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π-pref nets. It also discusses the procedures for transforming an LP-tree into a π-pref net. Finally and before concluding, Chapter 7 presents an implemented toolbox that supports CP-nets and π-pref nets as graphical structures in addition to the default rule-based algorithms discussed in previous chapters.
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Summary

π-pref nets, CP-nets and possibly LP-trees are able to encode specifications of the form "In the context of u, I prefer a to its negation" which is quite similar to the piece of knowledge "If u then generally a". This rule can be encoded by possibility logic.

In some works, researchers have been particularly interested in reasoning with default rules for representing some state of affairs in a possibilistic framework. Because of the similarity between a user preference and a default rule, this work has caught our attention and led us to question whether interpreting a collection of user preference statements as default rules and using some informational principles permit to construct the same ordering as induced by a given graphical preference representation.

One of the main goals of this manuscript is also to compare the expressive power of CP-nets, LP-trees and π-pref nets. Using a possibilistic framework, specifications of a user may be also encoded as default rules on which several reasoning approaches are applied to therefore compare their induced orderings. The work is restricted to Boolean variables.

The dissertation is divided in seven chapters. The first two chapters are dedicated to provide the background knowledge. On the one hand, they review the state of the art on conditional preference representations and on the other hand the basis of the possibility theory . The first chapter deals with qualitative graphical models, namely CP-nets, their extension TCP-nets and LP-trees. We provide independence assumption of each model, their induced orderings over complete configurations, in addition to explaining queries that can be performed over them. Chapter 2 is devoted to possibility theory and its use for representing preferences in different formats such as possibility distributions, logical bases or graphical networks. The first part of Chapter 3 gives a brief background about possibilistic preference networks (π-pref nets) and discusses their expressiveness and consistency with regard to CP-nets. The second part of the chapter introduces new variants of π-pref nets by using different scales for encoding preference degrees. Besides, some researchers have proposed to deal with default knowledge formalized by means of constraints expressed in the setting of the possibility theory. This is the aim of the chapter 4, we will apply a similar approach for modeling preferences in the aim of finding an order-ranking over solutions of a given preference problem thus handled by means of default rules. The resulting orderings are compared to those obtained by different order approaches and particularly the Pareto order. Chapter 5 discusses repairs and refinements of the complete pre-orders obtained from preferences encoded as default-like rules. Chapter 6 discusses our last goal that consists on studying the expressive and representative power of LP-trees compared to

Résumé

Les réseaux π-pref-nets, les CP-nets et éventuellement les LP-trees sont capables d'encoder des spécifications de la forme "Dans le contexte de u, je préfère a à sa négation" qui est assez similaire à une règle par défaut "Si u alors généralement a".

Cette règle peut être codée en théorie des possibilités. Dans certains travaux, des chercheurs se sont particulièrement intéressés au raisonnement avec des règles par défaut pour représenter un certain état de choses dans un cadre possibiliste. En raison de la similarité entre une préférence d'utilisateur et une règle par défaut, ce travail a attiré notre attention et nous a conduit à nous demander si l'interprétation d'une collection d'énoncés de préférences d'utilisateurs comme des règles par défaut et l'utilisation de certains principes informationnels permettent de construire le même ordre que celui induit par une représentation graphique donnée des préférences.

L'un des principaux objectifs de ce manuscrit est aussi de comparer le pouvoir expressif des CP-nets, LP-trees et des π-pref nets. En utilisant un cadre possibiliste, les spécifications d'un utilisateur peuvent aussi être encodées comme des règles par défaut sur lesquelles plusieurs approches de raisonnement sont appliquées pour ainsi comparer leurs ordonnancements induits. Le travail est limité aux variables booléennes.

La thèse est divisée en sept chapitres. Les deux premiers chapitres sont consacrés à fournir les connaissances de base. D'une part, ils passent en revue l'état de l'art sur les représentations des préférences conditionnelles et d'autre part, les bases de la théorie des possibilités. Le premier chapitre traite des modèles graphiques qualitatifs, à savoir les CP-nets, leur extension TCP-nets et les LP-trees. Nous indiquons l'hypothèse d'indépendance de chaque modèle, leurs ordonnancements induits sur des configurations complètes, en plus d'expliquer les requêtes qui peuvent être effectuées sur eux. Le chapitre 2 est consacré à la théorie des possibilités et à son utilisation pour représenter les préférences sous différents formats tels que les distributions de possibilités, les bases logiques ou les réseaux graphiques. La première partie du chapitre 3 donne un bref aperçu des réseaux de préférences possibilistes (π-pref nets) et discute de leur expressivité et de leur cohérence par rapport aux CP-nets. La deuxième partie du chapitre présente de nouvelles variantes des réseaux π-pref en utilisant différentes échelles pour encoder les degrés de préférence. Par ailleurs, des chercheurs ont proposé de traiter la connaissance par défaut formalisée au moyen de contraintes exprimées dans le cadre de la théorie des possibilités. C'est l'objet du chapitre 4, où nous appliquerons une approche similaire pour modéliser les préférences et pour trouver un ordre de classement sur les solutions d'un problème de préférence donné ainsi traité au moyen de règles par défaut. Les classements obtenus sont comparés à ceux obtenus par différentes approches d'ordre et notamment l'ordre de Pareto. Le chapitre 5 traite des réparations et des raffinements des préordres complets obtenus à partir de préférences codées comme des règles par défaut. Le chapitre 6 traite de notre dernier objectif qui consiste à étudier le pouvoir expressif et représentatif des LP-trees par rapport aux π-pref nets. Il aborde également les procédures de transformation d'un arbre LP-tree en un réseau π-pref nets. Enfin, avant de conclure, le chapitre 7 présente une boîte à outils implémentée qui prend en charge les CP-nets et les π-pref nets en tant que structures graphiques en plus des algorithmes basés sur des règles par défaut abordés dans les chapitres précédents.
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General Introduction

For several decades, modeling human preferences has been regarded as a particularly promising research field of great interest in decision analysis. Going from economics, ecommerce [START_REF] Ribeiro | Incremental evaluation of continuous preference queries[END_REF], recommender systems [START_REF] Wang | Incorporating both qualitative and quantitative preferences for service recommendation[END_REF], computer science and psychology to space, medicine, and politics, fields of applications in this area are many to be counted. Handling preferences requires to go through three main steps: data collection, formal representation and model querying. Preference specifications can be gathered using elicitation techniques or machine learning methods.

In fact, the former practice requires knowledge to be processed directly from human beings, e.g., surveys, observation or interviews. The latter one seeks to acquire new knowledge or function approximation in order to derive an unknown model based on input data sets. The second step, which is preference representation, consists on encoding these preferences into logical or graphical models that can encode qualitative or numerical preferences. Possibilistic logic [Benferhat et al., 2001c], propositional languages [START_REF] Coste-Marquis | Expressive power and succinctness of propositional languages for preference representation[END_REF] and modal logic [van Benthem et al., 2009] are some of the logical frameworks that allow to model preferences. Graphical models have been motivated by the need of a compact representation of user preferences. A general overview of graphical preference representations can be found in [Ben Amor et al., 2016a]. Figure 1 is a timeline that sums up the main preference approach that exist in the literature. The upper part of the scale designates the graphical representations, while the lower part designates logical representations. Rectangles in thick lines represent qualitative graphical models, those with strong lines indicate quantitative graphical models, while those in dashed lines can be classified as both qualitative and quantitative models. Once the preference model is constructed, the last step consists on exploiting information retrieved from these models to answer some given queries such as finding a dominance relation between alternatives or finding the most satisfying solution.

OCF-nets (Spohn, 1988) CP-nets UCP-nets [START_REF] Boutilier | Ucpnetworks: A directed graphical representation of conditional utilities[END_REF] TCP-nets GAI-nets (Gonzales and Perny, 2005) mCP-nets CUI-nets (Engel and Wellman, 2008) Marginal utility networks (Brafman and Engel, 2009) LP-trees PCP-nets (Bigot et al., 2013) π-pref nets (Ben Amor et al, 2015) [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF]) [START_REF] Brafman | Introducing variable importance tradeoffs into cp-nets[END_REF] (Rossi and Venable, 2004) [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF] possibilistic logic (Benferhat et al.,2001) propositional language (Coste-Marquis et al., 2004) modal logic (van Benthem et al., 2009) cp-theory (Wilson, 2011) Choquet integral (Choquet,1953) Figure 1: Timeline of some known preference representations Given any decision analysis task, comparing all conceivable configurations of the universe of discourse comes down to determine a specific function that manages to rank order them. No need to mention that it is obviously unreasonable to require a human being to specify an explicit preference ordering over a prohibitive number of solutions. This process leads to a high computational cost, then, to an impossibility to construct dominance relations between configurations. In fact, humans are more eager to express their preferences in a contextual manner than generally. For these reasons, managing preferences using graphical structures appears to be an emerging challenge, since in addition to its computational efficiency, it provides a succinct and compact tool for data collection and modeling. Graphical preference representations are divided into two main categories: qualitative and quantitative models.

A user can actually express its preferences by providing numerical or ordinal rankings. Ordinal Conditional function networks [Spohn, 1988], Utility CP-nets (UCPnets) [START_REF] Boutilier | Ucpnetworks: A directed graphical representation of conditional utilities[END_REF], Generalized Additive Independence networks (GAI-nets) [START_REF] Gonzales | GAI networks for utility elicitation[END_REF] and marginal utility networks [Brafman and Engel, 2009a] are some of many models where preferences are expressed by means of numerical values. When it comes to ordinal representations of preferences, we cite Conditional preference networks (CP-nets) [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF], Tradeoffs-enhanced CPnets (TCPnets) [START_REF] Brafman | Introducing variable importance tradeoffs into cp-nets[END_REF], Lexicographic Preference trees (LPtrees) [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF], etc. In Figure 1, quantitative models are depicted by bold line rectangles, qualitative models are depicted by thin line rectangles and semiqualitative models are drawn by dotted lines rectangles.

In this work, we will mainly focus on qualitative representation frameworks for representing conditional preferences, such as CP-nets, LP-trees and the π-pref nets (for possibilistic preference networks) [Ben Amor et al., 2018a] which have been more recently introduced. Even though CP-nets and LP-trees have been introduced to compactly represent (conditional) preferences, motivations and perspectives in which au-thors placed themselves when inventing them are not the same. In fact, CP-nets, which appeared already in 1999 and which experienced their great development between 2000 and 2005, were motivated by a representation concern and were more focused on reasoning. Instead, LP-trees came from several groups of researchers often motivated by learning concerns. Still CP-nets have also been investigated for learning purposes.

Even though they were not designed for this end, authors [START_REF] Chevaleyre | Learning ordinal preferences on multiattribute domains: The case of cp-nets[END_REF] [ [START_REF] Fürnkranz | [END_REF]Hüllermeier, 2010] [Liu et al., 2018] have used the CP-nets format for learning preferences.

LP-trees require the user to specify a total order over the domain of variable(s) composing each node of the graph. This seems to be restrictive and much demanding to the user especially as the number of grouped variables of same importance increases.

CP-nets use the ceteris paribus assumption to infer a partial order on complete configurations where an implicit priority on preferences associated with father nodes seems to be enforced without being explicitly specified by the user. A π-pref net is a graphical model that compactly represents conditional preferences. It seems to offer an interesting tool that enables to avoid the cumbersome task of the elicitation process imposed by LP-trees and the skewed effect of the ceteris paribus property on variables importance. Actually, the CP-net structure was inspired by Bayesian networks such that decision variables are associated with local tables that contain conditional preferences. π-pref nets were inspired from possibilistic networks where variables are associated with possibility distributions expressed with symbolic degrees encoding an ordinal ranking between values of the variable in question. Symbolic degrees take values in an ordinal scale and can be instantiated by numerical values. π-pref nets come thus halfway between quantitative and qualitative representations.

π-pref nets, CP-nets and possibly LP-trees are able to encode specifications of the form "In the context of u, I prefer a to its negation" which is quite similar to the piece of knowledge "If u then generally a". This rule can be encoded by possibility logic.

In some of their works Benferhat and his colleagues [START_REF] Benferhat | Representing default rules in possibilistic logic[END_REF] have been particularly interested in reasoning with default rules for representing some state of affairs in a possibilistic framework. Because of the similarity between a user preference and a default rule, this work has caught our attention and led us to question whether interpreting a collection of user preference statements as default rules and using some informational principles permit to construct the same ordering as induced by a given graphical preference representation.

One of the main goals of this manuscript is to compare the expressive power of CP-nets, LP-trees and π-pref nets. Using a possibilistic framework, specifications of a user may be also encoded as default rules on which several reasoning approaches are applied to therefore compare their induced orderings. The work is restricted to Boolean variables.

The dissertation is divided in seven chapters. The first two chapters are dedicated to provide the background knowledge. On the one hand, they review the state of the art on conditional preference representations and on the other hand the basis of the possibility theory . The first chapter deals with qualitative graphical models, namely CP-nets, their extension TCP-nets and LP-trees. We provide independence assumption of each model, their induced orderings over complete configurations, in addition to explaining queries that can be performed over them. Chapter 2 is devoted to possibility theory and its use for representing preferences in different formats such as possibility distributions, logical bases or graphical networks. The first part of Chapter 3 gives a brief background about possibilistic preference networks (π-pref nets) and discusses their expressiveness and consistency with regard to CP-nets. The second part of the chapter introduces new variants of π-pref nets by using different scales for encoding preference degrees. Besides, Benferhat and his colleagues have proposed to deal with default knowledge formalized by means of constraints expressed in the setting of the possibility theory. In chapter 4, we will apply a similar approach for modeling preferences in the aim of finding an order-ranking over solutions of a given preference problem thus handled by means of default rules. The resulting orderings are compared to those obtained by different order approaches and particularly the Pareto order. Chapter 5 discusses repairs and refinements of the complete pre-orders obtained from preferences encoded as default-like rules. Chapter 6 discusses our last goal that consists on studying the expressive and representative power of LP-trees compared to π-pref nets. It also discusses the procedures for transforming an LP-tree into a π-pref net. Finally and before concluding, Chapter 7 presents an implemented toolbox that supports CP-nets and π-pref nets as graphical structures in addition to the default rule-based algorithms discussed in previous chapters.

Papers summarizing the main contributions of this thesis are:

• [Ben [START_REF] Amor | [END_REF] Chapter 1

Qualitative Graphical Representations of Preferences: CP-nets and LP-trees

Introduction

Reasoning about user preferences requires to specify three components : a language that encodes information provided by the user about the decision problem, a formal model presenting the order retrieved from user specifications based assumptions, and finally queries to reason or question the model [Domshlak, 2008].

Consider a set of binary-valued decision variables X . In our work, a language consists of a total order (that may be weak) over values of each variable X ∈ X . This relation can be conditioned by the value of a set of depending variable(s) that are different from X. The language enables to translate preference statements into a formal definition while keeping the elicitation process as simple as possible without ambiguity or loss of information. For instance, a claim of the form c : a ā means that, in the context of c, the user prefers a to its negation, the conditioning part being optional.

This claim is called a generalized statement 1 . Concepts correspond to a set of postulates or informational properties that allow to concretize a language into a logical interpretation generating a possible arrangement over complete configurations which correspond to a conjunction of the value of each decision variable. A language, along with its assumptions, describes a model. The latter can subsequently be exploited to answer a number of questions, such as finding the optimal configuration, the top k configurations or compare configurations. Most preference models are mainly composed of two parts: a graphical structure, consisting of a graph (directed in most cases), and an informational component.

Modeling preferences graphically may represent a simple task. However, getting complete configurations ordered is not trivial, since their number is exponential in the number of variables of choice in X . To find the dominance relation between configurations, we generally associate assumptions to a graphical structure such as ceteris paribus [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF], lexicographic order [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF] or other order semantics, e.g., Pareto, Minimum, Leximin, etc. Conditional specifications of a user may also be encoded differently by assigning some degrees or rankings to values of variables. For instance, we cite ordinal conditional functions [Spohn, 1988], utility functions [START_REF] Brafman | Directional decomposition of multiattribute utility functions[END_REF], belief functions [START_REF] Wang | Incorporating both qualitative and quantitative preferences for service recommendation[END_REF] and possibility distributions [Ben Amor et al., 2014].

In this chapter, we mainly focus on CP-nets [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF], their extension TCP-nets [START_REF] Brafman | Introducing variable importance tradeoffs into cp-nets[END_REF] and LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. CP-nets, composed of directed acyclic graphs (DAGs)2 , obey to the ceteris paribus assumption.

LP-trees, that restrict their graphical structure to directed trees, are based on the lexicographic order. TCP-nets, depicted by graphs with directed and un-directed edges, enhance the expressiveness of a CP-net by permitting the expression of (conditional) importance relation between variables.

This chapter is organized as follows. Section 1.2 defines the general structure composing graphical preference models later introduced. Section 1.3 presents one of the most used models for representing conditional preferences, nameley CP-nets. The section also addresses an extension of CP-nets that permits to express importance relations between variables, entitled TCP-nets. Section 1.5 exposes another graphical preference model called LP-trees that is most used for learning purposes. As for TCP-nets, LP-trees are able to encode two types of relations: conditional preference dependencies and importance relations between decision variables. LP-trees however differ by their graphical representation and their semantics. Finally, CP-theories, which offer a logical framework for encoding preferences, are introduced in Section 1.6 as a tool for comparing the expressiveness of previously discussed models.

Conditional preference networks structure

The basis of graphical preference models that will be dealt with throughout our work is composed of a DAG relating decision variables along with a set of conditional local tables each encoding a total order between values of variables in the context of its parents in the DAG. We consider these components as elements of what we call a Conditional preference network structure. Each decision problem is depicted by a conditional preference network structure where nodes correspond to features / decision variables , e.g." meal, product, mean of transport, etc. and arcs reflect dependencies between them.

Before going any further, we first introduce some basic notations:

• X = {X 1 , . . . , X N } denotes the set of N decision variables;

• ∀X i ∈ X , X i denotes the domain of possible values of X i . We limit our work to the particular case of Boolean variables, i.e., ∀X i ∈ X , X i = {x i , xi };

• The set of parents of node X i is denoted by U X i ;

• ∀u ∈ U X i , the user specification "If u is true, I prefer x i to xi " expresses the choice of the agent over X i in the context of u. This statement is formally written u : x i xi , where is the strict part of , ∼ the indifference part of ;

• A configuration ω = {x * 1 ∧x * 2 ∧• • •∧x * N } 3 is a complete assignment of all decision variables in X such that X i = {x i , xi } for i = [0, N ]. For a matter of simplicity, we write ω = x * 1 x * 2 . . . x * N instead of ω = {x * 1 ∧ x * 2 ∧ • • • ∧ x * N }; • Ω = X 1 ו • •×X N = {ω 0 , . . . , ω 2 N -1 } denotes the universe of discourse composed of 2 N configurations; • ∀ω ∈ Ω, ω[X i ] denotes the projection of ω on the variable X i ; • ω |= x means that ∃X ∈ X such that ω[X] = x.
Definition 1.1 (Conditional preference network structure) A Conditional preference network structure P = G, CP T is composed of two components: 

(i) a Directed Acyclic Graph (DAG) G = (X , E) where X = {X 1 , .
i : X i ¬X i , such that X i = x i or X i = xi , that expresses a strict total order over values of X i in the context of each instance u i in U X i .
A conditional preference network structure makes it easy to find the optimal and worst outcomes which respectively correspond to configurations having all of their variables put at their best, resp. worst, assignments in the context of their parents.

Finding these configurations can easily be done graphically by sweeping though the network from root to leaves and associating to each node its preferred resp. worst value. The complexity of the optimisation query is linear at the number of decision variables, it is the same complexity for finding the worst configuration. • I'm confused about buying or renting a car. I am more keen on making long trips (s) rather than short ones (s) i.e. s s .

• I prefer to drive a luxury car (l) rather than a modest one (l) i.e. l l.

• Even though vehicles with electric propulsion systems are easier on the environment, if I am traveling a long distance (s), I prefer a gasoline car (ē), since finding a charging station and recharging is often difficult and may take a while i.e. s : ē e. From the other hand, if I am traveling short distances (s), I prefer to drive an electric engine (e) because its maintenance requirements are low and electricity is cheaper than gasoline i.e. s : e ē. is ω 10 = slēr and the worst one is ω 6 = s lēr.

Pareto semantic for ordering configurations

Each decision variable in X has a polarity that describes its value, it can take either (+) for the good or preferred assignment or (-) for the bad or rejected one. A configuration ω can thus be described by a quality vector composed of N symbols ρ i such that i = [1, N ] and ρ i ∈ {+, -}. Given the preference statement u : X ¬X, the good assignment corresponds to the preferred value X and the bad one corresponds to the rejected value ¬X. A natural way of ranking configurations is to say that ω ω if for all decision variables ω is as good as ω and at least one decision variable such

that ω[X] ω [X]
. ω defines the dominating configuration and ω the dominated one.

This ranking corresponds to the Pareto order on Boolean variables (see Definition 1.2). It permits to entail a partial order on configurations leaving some outcomes incomparable. This incomparability case happens when for the pair of solutions (ω, ω ),

∃{X i , X j } ∈ X such that ω[X i ] ω [X i ] and ω [X j ] ω[X j ].
Definition 1.2 (Pareto) ∀ω = ω ∈ Ω associated to the distinct quality vectors ω = (ρ 1 , . . . , ρ N ) and ω = (ρ 1 , . . . , ρ N ) such that ρ i is the polarity of variable

X i for i = [1, N ] and ρ i , ρ i ∈ {+, -}, then ω P areto ω iff ∀i = [1, N ] (i) either ρ i = ρ i or ρ i = + and ρ i = -;
(ii) for some , ρ = + and ρ = -.

The Pareto order can be depicted by a directed graph (see Definition 1. 

ω i = (ρ 1 , ρ 2 , . . . , ρ N ); • An arc W i → W j means that ω i Pareto dominates ω j (ω i P areto ω j ).
Example 1.2 Let us consider again network in Figure 1. 1. Using Pareto semantic, the ordering on configurations of Ω is presented by the graph in Figure 1.2. The outcome ω 1 , associated to the quality vector (-+ +-), is dominated by the outcome ω 0 , associated to the quality vector (-+++), because, all other variables equally valued,

ω 0 [R] ω 1 [R].

Cardinality order

Another natural way of ranking configurations is by considering the number of its variables put in their least preferred value4 , say Card (.). The larger Card(ω), the worst the configuration ω. Thus, each configuration ω can be associated with a cardinality degree Card(ω) that describes its preference degree with regard to the user's specifications. Indeed, a configuration ω is preferred to ω based on the cardinality order, simply ω Card ω , if Card(ω) < Card(ω ), respectively if the number of variables with polarity (+) of ω is greater than that of ω. ω 8 sler

(+ + -+)
ω 1 sler

(-+ +-) ω 2 slēr (-+ -+) ω 4 s ler (--++)
ω 14 sl ēr

(+ -+-) ω 9 sler (+ + --) ω 12 sl er (+ --+) ω 3 slēr (-+ --) ω 5 s ler (--+-) ω 7 s lēr (---+)
ω 13 sl er Ω Ω Ω

(+ ---) ω 6 s lēr (----)

Violated variables set

Card(ω) Card(ω) Card(ω) ω = sler {S} 1 ω = sler {S, R} 2 ω = slēr {S, E} 2 ω = slēr {S, E, R} 3 ω = s ler {S, L} 2 ω = s ler {S, L, R} 3 ω = s lēr {S, L, E, R} 4 ω = s lēr {S, L, E} 3 ω = sler {E} 1 ω = sler {E, R} 2 ω 10 = slēr ∅ 0 ω 11 = slēr {R} 1 ω 12 = sl er {L, E} 1 ω 13 = sl er {L, E, R} 3 ω 14 = sl ēr {L, R} 2 ω 15 = sl ēr {L} 1
Table 1.1: Configurations of network in Figure 1.1 and their cardinality degree

Card(ω) Card(ω) Card(ω) Partition 0 {ω 10 } 1 {ω 0 , ω 8 , ω 11 ,ω 15 } 2 {ω 1 , ω 2 , ω 4 , ω 9 , ω 12 ,ω 14 } 3 {ω 3 , ω 5 , ω 7 , ω 13 } 4 {ω 6 }
Table 1.2: Cardinality order relative to network in Figure 1.1

CP-nets

Conditional Preference Networks or simply CP-nets [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF] were introduced to compactly represent conditional preferences of a user over multivariate decision problems. (CP T ).

In order to detail semantics of CP-nets and give a complete definition of the model, we first need to define some basic notions.

Definition 1.4 (Worsening flip)

Let ω, ω be two configurations in Ω that differ by a single variable assignment over X ∈ X . X is called the swapped variable. There exists a worsening flip from ω to ω if and only if there exists a statement u : X ¬X where

X = x or X = x such that (i) ω, ω |= u, (ii) ω |= X, (iii) ω |= ¬X, (iv) ω, ω |= y such that y ∈ Y and Y = X \ {{X} ∪ U X }.

Definition 1.5 (Worsening flip sequence) Let ω, ω be two configurations in Ω.

There exists a worsening flip sequence from ω to ω if and only if there exists a sequence (ω, ω 1 , . . . , ω K , ω ) such that ∀k ∈ {1, . . . , K -1} there exists a worsening flip from ω k to ω k+1 .

CP-nets are based on the ceteris paribus independence property, which enables the preference over values of X in the context of a fixed instantiation of its parents U X to be extended to complete configurations assuming that the remaining set of variables Y = X \ {X} \ U X takes the same value. In other words, this assumption enables us to compare a pair of configurations that differ by single flip value on the swapped variable every thing else being equal. In fact, a CP-net5 can be defined as being a combination of a Conditional preference network structure P and an independence assumption, namely ceteris paribus which allows to construct a dominance relation between configurations by means of a transitive closure of the worsening flip relation. Indeed, given a set of variables X , a CP-net has the same graphical structure as defined in section 1.2 which consists of a directed acyclic graph expressing dependency between variables and a set of conditional preference tables. Note that the graphical structure of a CP-net could be cyclic.

This case can yield to an unsatisfiable ranking on configurations (∃ω, ω ∈ Ω with ω = ω such that ω ω and ω ω ). This case is discussed later. The optimal configuration is found by assigning the best value to each decision variable in the context or value of variables from which they depend. In a similar manner, the worst configuration is obtained by considering the least preferred value of each variable in the context of its parents. Finding the dominance relation between all possible solutions is performed by means of the transitive closure on worsening flips.

In most cases, the induced CP-net ordering corresponds to a strict partial order since some pairs of configurations may remain incomparable. 

The set of worsening flip sequences between all pairs of configurations is depicted by

Figure 1. [START_REF][END_REF]. The optimal configuration ω 10 , which assigns to each variable its preferred value, is in top of the graph while the worst one ω 6 is in the bottom. We count 21 worsening flips between pairs of configurations. The induced order is partial. For instance, ω 9 and ω 13 are incomparable since there exists no worsening flip sequence between them.

Ceteris paribus order and Pareto order

Let X (ω, ω ) ⊆ X be the set of variables on which configurations ω and ω differ.

Given a CP-net C, we say that ω locally dominates ω , simply ω LD ω if and only if [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF] have proved that the ceteris paribus order C is nothing more than the transitive closure of the order relation LD on C. This is due to the fact that a worsening flip sequence from ω to ω implies a local dominance from ω to ω . Thus, the local dominance relations are included in the induced ceteris paribus relations, formally LD ⊆ C .

for all variables X in X , ω[X] ω [X].

Definition 1.8 (Local dominance)

Let C be a CP-net, the subset X (ω, ω ) ⊆ X encompasses variables on which ω and ω differ. ω locally dominates ω , formally Formally ω 11 LD ω 5 . We can also check that ω 5 LD ω 7 since for each variable X in Wilson et al. [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF] have then proved that the Pareto order is contained in LD , which means that if ω P areto ω then ω LD ω . Indeed, considering a CP-net C, if ω P areto ω then for all variables X ∈ X , ω[X] ω [X] all else be-ing equal. This claim corresponds to the definition of a local dominance relation LD .

ω LD ω iff ∀X ∈ X , ω[X] ω [X].
X (ω 5 , ω 7 ) = {E} the statement ω 5 [X] ω 7 [X] is verified.
Thus, P areto ⊆ LD ⊆ C [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF], which stipulates that the ceteris paribus dominance relation refines the Pareto order with the local dominance relation being between the two. This proposition is also true for multi-valued decision variables.

1. 3.2 Implicit importance given by ceteris paribus [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] acknowledge the fact that "Violating the preference constraints for a parent variable is less preferred than violating the preference constraints for any of its children". [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] This can be seen in a very simple example like in Figure 1. 4. It is clear that this effect of ceteris paribus is debatable since it may happen that preferences associated with child node are more important than those associated with father nodes. The previous Example is minimalist but is sufficient for an illustration of the implicit relative priority allocated to parent nodes in CP-nets. Even after admitting that semantics of CP-nets give more priority to parents nodes over their descendants, the ceteris paribus order remains questionable, and open to criticism. By means of the following example, inspired from [START_REF] Dubois | Conditional preference nets and possibilistic logic[END_REF], we bring the light on some doubtful incompatibilities entailed by ceteris paribus semantic using a CP-net that involves variables depending from multiple father nodes. troublesome that the ceteris paribus is not able to rank order the configuration ω with respect to ω and ω , even though ω violates a parent node, ω violates a child node and ω violates a child and a grandchild node.

In the previous example 1.7, we can see that one configuration can be ranked by ceteris paribus as preferred over another even if they violate the same number of variables. In the next section, we discuss a ordering semantics that considers the number of variable violations as a ranking strategy.

Ceteris paribus order vs. cardinality order

As previously explained, given a CP-net, we can use what is called a cardinality order on the set of alternative Ω. Each configuration is ranked based on the number of its violated variables. The preference property of CP-nets is able to produce a ranking between a pair of configurations that both violate the same number of variables. How-ever, given a a configuration ω that violates less variables than ω , i.e., ω Card ω , it is not necessary the case that the ceteris paribus ordering acknowledges it. In general, the CP-net relation is in accordance with Pareto relation, but not with the cardinality order. In fact, the importance accorded by CP-net semantics in favor of parents are quite strong since violating a parent node can be more penalizing than violating multiple children. This is in contradiction with the cardinality order since the ceteris paribus ranks a configuration that violates multiple nodes as being preferred to a configuration that violates a single node. Thus two configurations can be compared by ceteris paribus and by cardinality orders in an opposite ways. Example 1.9 provides an illustration case.

Example 1.9 Consider CP-net C in Figure 1.6 with one root variable, namely A, that has two child nodes, namely B and C. Consider configurations (ω = a bc, ω = āb c) that differ on a single variable flip on A. ω C ω since there exists a preference statement in CP T (A) stipulating that a ā. The pair of configurations are respectively associated with quality vectors ω = (+ --) and ω = (-+ +). Since ω violates less variables than ω, then, the cardinality order confirms that ω ω, which is in contradiction with the CP-net order. 

Satisfiability of a CP-net

The satisfiability of a CP-net is actually related to its structure. The graphical component of a CP-net can either be cyclic or acyclic. In this section, in order to explain some concepts, we consider the both graphical structures. Most research works consider acyclic CP-nets since the acyclicity characteristic confers to the network the property of being satisfiable, which is not the case for cyclic networks [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF].

Definition 1.9 (Satisfiability of a CP-net) A CP-net C is satisfiable by an order

C iff it satisfies each of the conditional preference statements in the collection of local tables CP T using the ceteris paribus assumption.

Let C and C be two orderings that satisfy C. If C ranks ω C ω , and C ranks ω C ω then the assertion ω C ω should be valid for all orderings that satisfy C. This means that all induced partial orderings that satisfies C are transitive. Note that not all cyclic CP-nets yield to an inconsistent ordering over configurations. In fact, Domshlak and Brafman have studied the consistency of binary-valued cyclic CP-nets and have identified a wide class of satisfiable networks [START_REF] Domshlak | Cp-nets: Reasoning and consistency testing[END_REF].

The following example illustrates the problem encountered by cyclic graphs, where one may have a worsening path that is cyclic. 

Indifference and satisfiability

Most CP-nets are based on generalized statements that define a strict total order relation over instantiation of variables in question. However, CP-nets offer to the user the flexibility to express indifference between values of a given variable, e.g., u : x ∼ x which is interpreted by the claim "In the context of u, x and x are equally preferred". The preference order induced by CP-nets that allow indifference between variables values is not always consistent [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]. In fact, if indifference is allowed, then the CP-net must obey a precise restriction in order to generate a consistent ordering. Consider a CP-net

C composed of nodes X = {U X , X, Y, Ch X }
where U X denotes parents of X, Ch X denotes any children of X and Y is the set of parents of Ch X excluding X. Suppose that for a given u ∈ U X , we have u :

x ∼ x.
Then, C is satisfiable as long as the following technical condition holds, for a fixed value y in Y , the preference over values of Ch X is the same e.g xy : c c for x ∈ X and {c, c} ∈ Ch X . For the remainder of the manuscript, we will only assume the case where each generalized preference statement composing a CP-net holds a strict total order relation over values of the variable in question. The following example shows the problem created by indifference when the above technical condition does not hold.

To avoid dealing with inconsistent orderings, we prohibit indifference and we will only consider acylic structures for the remaining of this work. 

Querying CP-nets

The ceteris paribus semantic of CP-nets allows to exploit information contained in conditional preference tables to either compare a pair of configurations or find the optimal outcome in accordance with the network. In the following, we introduce the most used queries on CP-nets, namely the optimization query for determining the best configuration and the dominance query for finding a preference relation between two given configurations.

Optimization Query

Given a CP-net C, sweeping through its conditional preference tables while picking for each variable its preferred value in the context of parents assignment is a simple task that allows to determine the unique optimal solution in accordance with C. This procedure exploits both ceteris paribus informational property along with the compact graphical modeling of preference statements to easily determine the best solution in time linear with respect to the number of alternative choices [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF].

One can also be interested in finding the worst configuration which can be done by sweeping though the CP-net and setting each variable to its less preferred assignment given parents context. 

for i = 1 to i = |T | do 3 X ← T [i] 4 if U X = ∅ then 5 u ← Search_context (ω opt , X) 6 else 7 u ← ∅ 8 end 9 (pref, pref ) ← Values_given_context (X, u) 10 Concatenate (ω opt , pref ) 11 end 12 return ω opt
• Therefore, the worst case configuration is obtained by sweeping through nodes of the graph and assigning each variable its least preferred value. The worst configuration is slēr.

Complexity of optimization query

Considering a partial configuration ρ, a variant of the optimization query consists on finding the configuration that models ρ and assigns to the non instantiated variables their best value. Given any topological order on decision variables, and similarly to the classical optimization query, finding the optimal configuration in the completions set of ρ such that ω ∈ Ω is done by a forward sweep procedure by sweeping through the network from ancestors to descendant while assigning to each node its preferred value. The complexity of dominance query with enforced conjunctive constraints is also linear in the number of features [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF].

Dominance Query

The second most interesting query with respect to this model is to figure out if a configurations dominates another with respect to the ceteris paribus assumption or not. This query is called the preferential comparison between outcomes, better known as the dominance query. Let ω, ω ∈ Ω be two configurations, three situations are possible:

• ω dominates ω : ω ω ,

• ω dominates ω: ω ω,

• ω and ω are incomparable: ω ω . This relation is deduced if and only if ω ω and ω ω :

Complexity of dominance query The preferential independence property of CPnets allows to compare pairs of configurations by simply consulting information depicted in the network structures. In binary-valued decision variables, the complexity of this query performed over the set of possible solutions is generally NP-complete.

This complexity actually depends on the network structure. In acyclic CP-nets where the graph corresponds to a tree structure, the complexity of this query is quadratic in the number of variables. It is polynomial in the size of decision variables for polytrees. For directed-path singly connected DAGs6 the complexity is NP-complete [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF].

Figuring out if a configuration dominates another given a CP-net C is done by searching for a worsening flip sequence between them. Considering a configuration ω as a departure point, this can be seen as a planning problem for optimizing the value of each node X ∈ X until reaching the configuration ω which represents the goal.

Indeed, each preference statement u i : X i ¬X i is translated into a generalized statement of the form u i : x j i x j+1 i where x i is the preferred value of X i and u i ∈ U X i (the algorithm in [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] is not restricted to Boolean variables). Each generalized statement is converted into a planning operator of the form u i ∧ x j i which defines the set of Preconditions. In order to perform any action, a proposition in the set of Preconditions must be satisfied. 

s s - → ∅ ∧ s 1 such that s 1 = s, l l - → ∅ ∧ l 1 such that l 1 = l,
s : e ē -→ s ∧ e 1 such that e 1 = e, s : ē e -→ s ∧ e 1 such that e 1 = ē, {le : r r, lē : r r, le :

r r} - → {le ∧ r 1 , lē ∧ r 1 , le ∧ r 1 } such that r 1 = r, lē : r r - → { lē ∧ r 1 } such that r 1 = r.
We aim to find a plan that corresponds to a worsening flip sequence from ω 11 = slēr

to ω 5 = s ler. The first step consists on worsening the value of E. We note that ω 11 |= s ∧ ē, a proposition equivalent to the precondition s ∧ e 1 such that e 1 = ē. We can thus change the value of variable E from e 1 = ē to e 2 = e. This corresponds to a worsening flip on E resulting to the configuration ω 9 = sler. The second flip consists on modifying the value of L since ω 9 |= l which verifies the precondition ∅ ∧ l 1 such that l 1 = l. This leads to attain the configuration ω 13 = sl er. The last step consists on worsening the value of S accordingly to the operator ∅ ∧ s 1 such that s 1 = s. We end up reaching the configuration ω 5 = s ler. A plan is thus found from ω 11 to ω 5 which permits to conclude that ω 11 ω 5 according to preference specifications provided by the user. The corresponding worsening flip sequence is ω 11 = slēr → ω 9 = sler → ω 13 = sl er → ω 5 = s ler.

Ordering query

Another less exploited query named ordering query in the literature evaluates if there is a dominance relation or not between a given pair of configurations 

Complexity of ordering query

Let C be a CP-net and (ω, ω ) be a pair of configurations that differ by the value of X but have the same instantiations over all ancestors of X in X . If there exists a statement u : X ¬X in CP T (X) such that X |= ω and ¬X |= ω7 then the assertion ω C ω is false. Consider now a different pair of configurations (ω, ω ) over variables X of CP-net C. The complexity of determining the truth of that the assertion ω C ω ( or ω C ω ) do not hold is linear in the number of decision variables (O(N)) [START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]. The idea of the proof is to make a top-down traversal of variables of the network and verify if, for a given context u,

∃X ∈ X such that ω[X] ω [X]
. Thus, we can confirm that ω C ω does not hold. If configurations differ by more than a variable, for instance on {X i , X j } ∈ X then there must exist statements such that given a context u, ω

[X i ] ω [X i ] and ω [X j ] ω[X i ].
This implies that both assertions ω C ω and ω C ω are false.

TCP-nets

Expressiveness of CP-nets can be enhanced by introducing information about the relative importance between decision variables. In that regard Tradeoff-enhanced CPnets [START_REF] Brafman | Introducing variable importance tradeoffs into cp-nets[END_REF], TCP-nets for short, are an extension of CP-nets that encodes both preference statements of a user as well as conditional importance relation between variables. Thus, in addition of encoding specifications of the form "In the context of u, I strictly prefer x to x", this model can also take into account statements like "In context u, the preference associated with X is more important than the one associated with another variable X ".

In case of acyclic graphs, this leads to a richer expressive power than CP-nets providing a more refined partial ordering between outcomes. For their graphical structure, TCP-nets are represented by a DAG with three types of edges, namely we add two type edges corresponding to conditional or unconditional importance relations between preferences associated with two variables. If variables importance is conditioned by the value of some other variables, then the encoding edge is undirected, labeled with the conditioning variables and associated to a table defining the importance relation between variables in the context of what is defined by a so-called selector set. The notation X X means that X is more important than X .

TCP-nets still obey the independence property ceteris paribus leading to more comparisons than the original network. Their structure can be seen as basically being composed of a Conditional preference network structure P completed by two informational principles respectively ceteris paribus semantic and attribute importance relation that is depicted by additional types of edges. They are formally defined by Definition 1.10 (TCP-net) A Tradeoff-enhanced Conditional Preference network N = G, CP T, CIT , denoted by TCP-net is composed of three components:

(i) a graph G = (X , E) where X = {X 1 , . . . , X N } is a set of N decision variables and E the set of (directed) edges representing preference dependencies and importance relation between them. Each arc in E between X i and X j can be associated with one of the three following types:

• cp-arcs standing for conditional preference, which are directed edges of the form X i → X j expressing that the preferred value of X j depends on the value of X i .

