
HAL Id: tel-04161093
https://theses.hal.science/tel-04161093

Submitted on 13 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Hashing to elliptic curves and cryptanalysis of
RSA-based schemes

Mehdi Tibouchi

To cite this version:
Mehdi Tibouchi. Hashing to elliptic curves and cryptanalysis of RSA-based schemes. Cryptography
and Security [cs.CR]. Université Paris Diderot (Paris 7); Université du Luxembourg, 2011. English.
�NNT : �. �tel-04161093�

https://theses.hal.science/tel-04161093
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Université Paris
Diderot
(Paris 7)

Université du
Luxembourg

Thèse de doctorat

Hachage vers les courbes elliptiques
et cryptanalyse de schémas RSA.

Spécialité : informatique

présentée et soutenue publiquement le 23 septembre 2011 par

Mehdi Tibouchi

pour obtenir le grade de

Docteur de l’Université Paris Diderot et de l’Université du Luxembourg

devant le jury composé de

Directeurs de thèse : Jean-Sébastien Coron (Université du Luxembourg, Luxembourg)
David Naccache (Université Paris II & ENS, France)

Rapporteurs : Pierrick Gaudry (CNRS & LORIA, France)
Igor Shparlinski (Macquarie University, Australie)

Examinateurs : Pierre-Alain Fouque (ENS, France)
Jean-François Mestre (Université Paris 7, France)
Tatsuaki Okamoto (NTT, Japon)
Jacques Stern (ENS, France)

Remerciements

Merci tout d’abord à Pierrick et Igor qui ont accepté la lourde tâche de relire ce
manuscrit, et à tous les membres du jury, qui ont bien voulu se libérer à cet horaire
inhabituel, et qui pour certains viennent de fort loin !

Merci encore à mes directeurs de thèse, David et Jean-Sébastien, qui m’ont accueilli
alors que j’étais un matheux naïf et non sans préjugés, et m’ont fait découvrir combien la
cryptographie est un domaine vaste, où l’on trouve des questions passionnantes aussi bien
théoriques que très proches des applications. Merci aussi pour nos réunions de recherches
itinérantes et toujours intéressantes, et pour leur soutien dans toutes sortes de projets,
scientifiques ou non.

Merci également à l’équipe de cryptologie de l’ENS, qui offre aussi bien un envi-
ronnement scientifique idéal où l’on jouit d’une grande liberté que la possibilité d’aller
découvrir le monde. Merci notamment à Damien, Pierre-Alain, Phong, Michel et Vadim,
tant pour nos discussions autour d’un tableau noir que pour celles, pas moins impor-
tantes, autour d’une pizza à Taormina ou des fraises au chocolat de CRYPTO. Merci à
tous les chercheurs de l’équipe, permanents, post-docs, doctorants ou plus jeunes, pour
l’ambiance toujours agréable au labo, et aux administratifs pour faire en sorte que tout
cela fonctionne (pensée particulière pour Joëlle, Valérie et Michelle, pour avoir supporté
mon côté tête-en-l’air).

Merci aussi aux collègues qui m’ont accueilli à Ingenico au début de cette thèse, en
particulier Éric, avec qui discuter de mathématiques est toujours un plaisir, et Thomas,
avec qui j’espère avoir encore l’occasion de prendre un verre sur Orchard Road ou à
Shibuya.

Merci aux collègues de NTT, auprès de qui j’ai passé six excellents mois de stage
et que j’aurai plaisir à rejoindre par la suite. Merci à Okamoto-san pour son accueil si
aimable, à Uchida-san pour sa prévenance et les discussions en français que nous avions
sur le Japon (ou inversement), à Yamamoto-san, Abe-san, Fujioka-san et bien d’autres
pour des discussions scientifiques toujours intéressantes, à Nishimaki-san et Sasaki-san
pour leur aide à la résidence de Sayamagaoka, et à Berkant et Daegun avec qui j’ai pu
partager l’expérience de la vie d’étranger au Japon.

Au cours de cette thèse, j’ai eu l’occasion de collaborer avec de nombreux co-auteurs.
Merci à tous : ce travail est le vôtre autant que le mien.

Merci à tous ceux qui ont permis que j’aie de quoi vivre pendant cette thèse : David
N., David P. et Damien, qui se sont démenés pour cela, Ingenico, NTT, l’ENS et le

i

Remerciements

projet ANR PACE, ainsi que le projet européen ECRYPT II et le ministère des Affaires
étrangères qui ont pris en charge certains de mes déplacements. Merci aussi à ceux
qui m’ont encouragé à entreprendre cette thèse ou m’ont soutenu au travers de débuts
administrativement délicats : David et Damien, Philippe Clarisse et les collègues de
Saint-Louis, Johan Yebbou, Louis Vogel et Chantal Ladoux, David Madore, Yazid Sabeg
et d’autres sans doute qui sont intervenus sans que j’en aie eu connaissance.

Et parce qu’il y a une vie en dehors du labo, merci enfin à ceux qui m’ont supporté
au quotidien pendant ces trois ans : mes parents bien sûr (et ça n’a pas dû être facile !) ;
Chantal Ladoux ; Viêt-Linh, JB et Jean-Rémy ; yaforum ; et mes compagnons de virées
du côté de la rue de la Michodière ou de Higashi-Ikebukuro.

ii

はるかまで旅してゐたり昼寝覚

森　澄雄

Sommaire

1 Introduction . 1
2 Présentation des travaux . 11

I Contributions à la cryptographie par courbes elliptiques 31
3 Hachage en temps constant vers les courbes (hyper)elliptiques 37
4 Estimation de la taille de l’image des encodages en temps constant 63
5 Hachage indifférentiable vers les courbes elliptiques 75
6 Encodages bien distribués . 99
7 Hachage et encodage vers les courbes hyperelliptiques impaires 115
8 Le modèle de Huff . 125

II Cryptanalyse de schémas fondés sur RSA 141
9 Cryptanalyse pratique des signatures ISO/IEC 9796-2 et EMV 149
10 Attaques par fautes sur les signatures EMV 175
11 Attaques par fautes sur le module contre les signatures RSA 191
12 Sur la sécurité du chiffrement PKCS#1 v1.5 209
13 Cryptanalyse de l’hypothèse RSA dans un sous-groupe 229
Table des matières . 243
Liste des figures . 245
Liste des tables . 246
Liste des algorithmes . 247
Bibliographie . 248

v

Chapitre 1
Introduction

1.1 Introduction à la cryptologie

L’usage de codes secrets, principalement dans les communications diplomatiques et mili-
taires, remonte à l’Antiquité (on en trouve déjà des traces dans l’Égypte du moyen empire,
puis en Grèce antique), où il était encore artisanal. Peu à peu, une compétition s’installe
entre les utilisateurs de codes secrets et ceux qui tentent de les percer : à partir du Moyen-
Âge, plusieurs traités sont ainsi écrits sur des techniques permettant de casser les codes
secrets (notamment l’analyse de fréquence à l’encontre des chiffrements par substitution
simple). L’étude des messages secrets se constitue progressivement comme une science, la
cryptologie, rassemblant ces deux aspects apparemment antagonistes : la cryptographie
d’une part, visant à élaborer des méthodes pour sécuriser les communications, et la
cryptanalyse d’autre part, visant à déceler des faiblesses dans ces méthodes.

Depuis quelques décennies, l’essor des télécommunications et le développement et la
miniaturisation des moyens de calcul ont permis à la cryptographie de dépasser le champ
militaire et d’investir notre vie quotidienne : des dispositifs aussi variés qu’un téléphone
mobile, une carte bancaire, un passeport biométrique et un navigateur web effectuent
des calculs cryptographiques, afin de garantir diverses propriétés de sécurité de leurs
communications.

Parmi les propriétés de sécurité auxquelles s’intéresse la cryptologie, on peut citer
l’intégrité des messages (lorsque l’on veut s’assurer qu’ils n’ont pas été altérés sur le
canal de transmission : par exemple quand on télécharge un fichier), leur authenticité
(lorsque l’on veut s’assurer que l’expéditeur est bien celui qu’il prétend : par exemple
qu’une transaction bancaire est bien réalisée par une carte de paiement autorisée) ou
encore leur confidentialité (lorsque l’on veut les garder secrets en dépit des personnes
pouvant espionner la communication : par exemple lorsque l’on consulte son courrier
électronique à distance). Le cryptographe propose des algorithmes à exécuter par les
différentes parties pour satisfaire ces propriétés de sécurité, et le cryptanalyste y cherche
des faiblesses.

Si par le passé il a pu être courant de chercher à dissimuler ou garder secret les

1

1. Introduction

algorithmes cryptographiques afin de compliquer la tâche du cryptanalyste, on reconnaît
désormais que ce genre de secret, qu’il faut nécessairement partager avec ses correspon-
dants, est peu robuste, et que l’impression de « sécurité par l’obscurité » est largement
illusoire. Selon le principe énoncé par Kerckhoffs en 1883, il convient qu’un système
cryptographique utilise des algorithme publics, qui n’utilisent eux-mêmes qu’une petite
quantité d’information gardée secrète : la clef. Si la clef est compromise, elle peut être
remplacée sans avoir à concevoir tout un nouveau système. De plus, cela permet à l’algo-
rithme d’être évalué publiquement : si un algorithme cryptographique public a résisté
longtemps aux tentatives d’attaques des cryptanalystes, on a davantage confiance en sa
sécurité qu’en celle d’un algorithme secret qu’aucun analyste n’a eu l’occasion d’étudier.

1.2 Cryptographie moderne

1.2.1 Clef symétrique et clef publique

Jusque dans les années 1970, il était entendu que la clef cryptographique était un secret
partagé entre l’expéditeur et le destinataire : les systèmes cryptographiques étaient alors
toujours symétriques, au sens où la même clef servait au deux parties.

Pour assurer la confidentialité, par exemple, on utilisait des systèmes de chiffrement
symétriques par blocs ; un tel système est la donné deux algorithmes, Ek et Dk, qui
constituent des familles de permutations inverses l’une de l’autre des chaînes de bits
d’une certaine longueur fixée (par exemple 64 ou 128 bits), indicées par la clef symétrique
k. L’expéditeur, Alice, désirant faire parvenir à Bob, avec qui elle partage une clef secrète
k, un certain message m d’une façon qui préserve la confidentialité, envoie alors le chiffré
(ou cryptogramme) c = Ek(m), et Bob, à la réception, retrouve m en déchiffrant c :
m = Dk(c).

Pourvu que les algorithmes Ek et Dk aient de bonnes propriétés de sécurité, cette
approche fonctionne très bien et est encore d’un usage courant aujourd’hui. Cependant,
elle présente certains défauts, notamment du point de vue de la distribution de clef.
Pour limiter l’impact de la compromission d’une clef, il est important que, dans une
organisation où les individus s’échangent des messages chiffrés, chaque personne utilise
une clef différente pour communiquer avec n’importe quelle autre. En cryptographie
symétrique, cela impose d’utiliser une clef différente pour chaque paire d’individus : dans
une organisation comptant plusieurs milliers de personnes, le nombre de clef à maintenir
se compte en millions, et devient donc rapidement ingérable.

D’autre part, il y a des primitives de sécurité intéressantes qui ne sont pas réalisables
en cryptographie symétrique. Par exemple, deux personnes partageant une clef commune k
peuvent s’assurer mutuellement de l’authenticité des messages qu’elle s’échangent (on peut
pour cela utiliser la primitive cryptographique appelée code d’authentification de message,
ou MAC). En revanche, elles ne peuvent pas convaincre un tiers de cette authenticité,
puisque lui-même ne dispose pas du secret k. On ne peut donc pas espérer apposer
une signature publiquement vérifiable sur un message en utilisant de la cryptographie
symétrique.

2

1.2. Cryptographie moderne

Ces limites ont pu être dépassées avec l’avènement de la cryptographie à clef publique,
proposée par Diffie et Hellman en 1976 [Hel76], et dont la première réalisation, peu de
temps après, est due à Rivest, Shamir et Adleman [RSA78].

En cryptographie à clef publique, l’expéditeur et le destinataire n’ont pas besoin de
partager de secret. Si Alice souhaite envoyer un messagem à Bob de manière confidentielle,
elle lui demande sa clef publique pk, une information qui n’a pas besoin d’être gardée
secrète, et applique un algorithme de chiffrement utilisant cette clef publique, pour
obtenir un chiffré c = Encrypt(pk,m). La clef publique, en revanche, ne permet pas de
retrouver m à partir de c. Il faut pour cela disposer de la clef privée sk de Bob, que
celui-ci garde secrète ; il est donc le seul à pouvoir retrouver m à partir de c, sous la
forme m = Decrypt(sk,m).

La cryptographie à clef publique simplifie ainsi grandement le problème de la distri-
bution de clefs : dans une grande organisation, il suffit d’une paire de clef (sk, pk) par
individu, et non plus d’une clef secrète par paire d’individus désirant communiquer : plus
besoin de millions de clefs pour quelques milliers de personnes !

De plus, comme l’avaient observé Diffie et Hellman, la cryptographie à clef publique
permet l’existence de signatures numériques. Dans ce contexte, Alice possède une clef de
signature secrète sk et une clef de vérification publique pk. La clef de signature permet
de construire une signature σ = Sign(sk,m) publiquement vérifiable à l’aide de pk :
Verify(pk, σ,m) = true si et seulement si σ est de la forme précédente. En revanche, la
connaissance de pk ne permet pas de retrouver sk, ni de produire des signatures. On
a donc un système dans lequel une signature est « opposable aux tiers » ; depuis une
dizaine d’années, elles ont d’ailleurs acquis la même valeur juridique en droit français
que les signatures papier (Code civil, art. 1316–4).

Malgré ces nombreux avantages, la cryptographie à clef publique possède un inconvé-
nient de taille : celui d’être, en pratique, sensiblement moins efficace que la cryptographie
symétrique. C’est pourquoi de nos jours on utilise souvent l’une et l’autre en conjonction :
pour chiffrer un long message, par exemple, on va souvent chiffrer une clef symétrique
aléatoire (clef de session) avec une clef publique, et chiffrer le long message lui-même
avec la clef de session, en utilisant un algorithme de chiffrement symétrique (c’est ce que
l’on appelle le chiffrement hybride).

Les travaux présentés dans ce manuscrit relèvent tous de la cryptologie à clef publique.

1.2.2 Problèmes difficiles
Un algorithme de chiffrement à clef publique est une fonction à sens unique : la fonction
qui à un message m associe le chiffré c = Encrypt(pk,m) doit être efficacement calculable
pour que le chiffrement soit utilisable, mais elle doit également être difficile à inverser,
puisqu’il ne doit pas être possible de retrouver publiquement m à partir de c. Or on ignore
s’il existe réellement des fonctions à sens unique : leur existence implique P 6= NP (en
tout cas si l’on interprète, comme on le fait habituellement, « efficace » comme signifiant
« polynomial »), ce qui est peut-être le plus célèbre problème ouvert en informatique
théorique.

Par conséquent, toute la cryptographie à clef publique est en fait heuristique ou

3

1. Introduction

conjecturale. Pour construire des primitives cryptographiques à clef publique, on doit
en général supposer que certains problèmes NP sont difficiles (non résolubles en temps
polynomial), sans que l’on sache pour le moment établir un tel résultat. Citons quelques
un des problèmes supposés difficiles les plus couramment utilisés dans la conception de
systèmes cryptographiques à clef publique.

Factorisation et RSA. Le premier algorithme de chiffrement à clef publique, proposé par
Rivest, Shamir et Adleman [RSA78], avait la forme suivante (que l’on appelle aujourd’hui
« textbook RSA »).

La génération de clef tire au hasard deux grands nombres premiers p et q, et les
multiplie pour obtenir le module public N = pq. Il est par ailleurs choisi (généralement
pas au hasard) un entier e premier à ϕ(N) = (p− 1)(q − 1) (et en particulier impair),
appelé exposant public. La clef publique pk est le couple (N, e). La clef privée sk est un
entier d inverse de e modulo ϕ(N).

Le chiffrement d’un message m ∈ Z∗N s’obtient alors simplement en élevant à la
puissance e : c = me mod N ; et le déchiffrement est l’élévation à la puissance d : m =
cd mod N en vertu du théorème d’Euler sur l’ordre multiplicatif des entiers modulo N .

Retrouver la clef privée d en connaissant la clef publique (N, e) est essentiellement
équivalent à factoriser N . En effet, si l’on connait p et q, on peut calculer ϕ(N) et
donc l’inverse de e modulo ϕ(N). Réciproquement, connaissant d et e, on peut arriver
à retrouver ϕ(N), ce qui fournit ensuite la somme p+ q = N − ϕ(N) + 1 et le produit
pq = N de p et q, et donc révèle la factorisation.

Or jusqu’à présent, on ne connaît pas d’algorithme efficace (disons polynomial)
pour factoriser le produit de deux grands nombres premiers : c’est l’un des problèmes
supposés difficiles les plus importants en cryptographie. Le meilleur algorithme connu
actuellement pour la factorisation de tels entiers date des années 1990 et est nettement
sous-exponentiel : il s’agit du crible algébrique [LJMP90].

Notons que le caractère « à sens unique » du textbook RSA, c’est-à-dire l’impossibilité
de retrouver m à partir de c (i.e. de calculer des racines e-ièmes modulo N) est a priori
un problème plus facile que la factorisation, que l’on appelle problème RSA : si l’on
sait factoriser N , on peut calculer des racines e-ièmes, mais on ne voit pas comment
factoriser N à l’aide d’un calcul de racines e-ièmes. Néanmoins, on ne connaît pas non plus
d’algorithme meilleur que la factorisation pour calculer des racines e-ièmes : l’équivalence
ou non du problème RSA avec la factorisation est un problème ouvert.

Le chiffrement textbook RSA n’est pas considéré comme sûr (le fait qu’il soit déter-
ministe, par exemple, l’empêche de satisfaire la propriété de sécurité importante appelée
indistinguabilité des chiffrés), mais l’on sait effectivement construire des systèmes de
chiffrement, de signature, et beaucoup d’autres primitives cryptographiques qui sont
sûrs si l’on suppose le problème RSA difficile, et ces primitives restent les plus utilisées
aujourd’hui dans les applications.

On peut également effectuer la plupart de ces constructions en supposant seulement la
factorisation difficile, en se fondant sur le système de Rabin (qui consiste essentiellement
à choisir e = 2 dans ce qui précède), au prix d’une certaine perte de simplicité ou

4

1.2. Cryptographie moderne

d’efficacité.
Toute la seconde partie de cette thèse est consacrée à l’analyse de systèmes crypto-

graphiques (principalement des schémas de chiffrement ou de signature) dérivés de RSA
ou de certaines de ses variantes.

Logarithme discret et problèmes Diffie-Hellman. Dans leur article marquant le départ de
la cryptographie à clef publique [Hel76], Diffie et Hellman n’ont pas construit de système
de chiffrement, mais ils ont proposé une construction pour une primitive différente :
l’échange de clef. Il s’agit pour Alice et Bob, communiquant sur un canal susceptible
d’être écouté, de dériver un secret commun (par exemple une clef de session) d’une façon
qui ne permette pas à un adversaire ayant espionné l’ensemble de la communication de
découvrir ce secret.

La méthode proposé par Diffie et Hellman est la suivante. On suppose fixés une fois
pour toute un grand nombre premier q, et un générateur g d’une grand sous-groupe G
d’ordre premier p de Z∗q . Alors Alice tire au hasard x ∈ Zp et envoie à Bob l’élément gx
de G. De même Bob tire au hasard y ∈ Zp et envoie à Alice gy. Ils peuvent alors tous les
deux calculer la valeur commune gxy = (gx)y = (gy)x.

L’adversaire espionnant la communication, Ève, peut alors casser le protocole si elle
est capable de calculer gxy à partir de gx et gy. Ce problème s’appelle CDH, ou problème
Diffie-Hellman calculatoire. On ne connaît pas de meilleure attaque que celle consistant à
retrouver x à partir de gx et de même pour y, ce qui constitue le problème du logarithme
discret (DL). L’algorithme le plus efficace connu pour le calcul du logarithme discret
dans Z∗q est d’une complexité équivalente à celle de la factorisation : c’est également un
algorithme de crible algébrique.

De nombreuses primitives cryptographiques ont été construites sur la base du loga-
rithme discret, du problème CDH, de sa variante décisionnelle DDH (i.e. distinguer le
triplet (gx, gy, gxy) de (gx, gy, gz)) ou de variantes plus exotiques : outre l’échange de clef,
de nombreux schémas de chiffrement, de signature ou d’identification sont basés sur ces
problèmes difficiles.

Bien que le groupe G considéré originellement par Diffie et Hellman est dans Z∗q , le
problème du logarithme discret et ses variantes ont un sens dans un groupe cyclique
arbitraire, et la plupart des constructions se transposent immédiatement à un autre
groupe sous réserve que ces problèmes y soient encore difficiles. Ce n’est pas toujours le
cas (par exemple le logarithme discret est très facile dans un groupe tel que le groupe
additif Zp lui-même), ou parfois ce n’est pas plus intéressant que Z∗q lui-même (par
exemple travailler dans un sous-groupe cyclique d’un groupe algébrique linéaire n’apporte
généralement rien en terme de sécurité). Mais le cas où G est un sous-groupe cyclique du
groupe des points d’une courbe elliptique sur un corps fini, envisagé dès 1985 par Koblitz
[Kob87] et Miller [Mil85], présente un intérêt tout particulier : on appelle cryptographie
par courbes elliptiques la cryptographie construite sur les problèmes difficiles précédents
dans un tel groupe.

La cryptographie par courbes elliptiques a d’abord été considérée avec une relative
méfiance, ou en tout cas prudence, par la communauté cryptologique. Des attaques

5

1. Introduction

Niveau de sécurité (bits) RSA/Corps finis Courbes elliptiques
80 1248 160
96 1776 192
112 2432 224
128 3248 256
256 15424 512

Table 1.1 : Comparaison des tailles de clefs pour RSA ou DL dans les corps finis d’une
part, et DL dans les courbes elliptiques d’autre part, pour divers niveaux de sécurité
[S+10a].

comme celle de Menezes-Okamoto-Vanstone [MVO91, MOV93], réduisant le problème
du logarithme discret sur certaines courbes elliptiques à celui dans le groupe multiplicatif
d’un corps fini, ont suscité une certaine circonspection. Cependant, à mesure que les efforts
pour casser le logarithme discret sur les courbes ordinaires se sont révélés infructueux,
et que l’arithmétique sur ces courbes s’est faite plus efficace, les courbes elliptiques ont
gagné la faveur des cryptographes. Mais c’est sans doute l’avènement de la cryptographie
à base de couplages, utilisant la structure bilinéaire du groupe des points de certaines
courbes, et permettant des constructions cryptographiques riches et totalement nouvelles
(comme le chiffrement à base d’identité de Boneh-Franklin [BF01] ou l’échange de clef
tripartite de Joux [Jou00]) qui a imposé les courbes elliptiques dans la communauté
académique.

Depuis lors, comme le logarithme discret et les problèmes apparentés semblent
toujours avoir une complexité exponentielle sur les courbes elliptiques là où elle est sous-
exponentielle dans les corps finis (comme la factorisation et RSA), les courbes elliptiques
ont suscité un vif intérêt industriel, en étant susceptible d’améliorer notablement les
performances des applications tant logicielles que matérielles grâce à des clefs plus courtes
(voir Tab. 1.1). L’usage des courbes elliptiques est désormais recommandé par des agences
comme la NSA [NSA05].

La première partie de cette thèse est consacrée à diverses contributions à la crypto-
graphie par courbes elliptiques.

Autres problèmes. De nombreux autres problèmes difficiles ont été envisagés pour la
construction de systèmes cryptographiques à clef publique, depuis les problèmes de sac
à dos (Merkle-Hellman [MH78]) ou des problèmes de décodage pour les codes linéaires
(McEliece [McE78]) jusqu’à la résolutions de grands systèmes polynomiaux (cryptographie
multivariée). Toutefois, la plupart de ces systèmes restent peu usités en pratique.

Une famille de problèmes qui s’est avérée particulièrement fructueuse pour la construc-
tion de primitives cryptographiques ces dernières années concerne les réseaux (les sous-
groupes discrets de Rn), où il peut s’agir par exemple de trouver un plus court vecteur
non nul, ou bien un plus proche vecteur à un point donné de l’espace vectoriel ambiant,
éventuellement à un certain facteur d’approximation près. Des constructions basées sur

6

1.2. Cryptographie moderne

ces problèmes ont été proposées pour la plupart des primitives dont on connaissait une
instanciation à base de couplages (chiffrement à base d’identité. . .), ainsi que pour de
toutes nouvelles primitives, notamment le chiffrement totalement homomorphe. Ces
constructions, même si elles sont parfois « asymptotiquement efficaces », utilisent en
général des paramètres trop grands pour envisager leur utilisation pratique, en particulier
dans les applications embarquées, mais elles revêtent une importance théorique certaine.
Par ailleurs, il existe un schéma de chiffrement à base de réseaux, NTRUEncrypt, ayant
reçu une normalisation ANSI pour des usages embarqués [ANSI X9.98].

Nous avons consacré quelques travaux à la cryptographie à base de réseaux, non
présentés dans ce manuscrit. On en mentionne certains au paragraphe §2.3.1.

1.2.3 Sécurité heuristique et sécurité prouvée
Quand peut-on dire qu’une certaine primitive cryptographique, par exemple un schéma de
chiffrement ou de signature, est sûre ? Aux débuts de la cryptographie à clef publique, la
réponse à cette question n’était pas claire. Par exemple, s’il est vrai que, sous l’hypothèse
que le problème RSA est difficile, il n’est pas possible en général de décrypter1 un chiffré
textbook RSA ; cependant, comme on l’a indiqué plus haut, ce schéma n’est pas considéré
comme sûr : il est ainsi possible de décrypter les chiffrés des messages courts, ou encore
de déterminer si deux chiffrés correspondent au même message clair.

En cherchant à porter une réponse assez générale à cette question, les cryptographes
des années 1980 ont été amenés à formaliser la cryptographie à clef publique en donnant
des définitions rigoureuses des propriétés de sécurité que l’on cherche à atteindre pour
différentes primitives, et en tentant de proposer des schémas satisfaisant ces propriétés.
Ainsi, pour le chiffrement, Goldwasser et Micali [GM82, GM84] ont dégagé la notion de
sécurité sémantique, ou d’indistinguabilité des chiffrés : un schéma de chiffrement satisfait
cette propriété lorsqu’un adversaire efficace ne peut obtenir aucun bit d’information sur
un message à partir d’un chiffré (ou de façon équivalente, étant donné un chiffré d’un
message parmi deux de son choix, il ne peut pas deviner duquel des deux messages c’est
le chiffré significativement mieux qu’en répondant au hasard : il est clair dit comme cela
qu’un chiffrement sémantiquement sûr ne peut pas être déterministe). Pour les signatures,
Goldwasser, Micali et Rivest [GMR84, GMR88] ont défini l’infalsifiabilité existentielle :
un adversaire ne possédant pas la clef de signature ne peut produire de signature sur
aucun nouveau message. Ces notions ont été largement reconnues par la suite comme
« les bonnes »,2 pourvu qu’il soit donné à l’adversaire des moyens suffisamment puissant
(l’accès adaptatif à un oracle de déchiffrement ou à un oracle de signature selon le

1Rappelons que « déchiffrer » un cryptogramme consiste à retrouver le message clair quand on
possède la clef privée, tandis que le « décrypter » consiste à faire de même sans la clef. Un algorithme
de déchiffrement relève de la cryptographie, tandis qu’un algorithme de décryptement relève de la
cryptanalyse.

2À tel point que les cryptographes théoriciens considèrent parfois qu’une attaque qui ne met pas en
défaut ces propriétés de sécurité « n’est pas une attaque », dans la mesure où elle ne fait pas partie du
« cahier des charges » de la primitive correspondante, et ce même si l’attaque en question peut être un
problème de sécurité dans un cas courant d’utilisation de la primitive. Une discussion un peu polémique
de cette question a récemment été donnée par Koblitz et Menezes [KM11].

7

1. Introduction

cas). Et des études similaires ont été conduites pour toute sorte d’autres primitives
cryptographiques.

Une fois définies rigoureusement les notions à atteindre, il a été possible de construire
des schémas et de prouver qu’ils les atteignaient, sous réserve qu’un certain problème soit
difficile. La forme que prennent ces démonstrations est celle d’une réduction de sécurité :
on suppose qu’il existe un adversaire efficace (polynomial) cassant la propriété voulue du
schéma avec probabilité non négligeable, et on montre que cet adversaire peut être utilisé
comme « sous-programme » pour résoudre efficacement le problème supposé difficile. Mais
comme le problème est supposé difficile, il ne peut être résolu efficacement, et l’adversaire
ne peut donc pas exister ! De cette manière, les articles cités précédemment exhibent des
schémas dont ils prouvent qu’ils satisfont les propriétés de sécurité voulues.

Cependant, la plupart des schémas « prouvés sûrs » proposés jusque dans les années
1990 (et un bon nombre de ceux proposés depuis lors également) étaient d’une efficacité
limitée, ou en tout cas insuffisante pour les applications. L’industrie et le grand public se
contentaient donc souvent de schémas ad hoc, c’est-à-dire conçus pour résister à un certain
nombre d’attaques connues, mais dont il n’était pas pour autant établi qu’il satisfaisait
les propriétés de sécurité souhaitables. Par exemple, pour construire des schémas de
chiffrement ou de signature RSA palliant les attaques simples décrites plus haut et
quelques autres de ce type, il a été proposé diverses constructions ad hoc appliquant la
fonction RSA non pas au message lui-même, mais à son image par fonction de remplissage
ou padding, pouvant par exemple consister à faire précéder le message d’un certain
nombre de bits d’aléa. Ces techniques sont beaucoup plus efficaces que celles utilisés dans
les schémas prouvés, mais il n’est pas démontré qu’elles sont sûres, et on y a souvent
découvert des faiblesses (c’est d’ailleurs l’un des buts de cette thèse).

Cette division entre une cryptographie théorique prouvée sûre mais inefficace et une
cryptographie pratique rapide mais à la sécurité incertaine s’est un peu réduite dans
les années 1990, notamment grâce à l’introduction par Bellare et Rogaway du modèle
de l’oracle aléatoire [BR93], dans lequel les fonctions de hachage cryptographiques sont
modélisées par des fonctionnalités idéales répondant uniformément au hasard à chaque
nouvelle requête. Des constructions bien plus efficaces qu’auparavant (et souvent aussi
efficaces que les constructions ad hoc) ont pu être prouvées sûres dans ce modèle. Une
telle preuve n’est pas aussi « solide » qu’une preuve dans le modèle standard, puisqu’il
n’existe pas de véritable oracle aléatoire, et qu’instancier un oracle aléatoire par une
fonction de hachage cryptographique réelle ne préserve la sécurité que de façon heuristique.
Cependant, un schéma prouvé sur dans ce modèle est certainement bien préférable à
un schéma ad hoc, et de fait, on n’a pas constaté d’attaque sérieuse sur ces nouvelles
constructions contrairement à celles qui les ont précédées.

Jusque dans les années 1990, les systèmes cryptographiques à clef publique qui
ont été consacrés par une agence de normalisation, ce qui est en général un préalable
nécessaire à une large adoption industrielle, étaient pour ainsi dire tous des schémas ad
hoc. S’agissant de RSA, on peut citer par exemple les paddings ad hoc [PKCS#1 v1.5],
[ISO9796–1] et [ISO9796–2]. Depuis les années 2000, des schémas prouvés dans le modèle
de l’oracle aléatoire ont également été normalisés (c’est le cas des paddings RSA comme

8

1.2. Cryptographie moderne

OAEP [BR94, ISO18033–2] pour le chiffrement et PSS [BR96, PKCS#1 v2.1] pour
les signatures), et on peut espérer que cela ouvre la voie à leur déploiement dans
les applications. Malgré tout, aujourd’hui encore, les schémas ad hoc demeurent les
plus utilisés, du fait des cycles de renouvellement assez lents de beaucoup d’applications
embarquées (comme les terminaux de paiement) et d’une certaine réticence des industriels
à faire évoluer leur code cryptographique (ce qui est coûteux) en l’absence d’attaque
directe sérieuse sur leur produit (et parfois même dans ce cas !).

9

Chapitre 2
Présentation des travaux

Les travaux présentés dans ce manuscrit appliquent diverses techniques d’algèbre et
d’arithmétiques aux deux versants de la cryptologie, construction et analyse, dans deux
directions distinctes qui correspondent également aux deux familles de cryptosystèmes à
clef publique sans doute les plus utilisés de nos jours : ceux fondés sur RSA d’un côté
et sur le logarithme discret dans les courbes elliptiques (ou les jacobiennes de courbes
algébriques) de l’autre.

Les travaux de construction, d’une part, concernent la cryptographie à base de
courbes algébriques, et plus particulièrement, pour l’essentiel, le problème précis de
l’encodage et du hachage à valeurs dans les courbes elliptiques ou les jacobiennes de
courbes hyperelliptiques. Nous avons notamment étudié certaines propriétés quantitatives
de diverses fonctions d’encodage vers les courbes, notamment la taille de leur image
ou leur probabilité de collision, et obtenu une construction satisfaisante (c’est-à-dire
indifférentiable d’un oracle aléatoire) de fonctions de hachage à partir de ces encodages.
Ces résultats utilisent principalement des méthodes d’arithmétique des corps de fonctions,
de géométrie des courbes et des surfaces, et de sommes de caractères. Toujours en
cryptographie à base de courbes elliptiques, nous avons également travaillé sur une
question d’implémentation : l’obtention de formules d’addition et de doublement sûres et
efficaces.

Les travaux de cryptanalyse, d’autre part, ont porté sur divers cryptosystèmes fondés
sur RSA, principalement des schémas de chiffrement et de signature. Nous avons en
particulier obtenu et mis en œuvre une attaque pratique à messages choisis sur la norme
ISO/IEC 9796-2 :2002 de signatures RSA, utilisée notamment par les cartes et terminaux
de paiement EMV. Sur cette même norme, nous avons également étudié et implémenté
une attaque physique par fautes. Plus généralement, nous avons travaillé sur un nouveau
type d’attaque par fautes sur les implémentations de schémas de signatures RSA utilisant
les restes chinois. Par ailleurs, nous avons obtenu de nouveaux résultats sur la sécurité
de la norme PKCS#1 v1.5 de chiffrement RSA, et une meilleure attaque sur les schémas
RSA utilisant de petits sous-groupes. Les outils employés vont des techniques de calcul
d’indice ou de réduction de réseaux à l’algorithmique efficace des polynômes de grand
degré.

11

2. Présentation des travaux

Le présent manuscrit rassemble ces différents travaux en deux parties selon cette
double distinction : cryptographie par courbes elliptiques, puis cryptanalyse de schémas
RSA. À ces deux familles de travaux s’ajoutent quelques résultats non présentés dans ce
manuscrit mais mentionnés à la fin de ce chapitre, et portant sur des questions telles que
le chiffrement totalement homomorphe.

2.1 Contributions à la cryptographie par courbes elliptiques

La première partie de ce manuscrit rassemble les travaux sur la cryptographie par courbes
elliptiques et hyperelliptiques, notamment sur l’encodage et le hachage vers les courbes.

2.1.1 Hachage en temps constant vers les courbes (hyper)elliptiques

Le problème principal considéré dans cette partie, et présenté plus longuement au
chapitre 3, est celui du hachage en temps constant vers les courbes elliptiques et hyperel-
liptiques. Comme mentionné plus haut, un certain nombre de protocoles cryptographiques
utilisant des courbes elliptiques, notamment basés sur les couplages, nécessitent de pou-
voir hacher dans le groupe G des points de la courbe : ils mettent en jeu une ou plusieurs
fonctions de hachage H : {0, 1}∗ → G envoyant des chaînes de bits quelconques vers la
courbe. Il en va ainsi du schéma de chiffrement basé sur l’identité de Boneh-Franklin
[BF01], des signatures courtes de Boneh-Lynn-Schacham [BLS01] et beaucoup d’autres
schémas de chiffrement, de signatures ou d’identification prouvés sûrs dans le modèle de
l’oracle aléatoire pour ces fonctions H.

Cependant, s’il est souvent raisonnable d’instancier un oracle aléatoire à valeurs dans
les chaînes de bits de longueur fixée par une fonction de hachage cryptographique, et
que l’on peut aisément en déduire des oracles aléatoires à valeurs dans des groupes tels
que Z∗p ou F∗q , obtenir un oracle aléatoire à valeurs dans le groupe des points d’une
courbe elliptique est en revanche plus délicat, et beaucoup de constructions naïves cassent
totalement la sécurité des protocoles où elles sont utilisées.

Une construction dont on peut prouver qu’elle fonctionne effectivement est l’algorithme
dit try-and-increment : partant d’une courbe elliptique E sur Fq donnée par son équation
de Weierstrass

E : y2 = x3 + ax+ b

on se donne un oracle aléatoire h : Fq×{0, 1} (ce que l’on peut instancier raisonnablement
en pratique) et l’on procède comme suit pour calculer l’image H(m) d’un message m. On
commence par faire précéder m d’un compteur c de longueur fixe initialisé à zéro, et l’on
évalue (x, b) = h(c‖m). Alors si x est l’abscisse d’un point dans G = E(Fq), on retourne
(x, y) où y est l’une des deux ordonnées correspondantes choisie en fonction du bit b ;
sinon, on incrémente le compteur c et on recommence. Si la longueur du compteur est
choisie suffisamment grande (supérieure à log2 k où k est le paramètre de sécurité), la
fonction H se comporte comme un oracle aléatoire, et peut donc être utilisée dans les
protocoles nécessitant de hacher vers les courbes elliptiques.

12

2.1. Contributions à la cryptographie par courbes elliptiques

Toutefois, la méthode try-and-increment a l’inconvénient que le temps de calcul de
l’algorithme dépend du message à hacher. Cela peut permettre à un attaquant physique
d’acquérir de l’information sur le message par chronométrage : c’est par exemple un
problème particulièrement sérieux pour les protocoles d’authentification à base de mot de
passe implémentés dans des dispositifs comme les passeports électroniques, où une telle
attaque peut révéler complètement un mot de passe après tout juste quelques exécutions
du protocole.

Pour cette raison, et parce que c’est sans doute plus efficace, on cherche à obtenir
une construction de fonctions de hachages vers les courbes elliptiques qui s’exécute
naturellement en temps constant. Une première étape dans cette direction consiste à
construire des « encodages » en temps constant, c’est-à-dire des fonctions Fq → E(Fq)
d’image grande et pouvant s’évaluer en temps constant (tous les cas connus de tels
fonctions sont en fait des fonctions algébriques, ou au moins « algébriques par morceaux »,
de petit degré). Pour certaines courbes particulières, notamment supersingulières, il
est assez facile d’exhiber de tels encodages, mais traiter le cas général est un problème
qui, après avoir essentiellement été formulé par Schoof en 1985 [Sch85], est resté ouvert
pendant une vingtaine d’années, jusqu’aux travaux de Skałba [Ska05] et surtout Shallue
et van de Woestijne [SvdW06]. À la suite de ces articles, une succession assez rapide
de résultats ([Ula07, Ica09, SH09, KLR10] et d’autres encore) a fourni une solution
raisonnablement efficace au problème de l’encodage vers toutes les courbes elliptiques, et
l’a étendu à un certain nombres de courbes de genre supérieur.

Partant d’un encodage f : Fq → E(Fq) et d’un oracle aléatoire h : {0, 1}∗ → Fq, on
obtient alors une fonction de hachage H(m) = f

(
h(m)

)
dont on peut montrer dans

beaucoup de protocoles particuliers qu’elle peut remplacer un oracle aléatoire à valeurs
dans G = E(Fq) en préservant la sécurité. Néanmoins, on peut trouver des protocoles
pour lesquels ce n’est pas le cas, et il est de fait assez facile pour la plupart des encodages
f de distinguer efficacement la fonction H d’un véritable oracle aléatoire, ce qui rend
difficile l’obtention d’un résultat général de composition.

Plusieurs résultats de cette thèse, mentionnés dans les quatre sections qui suivent,
ont pour objet d’éclairer ces questions et de combler certaines lacunes de ce programme.

2.1.2 Estimation de la taille de l’image des encodages en temps
constant [FT10b]

Un premier résultat sur l’étude des encodages en temps constant, présenté au chapitre 4
de ce manuscrit, porte sur le calcul du nombre de points dans leur image. Ce nombre
de point permet d’une part de constater qu’il existe des distingueurs simples entre la
construction H(m) = f

(
h(m)

)
visée plus haut et un oracle aléatoire, et joue par ailleurs

un rôle dans la qualité de la réduction de sécurité dans des constructions plus élaborées.
L’une des fonctions d’encodage en temps constant les mieux connues est par exemple

celle d’Icart [Ica09]. Dans cet article, Icart montre que cette fonction f , lorsqu’elle est
définie vers une courbe elliptique E sur Fq, a une image de taille au moins #f(Fq) > q/4.
Cependant, cette borne inférieure est assez grossière, et il donne un argument heuristique

13

2. Présentation des travaux

lui suggérant de conjecturer l’estimation bien plus précise :∣∣∣∣#f(Fq)−
5q
8

∣∣∣∣ 6 λ√q
pour une certaine constante λ universelle. On donne dans cette thèse une preuve de ce
résultat, qui repose sur l’interprétation de la fonction d’Icart comme une correspondance
algébrique entre E et la droite ainsi que sur le théorème de Chebotarev.

On montre également comment la méthode se généralise de manière naturelle aux
autres encodages (y compris ceux dérivés des travaux de Shallue, van de Woestijne et
Ulas, dont la structure géométrique est un peu plus compliquée puisqu’elle fait intervenir
deux correspondances algébriques au lieu d’une), et ramène le calcul de la taille de l’image
au calcul du groupe de Galois du corps de fonctions associé à l’encodage considéré (le
corps de fonctions de la courbe donnant la correspondance) vu comme extension du corps
de fonctions de la courbe elliptique. On effectue en particulier ce calcul pour la variante
de la fonction d’Icart en caractéristique 2, et pour l’encodage « SWU simplifié » introduit
en §3.5.4.

2.1.3 Hachage indifférentiable vers les courbes elliptiques [BCI+10a]

Comme mentionné plus haut, la construction H(m) = f
(
h(m)

)
, où f est un encodage

en temps constant vers le groupe G des points d’une courbe elliptique, ne peut pas
génériquement remplacer un oracle aléatoire à valeurs dans G en préservant la sécurité
dans le modèle de l’oracle aléatoire. Bien que cette construction soit suffisante dans
un certain nombre de protocoles, on peut en trouver d’autres où la sécurité est perdue
lorsque l’on utilise cette construction (nous donnons un tel exemple en §5.4.2).

Aussi avons-nous étudié en détails les conditions sur une fonction F garantissant que
la construction H(m) = F

(
h(m)

)
soit indifférentiable d’un oracle aléatoire au sens de

Maurer [MRH04], ce qui fournit aussitôt un résultat générique de composition (dans les
limites précisées par Ristenpart et al. [RSS11]). Nous avons dégagé la notion d’encodage
admissible comme condition suffisante et pratique à établir pour obtenir l’indifférentiabi-
lité : un encodage F : S → G est admissible lorsqu’il est calculable en temps polynomial
déterministe, efficacement échantillonnable (c’est-à-dire qu’il existe un algorithme effi-
cace donnant pour tout P ∈ G un antécédent par F presque uniformément distribuée
dans F−1(P)) et régulier (c’est-à-dire que si s est uniforme dans S, F (s) est presque
uniformément distribué dans G).

Les encodages en temps constant f : Fq → G vers les courbes elliptiques ne sont
pas eux-mêmes des encodages admissibles (sauf quelques exemples très particuliers,
comme l’encodage de Boneh-Franklin vers une certaine courbe supersingulière), mais
nous donnons deux méthodes permettant de construire un encodage admissible à partir
d’un tel f .

Une première méthode consiste à considérer F : Fq×Z/NZ→ G avec N = #G donnée
par F (u, v) = P + [v] ·G où G est un générateur de G (supposé cyclique). L’admissibilité
de F est assez aisée à établir pour tous les encodages f connus, mais la fonction de

14

2.1. Contributions à la cryptographie par courbes elliptiques

hachage qui en résulte :

H(m) = f
(
h1(m)

)
+ [h2(m)] · G

(où h1, h2 sont des oracles aléatoires indépendants vers Fq et Z/NZ) est assez peu efficace,
du fait de la multiplication de longueur pleine dans le groupe G, qui est en général au
moins un ordre de grandeur plus lente que l’évaluation de f .

Une seconde méthode plus efficace consiste à prendre F : Fq × Fq → G donnée par
F (u, v) = f(u) + f(v). La fonction de hachage qui en résulte est rapide, mais son
indifférentiabilité (l’admissibilité de F) est plus délicate à établir. La difficulté principale
consiste à montrer que la fonction F est régulière. Dans un premier premier temps,
nous n’avons pu obtenir cette régularité que pour la fonction d’Icart et sa variante
en caractéristique 2. L’idée de base, assez simple, consiste à dire que l’ensemble des
antécédents (u, v) d’un point P forme une courbe dans le plan, en général irréductible et
de genre borné, et donc de cardinal à peu près constant en dehors de quelques points
exceptionnels d’après la borne de Hasse-Weil ; cependant, faire effectivement fonctionner
cette idée de preuve nécessite de résoudre un certain nombre d’obstacles techniques assez
délicat qui rendent l’extension à d’autres fonctions que celle d’Icart malaisée.

En tout état de cause, nous avons obtenu à ce stade une construction vraiment
satisfaisante (sûre et efficace) de fonctions de hachage vers une large classe de courbes
elliptiques :

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
avec f l’encodage d’Icart et h1, h2 des oracles aléatoires indépendants à valeurs dans Fq.
Notre approche démontre que cette construction peut remplacer un oracle aléatoire à
valeurs dans G dans essentiellement tout protocole le nécessitant.

2.1.4 Encodages bien distribués [FFS+11]

Nous avons ensuite cherché à étendre cette construction satisfaisante à d’autres fonctions
f que celle d’Icart, et dans la mesure du possible à des courbes de genre supérieur.

Comme la méthode de preuve géométrique considérée précédemment s’avère imprati-
cable, nous avons introduit une nouvelle approche de nature arithmétique, décrite au
chapitre 6, permettant d’étudier les constructions de fonctions de hachage de la forme
plus générale :

H(m) = f
(
h1(m)

)
+ · · ·+ f

(
hs(m)

)
où f est l’un quelconque des encodages en temps constant proposés jusqu’ici, à valeurs
dans les courbes elliptiques et même hyperelliptiques (dans ce dernier cas, on plonge la
courbe dans sa jacobienne et l’addition est celle de la jacobienne). Nous sommes en mesure
d’établir que cette construction se comporte convenablement (i.e. est indifférentiable
d’un oracle aléatoire quand les hi sont des oracles aléatoires à valeurs dans Fq) dès que
s est supérieur au genre de la courbe d’arrivée (autrement dit, s > 2 pour une courbe
elliptique, s > 3 pour une courbe de genre 2, etc.). Nous retrouvons notamment les
résultats précédents sur la fonction d’Icart comme cas particulier et avec de meilleures

15

2. Présentation des travaux

constantes dans les inégalités, et ils s’étendent à tous les encodage en temps constant
connus, y compris vers les courbes de genre supérieur.

Afin d’établir ces résultats, nous introduisons la notion d’encodage bien distribué,
définie en termes d’un nouveau type de somme de caractères sur le groupe des points de
la jacobienne de la courbe d’arrivée. Si f est un encodage bien distribué, on obtient de
manière formelle des bornes de régularité sur les fonctions de la forme (u1, . . . , us) 7→
f(u1) + · · ·+ f(us). Il suffit alors de montrer que les encodages en temps constant que
l’on considère sont bien distribués, ce qui se ramène, à l’aide d’estimations classiques dues
à Weil et Bombieri [Wei95, Bom66], à une propriété géométrique relativement simple
(bien plus que celle considérée dans l’approche antérieure, car elle ne met en jeu que la
courbe associée à l’encodage, et non des variétés de dimension plus grande).

Au final, nous obtenons des fonctions de hachages efficaces vers toutes les courbes
elliptiques, et vers les jacobiennes de toutes les courbes hyperelliptiques pour lesquelles
une fonction d’encodage est connue, avec en outre des bornes fines sur la qualité des
réductions de sécurité.

2.1.5 Hachage et encodage vers les courbes hyperelliptiques
impaires [FT10a]

Un autre champ d’investigation dans le domaine du hachage vers les courbes est celui de
la construction des encodages en temps constant eux-mêmes. Nous y avons contribué en
passant dans le travail décrit au chapitre 5, en proposant plusieurs encodages efficaces
vers les courbes elliptiques sur les corps de caractéristique 3, et de façon plus substantielle
dans celui présenté au chapitre 7.

Ce dernier travail porte sur la construction d’une nouvelle famille de fonctions d’enco-
dages particulièrement simple et efficace vers une large classe de courbes hyperelliptiques
de genres arbitrairement grand, à savoir les courbes de la forme :

H : y2 = g(x)

où g est un polynôme impair. Nous appelons ces courbes H courbes hyperelliptiques
impaires. On en trouve de fréquents exemples dans la littérature s’agissant du calcul
efficace de leur fonction zêta ou de calculs efficaces de couplages, ce qui en fait de bons
candidats à diverses applications cryptographiques.

Notre nouvel encodage est presque une bijection de Fq dans H(Fq), ce qui rend très
simple l’obtention du hachage indifférentiable dans la jacobienne, en utilisant la propriété
de bonne distribution évoquée précédemment. Cela permet en outre de construire une
fonction d’encodage injective d’image grande dans la jacobienne, ce qui est utile pour des
applications telles que le chiffrement El Gamal.

L’encodage a également l’avantage de se calculer très efficacement, sans division ni
branchement, avec une seule exponentiation et quelques multiplications dans Fq. Cela en
fait sans doute l’encodage le plus rapide existant. De plus, il étend de manière significative
la famille des courbes hyperelliptiques pour lesquelles un encodage est connu, qui se
limitait jusqu’alors à un certain nombre de courbes de genre 2 et seulement quelques
courbes isolées en genre plus grand.

16

2.1. Contributions à la cryptographie par courbes elliptiques

2.1.6 Le modèle de Huff [JTV10]

Outre les questions de constructions de fonctions de hachage évoquées jusqu’ici, et
qui relèvent de la sécurité des protocoles, nous avons examiné au cours de cette thèse
un problème de cryptographie par courbes elliptiques relevant plus directement de
préoccupations d’implémentation : celui de l’obtention de formules d’addition et de
doublement rapides.

Les courbes elliptiques ont l’avantage sur les groupes multiplicatifs des corps finis
ou les groupes RSA d’avoir des tailles de paramètres plus petites à niveau de sécurité
égal. Cependant, l’arithmétique y est plus complexe : ainsi, pour une courbe en forme
de Weierstrass dont les points sont représentés en coordonnées de Jacobi, très utilisées
en pratique, une addition sur la courbe nécessite 16 multiplications dans le corps de
base, ce qui relativise le gain d’efficacité obtenu. De ce fait, de nombreuses « formes » de
courbes elliptiques ont été examinées dans le but de réduire ce nombre de multiplications
et d’obtenir une arithmétique plus efficace pour les applications cryptographiques. On
trouve ainsi dans la littérature des formules d’addition efficaces sur les courbes elliptiques
en forme d’intersection de Jacobi, de courbes de Hesse, de de Montgomery, de Doche-
Icart-Kohel, d’Edwards, etc.

Dans cette thèse, nous avons examiné un autre modèle introduit en 1948 par le
mathématicien Gerald Huff [Huf48], à l’origine pour l’étude d’un problème diophantien.
Nous avons pu déterminer l’ensemble des courbes elliptiques pouvant se mettre sous cette
forme (il s’agit des courbes ayant un sous-groupe isomorphe à Z/4Z× Z/2Z sur le corps
de base) et proposer des formules d’addition assez compétitives (en 11 multiplications
dans le corps de base, ce qui est proche du record détenu par les courbes d’Edwards),
possédant de plus des propriétés d’unification et d’indépendance en les paramètres de la
courbe utiles contre les attaques par canaux auxiliaires. En outre, nous avons obtenu des
formules relativement efficaces pour le calcul de couplages.

Ces résultats, ainsi que leurs extensions à des modèles analogues un peu plus généraux,
sont présentés au chapitre 8.

2.1.7 Problèmes ouverts et perspectives

On peut considérer la question de l’encodage et du hachage vers la plupart des courbes
elliptiques comme réglée de façon assez satisfaisante. Elle a d’ailleurs déjà trouvé certaines
applications industrielles, notamment dans le domaine des passeports électroniques
[CT11, CGIP11, BCI10b]. Il subsiste néanmoins un champ assez vaste de questions à
explorer, tant pratiques que théoriques.

Sur le plan pratique, on souhaiterait disposer de fonctions d’encodage aussi efficaces
que celle d’Icart ou que SWU simplifié pour toutes les courbes elliptiques, et notamment
des courbes de Barreto-Naehrig, très utiles dans les applications mettant en jeu des
couplages : le seul encodage connu vers ce type de courbes, celui plus général de Shallue
et van de Woestijne, est en effet sensiblement plus exigeant en calculs. De même, il serait
souhaitable de disposer d’algorithmes explicites efficaces et sans division, comme il en
existe pour la fonction d’Icart et pour notre encodage vers les courbes hyperelliptiques

17

2. Présentation des travaux

impaires, pour le calcul de chacun des différents encodages en temps constant—afin de
s’assurer qu’ils se calculent effectivement en temps constant ! Comme la résistance aux
attaques physiques est l’un des buts de ces encodages, il est également souhaitable que
les algorithmes ne contiennent pas de branchement conditionnel.

D’un point de vue beaucoup plus théorique, un problème intéressant serait de formuler
et d’établir des résultats d’impossibilité dans un groupe générique : il ne devrait pas
être possible de construire des fonctions de hachage comme on le fait dans cette thèse
sans utiliser la représentation particulière du groupe d’arrivée. On peut par exemple
raisonnablement conjecturer qu’il n’existe pas d’encodage admissible de {0, 1}poly(N) dans
un groupe générique G de cardinal N . Un tel résultat pourrait généraliser le résultat de
Shoup sur la difficulté générique du logarithme discret [Sho97].

À mi-chemin entre le très pratique et le très théorique, on peut constater que les
constructions de fonctions d’encodage dont on dispose semblent assez disparates et très ad
hoc. On aimerait pouvoir dégager des principes généraux derrière la profusion de formules
(ce qui permettrait peut-être en outre de construire des encodages vers de plus larges
classes de courbes hyperelliptiques). Un premier pas dans cette direction a récemment
été franchi par Couveignes et Kammerer [CK11], qui ont pu donner une description
géométrique élégante et unifiée de trois fonctions d’encodage semblables à celle d’Icart,
mais qui ne semblaient pas jusqu’alors naturellement liées. Cependant, cette approche ne
semble pas se généraliser davantage, et en particulier elle n’admet pas d’analogue évident
en genre supérieur. Une autre piste pourrait passer par le constat, dû à Ritzenthaler, que
la correspondance algébrique associée à une fonction d’encodage (au moins de « type
Icart ») est, d’après un résultat de Guralnick et al., un revêtement exceptionnel de la
droite projective, et que ces revêtements admettent une classification combinatoire plus
ou moins explicite.

Enfin, une autre voie à explorer sur le plan tant théorique que pratique est celui de
la construction d’encodages injectifs. Nous en avons donné un exemple à valeurs dans
les jacobiennes de courbes hyperelliptiques impaires, mais le problème de construire de
tels encodages reste grand ouvert même pour la plupart des classes d’isomorphismes
de courbes elliptiques. Le résultat le plus fort à ce jour dans cette direction est dû à
Farashahi [Far11], qui obtient une fonction d’encodage injective vers toutes les courbes
de Hesse (i.e. possédant un point d’ordre 3) sur les corps Fq avec q ≡ 2 (mod 3), qui
atteint environ la moitié des points. Il serait intéressant d’aller plus loin.

S’agissant par ailleurs des courbes de Huff, on peut noter que leur généralisation
en caractéristique 2, présentée dans cette thèse, admet des formules d’addition et de
doublement particulièrement efficaces, exhibées par Devigne et Joye [DJ11], qui en font
le modèle binaire le plus rapide actuellement. On peut certainement espérer améliorer
également les formules que nous donnons pour le calcul de couplages.

Sur une note plus mathématiquement curieuse, le modèle de Huff a ceci d’assez
remarquable qu’il manifeste le fait que la courbe modulaire X1(4, 2), qui paramétrise les
courbes elliptiques contenant 8 points rationnels formant un sous-groupe isomorphe à
Z/4Z× Z/2Z, est de genre 0. En effet, il existe un isomorphisme évident entre P1 et la
famille des courbes de Huff, et comme ces courbes ont bien les 8 points rationnels requis,

18

2.2. Cryptanalyse de schémas fondés sur RSA

on en déduit un morphisme non trivial P1 → X1(4, 2). Il serait intéressant d’obtenir un
modèle similaire (et si possible d’un niveau comparable de simplicité) associé à toutes
les courbes modulaires X1(m,n) de genre 0. Le problème est, semble-t-il, partiellement
ouvert, et pourrait avoir des applications pratiques à des questions comme l’optimisation
pratique de l’algorithme de factorisation ECM.

2.2 Cryptanalyse de schémas fondés sur RSA
La seconde partie de ce manuscrit rassemble les travaux de cryptanalyse à l’encontre de
divers schémas de signature et de chiffrement RSA, dont plusieurs paddings normalisés.
Ces attaques sont pour certaines « en boîte noire » et pour d’autres des attaques physiques
ou supposant un accès à un oracle spécifique.

2.2.1 Cryptanalyse pratique des signatures ISO/IEC 9796-2 et
EMV [CNTW09]

Le premier de ces travaux, présenté au chapitre 9, concerne le padding ISO/IEC 9796-2
pour les signatures RSA avec récupération partielle de messages, utilisé notamment dans
les cartes et terminaux de paiement EMV. Il se fonde sur une attaque antérieure en
falsification existentielle par messages choisis, due à Coron, Naccache et Stern [CNS99],
sur une version précédente de la norme [ISO9796–2], et qui avait conduit à sa révision.

Nous avons proposé un certain nombre d’améliorations algorithmiques importantes
à la technique de Coron-Naccache-Stern, qui nous ont permis d’élaborer et de mener à
bien une attaque pratique sur la version alors valide de la norme [ISO9796–2 :2002].

Concrètement, notre attaque, comme celle de Coron-Naccache-Stern, est basée sur
l’observation suivante de Desmedt et Odlyzko [DO85]. Considérons un padding RSA µ
encodant des messages m en des entiers µ(m) relativement courts et d’apparence aléatoire
(par exemple µ = SHA-1), et montrons comment on peut espérer falsifier les signatures
RSA utilisant µ :

1. On se fixe une borne B et on pose P = {p1, . . . , p`} l’ensemble des nombres premiers
inférieurs à B.

2. En essayant des messages mi au hasard, on fait en sorte d’en trouver τ > `+ 1 tels
que µ(mi) ait tous ses facteurs premiers dans P (c’est-à-dire qu’il soit B-friable).

3. En résolvant le système linéaire dans Z/eZ (e étant l’exposant public RSA) donné
par les exposants des mi dans la décomposition en facteur premier sur la base P, on
peut alors exprimer l’un des µ(mj) comme combinaison multiplicative des µ(mi) pour
i 6= j : c’est analogue à l’étape d’algèbre linéaire des algorithmes de calcul d’indice ou
de crible algébrique.

4. Cela fait, on peut obtenir par requête à un oracle les signatures des messages mi pour
i 6= j, et en déduire la signature de mj .

19

2. Présentation des travaux

La complexité de cette attaque dépend principalement de la probabilité pour qu’un
nombre de la taille de µ(m) soit B-friable, et de la complexité du test de friabilité :
c’est pourquoi si µ(m) est trop grand, l’attaque peut être nettement plus lente que la
factorisation du module RSA lui-même ! Par exemple, la probabilité qu’un nombre de
1024 bits soit 225-friable est d’environ 2−247, donc l’attaque est inutile contre le Full
Domain Hash avec un module de 1024 bits. En revanche, la probabilité qu’un nombre
de 100 bits soit 225-friable est d’environ 0.5%, de sorte que l’on peut aisément trouver
` ≈ 225/ log(225) ≈ 221 tels nombres et mener l’attaque si µ se comporte comme un oracle
aléatoire de longueur 100 bits !

Le padding µ défini par la norme ISO/IEC 9796-2 est de longueur pleine, donc
l’attaque de Desmedt-Odlyzko ne peut pas s’appliquer directement. En revanche, Coron,
Naccache et Stern ont observé que pour certains messages mi bien choisis, les entiers
ti =

(
28 · µ(mi)

)
mod N étaient assez courts (de taille kh + 16 bits, où kh est la taille

de sortie d’une fonction de hachage utilisé dans le padding), et il est facile d’adapter la
technique précédente pour qu’elle s’applique aux ti plutôt qu’aux µ(mi). Cela suffisait
pour traiter le cas kh = 128 prévue par la version d’origine de la norme. En revanche, la
version révisée, imposant kh > 160, était hors de portée d’une attaque pratique.

Notre travail a consisté à améliorer cette approche pour réussir à attaquer la version
révisée. Les techniques employées sont les suivantes :

• l’utilisation d’un algorithme « par lots » dû à Bernstein [Ber04a] pour le test de
friabilité, beaucoup plus efficace en pratique que l’algorithme naïf ;

• l’utilisation d’une variante « avec grand premier » pour la friabilité, comme dans les
implémentations modernes des algorithmes de factorisation ou de logarithme discret ;

• un choix plus judicieux de constante à la place du 28 dans la définition des ti, qui
permet de réduire leur taille de kh + 16 à kh + 8 environ ;

• une recherche exhaustive sur les bits de poids faible et forts des valeurs de hachage
mis en jeu, qui permet d’équilibrer les vitesses respectives du calcul de hachage et du
test de friabilité.

On obtient avec ces différentes méthodes une accélération d’un facteur de plusieurs
milliers, qui a permis d’attaquer [ISO9796–2 :2002] en environ 1000 heures CPU (et deux
jours réels) sur le « nuage » Amazon EC2, pour un coût total de 800 USD. Nous estimons
qu’une attaque sur les signatures formatées selon les spécifications EMV, avec la même
technique, aurait un coût de 45 000 USD sur les mêmes machines Amazon.

Cette nouvelle attaque a conduit à la publication d’une nouvelle révision de la norme
ISO/IEC 9796-2 fin 2010 [ISO9796–2 :2010].

2.2.2 Attaques par fautes sur les signatures EMV [CNT10]

Nous avons également étudié, dans un travail présenté au chapitre 10, la sécurité de la
norme ISO/IEC 9796-2 et des spécifications EMV du point de vue des attaques physiques,

20

2.2. Cryptanalyse de schémas fondés sur RSA

et plus précisément des attaques par fautes. Dans ce modèle, l’adversaire a accès au
dispositif physique de signature (tel qu’une carte à puce), et est en mesure de le manipuler,
à l’aide par exemple de pics électriques ou de flashes laser, pour provoquer des erreurs
dans le calcul d’une signature.

Les attaques par fautes ont été introduites par Boneh, DeMillo et Lipton en 1997
[BDL01]. Ils ont montré notamment que les signatures RSA, en particulier lorsqu’elles
sont calculées en utilisant le théorème des restes chinois (ce qui est presque toujours le cas
en pratique, a fortiori dans les applications embarquées), sont très souvent vulnérables à
ce type d’attaques. Une unique signature fautive produite par un dispositif non protégé
peut suffire à révéler la clef secrète ! Depuis lors, les attaques par fautes sur les signatures
RSA et le contremesures à ces attaques ont constitué un sujet de recherche actif.

Cependant, l’attaque de Boneh et al. n’est pas directement applicable aux signatures
ISO/IEC 9796-2 ou EMV, car une partie de l’information utilisée pour calculer ces
signatures n’est pas accessible à l’adversaire (soit parce qu’elle est choisie aléatoirement
au moment de la génération de signatures, soit parce qu’elle est retrouvée au moment de
la vérification—sous réserve que la signature soit correcte !).

À CHES 2009, Coron, Joux, Kizhvatov, Naccache et Paillier [CJK+09] ont montré
comment l’attaque de Boneh et al. pouvait malgré tout se généraliser aux signatures
ISO/IEC 9796-2, pourvu que la partie du message encodé inconnue de l’adversaire soit
suffisamment courte. L’idée est de retrouver les chaînes de bits inconnues comme des
petites racines modulaires d’un polynôme multivarié, à l’aide de variantes multivariées de
l’algorithme de Coppersmith [Cop97]. Toutefois, les restrictions de taille sur ces chaînes
de bits inconnues sont très fortes, ce qui limite significativement la portée de cette attaque
en pratique.

Notre contribution a consisté à proposer une approche très différente pour retrouver
ces chaînes de bits inconnues, en utilisant plusieurs signatures fautives simultanément, et
en en déduisant les parties inconnues avec techniques de réseaux orthogonaux introduites
par Nguyen et Stern [NS97, NS98]. Nous montrons que cette approche permet de traiter
aisément et très efficacement des chaînes inconnues d’une longueur pouvant aller jusqu’à
la moitié de la taille du module.

Sur un exemple pratique de format de signature EMV dépassant de très loin ce
qui pouvait être traité avec l’attaque précédente, nous montrons qu’avec notre nouvelle
attaque, une dizaine de signatures fautives suffisent à retrouver la clef secrète en une
fraction de seconde.

2.2.3 Attaques par fautes sur le module contre les signatures
RSA [BNNT11a, BNNT11b]

Toujours en matière d’attaques par fautes contre les signatures RSA utilisant le théorème
des restes chinois, nous avons proposé un nouveau type d’attaque, qui s’écarte de la
tradition des attaques dérivées de celle de Boneh et al.. Ce travail est présenté au
chapitre 11.

L’attaque par fautes traditionnelle de Boneh et al. consiste à perturber l’exponentiation

21

2. Présentation des travaux

modulo l’un des deux facteurs du module RSA lors de la génération de signature, et
en réponse à cette attaque, de nombreuses contremesures protègent l’exposant RSA
privé. Nous montrons dans ce travail que l’on peut mettre en œuvre une attaque par
fautes récupérant la clef privé en perturbant plutôt le module RSA public juste avant
l’interpolation par les restes chinois. C’est une approche très différente, nécessite des
contremesures a priori différentes.

Notre nouvelle attaque est, comme celle décrite précédemment, basée sur les techniques
de réseaux orthogonaux de Nguyen et Stern, et nous montrons qu’elle est très efficace
en pratique. Selon le modèle de fautes considéré, 5 à 45 signatures fautives suffisent à
retrouver la clef privée en quelques secondes au plus. Dans sa version la plus simple,
l’attaque nécessite que l’adversaire connaisse le module fautif, mais des versions plus
sophistiquées fonctionnent même lorsque ce module fautif est inconnu, pourvu que les
fautes respectent une forme raisonnable.

Tant l’attaque dans ses diverses variantes que les modèles de fautes considérés ont
fait l’objet d’une validation expérimentale complète, à l’aide d’injections de fautes par
laser sur un microcontrôleur 8 bits très commun.

2.2.4 Sur la sécurité du chiffrement PKCS#1 v1.5 [BCN+10]
Outre les signatures RSA, nous nous sommes également intéressés à la sécurité de certains
paddings de chiffrement RSA. En particulier, dans le travail présenté au chapitre 12, nous
avons proposé plusieurs nouvelles attaques sur le chiffrement PKCS#1 v1.5, un schéma
dont l’utilisation est aujourd’hui déconseillée mais qui reste l’un des plus répandus en
pratique. Nous obtenus deux résultats principaux.

Le premier peut être vu comme un prolongement théorique de l’attaque de Bleichen-
bacher [Ble98], qui permettait de décrypter n’importe quel chiffré PKCS#1 v1.5 à l’aide
d’un nombre important (de l’ordre du million) de requêtes adaptatives à un oracle un peu
particulier permettant de déterminer si un entier donné était un chiffré PKCS#1 v1.5
valide. De telles attaques « à oracle » sont parfois considérées comme peu problématiques
en pratique, mais Bleichenbacher a montré que beaucoup d’implémentations du protocole
SSL à l’époque se comportaient précisément comme un tel oracle, en délivrant un message
d’erreur en cas de chiffré invalide, ce qui permettait de retrouver en pratique une clef de
session SSL en quelques centaines de milliers ou quelques millions d’interaction avec le
serveur. Notre nouvelle attaque utilise le même type d’oracle de validité, mais pour casser
l’indistinguabilité des chiffrés plutôt que le caractère à sens unique de PKCS#1 v1.5.
C’est en un sens plus faible, mais nous montrons qu’il suffit pour cela d’une unique
requête à l’oracle plutôt que d’un million.

L’autre résultat cryptanalytique, assez différent, que nous obtenons, concerne la
sécurité broadcast du chiffrement PKCS#1 v1.5, c’est-à-dire lorsqu’un même message
est chiffré à destination de plusieurs utilisateurs. Ce type de modèle d’attaque avait
été considéré par Håstad [Hås88] dans les années 1980 pour des paddings qui sont des
fonctions polynômes déterministes du message à chiffrer. Nous étendons cette attaque au
cas du padding probabiliste PKCS#1 v1.5. L’idée est de retrouver, connaissant plusieurs
chiffrés d’un même message pour des destinataires différents, les aléas utilisés pour chacun

22

2.2. Cryptanalyse de schémas fondés sur RSA

des chiffrés en même temps que le message. Nous utilisons pour cela une généralisation
multivariée des techniques de Coppersmith, et particulièrement la méthode de Jochemsz
et May [JM06] pour la construction du réseau à réduire. En particulier, nous pouvons
au moins en principe retrouver un message clair de 936 bits en connaissant un chiffré
PKCS#1 v1.5 pour chacun de 4 destinataires différents utilisant des clefs de 1024 bits.

2.2.5 Cryptanalyse de l’hypothèse RSA dans un sous-groupe [CJM+11]
Le dernier résultat exposé dans ce manuscrit, au chapitre 13, s’intéresse non pas à un
schéma de signature ou de chiffrement RSA particulier, mais plutôt à la réfutation d’une
hypothèse de sécurité liée à RSA et sur la base de laquelle Groth a proposé en 2005 la
construction de diverses primitives cryptographiques [Gro05].

Groth considère des modules RSA particuliers de la forme :

N = p · q = (2p′r + 1) · (2q′s+ 1)

où p, q, p′ et q′ sont premiers, avec p′, q′ relativement petits. Il existe alors un sous-groupe
G de Z∗N d’ordre p′q′ dont on publie un générateur g avec le module N . Tout le reste, y
compris l’ordre p′q′ de g, est gardé secret. L’hypothèse est alors que la fonction RSA est
difficile à inverser dans G.

La meilleure attaque considérée par Groth (outre la factorisation de N) considérée
sur cette hypothèse a pour complexité O(p′), ce qui lui permet de proposer un choix de
paramètres dans lequel p′ et q′ sont de l’ordre de 100 bits.

Nous montrons qu’il existe en réalité une attaque permettant de factoriser N connais-
sant le couple (N, g) en temps Õ(

√
p′), ce qui casse le choix de paramètres précédents avec

un nombre d’opération de l’ordre de 250 : cela rend ce choix de paramètres potentiellement
peu sûr, et a conduit Groth a réviser notablement à la hausse ses prescriptions.

Cette nouvelle attaque consiste essentiellement à appliquer l’algorithme « pas de bébé,
pas de géant » dans le groupe G, en utilisant un calcul de PGCD comme test d’égalité.
Nous en fournissons une implémentation asymptotiquement efficace, utilisant notamment
les techniques de Bostan et Schost pour l’évaluation et l’interpolation de polynômes de
grand degré [BS05].

Il faut toutefois noter que, comme il se doit pour une variante du « pas de bébé, pas
de géant », la complexité en espace de l’algorithme est aussi en O(

√
p′), ce qui limite la

portée pratique de l’attaque. Imaginer une variante en espace constant, à la manière de
l’algorithme lambda de Pollard, est un problème ouvert intéressant.

2.2.6 Factorisation de nombres RSA déséquilibrés partiellement
connus [BNT09]

Un travail supplémentaire non présenté en détails dans ce manuscrit a concerné la
factorisation des entiers RSA déséquilibrés (ayant un facteur beaucoup plus grand que
l’autre), popularisés par un célèbre article de Shamir dans CryptoBytes [Sha95].

Plus précisément, il s’est agi de déterminer dans quelle mesure la connaissance d’une
sous-chaîne de bits du grand facteur premier p permet de factoriser un nombre RSA

23

2. Présentation des travaux

déséquilibré N = pq en temps polynomial. On peut interpréter cette question tant comme
un problème théorique sur la complexité de la factorisation avec oracle que comme
une préoccupation pratique sur la sécurité de RSA dans des implémentations physiques
présentant des fuites ou pouvant faire l’objet d’attaques de type cold boot.

Nous établissons que la connaissance de 2dlog2 qe bits consécutifs de p suffisent à
factoriser N = pq en temps polynomial, quelle que soit la position de cette chaîne de bits.
Par ailleurs, nous pouvons montrer que selon la position de la chaîne, un nombre plus
faible de bits peut suffire.

Ces résultats sont à nouveau obtenus par une technique de type Coppersmith multiva-
rié. Plus précisément, nous montrons que la factorisation peut se ramener à la résolution
d’une équation quadratique de la même forme que celle de Boneh et Durfee [BD00], dont
on sait prouvablement retrouver les petites racines d’après les résultats de Bauer et Joux
[BJ07].

2.2.7 Falsification de signatures RSA à padding affine [CNT11a]

Un autre résultat un peu particulier, et non repris en détails dans ce manuscrit, a concerné
l’étude des paddings affines pour les signatures RSA. Ces paddings, sans doute les plus
simples qu’on puisse imaginer, encodent un message m à signer par RSA sous la forme
µ(m) = ω ·m+ a pour certaines constantes ω, a données.

Parce qu’ils sont si simples, ils ont fait l’objet d’une étude assez approfondie depuis
les années 1980. Il s’avère que si la taille permise pour m est une trop grande fraction de
la taille du module, on peut construire en temps polynomial des relations multiplicatives
entre les paddings de plusieurs messages, et donc construire des falsifications. Une série
de publications [dJC85, GM97, BCCN01] a progressivement réduit cette fraction de 2/3
à 1/2 puis 1/3, meilleure borne connue aujourd’hui. Cependant, on conjecture que cette
borne devrait pouvoir être encore améliorée, par exemple à 1/4 de la taille du module.
Ce problème reste ouvert depuis une décennie.

