
Sorbonne Université — isir — edite de Paris

THÈSE
défendue par

agnès mustar

en vue de l’obtention du grade de Docteur

MODEL ING USER-MACHINE INTERACT IONS
DUR ING THE INFORMAT ION RETR IEVAL

PROCESS

Devant le jury composé de

Dr Jean-Pierre Chevallet Rapporteur
Université Pierre Mendès France Grenoble II
Dr Karen Pinel-Sauvagnat Rapporteuse
Université Paul Sabatier Toulouse III
Pr Alexandre Allauzen Examinateur
Université Paris Dauphine-PSL
Pr Catherine Pelachaud Examinatrice
Sorbonne Université, CNRS
Pr Sylvain Lamprier Co-directeur
Université d’Angers
Dr Benjamin Piwowarski Co-directeur
Sorbonne Université, CNRS

mailto:esimon@esimon.eu

For Michka.

Remerciements
Ma thèse, à l’image de la recherche, repose sur la présence de nom-
breuses personnes. Seule ou sans le soutien et l’implication de chacune
d’entre elle ce travail n’aurait pas pu voir le jour.

Je remercie d’abord mes directeurs de thèse Benjamin et Sylvain qui
ont accepté de m’encadrer, merci de m’avoir proposé de nombreuses
directions de recherche, d’avoir partagé avec moi votre expertise et
expérience. Sans vos conseils, je me serais perdue dans les méandres
de la recherche. Votre capacité à discerner les pistes prometteuses a
grandement contribué à l’avancement de cette thèse.

Je suis également reconnaissante envers les membres du jury d’avoir
lu et évalué mon travail Catherine Pelachaud, Karen Pinel-Sauvagnat,
Jean-Pierre Chevallet et Alexandre Allauzen. Vos commentaires con-
structifs et vos précieuses suggestions ont enrichi cette thèse.

Merci à l’ensemble des doctorant.e.s duMLIA. Je n’ai pas eu l’occasion
de travailler avec vous mais votre présence bienveillante et joyeuse a
été un soutien moral d’une importance inestimable. Chaque partie de
babyfoot gagnée a contribué à mon bien être ! Je te remercie évidement
en particulier Marie, tu as été mon plus grand soutien et une amie en
or. Je suis également reconnaissante envers les ancien.ne.s qui m’ont
guidé Jean-Yves, Etienne, Clément, Jérémie, et Perrine, celles et ceux de
ma génération Yuan, Tristan, Corentin, Frosso, Pierre, et Yannis, et les
plus fraîchement arrivé.e.s Tanguy, Raphael, Armand et Lise.

Merci aussi à tous les permanent.e.s et en particulier à Christophe et
Laure, qui m’ont aidée jusqu’au jour de la soutenance. Merci de prendre
soin de nous pendant l’aventure du doctorat.

Enfin je remercie ceux qui comptent le plus, ma famille. Merci pour
votre amour inconditionnel et vos encouragements qui m’ont permis
de me surpasser. Merci à mes grands-mères qui sont des modèles, à
mes parents, mes frères et ma belle-sœur et évidement à Romane, mon
soleil.

Pour finir, je te remercie ma chère petite sœur, Pauline. Merci de
m’avoir aidée à préparer toutes mes interventions orales et d’avoir
organisé un mémorable pot de thèse ! Mais surtout merci d’avoir été

iv

un soutien inestimable, notamment dans les moments qui ont été les
plus difficiles, tu es mon ancre.

v

Abstract
While today’s search engines work well for simple queries, there are
situations where search results are not satisfactory. To cope with such
situations, user-machine interactions have increased significantly since
the early days of retrieval systems. The exchanges between users and
retrieval systems during search sessions may contain information that
is critical to the success of the information search.
Meanwhile, the Transformer-based architectures relying on the at-

tention mechanism have led to great improvements in several NLP
tasks, such as summarization or translation. The architecture was soon
applied to other domains, including information retrieval. Several re-
trieval models have benefited from this architecture’s ability to focus
on document and query terms to estimate their relationships.
However, the majority of these works have focused on ad hoc retrieval.

The goal of this thesis is to study user modeling and user-machine in-
teractions with transformer-based models. The contributions of this
thesis can be divided into two parts, those related to user modeling
and those related to interactive systems. In the former, I analyze ex-
isting user models, and in particular the text generation process of
transformer-based models for query suggestions (Mustar, Lamprier,
and Piwowarski, 2020; Mustar, Lamprier, and Piwowarski, 2021). In the
latter, I present a new user/machine interaction framework based on
the studied user models (Mustar, Lamprier, and Piwowarski, 2022).

vi

Contents
1 Introduction 1

1.1 Information Retrieval . 2
1.1.1 The first IR researcher 2
1.1.2 The IR boom . 3
1.1.3 IR research: current issues 4

1.2 User-Machine Interactions 7
1.2.1 Mutual influence between users and search engines 7
1.2.2 Leveraging interactions 8
1.2.3 Benefits of user modeling 10

1.3 Towards user modeling in IR 12
1.3.1 Cranfield experiments 12
1.3.2 Premises of user modeling 13
1.3.3 Questioning the ad-hoc retrieval and the Cran-

field paradigm 14
1.3.4 User models . 15

1.3.4.1 Rocchio algorithm 15
1.3.4.2 Explicit user models 15

1.4 Organization and contributions of the thesis 16
2 Background and State of the Art 18

2.1 Word, sentence and document representations 18
2.1.1 Bag-of-words . 18
2.1.2 Word Embeddings 19
2.1.3 Recurrent Neural Networks 22
2.1.4 The Transformer architecture 23
2.1.5 Pretrained Transformers 27

2.1.5.1 Bert . 27
2.1.5.2 Bart . 28
2.1.5.3 T5 . 28

2.1.6 Training Transformers 28
2.1.6.1 Supervised training 28
2.1.6.2 Training for complex objectives 29
2.1.6.3 Use of RL for various NLP tasks 30

2.2 Transformer for Information Retrieval 31
2.2.1 Enhancing representations with Transformers . 32

2.2.1.1 Sparse retrieval models 32
2.2.1.2 Dense retrieval models 33

2.2.2 Ranking with Transformers 33
2.2.2.1 Discriminative methods 34

vii

contents viii

2.2.2.2 Generative methods 35
2.3 User Modeling . 36

2.3.1 User simulation 36
2.3.2 Partial user modeling 39

2.3.2.1 Intent prediction 40
2.3.2.2 Query suggestion 40
2.3.2.3 Click model 40

2.4 Personalized systems . 41
2.4.1 Interactive systems based on explicit feedback . 41
2.4.2 Interactive systems based on implicit feedback . 43

3 Self-Attention Based Query Prediction 46
3.1 Motivations . 46
3.2 Query suggestions methods 49

3.2.1 Formalization . 49
3.2.2 Co-occurence, graph and similarity 50
3.2.3 RNN based methods 51

3.2.3.1 Hred . 51
3.2.3.2 Acg . 52

3.2.4 Feedback . 53
3.3 Transformers for query suggestion 53

3.3.1 Flat transformer 54
3.3.2 Hierarchical transformer 55

3.4 Experimental settings and results 56
3.4.1 Datasets . 56
3.4.2 Transformer trained from scratch (TS) 57
3.4.3 Compared models 58

3.4.3.1 Non-tranformer models 58
3.4.3.2 Fully trained transformer (TS) 58
3.4.3.3 Pre-trained transformers 58
3.4.3.4 Hierarchical transformers 59

3.4.4 Metrics . 60
3.4.5 Query Suggestion Performance 61
3.4.6 Generated queries 64
3.4.7 Human evaluation 66

3.5 Analysis of transformer for query suggestion 67
3.5.1 Robustness of the transformer models 67

3.5.1.1 Results on complex sessions 67
3.5.1.2 Results on noisy sessions 68
3.5.1.3 Sessions lengths 68

3.5.2 Query generation 70
3.5.2.1 The growing importance of queries . . 71
3.5.2.2 The importance of the context’s tokens 72
3.5.2.3 Generating a new token 74

3.6 Conclusion . 75
4 Interactive IR 77

4.1 Introduction . 77

contents ix

4.2 IRnator overview . 78
4.3 Positioning . 79
4.4 Problem formalization 80
4.5 Challenges . 81
4.6 Learning to drive users towards goals 83

4.6.1 Query suggestion process 83
4.6.2 Iterative Supervision 84
4.6.3 Reinforcement Learning 85

4.7 Experiments . 87
4.7.1 Experimental Details 87
4.7.2 Results . 89

4.8 Discussion . 90
4.8.1 Conclusion . 91

5 Conclusion 92
5.1 Contributions . 92
5.2 Experimental work and perspectives 93

5.2.1 Improved suggestion system 93
5.2.2 Towards better user models 93
5.2.3 Enhanced intent model 94

5.3 Discussions and Broader vision 97
5.3.1 Should search engines be conversational systems? 97
5.3.2 Glimpse of the future of IR 98

Appendix . 100
a Résumé . 100

a.1 Échanges utilisateur-machine 100
a.2 Limites des systèmes actuels 101
a.3 Influences mutuelles entre utilisateurs

et machines 103
a.4 Modèles utilisateurs 103
a.5 Contributions 105

Bibliography 107

List of Figures
Figure 1.1 Callimachus, the designer of the first library cat-

alog . 3
Figure 2.1 Word2vec models CBOW and Skip-Gram . . . 20
Figure 2.2 Examples of semantic relations captured with

Word2vec . 21
Figure 2.3 Architecture of a traditional RNN 22
Figure 2.4 RNN operations at step 𝑡 23
Figure 2.5 Transformer architecture 24
Figure 2.6 Illustration of the Transformer self-attentionwith

key, query, and value transformations 26
Figure 2.7 ColBert architecture 34
Figure 2.8 MonoBert architecture. 35
Figure 2.9 Proposed framework of Maxwell and Azzopardi

(2016a) . 37
Figure 2.10 Li et al. (2020) framework 44
Figure 3.1 Hred architecture 51
Figure 3.2 Acg architecture 52
Figure 3.3 Flat Transformer for Query Suggestion 54
Figure 3.4 Hierarchical Transformer for Query Suggestion 55
Figure 3.5 Degradation of the performance on the noisy

sessions . 69
Figure 3.6 Models scores depending on the length of the

sessions . 70
Figure 3.7 Importance of the queries depending on their

positions in a session 72
Figure 3.8 Importance of the tokens depending on their

position in the queries 73
Figure 4.1 IRnator: the proposed framework 78
Figure 4.2 Query suggestion process 83

x

list of tables xi

List of Tables
Table 3.1 Results on MS Marco and AOL datasets 62
Table 3.2 Perplexities forWord-Piece Tokenizer-basedmod-

els . 63
Table 3.3 Examples of generated queries 65
Table 3.4 Human evaluation 66
Table 3.5 Generation probabilities on mixed and unmixed

sessions . 75
Table 4.1 IRnator. Models scores 88
Table 4.2 IRnator: human evaluation 90
Table 5.1 𝑃(𝑔|𝑆) with artificial data. Choices are made by

the user in an euclidean representation space
(𝑛 = 0). To simulate non-euclidean users, we
report results obtained on entangled represen-
tation spaces, where a given number 𝑛 of non-
linear transformations are applied to items from
this initial space. The higher 𝑛, themore different
the user and system spaces are. 96

Chapter 1:
Introduction
To retrieve information and access knowledge in large data collections
such as Internet, people need to have a certain number of expertise and
skills. Digital literacy (Reddy, Sharma, and Chaudhary, 2020) refers
to the competence to use technologies in order to find, evaluate and
communicate information. This competence depends on various user-
specific factors, among which social and cultural background, access to
collections, age, level of education, and individual technical ability. The
ability to use these technologies and to obtain relevant information also
depends on technological advances (computer, internet connection,
software).
Access to knowledge does not only depend on the user literacy and IT

tools. Another essential feature, less often mentioned and yet playing
a crucial role, is the algorithm endowing users to access information,
namely search engines. Their functioning is often opaque, at least from
the users’ point of view. Search engines are black boxes, as explained
in the sociology of sciences (Pasquale, 2015), i. e. users do not need to
understand their innerworkings but nevertheless, the former determine
what information users can access. Users are biased by the search system
they are using, just as they are influenced by their level of literacy and
their equipment, without necessarily being aware of it.
How to rank documents in Information Retrieval (IR) systems is the

result of human choices that influence the information available to users.
An important example dates back to 1998, when the founders of Google,
Larry Page, and Sergey Brin, presented an algorithm, PageRank (Brin
and Page, 1998) whose principle is based on the notion of citation,
which comes from the scientific literature. It consists in evaluating the
importance of a web page. The PageRank value of a page is calculated
according to the number of pages pointing to it and the PageRank
values of these pages. The higher the value, the higher the document is
ranked in the result page. With PageRank, Google puts more emphasis
on websites that are frequently linked to.
PageRank’s way of evaluating pages has risks, for example, a page

that is often quoted, because it is shocking or because it contains false

1

1.1 information retrieval 2

information, has a high value. There are other ways to evaluate the im-
portance of a web page, for example with TrustRank (Gyöngyi, Garcia-
Molina, and Pedersen, 2004), a score also taken into account in the
Google algorithm, which evaluates the relevance of pages from a set
of documents known as legitimate. The TrustRank algorithm relies on
authority, while PageRank relies on visibility.
The importance given to TrustRank and PageRank is one of the many

design choices that influence how documents are selected, sorted, and
classified. The fact that search engines are black boxes makes this choice
invisible. But in reality, algorithms either respond to explicit rules,
or seek to optimize a function posed manually, or fit data labeled by
humans. Thus, it is a humanpoint of view that influences the documents
put forward.
Given the crucial role of search engines in accessing information,

it is essential to reduce these biases and to improve the relevance of
their results. To this end, we can try to give back more control to users
through interactions, for example, by asking them about their prefer-
ences. Interaction is a way for users to override the search engine biases
discussed above, and to incorporate their personal expectations. They
also make the choice of document ranking more transparent and less
black-boxed for the users. In the next section, I present how users and
search engines can interact together, and how these interactions can be
leveraged to improve search results.

1.1 Information Retrieval

In this section, I briefly review the history of IR, trying to address the
place given to user-computer interactions and user modeling. I point
out the importance of IR by going back to its omnipresence in today’s
world and its multiple applications. I then expose the current challenges
of IR.

1.1.1 The first IR researcher

In 300 BC, the Greek poet Callimachus had to organize the 500,000
papyri of the great Library of Alexandria so that readers could easily
find them. He organized papyrus scrolls into six genres, which he then
sorted by author in alphabetical order. For each genre, he created an
index – called a Pinake – with the name of the documents as well as
essential information to represent them, such as the author and a sum-
mary (Phillips, 2010). Historians now consider his work to be the first
library catalog that existed (Harman et al., 2019). While Callimachus’
work has now almost completely disappeared, the method he used is
still relevant today in some places, like bookstores or libraries. In fact,
as soon as collections with large quantities of documents existed, estab-

1.1 information retrieval 3

lishing systems to find the information sought in these collections was
necessary. Obviously, Pinakes are far from the complex Information
Retrieval systems of today, however, they testify the need of having
methods to access information as early as 300 BC.

Figure 1.1: Callimachus, the de-
signer of the first li-
brary catalog

After Callimachus, different systems
allowing a person to search for a docu-
ment in a large collection were created,
as for example directories or registers of
voters of a city. But it is with the develop-
ment of computers and then of the Inter-
net that IR research has really advanced.

1.1.2 The IR boom

In the 60s and 70s, we witness the emer-
gence of communication networks, a key
component of different technologies that
accelerated the development of IR (Har-
man et al., 2019).
In the early 1960s, an MIT project

aimed to allow computers, not located
in the same geographical space and tech-
nically heterogeneous, to communicate
and exchange information, instead of just being calculators. The tech-
nique is based on a communication method called packet switching
used by the telephone industry. It has the advantage of allowing mes-
sages split into different packets to circulate through different routes,
whichmakes them less vulnerable to failure. The project, calledArpanet,
was set up in 1969 and was used by academics who progressively in-
creased its capacities. With the support of American industrials, op-
erating networks with various types of architectures was then made
possible. Two protocols, that were then combined, played a decisive
role in the circulation of packets: in 1973 TCP (Transmission Control
Protocol) and in 1978 IP (Internet Protocol) (Ceruzzi, 2003; Abbate,
1999). To encourage the adoption of these protocols, DARPA funded
their integration into the Unix operating system, which was then sold
at a low cost to universities. Thus, the Internet was rapidly deployed in
all American universities, and in the early 1990s, the Internet arrived in
Europe, Asia, and Australia.
As the Internet evolved and gradually spread throughout the world,

computers also evolved. In 1969, Bell Labs computer scientists Ken
Thompson and Dennis Ritchie developed the first version of an operat-
ing system including an assembler, an editor, and a shell. This system,
calledUnix, is distinguished by its flexibility and simplicity compared to
other existing systems, which partly explains its success. In addition, as
mentioned briefly, in 1975, Unix and its source code were distributed to

1.1 information retrieval 4

universities in exchange for a very low-cost license, which popularized
it in the academic world. At the end of the 70s, personal computers were
being developed. One will speak later about the 1977 trinity: a series of
computers, from the companies Commodore, Apple, and Tandy, which
had an important public success.
In parallel with the development of networks and computers, the first

works on data management appeared. In 1965, Charles Bachman de-
signed the Ansi/Sparc architecture which is still used today. TheMARC
format – MAchine-Readable Cataloging – a format for the exchange
of computerized bibliographic data was created in 1968. Then in 1970,
Edgar F. Codd of IBM San Jose Research Lab laid down the principles
behind relational databases. Last but not least, many search engines
were created (JumpStation, Mosaic, Yahoo!, Infoseek, and Altavista
the most popular in the late 1990s…), although they were quickly sur-
passed by Google created in 1998. Thus, in the 90s, with the increase in
computer power and storage, the development of personal computers,
and of course, the creation of search engines, applications of IR models
took off. This development is noticeable, for example, by the expansion
of the SIGIR conference (Harman et al., 2019). It is not the purpose of
this thesis to review all of these works. However, to contextualize my
thesis, in the next section, I present current IR research problems, as
well as those that are emerging.

1.1.3 IR research: current issues

In this section, I present a non-exhaustive set of subfields of IR, and
their current research issues.

Data While information retrieval is a relatively unknown field of
research for the public, it has led to the development of some very pop-
ular technologies. First, of course, there are search engines, which are
used on a daily basis by almost anyonewho has access to the internet. IR
methods are needed when a person uses a search bar, whether it is the
one from a website, or a device, or an application. These techniques are
essential when a large amount of data is available. Beyond the quantity
of data, its very nature raises new research problems. Consequently, IR
subdomains attempting to cater for specific domains with their own
data have been developed. They deal with various types of data such
as geographical data (Purves and Jones, 2011), legal texts (Van Opij-
nen and Santos, 2017), or chemical structures (Cooke, 2011), or with
types of data that do not have the structure of a standard text docu-
ment: image (Datta et al., 2008), speech (Singhal and Pereira, 1999),
video (Gabeur et al., 2020) or 3D retrieval (Tangelder and Veltkamp,
2004). The emergence of new types of data leads to the rapid develop-
ment of new domains.

1.1 information retrieval 5

Usages Other IR areas tackle the problem of improving user ex-
perience. Indeed, it is sometimes tedious for users to perform their
search in the form of keyword queries, or they find it laborious to
look for the answer to a question in a long text, or they would prefer
to talk directly to the search device to answer their need for informa-
tion. This corresponds to specific information access tasks, respectively
question answering (Kolomiyets and Moens, 2011), automatic sum-
marization (Scialom et al., 2019a), or conversational and interactive
search (Radlinski and Craswell, 2017). The latter is now a very ac-
tive research area and includes new search interfaces such as chat-
bots (Adamopoulou and Moussiades, 2020) or voice assistants. These
assistants have become widespread in recent years with their commer-
cial applications, i. e. Alexa, Siri, or Google voice assistant (Kiesel et al.,
2018).
This shows the interest to further research on this constantly evolving

field where new hardware technologies (devices, computers, phones,
tablets, etc…) and new emerging types of data (social networks, 3d,
virtual reality, NFT, etc…) offer new research opportunities.

Although in some cases IR systems are satisfactory, a part of the
search sessions does not lead to relevant results (Carmel and Yom-Tov,
2010). Thus, even in the case of searches with more traditional data, text
queries, and text documents, searching is not a solved problem. Solving
these information needs requires looking at the nature of the search
process itself, proposing new ways to search or to return information,
i. e. to interact with users. The proposals for improvement concern all
stages of the process, from the moment users perform their search, to
the algorithm which ranks the documents, the processing of the results,
as well as the interface.

Expression of need The first step that can be improved in the search
process concerns the way users express their needs. The most com-
mon way for users to communicate their information needs to search
engines is to submit a textual query using keywords or natural lan-
guage. To allow users to add constraints on query words, some re-
trieval models (Muhammad, 2017) allow queries to be expressed as
boolean strings, i. e. queries with logical operators (and, or, not, …).
However, formulating a query to express a need can be tricky for users
without expertise, thus many conversational search frameworks have
emerged (Adamopoulou andMoussiades, 2020; Radlinski andCraswell,
2017).
Instead of asking users to express their needs in words, retrieval

methods require other types of data from the requester such as an
image, a tag, or a document. These methods are respectively query-by-
document (Abolghasemi, Verberne, and Azzopardi, 2022), query-by-
tag (Wang et al., 2011) and query-by-image (Datcu and Seidel, 1999).

1.1 information retrieval 6

More generally, these methods are referred to as query-by-example
(QBE) methods. They are particularly well suited in cases where users
fail to express their needs explicitly. The newest methods allow users
to submit more complex examples. For example, for audio, there are
methods for finding a song by singing it (query-by-humming) (Alfaro-
Paredes, Alfaro-Carrasco, and Ugarte, 2021) or playing its tune with an
instrument (query-by-vocal percussion) (Delgado et al., 2021). For text,
query-by-webpage (Geng, Chuai, and Jin, 2022) allows to find websites
that are similar in terms of content and web design. The latter makes
use of the fact that sources of the same type generally have similar web
designs (e. g. government or academic sites).
Recently,Mysore et al. (2021) introduced the faceted query-by-example

task: in addition to providing a document, users specify the aspect of
the document that interests them. This task allows to work on more
advanced systems than those trained for QBE, but also to users to get
finer-grained control on the results.

Ranking After the user’s initial query, arises the question of which
documents to return. On this point, actual search systems work rela-
tively well for needs that are considered simple. For example, to find
the name of the capital of France, a query is enough. But the needs
and the data are not always so trivial. Strohman et al. (2005) present
a search engine that deals with complex searches, i. e. searches with
queries requiring the combination of several documents to be answered
or searches with strong constraints on the documents such as the prox-
imity of terms, or the structure of the document.
A query can also be enriched by its context. Personalized ranking (Abri,

Abri, and Cetin, 2020) consider users’ data (age, gender, GPS location,
…) to refine the search results, while contextual ranking proposes to
improve the relevance of search results by taking into account users’
history such as past clicks and queries (Qu et al., 2020). I detail these
domains in the next Section 2.3.
Finally, the Transformer models, which have enabled great advances

in NLP, are now being used to design the new generation of IR sys-
tems thanks to their great semantic and cross-attention capabilities. We
describe this in more detail in the next chapter, Section 2.2.

Filtering After the selection of the documents by a first retrieval
algorithm, a processing can be done. Indeed, the information in the
database is not always controlled, and information filtering attempts
to exclude specific documents, such as fake news (Zhou and Zafarani,
2020) or spams (Aswani et al., 2021), from the results. Moreover, to
eliminate redundancy and lack of diversity, that actually still appears in
search results of current search engines, new metrics that take results
diversity into account are introduced (An, Huang, and Wang, 2020).

1.2 user-machine interactions 7

Interface Finally, various works (Hearst, 2009; Negi et al., 2020)
focus on the last stage of the search process: displaying the returned
documents. They aim at improving the interface that presents the re-
sults. Sekaran et al. (2020) adapt the interface to the needs of users,
with a presentation of results that summarize documents’ concepts
relevant to users’ queries. Interfaces can also be adapted to the target
audience. (Allen et al., 2021) design a search engine for children, show-
ing the importance of interactive tools and icons. (Aqle, Khowaja, and
Al-Thani, 2020)’s interface is adapted for visually impaired users by
reducing the effort and the time needed to find the relevant information
within documents.

To sum up, the information retrieval process can be improved at
each stage of the process: from the beginning via the way users express
their needs, to the ranking and filtering of the results, and finally via the
displayed interface. We can also consider a more global approach of the
problem. Rather than considering each step independently, the whole
process or part of it can be modeled. In this way, the dependencies
between the stages can be studied. For example, by modeling the users
expressing their needs and the model returning the results, one can set
the objective of optimizing both parts jointly.

1.2 User-Machine Interactions

Exchanges between users and retrieval systems are therefore essential at
each of the stages described above. I now detail the explicit and implicit
interactions between users and search engines, and expose the different
problems for which there are no satisfactory solutions, and how the
modeling of users could allow to improve retrieval systems.

1.2.1 Mutual influence between users and search
engines

As long as they are unsatisfied, users seek to modify search results
(Huang and Efthimiadis, 2009). They change the terms of their initial
query to refine the results according to their needs. Users also influence
search results in a more indirect way since engines’ personalization
mechanisms take users’ behavior and personal data into account.
Some search engines, such as Google, highlight results related to

actual events (Campos et al., 2014). They also take into account users’
GPS coordinates to prioritize documents close to their geographic
area (Tabarcea, Gali, and Fränti, 2017). Time and location play a role in
the results presented, as well as the type of device used. For instance,
mobile information retrieval (Tsai et al., 2010) focuses on information

1.2 user-machine interactions 8

searches from smartphones. All of the above define the search environ-
ment, which plays a key role on users’ behavior and expectations, and
on search engines’ results.
While the environment, search engines, and users determine the

search results, search engines influence users in their search behavior.
First, in an obvious way, users conform to the displayed interface. For
example, they have learned to express their need in the form of key-
words with search engines, while they discuss when it comes to interact
with a chatbot.
More generally, user behavior can be analyzed through the concept

of nudge, crafted by the Nobel Prize-winning economist Richard Thaler
and the philosopher and lawyer Cass Sunstein (Karlsen and Andersen,
2019). Their work shows that incentive is more efficient than coercion
in achieving a desired behavior. Influencing users’ behavior through a
nudge is more efficient than coercing them. For example, most search
engines are equipped with an automatic query suggestion tool: after
users have typed the first few query characters, search engines suggest
a list of queries. This list of suggestions influences users’ subsequent
search path.

To conclude, one cannot think about search systems without consid-
ering their users, and one cannot study these users without considering
the algorithms and techniques that make search engines. The purpose
of this thesis is precisely to study both users and machines when the
former seek to acquire information. I investigate user models and inter-
active search process to improve the quality of search sessions.

1.2.2 Leveraging interactions

Today access to knowledge is partly done through the Internet and
search engines. While for simple queries, search engines are fulfilling
well their role today, there are situations in which the search results
are not satisfactory. Let us take a look at the basic principles of search
engine algorithms, before discussing their limits through two types of
queries, for which search engines fail.

Initially, retrieval systems relied on statistics of queryword occurrence
in the documents. This method considers that the higher the number of
occurrences, the higher the document rank. The limit of these models is
that users must use exactly the same words as those present in relevant
documents, this issue is called vocabulary mismatch.
Although search engines have significantly evolved today, query for-

mulation still relies on the matching of similar concepts in the query
and in the document, without always caring about the global meaning
of the query. Consequently, this does not always satisfy the information
need. For example, a user searching “What animal doesn’t eat lettuce?”
is returned exclusively pages about animals with lettuce in their diet.

1.2 user-machine interactions 9

This is because documents about animals mention what they eat but
not what they don’t eat.
As a second example of the limitations of search engines, consider

the cases where the information need must be broken down into sev-
eral queries. In those cases, search engines generally fail. For example,
Google finds relevant results for the queries “movie hero in love AI?”
and “color movie her”, i. e. pages that discuss the movie Her in the first
case, and pages that describe the preponderance of red in the movie
Her in the second. On the other hand, when searching for “color movie
hero in love AI?”, the search engine only sends documents that evoke
the movie and not the color red. In this example, to reach their goal,
users must make two queries. For such information needs, users will
probably try new queries to get the information they are looking for.
More generally, Carmel and Yom-Tov (2010) have established a taxon-

omy of situations that can cause a search system to fail, and thus lead
users to reiterate the process. These situations are grouped into two
categories, those where systems fail to identify and cover all aspects of
the topic and those in which it incorrectly analyzes the meaning of the
query. In the first category, systems emphasize an irrelevant aspect or
miss a relevant one. This is the case of the query “color movie hero in
love AI?” for which Googlemiss the aspect “color”. The second category
includes failures to identify relationships between terms, proximity re-
lationships, or expansion of a general term (e.g., extending the word
“Europe” to a specific country such as “France”). The query “what ani-
mal doesn’t eat lettuce?” falls into this category: the considered search
engine, Google, does not take negation into account. Interactions with
the machine could allow users to show, in an indirect and non-explicit
way, that they are still unsatisfied.

The level of interaction between the user and themachine has evolved
greatly since the early days of search engines. In the beginning, users
were quite passive and had very few interactions with the search engine.
The only possible interactions were with the queries and the returned
search results. With years, and the growing interest of researchers and
computer scientists in information retrieval, tools to increase the quality
and quantity of these interactions have been developed. This is for
example the case of the query suggestion tool or the automatic query
completion tool.
Inherently, the system transmits information – the returned docu-

ments – to users, but users transmit also a certain number of feedback
or information in an indirect way to the system. For instance, reformu-
lating a query constitutes an interaction whereby users modify their
query in the hope of obtaining more relevant results. In fact, quite early
in the history of IR, leveraging terms added or deleted between two
consecutive queries have been considered (Bruza and Dennis, 1997).

1.2 user-machine interactions 10

Other users’ actions can be taken into consideration to improve the sys-
tem. For example, the links clicked during a search session help to under-
stand the trajectory of the search session (Mei, Zhou, and Church, 2008),
the documents clicked and ignored on the results page are a form of
feedback (Ahmad, Chang, and Wang, 2018; Ahmad, Chang, and Wang,
2019), and even the computer mouse movement (Diaz et al., 2013), or
the eyes’ movement on the screen (eye-tracking process) (Cutrell and
Guan, 2007) provide information.

1.2.3 Benefits of user modeling

As discussed in the previous section, machines, and users hence ex-
change information with each other, and this information can be deci-
sive in improving the search process. We now show how user models
can help to leverage those interactions.
During information search sessions, users start with an initial query,

then perform a set of actions: they study the returned documents, click
on some of them, might browse the internet further, formulate new
queries, and reiterate until they are satisfied or abandon their search.
Modeling users consists in building a model that predicts all or a part of
these actions. Brusilovsky and Tasso (2004) justify the necessity of user
modeling in this way: “the information retrieval system needs to follow
over time the way the user understands and formulates her information
needs”. User modeling could allow the system to adapt to the specific
needs of users. This modeling can be enriched by integrating other data
specific to users such as their geographical position (Tabarcea, Gali,
and Fränti, 2017), the device used (Tsai et al., 2010), their previous
searches (Sordoni et al., 2015), the set of admissible languages, etc.
Improving user modeling has many potential applications we detail
below.

Enhance interactions Search engines and users are interacting dur-
ing the search process. On one hand, users send queries and on the
other hand, search engines answer with a list of documents. Still, it is
users who initiate the interactions, through query reformulation and
navigation in the results page, which can be used as implicit feedback.
Although today search engines do not only rank documents, and have
several strategies to improve the search experience such as response
highlighting, query suggestions, query completion, or results aggrega-
tion. Richer interactions between the two parties could largely improve
search experiences. The prediction of users’ next queries, which is a
form of modeling, is used by query suggestions and autocompletion
tools (Sordoni et al., 2015; Dehghani et al., 2017; Mustar, Lamprier, and
Piwowarski, 2021). These tools are particularly important in the case of
complex searches to guide users and save time. One way to make inter-
actions more relevant is to correctly model users during their search

1.2 user-machine interactions 11

session. It has been done, for example, by predicting users’ intent and
then asking them clarifying questions about their intent (Dhole, 2020).

