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الخالصة

Résumé

L'électroencéphalographie est une technique d'enregistrement des signaux électriques du cerveau.

Cet outil est intensivement utilisé dans le service de neurologie et de psychiatrie. L'analyse de l'activité cérébrale est une étape critique, qui apporte des informations sur les états émotionnel, mental et neurologique d'un patient.

Un état d'anxiété légère ou sévère altère l'activité cérébrale d'un individu. Les changements qui peuvent se manifester lors d'un état d'anxiété sont détectables par l'analyse de l'activité cérébrale.

C'est aussi le cas pour le diagnostic de l'épilepsie, qui repose essentiellement sur l'électroencéphalogramme, qui aide les neurologues à diagnostiquer l'épilepsie et appliquer le traitement adéquat. Plusieurs recherches ont montré l'efficacité les signaux EEG à refléter les changements émotionnels, mentaux et les problèmes neurologiques.

La lecture des enregistrements EEG par l'expert du domaine est considérée comme un processus chronophage et fastidieux. L'automatisation de ce processus dans le but de détecter un état mental ou une maladie est de haute importance pour les neurologues. Les systèmes de reconnaissance intelligente, basée sur l'analyse de l'activité cérébrale, peuvent servir ainsi, pour les patients à domicile, à surveiller leur état, afin de se contrôler et d'avoir des préventions utiles.

Nous avons suivi l'approche typique utilisée en neuroscience pour le diagnostic des troubles cérébraux reposant sur les signaux EEG. La première étape est la collecte des données physiologiques à l'aide d'un casque EEG, suivie par le prétraitement. Cette étape comprend la préparation des données à analyser, soit en sélectionnant la partie optimale de l'enregistrement contenant les informations pertinentes, soit en appliquant certaines méthodes pour améliorer la qualité des données enregistrées. L'étape d'extraction des caractéristiques est appliquée après le prétraitement. Cependant, les données sont modélisées afin d'en extraire les informations pertinentes. Les caractéristiques les plus puissantes sont sélectionnées pour passer à l'étape de classification.

Etant donnée la nature des signaux EEG, qui sont réellement des séries temporelles, l'utilisation d'un réseau de neurones récurrents semble la manière la plus adéquate pour gérer ces signaux.

Dans ce travail, trois contributions sont proposées, afin d'extraire une meilleure représentation des séries temporelles (prétraitées et brutes) et de les classifier. Tout au long de ce travail, nous avons accentué la richesse des signaux EEG bruts, l'importance des méthodes d'apprentissage profond et l'importance de l'analyse des résultats, pour fournir aux médecins des modèles interprétables et affermir leur confiance en cette technologie.

Le manuscrit de thèse commence par un chapitre introductif dans lequel le contexte et la problématique abordée sont expliqués. En outre, l'architecture générale, résumant les trois contributions, est présentée dans une figure explicative. À la fin de ce chapitre, l'organisation de la thèse est décrite, en mentionnant les différentes publications scientifiques en relation avec la thèse.

L'état de l'art de cette thèse est présenté dans le chapitre 2. Tout concept lié à la détection du niveau d'anxiété, à la classification des types de crises ou bien à la prédiction des crises a été évoqué, pour permettre au lecteur d'assimiler le contexte. Un aperçu des bases de données existantes, exploitées dans chaque partie de la thèse, est aussi donné. Le chapitre présente clairement les défis à relever dans cette thèse. En fait, la diversité des techniques de décomposition, d'apprentissage de caractéristiques et le domaine d'application rendent assez difficile notre contribution utilisant une nouvelle approche. De plus, la comparaison avec les travaux existants n'est pas aisée, vu que, dans chaque travail, un contexte bien défini a été considéré comme type d'expérimentation : modèle pour chaque participant ou modèle pour tous les participants, nombre de participants fixé, durée de l'expérimentation, nombre d'électrodes, et sélection des caractéristiques.

L'apprentissage profond basé sur les signaux EEG a commencé à émerger au début de 2015.

Puisque l'extraction manuelle des caractéristiques est chronophage et nécessite un expert du domaine pour trouver la technique la plus convenable, l'apprentissage en profondeur a été proposé essentiellement pour faire l'apprentissage automatique des caractéristiques par le réseau de neurones. Dans les trois contributions, nous proposons une architecture basée sur l'apprentissage profond, suivi d'une étape d'interprétabilité du modèle créé. L'interprétabilité des résultats valorise le travail et donne des explications radicales aux médecins concernant le comportement caché du modèle. Pour comparer les techniques, nous avons aussi implémenté des méthodes basées sur l'extraction manuelle des caractéristiques.

Inspiré par ce principe, le présent travail a relevé le défi, en confiant l'étape d'extraction de caractéristiques et de classification à un réseau de neurones récurrents, convolutionnels.

Les contributions sont réparties en deux parties comme suit. La représentation typique des caractéristiques est apprise par nos modèles, ce qui conduit à des résultats très satisfaisants pour la prédiction des crises. De plus, nous pouvons appliquer la même architecture pour la détection des crises, en incluant des segments critiques au processus global. Au début de ce chapitre, nous avons étudié différentes approches pour extraire les caractéristiques liées aux crises EEG.

La prédiction des crises dans la première approche a été traitée comme un problème d'apprentissage automatique. Les principales étapes de ce problème de classification sont : l'extraction des caractéristiques pertinentes et la conception d'un classifieur adéquat. Une fois les caractéristiques extraites, il reste essentiel de définir la méthode de prise de décision. Le classifieur doit être capable de bien généraliser et de montrer de bonnes performances. Les annotations faites par un neurologue sont souvent considérées comme le point de référence dans le cadre de ce problème. Cette approche repose sur la détermination préalable des moments statistiques à calculer, comme la moyenne, la variance, l'asymétrie et l'aplatissement dans le signal EEG. La contribution majeure est la proposition d'un nouveau modèle pour l'apprentissage des caractéristiques spatio-temporelles du signal EEG, avec une couche d'attention pour les fragments d'entrée. Nous avons également implémenté un modèle LSTM pour l'apprentissage des dépendances temporelles, afin de montrer l'amélioration obtenue par le nouveau modèle spatiotemporel ConvLSTM proposé par [START_REF] Xingjian | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF].

L'objectif derrière l'intégration d'un mécanisme d'attention dans le modèle spatiotemporel ConvLSTM2D proposé est d'analyser en profondeur la contribution des fragments temporels construits dans la décision finale du système. Ainsi, nous identifions un horizon de prédiction justifiable, indépendant du patient, contenant les fragments les plus efficaces. Cette analyse peut aider le neurologue à rechercher les raisons de l'apparition de la crise, en identifiant les déclencheurs, suivant les fragments les plus contributifs. La définition de la période préictale optimale (OPP) peut également reposer sur les poids d'attention des fragments inclus dans la période préictale sélectionnée (SPP). Plus précisément, si le choix du SPP est fait à moins d'1h pour tous les patients, les scores d'attention calculés sur tous les segments de 1h peuvent fournir des informations importantes sur la contribution de chaque fragment ; ainsi le SPP peut être réduit de 1h à 15min. Nous supposons qu'il existe une phase préictale pour toutes les crises et qu'il existe un point d'inflexion entre les états interictal et préictal et nous travaillerons pour montrer cela.

Pour une période préictale égale à 15 minutes, suivant les travaux de [Tsiouris et al.], nous avons obtenu des résultats de prédiction très compétitifs par rapport à l'état de l'art, avec une précision de 94.45% et 90.62% pour les modèles ConvLSTMatt et ConvLSTM respectivement.

L'objectif principal de cette étude est de concevoir des modèles d'apprentissage en profondeur pour la prédiction des crises d'épilepsie, indépendamment du patient.

De tels modèles peuvent être utilisés dans des situations où les sujets de l'ensemble de données ont moins d'exemples étiquetés (enregistrements EEG). Nous reconnaissons qu'il s'agit d'un cas typique dans les scénarios de surveillance des unités de soins intensifs, où un nombre adéquat d'échantillons ne peut pas être obtenu pour former un modèle de prédiction. Le présent manuscrit se termine, dans le chapitre 6, par un rappel sur les différentes contributions présentées et par la proposition de deux perspectives intéressantes pour la poursuite de ce travail.

Une

La première perspective est une étude de la relation entre l'anxiété et les crises épileptiques. La question que l'on pose est la suivante : un état d'anxiété élevé peut-il provoquer une crise chez les patients épileptiques ? Les biomarqueurs de l'électroencéphalographie (EEG) sont un ensemble de manifestations neurologiques détectées dans le signal EEG, qui sont exploitées pour donner une empreinte à une réaction cérébrale, face à une émotion traumatique, à l'anxiété ou au stress.

Beaucoup de personnes ont du mal à gérer leurs émotions, c'est pourquoi, elles ont une forte probabilité que leur système de défense se bloque. Les patients épileptiques peuvent être confrontés à une Pseudo-épilepsie (PNES). Celle-ci n'est pas du même type que les crises neurologiques causées par une activité incontrôlée dans le cerveau. Les PNES sont plutôt une réponse extrême au stress et à l'anxiété et sont donc considérées de nature psychiatrique. Si une réponse extrême du cerveau d'un patient non-épileptique au stress et à l'anxiété peut provoquer une PNES, combien de biomarqueurs d'anxiété peuvent être présents dans l'état préictal d'une crise ? Comme nous savons que certains biomarqueurs EEG ont une grande corrélation avec un état anxieux, comme discuté dans le chapitre 3, nous proposons de rechercher la présence de ces empreintes dans les segments préictaux. L'étude doit fournir une comparaison entre les valeurs des états préictal, ictal et interictal du biomarqueur choisi. Si une corrélation est trouvée, un modèle peut être proposé pour discriminer entre les trois états, en fonction de la caractéristique extraite.

Ce travail peut être appliqué pour la prédiction ou la détection des crises.

La deuxième perspective est relative au problème de l'insuffisance de données EEG pour la classification des types des crises, via un réseau de neurones profond. Le modèle « Generative Adversarial Network » (GAN) peut servir d'approche comme générateur de nouvelles données EEG, très similaires aux données réelles. Une telle génération enrichit la base d'apprentissage et non pas celle de test. De cette manière, l'apprentissage d'un réseau de neurones profond sera plus pertinent.
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Anxiety detection is an underlying part of affective computing. It can also be an effective module in many frameworks, and can be adapted to early diagnosis of anxiety disorders, to digital marketing and even to serious games. This field is still immature, and related researches should involve biosignals in the affective computing more frequently.

Nowadays, and according to latest statistics [START_REF] Scheffer | Ilae classification of the epilepsies: position paper of the ilae commission for classification and terminology[END_REF], epilepsy affects 1% of the world population and come third place as the most common neurological disease after migraine and dementia.

The International League Against Epilepsy (ILAE) defined Epilepsy as a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures, and also by the neurobiologic, cognitive, psychological, and social consequences of this condition [START_REF] Scheffer | Ilae classification of the epilepsies: position paper of the ilae commission for classification and terminology[END_REF] Epileptic seizures are considered neurological dysfunctions manifested by an abnormal electrical activity of the brain. Sometimes seizures are accompanied with convulsions, but there are also silent seizures that do not manifest with external abnormal activity. These types of seizures require an EEG monitoring to be detected.

The occurrence of same seizures within dangerous conditions can be fatal and causes the famous SUDEP (Sudden Unexpected Death in Epilepsy). As healthy people die suddenly and unexpectedly, SUDEP concerns sudden death for epileptic patients. However, the risk is greater with epilepsy. It is very important that affected persons as well as their relatives be conscience and familiar with this fact to help reduce the risk of SUDEP.

Only a few epileptic seizures are fatal. There is danger when a seizure occurs in waters,
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Chapter 1. Introduction when no one is nearby, whether during swimming or in the tub. Some seizures do not stop on their own and can become what is called status epilepticus or status epileptic, which sometimes results in death. SUDEP, drowning and status epilepticus contribute significantly to the slight statistical decline in the life expectancy of people with epilepsy compared to the general population.

The application of artificial intelligence in the field of medical monitoring can help avoid the cases of SUDEP by preventing an incoming seizure within a sufficient period of time and with high sensitivity and low false prediction rate.

Seizure prediction domain has attracted researchers in the last decade. Neuroscientists have investigated EEG, ECG biomarkers to define the triggers of seizure within a defined preictal period. Features engineering has also played a crucial role in analysing the characteristics of the different epileptic states. Thus, defining relevant biomarkers that contribute the most in distinguishing two of more states. Despite the advances made in the field of Health-related AI, many

critical challenges and open questions pushing researchers to investigate more and more still exist. Brain activity analysis is the main and crucial step for neurological disorders diagnosis. It is also used to understand the behind-the-scenes of anxiety attacks [START_REF] Quesney | Localization of epileptic foci. Electroencephalography and clinical neurophysiology[END_REF].

Electroencephalogram EEG is the only way to record the electrical brain activity, through electrodes placed non-invasively on the scalp or during a brain surgery to measure intracranial discharges. EEG is the most used tool for epilepsy diagnosis and seizure monitoring. Extensive efforts in neuroscience and psychology were made. However, despite the high capability of intelligent approaches, especially deep learning based ones, the neuroscience community is still not entirely confident with this technology and avoids it due to the lack of explainability of these so-called 'black boxes'. So many questions are presented: What are the best approaches to simulate a person's anxiety in order to record EEG for an effective anxiety detection study?

How can we develop adaptive anxiety detection systems that can address the variability between individuals and environment settings? How deep model can be explainable and give more relevant information to the neurologist? When Deep learning can effectively replace handcrafted features and how learned feature can be interpretable? Does computational models have the ability to detect the highest important temporal fragments for onsets prediction ? How the according results can be used effectively in the seizure prediction systems ? In this study, Chapter 1. Introduction we will explore some parts of these questions.

Thesis contributions

Electroencephalography (EEG) is considered as the first step in the diagnosis of epilepsy. It is also employed for anxiety disorders. In order to respect the clinical process of neurological disorders diagnosis, EEG recorders are considered as the single modality in this thesis. The three major contribution of this dissertation are based on the intelligent analysis of the brain activity aiming to concept a computational model for recognition, detection and prediction.

Multi-channel EEG signals are gathered using neuro-headset or neuro-caps including a set of sensors. The recorded brain activity is used by real-time application in many fields.

In this thesis, we explore the theoretical basis, models, algorithms, and experimental validation of some models conceptualized for Health-related AI applications. The main contributions are as follows.

During our first contribution, a modernistic approach to anxiety stimulation following a faceto-face psychological incitement was presented. We constructed a dataset comprising EEG data that we gathered during the trial. We then presented insights in order to analyze acquired data demonstrating the efficiency of the pursued approach. The strategy showed success in inciting anxiety levels, which were then validated by HAM-A Test Scores, calculated before and after the test. A varied series of emotion recognition features based on EEG signals, in particular anxiety and stress, are reviewed and applied.

In the second contribution, an automated seizure classification system is proposed aiming to assist clinical professionals in diagnosing the disease, reducing time and potentially improves accuracy and reliability. We propose a novel Region-wise attention-based LSTM model and demonstrates the capability of the attention layer and the calculated weights related to the channels contribution enhancing the classification performances. As such, the model and results are more explainable showing correlations between neurological interpretation by an expert and the reading of the Heatmaps of deduced outputs of our model.

In the third contribution, we further enhance the feature learning by introducing the ConvL-STM neural Network to demonstrate its capabilities in learning spatio-temporal information. 

Thesis outline

The three major contributions of this theses are presented in Figure 1.1. We followed the steps used in neuroscience for the automatic detection of brain disorders with the help of EEG in our investigations. The first step is collecting physiological data with the help of an EEG headset. The following step is preprocessing, which includes the data preparation for analysis, either by selecting the recording optimal portion to be analyzed or by applying a number of methods to improve the recorded data quality. The feature extraction step is then applied after preprocessing. At this stage, the data is modeled to extract relevant information. The said relevant information is labeled using features describing the EEG signals, which features are subsequently used for classification. Namely, in the feature selection process, which is also called dimensionality reduction, in the case a considerable number of features were extracted, the most dominant features for the classification step are usually selected. The final step is classification, which is carried out using supervised classifiers. In a number of instances, the feature selection step can be bypassed. In this instance, the extracted features performance is evaluated during the classification process. The arrangement of this document follows the same arrangement as the afore-mentioned typical steps. The arrangement of the present thesis can be summed up as follows:

• Chapter Two: In this chapter, EEG and Epilepsy are theoretically introduced in order to highlight the basics required to comprehend the study. Then a review of state of the art literature, and particularly recent studies related to the three main contributions are described. A review of the principals concepts is presented in this chapter. First we describe EEG, the investigated recording method. Then the essential points of anxiety and epilepsy are described. At the final part of this chapter, the main scientific reports that perform anxiety levels recognition and seizures prediction/detection using EEG are detailed.

• Chapter Three: A novel approach to anxiety stimulation following a face-to-face psychological incitement was presented in this chapter. We then presented insights in order to analyze acquired data demonstrating the efficiency of the pursued approach. We detailed the used set of emotion recognition features based on EEG signals, in particular Chapter 1. Introduction anxiety and stress. Additionally, we examined which trial duration were most auspicious and which features were most efficient. This contribution yields the first public dataset of EEG data recorded using a portable device for anxiety detection.

• Chapter Four: This chapter presents the proposed novel Region-wise attention-based LSTM model and demonstrates the capability of the attention layer and the calculated weights related to the channels contribution enhancing the classification performances.

This way, the model and results are more explainable showing correlations between neurological interpretation by an expert and the reading of the Heatmaps of deduced outputs of our model

• Chapter Five: The chapter begins with an explanation of the convolutional LSTM neural network. After which, a technical overview of the applied convolutions and the model setting is provided. Different architectures of the proposed novel spatio-temporal ConvL-STM model for epileptic seizure detection are detailed. Finally, the results of the model validation on a public dataset was discussed and a case of study was elaborated.

The thesis ends with a conclusion that provides a summary of our contributions, outlines the conclusions and the limitations of this research and also suggests several directions for future research.

Thesis publications

The proposed contributions through this thesis work led to four communications in international conferences, to one accepted journal paper, as follows:

• Paper in international journals 

Introduction

Health-related Artificial Intelligence marks an evolution in the healthcare systems. The ability of these applications to mimic the human processing for problem resolution gives them the strength to make approximate conclusions based solely on input data.

Such applications are expansively used for diagnosis and data analysis, thus supporting the decision of clinicians and experts.

Algorithms based on machine learning and deep learning are able to give very high precision for detecting abnormalities, classifying disorders, highlighting differences between multi-states, etc.

Meanwhile, these techniques are important despite presenting few drawbacks, among which, the huge amount of data needed, some of these techniques are black boxes and give few ways to interpret the obtained results and explain the high level of recognition that they offer.

From the claimed necessity for automatic recognition and analysis systems, another need appears aiming to improve the quality of life of people suffering from brain disorders, emotion disturbance like stress and state anxiety, and even epileptic patients. An important request is reported expressing the need of self-monitoring systems.

One of the most used tools for diagnosing multiple disorders is the electroencephalography.

This tool provides the ability to reflect the inner state of a person, to present brain activity on several brain regions. It is the first exam to carry out for epileptic patients and have a high importance for dementia diagnosis.

Furthermore, many researches have demonstrated the high correlation between EEGs and anxiety types by identifying same relevant bio-marks.

In Hz), Alpha (8 -16 Hz), Beta (16 -32 Hz) and Gamma waves (>32 Hz). These EEG rhythms are described below.

• δ rhythms are the slowest compare to all existing rhythms. Yet, they demonstrate the highest amplitude of all these rhythms. Said rhythms are evident when the subject is sleeping. The higher value is produced when the subject is in deep sleep.

• θ rhythms are correlated with adolescence, childhood, young adulthood and drowsiness. They are also present during critical-thinking, e.g. mathematical problems. These rhythms are located in the prefrontal cortex.

• α rhythms are correlated with untroubled states. These were the first rhythms to be identified, since they are discernible in almost the entire world population. They appear Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications in different parts of the cortex, but are distinctly visible in the occipital part, with a higher amplitude compared to other rhythms [START_REF] Sanei | EEG signal processing[END_REF]. Distinctive α rhythms are originated in the human cortex: µ rhythm, α occipital rhythm and α parietal rhythm [START_REF] Sanei | EEG signal processing[END_REF].

• β rhythms show low amplitude with multiple and changing frequencies, apparent at different parts in the cortex. They are generally correlated with anxious, busy or active thinking and active focusing states. Different types of β rhythms exist, such as β Rolandic rhythms and β frontal rhythms [START_REF] Sanei | EEG signal processing[END_REF].

• γ rhythms: Originally, γ rhythms were not studied, since outdated EEG recording systems were not able to record signals above 25 Hz. Prior to the use of digital recordings systems, these rhythms were undiscovered. One of the first articles illustrating these rhythms appeared in 1964. γ rhythms seem to appear in advanced mental activity, including fear, perception, consciousness and problem solving [START_REF] Sanei | EEG signal processing[END_REF]. The 10-20 system is one of various standardized electrode locations sets on the skull. Said system is used as a viewpoint to determine a convenient electrode placement in different tests.

The skull sizes vary from a person to another, hence why this system utilizes distances as percentages taken from a couple of fixed points on the head.

The system is established based on the link between the electrode location and the underlying area of the cerebral cortex. The numbers "10" and "20" refer to notion that the actual distances between adjacent electrodes are either 10% or 20% of the total front-back or right-left distance of the skull.

To make this textual explanation a little less abstract, refer to Figure 2.2 for a visual representation.

Figure 2.2: The international 10-20 system of electrodes placement intense emotional state, associated with a short-term increased affectionate nervous system activity, with no specific pathological conditions [Spielberger, 2013].

Webster's College Dictionary, 4 th edition (2000) defines anxiety as:

• A state of being uneasy, apprehensive or worried about what might happen; concern about a possible future event.

• Such an abnormal state, outlined by a feeling of powerlessness and inability to cope with overwhelming events (generally imaginary) along with physical tension, demonstrated by sweating, trembling, etc. Costa et al. (1965), in a 72 first-year medical students study, found a notable negative correlation between alpha amplitude and scores on Welsh's "A" (anxiety) test.

The EEG demonstrated a lower alpha rhythm band frequency and amplitude during the insurance claim examination. This discovery appears to be similar in terms of EEG activity to an earlier study by Cohn (1946), in which he reported that anxiety related to particular life situations, presented an intermittent low magnitude alpha that would manifest itself within 20 seconds of the deep breathing initiation.

In various therapeutic approaches, the patients are asked to utilize the alpha feedback in order to bring themselves back to a high-percent-alpha-state, thus decreasing their anxiety.

It was largely understood that anxiety inhibited alpha.

Epilepsy disorder

Epilepsy is a chronic disorder, characterized by unprovoked, recurrent seizures. A person is diagnosed with epilepsy if they go through two unprovoked seizures (or one unprovoked seizure with the probability of having more) that were the consequence of a medical condition like extremely low blood sugar or alcohol withdrawal.

The seizures may be linked to a family medical history or brain injury, but the cause is often completely unknown. The word "epilepsy" does not indicate anything about the cause of the person's seizures or their severity.

On a global scale, the incidence of the disease is about 50 to 100 cases per 100,000 population.

Epilepsy is the fourth most common neurological disease after migraines, stroke, and Alzheimer's.

Worldwide, a quarter of all newly diagnosed cases of epilepsy are found in children.

Epilepsy Epilepsy's definition requires the occurrence of at least one epileptic seizure [START_REF] Fisher | Ilae official report: a practical clinical definition of epilepsy[END_REF]. ILAE defined an epileptic seizure as a transient occurrence of signs and/or symptoms due to synchronous neuronal or abnormal excessive activity in the brain [START_REF] Fisher | Ilae official report: a practical clinical definition of epilepsy[END_REF]. In 2017, The ILAE presented a revised operational classification of seizure types [START_REF] Fisher | Operational classification of seizure types by the international league against epilepsy: Position paper of the ilae commission for classification and terminology[END_REF]. We can present two different problems: Seizure prediction and seizure detection systems. Prediction mean to anticipate the seizure few minutes before it occurs. These systems are trained using only the preictal and interictal data, ictal data containing the real seizure are discarded from the learning process.

In the first method, a preictal duration is pre-selected to classify EEG signals into preictal and interictal states and a binary classifier is trained to exploit differences between the two states.

The second method can be achieved using threshold-based methodologies where the analysis is focusing on identifying increasing and/or decreasing trends in the values over some features during the preictal state. An alarm is raised to declare an incoming seizure when the value of the examined feature exceeds the activation threshold. Recently Deep learning is applied for the seizure detection problem and demonstrated a high ability in classifying a segment into seizure of not seizure classes.