Sans fournir une solution à ce problème ouvert, nous donnons un certain nombre
de résultats nouveaux tentant d’avancer dans cette direction en tirant de nouvelles
conséquences des méthodes de fractions continuées de Brier et al. [BCCN01].

Nous montrons tout d’abord qu’il est possible de falsifier en temps polynomial des
signatures à padding affine sur des messages dont l’entropie est 1/4 de la taille du module,
bien qu’ils soient de longueur plus grande que cette fraction. Nous montrons également
comment on peut construire en pratique (en temps superpolynomial mais bien plus
rapide que celui nécessaire à factoriser le module) une relation multiplicative entre quatre
messages dont les longueurs sont respectivement 1/4, 1/4, 1/4 et 3/8 de la taille du
module.

Nous montrons également que des falsifications à 1/4 peuvent être obtenues en temps
polynomial dans des scénarios particuliers, notamment lorsqu’il est possible de signer
avec deux paddings affines indépendants, ou encore lorsque les bits de poids fort du
module sont choisis de façon malveillante.

24

2.3. Autres travaux

2.2.8 Problèmes ouverts et perspectives
Bien que la communauté cryptologique s’accorde à ne plus recommander que l’utilisation
de paddings RSA prouvés, leur adoption industrielle reste modeste. Par conséquent, la
cryptanalyse des paddings RSA ad hoc, bien qu’elle soit un sujet de recherche moins actif
qu’il y a quelques années, demeure très pertinente, et nombre de schémas à la sécurité
qu’on peut considérer « suspecte » n’ont pas encore fait l’objet d’attaques pratiques.
On peut par exemple citer l’exemple des signatures PKCS#1 v1.5, qui à l’inverse du
chiffrement PKCS#1 v1.5 ou des signatures ISO/IEC 9796-2 n’ont pas encore été cassées.
Il est concevable que certaines des techniques utilisées dans cette thèse puissent s’y
appliquer, même si l’angle d’attaque semblent pour le moment nous échapper.

S’agissant des attaques par fautes, les attaques sur le module que nous avons in-
troduites ne peuvent avoir qu’un impact pratique limité sous leur forme actuelle car
elles ne s’appliquent pas lorsque l’interpolation par les restes chinois s’effectue par la
formule de Garner, ce qui est très souvent le cas dans les applications. Il serait très
intéressant d’essayer de généraliser ce nouveau type d’attaques à une implémentation des
signatures RSA protégée selon l’état de l’art. D’autre part, l’idée de perturber le module
semble pouvoir s’appliquer de manière fructueuse à d’autres contextes, comme celui du
logarithme discret aussi bien dans un corps fini que sur une courbe elliptique : il y a là
aussi des pistes intéressantes à explorer.

2.3 Autres travaux
Nous avons par ailleurs mené quelques travaux qui ne s’inscrivent pas dans l’un des
deux grands axes esquissés jusqu’ici, principalement parce qu’ils ne relèvent pas de l’un
des deux problèmes difficiles que sont RSA et le logarithme discret dans les courbes
elliptiques. Ces travaux ne sont pas présentés en détails dans ce manuscrit, mais nous en
donnons les grandes lignes ci-après.

2.3.1 Chiffrement totalement homomorphe sur les
entiers [CMNT11, CNT11b]

L’une des avancées théoriques les plus marquantes en cryptographie ces dernières années
a certainement été la construction par Gentry en 2009 du premier schéma de chiffrement
totalement homomorphe [Gen09].

Un schéma de chiffrement à clef publique est dit homomorphe lorsqu’il permet de
calculer publiquement sur des données chiffrées. Par exemple le chiffrement « textbook
RSA » est multiplicativement homomorphe car connaissant les chiffrés de deux entiers,
on peut calculer un chiffré de leur produit (à savoir le produit des chiffrés) sans avoir
à déchiffrer ni connaître la clef privée. De la même façon, le chiffrement de Paillier est
additivement homomorphe, et ainsi de suite.

Dès 1978, alors que RSA avait à peine été inventé, Rivest, Adleman et Dertouzos
[RAD78] ont imaginé qu’il puisse exister un schéma de chiffrement totalement homo-
morphe, c’est-à-dire pour lequel on puisse appliquer aux chiffrés non pas juste des additions

25

2. Présentation des travaux

ou juste des multiplications, mais n’importe quelle fonction efficacement calculable. Un
tel schéma aurait de nombreuses applications pratiques, permettant notamment de sous-
traiter des calculs à des serveurs distants sans que ces serveurs n’acquièrent d’information
sur les données traitées, qui peuvent rester confidentielles. Un tel scénario semblait
attirant en 1978, et l’est encore davantage de nos jours à l’heure du cloud computing.
Toutefois, Rivest et al. ne sont pas parvenus à exhiber de schéma sûr satisfaisant cette
propriété, et le problème est resté ouvert pendant plus de 30 ans jusqu’aux travaux de
Gentry.

Depuis, plusieurs schémas ont été proposés : celui original de Gentry, dont la sécurité
est basée sur des problèmes de réseaux idéaux (ICP), celui de van Dijk, Gentry, Halevi et
Vaikuntanathan [vDGHV10] reposant sur le problème du diviseur commun approché, et
plus récemment quelques autres, notamment ceux dûs à Brakerski et Vaikuntanathan
basés sur des problèmes de réseaux mieux compris comme LWE [BV11].

Cependant, aucun de ces schémas n’est utilisable en pratique. Les tailles de clefs
nécessaires pour assurer un niveau de sécurité raisonnable, notamment s’agissant des
deux premiers schémas, sont gigantesques (plus de 260 bits au minimum pour le schéma
de van Dijk et al., par exemple) et la complexité des opérations homomorphes sur les
chiffrés sont du même ordre.

Compte tenu de l’importance à la fois théorique et pratique du chiffrement totalement
homomorphe, beaucoup d’efforts ont été menés pour améliorer l’efficacité de ces schémas.
S’agissant du schéma original de Gentry, on peut citer les travaux de Smart et Vercauteren
[SV10] et de Stehlé et Steinfeld [SS10], qui ont abouti à la première implémentation
véritable du schéma par Gentry et Halevi [GH11]. Cette implémentation est encore
loin d’être « pratique », avec une clef publique de plusieurs giga-octets et environ une
demi-heure pour multiplier les chiffrés de deux bits, mais elle représente une réelle avancée,
en ce qu’elle concrétise pour la première fois le chiffrement totalement homomorphe.

Nos contributions à ce champ de recherche comprennent une amélioration importante
du schéma de van Dijk et al. sur les entiers (réduisant en particulier considérable la taille
des clefs) et sa première implémentation. Pour cela, il nous a fallu modifier l’algorithme
de chiffrement pour en quelque sorte combiner multiplicativement des éléments de la clef
publique et ainsi se contenter d’en avoir un nombre plus faible dans la clef. La preuve
de sécurité de ce schéma modifié met en jeu des résultats sur le nombre de points des
hypersurfaces algébriques de grande dimension sur les corps finis.

Certains de nos travaux en cours plus récents concernent également le chiffrement
totalement homomorphe sur les entiers : nous obtenons une nouvelle réduction importante
de la taille de clef, et nous sommes en mesure d’adapter à ce contexte les nouvelles
techniques de Brakerski, Gentry et Vaikuntanathan sur le chiffrement homomorphe « sans
bootstrapping » [BGV11].

2.3.2 Génération efficace et quasi-uniforme de nombres premiers [FT11]
Dans une direction très différente, nous nous sommes intéressés à la génération aléatoire
efficace de nombres premiers. On peut imaginer diverses mesures d’un algorithme de
génération de nombres premiers, telles que sa rapidité, sa précision (la probabilité qu’un

26

2.3. Autres travaux

nombre produit soit en fait composé), ses propriétés statistiques (la régularité de sa
distribution de sortie), la quantité d’aléa qu’il consomme pour produire un nombre
premier (car de l’aléa de qualité n’est pas aisé à obtenir), etc.

On trouve dans la littérature un certain nombre de travaux consacrés à l’accélération
de la génération de nombres premiers [BDL91, BD92, JPV00, JP06] ou à la construction
d’algorithmes de génération fournissant en outre une preuve de primalité [Mau89, Mau95,
Mih94].

Parmi ces articles, certains démontrent des bornes inférieures à l’entropie des dis-
tributions de sortie des algorithmes qu’ils considèrent, en utilisant généralement des
conjectures très fortes sur la distribution des nombres premiers, comme la conjecture
des r-uples de nombres premiers de Hardy-Littlewood. Toutefois, de telles bornes ne
suffisent pas à assurer que la distribution obtenue soit statistiquement proche de la
distribution uniforme sur les nombres premiers de la taille considérée ; et l’on peut en
fait généralement montrer avec l’aide des mêmes conjectures que la distance statistique
entre ces distributions n’est pas négligeable (par exemple qu’elle est minorée par une
constante : nous obtenons un résultat de ce type dans notre article).

Or certains protocoles cryptographiques particuliers, notamment basés sur l’hypothèse
Strong RSA, requièrent explicitement des nombres premiers uniformes pour que les
preuves de sécurité fonctionnent. D’autre part, pour une application plus commune
comme la génération de module RSA, il semble intuitivement préférable d’avoir des
facteurs premiers choisis sans biais, même si l’existence d’un biais statistique ou d’un
distingueur explicite entre la distribution des nombres premiers et l’uniforme ne fournit
pas immédiatement d’attaque sur la factorisation.

L’algorithme le plus simple imaginable pour générer des nombres premiers uniformes
consiste simplement à tirer des entiers (disons impairs) de taille voulue uniformément au
hasard, de tester leur primalité, et de recommencer si l’on a tiré un nombre composé. La
distribution de sortie est exactement uniforme, mais cette méthode est relativement peu
efficace et a surtout le défaut de consommer une quantité considérable d’aléa. À l’inverse,
l’algorithme PRIMEINC étudié par Brandt et Damgård [BD92] (essentiellement, prendre
un nombre au hasard et incrémenter jusqu’à tomber sur un premier) ou l’algorithme de
Joye, Paillier et Vaudenay [JPV00, JP06] consomment peu d’aléa (seulement au début de
l’algorithme) mais ont l’inconvénient d’avoir une distribution assez éloignée de l’uniforme.

Dans ce travail, nous introduisons un nouvel algorithme de génération de premiers
tentant de combiner les avantages de ces deux approches opposées : il consomme relative-
ment peu d’aléa, et la distance statistique à la distribution uniforme est prouvablement
contrôlée (en admettant l’hypothèse de Riemann étendue, ce qui est moins audacieux
que la conjecture de Hardy-Littlewood). Il a par ailleurs l’avantage d’être au moins aussi
rapide que l’algorithme de Joye-Paillier.

La majoration de la distance statistique utilise des majorations de sommes de carac-
tères de façon très analogue à nos travaux sur les encodages bien distribués (chapitre 6) :
il est intéressant de voir de telles techniques s’appliquer à des contextes aussi différents.

27

2. Présentation des travaux

2.4 Liste des publications

2.4.1 Articles de revues
[BNNT11b] Modulus Fault Attacks Against RSA Signatures. É. Brier, D. Naccache,

P. Q. Nguyen, M. Tibouchi. (JCEN)

[FFS+11] Indifferentiable Deterministic Hashing to Elliptic and Hyperelliptic Curves.
R. R. Farashahi, P.-A. Fouque, I. E. Shparlinski, M. Tibouchi, J. F. Vo-
loch. (Math. Comp.)

2.4.2 Articles de conférences
[CNTW09] Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures. J.-S. Coron,

D. Naccache, M. Tibouchi, R.-P. Weinmann. (CRYPTO 2009)

[BNT09] Factoring Unbalanced Moduli with Known Bits. É. Brier, D. Naccache,
M. Tibouchi. (ICISC 2009)

[CNT10] Fault Attacks Against EMV Signatures. J.-S. Coron, D. Naccache,
M. Tibouchi. (CT-RSA 2010)

[BCN+10] On the Broadcast and Validity-Checking Security of PKCS#1 v1.5.
A. Bauer, J.-S. Coron, D. Naccache, M. Tibouchi, D. Vergnaud.

(ACNS 2010, best student paper)

[JTV10] Huff’s Model for Elliptic Curves. M. Joye, M. Tibouchi, D. Vergnaud.
(ANTS-IX)

[FT10b] Estimating the Size of the Image of Deterministic Hash Functions to Elliptic
Curves. P.-A. Fouque, M. Tibouchi. (LATINCRYPT 2010)

[BCI+10a] Efficient Indifferentiable Hashing into Ordinary Elliptic Curves. É. Brier,
J.-S. Coron, T. Icart, D. Madore, H. Randriam, M. Tibouchi.

(CRYPTO 2010)

[FT10a] Deterministic Encoding and Hashing to Odd Hyperelliptic Curves. P.-
A. Fouque, M. Tibouchi. (Pairing 2010)

[CJM+11] Cryptanalysis of the RSA Subgroup Assumption from TCC 2005. J.-
S. Coron, A. Joux, A. Mandal, D. Naccache, M. Tibouchi. (PKC 2011)

[CMNT11] Fully Homomorphic Encryption over the Integers with Shorter Public Keys.
J.-S. Coron, A. Mandal, D. Naccache, M. Tibouchi. (CRYPTO 2011)

[BNNT11a] Modulus Fault Attacks Against RSA Signatures. É. Brier, D. Naccache,
P. Q. Nguyen, M. Tibouchi. (CHES 2011)

28

2.4. Liste des publications

2.4.3 Articles d’exposition et chapitres de livres
[CT11] Securing E-passports with Elliptic Curves. H. Chabanne, M. Tibouchi.

(IEEE Security & Privacy)

[NT11] Lattice-Based Fault Attacks on Signatures. P. Q. Nguyen, M. Tibouchi.
(Fault Analysis in Cryptography)

[Tib11] A Nagell Algorithm in Any Characteristic. M. Tibouchi.
(Festschrift J.-J. Quisquater)

2.4.4 Prépublications
[CNT11a] Another Look at RSA Signatures With Affine Padding. J.-S. Coron,

D. Naccache, M. Tibouchi.

[CNT11b] Optimization of Fully Homomorphic Encryption. J.-S. Coron, D. Naccache,
M. Tibouchi.

[FT11] Close to Uniform Prime Number Generation With Fewer Random Bits. P.-A.
Fouque, M. Tibouchi.

29

Part One

Contributions to Elliptic Curve
Cryptography

Overview

In 1985, Koblitz [Kob87] and Miller [Mil85] independently proposed the use of elliptic
curves in public-key cryptography. The main advantage of elliptic curve systems stems
from the absence of a subexponential-time algorithm to compute discrete logarithms on
general elliptic curves over finite fields. Consequently, one can use an elliptic curve group
that is smaller in size compared with systems based on either integer factorization or the
discrete log problem in the multiplicative group of a finite field, while maintaining the
same (heuristic) level of security.

Despite initial misgivings about the potential for unforeseen, mathematically sophisti-
cated attacks, elliptic curve cryptography became widely accepted by the cryptographic
community in the early 2000s [KKM11], particularly owing to the advent of pairing-based
cryptography: protocols such as Joux’s tripartite key agreement [Jou00] and especially
the first efficient construction by Boneh and Franklin of an identity-based encryption
scheme [BF01] quickly won cryptographers over. Since then, elliptic curves have also
made important inroads in the industry, with the standardization of multiple elliptic
curve-based cryptographic primitives [ISO18033–2, ANSI X9.62, ANSI X9.63] (ECDSA
[FIPS186–3] in particular has been widely adopted), agencies weighing in favor of their
use [NSA05], and new embedded applications such as secure e-passports mandating them
[ICAO10].

This part of the thesis presents contributions to two areas of elliptic curve cryptography.
On the one hand, we have used a range of tools from algebraic geometry and algebraic
number theory to construct and analyze so-called encoding functions to elliptic curves,
which are building blocks in a number of elliptic curve-based protocols (signatures,
password-based authenticated key exchange, encryption and more). Chapters 3–7 are
devoted to our work on this topic, some of which has found quick concrete applications.
On the other hand, we have studied the more basic problem of finding representations

31

2. Présentation des travaux

of elliptic curves with efficient arithmetic operations, specifically looking into an elliptic
curve model introduced by G.B. Huff in 1948. This work is covered in Chapter 8.

32

Contents

3 Constant-Time Hashing to Elliptic and Hyperelliptic Curves

3.1 Introduction . 37

3.1.1 Background . 37

3.1.2 Outline . 38

3.2 The Trivial Encoding: Totally Insecure . 38

3.2.1 A naive construction . 38

3.2.2 BLS signatures . 39

3.3 Try-and-Increment: Why Constant Time Matters 40

3.3.1 The try-and-increment algorithm 40

3.3.2 Timing attacks on key agreement protocols 42

3.4 Encoding to Elliptic Curves . 44

3.4.1 Main idea . 44

3.4.2 A simple example . 44

3.4.3 Beyond supersingular curves . 45

3.5 Constructing Encodings to Elliptic Curves and Hyperelliptic Curves . . . 46

3.5.1 The Shallue-van de Woestijne-Ulas approach 46

3.5.2 Icart’s approach . 50

3.5.3 Extensions to hyperelliptic curves 53

3.5.4 Our contributions . 55

3.6 Further Work . 59

3.6.1 Is the problem solved? . 59

3.6.2 Applications . 61

TABLE OF CONTENTS

4 Estimating the Size of the Image of Constant-Time Encodings
4.1 Introduction . 63

4.1.1 Icart’s conjecture . 63
4.1.2 Related work . 64
4.1.3 Outline . 64

4.2 Preliminaries . 64
4.2.1 Icart’s encoding . 64
4.2.2 Icart’s conjecture . 65

4.3 Proof of Icart’s Conjecture . 65
4.3.1 Genericity of P . 65
4.3.2 Applying Chebotarev . 67

4.4 Analogue in Characteristic 2 . 68
4.5 Analogue for the Simplified Shallue-van de Woestijne-Ulas Encoding . . . 70
4.6 Constructing Surjective Hash Functions 72
Appendices . 72
4.A Galois Groups of Quartics . 72

5 Indifferentiable Hashing to Elliptic Curves
5.1 Introduction . 75

5.1.1 The random oracle model . 75
5.1.2 Constructing good hash functions from elliptic curve encodings . . 76
5.1.3 Our goal . 76
5.1.4 Our results . 76

5.2 Admissible Encodings and Indifferentiability 78
5.2.1 Preliminaries . 78
5.2.2 Admissible encodings . 79

5.3 Our Main Construction . 81
5.3.1 Admissibility of F (u, v) = f(u) + f(v) 82
5.3.2 Geometric interpretation of Icart’s encoding 83
5.3.3 The square correspondence . 86
5.3.4 Generalization to even characteristic 88

5.4 A More General Construction . 89
5.4.1 Proof of Theorem 5.3 . 90

34

TABLE OF CONTENTS

5.4.2 Discussion . 92
5.5 Extensions . 93

5.5.1 Extension to a prime order subgroup 93
5.5.2 Extension to bit string-valued random oracles 94
5.5.3 Extension to primes p = 2` − ω . 94

Appendices . 94
5.A Composition Lemmas . 95

5.A.1 Generalized admissible encodings 95
5.A.2 Proof of Proposition 5.2 . 96
5.A.3 Proof of Proposition 5.3 . 96
5.A.4 Proof of Proposition 5.4 . 97

6 Well-Distributed Encodings
6.1 Introduction . 99

6.1.1 Background . 99
6.1.2 Our contributions . 100
6.1.3 Outline . 100

6.2 Well-Distributed Encodings . 101
6.2.1 Character sums . 101
6.2.2 Collision probability . 101
6.2.3 Distribution of image sums . 102

6.3 Character Sums on Curves . 104
6.4 Examples of Well-Distributed Encodings 106

6.4.1 Icart’s encoding . 106
6.4.2 The Kammerer-Lercier-Renault encodings 109
6.4.3 The simplified SWU encoding . 111

7 Hashing and Encoding to Odd Hyperelliptic Curves
7.1 Introduction . 115

7.1.1 Hyperelliptic curve encodings. 115
7.1.2 Our contribution . 116

7.2 Odd Hyperelliptic Curves . 116
7.3 Our New Encoding . 117

7.3.1 Definition . 117

35

TABLE OF CONTENTS

7.3.2 Efficient computation . 119
7.4 Mapping to the Jacobian . 120

7.4.1 Injective encoding to the Jacobian 120
7.4.2 Indifferentiable hashing to the Jacobian 121

7.5 Conclusion . 123

8 Huff’s Model for Elliptic Curves
8.1 Introduction . 125

8.1.1 Background . 125
8.1.2 Our contributions . 126

8.2 Huff’s Model . 127
8.2.1 Affine formulas . 129
8.2.2 Projective formulas . 130
8.2.3 Applicability . 131
8.2.4 Universality of the model . 132

8.3 Generalizations and Extensions . 133
8.3.1 Faster computations . 133
8.3.2 More formulas . 134
8.3.3 Twisted curves . 135
8.3.4 Binary fields . 135

8.4 Pairings . 136
8.4.1 Preliminaries . 136
8.4.2 Pairing formulas for Huff curves 137

8.5 Conclusion and Perspectives . 139

36

Chapter 3
Constant-Time Hashing to Elliptic

and Hyperelliptic Curves

3.1 Introduction

This chapter introduces the general problem of constant-time hashing to elliptic and
hyperelliptic curves, and discusses on several examples why this problem is of interest to
elliptic curve-based cryptographic protocols. It also presents a round-up of the various
constant-time encoding functions to elliptic and hyperelliptic curves that have been
proposed to this day to obtain hash functions.

3.1.1 Background

Many elliptic curve-based cryptographic protocols require hashing to the elliptic curve
group G: they involve one or more hash functions H : {0, 1}∗ → G mapping arbitrary
values to points on the elliptic curve.

For example, in the Boneh-Franklin identity-based encryption scheme [BF01], the
public key for identity id ∈ {0, 1}∗ is a point Qid = H(id) on the curve. This is also
the case in many other pairing-based cryptosystems including IBE and HIBE schemes
[BZ04, GS02, HL02], signature and identity-based signature schemes [Bol03, BGLS03,
BLS01, CC03, ZK02] and identity-based signcryption schemes [Boy03, LQ04].

Hashing into elliptic curves is also required for some passwords-based authentication
protocols such as the SPEKE [Jab96] and PAK [BMP00] protocols, as well as various
signature schemes based on the hardness of the discrete logarithm problem, like [CM05],
when they are instantiated over elliptic curves.

In all of those cases, the hash functions are modeled as random oracles [BR93] in
security proofs. However, it is not clear how such a hash function can be instantiated in
practice. Indeed, random oracles to groups like Z∗p can be easily constructed from random
oracles to fixed-length bit strings, for which conventional cryptographic hash functions
usually provide acceptable substitutes. On the other hand, constructing random oracles

37

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

to an elliptic curves even from random oracles to bit strings appears difficult in general,
and some of the more obvious instantiations actually break security completely.

3.1.2 Outline

We first present in §3.2 a naive construction of an elliptic curve-valued hash function
and show on a concrete example how this naive construction breaks security completely.
We then introduce in §3.3 a better solution, the so-called “try-and-increment” hashing,
that has satisfactory black-box security properties (it preserves random oracle proofs
of security). However, it has the drawback of not running in constant time, which, as
we shall see, can be a security concern for physical implementations. We then discuss
in §3.4 another strategy for constructing elliptic curve-valued hash functions, based on
simpler building blocks called encodings. In §3.5, we turn to the problem of constructing
elliptic and hyperelliptic curve encodings. Finally, in §3.6, we discuss the extent to which
those constructions actually solve our original hashing problem, as well as some practical
applications that those constructions have found in the industry.

3.2 The Trivial Encoding: Totally Insecure
To gain a sense of why the construction of hash functions to elliptic curves requires
some care, we first show how a naive construction can completely break the security of a
protocol that uses it.

3.2.1 A naive construction

We would like to construct a hash function H : {0, 1}∗ → G to an elliptic curve group
G, which we can assume is cyclic of order N and generated by a given point G. The
simplest, most naive way to do so is probably to start from an integer-valued hash
function h : {0, 1}∗ → ZN (for which reasonable instantiations are easy to come by) and
to define H as:

H(m) = [h(m)] · G. (3.1)

This is, however, a bad idea on multiple levels.
On the one hand, it is easy to see why this will typically break security proofs in the

random oracle model. Indeed, at some point in a random oracle model security reduction,
the simulator will typically want to “program” the random oracle by setting some of its
outputs to specific values. In this case, it will want to set the value H(m) for some input
m to a certain elliptic curve point P. However, if H is defined as in (3.1), the simulator
should actually program the integer-valued random oracle h to satisfy [h(m)] · G = P. In
other words, it should set h(m) to the discrete logarithm of P with respect to G. But
this discrete logarithm isn’t usually known to the simulator, and it cannot be computed
efficiently: therefore, the security reduction breaks down.

On the other hand, it is often not clear how this problem translates into an actual
security weakness for a protocol using the hash function H: one could think that it is

38

3.2. The Trivial Encoding: Totally Insecure

• KeyGen(): Pick x $← Zp as the private key, and P← [x] · G
as the public key.

• Sign(m,x): Compute the signature as S← [x] · H(m).

• Verify(m,S,P): accept if and only if e(H(m),P) = e(S,G).

Figure 3.1: The BLS signature scheme.

mostly an artifact of the security proof. Nevertheless, a construction like (3.1) makes it
possible for an adversary to compute the discrete logarithm of H(m) wheneverm is known,
which certainly feels uncomfortable from a security standpoint. We demonstrate below
that this discomfort is entirely warranted, by showing that the Boneh-Lynn-Shacham
signature scheme [BLS01]—certainly the best-known signature scheme that involves
hashing to elliptic curves—becomes completely insecure if the hash function involved is
instantiated as in (3.1).

3.2.2 BLS signatures

Proposed by Boneh, Lynn and Shacham in 2001 [BLS01], the BLS signature scheme
remains the efficient scheme which achieves the shortest signature length to this day:
about 160 bits at the 80-bit security level1.

It is also quite simple to describe. The public parameters are a cyclic group G of
prime order p endowed with a symmetric2 non degenerate bilinear pairing e : G×G→ GT

and a hash function H : {0, 1}∗ → G. A generator G of the group is also fixed.
In practical instances, G is a prime order subgroup in the group of rational points

of a supersingular elliptic curve over a finite field and e is the modified Weil pairing.
Therefore, we denote the group law of G additively, and that of GT multiplicatively. The
signature scheme is then as described in Figure 3.1. Boneh, Lynn and Shacham prove
that if the Computational Diffie-Hellman problem is hard in G, then this scheme is secure
(in the usual sense of existential unforgeability under chosen message attacks) when H is
modeled as a random oracle.

Now consider the case when H is instantiated as in (3.1). Then, the signature on a
message m can be written as:

S = [x] · H(m) =
[
xh(m)

]
· G = [h(m)] · P

1The security reduction for the original scheme is not tight (and cannot be made tight, much like
that of the Full Domain Hash [Cor00]), so one may want to increase signature size accordingly for really
conservative security. However, Katz and Wang [KW03] showed how a slight modification of the scheme
makes it possible to obtain tight security without increasing the signature size.

2As was noted in the journal version of the BLS paper [BLS04b], the construction extends in a
natural way to an asymmetric pairing, and hence to non supersingular pairing-friendly curves, such as
Barreto-Naehrig elliptic curves [BN05]. See also [SV07] for a discussion of how this affects the precise
statement of the security result.

39

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

and hence, one can forge a signature on any message using only publicly available data!
There is no security left at all when using the trivial hash function construction.

A slightly less naive variant of the trivial construction consists in defining H as:

H(m) = [h(m)] ·Q (3.2)

where Q is an auxiliary public point distinct from the generator G and whose discrete
logarithm α with respect to G is not published. Using this alternate construction for
H thwarts the key-only attack described above against BLS signatures. However, the
scheme remains far from secure. Indeed, the signature on a message m can be written as:

S =
[
xh(m)

]
·Q =

[
αxh(m)

]
· G = [h(m)] · αP.

Now suppose an attacker knows a valid signature S0 on some message m0. Then the
signature S on an arbitrary m is simply:

S =
[
h(m)
h(m0)

]
· [h(m0)] · [α]P =

[
h(m)
h(m0)

]
· S0

where the division is computed in Zp. Thus, even with this slightly less naive construction,
knowing a single valid signature is enough to produce forgeries on arbitrary messages:
again, a complete security break down.

3.3 Try-and-Increment: Why Constant Time Matters
A classical construction of a hash function to elliptic curves which does work (and one
variant of which is suggested by Boneh, Lynn and Shacham in the original short signatures
paper [BLS01]) is the so-called “try-and-increment” algorithm. We present this algorithm
here, as well as some of the limitations that explain why different constructions may be
preferable.

3.3.1 The try-and-increment algorithm
Consider an elliptic curve E over a finite field Fq of odd characteristic. It admits a
Weierstrass equation of the form:

E : y2 = x3 + ax2 + bx+ c (3.3)

for some a, b, c ∈ Fq. A probabilistic way of constructing points on E(Fq) is then to pick
a random x ∈ Fq, check whether t = x3 + ax2 + bx+ c is a square in Fq, and if so, let
y = ±

√
t and return (x, y). If t is not a square, then x is not the abscissa of a point on

the curve: then, one can pick another x and try again, and if so, let y = ±
√
t and return

(x, y). If t is not a square, then x is not the abscissa of a point on the curve: then, one
can pick another x and try again.

It is an easy consequence of the Hasse bound [Has36] on the number of points on
E(Fq) (namely, |#E(Fq)− q − 1| 6 2√q) that the success probability of a single try is

40

3.3. Try-and-Increment: Why Constant Time Matters

very close to 1/2. Indeed, if we denote by χq the non trivial quadratic character of F∗q ,
extended by 0 to Fq as usual, we have:

#E(Fq) = 1 +
∑
x∈Fq

(
1 + χq(x3 + ax2 + bx+ c)

)
= q + 1 +

∑
x∈Fq

χq(x3 + ax2 + bx+ c)

On the other hand, the success probability$ of a single iteration of this point construction
algorithm is the proportion of x ∈ Fq such that χq(x3 + ax2 + bx+ c) = 1 or 0, namely:

$ = α

2q + 1
q

∑
x∈Fq

1 + χq(x3 + ax2 + bx+ c)
2

where α ∈ {0, 1, 2, 3} is the number of roots of the polynomial x3 + ax2 + bx+ c in Fq.
This gives:

$ = 1
2 + #E(Fq)− q − 1 + α

2q = 1
2 +O

(
1
√
q

)
Now this point construction algorithm can be turned into a hash function based

on an Fq-valued random oracle h : {0, 1}∗ → Fq. To hash a message m, the idea is to
pick the x-coordinate as, essentially, h(m) (which amounts to picking it at random once)
and carry out the point construction above. However, since one should also be able
to retry in case the first x-coordinate that is tried out is not the abscissa of an actual
curve point, we rather let x ← h(c‖m), where c is a fixed length counter initially set
to 0 and incremented in case of a failure. Since there is a choice of sign to make when
taking the square root of t = x3 + ax2 + bx + c, we also modify h to output an extra
bit for that purpose: h : {0, 1}∗ → Fq × {0, 1}. This is the try-and-increment algorithm,
described more precisely in Algorithm 3.1 (and called MapToGroup in [BLS01]3). The
failure probability after up to k iterations is about 2−k by the previous computations, so
choosing the length of the counter c to be large enough for up to k ≈ 128 iterations, say,
is enough to ensure that the algorithm succeeds except with negligible probability.

Boneh, Lynn and Shacham prove that this construction can replace the random oracle
H : {0, 1}∗ → E(Fq) in BLS signatures without compromising security. In fact, it is not
hard to see that it is indifferentiable from such a random oracle, in the sense of Maurer,
Renner and Holenstein [MRH04]: this ensures that this construction can be plugged in
many protocols4 requiring a random oracle H : {0, 1}∗ → E(Fq) while preserving random
oracle security proofs—this will be discussed in more details in Chapter 5.

Nevertheless, there are various reasons why Algorithm 3.1 is not a completely satisfying
construction for hash functions to elliptic curves. There is arguably a certain lack of

3Boneh et al. were in fact concerned with hashing to a supersingular curve of characteristic 3 of
the form y2 = x3 + 2x± 1. In this case, it was later observed by Barreto and Kim [BK01] that picking
y at random and solving the resulting Artin-Schreier equation for x was actually much more efficient,
as that equation can be seen as a linear system over F3. But the basic principle of trying a value and
incrementing a counter in case of failure remains the same.

4Not necessarily all protocols, as conventional wisdom would have it until recently, but at least all
protocols with single-stage security games, as clarified by Ristenpart, Shacham and Shrimpton [RSS11].

41

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

Algorithm 3.1 The try-and-increment algorithm.
1: procedure TryAndIncrementHash(m) . hash to E : y2 = x3 + ax2 + bx+ c
2: c← 0 . c is represented as a dlog2 ke-bit bit string
3: (x, b)← h(c‖m) . h is a random oracle to Fq × {0, 1}
4: t← x3 + ax2 + bx+ c
5: if t is a square in Fq then
6: y ← (−1)b ·

√
t . define

√
· as the smaller square root wrt some ordering

7: return (x, y)
8: else
9: c← c+ 1

10: if c < k then
11: goto step 3
12: end if
13: end if
14: return ⊥
15: end procedure

mathematical elegance in the underlying idea of picking x-coordinates at random until a
correct one is found, especially as the length of the counter, and hence the maximum
number of trials, has to be fixed (to prevent collisions). More importantly, this may have
adverse consequences for the security of physical devices implementing a protocol using
this construction: for example, since the number of iterations in the algorithm depends
on the input m, an adversary can obtain information on m by measuring the running
time or the power consumption of a physical implementation.

3.3.2 Timing attacks on key agreement protocols
A concrete situation in which this varying running time can be a serious issue is the
case of embedded devices (especially e-passports) implementing an elliptic curve-based
Password-Authenticated Key Exchange (PAKE) protocol.

PAKE is a method for two parties sharing a common low-entropy secret (such as a
four-digit PIN, or a self-picked alphabetic password) to derive a high-entropy session key
for secure communication in an authenticated way. One of the main security requirements
is, informally, that an attacker should not be able to gain any information about the
password, except through a brute force online dictionary attack (i.e. impersonating one
of the parties in the protocol and attempting to authenticate with each password, one
password at a time), which can be prevented in practice by latency, smart card blocking
and other operational measures. In particular, a PAKE protocol should be considered
broken if a passive adversary can learn any information about the password.

Now consider the PAKE protocol described in Figure 3.2, which is essentially Jablon’s
Simple Password-base Exponential Key Exchange (SPEKE) [Jab96] implemented over an
elliptic curve, except with a random salt as suggested in [Jab97]. The public parameters
are an elliptic curve group G of prime order p and a hash function H : {0, 1}∗ → G.

42

3.3. Try-and-Increment: Why Constant Time Matters

Alice (Passport) Bob (Reader)
s←−−−−−−− s

$← {0, 1}k

G← H(s‖π) G← H(s‖π)
rA

$← Zp rB
$← Zp

A← [rA] · G A−−−−−−−→
B←−−−−−−− B← [rB] · G

K← [rA] · B K← [rB] · A

Figure 3.2: A randomized variant of the SPEKE protocol.

The two parties share a common password π, and derive a high-entropy K ∈ G using
Diffie-Hellman key agreement in G but with a variable generator G ∈ G computed by
hashing the password.

But if the hash function H is instantiated by the try-and-increment construction and
an eavesdropper is able to measure the running time of one of the parties, he will find
different running times or different power traces depending on how many trials it takes
to find a suitable x-coordinate in the computation of H(s‖π). Since it takes a single
iteration with probability close to 1/2, an execution of the protocol provides at least one
bit of information about π to the adversary (and about −∑k>1 2−k log2(2−k) = 2 bits
on average).

This leads to a so-called “partition attack”, conceptually similar to those described
by Boyd et al. in [BMN01]: the adversary can count the number of iterations needed to
compute H(s‖π0) for each password π0 in the password dictionary, keeping only the π0’s
for which this number of iterations matches the side-channel measurement. This reduces
the search space by a factor of at least 2 (and more typically 4) for each execution of the
protocol, as the running times for different values of s are independent. As a result, the
eavesdropper can typically reduce his search space to a single password after at most a
few dozen executions of the protocol!

A rather inefficient countermeasure that can be considered is to run all k iterations of
the try-and-increment algorithm every time. However, even that is probably insufficient
to thwart the attack: indeed, the usual algorithm (using quadratic reciprocity) for testing
whether an element of Fq is a square, as is done in Step 5 of Algorithm 3.1, also has different
running times depending on its input. This can be provide information to the adversary
as well, unless this part is somehow tweaked to run in constant time, which seems difficult
to do short of computing the quadratic character with an exponentiation and making the
algorithm prohibitively slow with k exponentiations every time. In principle, padding
the quadratic reciprocity-based algorithm with dummy operations might provide a less
computationally expensive solution, but implementing such a countermeasure securely
seems quite daunting. A construction that naturally runs in constant time would certainly
be preferable.

43

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

3.4 Encoding to Elliptic Curves

3.4.1 Main idea

A natural way to construct a constant-time hash function to an elliptic curve E would
be use, as a building block, a suitable function f : Fq → E(Fq) that can be efficiently
computed in constant time5. Then, combining f with a hash function h : {0, 1}∗ → Fq,
we can hope to obtain a well-behaved hash function to E(Fq).

Of course, not all such functions f are appropriate: for example, when q = p is prime,
the trivial encoding described in §3.2 is essentially of that form, with f : u 7→ [û] ·G (and
u 7→ û any lifting of Fp to Z).

On the other hand, if f is a bijection between Fq and E(Fq) whose inverse is also
efficiently computable, then the following construction:

H(m) = f
(
h(m)

)
(3.4)

is well-behaved, in the sense that if h is modeled as a random oracle to Fq, then H can
replace a random oracle to E(Fq) in any protocol while preserving proofs of security in the
random oracle model. Indeed, contrary to what happens in the case of the trivial encoding
(where programming the random oracle would require computing discrete logarithm),
a simulator can easily choose a value H(m0) = P0 by setting h(m0) = f−1(P0). More
generally, such a construction is, again, indifferentiable from a random oracle to E(Fq)
(and even reset indifferentiable in the sense of Ristenpart et al. [RSS11]).

The same holds if f induces a bijection from Fq \ T to E(Fq) \W for some finite or
negligibly small sets of points T , W .

More generally, we will be considering cases where f is not necessarily an efficiently
invertible bijection but only a so-called samplable mapping, in the sense that for each
P ∈ E(Fq), one can compute a random element of f−1(P) in probabilistic polynomial
time.

3.4.2 A simple example

It was actually one of the first papers requiring hashing to elliptic curves, namely Boneh
and Franklin’s construction [BF01] of identity-based encryption from the Weil pairing,
that introduced the first practical example of a hash function of the form (3.4). Boneh
and Franklin used elliptic curves of a very special form:

E : y2 = x3 + b (3.5)

over a field Fq such that q ≡ 2 (mod 3). In Fq, u 7→ u3 is clearly a bijection, and thus
each element has a unique cube root. This makes it possible, following Boneh and

5It is probably superfluous to point out that, by constant time, we mean “whose running time does
not depend on the input” (once the choice of parameters like E and Fq is fixed), and not O(1) time in
the sense of complexity theory.

44

3.4. Encoding to Elliptic Curves

Franklin, to define a function f as:

f : Fq → E(Fq) (3.6)

u 7→
((
u2 − b

)1/3
, u
)
. (3.7)

In other words, instead of picking the x-coordinate and try to deduce the y-coordinate
by taking a square root (which may not exist) as before, we first choose the y-coordinate
and deduce the x-coordinate by taking a cube root (which always exists).

Obviously, the function f is a bijection from Fq to all the finite points of E(Fq). In
particular, this implies that #E(Fq) = 1 + #Fq = q + 1; thus, E is supersingular (and
hence comes with a computable symmetric pairing). This also means that f satisfies the
conditions mentioned in the previous section; therefore, construction (3.4) can replace
the random oracle H required by the Boneh-Franklin IBE scheme, or any other protocol
proved secure in the random oracle model. And it can also easily be computed in constant
time: it suffices to compute the cube root as an exponentiation to a fixed power α such
that 3α ≡ 1 (mod q − 1).

Note that in fact, the group G considered by Boneh and Franklin isn’t E(Fq) itself,
but a subgroup G ⊂ E(Fq) of prime order. More precisely, the cardinality q of the base
field is chosen of the form 6p − 1 for some prime p 6= 2, 3. Then E(Fq) has a unique
subgroup G of order p (and index 6), which is the group actually used in the scheme.
Hashing to G rather than E(Fq) is then easy:

H(m) = f ′
(
h(m)

)
where f ′(u) = [6] · f(u). (3.8)

The encoding f ′ defined in that way isn’t injective but it is samplable: indeed, to compute
a random preimage of some point P ∈ G, we can simply compute the six points Qi such
that [6] · Qi = P, and return f−1(Qi) for a random index i. Using that observation,
Boneh and Franklin prove that construction (3.8) can replace the random oracle to G
in their IBE scheme. More generally, it is easy to see that it is indifferentiable from a
random oracle in the sense of Chapter 5.

3.4.3 Beyond supersingular curves
The previous example suggests that a sensible first step towards constructing well-behaved
constant-time hash functions to elliptic curves is to first obtain mappings f : Fq → E(Fq)
that are computable in deterministic polynomial time and samplable, and admit constant-
time implementations. We will refer to such mappings as encoding functions or simply
encodings6. Note that despite what the name might suggest, there is no assumption of
injectivity for those mappings.

It turns out that constructing encodings to elliptic curves beyond special cases such
as 3.6 is far from an easy task. In fact, Schoof mentioned the presumably easier problem

6We do not attempt to formulate a very precise definition for those terms, as we will be using them
rather informally. Precise statements will be made about more restricted (and properly defined) classes
of encodings in later chapters.

45

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

of constructing a single non-identity point on a general elliptic curve over a finite field
(the Hasse bound ensures that there is always such a point over fields of cardinality at
least 5) as open in his 1985 paper on point counting [Sch85], and little progress was made
on this problem before the 2000s.

The first significant result in that direction was obtained by Schinzel and Skałba in
2004 [SS04]. They exhibited one non-identity point on the elliptic curve (3.5) without
any assumption on the cardinality of the base field. A part of their result is as follows.

Theorem 3.1 ([SS04, Th. 1]). Let Fq be a finite field of characteristic at least 5 and b
an element of Fq such that b3 + 723 6= 0. Further set:

y1 = −2−93−5b3 + 2−63−3b2 − 2−3b− 3
y2 = 2−83−6b3 − 2−53−3b2 + 2−23−1b+ 2

y3 = b6 − 2532b5 + 2636b4 − 210365b3 + 212385b2 − 216311b+ 218312

2835(b+ 72)3

y4 = b9 − 23327b8 + 2935b7 − 21337b6 + 2133829b5
21035(b2 − 72b+ 722)3

+ −217312b4 + 2193137b3 + 222314b2 + 224317b+ 227318

21035(b2 − 72b+ 722)3 .

Then for at least one j = 1, 2, 3, 4, y2
j − b is a cube x3 in Fq, and hence (x, y) is a

non-identity rational point on the elliptic curve y2 = x3 + b.

This rather contrived result only shows how to construct a single non trivial Fq-point
on the special curve E : y2 = x3 + b in deterministic polynomial time. However, further
research in recent years by Skałba and others led to the construction of more or less
practical encoding functions to all elliptic curves in recent years. Several approaches have
been proposed. We introduce the main ones in the next section.

3.5 Constructing Encodings to Elliptic Curves and
Hyperelliptic Curves

3.5.1 The Shallue-van de Woestijne-Ulas approach
Skałba’s theorem. The first construction of a constant-time encoding function to a large
class of elliptic curves is due to Skałba in 2005 [Ska05], who was trying to generalize the
results of his earlier paper with Schinzel [SS04]. He was able to prove a result of the
following form.

Theorem 3.2 ([Ska05, Th. 1]). Let Fq be a finite field of characteristic at least 5, and
g(x) = x3 + ax + b ∈ Fq[x] a polynomial over Fq with a 6= 0. Then there exists non
constant rational functions X1, X2, X3, U ∈ Fq(x) such that the following identity holds
in Fq(t):

g
(
X1(t2)

)
g
(
X2(t2)

)
g
(
X3(t2)

)
= U(t)2. (3.9)

46

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

The rational functions Xi and U are given explicitly, but since they are quite large
(the product X1X2X3 is a rational function of degree 26 with coefficients that are several
hundred bits long), we omit them here. However, let us recall how, from identity (3.9),
one can readily deduce an encoding function to the elliptic curve:

E : y2 = x3 + ax+ b. (3.10)
For any value u ∈ Fq such that u2 is not a pole of the Xi’s, we see that the product
g
(
X1(u2)

)
g
(
X2(u2)

)
g
(
X3(u2)

)
is a square in Fq, which implies that at least one of the

three values g
(
Xi(u2)

)
is a quadratic residue. If i is the smallest index for which that is

the case, we can then set:

(x, y) =
(
Xi(u2),

√
g
(
Xi(u2)

))
and (x, y) is then a non trivial point in E(Fq).

This defines an encoding to any elliptic curve over finite fields of characteristic 6= 2, 3,
except those of j-invariant 0, so this is already “almost” a complete solution.

A caveat is that no unconditional polynomial deterministic algorithm is known for
computing square roots in general finite fields. However, this is never really a problem in
cryptographic applications, where it is usually possible to either make mild congruential
assumptions on the cardinality of the field (such that q 6≡ 1 (mod 8), in which case
computing square roots is easy) or assume that a fixed quadratic nonresidue is known
(and then use an algorithm such as Tonelli-Shanks [Sha73]). And a later result by van
de Woestijne ensures that, in this particular setting, the square root can actually be
computed in deterministic polynomial time without any restriction on q (see below).

Still, depending on the particular case under consideration, it may be somewhat
difficult to write down a constant-time implementation. And the rational functions Xi

are complex enough to make them unattractive for practical applications.

Shallue and van de Woestijne’s construction. In a paper presented at ANTS in 2006,
Shallue and van de Woestijne [SvdW06] proposed a more general construction along the
same lines, that applies to all elliptic curves.

Consider the general Weierstrass equation for an elliptic curve in odd characteristic
(possibly including 3):

E : y2 = x3 + ax2 + bx+ c.

Let further g(x) = x3 + ax2 + bx + c ∈ Fq[x]. It is possible to construct an encoding
function to E(Fq) like before from a rational curve on the three-dimensional variety:

V : y2 = g(x1)g(x2)g(x3)

(which, geometrically, is the quotient of E × E × E by (Z/2Z)2, where each non trivial
element acts by [−1] on two components and by the identity on the third one). Indeed,
if φ : A1 → V , t 7→

(
x1(t), x2(t), x3(t), y(t)

)
is such a rational curve, then for any u ∈ Fq

that is not a pole of φ, at least one of g
(
xi(u)

)
for i = 1, 2, 3 is a quadratic residue, and

we obtain a corresponding point on E(Fq) like before.

47

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

Then, Shallue and van de Woestijne show how to construct such a rational curve
φ (and in fact a large number of them). They first obtain an explicit rational map
ψ : S → V , where S is the surface of equation:

S : y2 ·
(
u2 + uv + v2 + a(u+ v) + b

)
= −g(u)

which can also be written, by completing the square with respect to v, as:

[
y(v + 1

2u+ 1
2a)

]2 +
[3
4u

2 + 1
2au+ b− 1

4a
2]y2 = −g(u).

Now observe that for any fixed u ∈ Fq, the previous equation defines a curve of genus 0
in the (v, y)-plane. More precisely, it can be written as:

z2 + αy2 = −g(u) (3.11)

with z = y(v+ 1
2u+ 1

2a) and α = 3
4u

2 + 1
2au+ b− 1

4a
2. This is a non degenerate conic as

soon as α and g(u) are both non zero (which happens for all u ∈ Fq except at most 5), and
then admits a rational parametrization, yielding a rational curve A1 → S. Composing
with ψ, we get the required rational curve on V , and hence an encoding, provided that
q > 5.

Two steps in this algorithm are potentially non deterministic: taking the square
root required to map a point of V (Fq) to E(Fq) (like in Skałba’s case), and finding
one point on the non degenerate conic defined by (3.11) (which is necessary to obtain
a parametrization). Van de Woestijne actually proves in his thesis that both of these
computations can be carried out in deterministic polynomial time: on the one hand, he
gives a deterministic variant of the Tonelli-Shanks algorithm which, given a1, a2, a3, b ∈ Fq
such that a1a2a3 = b2, returns an index i ∈ {1, 2, 3} and a square root of ai; on the other
hand, he proves that a solution of ax2 + by2 = c can be found in deterministic polynomial
time for any a, b, c ∈ F∗q .

Combining all of those results, we obtain an encoding function to any elliptic curve
over a field of odd characteristic with q > 5 elements. Moreover, Shallue and van de
Woestijne show that the image of this encoding contains at least (q − 4)/8 points in
E(Fq).

They also give a variant of this approach for elliptic curves over binary fields. For
example, to obtain an encoding to the binary curves with Weierstrass equation:

E : y2 + a3y = x3 + a4x+ a6

they construct rational curves on the following threefold:

V : y2 + a3y = g(x1) + g(x2) + g(x3)

where g(x) = x3 + a4x+ a6. Indeed, since the map y 7→ y2 + a3y is F2-linear, elements of
Fq = F2m of the form y2 + a3y make up a subgroup of index 2 of the additive group of
Fq. Hence, if (x1, x2, x3, y) is a point in V (Fq), at least one of g(xi), i = 1, 2, 3, belongs

48

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

to this subgroup, and hence the corresponding xi is the abscissa of a point in E(Fq) as
before. A similar reasoning, together with the construction of the corresponding rational
curves, can deal with both reduced Weierstrass forms in characteristic two.

In the end, Shallue and van de Woestijne obtain an encoding functions to every
elliptic curve over any finite field Fq with q > 5. The main drawback of their approach is
that the computations are relatively cumbersome, and implementing them in constant
time is not straightforward. It also requires finding a point on a conic: this is a one-time
pre-computation for any given elliptic curve, so not a serious issue from a cryptographic
viewpoint, but it does preclude nice formulas with small coefficients for the encoding
function, for example.

The contributions of Ulas. In a paper published the following year [Ula07], Ulas considered
again the problem of constructing rational curves on the threefold:

V : y2 = g(x1)g(x2)g(x3)

where, however, g is of the following somewhat special form (slightly more restricted
than the one considered by Skałba):

g(x) = x3 + ax+ b with ab 6= 0.

He was actually able to construct an explicit rational parametrization for a surface
embedded in V , which has the advantage of being much simpler than the rational curves
of Skałba and Shallue-van de Woestijne. A special case of his result can be written as
follows.

Theorem 3.3 ([Ula07, Th. 2.3(2)]). Let F be any field, and g(x) = x3 + ax+ b ∈ F[x] a
polynomial over F with ab 6= 0. Define the following bivariate rational functions over F:

X1(t, u) = u

X2(t, u) = − b
a
· t6g(u)3 − 1
t6g(u)2 − t2g(u)

X3(t, u) = t2g(u) ·X2(t, u)
U(t, u) = t3g(u)2 · g

(
X2(t, u)

)
.

Then the following identity holds in F(t, u):

g
(
X1(t, u)

)
g
(
X2(t, u)

)
g
(
X3(t, u)

)
= U(t, u)2.

Composing this rational parametrization of a surface embedded in V with almost
any rational map A1 → A2 gives rise to a rational curve on V and hence an encoding
function to the elliptic curve:

E : y2 = x3 + ax+ b, ab 6= 0

49

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

as before, which is simple enough to write down in full. Any elliptic curve over a finite
field of characteristic 6= 2, 3 and of j-invariant 6= 0, 1728 admits such a Weierstrass
equation, making these encoding functions suitable for many cryptographic applications.
We call them the SWU encodings (for “Shallue-van de Woestijne-Ulas”). They have
actually been considered in certain practical cryptographic settings (particularly for a
secure e-passport standard), although the arguably simpler encoding proposed by Icart
(§3.5.2) was ultimately preferred.

In [BCI+10a], we proposed a further simplification of these formulas, together with
an elementary derivation of them. We also extended them to the case of elliptic curves
in characteristic 3. See §3.5.4 for details.

It may be interesting to note that the original paper by Ulas has a somewhat more
general scope than suggested by our description. He was able to find rational curves on
all varieties of the form:

Vk : y2 = g(x1)g(x2) · · · g(xk)

for k > 2. This doesn’t have further impact on the construction of elliptic curve encodings,
however (but see §3.5.3).

The work of Sato and Hakuta. A different but related approach to construct encodings
to elliptic curves was later proposed by Sato and Hakuta [SH09]. They consider again
elliptic curves over fields of characteristic 6= 2, 3, given in short Weierstrass form:

E : y2 = x3 + ax+ b.

If we put their basic idea in geometric terms, it is again to parametrize a curve on a
higher dimensional variety and map it to the elliptic curve, but instead of considering the
threefold E3/(Z/2Z)2, they use the abelian surface A = ResFq2/Fq(E) given by the Weil
restriction of E from Fq2 to Fq. The norm NFq2/Fq : P 7→ P + Pσ then gives a rational
map A→ E which can turn a parametrized curve on A into an encoding to E.

Of course, we cannot hope to find a rational curve directly on A, but Sato and
Hakuta show in essence that there is a conic on the Kummer variety K = A/{±1} that
is non-degenerate provided that a 6= 0, and whose Fq-points are entirely contained in
the image of A(Fq)→ K(Fq). Thus, when a 6= 0, they obtain a curve on A(Fq) with an
algebraic parametrization, and composing with the norm map, a non-constant algebraic
encoding to E(Fq).

This approach has the same drawbacks as the original Shallue-van de Woestijne
technique (cumbersome formulas and the need to find a point on a conic) without the
generality and unconditional deterministicness, but it looks as if it might lend itself to
interesting generalizations (e.g. to higher-dimensional abelian varieties).

3.5.2 Icart’s approach

Icart’s encoding. In [Ica09], Icart introduced an encoding function based on a very
different idea—namely, trying to adapt the Boneh-Franklin encoding discussed in §3.4.2

50

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

f : Fq −→ E(Fq)

u 7−→

(v2 − b− u6

27

)1/3

+ u2

3 ; ux+ v


where v = (a − 3u4)/(6u). By convention, f(0) = O, the
identity element.

Figure 3.3: Icart’s encoding to E : y2 = x3 + ax+ b over Fq with q ≡ 2 (mod 3).

to the case of an ordinary elliptic curve. More precisely, consider again an elliptic curve
E given by a short Weierstrass equation:

E : y2 = x3 + ax+ b

over a field Fq of odd characteristic with q ≡ 2 (mod 3). The idea is again to reduce
the equation to a binomial cubic which can be solved directly in Fq (where u 7→ u3 is a
bijection).

Unlike the simple case considered by Boneh and Franklin, this cannot be done by
picking y as a constant: doing so results in a trinomial cubic which does not always have
a root in Fq. Icart’s idea is to set y = ux+ v for two parameters u, v to be chosen later.
This gives:

x3 − u2x2 + (a− 2uv)x+ b− v2 = 0
and after completing the cube:(

x− u2

3

)3

+
(
a− 2uv − u4

3

)
x = v2 − b− u6

27 .

Thus, by setting v = (a − 3u4)/(6u), it is possible to cancel the term of degree 1 and
obtain a binomial cubic equation:(

x− u2

3

)3

= v2 − b− u6

27

which is easy to solve for x in Fq. This gives Icart’s encoding, described in Figure 3.3.
This encoding applies to a slightly more restricted setting than the SWU encodings,

due to the requirement that q ≡ 2 (mod 3), but it has the advantage of being very easy
to describe and implement in constant time.

As Icart observed, the exact same technique applies in even characteristic. Consider
an elliptic curve E of non zero j-invariant over a binary field Fq = F2n with n odd (in
which case u 7→ u3 is again a bijection). E has a reduced Weierstrass equation of the
form:

E : y2 + xy = x3 + ax2 + b

51

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

f : F2n −→ E(F2n)

u 7−→
((
v4 + v3 + b

)1/3
+ v ; ux+ v2

)
where v = a+ u+ u2.

Figure 3.4: Icart’s binary encoding to E : y2 + xy = x3 + ax2 + b over F2n with n odd.

with b 6= 0. We can set y = ux+ v and solve as before. However, we get slightly simpler
formulas with y = ux+ v2 instead. This gives:

x3 + (a+ u+ u2)x2 + v2x+ b+ v4 = 0

and completing the cube:(
x+ (a+ u+ u2)

)3
+
(
v2 − (a+ u+ u2)2

)
x = b+ v4 + (a+ u+ u2)3.

Thus, the degree 1 term disappears if we let v = a + u + u2, and we can the solve
the resulting binomial cubic equation. This gives Icart’s binary encoding, described in
Figure 3.4, which is even easier to write down than the odd characteristic variant.

Generalizations. Several variants and extensions of Icart’s encoding have been proposed,
and various algebraic and geometric interpretations of it have been given afterwards. We
now give a quick review of these works.

Farashahi [Far11] showed that Icart’s technique applies directly to Hessian curves
(these are all elliptic curves with a rational point of order 3):

E : x3 + y3 + 1 = dxy

over fields Fq such that q ≡ 2 (mod 3). Indeed, setting y = ux+ v again and completing
the cube, the equation becomes:

(1 + u3)
(
x+ u2v − du

1 + u3

)3

+ 3(u2v − du) ·
(

1 + u2v − du
1 + u3

)
x = −1− v3 − (u2v − du)3

(1 + u3)2

and we can cancel the term of degree 1 by setting v = d/u, and then solve for x. The
encoding function obtained in this way is a bit less general than Icart’s since it only
applies to Hessian curves, but it has certain interesting properties of its own, such as an
inverse that is easier to describe.

Kammerer, Lercier and Renault [KLR10] interpreted (perhaps incorrectly) Icart’s
approach as an application of Cardano’s formulas for the resolution of the cubic equation,
and attempted to extended in that direction. More precisely, consider a curve of the
form:

E : x3 +A(y)x+B(y) = 0 (3.12)

52

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

where A and B are rational functions of sufficiently low degree to ensure that E is of
genus 1 (the reduced Weierstrass form corresponds to the case when A is constant and B
is a polynomial of degree 2 with no linear term). Over a field Fq with q ≡ 2 (mod 3), we
can hope to parametrize E(Fq) by solving (3.12) using Cardano’s formula:

x = r − A(y)
3r where r3 = −B(y)

2 +

√
B(y)2

4 + A(y)3

27 .

This works when the square root exists, i.e. when the discriminant A3/27 + B2/4 is
always a square. This can be ensured if the curve of equation:

4A(y)3 + 27B(y)2 = 4 · 27z2 (3.13)

is unicursal, in which case a rational parametrization u 7→
(
y(u), z(u)

)
provides an

encoding function to E(Fq) as:

u 7→
(
r(u)−

A
(
y(u)

)
3r(u) ; y(u)

)
where r(u) =

(
−
B
(
y(u)

)
2 + z(u)

)1/3

. (3.14)

Unfortunately, in the usual Weierstrass case when A is constant and B is a polynomial of
degree 2, the curve given by (3.13) is clearly of genus 1, and the method does not apply.
However, Kammerer et al. noticed that if A is a polynomial of degree 1 and B is chosen
as the product of A by another polynomial of degree 1, then A2 can be factored out in
(3.13) and the curve is birational to a non degenerate conic. Therefore, in that case, they
obtain a new encoding function to the curve E, which turns out to be (isomorphic to)
a Hessian curve again! Remarkably, this encoding is different from the one found by
Farashahi, although they share many properties.

Couveignes and Kammerer [CK11] were later able to give a common geometric
interpretation of all of these encodings (Icart’s, Farashahi’s and Kammerer et al.’s) in
terms of unicursal curves passing through the nine cusps of the dual curve of an elliptic
curve.

3.5.3 Extensions to hyperelliptic curves
The problem of constructing encoding functions extends naturally to any curve (or indeed
any variety) over Fq, and the case of hyperelliptic curves, in particular, has received some
attention with the hope that it may be relevant to hyperelliptic curve cryptography.

Indeed, most elliptic curve-base cryptographic protocols, including those that require
elliptic curve-valued hash functions (e.g. BLS signatures, Boneh-Franklin IBE, certain
PAKE protocols, etc.) admit natural generalizations to a hyperelliptic curve-based setting,
possibly with some efficiency gains and lower memory footprint (see e.g. [PWGP03]). A
caveat is that in the hyperelliptic setting, the group where computations occur is not
the set of point of the hyperelliptic curve itself (which does not have a natural group
structure) but the Jacobian variety of the curve, which is a higher-dimensional abelian
variety. Thus, hashing should be done to the Jacobian rather than to the curve itself.

53

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

However, as we have seen, constructing encoding functions to curves can already be
quite tricky, so to the best of our knowledge, no attempt has been made to construct en-
codings to the Jacobian directly: rather, research has focused on encoding to hyperelliptic
curves themselves, and then plugging those encodings into more general constructions to
obtain Jacobian-valued hash functions. We give a quick review here of the encodings
that have been proposed to date.

Hyperelliptic SWU encoding. The technique used by Ulas in [Ula07] to establish The-
orem 3.3 generalizes directly to hyperelliptic curves of the form y2 = xn + ax + b or
y2 = xn + ax2 + bx, for ab 6= 0 and any odd n > 3 coprime to the characteristic, and
Ulas himself actually stated his results in terms of these curves of arbitrary large genus.
In particular, the SWU encoding extends to these particular curves. These form two
somewhat restricted families of hyperelliptic curves—families of dimension 1 in the
(2g − 1)-dimensional moduli space of genus g hyperelliptic curves for any g > 1—but like
the elliptic curve SWU encoding, this encoding has the advantage of being quite easy
to describe. Furthermore, the simplified derivation we proposed in [BCI+10a] applies to
this hyperelliptic setting as well.

Kammerer et al.’s hyperelliptic encodings. In addition to the Hessian curve encoding
described above, Kammerer, Lercier and Renault [KLR10] presented several encodings
to higher-genus hyperelliptic curve.

They first try to extend the technique of applying Cardano’s formula to some genus 2
curves. They find that, for example, when A is constant and B is a rational function of
degree 2, then the curve of equation (3.12) is hyperelliptic of genus 2, isomorphic to:

H : y2 = λ(x3 + 3µx+ 2a)2 + 4v2 − 4λu2 (3.15)

for some λ, µ, a, u, v ∈ Fq, and the curve (3.13) associated to the cubic discriminant is of
genus 1. It is thus possible to construct an encoding to H(Fq) when q ≡ 2 (mod 3) by
first mapping to the associated genus 1 curve with Icart’s encoding, and then deducing
a function to H(Fq) by solving the cubic as in (3.14). The explicit formulas, given in
[KLR10, Fig. 3], are rather daunting. However, a nice feature of this encoding is that
the target family of genus 2 curves defined by (3.15) is rather large: it is a family of
dimension 2 in the 3-dimensional moduli space of genus 2 hyperelliptic curves. This is
the largest family of hyperelliptic curves of genus 2 for which an encoding is known (all
over families are of dimension at most 1).

Kammerer et al. also give two examples of simpler encodings to restricted families
of hyperelliptic curves of arbitrarily large genus. On the one hand, they describe an
encoding to hyperelliptic curves of the form:

H : y2 = x2d + axd + b

where d > 3 is an integer coprime to q(q − 1) (and a, b are such that the discriminant
of the right-hand side is not zero). The idea is simply to write an explicit rational

54

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

parametrization of the non degenerate conic y2 = w2 + aw + b and deduce an encoding
by setting x = w1/d.

On the other hand, they use the solvability of De Moivre polynomials to construct an
encoding to hyperelliptic curves of the form:

H : y2 = xd + daxd−2 + 2da2xd−4 + 3da3xd−6 + · · ·+ 2da(d−1)/2−1x3 + da(d−1)/2x+ b

with a, b ∈ Fq and d > 3 odd and coprime to the characteristic. Both of these families of
hyperelliptic curves are of dimension 1 in the moduli space.

Odd hyperelliptic curves. In [FT10a], we proposed a very simple encoding to all hyperel-
liptic curves of the form:

H : y2 = x2g+1 + a1x
2g−1 + a2x

2g−3 + · · ·+ agx

over finite fields Fq with q ≡ 3 (mod 4). We called such curves odd hyperelliptic curves
for obvious reasons. In genus g, they form a family of dimension g − 1 in the (2g − 1)-
dimensional moduli space of hyperelliptic curves of genus g: for any genus g > 3 it is thus
the largest family for which an encoding is known. Another nice feature of this family is
that many hyperelliptic curves of cryptographic interest are “odd” in this sense, including
those considered in [FKT03, HKT05, Sat09] and more. We give a short description our
encoding in the next section, and a more thorough treatment in Chapter 7.

3.5.4 Our contributions
Our works include some contributions to the construction of elliptic and hyperelliptic
curve encodings. We present them here.

The simplified SWU encoding. In [BCI+10a], we introduced a simpler, more efficient
variant of the SWU encoding, and described an elementary derivation of its formula. It
also extends in a straightforward way to the case of Ulas hyperelliptic curves.

To see where it comes from, consider what happens when we try to deduce an encoding
function from Theorem 3.3 by fixing the value of u. We know that a product of the
form g(u)g

(
X̃1(t, g(u))

)
g
(
X̃2(t, g(u))

)
is a square for all t. If g(u) itself is a square, we

don’t get any interesting information on the values that depend on t, so we cannot
construct a non constant encoding. On the other hand, if u is chosen such that g(u) is a
quadratic nonresidue, then for all t, either g

(
X̃1(t, g(u))

)
or g

(
X̃2(t, g(u))

)
is a square,

and thus we get a well-behaved, non constant encoding to E(Fq). And we can check,
moreover, that the same formulas give rise to an encoding even if we replace g(u) by
a quadratic nonresidue that isn’t in the image of the polynomial g: any choice of a
quadratic nonresidue ξ ∈ Fq lets us construct an encoding.

Let us see, more formally, how we can derive the formulas for these encodings based
on that simple remark. We will consider the hyperelliptic case right away, and try to
encode to the set of Fq-points of the curve:

H : y2 = g(x) where g(x) = xn + ax+ b

55

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

with n > 3 odd and coprime to the characteristic, and ab 6= 0.
First observe that, for any t ∈ Fq such that tn − t 6= 0, there is a unique x ∈ Fq such

that g(tx) = tn · g(x). Indeed, solving this equation for x, we get:

tnxn + atx+ b = tnxn + atnx+ btn

a(t− tn)x = b(tn − 1)

x = − b
a
· t
n − 1
tn − t

.

Now write t = ξu2, where ξ ∈ Fq is a fixed quadratic nonresidue, and u is a variable
parameter in Fq. Then tn is a quadratic nonresidue for all u, and hence if x is defined
as before (which is possible for all values of u except at most 2n), either g(x) or
g(tx) = tn · g(x) is a square. This means that either x or tx is the abscissa of a point
in H(Fq), with the ordinate begin ±

√
g(x) or ±

√
g(tx) accordingly. We thus get the

following encoding function:

f : Fq \ S −→ H(Fq)

u 7−→


(
x ;

√
g(x)

)
if g(x) is a square(

ξu2x ; −
√
g(ξu2x)

)
otherwise

where x = − b
a
· ξnu2n − 1
ξnu2n − ξu2 .

Here, S is the set of cardinality at most 2n consisting of all u ∈ Fq such that ξnu2n−ξu2 =
0. The minus sign before the second square root ensures that the two “branches” of this
encoding function are almost disjoint, making the image somewhat larger.

Note again that this formula is really the same as the one we obtain when deducing
an encoding function from Theorem 3.3 by fixing the parameter u, except that the choice
of the quadratic nonresidue doesn’t have to be in the image of g.

A particularly simple case is when q ≡ 3 (mod 4). Then, we have a very simple
nonresidue ξ = −1 (and taking square roots is just a matter of raising to the (q+ 1)/4-th
power). The resulting simple formula, given in Figure 3.5, is what we call the simplified
SWU encoding.

Note also that the same reasoning yields an encoding to hyperelliptic curves of the
form:

H : y2 = xn + ax2 + bx.

Simple encodings in characteristic 3. Among the encodings we have described until
now, the only one that applies to elliptic curves over fields of characteristic 3 is the
original Shallue-van de Woestijne algorithm [SvdW06], which has rather limited efficiency.
In [BCI+10a] we have proposed several more efficient constructions.

We only consider elliptic curves of non zero j-invariant over a field Fq of characteristic
3. They have a reduced Weierstrass equation of the form:

E : y2 = x3 + ax2 + b (3.16)

56

3.5. Constructing Encodings to Elliptic Curves and Hyperelliptic Curves

f : Fq \ S −→ H(Fq)

u 7−→


(
x ;

√
g(x)

)
if g(x) is a square(

−u2x ; −
√
g(−u2x)

)
otherwise

where x = − b
a
· u

2n + 1
u2n − u2

Here, S = {u ∈ Fq | u2n − u2 = 0}. We can extend f to all of
Fq by setting f(S) = {O}, the point at infinity.

Figure 3.5: Simplified SWU encoding to H : y2 = xn+ax+ b over Fq with q ≡ 3 (mod 4).

and their discriminant is ∆ = −a3b (hence ab 6= 0).
A simple approach is to try and mimic the simplified SWU technique described above.

Suppose first that ∆ is a square, and write g(x) = x3 + ax2 + b. For t ∈ Fq \ {0, 1}, we
can again find x ∈ Fq such that g(tx) = t3 · g(x). Indeed, trying to solve for x we get:

t3x3 + at2x2 + b = t3x3 + at3x2 + bt3

a(t2 − t3)x2 = b(t3 − 1)
at2x2 = b(t− 1)2

x2 = − b
a
·
(

1− 1
t

)2

but −b/a = ∆/a2 is a square c2, so we get a solution x = c(1− 1/t)2. Then, picking t of
the form ξu2 for some fixed quadratic nonresidue ξ ∈ Fq again, we get that one of g(x)
and g(tx) must be square. Hence the encoding:

f : F∗q −→ E(Fq)

u 7−→


(
x ;

√
g(x)

)
if g(x) is a square(

ξu2x ; −
√
g(ξu2x)

)
otherwise

where x = c ·
(

1− 1
ξu2

)
.

On the other hand, when ∆ is not a square, then the polynomial g(x) has a root
x0 ∈ Fq (indeed, if it were irreducible, it would have the non abelian group S3 as its
Galois group, which is not possible over a finite field). Therefore, g(x− x0) is of the form
x3 + ax2 + b′x, which is amenable to the usual SWU approach. Hence another encoding
in this case.

However, as noted by Barreto and Kim in [BK01], we can obtain much more efficient
encoding (or in their case, try-and-increment hashing) in characteristic 3 if we can reduce

57

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

the problem to solving an Artin-Schreier cubic equation (which is linear over the prime
field F3) instead of taking a square root (which is at least as costly as an exponentiation
in Fq). Let us describe how this can be done in our setting.

To put equation (3.16) in Artin-Schreier form (i.e. into a cubic with no term of degree
2), let w = 1/x. The equation becomes:

1
w3 + a

w2 + (b− y2) = 0

and multiplying by w3/(b− y2) to obtain the reciprocal of (3.16), we get:

w3 + a

b− y2 · w = − 1
b− y2 . (3.17)

This is an Artin-Schreier equation in w; clearly, the map w 7→ w3 + a/(b − y2) · w is
linear over F3, and bijective (hence invertible) if and only if it has a trivial kernel, i.e. if
and only if −a/(b − y2) is not a square. We can ensure that this is the case by fixing
a quadratic nonresidue ξ ∈ Fq, and choosing y such that b − y2 = −aξz2 for some
z ∈ Fq. But aξz2 + y2 = b is a non degenerate conic over Fq, and hence admits a rational
parametrization. For all the values of y given by this parametrization, we can solve
equation (3.17) for w and deduce x = 1/w. Hence yet another encoding function, which
we describe in Algorithm 3.2.

Note that this encoding has some of the drawbacks of the Shallue-van de Woestijne
one (e.g. the need to find a point on a conic), but the corresponding performance
penalty is easily offset by the efficiency improvement provided by the linear nature of the
Artin-Schreier equation.

Algorithm 3.2 Efficient encoding in characteristic 3.
1: procedure ArtinSchreierEncoding(u) . encode to E : y2 = x3 + ax2 + b

2: z ← −z0u
2 + 2y0u− aξz0
aξ − u2 . (z0, y0) precomputed solution of aξz2 + y2 = b

3: y ← y0 + u · (z − z0)
4: s← 1/(b− y2)
5: Find the unique solution w of the Artin-Schreier equation w3 + as · w = −s
6: return (1/w ; y)
7: end procedure

Encoding to odd hyperelliptic curves. Another contribution, alluded to in the previous
section, is the construction of an encoding to so-called odd hyperelliptic curves, of the
form:

H : y2 = g(x) where g is an odd polynomial

over fields Fq such that q ≡ 3 (mod 4). The idea is really quite simple: since −1 is a
quadratic nonresidue, we have that for any u ∈ Fq, at least one of g(u) and g(−u) = −g(u)

58

3.6. Further Work

f : Fq −→ H(Fq)

u 7−→
(
ε(u) · u ; ε(u)

√
ε(u) · g(u)

)
where ε(u) = χq(g(u)).

Figure 3.6: Encoding to odd hyperelliptic curves H : y2 = g(x) over Fq with q ≡ 3
(mod 4).

is a square (and indeed, exactly one of them if g(u) 6= 0). If we let ε(u) = χq(g(u)),
ε(u) · u is thus always the abscissa of a point in H(Fq). Hence the encoding function
described in Figure 3.6.

This encoding has a number of nice properties: for example, it is “almost” a bijection
(more precisely, it induces a bijection between Fq minus the set of roots of g on the
one had, and the non-Weierstrass points in H(Fq) on the other hand) and has the very
simple inverse (x; y) 7→ χq(y) · x. It is also easy to write a constant-time, branch-free
and division-free implementation of this encoding, making it possibly the simplest of all
encodings with the exception of the Boneh-Franklin supersingular encoding.