Improve interfaces The classic search engine interface with results
presented as a document list is challenged. For instance, search engines
now propose vertical search results which consist of aggregating results
of different types (text, image, video, news…) in an ergonomic interface
that allows users to find the information they are looking for more
quickly(Zhou et al., 2013).
Interfaces displayed to users can also be personalized thanks to user

models. These are called Adaptive Web Applications. A representative
work in this area is Lohmann, Kaltz, and Ziegler (2006) who propose
an approach to take users’ information into account in the way their
graphical interface is displayed. However, they show that a failed adap-
tation confuses the user, which limits the adaptation proposals and the
tasks for which the interface can be customized.

Training with simulated users Interactive IR systems are nowa-
days parametric systems, they can be trained with the simulation of
users’ decisions such as their queries, clicks, and overall satisfaction.
Training such algorithms requires thousands of interactions, which is
impossible to obtain. Even evaluating them on a sufficient number of
real users is very expensive.
The question of training models with simulated users is becoming

more and more important with the emergence of heavy neural network
architectures for text processing as Transformer (Vaswani et al., 2017).
It could be used, for example, to limit the number of interactions so that
users reach their goals as quickly as possible.

Improvemetrics IRmethods that aim to improve somemetrics such
as accuracy, or recall, are called system-centric. Conversely, research
that uses real users to evaluate their performance is called user-centric.
A gap has been found between these two types of measures since there
is not always a correlation between metrics and user satisfaction (Liu
et al., 2019a). This gap shows that automatic measures are not always
satisfactory. Consequently, training or evaluating amodel by optimizing
these same metrics is necessarily not very fruitful. In contrast, a perfect
user model could predict if a user is satisfied or not. A simulated user
could be used during training to define a reward, or during model eval-
uation at a cost lower than with expensive human evaluation (Dupret
and Piwowarski, 2013).

In this thesis, I work on user modeling in order to improve user-
machine interactions, which I consider the most promising angle of
attack to improve the classical search process. User modeling in IR
goes beyond search engines. It could be applied to every situation in

1.3 towards user modeling in ir 12

which humans and machines interact. For instance, in the context of
task-solving modelling, such as automatic translation or accounting,
software programs could benefit from these methods by anticipating
user behavior or explicitly asking for clarification. Given the intensive
use of machines to solve tasks today, it is interesting to model our
interactions with them.

1.3 Towards user modeling in IR

User models can be leveraged to improve user search experience, as
discussed in the previous section. We now discuss how the idea of
modeling the user has slowly emerged in IR.
From the early days, researchers already understood that taking into

account the users’ behavior and/or their characteristics could improve
search results. In this section, I describe the first IR methods which,
although they aim at various objectives (system evaluation, results
improvement, or user categorization) have in common to consider
users to improve IR systems results through better user models.

1.3.1 Cranfield experiments

In the 1960s, Cyril W. Cleverdon, a British librarian and computer
scientist, proposed a series of experiments to evaluate an indexing
system (Cleverdon, 1960). While research systems have changed dra-
matically since the 1960s, the Cranfield evaluation paradigm has been
followed for decades. The size of the Cranfield collections no longer
corresponds to the amount of data in current problems, however, the
principles of these experiments are still used in a number of current
evaluation campaigns.
The first Cranfield experiments are based on a test collection that

consists of a set of queries and documents with their associated set
of relevance judgments, indicating which documents are relevant or
non-relevant to which queries. Then various metrics – such as precision,
recall, and NDCG – are used to compare the evaluated search systems.
Cleverdon initially proposed an experiment in which a single document
is deemed relevant to a query. But this assumption has been criticized.
Indeed, it led to problems: a user might be happy to be presented with
several sources of knowledge (Harman, 2010).
For this reason, Cleverdon proposed a second evaluation (Cleverdon,

1967; Cleverdon, Mills, and Keen, 1966) in which a party judges if
the set of returned documents is relevant to the query. Moreover, in
this second evaluation, queries were formulated in natural language,
thus allowing to judge the correlation between real users’ searches and
their satisfaction given the documents, more than on their ability to
generate keyword queries. In these second Cranfield experiments, the

1.3 towards user modeling in ir 13

evaluation is conducted more from the users’ perspective. We notice
how very quickly in the IR history users are placed at the forefront of
the evaluation process.
Of course, Cranfield evaluations are limited, since they only consider

one type of users and are restricted to sessions of one query. However,
they are still very useful to advance ad-hoc search systems (Harman,
2010).

1.3.2 Premises of user modeling

At the end of the 70s, the term “user modeling” first appeared (Rich,
1979). User modeling can rely on two types of information: the user
categorization using stereotypes (Rich, 1979; Brajnik, Guida, and Tasso,
1987) or a summary of their past interactions with the machine (Ger-
shoum, 1981; Belkin, 1984). Stereotypes are characteristics that can be
inferred about a person from initial information about them. In the 80s
and 90s, the increasing evolution of the work on user modeling shows
that it is an important concern. The aim of this section is not to make
an exhaustive review of these works, but to describe some of them in
order to understand their positioning and the conclusions that serve as
a basis for interactive information retrieval.
In 1981, Gershman introduced the Automatic Yellow Page Assis-

tant (Gershoum, 1981) whose objective is to return to users useful
addresses for car repair based on their query about the problem with
their vehicle. The program can interact with users to ask for more infor-
mation. The method, based on rules and a knowledge graph, is done
in several steps. In particular, one of them has the objective of finding
the user’s goal. Although the system responds to a specific need and is
only functional in a specific domain, it constitutes one of the first “user
model” during a search and a proposal for interaction between the user
and the machine.
Belkin studies how a search process takes place in a more general

way (Belkin, 1984). For this purpose, he analyzes telephone records of
conversations between a user and an intermediary person working in
an online IR service, who issues the queries for the user. He concludes
with three essential criteria for a good search system: a model of the
user’s problem, and interactions, and that the usermodel and the search
engine model can cooperate to evolve mutually. These criteria are still
valid today.
Another work explores user modeling through the aggregation of

users via stereotypes: the assumed characteristics of a person (see Sec-
tion 1.3.2). (Rich, 1979) proposes to use both users’ behavior and stereo-
types to improve the search system. He presents Grundy, a system that
plays the role of a librarian who makes book recommendations. To do
this, he first asks users to describe themselves with adjectives and then
asks about their literary tastes. Brajnik, Guida, and Tasso (1990) show

1.3 towards user modeling in ir 14

that the information about users is used to better respond to their needs,
and that the interactions help to refine the recommendations.

In this section, I showed how the IR field evolved quickly to put the
user at the center of this field. I then discussed how user interaction
has been leveraged in early IR models. The presented works are based
on systems restricted to very specific domains and needs, where user
modeling is implicit. In the next section, I review the evolution of the
IR paradigm which tried to better match the search process to users’
needs.

1.3.3 Questioning the ad-hoc retrieval and theCran-
field paradigm

The Cranfield evaluation is based on a simplified conception of the
information retrieval process. It considers that the information need
is associated with a query and a set of relevant documents. In reality,
this IR paradigm, called ad-hoc retrieval, is not sufficient to meet all
information needs. It works well for particular cases such as simple
searches, very specific tasks, or very long queries, but often users face
more complex search situations, in which they perform several queries,
and for which the search is done in several steps. In these cases, Liu et al.
(2019a) have shown that ad-hoc evaluations following the Cranfield
model are insufficient to measure users’ satisfaction.
The Cranfield evaluation is said to be system-oriented because it is

positioned from the perspective of the search system and not the user
one. Therefore,more user-oriented systems, evaluations, and collections
have been proposed such as the Okapi project (Robertson et al., 1994)
or the MEDLARS tests (Borlund, 2009).
Donna Harman, an IR researcher who received the 1999 Tony Kent

Strix award for outstanding contributions to the field of IR, initiated the
TREC evaluation initiative (Harman, 1993) in 1992. The competition is
co-sponsored by the National Institute of Standards and Technology
(NIST) and the U.S. Department of Defense, but tracks are organized
by the participant research groups. A track consists, in general, of doc-
uments, research problems, and the needed relevance judgments. This
competition had a considerable impact on information retrieval by
standing out mainly for its large text collections, its strong participation
of the academy and industry, as well as the variety of its tracks, such
as Complex Answer Retrieval (CAR), Precision Medicine Track, and
Cross-Language Track.
Hal Varian the Chief Economist at Google wrote that “The TREC data

revitalized research on information retrieval. Having a standard, widely
available, and carefully constructed set of data laid the groundwork for

1.3 towards user modeling in ir 15

further innovation in this field”1. Starting from the first TREC track in
1992, there is a feedback track, an idea based on the Rocchio algorithm
(cf 1.3.4.1). In this track, participants have to submit three types of
results: without using user feedback, with one feedback iteration, and
with any number of feedback iterations. Participants are free to use the
feedback in their system to reformulate the next query automatically
or to re-rank future results.
Stephen Robertson, an IR researcher, known in part for his famous

BM25 model, said: “In fact, the idea has extended into theories and
models; the notion that documents may be judged for relevance to
the need becomes not just a mechanism for evaluating systems, but a
basic concept in design” (Information Science in Transition 2009). Next, I
present a set of works in which users are considered “by design”.

1.3.4 User models

Users can be modeled either from their characteristics or from their
behavior. The latter, based on users’ past behavior, is one of the topics
of my thesis. In this section, I review the evolution of user modeling. I
do not make an exhaustive list of user modeling works, but to draw up
a quick overview of the tracks pursued in the 2000s before the arrival
of the Deep Neural Networks (DNN) on which most research efforts
have since then been concentrated.

1.3.4.1 Rocchio algorithm

The Rocchio algorithm (Rocchio, 1971) proposes to improve a query
based on the relevant and non-relevant documents associated with
it. The new query is considered better than the initial one because, in
a document and query space, it is closer to relevant documents and
further away from non-relevant documents. An explicit way to get the
set of relevant and non-relevant documents is to directly ask the user
feedback, i. e. the so-called relevance feedback.
Asking users for feedback on the returned documents is probably

the most direct user-machine interaction. Firstly because it is explicit
feedback, and secondly because this feedback is directly targeted at
the relevance of the results. But in reality, the Rocchio algorithm was
mostly usedwithout explicitly asking users for feedback, but usingwhat
is called pseudo-relevance feedback, which consists in using indirect
signals to label documents as relevant (Robertson and Jones, 1976).

1.3.4.2 Explicit user models

Current user modeling methods are mainly based on deep learning – I
present them in the state of the art in chapter 2. But before the arrival

1 https://googleblog.blogspot.com/2008/03/why-data-matters.html

1.4 organization and contributions of the thesis 16

of deep learning, various methods were used to obtain user models. I
quickly review these works to illustrate the diversity of the methods
on which researchers have relied for user modeling based on short or
long-term behavior. All these works are not from the IR community,
however, they could also benefit retrieval tasks.
First, Bayesian models have been frequently used to model users.

A Bayesian network is a probabilistic model where probability rela-
tionships between variables are encoded by a directed acyclic graph.
Bayesian networks have been used to predict user future actions (Kuen-
zer et al., 2001), to model users’ search intent as a mixture of users’
latent search interests and their results preferences (clicks) (Wang et al.,
2014), and to investigate user models (Tedesco et al., 2006). Besides
Bayesian models, decision trees have also been used in the context of
works on users. They can be used for classification. For example, Beck
et al. (2003) use classification trees to predict if users click on a spe-
cific word. Finally, neural networks (not deep) have also been used
in this context. Bidel et al. (2003) use neural networks to classify user
navigation paths.

Although various methods have been proposed for modeling users,
today DNNs are the most common algorithms used for this task. I
focus more on these methods in the next chapter, by first presenting
the prerequisites in NLP and RL to understand these approaches.

1.4 Organization and contributions of the
thesis

Organization The objective of my thesis is to improve user-machine
interactions during a search process. The thesis is structured around
four chapters. First, I discuss the evolution of user-centeredness in
search systems. The latter has always been present, although it was
initially very simplistic. I then present user model methods that came
before the boom fostered neural networks and deep learning. In the
second chapter, I first outline the NLP and RL background on which
the state of the art and the proposed models lie. I analyze how the three
domains (NLP, RL, IR) have evolved first separately, and then were
able to share their methods. After that, I analyze the recent works on
interactive IR and user modeling based on NLP or RL models. The last
two chapters present my contributions, which I present next.

Contributions I nowbriefly describemy thesis’smain contributions.
I contribute to the study of RNN and transformers for user modeling
during a search session, through the task of next query prediction
(Chapter 3). Investigating long, complex, or noisy sessions, I compare
the robustness of various models for this task. Finally, I analyze how

1.4 organization and contributions of the thesis 17

transformers generate text in the context of a user model. The results
of this work have been published in the CIRCLE conference (Mustar,
Lamprier, and Piwowarski, 2020). A more detailed version has been
published in the TOIS journal (Mustar, Lamprier, and Piwowarski,
2021).
Then, in Chapter 4, I present a new user/machine interaction frame-

work. It is based on a user model that is derived from my previous
analysis of user behavior. More specifically, the search process is viewed
as a series of moves in a latent semantic information need space, where
the system agents drive the users toward relevant documents. This
system is trained using self-supervision and RL techniques. The work
on this framework has been published at the ICTIR conference (Mustar,
Lamprier, and Piwowarski, 2022).

Chapter 2:
Background and
State of the Art
This Chapter has two objectives. First, to introduce the essential con-
cepts of text representation in IR and the Reinforcement Learning (RL)
background. Then, in the remaining sections, to give an overview of
the state of the art in user-machine interaction (within IR).

2.1 Word, sentence and document repre-
sentations

For many fields involving texts – such as RI, NLP, or text mining –
representing texts in a latent space is essential. The objective is to rep-
resent texts in a vector space where similar text vectors are close to
each other according to a distance (e.g. the Euclidean distance or the
inner product). The produced representations can have different uses,
whether to find similar texts or to calculate distances between texts. In
this section, I expose methods from IR and NLP researchers. Although
these methods were distant for a while, they have finally converged
with neural networks.

2.1.1 Bag-of-words

Gerard Salton, known as “the father of Information Retrieval”, pre-
sented in 1975 a vector space model for IR (Salton, Wong, and Yang,
1975). This space model is used for automatic indexing, where the
stored entities are the documents and the keys are the queries. The
method relies on the fact that similar documents and query vectors
tend to be close in the vector space. Its novelty, at the time, was to use
word frequencies in a corpus of text as a clue for semantic similarity.

18

2.1 word, sentence and document representations 19

For that, it relies on the term-document matrix based on a collection.
The matrix columns represent documents as bag-of-words (BOW) – a
simple way of representing text as a set of words, without taking into
account word order or grammar.
Considering a vocabulary 𝑉, that is a set of |𝑉| terms e.g.

𝑉 = {𝑎𝑛𝑎𝑐𝑜𝑛𝑑𝑎, 𝑎𝑛𝑡, 𝑎𝑛𝑡𝑒𝑙𝑜𝑝𝑒, … }. Each document 𝐷𝑖 is represented by a
|𝑉|-dimensional vector 𝐷𝑖 = (𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖|𝑉|) where 𝑑𝑖𝑗 is the weight of
the 𝑗𝑡ℎ term. This value is zero if the term is not in the document, and
otherwise, multiple methods (such as TF-IDF) can be used to compute
it. The representations from the vector space model allow to compute
the similarity between a query vector and a document vector as their
inner product (or cosine distance), and so to retrieve documents from
a query. The retrieval model was implemented on the SMART system
(System for the Mechanical Analysis and Retrieval of Text) (Salton,
1971).

Vector space models were the theoretical foundation of the pioneer-
ing SMART search engine, and have been used by multiple NLP re-
searchers (Turney and Pantel, 2010). However, they rely on simplistic
BOW representations of text, which limits the semantic information
that can be embedded in the vectors. In this space, documents with
similar content but different terms can have completely different repre-
sentations, while documents with common terms but different contexts
can be close. The semantics of the texts are poorly represented because
the order of the words and the dependencies between words are not
taken into account. Another limitation is that the representation is at
document level and not at lower levels (such as word or sentence level).
For the latter, BOW representations are quite deficient.

2.1.2 Word Embeddings

IR researchers based early document representation methods on the as-
sumption that documentswith commonwords have similar content and
should therefore have close embeddings. However, these embeddings
lack semantics. Two steps can be taken to obtain word embeddings with
a better sense of their meaning. First, the idea of term co-occurrences
is introduced. Then, instead of considering whole documents, a more
restricted context such as a paragraph, a chapter, or a predefined num-
ber of words is considered. Thus, word-context matrices are considered
instead of a word-document matrix.

Co-occurrence et matrix factorization Dumais (1990) presents a
method to obtain word embeddings that are dense vectors with a size
smaller than the vocabulary. She relies on the frequency of occurrence
of words in the same window of a predefined size. The matrix 𝑋 of di-
mension |𝑉|×|𝑉| is called a window or a document-based co-occurrence

2.1 word, sentence and document representations 20

matrix. To reduce the size of this large matrix, Dumais (1990) uses a
matrix factorization method. More precisely, a singular value decom-
position (SVD) reduction, where 𝑋 = 𝑈Σ𝑉⊤. The first 𝑘 columns of
𝑈 correspond to the coordinates of each word in a k-dimensional vec-
tor space. The embedding matrix is of dimension |𝑉| × 𝑘. The use of
truncated SVD for word similarity is called Latent Semantic Analysis
(LSA), when used for document similarity it is called Latent Semantic
Indexing (LSI). Unlike BOW representations, LSA and LSI methods
have the advantage of giving representations of size 𝑘, where 𝑘 is a fixed
parameter that does not depend on the size of the collection. However,
this method is computationally expensive: SVD-based methods do not
scale well to large matrices, and to represent new words, the whole
process has to be redone from scratch.

Figure 2.1: Word2vec models CBOW and Skip-Gram. Illustration
from Landthaler et al. (2017).

Word2vec Models usingmatrix factorization are based onBOW-type
representations of words. Word order, dependencies, or relationships
are not taken into account. NLP researchers have been working on sta-
tistical methods that allow for better encoding of word meaning. In
2013, two models – CBOW and Skip-gram – were introduced, by a team
of NLP researchers at Google, under the name Word2vec (Mikolov, Yih,
and Zweig, 2013). For CBOW, the idea is to learn the probability of a
word based on its context. Let us take as an example the sentence “ig-
norance of the law is no excuse”, given the input “ignorance of

the ? is no excuse” the goal is to predict “law”. On the contrary, for
Skip-gram it is to learn the context from a word, i. e. from “law” predict
the whole sentence “ignorance of the law is no excuse”. In both
cases, a neural network is learned with backpropagation (Rumelhart,
Hinton, and Williams, 1986). At the end of the training, the hidden
layers of the network are used as word embeddings.

2.1 word, sentence and document representations 21

As LSI, Word2vec is able to capture the semantics of words. More in-
terestingly, Mikolov, Yih, and Zweig (2013) have shown that Word2vec
learns the relationships betweenwords. For example, by performing the
operation king - man + woman on the embeddings of the concerned
words, the closest word to the result is queen. This phenomenon is
illustrated Figure 2.2. This is also true for many relations such as singu-
lar/plural, present/past, or capital/country.

Figure 2.2: Examples of semantic relations captured with Word2vec.
Source: https://developers.google.com/

machine-learning/crash-course/embeddings/

translating-to-a-lower-dimensional-space?hl=fr

Unlike LSI, which does not provide document representations,
Doc2vec (Le and Mikolov, 2014), an extension of Word2vec, allows to
learn sentence, paragraph or document representations of a fixed size.
Doc2vec refers to two models, respectively Distributed Memory Model
of Paragraph Vectors (PV-DM) and Distributed Bag-of-Words version
of Paragraph Vector (PV-DBOW), which are equivalent to CBOW and
Skip-gram. To extend Word2vec to documents, Le and Mikolov (2014)
add a document-specific representation vector to the model’s input.
Once the model is trained, this vector holds a representation of the
document. PV-DM’s takes as input the document representation and
the document with a hidden word and outputs the hidden word, while
PV-DBOW takes as input the document identifier and outputs thewords
of the document. Although Doc2vec models can represent text, they do
not take text structure and word order into account. This makes them
less suitable for advanced tasks.

https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space?hl=fr
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space?hl=fr
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space?hl=fr

2.1 word, sentence and document representations 22

2.1.3 Recurrent Neural Networks

To improve the representation of text, more sophisticated methods
based on neural networks have been proposed. In particular, RNNs
make it possible to obtain fixed-size representations for sequences of
variable length. They update hidden states, one token/word at a time,
as the sentence is processed. Their output depends on the previous
sequence elements. This process is illustrated Figure 2.1.3. They are
mainly used for NLP, but can also be used to process time series or any
sequential data.

Figure 2.3: Architecture of a traditional RNN.
Source: https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks

Formally, let 𝑥 be the input sequence of token embeddings 𝑥1, … 𝑥𝑛 ∈.
The hidden layer 𝑎𝑡 and the output 𝑦𝑡 are computed as follows:

𝑎𝑡 = 𝑔1(𝑊𝑎𝑎𝑎𝑡−1 + 𝑊𝑎𝑥𝑥𝑡 + 𝑏𝑎)
𝑦𝑡 = 𝑔2(𝑊𝑦𝑎𝑎𝑡 + 𝑏𝑦)

(2.1)

where 𝑔1 and 𝑔2 are activation functions (e.g. tanh or ReLU), and 𝑊𝑎𝑎,
𝑊𝑎𝑥, 𝑊𝑦𝑎, 𝑏𝑎 and 𝑏𝑦 are the neural networks weights. Those weights can
be learned through a language modeling objective (pretraining) and
then fine-tuned on a specific task. The process is illustrated Figure 2.1.3.

While unidirectional RNN process sequences in a left-to-right direc-
tion, bidirectional RNN (Schuster and Paliwal, 1997) process them in
two ways: left-to-right and right-to-left. This allows to take into account
both previous and next tokens when encoding a token. This property is
interesting for text, where words can have different meanings depend-
ing on the words that precede or follow them.
The weights 𝑊𝑎𝑎, 𝑊𝑎𝑥, 𝑊𝑦𝑎, 𝑏𝑎 and 𝑏𝑦 are shared across time steps 𝑡,

which make the network efficient. This is also interesting for text pro-
cessing because they can process input of any length without modifying
the network size. However, because of this recurrent architecture, the
computation is not able to keep long-term information (Sherstinsky,
2020). In addition, backpropagation training can lead to vanishing gra-

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

2.1 word, sentence and document representations 23

Figure 2.4: RNN operations at step 𝑡.
Source: https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks

dients1 (Sherstinsky, 2020). This refers to situations where the gradient
becomes smaller (vanishing) through the layers of the network and
through the sequence’s items or conversely increases to huge values
(exploding). In both cases, the training is not successful.
To solve the short-term memory and training problems, alternative

architectures such as GRU (Cho et al., 2014) and LSTM (Hochreiter and
Schmidhuber, 1997) have been proposed. These problems can also be
reduced with training tricks, as for example (1) truncated backpropaga-
tion through time (Jaeger, 2002) which consists of considering a moving
window of the sequence, instead of thewhole sequence, during training,
(2) gradient clipping (Graves, 2013) which allows to control the mag-
nitude of the gradient without changing its direction. These different
works, although they provide improvements, do not entirely solve the
issues concerning RNN short-term memory, gradient vanishing, and
long training.

2.1.4 The Transformer architecture

RNNs have problems with long-term dependencies, while the newer
Transformer architecture presented by Vaswani et al. (2017) does not.

Transformers (illustrated Figure 2.1.4) produce contextual represen-
tations of words. This is very interesting when dealing with text since
the meaning of a word depends on its context. It has outperformed
the state of the art in various NLP tasks, which I return to at the end
of this section. This architecture consists of an encoder and a decoder
that successively refine the representation of sequences. Unlike RNNs,
transformers process the whole sequence at once and reintroduce word
order information via positional embedding. In this thesis, I analyze

1 RNNs also lead to exploding gradients, but to a lesser extent.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

2.1 word, sentence and document representations 24

the Transformer architecture and propose models based on it. I now
describe it in more detail.

Figure 2.5: Transformer architecture. Illustration from the original pa-
per (Vaswani et al., 2017)

Each layer of the encoder or of the decoder transforms a sequence 𝑥
composed of 𝑛 vectors 𝑥1, … , 𝑥𝑛 into a sequence 𝑦1, … , 𝑦𝑛 of the same
length, through an attention over a context sequence 𝑐 composed of
𝑛 vectors 𝑐1, … , 𝑐𝑛. Each time, the central mechanism is the use of an
attention mechanism — other operations are performed to ensure a
stable and efficient learning process, and are detailed in Vaswani et

2.1 word, sentence and document representations 25

al. (2017), but here we focus on the attention mechanism since it is
important for the future analysis.

Attention heads and transformations At each layer of the en-
coder or the decoder, the transformation function 𝑇 is based on the
output of a series of 𝐻 attention-based functions 𝐴ℎ (called heads).
For each head 𝐴ℎ, the attention mechanism (illustrated Figure 2.1.4)

relies on:

• keys 𝑘ℎ(𝑐𝑗) ∈ ℝ𝑑𝑘 computed for each element of the context 𝑐𝑗

• values 𝑣ℎ(𝑐𝑗) ∈ ℝ𝑑𝑘 computed for each 𝑐𝑗

• queries 𝑞ℎ(𝑥𝑖) ∈ ℝ𝑑𝑘 computed for each input token 𝑥𝑖 ∈ ℝ𝑑,
with 𝑑 = 𝐻 × 𝑑𝑘.

Each input is decomposed in 𝐻 parts of the same dimension 𝑑𝑘, i. e.
𝑥𝑖 = (𝑥1𝑖 ⊕ ⋯ ⊕ 𝑥𝐻𝑖) where ⊕ is a vector concatenation operation. Each
𝑥ℎ𝑖 is modified by a linear combination of the values 𝑣ℎ(𝑐𝑗) based on
weights derived from the match between the query 𝑞ℎ(𝑥𝑖) with the
different keys 𝑘ℎ(𝑐𝑗). More formally, we define a head 𝐴ℎ as:

𝐴ℎ𝑖(𝑥, 𝑐) = 𝑥ℎ𝑖 +
𝑚

∑
𝑗=1

𝛼ℎ𝑖𝑗𝑣ℎ(𝑐𝑗)⏟⏟⏟⏟⏟
𝛽ℎ𝑖𝑗(𝑐𝑗)

with 𝛼ℎ𝑖𝑗 ∝ exp⎛⎜⎜⎜
⎝

1

√𝑑𝑘

𝑞ℎ(𝑥𝑖) ⋅ 𝑘ℎ(𝑐𝑗)
⎞⎟⎟⎟
⎠

(2.2)
where we can see that the attention mechanism only modifies the input
if both the attention 𝛼ℎ𝑖𝑗 and the value 𝑣ℎ(𝑐𝑗) are not null. Each key,
query, and value function is unique to a given layer and head. The
output of the layer is given by 𝑇(𝑥, 𝑐) = (𝑇1(𝑥, 𝑐), … , 𝑇𝑛(𝑥, 𝑐)) with

𝑦𝑖 = 𝑇𝑖(𝑥, 𝑐) = 𝑓 (𝐴1𝑖(𝑥, 𝑐) ⊕ … ⊕ 𝐴𝐻𝑖(𝑥, 𝑐))

where 𝑓 is a normalization followed optionally by a feed-forward layer.
The full transformation performed at layer 𝑙 for a part • of the model

is denoted as 𝑇•
𝑙 in the following. The parameters of the corresponding

heads (queries, keys, and values) are specific to each 𝑇•
𝑙 , where • is

either the encoder self-attention e → e, the decoder self-attention d → d
or the decoder to encoder attention e → d (see below).

Encoding When encoding, i. e. processing the input sequence 𝑠(0) of
token embeddings 𝑠(0)

1 , … , 𝑠(0)
𝑛 , each layer transforms a sequence 𝑠(𝑙−1)

into 𝑠(𝑙) using the transformation 𝑇e→e
𝑙 (𝑠(𝑙−1), 𝑠(𝑙−1)) based on the heads

𝐴e→e
ℎ𝑖 (𝑒 → 𝑒 for attention from the encoder on the encoder).
Since the context is simply the input here, this is called a self -attention

mechanism — i. e. each input item representation is transformed by
looking at the whole input sequence. This is repeated 𝐿𝑒 times until

2.1 word, sentence and document representations 26

Figure 2.6: Illustration of the Transformer self-attention with key, query, and
value transformations.
Source: https://peterbloem.nl/blog/transformers

obtaining the final representation of the encoded sequence 𝑠(𝐿𝑒) which
has the same length as the original input, but where each representation
is contextualized depending on the other tokens of the input.

Decoding The generating process (called decoding) is based on the
same principle — with a small twist since we take into account not only
the already generated sequence but also the input. To compute the prob-
ability of generating a new token 𝑤 given the sequence 𝑤0, 𝑤1, … , 𝑤𝑛′,
whose embeddings are 𝑡(0)

0 , … , 𝑡(0)
𝑛′ , the decoder uses two attentions:

one self-attention 𝐴𝑑→𝑑 (decoder to decoder attention) followed by an
attention on the encoded sequence 𝐴𝑑→𝑒 (decoder to encoder attention).
The representation at layer 𝑙 is based on the representation at layer 𝑙 − 1
and on the final encoded sequence:

𝑑(𝑙) = 𝑇d→e
𝑙 [𝑇d→d

𝑙 (𝑡(𝑙−1), 𝑡(𝑙−1)) , 𝑠(𝐿𝑒)]

The process is repeated 𝐿𝑑 times, giving rise to the representations
𝑡(𝐿𝑑)
1 , … , 𝑡(𝐿𝑑)

𝑛′ . The distribution over the next token 𝑤 (whose embedding
is 𝑡) is then given by a parametric function applied to the representation
of the last previously generated output 𝑡𝑛′ (so that to generate the first
token, a special token [START] is used):

𝑝(𝑤|𝑤1, … , 𝑤𝑛′) = 𝑔(𝑡; 𝑡(𝐿𝑑)
𝑛′) (2.3)

Sentence transformers The Transformer architecture proposed
by Vaswani et al. (2017) is not suitable for computing the similarity be-
tween two sentences, nor for clustering. Indeed, Reimers and Gurevych

https://peterbloem.nl/blog/transformers

2.1 word, sentence and document representations 27

(2019) show that Bertrequires a large number of computations on each
sentence of the database. This makes it very expensive, especially for
IR tasks. For example, it takes 50 hours of computation on a V100 GPU
to find the most similar question on the Quora site to another question
with raw Bert. They propose an architecture that learns to predict the
similarity between two sentences. The architecture is a Siamese network
with mean pooling. With their method, it takes a few milliseconds to
find the most similar Quora question.

2.1.5 Pretrained Transformers

Transformer models have a large number of parameters, which makes
them costly to train. In addition, the attention mechanism is computa-
tionally expensive, especially for long sequences: it has a complexity of
𝒪(𝑛2) with respect to the sequence length 𝑛 (Wang et al., 2020). This
makes them complex to train. But multiple pre-trained models trained
on large datasets have been publicly released: Bert (Devlin et al., 2019),
Bart (Lewis et al., 2020), GPT-2 (Radford et al., 2019), T5 (Raffel et al.,
2020), XLM (Conneau and Lample, 2019), RoBERTa (Liu et al., 2019b),
and the famous GPT-3 (Brown et al., 2020) — whose parameters have
not been made public. I now detail some of these models as they are
used in the rest of this thesis.

2.1.5.1 Bert

Bert, the Bidirectional Encoder Representations from Transformers (De-
vlin et al., 2019) was released by Google in 2018 and remains the most
popular pre-trained Transformer.
As it is usually done for large pre-trained Transformers, Bert is trained

on a large dataset without any annotation, using self-supervision. In
order to use the model for a specific task, transfer learning is typically
used, i. e. some or all of the model weights are fine-tuned for the task
with annotated data.
Bert consists of a transformer-based encoder. Its parameters are

learned on two unsupervised tasks, namely Masked Language model-
ing (MLM) and Next Sentence Prediction (NSP). The former consists
of randomly masking a percentage of the input tokens and then pre-
dicting these masked tokens. Although it allows the model to learn a
representation of words in the context of a sentence, this first task does
not take into account the relationships between sentences in the text.
To overcome this problem, the NSP task requires the model to predict
whether two sentences follow each other. The Bert authors show that,
while simple, this task is crucial, and even more so for the Question
Answering (QA) and Natural Language Inference (NLI) tasks.
Bert was trained on a large dataset: the BooksCorpus (Zhu et al.,

2015) and all the text passages of English Wikipedia.