Seizures types

In 2017, the International League Against Epilepsy [START_REF] Scheffer | Ilae classification of the epilepsies: position paper of the ilae commission for classification and terminology[END_REF] They can be identified more specifically by these subcategories [START_REF] Scheffer | Ilae classification of the epilepsies: position paper of the ilae commission for classification and terminology[END_REF]]:

• Tonic. This type is characterized by stiffening muscles primarily in the arms, legs, and back.

• Clonic. Clonic seizures involve repetitive jerking movements across both sides of the body.

• Myoclonic. In this type, jerking or twitching movements occur in the arms, legs, or upper body.

• Atonic. Atonic seizures involve a loss of muscle tone and definition, ultimately leading to falls or inability to hold the head up.

• Tonic-clonic.Tonic-clonic seizures are sometimes called grand mal seizures. They can include a combination of these varied symptoms.

Unknown seizures The origin of these seizures is unknown. They manifest by sudden extension or flexion of the extremities. Moreover, they can reoccur in clusters.

Up to 20% of people with epilepsy experience non-epileptic seizures (NES), which appear like epileptic seizures, but are not associated with the typical electrical discharge found in the brain.

Seizures vs Artifacts

Artifact is present in virtually every EEG. It is an essential component for routine visual

analysis, yet it may beguile the interpreter into falsely identifying waveforms that simulate Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications

Epileptiform Discharges (ED)

The principal importance of artifact is represented by the frequency of its occurrence in contrast to the limited frequency of normal variants that may imitate pathological ED.

Some types of artifacts can look like a seizure. For example, the tremor, which is a muscular artifact, have different characteristic movements and can appear suddenly and periodically.

Neurologists [Tatum, 2013] assume that the ability to distinguish artifacts from pathological ED requires a human element in order to provide the essential identification of an abnormal EEG.

On the other hand, researches in the field of seizures detection have showed greater results

with a negligible false alarm rate, thanks to the methods and approaches robustness including artifacts removal techniques.

Review of EEG-based approaches for anxiety detection 2.3.1 Available benchmarks

Anxiety affects human capabilities and behavior as much as it affects productivity and quality of life. It is considered to be the main cause of depression and suicide. Anxious states are detectable by specialists by virtue of their acquired cognition and skills. There is a need for noninvasive reliable techniques to perform the complex task of anxiety detection. Several works [START_REF] García-Martínez | Symbolic analysis of brain dynamics detects negative stress[END_REF], [START_REF] Arsalan | Classification of perceived mental stress using a commercially available eeg headband[END_REF], and [Zhang et al., 2020a] were proposed to recognize anxious states. There is no consensus about the elicitation of anxious states nor about the labels, making existing works very different and difficult to compare.

Recently, we released a new dataset known as "DASPS" for anxiety levels recognition [Baghdadi et al., 2020a] from a low-cost 14-channels portable EEG device (EMOTIV-EPOC, https://www.emotiv.com/epoc/). The EEG recordings were taken from 23 participants.

DASPS is characterized by a therapeutic elicitation that triggers different levels of anxiety in participants by self-recalling stressful situations. To accord labels to two and four levels,

Hamilton score was taken from a questionnaire filled before and after experiment.

In the same context, Arsalen et al. [START_REF] Arsalan | Classification of perceived mental stress using a commercially available eeg headband[END_REF] carried out a psychological exper- Anxiety disorder is recognized through the Healthy Brain Network (HBN) dataset [START_REF] Alexander | An open resource for transdiagnostic research in pediatric mental health and learning disorders[END_REF] launched by the American Institute of Child Psychology and includes data collected from children and adolescents (ages 5 to 17) in New York City. HBN was proposed to diagnose and intervene in the mental health of minors. The dataset also contains eye movements and large EEG recordings.

Existing works on anxiety levels recognition

Studies conducted for stress/anxiety detection based on EEG signals analysis are scarce in comparison to researches done for emotion recognition surveyed in [Baghdadi et al., 2016]. The majority of the proposed works for EEG-based emotion recognition in ([Fourati et al., 2017a]; [START_REF] Fourati | Unsupervised learning in reservoir computing for eeg-based emotion recognition[END_REF]) were verified using DEAP datatset [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF]. In their work, Giorgos et al. [START_REF] Giannakakis | Detection of stress/anxiety state from eeg features during video watching[END_REF] extracted two trials subdatasets from the DEAP dataset following predefined conditions for two emotional states: calm and stress. The main goal is to define the thresholds for arousal and valence, and to only extract trials that respect the aforementioned condition. Ergo, the previous step lead to a 18-subjects subset in conformity with the adequate norm. The authors extracted non-linear, temporal and spectral EEG features in order to represent the investigated states.

Alternatively, other researchers opted to conduct a relevant experimentation in order to collect their proper EEG signals. In the work of Vanita et al. [START_REF] Vanitha | Real time stress detection system based on eeg signals[END_REF], the authors studied the stress levels of students and designated their proper experimental protocol to collect EEG signals during a stress stimulation session. Consequentely, data was preprocessed for noise and ocular artifact removal. The features were then extracted using timefrequency analysis and classification was performed by a hierarchical Support Vector Machines
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[ [START_REF] Lahane | [END_REF] proposed astress detection system based on EEG. They utilized an android application for the purpose of collecting EEG data. As feature, the Relative Energy Ratio (RER) was calculated for each frequency band.

Single channel EEG signal was collected from 25 students from the Sunway University for a Stress Detection System proposed by [START_REF] Lim | Analysis of single-electrode eeg rhythms using matlab to elicit correlation with cognitive stress[END_REF]. Utilizing the NeuroSky Mindwave headset, the data was recorded and stored for additional analysis. Students' stress was evoked for 60 seconds with the help of a Stroop color word test preceded by 30 seconds of onescreen instruction reading. Following an interview with the subjects who proclaimed that the instruction reading was the most demanding part of the experiment, it was deduced that solely the first 30 seconds of the collected data were preprocessed and processed for stress classification. The results reveal that k-NN, reaching 72%, outperforms LDA(60%) and ANN(44%) in stress classification.

Khosrowabadi et al. [START_REF] Khosrowabadi | A brain-computer interface for classifying eeg correlates of chronic mental stress[END_REF], recognized that the examination period is the most demanding part for students. Consequently, they conducted their experiment during and after the examination period. For which, they collected EEG signals from 26 students (15 of which were during examination period and the remaining 11 two weeks after). The data was preprocessed for noise removal with an elliptic band-pass filter . Three different features were investigated in this work: Gaussian mixtures of EEG spectrogram, Higuchi's Fractal Dimension (HFD) and Magnitude Square Coherence Estimation (MSCE). Classification was carried out using k-NN and SVM classifiers. Thereby, MSCE gives the best accuracy with up to 90% in classifying chronic mental stress.

As demonstrated in Table 2.2, the majority of the previous works depended on audio-visual stimulus from the international IAPS, IADS databases [Oude, 2007]. Despite that, others followed the path of arithmetic tasks as shown in [START_REF] Jun | Eeg based stress level identification[END_REF], where the stress level is presumed to increase when the tasks hardness level increases. As of late, Arsalan et al.

[ [START_REF] Arsalan | Classification of perceived mental stress using a commercially available eeg headband[END_REF] utilized a public speaking test as a stress stimulus. The stress level was calculated using the Perceived Stress Scale PSS before and after public speaking. The CHB-MIT scalp long-term EEG dataset [Shoeb, 2009] was recorded from pediatric patients (males with ages varying between 3 and 22 and females with ages varying between 3 and 19) with intractable seizures at Boston Children's Hospital. Table 2.3 presents the properties of seizure records (i.e., records with at least one seizure event) in this dataset. The total duration of the EEG data is 8756 min (146 h) within which the total duration of the seizure segments is only around 165 min (<3 h). So even with the seizure record selection, the seizure segments cover only 1.88% of the EEG dataset, presenting a highly imbalanced data distribution, which makes the classification highly challenging. The sampling frequency of all recorded signals was 256

Hz with 16-bit resolution and each frame is annotated whether it is seizure or non-seizure. International 10-20 system for electrode positioning was used. The 18 processed channels are: chb01, chb02, etc.) contains between 9 and 42 continuous .edf files from a single subject.

FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ and CZ-PZ. Each case (
In all, these records include 198 seizures (182 in the original set of 23 cases); the beginning ([) and end (]) of each seizure is annotated in the .seizure annotation files that accompany each of the files listed in the file 'records-with-seizures'.

The files named chbnn-summary.txt contain information about the montage used for each recording, and the elapsed time in seconds from the beginning of each .edf file to the beginning and end of each seizure contained in it.

In order to manipulate data from the CHB-MIT database, we used the toolbox EEGLAB.

EEGLAB is an interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data.

Existing works on epileptic seizures detection and prediction

Many different approaches have been experimented in order to produce EEG features specific to seizure and perform well in capturing the majority of the latter. Seizure prediction has
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Pre-treatment of EEG signals (suppression of noise and artifacts): According to M. K. Islam et al [START_REF] Islam | A wavelet-based artifact reduction from scalp eeg for epileptic seizure detection[END_REF] for CTs 1, 2, 3 and 5, 99.5% for CT4, 99.67% for CT6, 98.5% for CT7 and 99.6% for CT8.

In this paper [START_REF] Patidar | Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals[END_REF], the author proposed the combination of a TQWT and kraskov Entropy as a new method for detecting epileptic seizures using EEG signals from the Bonn database. The system performance in terms of accuracy, sensitivity, specificity and Matthew's correlation coefficient (MCC) are: 97.75%, 97.00%, 99.00% and 96.00% respectively for a window sized 1000. According to the analyzes elaborated in this research, the calculated values of the Entropy are higher for the segments with crisis and are identifiable even without classifier. This paper focuses on the effectiveness of using a single feature for detecting seizures, unlike other researches that investigates several types of features to improve performance.

In [Bhattacharyya et al., 2017] In [START_REF] Qiu | Denoising sparse autoencoderbased ictal eeg classification[END_REF], the authors presented a new method for automatic detection of seizures based on DSAE (Denoising Sparse AutoEncoder). DSAE is a deep neural network designed on SAE and DAE. The application of parsimony constraints allows the expression of the higher level of the EEG signal, which makes the distinction between normal and critical cases more obvious. The corruption operation adds noise to the input signal. The authors evaluated their method using Bonn database. They also classified 3 types of problems (2 classes, 3 classes and 5 classes) and reached 100% accuracy in the first 2 cases and 92% in the last 2 cases. Classification was done using logistic regression.

In [START_REF] Samiee | Epileptic seizure classification of eeg time-series using rational discrete short-time fourier transform[END_REF], the authors present a new tempo-frequency method for feature extraction. Discrete Short Time Fourier Transform (DSTFT), which is based on a set of rational The work of [START_REF] Yuan | A novel channel-aware attention framework for multi-channel eeg seizure detection via multi-view deep learning[END_REF] presents a new approach to the detection of epileptic seizures based on the attentive representation of the different channels of an EEG signal. The authors assume that, in the field of epileptic seizure detection from multiple-channel signals, several channels are unimportant and do not give any information about the activities, but they add a lot of noise to the signal, thus generating degradation of the detection system's performance.

Based on these facts, they proposed a multi-view deep learning model that can accurately detect the onset of epileptic seizures from multiple-path EEG signals. They introduced two attention mechanisms, taking into account the pathways, to dynamically calculate the scores of each channel and obtain a light selection of the channels.

A deep convolutional neural network is proposed by the authors in this paper. Comprised of 13 layers (5-convolutional layer, 5-max-pooling and 3-fully connected). The work of [START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals[END_REF] proposes the implementation of deep learning for the detection of normal, predictive and epileptic EEG signals (normal, interictal, ictal), without extraction or selection of characteristics. The system automatically learns and discovers the characteristics necessary for classification from input data processing through multiple layers. System performance is validated by the Bonn database, achieving 88.67% accuracy, 95.00% sensitivity and 90.00% specificity. The transition between the preictal and seizure is still not well understood by neuroscientists.

The nature and specificity of epileptic seizures are patient dependent. Handcrafted characteristics show limitations for some patients compared to others. Cook showed that building a such predictive system is not impossible, and that the key instruction is the use of a long term EEG data recorded over years for some patients [START_REF] Cook | Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drugresistant epilepsy: a first-in-man study[END_REF]. The proposed implantable system records continuous iEEG data for specific patient setting. Cook showed the feasibility of seizures prediction, his findings encourage researches for more clinical investigation and accentuate the need for new technologies to be tested for this issue. As the cook trial is based Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications on a predefined set of features, the system was not suitable for all patients, thus presenting its major limitation. The proposed system cannot generalise for all preictal patterns. This limitation makes researches deviate from the use of handcrafted predefined sets of features to a more generalised high level characteristics. The task is challenging with a high level of requirement that can only be handled by novel computational techniques. These days, many databases for In 2014, an international prediction competition (American Epilepsy Society Seizure Prediction Challenge) ran on a combination of short-term human EEG data and long-term dog EEG data. All provided data was intracranial EEG recorded over multiple days (>500 days in humans and >1,500 days in dogs) [START_REF] Howbert | Forecasting seizures in dogs with naturally occurring epilepsy[END_REF]][Brinkmann et al., 2016].

Sets provided to participants contained a 10 min segments of discontinuous data labelled into interictal and preictal classes. Furthermore, a set of unlabelled data was provided for testing the participant's system. In the both competitions, the evaluation of seizure prediction algorithms require the use of the Area Under Curve (AUC) metric. Similar performances were provided by both topperforming algorithms, producing an AUC value of 0.84 [START_REF] Brinkmann | Crowdsourcing reproducible seizure forecasting in human and canine epilepsy[END_REF] and 0.81 [START_REF] Kuhlmann | Epilepsyecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracranial eeg[END_REF] In the domain of deep learning based methods, the authors in [START_REF] Asif | Seizurenet: Multi-spectral deep feature learning for seizure type classification[END_REF] achieved an average F1-score of 98.4% on an ensemble of three DenseNet-based CNN's trained on the TUH dataset. This proposed architecture contains 45.94 million parameters, compared to 1.2 million parameters in the hybrid bilinear structure proposed in the study of [START_REF] Liu | Epileptic seizure classification with symmetric and hybrid bilinear models[END_REF].

This work also omitted myoclonic seizures from the classification task due to the low numbers of samples of myoclonic class in the TUH dataset.

Both [START_REF] Ahmedt-Aristizabal | Neural memory networks for robust classification of seizure type[END_REF] and [START_REF] Sriraam | A convolutional neural network based framework for classification of seizure types[END_REF] proposed solutions to the 8class classification problem on the TUH dataset, achieving 84.06% and 94.05%. As can be seen from Table 2.6, the bilinear models proposed by [START_REF] Liu | Epileptic seizure classification with symmetric and hybrid bilinear models[END_REF] achieved better performance on the 8-class classification problem. Non-deep learning methods, including the KNN proposed by [START_REF] Roy | Machine learning for seizure type classification: setting the benchmark[END_REF] and the Support Vector Machine proposed in [START_REF] Saputro | Seizure type classification on eeg signal using support vector machine[END_REF],

demonstrate reasonable performance (90.7% and 91.4%) but were achieved through extensive feature engineering that is not desirable.

Often in seizure detection, models trained on a single patient perform better than general models trained on multiple patients data. This is partly because there is a large variation between human brains, and partly because there is not necessarily any correspondence between device channels across patients.

In [START_REF] Cisotto | Comparison of attention-based deep learning models for eeg classification[END_REF], the author has discussed the difference between Machine Learning techniques and Deep Learning approach in distinguishing patients taking either anticonvulsant and those taking no medications; as well as between the two anticonvulsants. The techniques was validated on the TUH-Corpus database since it is the largest available dataset [START_REF] Nahmias | Deep learning and feature based medication classifications from eeg in a large clinical data set[END_REF]. The comparison invoked in this paper shows that a small difference exists between the used ML techniques and Deep model in achieving a moderate accuracy rate for medication use detection and that Deep models are less time consuming then ML techniques.
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Conclusion

Health-related applications are expansively used for diagnosis and data analysis, thus supporting the decision of clinicians and experts.

In this chapter, we detailed several concepts on the EEG-based systems for state anxiety and epilepsy recognition. We described the EEG signal specificities and we presented related definitions. Surveys of existing works on anxiety levels recognition, epileptic seizures prediction and seizures types classification were provided.

In the next chapter, a novel psychological stimulation experiment for anxiety levels recognition will be detailed. We will present the feature-based and the LSTM Autoencoder-based approaches that achieved both promising results for anxiety levels recognition. 

Introduction

Anxiety is a mental health issue that has physical consequences on our bodies. However, it can affect the immune system, and unfortunately, there is evidence that too much anxiety can actually weaken the immune system dramatically [Felman, 2018]. Anxiety is essentially a long term stress, in such a way the stress hormone is liberated by our bodies in huge quantities which correlates with body performance degradation. This invisible disability can greatly affect academic performance as well. Anxiety impacts memory capacities, leading to difficulties in learning and retraining information.

One in eight children suffers from anxiety disorders according to the Anxiety Disorders Association of America reports [START_REF] Adaa | Anxiety and depression association of america[END_REF]. Nevertheless, it presents a risk for poor performance, diminished learning and social/behavioral problems in school. Since anxiety disorders in children are difficult to identify, it is an imperative task to learn how to detect them in early stages in order to help them. It may manifest by signs such as increased inflexibility, overreactivity and emotional intensity.

Besides, effective anxiety and stress management can help balance stress in your life, while keeping high productivity and enjoying life. The intention is to find harmony between work, relationships and self-awareness, and to learn how to deal with anxiety states to confront challenges. But anxiety management is not one-size-fits-all, so we need to detect when anxiety is present, how it manifests in our bodies and how our neurological system reacts to such situations.

Anxiety detection is an underlying part of affect recognition. Another area that could significantly benefit from progress in affect recognition is the video game industry. New trends Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation of therapeutic environments for rehabilitation of patients with serious mental disorders, implement an affect detection algorithms. Biofeedback systems can help children, adolescent and adults control and manage their levels of anxiety, and facilitate real life challenges.

This chapter is organized into 4 sections. In section 2, we detail the implemented experimental protocol and the analysis of the collected data in terms of variability and coherence.

The followed steps for data recording and preprocessing as well as the general architecture of the proposed system are also included. A variety of features are presented in Section 4. An analysis and discussion of the obtained results are carried out in section 5. Finally, the last section summarizes our chapter and outlines future work.

DASPS: a new database for anxiety levels detection based on a psychological stimulation

Due to the lack of public benchmarks on anxiety levels recognition, we propose to design a new database characterized by the following advantages:

1. Elicitation of four anxiety levels based on real life situations.

2. Use of comfortable EEG headset which it is wireless and has dry electrodes.

3. Interaction with the psychotherapist ensures that the subject feels more comfortable in a safe place. 

DASPS is available in IEEE

Anxiety stimulation

Carrying out mental states related research, usually means it is necessary to provoke the desired response on the subject at the required moment. Before the experiment, we selected real Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation life situations to induce a stressed mental state. Actually, anxiety mainly arises due to three factors, namely external, internal and interpersonal. Table 3.1 shows anxiety categories and their stimuli from real life situations. To select the situations with the highest anxiety levels, a survey was carried out and broadcasted to all volunteers who wanted to participate in our experiment.

In accordance with survey answers, we selected 6 situations where participants experienced the highest anxiety levels as portrayed hereinafter: Loss (68%), Family issues (64%), Financial issues (54%), Deadline (46%), Witnessing deadly accident (45%) and Mistreating (40%). Health (Fear of being diagnosed with a serious illness)

The experiment was performed in an isolated environment to avoid distracting noises and to guarantee a subject's full concentration. The anxiety stimulation is accomplished by face-toface psychological elicitation performed in a professional manner by our psychotherapist.

Psychological evaluation

As mentioned, the experiment lasts almost 6 minutes divided into 6 different situations. The first 30 seconds of each trial are considered and the 15 seconds of SAM are removed which results in 6 trials of 30 seconds per each participant. According to the experiment protocol, after each 30 seconds of stimulation the participant is asked to fill in the SAM survey to express In order to increase the number of samples per participant, we follow previous work [START_REF] Zheng | Identifying stable patterns over time for emotion recognition from eeg[END_REF] 

Self Assessement Manikin

In emotion-related studies the Self Assessment Manikin (SAM) [START_REF] Bradley | Measuring emotion: the self-assessment manikin and the semantic differential[END_REF]] is widely used. It consists of a picture-oriented questionnaire, shown in Figure 3.1, containing five images for each of the three affective dimensions: valence (ranging from unpleasant/ stressed to happy/ relaxed); perceived arousal (from uninterested/ bored to excited/ alert); and perceptions of dominance/control. The participants rate their experience on a scale, normally with 9 points.

In most cases, only the valence and arousal scales are used, since the concept of dominance is harder to be understood and expressed. In our experiment, we collected SAM ratings for

Valence and Arousal dimensions after each presented "situation", i. e. the stimuli.

Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation Figure 3.1: Self-Assessment Manikin (SAM) proposed by [START_REF] Bradley | Measuring emotion: the self-assessment manikin and the semantic differential[END_REF]. Self-evaluation scales for the dimensions of valence (top row), arousal (middle row), and dominance (bottom row) in a 9-point scale.

Hamilton anxiety rating scale

Hamilton Anxiety Rating Scale (HAM-A) is a multi-point survey that allows psychologists to take a complete view of the body metrics related to an anxious state as depicted in Figure 3.2. It provides 14 items, each one contains a number of symptoms that can be rated on a scale of zero to four in order to measure the severity of participants'anxiety. The HAM-A scores were calculated before and after the entire experiment, to asses the impact of the psychological stimulation. While, the SAM rating were used to measure the intensity of each situation.

Subjects

The experiment was performed on 23 healthy subjects who do not suffer from psychological diseases. 13 women and 10 men with an average age of 30 years old were selected. The experiment involves Tunisian subjects, therefore the Arabic language was used to communicate.

The purpose was clearly explained to each participant before starting the experiment. Items of Figure 3.2: Hamilton anxiety rating scale (HAM-A) proposed by [Hamilton, 1959] [Maier et al., 1988]. 14 questions about feelings and thoughts during the last month in a 4-point scale.

the HAM-A questionnaire are highlighted to avoid misunderstanding each question.

EEG recording

EEG signals were recorded using a wireless EEG headset, the Emotiv EPOC with 14 channels and 2 mastoids [Ekanayake, 2010] were placed according to the international 10-20 system. The electrodes were attached to the scalp at position AF3, F7,F3, FC5, T7, P7, O1, O2, tems like proved by [START_REF] Jatupaiboon | Emotion classification using minimal eeg channels and frequency bands[END_REF]] [Anh et al., 2012] [Coan and Allen, 2003] and more recently by [START_REF] Katsigiannis | [END_REF]Ramzan, 2018] [Benitez et al., 2016].

The recording was performed through Emotiv Epoc Software for EEG raw data recording.

It allows us to view and save data for all channels or just customised the ones we need. The produced raw data have ".Edf" extension that is convertible using matlab script to ".mat" for further processing. The recording started before carrying out the first situation and ended after finishing the sixth one. The acquired EEG signals were processed at 128 Hz and impedance was kept as low as 7 kΩ.

Experiment protocol

The experimental protocol was designed carefully with a psychotherapist, who recommended the use of exposure therapy. The latter is a form of the well known Cognitive Behavioral Therapy (CBT). Exposure therapy involves starting with items and situations that cause anxiety, but anxiety that you feel able to tolerate [Eraldi-Gackiere and Graziani, 2007]. There are different forms of exposure, such as Imaginal Exposure, virtual reality exposure, and invivo exposure. In the experimental protocol, we used the Flooding as in-vivo exposure therapy The fixed protocol is as depicted in Figure 3.4. Each participant is asked to sign a consent before starting the experiment. The anxiety level is calculated before stimulation according to the HAM-A score [Hamilton, 1959] [Maier et al., 1988] to examine the current state of the participant (some participants are already in a routine related anxious state, but their score increases after the experiment, while others start with a low level of anxiety and migrate to a severe level after the experiment). This tool provides 14 items, each one contains a number of symptoms that can be rated on a scale of zero to four. The HAM-A test, widely used for anxiety, allows the detection of the anxiety levels by the mean of its wide variety of items and can handle the variability of people's reactions. The psychic factor was represented by anxious mood, tension, fearfulness, insomnia, intellectual-cognitive function, depressed mood, and behavior-at-interview items, whereas the somatic factor consisted of the somatic-muscular, somatic-sensory, cardiovascular, respiratory, gastrointestinal, genitourinary, and autonomic items [Dr. Aaron T, 1991].

