N

N

Use of Data Science tools for Assessing Inland Water
Surface and Quality on Regional Scales Through
High-Resolution Sentinel-2 Remote Sensing Images

Mauricio Cezar Rebello Cordeiro

» To cite this version:

Mauricio Cezar Rebello Cordeiro. Use of Data Science tools for Assessing Inland Water Surface and
Quality on Regional Scales Through High-Resolution Sentinel-2 Remote Sensing Images. Hydrology.
Université Paul Sabatier - Toulouse III, 2022. English. NNT: 2022T0OU30204 . tel-04161699

HAL Id: tel-04161699
https://theses.hal.science/tel-04161699
Submitted on 13 Jul 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-04161699
https://hal.archives-ouvertes.fr

Université Fédérale

THESE

En vue de I'obtention du
DOCTORAT DE LUNIVERSITE DE TOULOUSE

Délivreé par I'Université Toulouse 3 - Paul Sabatier

Toulouse Midi-Pyrénées

Présentée et soutenue par
Mauricio Cezar REBELLO CORDEIRO

Le 6 décembre 2022

Exploitation des outils de la science des données pour le suivi de
la quantité et de la qualité des eaux de surface a I'échelle
régionale a partir de données de télédétection haute résolution
Sentinel-2

Ecole doctorale : SDU2E - Sciences de I'Univers, de I'Environnement et de
I'Espace

Spécialité : Surfaces et interfaces continentales, Hydrologie

Unité de recherche :
GET - Geosciences Environnement Toulouse

These dirigée par
Jean-Michel MARTINEZ

Jury
M. Osmar ABILIO JR., Rapporteur
M. Jean-Stéphane BAILLY, Rapporteur
Mme Brigitte VINCON-LEITE, Examinatrice
Mme Sabine SAUVAGE, Examinatrice
M. Jean-Michel MARTINEZ, Directeur de thése
M. Bruno LARTIGES, Président




Université Fédérale

= THESE

En vue de |’obtention du
DOCTORAT DE L’UNIVERSITE DE TOULOUSE

Délivre par I'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par
Mauricio Cezar REBELLO CORDEIRO

Le 6 décembre 2022

Use of Data Science Tools for Assessing Inland Water Surface and
Quality on Regional Scales Through High-Resolution Sentinel-2
Remote Sensing Images

Ecole doctorale : SDU2E - Sciences de |'Univers, de I'Environnement et de
I'Espace

Spécialité : Surfaces et interfaces continentales, Hydrologie

Unité de recherche :
GET - Geosciences Environnement Toulouse

These dirigee par
Jean-Michel MARTINEZ

Jury
M. Osmar ABILIO JR., Rapporteur
M. Jean-Stéphane BAILLY, Rapporteur
Mme Brigitte VINCON-LEITE, Examinatrice
Mme Sabine SAUVAGE, Examinatrice
M. Jean-Michel MARTINEZ, Directeur de thése
M. Bruno LARTIGES, Président



Abstract

As demand for freshwater increases worldwide, water resources management is a priority
for most developed and developing countries. Water security has been elected by the United
Nations (UN) as one of the Sustainable Development Goals for the 2030 Agenda. In this regard,
water monitoring is essential for understanding water changes in terms of quantity and quality
supporting decision-makers. However, periodic monitoring of surface water remains challenging
due to the high costs involved in performing field measurements, due to maintaining dedicated
human resources, and laboratory analysis and the difficulty accessing remote locations. Moreover,
sparse punctual and infrequent measurements do not capture the complex spatial and temporal

variations that may occur in freshwater resources.

In this context, the present thesis proposes the use of data science tools such as Machine
Learning (supervised and unsupervised), Cloud Computing, and High-Performance Computing
(HPC) to leverage Remote Sensing (RS) as a potential tool that can be used to complement or even
replace traditional ground-based surveys while providing advantages such as cost-effectiveness,

higher temporal frequency, and spatial continuity.

Until the present, it lacks operational tools and products focusing on inland water bodies
monitoring, in contrast to several products available for land or oceanic applications. This absence
can be partially explained by the complex interactions among optically active constituents and the
need for higher spatial and spectral resolution from sensors to monitor smaller water bodies, that

leads to larger volumes of data.

To bridge some of these gaps, this thesis focuses on different aspects toward the
development of a comprehensive water quality assessment framework that can be replicated in



different regions of the globe in regional scale. Three main axes have been identified: unsupervised
and automatic water bodies detection; improved classification of optical water types for water

quality parameters retrieval; and large-scale monitoring and spatial-temporal analysis.

The first part of this thesis focused in developing a fully automated water detection
algorithm for optical imagery. The waterdetect algorithm uses a multidimensional clustering
approach to provide robust detection regardless of land coverage type and specific calibration. It is
capable of detecting reservoirs as small as 0.5 ha with fine accuracy (kappa greater than 0.8).
Moreover it is coupled with a random sampling and a subsequent machine learning classifier to
deliver high performance and low memory consumption. After been validated over continental
France (Cordeiro et al., 2021), it has been applied to several land coverage and challenging
conditions (e.g., Greenland, Gabon, Chad, Mexico, Colombia, among others) and to track volume

of smaller reservoirs (Pefia-Luque et al., 2021; Tottrup et al., 2022).

The second part proposes using unsupervised machine learning to obtain water
classification schemes to improve water quality inversion accuracy. Agglomerative clustering has
been used to classify spectra from more than 1,000 field measurements acquired over 14 different
watersheds before this thesis, and the solution has been optimized to decrease Suspended Particle
Matter (SPM) retrieval errors. It is shown that by calibrating SPM models for just four optical water
types (OWT), the overall accuracy matches the one obtained by calibrating one model individually
for each river/basin. These finds make it possible to adopt one simple classification scheme for

regional and global application, regardless of the inherent characteristics of each watershed.

Finally, in the third part, a comprehensive methodology has been proposed aiming at large-
scale generalization and analysis of inland water surface and water quality parameters. In this part,

a case study has been performed to demonstrate the applicability of RS in regional-scale water



assessment. The study focused in evaluating the effects of the major drought that hit Brazil’s
southeast in 2021, covering an area of 320,000 km?. Several analyses considering water quantity
and water quality (turbidity and Chl-a) were performed and validated with available field data. The
results showed that RS allows to finely monitor water surface variation of thousands of water
bodies that lack proper monitoring and to map spatial anomalies, revealing that the drought did not

affect the region equally.

In the water quality domain, the case study successfully mapped seasonal variation of water
quality parameters in the Paranapanema basin. Median turbidity and Chl-a were calculated for each
month throughout the period of analysis, considering all water bodies above 1 ha. The median Chl-
a ranged from 3.6 mg/m? in May 2018 to 16.3 mg/m?® in September 2021, when water storage levels

were lower, evidencing the drought can substantially affect eutrophic state.

In summary, the present thesis demonstrates the feasibility of using RS imagery for inland
water assessment by addressing some of its scientific bottlenecks. Moreover, it represents a step
forward in terms of large-scale and operational water monitoring in terms of quantity and quality
and it also opens the path to better practices in water resources management. Part of the work
developed herein (i.e., waterdetect) is being used operationally by the National Centre for Space

Studies (CNES) in the French Data Center for Continental Surfaces (THEIA) processing workflow.



Resumé

Alors que la demande en eau douce augmente dans le monde entier, la gestion des
ressources en eau est une priorité pour tous les pays développés ou en voie de développement. La
securité hydrique a été choisie par les Nations Unies comme l'un des objectifs de développement
durable de I'Agenda 2030. A cet égard, la surveillance de I'eau est essentielle pour comprendre ses
changements en termes de quantité et de qualité afin de fournir des données robustes a destination
des décideurs. Cependant, la surveillance périodique des ressources en eaux, notamment de surface,
reste un défi en raison des colts élevés liés a la réalisation de mesures sur le terrain, du maintien
de ressources humaines dédiées, d'analyses en laboratoire et de la difficulté d'accéder a des sites
éloignés. En outre, les mesures ponctuelles et peu fréquentes ne permettent pas de saisir les

variations spatiales et temporelles complexes qui peuvent se produire au sein des lacs et riviéres.

Dans ce contexte, la présente these propose I'utilisation d’outils de science des données tels
que l'apprentissage automatique (supervisé et non supervisé), le cloud computing et le calcul haute
performance (HPC, en anglais) pour tirer parti de la télédétection (RS, en anglais) comme un outil
potentiel qui peut étre utilisé pour compléter ou méme remplacer les mesures conventionnelles au
sol tout en offrant divers avantages tels qu'un bon rapport colt-efficacité, une fréquence temporelle

plus élevée et une continuité spatiale.

Jusqu'a présent, il manque d'outils et de produits opérationnels axés sur la surveillance des
masses d'eau intérieures, contrairement a plusieurs produits disponibles pour des applications
terrestres ou océaniques. Cette absence peut s'expliquer en partie par les interactions complexes

entre les constituants optiquement actifs et le besoin d'une résolution spatiale et spectrale plus



élevée des capteurs pour surveiller les petits plans d'eau, ce qui conduit a de plus grands volumes

de données.

Afin de combler certaines de ces lacunes, cette these se concentre sur différents aspects du
développement d'une chaine d'évaluation complet de la qualité de I'eau qui peut étre reproduit dans
différentes régions du globe a I'échelle régionale. Trois axes principaux ont éte identifiés: la
détection non supervisée et automatique des masses d'eau ; le classement améliorée des types d'eau
optiques pour la inversion des paramétres de qualité de I'eau ; et la surveillance a grande échelle et

I'analyse spatio-temporelle.

Afin de combler certaines de ces lacunes, la premiere partie de cette these s'est concentrée
sur le développement d'un algorithme de détection des surfaces en eaux entierement automatisé
pour I'imagerie optique. L'algorithme utilise une approche de regroupement multidimensionnel
pour fournir une détection robuste indépendamment du type de couverture du sol et sans nécessité
d’une calibration spécifique a la région d’étude. Il est capable de détecter des réservoirs aussi petits
que 0,5 ha avec une précision fine (kappa supérieur a 0,8). De plus, il est associé a un
échantillonnage aléatoire et a une machine learning subséquent afin de délivrer des performances
élevées et une faible consommation de mémoire. Apres avoir été valide sur la France continentale
(Cordeiro et al., 2021), il a été appliqué a plusieurs couvertures terrestres et conditions difficiles
(par exemple, Groenland, Gabon, Tchad, Mexique, Colombie, entre autres) et pour suivre le

volume de réservoirs plus petits (Pefia-Luque et al., 2021; Tottrup et al., 2022).

La deuxieme partie propose d'utiliser le machine learning non supervisé pour classer les
masses d’eaux intérieures en différentes types afin d'améliorer la précision de l'inversion de la
qualité de I'eau. Le regroupement agglomératif a été utilisé pour classer les spectres provenant de

plus de 1 000 mesures sur le terrain obtenus dans 14 bassins versants avant la thése, et la solution

\



a été optimisée pour réduire les erreurs de récupération des matieres en suspension (SPM, en
anglais). 1l est demontré qu'en calibrant les modeles SPM pour seulement quatre classes optiques
d'eau (OWT, en anglais), la précision globale correspond a celle obtenue en calibrant un modele
individuellement pour chaque riviere/bassin. Ces résultats permettent d'adopter un schéma de
classification simple pour une application régionale et globale, indépendamment des

caractéristiques inhérentes a chaque bassin versant.

Pour finir, dans la troisieme partie, une méthodologie compléte a été proposée afin de
généraliser et d'analyser a grande échelle les parametres de surface et de qualité des eaux
intérieures. Dans cette partie, une étude de cas a été réalisée pour démontrer I'applicabilité de la
télédétection dans I'évaluation des eaux a I'échelle régionale. L'étude s'est concentrée sur
I'évaluation des effets de la grande sécheresse qui a frappé le sud-est du Breésil en 2021, couvrant
une zone de 320 000 kmz2. Plusieurs analyses portant sur la quantité et la qualité de I'eau (turbidité
et Chl-a) ont été réalisées et validées a I'aide des données de terrain disponibles. Les résultats ont
montré que le RS permet de surveiller finement la variation de la surface de I'eau de milliers de
masses d'eau qui manquent de surveillance adéquate et d’analyser les anomalies spatiales, révélant

que la sécheresse n'a pas affecté la région de maniere similaire.

Dans le domaine de la qualité de I'eau, I'étude de cas a évalué la variation saisonniére des
parametres de qualité de I'eau dans le bassin du Paranapanema. La turbidité médiane et la Chl-a
ont eté calculées pour chaque mois tout au long de la période d'analyse, en considérant tous les
plans d'eau supérieurs a 1 ha. Le Chl-a médian variait de 3,6 mg/m3 en mai 2018 a 16,3 mg/m3 en
septembre 2021, lorsque les niveaux de stockage de I'eau étaient plus bas, ce qui montre que la

sécheresse peut affecter considérablement I'état eutrophe.
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En resumé, la presente thése démontre la faisabilité de [l'utilisation des images de
télédétection pour eévaluer des eaux intérieures en abordant certains de ses obstacles scientifiques.
En outre, elle représente un pas en avant en matiére de surveillance de lI'eau a grande échelle en
termes de quantité et de qualité et elle ouvre également la voie a de meilleures pratiques en matiére
de gestion des ressources en eau. Une partie des travaux développés dans cette these (par exemple,
le waterdetect) est utilisée de maniére opérationnelle par le Centre National d'Etudes Spatiales

(CNES) dans la chaine de traitement des surfaces continentales (THEIA).
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Introduction (English)

1. Global Water Challenges

Water is the most important natural resource on Earth, as it is necessary to sustain all kinds
of life. Besides, it is vital for human, social and economic development, food and energy
production, and maintaining a healthy environment. Unfortunately, although more than 70% of the
world’s surface is covered by water, most of this total is salty water within the oceans (98%). The
remaining freshwater (2%) is mostly stored in ice caps or deep subterranean aquifers, leaving just
a tiny fraction of the total (0.024%) on the surface available for human consumption (Gleick et al.,

1993).

Estimates show that global freshwater withdrawal has increased by six times over the past
100 years, reaching more than 4,000 km®/year. Agriculture (69%) and industry (19%) are the most
water-demanding activities. Much of this growth is credited to a combination of population growth,

economic development, and shifting consumption patterns (UNESCO-WWAP, 2021).

The world’s population, which is currently 7.6 billion people, is expected to reach 10 billion
by 2050 and 11 billion by 2100, according to projections from the United Nations (UNDP, 2020).
In addition to population growth, a rise in living standards, noticeable by the increase of the Human
Development Index (HDI) over the years, also translate into higher pressure on natural resources,

predominantly freshwater (UNDP, 2022a).

Moreover, the urban population increased from 2.3 billion people in 1990 to 4.0 billion in
2015, which represents 51% of the total population, and this concentration is expected to grow up
in the next years, reaching up to 68% by 2050, according to the World Urbanization Prospects (UN,
2018). In this context, understanding the spatial distribution of water resources in terms of quality

14



and quantity is also crucial, as this movement towards urbanization puts even more pressure on

localized, high-density areas with scarce water sources.

Despite different projections of future trends in water use and the uncertainty of its global
increase, a growing fraction of the population will face some form of water scarcity in the coming
years (UNESCO-WWAP, 2021). Furthermore, climate-related changes can also affect evaporation
and rainfall patterns due to temperature rise leading to more extreme water-related events such as

floods and droughts throughout the globe.

In addition to the pressure for additional water resources caused by the aforementioned
trends, water quality has also deteriorated due to the release of various contaminants in ground and
surface water resources, led by increased human activities. Half of the world’s rivers and lakes are
polluted, according to Makarigakis and Jimenez-Cisneros (2019), and this situation can also be

largely degraded by climate changes.

To face these challenges and to include sustainable water resource management in the
global political agenda, the United Nations has devoted one of its Sustainable Development Goals
(SGD), also known as Global Goals, for the 2030 Agenda, to ensure availability and sustainable

management of water and sanitation for all (6" goal) (UNDP, 2022b).

One aspect to consider is that most world’s water-related issues are not driven by an actual
lack of water. Instead, they result from poor and inefficient water resources governance (UNESCO-
IWSSM, 2019). In this context, water monitoring is essential for understanding water changes in
quantity and quality. The United Nations World Water Development Report (UNESCO-WWAP,
2021) argues that to achieve sustainable and long-term water resources management, it is essential
to incorporate better measurement and monitoring into decision-making frameworks. This way,

stakeholders can make equitable comparisons of the multiple values of water.

15



Moreover, periodic monitoring of water bodies and integrated management of river basins
are essential for water resource conservation. However, there are many challenges to overcome

regarding field monitoring, especially for non-developed countries, such as:

1) Time and costs involved in performing field measurements and laboratory analysis;
2) Punctual samples do not always capture spatial and temporal variations; and

3) Continuous field monitoring is not feasible in remote, difficult-access regions.

Therefore, the use of alternative data sources from remote sensors, especially from orbital
satellites, has been rapidly increasing in the last decades and is helping the scientific community
to better understand the complexity of water resources management on larger scales. In addition,
these technologies have shown the potential to complement or replace traditional ground-based
surveys and provide additional advantages such as cost-effectiveness, higher frequency, and better

spatial continuity (Barbosa et al., 2019).

2. Remote Sensing

According to Kairu (1982), the term remote sensing can be defined as “the collection and
interpretation of information about an object, a region or event without being in physical contact
with the object”. A simple photograph followed by the analysis of its contents is then considered a
kind of remote sensing. The sensors can be mounted on any platform, such as an airplane or a
research balloon. Spatial remote sensing for earth observations is not a new concept. It started
effectively with the launch of LANDSAT-1 in 1972 by the National Aeronautics and Space
Administration (NASA), followed by the French Space Agency (CNES) with the launch of SPOT-

1in 1986.

Although considerable progress has been made in remote sensing for earth observations

since then, the potential of satellite imagery remains under-exploited in numerous specialized

16



fields, especially by public actors and decision-makers responsible for elaborating and applying
public policies. In the early days, the cost of images and the lack of experts with the proper
knowledge for processing and analyzing these data were some of the causes for this under

exploitation of remote sensing data (Baghdadi and Zribi, 2016).

However, the capacity of remote sensing to survey the land surface and environmental
conditions over large areas has increased over the last few years, mostly due to the deployment of
several earth observation satellites that provide inexpensive data all over the globe. Moreover,
universities have adapted their curriculum and distinct courses, such as Geology, Geography,

Ecology and others, now consider remote sensing-related axes.

In practical terms, the information collected by a sensor is the energy emitted by the object,
frequently called as target, in different parts of the electromagnetic (EM) spectrum. The region of
interest of the EM spectrum in remote sensing goes from short wavelengths (visible portion), which
corresponds to the EM spectrum that the human eye can view, generally placed between 380 to

700nm, to infrared and longer wavelengths (microwaves).

The radiation emitted or reflected by the different targets on Earth will directly depend on
the incoming energy and the absorption/reflection of this energy by the target. This interaction is
specific for each type of material (Figure 1-a) and its physico-chemical properties. There exist two
types of sensors, depending on the energy source. The passive sensors rely on external sources of
energy, usually the sun, and the active sensors have their own source of energy, as in the case of

radars.

Once the downwelling energy hits the target, a portion of this energy can be absorbed by
the object. This absorption varies over the range of wavelengths in the EM spectrum and the portion

of energy not absorbed is scattered. The backscattered energy is measured by the sensor in different
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wavelength regions, defined as the spectral bands of the sensor. The relationship between the
upwelling radiance (measured by the sensor) and the downward irradiance is called reflectance and
can be estimated for each wavelength across the spectrum. Considering a single energy source and
that the absorption and scattering processes are a function of the material, each target will have a

unique spectral pattern called spectral signature (Figure 1Db).
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Figure 1: (a) Remote sensing schema. (b) Spectral signatures for distinct natural targets. Extracted from Mercan and Alam
(2011).

Many other factors can interfere with the remote measurements, such as interactions of both
the downwelling and upwelling light with atmospheric particles and the sun’s relative position. A
detailed presentation of these physical concepts is beyond the scope of the present thesis but can

be found in Guo et al. (2020), Kairu (1982), and Baghdadi and Zribi (2016).

The observation of these reflectance characteristics through space and time makes it
possible for the scientists and researchers to model different phenomena and to better understand

and characterize our environment (Baghdadi and Zribi, 2016).
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2.1 Remote Sensing Applied to Water Resources
Satellite platforms have been used for more than 50 years to understand complex processes
such as global land use, vegetation analysis, and ocean productivity or to establish connections

between industrial production and carbon cycling (Topp et al., 2020).

The focus on understanding these global coarse processes can be explained by the spatial,
spectral, and temporal resolutions provided by earlier platforms. As a reference, the LANDSAT-1
platform, launched in 1972, was the first satellite designed specifically for Earth-observing
applications and it was loaded with a Multispectral Scanner System (MSS) with 83m of spatial
resolution and just 4 spectral bands (visible and near-infrared) with a revisit time of 18 days. Other
ancient oceanic and atmospheric satellites had even coarser spatial resolutions and higher temporal

frequencies.

Concerning the use of remotely sensed images for inland waters assessment, Topp et al.
(2020) argue that, despite an increasing number of publications, there are limited global products
towards inland water quality of rivers, lakes and reservoirs, in comparison to land and oceanic
products. This slow evolution can be partially explained by the challenges related to the remote
sensing of continental waterbodies such as limited capacity of sensors to detect small bodies and
the complex interactions among optically active constituents (OACs). OACs are dissolved and
particulate water constituents that can absorb and scatter light (e.g., particulate matter, chlorophyll,

colored dissolved organic matter, and others), giving water its characteristic color.

One example of this complexity can be seen in Figure 2, which shows the mean spectral
response of several rivers considered in the present study, measured by field hyperspectral

radiometers, and how this reflectance can vary depending on its constituents, geographic region,
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etc. These observations contrast with the overall assumption of null water-leaving radiance at the

near-infrared (NIR) wavelengths, commonly adapted for clear oceanic waters (i.e. Case 1 Water).

Thankfully, there has been an increased capacity of remote-sensing Earth observation
satellites in recent years. In this regard, it is worth noting the Copernicus program, designed by the
European Space Agency (ESA), with missions that focus on different aspects of Earth observation:

Atmospheric, Oceanic and Land monitoring (Suhet and Hoersch, 2015).

The satellites of the Sentinel-2 mission, part of the Copernicus observation program, are
equipped with optical Multispectral Instrument (MSI) that offers high spatial, spectral and temporal
resolutions at a global scale without cost to the user. The first satellite of the Sentinel-2 family
(Sentinel-2A) was launched by the European Space Agency (ESA) in 2015, followed by its twin
satellite (Sentinel-2B) launched in 2017. Both are polar-orbiting satellites and operate phased at
180° to each other to provide a high revisit time of 2-3 days in mid-latitudes and 5 days revisit time
near the equator (Suhet and Hoersch, 2015). The Sentinel-2 has been selected to address inland

water quality issues, which is the scope of this thesis, as it provides a resolution that is suitable to

Figure 1: The mean spectral profiles of several rivers/basins considered in the present study measured with field radiometers.
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better detect narrow and linear features as river channels and smaller water bodies that would not

be visible with other medium resolution sensors.

Moreover, it can capture a wide range of spectral wavelengths separated into 13 spectral
bands ranging from 443 to 2200 nm, and spatial resolutions ranging from 10 to 60m depending on
the spectral band. Another information that must be considered when using satellite reflectance to
retrieve water quality parameters is the spectral resolution provided by each band as it can interfere
in the reflectance actually “seen” by the satellite. The Sentinel-2 MSI sensor has bandwidths
ranging from 15 to 180 nm, making it possible to identify different water colors and then infer the
properties of their constituents. However, it is important to note that the methodologies described
hereafter are not satellite specific and could be applicable to other platforms with different technical
specifications. Error! Reference source not found. presents the spectral response functions for

the 13 bands available in the Sentinel-2 MSI sensor and their corresponding spatial resolutions.

This extended capacity provided by newer satellites enables scientists to explore different
possibilities concerning the inland water domain, including surface water coverage (Buma et al.,
2018; Cordeiro et al., 2021; Feyisa et al., 2014; Markert et al., 2018; Pekel et al., 2016; Pefia-Luque
et al.,, 2021; Souza et al., 2019), flood and inundation mapping (Kordelas et al., 2019, 2018;
Martinis et al., 2011; Wieland and Martinis, 2019), water quality monitoring (Ansper and Alikas,
2018; Delegido et al., 2014; Frampton et al., 2013; Lins et al., 2017; Toming et al., 2016; Uudeberg
et al., 2020; Yadav et al., 2019), suspended sediment assessment (Condé et al., 2019; Espinoza

Villar et al., 2013; Martinez et al., 2009; Yepez et al., 2018), among others.

However, the growing number of scientific publications on the water resources domain,
does not translate into operational products in regional or global scale, which is crucial for decision-

makers (Topp et al., 2020)
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One exception that is worth mentioning is the Global Surface Water (GSW) project (Pekel
et al., 2016), which was developed to assess water surfaces worldwide and track their long-term
changes, making use of Landsat-8 optical imagery with 30m resolution. However, the objective of
the GSW project is to track long-term monthly changes, but to perform operational water quality
assessment through remotely sensed images, higher spatial and temporal resolutions are required.

In this way, the GSW dataset cannot be used for continuous monitoring.
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Figure 2: Spectral response functions for Sentinel-2/MSI, Visual-NIR, and SWIR bands and their corresponding spatial
resolutions.

Among the barriers that limit inland water quality assessment through satellite remote
sensing, Chami et al. (2015) highlight the difficulty of controlling the variation of atmospheric
effects. Historic correction procedures rely upon zero water leaving radiance beyond the visible

spectrum. This assumption cannot be generalized to optically complex inland waters, as the
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presence of inorganic and organic matter increases the light backscattering processes in the NIR

spectrum (Figure 2).

Moreover, optical sensors are subject to the atmospheric conditions such as clouds, cloud
shadows and other surface occurrences that can interfere in the detection of the water pixels, such
as snow, for example. Thus, besides an atmospheric correction that considers the presence of
optically complex water, another key element to provide operational products is the application of
robust masking methods that are able to correctly identify (and possibly discard) undesired

elements in the scene.

3. Data science tools for Remote Sensing

In the previous section, we broadly discussed the uses of satellite remote sensing images
for earth observations and how they can be a valuable tool to assess the physical, chemical, and

biological status of the inland water bodies, despite their challenges.

In the early days, remote sensing was mainly based on optical photography (confined
between the visible and infrared spectral range) captured from aerial platforms. The photo-
interpretation of these images was performed by trained technicians responsible for identifying
elements and patterns without the aid of automated processes (Baghdadi and Zribi, 2016).
However, this process is time-consuming and unfeasible, considering the amount of data available
in recent years. In addition, remote sensing has evolved from primarily optical to using the entire
spectrum of wavelengths, from the visible to microwaves, turning the images into n-dimensional

cubes that are difficult to be interpreted manually.

In this context, considerable progress in the development of computer-assisted methods for
processing and analysis of remote sensing data is being made, and data science tools such as Data

Mining, Machine Learning (ML), or Deep Learning (DL) are now playing a central role.
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3.1 Machine Learning
Machine Learning is a subfield of the artificial intelligence domain, together with Deep
Learning. The term was coined in 1959 by Arthur Samuel, an American pioneer in the fields of
computer gaming and artificial intelligence, and describes the ability to make predictions or

decisions without being explicitly programmed to do so (Mitchell, 1997).

To understand what ML is, one may think of a problem that has to be solved
programmatically. Sticking to the remote sensing context, imagine, for example, we need to
develop a program that can identify clouds in a satellite image. The straightforward approach would
be to map, beforehand, all the characteristics a cloud would have (e.g., color, temperature,
reflection intensity, among others) and how these characteristics translate into band reflectance
values and write clauses to verify if each pixel lies within those rules. This is called rule-based
approach. However, considering the diversity of clouds and their interaction with the ground (e.g.,
a semi-transparent cirrus), it can be cumbersome, or even impractical, to map all possible values to

program this algorithm accurately.

In the ML approach, instead of mapping all possible values that can occur, the ML
algorithm is presented with data previously labeled as cloud or non-cloud by a human, and the
computer “learns” from the given data how to distinguish clouds. This method, where data is
labeled previously, is called supervised learning. Other approaches when no label is provided are
also available and are called unsupervised learning (e.g., clustering and dimensionality reduction)
and will be discussed further. The fundamental differences between rule-based and ML

programming are highlighted in Error! Reference source not found..
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Figure 3: Schematic comparison of traditional programming approach (a) and machine learning approach (b). Adapted from
Géron (2017).

One advantage of ML methods over traditional approaches is that they do not require
previous knowledge concerning the intrinsic data properties and statistics. Instead, the relationship

among input variables (also called input features) is obtained automatically during the training

process, where internal parameters are calibrated to improve accuracy.

The ML-based techniques have proven useful for a very large number of applications, such
as land cover classification, object detection, empirical retrieval algorithms, among others and
distinct Earth observation domains (e.g., land, ocean, and atmosphere) (Lary et al., 2016).

Therefore, ML methods are increasingly used for interpreting all kinds of remote-sensing images.

To extract relevant information from multispectral images, ML techniques can be divided

into two main groups: 1) supervised learning; and 2) unsupervised learning.
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Supervised Learning

In the supervised learning context, the goal is to estimate variables (qualitative classes, in
the case of classification problems, or continuous values in regression problems) from samples in
a data set, given that some of these variables are provided for a subset called training dataset. Based
on the training dataset and according to the supervised algorithm being used, the computer can
establish a relationship between the data and the desired variables internally. Once the model is
trained (i.e., internal parameters calibrated during the training or learning phase), it can be used to
estimate the variables for all the samples in the data set, even if we cannot fully understand the

internal relationship (Baghdadi and Zribi, 2016).

Because of these characteristics, ML is usually used in domains such as difficult-to-
program applications or when our theoretical knowledge is still incomplete, but for which we do

have a significant number of observations and other data (Lary et al., 2016).

In the example presented before, concerning cloud detection, the algorithm can establish a
relationship considering as many input variables as we want. For example, we could provide the
totality of multispectral bands and the time of acquisition. The variables that are passed to the ML
algorithm during the learning process are called input features, and the program will use them to

predict the outputs of new samples.

The cloud detection application is a classification example, as the expected output is
qualitative (cloud or non-cloud). The same approach could be used to retrieve a quantitative output,
such as land temperature or evapotranspiration, for example. In this last case, we consider it a
regression application. Several methods exist in the supervised learning context. Among them, the
most commonly used ones in remote sensing are: support vector machines (SVM), decision trees

(DT), random forests (RF), artificial neural networks (ANN), k-nearest neighbors (KNN), among
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others (Lary etal., 2016). A detailed explanation of such methods is outside the scope of the present
thesis, however, comprehensive descriptions are available in the literature (Géron, 2017,

Vanderplas, 2016).

Unsupervised Learning

Unsupervised techniques are commonly used when we have no prior knowledge about the
data being analyzed (i.e., no labels), and we want the computer to extract meaningful correlations
from it. For example, suppose we want to identify how many different crops appear in a given
scene. Partition algorithms, also called clustering algorithms, can be used to automatically group
the data into subsets without intervention or training data. Several clustering algorithms exist in the
literature, and the most commonly used in the remote sensing domain are k-Means, agglomerative
clustering and DBScan. Error! Reference source not found. shows an example of agglomerative
clustering applied to several pixels in a Sentinel-2 scene to separate different classes of pixels

automatically. This kind of application will be further explored in Chapter 1 — Water Detection.

Clustering resuits (NDWI B12)
«  Water

004

NDOWI

~0.4 1

Figure 4: Scatter plot of the Normalized Difference Water Index (NDWI, Y-axis) and SWIR reflectance (X-axis) in sr - for
several pixels in a Sentinel-2 scene, showing clustering results in different colors.
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Another group of techniques used within unsupervised learning are called visualization or
dimensionality reduction methods. In dimensionality reduction, the task is to simplify the data,
preserving as much information as possible. This can be done by eliminating correlated input
features or merging several features into one new synthetic feature. This process of crafting input
variables to achieve better results is called feature extraction or feature engineering and it is a key

step in machine learning applications (Géron, 2017).

3.2 Deep Learning
In the previous section, we have mentioned ANN as one of the tools for supervised learning
with ML. Although the practical application of ANNSs is recent, its theoretical conception date back
to 1943, when McCulloch and Walter Pitts, a neurophysiologist and a cybernetician, respectively,
proposed the first mathematical model a neural network (Abrahart et al., 2004). An ANN is formed
by simple processing units called perceptrons, which are inspired by the human neurons that

connect to other perceptrons, creating a network that would mimic the brain.

However, due to difficulties to train an ANN, its use remained neglected by the scientific
community for a long time. More recently, with the increase in computational power, especially
provided graphics processing unity (GPUs), the availability of training data, and some technical

improvements in the training step (e.g., backpropagation) the ANNSs received a lot of attention.

In this context, we define DL models as ANN models composed of several stacked layers,
typically more than three. The more stacked layers, the model becomes more profound, and more
complex interactions can be learned, hence the name Deep Learning. These deep architectures
proved successful in extracting information from abstract concepts and outperformed classical ML
methods in a number of applications, such as speech recognition and image recognition (Hoeser

and Kuenzer, 2020).
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According to Hoeser and Kuenzer (2020), the use of DL reached the Earth Observation
community in 2012. Since then, the number of publications has doubled each year with a wide
range of applications, such as super-resolution, data fusion, denoising, weather forecasting, scene

recognition, classification, object detection and image segmentation.

4. Generalization and Operational Tools

Although multispectral visible optical remote sensing is now well known by scientists and
actors in charge of managing the environment, putting together all these pieces and making them
general enough to work in different regions with diverse land covers and atmospheric conditions
remains a challenge for the inland water domain. In addition, we faced a radical increase in the
volume of data (Big Data) acquired by higher-resolution sensors, which stands as a new issue in

the processing of satellite data.

Within global surface water detection, an effort towards this generalization has been
recently proposed by the World Water project (Tottrup et al., 2022). It was conducted an inter-
comparison round robin with the objective to assess several optical and radar methodologies aiming
to provide high-resolution regional surface water detection in different challenging regions across

the globe.

Another difficulty towards generalization concerns the development of global retrieval
algorithms that make it possible to assess water quality parameters independently of the monitored
water body. In oceanographic research, the delivery of synoptic maps of global chlorophyll-a (Chl-
a) concentration from radiometric sensors mounted on satellites has been a reality for decades.
Concerning inland waters, even though many different models have been proposed in the literature
for different parameters, the optical complexity in these waters frequently limits its operational use

to localized scales (Neil et al., 2019).
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Besides that, in recent years, massive amounts of satellite data have been generated,
dramatically expanding our ability to understand our environment from both spatial and temporal
perspectives. However, this unprecedented volume of data (the volume of remote sensed imagery
collected by satellites or drones could easily reach Terabytes or Petabytes levels) brought to light
the challenges and bottlenecks involved in storing, processing, analyzing and ultimately visualizing

all this information (Guo et al., 2020).

This means that methodologies developed locally are not feasible to be applied to larger
scales, because storage, memory and processing constraints will just prevent them from working
correctly, or they will not produce the results in the expected time, making them obsolete. And
that’s another reason why most inland water quality products and publications are usually
constrained to smaller areas or specific water bodies, and it makes them difficulty to be applied on

regional or global scales to help us understand the spatial context of these complex interactions.

In this context, new computational paradigms developed in other disciplines, such as Data
Mining, Grid Computing, Cloud Computing and High-Performance Computing (HPC) are being
incorporated into the set of optical remote sensing tools to provide processing support to address

these challenges (Guo et al., 2020).

These approaches are necessary depending on the tasks being performed as they unlock the
possibility of processing amounts of data unimagined to be done by a single processing instance.
However, being able to process these huge amounts of data is just one step. The satellite image is
still a complex product so it is also fundamental to develop methodologies that can be used to

extend the analysis to another spatial and temporal scale.
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5. Objectives

Remote sensing can be an efficient tool to enable large-scale monitoring to address water
quantity and quality issues. However, creating an operational framework that can assess inland
water quality from satellite remote sensing involves many steps and the careful selection of several
parameters, so it can all work in an integrated manner. From selecting the satellite platform to
identifying the atmospheric correction model and developing a robust inversion algorithm, all these

steps must be orchestrated in a meaningful way, as depicted in Figure .

In this context, this thesis proposes to work on different aspects of this chain, making use
of existing methodologies and proposing new advancements towards robustness, scale, and

automation, through the extensive application of data science techniques.

Therefore, the overall objective is to provide a comprehensive framework that can be
replicated in different regions of the globe for inland water quality studies through remotely sensed
imagery. Among a diversity of topics involved, the aspects to be explored in detail were
deliberately selected during the development of the thesis and were separated into three main axes

listed below:

1- Unsupervised and automatic water bodies detection;
2- Improved classification of optical water types for inland waters parameters retrieval;
and

3- Satellite-based large-scale monitoring and spatial-temporal trend analysis.

The objectives within each defined axis are detailed in the following sections.
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Figure 5: Schematic view of the steps involved in assessing inland water quality from satellite remote sensed imagery that
were developed in this thesis. Boxes in orange represent steps covered in axis 1 (water detection), boxes in blue represent axis
2 (water classification) and green boxes represent axis 3 (generalization and analysis).
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Axis 1 — Water Bodies Detection

The starting point for any water assessment through a remote sensing framework is
correctly separating water pixels from other targets in the scene. During the atmospheric correction
of the satellite images that converts them from Level-1C (top of atmosphere reflectance) to Level-
2A (surface reflectance), a geophysical mask is typically produced containing land cover pixels
classification. The most common Level-2A processors for the Sentinel-2 (MAJA, Sen2Cor, and F-
mask) deliver the water mask as a subproduct of the atmospheric correction. However, as inland
water is not their focus, the water masks provided by these processors are usually inaccurate,
especially for complex inland and smaller water bodies, and should be employed only as a last

resort (Cordeiro et al., 2021).

Apart from the standard processors, many studies have been published in the field, but
current algorithms usually require human intervention, in the case of supervised learning methods
that need training data for calibration, or they lack robustness to be applied in different conditions

because of the diversity of optically complex waters (due to its constituents) and land covers.

In this context, the first axis focuses on the challenges involved in water detection from
optical satellite imagery. The objective is to provide a methodology that can be applied

automatically in different regions with diverse land covers and atmospheric conditions.

Besides robustness, water detection scalability is another scientific issue to be addressed in axis 1,
as it can represent a significant constraint depending on the monitored area. As a reference, a single
Sentinel-2 scene, which covers an area of 110km x 110km, has more than 100 million pixels, with

13 radiometric bands, and the classification is the first step for further analysis.
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Other intervenient factors that can affect the correct water pixel identification are also
assessed in this axis. For example, the atmospheric correction to be applied and the masking
methods to eliminate undesired pixels such as clouds, shadows, or snow are also discussed in the

context of axis 1.

Axis 2 — Water Color Classification

The assessment of water quality, notably suspended sediment matter (SPM), through
remote sensing depends on the interaction that occurs between the OACs and the electromagnetic
radiation within the visible and near-infrared regions (Barbosa et al., 2019). Mathematical
inversion models are then developed, but it is generally accepted that no single model is applicable
to all water types occurring across the globe (Kirk, 1994). Furthermore, results are highly coupled
to the water types and the field measurements used for the calibration, and it is not always a simple
task to define the applicability range of these algorithms (Xue et al., 2019). These issues directly
affect the scalability of remote sensing for water resources assessments, as they impose constraints

when delivering water quality products on large scales.

To overcome this difficulty, some studies have shown that algorithms can perform better
when calibrated to specific ranges of Chl-a (Matsushita et al., 2015; Pahlevan et al., 2020; Smith
et al., 2018) or SPM (Condé et al., 2019; Yepez et al., 2018). However, an additional difficulty
must be considered for an automated regional or global scale assessment. Even if several
algorithms are calibrated for different water types, it can be challenging to assure the applicability
range and limitations of each model, so it is not known “a priori” which one is best suited for a
particular place or time. Additionally, the same water body can simultaneously contain different

water types (Moore et al., 2014; Neil et al., 2019).
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In this regard, studies have shown that using water classification schemas and calibrating
models for each defined optical water type (OWT) can contribute to an improvement of retrieval
algorithms accuracy (Lubac and Loisel, 2007; Moore et al., 2014; Vantrepotte et al., 2012).
However, although these papers can demonstrate an improvement in parameter retrieval if OWTs
are considered, the inversion accuracy is not the final objective of the classification process, it is a

secondary goal.

Considering this, the objective of the second axis is to propose a framework that can classify
OWTs in order to maximize a retrieval’s accuracy. Using machine learning strategies such as those
employed in axis 1, like unsupervised agglomerative clustering, axis 2 proposes to separate spectral
curves into water types, not by spatial distribution or river basin. The main idea is to explore the
hyperspectral response of different rivers and combine them automatically into distinct OWTS, so

the parameter retrieval is optimal.

A comprehensive database of more than 1,000 in situ radiometric measurements, coupled
with other laboratory water quality measurements will be used. Due to data constraints, the
methodology will be developed to retrieve Suspended Particle Matter (SPM), but the developed

framework can be extended to other water quality parameters, subject to data availability.

Axis 3 — Generalization and Analysis
The challenges towards robustness and generalization are not constrained to this third axis.
As already presented, the first two axes were also motivated by the need for more tools that permit

operational usage of satellite remote sensing images for inland water assessment.

However, developing methods that can be applied in different regions is just a first step.
Applying such methods to a regional scale and analyzing such amount of data adds up another

layer of complexity due to volume constraints.
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In this axis, concepts of Big Data, such as cloud computing and parallel processing, are
explored, to enable the processing of thousands of images that would not be feasible with

conventional tools.

Once these data are correctly processed, another scientific question arises and needs to be
addressed. How should we analyze and extract meaningful information from this huge amount of

data, and how should we present its results?

In this context, this third axis is devoted to exploring methodologies that can permit to scale
up the current methods to assess inland water on a regional scale, discuss its shortcomings and
propose alternatives. To accomplish this objective, a case study has been proposed to monitor by
RS a large area of 320,000km? in Brazil’s Parana Basin. This region was selected for its national
importance and because it faced a major drought in 2021. Water surface extents, as well as turbidity
and Chl-a have been assessed from 2018 to 2021 using Sentinel-2 imagery, and their results were

analyzed accordingly.
6. Thesis Structure

Considering the aforementioned objectives, this thesis is organized in three main chapters,

as detailed below:

Chapter 1 - Water Detection

This chapter focuses on the challenge of distinguishing water pixels from other objects in
satellite images. This chapter presents the paper “Automatic water detection from
multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level
2A processors” (Cordeiro et al., 2021) published in the Remote Sensing of Environment journal.

The paper proposes a new unsupervised method that uses machine learning methods, notably
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clustering and Naive Bayes classification, to improve robustness and performance to separate water

pixels in high-resolution optical scenes.

A second paper (Annex 1), “Sentinel-1&2 Multitemporal Water Surface Detection
Accuracies, Evaluated at Regional and Reservoirs Level” (Pefia-Luque et al., 2021), in which |
participated as the third author, focused on further comparison of the proposed clustering
methodology to existing ones and compared accuracies of separate optical and radar platforms.
These comparisons were performed on regional and reservoirs level, and the effect of time-

windowed estimations was also assessed.

Further developments on the same theme towards global generalization and resolution
improvements have produced respectively the papers “Surface water dynamics from space: a
round robin inter-comparison of using Optical and SAR high-resolution (10-m) satellite
observations for regional surface water detection” (Tottrup et al., 2022), published in Remote
Sensing — MDPI journal and “Maximizing the accuracy of surface water detection in an
intermittent river using the Water Detect algorithm and a sensitivity analysis to compare the
performance of Sentinel-2, Planetscope and Sharpened imagery [Submitted for
publication]”, submitted for publication in the GIScience & Remote Sensing journal. | participated
in the elaboration of both papers with a focus on the same theme but within different environments

and sensors, and they are presented in Annex |1, and Annex Il respectively.

Chapter 2 — Optical Water Classification
This chapter presents a framework to classify water types, according to their reflectance
spectra, in order to maximize the SPM retrieval accuracy. It is entitled “Optical Water

Classification for Suspended Particle Matter (SPM) retrieval” and uses unsupervised clustering
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methods to separate the water spectra in groups. Several input features, normalizations methods

and clustering algorithms are tested.

Several articles in the recent years have dealt with water optical class classification but they
were mostly focused with chlorophyll-a mapping or for coastal waters. There is a need to address
the suspended particulate matter that is the first driver of the water leaving radiance over inland
waters as a function of erosion and sediment transport processes in rivers, lakes and reservoirs. In
particular, we will seek the optimal number of classes allowing to achieve the best retrieval
accuracy and for different spectral resolution. For this, we took benefit of an unprecedented
database of hyperspectral field measurements over different rivers that allowed to represent

contrasted catchments is terms of climate and geology and hydrological processes.

Chapter 3 — Generalization and Analysis: A case study of Brazil’s 2021 drought.

The third chapter presents the methodologies developed towards the generalization and
analysis of inland water quality parameters. The first part is an in-depth presentation of the
methodologies developed in the current study to extrapolate the water detection and the quality
parameters inversion to a regional scale and a long timeframe. In this chapter, automation and
robustness are leveraged to a bigger scale (over 300 000 km?) to permit the processing of tens of

thousands of satellite imagery without manual intervention.

This introductory section is split in two parts. The first part, “Water Detection
Methodology” goes into the details of the improvements implemented over the waterdetect
package that were not covered in the original “Automatic water detection from
multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level

2A processors” paper. The second part, “Water Assessment Methodology” concerns all the
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postprocessing that has been performed in the resulting water masks and corresponding analysis

steps.

Following the detailed presentation of the methodologies that are used within this chapter,
a case study is presented in the form of an article, that employ the proposed methods to assess the
effects of a major drought that occurred in the Brazilian’s Parané River basin in 2021, in terms of

water quantity and water quality of thousands of inland water bodies.

Concerning water extension, all the region that was considered as in critical situation by the
Brazilian authorities was assessed. An area of 320,000km? that includes 17 major reservoirs has
been analyzed from January 2018 to December 2021. A total of 12,000 Sentinel-2 images with
10m of spatial resolution have been used to assess the effects of the drought on more than 20,000
reservoirs as small as 1 ha. Besides the analysis stratified by reservoirs’ dimensions, that would not
be feasible with field measurements, a spatial anomaly analysis is also performed, evidencing how

the drought affected differently the regions of the basin.

For the water quality assessment, a sub-basin of the Parana Basin, called Paranapanema
basin has been selected due to availability of sun-glint corrected data (to be discussed further).
Although smaller in area extension, the same time frame from January 2018 to December 2021 has
been assessed. The water quality parameters turbidity and Chl-a have been estimated through
inversion algorithms from the literature. Again, a stratified analysis has been performed to assess
difference in these parameters in function of reservoirs’ size and how they responded to the major

drought.
7. Development context of the Thesis

The present work has been developed as part of the cooperation agreement "Hidrosat™

between the French Institute de Recherche pour le Developpement (IRD), Géosciences
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Environnement Toulouse (GET) laboratory, and the Brazilian National Water and Sanitation
Agency (ANA), which financed my doctorate studies, to build up capacity in spatial hydrology.
More particularly, my work regarding the use of Sentinel-2/MSI sensor imagery has been
developed in the context of the OBS2CO project (acronym for OBServation de la Couleur des eaux
Continentales) and of the French data center for continental surfaces (THEIA) that involves several
institutions to provide access to the water sciences community to high-resolution water quality

products over lakes, reservoirs, and rivers.

Besides IRD and ANA, other institutions such as the French National Center for Space
Studies (CNES), the French Office for Biodiversity (OFB), Brasilia University (UNB), Federal
University of Amazonas (UFAM) takes part into these initiatives. The final objective is to develop
operational workflows to process remotely sensed time-series and make them available to the
community. Among its several work fronts, we can highlight: 1) the development of optical and
water quality databases; 2) inversion algorithms; 3) products validation; and 4) publishing
platforms. The results obtained from this pipeline permit the development of research and practical
applications. Trends in eutrophication, impacts of hydrological extreme events, erosion
monitoring, sediment transport and deposition (siltation), and environmental catastrophes are some

examples of subjects that can be addressed using the tools that are being developed in the thesis.

In this thesis, | worked closely with this multidisciplinary team and made significant

improvements in terms of methodology towards large-scale processing and analysis.
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Introduction (Francais)

1. Les enjeux mondiaux lies a I'eau

L'eau est la ressource naturelle la plus importante sur Terre, car elle est nécessaire au
maintien de toutes les formes de vie. En outre, elle est vitale pour le développement humain, social
et économique, la production de nourriture et d'énergie, et le maintien d'un environnement sain.
Malheureusement, bien que plus de 70 % de la surface du globe soit recouverte d'eau, la majeure
partie de ce total est constituée d'eau salée dans les oceans (98 %). L'eau douce restante (2%) est
principalement stockée dans les calottes glaciaires ou dans des aquiferes souterrains profonds, ce
qui ne laisse qu'une infime partie du total (0,024%) a la surface disponible pour la consommation

humaine (Gleick et al., 1993).

Les données montrent que les prélevements mondiaux d'eau douce ont été multipliés par
six au cours des 100 derniéres années, pour atteindre plus de 4 000 km3/an. L'agriculture (69 %)
et I'industrie (19 %) sont les activités les plus consommatrices des ressources en eaux. Une grande
partie de cette augmentation est attribuée a la combinaison de la croissance démographique, du
développement économique et de I'évolution des modes de consommation (UNESCO-WWAP,

2021).

La population mondiale, qui est actuellement de 7,6 milliards d'habitants, devrait atteindre
10 milliards d'ici 2050 et 11 milliards d'ici 2100, selon les projections de I’ONU (UNDP, 2020).
Outre la croissance démographique, I'¢lévation de 1’espérance de vie, perceptible par
l'augmentation de I'indice de développement humain (HDI en anglais) au fil des ans, se traduit
également par une pression accrue sur les ressources naturelles, principalement I'eau douce

(UNDP, 2022a).
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De plus, la population urbaine est passée de 2,3 milliards de personnes en 1990 a 4,0
milliards en 2015, ce qui représente 51% de la population totale, et cette concentration devrait
s'accentuer dans les prochaines années, pour atteindre jusqu'a 68% en 2050, selon le rapport World
Urbanization Prospects (United Nations, 2018). Dans ce contexte, il est également crucial de
comprendre la répartition spatiale des ressources en eau en termes de qualité et de quantité, car ce
mouvement d'urbanisation exerce une pression encore plus forte sur des zones restreintes et a forte

densité et donc sujettes a d’épisodes de restrictions d’usages de ’eau.

Bien que différentes études aient projeté des tendances différentes dans I'utilisation future
de I'eau, et que l'augmentation réelle de I'utilisation mondiale de I'eau reste incertaine, il est un fait
qu'une fraction croissante de la population sera confrontée a des pénuries d'eau dans les années a
venir (UNESCO-WWAP, 2021). En outre, les changements climatiques peuvent également
affecter les processus d'évaporation et de précipitations en raison de l'augmentation de la
température, renforgant des événements extrémes liés a I'eau, tels que des crues et des sécheresses

dans le monde entier.

Outre la pression supplémentaire exercée sur les ressources en eau par les tendances
évoquées ci-dessus, la qualité de I'eau s'est également détériorée en raison de la présence de divers
contaminants dans les ressources en eau souterraine et de surface, induite par l'intensification des
activités humaines. La moitié des riviéres et des lacs du monde sont pollués, selon Makarigakis et
Jimenez-Cisneros (2019), et cette situation peut également étre largement dégradée par les

changements climatiques.

Pour faire face a ces défis et inscrire la gestion durable des ressources en eau dans I'agenda

politique mondial, 'ONU a consacré I'un de ses Objectifs de Développement Durable (SGD en

42



anglais), également appelés Objectifs Globaux, de I'Agenda 2030, a assurer la disponibilité et la

gestion durable de I'eau et de I'assainissement pour tous (6eme objectif) (UNDP, 2022b).

Il faut notamment tenir compte du fait que la plupart des problémes liés a l'eau dans le
monde ne sont pas dus a un manque réel d'eau. Ils résultent plutét d'une gouvernance défaillante et
inefficace des ressources en eau (UNESCO-iWSSM, 2019). Dans ce contexte, la surveillance de
I'eau est essentielle pour comprendre ses changements en termes de quantité et de qualité. Le
rapport United Nations World Water Development (UNESCO-WWAP, 2021) sur la mise en valeur
des ressources globales en eau affirme que pour parvenir a une gestion durable et a long terme des
ressources en eau, il est essentiel d'intégrer de meilleures évaluations et un meilleur suivi pour les

processus décisionnels des gestionnaires.

En outre, la surveillance périodique des masses d'eau et la gestion intégrée des bassins
hydrographiques sont essentielles a la conservation de ces ressources. Cependant, il existe de
nombreux défis a relever en matiere de surveillance sur le terrain, en particulier pour les pays en

voie de développement, tels que :

1) Le temps et les colts nécessaires pour effectuer des mesures sur le terrain et des analyses

en laboratoire ;

2) Les échantillons ponctuels ne permettent pas toujours de saisir les variations spatiales et

temporelles ; et

3) La surveillance continue sur le terrain n'est pas réalisable dans les régions éloignées et

difficiles d'acces.

Par conséquent, l'utilisation de sources de données alternatives provenant de capteurs de

télédétection, en particulier de satellites orbitaux, a rapidement augmenté au cours des derniéres
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décennies et appuie la communauté scientifique a mieux comprendre 1’évolution des ressources en
eaux. En outre, ces technologies ont montré qu'elles pouvaient compléter ou remplacer les
inventaires traditionnels au sol et offrir des avantages supplémentaires tels qu'un meilleur rapport
colt-efficacité, une fréquence plus élevée et une meilleure continuité spatiale (Barbosa et al.,

2019).

2. Télédétection

Selon Kairu (1982), le terme télédétection peut étre défini comme «la collecte et
I'interprétation d'informations sur un objet, une région ou un événement sans étre en contact
physique avec l'objet ». Une simple photographie suivie de I'analyse de son contenu est alors
considérée comme une étude de télédétection. Les capteurs peuvent &tre montés sur n'importe
quelle plateforme, comme un avion ou un ballon de recherche. La télédétection spatiale pour
I'observation de la terre n'est pas un concept nouveau. Elle a effectivement débuté avec le lancement
de LANDSAT-1 en 1972 par la National Aeronautics and Space Administration (NASA), suivi par

le Centre national d’études spatiales (CNES) avec le lancement de SPOT-1 en 1986.

Bien que des progrés considérables aient été réalisés depuis lors dans le domaine de la
télédétection pour l'observation de la terre, le potentiel de I'imagerie satellitaire reste sous-exploité
dans de nombreux domaines spécialisés, notamment par les acteurs publics et les décideurs chargés
d'appliquer les politiques publiques. Au début de cet ere satellitaire, le colt des images et le manque
d'experts ayant les connaissances appropriées pour traiter et analyser ces données, étaient quelques-

unes des causes de cette sous-exploitation des données de télédétection (Baghdadi et Zribi, 2016).

Cependant, la capacité de la télédétection a étudier la surface terrestre et les conditions
environnementales sur de vastes zones a augmenté au cours des derniéres années, principalement

gréce au lancement de plusieurs satellites d'observation de la terre qui fournissent des données peu
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colteuses sur I'ensemble du globe. De plus, les universités ont adapté leur programme d'études et
des formations distinctes, telles que la géologie, la géographie, I'écologie et d'autres, inégrent

désormais des axes liés a la télédétection.

En termes pratiques, 1’information collectée par un capteur correspond a I'énergie émise par
I'objet, fréquemment appelé cible, dans différentes parties du spectre électromagnétique (EM en
anglais). La région d'intérét du spectre EM en télédétection va des courtes longueurs d'onde (partie
visible), qui correspond au spectre EM que I'eeil humain peut voir, généralement placé entre 380 et

700nm, a l'infrarouge et aux plus grandes longueurs d'onde (micro-ondes).

La radiation émise ou réfléchie par les différentes cibles sur Terre va dépendre directement
de I'énergie entrante et de I'absorption/réflexion de cette énergie par la cible. Cette interaction est
spécifique a chague type de matériau (Figure 7a) et a ses propriétés physico-chimiques. Il existe
deux types de capteurs, en fonction de la source d'énergie. Les capteurs passifs dépendent de
sources d'énergie externes, généralement le soleil, et les capteurs actifs ont leur propre source

d'énergie, comme dans le cas des radars.

Lorsque I'énergie descendante atteint la cible, une partie de cette énergie peut étre absorbée
par l'objet. Cette absorption varie selon la gamme de longueurs d'onde du spectre
électromagnétique et la partie de I'énergie non absorbée est diffusée. L'énergie rétrodiffusée est
mesurée par le capteur dans différentes régions de longueurs d'onde, définies comme les bandes
spectrales du capteur. La relation entre la radiance ascendant (mesuré par le capteur) et I’énergie
descendent que touche la cible est appelée réflectance et peut étre estimée pour chaque longueur
d'onde a travers le spectre. Si I'on considére qu'il n'y a qu'une seule source d'énergie et que les
processus d'absorption et de diffusion sont fonction du matériau, chaque cible aura un modéle

spectral unique, appelé signature spectrale (Figure 7b).
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Figure 7: (a) Principe général de la télédétection passive, (b) Signatures spectrales de différentes cibles naturelles. Extrait de
Mercan et Alam (2011).

De nombreux autres facteurs peuvent interférer dans les mesures a distance, comme les
interactions de la lumiére descendante et ascendante avec les particules de I'atmosphere et la
position relative du soleil. Une présentation détaillée de ces concepts physiques dépasse le cadre
de la présente thése mais peut étre consultée dans Guo et al. (2020), Kairu (1982), et Baghdadi et
Zribi (2016).

L'observation de ces caractéristiques de réflectance a travers I'espace et le temps permet
aux scientifiques et chercheurs de modéliser différents phénomeénes et de mieux comprendre et

caractériser notre environnement (Baghdadi et Zribi, 2016).

2.1 La télédétection appliquée aux ressources hydriques
Les plateformes satellitaires sont utilisées depuis plus de 50 ans pour comprendre des
processus complexes tels que I'utilisation des sols a I'échelle mondiale, I'analyse de la végétation,

la productivité des océans ou pour établir des liens entre la production industrielle et le cycle du

carbone (Topp et al., 2020).

L'accent mis sur la compréhension de ces processus en échelle globale s'explique par les

résolutions spatiales, spectrales et temporelles fournies par les plateformes antérieures. A titre de
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réference, le LANDSAT-1, lancée en 1972, a été le premier satellite concu spécifiquement pour
des applications d'observation de la Terre et il était chargé d'un systéme de balayage multispectral
(MSS en anglais) avec 83 m de résolution spatiale et seulement 4 bandes spectrales (visible et
proche infrarouge) avec un temps de revisite de 18 jours. D'autres anciens satellites océaniques et
atmosphériques avaient des résolutions spatiales encore plus rudimentaires mais une fréquence

d’observation élevée.

