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Summary

π-pref nets, CP-nets and possibly LP-trees are able to encode specifications of the
form “In the context of u, I prefer a to its negation” which is quite similar to the piece
of knowledge “If u then generally a”. This rule can be encoded by possibility logic.
In some works, researchers have been particularly interested in reasoning with default
rules for representing some state of affairs in a possibilistic framework. Because of
the similarity between a user preference and a default rule, this work has caught our
attention and led us to question whether interpreting a collection of user preference
statements as default rules and using some informational principles permit to construct
the same ordering as induced by a given graphical preference representation.

One of the main goals of this manuscript is also to compare the expressive power
of CP-nets, LP-trees and π-pref nets. Using a possibilistic framework, specifications
of a user may be also encoded as default rules on which several reasoning approaches
are applied to therefore compare their induced orderings. The work is restricted to
Boolean variables.

The dissertation is divided in seven chapters. The first two chapters are dedicated
to provide the background knowledge. On the one hand, they review the state of
the art on conditional preference representations and on the other hand the basis of
the possibility theory . The first chapter deals with qualitative graphical models,
namely CP-nets, their extension TCP-nets and LP-trees. We provide independence
assumption of each model, their induced orderings over complete configurations, in
addition to explaining queries that can be performed over them. Chapter 2 is devoted
to possibility theory and its use for representing preferences in different formats such as
possibility distributions, logical bases or graphical networks. The first part of Chapter
3 gives a brief background about possibilistic preference networks (π-pref nets) and
discusses their expressiveness and consistency with regard to CP-nets. The second
part of the chapter introduces new variants of π-pref nets by using different scales for
encoding preference degrees. Besides, some researchers have proposed to deal with
default knowledge formalized by means of constraints expressed in the setting of the
possibility theory. This is the aim of the chapter 4, we will apply a similar approach for
modeling preferences in the aim of finding an order-ranking over solutions of a given
preference problem thus handled by means of default rules. The resulting orderings are
compared to those obtained by different order approaches and particularly the Pareto
order. Chapter 5 discusses repairs and refinements of the complete pre-orders obtained
from preferences encoded as default-like rules. Chapter 6 discusses our last goal that
consists on studying the expressive and representative power of LP-trees compared to
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π-pref nets. It also discusses the procedures for transforming an LP-tree into a π-pref
net. Finally and before concluding, Chapter 7 presents an implemented toolbox that
supports CP-nets and π-pref nets as graphical structures in addition to the default
rule-based algorithms discussed in previous chapters.

Keywords

Graphical preference modeling, possibilistic preference network, default-like prefer-
ences, Pareto order, ceteris paribus preferences, lexicographic order.
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Résumé

Les réseaux π-pref-nets, les CP-nets et éventuellement les LP-trees sont capables
d’encoder des spécifications de la forme “Dans le contexte de u, je préfère a à sa
négation” qui est assez similaire à une règle par défaut “Si u alors généralement a”.
Cette règle peut être codée en théorie des possibilités. Dans certains travaux, des
chercheurs se sont particulièrement intéressés au raisonnement avec des règles par dé-
faut pour représenter un certain état de choses dans un cadre possibiliste. En raison de
la similarité entre une préférence d’utilisateur et une règle par défaut, ce travail a attiré
notre attention et nous a conduit à nous demander si l’interprétation d’une collection
d’énoncés de préférences d’utilisateurs comme des règles par défaut et l’utilisation de
certains principes informationnels permettent de construire le même ordre que celui
induit par une représentation graphique donnée des préférences.

L’un des principaux objectifs de ce manuscrit est aussi de comparer le pouvoir
expressif des CP-nets, LP-trees et des π-pref nets. En utilisant un cadre possibiliste, les
spécifications d’un utilisateur peuvent aussi être encodées comme des règles par défaut
sur lesquelles plusieurs approches de raisonnement sont appliquées pour ainsi comparer
leurs ordonnancements induits. Le travail est limité aux variables booléennes.

La thèse est divisée en sept chapitres. Les deux premiers chapitres sont consacrés
à fournir les connaissances de base. D’une part, ils passent en revue l’état de l’art
sur les représentations des préférences conditionnelles et d’autre part, les bases de la
théorie des possibilités. Le premier chapitre traite des modèles graphiques qualitat-
ifs, à savoir les CP-nets, leur extension TCP-nets et les LP-trees. Nous indiquons
l’hypothèse d’indépendance de chaque modèle, leurs ordonnancements induits sur des
configurations complètes, en plus d’expliquer les requêtes qui peuvent être effectuées
sur eux. Le chapitre 2 est consacré à la théorie des possibilités et à son utilisation pour
représenter les préférences sous différents formats tels que les distributions de possi-
bilités, les bases logiques ou les réseaux graphiques. La première partie du chapitre
3 donne un bref aperçu des réseaux de préférences possibilistes (π-pref nets) et dis-
cute de leur expressivité et de leur cohérence par rapport aux CP-nets. La deuxième
partie du chapitre présente de nouvelles variantes des réseaux π-pref en utilisant dif-
férentes échelles pour encoder les degrés de préférence. Par ailleurs, des chercheurs
ont proposé de traiter la connaissance par défaut formalisée au moyen de contraintes
exprimées dans le cadre de la théorie des possibilités. C’est l’objet du chapitre 4, où
nous appliquerons une approche similaire pour modéliser les préférences et pour trou-
ver un ordre de classement sur les solutions d’un problème de préférence donné ainsi
traité au moyen de règles par défaut. Les classements obtenus sont comparés à ceux
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obtenus par différentes approches d’ordre et notamment l’ordre de Pareto. Le chapitre
5 traite des réparations et des raffinements des préordres complets obtenus à partir de
préférences codées comme des règles par défaut. Le chapitre 6 traite de notre dernier
objectif qui consiste à étudier le pouvoir expressif et représentatif des LP-trees par
rapport aux π-pref nets. Il aborde également les procédures de transformation d’un
arbre LP-tree en un réseau π-pref nets. Enfin, avant de conclure, le chapitre 7 présente
une boîte à outils implémentée qui prend en charge les CP-nets et les π-pref nets en
tant que structures graphiques en plus des algorithmes basés sur des règles par défaut
abordés dans les chapitres précédents.

Mots clés

Modélisation graphique des préférences, réseau de préférences possibiliste, préférences
par défaut, ordre de Pareto, préférence ceteris paribus, ordre lexicographique.
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General Introduction

For several decades, modeling human preferences has been regarded as a particularly
promising research field of great interest in decision analysis. Going from economics, e-
commerce [Ribeiro et al., 2018], recommender systems [Wang et al., 2018], computer
science and psychology to space, medicine, and politics, fields of applications in this
area are many to be counted. Handling preferences requires to go through three main
steps: data collection, formal representation and model querying. Preference speci-
fications can be gathered using elicitation techniques or machine learning methods.
In fact, the former practice requires knowledge to be processed directly from human
beings, e.g., surveys, observation or interviews. The latter one seeks to acquire new
knowledge or function approximation in order to derive an unknown model based
on input data sets. The second step, which is preference representation, consists on
encoding these preferences into logical or graphical models that can encode qualita-
tive or numerical preferences. Possibilistic logic [Benferhat et al., 2001c], propositional
languages [Coste-Marquis et al., 2004] and modal logic [van Benthem et al., 2009] are
some of the logical frameworks that allow to model preferences. Graphical mod-
els have been motivated by the need of a compact representation of user prefer-
ences. A general overview of graphical preference representations can be found in
[Ben Amor et al., 2016a]. Figure 1 is a timeline that sums up the main preference ap-
proach that exist in the literature. The upper part of the scale designates the graphical
representations, while the lower part designates logical representations. Rectangles in
thick lines represent qualitative graphical models, those with strong lines indicate
quantitative graphical models, while those in dashed lines can be classified as both
qualitative and quantitative models. Once the preference model is constructed, the
last step consists on exploiting information retrieved from these models to answer some
given queries such as finding a dominance relation between alternatives or finding the
most satisfying solution.
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Figure 1: Timeline of some known preference representations

Given any decision analysis task, comparing all conceivable configurations of the
universe of discourse comes down to determine a specific function that manages to
rank order them. No need to mention that it is obviously unreasonable to require a
human being to specify an explicit preference ordering over a prohibitive number of
solutions. This process leads to a high computational cost, then, to an impossibility
to construct dominance relations between configurations. In fact, humans are more
eager to express their preferences in a contextual manner than generally. For these
reasons, managing preferences using graphical structures appears to be an emerg-
ing challenge, since in addition to its computational efficiency, it provides a succinct
and compact tool for data collection and modeling. Graphical preference represen-
tations are divided into two main categories: qualitative and quantitative models.
A user can actually express its preferences by providing numerical or ordinal rank-
ings. Ordinal Conditional function networks [Spohn, 1988], Utility CP-nets (UCP-
nets) [Boutilier et al., 2001], Generalized Additive Independence networks (GAI-nets)
[Gonzales and Perny, 2004] and marginal utility networks [Brafman and Engel, 2009a]
are some of many models where preferences are expressed by means of numerical
values. When it comes to ordinal representations of preferences, we cite Condi-
tional preference networks (CP-nets) [Boutilier et al., 1999], Tradeoffs-enhanced CP-
nets (TCPnets) [Brafman and Domshlak, 2002], Lexicographic Preference trees (LP-
trees) [Booth et al., 2010], etc. In Figure 1, quantitative models are depicted by
bold line rectangles, qualitative models are depicted by thin line rectangles and semi-
qualitative models are drawn by dotted lines rectangles.

In this work, we will mainly focus on qualitative representation frameworks for
representing conditional preferences, such as CP-nets, LP-trees and the π-pref nets
(for possibilistic preference networks) [Ben Amor et al., 2018a] which have been more
recently introduced. Even though CP-nets and LP-trees have been introduced to com-
pactly represent (conditional) preferences, motivations and perspectives in which au-
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thors placed themselves when inventing them are not the same. In fact, CP-nets, which
appeared already in 1999 and which experienced their great development between 2000
and 2005, were motivated by a representation concern and were more focused on rea-
soning. Instead, LP-trees came from several groups of researchers often motivated
by learning concerns. Still CP-nets have also been investigated for learning purposes.
Even though they were not designed for this end, authors [Chevaleyre et al., 2010]
[Fürnkranz and Hüllermeier, 2010] [Liu et al., 2018] have used the CP-nets format for
learning preferences.

LP-trees require the user to specify a total order over the domain of variable(s)
composing each node of the graph. This seems to be restrictive and much demanding
to the user especially as the number of grouped variables of same importance increases.
CP-nets use the ceteris paribus assumption to infer a partial order on complete config-
urations where an implicit priority on preferences associated with father nodes seems
to be enforced without being explicitly specified by the user. A π-pref net is a graph-
ical model that compactly represents conditional preferences. It seems to offer an
interesting tool that enables to avoid the cumbersome task of the elicitation process
imposed by LP-trees and the skewed effect of the ceteris paribus property on vari-
ables importance. Actually, the CP-net structure was inspired by Bayesian networks
such that decision variables are associated with local tables that contain conditional
preferences. π-pref nets were inspired from possibilistic networks where variables are
associated with possibility distributions expressed with symbolic degrees encoding an
ordinal ranking between values of the variable in question. Symbolic degrees take val-
ues in an ordinal scale and can be instantiated by numerical values. π-pref nets come
thus halfway between quantitative and qualitative representations.

π-pref nets, CP-nets and possibly LP-trees are able to encode specifications of the
form “In the context of u, I prefer a to its negation” which is quite similar to the piece
of knowledge “If u then generally a”. This rule can be encoded by possibility logic.
In some of their works Benferhat and his colleagues [Benferhat et al., 1992] have been
particularly interested in reasoning with default rules for representing some state of
affairs in a possibilistic framework. Because of the similarity between a user preference
and a default rule, this work has caught our attention and led us to question whether
interpreting a collection of user preference statements as default rules and using some
informational principles permit to construct the same ordering as induced by a given
graphical preference representation.

One of the main goals of this manuscript is to compare the expressive power of
CP-nets, LP-trees and π-pref nets. Using a possibilistic framework, specifications of
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a user may be also encoded as default rules on which several reasoning approaches
are applied to therefore compare their induced orderings. The work is restricted to
Boolean variables.

The dissertation is divided in seven chapters. The first two chapters are dedicated
to provide the background knowledge. On the one hand, they review the state of
the art on conditional preference representations and on the other hand the basis of
the possibility theory . The first chapter deals with qualitative graphical models,
namely CP-nets, their extension TCP-nets and LP-trees. We provide independence
assumption of each model, their induced orderings over complete configurations, in
addition to explaining queries that can be performed over them. Chapter 2 is devoted
to possibility theory and its use for representing preferences in different formats such as
possibility distributions, logical bases or graphical networks. The first part of Chapter
3 gives a brief background about possibilistic preference networks (π-pref nets) and
discusses their expressiveness and consistency with regard to CP-nets. The second
part of the chapter introduces new variants of π-pref nets by using different scales
for encoding preference degrees. Besides, Benferhat and his colleagues have proposed
to deal with default knowledge formalized by means of constraints expressed in the
setting of the possibility theory. In chapter 4, we will apply a similar approach for
modeling preferences in the aim of finding an order-ranking over solutions of a given
preference problem thus handled by means of default rules. The resulting orderings are
compared to those obtained by different order approaches and particularly the Pareto
order. Chapter 5 discusses repairs and refinements of the complete pre-orders obtained
from preferences encoded as default-like rules. Chapter 6 discusses our last goal that
consists on studying the expressive and representative power of LP-trees compared to
π-pref nets. It also discusses the procedures for transforming an LP-tree into a π-pref
net. Finally and before concluding, Chapter 7 presents an implemented toolbox that
supports CP-nets and π-pref nets as graphical structures in addition to the default
rule-based algorithms discussed in previous chapters.

Papers summarizing the main contributions of this thesis are:

• [Ben Amor et al., 2019]: Nahla Ben Amor, Didier Dubois, Henri Prade and Sy-
rine Saidi. Revisiting conditional preferences: from defaults to graphical repre-
sentations. In Proceedings of the 15th International Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages 187-198, (ECSQARU 2019)
Belgrade, Serbia. This paper is presented in Chapter 4;

• [Ben Amor et al., 2021a]: Nahla Ben Amor, Didier Dubois, Henri Prade and
Syrine Saidi. Conditional Preference Networks - Refining Solution Orderings
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Beyond Pareto Dominance. In Proceedings of the 34th International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Sys-
tems, pages 447-459, (IEA/AIE 2021), Kuala Lumpur, Malaysia. This paper is
presented in Chapter 5;

• [Ben Amor et al., 2021b]: Nahla Ben Amor, Didier Dubois, Henri Prade and
Syrine Saidi. Réseaux possibilistes de préférences et arbres de préférences lexi-
cographiques – Une comparaison. Actes de la Rencontres Francophones sur la
Logique Floue et ses Applications, pages 209-216 (LFA 2021), Paris, France.
This paper is presented in Chapter 6;

• [Ben Amor et al., 2022]: Nahla Ben Amor, Didier Dubois, Henri Prade and Sy-
rine Saidi. Possibilistic preference networks and lexicographic preference trees –
A comparison. In Proceedings of the 19th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
pages 581-592, (IPMU 2022), Milan, Italy. This work is the English version of
the paper in [Ben Amor et al., 2021b].
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Chapter 1
Qualitative Graphical Representations
of Preferences: CP-nets and LP-trees

1.1 Introduction

Reasoning about user preferences requires to specify three components : a language
that encodes information provided by the user about the decision problem, a formal
model presenting the order retrieved from user specifications based assumptions, and
finally queries to reason or question the model [Domshlak, 2008].

Consider a set of binary-valued decision variables X . In our work, a language con-
sists of a total order (that may be weak) over values of each variable X ∈ X . This
relation can be conditioned by the value of a set of depending variable(s) that are dif-
ferent from X. The language enables to translate preference statements into a formal
definition while keeping the elicitation process as simple as possible without ambiguity
or loss of information. For instance, a claim of the form c : a � ā means that, in the
context of c, the user prefers a to its negation, the conditioning part being optional.
This claim is called a generalized statement1. Concepts correspond to a set of pos-
tulates or informational properties that allow to concretize a language into a logical
interpretation generating a possible arrangement over complete configurations which
correspond to a conjunction of the value of each decision variable. A language, along
with its assumptions, describes a model. The latter can subsequently be exploited to
answer a number of questions, such as finding the optimal configuration, the top k con-
figurations or compare configurations. Most preference models are mainly composed

1All specifications considered in models presented later in this work are considered generalized
statements.
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of two parts: a graphical structure, consisting of a graph (directed in most cases), and
an informational component.

Modeling preferences graphically may represent a simple task. However, getting
complete configurations ordered is not trivial, since their number is exponential in the
number of variables of choice in X . To find the dominance relation between config-
urations, we generally associate assumptions to a graphical structure such as ceteris
paribus [Boutilier et al., 2004], lexicographic order [Booth et al., 2010] or other order
semantics, e.g., Pareto, Minimum, Leximin, etc. Conditional specifications of a user
may also be encoded differently by assigning some degrees or rankings to values of
variables. For instance, we cite ordinal conditional functions [Spohn, 1988], utility
functions [Brafman and Engel, 2009b], belief functions [Wang et al., 2018] and possi-
bility distributions [Ben Amor et al., 2014].

In this chapter, we mainly focus on CP-nets [Boutilier et al., 1999], their extension
TCP-nets [Brafman and Domshlak, 2002] and LP-trees [Booth et al., 2010]. CP-nets,
composed of directed acyclic graphs (DAGs)2, obey to the ceteris paribus assumption.
LP-trees, that restrict their graphical structure to directed trees, are based on the lex-
icographic order. TCP-nets, depicted by graphs with directed and un-directed edges,
enhance the expressiveness of a CP-net by permitting the expression of (conditional)
importance relation between variables.

This chapter is organized as follows. Section 1.2 defines the general structure
composing graphical preference models later introduced. Section 1.3 presents one of
the most used models for representing conditional preferences, nameley CP-nets. The
section also addresses an extension of CP-nets that permits to express importance
relations between variables, entitled TCP-nets. Section 1.5 exposes another graphical
preference model called LP-trees that is most used for learning purposes. As for
TCP-nets, LP-trees are able to encode two types of relations: conditional preference
dependencies and importance relations between decision variables. LP-trees however
differ by their graphical representation and their semantics. Finally, CP-theories,
which offer a logical framework for encoding preferences, are introduced in Section 1.6
as a tool for comparing the expressiveness of previously discussed models.

2In the original work [Boutilier et al., 1999], CP-net are presented as conditional preference net-
work that can be cyclic, however we limit our work to acyclic graphs.
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1.2 Conditional preference networks structure

The basis of graphical preference models that will be dealt with throughout our work
is composed of a DAG relating decision variables along with a set of conditional local
tables each encoding a total order between values of variables in the context of its
parents in the DAG. We consider these components as elements of what we call a
Conditional preference network structure. Each decision problem is depicted by a
conditional preference network structure where nodes correspond to features / decision
variables , e.g.„ meal, product, mean of transport, etc. and arcs reflect dependencies
between them.

Before going any further, we first introduce some basic notations:

• X = {X1, . . . , XN} denotes the set of N decision variables;

• ∀Xi ∈ X , Xi denotes the domain of possible values of Xi. We limit our work to
the particular case of Boolean variables, i.e., ∀Xi ∈ X , Xi = {xi, x̄i};

• The set of parents of node Xi is denoted by UXi ;

• ∀u ∈ UXi , the user specification “If u is true, I prefer xi to x̄i” expresses the
choice of the agent overXi in the context of u. This statement is formally written
u : xi � x̄i, where � is the strict part of �, ∼ the indifference part of �;

• A configuration ω = {x∗1∧x∗2∧· · ·∧x∗N} 3 is a complete assignment of all decision
variables in X such that Xi = {xi, x̄i} for i = [0, N ]. For a matter of simplicity,
we write ω = x∗1x

∗
2 . . . x

∗
N instead of ω = {x∗1 ∧ x∗2 ∧ · · · ∧ x∗N};

• Ω = X1×· · ·×XN = {ω0, . . . , ω2N−1} denotes the universe of discourse composed
of 2N configurations;

• ∀ω ∈ Ω, ω[Xi] denotes the projection of ω on the variable Xi;

• ω |= x means that ∃X ∈ X such that ω[X] = x.

Definition 1.1 (Conditional preference network structure) A Conditional pref-
erence network structure P = 〈G, CPT 〉 is composed of two components:

(i) a Directed Acyclic Graph (DAG) G = (X , E) where X = {X1, . . . , XN} is a set of
N decision variables and E is the set of arcs representing preference dependencies
between them;

3x∗i = xi or x∗i = x̄i
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(ii) a set of conditional preference tables CPT = {CPT (X1), . . . , CPT (XN)} where
CPT (Xi) is the local table attached to Xi and composed of statements of the
form ui : Xi � ¬Xi, such that Xi = xi or Xi = x̄i, that expresses a strict total
order � over values of Xi in the context of each instance ui in UXi.

A conditional preference network structure makes it easy to find the optimal and
worst outcomes which respectively correspond to configurations having all of their
variables put at their best, resp. worst, assignments in the context of their parents.
Finding these configurations can easily be done graphically by sweeping though the
network from root to leaves and associating to each node its preferred resp. worst
value. The complexity of the optimisation query is linear at the number of decision
variables, it is the same complexity for finding the worst configuration.

S

EL

R

s̄ � s

s : e � ē
s̄ : ē � e

l � l

le : r � r̄
lē : r � r̄
le : r � r̄
lē : r̄ � r

Figure 1.1: Conditional preference network structure

Example 1.1 Let us consider the following specifications expressed by a user:

• I’m confused about buying or renting a car. I am more keen on making long trips
(s̄) rather than short ones (s) i.e. s̄ � s .

• I prefer to drive a luxury car (l) rather than a modest one (l) i.e. l � l̄.

• Even though vehicles with electric propulsion systems are easier on the environ-
ment, if I am traveling a long distance (s̄), I prefer a gasoline car (ē), since
finding a charging station and recharging is often difficult and may take a while
i.e. s̄ : ē � e. From the other hand, if I am traveling short distances (s), I prefer
to drive an electric engine (e) because its maintenance requirements are low and
electricity is cheaper than gasoline i.e. s : e � ē.
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• My preferences on car ownership are conditional. If it is a luxury car (l), what-
ever is its propulsion system (e or ē), I’d prefer to rent (r) rather to purchase (r̄)
the car mainly because of its expensiveness i.e. le : r � r̄ and lē : r � r̄. If it is
a modest vehicle (l̄) with an electric motor (e), I still prefer to rent rather than
buy, mainly to avoid maintenance fees i.e. l̄e : r � r̄. However, if the vehicle
is modest (l̄) and equipped with a gasoline motor (ē), I prefer to buy since the
car price is still acceptable and spare parts are cheaper than electric ones i.e.
l̄ē : r̄ � r.

This example involves four decision variables, S: distance, L: category, E: propul-
sion system and R: ownership, s.t. S = {s, s̄}, L = {l, l}, E = {e, ē} and R = {r, r̄}.
The vehicle category L and distance trip S are not conditioned by other variables. The
preferences over the car motor E is conditioned by the trip distance S and owning or
renting the car R depends of its category L and propulsion system E. The conditional
preference network structure is given by Figure 1.1.

The set Ω contains 24 = 16 configurations, i.e., Ω = {ω0 = sler, ω1 = sler̄, ω2 =
slēr, ω3 = slēr̄, ω4 = sler, ω5 = sler̄, ω6 = slēr, ω7 = slēr̄, ω8 = s̄ler, ω9 = s̄ler̄, ω10 =
s̄lēr, ω11 = s̄lēr̄, ω12 = s̄ler, ω13 = s̄ler̄, ω14 = s̄lēr, ω15 = s̄lēr̄}. The optimal solution
is ω10 = s̄lēr and the worst one is ω6 = sl̄ēr.

1.2.1 Pareto semantic for ordering configurations

Each decision variable in X has a polarity that describes its value, it can take either
(+) for the good or preferred assignment or (−) for the bad or rejected one. A
configuration ω can thus be described by a quality vector composed of N symbols ρi
such that i = [1, N ] and ρi ∈ {+,−}. Given the preference statement u : X � ¬X, the
good assignment corresponds to the preferred value X and the bad one corresponds to
the rejected value ¬X. A natural way of ranking configurations is to say that ω � ω′

if for all decision variables ω is as good as ω′ and at least one decision variable such
that ω[X] � ω′[X]. ω defines the dominating configuration and ω′ the dominated one.
This ranking corresponds to the Pareto order on Boolean variables (see Definition
1.2). It permits to entail a partial order on configurations leaving some outcomes
incomparable. This incomparability case happens when for the pair of solutions (ω, ω′),
∃{Xi, Xj} ∈ X such that ω[Xi] � ω′[Xi] and ω′[Xj] � ω[Xj].

Definition 1.2 (Pareto) ∀ω 6= ω′ ∈ Ω associated to the distinct quality vectors ~ω =
(ρ1, . . . , ρN) and ~ω′ = (ρ′1, . . . , ρ′N) such that ρi is the polarity of variable Xi for i =
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[1, N ] and ρi, ρ′i ∈ {+,−}, then ω �Pareto ω′ iff ∀i = [1, N ]

(i) either ρi = ρ′i or ρi = + and ρ′i = −;

(ii) for some `, ρ` = + and ρ′` = −.

The Pareto order can be depicted by a directed graph (see Definition 1.3) such
that nodes correspond to configurations attached to quality vectors and an arc from
ω to ω′ reflects a dominance relation in favor to ω.

Definition 1.3 (Pareto graph) Given a conditional preference network with N de-
cision variables, a Pareto graph is a DAG structure < N , E > such that N = {W0, . . . ,

W2N−1} is the set of nodes and E is the set of arcs that connects them.

• Each node Wi is composed of the configuration reference ωi, its complete instan-
tiation x∗1x∗2 . . . x∗N and its associated quality vector ~ωi = (ρ1, ρ2, . . . , ρN);

• An arc Wi → Wj means that ωi Pareto dominates ωj (ωi �Pareto ωj).

Example 1.2 Let us consider again network in Figure 1.1. Using Pareto semantic,
the ordering on configurations of Ω is presented by the graph in Figure 1.2. The
outcome ω1, associated to the quality vector (− + +−), is dominated by the outcome
ω0, associated to the quality vector (−+++), because, all other variables equally valued,
ω0[R] � ω1[R].

1.2.2 Cardinality order

Another natural way of ranking configurations is by considering the number of its
variables put in their least preferred value4, say Card(.). The larger Card(ω), the
worst the configuration ω. Thus, each configuration ω can be associated with a car-
dinality degree Card(ω) that describes its preference degree with regard to the user’s
specifications. Indeed, a configuration ω is preferred to ω based on the cardinality
order, simply ω �Card ω′, if Card(ω) < Card(ω′), respectively if the number of vari-
ables with polarity (+) of ω is greater than that of ω. Unlike the Pareto order which

4Note that the least preferred value of a variable Xi refers here to the violated preference attached
to Xi in the context of Xi’s parent assignment.
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s̄l̄er̄

(+−−−)

ω6
sl̄ēr

(−−−−)

Figure 1.2: Pareto graph relative to network in Figure 1.1

produces a partial order over Ω, the cardinality order yields a total pre-order. Ac-
tually, The Pareto order states that if ω �Pareto ω′ then, every variable polarity else
being equal, there should exist at least one variable X ∈ X with a polarity equal to
(+) in ~ω and equal to (−) in ~ω′. If ω �Pareto ω′ then Card(ω) < Card(ω′). This
means that the cardinality order refines the Pareto order, more formally, ∀(ω, ω′) ∈ Ω,
ω �Pareto ω′ ⇒ Card(ω) < Card(ω′). Obviously, the reverse entailment is wrong.
If ω �Card ω′, the Pareto order may fail to capture this relation, ω and ω′ be-
ing incomparable. For instance, let ~ω = (+ + +−) and ~ω′ = (− + −+), then
Card(ω′) = 2 > Card(ω) = 1 which means that ω �Card ω′. However, ω and ω′

are incomparable based on Pareto order.

Example 1.3 Consider the network structure in Figure 1.1. Table 1.1 associates to
each configuration in Ω the set of its violated decision variables and its cardinality. We
depict the inferred ordering by a well-ordered partition of N+1 layers, each composed of
equally preferred configurations having the same cardinality. See Table 1.2 for details.
The first layer encompasses the best outcome while the last one corresponds to the
worst. Configurations of a given layer are preferred to those of the next layer.
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ΩΩΩ Violated variables set Card(ω)Card(ω)Card(ω)
ω0 = sler {S} 1
ω1 = sler̄ {S,R} 2
ω2 = slēr {S,E} 2
ω3 = slēr̄ {S,E,R} 3
ω4 = sl̄er {S, L} 2
ω5 = sl̄er̄ {S, L,R} 3
ω6 = sl̄ēr {S, L,E,R} 4
ω7 = sl̄ēr̄ {S, L,E} 3
ω8 = s̄ler {E} 1
ω9 = s̄ler̄ {E,R} 2
ω10 = s̄lēr ∅ 0
ω11 = s̄lēr̄ {R} 1
ω12 = s̄l̄er {L,E} 1
ω13 = s̄l̄er̄ {L,E,R} 3
ω14 = s̄l̄ēr {L,R} 2
ω15 = s̄l̄ēr̄ {L} 1

Table 1.1: Configurations of network in Figure 1.1 and their cardinality degree

Card(ω)Card(ω)Card(ω) Partition
0 {ω10}
1 {ω0, ω8, ω11,ω15}
2 {ω1, ω2, ω4, ω9, ω12,ω14 }
3 {ω3, ω5, ω7, ω13}
4 {ω6}

Table 1.2: Cardinality order relative to network in Figure 1.1

1.3 CP-nets

Conditional Preference Networks or simply CP-nets [Boutilier et al., 1999] were in-
troduced to compactly represent conditional preferences of a user over multivariate
decision problems. They initially were inspired from Bayesian networks, but unlike
the latter, they offer a tool for representing preferences in a qualitative manner. Each
user specification encoded by CP-nets define a ranking over values of single variables
in the context of fixed assignments of features that influence them. Thus, a CP-net
is composed of two components: a graphical and an informational structure. Indeed,
decision variables are depicted by nodes connected with each other by means of arcs
that reflect dependencies between them. Each node is associated with a local table
that contains an ordinal relation on values of the variable in question. A CP-net C is
thus composed of a directed graph that involves a set of decision variables depicted
by nodes that are connected by means of directed edges. Each arc from a node X to
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a node x̄ reflects the dependency of x̄ in regards of X. If we restrict features to be
binary-valued, each decision variable X ∈ X is associated with a collection of state-
ments of the form u : X � ¬X where u ∈ UX and {x, x̄} ∈ X. Such a statement
is interpreted by “In the context of u, I strictly prefer X to ¬X”. The collection of
conditional statements associated with each node forms the second component of a
CP-net namely Conditional Preference Tables (CPT ).

In order to detail semantics of CP-nets and give a complete definition of the model,
we first need to define some basic notions.

Definition 1.4 (Worsening flip) Let ω, ω′ be two configurations in Ω that differ by
a single variable assignment over X ∈ X . X is called the swapped variable. There
exists a worsening flip from ω to ω′ if and only if there exists a statement u : X � ¬X
where X = x or X = x̄ such that

(i) ω, ω′ |= u,

(ii) ω |= X,

(iii) ω′ |= ¬X,

(iv) ω, ω′ |= y such that y ∈ Y and Y = X \ {{X} ∪ UX}.

Definition 1.5 (Worsening flip sequence) Let ω, ω′ be two configurations in Ω.
There exists a worsening flip sequence from ω to ω′ if and only if there exists a sequence
(ω, ω1, . . . , ωK , ω

′) such that ∀k ∈ {1, . . . , K − 1} there exists a worsening flip from ωk

to ωk+1.

CP-nets are based on the ceteris paribus independence property, which enables the
preference over values of X in the context of a fixed instantiation of its parents UX to
be extended to complete configurations assuming that the remaining set of variables
Y = X \ {X} \ UX takes the same value. In other words, this assumption enables
us to compare a pair of configurations that differ by single flip value on the swapped
variable every thing else being equal.

Definition 1.6 (Ceteris paribus) Let Y be a set of variables s.t. Y = X \{X}\UX .
The ceteris paribus assumption states that ω = yux is preferred to ω′ = yux̄ s.t. y ∈ Y
and u ∈ UX if and only if one of the following conditions are satisfied:

(i) there exists a worsening flip from ω to ω′
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(ii) ω′ is obtained from ω via a worsening flip sequence.

In fact, a CP-net5 can be defined as being a combination of a Conditional pref-
erence network structure P and an independence assumption, namely ceteris paribus
which allows to construct a dominance relation between configurations by means of
a transitive closure of the worsening flip relation. Indeed, given a set of variables X ,
a CP-net has the same graphical structure as defined in section 1.2 which consists of
a directed acyclic graph expressing dependency between variables and a set of condi-
tional preference tables. Note that the graphical structure of a CP-net could be cyclic.
This case can yield to an unsatisfiable ranking on configurations (∃ω, ω′ ∈ Ω with
ω 6= ω′ such that ω � ω′ and ω′ � ω ). This case is discussed later.

Definition 1.7 (CP-net) A Conditional Preference network C = 〈G, CPT 〉, denoted
by CP-net, is a Conditional Preference network as defined in Definition 1.1 that obeys
to the ceteris paribus preferential independence property.

Given a configuration ω we can subsequently either improve a flip on one of its
variable’s value or worsen it to reach another configuration ω′. Given statements in
conditional tables of a CP-net C along with the ceteris paribus assumption, a sequence
of improving flips from one configuration to another confirms that these configura-
tions are comparable. Accordingly, they are incomparable if and only if there exists
no flipping sequence between them. In other words, ω is preferred to ω′ (ω � ω′), if
and only if there exists a improving flip sequence from ω to ω′. Every improving flip
can be depicted by an arc from ω to ω′ expressing that ω �C ω′. The collection of flip
sequences between all pairs of configurations in Ω forms a DAG called induced pref-
erence graph composed of a unique root node corresponding to the best configuration
and a single leaf node consisting of a sink corresponding to the worst one. Mind that
one could also start by the worst configuration as a root and subsequently deteriorate
values of variables. The obtained ordering remains unchanged.

The optimal configuration is found by assigning the best value to each decision
variable in the context or value of variables from which they depend. In a similar
manner, the worst configuration is obtained by considering the least preferred value of
each variable in the context of its parents. Finding the dominance relation between all
possible solutions is performed by means of the transitive closure on worsening flips.

5The abbreviation CP-nets refer to Conditional Preference networks introduced by
[Boutilier et al., 2004]. To avoid confusion with Conditional Preference network structures described
in Section 1.2, we use C as a reference to the former model and P to the latter.
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In most cases, the induced CP-net ordering corresponds to a strict partial order since
some pairs of configurations may remain incomparable.

Example 1.4 Let us re-consider Example 1.1 expressing preferences about renting or
buying a car. We consider network in Figure 1.1 which has the same structure of a
CP-net. Configurations ω0 = sler and ω1 = sler̄ differ by the value of node R which
corresponds to the swapped variable. There exists a worsening flip from ω0 to ω1 since
they both model the same assignment le of R’s parents: UR = {L,E}, and also the
same assignment s for the remaining variables Y = X \{R}\UR = S. Thus, ω0 = sler

is preferred to ω1 = sler̄ according to the ceteris paribus principle since le : r � r̄.

Let us now consider the pair of configurations ω0 = sler and ω7 = slēr̄ that differ
by the value of more than one decision variable. A worsening flip sequence from ω0 to
ω7 can be constructed by subsequently considering the worsening flips : ω0 = sler →
ω1 = sler̄, ω1 = sler̄ → ω3 = slēr̄ and finally ω3 = slēr̄ → ω7 = slēr̄. Hence,
ω0 = sler is preferred to ω7 = slēr̄ w.r.t. the ceteris paribus property since there exists
a worsening flip sequence from a configuration to the other.

The set of worsening flip sequences between all pairs of configurations is depicted by
Figure 1.3. The optimal configuration ω10, which assigns to each variable its preferred
value, is in top of the graph while the worst one ω6 is in the bottom. We count 21
worsening flips between pairs of configurations. The induced order is partial. For
instance, ω9 and ω13 are incomparable since there exists no worsening flip sequence
between them.

1.3.1 Ceteris paribus order and Pareto order

Let X ′(ω, ω′) ⊆ X be the set of variables on which configurations ω and ω′ differ.
Given a CP-net C, we say that ω locally dominates ω′, simply ω �LD ω′ if and only if
for all variables X in X ′, ω[X] � ω′[X]. Wilson et al. [Wilson et al., 2019] have proved
that the ceteris paribus order �C is nothing more than the transitive closure of the
order relation �LD on C. This is due to the fact that a worsening flip sequence from
ω to ω′ implies a local dominance from ω to ω′. Thus, the local dominance relations
are included in the induced ceteris paribus relations, formally �LD⊆�C .

Definition 1.8 (Local dominance) Let C be a CP-net, the subset X ′(ω, ω′) ⊆ X
encompasses variables on which ω and ω′ differ. ω locally dominates ω′, formally
ω �LD ω′ iff ∀X ∈ X ′, ω[X] � ω′[X].

17



ω10

ω2

ω3

ω1

ω0

ω7

ω11

ω9

ω4

ω5

ω8

ω12

ω13

ω15

ω14

ω6

s̄lēr

slēr
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Figure 1.3: Induced worsening flip graph of CP-net of Example 1.4

Example 1.5 Let us pursue with same example in 1.1. Consider configurations ω11 =
s̄lēr̄ and ω5 = sl̄er̄. they differ on values of variables X ′ = {S, L,E}. ω11 locally
dominates ω5 since, w.r.t local tables in CPT of CP-net depicted by the structure in
Figure 1.1, ω11[S] = s̄ � ω5[S] = s, ω11[L] = l � ω5[L] = l̄ and ω11[E] � ω5[E].
Formally ω11 �LD ω5. We can also check that ω5 �LD ω7 since for each variable X in
X ′(ω5, ω7) = {E} the statement ω5[X] � ω7[X] is verified. Thus, we can conclude that
ω11 �LD ω7 by transitivity. This order relation is entailed by CP-net semantics since
there exists a worsening flip sequence from ω11 to ω7 (see Figure 1.3). One can check
that all order relations induced by the transitive closure of local dominance relation are
entailed by the ceteris paribus assumption and conversely.

Wilson et al. [Wilson et al., 2019] have then proved that the Pareto order is con-
tained in �LD, which means that if ω �Pareto ω′ then ω �LD ω′. Indeed, considering
a CP-net C, if ω �Pareto ω′ then for all variables X ∈ X ′, ω[X] � ω′[X] all else be-
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ing equal. This claim corresponds to the definition of a local dominance relation �LD.
Thus, �Pareto⊆�LD⊆�C [Wilson et al., 2019], which stipulates that the ceteris paribus
dominance relation refines the Pareto order with the local dominance relation being
between the two. This proposition is also true for multi-valued decision variables.

1.3.2 Implicit importance given by ceteris paribus

[Boutilier et al., 2004] acknowledge the fact that

“Violating the preference constraints for a parent variable is less preferred than
violating the preference constraints for any of its children”.[Boutilier et al., 2004]

This can be seen in a very simple example like in Figure 1.4. It is clear that this
effect of ceteris paribus is debatable since it may happen that preferences associated
with child node are more important than those associated with father nodes.

A

B

a � ā

a : b � b̄

ā : b̄ � b

Figure 1.4: Example of CP-net

Example 1.6 The fact that the ceteris paribus assumption implies that parent pref-
erences have priority to child ones is easily detected by a CP-net with two nodes.
Consider CP-net C in Figure 1.4 and its induced order: ab �C ab̄ �C āb̄ �C āb. The
configuration that violates the root node A, namely āb̄, is considered less satisfactory
than the one that violates its child B, namely ab̄. Thus, violating A is more penaliz-
ing than violating B, while the semantics of the CP-net does not explicitly specify an
importance relation between them.

The previous Example is minimalist but is sufficient for an illustration of the im-
plicit relative priority allocated to parent nodes in CP-nets. Even after admitting
that semantics of CP-nets give more priority to parents nodes over their descendants,
the ceteris paribus order remains questionable, and open to criticism. By means of
the following example, inspired from [Dubois et al., 2013], we bring the light on some
doubtful incompatibilities entailed by ceteris paribus semantic using a CP-net that
involves variables depending from multiple father nodes.
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A

B C

D E

a � ā

a : b � b̄

ā : b̄ � b

a : c � c̄
ā : c̄ � c

c : d � d̄

c̄ : b̄ � d

c : e � ē
c̄ : ē � e

Figure 1.5: Example of CP-net

Example 1.7 Consider CP-net C in Figure 1.5 and configurations ω = abc̄d̄ē and
ω′ = ab̄c̄d̄e. Both ω and ω′ share same assignments on parent nodes, namely ω[A] =
ω′[A] = a and ω[C] = ω′[C] = c̄. In the context of a, ω assigns a more preferred
value to B than ω′, i.e., a : b � b̄. Similarly, In the context of c̄, ω assigns a more
preferred value to E than ω′, i.e., c̄ : ē � e. Thus, CP-nets semantics never imply
that ω′ �C ω and one can check that there exist no worsening flip sequence from ω′

to ω. The CP-net semantics entail the preference relations: ω �C ω′ �C ω
′′ and

ω �C ω
′′′, such that ω = abcd̄ē, ω′ = ab̄c̄d̄ē, ω′′ = āb̄c̄d̄ē, ω′′′ = abc̄d̄e. We divide

X into three subsets: parents {A}, children {B,C} and grand-children {D,E}. From
the relation ω �C ω′, we notice that violating constraints of children nodes is more
discriminant than violating constraints of grand-children, since violated nodes of ω are
D and E, and those violated by ω′ are B and C. Furthermore, violating multiple child
and grand-children nodes is less penalizing than violating one parent node. This can
be exemplified by the relation ω �C ω′ �C ω

′′, where ω′′ violates A. However, it is
troublesome that the ceteris paribus is not able to rank order the configuration ω′′′ with
respect to ω′ and ω′′, even though ω′′ violates a parent node, ω′ violates a child node
and ω′′′ violates a child and a grandchild node.

In the previous example 1.7, we can see that one configuration can be ranked
by ceteris paribus as preferred over another even if they violate the same number
of variables. In the next section, we discuss a ordering semantics that considers the
number of variable violations as a ranking strategy.

1.3.3 Ceteris paribus order vs. cardinality order

As previously explained, given a CP-net, we can use what is called a cardinality order
on the set of alternative Ω. Each configuration is ranked based on the number of its
violated variables. The preference property of CP-nets is able to produce a ranking
between a pair of configurations that both violate the same number of variables. How-
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ever, given a a configuration ω that violates less variables than ω′, i.e., ω �Card ω′, it
is not necessary the case that the ceteris paribus ordering acknowledges it.

Example 1.8 Consider network in Figure 1.1. Configuration ω3 = slēr̄ and ω9 = s̄ler̄

share the same number of violated variables but the preferential property of CP-nets
succeeds to rank order them. Indeed, the configuration ω3 violates the set of variables
{S,R} and ω9 violates {E,R}. Figure 1.3 confirms that there exists a worsening flip
sequence between them yielding the relation ω9 �C ω3. The configuration ω13 = s̄l̄er̄

has a cardinality equals to 3 for the violated nodes L,E and R. Semantics of CP-nets
fail to rank order ω3 and ω13 even though the latter violates more variables than the
former.

In general, the CP-net relation is in accordance with Pareto relation, but not with
the cardinality order. In fact, the importance accorded by CP-net semantics in favor
of parents are quite strong since violating a parent node can be more penalizing than
violating multiple children. This is in contradiction with the cardinality order since the
ceteris paribus ranks a configuration that violates multiple nodes as being preferred to
a configuration that violates a single node. Thus two configurations can be compared
by ceteris paribus and by cardinality orders in an opposite ways. Example 1.9 provides
an illustration case.

Example 1.9 Consider CP-net C in Figure 1.6 with one root variable, namely A, that
has two child nodes, namely B and C. Consider configurations (ω = ab̄c̄, ω′ = āb̄c̄) that
differ on a single variable flip on A. ω �C ω′ since there exists a preference statement in
CPT (A) stipulating that a � ā. The pair of configurations are respectively associated
with quality vectors ~ω = (+ − −) and ~ω′ = (− + +). Since ω′ violates less variables
than ω, then, the cardinality order confirms that ω′ � ω, which is in contradiction with
the CP-net order.

A

B C

a � ā

a : b � b̄

ā : b̄ � b

a : c � c̄
ā : c̄ � c

Figure 1.6: Example of CP-net
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1.3.4 Satisfiability of a CP-net

The satisfiability of a CP-net is actually related to its structure. The graphical compo-
nent of a CP-net can either be cyclic or acyclic. In this section, in order to explain some
concepts, we consider the both graphical structures. Most research works consider
acyclic CP-nets since the acyclicity characteristic confers to the network the property
of being satisfiable, which is not the case for cyclic networks [Boutilier et al., 2004].

Definition 1.9 (Satisfiability of a CP-net) A CP-net C is satisfiable by an order
�C iff it satisfies each of the conditional preference statements in the collection of local
tables CPT using the ceteris paribus assumption.

Let �′C and �
′′
C be two orderings that satisfy C. If �′C ranks ω �′C ω′, and �

′′
C ranks

ω′ �′′C ω
′′ then the assertion ω �C ω

′′ should be valid for all orderings that satisfy C.
This means that all induced partial orderings that satisfies C are transitive. Note that
not all cyclic CP-nets yield to an inconsistent ordering over configurations. In fact,
Domshlak and Brafman have studied the consistency of binary-valued cyclic CP-nets
and have identified a wide class of satisfiable networks [Domshlak and Brafman, 2002].
The following example illustrates the problem encountered by cyclic graphs, where one
may have a worsening path that is cyclic.

Example 1.10 Consider network C in Figure 1.7(a). The graph structure is cyclic
since the preference over variable A depends on B and vise versa. The first specification
b : a � ā in CPT (A) induces the preference relation ab �C āb which is represented by
an arc ab → āb in the right-most worsening flip graph in Figure 1.7 (b). The second
specification b̄ : ā � a in CPT (A) induces the preference relation āb̄ �C ab̄ which is
depicted by an arc āb̄→ ab̄. Following the same reasoning, CPT (B) entails the order
rankings ab̄ �C ab and āb �C āb̄. The induced worsening flip graph corresponding to
C is cyclic and entails an inconsistent ranking on configurations, namely ab �C āb �C
āb̄ �C ab̄ �C ab (see Figure 1.7(b)) . Note that if we modify the local table CPT (B) to
hold statements a : b � b̄ and ā : b̄ � b then we end up with a consistent partial order
namely {ab, āb̄} �C āb, {ab, āb̄} �C ab̄.

Indifference and satisfiability

Most CP-nets are based on generalized statements that define a strict total order
relation over instantiation of variables in question. However, CP-nets offer to the

22



A

B

b : a � ā

b̄ : ā � a

a : b � b

ā : b � b̄

(a)

ab

ab̄

āb̄

āb

(b)

Figure 1.7: Cyclic CP-net (a) and its induced worsening flip graph (b)

user the flexibility to express indifference between values of a given variable, e.g.,
u : x ∼ x̄ which is interpreted by the claim “In the context of u, x and x̄ are equally
preferred”. The preference order induced by CP-nets that allow indifference between
variables values is not always consistent [Boutilier et al., 2004]. In fact, if indifference
is allowed, then the CP-net must obey a precise restriction in order to generate a
consistent ordering. Consider a CP-net C composed of nodes X = {UX , X, Y, ChX}
where UX denotes parents of X, ChX denotes any children of X and Y is the set of
parents of ChX excluding X. Suppose that for a given u ∈ UX , we have u : x ∼ x̄.
Then, C is satisfiable as long as the following technical condition holds, for a fixed
value y in Y , the preference over values of ChX is the same e.g xy : c � c̄ for x ∈ X
and {c, c̄} ∈ ChX . For the remainder of the manuscript, we will only assume the case
where each generalized preference statement composing a CP-net holds a strict total
order relation over values of the variable in question. The following example shows
the problem created by indifference when the above technical condition does not hold.

To avoid dealing with inconsistent orderings, we prohibit indifference and we will
only consider acylic structures for the remaining of this work.

A

B

a ∼ ā

a : b � b̄

ā : b̄ � b

Figure 1.8: Example of CP-net where indifference is allowed

Example 1.11 Consider CP-net C in Figure 1.8. Statements in CPT (B) entail the
following order rankings: ab �C ab̄ and āb̄ �C āb. The indifference between values of A
yield to an inconsistent ordering over configurations namely ab �C ab̄ �C āb �C āb �C
ab, making the CP-net C unsatisfiable.
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1.3.5 Querying CP-nets

The ceteris paribus semantic of CP-nets allows to exploit information contained in
conditional preference tables to either compare a pair of configurations or find the
optimal outcome in accordance with the network. In the following, we introduce the
most used queries on CP-nets, namely the optimization query for determining the best
configuration and the dominance query for finding a preference relation between two
given configurations.

Optimization Query

Given a CP-net C, sweeping through its conditional preference tables while picking
for each variable its preferred value in the context of parents assignment is a simple
task that allows to determine the unique optimal solution in accordance with C. This
procedure exploits both ceteris paribus informational property along with the compact
graphical modeling of preference statements to easily determine the best solution in
time linear with respect to the number of alternative choices [Boutilier et al., 2004].
One can also be interested in finding the worst configuration which can be done by
sweeping though the CP-net and setting each variable to its less preferred assignment
given parents context.

The optimization query is outlined by Algorithm 1.1. Function Search_context
(ρ,Xi) takes as parameters a partial configuration ρ and a node Xi and determines the
assignment u of UXi such that u |= ρ. Function Values_given_context (Xi, u) return
a pair of values (pref , pref) corresponding to respectively the most and less preferred
assignments of Xi. Similarly, Algorithm 1.1 can generate the worst configuration by
modifying the instruction of the 10th line of the algorithm and concatenate the result
of previous iterations with the least preferred value of the variable in question namely
pref .

Example 1.12 Let us continue with Example 1.4. Consider that the set X is ordered
starting from root nodes to leaves, e.g., X = {S, L,E,R}.