2.1 word, sentence and document representations 28

2.1.5.2 Bart

Bart, the Bidirectional and Auto-Regressive Transformer (Lewis et al.,
2020), consists of an encoder and a decoder. Like Bert, it is trained
on several tasks: token masking, token detection, text filling, sentence
permutation, and document rotation. Because it has a decoder and is
trained on these tasks, Bart is better at text generation than Bert. The
authors have also released fine-tuned versions of Bart for other tasks.
Bart is trained on the same data as Bert.

2.1.5.3 T5

T5, Text-to-Text Transfer Transformer (Raffel et al., 2020), also has a
transformer-based encoder and decoder as described in Vaswani et al.
(2017) with minor architecture modifications in the attention mech-
anism. It is trained on numerous tasks such as machine translation,
question answering, or text classification. The tasks are specified by
adding their description as a prefix in the original input. Inputs and
outputs are always text, even for tasks for which it is not so natural
such as coreference resolution. Because inputs and outputs are always
textual, the authors call it a “unified” framework. While often multitask
models have a specific network for each task (Liu et al., 2020b), the T5
network is the same for all inputs. In our work on Query Generation
(Chapter 3) this is however not problematic because queries are short.

2.1.6 Training Transformers

2.1.6.1 Supervised training

The transformer-based models presented above are trained with gradi-
ent descent. Their parameters are learned byminimizing a cost function,
specific to the target task, called the loss. Let 𝜃 be the weights of the
model to be trained, 𝐽 the loss, and 𝛼 a parameter called the learning step.
The latter determines the step size performed to approach a minimum
of the loss function 𝐽. Gradient descent is performed in this way:

𝜃 ⟵ 𝜃 − 𝛼∇𝐽(𝜃) (2.4)

When training a language model, the most frequently used metric
is perplexity. It measures the ability of a model to generate a sentence
of the learned language. The lower it is, the better the model. With
𝑦 = (𝑦1, … , 𝑦𝑇) the target sequence of length 𝑇, and 𝑝𝜃 the probabilities
according to the model, the perplexity is:

𝑃𝑃𝐿(𝑦) = exp(−
1
𝑇

𝑇
∑
𝑡=1

log 𝑝𝜃(𝑦𝑡|𝑦1, … , 𝑦𝑡−1)) (2.5)

2.1 word, sentence and document representations 29

When ground-truth sequences are used as model inputs during train-
ing, this is called teacher forcing. But when the model is used for pre-
dictions, the training sequences can no longer be used, thus the model
inputs are the model’s own predictions. The gap between training and
inference inputs is problematic: the model may never have seen this
kind of input (Goyal et al., 2016). This phenomenon is known as ex-
posure bias. The bias increases with the length of the sequences to be
generated, the gap increasing over the course of the generation. This is
problematic when studying long sequences such as long-term research
sessions.

2.1.6.2 Training for complex objectives

In addition to the difficulties related to sequence lengths, the proposed
supervised training is not suitable for complex tasks. Indeed, for the
latter, it is not always possible to design an appropriate cost. For exam-
ple, to train an IR ranking model whose goal is to satisfy users during
a search session, search systems, and users perform actions that are
not immediately obvious to evaluate. We can only determine if the
strategy used was successful or not at the end of the search session, for
example, when users share their feedback. For this complex objective,
it is impossible to derive a loss function.

To tackle such problems, Reinforcement Learning tries to take into
account the effect of actions on the state of the world, even when actions
cannot be evaluated immediately. RL attempts to learn strategies, called
policies,which are evaluated by value functions. These reward functions
estimate the reward of the last action. The goal of RL is to learn a
policy that maximizes these cumulative values in the long run. For
these various reasons, I use reinforcement methods in this thesis. In the
following, I provide the RL formalism to understand them.

Reinforcement Learning framework I now formally set up the
Reinforcement Learning framework and show how well the RL frame-
work fits the search session task.

In RL, the problem to be solved is posed in the form of an MDP
(Markov Decision Process). It relies on:

• the Markov states 𝑆 of the world. A state has to be able to describe
the system without the history (i. e. the previous states)

• the actions of the agent 𝐴

• the transitions of the system, i. e. the probability of being in a state
𝑠𝑡+1 starting from a previous state 𝑠𝑡 and an action 𝑎𝑡: 𝑃(𝑠𝑡+1 =
𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

2.1 word, sentence and document representations 30

• the reward function 𝑅 which assigns a reward to a state and an
action

During a search session, a state could be a set of user queries ob-
served during a session. The actions of the search engine would be the
documents presented to users. The reward is the explicit or implicit
feedback from users. The optimal policy would then be the best ranking
of documents during the session. More generally, the MDP is defined
by the tuple (𝑆, 𝐴, 𝑅, 𝑃) describing the set of states 𝑆, set of actions 𝐴,
reward function 𝑅, and transition probability 𝑃.
We use the notion of cumulative reward which is the sum of the

rewards obtained with a discount term 𝛾 ∈ (0, 1) which penalizes the
rewards obtained late. Let 𝜏 be a sequence of states and actions 𝜏 =
(𝑠0, 𝑎0, 𝑠1, 𝑎1, …), and 𝑟𝑡 the reward obtained at step 𝑡 of that sequence.

𝑅(𝜏) =
∞
∑
𝑡=0

𝛾𝑡𝑟𝑡 (2.6)

The goal of RL is to find the policy thatmaximizes the expected return.
The optimal policy is defined by:

𝜋∗ = argmax𝜋 𝔼𝜏∼𝜋[𝑅(𝜏)] (2.7)

I detail RL algorithms in Chapter 4.

2.1.6.3 Use of RL for various NLP tasks

RL has been used in a wide variety of NLP tasks, such as question
answering, text generation, summarization, or translation. In those
tasks, the actions correspond to the chosen word at each step of the
generation process. The reward is a measure of the goodness of the
generated text and task-related metrics. For example, for text summa-
rization, a common metric is Recall-Oriented Understudy for Gisting
Evaluation (ROUGE). ROUGE regroups an ensemble of metrics, one
of the most common being ROUGE-N, which accounts for the over-
lap of n-grams between the generated summaries and the reference
summaries. However, the ROUGE metrics are not differentiable, which
prevents them from being used for supervised training. To overcome
this difficulty, Paulus, Xiong, and Socher (2017) propose to use a dual
objective: perplexity, which is the classical measure for languagemodels
and to optimize ROUGE using the self-critical policy gradient training
algorithm.

In the remainder of this section, I describe examples of the use of NLP
in a framework closer to our own, namely conversational agents. For
more examples of NLP tasks learned with RL algorithms, please refer
to the recent review from Uc-Cetina et al. (2022).

2.2 transformer for information retrieval 31

RL for conversational systems The use of RL for conversational
systems is becoming more and more common (Yang et al., 2021a; Liu
et al., 2020a). Through the combined use of deep learning and RL,
conversational systems have made significant progress (Gao, Galley,
and Li, 2018).
As an example, let us present the recent work of Yang et al. (2021a).

Their dialog system learns to maximize 3 rewards related to topic co-
herence, semantic coherence, and grammatical correctness. The first
reward computes the similarity between the topic representation of the
history and that of the generated response. It is therefore particularly
interesting because it has a direct impact on representations.

ChatGPT Recently, a conversational system trained with RL, Chat-
GPT, has been in the news because the sentences it generates are almost
indistinguishable from sentences that would have been written by a
human. ChatGPT model interacts with users in the form of a dialogue.
It is capable of answering complex questions, although some of its
limitations have already been identified (Wenzlaff and Spaeth, 2022).
ChatGPT is trained using Reinforcement Learning fromHuman Feed-

back (RLHF). The authors use the pre-trained Transformer GPT-3.5 as a
starting point. Training is then performed in two steps. First, the model
is trained in a supervised way on conversational data, and in a second
step, the model is fine-tuned using PPO (Schulman et al., 2017), the
RL algorithm. The reward model has been trained on manually rated
dialogs, where annotators had to rank different generated answers for
the same question.

2.2 Transformer for Information Retrieval

The use of Deep Learning in IR has led to state-of-the-art results. Es-
pecially, the attention-based text representation methods described in
the previous section have enabled great progress in IR. In this section,
I present this hot topic, called NeuIR (Neural Information Retrieval),
and in particular the Transformer-based models for IR.

Early statistical IR methods were often based on bag-of-words rep-
resentations (see Section 2.1.1), in which retrieved documents are re-
turned directly to users. More recent work divides the retrieval process
into two steps 1) retrieving documents and 2) re-ranking these docu-
ments. The first step retrieves a large number of results using sparse
representations of queries and documents. The second step uses more
accurate models to rank these documents. The works presented are
divided according to these two stages: those based on enhanced rep-
resentations to improve the retrieval stage of the system, and those
proposing transformer-based architectures for the ranking stage.

2.2 transformer for information retrieval 32

2.2.1 Enhancing representationswithTransformers

Many IR models depend on the representations of queries and doc-
uments. Hence, better representations can improve retrieval systems.
Two groups of models are particularly dependent on the latter: sparse
retrieval models and dense retrieval models. The former are based on
sparse representations followed by indexing, while the latter propose
to generate queries and documents low-dimensional representations
used during the second stage of the pipeline, namely the re-ranking.

2.2.1.1 Sparse retrieval models

The first stage of the pipeline, which consists in retrieving a large num-
ber of documents, is critical; relevant documents that are not selected
have no chance of being presented to users, and the performance of
the re-ranking stage is limited by this selection. Sparse retrieval models
propose improved query and document representations, which are
then used by an inverted index.

Term weighting Instead of calculating the weight of terms based
on their frequencies (as done in the standard bag-of-words methods
Section 2.1.1), terms’ importance can be calculated according to their
context (Zheng and Callan, 2015; Frej et al., 2020; Dai and Callan, 2020).
Embeddings from pre-trainedmodels can be used directly or fine-tuned
during ranking training to compute the importance of terms.
Dai and Callan (2020) estimate the importance of terms in passages

and in documents by projecting each word’s contextual representation
from Bert into a single term weight. Instead of relying on term-level
weights, Mallia et al. (2021) optimize the sum of query term weights
to maximize the score difference between relevant and non-relevant
documents for a query in their framework DeepImpact.

Document expansion Anothermethod for improving the results of
the first step of the pipeline is to add terms to the documents to reduce
the vocabularymismatch. The hypothesis is that by adding semantically
related terms, we reduce the number of documents that are ignored
during this first step. Again, various pretrained transformers have been
used (Yan et al., 2021; Nogueira, Lin, and Epistemic, 2019; Nogueira
et al., 2019). One of these interesting works is that of Yan et al. (2021)
who use an encoder-decoder transformer where the encoder manages
the re-ranking and the decoder manages the generation of terms to
expand the document. Thus, the expansion of the document must be
done in favor of the ranking of relevant documents.

Sparse representation learning While dense retrieval models
have shown good performances, they are still combined with BOW

2.2 transformer for information retrieval 33

models because they are not able of explicit term matching. Thus, they
are suffering from the same mismatch vocabulary problem than BOW
methods. On the other hand, there has been a growing interest in learn-
ing sparse documents and query representation.
Jang et al. (2021) use the hidden representations of several layers

of the model in a winner-take-all (WTA) model (Makhzani and Frey,
2015; Ahmad and Hawkins, 2015) that sparsifies the vectors. Formal,
Piwowarski, and Clinchant (2021) combined term weighting and docu-
ment expansion to produce sparse representations.

2.2.1.2 Dense retrieval models

Pre-trained Transformer models for NLP tasks provide a representation
per token. Many works propose adaptations of these models to obtain a
representation of a whole query or document that is useful for ranking.
The following text representation methods are used to compute the
similarity score between a document and a query.
Zhan et al. (2020) propose RepBert, a Bert-based model of query

and document representations where the token representations are
averaged to produce a single vector.
Instead of trying to pool the token representations, other methods

(Khattab and Zaharia, 2020; Gao, Dai, and Callan, 2021; Luan et al.,
2021) use a multi-vector representation to compute similarity. One
of the most popular models is ColBert (Khattab and Zaharia, 2020).
ColBert, illustrated Figure 2.7, is considered as a late interaction model
because query and document are encoded independently, as opposed
to all to all interaction model where they are encoded at the same time
(e.g. MonoBert model). Note that here the term interaction is used to
describe the relationships between queries and documents in ranking
models.
ColBert encodes queries and documents with two independent Bert

encoders. The similarity is computed with the MaxSim operator which
computes the summation of maximum similarity. The model parame-
ters are learned by minimizing a pairwise softmax cross-entropy loss.
Thus, with the ColBert architecture the document representations can
be pre-computed upstream.

2.2.2 Ranking with Transformers

Instead of working only on the representations of queries and docu-
ments, or on the first retrieval step of the IR pipeline, one can also
improve the re-ranking step. Ranking models can be divided into two
groups: discriminative and generative. The former learn to classify
whether a document is relevant to a query, while the latter predict the

2.2 transformer for information retrieval 34

Figure 2.7: ColBert architecture. Illustration from the original paper (Khattab
and Zaharia, 2020)

probability of relevance by modeling the generative process between
documents and queries.

2.2.2.1 Discriminative methods

Transformer-based models are interesting for ranking tasks because
their attention mechanisms allow them to take query-document rela-
tionships into account. Thus, the MonoBert model (Nogueira and Cho,
2019), which simply takes the concatenation of a query and a passage
as input and learns to predict the relevance score from the embedding
of the first token in the sequence, has achieved results far beyond the
existing state of the art. Other models with variations in the architecture
or training exist (MacAvaney et al., 2019; Pradeep, Nogueira, and Lin,
2021). However, MonoBert remains the most popular of the discrimi-
native models. Let’s look at the model in detail.

MonoBert The model is used in the second step of the classical
retrieval pipeline, after having retrieved a large number of documents
with BM25, the objective is to rank them.
The model takes as input the concatenation of the classification to-

ken [CLS], the query 𝑞, and the document 𝑑. The sequence is used as
input to Bert, which allows to obtain a representation for each of the
input tokens. The representation of the token [CLS] passes through a
feed-forward network with two outputs corresponding to the classes:
relevant/not relevant. The model weights are learned by minimizing
the cross-entropy loss. Since the loss only considers the [CLS] token
representation among the set of token representations output by the

2.2 transformer for information retrieval 35

transformer model, the representation of the [CLS] token captures the
relationships between queries and documents.
Although this approach is simple, it achieves very good performance.

However, queries and documents have to be processed simultaneously,
making it impossible to precompute the document representation of-
fline to make the whole process more efficient.

Figure 2.8: MonoBert architecture.

2.2.2.2 Generative methods

Generative methods focus on the generation process between queries
and documents, rather than learning the relevance score directly. Some
transformermodels arewell suited to this task, in particular, the encoder-
decoder transformers learned from language generation tasks. There
are two types of generative methods: the ones that generate a relevance
token from documents and queries, and the ones that generate queries
from documents.
Relevance models generate a token (usually “relevant”/“irrelevant”)

from a document and a query. The probability of generating the rel-
evant token is considered the relevance score. Nogueira et al. (2020)
uses the T5 model to generate the relevance token. By comparing the
performance of the complete model (encoder-decoder) with the en-
coder alone, the authors show that the decoder is crucial for this task.
Furthermore, when changing the relevance tokens (true/false) to other
words (yes/no) the results are less good. This shows the importance
of pretraining: even when fine-tuned, the model uses the knowledge
learned during pretraining on a large dataset.
Relevance generation methods estimate the probability of generat-

ing a query from a document to determine its relevance. Recently, a
hybrid method of relevance and query generation has been proposed

2.3 user modeling 36

by Liu et al. (2021). Their multi-task learning approach (ranking, query
generation, and question answering) allows to obtain a more complete
model. It is common to learn transformers on several tasks in order to
make them more robust.

2.3 User Modeling

Having described state-of-the-art IR models, we now go back to the
problem of user modeling, focussing on IR-related models.

A landmark work in Information Retrieval proposes a taxonomy of
user intents (Broder, 2002). The authors study the behavior of search
engine users and show that there are different types of search implying
different behaviors. They define three types of search: navigational,
transactional, and informational. This classification can be used to im-
prove search results, e.g. Tsukuda et al. (2013) who use it to diversify
search results after classifying the user’s intent, while (Santos, Macdon-
ald, and Ounis, 2011) propose to use different IR algorithms depending
on the type of intent of the initial query. These different works show
two essential points. There are different types of search, and taking into
account the type of search can improve the relevance of search results.
These findings lead to a search for more refined user modeling.
Among user modeling techniques, representative-based techniques

are the most suitable because they allow for great flexibility in terms
of modeling. The modeling of users with machine learning methods
consists in learning a latent representation from the users’ past actions
or personal characteristics (age, gender, preferences, location, …). In
this thesis, I am not interested in modeling users based on this latter
type of personal data called personalization (Abri, Abri, and Cetin,
2020), but instead, I follow the first direction that relies on user logs
datasets.
User simulation requires complete user modeling, while other tasks

such as intent prediction or next-click prediction can be tackled with
partial modeling. I present user modeling methods in two parts: first,
user simulation work, and then tasks that allow to obtain a user model
indirectly. The methods discussed are not all from standard textual
IR, but also come from conversational search, recommendation, and
reinforcement learning. I present them because I am convinced that
these methods can be as useful for Interactive Information Retrieval as
NLP methods have been before.

2.3.1 User simulation

User simulation in an unconstrained setting such as a search engine is
complex: the data are large and unstructured, and users have multiple

2.3 user modeling 37

modes of action (clicks and queries). Thus, there are more works on
user simulation in more restricted settings, such as recommendation
systems. In this section, I present work on user simulation in these
different settings.

Classic search Maxwell andAzzopardi (2016a) propose to simulate
a user during a search. The simulated user can write a query, click on a
document, and decide to continue or stop the search. The simulation is
based on a model representing the user’s cognitive state. The cognitive
state has multiple components: prior background knowledge, user
information needs, lists of previous interactions, and several models:
a query generation model, a model evaluating the attractiveness of
a snippet, and a document relevance model. The attractiveness of a
snippet and the relevance of a document depend on language models
computed on sets of attractive snippets and relevant documents.

Figure 2.9: Proposed framework of Maxwell and Azzopardi (2016a)

The model follows a framework based on a set of strong assumptions
and does not allow to obtain a latent representation of the user. However,
it is interesting since it represents the user as a set of components ranging
from their information needs to their interactions in the context of a
search on a classical search engine.
The authors extended theirworkwith subtopic selection strategies (Câ-

mara, Maxwell, and Hauff, 2022), which allows a decomposition of
complex search tasks into simpler ones, parametrized with tunable pa-
rameters (learning speed, exploration, tolerance, and subtopic switch-
ing). Although this extension makes the simulation more realistic and
allows to simulate different types of users, it still makes the framework
more complex and does not allow to obtain a latent representation of
the user, which restricts the use of such system to simulation.

The next papers of the section address more restricted settings.

2.3 user modeling 38

Commercial search engine The AESim (Gao et al., 2021) platform
allows to train and evaluate ranking models for commercial search
engines via a simulated user. In this simulation, a virtual user performs
a query that is part of a finite set of categories, the ranker proposes a
list of products, and then the user gives feedback on these products.
The learned feedback concerns the clicking and purchasing of the pro-
posed products. They show that their simulated user has a purchasing
behavior similar to real users. The virtual user is learned from a set
of real users logs. It is composed of two modules: a user module, and
a feedback module. The first module learns to represent the user via
a set of features. It is composed of a generator and a discriminator.
The generator generates user-query pairs and the discriminator learns
to distinguish true from false pairs. The models are learned with the
WGAN-GP algorithm (Arjovsky, Chintala, and Bottou, 2017; Gulrajani
et al., 2017). The second module simulates user feedback, i. e. the pre-
diction of clicks and purchases per presented product. It is learned with
the GAIL algorithm (Ho and Ermon, 2016).
This platform is interesting because it allows to learn and evaluate

models without using a search engine, or real users. However, it takes
place in a restricted search framework, since it is a commercial search
engine, with a finite number of initial queries and a limited number
of actions for the user (a single query and the following clicks). The
other major difference with a classic textual search is that we have very
implicit feedback on the user’s satisfaction, which is the purchase of
one of the presented products.

Conversational search First works on simulated users in conversa-
tional search are agenda-based user simulators: authors define a set of
hand-crafted rules named an agenda (Schatzmann and Young, 2009; Li
et al., 2016; Schatzmann et al., 2007). These rules-based approaches have
weaknesses. They require feature engineering work to define precisely
and exhaustively the various users’ needs. For complex situations, a
complete taxonomy cannot necessarily be established. Moreover, even
if the agenda is sophisticated, it only includes the situations present in
the training set, thus the simulated user is stationary and cannot learn
to adapt to new scenarios.
Setting such an agenda is restrictive. Other works are based only on

conversational data from real users, without using any preconceived
notions about the structure of the dialogue. These works can be clas-
sified into two groups: those learned only through supervision, and
those in which reinforcement algorithms are used.

First, there are works based on real conversation logs learned in a
supervised way. These sequence-to-sequence methods require a large
amount of data (Asri,He, and Suleman, 2016; Crook andMarin, 2017).Asri,
He, and Suleman (2016) seq-2-seq user simulator model takes as input

2.3 user modeling 39

the dialogue context. They propose a method for encoding the conver-
sation history by using one-hot-encoded vectors containing information
about the system response types (such as “confirm”, “request”, and
“inform”) and their consistency with previous answers. Crook and
Marin (2017) use a RNN model that takes as input the raw dialogues
without any processing. Instead of using annotated data, they propose
an architecture with an extra RNN encoder that embeds the history
context. These models are learned by optimizing cross-entropy, but this
loss is not always associated with a good user model.
To optimize a metric that better fits the problem, other work uses

reinforcement learning to train their models. (Gür et al., 2018; Chan-
dramohan et al., 2011; Kreyssig et al., 2018). They follow the RL formal-
ization, with anMDP inwhich the agent is the simulated user. Generally,
the main difficulty of these methods is to define a reward. Moreover,
RL-based training tends to lead to degeneration in the generated con-
versations with repetitions or irrational texts (He et al., 2018). Gür et al.
(2018) and Kreyssig et al. (2018) use a common reward in task-oriented
dialog for which the simulated user goal is known: at each new utter-
ance there is a small penalty, and at the end, if the dialog is successful,
there is a larger reward. Since RL algorithms are being used more and
more for text generation tasks (as discussed in Section 2.1.6.3), we can
expect that they will allow great improvements in user simulation for
conversational search in the next few years.

Simulating a user during a search on a classic textual search engine is
quite complex, especially when one tries to avoid strong assumptions
like the agendas (Asri, He, and Suleman, 2016). Thus, there is more
work concerning user simulation on more restricted applications such
as chatbots. Indeed, on a search engine, user actions are quite varied
(clicks, query reformulation, time spent on a document, …) feedbacks
are implicit and not easy to decode, and data are very large. To model
users, instead of trying to simulate them, we can rather go through
intermediate tasks like predicting their intention, their next request, or
their next click. This is what I propose and study in Chapter 3.

2.3.2 Partial user modeling

Users have multiple ways of interacting with search systems, making
their simulation very complex. Full user simulations follow a structured
framework that does not allow for a latent representation of users. In
this section, I present modeling work that addresses modeling a single
dimension of search, namely intent, queries, and clicks modeling.

2.3 user modeling 40

2.3.2.1 Intent prediction

In their article, Ruotsalo et al. (2014) claim that “Interactive intent
modeling can improve task-level information-seeking performance by
over 100%”. This is true for several reasons. First, users do not always
know how to express their information need correctly, especially in
the case of a complex search task. Secondly, because their intent may
change throughout the research process, for example, if they learn new
information about their initial intent.
Thus, several works focus on modeling users’ intent. Some of them

seek to split a search task into subtasks, or a multitask search into
different tasks (Liu and Belkin, 2010; Kotov et al., 2011). Yang et al.
(2020) use an intent taxonomy (such as follow-up question, positive
feedback, clarifying question, etc…) and add to a classical transformer
an intent-aware attention mechanism. The latter learns to classify the
intent of each sentence in the conversation. This model provides users’
representation at each stage of the search process.

Intent models are of great interest in this thesis, especially the model-
ing of the user’s goal, which can be updated during the search session.

2.3.2.2 Query suggestion

Query suggestion is a tool that proposes a list of queries to users to help
them with their search. One of the methods to generate suggestions is
to predict the user’s next queries using search logs, in order to suggest
a query that might accelerate the search process (Sordoni et al., 2015;
Mustar, Lamprier, and Piwowarski, 2021; Dehghani et al., 2017). Seq-
2-seq models (Section 2.1.3), such as RNNs or transformers, allows to
obtain a latent representation of users, by using the encoder output.
There are also other methods for query suggestion which I review in
the next chapter.

2.3.2.3 Click model

Click models aim to predict how users interact with the list of returned
results. Clicks can be seen as implicit feedback from users. Click mod-
els can be used to learn ranking models (Dai et al., 2021), to cluster
users (Punera and Merugu, 2010), or as a metric to compute the rele-
vance scores for query-document pairs (Chen et al., 2020).
Several of these methods are based on a latent representation of

users. Neural click model (NCM) from Borisov et al. (2016) repre-
sents users as a sequence of hidden states, while the click sequence
model (CSM) (Borisov et al., 2018) uses an encoder-decoder archi-
tecture, where the encoder computes contextual embeddings of the
documents and the decoder predicts the next clicked documents.

2.4 personalized systems 41

Many ways of modeling user behavior have been identified, although
no fully satisfactory model of users performing their searches on a
general search engine exists to date. However, while not perfect, these
models can be used to work on interactive search systems, which I
discuss in the next section.

2.4 Personalized systems

A promising avenue to increase users satisfaction in IR is the use of
interactive systems. In this section, I present interaction systems based
on user models. I first review interactive systems that require explicit
feedback from users, before I describe systems that exploit implicit
feedback, such as clicks or queries, to improve results.

2.4.1 Interactive systems based on explicit feedback

During a search, users’ actions (clicks, queries, etc.) are not always
interpretable. For example, a click on a document does not necessarily
imply that they are satisfied. One way to deal with the problem may be
to directly ask users to answer questions, either to clarify their needs or
to find out if they are satisfied.

Intent prediction in structured spaces The Q20 game consists in
guessing the object or the person the player is thinking about by asking
a maximum of 20 questions. The game is studied (Burgener, 2006; Hu
et al., 2018; Wu et al., 2018b) because it allows working on interaction
models in a small and controlled framework. Indeed, the search space
is much smaller than the one of a search engine. Each item is described
by a set of attributes which is easier to leverage by such systems.
Differently, data from search sessions are much less structured, which

makes the work on interactions more complex. Hu et al. (2018) learn
a probability distribution over objects, which is updated after each
response from the user. Their method requires a large amount of data
because each object and each question requires multiple answers to
learn an accurate distribution.
Yu et al. (2019) work in a similar environment, the agent asks users

clarifying questions to guess their goal using an information gain crite-
rion to determine which question to ask. This criterion, calculated for
each question, is based on the entropy of goals distribution before and
after asking the question. However, as the work on the Q20 game, a
knowledge base of attributes by goal is needed.

Recommendation system Recommendation systems, in which the
characteristics of the products to be recommended are usually available,
rely on explicit user feedback.

2.4 personalized systems 42

For example, Christakopoulou et al. (2018) use the fact that they
know the topic (e.g. “sketch comedy” or “horror”) of the recommended
videos. Thus, to improve their system, they propose to first ask a ques-
tion to users about their topics preferences: the system proposes a list
of topics likely to interest them, and this feedback is taken into account
by the recommendation system. The system has two components: a
question generator 𝑄 and a recommendation model 𝑅. 𝑄 takes as input
the sequence of topics seen up to 𝑡 and is trained to learn to predict
the topic of the video at 𝑡 + 1. While 𝑅 takes as input the history and
the topic chosen by users when asked and learns to predict the video
watched at 𝑡 + 1.

Similarly, product recommendation systems have taken advantage of
the fact that they know a set of attributes about products to query the
user (Zou andKanoulas, 2019; Lei et al., 2020). Zou andKanoulas (2019)
proposes a new interactive method for users to find the right products.
After an initial query, the system asks users about the attributes of the
searched product to discriminate it from others. When it considers that
it has acquired enough information about the user’s need, it proposes
a list of products. The model is learned with a reward which is the
evolution of the rank of the target product after asking the question.
Systems can try to use their feedback after returning an initial list of

results. Zhang et al. (2020) propose to ask directly users to give their
feedback in natural language on the proposed products. Their model
uses this feedback to update the recommendations. To do so, they use
a discriminator that evaluates whether the recommendations match
the feedback given by users. The score of the discriminator is used to
compute the reward of the recommendation model: 𝑅𝑡 = 𝑟𝑡 − 𝜆𝑘𝑐𝑡,
where 𝑐𝑡 is the score of the discriminator and 𝑟𝑡 is the score of the initial
recommendation model.

Recommendation systems, like search systems, seek to satisfy users.
But unlike the latter, they have a structured space (e.g., with attributes)
and explicit metrics to judge user satisfaction (e.g., a purchase at the
end of a session). Thus, most of the methods are not applicable in
the context of this thesis, which is restricted to Interactive Information
Retrieval.

Conversational search Conversational search systems are a special
case of explicit feedback, as by design, users can provide feedback in
natural language. In various conversational search systems, the search
agent and the simulated user are learned jointly (Liu and Lane, 2017;
Shah et al., 2018; He et al., 2018). These works are placed in the frame-
work of an RL problem with a MDP with two agents to learn. They can
be difficult to train because the deficiency of one agent (divergence)
can lead to the deficiency of the other.

2.4 personalized systems 43

Furthermore, it is necessary to manually define a reward for each
agent. In a restrictive system, it is easier to reward the agent. For ex-
ample, He et al. (2018) compare three rewards for simulating a user in
a price negotiation dialogue. The first is a linear function of the final
price negotiated, the second encodes a notion of fairness between the
two agents, and the last encourages dialogue length. The authors note
that although the intended rewards objectives are achieved, the conver-
sations are less natural than with supervised learning. This questions
the appropriateness of the proposed reward.
For more general systems, a simple heuristic cannot work. Chan-

dramohan et al. (2011) overcome the difficulty of manually setting a
reward by using Inverse Reinforcement Learning. This type of learning
consists of imitating the traces of an expert, without knowledge of ex-
pertise. They learn a reward function to maximize the distance between
the expert and the simulated users. This reward is then used to train
the simulated user.
To improve further conversational systems, user feedback can be

requested even more explicitly by asking users questions. Several stud-
ies have investigated ways of asking questions to disambiguate users’
intent (Zamani et al., 2020; Dhole, 2020; Cao, Rao, and Daumé III,
2019). Dhole (2020) disambiguates users’ initial query by asking a
question to discriminate their goal. The question is chosen according to
the predicted distribution of an intent classification model.
Conversational systems are becoming increasingly popular, as we

have seen with ChatGPT. Search engines are getting closer to these
systems by being able to answer queries in natural language. Both types
of systems have benefited from advances in NLP (with transformers)
and RL, so the boundary between them is shrinking.

2.4.2 Interactive systems based on implicit feed-
back

Explicit feedback systems require actions from users. This changes their
behavior and requires additional time and effort on their part. It is
therefore interesting to study weak signals of users satisfaction, such
as query reformulation, clicks on documents, time spent reading them,
ignored documents, etc.
A sequence of queries can be used to find the user goal. For example,

a user who starts with the query “jaguar” and then after considering
the results specifies a second query “jaguar animal”, sends a signal to
the search engine. Yang, Guan, and Zhang (2015) study users behavior
by focusing on the syntactic query changes during a session, such as
deleting or adding words. Two agents are learned, the user whose
actions are query changes, and the search engine whose actions are
term weights adjustments.