En ce qui concerne l'utilisation d'images de télédétection pour I'évaluation des eaux
intérieures, Topp et al. (2020) affirment que, malgré le nombre croissant de publications, les
produits globaux concernant la qualité de ces cours d'eau, lacs et réservoirs sont limités par rapport
aux produits terrestres et océaniques. Cette lente évolution peut s'expliquer en partie par les défis
liés a la télédétection de masses d'eau continentales ainsi que par la capacité limitée des capteurs a
détecter les petites masses d'eau et les interactions complexes de leurs constituants optiquement
actifs (OAC en anglais). Les OAC sont des constituants dissous et particulaires de I'eau qui peuvent
absorber et diffuser la lumiere (par exemple, les matiéres en suspension, la chlorophylle, la matiére

organique dissoute colorée et autres), donnant a I'eau sa couleur caractéristique.

Un exemple de cette complexité est illustré par la Figure 8, qui montre la réponse spectrale
moyenne de plusieurs riviéres considérées dans la présente étude, mesurée par des radiometres
hyperspectraux de terrain, et comment cette réflectance peut varier en fonction de ses constituants,
de la région géographique, etc. Ces observations contrastent avec I'nypothése générale d'une
radiance nulle a la sortie de I'eau dans les longueurs d'onde du proche infrarouge (NIR en anglais),

qui est communément adaptée aux eaux océaniques claires (Les eaux du cas 1).

Heureusement, ces derniéres années, la capacité des satellites d'observation terrestre a

fortement augmenté. A cet égard, il convient de noter le programme Copernicus, congu par
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[’European Space Agency (ESA), dont les missions portent sur différents aspects de I'observation

de la Terre : Atmosphérique, Océanique et Surveillance des terres (Suhet et Hoersch, 2015).

Figure 6: Les profils spectraux moyens de plusieurs rivieres/bassins considérés dans la présente étude mesurés avec des
radiomeétres de terrain.

Les satellites de la mission Sentinel-2, qui fait partie du programme d'observation
Copernicus, sont équipés d'un instrument optique multispectral (MSI en anglais) qui offrent de
hautes résolutions spatiale, spectrale et temporelle a I'échelle mondiale sans codt pour I'utilisateur.
Le premier satellite de la famille Sentinel-2 (Sentinel-2A), a été lancé par I’ESA en 2015, suivi de
son satellite jumeau (Sentinel-2B) qui a été lancé en 2017. Tous deux sont des satellites en orbite
polaire et fonctionnent en phase a 180 degrés I'un par rapport a l'autre pour offrir une fréquence
élevée de revisite de 2 a 3 jours aux latitudes moyennes et de 5 jours prés de la ligne équatoriale
(Suhet et Hoersch, 2015). Le Sentinel-2 a été choisi pour traiter les questions de qualité des eaux
intérieures, ce qui est le champ d'application de cette these, car il fournit une résolution compatible
avec la détection des canaux de riviere et des plus petits plans d'eau qui ne seraient pas visibles

avec d'autres capteurs de résolution moyenne.
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De plus, il peut capturer une large gamme de longueurs d'onde spectrales séparées en 13
bandes spectrales allant de 443 a 2200 nm, et des résolutions spatiales allant de 10 a 60m selon la
bande spectrale. Une autre information qui doit étre prise en compte pour étudier les parametres de
qualité de I'eau est la résolution spectrale car elle définit la capacité a identifier la présence de
différents paramétres de qualité des eaux (matieres organique dissoute, pigments photosynthétique,
particules en suspension). Le capteur MSI de Sentinel-2 a des largeurs de bande allant de 15 a 180
nm, ce qui permet d'identifier et quantifier les différents constituants de I’ecau optiquement actifs.
Cependant, il est important de noter que les méthodologies développées ci-aprés ne sont pas
spécifiques a un satellite et pourraient étre applicables a d'autres plateformes ayant des
spécifications techniques différentes. La Figure 9 présente les fonctions de réponse spectrale pour
les 13 bandes disponibles dans le capteur MSI de Sentinel-2 et leurs résolutions spatiales

correspondantes.

Cette capacité étendue fournie par les satellites les plus récents permet aux scientifiques
d'explorer différentes possibilités concernant le domaine des eaux intérieures, notamment la
couverture des eaux de surface (Buma et al., 2018 ; Cordeiro et al., 2021 ; Feyisa et al., 2014 ;
Markert et al., 2018 ; Pekel et al., 2016 ; Pefia-Luque et al., 2021 ; Souza et al., 2019), la
cartographie des crues et des inondations (Kordelas et al, 2019, 2018 ; Martinis et al., 2011 ;
Wieland et Martinis, 2019), la surveillance de la qualité de I'eau (Ansper et Alikas, 2018 ; Delegido
etal., 2014 ; Frampton et al., 2013 ; Lins et al., 2017 ; Toming et al, 2016 ; Uudeberg et al., 2020
; Yadav et al., 2019), I'évaluation des sédiments en suspension (Condé et al., 2019 ; Espinoza Villar

etal., 2013 ; Martinez et al., 2009 ; Yepez et al., 2018), entre autres.
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Figure 7: Fonctions de réponse spectrale pour les bandes Sentinel-2/MSI, Visual-NIR et SWIR et leurs résolutions spatiales

correspondantes.

Cependant, comme nous l'avons déja mentionné, ce nombre croissant de publications

scientifiques dans le domaine des ressources en eau ne se traduit pas par des produits opérationnels

a I'échelle régionale ou mondiale, pourtant cruciaux pour les décideurs (Topp et al., 2020).

Une exception qui mérite d'étre mentionnée est le projet Global Surface Water (GSW)

(Pekel et al., 2016), qui a été développé pour évaluer les surfaces d'eau dans le monde entier et

suivre leurs changements a long terme, en utilisant I'imagerie optique Landsat-8 avec une

résolution de 30m. Cependant, I'objectif du projet GSW est de suivre les changements mensuels a

long terme, mais pour effectuer une évaluation operationnelle de la qualité de I'eau gréce aux

images de telédetection, des résolutions spatiales et temporelles plus élevées sont nécessaires.

Ainsi, le groupe de données GSW ne peut pas étre utilisé pour une surveillance continue.
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Parmi les obstacles qui limitent I'évaluation de la qualité des eaux intérieures par
télédétection satellitaire, Chami et al. (2015) soulignent la difficulté de contrdler les altérations
atmosphériques, par essence tres variables. Les procédures de correction atmosphériques
conventionnelles pour les eaux océaniques reposent souvent sur 1’hypothése d’une radiance
montante nulle de I'eau au-dela du spectre visible. Cette hypothese ne peut pas étre généralisée aux
eaux intérieures optiquement complexes, car la présence de matiéres inorganiques et organiques

augmente les processus de rétrodiffusion de la lumiere dans le spectre NIR (Figure 8).

De plus, les capteurs optiques sont soumis aux conditions atmosphériques telles que les
nuages, les ombres des nuages et d'autres phénomenes de surface qui peuvent interférer dans la
détection des pixels d'eau, comme la neige, par exemple. Ainsi, outre une correction atmosphérique
qui tient compte de la présence d'eau optiquement complexe, un autre élément clé pour fournir des
produits opérationnels est I'application de méthodes de masquage robustes capables d'identifier
correctement (et éventuellement d'éliminer) les éléments indésirables de la scéne observée par le

satellite.

3. Les outils de science des données pour la télédétection

Dans la section précédente, nous avons largement discuté des utilisations des images de
télédétection par satellite pour l'observation de la terre et de la facon dont elles peuvent étre un
outil précieux pour évaluer I'état physique, chimique et biologique des masses d'eau intérieures,

malgré les défis que cela représente.

Au début, la telédetection etait principalement basée sur la photographie optique (limitee
entre la gamme spectrale visible et infrarouge) capturée a partir de plateformes aériennes. La photo-
interprétation de ces images était réalisée par des techniciens qualifiés chargés d'identifier les

éléments et les motifs sans l'aide de processus automatisés (Baghdadi et Zribi, 2016). Cependant,
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ce processus prend beaucoup de temps et est irréalisable compte tenu de la quantité de données
disponibles ces dernieres années. De plus, la télédétection a évolué, passant d'un mode
principalement optique a l'utilisation de I'ensemble du spectre des longueurs d'onde, du visible aux
micro-ondes, transformant les images en cubes a nombreuses dimensions difficiles a interpréter

manuellement.

Dans ce contexte, des progrés considérables ont été réalisés dans le développement de
méthodes assistées par ordinateur pour le traitement et I'analyse des données de télédétection, et
les outils de science des données tels que le Data Mining, Machine Learning (ML) ou Deep

Learning (DL) jouent désormais un role central.

3.1 Machine Learning
Le ML est un sous-domaine du domaine de l'intelligence artificielle, avec le DL. Le terme
a été inventé en 1959 par Arthur Samuel, un pionnier américain dans les domaines des jeux vidéo
et de l'intelligence artificielle, et décrit la capacité de faire des prédictions ou de prendre des

décisions sans étre explicitement programmeé pour le faire (Mitchell, 1997).

Pour comprendre ce qu'est la ML, on peut penser a un probléme qui doit étre résolu par un
programme. En restant dans le contexte de la télédétection, imaginons, par exemple, que nous
devions développer un programme capable d'identifier les nuages sur une image satellite.
L'approche la plus simple serait de cartographier, a I'avance, toutes les caractéristiques d'un nuage
(par exemple, la couleur, la température, I'intensité de la réflexion, entre autres) et la fagon dont
ces caractéristiques se traduisent en valeurs de réflectance de bande et d'écrire des clauses pour
vérifier si chaque pixel se trouve dans ces régles. C'est ce qu'on appelle I'approche basée sur les

regles. Cependant, compte tenu de la diversité des nuages et de leur interaction avec le sol (par
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exemple, un cirrus semi-transparent), il peut étre fastidieux, voire irréalisable, de cartographier

toutes les valeurs possibles pour programmer cet algorithme avec précision.

Dans l'approche ML, au lieu de cartographier toutes les valeurs possibles, on présente a
I'algorithme ML des données préalablement étiquetées comme nuage ou hon-nuage par un humain,
et l'ordinateur "apprend” a partir des données fournis comment distinguer les nuages. Cette
méthode, ou les données sont préalablement étiquetées, est appelée apprentissage supervise.
D'autres approches, dans lesquelles aucune étiquette n'est fournie, sont également disponibles et
sont appelées apprentissage non supervisé (par exemple, le regroupement et la réduction de la
dimensionnalité) et seront abordées plus loin. Les différences fondamentales entre la

programmation basée sur des regles et la programmation ML sont résumées dans la Figure 10.

L'un des avantages des méthodes ML par rapport aux approches traditionnelles est qu'elles
ne nécessitent pas de connaissances préalables concernant les propriétés et les statistiques
intrinséques des données. Au lieu de cela, la relation entre les variables d'entrée (également
appelées caractéristiques d'entrée) est obtenue automatiquement au cours du processus de

formation, ou les parametres internes sont calibrés pour améliorer la précision.

Les techniques basées sur les ML se sont avéerées utiles pour un trés grand nombre
d'applications, telles que la classification de la couverture terrestre, la détection d'objets, les
algorithmes de récupération empirique, entre autres et des domaines distincts d'observation de la
terre (par exemple, la terre, l'océan et I'atmosphere) (Lary et al., 2016). Par conséquent, les

méthodes ML sont de plus en plus utilisées pour interpréter toutes sortes d'images de télédétection.

Pour extraire des informations pertinentes des images multispectrales, les techniques ML
peuvent étre divisées en deux groupes principaux : 1) l'apprentissage supervisé ; et 2)

I'apprentissage non supervise.

53



(;) Tradifnbnal rulé-based épproaéh

Write Ok!
Smr:g:: programming Evaluate
P rules Deployl
eplo
I*:w».m-w.‘o;.vv.',..cl»: p I _ ol
o
Jer )] S
=)
4
Analyze
errors
‘(b) Machine Learning approach
Ok!
S‘:‘:J'eﬁ: Evaluate
A Deploy!
x>
(o]
=)
Z

Figure 8: Comparaison schématique de I'approche de programmation traditionnelle (a) et de I'approche d'apprentissage
automatique (b). Adapté de Géron (2017).

L"apprentissage supervisé

Dans le contexte de I'apprentissage supervisé, le but est d'estimer des variables (des classes
qualitatives, dans le cas de problémes de classification, ou des valeurs continues dans les problémes
de régression) a partir d'échantillons dans un ensemble de données, étant donné que certaines de
ces variables sont fournies pour un sous-ensemble appelé ensemble de données d'entrainement. Sur
la base de I'ensemble de données d'apprentissage et selon lI'algorithme supervisé utilisé, I'ordinateur
peut établir en interne une relation entre les données et les variables souhaitées. Une fois le modeéle
formé (c'est-a-dire les parametres internes calibrés pendant la phase de formation ou
d'apprentissage), il peut étre utilisé pour estimer les variables pour tous les échantillons de

I'ensemble de données, méme si nous ne pouvons pas comprendre entierement la relation interne

(Baghdadi et Zribi, 2016).
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En raison de ces caractéristiques, le ML est genéralement utilisé dans des domaines tels
que les applications difficiles a programmer ou lorsque nos connaissances théoriques sont encore
incomplétes mais pour lesquelles nous disposons d'un nombre important d'observations et d'autres

données (Lary et al., 2016).

Dans I'exemple présenté précédemment, concernant la détection des nuages, l'algorithme
peut établir une relation en considérant autant de variables d'entrée que nous le souhaitons. Par
exemple, nous pourrions fournir la totalité des bandes multispectrales et la date d'acquisition. Les
variables qui sont transmises a l'algorithme ML pendant le processus d'apprentissage sont appelées
caractéristiques d'entrée, et le programme les utilisera pour prédire les sorties des nouveaux

échantillons.

L'application de détection des nuages est un exemple de classification, car le résultat
attendu est qualitatif (nuage ou non nuage). La méme approche pourrait étre utilisée pour récuperer
une sortie quantitative, comme la température du sol ou I'évapotranspiration, par exemple. Dans ce
dernier cas, nous considérons qu'il s'agit d'une application de régression. Plusieurs méthodes
existent dans le contexte de I'apprentissage supervisé. Parmi elles, les plus utilisées en télédétection
sont : Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), Artificial
Neural Networks (ANN), K-Nearest Neighbors (KNN), entre autres (Lary et al., 2016).
L'explication détaillée de ces méthodes sort du cadre de la présente introduction, cependant des

descriptions complétes sont disponibles dans la littérature (Géron, 2017; Vanderplas, 2016).

L"apprentissage non supervisé
Les techniques non supervisées sont couramment utilisées lorsque nous n'avons aucune
connaissance préalable des données analysées (par exemple, aucune étiquette) et que nous voulons

que l'ordinateur en extraie des corrélations significatives. Par exemple, supposons que nous
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voulions identifier combien de cultures différentes apparaissent dans une scéne donnée. Les
algorithmes de partition, également appelés algorithmes de clustering, peuvent étre utilisés pour
regrouper automatiquement les données en sous-ensembles sans intervention ni données
d'entrainement. Plusieurs algorithmes de clustering existent dans la littérature, et les plus

Clustering resuits (NDWI B12)
Water

0014

NDWI

021

~0.4 1

Figure 9: Diagramme de dispersion de I'indice de différence normalisé de I'eau (NDWI, axe Y) et de la réflectance SWIR (axe
X) en sr -1 pour les pixels d’une scene Sentinel-2, montrant les résultats du regroupement avec différentes couleurs.

couramment utilisés dans le domaine de la télédétection sont : k-Means, clustering agglomératif et
DBScan. La Figure 11 montre un exemple de clustering agglomératif appliqué a plusieurs pixels
dans une scéne Sentinel-2 pour séparer automatiquement différentes classes de pixels. Ce type

d'application sera étudié plus en détail au chapitre 1 - Détection de I'eau.

Un autre groupe de techniques qui appartient a I'apprentissage non supervisé est appelé
méthodes de visualisation ou de reduction de la dimensionnalité. Dans la réduction de la
dimensionnalité, la tache consiste a simplifier les données en préservant autant d'informations que
possible. Cela peut se faire en éliminant les caractéristiques d'entrée corrélées ou en fusionnant
plusieurs caractéristiques en une nouvelle caractéristique synthétique. Ce processus de
modification des variables d'entrée pour obtenir de meilleurs résultats est appelé extraction de
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caractéristiques ou ingénierie des caractéristiques et constitue une étape clé des applications

d'apprentissage automatique (Geéron, 2017).

3.2 Deep Learning
Dans la section précédente, nous avons mentionné les ANN comme l'un des outils
d'apprentissage supervisé avec le ML. Bien que l'application pratique des ANN soit récente, leur
conception théorique remonte a 1943, lorsque McCulloch et Walter Pitts, respectivement
neurophysiologiste et cybernéticien, ont proposé le premier modéle mathématique de réseau
neuronal (Abrahart et al., 2004). Un ANN est formé d'unités de traitement simples appelées
perceptrons, inspirées des neurones humains qui se connectent a d'autres, créant ainsi un réseau qui

imiterait le cerveau.

Cependant, en raison des difficultés d'entrainement d'un ANN, son utilisation est restée
longtemps négligée par la communauté scientifique. Plus récemment, avec l'augmentation de la
puissance de calcul, notamment grace aux processeurs graphiques (GPU en anglais), la
disponibilité des données d'entrainement et certaines améliorations techniques dans [I'étape

d'entrainement (par exemple, la rétropropagation), les ANN ont recu beaucoup d'attention.

Dans ce contexte, nous définissons les modeles DL comme des modeles ANN composeés
de plusieurs couches empilées, généralement plus de trois. Plus il y a de couches empilées, plus le
modele devient profond, et des interactions plus complexes peuvent étre apprises, d'ou le nom
d'apprentissage profond. Ces architectures profondes se sont avérées efficaces pour extraire des
informations de concepts abstraits et ont surpassé les méthodes classiques de ML dans un certain
nombre d'applications telles que la reconnaissance vocale et la reconnaissance d'images (Hoeser et

Kuenzer, 2020).
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Selon Hoeser et Kuenzer (2020), l'utilisation de la DL par la communaute de I'observation
de la Terre date de 2012. Depuis lors, le nombre de publications a doublé chague année avec un
large éventail d'applications, telles que la super-résolution, la fusion de données, le débruitage, les
prévisions météorologiques, la reconnaissance de scenes, la classification, la détection d'objets et

la segmentation d'images.

4. Généralisation et outils opérationnels

Bien que la télédétection optique visible multispectrale soit désormais bien connue des
scientifiques et des acteurs en charge de la gestion de I'environnement, rassembler toutes ces pieces
et les rendre suffisamment générales pour fonctionner dans différentes régions aux couvertures
terrestres et conditions atmosphériques diverses reste un défi pour le domaine des eaux intérieures.
En outre, nous sommes confrontés a une augmentation radicale du volume de données (Big Data)
acquises par des capteurs a plus haute résolution, ce qui pose un nouveau probléme pour le

traitement des données satellitaires.

Dans le cadre de la détection globale des eaux de surface, un effort vers cette généralisation
a été récemment proposé par le projet World Water (Tottrup et al., 2022) d’intercomparaison
interdisciplinaire qui a été mené dans le but d'évaluer plusieurs méthodologies optiques et radar
visant a fournir une détection régionale haute résolution des surfaces en eaux dans différentes

régions difficiles du globe.

Une autre difficulté vers la géneralisation concerne le développement d'algorithmes de
surveillance globale par satellite qui permettent d'évaluer les parameétres de qualité de l'eau
indépendamment de la masse d'eau surveillée. Dans la recherche océanographique, la fourniture
de cartes synoptiques de la concentration globale de chlorophylle-a (Chl-a) a partir de capteurs

radiométriques montes sur des satellites est une réalité depuis des décennies. En ce qui concerne
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les eaux intérieures, méme si de nombreux modeles différents ont été proposés dans la littérature
pour différents parametres, la complexité optique de ces eaux limite souvent leur utilisation

opérationnelle a des échelles localisées (Neil et al., 2019).

A coté de cela, ces derniéres années, des quantités massives de données satellitaires ont été
acquises, augmentant considérablement notre capacité a comprendre notre environnement d'un
point de vue spatial et temporel. Cependant, ce volume de données sans précédent (le volume
d'images de télédétection recueillies par des satellites ou des drones peut facilement atteindre des
niveaux de téraoctets ou de pétaoctets) a mis en lumiere les défis et les goulots d'étranglement liés
au stockage, au traitement, a I'analyse et finalement a la visualisation de toutes ces informations

(Guo et al., 2020).

Celassignifie que les méthodologies développées localement ne peuvent pas étre appliquées
a plus grande échelle, car les contraintes de stockage, de mémoire et de traitement les empécheront
de fonctionner correctement ou ne produiront pas les résultats escomptés dans les délais prévus, ce
qui les rendra obsoletes. C'est une autre raison pour laquelle la plupart des produits et publications
sur la qualité des eaux intérieures sont généralement limités a des zones plus petites ou a des masses
d'eau spécifiques, ce qui les rend difficiles a appliquer a des échelles régionales ou mondiales pour

nous aider a comprendre le contexte spatial de ces interactions complexes.

Dans ce contexte, de nouveaux paradigmes informatiques développés dans d'autres
disciplines telles que Data Mining, Grid Computing, Cloud Computing and High Performance
Computing (HPC) sont incorporés a lI'ensemble des outils de télédétection optique afin de fournir

un support de traitement pour relever ces défis (Guo et al., 2020).

Ces approches sont necessaires en fonction des taches effectuées, car elles ouvrent la

possibilité de traiter des quantités de données inimaginables par une seule instance de traitement.
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Cependant, étre capable de traiter ces énormes quantités de données n'est qu'une étape. L'image
satellite reste un produit complexe, il est donc fondamental de développer des méthodologies

permettant d'étendre I'analyse a une échelle spatiale et temporelle supérieure.

5. Objectifs

La télédétection peut étre un outil efficace pour permettre une surveillance a grande échelle
afin de traiter les problémes de quantité et de qualité de I'eau. Cependant, la création d'un cadre
opérationnel permettant d'évaluer la qualité des eaux intérieures a partir de la télédétection par
satellite implique de nombreuses étapes et la sélection minutieuse de plusieurs parameétres, afin que
le tout puisse fonctionner de maniere intégrée. De la sélection de la plateforme satellitaire a
I'identification du modele de correction atmosphérique et au développement d'un algorithme
d'inversion robuste, toutes ces étapes doivent étre orchestrées de maniere pertinente, comme le

montre la Figure 12.

Dans ce contexte, cette these propose de travailler sur différents aspects de cette chaine, en
utilisant des méthodologies existantes et en proposant de nouveaux avancements vers la robustesse,

I'échelle et I'automatisation, par I'application intensive de techniques de science des données.

Par conséquent, I'objectif global est de fournir un cadre complet qui peut étre reproduit dans
différentes régions du globe pour les études de la qualité des eaux intérieures grace a I'imagerie de
télédétection. Parmi une diversité de sujets impliqués, les aspects a explorer en détail ont été
délibérément selectionnés au cours du développement de la these et ont été séparés en trois axes

principaux énumérés ci-dessous :

1. Détection automatique et non supervisée des plans d’eau ;
2. Amelioration de la classification des types d'eau optique pour la récupeération des

parameétres des eaux intérieures ; et
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3. Surveillance a grande échelle par satellite et analyse des tendances spatio-

temporelles des surfaces en eaux et de leur qualité.

Les objectifs de chaque axe défini sont détaillés dans les sections suivantes.

Sentinel-2 Satellite
High-res imagery (10m)

{ Water Quantity Analysis

;'\,,Y;\
Atmospheric correction
(Level 2A)

l Water pixel ’
detection

Pixel masking
(clouds,
shadows, snow)

Tiles: 22KDV e 22KEV
Date: 01/23/2018

Figure 10: Vue schématique des étapes de I'évaluation de la qualité des eaux intérieures a partir d'images de télédétection par
satellite qui ont été développées dans cette thése. Les cases en orange représentent les étapes couvertes par I'axe 1 (détection de
I'eau), les cases en bleu représentent I'axe 2 (classification de I'eau) et les cases vertes représentent I'axe 3 (généralisation et
analyse).
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Axis 1 — Détection automatique et non supervisée des plans d'eau

Le point de départ de toute évaluation de I'eau par le biais d'un cadre de télédétection est de
séparer correctement les pixels d'eau des autres cibles dans la sceéne. Au cours de la correction
atmospherique des images satellitaires qui les convertit du niveau 1C (réflectance au sommet de
I'atmosphere) au niveau 2A (réflectance de surface), un masque géophysique est genéralement
produit contenant la classification des pixels de la couverture terrestre. Les processeurs de niveau
2A les plus courants pour Sentinel-2 (MAJA, Sen2Cor et F-mask) fournissent le masque d'eau
comme sous-produit de la correction atmosphérique. Cependant, comme les eaux intérieures ne
sont pas leur priorité, les masques d'eau fournis par ces processeurs sont généralement imprécis,
en particulier pour les eaux intérieures complexes et les petits plans d'eau, et ne devraient étre

utilisés qu'en dernier recours (Cordeiro et al., 2021).

En dehors des processeurs standard, de nombreuses études ont été publiées dans le
domaine, mais les algorithmes actuels nécessitent généralement une intervention humaine, dans le
cas des méthodes d'apprentissage supervisées qui ont besoin de données d'entrainement pour la
calibration, ou bien manquent de robustesse pour étre appliqués dans différentes conditions en
raison de la diversité des eaux optiquement complexes (en raison de ses constituants) et des types

de couverture des sols (végétation, agriculture, etc.).

Dans ce contexte, le premier axe se concentre sur les défis liés a la détection de I'eau a partir
d'images satellites optiques. L'objectif est de fournir une méthodologie qui puisse étre appliquée
automatiquement dans différentes régions présentant des couvertures terrestres et des conditions

atmosphériques variées.

Outre la robustesse, la faisabilité d’une détection de I'eau a large échelle est une autre

question scientifique a traiter dans I'axe 1, car elle peut représenter une contrainte importante en
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fonction de la zone surveillée. A titre de référence, une seule scéne Sentinel-2, qui couvre une zone
de 110 km x 110 km, comporte plus de 100 millions de pixels, avec 13 bandes radiométriques, et
la classification automatisée des pixels en eaux représente une étape importante dans le cadre d’une

chaine dédiée a I’étude de la qualité des eaux.

D'autres facteurs intermédiaires qui peuvent affecter I'identification correcte des pixels
d'eau sont également évalués dans cet axe. Par exemple, la correction atmosphérique a appliquer
et les méthodes de masquage pour éliminer les pixels indésirables tels que les nuages, les ombres

ou la neige sont également discutées dans le contexte de I'axe 1.

Axis 2 —Classification de la couleur de I'eau

L'évaluation de la qualité de I'eau et notamment des matieres en suspension suspension
(MES) par télédétection dépend de I'interaction qui se produit entre les constituants optiquement
actifs (OAC en anglais) et la radiation électromagnétique dans les régions du visible et du proche
infrarouge (Barbosa et al., 2019). Des modeles d'inversion mathématiques sont ensuite développés,
mais il est généralement admis qu'un seul modéle n'est applicable a tous les types d'eau présents
sur la planéte (Kirk, 1994). En outre, les résultats sont fortement couplés aux types d'eau et aux
mesures de terrain utilisées pour I'étalonnage, et il n'est pas toujours simple de définir le domaine
d'applicabilité de ces algorithmes (Xue et al., 2019). Ces problemes affectent directement
I'évolutivité de la télédétection pour les évaluations des ressources en eau, car ils imposent des

contraintes lors de la livraison de produits de qualité de I'eau a grande échelle.

Pour surmonter cette difficulté, certaines études ont montré que les algorithmes peuvent
étre plus performants lorsqu'ils sont calibrés sur des gammes de concentration spécifiques de Chl-
a (Matsushitaetal., 2015 ; Pahlevan et al., 2020 ; Smith et al., 2018) ou des particules en suspension

(SPM en anglais), (Condé et al., 2019 ; Yepez et al., 2018). Cependant, pour une évaluation
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régionale ou globale automatisée, une difficulté supplémentaire doit étre prise en compte. Méme
si plusieurs algorithmes sont calibrés pour différents types d'eau, il peut étre difficile de s'assurer
de la plage d'applicabilité et des limites de chaque modele, de sorte qu'on ne sait pas a priori lequel
est le mieux adapté a un lieu ou un moment particulier. En outre, une méme masse d'eau peut

contenir simultanément différents types d'eau (Moore et al., 2014 ; Neil et al., 2019).

A cet égard, des études ont montré que I'utilisation de schémas de classification des eaux
et I'étalonnage de modeles pour chaque type d'eau optique (OWT, en anglais) défini peuvent
contribuer a améliorer la précision des algorithmes de récupération (Lubac et Loisel, 2007 ; Moore
et al., 2014 ; Vantrepotte et al., 2012). Cependant, bien que ces articles puissent démontrer une
amélioration de la récupération des parameétres si les OWTs sont pris en compte, la précision de

I'inversion n'est pas I'objectif final du processus de classification, c'est un objectif secondaire.

Compte tenu de ce qui précéde, l'objectif du deuxiéme axe est de proposer un cadre
permettant de classer les OWTs afin de maximiser la précision d'une inversion en termes de niveau
de concentration de MES. En utilisant des stratégies d'apprentissage automatique telles que celles
employées dans I'axe 1, comme le regroupement agglomératif non supervisé, I'axe 2 propose de
séparer les courbes spectrales en types d'eau, et non par distribution spatiale ou bassin fluvial.
L'idée principale est d'explorer la réponse hyperspectrale de différentes riviéres et de les combiner
automatiguement en OWTs distincts, afin que la récupération des parameétres de qualité des eaux

soit optimale.

Une base de données compléte de plus de 1 000 mesures radiométriques in situ, couplée a
d'autres mesures de qualité de I'eau en laboratoire, et préalable a la these sera utilisée. En raison

des contraintes de données, la méthodologie sera développée pour récupérer les SPM, mais le cadre
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méthodologique développé peut étre étendu a d'autres parameétres de qualité de I'eau, sous réserve

de la disponibilité des données de calibration.

Axis 3 — Généralisation et Analyses

Les défis envers la robustesse et la généralisation ne sont pas limités a ce troisieme axe.
Comme deja présenté, les deux premiers axes ont également été motivés par le manque d'outils
permettant une utilisation opérationnelle des images de télédétection par satellite pour I'évaluation

des eaux intérieures.

Cependant, le développement de méthodes pouvant étre appliquées dans différentes régions
n'est qu'une premiéere étape. Pouvoir appliquer ces méthodes a I'échelle régionale et analyser ces

données ajoute une autre dimension de complexité en raison des contraintes de volume.

Dans cet axe, les concepts de Big Data tels que le cloud computing et le parallel processing
sont explorés, afin de permettre le traitement de milliers d'images qui ne serait pas réalisable avec

les outils conventionnels.

Une fois ces données correctement traitées, une autre question scientifique se pose et doit
étre abordée. Comment analyser et extraire des informations significatives de cette énorme quantité

de données et comment présenter ses résultats ?

Dans ce contexte, ce troisieme axe est consacré a l'exploration des méthodologies qui
peuvent permettre de faire évoluer les méthodes actuelles d'évaluation des eaux intérieures a
I'échelle régionale, de discuter de leurs lacunes et de proposer des alternatives. Pour atteindre cet
objectif, une étude de cas a été proposée pour surveiller par télédétection une grande région de
320.000 km? dans le bassin du Parana au Brésil. Cette région a été choisie en raison de son
importance nationale pour des usages multiples des ressources en eaux et parce qu'elle a été

confrontée a une sécheresse majeure en 2021. L'étendue de la surface de I'eau, ainsi que la turbidité
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et le Chl-a ont été évalués de 2018 a 2021 a l'aide de I'imagerie Sentinel-2 et les résultats ont été

analysés en consequence.

6. Structure de la thése

Compte tenu des objectifs mentionnés ci-dessus, cette thése est organisée en trois chapitres

principaux, comme détaillé ci-dessous :

Chapitre 1 - Détection de I'eau

Ce chapitre se concentre sur le défi de distinguer les pixels d'eau des autres objets dans les
images satellites. Ce chapitre présente l'article « Automatic water detection from multidimensional
hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors »
(Cordeiro et al., 2021) publié dans la revue Remote Sensing of Environment. L'article propose une
nouvelle méthode non supervisée qui utilise des méthodes d'apprentissage automatique,
notamment le clustering et la classification de Naive Bayes, pour améliorer la robustesse et la

performance de la séparation des pixels d'eau dans les scenes optiques a haute résolution.

Un deuxiéme article (Annexe 1), « Sentinel-1&2 Multitemporal Water Surface Detection
Accuracies, Evaluated at Regional and Reservoirs Level » (Pefia-Luque et al., 2021), auquel j'ai
participé en tant que troisieme auteur, s'est concentré sur une comparaison plus poussée de la
méthodologie de clustering proposée avec celles existantes et a comparé les précisions des
plateformes optiques et radar séparées. Ces comparaisons ont été effectuées au niveau régional et

au niveau des réservoirs et I'effet des estimations a fenétre temporelle a également été évalue.

D'autres développements sur le méme theme vers une géneralisation globale et des
améliorations de résolution ont produit respectivement les articles « Surface water dynamics from

space : a round robin inter-comparison of using Optical and SAR high-resolution (10-m) satellite
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observations for regional surface water detection » (Tottrup et al., 2022), publié dans Remote
Sensing - MDPI journal et « Maximizing the accuracy of surface water detection in an intermittent
river using the Water Detect algorithm and a sensitivity analysis to compare the performance of
Sentinel-2, Planetscope and Sharpened imagery », soumis pout publication dans le GlScience &
Remote Sensing journal. Jai participé a I'élaboration de ces deux articles qui portent sur le méme
theme mais dans des environnements et des capteurs différents. lls sont présentés respectivement

en Annexe Il et Annexe I11.

Chapitre 2 — Classification optique de l'eau

Ce chapitre présente un cadre permettant de classer les types d'eau, en fonction de leurs
spectres de réflectance, afin de maximiser la précision de I'extraction des SPM. Il s'intitule
« Optical Water Classification for Suspended Particle Matter (SPM) retrieval » et utilise des
méthodes de regroupement non supervisées pour séparer les spectres de I'eau en groupes. Plusieurs

caractéristiques d'entrée, méthodes de normalisation et algorithmes de regroupement sont testés.

Ces derniéres annees, plusieurs articles ont traité de la classification des classes optiques de
I'eau, mais ils étaient principalement axés sur la cartographie de la chlorophylle-a ou sur les eaux
cotieres. 1l est nécessaire d'aborder la question des particules en suspension qui sont le premier
facteur de controle de la radiance montante de I'eau dans les eaux continentales en fonction des
processus d'érosion et de transport des sédiments en suspension dans les riviéres, les lacs et les
réservoirs. En particulier, nous chercherons le nombre optimal de classes permettant d'atteindre la
meilleure précision de récupération et pour différentes résolutions spectrales. Pour cela, nous avons
bénéficié d'une base de données sans précédent de mesures hyperspectrales de terrain sur
différentes riviéres permettant de représenter des bassins versants contrastés en termes de climat,

de géologie et de processus hydrologiques.
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Chapitre 3 —Généralisation et analyse : Une étude de cas de la sécheresse de 2021 au Brésil

Le troisieme chapitre présente les méthodologies développées pour la généralisation et
I'analyse des parametres de qualité des eaux intérieures. La premiere partie est une présentation
approfondie des méthodologies développées dans I'étude actuelle pour extrapoler la détection de
I'eau et I'inversion des paramétres de qualité a une échelle régionale et sur une longue période. Dans
ce chapitre, lI'automatisation et la robustesse sont exploitées a une échelle supérieure (supérieure a
300 000 km?) pour permettre le traitement de dizaines de milliers d'images satellites sans

intervention manuelle.

La présentation des méthodologies est divisée en deux parties. La premiére partie, Water
Detection Methodology, entre dans les détails des améliorations apportées au paquet waterdetect
qui n'étaient pas couvertes dans l'article original « Automatic water detection from
multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A
processors » (chapitre 1) pour une exploitation a large échelle. La deuxiéme partie, Water
Assessment Methodology, concerne tous les post-traitements qui ont été effectués sur les masques

d'eau résultants et les étapes d'analyse correspondantes.

Aprés cette présentation détaillée des méthodologies qui vont étre utilisées dans ce
chapitre, une étude de cas est présentée sous la forme d'un article, qui utilise les méthodes proposées
pour évaluer les effets d'une sécheresse majeure qui s'est produite dans le bassin du fleuve Parana

au Brésil en 2021, sur le quantité et de qualité de I'eau de milliers de lacs artificiels et naturels.

En ce qui concerne I'extension de I'eau, toute la région qui avait été considérée comme étant
en situation critique par les autorités brésiliennes lors de la sécheresse de 2021 a été évaluée. Une
zone de 320 000km? a été analysée de janvier 2018 a décembre 2021. Un total de 12 000 images

Sentinel-2 avec une résolution spatiale de 10 m a été utilisé pour évaluer les effets de la sécheresse
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sur plus de 20 000 réservoirs d'une superficie supérieure a 1 ha. Outre I'analyse stratifiée par classes
de taille des réservoirs, qui ne serait pas realisable avec des mesures sur le terrain, une analyse des
anomalies spatiales est également effectuée, mettant en évidence la fagcon dont la sécheresse a

affecté différemment les régions du bassin.

Pour I'évaluation de la qualité de I'eau, un sous-bassin du bassin du Parand, appelé bassin
du Paranapanema, a été sélectionné en raison de la disponibilité de données corrigées de I’effet de
sunglint (voir chapitre 3). Les variations saisonnieres et spatiales des parameétres de qualité de I'eau
turbidité et le Chl-a ont été estimés et ensuite analyses pour mieux comprendre I’impact de la

sécheresse et de la variabilité hydrologique.
7. Contexte du développement de la these

Le présent travail a été développé dans le cadre de I'accord de coopération HIDROSAT
entre I'Institut Francais de Recherche pour le Développement (IRD), le laboratoire Géosciences
Environnement Toulouse (GET), et I'Agéncia Nacional de Aguas (ANA), agence chargée des eaux
et de I’assainissement du Brésil, qui a financé mes études de doctorat, afin de renforcer les capacités
en hydrologie spatiale. Plus particuliérement, mon travail sur l'utilisation des images du capteur
Sentinel-2/MSI a été développé dans le contexte du projet OBS2CO (acronyme pour OBServation
de la Couleur des eaux Continentales) et du centre de données francais pour les surfaces
continentales THEIA qui implique plusieurs institutions pour fournir a la communauté des sciences
de I'eau une évaluation des produits de haute résolution sur la qualité de I'eau des lacs, réservoirs

et reviéres.

En plus de I'IRD et I'ANA, d'autres institutions telles que le Centre national d'études
spatiales (CNES), I'Office francais de la biodiversité (OFB), I'Universidade de Brasilia (UNB) et

["Universidade Federal do Amazonas (UFAM) participent a ces initiatives. L'objectif final est de
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développer des flux de travail opérationnels pour traiter les séries temporelles télédétectées et de
les mettre a la disposition de la communauté. Parmi ses différents fronts de travail, nous pouvons
souligner : 1) le développement de bases de données optiques et de qualité de l'eau ; 2) les
algorithmes d'inversion ; 3) la validation des produits ; et 4) les plateformes de publication. Les
résultats obtenus par ce pipeline permettent le développement de la recherche et des applications
pratiques. L'eutrophisation, le flux de sédiments et les catastrophes environnementales sont

quelques exemples de sujets abordés dans le cadre du projet.

Dans cette thése, j'ai travaillé en étroite collaboration avec cette équipe multidisciplinaire
et j'ai apporté des améliorations importantes en termes de méthodologie vers le traitement et

I'analyse & grande échelle.
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Chapter | - Water Detection

Correctly identifying water pixels from multispectral images is the first step towards inland
water assessment from remote sensed data but it is not a trivial task, and its operational application
remains a challenge. Atmospheric correction algorithms usually deliver land cover masks, but the
accuracy is not satisfactory for inland water bodies (Cordeiro et al., 2021). This behavior can be
explained because the zero leaving radiance on infrared wavelengths assumption, usually applied
to identify clear water, is not valid for inland waters due to the complex interactions that occur

among its constituents.

Besides that, other surface targets can have spectral signatures very similar to water, such

as very dark vegetation or cloud shadows.

Although many methods have been proposed in the literature, most of them rely on
supervised learning, that requires training samples on the region to be studied, that involves cost
and time. Another group of automated methods rely on thresholds that should be applied to
reflectance or spectral indices. This second group is usually more straightforward, but the
thresholds should be selected carefully, and the results can be tricky. This happens because the
optimal threshold can vary in space and time making it difficult to be applied automatically to a
large number of images. Sometimes, even within the same scene, the best threshold can vary

depending on the water body, making it difficult to deliver optimal results.

To address this issue, a new detection method has been proposed in the context of this study,
that makes use of unsupervised machine learning clustering method, intitled “Automatic water
detection from multidimensional hierarchical clustering for Sentinel-2 images and a

comparison with Level 2A processors”. The results are compared to traditional methods and to
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the operational masks delivered by the main Level 2A processors and shows an improvement
especially for smaller water bodies. This article has been published in the Remote Sensing of
Environment (RSE) journal and the resulting piece of software, called Waterdetect was made
available as open-source code to the research community through the GitHub platform

(https://github.com/cordmaur/WaterDetect).

Still in the context of the water detection, a second article intitled “Sentinel-1&2
Multitemporal Water Surface Detection Accuracies, Evaluated at Regional and Reservoirs
Level” (Pefia-Luque et al., 2021), was published on Remote Sensing MDPI journal (Annex-1). This
article, in which | participated as third author, focused on further comparison of the proposed
clustering method to existing ones in the optical image domain and compared the results to those
obtained by radar platforms. In addition to regional scale assessment, this study also compared the
performance of the methods to monitor water surface of specific reservoirs over the time. The
utilization of time windows has been proposed to minimize inaccuracies due to cloud persistence

and other punctual errors.

This second paper led to improvements in the waterdetect software, especially concerning
the robustness of the method. A new treatment for negative reflectance has been proposed, as well
as the possibility to perform the clustering with different combinations of reflectances and spectral

indices and to average the final results.

Further development on the same theme has been conducted in a third article “Surface
water dynamics from space: a round robin inter-comparison of using Optical and SAR high-
resolution (10-m) satellite observations for regional surface water detection” (Tottrup et al.,
2022), published in Remote Sensing — MDPI journal (Annex I1). This round robin was realized in

the context of the World Water project, proposed by the European Space Agency (ESA), which
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goal is to develop robust and scalable Earth Observation solutions for inland surface water
monitoring. The intercomparison has been performed among several peer reviewed algorithms that
used either optical or Synthetic Aperture Radar (SAR) or a combination of both do deliver accurate
water mapping. The algorithms were put to test in 5 sites covering various eco and climatic regions
as well as including a diversity of waterbodies and some of the major challenges for water detection
such as clouds, canopy shading, fire scars, urban areas, and regions with permanent low
backscatter. In general, the models that synergically combine optical and SAR data outperformed
single approach models, being cloud cover the major limiting factor affecting the performance

using optical imagery.

The possibility to use the methodology with data from diverse satellites, with different
resolution and bands configuration, has been object of another article that | participated in, entitled
“Maximizing the accuracy of surface water detection in an intermittent river using the Water
Detect algorithm and a sensitivity analysis to compare the performance of Sentinel-2,
Planetscope and Sharpened imagery” (Tayer et al., 2022, in review), and presented in (Annex
I1). In this study, beyond Sentinel-2 imagery, the waterdetect algorithm was applied to
Planetscope scenes, with 3m of spatial resolution but lacking a SWIR band. Additionally, a
sharpened version of Sentinel-2 imagery, with and without considering SWIR band, was also
assessed. The objective was to detect an intermittent river in a semi-arid environment, distinct from
those used so far. A sensibility test has also been conducted to assess the impact of the main
hyperparameters of the model to the final performance. As main outcomes, it is shown that the
sharpening procedure had little impact on the overall accuracy and that the NIR band and visible

bands are enough to deliver good results.
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Beyond those, the methodology has also been used in other side projects conducted during
the thesis such as a water surface assessment performed in lake Chad, located in the sub Saharan
Africa in the context of a UNESCO project, where the algorithm has been used to retrieve the

overall surface area for 7 distinct tiles from 2017 to 2020 (Figure 1-1).

Surface area (km2) for lake Chad tiles

Figure 1-1: Example of study conducted using the waterdetect algorithm on the lake Chad region. (a) monthly water surface in
km2 for each considered tile individually; (b) lake Chad water mask.

The participation on these studies following the original paper were important to validate
the methodology on different conditions, compare the results to other state of the art methods and
improve performance and robustness of the code. The improvements not covered in the articles are
presented in more details in Chapter 11l — Generalization and Analysis: A case study of Brazil’s

2021 drought.

Considering the aforementioned studies, the waterdetect methodology could be tested in
many different geographically distributed sites, in different seasons and with diverse climatological
conditions. In total, more than 20,000 Sentinel-2 images have been successfully processed with a

global coverage, as shown in Figure 1-2.
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Figure I-2: Overview of the main sites where the waterdetect algorithm has been successfully applied. Background image:
“World Map Blue” licensed under Creative Commons license.
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1. Automatic water detection from multidimensional hierarchical clustering for

Sentinel-2 images and a comparison with Level 2A processors
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Alikas, 2018; Delegido et al., 2014; Frampton et al, 2013; Lins ot al,
207; Toming et al, 2016; Yaday et ol 2019), led sedi
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Water lxmxtlan Index (AWEI) (Feyisa et ol 201 4). Por automated and

assessment (Conde e al, 2019 Martinez ot al, 2009; Yepez ot al,
2010), among others.

In this context, the correct identification of water pixels within an
image is the first process required for many subsequent applications. The
proposed solutions in the liternture include a number of approaches that
aze suitable for different objectives, scales (local, regional or global) and
sensar characteristics (Feny et al, 2016; Kowlelas et nl, 2018; Pekel
et al., 2014; Souza et al.. 2019).

Supervised (Hollnteln et al . 2014) and unsupervised classification
(Yousefi et al, 2014), hue saturation and value (HSV) transformation
(Dinh Ngoc et al, 2019; Pekel ot al, 2016, 2014), spectral mixture
analysis (SMA) (Feng et al, 2015 Sonza et al, 2019), water index
thresholding (Donchiyts et al, 2016; Du et al, 2016; Kosdelay et al,
2016; Zhong et al, 2010), object segmentation (Kaplan and Avitan,
2017) and, more recently, deep Jeaming (Wicland and Martini, 2019)
are examples of techniques that have been used to separate water boclies
from land cover in radar-based and optical images.

Althoegh radar based water mapping has the ady ge that it is pot
affected by cloud or b fitions and d water through a thin
canopy, optical images, when available, are more straightforward for
detecting wates (Shen vt nl, 201%) and have the advantage olmuklng ix
possible to use the sp 1 bands to perfi other analy 'y
water mapping using an | d b of p (Mackert etal,
2018),

Several optical water masking approaches rely on a stack of images
acquired on different dates to aveid clouds, shadows or

Amcirahl

P P these indices nre usually employed with an

j thresh King p dure, such as Otsu's thresholding (Otan

1979), which minimizes within-class variance in bimodal histograms.

This p dure can be bined with other bands os ancillary data in

. (31 to some of the mdices’ limitations (Dink

Nvoc ¢ al., 2019; Donchiyts et al, 2016; Konlelas et al., 2014; Markernt
et al., J018; Yang ot al, 2018),

The threshold values can be obtained locally ar globally, however a
unique global threshold is ineffective because it can vary with satellite
altitude, illumination, angle, pheric conditions (Ji =t al., 2009)
and water constituents (sediments, organic dissolved matter and chio
rophyll). Working over one river catchment, but within boxes of 20 km
» 20 km, Doachyts o= ol (2006) found that the MNDWI optimal
threshold varied from - 0.25 to 0.4, which highlights the need to adjust
the threshokd dynamically over space and time-

In this context, little attention has been paid to lazge areas, such as an
entire Sentinel 2 scene, in which all the complex variabilities of water
can lesx! to erronenus assessments due to a diversity of spectra occurring
at the same time. One exception that is worth mentioning is Global
Surface Water (Pebiel et nl 201 6), which was developad to nssess water
mxfuswwldwldemdlhdrlmgmmchmw ‘nleeqmthmfotin

were obtained by iy d ng hulls in a multi-

dlmamonnl festure space and isteractively nd;umng them to pixel

mplumhgumu classification and spectial overlaps were solved by
followed by a final visual Inspection,

Bangira et al I?Ul‘l) pared] the thresholding hod with ma.
chine & 1g classifiers and concluded that the use of caly ane feature

complex water conditions (Pekel et nl, 2016), or they use ancillary data,
such s Digital Elevation Models (DEM) or pre-existing cartagraphy
(Donchyes oral, 2016; Matkert #1ul, 2014). Although these approaches
can achieve high accuracy scores, some of them are complex, time
consuming or require human intervention to propare and process data
(Zhang et al., 2018).

Because this work is focused on providing a water pixel baseline for
thedevdupmmafwbuqum products within single scenes, especially
for the producti lity products, this article focuses on
uuzunntodnmhodtforwnewlngnpmal tmages without the use of any
auxiliary data or time series mosnicking.

For water & , the most Iy used
ogmmmdnﬂwldhglnomornwummumd}wmd
g algorithms (Wieland and Martinis, 2019),
“\e literature on supntviaod machine leaming models for water map-
ping incluxl nly used methods, such as suppart vector hil

el

(i.e., one water inclex) produced relatively poor and unstable results
compared to using a basic threshokl combination and that more work is
needed to investigate the efficacy of other combinations. To overcome
some of the diawbacks of using water indices, their combination with
other bands in a fully automated method has been an object of study
(Dinh Ngor et al, 2019; Kordelas ot al, 2010, 2019}, but in a rule-based
system, theis use in optically complex water vemains a challenge (San
garn et al, 2019),

In additon, it app that multidimensional unsupervised
methods, such as clustering, have not been as popular as other methods
for automatic water mapping based on the number of publications to
date, Thus, clustering could be used as a solution for combining multiple
features (reflectance bands and water indices) in a single awromared
procedure.

For this reason, the purpose of this study is to provide a robust

hod for water extraction from single scenes using optical high-

(Nandi ot al, 2017), decision tress (Arh:u*)'n ot @l 2016), random for-
ests (Feng ot gl 2015; Ko et al, 2015), multilayer perceptran (Jiany
et al, 2018 Mishra amd Prasul, 2015) and convolutional neural net-
works (Pu #t al, 2019; Wanog et al, 2020),

The use of supervised hine learni
threshalding for accurate results, but due to hurlng dlﬁannt water md
atmospheric conditions at different sites and their dependency on the
trnining data, supervised machine learning might not be the best option
when multiple sites at o global scale are addressed (Rangiva et ol 2019),

According to Hangira et al (2019), varying concentrations of sus-
pended sediments (turbidity), photosynthetic pigments in algae (e.g.,
chlorophylls, ils), dissolved arganic matter and aquatic plants
make the implementation of supervised optical remote sensing-based
water extraction methods difficult bomun tmlalnz data must be unl-
vemsally applicable and frequently pecially in the case of
water bodies that peesent highly vuhbh reflectance over space and
time,

With regard to unsupesvised water mapping from optical lmages, to
date, the majority of developed methods rely on water indices, sach as
the Normalized Difference Water Index (NDWI) (McFeoters, 1990),
Maodified Normalized Difference Water Index (MNDWI) (Xu, 2000),
Multiband Water Index (MBWD) (Wang ot al, 2015) axd Automated

Jl.k Sl

resolution sensors that can be applied ot a large scale. Differeat from
othes threshokding approaches that use only ocne dimension, usually a
water index, this article aims to analyze the applicability of combining
dﬂfcml waur indlm nnd lp«unl bands in unsupervised multidi-
’ ized for large-scale processing.
The obeained results ummmpandnownwrlndummboulnx.tbo
most method to sep water, and other major identification
algorithms, such ns Sen2Cor (Muelles-Wilm et al., 2019), PMask (Zhu
at ol., 2015; Zhu and Weodoock, 2012) and MAJA (Hagolle et al., 2010),

2. Materinls and methods
2. 1. Reference maps and study area

To test and validate the new water extraction methodology, it s
necessary to have a good refe ! Hi , obtaining a good
releun:edmunbendullmpfurhmembecmhslm

datab are ilabl unbmdlulemdmou
latak i :ust]y,’-—-’ ive i (Bostens
etal, 20|9}Mﬂwnghpxmou dies have been perfi d to provide
global water datasets, such as Global Surface Water data, provided by

the European Commission (Pekel of 2l | 2010), or Global Water Bodies -
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GLOWABO data (Verpoorter =t 0l 201 4), our goal is to provide a per-
scene pixel classification that is affected by instant climate and water
conditions.

Tomed\cd:lﬁcukyd £ mask g ion with a
¢! of 1 work, Hoetenn 2 gl (2019) developed an
octive machine learning algorithm called Active Leaming Coud Detec-
tian (ALCD), which can be used for any classification purpose.

The approach of ALCD of an iterative process in which the
operator manually selects the reference points, trains the machine
lumblgmndelbuulmmﬂdmfnmnmddnmﬁslhem After the
classification, the op the possible imperfec.
tions and labels new pixels wbmﬂn:mﬁmﬁmwmwmuum
uncertain and then repeats the cycle until a desirable result is achieved,
The operator performs n manual correction of persistent eivors if
necessary.

For the ¢ I wates d the ALCD algorithm was used to
produce the CNES ALCD Open Water Masks dataset (Santingo 2019),
which is available online. This open dataset comprises open water masks
for 16 Samnelz scenes over 9 different regions in France that were

Jected to minimize the p of dlouds while including areas with
diverse land coverage {Fig. |). Some areas have reference masks in
different seasons, such as the end of summes and the end of winter pe.
riods. The masks were genemted at & 10 m resolution, with each tile
covering 110 km » 110 km. Among the available scenes, tile T31TGK,
from the Alpes region during winter, was discarded because of the un-
availability of ancillary datn related to this scene that are rexqquired to
complete the study.

The selectedt dataset haz an inland area coverage of 96.315 lan® with
approximately 1.23% km” of surface water and water quality charac-
teristics that would match most European countries. The complete Jist of
scenes used in this stixly, with basic chasacteristics and water covernges
and percentages, is described in Table 1,

22 Data collection and preprocessing

The Copernicus Sentinel 2 missi of two polar-ocbiting
lites {Si 1 2A axl S i 2.8) that were developad to
monitor variability in land surface conditions with a revisit time from 2
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Table 1
Demeraption of (e soenes uned for reference with the coeresponding continental
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| N | Area Tile id.
@ 1 | Bretagne T30UXU
2 | Alsace T32ULU
3 | Chateauroux T31TCM
4 | Gironde T3I0TXR
S | Alpes T3I1TGL
6 | Bordeaux T30TXQ
7 | Marmande T30TYQ
8 | Camargue T31TFJ
5 | Ariége T31TCH

Flg. 1. Sputial distribnsivn of the peferenie scenes over Franee nsed for validution in this woekc
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to 5 days ling to latitude. Both Ilites are equipped with an
optical Multispectral Instrument (MSI) that can monitor 13 spectral
bands with wavelengths ranging from 440 to 2200 nm at high resolu-
tion, from 10 to 60 m depending on the spectral band (Suliet, 2015).

Different processoss have been developed for Sentinel 2 to correct

ges for atmospheric litions and to provide the surface reflectance
(Leved 2A). One important subproduct from these processes is the pixel
classification, which provides Clouds, Shadows, Land, and Water masks
among other ancillary data. Sentinel 2 - Level 2A products distributed by
ESA are genesated by the Sen2Cor processor (Mueller Wilm et al | 2019),
while the French Land Data Center (named Theia) uses the MAJA pro-
cessor (Gascoin et al, 200% Hagolle et ol 2010). Another important
provides, the United States Geological Survey (USGS), generates the
final pixel classification using the Punction of Mask (FMask) algorithm
(Qauz etal, 20)9; Zhu et al, 30]5),

To compare the performance of the proposed algorithm with the
water mask provided by the FMask, MAJA and Sen2Cor processors, all
15 scenes selected within the reference dataset were downloaded from
two different sources. The level2A MAJA cosrected images were
downloaded from CNES's Thein Land Data Center portal (littps /tseis
cnes (s /). For the FMask mask, we downlosded level 1 C images from
ESA's Scientific Data Hub, and for the Sen2Cor masks, we downloaded
Level.2A praduscts from the same source, Then, version 4.0 of the FMask
processor, which is available online (btips//githobcom G2
BSL Fmask), was used to produce the FMask categorical map.

Ceasidering the importance of the atmospheric comrection to better
characterize the spectral signature of the desired targets (water and
nonwater) and obtaln a uniform and conséstent dataset (Dinh Nyoc et al
20119; Jiang et ol 201 8; Wang et al 201 4), all of the images used to run
the wowud algorithm were Level 2-A. MAJA was selected, considering
the quality of its pheri ion and cloud mask in consparison
to other pmceuon (Boetens vt al, 2019

To avoid undesired pixels that are not objects of this study and that
could bias the results from the algorithm, one external reference mask
was procuced for each scene. Five categories of pixels were masked
using different specialized , a5 shy lul'n-'!'henndedmd
mugpﬂummow‘donddoud“ A hi and

ooean/ I and the respective sources for each category are
listed below:

/'

GSHHG
|Ghckad Settccnuissent,
Hesarchod Vegh-reichtion
Gacgrapty Datadase)

Original Scone

B
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* Spow: snow cover was downloaded from the Thein Snow collection
(Gascoln et al. 2019), which is an operational snow detector with a
20 m resolution, developed by the CESBIO laboratory;

& Ocean/coastal waters: CNES ALCD Open Water Masks (Sautiagn,

‘Ul‘))huavuxioucnlled 'tnhndmuh"tlnkddlnwu!hem/

This & was prod idering the 1
lines available at the Global Sdfoumtnml., Hlenu'hnl, High
resolution Geography Database - GSHHG (https://www soest
hawaii.edu/pweszel/mhlig/) (Wess=l and Smith, 1996) at level H
and using an erosion filter of 400 m toward the continent. The
shoreline was produced at a working seale of 1:100.000 according to
the World Vector Shoreline database;

« Clouds and shad For the of clouds, cloud-shadows and
geographic shadows, the geophysical - MG2 mask from MAJA was
lected b its mulsi 1 h has been p to be

L

superior to other cloud daenion processors, as shown in previows
studies (Bactens et ol 2019). Although the MG2 layer is provided at
10 m and 20 m resolutions, these masks were computed at 240 m for
the Sentinel 2 imagery.

23 Computational framework and infrastructure

Considering the amount of dats and the many experiments mquued
to complete this study, as described in section 3, all the p g waa
performed oo a high performance cluster within the CNES s compata-
tional infrastructure.

The main algorithm was developed in Python 3.7. The clustering,
qualification Indices and machine leaming algorithms were imple-
mented using the SciKit Leaming libeary (Pedregoan et al, 2011), and
the Otsu's thresholding algorithm (O, 1979) was from the SciKit
Image Hbrary (vor der Walt e ol 2014). For the geospatial data

manipulation, the GDAL libinry (CDAL/OGR contributar, 2020) was
employed.