• In order to answer the optimization query “find the optimal configuration”, we
need to associate to each variable its preferred value. We begin by root nodes
{S, L} making ωopt = s̄l, we then continue by node E that stipulates that in the
context of s̄ : ē � e, making ωopt = s̄lē, to finally assign the value r to ωopt

since in CPT (R) lē : r � r̄. The optimal configuration thus corresponds to
ωopt = s̄lēr.
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Algorithm 1.1: Optimization query given a CP-net C
Input: C = 〈G = (T,E), CPT 〉
Output: ωopt

1 T = table of nodes /* Nodes in Ω ordered in a topological order */
2 for i = 1 to i = |T | do
3 X ← T [i]
4 if UX 6= ∅ then
5 u ← Search_context (ωopt, X)
6 else
7 u ← ∅
8 end
9 (pref, pref)← Values_given_context (X,u)

10 Concatenate (ωopt, pref)
11 end
12 return ωopt

• Therefore, the worst case configuration is obtained by sweeping through nodes
of the graph and assigning each variable its least preferred value. The worst
configuration is slēr.

Complexity of optimization query Considering a partial configuration ρ, a vari-
ant of the optimization query consists on finding the configuration that models ρ and
assigns to the non instantiated variables their best value. Given any topological or-
der on decision variables, and similarly to the classical optimization query, finding
the optimal configuration in the completions set of ρ such that ω ∈ Ω is done by a
forward sweep procedure by sweeping through the network from ancestors to descen-
dant while assigning to each node its preferred value. The complexity of dominance
query with enforced conjunctive constraints is also linear in the number of features
[Boutilier et al., 2004].

Dominance Query

The second most interesting query with respect to this model is to figure out if a
configurations dominates another with respect to the ceteris paribus assumption or
not. This query is called the preferential comparison between outcomes, better known
as the dominance query. Let ω, ω′ ∈ Ω be two configurations, three situations are
possible:

• ω dominates ω′: ω � ω′,

• ω′ dominates ω: ω′ � ω,
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• ω and ω′ are incomparable: ω ./ ω′. This relation is deduced if and only if
ω � ω′ and ω′ � ω :

Complexity of dominance query The preferential independence property of CP-
nets allows to compare pairs of configurations by simply consulting information de-
picted in the network structures. In binary-valued decision variables, the complexity
of this query performed over the set of possible solutions is generally NP-complete.
This complexity actually depends on the network structure. In acyclic CP-nets where
the graph corresponds to a tree structure, the complexity of this query is quadratic
in the number of variables. It is polynomial in the size of decision variables for poly-
trees. For directed-path singly connected DAGs 6 the complexity is NP-complete
[Boutilier et al., 2004].

Figuring out if a configuration dominates another given a CP-net C is done by
searching for a worsening flip sequence between them. Considering a configuration ω
as a departure point, this can be seen as a planning problem for optimizing the value
of each node X ∈ X until reaching the configuration ω′ which represents the goal.

Indeed, each preference statement ui : Xi � ¬Xi is translated into a generalized
statement of the form ui : xji � xj+1

i where xi is the preferred value of Xi and ui ∈ UXi
(the algorithm in [Boutilier et al., 2004] is not restricted to Boolean variables). Each
generalized statement is converted into a planning operator of the form ui ∧ xji which
defines the set of Preconditions. In order to perform any action, a proposition in the
set of Preconditions must be satisfied. The set of Postconditions is obtained after
performing two operations: Delete list: xji and Add list: xj+1

i which consists on
removing xji from propositions in the set of Preconditions and replace it by xj+1

i . This
corresponds to the action of worsening xji to xj+1

i in the context of ui. Considering
any comparison of the form ω �C ω′ between a pair of different configurations, the
idea is to treat ω as the starting state and ω′ as the goal. Thus, ω �C ω′ holds
true if and only if the planning problem converges and can generate a plan. It is
obvious to see that the problem solution corresponds to a set of worsening flips that
compose a worsening flip sequence from ω to ω′. For binary-valued acyclic CP-nets,
this problem is known to be PSPACE since it is reducible to a specific variant of
STRIPS planning problems with unary operators which instantiate one variable at a
time [Brafman and Domshlak, 2011].

Example 1.13 Consider preference statements defined by local tables of network in
Figure 1.1. Each statement of the form u : X � ¬X is transformed into the operator or

6Given a pair of nodes, there exists at most one path that connects them with each other.
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precondition u∧x1 for u∧x. Statements of the considered example are thus transformed
into the following set of planning operators :
s̄ � s −→ ∅ ∧ s1 such that s1 = s̄,
l � l̄ −→ ∅ ∧ l1 such that l1 = l,
s : e � ē −→ s ∧ e1 such that e1 = e,
s̄ : ē � e −→ s̄ ∧ e1 such that e1 = ē,
{le : r � r̄, lē : r � r̄, l̄e : r � r̄} −→ {le ∧ r1, lē ∧ r1, l̄e ∧ r1} such that r1 = r,
l̄ē : r̄ � r −→ {l̄ē ∧ r1} such that r1 = r̄.

We aim to find a plan that corresponds to a worsening flip sequence from ω11 = s̄lēr̄

to ω5 = sl̄er̄. The first step consists on worsening the value of E. We note that
ω11 |= s̄ ∧ ē, a proposition equivalent to the precondition s̄ ∧ e1 such that e1 = ē. We
can thus change the value of variable E from e1 = ē to e2 = e. This corresponds to a
worsening flip on E resulting to the configuration ω9 = s̄ler̄. The second flip consists
on modifying the value of L since ω9 |= l which verifies the precondition ∅ ∧ l1 such
that l1 = l. This leads to attain the configuration ω13 = s̄l̄er̄. The last step consists on
worsening the value of S accordingly to the operator ∅ ∧ s1 such that s1 = s̄. We end
up reaching the configuration ω5 = sl̄er̄. A plan is thus found from ω11 to ω5 which
permits to conclude that ω11 � ω5 according to preference specifications provided by the
user. The corresponding worsening flip sequence is ω11 = s̄lēr̄ → ω9 = s̄ler̄ → ω13 =
s̄l̄er̄ → ω5 = sl̄er̄.

Ordering query

Another less exploited query named ordering query in the literature evaluates if there
is a dominance relation or not between a given pair of configurations. Indeed, the
optimization query evaluates if ω � ω′ is true making the reverse order relation false,
namely ω′ � ω. The ordering query is a weaker interrogation that verifies if ω � ω′

and ω′ � ω are both true. In other words, it verifies if there exists a strict dominance
relation between two configurations. It is a yes or no query checking if two configu-
rations are comparable or not. Actually, a user may be satisfied by simply knowing
that a configuration can consistently be ranked as preferred to another. The following
example gives an illustration of the ordering query.

Example 1.14 Consider CP-net C in Figure 1.1. Configurations ω1 = sler̄ and ω3 =
slēr̄ differ by the value of E but satisfy the same set {S} of ancestors. For the context
s, there exists a statement s : e � ē, then we can conclude that ω3 �C ω1 does not
hold. Consider now configurations ω0 = sler and ω9 = s̄ler̄ that differ by values of
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nodes S and R. Conditional tables associated with these variables stipulate that s̄ � s

and le : r � r̄ which means that ω9[S] � ω0[S] and ω0[R] � ω9[R]. This leads to the
conclusion that ω0 �C ω9 and ω9 �C ω0 do not hold which means that ω0 and ω9 are
not comparable.

Complexity of ordering query Let C be a CP-net and (ω, ω′) be a pair of configu-
rations that differ by the value of X but have the same instantiations over all ancestors
of X in X . If there exists a statement u : X � ¬X in CPT (X) such that X |= ω

and ¬X |= ω′7 then the assertion ω′ �C ω is false. Consider now a different pair of
configurations (ω, ω′) over variables X of CP-net C. The complexity of determining
the truth of that the assertion ω′ �C ω ( or ω �C ω′) do not hold is linear in the number
of decision variables (O(N)) [Boutilier et al., 2004]. The idea of the proof is to make
a top-down traversal of variables of the network and verify if, for a given context u,
∃X ∈ X such that ω[X] � ω′[X]. Thus, we can confirm that ω′ �C ω does not hold. If
configurations differ by more than a variable, for instance on {Xi, Xj} ∈ X then there
must exist statements such that given a context u, ω[Xi] � ω′[Xi] and ω′[Xj] � ω[Xi].
This implies that both assertions ω �C ω′ and ω′ �C ω are false.

1.4 TCP-nets

Expressiveness of CP-nets can be enhanced by introducing information about the
relative importance between decision variables. In that regard Tradeoff-enhanced CP-
nets [Brafman and Domshlak, 2002], TCP-nets for short, are an extension of CP-nets
that encodes both preference statements of a user as well as conditional importance
relation between variables. Thus, in addition of encoding specifications of the form
"In the context of u, I strictly prefer x to x̄", this model can also take into account
statements like “In context u, the preference associated with X is more important
than the one associated with another variable X ′”.

In case of acyclic graphs, this leads to a richer expressive power than CP-nets pro-
viding a more refined partial ordering between outcomes. For their graphical structure,
TCP-nets are represented by a DAG with three types of edges, namely we add two
type edges corresponding to conditional or unconditional importance relations between
preferences associated with two variables. If variables importance is conditioned by
the value of some other variables, then the encoding edge is undirected, labeled with

7This notation means that the preference associated with variable X is satisfied by the configura-
tion ω. This means that the preference associated with X is not satisfied by ω′.
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the conditioning variables and associated to a table defining the importance relation
between variables in the context of what is defined by a so-called selector set. The
notation X . X ′ means that X is more important than X ′.

TCP-nets still obey the independence property ceteris paribus leading to more
comparisons than the original network. Their structure can be seen as basically being
composed of a Conditional preference network structure P completed by two infor-
mational principles respectively ceteris paribus semantic and attribute importance
relation that is depicted by additional types of edges. They are formally defined by

Definition 1.10 (TCP-net) A Tradeoff-enhanced Conditional Preference network
N = 〈G, CPT,CIT 〉, denoted by TCP-net is composed of three components:

(i) a graph G = (X , E) where X = {X1, . . . , XN} is a set of N decision variables and
E the set of (directed) edges representing preference dependencies and importance
relation between them. Each arc in E between Xi and Xj can be associated with
one of the three following types:

• cp-arcs standing for conditional preference, which are directed edges of the
form Xi → Xj expressing that the preferred value of Xj depends on the
value of Xi.

• i-arcs standing for importance relation, which are directed dashed edges
depicted by Xi 99K Xj expressing that Xi is more important than Xj.

• ci-arcs standing for conditional importance relation, which are undirected
edges of the form Xi Xj, labeled with a selector set S ⊆ X \ {Xi, Xj}.

(ii) a set of conditional preference tables CPT = {CPT (X1), . . . , CPT (XN)} where
CPT (Xi) is the conditional preference table attached to Xi and composed of
statements of the form ui : xi � x′i expressing a strict total order � over values
of Xi in the context of each instance ui of Xi’s parents UXi.

(iii) a set of conditional importance tables CIT = {CIT (S1), . . . , CIT (SJ)} that ex-
press the relative importance between a pair of nodes given assignments (not
necessarily all) of the selector set Si.

TCP-nets obey to the ceteris paribus preferential independence property.

We now give an example of TCP-net with the three kinds of arcs.
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EL

R

{E}

s̄ � s

s : e � ē
s̄ : ē � e

l � l

le : r � r̄
lē : r � r̄
le : r � r̄
lē : r̄ � r

e R . L
ē L . R

Figure 1.9: TCP-net

Example 1.15 Let us continue Example 1.1, by considering that the user’s prefer-
ences over the car propulsion system has actually higher importance than her prefer-
ences over the vehicle category since she is more concerned by the car reliability. This
information is represented by a i-arc from E to L drawn in dotted lines. Moreover,
given an electric motor, deciding on whether to purchase or rent a car is more impor-
tant than the car category (e : R . L). However, if the car is mechanical, the user is
more likely to choose car category before deciding of its ownership (ē : L.R ). An edge
ci-arc between L and E labeled with a conditional importance table or CIT (E) express-
ing the previously enunciated statements is drawn. These information are sumed up
by Figure 1.9 that illustrates an extension of the CP-net associated with items of the
graphical structure in Figure 1.1 now capturing relative importance relation between
decision variables.

However, the implicit priority enforced in favor of father nodes cannot be reversed
by the use of TCP-net.

1.4.1 Satisfiability of a TCP-net

Semantics of a TCP-net N is defined in term of strict partial orders consistent with
the set of generalized preference statements in CPT and with the importance relation
encoded by the network. In fact, each type of arcs depicted by a TCP-net entail a
dominance relation. Definitions below formally define satisfiability with respect to
each type of arc, leading to the global satisfiability of a TCP-net.
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Definition 1.11 (Order satisfiability) 8 A strict partial order �N satisfies a TCP-
net N iff

(i) For cp-arcs: �N satisfies generalized preference statements in CPT (Xi), ∀Xi ∈
X . This means that for each dominance relation, e.g., ω �N ω′ between pairs
of configurations that differ by the value of Xi, there should exist a statement in
CPT (Xi) stipulating that ω[Xi] � ω′[Xi] for a given context u ∈ UXi.

(ii) For i-arcs: �N satisfies the importance relation Xi . Xj. This means that
for each dominance relation, e.g., ω �N ω′ between pairs of configurations that
differ by the value of exactly two variables Xi and Xj, there exists a statement
in CPT (Xi) stipulating that, for the most important variable Xi, ω[Xi] � ω′[Xi]
for a given context u ∈ UXi.

(iii) For ci-arcs: �N satisfies the importance relation Xi.sXj for a given assignment
s of the selector set S. This means that for each dominance relation, e.g., ω �N
ω′ between pairs of configurations that differ by the value of exactly two variables
Xi and Xj, there exists a statement in CPT (Xi) stipulating that, for the most
important variable Xi, ω[Xi] � ω′[Xi] for a given context u ∈ UXi.

A TCP-net N is satisfiable if and only if there exists a strict transitive partial order
�N that satisfies it. This means that if ω �N ω′ with respect to N then all preference
orders entailed by N verify the assertion ω � ω′.

In the sequel, we give an example of a TCP-net along with its induced ordering.

Example 1.16 Consider TCP-net N in Figure 1.9. cp-arcs yield to dominance re-
lation entailed by the ceteris paribus property. Details about order relation induced
from i-arcs and ci-arcs are described in Table 1.3. Besides of preferences induced from
CP-net (see Figure 1.3), additional dominance relations entailed by the TCP-net N
are written in bold.

1.4.2 Querying TCP-nets

The two main queries that can be performed on the original CP-nets are optimisation
and dominance query. The relative importance relation does not play a role in deter-
mining the best (resp. worst) configuration of a TCP-net. To answer the optimization

8Taking into account the importance relation between variables.
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Arc type Arc Induced importance relation Entailed preferences

i-arcs E 99K L E . L

sler �N sl̄ēr ω0 �N ω6
sler̄ �N sl̄ēr̄ ω1 �N ω7
s̄l̄ēr �N s̄lers̄l̄ēr �N s̄lers̄l̄ēr �N s̄ler ω14 �N ω8ω14 �N ω8ω14 �N ω8
s̄l̄ēr̄ �N s̄ler̄s̄l̄ēr̄ �N s̄ler̄s̄l̄ēr̄ �N s̄ler̄ ω15 �N ω9ω15 �N ω9ω15 �N ω9
sl̄er �N slērsl̄er �N slērsl̄er �N slēr ω4 �N ω2ω4 �N ω2ω4 �N ω2
sl̄er̄ �N slēr̄sl̄er̄ �N slēr̄sl̄er̄ �N slēr̄ ω5 �N ω3ω5 �N ω3ω5 �N ω3
s̄lēr �N s̄l̄er ω10 �N ω12
s̄lēr̄ �N s̄l̄er̄ ω11 �N ω13

ci-arcs E L
R .e L

sler �N sler̄ ω0 �N ω1
s̄ler �N s̄ler̄ ω8 �N ω9

L .ē R
slēr �N slēr̄ ω2 �N ω3
s̄lēr �N s̄lēr̄ ω10 �N ω11

Table 1.3: Preferences derived from i-arcs and ci-arcs

query we need to go through the network from root nodes to leaves and assign at each
step the preferred (resp. rejected) value of the node in the context of parents. How-
ever, the process of finding the dominance relation between a pair of configurations
is extended by considering, in addition to worsening flip sequences, another type of
flipping sequences called importance flip sequences based on the importance relation
of attributes.

Consider the pair of configurations (ω, ω′) that differ by two variable values. If the
TCP-net N stipulates that ω[Xi] � ω′[Xi] and ω′[Xj] � ω[Xj] given some context
(assignment of parents UXi and UXj), then, an importance worsening flip from ω to
ω′ exists if there is a priority of Xi over Xj conditioned (or not) by the selector set S
such that z |= ω and z |= ω′ for z ∈ S. A configuration ω dominates ω′ with respect
to a TCP-net N , formally ω �N ω′, if there exists a worsening flip sequence between
them. This is now more formally stated by the two following definitions.

Definition 1.12 (Importance worsening flip) Let ω, ω′ be two configurations in
Ω that differ by exactly two variables values Xi and Xj ∈ X . There exists an impor-
tance worsening flip from ω to ω′ if and only if the following conditions are satisfied

(i) Xi .z Xj given an assignment z of the selector set S such that ω, ω′ |= z and
S ⊆ X \ {Xi, Xj}.

(ii) There should be statements in CPT such that ω[Xi] � ω′[Xi] for the same context
UXi, and ω′[Xj] � ω[Xj] given the same context UXj .

Definition 1.13 (Importance worsening flip sequence) The sequence ω0 �N ω1 �N
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· · · �N ωm is an importance worsening flip sequence with respect to a TCP-net N such
that k ∈ [0,m], if and only if one of the following conditions is satisfied

(i) Configurations ωk and ωk+1 differ by a single flip of variable X ∈ X , and there
exists a worsening flip from ωk to ωk+1,

(ii) Configurations ωk and ωk+1 differ by the value of two variables and there exists
an importance worsening flip from ωk to ωk+1.

Considering all worsening flip sequences induced by a CP-net, finding the additional
dominance relations induced by adding i-arcs and ci-arcs to this structure comes down
to determine all importance flipping sequences between pairs that differ by the value of
two variables following the second condition in Definition 1.13. Example 1.17 exhibits
the ordering relation between configurations for the Example of Figure 1.9.

Example 1.17 Figure 1.10 represents the induced graph of TCP-net N in Figure
1.9. Due to the importance relation E . L, we detect four additional comparisons
or importance worsening flips consisting of ω4 �N ω2, ω14 �N ω8, ω5 �N ω3 and
ω15 �N ω9 (see Table 1.3). For instance, ω4 = sler and ω2 = slēr differ by two values
of variables L and E. For the more important variable E, ω4[E] = e � ω2[E] = ē

given the context s. For the less important variable namely L, ω2[L] = l � ω4[L] = l

where ω2, ω4 |= r for a fixed value r ∈ R. This preference entailment corresponds to
an importance worsening flip.

There exists a sequence of worsening flips between ω4 and ω1 described by the strict
partial order ω4 �N ω2 �N ω3. In fact, configurations ω4 ω2 are ranked by means of
the second condition in Definition 1.13, while configurations ω2 and ω3 are ranked by
means of the first condition in Definition 1.13.

Complexity of dominance query Methods developed for searching for worsening
flip sequences with respect to CP-nets [Domshlak and Brafman, 2002] [Boutilier et al., 2004]
can also be used for TCP-nets. Generally the dominance testing given a TCP-net N
is NP-hard [Brafman et al., 2006].

1.5 LP-trees

Lexicographic preference trees (LP-trees) have been introduced by[Booth et al., 2010].
They were proposed originally for learning purposes and more specifically for learning
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Figure 1.10: Induced graph of TCP-net of Figure 1.3. Arrows in straight line are
deduced from ceteris paribus assumption and those in dotted represent additional
comparisons deduced from the importance relation between variables.

ordinal preferences. The concept of a lexicographic order over preferences involves a
set of attributes X and a strict total importance order relation . over them. It can
be depicted by rooted tree where nodes correspond to decision variables and edges
indicate the relative importance between them. An arc Xi → Xj s.t. Xi, Xj ∈ X , im-
plies that Xi is more important than Xj formally encoded by the importance relation
statement: Xi . Xj. This relation can be contextual, i.e., Xi is more important than
Xj given Xi = xi, this case is formalized by Xi .xi Xj. LP-trees allow to express two
types of relations. In regards to a Conditional preference structure, LP-trees exhibit
importance relations between variables by generalizing the lexicographic order, in ad-
dition of permitting conditioning on variable’s preference relations. Both information
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are compactly reproduced by a graphical structure depicted by a directed tree and a
set of local tables.

As a representation and learning model, researchers have introduced different defi-
nitions of LP-trees [Booth et al., 2010] [Fargier et al., 2018] [Fargier and Mengin, 2021a].
In the sequel we propose a definition that subsumes all others (see definition 1.14). In
Chapter 5, we propose to structure representations of classes and extensions of this
model by providing well-detailed definitions and reasoning procedures.

Definition 1.14 (General LP-tree) A Lexicographic Preference Tree T = 〈A, PT 〉
denoted by LP-tree involves two components :

(i) a directed tree A = 〈X , E〉 where X is a set of decision variables and E is a
set of edges of the form Xi → Xj such that {Xi, Xj} ∈ X , indicating that the
preference over Xi is more important than Xj.

(ii) a set of local preference tables PT = {PT (X1), . . . , PT (XN)} where PT (Xi)
is the conditional preference table attached to Xi ∈ X . PT (Xi) contains ei-
ther conditional or unconditional specifications implying a strict total order over
assignments of Xi.

A LP-tree should respect the following statements:

1. Each variable Xi ∈ X appears at most once in each branch of the tree.

2. Each non-leaf node Xi ∈ X has either one single unlabeled outgoing edge or two
outgoing edges respectively labeled by xi and x̄i( the two possible values of Xi).

The following example gives an illustration of a general LP-tree.

Example 1.18 Let us reconsider the decision problem about choosing to rent or buy
a car with a restriction on three variables, i.e., X = {L,E,R} where L: category, E:
propulsion system, R: ownership, L = {l, l}, E = {e, ē} and R = {r, r̄}. Suppose that
the user’s preferences are:

• I prefer to drive a luxury vehicle (l) rather then a modest one (l̄)

• Given a luxury car (l), preferences over the propulsion system (E) are more
important than those about the ownership (R), and reversely when the car is
modern (l̄).
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• When the car is luxury, I prefer it to be equipped with a thermal propulsion system
(ē) since I like the sound it makes.

• It would be more reasonable to rent (r) it mainly to avoid maintenance fees.

• Alternatively, when the car is modest, I prefer to own (r̄) it and in this context,
I would choose a thermal motor since, conversely, maintenance fees are too ex-
pensive. Otherwise, if I am renting the vehicle I prefer to have an electric motor
(e) just to discover the new technology with minor cost.

Figure 1.11 sums up the relative importance of decision variables encoded by the
specified statements: L .l E, E .l R for the leftmost branch of the tree and L .l R,
R .l E for the opposite side. It also reveals dependencies between variables where
preferences can be unconditional, e.g., leaf node of the leftmost branch of the network,
or conditional, e.g., leaf node of the rightmost branch.

L

E R

R E

l l

l � l

e � ē r̄ � r

r � r̄
r : e � ē
r̄ : ē � e

Figure 1.11: Example of a general LP-tree

Considering an LP-tree model, we can perform the standard queries of CP-nets
namely the dominance and optimization queries. Finding the optimal configuration
consists on sweeping through the tree from top to bottom while assigning for each
node of the graph its preferred value, i.e., same procedure as for CP-nets. In order
to compare a pair of configurations, we first need to select variables for which they
have same assignments. We then trace along the tree structure and consider labels
in edges until reaching the decisive variable Xi on which configurations differ. The
dominance relation �Lex between the pair of configuration is deduced from the local
table associated with Xi. The following example suggests how configurations are
compared (see Chapter 5 for more details).

Example 1.19 Let us pursue with the Example 1.18. Consider configurations (l̄er, l̄ēr̄)
that differ by the value of E and R. Since both configurations model l̄, we need to trace
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down the right-most branch of the tree. The decisive variable is R which stipulates
that r̄ � r. This leads to conclude that the dominance relation between configurations
is l̄er̄ �Lex l̄ēr.

Complexity of dominance query In case of complete LP-trees (see Section 6.2.6)
where all priority relations and all preferences are provided, the LP-tree yield to a strict
total order. The search for a dominance relation between a pair of configurations can
be done in a linear time with respect to the size of the graph. However, the search for
the dominance relation between all pairs of configurations is done in polynomial time
[Booth et al., 2010].

1.6 On the consistency between graphical repre-
sentations and cp-theories

In 2011, Nic Wilson [Wilson, 2011] has introduced a logical encoding of preferences
that permit to capture order relations induced by graphical models detailed in this
chapter. Indeed, conditional preference theories (cp-theories) offer a logical framework
for representing conditional preferences. In this section, we aim to briefly discuss the
relative expressiveness of CP-nets, TCP-nets and LP-trees by means of cp-theories.
We also notice that, generally, a CP-net or TCP-net ordering cannot be reproduced
by an LP-tree ordering.

A cp-theory Φ is composed of a collection of conditional preference statements or
CP statements that define an order relation between solutions. A CP statement φ
over a subset U ⊆ X is formalized by φ = u|V : x � x̄, where u is an assignment
of variable in set U , x, x̄ are values in X, U and V are disjoint variable subsets s.t.
U ⊆ X \ {X}, V ⊆ X \U . It expresses the specification “Given the context u, I prefer
x to x̄ independently from the value of variables in V”, more formally

if φ = u|V : x � x̄ then yuxv �Φ yux̄v
′ with Y = X \ {{X} ∪ U ∪ V}. (1.1)

When V = X \ {X} then this means that X is more important than the remaining
variables in X . We define:

• U as the conditioning part or context variables;

• V the independent or free part;
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• X the swapped variable.

For the sake of simplicity, when V is empty and a CP statement is always true, we
simply write ω � ω′ instead of >|{∅} : ω � ω′. A subset Φ of such statements over X
forms a CP language.

Given a set Φ of CP statements over variables in X , we can construct what is called
a dependency graph HΦ encoding dependency relations between variables, which actu-
ally coincides with the conditional preference network structure previously introduced
in Section 1.2. For each statement u|V : x � x̄, ∀U ∈ U , an arc U → X is drawn indi-
cating that the preference of X is conditioned by the value of U . Given a cp-theory,
HΦ can be computed in polynomial time [Wilson, 2011]. Adding arcs X → V to HΦ

for all V ∈ V comes down to construct a more general network which indicates not
only the dependency relation between variables but also their relative importance.

Definition 1.15 (Dependency graph) Given a set Φ of CP statements over at-
tributes in X , a dependency graph HΦ is composed of a graphical structure consisting
of a DAG G = (X , E) where the set E holds d-arcs expressing preference dependency
between variables s.t. for each statement u|V : x � x̄, ∀U ∈ U an arc U → X is drawn
indicating that the preference of X depends on the value of U .

L E

R

Figure 1.12: Example of a dependency graph H if only arcs in straight lines are
considered, dotted lines reflect importance relation between variables

Example 1.20 Let us re-consider the car renting example by restricting the set X
to three variable namely: the car category (L), its propulsion system (E) and the
ownership (R). All else being equal, an electric (e) vehicle is always preferred to
thermal one (ē). Irrespective of the propulsion system (E) and the car ownership (R),
a luxury vehicle (l) is preferred to a modest one (l̄). Finally, if the car is modest
(l̄) and is equipped with a thermal engine (ē), purchasing the car (r̄) is preferred to
renting it (r). These three claims can respectively be transformed into the following
CP statements φ1 = e � ē, φ2 = >|{ER} : l � l̄ and φ3 = l̄ē|{∅} : r̄ � r. The latter
statements allow to construct the dependency graph in Figure 1.12 by depicting d-arcs
L → R and E → R. Statement φ2 stipulates that there is an importance relation
between decision variables s.t. L is more important than E and R.
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Any pair of configurations that differs by more than one flip are comparable if there
exists a CP worsening flipping sequence from one to another, which is a generalization
of flipping sequences for CP-nets.

Definition 1.16 (CP worsening flip) Let Φ be a set of CP statements and (ω, ω′)
be two configurations that differ by a single flip on X. There exists a CP worsening
flip from ω to ω′ with respect to Φ iff there exists a CP statement φ = u|V : x � x̄ in
Φ s.t. ω, ω′ |= u, ω[Y ] = ω′[Y ] and ω[X] = x, ω′[X] = x̄ with u ∈ U and Y ∈ Y s.t.
Y = X \ {X} ∪ U ∪ V.

A partial order between configurations is constructed by using the transitive closure
on preference constraints entailed from CP statements. A cp-theory Φ is consistent if
and only if there exists a strict acyclic total order on Ω that satisfies all CP statements
in Φ. The following example details ordering entitlements derived from a set of CP
statements.

Example 1.21 (Example 1.20 continued) From the CP statement φ3 = l̄ē|{∅} : r̄ � r,
we can deduce that given a luxury car (l) or an electric engine (e), renting the vehicle
(r) is preferred to buying (r̄) it, formally φ4 = l|{∅} : r � r̄ and φ5 = e|{∅} : r � r̄.
From each CP statement we derive an ordering over some configurations in Ω. Table
1.4 outlines constraints associated with each CP statement.

Let Φ be the cp-theory that contains all CP statements previously stated. There is
a worsening flip sequence from l̄er to l̄ēr̄ since φ5 entails l̄er �Φ l̄er̄ and φ1 entails
l̄er̄ �Φ l̄ēr̄, thus l̄er �Φ l̄ēr̄. Using the transitive closure, the induced partial order on
configurations in Ω is ler �Φ {ler̄, lēr} �Φ lēr̄ �Φ l̄er �Φ l̄er̄ �Φ l̄ēr̄ �Φ l̄ēr with ler̄
and lēr not being ordered.

In following sections, we are interested about which extent orderings induced by a
given CP-net, TCP-net or LP-tree can be represented by a cp-theory.

1.6.1 Expressing CP-nets by cp-theories

[Wilson, 2011] has proven that CP statements can actually cover much more infor-
mation than the ceteris paribus or the “everything else being equal” assumption .
Mapping a CP-net C into a cp-theory ΦC can be done by transforming each statement
u : X � ¬X, where u ∈ UX , of each conditional preference table CPT (X) into the
CP statement u|{∅} : X � ¬X. The cp-theory ΦC corresponds to the union of CP
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ΦΦΦ CP statement Entailed preferences

φ1 e �Φ ē

ler �Φ lēr
ler̄ �Φ lēr̄

l̄er �Φ l̄ēr

l̄er̄ �Φ l̄ēr̄

φ2 >|{ER} : l �Φ l̄ {ler, ler̄, lēr, lēr̄} �Φ {l̄er, l̄er̄, l̄ēr, l̄ēr̄}
φ3 l̄ē|{∅} : r̄ �Φ r l̄ēr̄ �Φ l̄ēr

φ4 l|{∅} : r �Φ r̄
ler �Φ ler̄
lēr �Φ lēr̄

φ5 e|{∅} : r �Φ r̄
ler �Φ ler̄

l̄er �Φ l̄er̄

Table 1.4: Preferences derived from CP statements given a CP-net

statements associated to each variable X ∈ X . The transformation leads to the exact
same ordering induced by a CP-net9.

Example 1.22 Consider the CP-net depicted by Figure 1.1. To construct its associ-
ated cp-theory, each preference statement is transformed into a CP statement leading
to the cp-theory Φ = {φ1 = s̄ � s, φ2 = l � l̄, φ3 = s|{∅} : e � ē, φ4 = s̄|{∅} : ē �
e, φ5 = le|{∅} : r � r̄, φ6 = lē|{∅} : r � r̄, φ7 = l̄e|{∅} : r � r̄, φ8 = l̄ē|{∅} : r̄ � r}.
After inferring their entailed preference constraints, the partial order induced by the
cp-theory Φ on configurations of Ω is ω10 �Φ ω8 �Φ ω0 �Φ {ω2, ω11} �Φ ω15 �Φ

ω14 �Φ {ω9, ω12} �Φ {ω1, ω4, ω13} �Φ {ω3, ω5} �Φ ω7 �Φ ω6. We can check that
the ordering is in accordance with the induced graph in Figure 1.3 but adds a lot of
information.

1.6.2 Expressing TCP-nets by cp-theories

A CP-net has directed arcs describing dependence relations between decision variables,
which are called cp-arcs in TCP-net structures. TCP-net also encodes an additional
type of information which consists of an importance relation between variables. If the
relation is unconditional, then it can be depicted by i-arcs. Otherwise, it is represented
by ci-arcs associated with conditional tables that express the the importance relation
between variables given a context s of the selector set S values. Note that ci-arcs can
simply be formalized by ci-statements of the form X .s Y indicating that X is more
important than Y given s. In cp-theories, arcs of a TCP-net structure are transformed
into CP statements as follows:

9The induced ordering of the CP-net must be acyclic
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• a cp-arc U → X is transformed into cp-statements u|{∅} : x � x̄ such that
u ∈ U and x � x̄ with respect to CPT (X) for {x, x̄} ∈ X. Each cp-statement
entails a preference constraint of the form zux �Φ zux̄ where Z = X \U \ {X},
z ∈ Z.

• an i-arc X 99K Y is transformed into cp-statements u|{Y } : x � x̄ such that
u ∈ U and x � x̄ with respect to CPT (X) for {x, x̄} ∈ X. Each cp-statement
entails a preference constraint of the form zxy �Φ zx̄y

′ where Z = X \ {X, Y },
z ∈ Z and {y, y′} ∈ Y .

• a ci-statement X .s Y is transformed into cp-statements qs|{Y } : x � x̄ where
q ∈ Q such that Q = UX \S and x � x̄ with respect to CPT (X) for {x, x̄} ∈ X.
Each cp-statement entails a preference constraint of the form zsxy �Φ zsx̄y′

such that z ∈ Z and Z = X \ S \ {X, Y }.

Any TCP-net can be converted into a set of CP statements that infers the same
dominance relation between configurations in Ω [Wilson, 2011]. See the following
example for illustration.

Example 1.23 Table 1.5 show details of transforming arcs of TCP-net in Figure 1.9
into a cp-theory. Each arc is translated into a set of CP statements from which an
ordering over subsets of configurations is entailed.

Type Arc CP statement ZZZ Entailed preferences

cp-arcs

S → E
φ3 = s|{∅} : e � ē {L,R} {sler, sler̄, sl̄er, sl̄er̄} �Φ {slēr, slēr̄, sl̄ēr, sl̄ēr̄}
φ4 = s̄|{∅} : ē � e {L,R} {s̄lēr, s̄lēr̄, s̄l̄ēr, s̄l̄ēr̄} �Φ {s̄ler, s̄ler̄, s̄l̄er, s̄l̄er̄}

E → R

φ5 = le|{∅} : r � r̄ {S} {sler, s̄ler} �Φ {sler̄, s̄ler̄}
φ6 = lē|{∅} : r � r̄ {S} {slēr, s̄lēr} �Φ {slēr̄, s̄lēr̄}
φ7 = l̄e|{∅} : r � r̄ {S} {sl̄er, s̄l̄er} �Φ {sl̄er̄, s̄l̄er̄}
φ8 = l̄ē|{∅} : r̄ � r {S} {sl̄ēr̄, s̄l̄ēr̄} �Φ {sl̄ēr, s̄l̄ēr}

i-arcs L 99K E
φ9 = s|{L} : e � ē {S,R} {sler, sler̄} �Φ {sl̄ēr, sl̄ēr̄}

{sl̄er, sl̄er̄} �Φ {slēr, slēr̄}

φ10 = s̄|{L} : ē � e {S,R} {s̄lēr, s̄lēr̄} �Φ {s̄l̄er, s̄l̄er̄}
{s̄l̄ēr, s̄l̄ēr̄} �Φ {s̄ler, s̄ler̄}

R .e L
φ11 = el|{L} : r � r̄ {S} {sler, s̄ler} �Φ {sler̄, s̄ler̄}

ci-state- φ12 = el̄|{L} : r � r̄ {S} {sl̄er, s̄l̄er} �Φ {sl̄er̄, s̄l̄er̄}
ments

L .ē R φ13 = ē|{R} : l � l̄ {S} {slēr, s̄lēr} �Φ {sl̄ēr̄, s̄l̄ēr̄}
{slēr̄, s̄lēr̄} �Φ {sl̄ēr, s̄l̄ēr}

Table 1.5: Preferences derived from CP statements given a TCP-net in Figure 1.9
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1.6.3 Expressing lexicographic orders by cp-theories

Consider thatX dominates V and Z be a subset of variables such that Z = X\{X}∪V .
Let (ω, ω′) be a pair of configurations that agree on the value of Z with ω[X] �
ω′[X] then ω lexicographically dominates ω′. In fact, any lexicographic order �L over
decision variables X can be mapped into a cp-theory Φ such that its associated order
�Φ equals �L. Suppose that elements in X are ranked from the most to the least
important variable. Each attribute Xi = {xi, x′i} ∈ X s.t. xi � x′i can be associated to
a set ΦXi composed of formulas of the form >|[Xi+1, . . . , XN ] : xi � x′i. Let Φ be the
union of cp-theories associated to each variable, then it has been proven that orderings
�Φ and �L are the same [Wilson, 2011].

Indeed, a lexicographic order represents a stronger form of preference statement
than ceteris paribus (for which a value is preferred independently of the other vari-
ables). If the cp-theory language is able to represent a CP-net ordering, then obviously
it can encode lexicographic orders. To do so, an importance relation statement of the
form X . Y is converted into the CP statement u|{Y } : x � x̄ for {x, x̄} ∈ X and
u ∈ UX .

Let Φ be a cp-theory that encodes a ceteris paribus ordering, and (ω, ω′) be a pair
of configurations that differ by the value of X. Assume ω � ω′ with respect to Φ, then
there exists a worsening flip from ω to ω′. Which means that, without making use of
the transitive closure, two configurations are comparable if and only if they differ by a
single flip value. Let us now assume the preference importance relation A.B .C over
three variables A,B and C with respective preference statements a � ā, b � b̄ and
c � c̄. The configuration ab̄c̄ is comparable to ābc leading to the dominance relation
ab̄c̄ � ābc. In fact, we have directly compared two configurations that differ by more
than one flip without using the transitive closure over �L. This cannot be done using
the ceteris paribus assumption. This is why lexicographic orders cannot generally be
captured by a CP-net (TCP-net) which only yields partial order. However, there exists
some exceptions as shown by the following example.

Example 1.24 Assume we have two variables A, B with A . B and the preferences
a � ā, a : b � b̄, ā : b̄ � b. The CP-net ordering is ab �C ab̄ �C āb̄ �C āb. It can be
checked that it agrees with the importance statement A . B.
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1.7 Conclusion

In order to specify preferences over combinatorial alternatives, an expressive but con-
cise representation is needed. Existing preference formalism are often categorized
into logical models and graphical models. In this chapter, we have addressed two
of the major qualitative graphical preference models: conditional preference net-
works CP-nets [Boutilier et al., 1999] and Lexicographic Preference trees LP-trees
[Booth et al., 2010].

Beyond their graphical appeal, CP-nets have given rise to several research works.
One of their most important extensions are TCP-nets which which allow to explicitly
specify priority relations between nodes, contrarily to CP-nets which implicitly impose
that a parent’s preferences is more important than a child’s one. This extension may
add additional importance specifications between variables but cannot reverse the
priority in favor of parents entailed by CP-nets. CP-nets and their extension TCP-
nets permit indifference between values of a variables but may yield to insatisfiable
partial orders in this case. To overcome this barrier, explicit restrictions should be
taken into consideration.

Like TCP-nets, LP-trees allow to compactly encode (conditional) preferences and
importance relations between variables. Even though they are able to express the
same informational properties: independence and priority relation between variables,
TCP-nets and LP-trees were initially introduced for different purposes. LP-trees are
more fitted to learning preferences of a user, while CP-nets and their extensions are
motivated by a concern of preference representation and reasoning. Mind that, TCP-
nets and LP-trees permit indifference on importance relations.

The last part of this chapter was dedicated to study the consistency between
the qualitative graphical representations: CP-nets, TCP-nets and LP-trees using cp-
theories. Actually, the cp-theory language offers a bridge to compare the expressive-
ness of CP-nets, TCP-nets and LP-trees. Indeed, all three mentioned models can be
represented by a cp-theory that entails their respective exact same orders. However,
orderings induced from CP-nets or TCP-nets cannot generally be represented by an
LP-tree.

A summary inspired from [Gouider, 2017] detailing the main differences between
the models10 discussed in this chapter is given in Table 1.6.

Apart from their direct extensions, CP-nets have inspired many theoretical exten-

10The recapitulation is only valid for binary-valued decision variables and acyclic graphs.
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sions. Preferences can actually be encoded by means of the possibilistic framework
which gives rise to Possibilistic Preference Networks (π-pref nets) [Ben Amor et al., 2015]
introduced in next chapter. A set of research studies relative to relations between
π-pref nets, CP-nets and possibilistic logic [Dubois et al., 2013] [Dubois et al., 2015]
[Wilson et al., 2019] is also discussed.
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Chapter 2
Possibility Theory as a Representation
Setting for Preferences

2.1 Introduction

In the previous chapter, we have considered some of the most known qualitative graph-
ical models for representing preferences. In Chapter 3, we shall discuss another rep-
resentation setting called possibilistic preference networks (or π-pref nets for short).
π-pref nets are based on possibilistic nets, and thus belong to the framework of pos-
sibility theory. Possibility theory [Zadeh, 1978], [Dubois and Prade, 1988] has been
originally introduced for representing incomplete and uncertain information.

This chapter is devoted to possibility theory and its use for representing preferences
in different formats (possibility distribution, logical bases, possibilistic nets). The
chapter is divided in three main sections. After providing the necessary background on
possibility theory in Section 2.2, Section 2.3 explains two ways of encoding conditional
preferences using a possibilistic logic framework, while the next Section 2.4 defines
possibilistic networks and ways to translate them into logical bases.

Throughout all the chapter, we use the same running example introduced in Ex-
ample 1.4 in Chapter 1 (dealing with decision problem about renting or buying a
car).
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2.2 Background on possibility theory

A piece of information or knowledge is prone to be encoded and treated to infer other
sets of information. A piece of knowledge may describe observations, facts of the real
world, for example describing a patient’s clinical condition. Information is likely to be
pervaded by diverse types of deficiencies: if we consider that a piece of information
is described by means of several attributes, a lack of the instantiation of part of
these attributes leads to incomplete information. Besides, a piece of information is
considered uncertain if there exists doubts about its truth or falsity.

In this context, possibility theory is a framework devoted to the handling of un-
certain and incomplete information. It has first been formulated in [Zadeh, 1978] in the
late seventies, and has further been studied and extended by [Dubois and Prade, 1988]).
Besides of its ability to handle uncertain pieces of knowledge, possibility theory offers
a valuable setting for modeling preferences. As possibility theory, probability theory
is based on set-functions. Unlike the latter, possibility theory relies on the use of two
dual functions: possibility and necessity measures that will be detailed in the sequel.
The second distinction that differentiates the two theories is that possibility theory
offers a quantitative and qualitative mathematical setting for reasoning on information
while the probability theory remains quantitative.

We now detail the interpretation of a possibility distribution and set functions for
dealing with preferences.

Possibility theory is based on the use of possibility distributions. Given a set
of configurations Ω, a possibility distribution is a mapping π from Ω to a totally
ordered scale that takes values from 0 to 1. π(ω) indicates how preferred is the
configuration ω, i.e., to which extent it is satisfactory in regard to other configurations.
A preference degree equal to 1 stipulates that the outcome is completely satisfactory,
while in contrast a degree equal to 0 means that the alternative is totally rejected.
Thus, the greater π(ω) is, the more desirable is ω.

A possibility distribution π1 is said to be less specific than π2 (in the wide sense)
if ∀ω ∈ Ω, π1(ω) ≥ π2(ω). Then, the distribution π1 is considered as less restrictive
than possibility distribution π2, since according to π1 any ω is more possible than
according to π2. The interpretation of specificity principles applied to preferences are
reported in Chapter 4.

A possibility distribution π is said to be normalized if, ∃ ω ∈ Ω, such that π(ω) = 1.
This means that, considering the combinatorial domain of alternatives Ω, there is at
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least one alternative ω that is fully satisfactory.

Two increasing set functions are built from a possibility distribution: a possibility
measure Π and a necessity measure N which are formally defined by,

Π(P ) = maxω∈P π(ω) s.t. P ⊆ Ω (2.1)

N(P ) = minω 6∈P {1− π(ω)} s.t. P ⊆ Ω (2.2)

Consider the proposition P that consists of a subset of configurations. Π(P ) esti-
mates to what extent at least one configuration ω of the configuration P is satisfactory,
while N(P ) evaluates to what extent all configurations outside P are unsatisfactory;
thus, N(P ) can be viewed as the level of priority of P . The constraint N(P ) > N(P̄ )
expresses that the user is more eager to have P than P̄ . Necessity and possibility mea-
sures are associated with a duality relation, namely N(P ) = 1 − Π(P̄ ). The smaller
N(P ) is, the larger Π(P̄ ) is, and the more satisfactory P̄ is. Cases of total indifference
can be represented in the possibility theory, by a possibility distribution uniformly
equal to 1. The constraint N(P ) = N(P̄ ) = 0 means that P and P̄ have no priority at
all because there are satisfactory configurations both in P and P̄ . This implies that
both propositions are fully satisfactory.

When dealing with pieces of knowledge, a degree of possibility π(ω) expresses the
level of plausibility and estimates to what extent ω is consistent with the available
information. π(ω) = 1 means that ω is totally plausible, whereas π(ω) = 0 indicates
that ω is impossible. The measure Π(P ) evaluates to what extent P is consistent with
the available beliefs. The necessity measure evaluates to what extent P is entailed by
the available knowledge.

As a result of the normalization property, we can verify that max(Π(P ),Π(P̄ )) = 1
and respectively min(N(P ), N(P̄ )) = 0, which means that if P is satisfactory to some
extent then its complement P̄ is totally rejected.

Possibility and necessity measures satisfy the maxitivity and the minitivity prop-
erties:

Π(P ∪Q) = max(Π(P ),Π(Q)) s.t. P,Q ⊆ Ω (2.3)

N(P ∩Q) = min(N(P ), N(Q)) s.t. P,Q ⊆ Ω (2.4)
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Considering a possibility distribution π, two other sets of functions can be defined:
the guaranteed or strong possibility measure 4 and its dual the potential or weak
necessity measure 5 [Dubois and Prade, 2012], formally defined by:

4 (P ) = min
ω∈P

π(ω) s.t. P ⊆ Ω (2.5)

5 (P ) = max
ω 6∈P

(1− π(ω)) s.t. P ⊆ Ω (2.6)

If we stick to a preference framework, 4(P ) estimates to what extent all models of
P are satisfactory. In other words, it evaluates the degree for which the least preferred
model of P is satisfactory. The assertion 4(P ) = 1 implies that all models of P are
fully satisfactory. In relation to the necessity measure, the evaluation of 4(P ) covers
all models of P , while the possibility measure Π checks the existence of at least one
configuration that models P . Thus, 4 is considered to be more demanding than Π
due to the fact 4(P ) ≤ Π(P ).

The potential necessity5 can be derived from4 by duality, i.e.,5(P ) = 1−4(P̄ ).
The assertion 5(P ) estimates to what extent at least one configuration outside P has
a low satisfaction degree. This constitutes a prioritized constraint for satisfying the
claim ω |= P . 5(P ) = 1 if and only if there exits a configuration ω s.t. ω 6|= P that
is rejected.

Unlike Π and N , 4 and 5 are decreasing functions. They however can be
weakly related by the constraint 2.7 provided that π and 1− π are both normalized1

[Dubois and Prade, 2012].

max(N(P ),4(P )) ≤ min(Π(P ),5(P )) s.t. P ⊆ Ω (2.7)

Example 2.1 Consider a user preference to plan his vacations. Specifications relate
on values of 2 binary decision features: Activities denoted by A with instantiations
a = physical pastimes, ā = cultural activities, and Season denoted by B with instan-
tiations b = winter, b̄ = summer. The set of discourse is composed of 22 configura-
tions, each associated with a preference degree: π(ab) = 0.3, π(ab̄) = 0, π(āb) = 1,
π(āb̄) = 0.8. Going on vacation in winter to undertake cultural activities is fully satis-
factory (π(āb) = 1). However, traveling in summer for performing physical activities
is completely rejected (π(ab̄) = 0). Distribution π and 1 − π are normalized. Let P
define the proposition “Traveling in summer or looking for cultural events”. We aim to

1The claim 1− π being normalized is equivalent to say that π is anti-normalized meaning that ∃
ω ∈ Ω s.t. π(ω) = 0.
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calculate to which extent the proposition P is satisfactory. It corresponds to the max-
imum between preference degrees of configurations that model ā or b̄. By applying the
equation 2.1, it appears that Π(P ) = max(π(āb), π(ab̄), π(āb̄)) = max(0, 1, 0.8) = 1.
This means that P is fully satisfactory. We seek to evaluate to which extent P is im-
perative. This amounts to find the priority related to P . By applying the equation 2.2,
we find that N(P ) = 1 − π(ab) = 0.7. This degree can also be calculated by means of
the duality property of possibility measures, i.e., N(P ) = 1−Π(P̄ ) = 1− π(ab) = 0.7.
The guaranteed possibility degree of P equals 4(P ) = min(π(āb), π(ab̄), π(āb̄)) = 0.
This means that all models of P are not satisfactory. This verifies the inequality
4(P ) ≤ Π(P ). The potential necessity can be computed using the duality prop-
erty, i.e., 5(P ) = 1 − 4(P̄ ) = 1 − π(ab) = 0.7. The constraint 2.7, namely
max(N(P ),4(P )) ≤ min(Π(P ),5(P )) is satisfied, i.e., max(0.7, 0) ≤ min(1, 0.7).

2.3 Logical encoding of conditional preferences

Conditional preference statements can be equivalently expressed in different ways. One
way consists of graphically encoding statements using networks as shown in the first
chapter. The second way consists on representing statements using a set of constraints
that form a possibilistic base. An agent may associate a priority degree to each propo-
sition that indicates its will to attain it. The set of such constraints forms what is
called a prioritized base. An agent might also express his preferences by providing
levels of satisfaction associated to classes of configurations. The entailed constraints
constitute a base designated by a guaranteed possibility base. A unique possibility
distribution can be derived from each of these bases [Benferhat et al., 2002c].