• i-arcs standing for importance relation, which are directed dashed edges depicted by X i X j expressing that X i is more important than X j .

• ci-arcs standing for conditional importance relation, which are undirected edges of the form X i X j , labeled with a selector set S ⊆ X \ {X i , X j }.

(ii) a set of conditional preference tables CP T = {CP T (X 1 ), . . . , CP T (X N )} where CP T (X i ) is the conditional preference table attached to X i and composed of statements of the form u i : x i x i expressing a strict total order over values of X i in the context of each instance u i of X i 's parents U X i .

(iii) a set of conditional importance tables CIT = {CIT (S 1 ), . . . , CIT (S J )} that express the relative importance between a pair of nodes given assignments (not necessarily all) of the selector set S i .

TCP-nets obey to the ceteris paribus preferential independence property.

We now give an example of TCP-net with the three kinds of arcs. , by considering that the user's preferences over the car propulsion system has actually higher importance than her preferences over the vehicle category since she is more concerned by the car reliability. This information is represented by a i-arc from E to L drawn in dotted lines. Moreover, given an electric motor, deciding on whether to purchase or rent a car is more important than the car category (e : R L). However, if the car is mechanical, the user is more likely to choose car category before deciding of its ownership (ē : L R ). An edge ci-arc between L and E labeled with a conditional importance table or CIT (E) expressing the previously enunciated statements is drawn. These information are sumed up by Figure 1.9 that illustrates an extension of the CP-net associated with items of the graphical structure in Figure 1.1 now capturing relative importance relation between decision variables.

However, the implicit priority enforced in favor of father nodes cannot be reversed by the use of TCP-net.

Satisfiability of a TCP-net

Semantics of a TCP-net N is defined in term of strict partial orders consistent with the set of generalized preference statements in CP T and with the importance relation encoded by the network. In fact, each type of arcs depicted by a TCP-net entail a dominance relation. Definitions below formally define satisfiability with respect to each type of arc, leading to the global satisfiability of a TCP-net.

Definition 1.11 (Order satisfiability) 8 A strict partial order N satisfies a TCPnet N iff (i) For cp-arcs: N satisfies generalized preference statements in CP T (X i ), ∀X i ∈ X . This means that for each dominance relation, e.g., ω N ω between pairs of configurations that differ by the value of X i , there should exist a statement in

CP T (X i ) stipulating that ω[X i ] ω [X i ] for a given context u ∈ U X i .
(ii) For i-arcs:

N satisfies the importance relation X i X j . This means that for each dominance relation, e.g., ω N ω between pairs of configurations that differ by the value of exactly two variables X i and X j , there exists a statement in CP T (X i ) stipulating that, for the most important variable X

i , ω[X i ] ω [X i ] for a given context u ∈ U X i .
(iii) For ci-arcs: N satisfies the importance relation X i s X j for a given assignment s of the selector set S. This means that for each dominance relation, e.g., ω N ω between pairs of configurations that differ by the value of exactly two variables X i and X j , there exists a statement in CP T (X i ) stipulating that, for the most

important variable X i , ω[X i ] ω [X i ] for a given context u ∈ U X i .
A TCP-net N is satisfiable if and only if there exists a strict transitive partial order N that satisfies it. This means that if ω N ω with respect to N then all preference orders entailed by N verify the assertion ω ω .

In the sequel, we give an example of a TCP-net along with its induced ordering.

Example 1.16 Consider TCP-net N in Figure 1.9. cp-arcs yield to dominance relation entailed by the ceteris paribus property. Details about order relation induced from i-arcs and ci-arcs are described in Table 1. [START_REF][END_REF]. Besides of preferences induced from CP-net (see Figure 1.3), additional dominance relations entailed by the TCP-net N are written in bold.

Querying TCP-nets

The two main queries that can be performed on the original CP-nets are optimisation and dominance query. The relative importance relation does not play a role in determining the best (resp. worst) configuration of a TCP-net. To answer the optimization 8 Taking into account the importance relation between variables. 

Arc type

Arc

TCP-net N stipulates that ω[X i ] ω [X i ] and ω [X j ] ω[X j ]
given some context (assignment of parents U X i and U X j ), then, an importance worsening flip from ω to ω exists if there is a priority of X i over X j conditioned (or not) by the selector set S such that z |= ω and z |= ω for z ∈ S. A configuration ω dominates ω with respect to a TCP-net N , formally ω N ω , if there exists a worsening flip sequence between them. This is now more formally stated by the two following definitions.

Definition 1.12 (Importance worsening flip) Let ω, ω be two configurations in Ω that differ by exactly two variables values X i and X j ∈ X . There exists an importance worsening flip from ω to ω if and only if the following conditions are satisfied (i) X i z X j given an assignment z of the selector set S such that ω, ω |= z and S ⊆ X \ {X i , X j }.

(ii) There should be statements in CP T such that ω[X i ] ω [X i ] for the same context There exists a sequence of worsening flips between ω 4 and ω 1 described by the strict partial order ω 4 N ω 2 N ω 3 . In fact, configurations ω 4 ω 2 are ranked by means of the second condition in Definition 1.13, while configurations ω 2 and ω 3 are ranked by means of the first condition in Definition 1. 13.

U X i , and ω [X j ] ω[X j ] given the same context U X j .

Complexity of dominance query

Methods developed for searching for worsening flip sequences with respect to CP-nets [Domshlak andBrafman, 2002] [Boutilier et al., 2004] can also be used for TCP-nets. Generally the dominance testing given a TCP-net N is NP-hard [START_REF] Brafman | On graphical modeling of preference and importance[END_REF].

LP-trees

Lexicographic preference trees (LP-trees) have been introduced by [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF].

They were proposed originally for learning purposes and more specifically for learning ordinal preferences. The concept of a lexicographic order over preferences involves a set of attributes X and a strict total importance order relation over them. It can be depicted by rooted tree where nodes correspond to decision variables and edges indicate the relative importance between them. An arc X i → X j s.t. X i , X j ∈ X , implies that X i is more important than X j formally encoded by the importance relation statement: X i X j . This relation can be contextual, i.e., X i is more important than X j given X i = x i , this case is formalized by X i x i X j . LP-trees allow to express two types of relations. In regards to a Conditional preference structure, LP-trees exhibit importance relations between variables by generalizing the lexicographic order, in addition of permitting conditioning on variable's preference relations. Both information are compactly reproduced by a graphical structure depicted by a directed tree and a set of local tables.

As a representation and learning model, researchers have introduced different definitions of LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]] [Fargier et al., 2018] [Fargier and Mengin, 2021a].

In the sequel we propose a definition that subsumes all others (see definition 1.14). In

Chapter 5, we propose to structure representations of classes and extensions of this model by providing well-detailed definitions and reasoning procedures.

Definition 1.14 (General LP-tree) A Lexicographic Preference Tree T = A, P T denoted by LP-tree involves two components :

(i) a directed tree A = X , E where X is a set of decision variables and E is a set of edges of the form X i → X j such that {X i , X j } ∈ X , indicating that the preference over X i is more important than X j .

(ii) a set of local preference tables P T = {P T (X 1 ), . . . , P T (X N )} where P T (X i )

is the conditional preference table attached to X i ∈ X . P T (X i ) contains either conditional or unconditional specifications implying a strict total order over assignments of X i .

A LP-tree should respect the following statements:

1. Each variable X i ∈ X appears at most once in each branch of the tree.

2. Each non-leaf node X i ∈ X has either one single unlabeled outgoing edge or two outgoing edges respectively labeled by x i and xi ( the two possible values of X i ).

The following example gives an illustration of a general LP-tree.

Example 1.18 Let us reconsider the decision problem about choosing to rent or buy a car with a restriction on three variables, i.e., X = {L, E, R} where L: category, E:

propulsion system, R: ownership, L = {l, l}, E = {e, ē} and R = {r, r}. Suppose that the user's preferences are:

• I prefer to drive a luxury vehicle (l) rather then a modest one ( l)

• Given a luxury car (l), preferences over the propulsion system (E) are more important than those about the ownership (R), and reversely when the car is modern ( l).

• When the car is luxury, I prefer it to be equipped with a thermal propulsion system (ē) since I like the sound it makes.

• It would be more reasonable to rent (r) it mainly to avoid maintenance fees. Considering an LP-tree model, we can perform the standard queries of CP-nets namely the dominance and optimization queries. Finding the optimal configuration consists on sweeping through the tree from top to bottom while assigning for each node of the graph its preferred value, i.e., same procedure as for CP-nets. In order to compare a pair of configurations, we first need to select variables for which they have same assignments. We then trace along the tree structure and consider labels in edges until reaching the decisive variable X i on which configurations differ. The dominance relation Lex between the pair of configuration is deduced from the local table associated with X i . The following example suggests how configurations are compared (see Chapter 5 for more details).

Example 1. 19 Let us pursue with the Example 1. 18. Consider configurations ( ler,lēr) that differ by the value of E and R. Since both configurations model l, we need to trace down the right-most branch of the tree. The decisive variable is R which stipulates that r r. This leads to conclude that the dominance relation between configurations is ler Lex lēr.

Complexity of dominance query

In case of complete LP-trees (see Section 6.2.6) where all priority relations and all preferences are provided, the LP-tree yield to a strict total order. The search for a dominance relation between a pair of configurations can be done in a linear time with respect to the size of the graph. However, the search for the dominance relation between all pairs of configurations is done in polynomial time [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF].

On the consistency between graphical representations and cp-theories

In 2011, Nic Wilson [Wilson, 2011] has introduced a logical encoding of preferences that permit to capture order relations induced by graphical models detailed in this chapter. Indeed, conditional preference theories (cp-theories) offer a logical framework for representing conditional preferences. In this section, we aim to briefly discuss the relative expressiveness of CP-nets, TCP-nets and LP-trees by means of cp-theories.

We also notice that, generally, a CP-net or TCP-net ordering cannot be reproduced by an LP-tree ordering.

A cp-theory Φ is composed of a collection of conditional preference statements or CP statements that define an order relation between solutions. A CP statement φ over a subset U ⊆ X is formalized by φ = u|V : x

x, where u is an assignment of variable in set U, x, x are values in X, U and V are disjoint variable subsets s.t.

U ⊆ X \ {X}, V ⊆ X \ U. It expresses the specification "Given the context u, I prefer

x to x independently from the value of variables in V", more formally

if φ = u|V : x x then yuxv Φ yuxv with Y = X \ {{X} ∪ U ∪ V}. (1.1)
When V = X \ {X} then this means that X is more important than the remaining variables in X . We define:

• U as the conditioning part or context variables;

• V the independent or free part;

• X the swapped variable.

For the sake of simplicity, when V is empty and a CP statement is always true, we simply write ω ω instead of |{∅} : ω ω . A subset Φ of such statements over X forms a CP language.

Given a set Φ of CP statements over variables in X , we can construct what is called a dependency graph H Φ encoding dependency relations between variables, which actually coincides with the conditional preference network structure previously introduced in Section 1.2. For each statement u|V : x x, ∀U ∈ U, an arc U → X is drawn indicating that the preference of X is conditioned by the value of U . Given a cp-theory, H Φ can be computed in polynomial time [Wilson, 2011]. Adding arcs X → V to H Φ for all V ∈ V comes down to construct a more general network which indicates not only the dependency relation between variables but also their relative importance. Any pair of configurations that differs by more than one flip are comparable if there exists a CP worsening flipping sequence from one to another, which is a generalization of flipping sequences for CP-nets.

Definition 1.16 (CP worsening flip) Let Φ be a set of CP statements and (ω, ω ) be two configurations that differ by a single flip on X. There exists a CP worsening flip from ω to ω with respect to Φ iff there exists a CP statement φ = u|V :

x x in Φ s.t. ω, ω |= u, ω[Y ] = ω [Y ] and ω[X] = x, ω [X] = x with u ∈ U and Y ∈ Y s.t. Y = X \ {X} ∪ U ∪ V.
A partial order between configurations is constructed by using the transitive closure on preference constraints entailed from CP statements. A cp-theory Φ is consistent if and only if there exists a strict acyclic total order on Ω that satisfies all CP statements in Φ. The following example details ordering entitlements derived from a set of CP statements.

Example 1.21 (Example 1.20 continued) From the CP statement φ 3 = lē|{∅} : r r, we can deduce that given a luxury car (l) or an electric engine (e), renting the vehicle (r) is preferred to buying (r) it, formally φ 4 = l|{∅} : r r and φ 5 = e|{∅} : r r.

From each CP statement we derive an ordering over some configurations in Ω. Table 1. 4 outlines constraints associated with each CP statement.

Let Φ be the cp-theory that contains all CP statements previously stated. There is a worsening flip sequence from ler to lēr since φ 5 entails ler Φ ler and φ 1 entails ler Φ lēr, thus ler Φ lēr. Using the transitive closure, the induced partial order on configurations in Ω is ler Φ {ler, lēr} Φ lēr Φ ler Φ ler Φ lēr Φ lēr with ler and lēr not being ordered.

In following sections, we are interested about which extent orderings induced by a given CP-net, TCP-net or LP-tree can be represented by a cp-theory. [Wilson, 2011] has proven that CP statements can actually cover much more information than the ceteris paribus or the "everything else being equal" assumption . After inferring their entailed preference constraints, the partial order induced by the cp-theory Φ on configurations of Ω is

Expressing CP-nets by cp-theories

ω 10 Φ ω 8 Φ ω 0 Φ {ω 2 , ω 11 } Φ ω 15 Φ ω 14 Φ {ω 9 , ω 12 } Φ {ω 1 , ω 4 , ω 13 } Φ {ω 3 , ω 5 } Φ ω 7 Φ ω 6 .
We can check that the ordering is in accordance with the induced graph in Figure 1.3 but adds a lot of information.

Expressing TCP-nets by cp-theories

A CP-net has directed arcs describing dependence relations between decision variables, which are called cp-arcs in TCP-net structures. TCP-net also encodes an additional type of information which consists of an importance relation between variables. If the relation is unconditional, then it can be depicted by i-arcs. Otherwise, it is represented by ci-arcs associated with conditional tables that express the the importance relation between variables given a context s of the selector set S values. Note that ci-arcs can simply be formalized by ci-statements of the form X s Y indicating that X is more important than Y given s. In cp-theories, arcs of a TCP-net structure are transformed into CP statements as follows:

• a cp-arc U → X is transformed into cp-statements u|{∅} : x

x such that u ∈ U and x x with respect to CP T (X) for {x, x} ∈ X. Each cp-statement entails a preference constraint of the form zux Φ zux where Z = X \ U \ {X}, z ∈ Z.

• an i-arc X Y is transformed into cp-statements u|{Y } : x x such that u ∈ U and x x with respect to CP T (X) for {x, x} ∈ X. Each cp-statement entails a preference constraint of the form zxy Φ z xy where

Z = X \ {X, Y }, z ∈ Z and {y, y } ∈ Y . • a ci-statement X s Y is transformed into cp-statements qs|{Y } : x x where q ∈ Q such that Q = U X \ S and x x with respect to CP T (X) for {x, x} ∈ X.
Each cp-statement entails a preference constraint of the form zsxy Φ zsxy

such that z ∈ Z and Z = X \ S \ {X, Y }.
Any TCP-net can be converted into a set of CP statements that infers the same dominance relation between configurations in Ω [Wilson, 2011]. See the following example for illustration.

Example 1.23 Table 1.5 show details of transforming arcs of TCP-net in Figure 1.9 into a cp-theory. Each arc is translated into a set of CP statements from which an ordering over subsets of configurations is entailed. 

Expressing lexicographic orders by cp-theories

Consider that X dominates V and Z be a subset of variables such that Z = X \{X}∪V.

Let (ω, ω ) be a pair of configurations that agree on the value of Z with ω[X] ω [X] then ω lexicographically dominates ω . In fact, any lexicographic order L over decision variables X can be mapped into a cp-theory Φ such that its associated order Φ equals L . Suppose that elements in X are ranked from the most to the least important variable. Each attribute

X i = {x i , x i } ∈ X s.t. x i x i can be associated to a set Φ X i composed of formulas of the form |[X i+1 , . . . , X N ] : x i x i .
Let Φ be the union of cp-theories associated to each variable, then it has been proven that orderings Φ and L are the same [Wilson, 2011].

Indeed, a lexicographic order represents a stronger form of preference statement than ceteris paribus (for which a value is preferred independently of the other variables). If the cp-theory language is able to represent a CP-net ordering, then obviously it can encode lexicographic orders. To do so, an importance relation statement of the

form X Y is converted into the CP statement u|{Y } : x x for {x, x} ∈ X and u ∈ U X .
Let Φ be a cp-theory that encodes a ceteris paribus ordering, and (ω, ω ) be a pair In fact, we have directly compared two configurations that differ by more than one flip without using the transitive closure over L . This cannot be done using the ceteris paribus assumption. This is why lexicographic orders cannot generally be captured by a CP-net (TCP-net) which only yields partial order. However, there exists some exceptions as shown by the following example. 

Example 1.24 Assume we have two variables A, B with

Conclusion

In order to specify preferences over combinatorial alternatives, an expressive but concise representation is needed. Existing preference formalism are often categorized into logical models and graphical models. In this chapter, we have addressed two of the major qualitative graphical preference models: conditional preference networks CP-nets [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF] and Lexicographic Preference trees LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF].

Beyond their graphical appeal, CP-nets have given rise to several research works.

One of their most important extensions are TCP-nets which which allow to explicitly specify priority relations between nodes, contrarily to CP-nets which implicitly impose that a parent's preferences is more important than a child's one. This extension may add additional importance specifications between variables but cannot reverse the priority in favor of parents entailed by CP-nets. CP-nets and their extension TCPnets permit indifference between values of a variables but may yield to insatisfiable partial orders in this case. To overcome this barrier, explicit restrictions should be taken into consideration.

Like TCP-nets, LP-trees allow to compactly encode (conditional) preferences and importance relations between variables. Even though they are able to express the same informational properties: independence and priority relation between variables, TCP-nets and LP-trees were initially introduced for different purposes. LP-trees are more fitted to learning preferences of a user, while CP-nets and their extensions are motivated by a concern of preference representation and reasoning. Mind that, TCPnets and LP-trees permit indifference on importance relations.

The last part of this chapter was dedicated to study the consistency between the qualitative graphical representations: CP-nets, TCP-nets and LP-trees using cptheories. Actually, the cp-theory language offers a bridge to compare the expressiveness of CP-nets, TCP-nets and LP-trees. Indeed, all three mentioned models can be represented by a cp-theory that entails their respective exact same orders. However, orderings induced from CP-nets or TCP-nets cannot generally be represented by an LP-tree.

A summary inspired from [Gouider, 2017] detailing the main differences between the models 10 discussed in this chapter is given in Table 1.6.

Apart from their direct extensions, CP-nets have inspired many theoretical exten-

10
The recapitulation is only valid for binary-valued decision variables and acyclic graphs.

sions. Preferences can actually be encoded by means of the possibilistic framework

which gives rise to Possibilistic Preference Networks (π-pref nets) [Ben Amor et al., 2015] introduced in next chapter. A set of research studies relative to relations between π-pref nets, CP-nets and possibilistic logic [START_REF] Dubois | Conditional preference nets and possibilistic logic[END_REF]] [Dubois et al., 2015] [Wilson et al., 2019] is also discussed. Table 1.6: Summary about the graphical preference representations: CP-nets, TCP-nets and LP-trees

Property

Chapter 2

Possibility Theory as a Representation

Setting for Preferences

Introduction

In the previous chapter, we have considered some of the most known qualitative graphical models for representing preferences. In Chapter 3, we shall discuss another representation setting called possibilistic preference networks (or π-pref nets for short).

π-pref nets are based on possibilistic nets, and thus belong to the framework of possibility theory. Possibility theory [Zadeh, 1978], [START_REF] Dubois | Possibility Theory -An Approach to Computerized Processing of Uncertainty[END_REF] has been originally introduced for representing incomplete and uncertain information.

This chapter is devoted to possibility theory and its use for representing preferences in different formats (possibility distribution, logical bases, possibilistic nets). The chapter is divided in three main sections. After providing the necessary background on possibility theory in Section 2.2, Section 2.3 explains two ways of encoding conditional preferences using a possibilistic logic framework, while the next Section 2.4 defines possibilistic networks and ways to translate them into logical bases.

Throughout all the chapter, we use the same running example introduced in Example 1.4 in Chapter 1 (dealing with decision problem about renting or buying a car).

Background on possibility theory

A piece of information or knowledge is prone to be encoded and treated to infer other sets of information. A piece of knowledge may describe observations, facts of the real world, for example describing a patient's clinical condition. Information is likely to be pervaded by diverse types of deficiencies: if we consider that a piece of information is described by means of several attributes, a lack of the instantiation of part of these attributes leads to incomplete information. Besides, a piece of information is considered uncertain if there exists doubts about its truth or falsity.

In this context, possibility theory is a framework devoted to the handling of uncertain and incomplete information. It has first been formulated in [Zadeh, 1978] in the late seventies, and has further been studied and extended by [START_REF] Dubois | Possibility Theory -An Approach to Computerized Processing of Uncertainty[END_REF]).

Besides of its ability to handle uncertain pieces of knowledge, possibility theory offers a valuable setting for modeling preferences. As possibility theory, probability theory is based on set-functions. Unlike the latter, possibility theory relies on the use of two dual functions: possibility and necessity measures that will be detailed in the sequel.

The second distinction that differentiates the two theories is that possibility theory offers a quantitative and qualitative mathematical setting for reasoning on information while the probability theory remains quantitative.

We now detail the interpretation of a possibility distribution and set functions for dealing with preferences.

Possibility theory is based on the use of possibility distributions. Given a set of configurations Ω, a possibility distribution is a mapping π from Ω to a totally ordered scale that takes values from 0 to 1. π(ω) indicates how preferred is the configuration ω, i.e., to which extent it is satisfactory in regard to other configurations.

A preference degree equal to 1 stipulates that the outcome is completely satisfactory, while in contrast a degree equal to 0 means that the alternative is totally rejected.

Thus, the greater π(ω) is, the more desirable is ω.

A possibility distribution π 1 is said to be less specific than π 2 (in the wide sense)

if ∀ω ∈ Ω, π 1 (ω) ≥ π 2 (ω).
Then, the distribution π 1 is considered as less restrictive than possibility distribution π 2 , since according to π 1 any ω is more possible than according to π 2 . The interpretation of specificity principles applied to preferences are reported in Chapter 4.

A possibility distribution π is said to be normalized if,

∃ ω ∈ Ω, such that π(ω) = 1.
This means that, considering the combinatorial domain of alternatives Ω, there is at least one alternative ω that is fully satisfactory.

Two increasing set functions are built from a possibility distribution: a possibility measure Π and a necessity measure N which are formally defined by,

Π(P ) = max ω∈P π(ω) s.t. P ⊆ Ω (2.1
) As a result of the normalization property, we can verify that max(Π(P ), Π( P )) = 1

N (P ) = min ω ∈P {1 -π(ω)} s.t. P ⊆ Ω (2.
and respectively min(N (P ), N ( P )) = 0, which means that if P is satisfactory to some extent then its complement P is totally rejected.

Possibility and necessity measures satisfy the maxitivity and the minitivity properties:

Π(P ∪ Q) = max(Π(P ), Π(Q)) s.t. P, Q ⊆ Ω (2.3
)

N (P ∩ Q) = min(N (P ), N (Q)) s.t. P, Q ⊆ Ω (2.4)
Considering a possibility distribution π, two other sets of functions can be defined:

the guaranteed or strong possibility measure and its dual the potential or weak necessity measure [START_REF] Dubois | Possibility theory and formal concept analysis: Characterizing independent sub-contexts[END_REF], formally defined by:

(P ) = min ω∈P π(ω) s.t. P ⊆ Ω (2.5) (P ) = max ω ∈P (1 -π(ω)) s.t. P ⊆ Ω (2.6)
If we stick to a preference framework, (P ) estimates to what extent all models of P are satisfactory. In other words, it evaluates the degree for which the least preferred model of P is satisfactory. The assertion (P ) = 1 implies that all models of P are fully satisfactory. In relation to the necessity measure, the evaluation of (P ) covers all models of P , while the possibility measure Π checks the existence of at least one configuration that models P . Thus, is considered to be more demanding than Π due to the fact (P ) ≤ Π(P ).

The potential necessity can be derived from by duality, i.e., (P ) = 1-( P ). 

(P ) = max(π(āb), π(a b), π(ā b)) = max(0, 1, 0.8) = 1.
This means that P is fully satisfactory. We seek to evaluate to which extent P is imperative. This amounts to find the priority related to P . By applying the equation 2.2, we find that N (P ) = 1 -π(ab) = 0.7. This degree can also be calculated by means of the duality property of possibility measures, i.e., N (P ) = 1 -Π( P ) = 1 -π(ab) = 0.7.

The guaranteed possibility degree of P equals

(P ) = min(π(āb), π(a b), π(ā b)) = 0.
This means that all models of P are not satisfactory. This verifies the inequality (P ) ≤ Π(P ). The potential necessity can be computed using the duality property, i.e., (P ) = 1 -( P ) = 1 -π(ab) = 0.7. The constraint 2.7, namely max(N (P ), (P )) ≤ min(Π(P ), (P )) is satisfied, i.e., max(0.7, 0) ≤ min(1, 0.7).

Logical encoding of conditional preferences

Conditional preference statements can be equivalently expressed in different ways. One way consists of graphically encoding statements using networks as shown in the first chapter. The second way consists on representing statements using a set of constraints that form a possibilistic base. An agent may associate a priority degree to each proposition that indicates its will to attain it. The set of such constraints forms what is called a prioritized base. An agent might also express his preferences by providing levels of satisfaction associated to classes of configurations. The entailed constraints constitute a base designated by a guaranteed possibility base. A unique possibility distribution can be derived from each of these bases [Benferhat et al., 2002c].

Next two sections respectively discuss how to logically express preferences using the necessity and guaranteed possibility measures. They also describe how to obtain the possibility distribution underlying a possibilistic logic base encoding priorities, the possibility distribution describing satisfaction levels for different configurations. The last section details the translation of a prioritized base into a guaranteed possibility base and conversely.

Logical representation of possibility measures

A priority base Σ is made up of a finite set of formulas of the form (p i , α i ), where p i is a propositional formula and α i is a priority degree in (0, 1] [ Benferhat et al., 1999b].

A weighted formula (p, α) means that p has a priority α and its counter-models are satisfactory at most at level 1 -α. The weight α is thus understood as a lower bound on the degree of priority N (p). Propositions that are associated with a null degree of priority are not explicitly represented by the base. To formalize constraints about preferences of an agent, the conjunction of pairs (p i , α i ) forms the base Σ as follows,

Σ = {(p i , α i ), i ∈ [1, n]} (2.8)

From prioritized base to distribution π

A prioritized base, syntactically constituted by a set of formulas (p i , α i ), can semantically be represented by a unique possibility distribution π Σ . If we consider that Σ is composed of a single formula (p, α), then the preference degree associated with each configuration ω is evaluated based on the consistency of ω with p. If ω is a model p, then its preference degree should be equal to 1, i.e., π(ω) = 1. In contrast, if ω falsifies p, which means that it satisfies ¬p, then it is associated to a preference degree such that the higher α is, the lower is π(ω). Particularly, if p has the highest priority, i.e., (α = 1), then the configuration ω such that ω |= p, is rejected, i.e., π(ω) = 0.

∀ω ∈ Ω, π (p,α) (ω) =      1 if ω |= p 1 -α if ω |= p
(2.9)

A prioritized base Σ can be seen as a well ordered partition composed of sets

S 1 ∪S 2 ∪• • •∪S M
where formulas in S i have more priority than those in S i+1 . Partitions S i for 1 ≤ i ≤ M can be attached to a prioritized base where each formula in S i is associated with a degree α i , such that 1 Benferhat et al., 2001a].

≥ α 1 > • • • > α M > 0 [
Generally, given Σ = {(p i , α i ), i = 1, n}, configurations that are in accordance with all propositions p i are considered fully satisfactory. Otherwise, configurations are ranked with respect to the falsified proposition of the highest priority degree.

∀ω ∈ Ω, π Σ (ω) =      1 if ω |= p i , ∀(p i , α i ) ∈ Σ 1 -max{α i : (p i , α i ) ∈ Σ; ω |= pi } otherwise (2.10)
Thus, the possibility distribution π Σ of Σ over a configuration ω ∈ Ω results from the combination of all elementary possibility distributions π (p i ,α i ) (ω) using the minimum operator [START_REF] Dubois | Theorem proving under uncertainty -A possibility theory-based approach[END_REF]. Equation 2.10 can be written more concisely as

π Σ (ω) = min{π {(p i ,α i )} (ω) : (p i , α i ) ∈ Σ} (2.11)
π(ω) is the greatest possibility distribution that satisfy the set of constraints

N (p i ) ≥ α i where N is based on π.
Example 2.2 Consider the prioritized base Σ = {(l, 0.1), (s, 0.4), (s ∨ e, 0.7), (s ∨ ē, 0.6), ( l ∨ ē ∨ r, 0.9), ( l ∨ e ∨ r, 0.8), (l ∨ ē ∨ r, 0.5), (l ∨ e ∨ r, 0. the minimum degree proposed by the elementary distributions is assigned for each configuration (see Equation 2.11) e.g.

π(ω 3 = slēr) = min(1, 0.6, 0.3, 1, 1, 0.2, 1, 1) = 0.2.
The last column in Table 2.1 contains the joint possibility distribution π Σ on Ω based on Σ.

Ω Ω Ω (l, .1) 4) (e ∨ s, (e ∨ s, (e ∨ s, (ē ∨ s,

(l, .1) (l, .1) (s, .4) (s, .4) (s, . 
(ē ∨ s, (ē ∨ s, (r ∨ l ∨ ē (r ∨ l ∨ ē (r ∨ l ∨ ē (r ∨ l ∨ e, (r ∨ l ∨ e, (r ∨ l ∨ e, (r ∨ l ∨ ē, (r ∨ l ∨ ē, (r ∨ l ∨ ē, (r ∨ l ∨ e, (r ∨ l ∨ e, (r ∨ l ∨ e, π Σ (ω) π Σ (ω) π Σ (ω) . 

7) .7) .7) .6) .6) .6) .9) .9) .9) .8) .8) .8) .5) .5) .5) .3) .3) .3) ω

0 = sler 1 .6 1 1 1 1 1 1 .6 ω 1 = sler 1 .6 1 1 .1 1 1 1 .1 ω 2 = slēr 1 .6 .3 1 1 1 1 1 .3 ω 3 = slēr 1 .6 .3 1 1 .2 1 1 .2 ω 4 = s ler .9 .6 1 1 1 1 1 1 .6 ω 5 = s ler .9 .6 1 1 1 1 .5 1 .
5

ω 6 = s lēr .9 .6 .3 1 1 1 1 .7 .3 ω 7 = s lēr .9 .6 .3 1 1 1 1 1 .
3

ω 8 = sler 1 1 1 .4 1 1 1 1 .4 ω 9 = sler 1 1 1 .4 .1 1 1 1 .1 ω 10 = slēr 1 1 1 1 1 1 1 1 1 ω 11 = slēr 1 1 1 1 1 .2 1 1 .2 ω 12 = sl er .9 1 1 .4 1 1 1 1 .4 ω 13 = sl er .9 1 1 .4 1 1 .5 1 .
4

ω 14 = sl ēr .9 1 1 1 1 1 1 .7 .7 ω 15 = sl ēr .9 1 1 1 1 1 1 1 .9
Table 2.1: Detailed computation of the possibility distribution π Σ given a prioritized base Σ

A possibilistic base is associated with a level of inconsistency.

Definition 2.1 (Consistency and inconsistency of Σ)

The inconsistency degree of Σ is defined semantically by the equation

Inc(Σ) = 1 -max ω∈Ω {π Σ (ω)} (2.12)
and the consistency degree is obtained by complementarity

Cons(Σ) = 1 -Inc(Σ) = max ω∈Ω {π Σ (ω)} (2.13)
Thus, in the normalized case, the consistency of Σ equals 1, i.e., Cons(Σ) = 1

when there exists at least one configuration that is fully satisfactory with π(ω) = 1.

Then, the inconsistency of the base is equal to 0, i.e., Inc(Σ) = 0. It can be shown that a priority base Σ is consistent if the classical base made of the propositions of Σ without their weights is consistent [START_REF] Dubois | Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty weights[END_REF]. When Inc(Σ) > 0 it means that there are conflicting priorities in the possibilistic base.

Example 2. 

(ω 0 ) = 1, π(ω 1 ) = 0.1, π(ω 2 ) = 0.3, π(ω 3 ) = 0.2, π(ω 4 ) = 1, π(ω 5 ) = 1, π(ω 6 ) = 0.3, π(ω 7 ) = 0.3, π(ω 8 ) = 0.4, π(ω 9 ) = 0.1, π(ω 10 ) = 1, π(ω 11 ) = 0.2, π(ω 12 ) = 0.4, π(ω 13 ) = 0.4, π(ω 14 ) = 1, π(ω 15 ) = 1. The prioritized base Σ * is totally consistent since Cons(Σ * ) = max ω∈Ω {π Σ * (ω)} = 1
, its inconsistency level thus equals 0.

Logical representation by guaranteed possibility measure

A guaranteed possibility base Γ is composed of a set of formulas of the form [p i , α i ],

where p i is a proposition and α i a preference degree in [0, 1) that estimates the minimal degree for which p i is satisfactory.

Γ = {[p i , α i ], i = 1, n} (2.14)
The formula [p, α] encodes the claim: "I am satisfied with any configuration ω where p is true with a minimal degree equal to α". This means that each collection of configurations that make p true is associated with a guaranteed minimal preference degree α, i.e., (p) ≥ α. Thus ω is called satisfaction base since it guarantees that configurations in π are satisfactory at least to a degree α i . Formulas expressing that an agent is not satisfied at all with a proposition, i.e., [p i , 0] are not mentioned in the base.

From guaranteed possibility base to a distribution π

From each formula [p, α] ∈ Γ, a possibility distribution π [p,α] can be associated. It is such that configurations ω i that model p are satisfactory with a minimal preference degree equals to α, while those that falsify p are considered as not satisfactory, i.e.,

π(ω i ) = 0. ∀ω ∈ Ω, π [p,α] (ω) =      α if ω |= p 0 if ω |= p (2.15)
Note that this is the smallest possibility distribution that agrees with the constraint

∆(p) ≥ α.
The resulting distribution δ Γ is obtained as the disjunction of these elementary distributions.

∀ω ∈ Ω, π Γ (ω) =      0 if ∀[p i , α i ] ∈ Γ, ω |= p i max{α : [p i , α i ] ∈ Γ} if ω |= p i (2.16)
The generalization of Equation 2.15 to the whole base Γ is defined by the smallest distribution in agreement with constraints in ∆(p i ) > α i associated with Γ2 . A configuration ω is satisfactory to a degree α if the highest degree of the formula [p, α] such that p models ω is equal to α. If ω falsifies all formulas of Γ, then ω presents no guarantee at all to be satisfactory and is associated with a degree π = 0 [START_REF] Dubois | Refinements of the maximin approach to decision-making in a fuzzy environment[END_REF].

The previous equation can be written more concisely by 

δ Γ (ω) = max{π {[p i ,α i ]} (ω) : [p i , α i ] ∈ Γ} (2.17
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From prioritized base to satisfaction base and back

Possibility measures can compactly represent a set of preference specifications which allows to construct a prioritized base Σ or a guaranteed possibility base Γ encoding the same possibility distribution on the set of alternatives, i.e., π Σ = δ Γ [Benferhat et al., 2002c].

In this section, we discuss the transformation of a base Σ into a base Γ, and conversely, such that both of these bases encode the same input information.

Before getting deeper into the subject, let us notice that given a guaranteed possibility base Σ that contains the formulas [p, α] and [q, β], then [p, α] is considered as subsumed by [q, β] as soon as α ≤ β and p |= q.

From prioritized base to satisfaction base

Given a prioritized base Σ, we aim to construct a guaranteed possibility base Γ that both encode the same information, i.e., yield the same possibility distribution π Σ = δ Γ .

First, let us consider a base Σ composed of a single formula : (p, α) (see Equation 2.9). Notice that all configurations have a minimal satisfaction degree equal to 1 -α which yields the formula [ , 1 -α]. In order to ensure that configurations that satisfy p be associated with a maximal degree of satisfaction, we must add the formula [p, 1] to Γ. Thus, the satisfaction base corresponding to Σ = {(p, α)} is

Γ = {[p, 1], [ , 1 -α]}.
Including another formula (q, β) in Σ such that α > β results in additional interpretations that should be considered for Γ. The preference degree associated with a configuration ω is obtained by considering the propositions that it satisfies. Three cases exists:

π Σ (ω) =              1 if ω |= p ∧ q 1 -α if ω |= p 1 -β if ω |= p ∧ q
All configurations have a minimal preference degree equal to 1 -α, which leads to include the formula [ , 1 -α] in Γ. Solutions that verify both propositions p and q are associated with the maximal preference degree, which results in adding the formula [p ∧ q, 1] in Γ. Configurations that satisfy neither p nor q are considered the least satisfactory and are associated with the minimal satisfaction degree 1 -α. This constraint is insured by the formula [ , 1-α]. Finally, configurations that satisfy p but not q, p being more prioritary than q, are associated with an intermediate preference degree equals to 1 -β, resulting in including [p ∧ q, 1 -β] in Γ. Hence, the guaranteed

possibility base corresponding to Σ = {(p, α), (q, β)} is Γ = {[p ∧ q, 1], [p ∧ q, 1 -β], [ , 1 -α]}
The generalization of the above equation is given in the following proposition,

Proposition 2.1 Let Σ = {(p i , α i ) : i = 1, . . . M } be a prioritized base where each formula (p i , α i ) corresponds to a level i where 1 ≤ i ≤ M , α i > α i+1 and α M +1 = 0.
We define from Σ a guaranteed possibility base as follows

Γ = {[p 1 ∧ • • • ∧ p i , 1 -α i+1 ] : i = 1, . . . , M } ∪ {[ , 1 -α 1 ]}.
(2.18)

In following we give an example of entailing a possibility distribution from a priority base.

Example 2.5 Let us reconsider the prioritized base in Example 2.2 namely Σ =

{(l, 0.1), (s, 0.4), (s∨e, 0.7), (s∨ ē, 0.6), ( l ∨ ē∨r, 0.9), ( l ∨e∨r, 0.8), (l ∨ ē∨r, 0.5), (l ∨e∨ r, 0.3)}. The first step is to arrange the base in a decreasing order of priority degrees of its formulas. Thus, Σ = {( l ∨ ē ∨ r, 0.9), ( l ∨ e ∨ r, 0.8), (s ∨ e, 0.7), (s ∨ ē, 0.6), (l ∨ ē ∨ r, 0.5), (s, 0.4), (l ∨ e ∨ r, 0.3)(l, 0.1), }. The second step consists on applying Equation 2. 18. Details are in the sequel:

• [ l ∨ ē ∨ r, 1 -0.8] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r), 1 -0.7] which yields [r ∨ l, 0.3] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s), 1 -0.6] which yields [e ∨ l, 0.4], [e ∨ r, 0.4], [e ∨ r, 0.4], [ l ∨ s, 0.4], [r ∨ s, 0.4] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s) ∧ (ē ∨ s), 1 -0.5] which yields [ē ∨ r ∨ s, 0.5], [e ∨ l ∨ s, 0.5], [e ∨ r ∨ s, 0.5], [e ∨ r ∨ s, 0.5], [ē ∨ l ∨ s, 0.5] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē), 1 -0.4] which yields [e ∨ r ∨ s, 0.6], [ē ∨ l ∨ s, 0.6], [ē ∨ r ∨ s, 0.6] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē) ∧ s), 1 -0.3] which yields [ē ∨ l ∨ s, 0.7], [ē ∨ r ∨ s, 0.7] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē) ∧ s ∧ r ∨ l ∨ ē), 1 -0.1] which yields [ē ∧ r ∧ l ∧ r, 0.9], [ē ∧ r ∧ l ∧ r, 0.9] • [( l ∨ ē ∨ r) ∧ ( l ∨ e ∨ r) ∧ (e ∨ s) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē) ∧ s ∧ r ∨ l ∨ ē), 1 -0] which yields [ē ∧ r ∧ l ∧ r, 1] • [ , 0.1].
After deleting all subsumed formulas, the guaranteed possibility base associated with Σ 

is Γ = {[r∨ l∨ē, 0.2], [r∨ l, 0.