Our psychotherapist inquires the participant about the degree of severity of each symptom and its rate on the scale, with four being the most severe. This acquired data is used to compute an overarching score that indicates a person's anxiety severity. After that, the participant is prepared to start the experiment, with closed eyes and minimizing gesture and speech. The psychotherapist starts by reciting the first situation and helps the subject to imagine it. This Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation phase is divided into two stages: recitation by the psychotherapist for the first 15 sec and Recall by the subject for the last 15 sec.

When time is over, the subject open his eyes to rate how he felt during stimulation using SAM scales. Rating feeling using SAM is one of the most used evaluation technique in the field of affective computing. For instance, it is used in emotion recognition [START_REF] Katsigiannis | Dreamer: a database for emotion recognition through eeg and ecg signals from wireless low-cost offthe-shelf devices[END_REF]][Koelstra et al., 2012] [Shukla et al., 2019]), anxiety detection [START_REF] Giannakakis | Detection of stress/anxiety state from eeg features during video watching[END_REF]] [Murdoch et al., 2019], and game assessment [START_REF] Xie | Applying self-assessment manikin (sam) to evaluate the affective arousal effects of vr games[END_REF] [ [START_REF] Hvass | Visual realism and presence in a virtual reality game[END_REF]. It has two rows for rating: Valence ranging from negative to positive and Arousal ranging from calm to excited. Each row contains nine items for rating. In order to evaluate the current emotion, each volunteer has to tick items that are suitable for emotion on only two dimensions (Arousal, valence). This trial is repeated until the sixth situation. At the end of the experiment, some items from HAM-A are re-evaluated by the psychotherapist to adjust the participant's anxiety level.

Data analysis

Before the processing phase, the data were evaluated to eliminate those with large difference between expected and real rating. Russell defines anxiety as [Russell, 1980] : Low Valence and High Arousal (LVHA). As a matter of fact, trials having this condition and belonging to LVHA quadrant are the main focus of our work as shown in Figure 3.5. To analyze data across all participants, we opt to measure the relative variability by computing the Coefficient of Variation (CV) for all participants' ratings for all stimuli situations. The mean CV between the participants' assessments was 0.58 for valence and 0.42 for arousal, which can be considered as low variability. Note that this value is higher than expected. In most cases, this variability is due to the lack of comprehension of SAM scales leading to no objective rating. The mean rating across all study participants for each stimuli case in terms of valence and arousal are shown in Table 3.2.

Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation As shown in Figure 3.5, samples are focused on LVHA and LVLA quadrants, which proves that the employed situations successfully worked in eliciting anxiety with most participants.

HAM-A score was calculated before and after the EEG recordings. According to HAM-A score, it is possible to know the anxiety level of the participant. Table 3.4 presents the number of participants with their corresponding anxiety level based on Hamilton score before and after the experiment. It can be seen that the number of participants before the experiment with Normal, Light, and Moderate levels is decreased in favour of an increasing in the number of the participants after the experiment with Severe level from 7 to 13. This is another proof that anxiety elicitation in our experiment was successful. Before processing the collected data, we elaborated a study on the correlation between each anxiety level and all EEG bands. Data were sorted by anxiety level resulting in 4 groups with variable number of samples N. The mean relative power per group was calculated and the EEG topographic maps were assembled in the Figure 3.6. The latter highlights the negative correlation between the anxiety and the right hemisphere. The alpha bands (Alpha1, Alpha2) are more present in the groups (G1: Normal, G2: Light), which are the closest from a calm state [Larson, 2019].

The Beta band spreads into all brain regions for G4: Severe. It is well known that Beat increases when the person is in a complex thinking state.

These findings validate the consistency of the collected EEG data.

Artifacts removal

In biomedical signal processing, the determination of noise and artifacts in the acquired Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation

The Automatic Artifact Removal (AAR) in EEGLAB toolbox [START_REF] Delorme | Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis[END_REF] was used to remove EOG and EMG artifacts. This toolbox implements several algorithms for EMG and EOG artifacts removal. We used the implementation of BSSCCA Canonical Correlation Analysis (CCA) which projects the observed EEG data into maximally auto-correlated components [De Clercq et al., 2006]. We chose the criterion emg_psd that considers the components whose average power ratio in the typical EEG and EMG bands is below certain threshold to be EMG-related . In order to estimate the power in the EEG and EMG bands, the default estimator used is a Hamming-windowed Welch periodogram with segment length equal to the analysis window length.

By default, the toolbox uses a combination of iWASOBI which is an asymptotically optimal Blind Source Separation (BSS) algorithm for autoregressive (AR) sources [START_REF] Tichavskỳ | A computationally affordable implementation of an asymptotically optimal bss algorithm for ar sources[END_REF], and the criterion eog_fd to automatically correct EOG artifacts in the EEG. Eog_fd marks as artifactual the components with smaller fractal dimension. Conceptually, components with low fractal dimensions are those that are composed of few low-frequency components [START_REF] Gómez-Herrero | Automatic removal of ocular artifacts in the eeg without an eog reference channel[END_REF]. This is often the case of ocular activity and therefore it is a suitable criteria for detecting ocular (EOG) components.

Feature-based Machine Learning Approach for anxiety levels recognition

This work covers all stages needed to create a robust EEG-based anxiety detection system, starting from the elaboration of an anxiety stimulation experimental protocol to the classification of anxiety levels. The general architecture of the proposed system is depicted in Figure 3.7. Generally, we can classify EEG features into three main classes according to the domain, namely, time-domain features, frequency-domain features and time-frequency-domain features. Other features can be extracted from a combination of electrodes, we mention one of them in this section.

Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation Figure 3.7: Architecture of the proposed system for anxiety levels detection

Time Domain Features

Time-domain features are results of an exploration of signal characteristics that differ between emotional states. Many approaches were employed in the researches to extract this type of features. In our work, we have extracted Hjorth features and FD features:

Hjorth features

Hjorth parameters [Hjorth, 1970] Assume that

dx i = x i+1 -x i , (i = 1, .., n -1), ddx = dx i+1 -d i , (i = 1, .., n -1).
The expressions of Hjorth parameters are:

Activity = 1 n n ∑ i=1 x 2 i (3.1)
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Mobility = 1 n-1 n-1 ∑ i=1 dx 2 i 1 n n ∑ i=1 x 2 i (3.2) Complexity = 1 n-2 n-2 ∑ i=1 ddx 2 i 1 n-1 n-1 ∑ i=1 dx 2 i - 1 n-1 n-1 ∑ i=1 dx 2 i 1 n n ∑ i=1 x 2 i (3.3)
Hjorth were used in many EEG studies such as in [Hjorth, 1970] [Horlings et al., 2008]. In our work, we calculated Hjorth parameters for all EEG channels, that produce a size Feature Vector of 42x1 for each trial.

Fractal dimension

The Higuchi algorithm calculates fractal dimension value of time-series data. X (1), X (2),..., X (N) is a finite set of time series samples. Then, the newly constructed time series is defined as follows:

X m k : X(m), X(m + k), ..., X m + N-m k .k (3.4) ( m=1,2,...,k )
where m is the initial time and k is the interval time. k sets of L m (k) are calculated as follows:

L m (k) =    ∑ N-m k i=1 |X(m + ik) -X(m + (i -1).k)| N-1 N-m k .k    k (3.5)
where L(k) denotes the average value of L m (k) , and a relationship exists as follows:

L(k)) ∞k -D (3.6)
Then, the fractal dimension can be obtained by logarithmic plotting between different k and its associated L(k). The decomposition of the overall power in the EEG signal into individual bands is commonly achieved through Fourier transforms and related methods for spectral analysis as stated in [START_REF] Jenke | Feature extraction and selection for emotion recognition from eeg[END_REF]. Otherwise, short-time fourier transform (STFT) is the most commonly used alternatives, or the estimation of power spectra density (PSD) using Welch's method [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF]. We use the STFT with a Hamming window of 1s with no overlapping. x(t) is then represented as a sum of IMFs and the residual.

Time-frequency domain features

x(t) = K ∑ i=1 c i (t) + r K (t) (3.7)
where C i (t) indicate the i th extracted Empirical Mode, r K (t) indicate the residual, and K is the total number of IMFs.

In this work, we computed HHS for each signal using the EMD to obtain a set of IMFs representing the original signal. Extracted features are Hilbert Spectrum (HS) and instantaneous Correspondence of frequency bands and wavelet decomposition levels depends on the sampling frequency. In our case, the correspondent decomposition is given in the last column of Table 3.5 for f s = 128 Hz. In our approach, in addition to the Band Power, the statistical feature Root Mean Square (RMS) derived from a wavelet decomposition with the function 'db5' for 4 levels, is extracted for each frequency band.

RMS( j) = ∑ j i=1 ∑ n i D i (n) 2 ∑ j i=1 n i (3.8)
where D i are the detail coefficients, n i the number of D i at the i t h decomposition level, and j denotes the number of levels [START_REF] Murugappan | Inferring of human emotional states using multichannel eeg[END_REF]. In addition to the aforementioned features, we adopted the set of features used in [START_REF] Toole | Neural: quantitative features for newborn eeg using matlab[END_REF], which include a variation of commonly used EEG features. However, for some features we use all channels and bands unlike in [START_REF] Toole | Neural: quantitative features for newborn eeg using matlab[END_REF] in which, a reduction of features was applied by averaging outputs. Details of the feature set are depicted in the Table 3.6.

The column FB indicate if features are generated for each frequency band or not.

A feature vector resulting from this step containing a fusion of all qEEG features, constructed for ulterior classification.

Table 3.6: EEG quantitative features

Feature Description FB Absolute and relative(normalised to total spectral power) spectral power Yes Spectral entropy: Wiener (measure of spectral flatness) Yes Difference between consecutive short-time spectral estimates Yes Cut-off frequency: 95% of spectral power contained between 0.5 and fc Hz No Amplitude: Time-domain signal: total power and standard deviation Yes Amplitude: Skewness and of time-domain signal Yes Amplitude: Envelope mean value and standard deviation (SD) Yes Connectivity: Brain Symmetry Index Yes Connectivity: Correlation between envelopes of hemisphere-paired channels Yes Connectivity: lag of maximum correlation coefficient Yes between hemisphere-paired channels Connectivity: coherence: mean, maximum and frequency of maximum values Yes Range EEG: mean, median, standard deviation and coefficient of deviation Yes Range EEG: measure of skew about median Yes Range EEG: lower margin (5th percentile) and upper margin (95th percentile) Yes Range EEG: upper margin -lower margin Yes

Differential asymmetry

Frontal asymmetry (the relative difference in power between two signals in different hemispheres) has been suggested as biomarker for anxiety [START_REF] Demerdzieva | Relation between frontal alpha asymmetry and anxiety in young patients with generalized anxiety disorder[END_REF].

Due to the inverse relationship between alpha power and cortical activity, decreased alpha power reflects increased anxiety [START_REF] Demerdzieva | Relation between frontal alpha asymmetry and anxiety in young patients with generalized anxiety disorder[END_REF].
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Frontal asymmetry within the alpha band can be inversely related to stress/anxiety. The feature was calculated using alpha band power. The natural logarithm of left side channels were subtracted from the right ones (L-R).

AsymmetryIndex = ln(α) LChannel -ln(α) RChannel (3.9)
To calculate the asymmetry index, the continuous signal must be broken into small parts. Scientific studies recommend overlapping epochs with each limited to a duration of 1-2 seconds [START_REF] Zheng | Identifying stable patterns over time for emotion recognition from eeg[END_REF].

Anxiety detection results and discussion

SAM-based results

The main aim of the current work is to provide a new database for EEG-based anxiety detection. Therefore, to validate the proposed methodology three experiments basing on trial duration were conducted. As a preliminary step, data were labeled by applying an algorithm based on arousal and valence values to handle two classification problems which are anxiety two levels detection and anxiety four levels detection. The number of trials for each class resulting from this step is presented in Figure 3.8 in term of distribution percentage leading to unbalanced classes.

We believe that unbalanced data in the case of 4 anxiety levels affects the classification results. So, we propose in order to obtain a balanced data, to regroup classes two-by-two: normal and light in the first class and moderate and severe in the second class. The dataset becomes slightly unbalanced, with samples amounting to 36% and 64% in average for the first class (labeled light) and the second class (labeled severe) respectively. Figure 3.8 shows the overall class distribution throughout the whole dataset for the two-class rating scale. Classification was performed using a SVM classifier with Radial Basis Function (RBF) kernel. It was trained and tested in Matlab. Furthermore, a 5-fold cross validation technique was used in order to validate the classification performance. It must be noted that k-NN was also evaluated using the same procedure, and happened in some cases to produce a more significant results than SVM. We In this work, we varied the trial duration to verify the anxiety manifestation. To make the comparison fair, we used the same classifiers and the same features. As depicted in Table 3.7, for Hjorth features it is remarkable that SVM accuracy decreases from 72.90% (5s) to 67.40% (1s) and k-NN accuracy is increased from 64.90% (5s) to 81.40% (1s). Two key ingredients are behind this accuracy variation, to know, the dataset size and the data projection in the space. Theoretically, with more samples the training phase is more efficient and the classifier is prevented from overfitting. In practice, k-NN improved the performance results while SVM decreased the accuracy results. To further analyze such variation, a 2D Principal Component Analysis (PCA) for data projection of trials with 5s and 1s, respectively is handled as shown in Figure 3.9. Low anxiety level (Blue dots) data are more overlapped with High anxiety level (dark red dots) in Figure 3.9.b with 1s than in Figure 3.9.a with 5s. This overlapping is responsible for the obtained results with SVM, it means that the Hjorth features for 1s are less discriminative than those with 5s and SVM was not able to find a hyperplane to discriminate between the two levels.
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Through the aforementioned results, it is clear that detection from one second trial length is more accurate and this is related to the anxiety as an emotion. It can be evoked in 1s, but 5s or 15s are too long and may contain more than one emotion. To add, we can notice that the best rates are related to time-frequency features obtained after a wavelet transform which was also proved by [START_REF] Zhao | Analyze eeg signals with extreme learning machine based on pmis feature selection[END_REF]. The latter showed that the frequency-domain features are more prominent for EEG signals regarding the time-varying and non-stationary nature.

Regardless of the trials' duration, features produced from a Hilbert Hung Transform and the set of quantitative EEG features do not lead to a great accuracy, despite proving that this approach outperform rates in many researches. Knowing this, Hjorth parameters are the most simple features to extract from an EEG signal, yet they produce a significant accuracy throughout all types of datasets.

For further study the impact of feature type on the performance of the proposed system, Feature vectors from 1s trial are grouped by type and then passed to SSAE. SSAE is a wellknown neural network proposed for data compression. In our work, SSAE is used for feature selection step. SSAE with one hidden layer is first considered and then a deeper SSAE with two hidden layers is tested. The activation of the last hidden layer is extracted and it is known as the latent representation. It is worthy to note that the sparsity constraint on the latent vector is very important in finding the most relative features. Actually, the sparsity on the activation allows to preserve only the most expressive (non-sparse) neurons that handle the pattern matched with the input. Once having the latent vector, it is passed to a softmax layer which is responsible for the classification step. Since the input of SSAE is a handcrafted feature vector, there is no feature learning process in our work. The latter consists in extracting automatically the relevant features from raw data which is not our case.

As the role of SSAE is the selection of the most relevant features, we specified the size of both hidden layers to be lower than the input size. Note that, a softmax layer is added to perform the classification task. While, the combination of features allows to provide rich information, the representation generated by SSAE proved their effectiveness in handling more discriminative aspect. The result of 2 levels is higher than the 4 levels and this is mainly to the increase of complexity aspect in the classification task.

Deep approches for neurological disorders detection based on brain activity analysis Asma Baghdadi 62
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HAM-based improved results

In order to evaluate the HAM-A test efficiency in the data labelling process, we keep the most relevant features and redo the classification on the HAM-based dataset. Best results were obtained for 1s duration trials with RMS features for 4 levels detection, and with all features combination with a SSAE classifier. In this section, we will discuss only the improved results for 4 levels detection.

As shown in Figure 3.10, better detection accuracies are obtained across all features using the HAM-A scores labeled dataset. Since SAM rates are related on the level of participant comprehension, a lack of comprehension of these scales may lead to a confusing rating. On the other hand, the HAM-A test was performed with the complete psychologist's assistance. The calculated scores are most accurate and informative.

Table 3.9 presents the performance comparison of our proposed work with recent studies conducted for the classification of human stress. The mentioned methods were compared with our proposed scheme on the basis of the number of participants, number of channels, classifier, number of classes and achieved accuracy. For multi-level stress classification, an accuracy of 83.40% was achieved using 128 electrodes [START_REF] Subhani | Machine learning framework for the detection of mental stress at multiple levels[END_REF]. Whereas our proposed methodology achieved an accuracy of 86.70% for multi-level classification with only 14 electrodes.

The multi-modal system proposed by Zanetti et al. [START_REF] Zanetti | Multilevel assessment of mental stress via network physiology paradigm using consumer wearable devices[END_REF] achieved an accuracy of 84.60% in the classification of 3 mental stress levels using multiple physiological Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation signals. When reducing the number of signals, the accuracy had decreased down to 76.50%.

Whereas, we proposed a less complicated single-modal approach and achieved a higher performance. Arsalan et al. [START_REF] Arsalan | Classification of perceived mental stress using a commercially available eeg headband[END_REF] tried to classify three levels of stress (non-stressed, mildly stressed and stressed) and proposed a feature selection algorithm in order to enhance the classification accuracy. Further, they didn't perform this task since the obtained accuracy is outstandingly lower than for binary classification (60.91%).

We performed a feature selection with deep SSAE and we obtained the highest state-ofthe-art results for multiple-label classification problem using SSAE with HAM-based labels (86.70%) as shown in Table 3.10. As for SAM-based results in Table 3.10, k-NN achieved higher accuracy (81.40%) in comparison to SVM classifier with RBF kernel (79.00%). This is not surprising, it is confirmed with previous findings in [START_REF] Piho | A mutual information based adaptive windowing of informative eeg for emotion recognition[END_REF] for EEGbased emotion recognition task. SSAE handle an improvement up to 5% in comparison with k-NN. In general, neural networks reach better performance than SVM or k-NN especially in the case of big dataset. Furthermore, SSAE due to its compression capability it performs better in case of dataset with large feature vector. The confusion matrix of the three classifiers on trials with 1s duration labeled with HAM scores is shown in Figure 3.11, which shows the details of strength and weakness of each between specificity and sensitivity, giving a good estimate on how well the classifiers separate the classes. Figure 3.12 of SSAE with HAM-based labels shows that frequency features separate anxiety two levels better than the other kind of features. Time frequency features curve is superimposed upon Frequency features curve, that means they separate similarly. Time features do not separate well between anxiety two levels.

From the aforementioned results, HAM-based labels are more expressive and reflective than SAM-based labels which means that Hamilton score is well related to anxiety elicitation than simple SAM ratings. Among different features, RMS features are the most discriminative for SVM and k-NN classifiers. Thanks to the segmentation into 1s trials, classification problem is more realistic. In such case, SSAE is more powerful than SVM and k-NN since it is able to perform both feature selection step and the classification step when linked to a softmax layer.

A mobile application for anxiety level recognition based on deep LSTM model

Mobile applications are massively used, regardless of their utility in event prediction and making decision. In health domain, this application can present an improvement if only their effectiveness is validated in term of sensitivity and specificity improvement for diseases pre-Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation vention, diagnosis and prognostics. [START_REF] Espinoza | Effect of a mobile application on the precision of the preliminary diagnosis of anxiety[END_REF]] elaborated a study to prove that the use of mobile applications supports the diagnosis of anxiety by improving the performances.

In this work, the author determined that the use of a mobile application improved the anxiety diagnosis sensitivity at the psychological service. The results of the study showed an improvement in sensitivity (from 33.3% to 83.3%) and a decrease in specificity (from 94.1% to 82.3%) of the preliminary diagnosis of this disorder.

The development of a mobile application will assist the psychotherapists and reduce the time of consultation and thus reduce costs and improve the clinician availability. To demonstrate the advantages of an EEG-based mobile application for anxiety levels recognition. we have elaborated a business canvas of the proposed framework Figure3.13. Figure 3.13: Business model canvas of an EEG-based mobile application for anxiety levels recognition

Broader impact and overview

Broader impacts refers to the potential for a research project to benefit society or advance desired societal outcomes. In our case, those outcomes include:

• Using a wearable wireless EEG headset; this application will allow users to track their Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation Our application presents the following advantages:

• Our application analyzes the brain activity that reflects the inner state of a person.

• Application implements an AI algorithm

• Deep learning is implemented to train the model aimed to improve the performances of anxiety detection, assess a high level of generalization, fast training and processing and adaptability to real time applications

Evaluation of LSTM architectures

We conceived a deep LSTM model adequate to our input data with parameters tuned to meet the best performances for anxiety levels detection.

While tuning the LSTM architectures, we used the whole amount of EEG data of our dataset DASPS described in section 3.2 of this chapter. The total classification accuracy for assigning Also, the number of LSTM layers, number of units per layer and the probability of the dropout layer are evaluated.

Overview of the application

In order to visualize the recognized anxiety level, we implemented our algorithm with Tkinter [2]. The Api Pycharm was used to implement Tkinter wrappers and run the application.

Data Acquisition: An Emotiv headset set at 128 Hz is used to collect EEG data. Emotiv Software Development Kit was also used to collect raw data from the device. For the anxiety level recognition step, a 1-second multi-channel segment was fed into the trained model. A data flow from the Emotiv headset is stored in a buffer. All the samples in the buffer are deleted and the buffer is cleared, every time a read command is prompted. Accordingly, the amount of data obtainable at a certain time depends on the length of samples accumulated in the buffer. The data Chapter 3. EEG-based anxiety levels recognition using a psychological stimulation to be fed into the model must be in a batch of the dimension 128x14. Accordingly, a queue is used in order to buffer the data from Emotiv's buffer into the model. Every time the read command is prompted, the queue is refreshed by the current number of samples in Emotiv's buffer.

We created four images to indicate the recognized level in order to define four levels. These 

Conclusion

A novel approach to anxiety elicitation based on a face-to-face psychological stimulation has been presented in this chapter. A dataset was constructed containing EEG data gathered during the experimentation. We present insights to analyze acquired data showing the efficiency of the followed strategy. The approach showed success in inducing anxiety levels, which was validated by HAM-A Test Scores calculated before and after the experiment. A various sets of emotion recognition features and in particular anxiety/stress, based on EEG signal, are reviewed and applied in this chapter. We presented the most popular feature extraction techniques from the wide range used in the literature. Some methods perform slightly better than others. We also investigated which trial duration are most promising and which features are most effective for it.

To the best of our knowledge, there are no available databases that contain EEG data recorded with a portable device for anxiety detection. The headset Emotiv Epoc used in our work is available for the public and is easy to install and use. Patients can use it at the comfort of their homes, and check their stress levels without the need to consult an expert. Many clinical applications can be derived from this work, improving life quality and reducing cognitive disabilities. Raw and preprocessed data were made available to the scientific community on IEEE DataPort (https://ieee-dataport.org/open-access/dasps-database).
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Introduction

Epilepsy is a neurological disease that manifests with irregular and sudden discharges of neurons in the brain. Affecting almost 1% of the worldwide population, it negatively impacts the quality of live for these persons.

Epileptologists use medications to control seizures. While it might work for some, this method might not have the same effect for a patient with uncontrolled seizures.

Seizures manifest in different forms and each type need a specific treatment. The initialisation of the treatment procedure rely to the correct identification of seizures type. Seizure types are classified by the ILAE based-on the manifestation symptoms. Epileptologists perform the identification process using electroencephalography recording combined with EEG-videos. Thanks to their expertise, a correct identification of the seizure attack is usually lead. The correct seizure type diagnosis is a critical step in selecting the appropriate drug therapy and to provide information regarding the prognosis. However, it remains challenging, labor-intensive, and time-consuming. It usually involves the monitoring of several real-time seizures of a patient, needing a continuous EEG recording [Goldenberg, 2010].