The comparison task was performed using the validation module of
SwiWater software developed by CNES's team, whkh mnwus the
confusion matrix with more rel
Precision, Recall, ¥] Score, among adan.

ing Kappa,

Fig. 2. Schematic view of the sousces und csmscgories of the phxeds selected w produce the redernce musk for each sevne.

q
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3. Methodology
3.1. Concept and rationale

Despite their simplicity, simple water extinction methods, such as
two - band water indices and single band thresholding, are not able to
accurately distinguish water in complex environments that include
build -zp areas, dark surfaces or in shad, (Feyma et al,, 2014;
Wieland and Mastinis, 2019). In addition, when addressing large areas
(e, 110 km » 110 km when idering a full Sentinel-2 scene), it &s
conunon to have different environments at the same time. The combi-
nation of water indices results with other reflectance bands has been
tested in some rule-based water extraction approaches (Dinh Ngoc et al
2019; Kondelns =t al,, 2010), but the optimal combination of different
thresholding results remains uncertain nnd often requires tuning to local
conditions (Sangira et al 2019),

In addition, one of the major criticisms of the Otsu thresholding
method is the instability that occurs when the histogram of the pixel
values is not bimodal (Dopchiyta ef al, 2016). That circumstance can
occur in different situations, depending on the relations of the land and
water pixels in the selected scene or study area, for example, in areas
with very few water pixels comparexd to land pixels.

The method propased in this study combines different water indices
and reflectunce bands into a single unsupervised multidimensional
clustering approach for lasge areas; we compare its results with those
from the most commonly used threshold methods and ready-to-use

The pr d method is applied on inclividual Seatine-2
munndklnundodmbcuudumlnputmurmukﬁwdtfﬁmz
water resources applications, such as inland water quality monitoring,
water temperature assessment, surface water stornge or geomarpho-
logical unalysis of river streams.

3.2 Feuture selection

An important step in machine learning is called feature engineeting,
mwln:h{umrumd;emputmfomhonpmwduimlhenlaomhm.
The ¢ y f ideted are the refl bands.

hmwamhlmbhanmsmgumnhupﬁmlwmve
lengths nbove 800 nm, covering the near-infrnred (NIR) and shart wave
infrared (SWIR) Sentinel-2 bands, compared to the visible bands, This
behavior serves as the rationale for the most commonly used water
indices {(NDWT and MNDWI) (McFestvos, 1990, X, 2006}, In addition,
ngnn et al (2019) assessedd the utilization of each of the Sentinel 2

1 bands, ig other indi for water discrimination through
Ouubudﬂne!wldmg.mdﬂunulebmdslhnnduﬂdthe* 1y
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Table 2
Features wnd caleolation methods considened in the chwiering experiment,

Fentivw n

Visle groen (537 682 am) 10w B3

Vikble ool (616-685 n) 10m 121 -

Newr o (767 X% om) 10w L -

Shtt-wave Lafrared Dm Bl Avermge up- s pding
(1559-1681)

Shoet waww infrured Hm w2 Avermge wp- s ling
NT3-E02)

Modifierl teoetmalisred 10 MNDWL o B3 AT
differmmce waler indes B3 B1)

Nunslunod dfference 100m NOow NOWI L
water slex #1 By

Malt beed witter index 10m MW MIOWY = 3% 1S - N4 -

- -m2

(’;) 'mT‘iTy )

where n stands for the number of features and k iz the number of di
mensions. To test the applicability of B11 instead of 812, we ran extra
tests by changing the input band to B11, but the results were system-
atically less robust than the same experiment with B12.

Additionally, 23 part of the experiment, for comparison purposes,
Otsu-based thresholding and its modified version using the Canny-edge
filter were also adopted for ¢ach index, achieving a total of 29 experi-
ments for each scene Toble 3 summanzes the water mapping experi-
ments arxl features used in this study.

3.3 Clustering method

One of the most commonly usesd clustering algorithms in remote
sensing applications is k-means becouse of its high performance, low
complexity and the fact that it is implemented in most image packages,
The k-means method partitions data into K given clusters, in which each
observation belongs to the cluster with the nearest centroid (the mean
value in each dimension). This process partitions the data space into
Voronoi polygons and Its in cl of similar size.

This chasacteristic has strong implications when attempting to
separate water from land pixels, because depending on the scene, the
bands included in the analysis and the ber of water pixels compared
to land pixels can imply very different cluster sizes.

Agglomerative clustering, which was selected for this study, can
address the difference in cluster sizes because it does not have any
constraint with regard to the sizes of the resulting clusters. Agglomer-

accuracies were BS (NIR) and B11 (SWIR).

Because Sentinel-2 has two bands in the shoet-wave infrared spectsa
and because the B11 band is already used in the MNDWI and the MBWI
indices, B12 was selected considering its lowest response over water
surfoces. In nddition to the selected B8 and B12 Sentinel 2 bunds, the
most commanly used indices for water segmentation, NDWI and
MNDWI, were generated as input features for each scene. Additionally,
the recently proposed MBWI (Wang «t 2l 2018), which was developed
to maximize the sp | ditference b water and sur-
faces in Landsat 8 sceaes, especially for confused backgrounds (ie.,
mmmmhmsshmlws:nddukbuu:upmuxwahpmdwwk
with Sentinel 2 bands and was also included in the
(Tobie 2),

Lowes resolution bands (B11 and B12) were upsampled 10 10 m
using the simple average algorithm. The two reflectance bands, BS and
812, and three indices were then combined in different dusteting ex-
periments with up to five dimensions when all of the features were
considered together. Considering that the order of the features is pot

P for the cl ing method, the number of necessary experi-
ments can be assessed by the combination formula (Eq. (1));

"y

ative cl ing is a subtype of hierarchical clustering that follows a
bottony-up approach, in which each observation starts in its own chuster
and is then merged iteratively until the desired ber of cl (K)is
reached (Nieliea, 2016),

The key parnmeters for the algorithm to decide whether 1o merge
two clusters are the metric (Eq. (2)) and the linkage (Eq. (3)). The metric
specifies the measure of the distance between pairs of observations, and
we used the simple Euclid 1 - ED, described in (Eq. {2)):

Table 3
Nomber af water mspping experiments performod in this sty for each mothod,

Method Nownber of expertmenty

Ot Tenesbusbebisg 1 £
Carnry wdge {limesduibdbing 3
Chustering 10
Chssireing 10
Chastrring 5

-
Chstwning 1

LU T

"aw -
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D, = VLm -b) (2)

where ED, &s the distance between points a and b in an n-dimen
sional space and | is the considered dimension.

In addition to the metric, the linkage criteria determine how to

pute the d b i as a function of the pairwise
distances between observations. The Avernge Linkage - AL, used in this
study, considers the mean distance considering all the points in each
cluster and can be described as in (Eq. (3)):

1 :
AL = g 22 _EDa. (3)

i ax

where a and b are the coordinates of polats in a n-dimensicaal space
and |A| and |B| are the total nuwmber of observations in each cluster.

During each iteration, the algorithm merges the two clusters, among
all of the clusters, that are closest to each other consldering the criteria
described above. The iteration continues until the specified number K is
reached.

3.4, Selecting the ideal number of clusters

Agglomerative cluswrlng cnnlinnu to merge chusters until a rargeted

ber of ¢k is the final objective is to develop a
nonparametric fully automated method, one lmpomw step lsto tdemfy
the best valoe of K. One way to eval the perfi ofad T
process when the true classes are not known Is to employ a coefficient
that measures whether the clusters obtzined are dense ond well

separated,
The coefficient used In this study is the Varance Ratio Criterion,
which is also cafled the Colinsk-Harabasz Index (Calinald snd JA. 1974),

The Varlance Ratio Criterlon considers Intracluster (Eq. (4)) and Inter-
cluster {Eq. (3)) variances, represented by Wy andl V, respectively, which
are defined as Sq, In (Eq. (0))

I y
W= & ; ED, (4)
L
« Y b, (s)
el
N - K}V
S22 ()
K-1Ew
A=

where x is a point in cluster k, k| is the number of samples in cluster k, 4,
is the centroid of cluster k, u is the centroid of all clustess, N is the total
number of points, and K is the total numbes of clustess,

To achieve the best value of K, the Calinak-Harabasz Index is eval-
aated for multiple experiments with K ranging from 2 to 10. The supe-

rior limit of 10 was defined empirically in the of this study. More
information on the selection of the i ber of clusters as well
as the ber of sampled pixels is pi § in section 4.4.
35. Mentifving the water cluster

Once the best ber of cl isk , the next step is to identify

which cluster, among all possibilities, Includes the water paints. To
achieve this goal, the MBWI i calculated for the centroids of each
cluster. The cluster that presents the highest MBWI value i u selected as
the water cluster, and the others are labeled as The
MBWI was selected due to its robustness over confused backgrounds,
which could result in false positives with the other indices (Wany =t ol
2018).

Renwte Sovveng of Do 250 (20011 112200

3.6, Pixel sampling and generali
One dissdvantage of aggl clustering compared to k-means
is that it has a space P y (the of Y led to

compute) of &n’) and a time complexity of O(n™) (Firdaus and Uddin,
2015), which make it inefficient for even medium sized datasets.

In addition, the clustering procedure is performed many times for
mch&ﬁmmkvuluennnlthembodmobmlndnbsﬁnmbaof

Considering that each Sentinel-2 scene includ:

120 million pixels (10,980 by lomwxﬂs)mmuouobjemvekm
provide an operational method for monitoring large areas, it woukd not
bet’cmhletonpplythepxmmduwholemum

The pr domly selects n subset of pixels
hmemmmapﬁymednmmmdluxbutxblomdmdlhe
water cluster is identified. Once the best cl i )| is

L3

and the subset pixels are labeled for water and nonwates, we generalize
dlemluﬂnnmnnﬂmpbchlnthemm!hmmhnmpemudmh!m
lassifier. After | tests, including Naive Bayes, support
vector hines and multik lels, Noive Bayes was
ndecmdbmmclkoﬁuedthebenmmltsmdlmnshonnmnlnguu
The schematic flow chart of the processing chain is shown in Fig 1
Even though mwost of the processing is performed using a high-
perfi cluster, as i | in section 2.3, a whole Sentinel.2
mmbedamﬁedmabo6mmmnnlmdl7compumwnh
32Gb of v running the Wind 10 Pro ing sy

¥ &

3.7 Image thresholding

The mast sunightforward method for water body mapping is to apply
a threshold to an index and select the puels whaose values are greater
than a selected threshold value. A d lected threshold is used
nsn:mndudbmuuthevalnesmvmybo«htmpmuym spatially
amang different regions, depending on the different image and water
chnmmism Amanglhnmrktydumodsbtaummnmtsdu
Id pased in the liter (A} Bayati and El. Zaart
2013; Yang et al,, .:(117). the Otsu nlxondlm. lkvtlopcd lntﬁnlly o
back d from foregr
isomoflbcmncwumnlymdupprwdw&ﬂﬂsmtmodaumtc
maximize intereclass variance and minimize intraclass variance based on
the histogium of n varioble. Considering @ to be the interclass varinnce
between ciasses separated by n threshald t (Eqs. (/) (V)), the algorithm
exhaustively searches for the value of t that maximizes @, as follows:

e} = Paliwg — pory = Polpg — ) 7)
3, Pixels in cluyy
e T«IM Pivels " (6)
< B
an a
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ArgMax

Threshold = win{s) < 7 < max(r)

[e*(n) ], (9)

where P is the probability of o pixel belonging to one of the classes,
sio and iy are the mean valwes of the variable for both classes, wy is the
mean vithue of the whole histogram, and the threshold value is the value
of t that maximizes e,

To analyze the proposed multidimensional clustering method, we
compate its results with those obtained by the plain Osu's method
applied to the three ditferent indices, MNDWI, NDWI and MBWL. It has
been shown, bowever, that this method yields unstable results if the
amounts of water and land pixels are not equivalent and do not form a
bimodal histogram {(Doachyts et al, 2016).

To overcome these limitations, another sel of experiments is per-
formed using the improved Canny-edge method introduced by Donchiyis
et al 12010), which first identifies the edges and then applies the Otsu
algorithm on the pixels around thoss edges.

Both methods are implemented in Python, while taking advantage of

Reawte Sevveng of Kiironave 250 (20011 11209

lnAxiqe eq)mﬂyﬂocﬂummfme.lnnddldmt,lllohbem
parably well in most scenes, and the major dif
&tmmnppwndmm:hnﬂupngm,mhu.ﬁdepuﬂpﬂ,
which include snow, a very mountainous area with topographic
shadows and the lowest perc ge of water surface. In such pl
cases, the used of o higher.d oa fi space can i per
formance, as is the case of the combinations (MNDWI, NDWIL, B12,
MBWI) and (NDWI, MBWI, BS, B12), which scored the best in Ariege
winter (kappa ~ 0.780) and Ariege summes (kappa ~ 0.740), respec
tively, We also noted that the inclusion of the MBWI index improvex] the
results, especially in the presence of very low reflectance waters.

The sccuracies among the scenes varied substantially. Fig 4 presents
the mean kappa coefficient and the standard deviation for each area
calculated over the best combinations. The water pixel percentage for
ench scene is shown in the right Y.axis (red line); it was ealculated
consdering all of the unmasked pixels. There appears to be an inverse

dati “,‘ y and water percentage. Clearly, the best

htained from scenes with o water percentage above

the algorithm implementations available in the Scikit Image package
(v der Walt et ol 2014). The implementation uses a mask for invalid
pixels (clowds, no-data, shadows and snow). An iterative process is
introduced to select the strongest edges. To provide similar conditions to
the clustering technigue, the finol threshold is limited by preconfigured
min/max  values, differing, in this regard, from the original
implementation.

4. Results
4.1. Muitidimensiona! clustering

The koppa coefficients obtained from the best performing combi.
nations of inlices/bands are presented in Table 4, as well as the averag

were
1.5%. For the most chalienging scenes (Ariege, Alsace and Alpes), only a
few combinations were able to produce accurate results, which can be
seen from the low mean nnd high stardard devintion.

Examples of the clustering results, with the combination of NDWI
and B12 channels, are shown in Fig 5, as well as a comparison with the
labels from the refesence masks. The X axis represents the reflectance, in
sz, of each pixel in the SWIR band (812), and the Y.axis represents its
NDWI value The left column graphs show the pixels of the reference
masks, where blue represents water pixels aml green nonwates pixels. As
expected, the water pixels are grouped in the higher NOWI and lower
SWIR values due to the higher absorption of water in this wavelength.

The right column graphs show the results of the clustering algorithm
{onhanumm Th-plxcl colors rep different ¢l found

and standard deviation for all of the scenes. Within this subset, all the
combinations achieved a mean kappa (calculated as the average kappa
among the scenes) higher than 0.6 for all of the scenes.

There is variation of accutacy for clustering combinations with two,
three or four dimensions, and therefore, no clear benefit is obtained by
increasing the number of channels. In addition, all of the top combina-
tions, including NDWI, MNDWI o both, b with a previ
study (Bangles of al., 2019) regarding the v of these indices to
correctly separate water and land pixels.

The most successful combiration comprises NDWI and the B12
(SWIR) reflectance banl; it achieved a mean kappa of 0.874, with a high
score of 0.980 in the Bordeaus summer scene and good results in most
arens. Even with a considernbly high mean kappa and low standard

hroughout the The best solution is achieved by
nudng a different fixed nnmhw of clusters (K), from two up to a pre-
defined maximum, and selecting the value of K that maximizes the
Variance Ratio index. It can be observed that the guantity of clustess
varies depending on the overall characteristics of the scene, such as
different caovernge types, the presence of build.up areas and other fen
tures. Once the clusters are well.defined, the algorithm automatically
Mmﬂﬂuwhkhdmulsﬁemdumhnwduhh&humm
valoe of the cluater centrolds. The infl of the i of
cluszers on the overall model accuracy Is assessed In Section 5.1,

Fram the examples shown in Fig 5, It can be observed that the NDWI
(¥-nxis) discriminates between land and water well, but the threshold
value (lower boundary of the wates pixels) can vary from almost 0, as in
Alsace, to as low as —0.2, in Bordeaux, This finding agrees with those of

deviation (std), the best combinations failed to produce relioble results othes studies that foumd significant thresholding diffe 5
Table 4
Bewts wndd stundied devintion suloes of thee kupgs coclficients foe the six best-perk ¥ clustering exg ks, Bt wnlves per scene wre highlighted in Bold
Sevtwe NDWIT MNDWI NDWI B2 MNDWI NIYWE 512 MY MNDWT NDWI MWL NDWI MIW! B8 112 MNRDWI NIJWT s
w2
Boedoanix S .08 0984 0.984 a5 M (L1
Canmrgue Wiseer 0.970 (IR 000 0966 05%9 0.8%1
Canmrgne Sty 0.977 e o2 nmz 0976 024
Buedeans Wister [R5 1,068 () 1957 0.960 005
Chasessnmniy Sasmey 0,869 LR32 0.0 0821 0.942 851
Alster St ILRST Nz 0.938 150 0757 NATR
Al Sttnumey 0.947 Ly (042 X5 0560 004
Alsate Winser 0017 .90 wr7mz n76s 1506 55
hantermons Windey 887 (TR 0.901 K7 754 075
Bortagre winmmwr 0.884 11256 (5] 076 uxra [0
Murmande (hhee s v [ R 0T D
Cilrende M1 1446 0 079 WITH 0848
Bertugpne winier n.856 ILRix L] LHRS =47 n~Na
Arwgy winder nr« nra 0.700 0 0620 LR
Arigy sy 0% 0.545 L& 512 0.740 0.8
Mown 0.874 [ 852 DHZY s nxz
sul 0,091 0 o "2 0,320 01z
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Fig. 4. Mean kuppa score aod standurd deviation (left Yeaxis) for cach scene aod comparison with the pweun Witer Aren / Water Perimeter eatio {right Yoasts), In the

socpes” Mbeby © 4" stands lor summer, and “ w” stands foe winter.

regions {(Doochyes et al. 2016), which densonstrates the need for a dy-
nambe method.

The fine separation ability provided by the NDWI, however, is not
sufficient to correctly extract water bodies in some scenes, [n seenes such
as Bordeaux summes and Bretagne winter, for example, a single NDW1
threshold would include many nonwater pixels (commission error) or
miss many water bodles (omisslon ervor). The high varlability of the
NDWT in the Bordeaux region is due 1o the presence of water with a high
suspended sediment marter (SPM) concentration {i.e,, turbid watess), as
Is the case for the Garonne River. The higher the SPM concentration, the
lower the NDWI index due to the increased reflectance response oa the
pear-infrared band (B3).

Another issue is the pressnce of lood pixels with a high NDWI
response, which can occur in high albedo o shadow areas (Bangia
et al, 2019; Feyisa o al., 2014; Wang «t al, 2016), In such cases, the
addition of compl ing infe ion, such as the SWIR band (B12),
lmproves the results, as can be visually observed from the clustering
results (Fig 5).

4.2 Otsu and canay-edge Thresholding

To compare out results with those of previously published methods,
we applied reveral water masking algorithms to the same scenes that we
analyzed with the clustering techmique. A simple thresholding experi-
ment was conducted using the Otsu's algorithm in each of the three
welected indices (MNDWI, NDWI and MBWI) with all of the pixels (no
subsampling is y) while idering the ref mask to treat
the clouds, shadows, snow and | The results obtained from
Otsu's theesholding algorithm, presented in Tobie 5, were rather
disappointing because the model failed to produce reliable results in
most scenes. These results could be explained, as previous studies have
already noted (Doochyts et al., Zblb].byﬂlefncltbnlmmulllgo
rithm, it is y to have a bimodal histogram for the indep
vatiable to be able to produce relinble resuits.

To overcome this Otsu thresholding fssue with a very low percentage
of wates pixels {not a bimodal histogram), we tested the same scenes
using the method proposed by Doachiyts et ol (2010), in which a
bimodal hi is obtained by selecting pixels around the contour
bﬂmmmdhndlhluuh&euzdlhe(hmyedaemm With
this ap h, the lts were greatly imp d, but they are still not
rdlnbhlmthem:hnﬂmmmwuﬁqeamlm).

The Canny edge algorithm using the MNDWI performed better in

ison with other tuesholding exp with a mean kappa of
0.718 when considering all scenes, Plain Otsu's algorithm, without

adjustments for the bimeodal histogram, is not a feasible option when
processing large scenes, A similar problem can be observed with the
MEBWI index b it fails to provide o goodd separation between water
and lond in all of the scenes, regardless of whether the Canny edge al-
gorithm or Otsu's algorithm s veed.

To further compare the different methods and to reduce the erros
caused by the small number of wates pixels, we tested a modification of
the Otsu’s algorithm, which is named here Modified Otsu (M-Otsu), M-
Otsu takes ndvantage of using the same sampling method (mplemented
for clustering, with minot adjustments. Durlng the sampling phase,
instead of selecting o tandom samgple of pixels, the algorithm is modified
to select equivalent amounts of plxels with high and low MNDWIs,
defined as MNDWI <0 (low) and MNDWI =0 (high), and the threshold
value is defined using this pew set of pixels. The results wese much
Improved, and the accutacy surpassed that of Canny-edge n all of the
tested scenes. Table 6 presents the new results, marked as M-Otsu, and
compares them with the results obtained by the best clustering and
Canny-edge approaches.

With the improved method, Modified Otsu thresholding achieved
better results than those for the simple thresholding, but the final mean
accuracy of M-Otsu was lower than the clustering, with mean kappas of
0.607 and 0.874, respectively. When comparing the overall behavior of
the methods (Fig 6), the results obtained from the best clustering
combinations presented better accuracies than those from thresholding,
with o lower standasd deviation. In addition, one can note that recall
(also known as sensibility) is significantly higher than precision in all of
the theesholding methods, especially for Canny-edge, This behavior con
be explaited because certain types of objects, such os roads, shadows,
mow and rome built-up areas, can have similar values to water bodies
after index caleulation due to similarities in thelr reflectance patterms
(Feyisa et al., 2014; Wang et al., 2018; Yang ¢ al, 2018). This charae-
teristic leads to an overestimation of water smmces with single indices,
regardless of the selected threshold. This p can be more
wwmdaepcndmgoumwmdmaummdmuh
the scene, and a single index thresholding might not be sufficient to
discriminate between water amd nonwater surfaces (Baugiza et al 2019,
Feyian ¢f nl, 2014),

mescmapacjnﬂymwmlmgummmlmme
results are comparable, with the advantage that thresholding is faster
and more straightforward. For more difficult mes (ie,a ma!lmmlm'
of water pixels, small water bodies axl i
targets), increasing the number of chanpels in lhe tlmwing appmm:h
gives more stable aixd accurate results, such a3 the cases in which ssow
and topographic shadows are presented (mountainous scenes).
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Fig. 6. Seatter phots of the NDWE (¥-axis) and 512 reflectunce (X-axis) in sr ' for ke different scenes. The left endomn graphs represent the reference misks, in
which the water pleels wre plotted tn bloe und the nonwater plxels are (n green. In the sight cobuamn grapbs, end adonr represents & ditferest cluster, wod the coloeed
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Table 5
Rownlts (kippad from Ons's (hresholding snd modified Canny-odge throsholds

Renwte Sovveng of Do 250 (20011 112200

correctly classify clouds, shadows anl siow, the only external noata
mask idered was the constal line, which was obtained fram

oo the MNDWI, NDWI and MEWI] indices. Best values per soene are thhlrd in
Bald,
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CSSHG with a 400 m dilation toward the continent.

FMask and Sen2Cor compute the classification at a 20-m resolution,
while MAJA, although it outputs the EDG layer at a 10-m resolution,
produces the water mask ot a 240.m lution. To pare the les,
the reference datan are resnmpled to the resolution of the input mask at
the of the parison, and no-data pixels are excluded from the

istics. This procedure is perfs d automatically by the validation
moxlule of the surf water system developed by CNES.

The results presented in Toble 7 show o clear advantage for FMask
and Sen2Cor over the MAJA processor, with mean kappas of 0.764,
0.726 and 0.355, respectively, These Its conkd be explained by the
lower spatial resolution used by MAJA to produce the water masks and
the relatively high proportion of smsall water body areas found in most
France scenes. This comparison shows that the clustering technique
outperforms the other water niasks on average and, more specifically, on
the scenes that have the lowest accuracy levels. Among the four scenes
with the lowest kappa scores, Ariege summer, Ariege winter, Bretagne
summes and Chateauroux summer only Ariege winter processed by
Sen2Cor obtained a kappa value higher than 0.6 (kappa « 0.673). All of
these scenes share the characteristics of having a small number of water
pixdsmdmﬂwmhodym!hmmobu‘ncdow&
0.780, 0.884 and 0.936, ively, with the ct g The

~

4.3. Results for stondard processors

Alnl:udymenuwd uneoftheob,ecmud!hnmdynmpmvlde
a robust, ponp ic and fully p for identifying
water pixels in large scenes. In this context, lasge-scale water masks for
Sentinel 2 can be produced using ready-to-use multipurposs classifica-
tion processors, such as Sen2Cor, MAJA and FMask. Sen2Cor and MAJA
have been used az operational ground segments for Sentinel 2 images by
ESA and CNES, respectively. In this case, the classified products were
downloaded ditectly fram the sites mentioned in section 2.2, PMask

classification maps were produced running 4.0, which is avail-
able online.
To compare the results from these p to the ref masks,

the multiclass classification outpats were transformed into a binacy
classification, with the water pixels being assigned a value of 1 and the
nonwater pixels a value of 0. Because these processors are meant to

Table 6
Resiilts (kapps) from Modified Onsa's theashodding and  compari
wtions {Table 1), Best values per socae ane highlighted In Bold.

m |

-
-

1T

/éffﬁé

Fig. 6. Values of kappa, recall, peecision and standard deviation for the elis
testrng, method (identified in red squams) considering different input chuanels,
and far ciher methods tested, cnlenlitod for all soetses, (For imterpretntion of the
rferences W colotr in this figare legend, the reader is ooferred o the wel
veersian of this asticle.)
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Tabde 7

Validstion rosalis (kappa) for the MAJA, PMask snd Sen2Cor wler mosks
compared with the resalts obtained from the 1hree best clastering combinations
(Tl 2), Bent values per seene are highlighted in Bold
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largest differences were observed in Ariege summer and Ch

Reawte Sevveng of Kiironave 250 (20011 11209

valoes were 0.245, 0.136, 0.503 and 0.515, respectively. The propased
M. Otsu method achieved kappa values of 0.652, 0.208, 0.589 and 0.642
in the same set of scenes, which shows its clear advantage over Canny-
edge in these complex environments. In addition, the mean overall
kappa was also higher (0.807) than that for Canny-edge (0.718), with a
lower starxlard deviation (0.203 vs. 0.248).

For the three thresholding methods (M- Otsu, Canny edge and Otsu),
the MNDWI1 has been shown to produce better results, with greater
diserimination of the cl These lts are ble with those
from Xu (2006) Zhai et al. (2015), who bnnd that the MNDWI
performed substantially better than the other indices in extracting water
bodies undes different even g that those studies
used bands from Landsat satellites instead of the Sentinel 2 results
presented here,

Amaong the processors, MAJA &5 the worst performer for water
detection, most likely because of the lower spatial resolution of the
water mask (i.e., 240 m) and the important areas of small water bodies
in the selected scenes. These results contrast with those observed for
clowd identification, where MAJA outperformed the other two pro
cessors (Hoetens et 5l 2019), The best overall processor performance
was obtnined for FMask. It delivered better kappa accuracies than
Sen2Cor in twelve scenes, and its performance was only worse for the
MpumdAmmeodnbudmhmldp,nondurnndy
has been cand paring the perf of these p s with
mﬂwmt«pb:lmmu

The results obtained using the propased automated clustering were
overall better than those cbtained from the Level-2 processors o from
the three thresholding approaches. The best configuration was
by combining the NDWI and the 812 band into o single bidimensional
clustering. This combination achieved a mean kappa wore of 0.474,
which sury d all the p and thresholdi

Cnmpum;thnmhdmawucmmlymllmndprmom
studies, Zbal er ol (2015) evaluated their results from water body

S P

Malnad

summer, whichhd 72.2% and 63.3% higher accuracies, respectively,
with ch 1 to the best p in each scene.

5, Discussion

5.1. Gwerall comparison

A visual comparison among the tested methods in the Camargue
summet scene, near Avignon city, is shown in Flg. /. This area comprises
rivers that vary from 50 m to 450 m wide and have dense cities on their
margins. We note that the Camny-edge MNDWI (Fig 7.c) appears floo-
ded pared to the ref mask, with many false positives, espe-
clally in cities and other built-up areas, On the contrary, the thiee
processors (Fig. /-d.e,ﬂmhsundlﬂwuubudlamdmdm
nrnr.hu.lnduslqnd,dne cl 1 a good
i undmml.l.

nemulushwthauhemllpedomwdaﬂofdnuned
methods is greatly influenced by the scene characteristics, such as the
quantity and size of the water boclies and the presence of sow, moun.
mwmwmhmwmmmdmm

Iy used methods, Otsu threst g | the p re
mlu:llonly,. isfactory | ln!heCnmugnearen.whlch
has the highest fraction of water pixels (approximately 4-5%), Conse
quently, the Otsu threshold “beneennlnvrnbleopnon
for smaller study areas, wilh a well-balanced amount of water and land
pixels, but it should not be employed as a standard when large scenes are
considered as a whole.

Utilization of the Canny-edge filtes to Identify the edges before the
use of Otsu thresholding can considerably improve results because it
surpasses the limitation of nonbimedal histograms, but there are still
azeas where it fails to identify a threshold, such as the Addéege summer
and winter, Alpes summer and Alsace winter scenes, in which the kappa

. L

i lad

Frel o

using different indices based on Landsat-8 and Sentinel.2
imageries at two different sites, a city and village. In the city, the best
kappa (0.68) was obtained using the AWE!, and for the village, the best
kappa (0.89) was from the MNDWL. In both cases, the thresholds were
selected manually. Acharys ot al, (2010) evaluated the performances of
the indices for water in 2 37,127.3 km® area In eastern Nepal
using the Landsat 8 sensor. The area’s elevation runges from 60 m to
8848 m and contains flat lands and mid-hilly regions as well as rugged
mountains with snow and glaclal lnkes. The optimal threshold was
searched to pravide a higher accuracy. The best kappa score was 0.596,
which was obtained from the NDWI, Bangirs et al. (2019] also compared
the perf of the thresholding method wsing Sentinel-2
acrass eight sites located in South African with a Muhmtnnundhnnu
nadmnmnaﬁuﬁomﬁdm‘.ashn’ Dmmemfmmﬂwptwlouly
d studies, the optimal threshold was

using the dard Otsu al, After nnnlyugnwmuunnm
hundred different bands tucomhlnm the best solution was achieved
with the NDWI band, with kappa scores ranging from 0.78 to 0.92, and a
mean kappa of 0.82 considering the eight sites. In the wetlands of
Doanng In Southwest Spaln, IKordelas v gl | 2018] proposed an auto-
matic thresholdi hod for i pping, using the MNDWI
and SWIR bands, undcmudllmnwpem:cdnpmmmu
pervised thresholding method Ited in a Xappa score of 0.882 for the
whale area, with 0.90 for recall and 0.88 for precision.

s

ek

Aned

5.2 Influence of the quantity of sampling points and maximum chrsters

Considering that the algorithm works initially with a subsample of
thaammmfotmpnvi-addmunnguddmmtemlu
using a supervised hi g (in this study, Naive
Bayes), the results can be infl d ber of points
selected initially. htaklmmamhuhnpumpmurtmmeal-
gorithm is the maximum number of clusters to limit the unsupesvised

i
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(d)

Fig, 7. Water e

ninal

step.

To assess the effects of the npumber of sampling pixels and the
maximum lHmit on the number of clusters in the overall results, an
additional experiment was conducted with the six best clustering
combinations,

U]

t P ® seene ysing the follawing methods: (n) referenee mask, (b) clostering (NDWE x 812) resalt; (0) Caney-
redge MNUOWI thresholding: (d) Sen2Cor mask; () PMask mask; (f) MAJA mask.

The mean koppa over all scenes and over the six best custering
combinations was evaluated for the number of sampling points varying
from1 % 10" to 25 « 10%, with steps of 2.5 » 10%, 5 « 107, and 10 = 10%.
The maximum number of allowed clustess was also fixed at K = 5 and K
= 15 for resting purposes. Additionally, the time for processing a single
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Fig. 8. Variation of the mean kappa ding to sumber of sampling pixels and the maxi Bowed ber of ol (K). The shaded nrea repeesents the
standard deslation of the neenracy among the scenes when coasidering the mas X — 10, The red line indicates the tbme for provessing ane single seene. (For

i Jon af the nd to codonr bn this Gguee kegend, the reader ks mederred 1o the web vesston of this anticde)
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scene was also measured according to the number of sampling points.
The results were obtained running the algorithm on a node of CNES's
cluster with 16 cores and 60 Gb of RAM memory. The results are pre-
sented in Fig. 0.
ﬂeﬁgmemmm&nmhdmﬁmgﬂxdsdm

Reawte Sevveng of Kiironave 250 (20011 11209

of the reference dataset, and each water body was accounted for sepa-
mately to make an accuracy assessment. The water bodies from all of the
scenes were g d together in the analysis to obtain an overnll mean

Ewl.bedumnpmnullma.
her important k is that no fusther adjustments were made

Ll

m(nun:lminmnbnuroumﬂncmnqamlﬁulm
inlly, as exp J from the time pl d

mdim:_ rivers from lakes or reservoirs. In such a scenario, it ix

agglamerative clustering, which is O(n?) (Pirdaus and Uddin, 201 5).0n
the other hand, a very small number of pixels is also prejudicial for the
model to work because the sampling might not include all of the
different pixel signatures peesented in the scepe. A maximum numbes of
sampling pixels beeween 5 » 10" and 10 « 10" appears to provide a
better trade-off between accuracy and computational cost.

With regard to the maximum number of clustess K, we note that there
is an optimal number of clusters foc the classsfication accurncy. Not
enough clusters mean that the classes can be defined too roughly
because each cluster can aggregate pixels with very different spectral
beh Too many cl can lead to the creation of different groups
of water pixels, resulting in significant ernrors because the algorithm
looks for one unique water pixel cluster,

53 Influence of warer body stoes on the clastering performance

To undesstand how the diffecent methods are compared to each other
according 1o the sizes of the water bodies in the soenes, we stratified the
results by eight different classes, 0.0, 0.5, 1, 10, 50, 100, 500 and 1000
ha of water surface.

passible to have a large water surfoce in a thin water body, which would
affect the accurncy of the algorithns by the introduction of mixed pixels,
for examiple.

The results fram the stratified analysis are shown in Fig % The mean
kappa score is presented in panel (a). Panels (b) and (c) present the
avernge precision and recall indices for the methods, respectively. It can
be seen that there is a clear advantage for the cb ing approach in
every range. The Canny-edge method has the closest performance, fol-
lowed by M.Otsu, FMask, Sen2Cor and MAJA, in that order. Considering
water bodies of sizes between 1 and 10 ha, only clustering (0.826) and
Canny-edge (0.809) were able to provide a kappa score above 0.8, In the
stze ranges from 0.5 to | ha and below 0.5 ha, clustering outperformed
Lhemdbelmthod,&myedse by 7% aml 34%, respectively. All
of the p ac y presented lower values for
mﬂwmbodm,qaemﬂyhcnwnmmfwembuaﬂhOShn,
whochrewumnsonadmmas«uiulzlummohmumxe
Far that class, the cl i d much better results
thnnothlrlechmqua.wﬁhamennhppﬂdﬁ.ﬂ a mean recall of 0.56
and a mean precision of 0.5. These results are much better than the
second-best technique, canny edge based on MNDWI images, with a
mean kappa of 0.35, mean recall of 0.42 and mean precision of 0.37.

0

Very small water bodies are lally challeaging b all of the
The water surface was estimated through a polygonization procedure
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el

pixelsnrelocntedmwnuramf‘ ly, water i
affected mare severely, propartionally, by adjacency effects compared
with larger water bodies. Other artifact eﬁecu can also lcnd to errors in
lhemmngmmcyfm:uchmallwuu‘ dies: | had
projected onto the water surface ( llakeL

lhhtyocmduud\nur/hndedpevmhmry 1t app that ¢l

q

vis-

and the reference mask in the Alsace winter scene. The red
horizental lines rep the best th g value for the inclex on
the Y-axis, nccording to the M-Otsu method (the threshold for MNDWI is
~0.033, and the threshold for NDWI is —0.044).

It can be observed that reganiless of whethes the ticlex is used for

Tl

u:hnqnumkznpuniblgwm&znm!mpnnoflhucuuﬁcu
because this technique provides much better results for the smallest
water bodies than any other methods cousidered in this wock. For the
0.5-1 ha water body size class, the clustering technique leads to an ac-
curate mapping assessment {kappa « 0.79, precision « 0.86, recall «
0.78), followed by Canny edge based on the MNDWI and the M-Otsu
technique. Considering wates bodies of sizes between 1 and 10 ba, only
clustering and Canny edge were able to provide a kappa score above 0.8.
For recall (Vig %c), clustering and Canny edge pesf d very sismul

hresholding, there are pixels above the threshold (commas
sion ertors) and water pixels below the threshold (omission errors),
wlﬁd:nslnshhmd fully resolve. In such complex scenes, the use
1 ing with the addition of move bands can improve the results.
mMegemnwscmepufum:dpudymmmdpdthmsud
A P shows that there is a large
Mb«w«n&ewmﬂmdl&wambodlumdx
mountainous region and the watey bodies in the lowlarxd area, The water
reflectance in the green wavelength is of the order of 0.01 s in the
lakes, which is mostly due to the very clear water with a

above 0.5 ha, while Fanask, Sen2cor and MAJA missed many water
bodies below 50 ha. MAJA was the worst performer for identifying water
bodies in all of the aspects analyzed due to its lower resolution.

5.4. Performance on chatlenging scenes

To d the best perf: ach ! by multidi donal
clustering over single band thresholding, Fig. 10 shows scatter plots with
a comparison of the pixel separation of water and land pixels for these
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low concentration of SPM in this region, whereas it reaches mare than
0.06 5t ! in flat areas as a result of higher SPM concentrations. Because
ﬂwhﬂusuﬂdfmwﬂtﬂdﬂxﬂmmmxﬂynm&ﬂnhﬂﬂphﬁwm
visible and near or middle infi wavelengths, this large difference in
duuﬂocuunnlhcmbudmuwltlnmormdlﬁmt
water classes far the NDWI or MNDWL. Using the clustering method, the
best accuracy for this scene was obtained using four dimensions
including combination of the three indices, NDWI, MNDWI and MBWI,
and the 812 band, and it achieved a kappa of 0.780. Although the NDWI
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Fig. 10. Water segmentation comparison in the Alsace wintes scene. The red horizontnl lines represent the theesholding sodution obeained by the M Otsis mvethod, and
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812 clustering combination can provide good results for mast areas, this
Mngﬁm&mmdnﬂ:mﬂmhnﬁu&e«nﬂcnmdm
mudﬂutmmhhmymmduﬁuem b

Reawte Sevveng of Kiironave 250 (20011 11209

hresholdi ethod luced good Its with very little complexity
mdthxh!hefurﬂxuevn!mhdmmibapplinbﬂnyhamdannge
of situati All of the tested methods, b P d o lower

and even i the ber of cl ing dimensions. Moreover, the
clustering approach performs better in these mountainous areas and
gives more flexibility by allowing the peasibility of multiple combina.
nm.Amtnpthm:kvdq:mnduptnﬁwdmﬁmlmhmqu
that can decide the ideal ber of ¢l i based on some
uptwdpanmemmmwedfxmunxeneiml!orhnmmmnl
knowledge. Information on the presence of snow, on solar zenith angle
foz shad liction or on the exp { water coverage would allow to
mlmnmﬂymﬂae best dmunngdimemwulndmpunalh.e.
Although a direct P to previ dies &5 not straightfc
wad,mﬁdchgﬂndwemcummenudymwmemwdm
maost unsupervised approaches were applied and validated oves smaller
regions or depend on subjectively mlgned thresholds and ancillary
data. In contrast, our method shows robustness (with a kappa standard
deviation of 0.094 across all scenes) while ddering the diversity of

mmuqnusnmplumwnhmmmlmmwhenlh
cocrect water identification remains a challenge, especially without the

use of ancillary data

This study d. that adding more sp ] i as
new dimensions, increases the water d i 5 [ clally for
smaller water bodies and more challengi meamul

dudﬁautcomhlmmdq:utmllndkamdmgvsﬁm
(a total of 480 expesiments), the combination of the NDWI and the 812
band produced the best 1l y across all of the considered
scenes, and a four-dimensional combination including NDWI, MNDWI,
MBWL, and BI2 improved the most difficult scenes.

In summary, the proposed clustering method shows promise in
automating water pixel extraction in large scepes from optical tmages
without need for ancillary or pretrained data. Moreover, the sub-

land covernge and environmental comditions (winter and summer
scenes) in the present study. Ccnuquwdy,autmuhodcmhundly
nppbedtoothunpmvmhout daptation, The ch
coupled with a machine } g h with rand whampllna
Mmm;ﬁ.mmwﬂumududﬁ
cient op y 4 min for o Sentinel 2 tile). With
tegnndmmdndvnnmges.mcclumingmlymdoumtmowhr
any sp lati g water pixels, such as spatin]l cannes-
tivity, Pmﬂﬂmagnﬁmooaﬁdngmgeu.m“m,domhm
landscape shadows, ewhlnllowu:mﬂallynmtbclwidvuynfm
thod to d conditions, such as lakes located in
mommﬁmumaumedbymwulwuwmbydmdm

6. Conclusions

Continuous monitoring of water surfaces is essential in many appli-
cations for water resource management, and the use of satellite images
has been increasing with a higher availability of finer spatial and tem-
poral resolution data.

This study proposed and tested a new method for the ion of
water pixel classification of Sentinel-2 images that combines reflectance
mdmwmhoemamubd:mmmnl:hmm;appmuh.Md
ionally, a hine Jearning d was proposed to subsample the
vthole image into o smaller classification set to make the process feasible
for an entire Sentinel-2 scene. The method was tested on a set of 15
msfmmhambtwhkhﬂ:exdmmhmamﬂab&lw

load (& 3, 2019). The ref ) had di covernge,
indldingmbulmmdmmm.whkhmchedmam
countries but did not consider extreme weather or complex canopy
mﬂmuh&lnﬂummﬂmp{nm«uwtmne

16 was perfi 1 at a 10.m spatial resolution, covering
nnmhndnmo(momthm%msm’ with an approximately 1239
lem? water surface and more than 80,000 water bodies of different sizes
and with a high peccentage (76%) of water bodies smaller than 0.5 ha.
Undesired pixels were removed according to established methodologies,
as expiained in section 2.2,

Comparing our results to the water classification performance of the
lhreema)mlzvdﬁpmms.lmmly.WA Sen2Cor and FMask, the

holdi hes showed that the proposed
dumh;mﬂbodnchkvulhighuumuyxmluwithuhwam
dard deviations, which i the better reliability of the proposed
muhodamdiﬂmum&ﬁnaﬁﬂcdmﬂyﬂsmmm
clustering method achieved the best mapping accuracy (i.e, kappa) for
all water body size ranges from 0.5 ha to 100 ha. However, there was n
quick drop in performance for water bodies that wese smaller than 0.5
b for all of the methods, and there were good results (kappa greater
tlsan 0.8) for water bodies above 1 ha with the clustering and thresh-
olding methods. In addition, the newly proposed Modified Otsu

ling approach leads to a gain in performance and makes it feasible
wlwlympkxllgonﬂmmhqemonnnofdaamﬂmtnpemhy
in accuracy. Currently, the use of good input masks for clowds, shadows,

mwmdmnnalwwnmﬂ:nﬂ:dformmtmeﬂndlmwmd

misclassification, and future studies shoukl be ‘ 1to e the
hods on images while idering these ek
The code y to run the algorithm is available for download at

lsttpe:// github.cam/ contnma /Watey Detect.
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Chapter Il - Optical Water Classification

1. Article Draft - Optical water type classification for suspended Particulate Matter

Retrieval Over inland tropical waters

1.1 Abstract

Monitoring suspended sediment in river systems evidences a wide range of environmental
issues. However, conventional measurement networks need to improve in most rivers to provide
an adequate spatial and temporal sampling frequency. To support the operational use of water color
remote sensing data for suspended sediment monitoring over inland waters, there is a lack of
systematical studies based on field measurements making possible to fully study the dependency
of the remote sensing reflectance to the suspended sediment characteristics in relation to their
watershed. In the present study, an exceptional dataset of 1,067 hyperspectral measurements
collected in 13 different watersheds in the tropics was collected jointly with water sampling
representing a wide range of suspended sediment matter (SPM) concentration levels from 0.1 to
1,800 mg/l. The article analyzed if retrieval models adjusted for generic optical water classes can
outperform retrieval models tailored to rivers or catchments. Both techniques for optical water class
definition (clustering) and membership functions (that match reflectance samples to pre-defined
spectral groups) were evaluated to understand how different methods may result in distinct water
classes definition. Different combinations of clustering algorithms (e.g., K-means, Agglomerative,
and Fuzzy C-Means), distance metrics (e.g., Mahalanobis, Euclidian) and input features (e.g.,
reflectance and normalized reflectance) were tested to achieve the best overall SPM concentration
retrieval. Multiple optical water types were considered starting with a simple 2-class typology (low
and high SPM concentration), catchment-based classes, optical water types previously proposed in

the literature, and with a varying number of optical clusters up to 10 different groups. As a result,
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a four-cluster classification was a reasonable cutoff, as there was no significant advantage in
accuracy by augmenting the number of clusters beyond this limit. This four-cluster classification
reaches the performance of the catchment-based classification with R? = 0.93, RMSE = 86.08 mg/I,
and RMSLE = 0.46 mg/l. The influence of the spectral resolution was also analyzed, demonstrating
that multispectral data such as Sentinel-2 multispectral instrument (MSI) sensor configuration
makes it possible to deliver fine precision without significant accuracy loss in relation to the
hyperspectral dataset. The spectral bands in the 700-800 nm range of the Sentinel-2/MSI sensor
were the most frequent bands used by the best retrieval models, independently of the optical water
type classification. This work paves the way for the global and systematic use of satellite water
color data for turbidity and suspended sediment monitoring in rivers, lakes and reservoirs,

supporting a large range of environmental studies in catchments.

1.2 Introduction
Besides the continuously increasing demand for water, due to population growth and the
increase in the standard of living, half of the inland available water may be polluted (A. K.
Makarigakis and Jimenez-Cisneros, 2019). Therefore, surface water monitoring is critical to ensure
efficient water resources management, but field monitoring for many countries can be challenging

to maintain, considering the high costs involved (Barbosa et al., 2019).

The increasing capacity of remote sensing earth observation satellites, which now offer
high spatial, spectral, and temporal resolutions at a global scale without cost, enables researchers
to assess surface water quality over inland remotely. There is a large amount of research on the
analysis of optical properties for phytoplankton assessment (Ansper and Alikas, 2018; Cairo et al.,
2020; Delegido et al., 2014; Toming et al., 2016; Yadav et al., 2019), but the analysis of sediment

fluxes using remote sensing has been relatively less studied in fluvial systems (Condé et al., 2019;
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Martinez et al., 2009; Yepez et al., 2018). Besides, the high interest in quantifying sediment fluxes
from the continent to the oceans, monitoring the fine fraction of the inorganic particulate matter,
such as clays, is crucial for many environmental studies. Nutrients, bacteria, or heavy metals are
adsorbed on the clays during their transport in the water column in rivers and lakes, which means
that assessing suspended sediment concentration and its particle type is a valuable information for

predicting pollution diffusion in watersheds.

Various methodologies have been proposed for studies of suspended sediment recovery:
simple reflectance spectral relationship, hybrid models, deterministic models, semi-analytical

models, bio-optical models and approach to optical water typologies.

Kirk (1994) stated that there is no universal retrieval model for suspended sediment as the
complex dependency of the inherent optical properties to the particles’ number, size distribution,
and type (i.e., mineralogical composition and relative organic fraction) may not be resolved by a
simple set of equations. Later, several studies (Doxaran et al., 2002; Espinoza Villar et al., 2013;
Moore et al., 1999) demonstrated that using a simple reflectance spectral ratio, mainly between
infrared and red wavelengths, is highly efficient in normalizing these multiple dependencies to the
sediment size and type with a series of studies on coastal and inland waters. In the last years, hybrid
models (Han et al., 2016; Novoa et al., 2017) have been proposed by triggering different models
as a function of reflectance level in order to select optimal models using short wavelength for low
concentrations (from green to red bands) and models integrating NIR bands for higher
concentrations. Although several hybrid algorithms have been developed to retrieve water quality
parameters from earth observation satellites, they have limited applicability in space and time.
Furthermore, the limitations of these retrieval algorithms across different optical complex systems

are often not considered (Neil et al., 2019). Consequently, the concern expressed by Kirk, three
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decades ago, remains open and needs to be addressed as there is a lack of systematic studies on

rivers, which are the primary vector for suspended sediment transport.

There is a wide range of inversion model types, allowing to retrieve SPM from apparent
and/or inherent optical properties. Strictly deterministic models take into account all the processes
involving light interaction with the atmosphere and water column but are strongly dependent on
the definition of a large number of input parameters that can be unsustainable for calibration in
natural water environments. For suspended particles, the main difficulty is to provide realistic
values for suspended size distribution or for real and complex refraction index that may reproduce
fairly the natural variability of the suspended sediment fluxes in inland waters (Pinet et al., 2017;
Wozniak and Stramski, 2004). Semi-analytical models have also been proposed with fine
agreement when compared to field surveys, but on local scales or for a limited number of locations,
especially for inland waters, making it difficult to define the applicability range of these algorithms

(Xue et al., 2019).

Bio-optical models for SPM retrieval vary in terms of mathematical expressions or spectral
bands, depending on the water type, SPM range, and geographic region or sensor design (Chen et
al., 2015; Long and Pavelsky, 2013). Doxaran et al. (2002) analyzed the spectral signature of highly
turbid waters and demonstrated no acceptable correlation for the whole concentration range using
a single model. Bands in the visible range (i.e., 500-590 nm and 610-680nm) performed better for
measuring low concentrations, with a linear relationship observed in the lowest concentrations
(SPM < 50 mg I'Y), but a saturation effect limited its use for higher concentrations. NIR reflectance
(790-890 nm) and the ratios NIR/Visible are usually used for higher concentrations,. Long and

Pavelsky (2013) compared the results of 35 empirical models for turbid coastal and inland waters
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and concluded that multispectral models are preferable for remotely sensing SPM and suggested

the combination of near-infrared and visible bands.

However, the SPM concentration is not the only variable affecting the complex interactions
between optically active components, which can also change according to particle size distribution
and other constituents, such as organic matter content. In this regard, many studies have shown
that Optical Water Typologies (OWTSs) can be used to apply tailored algorithms to improve overall
inversion accuracy (Bi et al., 2019; Moore et al., 2014; Neil et al., 2019; Xue et al., 2019). Posterior
to the commonly used Case 1 or Case 2 twofold classification scheme (Morel and Prieur, 1977),
that separated complex water according to the predominance of unique optically active components
- OAC (notably photosynthetic pigments) or of a couple of OACs simultaneously, several
subsequent studies have proposed OWT to describe waters in optically complex environments.
Most of these studies have focused on describing coastal and marine systems (Lubac and Loisel,
2007; Moore et al., 2014, 2009; Vantrepotte et al., 2012), with only a few on inland systems

(Spyrakos et al., 2018)

Several clustering techniques have been implemented to classify the reflectance spectra into
meaningful group types, such as k-means, agglomerative, fuzzy-c-means, and even artificial neural
networks. Spyrakos et al. (2018) moved further and presented an integrated classification schema
with 13 inland and coastal waters types while providing a comprehensive analysis of the physical

basis for each type (cluster) in terms of Inherent Optical Properties (I0OPs) variability.

Overall, these studies have demonstrated how these classification schemas can contribute
to an improvement of retrievals algorithms accuracy. In this regard, Mélin et al. (2011) proposed a
band ratio empirical Chl-a blending algorithm for 2 distinct water classes. Vantrepotte et al. (2012)

demonstrated the potential for optical 4 class-based approach to increase the performance of SPM
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concentration retrieval in coastal waters. Moore et al. (2014) showed that when a blending
approach is used together with OWT classification for Chl-a retrieval, the root mean squared error
(RMS) is considerably reduced. More recently, Neil et al. (2019) calibrated empirical Chl-a
algorithms for 13 inland OWTs and achieved a dynamic ensemble algorithm with a correlation

coefficient of 0.89 and a mean absolute error of 0.18mg/m?.

Although these papers can demonstrate an improvement in parameters retrieval if OWTs
are considered, inversion accuracy is not the final objective of the classification process; it is a
secondary goal. The optimal number of clusters, and their homogeneity are normally determined

by cluster validity measurements such as the Silhouette index (Vantrepotte et al., 2012), gap
statistics (Spyrakos et al., 2018; Xue et al., 2019), or a combination of validity functions as

compactness and separation (Moore et al., 2009).

By focusing on these validity metrics, the final clustering schema is a good descriptor of
different water types, but it is not necessarily optimized for retrieval algorithm performances and
robustness. Moreover, to the best of our knowledge, little attention has been paid to proposing a

framework for global SPM retrieval over inland water.

For this reason, this study aims to assess different classification methodologies in terms of
algorithms, input features, and spectra normalization, analyze their impact on the final SPM
inversion accuracy and, ultimately, provide a robust framework intended for global SPM retrieval
from remote sensed images. In particular, we aspire to determine which combination of clustering
algorithms (e.g., K-means, Agglomerative, or Fuzzy C-means) and input features (i.e., normal
versus normalized reflectance) provide the best optical classes for SPM retrieval. In particular, we
would like to assess if models adjusted for specific OWTs may outperform models tailored for each

catchment.
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1.3 Materials and methods

Radiometric and Water Quality Field Dataset

For this study, a large dataset of above reflectance measurements obtained from field
campaigns since 2008 has been assembled. Figure 1I-1 displays the location of the 60 rivers and
reservoirs in tropical regions located in Brazil, Peru, French Guyana, Burkina Faso, and Laos that
were sampled using a homogeneous protocol for both radiometric measurements and water

sampling are included (Figure 11-1).
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Figure 11-1: Map of the locations that were sampled for both radiometric above water measurements and surface water
collection.

This dataset comprises 1067 in-situ above-water hyperspectral radiometric measurements
paired with SPM laboratory analysis. In addition to the radiometric measurements and the SPM
concentration, Particle Size Distribution - PSD (182 values) is also available for some sites, as

detailed in Table I1-1.
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Table 11-1: Summary of data stored in the database and its water quality parameters.

Area Radiometry SPM Particle Size

Distribution

Madeira 185 185 66

Negro 177 166 1

Solimbes and Amazonas 121 121 29
Paranoa 119 119 0

Séao Francisco 99 98 0

Maroni 82 82 0

Ucayali 62 59 5

Jaguaribe and Piranhas-Acu 58 55 0
Amazon Floodplains 46 46 0
Paranapanema 41 41 0

Purus 34 34 17

Volta 29 21 0

Mekong 14 14 0

Total 1067 1041 182

The measurements were grouped in 13 more extensive areas, according to their watershed
or sub-watersheds. Figure 11-2 displays the SPM concentration range for each catchment, sorted by
mean SPM concentration, denoting a very large overall range from 0.1 mg/l to more than 1,800

mg/l.

| L—E'—

Figure 11-2: SPM concentration range box plots displayed as a function of the watershed where radiometric and water samples
were collected.
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During the sampling field campaigns, above-water radiometric measurements were
performed using TriOs RAMSES radiometers operating in the 350-950nm spectral range. A total
of 3 hyperspectral radiometers were mounted on a boat to measure: a) the downwelling irradiance
(E,); b) the total upwelling radiance (L,,); and the downwelling sky radiance (L,). The schematic
representation is presented in Figure 11-3. The radiometers setup follows the schema proposed by
Mobley (1999), with a viewing direction 8 of 40 degrees from the nadir and azimuthal angle @ of
135 degrees from the Sun, in order to minimize the effect of reflected light from the Sun (i.e.,

sunglint).

Figure 11-3: Schematic representation of the above-water reflectance measurements that was used for all the sampling points
analyzed in this study.

The estimation of the remote-sensing (R,.s) reflectance from above-surface measurements

was performed according to the methodology proposed by Mobley (1999), defined as:

L, (6,0,1
RrS(H, @, /1) = % Eq. -1

where L, is the water-leaving radiance, 6 and @ are the polar (from nadir) and azimuthal

(from the sun) directions, respectively, and A the spectral wavelength.

This methodology introduces the factor p that represents the conversion factor between the
measured downwelling sky radiance and the water surface radiance, i.e., the signal component

originating from the skylight reflection of the rough air-water interface. This correction is necessary
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because the L,, radiance contains sky radiance (L ) reflected by the water surface (Eqg. 11-2). In this
scenario, p is a function of 8, @ and A, as well as of the water roughness modeled as a function of

wind speed.

L,,(6,0,2) = L,(6,0) — p Ly(6,0) Eq. II-2

For each measurement, the factor p has been adjusted according to the method presented in
Harmel et al. (2012) based on full vector radiative transfer computations using the OSOAA model
(Chami et al., 2015). This approach properly handles the directional and spectral variations of the
water-surface radiance contribution considering all the related variables, such as the polarization
features, aerosol impacts, and air-water interface roughness. For this processing, the open-source
Python package (https://github.com/Tristanovsk/trios) has been used. Radiometry curves and mean
reflectances for each group are shown in Figure 11-4. Data collected from diverse campaigns were
gathered into a unified format and then visually corrected and filtered for the occurrence of outliers
and other artifacts. The original spectrum for each measurement was interpolated in 1 nanometer
resolution and compiled into a database including, among other variables, the Greenwich Mean
Time (GMT), geographic coordinates, and altitude. A comprehensive framework for managing and
manipulating these data, called RadiometryTrios was developed in the context of the current thesis.
The resulting package is available to the research community on GitHub through the following

link: https://github.com/cordmaur/RadiometryTrios.
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Figure 11-4: Spectra curves and mean reflectance for each Area within the dataset. Red lines represent the mean reflectance in
srl.
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Data Normalization

Besides the clustering algorithm itself, it is known that normalization or non-normalization
of input features can lead to different clustering results, as already reported by previous studies
(Jackson et al., 2017; Vantrepotte et al., 2012). While the non-normalized spectra classification is
dominated by the gradient in the concentrations of SPM, the normalized spectra are better for

focusing on shape variations.