From satisfaction base to prioritized base

The aim of this section is to construct prioritized base Σ from a guaranteed possibility base Γ such that both bases induce the same possibility distribution, i.e., π Σ = δ Γ .

We first start by considering a base Γ composed of a single formula [p, α]. Following the Equation 2.15, the possibility distribution associated with Γ is

∀ω ∈ Ω, δ Γ (ω) =      α if ω |= p 0 if ω |= p (2.19)
Due to the first constraint, the collection of configurations that model p have a maximum preference degree equal to α, leading the possibility distribution π Σ to be lower bounded by 1 -α. Therefore, this distribution is inconsistent to a level 1 -α.

To unsure this property, the formula (⊥, 1 -α) needs to be added to the prioritized base Σ. The distribution π Σ must hold an upper bound preference degree equal to 1 in order to guarantee that configurations that falsify p are prioritized to the highest degree. This is ensured by the formula (p, 1). The prioritized base corresponding to

Γ = {[p, α]} is Σ = {(p, 1), (⊥, 1 -α)}
Including another formula [q, β] to Γ such that α > β results in additional interpretations that should be considered for Σ. The preference degree associated with a configuration ω is obtained by considering the propositions that it satisfies. In alike manner as for the converse transformation, three cases can take place:

δ Γ (ω) =              α if ω |= p ∧ q β if ω |= p 0 if ω |= p ∧ q
In fact, all configurations verifying both p and q have a maximum priority equal to 1 -α, which leads to include the formula (⊥, 1 -α) in Γ. Solutions that model p but not q are are satisfactory to a degree β, which results in adding the formula (p ∨ q, 1 -β) in Γ. Finally, configurations that do not satisfy neither p nor q are considered totally rejected and are associated with a priority degree equal to 1. This constraint is insured by the formula (p ∨ q, 1). Hence, the prioritized possibility base

corresponding to Γ = {[p, α], [q, β]} is Σ = {[p ∨ q, 1], [p ∨ q, 1 -β], [⊥, 1 -α]} (2.20)
The following proposition [Benferhat et al., 2002c] generalizes the above equation.

Proposition 2.2 Let Γ = {[p i , α i ] : i = 1, . . . M } be a guaranteed possibility base where each formula [p i , α i ] corresponds to a level i where 1 ≤ i ≤ M , α i > α i+1 and α M +1 = 0. We define from Γ a prioritized base as follows

Σ = {[p 1 ∨ • • • ∨ p i , 1 -α i+1 ] : i = 1, . . . , M } ∪ {[⊥, 1 -α 1 ]}.
An agent can express his preferences by means of priority constraints using the N measure or by means of satisfaction constraints using the ∆ measure. Given a base of priority constraints Σ π we can infer a distribution π on Ω from which can be entailed a satisfaction base Γ π and vise versa. Bases Γ π and Σ π encode exactly the same distribution on configurations.

Bipolar preferences

Preferences over a set of possible configurations can often be expressed in terms of bipolar information. An agent may express his desires by associating degrees of satisfaction to solutions, but also by stating that it is rejecting some alternatives. What is really satisfactory for the agent is thus positively assessed. This type of preferences is called positive and is logically encoded by ∆ using constraints 

Sat = {∆(p i ) ≥ α i : i = 1, . . . ,

Possibilistic networks and the relation to possibilistic bases

In the possibility theory, preferences can be represented by logic bases or by graphs and both semantically induce the same possibility distribution on configurations.

A possibility distribution can be decomposed using either the product chain rule, when using a numerical framework, or the minimum operation when preferences are qualitative. These two decompositions correspond to the two types of conditioning recalled in the next Section 2. 4.1; they induce two kinds of possibilistic graphs [Benferhat et al., 2002a]. In the following, we describe the translation procedures between graphical and logical frameworks for both qualitative and quantitative networks.

But first we recall possibilistic networks in the perspective of modeling uncertain knowledge. At the end of the chapter in Section 3.2, we shall present their transposing in preference networks.

Conditioning

Conditional possibility is defined similarly to probability theory using the Bayesian rule. It actually depends on the preference configuration range, whether it is ordinal, e.g., totally ordered chain, or numerical, e.g., a scale from 0 to 1. This leads to two different forms of conditioning for qualitative and quantitative possibility. The conditioning rule can be defined by the equation Π(

P ∩ Q) = Π(Q | P ) Π(P )
where is the minimum or the product operator [START_REF] Dubois | The logical view of conditioning and its application to possibility and evidence theories[END_REF]].

If we are dealing with qualitative information, min-based conditioning is used and is defined as follows:

Π(P | Q) =      1, if Π(P ∩ Q) = Π(P ) > 0.
Π(P ∩ Q), otherwise.

(2.21)

In a quantitative numerical setting, the product-based conditioning, similar to the probabilistic conditioning, is used and is defined by:

Π(P | Q) = Π(P ∩ Q) Π(Q) (2.22)

Possibilistic networks

Possibilistic networks [Benferhat et al., 2002a] The value 0 being the absorbing element of the product operator, we assume that 0 < π(X|U X ) ≤ 1. Given a possibilistic network ΠG, there exists a unique joint possibility distribution π over configurations in Ω that is calculated using the following chain rule:

π(X 1 , ..., X N ) = N i=1 Π(X i |U X i ) (2.23)
where can take either the minimum or the product operator.

Encoding ΠG in possibilistic logic

The first step of translating a possibilistic network into a prioritized base is to consider each local distribution as a set of 3-tuples composed of (x, u, α) that encode the piece of knowledge π(x|u) = α with α < 1. A possibilistic network can thus be represented by a set of triples,

ΠG = {(x i , u i , α i ) : α i = Π(x i |u i )} where x i ∈ X i , u i ∈ U X i and ∀X i ∈ X .
Pieces of knowledge such that α = 1 are totally possible are not included in this set.

Each tuple (x, u, α) is translated into the formula (x ∨ ū, 1 -α) that constitutes the logical base Σ ΠG . Given a single triple (x, u, α) ∈ ΠG, the joint distribution of a complete solution ω is

∀ω ∈ Ω, π (x,u,α) (ω) =      1 if ω |= x ∨ ū α otherwise (2.24)
In fact, formulas associated to each variable or node of the graph compose an elementary base. The combination of these bases form the prioritized base associated with the ΠG network.

Σ ΠG = {(x i ∨ ūi , 1 -α i ) : Π(x i | u i ) = α i ∈ ΠG, α i ≤ 1} = {(x i ∨ ūi , 1 -α i ) : (x i , u i , α i ) ∈ ΠG, α ≤ 1} (2.25)

Logical encoding of ΠG m

Let ΠG m denote the qualitative specialisation of ΠG. The joint possibility distribution π associated with ΠG m is obtained by combining possibility distributions π i of each tuple (x i , u i , α i ) by means of the minimum operator [Benferhat et al., 2002a]. Equivalently, the result of fusing all elementary bases associated with each node of the graph corresponds to the possibilistic distribution π associated with the network. Indeed, let Σ X and Σ X be two prioritized bases associated with possibility distributions π X and π X , respectively for {X, X } ∈ X . The base Σ XX resulting from combining Σ X and Σ X is [START_REF] Benferhat | Encoding information fusion in possibilistic logic: A general framework for rational syntactic merging[END_REF]]

Σ XX = Σ X ∪ Σ X
Given ΠG m , the above equation is generalized as follows,

Σ ΠGm = N i=1 Σ X i = {(x i ∨ ūi , 1 -α) : (x i , u i , α) ∈ ΠG m , α = 1} s.t. u i ∈ U X i and X i ∈ X (2.26)
We now provide an example about encoding the ΠG in Figure 2.1 by a prioritized base.

Example 2.6 Let us consider the possibilistic network in Figure 2.1. The network is written under the set of formulas ΠG m = {(a, ∅, 0.4), (b, ā, 0.9), ( b, a, 0.6), (c, ā, 0.7), (c, a, 0.3), (d, bc, 0.6), ( d, bc, 0.7), ( d, bc, 0.8), ( d, bc, 0.2)}. Using Equation 2.26, the prioritized base associated with the ΠG m when using the minimum operator is

Σ ΠGm = Σ A Σ B Σ C Σ D = {(ā, 0.6), (ā ∨ b, 0.4), (a ∨ b, 0.1), (c ∨ ā, 0.7), (c ∨ a, 0.3), (d ∨ b ∨ c, 0.3), (d ∨ b ∨ c, 0.2), (d ∨ b ∨ c, 0.8), ( d ∨ b ∨ c, 0.4)}. A B C D a 0.4 ā 1 π(B | A) a ā b 1 0.9 b 0.6 1 π(C | A) a ā c 1 0.7 c 0.3 1 π(D | BC) bc bc bc bc d 1 1 1 0.6 d 0.7 0.8 0.2 1 Figure 2.1: Example of a ΠG

Logical encoding of ΠG *

As for qualitative possibilistic networks, when considering a quantitative ΠG, we are still able to construct a prioritized base that encodes the network. Following the same steps as for min-based possibilistic network, the idea is to first consider each local distribution and its entailed base. The joint possibility distribution computed from a product-based network ΠG * corresponds to the fusion of all elementary bases using the product operator. The joint possibility distribution π * of ΠG * is the same as the one obtained by combining all π X i using the product [Benferhat et al., 2002a]. Let Σ ΠG * define the prioritized base inferred from combining Σ X and Σ X using the product operator. Then Σ ΠG * is constructed using the following equation [START_REF] Benferhat | Encoding information fusion in possibilistic logic: A general framework for rational syntactic merging[END_REF],

Σ ΠG * = Σ X ∪ Σ X ∪ {(x i ∨ x j , α i + β j -α i × β j ), i ∈ I, j ∈ J, x i ∨ x j = } (2.27)
The possibilistic base inferred from a min-based ΠG is obviously smaller than a base derived from a product-based ΠG. This is explained by the fact that the encoding procedure of a ΠG * adds a set of formulas with intermediate levels to the prioritized base Σ ΠG * , formulas expressing knowledge not explicitly mentioned in the original knowledge bases.

The following Example 2.7 illustrates the procedure of transforming product-based ΠG into a prioritized base Σ ΠG * .

Example 2.7 Let us reconsider the graph in Figure 2.1 that corresponds to the set of triples ΠG * = {(a, ∅, 0.4), (b, ā, 0.9), ( b, a, 0.6), (c, ā, 0.7), (c, a, 0.3), (d, bc, 0.6), ( d, bc, 0.7), ( d, bc, 0.8), ( d, bc, 0.2)}. The network is associated with the elementary bases

Σ A = {(ā, 0.6)}, Σ B = {(ā ∨ b, 0.4), (a ∨ b, 0.1)}, Σ C = {(c ∨ ā, 0.7), (c ∨ a, 0.3)}, Σ D = {(d ∨ b ∨ c, 0.3), (d ∨ b ∨ c, 0.2), (d ∨ b ∨ c, 0.8), ( d ∨ b ∨ c, 0.4)}.
Step by step, we proceed by subsequently fusing two bases at a time. Combining Σ A and Σ B generates the following base:

Σ AB = Σ A ∪ Σ B ∪ {(ā ∨ b, 0.76)} = {(ā, 0.6), (ā ∨ b, 0.4), (a ∨ b, 0.1), (ā ∨ b, 0.76)} = {(ā, 0.6), (a ∨ b, 0.1), (ā ∨ b, 0.76)}
The formula (ā ∨ b, 0.4) is removed since it is subsumed by (ā ∨ b, 0.76). Combining Σ AB and Σ C generates the following base: 

Σ * ABC = Σ AB ∪ Σ C ∪ {(ā ∨ c, 0.
Σ * ΠG * = Σ ABC , Σ D = Σ ABC ∪ Σ D ∪ {(a ∨ b ∨ c ∨ d, 0.28), (a ∨ b ∨ c ∨ d, 0.56), (ā ∨ b ∨ c ∨ d, 0.99), (ā ∨ b ∨ c ∨ d, 0.96), (ā ∨ b ∨ c ∨ d, 0.9), (ā ∨ b ∨ c ∨ d, 0.72)} = {(ā, 0.6), (a ∨ b, 0.1), (ā ∨ b, 0.76), (c ∨ a, 0.3), (ā ∨ c, 0.88), (a ∨ b ∨ c, 0.37), (ā ∨ b ∨ c, 0.93), (a ∨ b ∨ c ∨ d, 0.28), (a ∨ b ∨ c ∨ d, 0.56), (ā ∨ b ∨ c ∨ d, 0.99), (ā ∨ b ∨ c ∨ d, 0.96), (ā ∨ b ∨ c ∨ d, 0.9), (ā ∨ b ∨ c ∨ d, 0.72)}
We have seen that in the possibility theory setting, we have different formats for representing information, namely a possibility distribution, a necessity-based logic base, a ∆-based logic base, a possibilistic graph ΠG with min-based conditioning and ΠG with product-based conditioning [Benferhat et al., 2001c]. We have described how to go from possibility distribution to logic bases and vice-versa and how to go from logic bases to possibility distribution in 2. [START_REF][END_REF].2 and 2. 3.4. We have also showed how to go from a possibilistic graph to logic bases in 2. 4.3: one can go from a ΠG m [Benferhat et al., 1999a] to a possibilistic logic base (see 2. 4.3), and from a ΠG * [Benferhat et al., 2001b] to a possibilistic logic base (see 2.4.3).

Conclusion

In possibility theory, information can logically be encoded in different formats: prioritized logic base, satisfaction logic base, possibility distribution and possibilistic networks. All of them describe the same information but some formats are more appropriate for different ways of expressing preferences or may have computational advantages [Benferhat et al., 2001c].

A remarkable feature of possibility theory is that it offers the advantage of encoding the same information in different ways. Specifications of a user can be logically encoded by possibilistic bases. The same set of statements could be compactly depicted by possibilistic networks in a graphical manner. Translating possibilistic bases into networks and conversely can be performed while preserving the same ordering on configurations. In the next chapter, we discuss π-pref nets which exploit possibilistic graphs for preference representation.

Chapter 3

Possibilistic Preference Networks:

Basis, Comparisons and Variants Throughout all the chapter, we continue with the same running example, dealing with decision problem about renting or buying a car, which was introduced in Example 1. 4 in Chapter 1 and already used in Chapter 2.

Introduction

π-pref nets

A possibilistic preference network [Ben Amor et al., 2015] (π-pref net for short) shares the same graphical structure as a CP-net C (see Definition 1.7). They however differ by their informational components. In fact, to each preference statement u : x x we associate a local conditional possibility distribution π(X | U X ) using symbolic weights expressing an ordering between the values in X. The symbolic weights are unspecified degrees, assumed to be in the real interval (0, 1]1 . In each context u, there must exist a preferred instantiation of X associated with a degree equal to 1. A π-pref net can be defined as a ΠG network where possibility degrees correspond to symbolic weights. The network obeys to the Markovian assumption which stipulates that each variable X is independent from other variables in the subset Y = {X \ U X \ {X}} in the context of its parents (U X ). Consider a variable X with X = {x, x}, the possibility degree π(x | u) evaluates the satisfaction degree of the value

x in context u. π(x | u) = 1 iff x is preferred, otherwise π(x | u) takes a symbolic degree α such that α < 1.
The symbolic weights appearing in different contexts have no reason to be equal: the violation of a preference may be a source of more dissatisfaction in one context than in another. However, we generally use a unique symbolic weight per value and context Apart from comparisons entailed from specifications in the network, constraints between symbolic weights can be added when available [Ben Amor et al., 2018a].

Let us illustrate the notion of π-pref net in the following Example 3.1. 

S E L R s α s 1 π(E | S) s s e 1 γ 2 ē γ 1 1 l 1 l β π(R | LE) le lē le lē r 1 1 1 σ 4 r σ 1 σ 2 σ 3 1

Chain rule

In order to find a ranking over configurations in Ω, we need to calculate the degree of satisfaction of each ω i ∈ Ω by means of a chain rule. If we consider their quantitative counterpart, the product-based chain rule is used. It is formally expressed by:

π(X 1 , ..., X N ) = N i=1 π(X i |U X i ) . (3.1)
From the other side, if we consider their qualitative counterpart, the minimum operator is used and the chain rule is formally written as follows:

π(X 1 , ..., X N ) = N min i=1 π(X i |U X i ) (3.2)
When no additional constraints on symbolic weights are added, due to the drowning effect of the minimum operator (values above the minimum values are 'lost'), the product-based joint possibility distribution permits to order configurations in a more discriminant and refined way than the minimum-based distribution.

We continue Example 3.1 by providing the symbolic weights computing the productbased chain rule.

Example 3.2 Table 3.1 provides calculation details about π-pref net in Figure 3.1.

For each configuration ω, Columns 2 to 5 present conditional preference degrees associated with each decision variable in the graph. The last column gives the satisfaction degree of each configuration based on the product operator.

Ω Ω Ω π(S) π(S) π(S) π(L) π(L) π(L) π(E|S) π(E|S) π(E|S) π(R|LE) π(R|LE) π(R|LE) ω ω ω π(ω) π(ω) π(ω) ω 0 = sler α 1 1 1 (α, 1, 1, 1) α ω 1 = sler α 1 1 σ 1 (α, 1, 1, σ 1 ) ασ 1 ω 2 = slēr α 1 γ 1 1 (α, 1, γ 1 , 1) αγ 1 ω 3 = slēr α 1 γ 1 σ 2 (α, 1, γ 1 , σ 2 ) αγ 1 σ 2 ω 4 = s ler α β 1 1 (α, β, 1, 1) αβ ω 5 = s ler α β 1 σ 3 (α, β, 1, σ 3 ) αβσ 3 ω 6 = s lēr α β γ 1 σ 4 (α, β, γ 1 , σ 4 ) αβγ 1 σ 4 ω 7 = s lēr α β γ 1 1 (α, β, γ 1 , 1) αβγ 1 ω 8 = sler 1 1 γ 2 1 (1, 1, γ 2 , 1) γ 2 ω 9 = sler 1 1 γ 2 σ 1 (1, 1, γ 2 , σ 1 ) γ 2 σ 1 ω 10 = slēr 1 1 1 1 (1, 1, 1, 1) 1 ω 11 = slēr 1 1 1 σ 2 (1, 1, 1, σ 2 ) σ 2 ω 12 = sl er 1 β γ 2 1 (1, β, γ 2 , 1) βγ 2 ω 13 = sl er 1 β γ 2 σ 3 (1, β, γ 2 , σ 3 ) βγ 2 σ 3 ω 14 = sl ēr 1 β 1 σ 4 (1, β, 1, σ 4 ) βσ 4 ω 15 = sl ēr 1 β 1 1 (1, β, 1, 1) β Table 3
.1: Joint possibility distribution of configurations in Ω covered by π-pref net in Figure 3.1

As can be seen in the above example, a product of symbolic weights is associated with each configuration. This product induce only a partial order since, e.g., βγ 2 > βγ 2 σ 3 , but σ 2 and βγ 2 cannot be compared for instance. However, in case we have complementary information about the relative values of satisfaction degrees under the form of inequalities between symbolic weights, we can perform further comparisons, e.g., ασ 1 > αγ 1 if we know that σ 1 > γ 1 .

Besides, in case we use a unique satisfaction degree for the preferences associated to a given node, i.e., in Table 3.1,

γ 1 = γ 2 , σ 1 = σ 2 = σ 3 = σ 4
, we are able to compare more configurations and the partial order obtained is in agreement with the cardinality order (see 1.2.2). However, the latter is a complete pre-order where configurations having the same number of violations are ties, while such configurations are incomparable in the π-pref net partial order.

In any case, each complete configuration ω ∈ Ω can be described by a quality vector ω = (ρ 1 , . . . , ρ N ), where each symbol ρ j represents the satisfaction degree π(x j |u j ), such that x j ∈ X j , u j ∈ U X j and j ∈ [1, N ]. The possibility degree π(ω) is just the product of components in the vector.

The following Example 3.3 illustrates the case of a π-pref net with equal symbolic weights per variable and parent context. Table 3.2 provides calculation details about the π-pref net in Figure 3.2. Each configuration ω is associated with a vector of symbolic weights and a satisfaction degree computed from Equation 3.1. When symbolic weights are equal in context of parents value, the chain rule induces more comparisons between configurations. This is due to the fact that there are less incomparable symbolic weights. For instance, ω 5

S E L R s α s 1 π(E | S) s s e 1 γ ē γ 1 l 1 l β π(R | LE) le lē le lē r 1 1 1 σ r σ σ σ 1
and ω 6 that were associated with the respective preference degrees αβσ 3 and αβγ 1 σ 4

were incomparable because σ 3 and σ 4 are incomparable. They are now associated with degrees αβσ and αβγσ which makes them comparable such that ω 5 P rod ω 6 , since π(ω 5 ) = αβσ > π(ω 6 ) = αβγσ. All comparisons of the π-pref net in Figure 3.2 are given in Figure 3. [START_REF][END_REF].

Ω Ω Ω π(S) π(S) π(S) π(L) π(L) π(L) π(E|S) π(E|S) π(E|S) π(R|LE) π(R|LE) π(R|LE) ω ω ω π(ω) π(ω) π(ω) ω 0 = sler α 1 1 1 (α, 1, 1, 1) α ω 1 = sler α 1 1 σ (α, 1, 1, σ) ασ ω 2 = slēr α 1 γ 1 (α, 1, γ, 1) αγ ω 3 = slēr α 1 γ σ (α, 1, γ, σ) αγσ ω 4 = s ler α β 1 1 (α, β, 1, 1) αβ ω 5 = s ler α β 1 σ (α, β, 1, σ) αβσ ω 6 = s lēr α β γ σ (α, β, γ, σ) αβγσ ω 7 = s lēr α β γ 1 (α, β, γ, 1) αβγ ω 8 = sler 1 1 γ 1 (1, 1, γ, 1) γ ω 9 = sler 1 1 γ σ (1, 1, γ, σ) γσ ω 10 = slēr 1 1 1 1 (1, 1, 1, 1) 1 ω 11 = slēr 1 1 1 σ (1, 1, 1, σ) σ ω 12 = sl er 1 β γ 1 (1, β, γ, 1) βγ ω 13 = sl er 1 β γ σ (1, β, γ, σ) βγσ ω 14 = sl ēr 1 β 1 σ (1, β, 1, σ) βσ ω 15 = sl ēr 1 β 1 1 (1, β, 1, 1) β Table 3
.2: Joint possibility distribution of configurations in Ω covered by π-pref net in Figure 3.2

Ordering quality vectors

Given a π-pref net, several procedures can be used for this comparing configurations, such as: Product, Minimum, Pareto, symmetric Pareto, Discrimin and Leximin orders.

In the sequel, we give formal definitions of these orderings that may be used for the dominance query. The following example considers sets of pairs of configurations and compares them using the mentioned orders. 

ω 7(f ) discrimin ω 3 due to the fact that min(α, δ 1 , β) < min(α, δ 1 , γ 2 ) if we know that γ 2 < β.
π-pref nets have a qualitative and quantitative counterpart. When symbolic weights express qualitative preferences, the M inimum semantic corresponds to the min-based chain rule mentioned in Equation 3.2. If preferences are described by numerical degrees, the P roduct order coincides with the product-chain rule defined in Equation 3.1. With no additional constraints on weights and if symbolic degrees are not instantiated, order semantics lead to a sparsely discriminant ordering between solutions since dominance relations between weights are unknown. We say that an ordering over elements in Ω refines if and only if for all pairs of configurations (ω i , ω j ) ∈ Ω if ω i ω j then ω i ω j . If symbolic degrees take numerical values, [START_REF] Dubois | Refinements of the maximin approach to decision-making in a fuzzy environment[END_REF] have presented proofs about refinements between orderings of strategies. Figure 3.4 from [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF] sums up the deduced properties. An edge from a box

A to B (A → B) means that A refines B.
When the satisfaction of preferences are assessed by symbolic degrees and no additional constraints are specified on them, the Pareto strategy and the product order lead to the same ordering [Ben Amor et al., 2015[START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF] (see Figure 3.4(b)). This ordering corresponds to the order induced by comparing the sets of violated variables using inclusion. Indeed, let V(ω) and V(ω ) be the set of variables that are set to their least preferred values for configurations ω and ω configurations respectively. If V(ω) ⊂ V(ω ), then ω strictly dominates ω based on both P areto and P roduct strategies. Without any constraint on the weights, all the order strategies mentioned above lead to equivalent orders, except for the minimum case which is less refined [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF].

When additional constraints on symbolic degrees are provided, the product and symmetric P areto yield the same ordering. Refinements between orders are given in Figure 3.4(c). When the symmetric P areto ranks a pair of configurations as incomparable, the minimum strategy may succeed in finding a strict dominance relationship between them. This relation is represented by a dotted arrow in Figure 3.4(c). Not surprisingly, when symbolic degrees are instantiated with numerical values, the order product induces the most discriminant order, while the minimum represents the weakest order. Figure 3.4(a) summarises refinements between order semantics. Proofs are given in [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF].

Consider a π-pref net model and a pair of different configuration (ω, ω ). Given a possibilistic setting, if ω P rod ω then ω P areto ω [Ben Amor et al., 2017a]. Without additional constraints, the minimum is a poorly discriminant order strategy that yields an ordered set composed of only two levels with the optimal configuration being classified as better than all other ones in Ω [Ben [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF]. Consider orderings P rod and P areto entailed from a π-pref net. A configuration dominates another with respect to a π-pref net if its preference degree is higher than the one associated with the other configuration. Formally, ω P rod ω iff π(ω) P rod π(ω ). This case happens when one or more variable values are instantiated to a preference degree equal to 1 for ω, whereas the rest of variables are instantiated to the same symbolic degrees for both configurations. Taking in consideration Pareto as an order strategy, ω P areto ω iff (i) there exists at least one symbolic weight ρ > ρ for ρ ∈ ω and ρ ∈ ω such that π(X i |U X i ) = ρ and (ii) all other weights are better or equal. Since no additional constraints are considered and due to the local normalization property, then it is clear that ρ = 1 and ρ < 1. This represents the unique case for which ω Pareto dominates ω . Thus we can conclude that if ω P areto ω then ω P rod ω and vice-versa, formally ω P areto ω ⇐⇒ ω P rod ω Each configuration can be characterized in term of a set of its satisfied variables.

We use S(ω)2 to define the described set for a given configuration ω ∈ Ω. Since quantitative π-pref nets reproduce the exact same ordering as Pareto, we are interested in using sets S(ω) as a bridge to prove that these networks are not in dis-accordance with the ceteris paribus assumption. In fact, S(ω) only depends on the set of satisfied decision variables, then if ω P rod ω according to the π-pref net S(ω ) ⊂ S(ω).

Formally

ω P rod ω =⇒ S(ω ) ⊂ S(ω) ω P areto ω =⇒ S(ω ) ⊂ S(ω)
This property is necessary but not sufficient since two configurations can be comparable in term of the inclusion order between subsets S but incomparable based on Pareto [Ben Amor et al., 2017a]. Without additional constraints on symbolic weights, two given configurations that violate the preference of a node X given different contexts are incomparable since symbolic degrees pertaining to X are different. Formally, if ω[X] = ρ and ω [X] = ρ for ρ, ρ ∈ (0, 1), then ω P areto ω . 

Querying π-pref nets

Most used queries for interrogating a preference model are dominance and optimization queries. A product-based possibilistic network can express uncertain or incomplete information using numerical degrees. When numerical degrees over preferences can be provided, we can use such network for representing preferences and process optimisation and dominance procedures. We now describe them for symbolic π-pref nets.

Optimization query

π-pref nets allow the user to express indifference by enabling him to assign the highest satisfaction degree to both binary values of a decision variable. For that specific reason, the optimization query may return more that one configuration all associated to a possibility degree equal to 1. For this query, optimal configuration(s) are always found, since local possibility distribution associated to features are normalized by imposing to one of the variable values to be fully satisfactory. Thus, the joint possibility distribution associated to configurations covered by the network is normalized whatever the operator of the chain rule is. Graphically, finding optimal configuration(s) amounts to sweeping through the graph nodes while assigning to each variable the value associated with the highest preference degree in context of parents. This procedure is linear in the size of decision variables [Ben Amor et al., 2018a]. 3.1 and whatever the chain rule operator is, there exists one optimal configuration ω Opt corresponding to a degree of satisfaction equal to 1, namely ω 10 . Graphically, the optimal configuration is easily detected by assigning their preferred values to decision variables as follows

Example 3.6 Considering joint possibility distribution in Table

S = s since π(s) = 1, L = l since π(l) = 1, E = ē since π(ē|s) = 1 and R = r since π(r|lē) = 1, thus ω Opt = ω 10 .

Dominance query

Finding a dominance relation between a pair of configurations in a π-pref net amounts to comparing their relative vectors of weights or to compare product of symbolic weights. The dominance query in π-pref nets is linear but answering all dominance queries between all pairs of configurations to find an ordering over them has an exponential complexity of O(N !) [Ben Amor et al., 2018a].

π-pref nets vs CP-nets

The induced graph in Figure 3.5 shows that π-pref nets and CP-nets do not lead to the same dominance relation over configurations of the possible states of the world. This is due to the fact that they do not share the same independence property. Although both graphical models are based on the same collection of user preference statements, however, they semantically use different strategies for comparing pairs of solutions.

Indeed, the induced ordering generated from the ceteris paribus assumption is based on single flips between configurations to which is applied a transitive closure to capture all possible comparisons. On the other hand, π-pref nets use the product operator to rank order solutions and the joint possibility distribution can be calculated for getting the ordering between all configurations (quality vectors may eventually be used). In the following, we discuss the consistency between these two models and we recall inequalities between products of symbolic weights to be added in order to lead to a good approximation of a CP-net by a π-pref net [Ben Amor et al., 2018a].

Consistency between π-pref nets and CP-nets

Considering a CP-net C, configurations are ranked based on a sequence of worsening flips according to ceteris paribus assumption. Let (ω, ω ) be two configurations that differ by a single flip value on variable X. If ω C ω , then S(ω) ⊂ S(ω ) is not possible [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF]. In fact, if ω C ω then there exists a worsening flips from ω to ω which means that ω holds an additional satisfied variable compared to ω which is X. By consequence, S(ω) ⊂ S(ω ) is never true. This conclusion can be further extended to all ceteris paribus dominance relations since when considering the sequence of worsening flips, the status of each flipped variable will not be questioned by the later flips.

As recalled in Chapter 1, CP-nets agree with the Pareto ordering [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF].

Thus, if we compare a CP-net and a π-pref net (without additional constraints), induced by the same set of preference statements, then all the comparisons made by the π-pref net will be acknowledged by the CP-net. This is illustrated by the following example. 

considering vectors ω 3 = (α, 1, δ 1 , γ 2 ) and ω 7 = (α, β, δ 1 , 1), we have ω 3 [L] ω 7 [L] while ω 7 [R] ω 3 [R]
ω 3 slēr (αδ 1 γ 2 )(L)
ω 5 s ler

(αβγ 3 )(E) ω 7 s lēr (αβδ 1 )(R)
ω 13 sl er

(βδ 2 γ 3 )(S)
ω 6 s lēr Next section details necessary constraints to recover all preference relations induced by a CP-net.

(αβδ 1 γ 4 )({∅})

Representing ceteris paribus dominance relations by πpref nets

CP-nets underly an implicit priority in favor of parent nodes over their children.

Thus, satisfaction degrees associated with parent nodes in the corresponding π-pref net must be lower than those associated with their children (for instance, in Figure 3.1, γ 2 α must be verified). This property can be insured by the following constraint [Ben Amor et al., 2018a] ∀i = 1, N max

u i ∈U X i α X i |u i < C∈Ch(X i ) min u C ∈U C ρ C|u C (3.3)
where α X i |u i is the satisfaction degree of the bad value of X i in the context of u i , ρ C|u C is similarly defined and Ch(X) denote the set of nodes that depend on X (graphically,

Ch(X) includes all children nodes of X).

Consider a CP-net C and the corresponding π-pref net. Let (ω, ω ) be a pair of configurations that differ by the value of X ∈ X and such that ω is preferred to ω based on the ceteris paribus assumption, ω C ω . Let x + and x -denote respectively the good and the bad values of the variable X in the context of its parent value

u X ∈ U X . Let Y = X \ {X} ∪ Ch(X) ∪ U X be the set of remaining variables.
Configurations ω and ω can be written under the form of the conjunction of literals

such that ω |= x + ∧ u X ∧ c * ∧ y * and ω |= x -∧ u X ∧ c * ∧ y * such that y * ∈ Y, C * ∈ Ch(X) provided that Ch(X) = {∅}, c * ∈ C = {c, c}.
In order for the π-pref net to recover the relation ω C ω , the constraint π(ω) > π(ω ) needs to be satisfied [Ben Amor et al., 2018a]. Note that the possibility degree of Y is the same for both configurations and do not depend on the value of X or its child nodes. Therefore, the constraint π(ω) > π(ω

) entails that π(x + |u X ). C∈Ch(X) π(C | u C ). Y ∈Y π(y * | u Y ) > π(x -|u X ). C∈Ch(X) π(C | u C ). Y ∈Y π(y * | u Y ). Let π(x -|u X ) =
ρ, this leads to the constraint

C∈Ch(X) π(C | u C ) > ρ • C∈Ch(X) π(C | u C ) with C = c or C = c (3.4)
For each node of the π-pref net, the above constraints must be considered in order to recover all dominance relations inferred by the corresponding CP-net C. In [Ben Amor et al., 2017a], Proposition (3) has established that the constraints (3.3) are enough to ensure the satisfaction of conditions (3.4), which ensures that ω C ω .

The following example illustrates the fact that the addition of constraints (3.3) enables us to enforce in the π-pref net all the dominance relations of a CP-net.

Example 3.8 Consider the induced graph in Figure 3.5. In order to cover all comparisons entailed by the ceteris paribus assumption (Figure 1.3), a number of inequalities based on the constraint 3.4 

> α, γ 1 > β, γ 2 > β, γ 1 > β, γ 1 > δ 1 , γ 3 > δ 1 , γ 4 > δ 2 , γ 2 > δ 2 γ 1 and γ 2 > δ 2 γ 3 .
Therefore, we can check that all comparisons represented by dashed arrows in Figure 3.5 are recovered.

Leaving complete freedom for a user to add constraints that express priorities between preference degrees of a π-pref net confirms the flexibility of this model compared to CP-nets. Although CP-nets share the same graphical structure and level of simplicity as π-pref nets, they do not have the same expressive power. In [Ben Amor et al., 2018a],

it has been proved that CP-nets and π-pref net induce consistent orderings over solutions. Without additional constraints, π-pref nets can not capture CP-net's dominance relations induced from the priority granted to father nodes. However, by adding some constraints to a π-pref net, we are able to recover all order relations induced by a CP-net. Thus, by adding some constraints to a π-pref net, we are able to restore the ceteris paribus priorities to capture CP-nets preference relations.

π-pref nets vs cp-theories

As mentioned in Chapter 1, a CP statement over a subset U ⊆ X is formalized by φ = u|V : x x , where u ∈ U, x, x ∈ X and U, V are disjoint subsets s.t.

U ⊆ X \ {X}, V ⊆ X \ U. They express the preference specification u : x x independently from values of the subset of variables V. At first sight they seem to encode the exact definition of the Markovian independence property used by π-pref nets.

Indeed, the CP statement φ = u|V : x

x entails that any configuration that models u ∧ x is preferred to any configuration that models u ∧ x whatever is the value of V. In π-pref net, the statement φ is implicitly satisfied by the constraint Π(u∧x) > Π(u∧x ) inferred from the constraint π(x|u) > π(x |u) such that u : x x .

Node Ch(node)

Constraints

S

{E} π(s).π(e|s) > π(s).π(e|s) δ 2 > α π(s).π(ē|s) > π(s).π(ē|s)

1

> αδ 1 L {R} π(l).π(r|le) > π( l).π(r| le) 1 > β π(l).π(r|le) > π( l).π(r| lē) 1 > βγ 4 π(l).π(r|lē) > π( l).π(r| le) 1 > β π(l).π(r|lē) > π( l).π(r| lē) 1 > βγ 4 π(l).π(r|le) > π( l).π(r| le) γ 1 > βγ 3 π(l).π(r|le) > π( l).π(r| lē) γ 1 > β π(l).π(r|lē) > π( l).π(r| le) γ 2 > βγ 3 π(l).π(r|lē) > π( l).π(r| lē) γ 2 > β E {R} π(e|s).π(r|le) > π(ē|s).π(r|lē) 1 > δ 1 π(e|s).π(r|le) > π(ē|s).π(r| lē) 1 > δ 1 γ 4 π(e|s).π(r| le) > π(ē|s).π(r|lē) 1 > δ 1 π(e|s).π(r| le) > π(ē|s).π(r| lē) 1 > δ 1 γ 4 π(e|s).π(r|le) > π(ē|s).π(r|lē) γ 1 > δ 1 γ 2 π(e|s).π(r|le) > π(ē|s).π(r| lē) γ 1 > δ 1 π(e|s).π(r| le) > π(ē|s).π(r|lē) γ 3 > δ 1 γ 2 π(e|s).π(r| le) > π(ē|s).π(r| lē) γ 3 > δ 1 π(ē|s).π(r|lē) > π(e|s).π(r|le) 1 > δ 2 π(ē|s).π(r|lē) > π(e|s).π(r| le) 1 > δ 2 π(ē|s).π(r| lē) > π(e|s).π(r|le) γ 4 > δ 2 π(ē|s).π(r| lē) > π(e|s).π(r| le) γ 4 > δ 2 π(

ē|s).π(r|lē) > π(e|s).π(r|le) γ 2 > δ 2 γ 1 π(ē|s).π(r|lē) > π(e|s).π(r| le) γ 2 > δ 2 γ 3 π(ē|s).π(r| lē) > π(e|s).π(r|le)

1 > δ 2 γ 1 π(ē|s).π(r| lē) > π(e|s).π(r| le)

1 > δ 2 γ 3 Table 3.3: Ceteris paribus constraints for π-pref net in Figure 3.1

It has been explained in section 3.3.2 that by adding some constraints to a πpref net, we are able to recover all order relations induced by a CP-net. Besides, cp-theories can represent CP-nets [Wilson, 2011]. However, the representation power of cp-theories and π-pref nets have not been compared until now; see however [Ben Amor et al., 2018a] for a beginning of discussion.

In the remaining of this chapter, we explore other ways of encoding conditional preferences, slightly beyond the standard possibilistic setting.

Other ways of encoding conditional preferences

We have seen that when dealing with Boolean variables of choice, the claim "Given c, I prefer x to x" can be translated into an elementary possibility distribution such that π(x|c) > π(x|c) assuming the use of [0, 1] as a scale for satisfaction degrees (still we were excluding the idea that the symbolic weight might be equal to 0). Moreover, the conditional preference tables can be turned into a possibilistic logic base expressing priorities between goals in terms of a necessity measure N associated with π as recalled in Chapter 2.

Let us observe that in the π-pref nets approach we are dealing with satisfaction constraints and violation constraints in a not similar way. Indeed, in the conditional preference tables, all the possibility degrees corresponding to the satisfaction of the preference are set to 1, while the violation situations receive a different symbolic weight for each preference. This might be justified by the fact that the important thing in the evaluation of the configuration is to take into account the preference violation.

However, in the following, we shall consider an approach where we rather assign the same degree 0 in all violation cases and different symbolic degrees for the satisfaction of each preference.

A particular phenomenon takes place in the π-pref net approach. Indeed, due to the privileged role of 1, we always get a unique best configuration with satisfaction degree equal to 1, which does not violate any preference. Even if there is also a unique configuration that violates all preferences, the partial order induced in general by the π-pref net leads to incomparability of this worst configuration with some other configurations that violate less variables. Indeed, in Table 3.1, we can observe that ω 6 , which violates all preferences, is incomparable for instance with ω 13 and ω 12 . Moreover, there are four configurations: ω 3 , ω 6 , ω 9 and ω 13 that are not comparable to each other and that are not better than any other configurations.

This situation raises the question of the possibility of for instance reversing the phenomenon by having a unique worst solution maybe at the price of several noncomparable non-dominated configurations.

Use of the guaranteed possibility distributions

In order to privilege 0 in the encoding of preferences, we may imagine to turn the possibility distribution π into another distribution 1 -π. As we shall see, this will lead us to use the set function ∆ recalled in Chapter 2. Switching from the possibility to the guaranteed possibility is done by simply reversing the possibility distribution:

if π is normalized to 1 then 1 -π is normalized to 0. In other words, on the one hand we compute the complement to 1 of quality vectors (e.g., (1, β, γ) is changed into (0, 1 -β, 1 -γ)), and on the other hand, we may wonder what becomes the chain rule in the transformation from π to δ = 1 -π.