Next two sections respectively discuss how to logically express preferences using
the necessity and guaranteed possibility measures. They also describe how to obtain
the possibility distribution underlying a possibilistic logic base encoding priorities, the
possibility distribution describing satisfaction levels for different configurations. The
last section details the translation of a prioritized base into a guaranteed possibility
base and conversely.

2.3.1 Logical representation of possibility measures

A priority base Σ is made up of a finite set of formulas of the form (pi, αi), where pi is
a propositional formula and αi is a priority degree in (0, 1] [Benferhat et al., 1999b].
A weighted formula (p, α) means that p has a priority α and its counter-models are

51



satisfactory at most at level 1−α. The weight α is thus understood as a lower bound
on the degree of priority N(p). Propositions that are associated with a null degree
of priority are not explicitly represented by the base. To formalize constraints about
preferences of an agent, the conjunction of pairs (pi, αi) forms the base Σ as follows,

Σ = {(pi, αi), i ∈ [1, n]} (2.8)

2.3.2 From prioritized base to distribution π

A prioritized base, syntactically constituted by a set of formulas (pi, αi), can seman-
tically be represented by a unique possibility distribution πΣ. If we consider that Σ is
composed of a single formula (p, α), then the preference degree associated with each
configuration ω is evaluated based on the consistency of ω with p. If ω is a model p,
then its preference degree should be equal to 1, i.e., π(ω) = 1. In contrast, if ω falsifies
p, which means that it satisfies ¬p, then it is associated to a preference degree such
that the higher α is, the lower is π(ω). Particularly, if p has the highest priority, i.e.,
(α = 1), then the configuration ω such that ω 6|= p, is rejected, i.e., π(ω) = 0.

∀ω ∈ Ω, π(p,α)(ω) =

1 if ω |= p

1− α if ω 6|= p
(2.9)

A prioritized base Σ can be seen as a well ordered partition composed of sets
S1∪S2∪· · ·∪SM where formulas in Si have more priority than those in Si+1. Partitions
Si for 1 ≤ i ≤ M can be attached to a prioritized base where each formula in Si is
associated with a degree αi, such that 1 ≥ α1 > · · · > αM > 0 [Benferhat et al., 2001a].

Generally, given Σ = {(pi, αi), i = 1, n}, configurations that are in accordance
with all propositions pi are considered fully satisfactory. Otherwise, configurations are
ranked with respect to the falsified proposition of the highest priority degree.

∀ω ∈ Ω, πΣ(ω) =

1 if ω |= pi,∀(pi, αi) ∈ Σ

1−max{αi : (pi, αi) ∈ Σ;ω |= p̄i} otherwise

(2.10)

Thus, the possibility distribution πΣ of Σ over a configuration ω ∈ Ω results from
the combination of all elementary possibility distributions π(pi,αi)(ω) using the min-
imum operator [Dubois et al., 1987]. Equation 2.10 can be written more concisely
as
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πΣ(ω) = min{π{(pi,αi)}(ω) : (pi, αi) ∈ Σ} (2.11)

π(ω) is the greatest possibility distribution that satisfy the set of constraints
N(pi) ≥ αi where N is based on π.

Example 2.2 Consider the prioritized base Σ = {(l, 0.1), (s̄, 0.4), (s̄ ∨ e, 0.7), (s ∨
ē, 0.6), (l̄ ∨ ē ∨ r, 0.9), (l̄ ∨ e ∨ r, 0.8), (l ∨ ē ∨ r, 0.5), (l ∨ e ∨ r̄, 0.3)}. The possibility
distribution associated with Σ is detailed in Table 2.1. To entail elementary possibility
distributions related to each formula in Σ we consider equation 2.10. For instance, let
us consider the formula (l̄∨ e∨ r, 0.8), its associated elementary distribution over Ω is
calculated such that configurations that model the proposition l̄ ∨ e ∨ r are considered
completely satisfactory and are attached to a preference degree equals to 1, while those
that falsify l̄ ∨ e ∨ r are reduced to a satisfaction degree equal to 1 − 0.8 = 0.2 (see
column 7 in Table 2.1). After computing possibility distributions of each formula in Σ,
the minimum degree proposed by the elementary distributions is assigned for each con-
figuration (see Equation 2.11) e.g. π(ω3 = slēr) = min(1, 0.6, 0.3, 1, 1, 0.2, 1, 1) = 0.2.
The last column in Table 2.1 contains the joint possibility distribution πΣ on Ω based
on Σ.

ΩΩΩ (l, .1)(l, .1)(l, .1) (s̄, .4)(s̄, .4)(s̄, .4) (e ∨ s̄,(e ∨ s̄,(e ∨ s̄, (ē ∨ s,(ē ∨ s,(ē ∨ s, (r ∨ l̄ ∨ ē(r ∨ l̄ ∨ ē(r ∨ l̄ ∨ ē (r ∨ l̄ ∨ e,(r ∨ l̄ ∨ e,(r ∨ l̄ ∨ e, (r ∨ l ∨ ē,(r ∨ l ∨ ē,(r ∨ l ∨ ē, (r̄ ∨ l ∨ e,(r̄ ∨ l ∨ e,(r̄ ∨ l ∨ e, πΣ(ω)πΣ(ω)πΣ(ω)
.7).7).7) .6).6).6) .9).9).9) .8).8).8) .5).5).5) .3).3).3)

ω0 = sler 1 .6 1 1 1 1 1 1 .6
ω1 = sler̄ 1 .6 1 1 .1 1 1 1 .1
ω2 = slēr 1 .6 .3 1 1 1 1 1 .3
ω3 = slēr̄ 1 .6 .3 1 1 .2 1 1 .2
ω4 = sl̄er .9 .6 1 1 1 1 1 1 .6
ω5 = sl̄er̄ .9 .6 1 1 1 1 .5 1 .5
ω6 = sl̄ēr .9 .6 .3 1 1 1 1 .7 .3
ω7 = sl̄ēr̄ .9 .6 .3 1 1 1 1 1 .3
ω8 = s̄ler 1 1 1 .4 1 1 1 1 .4
ω9 = s̄ler̄ 1 1 1 .4 .1 1 1 1 .1
ω10 = s̄lēr 1 1 1 1 1 1 1 1 1
ω11 = s̄lēr̄ 1 1 1 1 1 .2 1 1 .2
ω12 = s̄l̄er .9 1 1 .4 1 1 1 1 .4
ω13 = s̄l̄er̄ .9 1 1 .4 1 1 .5 1 .4
ω14 = s̄l̄ēr .9 1 1 1 1 1 1 .7 .7
ω15 = s̄l̄ēr̄ .9 1 1 1 1 1 1 1 .9

Table 2.1: Detailed computation of the possibility distribution πΣ given a prioritized
base Σ
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A possibilistic base is associated with a level of inconsistency.

Definition 2.1 (Consistency and inconsistency of Σ) The inconsistency degree
of Σ is defined semantically by the equation

Inc(Σ) = 1−max
ω∈Ω
{πΣ(ω)} (2.12)

and the consistency degree is obtained by complementarity

Cons(Σ) = 1− Inc(Σ) = max
ω∈Ω
{πΣ(ω)} (2.13)

Thus, in the normalized case, the consistency of Σ equals 1, i.e., Cons(Σ) = 1
when there exists at least one configuration that is fully satisfactory with π(ω) = 1.
Then, the inconsistency of the base is equal to 0, i.e., Inc(Σ) = 0. It can be shown
that a priority base Σ is consistent if the classical base made of the propositions of Σ
without their weights is consistent [Dubois et al., 1994]. When Inc(Σ) > 0 it means
that there are conflicting priorities in the possibilistic base.

Example 2.3 Consider the same prioritized base of Example 2.2. In this example
we only use the formula with weights > 0.5 for simplicity. Let Σ∗ this new base
Σ∗ = {(s∨ ē, 0.6), (s̄∨ e, 0.7), (l̄∨ e∨ r, 0.8), (l̄∨ ē∨ r, 0.9)}. The possibility distribution
πΣ∗ is constructed by considering columns 4 to 7 in Table 2.1. Preference degrees as-
sociated with configurations in Ω are constructed by combining elementary possibility
distributions of formulas in question using the minimum operator : π(ω0) = 1, π(ω1) =
0.1, π(ω2) = 0.3, π(ω3) = 0.2, π(ω4) = 1, π(ω5) = 1, π(ω6) = 0.3, π(ω7) = 0.3, π(ω8) =
0.4, π(ω9) = 0.1, π(ω10) = 1, π(ω11) = 0.2, π(ω12) = 0.4, π(ω13) = 0.4, π(ω14) =
1, π(ω15) = 1. The prioritized base Σ∗ is totally consistent since Cons(Σ∗) = maxω∈Ω

{πΣ∗(ω)} = 1, its inconsistency level thus equals 0.

2.3.3 Logical representation by guaranteed possibility mea-
sure

A guaranteed possibility base Γ is composed of a set of formulas of the form [pi, αi],
where pi is a proposition and αi a preference degree in [0, 1) that estimates the minimal
degree for which pi is satisfactory.

Γ = {[pi, αi], i = 1, n} (2.14)
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The formula [p, α] encodes the claim: “I am satisfied with any configuration ω

where p is true with a minimal degree equal to α”. This means that each collection
of configurations that make p true is associated with a guaranteed minimal preference
degree α, i.e., 4(p) ≥ α. Thus ω is called satisfaction base since it guarantees that
configurations in π are satisfactory at least to a degree αi. Formulas expressing that
an agent is not satisfied at all with a proposition, i.e., [pi, 0] are not mentioned in the
base.

2.3.4 From guaranteed possibility base to a distribution π

From each formula [p, α] ∈ Γ, a possibility distribution π[p,α] can be associated. It is
such that configurations ωi that model p are satisfactory with a minimal preference
degree equals to α, while those that falsify p are considered as not satisfactory, i.e.,
π(ωi) = 0.

∀ω ∈ Ω, π[p,α](ω) =

α if ω |= p

0 if ω 6|= p
(2.15)

Note that this is the smallest possibility distribution that agrees with the constraint
∆(p) ≥ α.

The resulting distribution δΓ is obtained as the disjunction of these elementary
distributions.

∀ω ∈ Ω, πΓ(ω) =

0 if ∀[pi, αi] ∈ Γ, ω 6|= pi

max{α : [pi, αi] ∈ Γ} if ω |= pi
(2.16)

The generalization of Equation 2.15 to the whole base Γ is defined by the smallest
distribution in agreement with constraints in ∆(pi) > αi associated with Γ2. A config-
uration ω is satisfactory to a degree α if the highest degree of the formula [p, α] such
that p models ω is equal to α. If ω falsifies all formulas of Γ, then ω presents no guaran-
tee at all to be satisfactory and is associated with a degree π = 0 [Dubois et al., 1996].
The previous equation can be written more concisely by

2Note that the aggregation of possibility distributions in Equation 2.16 is in agreement with
the modeling of satisfaction degrees by possibility distributions. Indeed, if all the models of p are
satisfactory and all the models of q are satisfactory then obviously, all models of p or q are satisfactory.
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δΓ(ω) = max{π{[pi,αi]}(ω) : [pi, αi] ∈ Γ} (2.17)

Example 2.4 details the procedure of inferring a guaranteed possibility base Γ from
a given possibility distribution.

Example 2.4 Let us consider the following guaranteed possibility base Γ = {[r ∨ l̄ ∨
ē, 0.2], [r∨l̄, 0.3], [e∧l̄, 0.4], [e∧r, 0.4], [s̄∧l̄, 0.4], [r∧s̄, 0.4], [e∧l̄∧s, 0.5], [e∧r∧s, 0.6], [ē∧
r∧ s̄, 0.6], [ē∧ l̄∧ s̄, 0.7], [ē∧r∧ s̄, 0.7], [s̄∧ l̄∧ ē∧ r̄, 0.9], [s̄∧ l∧ ē∧r, 1], [>, 0.1]}. Details
about the computation of the possibility distribution inferred given Γ is explained in
Table 2.2. For instance, the configuration ω2 = slēr only satisfies propositions of the
first, second and last formulas, namely ω2 |= r ∨ l̄ ∨ ē, ω2 |= r ∨ l̄ and ω2 |= >. Thus,
π[r∨l̄∨ē,0.2](ω2) = 0.2, π[r∨l̄(ω2),0.3] = 0.3 and π[>,0.1](ω2) = 0.1. The preference degree
associated with ω2 corresponds to the maximum between elementary degrees relative to
each formula. Therefore, δΓ(ω2) = max(π[r∨l̄∨ē,0.2](ω2), π[r∨l̄,0.3](ω2), π[>,0.1](ω2)) = 0.3.
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2.3.5 From prioritized base to satisfaction base and back

Possibility measures can compactly represent a set of preference specifications which
allows to construct a prioritized base Σ or a guaranteed possibility base Γ encoding the
same possibility distribution on the set of alternatives, i.e., πΣ = δΓ [Benferhat et al., 2002c].
In this section, we discuss the transformation of a base Σ into a base Γ, and conversely,
such that both of these bases encode the same input information.

Before getting deeper into the subject, let us notice that given a guaranteed pos-
sibility base Σ that contains the formulas [p, α] and [q, β], then [p, α] is considered as
subsumed by [q, β] as soon as α ≤ β and p |= q.

From prioritized base to satisfaction base

Given a prioritized base Σ, we aim to construct a guaranteed possibility base Γ that
both encode the same information, i.e., yield the same possibility distribution πΣ = δΓ.

First, let us consider a base Σ composed of a single formula : (p, α) (see Equation
2.9). Notice that all configurations have a minimal satisfaction degree equal to 1− α
which yields the formula [>, 1−α]. In order to ensure that configurations that satisfy
p be associated with a maximal degree of satisfaction, we must add the formula [p, 1]
to Γ. Thus, the satisfaction base corresponding to Σ = {(p, α)} is

Γ = {[p, 1], [>, 1− α]}.

Including another formula (q, β) in Σ such that α > β results in additional in-
terpretations that should be considered for Γ. The preference degree associated with
a configuration ω is obtained by considering the propositions that it satisfies. Three
cases exists:

πΣ(ω) =


1 if ω |= p ∧ q

1− α if ω |= p̄

1− β if ω |= p ∧ q̄

All configurations have a minimal preference degree equal to 1 − α, which leads
to include the formula [>, 1 − α] in Γ. Solutions that verify both propositions p
and q are associated with the maximal preference degree, which results in adding the
formula [p ∧ q, 1] in Γ. Configurations that satisfy neither p nor q are considered the
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least satisfactory and are associated with the minimal satisfaction degree 1− α. This
constraint is insured by the formula [>, 1−α]. Finally, configurations that satisfy p but
not q, p being more prioritary than q, are associated with an intermediate preference
degree equals to 1−β, resulting in including [p∧ q̄, 1−β] in Γ. Hence, the guaranteed
possibility base corresponding to Σ = {(p, α), (q, β)} is

Γ = {[p ∧ q, 1], [p ∧ q̄, 1− β], [>, 1− α]}

The generalization of the above equation is given in the following proposition,

Proposition 2.1 Let Σ = {(pi, αi) : i = 1, . . .M} be a prioritized base where each
formula (pi, αi) corresponds to a level i where 1 ≤ i ≤ M , αi > αi+1 and αM+1 = 0.
We define from Σ a guaranteed possibility base as follows

Γ = {[p1 ∧ · · · ∧ pi, 1− αi+1] : i = 1, . . . ,M} ∪ {[>, 1− α1]}. (2.18)

In following we give an example of entailing a possibility distribution from a priority
base.

Example 2.5 Let us reconsider the prioritized base in Example 2.2 namely Σ =
{(l, 0.1), (s̄, 0.4), (s̄∨e, 0.7), (s∨ ē, 0.6), (l̄∨ ē∨r, 0.9), (l̄∨e∨r, 0.8), (l∨ ē∨r, 0.5), (l∨e∨
r̄, 0.3)}. The first step is to arrange the base in a decreasing order of priority degrees
of its formulas. Thus, Σ = {(l̄∨ ē∨ r, 0.9), (l̄∨ e∨ r, 0.8), (s̄∨ e, 0.7), (s∨ ē, 0.6), (l∨ ē∨
r, 0.5), (s̄, 0.4), (l ∨ e ∨ r̄, 0.3)(l, 0.1), }. The second step consists on applying Equation
2.18. Details are in the sequel:

• [l̄ ∨ ē ∨ r, 1− 0.8]

• [(l̄ ∨ ē ∨ r) ∧ (l̄ ∨ e ∨ r), 1− 0.7] which yields [r ∨ l̄, 0.3]

• [(l̄ ∨ ē ∨ r) ∧ (l̄ ∨ e ∨ r) ∧ (e ∨ s̄), 1 − 0.6] which yields [e ∨ l̄, 0.4], [e ∨ r, 0.4],
[e ∨ r, 0.4], [l̄ ∨ s̄, 0.4], [r ∨ s̄, 0.4]

• [(l̄ ∨ ē ∨ r) ∧ (l̄ ∨ e ∨ r) ∧ (e ∨ s̄) ∧ (ē ∨ s), 1 − 0.5] which yields [ē ∨ r ∨ s̄, 0.5],
[e ∨ l̄ ∨ s, 0.5], [e ∨ r ∨ s, 0.5], [e ∨ r ∨ s, 0.5], [ē ∨ l̄ ∨ s̄, 0.5]

• [(l̄ ∨ ē ∨ r) ∧ (l̄ ∨ e ∨ r) ∧ (e ∨ s̄) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē), 1 − 0.4] which yields
[e ∨ r ∨ s, 0.6], [ē ∨ l̄ ∨ s̄, 0.6], [ē ∨ r ∨ s̄, 0.6]
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• [(l̄ ∨ ē ∨ r) ∧ (l̄ ∨ e ∨ r) ∧ (e ∨ s̄) ∧ (ē ∨ s) ∧ (r ∨ l ∨ ē) ∧ s̄), 1− 0.3] which yields
[ē ∨ l̄ ∨ s̄, 0.7], [ē ∨ r ∨ s̄, 0.7]

• [(l̄∨ ē∨ r)∧ (l̄∨ e∨ r)∧ (e∨ s̄)∧ (ē∨ s)∧ (r∨ l∨ ē)∧ s̄∧ r∨ l̄∨ ē), 1− 0.1] which
yields [ē ∧ r ∧ l ∧ r̄, 0.9], [ē ∧ r̄ ∧ l̄ ∧ r̄, 0.9]

• [(l̄ ∨ ē∨ r)∧ (l̄ ∨ e∨ r)∧ (e∨ s̄)∧ (ē∨ s)∧ (r ∨ l ∨ ē)∧ s̄∧ r ∨ l̄ ∨ ē), 1− 0] which
yields [ē ∧ r ∧ l ∧ r̄, 1]

• [>, 0.1].

After deleting all subsumed formulas, the guaranteed possibility base associated with Σ
is Γ = {[r∨l̄∨ē, 0.2], [r∨l̄, 0.3], [e∧l̄, 0.4], [e∧r, 0.4], [s̄∧l̄, 0.4], [r∧s̄, 0.4], [e∧l̄∧s, 0.5], [e∧
r∧s, 0.6], [ē∧r∧s̄, 0.6], [ē∧l̄∧s̄, 0.7], [ē∧r∧s̄, 0.7], [s̄∧l̄∧ē∧r̄, 0.9], [s̄∧l∧ē∧r, 1], [>, 0.1]}.
Both of these bases are equivalent since they infer the same possibility distribution (see
Tables 2.1 and 2.2).

From satisfaction base to prioritized base

The aim of this section is to construct prioritized base Σ from a guaranteed possibility
base Γ such that both bases induce the same possibility distribution, i.e., πΣ = δΓ.

We first start by considering a base Γ composed of a single formula [p, α]. Following
the Equation 2.15, the possibility distribution associated with Γ is

∀ω ∈ Ω, δΓ(ω) =

α if ω |= p

0 if ω 6|= p
(2.19)

Due to the first constraint, the collection of configurations that model p have a
maximum preference degree equal to α, leading the possibility distribution πΣ to be
lower bounded by 1 − α. Therefore, this distribution is inconsistent to a level 1 − α.
To unsure this property, the formula (⊥, 1 − α) needs to be added to the prioritized
base Σ. The distribution πΣ must hold an upper bound preference degree equal to 1
in order to guarantee that configurations that falsify p are prioritized to the highest
degree. This is ensured by the formula (p, 1). The prioritized base corresponding to
Γ = {[p, α]} is

Σ = {(p, 1), (⊥, 1− α)}

60



Including another formula [q, β] to Γ such that α > β results in additional inter-
pretations that should be considered for Σ. The preference degree associated with a
configuration ω is obtained by considering the propositions that it satisfies. In alike
manner as for the converse transformation, three cases can take place:

δΓ(ω) =


α if ω |= p ∧ q

β if ω |= p̄

0 if ω |= p ∧ q̄

In fact, all configurations verifying both p and q have a maximum priority equal
to 1 − α, which leads to include the formula (⊥, 1 − α) in Γ. Solutions that model
p but not q are are satisfactory to a degree β, which results in adding the formula
(p ∨ q̄, 1 − β) in Γ. Finally, configurations that do not satisfy neither p nor q are
considered totally rejected and are associated with a priority degree equal to 1. This
constraint is insured by the formula (p ∨ q, 1). Hence, the prioritized possibility base
corresponding to Γ = {[p, α], [q, β]} is

Σ = {[p ∨ q, 1], [p ∨ q̄, 1− β], [⊥, 1− α]} (2.20)

The following proposition [Benferhat et al., 2002c] generalizes the above equation.

Proposition 2.2 Let Γ = {[pi, αi] : i = 1, . . .M} be a guaranteed possibility base
where each formula [pi, αi] corresponds to a level i where 1 ≤ i ≤ M , αi > αi+1 and
αM+1 = 0. We define from Γ a prioritized base as follows

Σ = {[p1 ∨ · · · ∨ pi, 1− αi+1] : i = 1, . . . ,M} ∪ {[⊥, 1− α1]}.

An agent can express his preferences by means of priority constraints using the
N measure or by means of satisfaction constraints using the ∆ measure. Given a
base of priority constraints Σπ we can infer a distribution π on Ω from which can be
entailed a satisfaction base Γπ and vise versa. Bases Γπ and Σπ encode exactly the
same distribution on configurations.

2.3.6 Bipolar preferences

Preferences over a set of possible configurations can often be expressed in terms
of bipolar information. An agent may express his desires by associating degrees
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of satisfaction to solutions, but also by stating that it is rejecting some alterna-
tives. What is really satisfactory for the agent is thus positively assessed. This
type of preferences is called positive and is logically encoded by ∆ using constraints
Sat = {∆(pi) ≥ αi : i = 1, . . . ,m} where pi is a propositional formula and αi is its
corresponding level of satisfaction. Configurations that are not explicitly declared as
rejected are considered as tolerated. Solutions that are not totally rejected are some
what tolerated and can be represented by a set of prioritized constraints of the form
Tol = {N(qj) ≥ 1 − βj : j = 1, . . . ,m} where 1 − βj is a priority degree. Such state-
ments are called negative preferences [Benferhat et al., 2006]. Configurations which
are positively preferred are should be tolerated which means that the set of positive
preferences should be included into the set of negative ones (see below figure for illustra-
tion), and more generally the possibility distributions δ and π respectively associated
with the sets Sat and Tol should be such that ∀ω, δ(ω) ≤ π(ω).

2.4 Possibilistic networks and the relation to pos-
sibilistic bases

In the possibility theory, preferences can be represented by logic bases or by graphs
and both semantically induce the same possibility distribution on configurations.
A possibility distribution can be decomposed using either the product chain rule,
when using a numerical framework, or the minimum operation when preferences are
qualitative. These two decompositions correspond to the two types of condition-
ing recalled in the next Section 2.4.1; they induce two kinds of possibilistic graphs
[Benferhat et al., 2002a]. In the following, we describe the translation procedures be-
tween graphical and logical frameworks for both qualitative and quantitative networks.
But first we recall possibilistic networks in the perspective of modeling uncertain
knowledge. At the end of the chapter in Section 3.2, we shall present their trans-
posing in preference networks.
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2.4.1 Conditioning

Conditional possibility is defined similarly to probability theory using the Bayesian
rule. It actually depends on the preference configuration range, whether it is ordinal,
e.g., totally ordered chain, or numerical, e.g., a scale from 0 to 1. This leads to
two different forms of conditioning for qualitative and quantitative possibility. The
conditioning rule can be defined by the equation Π(P ∩Q) = Π(Q | P )�Π(P ) where
� is the minimum or the product operator [Dubois and Prade, 1990].

If we are dealing with qualitative information, min-based conditioning is used and
is defined as follows:

Π(P | Q) =

1, if Π(P ∩Q) = Π(P ) > 0.

Π(P ∩Q), otherwise.
(2.21)

In a quantitative numerical setting, the product-based conditioning, similar to the prob-
abilistic conditioning, is used and is defined by:

Π(P | Q) = Π(P ∩Q)
Π(Q) (2.22)

2.4.2 Possibilistic networks

Possibilistic networks [Benferhat et al., 2002a] are counterparts of probabilistic causal
networks. They are a noteworthy alternative to the latter when it comes to repre-
senting uncertain information. Possibilistic networks are based on the decomposition
of a joint possibility distribution as a combination of conditional possibility distri-
butions. Decision variables are depicted by nodes, each associated with a possibility
distribution that express the agent’s knowledge on the underlying variables. Local
distributions must be normalized, i.e., there must exist at least one instantiation of
underlying variable that is totally possible. Nodes are connected by means of edges
that reflect influence links between them. These networks permit to express ignorance
by associating the highest degree of possibility to all values of the variable in question.
It might be more convenient for an expert to express his knowledge about the world
by providing sure beliefs instead of possible ones. For this purpose, conditional local
distributions can be replaced by conditional necessities, i.e., Π(x|UX) = 1−N(x̄|UX),
due to the duality property between possibility and necessity measures.

Definition 2.2 (Possibilistic network) A possibilistic network over a set of vari-
ables X is characterized by two components
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(i) a graphical structure G = (X , E) consisting of a DAG expressing dependency
between decision variables;

(ii) a set CT of conditional tables where each node X ∈ X is attached to a condi-
tional table CT (X) that correspond to a local normalized conditional possibility
distribution π(X|UX).

As mentioned in Section 2.4.1, there exist two kinds of conditioning, which en-
gender two types of possibilistic graphs. The notation ΠGm refer to the qualitative
counterpart of possibilistic networks where the joint possibility distribution is calcu-
lated based on the minimum operator. A ΠG∗ corresponds to a quantitative possibilis-
tic network where the joint possibility distribution is based on the product operator.
The value 0 being the absorbing element of the product operator, we assume that
0 < π(X|UX) ≤ 1. Given a possibilistic network ΠG, there exists a unique joint pos-
sibility distribution π over configurations in Ω that is calculated using the following
chain rule:

π(X1, ..., XN) = �Ni=1Π(Xi|UXi) (2.23)

where � can take either the minimum or the product operator.

2.4.3 Encoding ΠG in possibilistic logic

The first step of translating a possibilistic network into a prioritized base is to consider
each local distribution as a set of 3-tuples composed of (x, u, α) that encode the piece
of knowledge π(x|u) = α with α < 1. A possibilistic network can thus be represented
by a set of triples,

ΠG = {(xi, ui, αi) : αi = Π(xi|ui)}

where xi ∈ Xi, ui ∈ UXi and ∀Xi ∈ X . Pieces of knowledge such that α = 1 are
totally possible are not included in this set.

Each tuple (x, u, α) is translated into the formula (x ∨ ū, 1 − α) that constitutes
the logical base ΣΠG. Given a single triple (x, u, α) ∈ ΠG, the joint distribution of a
complete solution ω is
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∀ω ∈ Ω, π(x,u,α)(ω) =

1 if ω |= x ∨ ū

α otherwise
(2.24)

In fact, formulas associated to each variable or node of the graph compose an
elementary base. The combination of these bases form the prioritized base associated
with the ΠG network.

ΣΠG = {(xi ∨ ūi, 1− αi) : Π(xi | ui) = αi ∈ ΠG,αi ≤ 1}

= {(xi ∨ ūi, 1− αi) : (xi, ui, αi) ∈ ΠG,α ≤ 1}
(2.25)

Logical encoding of ΠGm

Let ΠGm denote the qualitative specialisation of ΠG. The joint possibility distribution
π associated with ΠGm is obtained by combining possibility distributions πi of each
tuple (xi, ui, αi) by means of the minimum operator [Benferhat et al., 2002a]. Equiva-
lently, the result of fusing all elementary bases associated with each node of the graph
corresponds to the possibilistic distribution π associated with the network. Indeed, let
ΣX and ΣX′ be two prioritized bases associated with possibility distributions πX and
πX′ , respectively for {X,X ′} ∈ X . The base ΣXX′ resulting from combining ΣX and
ΣX′ is [Benferhat et al., 2000]

ΣXX′ = ΣX ∪ ΣX′

Given ΠGm, the above equation is generalized as follows,

ΣΠGm =
N⋃
i=1

ΣXi

= {(xi ∨ ūi, 1− α) : (xi, ui, α) ∈ ΠGm, α 6= 1} s.t. ui ∈ UXi and Xi ∈ X
(2.26)

We now provide an example about encoding the ΠG in Figure 2.1 by a prioritized
base.

Example 2.6 Let us consider the possibilistic network in Figure 2.1. The network
is written under the set of formulas ΠGm = {(a, ∅, 0.4), (b, ā, 0.9), (b̄, a, 0.6), (c, ā, 0.7),
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(c̄, a, 0.3), (d, b̄c̄, 0.6), (d̄, bc, 0.7), (d̄, bc̄, 0.8), (d̄, b̄c, 0.2)}. Using Equation 2.26, the pri-
oritized base associated with the ΠGm when using the minimum operator is ΣΠGm =
ΣA

⋃ ΣB
⋃ ΣC

⋃ ΣD = {(ā, 0.6), (ā ∨ b, 0.4), (a ∨ b̄, 0.1), (c ∨ ā, 0.7), (c̄ ∨ a, 0.3), (d ∨ b̄ ∨
c̄, 0.3), (d ∨ b̄ ∨ c, 0.2), (d ∨ b ∨ c̄, 0.8), (d̄ ∨ b ∨ c, 0.4)}.

A

B C

D

a 0.4
ā 1

π(B | A) a ā
b 1 0.9
b̄ 0.6 1

π(C | A) a ā
c 1 0.7
c̄ 0.3 1

π(D | BC) bc bc̄ b̄c b̄c̄
d 1 1 1 0.6
d̄ 0.7 0.8 0.2 1

Figure 2.1: Example of a ΠG

Logical encoding of ΠG∗

As for qualitative possibilistic networks, when considering a quantitative ΠG, we are
still able to construct a prioritized base that encodes the network. Following the same
steps as for min-based possibilistic network, the idea is to first consider each local
distribution and its entailed base. The joint possibility distribution computed from a
product-based network ΠG∗ corresponds to the fusion of all elementary bases using the
product operator. The joint possibility distribution π∗ of ΠG∗ is the same as the one
obtained by combining all πXi using the product [Benferhat et al., 2002a]. Let ΣΠG∗

define the prioritized base inferred from combining ΣX and ΣX′ using the product op-
erator. Then ΣΠG∗ is constructed using the following equation [Benferhat et al., 2000],

ΣΠG∗ = ΣX ∪ ΣX′ ∪ {(xi ∨ x′j, αi + βj − αi × βj), i ∈ I, j ∈ J, xi ∨ x′j 6= >} (2.27)

The possibilistic base inferred from a min-based ΠG is obviously smaller than a
base derived from a product-based ΠG. This is explained by the fact that the encoding
procedure of a ΠG∗ adds a set of formulas with intermediate levels to the prioritized
base ΣΠG∗ , formulas expressing knowledge not explicitly mentioned in the original
knowledge bases.
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The following Example 2.7 illustrates the procedure of transforming product-based
ΠG into a prioritized base ΣΠG∗ .

Example 2.7 Let us reconsider the graph in Figure 2.1 that corresponds to the set of
triples ΠG∗ = {(a, ∅, 0.4), (b, ā, 0.9), (b̄, a, 0.6), (c, ā, 0.7), (c̄, a, 0.3), (d, b̄c̄, 0.6), (d̄, bc, 0.7),
(d̄, bc̄, 0.8), (d̄, b̄c, 0.2)}. The network is associated with the elementary bases
ΣA = {(ā, 0.6)},
ΣB = {(ā ∨ b, 0.4), (a ∨ b̄, 0.1)},
ΣC = {(c ∨ ā, 0.7), (c̄ ∨ a, 0.3)},
ΣD = {(d ∨ b̄ ∨ c̄, 0.3), (d ∨ b̄ ∨ c, 0.2), (d ∨ b ∨ c̄, 0.8), (d̄ ∨ b ∨ c, 0.4)}.
Step by step, we proceed by subsequently fusing two bases at a time. Combining ΣA

and ΣB generates the following base:

ΣAB = ΣA ∪ ΣB ∪ {(ā ∨ b, 0.76)}

= {(ā, 0.6), (ā ∨ b, 0.4), (a ∨ b̄, 0.1), (ā ∨ b, 0.76)}

= {(ā, 0.6), (a ∨ b̄, 0.1), (ā ∨ b, 0.76)}

The formula (ā∨ b, 0.4) is removed since it is subsumed by (ā∨ b, 0.76). Combining
ΣAB and ΣC generates the following base:

Σ∗ABC = ΣAB ∪ ΣC ∪ {(ā ∨ c, 0.88), (a ∨ b̄ ∨ c̄, 0.37), (ā ∨ b ∨ c, 0.93)}

= {(ā, 0.6), (a ∨ b̄, 0.1), (ā ∨ b, 0.76), (c̄ ∨ a, 0.3), (ā ∨ c, 0.88), (a ∨ b̄ ∨ c̄, 0.37),

(ā ∨ b ∨ c, 0.93)}

Combining ΣABC and ΣD generates the prioritized base associated with the the ΠG∗

in Figure 2.1:

Σ∗ΠG∗ = ΣABC ,ΣD = ΣABC ∪ ΣD ∪ {(a ∨ b ∨ c ∨ d, 0.28), (a ∨ b̄ ∨ c̄ ∨ d, 0.56),

(ā ∨ b ∨ c ∨ d, 0.99), (ā ∨ b ∨ c ∨ d̄, 0.96), (ā ∨ b̄ ∨ c ∨ d, 0.9),

(ā ∨ b̄ ∨ c̄ ∨ d, 0.72)}

= {(ā, 0.6), (a ∨ b̄, 0.1), (ā ∨ b, 0.76), (c̄ ∨ a, 0.3), (ā ∨ c, 0.88),

(a ∨ b̄ ∨ c̄, 0.37), (ā ∨ b ∨ c, 0.93), (a ∨ b ∨ c ∨ d, 0.28),

(a ∨ b̄ ∨ c̄ ∨ d, 0.56), (ā ∨ b ∨ c ∨ d, 0.99), (ā ∨ b ∨ c ∨ d̄, 0.96),

(ā ∨ b̄ ∨ c ∨ d, 0.9), (ā ∨ b̄ ∨ c̄ ∨ d, 0.72)}
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We have seen that in the possibility theory setting, we have different formats for
representing information, namely a possibility distribution, a necessity-based logic
base, a ∆-based logic base, a possibilistic graph ΠG with min-based conditioning
and ΠG with product-based conditioning [Benferhat et al., 2001c]. We have described
how to go from possibility distribution to logic bases and vice-versa and how to go
from logic bases to possibility distribution in 2.3.2 and 2.3.4. We have also showed
how to go from a possibilistic graph to logic bases in 2.4.3: one can go from a
ΠGm [Benferhat et al., 1999a] to a possibilistic logic base (see 2.4.3), and from a ΠG∗

[Benferhat et al., 2001b] to a possibilistic logic base (see 2.4.3).

2.5 Conclusion

In possibility theory, information can logically be encoded in different formats: pri-
oritized logic base, satisfaction logic base, possibility distribution and possibilistic
networks. All of them describe the same information but some formats are more
appropriate for different ways of expressing preferences or may have computational
advantages [Benferhat et al., 2001c].

A remarkable feature of possibility theory is that it offers the advantage of encod-
ing the same information in different ways. Specifications of a user can be logically
encoded by possibilistic bases. The same set of statements could be compactly de-
picted by possibilistic networks in a graphical manner. Translating possibilistic bases
into networks and conversely can be performed while preserving the same ordering on
configurations. In the next chapter, we discuss π-pref nets which exploit possibilistic
graphs for preference representation.
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Chapter 3
Possibilistic Preference Networks:
Basis, Comparisons and Variants

3.1 Introduction

This chapter is dedicated to a recently introduced model situated half-way between
qualitative and quantitative representations called possibilistic preference network (π-
pref net for short). π-pref nets are based on possibilistic networks, as CP-nets are
inspired by Bayesian probabilistic nets. As we shall see, π-pref nets avoid the bias of
CP-nets that privilege preferences associated with father nodes (due to ceteris paribus
assumption). As CP-nets, a π-pref net structure enables us to express conditional
preference statements and offers a compact model for elicitation and representation.

This chapter is organized in three main sections. It both contains a background
part and also proposes new developments in Section 3.4. Next section gives background
about π-pref nets and describes the various ways to exploit them. Section 3.3 discusses
the expressiveness and consistency of possibilistic preference networks with regard to
CP-nets. Section 3.4 introduces new variants of π-pref nets using different scales for
encoding preference degrees, where the top and bottom elements 1 or 0 play or not a
role.

Throughout all the chapter, we continue with the same running example, dealing
with decision problem about renting or buying a car, which was introduced in Example
1.4 in Chapter 1 and already used in Chapter 2.
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3.2 π-pref nets

A possibilistic preference network [Ben Amor et al., 2015] (π-pref net for short) shares
the same graphical structure as a CP-net C (see Definition 1.7). They however differ
by their informational components. In fact, to each preference statement u : x � x′ we
associate a local conditional possibility distribution π(X | UX) using symbolic weights
expressing an ordering between the values in X. The symbolic weights are unspecified
degrees, assumed to be in the real interval (0, 1]1. In each context u, there must exist
a preferred instantiation of X associated with a degree equal to 1. A π-pref net can
be defined as a ΠG network where possibility degrees correspond to symbolic weights.

Definition 3.1 (Possibilistic preference network) A possibilistic preference net-
work Z = 〈G, CPT 〉, denoted by π-pref net, over a set of decision variables X is
composed of

(i) a graphical structure G = (X , E) consisting of a DAG expressing dependency
between decision variables,

(ii) a set CPT of conditional preference tables such that to each node X ∈ X is
attached a conditional table CPT (X) that associates preference degrees to each
value x ∈ X in the context of each possible value u of parents UX .

The network obeys to the Markovian assumption which stipulates that each vari-
able X is independent from other variables in the subset Y = {X \ UX \ {X}} in the
context of its parents (UX). Consider a variable X with X = {x, x̄}, the possibility de-
gree π(x | u) evaluates the satisfaction degree of the value x in context u. π(x | u) = 1
iff x is preferred, otherwise π(x | u) takes a symbolic degree α such that α < 1. The
symbolic weights appearing in different contexts have no reason to be equal: the vi-
olation of a preference may be a source of more dissatisfaction in one context than
in another. However, we generally use a unique symbolic weight per value and con-
text Apart from comparisons entailed from specifications in the network, constraints
between symbolic weights can be added when available [Ben Amor et al., 2018a].

Let us illustrate the notion of π-pref net in the following Example 3.1.

1We are excluding the case where the symbolic weight might be equal to 0, since we intend to
represent the kind of conditional preferences that are handled by CP-nets, where conditional rejection
is not considered. Indeed, in CP-nets we can not express that in a given context some variables
value(s) is/are not acceptable at all.
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S

EL

R

s α
s̄ 1

π(E | S) s s̄
e 1 γ2
ē γ1 1

l 1
l̄ β

π(R | LE) le lē le lē
r 1 1 1 σ4
r̄ σ1 σ2 σ3 1

Figure 3.1: Example of a symbolic π-pref net with different symbolic weights per
variable and context value

Example 3.1 Figure 3.1 depicts an example of a π-pref net without additional con-
straints between symbolic weights, about the car choice problem of Example 1.1. Pref-
erences specifications are encoded by the network by associating a preference degree
equals to 1 for the more satisfactory value in the context of parents,and a symbolic
degree otherwise. For example since the user prefers a luxury (l) car over a modest
one (l̄), therefore, π(l) = 1 and π(l̄) = β, where β is a positive number strictly less to
1.

3.2.1 Chain rule

In order to find a ranking over configurations in Ω, we need to calculate the degree of
satisfaction of each ωi ∈ Ω by means of a chain rule. If we consider their quantitative
counterpart, the product-based chain rule is used. It is formally expressed by:

π(X1, ..., XN) =
N∏
i=1

π(Xi|UXi) . (3.1)

From the other side, if we consider their qualitative counterpart, the minimum
operator is used and the chain rule is formally written as follows:

π(X1, ..., XN) =
N

min
i=1

π(Xi|UXi) (3.2)

When no additional constraints on symbolic weights are added, due to the drowning
effect of the minimum operator (values above the minimum values are ‘lost’), the
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product-based joint possibility distribution permits to order configurations in a more
discriminant and refined way than the minimum-based distribution.

We continue Example 3.1 by providing the symbolic weights computing the product-
based chain rule.

Example 3.2 Table 3.1 provides calculation details about π-pref net in Figure 3.1.
For each configuration ω, Columns 2 to 5 present conditional preference degrees asso-
ciated with each decision variable in the graph. The last column gives the satisfaction
degree of each configuration based on the product operator.

ΩΩΩ π(S)π(S)π(S) π(L)π(L)π(L) π(E|S)π(E|S)π(E|S) π(R|LE)π(R|LE)π(R|LE) ~ω~ω~ω π(ω)π(ω)π(ω)
ω0 = sler α 1 1 1 (α, 1, 1, 1) α
ω1 = sler̄ α 1 1 σ1 (α, 1, 1, σ1) ασ1
ω2 = slēr α 1 γ1 1 (α, 1, γ1, 1) αγ1
ω3 = slēr̄ α 1 γ1 σ2 (α, 1, γ1, σ2) αγ1σ2

ω4 = sl̄er α β 1 1 (α, β, 1, 1) αβ

ω5 = sl̄er̄ α β 1 σ3 (α, β, 1, σ3) αβσ3

ω6 = sl̄ēr α β γ1 σ4 (α, β, γ1, σ4) αβγ1σ4

ω7 = sl̄ēr̄ α β γ1 1 (α, β, γ1, 1) αβγ1
ω8 = s̄ler 1 1 γ2 1 (1, 1, γ2, 1) γ2
ω9 = s̄ler̄ 1 1 γ2 σ1 (1, 1, γ2, σ1) γ2σ1
ω10 = s̄lēr 1 1 1 1 (1, 1, 1, 1) 1
ω11 = s̄lēr̄ 1 1 1 σ2 (1, 1, 1, σ2) σ2

ω12 = s̄l̄er 1 β γ2 1 (1, β, γ2, 1) βγ2

ω13 = s̄l̄er̄ 1 β γ2 σ3 (1, β, γ2, σ3) βγ2σ3

ω14 = s̄l̄ēr 1 β 1 σ4 (1, β, 1, σ4) βσ4

ω15 = s̄l̄ēr̄ 1 β 1 1 (1, β, 1, 1) β

Table 3.1: Joint possibility distribution of configurations in Ω covered by π-pref net
in Figure 3.1

As can be seen in the above example, a product of symbolic weights is associated
with each configuration. This product induce only a partial order since, e.g., βγ2 >

βγ2σ3, but σ2 and βγ2 cannot be compared for instance. However, in case we have
complementary information about the relative values of satisfaction degrees under the
form of inequalities between symbolic weights, we can perform further comparisons,
e.g., ασ1 > αγ1 if we know that σ1 > γ1.

Besides, in case we use a unique satisfaction degree for the preferences associated
to a given node, i.e., in Table 3.1, γ1 = γ2, σ1 = σ2 = σ3 = σ4, we are able to
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compare more configurations and the partial order obtained is in agreement with
the cardinality order (see 1.2.2). However, the latter is a complete pre-order where
configurations having the same number of violations are ties, while such configurations
are incomparable in the π-pref net partial order.

In any case, each complete configuration ω ∈ Ω can be described by a quality vector
~ω = (ρ1, . . . , ρN), where each symbol ρj represents the satisfaction degree π(xj|uj),
such that xj ∈ Xj, uj ∈ UXj and j ∈ [1, N ]. The possibility degree π(ω) is just the
product of components in the vector.

The following Example 3.3 illustrates the case of a π-pref net with equal symbolic
weights per variable and parent context.

S

EL

R

s α
s̄ 1

π(E | S) s s̄
e 1 γ
ē γ 1

l 1
l̄ β

π(R | LE) le lē le lē
r 1 1 1 σ
r̄ σ σ σ 1

Figure 3.2: Example of a symbolic π-pref net with one symbolic weight per variable

Example 3.3 Let us consider the π-pref net in Figure 3.2 which encodes the same
preferences as the π-pref net in Figure 3.1. Nevertheless, the first network contains
different symbols per variable while the second contains equal symbols per variable.
Table 3.2 provides calculation details about the π-pref net in Figure 3.2. Each con-
figuration ω is associated with a vector of symbolic weights and a satisfaction degree
computed from Equation 3.1. When symbolic weights are equal in context of par-
ents value, the chain rule induces more comparisons between configurations. This is
due to the fact that there are less incomparable symbolic weights. For instance, ω5

and ω6 that were associated with the respective preference degrees αβσ3 and αβγ1σ4

were incomparable because σ3 and σ4 are incomparable. They are now associated with
degrees αβσ and αβγσ which makes them comparable such that ω5 �Prod ω6, since
π(ω5) = αβσ > π(ω6) = αβγσ. All comparisons of the π-pref net in Figure 3.2 are
given in Figure 3.3.
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ΩΩΩ π(S)π(S)π(S) π(L)π(L)π(L) π(E|S)π(E|S)π(E|S) π(R|LE)π(R|LE)π(R|LE) ~ω~ω~ω π(ω)π(ω)π(ω)
ω0 = sler α 1 1 1 (α, 1, 1, 1) α
ω1 = sler̄ α 1 1 σ (α, 1, 1, σ) ασ
ω2 = slēr α 1 γ 1 (α, 1, γ, 1) αγ
ω3 = slēr̄ α 1 γ σ (α, 1, γ, σ) αγσ

ω4 = sl̄er α β 1 1 (α, β, 1, 1) αβ

ω5 = sl̄er̄ α β 1 σ (α, β, 1, σ) αβσ

ω6 = sl̄ēr α β γ σ (α, β, γ, σ) αβγσ

ω7 = sl̄ēr̄ α β γ 1 (α, β, γ, 1) αβγ
ω8 = s̄ler 1 1 γ 1 (1, 1, γ, 1) γ
ω9 = s̄ler̄ 1 1 γ σ (1, 1, γ, σ) γσ
ω10 = s̄lēr 1 1 1 1 (1, 1, 1, 1) 1
ω11 = s̄lēr̄ 1 1 1 σ (1, 1, 1, σ) σ

ω12 = s̄l̄er 1 β γ 1 (1, β, γ, 1) βγ

ω13 = s̄l̄er̄ 1 β γ σ (1, β, γ, σ) βγσ

ω14 = s̄l̄ēr 1 β 1 σ (1, β, 1, σ) βσ

ω15 = s̄l̄ēr̄ 1 β 1 1 (1, β, 1, 1) β

Table 3.2: Joint possibility distribution of configurations in Ω covered by π-pref net
in Figure 3.2

3.2.2 Ordering quality vectors

Given a π-pref net, several procedures can be used for this comparing configurations,
such as: Product, Minimum, Pareto, symmetric Pareto, Discrimin and Leximin orders.
In the sequel, we give formal definitions of these orderings that may be used for the
dominance query.

Definition 3.2 (Product) ∀ω 6= ω′ ∈ Ω associated to distinct vectors ~ω = (ρ1, . . . , ρN)
and ~ω′ = (ρ′1, . . . , ρ′N), ω �Prod ω′ iff prod(~ω) ≥ prod(~ω′) such that prod(~ω) = ∏N

i=1 ρi.

Definition 3.3 (Minimum) ∀ω 6= ω′ ∈ Ω associated to distinct vectors ~ω = (ρ1, . . . , ρN)
and ~ω′ = (ρ′1, . . . , ρ′N), ω �min ω′ iff min(~ω) ≥ min(~ω) such that min(~ω) = minNi=1 ρi.

Definition 3.4 (Pareto) ∀ω 6= ω′ ∈ Ω associated to distinct vectors ~ω = (ρ1, . . . , ρN)
and ~ω′ = (ρ′1, . . . , ρ′N), ω �Pareto ω′ iff ∀i = 1, N, ρi ≥ ρ′i and for some `, ρ` = 1 > ρ′`.

Definition 3.5 (Symmetric Pareto) ∀ω 6= ω′ ∈ Ω associated to distinct vectors
~ω = (ρ1, . . . , ρN) and ~ω′ = (ρ′1, . . . , ρ′N), ω �SP ω′ iff there exists a permutation f of
symbolic weights positions of ~ω yielding another vector ~ωf = (ρf(1), . . . , ρf(N)) such
that ωf �Pareto ω′.
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s̄lēr̄
γ

ω8
¯sler
δ

ω1
sler̄
αγ

ω2
slēr
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αβδγ

Figure 3.3: Induced graph of π-pref net in Figure 3.2 based on the product chain rule

Definition 3.6 (Discrimin) ∀ω 6= ω′ ∈ Ω associated to distinct vectors ~ω = (ρ1, . . . , ρN)
and ~ω′ = (ρ′1, . . . , ρ′N), delete equal components in ~ω, ~ω′ such that ρi = ρ′i. Let d ∈ D
denotes a variable index for whom ω[Xd] 6= ω′[Xd] where D is the subset of the indices
remaining in configuration vectors. ω �discrimin ω′ iff mini∈D ρi > mini∈D ρ′i.

Definition 3.7 (Leximin) ∀ω 6= ω′ ∈ Ω associated to distinct vectors ~ω = (ρ1, . . . , ρN)
and ~ω′ = (ρ′1, . . . , ρ′N), ω �leximin ω′ iff there exists a permutation f of ~ω’s components
such that ωf �discrimin ω′.