The normalized field-measured remote sensing reflectance (NRgs(4)) was obtained by
dividing the reflectance at each wavelength by the integral of the spectral curve (area) between
400nm and 920nm, as follows (Eq. 11-3):

Rers(1)

NRps(2) = =gz
[ Rps(A)dA

Eq. 1I-3
After the normalization process, all spectra will have an area equals 1, and the spectral
shape will be privileged in detriment to overall magnitudes. The effect of the normalization process

can be visualized in the following example

Figure 11-5 of 3 spectra extracted from the Madeira River corresponding to 3 different SPM

concentration levels of 4mg/l (blue), 75.8mg/I (red) and 286mg/I (green).
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One issue that may arise from the normalization process occurs when the original
reflectances are too low and then the normalized spectra become “noisy”. This may happen for
spectra acquired over waters presenting extremely low albedos for all the spectrum, such as black
water typical of tropical dissolved organic carbon-rich waters. To account for this, a second data
cleaning process has been performed on the normalized spectra to identify possible outliers: a
Principal Component Analysis (PCA) on the normalized spectra has been performed to reduce the
data dimensionality to 2. The outliers were then identified visually and removed from the dataset;

otherwise, they could disturb the clustering algorithm.

Figure 11-5: Example of spectra normalization in 3 reflectance spectra from the Madeira river. Original spectra on the left and
normalized spectra on the right. SPM concentration were of 4mg/I (blue), 75.8mg/l (red) and 286mg/l (green).

Water type classification algorithms

Different unsupervised classifications have been used to obtain the classes of OWTSs,
considering clustering algorithms with input resources (input information provided to the
algorithm) and cluster validity measures (notably gap statistics). The K-means method remains the
most used clustering algorithm to partition waters into different groups (Spyrakos et al., 2018; Xue
et al., 2019), despite its inefficiency when the clusters present different sizes, as discussed in
Cordeiro et al. (2021). Other algorithms have also been tested, such as Fuzzy C-means (FCM) (Bi
et al., 2019; Jackson et al., 2017; Moore et al., 2014), Agglomerative (Vantrepotte et al., 2012),

and Spherical K-means (Jia et al., 2021) . For this work, we analyzed K-means, FCM, and
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Agglomerative algorithms. For the primary features used as inputs to the OWTs classification, we
considered the Rgps data and normalized reflectance (see next section) obtained by dividing the
reflectance at each wavelength by the integral of the spectral curve (area). Spectral resolution
resampling has also been tested to assess its impact on the final clustering. The following
wavelength steps were tested: 1nm, 10nm, 20nm, and 30nm. Additionally, Sentinel-2 and Sentinel
3 bands were also tested for clustering purposes. All tests have been done from the number of
clusters (K), ranging from 2 to 15, to find the optimal K value regarding the overall SPM retrieval

error.

SPM concentration models
To test the performance of each final classification with regard to SPM retrieval accuracy,
we calibrated three simple mathematical models (linear, power and exponential) and an analytical

single-band model developed for multisensor SPM retrieval (Nechad et al., 2010). All four models

were calibrated for different spectral reflectance Ris(A), normalized reflectance NRzs(4) and

reflectance ratios as %. These input features are denoted in the models as independent variable
RS\A12

x, being a, b and c the parameters to be calibrated:

e Linear: SPM =ax+b

e Power: SPM = ax? + ¢

e Exponential: SPM =a* + b
e Nechad: SPM = % +c

b
Considering the final goal to obtain a robust model that could be used to estimate SPM
concentration from high-resolution remotely sensed images, the wavelengths (1) used for the Ry

to be tested in the calibration phase, were the central wavelengths for the 10m and 20m spatial
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resolution Sentinel-2 MSI spectral bands. When the central wavelength differs for Sentinel-2A and

Sentinel-2B sensors, the average is considered.

For the reflectance ratios, all the possible combinations using the Sentinel-2 MSI bands

have been tested during the fitting process. As we considered only 10m and 20m bands (10 bands

10!
21(10-2)!

in total), 45 different ratios (combination (120) = ) have been tested in each mathematical

model, besides the Rps and normalized bands.

The final wavelength values considered were rounded in nanometers, as described in Table
I1-2. As our main objective was to provide a robust SPM framework to be applied in different
regions at a global scale and test its generalization performance for new, unseen conditions, the

main dataset was randomly split into calibration (80%) and validation (20%) sets.

Table 11-2: Sentinel-2 spectral bands used in models’ calibration.

Sentinel-2 band Rounded Central Bandwidth (nm) Spatial Resolution
Wavelength (nm)
Band 2 - Blue 492 66 10
Band 3 — Green 560 36 10
Band 4 — Red 665 31 10
Band 5 - Red edge 1 704 15 20
Band 6 — Red edge 2 740 15 20
Band 7 — Red edge 3 781 20 20
Band 8 — Near-infrared (NIR) 842 106 10
Band 8A — Narrow NIR 865 21 20
Band 11 — Short wave infrared 1612 92 20
Band 12 — Short wave infrared 2194 180 20

An important factor that must be considered when using satellite reflectance to invert water
quality parameters is the spectral resolution at each band. From Table 1I-2Error! Reference source

not found. one can note that the Sentinel-2 MSI sensor has bandwidths ranging from 15 to 180
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nm, and this can interfere in the reflectance “as seen” by the satellite. To reproduce this behavior
simulated Sentinel-2 bands have been derived from the field reflectances by applying the
corresponding satellite’s spectral response function (SRF). The spectral response functions are
provided by the European Space Agency (ESA) for each platform (Sentinel-2A and Sentinel-2B).

As the sensors are almost identical, the SRF from Sentinel-2A has been used.

The SRFs for the bands listed in Table 11-2 are presented in Figure 11-6.

11113

)

Figure 11-6: Spectral response functions for Sentinel-2 Visual-NIR and SWIR bands.

Metrics and Fitting

As depicted from Figure 11-2, the SPM values we are predicting can range from less than 1
mg/I to almost 2,000 mg/l and this exponential growth will lead to a non-linear fit. In this scenario,

the R? (R-squared) measurement can be misleading, as it assumes a linear fit and will privilege

some few high-concentration measurements in detriment to lower concentrations. To take account

for this, the Root Mean Squared Log Error (RMSLE) is also calculated, according to Eq. 11-4.
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n
1
RMSLE = EZ(log(ﬁi +1) —log(y; + 1))? Eq. II-4
i=1

where y; is the actual sediment concentration measurement and y; is the value predicted by

the model.

To automate the process of model fitting to the calibration set, considering all input features
and models and to test the goodness of fit to the validation set, a comprehensive fitting framework
has been developed in Python. The SciPy package (Virtanen et al., 2020) has been used in a two-
step basis. Initially, the curve fit method is used. It provides a non-linear least square fit of an
arbitrary function f to the given data. As the metric being used is RMSLE, the least square
optimization does not match the same result expected to minimize the RMSLE, but the parameters

obtained can be used as initial guesses.

Afterwards, the minimize method was used, and the loss function was defined to be the
RMSLE metric. This two-step fitting assures that the RMSLE metric will be correctly minimized
during the calibration phase and the best fit is selected as a combination of input feature (x),

mathematical model and corresponding parameters.

Besides the RMSLE metric, which is used to optimize the model, other metrics proposed
by Moriasi et al. (2007) were also calculated to assess the goodness of fit performance of the final
model and compare it to the baseline. The metrics are the coefficient of determination (R?), the
Root Mean Squared Error (RMSE), the Standard Deviation Ratio (RSR) and the Percent bias

(PBIAS) as detailed in the following equations (Eg. 11-5 to Eq. 11-7):
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i=1(yi — 9 Eq. II-7
PBIAS = 100 » 21— 30 g

=1 ()

To test the coherence between the clustering algorithm and the membership function, as
discussed in the Membership Function section, the accuracy score has been computed, according

to Eq. I1-8.

n
1
Accuracy Score = EZ(yi =) Eq. II-8
i=1

Membership Function
Once the clusters are defined by using the training dataset, to assign any new sample to its
correct cluster, it is necessary to define a distance function to compare the similarity degree of the

new spectra to the mean spectra of each cluster. In this study, we’ve tested the Euclidean and the

Mahalanobis distances.

In the simple Euclidean distance, the distance between two points in an n-dimensional space
(R™) is defined as the length of a line segment between these points. In our study, we can consider
each reflectance spectrum as a point in a n-dimensional space, where n will be the number of
wavelengths (or reflectance bands) considered. Therefore, we can define a spectrum as a vector
% = (Rgs(By), Rrs(By), ... Rgs(By)), where By ... B, are the reflectance bands. Similarly, each

cluster can also be represented by a vector fi, with the mean values in each wavelength. Using
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vectorial notation, the Euclidean distance can be written as the norm of the subtraction between the

two vectors (Eq. 11-9).

Euclidean distance = ||X — ji]| Eq. II-9

Besides the Euclidean distance, the Malahanobis distance is also proposed in the literature
to measure the distance between a point and a distribution (e.g., clusters) because it accounts for
two issues: scaling and correlation among variables. The first issue occurs when the variables have
distinct magnitudes. In this scenario, the Euclidean distance will privilege the variable with greater
magnitude in detriment of the others. This issue can be easily solved by normalizing each variable
before applying the Euclidean distance (i.e., Normalized Euclidean distance). The second issue
occurs because the Euclidean distance weights each variable equally, so it assumes that the
variables represent unrelated and equally important information, which is certainly not the case for
adjacent wavelengths. To account for this, the Mahalanobis distance uses the covariance matrix of
the distribution. Therefore, the Mahalanobis distance between a vector and a set of observations

(cluster) is defined in Eq. I1-10.

Mahalanobis Distance = /(¥ — i)TS1(% — i) Eq. II-10

where S is the covariance matrix of the cluster, | is its centroid vector and X is the vector

to be assessed.

Experimental Methodology
To select which classification schema is better to improve SPM retrieval accuracy, several
experiments have been performed to test the significance of the following hyperparameters to the

final results:

e Clustering algorithm: K-means, Agglomerative, and Fuzzy C-means;
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e Spectra type: original (Rgs) and normalized (NRys) reflectances;
e Spectral resolution: wavelengths in 1, 10, 20, and 30 nm steps and Sentinel-3 bands;
e Number of clusters: K varying from 1 to 10; and

e Membership function: Euclidean or Mahalanobis distance.

The spectra database has been randomly split into training and validation datasets with 80%
and 20% of the measurements, respectively. Each experiment follows five steps highlighted in
Figure 11-7: 1- clustering, 2- model calibration, 3- membership assignment, 4- SPM inversion, and

5- Evaluation of combined metrics.

The process starts with the clustering performed on the training dataset according to its
parameters (algorithm, spectra type and resolution). Then, for each cluster, a model is calibrated
(i.e., the algorithm searches for the best mathematical model and input bands). To test the
performance, the measurements of the validation set are assigned to the respective clusters by the
membership function. Besides the membership function to be used (Euclidean or Mahalanobis), it

IS also necessary to set the input bands that will be used during the assignment.

As the final objective is to create a schema to be used by the Sentinel-2 imagery, the
Sentinel-2 MSI bands (Table 11-2) were selected. After the cluster assignment, the SPM inversion
is performed for all the points in the validation dataset by using the corresponding models and the

combined metrics are evaluated. This process is repeated for K values varying from 1 to 10.

1.4 Results

Overall optical water classes
To assess the spectral coverage of the dataset for different inland water types, we used as a
reference the optical water types (OWT) described by Spyrakos et al. (2019) for inland water

bodies. In Spyrakos’ framework, 13 different OWTs were proposed and the below-water remote
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sensing reflectance (Rzs(0 —)) means were provided in wavelengths, ranging from 400 to 800nm.
The OWTs were identified for each record on our dataset through Euclidean distance. After
membership assignment, we didn’t find any measurement from our dataset to pertain to water type
13. This was expected, as type 13 comprises clear “blue-water” that is usually present in coastal
and oceanic systems and it is not scope of our study. Figure 11-8 shows the reflectance data sorted

into the specific OWTs.

Clustering algorithms:
- Agglomerative

- K-means ‘ ’

- Fuzzy C-means —
Training Rg; Dataset Validation RgsDataset
0,
Input reflectance (R): (80%) (20%)
- Raw .
- Normalized ‘

Spectra resolution:
- 1,10, 20, 30 nm
- S2 bands
- S3 bands

Step 1- Ry,
clustering for
OWT definition
(1<K < 10)

Step 4- Applied
SPM inversion
model defined for
each OWTs

Step 5- Accuracy
assessment on
validation Rgg
dataset

Figure 11-7: Schematic view of the steps involved in the OWT definition assessment for different scenarios considering different
input features (blue box) and model inversion types (yellow box).
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Additionally, OWTs 1 and 7 are also absent from our dataset. According to Spyrakos et al.
(2018), they represent hypereutrophic waters with scum cyanobacterial bloom and vegetation-like
Rps (i.e., OWT=1) and highly productive waters with high cyanobacteria presence (i.e., OWT=7).
These hypereutrophic waters are not considered important targets for our study as we focus mainly

on sediment-laden fluvial waters for SPM retrieval.
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Figure 11-8: Rrs spectra used in this study classified by Optical Water Type (OWT) as proposed by Spyrakos et al. (2019). Red
lines represent cluster means for each OWT.
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Baseline retrieval models

To provide a comparison reference for the results obtained from the different water
classification methods, three baselines have been produced. First, a simple hybrid SPM model with
two algorithms calibrated specifically for high and low SPM concentrations range. A second
baseline model was calculated with the calibration of one algorithm for each of the 13 catchments
sampled. Additionally, one baseline has been calibrated considering one model for each Spyrakos’
OWT. Each calibration was performed using the models and metrics described in sections: SPM

concentration models and Metrics and Fitting.

Hybrid Algorithm (High/Low SPM concentration class)

The complex interactions between optically active components and its relationship with
SPM concentration depend on the SPM concentration range. Previous studies have concluded that
short wavelengths are better for retrieving lower SPM concentrations whereas near-infrared
wavelengths are better for higher concentrations (Doxaran et al., 2002; Long and Pavelsky, 2013).
In this context, hybrid algorithms, with more than one mathematical model calibrated for different
concentration ranges, can be a viable alternative to serve as a baseline. This approach has been
used successfully in water quality studies for retrieving specific ranges of chl-a (Matsushita et al.,

2015; Pahlevan et al., 2020; Smith et al., 2018).

In the present study, we opted to calibrate two mathematical models, for lower and higher

SPM concentrations, considering the wavelengths available in the Sentinel-2 MSI sensor.

To develop an operational retrieval model that works for an entire SPM domain using
multiple algorithms (i.e., for high and low SPM concentrations), it is crucial to define how the
radiometric samples will be categorized in the High and Low SPM groups. As the SPM

concentration is our dependent variable and it is not known “a priori”, it is necessary to use a
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screening method on the reflectance to select the best algorithm to be used for each pixel in the

SCene.

To identify which Sentinel-2 band and which threshold value could be used to split the
samples in the two desired groups (high and low SPM), an algorithm has been developed to test
various combinations. The algorithm proceeds as follows: 1- For each tested band, the percentile
reflectance (from 10" to 90" percentile) values were calculated; 2- for each percentile value
(threshold), the dataset is split into two groups, where the samples with band value below the
threshold belongs to the low SPM group and samples with band value above the threshold are
assigned to the high SPM group; 3- each dataset group (low and high) is then fitted to find the best
combination of mathematical model and input reflectances (Rzs vs NRys), as described in section
Metrics and Fitting. The advantage of splitting the dataset in the percentiles is that the results
obtained for each band can be compared easily regardless of the actual absolute reflectance values
used for the split and for each band. Figure 11-9 presents the RMSLE metric obtained by splitting
the dataset in the corresponding band/percentile. For clarity, only the best-performing bands in the

visible range (665m), in the red edge (740nm) and in the near-infrared range (865nm) are displayed.

and (nm)

Bar

all RMSLE error

Over

Percentile

Figure 11-9: Overall RMSLE errors for hybrid model calibrated for high and low concentrations, according to different “proxy”
bands and threshold values for three different spectral bands: 665, 740 e 865 nm. Results obtained from the calibration dataset.
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The best performances on the calibration dataset were achieved using bands 665nm and
740nm with RMSLE values of 0.47 mg/l and 0.50 mg/l, respectively. Adopting band 665nm as a
proxy for determining high and low SPM concentrations, the threshold value for the optimal split

was Rgs(665nm) = 0.0182 srt, which corresponds to the quantile 0.428 obtained from the graph.

Once defined the band and cutoff value to serve as a proxy to split the dataset, each sub-
dataset was calibrated accordingly. The best fit for the lower concentration points (defined as
Rps(665nm) < 0.0182) was a linear relationship using Rgs(705nm), with RMSLE=0.55 mg/I

measured on the validation dataset. For the high concentration sample (defined as Rgrs(665nm)

Rrs(783nm)

, which obtained
RRrs(705nm)

>= 0.0182), the best fit was a power relationship using the ratio

RMSLE=0.33 mg/l in the validation dataset. The best models (mathematical model and spectral
band used as independent variable) for each group of measurements (i.e., low and high SPM

concentration), as well as its metrics, are presented in Table 11-3.

Applying the best models to the entire validation dataset to calculate the combined metrics,
we obtained R? = 0.86 and RMSLE = 0.45 mg/l. The predicted versus actuals graph on the
validation set is presented in Figure I1-10c, as well as the mean reflectances (Figure 11-10a) and
concentration range (Figure 11-10b). The actual versus prediction plot presents a good agreement
for SPM values between 10 mg/l and 1,000 mg/l. Above 1,000 mg/l, there is an underestimation of
SPM, and for the lowest SPM concentrations (SPM < 2 mg/l), it happens the inverse, with an

overestimation behavior.
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Table 11-3: Best fits for each group of measurements (low and high SPM concentrations). The combined metrics were calculated
on the validation dataset.

Group  Model S';Zﬂ‘;a' R? ('?“N;IE) ':x:/"lf RSR Pzz;s

Low SPM concentration  Exponential 705 0.46 4.81 0.55 0.74 17.70
High SPM concentration Linear 783/705  0.83 128.40 033 040  7.34
Overall metrics 0.86 123.78 0.45 0.37 12.68

Watershed-based model baseline

The second baseline is calculated by using one explictly calibrated model for each
watershed in the training dataset. The disadvantage of this approach is that a new model calibration
should be required for every new region to be remotely monitored. Even so, the results obtained
from this watershed-oriented model are essential to assess the maximum expected accuracy of the
water classification obtained from this study. The algorithm and metric results calculated for each
watershed are presented in Table 11-4 and correspond to the fitting results on the training dataset.
Two options were considered for validation considering the assignment method: i) using a simple
assignment decision based on its geographic / watershed location; ii) using a membership function

(Euclidean distance) ignoring the measurement location.

For this first option (simple geographic assignment) and applying these models to the
validation dataset, we obtained R?> = 0.95 and RMSLE = 0.46 mg/l, which is better than those
obtained with the High/Low SPM hybrid model, especially for higher concentrations and
considering the RZ metric. The watershed-based classification performed better than the Low/High

SPM classification also in terms of RMSE retrieval achieving 74.4 mg/l and 123.78 mg/I,
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Figure 11-11c) presented an excellent agreement for SPM values above 10 mg/l and a relative
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dispersion between 1 and 10 mg/l with an overestimation (predictions higher than actuals) for the

lowest SPM concentrations (SPM < 1 mg/l).

Although we obtained consistent overall metrics by calibrating one model for each basin,
these results require an “a priori” knowledge about the area to be monitored, which is not desirable
for an operational workflow designed to monitor large areas with distinct water types. Considering
our final objective is to provide an algorithm robust enough to be applied globally, the second
option has been conducted where we didn’t inform the algorithm to be used for the points in the
validation dataset. The assignment of the algorithm was achieved using the Euclidean membership
function, as described in item 1.3 - Materials and methods/Membership Function. In this new
scenario, the obtained results were: R? = 0.93 and RMSLE = 0.59 mg/l. The RMSLE error was
greater than the one obtained with the hybrid algorithm, but with a R? slightly better. This
performance degradation is related to inaccurate automatic assignment based on the spectral shape.
Most of this assignment confusion occurred in the lower reflectance range, while high reflectance

groups were identified correctly.

With respect to the models calibrated for each watershed (Table 1I-4), it is clear that
regardless the region to be monitored, the power function with input reflectance on the NIR range
(between 700 and 800) or a reflectance ratio between NIR and visible (from 490nm to 665nm),

seems to adjust better for most cases.
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Figure 11-10: Baseline retrieval model: 2-Class Optical Water Types (Low/High SPM range) (a) Mean reflectance spectra for
each group; (b) SPM range for each group; (c) Actual SPM (X axis) vs Predicted SPM (Y axis) graph in mg/l. The colors for

panels a, b, and c represent the corresponding the low SPM (Red) or high SPM (Blue) concentration group.
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Figure 11-11: Baseline retrieval model: Watershed-based OWTs (a) Mean raw reflectance for each considered watershed; (b)
Mean normalized reflectance for each considered watershed; (c) Actual vs prediction SPM concentrations in mg/l considering
one algorithm for each watershed. The colors represent different watersheds.
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Table 11-4: Models for the each watershed. The metrics are calculated considering the points in the validation dataset.

Watershed Model ngcnt;al R? (I:nNgI;:E) I:n“:lgs;];i RSR P?;:;S
Jaguaribe and Piranhas-Acu Power 783 0.61 4.36 0.46 0.60 19.49
Amazon Floodplains Linear 740 0.82 449 0.37 0.37 292
Madeira Power b740/b705 091 117.86 0.50 0.30 1.64

Maroni  Exponential 705 0.78 3.48 0.10 0.45 1.19

Mekong Power 842/443 -0.56  10.09 0.82 117  -14.36

Negro Power 705 0.64 3.52 0.74 0.59 -3.51
Paranapanema Power b705/b560 0.86 3.51 0.50 0.34 24.14
Paranoa Power 783 0.78 1.19 0.26 0.46 6.00

PUrUS Power 705 033 1540 0.42 0.71 -1.27

Séo Francisco Power n783 0.99 8.94 0.21 0.11 1.59

Amazon / SolimGes Exponential b740/b665 062 3770 0.39 0.60 -4.76

Ucayali Power b740/b705 086 17006 021 037  -1.20
b783/b490 098 2879 033 010 1185

Volta Power

Overall metrics 095 7437 0.46 0.22 0.22

Spyrakos” OWT-based model baseline

The last baseline was calculated using the OWTs proposed by Spyrakos et al. (2018) as a
starting point in order to create retrieval models for each class. Considering that each class is
defined by its mean normalized reflectances, the original reflectances in our dataset were

normalized accordingly.

Classes 3 and 8 didn’t have results due to the number of points being below the minimum required to fit a model properly.
Therefore, a total of 8 models have been created, as presented in

Table I1-5.
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Table 11-5: Models for the Spyrakos’ OWT classes. The metrics are calculated considering the points in the validation dataset.

Spyrakos' OWT Model Spectral Band R? (Tn N;:E) ?rr:;f RSR P?;SS
> Power 283 002 280 0.62 096 2031
4 Linear 842 -113.3 98.84 1.09 10.44 -177.8
5 Power b740/b4s3 020 26055 105 108 4066
6 Power 842 023 249 024 104 1586
9 Nechad b783/bdg0 003 052 031 085 933
10 Nechad b740/b705 026 40831 044 084  37.03
11 Linear 283 055  17.98 0.39 067  3.00
12 Power 665 087  3.09 0.73 035 017
0.64 200.77 0.71 0.60 33.89

Overall metrics

Applying these models to the validation dataset, we obtained R? = 0.64, RMSLE = 0.73
mg/l, and RMSE = 200.7 mg/Il, which was worse than those obtained with the previous baselines

(i.e., High/Low SPM classes and watershed-based OWTS).
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Predicted SPM (mg/l)

Figure I1-12a presents the mean reflectance for each OWT, and
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Figure 11-12b the SPM concentration range corresponding to each OWT. Measured versus predicted SPM concentration (
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Figure 11-12c) shows a higher dispersion across all range, when compared to the previous
baselines. In particular, the retrieval based on Spyrakos’ OWTs performed poorly for the largest

SPM concentration, beyond 100 mg/I.
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Membership function assessment

One key aspect of hybrid algorithms is to properly select the model to be used for each pixel
automatically. To achieve this, the membership function is responsible for matching a reflectance
sample to the pre-defined spectral groups (clusters). Diverse factors impact the accuracy of the
membership matching. One factor concerns the dimensions (or input features) used to create the
clusters and to perform the assignment of new samples. For example, if the pre-defined optical
classes were created using hyperspectral data, and the membership function uses multispectral data
as input features (e.g., Sentinel-2 MSI bands), the membership matching may result in poor
performances because some features detected using the high-resolution spectral data may not

appear in lower resolution dataset.

Another factor concerns the coherence between the algorithm used for the clustering and
the membership function characteristics. It has been proposed in the literature the use of
Mahalanobis distance for spectral shape matching (Lubac and Loisel, 2007; Moore et al., 2014;
Vantrepotte et al., 2012). As already noted, the advantage of Mahalanobis distance is that it
considers scaling and correlation among the input features. However, if the rule for a point to
belong to a cluster is the minimal distance to the cluster centroid, as it is the case for k-means and

Fuzzy C-means clustering, the Euclidean distance should be preferred.

To test these hypotheses, several experiments have been conducted using the complete Ry
dataset. The first experiment considered a clustering using the K-means algorithm and the spectral
dataset at “full” spectral resolution (i.e., Inm steps) to assess how the assignment accuracy is
affected by the spectral resolution of the sensor during the assignment step. For the assignment, the
simple Euclidean distance considering an n-dimensional space has been adopted and the input

features tested were 1) the same full hyperspectral resolution used for clustering; 2) a degraded

131



spectral resolution at 20nm steps; 3) Sentinel-2 spectral bands and 4) Sentinel-3 spectral bands. To
assess the precision of the membership assessment, we used the accuracy score, which is defined
as the number of correct assignments divided by the total of samples in the test (Eq. 11-8). The

results of this first test are presented in Figure 11-13.

Figure 11-13: Performance of the assignment accuracy (Euclidean distance) for different input features offering decreasing
spectral resolutions. Cluster definition was realized using k-means and full resolution hyperspectral Rrs dataset.

It can be seen from Figure 11-13 that the assignment accuracy slightly degrades as we
coarsen the bands used for the assignment, and a perfect match (i.e., accuracy equals to 1) is
obtained when the same bands are used for clustering and for the assignment. The assignment
accuracy also decreases according to the number of clusters to identify, but this degradation is

limited, representing less than 4% of loss of accuracy with a 10-cluster assumption.

As the final goal is to adapt the classification framework to Sentinel-2/MSI satellite images,
input features used in the clustering step for the next experiments were constrained to the spectral
bands listed in Table I1-2. Setting the clustering input features to the Sentinel-2 MSI bands and
clustering to K-means, Figure 11-14 shows the impact of the distance function jointly with the
spectral resolution during the assignment. Mahalanobis and Euclidean distance functions have been
tested for membership assignment. We can see that Euclidean distance provides better assignment

accuracy regardless of the bands used for clustering, with a perfect match (accuracy equals to 1)
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when the assignment uses the same Sentinel-2 MSI bands as the clustering. This finding evidence
that there must exist coherence among the spectral wavelengths used during the classification and
the retrieval phases. Moreover, as already noted, there must also be a coherence between the

distances considered in the clustering and assigning steps.

Figure 11-15 presents an experiment similar to the previous one but employing the
agglomerative method for clustering. It can be noted that, even when the clusters are not equidistant
(clusters derived from the agglomerative method can have distinct sizes), the Euclidean distance
surpasses the Mahalanobis distance in assignment accuracy for K < 5. For 5 clusters and more, the
results from Euclidean and Mahalanobis mix up and are indistinguishable. Comparing results from
Figure 11-14 and Figure 11-15, it is possible to note that regardless of the clustering algorithm used,
the Euclidean distance is more stable in all scenarios, and the best accuracy is achieved when it is

coupled with K-means clustering.

K-means Clustering

Accuracy Score
-
I

2 3 4 5 6 7 8 9 10

Number of clusters

Figure 11-14: Performance of the assignment accuracy as a function of distance metric used (Euclidean and Mahalanobis
distances) for different input features offering decreasing spectral resolutions. Cluster definition was achieved using k-means
applied to Sentinel-2/MSI spectral bands and for a varying number of clusters, from 1 to 10.
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Figure 11-15: Performance of the assignment accuracy as a function of distance metric used (Euclidean and Mahalanobis
distances) for different input features offering decreasing spectral resolutions. Cluster definition was achieved using
Agglomerative Clustering applied to Sentinel-2/MSI spectral bands and for a varying number of clusters, from 1 to 10.

Clustering experiments

We further analyzed how the OWTs definition driven by distinct clustering algorithms
impacts the final SPM concentration inversion. Figure 11-16 displays the retrieval error as a
function of the number of clusters (OWTSs) and for 3 different clustering methods. For this test,
Sentinel-2 MSI spectral bands were used as input features for both clustering and membership
assignment. Mahalanobis distance was used as it is the membership function primarily used in the

literature (Moore et al., 2014; Vantrepotte et al., 2012).

Until K=6, no significant difference was noted among the algorithms in terms of SPM
concentration retrieval performance. For 7 and 8 clusters, the algorithms K-means and FCM
presented an increase in the retrieval error. This can be explained by the difference between the
clustering methodology and the membership function, as discussed in the previous section.
Considering K-means and FCM create clusters of equal sizes, the proper membership function

would be the simple Euclidean distance. The agglomerative cluster seemed to adjust better to the

134



Mahalanobis distance and was used in the following experiments. It is worthwhile to note that from

4 clusters onwards, no improvement was detected in the retrieval error.

n Clustering bands: 52 MS| Bands

o Clustering spectra: Raw reflectances
Membership function: lanobis
0.754 Membership bands: 52 MSI Bands

Clustering algo:
—— K-means

Fuzzy C-means

RMSLE (mg/l)

Number of clusters

Figure 11-16: Impact of the clustering step on SPM retrieval as a function of the number of OWTs and for three different
algorithms: K-means, FCM and Agglomerative clustering. Retrieval performance is assessed using RMSLE on the Rrs validation
dataset. The input features were Rrs sampled to Sentinel2 MSI spectral bands for both clustering and assignment (Mahalanobis
distance).

Using normalized reflectance (NRg) as input features instead of the original Rgg data
(Figure 11-17), it took more OWTs to achieve the optimal performance and it did not provide any
additional improvement in terms of overall SPM retrieval. It can be interpreted that for SPM

retrieval it is more important the magnitude of the reflectances than their spectral shape.

An additional experiment compared the effect of different spectral sampling to be used as
input for the clustering and the overall results (Figure 11-18). The spectral curves used as input
features for clustering were resampled to 10nm, 20nm and 30nm steps. Additionally, the Sentinel-

2 and Sentinel-3 bands were also used as input features to the clustering algorithm.
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Figure I11-17: Impact of the clustering step on SPM retrieval as a function of the number of OWTs and for three different
algorithms: K-means, Fuzzy C-means and Agglomerative clustering. Retrieval performance is assessed using RMSLE on the Rrs
validation dataset. The input features were normalized Rrs sampled to Sentinel2 MSI spectral bands for both clustering and
assignment (Mahalanobis distance).
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Figure 11-18: Impact of the clustering step on SPM retrieval as a function of the number of OWTs and for Rrs input features
sampled at decreasing spectral resolution: 10nm, 20nm, 30nm, Sentinel-2 and Sentinel-3 spectral bands. For this test, clustering
used K-means algorithm while the assignment step was based on Euclidean distance and Sentinel-2 spectral resolution as input
features.
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Results showed that input features sampled at higher spectral rate during clustering did not
increase the overall SPM retrieval performance when the subsequent membership function uses,
as input features Ry, spectral data with a coarser spectral resolution (i.e., Sentinel-2 MSI spectral

bands).

Multiple Cluster model

Based on the results obtained in the previous section, the K-means algorithm and non-
normalized Rps were used to define the OWT classification delivering the most efficient SPM
retrieval. The input features for clustering were set to the Sentinel-2 MSI bands to keep coherence
between the clustering and assignment steps, and Euclidean distance was used for validation. Table
I1-6 presents the SPM retrieval performances (assessed on the validation dataset) using 1 to 10

OWTs.

Table 11-6: SPM retrieval performance as a function of the number of OWTSs. Accuracy was assessed on the validation dataset.
OWT classification was realized using K-means algorithm and non-normalized Rrs, with spectral input features set to Sentinel-2
MSI spectral bands. Assignment used Euclidean distance and Sentinel-2 MSI spectral bands as input features.

Number of OWTs
Metric 1 2 3 4 5 6 7 8 9 10
R? -24.35 0.82 0.89| 093 | 094 | 094| 095| 095| 0.95| 0.95
RMSE 1688.55 | 143.47 | 110.52 | 86.08 | 82.10 | 80.30 | 73.58 | 74.91 | 73.77 | 77.12
RMSLE 0.80 0.58 047 | 046 043 | 043| 043 | 043 | 043 | 0.42
RSR 5.02 0.43 0.33| 0.26| 0.24| 0.24| 0.22| 0.22| 0.22| 0.23
PBIAS 159.36 | 14.75| 10.20| 0.93 | -0.46 | 2.30| 0.07| -0.24| 0.32 | -4.87

As expected, SPM retrieval accuracy appears to increase with the number of OWTSs.
However, as for previous examples (Figure 11-16 to Figure 11-18), the SPM retrieval accuracy does
not improve much beyond a 4-OWT typology. In fact, defining more classes (i.e, 5 OWTs and
beyond) does not imply systematic gain in the accuracy depending on the metric as for example

for RMSLE, RSR or PBIAS. For example, SPM retrieval accuracy measured by RMSLE improved
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from 0.46 mg/l to 0.43 when considering 4 and 9 OWTs. To quantify the significancy in the
improvement of the accuracy retrieval as a function of the number of input OWTs, we randomly
repeated the experiment by re-shuffling the datasets and repeating the validation up to 10 times.
Consequently, it was possible to assess a mean and standard deviation for each retrieval accuracy
metric and OWTs configuration, allowing to use independent two-sample t-Student test for
significancy assessment. Student test was performed on pairwise adjacent OWTs configurations
(i.e., 2-OWTs/3-OWTs, 3-OWTs/4-OWTs, and so on). The results showed that there was no
significant difference (i.e., p-value > 0.05) between retrieval accuracy assessed with RMSLE when
using 4 or more clusters. To confirm this finding, additional t-Student tests were performed to
compare 4-OWTs typology to a larger number of OWTs, from 5 to 10. All the tests were performed
by using the RMSLE metric and agreed that there was no significant accuracy improvement beyond
the K=4 limit. There is probably a balance between complexity (number of OWTs and of retrieval
models) and retrieval performance (low RMSLE). Accordingly, the final OWTs clustering that we
propose is based on a 4-class OWT and Table 11-7 presents the OWTSs spectral characteristics (mean
Rrs and the standard deviation) for the Sentinel-2 MSI spectral bands. The OWTs have been

ordered ascending by median SPM values.

Table 11-8 details the accuracy results and retrieval model for each of the four OWTs. The
overall metrics for the validation dataset were R? = 0.93, RMSE = 86.08 mg/l, and RMSLE = 0.46

mg/l.
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Table 11-7: Rrs values, expressed as mean and standard deviation and for each Sentinel-2 MSI spectral bands, for the four OWTs
that represents the optimal water type classification for inland water SPM concentration retrieval.

Sentinel-2 Bands (wavelengths in nm)

Cluster 443 490 560 665 705 740 783 842 865 940

0| Mean | 50043 | 0.0058 | 0.0102 | 0.0077 | 0.0067 | 0.0024 | 0.0024 | 0.0015 | 0.0013 | 0.0008

Std | 0.0026 | 0.0036 | 0.0072 | 0.0058 | 0.0051 | 0.0020 | 0.0020 | 0.0014 | 0.0013 | 0.0009

1| Mean | 00105 | 0.0146 | 0.0271 | 0.0323 | 0.0297 | 0.0140 | 0.0145 | 0.0097 | 0.0084 | 0.0043

Std | 0.0025 | 0.0032 | 0.0065 | 0.0064 | 0.0065 | 0.0056 | 0.0060 | 0.0050 | 0.0045 | 0.0028

2 | Mean | 90224 | 0.0287 | 0.0519 | 0.0722 | 0.0735 | 0.0530 | 0.0554 | 0.0433 | 0.0393 | 0.0183

Std | 0.0058 | 0.0068 | 0.0092 | 0.0103 | 0.0101 | 0.0091 | 0.0102 | 0.0107 | 0.0106 | 0.0052

3 | Mean | 50151 | 0.0198 | 0.0352 | 0.0459 | 0.0455 | 0.0317 | 0.0325 | 0.0258 | 0.0236 | 0.0130

Std | 0.0038 | 0.0045 | 0.0079 | 0.0088 | 0.0076 | 0.0057 | 0.0058 | 0.0068 | 0.0069 | 0.0058

Table 11-8: Model type and accuracy for the 4-OWT classification retained as the most efficient spectral clustering for SPM
retrieval. Models were calibrated using the training dataset and the accuracy metrics were calculated using the validation

dataset.
Clusters Model Spectral Band R? (?“I\,;:E) l:.:fgs/l-ll)i RSR P?OZ?S
0  Exponential 705 0.53 7.21 060 068  23.05
1 Power b783/b705 082 11973 034 042 1855
2 Linear 865 0.97 23.56 010 016  -0.23
3 Nechad b740/b705 092 12181 019 027  -546
Overall metrics 0.93 86.08 0.46 0.26 0.93
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Figure 11-19a and Figure 11-19b present, respectively, the mean Ry for each OWT and the
boxplot graph with the SPM variability within each of the 4 clusters. The median SPM
concentrations for the clusters are: 6.8mg/I (cluster 0); 52.8mg/| (cluster 1); 188.7 (cluster 2); and
454.9 mg/l (cluster 3). In the measured versus predicted SPM concentration plot (Figure 11-19c¢), it
Is possible to note that, although RMSLE was close to the one obtained from the hybrid baseline
model, that R? value, RMSE and PBIAS were much improved, evidencing a better fit for the

highest SPM concentrations.

Moreover, the R? value was close to the one obtained using one model for each basin/area
(0.95) with the advantage of using just 4 models instead of 13. Additionally, it should be considered
that the performance obtained from the multi-basin algorithm was tailored by the previous
knowledge about the basin making it difficult to be used globally, while the 4 clusters algorithm
considers automatically assignment, through the Euclidean membership function. Comparing these
results with the second watershed-based model baseline (Table 11-9), where we do not inform “a
priori” the area being monitored, the 4 clusters algorithm matches R? and surpasses RMSE (86.08

vs 91.16 mg/l) and RMSLE (0.46 vs 0.59 mg/l) metrics.

Table 11-9: Comparison of different classification schemas.

cpe as RMSE RMSLE PBIAS
Classification Schema R? (ma/l) (mg/l) RSR (%)

Hybrid model (high/low) 0.87 97.62 0.44 0.36 7.50

Watershed-based (tailored by watershed) 0.95 74.36 0.46 0.22 0.22

Watershed-based (Wit;’s:i‘ét:rr:::t; 093 9116 0.59 027  -825

Spyrakos' OWT baseline 0.64 200.77 0.71 0.60 33.89

4 classes hybrid model 0.93 86.08 0.46 0.26 0.93
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1.5 Discussion

The analysis of a large dataset acquired over 13 catchments presenting contrasted
conditions in the tropical region allowed to better understand the sensitivity of Rzs to SPM
concentration over inland waters. Our results demonstrate that the use of a hybrid model based on
2 optical classes, as proposed by several authors (Han et al. 2016, Novoa et al. 2017), may not be
enough accurate to robustly retrieve SPM load over a large range of concentration. However, our
experiment demonstrates that the use of four optical classes allows to reach the best retrieval
performances and that a larger number of optical classes does not results in significant accuracy
improvement. This four-cluster classification matches the accuracy performance achieved using
catchment-wise OWTSs, but it does not require multiple models for each specific watershed to be

studied.

Looking at the dependency of the results to the spectral resolution, our results show that
there are no differences in the SPM retrieval performance if we increase the spectral resolution for
clustering if this increase is not accompanied by the assignment and fitting steps. Most important,
we observe the need for coherence between the OWT definition (clustering algo, and clustering
bands) and the retrieval algorithm (membership function and sensor bands). Moreover, unlike
photosynthetic pigments, such as Chl-a, that exhibit complex spectral absorption patterns, light
absorption and scattering by suspended particles present smooth spectral behavior and does not
present much variability as a function of wavelength, especially beyond the green range. This may
explain why the spectral resolution may not play an important role for the definition of the best

SPM retrieval method.

The most efficient optical water type typology matches a simple 4-class membership, which

are mainly function of increasing SPM concentration except for the two last clusters (Cluster 2 and
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Cluster 3, see Figure 11-19b) that overlap in terms of mean SPM concentration. For the latter two,
it appears that the difference may be more related to the suspended sediment type (expressed as
median particle diameter -D50) than to its concentration as Cluster 2 samples match the finest
suspended sediment median size, as shown in Figure 11-20. The median D50 diameter for each
cluster is: 16.75um (Cluster 0); 11.05um (Cluster 1); 5.43um (Cluster 2); and 7.90um (Cluster 3).
This observation confirms that SPM retrieval is not fully dependent to the concentration range but
also to the particle type or size distribution. Figure 11-21 shows that the final OWTs covered most
of the catchments and that each area usually may be represented by at least 2 OWTSs. In fact, most
individual catchments/region are represented by two different OWTs, which may explain why
simple 2-class OWT hybrid models may reach fine accuracy over limited region but fail to

represent all the water types in a much broader area.

Regarding the retrieval model type, most of the equations rely on power-like equations with
more than half of them making use of spectral band ratio. It is worthwhile to note that most of the
best retrieval models use NIR wavelengths especially in the 700-800 nm range. The use of this
narrow spectrum range demonstrate that the new spectral bands brought by Sentinel-2/MSI sensor
(e.g., bands 5 to 7) really represent an improvement towards better SPM mapping using resolution
images in comparisons to more conventional platforms such as Landsat that offer only one spectral

band in the red spectrum and one in the NIR spectrum beyond 800 nm.
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Figure 11-20: Suspended sediment particle diameter (D50) distribution for the four optimal OWTs configuration, expressed in pm.

Analyzing the results obtained from the Spyrakos’ OWTs baseline, which considers 8
different models, it is clear that those OWTs are not optimal for improving SPM retrieval. All
analyzed metrics using Spyrakos’ OWTs are worse than the simple hybrid (High/Low SPM
concentration) OWT clustering. This poor performance can be credited to the normalized
reflectances used to create the Spyrakos’ OWTs. The normalized reflectances tend to privilege the
spectral shape in detriment to its magnitudes, which is mostly useful to discriminate different water
types. However, SPM concentration tends to affect the light scattering in the NIR range (especially
700nm to 800nm) regardless of the water type, and the magnitude of the reflectance, as well as the
ratio between upper NIR bounds (800nm to 860nm) and lower NIR bounds (700nm to 740nm),
seems to play a bigger role in SPM retrieval than the spectral shape. Therefore, reflectance

magnitude should be preferred during the OWTs definitions.
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Figure 11-21: Geographical distribution of the OWTs (“clusters”) accordingly to the 13 hydrological regions. OWT frequency
was normalized to 100 % for each region.

1.6 Conclusion
Conventional monitoring of suspended sediment, as well as other water quality parameters,
in inland waters do not offer adequate spatial and temporal resolutions due to the high costs
involved in field surveys. The present study used a dataset of more than 1,000 hyperspectral
measurements, coupled with corresponding field measurements, to propose a new framework to
support the use of water color remote sensing images for SPM monitoring. The hyperspectral
dataset has been collected in 13 different sub-watersheds in tropical regions, with SPM

concentrations ranging from 0.1 to 1,800 mg/I.

The article analyzed the viability of using models tailored by water types to improve overall
SPM retrieval accuracy. In this regard, three “baselines” OWTs have been defined: 1) a 2-class

typology (low and high SPM concentration), as proposed in the literature (Han et al., 2016; Novoa
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et al., 2017); 2) OWTs tailored to rivers or catchments; 3) a 13-class OWT for inland waters as

previously proposed by Spyrakos et al. (2018).

To build up on these baselines, multiple combinations of clustering algorithms (K-means,
Agglomerative, and Fuzzy C-Means) and input features (i.e., Rgs VS. NRys) were tested into an
iterative process to achieve the best overall SPM retrieval accuracy. For each clustering test,

unsupervised fitting of SPM retrieval models was achieved for each now OWT.

The results show that only 4 classes would be enough to achieve results that are similar to
the one fitting one model for each specific river or catchment. The hybrid 2-class algorithm is a
good alternative, but it fails to deliver good results, especially in the higher concentration points
(above 1,000mg/l), probably due to a saturation effect on the NIR reflectance, as already discussed
in the literature (Dogliotti et al., 2015; Nechad et al., 2010). Interestingly, the more detailed water
types definition proposed by Spyrakos et al. (2018), with 13 distinct inland OWTs, delivered the
poorest results. This weak performance is also seen in our clustering experiments, which showed

a disadvantage of using normalized spectra for SPM retrieval.

To confirm the use of a 4-classes model in detriment to a higher number of OWTs, a
comprehensive t-Students test has been performed in order to verify if there were significant error

improvements by augmenting the number of clusters beyond this number.

This study also demonstrates that most models rely on NIR wavelengths, especially
between 700nm and 800nm to deliver the best accuracies, regardless of the water type or median
SPM concentration. Another important finding refers to the impact of the particle size of the
sediment on the light scattering. According to the 4-classes proposed in the Multiple Cluster Model

section, Cluster 2 appears with the highest reflectances, but it does not correspond to the higher
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SPM concentrations, which appears on Cluster 3. However, Cluster 2 presents the smaller particles,

as depicted in Figure 11-20.

In summary, this study makes use of unsupervised Machine Learning methods, such as
clustering algorithms, to maximize the results obtained from remote sensed data for inland water
quality assessment. In the end, we present an operational 4 classes OWT framework designed
specifically to improve SPM retrieval through Sentinel-2 MSI sensor. Although designed
specifically for SPM concentration, a similar workflow could be used to improve the performance
of other water quality parameters retrieval with distinct sensors. In particular, it is expected that the
results of this work may be applied straightforwardly for turbidity monitoring which is an optical
parameter mostly related to suspended sediment fluxes in inland waters and widely used in

limnological studies for water quality trend assessment.
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Chapter Ill — Generalization and Analysis: A case study of Brazil’s 2021

drought

The main focus of this chapter is to demonstrate the feasibility of applying remote sensing
techniques based on Sentinel-2/MSI high-resolution time series to assess water surface and some

water quality parameters at a regional level and over an extended period.

As described in the Introduction, to the best of our knowledge, there are no operational
tools available to complete these tasks in an automated way. When such a study is required,
geospatial experts usually craft the processing and analysis steps manually, and the area of interest
is generally cropped to very localized areas. Although it works for specific studies, this approach

is inefficient for operational monitoring over large extents.

New challenges arise when scaling up the analysis to a regional level, from the initial
processing that would require the acquisition of vast amounts of data and corresponding ancillary
data to the final analysis that requires combining all the generated information into a meaningful

result.

Supervised analysis through geospatial packages is impracticable due to the amount of data,
and automation is strictly necessary. Furthermore, the methods developed to work into single
scenes or at reservoir levels are insufficient for this new task, and new processing and analysis

methodologies are required.

To operate with tens of thousands of inputs assets (i.e., reservoirs, river reaches) and derived
subproducts, Spatio-Temporal Assets Catalogs (STAC) must be organized to keep track of the

assets’ semantics and corresponding geospatial localization. Besides, Big Data concepts such as
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cloud computing, lazy execution, and parallel computing must also be employed to process multi-

dimensional cubes at this large scale.

In this context, the present chapter is divided into two parts. It starts with an introductory
section to present in detail the methodologies developed in the context of the thesis to cope with
these challenges and would not fit in the case study article due to length restrictions imposed by
scientific journals. The methodology section covers the water detection step that goes from the
satellital input data to the resulting inland water masks. The water surface and quality assessment
section covers the stages that were used to aggregate, post-process, and subsequently analyze these

data.

In the second part of this chapter, we propose an article draft that uses the presented
methodologies to assess the impacts on the water surface and water quality caused by the drought
that hit Brazil’s southeast in 2021. The area of interest is within the Parana hydrographic region,
which is very important for Brazil’s economy, representing 40% of the country’s Gross Domestic
Product (GDP) and 45% of the country’s electric power generation (ANA, 2018). An area
composed of 36 Sentinel-2 tiles has been selected for the study. Each Sentinel-2 tile covers a square
area of approximately 10,000 km? (100 x 100 km), totalizing 320,000 km?, representing more than
the half of French territory. The study considered four years of data, from 2018 to 2021, for which
we had an average of 5-day coverage from both Sentinel-2 satellites. Before that period (2015-
2017), Sentinel-2A delivered mostly 10-day interval images which was considered inconsistent for
water body monitoring. Considering this time frame and the temporal resolution of the Sentinel-2
mission (one image every five days), over 12,000 images have been processed. At the end, the
results for water surface and water quality have been combined, validated with field measurements,

and interpreted accordingly.
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1. Water Detection and Assessment Methodologies

1.1 Large scale water detection methodology

The waterdetect algorithm, when initially developed in 2019, has been validated over 15
Sentinel-2 high-resolution selected scenes over continental France (Cordeiro et al., 2021). As
discussed in the article (Chapter 1), the challenge of classifying the pixels in a Sentinel-2 scene in
a short processing time required certain considerations in terms of performance. The adopted
solution included a random subsampling of the scene to cut down the number of pixels from more
than 100 million (single Sentinel-2 scene) to tens of thousands and a subsequent generalization
through a supervised machine learning classifier (Naive Bayes). These solutions enabled fast

processing of each image while keeping accuracy high, as demonstrated in the article.

However, the current case study presents a higher order of greatness regarding coverage
area and time frame. Although the original algorithm has served as a starting point, it needed to be
adjusted to face this more significant challenge towards scalability and robustness to provide a
fully operational execution over tens of thousands of images. The following sections provide a

high-level summary of the processes implemented on top of the original algorithm.

Multiprocessing

Due to the amount of data necessary for the study and to speed up the process, the
waterdetect algorithm has been reimplemented to take advantage of the public geospatial clouds
available, notably the Google Earth Engine (GEE) and the Microsoft Planetary Computer. VVarious
processes were developed to work in parallel. To avoid storage costs involved in downloading all
the 12,000 Sentinel-2 images necessary for the case study, which would take approximately 23Tb

of disk space, just the necessary bands were downloaded from the Planetary Computer on-demand.
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To save time, while the bands are being downloaded, a distinct thread is responsible for
processing the clouds and cloud shadows on GEE, and just the final mask is downloaded locally,
as explained in theCloud and shadow masking section (Page 151). A third concurrent thread is also
used, and it is responsible for calculating the probability of sunglint intensity from sun and satellite
viewing angles with the information from the granule’s metadata, as described in the Glint

Processor section (page 148).

For the water detection step, other improvements have been made to parallelize time-
consuming tasks such as clustering and calculating the cluster metrics (i.e., Calinsk-Harabasz
index) that are needed to find the best number of clusters (K). Instead of looping through each
possible K value, ranging from 2 to 10, concurrent processes are submitted, improving the overall

performance. A schematic diagram of the entire solution is presented in Figure I11-1.
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Figure I11-1: Schematic diagram of the water detection process. Blue boxes represent different threads. Gray boxes group the
threads that run in parallel. The orange box represents a process that runs entirely in the cloud.
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In the end, the water mask is saved with one of the three possible values: 0 — not water; 1 —
water; and 255 — no/masked data. Additionally, a simple report for each scene is also provided

with quick views and some scatter plots for investigation purposes (Figure I11-2).

The water detection step has been performed in a local server (Cirrus) and used specific
Application Program Interfaces (APIs) to access the Microsoft Planetary Computer and the Google

Earth Engine. With these improvements towards robustness and performance, taking advantage of

VIATE RMASK

GUNT

Figure 111-2: Examples of the reports saved for each Sentinel-2 images during the water detection step. (a) Scene overviews
with true color (RGB) image, final water mask, no/masked data, sunglint probability and the MNDWI and NDWI indices. (b)
NDWI x MNDWI and MNDW!I x B12 scatter plots with final clustering results.
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these public cloud platforms, each Sentinel-2 scene is processed in approximately 1 minute. For

the whole period and region (12,000 images), two weeks of processing were necessary.

Glint Processor

The optical remote sensing analysis depends on understanding the absorption and scattering
of solar radiance processes on ground targets. As each material will absorb and reflect energy
differently depending on the considered wavelength, the reflectance spectra are usually used to
distinguish and measure the properties of the ground targets. However, many undesired effects can
interfere with the observed reflectance when it is measured from space-borne sensors. One of these
effects, called sunglint, is caused by specular (mirror-like) reflectance of the incident solar
radiance, on water surfaces, in the direction of the sensor’s field of view. The occurrence of the
sunglint will depend on the zenithal (6s and 6y for source and viewing zenithal angles, respectively)
and azimuthal (®) angles (Figure 111-3). In these cases, the sensor will not measure the
characteristics of the observed target but rather a mixture with the spectra of the emitting source

(sun).

Zenith

Figure 111-3: Schematic representation of angles and geometry between light source, target and viewing sensor.

In water detection application, this sunglint will raise the reflectance values across all

wavelengths, specially NIR and SWIR regions, which are usually used to identify water because
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of the high absorption on these bands. This would cause failure for the algorithm to detect water

surfaces in these highly glinted waters (Figure 111-4).
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Figure 111-4: Effect of the sunglint in a Sentinel-2 image on the surface of the Lake of Cuitzeo, Mexico.

Although there exist de-glinting techniques for Sentinel 2 in the literature (Harmel et al.,
2018) that have been used in the case study’s water quality assessment, the process is costly and
requires prior knowledge of the water pixels in the scene. One alternative solution to minimize this

problem is to use sun and viewing angles to identify sub-regions in the scene which are prone to
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have sunglint and adjust waterdetect parameters (notably the NIR and SWIR thresholds)
accordingly. The methodology selected to estimate the probability of sunglint is the one proposed
by Giglio et al. (2003) for the Moderate Resolution Imaging Spectroradiometer — MODIS sensor,
and that has been implemented for several works dealing with water quality retrieval (Espinoza

Villar et al., 2013; Martinez et al., 2009; Santos et al., 2018):

cos(Hg) = cos(6,,) cos(6;) — sin(6,) sin(0s) cos(D), Eq. IlI-1

where 6, is the zenithal viewing (sensor) angle, 6, is the zenithal source (solar) angle and
@ is the azimuthal angle between the source and sensor. The angle 6, is the sunglint angle, and the

lower its value, the higher probability of sunglint in the sensed image.

All the required inputs necessary for calculation are available in the Sentinel-2 granule’s
metadata file in grids of 5km x 5km (23 x 23 grid). This way, a glint angle map can be produced
for the whole scene, as represented in Figure I11-5. The glint angle is then used to adjust the
thresholds in each grid cell to fine-tune the water detection process. The threshold value has been

adapted from the previous works dealing with water quality retrieval cited above.

The sunglint processing has been added to the waterdetect package and it can be turned

on/off through the software’s configuration file.
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Figure I11-5: Representation of the glint angles in the 5km grid cells. The lower the sunglint angle (yellow color), the higher
probability of sunglint in the region. Angle values higher than 25° are considered exempt from sunglint (dark colors)

Cloud and shadow masking

As mentioned in Chapter I, the waterdetect package was originally designed to work with

surface reflectance images atmospherically corrected by the MAJA processor.

As MAJA was originally developed to be a multi-temporal cloud detector (Hagolle et al.,
2010), its performance concerning cloud screening surpasses most other algorithms available for

Sentinel-2 imagery (Baetens et al., 2019).

However, MAJA-corrected products are unavailable globally, and our area of interest was
outside MAJA coverage. Therefore, the solution was to use Sen2Cor corrected images, which are
available globally in the Microsoft Planetary Computer. However, the cloud masks provided by
the Sen2Cor processor were not reliable enough for the automation and could deteriorate the
performance of the waterdetect algorithm. To overcome this limitation, an adaptor for the

s2cloudless cloud masks has been developed. The s2cloudless is a pixel-based cloud detector that
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uses a Random Forest algorithm trained with MAJA cloud masks as a reference on 14,140 Sentinel-
2 scenes covering 77 different countries from Europe, Asia, Africa, North and South Americas,
and Oceania. This machine learning approach is able to deliver state-of-the-art results surpassing

the traditional processors such as MAJA, FMASK, and Sen2Cor (Zupanc, 2020).

Instead of running the trained classifier on the selected scenes, we opted to get the processed
results directly from the Google Earth Engine platform, which is available in the form of a Cloud
Probability mask, with values ranging from O (low cloud probability) to 255 (high cloud
probability). In addition, a cloud threshold has been defined as 60 and pixels above this value were

marked as clouds.

One problem concerning clouds shadows detection remains, as the S2cloudless is limited
to identifying just the clouds. This is an essential step as shadows are usually misinterpreted as
water in many algorithms (due to their low albedo), and that could also deteriorate the performance
of the waterdetect. To overcome this limitation, a potential cloud shadow area is projected on the
ground in the opposite direction given by the solar azimuthal angle (@) for the scene. This
information is available in the image’s metadata. As the cloud altitude is unknown, the solar
zenithal angle is discarded, and an arbitrary distance of 1 km is used to project the potential shadow
area in the ground. Finally, to derive the final cloud shadow layer, dark pixels on the near-infrared
(NIR) band, herein defined as NIR < 0.15, that lie within the potential cloud shadow area are
marked as actual shadows (Figure I11-6). This process represents a simplified version of the cloud
shadow object matching implemented in FMASK (Qiu et al., 2019; Zhu and Woodcock, 2012),
and it is entirely performed within the Google Earth Engine platform before downloading the

masks, following the code implementation is proposed by Braaten (Google Developers, n.d.).
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Figure 111-6: Representation of the cloud shadow matching algorithm used to identify shadows on the ground.

The cloud and shadow masks are then downloaded from the GEE platform through another
package, GEES2Downloader (https://github.com/cordmaur/GEES2Downloader), developed
within the scope of this thesis. To download images using HTTP protocol and overcome size
limitations imposed by the GEE platform, the GEES2Downloader subdivides the original asset
into smaller tiles, download them in parallel and then recreates the original asset in the client

computer.

Average Sampling and Post-Processing

In terms of robustness, one last improvement in the water detection process was
implemented to avoid instabilities during the clustering process and water identification. Such
instabilities may occur when the scene has little or no water or when there are mainly water pixels.
As the clustering is done with a random subsample of the image, the water pixel percentage can
affect the algorithm’s performance (Cordeiro et al., 2021). Although not usual for an entire
Sentinel-2 scene, this can occur, for example, when clouds dominate the image, and there is no
water to be classified or when the cloud mask fails, and cloud pixels remain in the clustering
process. One possibility to smooth out the results regarding water surface extent is to define a
multitemporal window and average the results, as proposed by Pefia-Luque et al. (2021). Instead,

another solution has been implemented to deal with such scenarios. The water cluster parameters
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(i.e., mean MNDWI and mean SWIR values) are analyzed during a post-processing phase. The
cluster identified as the water cluster can be rejected if these parameters’ values do not match an
average water spectral signature, herein considered as mean MNDW!I value above 0.2 and mean
SWIR below 0.2. If this happens, a new sampling is made, ensuring that a minimum percentage of
water (defined as MNDWI > 0.4) is present in the subset. This process is repeated for minimum
percentages ranging from 20% to 45% in 5% steps and the scene is discarded if no solution passes

the post-processing parameters.