Similar clinical features are the main contributing elements in inaccurately distinguishing characteristics, as focal and generalized seizure disorders show overlap of both clinical and EEG symptoms [Panayiotopoulos, 2005a]. Recently, many studies have demonstrated that focal and generalized epilepsy are regularly troublesome to distinguish by experienced neurologists [START_REF] Panayiotopoulos | Optimal use of the eeg in the diagnosis and management of epilepsies[END_REF]. Since the manifestation of the same epilepsy classes might be somewhat variable between different patients, and even for a single patient over time [Panayiotopoulos, 2005a], this variable epilepsy interpretation further complicates the clinical diagnosis.

EEG artifacts must be detected over the entire recording and this complicates the task of seizure bio-markers identification.

The time-consuming nature of clinical EEG diagnosis and its variability could be greatly improved with an automated seizure classification/detection system that assists professionals.

A robust Neural network model can handle the task of feature learning and classification using its embedded layers.
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The choice of the neural network to implement for any automatic recognition system depends on the nature of the input data and the complexity of the task.

Since artificial neural networks are inspired from the natural neural networks which have a complex structure including recurrent synaptic connections, Recurrent Neural Networks (RNNs) are the most representative and suitable for dynamical systems modeling. An NN consider that all segments are independents, however this dependency on time is achieved by the recurrent connection of an RNN, on which the prediction at time t depends on the previous state at time t-1.

LSTM (Long Short-term Memory) is an improvement over traditional RNN characterized by the long memory. Based on its cell states mechanism, LSTMs can select the information to remember or forget. LSTM as a special RNN structure has proven stable and powerful for modeling long-range dependencies in various previous studies [START_REF] Xingjian | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF] As EEG have a complex nature with temporal dependencies, LSTMs are suitable RNN for the task of EEG-based seizure detection and type classification.

Regarding the clinical importance of the recognition of the most relevant channels of each seizure type and based on a clinical need for more investigation about the most contributed brain region per epilepsy type, we have proposed the novel channel-wise attention mechanism to address the current requests.

In our methodology we implement an attention-based Deep LSTM model to learn the temporal representation of the EEG signals while analysing the level of contribution of each channels.

Our main contributions presented in this chapter are:

• The use of EEG raw data as input to our model resulting in a gain of the pre-processing and feature extracting time. Also, to allow our model with high level of abstraction to learn more discriminative features.

• The integration of an attention layer that learns channel-wise weights from multi-channel raw EEG signal. To the best of our knowledge, this is the first application of a Raw-based channel-wise attention mechanism applied to seizure types classification.

• The analysis of the resulting attention scores of a case study to measure the correlation 

Attention mechanism for multi-channel epileptic signals

Attention mechanism was first introduced by [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] in Encoder/Decoder based on LSTM units for textual sequence translation. They suggest that relative importance should be given to each input words, as well as taking into account the context vector. In a follow up work [START_REF] Chen | Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning[END_REF], channel-wise attention-based CNN demonstrates superior performance in image captioning because it has the ability to change different channels' weight in order to explore feature map information. More specifically, it has the ability to gather additional important information about channels. [START_REF] Temko | Instantaneous measure of eeg channel importance for improved patient-adaptive neonatal seizure detection[END_REF]. Thus, an attention mechanism is introduced for channel importance learning and to pay different attention to various brain lobes. As abovementioned, the attention mechanism allows modeling of dependencies among EEG channels [START_REF] Zhang | Adversarial representation learning for robust patient-independent epileptic seizure detection[END_REF] and has shown success in some research topics [START_REF] Cisotto | Comparison of attention-based deep learning models for eeg classification[END_REF] [ [START_REF] Hu | Parallel deep learning algorithms with hybrid attention mechanism for image segmentation of lung tumors[END_REF]] [Eom et al., 2020].

Meanwhile, the excellent temporal feature learning ability of Recurrent Neural Networks (RNNs) has been extensively used in research areas such as speech recognition [START_REF] Miao | Eesen: End-to-end speech recognition using deep rnn models and wfst-based decoding[END_REF], language modeling [START_REF] Yin | Comparative study of cnn and rnn for natural language processing[END_REF], diseases prediction [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF]] and many others. Thus, we propose an attention-based LSTM model to automatically extract discriminative information from the received temporal multi-channel EEG data. The Figure 4.2 depicted all block of the proposed method. First, to explore the importance among the different channels of EEG signal, a channel-wise attention-based mechanism is employed as shown in the left block of the structure diagram of Figure 4.2. In the case of seizure detection or seizure type classification, some channels may not contribute to the final decision and thus add redundant information and demean the method capabilities.
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The adapted channel-wise mechanism takes into consideration the information of all channels and assigns weights to different channels based on their importance. This mechanism will allow to explain the contribution of each channel to the final decision. Consider that, X = [X 1 , X 2 , ..., X n ] represents EEG samples, and X i = [x 1 , x 2 , ..., x k ] where x k represents the k th channel of EEG sample X i , and k is the total number of channels of each sample. In this model, the attention scores are directly learnt from the EEG sample. The attention layer, shown in Figure 4.2, is used to generate attention weights for each channel and then executes an element-wise multiplication with the output of the dense layer of the LSTM block. In the attention block, the original data are inputted into a fully connected layer where the parameters W and b are initialised for all channels. The attention matrix is element-wisely multiplied by the original inputs. The outputs of the attention block are multiplied by the output of the dense layer of the LSTM block. Then, the attention-based temporel features are passed to a dense layer with the suitable activation respecting the classification task, i. e. sigmoid for seizure detection or softmax for seizure type classification to get the label of the EEG sample.

The attention layer is computed using the following equations:

Y 1 = f nor (X 0 ) (4.1) Y 2 = w al * Y 1 + b al (4.2) Y 3 = f tens (X 2 ) (4.3) Y 4 = σ (Y 3 ) (4.4)
Here, X 0 denotes an input of size (N samples , N timesteps , N channels The middle block of the Figure 4.2 shows the temporal feature learning module, which comprises a two-layer LSTM. The LSTM network can learn the context information of the sequence thanks to its recurrent structure [START_REF] Hochreiter | Long shortterm memory[END_REF]. The predicted seizure class Y 5 is related to the last dense layer (D2) and the learnt attention scores:

Y 5 = Dense out att scores (4.6)
The symbol means an element-wise multiplication between tensors.

LSTM model with an attention mechanism

Over the last years, deep learning networks were used for EEG classification tasks, including seizure detection [START_REF] Li | From regional to global brain: A novel hierarchical spatial-temporal neural network model for eeg emotion recognition[END_REF], emotion recognition [START_REF] Fourati | Unsupervised learning in reservoir computing for eeg-based emotion recognition[END_REF] [ Fourati et al., 2020a[START_REF] Fourati | Optimized echo state network with intrinsic plasticity for eeg-based emotion recognition[END_REF], and classification of motor (imagery) tasks. Various studies showed that LSTMs outperform other models like decision trees, support vector machines used in our previous work [Baghdadi et al., 2020a], logistic regressions, random forest classifiers, naïve Bayes, feedforward neural networks, deep belief networks, and even CNNs for some tasks [START_REF] Yao | A robust deep learning approach for automatic classification of seizures against non-seizures[END_REF]. The superior performance of LSTMs' EEG classification over other models is likely due to their ability to account for time dependencies. As EEG is a time-series data, preserving temporal characteristics might significantly improve the model's accuracy.

The LSTM architecture like an RNN network contains 3 main layers. The strength of LSTM came from it's hidden layer. This latter contains special blocks called memory blocks.

The input and output gates of these blocks perform the control by the activation functions. The revised version of LSTM added a forget gate to the memory blocks. An LSTM network finds the mapping from input sequence x = (x 1 , x 2 ...x T ) to the output sequence y = (y 1 , y 2 ...y T ) by figuring out the network unit activations using the following equations:
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i t = σ (W ix x t +W im m t-1 +W ic c t-1 + b i ) (4.7) f t = σ (W f x x t +W f m m t-1 +W f c c t-1 + b f ) (4.8) c t = f t c t-1 + i t g(W cx x t +W cm m t-1 + b c ) (4.9) o t = σ (W ox x t +W om m t-1 +W oc c t-1 + b o ) (4.10) m t = o t hc t (4.11) y t = φ (W ym m t + b y ) (4.12)
In the above equations, W represents the weight and W ix is the maximum weight of the input gate to the input. W ic , W f c and W oc are the diagonal weights of peepholes connections. The majority of the architectures consisted of one or two LSTM layers, followed by one or two fully connected layers. Input to the LSTM compromised mostly features extracted from EEG signals. However, the signal itself and EEG images (spectrograms) were also used [START_REF] Craik | Deep learning for electroencephalogram (eeg) classification tasks: a review[END_REF].

Several EEG-based studies compared the use of handcrafted features to the raw EEG signal as input for the LSTM model. Usage of the signal itself is consistently and massively under-performed in these comparisons [START_REF] Kaushik | Eeg-based age and gender prediction using deep blstm-lstm network model[END_REF], [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF], and [START_REF] Abbasi | Detection of epilepsy seizures in neo-natal eeg using lstm architecture[END_REF]. These studies reported an accuracy rate of 50.00%±1.50 when applying their methods on raw EEG data, while using artifact removal techniques to reduce noise slightly improved the performances. Our work shows that even with raw EEG data and without any preprocessing, our LSTM-att is able to achieve our objective in classifying epileptic seizures. 

Hyper-parameters fitting

In our work, a grid search for all parameters was adopted as depicted in Table 4.1. [10,20,50] 20 This technique prompted the best accuracy for all possible combination of parameters. It is a time consuming step, but it insures that better fitting is used for the final model. Next, we report the hyper-parameter settings in detail. The input EEG sample has a shape of

[N timesteps ; N channels ].
The number of units on the first and second LSTM layers was tuned to a range of [50,100,150,200,250]. Dropout probability of each layer tested to be between [0.0,0.2,0.5]. The two FC layers have N f eatures and N classes hidden neurons respectively, and several activation functions were tested ['softmax', 'relu', 'tanh', 'sigmoid', 'linear']. The attention layer has N channels hidden neurons corresponding to the input channels.

A categorical cross-entropy loss function is used in our model for multi-class classification, while binary cross-entropy is used for seizure detection. Considering the limited computational resources available in this study, we chose to use the Adam optimizer and omit other optimizers in the gridsearch parameters.

We tested our method for two classification problems on two datasets: TUSZ and CHB-MIT.

Our model was implemented using Python 3.7.9 and Keras 2.3 with the Tensorflow-gpu 2.1.0. 

Experimental results

In this section, we will discuss the performance results of the proposed model based-on raw EEG data: attention-based deep LSTM, as described in section 4. is attractive for either method performance improvement and results explainability. Since the considered datasets are imbalanced in their nature, Accuracy, Precision, Recall and F1-score, the average and the standard deviation are used as evaluation metrics.

Evaluation on TUSZ for seizure detection and type classification

In seizure detection problem, the LSTM-att achieves an accuracy of 96.78±0.21% which outperforms the basic LSTM model of approximately 9.46% for the TUSZ dataset as illustrated in Table 4.2. To add, our LSTM-att reached a value 0.976 for AUC metric. Note that, the higher the AUC, the better the model is at distinguishing between patients with the seizure and no seizure. According to the training and validation loss curves depicted in Figure4.5, the LSTM-att model does not suffer from overfitting problem.

For seizure type classification, the imbalanced issue is more highlighted than the seizure with 1.39% and 2.78%, respectively. The highest accuracy achieved is with the Tonic seizure (TNSZ) class. However, the lowest accuracy is obtained for ABSZ class. The low count of absence seizures in the TUH dataset can account for this comparability, with just six recording minutes for the model to learn from..

According to the aforementioned results, it was shown that the model trained using learnt feature in combination with calculated weights generated by the attention layer produced higher accuracy compared to the basic LSTM model. For instance, these improvements show that the channel weights representing their contribution scores compliment the learnt features in better discriminating seizure classes.

In comparison with state-of-the art methods as illustrated in Table 4.4, our LSTM-att is the first work to consider seizure detection and type classification on TUSZ dataset using the channel-wise attention mechanism and LSTM model directly fed with EEG raw data. For seizure detection, our proposed model improved the AUC scores and accuracy with 2.68% and handled, where our model greatly outperforms them.

Evaluation on CHB-MIT for seizure vs normal classification

Seizure detection problem consists in seizure vs normal classification task. This part is validated on data from the CHB-MIT dataset. The latter does not allow us to validate the model for seizure type classification due to the lack of seizure type labeled data. Only the start and the end of each onset is indicated for whole data in CHB-MIT, making it only usable for seizure vs normal classification or for seizure prediction as done in our previous paper [START_REF] Baghdadi | Robust feature learning method for epileptic seizures prediction based on longterm eeg signals[END_REF].

When tuning hyper-parameters for this binary classification task, we do not fix a number of epochs. Although, we configured a callback for early stop function in order to control the learning process and avoid over-fitting. As previously mentioned, We opted for a 5-fold cross validation splitting strategy. Firstly, we evaluated the rate of dropout layer by plotting its trend over cross validation iterations. As shown in Figure 4.4a, the accuracy is still not improved from the CV=2 and it achieved the best value without a dropout layer (dropout rate=0.0).

According to Table 4.5, the LSTM model achieves an accuracy of 88.40±1.31%, while our LSTM-att model reaches 96.48±1.16%. In terms of AUC and F1-score, the LSTM-att model reached 97.60% and 96.50% with an improvement of approximately 6% and 10%, respectively.

This can be explained by the fact that not all channels contributes equally to the decision of the presence or not of the seizure. The attention mechanism endows the LSTM model with a capability of weighting the channels such that they contribute differently and individually in Chapter 4. A novel region-aware attention with deep LSTM for EEG epileptic seizure classification each EEG sample to make the final decision.

To further understand the LSTM-att behavior, the confusion matrix is plotted as shown in Table 4.6 illustrates the comparison with raw data-based works for seizure detection. While bidirectional parsing of EEG signals tends to collect richer information, our LSTM-att model outperforms the BiLSTM-att model [START_REF] Yao | A robust deep learning approach for automatic classification of seizures against non-seizures[END_REF] with an improvement of 12.35%, 12.45% and 4.97% for F1-score, AUC, and accuracy metrics, respectively. Another work known as FusionAtt achieves similar results on AUC and accuracy metrics compared to our LSTM-att model, but it degrades in term of F1-score with a percentage of 6.97%. We conceptualized our attention mechanism to recognize different brain region signals and to produce various weights across channels. A single patient may experience seizures in different types from various brain regions. Accordingly, it is more reasonable to adaptively calculate channel weights in our attention mechanism. In our method, a kernel matrix and a bias matrix are trainable parameters, which undergo transformations by combining them with data segments. The transformation outputs represent the segment attention weights. If a channel weight is close to 0, it indicates that the corresponding signal characteristics are comparably weak to characterize a seizure type. This does not entail a lack of contribution of the corresponding channel to this seizure type. EEG signal manifestations vary between the seizure-free segment and the onset segment according to the brain region contribution. In our seizure detection experiments, we observed that channels having great differences between seizure and normal signals were assigned rather large weights

An example of attention weights of 18 channels for a set of seizure segments is shown in Specifically, when the seizure is generalized or begin as a focal and ends generalized, the distribution of attention scores are relatively uniform. This is because no such ictal pattern related to the seizure type is found within the whole channel views and hence the attention scores make even contribution to the seizure type classification. For some seizure types, we remarked that the attentional representations have the same view, then they depend on the seizure type. Since there is no specific lobe that includes the median line channels (Fz,Cz and Pz), these ones are almost affected by the seizure, which explains the implication of these channels in the In this subsection, we discuss the learnt contribution scores in LSTM-Attention to justify the benefit of adopting the attention mechanism in clinical settings. Figure 4.13 presents a clinical case study of multi-channel EEG seizure type detection on the TUSZ dataset where a Myoclonic (MYSZ) epileptic seizure occurs. We display the scores of all fragments for the visualization.

In a Myoclonic seizure, jerking or twitching movements occur in the arms, legs, or upperbody.

The figure 4.13 is a plot of a segment containing 5 myoclonic seizures manifested by a central spike waves.

Clinical history: 61 year old male status post code 06/14 for 10-15 minutes, now with my-Chapter 4. A novel region-aware attention with deep LSTM for EEG epileptic seizure classification oclonic movements, DNR1, small cell lung cancer, DVT, VDRF, diabetes.

Description of the record: The background EEG is markedly abnormal. There is myoclonic activity with a high amplitude generalized poly spike activity. The activity is relatively symmetric and is posteriorly predominant. When it abates, there seems to be a focus of right delta.

The epileptiform activity is associated with jerking of the chin and chest. Stimulation of the patient does not activate the record. The background is variable and consists of either a very suppressed pattern or a pattern with some 8 hertz alpha frequency activity which is probably part of the patient's ictal pattern.

Impression: Abnormal EEG due to a form of myoclonic status epilepticus with focal jerking, which demonstrates frequency evolution. Precise localization is challenging and the activity seems to emanate relatively symmetrically from the frontocentral regions with a generalized pattern at onset. The primary localizing feature is the behavior with elevation of the left arm and at the very, very onset of the seizure almost a fencer-like posture, but with more characteristic tonic-clonic activity on the right.

However, it must be noted that the patient turns to the left at the onset of the seizure and then turns back to the right later on, again, raising concerns about actual localization of the seizure. is not captured by our model, and this can be justified in two ways: The transition is too fast and may be for a few short seconds, so it ignored when learning features and weights.

The generalized pattern of poly-spikes is more dominant. For this example of a Tonic-Clonic seizure, attention weights of 21 channels for a seizure segments is shown in Figure 4.16, the channels of O1, O2,P4, Cz and Pz have the large weights compared to other channels, which do not correlate with the comments of the neurologist. Weights can be affected to the channels that contribute the most in identifying the type of the seizure and can not give a relevant information about the onset localisation, in particular in the case of a seizure with generalized pattern as in this example. Figure 4.17 shows us the position of the high weighted channels according to the 10-20 system. An explainability analysis of our model showed that a high correlation exists between neurological interpretation and the reading of the Heatmaps of the learnt features. The LSTM-attention model achieves a significant improvement in classification accuracy up to 98.41% on the TUSZ dataset for 8 types of epileptic seizures and 96.78% for a binary classification (seizure vs Normal). The model also generalizes well across different minority seizure types.

Future works can focus on improving the performance of this study for the minor classes, by using multi-modal data, primarily EEG videos. 

Introduction

To conceptualize a robust EEG-based epileptic seizure prediction system, it is important to respect the common machine-learning approaches for epileptic states recognition. This process includes in general, an acquisition step in which EEG signals are recorded from epileptic patients. A preprocessing phase aiming to remove baseline and artifacts, a feature extraction and a classification steps. Recently and by the mean of deep learning approaches, the process was renewed by including a feature learning step instead of the handcrafted features.

Unlike the basic LSTM model, which is restricted to the temporal information learning, we propose the recent improvement of LSTM, ConvLstm replacing the matrix multiplication with convolution operation at each gate in the LSTM cell. Thus, it captures underlying spatial features by operations convolution on the EEG signal. In addition, we aim to investigate more about the importance of each preictal segment in the detection of an incoming onset, which is very important to recognize the triggers of seizures and relatives events. To allow this analysis, we add the segment-wise attention mechanism producing an interpretable output to automate feature learning or representation learning, i.e. a transformation of the contribution of each segment of raw data input into scores or weights to discover the most relevant segments that can be effectively exploited for the EEG-based Seizure prediction task. To evaluate the robustness of our model, we have also extracted the statistical moments features in the time domain and Power bands features in the time-frequency domain in order to compare basic features and the representations from the basic LSTM model with the proposed spatio-temporal representation and their impact on the classification performance. It is to note that our approach is based on raw EEG data with no further preprocessing step. The choice of this strategy is based on the amount of relevant information existing in a raw signal. In addition, preprocessing techniques have major issue when dealing with epileptic signals, thus, it can remove relevant information by miss-classifying artifacts and seizures. In this chapter, we introduce some preliminaries re-Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals lated to the seizure prediction field. Then, we detail in the section 5.4 the proposed approach including feature extraction and convolutional Lstm feature learning parts. Section 5.5.1 illustrates the experiment results and the discussion.

Epileptic states

The different stages of an epileptic seizure are referred to as ictal states. These states represent the different stages of an epileptic seizure in its most general sense [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF].

Interictal state

The interictal state designates the normal resting state with no seizure activity, but the EEG is still defined by the irregular neuronal activity. Considering the likeliness of seizures, the chronic interictal period is important due to the presence of natural homeostatic mechanisms preventing seizure generation. The mechanisms or factors helping maintain homeostasis in the brain are still unidentified, as well as whether these mechanisms differ for various epileptic syndromes and types of seizures. This period comprises more than 99% of patients' lives. As such, the interictal period can be exploited by neurologists in the purpose of diagnosing an epileptic condition. Some abnormalities and small spikes would normally appear in the EEG tracings, which are defined by neurologists as subclinical seizures. These are not real seizures, but rather little hints from the brain that something is abnormal [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF].

Preictal state

The preictal state does not refer to the normal state of the brain but rather to a period of time occurring before a seizure. The said state suggests that a seizure might occur within a certain time-frame [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF]. The notion that a preictal period exists is still a subject of debate by numerous researchers. Lehnertz and Litt specify that, in certain conditions, the transition between preictal and ictal states might be lengthy, enabling the seizure prediction using EEG techniques anywhere prior to the occurrence of the onset [START_REF] Litt | Seizure prediction and the preseizure period[END_REF].

It is defined by an abrupt change in the EEG's frequency characteristics. Alpha bands are likely Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals to increase in amplitude and decrease in frequency. A gradual change from cluttered to regular waveforms is observed in the transition from the preictal to the ictal state. The transition may present major different characteristics and the transitional period can vary, depending on the type of epilepsy [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF].

Ictal state

The ictal state refers to the time period during which the onset occurs. It is defined by higher amplitudes and frequencies. An alteration in rhythmicity and synchronization can be witnessed over multiple areas of the cerebral cortex [Sackellares, 2008]. Patterns, which are commonly seen all over the tracing for a resting state, abruptly become unpredictable and erratic. Involuntary muscle twitching and a loss of consciousness during this state is completely common, along with other symptoms like a lack of self-control. The patient generally loses control of his body at this stage and convulsions tend to be noticeable [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF].

Postictal state

The end of an epileptic seizure represents a transition from the ictal state back to an individual's normal, or interictal state. This is referred to as the postictal state and signifies the recovery period of the brain. Focal or generalized neurological deficit, ranging from postictal depression to aphasia or paralysis is prevalent during this state. This period is associated with a difficulty in thinking clearly and a variety of other cognitive defects. The postictal state could last from seconds to hours depending on the severity of the seizure and the efficacy of the AEDs. Disturbances or aftershocks are seen in the EEG, which may just be the presence of natural mechanisms acting to terminate the seizure and restore homeostasis [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF]. Often postictal deficits are a consequence of the natural mechanisms that act to terminate a seizure suggesting that interventions designed to exploit these same homeostatic events could exacerbate postictal dysfunction [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF]. Attention and concentration is generally very difficult during this period. Poor short term memory and decreased verbal and interactive skills are noticeable. Postictal migraine headaches are very common due to the pressure resulting from cerebral edema. At this point, patients are unaware that they have had a seizure, but these Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals symptoms are evidence enough for an experienced epileptic [START_REF] Pitkänen | Models of seizures and epilepsy[END_REF].

Preictal biomarkers

The preictal state is defined by a range of characteristics that occurs in the period immediately preceding a seizure and does not occur at another time. Expert neurologists may distinguish visually some of those characteristics that are apparent in the EEG signal. Otherwise, biomarkers may not be apparent and only an analysis of changes in the underlying EEG signal can lead to the identification of those biomarkers. Characteristics values range changes within the different phases of an epileptic signal and simplify the development of an alarm system for seizures prediction. Regarding the complex nature of EEG signal, the use of Raw data rather than characteristics for an alarm system is not recommended. Algorithms based on a predefined sets of features may work with some persons better than other regarding that biomarkers are patient-specific. The use of raw data allows for a large-range investigation of signal characteristics and open the space for the development of non sensitive systems face to patients variability, and even within the same patient.