In order to define a joint distribution associated with a non-normalized π-pref net, we transform the product chain rule in Equation 3.1 to obtain the following chain rule:

1 -δ(X 1 , ..., X N ) = N i=1 (1 -δ(X i |U X i )) (3.5)
Note that the distribution δ is anti-normalized, i.e., ∃ω such that δ(ω) = 0, but may be not normalized.

In the following, we give an example of a variant of π-pref net handled in terms of Equation 3.5. We study two cases: (i) when each preference attached to a context has a particular symbolic weight for expressing the satisfaction degree when the preference is violated and, (ii) the case where we do not distinguish between the different instantiations of parent variables and where there is only a unique symbolic weight per node. by δ( b|ā) > δ(b|ā) where δ( b|ā) = β 1 ∈ (0, 1) and δ(b|ā) = 0. Table 3.4 gives results of the product chain rule on guaranteed possibility degrees given by Equation 3.5. The worst configuration is indeed associated with the lowest joint preference degree π(ω 10 ) = 1 -δ(ω 10 ) = 0 where δ(ω 10 ) = (1 -δ(A)).( 1

-δ(B|A).(1 -δ(C|B).(1 -δ(D|BC) = (1 -0).(1 -0).(1 -0).(1 -0) = 1.
The induced distribution π on Ω is represented by a Pareto graph in Figure 3.7.

Ω Ω Ω ω ω ω 1 -δ(ω) 1 -δ(ω) 1 -δ(ω) ω ω ω 1 -δ(ω) 1 -δ(ω) 1 -δ(ω) ω 0 = abcd (α, β 1 , σ 1 , γ 1 ) (1 -α).(1 -β 1 ). (α, β, σ, γ) (1 -α).(1 -β). (1 -σ 1 ).(1 -γ 1 ) (1 -α).(1 -β) ω 1 = abc d (α, β 1 , σ 1 , 0) (1 -α).(1 -β 1 ).(1 -σ 1 ) (α, β, σ, 0) (1 -α).(1 -β).(1 -σ) ω 2 = abcd (α, β 1 , 0, 0) (1 -α).(1 -β 1 ) (α, β, 0, 0) (1 -α).(1 -β) ω 3 = abc d (α, β 1 , 0, γ 2 ) (1 -α).(1 -β 1 ).(1 -γ 2 ) (α, β, 0, γ) (1 -α).(1 -β).(1 -γ) ω 4 = a bcd (α, 0, 0, 0) (1 -α) (α, 0, 0, 0) (1 -α) ω 5 = a bc d (α, 0, 0, γ 3 ) (1 -α).(1 -γ 3 ) (α, 0, 0, γ) (1 -α).(1 -γ) ω 6 = a bcd (α, 0, σ 2 , γ 4 ) (1 -α).(1 -σ 2 ).(1 -γ 4 ) (α, 0, σ, γ) (1 -α).(1 -σ).(1 -γ) ω 7 = a bc d (α, 0, σ 2 , 0) (1 -α).(1 -σ 2 ) (α, 0, σ, 0) (1 -α).(1 -σ) ω 8 = ābcd (0, 0, σ 1 , γ 1 ) (1 -σ 1 ).(1 -γ 1 ) (0, 0, σ, γ) (1 -σ).(1 -γ) ω 9 = ābc d (0, 0, σ 1 , 0) (1 -σ 1 ) (0, 0, σ, 0) (1 -σ) ω 10 = ābcd (0, 0, 0, 0) 1 (0, 0, 0, 0) 1 ω 11 = ābc d (0, 0, 0, γ 2 ) (1 -γ 2 ) (0, 0, 0, γ) (1 -γ) ω 12 = āb cd (0, β 2 , 0, 0) (1 -β 2 ) (0, β, 0, 0) (1 -β) ω 13 = āb c d (0, β 2 , 0, γ 3 ) (1 -β 2 ).(1 -γ 3 ) (0, β, 0, γ) (1 -β).(1 -γ) ω 14 = āb cd (0, β 2 , σ 2 , γ 4 ) (1 -β 2 ).(1 -σ 1 ).(1 -γ 4 ) (0, β, σ, γ) (1 -β).(1 -σ).(1 -γ) ω 15 = āb c d (0, β 2 , σ 2 , 0) (1 -β 2 ).(1 -σ 1 ) (0, β, σ, 0) (1 -β).(1 -σ)
Table 3.4: Vectors and weights associated to configurations of the π-pref net in Figure 3.6. In the last two columns the symbolic weights associated to the violation of a preference are the same in all contexts

As we can observe on Figure 3.5, in case we use different symbolic weights according to the context, there is a unique worst configuration here ω 6 = s lēr, while there are several non-comparable non-dominated configurations, namely ω 3 = slēr, ω 5 = s ler, ω 9 = sler and ω 13 = s lēr. As for regular π-pref nets, when there is a unique symbolic weight per variable (see Table 3.2 and Figure 3.3), we have more comparisons between configurations using the obtained partial order, in agreement with the number of violated preferences (see discussion in Chapter 1 Section 1.2.2).

Obviously, we might have used a qualitative variant of Equation 3.5, where we use min in place of product. However, for the same reason (drowning effect) as in a regular π-pref net, product is to be preferred to the min.

Use of bi-valued possibility distributions

We have seen the interest of privileging either 1 or 0 in the comparison process. We may wonder what would be obtained if we just consider 1 and 0 as satisfaction degrees, i.e.,

ω 0 abcd 1 -(1 -α).(1 -β 1 ).(1 -σ 1 ).(1 -γ 1 ) ω 1 abc d 1 -(1 -α). (1 -β 1 ).(1 -σ 1 ) ω 2 abcd 1 -(1 -α).
(1 -β 1 )

ω 3 abc d 1 -(1 -α). (1 -β 1 ).(1 -γ 2 ) ω 4 a bcd 1 -(1 -α) ω 5 a bc d 1 -(1 -α).
(1 -γ 3 )

ω 6 a bcd 1 -(1 -α). (1 -σ 2 ).(1 -γ 4 ) ω 7 a bc d 1 -(1 -α).
(1 -σ 2 )

ω 8 ābcd 1 -(1 -σ 1 ).
(1 -γ 1 )

ω 9 ābc d 1 -(1 -σ 1 ) ω 10 ābcd 0 ω 11 ābc d 1 -(1 -γ 2 ) ω 12 āb cd 1 -(1 -β 2 ) ω 13 āb c d 1 -(1 -β 2 ).
(1 -γ 3 )

ω 14 āb cd 1 -(1 -β 2 ). (1 -σ 1 ).(1 -γ 4 ) ω 15 āb c d 1 -(1 -β 2 ).
(1 -σ 1 ) Figure 3.7: Pareto graph of π-pref nets in Figure 3.6 we assign to the preferred (or good) value of X the highest preference degree possible and to its bad value the least possible preference degree. This means that given the preference statement u : x x then π(x|u) = 1 and π(x|u) = 0.

In this case the components of quality vectors are made of 1 or 0. Then the Pareto ordering yield a partial order such that there is a unique best configuration (where all satisfaction degrees are equal to 1) and a unique worst configuration (where all satisfaction degrees are equal to 0). This situation is illustrated in Example 3.10. Let us finally remark that if we want to keep the benefits of both privileging 1 and 0 in the scale and having intermediary degrees in between, we have to handle quality vectors where we can apply, in comparisons the inequalities 1 > α and β > 0 for any symbolic weight α and β. This situation is discussed in the next section.

Ω Ω Ω ω ω ω π(ω) π(ω) π(ω) ∆(ω) ∆(ω) ∆(ω) ω 0 abcd (1, 1, 1, 1) 1 1 ω 1 abc d (1, 1, 1, 0) 0 1 ω 2 abcd (1, 1, 0, 0) 0 1 ω 3 abc d (1, 1, 0, 1) 0 1 ω 4 a bcd (1, 0, 0, 0) 0 1 ω 5 a bc d (1, 0, 0, 1) 0 1 ω 6 a bcd (1, 0, 1, 1) 0 1 ω 7 a bc d (1, 0, 1, 0) 0 1
ω 8 ābcd (0, 0, 1, 1) 0 1 ω 9 ābc d (0, 0, 1, 0) 0 1 ω 10 ābcd (0, 0, 0, 0) 0 0 ω 11 ābc d (0, 0, 0, 1) 0 1 ω 12 āb cd (0, 1, 0, 0) 0 1

ω 13 āb c d (0, 1, 0, 1) 0 1 ω 14 āb cd (0, 1, 1, 1) 0 1 ω 15 āb c d (0, 1, 1, 0) 0 1
Table 3.5: Vectors and weights associated with configurations of π-pref net in Figure 3.8

Use of non-normalized distributions

In the variant presented in this subsection, we abandon the options of putting to 1 all the weights corresponding to satisfactory situations, or to 0 all the weights corresponding to violated preferences.

In possibility theory, the totally ordered unipolar numerical scale [0, 1] is used to encode preferences and information in general. A normalized π has at least an element whose satisfaction degree is equal to 1 and not necessarily another element with satisfaction degree equal to 0. A choice associated with the lowest degree expresses that the choice is completely rejected, while the highest value is neutral and does not ensure the complete satisfaction of the user about it. Similarly, an anti-normalized guaranteed possibility distribution has at least an element whose satisfaction degree is equal to 0, and has not necessarily an element with satisfaction degree equal to 1.

It is tempting to wonder what happens if we use a scale without 0 and without 1.

Then, we go out of the scope of possibility theory, we have no longer any chain rule but we can still work with quality vectors. This is what we discuss now.

A simple way of encoding a conditional preference u : x

x is to assign to the good value of X a degree ψ strictly higher than the one assigned to its bad value, namely ψ(x|u) = α + and ψ(x|u) = α -such that ψ(x|u) > ψ(x|u). We grant the agent the total freedom to instantiate these degrees with values in the open interval (0, 1).

Then for comparing quality vectors, we can only rely inequality of the type α + > α -, β + > β -, • • • , for each symbolic weight introduced in the encoding of the various preferences. In such a case, we have no longer, in general, a unique best configuration or a unique worst configuration.

As in the two previous sections, we study both the cases where there is a unique symbolic weight (with + or -) per node or if this weight depends on the context of the preference. The following example shows the kind of comparisons that are preserved with this approach: in case of different symbolic degrees per variable and parent value, we have obviously less comparisons than with the corresponding standard π-pref net or than with the reversed π-pref net in the sense of Section 3.4.1. Each configuration can only be compared to one other configuration. However, when symbolic degrees are unique per variable, we obtain a partial order that captures much more comparisons.

These comparisons are due to the deterioration of one or many variables' values.

induced from π-pref nets in the sense of Sections 3.2 and 3.4.1. 3.11 (b) (also depicted in Figure 3.11(a) by solid arrows) show that few pairs of configurations can be compared. All comparisons induced in this case lay between configurations that differ by a single flip value.

A B C D a α + ā α - a ā b β + β - b β -β + b b c σ + σ - c σ -σ + bc bc bc bc d γ + γ -γ -γ + d γ -γ + γ + γ - (a) A B C D a α + ā α - a ā b β 1 + β 2 - b β 1 - β 2 + b b c σ 1 + σ 2 - c σ 1 - σ 2 + bc bc bc bc d γ 1 + γ 2 - γ 3 - γ 4 + d γ 1 - γ 2 + γ 3 + γ 4 - (b) 
Ω Ω Ω ω ω ω ω ω ω ω 0 abcd (α + , β + , σ + , γ + ) (α + , β 1 + , σ 1 + , γ 1 + ) ω 1 abc d (α + , β + , σ + , γ -) (α + , β 1 + , σ 1 + , γ 1 -) ω 2 abcd (α + , β + , σ -, γ -) (α + , β 1 + , σ 1 -, γ 2 -) ω 3 abc d (α + , β + , σ -, γ + ) (α + , β 1 + , σ 1 -, γ 2 + ) ω 4 a bcd (α + , β -, σ -, γ -) (α + , β 1 -, σ 2 -, γ 3 -) ω 5 a bc d (α + , β -, σ -, γ + ) (α + , β 1 -, σ 2 -, γ 3 + ) ω 6 a bcd (α + , β -, σ + , γ + ) (α + , β 1 -, σ 2 + , γ 4 + ) ω 7 a bc d (α + , β -, σ + , γ -) (α + , β 1 -, σ 2 + , γ 4 -) ω 8 ābcd (α -, β -, σ + , γ + ) (α -, β 2 -, σ 1 + , γ 1 + ) ω 9 ābc d (α -, β -, σ + , γ -) (α -, β 2 -, σ 1 + , γ 1 -) ω 10 ābcd (α -, β -, σ -, γ -) (α -, β 2 -, σ 1 -, γ 2 -) ω 11 ābc d (α -, β -, σ -, γ + ) (α -, β 2 -, σ 1 -, γ 2 + ) ω 12 āb cd (α -, β + , σ -, γ -) (α -, β 2 + , σ 2 -, γ 3 -) ω 13 āb c d (α -, β + , σ -, γ + ) (α -, β 2 + , σ 2 -, γ 3 + ) ω 14 āb cd (α -, β + , σ + , γ + ) (α -, β 2 + , σ 2 + , γ 4 + ) ω 15 āb c d (α -, β + , σ + , γ -) (α -, β 2 + , σ 2 + , γ 4 -)
Table 3.6: Vectors and weights associated with configurations of networks in Figure 3.10 In case of preference encoding using different symbolic degrees per variable and context values, the only comparisons that are possible are those between configurations that differ by a single flip of value. We have been thus interested in answering the following question: What are the comparisons that the ceteris paribus property induced but not the Pareto strategy considering an encoding of preferences with non-normalized distributions ? Since CP-nets induce an ordering that implicitly stipulates that violating a parent node is more penalizing than violating child nodes, the answer could be that the uncovered comparisons are those induced from this property. This would confirm that such a structure is free from biased information. For instance, let us consider a conditional preference structure simply described over two decision variables. Next example treats this case. 

(a) = α + , ψ(ā) = α -, ψ(b|a) = β + 1 , ψ( b|a) = β - 1 , ψ(b|ā) = β - 2 , ψ( b|ā) = β + 2 .
The only possible comparisons based on the Pareto property are ab P areto a b and āb P areto āb (see solid arrows in Figure 3. 

14). When preferences are encoded with non-normalized distributions with equal degrees per variable and parent values, local tables associated with nodes hold the following specifications

ψ(a) = α + , ψ(ā) = α -, ψ(b|a) = ψ( b|ā) = β + , ψ( b|a) = ψ(b|ā) = β -

Conclusion

π-pref nets offer a flexible setting for representing preferences. The use of symbolic weights and possibly additional constraints between this symbolic weights enables us to have an approach which is not more committed than permitted by the available information.

When compared with CP-nets, it has been proved that π-pref nets can recover the dominance relations induced by CP-nets orderings by means of additional constraints between product of symbolic weights (which is a way to mimic the fact that father nodes are more important than children nodes). As pointed out in [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF],

π-pref nets provide a valuable way of computing in a polynomial time a good upper approximation of any CP-net. We have not mentioned OCF-networks [START_REF] Eichhorn | CP-and ocf-networks -a comparison[END_REF] which are indeed very close to π-pref nets. OCF-networks are based on Spohn's ordinal conditional functions (also called ranking function [Spohn, 2012], [Spohn, 1988], [START_REF] Eichhorn | CP-and ocf-networks -a comparison[END_REF]) can be transposed into the setting of possibility theory [START_REF] Dubois | Qualitative and semiquantitative modeling of uncertain knowledge -A discussion[END_REF]].

In the last part of this chapter, we have explored variants of the π-pref net approach,

showing the versatile nature of this type of approach based on possibility or possibilitylike distributions and comparisons on quality vectors. We have shown that the different variants may in general yield different partial orders, which are induced by different ways of cautiously representing the agent preferences. However, it is in practice quite desirable to obtain complete pre-orders. This is the concern of the next chapter.

Besides, the ultimate purpose to compactly represent preferences by graphical structures is to find an ordering on complete solutions given conditional preferences.

π-pref nets are positioned somewhat in between qualitative and quantitative models [Ben Amor et al., 2016a] due to the symbolic treatment of weights. Numerical π-pref nets may be of interest for learning purposes.

Chapter 4

Conditional Preferences as Defaults:

Possibilistic Approaches

Introduction

Chapter 1 has reviewed the best known forms of modeling preferences, while Chapters 2 and 3 have represented how to handle conditional preferences in the setting of possibility theory. More precisely, specifications can be represented by graphical networks or by possibilistic logic bases. When modeling preferences with π-pref nets, the Pareto dominance (equivalent to the product chain rule order) is a natural basis for comparing solutions: one is then preferred to another as soon as the latter violates the same preferences as the first one and some others.

Until now, we have been using a chain rule or an order principle on quality vectors allow us to rank order the set of possible choices. In this chapter, we propose another handling of conditional preference statements inspired by the treatment of default rules. In the setting of possibility theory setting, default rules are represented by constraints to which one may apply two information principles: the minimum, and maximum specificity [Dubois and Prade, 2015].

The application of the minimum specificity principle, applied to preferences, amounts to saying that a configuration is considered satisfactory unless preference statements say otherwise. In contrast, the maximum specificity principle amounts to saying that a configuration is considered unsatisfactory unless preference statements say otherwise. Applying such principles on preference specifications under default rules yields a complete pre-orders on the set of possible alternatives.

The aim of this chapter is to investigate and discuss the diverse orderings that can be inferred from preference specifications handled as default rules.

This chapter is divided in six main sections. Section 4.2 gives the necessary background on the possibilistic approach to reason on default rules encoding knowledge.

The next section details the diverse ways of reasoning on preferences in such a setting, then presents the default-like approach to preference handling, and compares orderings induced by the default rules and the Pareto order. In Section 4.4, we show that the complete pre-orders obtained have always three layers for particular structures, which may be insufficiently discriminant. In section 4.5, we present a modified algorithm that can remedy to excessive effects of minimum or maximum specificity principles regarding configurations that are not constrained. In Section 4.6, we show that there are preference statements that cannot be described neither by π-pref-nets nor by CPnets, but still can be handled by the "default-like" method. An experimental study, reported in Section 4.7, is proposed to confirm propositions and conjectures mentioned in this chapter.

Mind that in this chapter and in the next one, we no longer use the running example of chapters 1 to 3, but a slightly more sophisticated example necessary to exhibit some behaviours of interest.

The work reported in this chapter mainly rely on [Ben Amor et al., 2019] and to some extent on [Ben Amor et al., 2021a].

Background on possibilistic approach to default rules

A default rule [Pearl, 1990] of the form p q where p and q are Boolean propositions and is a non-classical arrow, modeling the rule "if p then generally q". Such rule divides the set of possible interpretations Ω into three parts: those that satisfy p but falsify q (ω |= p ∧ q), the models that verify both p and q (ω |= p ∧ q or ω |= p ∨ q), and the interpretations for which the rule cannot be fired, i.e., those that falsify p (ω |= p).

Such a rule is actually very similar to so-called conditional objects denoted by q|p [START_REF] Dubois | Conditional objects and non-monontonic reasoning[END_REF]]. More interestingly here, it also looks like the conditional preference p : q q.

In this section, we recall the approach on default rules offered by the possibility framework, in order to infer a ranking on the possible states of the world.

Given a set of default rules R = {r i : p i q i , i = 1, . . . , k} that represent a knowledge about the world, Benferhat et. al. [START_REF] Benferhat | Representing default rules in possibilistic logic[END_REF] gave a method that rank orders the set of alternatives Ω such that the more the configuration satisfies the rules in R, the higher is its possibility degree.

Given a default rules knowledge base R, C Π denotes the set of constraints modeling this rule. Namely a rule p q is understood in the possibilistic setting as a constraint Π(p ∧ q) > Π(p ∧ q) which means that if p is true then q true is more possible than q false. Let C Π be the set of constraints induced by R:

C Π = {c i : Π(p i ∧ q i ) > Π(p i ∧ qi ), r i : p i q i ∈ R} (4.1)
When representing knowledge in the possibilistic setting, a minimum specificity principle is applied which amounts to assessing the greatest possible possibility degree agreeing with the constraints to each interpretation. This is a least commitment principle since it does not restrict the interpretations that are possible to some extent abusively (see Section 4. [START_REF][END_REF].1 for more details).

Maximizing possibility degrees of interpretations according to the minimum specificity principle is achieved via the Algorithm 4.1 which outputs a well-ordered partition composed of sets E j of configurations [START_REF] Benferhat | Representing default rules in possibilistic logic[END_REF]. Remove from C Π all satisfied constraints (their left-hand side are consistent with solutions of E j )

6 j ← j + 1 7 end 8 return E
Given a set of constraints, the first step consists of finding interpretations that are never dominated. They can be derived from computing the negation of the disjunction of formulas that appear on the right side of constraints of C Π . In accordance with the minimum specificity principle, the resulting interpretations are then associated to the highest possibility degree (e.g. π(ω i ) = 1) and are assigned to the first partition E 0 .

Constraints that are satisfied are then deleted from C Π . The same process is repeated until no constraints are left. In a final step, the remaining interpretations of Ω are assigned to a final last level.

This procedure is illustrated by the following example. We have three bi-valued description variables C for Cancer, S for Smoking and Y for young. The universe of discourse is thus composed of 2 3 solutions, where Ω =

{ω 0 = ysc, ω 1 = ysc, ω 2 = ysc, ω 3 = ysc, ω 4 = ȳsc, ω 5 = ȳsc, ω 6 = ȳsc, ω 7 = ȳsc}.
Given R we can infer the set of constraints C Π (resp. C ∆ by replacing the measure Π by ∆ in all constraints) as follows

Π(c ∧ s) > Π(c ∧ s)= max(π(ω 0 ), π(ω 4 )) > max(π(ω 2 ), π(ω 6 )) Π(y ∧ c) > Π(y ∧ c)= max(π(ω 1 ), π(ω 3 )) > max(π(ω 0 ), π(ω 2 )) Π(ȳ ∧ s ∧ c) > Π(ȳ ∧ s ∧ c)= π(ω 7 ) > π(ω 6 ) Π(s ∧ y) > Π(s ∧ ȳ)= max(π(ω 0 ), π(ω 1 )) > max(π(ω 4 ), π(ω 5 ))
The optimistic approach consist thus on applying algorithm 4.1. The first iteration gives the first partition E 0 = {ω 1 , ω 3 , ω 7 } that corresponds to solutions that model

c ∧ s ∨ y ∧ c ∨ ȳ ∧ s ∧ c ∨ s ∧ ȳ.
All constraints except the first one are now satisfied, since there exists at least one solution in E 0 that figures on the left-hand side of them.

The second partition set is composed as follows E 1 = {ω 0 , ω 4 , ω 5 }. It groups solutions that are yet not ranked and that model c ∧ s. After satisfying and deleting the last constraint, the third iteration outputs the set E 2 = {ω 2 , ω 6 }. Furthermore, the partition obtained by applying the most specific distribution i. e. adapting a positive reasoning is E = {{ω 1 , ω 3 , ω 7 }, {ω 0 , ω 4 , ω 5 }, {ω 2 , ω 6 }}.

We now consider the application of the above approach to conditional preferences.

Default rules for preferences

At a semantic level, a conditional preference statement p : q q means that configurations that satisfy p ∧ q are preferred to configurations that satisfy p ∧ q. When dealing with single conditional preference. Let ω, ω such that ω |= p ∧ q and ω |= p ∧ q, we obtain the following preference relation

π(ω) > π(ω ) iff p : q q (4.2)
In the knowledge representation perspective of the previous section, the default rules were represented in terms of constrains expressed by possibility measures: we wrote that the maximum of the possibility degrees of models of p ∧ q are greater than the maximum of the possibility degrees of models of p∧ q, meaning that there is at least one model of p ∧ q that is more possible than any model of p ∧ q. This representation has proved to be appropriate for default rules [START_REF] Benferhat | Nonmonotonic reasoning, conditional objects and possibility theory[END_REF]]. However, this treatment in terms of possibility measures may be found to be too liberal for the intended meaning of the preference p : q q. Indeed, we may think of aggregating the possibility degrees on each side of the inequality in different ways. Namely,

⊕ {π(ω) : ω |= p i ∧ q i } > ⊗{π(ω ) : ω |= p i ∧ qi } iff p i : q i qi (4.3)
where ⊕ and ⊗ correspond to either the minimum or maximum operator. This can be related to possibility set functions Π and ∆ and considering conditional preferences, we thus can distinguish between four types of semantics that have been already considered in the literature [START_REF] Dubois | Ordinal and absolute representations of positive information in possibilistic logic[END_REF]] [Kaci and van der Torre, 2008] [Kaci, 2012] [Ben [START_REF] Amor | [END_REF]. We now recall these four types of reading conditional preferences. • Optimistic : p : q q encodes the claim "In the context of p, I prefer the best case in which q is true to the best case in which q is true". This is an optimistic reading focusing on best cases, formally expressed by Π(p ∧ q) > Π(p ∧ q), i.e.,

⊕ and ⊗ are both replaced by the max operator.

• Pessimistic: p : q q means that "In the context of p, I prefer the worst case in which q is true to the worst case in which q is true". This is a pessimistic reading focusing on worst cases, formally encoded by ∆(p ∧ q) > ∆(p ∧ q), i.e.,

⊕ and ⊗ are both replaced by the min operator.

• Opportunistic: p : q q can correspond to the specification "In the context of p, I prefer the best configurations in which q is true to the worst configurations in which q is true". This statement is formally expressed by the equation Π(p ∧ q) > ∆(p ∧ q), i.e., ⊕ = max and ⊗ = min.

• Cautious: p : q q can express a strong preference encoding the specification and is interpreted by the claim "In the context of p, I prefer the worst configurations in which q is true to the best configurations in which q is true". This statement is encoded by ∆(p ∧ q) > Π(p ∧ q), i.e., ⊕ = min and ⊗ = max.

Thus, the preferences of user may be understood in distinct ways, according to whether he stresses on what is rejected or on what is satisfactory. In this chapter, we only study the two first readings. Note that the optimistic and pessimistic readings cannot be compared in terms of strength, while the cautious one and the opportunistic one are respectively stronger and weaker than the optimistic and pessimistic readings.

The remaining readings are either too strong or too weak for being really of interest in the modeling of conditional preferences. Indeed, the cautious reading by forcing all the configurations where p ∧ q is true to be more satisfactory than any configuration where p∧ q is true does not leave any room for exceptions; this lack of flexibility sounds undesirable for local specifications of preferences. Note that we have not such a defect with the optimistic or pessimistic readings. The opportunistic reading, on the contrary guarantees only that one configuration where p ∧ q is true is more satisfactory than one configuration where p ∧ q is true; this is really weak as an understanding of the conditional preference. The reader is referred to [Kaci, 2012] for further discussions.

When dealing with the optimistic reading where we look for a possibility distribution π satisfying the constraints Π(p i ∧ q i ) > Π(p i ∧ qi ), we naturally apply the minimum specificity principle since we look for the less restrictive distribution. In the pessimistic reading we have constraints of the form ∆(p i ∧ q i ) > ∆(p i ∧ qi ), since the ∆ functions are decreasing, they are associated with an opposite principle, namely a maximum specificity principle1 , which assesses the smallest possible degrees in agreement with the constraints.

Given a π-pref net, the associated possibility distribution obtained by the chain rule and the corresponding Pareto ordering between configurations agree with the constraints in C Π expressing the preference statements of the π-pref net.

Proposition 4.1 Given a π-pref net, let π be the possibility distribution obtained by the product chain rule and π its associated preference relation between configurations of Ω. Let P areto be the preference relation on configurations of Ω obtained using the Pareto strategy. Let C Π be the set of default constraints expressing the preference statements p i : q i qi of the π-pref net. Then, ∀ω, ω ∈ Ω such that ω P areto ω i.e.

ω π ω , there exists no constraint c i ∈ C Π such that c i : Π(p i ∧ q i ) > Π(p i ∧ qi ) : ω |= p i ∧ qi , ω |= p i ∧ q i .
Proof 4.1 Let ω and ω be two configurations associated with their satisfaction vectors ω and ω . π(ω) > π(ω ) is known to be equivalent to ω P areto ω [Ben [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF] assuming one weight per preference statement. It means that for each vector component (corresponding to a variable) either the two components are equal with the same satisfaction degree, or the component of ω is 1 and the same component for ω is equal to some symbolic weight, say ρ, assuming ω P areto ω . Each inequality 1 > ρ, corresponds to an inequality of the form π( Thus the π-pref nets approach and the constraints of the "default rule" approach are in full agreement. To induce a ranking over the set of possible alternatives Ω, we apply exactly the same steps of Algorithm 4. 4.1, we infer the following respective constraints:

x i | u i ) = 1 > π( xi | u i ). If u i = u i this refers to a preference statement in a conditional table π(x i | u i ) = 1 > π( xi | u i ) equivalent as already said to the constraint Π(u i ∧ x i ) > Π(u i ∧ xi ). If u i = u i ,
c i (Π(p i ∧ q i ) > Π(p i ∧ qi ). Thus C Π = {(LC(c i ), RC(c i )} where LC(c i ) = {ω : ω |= p i ∧ q i , r i : p i q i } and RC(c i ) = {ω : ω |= p i ∧ qi , r i : p i q i }.
d A B C D a 1 ā α a ā b 1 β b β 1 b b c 1 σ c σ 1 bc bc bc bc d 1 γ γ 1 d γ 1 1 γ (a) A B C D a 1 ā α a ā b 1 β 2 b β 1 1 b b c 1 σ 2 c σ 1 1 bc bc bc bc d 1 γ 2 γ 3 1 d γ 1 1 1 γ 4 (b)
c 0 : max(π(ω 0 ), . . . , π(ω 7 )) > max(π(ω 8 ), . . . , π(ω 15 )) c 1 : max(π(ω 0 ), . . . , π(ω 3 )) > max(π(ω 4 ), . . . , π(ω 7 ))
c 2 : max(π(ω 12 ), . . . , π(ω 15 )) > max(π(ω 8 ), . . . , π(ω 11 ))

c 3 : max(π(ω 0 ), π(ω 1 ), π(ω 8 ), π(ω 9 )) > max(π(ω 2 ), π(ω 3 ), π(ω 10 ), π(ω 11 )) c 4 : max(π(ω 6 ), π(ω 7 ), π(ω 14 ), π(ω 15 )) > max(π(ω 4 ), π(ω 5 ), π(ω 12 ), π(ω 13 )) c 5 : max(π(ω 0 ), π(ω 8 )) > max(π(ω 1 ), π(ω 9 )) c 6 : max(π(ω 3 ), π(ω 11 )) > max(π(ω 2 ), π(ω 10 )) c 7 : max(π(ω 5 ), π(ω 13 )) > max(π(ω 4 ), π(ω 12 )) c 8 : max(π(ω 6 ), π(ω 14 )) > max(π(ω 7 ), π(ω 15 ))
Constraints in C Π of Example 4.2 are rewritten as tuples as follows: 

c 2 : LC(c 2 ) = {ω 12 , . . . , ω 15 }, RC(c 2 ) = {ω 8 , . . . , ω 11 } c 4 : LC(c 4 ) = {ω 6 , ω 7 , ω 14 , ω 15 }, RC(c 4 ) = {ω 4 , ω 5 , ω 12 , ω 13 } c 6 : LC(c 6 ) = {ω 3 , ω 11 }, RC(c 6 ) = {ω 2 , ω 10 } c 7 : LC(c 7 ) = {ω 5 , ω 13 }, RC(c 7 ) = {ω 4 , ω 12 } c 8 : LC(c 8 ) = {ω 6 , ω 14 }, RC(c 8 ) = {ω 7 , ω 15 }
The left solutions to be ranked are Ω \ {ω 0 }. In a second iteration, we get E 1 = {ω 1 , ω 3 , ω 6 , ω 14 }. The verified constraints to be deleted from C Π are c 2 , c 4 , c 6 and c 8 leaving a unique formula to satisfy which is

c 7 : LC(c 7 ) = {ω 5 , ω 13 }, RC(c 7 ) = {ω 4 , ω 12 }
The set Ω is updated and now composed of configurations Ω ∩ {ω 1 , ω 3 , ω 6 , ω 14 }.

Therefore, the set E 2 is composed of all left elements in Ω except of ω 4 and ω 12 that compose RC(c 7 ). We get E 2 = {ω 2 , ω 5 , ω 7 , ω 8 , ω 9 , ω 10 , ω 11 , ω 13 , ω 15 }. The last remaining constraint c 7 is now satisfied and the last partition set is composed of Observe that in the graph of Figure 4.2, the length of the longest sequence of comparisons is 5. This means that assimilating incomparability with indifference we would lead to 5 layers in a resulting well-ordered partition2 . However, the order obtained with the default rules method has only 4 layers, which may suggest a lack of discrimination.

E 3 = {ω 4 , ω 12 }.

Minimum specificity ordering Levels Cardinality ordering {ω

0 } 1 {ω 0 } {ω 1 , ω 3 , ω 6 , ω 14 } 2 {ω 1 , ω
ω 0 abcd 1 ω 1 abc d γ 1 ω 2 abcd σ 1 γ 2 ω 3 abc d σ 1 ω 4 a bcd β 1 σ 2 γ 3 ω 5 a bc d β 1 σ 2 ω 6 a bcd β 1 ω 7 a bc d β 1 γ 4 ω 8 ābcd αβ 2 ω 9 ābc d αβ 2 γ 1 ω 10 ābcd αβ 2 σ 1 γ 2 ω 11 ābc d αβ 2 σ 1 ω 12 āb cd ασ 2 γ 3 ω 13 āb c d ασ 2 ω 14 āb cd α ω 15 āb c d αγ 4
Lastly, taking a closer look to the obtained optimistic default rules order, we notice that, not only the chain rule entails more preference levels than the optimistic ordering when the minimal specificity principle is applied (which is unsurprising), but also that the orderings are not in full agreement. For instance, we have ω 10 ω 12 (and ω 10 ω 4 ) considering the default order while we have ω 12 ω 10 (ω 4 ω 10 if symbolic degrees are equal) given the chain rule distribution (or the Pareto order).

As mentioned before, the product chain rule agrees with the ordering of inclusion between subsets of nodes associated with violated preferences, and thus ranks alternatives according to the number of violated nodes, whereas, the specificity algorithm just finds the most compact ordering where constraints are respected. Nevertheless, the two approaches lead to distinct results that are not fully compatible, since it may be the case that ∃ ω ∈ Ω such that for the chain rule approach ω ω whereas for the minimum specificity based approach ω ω .

We can see that in Example 4.2, the worst configuration ω 10 = ābcd is ranked on the lowest level by the product chain rule with no outgoing arrows (see Figure 4.2 and right column of Table 4.1), whereas it appears in the third level based on the minimum specificity approach being ranked as preferred to ω 4 and ω 12 . This is due to the fact that in the third iteration the unsatisfied constraint c 7 do not prevent ω 10 from being higher than the remaining configurations ω 4 and ω 12 .

In Section 4.5, we shall present an improved algorithm that avoids this kind of phenomenon.

Pessimistic approach on default preferences

The minimum specificity Algorithm 4.1 outputs a well-ordered partition that clusters the worst configuration(s) with other less preferred ones in the same set. This can be explained by the focus on the best models of formulas. It does not provide information on the least preferred models. In order to better understand results of the optimistic preference interpretation approach, we also process preference statements using the maximum specificity principle with constraints expressed in terms of guaranteed possibility function ∆(.) (Equation 2.5). Let us recall that ∆(P ) = α expresses that all the models of P are satisfactory at least at a degree α. The focus is thus directed towards the minimal degree of satisfaction over a set of choices.

In contrast, if we understand the default rule p q as the conditional constraint ∆(p ∧ q) > ∆(p ∧ q) (pessimistic view). p ∧ q is evaluated by its worst configuration [Benferhat et al., 2002b]. Such a view of a default rule can be similarly handled by the opposite principle, i.e., maximum specificity principle 3 . Let C ∆ denote the set of constraints derived from the rules in R under a pessimistic semantics. Hence, C ∆ is formally composed of

C ∆ = {c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ), r i : p i q i ∈ R} (4.4)
The following proposition establishes the agreement of the Pareto ordering with the constraints set C ∆ expressing the preference statements.

Given a π-pref net, the associated possibility distribution obtained by the chain rule and the corresponding Pareto ordering between configurations agree with the constraints in C ∆ expressing the preference statements of the π-pref net.

Proposition 4.2 Given a π-pref net, let π be the possibility distribution obtained by the product chain rule and π its associated preference relation between configurations

of Ω. Let P areto be the preference relation on configurations of Ω obtained using the Pareto strategy. Let C ∆ be the set of default constraints expressing the preference statements p i : q i qi of the π-pref net. Then, ∀ω, ω ∈ Ω such that ω P areto ω i.e.

ω π ω , there exists no constraint c i ∈ C ∆ such that c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ) : ω |= p i ∧ qi , ω |= p i ∧ q i .
Proof 4.2 Let ω and ω be two configurations associated with their satisfaction vectors ω and ω . δ(ω) > δ(ω ) is equivalent to ω P areto ω since each vector holds weights [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF] assuming one weight per preference statement. It means that for each vector component (corresponding to a variable) either the two vectors are equal with the same satisfaction degree, or the component of ω is 0 and the same component for ω is equal to some symbolic weight, say ρ, assuming ω P areto ω. Each inequality ρ > 0, corresponds to an inequality of the form δ( To compare with the optimistic approach, the maximum specificity principle on defaults permits to rank order configurations going from the worst to the best ones such as all constraints in C ∆ are satisfied. However, as for the minimum specificity principle, the ordering obtained with the maximum specificity principle may present some contradictions with the chain rule ordering. For instance, in the following Example 4.3 which adopts a pessimistic approach to find a ranking on choices, one can check that the best configuration ω 0 is considered less preferred to ω 6 and ω 14 . This is also due to a lack of constraints that forces ω 0 to be ranked better than ω 6 and ω 14 . The second partition set E 1 = {ω 4 , ω 9 , ω 11 , ω 12 } satisfying constraints c 1 , c 4 , c 5 and c 7 .

x i | u i ) = ρ > ( xi | u i ) = 0. If u i = u i this refers to a preference statement in a conditional table δ(x i | u i ) = ρ > δ( xi | u i ) = 0 equivalent as already said to the constraint ∆(u i ∧ x i ) > ∆(u i ∧ xi ). If u i = u i ,
Then E 2 is constructed holding configurations E 2 = {ω 0 , ω 1 , ω 2 , ω 3 , ω 5 , ω 7 , ω 8 , ω 13 , ω 15 }.
The last remaining constraint c 8 is thus satisfied and the last level is composed of 

E 3 = {ω 6 , ω 14 }.

Well-ordered partition induced by a conditional preference graph

As explained in Section 4. [START_REF][END_REF].1 of this chapter, when the user adopts an optimistic mind, a preference statement of the form x 1 x 2 . . . x N : x x, where X 1 , X 2 , . a ranking of configurations can then be achieved. However, in such a case whatever the number of variables the number of layers will remain equal to 3. As we shall see in this section, this behaviour is quite general for a family of graph structure, for instance a path graph structure leads also to 3 layers whatever its length. In the following, we study graph structures that always lead to 3 layers and we indicate some way of modifying the structure in order to have more layers.

First let us consider the case of a path graph, where each variable has exactly one variable as a parent (except for the root one) and the graph forms a single path (as on Figure 4.3). Hence, when variables are sorted in a topological order, conditional preference constraints are of the form x i :

x i+1 > xi+1 such that {x i+1 , xi+1 } ∈ X i+1 . X 1 X 2 . . . X N -1 X N Figure 4.3: A linear DAG
Interpreting conditional preference statements as possibilistic constraints under the minimum specificity principle, any conditional preference path graph results into a well-ordered partition of solutions with exactly 3 layers. 