1.2 Water surface and quality Assessment Methodology
One key difference between the present study to other surface water assessments at a
regional level is that instead of using low spatial resolution to cover a larger area (e.g., Khandelwal
et al., 2017) we are producing the water masks in full spatial resolution (10m) in order to maintain
the ability to detect reservoirs as small as 0.5 ha that waterdetect can map with fine accuracy
(Cordeiro et al., 2021). Keeping this resolution permits the assessment of water surface and water
quality of thousands of reservoirs stratified by size ranges. The methodologies used to combine all

these output data to deliver meaningful results are presented in this section.

Data Processing

Considering the number of files to be processed and intermediate sub-products, a Spatio
Temporal Assets Catalog (STAC) has been created to organize all the assets. The advantage of
STAC catalogs is that each asset is referenced with its own metadata. The metadata can describe
the semantics of each asset stored in the catalog. Additionally, geospatial attributes such as scene
geometry, footprint, coordinate reference system, and other properties are saved into XML files for
quick search. This way, it is possible to find assets and combine them into the same projection

effortlessly for further operations.
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Once the catalog was prepared, the monthly water extent maps were created for each one
of the 36 tiles and 48 months, ranging from 2018 to 2021. A total of 1,728 monthly maps were
created by combining all images of the same month into a data cube, then applying the median
operator Figure I11-7a. No data values due to clouds or masked pixels have been skipped during
the median operation. The use of time windows for water detection has been the object of other
studies. Pefia-Luque et al. (2021) analyzed time windows ranging from 10 to 20 days on Sentinel-
2 and Sentinel-1 data and found significant improvements in large-scale water maps and reservoir

area estimation.

(a) Median operator 01-2018 (b)

Mosaicking

12-2021

gg

Month 1 Month2  +++ Month 48

Time

Figure I11-7: (a) Schematic view of the monthly water masks process creation for each tile. (b) Schematic view of the monthly
masks combination into a single mosaic.

These maps were then combined into monthly mosaics, covering the whole area of interest.
The overlapping regions were treated with the same median operation to avoid discontinuity along

the borders Figure 111-7b.

Even with one image being sensed every five days by the Sentinel-2 constellation,
approximately, the monthly mosaics can still present many no-data pixels, due to the high
persistence of clouds in the region, blocking the satellites’ view. This happens mainly in the wet

season, from October to March, when rains are abundant in the region. Figure 111-8 presents the
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permanently cloud covered pixels for January 2018 that represented the worst scenario during the

whole time series with about 6% of the scene presenting no data pixels.
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Figure 111-8: Water surface extent mosaic for January 2018. In red, the pixels that remained covered by clouds or without valid
data during the whole month.

Data Interpolation

Although not covering a huge percentage of the scene, these no-data areas can create
discontinuity in the time series and impact the overall water surface being measured. Figure 111-9
shows the total water surface extent for the area of interest in the blue line and the percentage of

no data pixels in the red bars.

It can be noticed that the months with higher cloud persistence (higher amount of no data
pixels) present discontinuities. This discontinuity was especially significant in January 2018 and

December 2018, when cloud persistence reached over 5%.
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Figure 111-3: Monthly water surface estimation in the area of interest and the percentage of invalid pixels due to cloud
persistence.

Two additional steps were taken to deal with these remaining gaps in the times series. First,
the Boolean values (0 — not water, 1 — water) have been replaced by real numbers through image
downscaling. Each group of 10x10 pixels (100m x 100m), corresponding to 1ha, has been merged
through the average operator and skipping no-data values. This first step result is a lower image
resolution (100m) with values ranging from 0.0 to 1.0, representing the water cover percentage in
the pixel area (1ha). This resolution remains consistent with our objective to analyze water body
dynamics for an area of about 1ha. In this specific case, the pixel values can be directly interpreted
as water surface in hectares. This processing has been done for each monthly mosaic. However,

the impact of missing pixels because of cloud coverage can still affect the surface area calculation.

To overcome the problem of the missing pixels, the second step consisted of interpolating
gaps linearly through time. For that, a data cube consisting of the 48 mosaics has been stacked and
a linear interpolation has been performed along the time axis (i.e., for each coarse pixel), as shown
in Figure I11-10. As the first (January 2018) and last (December 2021) months of the series cannot
be filled through the interpolation due to a lack of data outside its bounds, an additional step has

been taken to fill these gaps. The first month has been filled with a backward-fill method, which
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propagates the values backwards in time to fill existing gaps. In this case, remaining gaps occurring
in January were filled with values present in February. Conversely, the last month has been filled
with a forward-fill method that operates the opposite direction. Then, the total water extent area
was obtained by adding up the values for each pixel in each considered month. It is worthwhile to

note that both spatial resolution degradation and time mosaicking can be adjusted depending on

the area of interest of the seasonality of the hydrological processes.

Pixel time series

Water (%)

(=]

Time

Figure 111-10: Schematic representation of the pixel level interpolation along the time axis.

Anomaly Maps

To produce spatial water surface anomaly maps, the interpolated cube described in Data
Interpolation section has been used as a starting point. As already explained in the previous section,
this data cube has a downscaled resolution (10 pixels by 10 pixels), where each pixel has a real
value representing the water surface in hectares. This original cube has been coarsened one more
time to create regions with 200 by 200 pixels, using the average method, so the new coarse pixel

value would represent the water percentage over a 40,000ha area.

Considering that the water surface is unevenly distributed spatially, we have coarse pixels

in areas with large water surfaces and other ones with almost complete absence of water coverage.
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In this scenario, the anomalies cannot be presented in absolute values. Otherwise, they would
highlight the pixels that touch or contain large reservoirs and ignore the pixels with smaller water
bodies within. Instead, they will be represented as the z-score metric, that is the number of standard
deviations away from the mean. The z-score for each coarse pixel can be computed through the

following equations:

zi = , Eq. IlI-2

-2 Eq. llI-3
o= N

where o is the standard deviation for each coarse pixel, x; is the value each coarse pixel

assumes through time, N is the number of periods considered (48 months), X is the mean value and

z; is the z-score for element i.

The mean and the standard deviation of the coarsened cube were calculated through the

time dimension and the results are presented in Figure 111-11.

Anomaly maps were created for each month, according to Eq. I11-2, with the z-score
representing the amount of discrepancy from the mean value. The results of these anomalies for
each 40,000ha coarse pixel were then layered over the hydrography to create the final map

representations.

Figure I11-12 presents the hydrographic network for the whole area of interest in the left
panel and the anomaly map produced for November 2021, in the right pane. This month represented

the peak of the crisis period in the basin.
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Figure 111-11: (a) Mean value for each coarse pixel, calculated through time dimension, representing percentage of surface water
over 40,000ha area; (b) standard deviation for each coarse pixel.
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Figure 111-4: (a) In the left panel, the hydrographic network of the area of interest. (b) In the right panel, the anomaly map
produced for November 2021.
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Stratified Analysis

One advantage of the current study over other studies in regional level is the possibility to
assess what happens in smaller reservoirs that are not monitored by the water authorities. To
accomplish this, it is fundamental to perform an analysis stratified by reservoirs’ size. To sort the
reservoirs by size, the official shapefile containing all mapped water bodies from Brazil was
downloaded from the Sistema Nacional de Informacg6es de Recursos Hidricos — SNIRH which is a
comprehensive database of water resources provided by the National Water and Sanitation Agency

(ANA, 2019a).

First, a spatial clipping was performed to the region of interest, and a total of 26,955 water
bodies were identified. A 100m buffer was created around each polygon to consider any possible
flood that could spread outside the official polygon. To retrieve the area of each reservoir from the
raster satellite imagery, the number of water pixels within each reservoir’s polygon was retrieved.
This processing has been applied to each reservoir, individually, within the 48 months period. An

example is presented on Figure I11-13.
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(a)

Area: 36.77ha
Long: -50.909
Lat:-22.758

Figure 111-5: Example of the stratified analysis for an unnamed water body. (a) Shape file with its area and coordinates; (b) high
resolution imagery; and (c) overlayed water mask for June 2020.

As a result, it was possible to create a data table to keep track of each reservoir across the
entire time frame. Then, the reservoirs were grouped in 3 categories, according to their surface
areas: Large — area greater than 10,000ha; Medium — area between 100ha and 10,000 ha; and Small
— area between 1lha and 100ha. The corresponding number of reservoirs within each group and

their areas are represented in Figure 111-14.
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Figure 111-14: Reservoirs’ statistics (quantity and total area) grouped by category for the area of interest
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2. Article Draft - Assessing the Impacts on Water Surface and Quality during
Drought Events Using High Resolution Optical Satellite Imagery: Parana River

2021 drought (Brazil).

2.1 Abstract

The United Nations have elected water security as one of the Sustainable Development
Goals for the Agenda 2030, and continuous monitoring is essential for efficient water resources
management. In this context, Remote Sensing (RS) for Earth observations can be essential in
complementing traditional hydrometric data, especially for water quality parameters, but most
studies focus on localized scales and lack regional coverage. This study presents the application of
several RS techniques toward inland water monitoring in terms of quantity and quality on a regional
scale and proposes novelty in terms of data visualization. The significant drought that hit Brazil’s
southeast has been selected as a case study. A total of 12,000 scenes from the Sentinel-2 MSI sensor
with 10m of spatial resolution have been used, covering an area of 320,000km2 and 4 years of data
(from 2018 to 2022) in the Parana Hydrographic Region. In the quantity analysis, the monthly
water surface for the whole region has been estimated through the Waterdetect package. RS
estimations were validated with field data from 16 reservoirs representing more than 7,400 km2 of
water surface area with an R2 score of 9.16. Besides the overall area surface, a spatial analysis
evidencing the water surface anomalies has been performed as well as a stratified assessment to
investigate the impacts of the drought on reservoirs of different sizes. In the water quality domain,
turbidity and Chl-a parameters were retrieved for the Paranapanema sub-basin and displayed as
monthly Ridgeline plots. The results show a significant augmentation of eutrophication levels
during the dry periods, especially during the drought when Chl-a concentration reached its peak of

16.27 mg/ma3. Turbidity was substantially higher in wet periods evidencing different mechanisms
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involved and a strong correlation with the rains. Moreover, the stratified analysis identified that the
more extensive reservoirs have a higher seasonal variation in the water quality parameters. The
results evidence an excellent potential for RS in large-scale water monitoring for both water

quantity and quality, and for possible identification of trends and anomalies.

2.2 Introduction
Water availability, sustainable management of water resources, and sanitation for all, have
been elected as targets by the United Nations under the 2030 Agenda for Sustainable Development
Goals (UNDP, 2022b). In terms of availability, in 2020, over 2 billion people were living in areas
subject to water stress, and this situation will worsen with climate changes, population growth, and

land-use changes (UNDP, 2020).

In Brazil, from 2017 to 2020, drought events affected almost 90 million people, most
located in the northeast region. Although the country has the world's largest amount of fresh water,
almost 80% of the water discharge is in the remote Amazon River basin, away from the important
economic centers. Moreover, droughts have become more frequent and severe; during the last
years, they have shifted toward the southeast region. Increasing water use for agriculture and

industrial activities also pressures water availability in the region (ANA, 2021a).

In 2021, the Parana Hydrographic Region faced a severe drought with a recurrence time
estimated at more than 100 years (ANA, 2021a). The region is vital for the country's economics and
electric power generation, representing 40% of the country’s Gross Domestic Product — GDP and
45% of the total active storage of the national electric grid, called Interconnected National System
(SIN) (ANA, 2018). Due to low water storage volumes, the government imposed water-use

restrictions.
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One aspect to consider is that most of the world’s water-related issues are not driven by a

lack of water but result from poor and inefficient water resources governance (UNESCO-iWSSM,
2019). Therefore, robust water monitoring and accounting are key steps toward the sustainable

management of water resources and a better understanding of the surface water dynamics

(UNESCO-WWAP, 2021).

In this context, since the beginning of the drought event, the Brazilian National Water and
Sanitation Agency (ANA) began monitoring the daily levels of 14 large reservoirs in the region,
during selected among those that contribute to the SIN. Besides, this hydrographic region has the
highest stream gage density of stations operated by ANA, with 329 points. Even so, this amount is
far below the estimated number of reservoirs within the region, which according to the official

water bodies vectorized dataset (ANA, 2019b), has more than 20,000 water bodies with a surface

area above lha.

To fill this gap, remote sensing (RS) for earth observations can play an important role in
complementing national hydrometric data and supporting countries to monitor changes in their
surface waters. In this regard, the Sentinel-2 satellite, part of the European Copernicus initiative,
stands out, offering global coverage imagery free of charge. Moreover, these data have a high
spatial resolution (10m to 20m) and revisit frequency of a few days, and it highly improved

systematic earth observations.

To monitor inland surface water, using supervised models is preferable for accuracy.
However, considering their dependency on training data, they may not be the best option at a
regional scale and long time frames due to the presence of different water types, atmospheric
conditions, and a diverse land coverage (Bangira et al., 2019). Based on the Landsat program, the

Global Surface Water (GSW) database provides a comprehensive knowledge base about global
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water extent coverage and its long-term changes over the past decades on a monthly basis (Pekel
et al., 2016). However, it is not suitable for a per-scene operational analysis, and the spatial

resolution of 30m can limit the detection of smaller reservoirs.

Pefia-Luque et al. (2021) tested both optical and radar approaches to evaluate water surface
detection at regional and reservoirs level and concluded that optical was more accurate with a lower
recall error in smaller water bodies. Among the various optical algorithms tested, the better
performance was achieved with agglomerative clustering issued from Waterdetect package
(Cordeiro et al., 2021). It has outperformed other commonly used methods for automatic water
mapping, such as Otsu Masking and Canny Edge filter, especially in smaller water bodies.
Additionally, it has been shown that a windowed approach, with time windows ranging from 5 to
30 days, could improve water detection efficiency using optical images due to the persistent

presence of clouds.

Similarly, a round robin intercomparison of water detection algorithms has been recently
conducted in the context of the World Water project, sponsored by the European Space Agency
(ESA). Several peer-reviewed algorithms using optical or Synthetic Aperture Radar (SAR) or even
a combination of both were tested in 5 distinct sites. The sites covered various ecologic and climatic
regions and included challenging features for water detection, such as clouds, canopy shading, and
fire scars, among others. Despite the combined models (optical + SAR) having achieved the highest
accuracies, this study requires optical images without the presence of clouds to infer water quality
parameters. Among the optical algorithms, the Waterdetect outperformed its peers, with the

advantage of avoiding using ancillary data.

In brief, the Waterdetect algorithm is an unsupervised automatic algorithm based on

multidimensional agglomerative clustering. It achieves high-performance and low memory

171



consumption for high-resolution images by selecting a random sample of the image’s pixels and
then applying a Naive Bayes classifier responsible for generalizing the results to recreate the whole

SCene.

In this context, this article is divided into two main axes to better understand water extent
and water quality dynamics during the severe drought event that hit the southeast of Brazil at a
regional level and by reservoir sizes. The first axis focuses on mapping the water surface
occurrences for each month from 2018 to 2021 and evaluating the drought impact by stratifying
water bodies according to their surface area. The Brazilian water body database is used as a

baseline.

In the second axis, a water quality assessment considering two parameters, turbidity and
Chlorophyll-a (Chl-a), is performed in the Paranapanema basin, a sub-basin of the region of interest
with national importance. The rationale for this axis is to evaluate how the hydrological cycle and,
more specifically, the 2021s drought, contribute to the variation in these water quality parameters

and study the impact on smaller reservoirs that are not covered by conventional field monitoring.

2.3 Materials and Methods

Water Surface Study Area (axis 1)

The Parana is the third biggest Brazilian Hydrographic Region. It has the most significant
industrial park in Brazil and settles more than 32% of the Brazilian population. With a
predominantly tropical climate and a mean annual temperature of 22°C the region accounts for
30% of national consumptive water uses. However, it stores less than 7% of Brazil’s water

availability, evidencing potential pressures on water resources (SRHU-MMA, 2006).

The region has been subject to two significant droughts in the early 2000s and in 2014. The

2000s/2001s event was responsible for Brazil's most significant energy crisis, leading to energy-
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rationing impositions due to limited interconnection among national powerplants. The 2014s event
hit Brazil’s largest metropolis, Sdo Paulo, compromising its water supplies (Melo et al., 2016).
More recently, in 2021, the same region faced a new drought event leading the National Water and
Sanitation Agency (ANA) to raise an alert and declare water scarcity in the region on June 1st,
2021. Additionally, it established a technical follow-up group to continuously monitor and advise

decision-makers about the situation in the basin (ANA, 2021b).

The water authority in Brazil has selected 14 main reservoirs within the Parana
hydrographic region to be monitored continuously as they represent approximately 45% of
hydropower production provided by the SIN. However, due to size restrictions, the region of
interest has been defined to encompass 13 of these reservoirs, and it covers an area of

approximately 320,000km? (Figure 111-15).
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Figure 111-15: (a) Parana Hydrographic Region in the national context; (b) Regions’ water bodies and reservoirs being
monitored by ANA. The black grid represents the region of interest selected for the current study and the Sentinel-2 tiles
considered.
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Water quality study area (axis 2)

For the water quality assessment, we focused on the Paranapanema River basin that covers
approximately 100,000 km? with the river’s main stream extending over 929 km. It flows to the
Parana River, with a mean discharge of 1500 m®/s (Rocha and de Aradjo, 2011). The Paranapanema
River has a total of eight hydropower dams, from which Capivara, Jurumirim and, Chavantes are

the biggest ones considering its reservoirs’ areas.

The area of study selected for the water quality assessment includes 4 Sentinel-2 tiles,
which are highlighted in red in Figure I11-15. Although it does not strictly match the
Paranapanema’s boundaries, 40% of the basin is considered, as well as the two hydroelectric dams
of Jurumirim and Chavantes comprised in the ANA alert report. A schematic flowchart of the

study, main steps, datasets, and methods used is presented in Figure 111-16.

Datasets

The Sentinel-2 Multispectral Imagery satellite (Sentinel-2) was launched in June 2015 by
the European Space Agency (ESA) as part of Europe's Copernicus program to provide frequent
global coverage of Earth's land surface. With two satellites in orbit (Sentinel-2A and Sentinel 2B),
it offers a combined revisit time of 5 days near the Equator line. Each Sentinel-2 tile covers an area
of 100x100km, offering a medium spatial resolution (10m in visible and 20m in shortwave infrared
— SWIR bands) with broad wavelength coverage from 443nm to 2190nm. As the objective of the
current study is to assess the impact of drought in waterbodies stratified by size, this spatial
resolution permits better identification of smaller scale targets when compared to other medium

resolution platforms such as the Landsat program that has a pixel of 30m (Lima et al., 2019).
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For the water surface extent variation analysis, a total of 36 Sentinel 2 tiles have been
selected to cover all the regions of interest, as presented in Figure I11-15. In addition, level 2A
images atmospherically corrected by Sen2Cor (Mueller-Wilm et al., 2019) processor were used

instead of MAJA (Hagolle et al., 2010), as proposed initially by Cordeiro et al. (2021) due to
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Figure I11-6: Schematic flowchart of the main steps, data and methods used in the current study.
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coverage availability in the selected region. A total of 12,000 scenes were processed acquired from
January 2018 to December 2021. Instead of downloading the full dataset, which would take more
than 25Tb of disk storage, an adaptor has been developed for Waterdetect to retrieve the single

bands (Level 2A) on-demand from the Microsoft Planetary Computer cloud.

For the water quality dynamic analysis, we focused on 4 Sentinel-2 tiles covering the
Paranapanema basin for which we had Level-1C images processed by the Glint Removal for
Sentinel (GRS) algorithm. GRS allows removing sunglint reflection at the water surface and
provides atmospheric correction and has shown to provide very robust reflectance assessment over

inland and optically complex waters (Harmel et al., 2018).

It has been shown by Baetens et al. (2019) that MAJA outperforms both FMASK and
specially SEN2COR in terms of cloud masks accuracy. However, the region of interest is a tropical
climate zone with high cloud cover persistence and MAJA cloud masks are not available.
Therefore, an alternative for cloud masking was obtained from the S2Cloudless algorithm,
developed by Sinergise (Zupanc, 2020). S2Cloudless is a pixel-wise supervised Random Forest
algorithm that has been trained globally with MAJA cloud masks to serve as a reference. The
S2Cloudless is available as a cloud probability layer, and the dataset has been downloaded from
the Google Earth Engine (GEE) Platform. The processing to derive cloud shadows is explained in

the Water Detection Method section.

For the water surface analysis, besides the satellite images, the official water body vectorial
dataset, provided by ANA, has also been used as a reference (https://metadados.snirh.gov.br/). The
dataset has a total of 240,899 natural and artificial water bodies with surface areas ranging from
0.1 ha to 21,000 ha (SPR/ANA, 2020), of which 62,566 are located in the Parana hydrographic

region.
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To estimate rainfall in the regions, we’ve used data from the MERGE product from the
INPE (Rozante et al., 2010). This product covers the South American continent, and is derived
from the global Integrated Multi-Satellite Retrievals for GPM (IMERGE) from the National Space
Agency — NASA with the addition of field data from 3,000 rain gauges in the region for model
calibration (Huffman et al., 2019). The MERGE product has 10km of spatial resolution and daily

data from the 1% of June 2000 to the present, the same period used to compute average rainfall.

Field Data

Additional ground data from the 18 biggest reservoirs that belong to SIN and have a surface
area bigger than 10,000ha have been used to validate the water extents obtained from the satellite
images. These reservoirs also include the ones monitored by ANA, as detailed in Table I1I-1. Since
the alert has been raised, 14 of these reservoirs are subject to daily reports issued by ANA and are

identified in the Table 111-1 through the Alert Report column.

Historical daily stage data has been downloaded from the Reservoir’s Monitoring System
(SAR), available online at: https://www.ana.gov.br/sar/. As the historical data provides only the
stage and volume percentage, the stage-area-volume curves for these reservoirs were also
downloaded from the Sistema from the National Information System for Water Resources
(SNIRH), available at: www.snirh.gov.br. The stage-area-volume curves are derived from
bathymetric surveys and updated periodically by each reservoir manager in compliance with the
technical requirements imposed by the Brazilian Electricity Regulatory Agency (ANEEL) and

ANA (ANEEL and ANA, 2010).

For the turbidity validation, field data from 3 stations (Jurumirim, Taciba and Ourinhos),
operated by the Companhia Estadual do Estado de Sdo Paulo (CETESB), were downloaded from

https://sistemainfoaguas.cetesb.sp.gov.br/.
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Table 111-1: Reservoirs with area greater than 10,000ha, considered for the data validation. Reservoirs without stage curve were
excluded from the analysis.

Reservoir Alert Stage Reference

Report Curve Area (km2)
Agua Vermelha Yes Yes 593.53
Barra Bonita Yes Yes 27177
Capivara No Yes 563.61
Emborcacéo Yes Yes 403.87
Ilha Solteira Yes Yes 1172.90
Itumbiara Yes Yes 714.30
Jurumirim Yes Yes 437.13
Porto Colombia No Yes 129.04
Trés Irméos Yes No 653.78
Promisséo Yes Yes 537.82
Nova Ponte Yes Yes 405.25
Volta Grande No Yes 187.00
Sé&o Siméo Yes Yes 614.43
Marimbondo Yes Yes 365.41
Chavantes Yes Yes 363.16
Jupia Yes No 296.16
Mascarenhas Yes Yes 235.65
Nova Avanhandava No Yes 194.62

As Taciba and Ourinhos stations are located in the river stream, they are less prone to high
chl-a concentrations. To add relevant Chl-a measurements, additional data from the stations
Canoas I and Canoas II (station’s ids 64345078 and 64345075 respectively), located inside
reservoirs, were downloaded from the HIDROWEB/SNIRH website
(https://www.snirh.gov.br/hidroweb/). The stations used in water quality validation and their

corresponding geographic coordinates are listed in Table 111-2.
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Table I11-2: Stations used in water quality parameters validation.

Station Name Source Turbidity Chl-a Latitude Longitude

Jurumirim CETESB Yes Yes -23.2608 -49.0011
Taciba CETESB Yes No -22.6598 -51.3798
Ourinhos CETESB Yes No -22.9965 -49.9069
Canoas | — 64345078 ANA No Yes -22.9122 -50.4181
Canoas Il — 64345075 ANA No Yes -22.9378 -50.2492

Water Detection Method

The process to generate the water masks for each Sentinel-2 scene was developed using the
Waterdetect package as the main algorithm. The main workflow has been redesigned due to the
amount of data to be processed. It employs multiple threads to handle concurrent tasks such as

sunglint detection, band downloading, cloud masking, and cloud shadows processing (Figure 111-

17).

Microsoft Google Earth

Planetary Computer Engine
\ ‘

» (" Metadataxml / \7;“.?{1';1;;;:’.: ; i
= » bands Clusleting k=2
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Local Server  [55% N Clustering Water
(Cirrus) e Initialization |m—— testing ditastian fy
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WATERMASK H
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r‘ “ | o Save Naive Bayes Post- [
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Figure 111-7: Schematic diagram of the water detection process. Blue boxes represent different threads. Gray boxes group the
threads that run in parallel. The orange box represents a process that runs entirely in the cloud.

179



The Microsoft Planetary Computer platform was used to retrieve just the necessary bands
on-demand, avoiding the necessity to download complete images beforehand. The Google Earth
Engine was used to process the cloud masks and project their shadows on the ground according to
the sun angle in the scene, similarly to the object matching proposed in the FMask processor (Qiu

etal., 2019).

Additionally, a post-processing phase has been added to the original waterdetect workflow
to check if the water cluster output is within predefined thresholds to avoid wrong detections. If
the post-processing rejects the solution, new sampling is performed, but instead of a completely
random sampling, the algorithm forces a minimum amount of water pixels (defined as MNDWI >

0.4) to be included in the subset.

Surface Area Estimation

Water masks for the 36 tiles were created from January 2018 to December 2021 to estimate
the surface area in the region of interest. First, these masks were combined in 1728 monthly (48
months x 36 tiles) masks, using the median operator as the combining logic. Then, each month was
combined into a single mosaic, and its final resolution was downscaled to 100m of resolution, so
each pixel covered an area of 1 ha. Finally, the downscaling has been performed using the average

operator, so each new downscaled pixel represents the area percentage relative to 1 ha.

To fill up no data gaps that occurs mainly in the wet season months, due to high cloud
persistence, the 48 monthly mosaics were stacked into a data cube. Then, a linear interpolation has
been performed along the time axis to fill the remaining gaps. This whole process is presented in

Figure 111-18.

To provide the surface area estimation stratified by reservoir size, a subsequent processing

has been performed with the aid of the shapefile containing all mapped water bodies from Brazil,
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downloaded from the SNIRH. A 100m buffer was applied to each reservoir, and then the number
of the water pixels inside each polygon were summed up for considered months, with each pixel

representing an area of 0.01ha (10 x 10m).

(a) Median operstar 01_201;3 ( b)

12-2021

{ ] 1 L . |
| Month1  Month2 -« Month 48 Time \&'\J ,
-

7

Figure 111-8: Schematic view of the surface water estimation process steps. (a) Monthly water masks combination; (b) monthly
masks combination into mosaics; (c) time interpolation.

Additionally, to understand the spatial dynamics of the drought period, anomaly maps were
created in regions of 2,000 by 2,000 pixels (40,000 ha) that were overlayed on the hydrography for
visualization purposes. The anomaly was calculated by estimating the number of deviations (z-

scores) away from the mean value in each region, through to the equations:

z; = , Eq. Il1l-4
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-2 Eq. lII-5
g = N )

where o is the standard deviation for each coarse pixel, x; is the value each coarse pixel
assumes through time, N is the number of periods considered (48 months), X is the mean value and

z; is the z-score for element i.

Water Quality Parameters Inversion

The water quality analysis included two parameters: turbidity (T) and Chl-a. For turbidity,
the single-band switching algorithm proposed by Dogliotti et al. (2015) was implemented. The
algorithm makes use of the red band (645 nm) for low turbidity, defined as Rg5(665) < 0.05, which
corresponds to T ~ 15 FNU and the NIR band (842 nm) for higher values. The single-band equation

is defined as follows (Eqg. 111-6):

. A*Res(2)
A= (1 ~ RR5(1)>' Eq. IlI-6
cA

where A* and C* are wavelength-dependent coefficients, with values 228.1 (A™9) and

0.1641 (C"*%) for the red band and values 3078.9 (AN'R) and 0.2112 (CN'R) for the NIR band.

A transition zone between the algorithms is proposed for Rgs(665) ranging from 0.05 to
0.07. In this zone, the weight of the NIR algorithm (w) changes linearly from 0 at Rg5(665) =

0.05 to 1 at Rgg(665) = 0.07, and the blending is done according to

T = (1= wW)Tyeq + Wiz Eq. III-7

For the Chl-a parameter, several retrieval algorithms selected by Neil et al. (2019) have
been tested and validated using field measurements. In the end, the model that proved to be the
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most adherent with the region of study and Chl-a values range of the present study is a simple ratio
between the red-edge (704 nm) and the red (665 nm) bands. This model (Eg. 111-8) has been

originally proposed by Gitelson and Kondratiev.

Chla = Rps(704) +b Eq. IlI-8
= A\ Res(665)) 7

where a = 61.324 and b = —37.94 are determined empirically.

Metrics

The metrics used for evaluating the proposed methodologies are the standard Coefficient
of Determination (R?), relative error, Root Mean Squared Error (RMSE) and the Percentage Bias
(PBIAS) that measures the average tendency of the simulated data to be larger or smaller than their

observed counterparts:

RZ=1- % Eq. III-9
Yi—Yy
relative error = K ; Vi Eq. III-10
i
Eq. IlI-11
A~ _ ) 2
RMSE — /Z S ,
n
v, — V; Eqg. Ill-12
paias = 100+ (2-20) 7
XY

where y; is the true observed measurement, ¥, is the value estimated by the model, y is the

mean of the observed measurements, and n is the sample size.
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2.4 Results

Water Surface Analysis (axis 1)

The proposed methodology has been applied to assess the 2021 Brazilian drought by
analyzing the water surface variability as a function of time for a large number of water bodies,
most of them not being monitored by local authorities. Initially, data validation was performed to
compare the results obtained from remote sensing with the areas benefiting from field monitoring,
which correspond to the largest reservoirs (Table 111-1). Then, three analyses were proposed. First,
an overall analysis, considering all the water bodies within the area of interest to assess how the
basin behaved during the stress period. Then, a second analysis in which the water bodies were
grouped by area was performed to assess how the drought has impacted reservoirs of different
sizes. In the end, anomaly maps were produced to assess how the drought was distributed spatially

in the region.

Validation of remote sensing derived water surface

The proposed methodology for surface water extraction has been validated with field
measurements provided by ANA from 16 reservoirs (Table I11-1). Surface areas sum up to 8,144
km? and represent approximately 70% of the estimated water area for the entire region (11,888
km?). Unfortunately, two reservoirs don’t have stage curves (Trés Irmdos and Jupia) and were

excluded from the validation.

The field areas for each reservoir were obtained from the historical stage data and the stage
curves. The monthly average was computed to convert from daily data. The results of the field-

measured areas and comparison with remote sensed obtained values are shown in
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Figure 111-9: (a) Monthly water surface area time-series obtained from field measurements (red line) and from the satellite imagery
(blue line) for the 16 selected reservoirs, total volume as measured in the field (green line) and errors between field and satellite
measurements (purple bars); (b) Correlation between actual field measured area and estimated remote sensing area.
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Figure 111-19b presents the correlation between actual field area versus predicted remote sensing
area. The graph shows an excellent overall adherence with a coefficient of determination R2 =0.92,

and a maximum relative error of 7.6% occurred in October 2019 (
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Figure 111-19a, error bars). To check for possible bias, PBIAS was evaluated and resulted in -0.18%,

indicating an  almost unbiased result. However, a visual inspection of
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Figure 111-19 shows that most of the underestimation occurs in the wet season. This generalized

underestimation of the area extent identified for high filling periods might be explained by the

dense vegetation often covering the rarely flooded shores and upstream parts of the reservoirs, as

noted by Pefia-Luque et al. (2021). Other minor differences may be explained by the amount of no

data in the considered month, mainly due to clouds or other uncertainties in the water detection

process due to confusing pixels such as shadows, dark vegetation, and others (Cordeiro et al.,

2021).
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Overall water extent

The overall analysis assessed how the total water extent decreased in the 2021s drought and
compared it to the previous years. All water pixels in the region of interest, in full 20m resolution,
have been included, independent of whether they represent rivers, reservoirs, or smaller ponds. The
time series is presented in Figure 111-20. The red dot indicates the date when ANA declared the
critical drought situation in the basin, on June 1, 2021. It can be noted that the high filling rates
usually occur between April and June, corresponding to the end of the wet season, which goes from
September to May. The lower accumulation for 2020 occurred in November and represented
approximately 6,3% less surface area than the lower accumulation months of the two preceding

years (2018 and 2019), which also happened to be in November.

Moreover, the maximum surface area that typically surpasses 12,000km?2 was only 11,478
km? (7% lower) on Mars 2021 due to the scarcity of rains in the region during the 2020/21 rainy
season. According to a Climate Situation Report produced by the National Institute for Spatial
Research (INPE) issued on May 27, 2021, the accumulated monthly rains were below average from
February 2021 to April 2021, and the forecast pointed to rains lower than the mean up to September
2021. At the end of 2021, the surface reached its minimum area of 10,200km? in October, a value

slightly lower than the minimum that occurred the previous year (10,350km?).
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Figure 111-20: Overall water surface extents (lower panel) in the study area. Red dot indicates when ANA raised the drought alert
in the basin. In the upper panel, red bars indicate rainfall below average and blue bars indicate rainfall above average,
according to MERGE product. The dashed line represents the average rainfall computed between 2000-2019.

Assessment of the spatial pattern of the drought

The spatial assessment has been conducted to analyze how the basin has been affected
spatially by the 2021’s drought. The years 2018 and 2019 were considered as references for the
computation of average area and standard deviation in order to calculate the z-scores for 2020 and
2021. Figure 111-21 shows the distribution of the water surface anomalies, expressed in terms of z-
score statistics (Eq. 111-2) for the whole region of interest. The water surface anomalies for the
period of maximum water storage (April 2020) (Figure 111-21a), corresponding to the final stage
of the rainy season, showed that the northern portion of the region of interest has a water surface
above average, as expected for the period. However, the southern part is slightly below average,

notably the Capivara reservoir and the Tieté river (see Figure 111-15).

Comparing the dry period of November 2020 to the water storage capacity peak in April
2020 (Figure 111-21b), we can note a substantial drop in surface area in all locations but the
southwest. The most significant drops occurred in the northern areas, especially in the reservoirs

Itumbiara (highest area reduction), Sdo Sim&o, Agua Vermelha, and Marimbondo (Figure 111-15).
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Figure 111-10: Water surface anomaly maps, represented in percentage of change. (a) April’s 2020 anomaly compared to the mean;
(b) April’s 2021 anomaly compared to the mean of 2018 and 2019; (c) November 2020 compared to April 2020; (d) November 2021
compared to November 2020.
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Moving forward the analysis to April 2021, which marked the beginning of the dry season
and the period when the reservoirs were expected to be fully recovered, it can be seen from Figure
I11-21c that none of the biggest reservoirs in the region are above average. The situation worsened
until November 2021, when the overall water storage reached its minimum for the whole period
since 2018. Figure 111-21d compares the drought of 2021 to the drought of the previous year (i.e.,
2020). Most reservoirs remained stable, with percentage variations smaller than 2%. However, a
critical depletion can be noted in the reservoirs of llha Solteira, located in the Parana river, and

Trés Irmdos, located in the Tieté river.

Impact of the drought as a function of water body size

In the stratified analysis, the water bodies were categorized into three groups according to
their surface areas: Large — area greater than 10,000ha; Medium — the area between 100ha and
10,000 ha; and Small — area between 1ha and 100ha. As the order of greatness of the water surface
area is different for the three categories, the results were plotted in a graph with the anomaly

measured in percentage referenced to the maximum water extent in the period.

Figure 111-22 shows there exists similar seasonal trend between small and large water
bodies, with both groups presenting the same water depletion pattern, especially during the 2021s
drought, but with the smaller water body class showing greater losses (-30% in October relatively

to the maximum extent over the 2018/2021 period) than the larger body classes (-25% in November
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2021). The small water bodies present rapid variations, especially during the dry period while the

medium size water bodies exhibit almost no variations.
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Figure I11-12: Water surface variation, measured in percentage, in comparison to the maximum extents for the water bodies
grouped by size.
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Figure I11-11: Overall water surface extents (lower panel) in the Paranapanema basin. In the upper panel, red bars indicate
rainfall below average and blue bars indicate rainfall above average, according to MERGE product. The dashed line represents
the average rainfall computed between 2000-2019.
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Analysis of the Water Quality trend during the drought period (axis 2)

Paranapanema Water Surface Extents

To better understand the behavior of water quality parameters in the Paranapanema basin,
it is essential to note that its surface extents have a unique behavior, differing from the overall
behavior of the region of interest, as depicted in Figure 111-23. It can be seen from the graph that
the basin presents a descending trend from January 2018 onwards, with the lower level occurring
in November 2020, before the 2021 drought event. This behavior suggests a more complex pattern

involving interannual variability in the local water resource availability and management.

Water Quality Data Validation

Turbidity retrievals have been validated with field measurements from Jurumirim, Taciba,
and Ourinhos stations, with values up to 100 FNU. It can be noted from the graphs (Figure 111-24)
a positive BIAS with the algorithm delivering values slightly higher than those measured,

especially in Jurumirim and Taciba stations, during 2016.

Figure 111-13: Comparison between remote sensing derived turbidity (blue lines) and field measurements (red dots) for
Jurumirim, Taciba and Ourinhos stations in the Paranapanema basin.
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Some spikes in all three satellite retrieved series can be seen, but it is difficult to confirm
or discard them due to the absence of field measurements in matching periods. The actual versus
predicted scatter plot has been prepared by matching field measurements with the closest available
image and limiting the maximum date difference to 10 days. The graph (Figure 111-25a) shows a

good correlation, with RMSE = 10.6 FNU and a RMSLE of 0.46 FNU.
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Figure 111-14: (a) Comparison between field turbidity (x axis) and retrieved remote sensing turbidity (y axis), for Jurumirim,
Taciba and Ourinhos stations; (a) Comparison between field Chl-a (x axis) and retrieved remote sensing Chl-a (y axis), for
Jurumirim, Canoas | and Canoas |1 stations. Mashup performed considering a maximum data lag of 10 days.

A similar validation has been performed for Chl-a but replacing Taciba and Ourinhos river
stations with Canoas I and Canoas II (ANA’s station ids: 64345078 and 64345075 respectively)
reservoirs stations, as presented in Figure 111-26. Although these stations are located inside
medium-sized reservoirs, field measurements are mainly in the low range, with a maximum value

of 30.4 mg/m? in Canoas I, which occurred on March 20.

195



The actual versus predicted scatter plot for Chl-a (Figure 111-25b) shows a more significant

dispersion when compared to turbidity with a RMSE of 6.4 mg/m® and a RMSLE of 0.873m°.
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Figure 111-15: Comparison between remote sensing derived Chl-a (blue lines) and field measurements (red dots) for Jurumirim,
Canoas | and Canoas Il stations in the Paranapanema basin

Water Quality Maps

To analyze the effects of the 2021s drought on the water quality and understand its spatial
dynamics within the basin, monthly Chl-a and turbidity maps have been elaborated at 20-meter
resolution. These maps represent the median value obtained from all valid pixels in the specified
month, discarding invalid pixels such as clouds, shadows, negative reflectance values, and other
anomalies. Considering April 2018 has the higher surface area and November 2020 the lowest,
these two dates are plotted as examples in Figure 111-27 and Figure 111-28 for Chl-a and turbidity,

respectively.
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In Figure 111-27, we can note an overall higher level of eutrophication in the November
2020 image on all water bodies within the region of interest. Higher water residence time (WRT)
can lead to higher nutrients accumulation and stratification, resulting in excess phytoplankton
growth (Olsson et al., 2022). Therefore, that observation matches the expected behavior, as
November 2020 is the end of the dry season, representing the lowest water storage and inflow in

the basin, which diminishes WRT.

On the other hand, turbidity maps (Figure 111-28) doesn’t show the same behavior,

suggesting that turbidity and Chl-a are driven by different factors.

Water Quality Histograms

To go beyond a simple visualization of the water quality parameters for individual dates,
we produced monthly Chl-a and turbidity histograms elaborated using the pixel values within all
the water bodies with surface size greater than 1 ha identified in the Paranapanema region of
interest. A total of 48 monthly Chl-a and turbidity histograms have been combined into Ridges’
graphs for easy visualization. Due to the range of Chl-a values (from 0 up to 1,000 mg/m?3), the

histograms’ bins were defined using logarithmic scale, from 10° to 10% in 0.1 steps in the exponent.

Figure 111-29 presents the Chl-a histograms. The colors and annotated values represent the
median Chl-a value for each month, ranging from 4.18 mg/® in Mars 2019 to 17.63 mg/m? in
September 2021. There is an overall uptrend in eutrophication levels through these years, resulting
in higher Chl-a values, calculated as the mean from the monthly medians, from 7.04 mg/® (2018)

to 12.81 mg/® (2021), which represents an increase of 82%.
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Figure I11-16: Chl-a concentration maps for the Paranapanema region. (a) monthly composite for 04/2018; and (b) monthly composite for 11/2020
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Figure I11-17: Turbidity concentration maps for the Paranapanema region. (a) monthly composite for 04/2018; and (b) monthly composite for 11/2020
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When analyzing each year separately, eutrophication levels remained stable throughout
2018 and did not present a visible pattern. However, in 2019, a slight increase in Chl-a is noticeable
in the dry season, from June to November. In 2020, when the basin reached the lowest accumulation
levels, the mean Chl-a increased, especially in September and October, achieving the highest
median Chl-a in October (16.73 mg/m?). The last quarter of 2020 is also marked by a significant
drop in water surface (from 202,000 km? in September 2020 to 187,000km? in December 2020),
as seen in Error! Reference source not found.. In 2021, Chl-a levels remained higher than the
mean during the whole year and eutrophication reached its peaks from June to October with median
Chl-a consistently above 15 mg/m® and a maximum value of 17.63 mg/m® in September 2021.
These values indicate that most of the water surface would be rated as mesotrophic or eutrophic

according to the classification schema proposed by Carlson and Simpson (1996).

Additionally, the histograms become bimodal with second peak of occurrences around 70
— 100 mg/m? in several months (e.g., June, July, August, and September 2018; September 2019;

among others).

Turbidity histograms are presented in Figure 111-30. Similar to Chl-a, colors and annotated
values represent the median turbidity retrieved in FNU for each month, ranging from 2.18 FNU,
which occurred in May 2021, to 13.92 FNU In January 2018. Contrary to the Chl-a behavior,
turbidity presented an overall downtrend in the period. Yearly mean turbidity monotonically
decreased from 7.34 FNU in 2018 to 3.42 FNU in 2021. The behavior within each year is also
opposite to the one seen in Chl-a, with higher turbidity on rainy months (October to Mars) and
lower turbidity in the dry season (April to September). Higher turbidity values could be observed
in January, and February 2018 (13.92 and 12.27 FNU, respectively), and the lowest values occurred

in May, June, and July 2021 (2.18, 2.20, and 2.19 FNU, respectively).
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Figure 111-18: Chl-a histograms for the Paranapanema region of interest. Annotated values and color scale indicate the median Chl-a value in the month.
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However, it can be noted that the turbidity histograms show multimodal patterns depending
on the period of the hydrological cycle, probably revealing different dynamic as a function of the

water body use and size class

2.5 Discussion

Water surface variation during the 2021 drought

In this study, different assessments have been performed to better understand the effects of
the 2021’s drought and its impact on the water surface availability in the Parana hydrographic
region through high-resolution satellite imagery. Results from the validation performed with field
measurements from 16 of the biggest reservoirs in the region, with an area greater than 10,000ha,
showed a very good agreement between field measurements and remote sensing derived data (R2
of 0.91). It is well-known that area and volume do not follow a linear relationship and will depend
on the bathymetry of each reservoir. However, this linear relationship can be established depending
on the operational range. These finds reveal a great potential of the presented methodology for

assessing water availability on a regional scale during hydrological droughts.

The overall surface assessment (Figure 111-20), which also included the smaller reservoirs,
showed a behavior close to the one observed for the biggest reservoirs. This result is mostly driven
by the fact that the biggest reservoirs represent almost 70% of the water surface in the study region.
However, an important finding is that despite the 2021 event being noticed as a major drought, the
overall water area and water storage remained similar to those of the preceding year (2020). We
inferred that 2020’s dry period represented a significant drop in terms of water surface compared
to the previous years of 2018 and 2019, and that the region did not recover average water storage

levels in 2021 due to lower rainfall rates.
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In addition to the high drop in the water areas that occurred in November 2020, the rainfall
graph (Figure 111-20, top panel), obtained from the MERGE product, shows that from September
2020 to September 2021, all the months but one (December 2020) had observed rainfall rates lower
than the historical mean. Together with the low volume of the monitored reservoirs in May 2021,
these observations led the Agency to raise the alert on June 1. If this rain anomaly had been timely
predicted, the authorities could have raised the alert in advance, instead of waiting to the end of the
wet season, to better mitigate the impacts. From this date, several rules have been imposed
concerning water withdrawals and hydropower generation in the basin and the water extents
dropped continuously to reach a new minimum in November 2021. Even with these adverse
events, the overall situation of the basin in November 2021 remained comparable to the areas from
November 2020, which can highlight the efficacy of the efforts envisaged by the authorities to

control water consumption in the basin.

The stratified analysis (Figure 111-22) was intended to assess how the drought impacted
water bodies of different sizes. Results are noisier for small-size water bodies. This can be due to
detection issues related to sensor limitations in this size range. Although the water detection
methodology employed in this study can detect water bodies as small as 1ha with an overall kappa
score superior to 0.8 (Cordeiro et al., 2021), the spatial resolution may struggle to capture the minor

area variations of such small bodies.

Additionally, these results reveal that smaller water bodies lost slightly more area than the
biggest ones, -31% versus -25% respectively, compared to the highest accumulation in the period.
That’s probably due to a higher percentage of natural water bodies and a lack of proper
management in these smaller reservoirs. This is also evidence that good water use management can

mitigate drought impacts.
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Conversely, medium water bodies remained stable throughout the analysis, showing good
resilience. To understand this unexpected behavior, it is essential to investigate its members. The
medium-size group has 60 water bodies with a total area of 750 km?. The 14 biggest water bodies
in this group account for 80% of the total water surface and, among these, 13 are run-of-river
(without regularization) hydroelectric dams (in descending order of water surface: Ibitinga,
Taquarugu, Cachoeira Dourada, Salto, Estreito, Bariri, Salto do Rio Verdinho, Tibaji, Canoas I,
Ituparanga, Coqueiros, Canoas Il and Piraju) and just one has regulated storage reservoir (Cacgu).
In run-of-river dams the discharge upstream and downstream of the dam are the same, by

definition, so the reservoir is not designed to store water and its level remains constant.

The last analysis was intended to assess the spatial distribution of the drought impacts in
the region. The results (Figure 111-21) reveal that the drought impacted sub-regions differently. In
the direct comparison of November 2021 to November 2020 (Figure I11-21d), it is clear that the
effects were mostly localized in the middle west, around the reservoirs of llha Solteira (Parana
river) and Trés Irmdos (Tieté river). Moreover, water surfaces along the Tieté river and between
Tieté and Paranapanema rivers were also below the previous year. All other regions presented an
increase in the water surfaces. That was the case with the reservoirs Agua Vermelha and
Marimbondo in the Grande river, Itumbiara and Emborcacéo in the Paranaiba river and Nova Ponte
in the Araguari river. Considering all these reservoirs drain to the Ilha Solteira reservoir, this spatial

behavior may be due to operational rules enforced by the regulatory authorities.

Water Quality retrieval accuracy
The actual versus predicted graph for turbidity retrievals (Figure 111-25) presented a good
correlation with RMSE = 10.6 FTU. However, in the time series (Figure 111-24), it is possible to

note some outliers in the RS time series without a corresponding elevation on the field
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measurements. These spikes can be verified in Jurumirim (Mars 21, 2016), Taciba (July 22 and
November 19, 2017), and Ourinhos (June 2, 2016). The steepest spike occurred in Ourinhos, with

a peak of 93 FNU, while field measurements remained around 10 FNU.

A visual inspection of the satellite images was done to verify the spike in Ourinhos. The
satellite time series is already cleaned for invalid pixels and cloud occurrences, as explained in the
2.3- Materials and Methods section. Considering the high occurrence of clouds in this period, the
valid images are only available on the following days: April 3, June 2, and July 17, and RGB image
crops of 100 by 100 pixels have been selected (Figure I11-31). The top images correspond to RGB
crops from L2A images, and the bottom images from GRS corrected images. Red dots indicate the
exact retrieval position. From the image crops, it seems that a punctual event occurred on June 2.
This occurrence could have elevated the turbidity to levels far above the surrounding dates,

corroborating with the satellite-retrieved time series.

Chl-a validation is more challenging due to the absence of relevant concentrations (most
field measurements fall between 0 and 10 mg/m?) and to the noisier signal produced. This led to a
higher RMSLE error (0.873 mg/m®) when compared to turbidity RMSLE (0.458 FNU). Several
reasons may have contributed to this worse performance: difficulty to retrieve low level of Chl-a
concentration over inland waters with varying level of inorganic turbidity that may dominate the

overall water optical properties, adjacency effects and atmospheric interference.

A visual inspection like the one performed for turbidity was done on the October 14, 2020,
spike on the Canoas | series (Figure 111-32). The crop from October 14 shows a greenish pattern
equivalent to an algae bloom. This pattern is not present on nearby dates. Additionally, we can note
a strong sunglint in the image from November 8, but it has been almost entirely suppressed on the

GRS-corrected image and did not affect the Chl-a retrieval.
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Figure 111-20: Crops from the Ourinhos station, on dates surrounding the turbidity peak value occurred on June 2, 2016. Top images
represent L2A RGB crops and bottom images GRS corrected water bodies. Red dot marks the retrieval position.

10-04-2020 10-14-2020 11-08-2020

Figure 111-21: Crops from the Canoas | station, on dates surrounding the Chl-a peak value occurred on October 14, 2020. Top images
represent L2A RGB crops and bottom images GRS corrected water bodies. Red dot marks the retrieval position.
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Chl-a Analysis

The histograms presented in section Error! Reference source not found. Error!
Reference source not found. show an inverse relationship between Chl-a levels and water surface
and, thus, water storage. Considering all water bodies in the area of interest, there is an overall
water quality decay during dry months (from June to October) and drought events. In contrast,
eutrophication is lower throughout the wet months (from November to April). This phenomenon
remains true if we observe it from a yearly scale. In Figure 111-23, it is possible to note that the
overall area decreased from 218,000 km? in January 2018 to less than 198,000 km? in December
2021 (-9%). In the same period, there was a monotonic increase in the yearly mean Chl-a from

7.04 mg/m® to 12.81 mg/m?.

Interestingly, the quarterly field measurements (Figure 111-26) do not give us the whole
picture due to the difficulty to capture slight variation in eutrophication patterns in space and time
using pointwise estimates on a very limited number of water bodies. It is possible to note from
Figure 111-27 that the biggest reservoirs may present distinct trophic states simultaneously, as a

function of the location within the water body.

Table 111-3: Reservoirs’ size classes considered for the stratified analysis.

Size Class Minimum Maximum
size (ha) size (ha)

Very Small 2 5
Small 5 10
Medium 10 100
Large 100 -

To understand the impact on water quality caused by the drought on different size groups,
we also performed a water quality analysis stratified by water body surface. A total of 4 size classes

(Table 111-3) have been defined to assess the impact on reservoirs of diverse sizes.
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To highlight a significant Chl-a difference, the histograms for May 2018 (4.23 mg/m?®) and
September 2021 (17,63 mg/m?®) are plotted for comparison (Figure 111-33a, c). For visualization
purposes, the bars have been replaced by the Kernel Density Estimation density function. Vertical
lines represent the mode for each size class for visual reference. In May 2018, the median Chl-a
for larger water bodies was 4.0 mg/m?, indicating mostly oligotrophic and mesotrophic waters in
this size range in this month, according to the trophic class divisions proposed by Carlson and
Simpson (1996). In contrast, smaller water bodies presented similar eutrophic states with median
Chl-a values between 25.4 and 26,1 mg/m®. Moving forward to the end of the 2021s dry season,
when the area achieved the worst month in terms of eutrophication (September), the large group
presented a significant rise in the median Chl-a (17.4 mg/m®). This change represents an increment
of 513% compared to May 2018 and this value corresponds to a eutrophic state. Very small, small,
and medium water bodies presented a negligible variation with median values of 24.52, 24.75 and

22.92 mg/m3, in September 2021, respectively.

These results unveil that, in general, larger water bodies are prone to a greater impact in
terms of water quality compared to smaller water bodies during the dry period, and these two
groups have distinct dynamics for the region under study. Larger water bodies eutrophication is
inversely correlated to general inflow in the basin, with higher values during the dry seasons. To
visualize this difference, Figure 111-34 presents bimonthly crops of the 2019s dry season, when the
Chl-a raised from 4.18 mg/m?® on Mars to 12.6 mg/m? in September. Small and very small water
bodies are presented in Figure 111-34a (center coordinates: 49.206W and 23.514S), with surfaces
varying from 1 to 6 ha. Figure I11-34b shows a medium-size reservoir called Couro de Boi, with
70ha (center coordinates: 51.164W and 23.132S). The third row (Figure 111-34c) is the

hydroelectric dam Piraju, with 1400ha (center coordinates: 49.334W and 23.173S).
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Density

Concerning the bimodal histogram that occurs in September 2019 and other months with
high eutrophication, a careful analysis of the maps (Figure 111-27) gives us a clue that calls for
further investigation. The hypereutrophic water body that appears in the upper right section of the

map is the Barra Bonita reservoir. This specific reservoir does not belong to the Paranapanema

Figure 111-22: (a, ¢) Chl-a density histograms and (b, c) turbidity density histograms for the Paranapanema basin.

basin. Instead, it is located in the Tieté basin, that is known for being a very polluted river in
southeast of Brazil. To test this hypothesis, the monthly histograms have been re-generated
discarding the effects of Barra Bonita reservoir and the results are seen on Figure 111-35. It is

possible to note that the peak around 100mg/m?3 disappears as expected.
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Figure 111-23: Evolution in Chl-a during 2019s dry season for the following size classes: (a) Small and very small water bodies (center coordinates: 49.206W and 23.514S); (b) Couro do
Boi reservoir (center coordinates: 51.164W and 23.132S); and Piraju hydroelectric dam (center coordinates: 49.334W and 23.173S).

211



2018 (Yearly mean chi-a 6.33) 2019 (Yearly mean chl-a- 7.94) 2020 (Yearly mean chl-a: 10 20) 2021 (early mean chl-a: 11.72)

834

mg/m?*
g 798
ma/m*
1y 10t 0 10

e Median Chl-a (mg/m?)

40 8.0 12.0 16.0 20

Figure I11-24: Chl-a histograms for the Paranapanema region of interest, without Barra Bonita reservoir. Annotated values and color scale indicate the median Chl-a value in the month.
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Turbidity Analysis

Turbidity retrievals showed better accuracy than Chl-a when validated with field
measurements, evidencing that NIR bands have a good sensibility for this parameter. Analyzing
the turbidity histograms presented in Figure 111-30, it is possible to observe the opposite behavior
compared to Chl-a. Higher turbidity levels appear in the wet season, with a peak in January 2018
(13.92 FNU), and lower levels in the dry period, reaching a minimum level in May 2021 (2.18
FNU) during the drought period. Rain and water retention time seem to play a role in turbidity as
they do in Chl-a, but with different outcomes. During raining season, more sediment matter is
carried to rivers through erosion. Besides that, lower WRT and higher river discharges induce

resuspension in bed sediments.

Another observation is that turbidity histograms tend to be multimodal during high median
values, while Chl-a are all unimodal after the correction for Barra Bonita. This may be evidence
that turbidity does not affect the water bodies uniformly but shows spatially localized patterns with
concentrated turbidity, typically in reservoirs' intakes, as seen in the crops from January 2018

(Figure 111-36).

Turbidity (FNU)
0 15 30 45 60

Figure 111-25: Turbidity levels for Capivara (a), Jurumirim (b) and Chavantes (c) reservoirs.
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Additionally, the same stratified analysis has been performed for turbidity, but January
2018 and May 2021 have been chosen as they have the highest and lowest median turbidity,

respectively. The stratified histograms are presented in Figure 111-33b, d.

Similar to the observed for Chl-a, large water bodies with surface area greater than 100ha
were more affected by turbidity than smaller bodies. Median turbidity in large water bodies varied
from 14.28 FNU in January 2018 to 2.16 FNU in May 2021. In the same period, variation in very
small, small, and medium water bodies was marginal, from 4.81, 4.90, 4.15 FNU to 3.62, 3.49,
3.04 FNU. This apparent lower variability may be, in fact, due to the monthly time scale that has
been used for this study. Sediment transport and resuspension in small water bodies may be too
much rapid to be analyzed at this time scale as the hydrological processes are much more dynamic
in small catchments. Further studies are necessary to confirm these findings and explain their

mechanisms.

2.6 Conclusion
Continuous water availability and quality monitoring are essential for proper water resource
management, especially during critical periods such as a significant drought. However, the
dynamics of water quality and even volume accumulation in a basin as big as the Parana is complex
and challenging to be analyzed by field measurements that are spatially punctual and sparse in

time.

Considering the increasing availability of sensors with a more satisfactory spatial and
temporal resolution, the use of satellite imagery can serve as a complement to field surveys.

However, a comprehensive methodology is still lacking for operational use on a regional scale.

This study proposed to assess the effects of the 2021s drought that hit Brazil’s southeast

region, notably the Parana hydrographic region, through Sentinel-2 imagery. For that, a
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methodology has been developed to analyze the water surface and quality dynamics in space and
time. The Waterdetect software (Cordeiro et al., 2021) has been used to create water surface maps
and the quality parameters were retrieved through models available in the literature. The region of
interest covers approximately 320,000 km? and has more than 22,000 water bodies with more than

lha.

Water surface retrieved by Sentinel-2’s 10m resolution optical sensor a presented good
correlation to water accumulation for big reservoirs (R?=0.955) and stood out as a feasible solution
to monitor large surface areas. The overall water extents assessment results showed that the basin
was already at critical levels the preceding year (2020), and the alert could have been raised earlier.
Moreover, the spatial assessment showed that the drought affected the basin differently. Compared
to the dry period of the previous year, most areas remained stable while the depletion was
concentrated in the middle-west of the basin, especially around the reservoirs of Ilha Solteira and

Trés Irmaos.