The following example considers sets of pairs of configurations and compares them
using the mentioned orders.

Example 3.4 Consider two configurations ω0, ω1 in the set of feasible solution Ω
relative to network in Figure 3.1. ~ω0 = (α, 1, 1, 1) and ~ω1 = (α, 1, 1, γ1) represent the
respective vectors of weights of configurations ω0 and ω1. ω0 �prod ω1 since α > (α ×
γ1). If symbols are not instantiated, the minimum semantic can not rank order these
configurations since α is less or equal than min(α, γ1) (drowning effect). Considering
the Pareto order, ω0 �Pareto ω1 since for variables (S), (L) and (E) satisfaction degrees
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are equal, except for (R) for which ω0[R] = 1 > ω1[R] = γ1. Consider configurations
ω2 and ω15 with respective vectors ~ω2 = (α, 1, δ1, 1) and ~ω15 = (1, β, 1, 1). Deleting
equal preference degrees yields vectors ~ω2 = (α, 1, δ1) and ~ω15 = (1, β, 1). Suppose we
know that δ1 < β and δ1 < α. Based on the minimum procedure min(α, 1, δ1) = δ1

while min(1, β, 1) = β which makes ω15 �discrimin ω2. Configurations ω3 and ω7 are
encoded by vectors ~ω3 = (α, 1, δ1, γ2) and ~ω7 = (α, β, δ1, 0). Let ω7(f) = (α, 1, δ1, β) be
a permutation of weights in ~ω7 (f is a permutation function). ω7(f) �leximin ω3 since
ω7(f) �discrimin ω3 due to the fact that min(α, δ1, β) < min(α, δ1, γ2) if we know that
γ2 < β.

π-pref nets have a qualitative and quantitative counterpart. When symbolic weights
express qualitative preferences, the Minimum semantic corresponds to the min-based
chain rule mentioned in Equation 3.2. If preferences are described by numerical de-
grees, the Product order coincides with the product-chain rule defined in Equation
3.1. With no additional constraints on weights and if symbolic degrees are not in-
stantiated, order semantics lead to a sparsely discriminant ordering between solutions
since dominance relations between weights are unknown. We say that an ordering �
over elements in Ω refines �′ if and only if for all pairs of configurations (ωi, ωj) ∈ Ω if
ωi � ωj then ωi �′ ωj. If symbolic degrees take numerical values, [Dubois et al., 1996]
have presented proofs about refinements between orderings of strategies. Figure 3.4
from [Ben Amor et al., 2016b] sums up the deduced properties. An edge from a box
A to B (A→ B) means that A refines B.

When the satisfaction of preferences are assessed by symbolic degrees and no ad-
ditional constraints are specified on them, the Pareto strategy and the product order
lead to the same ordering [Ben Amor et al., 2015] [Ben Amor et al., 2016b] (see Fig-
ure 3.4(b)). This ordering corresponds to the order induced by comparing the sets of
violated variables using inclusion. Indeed, let V(ω) and V(ω′) be the set of variables
that are set to their least preferred values for configurations ω and ω′ configurations
respectively. If V(ω) ⊂ V(ω′), then ω strictly dominates ω′ based on both Pareto and
Product strategies. Without any constraint on the weights, all the order strategies
mentioned above lead to equivalent orders, except for the minimum case which is less
refined [Ben Amor et al., 2016b].

When additional constraints on symbolic degrees are provided, the product and
symmetric Pareto yield the same ordering. Refinements between orders are given in
Figure 3.4(c). When the symmetric Pareto ranks a pair of configurations as incompa-
rable, the minimum strategy may succeed in finding a strict dominance relationship
between them. This relation is represented by a dotted arrow in Figure 3.4(c).
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Figure 3.4: Refinements between ordering strategies (a) for instantiated numerical
degrees, (b) for symbolic degrees without additional constraints and (c) for symbolic
degrees and additional constraints on them

Not surprisingly, when symbolic degrees are instantiated with numerical values, the
order product induces the most discriminant order, while the minimum represents the
weakest order. Figure 3.4(a) summarises refinements between order semantics. Proofs
are given in [Ben Amor et al., 2016b].

Consider a π-pref net model and a pair of different configuration (ω, ω′). Given a
possibilistic setting, if ω �Prod ω′ then ω �Pareto ω′ [Ben Amor et al., 2017a]. Without
additional constraints, the minimum is a poorly discriminant order strategy that yields
an ordered set composed of only two levels with the optimal configuration being clas-
sified as better than all other ones in Ω [Ben Amor et al., 2016b]. Consider orderings
�Prod and �Pareto entailed from a π-pref net. A configuration dominates another with
respect to a π-pref net if its preference degree is higher than the one associated with
the other configuration. Formally, ω �Prod ω′ iff π(ω) �Prod π(ω′). This case happens
when one or more variable values are instantiated to a preference degree equal to 1
for ω, whereas the rest of variables are instantiated to the same symbolic degrees for
both configurations. Taking in consideration Pareto as an order strategy, ω �Pareto ω′

iff (i) there exists at least one symbolic weight ρ > ρ′ for ρ ∈ ~ω and ρ′ ∈ ~ω′ such
that π(Xi|UXi) = ρ and (ii) all other weights are better or equal. Since no additional
constraints are considered and due to the local normalization property, then it is clear
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that ρ = 1 and ρ′ < 1. This represents the unique case for which ω Pareto dominates
ω′. Thus we can conclude that if ω �Pareto ω′ then ω �Prod ω′ and vice-versa, formally

ω �Pareto ω′ ⇐⇒ ω �Prod ω′

Each configuration can be characterized in term of a set of its satisfied variables.
We use S(ω)2 to define the described set for a given configuration ω ∈ Ω. Since
quantitative π-pref nets reproduce the exact same ordering as Pareto, we are interested
in using sets S(ω) as a bridge to prove that these networks are not in dis-accordance
with the ceteris paribus assumption. In fact, S(ω) only depends on the set of satisfied
decision variables, then if ω �Prod ω′ according to the π-pref net S(ω′) ⊂ S(ω).
Formally

ω �Prod ω′ =⇒ S(ω′) ⊂ S(ω)

ω �Pareto ω′ =⇒ S(ω′) ⊂ S(ω)

This property is necessary but not sufficient since two configurations can be comparable
in term of the inclusion order between subsets S but incomparable based on Pareto
[Ben Amor et al., 2017a]. Without additional constraints on symbolic weights, two
given configurations that violate the preference of a node X given different contexts
are incomparable since symbolic degrees pertaining to X are different. Formally, if
ω[X] = ρ and ω′[X] = ρ′ for ρ, ρ′ ∈ (0, 1), then ω ./Pareto ω′.

Example 3.5 Consider configurations ω13 and ω15 with respective vectors ~ω13 = (1, β, δ2, γ3)
and ~ω15 = (1, β, 1, 1), ω15 �Pareto ω13 since all preference degrees in ω15 are higher
or equal to those of ω13. Based on the inclusion ordering between satisfied subsets,
S(ω13) = (S) ⊂ S(ω15) = (SER). The latter strategy does indeed recover the com-
parison engendered using Pareto semantic. However, configurations ω9 and ω11 with
respective vectors ~ω9 = (1, 1, δ1, γ2) and ~ω11 = (1, 1, δ2, 1), are incomparable based on
Pareto, since the inclusion order, unlike the Pareto order, does not take into account
variable’s positions but considers sets of satisfied variables as a whole. Based on in-
clusion, we have ω11 � ω9 since S(ω9) = (SL) ⊂ S(ω11) = (SLE).

2For a matter of representation, we use parentheses instead of braces and omit to separate variables
by commas to define the subset S.
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3.2.3 Querying π-pref nets

Most used queries for interrogating a preference model are dominance and optimization
queries. A product-based possibilistic network can express uncertain or incomplete in-
formation using numerical degrees. When numerical degrees over preferences can be
provided, we can use such network for representing preferences and process optimisa-
tion and dominance procedures. We now describe them for symbolic π-pref nets.

Optimization query

π-pref nets allow the user to express indifference by enabling him to assign the highest
satisfaction degree to both binary values of a decision variable. For that specific rea-
son, the optimization query may return more that one configuration all associated to a
possibility degree equal to 1. For this query, optimal configuration(s) are always found,
since local possibility distribution associated to features are normalized by imposing
to one of the variable values to be fully satisfactory. Thus, the joint possibility distri-
bution associated to configurations covered by the network is normalized whatever the
operator of the chain rule is. Graphically, finding optimal configuration(s) amounts to
sweeping through the graph nodes while assigning to each variable the value associated
with the highest preference degree in context of parents. This procedure is linear in
the size of decision variables [Ben Amor et al., 2018a].

Example 3.6 Considering joint possibility distribution in Table 3.1 and whatever the
chain rule operator is, there exists one optimal configuration ωOpt corresponding to a
degree of satisfaction equal to 1, namely ω10. Graphically, the optimal configuration
is easily detected by assigning their preferred values to decision variables as follows
S = s̄ since π(s̄) = 1, L = l since π(l) = 1, E = ē since π(ē|s̄) = 1 and R = r since
π(r|lē) = 1, thus ωOpt = ω10.

Dominance query

Finding a dominance relation between a pair of configurations in a π-pref net amounts
to comparing their relative vectors of weights or to compare product of symbolic
weights. The dominance query in π-pref nets is linear but answering all dominance
queries between all pairs of configurations to find an ordering over them has an expo-
nential complexity of O(N !) [Ben Amor et al., 2018a].
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3.3 π-pref nets vs CP-nets

The induced graph in Figure 3.5 shows that π-pref nets and CP-nets do not lead to the
same dominance relation over configurations of the possible states of the world. This
is due to the fact that they do not share the same independence property. Although
both graphical models are based on the same collection of user preference statements,
however, they semantically use different strategies for comparing pairs of solutions.
Indeed, the induced ordering generated from the ceteris paribus assumption is based
on single flips between configurations to which is applied a transitive closure to capture
all possible comparisons. On the other hand, π-pref nets use the product operator to
rank order solutions and the joint possibility distribution can be calculated for getting
the ordering between all configurations (quality vectors may eventually be used). In
the following, we discuss the consistency between these two models and we recall
inequalities between products of symbolic weights to be added in order to lead to a
good approximation of a CP-net by a π-pref net [Ben Amor et al., 2018a].

3.3.1 Consistency between π-pref nets and CP-nets

Considering a CP-net C, configurations are ranked based on a sequence of worsening
flips according to ceteris paribus assumption. Let (ω, ω′) be two configurations that
differ by a single flip value on variable X. If ω �C ω′, then S(ω) ⊂ S(ω′) is not
possible [Ben Amor et al., 2016b]. In fact, if ω �C ω′ then there exists a worsening
flips from ω to ω′ which means that ω holds an additional satisfied variable compared
to ω′ which is X. By consequence, S(ω) ⊂ S(ω′) is never true. This conclusion can be
further extended to all ceteris paribus dominance relations since when considering the
sequence of worsening flips, the status of each flipped variable will not be questioned
by the later flips.

As recalled in Chapter 1, CP-nets agree with the Pareto ordering [Wilson et al., 2019].
Thus, if we compare a CP-net and a π-pref net (without additional constraints), in-
duced by the same set of preference statements, then all the comparisons made by the
π-pref net will be acknowledged by the CP-net. This is illustrated by the following
example.

Example 3.7 Figure 3.5 graphically represents comparisons of the π-pref net in Fig-
ure 3.1 based on the inclusion / Pareto or product order. Two adjacent configurations
differ by only one flip and are described by the product of their respective weights. Each
configuration is associated to its preference degree and a subset of its non-violated vari-
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ables. Considering the induced CP-net graph in Figure 1.3, solid arrows in Figure 3.5
depict comparisons induced by both ceteris paribus and inclusion, Pareto and product
semantics. Arrows in dotted lines show comparisons that the CP-net gives but the
inclusion ordering does not. We can compare two different solutions by comparing
the product of their respective vectors e.g configuration ω0 associated with a preference
degree π(ω0) equals to α dominates configuration ω4 with π(ω4) = αβ since α > αβ,
or simply α ∈ {α, β} .

No contradictions are observed in Figure 3.5 between orderings induced from a π-
pref net and its corresponding CP-net. However, ω3 = slēr̄ �C ω7 = sl̄er since they
differ by the value of (L) s.t. ω3[L] = l, ω7[L] = l̄ and l � l̄. The corresponding π-pref
net fails to catch this relation. This can easily be checked by Pareto strategy where
considering vectors ~ω3 = (α, 1, δ1, γ2) and ~ω7 = (α, β, δ1, 1), we have ω3[L] � ω7[L]
while ω7[R] � ω3[R] which leads to an incomparability case. From the other hand,
ω0 �Pareto ω2 but these configurations are incomparable according to the ceteris paribus
assumption, which means that no flipping chain rule can be found between them.
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s̄lēr̄

(γ2)(SLE)

ω8
¯sler

(δ2)(SLR)

ω1
sler̄

(αγ1)(LE)

ω2
slēr
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Figure 3.5: Induced graph of π-pref net in Figure 3.1 based on the product chain rule

To conclude, if a CP-net ranks two configurations as one being preferred to the
other, e.g., ω �C ω′, then the corresponding product-based π-pref either entails an
incomparability case ω ./Prod ω

′ or supports the same dominance relation, but never
generates a preference reversal e.g. ω′ �Prod ω [Ben Amor et al., 2018a].

Next section details necessary constraints to recover all preference relations induced

81



by a CP-net.

3.3.2 Representing ceteris paribus dominance relations by π-
pref nets

CP-nets underly an implicit priority in favor of parent nodes over their children.
Thus, satisfaction degrees associated with parent nodes in the corresponding π-pref
net must be lower than those associated with their children (for instance, in Figure
3.1, γ2 � α must be verified). This property can be insured by the following constraint
[Ben Amor et al., 2018a]

∀i = 1, N max
ui∈UXi

αXi|ui <
∏

C∈Ch(Xi)
min
uC∈UC

ρC|uC (3.3)

where αXi|ui is the satisfaction degree of the bad value of Xi in the context of ui, ρC|uC
is similarly defined and Ch(X) denote the set of nodes that depend on X (graphically,
Ch(X) includes all children nodes of X).

Consider a CP-net C and the corresponding π-pref net. Let (ω, ω′) be a pair of
configurations that differ by the value of X ∈ X and such that ω is preferred to ω′

based on the ceteris paribus assumption, ω �C ω′. Let x+ and x− denote respectively
the good and the bad values of the variable X in the context of its parent value
uX ∈ UX . Let Y = X \ {X} ∪ Ch(X) ∪ UX be the set of remaining variables.
Configurations ω and ω′ can be written under the form of the conjunction of literals
such that ω |= x+ ∧ uX ∧ c∗ ∧ y∗ and ω′ |= x− ∧ uX ∧ c∗ ∧ y∗ such that y∗ ∈ Y ,
C∗ ∈ Ch(X) provided that Ch(X) 6= {∅}, c∗ ∈ C = {c, c̄}.

In order for the π-pref net to recover the relation ω �C ω′, the constraint π(ω) >
π(ω′) needs to be satisfied [Ben Amor et al., 2018a]. Note that the possibility degree of
Y is the same for both configurations and do not depend on the value of X or its child
nodes. Therefore, the constraint π(ω) > π(ω′) entails that π(x+|uX).∏C∈Ch(X) π(C |
uC).∏Y ∈Y π(y∗ | uY ) > π(x−|uX).∏C∈Ch(X) π(C | uC).∏Y ∈Y π(y∗ | uY ). Let π(x−|uX) =
ρ, this leads to the constraint

∏
C∈Ch(X)

π(C | uC) > ρ ·
∏

C∈Ch(X)
π(C | uC) with C = c or C = c̄ (3.4)

For each node of the π-pref net, the above constraints must be considered in or-
der to recover all dominance relations inferred by the corresponding CP-net C. In
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[Ben Amor et al., 2017a], Proposition (3) has established that the constraints (3.3)
are enough to ensure the satisfaction of conditions (3.4), which ensures that ω �C ω′.

The following example illustrates the fact that the addition of constraints (3.3)
enables us to enforce in the π-pref net all the dominance relations of a CP-net.

Example 3.8 Consider the induced graph in Figure 3.5. In order to cover all compar-
isons entailed by the ceteris paribus assumption (Figure 1.3), a number of inequalities
based on the constraint 3.4 must be added. The first step consist in defining nodes
that are not leafs which are {S, L,E}. Detailed computation allowing to infer ceteris
paribus constraints are detailed in Table 3.3. The set of relevant and most hard con-
straints are written in bold, namely δ2 > α, γ1 > β, γ2 > β, γ1 > β, γ1 > δ1, γ3 >

δ1, γ4 > δ2, γ2 > δ2γ1 and γ2 > δ2γ3. Therefore, we can check that all comparisons
represented by dashed arrows in Figure 3.5 are recovered.

Leaving complete freedom for a user to add constraints that express priorities be-
tween preference degrees of a π-pref net confirms the flexibility of this model compared
to CP-nets. Although CP-nets share the same graphical structure and level of simplic-
ity as π-pref nets, they do not have the same expressive power. In [Ben Amor et al., 2018a],
it has been proved that CP-nets and π-pref net induce consistent orderings over solu-
tions. Without additional constraints, π-pref nets can not capture CP-net’s dominance
relations induced from the priority granted to father nodes. However, by adding some
constraints to a π-pref net, we are able to recover all order relations induced by a
CP-net. Thus, by adding some constraints to a π-pref net, we are able to restore the
ceteris paribus priorities to capture CP-nets preference relations.

3.3.3 π-pref nets vs cp-theories

As mentioned in Chapter 1, a CP statement over a subset U ⊆ X is formalized
by φ = u|V : x � x′, where u ∈ U , x, x′ ∈ X and U ,V are disjoint subsets s.t.
U ⊆ X \ {X}, V ⊆ X \ U . They express the preference specification u : x � x′

independently from values of the subset of variables V . At first sight they seem to
encode the exact definition of the Markovian independence property used by π-pref
nets.

Indeed, the CP statement φ = u|V : x � x′ entails that any configuration that
models u ∧ x is preferred to any configuration that models u ∧ x′ whatever is the
value of V . In π-pref net, the statement φ is implicitly satisfied by the constraint
Π(u∧x) > Π(u∧x′) inferred from the constraint π(x|u) > π(x′|u) such that u : x � x′.
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Node Ch(node) Constraints

S {E} π(s̄).π(e|s̄) > π(s).π(e|s) δ2 > α
π(s̄).π(ē|s̄) > π(s).π(ē|s) 1 > αδ1

L {R}

π(l).π(r|le) > π(l̄).π(r|l̄e) 1 > β

π(l).π(r|le) > π(l̄).π(r|l̄ē) 1 > βγ4
π(l).π(r|lē) > π(l̄).π(r|l̄e) 1 > β

π(l).π(r|lē) > π(l̄).π(r|l̄ē) 1 > βγ4
π(l).π(r̄|le) > π(l̄).π(r̄|l̄e) γ1 > βγ3
π(l).π(r̄|le) > π(l̄).π(r̄|l̄ē) γ1 > β

π(l).π(r̄|lē) > π(l̄).π(r̄|l̄e) γ2 > βγ3
π(l).π(r̄|lē) > π(l̄).π(r̄|l̄ē) γ2 > β

E {R}

π(e|s).π(r|le) > π(ē|s).π(r|lē) 1 > δ1
π(e|s).π(r|le) > π(ē|s).π(r|l̄ē) 1 > δ1γ4
π(e|s).π(r|l̄e) > π(ē|s).π(r|lē) 1 > δ1
π(e|s).π(r|l̄e) > π(ē|s).π(r|l̄ē) 1 > δ1γ4
π(e|s).π(r|le) > π(ē|s).π(r|lē) γ1 > δ1γ2
π(e|s).π(r|le) > π(ē|s).π(r|l̄ē) γ1 > δ1
π(e|s).π(r|l̄e) > π(ē|s).π(r|lē) γ3 > δ1γ2
π(e|s).π(r|l̄e) > π(ē|s).π(r|l̄ē) γ3 > δ1
π(ē|s̄).π(r|lē) > π(e|s̄).π(r|le) 1 > δ2
π(ē|s̄).π(r|lē) > π(e|s̄).π(r|l̄e) 1 > δ2
π(ē|s̄).π(r|l̄ē) > π(e|s̄).π(r|le) γ4 > δ2
π(ē|s̄).π(r|l̄ē) > π(e|s̄).π(r|l̄e) γ4 > δ2
π(ē|s̄).π(r̄|lē) > π(e|s̄).π(r̄|le) γ2 > δ2γ1
π(ē|s̄).π(r̄|lē) > π(e|s̄).π(r̄|l̄e) γ2 > δ2γ3
π(ē|s̄).π(r̄|l̄ē) > π(e|s̄).π(r̄|le) 1 > δ2γ1
π(ē|s̄).π(r̄|l̄ē) > π(e|s̄).π(r̄|l̄e) 1 > δ2γ3

Table 3.3: Ceteris paribus constraints for π-pref net in Figure 3.1

It has been explained in section 3.3.2 that by adding some constraints to a π-
pref net, we are able to recover all order relations induced by a CP-net. Besides,
cp-theories can represent CP-nets [Wilson, 2011]. However, the representation power
of cp-theories and π-pref nets have not been compared until now; see however
[Ben Amor et al., 2018a] for a beginning of discussion.

In the remaining of this chapter, we explore other ways of encoding conditional
preferences, slightly beyond the standard possibilistic setting.

3.4 Other ways of encoding conditional preferences

We have seen that when dealing with Boolean variables of choice, the claim “Given c,
I prefer x to x̄” can be translated into an elementary possibility distribution such that
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π(x|c) > π(x̄|c) assuming the use of [0, 1] as a scale for satisfaction degrees (still we
were excluding the idea that the symbolic weight might be equal to 0). Moreover, the
conditional preference tables can be turned into a possibilistic logic base expressing
priorities between goals in terms of a necessity measure N associated with π as recalled
in Chapter 2.

Let us observe that in the π-pref nets approach we are dealing with satisfaction
constraints and violation constraints in a not similar way. Indeed, in the conditional
preference tables, all the possibility degrees corresponding to the satisfaction of the
preference are set to 1, while the violation situations receive a different symbolic weight
for each preference. This might be justified by the fact that the important thing in
the evaluation of the configuration is to take into account the preference violation.
However, in the following, we shall consider an approach where we rather assign the
same degree 0 in all violation cases and different symbolic degrees for the satisfaction
of each preference.

A particular phenomenon takes place in the π-pref net approach. Indeed, due to
the privileged role of 1, we always get a unique best configuration with satisfaction
degree equal to 1, which does not violate any preference. Even if there is also a
unique configuration that violates all preferences, the partial order induced in general
by the π-pref net leads to incomparability of this worst configuration with some other
configurations that violate less variables. Indeed, in Table 3.1, we can observe that ω6,
which violates all preferences, is incomparable for instance with ω13 and ω12. Moreover,
there are four configurations: ω3, ω6, ω9 and ω13 that are not comparable to each other
and that are not better than any other configurations.

This situation raises the question of the possibility of for instance reversing the
phenomenon by having a unique worst solution maybe at the price of several non-
comparable non-dominated configurations.

3.4.1 Use of the guaranteed possibility distributions

In order to privilege 0 in the encoding of preferences, we may imagine to turn the
possibility distribution π into another distribution 1 − π. As we shall see, this will
lead us to use the set function ∆ recalled in Chapter 2. Switching from the possibility
to the guaranteed possibility is done by simply reversing the possibility distribution:
if π is normalized to 1 then 1 − π is normalized to 0. In other words, on the one
hand we compute the complement to 1 of quality vectors (e.g., (1, β, γ) is changed into
(0, 1−β, 1− γ)), and on the other hand, we may wonder what becomes the chain rule
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in the transformation from π to δ = 1− π.

In order to define a joint distribution associated with a non-normalized π-pref net,
we transform the product chain rule in Equation 3.1 to obtain the following chain rule:

1− δ(X1, ..., XN) =
N∏
i=1

(1− δ(Xi|UXi)) (3.5)

Note that the distribution δ is anti-normalized, i.e., ∃ω such that δ(ω) = 0, but
may be not normalized.

In the following, we give an example of a variant of π-pref net handled in terms
of Equation 3.5. We study two cases: (i) when each preference attached to a context
has a particular symbolic weight for expressing the satisfaction degree when the pref-
erence is violated and, (ii) the case where we do not distinguish between the different
instantiations of parent variables and where there is only a unique symbolic weight
per node.

a � ā

a : b � b̄

ā : b̄ � b
b : c � c̄

b̄ : c̄ � c

bc : d � d̄

bc̄ : d̄ � d

b̄c : d̄ � d

b̄c̄ : d � d̄

A

B

C

D

a α
ā 0

a ā
b β 0
b̄ 0 β

b b̄
c σ 0
c̄ 0 σ

bc bc̄ b̄c b̄c̄
d γ 0 0 γ

d̄ 0 γ γ 0

(a)

A

B

C

D

a α
ā 0

a ā
b β1 0
b̄ 0 β2

b b̄
c σ1 0
c̄ 0 σ2

bc bc̄ b̄c b̄c̄
d γ1 0 0 γ4
d̄ 0 γ2 γ3 0

(b)

Figure 3.6: Examples of an anti-normalized π-pref nets

Example 3.9 Figure 3.6 depicts an anti-normalized π-pref net given (a) equal and
(b) different symbolic weights per variable and parents value. We consider the same
set of preference specifications as in Figure 4.1. The specification ā : b̄ � b is encoded
by δ(b̄|ā) > δ(b|ā) where δ(b̄|ā) = β1 ∈ (0, 1) and δ(b|ā) = 0. Table 3.4 gives results
of the product chain rule on guaranteed possibility degrees given by Equation 3.5. The
worst configuration is indeed associated with the lowest joint preference degree π(ω10) =
1 − δ(ω10) = 0 where δ(ω10) = (1 − δ(A)).(1 − δ(B|A).(1 − δ(C|B).(1 − δ(D|BC) =
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(1− 0).(1− 0).(1− 0).(1− 0) = 1. The induced distribution π on Ω is represented by
a Pareto graph in Figure 3.7.

ΩΩΩ ~ω~ω~ω 1− δ(ω)1− δ(ω)1− δ(ω) ~ω~ω~ω 1− δ(ω)1− δ(ω)1− δ(ω)
ω0 = abcd (α, β1, σ1, γ1) (1− α).(1− β1). (α, β, σ, γ) (1− α).(1− β).

(1− σ1).(1− γ1) (1− α).(1− β)
ω1 = abcd̄ (α, β1, σ1, 0) (1− α).(1− β1).(1− σ1) (α, β, σ, 0) (1− α).(1− β).(1− σ)
ω2 = abc̄d (α, β1, 0, 0) (1− α).(1− β1) (α, β, 0, 0) (1− α).(1− β)
ω3 = abc̄d̄ (α, β1, 0, γ2) (1− α).(1− β1).(1− γ2) (α, β, 0, γ) (1− α).(1− β).(1− γ)
ω4 = ab̄cd (α, 0, 0, 0) (1− α) (α, 0, 0, 0) (1− α)
ω5 = ab̄cd̄ (α, 0, 0, γ3) (1− α).(1− γ3) (α, 0, 0, γ) (1− α).(1− γ)
ω6 = ab̄c̄d (α, 0, σ2, γ4) (1− α).(1− σ2).(1− γ4) (α, 0, σ, γ) (1− α).(1− σ).(1− γ)
ω7 = ab̄c̄d̄ (α, 0, σ2, 0) (1− α).(1− σ2) (α, 0, σ, 0) (1− α).(1− σ)
ω8 = ābcd (0, 0, σ1, γ1) (1− σ1).(1− γ1) (0, 0, σ, γ) (1− σ).(1− γ)
ω9 = ābcd̄ (0, 0, σ1, 0) (1− σ1) (0, 0, σ, 0) (1− σ)
ω10 = ābc̄d (0, 0, 0, 0) 1 (0, 0, 0, 0) 1
ω11 = ābc̄d̄ (0, 0, 0, γ2) (1− γ2) (0, 0, 0, γ) (1− γ)
ω12 = āb̄cd (0, β2, 0, 0) (1− β2) (0, β, 0, 0) (1− β)
ω13 = āb̄cd̄ (0, β2, 0, γ3) (1− β2).(1− γ3) (0, β, 0, γ) (1− β).(1− γ)
ω14 = āb̄c̄d (0, β2, σ2, γ4) (1− β2).(1− σ1).(1− γ4) (0, β, σ, γ) (1− β).(1− σ).(1− γ)
ω15 = āb̄c̄d̄ (0, β2, σ2, 0) (1− β2).(1− σ1) (0, β, σ, 0) (1− β).(1− σ)

Table 3.4: Vectors and weights associated to configurations of the π-pref net in Figure
3.6. In the last two columns the symbolic weights associated to the violation of a
preference are the same in all contexts

As we can observe on Figure 3.5, in case we use different symbolic weights according
to the context, there is a unique worst configuration here ω6 = sl̄ēr, while there are
several non-comparable non-dominated configurations, namely ω3 = slēr̄, ω5 = sl̄er̄,
ω9 = s̄ler̄ and ω13 = sl̄ēr. As for regular π-pref nets, when there is a unique symbolic
weight per variable (see Table 3.2 and Figure 3.3), we have more comparisons between
configurations using the obtained partial order, in agreement with the number of
violated preferences (see discussion in Chapter 1 Section 1.2.2).

Obviously, we might have used a qualitative variant of Equation 3.5, where we use
min in place of product. However, for the same reason (drowning effect) as in a regular
π-pref net, product is to be preferred to the min.

3.4.2 Use of bi-valued possibility distributions

We have seen the interest of privileging either 1 or 0 in the comparison process. We may
wonder what would be obtained if we just consider 1 and 0 as satisfaction degrees, i.e.,
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ω0
abcd

1− (1− α).(1− β1).(1− σ1).(1− γ1)

ω1

abcd̄
1− (1− α).

(1− β1).(1− σ1)

ω2
abc̄d

1− (1− α).
(1− β1)

ω3

abc̄d̄
1− (1− α).

(1− β1).(1− γ2)

ω4

ab̄cd
1− (1− α)

ω5

ab̄cd̄
1− (1− α).

(1− γ3)

ω6

ab̄c̄d
1− (1− α).

(1− σ2).(1− γ4)

ω7

ab̄c̄d̄
1− (1− α).

(1− σ2)

ω8
ābcd

1− (1− σ1).
(1− γ1)

ω9

ābcd̄
1− (1− σ1)

ω10
ābc̄d

0

ω11

ābc̄d̄
1− (1− γ2)

ω12

āb̄cd
1− (1− β2)

ω13

āb̄cd̄
1− (1− β2).

(1− γ3)

ω14

āb̄c̄d
1− (1− β2).

(1− σ1).(1− γ4)

ω15

āb̄c̄d̄
1− (1− β2).

(1− σ1)

Figure 3.7: Pareto graph of π-pref nets in Figure 3.6

we assign to the preferred (or good) value of X the highest preference degree possible
and to its bad value the least possible preference degree. This means that given the
preference statement u : x � x̄ then π(x|u) = 1 and π(x̄|u) = 0.

In this case the components of quality vectors are made of 1 or 0. Then the Pareto
ordering yield a partial order such that there is a unique best configuration (where
all satisfaction degrees are equal to 1) and a unique worst configuration (where all
satisfaction degrees are equal to 0). This situation is illustrated in Example 3.10.

Example 3.10 Figure 3.8 shows a bi-normalized π-pref net constructed from the same
set of preference specifications as in Figure 4.1. The specification ā : b̄ � b is encoded
by π(b̄|ā) > π(b|ā) where π(b̄|ā) = 1 and π(b|ā) = 0. The second last column of
Table 3.5 gives results of the product chain rule based on Equation 3.1. There exists
a unique best configuration ω0 with π(ω0) = 1, while all the remaining configurations
are rejected with a preference degree equal to 0. All configurations, except of ω0, are
equivalent and are ranked worst than ω0. The same specifications can also be encoded
by satisfaction degrees where π is replaced by δ. Results of the product chain rule on
guaranteed possibility degrees based on Equation 3.5 are given in the last column of
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Table 3.5. All configurations, except of ω10, are considered equally preferred and are
ranked better than the worst configuration ω10. The Pareto graph of Figure the π-pref
net in Figure 3.8 is given in Figure 3.9.

A

B

C

D

a 1
ā 0

a ā
b 1 0
b̄ 0 1

b b̄
c 1 0
c̄ 0 1

bc bc̄ b̄c b̄c̄
d 1 0 0 1
d̄ 0 1 1 0

Figure 3.8: Bi-normalized (bi-valued) π-
pref net

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7ω8

ω9

ω13

ω14

ω12

ω10

ω11

ω15

Figure 3.9: Pareto graph of π-pref
net in Figure 3.8

Due to the drowning effects of degrees equal to 0 in the product chain rule of
Equation 3.1, and to degrees equal to 1 in the chain rule of Equation 3.5, the ordering
induced by this extension is poorly discriminant (composed of only two sets). How-
ever, since the Pareto strategy compares configurations based on comparisons between
values of single variables, it captures a lot more comparisons than the product chain
rule.

Let us finally remark that if we want to keep the benefits of both privileging 1 and
0 in the scale and having intermediary degrees in between, we have to handle quality
vectors where we can apply, in comparisons the inequalities 1 > α and β > 0 for any
symbolic weight α and β. This situation is discussed in the next section.
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ΩΩΩ ~ω~ω~ω π(ω)π(ω)π(ω) ∆(ω)∆(ω)∆(ω)
ω0 abcd (1, 1, 1, 1) 1 1
ω1 abcd̄ (1, 1, 1, 0) 0 1
ω2 abc̄d (1, 1, 0, 0) 0 1
ω3 abc̄d̄ (1, 1, 0, 1) 0 1
ω4 ab̄cd (1, 0, 0, 0) 0 1
ω5 ab̄cd̄ (1, 0, 0, 1) 0 1
ω6 ab̄c̄d (1, 0, 1, 1) 0 1
ω7 ab̄c̄d̄ (1, 0, 1, 0) 0 1
ω8 ābcd (0, 0, 1, 1) 0 1
ω9 ābcd̄ (0, 0, 1, 0) 0 1
ω10 ābc̄d (0, 0, 0, 0) 0 0
ω11 ābc̄d̄ (0, 0, 0, 1) 0 1
ω12 āb̄cd (0, 1, 0, 0) 0 1
ω13 āb̄cd̄ (0, 1, 0, 1) 0 1
ω14 āb̄c̄d (0, 1, 1, 1) 0 1
ω15 āb̄c̄d̄ (0, 1, 1, 0) 0 1

Table 3.5: Vectors and weights associated with configurations of π-pref net in Figure
3.8

3.4.3 Use of non-normalized distributions

In the variant presented in this subsection, we abandon the options of putting to 1
all the weights corresponding to satisfactory situations, or to 0 all the weights corre-
sponding to violated preferences.

In possibility theory, the totally ordered unipolar numerical scale [0, 1] is used
to encode preferences and information in general. A normalized π has at least an
element whose satisfaction degree is equal to 1 and not necessarily another element
with satisfaction degree equal to 0. A choice associated with the lowest degree expresses
that the choice is completely rejected, while the highest value is neutral and does not
ensure the complete satisfaction of the user about it. Similarly, an anti-normalized
guaranteed possibility distribution has at least an element whose satisfaction degree
is equal to 0, and has not necessarily an element with satisfaction degree equal to 1.

It is tempting to wonder what happens if we use a scale without 0 and without 1.
Then, we go out of the scope of possibility theory, we have no longer any chain rule
but we can still work with quality vectors. This is what we discuss now.

90



A simple way of encoding a conditional preference u : x � x̄ is to assign to the
good value of X a degree ψ strictly higher than the one assigned to its bad value,
namely ψ(x|u) = α+ and ψ(x̄|u) = α− such that ψ(x|u) > ψ(x̄|u). We grant the agent
the total freedom to instantiate these degrees with values in the open interval (0, 1).
Then for comparing quality vectors, we can only rely inequality of the type α+ > α−,
β+ > β−, · · · , for each symbolic weight introduced in the encoding of the various
preferences. In such a case, we have no longer, in general, a unique best configuration
or a unique worst configuration.

As in the two previous sections, we study both the cases where there is a unique
symbolic weight (with + or −) per node or if this weight depends on the context of the
preference. The following example shows the kind of comparisons that are preserved
with this approach: in case of different symbolic degrees per variable and parent value,
we have obviously less comparisons than with the corresponding standard π-pref net
or than with the reversed π-pref net in the sense of Section 3.4.1. Each configuration
can only be compared to one other configuration. However, when symbolic degrees are
unique per variable, we obtain a partial order that captures much more comparisons.
These comparisons are due to the deterioration of one or many variables’ values.

induced from π-pref nets in the sense of Sections 3.2 and 3.4.1.

A

B

C

D

a α+

ā α−

a ā
b β+ β−

b̄ β− β+

b b̄
c σ+ σ−

c̄ σ− σ+

bc bc̄ b̄c b̄c̄
d γ+ γ− γ− γ+

d̄ γ− γ+ γ+ γ−

(a)

A

B

C

D

a α+

ā α−

a ā
b β1

+ β2
−

b̄ β1
− β2

+

b b̄
c σ1

+ σ2
−

c̄ σ1
− σ2

+

bc bc̄ b̄c b̄c̄
d γ1

+ γ2
− γ3

− γ4
+

d̄ γ1
− γ2

+ γ3
+ γ4

−

(b)

Figure 3.10: Conditional preference network with non-normalized distribution on pref-
erences: (a) for equal symbolic degrees per variable (b) for different symbolic degrees
per variable and context

Example 3.11 Figure 3.10 shows a non-normalized preference network constructed
from the same set of preference specifications as in Figure 3.6. When there is a unique
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symbolic degree per variable, for instance, the specification ā : b̄ � b is encoded by
ψ(b̄|ā) > ψ(b|ā) where ψ(b̄|ā) = β+ and ψ(b|ā) = β−. The same specification is encoded
by ψ(b̄|ā) = β2

+ and ψ(b|ā) = β2
− when symbolic degrees are different per variable and

context. The specification a : b � b̄ is encoded by ψ(b|a) > ψ(b̄|a) where ψ(b|a) =
β1

+ and ψ(b̄|a) = β1
−. In the first case, i.e., equal symbols per variable, vectors

associated with each configuration are given in the second last column of Table 3.6.
In the other case, i.e., different symbols per variable and context, vectors associated
with each configuration are given in the last column of the same table. When degrees
are different, the induced Pareto graph in Figure 3.11 (b) (also depicted in Figure
3.11(a) by solid arrows) show that few pairs of configurations can be compared. All
comparisons induced in this case lay between configurations that differ by a single flip
value.

ΩΩΩ ~ω~ω~ω ~ω~ω~ω

ω0 abcd (α+, β+, σ+, γ+) (α+, β1
+, σ1

+, γ1
+)

ω1 abcd̄ (α+, β+, σ+, γ−) (α+, β1
+, σ1

+, γ1
−)

ω2 abc̄d (α+, β+, σ−, γ−) (α+, β1
+, σ1

−, γ2
−)

ω3 abc̄d̄ (α+, β+, σ−, γ+) (α+, β1
+, σ1

−, γ2
+)

ω4 ab̄cd (α+, β−, σ−, γ−) (α+, β1
−, σ2

−, γ3
−)

ω5 ab̄cd̄ (α+, β−, σ−, γ+) (α+, β1
−, σ2

−, γ3
+)

ω6 ab̄c̄d (α+, β−, σ+, γ+) (α+, β1
−, σ2

+, γ4
+)

ω7 ab̄c̄d̄ (α+, β−, σ+, γ−) (α+, β1
−, σ2

+, γ4
−)

ω8 ābcd (α−, β−, σ+, γ+) (α−, β2
−, σ1

+, γ1
+)

ω9 ābcd̄ (α−, β−, σ+, γ−) (α−, β2
−, σ1

+, γ1
−)

ω10 ābc̄d (α−, β−, σ−, γ−) (α−, β2
−, σ1

−, γ2
−)

ω11 ābc̄d̄ (α−, β−, σ−, γ+) (α−, β2
−, σ1

−, γ2
+)

ω12 āb̄cd (α−, β+, σ−, γ−) (α−, β2
+, σ2

−, γ3
−)

ω13 āb̄cd̄ (α−, β+, σ−, γ+) (α−, β2
+, σ2

−, γ3
+)

ω14 āb̄c̄d (α−, β+, σ+, γ+) (α−, β2
+, σ2

+, γ4
+)

ω15 āb̄c̄d̄ (α−, β+, σ+, γ−) (α−, β2
+, σ2

+, γ4
−)

Table 3.6: Vectors and weights associated with configurations of networks in Figure
3.10

In case of preference encoding using different symbolic degrees per variable and
context values, the only comparisons that are possible are those between configura-
tions that differ by a single flip of value. We have been thus interested in answering
the following question: What are the comparisons that the ceteris paribus property
induced but not the Pareto strategy considering an encoding of preferences with non-
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normalized distributions ? Since CP-nets induce an ordering that implicitly stipulates
that violating a parent node is more penalizing than violating child nodes, the answer
could be that the uncovered comparisons are those induced from this property. This
would confirm that such a structure is free from biased information. For instance,
let us consider a conditional preference structure simply described over two decision
variables. Next example treats this case.

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7ω8

ω9

ω13

ω14

ω12

ω10

ω11

ω15

(a)

ω0

ω1

ω3

ω2

ω5

ω4

ω6

ω7

ω8

ω9

ω11

ω10

ω13

ω12

ω14

ω15

(b)

Figure 3.11: Pareto graphs of networks in Figure 3.10: (a) solid arrows represent
comparisons given different symbolic degrees per variable and context, and dotted
arrows represent comparisons given unique symbols per variable; (b) only comparisons
induced given different symbolic degrees per variable and context

Example 3.12 Let us consider the conditional preference network in Figure 3.12. The
ceteris paribus property induces a total order described by the worsening flip sequence
in Figure 3.13. When preferences are encoded with non-normalized distributions with
different degrees per variable and context values, local tables associated with nodes
hold the following specifications ψ(a) = α+, ψ(ā) = α−, ψ(b|a) = β+

1 , ψ(b̄|a) = β−1 ,
ψ(b|ā) = β−2 , ψ(b̄|ā) = β+

2 . The only possible comparisons based on the Pareto property
are ab �Pareto ab̄ and āb̄ �Pareto āb (see solid arrows in Figure 3.14). When prefer-
ences are encoded with non-normalized distributions with equal degrees per variable
and parent values, local tables associated with nodes hold the following specifications
ψ(a) = α+, ψ(ā) = α−, ψ(b|a) = ψ(b̄|ā) = β+, ψ(b̄|a) = ψ(b|ā) = β−. The additional
Pareto comparisons are ab �Pareto āb̄ and ab̄ �Pareto āb (see dotted arrows in Figure
3.14). The only comparison that is not recovered with respect to the ceteris paribus
induced ordering is between configurations ab̄ and āb̄. The configurations are described
by respective quality vectors +− and −+ and the ceteris paribus assumption ranks the
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one associated with +− as preferred to the one associated with −+. It is a comparison
in favor of the priority given to the parent A over the son B.

A

B

a � ā

a : b � b̄

ā : b̄ � b

Figure 3.12: Example of a conditional
preference network

ab

ab̄

āb̄

āb

Figure 3.13: Worsening flip sequence of
the conditional preference network in Fig-
ure 3.12 using the ceteris paribus prop-
erty

ab

ab̄ āb̄

āb

Figure 3.14: Pareto graph of conditional preference network in Figure 3.12 for prefer-
ences encoding by non-normalized distributions. Solid arrow represent comparisons for
different symbols per variable and context values and dotted arrows reflect additional
comparisons for equal symbolic degrees per variable and context values
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3.5 Conclusion

π-pref nets offer a flexible setting for representing preferences. The use of symbolic
weights and possibly additional constraints between this symbolic weights enables us
to have an approach which is not more committed than permitted by the available
information.

When compared with CP-nets, it has been proved that π-pref nets can recover the
dominance relations induced by CP-nets orderings by means of additional constraints
between product of symbolic weights (which is a way to mimic the fact that father
nodes are more important than children nodes). As pointed out in [Wilson et al., 2019],
π-pref nets provide a valuable way of computing in a polynomial time a good upper ap-
proximation of any CP-net. We have not mentioned OCF-networks [Eichhorn et al., 2016]
which are indeed very close to π-pref nets. OCF-networks are based on Spohn’s or-
dinal conditional functions (also called ranking function [Spohn, 2012], [Spohn, 1988],
[Eichhorn et al., 2016]) can be transposed into the setting of possibility theory
[Dubois and Prade, 2016].

In the last part of this chapter, we have explored variants of the π-pref net approach,
showing the versatile nature of this type of approach based on possibility or possibility-
like distributions and comparisons on quality vectors. We have shown that the different
variants may in general yield different partial orders, which are induced by different
ways of cautiously representing the agent preferences. However, it is in practice quite
desirable to obtain complete pre-orders. This is the concern of the next chapter.

Besides, the ultimate purpose to compactly represent preferences by graphical
structures is to find an ordering on complete solutions given conditional preferences.
π-pref nets are positioned somewhat in between qualitative and quantitative models
[Ben Amor et al., 2016a] due to the symbolic treatment of weights. Numerical π-pref
nets may be of interest for learning purposes.
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Chapter 4
Conditional Preferences as Defaults:
Possibilistic Approaches

4.1 Introduction

Chapter 1 has reviewed the best known forms of modeling preferences, while Chap-
ters 2 and 3 have represented how to handle conditional preferences in the setting
of possibility theory. More precisely, specifications can be represented by graphical
networks or by possibilistic logic bases. When modeling preferences with π-pref nets,
the Pareto dominance (equivalent to the product chain rule order) is a natural basis
for comparing solutions: one is then preferred to another as soon as the latter violates
the same preferences as the first one and some others.

Until now, we have been using a chain rule or an order principle on quality vectors
allow us to rank order the set of possible choices. In this chapter, we propose another
handling of conditional preference statements inspired by the treatment of default
rules. In the setting of possibility theory setting, default rules are represented by
constraints to which one may apply two information principles: the minimum, and
maximum specificity [Dubois and Prade, 2015].

The application of the minimum specificity principle, applied to preferences, amounts
to saying that a configuration is considered satisfactory unless preference statements
say otherwise. In contrast, the maximum specificity principle amounts to saying that
a configuration is considered unsatisfactory unless preference statements say other-
wise. Applying such principles on preference specifications under default rules yields
a complete pre-orders on the set of possible alternatives.
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The aim of this chapter is to investigate and discuss the diverse orderings that can
be inferred from preference specifications handled as default rules.

This chapter is divided in six main sections. Section 4.2 gives the necessary back-
ground on the possibilistic approach to reason on default rules encoding knowledge.
The next section details the diverse ways of reasoning on preferences in such a setting,
then presents the default-like approach to preference handling, and compares orderings
induced by the default rules and the Pareto order. In Section 4.4, we show that the
complete pre-orders obtained have always three layers for particular structures, which
may be insufficiently discriminant. In section 4.5, we present a modified algorithm
that can remedy to excessive effects of minimum or maximum specificity principles
regarding configurations that are not constrained. In Section 4.6, we show that there
are preference statements that cannot be described neither by π-pref-nets nor by CP-
nets, but still can be handled by the “default-like” method. An experimental study,
reported in Section 4.7, is proposed to confirm propositions and conjectures mentioned
in this chapter.

Mind that in this chapter and in the next one, we no longer use the running example
of chapters 1 to 3, but a slightly more sophisticated example necessary to exhibit some
behaviours of interest.

The work reported in this chapter mainly rely on [Ben Amor et al., 2019] and to
some extent on [Ben Amor et al., 2021a].

4.2 Background on possibilistic approach to default
rules

A default rule [Pearl, 1990] of the form p q where p and q are Boolean propositions
and  is a non-classical arrow, modeling the rule “if p then generally q”. Such rule
divides the set of possible interpretations Ω into three parts: those that satisfy p but
falsify q (ω |= p∧ q̄), the models that verify both p and q (ω |= p∧ q or ω |= p̄∨ q), and
the interpretations for which the rule cannot be fired, i.e., those that falsify p (ω |= p̄).
Such a rule is actually very similar to so-called conditional objects denoted by q|p
[Dubois and Prade, 1991]. More interestingly here, it also looks like the conditional
preference p : q � q̄.

In this section, we recall the approach on default rules offered by the possibility
framework, in order to infer a ranking on the possible states of the world.
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Given a set of default rules R = {ri : pi  qi, i = 1, . . . , k} that represent a
knowledge about the world, Benferhat et. al. [Benferhat et al., 1992] gave a method
that rank orders the set of alternatives Ω such that the more the configuration satisfies
the rules in R, the higher is its possibility degree.

Given a default rules knowledge base R, CΠ denotes the set of constraints modeling
this rule. Namely a rule p q is understood in the possibilistic setting as a constraint
Π(p ∧ q) > Π(p ∧ q̄) which means that if p is true then q true is more possible than q
false. Let CΠ be the set of constraints induced by R:

CΠ = {ci : Π(pi ∧ qi) > Π(pi ∧ q̄i), ri : pi  qi ∈ R} (4.1)

When representing knowledge in the possibilistic setting, a minimum specificity
principle is applied which amounts to assessing the greatest possible possibility degree
agreeing with the constraints to each interpretation. This is a least commitment
principle since it does not restrict the interpretations that are possible to some extent
abusively (see Section 4.3.1 for more details).

Maximizing possibility degrees of interpretations according to the minimum speci-
ficity principle is achieved via the Algorithm 4.1 which outputs a well-ordered partition
composed of sets Ej of configurations [Benferhat et al., 1992].

Algorithm 4.1: Algorithm of partitioning of Ω using the mini-
mum specificity principle
Input: The set of solutions Ω

The set of possibilistic constraints CΠ
Output: A well-ordered partition E

1 j = 0
2 while Ω 6= ∅ do
3 Ej = {ωi, i = 0, · · · ,m} s.t. ωi does not belong to the set of configurations

on the right-hand side of any constraint (ωi is never dominated)
4 Ω = Ω \ Ej
5 Remove from CΠ all satisfied constraints (their left-hand side are consistent

with solutions of Ej)
6 j ← j + 1
7 end
8 return E

Given a set of constraints, the first step consists of finding interpretations that are
never dominated. They can be derived from computing the negation of the disjunction
of formulas that appear on the right side of constraints of CΠ. In accordance with the
minimum specificity principle, the resulting interpretations are then associated to the
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highest possibility degree (e.g. π(ωi) = 1) and are assigned to the first partition E0.
Constraints that are satisfied are then deleted from CΠ. The same process is repeated
until no constraints are left. In a final step, the remaining interpretations of Ω are
assigned to a final last level.

