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Résumé

Ce projet de thèse aspire à développer un système laser capable de générer,
intra-cavité, des états de lumière structuré en 3D. Le système est composé d’une
cavité optique auto-imageante et d’un milieu actif fondé sur des micro-lasers à
cavité externe et émission verticale (VECSEL). La cavité auto-imageante offre
la possibilité d’avoir un grand rapport d’aspect spatial. La taille transverse du
spot laser étant petite devant la surface de possible existence. De plus, pour la
génération de structures localisées temporellement, cette cavité présente un grand
rapport d’aspect temporel. La cavité pouvant être très longue tout en gardant une
grande étendue spatiale.

L’existence de structure localisée temporellement (SLT) et individuellement
adressable grâce à l’ajout d’un absorbant saturable rapide a déjà été démontré dans
un système fondé sur technologie. En outre, des structures localisées spatialement
(SLS) dans des microcavités VCSEL monolithiques ou dans un système auto-
imageante fondé sur des colorants ont été démontrés. Nous proposons dans ce
manuscrit de démontrer les capacités d’un système auto-imageante combiné à
un composant VECSEL, à supporter les deux types de localisations. Ce type
de structure, localisés spatio-temporellement (Balle de lumière) contrôlable et
adressable à la manière de « bit », sont intéressantes pour le traitement tout
optique de l’information. Ce travail intervient dans le cadre de l’ANR BLASON en
collaboration entre les laboratoires de l’IES et l’INPHYNI.

Le premier élément important du système est le milieu actif non-linéaire (gain
et absorbant) fondé sur des nanostructures à semi-conducteurs III-V développées
au C2N RENATECH. La génération de structures localisées émergeant grâce à
l’existence d’une bistabilité optique, nécessite une grande modulation des pertes
saturables. Un large gain optique est essentiel. Pour l’existence de STL, une large
bande passante spectrale est nécessaire. Dans le design, un compromis est alors
fait pour limiter l’effet de filtrage spatial et spectral de la micro-cavité et favoriser
le couplage du champ électromagnétique avec la cavité externe. Un absorbant
saturable (SESAM) a aussi été simulé et fabriqué pour s’adapter correctement aux



paramètres gain. Ce concept a d’abord été pensé pour la structuration spatiale
du champ (temps de réponse long de la matière) afin de simplifier la dynamique
temporelle à un régime continu. Des mesures de réflectivité non-linéaire et les
longueurs de diffusion des porteurs dans le SESAM nous ont aussi permis d’identifier
une limitation sur les SLS.

Dans un second temps, une étude de la cavité optique externe de forte ouverture
numérique a été réalisée. Pour répondre au besoin d’un système étendu transver-
salement et longitudinalement, le choix d’une cavité auto-imageante est évident.
Nous avons mis en évidence l’importance des effets perçus comme perturbatifs,
comme la lentille thermique ou les aberrations optiques. Dans des configurations en
4-f la lentille thermique devient le facteur principal de la stabilité sur l’axe optique
du système alors que les aberrations lèvent la dégénérescence entre les modes dits
à composante sphérique (sur l’axe) et conique (Bessel-Gauss).

Malgré ces limitations, le système actuel est capable d’émettre sur différents
types d’états de photon transverses. À l’aide de métasurface absorbante intégrée
sur le semi-conducteur, la génération de fonctions d’onde arbitraires, structurées en
champ proche a été démontrée. Le multiplexage de plusieurs émetteurs ou modes
laser dans une seule cavité optique a aussi été montré. Enfin, en combinant les
métasurfaces et le SESAM, une localisation spatiale a été démontrée, contrôlée
par les inhomogénéités et une injection non résonante. À l’aide de l’équation de
Schrödinger non-linéaire avec bi-laplacien une analyse de la dynamique spatiale a
permis d’expliquer ces états localisés de la lumière, leur dynamique spatiale, et in
fine la difficulté d’observation des SLS.



Abstract

This thesis project aims to develop a laser system capable of intra-cavity
generation of 3D structured light states. It is composed of a self-imaging optical
cavity and an active medium based on micro-lasers with surface emission and
external cavity (VECSEL). The self-imaging cavity offers the possibility of having
a large transverse aspect ratio. The laser spot size being small in front of the
transverse area of the system. Moreover, for the generation of temporally localized
structures, this cavity can support a large temporal aspect ratio. Indeed, the cavity
can be very long without degradation over the spatial extent.

The existence of individually addressable temporally localized structure (TLS)
thanks to the addition of a fast saturable absorber has already been demonstrated in
a system based on the same technology. Additionally, spatially localized structures
(SLS) in monolithic VCSEL microcavities or dye-based self-imaging system have
been shown. We propose in this manuscript to demonstrate the capabilities of a
self-imaging system combined with a VECSEL device, to support both types of
localization. A spatially and temporally localized structure (light bullet) capable of
being controlled and addressed in the manner of “bits” is interesting for all-optical
information processing. This work was done in collaboration between the IES and
INPHYNI laboratories within the framework of the ANR BLASON.

The first element of the system is the non-linear active medium (gain and
absorber) based on III-V semiconductor nanostructures developed at C2N REN-
ATECH. The generation of localized structures is possible thanks to an optical
bistability and requires a large modulation of saturable losses. A large optical gain
is then essential. For the existence of TLS, a large spectral bandwidth is required.
For the design, a compromise is made to limit spatial and spectral filtering effects of
the micro-cavity, and favor coupling of the electromagnetic field with the external
cavity. A saturable absorber (SESAM) is also simulated and manufactured to
match the gain parameters. To first focus on the spatial structuring of the field,
complex or unstable temporal dynamics is avoided (long response time of matter)
and a continuous regime is targeted. Nonlinear reflectivity and carrier diffusion



length measurements of the SESAM allow us to identify limitations on SLS.
In a second step, a study of a high numerical aperture external optical cavity

is carried out. To meet the need for a transversely and longitudinally extended
system, the choice of a self-imaging cavity is obvious. We have highlighted the
importance of perturbative effects, like thermal lensing or optical aberrations. In
4-f configurations thermal lens becomes the main force for stability on the optical
axis while optical aberrations lift the degeneracy between the so-called spherical
(on the axis) and conical (Bessel-Gauss) component.

Despite these limitations, the current system can emit on different types of
transverse photon states. Using an absorbing metasurface integrated on the semi-
conductor device, the generation of arbitrary, near-field structured wave functions
is demonstrated. Multiplexing of several emitters or laser modes in a single optical
cavity is also shown. Finally, by combining the metasurface and the SESAM, spatial
localization was demonstrated, controlled by the inhomogeneities and non-resonant
injection. Using the non-linear and bi-Laplacian Schrödinger equation, an analysis
of the spatial dynamics allows us to explain these localized states of light, their
spatial dynamics, and ultimately the difficulty of observing SLS.
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General introduction

Since Einstein predicted the phenomenon of stimulated emission in the early 20th
century, and after the first demonstration of a MASER (Microwave Amplification
by Stimulated Emission of Radiation), the field of Lasers (Light Amplification by
Stimulated Emission of Radiation) took off in the latter half of the 20th century.
Laser systems are devices that generate a coherent electromagnetic wave ranging
from the ultraviolet to the infra-red. They are based on two main components. A
coherent field can be built up using the active medium for light amplification and
the optical cavity for optical feedback.

Using these principles, a wide range of laser devices were developed from various
gain mediums, ranging from solid-state crystal (Ruby crystal was used for the first
laser demonstration.), Gas medium (He-Ne laser, CO2 laser, ...) to more recently,
semiconductor devices (laser diode, disk laser). Traditionally, laser sources are
developed to emit a single light state such as single transverse mode (Gaussian
profile), single frequency and a linear polarization state. However, more structured
light emission is generating interest for some of their unique properties.

For example, lasers with temporal structuration such as pulsed laser are used
in a myriad of applications ranging from optical spectroscopy [Mandon 2009,
Villares 2014] to material processing [Bliedtner 2016, Booth 2004]. Spatially struc-
tured lasers such as Vortex laser [Seghilani 2016], carrying orbital angular mo-
mentum are used in optical tweezers [Jeffries 2007, Tian 2021], or as spatial multi-
plexing in optical telecommunications [Wang 2016, Wang 2011]. Non-linear local-
ized state, also called localized structure in time and in space, holds interest for all
optical information processing. They are light states where chromatic dispersion
effect and non-linearity are balanced, leading to invariant propagation. Inside a
laser system, they appear as addressable light peaks or holes.

The combination of spatial and temporal structuration is still a recent field:
this thesis project aims to develop a laser system capable of intra-cavity generation
of 3D structured light states in space, time, and polarization. Direct generation
inside a laser cavity posses its own challenges, and we will address them. This
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work took place at the Institut d’Électronique et des Systèmes (IES) together with
the Institut de Physique de Nice (INPHYNI), the Centre de Nanosciences et de
Nanotechnologies (C2N), and the Universitat de les Illes Balears (UIB) within the
framework of the ANR BLASON. The manuscript is split into four main parts,
each addressing one aspect of intra-cavity 3D structured coherent light generation.

First Part

The first part will serve to more precisely define the basics principles of light
structuration in a laser system and contains a single chapter. We will define what is
coherent 3D structured light. Review some existing systems achieving structuration
on either the longitudinal or transverse dimension. We will also introduce some
basics laser principle to define the targeted system specifications.

Second Part

The second part will focus on the semiconductor technology based active medium.
More specifically, the Vertical external Cavity Surface Emission (VeCSEL) gain
mirror design. It’s separated into two chapters.

The first chapter consists of a general overview of the VeCSEL technology
building blocks, from an integrated high reflectivity Bragg mirror to the design
of mutiple quantum well (MQW) gain active region. Keeping in mind the need
for a flat phase potential, we also focus on how to reduce parasitic phase effects
such as thermal lensing and electronic lensing. We also cover the QW properties in
the absorption regime for the design of a semiconductor saturable absorber mirror
(SESAM).

The second chapter focuses on the two main designs (high gain structure and
SESAM) used in this work. We will present the design choices in accordance with
our targeted specifications. We will also present the first order characterization
of the gain structure performances, as well as a complete characterization of the
SESAM saturable absorption and carrier diffusion properties.

Third Part

The third part will focus on the optical cavity, and it’s design for degenerated
or modeless transverse emission. It is separated into two chapters.

The first chapter will describe the general concept of a stable optical cavity and
its various transverse mode basis. We will also use this chapter to improve cavity
specification for intra-cavity 3D light structuration.
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The second chapter will go more, in depth, into the analysis of a self-imaging
system used inside an optical cavity. The self-imaging cavity allows us to reach a
transverse degenerated system. However, we will see that in this condition, high
order wavefront distortion (4th order and higher) induced by the optical elements
aberrations becomes the main limiting factor to achieve complete degeneracy.

Fourth Part

The concluding part will deal with experimental results obtained with the laser
system, combining a semiconductor gain mirror, a self-imaging cavity and saturable
losses. It is separated into three chapters.

In the first chapter, we will introduce a Maxwell-Bloch based theoretical model
to support physical analysis of the system behavior. The model was inspired
by the non-linear Schrödinger equation developed for time domain analysis of
passive mode-locking systems. Additional local and non-local operators (high-
order diffraction, anharmonic potential) and a matter equation for gain and losses
saturation were added. With this model, we will observe the impact of local and
non-local phase/amplitude perturbations on the 3D structured light emission.

The second chapter will serve as a description of modes topology observed in
our laser system, without inserting the SESAM, and its non-linearity. We will
classify three different regimes: the on-axis mode basis akin to Hermite-Gaussian
or Laguerre-Gaussian modes, the off-axis mode basis akin to Bessel-Gauss and on
axis guided Bessel modes, and the degenerated region where arbitrary wavefunction
can be emitted.

The last chapter will focus on the non-linear system in the degenerated region
with the saturable absorption mirror inserted. In this condition, we saw non-linear
localization, and non-linear multiplexing, thanks to an absorbing meta-surface,
creating sharp boundary condition or step like metallic waveguiding.

We analyze such behaviors with our physical model, and conclude on slow
light behavior with quantum reflection of light particle as an analogy to quantum
mechanics. We then conclude and discuss the next step to reach and control LB
generation. We also show perspective applications such as 3D structured multiple
frequency combs generations, or the multiplexing of Vortex modes.

3





Part I

From conventional laser to

non-conventional light structuration

in lasers





Chapter 1

Motivation and basic principles of a

laser and light structuration

1.1 What is structured light?

Laser emission is built up through physical processes such as stimulated emission
in the gain medium and interferometry inside the laser resonator. The interplay
between the optical cavity and the active medium will structure the light in its
three observable (Degrees of freedom, see figure 1.1). In the paraxial approximation

they are: the transverse axis (
−→
k ), the propagating/temporal axis (Z(t)) and the

polarization axis (
−→
E ).

E
→

k(r)

Z(t)

Figure 1.1: The three-light axis: Transverse (k), longitudinal (Z), and polarization
(E)

In this context, structured light can be classified depending on the degree of
complexity. A 3D coherent structuration refers to a

−→
k and Z(t) (spatio-temporal)

complex light state. While intra-cavity means it takes place inside the laser system
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during the laser emission build up and not outside through phase/amplitude shaping
optical element.

1.1.1 Transverse structuration

Transversal structuration is related to the spatial aspect of the laser emission.
Inside a laser system, this is closely related to the design of the optical cavity.
Indeed, waveguided systems like laser diodes or fiber laser will not exhibit the same
challenges for transversal structuration than free space optical cavities. We can
classify those systems in three main categories, from the least to the most complex
transversal structure.

• Fundamental TEM00 mode emission as in single transverse mode laser. Those
systems are quite common and can find several applications. The usually
good beam quality can be interesting for low divergence system such as
LIDAR. The single transverse state can also help to limit temporal instability
for continuous single frequency emission.

• Higher order discreet transverse mode emission from the optical cavity mode
family. We find in such system, the “Vortex” laser [Seghilani 2016] using the
Laguerre-Gauss transverse mode basis or diffraction-free laser beam using
Bessel-Gauss mode basis [Uehara 1989].

• Transversally degenerate optical system. In this case, the mode separation is
blurred, and any shape can be decomposed onto a linear combination of any
mode basis. Self-imaging optical cavities are inherently diffraction free and a
high number of simultaneous transverse modes operation is possible.

Figure 1.2 shows two examples of the use of a degenerate optical cavity for
laser light structuration. The panels a) b) c) are from Knitter et al. [Knitter 2016]
where the 4-f degenerate external system is used to provide coherent feedback onto
the gain medium (semiconductor surface emission laser). The gain plane is imaged
onto itself after one round-trip, allowing for any arbitrary eigenfunction to exist.
They managed to control the number of transverse modes lasing using a pin-hole
in the Fourier plane of the optical system (between the two lenses). This effectively
reduced the spatial coherence of the laser. Panel a) shows the image of the gain
surface and speckle image to measure coherence without any pinhole for high
multimode operation (estimated at 1030 modes). Panel b) shows the same for a
pin-hole of 80 µm diameter for a couple of transverse mode operation. They gained
an order of magnitude on the speckle imaging contrast between the two, reaching
the human eye limit of the speckle-perception. Using this controllable coherence,
they managed to improve the quality of flow imaging by combining speckle with

8



Chapter 1. Motivation and basic principles of a laser 9

speckles free imaging technics [Cao 2019]. However, they point out that the number
of simultaneous transverse mode operation was lower than predicted. Due in part
to perturbative effects of the optical system, such as lens aberrations or thermal
lensing.

Figure 1.2: a), b), c) Spatial coherence switching for degenerate multimode VECSEL
[Knitter 2016]. a) Self-imaging cavity set-up with a controllable diaphragm. b)
Generated speckle and transverse profile for low coherence/high number of modes.
c) Generated speckle and transverse profile for low coherence/low number of modes.
d) and e) Modified degenerate cavity laser for invariant laser beam propagation
[Chriki 2018]. d) Experimental set-up with amplitude mask and Nd:YAG gain
medium. e) Generated laser profile at different position extra-cavity.

The panel d) and e) of figure 1.2 display the experiment of Chriki et al.
[Chriki 2018] where they set out to use the same type of degenerate optical cavity
for propagation invariant shaped laser beam generation. In their case, the gain
was provided by a 11 cm long Nd:YAG rod. Using an amplitude filtering mask
one the end-mirror to shape an arbitrary field and on the system Fourier plane to
filter spatial frequency, they managed to decompose the near field shape onto a
Bessel-Gauss mode basis to generate a propagation invariant beam over 37mm.
The use of a long ND:YAG rod compared to a delta-like semiconductor gain region,
limits their achievable resolution through NA limitation.

1.1.2 Longitudinal structuration

The longitudinal structuration is related to the temporal aspect. In this
manuscript and most of the literature, the longitudinal direction is always taken as
the field propagation direction and is thus related to the temporal evolution seen

9



10 1.1. What is structured light?

in space. Different temporal behavior can be thought of longitudinal structuration
and classified into two main categories with increasing complex structure:

• The continuous wave regime, where no coherent structuration of the temporal
envelope exists. The laser emits a field with a constant amplitude with a
narrow spectral width. Usually, in this regime, single frequency operation
is desired for many types of application from Optical metrology to high-
resolution spectroscopy or optical telecommunication. Despite its apparent
simplicity, creating a continuous wave single frequency laser system is not
always easy to implement. A lot of care is needed to select a single longitud-
inal light state such as dispersion control [Chomet 2019] or an intra-cavity
frequency selection element such as a Fabry-Perot etalon [Collins 1963] or
a diffraction grating in DFB laser [Kogelnik 1972]. Some gas lasers such as
He-Ne take advantage of the narrow gain bandwidth with a reasonably size
cavity to select a single light state [Baird 1965], the same way semiconductor
vertical cavity surface laser emission works [Koyama 1989].

• The pulsed regime, where the laser emits a series of pulses. Temporal dynam-
ics of laser emission have long been studied, and the multimode instability of
laser emission understood through several factors. The amplified spontaneous
emission induced modes hoping in wave-guided laser [Pedaci 2005], spatial
hole burning effect in standing wave cavity [Kimura 1971] or spectral hole
burning in inhomogeneously broaden gain. To generate a fixed temporal struc-
ture, one needs an external force to create a phase relationship between several
co-existing longitudinal modes. Those systems are also called mode-locked
laser [Haus 2000]. This can be achieved either by an active scheme with an
optical modulator synchronized to the cavity repetition rate [Hargrove 1964]
or a passive one with a saturable absorber opening a small temporal gain
window [Ippen 1972].

Several mechanisms exist to shorten the generated pulse width for passive mode-
locking (PML), mainly using soliton mode-locking, where the cavity dispersion is
managed to compensate the pulse self-phase modulation. The panels d) and e)
of figure 1.3 show an example of a 477 fs pulse width inside a broadband surface
emitting semiconductor laser coupled to a saturable semiconductor mirror (SESAM).
The micro-cavity anti-resonant design allows for broad gain bandwidth and high
saturation fluence of the gain. It also reduces the structure dispersion to a small
range of 900 fs2 to 0 fs2 around the max gain position. They showed a pulse width
reduction from 1.15 ps to 477 fs when tuning the laser emission from 1035 nm to
1045 nm, thus also tuning the wavelength dependent GDD from 1000 fs2 to 250 fs2.
The pulse also changed from a Gaussian envelope to a sech-squared one. The

10



Chapter 1. Motivation and basic principles of a laser 11

shortening occurs in the region where SPM effect from the SESAM and Gain is
balanced with the cavity dispersion. Semiconductor PML laser is a choice for
small and integrated system with high repetition rate (small cavity). However,
for ultra-short pules formation (< 100 fs2) solid state laser based on Ti:sapphire
remains the best option [Keller 2003].

Figure 1.3: a), b), c) Phase-locked and mode-locked multicore photonic crystal
fiber laser with a saturable absorber [Kawamura 2021]. a) Cavity setup. LD:
laser diode, DM: dichroic mirror, PBS: Polarizing Beam Splitter, SOC: Saturable
Output Coupler. b) Far-field profile and near-field profile in mode-locked operation.
c) Autocorrelation trace at 24W excitation. d), e) Sub-500-fs soliton-like pulse
in a passively mode-locked broadband surface-emitting laser [Garnache 2002]. d)
Experimental setup: OC output coupler; HR high reflector. e) Femtosecond pulse
operation with GDD 250 fs2: autocorrelation and optical spectrum (inset). The
average output power is 100mW at a repetition rate of 1.21GHz.

Fiber laser also has several properties making them interesting for PML pulse
generation, such as large gain bandwidth and high gain efficiency. However, some
performances (high power) are limited by the strong non-linearity. Photonic
crystal fiber using photonic band gap guiding instead of optical index gradient can
be a good solution thanks to the large effective mode size or dispersion control.
They also can be designed for multicore operation, thus combining transverse
and longitudinal structuration. The panels a), b) c) of figure 1.3 show a recent
development in multicore photonic crystal fiber. They demonstrated a transverse
phase-locked and longitudinal mode-locked laser using Yb-doped 7-core MC-PCF
and a semiconductor saturable absorber placed in the near-field inside a resonator
(panel (a)). Panel b) shows the 7-spot phase locked output of the PML laser and

11



12 1.1. What is structured light?

panel b the 42 ps resulting pulse width. In this configuration, it is possible to
increase the average power compares to a single core system.

1.1.3 Localized structure

Localized structure (LS) is a non-linear complex object deserving of its own
special category. In the general physical concept, when an extended system (i.e.,
not ruled by boundary condition) exhibits non-linearity and dissipative forces, a self-
organized pattern can evolve from a homogeneous initial condition [Turing 1952]. A
localized structure is then defined as the connection from one homogeneous state to
a piece of the self-organized pattern state (see figure 1.4). Those systems have been
observed spatially, in colloidal suspensions under vibrations [Lioubashevski 1999],
ferrofluids [Richter 2005] and in liquid crystals [Ramazza 2003] to cite a few.

Homogeneous Solution

Patterned Solution

Space (r) / Time (t)

|E|2

Front

Localized State

Figure 1.4: Representation of a localized structure as the connection between a
homogeneous state and a pattern state in time or space.

In optics, the same process can lead to pattern formation from the interplay
of diffraction and non-linearity provided that we are in an extended system (i.e.,
the correlation range of the LS is small compared to the size of the system). In a
passive system, the homogeneous solution can be provided by a coherent driving
beam [Grynberg 1988] or coherent feedback [Ackemann 1994], while in an active
system the pattern arises from spontaneous emission [Arecchi 1995]. They will
appear as independent peaks of intensity. The nature of their formation makes them
bi-stable solution from “Off” (only the homogeneous solution) to “On” (intensity
peak connection the homogeneous and pattern solution). In addition to their
independent nature, the bi-stable behavior makes them interesting for applications
such as all-optical information processing, or optical memory buffer [Gibbs 2012]
by addressing an array of LS to store information using them as an optical bit.
They can exist in both the spatial and temporal area of a laser system.

12
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1.1.3.1 Spatially localized structure

For spatially localized structure (SLS) in an active system, we must have a
large transverse aspect ratio to fulfil the extended system condition. The use of
a degenerate optical system allows having an optical cavity with a high Fresnel
number, meaning a large aperture compared to the optical structure size.

Figure 1.5: a) Self-imaging cavity for SLS generation using dye gain and absorber
medium placed at in Fourier conjugate plane. b) Positioning of the SLS initiated
by an external beam in different places of the laser cross-section (the region inside
the dark circle is 2.7 mm in diameter.) [Taranenko 1997].

Active SLS was demonstrated by Taranenko et al. [Taranenko 1997] using a
4-f self-imaging optical system coupling a dye gain medium and a dye saturable
absorber in each other Fourier plane. Figure 1.5 displays the set-up. The use of
a slow lifetime saturable absorber tuned to the emission wavelength of the gain
created an optical bi-stability. This allowed them to generate a single SLS by
locally saturating the saturable absorber using a He-Ne laser. Figure 1.5 also
shows the transverse intensity profile onto the saturable absorber of the SLS at
different positions. They showed that the SLS could be generated over a large
area depending on the position of the injected beam. Their system was limited to
only a single SLS at a time due to the gain being placed at the Fourier plane of
the SLS emission. Positioning the gain and absorber in the conjugate image plane
could solve this issue. However, this placement was chosen to have sufficient gain
to generate the SLS, which would not be possible otherwise.

Later, another demonstration of active SLS was made by Genevet et al.
[Genevet 2008] inside an 8-f self-imaging cavity (see figure 1.6). By using two
broad-area electrically pump vertical cavity surface emission laser (VCSEL), one
in the gain and the other in the absorption regime, they managed to have enough

13



14 1.1. What is structured light?

Figure 1.6: (Top) Schematic drawing of the experiment. L1: Laser above the
transparency, L2: Laser below the transparency, BS: beam splitter. L1 and L2
were placed in conjugate image plane. (Bottom) Near-field intensity distribution
on L1. Dark areas correspond to high intensities. Sequence of successive switching
of two independent structures with an incoherent writing beam [Genevet 2008].

optical gain to place them in the conjugate image plane of the optical system. Using
this set-up, they demonstrated multiple SLS when the wavelength emission of the
one used for Gain was correctly tuned to the absorption resonance of the other. As
with Taranenko, individual addressing of the multiple SLS was possible using a
laser to locally saturate the absorption. This demonstration using semiconductor
technology inside a self-imaging system is important since it opens the way to
an eventual 3D structuration (adding temporal pulses). Indeed, semiconductor
saturable absorber mirror (SESAM) are commonly used for PML system.

However, both Taranenko and Genevet system in their current state do not
possess the ability of temporal structuration. For Taranenko, the saturable absorber
lifetime is too slow to be considered for a PML system. For Genevet, the timescale
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of the gain medium and saturable absorber were too close to obverse stable PML.

1.1.3.2 Temporally localized structure

For PML operation, the saturable absorber opens a net gain window around
a pulse. To then achieve an extended system, the time between two consecutive
pulses must be large enough so both the gain and absorber recovers fully before
the next pulse, leading to a decoupling of the pulses. This can be summarized
by saying that for temporally localized structure (TLS) in an active system, the
round-trip time must be larger than the matter recovery time.

Figure 1.7: (a) Experimental setup. VCSEL and SESAM thermally stabilized. BS:
output coupling beam splitters, M: mirrors, Coll: aspheric lenses. b) Different
number of pulses for the same parameters of the system, revealing multi-stability.
c) Staircase in terms N when changing the current injection of the VCSEL.

Following the SLS experiment by Genevet, Marconi et al. [Marconi 2014]
has demonstrated experimentally and theoretically the existence of TLS from a
PML scheme in semiconductor laser. Figure 1.7 shows the set-up used for this
demonstration. A VCSEL used in the gain regime was coupled through a long
external cavity to a VCSEL used in the absorption regime. To ensure a good
saturation ratio for PML operation, the cavity was made to focus the full transverse
gain emission onto a small point inside the absorber. They then demonstrated
multi-stability between several PML solutions with different number of pulses per
round-trip. They also showed that those pulses can be individually addressable
by an electrical perturbation [Camelin 2017]. In this configuration, however, no
complex spatial structuration could be achieved since the optical system exhibited
a small Fresnel number.

To address these issues, work to combine the High Fresnel number and long
round-trip time is underway in the hope to generate a spatio-temporal localized
structure also called “Light bullet” (LB). In a passive system, a first observation of
LB was made by Minardi et al. [Minardi 2010] in an array of evanescent coupled
single mode fiber. The LB were observed for a few millimeters of propagation

15



16 1.2. EM-wave propagation

when a high-power femtosecond pulse was injected at the center waveguide. In
active system, it has been theoretically shown possible by J. Javaloyes and S.
Gurevich [Gurevich 2017, Javaloyes 2016]. Controlling the diffraction in a TLS
system evolved from PML could lead to LB addressable by an external optical
pulse.

1.1.4 Motivation

This thesis motivation was to design and optimize a laser system capable of
complex spatial and temporal structuration. The aim of this laser system is then to
combine SLS and TLS into the spatio-temporal Light Bullet. To achieve this goal,
we must keep in mind the high Fresnel number condition for a spatially extended
system and long cavity condition for a temporally extended system. The optical
cavity must not be the driving force behind the transverse light structuration, and
some work needs to be done to design and better understand such a system. At the
same time, a gain and saturable absorber medium compatible with PML operation
must be used.

The work in this thesis was done in collaboration between the IES and INPHYNI
laboratories within the framework of the ANR BLASON. Demonstration of a non-
linear pattern TLS inside a self-imaging optical cavity was already done by Bartolo
[Bartolo González 2022] in the INPHYNI. This thesis will focus more on the active
medium and optical system design, as well as the transversal structuration topology.

1.2 EM-wave propagation

To better understand the different processes of structuration inside a laser
system, we will first start by describing what is the propagating field. The laser
emission is a coherent electromagnetic field. We can write it for a paraxial wave as:

−→ε (x, y, z, t) = ℜ
[

U(x, y, z, t).e−iω0t+ikzz.−→x
]

(1.1)

Where U(x, y, z, t) represents the complex, slowly varying amplitude of the
electric field projected on the polarization axis defined by the unit vector −→x .
The term e−iω0t+ikzz represents the fast propagation factor in time (É0t) and space
(kzz) of the beam. In this case, the wave propagates in the z > 0 direction. The
description above is true in the semi-classical description of the laser, where the
field or photons are described using the Maxwell equations and the light-matter
interaction is described with the Bloch equation using quantum properties of the
electron-photon interactions. It is justified given the number of photons at play
inside a laser cavity (> 1016 photon/s) where photon quantum fluctuation can then
be neglected.
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The field posses three observable (Degrees of freedom, see figure 1.1) and can

be structured along all of them, the transverse axis (
−→
k ), the propagating/temporal

axis (Z(t)) and the polarization axis (
−→
E ). The transverse profile evolution along

propagation represents the spatial structuration. A Gaussian profile is a good
description for a simple spatial structuration. The fast temporal evolution describes
the oscillating frequency of the EM field, while the slow varying envelopes can be
part of the longitudinal structuration. The polarization axis describes the direction
of oscillation of the EM wave. All those aspects can be controlled by the main
constituents of a laser system, meaning the optical cavity and the active medium,
with its linear and non-linear response in space-time.

1.2.1 Traveling wave model

We take an EM field propagating along the z axis, and diffracting transversally
in a homogeneous medium. The on-axis z⃗ energy-momentum dispersion relation
is (light line) É0 = Ågk0 and Å0 = c/n. The propagation of such a field can be
described by the second order wave equation derived from the Maxwell equations:

∇2E − 1

v2g

¶2E

¶t2
= 0 (1.2)

Where E is the 3D electric field describing the electric field under the Slow
Varying Envelope Approximation (SVEA) and the paraxial approximation as in
equation 1.1. It is possible to reduce the second order wave equation into a first
order one. The SVE approximation means that the time envelope of the EM
field varies slowly compared to the field oscillation, thus the time’s second order
derivative can be ignored. In the same way, the paraxial approximation means
that the spatial envelope of the EM field is slowly varying along the propagation
direction, thus second order derivative along the propagation direction can be
ignored. We end up with the scalar paraxial wave equation for the complex field
amplitude:

¶U

¶t
+ vg

¶U

¶z
= i

vg
2k0

∇2
⊥
U (1.3)

We can add a NL source term in a Maxwell-Bloch equation system (matter polar-
ization vector aligned with light polarization vector, on the right-hand side of wave
equation), assuming a slow varying envelope too, and slow matter approximation
(compared to coherence time of dipole and optical frequency):

P = ϵ0Ç(x, y, z, t)E (1.4)

and thus for the complex amplitude:
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18 1.2. EM-wave propagation

p(x, y, z, t) = ϵ0Ç(x, y, z, t)U(x, y, z, t) (1.5)

We must add a physical space-time differential equation (carrier dynamics plus
spatial diffusion) to include matter dynamics through Ç(x, y, z, t) (active medium),
if slow compared to other physical variables. We can write the travelling wave
Maxwell-Bloch equation of motion:

¶U

¶t
+ vg

¶U

¶z
= i

vg
2k0

∇2
⊥
U + i

É0

2n2
Ç(x, y, z, t)U (1.6)

where U = U(x, y, z, t) is the SVE amplitude of the field, ∇2
⊥
= δ2

δx2 +
δ2

δy2
is the

transverse Laplacian operator and k0 = É0/vg =
√

k2z + k2x + k2y is the wavenumber.
The left-hand side describes longitudinal propagation of the field and the right-hand
side the transverse propagation or diffraction through a homogeneous non-linear
medium. To obtain a set of spatio-temporal equations of motion of light and matter
for a CW or quasi-CW wave, we can discard the fast time dynamics compared to
space dynamics:

¶U

¶t
<< vg

¶U

¶z
(1.7)

We can define a slow time along z propagation as T = z/vg >> t, and end up
with a NL Schrödinger like equation of motion or Helmholtz like equation without
source terms:

i
¶U(x, y, T )

¶T
= − Åg

2k0
∇2

⊥
U(x, y, T )− É0

2n2
Ç(x, y, z, t)U (1.8)

Note that a similar set of equations holds for short temporal dynamics for
ultrashort pulse, where δU

δt
>> Åg

δU
δz

, like for mode-locking instead of CW wave.
This would be schematized by local and/or non-local inhomogeneity in a stacked
medium with various complex phase/amplitude transfer function and unitary matrix
boundary conditions (no reflection, for example). The same could be done for
complex optical systems where a stacked medium with unity boundary condition
could represent free space propagation, lens transfer function, high order diffraction
or diffusion (Fourier space). Figure 1.8 describes this sort of complex system.

For the inhomogeneous system, we should integrate equation 1.8 over each
medium. However, we will see later in the manuscript a way to simplify this
complex system if the inhomogeneous propagation effect (gain, losses, filtering,
higher order diffraction) is having a small impact on the field for each pass. For
this, the Fourier description of the field will be of use.
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Figure 1.8: Simplified schematic for a travelling wave model optical cavity with
non-homogeneous medium

1.2.2 Fourier optics

From the previous equation 1.3, separating the time and space dependencies of
the field, U(x, y, z, t) we arrived at the spatial Helmholtz equation. One natural
solution to this system is a plane wave:

U(x, y, z) = U0e
i(βx.x+βy .y).e±iz

√
k2
0
−k2

x
−k2

y . (1.9)

Where ´x,y = k0 sin(¹x,y) represent the projection of the wavevector along its
transverse components due to an angle with the z-axis direction. Any field in
z = 0 can then be described as a superposition of weighted plane waves of different
propagating directions [Goodman 2005].

U(x, y, 0) =

¨ +∞

−∞

Ũ(fx, fy; 0)e
i2π(fxx+fyy) dfx dfy (1.10)

This equation is simply the 2D inverse Fourier transform, where Ũ(fx, fy; 0)
describes the complex amplitude of the plane wave component or the angular
spectrum of field U(x, y, 0) [Clemmow 1966]. The variables fx,y = ´x,y/2Ã are the
spatial frequencies related to the direction cosine of the individual plane waves. It
essentially corresponds to the EM field in the Fraunhofer region, sometime refereed
to as Far-field [Born 2000].

To compute the field at a position, z one can simply multiply the angular
spectrum of the field at z = 0 by a complex transfer function H(fx, fy) before
applying the inverse Fourier transform.

U(x, y, z) = TF−1
[

Ũ(fx, fy; 0).H(fx, fy)
]

(1.11)
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20 1.3. Optical cavity structuration

For free space propagation:

H(fx, fy) = e±ik0z
√

1−(λfx)2−(λfy)2 (1.12)

Provided that
√

(¼fx)2 + (¼fy)2 < 1. Simplifying the transfer function along
the Fresnel approximation which is equivalent to the paraxial one [Grella 1982] we
find:

H(fx, fy) = e±ik0zeiπλz(f
2
x
+f2

y
) (1.13)

Which is the exact transfer function of the Fresnel diffraction integral [Born 2000].
The constant phase term expresses the accumulated phase during propagation
by all plane waves. The parabolic term expresses the phase shift of the different
plane wave from the on-propagating axis one due to the angled emission. In the
spatial frequency space under paraxial approximation, EM field propagation or
diffraction is equivalent to a parabolic phase term with constant amplitude. Any
optical system, including aperture, optical components, and aberrations, can be
described by its transfer function in Fourier space as the way it affects the plane
wave distribution. And any EM field can be described as an amplitude and phase
function in Fourier space. In the field of optical imaging, scalar diffraction the-
ory combined with Fourier optics are an important part of the understanding of
propagating and imaging EM field [Gu 2000]. It also allows expressing non-local
effects such as diffraction as simply as a phase potential in the far-field region.

This vision allows us later in the manuscript to simplify the general form of the
structure travelling wave mode in figure 1.8 to an equation describing the transverse
field variation for each round-trip while considering higher order non-local diffraction
effect.

1.3 Optical cavity structuration

In a laser system, the first method we have to create a transverse and longitudinal
field structuration is through the optical cavity. An optical cavity being defined with
two end mirrors reflecting the EM wave, we will have a superposition of a propagative
wave ε+ and a contra-propagative wave ε−. This superposition discretizes the
available light state through wave interferences in the longitudinal/propagation
space. Similarly, it will define a transverse mode basis (transverse profile of the EM
field) though boundary condition of the system. This is the first way to structure
the light, and it is important to understand its behavior.
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1.3.1 Quantum mechanic analogy

A simple analogy with quantum mechanic theory can be made to express the
dispersion of an optical system. In one dimension (the propagation direction z),
for a simple linear cavity composed of two infinitely large mirrors separated by a
distance Lc and 100% reflection a field propagating in the z > 0 and z < 0 will form
a standing wave pattern following a sinusoidal wavefunction for one dimension:

U(z, t) = A(t) sin(n
Ã

Lc

z) (1.14)

n=1

n=2

n=3

x

E
V(x)

(x)

Harmonic potential
HG/LG functions

(a)
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Well potential
Sinus functions

(x)

V=

8

(b)

Figure 1.9: Schematic comparison between a parabolic potential with HG/LG
wavefunction and an infinite potential well with sinusoidal wavefunction.