As we mentioned earlier, it is also an encoding of some cryptographic interest, since
many remarkable hyperelliptic curves are “odd”. This includes the genus 2 curves
considered by Furukawa et al. [FKT03] and their extension to genus g by Haneda et
al. [HKT05], the Type II pairing-friendly curves of genus 2 constructed by Kawazoe and
Takahashi [KT08], the genus 2 hyperelliptic curves for which Satoh [Sat09] gave an efficient
class group counting algorithm, and more. And even in genus 1, the construction is
interesting, since “odd” elliptic curves are the supersingular elliptic curves of Joux [Jou02]:
y2 = x3 + ax.

We present a more thorough discussion of this encoding as well as some constructions
based on it in Chapter 7.

3.6 Further Work

3.6.1 Is the problem solved?

We have described a number of constructions of encodings to elliptic and hyperelliptic
curves. It is not clear, however, that they solve our initial problem of hashing to elliptic
curve groups.

The basic construction of a hash function H : {0, 1}∗ → E(Fq) from an Fq-valued
random oracle h : {0, 1}∗ → Fq and an encoding f : Fq → E(Fq), as suggested in §3.4, is
simply:

H(m) = f
(
h(m)

)
. (3.18)

59

3. Constant-Time Hashing to Elliptic and Hyperelliptic Curves

However, unlike what happens for the Boneh-Franklin encoding, the resulting hash
function H does not necessarily have strong security properties.

Consider the case when f is Icart’s encoding, for example (most other encodings are
similar). One can then prove some limited security properties on H, such as that H is
one-way if h is [Ica09, Lemma 5]. However, unlike the Boneh-Franklin encoding, f is
not a surjective or “almost” surjective function to the target group E(Fq). Indeed, in
his original paper [Ica09], Icart could only show that the image f(Fq) satisfies #f(Fq) &
(1/4) · #E(Fq), and conjectured that, in fact,#f(Fq) ≈ (5/8) · #E(Fq) (a conjecture
which we will prove in Chapter 4, and extend to other encodings). As a result, the hash
function H constructed from f using formula (3.18) is easily distinguished from a random
oracle!

To see this, note that since f is an algebraic function, we can efficiently compute
f−1(P) for any P ∈ E(Fq) by solving a polynomial equation over Fq. In particular, it is
possible to decide efficiently whether P is in the image of f or not. Therefore, we can
construct a distinguisher D between H0 = H and a random oracle H1 to E(Fq) as follows.
D is given as input P = Hb(m) ∈ E(Fq) for some message m and a random bit b ∈ {0, 1}.
It answers with a guess of the bit b, as b = 0 if P is in f(Fq) and b = 1 otherwise. Then
D has a constant positive advantage. Indeed, it answers correctly with probability 1 if
P /∈ f(Fq), and with probability 1/2 otherwise. Hence:

Adv D ≈ (5/8) · (1/2) + (1− 5/8) · 1− 1/2 = 3/16.

Thus, clearly, construction (3.18) does not behave like a random oracle when f is Icart’s
encoding (or most other encodings), and cannot replace a random oracle in a generic way.

In many protocols requiring a hash function to an elliptic curve group, this is actually
not much of a problem, and an encoding with an image size that is a constant fraction of
#E(Fq) is often good enough. The reason is that, in a random oracle proof of security,
the simulator does want to program the random oracle by setting the hash of some
message m to a value P, but that point P itself can usually be anything depending on
some randomness. So the simulator might typically want to set H(m) to P = [r] · G for
some random r, say. Now if H is defined in the protocol using a construction like (3.18),
the simulator would pick a random r and set h(m) to one of the preimages u ∈ f−1(P)
if P ∈ f(Fq). If however P is not in the image of f , the simulator would pick another
random r and try again.

Nevertheless, it seems difficult to give formal sufficient conditions on a protocol
for it to remain secure when the elliptic curve-valued random oracle is replaced by a
construction like (3.18). One can actually find protocols that are secure in the random
oracle model, but in which using that construction instead breaks security completely
(we give an example of such a situation in §5.4.2).

Therefore, it would be desirable to obtain from the encodings discussed thus far a
construction that does satisfy the indifferentiability property mentioned in §3.4, and can
thus be used as a plug-in replacement for elliptic curve-valued random oracles in a very
large class of protocols. We will see in Chapters 5–6 how we can prove that for the various
encodings f described above, the following construction achieves indifferentiability from

60

3.6. Further Work

a random oracle:
H(m) = f

(
h1(m)

)
+ f

(
h2(m)

)
(3.19)

where h1 and h2 are modeled as random oracles {0, 1}∗ → Fq (and the addition is the usual
group operation in E(Fq)). As we will show in Chapter 6, a variant of this construction
also provides indifferentiable hashing to the Jacobian of a hyperelliptic curve even when
f is an encoding to the curve itself: this is an important construction in the higher genus
case, as a formula like (3.18) alone can never provide secure hashing in that setting7.

3.6.2 Applications
Constant-time hashing to elliptic curves has already found its way into practical appli-
cations and the industry. We discuss some of these applications in a column to IEEE
Security & Privacy [CT11].

The best-known of them is probably PACE v2 IM [CGIP11], a password-based
authenticated key establishment protocol developed by Gemalto and Morpho for e-
passports, and standardized as part of the ICAO specifications on Supplemental Access
Control for Machine Readable Travel Documents [ICAO10]. This protocol uses a hash
function to elliptic curves constructed from Icart’s encoding, or alternatively the simplified
SWU encoding, using the basic method 3.18.

Bringer, Chabanne and Icart [BCI10b] have also shown how using the indifferentiable
hash construction (3.19) instead in a similar password-based key exchange protocol can
provide interesting additional anonymity properties for e-passports.

7Formula (3.18) does define a hash function to the Jacobian if we fix an embedding of the curve into
its Jacobian. However, its image only comprises a negligible proportion of all points on the Jacobian, and
thus the re-randomizing trick described in the elliptic case does not apply. More concretely, suppose we
were to instantiate BLS signatures over the 160-bit Jacobian of a pairing-friendly hyperelliptic curve of
genus 2 using (3.18) as a hash function construction. Then the message hashes would only be 80-bit long,
making it possible to find a collision and hence break the scheme in time 240.

61

Chapter 4
Estimating the Size of the Image of

Constant-Time Encodings

4.1 Introduction

This chapter is devoted to the problem of estimating the size of the image of constant-
time encodings. Both Shallue and van de Woestijne [SvdW06] on the one hand, and
Icart [Ica09] on the other, gave coarse lower bounds for the image size of their encodings.
Obtaining more precise estimates is an interesting mathematical problem, and provides
a better understanding of the tightness loss in random oracle security reductions when
these encoding functions are used in hash function constructions. A previous version of
this work was presented at LATINCRYPT 2010 [FT10b].

4.1.1 Icart’s conjecture

To construct a hash function to an elliptic curve group E(Fq) based on an encoding
f : Fq → E(Fq) as discussed in §3.4, one would ideally want f to be surjective (possibly
up to a negligible fraction of points), or better yet, to satisfy that for a uniformly
random u ∈ Fq, f(u) is “almost” uniformly random (i.e. to be regular in the terminology
of Chapter 5). The Boneh-Franklin encoding from §3.4.2 satisfies this property, as
does the odd hyperelliptic curve encoding we describe in Chapter 7. However, most
of the encodings we have described thus far actually factor through a rational map1

C(Fq)→ E(Fq) of degree > 1 for some covering curve C, and such a map is usually not
surjective. It is interesting to understand how far they fall short of being surjective.

Icart, for example, could only prove that his own encoding f satisfies #f(Fq) > q/4.
However, he conjectured the following much more precise result, which he left as an open

1This is the case for Icart-like encodings. The precise geometric picture is slightly more complicated
for SWU-like encodings, where there are typically two covering curves C1, C2 → E, and a value f(u) of
the encoding f is in the image of one cover or the other depending on the value of the quadratic character
χq(u). But the end result is the same: f is usually not surjective.

63

4. Estimating the Size of the Image of Constant-Time Encodings

problem: ∣∣∣∣#f(Fq)−
5q
8

∣∣∣∣ 6 λ√q
for some universal constant λ. It turns out that this result is true: we prove it in this
chapter using the Chebotarev density theorem, and show how the methodology naturally
adapts to any other encoding by stating and proving the same result for the simplified
SWU encoding introduced in §3.5.4, and for the variant of Icart’s function over binary
fields.

4.1.2 Related work

Independently of our work, Farashahi, Shparlinski and Voloch have obtained a very
similar proof of Icart’s conjecture [FSV10]. They did not investigate the case of other
encoding functions, however.

4.1.3 Outline

In §4.2, we first recall some basic facts about Icart’s encoding function, and then give
a precise statement of Icart’s conjecture. We prove this conjecture in §4.3. Then, we
formulate and prove analogues of this conjecture for the binary variant of Icart’s encoding
(§4.4) and for the simplified SWU encoding (§4.5). Finally, in §4.6, we mention an
interesting consequence, already noted by Icart, of the result established herein: namely,
the construction of surjective hash functions from Icart’s encoding.

4.2 Preliminaries

4.2.1 Icart’s encoding

Let Fq be a finite field of characteristic > 3 and E an elliptic curve over Fq. E can be
represented as the union of its neutral element O and the set of points (x, y) in the affine
plane over Fq such that:

y2 = x3 + ax+ b

for some suitable constants a, b ∈ Fq satisfying 4a3 + 27b2 6= 0 (non-singularity).
When q− 1 is not divisible by 3, these curves are supersingular for a = 0. In all other

cases, as discussed in §3.5.2, Icart [Ica09] defines the following function f : Fq → E(Fq).
He sets f(0) = O and for all u 6= 0, f(u) = (x, y) with:

x =
(
v2 − b− u6

27

)1/3

+ u2

3
y = ux+ v

where v = (3a− u4)/(6u). This function is shown to be well-defined and easily computed
in deterministic polynomial time.

64

4.3. Proof of Icart’s Conjecture

More importantly for our purposes, Icart proves [Ica09, Lemma 3], and it is easy
to verify, that there is an algebraic relation between elements x, y, u ∈ Fq such that
f(u) = (x, y). More precisely, the following holds for all x, y, u ∈ Fq:

f(u) = (x, y)⇐⇒ u4 − 6xu2 + 6yu− 3a = 0. (4.1)

In geometric terms, this equation defines a curve C ⊂ P1 × E with projections to P1

and E, and Icart’s function is really obtained by composing C(Fq) → E(Fq) with the
inverse of C(Fq)→ P1(Fq) (which is a bijection on Fq-points). See §5.3.2 more a longer
discussion of this geometric interpretation.

4.2.2 Icart’s conjecture
In [Ica09], Icart conjectures that the image of f contains (5/8) ·#E(Fq) +O(q1/2) points
of the curve. In view of relation (4.1), and since the curve itself has #E(Fq) = q+O(q1/2)
points in Fq, this conjecture can be stated as follows.

Conjecture 4.1 (Icart). Let K = Fq(x, y) = Fq(x)[y]/(y2 − x3 − ax− b) be the function
field of E, and P the polynomial in K[u] defined by P (u) = u4 − 6xu2 + 6yu− 3a. Let
further N be the number of points in E(Fq) at which the reduction of P has a root in Fq.
Then

N = 5
8q +O(q1/2)

where the implied constant in the big-O is absolute.

The next section is devoted to the proof of this conjecture.

4.3 Proof of Icart’s Conjecture

4.3.1 Genericity of P
Proposition 4.1. Let again K = Fq(x, y) be the function field of E. The polynomial
P (u) = u4 − 6xu2 + 6yu− 3a ∈ K[u] is irreducible over K, and its Galois group is S4.

Proof. Introduce the resolvent cubic of P , whose roots in an algebraic closure are
(ri + rj)(rk + rl) for all permutations (i, j, k, l) of (1, 2, 3, 4), with r1, . . . , r4 the roots of
P :2

R(u) = u3 + 12xu2 + (36x2 + 12a)u+ 36y2

= u3 + 12xu2 + (36x2 + 12a)u+ 36(x3 + ax+ b) ∈ Fq(x).

According to classical facts about the quartic equation (see Appendix 4.A), it suffices to
prove that P and R are irreducible over K, and that their common discriminant

∆ = −432(9x6 + 18ax4 + 90bx3 − 39a2x2 − 54abx+ 16a3 + 81b2)
2Some texts use the resolvent whose roots are the rirj + rkrl. This is of course equivalent, as both

sets of roots have the same Galois action.

65

4. Estimating the Size of the Image of Constant-Time Encodings

is not a square in K. Moreover, we can prove these assertions after extending the field of
scalars to the algebraic closure F = Fq. Indeed, if they hold over F, they clearly hold a
fortiori over Fq. The following three lemmas conclude the proof.

Lemma 4.1. The resolvent cubic R(u) is irreducible over F(x, y).

Proof. This amounts to showing that R(u) has no root in F(x, y). Note first that it is
actually sufficient to prove it has no root in F(x). Indeed, if it is irreducible in F(x) but
has a root in F(x, y), the degree of the algebraic extension F(x, y)/F(x) must be divisible
by degR(u) = 3. But this extension is quadratic: hence a contradiction.

Let then g/h be a root of R in F(x), with g and h coprime polynomials. Multiplying
the equation R(g/h) = 0 by h3, we get

g3 = h ·
(
− 12xg2 − (36x2 + 12a)gh− 36(x3 + ax+ b)h2)

Thus h divides g3, and since it is coprime to g, it must be constant. Without loss of
generality, we thus have h = 1 and

g3 + 12xg2 + (36x2 + 12a)g + 36(x3 + ax+ b) = 0

Let m = deg g. Then the terms in the previous sum are of respective degrees 3m, 2m+ 1,
m + 2, 3. If m > 2, the sum is thus of degree 3m, and if m 6 0, it is of degree 3: in
neither case can it be 0. The only possibility is thus m = 1 and g = αx+ β. We get

(α3 + 12α2 + 36α+ 36)x3 + 3β(α2 + 8α+ 12)x2+
(3αβ2 + 12aα+ 12β2 + 36a)x+ (β3 + 12aβ + 36b) = 0

in F(x). Suppose β 6= 0. Since the coefficients of x3 and x2 must be zero, this gives
α3 + 12α2 + 36α + 36 = α2 + 8α + 12 = 0, which is impossible, since the polynomials
X3 + 12X2 + 36X + 36 and X2 + 8X + 12 are coprime. Hence β = 0, and thus
α3 + 12α2 + 36α + 36 = 12a(α + 3) = 0, which is similarly seen to be impossible (as
a 6= 0). This completes the proof.

Lemma 4.2. The discriminant ∆ is not a square in F(x, y).

Proof. Again, we will show that it is sufficient to prove that ∆ is not a square in F(x).
Indeed, suppose that ∆ is not a square in F(x) but becomes a square in F(x, y). Since
the extension is quadratic, this gives F(x, y) = F(x,

√
∆). In particular, if λ is a root of

X3 + aX + b in F, the extension F(x,
√

∆)/F(x) must be ramified at (x− λ). In other
words, if we specialize ∆(x) at x = λ, we must get 0. But

(λ− 3b/a)∆(λ) = 16 · 432(λ− 3b/a)(3a2λ2 + 9abλ− a3)
= 16 · 432

[
3a2(λ3 + aλ+ b)− (4a3 + 27b2)λ

]
= −16 · 432(4a3 + 27b2)λ 6= 0

since the characteristic does not divide 6 and a 6= 0. Hence a contradiction.

66

4.3. Proof of Icart’s Conjecture

It remains to prove that ∆ is not a square in F(x), or equivalently in F[x] (since F[x]
is integrally closed). A square root of ∆ in F[x] must have the form S =

√
−432 · (3x3 +

rx2 + sx + t). The coefficient of x5 in S2 must be 0, hence r = 0. The coefficient of
x4 must be 18a, hence s = 3a. But then the coefficient of x2 is equal to both 9a2 and
−39a2, which is a contradiction since 48a2 6= 0. This completes the proof.

Lemma 4.3. The polynomial P is irreducible over F(x, y).

Proof. Let σ be the non trivial Galois automorphism of the extension F(x, y)/F(x)
(σ(y) = −y). If P (u) decomposes as a product of non constant factors in F(x, y)[u], then
its norm P0(u) = P (u)P (u)σ is reducible over F(x). We will show that this is not the
case. Note first that P0(u) can be written as Q0(u2), where

Q0(v) = v4 − 12xv3 + (36x2 − 6a)v2 − 36(x3 + b)v + 9a2

Now Q0(v) is easily seen to be an irreducible polynomial of F(x)[v]. Indeed, if it had a
root g/h ∈ F(x), the rational function g/h would be constant, which is clearly impossible.
And if it decomposes as a product of degree 2 factors Q0 = (v2 + rv + s)(v2 + r′v + s′),
these factors are in F[x] (integrally closed domain). Since ss′ = 9a2, both s and s′ are
constant. Then, since the coefficient of v2, rr′ + s+ s′, is of degree 2, r and r′ are both
of degree at most 2. But then so is rs′ + r′s, which is the coefficient of v in Q0, namely
−36(x3 + b), hence a contradiction.

Now let w be a root of P0 in the separable closure of F(x), and let L = F(x,w),
L′ = F(x,w2). L′ is a subfield of L, and a rupture field of Q0. In particular [L : F(x)] =
[L : L′] · [L′ : F(x)] = 4[L : L′]. Since the polynomial P0 is even, −w is another root of P0.
As w 6∈ F(x), w 7→ −w defines a non trivial F(x)-automorphism of L. This automorphism
fixes L′, so [L : L′] > 2. This gives [L : F(x)] > 8, and thus P0 must have an irreducible
factor of degree > 8. In other words, P0 is irreducible over F(x) as required.

4.3.2 Applying Chebotarev

Now that Proposition 4.1 is established, Conjecture 4.1 readily follows from effective
versions of the Chebotarev Density Theorem for function fields. One such version is
[FJ05, Proposition 6.4.8], from which one can easily deduce:

Theorem 4.1 (Chebotarev). Let K be an extension of Fq(x) of degree d < ∞ and L
a Galois extension of K of degree m <∞. Assume Fq is algebraically closed in L, and
fix some subset S of Gal(L/K) stable under conjugation. Let s = #S and N(S) the
number of places v of K of degree 1, unramified in L, such that the Artin symbol

(
L/K
v

)
(defined up to conjugation) is in S . Then∣∣∣∣N(S)− s

m
q

∣∣∣∣ 6 2s
m

(
(m+ gL) · q1/2 +m(2gK + 1) · q1/4 + gL + dm

)
where gK and gL are the genera of the function fields K and L.

67

4. Estimating the Size of the Image of Constant-Time Encodings

Proof of Conjecture 4.1. In our case, K is the function field of E and L the splitting
field of P (u). In particular, d = 2, m = #S4 = 24 and gK = 1. We consider the subset
S ⊂ Gal(L/K) = S4 consisting of permutations with at least one fixed point—these are
the conjugates of (1), (12) and (123), and there are s = 1 + 6 + 8 = 15 of them. Hence
s/m = 15/24 = 5/8.

The places v of K of degree 1 correspond to points of E(Fq) (in the projective plane),
and for a point (x0, y0) ∈ E(Fq) not at infinity, saying that v = (x− x0) has its Artin
symbol in S means that the reduction of P (u) at (x0, y0) is a polynomial over Fq which
decomposes into a products of factors at least one of which is of degree 1 (it splits
completely if the symbol is (1), decomposes as two linear factors and a quadratic if it is
(12) and a product of a linear factor and a cubic if it is (123) up to conjugation).

In other words, N(S) is the same as N in the statement of Conjecture 4.1 up to a
constant number accounting for ramified places (at most 12 since ∆ is a polynomial of
degree 6 in x) and the point at infinity. We then get∣∣∣∣N − 5

8q
∣∣∣∣ 6 5

4
(
(24 + gL) · q1/2 + 72q1/4 + gL + 48

)
+ 12 + 1

To bound gL, note again that there are at most 12 ramified points, and the ramification
index is at most degP0 = 4 at each of them. The Riemann-Hurwitz formula thus gives

2− 2gL > 24(2− 2gK)− 12 · (4− 1) i.e. gL 6 17

and thus ∣∣∣∣N − 5
8q
∣∣∣∣ 6 5

4
(
41q1/2 + 72q1/4 + 76

)
In particular, N = (5/8)q +O(q1/2). Concretely, for all q > 219, we have∣∣∣∣N − 5

8q
∣∣∣∣ 6 55q1/2 (4.2)

4.4 Analogue in Characteristic 2
As discussed in 3.5.2, Icart also introduced a variant of his function for elliptic curves
of non zero j-invariant over finite fields Fq of even characteristic, i.e. q = 2n. Such an
elliptic curve has the form

y2 + xy = x3 + ax2 + b

with a, b ∈ Fq, b 6= 0. Recall from Figure 3.4 that Icart’s function for such a curve E is
defined when n is odd as

f : Fq → E(Fq)
u 7→ (x, ux+ v2)

68

4.4. Analogue in Characteristic 2

where v = a + u + u2 and x = (v4 + v3 + b)1/3 + v. It is shown that u ∈ Fq maps to
(x, y) ∈ E(Fq) if and only if P (u) = 0, where P ∈ K[u] is defined as

P (u) = u4 + u2 + xu+ (a2 + y)

Using this result, we can prove the following analogue of Icart’s conjecture.

Proposition 4.2. The number of points N in the image of f satisfies:

N = 5
8q +O(q1/2)

where the implied constant in the big-O is universal.

The proof is identical to the one in §4.3.2. The only difference is that the computation
of the Galois group is slightly different in even characteristic. However, the group is still
S4. Let us prove this fact now.

Proposition 4.3. The polynomial P (u) = u4 + u2 + xu+ (a2 + y) ∈ K[u] is separable
and irreducible over K, and its Galois group is S4.

Proof. Since P ′ = x is a unit in K[u], P is certainly separable. Thus, if we prove that it
is irreducible, its Galois group can be determined according to [Con07, Theorem 3.4]:
to see that it is S4, it suffices to show that both its resolvent cubic R and its resolvent
quadratic Q are irreducible (see Appendix 4.A).

First, we have R(u) = u3 + u2 + x2. If this polynomial had a root in Fq(x), it would
be a polynomial of Fq[x] dividing x2 by integral closure, which is clearly impossible.
Therefore, R(u) is irreducible over Fq(x), and also over K by the same degree argument
as in the proof of Lemma 4.1: namely, if R(u) had a root in K, [K : Fq(x)] = 2 would be
divisible by degR(u) = 3, a contradiction.

Additionally, we have Q(u) = u2 + x2u+ x2 + x4. If Q is reducible over Fq(x), we see
again that it is split over Fq[x], and its roots s, t satisfy deg s+ deg t = 4 and deg(st) = 2,
hence s and t are quadratics dividing x2(1 + x)2, i.e. constant multiples of x2, x2 + x or
x2 + 1, but no such quadratic is a root of Q. Thus, Q is irreducible over Fq(x). To see
that it remains irreducible over K, it suffices to see that K and the splitting field F of Q
over Fq(x) are linearly disjoint, and this is certainly the case since F is a function field of
genus 0 whereas K is of genus 1.

Finally, let us prove that P is irreducible. Let first σ be the non-trivial Galois
automorphism of K/Fq(x), namely y 7→ y + x, and set P0 = PP σ ∈ Fq(x). It suffices to
prove that P0 is irreducible over Fq(x). We have

P0 = (u8 + u4) + x(u4 + u2) + x2(u2 + u) + (x3 + a2x2 + a2x+ a4 + b) = Q0(u2 + u)

where Q0(v) = v4 + xv2 + x2v + (x3 + a2x2 + a2x+ a4 + b).
If Q0 has a root over Fq(x), it is in fact in Fq[x], which is not possible by inspection

of the degrees of the four terms in the sum. Similarly, if Q0 can be written as a product
of factors of degree 2, we have Q0 = (v2 + r + s)(v2 + r + s′) with r, s and s′ are all

69

4. Estimating the Size of the Image of Constant-Time Encodings

in Fq[x] (with r appearing in both factors by inspection of the degree 3 coefficient of
Q0). We get deg(ss′) = 3, so the polynomial s+ s′ must be of degree at least 2. Since
r(s+ s′) = x2, this implies that r is constant. But then the relation s+ s′ + r2 = x gives
a contradiction. Therefore Q0 is irreducible over Fq(x).

Then, let w be a root of P0 in the separable closure of Fq(x), and set L = Fq(x,w),
L′ = Fq(x,w + w2). Like in the proof of Lemma 4.3, we have a tower of extensions
Fq(x) ⊂ L′ ⊂ L, and L′ is a rupture field of Q0, so [L : Fq(x)] = 4[L : L′]. Furthermore,
since P0(u+ 1) = P (u), w 7→ w + 1 is a non-trivial L′-automorphism of L, which gives
[L : Fq(x)] > 8 and hence, P0 is irreducible over Fq(x), which concludes the proof.

We can again give concrete bounds. With the notations of §4.3.2, we have d = 2,
m = 12, s = 8, gK = 1 and there is exactly one ramified point corresponding to x = 0.
The Riemann-Hurwitz formula then gives gL 6 2, and thus:∣∣∣∣N − 3

4q
∣∣∣∣ 6 21q1/2 + 54q1/4 + 42

In particular, for q > 216 we get ∣∣∣∣N − 3
4q
∣∣∣∣ 6 25q1/2 (4.3)

4.5 Analogue for the Simplified Shallue-van de
Woestijne-Ulas Encoding

Recall from §3.5.4 the description of the simplified version of the SWU encoding [Ula07]
that we gave in [BCI+10a]. We focus here on the case of elliptic curves:

E : y2 = x3 + ax+ b

with ab 6= 0 over fields Fq with q ≡ 3 (mod 4). Then, −1 is a readily available quadratic
nonresidue and we can then use the formula given in Figure 3.5, which simplifies a bit
further still as n = 3. We finally get the following encoding function:

f : Fq \ {0, 1,−1} −→ E(Fq)

u 7−→


(
x ;

√
g(x)

)
if g(x) is a square(

−u2x ; −
√
g(−u2x)

)
otherwise

where x = − b
a
·
(

1 + 1
u4 − u2

)
.

Here, g(x) is again the polynomial x3 + ax+ b, and
√
· denotes the standard square root

in Fq, obtained by exponentiation by (q + 1)/4.

70

4.5. Analogue for the Simplified Shallue-van de Woestijne-Ulas Encoding

Using the same notations as in Ulas’s Theorem 3.3, define the following rational
functions in Fq(u):

X2(u) = − b
a
·
(

1 + 1
u4 − u2

)
and X3(u) = −u2 ·X2(u).

The image of f is then made up of the points in E(Fq) with an x-coordinate of the form
X2(u) for some u and a positive3 y-coordinate, and of those with an x-coordinate of the
form X3(u) and a negative4 y-coordinate. More formally, f(Fq \ {0, 1,−1}) is the (almost
disjoint) union of the sets I2 and I3 defined by

Ij =
{
(x, y) ∈ E(Fq) | ∃u ∈ Fq, x = Xj(u) and y = (−1)j

√
g(x)

}
.

Now, disregarding at most three points with zero x-coordinate, Ij consists of half the
points on the curve with an x-coordinate of the form Xj(u) for some u. Therefore, if
N is the number of points in the image of the algorithm and Nj denotes the number of
points with an x-coordinate of the form Xj(u), we get

N = N2 +N3
2 +O(1)

and the implied constant is at most 6. We deduce the following result.

Proposition 4.4. The number of points N in the image of the simplified SWU encoding
satisfies:

N = 3
8q +O(q1/2)

where the implied constant in the big-O is universal.

Proof. The proof is again similar to the previous ones. What we actually show is that
Nj = (3/8)q +O(q1/2) for j = 2, 3, using the Chebotarev density theorem again. Note
that for all u ∈ Fq \ {−1, 0, 1}, we have

x = X2(u)⇐⇒ u4 − u2 + 1
ω

= 0

x = X3(u)⇐⇒ u4 − ωu2 + ω = 0

where ω = a
bx+ 1. Hence, denoting by K = Fq(x, y) the function field of E, it suffices

to prove that the polynomials P2(u) = u4 − u2 + 1/ω and P3(u) = u4 − ωu2 + ω are
irreducible and have Galois group D8 (the 8-element dihedral group, viewed as a transitive
subgroup of S4) over K. Indeed, D8 has 8 elements, 3 of which have a fixed point: the
same technique as in §4.3.2 then gives the desired estimates for N2 and N3.

In view of [KW89, Theorems 2 and 3], a polynomial P (u) = u4 − ru2 + s ∈ K[u]
is irreducible with Galois group D8 if and only if none of s, δ = r2 − 4s or sδ are

3That is, in the image of the square root function
√
·, or equivalently, square.

4That is, the opposite of a positive element, i.e. a quadratic nonresidue or zero. Using these definitions,
all elements are either positive or negative, except 0 ∈ Fq which is both.

71

4. Estimating the Size of the Image of Constant-Time Encodings

squares in K. For P2, we have (s, δ, sδ) = 1
ω2 (ω, ω(ω − 4), ω − 4), and for P3, (s, δ, sδ) =

(ω, ω(ω− 4), ω2(ω− 4)). Thus, all we have to prove is that ω, ω− 4 and ω(ω− 4) are not
squares in K. This is obvious in Fq(x) (since these are polynomials of Fq[x] which are not
square), and extends to K by a ramification argument as in the proof of Lemma 4.2.

4.6 Constructing Surjective Hash Functions

In view of the previous results, encodings Fq → E(Fq) are not usually surjective. However,
it is possible to use e.g. Icart’s encoding to construct simple, efficient surjective hash
functions to E(Fq) as explained in [Ica09, Corollary 2].

Indeed, let f be Icart’s function over Fq (which can be a field of characteristic 2 or
> 3) and consider

F : (Fq)2 → E(Fq)
(u1, u2) 7→ f(u1) + f(u2)

The following pigeonhole argument shows that F is surjective for large q. Fix a point
P0 ∈ E(Fq). Then the sets S1 = {f(u1) / u1 ∈ Fq} and S2 = {P0 − f(u2) / u2 ∈ Fq}
both consist of (5/8)q+O(q1/2) points of E. In particular #S1 +#S2 = (5/4)q+O(q1/2),
which is greater than q + 2√q + 1 > #E(Fq) > #S1 ∪ S2 for large enough q. Therefore,
S1 ∩ S2 is non empty provided that q is large enough, and in that case P0 is in the image
of F .

More precisely, using the explicit bounds (4.2) and (4.3) that we have given for the
image size, we obtain that F is surjective as soon as q > 229 in characteristic > 3 (resp.
q > 216 in characteristic 2), which is always true in cryptographic applications.

Thus, if we define a hash function H as follows:

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
where h1 and h2 are Fq-valued hash functions, then H is a surjective hash function to
E(Fq). This is not a very strong statement from a security viewpoint, but we will see in
Chapter 5 that, in fact, a much stronger property holds—namely, that H is indifferentiable
from a random oracle when h1 and h2 are modeled as random oracles. Hence, H can
be used as a plug-in replacement for an E(Fq)-valued random oracle in most protocols
while preserving random oracle model proofs of security. It is thus a very interesting
construction, considering its reasonable level of efficiency.

4.A Galois Groups of Quartics

In this appendix, we recall some classical results regarding the computation of Galois
groups of quartic polynomials. The reader is referred to texts like [Cox04, Theorem
13.1.1] and [KW89] for details.

72

4.A. Galois Groups of Quartics

Let K be any field of odd characteristic, and P (x) = x4 +a1x
3 +a2x

2 +a3x+a4 ∈ K[x]
an irreducible polynomial of degree 4. Let further ∆ ∈ K be its discriminant, and

R(x) = x3 − 2a2x
2 + (a2

2 + a1a3 − 4a4)x+ (a2
3 + a2

1a4 − a1a2a3)

its resolvent cubic. Then the Galois group G of P is conjugate to:

• S4 if R is irreducible and ∆ is not a square in K;

• A4 if R is irreducible and ∆ is a square in K;

• V4 = Z/2Z× Z/2Z if R is reducible and ∆ is a square in K;

• D8 or Z/4Z otherwise.

If P is a separable polynomial over a field K of characteristic 2, a similar result holds
[Con07, Theorem 3.4], except that the condition that ∆ is a square must be replaced by
the reducibility over K of the resolvent quadratic Q of P , defined by

Q(x) = x2 + (a2
1a4 + a1a2a3 + a2

3)x+ (a4
1a

2
4 + a3

1a
3
3 + a2

1a
3
2a4 + a3

2a
2
3 + a4

3)

Finally, when P is an irreducible biquadratic polynomial (i.e. a1 = a3 = 0) in odd
characteristic, its Galois group can be determined by inspection of its coefficients. It is
conjugate to:

• V4 if a4 is a square in K;

• Z/4Z if a4(a2
2 − 4a4) is a square in K;

• D8 if neither a4 nor a4(a2
2 − 4a4) are squares in K.

73

Chapter 5
Indifferentiable Hashing to Elliptic

Curves

5.1 Introduction
In this chapter, we turn to the problem, alluded to in §3.6.1, of constructing hash
functions to elliptic curves that are provably well-behaved, in the sense that they can
replace an elliptic curve-valued random oracle in a large, explicit class of protocols while
preserve proofs of security in the random oracle model. This work was presented at
CRYPTO 2010 [BCI+10a].

5.1.1 The random oracle model
Many cryptosystems based on elliptic curves—and all of those that involve the use of a
hash function—have been proved secure in the random oracle model (ROM): examples
include [BZ04, Bol03, BF01, BGLS03, BLS01, Boy03, BMP00, CC03, GS02, HL02, Jab96,
LQ04, ZK02]. In the random oracle model [BR93], a hash function is modeled by a
publicly accessible random function (the random oracle); the adversary cannot compute
the hash function by himself but must instead query the random oracle.

A proof in the random oracle model is not fully satisfactory, since it does not imply
that the scheme will remain secure when the random oracle is replaced by a concrete
cryptographic hash function. It is possible to construct ad hoc schemes that are provably
secure in the ROM but completely insecure when the random oracle is instantiated with
any function family (see [CGH04]). Despite these separation results, a proof in the ROM
is believed to indicate that there are no structural flaws in the design of the system, and
that no flaw will suddenly appear when a “well-designed” hash function is used instead.

Owing to a large amount of research in the area, we have a good idea of what
a well-designed bit string-valued hash function looks like, and it is relatively easy to
construct from them “well-behaved” hash functions with values in such algebraic objects
as finite fields Fq, finite rings ZN , and their groups of invertible elements. However, as
we mentioned in Chapter 3, it is more difficult to obtain well-behaved hash functions

75

5. Indifferentiable Hashing to Elliptic Curves

to elliptic curves even from a bit string-valued random oracle, especially if we want
constructions with constant running time.

5.1.2 Constructing good hash functions from elliptic curve encodings

Given a “well-behaved” hash function h : {0, 1}∗ → Fq and an elliptic curve encoding
f : Fq → E(Fq), the simplest way to construct a hash function H : {0, 1}∗ → E(Fq) is to
set:

H(m) = f
(
h(m)

)
.

However, even if h is modeled as a random oracle, this construction does not usually
behave like a random oracle to E(Fq). Indeed, except for a very limited number of special
curves, known encoding functions f have an image f(Fq) consisting of a constant fraction
< 1 of all points in E(Fq) (this fraction is ≈ 5/8 for Icart’s encoding, for example, as seen
in Chapter 4). This implies that, unlike a random oracle, H isn’t surjective at all, and
this property, together with the fact that encodings are efficiently samplable, is enough
to construct an efficient distinguisher between H and a random oracle (see §3.6.1).

As a result, current proofs in the random oracle model for H do not guarantee the
security of the resulting scheme when H is instantiated as H(m) = f

(
h(m)

)
, even if h itself

assumed to be ideal. In other words, even if a proof in the random oracle for H can indicate
that there are no structural flaws in the design of the cryptosystem, instantiating H in
that way could introduce a flaw that would make the resulting cryptosystem completely
insecure. We give an example of such a cryptosystem in §5.4.2.

5.1.3 Our goal

Our main goal is to give a generic construction of an elliptic curve-valued hash function
H : {0, 1}∗ → E(Fq), based on an elliptic curve encoding f and random oracles h for which
well-behaved instantiations are known, and that does preserve random oracle proofs of
security. To that end, we use the indifferentiability framework of Maurer et al. [MRH04],
and try to obtain a hash function construction which is indifferentiable from a random
oracle. General composition results then ensure that the construction can be used as
a plug-in replacement for a random oracle in a large class of cryptographic protocols
(namely protocols with single-stage security games, as clarified recently by Ristenpart et
al. [RSS11]) while preserving security proofs.

5.1.4 Our results

We first introduce and formalize the notion of admissible encoding in §5.2 (which general-
izes a similar definition from Boneh and Franklin [BF01]). Being an admissible encoding
is a sufficient condition on a family of deterministic algorithms F for the construction:

H(m) = F
(
h(m)

)
to be indifferentiable from a random oracle when h is modeled as a random oracle.

76

5.1. Introduction

As pointed out earlier, most of the known encoding functions f to elliptic curves
cannot give rise to a secure hash function using a construction of that form, so they
cannot be admissible encodings themselves. However, we introduce two constructions
using them that are indeed indifferentiable.

In §5.3, we prove that if f : Fq → E(Fq) is Icart’s encoding (both in odd and even
characteristic), then the following defines an admissible encoding:

F (u, v) = f(u) + f(v)

where + denotes the elliptic curve group law. As a result, we obtain a hash function
construction which is indifferentiable from a random oracle to E(Fq):

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
when h1, h2 are modeled as random oracle to Fq.

The proof relies on a rather careful inspection of the geometric properties of Icart’s
encoding, but the intuition behind it is in fact quite simple. The main step is to prove
that all points P on the elliptic curve up to a bounded number of exceptions has roughly
the same number of preimages under F . But this is true because, since f is an algebraic
function, the solutions (u, v) of f(u) + f(v) = P generically form an irreducible curve of
bounded genus in the affine plane over Fq, which consists of q +O(q1/2) points by the
Hasse-Weil bound.

However, there are some difficulties to overcome to make this idea work, which involve
somewhat technical tools from algebraic geometry. This makes the proof difficult to adapt
to other encodings with a more complicated geometric description, such as the SWU
encoding, and especially encodings to the Jacobians of higher genus curves. Chapter 6
describes a less intuitive but technically much simpler and versatile proof strategy, using
arithmetic tools like character sums instead of geometry.

In §5.4, we also describe a different hash function construction for which indifferen-
tiability is very easy to establish. For a very large class of encodings f : Fq → E(Fq)
which we call weak encodings (essentially those whose image size is at least a positive
constant fraction of all curve points, which includes all the known elliptic curve encodings
described in Chapter 3), the following construction is indifferentiable from a random
oracle:

H(m) = f
(
h1(m)

)
+ [h2(m)] · G.

Here, E(Fq) is assumed to be a cyclic group with generator G, h1 is modeled as a random
oracle to Fq, and h2 as a random oracle to Z/NZ with N = #E(Fq). This construction is
very general and has a very simple security proof, but it is less efficient than the previous
one due to the full size scalar multiplication in the elliptic curve group.

Further contributions include a number of composition lemmas for admissible encod-
ings, which we use in §5.5 to construct indifferentiable hash functions to subgroups of
elliptic curve groups, or to obtain indifferentiable hashing from bit string-valued random
oracles rather than Fq-valued ones.

77

5. Indifferentiable Hashing to Elliptic Curves

F ◦ h h H S

D
0/1

Figure 5.1: The indifferentiability notion, illustrated with construction Ch = F ◦ h for
some function F , and random oracles h and H.

5.2 Admissible Encodings and Indifferentiability

5.2.1 Preliminaries

Indifferentiability. We recall the notion of indifferentiability introduced by Maurer et al.
in [MRH04]. We define an ideal primitive as an algorithmic entity which receives inputs
from one of the parties and delivers its output immediately to the querying party. A
random oracle [BR93] to a finite set S is an example of ideal primitive, which provides a
random output in S for each new query while identical input queries are given the same
answer.

Definition 5.1 (Indifferentiability [MRH04]). A Turing machine C with oracle access
to an ideal primitive h is said to be (tD , tS , qD , ε)-indifferentiable from an ideal primitive
H if there exists a simulator S with oracle access to H and running in time at most tS ,
such that for any distinguisher D running in time at most tD and making at most qD
queries, it holds that: ∣∣∣Pr

[
DCh,h = 1

]
− Pr

[
DH,SH = 1

]∣∣∣ < ε

Ch is said to be indifferentiable from H if ε is a negligible function of the security
parameter k, for polynomially bounded qD , tD and tS .

It is shown in [MRH04] that the indifferentiability notion is a “good” notion for
substituting one ideal primitive by a construction based on another ideal primitive. That
is, if the construction Ch is indifferentiable from an ideal primitive H, then Ch can
replace H in “most” cryptosystems (at least those with single-stage security games), and
the resulting cryptosystem is at least as secure in the h model as in the H model; see
[MRH04] and [RSS11] for a precise discussion.

Statistical indistinguishability. We also recall the definition of statistically indistinguishable
distributions.

78

5.2. Admissible Encodings and Indifferentiability

Definition 5.2. Let X and Y be two random variables over a set S. The distributions
of X and Y are ε-statistically indistinguishable if:∑

s∈S

∣∣Pr[X = s]− Pr[Y = s]
∣∣ 6 ε.

The two distributions are statistically indistinguishable if ε is a negligible function of the
security parameter.

5.2.2 Admissible encodings
Our goal is to construct a hash function into elliptic curves that is indifferentiable from a
random oracle. First, we introduce our new notion of admissible encoding. It can be seen
as a generalization of the definition used by Boneh and Franklin in [BF01].

Definition 5.3 (Admissible Encoding). A function F : S → R between finite sets is an
ε-admissible encoding if it satisfies the following properties:

Computable: F is computable in deterministic polynomial time.

Regular: for s uniformly distributed in S, the distribution of F (s) is ε-statistically
indistinguishable from the uniform distribution in R.

Samplable: there is an efficient randomized algorithm I : R→ S ∪{⊥} such that for any
r ∈ R, I (r) induces a distribution that is ε-statistically indistinguishable from the
uniform distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of the security parameter.

The following theorem shows that if F : S → R is an admissible encoding, then the
hash function H : {0, 1}∗ → R with:

H(m) = F
(
h(m)

)
is indifferentiable from a random oracle into R when h : {0, 1}∗ → S is seen as a random
oracle. This shows that the construction H can replace a random oracle into R, and the
resulting scheme remains secure in the random oracle model for h.

Theorem 5.1. Let F : S → R be an ε-admissible encoding. The construction H(m) =
F
(
h(m)

)
is (tD , tS , qD , ε′)-indifferentiable from a random oracle, in the random oracle

model for h : {0, 1}∗ → S, with ε′ = 4qD · ε and tS = 2qD · tI , where tI is the maximum
running time of the sampling algorithm I for F .

Proof. We first describe our simulator in Algorithm 5.1. As illustrated in Figure 5.1,
the simulator S has oracle access to H, and must answer the random oracle queries to
h made by the distinguisher D . To answer the same queries with the same values, S
is stateful: it maintains a list L of previously answered queries. It uses the sampling
algorithm I of F to answer new queries.

79

5. Indifferentiable Hashing to Elliptic Curves

Algorithm 5.1 Simulator S such that (H,S H) is indistinguishable from (F ◦ h, h).
1: procedure S (m) . hash m ∈ {0, 1}∗ to S
2: if L contains a pair of the form (m, s) then . m was queried previously
3: return s
4: end if
5: r ← H(m) . m is new: query H on it
6: s← I (r)
7: Append (m, s) to L
8: return r
9: end procedure

We must show that the systems (F ◦ h, h) and (H,S H) are indistinguishable. We
consider a distinguisher D making at most qD queries to one of the systems (F ◦ h, h) or
(H,S H) and trying to guess which of the two systems it is.

Without loss of generality, we can assume that the distinguisher makes all queries to
h(m) (or S H) for which there was a query to (F ◦ h)(m) (or H(m)), and conversely; this
gives a total of at most 2qD queries. We can then describe the full interaction between
the distinguisher and the system as a sequence of triples:

View = (mi, si, ri)16i62qD

where si = h(mi) or S H(mi), and ri = (F ◦ h)(mi) or H(mi). Without loss of generality
we can assume that the mi’s are distinct.

If the system is (F ◦h, h) we have si = h(mi) for all i. Therefore the si’s are uniformly
and independently distributed in S. Moreover we have ri = (F ◦ h)(mi) = F (si) for all i:
hence, the distribution of each ri’s is ε-statistically indistinguishable from the uniform
distribution in R.

On the other hand, if the system is (H,S H) we have ri = H(mi) for all i. Therefore
the ri’s are uniformly and independently distributed in R. Moreover we have si = I (ri)
for all i. Hence, by Lemma 5.1 below, the distribution of each si is 2ε-statistically
indistinguishable from the uniform distribution in S. Moreover, from the definition of I ,
they always satisfy F (si) = ri, unless si = ⊥, which happens with probability at most ε.

Overall, the statistical distance between View in system (F ◦ h, h) and View in system
(H,S H) is thus at most qD · (ε+ 2ε+ ε) = 4qD · ε. Considering the running time of the
simulator, this concludes the proof.

Lemma 5.1. For r uniformly distributed in R, the distribution of s = I (r) is 2ε-
statistically indistinguishable from the uniform distribution in S.

Proof. We let ω be the sequence of random coins used by I . We have to show that
δ 6 2ε, where the statistical distance δ is given by:

δ =
∑
s∈S

∣∣∣∣Pr
ω,r

[I (r) = s]− 1
#S

∣∣∣∣
80

5.3. Our Main Construction

Given s ∈ S, we have I (r) = s only if r = F (s). Therefore, Prω,r[I (r) = s] =
(1/#R) · Prω[I

(
F (s)

)
= s]. This gives:

δ =
∑
r∈R

∑
s∈F−1(r)

1
#R

∣∣∣∣Pr
ω

[I (r) = s]− #R
#S

∣∣∣∣ . (5.1)

Now, since F is an ε-admissible encoding, the statistical distance δ1 between the
uniform distribution in R and the distribution of F (s) for a s ∈ S uniformly random is
at most ε, and we can write δ1 as:

δ1 =
∑
r∈R

∣∣∣∣Pr
s

[F (s) = r]− 1
#R

∣∣∣∣
=
∑
r∈R

∣∣∣∣∣#F−1(r)
#S − 1

#R

∣∣∣∣∣
=
∑
r∈R

∑
s∈F−1(r)

1
#R

∣∣∣∣#R#S −
1

#F−1(r)

∣∣∣∣ (5.2)

Moreover, by definition of admissibility again, for each r ∈ R the distribution of I (r)
is ε-statistically indistinguishable from the uniform distribution in F−1(r) for all r ∈ R.
This gives, for all r ∈ R: ∑

s∈F−1(r)

∣∣∣∣Pr
ω

[I (r) = s]− 1
#F−1(r)

∣∣∣∣ 6 ε.
Hence, summing over r ∈ R, we get:

δ2 =
∑
r∈R

∑
s∈F−1(r)

1
#R

∣∣∣∣Pr
ω

[I (r) = s]− 1
#F−1(r)

∣∣∣∣ 6 ε (5.3)

From (5.1), (5.2) and (5.3), we obtain δ 6 δ1 + δ2 6 ε+ ε = 2ε as required.

5.3 Our Main Construction
Let E be an elliptic curve over a finite field Fq with q ≡ 2 (mod 3). Let f : Fq → E(Fq)
denote Icart’s encoding [Ica09], whose definition is recalled in §3.5.2. As we have note
already, it is easy to see that f itself is not an admissible encoding to E(Fq) the image
of f consists of only a fraction of the elliptic curve points. Therefore we cannot use the
construction H(m) = f

(
h(m)

)
for indifferentiable hashing.

In this section, we describe a different construction with the same level of efficiency
that does achieve indifferentiability. We consider the following map F : (Fq)2 → E(Fq):

F (u1, u2) = f(u1) + f(u2) (5.4)

which had already been considered by Icart for the construction of surjective hashing
(see §4.6). We prove that F is an ε-admissible encoding with ε = 28 · q−1/2, and deduce
the following theorem.

81

5. Indifferentiable Hashing to Elliptic Curves

Theorem 5.2. If q > 213 is any 2k-bit prime power congruent to 2 mod 3 (even or odd),
and if the j-invariant of E is not in {0; 2592}, then the hash function

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
is (tD, tS , qD, ε′)-indifferentiable from a random oracle, where ε′ = 210 · qD · 2−k, in the
random oracle model for h1, h2 : {0, 1}∗ → Fq.

In order to prove that F is an admissible encoding, we write, for any P ∈ E(Fq):

N(P) = #{(u, v) ∈ (Fq)2 | f(u) + f(v) = P} = #F−1(P).

Then the following holds.

Proposition 5.1. If q is an odd prime power congruent to 2 mod 3, and if the j-invariant
of E is not in {0; 2592}, then for every point P ∈ E(Fq) except at most 144, we have∣∣q −N(P)

∣∣ 6 27 · √q

and all the remaining points P satisfy N(P) 6 25 · q.

Sections §5.3.2 and §5.3.3 are devoted to the proof of this proposition. Intuitively,
the idea of the proof is to show that, for all points P ∈ E(Fq) except a few exceptional
ones, F−1(P) is an irreducible algebraic curve of bounded genus in the affine plane A2

over Fq. The estimate for the number of points then follows from the Hasse-Weil bound.
We also show in §5.3.4 that the result extends to Icart’s function f in characteristic 2.

Let us now see how Proposition 5.1 implies the regularity of F , and how we can easily
deduce that this encoding is admissible, and hence Theorem 5.2.

5.3.1 Admissibility of F (u, v) = f(u) + f(v)

To prove that F is ε-admissible, note first that F is clearly computable in deterministic
polynomial time. Thus, it suffices to show that it is ε-regular and ε-samplable. Now, for
any P not among the exceptional points, we have∣∣∣∣∣#F−1(P)

#(Fq)2 −
1

#E(Fq)

∣∣∣∣∣ 6
∣∣∣∣∣#F−1(P)

#(Fq)2 −
1
q

∣∣∣∣∣+
∣∣∣∣∣1q − 1

#E(Fq)

∣∣∣∣∣
6

27

q3/2 + 5
q3/2 6

27 + 5
q3/2

And on the other hand, for exceptional points P:∣∣∣∣∣#F−1(P)
#(Fq)2 −

1
#E(Fq)

∣∣∣∣∣ 6 25

q

Thus, the statistical distance between the distribution of F (u, v) for uniform (u, v) and
the uniform distribution on the curve can be bounded as∑

P∈E(Fq)

∣∣∣∣∣N(P)
q2 − 1

#E(Fq)

∣∣∣∣∣ 6 (q + 2√q + 1) · 27 + 5
q3/2 + 144 · 25

q
6

28

q1/2

82

5.3. Our Main Construction

for q > 213, as required. This proves ε-regularity, with ε = 28 · q−1/2.
To see that F is ε-samplable, one can consider the following randomized sampling

algorithm, where c is some constant to be determined later. Note that computing the set
S in step 3 amounts to solving univariate polynomial equations over Fq, which is easily
done in polynomial time using an algorithm such as Berlekamp’s [Ber68].

Algorithm 5.2 Sampling algorithm for F .
1: repeat dc · lg qe times
2: pick v ∈ Fq uniformly at random
3: S ← f−1(P− f(v)

)
4: if S = ∅ then
5: next iteration
6: else
7: pick i uniformly at random in {1, 2, 3, 4}
8: if i 6 #S then
9: u← i-th element of S

10: return (u, v)
11: else
12: next iteration
13: end if
14: end if
15: end repeat
16: return ⊥

Since the image of f contains roughly (5/8) ·#E(Fq) points (as proved in Chapter 4),
a pigeonhole argument shows that S 6= ∅ with probability at least 2 · 5/8 − 1 = 1/4.
Furthermore, we always have #S 6 4. Thus, each repeat iteration succeeds with
probability at least 1/16. Therefore, if we set c = 1

2 lg(16/15) , we find that Algorithm 5.2
succeeds with probability greater than 1 − ε/2, and steps 7–13 ensure that it yields
the uniform distribution on F−1(P). This concludes the proof that F is an admissible
encoding.

5.3.2 Geometric interpretation of Icart’s encoding
Icart’s function f admits a natural extension to the projective line over Fq by setting
f(∞) = O, the neutral element of the elliptic curve. Then, consider the graph of f :

C = {(u,P) ∈ P1 × E | f(u) = P}

As shown in [Ica09, Lemma 3], C is the closed subscheme of P1 × E defined by

u4 − 6xu2 + 6yu− 3a = 0 (5.5)

In other words, Icart’s function is the algebraic correspondence between P1 and E given
by (5.5).

83

5. Indifferentiable Hashing to Elliptic Curves

Let j be the j-invariant of E:

j = 1728 · 4a3

4a3 + 27b2 ∈ Fq.

Save for a few exceptional values of j, we can precisely describe the geometry of C.

Lemma 5.2. If j 6∈ {0; 2592}, the subscheme C is a geometrically integral curve on
P1 × E with one triple point at infinity and no other singularity. Its normalization C̃
is a smooth, geometrically integral curve of genus 7. The natural map h : C̃ → E is a
morphism of degree 4 ramified at 12 distinct finite points of E(Fq), with ramification
index 2.

Proof. As usual with Icart’s function, we assume that E is not supersingular, i.e. a and
j are non-zero. The subscheme C is then clearly reduced, and was shown in Chapter 4
to be geometrically connected (this is Lemma 4.3). It is thus a geometrically integral
curve on the surface P1 × E.

Let us determine its singular locus. First consider the affine patch of C given by
u 6=∞ and P 6= O. It can be represented as the algebraic set of points (u, x, y) in affine
3-space satisfying y2 = x3 + ax+ b as well as equation (5.5). It is smooth at all points
where the map

(u, x, y) 7→
(
y2 − (x3 + ax+ b), u4 − 6xu2 + 6yu− 3a

)
is of rank 2. The gradient of this map is

(u, x, y) 7→
(

0 −3x2 − a 2y
4u3 − 12xu+ 6y −6u2 6u

)
.

Since E is smooth, this is of rank 2 at a point of the curve unless:

y2 = x3 + ax+ b

u4 − 6xu2 + 6yu− 3a = 0
4u3 − 12xu+ 6y = 0∣∣∣∣∣−3x2 − a 2y
−6u2 6u

∣∣∣∣∣ = 6u(2uy − 3x2 − a) = 0.

Eliminating u, x, y between those four equations, we find −24a4 − 162ab3 = −6a(4a3 +
27b2) = 0, which is impossible. Therefore, there is no singular point in this affine patch.

Turning now to points at infinity, we denote by v the local coordinate 1/u on P1

in a neighborhood of ∞, and let (z, w) = (1/y, x/y) be local coordinates on E in a
neighborhood of O. First note that there is no point (∞,P) ∈ C with P 6= O. Indeed,
writing equation (5.5) in terms of (v, x, y):

3av4 − 6yv3 + 6xv2 − 1 = 0

84

5.3. Our Main Construction

we see that v = 0 is never a root.
Similarly, let us find points of the form (u,O) with u 6= ∞. In terms of (u, z, w),

equation (5.5) becomes
zu4 − 6wu2 + 6u− 3az = 0.

For z = w = 0, we get only one root u = 0. Thus, the only point on C of the form
(u,O) with u 6=∞ is (0,O), and it is easily seen to be regular: the elliptic curve equation
becomes z = bz3 + awz2 + w3, and hence the map A3 → A2 defining C in this patch has
the following Jacobian matrix:(

0 −3bz2 − 2aw + 1 −a− 3w2

4zu3 − 12wu+ 6 u4 − 3a −6u2

)
which is of rank 2 for u = z = w = 0 (recall that the characteristic does not divide 6).

Finally, the point (∞,O) lies on C and is a triple point. Indeed, consider the local
ring O = Fq[v, z, w]/(bz3 + awz2− z+w3)(v,z,w) of P1×E at (∞,O), and write the local
equation of C at this point:

3azv4 − 6v3 + 6wv2 − z ∈ O.

Let m = (v, z, w) be the maximal ideal of O. Since z = bz3 + awz2 + w3 ∈ m3, we see
that the curve equation belongs to m3. It isn’t in m4, however, so the multiplicity of
(∞,O) is exactly 3 (see [Har77, Exercise V.3.4]).

Thus, the normalization C̃ of C is a smooth geometrically integral curve, and C̃ → C
is an isomorphism outside (∞,O), whereas the fiber over (∞,O) consists of three points.

Consider now the map h : C̃ → E deduced from the second projection C → E. Since
equation (5.5) is of degree 4, h is a morphism of degree 4 as well. The fiber at the origin
O of E contains 4 points, namely (0,∞) and the 3 points of C̃ over the singular point of
C. In particular, h is unramified at infinity. The ramification points are thus the finite
points (x, y) of E where (5.5) has a multiple root, i.e. where the discriminant ∆ vanishes.

Recall that ∆ is a polynomial of degree 6 in x. It has 6 simple roots over the algebraic
closure of Fq provided that its own discriminant:

disc(∆) = 258 · 342 · (4a3 + 27b2)2 · (−4a3 + 81b2)3

is nonzero, i.e. 4a3 6= 81b2, or j 6= 2592. We will assume this in what follows.
None of these roots x corresponds to a point (x, y) on E such that y = 0. Indeed,

eliminating x between ∆ = 0 and x3 + ax + b = 0, we find a(4a3 + 27b2) = 0, which
is impossible. Thus, each root of ∆ corresponds to exactly two points of E where h is
ramified. Hence the 12 distinct ramification points on E(Fq).

Eliminating u, x, y between equation (5.5) and its first and second derivatives as well
as y2 = x3 + ax + b, we find 12(−4a3 + 81b2) = 0, which contradicts our assumption
that j 6= 2592. It follows that equation (5.5) cannot have a triple root. Thus, all 12
ramification points of h have ramification index 2. This allows us to compute the genus
g
C̃
of C̃ using the Riemann-Hurwitz formula:

2g
C̃
− 2 = 4(2 · 1− 2) + 12 and hence g

C̃
= 7

as required.

85

5. Indifferentiable Hashing to Elliptic Curves

5.3.3 The square correspondence

In this context, the function (u, v) 7→ f(u) + f(v) occurring in our hash function
construction admits the following description. A point (u, v) in the affine plane A2, or
more generally in P1 × P1, corresponds to P on the elliptic curve E if and only if there is
some point (α, β) ∈ C̃ × C̃ over (u, v) such that h(α) + h(β) = P.

Consider the surface S = C̃ × C̃, and define the following two morphisms. The map
p : S → P1 × P1 is the square of the first projection, and s : S → E is obtained by
composing h× h : S → E × E with the group law E × E → E. Then the set of points
(u, v) ∈ P1 × P1 corresponding to a given P ∈ E is exactly p(s−1(P)) (and we can take
the intersection with A2 if we are only interested in affine points). This allows us to give
a geometric proof of Proposition 5.1.

Let us first describe the geometry of the fibers s−1(P). Denote by R1, . . . ,R12 the
12 geometric points of E over which h is ramified, and let R = {Ri + Rj}16i,j612 ⊂ E.
The map s is of rank 1 at (α, β) if and only if h is of rank 1 at at least one of α or β,
which is certainly the case when h(α) or h(β) is not one the Ri. Therefore, s is smooth
of relative dimension 1 over the open subscheme E0 = E −R, and all points in E0 have
smooth curves on S as fibers. The following lemma makes this more precise.

Lemma 5.3. The fibers of s at all geometric points of E0 are smooth connected curves
on SFq of genus 49.

Proof. The morphism s : S → E is projective, and thus proper, so it admits a Stein
factorization S → E1 → E, where s1 : S → E1 has connected geometric fibers, and
E1 → E is finite [EGA III.1, 4.3.3]. We will show that, in fact, E1 = E.

Consider αi ∈ C̃, i = 0, . . . , 3, the four points such that h(αi) = O. Then h factors
as C̃ → S → E1 → E where the first arrow is given by β 7→ (αi, β) for some fixed
i ∈ {0, . . . , 3}. In particular, we have surjective morphisms of curves C̃ → E1 → E.
The function field K(E1) of E1 is thus an intermediate field of the quartic extension
K(C̃)/K(E). But we know by Proposition 4.1 in Chapter 4 that this quartic extension has
a normal closure of Galois group S4. Thus, it doesn’t have any non trivial subextension:
we must either have E1 = C̃ or E1 = E. In the latter case, we are done. Otherwise,
C̃ → E1 is the identity map, since K(C̃) doesn’t have any non trivial automorphism
over K(E). This implies s1(αi, αj) = αj for all i, j. But by symmetry, we also have
s1(αi, αj) = αi, a contradiction.

Hence, E1 = E and s has connected geometric fibers. In particular, the fiber
Z = s−1(P) at any geometric point P of E0 is a smooth connected curve. Let us compute
its genus gZ . To do so, observe that the image of Z under h× h : SFq → (E × E)Fq is
the curve E′ of points (ς, τ) such that ς + τ = P. E′ is clearly isomorphic to EFq , and
is thus of genus 1. Since h : C̃ → E is of degree 4, any given point (ς, τ) on E′ has
42 = 16 preimages by Z → E′, except when either ς or τ is one of the 12 ramification
points R1, . . . ,R12 of h (note that ς and τ cannot be both ramification points since P
is outside R). In this latter case, (ς, τ) has 3 · 4 = 12 preimages. Thus, Z → E′ is a
morphism of degree 16 with 2 · 12 = 24 ramification points in E′, each of ramification

86

5.3. Our Main Construction

type (2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1). Applying the Riemann-Hurwitz formula, we get

2gZ − 2 = 16(2 · 1− 2) + 24 · 4 and hence gZ = 49

as stated.

Consider now a fiber Z of s at some Fq-point P of E not in R. The previous description
says that Z is a smooth geometrically integral curve of genus 49 on S. This gives a
precise estimate of the number of Fq-points on Z in view of the Hasse-Weil bound:∣∣q + 1−#Z(Fq)

∣∣ 6 98√q.

What we are interested in, however, is the number of points in p(Z), or more precisely
even, in p(Z) ∩ A2. But those numbers are related in a simple way when Icart’s function
is well-defined, i.e. q ≡ 2 (mod 3).

Lemma 5.4. Suppose that q ≡ 2 (mod 3), and let N be the number of Fq-points in
p(Z) ∩ A2. Then we have

q − 98√q − 23 6 N 6 q + 98√q + 1.

Proof. Let D be the closed subscheme of points (α, β) on S such that p(α, β) has at least
one component at infinity in P1 × P1. Denote further by U be the complementary open
subscheme: U = p−1(A2). Then p induces a bijection U(Fq)→ A2(Fq) ⊂ (P1 × P1)(Fq).
This is a direct consequence of the fact that t 7→ t3 is a bijection in Fq, as explained in
the proof of [Ica09, Lemma 3].

In particular, the Fq-points of p(Z) ∩ A2 are in bijection with (Z ∩ U)(Fq). This
immediately yields the upper bound:

N 6 #Z(Fq) 6 q + 1 + 98√q.

To obtain the lower bound, it suffices to estimate the number of Fq-points on Z outside
of U , i.e. on Z ∩D. This is certainly bounded above by the number of geometric points
on Z ∩D, which is itself not greater than the intersection number Z ·D when Z and D
are regarded as 1-cycles on S.

Let l and m denote the divisor classes on S = C̃ × C̃ of C̃ × {α} and {α} × C̃ for an
arbitrary α. Then D ≡ n∞(l +m), where ≡ denotes numerical equivalence and n∞ is
the number of points on C̃ mapping to ∞ in P1. As seen in the proof of Lemma 5.2, we
have n∞ = 3 (the three points of C̃ lying over the singular point of C). Hence

Z ·D = 3Z · (l +m).

On the other hand, the canonical divisor K of S satisfies K ≡ (2g
C̃
− 2)(l +m) =

12(l + m) (see e.g. [Har77, Exercises V.1.5(b) and V.1.9(b)]). Now K appears in the
adjunction formula of the intersection theory of surfaces [Har77, Proposition V.1.5]:

2gZ − 2 = Z ·K + Z2 = 4Z ·D + Z2.

87

5. Indifferentiable Hashing to Elliptic Curves

Since Z is a fiber of s0, its self-intersection number is zero: any two fibers of s0 are
algebraically equivalent and disjoint. Thus Z2 = 0 and we get

Z ·D = 1
4 · (2gZ − 2) = 24.

In particular, #(Z ∩D)(Fq) 6 24 and hence

N > #Z(Fq)− 24 > q − 98√q − 23

which concludes the proof.

The first part of Proposition 5.1 now follows from the previous propositions: under the
hypotheses of that theorem, if P ∈ E(Fq) does not belong to R, then N(P) = #{(u, v) ∈
(Fq)2 | f(u) + f(v) = P} satisfies∣∣q −N(P)

∣∣ 6 98√q + 23 6 27 · √q

as required. And obviously, there are at most 122 = 144 points in R.
It remains to bound N(P) for an Fq-point P ∈ R ∩E(Fq). To do so, consider again

Z = s−1(P) the fiber at such a point, and E′ ⊂ E × E the image of Z under h× h (or
equivalently, the fiber of the group law of E at P). The morphism Z → E′ is of degree
16, so each point has at most 16 preimages. Hence

N(P) 6 16 ·#E′(Fq) 6 16
(
q + 1 + 2√q

)
6 25 · q

since q > 5. This concludes the proof of Proposition 5.1.

5.3.4 Generalization to even characteristic
The previous technique carries over to Icart’s function in characteristic 2 easily (see
Figure 3.4 for the definition of Icart’s function in characteristic 2). In this case, if E is
the elliptic curve y2 + xy = x3 + ax2 + b over a field Fq of characteristic 2, the curve
C ⊂ P2 × E defining Icart’s correspondence has the equation

u4 + u2 + xu+ y + a2 = 0.

It is smooth except at the point (∞,O) which blows up into 4 regular points in the
normalization C̃. The second projection h : C̃ → E is then of degree 4 and only ramified
over the single point R of E such that x = 0, with ramification type (2, 2). In particular,
C̃ is a smooth curve of genus 2.

We can then consider the map s : S = C̃ × C̃ → E again, and find that the fiber
Z = s−1(P) at any point P ∈ E − {[2] ·R} is a smooth geometrically integral curve. The
morphism of Z to its image E′ in E×E is of degree 16 and only ramified over (R,P−R)
and (P− R,R), with ramification type (2, 2, 2, 2, 2, 2, 2, 2). Thus, Z is of genus 9.

Using the notations from the proof of Lemma 5.4, the first projection p : S → P1×P1

still induces a bijection U(Fq) → A2(Fq) on Fq-points when q ≡ 2 (mod 3) and U =

88

5.4. A More General Construction

p−1(A2). Moreover, if D denotes the complementary divisor on S, we can compute
Z ·D = n∞Z · (l+m) = 4Z · (l+m), while K ≡ (2g

C̃
− 2)(l+m) = 2(l+m). Thus, the

adjunction formula gives 2gZ − 2 = Z ·K + Z2 = 1
2Z ·D. Hence:

#(Z ∩D)(Fq) 6 Z ·D = 2 · (2gZ − 2) = 32.

Therefore, for any point P ∈ E(Fq)− {[2] · R}, we get

q − 4√q − 31 6 N(P) 6 q + 4√q + 1.

Furthermore, we still have N([2] · R) 6 25 · q as in the previous section.
Those results show that F : (u, v) 7→ f(u) + f(v) is still an admissible function when

f is Icart’s function in characteristic 2.

5.4 A More General Construction
Our construction of §5.3 has the advantage of being simple and efficient as it only requires
two evaluations of Icart’s function. However, the proof involves somewhat technical tools
from algebraic geometry, and it is not so simple to adapt to other encoding functions,
such as the SWU encoding.

At the cost of a small performance penalty, however, we describe a more general
construction that applies to a large class of encoding functions satisfying a few simple
axioms. Those encoding functions include Icart’s function, a simpler variant of the
SWU function, new deterministic encodings in characteristic 3, etc. We call them weak
encodings. They are defined as follows.

Definition 5.4 (Weak Encoding). A function f : S → R between finite sets is said to
be an α-weak encoding if it satisfies the following properties:

Computable: f is computable in deterministic polynomial time.

α-bounded: for s uniformly distributed in S, the distribution of f(s) is α-bounded in R,
i.e. the inequality Prs[f(s) = r] 6 α/#R holds for any r ∈ R.

Samplable: there is an efficient randomized algorithm I such that I (r) induces the
uniform distribution in f−1(r) for any r ∈ R. Additionally I (r) returns Nr =
#f−1(r).

The function f is a weak encoding if α is a polynomial function of the security parameter.

The main difference with an admissible encoding is that in the second criterion, the
distribution of f(s) is only required to be α-bounded instead of being ε-indistinguishable
from the uniform distribution. More precisely this criterion requires that, for all r ∈ R:

Pr
s

[f(s) = r] = #f−1(r)
#S 6

α

#R. (5.6)

89

5. Indifferentiable Hashing to Elliptic Curves

In view of this inequality, we see that when #R/#S is bounded, any invertible function
whose preimages have bounded cardinality is a weak encoding; in particular, this is
the case for Icart’s function, and indeed all the elliptic curve encodings introduced in
Chapter 3.

Lemma 5.5. Suppose #R/#S is bounded, and let f : S → R be a polynomially com-
putable function such that B = maxr∈R #f−1(r) is bounded. Assume that there exists a
polynomial-time algorithm Inv that for any r ∈ R outputs the set f−1(r). Then f is an
α-weak encoding, with α = B ·#R/#S. In particular, Icart’s function f is an α-weak
encoding from Fq to E(Fq) with α = 4 ·#E(Fq)/q.

Proof. We have Prs[f(s) = r] = #f−1(r)/#S 6 B/#S = α/#R by taking α =
B · #R/#S; therefore, the distribution of f(s) for uniform s ∈ S is α-bounded in R.
Given Inv(r) = f−1(r), the algorithm I (r) simply generates a random element in the set
f−1(r), and lets Nr = #f−1(r).

When the output set of a weak encoding is a group (such as the group of points on
an elliptic curve), we can construct an admissible encoding from it as follows.

Theorem 5.3 (Weak → Admissible Encoding). Let G be cyclic group of order N noted
additively, and let G be a generator of G. Let f : S → G be an α-weak encoding. Then the
function F : S × ZN → G defined by F (s, x) = f(s) + [x] · G is an ε-admissible encoding
into G, with ε = (1−1/α)t for any t polynomial in the security parameter k, and ε = 2−k
for t = α · k.

We prove this theorem in the next section. As a consequence, we get that if f : S → G
is any weak encoding to a cyclic group with generator G, then the hash function
H : {0, 1}∗ → G defined by:

H(m) = f
(
h1(m)

)
+ [h2(m)] · G

where h1 : {0, 1}∗ → G and h2 : {0, 1}∗ → ZN are hash functions, is indifferentiable from
a random oracle in the random oracle model for h1 and h2. In particular, this is the case
when f is any of the elliptic curve encodings of Chapter 3.

Note also that the construction extends to non-cyclic finite abelian groups in an
obvious way. For example, if G is a non-cyclic elliptic curve group, it is isomorphic to
the product of two cyclic groups generated by points G1 and G2 of order N1, N2. Then
the following hash function is indifferentiable from a random oracle:

H(m) = f
(
h1(m)

)
+ [h2(m)] · G1 + [h3(m)] · G2

when h1, h2, h3 are modeled as random oracles to G, ZN1 and ZN2 respectively.

5.4.1 Proof of Theorem 5.3
We must show that F is an admissible encoding. Efficient computability is trivially
satisfied. Regularity is also satisfied since for uniform (s, x) ∈ S × ZN the distribution of
F (s, x) = f(s) + [x] · G is uniform in G.

90

5.4. A More General Construction

It remains to prove that F is samplable. Let If be the sampling algorithm of the
α-weak encoding f : S → G with sampling algorithm If . We denote G as R as before.
Observe that when r is uniformly distributed in R, the distribution of If (r) is not
necessarily close to uniform. Therefore we first describe in Algorithm 5.3 a new sampling
algorithm I ′f which artificially aborts with some well chosen probability dependent on
the input, so as to ensure that I ′f (r) is uniformly distributed in S (when I ′f does not
abort).

Algorithm 5.3 Sampling algorithm with uniformly random preimages.
1: procedure I ′f (r)
2: (s,Nr)← If (r) . s ∈ f−1(r) ∪ {⊥} and Nr = #f−1(r)
3: δr = #R ·Nr

α ·#S . 0 6 δr 6 1
4: With probability (1− δr) return ⊥
5: Otherwise return s
6: end procedure

Lemma 5.6. Algorithm I ′f aborts with probability at most 1− 1/α, and for r uniformly
random in R, the distribution of I ′f (r) under the condition that I ′f (r) 6= ⊥ is uniform
in S.

Proof. Given r ∈ R, we have that I ′f (r) 6= ⊥ with probability δr given by:

δr = #R ·#f−1(r)
α ·#S .

Hence:
Pr
r

[I ′f (r) 6= ⊥] =
∑
r∈R

1
#R · δr = 1

α ·#S
∑
r∈R

#f−1(r) = 1
α
.

By definition, I (r) is uniformly distributed in the set f−1(r). As a result, we have for
any r ∈ R and any s ∈ f−1(r):

Pr[I ′f (r) = s] = δr ·
1

#f−1(r) = #R
α ·#S .

Since I ′f (r) = s only if r = f(s), this gives for any s ∈ S:

Pr
r

[I ′f (r) = s] = 1
α ·#S

and finally for any s ∈ S:

Pr
r

[I ′f (r) = s | I ′f (r) 6= ⊥] =
Prr[I ′f (r) = s]
Prr[I ′f (r) 6= ⊥] = 1

#S

which shows that the distribution of I ′f (r) conditioned on I ′f (r) 6= ⊥ is uniform in S.
This concludes the proof.

91

5. Indifferentiable Hashing to Elliptic Curves

We the construct the sampling algorithm IF of encoding F as described in Algo-
rithm 5.4, and show that it satisfies the samplability condition in the definition of an
admissible encoding.

Algorithm 5.4 Sampling algorithm for F .
1: procedure IF (P)
2: repeat t times
3: Randomly choose x ∈ ZN
4: s← I ′f (P− [x] · G)
5: if s 6= ⊥ then
6: return (s, x) ∈ S × ZN
7: end if
8: end repeat
9: return ⊥

10: end procedure

We must show that for any P ∈ G, the distribution of (s, x) is statistically close to
uniform in F−1(P). From Lemma 5.6 and the uniform distribution of P− [x] · G ∈ G,
we have s = ⊥ at step i with probability at most 1 − 1/α. Therefore algorithm IF

eventually outputs s = ⊥ with probability at most (1 − 1/α)t. Moreover, Lemma 5.6
ensures that, under the condition s 6= ⊥, the distribution of s in uniform in S, and hence
the distribution of (s, x) is uniform in S ×ZN . Therefore, for any P ∈ G the distribution
of IF (P) is ε-statistically close to uniform in F−1(P), with ε = (1− 1/α)t. For t = α · k,
we can take ε = 2−k; this concludes the proof of Theorem 5.3.