2.4 personalized systems 44

Another type of signal is ignoring the first returned documents and
clicking on links further in the results list, users send a signal to the
search engine. Using eye tracking, Joachims et al. (2005) show that
while clicks are not perfect relevance judgments, they provide good
estimates of relative preferences between documents. Thus, instead
of taking into account exclusively word changes in submitted queries,
various work focus on clicked or not documents (Zhao et al., 2018;
Levine, Roitman, and Cohen, 2017; Li et al., 2019). Levine, Roitman,
and Cohen (2017) consider not only the syntactic changes, but also the
returned documents, and those clicked in order to adjust the weights
given to each of the terms of the last query. Zhao et al. (2018) propose an
architecture with two different RNNs to encode separately clicked and
ignored items of their recommendation system. The outputs of these
RNNs are then concatenated to recommend new items. The model is
learned via Reinforcement Learning rewarding clicks and purchases.

Let us end this section with an article that is not directly related to
Information Retrieval, but whose framework is inspiring for interactive
systems designs. Li et al. (2020) propose a framework in which a system
and a user interact. They consider that as long as the user continues to
interact with the system, the latter is valuable. In the framework, the
user and the system are two agents. They are learned sequentially: at
one learning iteration the agent policy is learned, and at the next one the
user is updated with the newly learned policy. A particularly interesting
aspect of this work is that rather thanmanually defining rewards, which
is, as seen above, perilous for complex goals, they propose to infer
goals from observed interactions. To estimate the rewards, the authors
use inverse reinforcement learning and assume that rewards can be
estimated by a linear combination of the state features. They assume
that the reward can be estimated from the state.
Although the proposedMDP is interesting, it is not directly applicable

to the framework of this thesis. In fact, the simplification that allows
to represent a state in a vector without any learning and the fact that
it rewards the longest interactions do not correspond to a realistic or
desirable search system.

Figure 2.10: Li et al. (2020) framework

2.4 personalized systems 45

In most of the papers presented above, interactions between a user
and a search system are based on a model learned by reinforcement
learning. Reinforcement environments require a simulated user who
usually has knowledge of the taxonomy of products that can be rec-
ommended to them, and thus always answers the system’s questions.
In the context of a classical search engine, it is impossible to establish
such a taxonomy of needs. In the next chapter, I focus on user modeling
through the prediction of their next query.

Conclusion In recent years, NLP has made great progress with the
powerful transformer models. The latter have been used in many other
tasks, including IR, as we have seen with the monoBert and colBert
models. But while they have been used for sparse and dense retrieval
models, they have been little used for user modeling in a search task.
Moreover, they have been shown to outperform the existing state-of-the-
art in many domains, but little analysis has focused on their functioning.
On the other hand, existing work on interactive systems is promising,

but it is still at an exploratory stage, and there are still many challenges
to overcome. These are in limited or simplified settings. Explicit user
feedback is difficult to obtain, but implicit feedback is difficult to make
explicit. For these reasons, we believe that interactive information re-
trieval can be greatly improved.

Chapter 3:
Self-Attention Based
Query Prediction
User modeling is essential for improving IR systems. As seen in Sec-
tion 2.3, one way to build user models is to predict users’ behavior
based on their previous actions. Indeed, if a model is able to correctly
generate queries, it has (at least partially) captured the user’s intent. In
this chapter, I explore generative language models for modeling users
during a search session. Working with representation-based models -
such as neural networks - is particularly interesting for the next query
prediction task because the learned representations can be useful for
models exploiting user sessions, such as interactive IR models that rely
on a semantic representation of the user state.
Furthermore, when performing a search task, users may find it diffi-

cult to articulate their needs, especially when the task is complex. To
help them complete their search, search engines typically provide query
suggestions. While a good query suggestion system requires modeling
user behavior during the search session, user models based on queries
can serve as query suggestion models. The models studied can serve
two purposes, namely user modeling and query suggestion.

This chapter is an adaptation of two papers published during my
thesis: Mustar, Lamprier, and Piwowarski (2021) and Mustar, Lamprier,
and Piwowarski (2020) that investigate this issue.

3.1 Motivations

To explore the space of potentially relevant documents, users interact
with search engines through queries. This process is particularly valu-
able when users are accomplishing a complex search task (Liu et al.,
2019a). Among the differentways to help users in exploring the informa-

46

3.1 motivations 47

tion space, modern search engines provide a list of query suggestions,
which help users by either following their current search direction—e.g.
by refining the current query—or by switching to a different aspect of
a search task (Ozertem et al., 2012a). Another use of query suggestions
is to help search engines by providing ways to diversify the presented
information (Song, Zhou, and He, 2011).
There are twoways to approach the task of query suggestion. Either in

a direct way, seeking directly to improve user experience. This involves
searching for the most suitable queries so that users access the most rel-
evant information as quickly as possible (Bhatia, Majumdar, and Mitra,
2011). Such an approach requires a mean to assess what constitutes a
relevant suggestion, or data on whether or not suggestions are relevant.
The second approach consists in modeling the average user (Broccolo
et al., 2012; Sordoni et al., 2015; Dehghani et al., 2017; Ahmad, Chang,
and Wang, 2018; Ahmad, Chang, and Wang, 2019; Wu et al., 2018a).
The goal is to predict the next query based on the current search session
where learned systems can leverage huge datasets (i. e. query logs, etc.).
The hypothesis is that by proposing their future queries to users, they
skip search steps and reach their goals faster, thus the system would
help them in their search. In the absence of a public dataset allowing to
train and evaluate models on the first type of approach, this latter type
of approach is usually pursued.
To suggest useful queries, most models are built upon web search

logs, where the actions of users (queries, clicks, and timestamps) are
recorded. User sessions are extracted by segmenting web search log.
The first query suggestion models exploit query co-occurrence graph
extracted from user sessions (Huang, Chien, and Oyang, 2003; Jain,
Ozertem, and Velipasaoglu, 2011a): if a query is often followed by
another one, then the latter is a good potential reformulation. However,
co-occurrence based models suffer from data sparsity. For instance,
when named entities are mentioned, they lack of coverage for rare or
unseen queries. Moreover, these models are difficult to adapt when
using a broader context than the last submitted query (Dehghani et al.,
2017).
More recently, recurrent neural network-based (RNNs)methods have

been proposed to exploit longer dependencies between queries (Sordoni
et al., 2015; Dehghani et al., 2017; Ahmad, Chang, and Wang, 2018;
Ahmad, Chang, and Wang, 2019; Wu et al., 2018a). RNNs do so by
keeping track of users in a representation/vector space which depends
on all the previous actions performed. Such models have improved the
quality of suggestions by capturing a broader context, but are limited
by the relatively short span of interaction that RNNs are able to capture.
Moreover, these networks are black-boxed: the aspects on which the
suggestion generation mechanisms are based are unknown (Sussillo
and Barak, 2013).

3.1 motivations 48

Among all the models exploited in NLP and IR, most (Vaswani et
al., 2017; Tan et al., 2018; Liu et al., 2018; Scialom et al., 2019b; Qiao
et al., 2019; Yang, Zhang, and Lin, 2019) have benefited from the Trans-
former architecture (Vaswani et al., 2017). Transformer networks, such
as Bert (Devlin et al., 2019), capture long-range dependencies between
terms by refining each token representation based on its context before
handling the task at hand. They are thus a particularly interesting ar-
chitecture for query suggestion since query terms are often repeated
throughout a session (Sloan, Yang, and Wang, 2015) and their rela-
tionships need to be captured to build a faithful representation of the
user’s current state. Recently, Garg, Dhillon, and Yu (2019) presented a
hierarchical transformer for query suggestion, with a two-level encoder.
Their model outperforms the hierarchical recurrent-based models (De-
hghani et al., 2017; Sordoni et al., 2015), and shows that recurrence is not
essential for the query suggestion task. In opposition to this type of hi-
erarchical transformers, we refer afterward to the classical transformer
networks as flat transformers.
However, the authors Garg, Dhillon, and Yu (2019) do not provide

a full analysis of whether the hierarchical architecture is important,
especially for complex user sessions which are particularly interesting
in the context of interactive IR. In this chapter, I study transformers for
the query suggestion task—and more generally, for user models. The
outline is as follows:

• A reproduction of RNN-based models experiments (Dehghani
et al., 2017; Sordoni et al., 2015). The use of techniques from
transformers that segment queries using subword units, which
allow models to avoid the problem of out-of-vocabulary tokens
which limit the usefulness of RNN for query suggestion.

• A reproduction of the hierarchical Transformer architecture (Garg,
Dhillon, and Yu, 2019), with word and sub-word units, and a
comparison with flat transformers.

• A comparison of the flat transformers with three pre-trained trans-
formers: Bert, Bart and T5, fine-tuned for the next query pre-
diction task. The encoders of these pre-trained models are also
integrated to the hierarchical transformer.

The analysis is structured into three research questions detailed below.
First, the study of the transformers’ performance from a global point of
view.

Q1. How well the various presented transformers generate query
suggestions compared to the usual baselines?

When a user performs a complex search, it is more difficult to capture
the intent of the user. However, such sessions are of particular interest

3.2 query suggestions methods 49

for nowadays IR research, and in particular for interactive IR. Partic-
ular attention is thus paid to the robustness of the different models
on sessions corresponding to so-called “complex” search tasks. This
raises the question of whether all transformers have the same ability to
handle long, complex, or noisy sessions, or whether, on the contrary,
the results are impacted differently depending on the pretraining or
the architecture of the transformer:

Q2. Which model is the most robust?
a) to complex sessions
b) to noisy sessions
c) to long sessions

Following the analysis conducted to answer Q2., we conclude that
flatten pre-trained transformers are more resilient to noise, length, and
complexity of sessions. The understanding of the reason for the robust-
ness of this model leads to the final research question:

Q3. How does the flat transformer generate queries?
a) On which context’s queries does it focus its attention?
b) On which context’s tokens does it focus its attention?
c) How does it choose the next token to generate?

The analyses and answers to these questions aim to better understand
the behavior of various Transformer architectures for user modeling.

3.2 Query suggestions methods

3.2.1 Formalization

Before presenting the different methods of query suggestion, let us
formalize the problem.
Let us consider a session 𝑆 = (𝑄1, … , 𝑄|𝑆|) as a sequence of |𝑆| queries,

where every query 𝑄𝑖 = (𝑤𝑖,1, … , 𝑤𝑖,|𝑄𝑖|) is a sequence of |𝑄𝑖| words.
The goal of query suggestion is to propose the most relevant query for
the user intent, which is represented by the session. However, no perfect
ground truth can be easily established for such problems. Defining the
perfect query for a given need, given a sequence of past queries, is
an intractable problem. It requires to consider very diverse (in nature
and complexity) search tasks, and it depends on the user state, the IR
system, and the available information in the targeted collection. Thus,
the chosen task consists in predicting the next query within an observed
session.
We suppose that our dataset is composed of pairs (𝑆, �̌�) where �̌� is

the query following a sequence of queries 𝑆.

3.2 query suggestions methods 50

For the generative methods, the aim is to find the parameters 𝜃 that
maximize the log probability of observing the train dataset:

ℒ(𝑆; 𝜃) = ∑
(𝑆,�̌�)

log 𝑝𝜃(�̌�|𝑆) = ∑
(𝑆,�̌�)

|�̌�|
∑
𝑡=1

log 𝑝𝜃(𝑤𝑡|𝑄1, … , 𝑄|𝑆|) (3.1)

where (𝑤1, … , 𝑤|�̌�|) are the token of the query �̌�.

3.2.2 Co-occurence, graph and similarity

A large number of works have focused on the task of query sugges-
tion (Ozertem et al., 2012b), and related tasks such as query auto-
completion (Mitra and Craswell, 2015), based on search logs to extract
query co-occurrences (Huang, Chien, and Oyang, 2003; Jain, Ozertem,
and Velipasaoglu, 2011a). From a given single query formulated by
a user, the goal is to identify related queries from logs and to sug-
gest reformulations based on what follows in the retrieved sessions,
assuming subsequent queries as refinements of former ones (Sadikov
et al., 2010). These works rely on several methods, such as using term
co-occurrence (Huang, Chien, and Oyang, 2003), users click informa-
tion (Mei, Zhou, andChurch, 2008), orword-level representation (Bonchi
et al., 2012); capturing higher order collocation in query-document
sub-graphs (Boldi et al., 2009); clustering queries from logs (Sadikov
et al., 2010); or, defining hierarchies of related search tasks and sub-
tasks (Hassan Awadallah et al., 2014; Mehrotra and Yilmaz, 2017).
Methods based on similarities with existing queries in the logs en-

counter difficulties when confronted with queries never seen before,
they are not always able to generalize. The approach in Cao et al. (2008)
attempts to alleviate this sparsity problem by relating the user session to
paths in a concept tree. Other works prevent query sparsity via reformu-
lations using NLP techniques (Ozertem et al., 2012b). For instance, Jain,
Ozertem, and Velipasaoglu (2011b) present an end-to-end system to
generate synthetic suggestions based on the removal of non-critical
terms in the available text resources. Broccolo et al. (2012) propose to
alleviate the sparsity issue by creating a knowledge base from query
logs. This database contains synthetic documents produced from train
log queries. When users perform a query, a function measures the sim-
ilarity between this query and the documents in the database. The
closest document’s title is then used as a suggestion.
However, even for the latter methods, such log-based methods suffer

from data sparsity and are not effective for rare or unseen queries (Sor-
doni et al., 2015). In addition, these approaches are usually context-
agnostic, focusing on matching candidates with a single query. When
the query comes in a session with some previous attempts for finding
relevant information, it is crucial to leverage this context for capturing
the user intent and understanding its reformulation behavior.

3.2 query suggestions methods 51

Instead of trying to predict directly a query, it is possible to learn
how to transform it. Most approaches operate at a high level, with
term retention, addition and removal as the possible reformulation
actions (Levine, Roitman, and Cohen, 2017; Sloan, Yang, and Wang,
2015). Levine, Roitman, and Cohen (2017) consider these actions as
feedback from the user – e. g. a term that is retained during the whole
session should be considered as central for the user intent. Depending
on the previous sequence of user actions, these methods seek to pre-
dict their next action. They are interesting because they model users’
behavior in a session. However, they focus on the syntactic changes in
queries and do not capture the relationships between words and thus
the overall meaning of queries (Jiang and Wang, 2018).

3.2.3 RNN based methods

To cope with the limitations of log-based and action-based methods,
some works propose using probabilistic models for next query pre-
diction (He et al., 2009). Due to their ability to process sequences of
variable sizes, Recurrent Neural Networks (RNNs) have been widely
used for text modeling and generation tasks. They are composed of an
encoder that processes an input sequence by updating a representa-
tion in ℝ𝑛, and a decoder that generates the target sequence from the
last computed representation. Some works have adapted these ideas
to a sequence of queries (Dehghani et al., 2017; Jiang and Wang, 2018;
Sordoni et al., 2015).

3.2.3.1 Hred

Figure 3.1: Hred architecture

Themodel Hred (Sordoni et al., 2015), illustrated Figure 3.1, proposes
to use two encoders: a query-level encoder 𝐺𝑅𝑈𝑒𝑛𝑐, a session-level

3.2 query suggestions methods 52

encoder 𝐺𝑅𝑈𝑠𝑒𝑠 and a decoder 𝐺𝑅𝑈𝑑𝑒𝑐. 𝐺𝑅𝑈𝑒𝑛𝑐 encodes each query of
the user session independently, the representation of the 𝑛-th word of
the 𝑖-th query is noted ℎ𝑖,𝑛. While 𝐺𝑅𝑈𝑠𝑒𝑠, the session-level encoder,
deals with the sequence of query representations, it takes as input the
query encoding and updates its own recurrent state, the representation
of the 𝑖-th query is noted 𝑠𝑖. This session-level encoder should learn
a summary of the user history so that its output is used as input by
𝐺𝑅𝑈𝑑𝑒𝑐 to predict the next query. When computing the probability of
the 𝑛 + 1-th word of the 𝑖-th query, the decoder uses its recurrent state
𝑑𝑖,𝑛.
The hidden states of the three networks 𝐺𝑅𝑈𝑒𝑛𝑐, 𝐺𝑅𝑈𝑠𝑒𝑠 and 𝐺𝑅𝑈𝑑𝑒𝑐

are respectively:

ℎ𝑖,𝑛 = 𝐺𝑅𝑈𝑒𝑛𝑐(ℎ𝑖,𝑛−1, 𝑤𝑖,𝑛), 𝑛 = 1, … , |𝑄𝑖|
𝑠𝑖 = 𝐺𝑅𝑈𝑠𝑒𝑠(𝑠𝑖−1, ℎ𝑖,|𝑄𝑖|), 𝑖 = 1, … , |𝑆|

𝑑𝑖,𝑛 = 𝐺𝑅𝑈𝑑𝑒𝑐(𝑑𝑖,𝑛−1, 𝑤𝑖,𝑛), 𝑛 = 1, … , |𝑄𝑖|
(3.2)

The networks parameters are learned bymaximizing the log-likelihood
of a session S:

ℒ(𝑆) =
|𝑆|
∑
𝑖=1

log𝑃(𝑄𝑖 ∣ 𝑄1∶𝑖−1)

=
|𝑆|
∑
𝑖=1

|𝑄𝑖|
∑
𝑛=1

log𝑃(𝑤𝑖,𝑛 ∣ 𝑤𝑖,1∶𝑛−1, 𝑄1∶𝑖−1)
(3.3)

This architecture has the advantage of taking into account the hierar-
chical structure of the data by encoding each query before integrating
the information at the session level. It also allows to have a representa-
tion of the user for each new query via the session-level encoder 𝐺𝑅𝑈𝑠𝑒𝑠.
On the other hand, the tokenization of word queries does not allow the
integration of out-of-vocabulary words (OOV), which are common in
IR, especially for complex searches.

3.2.3.2 Acg

Figure 3.2: Acg architecture

3.3 transformers for query suggestion 53

Contrary to Hred which uses hierarchical representations, Acg (De-
hghani et al., 2017) encodes all the queries with a RNN at the same
time by concatenating them as a long sentence. However, to keep the
notion of queries sequences it relies on a hierarchical attention process
and a copy mechanism.
The attention mechanism has two levels of attention, a word-level

one and a query-level one. The word-level attention attributes weights
to the hidden states of the encoder which correspond to each word of
the input queries. The query-level attention is calculated according to
a query-level encoder. This second encoder takes as input the hidden
state of the last word of each query. It is used to calculate the attention
given to each query in the session. The two attention mechanisms are
then combined to get a weight for each input token at each decoding
step.
The authors assume that successive queries in sessions are reformula-

tions that usually share words. Thus, they introduce a copy mechanism
able to pick tokens from past user queries rather than generating them
using a fixed-size vocabulary. It also allows the model to deal with
Out-Of-Vocabulary (OOV) words if they have been used in the session
before. This mechanism is made of a switch gate that decides if the next
word should be copied or generated and of a copier that attributes a
probability for each input word to be copied.

3.2.4 Feedback

Other RNN-based approaches have also been recently proposed, such
as (Wu et al., 2018a), which leverages user clicks and document repre-
sentations to specify the user intent (Ahmad, Chang, and Wang, 2018;
Ahmad, Chang, and Wang, 2019), or (Jiang and Wang, 2018) which in-
tegrates click-through data into query embeddings to capture semantic
reformulations. Some works have explored the use of long-term search
history of users (Chen et al., 2018), using a RNN-based hierarchical
architecture, to score query suggestions. In this thesis, we restrict to
queries in sessions as input data, but other sources of information can
be added to such models.

3.3 Transformers for query suggestion

This thesis proposes a thorough analysis of transformers for query
prediction. Many variants of the architecture have been proposed. This
section first describes how transformers, called here “flat” transformers
can be used for this task. We also consider hierarchical transformers
that might leverage the session structure (as Hred). In addition to their
architecture based on powerful attention mechanisms, transformers
have enabled leaps in NLP thanks to their multi-task pretraining on

3.3 transformers for query suggestion 54

large corpora. Several pre-trained models are described in the last part
of this section.

3.3.1 Flat transformer

Let us first formalize how the classical transformers of Vaswani et al.
(2017) can be directly adapted to our task. The presented model is
illustrated by Figure 3.3.

Paris hotel </q> Paris cheap </q>hotel

Paris hostel </q>

Embeddings

Encoder	

EN
CO
D
ER

D
EC
O
D
ER

Figure 3.3: Flat Transformer for Query Suggestion

Input For a session, the input of the transformer is simply the con-
catenation of all the words of all the queries separated by a token [SEP],
i. e. the [SEP] is used to mark the beginning of a new query in the
session:

𝑆 = [[𝑆𝐸𝑃] 𝑤1,1 … 𝑤1,|𝑄1|⏟⏟⏟⏟⏟⏟⏟
𝑄1

[𝑆𝐸𝑃] … [𝑆𝐸𝑃] 𝑤|𝑆|,1 … 𝑤|𝑆|,|𝑄|𝑆||⏟⏟⏟⏟⏟⏟⏟
𝑄|𝑆|

[𝑆𝐸𝑃]]

This sequence is then transformed by using the token embeddings
added to positional embeddings (one per distinct position) — this is
how transformers recover the sequence order (Vaswani et al., 2017).
The encoder 𝐸 gives a contextualized representation for each token

of the session:

E(𝑆) = (ℎ0, … , ℎ𝑛) (3.4)

where 𝑛 is the number of tokens in the whole session: 𝑛 = ∑𝑖 |𝑄𝑖|.
We train models with various encoders E described in the next sec-

tions (in Section 3.4.2 and Section 3.4.3). The decoding part is the same
for all and has been described in Section 2.1.4.

3.3 transformers for query suggestion 55

3.3.2 Hierarchical transformer

Paris hotel </q> Paris cheap </q>hotel

Paris hostel </q>

Embeddings

Linear	Projection

Sum

Token	Encoder	

EN
CO
D
ER

D
EC
O
D
ER

Query	Encoder	

Figure 3.4: Hierarchical Transformer for Query Suggestion

For the query suggestion task, Garg, Dhillon, and Yu (2019) present
a hierarchical transformer that outperforms RNN-based model, and
thus show that recurrence is not crucial for the task. An illustration is
given in Figure 3.4. Their model is composed of two levels of encoding:
a token-level E𝑇 and a query-level one E𝑄, each following the same
contextualization process as a standard encoder in a transformer model.
The first encoder gives a contextualized representation of each token
that depends on the other tokens of the query, while the second one
outputs a contextualized representation of each query depending on the
other queries of the session. Our work extends this paper by providing a
thorough analysis of the behavior of (hierarchical) transformer models,
as well as experimenting with various pre-trained transformer models.
First, the token-level Encoder E𝑇 produces a contextualized repre-

sentation E𝑇(𝑄𝑖) = (�̃�𝑖,1, … , �̃�𝑖,𝐾) of each token of a given query 𝑄𝑖.
Since queries might have a different length, padding is used (e. g. a
special [blank] token), so that each query is of length 𝐾. This represen-
tation is then summarized into a query representation �̃�𝑖 using a linear
transformation:

�̃�𝑖 = E𝑇(𝑄𝑖)W𝑃 (3.5)

3.4 experimental settings and results 56

The transformation matrix is W𝑃 ∈ ℝ𝐾×𝑑 where 𝑑 is the output dimen-
sion of each token of the encoder. In our experiments we use 𝐾 = 12,
which is enough to cater for most of the queries of our dataset – the
remaining tokens are truncated.
The session-level encoder takes these vectors �̃�𝑖 as input to trans-

form them into final query representations ̃𝑆 = (̃𝑆1, … , ̃𝑆|𝑆|) that em-
bed context from neighbor queries, using positional encoding follow-
ing Vaswani et al. (2017).

̃𝑆 = E𝑄 (�̃�1, … , �̃�|𝑆|) (3.6)

where |𝑆| is the number of queries in the session.
We then obtain the final representation of a query token by summing

its query-wise representation �̃�𝑖,𝑗 with the contextualized representa-
tion of its corresponding query ̃𝑆𝑖:

ℎ̃𝑖,𝑗 = �̃�𝑖,𝑗 + ̃𝑆𝑖 (3.7)

Finally, the decoding part is exactly the same as for other transformer
models (Section 2.1.4).

3.4 Experimental settings and results

In this section,we report experimental results comparing the various flat
and hierarchical transformer-based models, as well as other baselines.
We first describe the datasets, the compared models, and the met-

rics (Sections 3.4.1 to 3.4.4), before presenting our main results in Sec-
tion 3.4.5. In Section 3.4.6, we present some queries generated by a
selection of models. Finally, in Section 3.5.1, we pursue our analysis by
studying how the models perform when exposed to noise, by altering
the sessions (filtering or concatenating). In both cases, we show that
hierarchy does not help as much as good pretraining.

3.4.1 Datasets

Some datasets allow a fine evaluation of query suggestions. They con-
sist of queries grouped by user sessions and associated with relevant
documents. These datasets are the TREC Session dataset (Carterette
et al., 2016) which contains the names of the tasks and relevant doc-
uments associated with the user sessions, the conversational dataset
SCSdata (Trippas et al., 2020) segmented by task and containing the
documents read by the user, and the Webis-SMC-12 dataset (Hagen
et al., 2013) which is a subset of AOL for which the sessions have
been manually split and annotated into missions. However, these three
datasets contain a few sessions, respectively 1300, 1000, and 2200 ses-
sions, which is insufficient to train the models we want to compare.

3.4 experimental settings and results 57

To the best of our knowledge, there is no dataset of sufficient size bet-
ter suited to the task of suggesting queries than the two query logs
datasets: the real dataset AOL web search log and the artificial dataset,
MS Marco Conversational Search (Nguyen et al., 2016). In both cases,
the queries are processed by removing all non-alphanumeric characters
and lowercasing following Sordoni et al. (2015).
MS Marco is an artificial dataset, built from real queries. The authors

filtered queries by removing navigation, bot, junk, and adult sessions
and merged users’ queries with a nearest-neighbor search based on
their embeddings to create artificial sessions. The MS Marco dataset
is provided in two parts. We use 80% of the first part as the training
set, the remaining 20% as the validation set, and the second part of the
dataset as the test set. Each set contains respectively 540 267, 135 066,
and 75 193 sessions.
The AOL dataset consists of 16 million real search log entries from

the AOL Web Search Engine for 657,426 users. Following Sordoni et
al. (2015), we delimit sessions using a 30-minutes timeout for both
datasets. The queries submitted before May 1, 2006, are used as the
training set, the remaining four weeks are split into validation and
test sets, as in (Sordoni et al., 2015). After filtering, there are 1 708 224
sessions in the training set, 416 450 in the test set, and 416 450 in the
validation set. As the real-world AOL dataset is not filtered, it contains
typos and noisy sessions. It is made of 860 155 unique words, whereas
the artificial dataset MS Marco has 28 968. Sordoni et al. (2015) build a
vocabulary by listing the 90k most common words in the training set.
For AOL, it is counted that 8.9% of the words from the dataset are not
in the vocabulary. Whereas when building a vocabulary in the same
way with MS Marco, all the words in the dataset are in the vocabulary.

3.4.2 Transformer trained from scratch (TS)

When the encoder and decoder parameters are learned from scratch,
these models are designated as fully trained transformer (TS), in oppo-
sition to the pre-trained transformers discussed in the next section. TS
architecture is described in 2.1.4, with 𝐿𝑑 = 6 layers, with 𝐻 = 12 heads
each and a dropout 𝑝 = 0.1. On the top of the decoder, we use a feedfor-
ward network with a hidden size of 2048. For the input tokens, we use
the same embeddings for the encoder and the decoder to reduce the
number of parameters and to regularize the network following Vaswani
et al. (2017).
In the following, we experiment with three different pre-trained mod-

els. (1) Bert because it is the most used transformer, (2) Bart because
it has an encoder-decoder architecture with very good performance in
generation, and especially in summarization, and finally (3) T5 because
it was one of the last transformers that has been published at the time
of writing.

3.4 experimental settings and results 58

3.4.3 Compared models

The models compared are the following:

3.4.3.1 Non-tranformer models

Inverted Index We use a co-occurence based method as a baseline:
the Inverted Index (Broccolo et al., 2012) described in Section 3.2.2.

RNN The RNN models are Hred (Sordoni et al., 2015) and Acg (De-
hghani et al., 2017), which we described in Section 3.2.

3.4.3.2 Fully trained transformer (TS)

The fully trained transformer, hereafter referred to as TS, is composed
of an encoder and a decoder presented in Section 3.3.

3.4.3.3 Pre-trained transformers

The pretrained models that we fine-tune are Bert (Devlin et al., 2019),
Bart (Lewis et al., 2020) and T5 (Raffel et al., 2020). To leverage these
pre-trained models, which is especially important since the number of
parameters in transformer models is high, we use their parameters to
initialize the parameters of our corresponding models. More precisely,
for the flat architecture, the encoder parameters are either initialized
to those of the Bert model, the Bart or T5 encoder. The models are
named respectively Bert, EncBart and EncT5. Since Bart and T5 are
not only an encoder as Bert, we also consider a version with both
encoder and decoder parameters initialized with pre-trained Bart and
T5 parameters, that we refer respectively to Bart and T5.

Bert We use the pre-trained model Bert (Devlin et al., 2019), and
extract each hidden layer of the model. We sum the last layer, with the
average and the max of these layers based on CLIP-as-service library 1,
and our own preliminary experiments. The intuition behind the use of
multiple hidden layers is that the last layer might be too close to the
specific tasks on which Bert was trained, while deeper layers could be
more representative of the general meaning of words. Thus, for each
token of the input, we have a contextualized embedding of size 768
given by Bert. For the decoding part, we use the same transformer
decoder and feedforward network as the ones described in 3.4.2. At
the beginning of the training the encoder is frozen and the decoder is
trained. We then use a “gradual unfreezing” of the encoder layers as
recommended by Howard and Ruder (2018): when the loss stabilizes,

1 https://github.com/hanxiao/bert-as-service

https://github.com/hanxiao/bert-as-service

3.4 experimental settings and results 59

we unfreeze the last frozen layer of the encoder, until all the layers are
fine-tuned.

Bart and EncBart Bart architecture is made of both an encoder
and a decoder. We also use gradual unfreezing to fine-tune the model
but starting from the last layer of the pre-trained decoder. We analyze
the results of the complete Bart model fine-tuned for our task, but
also the ones of the Bart encoder EncBart followed by a fully trained
transformer decoder. This allows a fair comparison with the Bert model
which has no decoder, and a measure of benefits of the pre-trained
decoder.

T5 and EncT5 T5 is a transformer with a pre-trained encoder and a
pre-trained decoder. Aswe did for Bart, we compare two versions of the
model: T5, a version forwhichwe fine-tune the entire pre-trainedmodel,
and EncT5 the encoder-only version, with a fine-tuned encoder and a
decoder trained from scratch. We use the training protocol described
for Bert and Bart.

3.4.3.4 Hierarchical transformers

H_TS The hierarchical transformer H_TS with the two-level encoder
described in Section 3.3.2.

H_Bert, H_Bart and H_T5 We also compare hierarchical architec-
tures (H_TS) for which the Query Encoder 𝐸𝑇 parameters are initialized
with those from Bert, Bart and T5 encoders, and the rest of the archi-
tecture remaining are trained from scratch. We refer to such models as
H_Bert, H_Bart and H_T5.

Tokenizer The two RNN-based models and the fully trained trans-
formers TS and H_TS use a fixed vocabulary composed of words, but
Bert, Bart and T5 employ subword tokenizers, denoted as word piece
tokenizer (WPT), that segment the text into n-grams of varying lengths
(Sennrich, Haddow, and Birch, 2016). For instance, the query “Robert
Mitchum” is segmented as [robert, [UNK]] with a word tokenizer
while the WPT returns [robert, mitch, ##um]. Hence, for the latter,
there is no out-of-vocabulary problemwhich was handled inadequately
with the word tokenizer using the special OOV token. Besides, the vo-
cabulary size is kept below a predefined threshold (31k tokens for Bert,
32k for T5, and 50k for Bart), which in turns speeds up learning.
To analyze the importance of the tokenizer, we consider variants of

Hred, Acg, TS and H_TS based on the Bert tokenizer, named Hred_wp,
Acg_wp, TS_wp and H_TS_wp.