This procedure is illustrated by the following example.

Example 4.1 Let R be composed of the following default rules expressing some knowl-
edge about cancer diagnosis {c s, y  c̄, ȳ ∧ s̄ c̄, s y}. Rules are respectively
interpreted by the assertions:

c s: People diagnosed by cancer c are generally smokers s.
y  c̄: Young people y are generally not sick c̄.
ȳ ∧ s̄ c̄: Old persons ȳ that do not smoke s̄ are generally not sick c̄.
s y: Smokers s are generally young y.

We have three bi-valued description variables C for Cancer, S for Smoking and
Y for young. The universe of discourse is thus composed of 23 solutions, where Ω =
{ω0 = ysc, ω1 = ysc̄, ω2 = ys̄c, ω3 = ys̄c̄, ω4 = ȳsc, ω5 = ȳsc̄, ω6 = ȳs̄c, ω7 = ȳs̄c̄}.
Given R we can infer the set of constraints CΠ (resp. C∆ by replacing the measure Π
by ∆ in all constraints) as follows

Π(c ∧ s) > Π(c ∧ s̄)= max(π(ω0), π(ω4)) > max(π(ω2), π(ω6))
Π(y ∧ c̄) > Π(y ∧ c)= max(π(ω1), π(ω3)) > max(π(ω0), π(ω2))
Π(ȳ ∧ s̄ ∧ c̄) > Π(ȳ ∧ s̄ ∧ c)= π(ω7) > π(ω6)
Π(s ∧ y) > Π(s ∧ ȳ)= max(π(ω0), π(ω1)) > max(π(ω4), π(ω5))

The optimistic approach consist thus on applying algorithm 4.1. The first iteration
gives the first partition E0 = {ω1, ω3, ω7} that corresponds to solutions that model
c ∧ s̄ ∨ y ∧ c ∨ ȳ ∧ s̄ ∧ c ∨ s ∧ ȳ. All constraints except the first one are now satisfied,
since there exists at least one solution in E0 that figures on the left-hand side of them.
The second partition set is composed as follows E1 = {ω0, ω4, ω5}. It groups solutions
that are yet not ranked and that model c ∧ s̄. After satisfying and deleting the last
constraint, the third iteration outputs the set E2 = {ω2, ω6}. Furthermore, the partition
obtained by applying the most specific distribution i. e. adapting a positive reasoning
is E = {{ω1, ω3, ω7}, {ω0, ω4, ω5}, {ω2, ω6}}.

We now consider the application of the above approach to conditional preferences.
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4.3 Default rules for preferences

At a semantic level, a conditional preference statement p : q � q̄ means that configura-
tions that satisfy p∧ q are preferred to configurations that satisfy p∧ q̄. When dealing
with single conditional preference. Let ω, ω′ such that ω |= p ∧ q and ω′ |= p ∧ q̄, we
obtain the following preference relation

π(ω) > π(ω′) iff p : q � q̄ (4.2)

In the knowledge representation perspective of the previous section, the default
rules were represented in terms of constrains expressed by possibility measures: we
wrote that the maximum of the possibility degrees of models of p∧ q are greater than
the maximum of the possibility degrees of models of p∧q̄, meaning that there is at least
one model of p ∧ q that is more possible than any model of p ∧ q̄. This representation
has proved to be appropriate for default rules [Benferhat et al., 1997]. However, this
treatment in terms of possibility measures may be found to be too liberal for the
intended meaning of the preference p : q � q̄. Indeed, we may think of aggregating
the possibility degrees on each side of the inequality in different ways. Namely,

⊕ {π(ω) : ω |= pi ∧ qi} > ⊗{π(ω′) : ω′ |= pi ∧ q̄i} iff pi : qi � q̄i (4.3)

where ⊕ and ⊗ correspond to either the minimum or maximum operator. This can be
related to possibility set functions Π and ∆ and considering conditional preferences,
we thus can distinguish between four types of semantics that have been already consid-
ered in the literature [Dubois et al., 2004] [Kaci and van der Torre, 2008] [Kaci, 2012]
[Ben Amor et al., 2019]. We now recall these four types of reading conditional prefer-
ences.

Definition 4.1 (Possible meanings of conditional preferences) Let p : q � q̄

be a conditional preference statement. Considering a constraint of the form ⊕{π(ω) :
ω |= p ∧ q} > ⊗{π(ω′) : ω′ |= p ∧ q̄}, we have the four following options when the
aggregation operators are min or max:

• Optimistic : p : q � q̄ encodes the claim “In the context of p, I prefer the best
case in which q is true to the best case in which q̄ is true”. This is an optimistic
reading focusing on best cases, formally expressed by Π(p ∧ q) > Π(p ∧ q̄), i.e.,
⊕ and ⊗ are both replaced by the max operator.
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• Pessimistic: p : q � q̄ means that “In the context of p, I prefer the worst case
in which q is true to the worst case in which q̄ is true”. This is a pessimistic
reading focusing on worst cases, formally encoded by ∆(p ∧ q) > ∆(p ∧ q̄), i.e.,
⊕ and ⊗ are both replaced by the min operator.

• Opportunistic: p : q � q̄ can correspond to the specification “In the context of
p, I prefer the best configurations in which q is true to the worst configurations in
which q̄ is true”. This statement is formally expressed by the equation Π(p∧q) >
∆(p ∧ q̄), i.e., ⊕ = max and ⊗ = min.

• Cautious: p : q � q̄ can express a strong preference encoding the specification
and is interpreted by the claim “In the context of p, I prefer the worst config-
urations in which q is true to the best configurations in which q̄ is true”. This
statement is encoded by ∆(p ∧ q) > Π(p ∧ q̄), i.e., ⊕ = min and ⊗ = max.

Thus, the preferences of user may be understood in distinct ways, according to
whether he stresses on what is rejected or on what is satisfactory. In this chapter, we
only study the two first readings. Note that the optimistic and pessimistic readings
cannot be compared in terms of strength, while the cautious one and the opportunistic
one are respectively stronger and weaker than the optimistic and pessimistic readings.
The remaining readings are either too strong or too weak for being really of interest
in the modeling of conditional preferences. Indeed, the cautious reading by forcing all
the configurations where p ∧ q is true to be more satisfactory than any configuration
where p∧ q̄ is true does not leave any room for exceptions; this lack of flexibility sounds
undesirable for local specifications of preferences. Note that we have not such a defect
with the optimistic or pessimistic readings. The opportunistic reading, on the contrary
guarantees only that one configuration where p ∧ q is true is more satisfactory than
one configuration where p ∧ q̄ is true; this is really weak as an understanding of the
conditional preference. The reader is referred to [Kaci, 2012] for further discussions.

When dealing with the optimistic reading where we look for a possibility distri-
bution π satisfying the constraints Π(pi ∧ qi) > Π(pi ∧ q̄i), we naturally apply the
minimum specificity principle since we look for the less restrictive distribution. In the
pessimistic reading we have constraints of the form ∆(pi∧qi) > ∆(pi∧ q̄i), since the ∆
functions are decreasing, they are associated with an opposite principle, namely a max-
imum specificity principle1, which assesses the smallest possible degrees in agreement
with the constraints.

1This principle can be applied either when the ∆ function is used for representing knowledge
(in this case, it usually refers to reported facts and then only these facts are regarded as possible)
[Benferhat et al., 2008], or when for representing preferences [Dubois et al., 2005] [Kaci, 2012].
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The minimal specificity principle corresponds thus to an optimistic way of reasoning
by saying that if a configuration ω has not been explicitly rejected, it is considered
as completely satisfactory. Thus, if some configurations are not constrained they will
be associated to the highest possible preference degree, namely π(ωi) = 1. Thus, the
minimum specificity principle means for preferences that a configuration is considered
satisfactory unless preference statements say otherwise. In contrast, reasoning on
preferences under a pessimistic view comes down to consider that a configuration is
rejected (π(ω) = 0) unless the user specifies its preference level. This minimization
principle corresponds to the maximum specificity principle. This is to say that, in
the possibility theory, when dealing with conditional propositions, the most (resp.
least) specific distribution(s) exist and correspond to an optimistic (resp. pessimistic)
approach. However, specific distributions for the cautious and opportunistic semantics
do not exist.

4.3.1 Optimistic approach on default preferences

A default rule p  q is represented in possibility theory by a constraint stating that
having p∧q is more satisfactory than p∧ q̄ that can be encoded by Π(p∧q) > Π(p∧ q̄).
Thus, the default rule p  q expresses the conditional preference p : q � q̄ and
is understood as “In the context defined by p, the best situation that models q is
preferred to the best situation that models q̄”, or in other words “the best case in
which p ∧ q is true is preferred to the best case in which p ∧ q̄ is true”. A possibility
distribution on configurations of Ω can be deduced from such constraints, based on
some informational principle. Indeed, the set of conditional preference statements
expressed by an agent {pi : qi � q̄i | i = 1, . . . , k} is viewed a set of default rules
R = {ri : pi  qi | i = 1, . . . , k}. Using an optimistic view, i.e, the minimum
specificity principle, we construct the set of constraints CΠ derived from R by applying
(4.1). This set is implicitly associated with a set of possibility distributions compatible
with constraints in CΠ.

Any possibility distribution that is in agreement with constraints in CΠ represents
the conditional preference statements expressed by the agent, in agreement with the
way it was done by the conditional preference tables in π-pref nets. This directly
follows from the definition of the conditional possibility: Π(pi ∧ qi) > Π(pi ∧ q̄i) iff
π(qi | pi) = 1 > π(q̄i | pi) (where Π(pi ∧ qi) = Π(qi | pi) · Π(pi)) .

The following proposition establishes the agreement of the Pareto ordering with
the constraints in CΠ expressing the preference statements [Ben Amor et al., 2021a].
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Given a π-pref net, the associated possibility distribution obtained by the chain
rule and the corresponding Pareto ordering between configurations agree with the
constraints in CΠ expressing the preference statements of the π-pref net.

Proposition 4.1 Given a π-pref net, let π be the possibility distribution obtained by
the product chain rule and �π its associated preference relation between configurations
of Ω. Let �Pareto be the preference relation on configurations of Ω obtained using
the Pareto strategy. Let CΠ be the set of default constraints expressing the preference
statements pi : qi � q̄i of the π-pref net. Then, ∀ω, ω′ ∈ Ω such that ω �Pareto ω′ i.e.
ω �π ω′, there exists no constraint ci ∈ CΠ such that ci : Π(pi ∧ qi) > Π(pi ∧ q̄i) : ω |=
pi ∧ q̄i, ω′ |= pi ∧ qi.

Proof 4.1 Let ω and ω′ be two configurations associated with their satisfaction vectors
~ω and ~ω′. π(ω) > π(ω′) is known to be equivalent to ~ω �Pareto ~ω′ [Ben Amor et al., 2016b]
assuming one weight per preference statement. It means that for each vector compo-
nent (corresponding to a variable) either the two components are equal with the same
satisfaction degree, or the component of ~ω is 1 and the same component for ~ω′ is equal
to some symbolic weight, say ρ, assuming ~ω �Pareto ~ω′. Each inequality 1 > ρ, corre-
sponds to an inequality of the form π(xi | ui) = 1 > π(x̄i | u′i). If ui = u′i this refers to
a preference statement in a conditional table π(xi | ui) = 1 > π(x̄i | ui) equivalent as
already said to the constraint Π(ui ∧ xi) > Π(ui ∧ x̄i). If ui 6= u′i, this violates no pref-
erence statement. It means that the comparison of 1 with ρ refers to different contexts
and no preference statement is involved. Besides, the vector components where ~ω and
~ω′ are equal cannot correspond to a violation of a preference statement.

Thus the π-pref nets approach and the constraints of the “default rule” approach
are in full agreement. To induce a ranking over the set of possible alternatives Ω, we
apply exactly the same steps of Algorithm 4.1 which comes down to apply the minimal
specificity principle to the constraints CΠ. In this case, violations of the Pareto ordering
may appear as shown by the following Example 4.2. For easiness of representation,
we give another writing of constraints in CΠ such that each of its formula is translated
into a collection of subsets (LC(ci), RC(ci)) referring to the existing configurations of
the left respectively right-hand side of constraint ci (Π(pi ∧ qi) > Π(pi ∧ q̄i). Thus
CΠ = {(LC(ci), RC(ci)} where LC(ci) = {ω : ω |= pi ∧ qi, ri : pi  qi} and RC(ci) =
{ω : ω |= pi ∧ q̄i, ri : pi  qi}.
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a � ā

a : b � b̄

ā : b̄ � b
b : c � c̄

b̄ : c̄ � c

bc : d � d̄

bc̄ : d̄ � d

b̄c : d̄ � d

b̄c̄ : d � d̄

A

B

C

D

a 1
ā α

a ā
b 1 β

b̄ β 1
b b̄

c 1 σ
c̄ σ 1

bc bc̄ b̄c b̄c̄
d 1 γ γ 1
d̄ γ 1 1 γ

(a)

A

B

C

D

a 1
ā α

a ā
b 1 β2
b̄ β1 1

b b̄
c 1 σ2
c̄ σ1 1

bc bc̄ b̄c b̄c̄
d 1 γ2 γ3 1
d̄ γ1 1 1 γ4

(b)

Figure 4.1: Examples of normalized π-pref nets

Example 4.2 Figure 4.1 depicts a π-pref net with normalized local distributions: (a)
for equal symbolic degrees and (b) for different degrees in context of parents. The set
of the combinatorial space of configurations is Ω = {ω0 = abcd, ω1 = abcd̄, ω2 =
abc̄d, ω3 = abc̄d̄, ω4 = ab̄cd, ω5 = ab̄cd̄, ω6 = ab̄c̄d, ω7 = ab̄c̄d̄, ω8 = ābcd, ω9 =
ābcd̄, ω10 = ābc̄d, ω11 = ābc̄d̄, ω12 = āb̄cd, ω13 = āb̄cd̄, ω14 = āb̄c̄d, ω15 = āb̄c̄d̄}. The set
of preference statements represented by the left-most table of Figure 4.1 corresponds
to R={r0 : a, r1 : a  b, r2 : ā  b̄, r3 : b  c, r4 : b̄  c̄, r5 : bc  d, r6 : bc̄  d̄,
r7 : b̄c  d̄, r8 : b̄c̄  d}. Based on Equation 4.1, we infer the following respective
constraints:

c0 : max(π(ω0), . . . , π(ω7)) > max(π(ω8), . . . , π(ω15))
c1 : max(π(ω0), . . . , π(ω3)) > max(π(ω4), . . . , π(ω7))
c2 : max(π(ω12), . . . , π(ω15)) > max(π(ω8), . . . , π(ω11))
c3 : max(π(ω0), π(ω1), π(ω8), π(ω9)) > max(π(ω2), π(ω3), π(ω10), π(ω11))
c4 : max(π(ω6), π(ω7), π(ω14), π(ω15)) > max(π(ω4), π(ω5), π(ω12), π(ω13))
c5 : max(π(ω0), π(ω8)) > max(π(ω1), π(ω9))
c6 : max(π(ω3), π(ω11)) > max(π(ω2), π(ω10))
c7 : max(π(ω5), π(ω13)) > max(π(ω4), π(ω12))
c8 : max(π(ω6), π(ω14)) > max(π(ω7), π(ω15))

Constraints in CΠ of Example 4.2 are rewritten as tuples as follows:
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c0 : LC(c0) = {ω0, . . . , ω7}, RC(c0) = {ω8, . . . , ω15}
c1 : LC(c1) = {ω0, . . . , ω3}, RC(c1) = {ω4, . . . , ω7}
c2 : LC(c2) = {ω12, . . . , ω15}, RC(c2) = {ω8, . . . , ω11}
c3 : LC(c3) = {ω0, ω1, ω8, ω9}, RC(c3) = {ω2, ω3, ω10, ω11}
c4 : LC(c4) = {ω6, ω7, ω14, ω15}, RC(c4) = {ω4, ω5, ω12, ω13}
c5 : LC(c5) = {ω0, ω8}, RC(c5) = {ω1, ω9}
c6 : LC(c6) = {ω3, ω11}, RC(c6) = {ω2, ω10}
c7 : LC(c7) = {ω5, ω13}, RC(c7) = {ω4, ω12}
c8 : LC(c8) = {ω6, ω14}, RC(c8) = {ω7, ω15}

When applying the Algorithm 4.1, we can see that there exists a single configuration
that do not belong to any right-hand part of constraints in CΠ which composes to the
first partition set E1 = {ω0}. Constraints c0, c1, c3, c5 are thus satisfied since ω0 appears
on the right-hand part of them namely, RC(c0), RC(c1), RC(c3) and RC(c5). They are
thus removed from CΠ which is now composed of constraints:

c2 : LC(c2) = {ω12, . . . , ω15}, RC(c2) = {ω8, . . . , ω11}
c4 : LC(c4) = {ω6, ω7, ω14, ω15}, RC(c4) = {ω4, ω5, ω12, ω13}
c6 : LC(c6) = {ω3, ω11}, RC(c6) = {ω2, ω10}
c7 : LC(c7) = {ω5, ω13}, RC(c7) = {ω4, ω12}
c8 : LC(c8) = {ω6, ω14}, RC(c8) = {ω7, ω15}

The left solutions to be ranked are Ω \ {ω0}. In a second iteration, we get E1 =
{ω1, ω3, ω6, ω14}. The verified constraints to be deleted from CΠ are c2, c4, c6 and c8

leaving a unique formula to satisfy which is

c7 : LC(c7) = {ω5, ω13}, RC(c7) = {ω4, ω12}

The set Ω is updated and now composed of configurations Ω ∩ {ω1, ω3, ω6, ω14}.
Therefore, the set E2 is composed of all left elements in Ω except of ω4 and ω12

that compose RC(c7). We get E2 = {ω2, ω5, ω7, ω8, ω9, ω10, ω11, ω13, ω15}. The last
remaining constraint c7 is now satisfied and the last partition set is composed of
E3 = {ω4, ω12}.

Minimum specificity ordering Levels Cardinality ordering
{ω0} 1 {ω0}

{ω1, ω3, ω6, ω14} 2 {ω1, ω3, ω6, ω14}
{ω2, ω5, ω7, ω8, ω9, ω10, ω11, ω13, ω15} 3 {ω2, ω5, ω7, ω8, ω13, ω15}

{ω4, ω12} 4 {ω4, ω9, ω11, ω12}
5 {ω10}

Table 4.1: well-ordered partitions based on an optimistic approach and based on the
cardinality order
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The default rule ordering induced by performing the partitioning algorithm is sum-
marized by the left column of Table 4.1 . The cardinality ordering is presented in the
right column of the same table as an element of comparison. Indeed, the π-pref net or-
der is partial and cannot be put in parallel with a complete pre-order without changing
incomparability into indifference.

The Pareto graph obtained by comparing quality vectors made with the symbolic
weights of the π-pref net (as explained in Chapter 3) in Figure 4.1 is depicted in Figure
4.2. As in Chapter 3, we consider the case (a) where there is a unique symbolic weight
per node and (b) there is a distinct symbolic weight for each conditional preference in
each context. Going from the best ω0 = abcd to the worst configuration ω10 = ābc̄d,
solid arrows represent comparisons where symbolic weights per variable are different
given each context of parent, while dotted arrows depict additional comparisons where
symbolic weights per variable are the same. We can check that all constraints are in
agreement with comparisons induced by the Pareto order (and thus with the product
chain rule).

ω0

abcd
1

ω1

abcd̄
γ1

ω2

abc̄d
σ1γ2

ω3

abc̄d̄
σ1

ω4

ab̄cd
β1σ2γ3

ω5

ab̄cd̄
β1σ2

ω6

ab̄c̄d
β1

ω7

ab̄c̄d̄
β1γ4

ω8

ābcd
αβ2

ω9

ābcd̄
αβ2γ1

ω10

ābc̄d
αβ2σ1γ2

ω11

ābc̄d̄
αβ2σ1

ω12

āb̄cd
ασ2γ3

ω13

āb̄cd̄
ασ2

ω14

āb̄c̄d
α

ω15

āb̄c̄d̄
αγ4

Figure 4.2: Pareto graph of π-pref nets in Figure 4.1

Observe that in the graph of Figure 4.2, the length of the longest sequence of com-
parisons is 5. This means that assimilating incomparability with indifference we would
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lead to 5 layers in a resulting well-ordered partition2. However, the order obtained with
the default rules method has only 4 layers, which may suggest a lack of discrimination.

Lastly, taking a closer look to the obtained optimistic default rules order, we notice
that, not only the chain rule entails more preference levels than the optimistic ordering
when the minimal specificity principle is applied (which is unsurprising), but also that
the orderings are not in full agreement. For instance, we have ω10 � ω12 (and ω10 � ω4)
considering the default order while we have ω12 � ω10 (ω4 � ω10 if symbolic degrees
are equal) given the chain rule distribution (or the Pareto order).

As mentioned before, the product chain rule agrees with the ordering of inclusion
between subsets of nodes associated with violated preferences, and thus ranks alter-
natives according to the number of violated nodes, whereas, the specificity algorithm
just finds the most compact ordering where constraints are respected. Nevertheless,
the two approaches lead to distinct results that are not fully compatible, since it may
be the case that ∃ ω′ ∈ Ω such that for the chain rule approach ω′ � ω whereas for
the minimum specificity based approach ω � ω′.

We can see that in Example 4.2, the worst configuration ω10 = ābc̄d is ranked on
the lowest level by the product chain rule with no outgoing arrows (see Figure 4.2 and
right column of Table 4.1), whereas it appears in the third level based on the minimum
specificity approach being ranked as preferred to ω4 and ω12. This is due to the fact
that in the third iteration the unsatisfied constraint c7 do not prevent ω10 from being
higher than the remaining configurations ω4 and ω12.

In Section 4.5, we shall present an improved algorithm that avoids this kind of
phenomenon.

4.3.2 Pessimistic approach on default preferences

The minimum specificity Algorithm 4.1 outputs a well-ordered partition that clusters
the worst configuration(s) with other less preferred ones in the same set. This can be
explained by the focus on the best models of formulas. It does not provide information
on the least preferred models. In order to better understand results of the optimistic
preference interpretation approach, we also process preference statements using the
maximum specificity principle with constraints expressed in terms of guaranteed possi-
bility function ∆(.) (Equation 2.5). Let us recall that ∆(P ) = α expresses that all the

2In general, there are several ways to build such a partition
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models of P are satisfactory at least at a degree α. The focus is thus directed towards
the minimal degree of satisfaction over a set of choices.

In contrast, if we understand the default rule p  q as the conditional constraint
∆(p ∧ q) > ∆(p ∧ q̄) (pessimistic view). p ∧ q is evaluated by its worst configuration
[Benferhat et al., 2002b]. Such a view of a default rule can be similarly handled by
the opposite principle, i.e., maximum specificity principle3. Let C∆ denote the set of
constraints derived from the rules in R under a pessimistic semantics. Hence, C∆ is
formally composed of

C∆ = {ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i), ri : pi  qi ∈ R} (4.4)

The following proposition establishes the agreement of the Pareto ordering with
the constraints set C∆ expressing the preference statements.

Given a π-pref net, the associated possibility distribution obtained by the chain
rule and the corresponding Pareto ordering between configurations agree with the
constraints in C∆ expressing the preference statements of the π-pref net.

Proposition 4.2 Given a π-pref net, let π be the possibility distribution obtained by
the product chain rule and �π its associated preference relation between configurations
of Ω. Let �Pareto be the preference relation on configurations of Ω obtained using
the Pareto strategy. Let C∆ be the set of default constraints expressing the preference
statements pi : qi � q̄i of the π-pref net. Then, ∀ω, ω′ ∈ Ω such that ω �Pareto ω′ i.e.
ω �π ω′, there exists no constraint ci ∈ C∆ such that ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i) : ω |=
pi ∧ q̄i, ω′ |= pi ∧ qi.

Proof 4.2 Let ω and ω′ be two configurations associated with their satisfaction vectors
~ω and ~ω′. δ(ω) > δ(ω′) is equivalent to ~ω �Pareto ~ω′ since each vector holds weights
[Ben Amor et al., 2016b] assuming one weight per preference statement. It means that
for each vector component (corresponding to a variable) either the two vectors are equal
with the same satisfaction degree, or the component of ~ω′ is 0 and the same component
for ~ω is equal to some symbolic weight, say ρ, assuming ~ω′ �Pareto ~ω. Each inequality
ρ > 0, corresponds to an inequality of the form δ(xi | u′i) = ρ > (x̄i | ui) = 0. If
ui = u′i this refers to a preference statement in a conditional table δ(xi | ui) = ρ >

3Considering constraints C∆ associated to default rules in the knowledge Example 4.1, we would
obtain the following well-ordered partition set E = {{ω0, ω1, ω3, ω4, ω7}, {ω2, ω5, ω6}}, which has less
layers that the one obtained by the minimum specificity principle, which as already said is more
appropriate to default reasoning.
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δ(x̄i | ui) = 0 equivalent as already said to the constraint ∆(ui ∧ xi) > ∆(ui ∧ x̄i).
If ui 6= u′i, this violates no preference statement. It means that the comparison of ρ
with 0 refers to different contexts and no preference statement is involved. Besides,
the vector components where ~ω and ~ω′ are equal cannot correspond to a violation of a
preference statement.

In Algorithm 4.1, it is enough to adapt the instruction of line 3 so that Ej involves
solutions that do not appear on the left-hand side of constraints, i.e.,that are always
dominated. In the output partition, configurations are ranked from the worst to the
best ones, which means that ωi ∈ Ej are less preferred than ωi ∈ Ej+1. The first
set E0 corresponds to the worst solution. The procedure for entailing a well-ordered
partition from constraints in C∆ is summarized by Algorithm 4.2.

Algorithm 4.2: Algorithm of partitioning of Ω using the maxi-
mum specificity principle
Input: The set of solutions Ω

The set of possibilistic constraints C∆
Output: A well-ordered partition E

1 j = 0
2 while Ω 6= ∅ do
3 Ej = {ωi, i = 0, · · · ,m} s.t. ωi does not belong to the left-hand side of any

constraint (ωi is never the dominant configuration)
4 Ω = Ω \ Ej
5 Remove from C∆ all satisfied constraints (their right-hand side are

consistent with solutions of Ej)
6 j ← j + 1
7 end
8 return E /* solutions are ranked from worst to best */

To compare with the optimistic approach, the maximum specificity principle on
defaults permits to rank order configurations going from the worst to the best ones
such as all constraints in C∆ are satisfied. However, as for the minimum specificity
principle, the ordering obtained with the maximum specificity principle may present
some contradictions with the chain rule ordering. For instance, in the following Ex-
ample 4.3 which adopts a pessimistic approach to find a ranking on choices, one can
check that the best configuration ω0 is considered less preferred to ω6 and ω14. This
is also due to a lack of constraints that forces ω0 to be ranked better than ω6 and ω14.

Example 4.3 Let us consider the same set of defaults of Example 4.2 which encodes
specifications in Figure 3.6: R = {r0 : a, r1 : a b, r2 : ā b̄, r3 : b c, r4 : b̄ c̄,
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r5 : bc  d, r6 : bc̄  d, r7 : b̄c  d̄, r8 : b̄c̄  d̄}. Following Equation 4.4, the
associated constraints in C∆ are

c0 : a � ā min(π(ω0), . . . , π(ω7)) > min(π(ω8), . . . , π(ω15))
c1 : a : b � b̄ min(π(ω0), . . . , π(ω3)) > min(π(ω4), . . . , π(ω7))
c2 : ā : b̄ � b min(π(ω12), . . . , π(ω15)) > min(π(ω8), . . . , π(ω11))
c3 : b : c � c̄ min(π(ω0), π(ω1), π(ω8), π(ω9)) > min(π(ω2), π(ω3), π(ω10), π(ω11))
c4 : b̄ : c̄ � c min(π(ω6), π(ω7), π(ω14), π(ω15)) > min(π(ω4), π(ω5), π(ω12), π(ω13))
c5 : bc : d � d̄ min(π(ω0), π(ω8)) > min(π(ω1), π(ω9))
c6 : bc̄ : d̄ � d min(π(ω3), π(ω11)) > min(π(ω2), π(ω10))
c7 : b̄c : d̄ � d min(π(ω5), π(ω13)) > min(π(ω4), π(ω12))
c8 : b̄c̄ : d � d̄ min(π(ω6), π(ω14)) > min(π(ω7), π(ω15))

Let us now perform Algorithm 4.2. The first partition set is composed of E0 = {ω10}
since it never dominates any configuration. The verified constraints are c0, c2, c3 and c6.
The second partition set E1 = {ω4, ω9, ω11, ω12} satisfying constraints c1, c4, c5 and c7.
Then E2 is constructed holding configurations E2 = {ω0, ω1, ω2, ω3, ω5, ω7, ω8, ω13, ω15}.
The last remaining constraint c8 is thus satisfied and the last level is composed of
E3 = {ω6, ω14}. The default rule ordering induced by performing the partitioning
algorithm is summarized by the left column in Table 4.2 going from best to worst
configuration(s). The inclusion ordering is presented in the right column of the same
table.

Maximum specificity ordering Levels Cardinality ordering
{ω6, ω14} 1 {ω0}

{ω0, ω1, ω2, ω3, ω5, ω7, ω8, ω13, ω15} 2 {ω1, ω3, ω6, ω14}
{ω4, ω9, ω11, ω12} 3 {ω2, ω5, ω7, ω8, ω13, ω15}

{ω10} 4 {ω4, ω9, ω11ω12}
5 {ω10}

Table 4.2: Well-ordered partitions based on a pessimistic approach and based on the
cardinality order

4.4 Well-ordered partition induced by a conditional
preference graph

As explained in Section 4.3.1 of this chapter, when the user adopts an optimistic
mind, a preference statement of the form x1x2 . . . xN : x � x̄, where X1, X2, . . . XN are
parent variables, is expressed by the default preference rule x1x2 . . . xN  x, which
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then translates into the constraint Π(x1x2 . . . xNx) > Π(x1x2 . . . xN x̄) simply written
as the expression x1x2 . . . xNx � x1x2 . . . xN x̄. A conditional preference network is thus
expressed by means of a collection of such constraints and by computing Algorithm 4.1,
a ranking of configurations can then be achieved. However, in such a case whatever the
number of variables the number of layers will remain equal to 3. As we shall see in this
section, this behaviour is quite general for a family of graph structure, for instance
a path graph structure leads also to 3 layers whatever its length. In the following,
we study graph structures that always lead to 3 layers and we indicate some way of
modifying the structure in order to have more layers.

First let us consider the case of a path graph, where each variable has exactly one
variable as a parent (except for the root one) and the graph forms a single path (as
on Figure 4.3). Hence, when variables are sorted in a topological order, conditional
preference constraints are of the form xi : xi+1 > x̄i+1 such that {xi+1, x̄i+1} ∈ Xi+1.

X1

X2

...

XN−1

XN

Figure 4.3: A linear DAG

Interpreting conditional preference statements as possibilistic constraints under
the minimum specificity principle, any conditional preference path graph results into
a well-ordered partition of solutions with exactly 3 layers.

Proposition 4.3 Let CΠ = {ci : Π(pi ∧ qi) > Π(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let EΠ be the well-ordered partition of
solutions obtained using the minimum specificity principle on constraints of CΠ. Then,
any conditional preference path graph results into a partition EΠ of exactly 3 layers.

Proof 4.3 Let us assume a path graph G of N vertices namely X1, X2, . . . , XN . The
root node holds a preference constraint of the form x1 � x̄1, whereas, for i = 2, N , the
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remaining nodes hold conditional preferences of the form xi−1 ∧ xi � xi−1 ∧ xi for the
preferred instantiation of the parent Xi−1 and xi−1 ∧ xi � xi−1 ∧ xi for its negation.
The non-dominated solution is unique and is defined by:

x̄1 ∨
N∨
i=2

(xi−1 ∧ x̄i) ∨
N∨
i=2

(xi−1 ∧ xi) = x1 ∧
N∧
i=2

(xi−1 ∨ xi) ∧
N∧
i=2

(xi−1 ∨ x̄i) = ∧Ni=1xi

At the end of this iteration, the root constraint and the children constraints in the
context of preferred parents configurations are satisfied by this best solution and can be
deleted. The remaining constraints are xi−1∧xi � xi−1∧xi, i = 1, . . . N . The dominated
solutions are the models of ∨N

i=2 xi−1∧xi. The non-dominated ones are thus of the form∧N
i=2 xi−1 ∨ xi. This formula is consistent with the left-hand sides of the constraints

xi−1∧xi � xi−1∧xi since they have in common the solution ∧Ni=1xi. Hence the solutions
can be ranked in three levels: ∧Ni=1xi at the top forming E0, and

∨N
i=2 xi−1 ∧ xi at the

bottom forming E2, the rest being of the form E1 = (∨N
i=2 xi−1 ∧ xi) ∧ ∨Ni=1xi.

The same result can be generalized for orders induced by the maximum specificity
principle. Indeed, a preference statement of the form x1x2 : x � x̄ is translated
into the constraint ∆(x1x2x) > ∆(x1x2x̄), simply written by x1x2x � x1x2x̄, under a
pessimistic mind. The set of such constraints expressing specifications of a conditional
preference network can infer a ranking of configurations (as explained in 4.3.2 to induce
an ordering that verifies the same property as in Proposition 4.3.

Interpreting conditional preference statements as possibilistic constraints under the
maximum specificity principle , any conditional preference path graph results into a
well-ordered partition of solutions with exactly 3 layers.

Proposition 4.4 Let C∆ = {ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E∆ be the well-ordered partition of
solutions obtained using the minimum specificity principle on constraints of C∆. Then,
any conditional preference path graph results into a partition E∆ of exactly 3 layers.

Proof 4.4 Following the same reasoning as for Proof 4.3, constraints of a path graph
conditional preference network are categorized in three sets of formulas: x1 � x̄i for
the root node, xi−1 ∧ xi � xi−1 ∧ xi for the preferred context of the parent Xi−1 of the
remaining nodes and xi−1 ∧ xi � xi−1 ∧ xi for its negation. The first iteration of the
algorithm permits to find the worst solution which is unique. It never appears on the
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left-hand side of constraints which means that it is defined by:

x1 ∨
N∨
i=2

(xi−1 ∧ xi) ∨
N∨
i=2

(xi−1 ∧ xi) = x̄1 ∧
N∧
i=2

(xi−1 ∨ xi) ∧
N∧
i=2

(xi−1 ∨ xi) = ∧Ni=1xi

After putting the dominated solution in the first level E0 = ∧Ni=1xi, the root constraint
and the children constraints in the context of less preferred parents configurations are
satisfied. The remaining constraints are xi−1 ∧ xi � xi−1 ∧ xi. The second set of
dominated solutions consist of models of the form ∧N

i=2 xi−1 ∨ xi. This formula is
consistent with the right-hand sides of the remaining constraints, namely the dominated
solutions, which are of the form ∨N

i=2 xi−1∧ x̄i, since they have in common the solution
xi. Therefore the bottom level is composed of solutions of the form E2 = ∨N

i=2 xi−1 ∧ x̄i
and ∨N

i=2 xi−1 ∨ xi form the intermediate remaining level E1.

Actually, the number of layers for ordering preferences using the constraint based
algorithm increases by adding edges between the grandparent nodes and those of
children nodes. The following example represents an illustration that confirms this
claim.

A

B

C

a � ā

a : b � b̄

ā : b̄ � b

b : c � c̄

b̄ : c̄ � c

Figure 4.4: A path preference network

A

B

C

a � ā

a : b � b̄

ā : b̄ � b
ab : c � c̄

ab̄ : c � c̄
āb : c � c̄

āb̄ : c̄ � c

Figure 4.5: Example of a preference
network

Example 4.4 The graph on Figure 4.5 differs from graph on Figure 4.4 by an ad-
ditional edge going from node A to node C. Applying the algorithm 4.1 yields 4 pref-
erence levels. Adding the edge A → C to the preference network of Figure 4.4, have
changed statements and therefore constraints of the node C. Let Ω = {ω0 = abc, ω1 =
abc̄, ω2 = ab̄c, ω3 = ab̄c̄, ω4 = ābc, ω5 = ābc̄, ω6 = āb̄c, ω7 = āb̄c̄} be the power set
of possible configurations. Adopting an optimistic mind, the set of constraints rel-
ative to the expressed preferences of Figure 4.5 is CΠ = {c0 = Π(a) > Π(ā), c1 =
Π(ab) > Π(ab̄), c2 = Π(āb̄) > Π(āb), c3 = Π(abc) > Π(abc̄), c4 = Π(ab̄c) > Π(ab̄c̄), c5 =
Π(ābc) > Π(ābc̄), c6 = Π(āb̄c̄) > Π(āb̄c̄)}. The induced well-ordered partition E is
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composed of the respective sets {ω0}, {ω1, ω2, ω7}, {ω3, ω4, ω6} and {ω5} satisfying the
respective sets of constraints {c0, c1, c3}, {c2, c4, c6} and {c5}. At the end of the second
iteration, the only remaining constraint is c5 enforcing ω5 = ābc̄ down to a fourth level.
If we consider the path graph on Figure 4.4, the minimum specificity principle ranks
configurations within a 3 layer set, namely E = {{ω0}, {ω1, ω3, ω7}, {ω2, ω4, ω5, ω6}}.

Using the pessimistic reasoning approach, preference specifications translate to the
same constraints previously announced where the possibilistic measure Π is replaced
by the guaranteed possibility measure ∆. The induced well-ordered partition of spec-
ifications in Figure 4.5 E is composed of 4 layers: E0 = {ω5}, E1 = {ω3, ω4, ω6},
E2 = {ω1, ω2, ω7} and E3 = {ω0}. After the first iteration, configurations in subset E0

satisfy constraints c0, c2 and c5. After the second iteration, the partition set satisfies
all remaining constraints except of c3 which adds two subset layers in E namely E2,
that makes c3 true, and E3. If we consider network in Figure 4.4, the default algo-
rithm yields the well-ordered partition E = {{ω5}, {ω2, ω4, ω6}, {ω0, ω1, ω3, ω7}} which
is composed of only 3 layers.

In fact, adding edges from a parent node to a grand-children node has not always
the effect of increasing the number of layers. However, it is possible to have more than
layers by adding edges from parents to grand-children in appropriate places in a path
graph. However, given a fixed number N of decision variables, the size of the order
obtained from the completely connected DAG structure corresponds to the maximum
number of levels that can be obtained for any structure defined on N variables. See the
following Example 4.5 that describes orderings induced from networks that describe
preferences over 4 decision variables.

Example 4.5 Given 4 decision variables A, B, C and D the set of configurations Ω
is the same as defined in Example 4.2. Let us consider networks in Figure 4.6. Table
4.3 give orderings induced from these networks. The network structures in Figures 4.1
and 4.6(a) both hold one arc from a grand-parent to a child node and both induce an
ordering composed of 4 layers. Adding an arc from a grand-grand-parent to a child node
does not have an impact on the number of layers of the induced ordering (see results
relative to Figure 4.6(b) for example). Figure 4.6(c) combine dependencies between
grand-parent node generations described by the mentioned networks, i.e., A → C and
B → D. The number of the induced well-ordered partition remains unchanged with
4 levels. Moreover, combining arcs between grand-parents and children, and between
grand-grand-parents and children does not effect the number of the partition layers (see
orderings of network in Figure 4.6(e) ). However in the completely connected DAG
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structure in Figure 4.6(c), the induced default ordering is defined on 5 layers, unlike
other networks defined on 4 layers.

A

B

C

D

a � ā

a : b � b̄

ā : b̄ � b

ab : c � c̄
ab : c � c̄
āb : c � c̄

āb̄ : c̄ � c

c : d � d̄

c̄ : d̄ � d

(a)

A

B

C

D

a � ā

a : b � b̄

ā : b̄ � b

ab : c � c̄

ab̄ : c � c̄
āb : c � c̄

āb̄ : c̄ � c ac : d̄ � d

ac̄ : d̄ � d

āc : d̄ � d

āc̄ : d � d̄

(b)

A

B

C

D

a � ā

a : b � b̄

ā : b̄ � b

ab : c � c̄
ab : c � c̄
āb : c � c̄

āb̄ : c̄ � c

abc : d̄ � d

abc̄ : d̄ � d

ab̄c : d � d̄

ab̄c̄ : d̄ � d

ābc : d � d̄

ābc̄ : d̄ � d

āb̄c : d � d̄

āb̄c̄ : d̄ � d (c)

A

B

C

D

a � ā

a : b � b̄

ā : b̄ � b

b : c � c̄

b̄ : c̄ � c

ac : d̄ � d

ac̄ : d̄ � d

āc : d̄ � d

āc̄ : d � d̄

(d)
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A

B

C

D

a � ā

a : b � b̄

ā : b̄ � b

b : c � c̄

b̄ : c̄ � c

ac : d̄ � d

ac̄ : d̄ � d

āc : d̄ � d

āc̄ : d � d̄

(e)

Figure 4.6: Examples of conditional preference networks

Figure 4.6(a):

Levels Minimum specificity ordering Maximum specificity ordering
1 {ω0} {ω0, ω1}
2 {ω1, ω3, ω4, ω5, ω15} {ω2, ω3, ω4, ω5, ω8, ω12, ω14, ω15}
3 {ω2, ω6, ω7, ω8, ω9, ω12, ω13, ω14} {ω6, ω7, ω9, ω11, ω13}
4 {ω10, ω11} {ω10}

Figure 4.6(b):

Levels Minimum specificity ordering Maximum specificity ordering
1 {ω1} {ω0, ω1}
2 {ω0, ω3, ω4, ω15} {ω2, ω3, ω4, ω5, ω7, ω9, ω12, ω14, ω15}
3 {ω2, ω5, ω6, ω7, ω8, ω9, ω12, ω13, ω14} {ω6, ω8, ω11, ω13}
4 {ω10, ω11} {ω10}

Figure 4.6(c):
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Levels Minimum and maximum specificity orderings
1 {ω1}
2 {ω0, ω3, ω4, ω15}
3 {ω2, ω5, ω7, ω8, ω12, ω14}
4 {ω6, ω9, ω11, ω13}
5 {ω10}

Figure 4.6(d):

Levels Minimum specificity ordering Maximum specificity ordering
1 {ω1} {ω3, ω7}
2 {ω0, ω3, ω4, ω15} {ω0, ω1, ω2, ω5, ω6, ω9, ω13, ω14, ω15}
3 {ω2, ω4, ω5, ω6, ω9, ω10, ω11, ω13, ω15} {ω4, ω8, ω10, ω12}
4 {ω8, ω12} {ω11}

Figure 4.6(e):

Levels Minimum specificity ordering Maximum specificity ordering
1 {ω0} {ω0, ω1, ω4}
2 {ω1, ω2, ω4, ω5ω14} {ω2, ω3, ω5, ω6, ω9, ω13, ω14, ω15}
3 {ω3, ω6, ω7, ω9, ω13, ω15} {ω7, ω8, ω10, ω12}
4 {ω8, ω10, ω11, ω12} {ω11}

Table 4.3: well-ordered partitions induced from networks in Figure 4.6

Whatever the topology of the graph and whatever the specificity principle, if the
network does not hold edges from the grandparents nodes to children nodes, the num-
ber of elements forming the well-ordered partition remains constant and equal to 3.
The following propositions confirm this claim for topologies of Figure 4.7 and Figure
4.8, respectively.

Given any conditional preference network with one parent node and N−1 children,
the well-ordered partition of configurations output by the minimum specificity principle
based algorithm has exactly 3 layers.

Proposition 4.5 Let CΠ = {ci : Π(pi ∧ qi) > Π(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let EΠ be the well-ordered partition of
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solutions obtained using the minimum specificity principle on constraints of CΠ. Then,
any conditional preference network with one parent node and N − 1 children results
into a partition EΠ of exactly 3 layers.

X1

X3X2 ... XN

Figure 4.7: A graph with one parent
and N children

X2 ...X1 XN−1

XN

Figure 4.8: A graph with N parents
and one child

Proof 4.5 Let us consider the graph G of Figure 4.7 with one parent and N − 1
children node. The root has a preference statement x1 � x̄1. For i = 2· · · , N , each
child node bears conditional constraints of the form x1xi � x1x̄i and x̄1x̄i � x̄1xi. The
un-dominated set is the complement of propositions on the right of constraints, namely
E0 = x1

∧N
i=2 xi. Constraints x1 � x̄1 and x1xi � x1x̄i are satisfied by this solution and

are then deleted. The second level set E1 contains models of x̄1 ∧
∨N
i=2 xi = x1∨

∧N
i=2 x̄i.

Note that all the left-hand side propositions x̄1x̄i of the remaining constraints are
consistent with x1 ∨

∧N
i=2 x̄i. Hence again 3 levels are obtained.

Given any conditional preference network with one parent node and N − 1 chil-
dren, the well-ordered partition of configurations output by the maximum specificity
principle based algorithm has exactly 3 layers.

Proposition 4.6 Let C∆ = {ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E∆ be the well-ordered partition of
solutions obtained using the minimum specificity principle on constraints of CΠ. Then,
any conditional preference network with one parent node and N − 1 children results
into a partition E∆ of exactly 3 layers.

Proof 4.6 Considering the same graph G in Figure 4.7, the root has a preference
statement x1 � x̄1, while each child node carries conditional constraints of the form
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x1xi � x1x̄i and x̄1x̄i � x̄1xi, for i = 2· · · , N . The rejected solution is unique and
is defined by the complement of propositions on the left of constraints, namely E0 =
x̄1

∧N
i=2 xi. Constraints x1 � x̄1 and x̄1x̄i � x1x̄i are satisfied by this solution and are

then deleted. The second level set E1 contains that never appear on the left side of the
remaining constraints. It is thus composed of models of x1 ∧

∨N
i=2 xi = x̄1 ∨

∧N
i=2 x̄i.

This formula is consistent with the left-hand side propositions x1x̄i of the remaining
constraints. Hence again 3 levels are obtained with E0 = x̄1

∧N
i=2 xi, E1 = x̄1 ∨ x̄i and

E2 = x1x̄i.

A

CB D

a � ā

a : b � b̄

ā : b̄ � b

a : c � c̄
ā : c̄ � c

a : d̄ � d

ā : d � d̄

Figure 4.9: A preference network with one parent and 3 children

Example 4.6 The graph in Figure 4.9 depicts a preference network composed of one
parent node A with its 3 children B, C and D. The set of possible configurations is
Ω = {ω0 = abcd, ω1 = abcd̄, ω2 = abc̄d, ω3 = abc̄d̄, ω4 = ab̄cd, ω5 = ab̄cd̄, ω6 =
ab̄c̄d, ω7 = ab̄c̄d̄, ω8 = ābcd, ω9 = ābcd̄, ω10 = ābc̄d, ω11 = ābc̄d̄, ω12 = āb̄cd, ω13 =
āb̄cd̄, ω14 = āb̄c̄d, ω15 = āb̄c̄d̄}. Preference specifications are translated into the fol-
lowing constraints CΠ = {c0 = Π(a) > Π(ā), c1 = Π(ab) > Π(ab̄), c2 = Π(āb̄) >

Π(āb), c3 = Π(ac) > Π(ac̄), c4 = Π(āc̄) > Π(āc), c5 = Π(ad̄) > Π(ad), c6 = Π(ād) >
Π(ād̄)}. The well-ordered partition induced from the minimum specificity postulate
is E = {{ω1}, {ω0, ω2, ω3, ω4, ω5, ω6, ω7, ω14}, {ω8, ω9, ω10, ω11, ω12, ω13, ω15}}. It indeed
involves 3 layer sets. The first partition satisfies constraints c0, c1, c3 and c5. The
remaining constraints are verified by the second partition set which leads to put con-
figurations ab̄ ∨ ac̄ ∨ ad in the last layer.

Under the maximum specificity principle configurations on both hand-sides of con-
straints remain the same while ∆ takes the place of Π. The well-ordered partition in-
duced from the pessimistic reasoning is E = {{ω9}, {ω6, ω8, ω10, ω11, ω12, ω13, ω14, ω15},
{ω0, ω2, ω3, ω4, ω5, ω7}}. It is indeed composed of 3 levels. Configurations of the first
layer validate constraints c0 ,c2, c4 and c6. Those in the second layer verify the remain-
ing ones. In addition of confirming Propositions 4.5 and 4.6, this result also confirms
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that, for such structure, the graph size does not impact the number of the partition
layers.

Given any conditional preference network with N−1 independent parent nodes and
one child variable, the well-ordered partition of configurations output by the minimum
specificity principle based algorithm has exactly 3 levels.

Proposition 4.7 Let CΠ = {ci : Π(pi ∧ qi) > Π(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let EΠ be the well-ordered partition of
solutions obtained using the minimum specificity principle on constraints of CΠ. Then,
any conditional preference network with N −1 independent parent nodes and one child
variable results into a partition EΠ of exactly 3 layers.

Proof 4.7 Assume the graph G of Figure 4.8. In the same vein as Propositions 4.3
and 4.5, parent nodes bear constraints xi � x̄i for i = 1,· · · , N − 1. Denote by u

the disjunction of parents configurations such that xN is preferred to x̄N , where it is
supposed that u satisfies ∧N−1

i=1 xi and ū satisfies ∧N−1
i=1 x̄i. The remaining conditional

constraints at step 2 reduce to uxN � ux̄N and ūx̄N � ūxN . Obviously we get 3 levels
again.

Given any conditional preference network with N−1 independent parent nodes and
one child variable, the well-ordered partition of configurations output by the maximum
specificity principle based algorithm has exactly 3 levels.

Proposition 4.8 Let C∆ = {ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let EΠ be the well-ordered partition of
solutions obtained using the minimum specificity principle on constraints of C∆. Then,
any conditional preference network with N −1 independent parent nodes and one child
variable results into a partition E∆ of exactly 3 layers.