The EEG signal is traditionally expressed in terms of particular frequency bands: Delta (less than 4 Hz), Theta [4][5][6][7][8], , , and Gamma (equal or greater than 30 Hz). Mormann et al. [START_REF] Mormann | On the predictability of epileptic seizures[END_REF] indicated the relative decrease in the power of the Delta band in preictal period in comparison with the interictal period, which was accompanied by a relative increase of the power in other bands. The spectral power of raw EEG signal has been investigated by several studies, and proved the ability to track the transient changes from interictal to ictal states ( [Cerf et al., 2000], [START_REF] Mormann | On the predictability of epileptic seizures[END_REF], [START_REF] Park | Seizure prediction with spectral power of eeg using cost-sensitive support vector machines[END_REF], [START_REF] Bandarabadi | Seizure prediction with bipolar spectral power features using adaboost and svm classifiers[END_REF], [START_REF] Rasekhi | Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods[END_REF]). The four statistical moments of mean, variance, skewness and kurtosis, also known as first, second, third and fourth moments respectively, provide information about the amplitude distribution of the time series. Skewness and kurtosis reveal information on the shape of the distribution, whereas mean and variance provide information on the location and variability (spread, dispersion).

Ideally, skewness is zero for symmetric amplitude distributions, and kurtosis measures the relative peakedness or flatness.

Studies have been made in [START_REF] Mormann | On the predictability of epileptic seizures[END_REF] employing these statistical measures to verify their ability to distinguish between the interictal and preictal periods using iEEG data.

Also variance and kurtosis have shown significant changes in preictal period in comparison to the interictal period (a decrease for variance and an increase for kurtosis). As far as the time domain features are concerned, the four statistical moments are computed (i.e., mean value, variance, skewness and kurtosis), as well as the total signal area, peak-to-peak value (i.e. minimum to maximum), number of zero crossings and decorrelation time (i.e. time of first zero-crossing of the autocorrelation function).

Despite the simplicity of these measures, significant variations have been previously re-Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals ported when entering the preictal state, with variance and decorrelation time decreasing compared to their respective interictal values, while kurtosis was found to increase towards seizure onset.

Variance: Variance is the measure of how the data is spread out from the mean. In EEG signals, variance signifies the change of amplitude, therefore conveying information of the general state of the brain, such as low difference from the mean describing low electrical activity and vice versa. The variance of each signal window has been calculated as shown in Equation 5.1

(σ 2 ) (n,m) = ∑ i (x (n,m) i -x(n,m) ) 2 L -1 (5.1)
where x n,m i is the i th point and x n,m is the mean of the n th window and m th EEG subcomponent. L is the length of the signal segment. 

β (n,m) = 1 (σ 4 ) (n,m) L-1 ∑ i=0 (x (n,m) i -x(n,m) ) 4
(5.3)

Zero crossing:

Refers to the number of zero-crossing occurrences representing a change from negative to positive value or from positive to negative value [START_REF] Elgohary | Epileptic seizure prediction using zero-crossings analysis of eeg wavelet detail coefficients[END_REF] . The zero-crossing algorithm analyzes EEG dynamics based on the successive change of the waveform from negative to positive. It is known for its robustness against noise and artifacts where it removes some of The EEG signal energy in each frequency band is extracted using the Discrete Fourier Transform (DFT). Along with DFT, the Discrete Wavelet Transform is also applied using a 6-level decomposition and the Daubechies 4 (db4) as the mother wavelet, to extract the detail (16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(8)(9)(10)(11)(12)(13)(14)(15)(16)(4)(5)(6)(7)(8)(0)(1)(2)(3)(4) wavelet decomposition levels depends on the sampling frequency. In our case, the correspondent decomposition is given in the last column of Table 5.1 for f s = 256 Hz. The main difference between ConvLSTM and LSTM is the number of input dimensions. As LSTM input data is one-dimensional, it is not suitable for spatial sequence data such as video, satellite, or radar image data set. ConvLSTM is designed for 3-D data as its input.

The LSTM layer adopted in the LSTM-att model for seizure detection and classification presented in the previous chapter does not take spatial correlation into consideration. Although the LSTM layer has proven powerful for handling temporal correlation, it contains too much redundancy for spatial data due to the lack of encoding spatial information between states.

The reason for using ConvLSTM is that its convolutional structures includes input-to-state and state-to-state transitions, which can model spatiotemporal characteristic information quite well. The inputs, cell states, hidden states and gates of ConvLSTM are 4D tensors whose first dimension denotes the time step, the second and the third are spatial dimensions (height, width), and the last dimension is the feature map. The computation of the hidden value (ht) of a ConvLSTM cell is updated at every time t. ConvLstm layers can be stacked like the case with LSTM layers to address complex tasks. The input layer with the size (Timesteps, channels, Rows, Cols) in our model will be followed by one or more stacked ConvLSTM layers. After convolutions, the dimensionality of output is increased, so we use averagePooling layers to reduce the dimensions. For each convolution, the filter size F and the kernel K must be defined.

The output layer like in LSTM, is a dense layer with an activation function and N number of neurons representing the number of target classes. 

i t = σ (W xi * X t +W hi * H t-1 +W ci •C t-1 + b i ) (5.4) f t = σ (W x f * X t +W h f * H t-1 +W c f •C t-1 + b f ) (5.5) C t = f t •C t-1 + i t • tanh(W xc * X t +W hc * H t-1 + b c ) (5.6) o t = σ (W xo * X t +W ho * H t-1 +W co •C t + b o ) (5.

Hyperparameters

Note that a parameter in Table 5.2 is a variable that is automatically optimized during the training process and a hyperparameter is a variable that needs to be set beforehand.

The ConvLSTM determines the future state of a certain cell in the grid by the inputs and past states of its local neighbors. It uses the described convolution operation in the state-to-state and input-to-state transitions (see Figure 5.6).

The advantages of ConvLSTM are as follows:

• It can extract the spatial characteristics of echoes while capturing the time characteristics efficiently • It allows the extraction of inter-channels characteristics using a 2D kernel size.

• It is the best for the prediction of long time and large-value EEG signal.

To summarize, the use of convolutions in the state-to-state and input-to-state transitions solves the issue of the lack of spatial information extraction, especially for a multi-channel EEG signal. The interpolation of multiple channels inside the convolution also can add new information about the signal and thus improve the prediction performances. 

Attention-based ConvLSTM model

Underlying the search for the prediction horizon is the assumption that changes in the brain occur prior to seizure onset making the seizure nearly inevitable. Despite this, seizure prediction based on EEG data has posed a challenge to the research community due to the absence of a clear and robust definition of preictal state biomarkers. The task of seizure prediction is defined as anticipating a seizure within some prediction horizon, or time window before seizure onset. Concretely defining the prediction horizon is difficult, since the optimal time window for prediction is not well understood. The goal behind the integration of an attention mechanism in the proposed spatio-temporal ConvLSTM2D model is to analyse in-depth the contribution of the constructed temporal Frames in the system's final decision. Thus, deriving a justifiable patient-independent prediction horizon containing the most effective frames. This analysis can provide a helping hand to neurologist in searching the reasons behind the onset release by identifying the triggers on most relevant frames. Defining the Optimal Preictal Period (OPP)

can also be based on the attention weights of the frames included in the Selected Preictal Period (SPP), i e. if the choice of the SPP is made to be within 1h for all patients, the attention scores calculated on all 1h frames can provide important information about the contribution of each fragment; thus the SPP can be reduced from 1h to 15min. Concluding that the first 45min of the preictal segment are not decisive. We assume that a preictal phase exists for all seizures and that there is an inflection point between interictal and preictal states. prediction, the optimal preictal period may differ from patient to another and only few segments can be able to contribute to the final decision result. The non informative frames can cause the demeaning of the system capabilities.

We adopt the adaptive frame-wise mechanism, which takes into consideration the information of all 3D fragments and assigns weights to the temporal segments based on importance.

This mechanism will allow us to interpret our deep model and make results more explainable. The attention layer is computed using the following equations:

Y 1 = f nor (X 0 ) (5.9) Y 2 = w al * Y 1 + b al (5.10) Y 3 = f tens (X 2 ) (5.11) Y 4 = σ (Y 3 ) (5.12)
Here, X 0 denotes an input tensor of size The symbol means an element-wise multiplication between matrices.

For this task, Attention-based ConvLSTM comes to improve the task of seizure prediction compared to the LSTM and ML classifier used on handcrafted features.

In the previous chapter, we have elaborated a study on the most relevant channels for seizure detection task (Seizure Vs Normal) and the seizure type classification (8 types of seizures). And we have demonstrated for many cases that the main brain region that contribute in a specific seizure type contains the most rated channels (based on our LSTM-attention model). In this chapter, we aim to investigate the most important segment of the preictal period containing the relevant information about an incoming seizure. For this aim, we designed an attention Layer that will be applied on the frames of the input signal. i.e., we have 10 frames of size 128x18, we applied a calculation of weights of every frame and the scores will be concatenated with the output of the ConvLSTM block.

Experimental results and discussion

In this section, we present and discuss our results using different configurations. To validate our method, we tested it on CHBMIT benchmarks enabling a comparison with the current state-of-the-art methods. Details of experimental settings are provided. An interpretation of seizure prediction results is done. Finally, an investigation for the most decisive frames from the preictal segments is elaborated.

• Patient-dependent method: with random augmentation of the preictal data in order to Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals balance the dataset per patient.

• Patient-independent method: for each patient we extract from the interictal data a set to be equal to the preictal data of the same patient. After all, data are concatenated and fed to the trainer.

• Patient-independent method: a randomly selected signals from the global preictal and interictal segments. In these approaches, some patients may not appear in the selected set.

In order to enable an exhaustive comparison of different approaches, we have accomplished a feature based SP, an LSTM-based SP from raw EEG signals and we contributed with the novel Spatio-Temporal ConvLSTM model.

EEG dataset and data preparation

We evaluated performances of our proposed method using data from the CHB-MIT scalp long-term EEG dataset [Shoeb, 2009] described in chapter 2 (refer to Table 2.3). Analysing files of all cases summary, we note that the montage of channels changes within the case, so we opt for a manual channel selection process to discern the common montage over all epochs.

Finally, we discern the 18 channels to be used in this work: FP1, T7, P7, O1, F3, C3, P3, FP2, F4, C4, P4, O2, F8, T8, P8, FZ, CZ and PZ. We used the complete data amount from the CHB-MIT dataset (except three segments from the case 12: chb12-27/28/29 since we cannot find the common montage of selected channels in these epochs like in the work of Tsiouris et al. [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF]). For the aim of seizure prediction, our deep network is deployed to accomplish the high-level characteristics learning of preictal and interictal states. Based on the findings of the work done by Tsiouris et al. [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF] in which they tested four windows to extract preictal states: 15-30-60-120 minutes and compared the obtained results, we decided to choose one window for the rest of the analysis. Since there are not a lot of differences between the average rate of sensitivity of all tested windows and leafing through all annotation files, we discover that some seizures occur in the beginning of the epochs, thus, there is not a sufficient duration to extract preictal segments with a 60-120 windows. Furthermore, We conceptualize an LSTM model adapted to the nature of the EEG signals with two LSTM Layers. Since the input signal is a complex time series of 18x1280 time points, we fixed the number of memory units at 500 for both LSTM layers. We included a dropout layer with a probability of training equal to 0.2. Two layers follow the LSTM layers: a fully connected layer activated with ReLu function, and a dense layer to discriminate between the preictal and interictal states. The "softmax" activation was used as function in the dense layer. We personalized the model parameters using the popular Adaptative Moment Estimation (Adam)

optimizer. The LSTM network was built in a Matlab environment using the deep learning toolbox.

The training and testing phases are performed separately for every subject, therefore making a subject-dependent approach. This selection was predicated in-line with our review of recent studies on onsets prediction and the insufficient subject-independent studies. Furthermore, carrying out a subject-dependent experiments allows to handle the variability and specificity of each subject and to compare the obtained results with existing ones.

The evaluation of our model was elaborated through a 10-folds cross-validation. For each case, trials were shuffled and divided into 10 groups. One group was designed to hold-out set and the remaining groups were used as training sets.

Since LSTM models have not been used for seizure prediction with Raw EEG data, there are no references in the literature regarding an optimal internal architecture. Thus, a pre-analysis is performed in this section testing the three different internal architectures, moving from simple to more complex networks. In the LSTM_1 architecture, which consists of the simplest approach, the network is composed of a single layer with 50 memory units. The number of memory units is increased to 100 using a BiLSTM in the second architecture design, LSTM_2, maintaining the single layer approach. Finally, in LSTM_3 the number of memory units is retained at 100 but another layer of equal dimension is included as well and LSTM is used instead BiLSTM since the BiLSTM with a double layer requires a lot of resources, thus rendering it a time consuming approach, which should be avoided. All networks are followed by a fully connected layer with an output of 30 units using the "relu" activation function and a final dense On the other hand, we are facing the problem of imbalanced data since the number of preictal segments for each case are minimum compared to the amount of interictal segments (for example: For the chb024, the ratio of interictal-class to preictal-class instances is 5:1; for some other cases it is even more imbalanced). This problem can affect notably the classification rate, in the case where the accuracy measures indicate excellent rates (such as 90%). However, the accuracy is really only reflecting the underlying class distribution.

To resolve this problem, we chose to deal with it by an random over-sampling technique that consists of adding copies of instances from the under-represented preictal-class.

The new datasets are fed to the LSTM model with a sequence of 18 channels x 1280 time points.

Results and discussion

For the 24 cases in CHB-MIT, the average SENS, SPEC and ACC are 84.60%, 90.16% and 88.89%, respectively as reported in the table 5. As it can be seen in Table 5.3, using raw EEG samples of every 5-s segments, we can achieve high performances varying across cases. The best sensitivity attained for cases chb07 and chb11 is 0.98. On the other hand, we have obtained as worst result a 0.67 sensitivity rate for the case chb24. We deduce that when seizures number exceeds 10, the LSTM network underperforms in prediction seizures, which can be justified by a high number of non-spaced seizures causing a miss-classification of adjacent states as explained in Section 5.5.2.1 .

Cross-patient sensitivity, specificity and accuracy results over all cases were illustrated on the Bar Chart 5.14. We can notice a degradation of rates that affects some specific cases, mainly ch012 and chb24. Many reasons can justify the under-performances such as: signals with high signal to noise ratio, number of consecutive seizures and the patients' medical history (we cannot confirm this fact since patients' personal information are private and cannot be accessed by the database users). In order to defend their methodology choice, Tsiouris et al. [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF] applied the proposed architecture on raw EEG data for only 3 cases (chb01,chb02 and chb14) and showed that the results accuracy are better with feature extraction Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals against feature learning. They obtained an average accuracy of 74.00% since their architecture failed to deal with the character of a Raw EEG signal because it does not include a sufficient number of hidden memory units.

Along with their hypothesis, we decided to investigate more in this direction and conceptualize a model adequate to receive a raw EEG signal as input.

Since we did not find an other research that deploys LSTM with a raw EEG segments for the aim of seizures prediction, we compared our method with three different approaches proposed recently by [START_REF] Yao | A robust deep learning approach for automatic seizure detection[END_REF] For convolution based ConvLSTM attention, the parameter settings are summarized in Table 5.5. The number of filters in the two models is set to 16,32 and 64, respectively. In addition, the kernel size of each convolution is fixed to 3 x 3. In order to make the categorical loss function of the proposed deep models converge to the greatest extent, the number of training epochs is fixed to 50. The learning rate is fixed to 0.001 on the Adam optimizer.

For hardware system configuration, all the following experiments are completed on a desktop with an Intel Core i7-6700HQ CPU 2.60GHz 2.59 GHz, 16 GB of DDR4 RAM, an Nvidia GeForce GTX 960M GPU with 4 GB memory. For software system configuration, we adopt

Windows 10 x64 as our operating system for all experiments. CUDA 10.1 and cuDNN 10.1, Tensorflow-gpu with 2.1 and python 3.8.7 are the main programming environment. Specially, all methods involved in our experiments are completed in Pycharm 2.1

Results and discussion

We are talking about subject-independent classification when the entire volume of the data is mixed and used for training and testing phases. Data from the 24 cases are used for the processing including the labeling, segmentation, feature extraction and channel selection. All Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals results are presented on the end of this section.

As previously mentioned, we set the prediction horizon as 15 minutes, and our dataset contains 5s 18-Channel EEG samples from all 24 subjects. We trained our models for 50 epochs with a batch size of 64. We used the Adam optimizer with a 0.001 learning rate. The following list demonstrates the 5 Fold Cross Validation results for our two models: For each one of the three test seizures, we considered the advance prediction time P delay defined as the difference between the beginning time marked in the database and the one determined by the system. The latter is the time in which the system starts to classify the raw segments as preictal samples without interruption. By definition, a seizure is correctly predicted if and only if the corresponding advance prediction time P delay is strictly positive. The positive value of P delay clearly indicates how early an ictal phase is predicted. In order to evaluate the system's behavior in terms of false alarms, the FPR (defined as the number of false positives per hour) is adopted. More precisely, the classification of a raw segment , belonging either to a preictal or to an interictal phase, produces a false positive whenever the output y p of the system vary before the onset of the next seizure as illustrated by the Figure 5.18. In table 5.8, we reported the performances of the system evaluated with three test seizures. For these seizures our model detect preictal against interictal segment with a recall rate of 88.33%, 92.22% and 78.33% respectively. A mean False Positive Rate of 0.11 h -1 is reported. We calculated the delay of prediction within the 15 minutes of pre-ictal period, as shown in the last column of the table 5.8, the P delay is variable. The seizure number 3 from the case01 was predicted before 12min91sec from the onset time, while the seizure number 4 from the same case was predicted before 07min83sec before the onset time. The neurologist confirm after reading the EEG and the correspondent attention heatmap that Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals segments at t=150s to t=205s contains more spikes than the rest of the EEG signal, also for segments at t=550s to t=570s. Changes on frequency and amplitudes in the raw EEG segments was highlighted by our system by affecting high attention score to the correspondent segments.

Conclusion

Assuming once again that the proposed deep models are conceptualized to handle the complex nature of the EEG signal, starting from adding layers to the LSTM model and increasing the number of hidden memory units to the implementation of more sophisticated networks and exploiting the strength of the attention mechanism to give our models more explainability analysis. This process aims to allow better feature learning. Our models are more appropriate for real time applications than others based on feature extraction techniques, which are implemented for a comparison aim, requiring high level of expertise and familiarity with epileptic seizures characteristics.

Typical feature representation is learned by our models leading to very satisfying results for seizures prediction. Furthermore, we can apply the same architecture for seizures detection by including ictal segments to the overall process.

In the beginning of this chapter, we have seen that many different approaches to extract EEG seizure-related features have been investigated. Seizure prediction in the first approach has been addressed as a machine-learning problem. The main steps of this classification problem are:

extracting relevant features and designing an adequate classifier. Once features are extracted, it remains essential to define the decision making method. The classifier should be able to generalize well and show good performance. Annotations made by a neurologist are often considered as the reference point in the problem setting. Machine-learning methods that have been applied in this field include expert systems, decision trees, clustering algorithms, selforganizing maps, and a variety of artificial neural network configurations.

After which, we moved through deep learning models, to demonstrate the capabilities of deep model in learning spatio-temporal information. We have also implemented an LSTM model for the learning of temporal dependencies in order to show the improvement achieved by the novel Spatio-temporal ConvLSTM model. 

Summary of contributions

In this thesis we grant attention to one of the most useful modality for the purpose of neurological disorders analysis, which is the Electroencephalogram (EEG). EEG recordings have shown efficiency in many field thanks to its wealth of temporal and spectral information.

Up until the past few years, traditional machine learning techniques (i.e. non-deep learning algorithms) have been the only viable option in EEG analysis, and in fact, continue to be extensively used combined with various feature extraction and feature selection algorithms.

In a relative newer trend, deep learning algorithms have found applications in medical image and signal processing, due to the advancements and availability of computational power and big data, showing high potential and significant impact as, in most cases, their performance exceeds the rates that have been previously achieved with traditional machine learning techniques.

In chapter three, we started with an oriented handcrafted feature methodology for anxiety levels detection. This contribution was elaborated in collaboration with a psychotherapist in order to propose a novel psychological stimulation method for anxiety elicitation. The produced dataset have an academic broader impact by improving the researches on anxiety detection since it is the first public dataset for the mentioned purpose. To this day, we are allowing many researchers to use the dataset in their studies. In the same chapter, we have detailed our approach for binary and multi-class recognition tasks. In addition, we concluded the chapter by a presentation of an application for anxiety level detection based on a deep learning method. The challenge was revealed during a national workshop. states as reported in various applications, such as emotion recognition [START_REF] Du | An efficient lstm network for emotion recognition from multichannel eeg signals[END_REF], anxiety recognition [Baghdadi et al., 2020a] and speech recognition. Despite their inherent advantage in EEG analysis, the basis of LSTM model neglect the spatial information of the input data.

Meanwhile, the ConvLSTM proposed by [START_REF] Xingjian | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF] have exploited the advantages of the spatial convolutions and the power of the gates architecture of LSTM. To the best of our knowledge, ConvLSTM was not studied in the field of seizure prediction based on EEG signals. Further more, we proposed our attention-based ConvLSTM to analyze the contribution of different temporal slices of EEG input as a set of frames. The studied models have not gained the appropriate attention in seizure prediction. These contributions were detailed in chapter five.

Future works

Researches can never end even by the implementation and the realisation of end-to-end products. AI was the most serving technology for the medical field, aiming to make the diagnosis and the prognostics of disease easier. Even for suffering patients, AI helped to improve their quality of life and keep their states under control.

Neurologists and psychotherapists are still searching for an explanation about many body manifestations face to diseases, recognition problems and emotional alteration. It is very important for them to know what events are considered as triggers for the manifestation of anxiety attacks or for seizure onset. Around this table of discovery, many questions are still unanswered and many researches are not practically achieved and remain theoretical.

In the previous section, we have summarized the main contributions of this thesis, and as Chapter 6. Conclusion and Future Works explained there, is a need to extend the researches done for anxiety detection to serve the diagnosis of anxiety disorders, which is a larger field than anxiety states detection. Furthermore, we propose to start an investigation about the relation between anxiety and epilepsy in order to answer the question: Can anxiety be considered as an epileptic onset trigger?

The problem of imbalanced datasets keep demanding a solution for many tasks. For seizure type classification, the only public dataset is TUHSZ, which suffers from a huge problem of imbalanced data. We talk here about a ratio of 1:1000 or more between major and minor classes. Regular parers have addressed this problem by the traditional ways of oversampling.

But results were not satisfying and many papers don't give this problem a lot of interest and use the existing amount of data. of Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF], it is possible nowadays to proceed to data augmentation using GAN. With sufficient and enough data, training a deep neural network will be efficient. For epileptic patients, it is hard to record a seizure during a consultation. Also, some types of seizures are rare, which makes the amount of recorded signals very small. By nature, the raw EEG data is usually mixed with noise and various artifacts, because of which researchers have to discard some bad channels and data.

Investigation of the relation between anxiety and epileptic seizures

Designing a data augmentation strategy [START_REF] Luo | Wgan domain adaptation for eeg-based emotion recognition[END_REF]] [Luo et al., 2019] [ [START_REF] Aznan | Simulating brain signals: Creating synthetic eeg data via neural-based generative models for improved ssvep classification[END_REF] is thereby a necessity to make the dataset balanced and thus the classification unbiased. This perspective has two major contributions. First, the proposition of a GAN architecture for data generation form raw EEG data and not from EEG feature vectors with an extensive validation on two benchmarks, notably TUSZ [START_REF] Obeid | The temple university hospital eeg data corpus[END_REF]] (8 seizure types) and CHBMIT [Shoeb, 2009] (3 seizure states). Second, the generated data are used in the training set and thus it can be used for the classification of EEG signals by deep models.

Automated hyper-parameters optimization

Since deep neural networks were developed, they have made huge contributions to peoples everyday lives. However, despite this achievement, the design and training of neural net-Chapter 6. Conclusion and Future Works works are still challenging and unpredictable procedures that have been alleged to be alchemy.

To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas.

LR is a positive scalar that determines the length of step during SGD [START_REF] Goodfellow | Deep learning[END_REF]. In most cases, the LR must be manually adjusted during model training, and this adjustment is often necessary for enhanced accuracy [Bengio, 2012].

Dropout is a technique used to select neurons randomly with a given probability that are not used during training, which makes the network less sensitive to the specific weights of neurons [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF]]. An overlarge dropout rate will over-simplify the model, whereas a small value will have little effect. In addition, a larger LR with decay and a larger momentum are suggested because fewer neurons updated with dropout requires more update for each batch [Brownlee, 2016].

The number of hidden layers is a critical parameter for determining the overall structure of neural networks, which has a direct influence on the final output [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF]. Deep learning networks with more layers are likely to obtain more complex features and relatively higher accuracy.

The number of neurons in each layer must also be carefully considered. Too few neurons in the hidden layers may cause underfitting because the model lacks complexity. By contrast, too many neurons may result in overfitting and increase the training time.