In the water quality domain, turbidity and Chl-a parameters were retrieved for all water
pixels through models from the literature. Eutrophication levels are directly correlated with the
WRT, being higher in dry periods (lower water inflow) and lower in wet seasons (higher water
inflow). As expected, higher Chl-a levels for the whole area were observed during the 2021s
drought and dry months. On average, Chl-a increased 84% in 2021 (11.72 mg/m®) compared to
2018 (6.33 mg/m?) levels. However, the stratified analysis demonstrates that smaller water bodies
(below 100 ha) were less affected by the water dynamics in the basin, maintaining their trophic

state stable throughout the period. Further study is necessary to confirm these findings.

Concerning turbidity levels, we observed the opposite phenomenon. Turbidity was

substantially lower in dry periods and during the 2021s drought, evidencing that different
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mechanisms are involved. Turbidity peaks during the wet season suggests it is related to an increase
in material eroded to water bodies during rain or resuspension from river bed caused by higher
discharges. Additionally, higher WRT in the dry period contributes to the deposition of sediment

matter on the river bed.

In summary, regional-scale water monitoring is still a big challenge for decision-makers
and authorities. Despite the instability on smaller water bodies, water surface monitoring from
satellite images has proved to be a viable option and provides a good estimation for great areas. It
is also worth mentioning that as technology advances, orbital sensors will provide us higher
resolutions allowing for more precise measurements, regardless of water bodies size. Concerning
water quality, the biggest challenge is ensuring a good accuracy from inversion models, which
makes room for further research in this subject. Even so, the results were promising and presented
us with great potential for large-scale monitoring and possible identification of trends and

anomalies.
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Conclusion and Prospects

The significant increase in the number of optical satellite sensors available and the ongoing
improvement of their spatial, temporal, and spectral resolution pave the way for its application in

integrated water resources management.

In recent years, more and more scientific publications have been devoted to the use of RS
in the context of inland water bodies for water quality monitoring. However, in contrast to products
available for land or oceanic applications (e.g., land use, sea surface temperature, and others), there
are neither regional nor global products available for operational monitoring of inland water bodies.
The reason for this lack of robust products lies in the complex interactions among water optically
active constituents, such as organic and inorganic matter, and the interference caused by
atmospheric conditions that represent major challenges that need to be overcome for a global use

of RS images for lakes, reservoirs, and rivers.

During the present thesis, several methodologies have been developed towards robustness,
scale, and automation of inland water assessment, through the extensive use of data science
techniques, such as machine learning and big data. In this context, three main axes have been

proposed, as depicted in Figure 1V-1, and are represented by boxes in orange, blue and green colors.

Moreover, orchestrating all the steps required for proper inland water assessment, from
imagery acquisition, preprocessing and final analysis, represents an additional layer of complexity

to the study.
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Figure 1V-1: Schematic view of the steps involved in assessing inland water quality from satellite remote sensed imagery.
Boxes in orange represent steps covered in axis 1 (water detection), boxes in blue represent axis 2 (water classification) and
green boxes represent axis 3 (generalization and analysis). Names inside parentheses identify python packages developed in

the context of the thesis.
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In the first axis, represented by the orange box in Figure 1V-1, the water detection problem
has been addressed through the development of an unsupervised clustering algorithm called
waterdetect (Cordeiro et al., 2021). The method, available as an open-source Python package at
www.github.com/cordmaur/waterdetect, uses a multidimensional clustering approach based on
reflectance values and water indices to identify water pixels without previous knowledge of the
scene or other ancillary data and threshold calibration. To guarantee high-performance and low
memory consumption for high resolution imagery, this process is coupled with random sampling

and a subsequent machine learning classifier to reconstruct the solution to the whole scene.

The proposed method is independent of the sensor and the coverage area being analyzed
and can be applied to various conditions. Compared to the most common thresholding approaches
and to the three major Level 2 processors available for Sentinel-2, namely, MAJA, Sen2Cor, and
FMask, the results showed that the waterdetect yielded the best accuracy for all body size ranges
analyzed. Furthermore, its performance, robustness, and simplicity make it ideal for operational

use with optical imagery.

During the thesis, further studies have been conducted in this field and the original
algorithm has been much improved since its conception. Additionally, | participated as co-author
in three more papers that addressed the water detection subject in diverse situations. In Pefia-Luque
et al. (2021), we confirmed the advantage of using multidimensional clustering over other
traditional water detection methods (Canny-edge and Hue, Saturation, Value - HSV) when

classifying water at both local (i.e., reservoir) and regional levels (Annex I).

In Tottrup et al. (2022) , the waterdetect algorithm was compared with other water
detection methods and tested in several challenging conditions (Annex Il). Results indicated that

waterdetect had higher average accuracy than other tested methods that used only optical input.
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In the third paper (Tayer et al., 2022, in review), we compared the performance of Sentinel-
2, Planetscope and sharpened imagery to detect an intermittent river in western Australia. The

relevance of the SWIR band for water detection was also assessed.

The second axis, represented by the blue boxes in Figure 1VV-1, focused on employing water
classification schemes to improve the accuracy of water quality parameters inversion. Suspended
sediment matter (SPM) has been chosen for the study as it is the first driver of the water leaving
radiance over inland waters. In contrast to previous studies with optical water types (OWT), our
objective was to define water classes based on their reflectance spectra, that could maximize the

inversion accuracy rather than provide a comprehensive qualitative classification schema of water

types.

Once again, we used unsupervised machine learning (agglomerative clustering) to classify
the spectra from more than 1,000 field measurements into several groups. Clustering performance

was analyzed by error metrics in terms of SPM retrieval.

The results show that calibrating SPM models for each optical water type (OWT) can
increase the overall retrieval accuracy without needing to produce one model for each river, basin,
or geographic region. The conclusion is that four classes are enough, and it matches the RMSLE
accuracy achieved by calibrating one model for each of the 13 areas included in the study. To the
best of our knowledge, this study is the first that focused on optimizing the classes for SPM

retrieval, specifically over inland waters.

The third axis (green boxes in Figure V-1 presented the methodologies developed toward
the large-scale generalization and regional analysis of inland water surface and water quality
parameters. Concepts of Big Data such as cloud computing and parallel processing were employed

to enable the processing of thousands of images that would not be feasible with conventional tools.
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Furthermore, we proposed an assessment methodology, presented as a case study, to assess the
effects of the major drought that hit Brazil’s southeast in 2021 on the water quality of large, medium

and small reservaoirs.

In the case study, remote sensing-retrieved water surface was used to analyze the drought
effects on reservoirs of different sizes and its spatial dynamics. Initially, the data validation showed
a good agreement between RS estimated surface and ground truth data (R?= 0.92). Additionally, a
linear relationship could be established between water surface and the accumulated volume in big
reservoirs with a determination coefficient R? of 0.96, demonstrating the feasibility of RS to

monitor accurately the variability of reservoir surfaces.

The stratified analysis presented little difference between small and large water bodies in
terms of total depletion during the drought period. The spatial analysis showed that the effects of
the drought were more prominent in the center-west of the basin, while other areas remained at
normal levels. Considering that rain levels remained below average in the region, most of this

resilience can be credited to the restrictions applied by regulatory authorities.

To assess the water quality parameters (Chl-a and turbidity), monthly histograms have been
elaborated using the pixel values within all water bodies with surface sizes greater than 1ha and
presented as Ridge’s graphs. Results for Chl-a showed that eutrophication is significantly higher
in the dry seasons when water retention time tends to be increase. The overall median Chl-a
increased 84% from 2018 (6.33 mg/m?®) to 2021 (11.72 mg/m?), during the drought, when water
storage accumulation reached its minimum levels due to the strong drought that hit the region. In
the stratified analysis, the results showed that smaller water bodies below 100ha were less affected
by the overall water dynamics in the basin, remaining with a higher eutrophication level throughout

the period of analysis.
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In terms of turbidity, the opposite phenomenon was observed, with more transparent waters
during the dry season, evidencing that different mechanisms are involved. Turbidity peaks during
wet season suggests a direct relationship with suspended sediment transport from the local
catchments during rainy events or from resuspension processes from river bed caused by higher

water discharges.

In summary, large-scale inland water monitoring through RS remains a challenge due to
the complexities involved and requires further scientific research. However, the current work
permitted to address several challenges related to the use of RS for inland water bodies assessment.
More specifically, in the water detection context (Orange box — Figure 1V-1), the proposed method
provided an easy-to-use package that can be applied in distinct conditions, as it does not require
pre-training or threshold calibration and it is not constrained to a specific satellite sensor.
Additionally, thanks to its high performance, scientists can increase the area of analysis without

the need to degrade its spatial resolution.

Another scientific question that this thesis contributed to answer concerns the difficulty to
identify the best inversion algorithm to be applied to a certain water condition (Blue boxes — Figure
IV-1). The proposed classification scheme allows the development of a concise number of tailored
models that can increase retrieval accuracy without the need to develop one model for each

river/basin.

Orchestrating all the steps presented in Figure 1V-1 into a fully operational workflow
represents another major challenge. One of the reasons is the lack of ready-to-use packages to
perform specific steps. To fill some of these gaps, besides the waterdetect algorithm, other three
packages have been developed under the context of the thesis and were made available to the

public. These packages are identified in parentheses in Figure 1V-1. To automate the retrieval of
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Sentinel-2 imagery, the SentinelDownlader package
(https://github.com/cordmaur/SentinelDownloader) provides a simple Python interface to
download Sentinel imagery from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
Additionally, the RadiometryTrios package (https://github.com/cordmaur/RadiometryTrios)
provides an interface to manipulate hyperspectral radiometry measurements obtained from field
campaigns. This pre-processing tool involves data-cleaning, radiometric interpolation, reflectance
generation and others and are requisite for developing retrieval algorithms based on hyperspectral
measurements. Finally, the waterquality package (https://github.com/cordmaur/WaterQuality)
extends the functionalities of the waterdetect to calculate water quality parameters through the

application of inversion algorithms to the satellite reflectances.

Although a fully integrated and automated workflow is still a goal to be pursued, the current
thesis proposed a comprehensive methodology for large scale processing and analysis, as detailed
in Chapter I11. Overall, the current work highlighted the feasibility of employing data science
techniques to leverage remote sensing as a viable tool for complementing sparse field

measurements and assessing water bodies that are otherwise impossible or unviable to monitor.

Prospects

The current thesis paves the way for future applied research projects on inland water
quality. Although the methodologies have been applied successfully in a case study on a regional
scale, more research is still necessary to orchestrate all the steps involved to deliver a complete

operational framework for inland water assessment.

Some domains that are required to complete the whole task still need improvements. Cloud
detection is one example. Current atmospheric correction processors deliver coarse (low spatial

resolution) cloud masks, and third-party tools, such as the S2Cloudless, do not take into account
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the corresponding shadows. In addition, performance is not optimal, with an overall accuracy
below 85% in more challenging scenes (Baetens et al., 2019), and there are many classification

issues between water surface and cloud shadows.

Although feasible for regional studies and trending analysis, water quality parameters
inversion is also a domain that requires additional research. The water classification scheme
introduced in Chapter Il represents a step forward as it proposes classes based on the pixels’
reflectance that aims to minimize inversion error. Furthermore, this water classification enables the

application of tailored algorithms and improves general retrieval accuracy.

However, when validated against punctual field measurements, accuracy is below optimal,
especially for low concentrations (when results are noisier), evidencing that the work is being done
within the limits of the satellite sensibility (radiometric resolution). Moreover, atmospheric effects
can broadly impact the results, and more atmospheric correction algorithms specialized in inland
waters should be considered. In this regard, the correction of the sunglint done by GRS is
fundamental, as its presence imposes two challenges. First, during water pixel extraction, strong
sunglint can prevent current algorithms from correctly identifying the water surface, reducing the
accuracy of quantitative analysis. Even if this behavior is treated during the water detection step
(e.g., the waterdetect has a sunglint detection processor to overcome this issue), a minor presence

of sunglint during water quality inversion can lead to erroneous results.

From an end-user perspective, it is cumbersome to put all the pieces to work together and
generate final water-quality products for several reasons. First, the existing tools are oriented to the
data acquisition structure (i.e., satellite tiles), and they cannot be applied directly to the area of
interest, requiring multiple tiles processing, and mosaicking, among other pre-processing steps.

This reality tends to evolve as cloud platforms that provide satellite data “on-demand”, such as the
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Google Earth Engine, become more popular. Another gap for end users is the complexity involved
in running scientific software. Usually, the packages necessary for the required steps (e.g.,
masking, inversion, and others) are designed for experimental purposes and require scientific
knowledge that is specific for each domain. Besides, they lack proper software design and

documentation, making them difficult to be used.

Another point that has been overcome in the case study but needs improvement for a better
end-use experience regards the processing of large volumes of data. In the methodology presented
in Chapter 3, distributed processing has been performed using Dask. Through this technology, the
main task is broken into multiple tasks which are sent to distributed workers. This approach can
solve memory and processing restrictions, but the setup and use of such tools must be done

programmatically and normally require technical knowledge.

Finally, besides the demonstrative character of using recent satellite data, like the optical
imagery from Sentinel-2, for water quality assessment, the tools and methods developed in the
present thesis can be adapted to other sensors (space- or air-borne), parameters and even to address
subjects other than water. In this regard, sensors with higher spectral resolution, such as the one
onboard Sentinel-3 mission, could be employed to improve the retrieval accuracy of water quality
parameters in larger water bodies. Alternatively, higher spatial resolution, such as the 3 meters
Planetscope sensor, could be applied to assess changes in narrow or intermittent river channels

(Tayer et al., 2022, in review).

In summary, the use of RS in the water resources domain is vast and requires further
development. In this context, the current work represents a step forward, highlighting the feasibility

of employing data science techniques to leverage RS as a viable tool for complementing sparse
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field measurements and assessing water bodies which are otherwise impossible or unviable to

monitor.
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Conclusion et Perspectives

L'augmentation significative du nombre de capteurs optiques satellite disponibles et
I'amélioration continue de leurs résolutions spatiale, temporelle et spectrale ouvrent la voie a leur

application dans la gestion intégrée des ressources en eaux.

Ces dernieres années, de plus en plus de publications scientifiques ont été consacrées a
I'utilisation de la télédétection dans le contexte des masses d'eau continentales pour le suivi de la
qualité des eaux. Cependant, contrairement aux produits disponibles pour des applications
terrestres ou océaniques (par exemple, le classement des types de couvertures des sols, la
température de surface de la mer, et autres), il n'existe pas de produits régionaux ou mondiaux
disponibles pour la surveillance opérationnelle des eaux continentales. La raison de ce manque de
produits robustes réside notamment dans les interactions complexes entre les constituants de I'eau
optiquement actifs, tels que les matiéres organiques et inorganiques, et les interférences causées
par les conditions atmosphériques qui représentent des défis majeurs a surmonter pour une

utilisation globale et robuste des images par télédétection concernant des lacs, rivieres et réservoirs.

Au cours de la présente thése, plusieurs méthodologies ont été développées afin d’améliorer
la robustesse, le changement d’échelle et 1'automatisation de 1'évaluation des eaux continentales,
grace a l'utilisation extensive de techniques de science des données, telles que le Machine Learning
et le Big Data. Dans ce contexte, trois axes principaux ont été proposés, comme le montre la Figure

V-2, et sont représentés par des cases de couleurs orange, bleue et verte.

En outre, orchestrer toutes les étapes nécessaires a une évaluation correcte des eaux
continentales depuis l'acquisition d'images, le prétraitement et I'analyse finale, a représenté une

couche de complexité supplémentaire pour I'étude.
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Figure 1V-2: Vue schématique des étapes de I'évaluation de la qualité des eaux intérieures a partir d'images de télédétection
par satellite. Les cases en orange représentent les étapes couvertes par I'axe 1 (détection de I'eau), les cases en bleu représentent
I'axe 2 (classification de I'eau) et les cases vertes représentent I'axe 3 (généralisation et analyse). Les noms entre parentheses
identifient les paquets python développés dans le cadre de la these.
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Dans le premier axe, représenté par la boite orange de la Figure 1V-2, le probleme de la
détection de I'eau a été abordé par le développement d'un algorithme de clustering non supervisé
appelé waterdetect (Cordeiro et al., 2021). La méthode, disponible sous forme d’un paquet Python
open-source a l'adresse www.github.com/cordmaur/waterdetect, utilise une approche de clustering
multidimensionnel basée sur les valeurs de réflectance et des indices spectraux dédiés a I'eau pour
identifier les pixels d'eaux sans la nécessit¢ d’une connaissance préalable sur la scéne ou d'autres
données auxiliaires et sans calibration de seuils. Pour garantir des performances élevées et une
faible consommation de mémoire pour les images a haute résolution, ce processus est associé a un
échantillonnage aléatoire et a un classificateur d'apprentissage automatique subséquent pour

reconstruire la solution a I'ensemble de la scéne.

La méthode proposée est indépendante du capteur et de la zone de couverture analysée et
peut étre appliquée a diverses conditions. Comparée aux approches de seuillage les plus courantes
et aux trois principaux processeurs de niveau L2 disponibles pour Sentinel-2, a savoir MAJA,
Sen2Cor et FMask, les résultats ont montré que la détection des eaux avec waterdetect donnait la
meilleure précision pour toutes les gammes de tailles de piéces d’eaux analysées a partir de 0,5 ha.
Les performances, la robustesse et la simplicité de waterdetect en font un outil idéal pour une

utilisation opérationnelle avec I'imagerie optique.

Pendant la these, d'autres études ont été menées dans ce domaine et I'algorithme original a
été beaucoup amélioré depuis sa conception. Ainsi, j'ai participé en tant que co-auteur a trois autres
articles qui ont abordé le sujet de la detection de I'eau dans diverses situations. Dans Pefia-Luque
et al. (2021), nous avons confirmé I'avantage de I'utilisation du clustering multidimensionnel par

rapport aux autres méthodes traditionnelles de détection de I'eau (Canny-edge et Hue, Saturation,
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Value - HSV) lors de la classification de I'eau aux niveaux local (c'est-a-dire le réservoir individuel)

et régional (Annexe I).

Dans Tottrup et al. (2022), I'algorithme waterdetect a été comparé a d'autres méthodes de
détection de I'eau et testé dans des conditions environnementales extrémes depuis le Groenland
jusqu’au Gabon (Annexe II). Les résultats indiquent que waterdetect a une précision moyenne

plus élevée que les autres méthodes testées basées exclusivement sur les données optique.

Dans le troisieme article (Tayer et al., 2022, en cours de révision), nous avons comparé les
performances de Sentinel-2, Planetscope et de I'imagerie treés haute résolution pour détecter une
riviere intermittente en Australie occidentale. La pertinence de la bande SWIR pour la détection de

I'eau a également été évaluée dans un contexte semi-aride.

Le deuxiéme axe, représenté par les cases bleues de la Figure V-2, se concentre sur
l'utilisation d’algorithme de classification de 1'eau pour améliorer la précision de l'inversion des
parametres de qualité de I'eau. Les matieres en suspension (MES ou SPM en anglais) ont été choisie
pour I'étude car elle constitue le premier facteur de contrdle de la radiance de sortie de I'eau dans
les eaux intérieures. Contrairement aux études précédentes sur les types d'eau optiques (OWT),
notre objectif était de définir des classes d'eau basées sur leurs spectres de réflectance, qui
pourraient maximiser la précision de I'inversion plutét que de fournir un schéma de classification

qualitative complet des types d'eau.

Une fois encore, nous avons utilisé I'apprentissage automatique non supervise (clustering
agglomeératif) pour classer les spectres de plus de 1 000 mesures sur le terrain en plusieurs groupes.

La performance du clustering a été analysée en quantifiant I’erreur d’inversion de la SPM.

Le troisieme axe (cases vertes de la Figure 1V-2) présente les méthodologies developpées

pour la généralisation a grande échelle et I'analyse régionale des parametres de quantité (surface
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en eaux) et de qualité de I'eau des eaux intérieures. Des concepts de Big Data tels que le Cloud
Computing et le traitement paralléle ont été employés pour permettre le traitement de milliers
d'images qui ne serait pas réalisable avec des outils conventionnels. En outre, nous avons proposé
une méthodologie d'évaluation, présentée sous forme d'étude de cas, pour évaluer les effets de la
grande sécheresse qui a frappé le sud-est du Brésil en 2021 sur la qualité de I'eau des lacs naturels

et de barrages (« réservoirs ») de grande, moyenne et petite taille.

Le troisieme axe (cases vertes de la Figure 1V-2) présente les méthodologies développées
pour la généralisation a grande échelle et I'analyse régionale des parametres de surface et de qualité
de I'eau des eaux intérieures. Des concepts de Big Data tels que le Cloud Computing et le traitement
paralléle ont été employés pour permettre le traitement de milliers d'images qui ne seraient pas
réalisables avec des outils conventionnels. En outre, nous avons proposé une méthodologie
d'évaluation, présentée sous forme d'étude de cas, pour évaluer les effets de la grande sécheresse
qui a frappe le sud-est du Brésil en 2021 sur la qualité de I'eau des réservoirs de grande, moyenne

et petite taille.

Dans cette étude de cas, la surface de I'eau estimée par télédétection a été utilisée pour
analyser les effets de la sécheresse sur des réservoirs de différentes tailles et sa dynamique spatiale.
Initialement, la validation des données a montré un bon accord entre la surface estimée par
télédétection et les données de vérité au sol (R? = 0,92). De plus, une relation linéaire a pu étre
établie entre la surface de I'eau et le volume accumulé dans les grands réservoirs avec un coefficient
de détermination R? de 0,96, démontrant la faisabilité de la télédétection pour surveiller avec

précision la variabilité des surfaces des réservoirs.

L'analyse stratifiée a présenté peu de différence entre les petites et les grandes masses d'eau

en termes de pertes d’eaux pendant la période de sécheresse. L'analyse spatiale a montré que les
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effets de la sécheresse étaient plus importants dans le centre-ouest du bassin, alors que les autres
zones sont restées a des niveaux normaux. Si I'on considere que les niveaux de pluie sont restés
inférieurs a la moyenne dans la région, la majeure partie de cette résilience peut étre attribuée aux

restrictions appliquées par les autorités réglementaires.

Pour évaluer les parametres de qualité de I'eau (Chl-a et turbidité), des histogrammes
mensuels ont été élaborés en utilisant les valeurs des pixels dans tous les plans d'eau dont la surface
est supérieure & 1lha et présentés sous forme de graphiques de Ridge. Les résultats pour le Chl-a
ont montré que l'eutrophisation est significativement plus élevée pendant les saisons séches lorsque
le temps de rétention de I'eau tend a augmenter. La médiane globale de Chl-a a augmenté de 84 %
entre 2018 (6,33 mg/m3) et 2021 (11,72 mg/m3), pendant la sécheresse, lorsque I'accumulation du
stockage de I'eau a atteint ses niveaux minimums en raison de la forte sécheresse qui a frappé la
région. Dans I'analyse stratifiée, les résultats ont montré que les plans d'eau plus petits, inférieurs
a 100ha, ont été moins affectés par la dynamique globale de I'eau dans le bassin, restant avec un

niveau d'eutrophisation plus élevé tout au long de la période d'analyse.

En termes de turbidité, le phénomeéne inverse a été observeé, avec des eaux plus transparentes
pendant la saison séche, ce qui prouve que différents mécanismes sont impliqués. Les pics de
turbidité pendant la saison des pluies suggerent une relation directe avec le transport de sédiments
en suspension provenant des bassins versants locaux pendant les événements pluvieux ou des

processus de remise en suspension du lit de la riviere causés par des débits d'eau plus éleves.

En résumé, la surveillance a grande échelle des eaux intérieures par le biais de la
télédétection reste un défi en raison de sa complexité et nécessite des recherches scientifiques
supplémentaires. Cependant, le travail actuel a permis de relever plusieurs défis liés a I'utilisation

de la télédétection pour I'évaluation des masses d'eau intérieures. Plus précisément, dans le contexte
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de la détection des eaux (cases orange - Figure 1V-2), la méthode proposee a fourni un ensemble
facile a utiliser qui peut étre appliqué dans des conditions distinctes, car elle ne nécessite pas de
pré-entrainement ou de calibrage de seuil et qu’elle n'est pas limitée a un capteur satellite
spécifique. De plus, grace a sa haute performance, les scientifiques peuvent augmenter la zone

d'analyse sans avoir a dégrader la résolution spatiale des résultats.

Une autre question scientifique a laquelle cette thése a contribué a répondre concerne la
difficulté d'identifier le meilleur algorithme d'inversion a appliquer & une certaine condition d'eau
(cases bleues - Figure 1V-2). Le schéma de classification proposé permet le développement d'un
nombre concis de modeles adaptés qui peuvent augmenter la précision de I'extraction sans avoir

besoin de développer un modele pour chaque riviére/bassin.

L'orchestration de toutes les étapes présentées dans la Figure V-2 en un flux de travail
pleinement opérationnel représente un autre défi majeur. L'une des raisons en est le manque de
paquets préts a I'emploi pour réaliser des étapes spécifiques. Pour combler certaines de ces lacunes,
outre l'algorithme waterdetect, trois autres paquets ont été développés dans le cadre de la these et
ont été mis a la disposition du public. Ces paquets sont identifiés entre parenthéses dans la Figure
IV-2. Pour automatiser la récupération de I'imagerie Sentinel-2, le paquet SentinelDownlader
(https://github.com/cordmaur/SentinelDownloader) fournit une interface Python simple pour
télécharger  l'imagerie  Sentinel  depuis le  Copernicus  Open  Access Hub
(https://scihub.copernicus.eu/). En outre, le paquet RadiometryTrios
(https://github.com/cordmaur/RadiometryTrios) fournit une interface permettant de manipuler les
mesures radiométriques hyper-spectrales obtenues lors de campagnes sur le terrain. Ce
prétraitement comprend le nettoyage des données, I'interpolation radiométrique, la génération de

la réflectance et d'autres éléments nécessaires au développement d'algorithmes d'extraction basés
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sur des mesures hyper-spectrales. Enfin, le paquet de qualitt de [Ieau
(https://github.com/cordmaur/WaterQuality) étend les fonctionnalités de waterdetect pour
calculer les parameétres de qualité de l'eau par l'application d'algorithmes d'inversion aux

réflectances du satellite.

Bien qu'un flux de travail entiérement intégre et automatisé reste un objectif a poursuivre,
la these actuelle a proposé une méthodologie complete pour le traitement et I'analyse & grande
échelle, comme détaillé dans le Chapitre Ill. Dans I'ensemble, le travail actuel a mis en évidence
la faisabilité de I'utilisation de techniques de science des données pour exploiter la télédétection
comme un outil viable pour compléter les mesures de terrain éparses et évaluer les masses d'eau

qu'il serait autrement impossible ou non viable de surveiller.

Perspectives

La présente thése ouvre la voie a de futurs projets de recherche appliquée sur la qualité des
eaux intérieures. Bien que les méthodologies aient été appliquées avec succés dans une étude de
cas a I'échelle régionale, des recherches supplémentaires sont encore nécessaires pour harmoniser
toutes les étapes impliquées afin de fournir un cadre opérationnel complet pour I'évaluation des

eaux intérieures.

Certains domaines nécessaires pour mener a bien I'ensemble de la tAche doivent encore étre
améliorés. La détection des nuages en est un exemple. Les processeurs de correction atmosphérique
actuels fournissent des masques de nuages assez grossiers (a faible résolution spatiale), et les outils
tiers, tels que le S2Cloudless, ne prennent pas en compte les ombres correspondantes. En outre, les
performances ne sont pas optimales, avec une précision globale inférieure a 85 % dans des scenes
plus difficiles (Baetens et al., 2019), et il existe de nombreux problemes de classification entre les

ombres de nuages a la surface de I'eau et des nuages.
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Bien que réalisable pour les études régionales et I'analyse des tendances, I'inversion des
parametres de qualité de l'eau est egalement un domaine qui nécessite des recherches
supplémentaires. Le schéma de classification de I'eau présenté au chapitre 11 représente un pas en
avant car il propose des classes basées sur la réflectance des pixels qui visent a minimiser I'erreur
d'inversion. En outre, cette classification de I'eau permet I'application d'algorithmes adaptés et

améliore la précision genérale de I'extraction.

Cependant, lorsqu'elle est validée par rapport a des mesures ponctuelles sur le terrain, la
précision est inférieure a I'optimum, en particulier pour les faibles concentrations (lorsque les
résultats sont plus bruités) lorsque I’inversion est effectuée dans les limites de sensibilité du satellite
(résolution radiométrique). De plus, les effets atmosphériques peuvent avoir un impact important
sur les résultats, et il est important de considérer des algorithmes de correction atmosphérique
spécifiques aux eaux intérieures. A cet égard, la correction du sunglint, notamment effectuée par
la GRS, est fondamentale car sa présence impose deux défis. Tout d'abord, lors de I'extraction des
pixels d'eau, la réflexion directe de la lumiere solaire peut empécher les algorithmes actuels
d'identifier correctement la surface de I'eau, ce qui réduit la précision de I'analyse quantitative.
Méme si ce comportement est traité au cours de I'étape de détection de l'eau (par exemple,
waterdetect dispose d'un processeur de détection de la teinte solaire pour surmonter ce probleme),
une présence mineure de la réflexion solaire au cours de l'inversion de la qualité de I'eau peut

conduire a des résultats erronés.

Du point de vue de l'utilisateur final, il est actuellement difficile d'assembler tous les
éléments et de genérer des produits finaux sur la qualité de I'eau pour plusieurs raisons.
Premierement, les outils existants sont orientés vers la structure d'acquisition des donneées (c'est-a-

dire les « tuiles » de satellite) et ne peuvent pas étre appliqués directement a la zone d'intérét d’un

235



utilisateur, ce qui nécessite le traitement de plusieurs tuiles et le mosaiquage, entre autres étapes de
prétraitement. Cette réalité tend a évoluer au fur et a mesure que les plateformes cloud qui
fournissent des données satellitaires "a la demande”, comme le Google Earth Engine, deviennent
plus populaires. Une autre lacune pour les utilisateurs finaux est la complexité liée a I'utilisation de
logiciels scientifiques. Habituellement, les paquets nécessaires aux étapes requises (par exemple,
le masquage, l'inversion, et autres) sont congus a des fins expérimentales et nécessitent des
connaissances scientifiques spécifiques a chaque domaine. En outre, ils ne sont pas congus et

documentés correctement, ce qui rend leur utilisation difficile.

Un autre point qui a été résolu dans I'étude de cas, mais qui doit étre amélioré pour une
expérience d'utilisation finale optimale, concerne le traitement de grands volumes de données.
Dans la méthodologie présentée au chapitre 3, le traitement distribué a été effectué a l'aide du
paquet Dask. Grace a cette technologie, la tache principale est divisée en plusieurs taches qui sont
envoyées a des travailleurs distribués. Cette approche peut résoudre les probléemes de mémoire et
de traitement, mais la configuration et I'utilisation de ces outils doivent étre programmées et

nécessitent des connaissances techniques assez poussees.

Enfin, outre le caractére démonstratif de Il'utilisation de données satellitaires récentes,
comme l'imagerie optique de Sentinel-2, pour I'évaluation de la qualité de l'eau, les outils et
méthodes développés dans la présente these peuvent étre adaptés a d'autres capteurs (Spatiaux ou
aériens) et a d'autres paramétres. A cet égard, des capteurs & plus haute résolution spectrale, tels
que ceux de la mission Sentinel-3, pourraient étre utilisés pour améliorer la précision de I'extraction
des paramétres de qualité de I'eau dans les grandes masses d'eau. De méme, une résolution spatiale

plus élevee, comme le capteur Planetscope de 3 métres, pourrait étre appliquee pour évaluer les
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changements dans les canaux de riviére étroits ou intermittents (Tayer et al., 2022, en cours de

révision).

En résume, l'utilisation de la télédétection dans le domaine des ressources en eau est vaste
et doit étre davantage développé. Dans ce contexte, le travail actuel représente un pas en avant,
soulignant la faisabilité de I'utilisation de techniques de science des données pour tirer parti de la
télédétection en tant qu'outil viable pour le complément de mesures de terrain éparses et
I'évaluation de masses deau qu'il serait impossible ou non viable de surveiller

conventionnellement.
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Abstract: Water stock monitoring is a mapor issue tor society on a Jocal and global scake. Sentinel-
142 satellites provide frequent acquisitions to track water surface dynamics, proxy variables to en-
able water surface volume monitaring. How do we combine such observations along time tor each
sensor? What advantages and disadvantages of singlo-date, monthly or time-windowed estima-
tions? In this context, we analysed the impact of merging mformation through different types and
lengths of Hme-windows. Satellite observations were pre d separately on optical (S 1-2)
and radar {Sentinel-1) water detectors at 10m resolution. The analysis has been applied at two scales.
First, validating with 26 large scones (110 « 110 km) in different climatic zones in France, time-win-
dows vielded an improvement on radar detection {Fl-score improved from 0.72 to 0.8 for 30 days
on average logic) while optical performances remained stable (1'1-score 184), Second, validating
reservelr anca estimations with 29 instrumented reserveirs (20-1250 ha), time windows presented
I all cases an improvement on both optical and radar ervor for any window length (3-30 days), The
mean relative absolute ercar in optical area detection improved from 16,%% on single measurements
to 12.9% using 15 days tme-windows, and from 2215% to 15.1% in radar detection), Regarding
reservoir filling rates, we identified an increased negative bias for both sensors when the reservoir
is nearly full. This work helped to compare accuracies of separate optical and radar capabilities,
where optical statistically outpertorms radar at both local and large scale to the detniment of loss
froquent measurements. Furthermore, we propose a g phological indicator of reservoirs to
predict the quality of radar area monitoring (R* = 0.58). In conclusion, we suggest the uso of time-
windows on operational water mapping or reservolr menitoring systems, wsing 10-20 days time-
windows with average logic, providing more frequent and faster infor to water managers in
periods of crisis (e.g, water shortage) d to thly estimati

¥ -

Keywords: water cycle; water surfaces; reservolrs; multi-temporal; water detection; radar imaging;
optical mmaging; arca monitoring

1. Introduction

Surface water dynamics are key variables to monitor the continental water stocks,
themselves crucial to human societies at a regional and global scale. Large reservoirs are
known to have a strong impact on hydrology, decreasing by around 2% the river dis-
charge to oceans [1]. They also have considerable importance for agriculture, domestic,
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and industrial water uses, considering that their annual storage capacity is equivalent to
10% of the annual soil water storage at the global scale [2]. In much larger numbers,
smaller surface reservoirs (<01 km?®) range from 0 to 10 reservotes per km2 depending on
the region. Their densities increase with average precipitations, from 10 to 10° m*km.
Their importance has been analysed in terms of stream discharge reduction, especially
important during driest conditions, and seepage rates that appear to be higher than the
evaporation rate in existing studies {3]. Their positive socio economic impacts are reported
worldwide for the local populations [4,5]. In that context, there 15 a need lo improve
knowledge of large and small reservoir characteristics,

High-resolution remote sensing data are identified to be highly appropriate to map
and quantify the properties of large and smaller reservoirs over vast areas. Recent releases
of surface water changes derived from high-resolution satellites have opened new insights
into global surface water dynamics. For instance, the global surface water database 6],
based on Landsat program observations since the 80s, allows imvestigating into the long
term and seasonal evolution of surface water area extents around the world, providing
quantitative evidence of human or natural induced changes over the 3 last decades. 1t was
used at the global scale, together with altimeter global datasets, to analyse the water vol-
ume varlations of 137 large reservoirs and lakes around the world, validated with in situ
data from 18 lakes, with the limitation that some regions like Africa and southwestern
Europe suffer from a lack of Landsat observations [7]. In that context, the global coverage
of Sentinel-1&2 observations highly improves systematic radar and optical satellite obwer-
vation capacities, with a higher spatial resolution (10 to 20 m) and revisit frequency (5 to
12 days). These operational missions are cructal to base now near real time surface water
dynamics monttoring systems at a global scale. Numerous studies have already proposed
and compared methods to extract water area extents from their optical and radar data,

Multispectral Sentinel-2 data are used mainly through the application of a threshold
on Spectral Indices (SI) that have been proposed worldwide: the Normalized Difference
Water Index (NDWI [8]), Modified NDWI (MNDWI), Automated Water Extraction Index
(AWEI), Water Index 2015 (W) to dassify water pixels [9-14] among others. A calibra-
tion of those Spectral Indices {SI) thresholds is often erucial for each acquisition date and
area covered. Automated thresholding procedunes have boen proposed, such as Otsu’s
thresholding, to split §1 bimodal histogram values into water and non-water classes [15].
False detections of water bodies in urban arcas, bare soil, clouds, snow/ice, and shadow
arcas can be mitigated with filters and combined methods. Novertheless, it is impossible
to correct all false detections on all scenes, especially shadows m low illumination in
mountainous areas. Water bodies with low (high depth, black seaweed, dark bottom,
shadow area) or high (high turbidity, shallow waters with bright battom) roflectance
might not be detected using those methods. A second method has been proposed to con-
vert the RGB color space (SWIR2, NIR, RED bands from Sentinel-2 respectively) into the
HSV (Hue, Saturation, and Value) space where the chromaticity (H and $) and the bright-
ness (V) components are decoupled [16-18]. To cope with the false detection obtained
with traditional water mapping methods using water indices in Mediterranean lakes and
wetlands, Genetic Programming algorithms have been used to demonstrate their better
accuracy especially for temporary lakes and wetlands [19]. Other methods based on clas-
sification or object segmentation or even deep learning have been used successfully [20-
23], Their companison shows that SI based methods are less robust than classifiers espe-
cially in complex waterbodies (turbidity and aquatic vegetation for instance), but the re-
quirement of external data (training samples) makes classifiers complex to set up [24]. A
promising approach has been tested, to combine multiple Sls and raw reflectance in un-
supervised multidimensional hierarchical dustering [25). This last method alms at opti-
mizing at a large scale the use of all the information contained in a Sentinel-2 scene with-
out the use of any auxiliary data or time-series mosaicking. This software outperformed
the existing programs and SIs most frequently used methods, such as Sen2Cor [26], Multi-
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sensor Atmospheric Correction and Cloud Screening-Atmaspheric Correction Joint Algo-
rithm (MAJA} [27], FMask [28], or MNDWI thresholding techniques, especially for small
surface water (<15 ha),

Water detoction in synthetic aperture radar (SAR) data has been performed at a
global scale (SWBD from SRTM mission), continental level [29,30], and local scale with
coarse to high-resolution data, for both annual/seasonal water monitoring and flood
events mapping [31-38], Various methods have been used within the literature to deline-
ate water from SAR data, either as a singular process or in combination. These include
histogram thresholding [31,39-42], fuzzy cassification [43,44], region growing [32,43] and
texture analysis [45], Thresholding techniques aim at separating low back-scattors from
surface water using a threshold, which becomes especially difficult for mixed pixels or
when the water back-scatter is affected by wind-induced roughness, floating vegetation,
or when the swath of the image is large enough to have important incidence angle ampli-
tude. In those cases, the threshold needs to be modified on a scene per scene basis [31,41),
To be successful, the histogram of the image values shall be bi-meodal [46]. Thresholding
technics have been combined with texture information [45] or region-growing segmenta-
tion algorithms used to increase the accuracy of water mapping [29,36,39,42,43,47).
Change detection and threshold techniques are also used in flood mapping |34,48,49),
Thase mixed techniques give good detection accuracy (95%) even if false detection cor-
responding to smooth dry terrains and radar shadows needs to be corrected with ancillary
data. Few scientific references present a fully automatic water detection processor for sur-
face water mapping from Sentinel-1 imagery [34,44,50]. Those methods rely on an initial
classification using automatic thresholding, coupled with a fuzzy-logic-based dassifica-
tion refinement, and a final classification including auxiliary data. Other automatic meth-
ods rely on ancillary data (optical water maps, optical images) to train machine kearning
classifiers [24,35]. And among all classifiers, Random Forest (RF) method (s known to be
the fastest and most robust, be., small effect of RF parameters and wrong labelled samples
on classification accuracy, with a small training time [51].

Besides the sensor physics (optical, radar) and its water detection algorithm, there is
an interesting dimension to study the water dynamics: the obscrvation time window.
Thanks to frequent optical and radar observations of Sentinels 1&2, water detection algo-
nithms may combine different observations (inside a time window) to produce the most
accurate map for a given date. The size of the obseevation window might have a different
impact on the quality of the resulting water maps depending on the validation criteria
(e, quantification of global water surface changes, estimation of single lake surfaces, or
river widths), The longer the window, the higher accuracies of wates maps are expected,
in detriment of missing rapid changes, such as flood cvents or changes in reservoirs re-
lated to infilling or draw off managements actions, For example, current water maps ser-
vices are generated from monthly observations (GSW [17], Water bedies product from
Copernicus Land Cover [52]). New products based on shorter observation windows (from
5 to 20 days) would provide faster and more frequent information on reservoir storage to
water managers during water crises such as for water shortage events. An analysts of the
overall quality effect is then needed to understand the use of time windows for water
detection apphcations.

The aim of this article is to characterize the effect of the time cbservation window on
water detection simultaneously at two levels: regional scale (water maps) and water bod-
1es scale (reservolrs area time senes). First, several state-of-the-art water detection meth-
ods on single images for optical and radar sensors are characterized and compared at large
scale evaluation, Then one single-date detection method of each sensor is selected in the
following. Different multi-temporal time-window Jogics are evaluated and compared to
the selected single-date observation method for each sensor at a large scale and reservolr
area monitoring. This ovaluation allows also the comparison of water detection capabili-
ties of Sentinels 1&2 (radar and optical). Finally, an analysis of the impact of reservoirs
water leved status and their geomorphological characteristics is presented to have a better
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understanding of the factors that affoct water detection/water body arca extent-accuracy
at the reservoir level, especially between radar and optical data,

2. Materials and Methods
2.1. Data

Optical and radar images are the main sources for water detection, which contain
information of surface water extents at different acquisition dates, Optical images are ob-
tamed from the Copernicus Sentinel-2 constellation, with a revisit time of five days [33]
and an operational life-time planned for the next decade [54]. Due to observation swath
overlaps between adjacent orbits in high latitudes, some zones in Europe have a higher
frequency of observations [55]. Ground resolution of optical images from Sentinel-2 is 10
m for visible bands ard 20 m for SWIR bands. To better characterize the top of canopy
level of images and correct atmaspheric effects, Sentinel 2 images have been processed by
MAJA algorithm [56], which corrects reflectance levels and detects clouds and shadows
(produced by relief or douds) |57], 52-L2A images processed by MAJA are publicly avail-
able in THEIA datacenter [58],

For radar iImages, Copernicus Sentinel-1 observations have been chosen for the same
reasons of continuity as Sentinel-2: similar revisit ime (six days in Europe, 12 days In
global) and similar resolution. On the main acquisition mode overland (Interferometric
Wide Swath), Ground Range Detected (GRD) product at high-resolution level-1 has a res-
olution of 20 x 22 m and pixel spacing of 10 x 10 m on range and azimuth axes [59]. Two
polarizations are available: VV and VH,

Auxiliary data are used to automatically select leaming samples or apply corrections
over water masks derived from radar and optical images. First, HAND (Height above
necarest drainage) (60] derived from MERIT DEM [61). This product, since highly corre-
lated to the depth of the water table in case of theoretical inundations, is used to identify
flood free arcas and we use it to exclude zones from the classification process. These zones
will always be detected as “non-water”. Second, the Global Surface Water [17] occurrence
dataset has been chosen to identify globally permanent waters, used as training data for
radar water detections by pixel level sampling. The resolution of the GSW product {30 m}
scems appropriate for input data (S1 raw resolution = 200 x 22 m) in order to have a wide
variety of permanent water samples,

2.2. Water Detection Methods

The process to generate water masks 1s divided into two different fluxes for radar
and optical images. Since Sentinel-1 and Sentinel-2 have similar resolutions, intermediary
and output data are generated on the same gnd (Military Gnd Reference System-MGRS})
and resolution, which facilitates comparing the results, For this work, all data are
v pled at 10 m resolution. The following Figure 1 depicts the workflow for the water
masks generation, which includes the multiple-date processing of single-date water
masks.

261



Remsde S, 2020, 13, 3279

3 of 26

w.um
Multicate Muttidate
Qe shrgie dav
W processing optical processing radar ier ot
e mack - "t
M '!.-',v:ﬂ By wndow
ol s o gkl k) L et
e mask 9 T wa
N7 v v
“ee walet mast *.m me
N

Figure 1. Water detection workflow on Sentinell and Sentinel2 observations, based on single and multiple date processes,

On the optical part, optical reflectances and cloud/shadow masks are retrieved from
the S2L2A MAJA product. Cloud/cloud-shadow/relief-shad ow masks are interpreted as a
“No Data” layer, Second, a snow filter 1s used. Some of the water detectors that are eval-
uated in this work use the Modified Normalized Difference Water Index (MNDWTI), which
has the same spectral definition as the Normalized Difference Snow Index (NDSI) [62],
quite sensible for snow detection. Therefore, it 1s important to separate snowy regions
first, before classifying water regions. Since MAJA snow masks have 240 m resolution, a
finer snow detector has been developed for this study. Toe avoid commission errors with
turbid waters, a new snow filter is proposed based on reflectance values: Red > 1200, Blue
> 1500, Red/Blue < 1 5. This filter is based on the fact that many turbid waters are prone to
red values and shadowed snow regions prone to bluish tones.

To limit commission errors on mountain ridges or shadowed zones in stecp valley
regions, the MERIT HAND product is used to identify only floodable zones. In our case,
reglons placed higher than 25 m above their direct drainage zome are not likely to be
flooded and they are excluded from the water detection process. This lovel has been cal-
culated by comparing GSW maximum extent with the resulting floodable area from
HAND.

Concemning the optical water detection algonithms, three state of the art classifiers
have been Integrated for the evaluation: (1) Edge filter Canny and Otsu thresholding on
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MNDWI [9]; (2) Binary clustering on HueSaturation/Value dimensions issued from
“Pylntertidal DEM” algonithm[63]; {3) Agglomerative Clustering issued from “WaterDe-
tect” algorithm [25] in three variants: using two channels (SWIR band, NDWI), using three
channels (SWIR band, NDWI, MNDWT) and using four channels (SWIR band, NDWI,
MNDWTI, MBWI [64]). Lastly, a SWIR filter is placed after the water detection dassifiers
based on values lower than 800

The radar detection module first progects the input Sentinel-1 data to the Sentinel-2
grid, in order to work in equivalent layers. This process s handled by the S1Tiling chain
[65], which does the calibration, projection, and concatenation of images in the MGRS2
grid. Multitemporal speckle filtering has not been applied, but a Leo filter applied on sin-
gle date images is more appropriate as it accounts for edges. Multiple window sizes have
been evaluated. On radar detection, a supervised method has been implemented based
on Random Forest (100 estimators, max depth = 3, test size = 20%). Global Surface Water
occurrence map is used as training data, where 2000 water samples (pixels) are obtained
from permanent waters (occurrence > 90%) and 10,000 land samples from areas where
water has been never detected (occurrence =0%). Finally, a regulanzation process is done,
to remove tsolated “as water detected” pixels, through the “ClassificationMapRegulariza-
tion'" application fram OrpheoToolBox (66, evaluated at different window sizes, and a
singhe-date water mask is obtained,

Every optical and radar observation runs a water detection process to obtain a single-
date water mask. Then, single-date water masks are combined together with a multiple-
date process for a time-window/sampling period. Five time-windows were tested in this
study: 5, 10, 15, 20, and 30 days. Two multiple-date merging methods have been devel-
oped. The "Average” method classifies a pixel of the mask as water if at least 50% of the
observations were classified as water by the single date classifiers, The “Max™ method
classifics a pixel of the mask as water if it has been classified as water at least once by the
single date classifiers. This last method 1s equivalent to the maximum surface water extent
as observed during the time-window period by Sentinel-1&2.

2.3. Regron of Interest Extraction Process and Surface Water Area Estination

A geographical layer of water bodies area extent found within the studied MGRS2
tiles is created from an Optical Water Occurrence mask (OWO). The OWO 1s computed
for cach Sentinel-2 pixel as the ratio between the number of water detection over the num-
ber of valid observations for optical data, The water bodies area extent is built from the
dilation by 50meters of the OWQ exceeding 15%. Every targeted water body, localized by
its coordinates, is associated with the closest water body area extent, The water area extent
of a water body for a single date or a time-window water mask is computed as the sum of
water pixels” area extent (10 x 10 m) contained in this area,

2.4. Refevence Data-Large Scenes Water Masks

In order to validate water masks for large scenes in different seasons, a reference da-
taset has been developed using Active Leaming for Cloud Detection (ALCD) software
exploiting Sentinel-2 images. The motivation behind the use of ALCD for validating re-
sults rather than a hydrological database comes from the fact that water bodies are highly
subject to change in time, depending on the season, meteorological conditions, manage-
ment policies, ete.

The ALCD software was developed initially to generate reference cloud masks which
may be used to validate Sentinel-2 cloud masks, such as thase generated operationally by
MAJA. This approach has been applied to generate reference water masks based on Sen-
tinel-2 L1C [67] imagery.

The reference water masks are g ted using an iterative active leamning procedure
which enables the creation of an accurate reference mask in less than 3-5 h for a 110 = 110
km scene, For this, itis necessary to manually create reference points on the image, train
the model (based on Random Forest of OTB [66]) and predict with ALCD, then add new
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reference points for the most problematic arcas, repeat training/predictions cycles as
many times as necessary (usually 5-7 iterations), The final step consists of 8 manual cor-
rection of persisting errors. For the training process, the following Sentinel-2 bands were
used, B2: Blue, B3: Green, B4: Red, BS: NIR, B11: SWIRI, B12: SWIR2, In addition, derived
indices such as MNDWI and slope information derived from SRTM [68] were also ex-
ploited.

The generated validation dataset has been shared in the ZENODO platform in open
access [69]. A total of 14 sites have been covered on different eco-climatic zones (oceanic,
Mediterranean, mountainous, continental) that are presented in Figure 2. Then, 26 scenes
have been completoly labelled on these sites on different seasons and conditions (snow,
flood event, turbid waters, wetlands, urban areas, dry scenes), as described in Table 1.

Figure 2. 26 Large scene reforence masks (110 « 110 km) have boen generated over 14 sites in
France

Since the aim is to evaluate inland waters, coastal waters have been excluded using
the CSHHG world shorelines database [70), applying a dilation of 400 m towards the land,
The total surface of labelled data 15 238,126 knv',

Table 1. Description of the scenes used as reference with corresponding continental water surface in km? and percentage.

Region Dates w':: ‘:‘)m Scene Content
Alpes 1 24 February 2019 37.85 (0.31%) Snow, Mountain
Alpes2 28 August N8 12504 {1.08%) Mountain
Alsace 12 September 2018 S3.78 (069N Lowlands, Slopes
21 Mars 2019 100,14 (0.83%) Saow, Lowlands, Slopes
Ardiche 17 February 2019 12275 (1L.01%) Snow, Lowland, Slopes
24 Mars 2019 119.75 (0.98%) Lowlands, Slopes
20 September 2019 10915 (0.90%:) -1
Ariege 23 October 2018 3994 (034%) Mountains
22 Mars 2019 3142 (026%) Snow, Mountains
Bordeaux 11 September 2018 18736 (251%) Coast, turbid/clear water
23 February 2019 18440 (2.47%) -
Bretagne 23 February 2019 54.93 (0.46%) Wetlands, small bodies
08 Jaly 2018 39.94 (D34%)
Camargue 31TH 27 September 2018 4156 (4.14%) Coast, large water bodies
31 Mars 2019 45911 (4.71%) -
Chateaurouy 3ITCM 19 Aupust 2018 1335 (1.1%) Lowlands
25 February 2019 121.24 (LK) -
Gironde HITXR 23 February 2009 92,63 (1.37'%) Defta, turbid/clear water
Havre UYV 24 Mars 2020 85.91 (R.17%) Delta, lowlands
Marmande 30TYQ 22 February 2019 95.33 (0.79%) Wetlands, small bodies
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Der Lake regpon

Orient Lake regron

Total

J1IUFP 10 July 2019 173.5 (1X85%) Lowlands/gentle slopes

(4 December 2019 4535 (0.37%) -
29 Dexember 2019 121 86 {1L.01%) Food

3IUEP 17 luly 2019 106,47 (0.85%) Lowlands/gentle slopes

(M December 2019 41.27 (0.37%) -
29 December 2019 31,65 (1L67%) Flood
323990 {1.36%) — 238,126 total surface

" same as provious line.

Concerning ALCD scenes accuracy, ALCD scenes have been evaluated over three
parts of France covening heterogeneous water bodies. In the Ardeche region (Tile 31TFL),
these results have been compared to a detailed static water database issued from water-
shed managers (3-Rivieres watershed). In the Normandy (Tile 30UYV) and the Sologne
regions (Tile 31TDV), the results have been compared to the TOPAGE static water data
base [71]. In cach case, the size of un-detected water bodies was checked with their size
distribution being around 85%, 10%, and 1% respectively for 0-0.1 ha, 0.1-4.2 ha, and (0.2
0.5 ha classes. Another result is that more than 90% of the water bodies larger than (15 ha
were correctly detected, Accordingly, it is estimated that the water bodics above (15 ha
are also similaely well detected over the other ALCD tiles.

2.5. Refevence Data-Reservvirs Area

Time Sertes of in situ daily observations of 29 reservoirs in the Ocaitanie region, in
the south of France, has been gathered to qualify area monitoring from 2017 to 2019, Given
the water surface elevation Z(t) and volume V(t) series provided by reservoir managers,
which contains bathymetric information on their relationship, the arca S(t) ime series has
been calculated as follows. First, the derivative values of V(Z) function of cach reservoir
are calculated, resulting in S${Z). Hence, $(Z) 1s used to transform Z{t) time series to S(t)
fHme series., Assummg Z(t) unu‘-rlnm!y of 22 ¢m on in-Situ measurements 8s 4 worst-case
scenario during high filling rate periods, mean 5(t) uncertainty has been computed as
+{),14 hectares or +0.12% of the area in our reservoirs dataset. Such worst-case uncertainty
15 small compared to 5(t) errors obtained from satellite estimations (see Section 32.3). As
shown in Figure 3, the reference reservoir maximum sizes were distributed from 1200 ha
to 38 ha. The geographical distribution of the reference reservoirs in the south of France
may be also noticed in Figure 3,

(a) (b)
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Figure 3. Reference reservoirs: (a) Surface dynamics over 3 vears of in situ data {2017-2019), (b) Location of Keference
Reservoirs in France (green)
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Tao have a better understanding of the impact of the reservoirs” state on the arca esti-
mations, all the measurements have been associated with a reservoir state: high filling rate
(arca of reservolr >80% quantile of the inwsitu area time serics), low filling rate (area of
roservoir <20% quantile of the in-situ area time series), increasing filling rate (if the arca is
greater than the previous day and outside high/low range), decreasing filling rate (if the
area is lower than the previous day and outside high/low range).

2.6. Large Scene Water Masks Assessment

The assessment of large scene water masks has been developed in two stages,

First, optical and radar classifiers have been evaluated on a single-date basis. This
assessment included the estimation of the following indicators. accuracy, Fl-score, preci-
sion, and recall. As well, we give the number of comparisons with Fl.score lower than 0.5
shown as “failures”, to provide an insight into the instability of the water detection
method.

Second, the best optical and radar classifiers from the first stage have been selected
based on their median F1-Score. Then, different multiple-date methods have been as-
sessed based on the same indicators of the first stage.

2.7. Reserwoirs Area Assessmen!

Since reference reservolrs have a wide range of maximum water surface arcas (from
20 ha to 1200 ha), error metrics chosen for this study should consider reservoirs” size dis-
parity. Thus, error metrics based on relative and absolute relative error have been used
for this assessment, using the following definitions:

relative error = Li'L )
Kyoy
- X- er[
absolute of relative evror = abs ¥ (2)
ref

where X is the reservoir arca measured by satellite at a given date and X refers to the
reservoir area obtained by in-situ measurements.

2.8. Reservvir Characteristics and Geamorphological Indicators

Reservoir characteristics might be also related to the quality of area monitoring. In
this study, we propose to compare maximum area extent, altitude, and four geomorpho-
loglcal indexes to their results on Absolute Relative Error on area estimation.

The two first geomorphological indexes are the "Eroded Anea index, defined as the
eroded surface area (maximum extent surface buffered by 50 m) divided by the maximum
surface area, and the “Eroded Perimeter” index, which uses perimeter instead of area.
Both indexes penalize reservoirs with narrow arms (widths <100 m will disappear), and
vield higher values for large surfaces, where the loss of eroded surface is relatively lower
compared to the maximum surface,

The second two morphological operations are the “Convex-Hull Area” index and the
“Convex-Hull Perimeter” which use the Convex-Hull shape instead of the Eroded one.
Low Convex-Hull Arca or Perimeter Index denotes a complex shape with sinuous bound-
aries.

Figure 4 shows examples of Maximum surface, Convex-Hull surface, and Eroded
surface and their geomorphological values on four different reservoirs. Table 2 present
the values of the proposed geomorphological indexes, where maximum values are repre-

sented with bold style,
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(a) (b) (<) (d)

Figure 4. Representation of maximum extent (red), Convex hull (blue) and Eroded surface (green)
for the following reservoirs: (a) Saint Céraud, (b) Tordre, (¢) Parcloup, (d) Salagou

Table 2. Geomorphwlogical indexes derived from maximum extent surfaces for 4 ditferent reser-
voirs, Maximum values are presented in bold style for each index (row).

hological In- 28 : .
Geemorp d:‘ogl“ " Saint Géraud Tordre Pareloup Salagou
Erud«-& ,(r;-'a Index 0.35 0.66 (.78 0.85
Eroded Perimeter In- 068 081 028 0.95

dex
Convex Area Index 021 0.72 035 0.619
Convex Penmeter In- 0.62 0.79 040 0.9
dex
3. Results

The proposed water detection methods and the multi-temporal approaches have
been evaluated by two different assessment procedures. The first part addresses the qual-
ity of large scene water masks by comparing the resulting water maps to reference masks
for specific dates. The second part addresses the quality assessment of area estimations
for individual water bodies using in-sttu data from 29 dams (two years’ ime series). For
both sections, single-date and multiplo-date water detection results are compared sepa-
rately for the optical and radar observations.

3.1. Large Scene Water Masks Evaluation

Every ground trath mask generated with ALCD has been compared with all the op-
tical and radar water maps avallable in the range [D - 5, D + 5 days], where "D” |5 the
acquisition date of the ALCD input mask. Radar and optical water detoction methods
have been evaluated independently. Optical input images with partial (cloudy) observa-
tions have been included in the evaluation; nevertheless, the areas marked as “cloud” or
“shadow” on the S2.L2A mput products are excluded from the evaluation, Thus, the in
tersection of all valid pixels from ground truth and dassifier outputs are included in the
evaluation (no sampling).