In this case, the possible longitudinal wavevector has been discretized such that
kz = n π

Lc

with the dispersion relation Én = kzc = n π
Lc

c. Only EM field with photon
energy En = ℏÉn = nÃ ℏc

Lc

can exist in this system. In quantum mechanics, this
problem is similar to the particle of mass m in a box. In 1D, the particle is trapped
inside an infinitely high potential well of width a. Solving the 1D time-independent
Schrödinger equation gives a discrete energy levels as En = n2h2

8ma2
.

In both cases, the computed wavefunction is the same and is of the sinus mode
family (see eq 1.14). Figure 1.9b shows the equivalent representation of the discrete
wavefunction for both the linear cavity and the potential well. In the case of a
parabolic potential, in quantum mechanics we found the discrete Hermite-Gaussian
(HG) or Laguerre-Gaussian (LG) wavefunction family which also corresponds to
the transverse mode profile of a diffractive spherical cavity. A potential well in
quantum mechanics corresponds in optics to the sinusoidal longitudinal modes,
while a parabolic potential in quantum mechanics corresponds to the transverse
mode wavefunction of a diffractive spherical cavity in the paraxial approximation.
Generalizing in three dimensions, we have the Schrödinger equation:
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22 1.3. Optical cavity structuration

−iℏ ¶
¶t
È(−→r , t) = − ℏ

2

2m
∇2È(−→r , t) + V (−→r , t)È(−→r , t) = EÈ(−→r , t) (1.15)

where −→r is the 3D spatial coordinate and È(−→r , t) the wavefunction describes
a quantum particle. The total energy of the particle is then a function of the
Hamiltonian operator H = − ℏ

2m
∇2 + V (−→r , t) describing the kinetic and potential

energy. Here V describes a step like potential where the boundary conditions are
V = infinity for x f 0, x g a and zero elsewhere. For the EM field in 3D, we can
use equation 1.8 with the T = z/c slow time approximation in the linear case (no
source terms and no potential) to get an eigenvalue Helmholtz equation:

i
¶U

¶T
= HopU == ΩU (1.16)

where the optical cavity Hamiltonian, describing the wave kinetic energy, is
defined as:

Hop = − vg
2k0

∇2
⊥

(1.17)

By analogy with the Schrödinger equation, we see a relationship with the
optical cavity Hamiltonian, such as Hop.ℏ ≡ H = − ℏ

2

2m
∇2. In this case, the

energy represents the wave pulsation. The kinetic energy is analogous to the wave
diffraction and the potential energy to the wave-matter interaction. Assuming a
transverse plane wave, we find two dispersion relationships for the longitudinal
(propagation) direction and the transverse direction in a homogeneous medium:

Ez

ℏ
= vgkz and

E⊥

ℏ
=
vg´

2

2k0
(1.18)

with ´ being the transverse wavenumber. By analogy with the quantum
Hamiltonian, we can define the equivalent particle mass of the transverse wave
packet for a harmonic optical cavity as:

mp = ℏk0/vg (1.19)

In an optical cavity, the transverse and longitudinal dispersion relationship will
be discretized along a sinusoidal basis for the longitudinal part and an HG/LG
basis for the transversal part of a harmonic cavity (i.e., non-local parabolic band
structure from diffraction). Our goal will be to design and engineer the local
(real space) and non-local (Fourier space) potential to transversally degenerate the
system. This is equivalent to having an infinite optical particle mass (flattening the
band structure). From this, we hope to generate arbitrary transverse wavefunction
of a non-linear spatially localized structure.
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1.4 Light amplification

Since the prediction of the stimulated emission process in an exited atom by
A. Einstein [Einstein 1917], the field of lasers and light amplification has been
born. Thus, any medium consisting of a collection of excitable atoms can become
the basis for light generation. Light matter interaction also plays a critical part
in shaping the laser light state. Describing the general concept is a first step to
understand its effect. We can express the Non-linear medium polarization as:

P = ϵ0
(

Ç(1)E + Ç(2)E2 + Ç(3)E3 + ...
)

(1.20)

The polarization describes the response from an electric field of the medium
that can be linear (first term only) or non-linear (higher-order terms). In the
polarization equation the Çn terms are the electrical susceptibility parameters of
the medium which describe its properties.

By describing the medium using the classical electron oscillator model that
simply describes the atomic transition of an exited atom, we can write the electric
susceptibility [Siegman 1986]:

Ç(É,∆N) = i
¼

2Ã

∆N

1 + i(2(É − Éa)/∆Éa)
(1.21)

where ∆N is the population inversion (difference of the number of atoms in the
excited state and fundamental state) in atomes/cm3, Éa is the transition linewidth
and Ã the transition cross-section in cm2/atomes. This susceptibility is a complex
quantity following a Lorentzian resonance shape and is characteristic of many real
atomic transitions. The imaginary part is then proportional to the material gain of
the medium in cm−1, while the real part is proportional to the refractive index.

g(É,∆N) = −2Ã

¼
Im (Ç(w,∆N)) (1.22)

Figure 1.10 shows the shape of the imaginary part of the transition susceptibility
for a single resonance frequency, this is called a homogeneous gain. However, in a
real system, a small random shift of the transition frequency of each atom leads to
an inhomogeneous gain broadening where the total response of the medium is due
to the effect of all the smaller individual responses.

Another important parameter being the transition cross-section Ã characterizing
the strength of the transition and written as [Siegman 1986]:

Ã =
¼2a
4Ã

µe
∆Éa

(1.23)

with ¼a the transition wavelength and µe the decay rate of the population
inversion. A large transition cross-section means a small lifetime of the upper level,
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Figure 1.10: Homogeneous (top) and inhomogeneous gain (bottom)

which impedes the population inversion. As the population difference increases
with the pumping, the optical response of a homogeneous atomic transition will
saturate when the saturation intensity Is is reached. This saturation intensity is
given by:

Is =
hc

¼

µe
Ã

(1.24)

To obtain a large gain with a low saturation intensity, one can use a medium
with a large transition cross-section. The required population inversion for a given
gain is then smaller. On the other hand, with a small cross-section, small saturation
intensity can be reached with a long upper level lifetime, but it will require a higher
population inversion.

This simple model does not take into account possible non-linearity response
that can arise for an intense electric field. These effects can be described by the
higher order susceptibility Ç(n). The most common ones being the second Ç(2)
and third order Ç(3) ones. Second-order non-linearity is mainly interesting for the
harmonic generation or optical parametric amplification. This effect is found only
in certain specific crystals with non-centrosymmetric arrangement, such as KDP
or quartz. Third-order non-linearity is present in fast gain medium compared to
temporal waveform and gives rise to four wave mixing or the optical Kerr effect. The
Kerr non-linearity is an intensity dependent refractive index leading to self-phase
modulation (SPM) for example.

n = n0 + n2I and n2 =
3

4n2
0ϵ0c

Ç(3) (1.25)

where n2 is known as the non-linear refractive index. A representative value for
the optical Kerr effect in a typical glass (such as might be used in an optical fiber)
is n2 = 10−16 cm2/W.
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1.5 Technologies overview

A variety of gain medium technologies exist and are used to create a laser
system. The choice of a given material over the other is made according to the
desired application and properties needed. This can range from the wavelength
option, output power capability, manufacturing cost and other considerations.

1.5.1 Solid state medium

This category encompasses mediums where active ions are introduced into
an otherwise transparent host matrix at the ion transition wavelength, usually
glass or other crystal. The most commonly used dopant are rare-earth ions such
as Neodymium (Nd3+), Ytterbium (Y b3+) or Erbium (Er3+) for near infra-red
application. The resulting medium can take the form of cylindrical glass rod or
cuboid and is even used as the core in optical fiber either for fiber laser or simple
optical amplifier.

To generate the required population inversion, only an optical pumping method
is used, usually from a laser diode with matched emission to certain pumping
transition. Solid state laser exhibit low emission cross-section (∼ 10−20 cm2) but
can compensate by using long interaction distance to reach high effective gain as
in the Erbium doped fiber amplifier. They also have a long lifetime from µs to ms
making them suitable for Q-switch operation.

1.5.2 Gas medium

Various gases can also be used as gain mediums. Although they have some
characteristics in common – low densities, high robustness, heat transport by
convection, energy input via an electrical discharge and short (nanosecond) upper-
state lifetimes – their properties are extremely diverse in some respects.

The first gas laser was a mixture of helium and neon that offers not only the
well-known 632.8-nm transition, but also various other transitions in the green,
yellow, orange and infrared regions. Laser operation requires only quite moderate
current densities, but is limited to relatively low output powers.

Carbon dioxide molecules are very different, not only because of the long
emission wavelength around 10.6 µm; in CO2, molecular vibrations play a crucial
role for the laser process, which occurs at much higher current densities. Output
powers can be many kilowatts, and power efficiencies above 10 percent are possible.

Argon-ion lasers (and, similarly, krypton-ion lasers) are also operated at very
high-power densities. Their efficiencies are far lower than those of CO2 lasers, on
the order of 0.1 percent. In earlier times, the low efficiency and limited lifetime
of the expensive tubes (a few hundred hours) often had to be accepted, as there
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26 1.5. Technologies overview

was no alternative; for example, for pumping a Ti:sapphire laser. Nowadays,
frequency-doubled diode-pumped lasers are often used instead of argon-ion lasers.

1.5.3 Dye medium

Laser dyes consist of organic molecules, which in most cases are contained in a
liquid solution. (Users often make them by dissolving dye powders in some solvents.)
The optical transitions of dyes are relatively broad: tens of nanometers or more –
roughly comparable to those of ion-doped glasses – resulting in good wavelength
tunability. A big difference between dyes and ion-doped glasses, however, is that
these transitions in dyes are not forbidden; they exhibit large transition cross-
sections, and the upper-state lifetime is correspondingly short (a few nanoseconds).
Particularly for pulsed pumping, the gain can easily become rather high, leading
to amplified spontaneous emission.

Many laser dyes are available, and together they cover huge wavelength regions,
the full visible range and also substantial areas in the ultraviolet and infrared
region. A dye laser can be operated with various dyes, ideally, different cuvettes
and circulation systems are used for different dyes so that an easy change is possible.

A notorious problem with dyes is their limited lifetime, they degrade during
laser operation. Dye circulation systems are usually required, enabling use of a
larger volume of dye solution, which may have a lifetime of a few hundred operation
hours.

1.5.4 Semiconductor medium

Semiconductors are utterly different from ionic crystals concerning their elec-
tronic and optical properties. The relevant electronic wave functions depend on
the whole crystal structure and can be influenced strongly by varying chemical
compositions, by structures such as very thin layers (quantum wells) and isolated
dots of different materials (quantum dots), and by strain resulting from such struc-
tures. This opens a massive range of possibilities for engineering semiconductor
structures with optimized properties for use as laser gain medium in a wide range
of wavelengths.

Wavelengths tuning is possible with semiconductor gain media, often in a range
of some tens of nanometers. Varying the material composition can often substan-
tially shift that tuning range so that vast wavelength regions become accessible,
although not with a single laser. Using GaAs, InP and GaSb semiconductor material
systems, interband heterostructure based semiconductor lasers operating in CW at
the ambient temperature can access 0.8µm, 1.5µm and 3.0µm wavelength regions
respectively. The accessible regions can be extended to 0.4µm using GaN-based
material systems and to 4.5−5µm using PbTe and PbSe. Thanks to inter sub-band
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Figure 1.11: Spectral regions accessible by the main semiconductor material-systems
used in semiconductor lasers

recombination in cascade lasers, emission wavelengths from 3µm to THz domain
can be achieved.

The optical transitions in semiconductors are very strong, and consequently
the carrier lifetime is very short: just a few nanoseconds. This results in a very
high gain per unit length, allowing laser operation with a gain medium only a
few hundreds of microns long, or even less than 1µm (in surface-emitting lasers).
Table 1.1 resumes some parameters discussed above for different laser media.

Parameters Ruby Nd:YAG Dye He-Ne Semiconductor

λ (nm) 694 1064 320− 1500 633 1000
τ 3ms 230 µs 2− 5 ns 150 ns 2 ns

σ (cm2) 2.5×10-20 2.8×10-19 ∼ 10-16 30×10-14 ∼ 10-15

∆a (nm) 0.5 0.5 20− 30 0.002 ∼ 50

Table 1.1: Gain medium parameters of various lasers

From the different gain mediums available, the semiconductor is best suited
for our targeted application (3D structured light). It can provide a high gain
(strong optical transition) with a delta like light matter interaction for a good
integration capacity into a complex system for transverse structuration (vertical
external cavity semiconductor laser VeCSEL). It is also possible to engineer to
some extent it’s properties (modal gain, spectral bandwidth and spatial wavevector
spectrum, emission wavelength) as well as design integrated saturable absorber
mirror (SESAM) with fast or slow carrier lifetime. Integrated meta-surfaces on the
semiconductor device are also possible, allowing a greater control of the spatial
amplitude/phase transfer function.
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28 1.6. 3D Light structuration inside a laser cavity

1.6 3D Light structuration inside a laser cavity

To design a system capable of 3D light structuration inside a laser system, we
must first generate an electromagnetic wave using an active medium. In our case,
semiconductor is a good option thanks to its versatility in design. Secondly, we
must confine the EM wave to an optical cavity. To allow for complex structuration
the system must exhibit a flat response in both local and non-local potential (flat
phase response in the gain, no diffraction) which posses, a real challenge.

1.6.1 Longitudinal band engineering

For the longitudinal structuration, meaning the ability to operate in a pulsed
regime such as passive mode-locking or to exhibit temporal localized structure, the
requirements are twofold.

First, the system must be able to operate on several longitudinal modes and lock
them in phase to generate a pulse train. In a linear optical cavity, the longitudinal
wave-function is of the sinus basis, and adding several of them with a fixed phase
relationship leads to temporal pulses. For this, the optical gain spectral width must
be large enough in front of the cavity mode separation (see figure 1.12).
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Figure 1.12: Dispersion diagram Pulsation-wavenumber for the longitudinal com-
ponent in a linear optical cavity.

Secondly, for a PML scheme, a saturable absorber with a faster response time
than gain saturation must be added to open a net gain window around the pulse.
Dispersion management of the pulse must also be considered to generate ultra-short
pulses. For TLS, another condition consists of having an extended longitudinal
system, meaning that the round-trip time must be greater than the matter recovery
time of the SESAM and Gain. Contrary to the transverse case, there is no need to
degenerate the longitudinal system and flatten the band structure of the dispersion
diagram.
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1.6.2 Transversal band engineering

Transversal structuration is related to the spatial aspect of the EM field emission.
It is related to the transverse mode profile of the beam and mostly given by the
optical cavity design and boundary conditions. A linear diffractive spherical cavity
with rotational symmetry will take the form of a photonic harmonic potential (see
figure 1.13a) and generate a Laguerre-Gauss mode basis.

E

kT

ck0�Gouy

c
kT

2k0

2

(a)

E

kT

Large �kT

Band engineering

Degenerate

wavefunction
0

kT

2

kT
20 0~ ~

Flat band

(b)

Figure 1.13: Dispersion diagram Pulsation-wavenumber for the transverse com-
ponent in a linear optical cavity. (a) Free space diffraction relationship. (b) Band
engineering for pulsation degeneracy and large wavenumber window.

To operate in the most complex transverse structuration, meaning to have
a spatially degenerate emission and/or non-linear spatial localization, we must
carefully engineer the optical system. Instead of a harmonic band response, we
want to flatten it. This will result in a transversally degenerate system capable of
operation along a broad-bandwidth of spatial frequency, thus capable of complex
and arbitrary wavefunction. One other way to explain this would be to say that in
a transversally degenerate system, any arbitrary wavefunction could be decomposed
onto a linear combination of HG or LG modes.

To achieve this, we must design a system with no diffraction (non-local potential)
and a flat phase response in real space. To summarize, the non-local and local
phase transfer function must be flat, meaning that:

δΦ

δξ
= 0 and

δ2Φ

δξ2
= 0 (1.26)

where ξ is either the local unit x, y (real transverse space) or the non-local
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30 1.6. 3D Light structuration inside a laser cavity

unit β (transverse wave-vector) and Φ the local or non-local phase response of the
optical system.

Secondly, to have an extended system for SLS generation, we must have a high
Fresnel number (small spatial spot in front of transverse area). This implies that
the transverse available bandwidth is large (i.e., large numerical aperture NA) to
have a small spatial spot and a good flatness and homogeneity in real space to
have a large transverse area.

1.6.3 Spatial structuration with self-imaging cavity

In this work, we want to design and study the behavior of a laser capable
of 3D light structuration. This means a system combining the transversal and
longitudinal band engineering for PML or TLS and Degenerate wavefunction or
SLS. Having a system capable of these two types of localized state is a start for the
more complex spatio-temporal localization also called light bullet (LB). To reach
this goal, both the optical system and the active medium must be carefully designed.
Figure 1.14 shows the complete laser system with a medium that provides gain g
and a third-order non-linearity χ(3)

g , another medium with saturable absorption α
and non-linearity χ(3)

α , and an optical cavity that couples gain and absorption to
create a 3D structured light state.

Figure 1.14: Schematic representation of the laser system needed for non-linear
light structuration with a gain medium and a saturable absorber medium.

In the end, we chose to use a self-imaging cavity coupled on one plane to a Gain
mirror using 1/2-VCSEL and to the second plane with a saturable absorber mirror.
Both those active media will be based on III-V semiconductor technology.

First, the optical cavity has to accommodate the extended aspect ratio condition
for both the transverse space and longitudinal (time) one. In the transverse plane,
the system must be degenerate, meaning that the phase of the transfer function
must be flat over a wide range of wavenumber. This implies that δϕ(β)

δβ
∼ 0 and
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δ2ϕ(β)
δβ2 ∼ 0 with a large numerical aperture NA > 0.1, or in other words, the

smallest spot must be small compared to the transverse extent of the system
(i.e., large Fresnel number F = a2

Lλ
>>> 1). We also must fulfil the condition

τRT >>> τmatter, for the extended system in time. To fulfil those two conditions, a
self-imaging optical cavity appears to be a good choice.

Secondly, the active medium plays an essential role in a laser to supply the
light beam with the necessary coherent photons through the stimulated emission
process. Thus, the type of active medium influences the laser beam properties such
as the wavelength, the output power, the tunability, the temporal dynamics and
more. For 3D Light structuration, both an active medium that provides optical
gain and one that provides saturable absorption are needed. For the gain medium,
a high gain with high saturation intensity is needed for a large non-linear phase-
amplitude coupling and the self-phase modulation effect associated. While for the
saturable absorber small saturation intensity with a long lifetime are optimal for
self-amplitude modulation in the spatial domain, but short lifetime are required
for the pulsed operation. In this optic, we must choose a technology capable of
providing both aspect with sufficient control over their properties.

In the rest of this manuscript, we will describe the active medium optical system
properties, as well as the different design choices made to reach this goal. In the
end, we will analyze the different observed light states.
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Chapter 2

VECSEL technology: building blocks

The VeCSEL (Vertical External Cavity Surface Emitting Laser) technology
uses a 1/2-VCSEL gain structure as a flat mirror in a larger external cavity
system. This configuration is interesting for non-linear spatio-temporal light
structuration. Indeed, this semiconductor system allows the decoupling of the
optical gain and the optical cavity part, for a greater control over the light state
compared to guided semiconductor lasers such as edge-emitting lasers. The stack
design for surfaces emitting allows for a broad transverse area of operation, while
the Semiconductor gain medium allows for large gain bandwidth with a high
cross-section. In conjunction, the need for an external cavity permits the use of
a complex optical system to combine both the large spatial and temporal aspect
ratio needed.

In the rest of this chapter, we will detail the different building blocks of the
1/2-VCSEL gain mirror.

2.1 Semiconductor design requirement

A 1/2-VCSEL is a multilayer semiconductor structure with the primary function
of light amplification and a high reflectivity mirror as a part of the optical cavity.
It is sometimes referred to as a gain mirror. In semiconductor laser, the gain
active zone can be made with a multitude of materials and alloys (binary, ternary,
quaternary) that can cover a wide range of wavelengths by bandgap engineering
(see figure 2.1). For lasing operation, direct band gap semiconductors are preferred
to facilitate radiative transition without momentum transfer.

One important point when designing a semiconductor multilayer structure is
to have a good lattice match, meaning a similar atomic separation between the
different crystals (∆a/a < 1%). If not, the mismatch will cause dislocation in the
crystal [Marée 1987]. However, using a strained structure (tensile or compressed)
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where the lattice of the deposited layer distorts to fit the lattice substrate can
exhibit higher material gain [Piprek 2013], polarization separation [Coldren 2012].
The thickness of the strained layer must not exceed the critical thickness to ensure
no crystal dislocation. For thick strained multilayer structure, compensation of
strain must be implemented by adding a compensating stress opposing the strained
layer. For example, a structure with compressive stress must be compensated with
tensile stress and reciprocally.

Figure 2.1: Energy gap, Wavelength vs. lattice constant for III-V semiconductor
compounds material. Solid line for direct bandgap and dash line for indirect
bandgap.

In our case, we use the III-V semiconductor family based on a GaAs substrate
and GaAs/InGaAs quantum wells for an emission at λ = 1.064 µm, while strained
compensation is done using GaAsP layers surrounding the QW. The design of
the structure (active zone and Bragg mirror) is done at the IES laboratory, while
the realization is made at the C2N by Isabelle Sagnes and Gregoire Beaudoin.
The growth is carried out by organometallic vapor phase epitaxy (MOCVD) and
post-treatment for meta-surface deposition is done through e-beam lithography.

2.2 Bragg mirror

Highly reflecting Bragg mirrors are realized using a stack of alternating layers
of different refractive indices. As shown in the figure 2.2, we consider a Bragg
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pair as two layers of a low and high refractive index. To optimize the reflective
constructive interferences, each layer must have a thickness of, λB/4n where λB
is the central wavelength of the mirror. At each interface, the partial reflection
introduces a phase shift of π when the wave goes from a medium of a low index
towards a medium of a high index and a phase shift of 0 in the opposite case. While
the propagation on each layer results in a phase shift of π/2. In this configuration,
we can reach high reflectivity (R > 99%) over a certain bandwidth ∆λ through
constructive interferences.
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Figure 2.2: Structure of a Bragg mirror, with the refractive indices n0 < nL < nH

with nL < nS; n0 ambient, nL medium of low index, nH medium of high index, nS

medium of the substrate. The phase shift experienced at each first partial reflection
is also shown.

It is then possible to write an analytical expression for the reflectivity, the
bandwidth and the dielectric losses:

R =







1− ns

no

(

nL

nH

)2Np

1 + ns

n0
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nL

nH

)2N







2

(2.1)

∆λ =
4λ

π
arcsin

(

∆n

nH + nL

)

(2.2)

Loss = 2αbLdepth = 2αb
λB
4∆n

(2.3)

To achieve a high reflectivity, it is important to have a high refractive index
contrast ∆n = nH − nL and a large number of pairs Np. The choices of material
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will fix ∆n and, depending on the technological platform, high or low contrast
is possible. For the III-V GaAs platform at 1 µm emission, it is possible to use
GaAs/AlAs pairs with ∆n = 0.53 while keeping a good lattice match. Having a high
contrast index also minimizes the penetration length Ldepth of the electromagnetic
wave inside the Bragg mirror, thus lowering the losses for high reflectivity. On the
other hand, the maximum number of pairs is not as much limited by the technology
than the ability of the system to evacuate the heat through the Bragg mirror. A
large number of pairs will result in large thermal impedance.
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Figure 2.3: Reflectivity spectrum for 25 pair of AlAs/GaAs on a GaAs substrate.
The Bragg pair thickness have been optimized for 1 µm wavelength.

As a typical example for a VeCSEL emitting at 1 µm with Np = 25 AlAs/GaAs
Bragg pair (∆n = 0.53) we have the following reflectivity spectrum (see figure 2.3
with Rmax = 99%, δλ = 110 nm and Loss < 0.02%. This number of Bragg pairs
does not significantly increase the thermal impedance.

2.3 Quantum wells active area

The multi-quantum well active area is the heart of the 1/2-VCSEL semiconductor
structure. To have optical gain, we must reach a population inversion between a
fundamental and exited energy state. In this case, confining the carrier in a plane
(1D confinement: Quantum Well (QW)) allows us to more easily reach a population
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inversion than with bulk material. This is linked to the resulting smaller active
volume needing less population to reach a same population density. We will now
detail the different properties linked with the quantum wells.

2.3.1 Quantum Well

Figure 2.4: Schematic description of an energy diagram of quantum wells pumped
in the barriers. Full dots represent electrons. Circles represent holes.

A Quantum Well (QW) is a thin layer of a small energy bandgap (Eg) crystal
sandwiched between two higher bandgap materials called “barriers”. Figure 2.4
details the resulting valence and conduction band, with the subband level inside
the QW. This heterostructure creates an energy potential, confining holes on the
top of the conduction band and electrons on the bottom of the valence band. The
resulting energy states in this small layer (8 nm thickness) are then quantized to
different subband level. The energy separation from the fundamental subband
level in the conduction band (E1

c ) and the valence band (E1
v) determine the lasing

wavelength. We can write in the parabolic band approximation [Zory 1993]:

En
c − En

v = Eg + (
1

2mr

)(
nπℏ

LQW

) (2.4)

Where Eg is the forbidden gap band energy of the material used, LQW is
the thickness of the well, mr = (1/me + 1/mh)

−1 is the reduced effective mass
related to the effective masses of the electrons of the conduction band (me) and the
effective mass of the holes of the valence band (mh). We can see that it is possible
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40 2.3. Quantum wells active area

to tune the emission wavelength by playing with the QW thickness and/or the
material bandgap. However, the separation between two consecutive levels in the
subband must be higher than the thermal energy kbT = 26meV (at 300K) to avoid
thermal coupling between states, resulting in higher density of states and higher
transparency density. It also follows that the energy height of the barrier must
be well above the thermal energy for a good carrier confinement and low leakage
current (carriers escaping the QW confinement). If these conditions are met, then
the leading recombination mechanism becomes the radiative recombination between
the fundamental state of the conduction and valence subband.

Depending on the technology choice, some latices mismatch can exist between
the substrate crystal and the QW materials. In this situation, using strained
balance QW by adding layers of a material with opposite lattice mismatch to
compensate the strained is a valid solution. For InGaAs based QW on GaAs
substrate, this solution allows to increase the number of QW and thus gain in the
NIR (λ > 1 µm). Strain QW also exhibits lower threshold and higher differential
gain compared to unstrained ones [Coldren 2012].

2.3.2 Absorption and Gain in QW

As seen in § 1.4 the light matter interaction is governed by the complex electrical
susceptibility χ from which we can determine the absorption, gain or the refractive
index of a medium. For a quantum well laser, S. Balle proposed a simple analytical
expression following a parabolic approximation of a single valence and conduction
band [Balle 1998]. This leads to the expression:

χ(ω) =
|M |2
ε0

2

V

∑

k

fc(k)− fν(k)

hω − Ec(k)− Eν(k) + ihγ
(2.5)

where V is the medium volume, M is the dielectric dipole element between the
electronic state, fc and fν are the occupation probabilities of the electronic states
given by the Fermi-Dirac distribution:

fc =
1

1 + e(E1−EFc )/kbT
and fν =

1

1 + e(E2−EFν )/kbT
(2.6)

where hν = E1 − E2 is the energy of the transition between high and low-
energy level and EFc,ν

is the quasi-Fermi level of the conduction and valence band
which strongly depends on the injection level and temperature as follows from the
expressions:

EFc
= E1

c + kbT ln
(

e
N
Nc − 1

)

and EFν
= E1

ν − kbT ln
(

e
N
Nν − 1

)

(2.7)

40



Chapter 2. VECSEL technology: building blocks 41

with

Nc,ν =
m∗

c,ν

πℏ2
kbT (2.8)

Figure 2.5: Energy diagram of an undoped quantum well, a) thermodynamic
equilibrium: the conduction subband is empty, and the valence subband is filled,
b) out of equilibrium: the Fermi quasi-level of the electrons (holes) goes up (down)
to the conduction subband (valence).

On figure 2.5 we show the first two energy bands of an undoped quantum
well with the distribution probabilities of the occupied state. At thermodynamic
equilibrium the conduction band is empty, and the quasi-Fermi level for the
conduction band (CB) and valence band (VB) are the same. By disrupting this
equilibrium through pumping, we can separate the quasi-Fermi levels for electrons
and holes. For electrons, the quasi-Fermi level will rise in the CB and reach a
state where we have a non-zero probability of finding electrons in the conduction
band and holes in the valence band. When the quasi-Fermi level is separated by
the energy gap, then transparency is reached, and further increase in separation
leads to a population inversion, where more carriers are found on the CB than the
VB. Optically, this is equivalent to having gain in an energy band equivalent to
[Bernard 1961]:

Eg < hω < ∆EF (2.9)

This expression reflects the fact that the material is transparent for photons of
energy below the forbidden band and highly absorbing for photons of energy higher
than the separation of quasi-Fermi levels. Therefore, the spectral width of the gain
will be greater as the separation of the quasi-Fermi levels will be important. In
the particular case where the energy difference between the Fermi quasi-levels is
equal to the gap energy of the quantum well (Eg = ∆EF ), the material is said

41



42 2.3. Quantum wells active area

to be transparent to the transition energy: the gain (or absorption) is then zero.
Transparency is characterized by a particular carrier density that will be noted Ntr.

The optical gain in this medium can be written with the imaginary part of the
electrical susceptibility as:

g = −ω
c
Im(χ(ω)) (2.10)

We note that for cases with no population inversion in the medium, this
expression is then representative of the optical absorption. For a real band structure,
the analytic calculation of χ is too complex. However, some insight can be gained
by considering a simple parabolic band structure of a single QW with only one
electron and hole band, and low temperature where the Fermi distribution closely
looks like a step function. In the frame of those approximations, S.Balle gave an
analytical formula of [Balle 1998]:

χ(ω,N) = −χ0[2ln(1−
N/Ntr

u+ i
)− ln(1− b

u+ i
)] (2.11)

with Ntr the carrier density at transparency and

u =
ω − ω0

γ
+ σ(N/Ntr)

1/3 , χ0 =
m∗|M |2
Wπεh2

(2.12)

where σ defines the band gap shrinkage, ω0 = Eg/ℏ is the bandgap pulsation and
gamma is the width of the considered transition. This expression stands that the
maximum gain gmax = ω0

c
χ0 is only dependent on the material properties, but the

center and the width of the gain spectrum is a complex function of N. In figure 2.6
the gain spectrum is displayed for different carrier density N/Ntr. For, N/Ntr = 0
corresponding to the thermodynamic equilibrium, we are in the absorption regime
with stronger absorption above the bandgap frequency w0 following the Fermi-Dirac
distribution. The two other curves are in the gain regime with N/Ntr = 1.1 and
2. From this, we can see that the gain bandwidth increases with N and exhibits
a blue shift (shift towards a smaller wavelength). Even if the transition width of
semiconductors is around γ ∼ 1014 s−1, close to transparency, the gain bandwidth
could be very narrow (∼ γ/10 for N/Nt = 1.1) while quite large at stronger
excitation (∼ 2γ for N/Nt = 2).

The linewidth enhancement factor can also be determined by:

αh =
Re(dχ/dN)

Im(dχ/dN)
(2.13)

This factor introduced by Henry is unique to the semiconductor materials
and can explain the mismatch of the laser linewidth from the Schawlow-Townes
formula due to the phase-amplitude coupling effect in the semiconductor material
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Figure 2.6: Normalized imaginary part of the susceptibility as a function of the
normalized frequency deviation (ω−ω0)/γ for increasing carrier densities N/Ntr = 0
(Absorption) and N/Ntr = 1.1, 2 (Gain).

[Henry 1982, Schawlow 1958]. Indeed, the real part of the electrical susceptibility
corresponds to the refractive index (phase variation) while the imaginary part to
the gain (amplitude variation), thus the equation 2.13 shows the link between the
variation of the refractive index and the gain as the function of carrier variation.

In figure 2.7a we show the variation of the linewidth enhancement factor at
the peak gain position from carrier excitation. We see that the phase-amplitude
coupling effect gets stronger with higher excitation. In figure 2.7b the linewidth
enhancement factor is shown as a function of the normalized frequency deviation
for two carrier excitations, N/Ntr = 0 (blue) and N/Ntr = 2 (red). We can see
that the Henry factor has an opposite sign in the absorption regime (α < 0) than
the gain regime (α > 0). We can also see the increasing trend for the lower energy
part of the spectrum. The usual value can range from 2 to 4 depending on the
spectral position and carrier excitation [Stohs 2001].

The value of this parameter can play an important role for single frequency laser
operation [Chomet 2019] due to its quasi-third order non-linear response arising
from the phase-amplitude coupling through the carriers variation. Indeed, since
a variation of a refractive index can occur from a variation in gain, this could be
interpreted as an intensity induced phase shift, then we have similar characteristics
as a third-order Kerr non-linearity. This way, the light beam experiences self-phase
modulation during propagation that leads to a self-lensing effect in the transverse
plane or four wave mixing from time variation of carrier density.
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44 2.3. Quantum wells active area

(a) (b)

Figure 2.7: a) Linewidth enhancement factor as a function ofN/Ntr at the maximum
of the gain. b) Linewidth enhancement factor as a function of the normalized
frequency deviation (ω−ω0)/γ for N/Ntr = 0 (Absorption) and N/Ntr = 2 (Gain).

2.3.3 Carrier lifetime

The QWs will confine carriers in their potential well for a certain amount of time
before the interband recombination occurs. The resulting carriers lifetime τ(N) is
dependent on carrier concentration N and the different radiative and non-radiative
recombination processes. This can be approximated by [Coldren 2012]:

1

τ(N)
= A+B∗N + CN2 (2.14)

Where A, B∗, C, are respectively the mono-molecular, bi-molecular and Auger
coefficient. A and C correspond to non-radiative recombination process. Where A
comes from crystal defects and impurities (A ∼ 10−7 s−1 for good quality crystal)
and C characterize the Auger recombination of three-particle interaction which
strongly depends on temperature and wavelength. It appears for large carrier
density (C ∼ 3× 10−30 cm6/s at λ = 1 µm for InGaAs QWs).

The radiative recombination is expressed by the bi-molecular coefficient, B∗

which is also dependent on the carrier density following [Bourdon 2002, Laurain 2010]
:

B∗ =
2B

LQW

N2
c

N2

(

N

Nc

+ e−N/Nc − 1

)

(2.15)

where B is the constant bi-molecular coefficient and Nc is the conduction band
density of state (see equation 2.8). This form allows us to consider the saturation
effect of the spontaneous emission rate for large carrier density due to band filling.

From this, it is possible to define a radiative lifetime:
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1

τr
= B∗N (2.16)

And a non-radiative lifetime:

1

τnr
= A+ CN2 (2.17)

We can express the internal quantum efficiency ηi, using the previous equation,
as the ratio between the number of carriers undergoing radiative recombination
versus the number of generated carriers.

ηi =
1
τr

1
τr
+ 1

τnr

(2.18)
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Figure 2.8: Theoretical quantum efficiency function of the carrier density for a
typical InGaAs/GaAs QWs.

Figure 2.8 shows the theoretical ηi with the carrier density for the typical A,
B∗, C parameters of InGaAs/GaAs QWs at λ = 1 µm [Laurain 2010]. We find
that the efficiency is maximal (around 80%) sightly above the carrier transparency
density. For large excitation density, the quantum efficiency quickly goes down due
to Auger recombination effect. The optimal range of operation should not exceed a
few time the transparency density to avoid such effects.
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46 2.4. Non-resonant optical pumping in barrier

Under lasing condition, when the lasing threshold is reached, the quantum
efficiency becomes close to 1, since the predominant recombination effects are due
to the stimulated emission process.

2.3.4 Gain dichroism

QW surface emitting lasers are known to exhibit an optical gain dependent
on polarization angle [Shimizu 1988]. It can be explained by two main effects.
First, the anisotropy originates from the breakdown of the rotoinversion symmetry
at the interface when the host materials (GaAsP/InGaAs/GaAsP) do not share
any common atoms due to growth conditions and chemical segregation. And
secondly, the induced birefringence from the axial symmetry breakdown of the
crystal at the air-semiconductor interface. As a result of those effects, the gain
mirror experiences some gain dichroism along the crystal [110] or [110] for [100]
oriented substrate[Cortez 2000, Krebs 1996, Yu 2011].

Figure 2.9 demonstrates this effect on the 1/2-VCSEL gain. Here we used a
13λ/2 GaAs structure with 6QWs placed at the anti node of the standing wave. A
λ/4 SiN layer has been added to the top surface to suppress the resonant effect
of the air semiconductor microcavity. The gain measurement were done using a
rotating glass window inside the laser cavity for losses control while measuring the
laser threshold for both polarization.

From this, we can extract a gain dichroism of ∆G/G ∼ 10%. The gain being
higher along the [110] crystalline axis. A laser based on a 1/2-VCSEL gain mirror
without other anisotropy will tend to emit a linear polarization along this axis.
One way to suppress or reinforce this dichroism is by introducing thermal strain
through an asymmetric optical pump spot. The anisotropic thermally induced
strain, can compensate or increase the surface crystal birefringence and thus the
gain anisotropy [Seghilani 2015].

2.4 Non-resonant optical pumping in barrier

To achieve a population inversion of the active medium, one must supply the
necessary energy into the system. The two most common ways are through an
electrical or optical pumping scheme. For our purpose, the optical pumping scheme
presents several advantages.

Firstly, the need to dope and post-process the semiconductor to inject the
electrically generated carrier puts a lot of strain and complexity on the required
broad transverse area of the system. Using an optical pumping scheme negates
the need for these processes and allows for a large and uniform pumped area in
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Figure 2.9: Measurement of the modal gain of a VECSEL emitting at 1 µm for two
directions of polarization following the crystal axis [110] and [110] [Chomet 2019].

an undoped and homogeneous semiconductor structure. This means that higher
optical gain with a longer lifetime can be achieved.

Secondly, the large absorption in the barriers (> 80% for a single pass) and
its broadband nature allow the easy use of a wide range of commercially available
laser diodes for pumping.

Lastly, the control of the optical pump beam size and shape, adds a degree of
freedom to the transverse structuration of the laser. By using several pumps or by
changing the shape of the pump, we can control the lasing transverse modes.