Activation functions are crucial in deep learning for introducing nonlinear properties to the output of neurons. Without an activation function, a neural network will simply be a linear regression model that is unable to represent complicated features of data. The most popular and widely used activation functions include sigmoid, hyperbolic tangent (tanh), rectified linear units (ReLU) [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]. Automatic search techniques have been applied in search of proper activation functions, including the structure of functions and related hyperparameters.

It is of high importance to study the optimization algorithms like the Random search, Grid search, Bayesian Optimization, Multi-banded methods and the Population-based trainig (BPT) methods to select the best hyper-parameters of our deep models conceptualized for the tasks of seizure detection, classification and prediction.
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 35 Chapitre Ce chapitre détaille tous les travaux élaborés afin de fournir un produit fini pour la détection du niveau d'anxiété. Vu le manque de travaux dédiés à l'étude de l'anxiété, comme l'état transitoire qu'un individu peut subir, nous avons eu du mal à trouver une base de données EEG exploitable à cette fin. Nous avons constaté une absence de bases de données publiques, puisque la plupart des travaux sur l'anxiété testent leurs méthodes sur des données purement cliniques et donc privées, ou bien collectent des signaux limités à un usage unique dans ces méthodes et sont privés. Il fallait donc penser à proposer une base de données pour la reconnaissance des niveaux d'anxiété. Dans ce cadre, une coopération a été établie avec une thérapeute de l'hôpital universitaire Hédi Chaker, afin de concevoir un protocole expérimental de stimulation d'anxiété. La collecte de données a été réalisée à l'aide d'un casque EMOTIV EPOC+ sur 23 participants. Une étude approfondie a été élaborée, produisant un protocole expérimental pour la stimulation de l'anxiété chez des individus sains. Le protocole a été validé par une psychothérapeute, pour qu'il contienne une phase de récitation d'une situation stimulante et une phase d'auto-rappel individuel. Le choix des six situations en premier lieu a été fait à travers la distribution d'un questionnaire proposé par la thérapeute à des personnes autres que celles engagées pendant l'enregistrement. Ce questionnaire a pour objectif de déterminer les six situations sources d'anxiété, à partir des réponses données. La durée de l'expérience est de 15 minutes. Tout au long de l'expérience, le volontaire est confronté à six situations différentes de la vie réelle et doit évaluer ses émotions durant chaque situation, en remplissant l'échelle SAM (Self-Assessment Manikin). La psychothérapeute a évalué le niveau d'anxiété chez les participants avant et après l'expérience, à travers l'échelle d'anxiété HAMILTON. Les données EEG collectées au moyen du neuro-casque EMOTIV EPOC+, qui contient 14 canaux et 2 références, ont été labélisées selon deux méthodes : en se basant sur l'échelle SAM (les valeurs Valence et Arousal) et en se basant sur les scores du test HAMILTON. Une étape de prétraitement des signaux EEG vis-à-vis du bruit et des artefacts internes et externes est très importante pour avoir un modèle pertinent. Les données brutes sous format .edf et les données prétraitées ont été mises à la disposition de la communauté scientifique sur IEEE DataPort. L'approche proposée pour la détection du niveau d'anxiété est basée sur l'extraction d'un ensemble de caractéristiques, qui ont été étudiées dans la littérature et ont prouvé leur pertinence comme marqueurs d'anxiété dans les signaux EEG. Cet ensemble contient des caractéristiques temporelles, spectrales et spatio-temporelles. Nous avons utilisé deux classifieurs pour la classification en multi-classes (4 niveaux d'anxiété) : SVM et KNN. Nous avons comparé les résultats en utilisant chaque type de caractéristique indépendamment, et en combinant plusieurs types ensemble. Les meilleurs résultats ont été obtenus pour l'ensemble des caractéristiques (ALLfeatures), en utilisant SSAE comme classificateur : 86.70%. À la fin de ce chapitre, une première utilisation d'un réseau de neurone récurrent LSTM a été faite dans le cadre d'une démonstration de l'application 'Anxiety checker', avec une amélioration remarquable du taux de détection (de 86.70% à 93.32%). Le travail présenté dans ce chapitre a donné lieu à un article publié dans la revue « Journal of Ambient Intelligence and Humanized Computing ». 2 ème partie : Détection/Prédiction des crises et classification des types de crise  Chapitre 4 : La classification des crises d'épilepsie présente un défi pour les neurologues durant le processus de diagnostic. Il est très important que le médecin détecte le type d'épilepsie, pour la prescription du traitement adéquat. En 2017, la ligue internationale contre l'épilepsie (ILAE) a proposé une nouvelle classification des types de crises. Le système automatisé de classification des crises proposé dans ce chapitre peut aider les professionnels de la santé à diagnostiquer la maladie, en réduisant le temps nécessaire et en améliorant potentiellement la précision et la fiabilité. Ce chapitre propose un nouveau modèle LSTM basé sur l'attention par régions et démontre l'intérêt de la couche d'attention et des poids calculés, liés à la contribution des canaux améliorant les performances de la classification. De cette manière, le modèle et les résultats sont plus explicables, en montrant des corrélations entre l'interprétation neurologique par un expert et la lecture des Heatmaps des sorties déduites de notre modèle. Le modèle LSTM-attention procure une amélioration significative de la précision de la classification, atteignant 94,40% sur l'ensemble de données TUSZ lors de la classification de 8 types de crises d'épilepsie et 96,78% pour une classification binaire (crise Vs normale). Le nombre de paramètres dans nos modèles est d'un peu plus d'un million, avec un temps d'inférence d'environ 1,2 ms sur un GPU NVIDIA GTX960m. Le modèle se généralise également bien à travers différentes types de crises minoritaires. Selon la description par session jointe aux données, il existe une corrélation significative entre les conclusions scientifiques et nos résultats. Le plus grand score d'attention signifie que la probabilité d'apparition de crises sur cette zone est plus élevée. En résumé, l'étude de cas indique que nous pouvons apprendre des scores d'attention avec des représentations interprétables par nos modèles basés sur l'attention par canal, qui, non seulement améliore les performances de détection/ classification, mais aussi identifie les causes cliniques de l'apparition des crises. Dans nos expériences, il a été observé que des poids relativement importants étaient attribués à des canaux qui contribuent à caractériser un type de crise. Pour un exemple de crise focale non spécifique, le neurologue a signalé un état pathologique épileptique non convulsif chez un patient atteint d'épilepsie pharmaco-résistante. L'EEG tracé montre une crise temporo-occipitale, qui coïncidait avec les poids de la couche attention de 21 canaux, pour les segments de crise correspondants. Les canaux (O1, O2) et (T5, T6) ont un poids important par rapport aux autres canaux au début de la crise. Les travaux futurs peuvent se concentrer sur l'amélioration des performances de cette étude pour les classes mineures, en utilisant des données multimodales, principalement des vidéos EEG. Le travail présenté dans ce chapitre a donné lieu à un article soumis à la revue « IEEE Journal of Biomedical and Health informatics ». Chapitre Dans ce chapitre, nous avons présenté la troisième contribution de cette thèse, qui concerne le problème de prédiction des crises épileptiques. Afin de conceptualiser un système robuste de prédiction des crises épileptiques à partir des signaux EEG, il est important d'étudier les approches d'apprentissage pour la reconnaissance des états épileptiques. Ce processus comprend en général, une étape d'acquisition, dans laquelle les signaux EEG sont collectés sur des patients épileptiques, une phase de prétraitement visant à supprimer la ligne de base et les artefacts, une phase d'extraction de caractéristiques et des étapes de classification. Récemment, le processus a été renouvelé en incluant une étape d'apprentissage des caractéristiques via les réseaux profonds, à la place de l'extraction manuelle, qui nécessite une expertise et une familiarité avec les caractéristiques des crises d'épilepsie. Les modèles profonds proposés dans cette thèse sont conceptualisés pour gérer la nature complexe du signal EEG, par l'ajout de plusieurs couches au modèle LSTM et par l'augmentation du nombre d'unités de mémoire cachées. Nous avons aussi proposé des modèles plus sophistiqués, en exploitant le mécanisme de l'attention, pour avoir des résultats déchiffrables 'EXPLAINABILITY'. Ce processus vise à permettre un meilleur apprentissage des caractéristiques. Nos modèles sont plus adaptés aux applications en temps réel que d'autres basés sur des techniques d'extraction de caractéristiques, qui sont mises en oeuvre dans un but de comparaison.

  partie du travail présenté dans ce chapitre a donné lieu à un article pour la conférence « International Joint Conference on Neural Networks ». La méthode proposée dans la deuxième partie de ce chapitre fera l'objet d'un article soumis à la revue « IEEE Transactions on Neural Networks and Learning Systems ».
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 11 Figure 1.1: The three major methodologies considered in this thesis.
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 21 Figure 2.1: EEG rhythms (Gamma, Beta, Alpha, Theta, Delta)
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 2 Literature Review on Health-Related Artificial Intelligence Applications iment on 28 participants by recording EEG signals using a low-cost 4-channels portable EEG device (MUSE). Preparing oral presentation is used as stressful activity to trigger perceived mental stress. Three sessions were recorded: the pre-activity is when participants are in a resting position, activity is when they prepare the presentation and post-activity is for the public oral presentation. Arsalen et al. showed that only pre-activity EEG recordings are well correlated to two and three stress levels, respectively. In the classification task, only pre-activity EEG signals are considered.

  the pre-treatment phase of EEG signals in the case of detection of seizures is very important and sensitive. Since 'Seizure' attacks are very similar in shape (amplitude, frequency, distribution) to artifacts (movement of the eyes, hands, external noises, etc.), it is imperative to differentiate between the crises and the artifacts in the pre-treatment phase in order to suppress artifacts and leave the crises. They proposed a wavelet-based system (SWT) and tested it on 3 different sets of data: real EEG signals from the CHB MIT database, Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications semi-synthesized data and fully synthesized data as shown in the following figure.Bhattacharyya and Pachori[Bhattacharyya and Pachori, 2017] proposed a multivariate approach for patient specific EEG seizure detection. They employed a multivariate extension of the Empirical Wavelet Transform (EMD). The proposed architecture consists of selecting only 5 channels from the 23 ones of the CHB MIT database in order to reduce the computation cost.The channel with the least standard deviation was regarded as reference to calculate the Mutual Information of other channels. The four channels with the highest MI are selected with the reference channel. Then EMD was applied to the 5 selected channels and instantaneous amplitudes and frequencies were calculated for each MODE. The three features extracted are: Mean, Mean monotonic absolute AM and Variance monotonic absolute AM. Synthetic minority oversampling technique (SMOTE) was used to resolve the problem of imbalanced data. In order to evaluate performances of the proposed system, authors used three classifiers : RF, linear Naive Bayes and K-NN. The proposed method has achieved maximum average sensitivity of 97.91% and maximum average specificity of 99.57% using RF classifier with five adaptively selected EEG channels.Lasitha et al. both used Bonn and CHB MIT databases to evaluate their work aiming to detectseizure onsets based on Harmonic Wavelet Packet Transform (HWPT) and Fractal Dimension (FD). Energy features from HWPT and FD are extracted for all channels and epochs to construct the feature vector passed to a Relevance Vector Machine (RVM) to achieve classification.This work[START_REF] Sharma | A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension[END_REF] presents a new approach for the detection of epileptic seizures based on the Fractal Dimension features extracted for each sub-band obtained after the application of Tunable-Q wavelet transform (TQWT) to obtain the tempo-frequency representation of the EEG signal. TQWT offers the possibility to adjust the Q factor differently to the DWT, which provides a low Q factor, whereas in oscillatory signal analysis, a high Q factor is recommended. 8 classification tasks were predefined by the authors (CT1: A vs E, CT2: B vs E, CT3: C vs E, CT4: D vs E, CT5: AB vs E, CT6: CD vs E, CT7: AB vs CD and CT8: ABCD vs E). TQWT is applied to each resulting CT at 17 sub-bands. Then FD is calculated for each sub-band obtained. Mean and STD of all FDs of each CT are subsequently passed to LS-SVM for the classification task. The authors compared the results obtained by their approach to several other approaches in the literature. An accuracy of 100% is obtained Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications

  , the authors analyze the complexity and non-linearity of electroencephalogram (EEG) signals by calculating a new multi-scale entropy measurement for the classification of normal and ictal EEGs. Q-based entropy (QEn) is calculated by decomposing the signal with the (TQWT) in number of sub-bands and cumulatively estimating the entropy of the K-nearest neighbors (K-NN) of various sub-bands. The optimal selection of Q and the redundancy (R) parameter of TQWT showed better robustness for the calculation. The extracted features are passed to the SVM classifier. The proposed method yielded 100% accuracy for classification of normal EEG signals (A and B) and epileptic seizures, 99.5% for the classification of EEG signals without seizure (C and D) and 98% for the classification of EEG signals without seizure (E).
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 2 Literature Review on Health-Related Artificial Intelligence Applications functions. The authors explain transformations applied to the simple STFT by a series of equations. They evaluated the impact of the system parameters. Each time they test a combination and see the results until they reach the optimal configuration they call "Optimal Pole". Based on this optimal pole, they compared the results obtained by their system and the other results obtained in the literature, certainly by referring to the same database "Bonn database". The characteristics extracted are: the absolute values of the 32 coefficients of DSTFT and 5 other statistical measures (absolute average value, absolute median value, absolute standard deviation, absolute maximum value, absolute minimum value of the coefficients). Different binary classifications were performed to evaluate the robustness of the proposed technique: (E vs A, E vs B, E vs C, E vs D, E vs A, C and E vs A, B, C, D) . As a classifier, the authors chose MLP (configuration: N + 5 neurons in the first layer, N + 6/2 in the hidden layer and 2 neurons in the output layer, N is the number of coefficients). The best precision obtained is 98.3% for a window sized 256 and 32 coefficients.

  continuous long-term EEG data are provided by clinical partners in order to help researchers validate their algorithms. The availability of big data has cemented the usefulness of deep learning for a diverse range of problems [LeCun et al., 2015]. The basis of deep learning models is to train deep network with a large amount of data in order to accomplish a task of classification. Nowadays, deep learning is expansively used in medical imaging, early diagnosis and prevention of neuro-degenerative disorders [Kiral-Kornek et al., 2018]. The availability of open access competitions for seizures prediction offered the possibility for developers to improve their algorithms and to demonstrate the capabilities of machine learning techniques. Seizures prediction competitions have enabled the validation and comparison of algorithms performances using a common set of data. Competitions started in 2007 in the International Workshop of Seizure Prediction IWSP3 https://iwsp8.umn.edu/, rendering long-term intracranial EEG data available for only three patients. Data was structured into training and testing sets, enabling the assessment of entered algorithms. Results for the first time competition does not exceed the above-chance rate of prediction.
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  Dataport https://ieee-dataport.org/open-access/ dasps-database. It contains edf files of the raw EEG signals collected from a 23 volunteers. Raw data and preprocessed data are stored under .mat format and also provided with the database.
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 3 EEG-based anxiety levels recognition using a psychological stimulation in terms of excitement (Arousal) and feeling (Valence) his emotions during the stimulation.Data were labeled with respect to arousal and valence values to handle two classification problems which are "Anxious/ Normal" and "Normal/ Light/ Moderate/ Severe anxiety". We have applied a matlab script to label all trials based on thresholds. By applying the labeling algorithm, we get: 156'Normal' trials, 90 'Severe' trials, 10 trials 'Moderate' and 20 'Light' trials. 

  by constructing two additional sub-datasets for 5 seconds and 1 second trials extracted as sample from the main EEG signal. After segmentation, we obtained more trials in each sub-dataset. The 5 seconds segmentation results: 468 'Normal', 270 'Severe', 30 'Moderate', and 60 'Light'. Sub-dataset of 1 second contains 2340 'Normal', 1350 'Severe', 150 'Moderate', and 300 'Light' trials. The script for HAM-A-based labelling respects the basis of the test. Trials with a HAM-A score ≤ 12 are labeled as normal anxiety. If the score is between [12-20], the anxiety level is considered light. And it is moderate if the score is between [20-25]. Finally, for severe states, the score should be above 25.
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 3 EEG-based anxiety levels recognition using a psychological stimulation P8, T8, FC6, F4, F8 and AF4. A picture of the electrodes placement and the Emotiv Epoc+ is shown in Figure3.3.

Figure 3 . 3 :

 33 Figure 3.3: The Emotiv EPOC EEG headset with 14 channels
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 334 Figure 3.4: The experimental protocol of anxiety stimulation

Figure 3 . 5 :

 35 Figure 3.5: Presentation of participant rating in two-dimensional space
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 3 Figure 3.6: Head plots of the distribution of mean power per frequency band. The warmer colors indicate higher relative power (scaled from minimum to maximum values of the total group)

  signal is necessary to move to the feature extraction phase with a clean signal and achieve good classification results. Physiological artifacts are generated by a source different than the brain, such as electroculogram (EOG) artifacts under 4 Hz, muscle artifacts (EMG) with frequency exeeding 30 Hz, and heart rate (electrocardiogram: EMG) of about 1.2 Hz. They can also be extra physiological, unrelated to the human body and are in the 50 Hz range. This may be caused by the environment or related to EEG acquisition parameters[Oude, 2007] [McEvoy et al., 2015] .For the aim of denoising our set of signals, we have applied an EEGLab script serving to cut relevant sub-band of EEG signals, removing baseline and removing Ocular and Muscular artifacts. A 4-45 Hz Finite impulse response (FIR) pass-band filter was applied to the raw data.

  are: Activity, Mobility, and Complexity. The variance of a time series represents the activity parameter. The mobility parameter is represented by the mean frequency, or the standard deviation proportion of the power spectrum. Finally The complexity parameter represents the variation in frequency. Besides, it indicates the deviation of the slope.
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 3 EEG-based anxiety levels recognition using a psychological stimulation 3.3.2 Frequency domain features Band Power Power bands features are the most popular features in the context of EEGbased emotion recognition. The definition of EEG frequency bands differs slightly between studies. Commonly, they are defined as following: δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-32 Hz) and Γ (32-64 Hz).

3. 3 . 3 . 1

 331 Hilbert-Huang spectrumThe Empirical Mode Decomposition (EMD) along with the Hilbert-Huang Spectrum (HHS) are considered as a new way to extract necessary information from EEG signal since it defines amplitude and instantaneous frequency for each sample[START_REF] Panoulas | Hilberthuang spectrum as a new field for the identification of eeg event related de-/synchronization for bci applications[END_REF]. EMD decomposes the EEG signal into a set of Intrinsic Mode Function (IMF) through an automatic shifting process. Each IMF represents different frequency components of original signals. EMD acts as an adaptive high-pass filter. It shifts out the fastest changing component first and as the level of IMF increases, the oscillation of the latter becomes smoother. Each component is bandlimited, which can reflect the characteristic of instantaneous frequency[START_REF] Zhuang | Emotion recognition from eeg signals using multidimensional information in emd domain[END_REF].
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 3 EEG-based anxiety levels recognition using a psychological stimulation energy density (IED) level. The decomposition into IMfs resulted in 10 IMFs per each channel. 3.3.3.2 Band power and RMS using DWT Discrete wavelet transform (DWT) is a technique of signal processing, that proceeds by the decomposition of the signal into different levels of approximation and detail corresponding to different frequency bands. It also keeps the temporal information of the signal. Compromise is done by downsampling the signal for each level.
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 3 Figure 3.8: Overall class distribution across all participants for two and four anxiety levels.

Chapter 3 .

 3 Figure 3.9: PCA score plot of PC1 and PC2 for (a) 5s trial duration and (b) 1s trial duration

Figure 3 .

 3 Figure 3.10: Improved results across all features extracted from the SAM-based and HAM-based databases

  classifier. The row refer to the target class and the column indicates the predicted class. The element (i; j) in a confusion matrix is the percentage of samples in class i that was classified as class j. As observed in Figure3.11.a, SVM with RMS features slightly confuses normal level when classifying severe level. It highly confuses severe and moderate levels with light level. K-NN classifier confuses highly severe level when classifying moderate level. For both SVM and k-NN, the highest confusion is made with severe level for light level classification task. SSAE does not confuse normal level when classifying severe, moderate, and light levels.

Figure 3 .

 3 Figure 3.11: Confusion matrix for (a) SVM, (b)k-NN and (c) SSAE summarizing the targeted (y-axis) and predicted (x-axis) anxiety level, where 0: Normal, 1: Severe, 2: Moderate and 3: Light

Figure 3 .

 3 Figure 3.14: The process of an anxiety levels recognition application with all implicated parts
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 3 Figure 3.15: Confusion matrix of anxiety levels recognition for the LSTM model evaluated with a test set from DASPS

  levels are: light, normal, moderate and severe. The aforementioned levels can be identified by the suggested anxiety level recognition model specified in section 3.5.2. Screenshots of the two major functionalities of the application implemented with Tkinter are shown in Figure 3.16.
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 3 Figure 3.16: ScreenShots of the anxiety checker application, Top: Topographic map option, Bottom: Anxiety level recognition
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification between the seizure type and the localization of the highest weights. The three main phases of the proposed method are depicted in the Figure 4.1. This chapter is composed of 6 sections. Sections 4.2.1 and 4.2.2 detail the proposed channel-wise attention mechanism and the LSTM model respectively. Section 4.3 summarizes the model parameters and the environment settings. Section 4.3.2 illustrates the experimental results and discussion. Section 4.4 presents many case studies analyzing the correlation between the channels contribution and the scientific findings.
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 41 Figure 4.1: The overall workflow of our proposed method including the three main phases
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification

Figure 4 . 2 :

 42 Figure 4.2: The structure diagram of our attention-based LSTM model

Figure 4 .

 4 Figure 4.2 detailed all blocks of the proposed system discussed in the two previous sections.
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification (a) Validation accuracy trends in five learning rates (b) Validation accuracy trends in four dropout rates The model was run on a NVIDIA GEFORCE GTX 960M. The average Accuracy, Precision, Recall and F1-scores were reported. AUC scores are reported only for seizure detection on CHB-MIT dataset.

  (a) Validation accuracy trends in five cross-validation iterations with and without a dropout layer (b) Validation accuracy trends in five units number with and without a dropout layer
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 4 Figure 4.5: LSTM-att model performance in term of accuracy and loss for seizure detection with TUSZ dataset
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 4 Figure 4.6: Confusion matrix of our LSTM-att model validated on TUSZ
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification Table 4.4: Comparison with state-of-the-art methods validated on TUSZ novel region-aware attention with deep LSTM for EEG epileptic seizure classification

  (a) Precision-Recall curve of seizure detection on TUSZ dataset (b) Confusion matrix of seizure detection for the LSTM-att model with CHB-MIT dataset

Figure 4 .

 4 Figure 4.7b. Actually, the model missclassified 2.75% of the seizure samples as normal and 4.28% of the normal samples as seizure. In general, the proposed model is able to classify 97.25% correctly of seizure cases and 95.72% of normal cases. The achieved results are encouraging.
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 48 Figure 4.8. The channels P7, C3, P3, FP2, F4, C4, O2, F8 and Cz have the large weights compared to other channels.

Figure 4 . 8 :

 48 Figure 4.8: Mean attention weights on channels for a set of seizure samples from CHB-MIT
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 4 Figure 4.10: Left:Visualization of a multi-channel signal containing a Focal Non-specific seizure from TUSZ, Right: Correspondent Heatmap of calculated weights
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 4 Figure 4.11: Position of high-weighted channels: Fz, Cz, Pz, (O1,O2) and (P5,P6) according to the 10-20 electrode system placement.

Figure 4 .

 4 Figure 4.12: Visualization of a multi-channel signal containing a seizure from TUSZ: Myoclonic seizure

Figure 4 .

 4 Figure 4.14: Position of high-weighted channels according to the 10-20 electrode system placement. Fz, Cz, Pz, O1 and P4 are central and posterior channels

Figure 4 .

 4 Figure 4.15: Tonic-Clonic seizure

Figure 4 .

 4 Figure 4.16: Heatmap of calculated weights of a tonic-clonic seizure

Figure 4 .

 4 Figure 4.17: Position of high-weighted channels according to the 10-20 electrode system placement. P4, O1, O2, Pz and Cz are central and posterior channels
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification Impression: Abnormal EEG due to Complex partial status epilepticus characterized by recurrent seizures from the left hemisphere although they do begin with some bilateral fast activity.

Figure 4 .

 4 Figure 4.18: Complex partial seizure

Figure 4 .