5.4.2 Discussion

We see that the construction H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
of §5.3 requires two evalua-

tions of Icart’s encoding f but no scalar multiplication in the elliptic curve. Since the
cost of evaluating f is essentially that of a field exponentiation, and in practice field
exponentiations are roughly 10 times faster than full-size scalar multiplications in E(Fq),
the construction of §5.3 is approximately 5 times faster than the general construction
given in this section.

As discussed in §3.6.1, we note that for a number of existing schemes that are proved
secure in the random oracle model into an elliptic curve, it would actually be sufficient
to use H(m) = f

(
h(m)

)
only. This is because for many existing schemes the underlying

complexity assumption (such as CDH or DDH) has the random self-reducibility property.
So in the security proof one “programs” the random oracle using a random instance
generated from the original problem instance. Hence, instead of letting H(m) = P where
P is from the random instance, one can adapt the proof by letting f

(
h(m)

)
= P. To

make sure that h(m) is uniformly distributed, one can “replay” the random instance
generation depending on the number of solutions to the equation f(u) = P, as we do in
the proof of Theorem 5.3.

92

5.5. Extensions

However it is easy to construct a cryptosystem that is secure in the random oracle
model but insecure with H(m) = f

(
h(m)

)
. Consider for example the following symmetric-

key encryption scheme: to encrypt with symmetric key k, generate a random r and
compute c = m + H(k, r) where the message m is a point on the curve and H hashes
into the curve; the ciphertext is (c, r). This scheme is semantically secure in the
random oracle model for H, since it is a one-time pad. But the scheme is insecure with
H(k, r) = f

(
h(k, r)

)
because in that case, H(k, r) is not uniformly distributed. Thus, for

two messages m0 and m1 the attacker has a good advantage in distinguishing between
the encryption of m0 and m1.1

The advantage of the two constructions of §5.3 and 5.4 is that we have a simple
criterion to plug them into existing schemes: it suffices that the scheme has a proof in the
random oracle model, and a single-stage security game. Whereas with H(m) = f

(
h(m)

)
it seems difficult to derive a formal criterion from the previous observations.

5.5 Extensions
In this section we consider three extensions that apply to both hash functions from §5.3
and §5.4. We show how to hash into any prime order subgroup of an elliptic curve (with
cyclic or non-cyclic group), how to use hash functions mapping into bit strings (rather
than Fq) and how to take advantage of primes p = 2` − ω where ω is small. These
extensions are based on composition lemmas for admissible encodings, established in
Appendix 5.A.

5.5.1 Extension to a prime order subgroup
In many applications only a prime order subgroup of E(Fq) is used, so we show how to
adapt the constructions of §5.3 and §5.4 to hashing into a subgroup. Let E be an elliptic
curve over Fq with N points, and let G be a subgroup of prime order N ′ and generator G.
Let further ` be the co-factor, i.e. N = ` ·N ′. We assume that N ′ does not divide ` (i.e.
that (N ′)2 does not divide N), which is satisfied in practice for key size and efficiency
reasons.

To obtain a well-behaved hash function to G, it suffices to use the constructions of
§5.3 or §5.4 and multiply the result by the cofactor `. For example, consider the hash
function H : {0, 1}∗ → G defined by:

H(m) = [`] ·
(
f
(
h1(m)

)
+ f

(
h2(m)

))
(5.7)

where h1, h2 : {0, 1}∗ → Fq are modeled as random oracles and f is Icart’s function.

Proposition 5.2. The hash function H defined by (5.7) is (tD , tS , qD , ε)-indifferentiable
from a random oracle in the random oracle model for h1 and h2, with ε = 210 · qD · 2−k.

1If we take Icart’s function for f , this is even worse: given c the attacker can easily determine whether
there exists u and v such that c−m0 = f(u) or c−m1 = f(v) and if one of the two equations has no
solution then the attacker recovers the plaintext without uncertainty (this happens with good probability
over r).

93

5. Indifferentiable Hashing to Elliptic Curves

Informally, we show that the composition of two admissible encodings remains an
(almost) admissible encoding, and that multiplication by a co-factor is an ε-admissible
encoding, with ε = 0. This proves that H is an indifferentiable hash function. See
Appendix 5.A.2 for the proof.

The same result holds for the construction of §5.4. In this case for both cyclic and
non-cyclic elliptic curves we simply use H(m) = [`] · f

(
h1(m)

)
+ [h2(m)] · G where G is a

generator of the subgroup.

5.5.2 Extension to bit string-valued random oracles
The constructions in the previous sections are based on hash functions into Fq or ZN .
However in practice a hash function outputs a fixed length string in {0, 1}`. We can
modify our construction as follows. We consider an elliptic curve E over Fp, with p a
2k-bit prime. We define the hash function H : {0, 1}∗ → E(Fp) with:

H(m) = f
(
h1(m) mod p

)
+ f

(
h2(m) mod p

)
where h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}3k and f is Icart’s function.

Proposition 5.3. The previous hash function H is (tD , tS , qD , ε)-indifferentiable from
a random oracle, in the random oracle model for h1 and h2, with ε = 211 · qD · 2−k.

Informally, we first show that reduction modulo p is an admissible encoding from
{0, 1}` to Fp if 2` � p. Since the composition of two admissible encodings remains an
(almost) admissible encoding, this shows that F (u, v) = f(u mod p) + f(v mod p) is also
an admissible encoding into E(Fp) and therefore H is an indifferentiable hash function.
Of course, the same result holds for the general construction of §5.4. See Appendix 5.A.3
for the proof.

5.5.3 Extension to primes p = 2` − ω

We show a slightly more efficient construction for primes p of the form p = 2` − ω for
small ω, as used for example in the NIST curves [FIPS186–3]. Let E be an elliptic curve
over Fp for such a prime p. Our construction H : {0, 1}∗ → E(Fp) is as follows:

H(m) = f
(
h1(m) mod p

)
+ f

(
h2(m) mod p

)
where, this time, h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}` and f is Icart’s
function. Note that the output size ` of h1 and h2 is the same as the bit size of p, as
opposed to the previous section in which we took ` = 3k for a 2k-bit prime p.

Proposition 5.4. H is (tD , tS , qD , ε)-indifferentiable from a random oracle, in the
random oracle model for h1 and h2, with ε = qD ·

(
210 · 2−`/2 + 4ω · 2−`

)
.

The proof is similar to the proof of Proposition 5.3, except that since p ' 2`, reduction
modulo p is now a generalized admissible encoding from {0, 1}` to Fp. See Appendix 5.A.4
for the full proof. The same result holds for the general construction of §5.4, where we
can take H(m) := f

(
h1(m) mod p

)
+ [h2(m)] · G with h1, h2 : {0, 1}∗ → {0, 1}`.

94

5.A. Composition Lemmas

5.A Composition Lemmas

5.A.1 Generalized admissible encodings
The propositions of §5.5.1, §5.5.2 and §5.5.3 fit in a common framework: they assert that
some function is admissible, and that we still get indifferentiable hashing when composing
them with one of our constructions.

It is not quite correct that composing two admissible encodings yields another
admissible encoding. To circumvent this problem, we introduce the slightly more general
notion of generalized admissible encoding. We show that admissible encodings are
generalized admissible encoding; that generalized admissible encodings are sufficient
for indifferentiability; and that the composition of two admissible encodings is again a
generalized admissible encoding.

Definition 5.5 (Generalized Admissible Encoding). A function F : S → R is said to be
an ε-generalized admissible encoding if it satisfies the following properties:

Computable: F is computable in deterministic polynomial time;

Invertible: there exists a probabilistic polynomial time algorithm IF such that IF (r) ∈
F−1(r) ∪ {⊥} for all r ∈ R, and the distribution of IF (r) is ε-statistically indistin-
guishable from the uniform distribution in S when r is uniformly distributed in
R.

F is an generalized admissible encoding if ε is a negligible function of the security
parameter.

From Lemma 5.1 we have that an ε-admissible encoding is also a 2ε-generalized
admissible encoding. The next lemma says that Definition 5.5 is sufficient for obtaining
the indifferentiability property; it follows immediately from our proof of Theorem 5.1.

Lemma 5.7. Let F : S → R be an ε-generalized admissible encoding. The construction
H(m) = F (h(m)) is (tD, tS , q, ε′)-indifferentiable from a random oracle, in the random
oracle model for h : {0, 1}∗ → S, with ε′ = 2qε and tS = 2q · tI , where tI is the maximum
running time of F ’s sampling algorithm.

Finally we prove that the composition of two generalized admissible encoding remains
a generalized admissible encoding.

Lemma 5.8. Let F : S → R be an ε1-generalized admissible encoding and G : R→ T be
an ε2-generalized admissible encoding. Then G ◦ F is an (ε1 + ε2)-generalized admissible
encoding from S to T .

Proof. Firstly, G ◦ F is computable in polynomial time. Secondly, given t uniformly
distributed in T , the random variable r = IG(t) is ε2-statistically indistinguishable from
the uniform distribution in R. Thus s = IF (r) is (ε1 + ε2)-statistically indistinguishable
from the uniform distribution in S.

95

5. Indifferentiable Hashing to Elliptic Curves

5.A.2 Proof of Proposition 5.2
Proposition 5.2 is then an immediate consequence of Lemma 5.8 and of the following
result.

Lemma 5.9. The map M` : E(Fq)→ G, P 7→ [`] · P is an ε-admissible encoding, with
ε = 0.

Proof. The proof is the same as the proof of [BF01, Lemma 5.1]. Since M` is a group
homomorphism, the distribution of M`(P) is uniform in G for uniform P ∈ E.

The group E(Fq) is isomorphic to Z`1N ′ × Z`2 for some `1, `2 such that ` = `1`2. Let
G1,G2 be the points corresponding to (1, 0) and (0, 1) under this isomorphism. Given
Q ∈ G, the sampling algorithm picks u ∈ Z`1 and v ∈ Z`2 uniformly at random, and
returns P = [1/`] ·Q + [uN ′] · ·G1 + [v] · G2. Here 1/` is computed in (ZN ′)∗. We have
that [`] · P = Q as required, and P is uniformly distributed among the preimages of Q
under M`.

5.A.3 Proof of Proposition 5.3
Let p be an integer. We first show that reduction modulo p is an admissible encoding
from {0, 1}` to Zp if 2` � p.

Lemma 5.10 ({0, 1}` → Zp). Let p be an integer and k be a security parameter. Let
` = k + dlog2 pe+ 1. The function Modp : [0, 2` − 1]→ Zp with Modp(x) = x mod p is
a 2−k-generalized admissible encoding.

Proof. Let µ ∈ Z such that 2` − p < µ · p 6 2`. We consider the sequence:

{0, 1}` F−→ [0, µ · p[G−→ Zp

where F (x) = x mod (µ · p) and G(y) = y mod p. We show that both F and G are
generalized admissible encodings; therefore from Lemma 5.8 the composition of F and
G remains a generalized admissible encoding. For F we actually prove a slightly more
general result.

Lemma 5.11. Let F : S → (S ∪ ∆2) \ ∆3 be a polynomially computable function
such that F (x) = x for all x ∈ S \ ∆1. Assume that set membership for S \ ∆1 can
be decided in polynomial time. Then F is an ε-generalized admissible encoding, with
ε = (#∆1 + #∆2 + #∆3)/#S.

Proof. Given x ∈ S ∪ ∆2, the sampling algorithm IF (x) returns x for x ∈ S \ ∆1
and ⊥ otherwise. Therefore for uniform x ∈ (S ∪∆2) \∆3 the distribution of IF (x)
is ε-indistinguishable from the uniform distribution in S, with ε = (#∆1 + #∆2 +
#∆3)/#S.

Applying Lemma 5.11 with S = {0, 1}`, ∆1 = [µ · p, 2`− 1[, ∆2 = ∅ and ∆3 = ∆1, we
obtain that F is an ε-generalized admissible encoding, with ε = 2p/2` 6 2−k. Moreover,

96

5.A. Composition Lemmas

it is easy to see that G is an ε-admissible encoding for ε = 0. From Lemma 5.8 the
composition of two generalized admissible encodings remains a generalized admissible
encoding. This concludes the proof of Lemma 5.10.

We now proceed with the proof of Proposition 5.3. With p a 2k-bit prime and ` = 3k,
from Lemma 5.10 we obtain that reduction mod p is a 2−k+1-admissible encoding from
{0, 1}` to Zp. Using Lemma 5.8, this shows that F : {0, 1}` × {0, 1}` → E(Fp) with:

F (u, v) = f(u mod p) + f(v mod p)

is an ε-generalized admissible encoding with ε = 29 · 2−k + 2−k+1 6 210 · 2−k. Applying
Lemma 5.7, this proves Proposition 5.3.

5.A.4 Proof of Proposition 5.4
We consider the function G : : {0, 1}` → Zp with G(u) = u mod p. Since p = 2` − ω,
applying Lemma 5.11 with S = {0, 1}`, ∆1 = [p, 2`[, ∆2 = ∅ and ∆3 = ∆1, we obtain
that G is an ε-generalized admissible encoding with ε = 2ω · 2−`. Using Lemma 5.8, this
shows that F : {0, 1}` × {0, 1}` → E(Fp) with:

F (u, v) = f(u mod p) + f(v mod p)

is an ε-generalized admissible encoding with ε = 29 · 2−`/2 + 2ω · 2−`. Applying Lemma
5.7, this proves Proposition 5.4.

97

Chapter 6
Well-Distributed Encodings:

A Framework for Indifferentiable
Hashing to (Hyper)elliptic Curves

6.1 Introduction

6.1.1 Background

In the previous chapter, we considered the problem of constructing “well-behaved”
hash functions to elliptic curves based on the constant-time encodings presented in
Chapter 3. We mainly proposed two constructions, both shown to be indifferentiable
from a random oracle, which implies, as we discussed previously, that they can serve as
plug-in replacement for random oracles in most cryptosystems while preserving security
proofs in the random oracle model.

The first construction is as follows:

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
where f is Icart’s encoding [Ica09] and h1 and h2 are modeled as random oracles to Fq.
This construction has the advantage of being quite efficient, requiring only two evaluations
of f (and hence, essentially two exponentiations in Fq). However, the geometric proof
given in §5.3 only applies to Icart’s encoding, and seems difficult to generalize to elliptic
curve encodings with a more complicated geometric description, such as the SWU
encoding [SvdW06, Ula07, BCI+10a], and even more so to a higher genus setting. In
fact, even extending the result to an encoding that is very close to Icart’s, such as the
Hessian curve encoding of Farashahi [Far11], while most likely possible, would require
studying the geometric properties of the morphisms involved all over again from scratch.

The second construction, for a cyclic elliptic curve group of order N and generator G,
can be written as:

H(m) = f
(
h1(m)

)
+ [h2(m)] · G

99

6. Well-Distributed Encodings

where f is essentially any of the known elliptic curve encodings, and h1 and h2 are
modeled as random oracles to Fq and ZN respectively. The indifferentiability proof for
this construction is much simpler, and it isn’t restricted to just Icart’s encoding (indeed,
it applies to all so-called weak encodings, which is a very mild condition). However it is
also much less efficient, and still does not readily generalize to hyperelliptic curves.

6.1.2 Our contributions

In this chapter, we introduce a new approach to deal with hash function constructions of
the more general form:

H(m) = f
(
h1(m)

)
+ · · ·+ f

(
hs(m)

)
(6.1)

when f is any of the known deterministic encodings. We can show in particular that
this construction is well-behaved (indifferentiable from a random oracle, in the random
oracle model for the Fq-valued hash functions hi) as soon as s is greater than the genus
of the target curve (that is, s > 2 for elliptic curves, s > 3 for genus 2 curves, etc.).
In particular, with this new approach, we recover the results of the previous chapter
about Icart’s function as a special case, and with sharper bounds. The methodology also
extends to all known deterministic encodings, including encodings to hyperelliptic curves.

For that purpose, we introduce the notion of well-distributed encoding, based on a new
type of character sums associated with characters of the groups of points of the Jacobians
of the target curves. We show that these sums can be estimated using classical results of
Weil [Wei95] and Bombieri [Bom66], and combine these estimates with standard number
theoretic technique in order to get explicit regularity results for functions of the form
(u1, . . . , us) 7→ f(u1) + · · ·+ f(us).

An expanded version of this work is to appear in Math. Comp. [FFS+11].

6.1.3 Outline

In §6.2, we introduce the notion of well-distributed encoding, and show how it can be used
to derive regularity results formally (Theorem 6.1 and Theorem 6.2). Combining these
results with those of Chapter 5, we obtain, in essence, that a well-distributed encoding
can be used in a construction of the form (6.1) to obtain an indifferentiable hash function.

We then introduce some arithmetic machinery in §6.3 to establish Theorem 6.3. This
theorem reduces the problem of proving that a given encoding is well-distributed to
checking some relatively simple geometric properties of the morphisms of curves associated
with an encoding (which is a lot simpler than the higher-dimensional geometry that the
approach of §5.3 required).

And finally, in §6.4, we pick three representative examples of deterministic encodings
to elliptic and hyperelliptic curves, apply this theorem to prove that they are well-
distributed, and deduce from our general results that they give rise to hash functions
indifferentiable from a random oracle. In particular, we obtain indifferentiable hashing
to Jacobians of certain hyperelliptic curves.

100

6.2. Well-Distributed Encodings

6.2 Well-Distributed Encodings

6.2.1 Character sums
Consider an encoding f into a curve X, and let J denote the Jacobian of X. Assume
that X has an Fq-rational point O, so that we can fix an embedding X → J (sending a
point P to the degree 0 divisor (P)− (O)). Regularity properties of functions f⊗s of the
form:

f⊗s : (Fq)s → J(Fq)
(u1, . . . , us) 7→ f(u1) + · · ·+ f(us)

can be derived formally from the behavior of f with respect to characters of J(Fq).More
precisely, introduce the character sums

Sf (χ) =
∑
u∈Fq

χ(f(u)), (6.2)

where χ is any character of the abelian group J(Fq). We say that f is well-distributed if
we have good bounds on the magnitude of Sf (χ) for nontrivial characters χ.

Definition 6.1. Let X be a smooth projective curve over a finite field Fq, J its Jacobian,
f a function Fq → X(Fq) and B a positive constant. We say that f is B-well-distributed
if for any nontrivial character χ of J(Fq), the following holds:

|Sf (χ)| 6 B√q. (6.3)

We say that f is well-distributed if it is B-well-distributed for some B bounded indepen-
dently of the security parameter.

As we show in §6.4, essentially all known deterministic encoding functions into elliptic
and hyperelliptic curves satisfy (6.3) and we can thus establish results on the regularity
of f⊗s for any such encoding similar to those obtained in Chapter 5 for f⊗2 when f is
Icart’s function.

6.2.2 Collision probability
Besides character sums our estimates also depend on the number of solutions Wf to the
equation f(u) = f(v) where u, v ∈ Fq. We note that

ρf = Wf/q
2

is the probability of a collision. For all functions considered in this chapter we have a
bound of the type

ρf 6
A0
q

+ B0
q2 (6.4)

with some explicit constants A0 and B0 (different for each function f).

101

6. Well-Distributed Encodings

6.2.3 Distribution of image sums
Fix a positive integer s, and consider for any element D ∈ J(Fq) the number of tuples
(u1, . . . , us) such that D = f(u1) + · · ·+ f(us):

Ns(D) = #
{
(u1, . . . , us) ∈ (Fq)s | D = f(u1) + · · ·+ f(us)

}
We can establish the following result.

Theorem 6.1. If f : Fq → X(Fq) is a B-well-distributed encoding into a curve X, then
for all D ∈ J(Fq), we have:∣∣∣∣∣Ns(D)

qs
− 1

#J(Fq)

∣∣∣∣∣ 6 Bs−2

qs/2−1

(
ρf −

1
#J(Fq)

)
.

Proof. Using the orthogonality relation
∑
χ

χ(D) =
{

#J(Fq) if D is the zero divisor J(Fq)
0 otherwise,

where the summation is over all characters of J(Fq), Ns(D) can be expressed in terms of
character sums:

Ns(D) =
∑

u1,...,us∈Fq

1
#J(Fq)

∑
χ

χ (f(u1) + · · ·+ f(us)−D)

=
∑
χ

χ(−D)
#J(Fq)

∑
u1,...,us∈Fq

χ (f(u1) + · · ·+ f(us))

=
∑
χ

χ(−D)
#J(Fq)

(Sf (χ))s .

Putting aside the contribution of the trivial character χ0, we get:

Ns(D)− qs

#J(Fq)
= 1

#J(Fq)
∑
χ 6=χ0

χ(−D) (Sf (χ))s .

Therefore, using (6.3), we derive∣∣∣∣∣Ns(D)− qs

#J(Fq)

∣∣∣∣∣ 6 1
#J(Fq)

∑
χ 6=χ0

|Sf (χ)|s 6
(
B
√
q
)s−2

#J(Fq)
∑
χ 6=χ0

|Sf (χ)|2.

On the other hand, Wf , defined in §6.2.2, is just:

Wf = #
{
(u1, u2) ∈ (Fq)2 | f(u1)− f(u2) = 0

}
=

∑
u1,u2∈Fq

1
#J(Fq)

∑
χ

χ (f(u1)− f(us))

and hence the same computations as above give:

Wf −
q2

#J(Fq)
= 1

#J(Fq)
∑
χ 6=χ0

Sf (χ)Sf (χ) = 1
#J(Fq)

∑
χ 6=χ0

|Sf (χ)|2 (6.5)

from which the result follows immediately.

102

6.2. Well-Distributed Encodings

We see from (6.5) that

ρf −
1

#J(Fq)
6
B2

q
. (6.6)

Therefore we have the following corollary.

Corollary 6.1. If f : Fq → X(Fq) is a B-well-distributed encoding into a curve X, then
for all D ∈ J(Fq), we have: ∣∣∣∣∣Ns(D)

qs
− 1

#J(Fq)

∣∣∣∣∣ 6 Bs

qs/2
.

Suppose that X is of genus gX . Then #J(Fq) = qgX + O(qgX−1/2), so the bound
of Corollary 6.1 is negligible compared to 1/#J(Fq) provided that s/2 > gX . In other
words, if f is a well-distributed encoding, then for s > 2gX , all elements D ∈ J(Fq) have
the same number of preimages by f⊗s up to negligible deviation.

When f is Icart’s function, this says that all the points of the target elliptic curve
have almost the same number of preimages by f⊗s for s > 3. This cannot be improved to
s = 2, as the analysis in the proof of Proposition 5.1 in the previous chapter shows that
there is in fact a bounded number of points which have several times more preimages by
f⊗2 than the others.

Nevertheless, we could obtain our indifferentiability result by bounding the statistical
distance between the distribution defined by f⊗2 and the uniform distribution. We can
establish a general result of this type for well-distributed encodings.

Theorem 6.2. If f : Fq → X(Fq) is a B-well-distributed encoding into a curve X, then
the statistical distance between the distribution defined by f⊗s on J(Fq) and the uniform
distribution is bounded as:∑

D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6 Bs−1

q(s−1)/2

√
ρf#J(Fq)− 1.

Proof. Consider first the sum of squared deviations. Let

Vs =
∑

D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣
2

.

Then, as in the proof of Theorem 6.1, we have:

Vs =
∑

D∈J(Fq)

1
q2s#J(Fq)2

∑
χ,η 6=χ0

χ(−D)η(−D)
(∑
u,v∈Fq

χ (f(u)) η (f(v))
)s

= 1
q2s#J(Fq)2

∑
χ,η 6=χ0

(∑
D∈J(Fq)

χ(D)η(D)
)(∑

u,v∈Fq
χ (f(u)) η (f(v))

)s

= 1
q2s#J(Fq)

∑
χ 6=χ0

|Sf (χ)|2s .

103

6. Well-Distributed Encodings

Now, using (6.5), we derive

Vs 6
B2s−2

qs−1

(
ρf −

1
#J(Fq)

)
.

On the other hand, by the Cauchy-Schwarz inequality, we have:

∑
D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6 √#J(Fq)Vs

and combining the two previous estimates concludes the proof.

In view of (6.6), the following corollary follows.

Corollary 6.2. If f : Fq → X(Fq) is a B-well-distributed encoding into a curve X, then
the statistical distance between the distribution defined by f⊗s on J(Fq) and the uniform
distribution is bounded as:

∑
D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6 Bs

qs/2

√
#J(Fq).

In particular, we see from Corollary 6.2 that if f is a well-distributed encoding, then
for s > gX , the distribution defined by f⊗s on J(Fq) is statistically indistinguishable
from the uniform distribution. If f is also computable and samplable (which is easily
verified to be the case when f is any of the known deterministic encodings), then it is
admissible. In particular, the following hash function construction:

H(m) = f
(
h1(m)

)
+ · · ·+ f

(
hs(m)

)
(s = gX + 1)

is indifferentiable from a random oracle if h1, . . . , hs are seen as independent random
oracles into Fq.

6.3 Character Sums on Curves
Let Y → X be a morphism of curves1 over Fq which is an abelian covering with Galois
group G (that is, a non-constant morphism such that the corresponding extension of
function fields Fq(Y)/Fq(X) is abelian with Galois group G).

Any character of G determines, via the Artin map, a corresponding character on the
group of Fq-divisors on X prime to the ramification locus S of Y → X, which extends
to a multiplicative map χ : DivFq(X)→ C vanishing on divisors not prime to S. Let us
call such a map χ an Artin character of X. One associates to χ a distinguished effective
divisor f(χ) of support S called the conductor (in particular, if Y → X is unramified,
f(χ) = 0; the character itself is then said to be unramified).

1In this section, “curve over k” means smooth, projective, geometrically connected curve over k.

104

6.3. Character Sums on Curves

Example 6.1. We consider the following examples of Artin characters.

• Let E be an elliptic curve over Fq. Then any character of the abelian group E(Fq)
extends to an unramified Artin character of E. Indeed, if F denotes the Frobenius
endomorphism of E, (1− F) : E → E is an unramified abelian covering with group
G = E(Fq), and characters of G determine Artin characters of E whose restriction to
E(Fq) is as expected.

• More generally, let X be any curve over Fq with an Fq-point, and J its Jacobian. As
usual, we can embed X in J using this rational point. Then any character of the group
J(Fq) extends to an Artin character of X. It is constructed similarly; (1− F) : J → J
is again an unramified abelian covering with group J(Fq) which can be pulled back to
an abelian covering Y → X with group J(Fq) along the embedding X → J .

• If χ is an Artin character on X, and h : X̃ → X is a non constant morphism of curves,
there is a natural Artin character χ̃ = h∗χ on X̃ obtained by pulling back the abelian
covering of X along h. On divisors, χ̃ can be defined as χ̃(D) = χ(h∗D). Clearly, if χ
is unramified, then χ̃ is too, and more generally, f(χ̃) = h∗f(χ).

• Assume that q is odd. The nontrivial quadratic character (i.e. the “generalized
Legendre symbol”) χq(·) on P1(Fq), which sends the point of abscissa x to 1, −1,
or 0 according as whether x is a quadratic residue, a quadratic nonresidue or 0,∞,
extends to the nontrivial Artin character χ2 defined by the ramified quadratic covering
P1 → P1 : x 7→ x2. One has f(χ2) = (0) + (∞).

• More generally, if X is a curve over Fq and ϕ a non constant, rational function on
X, the Legendre symbol of ϕ extends to a Artin character on X, namely ϕ∗χ2. Its
conductor is the sum of the divisor of zeros of ϕ and its divisor of poles. In particular,
deg f(ϕ∗χ2) = 2 degϕ.

When χ is nontrivial, Weil [Wei95] has proved the following estimate for sums related
to χ, as a consequence of the Riemann hypothesis for curves (see, for example, [KS00,
§2] or [Ros02, Chapter 9]). For any Artin character χ of X, let:

SX(χ) =
∑

P∈X(Fq)
χ(P).

Lemma 6.1. If χ is nontrivial and X is of genus g, one has

|SX(χ)| 6 (2g − 2 + deg f(χ))√q.

We can now easily deduce the following result, which forms the basis of the proofs of
well-distributedness in §6.4.

Theorem 6.3. Let h : X̃ → X be a non constant morphism of curves, and χ be any
nontrivial character of J(Fq), where J is the Jacobian of X. Assume that h does not

105

6. Well-Distributed Encodings

factor through a nontrivial unramified morphism Z → X. Then:∣∣∣∣∣∣∣
∑

P∈X̃(Fq)

χ(h(P))

∣∣∣∣∣∣∣ 6 (2g̃ − 2)√q (6.7)

where g̃ is the genus of X̃. Furthermore, if q is odd and ϕ is a non constant rational
function on X̃: ∣∣∣∣∣∣∣

∑
P∈X̃(Fq)

χ(h(P))χq(ϕ(P))

∣∣∣∣∣∣∣ 6 (2g̃ − 2 + 2 degϕ)√q. (6.8)

Proof. Denote also by χ the Artin character of X extending the given character of J(Fq).
The left-hand side of (6.7) is then just |S

X̃
(h∗χ)|, and we know that h∗χ is an unramified

Artin character of X̃, so the inequality follows from Lemma 6.1 provided that we can
prove that h∗χ is nontrivial. But if it is a trivial character, h∗ maps all divisors of X̃
to the kernel of χ: this means that h factors through the unramified covering Z → X
defined by the kernel of χ, which is impossible by hypothesis. Hence inequality (6.7).

Similarly, the left-hand side of (6.8) is |S
X̃

(χ̃)| for χ̃ the Artin character of X̃ defined
as the product of h∗χ and ϕ∗χ2. This character cannot be trivial: otherwise, ϕ∗χ2
would be the inverse of h∗χ, and hence unramified, which it is not. Thus, Lemma 6.1
gives |S

X̃
(χ̃)| 6 (2g̃ − 2 + deg f(χ̃))√q. Since h∗χ is unramified, we have deg f(χ̃) =

deg f(ϕ∗χ2) = 2 degϕ, which concludes the proof.

6.4 Examples of Well-Distributed Encodings

6.4.1 Icart’s encoding

Recall from §3.5.2 that Icart [Ica09] defined a family of deterministic functions to elliptic
curves E : y2 = x3 + ax + b over finite fields Fq such that q ≡ 2 (mod 3). His map
f : Fq → E(Fq) is given by u 7→ (x, y) with

x =
(
v2 − b− u2

27

)1/3

+ u2

3 and y = ux+ v (6.9)

where v = (3a− u4)/(6u). The image of 0 is chosen as the neutral element of the elliptic
curve.

Icart showed that a point (x, y) is the image of u if and only if

u4 − 6xu2 + 6yu− 3a = 0. (6.10)

This makes it possible to give a simple geometric interpretation of Icart’s function, as
has been done in [FSV10, FT10a, BCI+10a].

106

6.4. Examples of Well-Distributed Encodings

Indeed, let K = Fq(E) be the function field of E, and introduce the smooth projective
curve C whose function field is the quartic extension L = K[u]/(P) of K, where P =
u4 − 6xu2 + 6yu− 3a. The inclusions Fq(u) ⊂ L and K ⊂ L give rise to rational maps
g : C → P1 and h : C → E which are in fact morphisms, since these curves are smooth
and complete.

Then, Icart’s function can be described as f(u) = h(g−1(u)). This is well-defined
when q ≡ 2 (mod 3) because in that case, g induces a bijection from the set of points in
C(Fq) which are not poles of u to A1(Fq) = Fq.

This geometric point of view makes it possible to express the character sum Sf (χ),
for any character χ of E(Fq), in terms of the Artin character sum SC(h∗χ) (they are
the same up to a few “bad points”), and then to use Theorem 6.3 to show that Icart’s
function is well-distributed.

Theorem 6.4. Let f be Icart’s function (6.9). For any nontrivial character χ of E(Fq),
the character sum Sf (χ) given by (6.2) satisfies:

|Sf (χ)| 6 12√q + 3.

Proof. The map h : C → E defined above is a non constant morphism of curves. Moreover,
we know from the analysis of Chapters 4–5 (see also [FSV10]) that if a 6= 0, C is of genus
7, and that the Galois closure of the quartic extension Fq(C)/Fq(E) has Galois group S4
(for a = 0, the discussion in analogous). It follows that Fq(C)/Fq(E) has no nontrivial
intermediate extension, and it is clearly ramified (because an unramified covering of an
elliptic curve must be of genus 1). Thus, h fulfills the hypotheses of Theorem 6.3, and we
get ∣∣∣∣∣∣

∑
P∈C(Fq)

χ(h(P))

∣∣∣∣∣∣ 6 (2 · 7− 2)√q = 12√q.

Now recall that g induces a bijection from C(Fq) \ {poles of u} to Fq. Thus:∑
P∈C(Fq)

χ(h(P)) = Sf (χ) +
∑

P∈C(Fq)
u(P)=∞

χ(h(P)).

It is shown in the proof of Lemma 5.2 in the previous chapter that u has exactly 3 poles
on C, hence the result.

In other words, Theorem 6.4 asserts that f is a (12+3q−1/2)-well-distributed encoding.
In particular, as a well-distributed encoding to a curve of genus 1, Icart’s function f

satisfies that f⊗s is regular for s > 2. Since f⊗2 is clearly computable and samplable, it
is admissible. Thus, we get a new, simpler and conceptually different proof of the main
result of the previous chapter, that

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random oracle when h1, h2 are seen as random oracles to Fq.

107

6. Well-Distributed Encodings

We also get more general results, since we have information about f⊗s for s > 2, and
the bounds we obtain are also sharper than those in the previous chapters. If we denote
the collision probability for f by ρf , we have:

ρf = q−2 ∑
P∈E(Fq)

#f−1(P)2 6 4q−2 ∑
P∈E(Fq)

#f−1(P) = 4q−1

because points on E have at most 4 preimages. Theorem 6.1 then gives:

Corollary 6.3. For all P ∈ E(Fq) and all s, we have

∣∣∣∣∣Ns(P)
qs

− 1
#E(Fq)

∣∣∣∣∣ 6
(
12 + 3q−1/2

)s−2 (
4#E(Fq)q−1 − 1)

)
qs/2−1#E(Fq)

.

Similarly, Theorem 6.2 gives:

Corollary 6.4. For all s, the statistical distance between the distribution given by f⊗s
and the uniform distribution on E(Fq) is bounded as

∑
P∈E(Fq)

∣∣∣∣∣Ns(P)
qs

− 1
#E(Fq)

∣∣∣∣∣ 6 (12 + 3q−1/2)s−1
√

4#E(Fq)q−1 − 1
q(s−1)/2 .

Since #E(Fq) = q +O(q1/2), the bounds of Corollaries 6.3 and 6.4 simplify as∣∣∣∣∣Ns(P)
qs

− 1
#E(Fq)

∣∣∣∣∣ 6 3 · 12s−2 +O
(
q−1/2

)
qs/2

(6.11)

and ∑
P∈E(Fq)

∣∣∣∣∣Ns(P)
qs

− 1
#E(Fq)

∣∣∣∣∣ 6
√

3 · 12s−1 +O
(
q−1/2

)
q(s−1)/2 . (6.12)

For s = 2, this gives a bound of the statistical distance of the form 12
√

3q−1/2+O(q−1),
which is a significant improvement over the estimate from §5.3. We can refine this further
by computing the collision probability precisely.
Remark 6.1. As we saw in Chapter 4, the Chebotarev density theorem gives the preva-
lence of points with any given number of preimages: the number of permutations in
Gal(Fq(C)/Fq(E)) = S4 with exactly 1 (respectively 2, 4) fixed point(s) is 8 (respectively
6, 1), so the density of points with 1 (respectively 2, 4) preimages is 8/24 (respectively
6/24, 1/24). Using an effective version of the Chebotarev density theorem, this gives:

q2ρf = 12 ·
(8q

24 +O(√q)
)

+ 22 ·
(6q

24 +O(√q)
)

+ 42 ·
(
q

24 +O(√q)
)
.

Thus ρf = 2q−1 + O(q−3/2), which allows us to drop the factors 3 and
√

3 from (6.11)
and (6.12), respectively.

108

6.4. Examples of Well-Distributed Encodings

6.4.2 The Kammerer-Lercier-Renault encodings
As discussed in §3.5.3, Kammerer, Lercier and Renault [KLR10] have recently introduced
a series of new encodings based on the same principles as Icart’s function, namely solving
curve equations in radicals. One such example is an encoding f to hyperelliptic curves of
genus 2 over fields Fq such that q ≡ 2 (mod 3) of the form:

H : x3 + (y + c)
(

3x+ 2a+ 2b
y

)
= 0.

The precise description of the encoding is rather complicated, and we refer the reader
to [KLR10, §3.2.2] for details, but the geometric picture is the same as for Icart’s function.
The parameter u defining the encoding satisfies a relation of the form:

4u2(u2 − 3y − a2 − c
)3 + u8 + αu4 + βu2 + γ = 0 (6.13)

where α, β, γ are constants in Fq defined in terms of a, b, c, which we assume are nonzero.
In particular, if K = Fq(x, y) is the function field of H, one can consider the extension

L = K[u]/(P) where P is the polynomial of degree 8 given by equation 6.13. This defines
a covering h : C → H of degree 8 by a certain smooth projective curve C, and the rational
function u on C provides a morphism g : C → P1 of degree 9 which induces a bijection
on Fq-rational points over A1(Fq) \ S where S is a finite set of points shown in [KLR10]
to be of size at most 75. The encoding f : Fq → H(Fq) is then defined as u 7→ h(g−1(u))
for u ∈ Fq \ S, and is extended in some way to all of Fq.

Our machinery applies again to show that f is a well-distributed encoding. Denote
by J the Jacobian of H, and fix an embedding H → J .

Theorem 6.5. Let f be the encoding function described above. For any nontrivial
character χ of J(Fq), the character sum Sf (χ) given by (6.2) satisfies:

|Sf (χ)| 6 96√q + 759.

Proof. The map h : C → H defined above is a non constant morphism of curves. Let us
compute the genus of C.

Note first that P (u) can be written as Q(t) where t = u2, which defines a factorization
C → D → H, with [D : H] = 4. The discriminant of Q is a polynomial of degree 12 in
y, and each of its 12 roots corresponds to 3 ramified points on H, since each value of y
corresponds to 3 values of x. Moreover, when regarded as a polynomial over Fq((1/y)),
the quartic Q has a Newton polygon with integer slopes (−3 with length 1 and 1 with
length 3). Thus, D is unramified over points with y =∞. All in all, the Riemann-Hurwitz
formula gives 2gD − 2 = 4 · (2gH − 2) + 3 · 12 = 44: D is of genus 23.

Then, the quadratic covering C → D is ramified exactly at points such that t = 0 or
t =∞. At finite distance, this gives γ = 0, which is excluded, so all the ramification is at
infinity. By the previous Newton polygon argument, over each point of H with y =∞
lie 4 points of D, one with t = 0 and three with t =∞. And there are 2 such points of
H, by another Newton polygon argument. Hence 2gC − 2 = 2 · (2gD − 2) + 2 · 4 = 96,
and C is of genus 49.

109

6. Well-Distributed Encodings

Let us now show that h : C → H does not factor nontrivially through an unramified
covering. To see this, consider D0 → P1, the ramified covering of degree 4 defined by Q
(which pulls back to D → H along x : H → P1). We see like before that all points of D0
ramified over P1 have ramification index 2. Thus, the monodromy group of this covering
is a transitive subgroup of S4 generated by transpositions, hence all of S4.

By inspection of the ramification of x : H → P1, it follows that D → H also has S4
as its monodromy group. In particular, it has no quadratic subcovering. Now suppose
h : C → H factors through some abelian unramified extension Z → H, which we can
assume is quadratic. Then the function fields Fq(Z) and Fq(D) are everywhere linearly
disjoint over Fq(H) (i.e. all of their embeddings in some algebraic closure of Fq(H) are
linearly disjoint). Thus Fq(C) = Fq(D)⊗Fq(H) Fq(D), and in particular, C → D is the
pullback of Z → H along D → H. This implies that C → D is unramified, which we
know is not the case.

Thus, h does not factor nontrivially through an abelian unramified covering, and
hence fulfills the hypotheses of Theorem 6.3. We get∣∣∣∣∣∣

∑
P∈C(Fq)

χ(h(P))

∣∣∣∣∣∣ 6 (2gC − 2)√q = 96√q.

Now recall that g induces a bijection from C(Fq) \ g−1(S ∪ {∞}) to Fq \ S. Thus:∑
P∈C(Fq)

χ(h(P)) =
∑

u∈Fq\S
χ(f(u)) +

∑
P∈g−1(S∪{∞})

χ(h(P))

= Sf (χ)−
∑
u∈S

χ(f(u)) +
∑

P∈g−1(S∪{∞})
χ(h(P)).

Since #S 6 75 and g is of degree 9, we get

|Sf (χ)| 6 96√q + 9 · 76 + 75 = 96√q + 759

as required.

In other words, f is a (96 + 759q−1/2)-well-distributed encoding to H. In particular,
as a well-distributed encoding to a curve of genus 2, it satisfies that f⊗s is regular for any
s > 3. Thus, f⊗3 is regular and clearly also computable and samplable, so the following
construction:

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
+ f

(
h3(m)

)
∈ J(Fq)

is indifferentiable from a random oracle when h1, h2, h3 are seen as random oracles to Fq.
This is the first example of an efficient, well-behaved hash function to the Jacobians of a
large family of curves of genus 2.

We now estimate (quite coarsely) the collision probability for f : since h is of degree
8, any given point on H has at most 8 preimages by f . Thus,

ρf = q−2 ∑
P∈H(Fq)

#f−1(P)2 6 8q−2 ∑
P∈H(Fq)

#f−1(P) = 8q−1

and so qρf 6 8 as required. Thus, Theorem 6.1 gives the following estimate:

110

6.4. Examples of Well-Distributed Encodings

Corollary 6.5. For all D ∈ J(Fq) and all s, we have

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6 8
(
96 + 759q−1/2

)s−2

qs/2
.

Furthermore, from Theorem 6.2 we derive:

Corollary 6.6. For all s, the statistical distance between the distribution given by f⊗s
and the uniform distribution on J(Fq) is bounded as

∑
D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6
√

8 · (96 + 759q−1/2)s−1
√

#J(Fq)
qs/2

.

Using that #J(Fq) = q2 +O(q3/2) one can also obtain simplified versions of Corollar-
ies 6.5 and 6.6 similar to the bounds (6.11) and (6.12).

Of course, we have considered only one of the encodings from [KLR10], but the same
technique applies to all of them. In some cases, it is even much easier to apply. For
example, in the case of the encoding to hyperelliptic curves Ha : y2 = x2d + xd + a, the
covering curve is Ha itself (the parameter u is in fact just y − xd ∈ Fq(x, y)), so the
hypotheses of Theorem 6.3 are trivially verified.

6.4.3 The simplified SWU encoding
Recall from §3.5.4 the description of the simplified Shallue-van de Woestijne-Ulas encoding
over fields Fq with q ≡ 3 (mod 4), as introduced in [BCI+10a] with the sign tweak
from [FT10a]. The function is based on the following observation. Let g(x) = x3+ax+b ∈
Fq[x] with ab 6= 0, and define:

X2(u) = − b
a

(
1 + 1

u4 − u2

)
X3(u) = −u2X2(u)

and
Z(u) = u3g

(
X2(u)

)
.

Then we have Z(u)2 = −g
(
X2(u)

)
· g
(
X3(u)

)
.

Let S = {0, 1,−1} ∪ {roots of g(Xj(u)) = 0, j = 2, 3}. For any u 6∈ S, X2(u) and
X3(u) are well-defined and non zero. Since −1 is a quadratic nonresidue in Fq, this implies
that for any u ∈ Fq \ S, exactly one of g

(
X2(u)

)
or g

(
X3(u)

)
is a square. Therefore, we

can define an encoding function f to the elliptic curve E : y2 = x3 + ax+ b by

f(u) =
(
Xj(u) ; (−1)j

√
g(Xj(u))

)
,

where j = 2 or 3 is the index such that g
(
X3(u)

)
is a square, and

√
· is the standard

square root in Fq, given by exponentiation by (q + 1)/4 (thus, the y-coordinate is a
quadratic residue if j = 2 and a quadratic nonresidue if j = 3).

111

6. Well-Distributed Encodings

As discussed in §4.5, this encoding function admits the following geometric interpre-
tation. It is easy to see that for all u ∈ Fq \ {−1, 0, 1},

x = X2(u)⇐⇒ u4 − u2 + 1
ω

= 0

x = X3(u)⇐⇒ u4 − ωu2 + ω = 0

where ω = a
bx+1. Thus, we can introduce coverings hj : Cj → E, j = 2, 3, by the smooth

projective curves whose function fields are the extensions of Fq(x, y) defined respectively
by u4 − u2 + 1/ω = 0 and u4 − ωu2 + ω = 0. The parameter u is a rational function on
each of the Cj giving rise to morphisms gj : Cj → P1, such that any point in A1(Fq) \ S
has exactly two preimages in one of the two curves Cj(Fq), j = 2, 3, and none in the
other.

If u ∈ Fq \S has its preimages in Cj(Fq), those preimages are conjugate under y 7→ −y,
so that exactly one of them satisfies χq(y) = (−1)j . Let P ∈ Cj(Fq) be that preimage.
Then, f(u) = hj(P). This geometric interpretation is enough to apply Theorem 6.3 and
establish that f is well-distributed.

Theorem 6.6. Let f be the encoding described above. For any nontrivial character χ of
E(Fq), the character sum Sf (χ) given by (6.2) satisfies:

|Sf (χ)| 6 52√q + 151.

Proof. In light of the previous discussion, the character sum Sf (χ), when restricted to
parameters u in Fq \ S, can be written as:∑

u6∈S
χ(f(u)) =

∑
P∈C2(Fq)\S2
χq(y)=+1

χ(h2(P)) +
∑

P∈C3(Fq)\S3
χq(y)=−1

χ(h3(P)) (6.14)

where Sj = g−1
j (S ∪ {∞}). To estimate such sums, observe that:

∑
P∈Cj(Fq)

χ(hj(P)) ·
(

1 + (−1)jχq(y)
2

)

=
∑

P∈Cj(Fq)
χq(y)=(−1)j

χ(hj(P)) + 1
2

∑
P∈Cj(Fq)
χq(y)=0

χ(hj(P)).
(6.15)

The first sum on the right-hand side of (6.15) is almost what we want (up to a bounded
number of “bad terms”) and the second sum on the right-hand side contains at most
3 · 4 = 12 terms.

Furthermore, the left-hand side of (6.15) is directly estimated using Theorem 6.3.
Indeed, by the Eisenstein criterion, h2 and h3 are totally ramified over points in H such
that ω = 0 (that is, x = −b/a), so they cannot factor through any unramified covering of

112

6.4. Examples of Well-Distributed Encodings

E. Hence, Theorem 6.3 applies and gives:∣∣∣∣∣∣
∑

P∈Cj(Fq)
χ(hj(P)) ·

(
1 + (−1)jχq(y)

2

)∣∣∣∣∣∣ 6 (2gCj − 2 + deg y)√q

where gCj is the genus of Cj , and deg y is the degree of y as a rational function on Cj .
Clearly, deg y = [Fq(x, y, u) : Fq(x, y)] · [Fq(x, y) : Fq(y)] = 4 · 3 = 12. Furthermore, to
compute gCj , note that in addition to the totally ramified points mentioned previously,
Cj → E has ramification type (2, 2) at points with ω = 4 and at infinity, and is unramified
elsewhere. Thus, the Riemann-Hurwitz formula gives 2gCj − 2 = 0 + 2 · 3 + 2 · (1 + 1) +
2 · (1 + 1) = 14: the curves Cj are of genus 8. Thus:∣∣∣∣∣∣

∑
P∈Cj(Fq)

χ(hj(P)) ·
(

1 + (−1)jχq(y)
2

)∣∣∣∣∣∣ 6 26√q.

Plugging this estimate back into (6.14) using (6.15), we get:∣∣∣∣∣∣
∑
u6∈S

χ(f(u))

∣∣∣∣∣∣ 6 (26√q + #S2 + 6
)

+
(
26√q + #S3 + 6

)
= 52√q + 12 + #S2 + #S3.

Thus |Sf (χ)| 6 52√q + 12 + #S2 + #S3 + #S. Now #S 6 3 + 2 · 12 = 27, and since gj
is a map of degree 2, #Sj 6 2(#S + 1) 6 56, which concludes the proof.

Thus, we see from Theorem 6.6 that the simplified Shallue-Woestijne-Ulas encoding
is (52 + 151q−1/2)-well-distributed. As in §6.4.1 and §6.4.2, using Theorem 6.1 and
Theorem 6.2, we can deduce precise bounds on the maximum deviation of functions of
the form f⊗s and on the statistical distance of the distribution they define on E(Fq) and
the uniform distribution.

In particular, we get that f⊗s is regular for s > 2. Since f⊗2 is clearly computable
and samplable, it is admissible, and we obtain that

H(m) = f
(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random oracle when h1, h2 are seen as random oracles to Fq.

Once again, the method generalizes to other SWU-like encodings, such as the Ulas
encoding to hyperelliptic curves of the form y2 = x5 + ax+ b.

113

Chapter 7
Hashing and Encoding to Odd

Hyperelliptic Curves

7.1 Introduction
In this chapter, which can serve as an illustration for the results of Chapters 3, 5 and 6, we
propose a very simple and efficient encoding function from Fq to points of a hyperelliptic
curve over Fq of the form H : y2 = g(x) where g is an odd polynomial. Hyperelliptic
curves of this type have been frequently considered in the literature to obtain Jacobians
of good order and pairing-friendly curves.

Our new encoding is nearly a bijection to the set of Fq-rational points on H. This
makes it easy to construct well-behaved hash functions to the Jacobian J of H, as well
as injective maps to J(Fq) which can be used to encode scalars for such applications as
El Gamal encryption.

The new encoding is already interesting in the genus 1 case, where it provides a
well-behaved encoding to Joux’s supersingular elliptic curves.

This work was presented at Pairing 2010 [FT10a].

7.1.1 Hyperelliptic curve encodings.
While there are now rather general and efficient constructions for elliptic curves, encodings
to hyperelliptic curves are scarce. The first such encoding was proposed by Ulas in [Ula07],
for curves of the form y2 = xn + ax+ b or y2 = xn + ax2 + bx. Kammerer, Lercier and
Renault, in their recent paper [KLR10], have presented several additional families of
hyperelliptic curves for which an Icart-like encoding can be constructed, but the target
curves are still of a special form and may not be convenient to use for cryptographic
applications. Efficiency is also a problem for both of these constructions.

Moreover, all of these algorithms construct points on the curve itself, whereas the
relevant object in cryptography is the group attached to it, namely its Jacobian variety.
We have seen in Chapter 6 how to build a well-behaved hash function to the Jacobian
based on an encoding to the curve, but the relatively complex geometric description

115

7. Hashing and Encoding to Odd Hyperelliptic Curves

of a function like the Kammerer-Lercier-Renault genus 2 encoding led to rather large
constants in the results of §6.4.2.

7.1.2 Our contribution
This chapter presents a new encoding for hyperelliptic curves of the form H : y2 = g(x)
where g is an odd polynomial over Fq, with q = 3 mod 4. From this encoding to the
curve H, we also deduce efficient injective encodings and well-behaved hash functions to
its Jacobian. The new encoding has the following desirable properties:

• it can be very efficiently computed using one exponentiation and no division, in
constant time and without branching;

• the encoding is an efficiently invertible bijection: thus, it is possible to encode messages
as points on the curve and recover them. This has numerous applications, e.g. to
encryption;

• in genus 1, it provides an encoding to supersingular elliptic curves, similar to Boneh
and Franklin’s construction [BF01], but for different base fields;

• in higher genus, many cryptographically interesting curves are of the form H, including
the curves considered in [FKT03, HKT05, Sat09];

• many constructions of pairing-friendly hyperelliptic curves yield curves of the form
H [KT08, FS11];

• since the encoding has a simple geometric description, it is easy to obtain well-behaved
hash functions from it, and the corresponding regularity bounds are optimally tight.

7.2 Odd Hyperelliptic Curves
Let g be an odd monic polynomial over a finite field Fq with q ≡ 3 (mod 4), which has
simple roots in Fq. We denote its degree by 2k + 1, and consider the hyperelliptic curve
over Fq defined by:

H : y2 = f(x) = x2k+1 + a1x
2k−1 + · · ·+ akx

Let us call such curves odd hyperelliptic curves. Many hyperelliptic curves relevant to
cryptography, and particularly pairing-based cryptography, are of this form. For example:

• the supersingular elliptic curves of Joux [Jou02]: y2 = x3 + ax;

• the genus 2 curves studied by Furukawa et al. [FKT03] and their extension to higher
genus by Haneda et al. [HKT05]: y2 = x2k+1 + ax (for which one can compute the
zeta function);

• in particular, the Type II pairing-friendly curves of genus 2 constructed by Kawazoe
and Takahashi [KT08];

116

7.3. Our New Encoding

• the genus 2 hyperelliptic curves for which Satoh [Sat09] gave an efficient class group
counting algorithm: y2 = x5 + ax3 + bx;

• in particular, some of the pairing-friendly genus 2 curves constructed by Freeman and
Satoh [FS11] (although the case q ≡ 1 (mod 4) is more common).

Additionally, odd hyperelliptic curves and their Jacobians admit an automorphism of
order 4 over Fq2 (namely (x, y) 7→ (−x,

√
−1 · y)) which can be used to map points over

Fq to linearly independent points over Fq2 , another useful property for pairings.
Remark 7.1. A hyperelliptic curve over Fq is birational to an odd hyperelliptic curve
when the set of points in P1 over which it is ramified is invariant under an automorphism
of P1 of order 2 fixing two of them, both Fq-rational. For example, hyperelliptic curves
of the form:

H ′ : y2 = x6 + ax5 + bx4 − bx2 − ax− 1

are birational to odd hyperelliptic curves, since they are ramified over a set of points
invariant under x 7→ 1/x and containing ±1. One possible change of variables is
x 7→ (x− 1)/(x+ 1).

This remark shows that the coarse moduli space of odd hyperelliptic curves of genus
k over Fq is a subvariety of dimension k − 1 of the dimension 2k − 1 moduli space of
genus k hyperelliptic curves.

7.3 Our New Encoding

7.3.1 Definition

Let H : y2 = g(x) be an odd hyperelliptic curve over Fq, q ≡ 3 (mod 4). Denote by
√
·

the usual square root function on the set of quadratic residues in Fq (exponentiation by
(q + 1)/4), and by χq(·) the nontrivial quadratic character of Fq.

Over Fq, −1 is a quadratic nonresidue, and for any t ∈ Fq, we have g(−t) = −g(t), so
unless g(t) = 0, exactly one of g(t) or g(−t) is a square. In other words, exactly one of t
or −t is the abscissa of an Fq-rational point on H.

This observation allows us to define a point encoding function f to H(Fq) as follows:

f : Fq −→ H(Fq)

t 7−→
(
ε(t) · t ; ε(t)

√
ε(t) · g(t)

) (7.1)

where ε(t) = χq(g(t)). We claim that this function is well-defined and “almost” a
bijection.

More precisely, recall that a Weierstrass point of H is a point where the rational
function y is ramified: these are the points (x, 0) for x a root of g together with the point
at infinity ∞. Then, let W ⊂ H(Fq) be the set of Fq-rational Weierstrass points on H,
and T ⊂ Fq the set of roots of f .

117

7. Hashing and Encoding to Odd Hyperelliptic Curves

Theorem 7.1. The function f given by (7.1) is well-defined, maps all points in T to
(0, 0) ∈W , and induces a bijection Fq \ T → H(Fq) \W .

Proof. For t ∈ T , we have ε(t) = 0, hence f(t) = (0, 0) ∈ W . Now let t ∈ Fq \ T , and
x = ε(t) · t. Since g is odd and ε(t) = ±1, g(x) = ε(t) · g(t). In particular, recalling that
χq(−1) = −1, we can write:

χq(g(x)) = χq(ε(t) · g(t)) = ε(t) · χq(g(t)) = ε(t)2 = 1

Thus, the second component y = ε(t)
√
ε(t) · g(t) of f(t) is well-defined, and we have

y2 = ε(t) · g(t) = g(x), so f(t) is an affine point on H(Fq) as required. The condition
t 6∈ T further implies that g(t) 6= 0, so y 6= 0. Therefore, f(t) ∈ Fq \W .

Let us show that the restriction of f to Fq \T is injective. Indeed, suppose f(t) = f(u)
with t, u 6∈ T . Equating x-coordinates, we get ε(t) · t = ε(u) · u, hence u = ±t. If u = −t,
then comparing the y-coordinates, we obtain

ε(t)
√
ε(t) · g(t) = ε(u)

√
ε(u) · g(u)

= ε(−t)
√
ε(−t) · g(−t) = −ε(t)

√
ε(t) · g(t)

which is a contradiction. Therefore, t = u and f is injective on Fq \ T .
Finally, we claim that f(Fq \ T) = H(Fq) \W . To see this, take (x, y) ∈ H(Fq) \W

and let t = δ · x, where δ = ±1 is defined by y = δ
√
g(x). We have

ε(t) = χq(g(δx)) = χq(δ · g(x)) = δ · χq(g(x)) = δ

since g(x) = y2 is a square. Thus:

f(t) =
(
δ2 · x ; δ

√
δ · g(δx)

)
=
(
x ; δ

√
g(x)

)
= (x; y)

as required.

Corollary 7.1. The cardinality of H(Fq) is q + 1.

Proof. From the above, we get #H(Fq) = #(Fq \ T) + #W = q −#T + #W . But W
consists of the point at infinity on H, and all points of the form (x, 0), x ∈ T . Thus,
#W = #T + 1, and hence #H(Fq) = q + 1.

Remark 7.2. • Since f is an efficiently computable bijection between all of Fq and H(Fq)
except at most 2k + 2 points on both sides, with an efficiently computable inverse
(namely (x, y) 7→ χq(y) · x), it is a very well-behaved encoding function.
In particular, it is clear that if t is uniformly distributed in Fq, the distribution of f(t)
in H(Fq) is statistically indistinguishable from the uniform distribution. According
to the results of Chapter 5, it follows that if h is a hash function to Fq modeled
as a random oracle, then H(m) = f

(
h(m)

)
defines a function into H(Fq) that is

indifferentiable from a random oracle. When the genus of H is at least 2, however,

118

7.3. Our New Encoding

one is usually interested in hashing to the Jacobian of H rather than H itself. This
will be discussed in §7.4.

The fact that, unlike most other encodings, f is almost injective, makes it suitable for
other purposes than hashing, such as encoding a message to be encrypted, for example
with El Gamal.

• Since #T = #(W \ {∞}), it is in fact easy to modify the definition of f to obtain
a bijection f ′ : Fq → H(Fq) \ {∞} which misses only one rational point on H. This
modified encoding f ′ is slightly less efficient to compute, however, and using one or the
other makes no difference in practice (as one is not concerned with a few exceptional
points), so we shall stick to f as defined by (7.1).

• When H is in fact an elliptic curve E (i.e. deg g = 3), Corollary 7.1 says that E
is supersingular. These are in fact the supersingular elliptic curves y2 = x3 + ax
discussed by Joux in [Jou02]. Thus, the function f provides a convenient way to
encode points into supersingular elliptic curves over Fq with q ≡ 3 (mod 4). This is
an interesting addition to the original encoding of Boneh and Franklin [BF01], which
applies to supersingular curves of the form y2 = x3 + b over fields Fq with q ≡ 2
(mod 3). In particular, our encoding can be used in characteristic 3.

• In the general case, we see that #H(Fqn) = qn + 1 for any odd extension degree n.
This gives some constraints on the zeta function of H, but in genus k > 2, many
isogeny classes are possible for the Jacobian J of H nonetheless, so the proposed
encoding applies to a wide range of curves. It is not always easy to determine the
order of J(Fq): an approach is given by Satoh in [Sat09] for g = 2.

7.3.2 Efficient computation

The definition of f involves a generalized Legendre symbol and one square root, which
suggests that its computation might be costly, especially if it is to be done in constant time,
an important property in settings where side-channel attacks are a concern. However,
it is actually possible to compute f with a single exponentiation, a few multiplications
and no division, making it one of the most efficient deterministic encoding function
proposed to date. One such implementation is described as Algorithm 7.1. Note that
this implementation is also branch-free, contrary to what happens for encodings such
as the one by Shallue and van de Woestijne [SvdW06]; this also prevents certain active
side-channel attacks.

To see that this implementation is correct, consider α and β as defined in Algorithm 7.1.
For t ∈ T , we have α = 0, hence the procedure returns f(t) = (0, 0) as required. Now let
t 6∈ T . We have

β2 = α
q−3

2 = 1
α
χq(α) = ε(t)

α

In particular, αβ2t = ε(t) · t is indeed the abscissa of f(t).

119

7. Hashing and Encoding to Odd Hyperelliptic Curves

Algorithm 7.1 Constant-time, single-exponentiation implementation of the encoding f .
The constant r is (q − 3)/4 if q ≡ 3 (mod 8), (q − 3)/4 + (q − 1)/2 otherwise.
1: function f(t)
2: α← g(t)
3: β ← αr

4: return (αβ2t, αβ)
5: end function

Moreover, suppose q ≡ 3 (mod 8). Then (q + 1)/4 is odd and ε(t) = ±1, so we have

αβ = α
q−3

4 +1 = ε(t) · ε(t) · g(t)
q+1

4

= ε(t) ·
(
ε(t) · g(t)

) q+1
4 = ε(t)

√
ε(t) · g(t)

so the algorithm is correct.
Similarly, when q ≡ 7 (mod 8), (q + 1)/4 is odd and we obtain

αβ = α
q−1

2 + q−3
4 +1 = ε(t) · g(t)

q+1
4

= ε(t) · (ε(t) · g(t)
) q+1

4 = ε(t)
√
ε(t) · g(t)

which concludes.

7.4 Mapping to the Jacobian
In the previous section, we have constructed a function f : Fq → H(Fq) which is efficiently
computable and has a number of desirable properties. For cryptographic purposes,
however, we are usually interested in obtaining elements of a group attached to the curve,
namely the Jacobian, rather than points on the curve itself. In the case of elliptic curves,
the curve and its Jacobian are isomorphic so no further work is needed, but for curves of
genus k > 2, they are quite different objects.

In the following, we always denote the Jacobian of H by J , and we regard H as
embedded in J via the map H → J sending a point P to the class of the degree 0
divisor (P)− (∞). In particular, if P,Q are points in H(Fq), P + Q denotes the class of
(P) + (Q)− 2(∞).

We propose two constructions of maps to J(Fq) to accommodate for different use
cases: an injective map with large image, which can be used to encode scalars as group
elements (e.g. for encryption), and a map defining an essentially uniform distribution on
J(Fq), to obtain well-behaved hash functions.

7.4.1 Injective encoding to the Jacobian
Let us first recall a few facts about hyperelliptic curves, for which we refer for example
to [MWZ98]. Elements of J(Fq) are classes of Fq-divisors on H and admit a canonical

120

7.4. Mapping to the Jacobian

representation as so-called reduced divisors defined over Fq. Let ·̃ denote the hyperelliptic
involution on H, (x, y) 7→ (x,−y). A divisor D = P1 + · · ·+ Pr (where the Pi are not
necessarily distinct points in H(Fq)) is said to be reduced when r is less than or equal
to the genus k of H, and Pi 6= P̃j for all i 6= j. The reduced divisors D and D′ defined
by P1, . . . ,Pr and P′1, . . . ,P′r are distinct and non-equivalent as soon as the multisets
{P1, . . . ,Pr} and {P′1, . . . ,P′r} are different. Each divisor class in J(Fq) contains a unique
reduced divisor defined over Fq.

Now, with the notations of §7.3, the encoding f : Fq → H(Fq) defined by (7.1) satisfies
that for all t ∈ Fq \T , the only u such that f(u) = f̃(t) is u = −t. Therefore, if (t1, . . . , tk)
is any tuple of k elements of Fq \ T (k being the genus of H) such that ti + tj 6= 0 for
all i, j, then f(t1) + · · ·+ f(tk) is a reduced divisor. In particular, consider the set X
of k-element subsets of Fq \ T not containing any two opposite elements. Then it is
immediate from the facts above that the map:

Finj : X −→ J(Fq)
{t1, . . . , tk} 7−→ f(t1) + · · ·+ f(tk)

is injective. We have

#X = 2k
(

(q −#T)/2
k

)
= 1− o(1)

k! · qk > ck ·#J(Fq)

for some constant ck > 0 depending only on k. Thus, Finj is an injective mapping to
J(Fq) covering a constant positive fraction of all points. It is also very easy to compute
since points in the image are directly given as reduced divisors, so no actual arithmetic
on the Jacobian is needed.

In the case that is most relevant for cryptographic applications, namely k = 2, we
can define an even simpler injective encoding, from the set Y of 2-element subsets of
Fq \ T , which may be easier to manipulate than X:

F ′inj : Y −→ J(Fq)
{t1, t2} 7−→ f(t1) + f(−t2)

This function injective, easy to compute, and reaches roughly one half of all points in
J(Fq).

7.4.2 Indifferentiable hashing to the Jacobian
One can also use f to construct well-behaved hash functions to J(Fq). For this purpose,
we have shown in Chapter 5 how one could use functions to J(Fq) with good regularity
properties, and described in Chapter 6 how character sum estimates could be used to
prove such regularity properties for functions of the form:

f⊗s : (Fq)s −→ J(Fq)
(t1, . . . , ts) 7−→ f(t1) + · · ·+ f(ts).

121

7. Hashing and Encoding to Odd Hyperelliptic Curves

Since f is so simple, we do not really need to rely on the entire framework of Chapter 6.
Indeed, the following bound, which in the terminology of the previous chapter says that
f is a (2k − 2 + ε)-well-distributed encoding, can be proved using classical results on
characters on algebraic curves. Note that this bound is very tight: it gives a better
well-distributedness bound for f in genus up to 6 than can be established for Icart’s
function in genus 1.

Lemma 7.1. For any character χ of the abelian group J(Fq), let

S(χ) =
∑
t∈Fq

χ(f(t)).

Then, whenever χ is nontrivial, we have

|S(χ)| 6 (2k − 2)√q + 4k + 3.

Proof. A nontrivial character χ of J(Fq) is also a nontrivial, unramified Artin character
of H (see [KS00, §2] or §6.3). In particular, the Riemann hypothesis for the L-function
on H associated with χ gives:∣∣∣∣∣∣

∑
P∈H(Fq)

χ(P)

∣∣∣∣∣∣ 6 (2k − 2)√q.

The result then follows from the observation that∑
t∈Fq

χ(f(t)) = #T · χ((0, 0)) +
∑

P∈H(Fq)\W
χ(P)

= #T · χ((0, 0))−
∑

P∈W
χ(P) +

∑
P∈H(Fq)

χ(P)

since #T + #W 6 4k + 3.

We can then proceed like in §6.2 and deduce from this lemma a bound on the
statistical distance between the distribution defined on J(Fq) by f⊗s and the uniform
distribution.

For any D ∈ J(Fq), let Ns(D) denote the number of preimages of D under f⊗s:

Ns(D) = #
{
(t1, . . . , ts) ∈ (Fq)s | D = f(t1) + · · ·+ f(ts)

}
Then we have the following result:

Theorem 7.2. The statistical distance between the distribution defined by f⊗s and the
uniform distribution on J(Fq) is bounded as:

∑
D∈J(Fq)

∣∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣∣ 6
(
2k + 2 + (4k + 3)q−1/2)s√#J(Fq)

qs/2
.

122

7.5. Conclusion

Proof. This results from Corollary 6.2 in the previous chapter.

Note that #J(Fq) ∼ qk, so that the bound we get on the statistical distance is
in O(q(k−s)/2). Therefore, as soon as s > k, the distribution defined by f⊗s on J(Fq)
is statistically indistinguishable from the uniform distribution. In particular, in the
terminology of Chapter 5, the encoding f⊗(k+1) to J(Fq) is regular (see Definition 5.3).
It is also obviously computable and samplable, so f⊗(k+1) is an admissible encoding to
J(Fq).

This provides a simple, well-behaved hash function construction to the Jacobian of
H. Indeed, it follows that the hash function defined by

H(m) = f
(
h1(m)

)
+ · · ·+ f

(
hk+1(m)

)
is indifferentiable from a random oracle when h1, . . . , hk+1 are seen as independent random
oracles into Fq.

7.5 Conclusion
In this chapter, we provide a very efficient construction of a deterministic encoding into
odd hyperelliptic curves. Odd hyperelliptic curves are a simple and relatively large class of
hyperelliptic curves, compared to the families of curves covered by previous deterministic
encodings. They also include many curves of cryptographic interest (because of efficient
point-counting on the Jacobian, or pairing-friendliness), even in the elliptic curve case.

This encoding is almost a bijection, which can be useful for a number of applications,
such as encryption, and allows us to construct the first efficient injections with large image
to the Jacobians of odd hyperelliptic curves, as well as indifferentiable hash functions to
these Jacobians with particularly tight regularity bounds.

123

Chapter 8
Huff’s Model for Elliptic Curves

8.1 Introduction
This chapter moves away from the problem of hashing and encoding to elliptic curves to
concentrate on a very different practical concern arising in elliptic curve cryptography:
constructing elliptic curve models with efficient arithmetic operations.

Specifically, we revisit an elliptic curve model introduced by Huff in 1948, originally
to study a diophantine problem, and present explicit formulas for adding or doubling
points on these curves with a number of desirable features, including completeness and
independence on curve parameters. We also suggest extensions and generalizations of this
model that may be of interest for cryptographic applications, and consider the problem of
pairing computations over Huff curves. This work was presented at ANTS-IX [JTV10].

8.1.1 Background

Cryptography and efficient elliptic curve arithmetic. The use of elliptic curves in cryptogra-
phy makes key sizes smaller compared to other groups where the discrete logarithm and
related problems are hard, such as subgroups of Z∗p, but the arithmetic of the underlying
group is more complex (for example, with the widely-used Jacobian coordinates, the
general addition of two points on an elliptic curve typically requires 16 multiplications
in the base field). Therefore, a large amount of research has been devoted to analyzing
how efficient the group operations can be made for many “shapes” of elliptic curves
proposed in the mathematical literature: Weierstrass cubics, Jacobi intersections, Hessian
curves, Jacobi quartics, or the more recent forms of elliptic curves due to Montgomery,
Doche-Icart-Kohel or Edwards (see [BL08] for an encyclopedic overview of these models).

For instance, since 2007, there has been a rapid development of the curves introduced
by Edwards in [Edw07] and their use in cryptology. Bernstein and Lange proposed a
more general version of these curves in [BL07a] and the inverted Edwards coordinates
in [BL07b]. Bernstein, Birkner, Joye, Lange, and Peters studied twisted Edwards curves
in [BBJ+08]. Hisil, Wong, Carter and Dawson proposed extended twisted Edwards coordi-
nates in [HWCD08]. Bernstein, Lange, and Farashahi covered the binary case in [BLF08].

125

8. Huff’s Model for Elliptic Curves

The first formulas for computing pairings over Edwards curves were published by Das and
Sarkar [DS08]. They were subsequently improved by Ionica and Joux [IJ08]. The best
implementation to date is due to Arène, Lange, Naehrig, and Ritzenthaler [ALNR11].
The present chapter provides a similar study for a forgotten model of elliptic curves
hinted to by Huff in 1948.

A diophantine problem. Huff [Huf48] considered rational distance sets S (i.e., subsets
S of the plane R2 such that for all s, t ∈ S, the distance between s and t is a rational
number) of the following form: given distinct a, b ∈ Q, S contains the four points (0,±a)
and (0,±b) on the y-axis, plus points (x, 0) on the x-axis, for some x ∈ Q. Such a point
(x, 0) must then satisfy the equations x2 + a2 = u2 and x2 + b2 = v2 with u, v ∈ Q. The
system of associated homogeneous equations x2 + a2z2 = u2 and x2 + b2z2 = v2 defines a
curve of genus 1 in P3. Huff, and later his student Peeples [Pee54], provided examples
where this curve has positive rank over Q, thus exhibiting examples of arbitrarily large
rational distance sets of cardinality k > 4 such that exactly k − 4 points are on one line.

The above mentioned genus 1 curve is birationally equivalent to the curve

ax(y2 − 1) = by(x2 − 1) (8.1)

for some parameters a and b in Q. It is easily seen that, over any field K of odd
characteristic, Equation (8.1) defines an elliptic curve if a2 6= b2 and a, b 6= 0. Indeed,
if ab 6= 0, the gradient of the curve F (X,Y, Z) = aX(Y 2 − Z2) − bY (X2 − Z2) in the
projective plane P2(K) is(

∂F

∂X
,
∂F

∂Y
,
∂F

∂Z

)
=
(
a(Y 2 − Z2)− 2bXY, 2aXY − b(X2 − Z2), 2(−aX + bY)Z

)
,

which does not vanish at the three points at infinity (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0)
and vanishes at a finite point (x : y : 1) if and only if ax = by, which together with
equation (8.1) implies that x2 = y2 and therefore a2 = b2. It is worth noting that in
characteristic 2, the point (1 : 1 : 1) is always singular and therefore the family of curves
defined by (8.1) does not contain any smooth curve. As will be shown in §8.3, we can
extend our study to even characteristic by considering a generalized model.

8.1.2 Our contributions
Our first contribution is a detailed study of Huff’s form for elliptic curves over finite fields
of odd characteristic and a statement of the addition law in these groups. We show in
particular that all elliptic curves over non-binary finite fields with a subgroup isomorphic
to Z/4Z× Z/2Z can be transformed to Huff’s form. We then analyze their arithmetic
and investigate several generalizations and extensions. In particular, we present explicit
formulas (i.e., as a series of field operations) that

• compute a complete addition (X1 : Y1 : Z1)⊕ (X2 : Y2 : Z2) using 12m;

• compute a unified addition (X1 : Y1 : Z1)⊕ (X2 : Y2 : Z2) using 11m;

126

8.2. Huff’s Model

• compute a mixed addition (X1 : Y1 : Z1)⊕ (X2 : Y2 : 1) using 10m;

• compute a doubling [2](X1 : Y1 : Z1) using 6m + 5s

where m and s denote multiplications and squarings in the base field K.
As a further contribution, since bilinear pairings have found numerous applications

in cryptography, we also present formulas for computing Tate pairings using Huff’s form.
Specifically, we present explicit formulas that

• compute a full Miller addition using 1M + (k + 15)m;

• compute a mixed Miller addition using 1M + (k + 13)m;

• compute a Miller doubling using 1M + 1S + (k + 11)m + 6s

on a Huff curve over K = Fq of embedding degree k. M and S denote multiplications and
squarings in the larger field Fqk while m and s are operations in Fq as before.