2.4.1 Carrier generation

Figure 2.10 presents a schematic for an optical pumping scheme in the barriers.
To avoid surface recombination, a confinement layer with a large bandgap compares
to the barrier is added on top of the structure. Then, thanks to the diffusion
process, the carriers generated in the structure will end up trapped in the QWs
since the lifetime in the barriers is large in front of the capture time (τcap ∼ ps <<<
τb ∼ ns)[Steinkogler 2003] . In this case, population inversion in the QWs is simply
achieved by the absorption in the barrier. The resulting lifetime in the QWs can
then be written by equation 2.14.

By assuming that all generated carriers end up trapped inside the QWs, we can
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48 2.4. Non-resonant optical pumping in barrier

Figure 2.10: Schematic representation of a MQWs active zone for a 1/2-VCSEL
optically pumped in the barriers.

express the pump power density Ipump needed to generate a carrier density N by:

Ipump =
N

τ(N)

hc

λpump

1

AbTr
NQW (2.19)

Where NQW is the number of quantum wells, Ab is the Beer-Lambert pump
absorption coefficient inside the barriers and Tr is the pump transmission inside
the semiconductor structure. hc/λpump is the pump photon energy and τ(N) the
QWs lifetimes. With this expression, we can connect a measurable property (Ipump)
to the important physical parameter (N/τ(N)).

On the other hand, if the pumping action was done at a lower energy level,
meaning pumping directly into the QWs, less energy would be lost as phonons
from the pump to laser energy conversion. However, the absorption length would
also be greatly reduced (∼ 1% per pass per QWs) and resonant pumping would be
needed to increase pumping efficiency.

2.4.2 Thermal properties

For a laser, a certain part of the supplied pump energy is converted into laser
light through the spontaneous and stimulated emission process, while the reminder
is transformed into heat. The main contribution is from the mismatch in the
pump photon energy and the laser photon energy, where the energy difference
gets converted into heat. We can summarize the effect with the thermal efficiency
ηth = 1 − ηiλp/λl. It is, therefore, more pronounce when pumping with a high
photon energy, such as optical pumping in the barrier. For our GaAs based structure
emitting at 1.064 µm with a pump at, 808 nm we reach around 40 % under the
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(a) (b)

Figure 2.11: (a) Temperature profile inside a 1/2-VCSEL structure with a Gaussian
pump of ωp = 50 µm (b) Thermal impedance for different waist size.

threshold and 30 % above. This energy difference between the laser and pump is
imposed by the bandgap configuration of the QW for good carrier confinement.
Pumping directly into the quantum well with 980 nm a pump could be done to
lower the thermal efficiency, at the detriment of a good absorption efficiency (80 %
in barrier for 1 % in QWs). The resulting heating of the active area is then a
function of the pump/laser energy difference and the thermal dissipation from
conduction and/or convection effect. This can be summarized with the use of a
thermal impedance Rth, such that we have:

TQW = Tpeltier +RthPinc (2.20)

Where the QW temperature TQW is dependent on the Peltier cooler temperature
Tpeltier and the pumped induce rise in temperature RthPinc. Here, the thermal
impedance is defined as Rth = ∆T/∆Pinc. To estimate the thermal impedance,
which is dependent on the 3D pumped induce thermal profiles and the heat
conductivity of the different semiconductor layers, we need to solve the stationary
heat equation:

κ(x, y, z)▽2T (x, y, z) = Q(x, y, z) (2.21)

Where κ is the thermal conductivity in Wm−1K−1 and Q the heat source in
Wm−3. The heat source is then dependent on the power and pump size, which
will impact the resulting thermal impedance. Solving this equation using the
finite element method, we can see the thermal behavior of a typical 1/2-VCSEL
structure. Figure 2.11a shows the heat distribution on an axiosymmetric 2D cut
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50 2.4. Non-resonant optical pumping in barrier

(a) (b)

Figure 2.12: Transverse temperature profile for (a) Gaussian source and (b) top
hat source.

of the 1/2-VCSEL for a Gaussian pump of 50 µm of waist. Three layers were
used, one for the active region (7λ/2n length using the GaAs thermal conductivity
κGaAs = 55Wm−1K−1), one for the Bragg element (25.5 AlGaAs/GaAs pairs
with an effective conductivity of κBragg = 34Wm−1K−1) and the substrate layer
(350 µm of GaAs). There is almost no longitudinal temperature variation in the
active area, since the thermal diffusion length appears a lot larger than λ. We
can then use the surface temperature as the QW temperature for calculating the
thermal impedance.

In figure 2.11b we calculated the thermal impedance for different waist. A clear
inverse proportionality between Rth and ωp is shown. This can be explained by
the fact that for a small pump spot, the thermal power is concentrated in a small
volume before thermal diffusion spreads the heat, which creates a 3D flux with
a high thermal impedance. On the contrary, for large spots, the thermal power
is already spread to a large volume with a unidirectional flux thus lower thermal
impedance.

The thermal load applied onto the system will have several effects. One effect is
the thermal lensing from the induced optical index variation, δn/δT ∼ 2.7×10−4 K−1

leading to a transverse phase variation. The shift of the optical index also induces a
spectral variation of the micro-cavity resonance δλ/δT ∼ 0.07 nmK−1. Combined
with the gain spectral red-shift with temperature, the laser may exhibit roll-over
effect (sharp drop of output power) from too much thermal load.

Using the same simulation, we can extract the thermal transverse profile to
estimate the thermal lensing. The figure 2.12 displays two examples of the transverse
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thermal profile for a Gaussian shaped pump (2.12a) and a top hat shaped pump
(2.12b) of the same radius and thermal power. The thermal diffusion leads to
a larger temperature profile than the source with a parabolic component at the
center. The resulting thermal lensing effect from the parabolic part of the profile
will be expanded in section § 5.2.1.

2.5 Conclusion

The surface emission technology combined with the external optical cavity
fulfills the requirement for spatial structuration of the light state. Mainly the
extended transverse area and its possibility for high gain. In this chapter, we
have introduced the different components of a 1/2-VCSEL semiconductor structure
and their effects on the overall laser properties. First we looked at the choice
of the semiconductor technology for the desired wavelength application and the
importance of the strain management.

Then we looked at the different blocks describing the multilayer structure. The
first one being the high reflectivity Bragg mirror, where the choice of material can
impact the mirror performance. In our case, a high reflectivity (R > 99%) can be
achieved with a relatively small number of AlGaAs/GaAs pairs.

Secondly, we went over the different characteristics of a QW which composed
the 1/2-VCSEL active area. We saw that large bandwidth are possible and that
the phase-amplitude factor in a semiconductor can lead kerr-like non-linear effect.
The QW properties also inform us of the optical range of operation we can expect
(between Ntr to 4− 5Ntr).

Lastly, we describe the specifications needed for optical pumping. The main
perturbative effect of this carrier generation choice is thermal lensing. To understand
its origin, we simulated a simple 1/2-VCSEL using the 3D heat equation. This
highlighted the importance of good thermal management and pump shape to limit
the thermal lensing effect.

In the next chapter, we will take a closer look at the design of the different
semiconductor structure used in this manuscript.
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Chapter 3

Design of semiconductors structures:

GAIN & SESAM

We now need to design a gain medium for our laser system that fulfil all
the requirements laid out in the previous chapters. Mainly to achieve a high
effective gain, to optimize the ratio of saturable to unsaturable losses. To minimize
the thermal effect such as thermal lensing while keeping a strong enough phase
modulation from the phase-amplitude coupling effects. Minimizing long scale
(micro-cavity length variation) and small-scale (QW interfaces inhomogeneity)
inhomogeneity from the semiconductor growth as well as having a good crystalline
quality, with low defects density, to keep a large homogeneous transverse area.

In parallel, we also have to design a semiconductor saturable absorber (SESAM)
to match the maximum available gain and the expected saturation intensity. This
will introduce self-amplitude modulation (SAM) in our laser system and help start
spatially localized the laser emission.

In the following chapter, we will introduce the design of the gain mirror and
the SESAM. We will then characterize their properties, including the modal gain,
thermal impedance, carrier diffusion length, saturable absorption, and spatial
homogeneity.

3.1 Modal Gain

The effective gain of a laser or modal gain is not only dependent on the material
properties of the active medium, but also on the overlap between the laser beam
volume and the gain volume. In the 1/2-VCSEL design, this interaction only occurs
at the quantum well position. It will be dependent on both the micro-cavity effect
and the QWs placement in relation with the electric field standing wave. Making
both of them a critical part of the design.
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The general form of the modal gain is given by [Coldren 2012]:

gmod =

´

vol. actif

g(x, y, z)n(x, y, z) |ũ+(x, y, z) + ũ−(x, y, z)|2 dV
´

vol. mod

n(x, y, z)
(

|ũ+(x, y, z)|2 + |ũ−(x, y, z)|2
)

dV
(3.1)

where ũ+(x, y, z) and ũ−(x, y, z) are the propagating and contra-propagating
complex electromagnetic waves inside the semiconductor. Given the high reflectivity
of the Bragg mirror, we can assume they have the same amplitude. By supposing
that the electromagnetic mode size is not changing much over the micro-cavity
length (zr >> Luc) we can separate the longitudinal and transverse contribution.
Then by integrating along z on the QWs we have:

gmod =

nscg0
˜

x y

T (x, y) |E(x, y)|2 dxdy
´

QW

|Eint|2 2cos2(k0z)dz

|Eext|2 Lc

˜

x y

|E(x, y)|2 dxdy
(3.2)

where g0 is the linear gain in cm−1 for one QW and T (x, y) is its normalized
transverse profile such that g(x, y) = g0T (x, y). nsc is the refractive index of
the semiconductor and k0 = 2πnsc/λ the wavenumber. From the longitudinal
dependency of the ratio between the field inside the micro-cavity and outside, we
can define the longitudinal confinement factor as[Laurain 2010]:

Γz = Γuc ×
1

Lc

ˆ

QW

2cos2(k0z)dz (3.3)

where we find the micro-cavity confinement factor Γµc (see § 3.1.2). The other
terms reflect the overlap between the QWs and the standing wave pattern. If we
assume that the QWs are positioned at the anti-nodes of the standing wave, then
the longitudinal confinement factor can be reduced after integration to:

Γz ≃ 2ΓucNQW
LQW

Lc

(3.4)

where LQW is the QW length, Lc the micro-cavity length and NQW is the
number of quantum wells. In the case of a position mismatch δz between the
QWs and the standing wave anti-nodes, this parameter will reduce by a factor
(cos2(2kδz)). The other part of equation 3.2 relates to the transverse confinement
factor and can be defined as:

Γx,y =

´

A

T (x, y) |E(x, y)|2 dA
´

A

|E(x, y)|2 dA
(3.5)
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This factor reflects the transverse overlap between the laser transverse mode
and the gain distribution. For a TEM00 fundamental mode laser emission and
Gaussian distribution of the gain, we find that the minimum amount of power
needed to cross the threshold is when ωp = ω0 and Γx,y = 1.

In the end, we have an expression for the linear modal gain of our system
gmod = Γx,yΓucg0. Thus, by integrating over the round-trip distance inside the
micro-cavity (2Lc) we have a final expression for the modal gain of the 1/2-VCSEL1:

Gmod(N) = 4NqwLqwΓucΓx,yg(N) (3.6)

3.1.1 QWs placement

QWs placement inside the micro-cavity is essential to optimize. As seen from
equation 3.3 to ensure an optimal gain extraction we must place the QWs on the
anti-nodes of the micro-cavity standing wave pattern. And second, in the case
of optical pumping inside the barrier, to achieve a uniform carrier density across
all QWs, the longitudinal distribution of the QWs along the different anti-nodes
must be optimized. The longitudinal absorption of the pump is given by the Beer
Lambert’s law:

Ab = 1− e−αpL (3.7)

where Ab is the fraction of the pump absorbed inside the barrier, αb is the linear
absorption coefficient at the pump wavelength, λp which is around 1.3× 106m−1

at 808 nm for GaAs. L is the length of absorption which is equal to the active area
length. It must be long enough to efficiently absorb the pump. For example, 85%
of the incident pump power can be absorbed by an 7λ/2 active zone length made
of GaAs.

To efficiently distribute the QWs along the active zone. We need to consider
the exponential longitudinal carrier density from the pump absorption and the
diffusion length in the barrier (Ld ≃ 150 nm for GaAs). We can place up to 3 QWs
with ⩾ 20 nm spacing on one anti-node and avoid any parasitic coupling effect. All
the photo-generated carriers around ±Ld from the QW ends up contributing to
the QW carrier density. We can then choose the optimal distribution of the wells
between all the standing wave maxima to reach a uniform excitation. Figure 3.1
shows us an example of an active zone of 7λ/2 and 6 QWs. In this case, the first
anti-node has 2 QWs and the rest only one (02111010 distribution pattern). The
resulting pump absorption in each QW has good uniformity, thus a good carrier
density homogeneity.

1the approximation of small gain (eg2Lc ∼ 1 + g2Lc) is made to have our gain percentage.
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56 3.1. Modal Gain

Figure 3.1: Example of optimization of the distribution of 6 quantum wells in an
active zone of length 7λ/2 in the case of barrier pumping.

3.1.2 Micro-cavity factor

The 1/2-VCSEL structure is by design a microcavity, with one mirror being
the HR Bragg reflector and the other the air-semiconductor interface. This leads
to an enhancement of the standing wave pattern inside the structure compared to
outside. One way to express this effect is through the micro-cavity confinement
factor:

Γuc = nns
|Eint|2
|Eext|2

(3.8)
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Figure 3.2: (Left) Point emitter within a microcavity formed by highly reflecting
and partially transmitting mirrors (Right) Reflectivity of the microcavity with
R2 = 99.95% and different values of R1.
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Where nsc is the refractive index of the semiconductor and Eint, Eext are
respectively the field amplitude inside and outside the structure. All effects related
to the field-matter interaction such as the optical gain, thermal lensing, non-
linearity and others will be affected by this field enhancement. Following the
formalism introduced by Kastler [Kastler 1962] and Benisty et al. [Benisty 1999] of
a radiation pattern from a point emitter embedded within an optical micro-cavity
(see figure 3.2) we can write:

Γuc =
|
√
1−R1exp(−i2φ)|2

|1−
√
R1R2exp(−i2φ)|2

=
1−R1

1 +R1R2 − 2
√
R1R2 cos(2φ)

(3.9)

with

φ = k0n(d1 + d2)cos(θ) (3.10)

From this by fixing R2 = 1 (HR Bragg mirror) we can see that it is possible to
control the strength of the enhancement by tuning the reflectivity R1 of the top
mirror. This effect is also dependent on the wavelength through the phase term φ.
If the micro-cavity optical length n(d1 + d2) is a multiple of, λ/2 then the effect is
maximum, and we are in a resonant configuration. In the other case, if the optical
length is a multiple of λ/4 the effect is minimal, and we are in an anti-resonant
configuration.

3.1.2.1 Fourier Spatial filtering

The phase term is also dependent on the emission angle, implying a filtering of
spatial frequency. The Fresnel reflection being polarization-dependent, the filtering
should be as well. However, to simplify the calculation, we will for now assume
a constant reflectivity with the incident angle. Assuming we are lasing on one
resonance at normal incidence, the microcavity will affect both the amplitude and
phase of the beam spatial spectrum. Figure 3.3 plots the normalized micro-cavity
factor as a function of the numerical aperture in the air NA = n sin(θ).

The amplitude filtering is similar to a numerical aperture limit. As with spectral
dependence, it has a Lorentzian like shape. Defining the numerical aperture finesse
as Ft = θ1/2/π with the angle θ1/2 representing the half width half maximum
angle, we can express this function as a parabola. From figure 3.3 we can see the
different impacts using the angle dependent reflectivity. We also see that the angle
independent reflectivity curve is an average of the two different polarization ones.
We also remark that for angles below θ1/2 all curves are similar.

Γ(θ) = 1− θ2

2θ1/2
and θ1/2 = cos−1



1−
sin−1

(

1−R
2
√
R

)

k0ne



 (3.11)
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Figure 3.3: (a) Normalize intensity transfer function of the micro cavity versus the
transverse wavevector. (b) Normalize phase transfer function of the micro cavity
versus the transverse wavevector. Full line for R constant, dashed line for TE
polarization and dotted line for TM polarization. Both R constant plots are fitted
with a parabolic function and a fourth order one.

From this, we can express the NA limit in the air for a micro-cavity as NAΓµc
=

n sin(θ1/2). For the parabolic approximation, this corresponds in terms of the
spatial spectrum transfer function to a frequency band by:

∆k ∼
√

k0n

e

1−R1√
R1

(3.12)

Where e = d1 + d2 is the micro cavity length and R1 the top mirror reflectivity.
For high reflectivity and long cavity length, the band is reducing. In real space, it
corresponds to a diffusion term limiting the smallest size achievable. In our case, it
must be as high as possible to not limit our system.

The micro-cavity being non-null in length, it will also contribute to the laser
cavity diffraction through the effective optical length Leff = 2Γµcne. Or if we look
at it with the Fresnel approximation in Fourier space, it will be a phase parabola
e−iλLeffν

2

.
As seen in figure 3.3, both those effects also contain higher-order terms that

will perturb the parabolic expression. For simplicity, we will only look at the fourth
order term θ4 in the phase spectrum that can be related to spherical aberration in
the field of imaging optics. In the amplitude spectrum, the fourth order term tends
to flatten the response toward a less disturbing top-hat shape, while in the phase
spectrum it will perturb the diffraction. The full phase with second and fourth
order coefficient can be written for low finesse cavity as:
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φ(θair) ≃ − θ2air
1.5θ21/2n

2
+

θ4air
4θ41/2n

4
(3.13)

3.1.2.2 Resonant Design

For a resonant micro-cavity design, the length of the active area must be a
multiple of λ/2. This gives rise to constructive interference in the active zone, thus
an enhancement effect of the field (see figure 3.4). It will result in a higher modal
gain, but a more pronounced spectral filtering. The confinement factor Γµc is at
its maximum at the design wavelength, and its bandwidth is partly dependent on
the length of the active zone and the micro-cavity reflectivity. A lengthier active
zone and/or higher reflectivity means a smaller bandwidth. One way to increase
the semiconductor-air interface reflectivity is to add a Bragg reflector of a few
AlGaAs/GaAs pair on the top of the structure (see figure 3.5). With this, it is
possible to control the top mirror reflectivity and thus control the strength of the
field enhancement effect.

The increased wave-matter interaction in this configuration allows for larger
effective gain, thus lower threshold. However, this also increases the disadvantageous
effects such as thermal sensitivity, thermal lensing or surfaces losses sensibility. The
small bandwidth also means that we need to ensure a good match between the
maximum of the gain curve and the micro-cavity resonance. This implies a precise
growth process (composition of the wells and thickness of the epitaxial layers) and
a good anticipation of the thermal red-shifting effect.

Air Active Zone Bragg mirror

Figure 3.4: (Left) Calculation of the intra-cavity field intensity |E|2 for a simple
resonant structure (7λ/2 length). (Right) Confinement factor Γµc and the effective
gain of the structure.
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60 3.1. Modal Gain

This configuration also exhibits a field maximum on the air-semiconductor
interface. These properties can be useful when adding a functional layer to the
1/2-VCSEL, such as a phase and/or intensity masks, to increase interaction with
the field.

Air

Active Zone BraggTop Bragg

Figure 3.5: (Left) Calculation of the intra-cavity field intensity |E|2 for an enhanced
resonant structure (7λ/2 length and top Bragg mirror). (Right) Confinement factor
Γµc and the effective gain of the structure.

3.1.2.3 Anti-resonant Design

In the anti-resonant design, the active zone length must be an odd number of
λ/4. In this case, destructive interferences occur inside the micro-cavity and lead to
a diminution of the electric field intensity inside the structure compared to outside
(see figure 3.6). A node of the standing wave is on the gain chip surface, reducing
the effect of surface losses and the interest for phase or intensity integrated masks.

The weak coupling reduces the effective gain thus a higher threshold, but the
effective bandwidth becomes equivalent to the QW bandwidth or even larger (higher
Γµc at the edge of QW bandwidth than it’s peak). This can be very valuable for
large tunability application or wide bandwidth system (mode-locking) with a high
finesse optical system.

In our case, resonant design is preferred for a large effective gain and large
non-linearity. However, the need to limit thermal lensing effect and keep a large
enough bandwidth for mode-locking means that a simple resonant design with a
low enhancement factor is preferred.
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Air Active Zone Bragg mirror

Figure 3.6: (Left) Calculation of the intra-cavity field intensity |E|2 for an anti-
resonant structure (7.5λ/2 length). (Right) Confinement factor Γµc and the effective
gain of the structure.

3.2 High Gain Design

From the modal gain expression (equation 3.6) we can find the optimum design
parameters of our 1/2-VCSEL (number of QWs NQW , micro cavity factor Γuc).
From a phenomenological approach, we can express the max QWs gain as a function
of carrier density and incident power density since Iinc ∝ N and from equation 2.19
we have according to [Coldren 2012]:

g(I) = g0 × ln

(

I

ItrNQW

)

(3.14)

where Itr is the power density transparency of a single QW and g0 the material
gain in cm−1.

We need a 1/2-VCSEL capable of supporting the losses of the output coupler
(∼ 2%), the saturable absorber (∼ 10%), and the cavity elements (∼ 2%). In
total, we need a gain section with more than 14% gain. We also want to keep
a large bandwidth for mode-locking and temporal localized structure operation.
Figure 3.7 shows the plot of equation 3.6 as a function of incident pump power
with the assumption of Γx,y = 1 for different number of QWs and micro-cavity
configuration. We first see that the anti-resonant configuration (Γµc = 0.3), with
a small micro-cavity enhancement factor, is not suitable for large gain despite its
large bandwidth. The configuration with Γµc = 11 easily cross the 15% line with 6
or 12 QWs, however the gain bandwidth starts to be limited ∼ 3 nm. This design
also increases dramatically the thermal lensing effect and internal losses due to a
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Figure 3.7: Simulated gain for 12 QWs (solid line) and 6 QWs (dashed lines) for
different micro-cavity factor. (blue) an anti-resonant configuration Γµc = 0.3. (red)
an enhance resonant configuration with a single top bragg pair Γµc = 4.5. (gold)
an enhance resonant configuration with a four top bragg pair Γµc = 11.

longer effective length. Finally, for a smaller enhancement factor Γµc = 4.5 and
12 QWs, we can reach high gain at the detriment of a higher power density. This
could be a disadvantage for laser efficiency above the threshold and reaching high
output power, but is less of a concern in our case since we aim to work close or
below the threshold for non-linear localization.

In the end, we choose the to have 12 QWs with a resonant design and a small
micro-cavity factor of Γuc = 4.5. To obtain that value, a single Bragg pair is needed.

3.2.1 Active zone layout

The active region length was chosen as L = 14λ/2 with λ = 1064 nm as our
emission wavelength target. It was chosen to accommodate the 12 QWs and reach
a homogeneous excitation across all of them with an optical pumping scheme in
the barrier at λp = 808 nm. They have been arranged on the 1064 nm standing
wave anti-nodes by group of 2 in a 022202020020000 distribution from top Bragg to
bottom Bragg. Strained balance InGaAs/GaAsP quantum wells and GaAs spacer
was the chosen semiconductor technology to reach emission wavelength in the near
infra-red around λ = 1064 nm.
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To enhance the resonant effect to Γµc = 4.5 and slightly improve the modal gain
to reach, 15% a single pair of a AlAs/AlGaAs were added on top of the active zone
to act as a top Bragg mirror. The AlGaAs is chosen for pump energy transparency
and thus not degrading the pumping efficiency. This gives us a FWHM resonance
of 8.35 nm. Figure 3.8 shows the different layers material and arrangement, as well
as the corresponding energy bandgap and refractive index. We can also see in this
figure the laser and pump energy relative to the energy gap of the structure.
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Figure 3.8: Structure design for high gain at 1064 nm. Structure numbered V0450.

Figure 3.9 display the measure reflectivity of the device right after the growth
thanks to a Fourier Transform Infrared spectroscopy. The measure of photolu-
minescence of the QWs is also shown in the same figure. We see the expected
active zone resonance at, 1060 nm with a higher order resonance at 1118 nm. The
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QWs absorption also provokes a dip in the reflectivity curve at, 1041 nm which
corresponds to the QWs absorption spectrum peak. This ∼ 20 nm offset of the
QWs spectrum is necessary to properly overlap the gain peak and the micro-cavity
resonance under excitation because of a red-shift of the gain from the increase in
temperature caused by the pumping action (0.3 nm/K).
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Figure 3.9: Measure reflectivity for the high gain design using FTIR method and
measure QWs photoluminescence spectrum.

3.2.2 Growth process

The control of the epitaxial growth is a key point for the development of 1/2-
VCSEL structures. It is indeed fundamental to be able to produce reproducible
active zone emitting at the desired wavelength and to precisely control the thickness
of each layer. At present, GaAs is a mature and widely industrialized platform,
allowing for great semiconductor device quality with low defects density and QW
relaxation.

The growth is done in the “Centre de nanosciences et de nanotechnologies”
by Gregoire Beaudoin within the team of Isabelle Sagnes through the MOCVD
(Metalorganic Chemical Vapor Deposition) epitaxy process.

Metal-organic precursor source (TMGa, TMAl, TMIn, AsH3) mixed with
non-reactive gases (such as hydrogen) are injected into a high-pressure reactor
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chamber (60mTorr) where pyrolysis at high temperature (700 ◦C) allows the chosen
semiconductor to bond on the wafer substrate surface. With this process, it is
possible to achieve high-growth speed (to 10 µm/h) with a few monolayers precision.
Alloy composition can be controlled through gas flow adjustment, allowing a great
reproducibility. All semiconductor structures were designed at the IES and grown
in the C2N. The FTIR measurement was also done at the C2N.

3.2.2.1 Large-scale inhomogeneity

The growth process can introduce large-scale inhomogeneity from uneven radial
growth of each layer. It will impact the thickness of the active region and lead to a
radial variation of the micro-cavity resonance.

Figure 3.10: Measured micro-cavity resonance variation along the radial axis of the
semiconductor wafer.

From figure 3.10 we see that further from the wafer center the micro-cavity
resonance shifts to the blue (∆λ/∆r ∼= −0.12%mm−1), meaning that a reduction
of the layer thickness has occurred. This variation can be used in practice to
precisely tune the laser wavelength emission by transversally shifting the pumped
region. In our case, this effect can be used to help match the SESAM and Gain
resonances. In the scale of our pumped region around, 100 µm this effect is small
< 0.012%.
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3.2.2.2 Small-scale inhomogeneity

We have also observed a small-scale inhomogeneity of the QWs gain. Figure 3.11
shows the transverse field emission pattern on the surface of a very high gain
1/2-VCSEL with a large micro-cavity enhancement factor Γµc = 11 placed inside a
self-imaging optical cavity close to the threshold. The small laser spots were found
to follow the 1/2-VCSEL gain mirror after transverse translation. Meaning that
they were “gain pinned” by some small-scale inhomogeneity or “puddles” of the
optical gain.

(a) (b)

Figure 3.11: Near-field intensity profile of a very High gain 1/2-VCSEL in a self-
imaging cavity without saturable absorber, Γuc > 10. (a) Small spots (ω ∼ 4 µm)
seen close to threshold. (b) 12 µm translation in the positive x-direction of the
structure. The small spots are following the gain translation. They are gain pinned
by small gain modulation.

This gain modulation is small (< 10%) and found to be around 5 µm to 10 µm
in scale. It is believed that they originate from the QWs nanostructure interface
inhomogeneity due to the inherent diffusion process of the MOCVD growth. For
large transverse structure or cavity confined transverse modes, this QWs gain
“puddles” does not impact NL modes structures. The quantum efficiency is not
impacted for small or large light structure. However, for 3D light structuration
and non-linear localized structure of the same scale as gain modulation, “puddles”
can have an impact by pinning the structuration, or modulating the local potential
and thus limiting SLS freedom. Reducing the light-matter interaction and the
micro-cavity enhancement factor will naturally reduce the impact of the QWs gain
puddles.
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3.2.3 First order characterization

The analysis of the 1/2-VCSEL reflectivity spectrum is the first step to ensure
a good growth of the semiconductor structure and respect of the design. The next
step is to use a simple laser set-up to characterize its properties. For that, we can
measure the laser output power (threshold, efficiency) and the optical spectrum.
These measurements provide us with good information about the gain properties
of the 1/2-VCSEL.

1st Order measurment

ower: |E|2

ectrum: 

...

Pump Diode

 Module

Laser

High Gain

1/2-VCSEL

Peltier

module

Figure 3.12: Set-up for first order characterization of the 1/2-VCSEL using a
plano-concave laser cavity.

Figure 3.12 represents the laser set-up used for this characterization. The
1/2-VCSEL is optically pumped by a laser diode positioned at the Brewster angle,
both to circularize the pump spot and to maximize the transmitted power into
the active zone. We use a λ/2 polarizing plate to tune the pump polarization to
a TM state. The structure is used as one end-mirror of the laser cavity and is
mounted on a Peltier cooler module to control its temperature. The cavity is closed
with a spherical mirror of 90% reflectivity and radius of curvature, Rc = 10mm
creating a few millimeters long plano-concave optical resonator. The laser light is
then collimated using an off-the-shelf lens and is sent to the different measurement
devices such as an optical power-meter and an optical spectrum analyzer.

3.2.3.1 Output power

The laser output power versus pump power density curve shown in figure 3.13a
gives us access to important information such as the 1/2-VCSEL gain, internal losses
and temperature sensibility. Since for laser action, gain must equal losses, we can use
the pump power density at the threshold to estimate the structure modal gain using
the curves of figure 3.7. For this design, we expected around 3.5 kW/cm2 power
density for 10% losses, and we measure 3.3 kW/cm2 and 3.6 kW/cm2 respectively
for 20 ◦C and 30 ◦C Peltier cooler temperature. This means we have achieved the
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correct micro-cavity enhancement factor and there is no considerable mismatch on
the QWs positioning.

(a) (b)

Figure 3.13: (a) Laser output power vs. pump power density for two temperature
20 ◦C and 30 ◦C. (b) Measured wavelength variation from Peltier temperature
variation and pump power variation. In both measure ω0 ≃ ωp with ωp = 23.5 µm.

The laser efficiency given by (1− ηT )ηd in equation 3.15 can be used to check
the internal losses of the device. This formula links the laser output power with the
incident pump power through the efficiency factor. This factor can be separated
into several individual efficiency. First (1− ηT ) is the fraction of the pump power
used for light amplification, while the rest is converted into heat. For a design onto
GaAs at, λ = 1064 nm the useful pump fraction is around 70% [Laurain 2010].

Pout = (1− ηT )ηd (Pp − Pth) (3.15)

Then the differential efficiency ηd is as follows:

ηd = ηabηqηiηextΓx,y (3.16)

where ηab = TrAb is the fraction of incident pump power absorbed inside the
active zone, Tr is the transmitted power fraction inside the semiconductor and
Ab the absorption in the barrier. ηq = λp/λl is the quantum defect efficiency and
ηi the internal quantum efficiency whose value is 1 above threshold. Γx,y is the
transverse confinement factor and depends on the pump and laser beam size. Then
the output coupling efficiency ηext is given by:

ηext =
−ln(R)

−ln(R) + αµcΓµc

(3.17)
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where −ln(R) is the output coupler losses and αµc the internal losses of the
semiconductor. Its importance is enhanced by the micro-cavity factor Γµc. From
this, we can see that a high-efficiency means that, −ln(R) >>> αµcΓµc which
reflects a good structure quality with low defect and internal losses. We find with
our measurements an overall efficiency of 38% with R = 10% thus we can estimate
αµc = 0.35%.

In figure 3.13a we can also see the impact of temperature from the increase in
threshold (meaning a gain reduction) between T = 20 ◦C and T = 30 ◦C. At high
pump power, the QWs temperature also rises, leading to the roll-over effect seen in
the measurements. This gain reduction also comes from the detuning between the
cavity resonance drifting at 0.07 nm/K by thermal variation of the optical index
and the drift of the gain spectrum at 0.3 nm/K. It is conventional to describe those
effects with the following equation:

Pth(T2) = Pth(T1)e
T2−T1

T0 (3.18)

Using the characteristic temperature T0 as a figure of merit. For ∆T > T0
when the temperature rise equals, T0 then the output power starts to saturate
and the laser threshold increases quicker than the useful pump power, leading to
a roll-over. On the other end, for ∆T << T0 the threshold does not change, and
high output power can be reached. However, at high carrier density, auger effect
can start to degrade the quantum internal efficiency. A large T0 is then important
for high-power application and temperature sensitivity of the system. In our case,
for 10% at, 20 ◦C we can estimate T0 = 100K which is coherent with GaAs based
1/2-VCSEL [Laurain 2010].

3.2.3.2 Lasing wavelength tunability

Another impact of the rise of temperature can be seen on the laser spectrum
and can be used as a way to tune the laser emission wavelength. The temperature
rise is impacted by the thermal resistance of the semiconductor structure and the
pump size, as seen in § 2.4.2. The optical spectrum offers us a way to estimate its
value:

Rth =
∆T

∆P
=

∆T

∆λ
× ∆λ

∆P
(3.19)

From this equation, we can see that the thermal resistance in K/W can be
separated into two wavelength dependent components. The wavelength variation
through pump power and the inverse wavelength variation with the Peltier cooler
temperature. From the measurement with ωp = 23.5 µm in figure 3.13b we find that
∆λ
∆P

= 8.8 nm/W and ∆λ
∆T

= 0.09 nm/K. Those variations follow the variation of the
micro-cavity resonance. Using those measures, we can calculate Rth = 98K/W.
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This high value is coherent with the small pump size and the previous simulation,
but it also means that a high-temperature rise occurs, this explains the measured
roll-over for high excitation.

All relevant properties and parameters of the high gain 1/2-VCSEL design are
combined into table 3.1.

Material gain g0 570 cm−1

Puddles modulation ∆g0 <10%
Losses in chip αuc 0.35%
Pump power density at transparency per QW Itr 0.11 kW/cm2

Characteristic temperature T0 100K
Quantum well width LQW 8 nm
Number of quantum well NQW 12
Confinement factor Γuc 4.5
FWHM resonance bandwidth ∆λµc 8.35 nm
Resonance wavelength shift (T ◦) ∆λ

∆K
+0.09 nm/K

Resonance wavelength shift (Inhomogeneity) ∆λ
∆r

−0.12%/K
Pump wavelength λp 808 nm
Pump absorption coefficient Ab 92%
Transmission pump chip Tr 100%
Heat conversion ηth 30%
Quantum defect ηq 76%
Diffusion length at transparency Ld(Ntr) 3 µm
Lifetime at transparency τ(Ntr) 3 ns
Mono-molecular recombination coefficient A 1×106s−1

Bi-molecular recombination coefficient B 1×10-10cm3/s
Auger recombination coefficient C 1×10-30cm6/s
Ambipolar diffusion coefficient Dnp 30 cm2/s

Table 3.1: Main parameters of the High gain structure.

3.3 SESAM Design

To create the optical bi-stability essential for localized structure, saturable
losses are needed. Using the GaAs platform, it is possible to design what is called
a Semiconductor Saturable Absorber Mirror (SESAM). Typically, it consists of a
Bragg mirror and a single quantum well as the absorber layer. The main differences
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from the 1/2-VCSEL being that it is not used in the gain regime and carrier lifetime
is usually shorter. As with the 1/2-VCSEL and the semiconductor technology, it
is possible to engineer to a certain degree its physical properties. In the case of
the SESAM the important properties are the modulation depth or the maximum
change in reflectance, the amount of non-saturable loss, the saturation fluence or
saturation intensity and the carrier lifetime.

3.3.1 SESAM interest

SESAM are mainly used for passive mode-locking (PML) in a wide range of
lasers. Three fundamental models can explain passive mode-locking, the slow
saturable absorber with dynamic gain saturation [Haus 1975a], the fast saturable
absorber mode-locking [Haus 1975b] and soliton mode-locking [Kärtner 1995]. The
speed adjective referring here to the recovery time of the absorber versus the gain.
For semiconductors, this implies that we have a recovery time in the ps range
for “fast” SESAM and the ns range for “slow” SESAM. In all those models, the
SESAM is used to open a small positive net gain window where only the pulse
is amplified. The window size and pulse width is then dependent on the pulse
intensity, SESAM recovery time and gain bandwidth. The exception being that for
soliton mode-locking, the pulse is further shortened by the self-phase modulation
and kept stable through the balance of SPM with group velocity dispersion.

To reduce the recovery time, the excited carrier lifetime must be short, and
thus we must create a large density of state inside the energy gap to quickly trap
the excited carrier. For this, different processes have been developed in the past.
Low temperature III-V semiconductor growth by molecular beam epitaxy (LT-
MBE) creates an excess of group V atoms and the carrier lifetime is dramatically
reduced due to the trapping and subsequent recombination of carriers at these
centers [Gupta 1992]. High-energy ions irradiated QWs after growth also lead to
fast carrier lifetime as short as 5 ps [Gopinath 2001]. This process is usually more
delicate to fabricate and has relatively high non-saturable losses. Another method
compatible with a standard MOCVD growth consists in increasing the surface
recombination rate by quantum tunneling effect. For this, the QW of the SESAM
must be placed close to the semiconductor surface (f 2 nm) [Garnache 2003].

In our case, it has been proven that temporal localized structure can arise
from a passive mode-locked system where the round-trip time is greater than the
recovery time of gain (τRT >>> τg) [Marconi 2014]. Then a “fast” SESAM is
needed for this application. The rest of this manuscript is focused on the spatial
non-linear structuration and use a “very-slow” SESAM design to free ourselves from
the temporal dynamics. By using a SESAM with similar or longueur lifetime than
the gain, no temporal window of net-gain can be open for pulse formation, and
the SESAM saturation will simply follow the gain. For spatial structuration, a
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“very-slow” SESAM allows us to keep the effect of spatial self-amplitude modulation
without worrying with longitudinal dynamics.