 4 Figure 4.19: Heatmap of calculated weights of a complex partial seizure
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 4 A novel region-aware attention with deep LSTM for EEG epileptic seizure classification 4.5 Conclusion Classification of epileptic seizures has been a challenge for neurologists diagnosing epilepsy, prescribing treatment and arriving to a prognosis. The automated seizure classification method proposed in this chapter can assist clinical professionals in diagnosing the disease, reducing time and potentially improves accuracy and reliability This chapter proposes a novel channel-wise attention-based deep LSTM model which demonstrates the capability of the attention layer in enhancing the classification performance.
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 55152 Figure 5.1: Spectrum of two random signals from CHB-MIT and TUH EEG Corpus, Segment of 5 seconds and channels are averaged

Skewness: 2 α

 2 Skewness is a dispersion measure which represents the asymmetry of a distribution [50]. In the case of EEG signals, negative or positive skewness reflects the dominance of larger of smaller amplitude values, respectively. Skewness of the m th subcomponent in the n th window is computed as shown in Equation 5.The flatness or the peakedness of the distribution of the EEG signals are measured by the kurtosis of each window [51]. In this sense, given the relation of EEG peaks to epileptic seizures, kurtosis relays information on the epileptic status of the EEG signal. Kurtosis of the n th window's m th subcomponent is calculated as in Equation 5.3
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 5 A spatio-temporel attention network for epileptic seizures prediction from EEG signals the irrelevant components. It corresponds to the variation of the direction of the input signal between the interictal and the preictal states[START_REF] Selim | A review of machine learning approaches for epileptic seizure prediction[END_REF] 5.4.1.2 Extraction of spectral power featuresIn addition, the spectral information of the EEG signals is also taken into consideration, since various frequency domain features are also extracted including the total energy spectrum and the energy percentage across the fundamental rhythmic bands (i.e., Delta: 1-3 Hz, Theta: 4-7 Hz, Alpha: 8-13 Hz, Beta: 14-30 Hz, Gamma1: 31-55 Hz and Gamma2: 65-110 Hz).
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 53 Figure 5.3: 6 levels decomposition of the original EEG signal, the decomposition level was chosen based on the frequency sampling. fs=256 Hz
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 54 Figure 5.4: Power bands feature extraction
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 555 Figure 5.6: The inner architecture of a ConvLSTM model
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 5 Figure 5.7: The proposed spatio-temporal ConvLSTM model is depicted by the three blocks of ConvLSTM. The attention block captures the relevance of each segment to the final decision.

  Figure 5.8: Frame-based vs Conv-based ConvLSTM attention model
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 5 A spatio-temporel attention network for epileptic seizures prediction from EEG signals Consider that, X = [X 1 , X 2 , ..., X n ] represents EEG samples from the CHBMIT 256 Hz resampled dataset, and X i = [x 1 , x 2 , ..., x k ] where x k represents the k th channel of EEG sample X i , and k is the total number of channels of each sample.The original input with the shape [N samples , N timesteps , N channels ] was reshaped into a 5D tensor to adaptively be fed into an ConvLSTM2D layer. The new shape of the input data is:[N samples , N f rames , N cols ,N rows , N channels ]. In the frame-based model, the attention scores are directly learnt from the EEG frame which have the size of [N f rames , N cols , N rows ] The attention layer, shown in Figure 5.8, is to generate attention weights for each Frame composed from a set of images N cols , N rows and then executes an element-wise multiplication with the output of the last convolutional Layer of the ConvLSTM block. The set of frames are input into a fully connected module where the parameters W and b are initialised for all frames. The attention matrix is element-wisely multiplied by the reshaped inputs. The outputs of the fully connected module are multiplied by the reshaped output of the dense layer of the ConvLSTM model. Then, the obtained values are fed into a new FC layer with Softmax activation to extract further features and to reduce the last dimension of input matrix into a number of classes.

Y 5 =

 5 att scores = Y 3 = [att 1 ; att 2 ; ...; att(N f rames ](5.13)The Top block of the Figure4.2 shows the spatio-temporal feature learning module, which comprises three convLSTM layers. The predicted class Y 5 is the multiplication of the ConvLSTM block output and the learnt attention scores: Dense out att scores(5.14) 
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 5 A spatio-temporel attention network for epileptic seizures prediction from EEG signals signal. Thus, reducing extra-time of feature extraction and making it suitable for a real time application.

3 .

 3 The model provides a low FPR of 0.27 false alarms per hour. The minimum FPR is obtained for the cases chb04, chb07 and chb11. The standard deviations of sensitivity, specificity and accuracy are 0.11, 0.08, and 0.09, respectively.

  in the Figure5.11. This overlapping is responsible of the obtained dependent results for the chb12. It means that segments of the chb12 are less discriminative than those of the chb12 and the LSTM model was not able to learn a discriminative features to predict the fragment class with high sensitivity.
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 555 Figure 5.10: T-sne projection of data from chb01

Figure 5 .

 5 Figure 5.15: Improved results by the proposed LSTM-att method

Figure 5 .

 5 Figure 5.16: Confusion matrix of the ConvLSTM model
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 55 Figure 5.18: Illustration of the prediction process
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 5335 Figure 5.19: EEG Signal plot vs Spectrogram vs attention Heatmap of 15 minutes from a preictal state
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 51 A spatio-temporel attention network for epileptic seizures prediction from EEG signalsThe main objective of this study was to design deep learning models for patient-independent epileptic seizure prediction. Such models, can be used in situations where subjects in the dataset have fewer labeled examples (EEG recordings). We recognize this is a typical case in Intensive Care Unit (ICU) monitoring scenarios where an adequate number of samples cannot be obtained to train a prediction model. Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.2.1 Investigation of the relation between anxiety and epileptic seizures . . . . 135 6.2.2 Data augmentation using adversarial neural network for the TUHSZ dataset addressing the issue of imbalanced classification task . . . . . . . 136 6.2.3 Automated hyper-parameters optimization . . . . . . . . . . . . . . . . . 136 AI-related applications based on EEG analysis have addressed the technological gap in the clinical field. Also for personal use, the benefit of this intelligence have been used to save lives and improve the well being of affected people. The use of physiological signals for smart health applications has experienced a relative uprising. Meanwhile, people do not have the practice to wear a neuro-headset and may feel uncomfortable. This habit becomes more and more established. Since the use of one-channel neuro-headset was enabled by the smart health monitoring for exercises and meditation, people try to follow this trend and are able to further assimilate technologies based on EEG monitoring. Recent years have witnessed growing interests in AIrelated applications, mainly in the research and industry fields. In this thesis, we have explored several research problems related to this topic. Can we decode human anxiety using physiological signals? Specifically, the stimulation of anxiety following a psychological strategy. EEG signals were recorded during the session for a further analysis and used in the proposed anxiety levels detection approach. DASPS, as a new dataset for anxiety levels recognition, has been developed to promote scientific co-operations in the field. The proposed computational models and prototype demonstration are systematically evaluated and compared to the state-of-the art Chapter 6. Conclusion and Future Works methods.

  Chapter four was mainly structured into two main Sections, reporting the work addressing the seizure detection and seizure classification problems. The motivation behind this contribution is the crucial need of an interpretable model for epileptic seizure classification for the neurology service. The question triggering the work was: Can we find an effective correlation between the expertise-based reading and diagnosis of a clinician, and the decisive information generated by a deep model? For this aim, we have proposed an attention-based LSTM model to investigate the contribution of EEG channels and brain regions in the final decision Chapter 6. Conclusion and Future Works of the model. Consistency with the neurological findings was proved by the team of neurology collaborating with us to produce this study. Since LSTM is a more intelligent version of RNNs, offering the ability to better control the storage of information in the memory units, we proposed the exploitation of this technique for seizure prediction purposes and results was promising. Considering that EEG signals are essentially highly dynamic, non-linear time series data, LSTM networks have by design an advantage over CNN in isolating temporal characteristics of brain activity during different

  Electroencephalography (EEG) biomarkers are a set of neurological manifestation detected in the EEG signal, which are exploited to give a print to a brain reaction face to traumatic emotion, anxiety or stress. Many people struggle to manage their emotions, which is why, they have a high probability that their defense system shuts down. Epileptic patients can be faced to a Pseudoseizures (PNES). The latter are not the same type of neurological seizures that are caused by uncontrolled activity in the brain. Instead, PNES are an extreme response to stress and anxiety and are therefore considered psychiatric in nature. If an extreme response of an epileptic patient's brain to stress and anxiety may cause PNES, how much anxiety biomarkers can be present in the preictal state of a seizure. As we know that some EEG biomarkers have a great correlation with an anxious state, like discussed in the Chapter Three, we propose to search the presence of these prints in the preictal segments. The study should provide a comparison between preictal -ictal and interictal values of the chosen biomarker. If a correlation is found, a model can be proposed to discriminate between the three states based on the extracted feature. This work can be applied for seizure prediction or seizure detection. Chapter 6. Conclusion and Future Works 6.2.2 Data augmentation using adversarial neural network for the TUHSZ dataset addressing the issue of imbalanced classification task Data augmentation helps increase the available training data, and facilitate the use of more complex DL models. It can also reduce overfitting and improve the accuracy and stability of the classifiers. In the EE-based domains, we found that DA has been more or less successfully applied to many EEG tasks such as: Sleep stages, Motor imagery Mental workload and Emotion recognition tasks. The contribution presented in Chapter Four was evaluated on two datasets, one of them is the TUSZ. This dataset is the only free publicly available dataset for seizure type classification. The major drawback of this dataset is the unavailability of a similar amount of data in each class, which makes it a very imbalanced dataset. With the emergence
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  this chapter, we describe the background of Artificial Intelligence in Healthcare, related re-
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	tool used in the automatic analysis of both brain disorders. Section 2.3 gives an overview of 4. A number of methods like Blind Source Separation (BSS) or time-frequency analysis
	the research about EEG-based anxiety detection as well as epileptic seizure prediction, and (i.e. wavelet analysis) emerged for the EEG analysis.
	seizures types recognition are given in Section 2.4 and 2.5 respectively. Finally, Section 2.6 5. EEG signals have been investigated using machine learning and Deep learning ap-
	concludes the chapter. proaches and the obtained results are promising.
	6. It can be used in many environment (e.g., walking, driving, sleeping, physical activity, 2.2 Health-Related Artificial Intelligence Applications meditation and also for marketing)
	2.2.1 Electroencephalography For these reasons, EEG is a helpful tool in clinical neuroscience. Particularly, the low cost
	extending its wide use. Consequently, several research centers and hospitals currently opt for
	Hans Berger discovered EEG in 1924, and defined it as the recording of the electrical fields EEG recording system that has been used in different neuroscience clinical applications.
	generated in the brain and emitted by a group of neurons oriented perpendicularly to the surface
	of the head [Kropotov, 2010]. The electrical activity needs approximately 106 neurons with the 2.2.1.1 EEG rhythms
	same orientation to make it observable on the scalp [Nunez and Srinivasan, 2006]. The EEG
	signals are present and can be recorded in non-natal brain (pre-birth) and will stay present until EEG rhythms vary depending on the subject task since EEG is remarkably sensitive of the
	brain death. Since it was discovered, EEG has been one of the most used tools in diagnos-subject's state. Nonetheless, five primary types of continuous rhythmic EEG activities are
	ing various neurological disorders. Compared to fMRI or PET, EEG is simpler and cheaper. identified in the recordings. They are split into distinctive frequency bands. Said waves are
	However, EEG is a complex combination of rhythms, reflecting the activity simultaneously in originated in the brain, then amplified and displayed using a computer or other convenient
	different parts of the brain. The brain activity is in correlation with any human body activity equipment. It consists of a wave varying in time, resembling a sound or speech sign wave. Five
	performed, from muscular to cognitive tasks. EEG signal spectral sub-bands are largely of clinical interest: Delta (0 -4 Hz), Theta (4 -8
	Early EEG-based studies were stuck with visual interpretation and handcrafted measurements
	due to the lack of technology thereof. Following the uprising of technology, it became possi-
	ble to automatically analyse and investigate EEG recordings leading to intelligent systems for
	healthcare field.
	Some of the reasons explaining the expansive use of EEG [Kropotov, 2010]:
	1. No other neuroimaging technique can achieve the high temporal resolution produced by
	EEG. It provides a resolution of few milliseconds, while PET and fMRI are bound to a
	few seconds.
	2. The knowledge of the mechanism that generates spontaneous EEG activity has risen.
	searches and available benchmarks for the research community. Section 2.2 introduces some
	preliminaries on Anxiety state, Epilepsy and Electroencephalography, which is the common 3. fMRI and PET scans are atrociously more expensive than EEG recording systems.

  Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications pop-up and cable movement. Artifacts can contaminate several channels or just located in single channel. An example of artifact-contamination is illustrated in Figure 2.3.

	Figure 2.3: An example of artifact-contamination, Left: ECG is identified by its fixed period
	and morphology and is limited to T3-A1 channel, Right: The focal slowing in the T4-T6 and
	T6-O2 channels has no fields beyond T6 electrode and has the oscillation typical of rhythmic
	electrode movement
	2.2.2 Anxiety state
	2.2.2.1 Anxiety state definition
	"State anxiety" is defined as a temporary reaction to conflicting events. It is a deep, transitory
	2.2.1.3 EEG artifacts
	Different forms of artifacts can contaminate an EEG recording, having various types and
	sources. Artifacts can be internal or external. Internal artifact sources are due to the subject's
	physiological activities (e.g. ECG, EMG/muscle artifacts, EOG) and movement. External
	artifacts can be caused by environment-generated interference, recording equipment, electrode

  is most commonly diagnosed below the age of 20 or above the age of 65, and the rate of new cases increases after the age of 55 when people are more likely to develop strokes, tumors, and Alzheimer's disease.
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	Seizures can cause a range of symptoms, from momentarily staring blankly to loss of aware-
	ness and uncontrollable twitching. Some seizures can be milder than others, but even minor
	seizures can be dangerous if they occur during activities like swimming or driving.
	Overall, the average life span of an epileptic patient is slightly lower than that of the general
	population, mainly because of the risk of accidental death during a crisis (drowning, falling,
	accident) [Pellegrino, 2014]
	2.2.3.1 Epilepsy definitions
	Over the years, the definition and the classification of epilepsy were revised and updated
	following new discoveries and researches. The International League Against Epilepsy (ILAE)
	defined Epilepsy in 2005 as a brain disorder identified by an enduring predisposition to
	generate epileptic seizures, as well as the cognitive, neurobiologic, psychological and social
	consequences of this condition.

Table 2 .1: EEG frequency bands signification for diseases causing mental disorders
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	Disease	Earlier age	Advanced age
	Epilepsy	EEG in partial seizure may be	Rhythmic activity have diffused. The
		normal, or show quite usually	EEG signature of absence epilepsy is the
		high amplitude and is local-	generalised 3 Hz spike-wave discharge
		ized or lateralized Abnormal	EEG during a myclonic seizure typically
		rhythmic activity	shows a poly-spike and-slow-wave dis-
			charge
	2.2.3.2 Prediction vs detection of epileptic seizures
	The seizure detection main problem relies with its complexity because of the not-so clear
	definition of the seizures and spikes morphologies. Detecting seizures manually by an expert

  Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications established following the EEG frequency bands classification accuracy. Said work achieved an accuracy of 89.30% for the binary classification task. However, this accuracy degrades for the classification of three stress levels (60.91%). Zhang et al. [Zhang et al., 2020a] selected 92 subjects (where 45 children are considered as anxious and 47 children as normal) to conduct experiments according to the Screen for Child Anxiety Related Disorders (SCARED) scale. Zhang et al. He extracted PSD features from Gamma band and transform them using a new proposed Group Sparse Canonical Correlation Analysis (GSCCA) to achieve 82.70% with SVM classifier.
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	Affective states Accuracy 2.4.1.2 CHB-MIT dataset (%) Stress and Calm 76.15 Stress and Calm 81.31	Valence, Arousal 62.49	and Dominance	Stress and Relax					Neutral, Stress-89.07	low, Stress-	medium and	Stress-high	Stress and Relax --		Non-stressed and 72.00	Stressed		Stress and Stress-90.00	free
	#Participants #Channels Method	32 32 ESN with band	power features	32 32 SVM with Entropy	features	23 14 PSD with SVM		18 32 Asymmetry Index,	Coherence, Brain	Load Index and	Spectral Centroid	Frequency	6 14 Hilbert-Huang	Transform with	SVM		13 8 k-means clustering	with stress indice	25 1 ANN, k-NN, LDA	with DCT coeffi-	cient	26 8 k-NN and SVM	with Higuchi FD,	GM and MSCE
	Reference Stimulus	[Fourati et al., 2020b] Audio-Visual		[García-Martínez et al., 2017] Audio-Visual		[Katsigiannis and Ramzan, 2018] Audio-Visual		[Giannakakis et al., 2015] Audio-Visual					[Vanitha and Krishnan, 2016] Mathematical	tasks			[Patil et al., 2017] --		[Lim and Chia, 2015] Stroop Color	Word test		[Khosrowabadi et al., 2011] Examination pe-	riod

The muse headset was used to collect EEG signals and the gathered data was labeled following the collected PSS scores of each participant. Which presents a novel method for feature selection 2.4 Review on EEG-based approaches for epileptic seizures prediction 2.4.1 Available benchmarks 2.4.1.1 Bonn dataset This dataset is freely shared by the University of Bonn https://www.upf.edu/web/ mdm-dtic/-/1st-test-dataset?inheritRedirect=true#.YV64AbhKhPY. The EEG recordings in this database are divided into five sets (A-E). Each set consists of 100 segments of artifact-free single channel EEG recorded for 23.6 s durations. Sets A and B are scalp EEG recorded from five healthy volunteers where A is recorded with 'eyes open' and B is recorded with 'eyes closed' conditions. Sets C, D, and E consist of intracranial EEG (iEEG) recordings obtained for pre-surgical evaluation from five patients with temporal lobe epilepsy. Set D consists of EEG from the epileptogenic zone and set C from the hippocampal formation of the opposite hemisphere. EEG of both C and D are recorded in inter-ictal intervals. EEG in set E are recorded at seizure activities from all recording sites showing ictal activity. All the recordings are digitized and amplified using a 128 channel system with the average common reference method. The original sampling rate for all EEG in this dataset is 173.61 Hz. Deep approches for neurological disorders detection based on brain activity analysis Asma Baghdadi 23 Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications Table 2.2: Previous works on EEG-based anxiety detection

Table 2 .

 2 3: Details of all 24 cases included in the CHB-MIT database

	Case Gender Age (years) # of seizures Seizure duration EEG duration
					(mm:ss)	(hh:mm)
	1	F	11	7	07:20	40:30
	2	M	11	3	02:52	35:00
	3	F	14	7	06:42	38:00
	4	M	22	4	06:18	156:00
	5	F	7	5	09:18	39:00
	6	F	105	10	02:33	66:30
	7	F	14.5	3	05:25	67:00
	8	M	3.5	5	15:19	20:00
	9	F	10	4	04:35	68:00
	10	M	3	7	07:27	50:00
	11	F	12	3	13:26	35:00
	12	F	2	27	17:36	21:00
	13	F	3	12	08:55	33:00
	14	F	9	8	02:49	26:00
	15	M	16	20	26:55	40:00
	16	F	7	10	01:24	19:00
	17	F	12	3	04:53	21:00
	18	F	18	6	05:17	35:30
	19	F	19	3	03:56	30:00
	20	F	6	8	03:49	27:30
	21	F	13	4	03:19	33:00
	22	F	9	3	03:24	26:30
	23	F	6	7	05:30	26:30
	24	-	-	16	08:31	21:00

been approached as a machine-learning problem. The main steps of this problem are: extracting relevant features corresponding to the pre-ictal state and designing an adequate classifier.

  Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications tal discharges from intracranial EEG signal. 18 subjects assessed for temporal lobe epilepsy at King's College Hospital, London were included in this study. 13 EEG traces were entirely recorded during wakefulness and the remaining included periods of slow wave sleep (Subjects S2, S9, S10, S13, S15). 32-channels telemetry system was employed during the recording under general anesthesia and data was digitized at 200Hz. 20 min of scalp EEG recording was used for each patient. Score attributed for each trial of 325ms can be 0-4. This action was performed by an expert epileptologist. Filters in each layer of the proposed CNN are used to capture the temporal information of the EEG, and this by combining each electrode signal with Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications vector.A time-frequency analytic algorithm, denoted LMD for Local Mean Decomposition was applied to EEG signal in order to detect seizure activity in[START_REF] Zhang | Lmd based features for the automatic seizure detection of eeg signals using svm[END_REF]. LMD decomposes the EEG signal into several Product Functions (PFs). Maximal amplitude, minimal amplitude, average absolute value are three time-domain features. Maximum, skewness, kurtosis of PF's power spectral density are three frequency-domain features. Fractal Dimension, Renyi Entropy and Hurst Component are also extracted for the first five PFs. Features are passed to different types of classifiers: including back propagation neural network (BPNN),

	He therefore proposes to use Directed Transfer Function (DTF) to estimate cerebral connectiv-
	ity. The DTF is a measure of the dynamic causal relationship in the frequency domain, which
	can be estimated by the MVAR model coefficients. Functional brain connectivity based on DTF
	can characterize the intensity and direction of the link between the different EEG channels. For

Antoniades et al. 

in their work

[START_REF] Antoniades | Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial eeg[END_REF] 

proposed a system to detect interic-a 1-d filter and adding a bias term to generate the feature map. The output of the hidden layer of this CNN is passed to a logistic regression model to classify intracranial EEG features into non-IED, IED1, IED2 and IED3 classes. To resolve the problem of unbalanced data, authors employed the undersampling method for the non-IED class. Best accuracy obtained in this study is 89% achieved by the CNN multi-class approach.

Cerebral connectivity refers to a set of anatomical links ("anatomical connectivity"), statistical dependencies ("functional connectivity") or causal interactions ("effective connectivity") between distinct units of the nervous system. The units correspond to individual neurons, neuronal populations or anatomically separated brain regions. The connectivity model is formed by structural links such as synapses or fiber paths, or it represents statistical or causal relationships measured as cross-correlations, coherence, or information flows. Neuronal activity and, by extension, neuronal codes, are limited by connectivity. Brain connectivity is therefore crucial to elucidate the way neurons and neural networks process information.

Based on this fact, Wang et al.

[START_REF] Wang | Eegbased detection of epileptic seizures through the use of a directed transfer function method[END_REF] 

asserts that brain connectivity during seizures is certainly different to that between seizures, making it possible to differentiate between 'crisis' and 'non-crisis' by estimating brain connectivity for each segment of the seizure. each segment of the EEG signal, DTF is calculated for each pair of electrodes, resulting in a 19x19 matrix (since it used a 19-channels EEG headset). Each 19x1 line is considered a feature K-nearest neighbor (KNN), linear discriminant analysis (LDA), unoptimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM). Authors performed five classification cases of the Bonn epilepsy dataset and presented obtained accuracy of all classifiers. Classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases. Based on the statistical analysis elaborated in this work, it is showed that Set E is easily distinguishable from other sets regarding the difference of the mean values of statistics features.

Different to other studies,

[START_REF] Page | A flexible multichannel eeg feature extractor and classifier for seizure detection[END_REF] 

proposed a flexible hardware system for feature extraction and classification with five seizure detection processors fully placed and routed on a Virtex-5 FPGA. Statistics features are extracted from raw EEG signals for each channel and for 1 second epoch with 50% overlapping. Authors compared all classifiers in term of latency, complexity, memory and energy. Logistic regression had the best average F1 score of 91% and occupies less resource and memory, and consumes less energy than the other classifiers processors .

  Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications term human intracranial EEG recordings. 1,139 seizures were recorded during a period of 1,326 days from three persons with intractable seizures.

The second large-scale competition was in 2016, organized by the Melbourne University (Melbourne University AES/MathWorks/NIH Seizure Prediction) aiming to predict seizures in long-

  respectively. The data is stored in a proprietary format that has been exported to EDF with the use of NicVue v5.71.4.2530. These EDF files contain a header with important metadata information distributed in 24 unique field that contain the patient's information and the signal's condition. There are additional fields that describe signal conditions, such as the signals maximum amplitude, which are stored for every channel.