Outline. The rest of this chapter is organized as follows. The next section introduces
Huff’s model. We develop efficient unified addition formulas and discuss the applicability
of the model. We explicit the class of elliptic curves covered by Huff’s model. In §8.3,
we present several generalizations and extensions. We offer dedicated addition formulas.
We generalize Huff’s model to cover a larger class of elliptic curves. We also extend the
model to the case of binary fields. §8.4 deals with pairings over Huff curves. We exploit
the relative simplicity of the underlying group law to devise efficient formulas for the
evaluation of the Tate pairing. Finally, we conclude in §8.5.

8.2 Huff’s Model
Let K denote a field of characteristic 6= 2. Consider the set of projective points (X : Y :
Z) ∈ P2(K) satisfying the equation

E/K : aX(Y 2 − Z2) = bY (X2 − Z2) (8.2)

where a, b ∈ K× and a2 6= b2. This form is referred to as Huff’s model of an elliptic curve.
The tangent line at (0 : 0 : 1) is aX = bY , which intersects the curve with multiplicity

3, so that O = (0 : 0 : 1) is an inflection point of E. (E,O) is therefore an elliptic
curve with O as neutral element and whose group law, denoted ⊕, has the following
property: for any line intersecting the cubic curve E at the three points P1, P2 and P3
(counting multiplicities), we have P1 ⊕ P2 ⊕ P3 = O. In particular, the inverse of point
P1 = (X1 : Y1 : Z1) is 	P1 = (X1 : Y1 : −Z1) and the sum of P1 and P2 is P1⊕P2 = 	P3.
We note that a point at infinity is its own inverse. Hence, the three points at infinity (i.e.,
on the line Z = 0 in P2) —namely, (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0), are exactly the
three primitive 2-torsion points of E. The sum of any two of them is equal to the third

127

8. Huff’s Model for Elliptic Curves

Figure 8.1: Example of a Huff curve (over R).

one. More generally, (X1 : Y1 : Z1)⊕ (1 : 0 : 0) is the inverse of the point of intersection
of the “horizontal” line passing through (X1 : Y1 : Z1) with E. When Z1 6= 0, we have

(X1 : Y1 : Z1)⊕ (1 : 0 : 0) = (Z1
2 : −X1Y1 : X1Z1) ,

and analogously,

(X1 : Y1 : Z1)⊕ (0 : 1 : 0) = (−X1Y1 : Z1
2 : Y1Z1) .

From (a : b : 0) = (1 : 0 : 0) ⊕ (0 : 1 : 0), when Z1 6= 0, we get (X1 : Y1 : Z1) + (a : b :
0) = (Z1

2 : −X1Y1 : X1Z1)⊕ (0 : 1 : 0) and therefore

(X1 : Y1 : Z1)⊕ (a : b : 0) =
{

(a : b : 0) if (X1 : Y1 : Z1) = (0 : 0 : 1)
(Y1Z1 : X1Z1 : −X1Y1) otherwise

.

We remark that adding (a : b : 0) to any of the points (±1 : ±1 : 1) transforms it
into its inverse. It follows that these four points are the four solutions to the equation
[2]P = (a : b : 0) and so are primitive 4-torsion points. The eight remarkable points we
identified form a subgroup isomorphic to Z/4Z× Z/2Z. When K = Q, this must be the
full torsion since, according to a theorem by Mazur, the torsion subgroup is of order at
most 12 (and thus exactly 8 here).
Remark 8.1. In [Huf48, p. 445], it is noted that the inverse projective transformations

Υ : P2(K)→ P2(K) :
(X : Y : Z) 7→ (U : V : W) =

(
ab(bX − aY) : ab(b2 − a2)Z : −aX + bY

)
128

8.2. Huff’s Model

and

Υ−1 : P2(K)→ P2(K) :
(U : V : W) 7→ (X : Y : Z) =

(
b(U + a2W) : a(U + b2W) : V

)
induce a correspondence between equation (8.2) and the Weierstrass equation

V 2W = U(U + a2W)(U + b2W) .

Observe that point at infinity (0 : 1 : 0) on the Weierstrass curve is mapped to (0 :
0 : 1) on the Huff curve through Υ−1. Observe also that map Υ−1 is a line-preserving
transformation. This is another way to see that the group law on a Huff curve E follows
the chord-and-tangent rule [Sil86, §2] with O = (0 : 0 : 1) as neutral element.

8.2.1 Affine formulas
We give explicit formulas for the group law. Excluding the 2-torsion, we use the non-
homogeneous form ax(y2 − 1) = by(x2 − 1). Let y = λx + µ denote the secant line
passing through two different points P1 = (x1, y1) and P2 = (x2, y2). This line intersects
the curve at a third point 	P3 = (−x3,−y3). Plugging the line equation into the curve
equation, we get

ax
(
(λx+ µ)2 − 1

)
= b(λx+ µ)(x2 − 1) =⇒ λ(aλ− b)x3 + µ(2aλ− b)x2 + · · · = 0 .

Whenever defined, we so obtainx3 = x1 + x2 + µ(2aλ− b)
λ(aλ− b)

y3 = λx3 − µ

with λ = y1 − y2
x1 − x2

and µ = y1 − λx1. After simplification, we have

x3 = x1 + x2 +
(x1y2 − x2y1)

(
2a(y1 − y2)− b(x1 − x2)

)
(y1 − y2)

(
a(y1 − y2)− b(x1 − x2)

)
=

(x1 − x2)
(
a(y1

2 − y2
2)− b(x1y1 − x2y2)

)
(y1 − y2)

(
a(y1 − y2)− b(x1 − x2)

)
and

y3 = −
(y1 − y2)

(
b(x1

2 − x2
2)− a(x1y1 − x2y2)

)
(x1 − x2)

(
a(y1 − y2)− b(x1 − x2)

) .

The above formulas can be further simplified by reusing the curve equation. A simple
calculation shows that(

a(y1 − y2)− b(x1 − x2)
)
(x1 + x2)y1y2 = a(x2y1 − x1y2)(y1y2 − 1) .

129

8. Huff’s Model for Elliptic Curves

Hence, we can write

x3 = x1 + x2 −
(
2a(y1 − y2)− b(x1 − x2)

)
(x1 + x2)y1y2

(y1 − y2)a(y1y2 − 1)

= x1 + x2 −
x2y1 − x1y2
y1 − y2

− (x1 + x2)y1y2
y1y2 − 1

= x1y1 − x2y2
y1 − y2

− (x1 + x2)y1y2
y1y2 − 1 .

Furthermore, as easily shown
b(x1y1 − x2y2)(x1x2 + 1) = (y1 − y2)

(
ax1x2(y1 + y2) + b(x1 + x2)

)
,

it thus follows that

x3 = ax1x2(y1 + y2) + b(x1 + x2)
b(x1x2 + 1) − (x1 + x2)y1y2

y1y2 − 1

= (x1 + x2)(1 + y1y2)
(1 + x1x2)(1− y1y2) , (8.3)

since ax1x2(y1 + y2)(1− y1y2) = by1y2(x1 + x2)(1− x1x2).
Likewise, by symmetry, we have

y3 = (y1 + y2)(1 + x1x2)
(1− x1x2)(1 + y1y2) . (8.4)

Equations (8.3) and (8.4) are defined whenever x1x2 6= ±1 and y1y2 6= ±1. Advanta-
geously, curve parameters are not involved. Moreover, this addition law is unified: it can
be used to double a point (i.e., when P2 = P1).

8.2.2 Projective formulas
Previous affine formulas involve inversions in K. To avoid these operations and get faster
arithmetic, projective coordinates may be preferred.

We let m and s represent the cost of a multiplication and of a squaring inK, respectively.
The projective form of (8.3) and (8.4) is

X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)2(Z1Z2 −X1X2)
Y3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)2(Z1Z2 − Y1Y2)
Z3 = (Z1

2Z2
2 −X1

2X2
2)(Z1

2Z2
2 − Y1

2Y2
2)

. (8.5)

In more detail, this can be evaluated as
m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2)−m1 −m3, m5 = (Y1 + Z1)(Y2 + Z2)−m2 −m3,

m6 = (m2 +m3)(m3 −m1), m7 = (m1 +m3)(m3 −m2),
m8 = m4(m2 +m3), m9 = m5(m1 +m3),
X3 = m8m6, Y3 = m9m7, Z3 = m6m7,

that is, with 12m.

130

8.2. Huff’s Model

8.2.3 Applicability

If (x1, y1) 6= (0, 0) then (x1, y1) ⊕ (a : b : 0) = −(1
x1
, 1
y1

). Observe that Equation (8.5)
remains valid for doubling point (a : b : 0) or for adding point (a : b : 0) to another finite
point (i.e., which is not at infinity) different from O; we get (X1 : Y1 : Z1)⊕ (a : b : 0) =
(−Y1Z1 : −X1Z1 : X1Y1) as expected. The addition formula is however not valid for
adding (0 : 1 : 0) or (1 : 0 : 0). More generally, we have:

Theorem 8.1. Let K be a field of characteristic 6= 2. Let P1 = (X1 : Y1 : Z1) and
P2 = (X2 : Y2 : Z2) be two points on a Huff curve over K. Then the addition formula
given by (8.5) is valid provided that X1X2 6= ±Z1Z2 and Y1Y2 6= ±Z1Z2.

Proof. If P1 and P2 are finite, we can write P1 = (x1, y1) and P2 = (x2, y2). The above
affine formula for (x3, y3) as given by (8.3) and (8.4) is defined whenever x1x2 6= ±1 and
y1y2 6= ±1. This translates into X1X2 6= ±Z1Z2 and Y1Y2 6= ±Z1Z2 for their projective
coordinates.

It remains to analyze points at infinity. The points with their Z-coordinate equal to 0
are (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0). If P1 or P2 ∈ {(1 : 0 : 0), (0 : 1 : 0)}, the condition
X1X2 6= ±Z1Z2 and Y1Y2 6= ±Z1Z2 is not satisfied. Suppose now P2 = (a : b : 0). The
condition becomes X1 6= 0 and Y1 6= 0, which corresponds to P1 /∈ {O, (1 : 0 : 0), (0 : 1 :
0)}. As aforementioned, the addition law is then valid for adding P1 to (a : b : 0).

The previous theorem says that the addition on a Huff curve is almost complete. How-
ever, the exceptional inputs are easily prevented in practice. Cryptographic applications
typically involve (large) prime-order subgroups. More specifically, we state:

Corollary 8.1. Let E be a Huff curve over a field K of odd characteristic. Let also
P ∈ E(K) be a point of odd order. Then the addition law in the subgroup generated by P
is complete.

Proof. All points in 〈P〉 are of odd order and thus are finite (remember that points
at infinity are of order 2). It remains to show that for any points P1 = (x1, y1),P2 =
(x2, y2) ∈ 〈P〉, we have x1x2 6= ±1 and y1y2 6= ±1. Note that x1, y1, x2, y2 6= ±1 since
this corresponds to points of order 4 (and thus not in 〈P〉). Suppose that x1x2 = ±1.
Then ax1(y1

2−1) = by1(x1
2−1) =⇒ a 1

x1
(y1

2−1) = by1(1− 1
x12) =⇒ ±ax2(y1

2−1) =
−by1(x2

2 − 1). Hence, since ax2(y2
2 − 1) = by2(x2

2 − 1), it follows that ∓y2(y1
2 − 1) =

y1(y2
2 − 1) =⇒ (y1 ± y2)(1 ∓ y1y2) = 0 =⇒ y2 = ∓y1 or y1y2 = ±1. As a result,

when x1x2 = ±1, we have (x2, y2) ∈
{
(1
x1
,−y1), (1

x1
, 1
y1

), (− 1
x1
, y1), (− 1

x1
,− 1

y1
)
}
. In all

cases, one of (x1, y1)⊕ (x2, y2) or (x1, y1)	 (x2, y2) is a 2-torsion point, a contradiction.
Likewise, it can be verified that the case y1y2 = ±1 leads to a contradiction, which
concludes the proof.

The completeness of the addition law is very useful as it yields a natural protection
against certain side-channel attacks (e.g., see [BSS05]). Another useful feature is that
the addition law is independent of the curve parameters.

131

8. Huff’s Model for Elliptic Curves

8.2.4 Universality of the model
The next theorem states that every elliptic curve over a field of characteristic 6= 2
containing a copy of Z/4Z × Z/2Z can be put in Huff’s form. Generalizations and
extensions are discussed in §8.3.

Theorem 8.2. Any elliptic curve (E,O) over a perfect field K of characteristic 6= 2 such
that E(K) contains a subgroup G isomorphic to Z/4Z× Z/2Z is birationally equivalent
over K to a Huff curve.

Proof. The Riemann-Roch theorem implies that if D = a1P1 + · · ·+ arPr is a divisor of
degree 0 on E then the dimension of the vector space

L (D) = {f ∈ K(E)× | div(f) > −D} ∪ {0}

is equal to 1 when a1P1 ⊕ · · · ⊕ arPr = O, and to 0 otherwise.
Let H++,H+−,H−+ and H−− denote the four points of G of order exactly 4 (with

the convention H++ ⊕H−− = O). Doubling these points produces a unique primitive
2-torsion point that we denote R. We further let P and Q denote the other two 2-torsion
points; say, P = 	H++ ⊕ H+− and Q = H++ ⊕ H+−. We have P ⊕ R 	 Q 	 O = O;
so there exists a nonzero rational function x with divisor exactly Q + O − P − R. In
particular, x is well-defined and nonzero at H++ and thus without loss of generality we
may assume that x(H++) = 1. Similarly, there exists a rational function y with divisor
P + O−Q− R such that y(H++) = 1.

The rational function x− 1 has the same poles as x and vanishes at H++. Its divisor
div(x − 1) is thus given by H++ + X − P − R for some point X. Since this divisor is
principal, we have H++ ⊕ X	 P	 R = O. Hence, it follows that X = P⊕ R	H++ =
	H++ ⊕H+− ⊕ R	H++ = H+−. Consequently, we have x(H+−) = 1. Likewise, it is
verified that y(H−+) = 1.

Now, consider the map ι taking a rational function f to ιf : M 7→ f(M). This is an
endomorphism of the vector space L (P+R−Q−O). Indeed, the poles of ιf are 	P = P
and 	R = R and its zeros are 	Q = Q and 	O = O. Moreover, since ι2 = id and since
L (P + R−Q−O) is a one-dimensional vector space, ι is the multiplication map by 1
or −1. The equality ιx = x would imply x(H−−) = x(H++) = 1, which contradicts the
previous calculation of div(x − 1). As a result, we must have ιx = −x. In particular,
noting that H−+ = 	H+−, we obtain

x(H−+) = ιx(H+−) = −x(H+−) = −1 ,

and similarly for H−−. Since x+ 1 has the same poles as x, its divisor is then given by
div(x+1) = H−++H−−−P−R. Analogously, we obtain div(y+1) = H+−+H−−−Q−R.

Finally, consider the rational functions u = x(y2 − 1) and v = y(x2 − 1). We have:

div(u) = div(x) + div(y − 1) + div(y + 1)
= (Q + O− P− R) + (H++ + H−+ −Q− R) + (H+− + H−− −Q− R)
= H++ + H+− + H−+ + H−− + O− P−Q− 3R

and

132

8.3. Generalizations and Extensions

div(v) = div(y) + div(x− 1) + div(x+ 1)
= (P + O−Q− R) + (H++ + H+− − P− R) + (H−+ + H−− − P− R)
= H++ + H+− + H−+ + H−− + O− P−Q− 3R .

But the vector space L (P + Q + 3R−O−H++ −H+− −H−+ −H−−) is of dimension
1, so there exists a linear relation between u and v. In other words, there exist a, b ∈ K×
such that au = bv; i.e., such that ax(y2 − 1) = by(x2 − 1).

The rational map E → P2(K) given by M 7→ (x(M) : y(M) : 1) extends to a morphism
defined on all of E, and its image is contained in Ea,b in view of the previous relation
(and Ea,b itself is a smooth irreducible curve as seen in §8.1.1). We therefore have a
non-constant —and hence surjective— morphism of curves E → Ea,b. Moreover, its
degree is at most 1: indeed, if a point (x0 : y0 : 1) ∈ Ea,b(K) has two distinct preimages
M 6= M′ ∈ E(K), the functions x − x0 and y − y0 vanish at M and M′. Since they
have the same poles as x and y, their divisors are respectively M + M′ − P − R and
M + M′−Q−R, which yields P⊕R = M⊕M′ = Q⊕R, a contradiction. As a surjective
morphism of degree 1, the map E → Ea,b is thus an isomorphism.

8.3 Generalizations and Extensions
This section presents dedicated addition formulas. It also presents a generalization of
the model as originally introduced by Huff so that it covers more curves and extends to
binary fields.

8.3.1 Faster computations
Dedicated doubling. The doubling formula can be sped up by evaluating squarings in
K with a specialized implementation. The cost of a point doubling then becomes 7m + 5s.
When s > 3

4m, an even faster way for doubling a point is given by

m1 = X1Y1, m2 = X1Z1, m3 = Y1Z1, s1 = Z1
2,

m4 = (m2 −m3)(m2 +m3), m5 = (m1 − s1)(m1 + s1),
m6 = (m1 − s1)(m2 −m3), m7 = (m1 + s1)(m2 +m3),

X([2]P1) = (m6 −m7)(m4 +m5), Y ([2]P1) = (m6 +m7)(m4 −m5),
Z([2]P1) = (m4 +m5)(m4 −m5),

that is, with 10m + 1s.

Moving the origin. Choosing O′ = (0 : 1 : 0) as the neutral element results in
translating the group law. If we let ⊕′ denote the corresponding point addition, we have
P1 ⊕′ P2 = (P1 	O′)⊕ (P2 	O′)⊕O′ = P1 ⊕ P2 ⊕O′. Hence, we get

X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)(Y1Z2 + Y2Z1)
Y3 = (X1X2 − Z1Z2)(Z1

2Z2
2 − Y1

2Y2
2)

Z3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)(Y1Y2 − Z1Z2)
.

133

8. Huff’s Model for Elliptic Curves

This can be evaluated with 11m as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2)−m1 −m3, m5 = (Y1 + Z1)(Y2 + Z2)−m2 −m3,

X3 = m4(m2 +m3)m5, Y3 = (m1 −m3)(m3 −m2)(m3 +m2),
Z3 = m5(m1 +m3)(m2 −m3) .

(8.6)

This addition formula is unified: it can be used for doubling as well.
For a mixed point addition (i.e., when Z2 = 1), we have m3 = Z1 and the number

of required multiplications drops to 10m. When used for dedicated doubling, the above
addition formula requires 6m + 5s, which can equivalently be obtained as

s1 = X1
2, s2 = Y1

2, s3 = Z1
2,

s4 = (X1 + Y1)2 − s1 − s2, s5 = (Y1 + Z1)2 − s2 − s3,

X([2]P1) = 2s3s4(s2 + s3), Y ([2]P1) = (s1 − s3)(s3 − s2)(s3 + s2),
Z([2]P1) = s5(s1 + s3)(s2 − s3) .

(8.7)

Note that the expression for the inverse of point P1 is unchanged: 	′P1 = 	(P1 	
O′)⊕O′ = 	P1 = (X1 : Y1 : −Z1).

8.3.2 More formulas

Alternative addition formulas can be derived using the curve equation. For example,
whenever defined, we can write (x3, y3) = (x1, y1)⊕ (x2, y2) with

x3 = (x1 − x2)(y1 + y2)
(y1 − y2)(1− x1x2) and y3 = (y1 − y2)(x1 + x2)

(x1 − x2)(1− y1y2) .

In projective coordinates, this gives
X3 = (X1Z2 −X2Z1)2(Y1Z2 + Y2Z1)(Z1Z2 − Y1Y2)
Y3 = (Y1Z2 − Y2Z1)2(X1Z2 +X2Z1)(Z1Z2 −X1X2)
Z3 = (X1Z2 −X2Z1)(Y1Z2 − Y2Z1)(Z1Z2 −X1X2)(Z1Z2 − Y1Y2)

,

which can be evaluated with 13m as

m1 = X1Z2, m2 = X2Z1, m3 = Y1Z2, m4 = Y2Z1,

m5 = (Z1 −X1)(Z2 +X2) +m1 −m2, m6 = (Z1 − Y1)(Z2 + Y2) +m3 −m4,

m7 = (m1 −m2)m6, m8 = (m3 −m4)m5,

X3 = (m1 −m2)(m3 +m4)m7, Y3 = (m1 +m2)(m3 −m4)m8, Z3 = m7m8 .

Although not as efficient as the usual addition, this alternative formula is useful in some
pairing computations (see §8.4.2).

134

8.3. Generalizations and Extensions

8.3.3 Twisted curves
As shown in Theorem 8.1, the group of points of a Huff elliptic curve contains a copy of
Z/4Z×Z/2Z. This implies that the curve order is a multiple of 8. Several cryptographic
standards, however, require elliptic curves with group order of the form hn where
h ∈ {1, 2, 3, 4} and n is a prime.

We can generalize Huff’s model to accommodate the case h = 4. Let P ∈ K[t] denote
a monic polynomial of degree 2, with non-zero discriminant, and such that P (0) 6= 0. We
can then introduce the cubic curve

axP (y) = byP (x)

where a, b ∈ K×. The set of points {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (a : b : 0)} ∼=
Z/2Z × Z/2Z belongs to the curve. Moreover, when P factors in K —i.e., when
P (t) = (t− ω1)(t− ω2) with ω1, ω2 ∈ K×, the four points (±ω1 : ±ω2 : 1) are also on the
curve.

When CharK 6= 2, we consider P (t) = t2 − d for some d ∈ K×. So we deal with the
set of projective points (X : Y : Z) ∈ P2(K) satisfying the non-singular cubic equation

Êd : aX(Y 2 − dZ2) = bY (X2 − dZ2) (8.8)

where a, b, d ∈ K× and a2 6= b2. This equation corresponds to Weierstrass equation
V 2W = U(U + a2

d W)(U + b2

dW) under the inverse transformations (X : Y : Z) =
(
b(dU +

a2W) : a(dU+b2W) : dV
)
and (U : V : W) =

(
ab(bX−aY) : ab(b2−a2)Z : d(−aX+bY)

)
.

The transformation (X : Y : Z)← (X : Y : Z
√
d) induces an isomorphism from E = Ê1

to Êd over K(
√
d). Curves Êd are therefore quadratic twists of Huff curves.

In affine coordinates, we consider the curve equation ax(y2−d) = by(x2−d). The sum
of two finite points P1 = (x1, y1) and P2 = (x2, y2) such that x1x2 6= ±d and y1y2 6= ±d
is given by (x3, y3) where

x3 = d(x1 + x2)(d+ y1y2)
(d+ x1x2)(d− y1y2) and y3 = d(y1 + y2)(d+ x1x2)

(d− x1x2)(d+ y1y2) . (8.9)

Extending the computations of § 8.2.2, it is readily verified that the sum of two points can
be evaluated with 12m (plus a couple of multiplications by constant d) using projective
coordinates. The faster computations of the previous section also generalize to twisted
curves.

8.3.4 Binary fields
Huff’s form can be extended to a binary field as

ax(y2 + y + 1) = by(x2 + x+ 1) .

This curve is birationally equivalent to Weierstrass curve

v(v + (a+ b)u) = u(u+ a2)(u+ b2)

135

8. Huff’s Model for Elliptic Curves

under the inverse maps

(x, y) =
(
b(u+ a2)

v
,
a(u+ b2)

v + (a+ b)u

)
and (u, v) =

(
ab

xy
,
ab(axy + b)

x2y

)
.

The neutral element is O = (0, 0).

8.4 Pairings

8.4.1 Preliminaries
Let (E,O) be an elliptic curve over K = Fq, with q odd. Suppose that #E(Fq) = hn
where n is a prime such that gcd(n, q) = 1. Let further k denote the embedding degree
with respect to n, namely the smallest extension Fqk of Fq containing all n-th roots of
unity. In other words, k is the smallest positive integer k such that n | qk − 1. For better
efficiency, we further assume that k > 1 is even.

For any point P ∈ E(Fq)[n], we let fP denote a rational function on E defined over
Fq such that div(fP) = nP− nO; it exists and is unique up to a multiplicative constant,
according to the Riemann-Roch theorem. The group of n-th roots of unity in Fqk is
denoted by µn. The (reduced) Tate pairing is then defined as

Tn : E(Fq)[n]× E(Fqk)/[n]E(Fqk)→ µn : (P,Q) 7→ fP(Q)(qk−1)/n .

This definition does not depend on the choice of fP with the appropriate divisor, nor on
the class of Q mod [n]E(Fqk).

In practice, Tn can be computed using a technique due to Miller [Mil04], in terms
of rational functions gR,P depending on P and on a variable point R. Function gR,P is
the so-called line function with divisor R + P−O− (R⊕ P), which arises in addition
formulas when E is represented as a plane cubic. The core idea is to derive function fP
iteratively. Letting fi,P be the function with divisor div(fi,P) = iP− ([i]P)− (i− 1)O, it
is easily verified that

fi+j,P = fi,P · fj,P · g[i]P,[j]P .

Observe that f1,P = 1 and fn,P = fP. Hence, if n = n`−1n`−1 · · ·n02 is the binary
representation of n, the Tate pairing can be computed as follows.

Algorithm 8.1 Miller’s algorithm.
1: f ← 1; R← P
2: for i = `− 2 down to 0 do
3: f ← f2 · gR,R(Q); R← [2]R
4: if (ni = 1) then
5: f ← f · gR,P(Q); R← R⊕ P
6: end if
7: end for
8: return f (qk−1)/n

136

8.4. Pairings

Contrary to Edwards curves or Jacobi quartics, Huff curves are represented as plane
cubics. This makes Miller’s algorithm, along with a number of improvements proposed for
Weierstrass curves (e.g., as presented in [BLS04a]), directly applicable to the computation
of pairings over Huff curves.

8.4.2 Pairing formulas for Huff curves
Throughout the for-loop of Algorithm 8.1, the line function is always evaluated at the
same point Q ∈ E(Fqk) \ E(Fq). It is therefore customary to represent this point in
affine coordinates. In our case, it is most convenient to choose the coordinates of Q as
Q = (y, z) = (1 : y : z). Indeed, since the embedding degree k is even, the field Fqk can
be represented as Fqk/2(α), where α is any quadratic non-residue in Fqk/2 . As a result,
Q can be chosen of the form Q = (yQ, zQα) with yQ, zQ ∈ Fqk/2 [BLS03]. To do so, it
suffices to pick a point on a quadratic twist of E over Fqk/2 and take its image under the
isomorphism over Fqk .

Now, for any two points R, P in E(Fq), let `R,P denote the rational function vanishing
on the line through R and P. In general, we have

`R,P(Q) = (zXP − ZP)− λ(yXP − YP)
YP

where λ is the “(y, z)-slope” of the line through R and P. Then, the divisor of `R,P is

div(`R,P) = R + P + T− (1 : 0 : 0)− (0 : 1 : 0)− (a : b : 0)

where T is the third point of intersection (counting multiplicities) of the line through R
and P with the elliptic curve. In particular, if the neutral element of the group law ⊕ is
denoted by U, the line function gR,P can be written as

gR,P = `R,P
`R⊕P,U

.

We concentrate on the case when U = O = (0 : 0 : 1). Then for any Q = (yQ, zQα),
we have

`R⊕P,O(Q) = yQ −
YR⊕P
XR⊕P

∈ Fqk/2 .

Since this quantity lies in a proper subfield of Fqk , it goes to 1 after the final exponentiation
in Miller’s algorithm, which means that it can be discarded altogether. Similarly, divisions
by XP can be omitted, and denominators in the expression of λ can be canceled. In other
words, if λ = A/B, we can compute the line function as

gR,P(Q) = (zXP − ZP) ·B − (yXP − YP) ·A

and get the required result.
We can now detail precise formulas for the addition and doubling steps in the so-called

Miller loop (i.e., the main for-loop in Algorithm 8.1). We let M and S represent the cost
of a multiplication and of a squaring in Fqk while m and s are operations in Fq as before.

137

8. Huff’s Model for Elliptic Curves

Addition step. In the case of addition, the (y, z)-slope of the line through R = (XR :
YR : ZR) and P = (XP : YP : ZP) is

λ = ZRXP − ZPXR
YRXP − YPXR

.

Therefore, the line function to be evaluated is of the form

gR,P(Q) = (zQα ·XP − ZP)(YRXP − YPXR)− (yQ ·XP − YP)(ZRXP − ZPXR) .

Since P and Q are constant throughout the loop, the values depending only on P and Q
—in this case y′Q = yQ ·XP − YP and z′Q = zQα ·XP, can be precomputed.

Then, each Miller addition step requires computing R⊕P (one addition on the curve
over Fq), evaluating gR,P(Q), and computing f · gR,P(Q) (one multiplication in the field
Fqk).

We consider two types of Miller addition steps: full addition, for which no assumption
is made on the representation of P, and mixed addition, for which we further assume
that P is given in affine coordinates (i.e., XP = 1). Both steps start with computing
R⊕ P, including all intermediate results.

Full addition. Computing R ⊕ P requires 13m using the dedicated addition formula
from §8.3.1, including all intermediate results m1, . . . ,m8. Compute further m9 =
(XR + YR)(XP − YP). We then have

gR,P(Q) = (z′Q − ZP)(m9 +m5 −m6)− y′Q(m1 −m2)

where the first term requires (k2 + 1)m and the second term k
2 m. With the final multipli-

cation over Fqk , the total cost of full addition is thus of 1M + (k + 15)m.

Mixed addition. Now that XP = 1, computing R ⊕ P using the formula from §8.2.2,
including all the intermediate resultsm1, . . . ,m9, only requires 11m, since the computation
of m1 is free. We then have

gR,P(Q) = (z′Q − ZP)(YR − YPXR)− y′Q(2ZR −m4)

where both terms require the same number of multiplications as before, plus one for
YPXR. The total cost of mixed addition is thus of 1M + (k + 13)m.

Doubling step. In the case of doubling, the (y, z)-slope of the tangent line at R = (XR :
YR : ZR) is

λ = a(ZR)2 − 2bYRZR − a(XR)2

b(YR)2 − 2aYRZR − b(XR)2 = A

B
.

Thus, the line function is of the form

gR,R(Q) = zQα ·XRB − ZRB − yQ ·XRA+ YRA .

138

8.5. Conclusion and Perspectives

Miller’s doubling involves computing the point [2]R, which we do using the formulas
from §8.2.2 in 7m + 5s. Then the quantities A and B are obtained by computing the
additional product m10 = 2YRZR = (YR + ZR)2 − m2 − m3 using a single squaring.
Computing gR,R(Q) requires multiplying those two values by XR and YR (resp. XR and
ZR), hence an additional 4m. And finally, multiplications by yQ and zQα both require
k
2 m. Taking into account the multiplication and the squaring in Fqk needed to complete
the doubling step, the total cost of Miller doubling is thus of 1M + 1S + (k + 11)m + 6s.

8.5 Conclusion and Perspectives
This work introduced and studied Huff’s model, a representation of elliptic curves to
be considered alongside previous models such as Montgomery, Doche-Icart-Kohel and
Edwards. This model provides efficient arithmetic, competitive with some of the fastest
known implementations (although not quite as fast as “inverted Edwards” for now).
Moreover, it has a number of additional desirable properties, including unified/complete
addition laws and formulas that do not depend on curve parameters (both properties are
useful in cryptographic applications to thwart certain implementation attacks). It is also
suitable to other computations on elliptic curves, such as the evaluation of pairings.

Binary Huff curves, as introduced in §8.3.4, have been studied further by Devigne and
Joye [DJ11]. They have proposed very efficient addition and doubling formulas, making
Huff’s model currently the most efficient representation for elliptic curve arithmetic in
characteristic 2.

Additionally, further generalizations of Huff’s model have been suggested in odd
characteristic by Wu and Feng [WF10].

139

Part Two

Cryptanalysis of RSA-based
Schemes

Overview
A year after the discovery of public-key cryptography by Diffie and Hellman in 1976 [Hel76],
Rivest, Shamir and Adleman proposed the first example of a public-key cryptosystem
[RSA78], which became known as RSA. Nowadays, the most widely used public-key
cryptographic schemes, both for encryption and signature, are based on RSA and deployed
in many everyday applications, from payment cards to secure web servers and virtual
private networks.

Since its inception, the RSA function itself and the cryptographic protocols based on
it have received a lot of attention from many researchers, and a number of attacks and
vulnerabilities have been discovered, though, in the words of Boneh [Bon99], “none of
them [were] devastating” for RSA-based cryptography at large. Rather, this large body
of cryptanalytic work has shaped our understanding of the “proper way” to use the RSA
function in cryptographic protocols, and underscored the dangers of incautious uses. It
has also uncovered exploitable flaws in widespread systems and caused widely deployed
standards to be withdrawn, but RSA as a whole remains robust.

Many different types of attacks have been considered. Here are a few examples.

Factoring algorithms: the most direct way to break RSA cryptosystems is certainly to
factor the public modulus. As a result, there has arguably been more progress
on the millennia-old problem of factoring integers in the last three decades than
ever before. The recent factorization of the RSA-768 challenge modulus [KAF+10]
using the General Number Field Sieve (GNFS) [LJMP90, LL93], as developed by
Adleman, Buhler, Lenstra, Pollard, Pomerance and others, puts in perspective the
prediction by Martin Gardner in 1977 that his proposed 129-digit (426-bit) RSA
modulus would be safe for 40 quadrillion years!

The RSA problem: while it not known whether a random instance of the RSA problem

141

8. Huff’s Model for Elliptic Curves

is equivalent to factoring, some instances are known to be weaker. For example,
Wiener [Wie90] observed that given an RSA public key (N, e), it is possible to factor
N efficiently, and hence solve RSA, when the private exponent d ≡ 1/e (mod N) is
small (d < (1/3) ·N1/4, a bound which was later improved to d < N0.292 by Boneh
and Durfee [BD00] using techniques introduced by Coppersmith [Cop97]). On a
different note, the best known attack on the “one more RSA” problem, by Joux,
Naccache and Thomé [JNT07], has a better heuristic asymptotic complexity than
GNFS.

Special attack models: for example, even if the RSA problem is hard, RSA encryption
may not remain one-way when the same message is encrypted for several differ-
ent recipients. Clearly, if the same message is encrypted with the same small
public exponent e to more than e recipients with textbook RSA encryption, an
eavesdropping adversary can recover the message using a simple application of
the Chinese Remainder Theorem. A similar but more sophisticated attack in this
so-call broadcast model was proposed by Håstad [Hås88], who showed that if what
is encrypted is not the message itself but a polynomial function of it different for
all recipients, it is still possible to recover it.

Stronger security notions: the one-wayness of textbook RSA encryption under chosen-
plaintext attack and the universal unforgeability of textbook RSA signatures under
key-only attack are both equivalent to the RSA problem, but these are relatively
weak security notions that do not capture such simple flaws as the blinding attacks
deriving from the homomorphic properties of the RSA function. Many padding
methods were proposed early on to thwart those simple attacks, but they usually did
not come with clearly stated security guarantees, and many publications exhibited
vulnerabilities in those ad-hoc schemes, such as [CCG+08, JNT07, CJNP00, Gri00].
Additionally, attacks like that of Bleichenbacher against SSL [Ble98] made it clear
that strong security notions like CCA-security were not just purely theoretical
constructs, as some may have believed at the time, but actually mattered in
applications too.

Physical attacks: as embedded cryptographic devices such as smart cards became more
common, it was observed that a real-world adversary does not interact with
a mathematical algorithm in a black-box way, but can gain information from
observing the physical process of the computation and from tampering with it.
Key-recovery attacks on physical implementations of RSA, in particular, have been
an active research area since the seminal timing and DPA attacks by Kocher et
al. [Koc96, KJJ99] and the fault attacks of Boneh, DeMillo and Lipton [BDL01].

This part of the thesis is devoted to various contributions to the vast research area that
is RSA cryptanalysis. Those contributions include several different “types” of attacks,
and use different mathematical techniques. Chapter 9 describes the implementation of
an existential forgery attack on the ad-hoc RSA signature paddings ISO/IEC 9796-2
[ISO9796–2:2002] and EMV [EMV], using sieving techniques reminiscent of algorithms

142

8.5. Conclusion and Perspectives

such as the quadratic sieve and index calculus. Chapters 10–11 present fault attacks
on implementations of RSA signatures that use the Chinese Remainder Theorem; our
main technical tool in the orthogonal lattice technique of Nguyen and Stern [NS97].
Chapter 12 describes new attacks on the ad-hoc RSA encryption padding PKCS#1 v1.5
[PKCS#1 v1.5], some of which are similar to Bleichenbacher’s attack [Ble98], while others
consider a broadcast model à la Håstad [Hås88] and are based on generalizations of the
techniques of Coppersmith [Cop97]. Finally, Chapter 13 shows that certain RSA moduli
of a special form introduced by Groth in [Gro05] can be factored faster than he suggested,
making his proposed choice of parameters potentially insecure.

143

Contents

9 Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures
9.1 Introduction . 149

9.1.1 Ad-hoc vs. provable RSA paddings 149
9.1.2 The ISO/IEC 9796-2 encoding . 150
9.1.3 Our contribution . 151

9.2 The ISO/IEC 9796-2 Standard . 151
9.3 Previous Attacks . 152

9.3.1 The Desmedt-Odlyzko forgery . 152
9.3.2 The Coron-Naccache-Stern forgery 153

9.4 Building Blocks of the New Attack . 155
9.4.1 Bernstein’s smoothness detection algorithm 155
9.4.2 The large prime variant . 156
9.4.3 Constructing smaller a · µ(m)− b ·N candidates 156

9.5 Attacking ISO/IEC 9796-2 . 157
9.5.1 The Amazon cloud . 157
9.5.2 The experiment: Outline, details and results 158

9.6 Cost Estimates . 160
9.7 Application to EMV Signatures . 162

9.7.1 EMV Static Data Authentication, Issuer Public Key Data (SDA-
IPKD) . 162

9.7.2 Attacking SDA-IPKD . 162
9.7.3 Summary . 164

9.8 Conclusion . 164
9.A Optimizing Bernstein’s Batch Size . 165
9.B Large Prime Variant: Complexity Analysis 166

TABLE OF CONTENTS

9.C LLL Attack on EMV SDA-IPKD Encoding 167

9.C.1 The LLL attack . 167

9.C.2 Practical value for EMV SDA-IPKD 168

9.D EMV Signature Encoding Formats . 169

9.E Fewer Queries . 170

9.F Expected Number of Queries . 171

10 Fault Attacks on EMV Signatures

10.1 Introduction . 175

10.1.1 Fault attacks on RSA-CRT . 176

10.1.2 The attack of Coron et al. 176

10.1.3 Our contribution . 177

10.1.4 Outline . 177

10.2 Preliminaries on Lattices . 178

10.2.1 Notation and background . 178

10.2.2 Lattices and lattice bases . 178

10.2.3 Lattice volume . 179

10.2.4 Lattice reduction . 180

10.3 Modeling Faults on ISO/IEC 9796-2 Signatures 182

10.3.1 The ISO/IEC 9796-2 signature scheme 182

10.3.2 Attack model . 183

10.4 The Small Root Attack . 183

10.4.1 Single-fault attack . 184

10.4.2 Extension to several faults . 184

10.5 Our New Multiple-Fault Attack . 185

10.6 Simulation Results . 187

10.7 Application to EMV Signatures . 188

10.7.1 The EMV specification . 188

10.7.2 Fault attack . 189

10.8 Proposed Countermeasures . 190

146

TABLE OF CONTENTS

11 Modulus Fault Attacks Against RSA-CRT Signatures
11.1 Introduction . 191

11.1.1 Fault attacks on RSA-CRT signatures 191
11.1.2 Our contribution . 192
11.1.3 Related work . 193
11.1.4 Outline . 193

11.2 The New Attack . 193
11.2.1 Overview . 193
11.2.2 Applying orthogonal lattice techniques 194
11.2.3 Attack summary . 195
11.2.4 Simulation results . 196

11.3 Extending the Attack to Unknown Faulty Moduli 196
11.3.1 Single byte faults . 197
11.3.2 Faults on many least significant bits 198

11.4 Practical Experiments . 200
11.4.1 First scenario: Known modulus . 200
11.4.2 Second scenario: Unknown single byte faults 201
11.4.3 Third scenario: Least significant bytes faults 201

11.5 Countermeasures and Further Research 202
11.A Laser Fault Injection . 202

11.A.1 Photoelectric effects of laser on silicon 203
11.A.2 Different parameters in a fault attack by laser 203
11.A.3 Practical CRT fault injection . 204

12 On the Security of PKCS#1 v1.5 Encryption
12.1 Introduction . 209

12.1.1 The PKCS#1 v1.5 standard . 209
12.1.2 Our results . 210

12.2 Preliminaries . 210
12.2.1 Public-key encryption . 210
12.2.2 Security definitions . 211
12.2.3 RSA security . 212

12.3 PKCS#1 v1.5 Encryption . 213

147

TABLE OF CONTENTS

12.3.1 The PKCS#1 v1.5 encoding function 213
12.3.2 Previous attacks on PKCS#1 v1.5 213

12.4 On the OW-CPA-Security of PKCS#1 v1.5 214
12.5 PKCS#1 v1.5 Malleability and Indistinguishability 216

12.5.1 On the NM-CPA-security of PKCS#1 v1.5 216
12.5.2 On the IND-VCA-security of PKCS#1 v1.5 217

12.6 Broadcast Attack on PKCS#1 v1.5 . 219
12.6.1 The multivariate polynomial of broadcast PKCS#1 v1.5 220
12.6.2 Finding small modular roots of a multivariate polynomial 221
12.6.3 The Jochemsz-May lattice in broadcast PKCS#1 v1.5 223
12.6.4 Experimental results on the broadcast attack 225

12.7 Conclusion . 226

13 Cryptanalysis of the RSA Subgroup Assumption
13.1 Introduction . 229

13.1.1 Groth’s small RSA subgroups . 229
13.1.2 Our results . 230

13.2 The New Attack . 230
13.3 Attack Complexity . 231
13.4 Algorithmic Details . 232
13.5 Implementation . 233
13.6 Conclusion . 235
13.A Bostan’s Algorithms . 236
13.B Source Code of the Attack . 237

148

Chapter 9
Practical Cryptanalysis of ISO/IEC

9796-2 and EMV Signatures

9.1 Introduction

In 1999, Coron, Naccache and Stern [CNS99] discovered an existential signature forgery
attack against two popular RSA signature standards, ISO/IEC 9796-1 [ISO9796–1] and
ISO/IEC 9796-2 [ISO9796–2]. Following that attack, ISO/IEC 9796-1 was withdrawn
and ISO/IEC 9796-2 was amended by imposing higher parameter size requirements that
make Coron et al.’s attack infeasible in practice.

In this chapter, we describe a number of algorithmic improvements for the attack by
Coron, Naccache and Stern, which provide a speed-up of several orders of magnitude
and make it possible to attack the amended version of ISO/IEC 9796-2 [ISO9796–2:2002].
With these improvements, we were able to actually implement the attack on the Amazon
EC2 cloud, and obtain a forgery in two days for a total cost of about US$800.

In response to this new attack, the ISO/IEC 9796-2 standard was amended again in
late 2010 [ISO9796–2:2010].

Our algorithmic improvements also apply to attacking RSA signatures following the
EMV banking industry specifications, which are based on ISO/IEC 9796-2 but in a more
constrained format. We estimate that an EMV forgery would cost around US$45,000 on
Amazon EC2.

This work was presented at CRYPTO 2009 [CNTW09].

9.1.1 Ad-hoc vs. provable RSA paddings

RSA [RSA78] is the first, and certainly the most popular public-key cryptosystem, both
for encryption and signature. However, it has long been known that, in its textbook
form, it has a number of security flaws, due in particular to its homomorphic properties.

149

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

For example, if two messages m1, m2 are signed with textbook RSA:

σ1 = md
1 mod N

σ2 = md
2 mod N

then (σ1 · σ2) mod N is a valid signature on m1 ·m2, which shows that textbook RSA
signature is not unforgeable under chosen message attack.

As a result, to actually sign or encrypt with RSA, it is necessary to first “pad”
the message using a certain encoding function µ before actually applying the RSA
exponentiation. Thus, an RSA signature is really computed as:

σ = µ(m)d mod N.

We can roughly divide the RSA encoding functions µ in use nowadays in two categories:

Ad-hoc encodings are “handcrafted” to thwart certain classes of attacks. While still in
use, ad-hoc encodings are now being phased out. PKCS#1 v1.5 [PKCS#1 v1.5],
ISO/IEC 9796-1 [ISO9796–1] and ISO/IEC 9796-2 [ISO9796–2, ISO9796–2:2002]
are typical examples of such encodings.

Provably secure encodings are designed to make cryptanalysis equivalent to inverting RSA
(possibly in somewhat idealized attack models such as the Random Oracle Model
[BR93]). OAEP [BR94] (for encryption) and PSS [BR96] (for signature) are typical
examples of provably secure encodings.

For ad-hoc encodings, there is no guarantee that forging signatures is as hard as
inverting RSA. And as a matter of fact, many such encodings were found to be weaker
than the RSA problem. We refer the reader to [Ble98, CCG+08, JNT07, CJNP00, Gri00]
for a few typical examples. It is thus a practitioner’s rule of thumb to use provably secure
encodings whenever possible. Nevertheless, ad-hoc encodings remain in widespread use
in many commercial products (such as EMV payment cards). A periodic re-evaluation of
such encodings is thus necessary.

9.1.2 The ISO/IEC 9796-2 encoding

ISO/IEC 9796-2 is an international standard that defines a specific, add-hoc encoding
function for RSA signatures [ISO9796–2]. In [CNS99], Coron, Naccache and Stern
discovered an attack against it that led to a revision of the standard.

More precisely, ISO/IEC 9796-2 can be used with hash functions of various digest
sizes kh. Originally, ISO/IEC 9796-2 recommended 128 6 kh 6 160, but kh = 128 was
within reach of the attack by Coron et al., so the standard was amended and the official
requirement became kh > 160 [ISO9796–2:2002].

The attack by Coron et al. is based on an earlier cryptanalytic result by Desmedt
and Odlyzko [DO85], which was first presented as a chosen-ciphertext attack on RSA
encryption, but applies to RSA signatures as well, as noted in [Mis98], provided that

150

9.2. The ISO/IEC 9796-2 Standard

the encoding function µ maps to integers of small size (much smaller than the modulus
N). The ISO/IEC 9796-2 encoding itself does not satisfy this requirement (it maps to
integers to full size), but Coron et al. showed that the Desmedt-Odlyzko attack can be
adapted to this setting nonetheless.

9.1.3 Our contribution

In this chapter, we describe an improved attack against the amended version of ISO/IEC
9796-2, with kh = 160. The new attack applies to EMV signatures as well, which are
ISO/IEC 9796-2-compliant signatures with extra redundancy.

Our attack is based on the same idea as Coron et al.’s forgery, with a number of
algorithmic refinements: a more careful choice of queried messages, a more efficient
algorithm due to Bernstein for detecting smooth integers, the use of “large primes” as is
common in modern implementations of the quadratic and number field sieves, and an
optimized exhaustive search.

Using these refinements, we were able to compute an ISO/IEC 9796-2 forgery in
two days on a few dozen nodes of the Amazon EC2 cloud, for a total cost of US$800.
The forgery was implemented for public exponent e = 2 but attacking odd exponents
would not take significantly longer1. We estimate that under similar conditions an EMV
signature forgery would cost US$45,000. Note that all costs are per modulus. After
computing a first forgery for a given N , additional forgeries come at a negligible cost.

9.2 The ISO/IEC 9796-2 Standard

ISO/IEC 9796-2 is an standard for RSA signatures that defines RSA encoding functions
allowing partial or total message recovery [ISO9796–2, ISO9796–2:2002]. Here we consider
only partial message recovery. As we have already mentioned, ISO/IEC 9796-2 can be
used with hash functions H(m) of various output sizes kh. For the sake of simplicity we
assume that kh, the size of m and the size of N (denoted k) are all multiples of 8;2 this
is also the case in the EMV specifications. Then, the ISO/IEC 9796-2 encoding function
has the following form:

µ(m) = 6A16‖m[1]‖H(m)‖BC16

where the message m = m[1]‖m[2] is split in two: m[1] consists of the k−kh−16 leftmost
bits of m and m[2] represents all the remaining bits of m. The size of µ(m) is therefore
always k − 1 bits.

1It might slow down the final linear algebra stage of the attack somewhat, as sparse linear algebra in
characteristic 2 can benefit from some bit fiddling optimizations on typical CPU architectures, but the
linear algebra stage only takes a very small fraction of the overall CPU time anyway.

2As will be clarified later, if we drop the assumption that k ≡ 0 mod 8, the attack actually
becomes faster. Indeed, if m consists of an odd number of 4-bit nibbles, the encoding function becomes
µ(m) = 716‖m[1]‖H(m)‖BC16, with only 12 fixed bits instead of 16, which in turn makes the involved
integers about 4 bits shorter. For example, the RSA-2048 {a, b}-pair (see §9.4.3) becomes {45, 28} instead
of {625, 332}.

151

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

The original version of the standard recommended 128 6 kh 6 160 for partial
message recovery (see [ISO9796–2], §5, note 4). The amended versions of ISO/IEC 9796-2
[ISO9796–2:2002, ISO9796–2:2010] require kh > 160. The EMV specifications also use
kh = 160.

Note that newer versions of ISO/IEC 9796-2 [ISO9796–2:2002, ISO9796–2:2010] also
define and recommend a different encoding function known as ISO/IEC 9796-2 mode
3, which is essentially a deterministic variant of PSS-R [PKCS#1 v2.1]. This encoding
function does not suffer from the vulnerabilities described in this chapter. However, its
adoption and deployment remain unclear.

9.3 Previous Attacks

9.3.1 The Desmedt-Odlyzko forgery
In Desmedt and Odlyzko’s attack [Mis98] (existential forgery under a chosen-message
attack), the forger asks for the signature of messages of his choice before computing, by
his own means, the signature of a (possibly meaningless) message that was never signed
by the legitimate owner the signing key.

The attack only applies if µ(m) is much smaller than N and works as follows:

1. Select a bound B and let P = {p1, . . . , p`} be the list of all primes smaller than B.

2. Find τ > `+ 1 messages mi such that each µ(mi) is a product of primes in P.

3. Express one µ(mj) as a multiplicative combination of the other µ(mi)’s, by solving a
linear system given by the exponent vectors of the µ(mi) with respect to the primes
in P.

4. Ask for the signatures of the mi for i 6= j and forge the signature of mj .

In the following we assume that e is prime; this includes e = 2. We say that an integer
is B-smooth if all its prime factors are smaller than B. The integers µ(mi) obtained at
step 2 are therefore B-smooth and we can write for all messages mi, 1 6 i 6 τ :

µ(mi) =
∏̀
j=1

p
vi,j
j . (9.1)

To each µ(mi) we associate the `-dimensional vector of the exponents modulo e:

V i = (vi,1 mod e, . . . , vi,` mod e).

Since e is prime, the set of all `-dimensional vectors modulo e forms a linear space of
dimension `. Therefore, since τ > `+ 1, one can express one vector, say V τ , as a linear
combination of the others modulo e, which gives for 1 6 j 6 `:

V τ = Γ · e+
τ−1∑
i=1

βiV i

152

9.3. Previous Attacks

for some Γ = (γ1, . . . , γ`) ∈ Z`. That is,

vτ,j = γj · e+
τ−1∑
i=1

βi · vi,j .

Then using (9.1), one obtains:

µ(mτ) =
∏̀
j=1

p
vτ,j
j =

∏̀
j=1

p
γj ·e+

∑τ−1
i=1 βi·vi,j

j =
(∏̀
j=1

p
γj
j

)e
·
∏̀
j=1

τ−1∏
i=1

p
vi,j ·βi
j

µ(mτ) =
(∏̀
j=1

p
γj
j

)e
·
τ−1∏
i=1

(∏̀
j=1

p
vi,j
j

)βi
=
(∏̀
j=1

p
γj
j

)e
·
τ−1∏
i=1

µ(mi)βi .

That is:

µ(mτ) = δe ·
τ−1∏
i=1

µ(mi)βi , where we let δ =
∏̀
j=1

p
γj
j . (9.2)

Therefore, we see that µ(mτ) can be written as a multiplicative combination of the other
µ(mi). To produce a forgery, the attacker will ask for the signatures of m1, . . . ,mτ−1
and output the following valid signature on mτ :

στ = µ(mτ)d = δ ·
τ−1∏
i=1

(
µ(mi)d

)βi = δ ·
τ−1∏
i=1

σβii mod N.

Note that when e = 2, one uses with Rabin-Williams signatures rather than RSA
signatures, and an additional component in the vectors V i should be added to keep track
of the Jacobi symbols of the messages involved, but apart from this minor modification,
the attack works in exactly the same way.

The complexity of the attack depends on ` and on the probability that the integers
µ(mi) are B-smooth. But a “large” integer is very rarely B-smooth for a B corresponding
to a manageable factor base P.

For example, the probability that a random 1024-bit integer is, say, 225-smooth, is less
than 2−247, so there is no hope to obtain a forgery in this way if the encoding function
outputs random full size integers (as Full Domain Hash does, for example). On the other
hand, a random 100-bit integer is 225-smooth with probability about 0.5%, so finding
` ≈ 225/ log(225) ≈ 221 of them should be easy. As a result, the Desmedt-Odlyzko attack
is feasible when the encoding function µ outputs integers of small size.

See [CND+06] for an asymptotic complexity analysis. In practice, the attack is
feasible only if the µ(mi) are smaller than around 200 bits.

9.3.2 The Coron-Naccache-Stern forgery
In ISO/IEC 9796-2, the encoding function’s output µ(m) is as long as N . This thwarts
Desmedt and Odlyzko’s attack. However, Coron, Naccache and Stern observed [CNS99]
that it is actually sufficient to construct messages mi such that a fixed multiple ti of

153

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

µ(mi) modulo N is very small. Then, the attack can be applied to the integers ti instead
of µ(mi).

More precisely, suppose that one can find a constant a and messages mi such that for
all i:

ti = a · µ(mi) mod N

is small. Then we can hope to find many smooth ti’s, and the attack can proceed as before.
There is no problem in handling of the extra factor a in the multiplicative relations: one
only needs to add a corresponding column in the matrix of exponents considered in §9.3.1
to keep track of it.

In their attack Coron et al. used a = 28. Then, to construct messages m such that
a · µ(m) mod N is small can be done as follows. From the definition of ISO/IEC 9796-2,
we have:

µ(m) = 6A16 ‖ m[1] ‖ H(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + H(m) · 28 + BC16

Euclidean division by N provides b and 0 6 r < N < 2k such that:

(6A16 + 1) · 2k = b ·N + r

Denoting N ′ = b ·N one can write:

N ′ = 6A16 · 2k + (2k − r)
= 6A16 ‖ N ′[1]‖N ′[0]

where N ′ is k + 7 bits long and N ′[1] is k − kh − 16 bits long.
Consider the linear combination:

t = b ·N − a ·µ(m)
= N ′ − 28 ·µ(m)

By setting m[1] = N ′[1] we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖ m[1] ‖ H(m)‖BC0016

= �
��6A16 ‖ ��

�N ′[1] ‖ N ′[0]
− �

��6A16 ‖ ��
�N ′[1] ‖ H(m)‖BC0016

= N ′[0]− (H(m)‖BC0016) < 2kh+16

For kh = 160, the integer t is therefore at most 176-bits long.
The forger can thus modify m[2] (and therefore H(m)), until he gets a set of messages

whose t-values are B-smooth and express one such µ(mτ) as a multiplicative combination
of the others. As per the analysis in [CNS99], attacking the instances kh = 128 and
kh = 160 requires 254 and 261 operations respectively.

Note that the sign of the ti’s must be accounted for. This is simple because (−1)d mod
N is public. Hence, when an odd number of ti’s is used a minus sign is inserted into δ.

154

9.4. Building Blocks of the New Attack

9.4 Building Blocks of the New Attack
We improve the above complexities by using four new ideas: we speed up the process
of finding smooth integers by using Bernstein’s batch smoothness detection algorithm
[Ber04a] instead of trial division; we also use the large prime variant [BP96]; moreover,
we modify Coron et al.’s attack by selecting better messages and by optimizing exhaustive
search to balance complexities. In this section we present these new building blocks.

9.4.1 Bernstein’s smoothness detection algorithm
Bernstein [Ber04a] describes the following algorithm for finding smooth integers.

Algorithm: Given prime numbers p1, . . . , p` in increasing order and positive integers
t1, . . . , tn, output the p`-smooth part of each tk:

1. Compute z ← p1 × · · · × p` using a product tree.

2. Compute z1 ← z mod t1, . . . , zn ← z mod tn using a remainder tree.

3. For each k ∈ {1, . . . , n}: Compute yk ← (zk)2e mod tk by repeated squaring, where e
is the smallest non-negative integer such that 22e > tk.

4. For each k ∈ {1, . . . , n}: output gcd(tk, yk).

We refer the reader to [Ber08] for a description of the product and remainder trees.

Theorem 9.1 (Bernstein). The algorithm computes the p`-smooth part of each integer
tk in O(b log2 b log log b) time, where b is the number of input bits.

In other words, given a list of nt integers ti < 2a and the list of the first ` primes, the
algorithm will detect the B-smooth ti’s, where B = p`, in time:

O(b · log2 b · log log b)

where b = nt · a+ ` · log2 ` is the total number of input bits.
When nt is very large, it becomes more efficient to run the algorithm k times, on

batches of n′t = nt/k integers. We explain in Appendix 9.A how to select the optimal n′t,
and derive the corresponding running time.

Bernstein recommends a number of speed-up ideas of which we used a few. In our
experiments we used the scaled remainder tree [Ber04b], which replaces most division
steps in the remainder tree by multiplications. This algorithm is fastest when FFT
multiplications are done modulo numbers of the form 2α − 1: we used this Mersenne
FFT multiplication as well, as implemented in Gaudry, Kruppa and Zimmermann’s GMP
patch [GKZ07]. Other optimizations included computing the product z only once, and
treating the prime 2 separately.

Bernstein’s algorithm was actually the main speed up in our attack. It proved ' 1000
faster than the trial division used in [CNS99].

155

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

9.4.2 The large prime variant
An integer is semi-smooth with respect to y and z if its greatest prime factor is 6 y and
all other factors are 6 z. Bach and Peralta [BP96] define the function σ(u, v), which
plays for semi-smoothness the role played by Dickman’s ρ function for smoothness [Dic30]:
σ(u, v) is the asymptotic probability that an integer n is semi-smooth with respect to
n1/v and n1/u.

After an integer ti has had all its factors smaller than B stripped-off, if the remaining
factor ω is lesser than B2 then ω must be prime. This is very easy to detect using
Bernstein’s algorithm. As Bernstein computes the B-smooth part zi of each ti, it only
remains to check whether ti/zi is small enough. In most cases it isn’t even necessary to
perform the actual division since comparing the sizes of ti and zi suffices to rule out most
non-semi-smooth numbers.

Hence, one can use a second bound B2 such that B < B2 < B2 and keep the ti’s
whose remaining factor ω is 6 B2, hoping to find a second ti with the same remaining
factor ω to divide ω out. We refer the reader to Appendix 9.B for a detailed analysis of
the large prime variant in our context.

9.4.3 Constructing smaller a · µ(m)− b ·N candidates
In this paragraph we show how to construct smaller ti = a · µ(mi) − b · N values for
ISO/IEC 9796-2. Smaller ti-values increase smoothness probability and hence speed up
the forgery process. We write:

µ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = H(m), with 0 < x < 2k−kh−16.
We first determine a, b > 0 such that the following two conditions hold:

0 < b ·N − a · µ(0, 0) < a · 2k−8 (9.3)
b ·N − a · µ(0, 0) = 0 mod 28 (9.4)

and a is of minimal size. Then by Euclidean division we compute x and r such that:

b ·N − a · µ(0, 0) = (a · 2kh+8) · x+ r

where 0 6 r < a · 2kh+8 and using (9.3) we have 0 6 x < 2k−kh−16 as required. This
gives:

b ·N − a · µ(x, 0) = b ·N − a · µ(0, 0)− a · x · 2kh+8 = r

Moreover as per (9.4) we must have r = 0 mod 28; denoting r′ = r/28 we obtain:

b ·N − a · µ(x, h) = r − a · h · 28 = 28 · (r′ − a · h)

where 0 6 r′ < a · 2kh . We then look for smooth values of r′ − a · h, whose size is at most
kh plus the size of a.

156

9.5. Attacking ISO/IEC 9796-2

Challenge RSA-704 RSA-768 RSA-896 RSA-1024 RSA-1536 RSA-2048
a 481 251 775 311 581 625
b 228 132 412 172 316 332

Table 9.1: {a, b} values for several RSA challenge moduli.

If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy both conditions
(9.3) and (9.4); heuristically each of the two conditions is satisfied with probability ' 2−8;
therefore, we can expect to find an {a, b} pair with a and b not much larger than 8 bits.
For example, for the RSA-2048 challenge, we found {a, b} to be {625, 332}; therefore, for
RSA-2048 and kh = 160, the integer to be smooth is 170-bits long (instead of 176-bits in
Coron et al.’s original attack). This decreases the complexity of the attack further. The
optimal {a, b} values for other RSA challenge moduli are given in Table 9.1.

9.5 Attacking ISO/IEC 9796-2

We combined all the building-blocks listed in the previous section to compute an actual
forgery for ISO/IEC 9796-2, with the RSA-2048 challenge modulus. The implementation
replaced Coron et al.’s trial division by Bernstein’s algorithm, replaced Coron et al.’s
a · µ(m) − b · N values by the shorter ti’s introduced in §9.4.3 and took advantage of
the large prime variant. Additional speed-up was obtained by exhaustive searching for
particular digest values. Code was written in C++ and run on 19 Linux-based machines
on the Amazon EC2 cloud. The final linear algebra step was performed on a single
desktop PC.

9.5.1 The Amazon cloud

Amazon.com, Inc. offers virtualized computer instances for rent on a pay by the hour
basis, which we found convenient to run our computations. Various models are available,
of which the best-suited for CPU-intensive tasks, at the time when we carried out the
attack, featured 8 Intel Xeon 64-bit cores clocked at 2.4 GHz supporting the Core2
instruction set and offering 7 GB RAM and 1.5 TB disk space. Renting such a capacity
cost US$0.80 per hour (plus tax). One could run up to 20 such instances in parallel, and
possibly more subject to approval by Amazon (20 were enough for our purpose so we
didn’t apply for more).

When an instance on the grid is launched, it starts up from a disk image containing
a customizable UNIX operating system. In the experiment, we ran a first instance using
the basic Fedora installation provided by default, installed necessary tools and libraries,
compiled our own programs and made a disk image containing our code, to launch
subsequent instances with. When an instance terminates, its disk space is freed, making
it necessary to save results to some permanent storage means. We simply rsync’ed

157

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

results to a machine of ours. Note that Amazon also charges for network bandwidth but
data transmission costs were negligible in our case.

All in all, we used about 1,100 instance running hours (including setup and tweaks)
during a little more than two days. While we found the service to be rather reliable, one
instance failed halfway through the computation, and its intermediate results were lost.

9.5.2 The experiment: Outline, details and results

The attack can be broken down into the following elementary steps, which we shall review
in turn:

1. Determining the constants a, b, x, µ(x, 0) for the RSA-2048 challenge modulus N .

2. Computing the product of the first ` primes, for a suitable choice of `.

3. Computing the integers ti = bN−aµ(mi), and hence the SHA-1 digests, for sufficiently
many messages mi.

4. Finding the smooth and semi-smooth integers amongst the ti’s.

5. Factoring the smooth integers, as well as the colliding pairs of semi-smooth integers,
obtaining the sparse, singular matrix of exponents, with ` rows and more than `
columns.

6. Reducing this matrix modulo e = 2, with possible changes in the first row (correspond-
ing to the prime 2) depending on the Jacobi symbols (2|ti) and (2|a).

7. Finding nontrivial vectors in the kernel of this reduced matrix and inferring a forgery.

Steps 2–4 were executed on the Amazon EC2 grid, whereas all other steps were run
on one offline PC. Steps 3–4, and to a much lesser extent Step 7, were the only steps
that claimed a significant amount of CPU time.

Determining the constants. The cost of the attack doesn’t depend on the choice of N .
Since N has to be congruent to 5 mod 8 for Rabin-Williams signatures, we used the
RSA-2048 challenge. The resulting constants were computed in SAGE [S+10b]. We
found the smallest {a, b} pair to be {625, 332}. The integers ti = bN − aµ(x, hi) are thus
at most 170-bits long.

Product of the first primes. The optimal choice of ` for 170 bits is about 221. Since
the Amazon instances are memory-constrained (less than 1 GB of RAM per core), we
preferred to use ` = 220. This choice had the additional advantage of making the final
linear algebra step faster, which is convenient since this step was run on a single offline
PC. Computing the product of primes itself was done once and for all in a matter of
seconds using MPIR [H+09].

158

9.5. Attacking ISO/IEC 9796-2

Hashing. Since the smoothness detection part works on batches of ti’s (in our cases, we
chose batches of 219 integers), we had to compute digests of messages mi in batches as
well. The messages themselves are 2048-bit long, i.e. as long as N , and we chose them
in a fixed format facilitating the distributed computation: a constant 246-byte prefix
followed by a 10-byte seed. The first two bytes identify a family of messages examined
on a single core of one Amazon instance, and the remaining eight bytes are explored by
increments of 1 starting from 0.

Messages were hashed using the SHA-1 implementation from OpenSSL. For each
message, we only need to compute one SHA-1 block, since the first three 64-byte blocks
are fixed. This computation is relatively fast compared to Bernstein’s algorithm, so we
have a bit of leeway for exhaustive search. We can compute a large number of digests,
keeping the ones likely to give rise to a smooth ti. We did this by selecting digests for
which the resulting ti would have many zeros as leading and trailing bits.

More precisely, we looked for a particular bit pattern at the beginning and at the end
of each digest hi, such that finding n matching bits results in n null bits at the beginning
and at the end of ti. The probability of finding n matching bits when we add the number
of matches at the beginning and at the end is (1 + n/2) · 2−n, so we expect to compute
2n/(1 + n/2) digests per selected message. We found n = 8 to be optimal: on average,
we need about 50 digests to find a match, and the resulting ti is at most 170− 8 = 162
bit long once powers of 2 are factored out.

Note that faster (e.g. hardware-enhanced) ways to obtain digests might significantly
reduce the running time of the attack. We considered for example an FPGA-based
solution called COPACOBANA [P+09], which could in principle perform a larger amount
of exhaustive search, and speed up the attack dramatically. It turned out that our
attack was fast enough, hence pursuing the hardware-assisted search idea further proved
unnecessary, but a practical attack on EMV (see §9.7) could certainly benefit from
hardware acceleration.

At present, Amazon is also renting time on instances equipped with fast GPUs. As
GPUs are notoriously well-suited for the evaluation of hash functions likes SHA-1, it
might be interesting to try and run the attack on such machines.

Finding smooth and semi-smooth integers. Once a batch of 219 appropriate ti’s is gen-
erated, we factor out powers of 2, and feed the resulting odd numbers into our C++
implementation of Bernstein’s algorithm. This implementation uses the MPIR multi-
precision arithmetic library [H+09], which we chose over vanilla GMP because of a
number of speed improvements, including J.W. Martin’s patch for the Core2 architecture.
We further applied Gaudry, Kruppa and Zimmermann’s FFT patch, mainly for their
implementation of Mersenne FFT multiplication, which is useful in the scaled remainder
tree [Ber04b].

We looked for B-smooth and for (B,B2)-semi-smooth ti’s, where B = 16,290,047
is the 220-th prime, and B2 = 227. Each batch took ' 40 seconds to generate and to
process, and consumed about 500 MB of memory. We ran 8 such processes in parallel on
each instance to take advantage of the 8 cores, and 19 instances simultaneously.

159

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

Finding the 1,050,667 columns (slightly in excess of the ` = 220 = 1,048,576 required)
took a little over 2 days.

Factoring and finding collisions. The output of the previous stage is a large set of text
files containing the smooth and semi-smooth ti’s together with the corresponding message
numbers. Turning this data into a matrix suitable for the linear algebra stage mostly
involved text manipulation in Perl to convert it to commands that could be piped into
PARI/GP [Gro08]. The resulting 1,048,576× 1,050,667 matrix had 14,215,602 non-zero
entries (13.5 per column on average, or 10−5 sparsity; the columns derived from the large
prime variant tend to have twice as many non-zero entries, of course).3

Linear algebra. We found non-zero kernel elements of the final sparse matrix over
GF(2) using Coppersmith’s block Wiedemann algorithm [Cop94] implemented in WLSS2
[KL99, Lob95], with parameters m = n = 4 and κ = 2. The whole computation took
16 hours on one 2.7 GHz personal computer, with the first (and longest) part of the
computation using 2 cores, and the final part using 4 cores.

The program discovered 124 kernel vectors with Hamming weights ranging from
337,458 to 339,641. Since columns obtained from pairs of semi-smooth numbers account
for two signatures each, the number of signature queries required to produce the 124
corresponding forgeries is slightly larger, and ranges between 432,903 and 435,859.

Being written with the quadratic sieve in mind, the block Wiedemann algorithm in
WLSS2 works over GF(2). There exist, however, other implementations for different
finite fields.

The whole experiment is summarized in Figure 9.1.

Fewer signature queries. In Appendix 9.E we address the question of reducing the number
of signature queries in the attack.

9.6 Cost Estimates
The experiment described in the previous section can be used as a benchmark to estimate
the cost of the attack as a function of the size of the ti’s, denoted a; this will be useful
for analyzing the security of the EMV specifications, where a is bigger (204 bits instead
of 170 bits).

We assume that the ti’s are uniformly distributed a-bit integers and express costs
as a function of a. It is then easy to estimate the number of hash computations and
smoothness tests necessary for the attack, since we know, by the work of Bach and

3This matrix actually contained a number of rows with only one nonzero entry or less. Those rows
and the corresponding columns can be safely removed, and the process can be repeated on the resulting
matrix until a fix-point is reached (see Appendix 9.F for details). This reduction process is frequently the
first operation carried out by linear algebra packages when searching for kernel vectors. When applied to
our matrix, it produced a reduced matrix of dimension 750,031× 839,908. We found it most convenient
to leave any such reduction step to the linear algebra package itself.

160

9.6. Cost Estimates

16,230,259,553,940
digest computations

↓
339,686,719,488 ti’s in

647,901 batches of 219 each
↙ ↘

684,365 366,302 collisions between
smooth ti’s 2,786,327 semi-smooth ti’s

↘ ↙
1,050,667-column matrix

↓
algebra on 839,908 columns
having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving
432,903 signatures

Figure 9.1: Summary of the practical attack on ISO/IEC 9796-2.

a = log2 ti log2 ` Estimated TotalTime log2 τ EC2 cost (US$)
64 11 15 seconds 20 negligible
128 19 4 days 33 10
160 21 6 months 38 470
170 22 1.8 years 40 1,620
176 23 3.8 years 41 3,300
204 25 95 years 45 84,000
232 27 19 centuries 49 1,700,000
256 30 320 centuries 52 20,000,000

Table 9.2: Bernstein & large prime variant. Estimated parameter trade-offs, running
times and costs, for various ti sizes.

Peralta [BP96], the proportion of semismooth integers with respect to given bounds
among all a-bit integers. The semismoothness bounds themselves are selected according
to the results of Appendix 9.B.

Results are summarized in Table 9.2. Cost figures do not include the linear algebra step
whose computational requirements are very low compared to the smoothness detection
step. Another difference with our experiment is that here we do not assume any exhaustive
search on the ti’s; this is why the cost estimate for a = 170 in Table 9.2 is about twice

161

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

the actual cost of our experimental ISO/IEC 9796-2 forgery.
Running times are given for a single 2.4 GHz PC. Costs correspond to the Amazon

EC2 cloud (as of February 2009) like in the previous section. Estimates show that the
attack is feasible up to ' 200 bits, but becomes infeasible for larger values of a. We also
estimate log2 τ , where τ is the number of messages in the forgery.

9.7 Application to EMV Signatures
EMV is a collection of industry specifications for the inter-operation of payment cards,
POS terminals and ATMs. The EMV specifications [EMV] rely on ISO/IEC 9796-2
signatures to certify public keys and to authenticate data. For instance, when an Issuer
provides application data to a Card, this data must be signed using the Issuer’s private
key Si. The corresponding public-key Pi must be signed by a Certification Authority
(CA) whose public key is denoted by Pca. The signature algorithm is RSA with e = 3 or
e = 216 + 1. The bit length of all moduli is always a multiple of 8.

EMV uses special message formats; 7 different formats are used, depending on the
message type. We first describe one of these formats: the Static Data Authentication,
Issuer Public Key Data (SDA-IPKD), and adapt our attack to it. The other six formats
are examined in Appendix 9.D.

9.7.1 EMV Static Data Authentication, Issuer Public Key Data
(SDA-IPKD)

We refer the reader to §5.1, Table 2, page 41 in EMV [EMV]. SDA-IPKD is used by the
CA to sign the issuer’s public-key Pi. The message to be signed is as follows:

m = 0216‖X‖Y ‖Ni‖0316

where X represents 6 bytes that can be controlled by the adversary and Y represents 7
bytes that cannot be controlled. Ni is the Issuer’s modulus to be certified. More precisely,
X = id‖date where id is the issuer identifier (4 bytes) and date is the Certificate
Expiration Date (2 bytes); we assume that both can be controlled by the adversary.
Y = csn‖C where csn is the 3-bytes Certificate Serial Number assigned by the CA and
C is a constant. Finally, the modulus to be certified Ni can also be controlled by the
adversary.

Together with ISO/IEC 9796-2 encoding, this gives:
µ(m) = 6A0216‖X‖Y ‖Ni,1‖H(m)‖BC16

where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the modulus
size and kh = 160 as in ISO/IEC 9796-2.

9.7.2 Attacking SDA-IPKD
To attack SDA-IPKD write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

162

9.7. Application to EMV Signatures

where Y is constant and h = H(m)‖BC16. We have:
k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168.