To achieve this, no need to try to add a recombination center and using the
same growth process than with the 1/2-VCSEL design is enough. In this case, the
same care with accumulated strain and crystal interfaces quality must be taken.

3.3.2 Very-slow lifetime design
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Figure 3.14: Structure design for slow saturable absorber semiconductor mirror at
1064 nm. Structure numbered V0598

The SESAM was designed on an undoped GaAs substrate to keep it transparent
at the working wavelength (λ = 1064 nm) for use as an output coupler. The bottom
Bragg mirror was made of 22 AlAs/GaAs pair with a max reflectivity of (R = 99%).
The active zone was made one wavelength long and a single InGaAs/GaAsP strain
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compensated QW placed on the standing wave anti-node. This QW was made to
have an absorption peak at ambient temperature around 1064 nm. This design is
thus a simple resonant design, sightly enhancing the field inside the micro-cavity
Γµc = 3.5. Pumping at λp = 980 nm is also possible to externally control the QW
absorption while minimizing thermal effect.
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Figure 3.15: Measure reflectivity for the slow SESAM design using FTIR method
and QWs photoluminescence spectrum.

Despite the resonant design, the bandwidth remains large thanks to the short
length (∆ωµc = 40 nm). This allows for a simpler matching between the laser emis-
sion and absorption than with a highly resonant system such as in [Camelin 2018].
Considering the absorption coefficient of a single QW and the resonant design, we
expect around 13% peak absorption. Both of those properties can be checked in
figure 3.15 where contrary to the high gain design case, the absorption peak of
the QW is matched with the micro-cavity resonance since no “red-shift” due to
pumping is expected.

3.3.2.1 Saturable absorption measurement

The main goal of the SESAM is to provide saturable absorption for SAM effect,
thus characterizing this behavior was important. Figure 3.16 describes the full
set-up used for this measurement. We used a home-made laser emitting at 1064 nm
as our laser source to probe the SESAM. The laser beam was collimated by an
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f = 50mm achromatic lens before isolating the source from possible feedback by an
optical isolator. The incident laser beam was split by a 55:45 pellicle Beamsplitter,
sending one part to the device under test and the other part to an HR dielectric
mirror (Layertech : 146440 ) used as a reflective reference surface. Both reflected
beams will then be combined by the beamsplitter onto a Silicon photodiode. In
this way, both the HR dielectric mirror path and the SESAM path will undergo
one transmission and one reflection on the beamsplitter, rendering its effect on
power void.

Laser source
1064nm

HR miror
reference

Chopper ND lter
Isolator

BS

f=50mm

SESAM
f=50mm

Lock-In Ampli er

Chopper
Control

Photodiode

Light Sink

1

2

Figure 3.16: Set-up for the non-linear reflectivity measurement using a laser source
at 1064 nm and high reflectivity dielectric mirror as a reference.

To measure the real reflectivity of the SESAM for different incident power
density, the laser source was kept at a constant output power and wavelength while
a set of neutral density filter was used before the beamsplitter to vary the input
power over a few decades. The maximum incident power being, 48mW with an
attenuation range from 3 to 43 dB. A f = 30mm achromatic lens was used to
achieve a focused Gaussian spot on the SESAM of ωo = 10 µm waist. To separate
the useful signal from the noise, a lock-in amplifier with a chopper at 300Hz on
the main beam path was placed. An average of N = 400 points was taken for each
measurement. To discriminate between the reference mirror and the SESAM, two
measures were made, one with the SESAM path blocked (number one on the figure)
and the other with the reference mirror blocked (number two on the figure). This
process was repeated at least three times for each ND filter to ensure no outlier
measurement. The measurement protocol was first calibrated using a gold mirror
with known reflectivity instead of the SESAM.

Figure 3.17a shows the result of this measurement process, where the absolute
non-linear reflectivity is plotted. The error bar represents the confidence at 95%
from the multiple measurement variances. The power density was obtained using
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Figure 3.17: a) Measure of the non linear reflectivity for the slow SESAM design
using a 1064 nm laser, (solid) fit with a constant Is = 600W/cm2, (dashed) fit
with a variable Is(I) = Imin + Imax(1− 1/(1 +

√

I/I0)) and I0 = 18.5 kW/cm2. b)
Variation of Is for both fit curve, (solid) constant Is, (dashed) variable Is.

the disk area approximation for a Gaussian beam or I = P/(πω2). The solid curve
represents a fit from a simple stationary two level rate equation:

R(I) = Rmax −
∆R

1 + I
Is

(3.20)

In our case, this allows us to estimate key parameters such as the modula-
tion depth ∆R = 14.5%, the saturated reflectivity Rsat = 98%, the unsaturated
reflectivity Runsat = 83.5% and the saturation intensity Is = 600Wcm2.

Some disparity from the simple two level model are present. It could simply be
explained by a non-constant saturation intensity. Looking at equation 2.14, we see
that for low carrier density, the lifetime is long while for high carrier density the
lifetime decreases until saturation. The saturation intensity being highly dependent
on the level lifetime, Is = hν

στ
this can explain a non-constant value. By using a

power density dependent Is following this trend (see figure 3.17b, dashed line) we
can improve our correlation with the data points. In the end, for reducing by half
the saturable losses, we still have Is = 600W/cm2 but it quickly goes up delaying
the fully saturated state.

3.3.2.2 Diffusion length measurement

Another interesting property to know for both the gain and absorber is the
diffusion length of the carriers inside the QWs. For passive mode-locking, the size
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of the net gain window opened by the saturable absorber dictates the size of the
pulse (without soliton mode-locking effect). In the same way, the diffusion length
will give us a limit on the window open by SAM and the spatial size of the “pulse”.

ND lter

BS

SESAM

f=500mm

CCD
Camera

f=8mm
f=8mm

Laser Diode
808nm Anamorphic 

prism x4

Mirror
Longpass

Filter
 > 1000nm

808nm Pump

1064nm SESAM 
photoluminescence

Pin

Figure 3.18: Set-up for the diffusion length measurement using a 808 nm laser diode
as a pump while imaging the emitted photoluminescence.

We measured the diffusion length in both structures by pumping the QWs
with a 808 nm laser diode and then looking at the spatial intensity profile of the
QW photo-luminescence on the device surface with a 2D CCD camera. Using
different neutral density filter to change the pump power, we were able to get data
for different pump power density. Figure 3.18 shows the set-up for measuring the
SESAM QW photo-luminescence.

(a) (b)

Figure 3.19: (a) 2D intensity profile of the pump beam on the measured device.
(b) x,y cut of the 2D profile with a Gaussian fit of waist ωp = 2.9 µm.

To circularize the laser diode spot, an anamorphic prism of ×4 magnification was
used before focalizing the pump spot on the device at normal incidence. Figure 3.19
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shows the resulting spot intensity. To have a meaningful measurement, the pump
spot had to be smaller than the expected diffusion, thus a spot of ωp = 2.9 µm
waist was used.

Since the photo-luminescence intensity is proportional to the carrier density, n
we used the diffusion equation [Crank 1979]:

∂n(−→r , t)
∂t

= Dnp ▽2 n(−→r , t)− n(−→r , t)
τ

+ g(−→r ) (3.21)

Where Dnp is the ambipolar diffusion coefficient and is assumed to be spatially
invariant. Ld is the diffusion length, and is related to the carrier lifetime and
ambipolar coefficient by Ld = (τDnp)

1/2. And g(−→r ) is the source term related to
our pump profile by:

(a) (b)

Figure 3.20: Fit of the photoluminescence profile (x, y cut) of the measure device
(SESAM) using the solution of the diffusion equation.(a) for I = 2.8Itr and (b)
for I = 16Itr. The dashed line is the Gaussian source of ωp = 3µ used for the
simulation.

g(r) =
G0

Dnp

e
−2 r2

ω2
p (3.22)

with ωp being the pump waist and G0 a normalized amplitude. Following the
work of Bierker et al. [Bieker 2015] we can find an analytic stationary solution of
this differential equation under continuous excitation.

n(−→r ) = [G(−→r ) ∗ g(−→r )] (−→r ) (3.23)

G(−→r ) = 1

2πDnp

K0

(−→r
Ld

)

(3.24)
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Figure 3.21: Measure diffusion length versus the incident power density of the
pump beam for (red) the SESAM and (blue) the High Gain structure.

The 2D solution is the convolution of the source terms, with the Green function
defined as the zeroth rank K-Bessel function K0(z). Figure 3.20 shows two examples
at two different pump excitations. A 1D-cut from the symmetric 2D spatially
resolved photo-luminescence was used and fitted with a 1D cut of the analytical
model.

From different pump power density excitation, we were able to extract several
data points that are shown in figure 3.21. The measurements were made on both
the High Gain structure and the SESAM. Using the relation Ld = (τDnp)

1/2

and equation 2.14 for the lifetime, we can also roughly fit the data with realistic
parameters. All parameters are in table 3.1 and table 3.2 for the high gain structure
and the SESAM respectively.

The main give away here is the two to three times ratio between both structures,
with Ld = 13 µm at transparency for the SESAM. Although the two devices have
the same growth process, there is a large disparity between them. This is mainly
due to a change in the QW indium concentration, which reduces the radiative
recombination process. There is also a larger ambipolar coefficient, but this alone
does not explain the large change. To ensure the GaAs spacer does not impact
the transverse diffusion, a new measurement could be made at 980 nm. As said
earlier, the diffusion length gives us a fundamental limit for the net gain window a
spatial pulse can open. Depending on the optical cavity configuration, the SESAM
diffusion length could be a limiting factor. And reducing its value by using a fast
SESAM and temporal Mode-locking could be a solution. Table 3.2 combines all
the important SESAM parameters.
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Pump power density at transparency per QW Itr 0.11 kW/cm2

Quantum well width LQW 8 nm
Number of quantum well NQW 1
Confinement factor Γuc 3.5
FWHM resonance bandwidth ∆λµc 40 nm
Saturable absorption/Loss ∆R 14.5%
Saturated reflectivity Rsat 98%
Resonant Saturation intensity Is 600W/cm2

Diffusion length at transparency Ld(Ntr) 13 µm
Lifetime at transparency τ(Ntr) 28 ns
Mono-molecular recombination coefficient A 1×106s−1

Bi-molecular recombination coefficient B 0.5×10-10cm3/s
Auger recombination coefficient C 1×10-30cm6/s
Ambipolar diffusion coefficient Dnp 60 cm2/s

Table 3.2: Main parameters of the SESAM structure.

3.4 Air-semiconductor interface functionalization

The 1/2-VCSEL technology, by its nature, introduces an intra-cavity air-semicon-
ductor interface. We can take advantage of this fact to control the intra-cavity
light state generation of the laser.

One way is to use an anti-reflection coating to remove the micro-cavity resonance.
For that, we need to add a λ/4 layer of a material with close to

√
nsc refractive

index. In this case, we can have a design with a comparable bandwidth to the
anti-resonant system while keeping a larger effective gain (see figure 3.22).

Another way was to use the previously developed meta-surfaces masks technolo-
gies [Seghilani 2015, Sellahi 2014] to select a light state. These meta-surfaces can
be used to transversely modulate both the net gain amplitude and the reflected
phase of the structure by varying the spatial distribution of the effective refractive
index. Two main technologies are available for that:

• Amplitude modulation is done by adding selective transverse losses through
the use of a sub-wavelength metallic absorber or by localized diffraction
(abrupt phase step). This will affect the effective transverse gain of the
structure and thus the wavefunction intensity.

• Phase modulation is achieved thought a transparent dielectric meta-material
(sub-wavelength periodic dielectric pattern). This meta-material allow spatial
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Air Active Zone Bragg mirrorAR

Figure 3.22: (Left) Calculation of the intra-cavity field intensity |E|2 for an anti-
resonant structure (7.5λ/2 length). (Right) Confinement factor Γµc and the effective
gain of the structure.

control of the reflected phase on the 1/2-VCSEL multilayer structure. This
phase pattern can be used to select higher order mode.

In our work, only the amplitude modulation was used to introduce selective
losses and boundary conditions. However, the use of phase mask to further or
control over the real and imaginary potential in a self-imaging system is of great
interest.

3.4.1 Amplitude mask

An intensity mask is used to spatially control the net gain of the laser by adding
a small absorbent metallic layer on top of the 1/2-VCSEL structure. This layer
is made of chromium because the imaginary part of its refractive index gives a
strong absorption αcr = 4.46× 105 cm−1 at, 1 µm while the real part is close to the
GaAs optical index ncr ∼ 3.5. The chromium also forms a strong bond with GaAs,
allowing for good quality mask in a thin layer. The advantage of the high losses
means that a small chromium thickness ∼ 10 nm leads to large single pass losses
∼ 35 %. The thickness being well below the laser wavelength e <<< λ ensure that
no diffraction occurs on the mask edge. In this way, the metallic layer acts solely
as transverse losses.

This technology was previously experimented by M. Selahi to create an intra-
cavity mode selection. He demonstrated the possibility to generate, intra-cavity, in a
VeCSEL system a higher order Laguerre-Gauss [Sellahi 2014] . The chromium layer
adds selective transverse losses to suppress the appearance of other modes. The
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Figure 3.23: Design example of the chromium mask geometry for the bi-mode
LG00 & LG02, LG00 & LG03 and LG00 & LG04 configuration. [Paquet 2016]

same method was also used by R. Paquet et al. for a continuous wave bi-frequency
laser [Paquet 2016]. This time, the intensity mask design allowed for the existence
of both the fundamental Gaussian TEM00 mode and a higher-order Laguerre-Gauss
mode. By adjusting the pump size and the resulting thermal gradient, both modes
were able to lase simultaneously at two different frequencies with THz separation.
The fact that it is generated inside a single VeCSEL as the advantage of correlating
mechanical and optical noise. Figure 3.23 shows the geometry of the different mask
layout proposed. This system is currently used with a photo-antenna for THz
signal generation. It has the advantages of providing very low THz signal noise
thanks to the coupling of the optical noise [Abbes 2021].

Figure 3.24 shows some masks design used in our works. For instance, the “A”
shape was designed to test the ability of the laser system to lase onto arbitrary
shaped wave-function. This can also be used as a measurement of degeneracy.
The “holes” shape was intended to restrict the transverse area by adding a strong
absorptive boundary condition. The aim is to add one degree of transversal control
and to vary the Fresnel number for light structuration. This design was also
declined with a 2D periodic structure to create a transverse matrix of lasers. A
one dimensional periodic structure was also designed to allow a single direction
of freedom for localized structure. Other designs were made to simulate random
absorptive defects by placing a random distribution of small chromium circles. All
the different design types were declined in different size (diameter / period ...).
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"A" Shape Single hole Periodic hole

Periodic line Defects

Figure 3.24: Chromium mask design for testing spatial degeneracy and non-linear
localized structure.

3.4.2 Phase mask

To fabricate a phase mask, we must be able to control the reflected phase of the
gain mirror, leading to a spatially non-uniform phase variation ∆φ(x, y). One way
to achieve this is through the use of a metamaterial where the optical refractive
index can be spatially modulated (neff(x, y)). A metamaterial is an artificial
periodic structure with an elementary cell smaller than the operating wavelength
(a <<< λ). In this case, the periodic structure behaves, from the light perspective,
like a homogeneous material with specific properties (optical index for example).
By engineering the periodic structure and the elementary cell, it is possible to
transversally modulate the effective refractive index and thus the transverse phase of
a light beam. Thanks to the maturation of these types of components, M. Seghilani
et al. have demonstrated a Vortex laser [Seghilani 2016], where the metasurface
provides an azimuthally varying phase coupled with a phase step at the center
to math the intensity “doughnut” shape and the characteristic helical phase of a
vortex mode. The selection process happens through laser competition, the vortex
mode has good purity compared to external cavity methods with spiral phase plate
[Beijersbergen 1994].

3.4.3 Technological steps

All our designs were manufactured at the C2N (Centre de nanosciences et de

nanotechnologies) under the team of Pr Isabelle Sagnes. The fabrication process
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Figure 3.25: (Left) Schematic representation of the phase mask structure and the
elementary cell shape. (right) Effective refractive index of the artificial material
made of a Si3N4 layer perforated by a 2D periodic array of air holes placed on
a square lattice. (Insert) SEM photo of the fabricated phase mask for vortex
generation.

for the metallic mask layer is schematically described in figure 3.26. Firstly, a
polymethyl methacrylate (PMMA) resin is spin-coated on the wafer and patterned
by electron beam lithography (Vistec EBPG 5000 at 100 kV) with a resolution
of 1.25 nm. A PEC (proximity effect correction) method is used to improve
the quality over a wide range of possible design. After PMMA development in
methylisobutylketone (MBIK) solution, a thin layer (5 nm-20 nm) of chromium
is deposited using physical vapor deposition (PVD), and finally the structure is
cleaned from residual chromium and PMMA leaving us with the desired chromium
layer.

GaAs

AlAs

PMMA

Chrome

e-beam lithography

(a) (b) (c)

(d)

Figure 3.26: Technological process of fabrication of the metallic mask integrated
on the VECSEL gain-mirror. a) e-beam lithography; b) PMMA development; c)
chromium deposition; d) lift-off.

Several repetitions of the same mask design are made on the surface of the 1/2-
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VCSEL structure to have some redundancy. Each mask is usually implemented with
several design variations to test different functions in situ (same structure, same
pump, same cavity configuration and so on). Figure 3.27 shows SEM (Scanning
Electron Microscopy) photos of the different masks realized for non-linear light
structuration. The chromium layer of each mask is estimated to be around 10 nm
thick.

200 µm

200 µm

200 µm

Figure 3.27: SEM picture of the chromium mask realized on a 1/2-VCSEL structures

3.5 Perspective: MIXSEL (Two in one)

We decided to separate into two different devices, the gain and the saturable
absorption. However, it could be possible to combine both aspects into a single
semiconductor structure. One advantage of this configuration would be to reduce
the complexity of the optical cavity and improve our ability to integrate the complex
optical system. This set-up could then resemble the monolithic configuration used
in previous cavity soliton experiment [Barland 2002] with the added bonus of an
integrated saturable absorber. The downside, however, will be a lack of control of
intensity saturation ratio from gain to saturable absorber. This ratio will be fixed
by the design, instead of being adjustable by the magnification ratio within the
external optical system.

For this, we propose a simple design of a pseudo coupled cavity by placing
the absorber QW close to the HR Bragg mirror, using an intermediary Bragg
mirror to reflect the pump and then placing the gain active zone. In this case,
the intermediate Bragg mirror must be designed at the pump wavelength for an
incidence angle in the air at the Brewster angle while keeping the reflectivity at the
laser wavelength low enough to limit the field enhancement on the QW. Too large
of an enhancement and the saturable losses could be larger than the available gain,
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Figure 3.28: Design example for the MIXSEL two in one structure combining a
SESAM and a GAIN section. Structure numbered V0599.

for this reason, it should be kept between 1 and 1.5 more than the enhancement
factor on the gain section. A phase layer should also be added in front of the
intermediary Bragg to properly adjust the micro-cavity length by considering the
intermediary Bragg reflection phase shift.
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Figure 3.29: a) Measure of the power output as a funcion pump power density for
two different mirror reflection, the cavity was a simple plano concave cavity. b)
FTIR and photo-luminescence measurement for the structure.

In this case, a AlAs/AlGaAs Bragg mirror was used after an 11λ/2 active
gain region with 12 QWs to reflect > 60% of the remaining pump power and two
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Al40%GaAs layers sandwiched the QW to limit the remaining carrier diffusion into
the well, assuring a negligible excitation of the absorber.

A simple characterization (see figure 3.29) was done on this two in one structure,
validating the proposed design. We observe an optical bi-stability for output
coupler of up to 2% losses. The bistability is proof that the structure exhibits
saturable absorption. It remains to be used in a dedicated system for non-linear
light structuration, but the proof of concept for an integrated slow SESAM is done.

3.5.1 Conclusion

In this chapter, we have described the design for two active components based
on the GaAs III-V semiconductor technology. One design was made for a high
gain mirror and the other for a saturable absorber mirror. We opted for a surface
emission as in disk laser to take advantage of the small Dirac like light matter
interaction and ease of integration into a complex external optical system.

Two key elements were considered: a high gain with low threshold system
and a homogeneous system in phase and amplitude. To achieve a high gain, a
classic method consists of increasing the light-matter interaction by enhancing the
micro-cavity factor. However, with a large enhancement, parasitic effects such as
the resonance spatial frequency filtering, gain “puddles” modulation and thermal
lensing reducing the homogeneity of our system, a compromise was made. In the
end, a 12 QWs active zone layout with a micro-cavity enhancement factor of Γµc

to reach up to 15% gain while keeping a low threshold limiting the effect of the
thermal lens was made. This resulted in a 8.33 nm spectral bandwidth for possible
temporal structuration and > 0.4 numerical aperture filtering for high Fresnel
number operation. The compromise also limits the impact of the amplitude and
phase inhomogeneity from the gain “puddles”.

The SESAM design was also made in accordance with the gain design and the
added consideration of lower saturation density than the gain. The saturation ratio
should, however, not exceed 10 to not oversaturate the SESAM and nullify the
effect of SAM and reduce the gain SPM. Being made from the same technology, a
QW in the absorption regime will naturally exhibit lower saturation density due to
its sightly longer level lifetime. However, too long of a lifetime and carrier diffusion
might limit the smallest obtainable size from purely self-amplitude modulation. In
our case, using a unique QW inside a simple resonant micro-cavity design allowed
us to reach up to 14.5% saturable losses with 600W/cm2 saturation density. The
carrier diffusion length was measured 2-3 times larger than in the gain structure
for around an order of magnitude on the level lifetime. The limiting effect on the
small non-linear size can in part be compensated with the cavity design. On the
other hand, for TLS structuration, a fast SESAM (τ < 2 ns) is needed to create a
PML system. In this case, the discussion about carrier diffusion length becomes
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irrelevant. One such design was made in relation with the BLASON ANR and in
partnership with the INPHYNI for their work on TLS system.

The growth of semiconductor device was made at the RENATECH C2N using
MOCVD technology. The resulted structure exhibited low defect density and a
good spatial homogeneity. It was also possible to design and fabricate absorptive
metasurface onto the device surface. In the context of 3D light structuration, those
metasurface can be used to shape the near field light pattern or define a transverse
area with a sharp boundary, creating a “waveguided like” area.
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Chapter 4

Optical resonator design for 3D light

structuration

4.1 Introduction

In this chapter, we will touch on the design and properties of a laser resonator
for 3D Structured coherent light state and localized structure. A laser system
is composed of two main components, an active material providing optical gain
to the system and an optical resonator or optical cavity. An optical resonator
possesses a self-repeating field both in phase and amplitude as a stable solution
of the system[Siegman 1986]. The resulting 3D eigenvectors are called the mode
basis of the cavity. It is important to define the desired modes properties (spatially
and spectrally) of the laser system before choosing the type of resonator.

The goal of this chapter is to find the best design for structured light and non-
linear spatial localization. For that purpose, we will need to define the requirement
and tolerances on a few key parameters, such as the cavity stability. The design
and properties of a self-imaging system fulfilling the requirements will be explored
in the following chapter, after we define the basic properties of an optical cavity.

4.1.1 Different types of laser cavities

In the world of lasers, different types of cavities coexist, each with their advant-
ages and downsides. The choice of a particular design will be influenced both by the
choice of the gain technology and the type of targeted application. For example, a
single mode continuous wave laser and a passively mode-locked laser do not have the
same requirements. The first one needs high selectivity of a single mode (spatially
and longitudinally) while the other needs intra-cavity saturable absorption and
dispersion management. However, most laser systems can be categorized into two
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broad resonator technologies (free space and waveguide) and two broad designs
(linear or ring).

Free space resonator: They are mostly used with solid-state bulk gain me-
dia or for more complex laser applications. They are composed of a multiple
of optical elements, where light propagates in free space between them. The
resonator can range from a simple two mirrors system with a laser crystal me-
dium for single mode continuous wave application [Chomet 2019, Laurain 2010] to
multiple mirrors system integrating saturable absorber for passive mode-locking
[De Silvestri 1984, Heritage 1978, Hoogland 2005], non-linear crystal for intra-
cavity frequency doubling [Liew 2017, Polzik 1991] or a wavelength tuning element
[Lan 2004, Vainio 2008]. Each of these systems requires specific resonator modes
property. For PML, suitable mode size in the active elements for good saturation
and/or transverse mode selection and the appropriate length for the desired fre-
quency mode spacing or pulse repetition rate. This category of resonator is the
more diverse one, allowing a wide range of active mediums and application.

Waveguide resonator: This type of resonator is used when the gain medium is
integrated inside a waveguide. For solid-state lasers, external mirrors are coupled to
the waveguide and for semiconductors they are usually integrated in the waveguide
[Webb 2020, Mackenzie 2007]. Multiple types of gain medium can also be used,
but doped fiber and semiconductor double heterostructure are the most common.
For semiconductor laser most technology is based on waveguide resonator such as
edge-emitting laser diode (Fabry-Perot laser diode, distributed Bragg reflector laser
[Fricke 2010]), monolithic surface-emitting semiconductor lasers [Iga 1988]. This as
the advantage of a good miniaturization with versatility in wavelength and power
to allow for various applications. For the most part, the fields resonances are the
same as the propagating mode of the waveguide, but not easily tunable without an
external optical system.

Linear resonator: A linear resonator reflects the light between two end mirrors.
The propagative and contra-propagative generated waves interfere together. This
creates a longitudinal standing wave pattern and discretize the resonating frequency
(wavelength) to a fraction of the cavity length.

Ring resonator: A ring resonator has no end mirror, and the light circulates
in two counter-rotating propagation. This leads to some different behavior from
the linear case. Mainly that an optical component is only hit once per round-
trip and that the non-normal incidence of the light on the optical elements can
lead to astigmatism. Furthermore, a single rotating propagation can be selected,
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removing the contra-propagative wave and spatial-hole burning effect. This can be
advantageous for mono-frequency operation [Kane 1985].

4.1.2 Design guidelines for transverse structuration

For classical laser system such as edge-emitting laser diode or solid-state system,
the cavity volume is more or less equal to the field volume (a3 ≃ ω3

s). In this case,
see figure 4.1a, the transverse size of the system is close to the transverse size of
the field with a well-defined propagation direction. The longitudinal length tends
to be long in front of λ (Lk λ), meaning large diffraction for free space cavities.
These kinds of systems generate a discrete set of eigenfunctions represented in blue
in the dispersion diagram of figure 4.2. It is useful for applications needing a strong
discrimination between the different laser states. For example, to select a particular
resonating wavelength, such as single mode laser [Zayhowski 1989] or transverse
mode selection for bi-frequency operation [Paquet 2016].
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(r,z)

Mode
volume

Cavity
volume

(a)

Mode
volume

Cavity
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0(r,z)

n(r,z)

a   s

(b)

Figure 4.1: Schematic representation of a classical single transverse mode laser
cavity (a) versus the target system for spatially localized structure (b).

In our case, for transverse structuration of the light and localized structure,
these systems are not good enough. We want to reach a transverse degenerate state
in the dispersion diagram of figure 4.2 (red lines). In this context, the optical cavity
can allow arbitrary eigenfunction to resonate, including the spatially localized
structure. By definition, localized structure also implies the need for the following
requirements:

• Bi-stable system.

93



94 4.1. Introduction

• Broad area system.

• Equilibrium between non-linear dispersive / diffractive effects.

To meet these conditions, we need to adapt the optical cavity, we will first
focus on the transverse localization requirement, then we will see that the proposed
system is also suited for temporal localization. For the first condition, having a
bi-stable system means that we need to introduce saturable absorption. This will
create a hysteresis where both the On and Off lasing state can exist within the same
parameter range. The cavity then needs to accommodate two active mediums, one
for the optical gain and one for the saturable losses. To be able to have coexistence
of several localized structures, both of these active mediums need to fulfil the broad
area requirement and the telecentric condition (off axis normal incidence emission).
For that, they need to be on conjugate focal plane and image into each other.

E

LG01

LG00

k

LG02

Discret modes

E-k Degeneracy T

Figure 4.2: Energy-momentum diagram of the transverse cavity eigenvectors from
the classical system (blue) to the targeted system (red)

Coming back to figure 4.1b we can see what form such a system should take. To
have a broad transverse area system is to have a large aperture, then the localized
structure needs to be smaller compared to it (ak ωs). In other words, the volume
of the cavity needs to be larger than the volume of the localized structure. One
way to represent this criterion is to use the Fresnel number, F = a2/Lλ where a
is the aperture, L is the distance to the aperture or the diffraction length, λ is
the wavelength. By defining the elementary structure size with, ws =

√
Lλ we
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can have a direct comparison between the Fresnel number, the aperture and the
elementary structure size. This means that the Fresnel number is proportional to
the number N of structure of size ωs through the following relation:

N =
a2

w2
s

=
a2

Lλ
= F (4.1)

Then for our system to be able to support N = 10× 10 structure, the Fresnel
number needs to be F > 100.
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Figure 4.3: Transverse phase variation of a Gaussian beam at 1/e2 due to the
diffraction length L for three different Gaussian size (2.5, 5 and 10 µm).

To meet the second and third criterions, the system needs to operate with
minimal diffraction or well within the first Fresnel zone. This can be explained by
the amount of non-linear phase the active mediums can provide to compensate
for diffraction. Since the gain and the saturable absorption are achieved using
a III-V semiconductor with a quantum well (QW), the main χ(3) mechanism is
expected to be the amplitude-phase coupling effect through the Henry factor αh.
Where ∆φ ≃ −αh

2
∆g is the phase variation due to the ∆g gain variation. The gain

will then exhibit a self-focusing effect while the absorber a small defocusing effect,
resulting at the maximum with a 0.1 rad focusing phase variation. In fig.4.3 where
the transverse Gaussian phase variation due to diffraction is plotted for different
Gaussian beam size, we can see that we need around 10 µm or smaller diffraction
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96 4.2. Concept of stable optical cavity

length to compensate the 0.1 rad or smaller non-linear phase. This is computed for
a typical size of ω0 = 5 µm.

One implication of the previous condition is the need for a high numerical
aperture system to support small structure size. For a lens used for beam collimation,
the typical numerical aperture is its radius a over the focal length f . So to avoid
beam truncation leading to excessive losses and wavefront deformation, we can set
a limit for the beam waist on the lens such that the lens radius must be 2 times
greater than the beam waist. Written in terms of numerical aperture, we have
NAlens > 2NAGauss = 2λ/πω0. For a beam waist of, ω0 = 5 µm the numerical
aperture limit is, 2NAGauss = 0.14 which corresponds to more than 99.9% power
transmission.

As seen in the previous chapter, the active medium also has a limiting effect on
the numerical aperture. The microcavity nature of the gain device leads to spectral
and spatial filtering of the resonating field. To not be limiting, it should follow the
same requirement as the intra-cavity elements, meaning NAµc >>> 0.14.

Coming back to the Fresnel number, we can now find limits on the aperture
size using the previous Gaussian size of ω0 = 5 µm. If we want to support more
than 10× 10 optical structure, we need an aperture of at least a =

√
Nω0 = 50 µm

of diameter. The table 4.1 summarizes the different needed key parameters for the
optical system.

Parameter Value unit

F > 100 -

a > 50 µm

Ld < 10 µm

NA > 0.2 -

Table 4.1: Summary of key parameters in the design of an optical cavity for non-
linear structuration.

In this chapter, we will look at the properties of a cold cavity and select the
important ones for 3D light structuration. We will also look at how to compute a
cavity stability and the limits of that approach for a self-imaging system.

4.2 Concept of stable optical cavity

A passive optical cavity (i.e., with no active medium) imposes a discrete set of
electromagnetic modes through the mirror boundary conditions. The mode basis
possesses spectral, spatial, and polarization properties that the generated photon
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must couple into if it wants to resonate inside the cavity. We can then expand the
electromagnetic field inside the cavity into an orthonormal spatial basis uλ(x, y, z)
[Khanin 2012].

−→ε (x, y, z, t) = Re

(

∑

λ

Aλ(t)uλ(x, y, z)e
−iωλt+iβλz · −→xi

)

(4.2)

with λ = n, q, i representing the longitudinal index q, the transverse index n
and the polarization index i. uλ(x, y, z) is the complex spatial distribution of the
field. Aλ(t) is the slowly varying temporal evolution of the field with frequency ωλ

and wavenumber βλ. We’ll look in the following section at the resonant properties
ωλ and the transverse field profile uλ(x, y, z).

4.2.1 Longitudinal modes

An optical cavity creates a series of resonating longitudinal modes or resonating
frequency from it’s limited physical size. A simple model to explore the spectral
properties is to take two plane mirrors of reflecting coefficient R1 = |r1|2 and
R2 = |r2|2 separated by a distance Lc. This formalism is also known as the Fabry-
Perot interferometer [Fabry 1897]. We can then calculate the intensity transfer
function of the system as being:

T (δφ) =
(1−R1)(1−R2)
(

1−
√
R1R2

)2

1

1 + 4
√
R1R2

(1−
√
R1R2)

2 sin2
(

δφ
2

)
(4.3)

With δφ = 2knLccos(θ) being the phase difference between the multiple reflec-
tions of the light with an incident angle θ in the Fabry-Perot interferometer of
optical length nLc. So for an optical cavity at normal incidence cos(θ) = 1, the
phase-shift is equivalent to the round-trip phase. We can see from equation 4.3
that a maximum of transmission occurs when sin2(δφ/2) = 0 or δφ/2 = qπ, with
q as an integer, creating a resonant longitudinal mode. We can then express the
separation of each longitudinal resonance by the free spectral range:

FSR =
c

2nLc

(4.4)

Where c is the speed of light. However, in reality, the resonator is made up of
partially reflecting mirrors creating losses. On each reflection, the photons have
a probability of 1−R to escape. These optical losses create a broadening of the
resonance from not having an infinity of waves taking part in the interferometer.
We can then define the full width half maximum of the resonance by:
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98 4.2. Concept of stable optical cavity

δνc =
FSR

F (4.5)

where F is the cavity finesse defined as 2π over the half maximum phase. For
small round-trip losses (< 10%) it becomes equivalent to [Siegman 1986]:

F =
2π

Loss
(4.6)

By introducing the cavity photon lifetime τc as the average time a photon
remains in the cavity, we can see that the finesse can also be an indicator for the
average number of round-trip N of the system.

τc =
1

2πδνc
(4.7)

N =
τph
τar

=
FSR

2πδνc
=

F
2π

(4.8)

With the spectral properties, we can now explore some design and understand
their interest for certain applications. For example, to design a single longitudinal
mode laser with semiconductor QWs gain, the VCSEL platform is interesting. The
typical cavity is formed by two high reflectivity (R > 99%) Bragg mirrors and a
semiconductor multi-quantum well gain layer with around 3THz of gain bandwidth
and thickness of around 1-3 µm. The resulting cold properties of the resonator
are a FSR ranging from 15THz to 40THz with very high finesse F k 1000.
This ensures that only one longitudinal mode can coexist within the gain, thus
having a monochromatic laser emission. However, transverse mode selection in
this case cannot be done by diffraction alone and without proper care transverse
multi-modal operation can arise, especially in the so called broad-area VCSEL
[Chang-Hasnain 1990] .

4.2.2 Transverse eigenstates

The transverse modes of an optical cavity correspond to a transverse field
profile that reproduces itself after one round-trip. For comparison, an arbitrary
travelling wave will undergo changes during a round-trip due to losses, aperture
effects (optical element edges), and diffraction. While a transverse eigenmode
conserves the same shape. We can write this condition as [Siegman 1986]:

un+1(x, y) = γun(x, y) (4.9)

In this case, un(x, y) represent the complex transverse profile of the field at a
round-trip n and un+1(x, y) at a round-trip n + 1. γ is the complex eigenvalue
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with arg(γ) being the round-trip phase and 1 − |γ|2 is the power losses for one
round-trip.

4.2.2.1 Gaussian propagation

Figure 4.4: Schematic representation of the fundamental Gaussian beam TEM00.

The simplest solution for transverse modes in a stable laser resonator is a
Gaussian beam. For that reason, a quick overview of the nature of Gaussian beam
propagation is important, since it will describe the propagation of most transverse
laser modes. The normalized field expression for a Gaussian beam travelling
in the +z direction with its minimal size in z = 0 in cylindrical coordinate
is[Siegman 1986]:

u(r, z) =

√

2

π

q̃0
ω0q̃(z)

exp

[

−jkz − jk
r2

2q̃(z)

]

=

√

2

π

1

ω(z)
exp

[

− r2

ω(z)2

]

exp

[

−jkz − j
kr2

2R(z)
− jϕ(z)

]

(4.10)

Where the complex beam parameter q̃(z) describe the fundamental properties of
the beam such as its beam waist ω(z) (radius at 1/e amplitude) and the wavefront
curvature radius R(z) following this equation:

1

q̃(z)
=

1

R(z)
− j

λ

πω(z)2
(4.11)
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For z = 0 the beam parameter is purely imaginary and provides us information
about the size of the beam.

q̃0 = j
πω2

0

λ
= jzR (4.12)

Where ω0 is the small beam waist and zR is the Rayleigh length that charac-
terizes the distance for which the beam area is multiplied by 2. Knowing these
two parameters (ω0 and zR) allows for the calculation of the physically relevant
parameters anywhere along its propagation.

ω(z) = ω0

√

1 +

(

z

zR

)2

(4.13)

R(z) = z +
z2R
z

(4.14)

ϕ(z) = − arctan

(

z

zR

)

(4.15)

Eq. 4.13 calculates the beam waist at any point z. Eq. 4.14 gives us the beam
curvature radius for any z. And lastly, Eq. 4.15 expresses the Gouy phase of
the beam, which is an additional phase offset accumulated during propagation
compared to a perfect spherical wave. This parameter will later be important to
estimate the frequency separation of transverse modes and estimate the cavity
degeneracy.

Using Eq. 4.13, we can also define the angle θ as the divergence angle of the
beam as z k zR in the small angle approximation.

θ =
λ

πω0

(4.16)

However, in real beam, the divergence angle may be different from the ideal
case from wavefront deformation. In this case, we can introduce the M2 factor in
Eq. 4.16 to give us Eq. 4.17 where M2 is an indication of the beam quality. A M2

factor close to one means a near diffracted limited beam, while a M2 > 2 indicates
a poor beam quality.