Proposition 4.3 Let C Π = {c i : Π(p i ∧ q i ) > Π(p i ∧ qi ), p i : q i qi | i = 1, . . . ,
i-1 ∧ x i x i-1 ∧ x i for the preferred instantiation of the parent X i-1 and x i-1 ∧ x i x i-1 ∧ x i for its negation.
The non-dominated solution is unique and is defined by:

x1 ∨ N i=2 (x i-1 ∧ xi ) ∨ N i=2 (x i-1 ∧ x i ) = x 1 ∧ N i=2 (x i-1 ∨ x i ) ∧ N i=2 (x i-1 ∨ xi ) = ∧ N i=1 x i
At the end of this iteration, the root constraint and the children constraints in the context of preferred parents configurations are satisfied by this best solution and can be deleted. The remaining constraints are x i-1 ∧x i x i-1 ∧x i , i = 1, . . . N . The dominated solutions are the models of N i=2 x i-1 ∧x i . The non-dominated ones are thus of the form

N i=2 x i-1 ∨ x i .
This formula is consistent with the left-hand sides of the constraints x i-1 ∧x i x i-1 ∧x i since they have in common the solution ∧ N i=1 x i . Hence the solutions can be ranked in three levels: ∧ N i=1 x i at the top forming E 0 , and N i=2 x i-1 ∧ x i at the bottom forming E 2 , the rest being of the form

E 1 = ( N i=2 x i-1 ∧ x i ) ∧ ∨ N i=1 x i .
The same result can be generalized for orders induced by the maximum specificity principle. Indeed, a preference statement of the form x 1 x 2 : x x is translated into the constraint ∆(x 1 x 2 x) > ∆(x 1 x 2 x), simply written by x 1 x 2 x x 1 x 2 x, under a pessimistic mind. The set of such constraints expressing specifications of a conditional preference network can infer a ranking of configurations (as explained in 4.3.2 to induce an ordering that verifies the same property as in Proposition 4. [START_REF][END_REF].

Interpreting conditional preference statements as possibilistic constraints under the maximum specificity principle , any conditional preference path graph results into a well-ordered partition of solutions with exactly 3 layers.

Proposition 4.4 Let C ∆ = {c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ), p i : q i qi | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E ∆ be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C ∆ . Then, any conditional preference path graph results into a partition E ∆ of exactly 3 layers.

Proof 4. 4 Following the same reasoning as for Proof 4.3, constraints of a path graph conditional preference network are categorized in three sets of formulas: x 1 xi for the root node, x i-1 ∧ x i x i-1 ∧ x i for the preferred context of the parent X i-1 of the remaining nodes and x i-1 ∧ x i x i-1 ∧ x i for its negation. The first iteration of the algorithm permits to find the worst solution which is unique. It never appears on the left-hand side of constraints which means that it is defined by:

x 1 ∨ N i=2 (x i-1 ∧ x i ) ∨ N i=2 (x i-1 ∧ x i ) = x1 ∧ N i=2 (x i-1 ∨ x i ) ∧ N i=2 (x i-1 ∨ x i ) = ∧ N i=1 x i
After putting the dominated solution in the first level E 0 = ∧ N i=1 x i , the root constraint and the children constraints in the context of less preferred parents configurations are satisfied. The remaining constraints are

x i-1 ∧ x i x i-1 ∧ x i .
The second set of dominated solutions consist of models of the form N i=2 x i-1 ∨ x i . This formula is consistent with the right-hand sides of the remaining constraints, namely the dominated solutions, which are of the form N i=2 x i-1 ∧ xi , since they have in common the solution x i . Therefore the bottom level is composed of solutions of the form

E 2 = N i=2 x i-1 ∧ xi and N i=2 x i-1 ∨ x i form the intermediate remaining level E 1 .
Actually, the number of layers for ordering preferences using the constraint based algorithm increases by adding edges between the grandparent nodes and those of children nodes. The following example represents an illustration that confirms this claim. If we consider the path graph on Figure 4.4, the minimum specificity principle ranks configurations within a 3 layer set, namely E = {{ω 0 }, {ω 1 , ω 3 , ω 7 }, {ω 2 , ω 4 , ω 5 , ω 6 }}.

Using the pessimistic reasoning approach, preference specifications translate to the same constraints previously announced where the possibilistic measure Π is replaced by the guaranteed possibility measure ∆. The induced well-ordered partition of specifications in Figure 4.5 E is composed of 4 layers:

E 0 = {ω 5 }, E 1 = {ω 3 , ω 4 , ω 6 }, E 2 = {ω 1 , ω 2 , ω 7 } and E 3 = {ω 0 }.
After the first iteration, configurations in subset E 0 satisfy constraints c 0 , c 2 and c 5 . After the second iteration, the partition set satisfies all remaining constraints except of c 3 which adds two subset layers in E namely E 2 , that makes c 3 true, and E 3 . If we consider network in Figure 4.4, the default algorithm yields the well-ordered partition E = {{ω 5 }, {ω 2 , ω 4 , ω 6 }, {ω 0 , ω 1 , ω 3 , ω 7 }} which is composed of only 3 layers.

In fact, adding edges from a parent node to a grand-children node has not always the effect of increasing the number of layers. However, it is possible to have more than layers by adding edges from parents to grand-children in appropriate places in a path graph. However, given a fixed number N of decision variables, the size of the order obtained from the completely connected DAG structure corresponds to the maximum number of levels that can be obtained for any structure defined on N variables. See the following Example 4.5 that describes orderings induced from networks that describe preferences over 4 decision variables. Figure 4.6. Table 4.3 give orderings induced from these networks. The network structures in Figures 4.1 and 4.6(a) both hold one arc from a grand-parent to a child node and both induce an ordering composed of 4 layers. Adding an arc from a grand-grand-parent to a child node does not have an impact on the number of layers of the induced ordering (see results relative to Figure 4.6(b) for example). Figure 4.6(c) combine dependencies between grand-parent node generations described by the mentioned networks, i.e., A → C and B → D. The number of the induced well-ordered partition remains unchanged with 4 levels. Moreover, combining arcs between grand-parents and children, and between grand-grand-parents and children does not effect the number of the partition layers (see orderings of network in Figure 4.6(e) ). However in the completely connected DAG structure in Figure 4.6(c), the induced default ordering is defined on 5 layers, unlike other networks defined on 4 layers. Whatever the topology of the graph and whatever the specificity principle, if the network does not hold edges from the grandparents nodes to children nodes, the number of elements forming the well-ordered partition remains constant and equal to 3.

Example 4.5 Given 4 decision variables A, B, C and D the set of configurations Ω is the same as defined in Example 4.2. Let us consider networks in

The following propositions confirm this claim for topologies of Figure 4.7 and Figure 4.8, respectively.

Given any conditional preference network with one parent node and N -1 children, the well-ordered partition of configurations output by the minimum specificity principle based algorithm has exactly 3 layers. Given any conditional preference network with one parent node and N -1 children, the well-ordered partition of configurations output by the maximum specificity principle based algorithm has exactly 3 layers. Under the maximum specificity principle configurations on both hand-sides of constraints remain the same while ∆ takes the place of Π. The well-ordered partition induced from the pessimistic reasoning is E = {{ω 9 }, {ω 6 , ω 8 , ω 10 , ω 11 , ω 12 , ω 13 , ω 14 , ω 15 }, {ω 0 , ω 2 , ω 3 , ω 4 , ω 5 , ω 7 }}. It is indeed composed of 3 levels. Configurations of the first layer validate constraints c 0 ,c 2 , c 4 and c 6 . Those in the second layer verify the remaining ones. In addition of confirming Propositions 4.5 and 4.6, this result also confirms that, for such structure, the graph size does not impact the number of the partition layers.

Proposition 4.5 Let

C Π = {c i : Π(p i ∧ q i ) > Π(p i ∧ qi ), p i : q i qi | i = 1, .
Proposition 4.6 Let C ∆ = {c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ), p i : q i qi | i = 1, . . . ,
= x1 N i=2 x i , E 1 = x1 ∨ xi and E 2 = x 1 xi .
Given any conditional preference network with N -1 independent parent nodes and one child variable, the well-ordered partition of configurations output by the minimum specificity principle based algorithm has exactly 3 levels.

Proposition 4.7 Let C Π = {c i : Π(p i ∧ q i ) > Π(p i ∧ qi ), p i : q i qi | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E Π be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C Π . Then, any conditional preference network with N -1 independent parent nodes and one child variable results into a partition E Π of exactly 3 layers.

Proof 4.7 Assume the graph G of Figure 4.8. In the same vein as Propositions 4.3 and 4.5, parent nodes bear constraints

x i xi for i = 1,• • • , N -1. Denote by u the disjunction of parents configurations such that x N is preferred to xN , where it is supposed that u satisfies ∧ N -1 i=1 x i and ū satisfies ∧ N -1 i=1 xi .
The remaining conditional constraints at step 2 reduce to ux N ux N and ūx N ūx N . Obviously we get 3 levels again.

Given any conditional preference network with N -1 independent parent nodes and one child variable, the well-ordered partition of configurations output by the maximum specificity principle based algorithm has exactly 3 levels.

Proposition 4.8 Let C ∆ = {c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ), p i : q i qi | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E Π be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C ∆ . Then, any conditional preference network with N -1 independent parent nodes and one child variable results into a partition E ∆ of exactly 3 layers. Preference constraints are

C Π = {c 0 = Π(a) > Π(ā), c 1 = Π(b) > Π( b), c 2 = Π(abc) > Π(abc), c 3 = Π(a bc) > Π(a bc), c 4 = Π(ābc) > Π(ābc), c 5 = Π(ā bc) > Π(ā bc)}.
The first layer of the well-ordered partition induced from the minimum specificity postulate is composed of the unique optimal configuration: ω 0 . This makes constraints c 0 , c 2 , c 4 and c 6 verified. The second partition layer is composed of configurations {ω 1 , ω 2 , ω 4 , ω 7 } satisfying therefore all the remaining constraints, namely c 1 , c 3 and c 5 . The last unranked configurations in Ω compose the final layer. The well-ordered partition is thus divided in 3 levels of subsets.

Adopting a pessimistic point of view, specifications are translated into constraints using the measure ∆. Solutions of both sides constraints remain unchanged. The first partition level is composed of the unique worst configuration namely ω 6 which verifies constraints c 0 , c 1 and c 5 . The second layer is holds configurations {ω 1 , ω 3 , ω 5 , ω 7 }. The remaining constraints are satisfied and the last partition set contains {ω 0 , ω 2 , ω 4 }.

The last result considers a more general structure (see Figure 4.11) we call quasilinear and subsumes the preceding results.

Consider a conditional preference network G = {X , E}, where the set

X of variables is partitioned in X 1 ,• • • , X N . Suppose ∀j ∈ [1, m], each variable X ∈ X i has its parents only at the previous level i -1, i.e., U X ⊆ X i-1 ∀X ∈ X i .
The minimum specificity principle results in a well-ordered 3-partition of solutions.

Proposition 4.9 Let

C Π = {c i : Π(p i ∧q i ) > Π(p i ∧ qi ), p i : q i qi | i = 1, . . . ,
k} be the set of possibilistic default constraints. Let E Π be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C Π . Consider a conditional preference network G = {X , E}, where the set

X of variables is partitioned in X 1 ,• • • , X N . Suppose ∀j ∈ [1, m], each variable X ∈ X i has its parents only at the previous level i -1, i.e., U X ⊆ X i-1 ∀X ∈ X i . Then, any conditional preference network G results into a partition E Π of exactly 3 layers. Proof 4.9 ∀i = 2,• • • , N all nodes X i ∈ X i are associated to the conditional con- straints u i x i u i xi and u i x i u i x i , where u i is the disjunction of configurations of U X i such that x i is preferred to xi , plus x 1 x 1 for nodes X 1 ∈ X 1 . Assum- ing X i-1 ∈U X i x i |= u i and X i-1 ∈U X i xi |= ūi , the non-dominated set E 0 reduces to ( X 1 ∈X 1 x 1 ) ∧ N i=2 X i ∈X i [( ūi ∨ x i ) ∧ (u i ∨ xi )] = X∈X x.
After deleting the satisfied constraints, the remaining ones are

∀X i ∈ X i , ūi xi ūi x i , ∀i = 2,• • • , N . The un- dominated set E 1 ∪E 0 forms the models of N i=2 X i ∈X i (u i ∨ xi ). We can easily check that ūi xi is consistent with E 1 since they share xi , ∀i = 2,• • • , N and ∀X i ∈ X i . By conse- quence the third element of the well-ordered partition E 2 equals N i=2 m j=1 X ij ∈X i ūi ∧x i .
Consider a conditional preference network G = {X , E}, where the set

X of variables is partitioned in X 1 ,• • • , X N . Suppose ∀j ∈ [1, m], each variable X ∈ X i has its parents only at the previous level i -1, i.e., U X ⊆ X i-1 ∀X ∈ X i .
The maximum specificity principle results in a well-ordered 3-partition of solutions.

Proposition 4.10 Let

C ∆ = {c i : ∆(p i ∧ q i ) > ∆(p i ∧ qi ), p i : q i qi | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E ∆ be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C ∆ .

Consider a conditional preference network G = {X , E}, where the set

X of variables is partitioned in X 1 ,• • • , X N . Suppose ∀j ∈ [1, m], each variable X ∈ X i has its parents only at the previous level i -1, i.e., U X ⊆ X i-1 ∀X ∈ X i . Then, any conditional preference network G results into a partition E ∆ of exactly 3 layers. Proof 4.10 ∀i = 2,• • • , N all nodes X i ∈ X i are associated to the conditional con- straints u i x i u i xi and u i x i u i x i , where u i is the disjunction of configurations of U X i such that x i is preferred to xi , plus x 1 x 1 for nodes X 1 ∈ X 1 . Assuming X i-1 ∈U X i x i |= u i and X i-1 ∈U X i xi |= ūi , the dominated set E 0 reduces to ( X 1 ∈X 1 x 1 )∧ N i=2 X i ∈X i [( ūi ∨ xi ) ∧ (u i ∨ x i )] = X∈X x.
After deleting the satisfied constraints, the remaining ones are

∀X i ∈ X i , u i x i u i xi , ∀i = 2,• • • , N . The dominated set E 1 ∪ E 0 forms the models of N i=2 X i ∈X i ( ūi ∨ xi ). We can easily check that ūi x i is consistent with E 1 since they share x i , ∀i = 2,• • • , N and ∀X i ∈ X i . By consequence the third element of the well-ordered partition E 2 equals N i=2 m j=1 X ij ∈X i u i ∧ x i .
Thus, up to very quite special graph structures, the default-like rules approach leads to a complete pre-order with only 3 levels which is not very discriminating. In 123 
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Improving possibilistic default rules-based orderings

The ordering generated by means of the default rules using some specificity principles not only leads to a sparsely discriminant ranking but can also lead to contradictions with the Pareto order. This only take place when symbolic weights of variables in the context of parents are equal (unique symbol per node). In fact, at some step of the ranking algorithm, some configurations might no longer appear in any of the remaining constraints, although they are assigned in a set in the partition, the highest or the lowest possible one, depending on whether we adopt the minimum or maximum specificity principle. [Ben Amor et al., 2021a].

In order to overcome this problem, we propose Algorithm 4.3 which is a new version of Benferhat et. al algorithm 4.1 that considers the same sets of inputs but checks at each iteration if there exists configurations that do not appear in any remaining constraint. These configurations are assigned to a set E Π (respectively E ∆ ) and are considered just not better than previously ranked configurations. Conf ig(C Π ) (respectively Conf ig(C ∆ )) returns all configurations in C Π (respectively C ∆ ). This improved version results in a partial order on configurations that could be in full compliance with the Pareto order. We illustrate this new algorithm in the Example 4.8.

Algorithm 4.3:

Ordering Ω using an optimistic approach (Improved version) ω 6 , ω 14

Input: Ω , C Π Output: E Π , E Π i = 0 while C Π = ∅ do foreach ω ∈ Ω do if ω / ∈ Conf ig(C Π ) then 5 E Π [i] = E Π [i] ∪ {ω}; 6 Ω = Ω \ {ω} end foreach ω ∈ Ω do foreach c ∈ C Π do 10 if ω / ∈ RC(c) then 11 E Π [i] = E Π [i] ∪ {ω} 12 Ω = Ω \ {ω} end end end foreach ω ∈ E Π [j] do foreach c ∈ C Π do if ω ∈ LC(c) then 19 C Π = C Π \ {c} end i = i + 1 end if Ω = ∅ then foreach ω ∈ Ω do E Π [i] = E Π [i] ∪ {ω} end Return E Π , E Π ω 0 ω 1 ω 3 , ω 6 , ω 14 ω 5 , ω 13 ω 4 , ω 12 E Π E Π E Π E Π ω 2 , ω 7 , ω 8 , ω 9 , ω 10 , ω 11 , ω 15
c 0 : a ā L(c 0 ) = {ω 0 , . . . , ω 7 }, R(c 0 ) = {ω 8 , . . . , ω 15 } c 1 : a : b b L(c 1 ) = {ω 0 , . . . , ω 3 }, R(c 1 ) = {ω 4 , . . . , ω 7 } c 2 : ā : b b L(c 2 ) = {ω 12 , . . . , ω 15 }, R(c 0 ) = {ω 8 , . . . , ω 11 } c 3 : b : c c L(c 3 ) = {ω 0 , ω 1 , ω 8 , ω 9 }, R(c 3 ) = {ω 2 , ω 3 , ω 10 , ω 11 }
ω 0 , ω 1 , ω 2 , ω 3 , ω 5 , ω 8 , ω 13 ω 7 , ω 15 ω 4 , ω 9 , ω 12 ω 10 ω 11 E ∆ E ∆ E ∆ E ∆ Figure 4
.13: Improved pessimistic ordering of π-pref net in Figure 4.1 4. 4. Preference specifications written under defaults are translated into the following constraints:

B A C D b β b 1 a α ā 1 ab a b a b āb c γ γ 1 γ c 1 1 γ 1 c c d 1 σ d σ 1
c 0 : ā a L(c 0 ) = {ω 8 , . . . ω 15 }, R(c 0 ) = {ω 0 , . . . ω 7 } c 1 : b b L(c 1 ) = {ω 4 , . . . ω 7 , ω 12 , . . . ω 15 }, R(c 1 ) = {ω 0 , . . . ω 3 , ω 8 , . . . ω 11 } c 2 : ab : c c L(c 2 ) = {ω 2 , ω 3 }, R(c 0 ) = {ω 0 , ω 1 } c 3 : ab : c c L(c 3 ) = {ω 6 , ω 7 }, R(c 3 ) = {ω 4 , ω 5 } c 4 : āb : c c L(c 4 ) = {ω 8 , ω 9 }, R(c 4 ) = {ω 10 , ω 11 } c 5 : āb : c c L(c 5 ) = {ω 14 , ω 15 }, R(c 5 ) = {ω 12 , ω 13 } c 6 : c : d d L(c 6 ) = {ω 0 , ω 4 , ω 8 , ω 12 }, R(c 6 ) = {ω 1 , ω 5 , ω 9 , ω 13 } c 7 : c : d d L(c 8 ) = {ω 3 , ω 7 , ω 11 , ω 15 }, R(c 8 ) = {ω 2 , ω 6 , ω 10 , ω 14 }.
The optimistic ordering E Π induced from Algorithm 4.1 is:

E Π 0 {ω 15 } E Π 1 {ω 2 , ω 3 , ω 6 , ω 7 , ω 8 , ω 12 , ω 14 } E Π 2 {ω 0 , ω 1 , ω 4 , ω 5 , ω 9 , ω 10 , ω 11 , ω 13 }
The optimistic ordering induced from the improved Algorithm 4.3 is represented by the following figure:

ω 15 ω 14 ω 2 , ω 3 , ω 6 , ω 7 , ω 8 , ω 12 E Π E Π E Π E Π ω 0 , ω 1 , ω 4 , ω 5 , ω 9 , ω 10 , ω 11 , ω 13
The default and Pareto strategies contradict each other on the preference relation between configurations ω 2 and ω 9 . Indeed, the Pareto order stipulates that ω 9 P areto ω 2

since ω 9 = (1, β, 1, σ) and ω 2 = (α, β, 1, σ), while both the classical and improved version of the partitioning procedure state that ω 2 Opt ω 9 .

This improved procedure showed the possibility of obtaining a partial pre-order that generally does not contradict the Pareto order (proofs on the topic represent forthcoming studies). In the next section, we show that there exist sets of conditional preferences that can be only handled by a default-like approach [Ben Amor et al., 2019].

From default preference rules to conditional preference networks

While conditional preference graphs can be turned into default preference bases, we consider the reverse transformation, i.e., whether from any preference rule base, a network of conditional constraints can be generated. We show that this is generally not the case. Preference networks lead to very specific default preference statements.

Contexts are always conjunctions of literals, which makes it possible the construction of corresponding conditional data tables. But general preference statements admit more general forms of contexts. Moreover preferences in networks are local in the sense that they deal with values of single variables only. Finally, information in a preference base can be insufficient to build a conditional preference graph as shown by counter-example 4.10.

Ω Ω Ω ω ω ω ω 0 abcd (α, β, γ, 1)

ω 1 abc d (α, β, γ, σ) ω 2 abcd (α, β, 1, σ) ω 3 abc d (α, β, 1, 1)
ω 4 a bcd (α, 1, γ, 1)

ω 5 a bc d (α, 1, γ, σ) ω 6 a bcd (α, 1, 1, σ) ω 7 a bc d (α, 1, 1, 1
)

ω 8 ābcd (1, β, 1, 1) ω 9 ābc d (1, β, 1, σ) ω 10 ābcd (1, β, γ, σ) ω 11 ābc d (1, β, γ, 1)
ω 12 āb cd (1, 1, γ, 1)
ω 13 āb c d (1, 1, γ, σ) ω 14 āb cd (1, 1, 1, σ) ω 15 āb c d (1, 1, 1 , 1) Table 4.4: 
Vectors associated with configurations of the π-pref net of Figure 4.14 Example 4.10 Let us consider the counterpart of the well-known "penguin" example in non-monotonic reasoning [START_REF] Benferhat | Representing default rules in possibilistic logic[END_REF][ [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. Let c, r and s now stand for "Chicken (C)", "Red wine (R)" and "Spicy plate (S)". Preference rules are {"With chicken, I prefer red wine", "If spicy, I prefer white wine" and "If spicy, I prefer chicken "}, where "white wine" is the negation of "red wine". It corresponds to constraints cr > cr, sr > sr, sc > sc using the minimum specificity principle.

It is well-known that in this example, we get a well-ordered 3-partition with [START_REF] Benferhat | Representing default rules in possibilistic logic[END_REF]][Ben Amor et al., 2019].

E 0 = s∧ (c ∨ r), E 1 = c ∧ r and E 2 = s ∧ (r ∨ c)
The rules indicate that values of C and R depend on S and R depend on C, hence the graph of Figure 4.15. However some information is missing to get a full preference graph:

• The absolute preference between s and s on node S (represented by s?s).

• The preference for chicken or not when the plate is not spicy is not given (represented by s : c?c).

• The preference about wine when the dish is not chicken nor spicy (represented by sc : f ? f ).

• The preference about wine when the chicken is spicy. From the given rules, this is a conflicting case represented by a double question mark in sc : r??r. In fact, S and C act as independent parents of R, which causes the conflict.

It is forbidden in a preference graph for a variable to have several parent groups.

The conflict between S and C is solved when applying minimum specificity ranking to the default rules (we conclude that s > s, that sc > sc, scr > scr and no preference between scr and scr. Clearly there is a gap between general default rule-like preferences and conditional preference networks. However, once we have computed the complete pre-order associated to the well-ordered partition of the configurations obtained by means of the minimum specificity principle for instance, we can obviously generate a conditional preference network from it (since this would solves the question marks in the previous example, for instance).

Experimental study

In this section, we propose to conduct an experimental study to support the propositions made in 4.4, to evaluate the expressiveness of the partitioning algorithms of Sections 4.3.1, 4.3.2 and 4.5, to finally compare their results with those of the Pareto ordering.

Experimental protocol

The first step of the experimental protocol is to generate a collection of conditional preference networks. To this end, we use the generation tool GenCPnet developed by Thomas E. [START_REF] Allen | Generating cp-nets uniformly at random[END_REF]. This generator produces uniformly random connected acyclic networks with specified set of constraints. It allows to vary different parameters, namely:

• the number of nodes n that we vary from n = 3 to n = 7;

• the maximum bound on the number of in-going edges also-called in-degree c that we vary from 1 to n -1;

• the size of variable's domain d that we fix to d = 2.

Enumerating the number of acyclic DAGs (not necessarily connected) on n nodes with labels in [1, . . . , n] have been studied in [Robinson, 1977]. This number is calculated by the recurrence expressed by the following Equation 4.5: The second part of the experiments is first dedicated to study the behaviour of the size of default partitions with regards to the graphical structures. We then study the behaviour of the percentage of the Pareto and default orderings contradictions with regards to the number of nodes, the existence or not of links between grand-parents and child nodes and the maximum in-degree of graphs.

a n = n k=1 (-1) k+1 C k n 2 k(n-k) a n-k . ( 4 
For this purpose, we generated a second benchmark with a total of 3600 networks, where for each (n, d) with n = [3, . . . , 7], we vary the value of c starting from c = 2.

For n = 3, we generated 100 conditional preference networks, 500 networks for n = 4

and 1000 networks for each of n = 5, n = 6 and n = 7. Descriptions about this data set are given in Tables 4.5 and 4.6. This benchmark is composed of a quarter of quasi-linear graphs and 3/4 of graphs with a maximum in-degree equal to 2. If we divide the data set into subsets according to the size of the graphs, the Table 4.5 gives the percentage of graphs that contain grand-parent -children links compared to those that do not. For instance, for n = 4, 69.8% of graphs contain at least one arc going from a node to a grand-son, while 30.2% contain none. The Table 4.6 describes the benchmark in terms of the maximum in-degree. For example, the set of networks with n = 3 are composed of 43% of graphs with c = 1 and 57% of graphs with c = 2.

Nb nodes

Graph structure Other Quasi-linear For both benchmarks, the set of preference statements of each network is translated into default rules and then to default constraints as explained in 4.3.1 and 4.3.2. Therefore, for the sets of constraints, we apply Algorithms 4.1 and 4.2 to find respectively the optimistic and pessimistic orderings on the set of configurations. In a first step, the behaviour of the partition sizes is studied. In a second step, the orderings are compared with the Pareto ordering. Finally, the improved partitioning procedure explained in 4.5 is performed to confirm the accordance of its induced ordering with the Pareto order. For all these experiments, we consider the Pareto order assuming one symbolic degree per variable.

The goals of the second experiment part are summarized in the following:

(i) check if there exists a correlation between the number of layers of the default well-ordered partition and the following parameters:

• the number of nodes;

• the existence or not of grand-children links;

• the graph's maximum in-degree;

(ii) (Part 2) compare the expressive power of the Pareto ordering compared with the default orderings;

(iii) check if there exists a correlation between the percentage of strict dominance relations induced from the default and Pareto orderings and the following parameters:

• the number of nodes;

• the graph's maximum in-degree;

(iv) check if there exists a correlation between the percentage of strong violations between the Pareto and the default orderings given one of the following parameters:

• the number of nodes;

• the existence or not of grand-children links;

• the graph's maximum in-degree;

(v) confirm that, for most networks, the ordering induced from the improved default partitioning procedure can totally or partially repair contradictions with the Pareto order.

These experiments are conducted on an Intel Core i7-7700HQ processor and 20Go workstation. The software tool and functions used for the experiments are programmed in JavaScript language.

Experimental results

In this subsection, we give the results of our experiments. The conclusions in this section are drawn from the experiments conducted on the data sets described above.

The first subsection gives results on the size of the ordering induced by the partitioning 

Results on the well-ordered partition size

The first part of the experiment carried out on the first benchmark had confirmed the propositions of Section 4. 4. Indeed, we found that the optimistic and pessimistic orderings of all the networks of the first benchmark are composed of exactly 3 levels.

Moreover, no contradictions with the Pareto ordering were detected, which would suggest that these violations are perhaps related to the in-degree of graphs and/or to the presence of links between parent and grand-children. Besides, based on the given experiment results, the assumption that there is any correlation between the strong violations between the default and Pareto orderings and the number of nodes in the graph can be discarded for quasi-linear graphs (still needs to be proven in future research).

We now consider general graphs with grand-parents -children relations (75% of the second benchmark set) and study the behaviour of the default ordering partition size. Each set of networks with the same number of nodes results in partitions of different sizes. For each set, the Table 4.7 gives the percentage of graphs according to the size of their induced well-ordered partitions. Mind that for all of our experimental results, we note that for all preference networks, the sizes of the well-ordered partitions of the optimistic and pessimistic orderings are equal, meaning that all of the results described in this subsection are valid for both approaches. From the results described in 4.7, we can confirm that the sizes of the partitions increase with the number of nodes that compose the graphs. For instance, for n = 4, we have partitions with a number of layers going from 3 to 5, while for n = 5 we can in addition have partitions with 6 layers. Generally and based on these results, for networks of size N , default partition sizes can go up to N + 1 levels. However, note that for networks with n = 3, all induced partitions are of size 4. By comparing with the results of the first part of the experiment, we can confirm that there is a link between the size of the partition and the arcs between the generations of nodes. For future research, it is interesting to study the impact of the depth of arcs between nodes and grand-child generations on the number of levels in the partition.

Nb layers

Nb nodes 3 4 5 6 7 2 0 0 0 0 0 3 0 6. 3 3.3 The following experimental results aim to determine whether there is a correlation between the default partition size and the maximum degree of preference networks.

For fixed graph sizes, we varied c and calculated the percentage of network instances with respect to different partition sizes. The results are given in Figure 4.16. The results show that generally there is a stron relation between the partition sizes and the network in-degrees. However, except for the graphs with c = 2, we can detect a certain tendency in the behavior of curves with higher in-degrees. In fact, for a fixed number of nodes n, we can notice that most of the partitions have sizes which vary from c + 1 to c + 2. It is the case of the curve of the figure relative to n = 6 where, for c = 3 the number of levels varies between 4 and 5, for c = 4 the number of levels varies between 5 and 6, for c = 5 the number of levels varies between 6 and 7. Nevertheless, this cannot be generalized for all partitions. Indeed, for instance for n = 6 and c = 5, there are some partitions with a size equal to c.

In the same spirit, we want to determine if there is a correlation between the size of the default partition and the number of nodes in the preference networks. For fixed indegrees, we varied the size of the networks and calculated the percentage of instances of these networks with respect to different partition sizes. Figure 4.17 describes the results of this experimentation. These results confirm the assertion that there is correlation between the number of partition layers and the size of the preference network. This claim only holds for the networks of the second benchmark, since in the first part of the experiments, we have seen that, whatever the size of the graph and for a fixed in-degree equal to 1, all networks lead to default orderings of size 3.

Results on Pareto and default orders

To evaluate the expressive powers of the Pareto and default orders, we computed for each subset of graphs having the same size, the percentage of strict comparisons out of total comparisons. Figure 4.18 represents results of this experiment. We notice that for the default ordering, the number of nodes has almost no effect on the percentage of comparisons. However, the Pareto order is strongly influenced by the network size, since the percentage decreases as the size increases, which is represented in the graph by a decreasing curve. We recall that the experiments in this subsection are performed on all instances of the second benchmark. decreases. This shows that, contrary to the Pareto order on graph instances with a high number of nodes, the default approach manages to find strict dominance relations between a larger number of configuration pairs than the other approach. We now move to explore the relationship between the contradictions and the size of the graphs. To do this, we fix the in-degrees of the graphs and observe the behavior of the percentage of networks that violate the Pareto order as a function of the number of nodes. Results in Figure 4.20 do not reveal a real tendency. For the curves with indegrees equal to 3 and 4, we can presume the existence of a tendency described by their two respective curves. Indeed, we can see that the more the number of nodes increases the more the percentage increases. Nevertheless, this tendency is not respected by the curves of in-degrees 2 and 5. For example for in-degree= 5, when the number of nodes increases from 6 to 7 the percentage of contradictions decreases from about 45 to 0.8 percent. For in-degree= 2, no trend can be discerned by the respective curve. Note that for an in-degree equal to 6, we only have networks with a fixed number of nodes equal to 7, only 0.8% of these networks induce a default ordering that contradicts the Pareto order. We now fix the number of nodes and vary the in-degree of the graphs to study the relationship between the contradictions and the in-degrees. 

Results on improved partitioning procedure

Experiments on the improved partitioning procedure showed that for the majority of instances that lead to strong violations with the Pareto order (i.e., on 23.97% of the second benchmark), the new algorithm was able to fully or partially repair violations with the Pareto order. In our benchmark, 62 

Discussion of the experiment results

Using the default partitioning procedure, quasi-linear DAGs, described without arcs between grand generations of nodes, lead to total pre-orders described on exactly 3 levels. From our experiments, these default partitions were found to be free of Pareto contradictions. We have seen that on other DAG structures, the partition size is at least equal to 4 which means that there is a relationship between the existence of links between nodes and grand-children and the number of layers in the partition. Moreover, no relationship between the default ordering size and the graph in-degrees have been found. However, experiments have shown that generally, the lower the in-degree of the network, the larger the partition size. Deeper experiments to study the impact of the number of arcs between generations and the size of those links should be considered as research perspectives on the topic.

Concerning the percentage of strict dominance relations between pairs of configurations, the experiments showed that the default ordering procedure behaves in the same way and orders practically around 65% of the possible comparisons, whatever the size of the graph, which is not the case for the Pareto order. Indeed, the larger the number of nodes, the lower the percentage of comparisons induced by the Pareto order. Moreover, the two orders are sensitive to the variation of the in-degree and behave in divergent ways. In fact, the higher the in-degree, the more the percentage of default comparisons increases and the more the percentage of Pareto comparisons decreases.

The default partitioning procedure can lead to contradictions with the Pareto order.

The networks that describe this discrepancy contain in most cases links between nodes and grand-children. The improved partitioning algorithm version that we propose generally allows to completely or partially reduce the number of these contradictions.

However, experiments on our benchmark have shown that the order induced by the new procedure leads to a less discriminating order than the Pareto strategy for small DAG in-degrees and sizes but seems to overcome this drawback for larger numbers.

More experiments on higher number of nodes ans higher network in-degrees should conducted for future perspectives.

Conclusion

In this chapter, we have represented a set of conditional preferences by means of a collection of default-like rules encoded in terms of inequality constraints between possibilistic set functions applied to sets of configurations. Then we have shown that using a minimum or maximum specificity principle we can obtain a complete pre-order on configurations. Still this pre-order have some drawbacks: (i) it has a limited discrimination power; (ii) it may partially conflict with the Pareto order. However, in the general case, it is possible to remedy to the problem, by adapting the partitioning algorithm proposed in [Benferhat et al., 2001a] that we apply to the constraints representing preferences, by only handling the exact information given by the constraints.

Generally, this results in a partial order with no or fewer Pareto violations. However, we have shown that some sets of default rules cannot be represented by a π-pref net structure; this may be explained by the rigorous rules of representation imposed by the DAG structure, restricting the types of possible dependencies between variables.

In the next chapter, we propose solutions in order to obtain a complete pre-orders without Pareto violations while being more discriminant than the ones obtained in this chapter.

Chapter 5

Modifying Configuration Orderings in

Agreement with Pareto Dominance

Introduction

Conditional statements in a preference graph may be translated into default-like rules which may be represented by different inequality constraints involving the minimum or the maximum of satisfaction degrees for two mutually exclusive situations. In the previous chapter, we have seen how to translate these rules into a set of preference or satisfaction constraints on which an information principle from possibility theory is applied to entail a well-ordered partition of configurations. When the default rules and the Pareto order are considered, they lead to different ordering of the solutions and may contradict each other. In order to take advantage of both approaches and to remedy the mentioned discrepancy, we propose to study the repair of the default order by the Pareto order. Besides, since the default order gives a total pre-order on the configurations, we then seek to refine the Pareto order with the relations of the default rule.

The work reported in this chapter departs from the approaches dealt with in Chapter 4 by the particular role played by Pareto order for repairing or refining the complete pre-orders obtained in Chapter 4.

This chapter is divided in four main sections corresponding to three approaches that all lead to complete pre-orders. In the following Section 5.2, we correct the ordering obtained with the minimum or maximum specificity principles in order to satisfy the Pareto order. Section 5.3 then proposes to build a complete pre-order from both optimistic and pessimistic rankings that appears to be the most discriminant compared to the other orderings discussed in this thesis work; however, this can be applied only when these rankings do not contradict Pareto order (which is generally the case in practice). The before last Section 5.4 starts with the Pareto ordering and refines it by using the minimum or maximum specificity orderings. Finally, an experimental study that supports our work is reported in Section 5.5. Section 5.4 rely on paper [Ben Amor et al., 2021a]. The work reported in all other sections has not

been published yet.

The same running example is used in the three main sections.

Moreover, in all the procedures describes in this chapter, we refer to a Pareto order.

This means that we compute it by comparing quality vectors. These vectors are made of symbolic weights which are assigned just as in the conditional preference tables of a π-pref net. Still when dealing with the optimistic ordering, the symbolic weights are of the form 1 and α, β, . . . , while for the pessimistic ordering we use the weights α, β, . . . , and 0 (in reference to the different encodings discussed in Chapter 3).

Repairing optimistic or pessimistic orderings with Pareto order

In some cases, default-based orderings may exhibit strong violations with the Pareto order. In this section, we propose to correct the optimistic and pessimistic orderings with the Pareto order with the purpose of repairing these conflicts.

Given a well-ordered partition E (optimistic E Π or pessimistic E ∆ ), how can we possibly correct it by the Pareto order? By definition, the partition E is a set of k ordered layers, thus the repair process should be performed in two steps; the first is an intra-layer refinement consisting of pairwise comparisons within all configurations of a given layer, and the second step is an inter-layer refinement consisting of pairwise comparisons within configurations in a given layer and those of the lower layers + 1, . . . , k.

In the intra-layer refinement, for each pair of configurations (ω, ω ), we check whether the Pareto ordering gives additional dominance information (i.e., ω P areto ω

or ω P areto ω). If so, an intermediate level (between l and l + 1) is created and the less preferred configuration is put into it.

In the same vein, this principle is applied for the inter-layer refinement where In Example 5.1, we illustrate the application of Algorithm 5.1. 

A B C D a 1 ā α a ā b 1 β b β 1 b b c σ 1 c 1 σ ac ac āc āc d 1 γ 1 1 d γ 1 γ γ (a) A B C D a 1 ā α a ā b 1 β 2 b β 1 1 b b c σ 1 1 c 1 σ 2 ac ac āc āc d 1 γ 2 1 1 d γ 1 1 γ 3 γ 4 (b)
Ω Ω Ω ω ω ω ω ω ω ω 0 = abcd (1, 1, σ, 1) (1, 1, σ 1 , 1) ω 1 = abc d (1, 1, σ, γ) (1, 1, σ 1 , γ 1 ) ω 2 = abcd (1, 1, 1, γ) (1, 1, 1, γ 2 ) ω 3 = abc d (1, 1, 1, 1) (1, 1, 1, 1) ω 4 = a bcd (1, β, 1, 1) (1, β 1 , 1, 1) ω 5 = a bc d (1, β, 1, γ) (1, β 1 , 1, γ 1 ) ω 6 = a bcd (1, β, σ, γ) (1, β 1 , σ 2 , γ 2 ) ω 7 = a bc d (1, β, σ, 1) (1, β 1 , σ 2 , 1) ω 8 = ābcd (α, β, σ, 1) (α, β 2 , σ 1 , 1) ω 9 = ābc d (α, β, σ, γ) (α, β 2 , σ 1 , γ 3 ) ω 10 = ābcd (α, β, 1, 1) (α, β 2 , 1, 1
)

ω 11 = ābc d (α, β, 1, γ) (α, β 2 , 1, γ 4 ) ω 12 = āb cd (α, 1, 1, 1) (α, 1, 1, 1
)

ω 13 = āb c d (α, 1, 1, γ) (α, 1, 1, γ 3 )
ω 14 = āb cd (α, 1, σ, 1) (α, 1, σ 2 , 1)

ω 15 = āb c d (α, 1, σ, γ) (α, 1, σ 2 , γ 4 )
Figure 5.2: Vectors of weights associated to configurations of π-pref net in Figure 5.1 

Repairing optimistic ordering

Using optimistic and pessimistic approaches jointly

The minimum specificity algorithm outputs a well-ordered partition that clusters the worst configuration(s) with other more preferred ones all in the same set. This is due to the focus on the best models of formulas in the optimistic approach. In some sense, it does not take much in consideration the least preferred models. In order to refine results of the optimistic approach, we can also exploit preference statements based on the maximum specificity principle (pessimistic approach).

Preference graphs that induce a default ordering not consistent with the Pareto ordering are not taken into account, since experimentally, we could see that it is in this case that the optimistic and pessimistic orders may contradict one another.

On the graph structures considered in the Propositions from 4.3 to 4.10 of Chapter 4, it has been proved that the minimum and maximum specificity well-ordered partitions have three layers. In the pessimistic reasoning, the best solution is left on a par with the less preferred ones, while for the optimistic reasoning the worst configuration is left on a par with the more satisfactory ones. It is tempting to consider the conjunction of the minimum and the maximum specificity rankings.