Generate a random ka-bit integer a, where 36 6 ka 6 72, and consider the equation:

b ·N − a · µ(X, 0, 0) = b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3).

If we can find integers X and b such that 0 6 X < 248 and:

0 6 b ·N − a · µ(X, 0, 0) < a · 2k3 (9.5)

then as previously we can compute Ni,1 by Euclidean division:

b ·N − a · µ(X, 0, 0) = (a · 2k4) ·Ni,1 + r (9.6)

where 0 6 Ni,1 < 2k3−k4 as required, and the resulting b ·N − a · µ(X,Ni,1, h) value will
be small for all values of h.

In the above we assumed Y to be a constant. Actually the first 3 bytes of Y encode the
CSN assigned by the CA, and may be different for each new certificate (see Appendix 9.C).
However if the attacker can predict the CSN, then he can compute a different a for every
Y and adapt the attack by factoring a into a product of small primes.

Finding small X and b so as to minimize the value of

|b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|

is a Closest Vector Problem in a bidimensional lattice—a problem that can be easily
solved using the LLL algorithm [LLL82]. We first determine heuristically the minimal
size that can be expected; we describe the LLL attack in Appendix 9.C.

Since a · 6A0216 · 2k1 is an (k + ka)-bit integer, with X ' 248 and b ' 2ka , we can
heuristically hope to find X and b such that:

0 6 b ·N − a · µ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 ' a · 2k−48−ka = a · 2k3+72−ka

which is (72 − ka)-bit too long compared to condition (9.5). Therefore, by exhaustive
search we will need to examine roughly 272−ka different integers a to find a pair (b,X)
that satisfies (9.5); since a is ka-bits long, this can be done only if 72− ka 6 ka, which
gives ka > 36. For ka = 36 we have to exhaust the 236 possible values of a.

Once this is done we obtain from (9.6):

t = b ·N − a · µ(X,Ni,1, h) = r − a · h

with 0 6 r < a · 2k4 . This implies that the final size of t values is 168 + ka bits. For
ka = 36 this gives 204 bits (instead of 170 bits for plain ISO/IEC 9796-2). The cost of
the attack will thus be higher than for plain ISO/IEC 9796-2.

163

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

EMV mode Format |X| |Y | |t| EC2 cost
sda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000
sda-sad Y - k − 176 - -
odda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000
odda-icc-pkd 0416‖X‖Y ‖Nicc‖0316‖data 96 56 204 45,000
odda-dad1 Y - k − 176 - -
odda-dad2 Y - k − 176 - -
icc-pin 0416‖X‖Y ‖Nicc‖0316 96 56 204 45,000

Table 9.3: EMV message formats. X denotes a data field controllable by the adversary.
Y is not controllable. Data sizes for X, Y and t are expressed in bits.

In Appendix 9.C we exhibit concrete (a, b,X) values for ka = 52 and for the RSA-2048
challenge; this required ' 223 trials (109 minutes on a single PC). We estimate that
for ka = 36 this computation will take roughly 13 years on a single PC, or equivalently
US$11,000 using the EC2 cloud.

Table 9.2 shows that attacking 204-bit ti’s would cost US$84,000. As for the ISO/IEC
9796-2 attack, we can decrease this cost by first doing exhaustive search on the bits of
H(m) to obtain a smaller t-value. We found that with 8 bits of exhaustive search cost
drops to about US$45,000 (without the matrix step, but in our attack linear algebra
takes a relatively small amount of time).

9.7.3 Summary

In Appendix 9.D we provide an analysis of the other formats in the EMV specifications,
with corresponding attacks when such attacks exist. We summarize results in Table 9.3
where an X represents a string that can be controlled by the adversary, while Y cannot
be controlled. The size of the final t-value to be smooth is given in bits. Note that cost
estimates are cheaper than Table 9.2 because we first perform exhaustive search on 8
bits of H(m) = SHA-1(m); however here we do take into account the cost of computing
these SHA-1(m) values.

Table 9.3 shows that only four of the EMV formats can be attacked, with the
same cost as the SDA-IPKD format. The other formats seem out of reach because the
non-controllable part Y is too large.

9.8 Conclusion

This chapter exhibited a practically exploitable flaw in the ISO/IEC 9796-2 standard and
a conceptual flaw in EMV signatures. In response to this attack, the ISO/IEC 9796-2
standard was amended [ISO9796–2:2010] to discourage the use of the ad-hoc signature
padding in contexts where chosen-message attacks are an issue.

164

9.A. Optimizing Bernstein’s Batch Size

We can see this cryptanalysis as another indication that it might wise for the industry
to move away from ad-hoc constructs from the 1980s and early 1990s, and embrace
provable security as the cryptologic community and standardization bodies have done in
the past decade.

9.A Optimizing Bernstein’s Batch Size
We assume that for a single batch the algorithm runs in time:

BatchTime(n′t, a, `) = c · b′ · log2 b′ · log log b′

where c is a constant and:
b′ = n′t · a+ u (9.7)

is the bit-length of the batch, and u = ` · log2 ` is the pi-list’s size in bits. The total
running time is then:

TotalTime(nt, a, `, n′t) = nt
n′t
· c · b′ · log2 b′ · log log b′.

The running time of a single batch only depends on b′. Hence, as a first approximation
one could select an n′t equating the sizes of the ti-list and the pi-list; this yields n′t · a = u.
A more accurate analysis (see below) reveals that TotalTime is minimized for a slightly
larger n′t value; more precisely for an n′t such that:

n′t · a = u log u
2 .

Using (9.7) this gives b′ = (u log u)/2 and a total running time of:

TotalTime(nt, a, `) ' c · nt · a · log2 b′ · log log b′.

We now proceed with the analysis of the optimal n′t. For the sake of clarity we
temporarily denote b′ by b. Let u = ` · log2 ` and

n′t = u

a
· α

for some parameter α. We look for the optimal α. We have b = u · (α+ 1) and:

TotalTime(nt, a, `, α) = nt · a
u · α

· c · b · log2 b · log log b.

We neglect the log log b term and consider the function:

f(u, α) = b · log2 b

α
where b = u · (α+ 1).

Setting:
∂f(u, α)
∂α

= 0

165

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

we get:

u · (log2 b+ 2 log b) · α− b log2 b = 0 i.e. (log b+ 2) · α = (α+ 1) log b

and then 2α = log b, which gives:

2α = log u+ log(α+ 1).

Neglecting the log(α+ 1) term, we finally get α ' log u/2 as the optimal value of α. This
translates into running time as:

TotalTime(nt, a, `) ' c · nt · a · log2 b log log b

where b = (u log u)/2 and u = ` · log2 `.

9.B Large Prime Variant: Complexity Analysis
In this appendix we provide an accurate analysis of the large prime variant in the context
of our attack.

Assume that we check our ti-list for (B,B2)-semi-smoothness (instead of B-smooth-
ness) and detect η semi-smooth numbers. Amongst those, we expect to find ηλ numbers
that are actually B-smooth, for some λ ∈ [0, 1] that can be expressed in terms of ρ
and σ functions. If we further assume that the η(1− λ) remaining numbers, which are
semi-smooth but non-smooth, have their largest prime factors uniformly distributed
amongst the h primes between B and B2, we expect to find about η2(1 − λ)2/(2h)
“collisions” between them, that is, about η2(1− λ)2/(2h) pairs of numbers with the same
largest prime factor.

Note that:
h ' B2

logB2
−B.

Let ` be the number of primes less than B. The smooth numbers in the list yield a
total of ηλ exponent vectors over the first ` primes, and each of the collisions between
the remaining semi-smooth numbers yields such an additional exponent vector. Since we
need (slightly more than) ` vectors to forge a signature, we should examine enough ti’s
to find η semi-smooth numbers, where η satisfies:

` = ηλ+ η2(1− λ)2

2h .

Solving for η, we get:
η = 2`

λ+
√

2` · (1− λ)2/h+ λ2 .

The probability β that a random a-bit integer is semi-smooth with respect to B2 and
B ' ` · log ` is:

β = σ

(
a log 2

log(` log `) ,
a log 2
logB2

)
166

9.C. LLL Attack on EMV SDA-IPKD Encoding

a 128 144 160 176 192
Optimal log2(`) 19 20 21 23 24
Best ϑ 1.43 1.46 1.49 1.43 1.45

Table 9.4: Improvement factors from the large prime variant.

and if α denotes the probability that a random a-bit integer is B-smooth, we have:

λ = α

β
=

ρ
(

a log 2
log(` log `)

)
σ
(

a log 2
log(` log `) ,

a log 2
logB2

) .
In this large prime variant, we only need to generate n′t = η/β numbers to find enough

exponent vectors, as opposed to nt = `/α previously. Therefore, the large prime variant
improves upon simple smoothness by a factor of roughly:

ϑ = nt
n′t

= `/α

η/β
= 1
λ
· `
η

= 1
2

1 +
√

1 + 2`
h

(1
λ
− 1

)2
 > 1. (9.8)

ϑ is always greater than 1, and for the sizes we are interested in, say 100 6 a 6 200,
we find ϑ ' 1.5 for the best choice of B, and B2 & 7B.4 The reader is referred to Table
9.4 for precise figures.

9.C LLL Attack on EMV SDA-IPKD Encoding

9.C.1 The LLL attack

Given a, N we must minimize the value of:∣∣∣b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)
∣∣∣ .

We show how this can be done using LLL. We write:

u = a · 2k2

v = a · (6A0216 · 2k1 + Y · 2k3)

4According to formula (9.8), ϑ increases until B2 reaches ' 7B, and decreases slowly thereafter.
This is actually not the case: finding a larger ti population to be semi-smooth can only produce more
collisions. The decrease suggested by formula (9.8) stems from the assumption that the largest prime
factors of the ti’s are uniformly distributed amongst the h primes between B and B2, which is only
approximately true. The imprecision grows with h (a larger B2 doesn’t spread the largest prime factors
more thinly). Choosing a very large B2 is not advisable, however, because it produces considerable extra
output (searching for collisions becomes cumbersome) with negligible returns in terms of actual collisions.
In the practical attack, we selected ` = 220 and B2 = 227 ' 9B.

167

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

where N ' 2k, X ' 248, a ' 2ka , u ' 2k−64+ka and v ' 2k+ka . Hence we must minimize
the absolute value of:

t = b ·N − x · u− v.

Consider the lattice of column vectors:

L =

 2k−48

2k−96

N −u −v


As seen previously, heuristically, we can obtain t ' 2k−48; therefore the coefficients in L
are chosen so as to obtain a short vector of norm ' 2k−48. More precisely, we look for a
short column vector c ∈ L of the form:

c =

 2k−48

x · 2k−96

b ·N − u · x− v


Theorem 9.2 (LLL). Let L be a lattice spanned by (u1, . . . , uω). The LLL algorithm,
given the vectors (u1, . . . , uω), finds in polynomial time a vector b1 such that:

‖b1‖ 6 2(ω−1)/4 det(L)1/ω.

Therefore, using LLL we can find a short vector of norm:

‖b1‖ 6 2 · (detL)1/3 6 2 · (23k−144)1/3 6 2k−47.

Heuristically we hope that b1 = c, which allows solving for the values of b and X. The
attack is heuristic but it works very well in practice, as shown in the next section.

9.C.2 Practical value for EMV SDA-IPKD
Consider again the SDA-IPKD EMV format; we write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

where the constant Y is taken to be:

Y = 010203 0101 F8 0116.

The first 3 bytes correspond to the CSN assigned by the CA (we took 01020316),
010116 corresponds to the hash algorithm indicator and to the public-key algorithm
indicator. F816 = 248 is the issuer public-key length (in bytes) and 0116 is the length of
the public exponent (e = 3).

Taking the RSA-2048 challenge for N , we have run the attack (Appendix 9.C.1) for
ka = 52 and found the following values after 8,303,995 ' 223 iterations:

a = 4127135343129068 b = 2192055331476458 X = 66766242156276

168

9.D. EMV Signature Encoding Formats

which are such that 0 < X < 248 and:

0 6 b ·N − a · µ(X, 0, 0) < a · 2k3 (9.9)

as required.
The computation took ' 109 minutes on a single 2 GHz PC. Therefore, for ka = 36

we expect that 236 trials to yield a triple {a, b,X} satisfying condition (9.9) such that
|a| 6 236, within a running time of ' 109 · 236−20 = 4.3 · 108 minutes = 13 years on a
single PC, or equivalently for US$11,000 using the EC2 cloud.

9.D EMV Signature Encoding Formats
EMV specifies the following encoding formats, based on the ISO/IEC 9796-2 standard.
The new attack applies to modes preceded by the sign � and does not apply to modes
preceded by a ♦.

1. � Static Data Authentication, Issuer Public Key Data. EMV SDA-IPKD §5.1, Table 2,
page 41.
The signing entity is the CA. The signed message is the Issuer’s public-key Pi.

m = 0216‖X‖Y ‖Ni‖0316.

While being operationally debatable we assume that X (the concatenation of the
Issuer’s Identifier (4 bytes) and the Certificate Expiration Date (2 bytes)) and Ni (the
Issuer’s modulus to be certified) can be both controlled by the attacker. Y (7 bytes)
cannot be controlled by the adversary.

2. ♦ Static Data Authentication, Static Application Data. EMV SDA-SAD §5.1, Table 3,
page 42.
The signing entity is the Issuer. The signed message is the Issuer’s public-key Pi. As the
first part of the message m is fixed, the attack does not apply.

3. � Offline Dynamic Data Authentication, Issuer Public-Key Data. EMV ODDA-IPKD
§6.1, Table 10, page 57.
The signing entity is the CA. The signed message is the Issuer’s public-key Pi. The
message format is identical to SDA-IPKD.

4. � Offline Dynamic Data Authentication, ICC Public-Key Data. EMV SDA-ICC-PKD
§6.1, Table 11, page 58.
The signing entity is the Issuer. The signed message is the Card’s public-key Pi.

m = 0416‖X‖Y ‖Nicc‖0316‖data.

While being operationally debatable we assume that X (12 bytes) and Nicc (the
Card’s modulus to be certified) can be both controlled by the attacker. Y (7 bytes)

169

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

cannot be controlled by the adversary. Here data is static data to be authenticated,
as specified in Section 10.3, Book 3, EMV specifications; data can only appear in the
non-recoverable part of the message in the ISO/IEC 9796-2 standard.

5. ♦ Offline Dynamic Data Authentication, Dynamic Application Data. EMV ODDA-DAD1
§6.5, Table 15, page 67.
The signing entity is the Card. As the first part of the message m is fixed (BB16 padding),
the attack does not apply.

6. ♦ Offline Dynamic Data Authentication, Dynamic Application Data. EMV ODDA-DAD2
§6.6, Table 18, page 73.
The signing entity is the Card. As the first part of the message m is fixed5, the attack
does not apply.

7. � Personal Identification Number Encipherment, ICC PIN Encipherment Public Key Data.
EMV ICC PIN §7.1, Table 23, page 83.
The signing entity is the Issuer.

m = 0416‖X‖Y ‖Nicc‖0316.

While being operationally debatable we assume that X (12 bytes) and Nicc (the
Card’s modulus to be certified) can be both controlled by the attacker. Y (7 bytes)
cannot be controlled by the adversary.

Commercial impact. It is very fortunate that ODDA-DAD1 and ODDA-DAD2 do not
lend themselves to the new attack. Indeed, in the ODDA-DAD modes the signing device
is the payment card, which is supposedly in the opponent’s hands. In addition, the
signing capacity of EMV cards is limited by a ratification counter restricting the number
of signatures performed by the card during its lifetime.

9.E Fewer Queries
The number of signatures actually used by the forger is not τ but the number of nonzero
βi values in the formula:

µ(mτ) =

∏̀
j=1

p
γj
j

e · τ−1∏
i=1

µ(mi)βi .

Assuming that (β1, . . . , βτ−1) is a random vector of Zτ−1
e only τ(e − 1)/e of the

signatures will be actually used to compute the forgery. The gain is significant when
5Here m = 050116‖Y ‖X where Y is a 32 + 1 = 33 bytes string that cannot be controlled by the

adversary (32 leftmost bytes of ICC Dynamic Data). X can be controlled by the adversary.

170

9.F. Expected Number of Queries

e is a very small exponent (e.g. 2 or 3). However, one can try to generate more than
τ candidates but select the subset of signatures minimizing the number of nonzero βi
values. Such a sparse β-vector may allow to reduce the number of queries and defeat
ratification counters meant to restrict the number of authorized signature queries.

In essence, we are looking at a random [`, k] code: a kernel vector has ` components
which, for e = 2, can be regarded as a set of independent unbiased Bernoulli variables.
The probability that such a vector has weight less than w = ∑τ−1

i=1 βi is thus:

w∑
j=1

(
`

j

)
2−` ' 1

2

(
1 + erf

(
w − `/2√

`/2

))
.

We have 2k such vectors in the kernel, hence the probability that at least one of them
has a Hamming weight smaller than w is surely bounded from above by:

2k × 1
2

(
1 + erf

(
w − `/2√

`/2

))
= 2k−1

(
1 + erf

(
w − `/2√

`/2

))
.

Let c denote the density bias of w, i.e. w = (1/2− c)`. The previous bound becomes:

p(c) = 2k−1
(
1 + erf

(
−c
√

2`
))

= 2k−1
(
1− erf

(
c
√

2`
))

= 2k−1 erfc(c
√

2`) ∼
`→+∞

2k−1 exp(−2`c2)
c
√

2π`
.

For ` = 220, even if we take k as large as 210 (the largest subspace dimension
considered tractable, even in much smaller ambient spaces), we get p(1/50) ' 10−58, so
the probability that there exists a kernel vector of weight w < 500,000 is negligible. In
addition, even if such a vector existed, techniques for actually computing it, e.g. [BLP08],
seem to lag far behind the dimensions we deal with.

It follows that a better strategy to diminish w is to simply decrease `. The expected
payoff might not be that bad: If the attacker is limited to, say, 216 signatures, then he
can pick ` = 217, and for 196-bit numbers (204 bits minus 8 bits given by exhaustive
search), the attack becomes about 15 times slower than the optimal choice, ` = 224 (note
as well that more exhaustive search becomes possible in that case). That’s slow, but
perhaps not excruciatingly so.

9.F Expected Number of Queries
A further question that arises when studying the problem of minimizing the number of
signature queries in the attack is that of evaluating the expected Hamming weight of the
nullspace vectors returned by the linear algebra step, with or without the large prime
variant. The problem is nontrivial and still open. For simplicity we only consider the
GF(2) case (e = 2) the following, but the problem is not fundamentally different for
other exponents.

171

9. Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures

Figure 9.2: Distribution of row weights for a smooth matrix of size 216. Linear scale (left)
and log-log scale (right).

Some primes can never appear as components of nullspace vectors. That is the case, in
particular, when the corresponding row of the matrix contains only one nonzero element
(i.e. if the prime divides only one of our smooth or semismooth numbers to an odd power):
indeed, the column containing that nonzero element is clearly linearly independent from
all other columns. Hence, we may as well remove that row and column from the matrix,
and do so for every similar pair of rows and columns.

Additional rows of weight 1 may turn up after those removals, so we need to repeat
the process recursively. A fix-point is reached (i.e. the algorithm stops) when there is no
singleton row left in the reduced matrix.

Let `0 denote the total number of rows in this reduced matrix. It seems reasonable to
conjecture that (in the case of a square matrix at least) the expected weight of nullspace
vectors is of the order of `0/2. In other words, the primes that can appear as components
of nullspace vectors are likely to do so randomly. The question then reduces to evaluating
`0.

All this prompts us to estimate how many rows in the original matrix contain exactly
one nonzero entry, or more generally exactly n nonzero entries for small n. We expected
this variable to follow a Poisson distribution, or perhaps a sum of Poisson distributions,
but experiments appear to challenge this expectation: the empirical distribution does not
have exponential decay but a fat tail, as evidenced by the plots in Figures 9.2 and 9.3.
Finding a simple description of this distribution seems like a rather difficult open problem
in itself.

172

9.F. Expected Number of Queries

Figure 9.3: Distribution of row weights (log-log scale) for a smooth matrix of size 216

and the first four iterations of the reduction step applied to it. Lighter curves correspond
to further iterations.

173

Chapter 10
Fault Attacks on EMV Signatures

10.1 Introduction

In this chapter, we continue our investigation of the vulnerabilities of the ISO/IEC 9796-2
and EMV signature standards from a different angle. Whereas in Chapter 9 we were
interested in constructing signature forgeries in the “black-box” chosen-ciphertext attack
model, we now turn to fault attacks: in this threat model, the adversary can tamper
with a physical signing device and try to introduce errors during signature generation, by
hardware attacks such as voltage spikes in the power source or laser beams targeted at
memory chips.

Fault attacks were introduced by Boneh, DeMillo and Lipton [BDL01] in 1997. They
showed that RSA signatures, in particular, and especially when used with the Chinese
Remainder Theorem as is almost always the case in practice, were quite vulnerable to
this type of attack. In fact, a single faulty signature produced by an unprotected device
is enough to reveal the private signing key. Since then, fault attacks on RSA signatures
and countermeasures against them have been an active research topic.

Boneh et al.’s attack, however, is not directly applicable to ISO/IEC 9796-2 and EMV
signatures, because some of the information used to compute the signature is unknown to
the adversary (either because it is randomly chosen at the time of signature generation,
or because it is not transmitted along with the signature but recovered when verifying
the—correct!—signature).

At CHES 2009, Coron, Joux, Kizhvatov, Naccache and Paillier [CJK+09] showed
how the attack could still be adapted if the unknown message parts were small enough,
by retrieving the small unknown bit strings as small roots of a multivariate polynomial,
using variants of the lattice-based technique introduced by Coppersmith [Cop97]. The
size restriction on unknown message parts with their technique was quite severe, however,
making their attack difficult to apply in practice.

In this chapter, we present a different strategy for recovering the unknown message
parts when several faulty signatures are available, also based on lattice reduction but
in a simpler way, and that can handle much longer unknown bit strings very efficiently.

175

10. Fault Attacks on EMV Signatures

We show for example how ten faulty signatures in a specific EMV signature format are
enough to retrieve the private signing key with our new attack, while the same format
was well beyond the reach of the previous attack. This work was presented at CT-RSA
2010 [CNT10].

10.1.1 Fault attacks on RSA-CRT
As mentioned above, one of the first and best-known examples of a fault attack in
cryptography is the one described by Boneh, DeMillo and Lipton [BDL97, BDL01, JLQ99]
on RSA-CRT signatures. Let us first recall it succinctly.

To sign a message m with RSA, a signer computes σ = µ(m)d mod N , where N is
the public modulus, d is the private exponent and µ is a certain encoding function. Since
this computation is time-consuming, it is very common to use the Chinese Remainder
Theorem (CRT) to obtain a roughly 4-fold speed-up, by first evaluating:

σp = µ(m)d mod p−1 (mod p) and σq = µ(m)d mod q−1 (mod q)

and then deducing σ from σp and σq with the CRT.
This method is vulnerable to fault attacks: if an attacker can inject a fault during the

computation of σq, the whole computation will produce a faulty signature σ′ satisfying

σ′ ≡ µ(m)d (mod p) and σ′ 6≡ µ(m)d (mod q)

which allows the attacker to factor N by computing

gcd
(
(σ′)e − µ(m) mod N,N

)
= p.

Clearly, Boneh et al.’s fault attack applies to any deterministic RSA encoding µ,
such as the Full Domain Hash [BR96], where µ is a full-length hash function, or certain
add-hoc signature paddings such as PKCS#1 v1.5 [PKCS#1 v1.5]. The attack is also
applicable to probabilistic signature schemes where the random nonce used to generate
the signature is sent along with the signature, like PFDH [Cor02].

However, if the nonce is only recovered when verifying the signature, or if some
part of the message is unknown, the attack does not apply directly. For example, with
a probabilistic encoding of the form µ(m) = m‖r where a random nonce r is simply
concatenated with the message m, the nonce r is only recovered when verifying a correct
signature. Given a faulty signature σ′, the attacker cannot retrieve r nor infer (m‖r) which
would be necessary to compute gcd

(
(σ′)e − µ(m) mod N,N

)
= p. It is not advisable

to use this particular toy encoding (for example, one can clearly forge signatures if r
is allowed to be as large as N1−1/e), but more serious probabilistic encodings in which
the randomness is recovered as part of signature verification, such as PSS [BR96], are
similarly immune to Boneh et al.’s attack.

10.1.2 The attack of Coron et al.
At CHES 2009, Coron, Joux, Kizhvatov, Naccache and Paillier [CJK+09] showed how,
for certain padding schemes, the case of unknown nonces or partially unknown messages

176

10.1. Introduction

can be tackled nonetheless if the unknown part is not too large. The attack uses a
technique by Herrmann and May [HM08] for finding small roots of linear equations
modulo an unknown factor p of a public modulus N . This technique is in turned based
on Coppersmith’s lattice-based method for finding small roots of polynomials [Cop97].

The main application considered by Coron et al. was RSA signatures using the
ISO/IEC 9796-2 standard padding scheme [ISO9796–2:2002], where the message is
partially unknown, a common situation in smart card applications, especially EMV smart
cards [EMV]. The ISO/IEC 9796-2 encoding function is of the form:

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1]‖m[2] is split in two parts, and H is a hash function, typically SHA-1.
Only m[2] is transmitted together with the signature σ = µ(m)d mod N . To recover the
whole message and verify the signature, the recipient first computes µ(m) = σe mod N ,
from which he deduces m[1], and then checks that the hash value H(m) is correct.

In the cases considered in [CJK+09], the message prefix m[1] is partially known to
a fault attacker (because messages are formatted in a particular way, as is common in
applications) but some variable part is unknown, and the hash value H(m) is unknown
as well as a result. Yet, if the unknown part of m[1] is not too large (up to about 160
bits for a 2048-bit modulus), then, like in Boneh et al.’s attack, the private key can be
recovered with a single fault.

In addition, the same paper presents an extension of this attack to the case when
multiple faults are available, which makes it theoretically possible to deal with larger
unknown message parts. However, this variant involves lattice reduction in dimensions
exponential in the number of faults (using heuristic, multivariate versions of Coppersmith’s
method), and becomes quickly impractical.

10.1.3 Our contribution
In this chapter, we present another multiple fault attack in the same setting eschewing
Coppersmith-like techniques entirely. It is based on orthogonal lattices, as used in earlier
cryptanalytic results such as [NS97, NS98]. The lattice sizes involved are moderate and
make the attack quite practical for relatively large unknown message parts.

We implement a simulation of the attack and show it to scale gracefully with the
number of available faulty signatures. Unknown message parts very close to the theoretical
maximum of half of the modulus length can be recovered in seconds.

We also show that the attack applies to a number of EMV signature formats. For
a particular EMV use case well beyond the reach of the attack in [CJK+09], 10 faulty
signatures are sufficient with our technique to recover the private key in a fraction of a
second.

10.1.4 Outline
In preparation for the orthogonal lattice techniques used in this and the next chapter,
we start by collecting a few results about integer lattices and lattice reduction (§10.2).

177

10. Fault Attacks on EMV Signatures

We then recall the definition of the ISO/IEC 9796-2 padding function and describe the
structure of CRT faults on ISO/IEC 9796-2 signatures (§10.3). Based on this structure,
we explain the idea of Coron et al.’s Coppersmith-based attack as well as its limitations
(§10.4). Then, we describe our new multiple-fault attack (§10.5) and provide some
simulation results to assess its practicality and compare it to the previous attack (§10.6).
We show that our new attack does apply to EMV signatures (§10.7) and finally suggest
some possible countermeasures (§10.8).

10.2 Preliminaries on Lattices
We start with some preliminary definitions and results about lattices. A similar presenta-
tion with a larger scope and more details can be found in [Ngu09, §6].

10.2.1 Notation and background

We will consider Rn endowed with its usual structure as an Euclidean vector space.
Bold letters will denote vectors, usually in row notation. If x = (x1, . . . , xn) and
y = (y1, . . . , yn) are two vectors, their Euclidean inner product is denoted by

〈x,y〉 =
n∑
i=1

xiyi.

The corresponding Euclidean norm is denoted by

‖x‖ =
√
〈x,x〉 =

√
x2

1 + · · ·+ x2
n.

For any subset S of Rn, we define the linear span of S, denoted by span(S), as the
minimal vector subspace of Rn containing S.

The Gram determinant of b1, . . . , bm ∈ Rn, denoted by ∆(b1, . . . , bm), is by definition
the determinant of the Gram matrix (〈bi, bj〉)16i,j6m. This real number ∆(b1, . . . , bm)
is always > 0, and it turns out to be zero if and only if the bi’s are linearly dependent.
The Gram determinant is invariant by any permutation of the m vectors, and by
any integral linear transformation of determinant ±1 such as adding to one of the
vectors a linear combination of the others. The Gram determinant has a very useful
geometric interpretation: when the bi’s are linearly independent,

√
∆(b1, . . . , bm) is the

m-dimensional volume of the parallelepiped spanned by the bi’s.

10.2.2 Lattices and lattice bases

For our purposes, a lattice will be any subgroup L of (Zn,+) for some n (such a subgroup
is sometimes called an integral lattice, to distinguish it from more general definitions
of a lattice). Examples include Zn itself, the zero lattice {0}, and the set aZ + bZ of
linear combinations of any two integers a, b ∈ Z (which is simply gcd(a, b)Z). For another
example, consider n integers a1, . . . , an, together with a modulus M . Then the set of

178

10.2. Preliminaries on Lattices

all (x1, . . . , xn) ∈ Zn such that ∑n
i=1 aixi ≡ 0 (mod M) is a lattice, as it is clearly a

subgroup of Zn.
Let b1, . . . , bm be arbitrary vectors in Zn. Denote by L(b1, . . . , bm) the set of all

integral linear combinations of the bi’s:

L(b1, . . . , bm) =
{

m∑
i=1

nibi : n1, . . . , nm ∈ Z
}
.

This set is a subgroup of Zn, and hence a lattice L, called the lattice generated or spanned
by the bi’s. When the bi’s are linearly independent, we say that (b1, . . . , bm) is a basis of
the lattice L, in which case each lattice vector decomposes itself uniquely as an integral
linear combination of the bi’s.

Bases and sets of generators are useful to represent lattices, and to perform compu-
tations. One will typically represent a lattice by some lattice basis, which can itself be
represented by a matrix with integer coefficients. If (b1, . . . , bm) is a basis of L, with
bi = (bi,1, . . . , bi,n), we will represent the lattice L = L(b1, . . . , bm) by the following
matrix:  b1,1 · · · b1,n

...
...

bm,1 · · · bm,n


whose rows are the coordinates of the bi’s.

We define the dimension or rank of a lattice L, denoted by dim(L), as the dimension d
of the vector space span(L). The dimension is the maximal number of linearly independent
lattice vectors. Any lattice basis of L must have exactly d elements. It is clear that there
exist d linearly independent lattice vectors, but such vectors do not necessarily form
a basis, contrary to what happens in the case of vectors spaces. However, it is in fact
always possible to find a basis of L: in other words, lattices of dimension d in Zn are
exactly all subsets of Zn of the form

L = L(b1, . . . , bd)

for some linearly independent vectors b1, . . . , bd ∈ Zn.

10.2.3 Lattice volume
Let (b1, . . . , bd) and (c1, . . . , cd) be two bases of a lattice L in Rn. An elementary result
states that there exists a d× d integral matrix U = (ui,j)16i,j6d ∈Md(Z) of determinant
±1 such that ci = ∑d

j=1 ui,jbj for all 1 6 i 6 d. It follows that the Gram determinants
of those two bases are equal:

∆(b1, . . . , bd) = ∆(c1, . . . , cd) > 0.

The volume of the lattice L is then defined as:

vol(L) = ∆(b1, . . . , bd)1/2

179

10. Fault Attacks on EMV Signatures

which is independent of the choice of the lattice basis (b1, . . . , bd). It corresponds to the
d-dimensional volume of the parallelepiped spanned by any basis. In the important case
of full-dimensional lattices where dim(L) = n = dim(Rn), the volume is also equal to the
absolute value of the determinant of any lattice basis.

If an explicit basis is known, computing the lattice volume amounts to computing
a determinant. However, in some cases, we may not know any explicit lattice basis; in
such a case, the following elementary result may be useful for computing the volume
nonetheless. If L1 and L2 are two lattices in Zn of the same dimension such that L1 ⊂ L2,
then L2/L1 is a finite group of order denoted by [L2 : L1] which satisfies

vol(L1) = [L2 : L1] · vol(L2).

For example, consider n integers a1, . . . , an, together with a modulus M . We have
seen in §10.2.2 that the set L of all (x1, . . . , xn) ∈ Zn such that ∑n

i=1 aixi ≡ 0 (mod M)
is a lattice in Zn, but it is not obvious how to explicitly write down a basis of L. However,
note that L ⊂ Zn and that the dimension of L is n because L contains MZn. It follows
that vol(L) = [Zn : L]. Furthermore, the definition of L says that it is the kernel of the
group homomorphism Zn → Z/MZ sending (x1, . . . , xn) to ∑n

i=1 aixi. The image of this
morphism is the subgroup generated by gcd(M,a1, a2, . . . , an), and hence:

vol(L) = [Zn : L] = M

gcd(M,a1, a2, . . . , an) .

10.2.4 Lattice reduction

As previously noted, any lattice has a basis. In fact, any lattice of dimension 2 or more
has infinitely many bases. However, some of these bases are “better” than others, in
the sense that they give more compact descriptions of the lattice and make it easier to
answer various questions about the lattice.

In the case of Euclidean vector spaces, it is usually convenient to work with orthogonal
bases. Lattices, on the other hand, do not always admit orthogonal bases. Nevertheless,
it can be shown that one can always find so-called reduced bases, consisting of “relatively
short” vectors that are “not too far” from being orthogonal.

Giving precise definitions for such notions as “short vectors” and “reduced bases”,
showing that such vectors or such bases exist, and describing methods to find them, is
the purpose of the theory of lattice reduction.

Minkowski’s successive minima. In order to explain what a reduced basis is, we need to
define what is meant by short lattice vectors. Let L be a lattice of dimension > 1 in Rn.
Since any closed hyperball centered at zero contains finitely many vectors of L, there
exists a non-zero vector in L of minimal length. The Euclidean norm of that shortest
non-zero vector is called the first minimum of L, and is denoted by λ1(L) > 0. Any
vector v in L of norm λ1(L) is called a shortest vector of L. It is never unique, since −v
is also a shortest vector.

180

10.2. Preliminaries on Lattices

For that reason, one must be careful when defining the second-to-shortest vector of a
lattice. Minkowski [Min96] defined the other minima as follows. For all 1 6 i 6 dim(L),
the i-th minimum λi(L) is defined as the minimum of max16j6i ‖vj‖ over all families of
i linearly independent lattice vectors v1, . . . ,vi ∈ L. Clearly, the minima are increasing:
λ1(L) 6 λ2(L) 6 · · · 6 λd(L). And it is not difficult to see that there always exist
linearly independent lattice vectors v1, . . . ,vd reaching simultaneously the minima, that
is ‖vi‖ = λi(L) for all i.

As a side note, perhaps surprisingly, it is not the case in general that such vectors
form a basis of L. In fact, one can find lattices (of dimension > 5) in which there is no
basis at all formed by vectors of length equal to the successive minima.

Random lattices. It is possible to give a relatively precise description of how Minkowski’s
minima behave “generically”, namely for so-called random lattices. The precise definition
of a random lattice is somewhat technical but the idea is that there is a natural way to
pick a lattice “uniformly at random” (see e.g. [Ajt02] for details).

It is proved in [Ajt06] that a random lattice of rank n satisfies asymptotically, with
overwhelming probability:

∀ 1 6 i 6 n, λi(L) ≈
√

n

2πe vol(L)1/n. (10.1)

This means that all minima are close to each other and to the radius of an n-dimensional
ball of volume vol(L).

Furthermore, [Ajt06] also shows that asymptotically, in a random n-rank lattice L,
there exists with overwhelming probability a lattice basis (b1, . . . , bn) such that:

∀ 1 6 i 6 n, ‖bi‖ ≈
√

n

2πe vol(L)1/n. (10.2)

Such a basis consists of very short vectors, since their norms are close to the successive
minima. Thus, random lattices typically have nice bases.

In applications, lattices are often not picked at random in the previous sense but
constructed in a particular way. Such non-random lattices can sometimes behave quite
differently from random lattices: for example, the first minimum can be arbitrarily small
compared to vol(L)1/n for lattices constructed in an ad hoc way. However, it is often a
reasonable heuristic to infer the “typical” behavior of lattices in a given problem from
the case of random lattices, and assume that the previous properties hold most often
nonetheless.

Reduction notions and LLL. We just mentioned that random lattices always have nice
bases: what about general lattices? The goal of lattice reduction is to prove the existence
of nice lattice bases in every lattice, and to describe procedures to find such bases. These
nice bases are called reduced.

There are multiple definitions of a reduced basis: usually, one first defines a notion
of reduction, then shows that there exist bases which are reduced in this sense, and

181

10. Fault Attacks on EMV Signatures

finally proves that bases which are reduced in this sense have interesting properties,
mathematical (how short are the vectors of a reduced basis?) and computational (how
easy is it to compute the basis?).

One classical notion of reduction, which will be enough for our purposes, is the
Lenstra-Lenstra-Lovász reduction [LLL82] (LLL for short). It isn’t very strong (in
the sense that vectors of an LLL-reduced basis aren’t necessarily very short) but it is
computationally inexpensive: we can compute LLL-reduced basis of lattices of relatively
large dimension quickly.

We will not need a precise definition of LLL reduction, but the following few properties
will come in handy. All lattices admit LLL-reduced bases, and any LLL-reduced basis
(b1, . . . , bd) of a lattice L satisfies:

1. ‖b1‖ 6 2(d−1)/4(volL)1/d.

2. For all 1 6 i 6 d, ‖bi‖ 6 2(d−1)/2λi(L).

3. ‖b1‖ × · · · × ‖bd‖ 6 2d(d−1)/4 volL.

The vectors of an LLL-reduced basis are thus at most exponentially far from the minima.

10.3 Modeling Faults on ISO/IEC 9796-2 Signatures

10.3.1 The ISO/IEC 9796-2 signature scheme
As discussed in Chapter 9, ISO/IEC 9796-2 is an encoding standard allowing partial
message recovery [ISO9796–2, ISO9796–2:2002], and used in many embedded applications,
including EMV smart cards [EMV]. The encoding can be used with hash functions H of
various digest sizes kh. When kh, the message size and the size of N (denoted k) are all
multiples of 8, the ISO/IEC 9796-2 encoding of a message m = m[1] ‖m[2] is

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m[1] consists of the k−kh−16 leftmost bits of m and m[2] represents the remaining
bits of m. In [ISO9796–2:2002] it is required that kh > 160.

The ISO/IEC 9796-2 encoding itself is deterministic, but it is often used with messages
containing parts which are either secret or picked at random upon signature generation.
This is particularly the case in EMV smart cards. The message to be signed can be put
in the following general form: m = m[1] ‖m[2] with

m[1] = α ‖ r ‖α′ and m[2] = data

where r is an unknown bit string (e.g. a random nonce), α and α′ are bit strings
known to the attacker, and data is a possibly unknown bit string. Thus, the ISO/IEC
9796-2-encoded message is

µ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16

182

10.4. The Small Root Attack

where both r and the hash value are unknown. In typical use cases, the hash value is a
160-bit long SHA-1 digest, and N is an RSA modulus of around 1024 bits. The unknown
string r can be of various sizes depending on the nature of the signed message; the shorter
r is, the easier the attack becomes.

More generally, we will consider encoded messages of the form:

µ(m) = A+B · x0 + C · y0

where B and C are public constants (in the ISO/IEC 9796-2 case, suitable powers of
2), A is a number representing the known part of the encoding, and x0 and y0 are the
unknown parts (equal to r and H(m) respectively). The signature is then computed as
σ = µ(m)d mod N as usual, using the CRT.

10.3.2 Attack model
A fault is injected in the exponentiation modulo q part of the RSA-CRT signature
generation, resulting in a faulty signature σ satisfying

σe ≡ A+B · x0 + C · y0 (mod p) and σe 6≡ A+B · x0 + C · y0 (mod q).

Dividing by B and subtracting the left-hand side, the faulty signature yields a relation of
the form

a+ x0 + c · y0 ≡ 0 (mod p) and a+ x0 + c · y0 6≡ 0 (mod q)

where a = B−1(A−σe) mod N is a value known to the attacker, and c = B−1 ·C mod N
is a public constant.

In other words, the fault attack provides the attacker with an integer a such that for
a certain unknown pair (x0, y0) of bounded size, the following holds:

a+ x0 + c · y0 ≡ 0 (mod p) and a+ x0 + c · y0 6≡ 0 (mod q).

We will write the bounds on x0 and y0 as 0 6 x0 < Nγ and 0 6 y0 < N δ. The total
fraction of unknown bits in the encoded message is thus γ + δ.

Intuitively, in both Coron et al.’s attack and our new attack, the adversary takes
advantage of the affine relation in x0 and y0 mod p to recover the unknown part with
lattice techniques, and use it to factor N .

In practice, the fault can be injected using e.g. voltage spikes during the computation
modulo q (see [CJK+09, §4]).

The resulting value modulo q (of the faulty signature, or equivalently of a+ x+ cy)
is usually modeled as a random element in Zq: this is the random fault model.

10.4 The Small Root Attack
We now describe the previous attack by Coron et al. [CJK+09] in the single-fault case,
and show how it extends to multiple faults (albeit with poor efficiency).

183

10. Fault Attacks on EMV Signatures

10.4.1 Single-fault attack

After a single fault, the attacker obtains a bivariate linear polynomial f(x, y) = a+x+c ·y
such that f(x0, y0) ≡ 0 (mod p) and f(x0, y0) 6≡ 0 (mod q) for some unknown pair (x0, y0)
satisfying known bounds. They can then apply the following Coppersmith-like result by
Herrmann and May.

Theorem 10.1 (Herrmann-May [HM08]). Let N be a sufficiently large composite integer
with a divisor p > Nβ. Let f ∈ Z[x, y] be a bivariate linear polynomial. Assume that
f(x0, y0) = 0 mod p for some (x0, y0) such that |x0| 6 Nγ and |y0| 6 N δ. Then for any
ε > 0, under the condition

γ + δ 6 3β − 2 + 2(1− β)3/2 − ε (10.3)

one can find linearly independent polynomials h1, h2 ∈ Z[x, y] such that h1(x0, y0) =
h2(x0, y0) = 0 over Z, in time polynomial in logN and ε−1.

In our case, N is a (presumably balanced) RSA modulus, so β = 1/2 and condi-
tion (10.3) becomes:

γ + δ <

√
2− 1
2 ≈ 0.207. (10.4)

Under that condition, we obtain two linearly independent polynomials h1, h2 ∈ Z[x, y]
such that (x0, y0) is a root of both.

Suppose further that h1, h2 are in fact algebraically independent. It is then easy to
compute the finite list of their common roots, e.g. by taking the resultant with respect to
y and solving for x, and thus to find (x0, y0). Once (x0, y0) is computed, one can proceed
as in Boneh et al.’s attack to factor N :

gcd
(
f(x0, y0) mod N,N

)
= p.

The algebraic independence assumption makes the attack heuristic, but the experi-
mental validation carried out in [CJK+09] suggests that it works well for γ + δ not too
large. For example, with a 2048-bit modulus and 160-bit hash function, a 158-bit long
nonce r is recovered in less than a minute with a single fault. The total fraction of
unknown message bits is then γ + δ = (158 + 160)/2048 ≈ 0.155.

However, condition (10.4) is quite restrictive, especially when N is small. Indeed, for
a 1024-bit modulus with 160-bit hash function, the theoretical maximum nonce size that
can be recovered is 58 bits, and the algorithm is only manageable in practice for much
smaller sizes. As a result, the attack performs worse than exhaustive search for r for this
modulus size.

10.4.2 Extension to several faults

To tackle larger unknown message parts, Coron et al. suggest [CJK+09, §2.4] taking
advantage of ` > 1 faulty signatures obtained with the same signing key. This gives a

184

10.5. Our New Multiple-Fault Attack

family of ` linear polynomials fi(x, y) = ai + x + c · y each of which has a small root
(xi, yi) modulo p.

Using independent variables for all of these polynomials and multiplying powers of
them together, they get a large number of polynomials in 2` variables, each of which
has the small root (x1, y1, . . . , x`, y`) modulo p. If the small root is small enough, it
is then possible to construct a lattice from those multivariate polynomials such that
lattice reduction yields 2` linearly independent polynomials with the same small root
(x1, y1, . . . , x`, y`) over the integers. If those polynomials happen to be algebraically
independent, this reveals the unknown message parts xi, yi and we can factor N as before.

The algebraic independence condition in this case is a real hurdle, but more im-
portantly, the dimension of the lattice constructed in that way quickly becomes very
large. Theoretically, given a sufficiently large number of faults, the extended attack
could tackle cases where γ + δ is asymptotically close to 1/2. However, since the lattice
dimension grows exponentially with the number ` of faulty signatures, achieving γ + δ
values significantly higher than the single-fault maximum of 0.207 is quite impractical.
Table 10.2 illustrates how intractable the problem gets as γ + δ approaches 1/2. As a
result, this approach doesn’t extend the scope of the single-fault attack by a large margin.

10.5 Our New Multiple-Fault Attack
We now describe our new multiple-fault attack, which uses lattices in a very different
way. We are now given ` faulty signatures, and in particular a vector a = (a1, . . . , a`) of
integers such that, for two short unknown vectors x = (x1, . . . , x`), y = (y1, . . . , y`), we
have:

a+ x+ c · y ≡ 0 (mod p). (10.5)

The attack then proceeds in three steps.

Linearization. The first step is to eliminate a in (10.5) to obtain a linear, rather than
affine, relation. To do so, we try to find vectors uj orthogonal to a modulo N , and take
the inner products of (10.5) with the uj ’s.

The set La = {u ∈ Z` | 〈a,u〉 ≡ 0 (mod N)} of vectors u orthogonal to a modulo
N is a lattice in Z` of rank ` and volume N , as seen in §10.2.3. It is possible to find a
reduced basis of it by standard orthogonal lattice techniques [NS97] as follows. Denote
by L(0)

a the lattice in Z`+1 generated by the rows of the matrix
κN 0 · · · 0
κa1 1 0
... . . .
κa` 0 1

 (10.6)

where κ is a large scaling constant. Now for any vector u(0) = (u0, u1, . . . , u`) in this
lattice, one has u0 = κ(a1u1 + · · · + a`u` + mN) for some integer m. In particular, if

185

10. Fault Attacks on EMV Signatures

|u0| < κ, then u0 = 0, and u = (u1, . . . , u`) must satisfy 〈a,u〉 ≡ 0 (mod N). Thus, any
vector u(0) in L(0)

a whose norm is less than κ gives rise to a vector u ∈ La. Conversely, if
u is a point in La, then u(0) = (0, u1, . . . , u`) is in L(0)

a .
Since it admits NZ` as a sublattice, the lattice La in Z` contains a linearly independent

family consisting of ` vectors of length at most N . Taking the corresponding vectors in
L

(0)
a , this implies that λj(L(0)

a) 6 N for 1 6 j 6 `.
Consider then an LLL-reduced basis (u(0)

1 , . . . ,u
(0)
`+1) of L(0)

a . Recall from §10.2.4 that
a property of LLL reduction is that for 1 6 j 6 `,

‖u(0)
j ‖ 6 2`/2λj(L(0)

a) 6 2`/2N.

Hence, if one chooses κ large enough, all vectors u(0)
j , 1 6 j 6 `, are of norm less than κ

and give rise to independent vectors uj that are orthogonal to a modulo N (it is in fact
an LLL-reduced basis of the lattice of such orthogonal vectors). In particular, taking the
inner product of (10.5) with uj , we get, for 1 6 j 6 `

〈x,uj〉+ c〈y,uj〉 ≡ 0 (mod p). (10.7)

Moreover, we can give a heuristic estimate the size of the vectors uj . Assuming
that La behaves like a random lattice, the length of these vectors should be around√
`/2πe · N1/` since vol(La) = N . Neglecting the small multiplicative factor, we can

heuristically expect that ‖uj‖ . N1/`.

Orthogonalization. For all j, let αj = 〈x,uj〉 and βj = 〈y,uj〉. We expect to have, for
all j except the last few, |αj | . Nγ+1/` and |βj | . N δ+1/`. Now recall from (10.7) that

αj + c · βj ≡ 0 (mod p).

If (αj , βj) 6= (0, 0), this amounts to writing −c as the modular ratio αj/βj mod p. But
this is only possible in general if the sum of sizes of αj and βj is at least the size of p. In
other words, if Nγ+1/` ·N δ+1/` � p, that is

γ + δ + 2
`
.

1
2 (10.8)

we should have αj = βj = 0 for all j except perhaps the last few. This means that uj is
orthogonal to x and y in Z`.

Assume that this does in fact hold for 1 6 j 6 `−2, and consider the lattice of vectors
in Z` orthogonal to uj for 1 6 j 6 ` − 2. This is a bidimensional lattice containing x
and y, and we can find a basis (x′,y′) of it with LLL. This is done by computing the
LLL-reduction of the following lattice in Z`−2+` generated by the rows ofκ

′u1,1 · · · κ′u`−2,1 1 0
...

... . . .
κ′u1,` · · · κ′u`−2,` 0 1


where κ′ is a suitably large constant [NS97].

186

10.6. Simulation Results

Factoring. Finally, using LLL again as in the linearization step, we can construct a short
vector v orthogonal to both x′ and y′ modulo N . Then v is also orthogonal mod N to
all Z-linear combinations of x′ and y′, in particular x and y. Therefore, taking the inner
product of (10.5) with v, we get

〈a,v〉 ≡ 0 (mod p)

and we can thus factor N as required:

gcd(〈a,v〉, N) = p.

Summary. If condition (10.8) is satisfied, the following algorithm should heuristically
find a nontrivial factor of N :

1. Find an LLL-reduced basis (u1, . . . ,u`) of the lattice of vectors in Z` orthogonal to a
modulo N .

2. Find a basis (x′,y′) of the lattice of vectors in Z` orthogonal to uj , 1 6 j 6 `− 2.

3. Find a short vector v orthogonal to x′ and y′ modulo N (for example the first vector
of an LLL-reduced basis of the lattice formed by such orthogonal vectors).

4. Return gcd(〈a,v〉, N).

The attack is heuristic because it might be the case that uj isn’t actually orthogonal
to x and y in Z` for all j 6 `− 2.

Experimentally, however, success rates are very high when condition (10.8) is verified,
as we show in the next section.

10.6 Simulation Results
We simulate our new fault attack as follows: we first generate a correct σp = µ(m)d
mod p and a random σq ∈ Zq and then compute the faulty signature σ using the Chinese
Remainder Theorem. This mimics the process described in [CJK+09] where concrete
faults are injected into devices generating ISO/IEC 9796-2 signatures. We then feed
the resulting faulty signatures into the algorithm described above and check whether it
successfully factors the signing key.

We first collect results on the success rate of the attack γ+ δ = 0.33. Condition (10.8)
predicts that the number of faulty signatures should satisfy ` & 12, and we do in fact
find a success rate of 100% for ` = 13 or 14, both for balanced and unbalanced (γ, δ)
configurations, as shown in Table 10.1.

We then assess the practicality and efficiency of our attack for various unknown
message part lengths γ + δ, and compare it to the attack by Coron et al. [CJK+09].
The results are presented in Table 10.2, which provides, for several values of γ + δ, the
following information: the number of faulty signatures `new used in our simulation, the

187

10. Fault Attacks on EMV Signatures

Number of faults ` 12 13 14

Success rate with γ = δ = 1
6 13% 100% 100%

Success rate with γ = 1
4 , δ = 1

12 0% 100% 100%
Average CPU time (seconds) 0.19 0.14 0.17

Table 10.1: Attack simulation results using SAGE. Random 1024-bit moduli. Single
2.5 GHz Intel CPU core.

γ + δ `new ωnew CPU time (new) `old ωold CPU time (old)
0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 —
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

Table 10.2: Comparison of the new attack with [CJK+09] for a random 1024-bit modulus.

corresponding lattice dimension ωnew, and the running time of the new attack, as well as
the corresponding values `old, ωold and estimated running time for the multi-fault attack
of [CJK+09] (the stated γ + δ being out of reach of the single-fault variant).

As we can see from the table, the attack by Coron et al. has the advantage of requiring
fewer faulty signatures to attack the same γ + δ value. However, lattice dimensions are
much smaller in our case, making the attack considerably faster, and indeed practical for
values very close to the theoretical maximum of 1/2, which are completely out of reach
of the previous attack.

10.7 Application to EMV Signatures

10.7.1 The EMV specification

EMV is a collection of industry specifications for the inter-operation of payment cards,
POS terminals and ATMs. The EMV specification [EMV] uses ISO/IEC 9796-2 signatures
to certify public-keys and to authenticate data. For instance, to authenticate itself, the
payment card must issue a signature on data provided by the terminal. The signature
algorithm is RSA with ISO/IEC 9796-2 using e = 3 or e = 216 + 1. The bit length of all
moduli is always a multiple of 8. EMV uses special message formats; 7 different formats
are used, depending on the message type.

In the following, for clarity’s sake, we analyze one of these formats only: the Offline
Dynamic Data Authentication, Dynamic Application Data format, described in Book 2,

188

10.7. Application to EMV Signatures

Section 6.5, Table 15, page 67 of the EMV specifications [EMV]. The signing entity is
the Card. The message m to be signed has the format m = m[1]‖m[2] with:

m[1] = 050116 ‖ LDD ‖ ICCDD ‖ BB · · · BB16

m[2] = data

where LDD is a byte identifying the length (in bytes) of the ICC Dynamic Data string
ICCDD, and data is some data provided by the terminal. In general, the ICC Dynamic
Data string has the following form:

ICCDD = LICCDN ‖ ICCDN ‖ ADD

where LICCDN is one byte identifying the length (in bytes) of the time-variant ICC Dynamic
Number ICCDN, and ADD consists of LDD − LICCDN − 1 bytes of Additional Dynamic
Data to be signed. It is specified that one must have 2 6 LICCDN 6 8.

As mentioned in the EMV specifications, the ICC Dynamic Number can be an
unpredictable number or a counter incremented for every new signature. In a typical use
case (as described, for example, as part of EMV Test 2CC.086.1 Case 07 [EMV TC]),
ICCDN is a random 8-byte string generated by the card, and ADD is a variable 8-byte
string, encoded according to [ISO8825–1]. In this case, we have:

m[1] = 050116 ‖ 1116 ‖ 0816 ‖ ICCDN ‖ ADD ‖ BB · · · BB16

which can be rewritten as:

m[1] = X ‖ r ‖ BB · · · BB16

where X is a known value and r is a variable byte string of bit-size kr = 128. This gives:

µ(m) = 6A16 ‖ X ‖ r ‖ BB · · · BB16 ‖ H(m) ‖ BC16 (10.9)

where H(m) is a 160-bit digest of the encoded message m. Note that the no-fault forgery
attack from Chapter 9 does not apply because here m[1] cannot be controlled by the
adversary.

10.7.2 Fault attack
The EMV format for µ(m) given in (10.9) is the same as the one recalled in §10.3.1 and
considered in our new attack. In the particular use case described above, the string X
is known but r and H(m) are unknown to the attacker. Therefore the total number of
unknown bits is:

kr + kh = 128 + 160 = 288.
Hence, for a 1024-bit modulus N , we get:

γ + δ = 288
1024 ≈ 0.28

which is well beyond the range of practical applicability of [CJK+09], as shown in
Table 10.2. However, as apparent from the same table, our new attack will factor N in a
fraction of a second using about ten faulty signatures.

189

10. Fault Attacks on EMV Signatures

10.8 Proposed Countermeasures
Since faulty signatures are invalid, a possible countermeasure is to check the signature
after generation. Since signature verification is significantly cheaper than signature
generation in cases of interest (because of a low public exponent), this is a reasonable
option, and preferable to incurring the 4-fold performance penalty of not using the
Chinese Remainder Theorem at all. More generally, other usual countermeasures against
RSA-CRT fault attacks, as proposed e.g. by Shamir [Sha99, JPY01] or Giraud [Gir06],
apply to this setting. See however [KQ07] for an indication that such strategies may
prove ineffective in more elaborate attack models.

Furthermore, it should be noted that ad hoc signature paddings have no proof
of security even against standard attacks. The ISO/IEC 9796-2 padding scheme, in
particular, has a number of known vulnerabilities [CNS99, CNTW09]. It may be advisable
to use a probabilistic RSA signature scheme like PSS [BR96] instead, which is actually
secure in the random fault model considered here, as proved by Coron and Mandal
[CM09].

190

Chapter 11
Modulus Fault Attacks Against

RSA-CRT Signatures

11.1 Introduction

This chapter, like the previous one, is devoted to the description of a new fault attack
on RSA signatures using the Chinese Remainder Theorem, and the mathematical tools
involved are again the orthogonal lattice techniques of Nguyen and Stern.

However, while most of the work on RSA-CRT fault attacks and countermeasures
since the seminal 1997 paper of Boneh, DeMillo and Lipton has concentrated on the
perturbation of one of the two half exponentiations in signature generation, in this work
we consider the injection of faults in the public modulus before CRT interpolation. This
is a very different type of fault which does not seem to have been considered before, and
which defeats fault countermeasures that concentrate on protecting the exponentiations.

This new attack proves very effective in practice: depending on the fault model,
between 5 to 45 faults suffice to recover the RSA factorization within a few seconds.
Our simplest attack requires that the adversary knows the faulty moduli, but the most
sophisticated variant works even if the moduli are unknown, under reasonable fault
models. All our attacks have been fully validated experimentally with fault-injection
laser techniques.

This work is to be presented at CHES 2011 [BNNT11a] and will appear in the Journal
of Cryptographic Engineering [BNNT11b].

11.1.1 Fault attacks on RSA-CRT signatures

To sign a message m with RSA [RSA78], the signer first applies an encoding function µ
to m, and then computes the signature σ = µ(m)d mod N . To verify the signature σ,
the receiver checks that σe = µ(m) mod N. The Chinese Remainder Theorem (CRT)
is often used to speed up signature generation by a factor of about 4. This is done by

191

11. Modulus Fault Attacks Against RSA-CRT Signatures

computing:

σp = µ(m)d mod p−1 mod p and σq = µ(m)d mod q−1 mod q

and deriving σ from (σp, σq) using the CRT. As we discussed in Chapter 10, Boneh,
DeMillo and Lipton [BDL97, BDL01] observed in 1997 that RSA-CRT implementations
are vulnerable to fault attacks. Assuming that the attacker can induce a fault when σq is
computed while keeping the computation of σp correct, one gets:

σp = µ(m)d mod p−1 mod p and σq 6= µ(m)d mod q−1 mod q

hence:
σe = µ(m) mod p and σe 6= µ(m) mod q

which allows the attacker to factor N by computing gcd(σe−µ(m) mod N,N) = p. This
attack applies to any deterministic padding function µ, such as Full Domain Hash [BR96],
or probabilistic signatures where the randomizer used to generate the signature is sent
along with the signature, such as PFDH [Cor02]. Only probabilistic signature schemes
such that the randomness remains unknown to the attacker may be safe, though some
particular cases have been attacked as well, as we saw in the previous chapter.

In 2005, Seifert [Sei05] introduced a new type of RSA fault attacks, by inducing
faults on the RSA public modulus. The initial attack [Sei05] only allowed to bypass RSA
verification, but key-recovery attacks were later discovered by Brier et al. [BCMCC06],
and improved or extended in [Mui06, BCG08, BCDG09, BCDG10]. These key-recovery
attacks only apply to RSA without CRT, and they require many more faults than the
attack of Boneh et al.—at least on the order of 1000 faulty signatures.

11.1.2 Our contribution
We present new alternative key-recovery attacks on RSA-CRT signatures: instead of
targeting one of the RSA-CRT sub-exponentiations, we inject faults into the public
modulus like in Seifert’s attack. As a result, typical countermeasures against the attack
of Boneh et al. do not apply to these new attacks.

Our attacks are based on the orthogonal lattice techniques introduced by Nguyen
and Stern [NS97] in 1997. They are very effective in practice: they disclose the RSA
factorization within a few seconds using only between 5 to 45 faulty signatures. The
exact running time and number of faulty signatures depend on the fault model.

For instance, in our simplest attack, the running time is a fraction of a second using
only 5 faulty signatures, but the attacker is assumed to know the faulted moduli for
the 5 different messages. However, our attack can be extended to the case where the
attacker no longer knows the faulted moduli, using at most 45 faulty signatures, under
the following two fault models: either the faulted moduli only differ from the public
modulus on a single byte of unknown position and unknown value, or the faulted moduli
may differ from the public modulus by many bytes, but the differences are restricted to
the least significant bits, up to half of the modulus size.

All our attacks have been fully validated with physical experiments with laser shots
on a RISC microcontroller.

192

11.2. The New Attack

11.1.3 Related work

Many countermeasures have been proposed to protect against the attack of Boneh et al.
and its numerous generalizations, but they often focus on the exponentiation process.
The previously mentioned fault attacks [BCMCC06, Mui06, BCG08, BCDG09, BCDG10]
on RSA using faulty moduli only apply to standard RSA without CRT, and they use
non-lattice techniques. Our attack seems to be the first attack on RSA-CRT with faulted
moduli.

It should be pointed out, however, that a number of protected RSA-CRT im-
plementations also protect the CRT recombination. This is for example the case of
[ABF+02, CJ05, Gir06, BNP07, Vig08, Riv09].

More generally, as we observe in §11.5, using the technique known as Garner’s formula
for CRT recombination does thwart the attack introduced in this chapter. Since this
formula is often used in practice, typical implementations conforming to RSA standards
like PKCS#1 [PKCS#1 v2.1] and IEEE P1363 [IEEE P1363] should in principle be
immune to this attack.

11.1.4 Outline

In §11.2, we describe the basic attack where the faulty moduli are assumed to be known
to the attacker. In §11.3, we extend the attack to realistic fault models in which the faulty
moduli are no longer known to the attacker. In §11.4, we describe physical experiments
with laser shots on a RISC microcontroller to validate the attack. Finally, in §11.5, we
suggest possible countermeasures against this attack.

11.2 The New Attack

11.2.1 Overview

Consider again the generation of RSA-CRT signatures. To obtain the signature σ of a
message m padded as µ(m), the signer computes the mod-p and mod-q parts:

σp = µ(m)d mod p and σq = µ(m)d mod q

and returns the signature:

σ = σp · α+ σq · β mod N (11.1)

where α, β are the pre-computed Chinese Remainder coefficients α = q · (q−1 mod p) and
β = p · (p−1 mod q).

Assume that an adversary can obtain the correct signature σ, and also a signature
σ′ of the same padded message µ(m) after corrupting the modulus N before the CRT
step (11.1). In other words, the attacker gets σ as before but also σ′ defined as:

σ′ = σp · α+ σq · β mod N ′ for some N ′ 6= N .

193

11. Modulus Fault Attacks Against RSA-CRT Signatures

Suppose further, for the moment, that the adversary is able to recover the faulty modulus
N ′: we will see in §11.3 how this not-so-realistic hypothesis can be lifted in a more
practical setting. Then, by applying the Chinese Remainder Theorem to σ and σ′, the
adversary can compute

v = σp · α+ σq · β mod N ·N ′.

But if we denote the bit length of N by n, then N ·N ′ is a 2n-bit integer, whereas α, β
are of length n and σp, σq of length n/2, so v is really a linear combination of α and β in
Z:

v = σp · α+ σq · β.
That alone does not suffice to factor N , but several such pairs (σ, σ′) provide multiple

linear combinations of the (unknown) integers α, β with relatively small coefficients. Then
lattice reduction techniques allow us to recover the coefficients σp and σq, and hence
obtain the factorization of N by GCDs. The following sections describe this process in
detail.

11.2.2 Applying orthogonal lattice techniques
We refer to §10.2 or [Ngu09, NS01] for basic definitions and results on lattices. The
cryptanalytic tool we use here is the orthogonal lattice technique introduced by Nguyen
and Stern [NS97] and already used in §10.5. If L is a lattice in Zn, we let L⊥ be the
lattice formed by all vectors in Zn which are orthogonal to all vectors of L.

Suppose an attacker obtains ` pairs (σ, σ′) as above. He can compute as before a
vector v = (v1, . . . , v`) of 3n/2-bit integers satisfying an equation of the form:

v = αx+ βy (11.2)

where x,y are unknown vectors with n/2-bit components and α, β are the (unknown)
CRT coefficients relative to p and q. Lattice reduction can exploit such a hidden linear
relationship as follows.

Using the results from [NS97, NS98], it is possible to compute a reduced basis
{b1, . . . , b`−1} of the lattice v⊥ ⊂ Z` of vectors orthogonal to v in Z`. In particular we
get:

α〈bj ,x〉+ β〈bj ,y〉 = 0 for j = 1, 2, . . . , `− 1.
Now, observe that the smallest nonzero solution (u, v) ∈ Z2 of the equation α·u+β·v = 0 is
±(β,−α)/g, where g = gcd(α, β) is heuristically expected to be very small, which implies
that |u|, |v| > Ω(N) where the Ω() constant is very small. For each j = 1, 2, . . . , ` − 1,
there are thus two possibilities:

Case 1: 〈bj ,x〉 = 〈bj ,y〉 = 0, in which case bj belongs to the lattice L = {x,y}⊥ of
vectors in Z` orthogonal to both x and y;

Case 2: 〈bj ,x〉 and 〈bj ,y〉 have absolute value > Ω(N) with a very small Ω() constant.
Since x,y both have norm at most

√
`N , this implies ‖bj‖ > Ω(

√
N/`) by Cauchy-

Schwarz.

194

11.2. The New Attack

Since the lattice L = {x,y}⊥ is of rank `− 2, Case 1 cannot hold for all `− 1 linearly
independent vectors bj , so that the longest one b`−1 should be in Case 2, and hence
‖b`−1‖ > Ω(

√
N/`). On the other hand, the other vectors form a lattice of rank `− 2

and volume:

V = vol(Zb1 ⊕ · · · ⊕ Zb`−2) ≈ vol(v⊥)
‖b`−1‖

= ‖v‖
‖b`−1‖

6

√
` ·N3/2

Ω(
√
N/`)

= O(`N)

which can heuristically be expected to behave like a random lattice. In particular, we
should have:

‖bj‖ = O(
√
`− 2 · V 1/(`−2)) = O(`1/2+1/(`−2) ·N1/(`−2)) for j = 1, 2, . . . , `− 2.

This length is much smaller than
√
N/` as soon as ` > 5. Assuming that this is case, bj

should thus be in Case 1 for j = 1, 2, . . . , `− 2. This means that those vectors generate a
sublattice L′ = Zb1 ⊕ · · · ⊕ Zb`−2 of full rank in L = {x,y}⊥.

Taking orthogonal lattices, we get (L′)⊥ ⊃ L⊥ = Zx ⊕ Zy. Therefore, x and y
belong to the orthogonal lattice (L′)⊥ of L′. Let {x′,y′} be a reduced basis of that
lattice. We can enumerate all the lattice vectors in (L′)⊥ of length at most

√
`N as linear

combinations of x′ and y′. The Gaussian heuristic suggests that there should be roughly:

π(
√
`N)2

vol((L′)⊥) = π`N

V
= O(1)

such vectors, so this is certainly feasible. For all those vectors z, we can compute
gcd(v − z, N). We will thus quickly find gcd(v − x, N) among them, since x is a vector
of length 6

√
`N in (L′)⊥. But by definition of v we have:

v = x mod p and v = y mod q

so gcd(v − x, N) = p, which reveals the factorization of N .

11.2.3 Attack summary
Assume that, for ` > 5 padded messages µ(mi), we know a correct signature σi and a
signature σ′i computed with a faulty modulus N ′i . Then, we can heuristically recover the
factorization of N as follows.

1. For each i, compute the integer vi = CRTN,N ′i
(σi, σ′i). They form a vector v =

(v1, . . . , v`) ∈ Z`.

2. Compute an LLL-reduced [LLL82] basis {b1, . . . , b`−1} of the lattice v⊥ ⊂ Z` of
vectors in Z` orthogonal to v. This is done by applying LLL to the lattice in Z1+`

generated by the rows of the following matrix:κv1 1 0
... . . .
κv` 0 1


195

11. Modulus Fault Attacks Against RSA-CRT Signatures

Number of faulty signatures ` 4 5 6
1024-bit moduli 48% 100% 100%
1536-bit moduli 45% 100% 100%
2048-bit moduli 46% 100% 100%

Table 11.1: Attack success probability as a function of the number of faulty signatures
and the size of N . Each parameter set was tested with random faults on 500 random
moduli of the given size.

where κ is a suitably large constant, and removing the first component of each resulting
vector [NS97].

3. The first `− 2 vectors b1, . . . , b`−2 generate a lattice L′ ⊂ Z` of rank `− 2. Compute
an LLL-reduced basis {x′,y′} of the orthogonal lattice (L′)⊥ to that lattice. Again,
this is done by applying LLL to the lattice in Z`+2+` generated by the rows ofκ

′b1,1 · · · κ′b`−2,1 1 0
...

... . . .
κ′b1,` · · · κ′b`−2,` 0 1


and keeping the last ` components of each resulting vector.

4. Enumerate the vectors z = ax′ + by′ ∈ (L′)⊥ of length at most
√
`N , and for each

such vector z, compute gcd(v− z, N) using all components, and return any nontrivial
factor of N .

11.2.4 Simulation results
Since the attack is heuristic, it is important to evaluate its experimental performances.
To do so, we have implemented a simulation of the attack in SAGE [S+10b]: for a given
modulus N , we compute the vector v corresponding to a series of ` signatures on random
messages and apply the lattice attack, attempting to recover a factor of N .

Table 11.1 shows the measured success probabilities for various values of ` and
modulus sizes. It confirms the heuristic prediction that 5 faulty signatures should always
suffice to factor N . It turns out that even 4 signatures are enough in almost half the
cases.

Experimental running times are given in Table 11.2. The whole attack takes a few
dozen milliseconds on a standard PC. The number of vectors to test as part of the final
exhaustive search step is about 20 in practice, which is done very quickly.

11.3 Extending the Attack to Unknown Faulty Moduli
As mentioned in §11.2.1, in its basic form, the attack requires the recovery of the faulty
moduli N ′i in addition to the corresponding faulty signatures σ′i. This is not a very

196

11.3. Extending the Attack to Unknown Faulty Moduli

Modulus size 1024 1536 2048
Average search space π`N/V 24 23 24
Average total CPU time 16 ms 26 ms 34 ms

Table 11.2: Efficiency of the attack with ` = 5 faulty signatures and various modulus
sizes. Each parameter set was tested with random faults on 500 random moduli of the
given size. Timings for a SAGE implementation, on a single 2.4 GHz Core2 CPU core.

realistic assumption, since a typical implementation does not output the public modulus
along with each signature.

To work around this limitation, we would like to reconstruct the vector v of integer
values needed to run the attack from signatures alone, without the knowledge of the
faulty moduli—possibly at the cost of requiring a few more faulty signatures.

This can actually be achieved in various ways depending on the precise form of the
faults inflicted to the modulus. We propose solutions for the following two realistic fault
models:

1. The faulty moduli N ′i differ from N on a single (unknown) byte. This is known to be
possible using power glitches or laser shots with small aperture.

2. The differences between the faulty moduli N ′i and N are located on the least significant
half: the errors on the least significant bits can be up to half of the modulus size. It is
easy to obtain such faults with a laser or a cold boot attack.

11.3.1 Single byte faults

In this model, the attacker is able to obtain a certain number `′ > 5 of pairs (σi, σ′i)
where σi = αxi + βyi mod N is a valid signature and σ′i = αxi + βyi mod N ′i is the same
signature computed with a faulty modulus. The faulty moduli N ′i are not known, but
they only differ from N on a single byte whose position and value is unknown.

This type of fault can for example occur when attacking the transfer of the modulus
to memory on a smart card with an 8-bit processor, or when using a laser attack with a
sufficiently focused beam.

For a 1024-bit modulus N , for example, there are 128 × 255 ≈ 215 possible faulty
moduli. It can thus seem like a reasonable approach to try and run the attack with all
possible faults. However, since this should be done with 5 signatures, this results in a
search space of size ≈ (215)5 = 275 which is prohibitive.

This kind of exhaustive search can be made practical, though, if we take into account
the fact that the CRT value vi = CRTN,N ′i

(σi, σ′i) satisfies:

vi = αxi + βyi 6 N · (p+ q) = N3/2
(√

p

q
+
√
q

p

)
< (2N)3/2

197

11. Modulus Fault Attacks Against RSA-CRT Signatures

Number of pairs `′ 5 7 10 15 20 25
Search space size (bits) 11.6 9.8 7.2 6.2 4.2 2.6
Total attack time (seconds) 49 14 2.4 1.2 0.29 0.10

Table 11.3: Exhaustive search space size for the vector v of CRT values, and average
attack running time, depending on the number of pairs (σi, σ′i) available to the attacker.
Measured for a family of random single byte faults on a 1024-bit modulus. Timings are
given for the SAGE implementation as above.

since p/q ∈ (1/2, 2). Now, for a given value of σ′i, there are only very few possible target
moduli N∗i differing from N on a single byte such that v∗i = CRTN,N∗i

(σi, σ′i) < (2N)3/2:
often only one or two, and almost never more than 20. We only need to run the attack
with those target v∗i ’s until we find a factor.

Experimentally, for a 1024-bit modulus, the average base 2 logarithm of the number
of possible v∗i ’s is about 2.5, so if an attacker has 5 pairs (σi, σ′i) in this model, they can
expect to try all vectors v in a search space of around 12.5 bits, i.e. run the attack a
few thousand times, for a total running time of under 2 minutes. This is already quite
practical.

If more pairs are available, the attacker can keep the 5 pairs for which the number of
possible v∗i ’s is the smallest. This reduces the search space accordingly. In Table 11.3,
we show how the exhaustive search space size and the average running time evolve with
the number of signatures in a typical example.

11.3.2 Faults on many least significant bits
In this model, the attacker is able to obtain ` = 5 signature families of the form
(σi, σ′i,1, . . . , σ′i,k), where the σi’s are correct signatures:

σi = αxi + βyi mod N

and the σ′i,j ’s are faulty signatures of the form:

σ′i,j = αxi + βyi mod N ′i,j 1 6 i 6 `, 1 6 j 6 k.