	2.5 Review of EEG-based approaches for seizures types
	recognition
	2.5.1 Available benchmarks
	The TUH EEG Seizure Corpus, which is a subset of the TUH corpus has been manually an-

2.5.1.1 NEDC TUH Seizure Corpus The full TUH EEG corpus is the world's largest publicly available corpus of clinical EEG data (https://www.isip.piconepress.com/projects/tuh_eeg/html/ downloads.shtml). The corpus contains 15,757 hours (56,726,510 secs) of EEG recordings from 13,539 patients. It represents the collective output from Temple University Hospital's Department of Neurology since 2002. EEG signals were recorded using several generations of Natus Medical Incorporated's NicoletTM EEG recording technology. The raw signals obtained from the studies consist of recordings that vary between 20 and 128 channels sampled at 250 Hz minimum using a 16-bit A/D converter. notated and separated into training and test sets, as well as split up into sessions with and without seizures. The full training set contains 592 patients, 202 of which have seizures, for a total of 2370 seizures categorised into 9 types. The duration of all the seizures is 46.7 hours Chapter 2. Literature Review on Health-Related Artificial Intelligence Applications Table 2.4: Previous works on EEG-based seizure prediction

Table 2 .

 2 In the mixed patients, the number of electrodes vary between 54 and 113, being the average recording time of 140 h. EEG data were recorded using Nicolet, Micromed, Compumedics, or Neurofile NT digital video EEG systems at sampling rates of 250 Hz, 256 Hz, 400 Hz, 512 Hz, 1024 Hz, 2048 Hz or 2500 Hz. In all the acquisition systems, data was recorded relative to a common electrical reference. Since the Epilepsiae is not an open access database, we do not have the exact number of samples for each class.

	5: Summary of TUH dataset
	Dataset Features	TUH EPILEPSIAE
	No. of patients	314	278
	No.of seizure recordings 2012	2702
	No. of seizure classes	8	4
	(168,139.2295 secs) out of the full 752.3 hours (2,708,284 secs) of available EEG data. The
	test data is also large, with a total of 50 patients, 39 with seizures, 685 seizures (16.95hrs;
	61,036.8393 secs) and 170.34 hours (613,232 secs) of data.	
	2.5.1.2 EPILEPSIAE		
	Long-term EEG recordings from 278 epilepsy patients (149 males (53.8%); age range, 2-67

years; mean age: 34.3 years) suffering from medically intractable partial epilepsy were analyzed. Data was recorded in three different epilepsy units in a total of almost 2,031 days (48,742 h) of EEG including 2,702 seizures. 68% of the patients had temporal lobe epilepsy.

Concerning lateralization 42% present epilepsies in the left side of the brain, 41% in the right side, 8% in both sides (bilateral), and for 0.7% it was impossible to define a lateralization.

In 227 patients, EEG was recorded using 22-37 scalp electrodes; the average recording period was 162 h. In 42 patients, intracranial EEG with 14-124 recording sites was recorded using stereotactically implanted depth electrodes, subdural grids and/or strips; the average recording period was 253 h. Nine "mixed" patients were subjected to both intracranial and scalp EEG recordings. *:
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		1: Anxiety triggers categories and stimuli
	Category	Stimuli
	External	Witnessing a deadly accident
		Familial instability / Financial instability / Maltreatment / Abuse
		Deadlines / Insecurity / Routine
	Interpersonal Relationship with the supervisor / manager
		Lack of confidence towards spouse
		Being in an embarrassing situation
	Internal	Fear of getting cheated on / Fear of losing someone close
		Fear of children's failure / Feeling guilty permanently
		Recalling a bad memory
		Health (Fear of getting sick and missing on an important event)

Table 3 . 2

 32 For each situation, the participant rating can be presented in 2D plan corresponding to the valence and arousal values. This plan can be divided into four quadrants according to the possible combinations of valence and arousal scales. The four quadrants as shown in Figure3.5 are: Low Valence and Low Arousal (LVLA), High Valence and Low Arousal (HVLA), Low Valence and High Arousal (LVHA), and High Valence and High Arousal (HVHA). A summary of the subjective classification into the four Valence-Arousal quadrants from participants' ratings is presented in Table 3.3. Chapter 3. EEG-based anxiety levels recognition using a psychological stimulationTable 3.3: Participants Number in each quadrant according to SAM ratings

	Stimulus	Valence	Arousal
	Situation 1 2.13 ± 1.68 6.13 ± 2.63
	Situation 2 3.43 ± 1.44 5.13 ± 2.68
	Situation 3 1.86 ± 1.25 6.04 ± 1.69
	Situation 4 3.86 ± 1.79 4.30 ± 2.47
	Situation 5 3.30 ± 1.63 5.95 ± 2.24
	Situation 6 2.26 ± 1.54 6.30 ± 2.18
	Mean CV	0.58	0.42

: Mean rating and Standard Deviation across all participants for each situation

Table 3 .

 3 4: Participants number by anxiety levels according to Hamilton scores

	Anxiety level	Normal Light Moderate Severe
	Before Experiment	4	6	6	7
	After Experiment	2	5	3	13

Table 3 .

 3 5: EEG signal frequency bands and decomposition levels at fs=128 Hz

	Bandwidth Frequency Band Decomposition
	(Hz)		Level
	1-4 Hz	Delta δ	A4
	4-8 Hz	Theta θ	D4
	8-13 Hz	Alpha α	D3 (8-16 Hz)
	13-32 Hz	Beta β	D2 (16-32 Hz)
	32-64 Hz	Gamma Γ	D1 (32-64 Hz)

Table 3 .

 3 7: Anxiety detection results of 4 and 2 levels

				Accuracy(%)
	Trial duration Feature #Features	4 levels	2 levels
				SVM k-NN SVM k-NN
		Hjorth	42	56.20 56.50 66.30 63.80
		qEEG	25	56.50 56.50 64.10 63.80
	15s	HHT	10	57.00 56.80 64.10 64.10
		Power	56	58.30 57.60 66.30 66.30
		RMS	56	59.10 56.50 66.30 67.00
		Hjorth	42	57.40 58.80 72.90 64.90
		qEEG	25	56.80 56.40 64.00 63.60
	5s	HHT	9	56.90 56.30 64.00 64.10
		Power	56	62.00 63.20 73.10 70.50
		RMS	56	65.30 64.30 72.90 73.40
		Hjorth	42	60.10 57.00 67.40 81.40
		qEEG	25	58.30 56.40 64.00 63.50
	1s	HHT	7	56.60 56.30 64.00 63.60
		Power	56	64.40 68.00 76.00 74.90
		RMS	56	70.20 73.60 77.40 80.30
	highlight that the task here is subject-independent that means the training and test samples does
	not belongs to the same subject. Anxiety detection results for two and four levels are presented

in Table

3

.7. We report results obtained from different kind of features. We remark that DWTbased RMS features with SVM achieve the best results 59.10% and 65.30% for 15s and 5s trial duration respectively. When the trial length is 1s, the result is increased with k-NN classifier

Table 3

 3 

	.8 depicts the results obtained for Time, Frequency,
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 3 9: Performance comparison of the proposed work with the state-of-the-art methods

	Reference	#Subjects #Channels	Classifier	#Classes Accuracy(%)
	[Saeed et al., 2015]	28	01	SVM	2	71.42
	[Saeed et al., 2017]	28	01	Naive Bayes	2	71.40
	[Secerbegovic et al., 2017]	09	01	SVM	2	83.33
	[Subhani et al., 2017]	22	128	Naive Bayes Multiple	83.40
	[Saeed et al., 2018]	23	01	SVM	2	78.57
	[Arsalan et al., 2019]	28	04	MLP	2	89.30
		28	04	MLP	3	60.91
	[Zanetti et al., 2019]	17	14	LR-RF	3	84.60
	[Baghdadi et al., 2020a]	23	14	SSAE	4	86.70

Table 3
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	.10: Anxiety detection improved results for 4 levels
	Trial duration	Feature	Classifier Accuracy (%)
	1s	RMS	SVM KNN	79.00 81.40
		All Features	SSAE	86.70

  ). Symbols (N samples , N timesteps and N channels ) represent the number of samples, the number of time steps, and the number of EEG channels, respectively. Y 1 is a normalized matrix of X 0 size. W al a weight of size (N channels , N channels ), a bias b al of (N samples , N timesteps and N channels ), and Y2 have the same size as Y 1 . A symbol σ (.) represents a nonlinear activation function, which transforms the Chapter 4. A novel region-aware attention with deep LSTM for EEG epileptic seizure classification Functions f nor (.) and f tens (.) are to normalize and tensorize a matrix.

	att scores = Y 3 = [att 1 ; att 2 ; ...; att k ]	(4.5)

importance of channels to probability distribution, like softmax(.) and sigmoid(.). Y 2 is a tensorized matrix of Y 2 .
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	1: Proposed LSTM architecture parameters
	Parameters	Range	Best Value
	LSTM Layers	[1-2]	2
	Dropout Layers	[0-2]	0
	Learning rate	[0.001,0.002,0.005,	0.001
		0.01,0.1,0.2,0.3]	
	Memory units	[50,100,150,200,250]	250
	Dropout probability	[0.2,0.3]	None
	Dense activation	['softmax', 'relu', 'tanh', Softmax
		'sigmoid', 'linear']	
	Optimizer	None	Adam
	Epochs	[20, 50, 100]	100
	Batch size		

Table 4 .

 4 Chapter 4. A novel region-aware attention with deep LSTM for EEG epileptic seizure classification 2: Results on TUSZ dataset for seizure detection

			LSTM				LSTM-att	
	Class	Accuracy Precision Recall F1-score	Accuracy Precision Recall F1-score
	Seizure	88.40	88.40 88.45	88.42	97.01	97.01 96.39	96.69
	Normal	86.25	86.25 86.72	86.48	96.56	96.56 97.24	96.89
	Mean	87.32	87.08 87.39	87.59	96.78	96.86 96.50	96.60
	Std	0.14	0.63	0.78	0.44	0.21		0.64	0.60	0.54
		AUC=0.913				AUC=0.976			
		Table 4.3: Results on TUSZ dataset for seizure classification	
			LSTM				LSTM-att	
	Class	Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
	GNSZ	96.00	96.00 84.56	89.91	98.48	98.48	98.57	98.52
	FNSZ	83.01	83.01 93.14	87.78	98.11	98.11	98.86	98.48
	CPSZ	83.78	83.78 94.57	88.85	98.95	98.95	98.38	98.66
	ABSZ	81.25	81.25 87.00	84.14	93.75	93.75 100.00	96.77
	SPSZ	84.85	84.85 38.36	52.83	97.30	97.30	98.63	97.96
	TCSZ	100.00	100.00 53.85	70.00	98.11	98.11 100.00	99.05
	TNSZ	80.21	80.21 87.64	83.76	100.00	100.00	87.50	93.33
	MYSZ	100.00	100.00 43.42	60.55	95.83	95.83	90.79	93.24
	Mean	88.32	88.32 72.14	77.55	98.41	97.86	96.02	96.87
	Std	0.26	0.26	1.30	0.96	0.18	0.90	1.06	0.78

2.1 and the basic deep LSTM model section 4.2.2. Two different classification problems based-on EEG signals are addressed to evaluate whether the integration of the proposed channel-wise attention mechanism

Table 4 .

 4 

				5: Results on CHB-MIT dataset			
			LSTM				LSTM-att	
	Class	Accuracy	Precision Recall F1-score Accuracy	Precision Recall F1-score
	Seizure 87.47	88.00	84.15 86.03	97.25	97.25	95.88 96.56
	Normal 89.33	85.24	89.66 87.39	95.72	95.72	97.65 96.67
	Mean	88.40	86.50	87.35 86.44	96.48	96.88	96.28 96.50
	Std	1.31	0.86	0.78	0.25	1.16	0.40	0.45	0.17
		AUC=0.916				AUC=0.976			
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	Ref	Year	Input	Classifier	Results F1-score AUC ACC
	[Yuan and Jia, 2019]	2019 Raw EEG FusionAtt	89.53	96.22 97.01
	[Yao et al., 2021]	2021 Raw EEG BiLSTM-att 84.15	84.15 91.51
	[Baghdadi et al., 2021a] 2021 Raw EEG LSTM-att	96.50	97.60 96.48

6: Comparison with state-of-the-art methods on seizure detection with CHB-MIT dataset

Table 5 .

 5 and approximation coefficients. Discrete wavelet transform (DWT) is a signal processing technique, which proceeds by the decomposition of the signal into different levels of approximation and detail corresponding to different frequency bands. It also keeps the temporal information of the signal. Compromise is done by downsampling the signal for each level. Correspondence of frequency bands and Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals 1: EEG signal frequency bands and decomposition levels at fs=256 Hz

	Bandwidth (Hz) Frequency Band Decomposition Level
	0-4 Hz	Delta (δ )	A6
	4-8 Hz	Theta (θ )	D6
	8-16 Hz	Alpha (α)	D5
	16-32 Hz	Beta (β )	D4
	32-64 Hz	Gamma1 (Γ1)	D3
	64-128 Hz	Gamma2 (Γ2)	D2
	128-256 Hz	HFO	D1

  X 1 , ..., X t are the inputs, cell outputs C 1 , ...,C t , hidden states H 1 , ..., H t , and gates i t , f t , o t of the ConvLSTM are 3D tensors whose last two dimensions are spatial dimensions (rows and columns).

	Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from
	EEG signals		
	Layer	Parameter Hyperparameter
	ConvLSTM2D	Kernels	Kernel size, number of filters, stride, padding and
			activation function
	Pooling layer	None	pooling method, Filter size, padding, stride
	Fully connected layer	Weights	Number of weights, activation function
	Others	None	BatchNormalization, optimizer, learning rate, loss
			function, Bach-size, epochs, regularization, weight
			initialization
	Table 5.2: Parameters and hyperparameters of the a ConvLSTM model
			H t = o t • tanh(C t )	(5.8)
				7)

  [N samples , N f rames N cols , N rows , N channels ]. Symbols N samples , N f rames , N cols , N rows and N channels represent the number of samples, the number of images per frame, the width and high of an image and the number of dimension of an image, respectively. Y 1 is a normalized matrix of X 0 size. W al is a weight matrix of size (N rows , N dimension ), Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals Functions f nor (.) and f tens (.) are to normalize and tensorize a matrix.

a bias matrix B al of N f rames , and Y2 have the same size as Y 1 . A symbol σ (.) represents a nonlinear, which transform the importance of frames to probability distribution function, like softmax(.) and sigmoid(.). Y 2 is a tensorized matrix of Y 2 .

  Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals layer that outputs the binary classification as a one hot encoded result (i.e. preictal or interictal), using the "softmax" activation. The batch size is set to 128 and the cross-entropy loss function is selected as the cost function, using the Adaptive Moment Estimation (Adam) optimizer.The activation function to use is depending on the application. For our problem at hand, we have multiple classes (interictal and preictal) but only one of the classes can be present at a time. For these types of problems, generally, the softmax activation function works best, because it allows us to interpret the outputs as probabilities.The loss and activation functions are often chosen together. Using the softmax activation function points us to cross-entropy as our preferred loss function or more precisely, the binary cross-entropy, since we are faced with a binary classification problem. Those two functions work well with each other because the cross-entropy function cancels out the plateaus at each end of the soft-max function, and therefore, speeds up the learning process.For choosing the optimizer, adaptive moment estimation, short Adam, has been shown to work well in most practical applications and works well with only little changes in the hyperparameters. Last but not least we have to decide, after which metric we want to judge our model. The architecture previously described in Section 5.5.2.1 is used to perform the classification. In this approach, we do not elaborate a feature extraction step. We consider the raw data as input to the LSTM model. In general, a minimum of feature extraction is always needed. The unique case where we would not need any feature extraction is when our algorithm can perform feature extraction by itself as in the deep learning neural networks, which can get a low dimensional representation of high dimensional data, which is the case of this work.Deep Learning methods offer an automatic learning of temporal dependency. In this work, we implemented a deep architecture of an LSTM model for features learning applicable for epileptic seizures prediction. The model was tested on the CHB-MIT database using only Raw data. As it is known, neural networks are invulnerable to the noise in the input data and in the mapping function, and can carry out the tasks of learning and prediction even if some values are missing. Neural networks have a high capacity to readily learn linear and nonlinear rela-

	Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from
	EEG signals

tionships. For these reasons, we have chosen to feed our LSTM raw EEG segments with no pre-processing against noise and artifact and to demonstrate that even with raw data, we can perform the task of seizure prediction with satisfying performances.
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 5 3: EEG-based seizure prediction results

			preictal window: 15min	
	Case	#seizures		RAW EEG	
			SENS SPEC ACC FPR (h -1 )
	case01	7	0.92	0.94	93.42	0.12
	case02	3	0.95	0.97	96.91	0.14
	case03	7	0.93	0.93	93.53	0.11
	case04	4	0.95	0.97	96.78	0.02
	case05	5	0.88	0.90	89.48	0.25
	case06	10	0.70	0.79	76.51	0.4
	case07	3	0.98	0.98	98.74	0.02
	case08	5	0.90	0.94	92.47	0.12
	case09	4	0.92	0.97	95.53	0.03
	case10	7	0.83	0.82	82.62	0.36
	case11	3	0.96	0.99	98.24	0.02
	case12	27	0.53	0.74	65.84	1.21
	case13	12	0.82	0.87	84.96	0.37
	case14	8	0.71	0.82	76.54	0.69
	case15	20	0.73	0.81	78.09	0.47
	case16	10	0.78	0.89	84.16	0.53
	case17	3	0.96	0.99	97.99	0.03
	case18	6	0.92	0.95	95.49	0.11
	case19	3	0.95	0.96	96.04	0.12
	case20	8	0.88	0.91	90.49	0.3
	case21	4	0.95	0.95	95.49	0.13
	case22	3	0.95	0.96	96.10	0.1
	case23	7	0.88	0.88	88.21	0.45
	case24	16	0.67	0.71	69.92	0.46
	MEAN	-	0.84	0.90	88.89	0.27
	STD	-	0.11	0.08	0.09	0.27

  Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals in Table5.4, our system outperforms the three aforementioned models, in terms of specificity and accuracy. Thus, the projected LSTM model is ready to produce higher seizure prediction performance as compared with the work of Yao et al.[START_REF] Yao | A robust deep learning approach for automatic seizure detection[END_REF].Assuming once again that the proposed deep LSTM model is conceptualized to handle the complex nature of the EEG signal, using two LSTM layers and more hidden memory units allowing for better feature learning. Our model is more appropriate for real time applications than other based on feature extraction techniques requiring high level of expertise and familiarity with epileptic seizures characteristics.Typical feature representation is learned by our model leading to very satisfying results for seizures prediction. Furthermore, we can apply the same architecture for seizures detection by including ictal segments to the overall process.

in order to detect seizures and no-seizures segments. The comparison focuses on this study, which was evaluated with the complete volume of CHB-MIT database, being the premier public database consisting of long-term EEG signals. As shown To further analyze the variation between patients, t-Distributed Stochastic Neighbor Embedding (t-SNE) was applied on two selected patients (chb01, having a high sensitivity rate, and chb12, having the poorest sensitivity rate). t-SNE allows the visualization of high-dimensional data. Interictal segments (red dots) are more overlapped with Preictal segments (Blue dots)

Table 5 .

 5 4: Performance comparison of the proposed work with a raw EEG-based approach

	Ref	#Cases	#Channels	Method	Results SENS SPEC ACC
				BILSTM	0.86	0.82	84.00
	[Yao et al., 2018]	24	17	Attention mechanism	0.83	0.88	86 .00
				+ LSTM			
				Attention mechanism	0.87	0.88	87.80
				+ BILSTM			
	[Tsiouris et al., 2018]	24	18	LSTM	-	-	74.00
	[Baghdadi et al., 2021b] 24	18	Deep LSTM	0.84	0.9	88.89

Table 5 .

 5 5: The parameter settings of the proposed Convolution based ConvLSTM attention

	Layer Name	Output Shape Filter Size Padding Layer Name	Output Shape
	Input Layer	10x128x18x1	-	-	Dropout	10x8x1x64
	ConvLSTM2D Layer 10x128x18x16	3x3	same	Reshape	10x512
	batch Normalization	10x128x18x16	-	-	Attention Layer	1x10
	Max pooling3D	10x64x9x16	1x2x2	-	Multiplication Layer	512x10
	Dropout	10x64x9x16	-	-	Flatten	5120
	ConvLSTM2D Layer	10x64x9x32	3x3	same	Dense	1024
	batch Normalization	10x64x9x32	-	-	Dense	128
	max pooling3D	10x32x4x32	1x2x2	-	Dense	2
	Dropout	10x32x4x32	-	-		
	ConvLSTM2D Layer	10x32x4x64	3x3	same		
	batch Normalization	10x32x4x64	-	-		
	max pooling3D	10x8x1x64	1x4x4	-		

sets of preictal and interictal segments across patients. After selecting preictal and interictal samples from each patient, we obtained a 63,905 sample balanced dataset where each sample has a duration of 5s and 18 channels. When constructing this balanced dataset, we do not use an overlapping window for the segmentation.

Table 5 .

 5 7 resumes all obtained results in term of accuracy for the five different methods deployed for seizure prediction and evaluated on the CHBMIT dataset. As mentioned, we have

	• Model I: ConvLSTM on raw EEG data, Accuracy: preictal-interictal state detection
	90.62%, Precision:, Recall: 90.71% and F1-score:90.62%
	• Model II: ConvLSTMatt on raw EEG data, preictal-interictal state detection; Accu-
	racy:94.45%, Precision: 94.53%, Recall: 94.38% and F1-score: 94.43%
	Examining the proposed models, both architectures consist of a ConvLSTM network followed
	by an additional linear layers. Looking at the number of trainable parameters in each classi-
	fier: the deep ConvLSTM model contains 2,5M parameters and the attention-based ConvLSTM
	holds 5.6M parameters. Even though the proposed models have similar architectural arrange-
	ments, they employ two different strategies to valorize the contribution of EEG frames, and
	output produced by both models differ.		
	Table 5.6: Results of the proposed ConvLSTM and ConvLSTM attention
	Class	Accuracy Precision Recall F1-score
			ConvLSTM model
	Interictal 93.22	93.22	88.34 90.72
	Preictal	88.10	88.10	93.07 90.52
		ConvLSTM model attention
	Interictal 93.35	93.35	96.16 94.73
	Preictal	95.72	95.72	93.61 94.14

extracted 3 sets of features from the time domain and time-frequency domain in order to allow a comparison with the proposed deep models. The best accuracy rate obtained for the handcrafted features is 67.7.% using the coefficient of the DWT at 6 levels. Furthermore, accuracy Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals

Table 5 .

 5 7: Results of patient-independent seizure prediction approaches

	Method		Input type	Input dimension Accuracy (%)
	Feature extraction		Statistical features	126	57.00
			Energy of 7 eeg bands	126	61.10
	LSTM deep model		Raw EEG	18x 1280	83.48
	LSTM deep model with channel	Raw EEG	5x1280	84.45
	selection				
	ConvLSTM model		Raw EEG	10x128x18x1	90.62
	Attention-based	ConvLSTM	Raw EEG	10x128x18x1	94.45
	model				

Table 5 .

 5 8: Evaluation of the system's behavior for three different seizures Case N°Seizure file N°Total duration Total segments Recall FPR P delay

			(hh:mm)		(%)	(h -1 ) (mm:ss)
	1	3	02:50	2040	88.33 0.11 12:91
	1	4	00:24	288	92.22 0.10 07:83
	10	12	09:45	7020	78.33 0.13 09:41
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Chapter 5. A spatio-temporel attention network for epileptic seizures prediction from EEG signals some seizures occur consecutively with an interval of less then 60-120 minutes. For these reasons, we opt to test our method using a preictal window of 15 minutes.

For the purpose of this study, ictal segments (when the seizure occurs, annotated on the file 'seizures-info') are not included. For each case, we extract preictal and interictal epochs, then we apply a segmentation script in order to obtain 5sec epochs. This segmentation window has been proven by [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals[END_REF]] [Barata et al., 2018] to be the best for epileptic seizures analysis. All obtained epochs were labeled based on the annotation files accompanied with the database. We test different methods when preparing the data to be fed into the model.

The Figure 5.9 shows how to differentiate between preictal, ictal and interictal periods.

The borders are generally identified by epileptologists. In the case where two onsets occur consecutively, the set of segments between the first and second onsets can be miss-labeled as interictal and preictal states. To resolve this problem, all consecutive seizures should be processed separately to ensure a correct labeling of the overlapped segments.

Results on patient-dependent epileptic seizure prediction

Experimental set up

To overcome the imbalanced aspect of data, we carried out an over-sampling augmentation technique to expand the amount of samples in the preictal class (patient-independent approach).

The ratio of preictal:interictal class differs between cases. Thus, for each case, we tried to reach the ratio 1:1 or 1:2 to guarantee a significant classification rate. Duplicated trials were selected randomly, then the resulted set was shuffled.

We contribute by proving that the seizures prediction can be carried out with a raw EEG