Proof 4.8 In a like manner as for Proposition 4.7, graphs sharing the same structure
as in Figure 4.8 bear constraints of the form xi � x̄i for root nodes and uxN �
ux̄N and ūx̄N � ūxN for the child node. The first level is composed of models of
∧N−1
i=1 x̄i ∧ ux̄N ∨ ūxN . This formula only leaves the constraint uxN � ux̄N unsatisfied

which yields two partition levels namely E1 = ū ∨ x̄N and E2 = uxN .
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A B

C

a � ā b � b̄

ab : c � c̄

ab̄ : c � c̄
āb : c � c̄

āb̄ : c̄ � c

Figure 4.10: A preference network with 2 parents and one child

Example 4.7 Unlike network in Figure 4.9, Figure 4.10 depicts a graph with several
root nodes and only one child. Possible configurations Ω is the same as in Example 4.4.
Preference constraints are CΠ = {c0 = Π(a) > Π(ā), c1 = Π(b) > Π(b̄), c2 = Π(abc) >
Π(abc̄), c3 = Π(ab̄c) > Π(ab̄c̄), c4 = Π(ābc) > Π(ābc̄), c5 = Π(āb̄c̄) > Π(āb̄c)}. The first
layer of the well-ordered partition induced from the minimum specificity postulate is
composed of the unique optimal configuration: ω0. This makes constraints c0, c2, c4 and
c6 verified. The second partition layer is composed of configurations {ω1, ω2, ω4, ω7}
satisfying therefore all the remaining constraints, namely c1, c3 and c5. The last un-
ranked configurations in Ω compose the final layer. The well-ordered partition is thus
divided in 3 levels of subsets.

Adopting a pessimistic point of view, specifications are translated into constraints
using the measure ∆. Solutions of both sides constraints remain unchanged. The first
partition level is composed of the unique worst configuration namely ω6 which verifies
constraints c0, c1 and c5. The second layer is holds configurations {ω1, ω3, ω5, ω7}. The
remaining constraints are satisfied and the last partition set contains {ω0, ω2, ω4}.

The last result considers a more general structure (see Figure 4.11) we call quasi-
linear and subsumes the preceding results.

Consider a conditional preference network G = {X , E}, where the set X of variables
is partitioned in X1,· · · ,XN . Suppose ∀j ∈ [1,m], each variable X ∈ Xi has its parents
only at the previous level i − 1, i.e., UX ⊆ Xi−1∀X ∈ Xi. The minimum specificity
principle results in a well-ordered 3-partition of solutions.

Proposition 4.9 Let CΠ = {ci : Π(pi∧qi) > Π(pi∧q̄i), pi : qi � q̄i | i = 1, . . . , k} be the
set of possibilistic default constraints. Let EΠ be the well-ordered partition of solutions
obtained using the minimum specificity principle on constraints of CΠ. Consider a
conditional preference network G = {X , E}, where the set X of variables is partitioned
in X1,· · · ,XN . Suppose ∀j ∈ [1,m], each variable X ∈ Xi has its parents only at
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the previous level i − 1, i.e., UX ⊆ Xi−1∀X ∈ Xi. Then, any conditional preference
network G results into a partition EΠ of exactly 3 layers.

Proof 4.9 ∀i = 2,· · · , N all nodes Xi ∈ Xi are associated to the conditional con-
straints uixi � uix̄i and uixi � uixi, where ui is the disjunction of configurations
of UXi such that xi is preferred to x̄i, plus x1 � x1 for nodes X1 ∈ X1. Assum-
ing ∧

Xi−1∈UXi
xi |= ui and

∧
Xi−1∈UXi

x̄i |= ūi, the non-dominated set E0 reduces to
(∧

X1∈X1 x1) ∧ ∧N
i=2

∧
Xi∈Xi [(ūi ∨ xi) ∧ (ui ∨ x̄i)] = ∧

X∈X x. After deleting the satisfied
constraints, the remaining ones are ∀Xi ∈ Xi, ūix̄i � ūixi, ∀i = 2,· · · , N . The un-
dominated set E1∪E0 forms the models of ∧N

i=2
∧
Xi∈Xi(ui∨x̄i). We can easily check that

ūix̄i is consistent with E1 since they share x̄i, ∀i = 2,· · · , N and ∀Xi ∈ Xi. By conse-
quence the third element of the well-ordered partition E2 equals

∨N
i=2

∨m
j=1

∨
Xij∈Xi ūi∧xi.

Consider a conditional preference network G = {X , E}, where the set X of variables
is partitioned in X1,· · · ,XN . Suppose ∀j ∈ [1,m], each variable X ∈ Xi has its parents
only at the previous level i − 1, i.e., UX ⊆ Xi−1∀X ∈ Xi. The maximum specificity
principle results in a well-ordered 3-partition of solutions.

Proposition 4.10 Let C∆ = {ci : ∆(pi ∧ qi) > ∆(pi ∧ q̄i), pi : qi � q̄i | i = 1, . . . , k}
be the set of possibilistic default constraints. Let E∆ be the well-ordered partition
of solutions obtained using the minimum specificity principle on constraints of C∆.
Consider a conditional preference network G = {X , E}, where the set X of variables
is partitioned in X1,· · · ,XN . Suppose ∀j ∈ [1,m], each variable X ∈ Xi has its parents
only at the previous level i − 1, i.e., UX ⊆ Xi−1∀X ∈ Xi. Then, any conditional
preference network G results into a partition E∆ of exactly 3 layers.

Proof 4.10 ∀i = 2,· · · , N all nodes Xi ∈ Xi are associated to the conditional con-
straints uixi � uix̄i and uixi � uixi, where ui is the disjunction of configurations
of UXi such that xi is preferred to x̄i, plus x1 � x1 for nodes X1 ∈ X1. Assuming∧
Xi−1∈UXi

xi |= ui and
∧
Xi−1∈UXi

x̄i |= ūi, the dominated set E0 reduces to (∧
X1∈X1 x1)∧∧N

i=2
∧
Xi∈Xi [(ūi ∨ x̄i) ∧ (ui ∨ xi)] = ∧

X∈X x̄. After deleting the satisfied constraints,
the remaining ones are ∀Xi ∈ Xi, uixi � uix̄i, ∀i = 2,· · · , N . The dominated set
E1 ∪ E0 forms the models of ∧N

i=2
∧
Xi∈Xi(ūi ∨ x̄i). We can easily check that ūixi is

consistent with E1 since they share xi, ∀i = 2,· · · , N and ∀Xi ∈ Xi. By consequence
the third element of the well-ordered partition E2 equals ∨N

i=2
∨m
j=1

∨
Xij∈Xi ui ∧ xi.

Thus, up to very quite special graph structures, the default-like rules approach
leads to a complete pre-order with only 3 levels which is not very discriminating. In
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X11 X12 ... X1m X1

X22 ... X2k X2
X21

...

XN1 XN2 ...

...

XNl

...
...

XN

Figure 4.11: A quasi-linear DAG

the next section, we explain how to repair another problem of this approach which is
to conflict with the Pareto ordering.

4.5 Improving possibilistic default rules-based or-
derings

The ordering generated by means of the default rules using some specificity principles
not only leads to a sparsely discriminant ranking but can also lead to contradictions
with the Pareto order. This only take place when symbolic weights of variables in
the context of parents are equal (unique symbol per node). In fact, at some step
of the ranking algorithm, some configurations might no longer appear in any of the
remaining constraints, although they are assigned in a set in the partition, the highest
or the lowest possible one, depending on whether we adopt the minimum or maximum
specificity principle. [Ben Amor et al., 2021a].

In order to overcome this problem, we propose Algorithm 4.3 which is a new ver-
sion of Benferhat et. al algorithm 4.1 that considers the same sets of inputs but checks
at each iteration if there exists configurations that do not appear in any remaining
constraint. These configurations are assigned to a set E ′Π (respectively E ′∆) and are
considered just not better than previously ranked configurations. Config(CΠ) (respec-
tively Config(C∆)) returns all configurations in CΠ (respectively C∆). This improved
version results in a partial order on configurations that could be in full compliance
with the Pareto order. We illustrate this new algorithm in the Example 4.8.
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Algorithm 4.3: Ordering Ω using an optimistic approach (Improved version)
Input: Ω , CΠ
Output: EΠ, E

′
Π

1 i = 0
2 while CΠ 6= ∅ do
3 foreach ω ∈ Ω do
4 if ω /∈ Config(CΠ) then
5 E ′Π[i] = E ′Π[i] ∪ {ω};
6 Ω = Ω \ {ω}
7 end
8 foreach ω ∈ Ω do
9 foreach c ∈ CΠ do

10 if ω /∈ RC(c) then
11 EΠ[i] = EΠ[i] ∪ {ω}
12 Ω = Ω \ {ω}
13 end
14 end
15 end
16 foreach ω ∈ EΠ[j] do
17 foreach c ∈ CΠ do
18 if ω ∈ LC(c) then
19 CΠ = CΠ \ {c}
20 end
21 i = i+ 1
22 end
23 if Ω 6= ∅ then
24 foreach ω ∈ Ω do
25 EΠ[i] = EΠ[i] ∪ {ω}
26 end
27 Return EΠ, E

′
Π
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ω0

ω1
ω3, ω6, ω14

ω5, ω13

ω4, ω12

EΠEΠ E ′ΠE
′
Π

ω2, ω7, ω8, ω9, ω10, ω11, ω15

Figure 4.12: Improved optimistic ordering of π-pref net in Figure 4.1

Example 4.8 Let us consider pursue with π-pref net in Figure 4.1. Under the opti-
mistic or pessimistic approach, preference statements are translated into default rules
and then to the following constraints:
c0 : a � ā L(c0) = {ω0, . . . , ω7}, R(c0) = {ω8, . . . , ω15}
c1 : a : b � b̄ L(c1) = {ω0, . . . , ω3}, R(c1) = {ω4, . . . , ω7}
c2 : ā : b̄ � b L(c2) = {ω12, . . . , ω15}, R(c0) = {ω8, . . . , ω11}
c3 : b : c � c̄ L(c3) = {ω0, ω1, ω8, ω9}, R(c3) = {ω2, ω3, ω10, ω11}
c4 : b̄ : c̄ � c L(c4) = {ω6, ω7, ω14, ω15}, R(c4) = {ω4, ω5, ω12, ω13}
c5 : bc : d � d̄ L(c5) = {ω0, ω8}, R(c5) = {ω1, ω9}
c6 : bc̄ : d̄ � d L(c6) = {ω3, ω11}, R(c6) = {ω2, ω10}
c7 : b̄c : d̄ � d L(c0) = {ω5, ω13}, R(c7) = {ω4, ω12}
c8 : b̄c̄ : d � d̄ L(c8) = {ω6, ω14}, R(c8) = {ω7, ω15}.

Following steps of Algorithm 4.3, the first partition set is EΠ[0] = {ω0}. Con-
straints c0, c1, c3 and c5 are deleted. For the second iteration, EΠ[1] = {ω0, ω3, ω6, ω14}.
The remaining constraints c2, c4, c6, c7 and c8 impose no restriction on ω1. Therefore
this configuration is assigned to E ′Π[1]. After the second iteration of the Algorithm 4.3,
constraints c2, c4,

Using an optimistic or pessimistic mindset, the previous example shows the possi-
bility of obtaining a well-ordered partition on configurations that is in full agreement
with the Pareto strategy. In this case, the new partitioning procedure succeeds in
repairing all the contradictions induced by the ordering obtained from the algorithms
4.1 and 4.2. However, in some cases, the algorithm may fail to repair some strong
Pareto violations as shown by Example 4.9.
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ω6, ω14

ω0, ω1, ω2, ω3, ω5, ω8, ω13

ω7, ω15

ω4, ω9, ω12

ω10

ω11

E∆E∆ E ′∆E
′
∆

Figure 4.13: Improved pessimistic ordering of π-pref net in Figure 4.1

BA

C

D

b β

b̄ 1
a α
ā 1

ab ab̄ ab̄ āb̄
c γ γ 1 γ
c̄ 1 1 γ 1

c c̄
d 1 σ

d̄ σ 1

Figure 4.14: Example of a π-pref net with one symbolic degree per variable

Example 4.9 Figure 4.14 depicts an example of a π-pref net that encodes the follow-
ing set of preference specifications: ā � a, b̄ � b, ab : c̄ � c, ab̄ : c̄ � c, ab̄ : c � c̄,
āb̄ : c̄ � c, c : d � d̄ and c̄ : d̄ � d. Quality vectors of configurations are given in Table
4.4. Preference specifications written under defaults are translated into the following
constraints:
c0 : ā � a L(c0) = {ω8, . . . ω15}, R(c0) = {ω0, . . . ω7}
c1 : b̄ � b L(c1) = {ω4, . . . ω7, ω12, . . . ω15}, R(c1) = {ω0, . . . ω3, ω8, . . . ω11}
c2 : ab : c̄ � c L(c2) = {ω2, ω3}, R(c0) = {ω0, ω1}
c3 : ab : c̄ � c L(c3) = {ω6, ω7}, R(c3) = {ω4, ω5}
c4 : āb : c � c̄ L(c4) = {ω8, ω9}, R(c4) = {ω10, ω11}
c5 : āb̄ : c̄ � c L(c5) = {ω14, ω15}, R(c5) = {ω12, ω13}
c6 : c : d � d̄ L(c6) = {ω0, ω4, ω8, ω12}, R(c6) = {ω1, ω5, ω9, ω13}
c7 : c̄ : d̄ � d L(c8) = {ω3, ω7, ω11, ω15}, R(c8) = {ω2, ω6, ω10, ω14}.

The optimistic ordering EΠ induced from Algorithm 4.1 is:
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EΠ0 {ω15}
EΠ1 {ω2, ω3, ω6, ω7, ω8, ω12, ω14}
EΠ2 {ω0, ω1, ω4, ω5, ω9, ω10, ω11, ω13}

The optimistic ordering induced from the improved Algorithm 4.3 is represented by
the following figure:

ω15

ω14
ω2, ω3, ω6, ω7, ω8, ω12

EΠEΠ E ′ΠE
′
Π

ω0, ω1, ω4, ω5, ω9, ω10, ω11, ω13

The default and Pareto strategies contradict each other on the preference relation
between configurations ω2 and ω9. Indeed, the Pareto order stipulates that ω9 �Pareto ω2

since ~ω9 = (1, β, 1, σ) and ~ω2 = (α, β, 1, σ), while both the classical and improved
version of the partitioning procedure state that ω2 �Opt ω9.

This improved procedure showed the possibility of obtaining a partial pre-order
that generally does not contradict the Pareto order (proofs on the topic represent forth-
coming studies). In the next section, we show that there exist sets of conditional pref-
erences that can be only handled by a default-like approach [Ben Amor et al., 2019].

4.6 From default preference rules to conditional
preference networks

While conditional preference graphs can be turned into default preference bases, we
consider the reverse transformation, i.e., whether from any preference rule base, a
network of conditional constraints can be generated. We show that this is generally
not the case. Preference networks lead to very specific default preference statements.
Contexts are always conjunctions of literals, which makes it possible the construction
of corresponding conditional data tables. But general preference statements admit
more general forms of contexts. Moreover preferences in networks are local in the
sense that they deal with values of single variables only. Finally, information in a
preference base can be insufficient to build a conditional preference graph as shown
by counter-example 4.10.
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ΩΩΩ ~ω~ω~ω

ω0 abcd (α, β, γ, 1)
ω1 abcd̄ (α, β, γ, σ)
ω2 abc̄d (α, β, 1, σ)
ω3 abc̄d̄ (α, β, 1, 1)
ω4 ab̄cd (α, 1, γ, 1)
ω5 ab̄cd̄ (α, 1, γ, σ)
ω6 ab̄c̄d (α, 1, 1, σ)
ω7 ab̄c̄d̄ (α, 1, 1, 1)
ω8 ābcd (1, β, 1, 1)
ω9 ābcd̄ (1, β, 1, σ)
ω10 ābc̄d (1, β, γ, σ)
ω11 ābc̄d̄ (1, β, γ, 1)
ω12 āb̄cd (1, 1, γ, 1)
ω13 āb̄cd̄ (1, 1, γ, σ)
ω14 āb̄c̄d (1, 1, 1, σ)
ω15 āb̄c̄d̄ (1, 1, 1, 1)

Table 4.4: Vectors associated with configurations of the π-pref net of Figure 4.14

Example 4.10 Let us consider the counterpart of the well-known “penguin” example
in non-monotonic reasoning [Benferhat et al., 1992][Kraus et al., 1990]. Let c, r and
s now stand for “Chicken (C)”, “Red wine (R)” and “Spicy plate (S)”. Preference rules
are {“With chicken, I prefer red wine”, “If spicy, I prefer white wine” and “If spicy,
I prefer chicken ”}, where “white wine” is the negation of “red wine”. It corresponds
to constraints cr > cr̄, sr̄ > sr, sc > sc̄ using the minimum specificity principle.

It is well-known that in this example, we get a well-ordered 3-partition with E0 = s̄∧
(c̄∨r), E1 = c∧ r̄ and E2 = s∧(r∨ c̄) [Benferhat et al., 1992][Ben Amor et al., 2019].

The rules indicate that values of C and R depend on S and R depend on C, hence
the graph of Figure 4.15. However some information is missing to get a full preference
graph:

• The absolute preference between s and s̄ on node S (represented by s?s̄).

• The preference for chicken or not when the plate is not spicy is not given (rep-
resented by s̄ : c?c̄).

• The preference about wine when the dish is not chicken nor spicy (represented
by s̄c̄ : f?f̄).
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• The preference about wine when the chicken is spicy. From the given rules, this
is a conflicting case represented by a double question mark in sc : r??r̄. In fact,
S and C act as independent parents of R, which causes the conflict.

It is forbidden in a preference graph for a variable to have several parent groups.
The conflict between S and C is solved when applying minimum specificity ranking to
the default rules (we conclude that s̄ > s, that s̄c > s̄c̄, scr̄ > scr and no preference
between s̄c̄r and s̄c̄r̄.

S

C

R

s ? s̄

s : c � c̄
s̄ : c ? c̄

sc : r ?? r̄
sc̄ : r̄ � r
s̄c : r � r̄
s̄c̄ : f ? r̄

Figure 4.15: Partial network from preference rules

Clearly there is a gap between general default rule-like preferences and conditional
preference networks. However, once we have computed the complete pre-order asso-
ciated to the well-ordered partition of the configurations obtained by means of the
minimum specificity principle for instance, we can obviously generate a conditional
preference network from it (since this would solves the question marks in the previous
example, for instance).

4.7 Experimental study

In this section, we propose to conduct an experimental study to support the propo-
sitions made in 4.4, to evaluate the expressiveness of the partitioning algorithms of
Sections 4.3.1, 4.3.2 and 4.5, to finally compare their results with those of the Pareto
ordering.

4.7.1 Experimental protocol

The first step of the experimental protocol is to generate a collection of conditional
preference networks. To this end, we use the generation tool GenCPnet developed
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by Thomas E. Allen et al. [Allen et al., 2016]. This generator produces uniformly
random connected acyclic networks with specified set of constraints. It allows to vary
different parameters, namely:

• the number of nodes n that we vary from n = 3 to n = 7;

• the maximum bound on the number of in-going edges also-called in-degree c that
we vary from 1 to n− 1;

• the size of variable’s domain d that we fix to d = 2.

Enumerating the number of acyclic DAGs (not necessarily connected) on n nodes
with labels in [1, . . . , n] have been studied in [Robinson, 1977]. This number is calcu-
lated by the recurrence expressed by the following Equation 4.5:

an =
n∑
k=1

(−1)k+1Ck
n2k(n−k)an−k. (4.5)

For instance, for n = 2 we can generate a2 = 3 different DAGs, for n = 3 we can
generate a3 = 25 different DAGs and for n = 4 we can generate a4 = 543 different
DAGs. Even with small numbers of nodes, we can see that the number of possible
graphs increases exponentially as n grows, to reach 1.138.779.256 graphs for n = 7.
This number grows even more if we consider all possible combinations of preference
specifications.

The experiments are divided into two parts. We first start by computing the
optimistic and pessimistic orderings to confirm propositions made in Section 4.4. To
do so, we generated a first benchmark of 1000 instances of preference networks only
composed of quasi-linear DAGs: 50 instances with n = 3, 200 instances with n = 4 and
250 instances for each of n = 5, n = 6 and n = 7. The purpose of the first experiment
part is to confirm the proposition that for quasi-linear networks (see Figure 4.11), the
number of partition layers of the optimistic and pessimistic orderings equals 3.

The second part of the experiments is first dedicated to study the behaviour of the
size of default partitions with regards to the graphical structures. We then study the
behaviour of the percentage of the Pareto and default orderings contradictions with
regards to the number of nodes, the existence or not of links between grand-parents
and child nodes and the maximum in-degree of graphs.

For this purpose, we generated a second benchmark with a total of 3600 networks,
where for each (n, d) with n = [3, . . . , 7], we vary the value of c starting from c = 2.
For n = 3, we generated 100 conditional preference networks, 500 networks for n = 4
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and 1000 networks for each of n = 5, n = 6 and n = 7. Descriptions about this
data set are given in Tables 4.5 and 4.6. This benchmark is composed of a quarter
of quasi-linear graphs and 3/4 of graphs with a maximum in-degree equal to 2. If we
divide the data set into subsets according to the size of the graphs, the Table 4.5 gives
the percentage of graphs that contain grand-parent - children links compared to those
that do not. For instance, for n = 4, 69.8% of graphs contain at least one arc going
from a node to a grand-son, while 30.2% contain none. The Table 4.6 describes the
benchmark in terms of the maximum in-degree. For example, the set of networks with
n = 3 are composed of 43% of graphs with c = 1 and 57% of graphs with c = 2.

Nb nodes
Graph structure Other Quasi-linear

3 36 64
4 69.8 30.2
5 82.5 17.5
6 92 8
7 95 5

Total 75 25

Table 4.5: The composition of the second benchmark in percentage

Max in-degree
Nb nodes 3 4 5 6 7

1 43 22.2 14.9 7.5 5
2 57 41.4 25.2 12.5 12.5
3 0 36.4 30 20 17.5
4 0 0 29.9 25 25
5 0 0 0 35 15
6 0 0 0 0 25

Table 4.6: Percentage of graphs given their maximum in-degree for a fixed number of
nodes in the second benchmark

For both benchmarks, the set of preference statements of each network is trans-
lated into default rules and then to default constraints as explained in 4.3.1 and 4.3.2.
Therefore, for the sets of constraints, we apply Algorithms 4.1 and 4.2 to find respec-
tively the optimistic and pessimistic orderings on the set of configurations. In a first
step, the behaviour of the partition sizes is studied. In a second step, the orderings
are compared with the Pareto ordering. Finally, the improved partitioning procedure
explained in 4.5 is performed to confirm the accordance of its induced ordering with
the Pareto order. For all these experiments, we consider the Pareto order assuming
one symbolic degree per variable.

The goals of the second experiment part are summarized in the following:
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(i) check if there exists a correlation between the number of layers of the default
well-ordered partition and the following parameters:

• the number of nodes;

• the existence or not of grand-children links;

• the graph’s maximum in-degree;

(ii) (Part 2) compare the expressive power of the Pareto ordering compared with the
default orderings;

(iii) check if there exists a correlation between the percentage of strict dominance
relations induced from the default and Pareto orderings and the following pa-
rameters:

• the number of nodes;

• the graph’s maximum in-degree;

(iv) check if there exists a correlation between the percentage of strong violations
between the Pareto and the default orderings given one of the following param-
eters:

• the number of nodes;

• the existence or not of grand-children links;

• the graph’s maximum in-degree;

(v) confirm that, for most networks, the ordering induced from the improved default
partitioning procedure can totally or partially repair contradictions with the
Pareto order.

These experiments are conducted on an Intel Core i7−7700HQ processor and 20Go
workstation. The software tool and functions used for the experiments are programmed
in JavaScript language.

4.7.2 Experimental results

In this subsection, we give the results of our experiments. The conclusions in this
section are drawn from the experiments conducted on the data sets described above.
The first subsection gives results on the size of the ordering induced by the partitioning
Algorithm 4.1 (and 4.2). The second subsection describes results on the expressiveness
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of the Pareto and default orders. The third subsection gives results on the improved
partitioning procedure detailed in 4.5. Finally, the last subsection summarizes the
results of all experiments.

Results on the well-ordered partition size

The first part of the experiment carried out on the first benchmark had confirmed
the propositions of Section 4.4. Indeed, we found that the optimistic and pessimistic
orderings of all the networks of the first benchmark are composed of exactly 3 levels.
Moreover, no contradictions with the Pareto ordering were detected, which would
suggest that these violations are perhaps related to the in-degree of graphs and/or
to the presence of links between parent and grand-children. Besides, based on the
given experiment results, the assumption that there is any correlation between the
strong violations between the default and Pareto orderings and the number of nodes
in the graph can be discarded for quasi-linear graphs (still needs to be proven in future
research).

We now consider general graphs with grand-parents - children relations (75% of
the second benchmark set) and study the behaviour of the default ordering partition
size. Each set of networks with the same number of nodes results in partitions of
different sizes. For each set, the Table 4.7 gives the percentage of graphs according to
the size of their induced well-ordered partitions. Mind that for all of our experimental
results, we note that for all preference networks, the sizes of the well-ordered partitions
of the optimistic and pessimistic orderings are equal, meaning that all of the results
described in this subsection are valid for both approaches. From the results described
in 4.7, we can confirm that the sizes of the partitions increase with the number of
nodes that compose the graphs. For instance, for n = 4, we have partitions with a
number of layers going from 3 to 5, while for n = 5 we can in addition have partitions
with 6 layers. Generally and based on these results, for networks of size N , default
partition sizes can go up to N + 1 levels. However, note that for networks with n = 3,
all induced partitions are of size 4. By comparing with the results of the first part of
the experiment, we can confirm that there is a link between the size of the partition
and the arcs between the generations of nodes. For future research, it is interesting to
study the impact of the depth of arcs between nodes and grand-child generations on
the number of levels in the partition.
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Nb layers
Nb nodes 3 4 5 6 7

2 0 0 0 0 0
3 0 6.3 3.3 2.1 1.6
4 100 69.9 43.9 21.1 20.1
5 0 23.8 37.8 27.9 24.2
6 0 0 15 32.4 21.7
7 0 0 0 16.5 21.5
8 0 0 0 0 10.9

Table 4.7: Variation of the percentage of graphs according to the size of their induced
default partitions

The following experimental results aim to determine whether there is a correlation
between the default partition size and the maximum degree of preference networks.
For fixed graph sizes, we varied c and calculated the percentage of network instances
with respect to different partition sizes. The results are given in Figure 4.16.
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Figure 4.16: Percentage of networks by size of partitions for n from 4 to 7

The results show that generally there is a stron relation between the partition sizes
and the network in-degrees. However, except for the graphs with c = 2, we can detect
a certain tendency in the behavior of curves with higher in-degrees. In fact, for a fixed
number of nodes n, we can notice that most of the partitions have sizes which vary
from c+ 1 to c+ 2. It is the case of the curve of the figure relative to n = 6 where, for
c = 3 the number of levels varies between 4 and 5, for c = 4 the number of levels varies
between 5 and 6, for c = 5 the number of levels varies between 6 and 7. Nevertheless,
this cannot be generalized for all partitions. Indeed, for instance for n = 6 and c = 5,
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there are some partitions with a size equal to c.

In the same spirit, we want to determine if there is a correlation between the size of
the default partition and the number of nodes in the preference networks. For fixed in-
degrees, we varied the size of the networks and calculated the percentage of instances
of these networks with respect to different partition sizes. Figure 4.17 describes the
results of this experimentation.
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Figure 4.17: Percentage of networks by size of partitions for c = 2 c = 4 and c = 5

These results confirm the assertion that there is correlation between the number
of partition layers and the size of the preference network. This claim only holds for
the networks of the second benchmark, since in the first part of the experiments, we
have seen that, whatever the size of the graph and for a fixed in-degree equal to 1, all
networks lead to default orderings of size 3.

Results on Pareto and default orders

To evaluate the expressive powers of the Pareto and default orders, we computed for
each subset of graphs having the same size, the percentage of strict comparisons out of
total comparisons. Figure 4.18 represents results of this experiment. We notice that
for the default ordering, the number of nodes has almost no effect on the percentage
of comparisons. However, the Pareto order is strongly influenced by the network size,
since the percentage decreases as the size increases, which is represented in the graph
by a decreasing curve. We recall that the experiments in this subsection are performed
on all instances of the second benchmark.

Figure 4.19 shows the percentages of strict dominance relations induced by the
two approaches as a function of the in-degree of different graphs. The figure describes
divergent curves. Indeed, as the number of in-degree increases, the percentage of
default order comparisons increases and the percentage of Pareto order comparisons
decreases. This shows that, contrary to the Pareto order on graph instances with a
high number of nodes, the default approach manages to find strict dominance relations
between a larger number of configuration pairs than the other approach.
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Figure 4.18: Average of the percentage of strict Pareto and default orders dominance
relations as a function of the network size
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Figure 4.19: Average of the percentage of strict Pareto and default orders dominance
relations as a function of the network in-degree

Of the total number of networks in the data set, 23.97% of the instances lead to
default orderings that contradict the Pareto order. On this set of networks, we first try
to find out if there is a relationship between the contradictions and the existence or not
of arcs that connect the nodes to the grand-children. Indeed, experiment results have
shown that, on the set of networks with Pareto contradictions, almost all instances
(99.08%) with grand-parent - children links hold strong violations with the Pareto
order.

We now move to explore the relationship between the contradictions and the size
of the graphs. To do this, we fix the in-degrees of the graphs and observe the behavior
of the percentage of networks that violate the Pareto order as a function of the number
of nodes. Results in Figure 4.20 do not reveal a real tendency. For the curves with in-
degrees equal to 3 and 4, we can presume the existence of a tendency described by their
two respective curves. Indeed, we can see that the more the number of nodes increases
the more the percentage increases. Nevertheless, this tendency is not respected by the
curves of in-degrees 2 and 5. For example for in-degree= 5, when the number of nodes
increases from 6 to 7 the percentage of contradictions decreases from about 45 to 0.8
percent. For in-degree= 2, no trend can be discerned by the respective curve. Note
that for an in-degree equal to 6, we only have networks with a fixed number of nodes
equal to 7, only 0.8% of these networks induce a default ordering that contradicts the
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Pareto order.
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Figure 4.20: Percentage of networks with Pareto contradictions as a function of the
graph size

We now fix the number of nodes and vary the in-degree of the graphs to study
the relationship between the contradictions and the in-degrees. Figure 4.21 presents
the percentage of networks with Pareto violations as a function of the in-degree of the
graph. All curves have different inflection points showing the presence of a relation
between the in-degree of the networks and the number of Pareto contradictions.
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Figure 4.21: Percentage of networks with Pareto contradictions as a function of the
graph in-degree

Results on improved partitioning procedure

Experiments on the improved partitioning procedure showed that for the majority of
instances that lead to strong violations with the Pareto order (i.e., on 23.97% of the
second benchmark), the new algorithm was able to fully or partially repair violations
with the Pareto order. In our benchmark, 62.93% of orderings have been partially or
totally improved. In some networks, no improvement is reported and the percentage
of contradictions remains constant (see Example 4.9). No deterioration or increase in
the percentage of violations was detected. Results of the experiment are reported in
the Table 4.8.
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Observation Percentage
The order is totally repaired 19.71%
The order is partially repaired 43.22%
No repair 37.07%

Table 4.8: Experiment results of the improved partitioning procedure

Figures 4.22 (a) and (b) give the average of the percentage of strict comparisons
induced from the Pareto, the default partitioning algorithm and its improved version in
function of the network sizes and in-degrees respectively. In both figures, we notice that
the classical partitioning procedure and the improved partitioning procedure behave
in the same way: whatever the size of the graph considered, the percentage of strict
comparisons is practically the same. We even notice that the number of nodes and the
in-degree have an influence on the improvement. More precisely, for n = 7 or c = 5,
the improved procedure allows to have a more discriminating order than the Pareto
one. Nevertheless, this order is not necessarily free of contradictions with the Pareto
strategy. The same behavior can be observed for all the graphs having contradictions
with the Pareto order.
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Figure 4.22: Average of the percentage of strict order dominance relations as a function
of (a) the network sizes and (b) the network in-degrees for all the benchmark

Discussion of the experiment results

Using the default partitioning procedure, quasi-linear DAGs, described without arcs
between grand generations of nodes, lead to total pre-orders described on exactly 3
levels. From our experiments, these default partitions were found to be free of Pareto
contradictions. We have seen that on other DAG structures, the partition size is at
least equal to 4 which means that there is a relationship between the existence of links
between nodes and grand-children and the number of layers in the partition. Moreover,
no relationship between the default ordering size and the graph in-degrees have been
found. However, experiments have shown that generally, the lower the in-degree of the
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network, the larger the partition size. Deeper experiments to study the impact of the
number of arcs between generations and the size of those links should be considered
as research perspectives on the topic.

Concerning the percentage of strict dominance relations between pairs of config-
urations, the experiments showed that the default ordering procedure behaves in the
same way and orders practically around 65% of the possible comparisons, whatever
the size of the graph, which is not the case for the Pareto order. Indeed, the larger
the number of nodes, the lower the percentage of comparisons induced by the Pareto
order. Moreover, the two orders are sensitive to the variation of the in-degree and
behave in divergent ways. In fact, the higher the in-degree, the more the percentage
of default comparisons increases and the more the percentage of Pareto comparisons
decreases.

The default partitioning procedure can lead to contradictions with the Pareto order.
The networks that describe this discrepancy contain in most cases links between nodes
and grand-children. The improved partitioning algorithm version that we propose
generally allows to completely or partially reduce the number of these contradictions.
However, experiments on our benchmark have shown that the order induced by the
new procedure leads to a less discriminating order than the Pareto strategy for small
DAG in-degrees and sizes but seems to overcome this drawback for larger numbers.
More experiments on higher number of nodes ans higher network in-degrees should
conducted for future perspectives.

4.8 Conclusion

In this chapter, we have represented a set of conditional preferences by means of a
collection of default-like rules encoded in terms of inequality constraints between pos-
sibilistic set functions applied to sets of configurations. Then we have shown that using
a minimum or maximum specificity principle we can obtain a complete pre-order on
configurations. Still this pre-order have some drawbacks: (i) it has a limited discrim-
ination power; (ii) it may partially conflict with the Pareto order. However, in the
general case, it is possible to remedy to the problem, by adapting the partitioning
algorithm proposed in [Benferhat et al., 2001a] that we apply to the constraints repre-
senting preferences, by only handling the exact information given by the constraints.
Generally, this results in a partial order with no or fewer Pareto violations. However,
we have shown that some sets of default rules cannot be represented by a π-pref net
structure; this may be explained by the rigorous rules of representation imposed by

140



the DAG structure, restricting the types of possible dependencies between variables.

In the next chapter, we propose solutions in order to obtain a complete pre-orders
without Pareto violations while being more discriminant than the ones obtained in
this chapter.

141



142



Chapter 5
Modifying Configuration Orderings in
Agreement with Pareto Dominance

5.1 Introduction

Conditional statements in a preference graph may be translated into default-like rules
which may be represented by different inequality constraints involving the minimum
or the maximum of satisfaction degrees for two mutually exclusive situations. In the
previous chapter, we have seen how to translate these rules into a set of preference
or satisfaction constraints on which an information principle from possibility theory
is applied to entail a well-ordered partition of configurations. When the default rules
and the Pareto order are considered, they lead to different ordering of the solutions
and may contradict each other. In order to take advantage of both approaches and
to remedy the mentioned discrepancy, we propose to study the repair of the default
order by the Pareto order. Besides, since the default order gives a total pre-order on
the configurations, we then seek to refine the Pareto order with the relations of the
default rule.

The work reported in this chapter departs from the approaches dealt with in Chap-
ter 4 by the particular role played by Pareto order for repairing or refining the complete
pre-orders obtained in Chapter 4.

This chapter is divided in four main sections corresponding to three approaches
that all lead to complete pre-orders. In the following Section 5.2, we correct the
ordering obtained with the minimum or maximum specificity principles in order to
satisfy the Pareto order. Section 5.3 then proposes to build a complete pre-order from
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both optimistic and pessimistic rankings that appears to be the most discriminant
compared to the other orderings discussed in this thesis work; however, this can be
applied only when these rankings do not contradict Pareto order (which is generally
the case in practice). The before last Section 5.4 starts with the Pareto ordering
and refines it by using the minimum or maximum specificity orderings. Finally, an
experimental study that supports our work is reported in Section 5.5. Section 5.4 rely
on paper [Ben Amor et al., 2021a]. The work reported in all other sections has not
been published yet.

The same running example is used in the three main sections.

Moreover, in all the procedures describes in this chapter, we refer to a Pareto order.
This means that we compute it by comparing quality vectors. These vectors are made
of symbolic weights which are assigned just as in the conditional preference tables of
a π-pref net. Still when dealing with the optimistic ordering, the symbolic weights
are of the form 1 and α, β, . . . , while for the pessimistic ordering we use the weights
α, β, . . . , and 0 (in reference to the different encodings discussed in Chapter 3).

5.2 Repairing optimistic or pessimistic orderings
with Pareto order

In some cases, default-based orderings may exhibit strong violations with the Pareto
order. In this section, we propose to correct the optimistic and pessimistic orderings
with the Pareto order with the purpose of repairing these conflicts.

Given a well-ordered partition E (optimistic EΠ or pessimistic E∆), how can we
possibly correct it by the Pareto order? By definition, the partition E is a set of k
ordered layers, thus the repair process should be performed in two steps; the first is
an intra-layer refinement consisting of pairwise comparisons within all configurations
of a given layer, and the second step is an inter-layer refinement consisting of pairwise
comparisons within configurations in a given layer ` and those of the lower layers
`+ 1, . . . , k.

In the intra-layer refinement, for each pair of configurations (ω, ω′), we check
whether the Pareto ordering gives additional dominance information (i.e., ω �Pareto ω′

or ω′ �Pareto ω). If so, an intermediate level (between l and l + 1) is created and the
less preferred configuration is put into it.

In the same vein, this principle is applied for the inter-layer refinement where
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we check that, according to the Pareto order, any configuration ω in layer l of E is
preferred to all configurations ω′ at a lower level of E. If not the case, ω is moved
down. If the Pareto ordering indicates an incomparability relation between ω and ω′,
then the dominance relation indicated by the default order is preserved.

Algorithm 5.1 outlines the explained process. Function extend(E, i) permits to
add an intermediary layer below the layer i. The function Pref(M,ω, ω′) gives the
dominance relation between configurations ωi and ωj based on a given a matrix M

that encodes an order.

Algorithm 5.1 has as input the Pareto incidence matrix MPareto and a well-ordered
partition E such that its layers are sorted from best to worst ones. In the worst case, E
is composed of not less than 3 layers (see propositions in Section 4.4) . To simplify the
calculation of the algorithm’s complexity, we consider that E contains a single layer
holding all possible configurations. Thus, one layer is created for each configuration if
the Pareto partial ordering is refined into a total order at the end. The time complexity
of the refinement algorithm is O(2N).

In Example 5.1, we illustrate the application of Algorithm 5.1.
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b 1 β

b̄ β 1
b b̄

c σ 1
c̄ 1 σ

ac ac̄ āc āc̄
d 1 γ 1 1
d̄ γ 1 γ γ

(a)

A

B

C

D

a 1
ā α

a ā
b 1 β2
b̄ β1 1

b b̄
c σ1 1
c̄ 1 σ2

ac ac̄ āc āc̄
d 1 γ2 1 1
d̄ γ1 1 γ3 γ4

(b)

Figure 5.1: Example of π-pref net (a) for equal symbolic degrees per variable and
contexts (b) for different symbolic degrees per variable and context values

Example 5.1 Let us consider π-pref nets in Figure 5.1 that encode the same set of
preference specifications, namely a � ā, a : b � b̄, ā : b̄ � b, b : c̄ � c, b̄ : c � c̄,
ac : d � d̄, ac̄ : d̄ � d, āc : d � d̄, āc̄ : d � d̄. Vectors of weights associated with config-
urations are given in Table 5.2. The induced Pareto ordering on configurations is repre-
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Algorithm 5.1: Refining default ordering by Pareto ordering
Input: MPareto, E s.t. E = EΠ or E = E∆
Output: ERefined

1 ERefined = E
2 i = 0
3 while i < len(ERefined) do

/* intra-layer refinement */
4 extend(ERefined, i)
5 foreach ω ∈ ERefined[i] do
6 foreach ω′ ∈ ERefined[i] s.t. ω′ 6= ω do

/* i+1 is the intermediary intra-layer of i */
7 �Pareto= Pref(MPareto, ω, ω

′)
8 if �Pareto 6= ω′ ./ ω then
9 if �Pareto= ω′ � ω then

10 move(ERefined, ω, i, i+ 1)
11 else if �Pareto= ω � ω′ then
12 move(ERefined, ω′, i, i+ 1)
13 end
14 end
15 clean(ERefined)

/* inter-layer refinement */
16 foreach ω ∈ ERefined[i] do
17 k = i+ 1
18 extend(ERefined, k)
19 foreach ω′ ∈ ERefined[k] s.t. ω′ 6= ω do
20 �Pareto= Pref(MPareto, ω, ω

′)
21 if �Pareto = ω′ � ω then
22 move(ERefined, ω, i, k + 1)
23 end
24 end
25 clean(ERefined)
26 i = i+ 1
27 end
28 Return ERefined
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sented by the Figure 5.3. The optimal configuration is ω3 = abc̄d̄ and the worst config-
uration is ω9 = ābcd̄. The induced optimistic ordering is EΠ = {{ω3}, {ω0, ω2, ω4, ω12},
{ω1, ω5, ω6, ω7, ω8, ω9, ω10, ω13, ω14}, {ω11, ω15}}. Note that the worst configuration ω9

figures in the before last layer. We use the Algorithm 5.1 to repair this discrepancy. The
repaired well-ordered partitions by the Pareto order considering one symbolic weight
per preference statement and one weight per variable are respectively given in Table
5.1. Note that the refined orderings EΠ are composed of 6 layers instead of 4.

ΩΩΩ ~ω~ω~ω ~ω~ω~ω
ω0 = abcd (1, 1, σ, 1) (1, 1, σ1, 1)
ω1 = abcd̄ (1, 1, σ, γ) (1, 1, σ1, γ1)
ω2 = abc̄d (1, 1, 1, γ) (1, 1, 1, γ2)
ω3 = abc̄d̄ (1, 1, 1, 1) (1, 1, 1, 1)
ω4 = ab̄cd (1, β, 1, 1) (1, β1, 1, 1)
ω5 = ab̄cd̄ (1, β, 1, γ) (1, β1, 1, γ1)
ω6 = ab̄c̄d (1, β, σ, γ) (1, β1, σ2, γ2)
ω7 = ab̄c̄d̄ (1, β, σ, 1) (1, β1, σ2, 1)
ω8 = ābcd (α, β, σ, 1) (α, β2, σ1, 1)
ω9 = ābcd̄ (α, β, σ, γ) (α, β2, σ1, γ3)
ω10 = ābc̄d (α, β, 1, 1) (α, β2, 1, 1)
ω11 = ābc̄d̄ (α, β, 1, γ) (α, β2, 1, γ4)
ω12 = āb̄cd (α, 1, 1, 1) (α, 1, 1, 1)
ω13 = āb̄cd̄ (α, 1, 1, γ) (α, 1, 1, γ3)
ω14 = āb̄c̄d (α, 1, σ, 1) (α, 1, σ2, 1)
ω15 = āb̄c̄d̄ (α, 1, σ, γ) (α, 1, σ2, γ4)

Figure 5.2: Vectors of weights associated to configurations of π-pref net in Figure 5.1

Repairing optimistic ordering EΠ with Pareto
Pareto with different symbolic Pareto with equal symbolic

weights in a node weights in a node
{ω3} {ω3}

{ω0, ω2, ω4, ω12} {ω0, ω2, ω4, ω12}
{ω1, ω5, ω7, ω10, ω13, ω14} {ω1, ω5, ω7, ω10, ω13, ω14}

{ω6, ω8} {ω6, ω8}
{ω9} {ω11, ω15}

{ω11, ω15} {ω9}

Table 5.1: Repairing optimistic ordering of π-pref net in Figure 5.1 based on Algorithm
5.1
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ω0

abcd

ω1

abcd̄

ω2

abc̄d

ω3

abc̄d̄

ω4

ab̄cd

ω5

ab̄cd̄

ω6

ab̄cd

ω7

ab̄c̄d̄

ω8

ābcd

ω9

ābcd̄

ω10

ābc̄d

ω11

āb̄cd

ω12

āb̄cd

ω13

āb̄cd̄

ω14

āb̄c̄d

ω15

āb̄c̄d̄

Figure 5.3: Pareto graph of π-pref nets in Figure 5.1 (dotted arrows represent addi-
tional comparisons given one symbol per variable)

5.3 Using optimistic and pessimistic approaches jointly

The minimum specificity algorithm outputs a well-ordered partition that clusters the
worst configuration(s) with other more preferred ones all in the same set. This is due
to the focus on the best models of formulas in the optimistic approach. In some sense,
it does not take much in consideration the least preferred models. In order to refine
results of the optimistic approach, we can also exploit preference statements based on
the maximum specificity principle (pessimistic approach).

Preference graphs that induce a default ordering not consistent with the Pareto
ordering are not taken into account, since experimentally, we could see that it is in
this case that the optimistic and pessimistic orders may contradict one another.

On the graph structures considered in the Propositions from 4.3 to 4.10 of Chapter
4, it has been proved that the minimum and maximum specificity well-ordered par-
titions have three layers. In the pessimistic reasoning, the best solution is left on a
par with the less preferred ones, while for the optimistic reasoning the worst configu-
ration is left on a par with the more satisfactory ones. It is tempting to consider the
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conjunction of the minimum and the maximum specificity rankings.

Algorithm 5.2 takes as input the set of possible solutions, the optimistic and the
pessimistic orderings and outputs a well ordered partition, say E∗, consistent with
both input orders. The first step consists on creating a refined partition composed of
2N layers since, in the best case, well-ordered partitions yield a total order where each
configuration is put in a different layer. The first and last layers of the output partition
are associated with the best and worst configurations respectively. The second layer is
then associated with the second layer of EΠ. Configurations of this layer are compared
to those of the first layer of E∆. If they match, then there exists no possible refinement.
Otherwise, configurations in the second layer E∗[1] are put in a lower level since E∆

expresses so This process is similarly considered to rank-order partition sets of E∆.
Configurations in the penultimate layer of E∆ are put in the last but one layer of
E∗. These configurations are compared with the second layer of E∗ and identical
configurations found in the two layers are raised to a higher level in E∗. At the end of
each iteration configurations in E∗ are deleted from Ω. The procedure is repeated until
all configurations are ranked. Function clean(E) removes empty layers from E. In the
worst case, the refinement algorithm yields a well ordered partition with a number of
layer equal to the maximum between |EΠ| and |E∆|.

Mind that in case we start by considering E∆ that we refine by EΠ thus building
E∆Π we have to exchange instructions from line 12 to 24 with instructions from line
25 to 39. This does not affect the algorithm’s output, and means that considering the
pessimistic order instead of the optimistic order at first place have no impact on the
result.

The Example 5.2 illustrates the procedure of Algorithm 5.2. As it can be seen, we
obtain a more refined pre-order since we have now 5 layers instead of 3. This suggests
the interest of this procedure.

Example 5.2 Let us consider again the π-pref net in Figure 4.10. Details on re-
sults of applying both the minimum and the maximum specificity approaches are pre-
sented in Example 4.7. The optimistic well-ordered partition corresponds to EΠ =
{{ω0}, {ω1, ω2, ω4, ω7}, {ω3, ω5, ω6}} and the pessimistic one corresponds to E∆ = {{ω0,

ω2, ω4}, {ω1, ω3, ω5, ω7}, {ω6}}. The refined partition E∗ is associated with 23 = 8
empty layers. The optimal and worst configurations are classified such that E∗[0] =
{ω0} and E∗[7] = {ω6}. The layer E∗[1] is then composed of configurations in EΠ[1]
namely E∗[1] = {ω1, ω2, ω4, ω7} from which are deleted E∗[1] ∩ E∆[0] = {ω1, ω7} since
they are considered by the pessimistic ordering as less satisfactory than ω2 and ω4.
The latter are then associated with E∗[2]. At the end of the series of instructions
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Algorithm 5.2: Ordering Ω using both optimistic and pessimistic orders
Input: Ω , EΠ, E∆
Output: E∗

1 len(E∗) = 2N
2 E∗[0] = EΠ[0]
3 E∗[2N − 1] = E∆[len(E∆ − 1)]
4 i = 0
5 j = len(EΠ)− 2
6 index_up = 1
7 index_low = 2N − 2
8 index_opt = len(EΠ)− 2
9 index_pess = 0

10 while Ω 6= ∅ and i ≤ len(EΠ) and j ≤ len(E∆) do
11 E∗[index_up] = EΠ[i]
12 increment = 0
13 foreach ω ∈ E∗[index_up] do
14 if ω 6∈ E∆[index_pess] and ω ∈ Ω then
15 Add ω to E∗[index_up+ 1]
16 increment = 1
17 Delete ω from E∗[index_up]
18 Delete ω from Ω
19 end
20 i = i+ 1
21 index_up = index_up+ increment+ 1
22 index_pess = index_pess+ 1
23 if i 6= j or index_opt 6= index_pess then
24 E∗[index_low] = E∆[j]
25 increment = 0
26 foreach ω ∈ E∗[index_low] do
27 if ω ∈ EΠ[index_opt] and ω ∈ Ω then
28 Add ω to E∗[index_low − 1]
29 increment = −1
30 Delete ω from E∗[index_low]
31 Delete ω from Ω
32 end
33 j = j − 1
34 index_low = index_low + increment− 1
35 index_opt = index_opt− 1
36 end
37 E∗ = clean(E∗)
38 Return E∗
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(from line 12 to 21) the refined ordered partition is E∗ = {{ω0}, {ω2, ω4}, {ω1, ω7},
{}, {}, {}, {}, {ω6}} and the remaining configurations in Ω are {ω3, ω5}. Moving to in-
structions from line 25 to 36, the layer before last is associated with EΠ[1] = {ω1, ω3, ω5,

ω7} from which are deleted ω1 and ω7 since they already have been ranked. No con-
figurations are now left to be ranked. After deleting empty layers, the output refined
ordering is E∗ = {ω0}, {ω2, ω4}, {ω1, ω7}, {ω3, ω5}, {ω6}} composed of 5 layers while
EΠ and E∆ only contain 3 levels.