Algorithm 5.2 takes as input the set of possible solutions, the optimistic and the pessimistic orderings and outputs a well ordered partition, say E * , consistent with both input orders. The first step consists on creating a refined partition composed of 2 N layers since, in the best case, well-ordered partitions yield a total order where each configuration is put in a different layer. 

Output: E * len(E * ) = 2 N E * [0] = E Π [0] E * [2 N -1] = E ∆ [len(E ∆ -1)] i = 0 j = len(E Π ) -2 index_up = 1 index_low = 2 N -2 index_opt = len(E Π ) -2 index_pess = 0 while Ω = ∅ and i ≤ len(E Π ) and j ≤ len(E ∆ ) do E * [index_up] = E Π [i] increment = 0 foreach ω ∈ E * [index_up] do if ω ∈ E ∆ [index_pess] and ω ∈ Ω then 15 Add ω to E * [index_up + 1] 16 increment = 1 17 Delete ω from E * [index_up] Delete ω from Ω end i = i + 1 index_up = index_up + increment + 1 index_pess = index_pess + 1 if i = j or index_opt = index_pess then E * [index_low] = E ∆ [j] increment = 0 foreach ω ∈ E * [index_low] do 27 if ω ∈ E Π [index_opt] and ω ∈ Ω then 28 Add ω to E * [index_low -1] 29 increment = -1 30 Delete ω from E * [index_low] 31 Delete ω from Ω end j = j -1 index_low = index_low + increment -1 index_opt = index_opt -1 end E * =

Refining Pareto ordering with default rules

The Pareto order is an indisputable semantics for ordering preference solutions that coincides with the product chain rule order for symbolic π-pref nets with no additional constraints. Moreover, recent researches on the compatibility of CP-nets ordering with the Pareto ordering [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF] have proved that the CP-net ordering refines the Pareto ordering adding the Ceteris Paribus assumption to it.

In this paragraph, we propose to refine the Pareto ordering by chiefly considering it as the basic ordering to which we add information such as the one brought by the application of the minimum or maximum specificity postulates. Thus, we propose to refine the Pareto ordering with the optimistic and pessimistic orderings.

Each of the mentioned orderings are represented by a 2 N × 2 N incidence matrix denoted M (M P areto for the Pareto ordering matrix, M Π for the optimistic ordering matrix and M ∆ for the pessimistic one). We use the following encoding for describing dominance relations between two configurations: If two solutions are incomparable by the Pareto ordering but comparable with the default ordering, then preferences in M P areto are updated. The W arshall function is then applied on M P areto to compute the transitive closure after each refinement, i.e.,

• if ω i ω j then M [i, j] = 1 and M [j, i] = 0, • if ω i ω j then M [i, j] = M [j, i] = 1.

Experimental study

For some networks, the Pareto and default orderings may contradict each other on the ranking of some pairs of configurations. In Section 5.3, we showed that for networks for which the default orderings do not contradict the Pareto ordering, when all the dominance relations of the optimistic and pessimistic orderings are considered jointly, we can entail a total preorder on configurations that is highly discriminating, with fewer equivalence relations between the pairs of configurations. The first purpose of our experiments consists on confirming this assertion. The second goal of our experimental study is to evaluate the ordering obtained by the Pareto ordering refinement procedure by the different default orderings (optimistic, pessimistic and both of their induced orderings jointly).

Experimental protocol

To conduct our experimental study, we use the same set of randomly generated conditional preference networks considered in the second part of the experiments in Section 4.7 of Chapter 4. We recall that we used the generation tool GenCPnet [START_REF] Allen | Generating cp-nets uniformly at random[END_REF] to generate a set of preference network instances in which we varied the number of nodes n from n = 3 to n = 7 and the maximum in-degree c from 1

to n -1. We consider only bivalent decision variables, which means that d is fixed at 2.

Experiments are divided in two parts. The goal of the first part is to confirm that the Algorithm 5.2 induces a total preorder not only free from Pareto contradictions but also highly refined.

The second part is conducted on the whole benchmark and shows results on the refinement of the Pareto ordering by well-ordered default partitions comparisons.

These experiments are also conducted using the same test server as experiments of Chapter 4. The server technical specifications are described with an Intel Core i7 -7700HQ processor and a 20Go workstation. We used the toolbox presented in chapter 7 for all experiments.

Experimental results

For the first part of the experiment, we first train the optimistic and pessimistic default network orderings on the benchmark described in section 4.7.1. We then consider only those networks whose default orderings do not contradict the Pareto order (73.03%) of the total number of instances). The two default partitions are then used to construct a more refined ordering that we call combined default ordering.

For each partitioning approach, we start by varying the size of the network and verify the behavior of strict dominance relations with respect to in-degree evolution.

Figure 5. 4 (a) shows the experiment results. We can see that, regardless of the size of the graph, the combined default order induces a highly discriminating order and succeeds in finding a strict ranking for almost 80% of the configuration pair comparisons.

In the same manner, for each partitioning approach, we vary the network size examine the behavior of strict dominance comparisons with respect to the in-degree evolution. Figure 5. 4 (b) gives results of this experiment. The graphical plot shows that the higher the in-degree of the graph, the more discriminating the combined default order is and the less refined the Pareto order is.

This experiment confirms that the Algorithm 5.2 induces a total pre-order that is not only free of contradictions with the Pareto strategy but also highly refined. 

Conclusion

When comparing two potential solutions with respect to a set of conditional preferences, the Pareto partial order acknowledging that the set of preferences violated by one is a subset of the preferences violated by the other, is a natural basis for ordering solutions. In this chapter, we have shown that it is possible to enrich the Pareto ordering. To this end, we take advantage of two approaches, in terms of default-like constraints corresponding to the optimistic and to the pessimistic readings, which are been proved in Chapter 4 to be compatible with the π-pref net representation.

The constraints-based approach can lead to a complete pre-order once an optimistic or a pessimistic principle is applied, but at the price of some violations of the Pareto order. This chapter has proposed three algorithms for mending this situation, (i) one that leads to repair specificity-based orderings by the Pareto order, (ii) one that combines the optimistic and the pessimistic orderings, (iii) and a last one that refines the Pareto order by means of the optimistic or the pessimistic orderings.

The first and last algorithms can always be used, while the second one which may give more discriminant orderings is only applicable when the specificity-based orderings do not conflict with Pareto order.

In the next chapter, we investigate an approach briefly mentioned in Chapter 1, that is based on lexicographic preference trees (LP-trees for short). Its merits is to always lead to a total ordering. The LP-tree approach heavily relies on complete pre-orders stating the relative importance of the variables in the specifications of constraints.

Classes of LP-trees

Remember from Chapter 1 that an LP-tree is a preference model defined both from an order relation between variables that expresses their relative importance, and from local preference relations on the domains of the variables. Both the importance relationship between variables and the local preferences can be conditioned on the values of other variables. For a better study of this model, arcs that represent this information will be differentiated in the graphical structure:

• cp-arcs depicted by unlabeled solid arrows reflect dependencies between variables;

• i-arcs represented by dotted arrows reveal importance relations between variables. They may be labeled by context(s) of more important variables.

An LP-tree can combine conditional and unconditional preferences and importance relations. The following example deals with the case of a general LP tree. (i) V correspond to the set of nodes. Each node is labeled with a decision variable in X ;

(ii) E is the set of arcs composed of • i -arc of the form U X X with {U X , X} ∈ X . An i -arcs can either be labeled or not indicating a conditioned importance relation or not respectively;

• cp -arc of the form X i → X j with {X i , X j } ∈ X and X i ∈ U X j . A cp -arc is unlabeled and indicate that preferences over a variable are conditioned by values of its parents.

(iii) P T = {P T (V 1 ), . . . , P T (V M )} corresponds to the set of local tables where P T (V i ) is a preference table that describes a total order on values of X j such that X j is the label of V i . P T (V i ) contains specifications either of the form u V i : X j ¬X j , or of the form X j ¬X j where u

V i ∈ U V i .
Each variable X ∈ X appears at most once in each branch of the tree. A CI LP-tree should respect the following statements:

1. There must exist at least one conditional importance relation in the tree;

2. All nodes in the tree must be connected by an i -arc.

Figure 6.2 depicts an example of a CI LP-tree where all importance relations are conditional. However, nothing prevents preferences to be all context-independent.

As for UI LP-trees, the formal definition is given below. A UI LP-tree should respect the following statements: Conditional Preferences LP-trees. When a node X depends from U X then the user must furnish a strict total order over assignments of X for each context value u X ∈ U X . For both CP and UP LP-trees, the priority over variables can be unconditional or conditioned by assignments of more important nodes. However, in CP LP-tree there must exist at least one context-dependent preference, while in UI LP-trees all importance relations should be context-free. In the following we give formal definitions of these two LP-tree types.

u V i : X j ¬X j with u V i ∈ U V i , or unconditional preferences of the form X j ¬X j .

Definition 6.3 (CP LP-tree)

A Conditional local preferences LP-tree over decision variables X is defined by a tuple V, E, P T where:

(i) V correspond to the set of nodes. Each node is labeled with a decision variable in X ;

(ii) E is the set of arcs composed of

• i -arc of the form U X X with {U X , X} ∈ X . An i -arcs can either be labeled or not indicating a conditioned importance relation or not respectively;

• cp -arc of the form X i → X j with {X i , X j } ∈ X and X i ∈ U X j . A cp -arc is unlabeled and indicate that preferences over a variable are conditioned by values of its parents.

(iii) P T = {P T (V 1 ), . . . , P T (V M )} corresponds to the set of local tables where P T (V i ) is a preference table that describes a total order on values of X j such that X j is the label of V i . P T (V i ) contains specifications either of the form u V i : X j ¬X j , or of the form X j ¬X j where u

V i ∈ U V i .
Each variable X ∈ X appears at most once in each branch of the tree. A CP LP-tree should respect the following statements:

1. There must exist at least one context-dependent preference relation;

2. All nodes in the tree must be connected by an i -arc.

Definition 6.4 (UP LP-tree) An Unconditional local preferences LP-tree over decision variables X is defined by the same structure as a CP LP-tree, i.e., V, E, P T .

A UP LP-tree should respect the following statements:

1. The set of arcs E only contains i-arcs of the form U X X with {U X , X} ∈ V.

i-arcs can either be labeled by the value(s) of U X 1 or not indicating a conditioned importance relation or not respectively;

Each local table P T (V i

) describes a total order on values of X j such that X j is the label of V i , and only contains specifications of the form X j ¬X j ; 3. All nodes V i ∈ V labeled with the same variable X j ∈ X have the same preference order over values in X j .

Figure 6.4 is an illustrative example of the classe of CP LP-tree.

1 An i-arc U X X labeled by all context values of the parent node encodes the same information as an unlabeled i-arc, which is that U X is more important than X regardless of the value of U X . 

Fixed preferences

The order of importance between variables can be independent or conditioned by some values. But whatever the case, preferences can be fixed, which means that they remain unchanged on all branches of the LP-tree forming the class of FP LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. Generally, local fixed preferences can be context-dependent.

In the following we give a formal definition of an FP LP-tree (see Figures in 6.11 for illustration). Definition 6.6 (FP LP-tree) A Fixed Preference LP-tree over decision variables X is defined by a pair V, E, P T where: (i) E contains both i -arcs and cp -arcs;

(ii) P T = {P T (V 1 ), . . . , P T (V M )} is a set of local tables where V i is labeled with X ∈ X and P T (V i ) contains preference specifications of the form X ¬X (or

u X : X ¬X where u X ∈ U X ).
Each variable X i ∈ X appears at most once in each branch of the tree. A FP LP-tree should respect the following statement:

1. Each variable X i keeps the same dependency constraint and preference specifications in all branches on the tree. The fact that preferences are conditioned by values of one or many more important variables is not clearly allowed in the literature. However, this case may lead to unsatisfiable networks (see Section 6.3 for more details). When (i) the less important variables depend from the more important ones and, (ii) if the lexicographic order over the dependent variables is the same in all branches of the tree, this troubling situation can be avoided. We can specify sub-classes of FP LP-trees, depending on whether or not the conditioning over importance relations and preferences is allowed. Table 6.1 summarizes these sub-classes. We use a ∼ ∼ ∼ to mention that the network contains both conditional and unconditional information. Symbols (respectively ) indicate that all relations in the tree are conditional (respectively inconditional). We use the exclamation mark to indicate a strong preference. The first and second columns specify whether or not the conditioning is performed on preferences and priority relations respectively. For instance the general class of FP trees contains both conditional an inconditional preferences as well as importance relations. It is represented by the first row of the Table 6.1. If we consider definitions given in 6.2.4 and depending on whether the conditioning covers all preference relations or not, we can define more sub-classes of FP LP-tree (see last 3 rows of Table 6.1). For example, the last row should be read as follows:

When an LP-tree structure contains only conditional preferences with no conditioning on importance relations, then it belongs to the set of FSCP-UI LP-trees.

Note that FP LP-trees should not be confused with the class of UP LP-trees.

Consider the variable X i of a FP tree. In all branches of the graph the local preference relation over X i is unique and equals x i xi . In contrast, if we consider a UP LPtree, then specifications in X i can take either x i xi or xi x i . Actually, for a given number N of variables, the set of possible FP LP-trees is included in the set of possible UP LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. Proof 6.1 Since we consider that variables are independent, the preference over the parent node does not affect preference over its descendant. Thus, local preference tables of a UI tree are independent from the structure of the graph. While keeping in mind that by definition any UI LP tree is a path graph (see Definition 6.2), finding the number of possible FP trees given a number N of features comes down to find the set of linear graphs that can be constructed with N nodes, which corresponds to the number of permutations of N distinct objects i.e. N !.

preference dependencies conditioning on importance subclass relations relations

∼ ∼ ∼ ∼ ∼ ∼ FP ∼ ∼ ∼ FP-CI ∼ ∼ ∼ FP-UI ∼ ∼ ∼ FUP FUP-CI FUP-UI ∼ ∼ ∼ FCP FCP-CI FCP-UI ! ∼ ∼ ∼ FSCP ! FSCP-CI ! FSCP-UI
Given N , the idea is to find, for each path graph from N ! graphs, the number of UI trees that can be constructed. Let us fix the preference of the root node to x x 2 . 

Completeness of an LP-tree

The notion of completeness of an LP-tree has been introduced in [START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF].

LP-trees which are said to be complete, require that a total importance order over variables is provided. Completeness covers only priority relationships since the order of preferences is complete by definition. A complete LP-tree should respect the following statements:

1. Each variable appears in each branch of the tree.

2. When preferences are conditional, all CP T should contain preference orders for all contexts of parents.

3. When preferences are not conditional all variables hold P T s that express a total order on its values. We mention that another class of trees called partial lexicographic preference trees (PLP-trees) has been introduced in [START_REF] Liu | Learning partial lexicographic preference trees over combinatorial domains[END_REF]]. These networks allow some variables to be missing from some paths. They seem quite similar to incomplete LP-trees. This relaxation is of interest in a learning perspective [START_REF] Liu | Learning partial lexicographic preference trees over combinatorial domains[END_REF]. we mention that PLP-trees describe total preorders (instead of total orders) on the set of configurations.

k LP-trees

In all previous defined classes, a variable is affected to a single node. However, a user may express importance equality for a set of features 

Order induced from an LP-tree

Unlike CP-nets and TCP-nets, finding the dominance relation Lex between all pairs of solutions in X of an LP-tree can be ensured by a straightforward algorithm that consists of sweeping through i-arcs of the tree and considering preferences associated to nodes. Algorithm 6.1 details the procedure of inferring an ordering given a complete UI LP-tree. Given a node V ∈ V labeled with X, we consider that x is always preferred to x . Starting from the root node and according to its conditional ω |= l ((respectively ul ). The second step consists in flipping the value of U (L) on its less preferred instantiation u and verify P T (L) given the new context u . The process is repeated by subsequently considering variables from the least preferred ones until reaching the root node.

In the following example, we give the lexicographic induced ordering on configurations for all satisfiable LP-trees given in this chapter. For ease of reading,

Conditioning by multiple variables

There is nothing to prevent having an LP-tree like the one in Figure 6.15(a) where the preferences of a node depend on several important variables (we have in fact abc abc a bc a bc ābc ābc āb c āb c). Even if it seems that no example can be found in the literature, conditioning could a priori also depend on less important variables. But this can lead to troubling situations as in Figure 6. 

Dominance query

To compare two configurations, it is necessary to know which variable(s) they differ on 3 . If this includes one or more variables involved in defining the branches, then the preference associated with the most important of these variables determines the order. This variable is called the decisive variable. If the difference in configurations involves only variables not included in the definition of the branches, then the path corresponding to their common "context" must be identified [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. 

Lexicographic order and cardinality order

We have seen that CP-nets can violate cardinality order, while π-pref net agrees with 

Comparison π-pref-net vs LP-tree

In this section, we indicate several differences, more or less obvious, between π-prefnets and LP-trees, after their respective presentations in the previous sections.

The π-pref network framework allows us to add importance relations between the preferences associated with nodes in the form of inequalities between symbolic weights, which allows us to refine the order of inclusion [START_REF] Amor | Preference modeling with possibilistic networks and symbolic weights: A theoretical study[END_REF]. However, even with additional constraints on symbolic preference degrees, the order obtained from the chain rule remains partial and incomparabilities between configurations may persist.

Example 6.5 Consider π-pref net in Figure 4.1(a) Therefore, the first main difference between LP-trees and π-pref nets is that complete LP-trees (where all variables are ordered) lead to a total ordering of configurations, while π-pref nets generally lead to only a partial order, even when adding constraints on inequalities between the symbolic weights associated with the variables, as shown in the above Example 6.5.

Besides, the π-pref nets allow the expression of the indifference between configurations, notably if we have conditional constraints such as u : X ∼ ¬X or if we have equalities between symbolic weights. With an LP-tree there are no tie configurations (except in the case of incomplete LP-trees, see the ordering of LP-tree in Figure 6.13 in the Example 6.3).

A more or less obvious difference between the two networks lies in their graphic structure which consists of a DAG in π-pref nets and of a directed tree in LP-trees.

Moreover, for π-pref nets the structure of conditional preferences is only constrained by the structure of the DAG (more general than that of a tree).

Even if lexicographical orders, because of their simplicity, are very present in human cognition [START_REF] Gigerenzer | Reasoning the fast and frugal way: models of bounded rationality. psychological review 103[END_REF], the fact of always leading to a total order of the configurations (for the complete case) presents a forced character which can be all the less acceptable cognitively as there are many variables. In particular, the LP-tree idea is not compatible with the order provided by weighted averages of not very different weights. Indeed let us suppose that we have 4 Boolean variables A, B, C, D of respective weights α, β, γ, δ such that α

+ β + γ + δ = 1 with α ≥ β ≥ γ ≥ δ; the lexicographic constraint a ā implies α ≥ β + γ + δ, the lexicographic constraint b b implies β ≥ γ + δ the constraint c c implies γ ≥ δ.
We can therefore see that the weights must decrease rapidly. The networks are in comparison much more flexible.

From LP-trees to π-pref nets

In this section, we examine the question of building a π-pref net that recovers dominance relations induced from a complete LP-tree. To do so, the question is to know if it is possible to impose symbolic constraints in a π-pref net so that it is equivalent to an LP-tree. Let us first consider the simple case of a linear LP-tree as in Figure 6.16(a) before dealing with the general case illustrated by Figure 6.17 on {c, c} if B = b, with the importance constraints β 1 ≤ min(γ 1 , γ 2 ). This ensures the desired lexicographical order on this branch. The two branches correspond to the Table 6.18. To have a bc āb c, we must add the constraint β 1 × γ 2 > α. As can be seen, the process of adding constraints, which is used to represent a linear LP tree, must be repeated on each branch in the case of a general LP tree.

The study of these two examples shows that it is necessary to add in a π-pref network not only constraints between symbolic weights to reflect the order of importance of nodes in a (sub)-branch, but also constraints involving products (with a number of terms that increases with the number of variables) to obtain a fully lexicographic order.

This echoes the price to be paid for obtaining such an order under all circumstances.

Let us note finally that the 2-LP-tree of Figure 6.14 does not pose any particular difficulty and is easily expressed in the form of π-pref network with the possibility distributions (1, α) on {a, ā}, (γ 1 , β 1 , 1, σ 1 ) on bc, bc, bc, bc in context of a and (β 2 , γ 2 , σ 2 , 1) on bc, bc, bc, bc in context of ā with the constraints inequality α < min(β 1 , β 2 , σ 1 , σ 2 , γ 1 , γ 2 ), β 1 > σ 1 > γ 1 and β 2 > σ 2 > γ 2 .

Conclusion

The introduction of LP-trees has been largely motivated by their use in preference learning [START_REF] Liu | Learning cp-nets structure from preference data streams[END_REF]] [Fargier et al., 2018]. However, if we consider that we can extrapolate a user's preferences from the observation of her/his preferences between a rather small number of configurations, making the assumption that we are trying to learn an LP-tree can constitute a rather important representation burden of having to provide importance relations, dependency relations and total order on variable domains! LP-trees do not permit to express indifference which constitutes a biased representation and a restriction on the user preference specifications. From this point of view, the representation offered by π-pref nets is not biased (because it obeys at least the Pareto order, which seems to be not very debatable, and can be modulated by adding constraints between the symbolic weights).

We have seen that many classes of LP-trees have not yet been well examined or even introduced in the literature. Moreover, the reverse transformation procedure for translating a π-pref net into a (potentially incomplete) LP-tree has not been investigated. However, translating a partial order into a total (pre-)order may seem arbitrary.

Further studies on these of research topics need to be conducted.

Chapter 7

A Toolbox for Reasoning About Conditional Preferences

Introduction

In this chapter, we propose a possibilistic preference networks toolbox: ΠPNT, developed in JavaScript language and designed to visualize and edit possibilistic preference networks. ΠPNT proposes a number of features that allow to interrogate π-pref nets and compare induced ordering(s) 1 over the set of choices with respect to different other orderings such as default orderings, Pareto ordering and ceteris paribus ordering.

The implementation of ΠPNT is based on the CP-net visualizer 2 toolbox dedicated to CP-nets [START_REF] Shafran | A tool to graphically edit cp-nets[END_REF]. It contains revised code, additional functions and scripts that are produced as a byproduct of the research work in Chapters 3 to 5. The ergonomics of the window components and the graphical representation of a CP-net have been reused from the CP-net visualizer toolbox. ΠPNT source code is published in the GitHub forge 3 .

Next section first describes how to create a π-pref net from a set of preference statements. It then explains how to construct network extensions of a π-pref net.

Therefore, it details procedures of inferring orderings from the created and generated networks to then perform the dominance query on the set of solutions. Section 7.3

explains how preference specifications are translated into default rules used to entail orderings over the set of solutions. Section 7. 4 shows how to compare these orderings.

1 generated assuming all variants introduced in Chapter 3 2 https://github.com/azsn/cp-net-visualizer 3 https://github.com/SyrineIRIT/Possibilistic-Preference-Nets.git

Section 7.5 is dedicated to possible refinements between the Pareto and defaults orders.

Finally, Section 7.6 is dedicated to conditional preference networks. It describes how to randomly generate these models using an existing library, which is an essential procedure that made our experiments possible.

The ΠPNT toolbox proposes the following functionalities :

• Create a π-pref net and all of its extensions assuming different scales for preference degrees (see Section 3.4). This functionality includes:

-Generate π-pref nets from a set of conditional preference statements;

-Visualize the π-pref net.

• Compute the joint possibility distribution(s) using:

-Equation 2.23 preference degrees; -Equation 3.5 when preferences are encoded by satisfaction degrees.

• Infer ordering based on:

the Pareto order for all π-pref nets extensions (see Section 3.4 of Chapter 3);

the pessimistic or optimistic approaches using Algorithms 4.1, 4.2 and 4.3;

the ceteris paribus assumption;

• Compare orderings of the default-like approach and the CP-net approach with the Pareto ordering

• Perform repairs and refinements on some generated orderings (see Sections 5.2 and 5.4 of Chapter 5)

• Perform dominance and optimization queries on both CP-nets and π-pref nets

The main menu of the toolbox is represented by the most-left column of Figures in 7. 

Creating and querying π-pref nets

In this section, we explain how π-pref nets and their extensions are created, displayed and queried in the ΠPNT toolbox. 

Network definition

The π-pref net is defined by a structure called Graph which is described by a list of topologically sorted nodes, i.e., ancestors before descendants, called Nodes and a number of nodes denoted by N . Each node is associated with a local possibility distribution derived from statements in local tables CP T s associated to the nodes.

Each node X i is described by a set of attributes listed below. We provide the equivalent notation used in previous chapters between brackets:

• a unique name Name (X i );

• an array Domain that saves the multiple values of the decision variable (X i );

• a set of parents Parents (U X i );

• a set of children Children (Ch X i );

• a bi-dimensional matrix 3 × |U X i |, named CPT (CPT(X i ) of Definition 1.7). Let For each node, preference statements in CP T are considered to generate a possibilistic local distribution stored in the attribute πCP T .

Generating a π-pref net from a set of preference statements is explained in Section 3.2. Briefly, the preferred value is attributed a degree equal to 1 while its negation is allied with a positive symbolic degree strictly inferior to 1. The user can constraint symbols to be equal for all parents values or specific to each context. Algorithm 7.1 implements this procedure of creating a general normalized π-pref net (see Definition 3.2), which we call πGraph, from a statements of the corresponding CP-net structure called Graph. We define the algorithm's used functions in the following:

• function ListOf Symbols returns a list of symbolic degrees;

• function P ref _Rejected_V alues takes as input a statement in the CP T table and returns the preferred good and rejected bad node values respectively;

(non-root) nodes and, for each node, associates to the parameter row the preference specification of a given context value. The conditional preference row is then passed as parameter to the function P ref _Rejected_V alues and the same instructions as for root nodes are applied.

Note that, the user can choose to create a π-pref net that contains equal or different symbolic weight(s) per variable and context, the list ListOf Symbols is thus adapted to take into consideration the choice of the user. For instance, the last column in Table 7.1 gives the added conditional tables to the CP-net structure in order to construct an normalized π-pref net: specifications of each node are translated into a possibility distribution. Besides, the user can choose to work with equal or different symbolic degrees per variable by checking the checkbox "Equal symbols per variable". 

π-pref net extensions

In Section 3.4, we have proposed other encoding scales to express conditional preferences which gave rise to various π-pref net extensions. The example of the previous section was is an illustration of a general π-pref net or more precisely an normalized πpref net (see Definition 3.2). The toolbox enables the user to generate from statements of a conditional preference network an anti-normalized π-pref net, a bi-normalized πpref net or simply a preference network with a non-normalized distribution on conditional preferences (see Section 3.4). For each of these cases, the toolbox provides the user the freedom to choose working either with equal or different symbols for encoding preference degrees. Algorithm 7.1 is adapted and reused to generate preference networks with the different distribution scales.

Example 7. [START_REF][END_REF] Networks in Figures 7.5 (a), (b) and (c) correspond to extensions of π-pref net in Figure 7. 4. Preferences of network in Figure 7.5(a) are encoded with satisfaction degrees using the guaranteed possibility measure. Those of network in Figure 7.5(b) are encoded with non normalized distributions which lay in the scale (0, 1). In Figure 7.5(c) variable preferences are encoded by bi-normalized distribution such that the preferred value of the variable is associated with highest preference degree 1 and the rejected one is associated with a degree equal to 0. 

Joint distribution over solutions

Depending on the distribution scale, the toolbox is able to calculate the joint distri- We have proposed and coded one of many solutions that permit to calculate the joint distribution on solutions.

Dominance query

As noted above, the product chain rule induces the exact same ordering as the Pareto strategy without additional constraints on symbolic weights [Ben Amor et al., 2015].

Thus, the toolbox implements the latter strategy (see Definition 3.4) Even-though there are no constraints left to verify, the power set Ω still contains un-ranked configurations. For each of them, the parameter verif = f alse, therefore, they are associated to the last partition layer: E [START_REF][END_REF] = {ω 3 , ω 5 , ω 6 }.

The entire ordering is reversed so that configurations are classified from best to worst. 

Combine specificity orderings

Algorithm 7.8 exactly reproduces Algorithm 5.2 that combines dominance relations induced by both optimistic and pessimistic orderings but uses the appropriate notation. All of our previous experiments are conducted on a set of π-pref nets constructed from a set of randomly generated conditional preference networks. In this section, we briefly describe how these networks are generated using the Gencpnet library [START_REF] Allen | Generating cp-nets uniformly at random[END_REF].

The original toolbox includes the Gencpnet library [START_REF] Allen | Generating cp-nets uniformly at random[END_REF] as a network generator. It permits to generate multiple acyclic networks with respect to some specified parameters. Ones can vary the number of generated networks (m), the number of nodes (n), the maximum bound on in-degree (c), the domain size (d) and the probability of incompleteness (i). In our work, we focused on Boolean variable domain which means that the parameter d is fixed to 2. We only considered modifying parameters m and n. The generated networks are written and stored under XML format files that can afterword be uploaded by the CP-net visualizer and π-pref net visualizer toolboxes.

The Gencpnet is a free toolbox available in the Github forge (link). It is coded with C + + language and is designed to work only on GNU Linux system. • Probability of incompleteness i = 0

The toolbox implements the optimization query described in 1. 3.5, algorithm for the optimization query and gives a new implementation of the dominance query.

It has been proved that the ceteris paribus ordering is nothing less than a refinement of the Pareto ordering [START_REF] Wilson | Cp-nets, \pi -pref nets, and pareto dominance[END_REF]. From there, instead of searching for flipping sequences to perform the dominance query on a pair of configurations (see Section 12), we were interested in developing an algorithm that treats each variable value in configurations separately and returns a vector which is examined to deduce the dominance relation between them.

Conclusion

The π-PNT have been implemented to allow further researches on graphical structures of preferences. As a continuity of this work, further developments that implement other features should be considered. For instance, he should be granted the ability to instantiate symbolic weights with numerical degrees or to impose additional constraints on these weights so that, in a second time, the min or product-based chain rule distribution is compared with orderings of other approaches.

A particular and interesting case should be to develop a library that randomly generates π-pref nets using symbolic degrees, random constraints on them or numerically instantiated weights. The generated π-pref nets should therefore be saved and loaded under xml or csv files for future experiments. Preference structure generators should be parameterized to produce networks with specific categorized structures such as path graph, trees, multiply-connected-networks, etc.

Further developments on LP-trees would be eventually interesting. The toolbox should offer the possibility to create, visualize, question and generate LP-trees, which in a second step, would be translated into π-pref nets when possible.

several proposed algorithms. The extension of the π-pref nets approaches with the bipolar view mentioned above (with symbolic weights intermediary between 0 and 1) seems also to be worth studying.

The representation of preferences held by groups of agents (possibly defined by sets of characteristic properties) and the analysis of possible conflicts of preferences between different groups is a topic of interest that can benefit from the works on the modeling of the preferences of a single agent [START_REF] Amor | Representation of multiple agent preferences -A short survey[END_REF]] [Ben Amor et al., 2017b].

Learning the preferences of an agent, or of a group of agents, is an important issue.

While there exist works on preference learning in terms of CP-nets or LP-trees, the possible use of π-pref nets, which offer a flexible and compact way of representing preferences, has not yet been considered in this perspective. The problem may be considered either by learning a π-pref net with numerical degrees (but such a network may provide more comparisons than we would reasonably expect from the qualitative specification of conditional preferences) by only identifying ordinal conditions between satisfaction degrees. These are open questions.
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  Figure 1.1: Conditional preference network structure

  Figure 1.1. The set Ω contains 2 4 = 16 configurations, i.e., Ω = {ω 0 = sler, ω 1 = sler, ω 2 = slēr, ω 3 = slēr, ω 4 = sler, ω 5 = sler, ω 6 = slēr, ω 7 = slēr, ω 8 = sler, ω 9 = sler, ω 10 = slēr, ω 11 = slēr, ω 12 = sler, ω 13 = sler, ω 14 = slēr, ω 15 = slēr}. The optimal solution
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 1213 Figure 1.2: Pareto graph relative to network in Figure 1.1
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 6 Ceteris paribus) Let Y be a set of variables s.t. Y = X \{X}\U X . The ceteris paribus assumption states that ω = yux is preferred to ω = yux s.t. y ∈ Y and u ∈ U X if and only if one of the following conditions are satisfied: (i) there exists a worsening flip from ω to ω (ii) ω is obtained from ω via a worsening flip sequence.

  Definition 1.7 (CP-net) A Conditional Preference network C = G, CP T , denoted by CP-net, is a Conditional Preference network as defined in Definition 1.1 that obeys to the ceteris paribus preferential independence property.Given a configuration ω we can subsequently either improve a flip on one of its variable's value or worsen it to reach another configuration ω . Given statements in conditional tables of a CP-net C along with the ceteris paribus assumption, a sequence of improving flips from one configuration to another confirms that these configurations are comparable. Accordingly, they are incomparable if and only if there exists no flipping sequence between them. In other words, ω is preferred to ω (ω ω ), if and only if there exists a improving flip sequence from ω to ω . Every improving flip can be depicted by an arc from ω to ω expressing that ω C ω . The collection of flip sequences between all pairs of configurations in Ω forms a DAG called induced preference graph composed of a unique root node corresponding to the best configuration and a single leaf node consisting of a sink corresponding to the worst one. Mind that one could also start by the worst configuration as a root and subsequently deteriorate values of variables. The obtained ordering remains unchanged.

Example 1. 4

 4 Let us re-consider Example 1.1 expressing preferences about renting or buying a car. We consider network in Figure 1.1 which has the same structure of a CP-net. Configurations ω 0 = sler and ω 1 = sler differ by the value of node R which corresponds to the swapped variable. There exists a worsening flip from ω 0 to ω 1 since they both model the same assignment le of R's parents: U R = {L, E}, and also the same assignment s for the remaining variables Y = X \{R}\U R = S. Thus, ω 0 = sler is preferred to ω 1 = sler according to the ceteris paribus principle since le : r r. Let us now consider the pair of configurations ω 0 = sler and ω 7 = slēr that differ by the value of more than one decision variable. A worsening flip sequence from ω 0 to ω 7 can be constructed by subsequently considering the worsening flips : ω 0 = sler → ω 1 = sler, ω 1 = sler → ω 3 = slēr and finally ω 3 = slēr → ω 7 = slēr. Hence, ω 0 = sler is preferred to ω 7 = slēr w.r.t. the ceteris paribus property since there exists a worsening flip sequence from a configuration to the other.
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 13415 Figure 1.3: Induced worsening flip graph of CP-net of Example 1.4
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 14 Figure 1.4: Example of CP-net

  Figure 1.5: Example of CP-net

Example 1. 8

 8 Consider network in Figure 1.1. Configuration ω 3 = slēr and ω 9 = sler share the same number of violated variables but the preferential property of CP-nets succeeds to rank order them. Indeed, the configuration ω 3 violates the set of variables {S, R} and ω 9 violates {E, R}. Figure 1.3 confirms that there exists a worsening flip sequence between them yielding the relation ω 9 C ω 3 . The configuration ω 13 = sl er has a cardinality equals to 3 for the violated nodes L,E and R. Semantics of CP-nets fail to rank order ω 3 and ω 13 even though the latter violates more variables than the former.

  Figure 1.6: Example of CP-net

Example 1. 10

 10 Consider network C in Figure 1.7(a). The graph structure is cyclic since the preference over variable A depends on B and vise versa. The first specification b : a ā in CP T (A) induces the preference relation ab C āb which is represented by an arc ab → āb in the right-most worsening flip graph in Figure 1.7 (b). The second specification b : ā a in CP T (A) induces the preference relation āb C a b which is depicted by an arc āb → a b. Following the same reasoning, CP T (B) entails the order rankings a b C ab and āb C āb . The induced worsening flip graph corresponding to C is cyclic and entails an inconsistent ranking on configurations, namely ab C āb C āb C a b C ab (see Figure 1.7(b)) . Note that if we modify the local table CP T (B) to hold statements a : b b and ā : b b then we end up with a consistent partial order namely {ab, āb } C āb, {ab, āb } C a b.

  Figure 1.7: Cyclic CP-net (a) and its induced worsening flip graph (b)

Figure 1 . 8 :

 18 Figure 1.8: Example of CP-net where indifference is allowed

  Figure 1.9: TCP-net

  Definition 1.13 (Importance worsening flip sequence) The sequence ω 0 N ω 1 N • • • N ω m is an importance worsening flip sequence with respect to a TCP-net N such that k ∈ [0, m], if and only if one of the following conditions is satisfied (i) Configurations ω k and ω k+1 differ by a single flip of variable X ∈ X , and there exists a worsening flip from ω k to ω k+1 , (ii) Configurations ω k and ω k+1 differ by the value of two variables and there exists an importance worsening flip from ω k to ω k+1 . Considering all worsening flip sequences induced by a CP-net, finding the additional dominance relations induced by adding i-arcs and ci-arcs to this structure comes down to determine all importance flipping sequences between pairs that differ by the value of two variables following the second condition in Definition 1.13. Example 1.17 exhibits the ordering relation between configurations for the Example of Figure 1.9. Example 1.17 Figure 1.10 represents the induced graph of TCP-net N in Figure 1.9. Due to the importance relation E L, we detect four additional comparisons or importance worsening flips consisting of ω 4 N ω 2 , ω 14 N ω 8 , ω 5 N ω 3 and ω 15 N ω 9 (see Table 1

  .

  3). For instance, ω 4 = sler and ω 2 = slēr differ by two values of variables L and E. For the more important variable E, ω 4 [E] = e ω 2 [E] = ē given the context s. For the less important variable namely L, ω 2 [L] = l ω 4 [L] = l where ω 2 , ω 4 |= r for a fixed value r ∈ R. This preference entailment corresponds to an importance worsening flip.

Figure 1

 1 Figure 1.10: Induced graph of TCP-net of Figure 1.3. Arrows in straight line are deduced from ceteris paribus assumption and those in dotted represent additional comparisons deduced from the importance relation between variables.

  Figure 1.11: Example of a general LP-tree

Definition 1 .Figure 1

 11 Figure 1.12: Example of a dependency graph H if only arcs in straight lines are considered, dotted lines reflect importance relation between variables

  . The transformation leads to the exact same ordering induced by a CP-net 9 . Example 1.22 Consider the CP-net depicted by Figure 1.1. To construct its associated cp-theory, each preference statement is transformed into a CP statement leading to the cp-theory Φ = {φ 1 = s s, φ 2 = l l, φ 3 = s|{∅} : e ē, φ 4 = s|{∅} : ē e, φ 5 = le|{∅} : r r, φ 6 = lē|{∅} : r r, φ 7 = le|{∅} : r r, φ 8 = lē|{∅} : r r}.

  of configurations that differ by the value of X. Assume ω ω with respect to Φ, then there exists a worsening flip from ω to ω . Which means that, without making use of the transitive closure, two configurations are comparable if and only if they differ by a single flip value. Let us now assume the preference importance relation A B C over three variables A, B and C with respective preference statements a ā, b b and c c. The configuration a bc is comparable to ābc leading to the dominance relation a bc ābc.

  A B and the preferences a ā, a : b b, ā : b b. The CP-net ordering is ab C a b C āb C āb. It can be checked that it agrees with the importance statement A B.

  2)Consider the proposition P that consists of a subset of configurations. Π(P ) estimates to what extent at least one configuration ω of the configuration P is satisfactory, while N (P ) evaluates to what extent all configurations outside P are unsatisfactory; thus, N (P ) can be viewed as the level of priority of P . The constraint N (P ) > N ( P ) expresses that the user is more eager to have P than P . Necessity and possibility measures are associated with a duality relation, namely N (P ) = 1 -Π( P ). The smaller N (P ) is, the larger Π( P ) is, and the more satisfactory P is. Cases of total indifference can be represented in the possibility theory, by a possibility distribution uniformly equal to 1. The constraint N (P ) = N ( P ) = 0 means that P and P have no priority at all because there are satisfactory configurations both in P and P . This implies that both propositions are fully satisfactory.When dealing with pieces of knowledge, a degree of possibility π(ω) expresses the level of plausibility and estimates to what extent ω is consistent with the available information. π(ω) = 1 means that ω is totally plausible, whereas π(ω) = 0 indicates that ω is impossible. The measure Π(P ) evaluates to what extent P is consistent with the available beliefs. The necessity measure evaluates to what extent P is entailed by the available knowledge.