3.1.1. Optical Water Masks Evaluation at Single-Date Observation

Three different algorithms have been evaluated for water detection on Sentinel-2-
L2A images: (1} Edge filter Canny and Otsu thresholding on MNDWI; (2) Binary cluster-
g on Hoe/Saturation/Value dimensions extracted from PylntertidalDEM algorithiy (3}
Agglomerative clustering based on the “"WaterDetect” algorithm in three variants: two
features (SWIR band, NDWI), throe features (two first features + MNDWI1) and using four
features (three first features + MBWI). Furthermore, an additional filter has been evaluated
on top of the basic algorithms: a threshold filter at 0.8 on the SWIR band, A total of 74
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images have beon evaluated and compared to the 26 ALCD ground truth masks using
indicators described in Section 2.6, Results are presented in Table 3

Table 3, Median Scores tor the Optical methods as tand total oumber of failures (soenes with F1 <0.5) for 74 scomwe
cvaluabions. Best values are presented in bold style for each score (column),

Optical Method SWIR Filter ¥1_Score Precisi Recall A 'y Failures
Canny-Otsu MNDWI - (81449 0.916422 0.826836 0.99697 7
Canny-Otsu MNDWI Yes 832646 0.92834 (826021 0997206 5

sV - 0.7854 091604 0875777 DM6111 12
sV Yes 081009 0.941263 (856648 0.996487 7
Clustering 2 channels Yes (LERRE8Y 0.944292 (.888526 0997996 6
Clustering 3 channels - (868414 0864012 0933613 0997416 7
Clustering 3 channels Yes 0.890239 0.893692 0917815 0997814 4
Chustering 4 channcls Yes (L886854 092536 (886162 .997939 &

Agglomerative clustering methods (“Clustering”) achieved the best FI median re-
sults over the 74 comparisons, providing the best scores on recall. Also, the “Clustering 3
channels” method with SWIR filter provided the best median F1 Score and the Jowest
number of failed detections (three images of F1 < 0.5 over 74 comparisons), The rest of the
optical methods (Canny-Otsu MNDWI and HSV) have better Precision than Recall scores,
SWIR filter has shown an improvement of median precision scores or number of failures
at this evaluation,

3.12. Radar Water Masks Evaluation at Single-Date Observation

The radar water detection method, based on Random Forest trained on historle opti-
cal water detections, has been d through combinations of different window sizes
of Lee speckle filters (unit: 10 m pixels) and output regularization filters based on ball
structure (radius unit: 10 m pixels). A total of 123 images have been evaluated and com-
pared to the 26 ALCD ground truth masks providing the following results, presented in
Table 4:

Table 4. Median Scorvs for the Radar methods assessmont and total numbaor of falled comparisons
(F1<0.5) for 123 scene evaluations. Best values are presented (n bold style for each score (column),

Loefis - Remuls- .
RedsrMettiod ' DA o oo Poed Reesll Ace  Fak-
Size -ml.l Ra- sion racy lures
dius
Random Forest No 1 (L6s) a7 0714 0995 "
Random Fomst Ax3 1 (A 0674 723 11995 2
Random Forest  No 2 am7 0787 1710 099 5

The effect of larger preprocessing Lee filtering windows slightly improves the me-
dian recall score in detriment of a higher number of failures. The effect of a larger Regu-
larisation window improves the median precision and the number of failed scenes. Reg-
ularisation had a cleaning effect on small, isolated detections or water omissions, pro-
duced by speckle and surface roughness irregularities present in crop bare soils or windy
water surfaces,

3.1.3. Multiple-Date Water Masks Evaluation

The multiple-date water masks assessment considers different time window lengths
and different methods to process single-date water masks.

The sclected optical water detection algorithm, based on the best Fl-scor, is the
“Clustering 3 channels” with a SWIR filter; the selected radar water detection algonithm
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Table 5. Median Scores for Optical and Radar assessiments on different multi-temp

is based on Random Forest with a regularisation size equal to two, Like in previous as-
sessments, 74 optical evaluations and 104 radar evaluations have been performed. Results
are shown on Table 5 thelr median values and number of fatlures;

thods and lenyths and

1 window

number of failed scenes (F1 < 50%) over 74 optical scenes and 104 radar scones. Best values are presented in bold style for

each score (column).

Average Max
Method F1_Score  Precision  Recall  Accuracy  Failures | F1_Score Precision  Recall  Accuracy  Failures
Radar | day 0727 0787 0z 0.9962 L] 0.727 0.787 0710 0.99% B
Radar 5 days 0744 0.789 0.756 0996 1 0,708 D669 D.784 0.995 3
Radar 10 days 0,795 0887 0.754 0.9970 3 0.672 0.584 0510 0.994 9
Radar 15days 079 D590 0755 0970 3 (L5848 0.492 E2 1) 093 23
Radar 20 days 07 0894 0752 0wz 2 0565 0424 D862 0,992 B
Radar 30 davs 0.802 0.907 0746 09973 2 0,508 1386 0.869 1,99 i
Optical 1 day 0.8%0) 0893 0917 09978 4 0,890 0.893 0917 09978 El
Optical 5 days (.89 0.906 0895 1.9979 9 0.894 D870 0.930 0.997% 7
Optical T0days 0899 D889 noNd 080 10 0.853 0834 0936 0Wrs 9
Optical 15 days 0901 0.3 N9 0978 10 0857 1786 0942 09966 0
Optical 20 days 0886 0885 0915 (9977 7 0.846 0767 0960 (05963 18
Optical 30 davs (.889 0599 [ 1.9981 7 (.524 0740 0.953 0.9964 14

Regarding radar results, “average” methods improve precision, and henee, F1-Score
with longer time.windows. Recall remains constant even with Increasing time-window
length, wh fail drop considerably if a ime window 14 set, “"Max" methods, on
the contrary, worsen the performance when increasing the length of the time-window in
precision and number of fatlures.

About optical results, “average” multiple-date methods do not improve scores for
the general scene evaluation, and failures are increased. On the other hand, “Max” multi-
ple-date methods decrease performance for longer windows,

3.2 Area Monitoring Evaluation on Reservoirs

This evaluation 1s based on the companson of reservoirs’ areas issued from satellite
observations with daily in-situ measurements from 29 reservoiss in the South of France.
Time series of two years (2018, 2019) have been used for this analysis. Figure 5 shows an
example of reference area time-series and satellite area estimations for one reservoir.
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Figure 5. Satellite anea estimations ot Louet reservoir (Optical in orange, Radar in green) wsing 20 days time-window com-
pared with the reference insitu areas (blue line),
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3.2.1. Error Assessment of Reservoirs Area Monitoring

The surface area of cach water body Is computed from a large-scone water mask, as
described in Section 2.3, and error metrics are then processed, described in Section 2.7,
The propased reservoir monitoring methods are classified according to how large-scone
water masks are generated using the following criteria:

*  Sensor:optical measurements (“MO") and radar measurements (“MR”), based on the
same water classification methods evaluated in Section 3.1.3.

e Single/Multi-date method: They are categorized in three classes: Single-date methods
are based on ust one satellite observation ("MO17, “MR1”), multiple-date methods
apply a backwards time-window (“MO2", “MR2") and the last methods calculate the
sum of all the surfaces detected as water at least once during a natural month
("MO3", “MR3"). Multiple-date methods ("MO2", "MR2") present two possible
logies: average (“_avg") and maximum pixel wise surface (“_max"), as described in
Section 2.2 Also, multiple-date methaods with time-windows have a suffix ("_WN"),
where N is the ime-window size in days.

In order to understand the general behavior of each method, all measurements for 29
reservoirs for two years are shown in Figure 6 by boxplots, Optical methods have been
represented in red tone boxes and radar methods in blue tone boxes, Multiple-date meth-
ods based on “maximum” logic are represented with more intense colors. Green horizon-
tal lines inside the boxes show median values. The box is bounded at 25% and 75% quan-
tiles and whiskers are set on 10% and 90% quantiles.

Regarding median values for this global visualization, it may be noticed that all the
methods have a generalized negative bias on reservoir area estimation. The optical
method’s underestimations are less accused than the corresponding radar methods. For
example, MO2_WI15_avg has a median valoe of -5.49%, while the radar version
MR2_W15_avg has a median value of -13.8%. Regarding the effect of time-windows, it
may be observed that longer windows are assoctated with a reduced underestimation. For
instance, median values on the optical values improve from =7.23% in MOT to -5.28% i
MO2_W20_avg. Radar median values improve from -1604% in MR1 to —4.1% in
MR2 W20 max. Among the time-window methods, those applying the “maximum”
multi-date logic have smaller bias values than the equivalent “average” methody for the
same window length. MO3 and MR3 methods may be considercd equivalent to
MO2_W30_max or MR2 W30_max methods where estimations are produced only once
per month (only natural month data are considered), Their error boxplots are quite similar
as expected. Respecting median values, MO2_W30_max and MR2Z_W30_max achieve bet-
ter accuracies, with 0.3% and 1.3% respectively.
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Figure 6. Relative error of Reservoir area estimation using different combinations of optical and radar masks for 2 years
of measurements at 29 instrumented reservatrs, Naming convention: MO « Optical, MR = Radar; MOT, MR1 = single date
miasks; MO MR2 = multiple dates masks; MO3, MR3 = maximum extent during the natural month; WN =N days of tme-
window length; avg = average logic, max = maximum logic. Optical methods have been represented in red tone boxes and
radar methods in blue tone boxes, Multiple-date methods based on “maximum® logic are represented with more intense
colors, Green horizontal lines inside the boxes show median values. The box is bounded a 25% and 75% quantiles and
whiskers are set on 10% and 90% quantiles. Extreme values are represented as black arcles.

322 Influence of Reservoir Filling Rate

The dynamics of water stored in reservoirs have an impact on the water surface char-
acteristics (area, nature of boundary water/land areas) and thus may affect the water mask
quality for cach reservoir. We define two contrasted hydmlogical conditions by subset the
water area extent: high filling rate and low filling rate {see Section 2.5)

Figure 7 shows the same relative error of each method presented in Figure 6 but re-
stricted to dates with high filling rate status, Two main differences appear, First, the gen-
eral negative blas of area estimations s higher than in the global case. For example, me-
dian relative errors of “MO_W20_avg" change from ~5.33% in all reservoirs status to
=7.96% in the high filling rate. Second, this negative bias decreases less while increasing
the time-window compared to the global case,
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Figure 7. Kelative error of Area estimation for High leved reservoirs (>80% arca quantile) measurements. See description

at Figure 6 caption,

This generalised underestimation of the arca extent detected for hugh filling rate pe-
riods might be explained by the dense vegetation often covering the rarely flooded shores
and upstream parts of the reservoirs. Water detection algorithms are very affected inareas
with dense vegetation in ophical images [17] and SAR [72], as shown in Figure 8, Shrubs
and small trees also affect radar detection, to a larger extent than optical data detection,
as shown in water occurrence maps in Section 4.1, Confusions between sand and water
are also a source of detection failures with radar data, as shown in the inner part of the

lake in Figure 8

(a) (b) (c)

Water
Occurrence
Bo
0.25
05
0.75

[ B

Figure B. Fifect of dense vegetation and sandy surfaces on occurrence maps on the southern area of Midlan reservoir,
where radar water detections ane quite limited due to vegetation. (a) and background: ESRI acrial image; (b): water oocur-
rence map from 2 vear of npn:al observations; (¢ water occurrence map from 2 vear of radar observations. Zero oocur-

rence has been displayed as transparent
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The same analysis made for low filling rate periods shows different behaviors, as

shown in Figure 9. In hydrologically drier conditions, bias increases with increasing time
window. Time-window methods using “maximum” logic tum negative bias into high
positive bias, The “average™ method over 20 days leads to removing the negative bias
observed with the optical data detection methods whereas radar detection blases are not
improved with time window. This oversstimation is mainly due to the integration of
higher water level observations within the time window,
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Figure 9. Relative errar of Area estimation for Low level resecvoir mensurements, See description ot Figure 6 caption.

3.23. Analysis of Absolute of Relative Error on Reservoir Area Estimation

To provide a more comprehensive study on reservoir area estimation error and its

dispersion, we propose to analyze absolute values of relalive area errors fram all the res-
ervoir area estimations altogether, Working with absolute values, median or quantile er-
ror values better reflect all kinds of error, positive and negative. In Figure 10, we have
sorted the quantile values (50%, 90%) of absolute of relative error of area estimation of
each method for all reservoirs as a whole, and the following results may be observed:

On the optical methods, MO3 (maximum on natural month) provides the best results
on quantile 50% (median value), but it performs worse on quantile 90% compared
with other optical methods. Time-window methods based on “maximum” logic per-
form well on 50% quantiles, but they are not the best on 90%, Time-window methods
based on "average™ logic with 10-15-20 days perform well on quantile 90%, For ex-
ample, the mean absolute relative error in MO1 is 16 9%, whereas MO2_W15_avy, is
12.9%., In conclusion, “average” and “max” time-windows have similar positive re-
sults compared to single-date methods.

On the radar methods, MR3 (maximum on natural month) provides the best perfor-
man<e on both quantiles 30% and 90%; on the time-window methods, methods based
an “maximum” outperform the “average” methods for both quantiles, For example,
the mean absolute refative ereor in MR1 is 22.7%, whercas MR2_W10_avg is 19.5%
and MR2_W10_max 5 15.1%. For “maximum” methods, relatively long windows (20,
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30 days) perform bettor than short windows (3, 10 days). For “average” methods,
quantiles 50% are better with short windows (5, 10 days) but quantiles 9%0% are better
with middle (10, 20 days) windows.

Any multi-temporal method {*MO2", "MO3”, “MR2", "MR3") outperforms the other
methods based on single observations ("MO1”, “MR1”) on quantile 50% and 90% of
absolute of relative error on the area estimation,

Any optical method (“MO") outperforms the other methods based on radar observa-
tions{"MR") on quantile 50% and $0% of absolute of relative error on the area esti-
mation,
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Figure 10, Quantiles of absolute of relative error on area estimation on each method, (a) Quantibe 50%; (b}: Quantile 0%,

3.2.4. Geomorphological Influence on Area Estimation Quality

To have a better understanding, an analysis of optical and radar area monitoring er-
ror (median error) has been plotted against the maximum area, altitude, and four geomor-
phological indicators of all reservoins in Figure 11. Separately for optical and radar meth-
ods, a linear regression function has been fitted for each ensemble of Area Monitoring
Error and geomorphological information of each reservoir. For the optical method
(MO2_W20_avg), individual geomorphological indicators show a poor correlation with
area monitoring quality, with R?values < 0.2 Using all morphological indices in one singhe
lincar model for optical, it yields a 042 R* score, which is low. For Radar Methods
(MR2_W20_avg), Eroded Peri and Arca ind have the most relevant information
to predict the area monitoring quality, with R? scores of 0,44 and (1.58. Results corroborate
the Idea that radar water detection is limited for narrow water areas (width <100 m) by
the lower spatial resolution and the effect of bright adjacent land zones comparatively to
Sentinel-2. This impacts significantly the total area extent detection accuracy. Using all
morphological indices in one single Imear model for radar yields a 0.67 R? value. Hence,
the presented geomorphological indices would better predict the quality of area estima-
tion of each reservoir on radar methods than in optical ones, With respect to a maximum
surface dataset of 104 reservolrs in the Occitanie region, we appreciate that 37.5% of res-
ervoirs have Eroded Perimeter index values under 0.5, which suggests that they will have
bad arca estimation quality using radar methods (median absolute of relative error higher
than 207%).
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Figure 11. Median Absolute of relative error of area estimations of reservoirs depending on their geomorphological in-

dexes: maximuemn area, altitude, Eroded Area ratio, Convex-1ull Area ratio, Convex-FHull panmeter ratio and Froded Pe-
rimeter ratio. (a) Results based in optical method "MO2_W20_avg” (b) Results based In radar method “MR_W20_avg",

4. Discussion
4.1 Multitemporal Impact on Optical and Radar Detections

We presented a methodology to generate largescale water maps and process them
to monitor reservoir arcas. In comparison with other works on reservoir monitoring based
on optical surface observations [73,74] or radar observations [75], the presented surface
and area estimation method proposes a multi-temporal approach, This strategy of merg-
Ing multiple date information corrects occasional noisy ovents, acting as a temporal (not
to confuse with spatial filter) low-pass filter on the time series. On the other hand, detec-
tion of rapid changes will be penalized, which affocts reservoir area estimation (e.g.,
coastal reservolrs that change with the tide), Regarding end-to-end performance on reser-
volr arca monitoring presented in Section 3.2.3, results show a general positive effect of
multi-temporal approach on reservoir area estimation, for both radar and optical methods
and for any kind of merging logic (average, max). Nevertheless, there are differences be-
tween radar and optical performances.

First, there are constant factors affecting water mask quality which are different for
optical and radar observations. On SAR images from Sentinel-1, water detection is based
on spotting zones with low backscattering. Whena water body is contiguous to high radar
reflectance elements (trees, artificial structures as bridges, or walls), the SAR impulse re-
sponse of these bright elements affects the adjacent low signal zones on water surfaces,
Being Sentinel-1 resolution equal to 20 * 22 m and affecting at least one adjacent pixel, it
may ropresent a loss of 40 m when measuring river widths, or erosion of 20 m inside the
perimeter of a lake or reservoir. Detection problems by trees are aggravated by Sentinel-1
high incidence angle range (29,1°46%) compared to Sentinel-2 (0°-10.17). There are other
constant factors that challenge the radar water detection at boundaries, such as sand,
which may have very low backscatter for certain angles and certain moisture levels [44],
or the effect of vegetation at the surface water, Other relatively conatant factors (which
duration is longer than several weeks) also affect optical detection, like a tree or urban
shadows [76] or sunglint [77]. As a result, water boundaries zones with sand and vegeta-
tion are often better detected with optical measurements. Figures 8 and 12 show the sys-
tematic drastic drop of radar occurrence near water bodies shores, especially for forested
surroundings. On the contrary, optical occurrence remains stable and drops closer to the
shore.
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Figure 12. Reprosentation of the reference water mask on a specific date (red polygons) with ESRI Satellibe background
(a), compared with water occurrence map based on Optical measurements for 1 year of observations (b) and the water
OCCUrTENce map based on Radar measuroments for 1 yoar of observations (¢),

Second, the quality of the masks ts affected by varlable observation conditions de-
pending on the method (optical, radar). The multi-temporal approach allows to correct
and erase false detections inside the time-window: clouds or doud shadows perturbations
for optical detection; speckle, certain bare soil conditions (roughness, soll moisture), and
water roughness variations due to wind for radar detection [78]. In this study, clouds or
cloud shadows are generally flagged and removed by the MAJA preprocessing chain,
Some remaining artifacts (cloud or shadow not detected) may sporadically affect detec-
tion quality. On the contrary, scene variable conditions that perturb the radar detection
quality, such as speckle, water/soil roughness, or soil moisture, are always present in ra-
dar Images and cannot be flagged. Hence, radar water masks quality might be more fre-
quently affected by undetected changes of these variables.

Multiple-date methods statistically improve more unflagged radar detections than
flagged optical detections. This should come to a reduction of omission errors in rough
waters 0r commission errors in bare soils, and compensates for speckle effects in omission
and commission, as illustrated in Figure 13. Also, multiplo-date methods like maximum
extent logic combine ascending and descending radar views of reservoirs surrounded by
trees, reducing the shadowed ares and improving arca estimation. This is an important
result for regions that have a permanent cloud coverage in tropical or polar arcas, for
which the Sentinel-1 data time-series could be more complete/accurate than cloud-free
composite Sentinel 2,
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Given the ated differences between optical and radar methods, which are affected
by different constant and variable factors, we have kept a separate analysis for reservolr
monitoring evaluation, In this context, it should be taken into account that water bound
aries detection will be different on optical and radar sensors for thin water bodies (<50 m),
sandy shores, artificial structures, and some vegetation types above water, Nevertheless,

merging both outputs together is possible and complementary (better accur

wson l‘l'(l
cal methods and assured systematic radar observations). On complex zones like wetlands,
the benefits of merging both sensor measurements have been already shown [7Y] or in

flood duration analysis [74]

1.2, Observation Frequency

The presented work has been evaluated i metropolitan France, where Sentinel-1 and
Sentinel-2 observation conditions might not be completely generalizable. Sentinel-1 ob
servations are more frequent (2-6 days) than other zones in the world (12 days) [55,50]
Also, Sentinel-2 observations in tropical and arctic zones are very limited due to frequent
clouds. With regard to our reference reservoirs, there is a notorious difference in fre

quency of reservolr observations due to swaths overlap or local climatological conditions

for n;*nml measurements, Figure 14 shows how time-window with average logic using
20 days changes the quality of the area estimations depending on the mean duration be
tween clear observations. This effect is expressed as the difference of the mean absolute of
relative error multiple date estimations (MO2_W20_avg, MR2Z_ W20 _avg) compared to
single date observations (MOT, MR1), In view of the results, where the estimations are

improved in general, it cannot be stated that more frequent clear observations increase
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accuracy for cither aptical or radar methods. In other words, even if the time-window
captures a small number of observations, quality improvement on area estimation has
been observed. This fact could justify longer tUme-windows in zones with less frequent
Sentinel-1 observations, with durations like 12 or 24 days in order to include at least one
or two observations,
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Figure 14. Improvement of mean

[

of rel error bety single date measurements (MO1, MR1) and multiple

date (MO2_W20_avy, MR2_W20_avy) compared with the Number of observations on each reservolr for optical (a) and

radar (b) measurements.

5. Conclusions

We argued at the beginning of the article that multiple-date approaches had to be
considered and evaluated for the improvement of water maps (large scenes) and the ac-
curacy of reservolr area estimation. Through the evaluation of 26 reference water maps
(110 km x 110 km at 10 m resolution), and the analysis of 29 reservoirs in France for 2
years, we have shown the improvement of accuracy for optical (Sentinel-2) and radar
(Sentinel-1) measurements in two ways. First, large scene water maps scores have im-
proved significantly on radar multi-date approaches (an increase of 0.08 in F-Score with
average logic at 30 days), while optical maps just yield similar results to multiple-date. On
the reservolr area assessment, both multiple dates approaches (average and maximum
logies) improved results for both radar and optical approaches for any time window
length. For example, the mean absolute relative error on area estimation from single date
radar measurements improved from 22% to 14% using the Maximum logic on 15 days,
For optical data, even if large scene quality did not apparently improve (similar Fl-score),
the mean absolute of relative ¢rror on reservoir area estimation decreases from 16,9% to
12.9% using the Average logic on 15 days. Table 6 summarizes the impacts of multiple-
date approach compared to single-date results.

Table 6. Effect of multiple-dates method compared bo its corresponding single-date method on dif-
ferent evaluations,
_Large Scene Evaluation |Reservoir Area Evaluation
Optical Radar Optical Radar
Multiple-dates '::::5: u::glc Neutral  Very Positive  Positive Positive
Method Effect logle Negative  Negative Positive  Very Positive

Additionally, the present work yiclds a quality evaluation and comparison of radar
and optical water maps, using state of the art methods, While similar in the precision score
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(0.9), optical water maps had better median recall scores (0.9) than radar (0.75), which may
be explained by difficulties of radar on smaller water bodies like thin rivers or small
ponds. Concerning reservolr area monitoring, optical estimations outperform radar, Op-
tical approaches yield a median absolute of relative error of 6.8% (30 days with “maxi-
mum” Jogic) while radars yield 9.5% (30 days with maximum logic). It is important to
remark that both methods have a tendency to underestimate area (negative bias), being
more significant on the radar. Considering the water level status of reservoirs, our meth-
ods have shown better estimations at low filling rate conditions than at high filling rates.
This observation is important for application purposes, as low filling rates oceur during
dry conditions when water restnictions and water shortage happens. Lastly, in order to
predict the radar performance on reservoir area monitoring, we propose the analysis of
the “Eroded Area Ratio”, showing a considerable correlation with area estimation quality
(mean of absolute of relative error).

As a result of conducting this research, we propose two improvements to future wa-
ter maps and reservoir monitoring systems based on satellite ts. First, fub
water maps products should take advantage of multiple-date approaches to improve
mapping accuracy, especially in radar observations. We propase to use time windows
between 10-20 days applying “sverage” logic which ylelds significant improvements on
large-scale water maps and reservoirs area estimation. In zones with less frequency of
Sentinel-1 observations (mainly outside Europe), time-windows of 12-24 days would be
recommended. Second, reservoir filling rate may influence the quality of area estimations,
being critical on full reservoirs surrounded by dense vegetation or artificial structures af-
fecting radar. Some solutions are propased for future investigations: flag high-filled res-
ervoir measurements surrounded by such conditions by means of land cover maps; re-
construct area dynamics just focusing in zones not surrounded by vegetation of artificial
structures [75] or correct area dynamics using auxiliary measurements, such as altimetry,
digital elevation models or in situ measurements. New altimetry systems providing a
larger number of tracked water bodies in a global approach, like lceSat2 based on Lidar
[81], altimeters Sentinel-3 [82], Sentinel-6 [83], and the future SWOT mission [84], will pro-
vide essential information to be combined with the proposed arca estimations. Such a
combination will help to better determine the volume dynamics of reservoirs and lakes
globally. As a final idea and with regard to the results of this work, we suggest that oper-
ational reservoir monitoring systems should combine both optical
with better accuracics, and radar measuroments, with more observations mdcpcndmt
from cloud conditions, to provide a complete as possible insight on water dynamics.
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Abstract: Climate change, increasing population and changes in land use are all rapidly driving the
need to be able to better understand surface water dynamics, The targets set by the United Nations
under Sustainable Development Goal 6 in relation to freshwater ecosystems also make accurate
surface water monitoring increasingly vital, However, the last decades have seen a steady decline in
in situ hydrological monitoring and the availability of the growing volume of environmental data
from free and open satellite systems is increasingly being recognized as an essential tool for largescale
muonitoring of water resources. The scientific literature bolds many promising studies on satellite-
based surface-water mapping, but a systematic evaluation has been lacking. Therefore, a round robin
exercise was organized to conduct an intercomparison of 14 different satellite-based approaches for
monitoring inland surface dynamics with Senti i-2, and Landsal 8 imagery. The objective
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was to achieve a better understanding of the pros and cons of different sensors and models for surface
waler detection and monitoring. Results indicate that, while using a single sensor approach (applying
cither optical or radar satellite data) can provide comprehensive results for very specific localities, a
dual sensor approach (combining data from both optical and radar satellites) i the most effective way
to undertake largescale national and regional surface water mapping across bioclimatic gradients,

Keywords: surface water dynamics; SAR and optical data; data fusion; water resource management;
Sustainable Development Goal 6

1. Introduction

Water is key to sustainable development, being critical for socioeconomic development,
energy and food production, and healthy ecosystems. Today water scarcity affects more
than 40 percent of the world’s population and is projected to rise further, exacerbated by
climate change {1]. As the global population grows, there is an increasing need to balance
the competing demands for water resources and have more efficient ways to manage water
supply. The importance of ensuring the availability and sustainable management of water
for all has been increasingly addressed in the global political agenda, as seen with the Sixth
Sustainable Development Goal (SDG) of the United Nations 2030 Agenda for Sustainable
Development |2] and the adoption of an International Decade 2018-2028 for Action on
‘Water for Sustainable Development’ by the UN General Assembly [3]. As the demand for
freshwater increases, the importance of monitoring changes in surface waters is gaining
more attention, but many countries are still lacking data to manitor the extent of their
inland waters and their intra- and interannual changes.

Earth Observation (EQ) is an essential source of information, which can complement
national hydrometric data and services and support countries to operationally monitor
changes to their surface waters, Ever since the launch of the first Earth observation satellites
in the early 1970s, the mapping and monitoring of surface water has been a subject that at-
tracts interest from researchers and practitioners in hydrology, environmental conservation,
and water resource management. The field has gradually evolved and been incentivized
by the steady buildup of long-term archives of global satellite data and computer resources
for analyzing those data. A significant breakthrough in the adoption of EO solutions for
water=related topics has been the European Commission Joint Research Center’s Global
Surface Water Explorer [JRC-GSWE] [4] and the Global Land Analysis and Discovery
Group's Global Surface Water Dynamics [GLAD-GSWD] [5]. Despite these developments
and the long track record of related successful case studies on surface water mapping, there
is still & lack of clear, robust, efficient, user-oriented methods and guidelines that allow
for the use of EO data at scale and on an operational basis for surface water mapping and
monitoring.

The mapping of surface water with either optical or Synthetic Aperture Radar (SAR)
data has been reviewed in several papers (e.g., [6,7]) and with a series of more recent papers
focusing on the combined use of optical and SAR data [5-11]. This development is directly
related to the Sentinel program under the European Copernicus initiative [12]. Through the
Copernicus Sentinel mission, optical and SAR data in high resolution (10 m) have become
globally available free of charge and with a short latency of a few days or less. The next
leap in EO-based surface water detection will need to take full advantage of this enhanced
observation capacity, which offers unprecedented opportunities to develop robust and
cost-cffective EO methods to monitor the seasonal and annual variations of surface waters,
These EQ methods and associated information products can be embedded in national
processes for more evidence-based water policies and efficient reporting on the global
water agenda. This is why the European Space Agency (ESA) has launched the WorldWater
project with a principal aim of strengthening EO capacities in countries to better monitor
their inland waterbodies (lakes, reservoirs, rivers, and estuaries) and, consequently, better
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fulfil their commitments on water resource management and water security in the different
water-related global agendas such as the 2030 Agenda on Sustainable Development |2], the
2015 Paris Agreement on climate change [13] and the Sendai Framework for Disaster Risk
Reduction [14].

The overarching goal of the WorldWater project is to develop robust and scalable EO
solutions for inland surface water monitoring, which can be exploited by a large community
of stakeholders involved in water management from local water supplies to national water
strategies, including transboundary river basin management plans and global assessment of
surface water changes. As part of the project goal, a round robin exercise has been organized
to conduct an intercomparison of EQ algorithms for surface water detection, using the latest
generation of free and open satellite data from Sentinel-1, Sentinel-2, and Landsat 8. The
round robin was open to researchers, companies, and other developers of satellite-based
algorithms for surface water detection. The precondition for participating in the round
robin was a peer-reviewed algorithm for surface water detection based on (or adaptable
to) Sentinel-1, Sentinel-2, and /or Landsat 8. Non-peer reviewed algorithms were accepted
provided that adequate supplementary documentation and justification could be provided.
In this paper, we present the results of the WorldWater round robin intercomparison and
use them as the basis for discussing the pros and cons of different approaches to detect and
monitor surface waters from Earth observation data. By using various statistical tests, we
evaluate the quantitative performance of the individual algorithms and use the findings
to draw some qualitative considerations about their performance. The focus is not on
the algorithms themselves, as they have already proved themselves (cf. peer-reviewed
or in an operational setting), but rather, on the underlying data model, that is, whether
the algorithms are relying on single sensor inputs or whether they are using a dual sensor
approach. Ideally, the best performing algorithms can provide spatially and temporally
consistent timeseries of surface water extent dynamics that meet the user requirements,
not only in terms of accuracy but also in terms of transparency, cost, and transferability.
The aim is to contribute to the development of a new set of best practices for surface water
monitoring, as well as identifying shortfalls and areas of further research.

2. Materials and Methods
2.1. Test Sites and Input Data

All participants in the round robin were required to produce monthly maps of inland,
open surface waters at 10-m spatial resolution for 2 consecutive years over three test
sites (100 x 100 km) located in 3 different countries: Colombia, Mexico, and Zambia.
Optionally, participants could also submit results for an additional two test sites located
in Gabon and Greenland (cf. Figure 1). Test site locations were selected to cover various
eco-and climatic regions as well as to include major challenges for EO-based surface water
mapping, including sites influenced by topography, clouds, canopy shading, fire scars,
urban areas, and regions with permanent low backscatter (e.g., flat and impervious areas,
sandy surfaces). The sites also included a diversity of waterbodies ranging from large
waterbodies (wind and wave effects) to smaller waterbodies of both a permanent and
seasonal nature, as well as waterbodies impacted by water constituents and shallow waters
influenced by bottom reflectance. The input datasets, made available to all participants,
included all Sentinel 1, Sentinel 2, and Landsat § images acquired over the test sites from
July 2018 to June 2020. Use of ancillary datasets (such as Digital Elevation Model (DEMs)
and a priori surface water maps) were allowed, but under the condition they were publicly
available, e.g., the Copernicus DEM [ 15] and JRC-GSWE [4].
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Figure 1. Location map of the test sites annotated with their dominant eco-region(s),

2.2 Surface Water Detection Models

The following sections provide a high-level summary of the fourteen contributions
to the round robin intercomparison. Each contribution is referred to as a model in order
to emphasis that the focus on the intercomparison was to evaluate the performance of the
underlying data models, i.e., whether the surface water detection was based on optical data
only (O), SAR data only (5), or integration of both optical and SAR data (O +5).

Model A [O + S] uses a histogram segmentation method to separate imagery from
Sentinel-1, Sentinel-2, and Landsat 8 into water and non-water classes [16,17]. Specifically,
it carries out edge detection followed by procedures to help obtain a bimodal distribution
on which Otsu’s methaod is carried out to automatically derive an optimal threshold. This
model was specifically designed for fast and largescale water detection to assist in flood
relief efforts. Similar methods exist that attempt to obtain local thresholds over small
sections of each image [18], which can potentially yield more accurate results but at the
expense of computational speed. A postprocessing step is applied on the monthly water
maps derived separately from optical and SAR imagery, where water pixels are constrained
to areas that are hydrologically likely to contain water, with the full timeseries of maps
derived from optical imagery included as an additional constraint for the SAR-derived
maps, Finally, the optical and SAR-based maps are merged to produce a single water map
per month,

Model B [O + S] This surface water detection approach is based on Sentinel-2 imagery
as the primary water detection dataset, with the all-weather capabilities of Sentinel-1 SAR
imagery being used to "fill-in” cloud-obscured water surfaces. SAR data “in-filling” was
restricted to raster cells previously detected as having recorded a surface water content
trom longer-term data modelling results (circa 2016 and forwards) in order to minimize
SAR-generated commission errors in the target month. The water surface modelling
procedure is based on a set of decision-tree-generated rules that have been derived from
a comprehensive set of water and non-water feature reference points distributed across
South Africa. The reference dataset consists of =60,000 sample points that represent a
wide range of seasonal and geographical variations in both water (i.e., turbidity, depth)
and non-water surface conditions with potentially similar spectral characteristics, such
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as burn scars, terrain shadows, and dark, non-vegetated surfaces from both natural and
man-made environments, Collectively, these points ensure full representation of all spectral
characteristics required in the water detection modelling process. The monthly surface
water datasets represent the median surface water extent for that month, rather than the
average or (absolute) maximum extent, as a result of the multidate image acquisition date
compositing approach used to model water features [19.20].

Model C[O + S] uses a random forest classifier to map surface waterbodies pixel by
pixel by taking advantage of the strength of both optical and SAR data in an integrated
manner [21]. For optical data, the model relies on a maximum value of the NDWI composite
created using both Level-1 and L-2 Sentinel-2 data. The model depends on a minimum
radar backscatter intensity, from both VV and VH polarizations, of a compasite for sentinel-
1 SAR data, Relying composite images minimizes disturbances from clouds, turbidity, and
shadows for the optical data and speckles, lake ice, and radar shadows for the SAR data,
The model also uses DEM as a feature to remove false positives over a steeper terrain. All
the workflows are implemented in Google Earth Engine for ease of transferability and
reproducibility.

Model D [O + S] applied a combined histogram-thresholding and edge-detection
approach to estimate monthly surface water extent from monthly, cloud-free Sentinel-1,
Sentinel-2, and Landsat-8 scenes. Following cloud masking for optical scenes, we applied
the Edge-Otsu algorithm to create binary land and water maps for each scene [17,22]. For
a complete description and application of the Edge algorithm, see Markert et al., 2020.
To initially segment water, histogram-thresholding was performed using the Normalized
Difference Water Index (NDWI) index for optical scenes and the VV-median band for SAR
scenes within already buffered surface water polygons from Pekel et al., 2016, A second
segmentation was applied to full scenes to segment water and non-water, irrespective of
initial water polygons. The MERIT DEM [23] was then used to derive a Height Above
Nearest Drainage (HAND) model [24] and on regions less than 30 m in height relative to
the nearest drainage. Final monthly surface water products combined both optical and SAR
water maps by selecting the optical land-water prediction when available, and otherwise
selecting the SAR-identified water pixel. Given that cloud-free optical images segment
water with higher accuracy than SAR, this approach reduces error during less cloudy
periods.

Model E [S] is a fully automated approach that uses dynamic thresholds to classify
individual Sentinel-1 scenes. The scene-dependent thresholds to classify water are defined
through the use of existing geospatial information of permanent water areas, e.g., data from
the Global Surface Water Explorer (GSWE) [4]. The S-1 backscatter values of permanent
water areas are derived per scene and are then statistically analyzed by using percentiles
to eliminate outliers and a combination of mean and standard deviation to define the
individual classification threshold. In opposite to a fixed threshold, this standardized
statistical approach allows for the definition of dynamic classification thresholds per scene
in order to account for variations in backscatter caused by various factors. The individually
classified scenes are then combined to monthly surface water compuosites, in which false
positives (mainly radar shadows) are removed by the use of the Multi-resolution Valley
Bottom Flatness (MrVBF) index [25] derived from the Copernicus Digital Elevation Model
(DEM). The automated, computationally efficient classification approach has been shown
to capture seasonal changes in surface water accurately, but also shows some limitations in
non-vegetated sandy areas, in which false positives occur.

Madel F [O + S] used combinations of monthly percentile composite images from
Sentinel-1 and Normalized Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), Land Surface Water Index (LSWI), Normalized Difference Snow
Index (NDSI), red, NIR, and SWIR1 bands from the greenest manthly Sentinel-2 images as
covariates for the mapping of monthly surface water extent in Colombia, Mexico, Zambia,
and Gabon. For Greenland, covariates from Sentinel-1 were excluded and replaced by
monthly minimum NDVI from Sentinel-2 [26]. Training datasets (water-non-water) were

289



Remute Sews. 2022, 14, 2410

Hhof2]

generated using a stratified, random sample of points based on Global Surface Water
data [1] and visual inspections of spectra profile based on k-means clustering results.
Random forest classifier was used for classification.

Model G [S] This approach applies a novel Convolutional Neural Network (CNN)
model applied to Sentinel-1 observations to detect surface water. The JRC GSWE product
was used as training data, and several finetuning strategies were implemented to improve
accuracy of the model in places with complex landcover types. The resulting surface water
product has & 10-m spatial resolution, is not impacted by cloud coverage, and can be run in
near-real time to detect any surface water changes [27].

Model H |O] uses a thresholding method based on a combination of water indexes
(MNDWI > NDVI or MNDWI > EVI) to extract surface water extent from monthly com-
posite Sentinel-2 MSI images. Different from the conventional thresholding method, this
algorithm does not need to determine the threshold artificially. To obtain more accurate sur-
face water extent maps, the clouds and cloud shadows pixels, buildup pixels, and snow /ice
pixels were removed by auxiliary datasets in preprocessing, and the surface water maps
with residual non-water pixels were furtherly denoised in postprocessing. For incomplete
monthly surface water extent maps, the surface water frequency map was utilized to fill
the gaps caused by clouds and cloud shadows. These methods had been proved effective
and accurate in the construction of surface water extent continuous imeseries [25].

Model 1 [O] uses a multidimensional clustering analysis based on reflectance values
and water indices to identify water pixels using optical scenes individually. To achieve
high-performance and low memory consumption for high resolution images, this process is
applied to a random subsample of the image’s pixels and then coupled with a Naive Bayes
classifier responsible for generalizing the results to the complete scene. The advantage
of using an unsupervised approach such as clustering is that the water pixels group is
identified automatically by comparing it to other clusters (targets) in the scene. Therefore,
the algorithm doesn’t require ancillary data, pretraining, or any threshold calibration, and
it is independent of the sensor and the coverage being analvzed. These ideas make it simple
to apply the model to a great variety of conditions [29]. As the original algorithm was
designed for operational use on single scenes, the monthly water surface has been derived
by combining subsequent water masks through an upvote logic that considers as water
those pixels that received at least two votes.

Model J [S] This model is based on an unsupervised k-means-clustering algorithm and
aims to extract monthly inland waterbody extents over wide areas using multitemporal
Sentinel-1 SAR data. To account for slope-induced backscatter differences caused by
hills and mountains, due to the slanted acquisition geometry of SAR systems, the model
included a radiometric terrain correction, as this step is not applied in the standard Sentinel-
1 preprocessing chain. Moreover, the methodology added a multitemporal speckle noise
filter which provides better results than a spatial filter applied independently to each SAR
image. Seed points for the k-means model are then retrieved by randomly sampling the
water layer of the ESA CCI GlobCover Land Cover map [30]. Each sample is represented by
a set of temporal features suitable for water characterization in SAR data, such as the mean
backscattering value, the maximum value, minimum value, and four “quarter composites”
obtained by averaging in time all the Sentinel-1 acquisitions available within cach quarter
of a year. After the k-means clustering, applied with k = 4, the water cluster is selected by
considering a majority voting procedure within the multi-polygon water boundaries of the
GlobCover map. Since it is based on SAR data, the methodology can be applied in every
weather and lighting condition. Being an unsupervised technique, it is quick, robust, and
can be applied automatically over any region of the World [21].

Model L [O] uses the simple yet robust band ratio Normalized Difference Vegetation
Index (NDVI) on Sentinel-2 images, screened with the cloud mask processor available in
ESA’s SNAP software. Despite the rather simplistic nature of the NDVI band ratio algo-
rithm, results reported in other studies of this type are encouraging (e.g., [26]). Furthermore,
the aim of choosing this approach was to test the application of simple and fast algorithms
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for processing large amounts of images in a short time. We implemented the processing on
the Web Advanced Space Developer Interface (WASDI) to process all images without the
need for downloading large data quantities on a personal computer [32].

Model M [O + S] uses an efficient and opensource supervised Random Forest classifier
system based on Geographic Object-Based Image Analysis (GEOBIA) [33]. It relies on two
main components, which are feature extraction based on attribute profiles and a semi-
supervised classification using a Random Forest Algorithm, The first step consists of
computing features based on Sentinel-2 L1C without cloud detection (MNDWI) and DEM
(SRTM or ArcticDEM for Greenland) and extraction of spatial features (object area). The
ground truths are automatically extracted from GlobalSurfaceWater data (Pekel et al,, 2016).
The output from this model is maps of monthly surface water extent and a confidence
index. The same automatic system is applied for all 5 test areas.

Model N [O + S]is based on a combination of different image-binarization techniques
applied on monthly aggregated Sentinel-1, Sentinel-2, and Landsat-§ imagery. Dynamic,
tile-based thresholding [34,35] is conducted on both SAR and optical inputs. In addition,
adaptive thresholding [36] and seeded region growing [37] on each initially detected
waterbody is performed on the monthly SAR imagery. Finally, fuzzy-logic classification
refinement reduces water lookalikes and misclassifications (e.g., radar shadows) from the
SAR-based water masks [35,39],

Model O [O + S] uses a multivariate logistic regression model to estimate monthly
surface water extent from the combined usages of Sentinel-1, Sentinel-2, and Landsat-
8 imagery. Models that rely upon linear distributions are often simpler and generalize
well and, therefore, do not require high-quality training labels, Yet, since land-water
classification has some nonlinear exceptions, such as clouds, shadows, and snow, the
approach integrates logic-based masking to reduce the impact from problematic areas
through specific thresholds or basic decision trees. The final approach has proved to be
accurate whilst at the same time maintaining computational efficiency and simplicity that
facilitates analysis and understanding at scale [8].

2.3. Vatidation and Evaluation

These water detection models were evaluated individually and in cross-comparison
using independent reference data collected from the test sites. A fundamental premise
for sound scientific validation is to use reference data of higher quality than the product
to be validated. There are two ways to ensure higher quality in the reference data: (i) by
using a reference data source with a better resolution than the data used for production
(L.e,, verification by higher data) and/or (ii) by using a more accurate measurement or
interpretation than being used for production (i.e., verification by higher method). A
further requirement on the reference data is the ability to provide sufficient spatial and
temporal representation to accurately label each unit in the sample; ie., the ideal reference
data are: (i) available for the entire region of interest, (ii) representative of the attribute
at the date of interest, and (iii) available at a low cost. The balance between these criteria
is often difficult to achieve and why tradeoffs and compromises may be needed when
generating the final set of reference data. In the case of the round robin validation, a two-
step approach was followed: (i) sample based validation (pixel based) and labelled using
the production imagery (verification by higher method) and (ii) object extraction accuracy
(area based) and using PlanetScope data as a reference (verification by higher data), The
sample-based validation has the advantage of delivering reference data, which can be
directly matched (in space and time) to the validation input, whereas the PlanetScope
data offer the advantage of better capturing and, hence, better evaluation of smaller and
narrower waterbodies/ features. Still, the acquisition and interpretation of PlanetScope
data is costly, and their representation is therefore restricted in space and time. In a final
step, the temporal consistency of the optical, SAR, and dual sensor-mapping approaches
were evaluated by comparing the total areal water extent mapped within each test site and
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across the monthly imeseries. Each validation and evaluation step is described in more
detail befow.

2.3.1. Sample Based Validation

Stratified random sampling was used to generate reference points over each 100 x 100 km
test site and within three strata across the land-water continuum: permanent water, sea-
sonal water, and non-water. The three strata were generated from the JRC-GSWE long-
term water occurrence and defined according to the following thresholds: permanent
water > 90/%; 0" < seasonal water < 90%, and non-water = (1%. In all test sites, the target
class “water” is a rare occurrence. In the case of rare occurrences, statistical equations does
not allow for proper estimation of sample sizes, but stratified random sampling affords the
option to increase the sample size in classes and /or regions that occupy a small proportion
of area to thereby help reduce the standard errors of class/region-specific accuracy esti-
mates [40]. It was our aim to ensure a minimum of 50 samples in each stratum, while using
subsequent sample size allocations to provide a proportional allocation of samples in better
accordance with the actual area of the different strata within each test site. In addition, the
expected variance within each stratum was also considered; i.e,, the transitional strata are
expected to have the highest variance, and why it has a higher sample allocation. Thus,
by taking area and expected variance into account, the following sample allocations were
applied for the five test sites (cf. Table 1),

Table 1. Sample size allocations for the 5 test sites used in the round robin,

Colombia Gabon Greenland Mexico Zambia
per per per per per
month lotal mouth detal mionth botat movith fotal mionth dotel
Land 140 840 75 450 6l 180 140 B840 90 540
n‘;:':"" 140 540 150 900 an 270 140 840 190 1140
Water 20 120 60 360 100 N0 20 120 40 240
TOTAL 300 1800 285 1710 250 750 30 1500 320 1920

In total, 7.980 samples were allocated across the five test sites and six time periods
representing every second month of the year 2019 (January, March, May, July, September,
November). Each sample point was assigned to be either water or non-water by two
independent and experienced interpreters using blind visual interpretations of monthly
Sentinel-1 and -2 composites. To harmonize and achieve consistent reference labelling, a
standard validation interface was used to ensure interpreters were looking at same area
and using the same reference data and the predefined set of classes. In cases where the
interpreters disagreed, a quality manager intervened to seck consensus, If consensus could
not be agreed upon, the sample was rejected. For each sample we extracted, the respective
water classifications and the final set of samples were used to derive standard metrics
for accuracy assessments, Le,, overall accuracy (OA), producer accuracy (PA), and user
accuracy (UA). For this analysis, all pixels in the individual round robin dassifications not
classified as water were considered to be non-water; i.e., the non-water class also included
pixels being masked (e.g., due to clouds).

2.3.2, Object Extraction Accuracy

Traditionally, stratified point sampling will, in most instances, under-sample Small
Waterbodies (SWB) simply because SWBs only represent a fraction of the total water area,
even though they may by far exceed the larger waterbodies in numbers [41]. To deal
with the issue of SWBs, we complemented the more conventional stratification, sampling,
and confusion matrix-type accuracy assessments with an evaluation of object extraction

292



Remute Seres. 2022, 14, 2410

Sof2l

accuracy based on area-based accuracy metrics and the use of higher spatial resolution but
single date (i.e., time-limited) PlanetScope data. An independent reference dataset was
created from the dassification and interpretation of imagery from Planet. The acquired
data was PlanetScope Level 3B (Ortho Scene Products) in 3-m spatial resolution and
with 4 spectral bands (RGB, NIR) (https:/ /www.planet.com/ products/ planet-imagery /,
accessed on 10 January 2022). The PlanetScope data was acquired within the coverage of
each of the test sites and for two arcas of approximately 25 km?. The exact coverage was
determined by size and type of waterbodies, i.e., covering areas with small waterbodies
relative to the test site in general and representing both lakes/ reservoirs and streams /rivers.
For each PlanetScope coverage, we applied a supervised Gradient Boosting (lightGBM)
algorithm [42] to generate water masks using the convolution layers derived from spatial
filtering of Planet imagery as the explanatory variables and manually derived training
samples for water and land (¢f. non-water) as the response variable. The Gradient Boosting
typically involved a couple of iterations to optimize results, and before finalization, all
water masks were manually checked and corrected to ensure high quality. Once analyzed,
the PlanetScope data was used to evaluate the object extraction accuracy of the water
classifications derived using Sentinel data,

The accuracy evaluation of object extraction is based on object matching, and we
focused on two elements related to this, namely: object matching and area-based accuracy
measures [43]. The central idea of object matching is to estimate the maximum overlap area
by computing the coincidence degree, Ay, between two objects.

A _1 Acin AR_,‘+ACJ."I AR',
o Aci Ag,

where A¢, denotes the area of the ith-evaluated object, Ay is the area of the jth reference
object, and A, M Ag, represents the intersection area, For an evaluated object and
candidate reference objects, each coincidence degree will be computed. Two objects will be
judged as being a matching pair if the area of the coincidence degree is at a maximum, ie,,
Ay equals 1.

The maximum overlap object matching is complemented by three area-based accuracy
measures (i.e., correctness, completeness, and quality). Correctness (A, ) is defined as
the ratio of the correctly extracted area (Ac) and the whole extracted area (Apc), whereas
completeness (A ) refers to the ratio of the correctly extracted area to the reference area
{Agc). The range of correctness and completeness is 0 to 1. If A¢ fully corresponds to Apc
or Agc, then the value is 1. If there is no overlap between A¢ and Ape or Age, then the
value is 0; correctness and completeness interact. For instance, a large Apc leads to a small
correctness value, while a small Age results in a large completeness value. To amend this
issue, the quality A, is designed to provide a measure of quality by balancing correctness
and completeness.

= Ac
= Apc + Agc — Ac

The range of quality is 0 to 1. If the water extraction results are the same as the reference
data, then the value is 1. If none of the extracted water area overlaps with the reference
area, then the value is 0. The advantage of area-based accuracy measures compared to the
sample-based validation relates to the fact that the confusion matrix of the latter depends
on total pixel number. In contrast, the evaluation results for two cases using area-based
accuracy measures are equivalent because it relies only on the evaluation, and reference
objects are independent of the total pixel number.,

A

2.3.3. Temporal Consistency Evaluation

The purpose of temporal consistency evaluation is to identify anomalies in sequences
of surface water maps. Sudden decreases in surface water can be due not only to drought
and high reservoir release but also clouds and lack of valid observation. Flooding, on
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the other hand, may cause an increase in surface water, but so could cloud shadows and
topographic shading, as well as the impact of low-backscatter areas. More robust water
detection algorithms should be able to accurately capture actual water dynamics while
minimizing the influence of the other factors.

3. Results
3.1. Water Occurence

The five test sites used for intercomparison represent very different conditions, which
can also be inferred by looking at multiannual water occurrence maps for the respective
test sites (cf. Figure 2). As explained in Section 2.1, site variability is, on the one hand,
dictated by geographic location (i.e., from tropical to arctic, coastal to inland, and lowland
to high land) and, on the other hand, by surface water characteristics, The latter is clearly
illustrated in the water occurrence maps, which show the differences between test sites
in terms of size and type of waterbodies, as well as the relative distribution of permanent
and seasonal water (Figure 2). These different characteristics are important to bear in mind
when interpreting the validation results, as they will influence the performance of the

individual algorithm.
Gavon Groesiond
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Figure 2. Examples of surface water frequency maps over the 5 test sites and as derived by Model N.

3.2. Sample Based Validation

In Table S1, we provide classification accuracies for the water extraction for all round
robin submissions and for each of the three mandatory sites, as well as the optional sites,
where relevant. The general performance of all models can be deemed satisfactory, with
overall accuracies above or near 90% when looking across the mandatory sites. There is
more ambiguity when looking at the performance in terms of user and producer accuracy
and at the level of the individual sites.

In Figure 3, the classification accuracies have been grouped (median value) by input
data type, i.e., algorithms using both optical and SAR vs. models based on single-sensor
inputs (SAR or optical). Figure 3 shows an overall better performance of the combined
sensot approach compared to single sensor approaches, although the results are not one-
sided when looking at the individual sites or in terms of user and producer accuracies.
In Colombia, the combined sensor approach performed best in terms of overall accuracy,
but, at the level of UA and PA, the SAR and Optical models, respectively, outperform
the combined approach. In Gabon, the SAR approach outperforms the other data models
in terms of OA, while in Colombia and Zambia, the optical approach has much higher
accuracies for, respectively, PA and UA. In Mexico, OA and UA are almost equal between
the data models, but with a noteworthy (+4-5 percentage) drop in producer accuracy for the
optical data models compared to the SAR and dual sensor models. The observed differences
in UA and PA are closely related to site-specific characteristics, For example, the higher UA
accuracies achieved in Gabon and Colombia using SAR are an indication of the benefit SAR
adds in a cloud-prone region. In contrast, SAR produces a lower UA in Zambia and Mexico
because of commission errors introduced by dry, sandy surfaces, In both Zambia and
Mexico, it was also noted that sunglint in certain months caused erroneous cloud masking
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for certain processors and hence contributed to lowering the PA for the aptical data model,
In Mexico, the UA for SAR is, however, only marginally lower than for the optical data
maodel, which is impacted by bottom reflectance from shallow waters and turbidity, which
both impact the optical properties (cf. spectral signal) of water more than the physical
state and, therefore, the sensitivity of SAR backscatter (e.g., roughness). The Zambia site is
dominated by the Kafue flats, an extensive wetland ecosystem subject to variable flooding
and with a sharp contrast to the surrounding drier landscape, where fire is a major natural
factor impacting the landecape, The dynamic nature and many confounding factors (e.g,,
fires and emergent vegetation) make Zambia a particularly challenging site, and it was also
where the dual sensor approach displayed it strongest potential in balancing the individual
strengths and weaknesses of optical and SAR data. In Greenland, the topography and light
conditions are the main challenges. For optical data, it means higher commission errors (cf.
lower UA) due to shading effects and low sun angles. The SAR model is better at dealing
with these issues because it works independent of sunlight, and by using ascending and
descending SAR scenes, the part of the landscape that can be monitored is increased. Still,
the influence of low-backscatter areas (e.g., exposed riverbeds and in snow dominated
landscapes) means the SAR data model typically suffers from commission errors and
lower PA.

o

Acturacy (W)
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Cotewivs Menie Dambid  Cabeo Crestiend Corevind Moo Javisa  Cates Dreerians Coomm Meuxo Darviod  Galon Crestiand
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Figure 3. Accuracy statistics from the WorldWater round robin test sites, individually and overall,
summarized by model input data type {OA = Overall Accuracy; UA = User Accuracy; PA = Producer
Accuracy).

It is important to note that, apart from site-specific characteristics, the UA and PA are
also dictated by how individual algorithms have been implemented, e.g., to what extent the
individual round robin contributions have favored the importance of commission errors
relative to omissions errors. The results will also depend on whether individual scenes are
classified and then aggregated to a monthly water map or whether the individual scenes
are merged into a monthly compaosite before water classification. The full accuracy statistics
for the individual models is provided as supplementary material (cf. Table S1).

3.3. Object Extraction Accuracy

The 3-m PlanetScope water classification maps used to evaluate object extraction
accuracy are shown in Figure 4. Like the full-size test sites, it is important to notice the
variability between the sites. Individually, the PlanetScope data represent SWB regions
relative to the general water characteristics within their respective test sites, yet, there is
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variability between sites with, e.g., Zambia having larger waterbodies on average than
Colombia,

Colomb i

Api, 20205

Mexo

fab, 2020)

Geatony
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seeenland

(Aug 2018)

Figure 4. False colour PlanetScope QuickLooks and associated water classifications for each AOI
used in the object-based validation approach (Imagery © 2022 Planct Labs Inc.).

Table S2 provides an overview of the summary statistics for object extraction accuracy
for each of the three mandatory sites, as well as the optional sites, where relevant. There
is & large variability between the individual contributions, and yet, with similar tendency
across the sites i.e., the algorithms that integrate optical data perform better than those
relying solely on SAR (Figure 5). The lowest overall accuracy is in Colombia, and this is
also where the difference between the best optical approaches and the best SAR algorithm
is greatest (cf. Figure 5). Figure 5 also shows the highest object extraction accuracy is in
Zambia, which, together with Greenland, has the largest share of waterbodies within the
test sites (cf. Figure 4). It is also noteworthy the optical data model consistently outperforms
the SAR data model in all test sites except for Gabon (Figure 5).
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Figure 5. Object accuracy statistics from the WorldWater round robin PlanetScope sites, summarized
by country and model input data type.

The findings from the object extraction accuracy analysis indicate that using or inte-
grating optical data into the water detection algorithm is key to achieving accurate water
object definitions. How important depends on the average size of the waterbodies and the
surrounding landscape. In Colombia, where the average waterbody size/width is smaller
compared to other sites, the difference between the optical algorithms and the SAR-only
approaches are the largest. This is explained by the characteristics of the input data, with
key spectral water detection bands from Sentinel-2 available only in 10-m spatial resolution,
while the true spatial resolution of Sentinel-1 is understood to be closer to 20 x 20 m,
although data from the widely used Sentinel-1 Ground Range Detected (GRD) product
are delivered with a pixel spacing of 10 % 10 m. There are also some marked differences
between the optical algorithms and the SAR only approaches in Mexico, which is likely
caused by the dry environment and a landscape dominated by large tracts of dry, sandy
surfaces, as well as the assodiated challenge for SAR-based water detection [44]. In contrast,
the difference between optical and SAR is much less pronounced in Zambia and Gabon,
which is likely related to the larger average size of the waterbodies (Zambia) and the dense
tropical forest landscape causing a stark land-water contrast (Gabon).

3.4. Temporal Consistency Evaluation

The surface water area (km?) was calculated over each test site and for each month
in the 2-year observation period (cf. July 2018 to June 2020). For each test site, the surface
water areas were summarized by input data model type, i.e., optical (0), SAR (S), and the
fused date model (O + S), In Figure 6, the average surface water area was then plotted
against time with indications of variance (i.e., minimum and maximum observed water
extent within a given month) and with some key explanatory variables plotted on the
secondary axis.
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Figure 6. Monthly surface water anea trajectories for the individual test sites and per sensor model,
For each test site, corresponding timeseries of the key explanatory variables are equally shown, ie,,
the Humidity and Leaf Area Index from the ERA-5 monthly averaged reanalysis data [45], water
surface elevation from satellite altimetry [46], solar zenith angle, and cloud cover [47],

A comparison of the surface water area temporal development curves shows the
variance of the fused Optical-5AR-based algorithms are much less than the single sensor
solutions both within and between nearby months. If not directly, then at least indirectly,
this indicates the fusing algorithms to be more reliable and have less sensitivity to temporary
or seasonal phenomena that can impact water detection, including dry /moist conditions,
topographic/canopy shading, and clouds.