3.4 experimental settings and results 60

Training For all models involving pre-trained transformers, the
training procedure is the same:weuse the “gradual unfreezing”method,
as recommended by (Howard and Ruder, 2018) and described in 3.4.3.3.
Models optimization is performed on the training sets of sessions with
the ADAM optimizer (Kingma and Ba, 2015). All hyper-parameters are
tuned via grid search on a validation dataset.

3.4.4 Metrics

As with many other tasks in IR, evaluating the quality of the models is
problematic since the evaluatedmodels can generate arbitrary queries in
response to a session — and there is no principled way to evaluate their
quality. In the following, we describe the metrics that were reported
in previous works to compare models, and which try to capture the
quality of the system responses:

• Perplexity. All compared models generate probability distribu-
tions over the sequences. This enables to check how surprised the
model is by the target query. However, the perplexities of some
pairs of models cannot be compared because the vocabulary size
is different (90k tokens for models without a WPT, 31k tokens
with WPT, 50k for Bart’s tokenizer, and 32k for T5). An option
would be to normalize the sentence likelihood by the number of
characters, but it would have made the results less interpretable.
Moreover, former versions of Hred, Acg, TS, and H_TS can gener-
ateOOVwords,which strongly biases the results. Thus, perplexity
is not reported for these last methods.

• BLEU. As a metric to evaluate generated queries compared to
the target ones, we first use the classical metric BLEU (Papineni
et al., 2002), which corresponds to the rate of generated n-grams
that are present in the target query. We refer to BLEU-1, BLEU-2,
BLEU-3 and BLEU-4 for 1-gram, 2-grams, 3-grams and 4-grams
respectively.

• EM. We also calculate the exact match EM, which is equal to 1 if
the predicted query is exactly the observed one, and 0 otherwise.

• Sim𝑒𝑥𝑡𝑟𝑒𝑚𝑎. As EM can be too harsh, we also use a metric,
Sim𝑒𝑥𝑡𝑟𝑒𝑚𝑎 (Forgues et al., 2014), which computes the cosine sim-
ilarity between the representation of the candidate query with
the target one. The representation of a query 𝑞 (either target or
generated) is a component-wise maximum of the representations
of the words making up the query (we use the GoogleNews em-
beddings, following (Sordoni et al., 2015)). The extrema vector
method has the advantage of taking into account words carrying
information, instead of other common words of the queries.

3.4 experimental settings and results 61

• Sim𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒. However, this component-wise maximum method
might excessively degrade the representation of a query. As an
alternative, we propose to compute Sim𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 as the mean value
of the maximum cosine similarity between each term of the target
query and all the terms of the generated one.

• New Words. We also want to have models that can suggest words
and queries that have not yet been used during the session. We
use the ratio of new words, calculated by counting the number of
unique words that appear in the suggested query but were not
in the past queries of the session, divided by the count of unique
words in this query. This metric is an indication of the model’s
ability to suggest new terms. The higher, the more new words.

• Repetition Rank. Amodel that suggests queries that have already
been issued by the user is pointless. To evaluate this, we intro-
duce the Repetition Rank metric, which computes the rank of the
prediction in the beam search if the predicted query appears in
the context (or 10 if it doesn’t). The lower, the more repetitive.

Finally, as discussed in Section 3.3, there is no ground truth on what
the best queries to suggest are. For each generation metric, we consider
the maximum performance of the top 10 queries generated by the
models. More precisely, for each model, we first generate (through a
beam search with 𝐾 = 20) 10 queries to suggest to the user given the
context 2 The reported value for each metric (BLEU, EM, Sim𝑒𝑥𝑡𝑟𝑒𝑚𝑎
and Sim𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒) is the maximum score over the 10 different generated
queries. This is usually employed for assessing the performance of a
probabilistic model w.r.t. a single target (see e. g. Kumar et al. (2020))
and corresponds to a fair evaluation of models that try to find a good
balance between quality and diversity.

3.4.5 Query Suggestion Performance

In this section, we aim to answer our first question: Q1. How well the
various presented transformers generate queries suggestions com-
pared to the usual baselines?
Tables 3.1 (generation scores), and 3.2 (perplexity) report results

obtained by all the models.
We first note the difference between the two datasets. As expected,

being synthetic, MS Marco is a much easier dataset — more restricted
vocabulary and more regular sessions, as acknowledged by the fact that
all the metrics are higher for MS Marco.

2 As we want to encourage the models trained with a word tokenizer to generate tokens
present in the vocabulary, we follow (Kai, Hirose, and Nakagawa, 1998) and apply a
penalty on the “OOV” token in the beam search.

3.4 experimental settings and results 62

Table 3.1: Results on the MS Marco (a) and the AOL dataset (b). We report
different metrics, along with two quality indicators. Best results for
a metric are reported with a bold font.

II Acg Acg_wp Hred Hred_wp TS TS_wp H_TS H_TS_wp Bert H_Bert EncBart Bart H_Bart EncT5 T5 H_T5

EM 0.173 0.044 0.041 0.139 0.129 0.174 0.197 0.164 0.170 0.223 0.182 0.184 0.226 0.183 0.175 0.203 0.121
BLEU 1 0.584 0.435 0.416 0.572 0.555 0.579 0.596 0.574 0.589 0.617 0.597 0.591 0.618 0.592 0.598 0.576 0.565
BLEU 2 0.369 0.200 0.182 0.341 0.320 0.372 0.377 0.363 0.371 0.402 0.378 0.385 0.419 0.383 0.379 0.375 0.335
BLEU 3 0.218 0.092 0.087 0.193 0.176 0.223 0.248 0.218 0.224 0.274 0.234 0.238 0.275 0.236 0.230 0.238 0.174
BLEU 4 0.202 0.073 0.068 0.175 0.161 0.213 0.239 0.201 0.206 0.268 0.217 0.222 0.266 0.221 0.212 0.231 0.149
𝑠𝑖𝑚𝑒𝑥𝑡𝑟𝑒𝑚𝑎 0.835 0.798 0.780 0.828 0.817 0.833 0.840 0.834 0.837 0.846 0.839 0.837 0.848 0.839 0.837 0.837 0.830
𝑠𝑖𝑚𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 0.677 0.579 0.543 0.635 0.616 0.671 0.682 0.665 0.670 0.697 0.677 0.672 0.697 0.678 0.675 0.659 0.661
New Words 0.950 0.138 0.354 0.594 0.604 0.886 0.880 0.902 0.899 0.870 0.902 0.902 0.858 0.911 0.879 0.910 0.895
Repetition Rank 8.618 8.767 9.429 8.974 9.141 6.926 6.689 7.055 7.022 6.424 6.755 6.985 5.586 7.098 7.116 6.913 7.318

(a) MS Marco dataset
II Acg Acg_wp Hred Hred_wp TS TS_wp H_TS H_TS_wp Bert H_Bert EncBart Bart H_Bart EncT5 T5 H_T5

EM 0.018 0.017 0.010 0.029 0.036 0.037 0.048 0.046 0.081 0.061 0.085 0.055 0.119 0.087 0.052 0.082 0.053
BLEU 1 0.438 0.417 0.388 0.409 0.422 0.439 0.454 0.447 0.493 0.460 0.495 0.455 0.552 0.494 0.452 0.519 0.435
BLEU 2 0.148 0.128 0.098 0.122 0.135 0.162 0.178 0.178 0.238 0.194 0.241 0.186 0.316 0.240 0.183 0.275 0.166
BLEU 3 0.067 0.037 0.026 0.052 0.059 0.071 0.089 0.102 0.146 0.110 0.150 0.104 0.231 0.144 0.098 0.192 0.090
BLEU 4 0.033 0.006 0.004 0.018 0.023 0.027 0.040 0.055 0.086 0.063 0.093 0.058 0.174 0.084 0.051 0.148 0.043
𝑠𝑖𝑚𝑒𝑥𝑡𝑟𝑒𝑚𝑎 0.751 0.668 0.687 0.710 0.713 0.729 0.723 0.742 0.762 0.741 0.763 0.739 0.792 0.762 0.731 0.776 0.723
𝑠𝑖𝑚𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 0.484 0.408 0.390 0.404 0.415 0.447 0.457 0.462 0.501 0.466 0.504 0.459 0.558 0.499 0.454 0.537 0.435
New Words 0.996 0.119 0.588 0.679 0.740 0.916 0.941 0.849 0.881 0.927 0.880 0.919 0.682 0.934 0.902 0.593 0.940
Repetition Rank 9.711 7.138 9.128 7.841 7.157 8.683 8.300 6.830 4.970 6.668 4.203 6.132 2.204 3.665 6.203 1.468 6.324

(b) AOL dataset

From a high-level point of view, we see that transformers are better
performing than the baseline Inverted Index (II) and that the RNN-
based models, Hred and Acg. Among transformers, more complex and
pre-trained models perform better, with the flat architecture with a
pre-trained encoder and decoder Bart performing the best. Contrarily
to (Garg, Dhillon, and Yu, 2019), we do not observe a real difference
between hierarchical and non-hierarchical Transformer architectures:
The main factor of variation is on what task and dataset the model was
pretrained.
We note that models have different tendencies to copy one of the

queries in the session. This is a standard behavior: 3% of queries for
MS Marco and 6% for AOL are among the previous queries of the
session. So it is not surprising that more powerful models learn to copy
— transformer models have a tendency to repeat a seen query compared
to Acg or Hred (lower Repetition Rank). We explain this tendency by
their ability to retrieve information at arbitrary positions in the input.

Perplexity We only compare perplexity for models based on the
same tokenizer, since otherwise the problem of evaluating prediction
with OOV tokens, or of vocabulary with different sizes makes compar-
isons impossible. We observe that the transformers obtain a much better
perplexity than Acg and Hred with a Word Piece Tokenizer. The likeli-

3.4 experimental settings and results 63

Table 3.2: Perplexities for Word-Piece Tokenizer-based models

Acg_wp Hred_wp TS_wp H_TS_wp Bert H_Bert EncBart H_Bart Bart EncT5 H_T5 T5
AOL 1 175 1 101 721 486 492 473 557 209 173 92 215 37

MS Marco 242 111 56 56 47 64 52 40 39 22 58 21

hoods of target queries with these last two methods are both about half
the one of the transformer model TS_wp. This shows that transformers
better explain users’ behavior in search sessions. Among transformers,
we observe that while the hierarchy is beneficial on the AOL dataset, it
is not the case on the MS Marco dataset. We discuss this behavior in
more detail later.

Word Piece Tokenizer Among RNNs, using a WPT is sometimes
beneficial for Hred but not for Acg. We explain this because the copy
mechanism already allows Acg to produce rare tokens. This ability ap-
pears lowered when using word pieces, as assembling unknown words
from smaller tokens is much more difficult than copying a whole word
for such architectures. For Hred, the Word Piece Tokenizer improves
the scores on the AOLDataset, while it degrades them on theMSMarco
one. This is explained by the fact that for the MS Marco dataset, there
is no OOV and hence using a WPT is not useful anymore.
For transformers trained from scratch (TS, TS_wp,H_TS andH_TS_wp),

the Word Piece tokenizer is always beneficial. It could be due to the use
of positional embeddings, which makes the copy of consecutive tokens
easier. Moreover, the use of this tokenizer reduces the vocabulary size.

Pretrained models First, Bart (flat transformers with a pre-trained
encoder and decoder) outperforms all the models on all metrics. This
shows the value of pre-trained models on large datasets and on genera-
tive tasks. When observing the flat pre-trained models scores, we note
that they outperform the version trained from scratch: Bert, EncBart,
Bart, EncT5 and T5 are better than TS_wp on the AOL dataset.
For the MS Marco dataset, while Bert and Bart have better scores

than TS_wp, EncBart and EncT5 are similar to TS_wp. We think that
because the vocabulary used in theMSMarco dataset is more restricted,
and the dataset more regular, the use of large pre-trained models is less
beneficial. While T5 largely outperforms Bert on the AOL dataset, Bert
is much better than T5 on theMSMarco dataset. The unified framework
— consisting of training simultaneously the model for various tasks —
used to pretrain T5 is useful on a complex dataset, as it probably allows
the model to acquire more language knowledge, but it is less efficient
on simpler data. Finally, for both datasets, Bart performs the best for
all metrics.

3.4 experimental settings and results 64

On the AOL dataset, Bart improvement is particularly important on
BLEU 3 and BLEU 4 — which are calculated by considering 3-gram
and 4-gram sequences. It indicates that when comparing longer word
sequences between target and predictions, Bart is the best model, it
is better at generating longer queries. We think this is because Bart
has been trained on a summarization task, it performs better than the
other models at generating comprehensive sequences. Its similarity
scores 𝑠𝑖𝑚𝑒𝑥𝑡𝑟𝑒𝑚𝑎 and 𝑠𝑖𝑚𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 are also significantly better on the AOL
dataset, which means that TS is the best model to capture the word
semantic.

The Hierarchy On the AOL dataset, the hierarchical models per-
form better than their flat version: TS vs H_TS, TS_wp vs H_TS_wp, Bert
vs H_Bert, EncBart vs H_Bart except for T5 for which EncT5 outper-
forms H_T5. This could be due to the fact that T5 uses relative positional
embeddings, while other models use absolute positional embeddings.
H_T5 would have more difficulties to find the exact position of words
within queries. Note that for fair comparison H_Bart and H_T5 are com-
pared to EncBart and EncT5 rather than Bart and T5 because Bart and
T5 decoders are pretrained while H_Bart and H_T5 decoders are trained
from scratch. This shows that with a suitable encoder the hierarchy is
beneficial for the query suggestion task, the two-levels encoder allowing
to have a more complex representation of the session.
The conclusions are different for the MS Marco dataset. For the fully

trained model TS and TS_wp, and for Bart, the hierarchy does not help
significantly, while with Bert and T5, the hierarchy decreases the results.
We explain this because the queries and the sessions of the MS Marco
dataset are longer, and the model has difficulty to focus its attention
on the important queries. We discuss the behavior of the hierarchical
models on longer and more complex sessions more in detail below.

3.4.6 Generated queries

In Table 3.3, we give examples of query suggestions for three sessions,
and multiple models: Hred_wp(which is the best among the RNN
baselines), the fully trained transformers TS_wp and H_TS_wp and the
pre-trained ones EncBart, H_Bart, and Bart.
First, we note that the RNN-based model Hred_wp generates the

same word several times in a row. This behavior is very common for
Hred_wp. For the session presented in the first column, it suggests
“divorce groups groups”, for the second “maryland hotel hotel ocean”
and for the third “disney resorts resorts”. Note that this is something
the transformermodels never do.Moreover, Hred_wp doesn’t introduce
new words, it reformulates the queries of the context by mixing words

3.4 experimental settings and results 65

Table 3.3: Generated queries for three sessions. The two first queries of the sessions are given in the top
of the table (Q1 and Q2), and the first 5 suggestions of each model are reported below.

Q1. divorce chat rooms
Q2. divorce support groups

Q1. maryland ocean city
Q2. marylandocean vity hotel

Q1. carobean cruises
Q2. spa resorts
Q3. disney world

Hred_wp

- divorce support groups
- divorce chat groups
- divorce divorce groups
- divorce groups groups
- divorce support

- maryland hotel hotel
- maryland hotel ocean
- maryland hotel hotel ocean
- maryland hotel
- maryland hotel ocean ocean

- disney world resorts
- disney resorts resorts
- disney world
- disney vacation resorts
- disney resorts

TS_wp

- chat room listings
- ebay
- aol chat
- chat rooms
- divorce chat room

- ocean city maryland
- ocean city md
- mapquest
- ocean county maryland
- expedia

- disney world
- travelocity
- disney world hotels
- disney world cruise
- disney cruise

H_TS_wp

- divorce support groups
- free divorce support groups
- divorce
- divorce chat rooms
- divorce support

- maryland ocean city
- ocean city maryland
- hotels in maryland
- hotel ocean city
- mapquest

- disney world
- sea world
- disneyworld
- carnival cruise
- spa resorts

EncBart

- divorce chat rooms
- divorce chat room
- divorce support group
- divorce support
- divorce chat

- maryland hotel
- maryland hotels
- mapquest
- maryland
- maryland beach hotel

- disney world
- disney world cruises
- disney world texas
- disney world hotels
- disney world resort

H_Bart

- divorce support groups
- divorce
- free divorce chat rooms
- divorce help
- free divorce help

- maryland ocean city
- marriott hotels
- marylando ocean city
- marriott
- mapquest

- disney world
- spa resorts
- disney world cruise
- disney world resorts
- ebay

Bart

- divorce chat rooms
- divorce support groups
- free divorce support groups
- divorce chat room
- free divorce chat rooms

- maryland ocean city hotel
- maryland ocean city
- maryland ocean city hotels
- maryland ocean town hotel
- maryland ocean city resort

- disney world
- spa resorts
- disneyworld
- disney world cruise
- disney world hotels

order. On the contrary, the transformer models propose more diverse
suggestions.
We note that the hierarchical models have a greater tendency to copy

words from the context compared to their flat version (we study this
behavior in the next section). H_TS introduces only one new word

3.4 experimental settings and results 66

Table 3.4: Human evaluation on 100 queries for MS Marco and AOL. Each
cell is the % of times model in row is better than model in column
vs the reverse (and the remaining % is equality)

.

Hred Hred_wp Acg Acg_wp TS TS_wp Bert

MS Marco

Hred_wp 19% vs 18%
Acg 26% vs 29% 22% vs 22%
Acg_wp 20% vs 22% 17% vs 21% 22% vs 24%
TS 32% vs 11% 33% vs 13% 38% vs 16% 36% vs 13%
TS_wp 37% vs 10% 35% vs 10% 42% vs 15% 39% vs 11% 15% vs 10%
Bert 41% vs 10% 38% vs 8% 42% vs 15% 43% vs 11% 25% vs 15% 22% vs 18%
Bart 43% vs 9% 42% vs 11% 45% vs 11% 44% vs 9% 27% vs 15% 21% vs 16% 19% vs 16%

AOL

Hred_wp 23% vs 16%
Acg 13% vs 24% 10% vs 29%
Acg_wp 4% vs 24% 6% vs 32% 7% vs 15%
TS 34% vs 17% 31% vs 20% 35% vs 3% 43% vs 5%
TS_wp 28% vs 15% 24% vs 18% 32% vs 5% 38% vs 5% 13% vs 18%
Bert 34% vs 13% 31% vs 18% 41% vs 9% 44% vs 6% 28% vs 24% 28% vs 19%
Bart 38% vs 17% 35% vs 20% 41% vs 11% 45% vs 8% 30% vs 28% 31% vs 24% 26% vs 24%

(“free”) in the suggestions of the first session, while TS_wp proposes
several new themes (“listings”, “ebay”, “aol”). The second presented
session contains a typo: “marylandocean” instead of “maryland ocean”
with a blank space. The hierarchical H_Bart didn’t succeed to correct
this typo, it proposes “marylando ocean city” because it is more willing
to copy words from the context, and thus a part of this typo, while the
flat transformer models didn’t.
The pre-trained models Bart and H_Bart propose more diverse sug-

gestions compared to the fully trained models. In the session of the
third column, the user performs queries on several topics of the same
subject. While the various models succeed in integrating the diverse
themes in the suggestions, the pre-trainedmodels introducedmore new
topics: “texas”, “hotels”, “ebay”. Finally, we notice that the suggestions
of Bart tend to be longer than the ones of the other models, confirming
the experimental results shown earlier.

3.4.7 Human evaluation

To further investigate the ability of the flat models, we conducted a
human evaluation by comparing 100 queries predicted for AOL and
MS Marco by all the models. The judges were presented with complete
sessions and corresponding suggestions predicted by each model. They
had no knowledge of the ground truth or the user’s goal. In our user
modeling framework, we seek to evaluate whether suggestions make

3.5 analysis of transformer for query suggestion 67

sense to annotators based on the user’s session, not only whether they
are syntactically correct. That’s why judges were asked to evaluate
the suggestions that were most likely to meet the user’s need in the
session by answering the question “is this query likely to follow in the
session?”. They were asked to rank the predictions from most to least
suitable. Annotators are supposed to be able to infer the user’s purpose
from the session. Indeed, no more can be expected from an optimal
policy that only has the user session at its disposal, and this is what
we are trying to assess. Giving the user’s purpose to the annotators
could have biased the evaluation by leading the annotators to evaluate
too negatively many suggestions, even though they corresponded to
average user behavior. We further asked the annotator to rank exact
repetitions and generic queries (e. g. “google”) as bad predictions. We
report in Table 3.4 the % of times a model is judged better than another
one.
The evaluation confirms the results obtained with the other metrics.

The models Acg, Hred and the different transformers are increasingly
better (e. g. on AOL, 27% of predicted queries are better for Bart than
for Hred, and 17% for the other way around). Among transformers, pre-
trained models perform better (5-10% gap), with Bart doing slightly
better than Bert. Regarding Word Piece tokenization, they do perform
better except for transformer on AOL, and for Acg.

3.5 Analysis of transformer for query sug-
gestion

This section is an in-depth analysis of transformers in response to ques-
tions Q2 and Q3.

3.5.1 Robustness of the transformer models

We now look in more detail at how the models behave regarding differ-
ent types of sessions to answer the second question Q2: Which model
is the most robust to complex sessions (a), to noisy sessions (b), and
to long sessions (c)? For each type of session, a section is dedicated to
the answer.

3.5.1.1 Results on complex sessions

Focusing on the real-world dataset AOL, which contains many very
short and simple search sessions typical of web search, we were in-
terested in how transformer models could handle complex sessions.
To identify those, we used a simple heuristic: a complex session (1)
consists of at least three queries; (2) contains queries with more than

3.5 analysis of transformer for query suggestion 68

one word; and (3) should not contain spelling corrections. For (3), we
used the following heuristic: each of its queries must be sufficiently
different from the previous one, i. e. its editing distance (in characters)
should be greater than 3.
Figure 3.5a reports the relative results obtained on this subset of 193

336 complex sessions. In particular, we want to compare the results of
the flat and of the hierarchical models.

We note the good behavior of pre-trained flat transformers for query
suggestions for the complex search task, while it emphasizes the weak-
ness of the pre-trained hierarchical models on these sessions. The flat
models improve the results on these sessions over the corresponding
hierarchical model on all metrics: Bert is less deteriorated than H_Bert,
and likewise, Bart and EncBart are less impacted than H_Bart by the
complexity of the sessions, and the same is true for T5 models. For the
fully trained models, TS_wp is also less impacted than H_TS_wp on this
subset of sessions on all metrics. This shows again the robustness of flat
models.

3.5.1.2 Results on noisy sessions

To assess the robustness of the approaches, we add one random session
at the start of each session of the test set. Since the intent of these added
sessions is not the same (on average) as the intent driving the user’s
behavior when formulating test queries, models must have learned
to identify thematic breaks, and to ignore this noisy information. Fig-
ure 3.5b shows percentages of performance loss for every metric. We
can see that for all models, the flat architectures are much less impacted
than their corresponding hierarchical counterparts. This is an impor-
tant result since the test sessions were arbitrarily split according to a
30-minute timeout, whichmight not correspond to users’ intent changes.
It shows that with the hierarchy, the transformers lose their ability to
focus on the relevant part, and so to adapt themselves to longer sessions.

3.5.1.3 Sessions lengths

We study the impact of the session lengths on the two pre-trained
models Bert and Bart (flat and hierarchical versions) on the AOL
dataset. Results are reported in Figure 3.6. Whatever the metric, the
hierarchical models (in green) perform better than the flat ones (in red)
for short sessions. However, for longer sessions (above 7 queries), it is
the other way around. The flat models scores remain stable while the
scores of the hierarchical models decrease. The hierarchical architecture
of Garg, Dhillon, and Yu (2019) is adapted to short and more simple
sessions search, but for longer and complex tasks the flat transformers

3.5 analysis of transformer for query suggestion 69

(a) Complex sessions

(b) Concatenated sessions

Figure 3.5: Difference between the performance on all the AOL sessions and on
the noisy version (filtered/concatenated). Negative values indicate
a degradation.

are more suitable. We believe that this is due to the fact that hierarchical
transformers cannot focus reliably on the relevant parts of the session.

3.5 analysis of transformer for query suggestion 70

(a) EM (b) BLEU 1

(c) BLEU 2 (d) BLEU 3

(e) BLEU 4 (f) Sim Extrema

(g) Sim Pairwise (h) Legend

Figure 3.6: Models scores depending on the length of the sessions

3.5.2 Query generation

Having studied the robustness of the different models, we know that
Bart is the most suitable model for our task. We now investigate the be-
havior of this latter and design experiments to answer the last question
Q3: How does the flat transformer generate queries?

3.5 analysis of transformer for query suggestion 71

Several papers propose to analyze transformers to check which in-
formation is learned or used (Clark et al., 2019; Jawahar, Sagot, and
Seddah, 2019; Brunner et al., 2020) through either probing different
parts of the layer or by looking at the attention towards the input (Clark
et al., 2019). In this section, we follow this latter line of work, focusing
on specific properties of transformers for query generation.
To do so, we focus on the attention of the decoder towards the encoder

output (see Section 2.1.4), i. e. the attention weights computed for 𝐴d→e.
When generating the (𝑡 + 1)th token, we denote 𝛼(𝑡)

𝑙ℎ𝑖𝑗 the attention from
the 𝑖th decoder token into the 𝑗th encoded token for each layer 𝑙 and
attention head ℎ. To summarize this information, we (1) average the
attention over the different heads – following (Clark et al., 2019); and
(2) only look at the attention of the 𝑗 output token when generating
the 𝑗 + 1 output token. The rationale for the latter is that the generated
token at step 𝑗 + 1 mostly depends on the final representation 𝑡(𝐿𝑑)

𝑗 of
the decoder token 𝑗, as shown in equation(2.3). Moreover, we observed
that the attention did not vary much during the generation process, and
hence those values are close to their average. We denote those averaged
and picked attentions of token 𝑖 on token 𝑗 at the layer 𝑙 as ̃𝛼𝑙𝑖𝑗.
Finally, as shown in (Brunner et al., 2020), the attention weight might

not be a reliable indicator in all cases, since the actualmodification of the
representation depends on the value 𝑣ℎ(𝑠(𝐿)

𝑖) as shown in equation(2.2).
To cater for this problem, we define the importance (of an attention) 𝛽(𝑡)

𝑙ℎ𝑖𝑗
as 𝛼(𝑡)

𝑙ℎ𝑖𝑗‖𝑣𝑙ℎ(𝑠(𝐿)
𝑖)‖. As for the attention, we summarize those values as

̃𝛽𝑙𝑖𝑗. Unless specified, we focus on results for Bart — but most of the
behavior is shared by the different versions of the transformers we
analyzed.

3.5.2.1 The growing importance of queries

In this section, we answer the first sub-question Q3. (a) On which con-
text’s queries does the flat transformer focus its attention? (Sordoni
et al., 2015) claim that the last query — which they called the anchor
query — plays a crucial role in queries suggestions. We verify this claim
by assessing whether more attention was paid to the last queries in a
session or not. For long enough sessions (≥ 5 queries), and for each
query, we first sum the importance ̃𝛽𝑙𝑖𝑗 over its tokens, and normalize
the value by dividing it by its maximum value, so that we can average
sessions of varying length. For the same reason, we normalize the index
of each query by the length of the session, i. e. 𝑖/|𝑆|. In Figure 3.7, we
plot the boxplot of the importance given the normalized index of the
query in the session. The x-axis corresponds to the position of the query
in the session (from left to right: from the beginning to the end of the
session), and the y-axis to the importance of the query.

3.5 analysis of transformer for query suggestion 72

Figure 3.7: Importance of the queries depending on their (normalized, and
using quantiles) positions in a session (average over layers)

We see that there is a trend showing that last queries are more im-
portant for the prediction of the transformers since they have more
impact on the vector used for predicting the output. It also explains the
robustness of Bart on concatenated sessions 3.5b.

3.5.2.2 The importance of the context’s tokens

We now answer the second sub question ofQ3. (b) Onwhich context’s
tokens does Bart focuses its attention?
For each decoded token (including the special token START num-

bered 0), we first look at the importance assigned to encoded tokens.
In Figure 3.8, each cell (𝑖, 𝑗) in the grid gives the importance of the 𝑗𝑡ℎ
token (of each query in the session, e. g. the second token of each query
in the session is numbered “2”) when decoding the 𝑖𝑡ℎ token of the
target query.

We only plot the importance for two representative layers (1 and
12), as we can distinguish two layers groups that behave similarly (not
shown here: 1 to 4, and 8 to 12). We can observe that at layer 1 to 4, the
importance focuses on tokens that match the same position (e. g. the
first tokens of each query and the first decoded token). For the decoder
token START (numbered 0), the importance is more broadly distributed
— which is sensible since nothing has been generated so far. On layers
8 to 12, the importance focuses on tokens that match the next token
position (e. g. the first tokens of each input query for START, the second
tokens of each input query for 𝑡1, etc.). This shows that transformers

3.5 analysis of transformer for query suggestion 73

(a) Layer 𝑙 = 1

(b) Layer 𝑙 = 12

Figure 3.8: Importance of the tokens depending on their position in the queries
(attention of the decoder on the encoder), for layer 1 (a) and layer
12 (b) of the encoder. The X-axis corresponds to the context — i. e.
the encoder tokens (averaged over all queries), while the Y-axis
corresponds to the decoder — i. e. the decoder tokens. For the
decoder, 0 corresponds to the START token. For instance, from (a)
we see that when generating the 3rd token (row of index 2), the
attention is focused mostly on the second token, and also (but less)
on the first and third ones. This is different for the same token at
layer 12 (b), where most of the attention is focused on the third
token of every past query. Results are averaged over 20 000 sessions.

first focus on the matching encoded token before selecting the next
token to generate.
The figure also underlines that Bart, even without explicit hierarchi-

cal architecture, is able to capture the basic structure of sessions, the
attention being in average more focused around the matching tokens
(i. e. same position) of the queries present in the context session (as
shown by the diagonal in both graphs).

3.5 analysis of transformer for query suggestion 74

3.5.2.3 Generating a new token

Finally, we answer the last sub question Q3. (c) How does the model
choose the next token to generate?
This brings interesting questions in terms of the generative process of

the transformer-based architectures. For the START decoder token, we
observe that they first focus on the “[SEP]” encoded tokens, and then
shift their attention to the next ones — relying on the position embed-
ding that is added to the encoded token representations. For the next
tokens to be generated, this is less obvious since the model could simply
focus on a matching token (e. g. the decoder token “cat” matches the
encoded tokens “cat”). As queries are often repeated within a session
with small variations, the tokens might be in the same positions (in av-
erage) in the session queries and in the generated query. Consequently,
to generate the next token, there are two possibilities: either the trans-
former shifts the attention towards a token to the right (position-based
decision), or, the (query) language model of the decoder proposes a
direction in the token space, which is then matched if an encoded token
lies in this direction in the representation space.
To look into this, we used sub-sessions of the form

… … | … A B C … | …A B

for which the next query to be predicted (in red) contains a bi-gram
of tokens (A,B) that exists in the past queries, followed by a different
token C. For example, the target query contains “black/A cat/B” and
the session contains a query with tokens “black/A cat/B sold/C”. We
calculate the probability of generating after “black/A” in the target:

• the target token (“cat/B”) with a probability 𝑃(𝐵|𝑆, 𝐴)

• the token following the bi-gram in the context (“sold/C”) with a
probability 𝑃(𝐶|𝑆, 𝐴)

We do this for two settings: 1) using the original context session as
S and 2) using a modified context session S for which we swapped
tokens B and C in the context (i. e., substituting “black/A sold/C cat/B”
to “black/A cat/B sold/C”). The goal is to assess whether the model
favors a language model (LM) that captured that B usually follows A,
or rather a copy mechanism that mainly considers positions from the
context session (POS). Following this process, the average probabilities
are computed over a set of 20000 sessions and are reported in Table 3.5
for the different transformers.