In other words, for each one of the ` different messages, the attacker learns the reduction
of the CRT value vi = αxi +βyi modulo N , as well as modulo k different unknown faulty
moduli N ′i,j . Additionally, it is assumed that all N ′i,j differ from N only on the least
significant bits, but the number of distinct bits can be as large as half of the modulus
size: we assume that|N −N ′i,j | < N δ for a certain constant δ < 1/2.

This is a reasonable fault model for a laser attack: it suffices to target a laser beam
on the least significant bits of N to produce this type of faults.

To run the attack successfully, the attacker needs to recover the CRT values vi. This
can be done with high probability when the number of available faults k for a given
message is large enough. The simplest approach is based on a GCD computation.

198

11.3. Extending the Attack to Unknown Faulty Moduli

k (faults per message) 3 5 7 9
1/ζ(k) .832 .964 .992 .998

100-bit errors 83.2% 96.8% 99.0% 99.8%
200-bit errors 83.4% 96.2% 99.2% 99.8%
400-bit errors 82.7% 96.6% 99.1% 99.8%

Average CPU time .73 ms .75 ms .79 ms .85 ms

Table 11.4: Success probabilities of the GCD method for CRT value recovery, depending
on the number of available faults on a given message. Tested with random 1024-bit
moduli. In the simulation, errors εj are modeled as uniformly random signed integers of
the given size, and 10,000 of them were generated for each parameter set.

Indeed, fix an index i ∈ {1, . . . , `}, and write N ′i,j = N + εj , vi = u, σi = u0 and
σ′i,j = uj . The attacker knows the uj ’s and wants to recover u.

Now, observe that there are integers tj such that u satisfies u = u0 + t0 · N and
u = uj + tj · (N + εj). In particular, for j = 1, . . . , k we can write:

(tj − t0) ·N + (uj − u0) + tj · εj = 0. (11.3)

This implies that uj − u0 ≡ tj · εj (mod N). However, we have tj · εj < N1/2+δ � N ,
so that the congruence is really an equality in Z. In view of (11.3), this implies that all
tj ’s are in fact equal, and hence:

t0 · εj = u0 − uj 1 6 j 6 k.

If the errors εj on the modulus are co-prime, which we expect to happen with probability
≈ 1/ζ(k), we can then deduce t0 as the GCD of all values u0 − uj , and this gives:

u = u0 + t0 ·N = u0 +N · gcd(u0 − u1, . . . , u0 − uk).

As seen in Table 11.4, the success probability is in practice very close to 1/ζ(k) regardless
of the size of errors.

It is probably possible to further improve the success probability by trying to remove
small factors from the computed GCD g = gcd(u0 − u1, . . . , u0 − uk) to find t0 when
g >
√
N , but we find that the number of required faults is already reasonable without

this computational refinement.
Indeed, recall that ` = 5 CRT values are required to run the attack. If k faults are

obtained for each of the ` messages, the probability that these ` CRT values can be
successfully recovered with this GCD approach is ζ(k)−`. This is greater than 95% for
k = 7, and 99% for k = 9.

We can also mention an alternate, lattice-based approach to recovering the CRT value
u. The relation between the different quantities above can be written in vector form as:

u01 = u+ t0e

199

11. Modulus Fault Attacks Against RSA-CRT Signatures

where 1 = (1, . . . , 1), u = (u1, . . . , uk) and e = (ε1, . . . , εk).
Then, since u0 ≈ N is much larger than ‖t0e‖ ≈ N1/2+δ, short vectors orthogonal to

u will be orthogonal to both 1 and e. More precisely, we can heuristically expect that
when k is large enough (k & 2/(1− 2δ)), the first k − 2 vectors of a reduced basis of u⊥
will be orthogonal to 1 and e.

Taking orthogonal lattices again, we can thus obtain a reduced basis {x,y} of a
two-dimensional lattice containing 1 and e (and of course u). Since 1 is really short, we
always find that x = 1 in practice. Then, it happens quite often that y can be written as
λ1±e, in which case t0 is readily recovered as the absolute value of the second coordinate
of u in the basis {x,y}.

However, this fails when Z1⊕Ze is a proper sublattice of Zx⊕Zy = Zk ∩ (Q1⊕Qe),
namely, when there is some integer d > 1 such that all errors εj are congruent mod d.
Thus, we expect the success probability of this alternate approach to be 1/ζ(k−1), which
is slightly less than with the GCD approach.

11.4 Practical Experiments

Practical experiments for validating the new attack were done on an 8-bit 0.35µm RISC
microcontroller with no countermeasures. As the microprocessor had no arithmetic
coprocessor the values σp and σq were pre-computed by an external program upon each
fault-injection experience and fed into the attacked device. The target combined σp and
σq using multiplications and additions (using Formula 11.1) as well as the final modular
reduction.

The location and spread of the faults were controlled by careful beam-size and shot-
instant tuning. The reader is referred to Appendix app:laser for a description of the
physical setting (common to the experiments reported in [MDT+10]).

We conducted several practical experiments corresponding to three different scenarios,
roughly corresponding to the fault models considered in §11.2.1, §11.3.1 and §11.3.2
respectively. Let us describe these experiments in order.

11.4.1 First scenario: Known modulus

In this case, we considered 5 messages for a random 1024-bit RSA modulus N . For each
message mi, we obtained a correct signature σi, as well as a faulty-modulus signature σ′i
where the faulty modulus N ′i was also read back from the microcontroller.

Therefore, we were exactly in the setting described in §11.2.1, and could apply the
algorithm from §11.2.3 directly: apply the Chinese Remainder Theorem to construct the
vector v of CRT values and run the lattice-based attack to recover a factor of N .

The implementation of the attack used the same SAGE code as the simulation from
§11.2.4. In our experimental case, the ball of radius

√
N` contained only about 10 vectors

of the double orthogonal lattice, and the whole attack revealed a factor of N in less than
20 milliseconds.

200

11.4. Practical Experiments

11.4.2 Second scenario: Unknown single byte faults
In this case, we tried to replicate a setting similar to the one considered in §11.3.1. We
considered 20 messages and a random 1024-bit RSA modulus N . For each message
mi, we obtained a correct signature σi, as well as faulty-modulus signatures σ′i with
undisclosed faulty modulus N ′i generated by targeting a single byte of N with the laser.

We had to eliminate some signatures, however, because in some cases, errors on the
modulus turned out to exceed 8 bits.1 After discarding those, we had 12 pairs (σi, σ′i)
left to carry out the approach described in §11.3.1.

The first step in this approach is to find, for each i, all values v∗i of the form
CRTN,N∗i

(σi, σ′i) (N∗i differing from N only on one byte) that are small enough to be
correct candidate CRT values. Unlike the setting of §11.3.1, we could not assume that
bit-differences were aligned on byte boundaries: we had to test a whole 1016 × 255
candidate moduli2 N∗i for each i . Therefore, this search step was a bit costly, taking a
total of 11 minutes and 13 seconds. Additionally, due to the higher number of candidate
moduli, the number of candidate CRT values v∗i was also somewhat larger than in §11.3.1,
namely:

7, 17, 3, 9, 15, 5, 14, 44, 44, 17, 10, 55

for our 12 pairs respectively. Keeping only the 5 indices with the smallest number of
candidates, we obtained 3× 5× 7× 9× 10 = 9450 possible CRT value vectors v∗.

We then ran the lattice-based attack on each of these vectors in order until a factor of
N was found. The factor was found at iteration number 2120, after a total computation
time of 43 seconds.

11.4.3 Third scenario: Least significant bytes faults
In this case, we considered 10 messages for a random 1024-bit N . For each message
mi, we obtained a correct signature σi, as well as 10 faulty-modulus signature σ′i,j with
undisclosed faulty modulus N ′i . The laser beam targeted the lower order bytes of N but
with a large aperture, generating multiple faults stretching over as much as 448 modulus
bits.

In practice, we only used the data (σi, σ′i,1, . . . , σ′i,10) for the first 5 messages, discarding
the rest. Then, we reconstructed the CRT values vi using the GCD technique of §11.3.2:

vi = σi +N · gcd(σi − σ′i,1, . . . , σi − σ′i,10) 1 6 i 6 5

and applied the lattice-based attack on the resulting vector v. This revealed a factor of
N in 16 milliseconds.

1Note that in a real-world attack, it might not be possible to detect such overly spread out faults:
hence, this particular technique should be used preferably when faults are known to affect only single
bytes (e.g. in a glitch attack), whereas the technique from the next section is better suited to laser attacks
as aperture control is much less of an issue.

2There are duplicates among those, corresponding to perturbations of 7 consecutive bits or less, but
we did not attempt to avoid testing them several times, as this can only improve the search by a small
constant factor while introducing significant complexity in the code.

201

11. Modulus Fault Attacks Against RSA-CRT Signatures

We also tried the same attack using a fewer number of the σ′i,j ’s, and found that it
still worked when taking only 4 of those values in the computation of vi:

vi = σi +N · gcd(σi − σ′i,1, . . . , σi − σ′i,4) 1 6 i 6 5

but failed if we took 3 instead. Considering that 1/ζ(3)5 ≈ .40 and 1/ζ(4)5 ≈ .67, this is
quite in line with expectations.

11.5 Countermeasures and Further Research

Probabilistic and stateful signature schemes are usually secure against this attack, since
they make it difficult to obtain two signatures on the same padded message. However,
all deterministic schemes are typically vulnerable, including those in which the attacker
doesn’t have full access to the signed message, provided that the target device can be
forced to compute the same signature twice.

A natural countermeasure is to use a CRT interpolation formula that does not require
N , such as Garner’s formula, computed as follows:

t← σp − σq
if t < 0 then t← t+ p
σ ← σq + (t · γ mod p) · q
return(σ)

where we assume that p > q, and γ is the usual CRT coefficient q−1 mod p. Note that
the evaluation of σ does not require a modular reduction because

σ = σq + (t · γ mod p) · q 6 q − 1 + (p− 1)q < N.

Besides the obvious countermeasures consisting in checking signatures before release, it
would be interesting to devise specific countermeasures for protecting Formula (11.1) (or
Garner’s formula) taking into account the possible corruption of all data involved.

11.A Laser Fault Injection

Laser (Light Amplification by Stimulated Emission of Radiation) is a stimulated-emission
electromagnetic radiation in the visible or the invisible domain. Laser light is monochro-
matic, unidirectional, coherent and artificial (i.e. laser does not spontaneously exist in
nature). Laser light can be generated as a beam of very small diameter (a few µm). The
beam can pass through various material obstacles before impacting a target during a
very short duration.

Laser impacts on electronic circuits are known to alter functioning. Current chip
manufacturing technologies are in the nanometers range. This, and the laser’s brief and
precise reaction time, makes laser a particularly suitable fault injection means.

202

11.A. Laser Fault Injection

Figure 11.1: Architecture of a typical SRAM cell.

11.A.1 Photoelectric effects of laser on silicon

SRAM (Static Random Access Memory) laser exposure is known to cause bit-flips [SA02],
[DBP+02], [BECN+06], [Can09], a phenomenon called Single Event Upset (SEU). By
tuning the beam’s energy level below a destructive threshold, the target will not suffer
any permanent damage.

A conventional one-bit SRAM cell (Figure 11.1) is made of two cross-coupled inverters.
Every cell has two additional transistors controlling the cell’s content access during write
and read. As every inverter is made of two transistors, an SRAM cell contains six MOS.

In each cell, the states of four transistors encode the stored value. By design, the cell
admits only two stable states: a “0” or a “1”. In each stable state, two transistors are at
an ON state and two others are OFF.

If a laser beam hits the drain/bulk reversed-biased PN junctions of a blocked transistor,
the beam’s energy may create pairs of electrons as the beam passes through the silicon.
The charge carriers induced in the collection volume of the drain-substrate junction of the
blocked transistor are collected and create a transient current that inverts logically the
inverter’s output voltage. This voltage inversion is in turn applied to the second inverter
that switches to its opposite state: all in all, a bit flip happens [DBP+02], [BECN+06].

From the opponent’s perspective, an additional advantage of laser fault injection is
reproducibility. Identical faults can be repeated by carefully tuning the laser’s parameters
and the target’s operating conditions.

11.A.2 Different parameters in a fault attack by laser

In a laser attack, the opponent usually controls the beam’s diameter, wavelength, amount
of emitted energy, impact coordinates (attacked circuit part) and the exposure’s duration.
Sometimes, the opponent may also control the synchronicity of the impact with a given
clock cycle of the target, the target’s clock frequency, Vcc and temperature. Finally, laser
attacks may indifferently target the chip’s front side or back side.

However, the chip’s front and back sides have different characteristics when exposed
to a laser beam.

Front side attacks are particularly suited to green wavelength (∼ 532nm). The visibility
of chips components makes positioning very easy in comparison to backside attacks.
But because of the metallic interconnects’ reflective effect, it is difficult to target a
component with enough accuracy. In addition, progress in manufacturing technolo-

203

11. Modulus Fault Attacks Against RSA-CRT Signatures

gies results in both a proliferation of metal interconnects and much smaller chips.
All in all, it becomes increasingly difficult to hit a target area.

Backside attacks are more successful at the infrared wavelength (∼ 1064nm) as the laser
needs to deeply enter the silicon. Positioning is more difficult for lack of visibility.
Nonetheless, backside attacks allow to circumvent the reflective problem of metallic
surfaces.

11.A.3 Practical CRT fault injection

After chip decapsulation and a mapping of the chip’s components, we selected a large
target area, given our knowledge of the implementation. Using automated search on the
chip’s front-side, we modified the impact’s coordinates, the beam parameters and timing
until a reproducible fault area was obtained.

The target is an 8-bit 0.35 µm 16 MHz RISC microcontroller with an integrated 4KB
SRAM and no countermeasures. The device runs SOSSE (Simple Operating System
for Smartcard Education [B+03]) to which we added some commands, most notably
for feeding-in the data {N, p, q, σp, σq, p−1 mod q, q−1 mod p}. Upon reception all these
parameters are stored in SRAM. The laser, shown in Figures 11.6 and 11.7, is equipped
with a YAG laser emitter in three different wavelengths: green, infrared and ultraviolet.

The spot’s diameter can be set between 0 and 2500µm. As the beam passes through
a lens, it gets reduced by the lens’ zoom factor and loses a big part of its energy. Our
experiments were conducted with a 20× Mitutoyo lens, a green3 beam of ∅4µm and
' 15pJ per shot4. The circuit is installed on a programmable Prior Scientific X-Y
positioning table5. The X-Y table, card reader, laser and an FPGA trigger board, were
connected via RS-232 to a control PC. The FPGA trigger board receives an activation
signal from the reader and sends a trigger signal to the laser after a delay defined by the
control PC.

Experiments were conducted in ambient temperature and at Vcc = 5V. These
parameters are within the device’s normal operating conditions 2.7V 6 Vcc 6 5.5V.

The chip was decapsulated by chemical etching using a Nisene JetEtch automated
acid decapsulator. The decapsulator can be programmed for the chemical opening of
different chip types using different ratios of nitric acid (HNO3) and sulfuric acid (H2SO4),
at a desired temperature and during a specified time. For opening our chip, we used
only nitric acid at 80◦C for 40 seconds. The etched chip (Figure 11.2) successfully passed
functional tests before and during fault injection.

As it is very difficult to target the chip’s ALU (Arithmetic Logic Unit) during a very
specific calculation step, we decided to hit the SRAM to corrupt data rather than modify
calculations.

3532nm wavelength.
4At the laser source emitter, before passing through the lens.
5Motorized stepper stage for upright microscopes with 0,1 µm steps.

204

11.A. Laser Fault Injection

Figure 11.2: Decapsulated chip (SRAM is on the left middle and bottom side).

Figure 11.3: Decapsulated chip (closeup on SRAM).

Finding the SRAM area containing each data element and properly tuning the laser’s
parameters is very time consuming. The number of faults in the read back data, their
position and their contents indicate which element has been hit.

Figure 11.5 compares a 1µm laser spot and SRAM cells in different technology sizes.
As technology advances, transistor density per µm grows. With several transistors are
packed into 1µm areas, single-bit fault injection will require much more precise equipment
and are likely to become unfeasible using cheap lasers.

Figure 11.4 shows how we explored the target SRAM space. The method consisted
in searching N ’s precise storage area, shooting into it and reading data back. Figure 11.4
is just a schematic model of the real SRAM (Figure 11.3) to describe our technique and
does not correspond to real address allocation. We could successfully inject multiple byte
faults into selected parts of N and iterate the process for different moduli and signatures.
This sufficed to implement our scenario.

205

11. Modulus Fault Attacks Against RSA-CRT Signatures

Figure 11.4: Exploration process.

206

11.A. Laser Fault Injection

Transistor SRAM Cell

350nm

130nm

90nm

65nm

Figure 11.5: 1µm laser spot (dotted circle) vs. technology sizes [Pou07].

Figure 11.6: Laser and target (general overview).

Figure 11.7: Laser and target (closeup).

207

Chapter 12
On the Broadcast and

Validity-Checking Security of
PKCS#1 v1.5 Encryption

12.1 Introduction

Returning to black-box model attacks on ad-hoc RSA paddings, this chapter describes new
attacks on PKCS#1 v1.5 encryption, a deprecated but still widely used RSA encryption
standard.

The first attack predicts, using a single query to a validity checking oracle, which of
two chosen plaintexts corresponds to a challenge ciphertext (in other words, it breaks
semantic security under validity-checking attacks). The rather simple idea is that a
validity-checking oracle makes it possible to check when the least significant bits of the
plaintext are zero, an observation that essentially goes back to Bleichenbacher’s famous
1998 attack on SSL.

The second attack is a so-called broadcast attack, allowing the opponent to reveal
an identical plaintext sent to different recipients, which is nontrivial because different
random nonces are used for different encryptions (i.e. plaintexts coincide only partially).
It relies on multivariate generalizations Coppersmith’s technique for finding small roots
of polynomials over ZN .

This work was presented at ACNS 2010 [BCN+10].

12.1.1 The PKCS#1 v1.5 standard

PKCS stands for Public-Key Cryptography Standards, and refers to a large body of
specifications covering RSA encryption, Diffie-Hellman key agreement, password-based
encryption, syntax (extended-certificates, cryptographic messages, private-key information
and certification requests) and selected attributes. PKCS was initially developed by RSA
Laboratories in collaboration with academia and multiple industry players, and has been

209

12. On the Security of PKCS#1 v1.5 Encryption

regularly updated since. Today, PKCS has become part of several standards and of a
wide range of security products including S/MIME (the standard for encrypted e-mails).

Within the PKCS collection, PKCS#1 v1.5 [PKCS#1 v1.5] describes a particular
padding scheme for RSA encryption, in which the secret data (usually a random symmetric
key for a block cipher) is prepended with random bytes before applying the RSA function.

At CRYPTO 1998, Bleichenbacher [Ble98] presented an adaptive chosen-ciphertext
attack against PKCS#1 v1.5 capable of recovering arbitrary plaintexts from about half
a million ciphertexts. Although active adversarial models are generally regarded as
theoretical concerns, Bleichenbacher’s attack makes use of an oracle that only detects
conformance with respect to the padding format, a real-life assumption that resulted in
a practical threat. PKCS#1 v1.5 was subsequently updated (release 2.0 [PKCS#1 v2.0])
and patches were issued to users wishing to continue using the old version of the standard.
Over a decade later and despite its vulnerabilities, PKCS#1 v1.5 remains widely used
in applications. Provably secure algorithms such as RSA-OAEP [BR94, FOPS04] and
RSA-KEM [CS03, ISO18033–2, ANSI X9.44] are recommended replacements, but their
deployment remains limited.

Another more recent work by Coron, Joye, Naccache and Paillier on the security of
PKCS#1 v1.5 [CJNP00] presented a somewhat atypical attack allowing the opponent to
retrieve plaintexts ending by enough zero bits.

12.1.2 Our results

In this chapter, we look again at the security of PKCS#1 v1.5 in various adversarial
models, and mainly describes two new weaknesses in PKCS#1 v1.5:

• The possibility to predict, using a single validity-checking query and with high
probability, which of two chosen plaintexts corresponds to a challenge ciphertext. In
other words, we show that PKCS#1 v1.5 encryption in not 1-IND-VCA-secure. The
proof is quite elementary.

• A broadcast attack allowing to decrypt an identical message sent to several recipients.
The attack is based on multivariate extensions of Coppersmith’s technique for finding
small roots of polynomials modulo an integer with unknown factorization.

We also obtain some additional results, including a (rather weak) positive security
result on the one-wayness of PKCS#1 v1.5, and a proof that PKCS#1 v1.5 encryption
is malleable.

12.2 Preliminaries

12.2.1 Public-key encryption

A public-key encryption scheme P = (KeyGen,Encrypt,Decrypt) is a collection of three
efficient algorithms (the first two can be probabilistic):

210

12.2. Preliminaries

KeyGen(1k): produces a pair (pk, sk) of matching public and private keys depending on
the security parameter k (which implicitly define a message spaceM).

Encrypt(pk,m ∈M): produces a ciphertext c = Encrypt(pk,m).

Decrypt(sk, c): produces a plaintext m = Decrypt(sk, c) or ⊥.

For allm ∈M and for properly generated {pk, sk}, the following correctness condition
must hold:

Decrypt(sk,Encrypt(pk,m)) = m.

12.2.2 Security definitions
Security is traditionally defined by combining an adversarial goal and an attack model.
We refer to classical texts on provable security, such as [Poi05], for precise statements of
security definitions. Intuitively, a public-key encryption scheme P is:

Unbreakable (UBK): if no efficient adversary A can compute sk given pk with significant
probability;

One-Way (OW): if no efficient adversary A can recover m ∈ M given pk and c =
Encrypt(pk,m) with significant probability;

Indistinguishable (IND): if no efficient adversary A , given pk and a ciphertext computed
from one of two messages of his choice, can guess with significant probability which
of the two messages was encrypted (this is also referred to as “semantic security”,
as it implies no information on the plaintext can be recovered from a ciphertext by
an efficient adversary);

Non-Malleable (NM): if no adversary A can produce, given pk and a ciphertext c =
Encrypt(pk,m) corresponding to a message m chosen according to a distribution
of his choice (with positive entropy), a new ciphertext c′ 6= c corresponding to a
plaintext m′ meaningfully related to m (in the sense that R(m,m′) = 1 with good
probability, for some binary relation R initially chosen by A as well).

Security notions for encryption schemes are obtained by combining an adversarial
goal with an attack model, which is essentially the definition of an oracle that A is given
access to. In this chapter, we consider the following attack models:

Chosen-Plaintext Attack (CPA): A is given nothing more than pk.

Validating-Checking Attack (VCA): A is given access to a validity-checking oracle, indicat-
ing if a given ciphertext c is a valid or not (i.e. returning the bit Decrypt(sk, c) ?= ⊥).
Note that this is different from the notion of Plaintext-Checking Attack (PCA)
[Poi05].

Chosen-Ciphertext Attack (CCA): A has access to a decryption oracle.

211

12. On the Security of PKCS#1 v1.5 Encryption

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA
⇓ ⇓ ⇓

OW-CCA ⇐= OW-VCA ⇐= OW-CPA
⇓ ⇓ ⇓

IND-CCA ⇐= IND-VCA ⇐= IND-CPA
⇓ ⇓ ⇓

NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Figure 12.1: Public-key encryption security hierarchy.

We denote security notions positively: e.g. OW-VCA[P] is the problem of contradict-
ing the one-wayness of scheme P under validity-checking attack. This convention permits
the easy description of hierarchies between security notions using reductions, as illustrated
in Figure 12.1. When oracle access is permitted (i.e. either for VCA or CCA), we denote
by `-GOAL-ATTACK[P] the problem of contradicting GOAL ∈ {UBK,OW, IND,NM} in
less than ` oracle queries under an ATTACK ∈ {VCA,CCA}.

12.2.3 RSA security

Single-user RSA security. RSA encryption as originally described by Rivest, Shamir
and Adleman [RSA78] (also known as “textbook RSA encryption”) is UBK-CPA-secure
assuming the hardness of factoring. Contradicting the OW-CPA security of textbook RSA
is known as the RSA problem and is believed to be intractable. In fact, no better attack
is known on the RSA problem than on factoring.

The validity of a textbook RSA ciphertext can be checked publicly, so in the case
of textbook RSA, VCA and CPA are equivalent adversarial models. In particular, the
scheme is OW-VCA-secure under the hardness of the RSA problem as well.

Since textbook RSA encryption is deterministic, on the other hand, it cannot be
semantically secure: given the encryption c of either m0 or m1, the adversary simply
computes c0 = me

0 mod N and checks whether c0 = c.
Many variants of this basic scheme have been proposed in order to achieve better

security properties (especially semantic security) through the use of randomized padding
schemes. PKCS#1 v1.5 is an early example of such a randomized padding, and this
chapter is devoted to studying its security under the various security notions mentioned
above.

Multi-user RSA security. The previous definitions do not capture security in a multicast
context. In the early 1990s, attacks against low-exponent RSA highlighted the danger of
multi-user security threats left uncaptured by single-user models. In independent works,
Baudron, Pointcheval and Stern [BPS00] and Bellare, Boldyreva and Micali [BBM00]

212

12.3. PKCS#1 v1.5 Encryption

proved that for strong security notions (namely IND or NM), schemes with reductionist
security in the multi-user setting are exactly those permitting security proofs in the
single-user setting. However, encryption one-wayness (OW) in a multi-user setting is not
guaranteed by single-user one-wayness.

For textbook RSA encryption, if a common public exponent e is used, then e encryp-
tions of a given messagem under different public keys N1, . . . , Ne lead to an easy plaintext
recovery (indeed, applying the Chinese Remainder Theorem reveals me mod N1N2 · · ·Ne,
but this value is just me in Z): see [Bon99, §4.2]. Again, several countermeasures have
been proposed (e.g. padding the message with random bits) but with an unclear security
guarantees. The second part of this chapter explores broadcast attacks on PKCS#1 v1.5.

12.3 PKCS#1 v1.5 Encryption

12.3.1 The PKCS#1 v1.5 encoding function

PKCS#1 v1.5 describes a particular padding scheme for RSA encryption. Consider
an RSA modulus N , and let k denote its byte-length (i.e. 28(k−1) < N < 28k). Let
m be an |m|-byte message with |m| < k − 11. A PKCS#1 v1.5 padding µ(m) of m is
obtain as follows. A random nonce r consisting in k − 3− |m| > 8 nonzero bytes is first
generated uniformly at random. Then, µ(m) = µ(m, r) is the integer converted from the
octet-string:

µ(m, r) = 000216‖r‖0016‖m. (12.1)

The leading 00 byte guarantees that the encryption block is an integer smaller than N .
The encryption of a message m of |m| < k − 11 bytes is then computed as:

c = µ(m, r)e mod N

where r is the random nonce chosen as above.
To decrypt c ∈ Z∗N , compute cd mod N , convert the result to a k-byte octet-string

and parse it according to equation (12.1). If the string cannot be parsed correctly or if r
is shorter than 8 octets, the decryption algorithm Decrypt outputs ⊥; otherwise, Decrypt
outputs the plaintext m.

12.3.2 Previous attacks on PKCS#1 v1.5

In 1998, Bleichenbacher [Ble98] published an attack on PKCS#1 v1.5 capable of recovering
arbitrary plaintexts from a large number ` of ciphertexts validation queries. This
attack established that PKCS#1 v1.5 is not `-GOAL-ATTACK for a large1 `, GOAL ∈
{OW, IND,NM} and ATTACK ∈ {VCA,CCA} (see Appendix 12.2.2 for definitions of these
security notions).

In 2000, Coron, Naccache, Joye and Paillier [CJNP00] introduced two new CPAs on
PKCS#1 v1.5. The first attack can be considered as a IND-CPA when e is small (for

13 · 105 < ` < 2 · 106 for 512 < log2 N < 1024.

213

12. On the Security of PKCS#1 v1.5 Encryption

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA
= Factoring

⇓ ⇓ ⇓
OW-CCA ⇐= ((((

(OW-VCA ⇐= OW-CPA
large ` ([Ble98])

⇓ ⇓ ⇓
IND-CCA ⇐= ((((

(IND-VCA ⇐= ((((
(IND-CPA

large ` ([Ble98]) small e or large |m| ([CJNP00])
⇓ ⇓ ⇓

NM-CCA ⇐= NM-VCA ⇐= NM-CPA

Figure 12.2: PKCS#1 v1.5 security.

plaintext ending by sufficiently many zeros). The second attack applies to arbitrary e,
provided that |m| is large and most message bits are zeros. Thus PKCS#1 v1.5 is not
GOAL-CPA for a small e or a large |m|, for GOAL ∈ {IND,NM}.

The previous crytanalytic results are summarized in Figure 12.2. In the rest of the
chapter, we will study the remaining security notions and prove that PKCS#1 v1.5 is:

• OW-CPA assuming the intractability of the RSA problem (§12.4);

• not OW-CCA for ` = 2 (§12.4);

• not NM-CPA (§12.5.1);

• not IND-VCA for ` = 1 (§12.5.2);

• not OW-CPA in a multi-user setting (§12.6).

12.4 On the OW-CPA-Security of PKCS#1 v1.5
In this paragraph, we prove the following result:

Proposition 12.1. The OW-CPA security of PKCS#1 v1.5 is equivalent to the RSA
problem.

In [CJNP02, Lemma 2], Coron, Joye, Naccache and Paillier proved that for suitable
parameters, the existence of an algorithm that on input y ∈ Z∗N outputs the k1 least
significant bits of yd mod N is equivalent to the existence of an RSA inverter. Following
their approach, we prove the following lemma.

Lemma 12.1. Let A be a OW-CPA-adversary against PKCS#1 v1.5 with success
probability ε within time τ , with uniformly distributed messages of (maximum) length

214

12.4. On the OW-CPA-Security of PKCS#1 v1.5

k− 11. There exists an algorithm A ′ that solves the RSA problem with success probability
ε′ within time τ ′, where: {

ε′ > η2 · ε2 − 2−kε
τ ′ 6 2 · τ + poly(k)

where η is a constant independent of k and η > 5 · 10−8.

Proof. Let A be a OW-CPA-adversary against PKCS#1 v1.5 with success probability
ε within time τ . We construct an algorithm A ′ that on input y ∈ Z∗N outputs yd with
success probability ε′ within time τ ′:

1. A ′ picks α ∈ Z∗N uniformly at random;

2. A ′ sets y0 = y and y1 = y · αe

3. Let us denote, for i ∈ {0, 1}:
ydi = ωi · 2β +mi

with β = 8(k − 11). yi is a valid PKCS#1 v1.5 ciphertext if ωi = 0002||ri||00 where
ri is a 8-(nonzero)-octet string. This happens with probability η > (255/256)8 · 2−24.
If this happens, then with probability ε, A will return mi on input yi (for i ∈ {0, 1}).

4. Therefore with probability at least (ηε)2, we obtain:

α(ω0 · 2β +m0) = ω12β +m1 mod N.

Letting c1 = 2−β(αm0 −m1) mod N , we get the equation in (ω0, ω1):

ω1 − α · ω0 = c1 mod N. (12.2)

From [CJNP02, Lemma 3], there exists an algorithm that given this system will
output a solution (ω0, ω1) (should such a solution exist) with probability at least 1− 2−k
on the choice of α.

Using the same technique, this can be extended to messages of different length, with
a possibly higher constant loss in the reduction.

As a byproduct of the previous proof one immediately gets that:

Proposition 12.2. PKCS#1 v1.5 is not 2-OW-CCA.

Proof. Thanks to the homomorphic properties of RSA, an adversary can mask the
challenge ciphertext c as c′ = cre for some random r and with two decryption oracle
queries, compute the e-th root x′ of c′ as in the previous proof. Then x = x′/r is the
e-th root of c from which, the adversary retrieves readily the plaintext.

215

12. On the Security of PKCS#1 v1.5 Encryption

12.5 PKCS#1 v1.5 Malleability and Indistinguishability
We now show in this section that PKCS#1 v1.5 is neither NM-CPA-secure nor IND-
VCA-secure. The general idea is the following. Let m be some message to be encrypted,
and µ(m) a corresponding PKCS#1 v1.5 padded encryption block. If m has Z > 2
trailing zero bits, then µ(m) is divisible by 2Z , and µ(m)− µ(m)/2Z mod N has a good
probability of still being a valid encryption block. This is not usually the case when the
Z least significant bits of m are not all zero.

Let c = µ(m)e mod N be a ciphertext of some message m. If m has Z > 2 trailing
zeros, c′ = c · (1− 2−Z)e mod N will often be a valid ciphertext of some other message
m′ which can be related to m: this contradicts non-malleability under chosen plaintext
attack. Moreover, if one is granted a single query to a validity oracle, it is possible to
distinguish ciphertexts of plaintexts with trailing zeros and ciphertexts from plaintexts
whose least significant bits are not all zero: this contradicts indistinguishability under
validity checking attack. Note that if i queries are allowed, the distinguishing success
odds can quickly approach 1 by iterating the test with c′i = c · (i − 2−Z)e mod N for
i = 1, 2, . . .

We develop this idea in further details below.

12.5.1 On the NM-CPA-security of PKCS#1 v1.5
Let k be the byte-size of N , Z = 4k, and M a positive integer such that M + Z + 1 is a
multiple of 8 and (M + Z + 1)/8 < k − 11. We consider messages of the following form:

m = m̄︸︷︷︸
M bits

‖12‖ 0 · · · 02︸ ︷︷ ︸
Z zero bits

.

LetM denote the uniform distribution over messages of this form. Furthermore, we
define a relation R over messages of length l = M + Z + 1 as follows: for any l-bit two
messages m1,m2 (not necessarily of the previous form), R(m1,m2) holds if and only if
the M most significant bits of m1 and m2 coincide. In particular, for any given message
m2, there is exactly one m1 ∈M such that R(m1,m2).

Now, consider m←M. We can write µ(m) · (1− 2−Z) as:

000216‖r‖0016‖m̄‖12‖ 0 · · · 02
− 000216‖r‖0016‖m̄‖12

= 000216‖r‖0016‖m̄‖02‖ some digits · · · some digits

Hence, µ(m) · (1− 2−Z) = µ(m′) for some message m′ 6= m such that R(m,m′).
Consider, the NM-CPA adversary A which outputs sampling algorithm M in the

setup stage, and transforms a challenge ciphertext c into c′ = c · (1− 2−Z)e mod N . A ’s
advantage is:

AdvNM-CPA
A = Pr[R(m,m′)]− Pr[m0

$←M; R(m0,m
′)] = 1− 2−M > 1/2

which is non-negligible. Therefore, PKCS#1 v1.5 encryption is not NM-CPA-secure.

216

12.5. PKCS#1 v1.5 Malleability and Indistinguishability

Note that the advantage of A is, in fact, very close to 1. For a 1024-bit modulus and
a 128-bit random nonce, we have M = 383, making it exceedingly unlikely that A will
ever fail.

12.5.2 On the IND-VCA-security of PKCS#1 v1.5
We now show how to contradict ciphertext indistinguishability under validity checking
attack using a single oracle query. There are two natural types of validity-checking
oracles: one which determines whether a given query is a valid ciphertext associated
to a plaintext of any length, and the other which also checks message length. We can
always contradict IND-VCA-security in the non-length-checking case (which is the one
considered in Bleichenbacher’s attack [Ble98]) with a single oracle query. Furthermore, if
the byte-length of the randomizer is constant, as permitted by the PKCS#1 v1.5 standard,
it is also possible to break IND-VCA-security with a single query to a length-checking
oracle. Both attacks stem from the following result.

Proposition 12.3. Let c = µ(m)e mod N be the ciphertext associated to some byte-string
message m, ω the byte-length of the random nonce and c′ = c · (1− 2−4)e mod N .

1. If the least significant nibble2 of m is not 016, then c′ is never a valid ciphertext.

2. If m is a message consisting of a string of 0016 bytes, then c′ is a valid ciphertext
with probability at least 0.47. c′ is a valid ciphertext corresponding to a message of
the same length as m with probability at least:

64
1445

(239
255

)ω−1
.

Proof. Starting with the first assertion, consider a message m such that c′ is a valid
ciphertext. This implies that µ(m)− µ(m) · 2−4 mod N is a valid encoding string that,
in particular, begins with the same 000216 pattern as µ(m).

If, for an integer x, we denote by x̄ the only integer in (−N/2, N/2) such that x ≡ x̄
mod N , it follows that:

|µ(m) · 2−4 mod N | < 28k−16.

Consider the set S of residue classes x mod N such that |x̄| < 28k−16. Clearly,
#S = 28k−15 − 1. On the other hand, let T+ be the set consisting of k-byte strings
of the form 00016‖u‖016, and T be the union of T+ and −T+ (where opposites are
taken modN). We also have #T = 28k−15 − 1 and T maps into S under multiplication
by 2−4 mod N . Since multiplication by 2−4 is a permutation of ZN , we infer that
(y · 2−4 mod N) ∈ S if and only if y ∈ T .

In particular, if c′ is a valid ciphertext, we get µ(m) ∈ T . By inspection of its top
bits, we see that µ(m) cannot be in −T+, so it has to be in T+. Its least-significant
nibble must thus be 016 as required.

2Recall that a nibble is a sequence of four bits, or equivalently a hexadecimal digit.

217

12. On the Security of PKCS#1 v1.5 Encryption

Turning now to the second assertion, let m be the zero-message of some fixed byte-
length. Write the encryption block µ(m) as follows:

µ(m) = 000216 ‖ r2ω−1 ‖ r2ω−2 ‖ · · · ‖ r1 ‖ r0 ‖ 0016 ‖ 00 · · · 0016

where r0, . . . , r2ω−1 are the nibbles of the random nonce. Recall that the randomizer
bytes r2j‖r2j+1 are chosen uniformly and independently at random in the range 0116,
. . . , FF16.

Assuming that r2ω−1 is at least 4 (which happens with probability (256−4×16)/255 =
64/85, and which we will henceforth assume), we can write (1− 2−4)µ(m) as:

000216 ‖ r2ω−1 ‖ r2ω−2 ‖ · · · ‖ r1 ‖ r0 ‖ 0016 ‖ 00 · · · 0016
− 000016 ‖ 216 ‖ r2ω−1 ‖ · · · ‖ r2 ‖ r1 ‖ r0‖016 ‖ 00 · · · 0016

= 000216 ‖ r′2ω−1 ‖ r′2ω−2 ‖ · · · ‖ r′1 ‖ r′0 ‖ s ‖ 00 · · · 0016

where r′j ≡ rj − rj+1 − κj mod 16 for some carry bit κj .
Then, µ′ = (1−2−4)µ(m) is a valid encoding block if and only if the first 8 randomizer

bytes, namely r′2ω+1−2j‖r′2ω−2j , j = 1, . . . , 8, are all nonzero. µ′ is a valid encoding block
for a message of the same length as m (or for short, “strongly valid”) if and only if
s = 0 and all the padding bytes r′2j+1‖r′2j , j = 0, . . . , ω − 1, are nonzero. We will find an
explicit lower bound for the probability of these events.

Note first that a sufficient condition for r′2j+1‖r′2j to be nonzero is that r′2j+1 6= 0.
This nibble is zero if and only if r2j+2 ≡ r2j+1−κ2j+1. Now r2j+2 is picked independently
of r2j+1, since they belong to different bytes; it is also independent of κ2j+1, which only
depends on lower order bytes. Consequently:

Pr[r′2j+1 = 0] =
15∑
ρ=0

Pr[r2j+2 = ρ] · Pr[r2j+1 − κ2j+1 ≡ ρ (mod 16)]

6 max
ρ

Pr[r2j+2 = ρ] = 16
255

and this bound still holds conditionally to any assignment of the lower order nibbles
r′2i+1, i < j. Therefore:

Pr[µ′ is valid] > Pr[r2ω−1 > 4 ∧ r′2ω−3 6= 0 ∧ r′2ω−5 6= 0 ∧ · · · ∧ r′2ω−15 6= 0]

>
64
85 ·

(
1− 16

255

)7
> 0.47.

Furthermore:

Pr[µ′ is strongly valid] > Pr[r2ω−1 > 4 ∧ r′2ω−3 6= 0 ∧ · · · ∧ r′1 6= 0 ∧ r0 = 0]

>
64
85 ·

(
1− 16

255

)ω−1
· 15

255 = 64
1445 ·

(239
255

)ω−1
.

The corresponding validity assertions for c′ follow immediately.

218

12.6. Broadcast Attack on PKCS#1 v1.5

Consider the IND-VCA adversary A defined as follows. In the setup stage, A outputs
two messages m0,m1 of equal length, with m1 not zero-terminated (e.g. 00 · · · 000116)
and m0 consisting of 0016 bytes only. Then, upon receiving a challenge ciphertext
c = µ(mb)e mod N , A makes a single oracle query and outputs b′ = 0 or 1 according to
whether c′ = c · (1− 2−4) mod N is a valid ciphertext or not. Its advantage is then:

AdvIND-VCA
A = Pr[b′ = 0|b = 0]− Pr[b′ = 1|b = 0] = Pr[b′ = 0|b = 0]− 0

>

0.47 if the oracle doesn’t check message length
64

1445 ·
(

239
255

)ω−1
otherwise

which is non-negligible. In the length-checking case, it is over 2.8% (resp. 1.6%) for
64-bit (resp. 128-bit) nonces.

In the non-length-checking case, we can obtain an even better advantage using
c′ = c · (1 − 2−8) mod N (shifting by 8 bits instead of 4). The proof works similarly
provided that N satisfies N > 28k−7, which is not required by the PKCS#1 v1.5 standard
but is usually verified in practice. This yields an advantage of at least:

252
255 ·

(254
255

)7
> 0.96.

12.6 Broadcast Attack on PKCS#1 v1.5
We now examine the security of PKCS#1 v1.5 in a multiple users context.

In such a scenario, i.e. when broadcast encryption is performed, the sender wishes
to transmit the same message m to ` parties P1, . . . , P`. As each party has its own key
pki = (e,Ni) (with a common public exponent e), the sender encrypts m using all the
pki’s and sends the resulting ciphertexts c1, . . . , c` to the corresponding recipients. It has
long been known that textbook RSA encryption should not be used in such a context,
since an attacker can easily recover the plaintext using the Chinese Remainder Theorem
as long as ` > e. Therefore, m has to be padded before applying the RSA function, and
the padding has to be different for each recipient.

In 1988, Håstad [Hås88] showed that using different deterministic linear paddings
µi(m) for all parties is not enough to guarantee security. Indeed, when e is small,
e ciphertexts are again sufficient to efficiently recover m provided that the encoding
functions µi are known to the attacker. To achieve this result, Håstad expressed the
attack in terms of finding small roots of a univariate modular polynomial, which he
accomplishes using Coppersmith’s techniques [Cop97].

Håstad’s attack does not apply to PKCS#1 v1.5, since the padding used for a given
recipient is random, and is thus unknown to an attacker. The following sections will
overcome this difficulty. Our main result is as follows.

Proposition 12.4. Let c1, . . . , c` be ` PKCS#1 v1.5 ciphertexts of the same message m,
of byte length |m|. Each ci is encrypted for a recipient having pki = (e,Ni). All Ni are

219

12. On the Security of PKCS#1 v1.5 Encryption

k-byte long. Then there exists a heuristic algorithm which, given c1, . . . , c`, outputs m,
provided that the following condition is satisfied:

` >
e|m|

k − e(k − |m| − 3) > 0.

Its complexity is polynomial in e, |m| and k but exponential in the number ` of recipients.

We describe this algorithm in the coming sections. The core idea is to reduce the
problem to finding small modular roots of a multivariate polynomial equation, which can
be achieved using a standard generalization of Coppersmith’s techniques. As usual, this
generalization relies on an assumption of algebraic independence between polynomials,
which makes the algorithm heuristic.

12.6.1 The multivariate polynomial of broadcast PKCS#1 v1.5
Recall from §12.3.1 that to encrypt message m for recipient Pi, a PKCS#1 v1.5 sender
first generates an |ri|-byte randomizer ri, and then computes the encoding function:

µ(m, ri) = 000216 ‖ ri ‖ 0016 ‖ m.

Numerically, this gives:

µ(m, ri) = m+ 28|m|+8ri + 28|m|+8|ri|+9.

The ciphertext ci is then computed as ci = µ(m, ri)e mod Ni.
Consider then an adversary A who obtains c1, . . . , c`. Since the Ni are of the same

size, the random nonces ri have a common byte length |r|. Therefore, the ciphertexts
collected by A can be written as:

c1 = (m+Ar1 +B)e mod N1, . . . , c` = (m+Ar` +B)e mod N`

where A = 28|m|+8 and B = 28|m|+8|r|+9. Obviously, the Ni are pairwise co-prime
(otherwise, the factorization of some of the Ni could easily be recovered). Thus, the
Chinese Remainder Theorem ensures that the previous equations can be rewritten as a
single congruence mod N = N1 · · ·N`:

u1c1 + · · ·+ u`c` = u1(m+Ar1 +B)e + · · ·+ u`(m+Ar` +B)e mod N

where the constants u1, . . . , u` are given by the extended Euclidean algorithm. It follows
that the tuple (m, r1, . . . , r`) is a root of the multivariate modular polynomial:

f(x, y1, . . . , y`) = u1(x+Ay1 +B)e + · · ·+ u`(x+Ay` +B)e − C mod N (12.3)

where C = u1c1 + · · ·+u`c`. This root is small in the sense that all of its components are
bounded by quantities that are small compared to N : m is smaller than 28|m| and each
ri is bounded by 28|r|. Under suitable conditions on |m| and |r| which will be detailed

220

12.6. Broadcast Attack on PKCS#1 v1.5

below, it will thus become feasible to recover this root, and hence m, in polynomial time
using Coppersmith’s techniques.

In particular, we show in §12.6.3 that the lattice construction of Jochemsz and May
[JM06] yields a heuristic polynomial time algorithm for recovering the small root of f
under the following condition:

`|r|+ |m| < t(ν)
s(ν) · `k

where ν is a parameter which determines the complexity of the attack, and s(ν), t(ν) are
defined as:

s(ν) =
eν∑
i=0

i

(
eν − i+ `

`

)
=
(
`+ eν − 1

`

)
(`+ eν)(1 + `+ eν)

2 + 3`+ `2

and
t(ν) =

ν∑
i=1

(
eν − ie+ `+ 1

`+ 1

)
.

We also prove in the same section that t(ν)/s(ν)→ 1/e as ν tends to +∞, so that the
best achievable bound on |m| and |r| for which the attack applies is:

`|r|+ |m| < `k

e
.

Since |r| = k − |m| − 3 in PKCS#1 v1.5 we obtain the bound announced in Proposition
12.4. As usual when using Coppersmith’s techniques, the complexity of the attack is
polynomial in the dimension of the constructed lattice and in the size of the entries.

Given the heuristic nature of multivariate Coppersmith-like techniques, we also
implement the attack and report practical experiment results in §12.6.4.

12.6.2 Finding small modular roots of a multivariate polynomial
The problem of solving modular polynomial equations is believed to be difficult in the
general case. Nevertheless, when we restrict the problem to finding small roots only, the
problem becomes easier to solve. Indeed, in 1996, Coppersmith [Cop96] introduced a
technique, based on lattice reduction, allowing to recover the root of a univariate modular
polynomial provided that this root is small enough. This construction was reformulated
in simpler terms by Howgrave-Graham [HG97] and its extensions to more variables found
numerous cryptanalytic applications.

Coppersmith’s technique. Starting from a polynomial f modulo a known composite
integer N , the idea behind Coppersmith’s method is to construct a set of polynomials
h1, . . . , hn sharing the same sought root over the integers. If the number of these generated
polynomials is sufficiently large (greater than the number of variables) and under the
assumption that all resultant computations lead to non-zero results, then the root can
easily be recovered. Note that this assumption makes the method heuristic.

221

12. On the Security of PKCS#1 v1.5 Encryption

A sufficient condition ensuring that the polynomials h1, . . . , hn share a common root
in Z was formulated by Howgrave-Graham.

Lemma 12.2 (Howgrave-Graham [HG97]). Let h ∈ Z[x1, . . . , xn] be an integer polyno-
mial that consists of at most ω monomials. Suppose that

1. h(x01, . . . , x0n) ≡ 0 mod N for some |x01| < X1,. . . ,|x0n| < Xn.

2. ‖h(x1X1, . . . , xnXn)‖ < N√
ω
.

Then h(x01, . . . , x0n) = 0 holds over the integers.

The problem can thus be reduced to finding polynomials h1, . . . , hn of small norm
having the same modular root as f . This can be achieved by representing polynomials as
coefficient vectors (using a suitable ordering on monomials) and using lattice reduction
techniques such as LLL [LLL82] to search for small vectors in a lattice spanned by
polynomials which are known to have the sought modular root.

If L is a lattice of polynomials consisting of at most ω monomials and all having the
same modular root as f , then the condition

2
ω(ω−1)

4(ω+1−n) det(L)
1

(ω+1−n) <
N√
ω

(12.4)

ensures first n polynomials obtained by applying LLL to the lattice L match Howgrave-
Graham’s bound. In the analysis, we let terms that do not depend on N contribute to
an error term ε, and simply use the determinant condition det(L) 6 Nw+1−n.

Lattice construction. A variety of methods for constructing the lattice L have been
proposed in the literature. In what follows, we choose to rely on the technique introduced
by Jochemsz and May in [JM06].

Recall that we have a polynomial f with an unknown root x0 = (x01, . . . , x0n) modulo
some composite integer N whose factorization is unknown. This root is small in the sense
that each of its components is bounded: |x0i| < Xi for i ∈ {1, . . . , n}. We denote by λ
the leading monomial of the polynomial f and byM(f) the set of monomials appearing
in f . Of course, λ can be assumed to be monic as otherwise one simply has to multiply
f by the modular inverse of its initial coefficient.

Given ε > 0, we fix an integer ν = ν(ε) and without loss of generality we assume that
M(f j) ⊆M(fν) for j ∈ {1, . . . , ν − 1}. If k is an integer between 0 and ν + 1, we define
the set Mk asM(fν) ∩ λkM(fν−k) (in particular M0 =M(fν) and Mν+1 = ∅). Next,
we define the following shift polynomials:

gi1...in(x1, . . . , xn) = xi11 · · ·xinn
λk

fkNν−k

for k ∈ {0, . . . , ν} and xi11 · · ·xinn ∈Mk \Mk+1. By definition, all polynomials g have the
root (x01, . . . , x0n) modulo Nν . We can now define L as the lattice generated by the

222

12.6. Broadcast Attack on PKCS#1 v1.5

coefficient vectors of all polynomials gi1...in(x1X1, . . . , xnXn). If the monomial ordering
has been chosen correctly, the matrix corresponding to that lattice is lower triangular
and the determinant becomes easy to compute. Indeed, the diagonal elements are those
corresponding to the monomial λk in fk for each row. Therefore, the diagonal terms
of the matrix are Xi1

1 · · ·Xin
n N

ν−k for k ∈ {0, . . . , ν} and xi11 . . . xinn ∈ Mk \Mk+1. By
doing a simple computation and neglecting low order terms, one can finally reduce the
condition (12.4) to the following new one:

n∏
j=1

X
sj
j < N sN for

sj = ∑
x
i1
1 ···x

in
n ∈M0

ij (1 6 j 6 n)
sN = ∑ν

k=1 |Mk|.
(12.5)

This formula expresses an asymptotic condition on the bounds X1, . . . , Xn allowing to
recover the root in polynomial time.
Remark 12.1. The method outlined above is what Jochemsz and May called the “basic
strategy”; they also proposed an “extended strategy” in which we can use extra shifts of
a certain variable and replace Mk for instance by Mk = ⋃t

j=1 x
j
1

(
M(fν) ∩ λkM(fν−k)

)
for some well-chosen parameter t.

12.6.3 The Jochemsz-May lattice in broadcast PKCS#1 v1.5
Let us examine what the lattice L looks like in the particular setting of broadcast
PKCS#1 v1.5 encryption.

Recall from §12.6.1 that recovering m from c1, . . . , c` reduces to finding the root
(x0, y0,1, . . . , y0,`) = (m, r1, . . . , r`) of the following modular polynomial:

f(x, y1, . . . , y`) = u1(x+Ay1 +B)e + · · ·+ u`(x+Ay` +B)e − C mod N.

We know that this root satisfies the bounds |x0| < X and |y0i| < Y for all i ∈ {1, . . . , `}
with X = 28|m| and Y = 28|r|. We examine how the Jochemsz-May bounds described
in the previous section translate into bounds on |m| and |r| allowing the message to be
recovered in polynomial time.

Form of the sets Mk. The analysis’ first step consists in describing the sets Mk. Note
first that the set of monomialsM(f) is included in {xayb1

1 · · · y
b`
` | a+ b1 + · · ·+ b` 6 e}.

In other words, the geometrical shape of the polynomial f is included in a “pyramid”
of dimension ` + 1 of monomials with total degree less than e. We choose the deglex
monomial order, according to which the leading monomial of f is xe. The sets Mk can
then be described as follows:

M0 = {xayb1
1 · · · y

b`
` | a+ b1 + · · ·+ b` 6 eν}

M1 = {xayb1
1 · · · y

b`
` | a+ b1 + · · ·+ b` 6 eν with a > e}

...
Mν = {xayb1

1 · · · y
b`
` | a+ b1 + · · ·+ b` 6 eν with a > eν}

which makes it easy to count the number of monomials in each of them.

223

12. On the Security of PKCS#1 v1.5 Encryption

Condition on the bounds. Given the above description, we can evaluate the quantities
sj and sN of equation (12.5) as follows. First, by symmetry, si, sj1 , . . . sj` are all equal
to:

s(ν) =
eν∑
i=0

i(eν − i+ 1)(eν − i+ 2) · · · (eν − i+ `)
`! .

Furthermore, we have:

sN = t(ν) =
ν∑
i=1

(eν − ie+ 1)(eν − ie+ 2) · · · (eν − ie+ `+ 1)
(`+ 1)! .

Condition (12.5) can then be rewritten as Xs(ν)Y `s(ν) < N t(ν), and since N is of byte
size `k, this gives:

`|r|+ |m| < t(ν)
s(ν) · `k.

Asymptotic bound. The functions s(ν) and t(ν) are polynomials in ν. Hence, it suffices
to evaluate their leading coefficients to obtain an asymptotic estimate as ν → +∞. Note
further that s(ν) and t(ν) are easily expressed in terms of the antidifference operator, which
takes a polynomial P (X) to the polynomial σ(P)(X) defined by σ(P)(j) = ∑j

i=1 P (i)
for j ∈ N. Indeed:

s(ν) =
eν∑
i=0

(eν − i)P (i) = eν · σ(P)(eν)− σ(XP)(eν) + eν

with P (X) = (X + 1) · · · (X + `)
`! ;

t(ν) =
ν∑
i=1

Q(i) = σ(Q)(ν)

with Q(X) = (eX − e+ 1) . . . (eX − e+ `+ 1)
(`+ 1)! .

Now it is easily seen that if the leading coefficient of P is cdXd, the leading coefficient of
σ(P) is cdXd+1/(d+ 1). It follows that, as ν → +∞, we have:

s(ν) ∼ eν · (eν)`+1

`!(`+ 1) −
(eν)`+2

`!(`+ 2) = (eν)`+2

(`+ 2)! and t(ν) ∼ e`+1ν`+2

(`+ 2)! .

In particular, t(ν)/s(ν)→ 1/e when ν → +∞. Thus, the best asymptotic bound on |m|
and |r| for which the attack is theoretically possible is:

`|r|+ |m| < `k

e
.

224

12.6. Broadcast Attack on PKCS#1 v1.5

12.6.4 Experimental results on the broadcast attack

Given the heuristic nature of Coppersmith’s techniques in the multivariate case, it
is important to assess the practicality of our attack. In particular, one can ask how
many ciphertexts an attacker really needs to recover m. In the particular instance
{log2N = 1024, e = 3}, the number of required ciphertexts is, in principle, really low.

Corollary 12.1. If a PKCS#1 v1.5 user encrypts the same message m with 64-bit
random nonces to multiple recipients using 1024-bit moduli and e = 3, then there exists a
heuristic polynomial time algorithm that recovers m from ` = 4 ciphertexts.

Proof. This is a direct consequence of Proposition 12.4, given that, for 1024-bit moduli
and 64-bit nonces, message size is equal to 936 bits.

These parameters, corresponding to optimal message size and encryption speed for
1024-bit moduli, are rather realistic and commonly implemented (although it is much
more common to encrypt short messages such as AES symmetric keys than messages
of maximal size). However, we will see that the dimension of the lattice that should be
reduced to recover m with these parameters can hardly be called practical.

Partial information. Consider an attacker who does not collect all the ` required
ciphertexts. In that specific case, even if m can not be fully recovered, the attacker can
nevertheless obtain partial information on m. In particular, in a scenario where m would
not be of full size and would have been previously padded with zero bits, the attack can
still be performed.

Practical implementations. To check the applicability of the attack, we investigated
three configurations: An attacker having access to two, three and four ciphertexts.
Before implementing the attack in each scenario, we first evaluated the dimension of
the corresponding lattices (for reasonably small values of the parameter ν) and then
expressed the number of bits on m that should be recovered in practice. The results
obtained for 1024-bit moduli and e = 3 are shown in Table 12.1.

As we can see, the number of bits of m that we are able to recover increases with
ν, and approaches 936 bits for (`, ν) = (4, 10). Unfortunately, the dimensions of the
constructed lattices are often quite impractical. In many cases, matrix size turns out to
exceed 1000, making lattice reduction unfeasible in practice. As a result, and because
we had limited processor time at our disposal, we only ran practical experiments in the
small cases, namely ` = 2 and ν = 2, 3.

Experiments have been performed on a 7-processor Intel Xeon clocked at 1.86 GHz.
Each test was done in the same way: construction of the appropriate lattice, LLL-
reduction and then extraction of short vectors. Although theoretically one only needs a
number of short vectors equal to the number of variables, in practice we decided to take as
many vectors as possible to increase the success odds of the attack. Most of the CPU time
was claimed by the LLL-reduction step (approximately 3 hours for (`, ν) = (2, 3)). With

225

12. On the Security of PKCS#1 v1.5 Encryption

` = 2 ` = 3 ` = 4
ν dim(L) |m| dim(L) |m| dim(L) |m|
2 84 213 210 246 462 249
3 220 306 715 395 2002 451
4 455 359 1820 483 6188 578
5 816 394 3876 542 15504 664
6 1330 418 7315 584 33649 726
7 2024 435 12650 615 65780 773
10 5456 469 46376 675 324632 863

Table 12.1: Dimension of the lattice L and number of recoverable bits for different values
of (`, ν).

1024-bit moduli and 64-bit random nonces, we managed to recover a 115-bit message
(padded with zeros).

Toy example. To better illustrate the process, we present here a toy example for 150-bit
moduli and a 5-bit message m. After constructing the polynomial f had and generating
the lattice (of dimension 84 in this case), we performed the LLL-reduction. Here the
first 50 vectors corresponded to polynomials having the desired root over the integers.
We then took all these polynomials and computed a Gröbner basis of the ideal they
generated. The results were the following:

Ni = 150 bits, m = 5 bits, r = 6 bits, e = 3, ν = 2
f(x, y, z) with modular root (24, 58, 34).

p1 = z4 + 512z3 + 98304z2 + 86093442y − 94710946z − 1908346880
p2 = yz2 − 89

81z
3 + 256yz − 7936

27 z2 + 16384y − 573440
27 z − 33783328

81
p3 = y2 − 62

27yz + 961
729z

2 − 1024
27 y + 31744

729 z + 262144
729

p4 = x− 55297y + 63489z + 1048576.
The Gröbner basis computation does not allow us to directly recover the message m,

since the corresponding subvariety is not of dimension zero, as was usually the case in
most experiments. In fact, we commonly faced problems of algebraic dependence between
the resulting polynomials (hence our choice to take a large number of polynomials, rather
than the first few, to compute the Gröbner basis). Nevertheless, it was usually possible
to recover the message, as the polynomials in the Gröbner basis had a very simple form.
In this particular case, for instance, p4 is affine and p3 can be written as (ay + bz + c)2,
making it easy to recover the common root.

12.7 Conclusion
Figure 12.3 summarizes our current knowledge of the security of PKCS#1 v1.5.

226

12.7. Conclusion

UBK-CCA ⇐= UBK-VCA ⇐= UBK-CPA = Factoring
⇓ ⇓ ⇓

(((
((OW-CCA ⇐= (((

((OW-VCA ⇐= OW-CPA = RSA, single user (§12.4)
` = 2 (§12.4) large ` ([Ble98]) ((((

(OW-CPA multi-user (§12.6)
(small e and large |m|)

⇓ ⇓ ⇓
IND-CCA ⇐= ((((

(IND-VCA ⇐= ((((
(IND-CPA

large ` ([Ble98]) small e or large |m| ([CJNP00])
` = 1 (§12.5.2)

⇓ ⇓ ⇓
NM-CCA ⇐= NM-VCA ⇐= ((((

(NM-CPA (§12.5.1)

Figure 12.3: Updated security status of PKCS#1 v1.5.

227

Chapter 13
Cryptanalysis of the RSA Subgroup

Assumption

13.1 Introduction
This chapter is devoted to a different type of attack: a “better” exponential algorithm
for factoring an RSA modulus of a special form.

At TCC 2005, Groth [Gro05] underlined the usefulness of working in small RSA
subgroups of hidden order. In assessing the security of the relevant hard problems,
however, the best attack considered for a subgroup of size 22` had a complexity of O(2`).
Accordingly, ` = 100 bits was suggested as a concrete parameter.

In this chapter, we exhibit an attack with a complexity of roughly 2`/2 operations,
suggesting that Groth’s original choice of parameters was overly aggressive. We also
discuss the practicality of this new attack and various implementation issues. This work
was presented at PKC 2011 [CJM+11].

13.1.1 Groth’s small RSA subgroups

In 2005, Groth [Gro05] proposed a collection of cryptographic primitives based on small
RSA subgroups of Z∗N of hidden orders. The motivation behind these constructions is
improved efficiency and tighter security reductions.

The RSA moduli N used by Groth are of the form:

N = p · q = (2p′r + 1) · (2q′s+ 1)

where p, p′, q, q′ are prime integers and r, s are random integers. Then there exists a
unique subgroup G of Z∗N of order p′q′. Letting g be a random generator of G, the pair
(N, g) is made public whereas everything else including the group order p′q′ is kept secret.

The best attack considered in [Gro05] has complexity O(p′). Therefore, when propos-
ing concrete parameters, the author suggests to take the bit-lengths `p′ and `q′ of the
primes p′ and q′ as `p′ = `q′ = 100.

229

13. Cryptanalysis of the RSA Subgroup Assumption

13.1.2 Our results
We do not consider any specific scheme from [Gro05] in this chapter. Instead, we describe
an attack that recovers the secret factors of N from the public data (N, g) in Õ(

√
p′),

and hence breaks all the proposed schemes with the same complexity. This results in
a 250 attack making the choice `p′ = `q′ = 100 potentially insecure. We analyze the
practicality of our attack with an implementation, for which we provide the source code
in the Appendix.
Remark 13.1. In [Gro05], Groth also considers RSA subgroups where r and s are smooth
integers (i.e. all prime factors of r and s are smaller than some bound B). For this
specific variant an attack in complexity O(

√
p′) is given in [Gro05], and consequently

larger parameters (`p′ = `q′ = 160) are suggested. In this chapter we do not consider this
variant but directly focus on the general case.
Remark 13.2. Other works have proposed schemes based on small subgroups of Z∗N . The
attack introduced in this chapter applies to some, but not all of them. In particular, the
scheme proposed by Damgård et al. in [DGK07] uses a subgroup of prime order v of
Z∗N , where v is a factor of both p− 1 and q − 1 (of around 160 bits). Since the group
has the same order modulo p and q, the attack presented herein does not apply to this
scheme. On the other hand, it does, in principle, apply to the subgroup variant of the
Paillier cryptosystem [PP99]. The parameter choice from the original paper was more
conservative than that of Groth, however (320-bit subgroup), making it out of reach of
our new attack.

13.2 The New Attack
Using the notations above, we factor N in time Õ(

√
p′) and memory O(

√
p′) as follows.

Recall that the RSA modulus N = pq is such that:

N = p · q = (2p′r + 1) · (2q′s+ 1)

where p′ and q′ are prime; besides, g is a generator of the subgroup G of order p′q′. From
gp
′q′ = 1 mod N we get:

gp
′ = 1 mod p. (13.1)

Let ` denote the bit length of p′, which we assume is even without loss of generality, and
write ∆ = 2`/2. We then have

p′ = a+ ∆ · b
with 0 6 a, b < 2`/2. From (13.1), we get:

ga = (g∆)−b mod p.

If the prime factor p was known, one could carry out a baby-step giant-step attack by
generating the following two lists:

Lp = {gi mod p : 0 < i < 2`/2}
L′p = {(g∆)−j mod p : 0 6 j < 2`/2}

230

13.3. Attack Complexity

and finding a collision between Lp and L′p, which would reveal a, b and thus p′ in total
time and space O(2`/2).

Obviously p is unknown, so instead of computing Lp and L′p, we generate the two
following lists modulo N :

L = {xi = gi mod N : 0 < i < 2`/2}
L′ = {yj = (g∆)−j mod N : 0 6 j < 2`/2}

One could then compute gcd(xi − yj , N) for all xi ∈ L and all yj ∈ L′. Since we have

xa − yb = 0 mod p

this would reveal the factors of N for i = a and j = b. However, the complexity of this
naive approach is quadratic in ∆, and will thus require 2` computations, not 2`/2. Hence
we proceed as follows instead:

1. Generate the polynomial:

f(x) =
∏
xi∈L

(x− xi) mod N

2. For all yj ∈ L′, evaluate f at yj and compute gcd(f(yj), N).

Since we have
f(yb) =

∏
xi∈L

(yb − xi) = (yb − xa) ·R = 0 mod p

computing gcd(f(yj), N) reveals the factors of N for j = b.
The attack is summarized in Algorithm 13.1. In the next section we show that it can

be carried out in time quasi-linear in the cardinalities of L and L′.

13.3 Attack Complexity
This attack involves the computation and evaluation of a polynomial of the form:

f(x) =
d−1∏
i=1

(x− xi) mod N

with d = 2`/2. It is a classical fact [Ber08] that the coefficients of such a polynomial can
be computed using a product tree, with a total number of operations in ZN which is
quasilinear in d (namely O(M(d) log d), whereM(d) is the complexity of the multiplication
of two polynomials of degree d). Similarly, with a remainder tree, this polynomial can be
evaluated at all points yj , 0 6 j < d in O(M(d) log d) operations.

In our case, however, both (xi) and (yj) are geometric progressions, hence even
more efficient algorithms exist: the Newton basis conversion algorithms of Bostan and
Schost [BS05] make it possible to compute f using O(d) pre-computations and a single

231

13. Cryptanalysis of the RSA Subgroup Assumption

Algorithm 13.1 Attack overview.
1: Let ∆← 2`/2.
2: for i = 0 to ∆− 1 do
3: xi ← gi mod N
4: yi ← (g∆)−i mod N
5: end for
6: Generate the polynomial

f(x)←
∆−1∏
i=1

(x− xi) mod N

7: for i = 0 to ∆− 1 do
8: Evaluate f(yi) ∈ ZN
9: Attempt to factor N by computing gcd(f(yi), N).

10: end for

middle product [HQZ04] of polynomials of degree d, and to evaluate f(yj) for all j using
O(d) pre-computations, a product of polynomials of degree d and a middle product of
polynomials of degree d. See the next section for details. This results in an overall
complexity of 3M(d) +O(d) for the complete attack, with a small constant in the big-O.
Space requirements are also O(d), to store a few polynomials of degree d.

Thus, for typical parameter sizes, the attack is essentially linear in
√
p′ both in time

and space.

13.4 Algorithmic Details

As discussed above, we can break down the attack in two steps: first compute the
coefficients of the polynomial f(x) = ∏d−1

i=1 (x−xi) mod N , and then evaluate f mod N
at each of the points yj . Since both (xi) and (yj) are geometric progressions, both
of these steps reduce to a variant of the discrete Fourier transform, called the “chirp
transform” (or its inverse) [RSR69, Blu70]. In our implementation, we carry out these
computations using the particularly efficient algorithms of Bostan and Schost [BS05],
as described in [Bos03, §5.5]. More precisely, Bostan gives pseudocode, reproduced as
Algorithms 13.3 and 13.4 in Appendix 13.A, to compute polynomial interpolation and
polynomial evaluation at a geometric progression.

In our case, a number of further simplifications are possible in the interpolation stage.
Indeed, f(xi) = 0 for 1 6 i 6 d − 1 and f(1) = ∏d−1

i=1 (1 − xi), so with the notations
of Algorithm 13.3, v0 = (−1)n−1sn−1 and vi = 0 for i > 0. This means in particular
that the polynomial multiplication of Algorithm 13.3, Step 9 reduces to a simple scalar
multiplication, and that the computations of Steps 10–12 can be carried out in the
main loop. We can also have a slightly more conservative memory management, with
only 4 polynomials of degree n− 1 kept in memory for both the interpolation and the

232

13.5. Implementation

` = dlog2 p
′e running time

26 bits 1.9 seconds
28 bits 4.0 seconds
30 bits 8.1 seconds
32 bits 16.5 seconds
34 bits 33.5 seconds
36 bits 68.9 seconds

Table 13.1: Experimental attack running times for 1024-bit moduli.

` = dlog2 p
′e running time estimated number of clock cycles

60 bits 3 days 250

80 bits 9 years 260

100 bits 9000 years 270

Table 13.2: Estimated attack running times for 1024-bit moduli.

evaluation step. Finally, the multiplications by si in Algorithm 13.4, Step 14 can be
skipped altogether as we search for a factor of N with GCD computations, since the
si’s are prime to N by construction. We obtain the detailed procedure described in
Algorithm 13.2.

The attack can again be broken down in three stages: interpolation in Steps 2–18,
evaluation in Steps 19–36 and factor search in Steps 37–40. Complexity is dominated by
the three quasi-linear multiplication steps: the middle products of Steps 15 and 32, and
the polynomial multiplication of Step 36.

13.5 Implementation
We provide the source code of our attack in Appendix 13.B. The implementation of
polynomial interpolation and evaluation using Newton basis conversions largely follows
the pseudocode from [Bos03] (Figure 5.1 and 5.2), implemented in C using the FLINT
library [HH+10].

In Table 13.1, we provide the observed running time of our attack on an Intel Core2
Duo E8500 3.12 GHz, for 1024-bit RSA moduli. The program was linked to the following
libraries: FLINT 1.6 (prerelease), MPIR 2.1.3 and MPFR 3.0, and ran on a single CPU
core.

From Table 13.1 we see that, as expected, running times are essentially linear in
√
p′.

Direct extrapolation yields the estimates given in Table 13.2.
Thus, even the parameter ` = 100 suggested in Groth’s paper [Gro05] would require

a large but not unachievable amount of computation, even by academic standards. As a

233

13. Cryptanalysis of the RSA Subgroup Assumption

Algorithm 13.2 Detailed attack.
1: function Attack(g, n,N)
2: p← 1; q ← 1; s← 1; u← 1; z ← 1; w ← 1
3: Initialize U,Z, S,W as zero polynomials of degree n− 1
4: U0 ← u; Z0 ← z; W0 ← w
5: for i = 1 to n− 1 do
6: p← p · g mod N
7: q ← q · p mod N
8: s← s · (p− 1) mod N
9: u← u · p/(1− p) mod N

10: z ← (−1)iu/q mod N
11: w ← q/(s · u) mod N
12: Ui ← u; Zi ← z; Wi ← w
13: end for
14: Z ← (−1)n−1sn−1 · Z mod N
15: W ← mult(n− 1, U,W)
16: for i = 0 to n− 1 do
17: Wi ←Wi · Zi mod N
18: end for
19: g ← 1/(p · g) mod N . g ← g−∆

20: p← 1; q ← 1; s← 1; u← 1; z ← 1; w ← 1
21: U ← 0; Z ← 0
22: U0 ← u; Z0 ← z; S0 ← s
23: for i = 1 to n− 1 do
24: p← p · g mod N
25: q ← q · p mod N
26: s← s/(p− 1) mod N
27: u← u · p/(1− p) mod N
28: z ← (−1)iu/q mod N
29: Si ← s; Ui ← u; Zi ← z
30: Wi ←Wi/z mod N
31: end for
32: W ← mult(n− 1, Z,W)
33: for i = 0 to n− 1 do
34: Wi ← (−1)iWi · Ui mod N
35: end for
36: W ←W · S
37: for i = 0 to n− 1 do
38: if gcd(Wi, N) 6= 1 then return gcd(Wi, N) . Factor found!
39: end if
40: end for
41: end function

234

13.6. Conclusion

comparison, the recent factorization of RSA 768 [KAF+10] required about 2000 CPU-
years.

However, it is not obvious how the algorithm can be efficiently parallelized to distribute
the computation. A naive parallelization strategy is to reduce the number of xi’s and
increase the number of yi’s by some factor 2k, but this only reduces time and memory by
a factor of about 2k while requiring 22k parallel nodes. It would be desirable to be able
to distribute the full size computation—both the FFT steps (multiplication and middle
product) and the pre-computations—but this appears to be nontrivial.

Most importantly, it is difficult to deal with larger parameters because the attack
is heavily memory-bound: the O(

√
p′) memory requirement is a serious hurdle. In

experiments, we encountered memory problems as early as ` ≈ 38 for a 1024-bit modulus,
and even with much more careful memory management and the use of mass storage
rather than RAM, it seems unlikely that parameters larger than ` ≈ 60 can be attacked
unless storage can be efficiently distributed as well.

13.6 Conclusion
We have described an attack against the RSA subgroup of hidden order described in
[Gro05] that works in time Õ(

√
p′) while the best attack considered in [Gro05] had

complexity O(p′). We have implemented our attack and assessed its practicality. As
expected, our attack exhibits a time complexity quasi-linear in

√
p′. In terms of CPU time

alone, the parameters suggested in [Gro05] appear to be within reach for a resourceful
attacker. However, due to heavy memory requirements and parallelization problems,
these parameters may remain unchallenged.

An interesting open question is to decrease the memory requirement: an algorithm
similar to Pollard rho or Pollard lambda with constant memory would be the most
convenient type of attack on this problem if it exists. If not, a method for distributing
the computation and storage efficiently would be the simplest way to make the attack
practical for larger parameters.