θLaser =M2 λ

πω0

, with M2 > 1 (4.17)

For higher order beam the M2 factor scales linearly with the mode number,
this indicates that higher order mode diffract quicker.
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4.2.2.2 Higher order modes : Spherical wave cavity

In a spherical resonator, meaning a resonator which only affects the spherical
or parabolic (in the paraxial approximation) part of the eigenfunction phase, we
find two main mode families. For a cavity with rotational symmetry, the higher
order modes are of the Laguerre-Gaussian (LG) family. While for a resonator
which breaks this symmetry, then the Hermite-Gaussian (HG) family describes the
eigenfunction.

4.2.2.2.1 Higher order modes : LG & HG

For both mode basis, the Gaussian beam is the fundamental HG00 or LG00 solution.
Higher order modes are simply a more complex transverse propagating pattern. It
is important to note that they are both solutions of the paraxial wave equation.
The general expression of non-degenerate LG and HG modes are given by Eq. 4.18
and Eq. 4.20 respectively.

u∗pl(r, θ, z) =

√

2

π

1

ω(z)

√

p!

(p+ |l|)!

(√
2r

ω(z)

)|l|

L|l|
p

(

2r2

ω(z)2

)

× exp

[

−jk r2

2q̃(z)

]

exp [−jkz + jlθ − jϕ(z)(2p+ |l|+ 1))]

(4.18)

For LG modes, the cylindrical (r, θ, z) coordinate system is used with p g 0 as
the radial mode number and l the azimuthal one. L|l|

p is the generalized Laguerre
polynomial given by Eq. 4.19. ω(z) and q̃(z) are respectively the Gaussian waist
and complex beam radius from the propagations properties of a Gaussian beam
seen in § 4.2.2.1. The Gouy phase shift is modified as (2p + |l| + 1)ϕ(z). This
transverse mode basis has a phase singularity in the mode center, leading to a
donut-shaped intensity profile and a helical wavefront carrying orbital momentum
for mode with l ̸= 0 and p = 0. These types of modes are also known as “Vortex”
and can be useful in certain applications, notably the trapping of particles in optical
tweezers[Yao 2011].

L|l|
p (X) =

p
∑

i=0

(−1)i
(p+ l)!

(p− i)!(l + i)!

X i

i!
(4.19)

For degenerate LG beam the azimuthal phase exp[jlθ] transform into cos(lθ)
leading to the more common petals shape modes. To explain this transformation,
we can consider a LG degenerate mode as being a coherent combination of two non-
degenerate LG modes of same indices p and |l| but with opposite handedness (±l).
Thanks to the Euler formula, we go back to exp (+ilθ) + exp (−ilθ) = 2 cos(lθ).
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Figure 4.5: Transverse intensity distribution of some possible transverse modes of
Fabry-Perot spherical like cavities.

The HG beam used the Cartesian (x, y, z) coordinate system, and the same
way as for LG beam they can be expressed as Gaussian beam modulated by a
polynomial function:

unm(x, y, z) =

√

2

π

1

ω(z)

√

1

(2n+mn!m!)
Hn

(√
2x

ω(z)

)

Hm

(√
2y

ω(z)

)

× exp

[

−jk (x
2 + y2)

2q̃(z)

]

exp [−jkz − jϕ(z)(n+m+ 1)]

(4.20)

In this case, it uses the Hermite polynomial of order n Hn(X) for both x and y.
The Gouy phase shift is modified as (n+m+ 1)ϕ(z)

Hn(X) = n!

+n
2
,

∑

m=0

(−1)m

m!(n− 2m)!
(2X)n−2m (4.21)

Inside a resonator, the additional axial Gouy phase shift for each transverse
pattern will lead to the shift of the transverse mode resonance.

4.2.2.3 Conical wave cavity: Bessel-Gauss Beam

For cavities with a conical phase dependence as well as a spherical one, the
HG and LG are not the best suited mode families to describe the eigenfunc-
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tion. For this type of system, using the Bessel-Gauss representation is better
[Gutiérrez-Vega 2003, Khilo 2001].

Figure 4.6: Representation of the geometry for generalized Bessel-Gauss beams
from Bagini et al [Bagini 1996].

Bessel-Gauss modes can be thought of as a superposition of an infinity of
Gaussian beams emitted on a cone of semi-aperture φ from the propagation
direction z. This can be written as a transverse component of the wavevector
β = k0sin(φ) (see figure 4.6). The transverse field can be expressed as a function
of r and z [Bagini 1996]:

u(r, z) =
ω0

ω(z)
exp

(

j[kz − ϕ(z)]− j
β2

2k
z

)

exp

(

− 1

q̃(z)

[

r2 +
β2z2

k2

])

× 2πJ0

[

2r

q̃(z)

βz

k
+ iβr

] (4.22)

Where we used the Gaussian parameter ω(z), q̃(z) and ϕ(z) as well as the
zeroth order Bessel function of the first kind J0(x) to describe the transverse beam.
This equation makes the assumption that the infinity of Gaussian beam have the
same amplitude. Higher order Bessel mode, on the other hand, can be composed
with a variety of amplitude or even using Hermite-Gaussian beam instead of simple
Gaussian beam [Schimpf 2012]. In all cases, this mode family carries a conical
phase component βr. The modified Gouy phase shift is also dependent on the
transverse wavevector by ΦG = ϕ(z) + β2

2k
z.

103



104 4.2. Concept of stable optical cavity

(a) (b)

Figure 4.7: Example of a Bessel gauss beam with β = 0.5, ω0 = 30 µm. a)
Representation for z = 0. b) Spatial spectrum of the beam in a).

Figure 4.7 shows a 2D intensity profile for z = 0 of a Bessel-Gauss with β = 0.5
as well as its spatial spectrum. This picture shows the characteristic interference
pattern for when all Gaussian beams converge, and its characteristic annular spatial
spectrum. One particularity of Bessel-Gauss beam is the appearance of diffraction
free propagation around its focus. Indeed, through the interference most of the
beam energy is concentrated in the first lobe (which is smaller than ω0), making it
interesting for non-linear optics where strong field-matter interaction is needed.

When a cylindrical step like transverse confinement is present, such as in step
index wave-guide, the eigen-wavefunction becomes a pure Bessel basis. Contrary to
the conical part of Bessel-Gauss beams, Bessel beams exhibits a plane wave phase
function in real space and not a conical one.

4.2.2.4 Transverse modes frequency spacing

Inside an optical cavity, each transverse mode will resonate on a slightly different
frequency due to its Gouy phase shift. By reusing the condition in Sec. § 4.2.1 for
a resonating mode but with the complete axial phase from the higher order mode
basis we can write the resonating frequency for each longitudinal q and HG modes
n,m. The same derivation can be done for LG modes with p and l mode number,
giving the factor (1 + |l|+ 2p) beam [Siegman 1986].

νnmq = qFSR + (1 + n+m)
ϕGRT

2π
FSR (4.23)

The qFSR term comes from the plane wave longitudinal phase and the last
term arises from the Gouy phase of higher order modes with ϕGRT

2π
FSR being the
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Figure 4.8: Frequency of transverse modes for a plane-concave cavity, calculated
for a resonator length Lc = 8mm and spherical mirror with Rc = 10mm.

transverse mode spacing frequency. This means that for each longitudinal mode q
there is an associated set of discrete frequencies corresponding to transverse modes
with different mode number as shown in figure 4.8.

In the transverse dispersion diagram for a free space resonator, for each longitud-
inal mode q we have a set of (n, m) transverse modes. In the longitudinal direction
the system is akin to a “well” like potential thus having a sinusoidal wavefunction
and an energy-momentum dispersion relation following Eq/ℏ = 2πqFSR = qvgk0
where the energy is discretized following a linear relationship with the wavevector.
In the transverse space, we will have the following relationship:

En,m/ℏ = (n+m)ϕGRT
FSR =

β2

2k0
(4.24)

where the energy is discretized following a parabolic relationship with the
transverse wavevector β. For the special case of the BG family, the Gouy phase
shift carrying a conical phase component, βr is added, and the dispersion relation
becomes a mix of parabolic and linear dependencies.

It is important to note that in this equation, the axial mode spacing or FSR
derived earlier is the result of the physical length of the resonator. While the
transverse mode spacing is dependent on the round-trip Gaussian Gouy phase
shift, which is not directly dependent on the resonator length but on the resonator
configuration. For a two spherical mirror cavity of a same given length, the Gouy
phase will not be the same for a near-planar or a near-confocal configuration. The
accumulated Gouy phase for a near planar configuration is small (large stable mode
size) thus leading to the clustering of the transverse mode frequency around the
axial mode. On the other end, moving the configuration toward a confocal system
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(small stable mode size) will increase the Gouy phase and increase the transverse
mode frequency separation independent of resonator length.

4.2.3 Polarisation modes

The polarization state of a beam is completely characterized by its electric field
vector. In the case of plane waves, this vector lies in the transverse plane and can
be written as a combination of two mutually independent components:

Ex = Axe
(−iωt+iβz+iΦx)

Ey = Aye
(−iωt+iβz+iΦy)

(4.25)

The polarization state of the electric field depends on the phase difference
∆ϕ = ϕx − ϕy between the two components. The electric field vector oscillates
linearly along one direction at an angle ψ with respect to the x-axis, when the
two components are either in phase(∆ϕ = 0) or have opposite signs (∆ϕ = π).
The light is circularly polarized when (∆ϕ = ±π/2) in this case, the vector field
describes a circle as time evolves. If we look in the direction of propagation, the
field rotates in a clockwise direction (right-handed) for (∆ϕ = +π/2) and in a
counter-clockwise direction for (∆ϕ = −π/2). For any other phase difference value,
the polarization of the light is elliptical.

Figure 4.9: Different polarization states, from the left to the right: linear, circular
and elliptical.

We note that the introduction of a linear birefringent element inside a laser
cavity defines two linear polarization modes oriented parallel to the ordinary
and the extraordinary axis of the element, regardless of the birefringence value
[Seghilani 2015]. Nevertheless, the birefringence value will induce a frequency
difference between the two oscillating waves.
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4.2.4 Cavity stability

We described the different properties of a propagating field in free-space using
the fundamental Gaussian parameter q̃(z). However, not every cavity parameters
fulfills the self-replicating beam requirement. ABCD matrix stability analysis
can be used to find the Gaussian beam parameter q̃RT (z) for certain resonator
configuration (See figure 4.10). This analysis is usually performed in the paraxial
approximation using ray transfer matrix [Yariv 1991].

Zref

A B

DC

Figure 4.10: Schematic representation of the calculation of cavity stability using
complex Gaussian parameter and ABCD matrix describing the round-trip.

4.2.4.1 ABCD matrix formalism

The ray transfer matrix or ABCD matrix are useful to describe an optical
system including an optical resonator. They come from a geometrical description
of optical rays in paraxial optical elements. The matrix links the slope and position
of the input ray to the slope and position of the output ray in relation with the
optical axis of the system. From this, we can relate each element of the matrix to
the properties of the system. If we define r1 and θ1 as the input height and slope
of the ray and r2 and θ2 as the output height and slope of the ray, we can write:

[

r2
θ2

]

=

[

A B
C D

]

·
[

r1
θ1

]

≡ r2 = Ar1 +Bθ1
θ2 = Cr1 +Dθ1

(4.26)

From equation 4.26 we see that the coefficient A represents the transverse
magnification of the system while D is the angular magnification. While the
coefficient B can be seen as an equivalent propagation length of the system. Bθ1
represents a change of height in the output ray. And C gives us the focusing power
of the optical system, or in other words, the change in the output slope versus the
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input height. Several optical elements can then be represented as an ABCD ray
matrix. Some elements used in this work are presented in the table 4.2

Propagation
r

d

»
[

1 d
0 1

]

Thin lens

focal : f

f

[

1 0
− 1

f
1

]

Spherical Mirror
fRc

[

1 0
− 2

Rc
1

]

Waveguide

z

x

[

cos(γz) 1
n0γ

sin(γz)

−n0γ sin(γz) cos(γz)

]

Table 4.2: Summary table of ABCD matrix for four key optical element.

ABCD matrix can also be used for optical resonator. A geometric stability
condition can be derived when after N round-trip no ray escapes the system. This
condition is expressed for an ABCD matrix Mr in equation 4.27

|tr(Mr)|
2

=
|A+D|

2
f 1 (4.27)

Instead of geometrical rays, the ABCD matrix lets us work with spherical waves
by defining the radius of curvature of the wave as R = r/θ. Then, by replacing
R with the complex Gaussian parameter q̃RT = q̃1 = q̃2 defined earlier, we can
transform equation 4.26 as:

1

˜qRT

=
A+B 1

˜qRT

C +D 1
˜qRT

(4.28)
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This equation expresses the fact that the complex Gaussian parameter must be
the same before and after a round-trip, and is schematized in figure 4.10. From
equation 4.28 we can derive Eq. 4.29 to calculate the size of the stable fundamental
TEM00 mode in the cavity. It is done by extracting the waist ω0 from ˜qRT , since
after a round-trip the mode must be the same. The higher order mode size can
then be calculated from the fundamental mode using Siegman definition adapted
for a Hermite-Gauss basis[Siegman 1986]: ωm,n = ω0

√
1 +m+ n.

ω0 =

√

λ

π
|B| ·

[∣

∣

∣

∣

∣

(

A+D

2

)2

− 1

∣

∣

∣

∣

∣

]− 1

4

(4.29)

We can also use the round-trip ABCD matrix to calculate the total Gouy phase
shift. Using equation 4.15 we see that it is dependent on the propagation length
and the Rayleigh length. By substituting the propagation distance with the B
coefficient of the round-trip matrix and using equation 4.29 to get the Rayleigh
length as a function of the ABCD parameters, we find:

ϕG = − arctan



sign(B)

√

√

√

√

∣

∣

∣

∣

∣

(

A+D

2

)2

− 1

∣

∣

∣

∣

∣



 (4.30)

4.2.4.2 Diffracitve cavity: Plano-Concave example

Zref

Lc

Rc f = Rc/2 f = Rc/2

1 Round-Trip

Lc Lc Lc Lc

Zref Zref Zref

1 Round-Trip

Figure 4.11: Schematic representation of a plano-concave optical cavity and it’s
propagating equivalents by unwrapping each round-trip.

Using the previously developed tools, we can analyze the stability and behavior
of a simple plano-concave cavity used mainly in VeCSEL system. Figure 4.11
shows us this cavity, and it’s development with paraxial elements, the reference for
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development is on the plan mirror. Using that, we can write the ABCD round-trip
matrix as:

MRT =

[

1 L
0 1

] [

1 0
− 2

Rc
1

] [

1 L
0 1

]

=

[

1− 2L
Rc

2LRc−L
Rc

2
Rc

1− 2L
Rc

]

(4.31)

Using this matrix, it is possible to compute the stability region using equa-
tion 4.27. In this case, the parameters A and D are the same, and thus the
condition become 0 < L/Rc < 1 meaning the length of the cavity must not exceed
the curvature radius of the mirror. Knowing the stability region, we can estimate
the properties of the cold modes inside the cavity by calculating the size of the
fundamental waist and the Gouy phase shift. Figure 4.12 shows the resulting
calculation for, Rc = 10mm with the fundamental mode size on the left and the
Gouy phase on the right. An example of the longitudinal mode spacing for this
type of cavity has also been given in section 4.2.1.
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Figure 4.12: Waist size and Gouy phase shift versus the cavity length of a plano-
concave system with Rc = 10mm.

From this figure, we can observe the correlation between large mode size and
large Gouy phase or strong discretization of the transverse modes. However, on
the stability edge, when L = Rc we see both the Gouy phase shift and the mode
size going to zero. In our case, those conditions are interesting since we want to
reach degeneracy in the transverse plane (we get closer to a con-focal configuration
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where there is no effective diffraction). However, the plano-concave system is not
telecentric (extended transverse area) and does not offer two separate conjugate
focal planes to place both gain and SESAM. The cavity length is also dependent
on mirror curvature, and long cavity for TLS are impossible to implement.

4.3 Conclusion

For 3D light structuration and localized structure generation, we have defined
three main requirements. The extended transverse area, expressed by the Fresnel
number and/or the NA limit of our system. The need to have access to two
conjugate focal planes to place both the gain and saturable absorbing medium.
And lastly the needs to reach high transverse degeneracy, meaning a small Gouy
phase shift, thus a small effective diffraction. We can summarize those three
conditions by restricting the cavity geometry to a bi-telecentric system. The object
plane is imaged onto the image plane while conserving the same angular direction
regardless of object height. The imaging system ensures two conjugate focal planes
and low effective diffraction while keeping an extended transverse area.

To find a solution to this problem, we have introduced the general properties of
a cold cavity. An optical resonator is considered stable when an eigenfunction after
one round trip remains the same. From these properties and the cavity geometry,
we can derive the shape and resonant frequency of the resonating modes. For
spherical system two main mode families exist, the Laguerre and Hermit-Gaussian
modes, while in conical wave system the Bessel-Gaussian mode best describes the
resonating field. The stability analysis of a diffractive plano-concave cavity showed
us that this system is inadequate for all of ours needs. Mainly the conjugate focal
plane and extended transverse area. We will see in the next section the description
of a self-imaging system fulfilling all the requirements.
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Chapter 5

Spatially modeless cavity:

Self-imaging optical system

The self-imaging optical cavity at first glance is ideal for 3D light structuration
and localized structure generation. Indeed, the fact that it is an imaging system will
produce very low effective diffraction and thus high spatial degeneracy. However,
those systems are operating close to or at the marginally stable point. This
means in part that it will become more sensitive to effects previously considered as
perturbative, such as thermal lensing or optical aberration. An optical system that
images itself onto itself after each round-trip does not impose a condition on the
resonating field, and can be thought of as transparent. Therefore, any perturbative
effects that were smaller than the cavity structuration before will now become
important.

The stability of this optical cavity with low diffraction, a wide area across the
transverse direction, and a high numerical aperture can be changed by different
potentials in the real space (Near field) and the space of spatial frequencies (Far
field). In near field, thermal lensing, self-focusing, gain modulation will tend to
keep the light in place, while in far field the optical aberration will make the phase
profile deviate from the paraxial parabolic one.

φ(β) = φ0 +D1β +D2β
2 +D3β

3 +D4β
4 + ... (5.1)

Equation 5.1 described the paraxial far-field phase linearization relative to the
transverse wavevector β ≈ kθ. With all orders different from β2 being deformation
due to aberration. By ignoring all odd orders that break rotational symmetry
and keeping only the second and fourth order, we can derive an effective second
order coefficient D2eff = D2 + D4β

2. Where D2 = −Ld/2k is the diffraction
coefficient that will tend to zero in a self-imaging system. It leaves us with an
effective diffraction from the spherical aberration. We can derive the condition that
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D4β
2 <<< 2π to lessen the aberration impact. This term is also dependent on the

divergence angle through β.
A similar expression as equation 5.1 can be written to express the Fourier plane

amplitude filtering corresponding to diffusion effects in real space.
In this chapter, we will describe a self-imaging optical system and look at the

effect of thermal lensing and misalignment on the cavity stability. We will also
introduce optical aberration, more specifically spherical aberration, to explain the
observed behavior of this system. In the end, we will summarize the key parameters
to design a good self-imaging optical cavity.

5.1 Self-imaging interest

A self-imaging degenerate optical cavity is a system that images a plane on
itself after a round-trip or when an arbitrary ray retraces its path [Arnaud 1969].
The ABCD matrix formalize implies that after a round-trip:

A = D = 1

B = C = 0
(5.2)

The important parameter here is B = 0, since it means that the reference plane
is imaged onto itself and the system exhibits no diffraction. C = 0 also means that
the system has a null vergence. From this condition, it is possible to design different
possible configurations of optical elements, leading to a self-imaging system. We
show in figure 5.1 three different configurations for a self-imaging system.

f1 f2

d1 = f1 d2 = f2d3 = f1+f2

f1 f2 f3 f4

d1 = f1 d5 = f5d2 = f1+f2 d3 = f2+f3 d4 = f3+f4

f Rc

d2 = f + Rc

a) b)

c)

Figure 5.1: Example of three self-imaging cavity. a) Two lenses cavity. b) One lens,
one mirror cavity. c) Four lenses cavity.
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The configuration a) is made up of two plan mirrors and two lenses. By setting
d1 = f1, d2 = f1 + f2 and d3 = f3 we are in a 4-f telescopic configuration respecting
the self-imaging conditions. In this case, the two plane mirrors are image onto
themselves and the other. We can control the magnification on each plane with
the choice of the focal length where M = f2/f1. The configuration b) is made
of one lens and one spherical mirror. The conditions to respect in this case are
d1 = f(1 + f/R) and d2 = R + f . The configuration a) and c) are essentially the
same, with an added pair of lenses for an 8-f configuration. This allows for longer
cavity length and broader magnification control.

5.1.1 Extended transverse broad area

For 3D light structuration and spatially localized structure, we need a wide
transverse area compared to the laser spot size. Like explained in section 4.1.2, for
that, we want a large numerical aperture and Fresnel number. In our case, the
three configurations can fulfil those requirements. The lenses used can be with
large NA, and in the passive cavity case the Fresnel number of such a system is
near infinite since B = 0.

The other advantage of the self-imaging cavity is the telecentric configuration.
Any ray emitted from the gain mirror with transverse offset r at normal incidence
θ = 0 will be imaged on the opposite plane with the same angle and return after a
round-trip with the same parameters. This theoretically extends our transverse
area to the full lens diameter. In reality, we must consider the beam divergence
and the lens truncating effects reducing this range.

5.1.2 Extended longitudinal area

For temporally localized structure (temporal pulse) it is important to have a
round-trip time longer than the recovery time of the active mediums. In other
words, the cavity length must be long so that after a round-trip the travelling
pulse sees an unsaturated gain and absorption. For that, the self-imaging system
and in particular the c) configuration is the most interesting. With the 8-f lenses
systems, we can have a spatially degenerate cavity with low diffraction while keeping
the physical length and the round-trip time long. For example, a system with
f1 = f4 = 8mm, f2 = 100mm and f3 = 200mm in a 8-f configuration has a length
of Lc = 632mm and a round-trip time of τrt ≃ 4 ns. Thus, a gain medium with quick
recovery time < 4 ns could be used for temporal localized structure [Camelin 2018].
The other two configurations are less suited for this application since using long
focal length will inherently reduce the maximum numerical aperture, so the limit
of transverse degeneracy.
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5.1.3 Active component placement

We need to both place the gain and the saturable absorber in conjugate focusing
planes. For both configuration a) and c) the two plane mirrors allow adequate
placement (see figure 5.2). The added benefice of those configurations is the
possibility to control the magnification of the image of one plane onto the other.
For the configuration a) the magnification corresponds to M = f2/f1 while for the
configuration c) it becomes M = f2f4/f1f3. The resulting zoom is an important
parameter to be able to control. Since the gain and saturable absorber are integrated
on each mirror, we can adjust the relative size of the localized structure on each
of them to maximize or minimize the saturation and non-linear effect without
affecting other parameters such as the effective diffraction (B parameter of ABCD
matrix).

However, for the configuration b), only one plane is accessible for gain and
absorption placement, leading to the added requirement of combining them into
one device. In this case, we also lose the ability to adjust the saturation parameter
independently. For this reason, we choose to use a 4-f configuration for spatially
localized structure that can be expended into a 8-f system for combining spatial
and temporal localization.

Figure 5.2: Placement of the active component (Gain and SESAM) inside a 4-f
cavity.

In the 4-f configuration, the active elements will be placed on the near field
of the resonating field. This placement means that the lenses must have a large
numerical aperture, to allow for the coexistence of multiple resonating transverse
spots.

5.2 System stability

In this section, we will look at the self-imaging stability using configuration
a). By design, the round-trip matrix of such a system is an identity matrix, thus
A+D = 2. According to the stability criterion, such a system is then marginally
stable. In reality, this kind of system is not achievable and several effects such as
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small offset/misalignment, thermal lensing, optical aberration can strongly impact
the stability.

5.2.1 Thermal lensing: local anharmonic potential

In all pumped systems, thermal effect can play on the resulting cavity stability.
In our case, the optical pumping of semiconductors induces a three-dimensional
refractive index variation proportional to the temperature. We can estimate the
resulting phase variation using dn/dT = 2.7× 10−4K−1 for the GaAs. After one
round trip in the structure, the laser wave undergoes a phase shift due to the
variations of the optical path, which is now spatially inhomogeneous. For the 1/2
VCSEL structure, given the small thickness of penetration length and the small
temperature variations over this distance, we can neglect the longitudinal variation
of the index, so the phase shift will be mainly transverse and generates a “thermal
lens”.

∆ϕ(x, y) = 2kLp(n− 1) + 2kLp
dn

dT
∆T (x, y) (5.3)

where ∆T (x, y) is the thermal distribution induced by the pumping. This
thermal lens will distort the resonator stability condition. If the temperature profile
can be approximated by a parabola around the axis of the pump, then the phase
shift will have the effect of a lens called a “thermal lens.” For a uniform pump
profile with rotational symmetry, the focal length of the equivalent thermal lens
can be calculated with the following formula [Laurain 2010][Yariv 1991]:

F ∼ σ2

2ln(2)Lp

(RthPp
dn

dT
)−1 (5.4)

where σ is the half-width at half maximum (HWHM) of the pump beam, Lp

the penetration length in the 1/2 VCSEL chip, Rth the thermal impedance and
dn/dT the change of the refractive index with temperature. Other pump profile
can lead to a differently shaped “thermal lens”. Using the tool in section § 2.4.2
to compute the thermal profile, we can estimate the equivalent paraxial lens and
wavefront aberration of any pump shape.

The paraxial thermal lens on the gain can be introduced in the round-trip
matrix calculation by multiplying the identity matrix with a thin lens matrix,
where Cth = −1/ffth gives us the following result:

MRT =

[

1 0
Cth 1

]

×
[

1 0
0 1

]

=

[

1 0
Cth 1

]

(5.5)

This leads to a non-null C coefficient for the ABCD round-trip matrix, meaning
that our system is not perfectly telecentric anymore. Indeed, for a beam emitted
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r

»=rCth

Figure 5.3: Schematic representation of the angle shift experienced by a ray after
one round-trip.

at normal incidence θ = 0 with a transverse offset on the gain mirror plane r ≠ 0 it
will, after a round-trip, accumulate an angle rCth (see figure 5.3) then 2rCth for
the second round-trip and NrCth for the N round-trip.

As an example, let’s take a cavity with a finesse of, F = 100 then the average
number of round-trip is N = F/2π. For an off-axis beam r = 50 µm, if we
want the total angle deviation to be |NCthr| < 10mrad, we need the thermal
lens contribution to be |Cth| < 2.5 × 10−2 mm−1. Or in terms of focal length
|fth| > 40mm. However, this is true only for a paraxial lens contribution, in reality
the thermal phase profile deviates from this simple approximation especially on
the edge of the pumping region.

For a Gaussian pumping profile, we can approximate the induced temperature
and phase profile by a Lorentzian, following:

Φth(r) =
∆φ

1 + r2

(0.9ωp)2

∼ 1− kCthr
2

2
(5.6)

where ∆φ = k.2e.dndT.∆T , is the induced phase shift from ∆T temperature
difference, dndT is the optical index variation from temperature and e is the gain
active region thickness. ωp is the pump waist. Approximating the equation with a
Taylor expansion and ignoring the constant phase term, we can deduce the paraxial
equivalent focal. This equation represents the phase potential seen by a resonating
electromagnetic field in real space on the gain mirror plane.

5.2.2 Longitudinal misalignment: non-local parabolic phase

diffraction tuning

Starting from the perfect 4-f configuration, we can add misalignment in the
system to investigate the effect on the cavity stability. In addition, we look for
misalignment in d2 and d3 shown in figure 5.4.

We end up with the round-trip matrix with the reference plane on the side of
the thermal lens:
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f1 f2

d1 = f1 d2=f2 d3 = f1+f2 + ·d

·Cth=

·z

-1

fth

Figure 5.4: Self-imaging cavity in 4-f configuration with the thermal lens Cth =
−1/fth and misalignment in d2 = f1 + f2 + δd and d3 = f2 + δz
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(5.7)

To simplify the matrix and understand what are the physical effects of each
misalignment, and since they are small perturbations, we remove the second order
terms (C2

th, δd
2, δz2) and the cross products to get the matrix in equation 5.8. This

optical system can also be represented as a small micro-cavity of length B/2 with
a parabolic phase profile of curvature −πC

λ
r2 (see figure 5.5).

MRT ≃









1 2δz
f 2
1

f 2
2

Cth − δd
2

f 2
1

1









(5.8)

Typically, the A and D coefficient are not impacted at first order, meaning
that there is no change in magnification from small longitudinal variation. As seen
previously, the thermal lens adds some phase profile in the near field, leading to a
vergence destabilizing off-axis emission. On the other hand, tuning the distance
δd also allows adjusting of the total vergence of the system. It is then possible to
use the distance δd to cancel or minimize the impact of the thermal lens on the
round-trip stability. Together, this gives us some small control over the residual
focusing power of the system. In figure 5.5 we can represent those effects as a
parabolic phase profile in the micro-cavity.

On the other hand, tuning the distance δz affects the effective length of the
system. In this case, since the reference plane is on the opposite side of the variation,
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rÃ

»
r

B

Figure 5.5: Schematic representation of the SI 4-f cavity with the thermal lens and
small longitudinal misalignment.

the magnification divides its effect by M2 = f 2
2 /f

2
1 . If the reference plane was on

the same side as the variation, then the result would have been B = 2δz. This
equivalent distance correlates directly with the offset from the self-imaging position
and can be linked to the round-trip length of the micro-cavity in figure 5.5. In
practice, this variation is easily tunable with a micro-metric translation stage.

Using the non-simplified matrix, we can study the different regions of stability
of such a system. Figure 5.6 shows the calculation of the on-axis Gaussian mode
size versus the value of the B parameter for different configurations. The black line
corresponds to the marginally stable case with no thermal lens and δd = 0. This
case is not physically realistic and serves to illustrate the self-imaging point in the
plot. When the contribution of Cth and δd results in a negative C parameter, then
stability occurs for B > 0. This regime is the regime of normal diffraction. The
other case when C > 0 the stability occurs in the anomalous diffraction regime
B < 0. The properties of this system to be able to function in both regimes is
interesting, since it could be possible to balance any sign of non-linearity.

This result also shows us that too big of an offset from the self-imaging position
leads to large stable mode size, incompatible with our requirement for small
degenerate transverse modes. To look at the tolerance for this degeneracy, we need
to go back to the Gouy phase shift.

5.2.3 Transverse degeneracy tolerances

Two aspects are important to define the level of spatial degeneracy. First the
transverse frequency mode separation given by the Gouy phase shift ϕG of the
system and the width of the resonance given by the Finesse F . We want to have a
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Figure 5.6: Gaussian mode size ω0 versus the parameter B.

continuum of transverse states around one longitudinal resonance. Figure 5.7 shows
two examples of a dispersion diagram with the superposition of the longitudinal
resonance width for each transverse mode. The first example is for a discreet
transverse mode basis with large Gouy phase shift like in the previously shown
plano-concave cavity, while the other is an example of the targeted self-imaging
cavity with a continuum of transverse state.

A simple way to evaluate the degeneracy is to calculate the number of transverse
resonance one longitudinal mode width can accommodate.

Ndege =
mode width

mode separation
=

FSR2π

F |ϕG|FSR
=

2π

F |ϕG|
(5.9)

In the self-imaging case, it is also possible to simplify the Gouy phase expression
from equation 4.30 using since A = D ≃ 1 and AD − BC = 1.

ϕG = − arctan

(

sign(B)

√

∣

∣

∣

∣

BC

2

∣

∣

∣

∣

)

(5.10)

It is then possible to represent the number of degenerated modes Ndege versus
the B and/or C coefficient for a 4-f self-imaging cavity. For our needs, we can
set the subjective criterion of Ndege > 10 to define the self-imaging region of our
system. Figure 5.8 depicts the number of degenerated on-axis mode verse the B
coefficient for the 4-f system and different C values. We see that the width of the
degenerated region is impacted by the strength of the thermal lens, and the smaller
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Figure 5.7: Resonance frequency versus transverse wavevector dispersion diagram
depicting a cavity with a discreet mode basis (Left) and a cavity with a transverse
continuum of state (Right).

it is, the larger it becomes. For a thermal lens of fth = 25mm to fth = 100mm the
range of the degeneracy varies from ∆B = 2 µm to ∆B = 8 µm.

For now, we have analyzed the optical cavity in the paraxial ABCD approxima-
tion. However, this analysis shows some limits. In figure 5.9 we show a real example
of the optical modes sizes resonating inside a two lenses cavity with f1 = 20mm and
f2 = 15mm. The pumping scheme for this measurement amounted to a thermal
lens around, fth = 15mm leading to δz a variation of around 400 µm. The simple
model can explain the spherical wave variation. However, it falls short for the
conical wave (Bessel-Gauss family). In the degenerate position, the ABCD system
also falls short to explain the measured degenerated wavefunction. We will develop
in the next chapter a tool to analyze the system in those conditions. To achieve this
analysis, we need to consider the more complex phase transfer function, including
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Figure 5.8: Number of degenerated on-axis mode verse the B coefficient for the 4-f
system and different C values. The dotted line represents the criterion Ndege = 10.

higher order perturbation than the parabolic phase. We refer to these perturbations
as the aberration of the optical system.

5.3 Aberrations effects on self-imaging system

The optical aberrations are usually defined as the performance departure from
the paraxial optical system. In classical paraxial optics the phase effects are
limited to the second order or parabolic term while all other terms are considered
as aberration. For an optical system with circular symmetry, we can write the
complex pupil function as:

P (ρ, θ, h) = A(ρ, θ)eikW (ρ,θ,h) (5.11)

Where (ρ, θ) are the normalized polar coordinates in the exit pupil plane of the
optical system and h the object height. A(ρ, θ) is the pupil transmission function
and kW (ρ, θ, h) is the phase transfer function. This term is directly proportional
to the wave aberration following the corresponding power expansion[Welford 1986]:
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124 5.3. Aberrations effects on self-imaging system

Figure 5.9: (solid line) Expected waist size on the gain versus effective cavity length.
(cross / square) Measured waist size on the gain side. The square point indicates
conical waves, while the cross indicates spherical Gaussian waves. The two inserts
are the 2D intensity profile of the far field.

W (ρ, θ, h) =W000 +W020ρ
2 +W111hρ cos(θ) +W040ρ

4 +W131hρ
3 cos(θ)

+W222h
2ρ2 cos2(θ) +W220h

2ρ2 +W311h
3ρ cos(θ)

+W060ρ
6 +W151hρ

5 cos(θ)

+ ...

(5.12)

The explanation for the different terms is listed in table 5.1. The first five
terms, excluding the piston, are usually referred to as the primary aberration since
they describe the most important effect. Figure 5.10 schematize the principal
parameters for aberrated optical system, the exit pupil position, the reference
sphere and aberrated wavefront.

In our case, we will neglect the Tilt and coma since or object offset height is
small compared to the pupil size (h <<< ρ), but we will focus on the effect of the
spherical aberration for the stabilization of conical waves.

5.3.1 Spherical aberration

Most optical elements have spherical surfaces, in large part due to the simplicity
of the manufacturing process. The surface shape follows a parabola close to the
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Coefficient Power expansion Name

W000 1 Piston

First order terms

W020 ρ2 Defocus

W111 hρ cos(θ) Tilt

Third order terms

W040 ρ4 Spherical aberration

W131 hρ3 cos(θ) Coma

W222 h2ρ2 cos2(θ) Astigmatism

W220 h2ρ2 Field curvature

W311 h3ρ cos(θ) Distortion

Fifth order terms

W060 ρ6 Fifth order spherical aberration

W151 hρ5 Fifth order linear coma
...

Table 5.1: List of the different wavefront aberration terms and their meaning.
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Figure 5.10: Schematic representation of an imaging system with the representation
of the real wavefront (with aberration) and the reference sphere in the exit pupil.

center, but quickly breaks down, leading to large variation from the paraxial
approximation. It is easy to see this effect for a simple plano-convex lens using a
geometrical ray tracing (see figure 5.11).

Figure 5.11: Spherical aberration in plano-convex lens.

In this example, where a plano-convex lens is used to focus the incident collim-
ated light, the marginal ray near the edge of the lens will cross the optical axis
before the paraxial ray which is closer to the lens center. Looking at the wavefront
aberration function, the term W040ρ

4 corresponds to the spherical aberration. This
is only dependent on ρ meaning a small phase variation at the center of the pupil
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and a large phase variation at the edge. This will have the effect of increasing the
focusing power on the edge of the lens.

From this view, it is also useful to define the longitudinal aberration coefficient
ez as the distance between the paraxial focus point and the marginal focus. Using
the optical distance convention, if the marginal focus is before the paraxial focus,
then ez < 0 and inversely.

5.3.1.1 Seidel coefficient

The primary aberrations are inherent to the shape of the surfaces, so Seidel
derived a way to link the wavefront aberration function with the surface shape
[Welford 1986]. For the spherical aberration, this leads to:

W040 =
1

8
S1 with S1 =

∑

All surf

Surface geometry impact (5.13)

This shows that the impact of each surface adds up into the full aberration of
the system. This enables us to use a single aberrated element representing the full
system aberration while keeping all others as paraxial elements, as we will see in
section 5.3.2. The usual convention for the sign of S1 is to take it positive if the
marginal ray focuses before the paraxial ray and inversely.

5.3.1.2 Off-axis incident beam

Figure 5.12: Schematic representation of a decentered Gaussian beam and lens
aberration effects[Yoshida 1982].
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128 5.3. Aberrations effects on self-imaging system

We want to calculate the effect of the spherical aberration on the focus of the
off-axis beam. Following the development of Yoshida [Yoshida 1982] we write the
aberration function for a incident beam parallel to the optical axis with a plane
wavefront.