First, when position (in the context session) and language model
agree (first and second columns), the probabilities are high for the real
target and low otherwise. Among the different models, we note that

3.6 conclusion 75

Table 3.5: Probabilities on mixed and unmixed sessions. For each original and
swapped sessions, the preference of the model is highlighted in red
(for differences above 0.01)

Session 𝑆 original B/C swapped
…A B C … …A C B …

probability 𝑝(𝐵|𝑆, 𝐴) 𝑝(𝐶|𝑆, 𝐴) total 𝑝(𝐵|𝑆, 𝐴) 𝑝(𝐶|𝑆, 𝐴) total
favors LM/POS LM POS LM/POS
TS_wp 0.19 0.03 0.22 0.19 0.03 0.22

H_TS_wp 0.67 0.01 0.68 0.37 0.22 0.59
Bert 0.46 0.01 0.47 0.17 0.23 0.40

EncBart 0.51 0.00 0.51 0.21 0.20 0.41
EncT5 0.57 0.02 0.59 0.21 0.26 0.47
Bart 0.70 0.03 0.73 0.35 0.28 0.63
T5 0.80 0.02 0.82 0.36 0.36 0.72

H_Bert 0.63 0.01 0.64 0.20 0.34 0.54
H_Bart 0.72 0.01 0.73 0.29 0.28 0.57
H_T5 0.68 0.01 0.69 0.31 0.27 0.58

the best performing models (Section 3.4.5) have a very high probability
of generating the token B (between 0.7 and 0.8).
When position (in the context session) and language model disagree

(fourth and fifth column), the behavior of the architectures is quite
different. Apart from the TS_wp (and to a lesser extent its hierarchi-
cal version) which mostly follows the language model (0.03 vs 0.19)
and ignores the context session, we see that all the other models as-
sign balanced probabilities to position and language in these swapped
sessions.
Sufficiently powerful flat models such as Bart appear sufficient to cap-

ture the query organization of sessions, while keeping enough flexibility
to adapt to perturbations. We indeed observe that Bart has both high
probabilities of either following the language model or the position-
based prediction (total probability of 0.63), which is nearly as high
as when the context session and language model match (0.70). This
difference with the other models might explain why Bart is perform-
ing so well: it leverages both the copying mechanism and its powerful
language model.

3.6 Conclusion

Inspired by the success of transformer-based models
(Vaswani et al., 2017) in various NLP and IR tasks, we looked at the
various architectures that could be applied to query generation. We
compared tokenizers, architectures, and different pretraining methods.
We show that while hierarchical models permit to obtain better per-
formance than corresponding flat architectures, they are not adapted

3.6 conclusion 76

for long and complex sessions. We conducted a deeper analysis of the
flat models to understand why they are better at handling these ses-
sions. We analyzed their generation process and found that the flat
transformer is, on one hand, a position model that is able to recover the
structure of a web search session (input queries are concatenated), and
on the other hand, a good (query) language model.
This work could be extended in various directions. It would be worth-

while to look for ways to improve the hierarchical architecture, so the
model could handle more complex search tasks, and could incorpo-
rate signals of various natures (longer history, clicked documents) into
transformer-based architectures. This study is limited to query-based
search sessions, but the hierarchical structure of data is also present in
conversational searches (Aliannejadi et al., 2019; Zamani et al., 2020).
However, while for the query suggestion task users can be modeled
according to their own past actions only, the setting of conversational
search requires considering external data such as the IR system’s an-
swers or available documents in the collection, to drive the user toward
their target documents. It could also focus on working on architectures
able to cope with long sessions, potentially all the user history, using
other recently introduced transformers (Dai et al., 2019; Kitaev, Kaiser,
and Levskaya, 2020; Beltagy, Peters, and Cohan, 2020) that overcome
the limitations of the maximum context length.

The studies conducted on various models allow a thorough compar-
ison of the ability of different models to predict the next user query in
a more or less complex search session. As discussed in Section 2.3.2, a
model with this ability can be used as a user model. The models studied
can easily be enriched by incorporating other actions, such as clicks, into
the model’s input or prediction, in the manner of Borisov et al. (2016)
and Borisov et al. (2018). Transformers are thus excellent behavioral
models or user simulators. However, it would be useful to get a unique
user representation, which could be obtained by using the [CLS] token
representation during training to make it carry more semantics (as is
done by (Liu and Shao, 2022)).
The work carried out in this chapter, beyond the query suggestion

tool, allows us towork on new interactive systemswith fine usermodels.
This is the subject of the next chapter.

Chapter 4:
Interactive IR
To tackle complex IR tasks, where users cannot precisely define their
needs, interaction is paramount. Both query-reformulation approaches
and chatbots are limited for this type of task since the former only
learn to mimic users, while the latter are bounded by the domain they
have been trained on. To take a first step towards truly exploratory and
interactive IR, we introduce a framework, where users navigate docu-
ment collections by expressing their preference among sets of queries
proposed by the system at each step – thus refining the knowledge
about the user’s information need. Our training approach, based on
self-supervised and reinforcement learning techniques, aims at mini-
mizing the amount of interactions required to reach relevant queries,
and thus documents, for users. We experimentally show that the in-
troduced framework enables efficient learning from interactions with
simple user bots, that are demonstrated to generalize well in real-world
settings.

4.1 Introduction

For complex search tasks, when user needs cannot be precisely de-
fined from a single query, interaction with session-based Information
Retrieval systems is essential. Different session-based IR models have
been proposed (Yang, Guan, and Zhang, 2015; Luo, Dong, and Yang,
2015; Luo et al., 2015), but they focus on biasing the document ranking
process, thus preventing the user from truly interacting with the system.
More direct interactions can be provided using query suggestions ap-
proaches (Sordoni et al., 2015; Dehghani et al., 2017; Mustar, Lamprier,
and Piwowarski, 2021), that help users by reformulating their needs
from interactions during the session. Most of them (see Section 3.2)
are based on behavior models to predict the next queries of search
sessions. Finally, chatbots for Information Retrieval, while ambitious
in their goals, are usually ad-hoc systems, that are restricted to simple

77

4.2 irnator overview 78

dialogues for the specific domain they have been trained for (Chen
et al., 2019).
Going further supposes IR systems able to anticipate user behavior

so that they can proactively help users in their search tasks, as well as
systems that can consider various possibilities in the evolution of the
search process.

In this chapter, I first present a brief overview of our framework,
IRnator, which allows a user and a system to cooperate to achieve
the user’s end goal. I then compare the system to existing work in
interactive search that attempts to obtain insights from users to improve
results. In the remainder of the chapter, I describe the framework and
the experiments conducted to test it. This work was published at the
ICTIR conference (ACM SIGIR International Conference on the Theory
of Information Retrieval): Mustar, Lamprier, and Piwowarski (2022)

4.2 IRnator overview

Figure 4.1: IRnator: the proposed framework

Rather than directly attempting to answer the user need, which is
usually ill-defined for complex needs, or trying to have a conversation
with the user about its interests, which is very difficult to efficiently drive
and interpret, we introduce a new kind of interaction methodology
inspired by Akinator-like systems (Groza and Coroama, 2019), i. e.
systems that find a user’s intent by asking questions about it. Our
system (see Figure 4.1) successively proposes 𝐾 query suggestions
among which users can choose their favorite.
We think that this task, while simple, if successfully conducted, can

be the basis of more ambitious conversation-based IR models because
it (1) supposes refining the system’s knowledge about users’ needs to
guide them more quickly toward relevant queries until it uncovers the
user intent; and (2) requires that the system proposes different paths
the user can follow.

4.3 positioning 79

4.3 Positioning

Our work is at the crossroads of many: asking clarifying questions,
query suggestions, interactive IR systems, and user simulation. In this
section, I position our work in relation to existing interactive systems.

Query Suggestion As discussed in Chapters 2 and 3 query sugges-
tion works (Sordoni et al., 2015; Dehghani et al., 2017; Mustar, Lamprier,
and Piwowarski, 2021; Garg, Dhillon, and Yu, 2019; Wu et al., 2018b)
model users’ sessions so as to predict their next query, which is then
used as a suggestion. Most of these works do not take into account user
feedback, except (Wu et al., 2018b) who use clicked (or not) documents.
However, all of these works consider that users’ future queries are rele-
vant suggestions. In contrast, we view query suggestions as a way to
uncover users’ intent.
Our method differs from query suggestion in three other ways. First,

query suggestion focuses on one or a few steps (Sordoni et al., 2015;
Dehghani et al., 2017; Mustar, Lamprier, and Piwowarski, 2021; Garg,
Dhillon, and Yu, 2019; Wu et al., 2018b) of a search session. In contrast,
we aim at helping users to fulfill their information needs.
Second, while query suggestion works mostly focus on behavioral

cloning methods, wherein the agent learns to mimic the user by pre-
dicting future actions, we aim at explicitly shortening the user efforts.
We argue that this is necessary since users do not necessarily know the
best course of actions to reach relevant documents.
Finally, the data needed to train query suggestion models are based

on search session logs. These logs are expensive to obtain and raise
serious questions about user privacy. They are dependent on the search
engine used by the user at the time of extraction and do not allow the
model to generalize if new goals or queries arise. It is thus interesting
to develop models that do not rely on this type of data.

Clarification questions Several works have proposed to ask ques-
tions about users’ goals to infer them. In particular, (Burgener, 2006; Hu
et al., 2018; Wu et al., 2018b) study the Q20 game, and (Yu et al., 2019)
the Akinator game, where the agent asks questions about the goal. In
the proposed framework, the main difference is that the search space is
much higher, and there are no predefined attributes that can guide the
search. More IR-related, (Dhole, 2020) disambiguate an initial query
by asking a question to discriminate the most likely intent, but in a
one-step interactive process that can only be applied when the number
of intents is small.
Some tasks such as product recommendation (Yang et al., 2021b;

Bhattacharya et al., 2017) bear some similarities with our work since
they aim at predicting user intents. These works are generally based on
item (category, etc.) and user metadata (gender, age, location, etc.) and

4.4 problem formalization 80

interaction logs. Our research direction is orthogonal since we focus on
a session-based single intent prediction – beside not using anymetadata
and/or interaction log.

Interactive IR models Closer to our work, interactive search ses-
sions have already been modeled (Yang, Guan, and Zhang, 2015; Luo,
Dong, and Yang, 2015; Luo et al., 2015) as a MDP (Markov Decision
Process), in which the search engine plays the role of the agent. These
works focus on ranking documents, and not on the interaction with the
user, which could provide a better understanding of the user’s goal.
For instance, (Yang, Guan, and Zhang, 2015) studies user behavior
by focusing on syntactic query changes during a session and doesn’t
provide the user with additional information. While (Pallagani and
Srivastava, 2021) uses a setting closer to ours, it learns a strategy to
reach the user’s goal as quickly as possible. However, it works with
structured data (with a hierarchy) and requires conversational data.

User Model Finally, Maxwell and Azzopardi (2016b), Baskaya,
Keskustalo, and Järvelin (2013), Thomas et al. (2014), Maxwell and
Azzopardi (2016b), and Câmara, Maxwell, and Hauff (2022) attempt
to simulate users, based on a more or less complete description of the
user’s need. While simulating IR users in an interactive setting is a
crucial topic to developing better interactive IR systems, such models
are still difficult to use and not so reliable. In this work, we rely on a
simple user heuristic, that allows to get a large number of simulated
sessions needed for training our model and leave for future work the
use of more sophisticated models.

4.4 Problem formalization

Let us consider a session 𝑆 composed of 𝑆 interaction steps between
a user 𝜉 with a goal 𝑔 and an IR system 𝜋. We suppose that the ses-
sion starts with an initial query 𝑞0, which follows a distribution 𝜉0(𝑔) of
initial queries for the user 𝜉 having a need 𝑔. Each interaction step 𝑡 corre-
sponds to 𝑆𝑡 = (𝑄𝑡, 𝑢𝑡), where 𝑄𝑡 = {𝑞1

𝑡 , .., 𝑞𝐾
𝑡 } corresponds to a set of 𝐾

query suggestions, and 𝑢𝑡 is the index of the user’s preferred suggestion
amongst the K. A complete session is denoted as 𝑆 = (𝑞0, 𝑆1, … , 𝑆|𝑆|).
Any user choice 𝑢𝑡 of a given session follows a conditional distribution

about preferences of the user given the goal and the session up to step 𝑡,
i. e. 𝑢𝑡 ∼ 𝜉(𝑢𝑡|𝑔, 𝑆<𝑡, 𝑄𝑡), where 𝑆<𝑡 denotes all interactions before step
𝑡 in the session. Successive sets of questions suggested by the system
also follow a conditional distribution 𝜋(𝑄𝑡|𝑆<𝑡) given the previous
interactions of the session 𝑆<𝑡 at step 𝑡. Finally, a session 𝑆 with a goal 𝑔
follows a distribution 𝒮𝜉

𝜋(𝑔), depending both on the user model 𝜉 and
the suggestion system 𝜋.

4.5 challenges 81

The aim is to suggest query sets 𝑄𝑡 that allow to increase information
about 𝑔 as much as possible at each step, to help users achieve their
goal as soon as possible. We introduce an interactive IR system whose
aim is defined as the following maximization problem, given sessions
with a maximum number of interactions 𝑇:

𝜋∗ = argmax
𝜋

𝔼
𝑔∼𝒢

𝔼
𝑆∼𝒮𝜉

𝜋(𝑔)
⎡⎢
⎣

𝑇
∑
𝑡=0

𝛾𝑡𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑(𝑔, 𝑆≤𝑡)⎤⎥
⎦

(4.1)

where 𝒢 is the distribution of goals and 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑(𝑔, 𝑆≤𝑡) is a binary
function that returns 1 if goal 𝑔 can be directly completed given infor-
mation from 𝑆≤𝑡, and 0 otherwise. The precise definition of 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑
depends on the considered IR system. The proposed framework can
consider complex goals, which implies for instance the interrogation of
a document retrieval system given the last selected query (or the full
past session) and the inspection of the corresponding returned docu-
ments to assess the completion of 𝑔. In practice, it should be set to the
propensity of users to continue their search. In Equation 4.1, 𝛾 ∈]0; 1[is
a discount factor that pushes to prefer sessions that complete goal 𝑔 as
soon as possible. For the sake of simplicity, and to avoid the dependence
on a document collection with its specific retrieval system, we consider
that goal 𝑔 can be expressed as a query 𝑞𝑔 and that 𝑔 is achieved at
step 𝑡 if the system 𝜋 proposes a set of suggestions that includes 𝑞𝑔 i. e.,
𝑞𝑔 ∈ {𝑞1

𝑡 , .., 𝑞𝐾
𝑡 }.

4.5 Challenges

The problem as defined in Equation 4.1 is however particularly difficult
to directly solve using standard Reinforcement Learning algorithms, as
it involves the following challenges:

Query space size Ideally, given a vocabulary 𝑉 of |𝑉| tokens and
a max query length 𝐿, any suggested query 𝑞 lives in 𝑉𝐿. This is huge,
even for reasonably-sized vocabularies, and includes many sequences
that do not correspond to human-readable queries (e.g., with token
sequences that form words that do not exist in the user’s language).
While a prior query-language model could be used, in this work we
simplify the task for 𝜋, by only restraining suggested queries to a set 𝒬
of pre-defined ones, from which the system samples sub-sets at each
step, which allows to greatly restrict the search space. Dealing with
more complex (generative) strategies are left for future works.

Combinatorial action space Even with the reduction of the query
space as proposed above, the action space remains particularly large,
because of its combinatorial aspect: an action for 𝜋 corresponds to select
𝐾 queries from 𝒬, inducing an action space of size 𝒬𝐾. While a policy 𝜋

4.5 challenges 82

composed of a main network (e.g., transformer) with 𝐾 heads on top of
its output would be an option, this still implies a complex search space,
involving a hard credit assignment problem, well known in the multi-
agent RL literature (Foerster et al., 2017). As detailed in the following
section, we assume a well-structured semantic representation space of
queries, that reduces the choice of 𝑄𝑡 to a single point in the space, from
which the set of 𝐾 suggestions can be deterministically determined
(here, by clustering queries).

User model 𝜉 unknown Modeling users of interactive IR systems
is a particularly difficult task (Câmara, Maxwell, and Hauff, 2022). Be-
yond the lack of training IR session data, especially when considering
innovative systems, behaviors of users are very difficult to precisely
predict in many settings, due to the implication of many confounding
factors. While it is well known that behaviors are not stationary during
IR sessions, we assume here that past interactions do not modify users’
preferences during the search. Moreover, rather thanmodeling complex
user behaviors, as done for instance in classical – short term – query
suggestion (Mustar, Lamprier, and Piwowarski, 2021) as discussed in
Chapter 3, we assume in the following a simple user bot as 𝜉, hard-coded
with pre-defined heuristics shared across sessions, though possibly hid-
den from the system agent 𝜋 to be general enough for application of the
model in real-world settings (where minds of users are not accessible).

Very sparse reward problem As defined in Equation 4.1, system 𝜋
must succeed in generating a target query in less than 𝑇 steps to expect
a non-null reward. Thus, in the first steps of learning, no improvement
direction of 𝜋 is given to the learner, preventing it from completing the
task. Reward shaping (Ng, Harada, and Russell, 1999) is a popular way
to densify rewards for such hard problems, where advisories about
states to visit are given as potential functions 𝜙 ∶ 𝒮 → ℝ, with 𝒮 the set
of reachable states in the environment1. In addition to a self-supervised
learning process to initiate the learning process, we consider in the
following a learned model of user intent prediction 𝜙𝑔, based on the
partial user sessions, to drive the learning of 𝜋 following directions
which minimize the uncertainty of 𝑔 with respect to this model.

Note that, assuming a well-known user that deterministically selects
the closest suggestion to its goal in its own Euclidean representation
space 𝜓𝜉, the problem as defined in Equation 4.1 could be greedily
optimized by choosing each step 𝑡 the set of queries that minimizes the
number of admissible goals regarding 𝑆≤𝑡. For a probabilistic user, the
optimal solution could be approximated by suggesting at each step 𝑡 the
set of queries 𝑄𝑡 = {𝑞1

𝑡 , .., 𝑞𝐾
𝑡 } that minimizes the conditional entropy

𝐻(𝐺|𝑈𝑡) with:

1 In our setting, 𝒮 corresponds to the full set of possible search sessions that can be built
for any user from the set of all possible needs.

4.6 learning to drive users towards goals 83

𝐻(𝐺|𝑈𝑡) =
𝐾

∑
𝑢=1

𝜉(𝑢|𝑄𝑡, 𝑆<𝑡)𝐻(𝐺|𝑆≤𝑡) (4.2)

with 𝜉(𝑢|𝑄𝑡, 𝑆<𝑡) the marginal probability that the user selects the
query of index 𝑢 given 𝑄𝑡 and the past of session 𝑆<𝑡, and 𝐻(𝐺|𝑆≤𝑡) =
− ∑𝑔 𝜙(𝑔|𝑆≤𝑡) log𝜙(𝑔|𝑆≤𝑡) the entropy of goal distribution given ses-
sion 𝑆≤𝑡. However, while this can be considered for instance for inter-
active classification with restricted sets of labels and closed questions,
such as in (Yu et al., 2019), this is completely intractable in our setting.

4.6 Learning to drive users towards goals

This section first presents the considered suggestion architecture 𝜋, be-
fore describing self-supervised and reinforcement learning techniques
used to solve the task.

4.6.1 Query suggestion process

Let us consider that the set of all possible queries 𝑞 ∈ 𝒬 belong to a
continuous representation space, i. e. 𝜓(𝑞) ∈ ℝ𝑑. Figure 4.2 depicts the
proposed suggestion process, where 𝜋 is implemented as a Transformer
architecture (Vaswani et al., 2017), which takes as input the session 𝑆
and outputs a set of 𝐾 suggestions (in the figure, 𝐾 = 3).
To provide a diverse set of suggestions, we rely on a clustering process

based on a point 𝜋(𝑆) predicted by our model. The 𝑁 closest queries
from 𝒬 (queries are represented by crosses in the figure), depending
on Euclidean distances in the continuous space 𝜓, are selected and
clustered into 𝐾 groups. Finally, the 𝐾 medoids of clusters are used as
the set of queries 𝑄𝑡 proposed to the user at step 𝑡. The user selects their
preferred query, depending on 𝑔 and 𝜉 (𝑞3

3 in our example), which is
the closest suggestions to 𝑔. This feedback 𝑢𝑡 defines 𝑆𝑡 that is used for
the next suggestion step.

Figure 4.2: Query suggestion process

4.6 learning to drive users towards goals 84

The assumption behind the use of a clustering method (a simple
K-means approach in our experiments) is that the neighborhood 𝜋(𝑆)
in 𝜓 contains the main aspects that can specialize 𝜋(𝑆), which can
be partitioned in relevant sub-topics to present to the user. We argue
that, while the use of hyperbolic representation spaces (Tay, Tuan, and
Hui, 2018) could allow to even improve accuracy (which we leave as a
possible extension of our work), the representation space 𝜙 we consider,
which results from a pre-trained sentence-transformer designed for
semantic search (Reimers and Gurevych, 2019), presents a structure
that fits well with this assumption, with general queries tending to
occupy central positions in the representation space.
The suggestionmodel𝜋 corresponds to a Transformer architecture (Vaswani

et al., 2017), which takes as input sessions concatenation of the initial
query with all past interactions, each 𝑆𝑡 being encoded as the sum of
three representations:

• Query embeddings are obtained by encoding the set of Wikipedia
queries with a pre-trained sentence-transformer (Reimers and
Gurevych, 2019) designed for semantic search. These embeddings
are normalized as suggested by the authors.

• Positional embeddings allowing to retain the temporality of inter-
actions

• User’s action embeddings corresponding to the user’s choice (1
for selected queries, 0 for the others)

We use a FAISS index (Johnson, Douze, and Jégou, 2019) to search
quickly for the top-𝐾 nearest neighbors of a query.

This model 𝜋 is trained using two learning modes: an iterative super-
vision and a training based on reinforcement learning. These modes
are described in the next two sections.

4.6.2 Iterative Supervision

We don’t have any existing sessions, which makes classical supervised
training impossible. Instead, we propose an iterative self-supervision
training.
The iterative process starts with synthetic trajectories generated with

a random model 𝜋0. The suggestion model learns to infer the goal 𝑔
on these sessions. We obtain a suggester 𝜋1 which is better than the
random model 𝜋0, because it proposes suggestions closer to the goal.
New trajectories can then be generated with this new policy. Thus, over
the course of the iterations, the set of generated sessions will be of better
quality, allowing the model to infer more easily the users’ goals.
Precisely, during the iterative supervised learning, we seek at min-

imizing the Euclidean distance between the point 𝜋(𝑆) predicted by

4.6 learning to drive users towards goals 85

the suggestion model and the user’s final goal (represented as 𝐿𝜋 on
Figure 4.2), given various input pairs of (goal, session) as input. At
each iteration 𝑖 of the training algorithm, the following optimization
problem is considered:

argmin
𝜋

∑
(𝑔,𝑆)∈Γ(𝑖)

||𝜓(𝑔) − 𝜋(𝑆)||22 (4.3)

where 𝜓(𝑔) returns the representation of the query targeted by goal 𝑔. In
our work, we focus here on the case where a goal corresponds to a single
target query i. e. 𝜓(𝑔) = 𝑞𝑔. Γ(𝑖) is the training set at iteration 𝑖, obtained
using the distribution of goals 𝒢 and the policy 𝜋(𝑖−1), obtained at
iteration 𝑖 − 1 of the learning, 𝜋0 being a random suggestion policy. At
step 𝑖, after optimization of Equation 4.3, 𝜓 is used as the new policy
𝜋𝑖+1.

4.6.3 Reinforcement Learning

While the iterative supervised learning proposed in the previous sec-
tion enables to train the model accurately, this may suffer from some
limitations:

• no convergence guarantee due to the iterative process which does
not take into account the dependence of the training data on the
optimized model

• strong relatedness with the user heuristics, which prevents from
the ability to adapt to different kinds of users

• no direct consideration of the queries presented to the user.

Thus, we propose here to consider possible refinement of the super-
visedmodel via reinforcement learning techniques, notablyDPPG(Barth-
Maron et al., 2018), a policy gradient approach specifically designed
for continuous actions as it is the case for our setting where the action
corresponds to outputting point 𝜋(𝑆).
The basics of reinforcement learning have been described in Sec-

tion 2.1.6.2. I detail below RL basic algorithms and DDPG.

Let us consider a MDP (𝑆, 𝐴, 𝑅, 𝑃) with 𝑆 the set of states, 𝐴 the set
of actions, 𝑅 ∶ 𝐴 × 𝑆 → ℝ the reward function and 𝑃 the transition
probability 𝑃(𝑠′|𝑎, 𝑠) of being in state 𝑠′ after the agent took the action 𝑎
in state 𝑠. The agent is defined by a policy 𝜋(𝑎|𝑠) which is a distribution
over possible actions 𝑎 ∈ 𝐴 given a state 𝑠 ∈ 𝑆. This policy is trained to
improve the expected reward E[𝑅(𝜏)]

𝜏∼𝜋
.

4.6 learning to drive users towards goals 86

Q-learning In order to get closer to the optimal policy 𝜋∗, an action-
value function 𝑄𝜋 which gives the expected return with the policy 𝜋, a
state 𝑠 and an action 𝑎 is defined:

𝑄𝜋(𝑠, 𝑎) = E𝜏∼𝜋 [𝑅(𝜏) ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎] (4.4)

Bellman equations The majority of RL algorithms are based on
Bellman equations. The idea of the equation is that the value of the next
state is the expected reward from being at this state plus the expected
reward of the next state.

𝑄𝜋(𝑠, 𝑎) = E
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾 E
𝑎′∼𝜋

[𝑄𝜋 (𝑠′, 𝑎′)]] (4.5)

Deep Q-Network Mnih et al. (2015) propose a learning algorithm,
Deep Q-Network (DQN). Let 𝑄∗(𝑠, 𝑎) be the optimal action-value func-
tion, then the optimal action is 𝑎∗(𝑠) = argmax𝑎 𝑄∗(𝑠, 𝑎). Based on the
Bellman equation, with 𝜙 the parameters of 𝑄𝜙, we want to minimize:

𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)∼𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)max
𝑎′

𝑄𝜙 (𝑠′, 𝑎′)))
2
]

(4.6)
where 𝒟 is a set of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑), with 𝑑 = 1 indicating that
the state 𝑠′ is terminal, else 𝑑 = 0 and 𝛾 the discount factor.

DDPG The RL algorithm that we use to train our IRnator framework
is Deep Deterministic Policy Gradient (Barth-Maron et al., 2018) which
extends the DQN algorithm to continuous space. DDPG is built accord-
ing to an actor-critic framework, i. e. two models are learned: the critic
𝑄𝜙 of parameters 𝜙, and the policy 𝜋𝜃 of parameters 𝜃. The Bellman
equation (Equation 4.5) is used to learn 𝑄𝜙 (Equation 4.4), and DDPG
leverages the latter to learn the policy 𝜋𝜃. The algorithm relies on the
fact that the action space is continuous to be able to differentiate 𝑄𝜙
according to the actions, thus instead of computing max𝑎 𝑄(𝑠, 𝑎), it is
approximated with 𝑄𝜙(𝑠, 𝜋𝜃(𝑠)).

The policy 𝜋𝜃 parameters 𝜃 are learned by maximizing:

E
𝑠∼𝒟

[𝑄𝜙 (𝑠, 𝜋𝜃(𝑠))] (4.7)

While critic parameters 𝜙 are learned by minimizing the following
loss:

𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)∼𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑄𝜙targ
(𝑠′, 𝜋𝜃targ

(𝑠′))))
2
]

(4.8)
where 𝒟 is a set of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) and 𝛾 the discount factor.

𝑄𝜙targ
and 𝜋𝜃targ

are target networks that are used to stabilize the training

4.7 experiments 87

by regularly copying the weights from the networks 𝑄𝜙 and 𝜋𝜃 to 𝑄𝜙targ
and 𝜋𝜃targ

.

Intent reward As previously mentioned, to deal with sparse re-
wards, and to gain flexibility regarding the considered user, we propose
to consider a probabilistic intent model 𝜙(𝑔|𝑆≤𝑡) as the intrinsic reward
at each step 𝑡, implemented as a transformer that outputs the mean
vector 𝜇 of a Gaussian 𝒩(𝜇, 𝐼) with unit variance.

This allows rewarding suggestion sets that most improve knowledge
about the hidden user’s goal, according to the user’s answer. The reward
is hence defined as:

𝑅𝑡 = log𝜙(𝑔|𝑆≤𝑡) − log𝜙(𝑔|𝑆<𝑡) (4.9)

where the second term acts as a baseline. If 𝑅𝑡 > 0 the intent model is
getting closer to the goal, thus the last action has been useful. The bigger
the reward, the bigger the information gain. This reward represents the
information gained obtained after the user has been asked the question
and responded to. The closer the intent model is to the goal, in relation
to its previous knowledge, the more the policy is rewarded.
The intent model is refined regularly to update it regarding sessions

generated with the last learned policy, via goal likelihoodmaximization.
Finally, rather than dealing with long-term reinforcement, which

appeared unstable in our experiments, we propose to use a one-step
ahead critic network 𝑄(𝑆<𝑡, 𝜋(𝑆<𝑡)), that simply learns to predict 𝑅𝑡
from past interactions and the output of the suggester 𝜋.

4.7 Experiments

4.7.1 Experimental Details

Data For our experiments, we use the Wikipedia dump from TREC
CAR 2020 (Ramsdell and Dietz, 2020), which is interesting because it
covers a large spectrum of domains and can provide pairs of queries.
Indeed, Wikipedia page titles are used as initial queries, and the names
of the subsections are concatenated to the title to obtain final goals.
For example, for the page `anarchism' which contains a section `his-

tory'with a subsection `prehistoric and ancient world', we get an
initial query-goal pair: (`anarchism', `anarchism prehistoric and

ancient world'). This method provides general initial queries and spe-
cific goals. As the latter are specific, they would probably not have been
the initial query of a user. An important advantage of this method is that
an initial query can lead to different goals, so the model must actually
learn to suggest discriminating queries and to use the user’s answers
(rather than relying only on the first query). Furthermore, to focus on
rather complex search goals, we only kept pages with at least 3 sections,

4.7 experiments 88

each containing at least 2 subsections. Sectionswith too long titles (more
than 3words) or too generic – e.g. see also, references, citations,

sources, further reading, external links, notes, other, notes

and references – are also filtered out. Following this process, we get
633,647 pairs that we split into train and test with a 80-20 ratio. The
data is split so that there is no common goal between the train set and
the test set: test goals were never seen during the training phase. The
scores reported are computed on the test set.
Note that the dataset can be easily expanded with other queries from

different sources. We are aware that using synthetic data has its short-
comings, but using (filtered) query logs would have introduced too
much noise, preventing analyzing the model behavior in such a con-
trolled setting, where learning a working system is already challenging.

𝑆𝐶 𝑆𝑆 𝑆𝑆𝐶𝑟𝑎𝑛𝑑 𝑆𝑆𝐶 𝐷𝐷𝑃𝐺

% success 0.175 0.178 0.308 0.457 0.475
steps 5.212 5.215 5.080 4.571 4.568
min. dist 0.371 0.409 0.415 0.259 0.253

Table 4.1: IRnator. Models scores

Compared Models In our experiments, unless specified otherwise,
we use a simple model to simulate the user’s choices, both at train and
test time (except for the human evaluation experiment): at each step,
our bot user chooses the closest query (in term of Euclidean distance)
to its target goal in the representation space 𝜓. We compare our Self-
Supervised Suggestion model with Clustering (𝑆𝑆𝐶) with three of its
ablations:

• To assess the usefulness of the suggestion model 𝜋, we remove it
in the first ablation (𝑆𝐶). Instead of 𝜋, we use the previous user’s
choice to obtain the next suggestions, i. e. 𝜋𝑆𝐶(𝑆<𝑡) = 𝜓(𝑞𝑢𝑡−1

𝑡−1)
where 𝜓(𝑞𝑢𝑡−1

𝑡−1) is the representation of the 𝑞𝑢𝑡−1
𝑡−1 query.