5.4 Refining Pareto ordering with default rules

The Pareto order is an indisputable semantics for ordering preference solutions that
coincides with the product chain rule order for symbolic π-pref nets with no additional
constraints. Moreover, recent researches on the compatibility of CP-nets ordering with
the Pareto ordering [Wilson et al., 2019] have proved that the CP-net ordering refines
the Pareto ordering adding the Ceteris Paribus assumption to it.

In this paragraph, we propose to refine the Pareto ordering by chiefly considering
it as the basic ordering to which we add information such as the one brought by the
application of the minimum or maximum specificity postulates. Thus, we propose to
refine the Pareto ordering with the optimistic and pessimistic orderings.

Each of the mentioned orderings are represented by a 2N × 2N incidence matrix
denoted M (MPareto for the Pareto ordering matrix, MΠ for the optimistic ordering
matrix and M∆ for the pessimistic one). We use the following encoding for describing
dominance relations between two configurations:

• if ωi � ωj then M [i, j] = 1 and M [j, i] = 0,

• if ωi ' ωj then M [i, j] = M [j, i] = 1.

Algorithm 5.3 outlines the process for refining the Pareto ordering by a default
ordering. The idea is to try resolving incomparabilities of the Pareto ordering by the
minimum or maximum specificity principles.

Function move(E,ω, i, j) removes ω from E[i] and place it in E[j]. Functions
Pref(M,ω, ω′) and clear(E) are the same as in Algorithm 5.3 and 5.2 respectively.

If two solutions are incomparable by the Pareto ordering but comparable with the
default ordering, then preferences in MPareto are updated. The Warshall function is
then applied on MPareto to compute the transitive closure after each refinement, i.e.,
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propagate modifications in MPareto. The time complexity of Warshall’s function is
O(2N 3) making the complexity of Algorithm 5.3 equal to O(C2

2N .2N
3) = O(2N) since

it performs C2
2N comparisons with at most one call to Warshall’s function.

Algorithm 5.3: Refining Pareto ordering by default ordering
Input: MPareto, Ω, M = MΠ or M = M∆
Output: MRefinedPareto

1 MRefinedPareto = MPareto

2 for i = 0 to 2N − 2 do
3 for j = i+ 1 to 2N − 1 do
4 ωi = Ω[i]
5 ωj = Ω[j]
6 �Pareto= Pref(MPareto, ωi, ωj)
7 �= Pref(M, i, j)
8 if (�Pareto = −1 and � = 1) or (�Pareto = −1 and � = 2) then
9 MRefinedPareto[i, j] = M [i, j]

10 MRefinedPareto[j, i] = M [j, i]
11 MRefinedPareto = warshall(MRefinedPareto)
12 end
13 end
14 Return MRefinedPareto

In the following Example 5.3, we illustrate the application of Algorithm 5.3, show-
ing that indeed we substantially diminish the number of incomparabilities both with
the minimum and the maximum specificity principle.

Example 5.3 Let us consider π-pref net in Figure 5.1. Its induced Pareto ordering is
represented by Figure 5.3. The Pareto ordering succeeds to rank order 65 leaving 55 in-
comparable pairs of configurations. The optimistic ordering is EΠ = {{ω3}, {ω0, ω2, ω4,

ω12}, {ω1, ω5, ω6, ω7, ω8, ω9, ω10, ω13, ω14}, {ω11, ω15}}. The well ordered partition in-
duced considering the pessimistic approach is E∆ = {{ω0, ω4}, {ω1, ω2, ω3, ω5, ω7, ω10,

ω12, ω13, ω14}, {ω6, ω8, ω11, ω15}, {ω9}}. After performing Algorithm 5.3, the number of
Pareto incomparabilities decreases to 29 when refining either with EΠ or E∆. Each
of these default orderings strongly violate the Pareto order on 2 relations on pairs of
configurations that is corrected in the final result. When considering one symbol for
each preference statement, the number of Pareto incomparabilities increases to 84/120.
When refining with the minimum specificity ordering this number reduces to 38. When
refining with the maximum specificity ordering, Pareto incomparabilities diminishes to
32.

The partial order obtained by Algorithm 5.3 can be turned into a complete pre-
order if we also exploit the ties of the optimistic (or the pessimistic) ordering(s).
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5.5 Experimental study

For some networks, the Pareto and default orderings may contradict each other on the
ranking of some pairs of configurations. In Section 5.3, we showed that for networks
for which the default orderings do not contradict the Pareto ordering, when all the
dominance relations of the optimistic and pessimistic orderings are considered jointly,
we can entail a total preorder on configurations that is highly discriminating, with
fewer equivalence relations between the pairs of configurations. The first purpose of our
experiments consists on confirming this assertion. The second goal of our experimental
study is to evaluate the ordering obtained by the Pareto ordering refinement procedure
by the different default orderings (optimistic, pessimistic and both of their induced
orderings jointly).

5.5.1 Experimental protocol

To conduct our experimental study, we use the same set of randomly generated con-
ditional preference networks considered in the second part of the experiments in
Section 4.7 of Chapter 4. We recall that we used the generation tool GenCPnet
[Allen et al., 2016] to generate a set of preference network instances in which we var-
ied the number of nodes n from n = 3 to n = 7 and the maximum in-degree c from 1
to n− 1. We consider only bivalent decision variables, which means that d is fixed at
2.

Experiments are divided in two parts. The goal of the first part is to confirm that
the Algorithm 5.2 induces a total preorder not only free from Pareto contradictions
but also highly refined.

The second part is conducted on the whole benchmark and shows results on the
refinement of the Pareto ordering by well-ordered default partitions comparisons.

These experiments are also conducted using the same test server as experiments
of Chapter 4. The server technical specifications are described with an Intel Core
i7 − 7700HQ processor and a 20Go workstation. We used the toolbox presented in
chapter 7 for all experiments.

153



5.5.2 Experimental results

For the first part of the experiment, we first train the optimistic and pessimistic default
network orderings on the benchmark described in section 4.7.1. We then consider only
those networks whose default orderings do not contradict the Pareto order (73.03%) of
the total number of instances). The two default partitions are then used to construct
a more refined ordering that we call combined default ordering.

For each partitioning approach, we start by varying the size of the network and
verify the behavior of strict dominance relations with respect to in-degree evolution.
Figure 5.4 (a) shows the experiment results. We can see that, regardless of the size of
the graph, the combined default order induces a highly discriminating order and suc-
ceeds in finding a strict ranking for almost 80% of the configuration pair comparisons.

In the same manner, for each partitioning approach, we vary the network size
examine the behavior of strict dominance comparisons with respect to the in-degree
evolution. Figure 5.4 (b) gives results of this experiment. The graphical plot shows
that the higher the in-degree of the graph, the more discriminating the combined
default order is and the less refined the Pareto order is.

This experiment confirms that the Algorithm 5.2 induces a total pre-order that is
not only free of contradictions with the Pareto strategy but also highly refined.
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Figure 5.4: Average of the percentage of strict order dominance relations as a function
of (a) the network sizes and (b) the network in-degrees for networks with no Pareto
contradictions

For the second part of the experiment, we consider the Pareto order and refine it by
different ordering of the default partitioning procedures. For different network sizes,
Figure 5.5(a) depicts the behavior of the percentage of strict dominance relations of the
Pareto order refined by the optimistic partition (orange dashed curve) and refined by
the combined default ordering (green dashed curve). For different network in-degrees,
Figure 5.5(b) shows the relationship between the percentage of strict comparisons of
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the Pareto order refined by the optimistic ordering (orange dashed curve) and then by
the combined default ordering (green dashed curve).
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Figure 5.5: Average of the percentage of strict order dominance relations as a func-
tion of (a) the network sizes and (b) the network in-degrees for networks of all the
benchmark

5.6 Conclusion

When comparing two potential solutions with respect to a set of conditional prefer-
ences, the Pareto partial order acknowledging that the set of preferences violated by
one is a subset of the preferences violated by the other, is a natural basis for order-
ing solutions. In this chapter, we have shown that it is possible to enrich the Pareto
ordering. To this end, we take advantage of two approaches, in terms of default-like
constraints corresponding to the optimistic and to the pessimistic readings, which are
been proved in Chapter 4 to be compatible with the π-pref net representation.

The constraints-based approach can lead to a complete pre-order once an optimistic
or a pessimistic principle is applied, but at the price of some violations of the Pareto
order. This chapter has proposed three algorithms for mending this situation, (i)
one that leads to repair specificity-based orderings by the Pareto order, (ii) one that
combines the optimistic and the pessimistic orderings, (iii) and a last one that refines
the Pareto order by means of the optimistic or the pessimistic orderings.

The first and last algorithms can always be used, while the second one which
may give more discriminant orderings is only applicable when the specificity-based
orderings do not conflict with Pareto order.

In the next chapter, we investigate an approach briefly mentioned in Chapter 1, that
is based on lexicographic preference trees (LP-trees for short). Its merits is to always
lead to a total ordering. The LP-tree approach heavily relies on complete pre-orders
stating the relative importance of the variables in the specifications of constraints.
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This kind of information can be handled in the approaches handled in Chapters 1
to 5, in TCP-nets to a limited extent, and without restrictions in π-pref nets by the
addition of constraints between symbolic weights.
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Chapter 6
Comparing Possibilistic Preference
Networks and LP-trees

6.1 Introduction

Preferences of a user can be represented by various graphical structures. The most
used among them have been discussed in the first chapter. In order to express pref-
erence relations, the user may provide satisfaction degrees on values of conditional
variables which amounts to construct the conditional preference table of a π-pref net-
work. Alternatively, he may provide a strict total order on values of decision variables
which may be attached to dependency constraints along with importance relations
between variables. This latter set of information permits to construct an LP-tree.

As we shall see, there are different kind of LP-trees which are detailed in this
chapter, where we also seek to compare π-pref nets and LP-trees as structures for
representing preferences over Boolean variables.

The chapter is organised in five main sections. Section 6.2 reviews the different
classes and extensions of LP-trees and provides their detailed definitions. Section 6.3
details the procedure to be applied to LP-trees in order to infer a (total) order on the
set of solutions. Section 6.4 focuses on the comparison between LP-trees and π-pref
nets. Section 6.5 discusses the transformation procedure for translating an LP-tree
into a π-pref net, to finally end with concluding remarks.

This chapter develops the work published in [Ben Amor et al., 2022] and its French
version in [Ben Amor et al., 2021b].
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6.2 Classes of LP-trees

Remember from Chapter 1 that an LP-tree is a preference model defined both from
an order relation between variables that expresses their relative importance, and from
local preference relations on the domains of the variables. Both the importance rela-
tionship between variables and the local preferences can be conditioned on the values of
other variables. For a better study of this model, arcs that represent this information
will be differentiated in the graphical structure:

• cp-arcs depicted by unlabeled solid arrows reflect dependencies between vari-
ables;

• i-arcs represented by dotted arrows reveal importance relations between vari-
ables. They may be labeled by context(s) of more important variables.

An LP-tree can combine conditional and unconditional preferences and importance
relations. The following example deals with the case of a general LP tree.

Example 6.1 In Figure 6.1, cp − arcs from A to B and from B to C show that a
preference dependency of B over A and from C over B. Preferences over variables A
and D are not context-dependent. Priority between variables is not conditional in the
left-hand branch from B to D (B . C . D), which is not the case for nodes B and D
of the first layer (A .a B, A .ā D). Given ā, the preferences and priority relations of
the variables B and C are not provided, resulting in an incomplete right branch in the
tree.

A

B D

C

D

a ā

a � ā

a : b � b̄

b : c � c̄

b̄ : c̄ � c

d̄ � d

d̄ � d

Figure 6.1: An example of a general LP-tree
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There are several types of LP-trees [Booth et al., 2010] depending on (i) whether
or not the preferences are conditional, (ii) whether or not the order of importance of
the variables depends on the value of more important variables. Each of these options
induces a separate LP-tree class. Next Section 6.2.1 regroups and details LP-trees
obtained by imposing conditioning restrictions on importance relations, while Section
6.2.2 deals with LP-trees obtained by imposing conditioning on preferences.

This taxonomy of LP-trees into several classes has first been proposed in
[Booth et al., 2010]. However, we can find in the literature [Bräuning and Hüllermeier, 2016]
other classification principles for describing classes of LP-trees, by considering the con-
ditioning on importance relationships as a categorization criterion.

The two types of conditioning can be combined as detailed in Section 6.2.3, while
Section 6.2.4 provides an overview of the different classes of LP-trees.

Preferences may remain the same for whatever the branch in the tree. Section 6.2.5
is dedicated to the definition and study of LP-trees with such fixed preferences.

When some specifications are missing the LP-tree is considered incomplete. Pref-
erences and importance relationships between variables can describe what is called a
complete LP-tree. This property is defined in Section 6.2.6.

Also, an LP-tree may have nodes with multiple variables. If a node of the tree has
up to k decision variables all grouped together, we speak of k LP-trees, which were
first introduced in [Bräuning and Hüllermeier, 2016]. Section 6.2.7 is dedicated to this
extension of LP-trees.

6.2.1 Conditioning on importance relations

The order of importance of variables can depend on the value of more important
variables, an idea also introduced in [Booth et al., 2010] and investigated in
[Bräuning and Hüllermeier, 2012]. Restraining priority relations to be conditional or
not generates two classes of LP-trees characterized by: unconditional or conditional
importance relations. A lexicographic order on variables exempt of any conditioning is
graphically depicted by a linear path graph such that if Xi .Xj then variables labeled
with Xi and Xj are allied by an unlabeled i − arc. The order expressed on values
of each variable can be conditioned by values of other variables. When all priority
relations between variables do not depend from values of other nodes, we refer to the
class of UI LP-trees for Unconditional Importance relations LP-trees. The importance
relation between variables can depend on the value of the more important variables.
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Each new dependency induces a new sub-branch. Each path from the root to a leaf
defines an order of importance of the variables, for the context of the value(s) that
determined the branch(es) defining this path. When an LP-tree encodes both types
of importance relations, i.e., conditional and unconditional, we speak of CI LP-trees
for Conditional Importance relations LP-trees (see Definition 6.1). This class of trees
must hold at least one conditional importance relation.

Definition 6.1 (CI LP-tree) A Conditional Importance relation LP-tree over deci-
sion variables X is defined by a tuple 〈V,E, PT 〉 where:

(i) V correspond to the set of nodes. Each node is labeled with a decision variable
in X ;

(ii) E is the set of arcs composed of

• i − arc of the form UX 99K X with {UX , X} ∈ X . An i − arcs can ei-
ther be labeled or not indicating a conditioned importance relation or not
respectively;

• cp−arc of the form Xi → Xj with {Xi, Xj} ∈ X and Xi ∈ UXj . A cp−arc
is unlabeled and indicate that preferences over a variable are conditioned by
values of its parents.

(iii) PT = {PT (V1), . . . , PT (VM)} corresponds to the set of local tables where PT (Vi)
is a preference table that describes a total order on values of Xj such that Xj is
the label of Vi. PT (Vi) contains specifications either of the form uVi : Xj � ¬Xj,
or of the form Xj � ¬Xj where uVi ∈ UVi.

Each variable X ∈ X appears at most once in each branch of the tree. A CI LP-tree
should respect the following statements:

1. There must exist at least one conditional importance relation in the tree;

2. All nodes in the tree must be connected by an i− arc.

Figure 6.2 depicts an example of a CI LP-tree where all importance relations are
conditional. However, nothing prevents preferences to be all context-independent.

As for UI LP-trees, the formal definition is given below.
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a � ā

b̄ � b
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c � c̄

d̄ � d d � d̄b � b̄

b̄ � bd̄ � dd̄ � d c̄ � c

Figure 6.2: Example of a CI LP-tree

Definition 6.2 (UI LP-tree) An Unconditional Importance relations LP-tree over
decision variables X is a linear graph composed of the tuple 〈V,E, PT 〉.

A UI LP-tree should respect the following statements:

1. Each variable Xi ∈ X appears at most once in each branch of the tree;

2. All importance relations are unconditional;

3. The set of arcs E contains both i−arcs and cp−arcs. All i−arcs are unlabeled
of the form UX 99K X expressing that UX is more important than X regardless
of the value of UX ;

4. Each local table PT (Vi) describes a total order on values of Xj such that Xj is
the label of Vi. A local table PT (Vi) contains either conditional preferences of the
form uVi : Xj � ¬Xj with uVi ∈ UVi, or unconditional preferences of the form
Xj � ¬Xj.

Figures 6.3 (a) and (b) are illustrative network examples defined on the same set of
variables: X = {A,B,C}. Both trees correspond to the class of UI LP-trees. In Figure
6.3 (a) all variables are independent, the network thus encodes the importance relation
A . B . C and preferences a � ā, b̄ � b and c̄ � c. In this case, graphical modeling
does not seem to be the most concise way to encode all the given information. Unlike
this network, preferences in Figure 6.3 (b) are partially conditional since preferences
over B depend from A.
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a � ā
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c̄ � c
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(b)

a � ā

a : b � b̄

ā : b̄ � b

c̄ � c

Figure 6.3: Examples of UI LP-trees

6.2.2 Conditioning on preferences

The preference statements on values of variables may or may not be conditioned by
contexts expressed by the values of parent variables. This two situations give birth
to two classes of trees respectively called: unconditional or conditional preferences
LP-trees. When all the variables of the tree are context-free, i.e., independent, we
speak of UP LP-trees for Unconditional Preferences LP-trees. When the local tables
contain both conditional and unconditional preferences we deal with CP LP-trees for
Conditional Preferences LP-trees. When a node X depends from UX then the user
must furnish a strict total order over assignments of X for each context value uX ∈
UX . For both CP and UP LP-trees, the priority over variables can be unconditional
or conditioned by assignments of more important nodes. However, in CP LP-tree
there must exist at least one context-dependent preference, while in UI LP-trees all
importance relations should be context-free. In the following we give formal definitions
of these two LP-tree types.

Definition 6.3 (CP LP-tree) A Conditional local preferences LP-tree over decision
variables X is defined by a tuple 〈V,E, PT 〉 where:

(i) V correspond to the set of nodes. Each node is labeled with a decision variable
in X ;

(ii) E is the set of arcs composed of

• i − arc of the form UX 99K X with {UX , X} ∈ X . An i − arcs can ei-
ther be labeled or not indicating a conditioned importance relation or not
respectively;

162



• cp−arc of the form Xi → Xj with {Xi, Xj} ∈ X and Xi ∈ UXj . A cp−arc
is unlabeled and indicate that preferences over a variable are conditioned by
values of its parents.

(iii) PT = {PT (V1), . . . , PT (VM)} corresponds to the set of local tables where PT (Vi)
is a preference table that describes a total order on values of Xj such that Xj is
the label of Vi. PT (Vi) contains specifications either of the form uVi : Xj � ¬Xj,
or of the form Xj � ¬Xj where uVi ∈ UVi.

Each variable X ∈ X appears at most once in each branch of the tree. A CP
LP-tree should respect the following statements:

1. There must exist at least one context-dependent preference relation;

2. All nodes in the tree must be connected by an i− arc.

Definition 6.4 (UP LP-tree) An Unconditional local preferences LP-tree over de-
cision variables X is defined by the same structure as a CP LP-tree, i.e., 〈V,E, PT 〉.

A UP LP-tree should respect the following statements:

1. The set of arcs E only contains i−arcs of the form UX 99K X with {UX , X} ∈ V.
i−arcs can either be labeled by the value(s) of UX1 or not indicating a conditioned
importance relation or not respectively;

2. Each local table PT (Vi) describes a total order on values of Xj such that Xj is
the label of Vi, and only contains specifications of the form Xj � ¬Xj;

3. All nodes Vi ∈ V labeled with the same variable Xj ∈ X have the same preference
order over values in Xj.

Figure 6.4 is an illustrative example of the classe of CP LP-tree.

1An i-arc UX 99K X labeled by all context values of the parent node encodes the same information
as an unlabeled i-arc, which is that UX is more important than X regardless of the value of UX .
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a ā
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d̄

a � ā

b � b̄

b : c � c̄

b̄ : c̄ � c

d � d̄

ā : d̄ � d

c � c̄d : b � b̄

c : b̄ � b

c̄ : b � b̄
c � c̄

Figure 6.4: Example of a CP LP-tree

6.2.3 Other classes of LP-trees

The conditioning properties on local preferences and on the importance relation of an
LP-tree can be combined, which yields four other classes of LP-trees, namely UP-UI,
CP-UI, UP-CI LP-trees, CP-CI. For instance, Booth et al. define the class of CP-UI
as

“(...) the class of all LP-trees with conditional preferences and an unconditional
importance relation”. [Booth et al., 2010]

No further and explicit definitions about these classes are provided in the litera-
ture. Based on network examples given in [Booth et al., 2010], CP-UI LP-trees do
not permit to express conditioning on priority relations between variables. However,
they can hold both conditional and unconditional preferences. Therefore, the class of
UI LP-trees is the union of the classes CP-UI and UP-UI (see Figure 6.5).

Figure 6.5: Class of UI LP-trees Figure 6.6: Class of UP LP-trees

In the same vein, the class of UP-CI would be defined by “the class of all LP-
trees with unconditional preference and conditional importance relations”. Such a
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class should hold structures with both conditional and unconditional priority relations
between variables. Moreover Bouth. et. al., privilege LP-trees where preferences over
each decision variable are the same in all branches of the tree in addition to the fact
that they have to be context-independent. Thus, the class of UP LP-trees is the union
of the classes UP-UI and UP-CI (see Figure 6.6).

With the same reasoning mind, the class of CP-CI would be defined by “the class
of all LP-trees with at least one conditional preference and at least one conditional
importance relation”. This means that preferences can either be context-dependent or
not, and importance relations too. Therefore, if we focus on the conditional relations,
the class of CP-CI corresponds to the intersection between the classes CP-UI and
UP-CI.

The class of UP-UI defines the most restrictive LP-tree structure namely with
unconditional preference and unconditional importance relation. The formal definition
of this class is given below.

Definition 6.5 (UP-UI LP-tree) An Unconditional local Preference and Uncondi-
tional Importance relation LP-tree over decision variables X is a linear graph defined
by 〈V,E, PT 〉.

An UP-UI LP-tree should respect the following statements:

• Each variable Xi ∈ X appears at most once in the tree;

• E only contains i− arcs;

• Each node Vi has one unlabeled outgoing i−arc of the form UX 99K X expressing
that UX is more important than X regardless of the value of UX ;

• Each local table PT (Vi) describes a total order on values of Xj such that Xj is
the label of Vi. It only contains specifications of the form Xj � ¬Xj.

If we consider unconditional relations, the class of UP-UI corresponds to the inter-
section between the classes CP-UI and UP-CI.

The following network illustrates an example of a UI LP-tree.

6.2.4 Discussion on other sub-classes

Given the LP-trees taxonomy discussed in previous sections, there exists no class that
restricts preference relations as well as importance relations to be only conditional

165



A

B

C

a � ā

b � b̄

c̄ � c

Figure 6.7: Example of an UP-UI LP-tree

everywhere. When these restrictions are combined, we may have additional classes of
LP-trees that have never been defined and considered in the previous researches. In
this section, we propose new classes of LP-trees defined in following:

• A SCP for Strong Conditional Preferences is an LP tree that contains only
context-dependent preferences, whenever the dependency relationship is possi-
ble. Importance relations are free to be conditional or not (except for the most
important variable), i.e., all nodes have at least one in-going cp− arc;

• A SCI for Strong Conditional Importance relations LP-trees contains only condi-
tional importance relations. Preferences can be context-dependent or not. Root
and intermediate node, except for parents of leaf nodes, have two outgoing la-
beled i− arcs. Parents of leaf nodes have one unlabled outgoing i− arc.

The combination of restrictions on conditioning on relationships can give rise to
another class of LP-trees: SCP-SCI LP-trees that contain only conditional preferences
and importance relations. The size of the graphical structures in this class grows
exponentially as the number of decision variables increases. On a complexity scale,
SCP-SCI trees would be the heaviest to learn and to elicit, while UP-UI would be the
simplest ones and the less complicated to construct.

Figures 6.8, 6.9 and 6.10 represent examples of an SCP, SCI and SCP-SCI LP-tree,
respectively.
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a ā
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d̄

a � ā

b � b̄

b : c̄ � c

b̄ : c � c̄

ac : d � d̄

ac̄ : d̄ � d

ā : d̄ � d

d̄ : c̄ � cd : b̄ � b

d̄ : b̄ � b

b : c � c̄

b̄ : c̄ � c

Figure 6.8: Example of an SCP LP-tree

6.2.5 Fixed preferences

The order of importance between variables can be independent or conditioned by
some values. But whatever the case, preferences can be fixed, which means that they
remain unchanged on all branches of the LP-tree forming the class of FP LP-trees
[Booth et al., 2010]. Generally, local fixed preferences can be context-dependent.

In the following we give a formal definition of an FP LP-tree (see Figures in 6.11
for illustration).

Definition 6.6 (FP LP-tree) A Fixed Preference LP-tree over decision variables X
is defined by a pair 〈V,E, PT 〉 where:

(i) E contains both i− arcs and cp− arcs;

(ii) PT = {PT (V1), . . . , PT (VM)} is a set of local tables where Vi is labeled with
X ∈ X and PT (Vi) contains preference specifications of the form X � ¬X (or
uX : X � ¬X where uX ∈ UX).

Each variable Xi ∈ X appears at most once in each branch of the tree. A FP LP-tree
should respect the following statement:

1. Each variable Xi keeps the same dependency constraint and preference specifica-
tions in all branches on the tree.
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a ā

c̄b b̄

a � ā

b̄ � b

c � c̄

c � c̄

c : d � d̄

c̄ : d̄ � d
d � d̄b � b̄

b̄ � bd̄ � dd̄ � d c̄ � c

Figure 6.9: Example of an SCI LP-tree
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D

C

C

D

B

B

D

c

a ā

c̄b b̄

a � ā

a : b � b̄

b : c � c̄

ā : c � c̄

b̄ : d̄ � d c̄ : d̄ � dc : b � b̄

d : b � b̄

d̄ : b̄ � b

b : d̄ � d

b̄ : d � d̄
c : d̄ � d

d : c � c̄

d̄ : c̄ � c

Figure 6.10: Example of an SCP-SCI LP-tree

Preferences can be fixed for both conditional and inconditional dependencies. Fig-
ure 6.11(a) gives an example of an FP LP-tree where all preferences are context-free.
Figure 6.11(b) shows an example of an FP LP-tree with both conditional and uncon-
ditional preferences. Variables A, C and D are context-independent Preferences over
values of their domains do not change in every branch of the tree. Preferences over
the values of B depend from the value of C. This dependency relations is expressed
in all branches of the tree and preferences over B remain fixed for every context in all
the tree.

The fact that preferences are conditioned by values of one or many more important
variables is not clearly allowed in the literature. However, this case may lead to
unsatisfiable networks (see Section 6.3 for more details). When (i) the less important
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variables depend from the more important ones and, (ii) if the lexicographic order over
the dependent variables is the same in all branches of the tree, this troubling situation
can be avoided.

A

B C

C B

DD

a ā

a � ā

b � b̄ c � c̄

c � c̄ b � b̄

d � d̄d � d̄

(a)

A

B C

C B

DD

a ā

a � ā

c : b � b̄

c̄ : b̄ � b
c � c̄

c � c̄
c : b � b̄

c̄ : b̄ � b

d � d̄d � d̄

(b)

Figure 6.11: Example of an FP LP-tree (a) with unconditional, (b) conditional pref-
erences

We can specify sub-classes of FP LP-trees, depending on whether or not the con-
ditioning over importance relations and preferences is allowed. Table 6.1 summarizes
these sub-classes. We use a ∼∼∼ to mention that the network contains both conditional
and unconditional information. Symbols X (respectively 7) indicate that all relations
in the tree are conditional (respectively inconditional). We use the exclamation mark
to indicate a strong preference. The first and second columns specify whether or not
the conditioning is performed on preferences and priority relations respectively. For
instance the general class of FP trees contains both conditional an inconditional pref-
erences as well as importance relations. It is represented by the first row of the Table
6.1. If we consider definitions given in 6.2.4 and depending on whether the condition-
ing covers all preference relations or not, we can define more sub-classes of FP LP-tree
(see last 3 rows of Table 6.1). For example, the last row should be read as follows:
When an LP-tree structure contains only conditional preferences with no conditioning
on importance relations, then it belongs to the set of FSCP-UI LP-trees.

Note that FP LP-trees should not be confused with the class of UP LP-trees.
Consider the variable Xi of a FP tree. In all branches of the graph the local preference
relation over Xi is unique and equals xi � x̄i. In contrast, if we consider a UP LP-
tree, then specifications in Xi can take either xi � x̄i or x̄i � xi. Actually, for a given
number N of variables, the set of possible FP LP-trees is included in the set of possible
UP LP-trees [Booth et al., 2010].
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preference dependencies conditioning on importance subclassrelations relations
∼∼∼ ∼∼∼ FP
∼∼∼ X FP-CI
∼∼∼ 7 FP-UI
7 ∼∼∼ FUP
7 X FUP-CI
7 7 FUP-UI
X ∼∼∼ FCP
X X FCP-CI
X 7 FCP-UI
! ∼∼∼ FSCP
! X FSCP-CI
! 7 FSCP-UI

Table 6.1: New sub-classes of FP LP-trees

Most LP-trees preference learning algorithms proposed in the literature are greedy.
Therefore, finding an upper-bound approximation of the number of possible FP LP-
trees given a fixed number of variables seems interesting for future works.

Proposition 6.1 Let X be composed of N preference variables. Considering uncon-
ditional dependency relations between variables, there exists ∏N

i=1(2 × i) possible UI
trees but only N ! FUP UI trees.

Proof 6.1 Since we consider that variables are independent, the preference over the
parent node does not affect preference over its descendant. Thus, local preference tables
of a UI tree are independent from the structure of the graph. While keeping in mind
that by definition any UI LP tree is a path graph (see Definition 6.2), finding the
number of possible FP trees given a number N of features comes down to find the set
of linear graphs that can be constructed with N nodes, which corresponds to the number
of permutations of N distinct objects i.e. N !.

Given N , the idea is to find, for each path graph from N ! graphs, the number of
UI trees that can be constructed. Let us fix the preference of the root node to x � x̄ 2.
The next node X ′ holds a specification of the form x′ � x̄′ or x̄′ � x′. Thus we can
construct two paths from node X to node X ′. Consequently, the number of LP trees
with N nodes equals ∏N

i=1(2× i).

For example let us consider N = 2 decision variables, namely A and B. There
are two possible networks that can be constructed with either A being the root node

2The same reasoning is considered for the case x̄ � x
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and B its children or inversely (see above most structures in Figure 6.12). If we fix
the preference statement associated to A to be a � ā then local table of node B can
take two statements: b � b̄ or b̄ � b, which leads us to two possible path graphs. If
we switch the preference statement associated with A to be ā � a, we would have two
other possible networks leading to 2N = 4 graphs (see left-most trees in Figure 6.12.
Trees in the rectangle with solid line rectangle are FUP-UI LP-trees. If we remove the
restriction of fixed preferences, each one of them leads to four UP-UI LP trees depicted
in rectangles with dotted lines). This number is multiplied by the number of possible
path graph structures with N nodes leading to a total of 2N ×N ! = 8 LP trees.

A

B

a � ā

a � ā

b � b̄

b � b̄

B

A

A

B

a � ā

b � b̄

A

B

a � ā

b � b̄

A

B

a � ā

b � b̄

A

B

a � ā

b � b̄

a � ā

b � b̄B

A

a � ā

b � b̄B

A

a � ā

b � b̄B

A

a � ā

b � b̄B

A

Figure 6.12: Sets of FUP-UI LP-trees (in solid line rectangle) and UP-UI LP-trees (in
dotted line rectangles) given two decision variables

6.2.6 Completeness of an LP-tree

The notion of completeness of an LP-tree has been introduced in [Bräuning and Hüllermeier, 2016].
LP-trees which are said to be complete, require that a total importance order over vari-
ables is provided. Completeness covers only priority relationships since the order of
preferences is complete by definition. A complete LP-tree should respect the following
statements:
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1. Each variable appears in each branch of the tree.

2. When preferences are conditional, all CPT should contain preference orders for
all contexts of parents.

3. When preferences are not conditional all variables hold PT s that express a total
order on its values.

4. When importance relations are conditional, the number of outgoing i − arcs of
all non-leaf nodes equals the size of the variable domain, each labeled with a
node value. All leaves hold one unlabeled outgoing i− arc.

5. When importance relations are unconditional, all nodes have one unlabeled out-
going i− arc.

So far, except for the general LP-tree in Figure 6.1, all other network examples are
complete. Figure 6.13 illustrates the example of incomplete LP-trees. In the right-
most branch of the tree, importance and preference information in the context of c̄ are
missing.

A

B C

BC D

D C D

a ā

b b̄ c

a � ā

a : b � b̄

ā : b̄ � b
ā : c � c̄

c : b � b̄b : c � c̄ b̄ : d̄ � d

d � d̄ c � c̄ d � d̄

Figure 6.13: Example of an incomplete LP-tree

We mention that another class of trees called partial lexicographic preference trees
(PLP-trees) has been introduced in [Liu and Truszczynski, 2015]. These networks al-
low some variables to be missing from some paths. They seem quite similar to incom-
plete LP-trees. This relaxation is of interest in a learning perspective
[Liu and Truszczynski, 2015]. we mention that PLP-trees describe total preorders (in-
stead of total orders) on the set of configurations.
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6.2.7 k LP-trees

In all previous defined classes, a variable is affected to a single node. However, a user
may express importance equality for a set of features. A group of decision variables
may have the same importance degree, they can thus be depicted by a single high
dimensional node. An idea introduced in [Bräuning and Hüllermeier, 2016]. The ex-
pressiveness of LP-tree can thus be extended which gives rise to so called k LP-trees
in which each node holds at most k grouped variables. Note that the fact of declar-
ing two variables of equal importance does not authorise the separate expression of
preferences concerning them. Preference statements in local tables attached to nodes
with grouped variables define a total order over the Cartesian product of variable’s
domains. Any strict total order over a set X can be expressed by a k LP-tree, where
k = |X |.

As for previous classes, k LP-trees allow to make restrictions on conditioning over
importance relation or on preference dependencies between variables. Figure 6.14
shows an example of 2 CP-UI LP-tree where nodes B and C share equal importance
degree and do both depend from A.

A

BC

a � ā

a : b̄c � bc̄ � b̄c̄ � bc

ā : b̄c̄ � bc � b̄c � bc̄

Figure 6.14: Example of a 2 CP-UI LP-tree

6.3 Order induced from an LP-tree

Unlike CP-nets and TCP-nets, finding the dominance relation �Lex between all pairs
of solutions in X of an LP-tree can be ensured by a straightforward algorithm that
consists of sweeping through i−arcs of the tree and considering preferences associated
to nodes. Algorithm 6.1 details the procedure of inferring an ordering given a complete
UI LP-tree. Given a node V ∈ V labeled withX, we consider that x is always preferred
to x′. Starting from the root node and according to its conditional table, configurations
that model x are considered better than those that model x′ s.t. {x, x′} ∈ X. Formally,
we can write ∀ω, ω′ ∈ Ω, the ordering �Lex specifies that if ω |= x and ω′ |= x′ then
ω �Lex ω′. The procedure is recursively repeated until reaching the leaf node.
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Algorithm 6.1: Lexicographic ordering given an UI LP-tree T
Input: T , end /* end equals the number of configurations */
Output: �Lex /* Ordered list of configurations from best to worst */

1 Algorithm: function Ordering(i, end, �Lex)
2 begin
3 if i = |V| then
4 �Lex= Reorder(res) /* function Reorder keeps only the complete

configurations */
5 return �Lex
6 else
7 (pref, reject) = Pref_Rejected_V alues(V ) /* pref (resp. reject) is

the preferred (resp. rejected) value of variable in V */
8 for j = 0 to end/2− 1 do
9 Concatenate(res[j], pref)

10 end
11 for j = end/2 to end do
12 Concatenate(res[j], reject)
13 end
14 Add(�Lex, res)
15 i = i+ 1
16 tab1 =�Lex .slice(0, end/2)
17 tab1 =�Lex .slice(end/2, end)
18 res = Ordering(i, end/2, tab1)
19 res = Ordering(i, end/2, tab2)
20 end
21 end
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Example 6.2 Let us consider the UI LP-tree in Figure 6.3. The root node labeled with
A indicates that a � ā, the ordering array �Lex is thus composed of 4 cells containing
a followed by 4 cells containing ā. The ordering array �Lex is spliced into two halves,
namely tab1 composed of 4 cells containing a and tab1 composed of 4 cells containing
ā. For each part, the procedure is repeated considering now the next important node B.
Thus, tab1 equals now [ab, ab, ab̄, ab̄] and tab1 equals now [āb, āb, āb̄, āb̄]. Same steps
are considered for the last remaining node labeled with C to output the ordering �Lex=
[abc̄, abc, ab̄c̄, ab̄c, ābc̄, ābc, āb̄c̄, āb̄c] such that configurations are organized from best to
worst (configurations between brackets are rank-ordered according to the preference).

In case of a conditional preference and importance relations, we have to consider
each value of the variable X of a node Vi ∈ V separately. Starting by the root node,
trace down the tree according to the preferred instantiation of each variable (in the
context of parent value, if T is a conditioned preference LP-tree), which leads to getting
the optimal alternative ωOpt. Now consider the preference table PT (L) corresponding
to the least important variable L ∈ X , where L labels the leaf node and has respective
assignments {l, l′} and preference relation l � l′ (or u : l � l′ s.t. u ∈ UL for the
conditional case). Since ωOpt |= l (respectively ul), we can deduce that ωOpt � ω′ s.t.
ω′ |= l′ ((respectively ul′). The second step consists in flipping the value of U(L) on its
less preferred instantiation u′ and verify PT (L) given the new context u′. The process
is repeated by subsequently considering variables from the least preferred ones until
reaching the root node.

In the following example, we give the lexicographic induced ordering on configura-
tions for all satisfiable LP-trees given in this chapter.

Example 6.3 Let us consider LP-tree in Figure 6.1. Preference of the root node
stipulates that a � ā, this means that all models of a should lexicographically dominate
those of ā. When the variable A takes the value a, then the second most important
variable is B. The contextual specification associated with this node is a : b � b̄.
This means that in configurations that satisfy a all configurations that satisfy b are
preferred to those that satisfy b̄. In the left-most branch the third most important
variable is C. It holds preferences that depend from B. When a configuration satisfies
b then c � c̄. In the obtained order-ranking, configurations that satisfy c are preferred to
those that satisfy c̄. The least important node is D with the preference statement d̄ � d

which means that, whatever the value of the more important variables the configuration
that verify d̄ is preferred to d. Let us now move on to the right-most branch. The
second most important variable given the value ā of A is D. Configurations that
model ā and d̄ are preferred than those that verify ā and d. For ease of reading,
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we use the symbol � instead of �Lex throughout this example. The final ordering is:
abcd̄ � abcd � abc̄d̄ � abc̄d � ab̄c̄d̄ � ab̄c̄d � ab̄cd̄ � ab̄cd � ω |= ād̄ � ω′ |= ād with
ω 6= ω′ and ω, ω′ ∈ Ω. This order is a pre-order since the LP-tree is incomplete.

We give the following lexicographic orderings for a set of LP-tree example:

• Figure 6.2: ab̄d̄c̄ � ab̄d̄c � ab̄dc̄ � ab̄dc � abcd̄ � abcd � abc̄d̄ � abc̄d � ācbd̄ �
ācbd � ācb̄d̄ � ācb̄d � āc̄db̄ � āc̄db � āc̄d̄b̄ � āc̄d̄b

• Figure 6.3(a): ab̄c̄ � ab̄c � abc̄ � abc � āb̄c̄ � āb̄c � ābc̄ � ābc

• Figure 6.3(b): abc̄ � abc � ab̄c̄ � ab̄c � āb̄c̄ � āb̄c � ābc̄ � ābc

• Figure 6.4: abcd � abcd̄ � abc̄d � abc̄d̄ � ab̄c̄d � ab̄c̄d̄ � ab̄cd � ab̄cd̄ �

ād̄cb̄ � ād̄cb � ād̄c̄b � ād̄c̄b̄ � ādbc � ādbc̄ � ādb̄c � ādb̄c̄

• Figure 6.8: abc̄d̄ � abc̄d � abcd � abcd̄ � ab̄cd � ab̄cd̄ � ab̄c̄d̄ � ab̄c̄d �

ād̄c̄b̄ � ād̄c̄b � ād̄cb̄ � ād̄cb � ādb̄c̄ � ādb̄c � ādbc � ādbc̄

• Figure 6.10: abc � abc � abc̄ � abc̄ � ab̄d̄c̄ � ab̄d̄c � ab̄dc � ab̄dc̄ �

ācbd̄ � ācbd � ācb̄d � ācb̄d̄ � āc̄d̄b̄ � āc̄d̄b � āc̄db � āc̄db̄

• Figure 6.11(a): abcd � abcd̄ � abc̄d � abc̄d̄ � ab̄cd � ab̄cd̄ � ab̄c̄d � ab̄c̄d̄ �
ācbd � ācbd̄ � ācb̄d � ācb̄d̄ � āc̄bd � āc̄bd̄ � āc̄b̄d � āc̄b̄d̄

• Figure 6.13: abcd � abcd̄ � abc̄d � abc̄d̄ � ab̄d̄c � ab̄d̄c̄ � ab̄dc � ab̄dc̄ � ācb �
ācb � ācb̄ � ācb̄ � ωi |= āc̄ with ωi ∈ Ω

• Figure 6.14: ab̄c � abc̄ � ab̄c̄ � abc � āb̄c̄ � ābc � āb̄c � ābc̄

When the LP-tree is complete, it represents a total linear ordering over
X [Booth et al., 2010]. Given an ordering �Lex, each configuration can be associated
with a rank that can be calculated in polynomial time [Fargier and Mengin, 2021b].
Inversely, considering a given rank searching for the configuration which corresponds
to it is also done in polynomial time [Lang et al., 2012]. Recall that, generally, CP-
nets find their induced order in time exponential O(N2N), whereas LP-trees entail an
ordering in time linear to the size of the tree O(N) [Fargier et al., 2018] .
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Conditioning by multiple variables

There is nothing to prevent having an LP-tree like the one in Figure 6.15(a) where
the preferences of a node depend on several important variables (we have in fact
abc � abc̄ � ab̄c � ab̄c̄ � ābc̄ � ābc � āb̄c̄ � āb̄c). Even if it seems that no example
can be found in the literature, conditioning could a priori also depend on less important
variables. But this can lead to troubling situations as in Figure 6.15(b), where B is
conditioned by both A more important and C less important. If we then seek to
compare abc̄d̄ and ab̄cd, it seems that we are led to prefer the second configuration
since c � c̄ and no constraint concerning the more important variable B applies (yet
the value of B in abc̄d̄ is the preferred value in the context ac̄ and the value of B in
ab̄cd is not its preferred value in the ac context).

Moreover, the preference on D, admittedly less important, is violated by ab̄cd (and
one could besides add many other less important preferences below D which would be
violated in the same way!)

A

B

C

a � ā

b � b̄

ab : c � c̄

ab̄ : c � c̄
āb : c̄ � c

āb̄ : c̄ � c
(a)

A

B

C

D

a � ā

ac : b � b̄

ac̄ : b � b̄

āc : b � b̄

āc̄ : b̄ � b

c � c̄

d̄ � d
(b)

Figure 6.15: Multiple conditionings

Dominance query

To compare two configurations, it is necessary to know which variable(s) they differ
on3. If this includes one or more variables involved in defining the branches, then
the preference associated with the most important of these variables determines the
order. This variable is called the decisive variable. If the difference in configurations
involves only variables not included in the definition of the branches, then the path
corresponding to their common “context” must be identified [Booth et al., 2010].

3In the case of a k LP tree with k ≥ 2, we have to consider the node which contains the set of
variables in which appears the variable(s) on which the two given configurations differ.
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Example 6.4 Let us consider the UI LP-tree in Figure 6.7, and the pair of config-
urations abc, ab̄c̄. The two configurations differ on the value of variables B and C.
The lexicographic order expressed by the network states that A.B .C. The variable B
constitutes thus the decisive variable. It stipulates that b � b̄ which yields to conclude
that abc �Lex ab̄c̄.

Lexicographic order and cardinality order

We have seen that CP-nets can violate cardinality order, while π-pref net agrees with
it. It is interesting to examine the compatibility of the cardinality order with the or-
dering entailed from LP-trees. For this purpose, let us consider the simplest structure
of UP-UI LP-trees illustrated by the Figure 6.7. The induced total order on config-
urations stipulates that abc �Lex āb̄c̄. However, the dominant configuration violates
nodes B and C, while the dominated one violates only A. The two orders may thus
lead contradictory dominance relations. This can be explained by the fact that the im-
portance relation on variables has a dominant and discriminant power on the ranking
of configurations.

6.4 Comparison π-pref-net vs LP-tree

In this section, we indicate several differences, more or less obvious, between π-pref-
nets and LP-trees, after their respective presentations in the previous sections.

The π-pref network framework allows us to add importance relations between the
preferences associated with nodes in the form of inequalities between symbolic weights,
which allows us to refine the order of inclusion [Ben Amor et al., 2016b]. However,
even with additional constraints on symbolic preference degrees, the order obtained
from the chain rule remains partial and incomparabilities between configurations may
persist.

Example 6.5 Consider π-pref net in Figure 4.1(a). For example we can add α >

β > σ > γ. This expresses that it is less serious to violate the preference(s) on the
variable A than those on the variable B, which are themselves of lesser priority than
those on the variable C, and that the preferences on D are of greater priority than
those on C. If we add this total order information between nodes to the π-pref net, we
obtain an order which now makes it possible to make the comparison abc̄d � abcd̄ (with
respective preference degrees σ and γ), but which remains partial since for instance,
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one cannot compare abc̄d̄ (with respective preference degree σγ) either with āb̄c̄d (with
respective preference degree α), or with ābcd (with respective preference degree αβ).

Therefore, the first main difference between LP-trees and π-pref nets is that com-
plete LP-trees (where all variables are ordered) lead to a total ordering of config-
urations, while π-pref nets generally lead to only a partial order, even when adding
constraints on inequalities between the symbolic weights associated with the variables,
as shown in the above Example 6.5.

Besides, the π-pref nets allow the expression of the indifference between configu-
rations, notably if we have conditional constraints such as u : X ∼ ¬X or if we have
equalities between symbolic weights. With an LP-tree there are no tie configurations
(except in the case of incomplete LP-trees, see the ordering of LP-tree in Figure 6.13
in the Example 6.3).

A more or less obvious difference between the two networks lies in their graphic
structure which consists of a DAG in π-pref nets and of a directed tree in LP-trees.
Moreover, for π-pref nets the structure of conditional preferences is only constrained
by the structure of the DAG (more general than that of a tree).

Even if lexicographical orders, because of their simplicity, are very present in human
cognition [Gigerenzer and Goldstein, 1996], the fact of always leading to a total order
of the configurations (for the complete case) presents a forced character which can
be all the less acceptable cognitively as there are many variables. In particular, the
LP-tree idea is not compatible with the order provided by weighted averages of not
very different weights. Indeed let us suppose that we have 4 Boolean variables A, B,
C, D of respective weights α, β, γ, δ such that α+β+ γ+ δ = 1 with α ≥ β ≥ γ ≥ δ;
the lexicographic constraint a � ā implies α ≥ β + γ + δ, the lexicographic constraint
b � b̄ implies β ≥ γ + δ the constraint c � c̄ implies γ ≥ δ. We can therefore see
that the weights must decrease rapidly. The networks are in comparison much more
flexible.

6.5 From LP-trees to π-pref nets

In this section, we examine the question of building a π-pref net that recovers domi-
nance relations induced from a complete LP-tree. To do so, the question is to know
if it is possible to impose symbolic constraints in a π-pref net so that it is equivalent
to an LP-tree. Let us first consider the simple case of a linear LP-tree as in Figure
6.16(a) before dealing with the general case illustrated by Figure 6.17.
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A

B

C

D

a � ā

b � b̄

c � c̄

d � d̄

(a)

A

B

C

a � ā

a : b � b̄

ā : b̄ � b

b : c � c̄

b̄ : c̄ � c

(b)

Figure 6.16: Two linear LP trees with (a) unconditional and (b) conditional preferences

For the LP-tree of Figure 6.16(a), each of the constraints a � ā, b � b̄, c � c̄, d � d̄

is translated respectively by the possibility distributions (1, α), (1, β), (1, γ), (1, δ)
on {a, ā}, {b, b̄}, {c, c̄}, {d, d̄} respectively. The order of importance of the variables
induces the constraint α ≤ β ≤ γ ≤ δ. But as can be seen by examining the table in
Figure 6.19, this constraint is not sufficient to recover the lexicographical order. We
must add the constraints α ≤ β×γ×δ and β ≤ γ×δ to recover it (the first constraint,
for example, ensures that ab̄c̄d̄ � ābcd). The syntax of these products shows that it is
easy to generalise the constraints to be added for a linear LP-tree with any number of
variables.

A

B C

C B

a ā

a � ā

c̄ � c

b̄ � b

b � b̄

b : c � c̄

b̄ : c̄ � c

Figure 6.17: A general LP-tree

ΩΩΩ ~ω~ω~ω
abc (1, 1, 1)
abc̄ (1, 1, γ1)
ab̄c̄ (1, β1, 1)
ab̄c (1, β1, γ2)
āb̄c̄ (α, 1, 1)
ābc̄ (α, β2, 1)
āb̄c (α, 1, γ3)
ābc (α, β2γ3)

Figure 6.18: Vectors associated to
configurations of π-pref net relative
to LP-tree in Figure 6.17
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ΩΩΩ ~ω~ω~ω

abcd (1, 1, 1, 1)
abcd̄ (1, 1, 1, δ)
abc̄d (1, 1, γ, 1)
abc̄d̄ (1, 1, γ, δ)
ab̄cd (1, β, 1, 1)
ab̄cd̄ (1, β, 1, δ)
ab̄c̄d (1, β, γ, 1)
ab̄c̄d̄ (1, β, γ, δ)
ābcd (α, 1, 1, 1)
ābcd̄ (α, 1, 1, δ)
ābc̄d (α, 1, γ, 1)
ābc̄d̄ (α, 1γ, δ)
āb̄cd (α, β, 1, 1)
āb̄cd̄ (α, β, 1, δ)
āb̄c̄d (α, β, γ, 1)
āb̄c̄d̄ (α, β, γ, δ)

Figure 6.19: Vectors associated to configurations for the π-pref net relative to LP-tree
in Figure 6.16(a)
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Let us now study a more generalized case. The LP-tree of Figure 6.17 which has
for root A with preference a � ā encoded by the distribution (1, α) on {a, ā}, has
two branches. The one on the right (context ā) is coded with the two distributions
(β2, 1), (γ3, 1) on {b, b̄} and on {c, c̄} respectively for the preferences c̄ � c and b̄ � b.
The constraint γ3 ≤ β2 ensures the lexicographic order on this branch. As for the left
branch (context a), we have on the one hand the distribution (1, β1) on {b, b̄} for b � b̄,
and on the other hand the distributions (1, γ1) on {c, c̄} if B = b is true and (γ2, 1)
on {c, c̄} if B = b̄, with the importance constraints β1 ≤ min(γ1, γ2). This ensures
the desired lexicographical order on this branch. The two branches correspond to the
Table 6.18. To have ab̄c � āb̄c̄, we must add the constraint β1 × γ2 > α. As can be
seen, the process of adding constraints, which is used to represent a linear LP tree,
must be repeated on each branch in the case of a general LP tree.