W (r, φ) =
S1

8
ρ40+

S1

2
ρ30 cos(φ)r+

S1

4
ρ20(2+cos(2φ))r2+

S1

2
ρ0 cos(φ)r

3+Sr4 (5.14)

The offset referential is (r, φ) where r is the normalized (by the lens radius
a) local radius on the beam axis and φ is the azimuth angle. The normalized
offset from the optical axis is ρ0, figure 5.12 schematize this geometry. For a
Gaussian beam, we assume that the aperture is large in front of the beam waist
to avoid any truncation issue. This can be written as 2ω < (1 − ρ0). Since the
local beam variation is small, r <<< 1 we neglect the effect of the induced coma
r3 and spherical aberration r4 on the beam itself. We also neglect the r term
corresponding to a small anisotropic tilt, since the term is also proportional to
ρ30 <<< θ ≃ ρ0/f0. We are left with:

W (r, φ) =
S1

8
ρ40 +

S1

4
ρ20(2 + cos(2φ))r2 (5.15)

The first term gives us the shift in path length from the offset optical path
due to spherical aberration. While, the second term allows us to calculate the
anisotropic focal variation for an offset beam. By denormalizing r′ = r.a and
ρ′0 = ρ0.a and using, θ ≃ aρ0/f0 we can express equation 5.15 with the incident
angle on the image plane. Now we can write the complete phase transfer function,
including the paraxial focusing element of focal f0, the calculated aberration and
neglecting the constant (not depending on r) phase term, we find:

Φ(r, φ) = −kr
2

2f0

(

1 +
S1θ

2

2a4
f 3
0 (2 + cos(2φ)

)

(5.16)

From this, we can see that the equivalent vergence C = −1/f + δCSA of an
offset incident beam on a lens with spherical aberration corresponds to the paraxial
focal plus a parabolic angle variation from the spherical aberration. According to
the Seidel definition, a positive coefficient corresponds to a marginal ray crossing
the optical axis before the paraxial one, thus is equivalent to reducing the focal
length and inversely. We can also see the induced anisotropy from the beam offset,
where x, is the sagittal plane φx = π/2 and y the tangential plane φy = 0. This
results in a vergence variation with a strong astigmatism of 1 : 3

δCSAx,y
= −S1θ

2

2a4
f 2
0 (2± 1) (5.17)
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The tangential plane corresponds to the incident angle plane, while the sagittal
plane is at 90 deg from it. From the anisotropic focal length variation due to
aberration, it is then possible to recalculate the stability for the off-axis emitted
beam.

5.3.2 Stability analysis with spherical aberration

Gain SESAM

Near

Field

E eld
Spatial Spectrum

Far Field

Chief Ray

Chief Ray

zx

y

d1 d3

d3

f1 f2

»i

»i+1

CSA

Cth

Figure 5.13: 4-f optical cavity schematics with thermal lensing effect and focal
variation aberration effect. An off-axis bidirectional rotating beam is included as a
reference for the off-axis angle θ.

To consider the spherical aberration in a near self-imaging cavity using ABCD
matrix, several hypotheses must be met:

• We assume a quasi continuum of off-axis cavity systems that circulate radially
in a ring-like path (see figure. 5.13) at angle θi in a self-imaging telecentric
configuration (uni-directional travelling wave or bidirectional standing wave
states).

• Only spherical aberration are taken into account. All lenses are computed
as paraxial element. The round-trip focal length variation due to spherical
aberration is placed at the NA limiting lens.

• We assume our system to be close to self-imaging such that the angular
magnification from the gain to the SESAM does not vary and is equal
to αm = f1/f2. Thus, the incident angle θ2 on the SESAM is equal to
θ2 = f1/f2θ.

• Each angle θi propagates a possibly anisotropic Hermite-Gauss like basis of
weak divergence ΘG < NA compared to the paraxial system NA < 0.5. The
possible angular separation between two stable off-axis mode must be greater
than the beam divergence 2/kω0 < θ < NA.
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130 5.3. Aberrations effects on self-imaging system

Using ABCD matrix, we can now write the single pass system matrix for the
sagittal and tangential plane. A cavity stability corresponding to a unique system
can then be calculated for each angle θi.

MSPx,y
(θ) =

[

1 0
Cth

2
1

] [

1 d1
0 1

] [

1 0
− 1

f1
1

] [

1 d2
0 1

] [

1 0
− 1

f2
1

]

×
[

1 0

δCSAx,y
(θ f1

f2
) 1

] [

1 d3
0 1

] (5.18)

Following Siegman [Siegman 1986] we can calculate the round-trip matrix using
the reverse matrix from SESAM to Gain MRT =MSPM

T
SP . In this system, d1, d2

and d3 correspond to the distance between lenses with d3 = f2 + δz and Cth is the
vergence from the thermal lensing effect and δCSA(θ2) is the vergence variation
from spherical aberration.

(a) (b)

Figure 5.14: Off-axis ABCD stability analysis with f1 = 20mm and f2 = 15mm
and S1 = 1.2mm with a = 8.25mm. a) 2D representation of all stable angles. Each
line represents a new cavity with θ incidence angle. b) Stability for the On-axis
(black) and for two different θ angles. X represents the sagittal plane and Y the
tangential one.

On figure 5.14 we show the result of the stable fundamental waist size (color
scale) for different incident angle θ and f1 = 20mm, f2 = 15mm, a thermal lens
fth = 12mm and a Seidel coefficient of S1 = 1.2mm. From this example, each
horizontal line corresponds to the stability of a cavity with θi angle. On figure 5.14b
we show the sagittal and tangential stability for angles 0.08 rad and 0.04 rad. We
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remark that for each angle, the self-imaging point (waist null) shifts according to
the sagittal/tangential focal variation of equation 5.17.

The highlighted white line marks the “resonant angle”. It shows the exact
angle for when the off-axis focal (in the sagittal plane) equals the distance
d3. In the case of spherical aberration, this follows the longitudinal spherical
aberration[Welford 1986]:

ez = −S1f
4
0

2a4
θ2 (5.19)

This value characterizes the distance at which the marginal ray of angle θ cross
the optical axis from the paraxial one. A negative value implies that the marginal
ray crosses the axis before the paraxial one.

(a) (b)

Figure 5.15: Off and On axis stability with the ABCD matrix and spherical
aberration with f1 = 20mm, f2 = 15mm, fth = 12mm and S1 = 1.2mm with
a = 8.25mm corresponding to the system shown in figure 5.9. a) Plots of the
measured TW angle with the hard angle ABCD condition fit giving S1 = 1.2mm.
b) Plots of the near field stability with the On-axis and Off-axis ABCD fit.

We can use this condition for limiting the infinity of cavity stability by only
picking the fundamental waist for the “resonant angle”. Plotting the fundamental
waist in the sagittal and tangential plane for each (δz, θ) satisfying it, we have
figure 5.15b. This simulation was done to fit the measured waist of figure 5.9 for a
cavity with f1 = 20mm and f2 = 15mm. The Seidel coefficient was adjusted with
the measured angle of the off-axis modes following equation 5.19 (see figure 5.15a).
In this configuration, the NA limit lens was the f2 = 15mm thus the angled used
to estimate S1 was θ2 = f1/f2θ. The measured Seidel coefficient is equivalent to
the aberration effect of the whole system.

From those graph, we can see the on-axis (θ = 0 rad) stability for positive
δz and the strongly astigmatic stability for off-axis beam for negative δz. In this
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132 5.3. Aberrations effects on self-imaging system

representation, each point along the off-axis stability line corresponds to an incident
angle, θ which itself is the result of a whole stability analysis. Even if the off-axis
stability appears to be for anomalous diffraction, going back to figure 5.14 shows
that we are still in the normal diffraction regime given that the self-imaging point
has shifted.
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Figure 5.16: Summary of the different Off-axis stability, depending on the sign of
both the aberration (S1) and the parameter C.

To summarize the expected behavior for telecentric optical cavity near self-
imaging with spherical aberration, we can look at figure 5.16. It displays the result
of the ABCD calculation (large waist yellow, small waist blue) for a stability in
the normal (C < 0) or anomalous (C > 0) diffraction regime with a positive or
negative Seidel coefficient. We see here that stability shift for the off-axis beam is
not affected by the C parameter (toward larger focal for S1 < 0 and toward smaller
focal for S1 > 0 but the stable region is given by the sign of the C parameter. To
reduce TW competition near the self-imaging being in the top right and bottom
left quadrants is better since the resonant angle condition is opposite the on-axis
stability. Using this fact in practice also allows us to quickly identify the on-axis
self-imaging position by looking for the transition between on-axis and off-axis
emission.
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5.3.2.1 Spherical aberration limits

In practice, the wavefront aberration of commercially available lenses rarely
consists of only fourth order variation (i.e., spherical aberration) but can show a
much more complex pattern. Figure 5.17 (taken from Thorlabs) shows the difference
in wavefront error between three lenses of similar focal and diameter but different
design (aspherical and achromatic) and polishing methods. Spherical polishing for
the achromatic lens (only spherical surfaces). CNC-Polished and MRF-Polished
method for the aspheric lens. Their measurements show a strong deviation from
only spherical aberration (lens b and c) and thus some higher aberration order term.
The measured peak to peak value for the aspheric lens (lens b) is even stronger
than for the achromatic lens (lens c). This difference can be explained by the fact
that the aspheric is inherently more difficult to polish. Using the more precise
MRF-polished method (Magnetorheological Finishing) it is possible to reduce by
a factor of ten the aberration amplitude but not all the higher order aberration
oscillation. Those large differences are due to manufacturing process and tolerances
[Malacara 2001].

(a) (b) (c)

Figure 5.17: Example of measured wavefront error from the Thorlabs lenses catalog.
(a) AL2550H, MRF polished aspheric lenses. (b) AL2550, CNC polished aspheric
lenses. (c) AC254-050, achromatic doublet lens

The presence of higher order aberration term will deform the simple spherical
aberration response. To investigate their effects, we use a ray-tracing software
(Zemax) with the fitted wavefront error shape from figure 5.17 applied to the NA
limiting lens of a 4-f paraxial system. The longitudinal aberration being related to
the “resonant angle” of Off-axis emission, by computing those values we can see
how higher order aberration terms can deform the off-axis stability.

Figure 5.18 shows the comparison of the longitudinal aberration (i.e., resonant
angle position) for a round trip in a 4-f optical system with the fitted wavefront
error of the AL2550 (aspheric lens b) and AC254-05 (achromatic lens c). The
dotted lines are a fit for only spherical aberration. The equivalent Seidel coefficient
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134 5.3. Aberrations effects on self-imaging system

Figure 5.18: Longitudinal aberration for a round-trip 4-f system with one paraxial
lens of focal f1 = 50mm and a lens with the fitted wavefront error of AL2550 and
AC254-50.

is S1 = 1.2mm and S1 = 0.05mm for the aspheric and achromatic lens, respectively.
We see that the wavefront modulation is deforming the resonant angle response to
the point where multiple angles could resonate for a same detuning δz.

Code Lens Type f CA NA WE S1

AC-254-050 Achromatic 50mm 22.86mm 0.22 No Data 0.05mm

AL-2550 CNC Aspheric 50mm 23mm 0.23 < 0.5 µm (RMS) 1.1mm

AL2550J MRF Aspheric 50mm 21.3mm 0.2 < 100 nm (P-V) < 0.05mm

AL1225J MRF Aspheric 25mm 10.6mm 0.2 < 100 nm (P-V) < 0.05mm

AL2520-C CNC Aspheric 20mm 22.5mm 0.54 < 0.5 µm (RMS) ∼ 1.2mm

AL1815-C CNC Aspheric 15mm 16.5mm 0.53 < 0.5 µm (RMS) ∼ 1.2mm

Table 5.2: Thorlabs datasheet of the lenses used in this work. CA: Clear Aperture.
NA: Numerical Aperture. WE: Wavefront error. And estimated equivalent S1

coefficient.

Table 5.2 summarizes the datasheet of the lenses used in this work. We see
that for an equivalent numerical aperture, the MRF polished asphere gives the
least amount of aberration both in the Thorlabs datasheet and in the estimated
S1 coefficient. However, from the datasheet alone we do not have any information
on the regularity or modulation of the wavefront error. For this, we can refer to
figure 5.17 to have a general idea of the wavefront error shape according to the
manufacturing and design process.
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5.3.3 Numerical aperture

The finite aspect of the lens provides a physical limit for the numerical aperture
that can be written, NAmax = arctan(a/f) where a is the clear aperture radius and
f the lens focal length. To maximize this limit, we can choose a large diameter lens
with short focal. However, in practice, mechanical limitations such as the minimum
distance from the gain to the lens mount while being able to still optically pump
our sample at Brewster angle or the minimum space required by the translation and
mount between the two lenses, put limits on those choices. As seen at the beginning
of this chapter, to have more than 99.9% power transmission through the lens for a
Gaussian spot of 5 µm on the gain, we must use a lens with at least NA > 0.14. This
result come from [Siegman 1986] by using the power transmission of a Gaussian
beam through a circular aperture of radius a formula: T = 1− e−2a2/ω2

. Thus, to
ensure good operation for spot size as small as, 5 µm we have to use lenses with
minimum 0.14 NA. With this limit set, the choice of focal length available becomes
quite large and one inch 50mm focal length lenses with NA = 0.2 are an adequate
option.

Figure 5.19: Point Spread Function (PSF) for a given aperture size without
aberration (blue) and with aberration (red). The blue PSF give the diffraction
limited and the 100% Strehl ratio, while the red one is the real PSF with a lower
Strehl ratio.

This criterion, only looks at the power transmission of the optical element, but
wavefront deformation from aberration can also dramatically reduce the achievable
spot size. This effect is even amplified by the intra-cavity nature of the optical
element, where phase deformation will strongly shape the resonating beam. To
investigate the phase aberration effects, we look at the Strehl ratio.
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136 5.3. Aberrations effects on self-imaging system

5.3.3.1 Strehl ratio

The Strelh ratio, first proposed by astronomer Karl Strelh [Strehl 1895] is
commonly used to define image quality in various optical systems through the
Maréchal criterion [Maréchal 1948]. It states that for a Strehl ratio of 0.8 or above,
we can consider the optical system to be diffraction limited, meaning that aberration
has close to no impact on the image size and quality.

The Strehl ratio is defined as the ratio from the max intensity of the real
system PSF (Point Spread Function) over the theoretical PSF without aberration
[Mahajan 1983]. The PSF being the image through the optical system of an
infinitesimally small point source. In signal processing terms, the impulse response
of the optical system. Figure 5.19 shows the two PSF used to define the ratio. The
aberration of the optical system tends to broaden the PSF and thus reduce its peak
intensity, leading to lower than 1 Strehl ratio.

5.3.3.2 Aperture limits for On-axis beam

In our case, we investigated the aberration effect of this criterion to have a
better picture of the NA limit of our system. Using a ray tracing software, we were
able to compute the Strehl ratio for different apertures in our system from 0 to the
full aperture given by the lenses size. Around 0.2 NA for 25.4mm diameter lenses
of 50mm focal.

Figure 5.20: Strehl ratio computation for two different lenses as a function of the
aperture, given as the marginal ray angle on the gain size. The blue curve is for
the Thorlabs AC-254-050 achromatic lens and the red curve is for the Thorlabs
AL-2550 aspherical lens. Both lens have a f = 50mm focal length.

Figure 5.20 shows the results for the achromatic AC254-50 lens (blue curve)
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and the aspheric AL2550 one (red curve).For both those lenses, we see a sharp
drop-off of the Strehl ratio the larger the aperture gets. However, despite being an
aspheric lens, the higher order aberration terms lead to a quicker cut-off. For a
5 µm Gaussian spot size with 0.067 rad divergence angle only the achromatic lens is
still considered diffraction limited while the wavefront modulation of the aspheric
one will lead to a large broadening of the spot size. This limits from the 0.8 Strehl
ratio criteria does not mean the laser cavity cannot stabilize larger diffracting spots.
However, it is a good approximation for when the transition between the on-axis
and off-axis emission occurs, since on-axis mode are no longer diffraction limited
and multiple round-trip in the system would lead to a large broadening.

5.4 Conclusion

In this chapter, we have studied the self-imaging 4-f optical cavity. We explained
why this optical system was ideal for 3D light structuration and localized structure
generation. Indeed, by design the optical system is telecentric with two conjugate
focal planes. This allows us to be in an extended transverse system where we can
have multi-axis stability. Looking at the round-trip matrix for such design, we can
see that the effective diffraction length of the simplified micro-cavity is tunable by
the longitudinal detuning from the self-imaging position. This in effects allows us
to reach a system with no diffraction (at the SI position) and high Fresnel number.
In this condition, the Fourier space phase transfer function (energy-momentum
dispersion diagram) should be flat, meaning that:

δϕ

δβ
= 0 and

δ2ϕ

δβ2
= 0 (5.20)

In this condition, we have reached the transverse degeneracy regime, where any
arbitrary wavefunction could be projected on any transverse mode-basis. However,
in reality, reaching this marginally stable point is impossible, and perturbative
effects becomes the main stabilizing factor. We studied two of them, one in real
space with a local effect on the EM field (thermal lensing) and another with a
non-local effect (spherical aberration).

Figure 5.21 synthesize the two stabilizing effects in a self-imaging cavity by
tracing the phase in real space (thermal lens) and in spatial frequency space (aber-
ration). The optical aberration limits the range of on-axis transverse wavevector
∆k compared to the SI position.

Thermal lensing both helps to stabilize paraxial optical modes and limit the
high degeneracy operating regions. The stronger thermal lensing is, the harder it
is to degenerate a large number of transverse modes. This can be explained by
the confining/waveguiding effect of this phenomenon, thus making it harder to
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Figure 5.21: Local and non-local phase potential from thermal lensing, cavity
detuning and optical aberration.

collapse all transverse resonances. For a cavity composed of lenses f1 = 20mm
and f5 = 15mm the transversally degenerate region for several degenerate modes
Ndege > 10 ranged from an effective round-trip length of B = 2 µm to B = 8 µm
corresponding to a thermal lensing of fth = 25mm to fth = 100mm. As a general
rule, having a thermal lens larger than the max focal length of the optical system
is important to be able to reach the degenerated state.

On the other hand, optical aberrations, are non-local effects that limit the
achievable flatness of the transverse Fourier phase profile. For a large numerical
aperture, the wavefront error leads to a spot size broadening, limiting the effective
numerical aperture of the optical system. Looking at the Strelh ratio, we can
quantify this limitation. For commercially available lenses, diffracted limited
design such as MRF polished lens or achromatic lens appears to be the least
limiting. Higher order aberration which modulates the optical system wavefront
error decreases significantly the lens quality. By carefully selecting the lens, we
can still design a system with a flat on-axis phase response. The spatial frequency
bandwidth is then not limited by the numerical aperture of the system (lens
diameter) but by the residual aberration shape.

Beyond this limit, the optical aberration, especially the spherical one, will
separate the stability diagram for the on-axis and off-axis modes (Gaussian with
tilted emission). This degeneracy lift is both limiting for high degeneracy operation
and useful in practice to estimate the SI position. In practice, we can also use the
conical-wave regime to estimate the spherical Seidel coefficient S1 for each cavity
configuration. The amplitude of this coefficient provides us information about
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the maximum NA bandwidth (∆β ∝ 1/|S1|) possible and the sign of the residual
diffraction (normal for S1 > 0 and anomalous for S1 < 0). Typically, for having
a sufficient bandwidth to support as small as 5 µm waist spot, |S1| < 0.1mm is
needed and with a positive sign to be compensated by non-linear self-focusing effect.
From the studied lenses, a combination of MRF and achromatic lenses are viable
options.

To conclude, the 4-f SI configuration is a good choice for light structuration, but
careful consideration must be taken in the choice of optics and pumping scheme.
A simple paraxial ABCD matrix stability analysis can be made to have a global
vision of the system behavior. However, in the degenerate region this model fails,
and a more complete model is needed. In the next part of this manuscript, we will
describe such physical model which will be used to understand linear and non-linear
behavior in the degenerate region.
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Part IV

Experimental results and analysis





Chapter 6

Analysis tools: Multi-harmonic

Schrödinger Non-linear like equation

For now, we have described the gain structure properties as well as the saturable
absorber. We design one of each with the goal of 3D light structuration and
spatially localized structure generation. For this, we also explored the relevant
properties of an optical cavity and their limits for large transverse extended area in a
self-imaging configuration. Now to complete our understanding and help us analyze
the experimental data, deriving a simple model encompassing the semiconductor
and cavity properties is essential.

Figure 6.1 schematize such a system, where a gain mirror is image with some
magnification through an optical system onto a saturable absorber mirror. Each
of those elements will impact the transverse wavefunction propagation. The local
effects from near-field (here the near field is defined as the gain or SESAM plane)
interaction with the active medium. It will affect both the phase (self-focusing,
thermal lensing) and the amplitude (localized losses, self-amplitude modulation) of
the wavefunction. While, the non-local effect is applied onto the Fourier (here also
defined as the Far field) space of the wavefunction. In turn, they will also change
the wavefunction through diffusion, diffraction, or aperture effects and deviation
from the ideal wavefront. As seen in chapter 1, describing this system in the SVE
and paraxial approximation will lead to an inhomogeneous traveling wave model.
In the following chapter, we will simplify this model to a single equation describing
the change of the transverse field per round-trip, following the same description
and assumption made for pulse propagation in time.
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Figure 6.1: Laser system, with the main physical operator playing a role in the
transverse structuration of the laser beam.

6.1 Derivation of multi-harmonic Schrödinger like

non-linear equation

For a long time, temporal dynamics inside a laser cavity have been studied using
both simple rate equation and more complex Schrödinger like model. Furthermore,
the field of passive mode-locking using saturable absorber has made use of a discrete
model of the different cavity element to derive a master equation for individual
pulse propagation [Haus 1975a, Haus 1975c, New 1974]. For this, they used the
Fourier space to describe the pulse behavior with group delay dispersion and the
pulse shape with third order dispersion [Keller 2021]. However, from a simply
mathematical standpoint, dispersion in time is equivalent to diffraction in space
and higher order dispersion to higher order diffraction. Based on this simple
analogy, we aim to establish a multi-harmonic Schrödinger like non-linear equation
to analyze a self-imaging laser cavity.
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6.1.1 Simplified system and hypothesis

To follow the same kind of derivation as for passive mode-locked pulse propaga-
tion equation, first some assumptions and approximations needs to be made.

• We make the slowly varying envelope approximation (SVEA) on the electro-
magnetic field

−→
E propagating as a continuous wave (mono-frequency). We

also work in the paraxial approximation, where the wave propagates in the
−→z direction. From those approximations, we can say that the transverse field
profile variation per round-trip is small, while the CW regime allows us to
neglect the time dependency.

−→
E (x, y, z, t) = A(x, y, z).ekzz−ω0t.−→e (6.1)

From this, we also defined the spatial spectrum as the 2D Fourier transform
following:

Ã(kx, ky, z) =

ˆ ˆ

A(x, y, z).e−i(kxx+kyy) dx dy (6.2)

and its inverse:

A(x, y, z) =

ˆ ˆ

Ã(kx, ky, z).e
i(kxx+kyy) dkx dky (6.3)

where, kx,y is the transverse component of the wavevector of magnitude
k20 = k2z + k2x + k2y. They can be thought of as the spatial frequency and can
be related to the Fraunhofer divergence angle by:

kx,y = k0 sin(θx,y) (6.4)

The field in real space can be though of as the superposition of an infinity of
plane waves, each travelling at a different angle θ from the z direction.

• Our optical system is in self-imaging condition or close to it. Thus, the object
plane (in this case the gain mirror) is imaged onto the image plane (here the
SESAM) with only a transverse scaling factor. The reciprocal is also assumed
true. From this assumption, we can simplify the system by combining in the
same plane the gain and SESAM effects r(x) = g(x) + q(x ∗M). Where M
is the magnification from the gain plane to the SESAM plane.
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146 6.1. Multi-harmonic Schrödinger like non-linear equation

• The saturable absorber and gain medium are assumed to be instantaneous to
the incident field. The round trip modification of the field through them is
assumed to be small (less than 20% amplitude gain or loss). The exponential
nature of gain and loss on the field can be expended in first order.

• The optical system round-trip transfer function can be written on the field
spatial spectrum. Its effect per round-trip is also small enough (less than
20% amplitude filtering and less than 2π phase modification) to be linearized
up to fourth order.

With this, we can schematize the field propagation for a round-trip inside our
cavity, following figure 6.2. The field A0(x, y, z) is the starting field just outside
the active medium. A1(x, y, z) is the field after almost one round-trip around the
optical cavity just before the active medium. The field A3(x, y, z) is then the field
after a complete round-trip.

Active Medium

Optical system

A1

A2

A3

d/2e/2

Figure 6.2: Schematize propagation of the field inside the laser system.

6.1.2 Master equation

The first step is to connect the field A1 and A2. For that, we can use the Fourier
transform Ã1(kx, ky, z) of field A1(x, y, z) and the complex pupil function H̃(kx, ky)
of the imaging system. It follows from Fourier optics and the diffraction integral
that we can write:

Ã2(kx, ky, z) = H̃(kx, ky).Ã1(kx, ky, z − d) (6.5)

The function H̃(kx, ky) corresponds to the Fourier transform of the impulse
response of the system. In frequency space, it will describe the bandwidth limits
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by the filtering of the spectrum amplitude. And the phase transfer function, where
ϕ(k) = k0.W (k) is the aberrated phase induced by the wavefront error of the
optical system:

H̃(kx, ky) = P (kx, ky).e
−iϕ(kx,ky) (6.6)

Since we assume our optical system to be in self-imaging, all misalignment
from the tuning of the SESAM and lenses position can be considered as defocus
aberration. The same goes for higher-order terms introduced from any deviation
with the ideal wavefront, such as spherical aberration. For simplicity’s sake, we
will consider only even order terms. This assumes axial symmetry in the system,
and thus no Tilt (first order) or coma (third order) are present. Spectral filtering
is produced by the numerical aperture limit of the optical system. In this case,
no filtering occurs below this limit and 100% after (Top hat shape). This can be
approximate either by a super Gaussian of waist Γ = k0NA. Thus, we can write
using β = kx,y:

H̃(β) = exp
[

−i
(

D∗
0 +D∗

2.β
2 +D∗

4.β
4 + . . .

)]

(6.7)

with the real part of the D2n coefficient are:

D2n =
1

2k0n!

δ2nW (β)

δβ2n
(6.8)

It described the diffraction coefficient of the optical system and is connected
to the aberration coefficient of the wavefront error function. The coefficient D0

represents a constant phase factor across the field, akin to a propagation distance
already taken into account into e and d. It will be ignored for the next step.
The imaginary part of D∗

n describes the diffusion coefficient and is related to the
amplitude filtering of the spatial spectrum. For the rest we will assume P (β) as
a super-Gaussian of fourth order, thus only the fourth order term will possess
an imaginary part such that Im (D∗

4) = 1/Γ4. For the next part, we limit the
expansion to the fourth order term to consider only spherical aberration. By using
the property of an inverse Fourier transform stating δ

δx
ô ikx and our previous

assumption, we then have the relation:

A2(x, y, z) = exp

[

i

(

−D2∇2
§ + (D4 − i

1

Γ4
)∇4

§

)]

A1(x, y, z − d) (6.9)

where ∇§ = δ
δx

+ δ
δy

is the transverse differential operator and exp (∇2
§ +∇4

§)
has to be interpreted as an operator describing the exponential expansion in iβ of
H(β) as long as we stay in the first Fresnel zone (ϕ < 2π)[Haus 1975c].

When the field passes in the thin active medium (delta like) the envelope
becomes:
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148 6.1. Multi-harmonic Schrödinger like non-linear equation

A3(x, y, z) = er(x,y,|A|2).A2(x, y, z − e) (6.10)

where r(x, y, |A|2) = V (x, y) + R(x, y, |A|2) is the active medium coefficient
encompassing local potential effect V (x, y) from the matter-light interaction and/or
localized non-saturable losses and the reactive part R(x, y, |A|2) describing the
saturable gain and losses. By assuming the spectral bandwidth in equation 6.7 to
be sufficiently narrow, the phase effects small in front of 2π and the variation of the
field after passing in the active medium to be small, we can expand the exponential
to first order.

A3(x, y, z) =

[

1 + i

(

−D2∇2
§ +

(

D4 − i
1

Γ4

)

∇4
§

)

+ r(x, y, |A|2)
]

× A1(x, y, z − LRT )

(6.11)

where we have replaced all intermediate fields by A1 and set LRT = e+ d as the
optical length of the optical cavity. Since for a resonating wavefunction the field
must not change after a round-trip, we write A3(x, y, z) = A1(x, y, z − LRT ), and
we expend A1 to first order in LRT . Lastly, for better understanding, we transform
the variable z in a slow time T = z/c and TRT = LRT/c. We can finally write the
equation as:

TRT
δA(x, y, T )

δT
=
[

iD∗
4∇4

§ − iD2∇2
§ + V ∗(x, y) +R(x, y, |A|2)

]

A(x, y, T )

+ F (x, y, T )
(6.12)

This equation describes the small change in the transverse envelope of the
electromagnetic field after each round-trip, where D∗

4 is the complex coefficient
that describes both fourth order diffraction from spherical aberration and diffusion
from spectral filtering. It follows the same derivation as the Haus master equation
describing a mode-locked pulse, and is quite similar to it if the transverse coordinate
were replaced by the fast time of the pulse. One added element is the bi-Laplacian
operator ∇4

§ coming from the expansion of the spectral phase transfer function to
the fourth order instead of the commonly used second one. In addition, we take
into account the quantum nature of light (spontaneous quantum noise), by adding
a stochastic Langevin force F (x, y, t) (spatio-temporal source) as an external source
in a semi-classical model of E-field, with the well-known properties:

< F (x, y, T ) >= 0 (6.13)

< F (x, y, T )F (x′, y′, t′) >= DEδxx′δyy′δ(T − T ′) (6.14)
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where DE, homogenous to s−2 is the diffusion coefficient (and variance) of the
delta correlated quantum process. This coefficient used in simulations is DE = 10−4

expressed in normalized variables (×T 2/Is). We now need to relate all functions
and coefficients to the physical properties of the system.

6.2 Physical interpretation of the operators

6.2.1 Non-local operator

The non-local operators are the ones coming from eq 6.7 and are local to the
spatial spectrum of the field. There are best described in the Fourier coordinate
space (Far field). All set of coordinates (x, y) play a part in all spatial frequency,
thus any local effect on Fourier space is applied to all real space, making it a
non-local operation.

In equation 6.12 this is the case for both Laplacian operators. In space, their
effects are to broaden the field for both the classic Laplacian ∇2

§ and the bi-
Laplacian ∇4

§. For the normal Laplacian (second order) those effects are called
diffraction when the cause of the broadening is the spectral phase, and called
diffusion when it is the spectral amplitude. For the bi-Laplacian, we simply called
them fourth order diffraction/diffusion effects. A parallel can be made with time
when the second order phase effects are called chromatic dispersion or group delay
dispersion (GDD) and spectral filtering for amplitude effect.

We now want to express both coefficient D2 and D∗
4 in terms of physicals

parameters of the optical system. Looking back at eq 6.6 we have defined the
phase of the pupil function as the wavefront error of the optical system. We also
considered any misalignment δz to be considered as aberration of the self-imaging
system. We can then relate both D2 and the real part of D∗

4 to the effective length
of the optical cavity and the spherical Seidel coefficient, respectively.

6.2.1.1 Diffraction coefficient

Looking at the free space propagating transfer function of eq 1.12 we can equate
with the β2 term of equation 6.7 giving us:

D2 =
−2δz

2k0
=

−B
2k0

(6.15)

where 2δz = B corresponds exactly to the effective length of our system found
using the ABCD matrix formulation. We can also verify that fact, by writing the
Fourier transform of the generalized Fresnel transforms with ABCD coefficients
[Palma 1997]:
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150 6.2. Physical interpretation of the operators

Ũ(β, z) =

√

iλA

C
exp

(

−i A

2k0C
β2

)

¹
√
AŨ(Aβ, z − d) exp

(

−iAB
2k0

β2

)

(6.16)

we find D2 =
AB
2k0

which reduce to the same as eq 6.15 in our case since for the
round-trip matrix A = 1. The detuning δz of the cavity introduces a parabolic
transfer phase profile corresponding to simple free space propagation. We call D2

the diffraction coefficient, and it can take positive (normal diffraction) or negative
(anomalous diffraction) values depending on the cavity detuning δz. To remain in
the first Fresnel zone, the effect of D2 must be small compared to 2π. Thus, we
can set the condition:

|B| < 4π
k0
β2

(6.17)

thus for a small spot of 0.2 numerical aperture, the detuning must be smaller
than 53 µm and for 0.1 numerical aperture this goes up to 212 µm. The assumption
made means that the equation is valid only for close to self-imaging position.

6.2.1.2 Fourth order diffraction coefficient

The real part of D∗
4 is the fourth order diffraction coefficient arising from

spherical aberration in the transfer phase function. As with D2, we can equate it
to some physical parameter using this time the wavefront error equation in spatial
frequency space. Limiting this to only spherical aberration, we can do the Fourier
transform of equation 5.11 in frequency space as[Goodman 2005]:

k0W (β) =
S1f

4

8a4k30
β4 (6.18)

where we have used the denormalized pupil coordinate x = aξ and the transform
to frequency space using x = λfβ/2π following Goodman. The a parameter
represents the pupil radius and f is the focal length of the reference sphere
corresponding to the pupil position from the image plane. We can now find the
real part of the fourth order coefficient:

D4 = − S1f
4

8a4k30
(6.19)

It is clear from this equation that the fourth order diffraction depends solely on
the spherical aberration of the round-trip optical system through Seidel spherical
coefficient S1. Contrary to second order diffraction, D4 is not tunable, except
by limiting the effective pupil size (thus tuning a). However, this operation also
reduces the NA of the optical system.
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The imaginary part of D∗
4 was found previously by approximating the top hat

filtering of the optical system (from the lens clear aperture) to a super-Gaussian
of fourth order. However, a Taylor expansion could be made to approximate any
pupil shape. It has for effect to filter the amplitude of the spatial spectrum, thus
limiting the system bandwidth.

6.2.1.3 Combined diffraction effects

Those two types of diffraction are the non-local operators affecting our system.
They both will tend to broaden the beam size in real space. In figure 6.3 we show
the phase transfer function of the optical system for different tuning of B and a
fixed Seidel coefficient. To remain in the first Fresnel zone, the combine effect of
D2 and D4 must be smaller than 2π or λ.

Figure 6.3: Example of the transfer phase function for B = −50µm, B = 0 and
B = 100µm and with S11 = 5µm.

For an ideal self-imaging system, the phase transfer function should be null and
does not impact the EM field. In the case of B = 0 µm (at perfect SI position) only
the effect of spherical aberration remains, where large variation occurs at large
angles. This is the limiting effect of the numerical aperture discussed earlier. Small
bandwidth spot (large spot in the near field) sees almost no effects, but larger
bandwidth spots (small in the near field) start to see large phase variation, leading
to their broadening in near field. However, the model assumptions are only valid
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152 6.2. Physical interpretation of the operators

for small enough angle. For the case in figure 6.3 for a numerical aperture over
0.25 we start to go out of the first Fresnel zone.

For large detuning from SI (i.e., for B > 100 µm), the spherical aberration
effect is small compared to diffraction effect. This is because for large values of
B, the parabolic phase variation from diffraction becomes strong in front of the
spherical aberration.The case of strong diffraction can also be explained by the
ABCD matrix, and as seen earlier, is true in our equation only for a small numerical
aperture.

And lastly, in the case of anomalous diffraction (for positive S1, normal dif-
fraction for S1 < 0), the opposite sign variation of the β2 and β4 term leads to a
special behavior. Where in the center, small bandwidth spots will see anomalous
diffraction and small bandwidth spots with angle emission see normal diffraction.
This is another view of the conical-wave cavity, where, depending on the stability
region, we could see on-axis emission or conical-wave.

6.2.2 Local operators

The local operators are coming from the light-matter interaction of the EM field
in the active medium. Contrary to the non-local operator, they are best described
in the real space coordinate system (Near Field). Their effect, in this case, can be
localized in space, and losses at the (x, y) point does not imply losses at (x1, y2).
In equation 6.12 we identified the two main components as the potential V ∗(x, y)
and the reaction R(x, y, |A|2). This distinction was made to separate static effect
placed in the potential and instantaneous non-linear effect placed into the reaction.

6.2.2.1 Complex potential

The static part of the local effect is the complex potential V ∗(x, y). Its complex
nature means that it can affect both the phase and the amplitude of the propagating
field. The first static effect of the active medium interaction that we saw in earlier
chapters was thermal lensing. Amplitude effect could come from spatially localized
losses, such as the chromium mask of section § 3.4.1. We can then write:

V ∗(x, y) = −Llocal(x, y) + iΦlocal(x, y) (6.20)

where the real part Llocal(x, y) is a function describing local losses from unsat-
urable losses or chromium masks or defects. The imaginary part regroups all the
potential phase effects. In Gaussian pumping, thermal lensing can be approxim-
ated by a Lorentzian using the thermal simulation described in § 2.4.2 or further
expanded into a parabolic phase profile like the ABCD matrix. In the end, we have
in the parabolic approximation:
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Φlocal(x, y) ∼= −k0
2
(Cthx

x2 + Cthy
y2) (6.21)

where Cthx, y
is the astigmatic equivalent vergence from the thermal effects,

and it must be small enough in front of the spot size to warrant the exponential
expansion assumption. As for the non-local operator, we can compare this effect
to the generalized Fresnel transforms with ABCD coefficient, but this time in real
space we have:

U(x, z) = exp

(

−ik0C
2A

x2
)

× F−1

[√
AŨ(Aβ, z − d) exp

(

−iAB
2k0

β2

)]

(6.22)

From this equation, we can see that after we apply the transfer function in the
Fourier space, we apply another parabolic potential, which corresponds to the effect
of the parameter C in an ABCD matrix. In the SI position, we have A = 1. We see
that in fact, not only the thermal lens but all other elements in the optical system
that change the C parameter can be measured with a parabolic imaginary potential.
More generally, any phase profile, such as an accurate thermal lens or manufactured
phase gradient from metasurfaces could be inserted into this potential.