• The second ablation (𝑆𝑆) removes the clustering step, and replaces
it by proposing the 𝐾 queries closest to 𝜋(𝑆<𝑡). This ablation
allows us to measure the value of clustering.

• Finally, the last ablation (𝑆𝑆𝐶𝑟𝑎𝑛𝑑) considers a random user for
supervision rather than our heuristic bot user described above.
This enables us to determine the extent to which users’ responses
are actually taken into account by the suggestion policy.

Finally, we also consider a policy fine-tuned via RL (𝐷𝐷𝑃𝐺), as de-
scribed in Section 4.6.3.

4.7 experiments 89

All models use 𝐾 = 3 and a maximal session length of 𝑇 = 6. The pol-
icy and the intent models all have the same architecture: a transformer
with 6 heads and 6 layers and a dropout 𝑝 = 0.1. We use a feedforward
network with two layers with hidden size of 768, which corresponds
to the size of the embeddings from the chosen pre-trained sentence-
transformer (Reimers andGurevych, 2019), to compute 𝜋(𝑆<𝑡) from the
contextualized CLS token. The model is optimized with Adam (Kingma
and Ba, 2015) – we observed that the Self-Supervised model converged
quickly after a few steps (around 5-10).

4.7.2 Results

Suggestion policies are evaluated in terms of average success (i. e., the
rate of sessions where the target query was finally suggested by the
system within the T=6 steps of interaction), average number of steps to
complete the task (using 6 if the goal was not reached) and minimum
distance (i. e., the average distance between the closest suggestions and
the target in each session).

Performances of Compared Strategies Table 4.1 reports the re-
sults of the compared policies 𝜋. First, the 𝑆𝐶 ablation obtains the worst
results, which indicates that simply focusing on the neighborhood of
expressed or selected user queries is not enough to help navigation,
validating the usefulness of the learning task. Second, the 𝑆𝑆 ablation
does not demonstrate significantly better results, which points out the
relevance of the use of clustering to ensure the diversity of the sug-
gestions. Third, and very importantly, the 𝑆𝑆𝐶𝑟𝑎𝑛𝑑 approach obtains
significantly worse results than our 𝑆𝑆𝐶, which shows that the latter
succeeds in leveraging useful feedback of users, only suggesting using
the initial query and the structure of available ones is not enough. Fi-
nally, the reinforcement learning approach 𝐷𝐷𝑃𝐺 allows us to obtain
the best results, with no big improvements over the self-supervised
approach 𝑆𝑆𝐶, but showing the potential of using such a way more
flexible learning paradigm that RL enables.

Human Evaluation To analyze if models trained with our heuristic
user can be helpful for real users interacting with the system, we asked
three annotators to use IRnator. At the beginning of each session, they
are given an initial query and a goal to reach (see Section 4.7.1). At
each step, they are asked to select the proposition that corresponds
best to their final goal. Their aim is to navigate towards the specified
target, only via selecting at each step a query among the three proposed.
Suggestions are randomly proposed by one of the compared models,
hidden from the annotator. The results are presented in Table 4.2 with
150 samples per model.

4.8 discussion 90

While the variance is high, we see that the general magnitude of the
measures corresponds to the model scores with the simulated user,
confirming the validity of our approach. The only difference is for 𝑆𝑆
(no clustering) – which can be explained because it is much harder
for a human to know which query is closer to the target when they
are not enough diverse, and for DDPG, which shows that we need
more realistic user models to generalize better. We further discuss these
points in the next section.

𝑆𝑆 𝑆𝐶 𝑆𝑆𝐶 𝐷𝐷𝑃𝐺

% success 0.06 0.21⋆ 0.5⋆† 0.38⋆†

steps 5.71 5.17⋆ 4.25⋆† 4.83⋆

min. dist 0.48 0.34⋆ 0.23⋆† 0.32⋆

Table 4.2: Human evaluation. ⋆ indicates significant gains (𝑝 < 0.05) com-
pared to 𝑆𝑆. † indicates significant gains (𝑝 < 0.05) compared to 𝑆𝐶.

4.8 Discussion

IRnator is a generic framework for interactive search, which allows
to study how an agent can guide a user in a knowledge space so that
they reach their goal with minimal effort. We believe that, for a search
engine, the challenge of learning to interact with a user is ambitious
and requires simplifications that we restate and justify below.

User model Our user behavior is stationary (it does not depend
on the previous interactions) and relies on heuristics. These simulated
users are always able to choose the query closest to their goals (in
the representation space). In reality, it might happen that none of the
proposed queries matches what the user wants or that the user does
not know which query is the best. We should study the possibility for
the user to submit a new query, or to express negative feedback on the
suggestions, rather than being forced to choose a proposition. Future
works should explore more realistic user models, with more possible
actions. However, even with such a simplified setting, we show in our
human evaluation experiment that there exists a correlation between
real and simulated users in terms of reduction of the effort to reach the
goal.

Discrete query space We use a space with a finite number of
queries to focus on the agent role as a guide towards the goal rather than
dealing with text generation problems. However, in our experiments,

4.8 discussion 91

the database contains a large number of query/goals (633,647) from
a Wikipedia dump, a website that covers many domains. The scores
presented are from the test set, thus based on goals never seen in the
training phase. This shows the generalization capacity of our model:
the agent has learned to navigate in this knowledge space. The large
size of the chosen space and the ability to generalize to new goals, allow
us to think that simplifying the space to a finite number of queries is
acceptable.

4.8.1 Conclusion

We introduced the IRnator framework, inspired byAkinator systems (Xie
et al., 2018), for the context of complex search sessions in information
retrieval. The aim of the system is to guess the hidden user’s intent
by suggesting sets of query suggestions and leveraging its feedback.
Rather than hard-coding non-scalable suggestion heuristics, based for
instance on conditional entropy minimization, the associated learning
task aims at discovering efficient strategies according to the user’s be-
havior. An efficient clustering-based solution on top of a Transformer
architecture, learned via self-supervised and reinforcement learning,
was proposed as a first solution for this innovative task.We expect many
promising directions for this very challenging, but crucial, problem of
intent discovery in IR. Those are discussed in the next chapter.

Chapter 5:
Conclusion
5.1 Contributions

In this thesis, I studied the interactions between users and search en-
gines with the long-term goal of assisting users with complex search
tasks. I first focused on modeling users during a search task, before
studying user-system interactions in a simple yet promising framework
named IRnator.

User Model My first contribution was the analysis of query pre-
diction models, which also serve as a query suggestion tool. This task
is interesting since it requires anticipating user behavior from search
engine logs. I compared task-specific models as well as generic lan-
guage generators (e.g. Transformer). These analyses demonstrate that
although models with a task-specific architecture perform well, large
pre-trained Transformers are more robust. Further analyses of the gen-
eration process show that they are able to recover the structure of a
search session and are also good language models. These models could
be used to work on interaction systems as discussed next.

Interactive system The user models we propose mimic users’ be-
havior during their search by learning to predict their next actions.
However, this is usually insufficient since for complex search sessions
where we want to design systems that can reduce the number of session
steps to reach users goal. While there is a lot of work on interactive
recommender systems, for which data are more structured and lim-
ited, there is no common framework for interactive search systems.
Furthermore, evaluating their performances is hard. For this reason,
we propose a paradigm in which the system and users interact in a lim-
ited setting. Inspired by the Akinator system, IRnator seeks to discover
user’s goal by asking them to make their preferences explicit. Although
the framework is restricted, it allows a formalization of the problem
and can be easily extended.

92

5.2 experimental work and perspectives 93

5.2 Experimental work and perspectives

We experimented with several ways to improve both the user model
and the IRnator framework, which is only a first step towards truly
interactive IR, by looking at several aspects: (1) architecture of the
IRnator system, (2) realistic user simulation, (3) design of an intent
model as a reward. We discuss each of these points in the following
sections.

5.2.1 Improved suggestion system

IRnator applies a clustering algorithm to the 𝑘 queries closest to the
predicted intent. However, 𝑘 should depend on the actual user-system
state and not be fixed. Indeed, the space of our query collection does
not have the same density at all points: depending on the topic, the
structure of the neighbor queries change. Therefore, we tested a version
of our model with an additional output to learn the number of queries
to cluster. The results were however similar to the fixed number version.
This negative result can be explained by the fact that clustering itself

might be a limiting factor. Clustering indeed supposes that relevant
facets of any expressed intent are organized hierarchically in the repre-
sentation space. A promising approach to enhance performance would
therefore be hyperbolic representation space (Dhingra et al., 2018).
An alternative is to remove the clustering step. We designed a model

that takes the history as input and directly predicts three suggestions.
Initial experiments have shown that training this model is more com-
plex, resulting in a model that tends to predict the same suggestion
several times, contrary to the clustering approach. This suggests that a
better exploration process is required. Rewards incentivizing diversity
are also envisaged.
This approach, although not yet successful, is promising as it allows

for more flexibility and does not rely on the imperfect clustering from
our initial approach which might have been too naive.

5.2.2 Towards better user models

To simulate users in IRnator, we used a simple heuristic, namely that the
selected query is closer to the final goals in the user’s query space than
other suggestions. Obviously, real users do not make choices in this
way, and even if they did, we do not have access to this space. Therefore,
we need a better user model. For training simulation, one promising
work is to learn a parametric user model. We want to learn a model that
is able to generate realistic search sessions from a small number of user
logs, given a goal (a sampled information need).

5.2 experimental work and perspectives 94

As a preliminary setup to learn complex user models from a limited
number of example sessions, we used a sequence model (a randomly
initialized Transformer). From this model, we can generate a number
of sessions, i.e. sequences of tokens where each token can be thought
of as a user action (e.g., an issued query or a clicked document). The
last action is deemed to be the goal of the user. Given those “user logs”,
we can now study how to learn a robust and realistic user model from
them, that can express preferences among suggestions.

The simplest method to learn a user model is to use a behavioral
cloning algorithm based on supervised learning on the available trajec-
tories, similar to the models seen in Chapter 3. When a large number
of user logs are available, the method succeeds in learning a user who
is almost certain to reach their goal and has a low perplexity with the
language model, i. e. the trajectory is successful and realistic.
On the other hand,when the number of available trajectories is limited,

supervised learning is no longer conclusive. The simulated user fails
to reach the final goal. To cope with this more realistic setting, we
propose to use a RL technique, namely goalGAIL (Ding et al., 2019). In
goalGAIL, an agent generates trajectories given an intent as a goal, and
a discriminator 𝒟 learns to differentiate the real user trajectories from
those generated by the agent. 𝒟 is then used to calculate the reward.
The user model is then used to select the most relevant suggestions
given the need, using likelihood ratios.

This preliminary work allowed us to study user models with the
constraint of a small number of logs. This limitation is all the more
important when proposing new search systems, such as IRnator, for
which no large dataset exists. The next step would be to use real user
logs and more complex user models that could be learned jointly with
the suggestion system.

5.2.3 Enhanced intent model

RL algorithms depend on the defined reward. For the IRnator system,
we proposed in Chapter 4 to use an intent model 𝜋 that predicts the
user goal given past interactions. The better the intent model predicts
the goal, the better the reward and hence the learned IRnator model.
In the experiments presented below, we were interested in how the
IRnator system could represent the user’s needs in a space where it
could predict the user’s goals.
The intent model 𝜋, presented Section 4.6.3, takes as input the history

𝑆 = 𝑆0, … , 𝑆|𝑆| where each interaction step 𝑡 corresponds to 𝑆𝑡 = (𝑄𝑡, 𝑎𝑡),
with𝑄𝑡 = {𝑞1

𝑡 , … , 𝑞𝐾
𝑡 } the set of𝐾 suggestions, and 𝑎𝑡 the user’s preferred

suggestion amongst the K, and predicts a Gaussian probability distri-
bution over the possible goals. We implemented it with a Transformer-

5.2 experimental work and perspectives 95

based model. However, this architecture is not specifically designed
to handle sequences of preferences. In addition, using a Gaussian dis-
tribution in a space learned by our system to generate suggestions is
restrictive. First, the choice of using a normal distribution is limiting.
Second, the suggestions are based on a representation of a need in the
system space, not in the user space. This is a problem since we cannot
realistically assume that the user and the system make their choices in
the same space with same geometry.
We suppose that there exists a transformation 𝜙∗ that maps an infor-

mation need 𝑥 in the system InformationNeed (IN) space (e. g. a query)
to a Euclidean space – called the user Information Need (IN) space –
where the target intent is always closer to the selected suggestions than
to the suggestions discarded by the user. In the following, we aim at
learning this mapping and explore ways to leverage it to better predict
𝑝(𝑔|𝑆). The learned representation of an information need 𝑥 is denoted
as 𝜙(𝑥).

Analytical solution To simplify, first assume that the user’s Infor-
mation Need space is (1) Euclidean and (2) known. We could directly
partition this space with hyperplanes based on the expressed prefer-
ences. This partitioning could be used to discard the non-relevant parts
of the space at each interaction step. Let 𝒳 be the set of all possible
queries and 𝒴𝑡 the current suggestion candidates at step 𝑡. At initial-
ization, 𝒴0 = 𝒳, all queries of the space are candidates. At each step
𝑡, we remove all the candidates ∀𝑥 ∈ 𝒴𝑡 that are further away from
the choice 𝑎𝑡 of the user than any of the suggestions 𝑠𝑡,𝑘. Formally, the
analytical solution is:

𝒴𝑡+1 = 𝒴𝑡\{𝑥 ∈ 𝒴𝑡|∀𝑘 = [1, … , 𝐾], 𝑑𝜙(𝑥, 𝑞𝑘
𝑡) < 𝑑𝜙(𝑥, 𝑎𝑡) with 𝑞𝑘

𝑡 ≠ 𝑎𝑡}
(5.1)

where 𝑑𝜙(𝑎, 𝑏) = 𝑑(𝜙(𝑎), 𝜙(𝑏)) and 𝑑 the Euclidean distance. We can
infer a distribution 𝑝(𝑔|𝑆) for this partitioning by considering the dis-
tribution is uniform amongst candidates in the admissible area. With
𝜙 = Id where Id is the identity function, this solution implies that
the user IN space and the system one are the same. To overcome this
limitation, one possibility is to learn 𝜙 so as to minimize the pairwise
loss:

ℒ(𝒮, 𝑔) =
𝑇

∑
𝑡=1

∑
𝑠𝑡,𝑘∈𝑆𝑡
𝑠𝑡,𝑘≠𝑎𝑡

max(𝑑(𝜙(𝑔), 𝜙(𝑎𝑡) − 𝑑(𝜙(𝑔), 𝜙(𝑠𝑡,𝑘))) + 𝛼, 0) (5.2)

with 𝛼 an hyperparameter, namely the margin. However, using 𝜙 di-
rectly with the proposed analytical solution to compute 𝑝(𝑔|𝑆) is dif-
ficult. First, it requires many computations to extract the remaining
candidates. Second, it is not robust to noisy preferences. In the follow-
ing, we propose to relax this approach.

5.2 experimental work and perspectives 96

𝑛 transformations 𝑛 = 0 𝑛 = 2 𝑛 = 3

Analytic 0.935 0.012 0.011

Bayes 0.487 0.159 0.159

LSTM 0.393 0.173 0.058
Transf 0.552 0.316 0.172

MaxEnt 0.875 0.788 0.800

Table 5.1: 𝑃(𝑔|𝑆) with artificial data. Choices are made by the user in an eu-
clidean representation space (𝑛 = 0). To simulate non-euclidean
users, we report results obtained on entangled representation spaces,
where a given number 𝑛 of non-linear transformations are applied
to items from this initial space. The higher 𝑛, the more different the
user and system spaces are.

Intent model learning Given a cost 𝑐𝜙(𝑥, 𝑆) that reflects the rank
of 𝑥 given the user’s preferences from S, we propose to consider a maxi-
mum entropy distribution that assigns probability mass to the preferred
regions of the space. The latter is defined as 𝑝(𝑔 ∣ 𝑆) ∝ 𝑒−𝑐𝜙(𝑔,𝑆). The
model 𝜙 can be learned by maximizing the likelihood of 𝑝(𝑔|𝑆) for a
set of sampled user sessions, and optimized using a framework similar
to (Finn, Levine, and Abbeel, 2016). 𝜙 is learned such that the cost of a
suggestion ignored by the user is higher than the cost of a suggestion
accepted by the user. Thus, the cost for a query 𝑥 ∈ 𝒳 is defined as:

𝑐𝜙(𝑥, 𝑆) =
𝑇

∑
𝑡=1

∑
𝑠𝑡,𝑘∈𝑆𝑡
𝑠𝑡,𝑘≠𝑎𝑡

max(0, 1 − 𝑑(𝜙(𝑥), 𝜙(𝑠𝑡,𝑘)) + 𝑑(𝜙(𝑥), 𝜙(𝑎𝑡))) (5.3)

with 𝑑 the Euclidean distance.

Experimental setup We compare the above intent model propo-
sition with various methods: (1) using directly the analytic solution
(2) a method that uses Bayes’ theorem to decompose the probability of
goals according to the user’s previous actions (Yu et al., 2019), (3) two
supervised models (a LSTM and a Transformer) that predict a normal
distribution of the goal as in Chapter 4.

Experimental results The models were compared using three dif-
ferent setups. First, by unrealistically assuming that the user and the
system IN space are the same space, i. e. 𝜙∗ = Id, then by using trans-
formations inducing changes between the system and the user space,
implemented by 𝑛 linear transformations, each followed by a tanh acti-
vation.

5.3 discussions and broader vision 97

As expected, experiments (reported in Table 5.1) show that (1) the
analytical solution only works if the user space is perfectly known. (2)
Models following Bayes’ theorem and supervised models performance
decrease when 𝑛 increases. (3) Our method has a stable performance
significantly higher than the transformer-based ones. These results are
quite promising for future work, it suggests that the idea of a user
Information Need space is achievable and should be tested with real
data.
However, these results are preliminary. The experiments were per-

formed using low-dimensional representations of queries, while the
representations generally used in IR are high-dimensional. Moreover,
the results should be confirmed by testing the methods on real users.

To improve our IRnator system, we are furthermore considering sev-
eral further improvements. First, we would like to give users more
freedom by allowing them to not select any of the suggestions, and
eventually to be able to resubmit queries during a session. Also, the
retrieval system needs to be robust to user errors and adapt to the user’s
evolution, so we plan to train IRnator under more realistic conditions,
with an imperfect and non-stationary simulated user. Finally, we want
to extend the query suggestions to document suggestions to get closer
to the search engine framework.

5.3 Discussions and Broader vision

The experiments of the previous section concern medium-term per-
spectives. We will now discuss the prospects for IR in the more distant
future, and I will explain why I believe that the emergence of new
interactive IR systems is fundamental.

5.3.1 Should search engines be conversational sys-
tems?

In Chapter 3, I looked at pre-trained transformer models. The latest
successful transformer was ChatGPT1 which has received a lot of media
attention. This chatbot impresses with its ability to respond consistently
and accurately. This clearly shows the trend of IR engines toward con-
versational IR systems to help users solve complex information needs.
It has been shown that the OpenAI model is able to answer rather

advanced questions, on topics such as crowdfunding or alternative
finance. However, when issuing more complex questions, the model
is not always able to answer, although these answers are easily found
with a search engine (Wenzlaff and Spaeth, 2022).

1 https://openai.com/blog/chatgpt/

5.3 discussions and broader vision 98

The interactions enabled by chatbots may not be enough. Although
users can express themselves freely, dialoguing takes time and is not
always so intuitive. There are more interesting interactions that could
be used, such as rating the results, highlighting some words or images,
or voice interactions.
In addition to this, chatbots make the existence of sources, which

may be contradictory, often invisible. Users need to know who they
are reading. Scrolling around the results is also an essential part of
the search process that the chatbot lacks. Thus, although ChatGPT is
credible and often indistinguishable from human speech, the tool seems
too limited to really allow serious and complex research.
The best of both worlds could be a fusion tool between a retrieval

system and a conversational system. A first step in this direction has
been made with WebGPT(Nakano et al., 2021). This model, based on
GPT-3, answers open-ended questions using a text-based web browser.
Thus, it can query a web browser before answering. An interesting
feature of WebGPT is that it includes sources in these answers, which
informs users more about them. However, I think that the addition of
extra features (multiplication of sources, interactions, etc.) is essential
for a truly interactive search system.
There is still no evidence that chat systems can handle complex infor-

mation needs, as discussed in this thesis, so we need to integrate more
sophisticated ways to model and to interact with users.

5.3.2 Glimpse of the future of IR

In this thesis, I worked on search systems that play a critical role in
information access (as discussed in Chapter 1). It is worth considering
the implications of our work. I now present a discussion of the exist-
ing systems and how interactive search (studied in Chapter 4) could
counteract the almost unchallengeable influence of search engines.
The power of search engines on the opinions and behaviors of their

users has been shown several times. Epstein and Robertson (2015)
showed that by manipulating search engine results it was possible to
influence the voting choices of undecided voters in elections. Pogacar
et al. (2017) exposed the influences of search engines results on their
opinion on the effectiveness of medical treatments.
This influence can have problematic consequences. Firstly, the results

presented perpetuate, or even reinforce, existing biases, and contribute
to the dissemination of false information. In addition, with personaliza-
tion tools and the use of users’ long-term histories, search engines have
been accused of locking users into filter bubbles (Zuiderveen Borge-
sius et al., 2016). These filter bubbles would prevent users from being
exposed to information that contradicts their opinions.
The influence of information search systems is all themore of a danger

as it is possible to play on its mechanisms to highlight certain results or

5.3 discussions and broader vision 99

modify search suggestions. For example, users of the Reddit platform
manipulated Google search results by largely upvoting a post from the
platform. As a result, the query “idiot” led to photos of Donald Trump,
and the query “Michelle Obama” led to a racist photomontage2.
While the results can be manipulated, the user has little control over

what is returned. Interactive search can be seen as one of the levers to
fight against these biases. Users could express their dissatisfaction, and
even explain the reasons for it, to better guide the search system.

2 https://www.theguardian.com/us-news/2018/jul/17/trump-idiot-google-images-
search

5.3 discussions and broader vision 100

Appendix

A Résumé

Bien que les moteurs de recherche actuels fonctionnent convenablement
pour des besoins d’information élémentaires avec des requêtes sim-
ples, il existe des situations pour lesquelles les résultats de recherche
qu’ils retournent ne sont pas satisfaisants. Pour remédier à cela, au
cours de l’histoire des systèmes de recherche, les interactions entre
utilisateurs et machines ont évolué de manière significative. En effet, les
données échangées entre les utilisateurs et les systèmes de recherche
peuvent contenir des informations cruciales au succès de la recherche
d’information.
D’autre part, l’architecture Transformer basée sur le mécanisme d’at-

tention a permis des améliorations considérables pour plusieurs tâches
de langage naturel, comme le résumé ou la traduction. Elle a rapide-
ment été utilisée dans d’autres domaines, dont la recherche d’informa-
tion (RI). Plusieurs modèles de RI ont bénéficié de la capacité de cette
dernière à analyser les relations entre les termes du document et ceux
des requêtes. Cependant, la majorité de ces travaux se sont concentrés
sur la recherche ad hoc. L’objectif de cette thèse est d’étudier la modéli-
sation de l’utilisateur et les interactions utilisateur-machine avec des
modèles Transformers.
Les contributions de cette thèse peuvent être divisées en deux parties,

celles liées à la modélisation de l’utilisateur et celles liées aux systèmes
interactifs.

A.1 Échanges utilisateur-machine

Les échanges entre utilisateurs et systèmes de recherche sont essentiels.
Dans cette partie, je détaille les interactions explicites et implicites, et
expose les différents problèmes pour lesquels il n’existe pas de solutions
satisfaisantes, et comment la modélisation des utilisateurs pourrait
permettre d’améliorer les systèmes de recherche.
Tant qu’ils ne sont pas satisfaits, les utilisateurs cherchent à modifier

les résultats de recherche (Huang and Efthimiadis, 2009). Pour cela,
ils modifient les termes de leur requête initiale pour affiner les résul-
tats en fonction de leurs besoins. Ils influencent aussi les résultats de
recherche de manière inconsciente, via les mécanismes de personnal-
isation des moteurs qui prennent en compte le comportement et les
données personnelles des utilisateurs.
Certains moteurs de recherche, comme Google, mettent en évidence

les résultats liés à l’actualité. Campos et al. (2014). Ils peuvent également
prendre en compte les coordonnées GPS des utilisateurs pour donner
la priorité aux documents en lien avec leur zone géographique
(Tabarcea, Gali, and Fränti, 2017). Le temps et le lieu jouent un rôle

5.3 discussions and broader vision 101

dans les résultats présentés, de même que le type d’appareil utilisé.
Par exemple, la recherche d’information mobile (Tsai et al., 2010) se
consacre à la recherche d’informations à partir de smartphones. Tout
ce qui précède définit l’environnement de recherche, qui joue un rôle
clé dans le comportement et les attentes des utilisateurs, ainsi que dans
les résultats des moteurs de recherche.
Alors que l’environnement, lesmoteurs de recherche et les utilisateurs

déterminent les résultats de recherche, les moteurs de recherche influ-
encent à leur tour les utilisateurs dans leur comportement de recherche.
Tout d’abord, de manière évidente, les utilisateurs se conforment à l’in-
terface affichée. Par exemple, ils expriment leur besoin sous forme de
mots-clés avec les moteurs de recherche, alors qu’ils dialoguent lorsqu’il
s’agit d’interagir avec un chatbot.
Plus généralement, le comportement des utilisateurs peut être analysé

à travers le concept de nudge, élaboré par le prix Nobel d’économie
Richard Thaler et le philosophe et juriste Cass Sunstein (Karlsen and
Andersen, 2019).
Leurs travaux montrent que l’incitation est plus efficace que la co-

ercition pour obtenir un comportement souhaité. Influencer le com-
portement des utilisateurs par un nudge est plus efficace que de les
contraindre. Par exemple, la plupart des moteurs de recherche sont
équipés d’un outil de complétion automatique de requêtes : après que
les utilisateurs aient saisi les premiers caractères de leurs requêtes, les
moteurs de recherche suggèrent une liste de requêtes. Cette liste de
suggestions influence le parcours de recherche ultérieur des utilisateurs.

En conclusion, on ne peut pas penser aux systèmes de recherche sans
considérer leurs utilisateurs, et on ne peut pas étudier ces utilisateurs
sans considérer les algorithmes et les techniques qui composent les
moteurs de recherche. L’objet de cette thèse est précisément d’étudier
à la fois les utilisateurs et la machine lorsque les premiers cherchent à
acquérir des informations. Dans cette thèse, j’étudie les modèles d’util-
isateurs et le processus de recherche interactif afin d’améliorer la qualité
des sessions de recherche.

A.2 Limites des systèmes actuels

Aujourd’hui, l’accès à la connaissance se fait en partie par le biais d’In-
ternet et des moteurs de recherche. Si pour les requêtes simples, les
moteurs de recherche remplissent bien leur rôle, il existe encore des cas
pour lesquels les résultats de recherche ne sont pas satisfaisants. Exam-
inons les principes de base des algorithmes des moteurs de recherche,
avant de discuter de leurs limites.
À l’origine, les systèmes de recherche reposaient sur les statistiques

d’occurrence des mots recherchés dans les documents. D’après cette
méthode plus le nombre d’occurrences est élevé, plus le rang du docu-

5.3 discussions and broader vision 102

ment est élevé. La limite de ces modèles est que les utilisateurs doivent
utiliser exactement les mêmes mots que ceux présents dans les docu-
ments pertinents, ce problème est appelé “vocabulary mismatch”.
Bien que les moteurs de recherche aient considérablement évolué

aujourd’hui, la formulation des requêtes repose toujours sur la corre-
spondance des concepts présents dans la requête et dans le document,
sans toujours se soucier du sens global de la requête. Par conséquent,
cela ne satisfait pas toujours le besoin d’information. Par exemple, un
utilisateur qui cherche “Quel animal ne mange pas de laitue ?” n’obtien-
dra que des pages sur les animaux dont le régime alimentaire contient
de la laitue. En effet, les documents sur les animaux mentionnent ce
qu’ils mangent mais pas ce qu’ils ne mangent pas.
Comme deuxième exemple des limites des moteurs de recherche,

considérons les cas où le besoin d’information doit être décomposé en
plusieurs requêtes. Dans ces cas, les moteurs de recherche échouent
généralement. Par exemple, Google trouve des résultats pertinents pour
les requêtes “héros film amoureux d’une AI” et “couleur film Her”,i. e.
des pages qui traitent du film Her dans le premier cas, et les pages qui
décrivent la prépondérance du rouge dans le film Her dans le second.
En revanche, lors de la recherche de “couleur film héros amoureux
d’une AI”, le moteur de recherche n’envoie que les documents qui évo-
quent le film et non la couleur rouge. Dans cet exemple, pour atteindre
leur objectif, les utilisateurs doivent effectuer deux requêtes. Pour de
tels besoins d’information, les utilisateurs essaieront probablement de
nouvelles requêtes pour obtenir les informations qu’ils recherchent.
Plus généralement, Carmel and Yom-Tov (2010) ont établi une tax-

onomie des situations qui peuvent faire échouer un systèmede recherche,
et donc conduire les utilisateurs à réitérer le processus. Ces situations
sont regroupées en deux catégories, celles où les systèmes ne parvien-
nent pas à identifier et à couvrir tous les aspects du sujet et celles où il
analyse de manière incorrecte le sens de la requête. Dans la première
catégorie, les systèmes font ressortir un aspect non pertinent ou alors
omettent un aspect pertinent. C’est le cas de la requête “couleur film
héros amoureux d’une AI” pour laquelle l’aspect “couleur” a échappé à
Google. La deuxième catégorie comprend les échecs d’identification des
relations entre les termes, des relations de proximité ou de la générali-
sation d’un terme (par exemple, l’extension du mot “Europe” à un pays
spécifique comme la “France”). La requête “quel animal ne mange pas
de laitue ?” entre dans cette catégorie : le moteur de recherche considéré,
Google, ne prend pas en compte la négation. Les interactions avec la
machine pourraient permettre aux utilisateurs de montrer, de manière
indirecte et non explicite, qu’ils ne sont pas satisfaits des résultats.

5.3 discussions and broader vision 103

A.3 Influences mutuelles entre utilisateurs et machines

Les interactions entre utilisateurs et machines ont beaucoup évolué
depuis les débuts des moteurs de recherche. Les utilisateurs étaient
assez passifs et interagissaient très peu avec le moteur de recherche.
Les seules interactions possibles étaient celles avec les requêtes et les
résultats de recherche renvoyés. Avec les années, et l’intérêt croissant
des chercheurs et des informaticiens pour la recherche d’information,
des outils permettant d’augmenter la qualité et la quantité de ces in-
teractions ont été développés. C’est par exemple le cas de l’outil de
suggestion de requêtes, ou de l’outil de complétion automatique de
requêtes.
Intrinsèquement, le système transmet des informations - les docu-

ments retournés - aux utilisateurs, mais ces derniers transmettent égale-
ment un certain nombre de feedbacks et d’informations de manière
indirecte au système. Par exemple, la reformulation d’une requête con-
stitue une interaction par laquelle les utilisateurs modifient leur requête
pour obtenir des résultats plus pertinents. D’ailleurs, relativement tôt
dans l’histoire de la RI, on a pris en considération l’ajout et la suppres-
sion de termes entre deux requêtes consécutives (Bruza and Dennis,
1997).
D’autres actions peuvent être prises en compte pour améliorer le

système. Par exemple, les liens cliqués pendant une session de recherche
aident à comprendre la trajectoire de la session de recherche (Mei, Zhou,
and Church, 2008), les documents cliqués et ceux ignorés sur la page
des résultats sont une forme de feedback (Ahmad, Chang, and Wang,
2018; Ahmad, Chang, and Wang, 2019), et même le mouvement de la
souris de l’ordinateur (Diaz et al., 2013), ou le mouvement des yeux
sur l’écran (eye-tracking process) (Cutrell and Guan, 2007) fournissent
des informations.