  The assertion (P ) estimates to what extent at least one configuration outside P has a low satisfaction degree. This constitutes a prioritized constraint for satisfying the claim ω |= P . (P ) = 1 if and only if there exits a configuration ω s.t. ω |= P that is rejected. Unlike Π and N , and are decreasing functions. They however can be weakly related by the constraint 2.7 provided that π and 1 -π are both normalized 1 [Dubois and Prade, 2012]. max(N (P ), (P )) ≤ min(Π(P ), (P )) s.t. Consider a user preference to plan his vacations. Specifications relate on values of 2 binary decision features: Activities denoted by A with instantiations a = physical pastimes, ā = cultural activities, and Season denoted by B with instantiations b = winter, b = summer. The set of discourse is composed of 2 2 configurations, each associated with a preference degree: π(ab) = 0.3, π(a b) = 0, π(āb) = 1, π(ā b) = 0.8. Going on vacation in winter to undertake cultural activities is fully satisfactory (π(āb) = 1). However, traveling in summer for performing physical activities is completely rejected (π(a b) = 0). Distribution π and 1 -π are normalized. Let P define the proposition "Traveling in summer or looking for cultural events". We aim to calculate to which extent the proposition P is satisfactory. It corresponds to the maximum between preference degrees of configurations that model ā or b. By applying the equation 2.1, it appears that Π

  ) Example 2.4 details the procedure of inferring a guaranteed possibility base Γ from a given possibility distribution. Example 2.4 Let us consider the following guaranteed possibility base Γ = {[r ∨ l ∨ ē, 0.2], [r∨ l, 0.3], [e∧ l, 0.4], [e∧r, 0.4], [s∧ l, 0.4], [r∧s, 0.4], [e∧ l∧s, 0.5], [e∧r∧s, 0.6], [ē∧

  m} where p i is a propositional formula and α i is its corresponding level of satisfaction. Configurations that are not explicitly declared as rejected are considered as tolerated. Solutions that are not totally rejected are some what tolerated and can be represented by a set of prioritized constraints of the form T ol = {N (q j ) ≥ 1 -β j : j = 1, . . . , m} where 1 -β j is a priority degree. Such statements are called negative preferences[START_REF] Benferhat | Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions[END_REF]]. Configurations which are positively preferred are should be tolerated which means that the set of positive preferences should be included into the set of negative ones (see below figure for illustration), and more generally the possibility distributions δ and π respectively associated with the sets Sat and T ol should be such that ∀ω, δ(ω) ≤ π(ω).

  88), (a ∨ b ∨ c, 0.37), (ā ∨ b ∨ c, 0.93)} = {(ā, 0.6), (a ∨ b, 0.1), (ā ∨ b, 0.76), (c ∨ a, 0.3), (ā ∨ c, 0.88), (a ∨ b ∨ c, 0.37), (ā ∨ b ∨ c, 0.93)} Combining Σ ABC and Σ D generates the prioritized base associated with the the ΠG * in Figure 2.1:

  This chapter is dedicated to a recently introduced model situated half-way between qualitative and quantitative representations called possibilistic preference network (πpref net for short). π-pref nets are based on possibilistic networks, as CP-nets are inspired by Bayesian probabilistic nets. As we shall see, π-pref nets avoid the bias of CP-nets that privilege preferences associated with father nodes (due to ceteris paribus assumption). As CP-nets, a π-pref net structure enables us to express conditional preference statements and offers a compact model for elicitation and representation.This chapter is organized in three main sections. It both contains a background part and also proposes new developments in Section 3.4. Next section gives background about π-pref nets and describes the various ways to exploit them. Section 3.3 discusses the expressiveness and consistency of possibilistic preference networks with regard to CP-nets. Section 3.4 introduces new variants of π-pref nets using different scales for encoding preference degrees, where the top and bottom elements 1 or 0 play or not a role.
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 31 Figure 3.1: Example of a symbolic π-pref net with different symbolic weights per variable and context value

Figure 3 . 2 : 3 . 3

 3233 Figure 3.2: Example of a symbolic π-pref net with one symbolic weight per variable
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 323334 Product) ∀ω = ω ∈ Ω associated to distinct vectors ω = (ρ 1 , .. . , ρ N ) and ω = (ρ 1 , . . . , ρ N ), ω P rod ω iff prod( ω) ≥ prod( ω ) such that prod( ω) = N i=1 ρ i . Minimum) ∀ω = ω ∈ Ω associated to distinct vectors ω = (ρ 1 , . . . , ρ N ) and ω = (ρ 1 , . . . , ρ N ), ω min ω iff min( ω) ≥ min( ω) such that min( ω) = min N i=1 ρ i . Pareto) ∀ω = ω ∈ Ω associated to distinct vectors ω = (ρ 1 , . . . , ρ N ) and ω = (ρ 1 , . . . , ρ N ), ω P areto ω iff ∀i = 1, N, ρ i ≥ ρ i and for some , ρ = 1 > ρ .Definition 3.5 (Symmetric Pareto) ∀ω = ω ∈ Ω associated to distinct vectors ω = (ρ 1 , . . . , ρ N ) and ω = (ρ 1 , . . . , ρ N ), ω SP ω iff there exists a permutation f of symbolic weights positions of ω yielding another vector ω f = (ρ f (1) , . . . , ρ f (N ) ) such that ω f P areto ω .

Figure 3 . 3 :

 33 Figure 3.3: Induced graph of π-pref net in Figure 3.2 based on the product chain rule
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 34 Consider two configurations ω 0 , ω 1 in the set of feasible solution Ω relative to network in Figure3.1. ω 0 = (α, 1, 1, 1) and ω 1 = (α, 1, 1, γ 1 ) represent the respective vectors of weights of configurations ω 0 and ω 1 . ω 0 prod ω 1 since α > (α × γ 1 ). If symbols are not instantiated, the minimum semantic can not rank order these configurations since α is less or equal than min(α, γ 1 ) (drowning effect). Considering the Pareto order, ω 0 P areto ω 1 since for variables (S), (L) and (E) satisfaction degrees are equal, except for (R) for which ω 0[R] = 1 > ω 1 [R] = γ 1 . Consider configurationsω 2 and ω 15 with respective vectors ω 2 = (α, 1, δ 1 , 1) and ω 15 = (1, β, 1, 1). Deleting equal preference degrees yields vectors ω 2 = (α, 1, δ 1 ) and ω 15 = (1, β, 1). Suppose we know that δ 1 < β and δ 1 < α. Based on the minimum procedure min(α, 1, δ 1 ) = δ 1 while min(1, β, 1) = β which makes ω 15 discrimin ω 2 . Configurations ω 3 and ω 7 are encoded by vectors ω 3 = (α, 1, δ 1 , γ 2 ) and ω 7 = (α, β, δ 1 , 0). Let ω 7(f ) = (α, 1, δ 1 , β) be a permutation of weights in ω 7 (f is a permutation function). ω 7(f ) leximin ω 3 since

Figure 3 . 4 :

 34 Figure 3.4: Refinements between ordering strategies (a) for instantiated numerical degrees, (b) for symbolic degrees without additional constraints and (c) for symbolic degrees and additional constraints on them
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 35 Consider configurations ω 13 and ω 15 with respective vectors ω 13 = (1, β, δ 2 , γ 3 ) and ω 15 = (1, β, 1, 1), ω 15 P areto ω 13 since all preference degrees in ω 15 are higher or equal to those of ω 13 . Based on the inclusion ordering between satisfied subsets, S(ω 13 ) = (S) ⊂ S(ω 15 ) = (SER). The latter strategy does indeed recover the comparison engendered using Pareto semantic. However, configurations ω 9 and ω 11 with respective vectors ω 9 = (1, 1, δ 1 , γ 2 ) and ω 11 = (1, 1, δ 2 , 1), are incomparable based on Pareto, since the inclusion order, unlike the Pareto order, does not take into account variable's positions but considers sets of satisfied variables as a whole. Based on inclusion, we have ω 11 ω 9 since S(ω 9 ) = (SL) ⊂ S(ω 11 ) = (SLE).
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 37 Figure 3.5 graphically represents comparisons of the π-pref net in Figure 3.1 based on the inclusion / Pareto or product order. Two adjacent configurations differ by only one flip and are described by the product of their respective weights. Each configuration is associated to its preference degree and a subset of its non-violated vari-ables. Considering the induced CP-net graph in Figure 1.3, solid arrows in Figure 3.5 depict comparisons induced by both ceteris paribus and inclusion, Pareto and product semantics. Arrows in dotted lines show comparisons that the CP-net gives but the inclusion ordering does not. We can compare two different solutions by comparing the product of their respective vectors e.g configuration ω 0 associated with a preference degree π(ω 0 ) equals to α dominates configuration ω 4 with π(ω 4 ) = αβ since α > αβ, or simply α ∈ {α, β} . No contradictions are observed in Figure 3.5 between orderings induced from a πpref net and its corresponding CP-net. However, ω 3 = slēr C ω 7 = s ler since they differ by the value of (L) s.t. ω 3 [L] = l, ω 7 [L] = l and l l. The corresponding π-pref net fails to catch this relation. This can easily be checked by Pareto strategy where
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 35 Figure 3.5: Induced graph of π-pref net in Figure 3.1 based on the product chain rule
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 36 Figure 3.6: Examples of an anti-normalized π-pref nets
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 339 Figure 3.8: Bi-normalized (bi-valued) πpref net
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 3 Figure 3.10: Conditional preference network with non-normalized distribution on preferences: (a) for equal symbolic degrees per variable (b) for different symbolic degrees per variable and context

Figure 3 .

 3 Figure 3.11: Pareto graphs of networks in Figure 3.10: (a) solid arrows represent comparisons given different symbolic degrees per variable and context, and dotted arrows represent comparisons given unique symbols per variable; (b) only comparisons induced given different symbolic degrees per variable and context
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 33 Figure 3.12: Example of a conditional preference network

Algorithm 4 . 1 : 3 E 4 Ω

 4134 Algorithm of partitioning of Ω using the minimum specificity principle Input: The set of solutions Ω The set of possibilistic constraints C Π Output: A well-ordered partition E 1 j = 0 2 while Ω = ∅ do j = {ω i , i = 0, • • • , m} s.t. ω i does not belong to the set of configurations on the right-hand side of any constraint (ω i is never dominated) = Ω \ E j 5

Definition 4 . 1 (

 41 Possible meanings of conditional preferences) Let p : q q be a conditional preference statement. Considering a constraint of the form ⊕{π(ω) : ω |= p ∧ q} > ⊗{π(ω ) : ω |= p ∧ q}, we have the four following options when the aggregation operators are min or max:

  1 which comes down to apply the minimal specificity principle to the constraints C Π . In this case, violations of the Pareto ordering may appear as shown by the following Example 4.2. For easiness of representation, we give another writing of constraints in C Π such that each of its formula is translated into a collection of subsets (LC(c i ), RC(c i )) referring to the existing configurations of the left respectively right-hand side of constraint

Figure 4 .

 4 Figure 4.1: Examples of normalized π-pref nets

  Figure 4.1 corresponds to R={r 0 : a, r 1 : a b, r 2 : ā b, r 3 : b c, r 4 : b c, r 5 : bc d, r 6 : bc d, r 7 : bc d, r 8 : bc d}. Based on Equation

c 0 : 3 : 4 :

 034 LC(c 0 ) = {ω 0 , . . . , ω 7 }, RC(c 0 ) = {ω 8 , .. . , ω 15 } c 1 : LC(c 1 ) = {ω 0 , . . . , ω 3 }, RC(c 1 ) = {ω 4 , . . . , ω 7 } c 2 : LC(c 2 ) = {ω 12 , . . . , ω 15 }, RC(c 2 ) = {ω 8 , . . . , ω 11} c LC(c 3 ) = {ω 0 , ω 1 , ω 8 , ω 9 }, RC(c 3 ) = {ω 2 , ω 3 , ω 10 , ω 11 } c LC(c 4 ) = {ω 6 , ω 7 , ω 14 , ω 15 }, RC(c 4 ) = {ω 4 , ω 5 , ω 12 , ω 13 } c 5 : LC(c 5 ) = {ω 0 , ω 8 }, RC(c 5 ) = {ω 1 , ω 9 }c 6 : LC(c 6 ) = {ω 3 , ω 11 }, RC(c 6 ) = {ω 2 , ω 10 } c 7 : LC(c 7 ) = {ω 5 , ω 13 }, RC(c 7 ) = {ω 4 , ω 12 } c 8 : LC(c 8 ) = {ω 6 , ω 14 }, RC(c 8 ) = {ω 7 , ω 15 } When applying the Algorithm 4.1, we can see that there exists a single configuration that do not belong to any right-hand part of constraints in C Π which composes to the first partition set E 1 = {ω 0 }. Constraints c 0 , c 1 , c 3 , c 5 are thus satisfied since ω 0 appears on the right-hand part of them namely, RC(c 0 ), RC(c 1 ), RC(c 3 ) and RC(c 5 ). They are thus removed from C Π which is now composed of constraints:

Figure 4 .

 4 Figure 4.2: Pareto graph of π-pref nets in Figure 4.1

Algorithm 4 . 2 : 3 E 4 Ω = Ω \ E j 5

 42345 Algorithm of partitioning of Ω using the maximum specificity principle Input: The set of solutions Ω The set of possibilistic constraints C ∆ Output: A well-ordered partition E 1 j = 0 2 while Ω = ∅ do j = {ω i , i = 0, • • • , m} s.t. ω i does not belong to the left-hand side of any constraint (ω i is never the dominant configuration)Remove from C ∆ all satisfied constraints (their right-hand side are consistent with solutions of E j ) are ranked from worst to best */

Example 4 . 3

 43 Let us consider the same set of defaults of Example 4.2 which encodes specifications in Figure 3.6: R = {r 0 : a, r 1 : a b, r 2 : ā b, r 3 : b c, r 4 : b c, r 5 : bc d, r 6 : bc d, r 7 : bc d, r 8 : bc d}. Following Equation 4.4, the associated constraints in C ∆ are c 0 : a ā min(π(ω 0 ), . . . , π(ω 7 )) > min(π(ω 8 ), . . . , π(ω 15 )) c 1 : a : b b min(π(ω 0 ), . . . , π(ω 3 )) > min(π(ω 4 ), . . . , π(ω 7 )) c 2 : ā : b b min(π(ω 12 ), . . . , π(ω 15 )) > min(π(ω 8 ), . . . , π(ω 11 )) c 3 : b : c c min(π(ω 0 ), π(ω 1 ), π(ω 8 ), π(ω 9 )) > min(π(ω 2 ), π(ω 3 ), π(ω 10 ), π(ω 11 )) c 4 : b : c c min(π(ω 6 ), π(ω 7 ), π(ω 14 ), π(ω 15 )) > min(π(ω 4 ), π(ω 5 ), π(ω 12 ), π(ω 13 )) c 5 : bc : d d min(π(ω 0 ), π(ω 8 )) > min(π(ω 1 ), π(ω 9 )) c 6 : bc : d d min(π(ω 3 ), π(ω 11 )) > min(π(ω 2 ), π(ω 10 )) c 7 : bc : d d min(π(ω 5 ), π(ω 13 )) > min(π(ω 4 ), π(ω 12 )) c 8 : bc : d d min(π(ω 6 ), π(ω 14 )) > min(π(ω 7 ), π(ω 15 )) Let us now perform Algorithm 4.2. The first partition set is composed of E 0 = {ω 10 } since it never dominates any configuration. The verified constraints are c 0 , c 2 , c 3 and c 6 .
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 4 Figure 4.4: A path preference network
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 46 Figure 4.6: Examples of conditional preference networks
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 4 Figure 4.6(a):

Figure 4

 4 Figure 4.8: A graph with N parents and one child

  Figure 4.9: A preference network with one parent and 3 children
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 484 Figure 4.10: A preference network with 2 parents and one child

Figure 4 .

 4 Figure 4.11: A quasi-linear DAG

Figure 4 .Example 4 . 8

 448 Figure 4.12: Improved optimistic ordering of π-pref net in Figure 4.1

c 4 : 4 ,

 44 b : c c L(c 4 ) = {ω 6 , ω 7 , ω 14 , ω 15 }, R(c 4 ) = {ω 4 , ω 5 , ω 12 , ω 13 } c 5 : bc : d d L(c 5 ) = {ω 0 , ω 8 }, R(c 5 ) = {ω 1 , ω 9 } c 6 : bc : d d L(c 6 ) = {ω 3 , ω 11 }, R(c 6 ) = {ω 2 , ω 10 } c 7 : bc : d d L(c 0 ) = {ω 5 , ω 13 }, R(c 7 ) = {ω 4 , ω 12 } c 8 : bc : d d L(c 8 ) = {ω 6 , ω 14 }, R(c 8 ) = {ω 7 , ω 15 }. Following steps of Algorithm 4.3, the first partition set is E Π [0] = {ω 0 }. Constraints c 0 , c 1 , c 3 and c 5 are deleted. For the second iteration, E Π [1] = {ω 0 , ω 3 , ω 6 , ω 14 }. The remaining constraints c 2 , c 4 , c 6 , c 7 and c 8 impose no restriction on ω 1 . Therefore this configuration is assigned to E Π [1]. After the second iteration of the Algorithm 4.3, constraints c 2 , c Using an optimistic or pessimistic mindset, the previous example shows the possibility of obtaining a well-ordered partition on configurations that is in full agreement with the Pareto strategy. In this case, the new partitioning procedure succeeds in repairing all the contradictions induced by the ordering obtained from the algorithms 4.1 and 4.2. However, in some cases, the algorithm may fail to repair some strong Pareto violations as shown by Example 4.9.

Figure 4 .

 4 Figure 4.14: Example of a π-pref net with one symbolic degree per variable

Figure 4 .

 4 Figure 4.15: Partial network from preference rules

  .5) For instance, for n = 2 we can generate a 2 = 3 different DAGs, for n = 3 we can generate a 3 = 25 different DAGs and for n = 4 we can generate a 4 = 543 different DAGs. Even with small numbers of nodes, we can see that the number of possible graphs increases exponentially as n grows, to reach 1.138.779.256 graphs for n = 7.This number grows even more if we consider all possible combinations of preference specifications.The experiments are divided into two parts. We first start by computing the optimistic and pessimistic orderings to confirm propositions made in Section 4.4. To do so, we generated a first benchmark of 1000 instances of preference networks only composed of quasi-linear DAGs: 50 instances with n = 3, 200 instances with n = 4 and 250 instances for each of n = 5, n = 6 and n = 7. The purpose of the first experiment part is to confirm the proposition that for quasi-linear networks (see Figure4.11), the number of partition layers of the optimistic and pessimistic orderings equals3. 

Algorithm 4 .

 4 1 (and 4.2). The second subsection describes results on the expressiveness of the Pareto and default orders. The third subsection gives results on the improved partitioning procedure detailed in 4.5. Finally, the last subsection summarizes the results of all experiments.
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 4 Figure 4.16: Percentage of networks by size of partitions for n from 4 to 7

Figure 4 .

 4 Figure 4.17: Percentage of networks by size of partitions for c = 2 c = 4 and c = 5

Figure 4 .

 4 Figure 4.19 shows the percentages of strict dominance relations induced by the two approaches as a function of the in-degree of different graphs. The figure describes divergent curves. Indeed, as the number of in-degree increases, the percentage of default order comparisons increases and the percentage of Pareto order comparisons

Figure 4 .Figure 4 .

 44 Figure 4.18: Average of the percentage of strict Pareto and default orders dominance relations as a function of the network size

Figure 4 .

 4 Figure 4.20: Percentage of networks with Pareto contradictions as a function of the graph size

  Figure 4.21 presents the percentage of networks with Pareto violations as a function of the in-degree of the graph. All curves have different inflection points showing the presence of a relation between the in-degree of the networks and the number of Pareto contradictions.

Figure 4 .

 4 Figure 4.21: Percentage of networks with Pareto contradictions as a function of the graph in-degree

Figures

  Figures 4.22(a) and (b) give the average of the percentage of strict comparisons

  Figures4.22 (a) and (b) give the average of the percentage of strict comparisons induced from the Pareto, the default partitioning algorithm and its improved version in function of the network sizes and in-degrees respectively. In both figures, we notice that the classical partitioning procedure and the improved partitioning procedure behave in the same way: whatever the size of the graph considered, the percentage of strict comparisons is practically the same. We even notice that the number of nodes and the in-degree have an influence on the improvement. More precisely, for n = 7 or c = 5, the improved procedure allows to have a more discriminating order than the Pareto one. Nevertheless, this order is not necessarily free of contradictions with the Pareto strategy. The same behavior can be observed for all the graphs having contradictions with the Pareto order.

Figure 4 .

 4 Figure 4.22: Average of the percentage of strict order dominance relations as a function of (a) the network sizes and (b) the network in-degrees for all the benchmark

  we check that, according to the Pareto order, any configuration ω in layer l of E is preferred to all configurations ω at a lower level of E. If not the case, ω is moved down. If the Pareto ordering indicates an incomparability relation between ω and ω , then the dominance relation indicated by the default order is preserved.Algorithm 5.1 outlines the explained process. Function extend(E, i) permits to add an intermediary layer below the layer i. The function P ref(M, ω, ω ) gives the dominance relation between configurations ω i and ω j based on a given a matrix M that encodes an order.Algorithm 5.1 has as input the Pareto incidence matrix M P areto and a well-ordered partition E such that its layers are sorted from best to worst ones. In the worst case, E is composed of not less than 3 layers (see propositions in Section 4.4) . To simplify the calculation of the algorithm's complexity, we consider that E contains a single layer holding all possible configurations. Thus, one layer is created for each configuration if the Pareto partial ordering is refined into a total order at the end. The time complexity of the refinement algorithm is O(2 N ).

Figure 5 . 1 :

 51 Figure 5.1: Example of π-pref net (a) for equal symbolic degrees per variable and contexts (b) for different symbolic degrees per variable and context values

Figure 5 . 3 :

 53 Figure 5.3: Pareto graph of π-pref nets in Figure 5.1 (dotted arrows represent additional comparisons given one symbol per variable)

Algorithm 5. 3

 3 outlines the process for refining the Pareto ordering by a default ordering. The idea is to try resolving incomparabilities of the Pareto ordering by the minimum or maximum specificity principles. Function move(E, ω, i, j) removes ω from E[i] and place it in E[j]. Functions P ref (M, ω, ω ) and clear(E) are the same as in Algorithm 5.3 and 5.2 respectively.

Figure 5 . 4 :

 54 Figure 5.4: Average of the percentage of strict order dominance relations as a function of (a) the network sizes and (b) the network in-degrees for networks with no Pareto contradictions

  Figure 5.5: Average of the percentage of strict order dominance relations as a function of (a) the network sizes and (b) the network in-degrees for networks of all the benchmark

Example 6. 1

 1 Figure 6.1: An example of a general LP-tree

Figure 6 . 2 :

 62 Figure 6.2: Example of a CI LP-tree

Figures 6. 3

 3 Figures 6.3(a) and (b) are illustrative network examples defined on the same set of

Figure 6 . 3 :

 63 Figures 6.3(a) and (b) are illustrative network examples defined on the same set of variables: X = {A, B, C}. Both trees correspond to the class of UI LP-trees. In Figure 6.3 (a) all variables are independent, the network thus encodes the importance relation A B C and preferences a ā, b b and c c. In this case, graphical modeling does not seem to be the most concise way to encode all the given information. Unlike this network, preferences in Figure 6.3 (b) are partially conditional since preferences over B depend from A.
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 64 Figure 6.4: Example of a CP LP-tree

Figure 6 . 5 :Figure 6 . 7 :

 6567 Figure 6.5: Class of UI LP-trees Figure 6.6: Class of UP LP-trees

  Figure 6.9: Example of an SCI LP-tree

Figure 6 .

 6 Figure 6.11(b) shows an example of an FP LP-tree with both conditional and unconditional preferences. Variables A, C and D are context-independent Preferences over values of their domains do not change in every branch of the tree. Preferences over the values of B depend from the value of C. This dependency relations is expressed in all branches of the tree and preferences over B remain fixed for every context in all the tree.

  Figure 6.11: Example of an FP LP-tree (a) with unconditional, (b) conditional preferences

  Figure 6.12: Sets of FUP-UI LP-trees (in solid line rectangle) and UP-UI LP-trees (in dotted line rectangles) given two decision variables

4 .

 4 Figure 6.13: Example of an incomplete LP-tree

  Figure 6.14: Example of a 2 CP-UI LP-tree

Example 6. 3

 3 Let us consider LP-tree in Figure 6.1. Preference of the root node stipulates that a ā, this means that all models of a should lexicographically dominate those of ā. When the variable A takes the value a, then the second most important variable is B. The contextual specification associated with this node is a : b b. This means that in configurations that satisfy a all configurations that satisfy b are preferred to those that satisfy b. In the left-most branch the third most important variable is C. It holds preferences that depend from B. When a configuration satisfies b then c c. In the obtained order-ranking, configurations that satisfy c are preferred to those that satisfy c. The least important node is D with the preference statement d d which means that, whatever the value of the more important variables the configuration that verify d is preferred to d. Let us now move on to the right-most branch. The second most important variable given the value ā of A is D. Configurations that model ā and d are preferred than those that verify ā and d.

  Figure 6.15: Multiple conditionings

Example 6. 4

 4 Let us consider the UI LP-tree in Figure 6.7, and the pair of configurations abc, a bc. The two configurations differ on the value of variables B and C. The lexicographic order expressed by the network states that A B C. The variable B constitutes thus the decisive variable. It stipulates that b b which yields to conclude that abc Lex a bc.

  it. It is interesting to examine the compatibility of the cardinality order with the ordering entailed from LP-trees. For this purpose, let us consider the simplest structure of UP-UI LP-trees illustrated by the Figure 6.7. The induced total order on configurations stipulates that abc Lex āb c. However, the dominant configuration violates nodes B and C, while the dominated one violates only A. The two orders may thus lead contradictory dominance relations. This can be explained by the fact that the importance relation on variables has a dominant and discriminant power on the ranking of configurations.

  .

  Figure 6.16: Two linear LP trees with (a) unconditional and (b) conditional preferences

Figure 6 .

 6 Figure6.19, this constraint is not sufficient to recover the lexicographical order. We must add the constraints α ≤ β × γ × δ and β ≤ γ × δ to recover it (the first constraint, for example, ensures that a bc d ābcd). The syntax of these products shows that it is easy to generalise the constraints to be added for a linear LP-tree with any number of variables.A

  Figure6.19: Vectors associated to configurations for the π-pref net relative to LP-tree in Figure6.16(a) 
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 71 Figure 7.1: The toolbox main menu

u

  figures), the user can first specify the variable name and domain in Domains in the right most column of the window. Links are then created by clicking on each node and selecting parents to add. Once the graphical structure is created, the user can now specify preferences for each context value. Conditional tables can be displayed by checking the checkbox "Show CPT's".

if

  Graph.N odes[i].P arents = ∅ then 8[good, bad] = P ref _Rejected_V alues(Graph.N odes[i].CP T ) 9 if Graph.N odes[i].CP T [0] = good then 10 pref _degree[0] = 1 11 pref _degree[1] = symbols[i] 12 else if Graph.N odes[i].CP T [0] = bad then 13 pref _degree[0] = symbols[i] ∈ Graph.N odes[i].CP T do 18 [good, bad] = P ref _Rejected_V alues(row) 19 if Graph.N odes[i].CP T [0] = good then 20 pref _degree[j][0] = 1 21 pref _degree[j][1] = symbols[i] 22 else if Graph.N odes[i].CP T [0] = bad then 23 pref _degree[j][0] = symbols[i]Let us reconsider the network in Figure7.2. By clicking on one of the four last checkboxes in the option panel in the left most column of the window, the toolbox creates and displays local tables associated to (extensions) of the π-pref net.

Figures 7. 3

 3 Figures7.3 and 7.4 represent induced π-pref nets given sets of preference statements of network in Figure7.2, respectively with equal and different symbolic weights per variable and context.

Figure 7 . 3 :

 73 Figure 7.3: Example of a π-pref net with one symbolic weight per variable

  Figure 7.5: Examples of (a) an anti-normalized (guaranteed), (b) a non-normalized, (c) a bi-normalized π-pref net generated from network in Figure 7.4

  figuration itself ω and the π-pref net πGraph. The entered solution is then written in a Boolean form using the function omegaU nderBooleans. The algorithm then simply sweeps through all configuration values in ω and searches for their corresponding symbolic weights, to then output the vector of weights ω. Function P roductChainRule simply multiplies degrees in ω and returns the possibility degree associated with the input vector.

Algorithm 7 . 4 :

 74 in order to compare pairs of configurations. Algorithm 7.4 details the comparison procedure. It describes the function P ref (M, ω, ω ) used in Algorithm 5.1. To find the dominance relation P areto between the entered solutions, the algorithm uses a result vector vec in the size of decision nodes. Configurations preference degrees are compared one by one. If π(ω[i]) > π(ω [i]) then vec[i] = . Conversely, if π(ω [i]) > π(ω[i]) then vec[i] =≺.When both degrees correspond to equal symbolic weights, then vec[i] = ' ' otherwise they are considered incomparable and vec[i] = ' '. If vec contains either both and ≺ relations or the incomparability relation then ω and ω can not be compared by the Pareto order. Otherwise, if vec contains the relation but not ≺ than ω P areto ω . By contrast, if vec contains the relation ≺ but not than ω P areto ω. Similarly, the toolbox implements the Pareto order for comparing vectors of weights corresponding to all extensions of a π-pref net. Dominance query based on Pareto order Input: ω, ω , πGraph Output: 0 to πGraph.N -1 do 6 if ( ω[i] = 1) and !( ω [i] = 1) then 7 vec[i] = 8 else if !( ω[i] = 1) and ( ω [i] = 1) includes( ) or (vec.includes( ) and vec.includes(≺)) then 17 P areto = 18 else if vec.includes( ) and !vec.includes(≺) then 19 P areto = 20 else if !vec.includes( ) and vec.includes(≺) We pursue with the same π-pref net example depicted by Figure 7.4. The comparison vector vec of configurations ω 0 = ABCD with ω 0 = (1, β 0 , γ 0 , 1) and ω 15 = abcd with ω 15 = (α, β 1 , γ 1 , 1) is vec = [ , , , ]. Algorithm 7.4 deduces an incomparability relation. For a second illustration, let us compare configurations ω 0 and ω 3 . Their associated vectors of weights are respectively ω 0 = (1, β 0 , γ 0 , 1) and ω 3 = (1, β 0 , 1, 1). The computed comparison vector is vec = [ , , ≺, ]. Thus, the algorithm deduces the dominance relation ≺ which means that ω 3 P areto ω 0 .

7. 3 ••

 3 Default reasoning on preferencesPreference statements of a user are translated into default constraints composed of two subsets that we call LC for the left-hand side of constraints and RC for the righthand side (see Equations4.1 and 4.4). Algorithm 7.5 scrolls through all CP T 's of the Graph structure and, for each node, associates to the parameter row the preference specification of a given context value. The conditional preference row is then passed as parameter to the function P ref _Rejected_V alues which returns the preferred good and rejected bad node values respectively. Function CartesianP roduct takes as input a list of nodes and returns the set P ar_Contexts of all their possible assignments. For each context u ∈ P ar_Contexts, configurations that verify both values good and u are assigned to LC[j] such that j is an iterator over the number of constraints. Configurations that verify values bad and u are assigned to the other hand side of the constraint j namely RC[j]. This procedure describes how constraints used by Algorithms 4.1 and 4.2 are created. Example 7.6 Table 7.2 gives the output of Algorithm 7.5 computed on the conditional preference network in Figure 7.2. The toolbox log file of the set of default constraints is given in Figure 7.7. Each constraint is represented by a set of dominant configurations loaded in a first row, and a set of dominated configurations loaded in a second row. As case in point, let us consider specifications of node(X(B)). Function CartesianP roduct takes as parameter the parent list composed of node(X(A)) and returns its possible values, namely A and a. For the first context A, row = [b, 0, B]. Function P ref _Rejected_V alues outputs good = b and bad = B. The constructed constraint is thus LC[1] = {ω 4 = AbCD, ω 5 = AbCd, ω 6 = AbcD, ω 7 = Abcd} (all models of A ∧ b) and RC[1] = {ω 0 = ABCD, ω 1 = ABCd, ω 2 = ABcD, ω 3 = ABcd} (all models of A ∧ B). For the second context a, row = [B, 0, b]. The constructed constraint is thus LC[2] = {ω 8 = aBCD, ω 9 = aBCd, ω 10 = aBcD, ω 11 = aBcd} and RC[2] = {ω 12 = abCD, ω 13 = abCd, ω 14 = abcD, ω 15 = abcd}.

Figure 7 . 7 :

 77 Figure 7.7: Log file of default constraints relative to preference statements of the conditional preference network in Figure 7.2

Figures

  Figures 7.8(a) and (b) represent results of Algorithm 7.6 displayed by the toolbox, using

  Figures 7.8(a) and (b) represent results of Algorithm 7.6 displayed by the toolbox, using an optimistic and pessimistic strategy respectively.

  (a) and (b).

Figure 7 .

 7 Figure 7.12: Metrics results for comparing the ceteris paribus ordering and the combined specificity approaches default ordering of the conditional preference network in Figure 7.2

  Figure 7.13 shows an example of an ordering displayed under the form of a matrix. Figures 7.14

  and 7.15 show the displayed windows for performing the dominance query given a precise ordering.

Figure 7 .

 7 Figure 7.13: Incidence matrix of the combined specificity ordering in Figure 7.10

Figure

  Figure 7.14: Window of dominance query

Example 7. 10 3 ••

 103 Let us consider the following command line: command line : ./gencpnet -n 3 -c 2 -d 2 -g 10 GeneratedExamples It allows to generate 10 random networks under the described specifications and store them in the folder "GeneratedExample". Parameters are fixed as follows: • Number of generated CP-nets g = 10 • Number of nodes n = Bound on in-degree c = 2 Domains size d = 2

  

  

  

  

  

•

  My preferences on car ownership are conditional. If it is a luxury car (l), whatever is its propulsion system (e or ē), I'd prefer to rent (r) rather to purchase (r)the car mainly because of its expensiveness i.e. le : r r and lē : r r. If it is

	a modest vehicle ( l) with an electric motor (e), I still prefer to rent rather than
	buy, mainly to avoid maintenance fees i.e. le : r	r. However, if the vehicle
	is modest ( l) and equipped with a gasoline motor (ē), I prefer to buy since the
	car price is still acceptable and spare parts are cheaper than electric ones i.e.
	lē : r r.	

This example involves four decision variables, S: distance, L: category, E: propulsion system and R: ownership, s.t. S = {s, s}, L = {l, l}, E = {e, ē} and R = {r, r}. The vehicle category L and distance trip S are not conditioned by other variables. The preferences over the car motor E is conditioned by the trip distance S and owning or renting the car R depends of its category L and propulsion system E. The conditional preference network structure is given by

  3) such that nodes correspond to configurations attached to quality vectors and an arc from ω to ω reflects a dominance relation in favor to ω.

Definition 1.3 (Pareto graph) Given a conditional preference network with N decision variables, a Pareto graph is a DAG structure < N , E > such that N = {W 0 , . . . , W 2 N -1 } is the set of nodes and E is the set of arcs that connects them

  Unlike the Pareto order which

		ω 10	
		slēr	
		(++++)	
	ω 0	ω 11	ω 15
	sler	slēr	sl ēr
	(-+ ++)	(+ + +-)	(+ -++)

Table 1

 1 

	.1 associates to

The first layer encompasses the best outcome while the last one corresponds to the worst. Configurations of a given layer are preferred to those of the next layer.

  Such a statement is interpreted by "In the context of u, I strictly prefer X to ¬X". The collection of conditional statements associated with each node forms the second component of a CP-net namely Conditional Preference Tables

They initially were inspired from Bayesian networks, but unlike the latter, they offer a tool for representing preferences in a qualitative manner. Each user specification encoded by CP-nets define a ranking over values of single variables in the context of fixed assignments of features that influence them. Thus, a CP-net is composed of two components: a graphical and an informational structure. Indeed, decision variables are depicted by nodes connected with each other by means of arcs that reflect dependencies between them. Each node is associated with a local table that contains an ordinal relation on values of the variable in question. A CP-net C is thus composed of a directed graph that involves a set of decision variables depicted by nodes that are connected by means of directed edges. Each arc from a node X to a node x reflects the dependency of x in regards of X. If we restrict features to be binary-valued, each decision variable X ∈ X is associated with a collection of statements of the form u : X ¬X where u ∈ U X and {x, x} ∈ X.

The set of Postconditions is obtained after performing two operations: Delete list: x j i and Add list: x j+1 i which consists on removing x j i from propositions in the set of Preconditions and replace it by x j+1 i

  

	precondition u∧x 1 for u∧x. Statements of the considered example are thus transformed
	into the following set of planning operators :	
		. This
	corresponds to the action of worsening x j i to x j+1 i	in the context of u i . Considering
	any comparison of the form ω C ω between a pair of different configurations, the
	idea is to treat ω as the starting state and ω as the goal. Thus, ω C ω holds
	true if and only if the planning problem converges and can generate a plan. It is
	obvious to see that the problem solution corresponds to a set of worsening flips that
	compose a worsening flip sequence from ω to ω . For binary-valued acyclic CP-nets,
	this problem is known to be PSPACE since it is reducible to a specific variant of
	STRIPS planning problems with unary operators which instantiate one variable at a
	time [Brafman and Domshlak, 2011].	
	Example 1.13 Consider preference statements defined by local tables of network in
	Figure 1.1. Each statement of the form u : X ¬X is transformed into the operator or

Example 1.14 Consider

  CP-net C in Figure 1.1. Configurations ω 1 = sler and ω 3 = slēr differ by the value of E but satisfy the same set {S} of ancestors. For the context s, there exists a statement s : e ē, then we can conclude that ω 3 C ω 1 does not hold. Consider now configurations ω 0 = sler and ω 9 = sler that differ by values of nodes S and R. Conditional tables associated with these variables stipulate that s s and le : r r which means that ω 9 [S] ω 0 [S] and ω 0 [R] ω 9 [R]. This leads to the conclusion that ω 0 C ω 9 and ω 9 C ω 0 do not hold which means that ω 0 and ω 9 are not comparable.

		. Indeed, the
	optimization query evaluates if ω ω is true making the reverse order relation false,
	namely ω	ω. The ordering query is a weaker interrogation that verifies if ω	ω
	and ω	ω are both true. In other words, it verifies if there exists a strict dominance
	relation between two configurations. It is a yes or no query checking if two configu-
	rations are comparable or not. Actually, a user may be satisfied by simply knowing
	that a configuration can consistently be ranked as preferred to another. The following
	example gives an illustration of the ordering query.	

Induced importance relation Entailed preferences

  

					sler N s lēr ω 0 N ω 6 sler N s lēr ω 1 N ω 7
					sl ēr N sler sl ēr N sler sl ēr N sler ω 14 N ω 8 ω 14 N ω 8 ω 14 N ω 8
	i-arcs	E	L	E L	sl ēr N sler sl ēr N sler sl ēr N sler ω 15 N ω 9 ω 15 N ω 9 ω 15 N ω 9 s ler N slēr s ler N slēr s ler N slēr ω 4 N ω 2 ω 4 N ω 2 ω 4 N ω 2 s ler N slēr s ler N slēr s ler N slēr ω 5 N ω 3 ω 5 N ω 3 ω 5 N ω 3
					slēr N sl er ω 10 N ω 12
					slēr N sl er ω 11 N ω 13
	ci-arcs	E L	R e L L ē R	sler N sler ω 0 N ω 1 sler N sler ω 8 N ω 9 slēr N slēr ω 2 N ω 3 slēr N slēr ω 10 N ω 11
			Table 1.3: Preferences derived from i-arcs and ci-arcs
	query we need to go through the network from root nodes to leaves and assign at each
	step the preferred (resp. rejected) value of the node in the context of parents. How-
	ever, the process of finding the dominance relation between a pair of configurations
	is extended by considering, in addition to worsening flip sequences, another type of
	flipping sequences called importance flip sequences based on the importance relation
	of attributes.				
	Consider the pair of configurations (ω, ω ) that differ by two variable values. If the

Table 1 .

 1 

	Entailed preferences

Mapping a CP-net C into a cp-theory Φ C can be done by transforming each statement u : X ¬X, where u ∈ U X , of each conditional preference table CP T (X) into the CP statement u|{∅} : X ¬X. The cp-theory Φ C corresponds to the union of CP Φ Φ Φ CP statement |{ER} : l Φ l {ler, ler, lēr, lēr} Φ { ler, ler, lēr, lēr} φ 3 lē|{∅} : r Φ r lēr Φ lēr 4: Preferences derived from CP statements given a CP-net statements associated to each variable X ∈ X

  Details about the computation of the possibility distribution inferred given Γ is explained inTable 2.2. For instance, the configuration ω 2 = slēr only satisfies propositions of the

first, second and last formulas, namely ω 2 |= r ∨ l ∨ ē, ω 2 |= r ∨ l and ω 2 |= . Thus,

π [r∨ l∨ē,0.2] (ω 2 ) = 0.2, π [r∨ l(ω 2 ),0.3] = 0.3 and π [ ,0.1] (ω 2 ) = 0.1.