In Colombia, the pure optical methods, in general, returns a higher surface water
area across the entire timeseries. This can be attributed to false positives from topographic
shading and ineffective cloud shadow masking, particularly during the humid season.
In Mexico, where clouds and topography are less of a problem, there are hardly any
noteworthy peaks/dips in the optical development curves. In Colombia and Mexico, the
SAR peaks correspond to the dry seasons when the vegetation cover is low, resulting in an
increased influence of low backscatter from dry, sandy surfaces,

In Zambia, the variance observed in both the optical and SAR data predictions is most
dominant during the 2019 dry season, which was reported as having been one of the worst
droughts in Western Zambia in almost 70 years. The exceptionally low water levels during
this period indicates that droughts and receding water lines are likely to have an impact
on water classifications, The SAR data are challenged by very dry soils, especially in the
southern parts of this site, while wildfires represent another challenge for both the aptical
and SAR data mode, as the burn scars can be difficult to separate from water. In optical
imagery, burn scars have low reflectance in the near infrared and visible spectrum, and this
can Jead to spectral confusion with water. As fire also changes the physical and structural
characteristics of the vegetated landscape, it also impacts SAR imagery. After a fire, the
backscatter decreases strongly [48], and, as a result, the contrast between land and water
will be lessened.
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In Gabon, the cloud cover percentage over the test site is, on average, 50%, significantly
impacting the optical data model, which returns estimates of water extent that strongly
correlate with the cloud cover percentage. In contrast, the SAR and fused sensor approach
return a much more consistent timeseries, with no apparent sensitivity to the cloud cover
percentage.

Finally, in the case of Greenland, the temporal evaluation shows how limited light
conditions in spring and fall (before everything freezes) hamper the optical data model.
In essence, our evaluation shows the time window to collect optical imagery is short, but
also that it can be extended by integration with SAR data. Using a fused data model in
Greenland can also help to even out issues generated by a complex topography (e.g., cast
shadows in optical imagery and foreshortening and layover effects in the SAR imagery), as
indicated in Table S1.

In Figure 6, a large part of the temporal variation is explained by the performance of
the individual contributions both between and within the three different sensor models,
The dual sensor model has the least variation and, hence, we argue that it is the more robust
in dealing with confounding factors. Figure 7 shows the average monthly surface water
area statistics for the top three-performing dual sensor models, Figure 7 illustrates quite
well the ability of the dual sensor model to provide consistent timeseries information that
captures the seasonality of surface water dynamics in each of the test sites, The strongest
seasonality is observed in Colombia and Zambia, which are the two test sites with the
largest rainfall gradient. In contrast, Mexico and Gabon have less seasonal variation due to
very dry (Mexico) and consistently wet (Gabon) conditions. In Greenland, the seasonality
is first and foremost dictated by the temperature, i, thawing, and increased meltwater
starting around April/May and then frost and total freezing once we enter November.
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Figure 7. Interannual monthly mean surface water area dynamics and uncertainties (98'% Cl), as
captured by the best-performing dual sensor models {i.e, models A, N, and O),

4. Discussion

The round robin evaluation was conducted over a diverse set of test sites that repre-
sented landscapes influenced by several of the known challenges for satellite-based surface
water mapping, including topography, clouds, dense and inundated vegetation, fire scars,
low-backscatter landcovers, low sun angles, as well as snow and ice. The intercomparison
of the different round robin contributions across this diverse set of test sites supports the
general hypothesis that fusing optical with SAR data produces a more robust mapping of
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surface water extent dynamics across bioclimatic gradients. Yet, the findings also show
that, at individual locations, the single sensor approach can outperform the fused sensor
approach. By example SAR data are the better option in heavily clouded regions (cf. Gabon)
while optical data are better in dry regions and in capturing smaller waterbodies. As
such the round robin provides key insight to the advantage of the strengths of optical
and SAR data while also identifying how a fused sensor model can help address their
individual shortfalls. Moreover, the evaluation demonstrates that both supervised and
unsupervised learning can provide very good results, and while steps for preprocessing
and postprocessing are highly relevant to the outcome, they include many variables that
are harder to quantify in terms of their individual contributions to the statistical accuracy.
Still, there are several crosscutting factors that impact optical and SAR data in various ways,
and which underpin why the dual sensor approach, on an overall level, outperforms single
sensor approaches.

Both SAR and optical data can struggle in mountainous areas, as steep slopes can
lead to shadow issues and image distortions. Orthorectification and radiometric terrain
correction using a DEM are the main direct techniques to obtain the relevant geometric
and/or signal correction. Yet, such correction can introduce errors, as globally available
DEMs have known quality issues [49], although newer DEMs provide gradual improve-
ments [50]. In complex terrain, shadows cast by mountains and hills will appear very dark
in optical imagery, which can cause a confusion between topographic shadows and water.
This means extra steps should be taken when mapping water extents to make sure the
effect of terrain shadow is minimized. While there are specific methods to deal with this
in optical imagery [51], SAR imagery can also be used, e.g., to remove water classified in
optical imagery if it is consistently mapped as land in SAR (cf. Model A}. SAR imagery is
not affected by natural sunlight shadows cast by topography. However, radar sensors are
side-looking, meaning they view the Earth’s surface from the side of the satellite as it passes
by (as opposed to looking directly from above). The side-looking nature of these radar
sensors means that they can only see the side of mountains that face their sensors—they
cannot see the opposite side of mountains. This is known as radar topographic shadow.
Fortunately, radar sensors, such as Sentinel-1, have both ascending and descending or-
bits, which can collect imagery from east- and west-looking angles. Using ascending and
descending imagery together helps to increase the area that can be effectively monitored
using radar imagery; however, this does not solve all radar problems related to topography.
Areas in deeper canyons and fjords that have a north-south orientation will likely always
be in the radar signal shadow, leading to some unavoidable data gaps, and in these cases,
sometimes the optical data model can help.

As both SAR and optical data can struggle in mountainous areas, using one sensor to
help overcome the other is not always sufficient. Therefore, DEMs are often applied during
postprocessing to mask out regions where water formation is unlikely given the topographic
conditions, e.g., due to slopes or based on hydrological terrain analysis, such as the Height
Above Nearest Drainage (HAND). A range of DEMs have been used for postprocessing,
including the Shuttle Radar Topography Mission (SRTM) DEM (e.g., Model B, M), ALOS
World 3D-30 m (Model F, J), and Copernicus DEM (Model E, N, O). Although the impact
on accuracy is not quantified directly, the use of Copernicus DEM is recommended, not
only because Copernicus DEM comes out favorably in statistical evaluations against other
DEMs [50], but also because of the reference year (2010-2015), which is newer than SRTM
(i.e., 2000) and AW3D30 (2006-2011). In essence, this means the Copericus DEM is more
likely to capture and, hence, avoids masking out newly established reservoirs, which have
boomed dramatically in the past few decades [32].

Cloud cover is a major limiting factor affecting the usefulness of optical imagery.
However, if clouds and their associated shadows can be effectively masked out from
each image, the remaining cloud-free data in each image can be used for accurate water
classification, yet the frequency of monitoring will depend on the persistency of the coud
cover, While several algorithms are available for automated cloud masking, (e.g., MAJA,
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Fmask, CFMask, Tmask, IdePix, Sen2Cor, s2cloudless) none are perfect in separating clear
observations from those contaminated with clouds and cloud shadows. Too aggressive
cloud masking, and many waterbodies may be missed, while failure to adequately mask
cloud shadows will introduce many false positives. Often, making a cloud-free optical
image will require some form of image compaositing and mosaicking, There are several
possible wavs to do this, e.g., by using the best available pixel by cloudiness (Model O),
or through per-pixel band statistics such as mean/median band reflectances (Model N).
Model F applies an NDVI Maximum Value Composite (MVC) procedure, which is effective
for providing spatially continuous cloud-free imagery [53]. The MVC has been particularly
widely adopted in vegetation studies [54], but, since the MVC emphasizes the vegetation
signal, it should be used with care for monitoring water dynamics, as seasonally flooded
vegetation may risk being masked, Furthermore, and as illustrated by one contribution,
a synthetic timeseries can also be constructed by interpolation and gap-filling using the
historical water frequency (cf. Model H). Finally, SAR data can also be used to fill in
the “cloud” gaps in the optical imagery. However, even if SAR imagery is not affected
by clouds, it is impacted by other issues, which can result in spurious water detection,
including speckle noise and permanent low-backscatter regions. The reduction of speckle
noise is important to improve the usefulness of SAR imagery. The main purpose of the
noise reduction technique is to remove speckle noise while still retaining the important
features in the images. Widely adopted speckle filters, such as Lee Sigma or Refined
Lee, have proved effective; however, depending on the window kernel size, they may
compromise the ability to map smaller water features. Therefore, attention has been drawn
to other methods, such as the Gamma Map method (Model A, E) and the use of temporal
filtering (e.g., mean, median, or minimum backscatter), as a means to better preserve spatial
resolution {cf, Model O, N). The further advantage of using temporal filtering is the ability
to also suppress the influence of high winds, which can cause wind-roughened waters that,
at specific times, can vanish the contrast between open water and dry surfaces and cause
Bragg scattering. With SAR data, it can also be difficult to differentiate water from other
surfaces with low backscatter, such as asphalt (parking lots, airports, roads), flat rock, and,
in some dry regions, sand surfaces. Long timeseries of backscatter measurements can be
used to identify such areas but at the expense of computational efficiency, especially for
large areas [55]. Another way is to integrate optical data to reduce potential commission
errors caused by permanent low-backscatter areas (cf. Models A and O).

As additional examples, the round robin intercomparisons have also shown how the
complementary use of optical and SAR data can help suppress the influence of burn scars
and, to an extent, the monitoring period in light-constrained, high-latitude regions.

Aside from the challenges discussex] above, there are variables and challenges which
could not be fully evaluated. Unresolved issues still circulate around inundated vegetation
and how to deal with the aryosphere. As the focus in this study was on open inland
waters, neither of these issues was investigated. However, future improvements could be
performed through the investigation of L-band SAR sensors, which penetrate vegetation
better than C-band SAR data (Sentinel-1) and have potential for mapping flooded areas
under vegetated canopies [56,57), In large parts of the world, lake and river ice is an integral
part of annual water dynamics, which is why we also recommend looking at scalable
solutions for using optical and SAR data to monitor lake and river ice evolution [58,59] and
as complementary information for open surface water dynamics.

Urban environments represent another challenge from the perspective of both optical
and SAR data. For optical images, the main issue is building shadows, whereas SAR data
may suffer from layover effects caused by tall buildings, as well as corner reflection (cf,
double/triple bouncing), Like topography, the urban challenge is often addressed using
postprocess masking, which is sensible, especially for large-area applications, as urban
areas represent only a fraction of the overall landscape, and the waterbodies associated
with the urban environment even less so. In addition, and as new high resolution and
freely available urban footprint layers become available [60], urban masking will gradually
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improve and integrating them as masking layers can help simplify the water mapping
solution.

The results and above discussion point to some inherent limitations to mapping surface
water when relying solely on either optical or SAR-based instruments. These limitations
can be partly mitigated by using both sensors in a fused approach for surface water extent
mapping. However, since the fused mapping approach will likely add to complexity,
computational effort, transferability, and automation level of the mapping approach, it is
important to consider exact needs and objectives before the appropriation of a specific data
model.

However, if monitoring is to be conducted in a region with persistent cloud cover,
or if the focus is to monitor during the wet—cloudy season, it may be worth considering
if adding optical data will bring the necessary improvement to warrant the additional
complexity of an operational solution. In other regions, the status of small farm dams may
be the most critical information gap in supporting timely information on potential water
shortages. In drier regions or during dry spells, where clouds are not an issue, monitoring
should rely on optical data only to maximize the spatial resolution. However, where clouds
may be an issue, the integration of SAR data will be critical to reliably monitor the status of
small farm reservoins and dams [22,61]. This reiterates that the best practices for surface
water monitoring are often reliant on the study domain, In other words, a case-dependent
choice of mapping approach will be needed based on certain criteria, such as ecosystem
type, seasonality, climate regime, area size, and requirements for the degree of automation.
Moreover, as EO technology becomes more widely adopted and mapping approaches
evolve, it is further recommended that cross-comparison exercises, as presented in this
paper, be repeated periodically to assess advances in surface water mapping,

5. Conclusions

The availability of sateflite missions and constellations for environmental monitoring
has continued to grow in the past decades, and combined with the advances in technical
infrastructures for big data analysis, it is now within the realm of possibility for countries
to implement satellite-based surface water monitoring systems. These systems will be vital
to supporting more evidence-based planning and management of water resources and
provide an ability to efficiently report and act in response to the global water agenda. By
evaluating 14 different EO-based models for surface water detection, we show that single
sensor approaches can produce accurate and consistent water maps under ideal conditions,
and yet, across a range of challenging environments, the synergistic usage of optical and
SAR data delivers more accurate and consistent outputs,

The findings in this paper therefore bear some important perspectives for formulat-
ing a new best practice where optical and SAR data are used synergistically to achieve
the highest accuracy and most consistent results for monitoring surface water dynam-
ics. While accuracy is a eritical concern for selecting a surface water detection model,
there are other important aspects, including computational efficiency, simplicity, and ease
of implementation, which all contribute to increase understanding, maintainability, and
potential scalability. In the end, specific working routines, management objectives, and
individual user preferences may all contribute to how users will choose to appropriate
EQ technology for surface water monitoring. At larger scales across diverse ecological
gradients, a synergistic approach should be preferred, but at a local scale, SAR data may be
preferred for the effective and timely monitoring of water extent and potential emerging
floods during cloudy periods, and similar optical data may be preferred to monitor the
status of reservoirs and small waterbodies during drought periods and when clouds are
not an issue.

Therefore, rather than advocating for a single “best” approach, we recommend flexibil-
ity and options to build and /or adapt surface water detection methods that meet individual
user needs in terms of management goals, environmental settings, and scale of study, 1.e,,
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ensuring users have options for receiving data in multiple formats or from multiple sources,
and with the tools necessary to process these data effectively.

The round robin evaluation presented in this paper has shown that EO datasets,
methods, and tools for monitoring surface water dynamics are available and successfully
applied in various contexts around the globe. The upcoming challenge will be to make
the community aware of these tools and, via practical guidance, illustrate how to get
started using EO data and tools to support better water resource monitoring, reporting,
and management,
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Maximizing the accuracy of surface water detection in an intermittent river
using the Water Detect algorithm and a sensitivity analysis to compare the
performance of Sentinel-2, Planetscope and Sharpened imagery

Remote sensing classification algorithms performed on multispectral images offer much
promise for mapping river systems over large areas and through time. However, the
quality of the water detection results depends on the algorithm used and its input
parameters, as well as the satellite's spectral quality and spatial resolution. Achieving
accurate results 1s especially imporiant for intermittent rivers, given the challenges of
mapping their narrow lincar features (e.g., thalweg/run/nffle) and isolated pools. The
Water Detect algorithm is emerging as one of the best options to ideatify water using
optical satellites without the need for ancillary data, but to date, no onc has evaluated
how to maximize its accuracy in an intermittent river. There is a need to compare its
accuracy across a range of mput parameters and satellites, especially those that can
provide high spatial resolution and revisit frequency, which may not be equipped with
Shortwave infrared (SWIR) sensors, useful for identifying water. The lack of SWIR
bands in many high spatial resolution and high revisit frequency satellites, such as
Planctscope, which only has Visible and Near-infrared (VNIR) sensors, may be
overcome by image sharpening and band synthesizing, which integrates different image
sources to improve the information content and quality of multispectral images. To this
end, we automated an existing method for sharpening and synthesizing bands and applied
it to a serics of multispectral Sentinel-2 and Planctscope images, We then developed a
sensitivity analysis algorithm to compare the accuracy for all possible combinations of
inpul parameters in a given range for the water detection process — thus allowing the
identification of parameters that maximize the ability 1o detect water. Our sensitivity
analysis was performed on five sets of images, two of which were generated by the
sharpening and synthesizing bands routine, i.e., Planetscope (VNIR), Sentinel-2 (VNIR
and VNIR+SWIR), and Scntinel-2 sharpened with  Planctscope (VNIR  and
VNIR+Synthetic SWIR). We used the Matthews Correlation Cocfficient to evaluate the
accuracy of the water detection resulis. We found that the ability to accurately detect
surface waler using spectral imagery was maximized by identifying the optimal input
parameters for the Water Detect algorithm and using VNIR sensors, with relatively little
gained by using image sharpening routines. Results showed that by maximizing the
overall detection accuracy. we also increased the potential of detecting important features
of intermittent rivers, Using automated routines to sharpen imagery and determine input
parameters for the Water Detect algorithm is a significant advancement that should
increase our abilily 10 accurately detect and map water in intermittent rivers.

Keywords: remote sensing; Sentinel-2; Planetscope; waler detection; sensitivily
analysis; image sharpening; band synthesizing; intermittent river

Introduction

As freshwater availability and quality increasingly becomes a global concern (Virosmarty et
al. 2010), there is a growing need for more accurate water resource assessments. This is a
challenge for the world's intermittent dryland rivers, which support around 40% of the global
population (Koohafkan and Stewart 2008) but have little gauging infrastructure/data to guide
decision-making (Callow and Boggs 2013; Jarihani et al. 2015). Accurately mapping surface
water across space and through time in intermittent river systems can assist us to better
understand their hydrology and ecology and improve our capacity to quantify land use and
climate change impacts (Lehner et al. 2011; Mueller et al. 2016).
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Mapping surface water using remote sensing is a particular challenge in intermittent
rivers because water contracts down to narrow linear features (e.g., thalweg/run/riffle) and
isolated pools which requires accurate water detection methods as well as reliable image
datasets. The increasing spatial and spectral resolution of remote sensing platforms may
overcome these barriers and allow better mapping of hydrologic features and connections.
Remotely-sensed technologies provide a cost-effective alternative to traditional ground-based
monttoring methods and offer advantages such as higher frequency, temporal and spatial
continuity, as well as lower costs (Callow and Boggs 2013). Identifying intermittent rivers'
water features indicative of no flow periods and mapping persistent pools using remote satellite
data can help understand the impacts of hydrological alterations on riverine habitats in
intermittent systems, which can improve the management of surface- and groundwater
resources and assist the preservation of biodiversity. However, there is a critical gap in our
current ability to map these features as accurately as possible due to the compromise inherent
with water detection algorithms (e.g., accuracy, processing time, user bias) and imagery
datasets (e.g., spectral bands, ground pixel resolution, and revisit frequency — most of the
satellites with high- resolution and revisit frequency lack of SWIR bands). Increasing the
overall accuracy of the water detection process can potentially improve the identification of
those features. Efficient water detection methods and high-resolution multispectral imagery
with high revisit frequency, such as Planescope, have the potential to make the detection of
intermittent river features more accurate.

Water detection methods based on multispectral imagery offer advantages due to their
spatial resolution, coverage extent, and revisit frequency (Marcus and Fonstad 2008; Jiang et
al. 2014; Liu, Yao, and Wang 2021; Gao 1996; Qiao et al. 2012; Yang et al. 2017; Callow and
Boggs 2013), but their efficacy depends directly on the method used, cloud cover and the
spectral quality and resolution of the chosen satellite. From the many methods that use optical
sensors to identify water, the Water Detect algorithm (Cordeiro, Martinez, and Pefia-Luque
2021) stands out as potentially one of the best options due to its accuracy Tottrup et al. (2022)
and open-source code. In the original study, this algorithm showed higher accuracy in mapping
water bodies smaller than 0.5 ha, and at a country scale, than other commonly used
unsupervised methods (e.g., Canny-edge MNDWI, Multi-Otsu MNDWI, FMask, Sen2Cor,
and MAJA) (Cordeiro, Martinez, and Pefia-Luque 2021). Similarly, Pefia-Luque et al. (2021)
confirmed the advantage of using multidimensional clustering over other traditional water
detection methods (Canny-edge and Hue, Saturation, Value - HSV) when classifying water at
both local (i.¢., reservoir) and regional levels. The Water Detect algorithm was also compared
with other optical water detection methods and tested in several countries by Tottrup et al.
(2022); results indicated that Water Detect had higher average accuracy than other tested
methods that used only optical input. However, care needs to be taken when selecting the best
input parameters for the Water Detect algorithm for a specific region or sensor. If sub-optimal
parameters are chosen, the resulting classification accuracy can be compromised. Sensitivity
analysis algorithms designed to test and compare the results of multiple input parameters can
be used to identify optimal parameter values, i.e., those that most accurately detect water, for
each use case. Currently, no automated script exists that performs a sensitivity analysis for the
Water Detect algorithm meaning there is little guidance for practitioners wishing to use this
method for water mapping and a lack of understanding of how the dynamic change of input
parameters influences the accuracy of this method.

Optical satellites with high spatial resolution and high revisit frequency have the
potential 10 provide guality input data to water detection methods and improve the mapping of
intermittent river features and the overall result accuracy. If a nver's surface water extent
changes markedly through time, which is common in intermittent systems, the spatial
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resolution and the frequency of cloud-free imagery constrain our ability to quantify these
changes. In this sense, the Planetscope constellation (Planet Team 2021) is a game-changer,
producing daily global coverage at high spatial resolutions (3 m). The high frequency- and
spatial resolution of imagery obtained from Planetscope now means that riverine surface water
can be mapped with much higher precision than previously achieved with coarser and less
frequent imagery from platforms such as Landsat, Sentinel, or MODIS. However, while
Planetscope accessibility, frequency, and pixel resolution represent a significant advance, their
sensors lack longer spectral wavelengths (SWIR bands). This can be problematic for water
mapping as these wavelengths are known to be sensitive to water absorption and are widely
used in water mapping. For instance, the Water Detect algorithm was initially proposed to be
applied to Sentinel-2 images with SWIR bands. Planetscope sensors also have no onboard
calibration devices, making it hard to systematically implement corrections to the multiple
generations of this satellite constellation, resulting in spectrally-vanable output data (Huang
and Roy 2021). While initially problematic, this difference in spectral quality and number of
bands among Planetscope images may be overcome by spectral data sharpening and band
synthesizing.

Image sharpening has been developed to get the best of both spectral and spatial
resolution by integrating different image sources to improve the information content and
quality of multispectral images (Kaplan and Avdan 2018). Generally, high-resolution
multispectral imagery is merged with lower-resolution images to create a hybrid product with
the highest resolution possible while preserving spectral quality (Fonseca et al. 2011). Some
satellites, such as Landsat, Worldview, and Quickbird, provide a panchromatic (Pan) band,
which can be used in sharpening. Satellites with no Pan band can use other satellites' high-
resolution bands to emulate a Pan band, provided the pixel resolution and the sharpening
algorithm are suited to the specific process. For instance, to take advantage of Planetscope's
four spectral resolution bands (3m), Li et al. (2020) tested methods to combine spectrally-
corrected Sentinel-2 imagery with high-resolution but uncorrected, Planetscope-0 imagery for
Earth Observation studies. Li et al. (2020) concluded that it is feasible to sharpen 3 m VNIR
(Visible - Blue/Green/Red, and Near-Infrared -~ NIR) and synthesize Red-edge and Shortwave
Infrared (SWIR) reflectance on days that Sentinel-2 and Planetscope-0 are spatially
overlapping. Sharpening and synthesizing bands can also be highly beneficial for surface water
mapping. For instance, sharpening methods, such as the Landsat-MODIS fusion (Jarihani et al.
2015), could be adapted to Planetscope-Sentinel. Given that water has a strong absorption on
the SWIR band (Xu 2006), synthesizing bands allows the application of many methods for
water detection that uses the SWIR band (Feyisa et al. 2014; Xu 2006; Fisher, Flood, and
Danaher 2016: Wang et al. 2018; Jarihani et al. 2015), even if the chosen satellite is not
equipped with the sensor to capture this wavelength band. Although using high resolution and
high-frequency imagery combined with sharpening and band synthesizing techniques have the
potential to improve the accuracy of surface water mapping, their specific benefit to the Water
Detect algorithm remains unknown. Moreover, as the sharpening and band synthesizing
process can require considerable processing time, there is a need to ascertain the benefit of this
step for surface water detection,

This study aims to improve our ability to detect surface water in an intermittent river
using multispectral imagery. Specifically, we compared the performance of a higher spatial
resolution and narrower spectral range (Planetscope-0) with a lower spatial resolution and
wider spectral range image (Sentinel-2) and assessed the benefits of combining both images
through sharpening to identify surface water features in an intermittent river over a time series
analysis. To achieve this, we (1) automated the sharpening routine proposed by Li et al. (2020);
(i1) developed a sensitivity analysis algorithm to test all possible combinations of input
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parameters (spectral indices, maximum number of clusters. and regularization) and determine
optimum inputs for the Water Detect algorithm that generates the most accurate detection of
surface water given a specific image type, (i1} determined an input combination for Water
Detect that performed consistently over multiple images and time, representing the best global
fitting input parameters for each sensor, and (iv) performed a visual inspection of the results to
assess special cases. The authors are unaware of any previous research using Planetscope or
sharpened images as input data or any sensitivity analysis algorithm that can automatically test
and assess input parameters and results for the Water Detect algorithm. Our sensitivity analysis
algorithm and the leamings from this study will assist the development of best practices in
mapping surface water in intermittent rivers.

Materials and Methods

Study Area

The Fitzroy River, located in the semi-arid Kimberley region of north-western Australia
(Figure 1), experiences extreme flood flows during the wet season (November to April) but
dries to poorly interconnected or disconnected pools in the dry season (May to October)
(Beesley et al, 2021). Using remote sensing techniques to map these pools and maintenance of
their interconnection accurately can provide crucial information on pool persistence and
improve our understanding of the role of surface water and groundwater in the river's
hydrological functioning.
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Figure 1. Location of the study area in the Fitzroy River, Kimberley, Western Australia. The inset
dashed box on the right shows an example of the estimated Fitzroy River comndor.
This study focused on the lower Fitzroy River (Figure 1), where there is an extreme
variation in water extent within and between years, as this region has little or no influence from

groundwater discharge (Taylor et al. 2018). We deliberately selected an area of the river where
longitudinal surface water connectivity breaks down during the dry season so that we could
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detect narrow linear features (e.g., thalweg/run/riffle) and isolated pools. The marked variation
of water extent through time benefits the testing of image classification accuracy as it helps
cover different scenarios, Specifically, we chose time points to maximize varnation in surface
water within a hydrological year, such as mid-wet (February). early-dry (June), and late-dry
season (October), and among years (2018-2020), given that in 2019 the catchment experienced
the lowest (348mm) total rainfall of the measured record (2003-2022). The other years (2018
and 2020) presented total rainfall closer to the historical average (Department of Water and
Environmental Regulations Water Information Reporting system). The river corridor extent
was estimated using slope values from a Digital Elevation Model (DEM) derived from LiDAR
(2 m) measurements provided by the Western Australian Department of Water and
Environment Regulation (DWER). Values >20 degrees were considered likely riverbanks
given the lower Fitzroy River has deeply scoured channels. After filtering slope values, the
river corridor was visually defined and manually polygonized using ArcGIS Pro and Esri base
maps with a total area of 10.08 km2. Moreover, the river corridor was buffered on each side
by | km to cover a wider area of interest (169.98 km2), or buffered zone, given the hydrological
and ecological importance of the immediate floodplain (Figure. 1). The resulting polygon was
used to clip Planetscope, Sentinel-2, and sharpened images for further analysis.

Image Datasets and Data Processing Tools

Sentinel-2

We used nine cloud-free Sentinel-2 surface reflectance NBART images (Nadir BRDF Adjusted
Reflectance + Terrain Hllumination Correction) captured in February, June, and October of
2018, 2019, and 2020 downloaded from the Geoscience Australia - Digital Earth Australia
(DEA) database (http://www.ga.gov.au/dea (accessed on February 8, 2021)) using the National
Computational Infrastructure (NCI), reprojected to UTM/WGS84. Geoscience Australia used
several pre-processing techniques for Sentinel-2 (F. Li et al. 2012, 2010; Vincenty 1975), with
a detailed description of the steps at: https://cmi.ga. gov.auw/data-products/dea/1 90/dea-surface-
reflectance-nbart-sentinel-2-msifbasics (accessed on Apnl 1, 2021).

Planetscope

As a source of high spatial resolution imagery, we used cloudless Level-3B PlanetScope-0
analytic surface reflectance orthoscenes atmospherically corrected by Planet Labs to surface
reflectance using the 6S radiative transfer model (Kotchenova et al. 2006) with ancillary data
from MODIS. The PlanetScope-0 satellites have four spectral bands (Visible + Near-infrared
- VNIR): Blue (B: 455-515 nm), Green (G: 500-590 nm), Red (R: 590-670 nm), and Near-
infrared (NIR, 780-860 nm) with a spatial resolution of 3 x 3 m (Planet Team 2021). We used
82 images captured in February, June, and October of 2018, 2019, and 2020 (~9 tiles per
month). The acquisition of images on dates close to Sentinel-2 image capture helps produce
better sharpening quality results (Fonseca et al. 2011). Planetscope images were acquired using
an academic license provided by Planet Labs Inc (https:/planet.com (accessed on February 12,
2021)).

Image Sharpening and Band Synthesizing

Li's et al. (2020) method for sharpening and synthesizing Sentinel-2 bands with Planetscope
was automated. We followed the same workflow found in Li et al. (2020) but used different
packages intending to improve performance (see Data Availability Statement for script).
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The first step of the automated sharpening process was to check if both images were in
the same projection and if the reference image (Planetscope) was within the extent of the target
image (Sentinel-2). Each band of the Sentinel-2 and the Planetscope images were co-registered
using AROSICS (Scheffler et al. 2017) to ensure that all pixels were in the same geographic
position. In the AROSICS co-registry process, the target image (Sentinel-2) is resampled to
match the reference (Planetscope) pixel resolution (3 m). The co-registered Planetscope visible
+ near infra-red or VNIR (Red, Green, Blue and Near-infrared) bands were spatially degraded
to Sentinel-2 spatial resolutions (i.e., 10 or 20 m) using an OpenCV 2D convolution filter
(Bradski 2000) with a 41 x 41 matrix (-20 .... 20 — with center =0, j=0). Each value of the
convolutional matrix is defined by the following equations extracted or analytically derived
from Li et al. (2020):
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Where, @; (i, ) is the value of each cell in the convolution matrix, o, is the standard deviation
(m!) of the modulation transfer function (MTF - values for each band published in (ESA
2021)), pr is the reference image (Planetscope) pixel spatial resolution value (m™), and f'is the
spatial frequency (m™), which depends on pixel resolution or the target image (i.e., f=1/20 m"
for 10 m bands and f=1/40 m™' for 20m bands). Before applying the convolution matrix to the
respective Sentinel-2 band. A, @; (i, j) values were normalized, so the 41 x 41 matrix sums to

one (1/Z82_20Z52 20 ®a(i, /).

Because Planetscope is equipped with sensors to capture only four bands (VNIR), and water
has a high absorption spectrum on the Short-wave Infrared (SWIR) band (Xu 2006), a 3 m
equivalent SWIR band was synthesized from Sentinel-2 SWIR 1 (Band 11) and SWIR 2 (Band
12). For that, each of the Sentinel-2 SWIR bands was resampled and co-registered with
Planetscope bands. While Jarihani et al. (2015) suggested calculating indices and then
sharpening data for water footprint mapping, Planetscope lacks the same spectral bands as
Sentinel-2 and necessitates the band synthesizing first, then index approach. All Planetscope
bands were degraded to 20 m resolution using Equation (1) (with £=1/40 m™') and the respective
SWIR MTF values to calculate the convolutional matrix. The degraded 20 m bands were used
as input variables in multiple linear regression equations (Equation (3)), executed with Scikit-
learn (Pedregosa et al. 2011), using each band as explanatory (or independent) variables and
the 20 m Sentinel SWIR bands as the response (or dependent) variable. The regression
coefficients were used in Equation (4) with the Planetscope bands to synthesize the SWIR
bands. Equation (4) and Equation (5) (as per Li et al. (2020)) are shown below.

ﬁzpmneq(ivl’) = “’bluelpgluntlm,,(ivj) + wgraen.lpzlanttg,,," (i'j) +
wrcd.).p?'lnnt:,..a (Lj)+ leR,XP?’Ianetmg(irD 4)
Where, ﬁ’mmm (i,/) is the synthetic Planetscope values for the considered band (%; e.g..

SWIR I, SWIR 2), Wpye 4, Wgreen . @reqa and wyg 5 are weights calculated as per Equation
(5). and PPlanetyyqer PPlanetgreen: PPlanetreg A4 Pplanetyyq a7¢ the 3m Planctscope bands.

20 _ 20 20 20
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Where, pégl is the Sentinel-2 values for the considered band A (e.g.. SWIR 1, SWIR 2), o is
the multiple linear regression coefficient values calculated for each planet band (e.g., Green,
Blue) and target synthesized band & (e.g., SWIR 1, SWIR 2), and pflinet, e Planetgreen:

08 et req A0d p%',’,nm"m are the degraded to 20 m Planetscope bands.

Lastly, a high-pass modulation equation (HPM) (Schowengerdt 2007; Z. Li et al, 2020, Vivone
et al. 2019) was applied for each VNIR band (Equation (6)) and to synthetic SWIR bands
(Equation (7)) to finish the sharpening process.
g P33, (LN .
P32, (1)) = =ttrs— X Phianets (1)) (©)
prmmu (.0

Where, p3,, (i, j) is the sharpened Sentinel-2 ) band (VNIR) at 3 m pixel resolution, p&3 (i, /)

g;::l-a(f-i) is the 3 m to 10 m spatially-

degraded Planetscope values before being resampled back to 3 m, and ppjyper, (i./) is the
Planetscope A band at 3 m pixel resolution.
p33,7 (LS

P52, (i) = —=trs— X Phtaner, (i) (7
Ppranet, ¢ A

is the resampled Sentinel-2 A band (10 m) to 3m, p

Where, ﬁgzl(i. j) 1s the sharpened Sentinel-2 A band (SWIR1, SWIR2) at 3 m pixel resolution,
p33,3(i. ) is the resampled Sentinel-2 A band (SWIR1, SWIR2) at 3 m, piore (i, j) is the
synthetic Planetscope A band degraded to 20 m and resampled back to 3m and iﬁlanm(l, fis
the synthetic Planetscope A band.

Ground Truthing

The Fitzroy River is located in a very remote area with limited access to the river, making the
collection of ground truth information on water extent logistically difficult, costly, and
impossible across all images. Opportunistic hand-held GPS water extent points were collected
during two fieldwork campaigns in October 2018 and September 2019. Although the ground
truth points were insufficient to validate the entire area of interest, they aided in interpreting
satellite imagery and creating hand-classified validation maps. Validation was also assisted by
using high-resolution images (10 cm) from the Western Australian Land Information Authority
(Landgate),

To overcome the scarcity of ground truth data, we manually polygonized the water
extent for all images by interpreting arcas identified as water. We used supporting data,
including high-resolution aerial imagery and LiDAR DEM products (2 m), to understand
preferential runoff flow paths and a combination of Sharpened Sentinel-2 with SWIR bands (3
m) and natural and false colors of Planetscope (3 m) to enhance contrast. The resulting hand-
digitized polygons were smoothed using ArcGIS's 'smooth polygon' tool to give features a more
natural and rounded appearance, as manual polygonizing can leave sharp and unnatural edges.
The interpreted data was used as a ground truth reference in subsequent quantitative accuracy
analysis.

Automated Sensitivity Analysis for the Water Detect Algorithm

The Water Detect algorithm (Cordeiro, Martinez, and Pefia-Luque 2021) identifies surface
water features by combining spectral water indices (e.g., Normalized Difference Water Index-
NDWI, Modified Nomalized Difference Water Index-MNDWI, and the Multiband Water
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Index-MBWT) with VNIR-SWIR bands to highlight features of interest that are clustered based
on multidimensional agglomerative clustering and a naive Bayesian classifier, In addition to
choosing the main water spectral indices and the combination of bands, two other parameters
can significantly influence the results of Water Detect: the maximum clustering and the
regularization of the normalized spectral indices. These are particularly important for this
study, given that the area of interest is a buffered corridor around the main river channel. In
this case, the number of possible targets to be identified as clusters is lower than an entire
Sentinel-2 scene, such as that used in the original paper by Cordeiro, Martinez, and Pefia-Luque
(2021). Moreover, the regularization of spectral water indices promotes a shrinkage of the
water indices variance and can avoid a water cluster being split in two in the presence of
different water constituents (i.¢., organic and inorganic matter). The main input parameters for
Water Detect must be configured in an initialization file (.ini), which holds all necessary inputs.

We developed a sensitivity analysis algorithm (see Data Availability Statement for
script) to test all possible combinations of inputs parameters (i.¢., spectral indices, maximum
clustering, and regularization) for Water Detect within a specified range and assessed accuracy,
determining the most accurate inputs for each specific case, and producing a most-to-least
accuracy ranking, The developed sensitivity algorithm has four main inputs: 1) the Water
Detect default initialization file as per Cordeiro et al, (2021); 2) the range of maximum
clustering and regularization given by lowest, highest, and step values; 3) the images to be
tested, and 4) the ground truth raster to be used in the accuracy assessment.

The first step to finding the most accurate Water Detect input parameters for each tested
image was to calculate all possible combinations between the range of maximum clustering
and regularization values and the images to be tested. We automatically changed the
initialization file for each unique combination based on the number of bands, maximum
clustering, and regularization and used the modified initialization file to execute Water Detect.
The reference points (ground truth) were then compared with the classification results (water
mask) using the Scikit-learn Metrics module and Matthews correlation coefficient (MCC)
function (Pedregosa et al. 2011). The MCC is a performance measure of the quality of binary
and multiclass classifications proposed by Matthews (1975) and revised by Baldi et al. (2000),
which accommodated the Pearson correlation coefficient to assess the correlation in confusion
matrices. The MCC is less influenced by imbalanced datasets, as it considers both accuracy
and error rates and uses all confusion matrix values (Bekkar, Kheliouane Djemaa, and Akrouf
Alitouche 2013). In intermittent rivers, the ratio between non-water and water classes will
invariably become smaller as the dry season progresses and the relative number of water pixels
decreases. Therefore, using metrics that account for skewed or biased datasets is necessary. It
ranges from -1 (total disagreement between predicted scores and true labels' values) to 0
(prediction no better than random) to | perfect prediction (Fernandez et al. 2018). A high MCC
value means high accuracy and low misclassification of positive and negative classes (Chicco,
Totsch, and Jurman 2021).

To assess the Water Detect algorithm's input parameter values and resulting accuracy,
we used 3, 9, | as lowest, highest and step values for maximum clustering (or 3, 4,5, 6, 7, 8,
9), and 0.01, 0,1, 0,01 for regularization (or 0.01, 0.02 ... 0,09, 0.1), We tested five sensor
configurations as input for the sensitivity analysis algorithm: (i) Planetscope (VNIR —
NDWI/NIR); (ii) Sentinel-2 (VNIR — NDWI/NIR); (iii) Sharpened Sentinel-2 (VNIR -
NDWI/NIR), (iv) Sentinel-2 (VNIR-SWIR - MNDWI'NDWI/SWIR-2): and (v) Sharpened
Sentinel-2 (VNIR-Synthetic SWIR - MNDWINDWI/SWIR-2). The accuracy of the classified
images was evaluated using all valid points retrieved from each reference ground truth raster
(=19 = 106 points) and the respective values of those points in each classified raster. We,
therefore, applied our sensitivity analysis algorithm across 3,150 configurations (i.e., 70
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possible input combinations for each sensor and nine time periods — February. June, October
of 2018, 2019, and 2020),

Comparing sensor performance

The water detection performance of different sensors (Planetscope - VNIR, Sentinel-2 - VNIR,
Sharpened Sentinel-2 — VNIR, Sentinel-2 — VNIR-SWIR, and Sharpened Sentinel-2 — VNIR-
Synthetic SWIR) were compared over various periods (February, June, October of 2018, 2019,
and 2020). Firstly, we compared ecach sensor performance using all the combinations
considered for the sensitivity analysis and then used box- and 3D- plots to aid in interpreting
accuracy dispersion, patterns, and regions of high performance. Secondly, we compared the
performance of the water detection results using the best fitting input parameters, identified by
the developed sensitivity analysis, with global fitting parameters (mputs that presented high
accuracy over all considered images) to confirm that the global fitting parameters had good
adherence with optimum input parameters, We then compared the performance of each sensor
using the global fitting parameters.

Although the sensitivity test algorithm can extract top-performing input combinations
for each image, for reproducibility purposes, we also aimed to find a combination that would
perform consistently well over multiple images and time periods for each sensor, ie., to
identify global fitting parameters. We identified the global fitting parameters for each sensor
by averaging the MCC results over time for each combination of maximum clustering and
regularization. In addition, we analyzed the top five parameter combinations for each time step
and sensor.

The complete workflow for this study is presented in Figure 2.
Results

Water Detect Input Parameter Analytics and Accuracy Assessment

We found a higher level of agreement in the ability to detect water for VNIR compared to
SWIR sensors. The Sharpened Sentinel-2 ( VNIR) outperformed the other sensors (mean MCC:
0,746), followed by Sentinel-2 (VNIR) (0.721), Planetscope (VNIR) (0.704), Sharpened
(SWIR) (0.55) and the Sentinel-2 (SWIR) (0.48). We observed a considerable range between
maximum and minimum MCC values, with Sharpened (SWIR) presenting the highest range
(1.135), followed by Planetscope (0.89), Sentinel-2 (SWIR) (0.842), Sharpened (VNIR)
(0.794), and Sentinel-2 (VNIR) (0.741), Not surprisingly, the standard deviation was also high,
with Sentinel-2 (SWIR) (std: 0.351) as the topmost, followed by Sharpened (SWIR) (0.336),
Planetscope (0.185), Sharpened (VNIR) (0.179), and Sentinel-2 (VNIR) (0.165).

The correct use of input parameters for the "Water Detect' algorithm had a greater
influence on results than the choice of sensor. Even expecting variability, the wide range of
accuracy values showed that finding the optimal input parameters is essential, as some
combinations performed poorly and others outstandingly. This highlights the importance of
using the sensitivity analysis algorithm developed here. As shown in Figure 3, the difference
between the interquartile range (IQR) MCC values of images with SWIR bands was much
more significant than images with only VNIR bands, which indicated that VNIR sensors were
more robust and accurate for water identification using the Water Detect in the tested
environment.
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Figure 3. Boxplots represent all sensors’ MCC median, interquartile range, extreme values,
and outliers. High values indicate better performance, while narrow ranges indicate greater
robusiness over time.

Global Fitting Parameters

The overall best-fitting results for all sensors tended to gravitate to low maximum clustering
and high regularization, although regularization seemed to have a lesser effect on the accuracy
of water detection results (Figure 4). This finding was also true when evaluating only the top
five combinations for each sensor. For instance, four out of five had a mean maximum number
of clusters between 3 and 5, with Sentinel-2 (VNIR) presenting a value of 6. Similarly, for
mean optimal regularization, four out of five sensors ranged from 0,07 and 0.1, with Sharpened
(VNIR) presenting a value of 0.04. Furthermore, our data suggest that the best overall fitting
(i.e. global conditions) for maximum clustering and regularization is: Planetscope (VNIR)
(max. cluster: 3, regularization: 0.09), Sentinel-2 (VNIR) (6, 0.07), Sharpened (VNIR) (5,
0.04), Sentinel-2 (SWIR) (3, 0.08) and Sharpened (SWIR) (4, 0.1), We highlight that there was
a minimal difference between the top five most accurate combinations of each sensor, with the
MCC difference between the first and last (1 and 5) of 0,007 (Planetscope VNIR), 0.012
(Sentinel-2 VNIR), 0.017 (Sharpened VNIR), 0,006 (Sentinel-2 SWIR), and 0.023 (Sharpened
SWIR). In this case, we could choose as global fitting parameters any of the top five most
accurate input combinations for each sensor with almost no change in accuracy (< 2.3%).

The proposed global fitting parameters showed excellent adherence with individual
fitting, suggesting that the Water Detect can perform close to maximum accuracy (Figure 5),
Planetscope (VNIR), Sentinel-2 (VNIR), and Sharpened (VNIR) exhibit exceptional adherence
with mean differences in MCC values of 0.014, 0.013, and 0.016, respectively. Conversely,
Sentinel-2 (SWIR) and Sentinel-2 Sharpened (SWIR) showed the lowest adherence with a
mean difference in MCC values of 0,037 and 0.053, respectively (Figure 5). Figure 6 shows
the water detection results for the most accurate sensor and each time step, see how isolated
pools and potential runs were successfully mapped.
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Panetscope (VNIR) Sentinel-2 (VNIR)

Figure 4. 3D plots comparing different maximum cluster and regularization parameiers for
each sensor with their MCC values. The grouped mean is shown on the lower left.

Comparison of Sensors using Global Fitting Parameters

To compare the primary sensors and the sharpened versions, we used the Global fitting
parameters described above that represented the most overall accurate water extraction for cach
sensor, The Sharpened (VNIR) showed the highest MCC performance mean values (0.822),
followed by Planetscope (VNIR) (0.809), Sentinel-2 (VNIR) (0.791), Sharpened (SWIR)
(0.783), and finally Sentinel-2 (SWIR) (0.753) (Figure7). While the Sharpened (VNIR)
presented the most consistent performance over time, Planetscope (VNIR) showed the highest
MCC values in six of the nine time steps. However, it also had the highest standard deviation

319



"% 1

Zas

oA ot

@ L P w‘”w"o«’aﬁfw’wyf

Sertinel-2 (VNIR)

vﬂ\/g’v

LB} o«

e I e

9 Sharpesed (VNIR)

W

—— Ingreidund Pitng
04— Gibal Fiting

AP

Figure 5. Comparison of performance between the most accurare images using individually-
fitted parameter combinations and the global-fitting parameter combination. Horizontal lines
show the adherence between the two fittings.

320



Figure 6. Example of best performance achieved across classified images for each timestep
where blue indicates identified water with Planetscope as a base map in the background.
Sharpened (VNIR) showed the best performance over the other considered sensors in February
2018 and October 2020 (a, i); Sharpened (SWIR) in June 2018 (b); and Planetscope in October

2018, February 2019, June 2019, October 2019, February 2020 and June 2020 (¢, d, e, |, g,
and h).
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Figure 7. Comparison of sensor performance over time using the chosen Global Fitting
Parameters. Bars show MCC values for each time and sensor, as per the legend on the bottom.
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Figure 8. Visual comparison between Sentinel-2 (a) on the left, Planetscope (b) in the center,
and Sharpened Sentinel-2 {¢) on the right. The black arvows in the center indicate the
difference between scenes (edge effect) when merging raw Planeiscope imagery without any
reatment.

Figure 9. Water identification in raw merged Planetscope imagery at regions affected by edge
effect (a, b, c). The difference between scenes did not seem o affect water identification
outcomes in merged Planeiscope images,

45
S Posemoops (VMR ses Sharpered (VINFT; s Shamened (TWR)
N — Reertrwe J (WNIR) = Jartyed] (NWR)

R =

% of Hentited wwear
B

<

{‘ I‘
L Burnt , Shadow 0 — l" L I .,I

; e o N e o C T A0 v L
oy Demse Vegetanion o~ wWater d,ﬁ ,,.I“ 2P B P oA d,‘.‘i ’rw oo

L2 ghadow o o ¥
Figure 10. Most typical cases of misclassification — Burnt areas. On the left is an example

showing burnt areas in orange, and on the right, a bar plot showing the percentage of burnt
areas erroneously classified as waier.
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because of poor performances in Feb/2018 and Oct/2020, which can be due to sensor
calibration issues and appears to be corrected in the sharpened image. Comparably, Sentinel-2
(VNIR) and Sharpened (SWIR) images also had excellent performance over time, with mean
MCC values very close to Planetscope (VNIR). In fact, the Water Detect algorithm consistently
identified water in all images with good performance, i.e., the difference between the highest
mean (Sharpened VNIR) and the lowest (Sentinel-2 SWIR) was only 0.069 or 8%.
Furthermore, the Sentinel-2 Sharpened (VNIR) MCC values appeared to follow the highest
accuracy between their source images (i.e., Sentinel-2 (VNIR) and Planetscope (VNIR), which
suggests that the sharpening process can benefit water detection consistency over time and
helps to explain its overall good performance. Even though in our case, the performance
metrics were almost negligible between Sharpened (VNIR), Planetscope (VNIR), and Sentinel-
2 {(VNIR).

Visual Analysis

Visual assessment is an important step in image data validation as human interpretation can
detect nuances that are not readily highlighted by examining image statistics. Our visual
assessment indicated that the sharpening method seamlessly unified all Planetscope scenes
(Figure 8). The resulting image looked more natural with obvious contrast when compared
with the merged raw images. For example, in the area pointed by the black arrows in Figure
8B, the fusion results are clear, with smooth edges. obvious contrast, and critical information
in the image can be clearly assessed. However, the edge effects did not seem to affect water
identification outcomes in Planetscope images (Figure 9 a. b, ¢).
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Figure 11. Most iypical cases of misclassification  Heavily shaded areas. On the lefi is an
example showing heavily shaded areas in yellow, and on the right, a bar plot showing the
percentage of heavily shaded areas erroneously classified as water.

The Water Detect algorithm was able to identify surface water features in all images
with excellent classification performance. This was also the case when narrow linear features
between pools (1.c., runs) were analyzed, a critical feature in river fragmentation/connectivity
studies. However, we observed a few misclassification cases, even when each sensor's best
global fitting parameters were used. For instance, in all VNIR images (Planetscope, Sentinel-
2, and Sharpened), burnt areas were erroneously classified as water. This can dramatically
affect the classification accuracy, as seen in Figure 10. Also. heavily shaded areas were
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frequently mistaken for water in VNIR images (Figure 11). In some SWIR (Sentinel-2 and
Sharpened) images, parts of the riparian vegetation and a few spots with dense vegetation
throughout the floodplain were misclassified as water, as were some sparse vegetation areas in
drier months (June and October) (Figure 12).
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Figure 12. Most typical cases of misclassification - Dense vegetation. On the left is an example
showing dense vegetation in green, and on the vight, a bar plot showing the percentage of
shadows on dense vegetation areas erroneously classified as water.

Discussion

This study of an intermittent river found that the ability to accurately detect surface water using
multispectral imagery was maximized by identifying the optimal input parameters for the
Water Detect algorithm and using VNIR sensors, with relatively little gained by using image
sharpening routines. Our automated sensitivity test for the Water Detect algorithm was highly
effective at identifying parameter inputs that maximized the algorithm's accuracy. The use of
sub-optimal parameter inputs resulted in considerable declines in accuracy. We found a higher
level of agreement in the ability to detect water for VNIR compared to SWIR sensors
highlighting the possibility of accurate water detection using simple sensors. The benefits of
sharpening Sentinel-2 images with Planetscope images were marginal, especially if the target
area did not include heavily shadowed or extensive burnt areas; thus, sharpening should be
considered only after weighing the benefits against the additional processing time. Using
automated routines to sharpen imagery and determine input parameters for the Water Detect
algorithm is a significant advancement that should increase our ability to accurately detect and
map water in intermittent rivers.

The correct choice of input parameters for Water Detect considerably influenced the
ability of the algorithm to accurately classify surface water in the study river. For instance,
optimal parameters for clustering and regularisation identified by the developed sensitivity test
algorithm increase accuracy by 130% compared to suboptimal values (MCC = 0.87 vs. -0.266,
respectively) if considering the sensor with the largest accuracy range (Sharpened-SWIR).
Specifically, we found the global optimum maximum clustering value to be 6 for Sentinel-2
This finding is in accordance with the results of Cordeiro, Martinez, and Pena-Luque (2021),
where accuracy results for Sentinel-2 peaked and stabilized with maximum clustering values
between 5 and 10. Our study is the first systematic test of regularization for the Water Detect
algorithm, and our results suggest that in conjunction with maximum clustering, classification
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accuracy is higher when regularization is also higher. However, this parameter varied greatly
among individual fittings, suggesting that it would impact the classification performance less
than the maximum clustering value. Ground-truthed data are required to confirm our sensitivity
test and performance assessment. However, in the absence of such data, we recommend using
our proposed global fitting parameters for each sensor and combinations of bands as a starting
point. We are particularly confident in these parameter values for semi-arid locations, given
the excellent performance achieved in our study. However, as our study was only undertaken
in one location, we recognize that the global fitting parameters presented here might not be
ideal for all uses and should be used mindfully.

Our automation of Li et al’s (2020) sharpening routine is a significant advancement
that makes it possible to easily and quickly sharpen many images or time series. This
automation is advantageous due to its speed and also because it reduces the possibility of
human error, which can arise when many images are sharpened manually. The resulting images
were clear and seamlessly unified compared to raw merged Planetscope images and are
visually comparable to the results achieved by Li et al. {2020). The sharpened images also
outperformed, albeit slightly, raw merged images when identifying water, which is another
indicator that the sharpening process successfully fused the best qualities of the source images.

While our automated image sharpening was successful, our study revealed that
sharpening had a negligible effect on the accurate identification of water in most situations.
For instance, the maximum increase in accuracy associated with sharpening in our study system
was only 1.52%. Nonetheless, when one of the source images performed poorly, the sharpened
image tended to perform as well as the most accurate source image (Sentinel-2 or Planetscope),
making its accuracy more consistent over time. This can be attributed to a given sensor's
spectral quality or spatial resolution since we used the best combination of both in the
sharpened image. Depending on a project’s objective, this could justify the additional
processing time despite marginal improvement. Furthermore, VNIR images outperformed
SWIR images in all scenarios but one, opening the possibility of using a plethora of images as
input for Water Detect. This is an encouraging finding, given that four-band images are much
more common and less expensive to capture,

Sentinel-2 (VNIR) images performed surprisingly well relative to Sentinel-2 sharpened
(VNIR) and Planetscope (VNIR), even though its spatial resolution is more than three times as
coarse. This is especially important as the marginal improvement in performance from
Planetscope (VNIR) and Sentinel-2 sharpened (VNIR) incurs the expense of greater processing
time and the financial cost of purchasing Planetscope versus the freely available Sentinel-2
imagery. When comparing Sentinel-2 (VNIR) to Sentinel-2 (SWIR), our results indicate that
VNIR bands were more robust and performed better over time, which is a very relevant
outcome since Cordeiro, Martinez, and Pefa-Luque (2021) initially proposed the Water Detect
algorithm to be used only with SWIR images. Although this allows the use of VNIR bands as
an option or default in the subsequent upgrades of Water Detect. our study area is located in a
remote semi-arid region with no build-up areas, which can impact the transferability for
regional scales. Studies such as Xu (2006) and Zhang et al. (201 1) suggest that MNDWI (SWIR
bands) has the broadest applicability and is a better alternative in distinguishing water from
shadow than NDWI, especially in areas of interest that include cities. Thus, future research
should apply our sensitivity algorithm and workflow in areas with those characteristics to
enable a comparison.

It is possible that the relatively large size of both the target river (Fitzroy River) and the
study area minimized the difference in performance between high resolution (Planetscope and
Sentinel-2 Sharpened) and coarser images (Sentinel-2), somewhat diminishing the overall
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influence of spatial resolution needed for very narrow features. The Fitzroy River has a width
of 100 m in wet months, and the catchment area is large. Locations where the classification
would benefit from higher spatial resolution, such as in very small pools, and runs/riffles, were
relatively minor, which does not significantly affect overall accuracy. However, even though
we did not assess the detection accuracy of these important intermittent river features, results
showed that by maximizing the overall detection accuracy, we also increased the potential of
detecting them. Nonetheless, we believe Sentinel-2 is a solid option for many studies,
especially on catchment or sub-basin scales. Of course, the extent of the area of interest and
the size of target features will directly influence the choice of a particular spatial resolution to
better represent each study's needs.

Even though all tested images demonstrated excellent overall performance in water
detection, we observed three significant misclassification cases linked to dark surfaces: burnt
areas, heavily shaded areas, and shaded areas in dense vegetation. The first two cases were
more pronounced on VNIR images and the latter on SWIR images. Previous studies frequently
report that shadows and dark surfaces, such as bumt areas, are often misclassified as water. For
example, Xu (2006) noted that the NDWI was not appropriate for distinguishing water from
shadows in built-up areas and proposed the MNDWI, which improved water discrimination
over the NDWTI in the presence of high turbidity waters and shadows in built-up areas. Zhang
etal. (2011) found that the multi-band spectral relationships are more effective in dealing with
shadow misclassification in mountainous areas, whereas MNDWI performed better in city
areas. According to Zhai et al. (2015), this happens because NDWI values of water and
shadows overlap, while MNDWI minimizes such problems with minimal intersections
between shadow and other features. However, MNDWI still misclassifies vegetation in shaded
areas as water, mainly because in such areas the SWIR band spectral value is usually smaller
than the green band causing MNDW!I values to increase (Guo et al. 2017), Burnt areas are also
problematic, like shadows, due to their similar spectral reflectance to surface water, especially
when dealing with 4-band images and NDWI. Nevertheless, unlike shadows, burnt regions are
usually large and contiguous, severely influencing classification accuracy when present over
extensive areas, Usually, in semi-arid regions, fires occur naturally or by controlled buming.
In northern Australia, controlled fire techniques are commonly applied by Aboriginal
communities to reduce the intensity of bushfires (Jackson, Finn, and Featherston 2012: Bird,
Bliege Bird, and Parker 2005; McGregor et al. 2010). SWIR bands should be considered if
attempting to detect water in these heavily burnt areas, especially when examining the
floodplain since this is a lesser problem if only the river’s main channel is of interest. A possible
solution to minimize misclassification would be introducing other methods to the classification
routine specifically designed to mask heavily shaded and burnt areas. This is possible (Mostafa
2017; Yamazaki, Liu, and Takasaki 2009; Pereira 2003; Roy et al. 2005; Frantz et al. 2016)
but beyond the scope of the present study.

Conclusions

Our results revealed that the ability to accurately detect surface water in an intermittent river
using multispectral imagery was maximized by identifying the optimal input parameters for
the Water Detect algorithm. By maximizing the overall detection accuracy, we also increase
the potential of detecting important intermittent river features, such as runs, riffles, and small
isolated pools, which could be the focus of assessments in future studies. Furthermore, VNIR
images outperformed SWIR images and should be considered an option in future versions of
the "Water Detect’ algorithm. We also found a minor overall improvement in the performance
of water detection after sharpening, but the benefits were marginal, especially if the target area
did not include heavily shadowed or extensive bumnt areas. Thus, sharpening and synthesizing
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bands should be considered only after weighing the benefits against the additional processing
time. Sentinel-2 performed well and proved a robust option for studies on catchment or sub-
basin scales. Further research is needed to test the workflow presented in this study in other
locations to establish if the tested images' performance is similar to our results. Furthermore,
the developed sensitivity analysis algorithm should also be applied in other locations to refine
the global fitting parameters.
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