Llocal(x, y) = Qsat + fmsk(x, y) (6.23)

Secondly, the real part −Llocal(x, y) of the complex potential will affect the
wavefunction amplitude. The first component is the saturated losses Qsat and then
the local effect from the chromium mask fmsk(x, y). If all other effects are small,
mainly very low diffraction, the near field filtering can lead to a waveguiding like
effect confining the field. However, this pushes the limit of our previous assumption,
where the amplitude effect must be small in front of 1 to warrant the exponential
linearization. Indeed, chromium absorption for small thickness still leads to around
50% amplitude losses.

6.2.2.2 Complex reaction

The final operator for the local effect is the reaction. It encompasses both
the gain and the saturable losses, which are non-linear effects. As stated in the
assumptions/hypothesis, we will assume that they are instantaneous:

R∗(x, y, |A(x, y)|2) =(1− iα)

2
G(x, y, |A(x, y)|2)

− (1− iβ)

2
Q(Mx,My, |A(Mx,My)|2)

(6.24)
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where both gain G and saturable losses Q can be written following the saturation
equation:

G(x, y, |A|2) = G0(x, y)

1 + |A(x,y)|2
s

(6.25)

Q(x, y, |A|2) = Q0

1 + |A(Mx,My)|2 (6.26)

The gainG0(x, y) represent the pumped region with Gaussian shape for Gaussian
pumping or top hat shape for top hat pumping. The saturable absorption Q0

is homogeneous along the SESAM plane, but is locally saturated by the field
intensity |A(Mx,My)|2. Here we have taken into account the possible scale factor
M from the magnification of the optical system. Finally, the saturation parameter
s was added to the gain equation because the field intensity was normalized to the
saturation intensity of the SESAM. We can express it following:

s =
ΓQ.τQ

M2ΓG.τG
(6.27)

where M is the field magnification from gain to SESAM, ΓQ,G are the micro-
cavity enhancement factor of the SESAM and gain structure and τQ,G the exited
level lifetime.

(a) (b)

Figure 6.4: Amplitude and phase effect of the instantaneous non-linear reaction
for G0 = 0.1, Q0 = 0.13, α = 4, β = −1, s = 5 and a Gaussian spot of ω0 = 5 µm
waist and I0 = 5Is. (a) Amplitude effect with (left) gain and saturable losses and
(right) Gaussian spot intensity (b) Phase effect with (left) gain, saturable absorber
and their sum and (right) the Gaussian spot intensity.

Equation 6.24 also considers the phase amplitude coupling effect of the semi-
conductor medium for the gain α and for the SESAM β. Thanks to those effects,
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the resonating field will experience positive self-amplitude modulation (SAM>0)
from the gain and the SESAM by opening a net positive gain window. The Gain
saturation will generate positive self-phase modulation (SPM>0) that will dominate
the SPM from the SESAM, as long as the SESAM is not too saturated. Thus, we
should not use an S factor too large in front of 1 to exploit SPM>0. Similarly to
passively mode-locked lasers, the saturable absorption will open a net gain window
around a spatial pulse, and the SPM effect could lead to soliton mode-locking by
balancing diffraction effects. For normal diffraction (B > 0 or D2 < 0) the SPM
must be positive to compensate the pulse broadening and the reverse for anomalous
diffraction (B < 0 or D2 > 0). With our optical cavity, the diffraction is a tunable
parameter, allowing us to reach the preferred regime. Figure 6.4 summarizes the
non-linear saturation effect. On the left, we see the net gain window (SAM) opened
by a Gaussian spot of 5 times the saturation intensity of the SESAM. On the right,
we see the residual self-focusing (SPM > 0) effect from the Gain saturation (α = 4
and β = −1

However, those simple models for Gain and Saturable losses are not considering
the effect of carrier diffusion. They’ll lead to a larger coherence range of the local
saturation, which could prevent a spatially stable localized structure. We saw that
the SESAM provides most of the carrier diffusion. A different spatio-temporal
differential equation for the absorption should be added. In the steady-state with
instantaneous media (compare to cavity photon lifetime), we can write:

Q(x, y, |A|2) = Q0 + L2
d∇2Q(x, y, |A|2)

1 + |A(Mx,My)|2 (6.28)

where the Laplacian operator takes carrier diffusion into account with the
diffusion length Ld. In our case, the long photon lifetime of the large cavity length
in front of matter recovery time, sets our system in class A dynamics where we can
consider the saturation instantaneous compared to field formation. However, for
class B laser dynamics (i.e., fast photon lifetime compared to matter lifetime) the
matter equation is time dependent and the field formation occurs before the full
gain and absorption saturation. The delay in saturation will lead to more complex
dynamics and can even prevent from any pattern formation.

6.3 Eigenvalue problem : Bi-Harmonic Helmholtz

like equation

We can also take advantage of the master equation to express an eigenvalue
problem, allowing us to compute the eigenvector and eigenvalue of a close to
degeneracy. First, we must assume a stationary system where the transverse field
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does not change with time:

δA(x, y, T )

δT
= 0 (6.29)

Secondly, we assume no non-linearity, and thus we remove the |A|2 dependency
of the Gain and Absorption. However, we keep the transversal dependent part of
the Gain. The complex reaction thus becomes:

R(x, y, |A|2) = (1− iα)G0(x, y)− (1− iβ)Q0 (6.30)

Since we remove the saturation, the phase amplitude coupling parameter β for
the absorption will only create a constant phase shift, while for the gain we will
have a diverging “electronic lens” effect. In the laser system, this effect will be
attenuated and even reversed by the gain saturation.

In the end, we have the following Eigenvalue problem:

[

iD∗
4∇4

§ − iD2∇2
§ + V ∗(x, y) + (1− iα)G0(x, y)−Q0

]

A(x, y) = ΩA(x, y) (6.31)

where D∗
4 and D2 are the previously defined diffraction coefficient. V ∗(x, y) is

the complex local potential describing the thermal lens profile (Lorentzian profile),
the residual cavity C parameter (parabolic profile) and localized losses. While, only
the net gain profile remains from the complex reaction. From this equation, we can
find the stable wavefunction A(x, y) (transverse mode basis) of the linear optical
system. Those will be the mode basis with which will be generating localized
structure. The real part of the complex eigenvalue Ω is equivalent to the gain of
the eigenfunction. It tells us which function is more likely to appear first. The
imaginary part carries the constant phase shift of the eigenfunction, which is
equivalent to a frequency shift (Gouy phase shift) of each transverse mode. It can
be used to evaluate the number of degenerated transverse modes. It is analogous
to the energy-momentum dispersion diagram where the shift is proportional to
the resonant frequency (i.e., the energy) and the mode number to a transverse
wavevector (i.e., momentum).

6.4 Conclusion

In this chapter, we derived an equation describing the transverse field variation
per round-trip for an optical system close to self-imaging. This derivation was done
following a similar treatment as for temporal propagation of mode-locked pulse
inside a laser system, but for the transverse profile of a spatial pulse. From this
equation, we found both local and non-local operators. The entire system can be
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summarized as a small micro-cavity with a complex transfer function in real space
and Fourier space (see figure 6.5).

x

z

kx

z

x

A

kx

A

Di raction / Di usion

D2, D4
*

Potential + NL

fth, Masks, G, Q

Figure 6.5: Summary schematics of the equivalent laser cavity modelled by the
developed equation. Local and Non-local linear potential are both displayed.

The non-local operators are the second order diffraction and the fourth order
diffraction. The first one, originates from the small cavities detuning of the self-
imaging position. The second originates from spherical aberration of the optical
elements. This means that D2 is tunable with the SESAM plane position (δz
detuning) and D4 is fixed by the choice of the optics. However, to remain in
the approximation validity (first Fresnel zone) both the detuning and spherical
aberration must be small enough in front of 2π. For example, taking a Gaussian
spot of 5 µm waist and sin(θ) = 0.07 of Gaussian numerical aperture, the tuning
of D2 is limited to |δz| < 217 µm to remain in the correct approximation. At the
perfect SI position (D2 = 0) one can define a numerical aperture limit from the
spherical aberration following the small phase perturbation D4β

4 < 2π:

sin(θ) <
1

k0
4

√

2π

|D4|
(6.32)

For the same Gaussian spot, the Seidel coefficient needs to follow |S1| < 1.4mm
to respect the approximation. The computation was done with a lens of 50mm
focal length and 25.4mm optical diameter. As seen in the previous chapter, those
limits are well above the targeted amount of spherical aberration |S1| < 0.1mm
and the degenerate range.

On the other hand, the local operators came from the light-matter interaction of
the field with the active medium and can be separated into two components. The
first one is the complex potential, consisting of static effects such as thermal lensing
or localized losses from chromium metasurfaces. The second is the instantaneous
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Non-Local effect
Parameter Effect on Typical value Tunable

δz D2 < 100 µm Yes -
S1 D4 < 0.1mm No Design

Local effect
Parameter Effect on Typical value Tunable

fth Φlocal(x, y) ∼ 50mm Yes/No Design + Pump
s SPM ∼ 5 No Design
α SPM ∼ 4 No Technology
β SPM ∼ −1 No Technology
Q0 SAM/SPM ∼ 10% No Design
G0 SAM/SPM ∼ 10% No Design

Table 6.1: Summary of the Local and Non-local parameters of our system and their
tunability.

non-linear reaction from the optical gain and saturable losses. As for passive mode-
locking, they can provide the necessary phenomenon to obtain spatial localization
(self-phase and self-amplitude modulation). The reactive part of the local effects
are primarily affected by the active medium design (max gain, max saturable
absorption, saturation parameters) and in our case are small to allow linearization.
While for the complex potential, the thermal lens is also dependent on the optical
pump shape. For the local phase potential, the first Fresnel zone limit (ϕ < 2π) is
reached for a 5 µm waist Gaussian beam when the thermal lens is small fth < 15 µm.
In practice, we aim to reduce the thermal lens impact, and thus we will never reach
this limit. However, the amplitude part of the complex potential coming from the
chromium mask may start to approach the limit of the approximation. Indeed,
for small chromium thickness (e ∼ 5 nm) we can have up to 50% amplitude loss,
meaning a 20% error on the approximation.

Table 6.1 summarized the important parameters of the system and their order of
magnitude for a typical 4-f optical system and the V0450 1/2-VCSEL gain and V0598
SESAM. For cases where all parameters agree with assumption/approximation, it
is possible to directly numerically solve equation 6.12. Otherwise, outside those
limits, we can keep the exact formulation and separate the equation into a split-step
method where local effects are calculated in real space and non-local effects in
Fourier space. The advantage of this model compared to the much simpler ABCD
matrix approximation is its ability to give us insight into a self-imaging laser
transverse dynamic inside the targeted degeneracy range. It will be used for the
rest of the manuscript to analyze and predict certain behavior.
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6.4.1 Passive Eigenfunctions

(a) (b)

Figure 6.6: E-k Dispersion diagram of the non-local effect for static real space
confining phase potential (C < 0). a) On axis stability for large normal (solid
curve) diffraction and for only negative fourth order diffraction (dashed curve).
b) Off-axis stability for anomalous diffraction at the position of zero first order
derivative. Locally, the field sees normal diffraction.

From the non-local operator and the transverse E-k dispersion diagram, we can
have insight into the passive wavefunction of the system. For example, figure 6.6
shows that the wavefunction would be stable in the negative curvature region for
a confining static potential with C < 0 or positive thermal lensing in near field.
The reverse is also true, for C > 0 the wavefunction would be stable in the positive
curvature region. From the quantum-mechanical analogy standpoint, it would
correspond to a particle of positive mass (C < 0) or negative mass (C > 0).

Thus, for normal diffraction and confining static real space potential stability
should be on axis. Depending on the amount and sign of the fourth order diffraction
coefficient (i.e., spherical aberration) we also find an off-axis stability region. For
C < 0, D4 < 0 (S1 > 0) and normal diffraction D2 < 0 the stability remains on-axis
but for anomalous diffraction we find an off-axis stability region. The emission
angle corresponds to δϕ

δt
= 0 where locally the curvature is still negative, thus

equivalent to normal diffraction. This regime is the conical-wave cavity region, and
we find the same conditions as for detail in the previous chapter with the modified
ABCD matrix stability.
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(a) (b)

Figure 6.7: E-k Dispersion diagram of the non-local effect for NL localization.
A broad (∆r × 10) flat potential was assumed in real space. a) For the ideal
case, D2 = D4 = 0 the whole spatial bandwidth is available and D2 tunable to
compensate the SPM. b) For the realistic case, D4 is fixed by the optical system
aberration. The NL localization is only possible for D4 < 0 and still small enough
to allow for a large spatial bandwidth. For the D4 > 0 on axis, compensation of
SPM is not possible.

6.4.2 Non-linear localization

The reactive parameters are important to achieve non-linear structuration of
the transverse field. Indeed, the Gain and SESAM will provide SPM an SAM of
the field. SAM is positive thanks to the net gain windows opened by the SESAM,
while the SPM is positive through self-focusing by the gain saturation. In order to
compensate for its effect, the diffraction must be normal, meaning that the effective
diffraction comprised of both second and fourth order terms Deff

2 = D2 +D4β
2

must be negative. The condition can be expressed as:

∆ϕSPM ∼ −Deff
2 ∆β2 with ∆β ∼ 1/∆r (6.33)

where the transverse bandwidth ∆β is inversely proportional to size in real space.
With ∆ϕSPM f 0.1 and D2 being tunable to zero, the remaining diffraction effect
is coming from the spherical aberration. To have normal effective diffraction for a
real space size around ∆r ∼ 5− 10 µm, the condition on fourth order diffraction
becomes −50 µm4 f D4 j 10 µm4. Figure 6.7 displays the non-local transverse
phase dispersion diagram for the ideal case D2 = 0 and D4 = 0 and the more
realistic case with D4 ̸= 0. The non-linear spatially localized appears only for
normal effective diffraction when the bandwidth is sufficient. In real space, a broad,
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flat potential of more than times the non-linear structure size was assumed.
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Chapter 7

Non-linear self-imaging laser cavity

modes topology

This chapter will present the experimental results obtained with a self-imaging
laser based on a 1/2-VCSEL Gain mirror and a saturable absorber. All the results
presented have been done using the 4-f cavity system. This system allows us to
reach a low diffraction regime (self-imaging) while keeping a large Fresnel ratio for
the broad transverse area condition.

7.1 Experimental set-up

The figure 7.1 describes the full set-up used during this work. The 4-f laser
system is composed of the previously described 1/2-VCSEL, two intra-cavity
lenses and a SESAM. The lenses L1 and L2 can be chosen from either large
numerical aperture aspheric lenses (Thorlabs CNC polished or MRF polished for
lower aberration) or achromatic lenses. The choice is made to achieve the correct
magnification while reducing the impact of higher-order diffraction. The laser
cavity was folded using a short pass dichroic mirror (Thorlabs DMSP102B) with
high reflectivity in the laser wavelength (>99% at 1064 nm) and still permit the
transmission of both the pump for the gain (at 808 nm) and the injection for the
SESAM (at 980 nm).

An alignment protocol was developed to correctly place each element of the
cavity. The optical axis was defined using a “green” laser diode. Alignment was
made by matching the reflection on each optical element’s surface to the optical
axis and by a repeating cycle of translation and tilting of the lenses. Both lenses
were placed on a micro-translation stage to finely adjust each distance during the
alignment process. The SESAM was placed on a three axis translation stage with
differential adjusters and a micro-metric resolution coupled to a theta/phi gimbals.
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It was the last element to align and was used to finely tune the system diffraction,
thus the higher translation resolution.

out
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Figure 7.1: Full set up with the 4-f laser system, the pumps, and the external
detection system. LD (Laser Diode), D (Dichroic mirror), M (Mirror), L-AC
(Achromatic lens), L-AS (Aspheric lens), BS (Beam splitter), PD (Photodiode).

7.1.1 Instrumentation

To fully characterize this laser system and understand its different modes family
and behavior, we will need to monitor several key aspects of the laser emission.
The folded 4-f laser system allows for two outputs from the dichroic mirror, and one
from the mirror/SESAM (with small transmission ∼ 1%). From those possibilities,
only two will be used to monitor the laser system.

The main branch is coming from the dichroic mirror output, and two CCD
cameras are used to monitor the laser profile. The images produced by the CCD
camera are intensity time average profile. One camera is dedicated for imaging
the gain plane that we call the Near-Field (NF). The other is to image the Fourier
transform of the NF that we call the Far-Field (FF). Using a beam splitter, we can
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also inject the residual power into an optical spectrometer using a 600 line/mm
grating to achieve 0.034 nm spectral resolution on the first order. Our cavity being
usually long (from 100 to 200 mm with 0.005 to 0.003 nm free spectral range), we
cannot resolve individual cavity modes but only the spectral envelope.

We also replace the CCD camera measuring the NF or the FF by a wavefront
sensor (Phasics SID4). It allowed us to also have information about the transverse
phase profile of the emitted laser beam.

The secondary branch from the SESAM output is mainly used to either measure
the average output power on a broad area photodiode (Thorlabs PM100D with PD
S120C) or to look at the relative intensity noise (RIN) in the RF domain using
a fast photodiode (PDA8GS) combined with RF spectrum analyzer (Rohde &
Schwarz FSV 10Hz to 30GHz).

7.1.2 Pumping profiles

The 1/2-VCSEL can be pumped either by a single mode laser diode (Pump
1: LD808-SE500) or by a large core fiber coupled laser diode array (Pump 2:
UNIQUE MODE UM8K/200/20). Both of them emitting at 808 nm. Pump 1 is
placed into an in-house module with a half-wave plate and refocused onto the gain
mirror at the Brewster angle. This angle allows us to maximize transmission into
the semiconductor and to circularize the Gaussian profile. Figure 7.2 shows the
resulting 2D intensity profile of the spontaneous emission from pump 1 and the
horizontal (X) and vertical (Y) cuts of the profile. The resulting pumped area is a
Gaussian of 52 µm waist with good circularity.

(a) (b)

Figure 7.2: (a) 2D intensity profile of the Gaussian pump on the 1/2-VCSEL. (b)
1D cut in X and Y.
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Pump 2 is injected into the 1/2-VCSEL at normal incidence, using the same
path as for detection. To not block the detection path, a long-pass dichroic mirror
(D2) is used reflecting the pump but letting through the laser, while the short-pass
dichroic mirror (D1) is used for the reverse effect in the cavity. This pump used the
cavity lens L1 to refocus the pump beam onto the gain mirror. The fiber core of
pump 2 being 200 µm diameter, a similar focal than L1 must be used to collimate
the pump beam to have a 200 µm focus spot onto the gain mirror. Figure 7.3 shows
the resulting 2D intensity profile of the spontaneous emission from pump 2 with L1
f = 25mm and the collimation lens fc = 30mm. On the X/Y-cuts, we measured
the FWHM at 170 µm and around 10% residual modulation of the top-hat flatness.
The top hat profile comes from the multi-modal operation of the fiber, leading to a
refocus top hat profile.

(a) (b)

Figure 7.3: (a) 2D intensity profile of the top hat pump profile on the 1/2-VCSEL.
(b) 1D cut in X and Y.

Lastly, a 980 nm fiber grating stabilized laser diode (3SP Technologies 2000CHP)
was used to locally inject the SESAM and giving us the ability to locally saturate
the losses. The same technics then with pump 2 was used to focus a small spot on
the SESAM, this time using lens L2. In this case, the fiber used was mono-mode
with a core of 6 µm. To have the same spot size or smaller on the SESAM, the
same focal or smaller than L2 must be used. In our case, the smaller the spot
is, the better to localize the saturation. However, we have seen in § 3.3.2.2 that
the diffusion length of the SESAM is around, 10 µm thus a target spot of 3 µm is
sufficient. So, the collimator must always be half or less the focal length of L2.
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7.2 Study of the spatial morphology in a 4-f self-

imaging laser

We start to explore the typical transverse solution of our system, and it’s
dependence on the controllable parameters (longitudinal detuning, thermal lensing,
chromium masks) to classify the different types of emission. From this, we will be
able to define a target area for the non-linear structuration of light. We can first
define the two types of spatial emission encountered as:

• Spherical wave with an emission on the cavity axis. Meaning the main
propagating wave-vector as no transverse component and is positioned at the
zero spatial-frequency point, thus HG or LG mode basis.

• Conical-wave with an angle of emission compared to the cavity axis. We thus
have either two contra-propagative wave-vector with a transverse component
and not positioned on the zero spatial-frequency point, or a multitude of
contra-propagative off-axis waves forming a ring in the spatial frequency
domain, thus Bessel-gauss like mode basis.

The following results have been obtained using the 4-f laser cavity with the
same lens (f = 50mm, MRF polished) for L1 and L2 and by replacing the SESAM
with a high reflectivity mirror in order to focus the analysis onto the transverse
mode family of our system. The Gaussian pump was used.

7.2.1 On-axis spherical wave emission.

7.2.1.1 Without chromium mask: Thermal lens based potential stabil-
ization.

First, we look at the spatial pattern in the 4-f self-imaging cavity and the Gaus-
sian pump for different pumping power without any chromium masks. Figure 7.4
and figure 7.5 represent the overall size of the spatial pattern on the 1/2-VCSEL
surface as a function of the detuning δz (position of the mirror).

By using the on-axis emission, we can fit the near field using the previously
shown ABCD model with our system parameter (gold curve). Figure 7.4 uses a
thermal lens of fth = 16.4mm and an electronic lens of fe = −200mm. In this case,
the thermal lens corresponds to an absorbed power of 392mW on a pump waist
of 50 µm, while the negligible electronic lens comes from the residual unsaturated
gain, being at a relatively high pumping rate of r ∼ 2 the electronic lens is small.
In this case, the stability occurs for positive detuning (i.e., normal diffraction).
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168 7.2. Study of the spatial morphology in a 4-f self-imaging laser

Figure 7.4: Measured waist on the 1/2-VCSEL surface versus the longitudinal
detuning δz. Pumping rate r ∼ 2.

Figure 7.5: Measured waist on the 1/2-VCSEL surface versus the longitudinal
detuning δz. Pumping rate r ∼ 1.

On the other end for figure 7.5 the thermal lens is fth = 33.6mm, for an
absorbed power of 192mW, which corresponds to a pumping rate close to unity.
In this case, the electronic lens due to the unsaturated gain modulations is high,
fe = −20mm leading to a shift of the stability towards negatives detuning (i.e., for
anomalous diffraction).

In both cases, the larger the detuning from self-imaging, the larger the NF size.
And in both cases, the on-axis emission is similar to a Hermite/Laguerre-gauss
basis. On figure 7.6 and 7.7 illustration of the NF and FF profile are shown for

168



Chapter 7. Laser cavity modes topology 169

r = 2 and r ∼ 1 respectively. We found that there is a strong stability dependence
on the thermal and gain induced potential. Depending on the curvature potential
sign, the system can be stable on-axis for positive (normal) or negative (anomalous)
diffraction.

The self-imaging position is not affected by this potential variation and can
still be approached from positive or negative diffraction. Looking at figure 7.6 and
7.7 we can also see the evolution of the on-axis emission NF and FF profile in
conjuncture with the simple ABCD fit to estimate the exact self-imaging position.
As expected, the closer to the self-imaging point, the smaller the NF modulation
consists of larger spatial frequency (FF). However, in this region, we have observed
strong competition between the on-axis spherical mode emission and the off-axis
conical-waves.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.6: 2D NF intensity profile (a, c, e, g) and the corresponding 2D FF
intensity (b, d, f, h) for the position A, B, C, D of figure 7.4.

170



Chapter 7. Laser cavity modes topology 171

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.7: 2D NF intensity profile (a, c, e, g) and the corresponding 2D FF
intensity (b, d, f, h) for the position A, B, C, D of figure 7.5.
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7.2.1.2 With chromium mask: Guided mode stabilisation.

Adding a chromium mask on the gain surface with a 30 µm diameter clear
aperture on the same configuration with a pumping rate of r ∼ 2 results in a
different behavior. On figure 7.8 we show the resulting large-scale waist as a
function of the detuning and on figure 7.11 the corresponding NF and FF profiles.

Figure 7.8: Measured waist on the 1/2-VCSEL surface versus the longitudinal
detuning δz. Pumping rate r ∼ 2, chromium mask of 30 µm diameter.

The first observation is that the stability is reversed compared to without the
mask, and the on-axis emission occurs for anomalous diffraction. And the second
observation is the lack of variation from the overall envelope, which remains close
to an equivalent waist of 10 µm.

Using a thermal profile (ωp = 50 µm) that was created by Gaussian pumping
on a circular mask with a clear aperture of, 30 µm (see figure 7.9), we can show
that the thermal lens that is created is of the opposite sign. This is because 100%
of the optical energy is converted into heat in the chromium layer, instead of 30%
in the semiconductor. The hot-spot is then on the mask perimeter and thermal
diffusion smooths the variation.

As previously, the stabilizing process is fixed by the thermal and electronic
lensing effect, and thus we find on-axis emission for anomalous diffraction regardless
of pumping power. The restricted transverse area also helps confine the transverse
modes, and a simple ABCD simulation does not accurately describe the mode sizes.

We are closer to a guided micro-cavity cavity where the longitudinal size is
larger than the transverse one. We can still get close to the self-imaging point, but
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Figure 7.9: Finite element simulation illustrating the effect of the chromium mask
on the optically induced thermal profiles by a Gaussian pump.

the competition with spherical-wave and the conical wave emission makes finding
the exact position more difficult.

7.2.2 Off-axis, conical-wave behaviour

The conical-wave is a type of emission where the beam is not emitted perpen-
dicular to the gain section but at an angle leading to a ring pattern emission in
FF or a couple of spots offset from the optical axis and an interference pattern in
the NF. This behavior is seen in both cases close to the self-imaging position, and
sometime overlaps with an on axis emission, see figure 7.7g and 7.7h.

On figure 7.10a we show the measured max angle emission for both pumping
rate and two clear tendencies can be seen. The first one is a slowly increasing max
FF angle the closer we get to self-imaging, and the second is a sharp increase in the
maximum angle and larger angle variation for small δz detuning. The first one is
following the expected behavior of a simple on axis cavity stability (ABCD fit) while
the second part is indicative of the conical-wave emission. Another point is that
the conical-wave emission stability region does not appear to change between the
two pumping rates, like with the on-axis emission. This appears to be indicative of
another process than the near-field potential from thermal lensing for their stability,
such as optical aberration.

By using a different set of lenses with more aberration than the MRF polished
one such as an achromatic doublet (f = 50mm) we find a different behavior for
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(a) (b)

Figure 7.10: a) Measured max emission angle in FF for both 7.6 (r = 2) and 7.7
(r ∼ 1). b) Measure max emission angle in FF for a cavity with L2 replaced by
an achromatic doublet of same focal length as L1. For on-axis mode the angle is
taken at 1/e2 while for conical-wave the emission angle is taken.

the conical-waves emission such as a slower and more continuous angle variation
as we can see in figure 7.10b. This reinforces the idea that conical-wave stability
comes mainly from optical aberration of the external cavity system.

We can link the angle variation properties with the spherical aberration and the
related Seidel coefficient. As seen in the previous chapter, the spherical aberration
introduces a focal variation for a small diverging beam and an offset incidence
onto the lens. This focal shift with incidence angle explains the measured angle
variation, and the slope can be related to the Seidel spherical coefficient.

A negative slope means a positive Seidel coefficient and thus a strong possibility
of on-axis competition with the anomalous stability region, since a positive Seidel
coefficient means a focal reduction with increasing incidence angle. The reverse
is true for a positive slope. The strength of the slope is inversely proportional to
the strength of the aberration. Lower aberration means a lower focal variation for
the same incident angle, thus a smaller detuning and a large slope. This can be
encapsulated using the longitudinal spherical aberration formula:

|S1| =
4a4

f 4
0 (∆θ)

2
∆z (7.1)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.11: 2D NF intensity profile (a, c, e, g) and the corresponding 2D FF
intensity (b, d, f, h) for the position A, B, C, D of figure 7.8.
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7.2.3 Summary of the different emission behaviour

In conclusion, we have identified two main operating regimes, the on-axis one
with a standard mode basis, the conical-wave one depending on the optical system
aberrations. We also find this distinction when looking at the optical spectrum
(see figure 7.12).

(a) (b)

Figure 7.12: a) Maximum of each optical spectrum codify by their type of emission
versus the detuning δz. b) 2D representation of the optical spectrum intensity
versus the detuning δz.

Indeed, we see here the single mode optical spectrum in the normal diffraction
regime, corresponding to the on-axis emission. The red-shift occurring the closer
we are to the self-imaging point can be explained by the increased local heating
due to the decreasing size (thus increasing power-density) of the fundamental mode
until spatial degeneracy occurs and longitudinally multimode operation appears.

Then for anomalous diffraction we have the conical-wave emission following
a wavelength blue-shift with their emission angle. The longitudinal resonating
part follows λ0 cos(sin(θ)/nsc) with θ being the emission angle from the normal
of the gain in the air and λ0 the wavelength for on-axis emission, in this case
λ0 = 1059.6 nm.

As seen in the previous chapter, we can equate the 4-f system as a small micro-
cavity with an extended transverse plane and a complex potential representing both
the net-gain and the focusing effects (thermal lens, SPM). This can be expressed by a
stationary linear eigenvalue problem using the Bi-Harmonic Helmholtz like equation
(see section § 6.3). Where the bi-Laplacian represents the spherical aberration, the
normal Laplacian, the diffraction and the complex potential describing the thermal
lens profile (Lorentzian profile), the electronic lens profile (Gaussian profile), the
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Figure 7.13: Near field intensity for the fundamental mode calculated with the
simulation parameter of point B in figure 7.4. The Gaussian fit is of 33 µm waist.

residual cavity C parameter (Parabolic profile) and the net gain profile (Gaussian
profile). By solving this eigenvalue problem, we can explore the effect of each
parameter on the stabilized profile.

Solving this Eigenvalue problem results in a series of transverse modes supported
by the cavity for a parameter set. It is possible to confirm the existence of
the two emission regimes. Using the parameter of section § 7.2.1 with a phase
profile equivalent to a f = 16mm lens and around 4% losses, we can look at the
fundamental mode of the system with the fewer losses or higher net gain.

Figure 7.13 displays the NF intensity resulting from the simulation with a
detuning equivalent to δz = 400 µm and a Seidel coefficient for spherical aberration
of S1 = 1mm equivalent to the point B in figure 7.4. Both the measured beam and
the simulation give a close result, similar to the more simple ABCD fit. On the
other hand, for detuning of δz = −50 µm the equation 6.31 predicts the stabilization
of conical-waves. Figure 7.14 displays both the NF and the FF of the fundamental
solution, which is a conical-wave.

With this eigenvalue problem, we now can define a detuning range for the
degenerated region, useful for non-linear structuration. In figure 7.15 we show the
real and imaginary part of the solved eigenvalues for detuning δz = 5 µm. And
looking at the imaginary part (Gouy phase) we can see that we reach degeneracy
for the first 10 cavity transverse modes. Indeed, the phase of each of those modes
is included into a single resonance of a Fabry-Perot cavity of finesse 150.

It is also better to have the on-axis stability separated from the off-axis one to
reach as close as 5 µm the self-imaging point. For this, having a positive spherical
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(a) (b)

Figure 7.14: a) Near field intensity and b) Far field intensity for the fundamental
mode, calculated with the simulation parameter of figure 7.4 and δz = −25 µm
detuning. The Gaussian envelope fit is of 22 µm waist.

(a) (b)

Figure 7.15: Eigenvalue result for a detuning δz = 5 µm and the equivalent potential
as figure 7.4. In this configuration, we reach 10 degenerates modes. a) Real part of
the eigenvalue corresponding to the net gain. b) Imaginary part of the eigenvalues
corresponding to the transverse mode Gouy phase.
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Seidel coefficient for the normal on-axis stability and negative spherical Seidel
coefficient for the anomalous on-axis stability. This means that the marginal ray
defining the off-axis stability will cross before (after) the self-imaging point for
normal (anomalous) on-axis stability.

7.3 Arbitrary wavefunction

For the rest of the manuscript, we place ourselves in the high transverse
degeneracy region around the self-imaging position. We first explore the potential
of this region to generate arbitrary transverse wavefunction by using other chromium
mask design such as the “A” shape, while adding the SESAM as one end mirror.
The larger losses mean lower finesse and thus better degeneracy.

7.3.1 Chromium mask "A"

(a) (b)

Figure 7.16: Example of arbitrary/complex wave pattern occurring near the self-
imaging position for high pump power. Chromium mask simulating a “A” shape.
(a) Near field intensity. (b) Far field intensity.

Using the “A” shape chromium mask with width and height of 50 µm and spacing
of 15 µm in combination with the Gaussian pump, we manage to achieve lasing on
an arbitrary pattern. Figure 7.16 displays the NF and FF 2D intensity distribution
of this beam. The NF profile follows roughly the mask contours, with modulation
from 3.5 to 6 µm Gaussian waist. The FF also shows an on-axis modulated emission
with max angle of 0.1 rad corresponding to the Gaussian divergence angle for a
3.5 µm spot at 1.064 µm. The FF modulation has a mean value of 0.028 rad waist
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at, 1/e2 which in turn corresponds to the Gaussian divergence angle of a 12 µm
waist spot.

Figure 7.17: Optical spectrum for the arbitrary wave on a “A” shaped chromium
mask/

In figure 7.17 We see a strong longitudinal multimode operation where each
of the peaks represents a SESAM transmission resonance. And each of those
resonances can fit up to 26 longitudinal cavity modes. This makes this emission
pattern strongly multi-modal, both transversally and longitudinally.

(a) (b)

Figure 7.18: Zoom on a few modulations in NF measure with a wavefront sensor
(Phasics). (a) Near field intensity. (b) Corresponding wavefront.

We used the Phasics SID4 4-wave Shearing Interferometer wavefront sensor
camera to look at a zoomed in portion of the NF. Figure 7.18a shows the intensity
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distribution inside the measurement pupil, while figure 7.18b shows the correspond-
ing transverse phase (the max intensity is marked with a black dot). From this, we
can correlate phase valley with intensity peak, indicating some small self-focusing
effect (< λ/10 phase variation over the small beam radius). However, the max/min
of intensity and phase do not match perfectly, indicating of a spatial chirp in the
transverse phase.

7.3.2 Chromium defects

For the next example, we changed the “A” mask to a random assortment of
small chromium dots (5 µm diameter). It is used to simulate some local defects.
The top hat pump (FWHM 170 µm) was preferred to the Gaussian pump, enlarging
the pumped transverse area.

Figure 7.19 shows the 2D intensity NF (FF) profile on the left (right) for three
different pumping rates (r = 1.6 for the top, r = 1.1 for the middle one and r = 0.9
for the bottom one).

For large pumping rate, both the NF and FF almost fill all the available space
with some randomly modulated intensity pattern. This pattern clearly does not
belong to a single transverse mode of any base, and resembles more the output
of multimode fiber [Čižmár 2011]. We thus have, in this case, a high spatial
degeneracy.

Lowering the pumping rate, the laser emission is concentrated on the maximum
gain, but still largely multimode. We can note that under the threshold the FF
becomes less uniform, but we start to see a strong on-axis emission coupled with
lower high-frequency components. This can be the result of lowering the thermal
lens and thus the NF confining potential and switching to the FF or aberration
confinement of the field, as well as the start of non-linear structuration.

7.3.3 Degenerated conical wave

Using the top-hat pump without mask in the conical regime, we show an
azimuthally degenerated tilted-wave emission. We used a cavity set-up with the
one achromatic lens and one MRF lens to increase the aberration and range of
conical-wave emission. We pump the gain without mask with the Gaussian pump
at a high pumping rate. In this condition, the separation of the on-axis emission
and tilted wave is clear, and we manage to observe a fully azimuthally degenerated
beam.

Figure 7.20 displays this emission. On the right, we see a complex interference
pattern arising from a multitude of tilted-waves. The mean period of the inter-
ferences fringes is 3.2 µm. On the left, the 2D FF intensity shows a multitude of
spots arranged in a ring at 0.14 rad emission angle. Some pairs of spots have been
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(a) (b)

(c) (d)

(e) (f)

Figure 7.19: Example of an arbitrary/complex wave pattern occurring near the
self-imaging position for three pump rates. r = 1.6 for (a) and (b). r = 1.1 for (c)
and (d). r = 0.9 for (e) and (f). Chromium mask simulating random 5 µm defects.
(a),(c),(e) Near field intensity. (b),(d),(f) Far field intensity.
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(a) (b)

Figure 7.20: Example of azimuthally degenerated complex wave pattern occurring
near the self-imaging position for high pump power with top hat pump. (a) Near
field intensity. (b) Far field intensity.

marked by an arrow. Each of those pairs interfere in the NF to give rise to this
complex pattern.

By simple trigonometry, we can calculate the expected interference period
given this emission angle. Using T = λ/2 sin(θ) we find for λ = 1.064 µm and
θ = 0.13 rad, T = 3.8 µm. This is coherent with the measure interferences fringes
period in NF.
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Chapter 8

Non-linear light structuration in the

spatial domain

In this chapter, we will describe and analyze the non-linear behavior observed
in our system by adding the saturable absorber. We aim to demonstrate the
possible existence of a spatially localized state. The resulting wavefunction takes
the form of a unidirectional travelling wave with a small off-axis component, similar
to a unidirectional ring cavity. The transverse dynamics can be compared to a
quantum-mechanical system with a heavy mass particle and small momentum
inside a close to flat potential.

We used a 4-f self-imaging cavity with one lens (MRF polished) for low optical
aberration and the other as an achromatic lens to better control to conical cavity
regime. As seen previously, the achromatic lens introduces mainly spherical aberra-
tion and almost no higher order one. From this, it is possible to better separate
the on-axis and off-axis stability region. We also used the V0450 Gain section with
the V0598 saturable absorber presented in part 2.