235

13. Cryptanalysis of the RSA Subgroup Assumption

13.A Bostan’s Algorithms

Algorithm 13.3 Polynomial interpolation: compute the polynomial F of degree < n
such that F (pi) = vi, where pi = qi, 0 6 i 6 n− 1.
1: function InterpGeom(p0, . . . , pn−1; v0, . . . , vn−1)
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; w0 ← v0
3: for i = 1 to n− 1 do
4: qi ← qi−1 · pi
5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1− pi)
7: zi ← (−1)iui/qi
8: end for
9: H ←

(∑n−1
i=0 vi/six

i
)
·
(∑n−1

i=0 (−x)iqi/si
)

10: for i = 1 to n− 1 do
11: wi ← (−1)i Coeff(H, i)/ui
12: end for
13: G← mult(n− 1,∑n−1

i=0 uix
i,
∑n−1
i=0 wix

i)
14: return

∑n−1
i=0 zi Coeff(G, i)xi

15: end function

Algorithm 13.4 Polynomial evaluation: evaluate the polynomial F at all points pi = qi,
0 6 i 6 n− 1.
1: function EvalGeom(p0, . . . , pn−1;F)
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; g0 ← 1
3: for i = 1 to n− 1 do
4: qi ← qi−1 · pi
5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1− pi)
7: zi ← (−1)iui/qi
8: end for
9: G← mult(n− 1,∑n−1

i=0 zix
i,
∑n−1
i=0 Coeff(F, i)/zixi)

10: for i = 1 to n− 1 do
11: gi ← (−1)iui Coeff(G, i)
12: end for
13: W ←

(∑n−1
i=0 gix

i
)
·
(∑n−1

i=0 s
−1
i xi

)
14: return s0 Coeff(W, 0), . . . , sn−1 Coeff(W,n− 1)
15: end function

236

13.B. Source Code of the Attack

13.B Source Code of the Attack

#include <stdio.h>
#include <time.h>
#include <gmp.h>
#include "F_mpz_poly.h"
#include "F_mpz.h"

void F_mpz_poly_set_coeff_F_mpz(F_mpz_poly_t, ulong, const F_mpz_t);

void attack(F_mpz_t q, F_mpz_t m, unsigned long n)
{

F_mpz_poly_t polW, polU, polZ, polS;
F_mpz_t pi, qi, si, ui, zi, wi, x;
unsigned long i;

printf("Attack started.\n");

F_mpz_poly_init2(polW, n);
F_mpz_poly_init2(polU, n);
F_mpz_poly_init2(polZ, n);
F_mpz_poly_init2(polS, n);

/* Step 1: interpolation */
F_mpz_init(pi); F_mpz_set_ui(pi, 1);
F_mpz_init(qi); F_mpz_set_ui(qi, 1);
F_mpz_init(si); F_mpz_set_ui(si, 1);
F_mpz_init(ui); F_mpz_set_ui(ui, 1);
F_mpz_init(zi); F_mpz_set_ui(zi, 1);
F_mpz_init(wi); F_mpz_set_ui(wi, 1);
F_mpz_init(x);

F_mpz_poly_set_coeff_F_mpz(polU, n-1, ui);
F_mpz_poly_set_coeff_F_mpz(polZ, 0, zi);
F_mpz_poly_set_coeff_F_mpz(polW, 0, wi);

for(i=1; i<n; i++) {
F_mpz_mulmod2(qi, qi, pi, m);
F_mpz_mulmod2(pi, pi, q, m);

/* s_i = s_{i-1} * (p_i - 1) */
F_mpz_sub_ui(x, pi, 1);
F_mpz_mulmod2(si, si, x, m);

/* u_i = u_{i-1} * p_i/(1 - p_i) */
F_mpz_invert(x, x, m);
F_mpz_mul2(ui, ui, pi);
F_mpz_mul2(ui, ui, x);

237

13. Cryptanalysis of the RSA Subgroup Assumption

F_mpz_neg(ui, ui);
F_mpz_mod(ui, ui, m);

F_mpz_poly_set_coeff_F_mpz(polU, n-1-i, ui);

/* z_i = (-1)^i u_i / q_i */
F_mpz_invert(x, qi, m);
F_mpz_mulmod2(x, x, ui, m);
if(i & 1)

F_mpz_neg(zi, x);
else

F_mpz_set(zi, x);

F_mpz_poly_set_coeff_F_mpz(polZ, i, zi);

/* w_i = q_i / (s_i * u_i) */
F_mpz_mul2(x, x, si);
F_mpz_invert(wi, x, m);

F_mpz_poly_set_coeff_F_mpz(polW, i, wi);
}

/* W *= (-1)^{n-1} s_{n-1} */
if(!(n & 1))

F_mpz_neg(si, si);
F_mpz_poly_scalar_mul(polW, polW, si);
F_mpz_poly_scalar_smod(polW, polW, m);

F_mpz_poly_mul_trunc_left(polW, polU, polW, n-1);
F_mpz_poly_right_shift(polW, polW, n-1);

for(i=0; i<n; i++) {
F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, polZ->coeffs + i, m);

}

printf("Polynomial interpolation complete.\n");

/* Step 2: evaluation */
F_mpz_mul2(q, q, pi);
F_mpz_invert(q, q, m);

F_mpz_set_ui(pi, 1);
F_mpz_set_ui(qi, 1);
F_mpz_set_ui(si, 1);
F_mpz_set_ui(ui, 1);
F_mpz_set_ui(zi, 1);
F_mpz_set_ui(wi, 1);

F_mpz_poly_zero(polU);

238

13.B. Source Code of the Attack

F_mpz_poly_zero(polZ);

F_mpz_poly_set_coeff_F_mpz(polU, 0, ui);
F_mpz_poly_set_coeff_F_mpz(polZ, n-1, zi);
F_mpz_poly_set_coeff_F_mpz(polS, 0, si);

for(i=1; i<n; i++) {
F_mpz_mulmod2(qi, qi, pi, m);
F_mpz_mulmod2(pi, pi, q, m);

/* s_i = s_{i-1} / (p_i - 1) */
F_mpz_sub_ui(x, pi, 1);
F_mpz_invert(x, x, m);
F_mpz_mulmod2(si, si, x, m);

F_mpz_poly_set_coeff_F_mpz(polS, i, si);

/* u_i = u_{i-1} * p_i/(1 - p_i) */
F_mpz_mul2(ui, ui, pi);
F_mpz_mul2(ui, ui, x);
F_mpz_neg(ui, ui);
F_mpz_mod(ui, ui, m);

F_mpz_poly_set_coeff_F_mpz(polU, i, ui);

/* z_i = (-1)^i u_i / q_i */
F_mpz_invert(x, qi, m);
F_mpz_mulmod2(x, x, ui, m);
if(i & 1)

F_mpz_neg(zi, x);
else

F_mpz_set(zi, x);

F_mpz_poly_set_coeff_F_mpz(polZ, n-1-i, zi);

/* w_i /= z_i */
F_mpz_invert(x, zi, m);
F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, x, m);

}

F_mpz_poly_mul_trunc_left(polW, polZ, polW, n-1);
F_mpz_poly_right_shift(polW, polW, n-1);

F_mpz_poly_clear(polZ);

for(i=0; i<n; i++) {
if(i & 1)

F_mpz_neg(polU->coeffs + i, polU->coeffs + i);
F_mpz_mulmod2(polW->coeffs + i, polW->coeffs + i, polU->coeffs + i, m);

239

13. Cryptanalysis of the RSA Subgroup Assumption

}

F_mpz_poly_clear(polU);
F_mpz_poly_mul(polW, polW, polS);
F_mpz_poly_clear(polS);

printf("Evaluation complete. Searching for a factor.\n");
for(i=0; i<n; i++) {

F_mpz_gcd(x, polW->coeffs + i, m);
if(!F_mpz_is_one(x)) {

printf("Factor found!\n");
F_mpz_print(x);
printf("\n");
break;

}
}

F_mpz_poly_clear(polW);

F_mpz_clear(pi);
F_mpz_clear(qi);
F_mpz_clear(si);
F_mpz_clear(ui);
F_mpz_clear(zi);
F_mpz_clear(wi);
F_mpz_clear(x);

}

int main()
{

F_mpz_t m, g;
unsigned long d;
clock_t c0, c1;

printf("Enter parameters N, g, d.\n");
F_mpz_init(m);
F_mpz_init(g);

F_mpz_read(m);
F_mpz_read(g);
scanf("%lu", &d);

printf("\nParameters:\nN = ");
F_mpz_print(m);
printf("\ng = ");
F_mpz_print(g);
printf("\nd = %lu\n\n", d);

240

13.B. Source Code of the Attack

c0 = clock();
attack(g, m, 1L<<d);
c1 = clock();

printf("Elapsed time: %.3f seconds.\n",
((float)(c1-c0))/CLOCKS_PER_SEC);

}

241

Contents

1 Introduction . 1
1.1 Introduction to Cryptology . 1
1.2 Modern Cryptography . 2

2 Overview of Our Results . 11
2.1 Contributions to Elliptic Curve Cryptography 12
2.2 Cryptanalysis of RSA-based Schemes 19
2.3 Other Results . 25
2.4 List of Publications . 28

I Contributions to Elliptic Curve Cryptography 31
3 Constant-Time Hashing to Elliptic and Hyperelliptic Curves 37

3.1 Introduction . 37
3.2 The Trivial Encoding: Totally Insecure 38
3.3 Try-and-Increment: Why Constant Time Matters 40
3.4 Encoding to Elliptic Curves . 44
3.5 Constructing Encodings to Elliptic Curves and Hyperelliptic Curves . 46
3.6 Further Work . 59

4 Estimating the Size of the Image of Constant-Time Encodings 63
4.1 Introduction . 63
4.2 Preliminaries . 64
4.3 Proof of Icart’s Conjecture . 65
4.4 Analogue in Characteristic 2 . 68
4.5 Analogue for the Simplified Shallue-van de Woestijne-Ulas Encoding . 70
4.6 Constructing Surjective Hash Functions 72
4.A Galois Groups of Quartics . 72

5 Indifferentiable Hashing to Elliptic Curves . 75
5.1 Introduction . 75
5.2 Admissible Encodings and Indifferentiability 78
5.3 Our Main Construction . 81
5.4 A More General Construction . 89
5.5 Extensions . 93
5.A Composition Lemmas . 95

6 Well-Distributed Encodings . 99

243

Contents

6.1 Introduction . 99
6.2 Well-Distributed Encodings . 101
6.3 Character Sums on Curves . 104
6.4 Examples of Well-Distributed Encodings 106

7 Hashing and Encoding to Odd Hyperelliptic Curves 115
7.1 Introduction . 115
7.2 Odd Hyperelliptic Curves . 116
7.3 Our New Encoding . 117
7.4 Mapping to the Jacobian . 120
7.5 Conclusion . 123

8 Huff’s Model for Elliptic Curves . 125
8.1 Introduction . 125
8.2 Huff’s Model . 127
8.3 Generalizations and Extensions . 133
8.4 Pairings . 136
8.5 Conclusion and Perspectives . 139

II Cryptanalysis of RSA-based Schemes 141
9 Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures 149

9.1 Introduction . 149
9.2 The ISO/IEC 9796-2 Standard . 151
9.3 Previous Attacks . 152
9.4 Building Blocks of the New Attack . 155
9.5 Attacking ISO/IEC 9796-2 . 157
9.6 Cost Estimates . 160
9.7 Application to EMV Signatures . 162
9.8 Conclusion . 164
9.A Optimizing Bernstein’s Batch Size . 165
9.B Large Prime Variant: Complexity Analysis 166
9.C LLL Attack on EMV SDA-IPKD Encoding 167
9.D EMV Signature Encoding Formats . 169
9.E Fewer Queries . 170
9.F Expected Number of Queries . 171

10 Fault Attacks on EMV Signatures . 175
10.1 Introduction . 175
10.2 Preliminaries on Lattices . 178
10.3 Modeling Faults on ISO/IEC 9796-2 Signatures 182
10.4 The Small Root Attack . 183
10.5 Our New Multiple-Fault Attack . 185
10.6 Simulation Results . 187
10.7 Application to EMV Signatures . 188
10.8 Proposed Countermeasures . 190

244

11 Modulus Fault Attacks Against RSA-CRT Signatures 191
11.1 Introduction . 191
11.2 The New Attack . 193
11.3 Extending the Attack to Unknown Faulty Moduli 196
11.4 Practical Experiments . 200
11.5 Countermeasures and Further Research 202
11.A Laser Fault Injection . 202

12 On the Security of PKCS#1 v1.5 Encryption 209
12.1 Introduction . 209
12.2 Preliminaries . 210
12.3 PKCS#1 v1.5 Encryption . 213
12.4 On the OW-CPA-Security of PKCS#1 v1.5 214
12.5 PKCS#1 v1.5 Malleability and Indistinguishability 216
12.6 Broadcast Attack on PKCS#1 v1.5 219
12.7 Conclusion . 226

13 Cryptanalysis of the RSA Subgroup Assumption 229
13.1 Introduction . 229
13.2 The New Attack . 230
13.3 Attack Complexity . 231
13.4 Algorithmic Details . 232
13.5 Implementation . 233
13.6 Conclusion . 235
13.A Bostan’s Algorithms . 236
13.B Source Code of the Attack . 237

List of Figures

3.1 The BLS signature scheme. 39
3.2 A randomized variant of the SPEKE protocol. 43
3.3 Icart’s encoding. 51
3.4 Icart’s binary encoding. 52
3.5 Simplified SWU encoding. 57
3.6 Encoding to odd hyperelliptic curves. 59

5.1 The indifferentiability notion. 78

8.1 Example of a Huff curve (over R). 128

245

9.1 Summary of the practical attack on ISO/IEC 9796-2. 161
9.2 Distribution of row weights. 172
9.3 Distribution of row weights after reduction. 173

11.1 Architecture of a typical SRAM cell. 203
11.2 Decapsulated chip. 205
11.3 Decapsulated chip (closeup on SRAM). 205
11.4 Exploration process. 206
11.5 1µm laser spot (dotted circle) vs. technology sizes [Pou07]. 207
11.6 Laser and target (general overview). 207
11.7 Laser and target (closeup). 207

12.1 Public-key encryption security hierarchy. 212
12.2 PKCS#1 v1.5 security. 214
12.3 Updated security status of PKCS#1 v1.5. 227

List of Tables

1.1 Key size comparison : RSA vs. ECC. 6

9.1 {a, b} values for several RSA challenge moduli. 157
9.2 Estimated cost of the ISO/IEC 9796-2 attack. 161
9.3 EMV message formats. 164
9.4 Improvement factors from the large prime variant. 167

10.1 Attack simulation results using SAGE. 188
10.2 Comparison of the new attack with [CJK+09]. 188

11.1 Attack success probability. 196
11.2 Efficiency of the attack with 5 faulty signatures. 197
11.3 Exhaustive search space size. 198
11.4 Success probabilities of the GCD method. 199

12.1 Dimension of the lattice and number of recoverable bits. 226

13.1 Experimental attack running times for 1024-bit moduli. 233

246

List of Algorithms

13.2 Estimated attack running times for 1024-bit moduli. 233

List of Algorithms

3.1 The try-and-increment algorithm. 42
3.2 Efficient encoding in characteristic 3. 58
5.1 Indifferentiability simulator. 80
5.2 Sampling algorithm for the main construction. 83
5.3 Sampling algorithm with uniformly random preimages. 91
5.4 Sampling algorithm for the general construction. 92
7.1 Implementation of the odd hyperelliptic curve encoding. 120
8.1 Miller’s algorithm. 136
13.1 Attack overview. 232
13.2 Detailed attack. 234
13.3 Bostan’s polynomial interpolation. 236
13.4 Bostan’s polynomial evaluation. 236

247

Bibliography

[ABF+02] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and
Jean-Pierre Seifert. Fault attacks on RSA with CRT: Concrete results and
practical countermeasures. In Burton S. Kaliski Jr., Çetin Kaya Koç,
and Christof Paar, editors, CHES, volume 2523 of Lecture Notes in
Computer Science, pages 260–275. Springer, 2002. 11.1.3

[Ajt02] Miklós Ajtai. Random lattices and a conjectured 0–1 law about their
polynomial time computable properties. In FOCS, pages 733–742. IEEE
Computer Society, 2002. 10.2.4

[Ajt06] Miklós Ajtai. Generating random lattices according to the invariant
distribution. Draft, March 2006. 10.2.4, 10.2.4

[ALNR11] Christophe Arène, Tanja Lange, Michael Naehrig, and Christophe Ritzen-
thaler. Faster computation of the Tate pairing. J. Number Theory,
131(5):842–857, 2011. 8.1.1

[ANSI X9.44] ANSI X9.44:2007. Public Key Cryptography for the Financial Services
Industry – Key Establishment Using Integer Factorization Cryptography.
ANSI, Washington DC, USA, 2007. 12.1.1

[ANSI X9.62] ANSI X9.62:2005. Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA).
ANSI, Washington DC, USA, 2005. I

[ANSI X9.63] ANSI X9.63:2001. Public Key Cryptography for the Financial Services
Industry, Key Agreement and Key Transport Using Elliptic Curve Cryp-
tography. ANSI, Washington DC, USA, 2001. I

[ANSI X9.98] ANSI X9.98:2010. Lattice-Based Polynomial Public Key Establishment
Algorithm for the Financial Services Industry. ANSI, Washington DC,
USA, 2010. 1.2.2

[B+03] Matthias Brüstle et al. SOSSE: Simple Operating System for Smartcard
Education, 2003. http://www.mbsks.franken.de/sosse/. 11.A.3

249

http://www.mbsks.franken.de/sosse/

Bibliography

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. Twisted Edwards curves. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science,
pages 389–405. Springer, 2008. 8.1.1

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key
encryption in a multi-user setting: Security proofs and improvements.
In Bart Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, 2000. 12.2.3

[BCCN01] Eric Brier, Christophe Clavier, Jean-Sébastien Coron, and David Nac-
cache. Cryptanalysis of rsa signatures with fixed-pattern padding. In
Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 433–439. Springer, 2001. 2.2.7

[BCDG09] Alexandre Berzati, Cécile Canovas, Jean-Guillaume Dumas, and Louis
Goubin. Fault attacks on RSA public keys: Left-to-right implementations
are also vulnerable. In Marc Fischlin, editor, CT-RSA, volume 5473
of Lecture Notes in Computer Science, pages 414–428. Springer, 2009.
11.1.1, 11.1.3

[BCDG10] Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin. Public key
perturbation of randomized RSA implementations. In Stefan Mangard
and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture
Notes in Computer Science, pages 306–319. Springer, 2010. 11.1.1, 11.1.3

[BCG08] Alexandre Berzati, Cécile Canovas, and Louis Goubin. Perturbating
RSA public keys: An improved attack. In Elisabeth Oswald and Pankaj
Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer
Science, pages 380–395. Springer, 2008. 11.1.1, 11.1.3

[BCI+10a] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues
Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into
ordinary elliptic curves. In Tal Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 237–254. Springer, 2010.
2.1.3, 2.4.2, 3.5.1, 3.5.3, 3.5.4, 3.5.4, 4.5, 5.1, 6.1.1, 6.4.1, 6.4.3

[BCI10b] Julien Bringer, Hervé Chabanne, and Thomas Icart. Password based key
exchange protocols on elliptic curves which conceal the public parameters.
In Jianying Zhou and Moti Yung, editors, ACNS, volume 6123 of Lecture
Notes in Computer Science, pages 291–308, 2010. 2.1.7, 3.6.2

[BCMCC06] Eric Brier, Benoît Chevallier-Mames, Mathieu Ciet, and Christophe
Clavier. Why one should also secure RSA public key elements. In Louis
Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of Lecture
Notes in Computer Science, pages 324–338. Springer, 2006. 11.1.1, 11.1.3

250

Bibliography

[BCN+10] Aurélie Bauer, Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi,
and Damien Vergnaud. On the broadcast and validity-checking security
of PKCS#1 v1.5 encryption. In Jianying Zhou and Moti Yung, editors,
ACNS, volume 6123 of Lecture Notes in Computer Science, pages 1–18,
2010. 2.2.4, 2.4.2, 12.1

[BD92] Jørgen Brandt and Ivan Damgård. On generation of probable primes by
incremental search. In Ernest F. Brickell, editor, CRYPTO, volume 740
of Lecture Notes in Computer Science, pages 358–370. Springer, 1992.
2.3.2

[BD00] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d
less than N0.292. IEEE Transactions on Information Theory, 46(4):1339,
2000. 2.2.6, II

[BDL91] Jørgen Brandt, Ivan Damgård, and Peter Landrock. Speeding up prime
number generation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, ASIACRYPT, volume 739 of Lecture Notes in
Computer Science, pages 440–449. Springer, 1991. 2.3.2

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract).
In EUROCRYPT, pages 37–51, 1997. 10.1.1, 11.1.1

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of eliminating errors in cryptographic computations. J. Cryptology,
14(2):101–119, 2001. 2.2.2, II, 10.1, 10.1.1, 11.1.1

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. The sorcerer’s apprentice guide to fault attacks. Proc.
IEEE, 94(2):370–382, 2006. 11.A.1, 11.A.1

[Ber68] Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.
5.3.1

[Ber04a] Daniel J. Bernstein. How to find smooth parts of integers. http:
//cr.yp.to/papers.html#smoothparts, May 2004. 2.2.1, 9.4, 9.4.1

[Ber04b] Daniel J. Bernstein. Scaled remainder trees. http://cr.yp.to/papers.
html#scaledmod, August 2004. 9.4.1, 9.5.2

[Ber08] Daniel J. Bernstein. Fast multiplication and its applications. In Algo-
rithmic number theory: lattices, number fields, curves and cryptography,
volume 44 of Math. Sci. Res. Inst. Publ., pages 325–384. Cambridge
Univ. Press, Cambridge, 2008. 9.4.1, 13.3

251

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#scaledmod
http://cr.yp.to/papers.html#scaledmod

Bibliography

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2001. 1.2.2, 2.1.1,
I, 3.1.1, 3.4.2, 5.1.1, 5.1.4, 5.2.2, 5.A.2, 7.1.2, 7.2

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham, ed-
itor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science,
pages 416–432. Springer, 2003. 3.1.1, 5.1.1

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. Cryptology ePrint Archive,
Report 2011/277, 2011. http://eprint.iacr.org/. 2.3.1

[BJ07] Aurélie Bauer and Antoine Joux. Toward a rigorous variation of cop-
persmith’s algorithm on three variables. In Moni Naor, editor, EU-
ROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages
361–378. Springer, 2007. 2.2.6

[BK01] Paulo S. L. M. Barreto and Hae Yong Kim. Fast hashing onto elliptic
curves over fields of characteristic 3. Cryptology ePrint Archive, Report
2001/098, 2001. http://eprint.iacr.org/. 3, 3.5.4

[BL07a] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on
elliptic curves. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833
of Lecture Notes in Computer Science, pages 29–50. Springer, 2007. 8.1.1

[BL07b] Daniel J. Bernstein and Tanja Lange. Inverted Edwards coordinates.
In Serdar Boztas and Hsiao feng Lu, editors, AAECC, volume 4851 of
Lecture Notes in Computer Science, pages 20–27. Springer, 2007. 8.1.1

[BL08] Daniel J. Bernstein and Tanja Lange. Explicit-formulas database, 2008.
http://www.hyperelliptic.org/EFD/. 8.1.1

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In Hugo Krawczyk,
editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 1–12. Springer, 1998. 2.2.4, II, 9.1.1, 12.1.1, 12.3.2, 12.5.2, 12.7

[BLF08] Daniel J. Bernstein, Tanja Lange, and Reza Rezaeian Farashahi. Binary
Edwards curves. In Elisabeth Oswald and Pankaj Rohatgi, editors,
CHES, volume 5154 of Lecture Notes in Computer Science, pages 244–
265. Springer, 2008. 8.1.1

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the McEliece cryptosystem. In Johannes Buchmann and Jintai
Ding, editors, PQCrypto, volume 5299 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2008. 9.E

252

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.hyperelliptic.org/EFD/

Bibliography

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the Weil pairing. In Colin Boyd, editor, ASIACRYPT, volume 2248
of Lecture Notes in Computer Science, pages 514–532. Springer, 2001.
2.1.1, 3.1.1, 3.2.1, 3.2.2, 3.3, 3.3.1, 5.1.1

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection
of pairing-friendly groups. In Mitsuru Matsui and Robert J. Zuccherato,
editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes
in Computer Science, pages 17–25. Springer, 2003. 8.4.2

[BLS04a] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient imple-
mentation of pairing-based cryptosystems. J. Cryptology, 17(4):321–334,
2004. 8.4.1

[BLS04b] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. J. Cryptology, 17(4):297–319, 2004. 2

[Blu70] Leo I. Bluestein. A linear filtering approach to the computation of the
discrete Fourier transform. IEEE Trans. Electroacoustics, 18:451–455,
1970. 13.4

[BMN01] Colin Boyd, Paul Montague, and Khanh Quoc Nguyen. Elliptic curve
based password authenticated key exchange protocols. In Vijay Varad-
harajan and Yi Mu, editors, ACISP, volume 2119 of Lecture Notes in
Computer Science, pages 487–501. Springer, 2001. 3.3.2

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure
password-authenticated key exchange using Diffie-Hellman. In Bart Pre-
neel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer
Science, pages 156–171. Springer, 2000. 3.1.1, 5.1.1

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Bart Preneel and Stafford E. Tavares, edi-
tors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in
Computer Science, pages 319–331. Springer, 2005. 2

[BNNT11a] Éric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Tibouchi.
Modulus fault attacks against RSA signatures. In Bart Preneel and
Tsuyoshi Takagi, editors, CHES, volume 6917 of Lecture Notes in Com-
puter Science. Springer, 2011. To appear. 2.2.3, 2.4.2, 11.1

[BNNT11b] Éric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Tibouchi.
Modulus fault attacks against RSA signatures. J. Cryptographic Engi-
neering, 1(3), 2011. To appear. 2.2.3, 2.4.1, 11.1

253

Bibliography

[BNP07] Arnaud Boscher, Robert Naciri, and Emmanuel Prouff. CRT-RSA
algorithm protected against fault attacks. In Damien Sauveron, Con-
stantinos Markantonakis, Angelos Bilas, and Jean-Jacques Quisquater,
editors, WISTP, volume 4462 of Lecture Notes in Computer Science,
pages 229–243. Springer, 2007. 11.1.3

[BNT09] Eric Brier, David Naccache, and Mehdi Tibouchi. Factoring unbalanced
moduli with known bits. In Donghoon Lee and Seokhie Hong, editors,
ICISC, volume 5984 of Lecture Notes in Computer Science, pages 65–72.
Springer, 2009. 2.2.6, 2.4.2

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme. In
Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 31–46. Springer, 2003. 3.1.1, 5.1.1

[Bom66] Enrico Bombieri. On exponential sums in finite fields. In Les Tendances
Géom. en Algèbre et Théorie des Nombres, pages 37–41. Éditions du
Centre National de la Recherche Scientifique, Paris, 1966. 2.1.4, 6.1.2

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices
Amer. Math. Soc., 46(2):203–213, 1999. II, 12.2.3

[Bos03] Alin Bostan. Algorithmique efficace pour des opérations de base en calcul
formel. PhD thesis, École polytechnique, 2003. In English. 13.4, 13.5

[Boy03] Xavier Boyen. Multipurpose identity-based signcryption (a Swiss army
knife for identity-based cryptography). In Dan Boneh, editor, CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 383–399.
Springer, 2003. 3.1.1, 5.1.1

[BP96] Eric Bach and René Peralta. Asymptotic semismoothness probabilities.
Math. Comp., 65(216):1701–1715, 1996. 9.4, 9.4.2, 9.6

[BPS00] Olivier Baudron, David Pointcheval, and Jacques Stern. Extended
notions of security for multicast public key cryptosystems. In Ugo
Montanari, José D. P. Rolim, and Emo Welzl, editors, ICALP, volume
1853 of Lecture Notes in Computer Science, pages 499–511. Springer,
2000. 12.2.3

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference on
Computer and Communications Security, pages 62–73, 1993. 1.2.3, 3.1.1,
5.1.1, 5.2.1, 9.1.1

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
EUROCRYPT, pages 92–111, 1994. 1.2.3, 9.1.1, 12.1.1

254

Bibliography

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital sig-
natures: How to sign with RSA and Rabin. In EUROCRYPT, pages
399–416, 1996. 1.2.3, 9.1.1, 10.1.1, 10.8, 11.1.1

[BS05] Alin Bostan and Éric Schost. Polynomial evaluation and interpolation
on special sets of points. J. Complexity, 21(4):420–446, 2005. 2.2.5, 13.3,
13.4

[BSS05] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture
Note Series, chapter V. Cambridge University Press, 2005. 8.2.3

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from Ring-LWE and security for key dependent messages. In Phillip
Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 505–524. Springer, 2011. 2.3.1

[BZ04] Joonsang Baek and Yuliang Zheng. Identity-based threshold decryption.
In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key
Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
262–276. Springer, 2004. 3.1.1, 5.1.1

[Can09] Gaëtan Canivet. Analyse des effets d’attaques par fautes et conception
sécurisée sur plate-forme reconfigurable. PhD thesis, Institut polytech-
nique de Grenoble, 2009. 11.A.1

[CC03] Jae Choon Cha and Jung Hee Cheon. An identity-based signature
from gap Diffie-Hellman groups. In Yvo Desmedt, editor, Public Key
Cryptography, volume 2567 of Lecture Notes in Computer Science, pages
18–30. Springer, 2003. 3.1.1, 5.1.1

[CCG+08] Don Coppersmith, Jean-Sébastien Coron, François Grieu, Shai Halevi,
Charanjit S. Jutla, David Naccache, and Julien P. Stern. Cryptanalysis
of ISO/IEC 9796-1. J. Cryptology, 21(1):27–51, 2008. II, 9.1.1

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004. 5.1.1

[CGIP11] Jean-Sébastien Coron, Aline Gouget, Thomas Icart, and Pascal Paillier.
Supplemental access control (PACE v2): Security analysis of PACE
Integrated Mapping. Cryptology ePrint Archive, Report 2011/058, 2011.
http://eprint.iacr.org/. 2.1.7, 3.6.2

[CJ05] Mathieu Ciet and Marc Joye. Practical fault countermeasures for Chinese
remaindering based cryptosystems. In L. Breveglieri and I. Koren, editors,
FDTC, pages 124–131, 2005. 11.1.3

255

http://eprint.iacr.org/

Bibliography

[CJK+09] Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache,
and Pascal Paillier. Fault attacks on RSA signatures with partially
unknown messages. In Christophe Clavier and Kris Gaj, editors, CHES,
volume 5747 of Lecture Notes in Computer Science, pages 444–456.
Springer, 2009. 2.2.2, 10.1, 10.1.2, 10.1.3, 10.3.2, 10.4, 10.4.1, 10.4.2,
10.6, 10.6, 10.2, 10.7.2, 13.6

[CJM+11] Jean-Sébastien Coron, Antoine Joux, Avradip Mandal, David Naccache,
and Mehdi Tibouchi. Cryptanalysis of the RSA subgroup assumption
from TCC 2005. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, Public Key Cryptography, volume 6571
of Lecture Notes in Computer Science, pages 147–155. Springer, 2011.
2.2.5, 2.4.2, 13.1

[CJNP00] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier.
New attacks on PKCS#1 v1.5 encryption. In Bart Preneel, editor,
EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 369–381. Springer, 2000. II, 9.1.1, 12.1.1, 12.3.2, 12.7

[CJNP02] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier.
Universal padding schemes for RSA. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 226–241.
Springer, 2002. 12.4, 12.4

[CK11] Jean-Marc Couveignes and Jean-Gabriel Kammerer. The geometry of
flex tangents to a cubic curve and its parameterizations. Cryptology
ePrint Archive, Report 2011/033, 2011. http://eprint.iacr.org/.
2.1.7, 3.5.2

[CM05] Benoît Chevallier-Mames. An efficient CDH-based signature scheme with
a tight security reduction. In Victor Shoup, editor, CRYPTO, volume
3621 of Lecture Notes in Computer Science, pages 511–526. Springer,
2005. 3.1.1

[CM09] Jean-Sébastien Coron and Avradip Mandal. PSS is secure against random
fault attacks. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 653–666. Springer, 2009. 10.8

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Fully homomorphic encryption over the integers with shorter
public keys. In Phillip Rogaway, editor, CRYPTO, volume 6841 of
Lecture Notes in Computer Science, pages 487–504. Springer, 2011.
2.3.1, 2.4.2

[CND+06] Jean-Sébastien Coron, David Naccache, Yvo Desmedt, Andrew M.
Odlyzko, and Julien P. Stern. Index calculation attacks on RSA signature
and encryption. Des. Codes Cryptography, 38(1):41–53, 2006. 9.3.1

256

http://eprint.iacr.org/

Bibliography

[CNS99] Jean-Sébastien Coron, David Naccache, and Julien P. Stern. On the
security of RSA padding. In Michael J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 1–18. Springer, 1999.
2.2.1, 9.1, 9.1.2, 9.3.2, 9.4.1, 10.8

[CNT10] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault
attacks against EMV signatures. In Josef Pieprzyk, editor, CT-RSA,
volume 5985 of Lecture Notes in Computer Science, pages 208–220.
Springer, 2010. 2.2.2, 2.4.2, 10.1

[CNT11a] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Another
look at RSA signatures with affine padding. Cryptology ePrint Archive,
Report 2011/057, 2011. http://eprint.iacr.org/. 2.2.7, 2.4.4

[CNT11b] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Opti-
mization of fully homomorphic encryption. Cryptology ePrint Archive,
Report 2011/440, 2011. http://eprint.iacr.org/. 2.3.1, 2.4.4

[CNTW09] Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi, and Ralf-
Philipp Weinmann. Practical cryptanalysis of ISO/IEC 9796-2 and
EMV signatures. In Shai Halevi, editor, CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 428–444. Springer, 2009.
2.2.1, 2.4.2, 9.1, 10.8

[Con07] Keith Conrad. Galois groups of cubics and quartics in all char-
acteristics, 2007. http://www.math.uconn.edu/~kconrad/blurbs/
galoistheory/cubicquarticchar2.pdf. 4.4, 4.A

[Cop94] Don Coppersmith. Solving homogeneous linear equations over GF(2)
via block Wiedemann algorithm. Math. Comp., 62(205):333–350, 1994.
9.5.2

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation.
In EUROCRYPT, pages 155–165, 1996. 12.6.2

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997. 2.2.2,
II, 10.1, 10.1.2, 12.6

[Cor00] Jean-Sébastien Coron. On the exact security of Full Domain Hash.
In Mihir Bellare, editor, CRYPTO, volume 1880 of Lecture Notes in
Computer Science, pages 229–235. Springer, 2000. 1

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signa-
ture schemes. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332
of Lecture Notes in Computer Science, pages 272–287. Springer, 2002.
10.1.1, 11.1.1

257

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/cubicquarticchar2.pdf
http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/cubicquarticchar2.pdf

Bibliography

[Cox04] David A. Cox. Galois theory. Pure and Applied Mathematics. Wiley-
Interscience, 2004. 4.A

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical
public-key encryption schemes secure against adaptive chosen ciphertext
attack. SIAM J. Comput., 33(1):167–226, 2003. 12.1.1

[CT11] Hervé Chabanne and Mehdi Tibouchi. Securing e-passports with elliptic
curves. IEEE Security & Privacy, 9(2):75–78, 2011. 2.1.7, 2.4.3, 3.6.2

[DBP+02] Frédéric Darracq, Thomas Beauchene, Vincent Pouget, Hervé Lapuyade,
Dean Lewis, Pascal Fouillat, and André Touboul. Single-event sensitivity
of a single SRAM cell. IEEE Trans. Nuclear Sci., 49:1486–1490, 2002.
11.A.1, 11.A.1

[DGK07] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and
secure comparison for on-line auctions. In Josef Pieprzyk, Hossein
Ghodosi, and Ed Dawson, editors, ACISP, volume 4586 of Lecture Notes
in Computer Science, pages 416–430. Springer, 2007. 13.2

[Dic30] Karl Dickman. On the frequency of numbers containing prime factors of
a certain relative magnitude. Arkiv för matematik, astronomi och fysik,
22A(10):1–14, 1930. 9.4.2

[DJ11] Julien Devigne and Marc Joye. Binary Huff curves. In Aggelos Kiayias,
editor, CT-RSA, volume 6558 of Lecture Notes in Computer Science,
pages 340–355. Springer, 2011. 2.1.7, 8.5

[dJC85] Wiebren de Jonge and David Chaum. Attacks on some RSA signatures.
In Hugh C. Williams, editor, CRYPTO, volume 218 of Lecture Notes in
Computer Science, pages 18–27. Springer, 1985. 2.2.7

[DO85] Yvo Desmedt and Andrew M. Odlyzko. A chosen text attack on the
RSA cryptosystem and some discrete logarithm schemes. In Hugh C.
Williams, editor, CRYPTO, volume 218 of Lecture Notes in Computer
Science, pages 516–522. Springer, 1985. 2.2.1, 9.1.2

[DS08] M. Prem Laxman Das and Palash Sarkar. Pairing computation on twisted
Edwards form elliptic curves. In Steven D. Galbraith and Kenneth G.
Paterson, editors, Pairing, volume 5209 of Lecture Notes in Computer
Science, pages 192–210. Springer, 2008. 8.1.1

[Edw07] Harold M. Edwards. A normal form for elliptic curves. Bull. Am. Math.
Soc., New Ser., 44(3):393–422, 2007. 8.1.1

[EGA III.1] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie
algébrique III. Étude cohomologique des faisceaux cohérents, première
partie. Publ. Math. IHES, 11:5–167, 1961. 5.3.3

258

Bibliography

[EMV] EMV. Integrated circuit card specifications for payment systems. Book
2. Security and key management. Version 4.2, June 2008. http://www.
emvco.com/. II, 9.7, 9.7.1, 10.1.2, 10.3.1, 10.7.1

[EMV TC] EMV. EMVCo type approval terminal level 2 test cases. Version 4.2a.,
April 2009. http://www.emvco.com/. 10.7.1

[Far11] Reza Rezaeian Farashahi. Hashing into hessian curves. In Abderrahmane
Nitaj and David Pointcheval, editors, AFRICACRYPT, volume 6737
of Lecture Notes in Computer Science, pages 278–289. Springer, 2011.
2.1.7, 3.5.2, 6.1.1

[FFS+11] Reza R. Farashahi, Pierre-Alain Fouque, Igor E. Shparlinski, Mehdi
Tibouchi, and J. Felipe Voloch. Indifferentiable deterministic hashing
to elliptic and hyperelliptic curves. Math. Comput., 2011. To appear.
2.1.4, 2.4.1, 6.1.2

[FIPS186–3] FIPS PUB 186-3. Digital Signature Standard (DSS). NIST, USA, 2009.
I, 5.5.3

[FJ05] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag,
Berlin, second edition, 2005. 4.3.2

[FKT03] Eisaku Furukawa, Mitsuru Kawazoe, and Tetsuya Takahashi. Counting
points for hyperelliptic curves of type y2 = x5+ax over finite prime fields.
In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in
Cryptography, volume 3006 of Lecture Notes in Computer Science, pages
26–41. Springer, 2003. 3.5.3, 3.5.4, 7.1.2, 7.2

[FOPS04] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques
Stern. RSA-OAEP is secure under the RSA assumption. J. Cryptology,
17(2):81–104, 2004. 12.1.1

[FS11] David Mandell Freeman and Takakazu Satoh. Constructing pairing-
friendly hyperelliptic curves using Weil restriction. J. Number Theory,
131(5):959–983, 2011. 7.1.2, 7.2

[FSV10] Reza R. Farashahi, Igor E. Shparlinski, and José Felipe Voloch. On
hashing into elliptic curves. J. Math. Cryptology, 3:353–360, 2010. 4.1.2,
6.4.1, 6.4.1

[FT10a] Pierre-Alain Fouque and Mehdi Tibouchi. Deterministic encoding and
hashing to odd hyperelliptic curves. In Marc Joye, Atsuko Miyaji,
and Akira Otsuka, editors, Pairing, volume 6487 of Lecture Notes in
Computer Science, pages 265–277. Springer, 2010. 2.1.5, 2.4.2, 3.5.3,
6.4.1, 6.4.3, 7.1

259

http://www.emvco.com/
http://www.emvco.com/
http://www.emvco.com/

Bibliography

[FT10b] Pierre-Alain Fouque and Mehdi Tibouchi. Estimating the size of the
image of deterministic hash functions to elliptic curves. In Michel Abdalla
and Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of
Lecture Notes in Computer Science, pages 81–91. Springer, 2010. 2.1.2,
2.4.2, 4.1

[FT11] Pierre-Alain Fouque and Mehdi Tibouchi. Close to uniform prime
number generation with fewer random bits. Cryptology ePrint Archive,
Report 2011/481, 2011. http://eprint.iacr.org/. 2.3.2, 2.4.4

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, STOC, pages 169–178. ACM, 2009. 2.3.1

[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-
homomorphic encryption scheme. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer, 2011. 2.3.1

[Gir06] Christophe Giraud. An RSA implementation resistant to fault attacks
and to simple power analysis. IEEE Trans. Computers, 55(9):1116–1120,
2006. 10.8, 11.1.3

[GKZ07] Pierrick Gaudry, Alexander Kruppa, and Paul Zimmermann. A GMP-
based implementation of Schönhage-Strassen’s large integer multipli-
cation algorithm. In Dongming Wang, editor, ISSAC, pages 167–174.
ACM, 2007. 9.4.1

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how
to play mental poker keeping secret all partial information. In STOC,
pages 365–377. ACM, 1982. 1.2.3

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984. 1.2.3

[GM97] Marc Girault and Jean-François Misarsky. Selective forgery of RSA
signatures using redundancy. In EUROCRYPT, pages 495–507, 1997.
2.2.7

[GMR84] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical”
solution to the signature problem. In FOCS, pages 441–448. IEEE, 1984.
1.2.3

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM J.
Comput., 17(2):281–308, 1988. 1.2.3

260

http://eprint.iacr.org/

Bibliography

[Gri00] François Grieu. A chosen messages attack on the ISO/IEC 9796-1
signature scheme. In Bart Preneel, editor, EUROCRYPT, volume 1807
of Lecture Notes in Computer Science, pages 70–80. Springer, 2000. II,
9.1.1

[Gro05] Jens Groth. Cryptography in subgroups of Z∗N . In Joe Kilian, editor,
TCC, volume 3378 of Lecture Notes in Computer Science, pages 50–65.
Springer, 2005. 2.2.5, II, 13.1, 13.1.1, 13.1.2, 13.1, 13.5, 13.6

[Gro08] The PARI Group. PARI/GP, Version 2.3.4, 2008. http://pari.math.
u-bordeaux.fr. 9.5.2

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography.
In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes
in Computer Science, pages 548–566. Springer, 2002. 3.1.1, 5.1.1

[H+09] William B. Hart et al. Multi Precision Integers and Rationals library,
2009. http://www.mpir.org. 9.5.2, 9.5.2

[Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in
Mathematics. Springer, 1977. 5.3.2, 5.3.3

[Has36] Helmut Hasse. Zur Theorie der abstrakten elliptischen Funktionenkörper
III. Die Struktur des Meromorphismenrings; die Riemannsche Vermu-
tung. J. Reine Angew. Math., 175:193–208, 1936. 3.3.1

[Hås88] Johan Håstad. Solving simultaneous modular equations of low degree.
SIAM J. Comput., 17(2):336–341, 1988. 2.2.4, II, 12.6

[Hel76] Whitfield Diffie Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. 1.2.1, 1.2.2,
II

[HG97] Nick Howgrave-Graham. Finding small roots of univariate modular
equations revisited. In Michael Darnell, editor, IMA Int. Conf., volume
1355 of Lecture Notes in Computer Science, pages 131–142. Springer,
1997. 12.6.2, 12.2

[HH+10] William B. Hart, David Harvey, et al. Fast Library for Number Theory,
2010. http://www.flintlib.org. 13.5

[HKT05] Mitsuhiro Haneda, Mitsuru Kawazoe, and Tetsuya Takahashi. Suitable
curves for genus-4 HCC over prime fields. In Luís Caires, Giuseppe F.
Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Science, pages
539–550. Springer, 2005. 3.5.3, 3.5.4, 7.1.2, 7.2

261

http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr
http://www.mpir.org
http://www.flintlib.org

Bibliography

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based
encryption. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332
of Lecture Notes in Computer Science, pages 466–481. Springer, 2002.
3.1.1, 5.1.1

[HM08] Mathias Herrmann and Alexander May. Solving linear equations modulo
divisors: On factoring given any bits. In Josef Pieprzyk, editor, ASI-
ACRYPT, volume 5350 of Lecture Notes in Computer Science, pages
406–424. Springer, 2008. 10.1.2, 10.1

[HQZ04] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle
product algorithm I. Appl. Algebra Eng. Commun. Comput., 14(6):415–
438, 2004. 13.3

[Huf48] Gerald B. Huff. Diophantine problems in geometry and elliptic ternary
forms. Duke Math. J., 15:443–453, 1948. 2.1.6, 8.1.1, 8.1

[HWCD08] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Daw-
son. Twisted Edwards curves revisited. In Josef Pieprzyk, editor,
ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages
326–343. Springer, 2008. 8.1.1

[Ica09] Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
303–316. Springer, 2009. 2.1.1, 2.1.2, 3.5.2, 3.6.1, 4.1, 4.2.1, 4.2.2, 4.6,
5.3, 5.3.2, 5.3.3, 6.1.1, 6.4.1

[ICAO10] ISO/IEC JTC1 SC17 WG3/TF5. Supplemental Access Control for
Machine Readable Travel Documents, version 1.01. International Civil
Aviation Organization, 2010. http://mrtd.icao.int/. I, 3.6.2

[IEEE P1363] IEEE P1363-2000. Standard Specifications For Public Key Cryptography.
IEEE, 2000. 11.1.3

[IJ08] Sorina Ionica and Antoine Joux. Another approach to pairing compu-
tation in Edwards coordinates. In Dipanwita Roy Chowdhury, Vincent
Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture
Notes in Computer Science, pages 400–413. Springer, 2008. 8.1.1

[ISO18033–2] ISO/IEC 18033-2:2006. Information technology – Security techniques
– Encryption algorithms – Part 2: Asymmetric ciphers. ISO, Geneva,
Switzerland, 2006. 1.2.3, I, 12.1.1

[ISO8825–1] ISO/IEC 8825-1:2002. Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER). ISO, Geneva, Switzer-
land, 2002. 10.7.1

262

http://mrtd.icao.int/

Bibliography

[ISO9796–1] ISO/IEC 9796-1. Information Technology – Security Techniques – Digital
signature scheme giving message recovery, Part 1: Mechanisms using
redundancy. ISO, Geneva, Switzerland, 1999. 1.2.3, 9.1, 9.1.1

[ISO9796–2] ISO/IEC 9796-2. Information Technology – Security Techniques – Digital
signature scheme giving message recovery, Part 2: Mechanisms using a
hash-function. ISO, Geneva, Switzerland, 1997. 1.2.3, 2.2.1, 9.1, 9.1.1,
9.1.2, 9.2, 10.3.1

[ISO9796–2:2010] ISO/IEC 9796-2:2010. Information Technology – Security Techniques
– Digital signature scheme giving message recovery, Part 2: Integer
factorization based mechanisms. ISO, Geneva, Switzerland, 2010. 2.2.1,
9.1, 9.2, 9.8

[ISO9796–2:2002] ISO/IEC 9796-2:2002. Information Technology – Security Techniques
– Digital signature scheme giving message recovery, Part 2: Integer
factorization based mechanisms. ISO, Geneva, Switzerland, 2002. 2.2.1,
2.2.1, II, 9.1, 9.1.1, 9.1.2, 9.2, 10.1.2, 10.3.1

[Jab96] David P. Jablon. Strong password-only authenticated key exchange.
SIGCOMM Comput. Commun. Rev., 26:5–26, October 1996. 3.1.1, 3.3.2,
5.1.1

[Jab97] David P. Jablon. Extended password key exchange protocols immune
to dictionary attacks. In WETICE, pages 248–255. IEEE Computer
Society, 1997. 3.3.2

[JLQ99] Marc Joye, Arjen K. Lenstra, and Jean-Jacques Quisquater. Chinese
remaindering based cryptosystems in the presence of faults. J. Cryptology,
12(4):241–245, 1999. 10.1.1

[JM06] Ellen Jochemsz and Alexander May. A strategy for finding roots of
multivariate polynomials with new applications in attacking RSA vari-
ants. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284
of Lecture Notes in Computer Science, pages 267–282. Springer, 2006.
2.2.4, 12.6.1, 12.6.2

[JNT07] Antoine Joux, David Naccache, and Emmanuel Thomé. When e-th roots
become easier than factoring. In Kaoru Kurosawa, editor, ASIACRYPT,
volume 4833 of Lecture Notes in Computer Science, pages 13–28. Springer,
2007. II, 9.1.1

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In
Wieb Bosma, editor, ANTS, volume 1838 of Lecture Notes in Computer
Science, pages 385–394. Springer, 2000. 1.2.2, I

263

Bibliography

[Jou02] Antoine Joux. The Weil and Tate pairings as building blocks for public
key cryptosystems. In Claus Fieker and David R. Kohel, editors, ANTS,
volume 2369 of Lecture Notes in Computer Science, pages 20–32. Springer,
2002. 3.5.4, 7.2, 7.2

[JP06] Marc Joye and Pascal Paillier. Fast generation of prime numbers on
portable devices: An update. In Louis Goubin and Mitsuru Matsui,
editors, CHES, volume 4249 of Lecture Notes in Computer Science, pages
160–173. Springer, 2006. 2.3.2

[JPV00] Marc Joye, Pascal Paillier, and Serge Vaudenay. Efficient generation of
prime numbers. In Çetin Kaya Koç and Christof Paar, editors, CHES,
volume 1965 of Lecture Notes in Computer Science, pages 340–354.
Springer, 2000. 2.3.2

[JPY01] Marc Joye, Pascal Paillier, and Sung-Ming Yen. Secure evaluation
of modular functions. In R. J. Hwang and C. K. Wu, editors, 2001
International Workshop on Cryptology and Network Security, pages
227–229, Taipei, Taiwan, 2001. 10.8

[JTV10] Marc Joye, Mehdi Tibouchi, and Damien Vergnaud. Huff’s model for
elliptic curves. In Guillaume Hanrot, François Morain, and Emmanuel
Thomé, editors, ANTS, volume 6197 of Lecture Notes in Computer
Science, pages 234–250. Springer, 2010. 2.1.6, 2.4.2, 8.1

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra,
Emmanuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa,
Peter L. Montgomery, Dag Arne Osvik, Herman J. J. te Riele, Andrey
Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA
modulus. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes
in Computer Science, pages 333–350. Springer, 2010. II, 13.5

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999. II

[KKM11] Ann Hibner Koblitz, Neal Koblitz, and Alfred Menezes. Elliptic curve
cryptography: The serpentine course of a paradigm shift. J. Number
Theory, 131(5):781–814, 2011. I

[KL99] Erich Kaltofen and Austin A. Lobo. Distributed matrix-free solution of
large sparse linear systems over finite fields. Algorithmica, 24(3-4):331–
348, 1999. 9.5.2

[KLR10] Jean-Gabriel Kammerer, Reynald Lercier, and Guénaël Renault. En-
coding points on hyperelliptic curves over finite fields in deterministic

264

Bibliography

polynomial time. In Marc Joye, Atsuko Miyaji, and Akira Otsuka, edi-
tors, Pairing, volume 6487 of Lecture Notes in Computer Science, pages
278–297. Springer, 2010. 2.1.1, 3.5.2, 3.5.3, 3.5.3, 6.4.2, 6.4.2, 6.4.2, 7.1.1

[KM11] Neal Koblitz and Alfred Menezes. Another look at security definitions.
Cryptology ePrint Archive, Report 2011/343, 2011. http://eprint.
iacr.org/. 2

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209,
1987. 1.2.2, I

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996. II

[KQ07] Chong Hee Kim and Jean-Jacques Quisquater. Fault attacks for CRT
based RSA: New attacks, new results, and new countermeasures. In
Damien Sauveron, Constantinos Markantonakis, Angelos Bilas, and
Jean-Jacques Quisquater, editors, WISTP, volume 4462 of Lecture Notes
in Computer Science, pages 215–228. Springer, 2007. 10.8

[KS00] David R. Kohel and Igor Shparlinski. On exponential sums and group
generators for elliptic curves over finite fields. In Wieb Bosma, editor,
ANTS, volume 1838 of Lecture Notes in Computer Science, pages 395–
404. Springer, 2000. 6.3, 7.4.2

[KT08] Mitsuru Kawazoe and Tetsuya Takahashi. Pairing-friendly hyperelliptic
curves with ordinary jacobians of type y2 = x5 + ax. In Steven D.
Galbraith and Kenneth G. Paterson, editors, Pairing, volume 5209 of
Lecture Notes in Computer Science, pages 164–177. Springer, 2008. 3.5.4,
7.1.2, 7.2

[KW89] Luise-Charlotte Kappe and Bette Warren. An elementary test for the
Galois group of a quartic polynomial. Amer. Math. Monthly, 96(2):133–
137, 1989. 4.5, 4.A

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature
schemes with tight security reductions. In Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger, editors, ACM Conference on Computer and
Communications Security, pages 155–164. ACM, 2003. 1

[LJMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M.
Pollard. The number field sieve. In STOC, pages 564–572. ACM, 1990.
1.2.2, II

265

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development
of the number field sieve, volume 1554 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1993. II

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and L. Lovász. Factoring
polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.
9.7.2, 10.2.4, 2, 12.6.2

[Lob95] Austin A. Lobo. WLSS2: an implementation of the homogeneous
block Wiedemann algorithm, 1995. http://www4.ncsu.edu/~kaltofen/
software/wiliss. 9.5.2

[LQ04] Benoît Libert and Jean-Jacques Quisquater. Efficient signcryption with
key privacy from gap Diffie-Hellman groups. In Feng Bao, Robert H.
Deng, and Jianying Zhou, editors, Public Key Cryptography, volume
2947 of Lecture Notes in Computer Science, pages 187–200. Springer,
2004. 3.1.1, 5.1.1

[Mau89] Ueli M. Maurer. Fast generation of secure RSA-moduli with almost
maximal diversity. In EUROCRYPT, pages 636–647, 1989. 2.3.2

[Mau95] Ueli M. Maurer. Fast generation of prime numbers and secure public-key
cryptographic parameters. J. Cryptology, 8(3):123–155, 1995. 2.3.2

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic
coding theory. The Deep Space Network Progress Report, 42-44:114–116,
1978. 1.2.2

[MDT+10] Amir Pasha Mirbaha, Jean-Max Dutertre, Assia Tria, Michel Agoyan,
Anne-Lise Ribotta, and David Naccache. Study of single-bit fault injec-
tion techniques by laser on an AES cryptosystem. In D. Gizopoulos and
A. Chatterjee, editors, IOLTS, 2010. 11.4

[MH78] Ralph C. Merkle and Martin E. Hellman. Hiding information and
signatures in trapdoor knapsacks. IEEE Transactions on Information
Theory, 24(5):525–530, 1978. 1.2.2

[Mih94] Preda Mihailescu. Fast generation of provable primes using search in
arithmetic progressions. In Yvo Desmedt, editor, CRYPTO, volume 839
of Lecture Notes in Computer Science, pages 282–293. Springer, 1994.
2.3.2

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, CRYPTO, volume 218 of Lecture Notes in Computer
Science, pages 417–426. Springer, 1985. 1.2.2, I

[Mil04] Victor S. Miller. The Weil pairing, and its efficient calculation. J.
Cryptology, 17(4):235–261, 2004. 8.4.1

266

http://www4.ncsu.edu/~kaltofen/software/wiliss
http://www4.ncsu.edu/~kaltofen/software/wiliss

Bibliography

[Min96] Hermann Minkowski. Geometrie der Zahlen. Teubner-Verlag, 1896.
10.2.4

[Mis98] Jean-François Misarsky. How (not) to design RSA signature schemes.
In Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography,
volume 1431 of Lecture Notes in Computer Science, pages 14–28. Springer,
1998. 9.1.2, 9.3.1

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing
elliptic curve logarithms to logarithms in a finite field. IEEE Transactions
on Information Theory, 39(5):1639–1646, 1993. 1.2.2

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferen-
tiability, impossibility results on reductions, and applications to the
random oracle methodology. In Moni Naor, editor, TCC, volume 2951 of
Lecture Notes in Computer Science, pages 21–39. Springer, 2004. 2.1.3,
3.3.1, 5.1.3, 5.2.1, 5.1, 5.2.1

[Mui06] James A. Muir. Seifert’s RSA fault attack: Simplified analysis and
generalizations. In Peng Ning, Sihan Qing, and Ninghui Li, editors,
ICICS, volume 4307 of Lecture Notes in Computer Science, pages 420–
434. Springer, 2006. 11.1.1, 11.1.3

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing
elliptic curve logarithms to logarithms in a finite field. In STOC, pages
80–89. ACM, 1991. 1.2.2

[MWZ98] Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. An ele-
mentary introduction to hyperelliptic curves. In Neal Koblitz, editor,
Algebraic Aspects of Cryptography, volume 3 of Algorithms and Compu-
tation in Mathematics, pages 155–178. Springer, 1998. 7.4.1

[Ngu09] Phong Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent
Trends in Cryptography, volume 477 of Contemporary Mathematics.
AMS–RSME, 2009. 10.2, 11.2.2

[NS97] Phong Q. Nguyen and Jacques Stern. Merkle-Hellman revisited: A
cryptoanalysis of the Qu-Vanstone cryptosystem based on group fac-
torizations. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 198–212. Springer, 1997.
2.2.2, II, 10.1.3, 10.5, 10.5, 11.1.2, 11.2.2, 11.2.2, 2

[NS98] Phong Q. Nguyen and Jacques Stern. Cryptanalysis of a fast public key
cryptosystem presented at SAC ’97. In Stafford E. Tavares and Henk
Meijer, editors, Selected Areas in Cryptography, volume 1556 of Lecture
Notes in Computer Science, pages 213–218. Springer, 1998. 2.2.2, 10.1.3,
11.2.2

267

Bibliography

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in
cryptology. In Joseph H. Silverman, editor, CaLC, volume 2146 of
Lecture Notes in Computer Science, pages 146–180. Springer, 2001.
11.2.2

[NSA05] National Security Agency. The case for elliptic curve cryptog-
raphy, 2005. http://www.nsa.gov/business/programs/elliptic_
curve.shtml. 1.2.2, I

[NT11] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-based fault attacks on
signatures. In Marc Joye and Michael Tunstall, editors, Fault Analysis
in Cryptography. Springer, 2011. To appear. 2.4.3

[P+09] Christof Paar et al. COPACOBANA: A codebreaker for DES and other
ciphers, 2009. http://www.copacobana.org. 9.5.2

[Pee54] William D. Peeples, Jr. Elliptic curves and rational distance sets. Proc.
Am. Math. Soc., 5:29–33, 1954. 8.1.1

[PKCS#1 v1.5] Burton S. Kaliski et al. PKCS#1: RSA Encryption Standard, Version
1.5. RSA Laboratories, November 1993. 1.2.3, II, 9.1.1, 10.1.1, 12.1.1

[PKCS#1 v2.0] Burton S. Kaliski et al. PKCS#1: RSA Encryption Standard, Version
2.0. RSA Laboratories, September 1998. 12.1.1

[PKCS#1 v2.1] Burton S. Kaliski et al. PKCS#1: RSA Encryption Standard, Version
2.1. RSA Laboratories, June 2002. 1.2.3, 9.2, 11.1.3

[Poi05] David Pointcheval. Provable security for public key schemes. In Contem-
porary cryptology, Adv. Courses Math. CRM Barcelona, pages 133–190.
Birkhäuser, Basel, 2005. 12.2.2

[Pou07] Vincent Pouget. Test et analyse par faisceau laser: Plateforme et
applications. Technical report, Journée thématique du GDR SOC-
SIP, 2007. http://www.lirmm.fr/soc_sip/6fev/GCT_R1_Pouget.pdf.
11.5, 13.6

[PP99] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In Kwok-Yan Lam, Eiji
Okamoto, and Chaoping Xing, editors, ASIACRYPT, volume 1716 of
Lecture Notes in Computer Science, pages 165–179. Springer, 1999. 13.2

[PWGP03] Jan Pelzl, Thomas J. Wollinger, Jorge Guajardo, and Christof Paar.
Hyperelliptic curve cryptosystems: Closing the performance gap to
elliptic curves. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar,
editors, CHES, volume 2779 of Lecture Notes in Computer Science, pages
351–365. Springer, 2003. 3.5.3

268

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.copacobana.org
http://www.lirmm.fr/soc_sip/6fev/GCT_R1_Pouget.pdf

Bibliography

[RAD78] Ron L. Rivest, Leonard M. Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. In Richard A. DeMillo, editor,
Foundations of Secure Computation, pages 169–180. Academic Press,
1978. 2.3.1

[Riv09] Matthieu Rivain. Securing RSA against fault analysis by double addition
chain exponentiation. In Marc Fischlin, editor, CT-RSA, volume 5473
of Lecture Notes in Computer Science, pages 459–480. Springer, 2009.
11.1.3

[Ros02] Michael Rosen. Number Theory in Function Fields, volume 210 of
Graduate Texts in Mathematics. Springer, 2002. 6.3

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978. 1.2.1, 1.2.2, II, 9.1.1, 11.1.1, 12.2.3

[RSR69] Lawrence R. Rabiner, Ronald W. Schafer, and Charles M. Rader. The
chirp z-transform algorithm and its application. Bell System Tech. J.,
48:1249–1292, 1969. 13.4

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful
with composition: Limitations of the indifferentiability framework. In
Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture
Notes in Computer Science, pages 487–506. Springer, 2011. 2.1.3, 4,
3.4.1, 5.1.3, 5.2.1

[S+10a] Nigel P. Smart et al. ECRYPT II yearly report on algorithms and
key lengths. Technical report, European Network of Excellence in
Cryptology II, March 2010. http://www.ecrypt.eu.org/documents/
D.SPA.13.pdf. 1.1

[S+10b] W.A. Stein et al. Sage Mathematics Software (Version 4.4). The Sage
Development Team, 2010. http://www.sagemath.org. 9.5.2, 11.2.4

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction
attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, CHES, volume 2523 of Lecture Notes in Computer Science, pages
2–12. Springer, 2002. 11.A.1

[Sat09] Takakazu Satoh. Generating genus two hyperelliptic curves over large
characteristic finite fields. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages 536–553.
Springer, 2009. 3.5.3, 3.5.4, 7.1.2, 7.2, 7.2

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of
square roots mod p. Math. Comp., 44(170):483–494, 1985. 2.1.1, 3.4.3

269

http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.sagemath.org

Bibliography

[Sei05] Jean-Pierre Seifert. On authenticated computing and RSA-based au-
thentication. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors,
ACM Conference on Computer and Communications Security, pages
122–127. ACM, 2005. 11.1.1

[SH09] Hisayoshi Sato and Keisuke Hakuta. An efficient method of generating
rational points on elliptic curves. J. Math-for-Industry, 1(A):33–44, 2009.
2.1.1, 3.5.1

[Sha73] Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the
Second Manitoba Conference on Numerical Mathematics (Univ. Mani-
toba, Winnipeg, Man., 1972), pages 51–70. Congressus Numerantium,
No. VII. Utilitas Math., 1973. 3.5.1

[Sha95] Adi Shamir. RSA for paranoids. CryptoBytes Technical Newsletter,
1(3):1–4, 1995. 2.2.6

[Sha99] Adi Shamir. Method and apparatus for protecting public key schemes
from timing and fault attacks. US Patent #5,991,415, November 1999.
Presented at the rump session of EUROCRYPT ’97. 10.8

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In EUROCRYPT, pages 256–266, 1997. 2.1.7

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics, chapter III. Springer-Verlag, 1986. 8.1

[Ska05] Mariusz Skałba. Points on elliptic curves over finite fields. Acta Arith.,
117:293–301, 2005. 2.1.1, 3.5.1, 3.2

[SS04] Andrejz Schinzel and Mariusz Skałba. On equations y2 = xn + k in a
finite field. Bull. Pol. Acad. Sci. Math., 52(3):223–226, 2004. 3.4.3, 3.1,
3.5.1

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption.
In Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes
in Computer Science, pages 377–394. Springer, 2010. 2.3.1

[SV07] Nigel P. Smart and Frederik Vercauteren. On computable isomorphisms
in efficient asymmetric pairing-based systems. Discrete Applied Mathe-
matics, 155(4):538–547, 2007. 2

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption
with relatively small key and ciphertext sizes. In Phong Q. Nguyen and
David Pointcheval, editors, Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 420–443. Springer, 2010. 2.3.1

270

Bibliography

[SvdW06] Andrew Shallue and Christiaan van de Woestijne. Construction of
rational points on elliptic curves over finite fields. In Florian Hess,
Sebastian Pauli, and Michael E. Pohst, editors, ANTS, volume 4076
of Lecture Notes in Computer Science, pages 510–524. Springer, 2006.
2.1.1, 3.5.1, 3.5.4, 4.1, 6.1.1, 7.3.2

[Tib11] Mehdi Tibouchi. A Nagell algorithm in any characteristic. In David
Naccache, editor, Festschrift Jean-Jacques Quisquater, volume 6805 of
Lecture Notes in Computer Science. Springer, 2011. To appear. 2.4.3

[Ula07] Maciej Ulas. Rational points on certain hyperelliptic curves over finite
fields. Bull. Pol. Acad. Sci. Math., 55(2):97–104, 2007. 2.1.1, 3.5.1, 3.3,
3.5.3, 4.5, 6.1.1, 7.1.1

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Henri Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
24–43. Springer, 2010. 2.3.1

[Vig08] David Vigilant. RSA with CRT: A new cost-effective solution to thwart
fault attacks. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES,
volume 5154 of Lecture Notes in Computer Science, pages 130–145.
Springer, 2008. 11.1.3

[Wei95] André Weil. Basic number theory. Classics in Mathematics. Springer-
Verlag, Berlin, 1995. Reprint of the second (1973) edition. 2.1.4, 6.1.2,
6.3

[WF10] Hongfeng Wu and Rongquan Feng. Elliptic curves in Huff’s model.
Cryptology ePrint Archive, Report 2010/390, 2010. http://eprint.
iacr.org/. 8.5

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE
Transactions on Information Theory, 36(3):553–558, 1990. II

[ZK02] Fangguo Zhang and Kwangjo Kim. ID-based blind signature and ring
signature from pairings. In Yuliang Zheng, editor, ASIACRYPT, volume
2501 of Lecture Notes in Computer Science, pages 533–547. Springer,
2002. 3.1.1, 5.1.1

271

http://eprint.iacr.org/
http://eprint.iacr.org/

	Sommaire
	Introduction
	Introduction à la cryptologie
	Cryptographie moderne
	Clef symétrique et clef publique
	Problèmes difficiles
	Sécurité heuristique et sécurité prouvée

	Présentation des travaux
	Contributions à la cryptographie par courbes elliptiques
	Hachage en temps constant vers les courbes (hyper)elliptiques
	Estimation de la taille de l'image des encodages en temps constant
	Hachage indifférentiable vers les courbes elliptiques
	Encodages bien distribués
	Hachage et encodage vers les courbes hyperelliptiques impaires
	Le modèle de Huff
	Problèmes ouverts et perspectives

	Cryptanalyse de schémas fondés sur RSA
	Cryptanalyse pratique des signatures ISO/IEC 9796-2 et EMV
	Attaques par fautes sur les signatures EMV
	Attaques par fautes sur le module contre les signatures RSA
	Sur la sécurité du chiffrement PKCS#1 v1.5
	Cryptanalyse de l'hypothèse RSA dans un sous-groupe
	Factorisation de nombres RSA déséquilibrés partiellement connus
	Falsification de signatures RSA à padding affine
	Problèmes ouverts et perspectives

	Autres travaux
	Chiffrement totalement homomorphe sur les entiers
	Génération efficace et quasi-uniforme de nombres premiers cryptoeprint:2011:481

	Liste des publications
	Articles de revues
	Articles de conférences
	Articles d'exposition et chapitres de livres
	Prépublications

	Contributions to Elliptic Curve Cryptography
	Constant-Time Hashing to Elliptic and Hyperelliptic Curves
	Introduction
	Background
	Outline

	The Trivial Encoding: Totally Insecure
	A naive construction
	BLS signatures

	Try-and-Increment: Why Constant Time Matters
	The try-and-increment algorithm
	Timing attacks on key agreement protocols

	Encoding to Elliptic Curves
	Main idea
	A simple example
	Beyond supersingular curves

	Constructing Encodings to Elliptic Curves and Hyperelliptic Curves
	The Shallue-van de Woestijne-Ulas approach
	Icart's approach
	Extensions to hyperelliptic curves
	Our contributions

	Further Work
	Is the problem solved?
	Applications

	Estimating the Size of the Image of Constant-Time Encodings
	Introduction
	Icart's conjecture
	Related work
	Outline

	Preliminaries
	Icart's encoding
	Icart's conjecture

	Proof of Icart's Conjecture
	Genericity of P
	Applying Chebotarev

	Analogue in Characteristic 2
	Analogue for the Simplified Shallue-van de Woestijne-Ulas Encoding
	Constructing Surjective Hash Functions
	Appendices
	Galois Groups of Quartics

	Indifferentiable Hashing to Elliptic Curves
	Introduction
	The random oracle model
	Constructing good hash functions from elliptic curve encodings
	Our goal
	Our results

	Admissible Encodings and Indifferentiability
	Preliminaries
	Admissible encodings

	Our Main Construction
	Admissibility of F(u,v)=f(u)+f(v)
	Geometric interpretation of Icart's encoding
	The square correspondence
	Generalization to even characteristic

	A More General Construction
	Proof of Theorem 5.3
	Discussion

	Extensions
	Extension to a prime order subgroup
	Extension to bit string-valued random oracles
	Extension to primes p=2-

	Appendices
	Composition Lemmas
	Generalized admissible encodings
	Proof of Proposition 5.2
	Proof of Proposition 5.3
	Proof of Proposition 5.4

	Well-Distributed Encodings
	Introduction
	Background
	Our contributions
	Outline

	Well-Distributed Encodings
	Character sums
	Collision probability
	Distribution of image sums

	Character Sums on Curves
	Examples of Well-Distributed Encodings
	Icart's encoding
	The Kammerer-Lercier-Renault encodings
	The simplified SWU encoding

	Hashing and Encoding to Odd Hyperelliptic Curves
	Introduction
	Hyperelliptic curve encodings.
	Our contribution

	Odd Hyperelliptic Curves
	Our New Encoding
	Definition
	Efficient computation

	Mapping to the Jacobian
	Injective encoding to the Jacobian
	Indifferentiable hashing to the Jacobian

	Conclusion

	Huff's Model for Elliptic Curves
	Introduction
	Background
	Our contributions

	Huff's Model
	Affine formulas
	Projective formulas
	Applicability
	Universality of the model

	Generalizations and Extensions
	Faster computations
	More formulas
	Twisted curves
	Binary fields

	Pairings
	Preliminaries
	Pairing formulas for Huff curves

	Conclusion and Perspectives

	Cryptanalysis of RSA-based Schemes
	Practical Cryptanalysis of ISO/IEC 9796-2 and EMV Signatures
	Introduction
	Ad-hoc vs. provable RSA paddings
	The ISO/IEC 9796-2 encoding
	Our contribution

	The ISO/IEC 9796-2 Standard
	Previous Attacks
	The Desmedt-Odlyzko forgery
	The Coron-Naccache-Stern forgery

	Building Blocks of the New Attack
	Bernstein's smoothness detection algorithm
	The large prime variant
	Constructing smaller a (m)-b N candidates

	Attacking ISO/IEC 9796-2
	The Amazon cloud
	The experiment: Outline, details and results

	Cost Estimates
	Application to EMV Signatures
	EMV Static Data Authentication, Issuer Public Key Data (SDA-IPKD)
	Attacking SDA-IPKD
	Summary

	Conclusion
	Optimizing Bernstein's Batch Size
	Large Prime Variant: Complexity Analysis
	LLL Attack on EMV SDA-IPKD Encoding
	The LLL attack
	Practical value for EMV SDA-IPKD

	EMV Signature Encoding Formats
	Fewer Queries
	Expected Number of Queries

	Fault Attacks on EMV Signatures
	Introduction
	Fault attacks on RSA-CRT
	The attack of Coron et al.
	Our contribution
	Outline

	Preliminaries on Lattices
	Notation and background
	Lattices and lattice bases
	Lattice volume
	Lattice reduction

	Modeling Faults on ISO/IEC 9796-2 Signatures
	The ISO/IEC 9796-2 signature scheme
	Attack model

	The Small Root Attack
	Single-fault attack
	Extension to several faults

	Our New Multiple-Fault Attack
	Simulation Results
	Application to EMV Signatures
	The EMV specification
	Fault attack

	Proposed Countermeasures

	Modulus Fault Attacks Against RSA-CRT Signatures
	Introduction
	Fault attacks on RSA-CRT signatures
	Our contribution
	Related work
	Outline

	The New Attack
	Overview
	Applying orthogonal lattice techniques
	Attack summary
	Simulation results

	Extending the Attack to Unknown Faulty Moduli
	Single byte faults
	Faults on many least significant bits

	Practical Experiments
	First scenario: Known modulus
	Second scenario: Unknown single byte faults
	Third scenario: Least significant bytes faults

	Countermeasures and Further Research
	Laser Fault Injection
	Photoelectric effects of laser on silicon
	Different parameters in a fault attack by laser
	Practical CRT fault injection

	On the Security of PKCS#1 v1.5 Encryption
	Introduction
	The PKCS#1 v1.5 standard
	Our results

	Preliminaries
	Public-key encryption
	Security definitions
	RSA security

	PKCS#1 v1.5 Encryption
	The PKCS#1 v1.5 encoding function
	Previous attacks on PKCS#1 v1.5

	On the OW-CPA-Security of PKCS#1 v1.5
	PKCS#1 v1.5 Malleability and Indistinguishability
	On the NM-CPA-security of PKCS#1 v1.5
	On the IND-VCA-security of PKCS#1 v1.5

	Broadcast Attack on PKCS#1 v1.5
	The multivariate polynomial of broadcast PKCS#1 v1.5
	Finding small modular roots of a multivariate polynomial
	The Jochemsz-May lattice in broadcast PKCS#1 v1.5
	Experimental results on the broadcast attack

	Conclusion

	Cryptanalysis of the RSA Subgroup Assumption
	Introduction
	Groth's small RSA subgroups
	Our results

	The New Attack
	Attack Complexity
	Algorithmic Details
	Implementation
	Conclusion
	Bostan's Algorithms
	Source Code of the Attack

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