The preference degree associated with ω 2 corresponds to the maximum between elementary degrees relative to each formula. Therefore, δ Γ

Table 2 .

 2 

2: Detailed computation of the possibility distribution δ Γ given a guaranteed possibility base Γ

  These networks permit to express ignorance by associating the highest degree of possibility to all values of the variable in question.As mentioned in Section 2.4.1, there exist two kinds of conditioning, which engender two types of possibilistic graphs. The notation ΠG m refer to the qualitative counterpart of possibilistic networks where the joint possibility distribution is calculated based on the minimum operator. A ΠG

	It might be more convenient for an expert to express his knowledge about the world
	by providing sure beliefs instead of possible ones. For this purpose, conditional local
	distributions can be replaced by conditional necessities, i.e., Π(x|U

are counterparts of probabilistic causal networks. They are a noteworthy alternative to the latter when it comes to representing uncertain information. Possibilistic networks are based on the decomposition of a joint possibility distribution as a combination of conditional possibility distributions. Decision variables are depicted by nodes, each associated with a possibility distribution that express the agent's knowledge on the underlying variables. Local distributions must be normalized, i.e., there must exist at least one instantiation of underlying variable that is totally possible. Nodes are connected by means of edges that reflect influence links between them. X ) = 1 -N (x|U X ), due to the duality property between possibility and necessity measures.

Definition 2.2 (Possibilistic network) A possibilistic network over a set of variables X is characterized by two components (i) a graphical structure G = (X , E) consisting of a DAG expressing dependency between decision variables;

(ii) a set CT of conditional tables where each node X ∈ X is attached to a conditional table CT (X) that correspond to a local normalized conditional possibility distribution π(X|U X ). * corresponds to a quantitative possibilistic network where the joint possibility distribution is based on the product operator.

  which leads to an incomparability case. From the other hand, ω 0 P areto ω 2 but these configurations are incomparable according to the ceteris paribus assumption, which means that no flipping chain rule can be found between them.

		ω 10				
		slēr				
		(1)(SLER)			
	ω 11 slēr	ω 0 sler		ω 15 sl ēr	ω 8 sler	
	(γ 2 )(SLE)	(α)(LER)		(β)(SER)	(δ 2 )(SLR)	
	ω 1 sler	ω 2 slēr	ω 4 s ler	ω 14 sl ēr	ω 12 sl er	ω 9 sler
	(αγ 1 )(LE)	(αδ 1 )(LR)	(αβ)(ER)	(βγ 4 )(SE)		(δ 2 γ 1 )(SL)

(βδ 2 )(SR)

  must be added. The first step consist in defining nodes that are not leafs which are {S, L, E}. Detailed computation allowing to infer ceteris paribus constraints are detailed in Table 3.3. The set of relevant and most hard constraints are written in bold, namely δ 2

Table 3

 3 

	.6.

  3 , ω 6 , ω 14 } {ω 2 , ω 5 , ω 7 , ω 8 , ω 9 , ω 10 , ω 11 , ω 13 , ω 15 } 3 {ω 2 , ω 5 , ω 7 , ω 8 , ω 13 , ω 15 } {ω 4 , ω 12 } 4 {ω The default rule ordering induced by performing the partitioning algorithm is summarized by the left column of Table 4.1 . The cardinality ordering is presented in the right column of the same table as an element of comparison. Indeed, the π-pref net or-Going from the best ω 0 = abcd to the worst configuration ω 10 = ābcd, solid arrows represent comparisons where symbolic weights per variable are different

	der is partial and cannot be put in parallel with a complete pre-order without changing
	incomparability into indifference.
	The Pareto graph obtained by comparing quality vectors made with the symbolic
	weights of the π-pref net (as explained in Chapter 3) in Figure 4.1 is depicted in Figure
	4.2. As in Chapter 3, we consider the case (a) where there is a unique symbolic weight
	per node and (b) there is a distinct symbolic weight for each conditional preference in
	each context.

4 , ω 9 , ω 11 , ω 12 } 5 {ω 10 } Table 4.1: well-ordered partitions based on an optimistic approach and based on the cardinality order given each context of parent, while dotted arrows depict additional comparisons where symbolic weights per variable are the same. We can check that all constraints are in agreement with comparisons induced by the Pareto order (and thus with the product chain rule).

  this violates no preference statement. It means that the comparison of ρ with 0 refers to different contexts and no preference statement is involved. Besides, In Algorithm 4.1, it is enough to adapt the instruction of line 3 so that E j involves solutions that do not appear on the left-hand side of constraints, i.e.,that are always dominated. In the output partition, configurations are ranked from the worst to the best ones, which means that ω i ∈ E j are less preferred than ω i ∈ E j+1 . The first set E 0 corresponds to the worst solution. The procedure for entailing a well-ordered partition from constraints in C ∆ is summarized by Algorithm 4.2.

	the vector components where ω and ω are equal cannot correspond to a violation of a
	preference statement.

Table 4 .

 4 , ω 1 , ω 2 , ω 3 , ω 5 , ω 7 , ω 8 , ω 13 , ω 15 } 2 {ω 1 , ω 3 , ω 6 , ω 14 } {ω 4 , ω 9 , ω 11 , ω 12 } 3 {ω 2 , ω 5 , ω 7 , ω 8 , ω 13 , ω 15 } {ω 10 } 4 {ω 4 , ω 9 , ω 11 ω 12 } 5 {ω 10 } 2: Well-ordered partitions based on a pessimistic approach and based on the cardinality order

	Maximum specificity ordering Levels Cardinality ordering
	{ω 6 , ω 14 }	1	{ω 0 }
	{ω 0		

The default rule ordering induced by performing the partitioning algorithm is summarized by the left column in Table

4.2 

going from best to worst configuration(s). The inclusion ordering is presented in the right column of the same table.

  which then translates into the constraint Π(x 1 x 2 . . . x N x) > Π(x 1 x 2 . . . x N x) simply written as the expression x 1 x 2 . . . x N x x 1 x 2 . . . x N x. A conditional preference network is thus expressed by means of a collection of such constraints and by computing Algorithm4.1, 

. . X N are parent variables, is expressed by the default preference rule x 1 x 2 . . . x N x,

  k} be the set of possibilistic default constraints. Let E Π be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C

Π . Then, any conditional preference path graph results into a partition E Π of exactly 3 layers. Proof 4.3 Let us assume a path graph G of N vertices namely X 1 , X 2 , . . . , X N . The root node holds a preference constraint of the form x 1 x1 , whereas, for i = 2, N , the remaining nodes hold conditional preferences of the form x

Table 4 . 3

 43 3 , ω 4 , ω 5 , ω 15 } {ω 2 , ω 3 , ω 4 , ω 5 , ω 8 , ω 12 , ω 14 , ω 15 } 3 {ω 2 , ω 6 , ω 7 , ω 8 , ω 9 , ω 12 , ω 13 , ω 14 } {ω 6 , ω 7 , ω 9 , ω 11 , ω 13 } , ω 3 , ω 4 , ω 15 } {ω 2 , ω 3 , ω 4 , ω 5 , ω 7 , ω 9 , ω 12 , ω 14 , ω 15 } 3 {ω 2 , ω 5 , ω 6 , ω 7 , ω 8 , ω 9 , ω 12 , ω 13 , ω 14 } {ω 6 , ω 8 , ω 11 , ω 13 } , ω 3 , ω 4 , ω 15 } {ω 0 , ω 1 , ω 2 , ω 5 , ω 6 , ω 9 , ω 13 , ω 14 , ω 15 } 3 {ω 2 , ω 4 , ω 5 , ω 6 , ω 9 , ω 10 , ω 11 , ω 13 , ω 15 } {ω 4 , ω 8 , ω 10 , ω 12 } 4 {ω 8 , ω 12 } {ω 11 } , ω 2 , ω 4 , ω 5 ω 14 } {ω 2 , ω 3 , ω 5 , ω 6 , ω 9 , ω 13 , ω 14 , ω 15 } 3 {ω 3 , ω 6 , ω 7 , ω 9 , ω 13 , ω 15 } {ω 7 , ω 8 , ω 10 , ω 12 } 4 {ω 8 , ω 10 , ω 11 , ω 12 } {ω 11 }

	4	{ω 10 , ω 11 }	{ω 10 }
	Figure 4.6(b):		
	Levels Minimum specificity ordering Maximum specificity ordering
	1	{ω 1 }	{ω 0 , ω 1 }
	2 {ω 0 4 {ω 10 , ω 11 }	{ω 10 }
	Figure 4.6(c):		

: well-ordered partitions induced from networks in Figure

4.6 

  the minimum specificity principle on constraints of C Π . Then, any conditional preference network with one parent node and N -1 children results into a partition E Π of exactly 3 layers.

		X 1		X 1	X 2	...	X N -1
	X 2	X 3	...	X N	X N
	Figure 4.7: A graph with one parent	
	and N children			

. . , k} 

be the set of possibilistic default constraints. Let E Π be the well-ordered partition of solutions obtained using

  k} be the set of possibilistic default constraints. Let E ∆ be the well-ordered partition of solutions obtained using the minimum specificity principle on constraints of C 1 xi and x1 xi x1 x i , for i = 2• • • , N . The rejected solution is unique and is defined by the complement of propositions on the left of constraints, namely E 0 = x1 N i=2 x i . Constraints x 1 x1 and x1 xi x 1 xi are satisfied by this solution and are then deleted. The second level set E 1 contains that never appear on the left side of the remaining constraints. It is thus composed of models of x 1 ∧ N i=2 x i = x1 ∨ N i=2 xi . This formula is consistent with the left-hand side propositions x 1 xi of the remaining constraints. Hence again 3 levels are obtained with E 0

Π . Then, any conditional preference network with one parent node and N -1 children results into a partition E ∆ of exactly 3 layers. Proof 4.6 Considering the same graph G in Figure 4.7, the root has a preference statement x 1 x1 , while each child node carries conditional constraints of the form x 1 x i x

Table 4 .

 4 5: The composition of the second benchmark in percentage

	3		36		64	
	4		69.8		30.2	
	5		82.5		17.5	
	6		92		8	
	7		95		5	
	Total		75		25	
	Max in-degree	Nb nodes 3	4	5	6	7
	1	43 22.2 14.9 7.5	5
	2	57 41.4 25.2 12.5 12.5
	3	0 36.4 30	20 17.5
	4	0	0	29.9 25	25
	5	0	0	0	35	15
	6	0	0	0	0	25

Table 4 .

 4 6: Percentage of graphs given their maximum in-degree for a fixed number of nodes in the second benchmark

Table 4 .

 4 7: Variation of the percentage of graphs according to the size of their induced default partitions

	2.1 1.6

  .93% of orderings have been partially or totally improved. In some networks, no improvement is reported and the percentage of contradictions remains constant (see Example 4.9). No deterioration or increase in the percentage of violations was detected. Results of the experiment are reported in the Table4.8. 

	Observation	Percentage
	The order is totally repaired	19.71%
	The order is partially repaired	43.22%
	No repair	37.07%
	Table 4.8: Experiment results of the improved partitioning procedure

  Table 5.2. The induced Pareto ordering on configurations is repre-Ref inedsented by the Figure5.[START_REF][END_REF]. The optimal configuration is ω 3 = abc d and the worst configuration is ω 9 = ābc d. The induced optimistic ordering is E Π = {{ω 3 }, {ω 0 , ω 2 , ω 4 , ω 12 }, {ω 1 , ω 5 , ω 6 , ω 7 , ω 8 , ω 9 , ω 10 , ω 13 , ω 14 }, {ω 11 , ω 15 }}. Note that the worst configuration ω 9 figures in the before last layer. We use the Algorithm 5.1 to repair this discrepancy. The repaired well-ordered partitions by the Pareto order considering one symbolic weight per preference statement and one weight per variable are respectively given in Table5.1. Note that the refined orderings E Π are composed of 6 layers instead of4. 

	Algorithm 5.1: Refining default ordering by Pareto ordering
	Input: M P areto , E s.t. E = E Π or E = E ∆
	Output: E Ref ined	
	E Ref ined = E		
	i = 0			
	while i < len(E Ref ined ) do	
	/* intra-layer refinement	*/
	extend(E Ref ined , i)	
	foreach ω ∈ E Ref ined [i] do
	foreach ω ∈ E Ref ined [i] s.t. ω = ω do
		/* i+1 is the intermediary intra-layer of i	*/
	7	P areto = P ref (M P areto , ω, ω )
	8	if	P areto = ω	ω then
	9		if P areto = ω	ω then
	10		move(E Ref ined , ω, i, i + 1)
	11		else if P areto = ω ω then
	12		move(E Ref ined , ω , i, i + 1)
	end		
	end			
	clean(E Ref ined )	
	/* inter-layer refinement	*/
	foreach ω ∈ E Ref ined [i] do
	k = i + 1	
	extend(E Ref ined , k)	
	foreach ω ∈ E Ref ined [k] s.t. ω = ω do
	20	P areto = P ref (M P areto , ω, ω )
	21	if P areto = ω	ω then
	22		move(E Ref ined , ω, i, k + 1)
	end		
	end			
	clean(E Ref ined )	
	i = i + 1		
	end			
	Return E		

E Π with Pareto Pareto with different symbolic Pareto with equal symbolic weights in a node weights in a node {ω

  3 } {ω 3 } {ω 0 , ω 2 , ω 4 , ω 12 } {ω 0 , ω 2 , ω 4 , ω 12 } {ω 1 , ω 5 , ω 7 , ω 10 , ω 13 , ω 14 }{ω 1 , ω 5 , ω 7 , ω 10 , ω 13 , ω 14 } {ω

						ω 3				
		ω 12	ω 0	abc	d ω 4		ω 2	
		āb cd	abcd			a bcd	abcd
	ω 10	ω 13	ω 14			ω 7		ω 1		ω 5
	ābcd	āb c	d	āb cd			a bc	d	abc	d	a bc	d
		ω 15	ω 8			ω 11	ω 6	
		āb c	d	ābcd			āb cd	a bcd
				ω 9					
				ābc	d				
				6 , ω 8 }					{ω 6 , ω 8 }
				{ω 9 }					{ω 11 , ω 15 }
				{ω 11 , ω 15 }					{ω 9 }
	Table 5.1: Repairing optimistic ordering of π-pref net in Figure 5.1 based on Algorithm
	5.1									

  The first and last layers of the output partition are associated with the best and worst configurations respectively. The second layer is then associated with the second layer of E Π . Configurations of this layer are compared to those of the first layer of E ∆ . If they match, then there exists no possible refinement. Otherwise, configurations in the second layer E * [1] are put in a lower level since E ∆ expresses so This process is similarly considered to rank-order partition sets of E ∆ . Configurations in the penultimate layer of E ∆ are put in the last but one layer of E * . These configurations are compared with the second layer of E * and identical configurations found in the two layers are raised to a higher level in E * . At the end of each iteration configurations in E * are deleted from Ω. The procedure is repeated until all configurations are ranked. Function clean(E) removes empty layers from E. In the worst case, the refinement algorithm yields a well ordered partition with a number of layer equal to the maximum between |E Π | and |E ∆ |. Let us consider again the π-pref net in Figure 4.10. Details on results of applying both the minimum and the maximum specificity approaches are presented in Example 4.7. The optimistic well-ordered partition corresponds to E Π = {{ω 0 }, {ω 1 , ω 2 , ω 4 , ω 7 }, {ω 3 , ω 5 , ω 6 }} and the pessimistic one corresponds to E ∆ = {{ω 0 , ω 2 , ω 4 }, {ω 1 , ω 3 , ω 5 , ω 7 }, {ω 6 }}. The refined partition E * is associated with 2 3 = 8 empty layers. The optimal and worst configurations are classified such that E * [0] = {ω 0 } and E * [7] = {ω 6 }. The layer E * [1] is then composed of configurations in E Π [1] namely E * [1] = {ω 1 , ω 2 , ω 4 , ω 7 } from which are deleted E * [1] ∩ E ∆ [0] = {ω 1 , ω 7 } since they are considered by the pessimistic ordering as less satisfactory than ω 2 and ω 4 . The latter are then associated with E * [2]. At the end of the series of instructions Algorithm 5.2: Ordering Ω using both optimistic and pessimistic orders Input: Ω , E Π , E ∆

	Mind that in case we start by considering E ∆ that we refine by E Π thus building
	E ∆Π we have to exchange instructions from line 12 to 24 with instructions from line
	25 to 39. This does not affect the algorithm's output, and means that considering the
	pessimistic order instead of the optimistic order at first place have no impact on the
	result.
	The Example 5.2 illustrates the procedure of Algorithm 5.2. As it can be seen, we
	obtain a more refined pre-order since we have now 5 layers instead of 3. This suggests
	the interest of this procedure.
	Example 5.2

  clean(E *) Return E * (from line 12 to 21) the refined ordered partition is E * = {{ω 0 }, {ω 2 , ω 4 }, {ω 1 , ω 7 }, {}, {}, {}, {}, {ω 6 }} and the remaining configurations in Ω are {ω 3 , ω 5 }. Moving to instructions from line 25 to 36, the layer before last is associated with E Π [1] = {ω 1 , ω 3 , ω 5 , ω 7 } from which are deleted ω 1 and ω 7 since they already have been ranked. No configurations are now left to be ranked. After deleting empty layers, the output refined ordering is E * = {ω 0 }, {ω 2 , ω 4 }, {ω 1 , ω 7 }, {ω 3 , ω 5 }, {ω 6 }} composed of 5 layers while E Π and E ∆ only contain 3 levels.

Table 6 .

 6 1: New sub-classes of FP LP-trees Most LP-trees preference learning algorithms proposed in the literature are greedy.

Therefore, finding an upper-bound approximation of the number of possible FP LPtrees given a fixed number of variables seems interesting for future works. Proposition 6.1 Let X be composed of N preference variables. Considering unconditional dependency relations between variables, there exists N i=1 (2 × i) possible UI trees but only N ! FUP UI trees.

  its children or inversely (see above most structures in Figure6.12). If we fix the preference statement associated to A to be a ā then local table of node B can take two statements: b b or b b, which leads us to two possible path graphs. If we switch the preference statement associated with A to be ā a, we would have two other possible networks leading to 2 N = 4 graphs (see left-most trees in Figure 6.12. Trees in the rectangle with solid line rectangle are FUP-UI LP-trees. If we remove the restriction of fixed preferences, each one of them leads to four UP-UI LP trees depicted in rectangles with dotted lines). This number is multiplied by the number of possible path graph structures with N nodes leading to a total of 2 N × N ! = 8 LP trees.

	The next node X holds a specification of the form x	x or x	x . Thus we can
	construct two paths from node X to node X . Consequently, the number of LP trees
	with N nodes equals N i=1 (2 × i).		

For example let us consider N = 2 decision variables, namely A and B. There are two possible networks that can be constructed with either A being the root node and B

  . A group of decision variables may have the same importance degree, they can thus be depicted by a single high dimensional node. An idea introduced in[START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF]. The expressiveness of LP-tree can thus be extended which gives rise to so called k LP-trees in which each node holds at most k grouped variables. Note that the fact of declaring two variables of equal importance does not authorise the separate expression of preferences concerning them. Preference statements in local tables attached to nodes with grouped variables define a total order over the Cartesian product of variable's domains. Any strict total order over a set X can be expressed by a k LP-tree, where

k = |X |.

As for previous classes, k LP-trees allow to make restrictions on conditioning over importance relation or on preference dependencies between variables. Figure

6

.14 

shows an example of 2 CP-UI LP-tree where nodes B and C share equal importance degree and do both depend from A.

  Let us consider the UI LP-tree in Figure6.[START_REF][END_REF]. The root node labeled withA indicates that a ā, the ordering array Lex is thus composed of 4 cells containing a followed by 4 cells containing ā. The ordering array Lex is spliced into two halves, namely tab1 composed of 4 cells containing a and tab1 composed of 4 cells containing ā. For each part, the procedure is repeated considering now the next important node B.Thus, tab1 equals now [ab, ab, a b, a b] and tab1 equals now[āb, āb, āb , āb ]. Same steps are considered for the last remaining node labeled with C to output the ordering Lex = [abc, abc, a bc, a bc, ābc, ābc, āb c, āb c] such that configurations are organized from best to worst (configurations between brackets are rank-ordered according to the preference). case of a conditional preference and importance relations, we have to consider each value of the variable X of a node V i ∈ V separately. Starting by the root node, trace down the tree according to the preferred instantiation of each variable (in the context of parent value, if T is a conditioned preference LP-tree), which leads to getting the optimal alternative ω L for the conditional case). Since ω Opt |= l (respectively ul), we can deduce that ω Opt ω s.t.

	Example 6.2 In

table, configurations that model x are considered better than those that model x s.t. {x, x } ∈ X. Formally, we can write ∀ω, ω ∈ Ω, the ordering Lex specifies that if ω |= x and ω |= x then ω Lex ω . The procedure is recursively repeated until reaching the leaf node. Opt . Now consider the preference table P T (L) corresponding to the least important variable L ∈ X , where L labels the leaf node and has respective assignments {l, l } and preference relation l l (or u : l l s.t. u ∈ U

  , ω 1 , ω 2 , ω 3 , ω 4 , ω 5 , ω 6 , ω 7 } {ω 8 , ω 9 , ω 10 , ω 11 , ω 12 , ω 13 , ω 14 , ω 15 } 1 {ω 4 , ω 5 , ω 6 , ω 7 } {ω 0 , ω 1 , ω 2 , ω 3 } 2 {ω 8 , ω 9 , ω 10 , ω 11 } {ω 12 , ω 13 , ω 14 , ω 15 } 3 {ω 2 , ω 3 , ω 6 , ω 7 } {ω 0 , ω 1 , ω 4 , ω 5 } 4 {ω 8 , ω 9 , ω 12 , ω 13 } {ω 10 , ω 11 , ω 14 , ω 15 } Table 7.2: Default constraints of preference statements of the conditional preference network in Figure 7.2 Once Algorithm 7.5 is run and constraints are generated, Algorithm 7.6 permit to infer the default ordering on configurations based on the chosen reasoning attitude approach. It is basically composed of two blocks of instructions, the first one lays from line 8 to line 22 where for each right-hand side of constraint in RC, configurations that never appear are stored in the layer E[i] and deleted from Ω. The second block goes from line 23 to line 34. It allows to delete constraints, both left and right side, that contain an element of E[i]. These blocks are repeatedly executed until no constraints are left in LC and RC or that all solutions have been ordered. This procedure is summarized by Algorithms 4.1 and 4.2. Consider constraints sets LC and RC in Table 7.2. Let us use Algorithm 7.6 to deduce the pessimistic ordering on solutions: 1. in the first iteration, the configuration that never appear in any constraint in LC, i.e., for which the parameter value = f alse is ω 14 . The first partition layer 2. for the next iteration, E[1] = {ω 1 , ω 9 , ω 11 , ω 12 , ω 15 }. Satisfied constraints indexes are 1, 3, 5, 9, 10 and 11; 3. for the third iteration, E[1] = {ω 0 , ω 2 , ω 4 , ω 7 , ω 8 , ω 10 , ω 13 }, which leads to satisfy all remaining constraints and delete LC[6], RC[6], LC[7], RC[7], LC[8], RC[8].

	index j j j	LC[j] LC[j] LC[j]	RC[j] RC[j] RC[j]
	0 {ω 0 5	{ω 0 }	{ω 1 }
	6	{ω 3 }	{ω 2 }
	7	{ω 5 }	{ω 4 }
	8	{ω 6 }	{ω 7 }
	9	{ω 8 }	{ω 9 }
	10	{ω 10 }	{ω 11 }
	11	{ω 13 }	{ω 12 }
	12	{ω 15 }	{ω 14 }
		2	
	Example 7.7		

7.3.1 Specificity principles orders

E[0] = {ω 14 }.

The configuration is then deleted from Ω. For the second block of the procedure (line 23 to 33), ω 14 appears in RC[0], RC

[2]

, RC

[4] 

and RC

[12]

.

These subsets are thus removed from RC along with their complementary lefthand side constraints in LC;

Table 7 .2 7.3.2 Improved specificity principles orders

 7 When preferences are expressed under a chosen mind of reasoning (explained in Section4.3), the ordering process described by Algorithm 7.6 is not sensitive to the coverage of solutions by default formulas. In Section 4.5, we proposed an enhanced version of the previous procedure that ranks only solutions encompassed by the available constraints (see Algorithm4.3). Algorithm 7.7 details the toolbox implemented procedure. Algorithm 7.7 expresses the exact same instructions as in Algorithm 4.3 but uses notations of the toolbox. Let us look again at default constraints in Table7.2 and adopt an optimistic mind.• At the first iteration, all configurations are covered. The configuration that never appears in RC is ω 6 . Thus, top layers are E[0] = {ω 6 } and E [0] = {∅}. Constraints having indexes 0, 1, 3 and 8 are verified and removed from LC and RC.• For the second iteration, the configuration ω 7 never appears in the remainingconstraints. It is thus added to E [1]. The second partition layer of E is E[1] = {ω 0 , ω 3 , ω 5 , ω 8 }.they satisfy constraints 2, 4, 5, 6, 7 and 9. • In the next iteration, the remaining constraints are 10, 11 and 12. Configurations that have not yet been ranked and that do not appear as dominated in any of the left constraints are ω 10 , ω 13 and ω 15 . All constraints are now verified and configurations that still in Ω are assigned to the last layer of E .

	Example 7.8

All specifications considered in models presented later in this work are considered generalized statements.

In the original work[START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF], CP-net are presented as conditional preference network that can be cyclic, however we limit our work to acyclic graphs.

x * i = x i or x * i = xi

Note that the least preferred value of a variable X i refers here to the violated preference attached to X i in the context of X i 's parent assignment.

The abbreviation CP-nets refer to Conditional Preference networks introduced by[START_REF] Boutilier | Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]. To avoid confusion with Conditional Preference network structures described in Section 1.2, we use C as a reference to the former model and P to the latter.

Given a pair of nodes, there exists at most one path that connects them with each other.

This notation means that the preference associated with variable X is satisfied by the configuration ω. This means that the preference associated with X is not satisfied by ω .

The induced ordering of the CP-net must be acyclic

The claim 1 -π being normalized is equivalent to say that π is anti-normalized meaning that ∃ ω ∈ Ω s.t. π(ω) = 0.

Note that the aggregation of possibility distributions in Equation2.16 is in agreement with the modeling of satisfaction degrees by possibility distributions. Indeed, if all the models of p are satisfactory and all the models of q are satisfactory then obviously, all models of p or q are satisfactory.

We are excluding the case where the symbolic weight might be equal to 0, since we intend to represent the kind of conditional preferences that are handled by CP-nets, where conditional rejection is not considered. Indeed, in CP-nets we can not express that in a given context some variables value(s) is/are not acceptable at all.

For a matter of representation, we use parentheses instead of braces and omit to separate variables by commas to define the subset S.

This principle can be applied either when the ∆ function is used for representing knowledge (in this case, it usually refers to reported facts and then only these facts are regarded as possible)[Benferhat et al., 

2008], or when for representing preferences[START_REF] Dubois | Expressing preferences from generic rules and examples -A possibilistic approach without aggregation function[END_REF]] [Kaci, 2012].

In general, there are several ways to build such a partition

Considering constraints C ∆ associated to default rules in the knowledge Example

4.1, we would obtain the following well-ordered partition set E = {{ω 0 , ω 1 , ω 3 , ω 4 , ω 7 }, {ω 2 , ω 5 , ω 6 }}, which has less layers that the one obtained by the minimum specificity principle, which as already said is more appropriate to default reasoning.

The same reasoning is considered for the case x x

In the case of a k LP tree with k ≥ 2, we have to consider the node which contains the set of variables in which appears the variable(s) on which the two given configurations differ.

The minimal specificity principle corresponds thus to an optimistic way of reasoning by saying that if a configuration ω has not been explicitly rejected, it is considered as completely satisfactory. Thus, if some configurations are not constrained they will be associated to the highest possible preference degree, namely π(ω i ) = 1. Thus, the minimum specificity principle means for preferences that a configuration is considered satisfactory unless preference statements say otherwise. In contrast, reasoning on preferences under a pessimistic view comes down to consider that a configuration is rejected (π(ω) = 0) unless the user specifies its preference level. This minimization principle corresponds to the maximum specificity principle. This is to say that, in the possibility theory, when dealing with conditional propositions, the most (resp. least) specific distribution(s) exist and correspond to an optimistic (resp. pessimistic) approach. However, specific distributions for the cautious and opportunistic semantics do not exist.

Optimistic approach on default preferences

A default rule p q is represented in possibility theory by a constraint stating that having p ∧ q is more satisfactory than p ∧ q that can be encoded by Π(p ∧ q) > Π(p ∧ q). Thus, the default rule p q expresses the conditional preference p : q q and is understood as "In the context defined by p, the best situation that models q is preferred to the best situation that models q", or in other words "the best case in which p ∧ q is true is preferred to the best case in which p ∧ q is true". A possibility distribution on configurations of Ω can be deduced from such constraints, based on some informational principle. Indeed, the set of conditional preference statements expressed by an agent {p i : q i qi | i = 1, . . . , k} is viewed a set of default rules R = {r i : p i q i | i = 1, . . . , k}. Using an optimistic view, i.e, the minimum specificity principle, we construct the set of constraints C Π derived from R by applying (4.1). This set is implicitly associated with a set of possibility distributions compatible with constraints in C Π .

Any possibility distribution that is in agreement with constraints in C Π represents the conditional preference statements expressed by the agent, in agreement with the way it was done by the conditional preference tables in π-pref nets. This directly follows from the definition of the conditional possibility: Π(p i ∧ q i ) > Π(p i ∧ qi ) iff

The following proposition establishes the agreement of the Pareto ordering with the constraints in C Π expressing the preference statements [Ben Amor et al., 2021a].

propagate modifications in M P areto . The time complexity of W arshall's function is

2 N comparisons with at most one call to W arshall's function.

Algorithm 5.3: Refining Pareto ordering by default ordering Input: The partial order obtained by Algorithm 5.3 can be turned into a complete preorder if we also exploit the ties of the optimistic (or the pessimistic) ordering(s).

This kind of information can be handled in the approaches handled in Chapters 1 to 5, in TCP-nets to a limited extent, and without restrictions in π-pref nets by the addition of constraints between symbolic weights.

Chapter 6

Comparing Possibilistic Preference

Networks and LP-trees

Introduction

Preferences of a user can be represented by various graphical structures. The most used among them have been discussed in the first chapter. In order to express preference relations, the user may provide satisfaction degrees on values of conditional variables which amounts to construct the conditional preference table of a π-pref network. Alternatively, he may provide a strict total order on values of decision variables which may be attached to dependency constraints along with importance relations between variables. This latter set of information permits to construct an LP-tree.

As we shall see, there are different kind of LP-trees which are detailed in this chapter, where we also seek to compare π-pref nets and LP-trees as structures for representing preferences over Boolean variables.

The chapter is organised in five main sections. Section 6.2 reviews the different classes and extensions of LP-trees and provides their detailed definitions. Section 6.3 details the procedure to be applied to LP-trees in order to infer a (total) order on the set of solutions. Section 6.4 focuses on the comparison between LP-trees and π-pref nets. Section 6.5 discusses the transformation procedure for translating an LP-tree into a π-pref net, to finally end with concluding remarks. This chapter develops the work published in [Ben Amor et al., 2022] and its French version in [Ben Amor et al., 2021b].

There are several types of LP-trees [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF] depending on (i) whether or not the preferences are conditional, (ii) whether or not the order of importance of the variables depends on the value of more important variables. Each of these options induces a separate LP-tree class. Next Section 6.2.1 regroups and details LP-trees obtained by imposing conditioning restrictions on importance relations, while Section 6.2.2 deals with LP-trees obtained by imposing conditioning on preferences.

This taxonomy of LP-trees into several classes has first been proposed in [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. However, we can find in the literature [START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF] other classification principles for describing classes of LP-trees, by considering the conditioning on importance relationships as a categorization criterion.

The two types of conditioning can be combined as detailed in Section 6.2.3, while Section 6.2.4 provides an overview of the different classes of LP-trees.

Preferences may remain the same for whatever the branch in the tree. Section 6. 2.5 is dedicated to the definition and study of LP-trees with such fixed preferences.

When some specifications are missing the LP-tree is considered incomplete. Preferences and importance relationships between variables can describe what is called a complete LP-tree. This property is defined in Section 6.2.6. Also, an LP-tree may have nodes with multiple variables. If a node of the tree has up to k decision variables all grouped together, we speak of k LP-trees, which were first introduced in [START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF]. Section 6.2.7 is dedicated to this extension of LP-trees.

Conditioning on importance relations

The order of importance of variables can depend on the value of more important variables, an idea also introduced in [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF] and investigated in [START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF]. Restraining priority relations to be conditional or not generates two classes of LP-trees characterized by: unconditional or conditional importance relations. A lexicographic order on variables exempt of any conditioning is graphically depicted by a linear path graph such that if X i X j then variables labeled with X i and X j are allied by an unlabeled i -arc. The order expressed on values of each variable can be conditioned by values of other variables. When all priority relations between variables do not depend from values of other nodes, we refer to the class of UI LP-trees for Unconditional Importance relations LP-trees. The importance relation between variables can depend on the value of the more important variables. class should hold structures with both conditional and unconditional priority relations between variables. Moreover Bouth. et. al., privilege LP-trees where preferences over each decision variable are the same in all branches of the tree in addition to the fact that they have to be context-independent. Thus, the class of UP LP-trees is the union of the classes UP-UI and UP-CI (see Figure 6.6).

With the same reasoning mind, the class of CP-CI would be defined by "the class of all LP-trees with at least one conditional preference and at least one conditional importance relation". This means that preferences can either be context-dependent or not, and importance relations too. Therefore, if we focus on the conditional relations, the class of CP-CI corresponds to the intersection between the classes CP-UI and UP-CI.

The class of UP-UI defines the most restrictive LP-tree structure namely with unconditional preference and unconditional importance relation. The formal definition of this class is given below.

Definition 6.5 (UP-UI LP-tree) An Unconditional local Preference and Unconditional Importance relation LP-tree over decision variables X is a linear graph defined by V, E, P T .

An UP-UI LP-tree should respect the following statements:

• Each variable X i ∈ X appears at most once in the tree;

• E only contains i -arcs;

• Each node V i has one unlabeled outgoing i-arc of the form U X X expressing that U X is more important than X regardless of the value of U X ;

• Each local table P T (V i ) describes a total order on values of X j such that X j is the label of V i . It only contains specifications of the form X j ¬X j .

If we consider unconditional relations, the class of UP-UI corresponds to the intersection between the classes CP-UI and UP-CI.

The following network illustrates an example of a UI LP-tree.

Discussion on other sub-classes

Given the LP-trees taxonomy discussed in previous sections, there exists no class that restricts preference relations as well as importance relations to be only conditional We give the following lexicographic orderings for a set of LP-tree example: When the LP-tree is complete, it represents a total linear ordering over X [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF]. Given an ordering Lex , each configuration can be associated with a rank that can be calculated in polynomial time [Fargier and Mengin, 2021b].

Inversely, considering a given rank searching for the configuration which corresponds to it is also done in polynomial time [START_REF] Lang | Aggregating conditionally lexicographic preferences on multi-issue domains[END_REF]. Recall that, generally, CPnets find their induced order in time exponential O(N 2 N ), whereas LP-trees entail an ordering in time linear to the size of the tree O(N ) [START_REF] Fargier | Learning lexicographic preference trees from positive examples[END_REF] .

• function AddAttribute adds the second parameter as an attribute to the object in the first parameter.

Nodes Name Domain Parents

Table 7.1: Attributes describing the conditional preference network in Figure 7.2 (from column 1 to 5) and π-pref net in Figure 7.3 (all columns) • For the second iteration, the context c ω 2 = A and the possibility distribution

Figure 7.6(a) gives an example of the window displayed by the toolbox when calculating the joint possibility distribution inferred from π-pref net in Figure 7. 4. Each configuration ω is described by its index in Ω, its complete instantiation and its vector ω. The joint preference degree is then displayed in a second line. Algorithm 7.8: Ordering Ω using both optimistic and pessimistic orders 

Algorithms for calculating the joint distribution on configurations when preferences

Comparing default orderings

The toolbox gives the user the opportunity to compare all previously mentioned orderings in this chapter. He may select 2 out of 7 order strategies, namely P areto, Ceteris paribus, Optimistic approach, P essimistic approach, Improved optimistic approach, Improved pessimistic approach, Combined specif icty approaches, which makes a total of 21 pairs of order strategies. Figure 7.11 represents the displayed window for choosing orderings to examine.

An ordering can be represented by means of a square matrix M such that: Algorithm 7.9: Generate ceteris paribus ordering matrix 

Conclusion and Perspectives

A conditional preference statement is something which looks quite simple to represent and to exploit. When CP-nets have been proposed twenty years ago, we might have thought that it was a definitive approach to the problem of handling preferences stated in a concise manner.

The apparition of other settings such as cp-theories, LP-trees and π-pref nets have shown that other options were possible. The problem of answering dominance queries aiming at comparing complete configurations may receive different kinds of answers.

Indeed, one may obtain partial orderings as well as complete pre-orderings. Then, this rises the question of what is the "good" answer.

On the one hand, it seems clear that the Pareto ordering that acknowledges the fact that a configuration that violates some preferences also violated by another configuration plus some other preferences is worst. Beyond that, the use of general principles like ceteris paribus, or for instance, the idea such that "a configuration is considered satisfactory unless preference statements say otherwise" seems natural and innocuous, but unfortunately this is not the case as recalled and explained in this thesis.

On the other hand, from a user point of view obtaining a complete pre-ordering or even a total ordering may seem more useful than providing a partial ordering only.

However, if the complete pre-ordering has many ties or in other words a small number of layers, it is not very useful either. Generally speaking, qualitative approaches seem more in line with the qualitative specifications of conditional preference statements, even if we have seen that there may exist different ways of understanding and representing such statements.

This thesis has contributed to various advances in the discussion of the above issues.

First, in the second part of Chapter 3, we have introduced several variants of π-pref nets suggesting that it may be beneficial to have a bipolar point of view and to use both the extreme values 1 and 0 for stating full satisfaction and complete absence of satisfaction together with symbolic intermediary weights.

In Chapter 4, we have introduced the reading of conditional preference statements as default-like rule, together with the use of optimistic or pessimistic principles regarding ho to consider configurations which are not concerned by preference statements.

We have shown that we obtain complete pre-orderings which might violate the Pareto order. Then, we have proposed a modified algorithm to cope with this problem, yielding a partial order. We have also shown that for a large class of graph structures the complete orderings obtained have only three layers, even if for very particular structures it is possible to have a number of layers that increases with the number of variables. Finally we have also shown that there exist systems of default rules representing preferences that cannot be represented by π-pref nets or CP-nets.

When the minimum or maximum specificity principle is used to rank-order configurations, contradictions with the Pareto order may take place. In Chapter 5, we have proposed to remedy this problem by considering three main approaches: (i) the optimistic or pessimistic ordering can be corrected by taking into consideration dominance relations induced from the Pareto order. This yields a slightly more refined ordering than the initial one; (ii) when no conflicts with the Pareto order are detected, one may take advantage of the joint use of the two specificity orderings to produce a more discriminant ordering; (iii) the Pareto partial ordering can be refined by specificity-based orderings to induce a complete pre-order that takes advantages of both principles which combines the advantages of the indisputable nature of Pareto order with an optimistic or pessimistic view.

The Chapter 6 is devoted to a detailed presentation of LP-trees and the algorithms for producing the total ordering of configurations, as we well as to their comparison with π-pref nets. It is explained that π-pref nets can encode lexicographic orderings (at the price of adding some constraints between symbolic weights). The proofs have yet to be provided. The converse transformation does not appear to be always feasible, since π-pref net encode only partial order in general (even if incomplete LP-trees provide a way to obtain partial order).

Chapter 7 presents an implemented toolbox which enables us to test the different approaches considered in the thesis on a variety of graph structures either directly specified or randomly generated.

The thesis have left a number of questions that remain unanswered, and which are topics for further researches in order to offer theoretical proofs about results of the [Zadeh, 1978] Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility.

Fuzzy Sets and Systems, 1:3-28.