The study of these two examples shows that it is necessary to add in a π-pref net-
work not only constraints between symbolic weights to reflect the order of importance
of nodes in a (sub)-branch, but also constraints involving products (with a number of
terms that increases with the number of variables) to obtain a fully lexicographic order.
This echoes the price to be paid for obtaining such an order under all circumstances.

Let us note finally that the 2-LP-tree of Figure 6.14 does not pose any particular dif-
ficulty and is easily expressed in the form of π-pref network with the possibility distri-
butions (1, α) on {a, ā}, (γ1, β1, 1, σ1) on bc, bc̄, b̄c, b̄c̄ in context of a and (β2, γ2, σ2, 1) on
bc, bc̄, b̄c, b̄c̄ in context of ā with the constraints inequality α < min(β1, β2, σ1, σ2, γ1, γ2),
β1 > σ1 > γ1 and β2 > σ2 > γ2.

6.6 Conclusion

The introduction of LP-trees has been largely motivated by their use in preference
learning [Liu et al., 2018] [Fargier et al., 2018]. However, if we consider that we can
extrapolate a user’s preferences from the observation of her/his preferences between a
rather small number of configurations, making the assumption that we are trying to
learn an LP-tree can constitute a rather important representation burden of having
to provide importance relations, dependency relations and total order on variable
domains!

LP-trees do not permit to express indifference which constitutes a biased represen-
tation and a restriction on the user preference specifications. From this point of view,
the representation offered by π-pref nets is not biased (because it obeys at least the
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Pareto order, which seems to be not very debatable, and can be modulated by adding
constraints between the symbolic weights).

We have seen that many classes of LP-trees have not yet been well examined or
even introduced in the literature. Moreover, the reverse transformation procedure for
translating a π-pref net into a (potentially incomplete) LP-tree has not been investi-
gated. However, translating a partial order into a total (pre-)order may seem arbitrary.
Further studies on these of research topics need to be conducted.
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Chapter 7
A Toolbox for Reasoning About
Conditional Preferences

7.1 Introduction

In this chapter, we propose a possibilistic preference networks toolbox: ΠPNT, devel-
oped in JavaScript language and designed to visualize and edit possibilistic preference
networks. ΠPNT proposes a number of features that allow to interrogate π-pref nets
and compare induced ordering(s)1 over the set of choices with respect to different other
orderings such as default orderings, Pareto ordering and ceteris paribus ordering.

The implementation of ΠPNT is based on the CP-net visualizer2 toolbox dedi-
cated to CP-nets [Shafran et al., 2016]. It contains revised code, additional functions
and scripts that are produced as a byproduct of the research work in Chapters 3 to
5. The ergonomics of the window components and the graphical representation of a
CP-net have been reused from the CP-net visualizer toolbox. ΠPNT source code is
published in the GitHub forge3 .

Next section first describes how to create a π-pref net from a set of preference
statements. It then explains how to construct network extensions of a π-pref net.
Therefore, it details procedures of inferring orderings from the created and generated
networks to then perform the dominance query on the set of solutions. Section 7.3
explains how preference specifications are translated into default rules used to entail
orderings over the set of solutions. Section 7.4 shows how to compare these orderings.

1generated assuming all variants introduced in Chapter 3
2https://github.com/azsn/cp-net-visualizer
3https://github.com/SyrineIRIT/Possibilistic-Preference-Nets.git
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Section 7.5 is dedicated to possible refinements between the Pareto and defaults orders.
Finally, Section 7.6 is dedicated to conditional preference networks. It describes how
to randomly generate these models using an existing library, which is an essential
procedure that made our experiments possible.

The ΠPNT toolbox proposes the following functionalities :

• Create a π-pref net and all of its extensions assuming different scales for prefer-
ence degrees (see Section 3.4). This functionality includes:

– Generate π-pref nets from a set of conditional preference statements;

– Visualize the π-pref net.

• Compute the joint possibility distribution(s) using:

– Equation 2.23 preference degrees;

– Equation 3.5 when preferences are encoded by satisfaction degrees.

• Infer ordering based on:

– the Pareto order for all π-pref nets extensions (see Section 3.4 of Chapter
3);

– the pessimistic or optimistic approaches using Algorithms 4.1, 4.2 and 4.3;

– the ceteris paribus assumption;

• Compare orderings of the default-like approach and the CP-net approach with
the Pareto ordering

• Perform repairs and refinements on some generated orderings (see Sections 5.2
and 5.4 of Chapter 5)

• Perform dominance and optimization queries on both CP-nets and π-pref nets

The main menu of the toolbox is represented by the most-left column of Figures
in 7.1.

7.2 Creating and querying π-pref nets

In this section, we explain how π-pref nets and their extensions are created, displayed
and queried in the ΠPNT toolbox.
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Figure 7.1: The toolbox main menu

7.2.1 Network definition

The π-pref net is defined by a structure called Graph which is described by a list
of topologically sorted nodes, i.e., ancestors before descendants, called Nodes and a
number of nodes denoted by N . Each node is associated with a local possibility
distribution derived from statements in local tables CPT s associated to the nodes.
Each nodeXi is described by a set of attributes listed below. We provide the equivalent
notation used in previous chapters between brackets:

• a unique name Name (Xi);

• an array Domain that saves the multiple values of the decision variable (Xi);

• a set of parents Parents (UXi);

• a set of children Children (ChXi);

• a bi-dimensional matrix 3×|UXi |, named CPT (CPT(Xi) of Definition 1.7). Let
u ∈ UXi , each context u is allied with an array of size 3 where the first and last
cells indicate the preferred and rejected values of Xi in Xi, respectively. The
intermediate cell indicates if the preference relation is strict (0) or loose (1);

• a bi-dimensional matrix 2 × |UXi |, named PossibilisticCPT or πCPT for short
(CPT(Xi) of Definition 3.2). For each context u ∈ UXi is associated an array of
size 2 in reference to values of the node. The array contains degrees associated
with the values of Xi.
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This description allows to define nodes of the network and the dependency relations
between them in addition to their associated local tables. We recall that we only
consider binary decision variables and strict dominance relations between values.

Example 7.1 Let us consider CP-net depicted in the toolbox window of Figure 7.2.
First, the network structure is either uploaded from an xml file by clicking on the but-
ton “Load CP-net from file”, randomly generated using the button “Generate random
CP-net” or manually created by adding root nodes using the button “Add root node”
and then dependencies between them. By clicking on each node (colored with red in
figures), the user can first specify the variable name and domain in Domains in the
right most column of the window. Links are then created by clicking on each node
and selecting parents to add. Once the graphical structure is created, the user can
now specify preferences for each context value. Conditional tables can be displayed by
checking the checkbox “Show CPT’s”.

Let the structure in Figure 7.1 define a conditional preference network that encodes
preference specifications over 4 decision variables Nodes = {node(X(A)), node(X(B)),
node(X(C)), node(X(D))}. Preferences over node(X(C)) and node(X(B)) depend
from values of node(X(A)). Preferences over node(X(D)) depend from values of all
other nodes. Preference specifications are: A � a, A : b � B, a : B � b, A : c � C,
a : C � c, ABC : D � d, ABc : d � D, AbC : d � D, Abc : D � d, aBC : D � d,
aBc : D � d, abC : d � D, abc : d � D. Figure 7.2 presents the displayed window of
the toolbox that depicts the described conditional preference network. Attributes that
describe each node are given by Columns 1 to 5 of Table 7.1.

For each node, preference statements in CPT are considered to generate a possi-
bilistic local distribution stored in the attribute πCPT .

Generating a π-pref net from a set of preference statements is explained in Section
3.2. Briefly, the preferred value is attributed a degree equal to 1 while its negation is
allied with a positive symbolic degree strictly inferior to 1. The user can constraint
symbols to be equal for all parents values or specific to each context. Algorithm 7.1
implements this procedure of creating a general normalized π-pref net (see Definition
3.2), which we call πGraph, from a statements of the corresponding CP-net structure
called Graph. We define the algorithm’s used functions in the following:

• function ListOfSymbols returns a list of symbolic degrees;

• function Pref_Rejected_V alues takes as input a statement in the CPT table
and returns the preferred good and rejected bad node values respectively;
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• function AddAttribute adds the second parameter as an attribute to the object
in the first parameter.

Nodes Name Domain Parents Children CPT πππCPT

node(X(A)) X(A) [A, a] [∅]
[node(X(B)),

[A, 0, a] [1, α]node(X(C)),
node(X(D))]

node(X(B)) X(B) [B, b] [node(X(A))] [node(X(D))] A : [b, 0, B] [β, 1]
a : [B, 0, b] [1, β]

node(X(C)) X(C) [C, c] [node(X(A))] [node(X(D))] A : [c, 0, C] A : [γ, 1]
a : [C, 0, c] a : [1, γ]

node(X(D)) X(D) [D, d] [∅]

ABC : [D, 0, d] ABC : [1, σ]
ABc : [d, 0, D] ABc : [σ, 1]
AbC : [d, 0, D] AbC : [σ, 1]

[node(A), Abc : [D, 0, d] Abc : [1, σ]
node(B), aBC : [D, 0, d] aBC : [1, σ]
node(C)] aBc : [D, 0, d] aBc : [1, σ]

abC : [d, 0, D] abC : [σ, 1]
abc : [d, 0, D] abc : [σ, 1]

Table 7.1: Attributes describing the conditional preference network in Figure 7.2 (from
column 1 to 5) and π-pref net in Figure 7.3 (all columns)

Figure 7.2: Example of a conditional preference network

Algorithm 7.1 starts by considering the root node. Function Pref_Rejected_V alues
return the preferred good and rejected bad values of the node. The good value is
associated with a degree 1 and the bad one with a symbolic degree from the list
ListOfSymbols. A possibilistic local table πCPT is created in which preference
degrees are added. Similarly, the algorithm goes through all remaining CPT s of
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(non-root) nodes and, for each node, associates to the parameter row the preference
specification of a given context value. The conditional preference row is then passed
as parameter to the function Pref_Rejected_V alues and the same instructions as
for root nodes are applied.

Note that, the user can choose to create a π-pref net that contains equal or different
symbolic weight(s) per variable and context, the list ListOfSymbols is thus adapted
to take into consideration the choice of the user.

Algorithm 7.1: Create a general π-pref net
Input: Graph /* CP-net */
Output: πGraph /* π-pref net */

1 begin
2 symbols = ListOfSymbols()
3 πGraph = Graph
4 for i = 0 to Graph.N − 1 do
5 j = 0
6 pref_degree = [ ]
7 if Graph.Nodes[i].Parents = ∅ then
8 [good, bad] = Pref_Rejected_V alues(Graph.Nodes[i].CPT )
9 if Graph.Nodes[i].CPT [0] = good then

10 pref_degree[0] = 1
11 pref_degree[1] = symbols[i]
12 else if Graph.Nodes[i].CPT [0] = bad then
13 pref_degree[0] = symbols[i]
14 pref_degree[1] = 1
15 else
16 pref_degree[j] = [ ]
17 foreach row ∈ Graph.Nodes[i].CPT do
18 [good, bad] = Pref_Rejected_V alues(row)
19 if Graph.Nodes[i].CPT [0] = good then
20 pref_degree[j][0] = 1
21 pref_degree[j][1] = symbols[i]
22 else if Graph.Nodes[i].CPT [0] = bad then
23 pref_degree[j][0] = symbols[i]
24 pref_degree[j][1] = 1
25 j = j + 1
26 end
27 Delete (πGraph.Nodes[i].CPT )
28 AddAttribute(πGraph.Nodes[i],PossibilisticCPT )
29 πGraph.Nodes[i].PossibilisticCPT = pref_degree
30 end
31 Return πGraph

32 end
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Example 7.2 Let us reconsider the network in Figure 7.2. By clicking on one of the
four last checkboxes in the option panel in the left most column of the window, the
toolbox creates and displays local tables associated to (extensions) of the π-pref net.
For instance, the last column in Table 7.1 gives the added conditional tables to the
CP-net structure in order to construct an normalized π-pref net: specifications of each
node are translated into a possibility distribution. Besides, the user can choose to work
with equal or different symbolic degrees per variable by checking the checkbox “Equal
symbols per variable”.

Figures 7.3 and 7.4 represent induced π-pref nets given sets of preference statements
of network in Figure 7.2, respectively with equal and different symbolic weights per
variable and context.

Figure 7.3: Example of a π-pref net with one symbolic weight per variable
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Figure 7.4: Example of a π-pref net with one symbolic weight per variable and context
value

7.2.2 π-pref net extensions

In Section 3.4, we have proposed other encoding scales to express conditional prefer-
ences which gave rise to various π-pref net extensions. The example of the previous
section was is an illustration of a general π-pref net or more precisely an normalized π-
pref net (see Definition 3.2). The toolbox enables the user to generate from statements
of a conditional preference network an anti-normalized π-pref net, a bi-normalized π-
pref net or simply a preference network with a non-normalized distribution on condi-
tional preferences (see Section 3.4). For each of these cases, the toolbox provides the
user the freedom to choose working either with equal or different symbols for encod-
ing preference degrees. Algorithm 7.1 is adapted and reused to generate preference
networks with the different distribution scales.

Example 7.3 Networks in Figures 7.5 (a), (b) and (c) correspond to extensions of
π-pref net in Figure 7.4. Preferences of network in Figure 7.5(a) are encoded with
satisfaction degrees using the guaranteed possibility measure. Those of network in
Figure 7.5(b) are encoded with non normalized distributions which lay in the scale
(0, 1). In Figure 7.5(c) variable preferences are encoded by bi-normalized distribution
such that the preferred value of the variable is associated with highest preference degree
1 and the rejected one is associated with a degree equal to 0.
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(a) (b) (c)

Figure 7.5: Examples of (a) an anti-normalized (guaranteed), (b) a non-normalized,
(c) a bi-normalized π-pref net generated from network in Figure 7.4

7.2.3 Joint distribution over solutions

Depending on the distribution scale, the toolbox is able to calculate the joint distri-
bution on configurations covered by a π-pref net. When preferences are encoded by
possibilistic weights, the product chain rule in Equation 3.1 is used to infer an order-
ing over Ω. To do so, we have used Algorithm 7.2 which associates to each complete
solution ω its preference weight called degree. The joint possibility distribution of a
configuration is calculated based on its vector of weights. Algorithm 7.3 describes the
procedure of constructing the vector ~ω of a given solution ω. It takes as input the con-
figuration itself ω and the π-pref net πGraph. The entered solution is then written in
a Boolean form using the function omegaUnderBooleans. The algorithm then simply
sweeps through all configuration values in ω and searches for their corresponding sym-
bolic weights, to then output the vector of weights ~ω. Function ProductChainRule

simply multiplies degrees in ~ω and returns the possibility degree associated with the
input vector.

Algorithm 7.2: Calculate joint possibility distribution
Input: Ω

1 begin
2 foreach ω ∈ Ω do
3 ~ω = Construct_V ector(ω)
4 degree = ProductChainRule(~ω)
5 AddAttribute(ω, degree)
6 end
7 end
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Algorithm 7.3: Construct vector of weights (Construct_Vector)
Input: ω , πGraph
Output: ~ω

1 begin
2 ~ω = [ ]
3 ωb = omegaUnderBooleans(ω)
4 for i = 0 to πGraph.N − 1 do
5 if πGraph.Nodes[i].Parents = ∅ then
6 degree = πGraph.Nodes[i].PossibilisticCPT [ωb[i]]
7 else if Graph.Nodes[i].Parents 6= ∅ then
8 cω = GetContext(ω,Graph.Nodes[i])
9 rowcω = findCPTContextRow(πGraph.Nodes[i].PossibilisticCPT, cω)

10 degree = πGraph.Nodes[i].PossibilisticCPT [rowcω ][ωb[i]]
11 ~ω = Concatenate(~ω, degree )
12 end
13 Return ~ω

14 end

Example 7.4 Let us consider the configuration ω2 = ABcD and π-pref net in Figure
7.4.

• In the first iteration, function omegaUnderBooleans returns ω2b = 0010. The
possibilistic local table attached to node(X(A)) is [1,α]. The projection of ω2b

on the possibilistic conditional table of node(X(A)) corresponds to the degree of
ω2[node(X(A))]. After this first iteration degree = 1 and vector ~ω2 = [1].

• For the second iteration, the context cω2 = A and the possibility distribution
of node(X(B)) in the context of A is rowcω2

= [β0, 1]. Since ω2b [1] = 0, the
preference weight added to ~ω2 is degree = β0 which yields ~ω2 = [1, β0].

• In a third iteration, we get cω2 = A, rowcω2
= [γ0, 1] and ω2b [2] = 1. The

vector of weights is thus equal to ~ω2 = [1, β0, 1]. Finally, for the last vertex
node(X(D)), the context is cω2 = ABc and the possibilistic conditional table is
rowcω2

= [δ1, 1]. The binary value of node(X(D)) is ω2b [3] = 0. The returned
output vector describing ω2 is ~ω2 = [1, β0, 1, δ1].

Figure 7.6(a) gives an example of the window displayed by the toolbox when cal-
culating the joint possibility distribution inferred from π-pref net in Figure 7.4. Each
configuration ω is described by its index in Ω, its complete instantiation and its vector
~ω. The joint preference degree is then displayed in a second line.

Algorithms for calculating the joint distribution on configurations when preferences
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(a) (b)

Figure 7.6: Windows displaying the joint possibility distribution given (a) π-pref net
in Figure 7.4 and (b) π-pref net in Figure 7.5(a)

are expressed in terms of satisfaction degrees are also implemented (see Figure 7.6(b)
for illustration).

We have proposed and coded one of many solutions that permit to calculate the
joint distribution on solutions.

7.2.4 Dominance query

As noted above, the product chain rule induces the exact same ordering as the Pareto
strategy without additional constraints on symbolic weights [Ben Amor et al., 2015].
Thus, the toolbox implements the latter strategy (see Definition 3.4) in order to com-
pare pairs of configurations. Algorithm 7.4 details the comparison procedure. It
describes the function Pref(M,ω, ω′) used in Algorithm 5.1.

To find the dominance relation �Pareto between the entered solutions, the algorithm
uses a result vector vec in the size of decision nodes. Configurations preference degrees
are compared one by one. If π(ω[i]) > π(ω′[i]) then vec[i] =�. Conversely, if π(ω′[i]) >
π(ω[i]) then vec[i] =≺. When both degrees correspond to equal symbolic weights,
then vec[i] = ‘'’ otherwise they are considered incomparable and vec[i] = ‘./’. If vec
contains either both � and ≺ relations or the incomparability relation ./ then ω and
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ω′ can not be compared by the Pareto order. Otherwise, if vec contains the relation
� but not ≺ than ω �Pareto ω′. By contrast, if vec contains the relation ≺ but not �
than ω′ �Pareto ω.

Similarly, the toolbox implements the Pareto order for comparing vectors of weights
corresponding to all extensions of a π-pref net.

Algorithm 7.4: Dominance query based on Pareto order
Input: ω, ω′, πGraph
Output: �Pareto

1 begin
2 ~ω = Construct_V ector(ω)
3 ~ω′ = Construct_V ector(ω′)
4 vec = [ ]
5 for i = 0 to πGraph.N − 1 do
6 if (~ω[i] = 1) and !(~ω′[i] = 1) then
7 vec[i] =�
8 else if !(~ω[i] = 1) and (~ω′[i] = 1) then
9 vec[i] =≺

10 else if !(~ω[i] or ~ω′[i] = 1) then
11 if ~ω[i] = ~ω′[i] then
12 vec[i] ='
13 else
14 vec[i] =./
15 end
16 if vec.includes(./) or (vec.includes(�) and vec.includes(≺)) then
17 �Pareto=./
18 else if vec.includes(�) and !vec.includes(≺) then
19 �Pareto=�
20 else if !vec.includes(�) and vec.includes(≺) then
21 �Pareto=≺
22 Return �Pareto
23 end

Example 7.5 We pursue with the same π-pref net example depicted by Figure 7.4.
The comparison vector vec of configurations ω0 = ABCD with ~ω0 = (1, β0, γ0, 1) and
ω15 = abcd with ~ω15 = (α, β1, γ1, 1) is vec = [�, ./, ./,']. Algorithm 7.4 deduces an
incomparability relation. For a second illustration, let us compare configurations ω0

and ω3. Their associated vectors of weights are respectively ~ω0 = (1, β0, γ0, 1) and
~ω3 = (1, β0, 1, 1). The computed comparison vector is vec = [',',≺,']. Thus, the
algorithm deduces the dominance relation ≺ which means that ω3 �Pareto ω0.
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7.3 Default reasoning on preferences

Preference statements of a user are translated into default constraints composed of
two subsets that we call LC for the left-hand side of constraints and RC for the right-
hand side (see Equations 4.1 and 4.4). Algorithm 7.5 scrolls through all CPT ’s of the
Graph structure and, for each node, associates to the parameter row the preference
specification of a given context value. The conditional preference row is then passed as
parameter to the function Pref_Rejected_V alues which returns the preferred good
and rejected bad node values respectively. Function CartesianProduct takes as input
a list of nodes and returns the set Par_Contexts of all their possible assignments.
For each context u ∈ Par_Contexts, configurations that verify both values good and
u are assigned to LC[j] such that j is an iterator over the number of constraints.
Configurations that verify values bad and u are assigned to the other hand side of
the constraint j namely RC[j]. This procedure describes how constraints used by
Algorithms 4.1 and 4.2 are created.

Example 7.6 Table 7.2 gives the output of Algorithm 7.5 computed on the condi-
tional preference network in Figure 7.2. The toolbox log file of the set of default con-
straints is given in Figure 7.7. Each constraint is represented by a set of dominant
configurations loaded in a first row, and a set of dominated configurations loaded in a
second row. As case in point, let us consider specifications of node(X(B)). Function
CartesianProduct takes as parameter the parent list composed of node(X(A)) and
returns its possible values, namely A and a.

• For the first context A, row = [b, 0, B]. Function Pref_Rejected_V alues out-
puts good = b and bad = B. The constructed constraint is thus LC[1] =
{ω4 = AbCD, ω5 = AbCd, ω6 = AbcD, ω7 = Abcd} (all models of A ∧ b) and
RC[1] = {ω0 = ABCD,ω1 = ABCd, ω2 = ABcD, ω3 = ABcd} (all models of
A ∧B).

• For the second context a, row = [B, 0, b]. The constructed constraint is thus
LC[2] = {ω8 = aBCD,ω9 = aBCd, ω10 = aBcD, ω11 = aBcd} and RC[2] =
{ω12 = abCD, ω13 = abCd, ω14 = abcD, ω15 = abcd}.
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Algorithm 7.5: Generate default constraints
Input: Ω, Graph
Output: LC,RC

1 begin
2 k = 0
3 for i = 0 to Graph.N − 1 do
4 if Graph.Nodes[i].Parents = ∅ then
5 row = Graph.Nodes[i].CPT
6 [good, bad] = Pref_Rejected_V alues(row)
7 foreach ω ∈ Ω do
8 if ω[i] = good then
9 LC[j].Add(ω)

10 else if ω[i] = bad then
11 RC[j].Add(ω)
12 end
13 j = j + 1
14 else
15 Par_Contexts = CartesianProduct(Graph.Nodes[i].Parents) /* all

parents values */
16 foreach u ∈ Par_Contexts do
17 row = findCPTContextRow(Graph.Node[i].CPT, u)
18 [good, bad] = Pref_Rejected_V alues(Graph.Nodes[i].CPT [row])
19 foreach ω ∈ Ω do
20 if ω[i] = good and ω.includes(u) then
21 LC[j].Add(ω)
22 else if ω[i] = bad and ω.includes(u) then
23 RC[j].Add(ω)
24 end
25 j = j + 1
26 end
27 end
28 Return LC,RC

29 end
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Figure 7.7: Log file of default constraints relative to preference statements of the
conditional preference network in Figure 7.2
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index jjj LC[j]LC[j]LC[j] RC[j]RC[j]RC[j]
0 {ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7} {ω8, ω9, ω10, ω11, ω12, ω13, ω14, ω15}
1 {ω4, ω5, ω6, ω7} {ω0, ω1, ω2, ω3}
2 {ω8, ω9, ω10, ω11} {ω12, ω13, ω14, ω15}
3 {ω2, ω3, ω6, ω7} {ω0, ω1, ω4, ω5}
4 {ω8, ω9, ω12, ω13} {ω10, ω11, ω14, ω15}
5 {ω0} {ω1}
6 {ω3} {ω2}
7 {ω5} {ω4}
8 {ω6} {ω7}
9 {ω8} {ω9}
10 {ω10} {ω11}
11 {ω13} {ω12}
12 {ω15} {ω14}

Table 7.2: Default constraints of preference statements of the conditional preference
network in Figure 7.2

7.3.1 Specificity principles orders

Once Algorithm 7.5 is run and constraints are generated, Algorithm 7.6 permit to
infer the default ordering on configurations based on the chosen reasoning attitude
approach. It is basically composed of two blocks of instructions, the first one lays from
line 8 to line 22 where for each right-hand side of constraint in RC, configurations that
never appear are stored in the layer E[i] and deleted from Ω. The second block goes
from line 23 to line 34. It allows to delete constraints, both left and right side, that
contain an element of E[i]. These blocks are repeatedly executed until no constraints
are left in LC and RC or that all solutions have been ordered. This procedure is
summarized by Algorithms 4.1 and 4.2.

Example 7.7 Consider constraints sets LC and RC in Table 7.2. Let us use Algo-
rithm 7.6 to deduce the pessimistic ordering on solutions:

1. in the first iteration, the configuration that never appear in any constraint in
LC, i.e., for which the parameter value = false is ω14. The first partition layer
E[0] = {ω14}. The configuration is then deleted from Ω. For the second block of
the procedure (line 23 to 33), ω14 appears in RC[0], RC[2], RC[4] and RC[12].
These subsets are thus removed from RC along with their complementary left-
hand side constraints in LC;
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Algorithm 7.6: Generate well ordered partition
Input: LC,RC, approach
Output: E

1 begin
2 if approach = ‘optimistic’ then
3 side1 = RC
4 side2 = LC

5 else if approach = ‘pessimistic’ then
6 side1 = LC
7 side2 = RC

8 i = 0
/* construct partition layer */

9 while side1 6= ∅ or side2 6= ∅ or Ω 6= ∅ do
10 foreach ω ∈ Ω do
11 verif = false
12 j = 0
13 while verif = false and j < len(side1) do
14 c = side1[j]
15 if c.includes(ω) then
16 verif = true
17 j = j + 1
18 end
19 if verif = false /* ω never appears in any constraint */
20 then
21 E[i].Add(ω)
22 Ω.Delete(ω)
23 end

/* remove satisfied constraints */
24 for i = 0 to len(side2)− 1 do
25 for j = 0 to len(E)− 1 do
26 ω = E[j]
27 c = side2[i]
28 pos = find(c, ω)
29 if pos 6= −1 /* ω appears in constraint c */
30 then
31 side1.Delete(c)
32 side2.Delete(c)
33 end
34 end
35 i = i+ 1
36 end
37 if approach = ‘pessimistic’ then
38 E.reverse()
39 Return E

40 end
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2. for the next iteration, E[1] = {ω1, ω9, ω11, ω12, ω15}. Satisfied constraints indexes
are 1, 3, 5, 9, 10 and 11;

3. for the third iteration, E[1] = {ω0, ω2, ω4, ω7, ω8, ω10, ω13}, which leads to satisfy
all remaining constraints and delete LC[6], RC[6], LC[7], RC[7], LC[8], RC[8].
Even-though there are no constraints left to verify, the power set Ω still con-
tains un-ranked configurations. For each of them, the parameter verif = false,
therefore, they are associated to the last partition layer: E[3] = {ω3, ω5, ω6}.

The entire ordering is reversed so that configurations are classified from best to worst.
Figures 7.8(a) and (b) represent results of Algorithm 7.6 displayed by the toolbox, using
an optimistic and pessimistic strategy respectively.

(a) (b)

(a)

Figure 7.8: Optimistic (a) and pessimistic (b) orderings induced from constraints in
Table 7.2

7.3.2 Improved specificity principles orders

When preferences are expressed under a chosen mind of reasoning (explained in Section
4.3), the ordering process described by Algorithm 7.6 is not sensitive to the coverage of
solutions by default formulas. In Section 4.5, we proposed an enhanced version of the
previous procedure that ranks only solutions encompassed by the available constraints
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(see Algorithm 4.3). Algorithm 7.7 details the toolbox implemented procedure. Algo-
rithm 7.7 expresses the exact same instructions as in Algorithm 4.3 but uses notations
of the toolbox.

Example 7.8 Let us look again at default constraints in Table 7.2 and adopt an op-
timistic mind.

• At the first iteration, all configurations are covered. The configuration that never
appears in RC is ω6. Thus, top layers are E[0] = {ω6} and E ′[0] = {∅}. Con-
straints having indexes 0, 1, 3 and 8 are verified and removed from LC and
RC.

• For the second iteration, the configuration ω7 never appears in the remaining
constraints. It is thus added to E ′[1]. The second partition layer of E is E[1] =
{ω0, ω3, ω5, ω8}. they satisfy constraints 2, 4, 5, 6, 7 and 9.

• In the next iteration, the remaining constraints are 10, 11 and 12. Configurations
that have not yet been ranked and that do not appear as dominated in any of
the left constraints are ω10, ω13 and ω15. All constraints are now verified and
configurations that still in Ω are assigned to the last layer of E ′.

Results of computing Algorithm 7.7 on the conditional preference network in Figure
7.2 are given by Figures 7.9(a) and (b).

7.3.3 Combine specificity orderings

Algorithm 7.8 exactly reproduces Algorithm 5.2 that combines dominance relations
induced by both optimistic and pessimistic orderings but uses the appropriate notation.
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Algorithm 7.7: Generate improved well ordered partition
Input: LC,RC, approach
Output: E,E′

1 begin
2 if approach = ‘optimistic’ then
3 side1 = RC
4 side2 = LC

5 else if approach = ‘pessimistic’ then
6 side1 = LC
7 side2 = RC

8 i = 0
9 nb_constraints = len(LC) (or nb_constraints = len(RC))

10 while Ω 6= ∅ or LC 6= ∅ and RC 6= ∅ do
/* remove uncovered configurations */

11 foreach ω ∈ Ω do
12 uncovered = true
13 j = 0
14 while j < nb_constraints and uncovered = true do
15 if LC[j].includes(ω) or RC[j].includes(ω) then
16 uncovered = false
17 j = j + 1
18 end
19 if uncovered = true then
20 E′[i].Add(ω)
21 Ω.Delete(ω)
22 end

/* construct partition layer */
23 foreach ω ∈ Ω do
24 foreach c ∈ RC do
25 if !c.includes(ω) then
26 E[i].Add(ω)
27 Ω.Delete(ω)
28 end
29 end

/* remove satisfied constraints */
30 foreach c ∈ LC do
31 foreach ω ∈ E[i] do
32 if c.includes(ω) then
33 LC.Delete(c)
34 RC.Delete(c)
35 end
36 end
37 i = i+ 1
38 end
39 Return E,E′

40 end
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Algorithm 7.8: Ordering Ω using both optimistic and pessimistic orders
Input: Ω , EΠ, E∆
Output: E

1 begin
2 len(E) = len(Ω)
3 E[0] = EΠ[0]
4 E[len(Ω)− 1] = E∆[len(E∆ − 1)]
5 i = 0
6 j = len(EΠ)− 2
7 index_up = 1
8 index_low = len(Ω)− 2
9 index_opt = len(EΠ)− 2

10 index_pess = 0
11 while Ω 6= ∅ and i ≤ len(EΠ) and j ≤ len(E∆)
12 foreach ω ∈ EΠ[i] do
13 if ω ∈ Ω then E[index_up].Add(ω)
14 end
15 p = 0
16 foreach ω ∈ E[index_up] do
17 if ω 6∈ E∆[index_pess] and ω ∈ Ω then
18 E[index_up+ 1].Add(ω)
19 p = 1
20 E[index_up].Delete(ω)
21 Ω.Delete(ω)
22 end
23 i = i+ 1
24 index_up = index_up+ p+ 1
25 index_pess = index_pess+ 1
26 if i 6= j or index_opt 6= index_pess then
27 E[index_low] = E∆[j]
28 p = 0
29 foreach ω ∈ E[index_low]
30 if ω ∈ EΠ[index_opt] and ω ∈ Ω then
31 E[index_low − 1].Add(ω)
32 p = −1
33 E[index_low].Delete(ω)
34 Ω.Delete(ω)
35 j = j − 1
36 index_low = index_low + p− 1
37 index_opt = index_opt− 1
38 E = clean(E)
39 Return E

40 end
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(a) (b)

Figure 7.9: Optimistic (a) and pessimistic (b) orderings induced from constraints in
Table 7.2 using the improved partitioning algorithm version

Example 7.9 Figure 7.10 shows the result of computing Algorithm 7.8 taking as input
the optimistic and pessimistic orderings in Figures 7.8(a) and (b). At the beginning of
the procedure, the output ordering E is initialized with 2N = 16 empty layers. The best
configuration that composes the first layer of the optimistic ordering is assigned to the
first layer of E. By analogy, we do the same with the worst configuration. Therefore,
E[0] = {ω6} and E[15] = {ω14}. Executing line 12 of the algorithm gives E[1] =
{ω0, ω3, ω5, ω7, ω8}. By comparing E[1] with E∆[0], we deduce that actually ω3 and ω5

are more satisfactory than the remaining configurations of E[1], thus we only retain
ω3 and ω5 in E[1] and put the remaining solutions in a lower level, namely E[2] =
{ω0, ω7, ω8}. Instructions from line 12 to 20 execute this sequence of steps. We now
copy configurations in E∆[2] in E[14]. The optimistic order imposes to configurations
ω11 and ω12 to be less preferred than all the remaining in E∆[2]. Thus, E[14] =
{ω11, ω12} and E[13] = {ω1, ω9, ω15}. These instructions are executed by the block of
code going from line 25 to 33. For the next iteration, we move to fill layer E[2] with
solutions in EΠ[2]. The pessimistic ordering agrees to rank order ω2, ω4, ω10 and ω13

which are the last remaining configurations in Ω. Hence, The output ordering of the
algorithm 7.8 is E = {{ω6}, {ω3, ω5}, {ω0, ω7, ω8}, {ω2, ω4, ω10, ω13}, {ω1, ω9, ω15}, {ω11,
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ω12}, {ω14}}.

Figure 7.10: Ordering induced from combining the optimistic and pessimistic orderings
of statements of in Figure 7.2

7.4 Comparing default orderings

The toolbox gives the user the opportunity to compare all previously mentioned or-
derings in this chapter. He may select 2 out of 7 order strategies, namely Pareto,
Ceteris paribus, Optimistic approach, Pessimistic approach, Improved optimistic
approach, Improved pessimistic approach, Combined specificty approaches, which
makes a total of 21 pairs of order strategies. Figure 7.11 represents the displayed
window for choosing orderings to examine.

An ordering can be represented by means of a square matrix M such that:

• if Ω[i] � Ω[j] then M [i][j] = 1 and M [j][i] = 0,

• if Ω[i] ≺ Ω[j] then M [i][j] = 0 and M [j][i] = 1,

• if Ω[i] ' Ω[j] then M [i][j] = 1 and M [j][i] = 1,

• if Ω[i] ./ Ω[j] then M [i][j] = 0 and M [j][i] = 0.
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Figure 7.11: Window for comparing orderings

Algorithms 7.9, 7.10, 7.11 and 7.12 detail the procedure of constructing ordering
matrices for respective orders: ceteris paribus, default orders, improved default orders
and Pareto order. The user has the possibility to display any ordering matrix by the
toolbox (see Figure 7.13 for an example).

Algorithm 7.9: Generate ceteris paribus ordering matrix
Input: Ω
Output: M

1 begin
2 M = InitializeMatrix()
3 for i = 0 to len(Ω)− 2 do
4 ω = Ω[i]
5 x = find(Ω, ω)
6 for i = j + 1 to len(Ω)− 1 do
7 ω′ = Ω[j]
8 y = find(Ω, ω′)

/* function CPDominanceQuery corresponds to the dominance
query */

9 cp_dominance = CPDominanceQuery(ω, ω′)
10 if cp_dominance = ‘�’ then
11 M [x][y] = 1
12 else if cp_dominance = ‘≺’ then
13 M [y][x] = 1
14 end
15 end
16 Return M

17 end

Ones orderings are described by matrices, different metrics are calculated to com-
pare them:

1. the number of strict dominance relations (strict)

2. the number of incomparability relations (incomp)

3. the number of equality relations (equalities)
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Algorithm 7.10: Generate default ordering matrix
Input: E
Output: M

1 begin
2 M = InitializeMatrix()

/* equivalence relation between configurations of the same layer
*/

3 for i = 0 to len(E)− 1 do
4 for j = 0 to len(E[i])− 1 do
5 ω = E[i][j]
6 x = find(Ω, ω)
7 for k = 0 to len(E[i])− 1 do
8 ω′ = E[i][k]
9 y = find(Ω, ω′) M [x][y] = 1

10 M [y][x] = 1
11 end
12 end
13 end

/* dominance relation between configurations of different layers
*/

14 for i = 0 to len(E)− 2 do
15 for j = i+ 1 to len(E)− 1 do
16 foreach ω ∈ E[i] do
17 foreach ω′ ∈ E[j] do
18 x = find(Ω, ω)
19 y = find(Ω, ω′) M [x][y] = 1
20 end
21 end
22 end
23 end
24 Return M

25 end
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Algorithm 7.11: Generate improved optimistic ordering matrix
Input: EΠ, E∆
Output: M

1 begin
2 M = InitializeMatrix()

/* equivalence relation between configurations of the same layer
*/

3 for i = 0 to len(E)− 1 do
4 for j = 0 to len(E[i])− 1 do
5 ω = E[i][j]
6 for k = j to len(E[i])− 1 do
7 ω′ ∈ E[i][k]
8 x = find(Ω, ω)
9 y = find(Ω, ω′)

10 M [x][y] = 1
11 M [y][x] = 1
12 end
13 end
14 end

/* dominance relation between configurations of different layers
*/

15 for i = 0 to len(E)− 2 do
16 for j = i+ 1 to len(E)− 1 do
17 foreach ω ∈ E[i] do
18 foreach ω′ ∈ E[j] do
19 x = find(Ω, ω)
20 y = find(Ω, ω′)
21 M [x][y] = 1
22 end
23 end
24 end
25 end

/* dominance relation between configurations in E and those in E′

*/
26 for i = 0 to len(E)− 2 do
27 foreach ω ∈ E[i] do
28 foreach ω′ ∈ E[i+ 1] do
29 x = find(Ω, ω)
30 y = find(Ω, ω′)
31 M [x][y] = 1
32 end
33 end
34 end
35 Return M

36 end
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Algorithm 7.12: Generate Pareto ordering matrix
Input: Ω
Output: M

1 begin
2 M = InitializeMatrix()
3 for i = 0 to len(Ω)− 2 do
4 ω = Ω[i]
5 x = find(Ω, ω)
6 ~ω = Construct_V ector(ω)
7 for j = i+ 1 to len(Ω)− 1 do
8 ω′ = Ω[j]
9 y = find(Ω, ω′)

10 ~ω′ = Construct_V ector(ω′)
/* function ParetoDominanceQuery correspond to Algorithm

7.4 */
11 pareto_dominance = ParetoDominanceQuery(~ω, ~ω′)
12 if pareto_dominance = ‘�’ then
13 M [x][y] = 1
14 else if pareto_dominance = ‘≺’ then
15 M [y][x] = 1
16 end
17 end
18 Return M

19 end
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4. the number of resolved incomparability relations (resolved_incomp)

5. the number of resolved equalities (resolved_eq)

6. the number of strong violations (contradiction)

Computational details for calculating these metrics are described by Algorithm
7.13. An example of window result of the toolbox is given in Figure 7.12.

Algorithm 7.13: Compare orderings
Input: M , M ′
Output: metrics

1 begin
/* initialize all metrics to zero */

2 metrics = Initiate(metrics)
3 for i = 0 to len(M)− 2 do
4 for j = i+ 1 to len(M)− 1 do
5 M_dominance = Pref(M,Ω[i],Ω[j])
6 M ′_dominance = Pref(M,Ω[i],Ω[j])
7 if (M_dominance = ‘�’ and M ′_dominance = ‘≺’) or

(M ′_dominance = ‘�’ and M_dominance = ‘≺’) then
8 contradiction = contradiction+ 1
9 if M_dominance = ‘�’ or M_dominance = ‘≺’ then

10 M_strict = M_strict+ 1
11 if M ′_dominance = ‘�’ or M ′_dominance = ‘≺’ then
12 M ′_strict = M ′_strict+ 1
13 if M_dominance = ‘./’ then
14 M_incomp = M_incomp+ 1
15 if M ′_dominance = ‘�’ or M ′_dominance = ‘≺’ then
16 M ′_resolved_incomp = M ′_resolved_incomp+ 1
17 if M ′_dominance = ‘./’ then
18 M ′_incomp = M ′_incomp+ 1
19 if M_dominance = ‘�’ or M_dominance = ‘≺’ then
20 M_resolved_incomp = M_resolved_incomp+ 1
21 end
22 end
23 Return metrics

24 end

7.5 Refinements and repairs between Pareto and
default orderings

In Sections 5.4 and 5.2, we proposed algorithms for repairing the default ordering by
the Pareto order and refining the Pareto ordering by a default ordering (see Sections
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Figure 7.12: Metrics results for comparing the ceteris paribus ordering and the com-
bined specificity approaches default ordering of the conditional preference network in
Figure 7.2

5.2 and 5.4 respectively). The toolbox implements the described procedures which
correspond to Algorithms 5.1 and 5.3 respectively, and enables the user to visualize
the resulting ordering under the form of an incidence matrix. The user may also
choose two configurations to compare based on the induced ordering. Figure 7.13
shows an example of an ordering displayed under the form of a matrix. Figures 7.14
and 7.15 show the displayed windows for performing the dominance query given a
precise ordering.

Figure 7.13: Incidence matrix of the combined specificity ordering in Figure 7.10
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Figure 7.14: Window of domi-
nance query

Figure 7.15: Window of an example of
dominance query result

7.6 Generating π-pref nets from a conditional pref-
erence network

All of our previous experiments are conducted on a set of π-pref nets constructed
from a set of randomly generated conditional preference networks. In this section,
we briefly describe how these networks are generated using the Gencpnet library
[Allen et al., 2016].

The original toolbox includes the Gencpnet library [Allen et al., 2016] as a net-
work generator. It permits to generate multiple acyclic networks with respect to some
specified parameters. Ones can vary the number of generated networks (m), the num-
ber of nodes (n), the maximum bound on in-degree (c), the domain size (d) and the
probability of incompleteness (i). In our work, we focused on Boolean variable domain
which means that the parameter d is fixed to 2. We only considered modifying pa-
rameters m and n. The generated networks are written and stored under XML format
files that can afterword be uploaded by the CP-net visualizer and π-pref net visualizer
toolboxes.

The Gencpnet is a free toolbox available in the Github forge (link). It is coded
with C + + language and is designed to work only on GNU Linux system.

Example 7.10 Let us consider the following command line:

command line : ./gencpnet -n 3 -c 2 -d 2 -g 10 GeneratedExamples

It allows to generate 10 random networks under the described specifications and
store them in the folder “GeneratedExample”. Parameters are fixed as follows:

• Number of generated CP-nets g = 10
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• Number of nodes n = 3

• Bound on in-degree c = 2

• Domains size d = 2

• Probability of incompleteness i = 0

The toolbox implements the optimization query described in 1.3.5, algorithm for
the optimization query and gives a new implementation of the dominance query.

It has been proved that the ceteris paribus ordering is nothing less than a refine-
ment of the Pareto ordering [Wilson et al., 2019]. From there, instead of searching for
flipping sequences to perform the dominance query on a pair of configurations (see
Section 12), we were interested in developing an algorithm that treats each variable
value in configurations separately and returns a vector which is examined to deduce
the dominance relation between them.

7.7 Conclusion

The π−PNT have been implemented to allow further researches on graphical struc-
tures of preferences. As a continuity of this work, further developments that implement
other features should be considered. For instance, he should be granted the ability
to instantiate symbolic weights with numerical degrees or to impose additional con-
straints on these weights so that, in a second time, the min or product-based chain
rule distribution is compared with orderings of other approaches.

A particular and interesting case should be to develop a library that randomly
generates π-pref nets using symbolic degrees, random constraints on them or numer-
ically instantiated weights. The generated π-pref nets should therefore be saved and
loaded under xml or csv files for future experiments. Preference structure generators
should be parameterized to produce networks with specific categorized structures such
as path graph, trees, multiply-connected-networks, etc.

Further developments on LP-trees would be eventually interesting. The toolbox
should offer the possibility to create, visualize, question and generate LP-trees, which
in a second step, would be translated into π-pref nets when possible.
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Conclusion and Perspectives

A conditional preference statement is something which looks quite simple to represent
and to exploit. When CP-nets have been proposed twenty years ago, we might have
thought that it was a definitive approach to the problem of handling preferences stated
in a concise manner.

The apparition of other settings such as cp-theories, LP-trees and π-pref nets have
shown that other options were possible. The problem of answering dominance queries
aiming at comparing complete configurations may receive different kinds of answers.
Indeed, one may obtain partial orderings as well as complete pre-orderings. Then, this
rises the question of what is the “good” answer.

On the one hand, it seems clear that the Pareto ordering that acknowledges the fact
that a configuration that violates some preferences also violated by another configu-
ration plus some other preferences is worst. Beyond that, the use of general principles
like ceteris paribus, or for instance, the idea such that “a configuration is considered
satisfactory unless preference statements say otherwise” seems natural and innocuous,
but unfortunately this is not the case as recalled and explained in this thesis.

On the other hand, from a user point of view obtaining a complete pre-ordering
or even a total ordering may seem more useful than providing a partial ordering only.
However, if the complete pre-ordering has many ties or in other words a small num-
ber of layers, it is not very useful either. Generally speaking, qualitative approaches
seem more in line with the qualitative specifications of conditional preference state-
ments, even if we have seen that there may exist different ways of understanding and
representing such statements.

This thesis has contributed to various advances in the discussion of the above issues.
First, in the second part of Chapter 3, we have introduced several variants of π-pref
nets suggesting that it may be beneficial to have a bipolar point of view and to use
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both the extreme values 1 and 0 for stating full satisfaction and complete absence of
satisfaction together with symbolic intermediary weights.

In Chapter 4, we have introduced the reading of conditional preference statements
as default-like rule, together with the use of optimistic or pessimistic principles regard-
ing ho to consider configurations which are not concerned by preference statements.
We have shown that we obtain complete pre-orderings which might violate the Pareto
order. Then, we have proposed a modified algorithm to cope with this problem, yield-
ing a partial order. We have also shown that for a large class of graph structures
the complete orderings obtained have only three layers, even if for very particular
structures it is possible to have a number of layers that increases with the number
of variables. Finally we have also shown that there exist systems of default rules
representing preferences that cannot be represented by π-pref nets or CP-nets.

When the minimum or maximum specificity principle is used to rank-order con-
figurations, contradictions with the Pareto order may take place. In Chapter 5, we
have proposed to remedy this problem by considering three main approaches: (i) the
optimistic or pessimistic ordering can be corrected by taking into consideration dom-
inance relations induced from the Pareto order. This yields a slightly more refined
ordering than the initial one; (ii) when no conflicts with the Pareto order are de-
tected, one may take advantage of the joint use of the two specificity orderings to
produce a more discriminant ordering; (iii) the Pareto partial ordering can be refined
by specificity-based orderings to induce a complete pre-order that takes advantages of
both principles which combines the advantages of the indisputable nature of Pareto
order with an optimistic or pessimistic view.

The Chapter 6 is devoted to a detailed presentation of LP-trees and the algorithms
for producing the total ordering of configurations, as we well as to their comparison
with π-pref nets. It is explained that π-pref nets can encode lexicographic orderings (at
the price of adding some constraints between symbolic weights). The proofs have yet to
be provided. The converse transformation does not appear to be always feasible, since
π-pref net encode only partial order in general (even if incomplete LP-trees provide a
way to obtain partial order).

Chapter 7 presents an implemented toolbox which enables us to test the different
approaches considered in the thesis on a variety of graph structures either directly
specified or randomly generated.

The thesis have left a number of questions that remain unanswered, and which are
topics for further researches in order to offer theoretical proofs about results of the
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several proposed algorithms. The extension of the π-pref nets approaches with the
bipolar view mentioned above (with symbolic weights intermediary between 0 and 1)
seems also to be worth studying.

The representation of preferences held by groups of agents (possibly defined by sets
of characteristic properties) and the analysis of possible conflicts of preferences between
different groups is a topic of interest that can benefit from the works on the modeling
of the preferences of a single agent [Ben Amor et al., 2018b] [Ben Amor et al., 2017b].

Learning the preferences of an agent, or of a group of agents, is an important issue.
While there exist works on preference learning in terms of CP-nets or LP-trees, the
possible use of π-pref nets, which offer a flexible and compact way of representing
preferences, has not yet been considered in this perspective. The problem may be
considered either by learning a π-pref net with numerical degrees (but such a network
may provide more comparisons than we would reasonably expect from the qualitative
specification of conditional preferences) by only identifying ordinal conditions between
satisfaction degrees. These are open questions.
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