To characterize the field properties, we measured both the NF and FF spatial
intensity profiles using a time average CCD camera, giving us insight for the spatial
properties. We also looked at the optical spectrum using a diffraction grating
spectrometer and the relative intensity noise for temporal properties. And lastly, a
polarizer to verify the polarization properties of the generated laser emission.
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8.1 Non-linear travelling wave

8.1.1 Dynamically instable NL travelling wave

8.1.1.1 Without mask, magnification: 2

At first, let’s investigate the bi-stable behavior of the system. Figure 8.1 shows
the measured output power versus pump power density curve for this system using
the Top Hat pump near the self-imaging position. Several inserts of the 2D field
intensity in both NF and FF are also shown. The laser threshold from low to
high power is measured at 2.6 kW/cm2 which is equivalent to around 6% losses
according to figure 3.7 and the threshold from high power to low power is measured
at 2.3 kW/cm2 equivalent to 4% losses. The last point roughly corresponds to the
unsaturated losses of the system, while the first point to the total losses. The small
loss modulation, in this case, is due to a bad matching of micro-cavity resonance
and the maximum of the gain of the semiconductor device. Because of its large
size, the Top hat pump requires a higher power to reach the power density needed
to cross threshold and generate a large red-shift of the gain spectrum. The top hat
pump, despite its lower impact on the thermal lens, is not the best suited pump to
achieve large modulation depth of the saturable losses.

Figure 8.1: Output power versus pump power density for the 4-f cavity (f1 = 25mm
and f2 = 50mm) without chromium mask near Self-imaging. The pump used is
the Top Hat pump.

The 2D intensity profiles were taken for different pump power excitations and
show the beam evolution from high above the threshold to inside the bistability. In
the near field, the dotted circle delimit the pumped area. We observed a downsizing
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of the lasing area when pump excitation is going down. This is explained by the
fact that the top hat pump is not entirely flat, and thus the net gain region is
actually decreasing in size. On the other hand, the FF does not evolve a lot, and
most of its energy is found on the cavity axis except for the last point where a
strong off-axis component appears. On important observation is that the emitted
pattern does not collapse onto a singular localized spot.

NF NF NF

FF FF FF

A

A

B

B

C

C

Figure 8.2: 2D NF and FF intensity for the position marked A, B, C in figure 8.1.

Despite having a large Fresnel number (large pumped transverse area in front
of the maximum numerical aperture of the system) and optical bi-stability, the
system does not natural collapse onto the SLS state. One reason is that the system
has a lot of freedom to choose a wavefunction that resonates near the self-imaging
position. This freedom of choices and the near-field phase potential induces spatial
dynamical instabilities.

To reduce this freedom, we choose to use the chromium mask filtering the field
amplitude to limit the transverse area. Meaning both the Fresnel number and
the maximum phase potential height. We also choose to work with the Gaussian
pump to improve the losses modulation and thus the self-amplitude modulation
and self-phase modulation effect.

8.1.1.2 Chromium mask 30 µm, magnification: 2

In order to restrict the transverse plane and to have a flatter near field phase
profile, we decided to use the circular chromium mask. For this, we used a
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188 8.1. Non-linear travelling wave

f1 = 25mm MRF polished lens in front of the gain section V0450 and an achromatic
lens f2 = 50mm in front of the saturable absorber V 0598. We end up with times 2
magnification on the SESAM. The chromium mask diameter was 30 µm.

Figure 8.3: Minimum pumping rate versus the cavity self-imaging detuning with
chromium mask 30 µm. The range of the transversally degenerate position is shown,
with the smaller range for non-linear structuration.

Figure 8.3 shows the degenerate range of the system as well as the range where
non-linear localization occurred. The figure displays the lower threshold pumping
rate versus the self-imaging detuning δz, meaning the pumping rate at which laser
emission stops when starting with the laser On and decreasing the pump power.
This is calculated following:

η =
P − Ptr

Pth − Ptr

(8.1)

where Ptr is the pump power needed to reach transparency, and Pth is the laser
threshold when starting from the Off solution and increasing pump power. This
threshold is then equivalent to pumping rate, η = 1 and the lower threshold display
on figure 8.3 is a measure of the size of the optical bistability. We see that the
bistability range varies according to the cavity detuning. When the laser is at the
SI position, the bistability is the smallest and then increases with the detuning.
This is easily explained with chromium masks on the gain side by the fact that for
larger detuning, the effective mode size growths. Thus, it sees more losses from
the chromium layer. The high threshold increases faster than the low threshold
(better loss saturation from larger mode size). For the SI position, the chromium
losses are less impactful since the resonating wavefunction adapts its shape to the
loss mask. We find a similar emission profile as the ones described in the cavity
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AFF BFF CFF

ANF BNF CNF

Figure 8.4: 2D NF and FF intensity for the position marked A, B, C in figure 8.3.

topology. With Gaussian emission for large detuning, conical emission for smaller
detuning mixed with on-axis degenerate emission.

The degenerated range was taken for less than |δz| < 50 µm detuning. While
the NL localization range corresponds to the small window ∼ 10 µm. Figure 8.4
displays the 2D NF and FF intensity profiles of the position marked A, B, C with
a pumping rate close to the low threshold.

On figure 8.4, the picture C corresponds to parameters where the non-linear
localization should appear. The system parameters were: D2 = −0.42 µm2 with
D4 = −11.1 µm4. The static near field phase potential was estimated around a
maximum of ∆ϕ = 0.025wave using the pump thermal profile and the chromium
mask. Figure 8.6 displays the near field and far field phase diagram of the system.
In this configuration, we should be able to balance the SPM for a spatially localized
structure.

However, we do not see a single localized state, but rather a “random” pattern of
emission. Using the injection laser to turn on a single spatial pulse of this pattern
results in turning on the entire pattern. Simulation of a similar configuration
confirms the difficulty in observing a single NL state.

Figure 8.5 shows a series of simulated NF 2D intensity profile for different
numbers of round-trip as well as the time integrated profile for 1024 round-trip. We
clearly see that transverse emission is not temporally stable and oscillate between
different patterns.
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190 8.1. Non-linear travelling wave

Figure 8.5: 2D NF intensity simulation for the round-trip number N=200, N=500
and N=1000 as well as the NF and FF on the integrated simulation over 1024
RT. The simulation is scaled on the SESAM plane. Simulation parameters: D4 =
−20 µm2, D2 = 1 µm2, η = 0.92, S = 5, Gain to SESAM magnification m = 2.

The carriers diffusion is limiting the saturated size of the transverse spot at
around 10 µm on the SESAM. The magnification from Gain to SESAM being 2 we
can expect spot as small as 5 µm on the gain. The small spot size is too small in
front of the mask radius and the near field phase variation to find a stable position.
This freedom means that any perturbation such as ASE, gain modulation will
transfer some energy and start some transverse motion of the NL spot, the same
way as for the no-mask case.

8.1.2 Stable NL travelling wave

8.1.2.1 Chromium mask 30 µm, magnification: 0.75

The next step to observe a NL spatial localization was to adjust the spot size
versus mask size ratio. For this, we changed the cavity magnification while keeping
the other parameters the same. We choose the lens f1 = 20mm in front of the gain
and lens f2 = 15mm in front of the SESAM. This results in a 0.75 magnification
from Gain to SESAM.

The 30 µm chromium mask on the gain then corresponds to a 22.5 µm diameter
circle on the SESAM. The size of the 980 nm injected spot was measured around
3 µm waist, resulting in a Lorentzian saturated losses window of around 10 µm
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(a) (b)

Figure 8.6: Dispersion diagram in (a) real space and (b) Fourier space for the
30 µm chromium mask and D2 = −0.42 µm2 with D4 = −11.1 µm4.

due to carrier diffusion. With the effective size of the chromium mask, it was
then possible to saturate at least two distinct positions with minimum coupling.
The expected NL spot size was then to be around 13 µm or two to three times
larger than in the previous configuration. The other parameters were kept as close
as possible to the other configuration, meaning D2 = −0.84 µm2, D4 = −8 µm4

and the same amount of near-field phase variation. The previous figure 8.6 still
summarizes quite well the NF and FF phase dispersion diagram.

In this configuration, we observed a single NL localized light state under the
threshold pumping rate (i.e., inside the optical bistability). We crossed the Off to
On state using an injection laser emitting at 980 µm to locally saturate the losses
of the SESAM by generating carrier inside the QW.

Figure 8.7 shows the NF 2D intensity chronology of generation. The red circle
marks the chromium mask limit. The pictures coordinate were taken to the gain
side. First we are in the off state (left image) then we locally saturate the SESAM
losses at the position marked by the injection arrow. We then end up at the top
right picture (follow the black arrow to “A”), where we have crossed the threshold
at the injected position. Turning off the injection laser does not turn off the laser
emission, which remains in place. From this state, we can either go back to the off
state by lowering the pumping rate (red arrow), or switch to a different position
in NF by moving the injection laser to another position (black arrow to “B”). In
position “B” the laser emission also remains stable with or without the injection
laser. From this position, we can either go back to the Off state by lowering the
pumping rate or go back to position “A” by moving the injection laser.
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Injection

Injection

Injection

NF

NF

Lowering

pumping rate

SESAM

Injection

"A"

"B"

Figure 8.7: Transition from the off state to one of two possible non-linear localized
states. 2D NF intensity profiles are shown. The position of the injection laser
dictates the NL state that appears. It is also possible to switch from one state to
the other directly with the injection laser.
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"A" "B"

Figure 8.8: 2D FF intensity profile and optical spectrum corresponding to the
positions “A” and “B” of figure 8.7.

The corresponding FF intensity profile and optical spectrum of position “A”
and “B” are shown in figure 8.8. A gray dot marks the centroid of position “A”
and a black dot, the centroid of position “B”. We see that they are both offset
from the on-axis emission by 10mrad and, 5.5mrad respectively. Furthermore,
the separation between them is 8.6mrad. The laser cavity being telecentric, all
transverse positions should emit at normal incidence. This small measured offset
could be due to some cavity misalignment (i.e., small tilt) however it should result
in the same offset for the two positions. We can say that both light states are not
simple linear solution of the optical system. A non-linear force stabilizes to two
positions and allows them to follow a unidirectional ring path in the system.

The corresponding time integrated optical spectrums are also displayed on
figure 8.8. For position “A” we see a single mode at the resolution limit of the
optical spectrometer (∆f ∼ 4GHz) and thus only one longitudinal mode exists
since in this case FSR = 2.2GHz. The optical spectrum for the position “B” is less
stable, thus the time average trace result in a multi-modal emission. The optical
spectrum of position “A” is superposed onto the optical spectrum of position “B”
and we see that despite the unstable behavior of position B it does mainly lase
onto a separate longitudinal mode. Both those light states are linearly polarized
following the [110] axis of the Gain semiconductor device.

Using the Phasics SID4 wavefront sensor, we also measured the transverse
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Figure 8.9: X/Y cut of the transverse phase profile of position “A”. Insert of the
2D phase profile.

phase profile in the near-field of the non-linear localized light state “A”. Figure 8.9
displays the X/Y cut of the transverse wavefront, showing a residual focusing phase
of around λ/10 for 10 µm. This phase is the trace of the phase-amplitude coupling
self-phase modulation.

(a) (b)

Figure 8.10: a) 1D x-cut of the NF intensity of spot “A” with a sech2 fit of radius
rs = 7 µm or FWHM 12.3 µm. b) 1D x-Cut of the transverse phase profile measure
with the Phasics SID4 wavefront sensor and the sech2 fit with the soliton parameter
βs = 0.5.
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We can use a sech-squared profile to fit and extract the NL parameters.

A(r) = sech
(

r

rs

)1+iβs

(8.2)

Where the Sech-squared profile is the typical profile for soliton like-pulse in time,
here we complete this analogy in space. rs is the soliton radius and βs the soliton
chirp, positive for focusing SPM and negative for defocusing SPM. Figure 8.10
shows the Intensity and phase x-cut profile and their corresponding sech-squared
fit. We find a radius of rs = 7 µm, equivalent to 12.3 µm FWHM and a soliton
parameter βs = 0.5. Those values are in concordance with the soliton pulse size
adapted for with SPM stabilization for the spatial case [Keller 2021]:

r2s =
−16Deff

2

αG0
Fp

S

(8.3)

where α is the phase amplitude coupling factor of the Gain, G0 is the gain
modulation and Fp/S is the pulse saturation fluence normalized on the SESAM.
Plugging the value Deff

2 = −1 µm2, α = 4 and Fp/S = 3/5 we find rs ≃ 8 µm.

8.1.2.2 Chromium mask 15 µm, magnification: 2

To test if the spot size vs. chromium mask size ratio does impact the single
NL localized light state stability, we went back to the previous configuration with
two times the magnification using the f1 = 25mm MRF aspheric lens and the
f2 = 50 µm achromatic lens. This time, instead of the 30 µm mask, we used a 15 µm
diameter one to have a mask diameter to number of spots ratio of 2 to 3, similar
to the former section. As previously, we used parameters compatible with NL
localization. Here, D2 = −0.42 µm2, D4 = −11.4 µm4, and a good phase flatness
in near field ∆ϕ < 0.0025 λ. Figure 8.11 displays the corresponding NF and FF
phase dispersion diagram.

In this case, shown in figure 8.12 we find the same behavior as in the previous
cavity configuration (figure 8.7). The red circle delimit the chromium mask, and
the coordinates are taken on the gain side.

We show that starting from the Off state, it is possible to turn on a spatial pulse
at two different positions depending on the injection direction. When approaching
the injection laser from the left, a spot on the left of the mask turns on, while
approaching the injection laser from the right, a spot on the right turns on. Similarly,
the FF emission shows an off-axis component different for each position. The large
shift in angle (0.08 rad) cannot be explained only with cavities detuning and
misalignment, and thus another non-linear force must be at play.
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(a) (b)

Figure 8.11: Dispersion diagram in (a) real space and (b) Fourier space for the
15 µm chromium mask and D2 = −0.42 µm2 with D4 = −11.4 µm4.

We also remark that the switched between two different positions only works
on a certain range of the bi-stability. Figure 8.13 shows the Output power versus
pump power curve where the low to high and high to a low threshold are marked
by arrows and the range where the position selection works is indicated by dashed
lines. This figure was taken for the configuration f1 = 15mm, f2 = 20mm and
the 30 µm chromium mask. The selection process only works for parameters at the
higher end of the bi-stability. This is also true for the two times magnification
configurations, where the selection process only works for the highest 40% of the
bi-stability. One reason could be that at lower pumping rate the intra-cavity power
is too small, thus non-linear effects such as self-phase modulation are too small to
balance linear effects such as diffraction or the near field phase potential.

To better understand the origin of those singular light states, we looked in
figure 8.14 at the NF and FF 2D intensity transition from above the bi-stability to
inside the NL localization region. We remark that the singular light state appears to
be the collapse into a single spot of a larger pattern. In this case, from a modulated
doughnut like pattern in NF and FF to a single offsetted spot in NF and FF with
the same position as the modulated pattern. The black dot represents the centroid
for the single light state.

8.1.3 Experimental limits

The question is now, why do we see this behavior in only certain cases, mainly
when we restrict the transverse space using a sharp absorptive boundary condition?

A beginning of a response can be found by looking at the relative intensity
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Left Injection

Right Injection

Figure 8.12: Transition from the off state to one non-linear localized state. 2D NF
and FF intensity profile are shown. (Top line) When the injection laser comes from
the left. (Bottom line) When the injection laser comes from the right.

Figure 8.13: P-P Curve at the Non-linear structuration position, showing the
optical bistability and the controllable range of the non-linear structure.
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High to Low

Excitation

Figure 8.14: 2D NF and FF intensity pattern transition from high pump excitation
to low pump excitation.

Figure 8.15: Relative intensity noise (RIN) from the single state of figure 8.14.

noise for the single light state in figure 8.15. We observe a strong frequency around,
7MHz which should not exist for a single light state. This frequency could be
a signature of some spatio-temporal instability of the system. Indeed, in this
configuration where the Finesse is around 100 and the round trip time is 1 ns,
the characteristic frequency is 7MHz corresponds to dynamics around the photon
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lifetime. Meaning that some spatio-temporal instability is destabilizing the system
during its generation.

Figure 8.16: X-cut of the NF intensity for emission at the self-imaging position
with no chromium mask and η = 0.9. Insert of the 2D profile.

The nature of those instabilities could be diverse. At the beginning, we aim
to design a system offering the maximum of freedom to generate SLS. Doing so
means that we would have a flat non-local potential by reducing the impact of
optical aberration and reaching self-imaging in a telecentric system, and a flat
local potential, thus limiting any near field phase and amplitude variation. In
those conditions, the SLS should be free to move and exist at any positions. In
reality, some variations still exist from thermal lensing or QW gain inhomogeneity
having an impact on the SLS drift, or from optical aberration having an impact
on the available spatial frequency. Lastly, the stochastic effect from amplified
spontaneous emission (ASE) can also be seen as a strong perturbation in both
phase and amplitude.

Figure 8.16 shows a cut of the NF emission at the SI position without chromium
mask. The y-axis is in the log scale to show the limit of the camera dynamics and
the power of the ASE, which is less than 20 dB below the laser emission inside the
bi-stability. This will cause some phase and amplitude instability for the localized
state, which will prevent it from finding a stable position. Limiting the transverse
area with a chromium mask helps to limit this effect, but also prevents the localized
state from escaping the gain region from drifting away, by quantum reflection on
the chromium mask (amplitude barrier).
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8.1.3.1 Quantum particle analogy

Following the quantum-mechanical analogy for the transverse wavefunction
developed in the first part of the manuscript. We can compare the single non-linear
state to a cold fermion particle with heavy mass near the SI degeneracy position.
Indeed, the transverse non-local potential is close to a flat energy band, thus a
heavy mass particle. In other terms, we are in the slow light condition in the
transverse plane, since the transverse wavevector is longer than the light state size
(1/β >>> rs)[Khurgin 2010]. In this case, we can also view the absorptive barrier
as a reflective potential following quantum reflections (see figure 8.17a).

V(x)

|Ë(x)|

V(x)

|Ë(x)|

(a) (b)

Figure 8.17: a) Schematics representation of a quantum reflection on a slow light
wave-packet. b) Transmission and Reflection coefficient and phase of an absorptive
barrier αm = 0.8 with Deff

2 = −1 µm2 versus the particle impulsion (transverse
wavevector β). The black dotted line represents the transverse wavevector for
section § 8.1.2.2.

From this and the model of chapter § 6 applied to the optical cavity Hamiltonian,
we can define the transverse wave vector outside the barrier (β) and inside the
barrier (κ) following:

κ2 = β2 +
V

Deff
2

(8.4)

where V is the absorptive potential with V = 0 outside the barrier and V = αm/2
inside it and Deff

2 is the effective diffraction coefficient considering D4 if needs to.
From that, we can define a transmission, and reflection coefficient of the barrier
versus the light particle impulsion (transverse wavevector), see figure 8.17b.

We see from figure 8.17b that for small impulsion the barrier provides a very
high reflection and the more kinetic energy the particle has the less effective the
barrier is until we reach a point where more energy is transmitted than reflected. In
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a parabolic optical cavity, we can define the particle speed using the Hamiltonian
kinetic energy following:

vp =
βDeff

2

Trt
(8.5)

(a) (b)

Figure 8.18: 2D NF and FF simulated and intensity profile at round-trip number
1024. The simulation is scaled on the SESAM plane. (a) A positive tilt on the
horizontal axis was added. (a) A negative tilt on the vertical was added. Simulation
parameters 15 µm chromium mask and D2 = 1 µm2 with D4 = −20 µm4, η = 0.95,
S = 5, Magnification Gain to SESAM m = 2.

We see a linear proportionality with the light transverse wavevector β. The
transverse behavior of this light state can then be though of in terms of a mechanical
system with speed vp and momentum β. Small perturbations can generate transverse
dynamics, destabilizing the system by supplying kinetic energy to the light particle,
who then bounces back on the potential. Such mechanisms could be from mechanical
origin, thermal lensing, gain amplitude gradient/modulation, optical system tilt, or
amplified spontaneous emission on both the phase and amplitude.

The stable position seen in the previous section which was neither at the mask
center nor at the on-axis emission can be explained by this phenomenon. The
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destabilizing forces supplied kinetic energy to the light particle, who bounced back
on the chromium potential until reaching a balance between the reflective force
and the induced tilt.

We can see from figure 8.18 which is the result of a simulation using the
parameters of section § 8.1.2.2 with a constant tilt to the right (a) and to the
bottom (b). The simulation shows the NF and FF intensity after the spot stabilize
to its final position (1024 round-trip). The initial beam was injected at the mask
center. Looking at the transient, we see multiple reflections on the mask edge before
its stabilization. This is coherent with the quantum reflection analysis. Secondly,
the final position of the spot is only dependent on the perturbation applied to
it. In our case, the kinetic energy was provided by changing the phase/amplitude
potential using the injection laser, which moved the light particle position.

Figure 8.19: Relative intensity noise of the simulation in figure 8.18b.

Lastly, another marker of this dynamic can be found by estimating the time it
takes a light particle to travel across the chromium mask. This characteristic time
can then be related to a dynamical trace of the system. From the mask diameter
and the particle speed of equation 8.5 we can get the time Tmsk = dmask/vp. Using
typical the typical value of section § 8.1.2.2, dmsk = 15 µm, D2 = −0.42 µm2 and
measured angle θ = 0.04 rad and Trt = 1ns we find a time of Tmsk = 151 ns. This
time corresponds to slow intensity fluctuation of fmsk = 1/Tmsk = 6.6MHz. We
find those typical frequencies while looking at the RIN in practice (see figure 8.15)
but also in simulation (see figure 8.19). The intensity variation corresponds to
approximately 10% of the mean value.

To complete our understanding of those behaviors, a more in-depth analysis of
the spatio-temporal transverse dynamics remain to be done. Currently, limitation
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in output power has prevented us to image this behavior using time-resolved
equipment such as a Streak camera.

8.2 Laser multiplexing

In the current system, it was not possible to simultaneously have several NL
localizations. Indeed, a transverse restriction in the form of a loss mask has to
be added to stabilize the NL state. Thus, a single state at a same time could be
obtained in a single mask. However, by taking advantage of the telecentric nature
of the self-imaging cavity and by using a matrix of losses potential, we could obtain
multiplexing of lasers inside the same system.

8.2.1 Two lasers in one

We used the same optical system with an MRF lens f1 = 25mm on the gain
side and an achromatic lens f2 = 50mm on the SESAM side. However, instead
of the chromium mask with a single hole, we used a periodic system with a hole
diameter of 15 µm and different periods from 30 µm to 16 µm.

(a) (b)

Figure 8.20: Representation of the multiplexing ability of the 4-f laser system using
chromium (15 µm diameter, 30 µm period) mask and two Gaussian pumps. (a) Two
pumps in a close to each other. (b) Two pumps far from each other.

We also used two different Gaussian pumps to separately control to different
positions. In this case, we are not at the self-imaging position but sightly detuned
in order to obtain a Gaussian on-axis emission.
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8.2.1.1 Large separation : Independent system

For the case where the circular holes have a large separation between them
(30 µm period) we managed to control two lasers independently (one for each pump)
across a large section of the gain (Chromium mask of 200 µm2). Figure 8.20 shows
the near field intensity for two cases, (left) when the two pumps are close to each
others and (right) when they are far from each others. The red circles mark the
chromium limits. Here, both spots are independently stabilized by the chromium
mask and the thermal potential of each pump.

Both spots are also independently controllable by varying the pumping rate of
each pump and each are lasing on different longitudinal modes (see figure 8.21a).
This is also a proof of the good telecentricity of the optical system, since despite
a large transverse separation, the spatial spectrum remains centered around the
on-axis position (see figure 8.21b). Confirming the fact that each laser lase on a
different longitudinal mode, the FF intensity profile does not show any interference
pattern. The two lasers are uncorrelated.

(a) (b)

Figure 8.21: a) Optical spectrum of the two spots from pump 1 and pump 2 in the
close from each other configuration in figure 8.20a. b) Far-field intensity for both
laser spots in figure 8.20b.

8.2.1.2 Small separation: coupled system

To see if the independent nature remains for small separation, we used the
chromium mask with a 15 µm diameter hole separated by 1 µm. In this condition,
a single Gaussian pump was used to create gain for several holes. Figure 8.22
shows the NF and FF 2D intensity for this configuration. We see that we still
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have emission on several spots, where their intensity differences come from the gain
gradient of the Gaussian pumping. However, by looking at the FF emission profile,
we can infer that the four spots are coherent with each other since we observe an
interference pattern in FF.

(a) (b)

Figure 8.22: Gaussian pump on a periodic Cr mask with holes of diameter 15 µm
and periodicity of 16 µm. The smallest separation consists of 1 µm chromium strip.
(a) NF 2D intensity. (b) FF 2D intensity.

We can conclude that a 1 µm chromium separation between two adjacent holes
is not enough to prevent coupling either by the evanescent wave of the wavefunction
or by the diffusion of the carriers in the SESAM, coupling two adjacent spots
through loss saturation.

8.2.2 Multiplexed NL localized structure

Using the large diameter top hat pump, we wanted to confirm the independent
nature of the multiplexed laser and extend it to the non-linear structuration region,
meaning close to self-imaging and inside the optical bi-stability. For this, we went
back to a mask with large separation (15 µm) illuminated only with the top hat
pump. This way, each spot was not stabilized through independent thermal lens
and independent gain, but with the same pump.

Using the same methods as for the single hole mask, and with the same
parameters, we used the 980 nm injection laser to turn on the first spot by starting
from the Off state (figure 8.23a) and saturating the losses inside one hole to cross
onto the On state at this position (figure 8.23b). Then, moving the injection laser,
we also manage to cross the On state on a different position (figure 8.23c). However,
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(a) (b)

(c)

Figure 8.23: Representation of the multiplexing ability of the 4-f laser system using
chromium mask and large area top hat pump. (a) The system starts in the off
state, we saturate the losses at a specific point. (b) One laser spot appears at
the previous point, we now saturate the losses at another point. (c) Both spots
coexists.
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turning off a single spot was not achieved. Only by reducing the pumping rate can
we go back to the Off state for both spots.

Figure 8.24: Optical spectrum of the two spots, (bottom) first spot to appear and
(top) second spot.

Looking at their optical spectrum (figure 8.24) we can confirm they are operating
on different longitudinal resonances and the large shift between them can be
attributed, in part, to the micro-cavity thickness inhomogeneity.

As with the two Gaussian pumps pumping scheme, we have a mostly on-axis
emission for both spots. Figure 8.25 shows the FF intensity profile for the bottom
spot (first one to appear) and the top spot (second one to appear). The centroid
of both of those spots was measured with 13mrad offset.
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(a) (b)

Figure 8.25: Far-field intensity for each multiplexed spot. (a) First spot (on the
bottom of the NF), the center, is marked by the dot C1. (b) Second spot (on
the top in the NF), the center, is marked by the dot C2. We observe an offset of
13mrad
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Conclusion and perspective

The goal of this project was to design a laser system capable of a high-level
of 3D light structuration. This meant a highly spatially degenerated coherent
optical system able to emit spatially localized states (SLS), together with a pulsed
modelocked operation exhibiting temporally localized states (TLS). This work
was carried out in collaboration with INPHYNI and C2N in the framework of the
BLASON ANR project dedicated to the generation of 3D spatio-temporal localized
state (i.e., Light bullet). The work on the temporal structuration and TLS was
carried out mainly at INPHYNI, while at IES we focused on the degenerated
cavity concept, and its spatial behavior together with semiconductor GaAs based
heterostructure design and fabrication. The requirements were to design and
build an extended system in both time and space exhibiting optical bistability.
This meant a long round-trip time compared to matter response time and a high
Fresnel number, together with saturable losses. To achieve this goal, we chose the
semiconductor vertical external cavity surface emission laser technology coupled to
a degenerate self-imaging cavity.

We choose semiconductor devices for their easy integration as end mirrors
of the optical cavity, versatility in design wavelengths, modal gain, spatial and
spectral bandwidth and spatial structuration of the susceptibility. We designed
a high modal gain device while limiting the impact of inhomogeneous physical
properties such as thermal lensing, all while keeping a large spatial and spectral
bandwidth. We observed, together with a good crystal quality, a low laser threshold,
a good differential efficiency and residual small-scale (few µm in-plane length scale)
inhomogeneity from QW interfaces due to growth process. For weak transverse
structuration (large transverse mode with Gaussian like profile) those inhomo-
geneities do not impact the laser field. However, in our highly degenerated case
exhibiting small spatial structure in the bistability regime, they do moderately
impact the structuration. We also designed a fast and slow semiconductor saturable
absorber mirrors (SESAM) to generate the needed optical bistability. The design
was matched to the gain properties to have the best modulation ratio. In this work,
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we used a SESAM designed to exhibit a slow carrier lifetime to prevent any fast
temporal dynamics or instability. This allowed us to focus on the spatial dynamics.
Another design was developed for INPHYNI to have a fast response time, in order
to study temporal structuration. Using our “slow” SESAM, we measured the carrier
diffusion length to be 10 µm. This limits the size of the achievable narrow net gain
window from the SESAM, and by implication the size of the non-linear localized
structure.

Next we studied the cold cavity properties, first for classical system and then
for 4-f self-imaging degenerate configuration. The self-imaging system allowed us
to tune from normal to anomalous regime (-10 to 10 µm2) the effective optical
system second order diffraction by moving the end-mirror away from the perfect
self-imaging position. Placing the end mirror further than SI position is equivalent
to adding normal diffraction and inversely. To obtain the largest Fresnel number
and the most complex spatial structuration, no effective diffraction is required.
In this condition, we study non-local phase perturbative effects, such as optical
aberrations. We showed, thanks to a ray tracing software and real lens wavefront
error function, that optical aberrations have a strong impact on the effective on-axis
numerical aperture. Spherical aberrations (4th order diffraction) are the main
limiting factor, while higher-order terms induced wavefront error radial modulation.

To help us analyze the non-linear transverse laser emission, we combined all the
important physical features: gain and loss space-time modulation, thermal lensing,
spatial gain modulation, spherical aberrations, tunable second-order diffraction
(D2 ∝ −δz), into a powerful model inspired from the Haus master equation used
in time domain (or NL Schrödinger like equation). The novelty here was to include
high order diffraction for non-local terms, like fourth order diffraction (D4 ∝ −S1),
together with local anharmonic complex potentials.

Finally, we have studied the emitted light states from a CW laser (without
saturable absorber) and from a spatially non-linear laser cavity (with “slow” satur-
able absorber). We have observed three types of transverse emission depending on
the cavity parameters. i) For large detuning from self-imaging (i.e., large second
order diffraction) we observed classical mode basis such as HG or LG modes. They
were stable with normal diffraction for a confining near-field (or local) potential, or
stable with anomalous diffraction for a deconfining near-field potential. ii) Conical-
wave emission (either Bessel-Gauss or tilted wave, depending on the azimuthal
symmetry) close to self-imaging position; as well as guided Bessel beams near SI
with a metallic guide (mask). This emission was stabilized thanks to spherical
aberrations. The emission angle was shown to be strongly dependent on the optical
cavity self-imaging detuning. The Tilted-Wave angle directly correlates with the
second order diffraction. Using a powerful NL Schrödinger like model detailing the
effects of non-local potential, it was shown that tuning the second order diffraction
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with an opposite sign to the fourth order diffraction creates a local minima (normal
2nd order diffraction and anomalous 4th order diffraction) or maxima (anomalous
2nd order diffraction and normal 4th order diffraction) in the non-local phase
diagram. The maxima will increase toward larger emission angle, the larger D2

is. Around those points, a stable off-axis emission can be observed, depending
on the local confining potential in near-field. In our case, by lens design, fourth
order diffraction was always negative, D4 ∼ −10 µm4 thus stable off axis emission
occurred for anomalous diffraction with a confining near-field potential (positive
thermal lens). The transverse field emission is characterized by an annular intensity
ring in the far-field and an interference pattern in the near field. Depending on
the local and non-local homogeneity (thermal lens astigmatism, optical cavity tilt,
aberration modulation) the far-field pattern could be azimuthally homogeneous like
a Bessel-Gauss beam or with a discrete azimuthal angle selection like a Gaussian
beam circulating in a ring laser or Tilted-Wave. iii) Arbitrary degenerate transverse
emission. By integrating a sub-lambda absorbing chromium metasurface on the
gain mirror, we manage to shape the near-field laser emission into the letter “A” or
to a non-uniform profile using artificial defects, demonstrating the high transverse
degeneracy of our system.

Close to the self-imaging position with the SESAM, we have demonstrated
non-linear spatial localization of the transverse laser field. As for temporal soliton,
we balanced the positive SPM from QW gain saturation with normal diffraction. In
the self-imaging position, the leading diffraction term is the fourth order diffraction
from spherical aberrations, so non-linear localization was impossible for positive
D4. The optical bi-stability allowed us to address (turn On) spatially the non-
linear structure inside a reduce transverse area with step like absorptive boundary
conditions (circular chromium mask metasurface). Some work remains to improve
the control over a greater area and full addressability (On and Off). Switching
from non-resonant to resonant seeding of the non-linear state is one possible future
prospect. The need for a reduced transverse area may seem counterintuitive for
the spatially extended system SLS condition, but is required to prevent transverse
dynamics instabilities and deterministic motion of the localized structure during
cavity build-up time (τ ∼ 100 ns). Using a quantum-mechanical analogy, since the
transverse dynamics are characterized by slow light behavior, we explain the need
for step like potential (absorptive) barrier as a quantum reflector, preventing the
transverse light particle from escaping the pumped area and dying out of the system.
Phase and amplitude inhomogeneity, such as thermal lensing, small gain modulation,
amplified spontaneous emission or optical system tilt, will induce motion (kinetic
energy) of the light particle. The quantum reflection of the absorptive barrier will
compensate for this spatial drift, leading to a stable non-linearly localized traveling
wave laser emission. The same analysis can be made for the observed non-linear
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laser multiplexing. Two uncorrelated light states were demonstrated to coexist
within the same laser system (gain medium, cavity, pump). Each light state was
stabilized by a step like absorptive potential from a periodic matrix of circular
chromium mask.

Currently, we are limited in our ability to observe the transverse dynamics of the
system with a characteristic time of few 10 ns. Only time integrated 2D intensity
profile (using CCD camera) or space integrated relative intensity noise (using a
photodiode) were available. Spatially resolved output power was too low (average
power Pout < 100 µW) to use a time resolved Streak camera. Power limitation is
due to both: below laser threshold operation and a design limiting unsaturable
losses from the SESAM. For a more in-depth study, a higher transmission output
coupler with a high-speed CMOS linear or 2D camera or Streak camera could be
used to investigate dynamics in the sub-1 µs range. Increasing output power is also
beneficial for concrete applications. More intra-cavity power would also help the
light particle stability by reducing the amplified spontaneous emission.

Figure 8.26: Optical spectrum of tow Gaussian spot emission inside a self-imaging
laser cavity with a fast SESAM. The two spots are shown on the right and are
separated by 176 µm

To improve this system, work is still needed to reduce local and non-local
inhomogeneity. Thermal management of the semiconductor gain mirror could help
to reduce the thermal lens induced local inhomogeneity. However, wafer bonding
of transparent crystal heat sink onto the gain surface will have an impact on the
homogeneity and optical performances (introduces loss, generates a coupled Fabry-
Perot micro cavity, together with large chromatic dispersion for pulse operation).
Another choice is substrate removal and wafer bonding of the resulting membrane,
onto a high thermal conductivity host substrate. It usually leads to large defect
density arising from mechanical strain. To tackle the non-local inhomogeneity
(optical aberration), custom optical lenses could be designed with no radial phase
modulation, flat wavefront error (P-V < λ/10) for more than 0.05 NA. However,
manufacturing tolerances and cost could limit the achievable flatness. Another way
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Figure 8.27: Far-field of the Vortex emission and the characteristic spiral phase
interferometer for OAM carrying mode.

to circumvent custom lenses could be to use adaptive optics technics. Indeed, by
replacing the folding dichroic mirror with a controllable deformable one, we could
compensate for the optical system wavefront error. The carrier diffusion length in
the SESAM could also be improved by slightly reducing (few nanoseconds) their
carrier lifetime for CW operation. In the case of pulsed operation, carrier lifetime
is already sufficiently fast for a short scale (about 10 nm) carrier diffusion length.

In its current state, the laser system was able to generate a variety of light states,
from Bessel-Gauss beam to non-linear localized structure and laser multiplexing.
With small adaptations, we could generate a dual comb mode-locked laser (see
figure 8.26) for spectroscopy application, or an array of independent “vortex” modes
carrying orbital angular momentum (see figure 8.27) for integration into optical
tweezers. The dual-comb mode-locked laser was obtained by replacing the “slow”
SESAM with a fast one and each frequency comb was generated by a transverse
Gaussian mode at different transverse position using two optical pumps. The
tuning of the comb offset can be done by tuning the distance between the two
Gaussian modes, taking advantage of the semiconductor gain media large-scale
inhomogeneity (∆λ ∼ −0.12%mm−1), or varying the pumps power to induce
an emission wavelength red-shift (∆λ = 8.8 nm/W). The Vortex laser emission
shown in figure 8.27 was one of the solutions of the laser system operating with a
near-field circular aperture (chromium mask). Using the spiral phase mask meta-
surface methods developed by Seghilani et al. [Seghilani 2016] to have a robust
Vortex operation, and expending it across a transverse array, we could generate
a multiplexed emission of tunable in angular momentum Vortex beam. It is of
great interest for applications in optical tweezers for the study of mechanical and
dynamical processes in biological systems. At the same time, the phase metasurface
could also be used for shaping the near-field phase potential and controlling the

213



214 8.2. Laser multiplexing

Figure 8.28: a) Average time profile of the near-field (left) and far field (right)
intensity profile of the observed TLS Turing pattern. b) Spatio-temporal of the
writing (left) and deleting (right) of a temporally localized pulse. The TLS pulse
trajectory is marked by a black line.

mechanical dynamics of the light particle (adding drift, rotation, ...).
Lastly, advances towards optical 3D spatio-temporal localized state or Light

bullet were made using the non-local and local phase and amplitude potential
engineering developed in this work. Bartolo et al. [Bartolo 2022] have already
demonstrated temporal localization of Turing patterns and optical addressability
of individual pulses (see figure 8.28). This paves the way towards Light Bullets
demonstration inside a laser cavity (dissipative system).
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