A.4 Modèles utilisateurs

Comme nous l’avons vu dans la section précédente, les machines et les
utilisateurs échangent donc des informations entre eux, et ces informa-
tions peuvent être décisives pour améliorer le processus de recherche.
Nous montrons maintenant comment les modèles d’utilisateur peuvent
aider à tirer parti de ces interactions.
Lors des sessions de recherche d’information, les utilisateurs com-

mencent par une requête initiale, puis effectuent un ensemble d’actions
: ils étudient les documents retournés, cliquent sur certains d’entre eux,
peuvent poursuivre leur navigation sur d’autres pages web, formu-
lent de nouvelles requêtes, et réitèrent jusqu’à ce qu’ils soient satisfaits
ou abandonnent leur recherche. La modélisation des utilisateurs con-
siste à construire un modèle qui prédit tout ou une partie partie de ces
actions. Brusilovsky and Tasso (2004) justifient la nécessité de la mod-
élisation des utilisateurs de cette manière : “le système de recherche

5.3 discussions and broader vision 104

d’information doit suivre dans le temps la manière dont l’utilisateur
comprend et formule ses besoins en information”. La modélisation de
l’utilisateur pourrait permettre au système de s’adapter aux besoins
spécifiques des utilisateurs. Cette modélisation peut être enrichie en
intégrant d’autres données spécifiques aux utilisateurs telles que leur
position géographique (Tabarcea, Gali, and Fränti, 2017), le dispositif
utilisé (Tsai et al., 2010), leurs recherches précédentes (Sordoni et al.,
2015), l’ensemble des langues admissibles, etc. L’amélioration de la
modélisation des utilisateurs a de nombreuses applications potentielles
que nous détaillons ci-dessous.

Améliorer les interactions Les moteurs de recherche et les util-
isateurs interagissent au cours du processus de recherche. D’une part,
les utilisateurs envoient des requêtes et d’autre part, les moteurs de
recherche répondent avec une liste de documents. Pourtant, ce sont
les utilisateurs qui initient les interactions, par la reformulation de la
requête et la navigation dans la page de résultats, qui peuvent être util-
isées comme un feedback implicite. Bien qu’aujourd’hui les moteurs de
recherche ne se contentent pas de classer les documents. Ils disposent
de plusieurs stratégies pour améliorer l’expérience de recherche, telles
que la mise en évidence des réponses, les suggestions de recherche, ou
l’agrégation des résultats. Des interactions plus riches entre les deux par-
ties pourraient améliorer les expériences de recherche. La prédiction des
prochaines requêtes des utilisateurs, qui est une forme de modélisation,
est utilisée par les outils de suggestions de requêtes et d’autocomplé-
tion (Sordoni et al., 2015; Dehghani et al., 2017; Mustar, Lamprier, and
Piwowarski, 2021). Ces outils sont particulièrement importants dans le
cas de recherches complexes pour guider les utilisateurs et leur faire
gagner du temps. Une façon de rendre les interactions plus pertinentes
est de modéliser correctement les utilisateurs pendant leur session de
recherche. Cela a aussi été fait, par exemple, en prédisant l’intention
des utilisateurs puis en leur posant des questions de clarification sur
leur intention (Dhole, 2020).

Améliorer les interfaces L’interface classique des moteurs de
recherche avec des résultats présentés sous forme de liste de documents
est remise en question. Ainsi, certains moteurs de recherche proposent
désormais des résultats de recherche verticaux qui consistent à agréger
des résultats de différents types (texte, image, vidéo, news…) dans
une interface ergonomique qui permet aux utilisateurs de trouver plus
rapidement l’information qu’ils recherchent (Zhou et al., 2013).
Les interfaces présentées aux utilisateurs peuvent également être

personnalisées grâce à des modèles d’utilisateurs. On parle alors d’ap-
plications Web adaptatives. Un travail représentatif dans ce domaine
est celui de Lohmann, Kaltz, and Ziegler (2006) qui propose une ap-
proche pour prendre en compte les informations des utilisateurs dans

5.3 discussions and broader vision 105

la façon dont leur interface graphique est affichée. Cependant, ils mon-
trent qu’une adaptation ratée perturbe l’utilisateur, ce qui limite les
propositions d’adaptation et les tâches pour lesquelles l’interface peut
être personnalisée.

Entraînement avec des utilisateurs simulés Les systèmes de RI
interactifs sont aujourd’hui des systèmes paramétriques, ils peuvent
être entraînés en simulant les décisions des utilisateurs telles que leurs
requêtes, leurs clics et leur satisfaction globale. L’entraînement de tels
algorithmes nécessite des milliers d’interactions, ce qui est impossible à
obtenir. Demême, leur évaluation sur un nombre suffisant d’utilisateurs
réels est très coûteuse.

Améliorer lesmétriques Lesméthodes deRI qui visent à améliorer
certaines métriques, telles que la précision ou le rappel, sont dites
system-centered. À l’inverse, les recherches qui utilisent des utilisa-
teurs réels pour évaluer leurs performances sont dites user-centered.
Un écart a été constaté entre ces deux types de mesures, car il n’y a pas
toujours de corrélation entre les mesures et la satisfaction des utilisa-
teurs (Liu et al., 2019a). Cet écart montre que les mesures automatiques
ne sont pas toujours satisfaisantes. Par conséquent, l’entraînement ou
l’évaluation d’un modèle sur ces métriques n’est pas forcément très
fructueux. En revanche, unmodèle d’utilisateur parfait pourrait prédire
si un utilisateur est satisfait ou non. Un utilisateur simulé pourrait être
utilisé pendant l’entraînement pour définir une reward, ou pendant
l’évaluation du modèle, à un coût bien inférieur à celui d’une évalua-
tion humaine coûteuse (Dupret and Piwowarski, 2013).

Dans cette thèse, je travaille sur la modélisation utilisateur afin
d’améliorer les interactions utilisateur-machine, c’est l’angle d’attaque
qui me semble le plus prometteur pour améliorer le processus de
recherche classique. La modélisation des utilisateurs en RI va au-delà
des moteurs de recherche. Elle peut être appliquée à toutes les situ-
ations dans lesquelles les humains et les machines interagissent. Par
exemple, dans le contexte de la modélisation de la résolution de tâches,
comme la traduction automatique ou la comptabilité, les logiciels pour-
raient bénéficier de ces méthodes en anticipant le comportement de
l’utilisateur ou en demandant explicitement des clarifications. Étant
donné l’utilisation importante des machines pour résoudre des tâches
aujourd’hui, il est intéressant de modéliser nos interactions avec elles.

A.5 Contributions

Dans cette thèse, j’ai étudié les interactions entre les utilisateurs et les
moteurs de recherche lors de tâches de recherche complexes. Je me
suis d’abord attaché à modéliser les utilisateurs pendant une tâche de

5.3 discussions and broader vision 106

recherche, avant d’étudier de nouvelles façons d’interagir pour mieux
satisfaire les utilisateurs.

Modèle de l’utilisateur Ma première contribution a été l’analyse
des modèles de prédiction de requêtes, qui servent également d’outil
de suggestion de requêtes. Cette tâche est intéressante car elle nécessite
d’anticiper le comportement des utilisateurs, mais elle est réalisable
grâce aux logs des moteurs de recherche disponibles. J’ai comparé
des modèles spécifiques à cette tâche ainsi que des générateurs de
langage génériques (par exemple, un transformateur). Ces analyses
démontrent que bien que les modèles avec une architecture spécifique à
la tâche soient performants, les transformateurs pré-entraînés de grande
taille sont plus robustes. Une analyse plus poussée du processus de
génération montre qu’ils sont capables de récupérer la structure d’une
session de recherche web et sont également de bons modèles de langue.
Ces modèles peuvent donc être utilisés pour des systèmes interactifs.

Système interactif Après ce travail centré sur l’utilisateur, j’ai étudié
les systèmes d’interaction existants. À ce jour, il n’existe pas de cadre
standard en RI. Alors qu’il existe de nombreux travaux sur les systèmes
de recommandation interactifs, où les données sont plus structurées
et limitées, les systèmes de recherche interactifs sont difficiles à mod-
éliser. De plus, l’évaluation de leurs performances est difficile. Pour
cette raison, nous proposons un paradigme dans lequel le système et les
utilisateurs interagissent dans un cadre limité. Inspiré par le système
Akinator, IRnator cherche à déterminer l’objectif de l’utilisateur en lui
demandant de rendre ses préférences explicites. Bien que le cadre soit
restreint, il permet une formalisation stricte du problème et peut être
étendu facilement.

Bibliography
Abbate, Janet (1999). Inventing the Internet. Cambridge, MA, USA: MIT

Press.
Abolghasemi, Amin, Suzan Verberne, and Leif Azzopardi (2022). “Im-

proving BERT-based Query-by-Document Retrieval with Multi-task
Optimization.” In: Advances in Information Retrieval - 44th European
Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10-14,
2022, Proceedings, Part II. Ed. by Matthias Hagen, Suzan Verberne,
CraigMacdonald, Christin Seifert, Krisztian Balog, Kjetil Nørvåg, and
Vinay Setty. Vol. 13186. Lecture Notes in Computer Science. Springer,
pp. 3–12.

Abri, Sara, Rayan Abri, and Salih Cetin (2020). “A Classification on
Different Aspects of User Modelling in Personalized Web Search.”
In: Proceedings of the 4th International Conference on Natural Language
Processing and Information Retrieval. NLPIR 2020. Seoul, Republic of
Korea: Association for Computing Machinery, pp. 194–199.

Adamopoulou, Eleni and Lefteris Moussiades (2020). “An Overview of
Chatbot Technology.” In: Artificial Intelligence Applications and Innova-
tions. Ed. by Ilias Maglogiannis, Lazaros Iliadis, and Elias Pimenidis.
Cham: Springer International Publishing, pp. 373–383.

Ahmad, Subutai and Jeff Hawkins (2015). Properties of Sparse Distributed
Representations and their Application to Hierarchical Temporal Memory.

Ahmad, Wasi Uddin, Kai-Wei Chang, and Hongning Wang (2018).
“Multi-Task Learning for Document Ranking and Query Suggestion.”
In: International Conference on Learning Representations.

Ahmad, Wasi Uddin, Kai-Wei Chang, and Hongning Wang (2019).
“Context Attentive Document Ranking and Query Suggestion.” In:
Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR’19. New York, NY,
USA: ACM, pp. 385–394.

Alfaro-Paredes, Edwin, Leonardo Alfaro-Carrasco, and Willy Ugarte
(2021). “Query by Humming for Song Identification Using Voice
Isolation.” In: Advances and Trends in Artificial Intelligence. From Theory
to Practice: 34th International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, IEA/AIE 2021, Kuala
Lumpur, Malaysia, July 26–29, 2021, Proceedings, Part II. Kuala Lumpur,
Malaysia: Springer-Verlag, pp. 323–334.

Aliannejadi,Mohammad, HamedZamani, Fabio Crestani, andW. Bruce
Croft (2019). “AskingClarifyingQuestions inOpen-Domain Information-

107

http://books.google.com/books?vid=ISBN0262011727
https://mitpress.mit.edu/9780262511155/inventing-the-internet/
https://doi.org/10.1007/978-3-030-99739-7_1
https://doi.org/10.1007/978-3-030-99739-7_1
https://doi.org/10.1007/978-3-030-99739-7_1
https://doi.org/10.1145/3443279.3443291
https://doi.org/10.1145/3443279.3443291
https://link.springer.com/chapter/10.1007/978-3-030-49186-4_31
https://link.springer.com/chapter/10.1007/978-3-030-49186-4_31
http://dx.doi.org/10.48550/ARXIV.1503.07469
https://arxiv.org/abs/1503.07469
http://dx.doi.org/10.48550/ARXIV.1503.07469
https://arxiv.org/abs/1503.07469
https://openreview.net/pdf?id=SJ1nzBeA-
https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1007/978-3-030-79463-7_27
https://doi.org/10.1007/978-3-030-79463-7_27
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265

bibliography 108

Seeking Conversations.” In: The 42nd International ACM SIGIR Confer-
ence on Research & Development in Information Retrieval. SIGIR’19. New
York, NY, USA: ACM, pp. 475–484.

Allen,Garrett, BenjaminLPeterson,Dhanush kumarRatakonda,Mostofa
Najmus Sakib, Jerry Alan Fails, Casey Kennington, Katherine Lan-
dau Wright, and Maria Soledad Pera (2021). “Engage!: Co-Designing
Search Engine Result Pages to Foster Interactions.” In: Interaction De-
sign and Children. IDC ’21. Athens, Greece: Association for Computing
Machinery, pp. 583–587.

An, Xiangdong, JimmyXiangji Huang, and YuqiWang (2020). “Chapter
Twelve - Diversity and novelty in biomedical information retrieval.”
In: Biomedical Information Technology (Second Edition). Ed. by David
Dagan Feng. Second Edition. Biomedical Engineering. Academic
Press, pp. 369–396.

Aqle, Aboubakr, Kamran Khowaja, and Dena Al-Thani (2020). “Prelim-
inary Evaluation of Interactive Search Engine Interface for Visually
Impaired Users.” In: IEEE Access 8, pp. 45061–45070.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasser-
stein Generative Adversarial Networks.” In: Proceedings of the 34th
International Conference on Machine Learning - Volume 70. ICML’17.
Sydney, NSW, Australia: JMLR.org, pp. 214–223.

Asri, Layla El, Jing He, and Kaheer Suleman (2016). “A Sequence-to-
Sequence Model for User Simulation in Spoken Dialogue Systems.”
In: Proc. Interspeech 2016, pp. 1151–1155.

Aswani, Reema, SP Ghrera, Satish Chandra, and Arpan Kumar Kar
(2021). “A hybrid evolutionary approach for identifying spam web-
sites for search engine marketing.” In: Evolutionary Intelligence 14.4,
pp. 1803–1815.

Barth-Maron, Gabriel, Matthew W. Hoffman, David Budden, Will Dab-
ney, Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, and
Timothy Lillicrap (2018). “Distributional Policy Gradients.” In: Inter-
national Conference on Learning Representations.

Baskaya, Feza, Heikki Keskustalo, and Kalervo Järvelin (2013). “Mod-
eling Behavioral Factors Ininteractive Information Retrieval.” In: Pro-
ceedings of the 22nd ACM International Conference on Information and
Knowledge Management. CIKM ’13. San Francisco, California, USA:
Association for Computing Machinery, pp. 2297–2302.

Beck, Joseph E., Peng Jia, June Sison, and Jack Mostow (2003). “Pre-
dicting Student Help-Request Behavior in an Intelligent Tutor for
Reading.” In: User Modeling 2003. Ed. by Peter Brusilovsky, Albert
Corbett, and Fiorella de Rosis. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 303–312.

Belkin, N.J. (1984). “Cognitive models and information transfer.” In:
Social Science Information Studies 4.2. Special Issue Seminar on the
Psychological Aspects of Information Searching, pp. 111–129.

https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3459990.3465183
https://doi.org/10.1145/3459990.3465183
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-816034-3.00012-2
https://www.sciencedirect.com/science/article/pii/B9780128160343000122
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-816034-3.00012-2
https://www.sciencedirect.com/science/article/pii/B9780128160343000122
http://dx.doi.org/10.1109/ACCESS.2020.2977593
https://ieeexplore.ieee.org/document/9019642
http://dx.doi.org/10.1109/ACCESS.2020.2977593
https://ieeexplore.ieee.org/document/9019642
http://dx.doi.org/10.1109/ACCESS.2020.2977593
https://ieeexplore.ieee.org/document/9019642
https://dl.acm.org/doi/10.5555/3305381.3305404
https://dl.acm.org/doi/10.5555/3305381.3305404
https://www.isca-speech.org/archive/interspeech_2016/asri16_interspeech.html
https://www.isca-speech.org/archive/interspeech_2016/asri16_interspeech.html
https://link.springer.com/article/10.1007/s12065-020-00461-1
https://link.springer.com/article/10.1007/s12065-020-00461-1
https://openreview.net/forum?id=SyZipzbCb
https://doi.org/10.1145/2505515.2505660
https://doi.org/10.1145/2505515.2505660
https://link.springer.com/chapter/10.1007/3-540-44963-9_41
https://link.springer.com/chapter/10.1007/3-540-44963-9_41
https://link.springer.com/chapter/10.1007/3-540-44963-9_41
http://dx.doi.org/https://doi.org/10.1016/0143-6236(84)90070-X
https://www.sciencedirect.com/science/article/pii/014362368490070X

bibliography 109

Beltagy, Iz, Matthew E. Peters, and Arman Cohan (2020). “Longformer:
The Long-Document Transformer.” In: arXiv: 2004.05150.

Bhatia, Sumit, DebapriyoMajumdar, and PrasenjitMitra (2011). “Query
Suggestions in the Absence of Query Logs.” In: The 34th International
ACM SIGIR Conference on Research & Development in Information Re-
trieval. SIGIR ’11. New York, NY, USA: ACM, pp. 795–804.

Bhattacharya, B., I. Burhanuddin, A. Sancheti, and K. Satya (2017).
“Intent-Aware Contextual Recommendation System.” In: 2017 IEEE
International Conference on Data Mining Workshops (ICDMW). Los
Alamitos, CA, USA: IEEE Computer Society, pp. 1–8.

Bidel, Sylvain, Laurent Lemoine, Frédéric Piat, Thierry Artières, and
Patrick Gallinari (June 2003). “Statistical machine learning for track-
ing hypermedia user behaviour.” In: MLIRUM’03 - 2nd Workshop on
Machine Learning, Information Retrieval and User Modeling. Pittsburgh,
PA, United States.

Boldi, Paolo, Francesco Bonchi, Carlos Castillo, Debora Donato, and
Sebastiano Vigna (2009). “Query Suggestions Using Query-Flow
Graphs.” In: Proceedings of the 2009 Workshop on Web Search Click Data.
WSCD ’09. New York, NY, USA: ACM, pp. 56–63.

Bonchi, Francesco, Raffaele Perego, Fabrizio Silvestri, Hossein Vahabi,
and Rossano Venturini (2012). “Efficient Query Recommendations
in the Long Tail via Center-Piece Subgraphs.” In: The 35th Interna-
tional ACM SIGIR Conference on Research & Development in Information
Retrieval. SIGIR ’12. New York, NY, USA: ACM, pp. 345–354.

Borisov, Alexey, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov
(2016). “A Neural Click Model for Web Search.” In: Proceedings of the
25th International Conference on World Wide Web. WWW ’16. Montréal,
Québec, Canada: InternationalWorldWideWebConferences Steering
Committee, pp. 531–541.

Borisov, Alexey, Martijn Wardenaar, Ilya Markov, and Maarten de Rijke
(2018). “AClick SequenceModel forWeb Search.” In: The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information
Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association for Computing
Machinery, pp. 45–54.

Borlund, Pia (Oct. 2009). “User‐Centred Evaluation of Information
Retrieval Systems.” In: pp. 21 –37.

Brajnik, G., G. Guida, and C. Tasso (1990). “User modeling in expert
man-machine interfaces: a case study in intelligent information re-
trieval.” In: IEEE Transactions on Systems, Man, and Cybernetics 20.1,
pp. 166–185.

Brajnik, Giorgio, Giovanni Guida, and Carlo Tasso (1987). “User mod-
eling in intelligent information retrieval.” In: Information Processing &
Management 23.4. Special Issue: Artificial Intelligence and Information
Retrieval, pp. 305–320.

Brin, Sergey and Lawrence Page (1998). “The anatomy of a large-scale
hypertextual Web search engine.” In: Computer Networks and ISDN

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://doi.org/10.1145/2009916.2010023
https://doi.org/10.1145/2009916.2010023
https://doi.ieeecomputersociety.org/10.1109/ICDMW.2017.8
https://hal.archives-ouvertes.fr/hal-01533380
https://hal.archives-ouvertes.fr/hal-01533380
https://doi.org/10.1145/1507509.1507518
https://doi.org/10.1145/1507509.1507518
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1145/2348283.2348332
https://doi.org/10.1145/2872427.2883033
https://doi.org/10.1145/3209978.3210004
https://onlinelibrary.wiley.com/doi/10.1002/9780470033647.ch2
https://onlinelibrary.wiley.com/doi/10.1002/9780470033647.ch2
http://dx.doi.org/10.1109/21.47819
https://ieeexplore.ieee.org/document/47819
http://dx.doi.org/10.1109/21.47819
https://ieeexplore.ieee.org/document/47819
http://dx.doi.org/10.1109/21.47819
https://ieeexplore.ieee.org/document/47819
http://dx.doi.org/https://doi.org/10.1016/0306-4573(87)90020-3
https://www.sciencedirect.com/science/article/pii/0306457387900203
http://dx.doi.org/https://doi.org/10.1016/0306-4573(87)90020-3
https://www.sciencedirect.com/science/article/pii/0306457387900203
http://dx.doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
http://dx.doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X

bibliography 110

Systems 30.1. Proceedings of the Seventh International World Wide
Web Conference, pp. 107–117.

Broccolo, Daniele, Lorenzo Marcon, Franco Maria Nardini, Raffaele
Perego, and Fabrizio Silvestri (Mar. 2012). “Generating Suggestions
for Queries in the Long Tail with an Inverted Index.” In: Information
Processing & Management 48.2, pp. 326–339.

Broder, Andrei (2002). “A Taxonomy of Web Search.” In: SIGIR Forum
36.2, pp. 3–10.

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners.”
In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 1877–1901.

Brunner, Gino, Yang Liu, Damian Pascual, Oliver Richter, Massimil-
iano Ciaramita, and Roger Wattenhofer (2020). “On Identifiability in
Transformers.” In: International Conference on Learning Representations.

Brusilovsky, Peter and Carlo Tasso (2004). “Preface to special issue on
user modeling for web information retrieval.” In: User Modeling and
User-Adapted Interaction 14.2, pp. 147–157.

Bruza, P. D. and S. Dennis (1997). “Query ReFormulation on the Inter-
net: Empirical Data and theHyperindex Search Engine.” In:Computer-
Assisted Information Searching on Internet. RIAO ’97. Montreal, Quebec,
Canada: Le Centre De Hautes Etudes Internationales d’Informatique
Documentaire, pp. 488–499.

Burgener, R (2006). “20q: The neural network mind reader.” In: Goddard
Space Flight Center Engineering Colloquium.

Câmara, Arthur, DavidMaxwell, and Claudia Hauff (2022). “Searching,
Learning, and Subtopic Ordering: A Simulation-Based Analysis.”
In: Advances in Information Retrieval. Ed. by Matthias Hagen, Suzan
Verberne, Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil
Nørvåg, and Vinay Setty. Cham: Springer International Publishing,
pp. 142–156.

Campos, Ricardo, Gaël Dias, Alípio M. Jorge, and Adam Jatowt (2014).
“Survey of Temporal Information Retrieval and Related Applica-
tions.” In: ACM Comput. Surv. 47.2.

Cao, Huanhuan, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen,
and Hang Li (2008). “Context-Aware Query Suggestion by Mining
Click-through and Session Data.” In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD ’08. New York, NY, USA: ACM, pp. 875–883.

Cao, Yang Trista, Sudha Rao, and Hal Daumé III (Aug. 2019). “Control-
ling the Specificity of Clarification Question Generation.” In: Proceed-
ings of the 2019Workshop onWidening NLP. Florence, Italy: Association
for Computational Linguistics, pp. 53–56.

Carmel, David and Elad Yom-Tov (2010). “Estimating the Query Diffi-
culty for Information Retrieval.” In: Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Re-

http://books.google.com/books?vid=ISSN0306-4573
https://doi.org/10.1016/j.ipm.2011.07.005
http://books.google.com/books?vid=ISSN0306-4573
https://doi.org/10.1016/j.ipm.2011.07.005
http://dx.doi.org/10.1145/792550.792552
https://doi.org/10.1145/792550.792552
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=BJg1f6EFDB
https://openreview.net/forum?id=BJg1f6EFDB
https://link.springer.com/article/10.1023/B:USER.0000029016.80122.dd
https://link.springer.com/article/10.1023/B:USER.0000029016.80122.dd
https://dl.acm.org/doi/10.5555/2856695.2856738
https://dl.acm.org/doi/10.5555/2856695.2856738
https://ecolloq.gsfc.nasa.gov/archive/2006-Spring/announce.burgener.html
https://dl.acm.org/doi/10.1007/978-3-030-99736-6_10
https://dl.acm.org/doi/10.1007/978-3-030-99736-6_10
http://dx.doi.org/10.1145/2619088
https://doi.org/10.1145/2619088
http://dx.doi.org/10.1145/2619088
https://doi.org/10.1145/2619088
https://doi.org/10.1145/1401890.1401995
https://doi.org/10.1145/1401890.1401995
https://aclanthology.org/W19-3619
https://aclanthology.org/W19-3619
https://doi.org/10.1145/1835449.1835683
https://doi.org/10.1145/1835449.1835683

bibliography 111

trieval. SIGIR ’10. Geneva, Switzerland: Association for Computing
Machinery, p. 911.

Carterette, Ben, Paul Clough, Mark Hall, Evangelos Kanoulas, and
Mark Sanderson (2016). “Evaluating Retrieval over Sessions: The
TREC Session Track 2011-2014.” In: The 39th International ACM SIGIR
Conference on Research & Development in Information Retrieval. SIGIR
’16. New York, NY, USA: ACM, pp. 685–688.

Ceruzzi, Paul E. (2003). A History of Modern Computing. 2nd ed. Lan-
guage, Speech, and Communication. Cambridge, MA: MIT Press.

Chandramohan, Senthilkumar, Matthieu Geist, Fabrice Lefèvre, and
Olivier Pietquin (Aug. 2011). “User Simulation in Dialogue Systems
using Inverse Reinforcement Learning.” In: Interspeech 2011. Florence,
Italy, pp. 1025–1028.

Chen, Cen, Chilin Fu, Xu Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li,
and Forrest Sheng Bao (2019). “Reinforcement Learning for User In-
tent Prediction in Customer Service Bots.” In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. SIGIR’19. Paris, France: Association for Computing
Machinery, pp. 1265–1268.

Chen, Jia, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma (2020).
“A Context-Aware Click Model for Web Search.” In: Proceedings of the
13th International Conference onWeb Search and DataMining. WSDM ’20.
Houston, TX, USA: Association for Computing Machinery, pp. 88–96.

Chen, Wanyu, Fei Cai, Honghui Chen, and Maarten de Rijke (2018).
“Attention-Based Hierarchical Neural Query Suggestion.” In: The 41st
International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval. SIGIR ’18. New York, NY, USA: ACM, pp. 1093–1096.

Cho, Kyunghyun, Bart vanMerriënboer, Dzmitry Bahdanau, andYoshua
Bengio (Oct. 2014). “On the Properties of Neural Machine Transla-
tion: Encoder–Decoder Approaches.” In: Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation.
Doha, Qatar: Association for Computational Linguistics, pp. 103–111.

Christakopoulou, Konstantina, Alex Beutel, Rui Li, Sagar Jain, and EdH
Chi (2018). “Q&R: A two-stage approach toward interactive recom-
mendation.” In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 139–148.

Clark, Kevin, Urvashi Khandelwal, Omer Levy, and Christopher D.
Manning (2019). “What Does BERT Look at? An Analysis of BERT’s
Attention.” In: Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP. Florence, Italy:
ACL, pp. 276–286.

Cleverdon, Cyril W (1960). “The aslib cranfield research project on
the comparative efficiency of indexing systems.” In: Aslib Proceedings.
MCB UP Ltd.

Cleverdon, Cyril (1967). “The Cranfield tests on index language de-
vices.” In: Aslib proceedings. MCB UP Ltd.

https://doi.org/10.1145/2911451.2914675
https://doi.org/10.1145/2911451.2914675
http://books.google.com/books?vid=ISBN978-0-262-53203-7
https://mitpress.mit.edu/9780262531696/a-history-of-modern-computing/
https://dl.acm.org/doi/10.1145/3331184.3331370
https://dl.acm.org/doi/10.1145/3331184.3331370
https://doi.org/10.1145/3336191.3371819
https://doi.org/10.1145/3209978.3210079
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828

bibliography 112

Cleverdon, Cyril, Jack Mills, and Michael Keen (1966). “Factors deter-
mining the performance of indexing systems.” In.

Conneau, Alexis and Guillaume Lample (2019). “Cross-lingual Lan-
guage Model Pretraining.” In: Advances in Neural Information Process-
ing Systems. Vol. 32. Curran Associates, Inc.

Cooke, M.D. (2011). “CHAPTER SIX. Chemical structure handling by
computer.” In: Information Sources in Chemistry. Ed. by R. T. Bottle and
J. F. B. Rowland. Berlin, Boston: K. G. Saur, pp. 105–116.

Crook, Paul A and AlexMarin (2017). “Sequence to SequenceModeling
for User Simulation in Dialog Systems.” In: INTERSPEECH, pp. 1706–
1710.

Cutrell, Edward and Zhiwei Guan (2007). “What Are You Looking
for? An Eye-Tracking Study of Information Usage in Web Search.”
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’07. San Jose, California, USA: Association for
Computing Machinery, pp. 407–416.

Dai, Xinyi, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming
Tang, Xiuqiang He, Jianye Hao, Jun Wang, and Yong Yu (2021). “An
Adversarial Imitation Click Model for Information Retrieval.” In:
Proceedings of the Web Conference 2021. WWW ’21. Ljubljana, Slovenia:
Association for Computing Machinery, pp. 1809–1820.

Dai, Zhuyun and Jamie Callan (2020). “Context-Aware Document Term
Weighting for Ad-Hoc Search.” In: Proceedings of The Web Conference
2020. WWW ’20. Taipei, Taiwan: Association for Computing Machin-
ery, pp. 1897–1907.

Dai, Zihang, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le,
and Ruslan Salakhutdinov (July 2019). “Transformer-XL: Attentive
LanguageModels beyond a Fixed-Length Context”.” In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: ACL, pp. 2978–2988.

Datcu, M. and K. Seidel (1999). “Query by image content and informa-
tion mining.” In: IEEE 1999 International Geoscience and Remote Sensing
Symposium. IGARSS’99 (Cat. No.99CH36293). Vol. 2, 1335–1337 vol.2.

Datta, Ritendra, Dhiraj Joshi, Jia Li, and James Z. Wang (2008). “Image
Retrieval: Ideas, Influences, and Trends of the New Age.” In: ACM
Comput. Surv. 40.2.

Dehghani, Mostafa, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury
(2017). “Learning to Attend, Copy, and Generate for Session-Based
Query Suggestion.” In: Proceedings of the 26th ACM International on
Conference on Information and Knowledge Management. CIKM ’17. New
York, NY, USA: ACM, pp. 1747–1756.

Delgado, Alejandro, SkoT McDonald, Ning Xu, Charalampos Saitis,
and Mark Sandler (2021). “Learning Models for Query by Vocal
Percussion: A Comparative Study.” In: arXiv preprint arXiv:2110.09223.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(June 2019). “BERT: Pre-training of Deep Bidirectional Transformers

https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/P19-1285
http://dx.doi.org/10.1145/1348246.1348248
http://dx.doi.org/10.1145/1348246.1348248
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/3132847.3133010
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

bibliography 113

for Language Understanding.” In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Vol. 1. Minneapolis, Minnesota:
ACL, pp. 4171–4186.

Dhingra, Bhuwan, Christopher Shallue, Mohammad Norouzi, Andrew
Dai, and George Dahl (June 2018). “Embedding Text in Hyperbolic
Spaces.” In: Proceedings of the Twelfth Workshop on Graph-Based Meth-
ods for Natural Language Processing (TextGraphs-12). New Orleans,
Louisiana, USA: Association for Computational Linguistics, pp. 59–
69.

Dhole, Kaustubh D. (2020). Resolving Intent Ambiguities by Retrieving
Discriminative Clarifying Questions. arXiv: 2008.07559 [cs.AI].

Diaz, Fernando, Ryen White, Georg Buscher, and Dan Liebling (2013).
“Robust Models of Mouse Movement on Dynamic Web Search Re-
sults Pages.” In: Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management. CIKM ’13. San Francisco, Cal-
ifornia, USA: Association for Computing Machinery, pp. 1451–1460.

Ding, Yiming, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp
(2019). “Goal-conditioned imitation learning.” In: Advances in Neural
Information Processing Systems, pp. 15298–15309.

Dumais, Susan (1990). “Indexing by Latent Semantic Analysis.” In:
Journal of the American Society for Information Science 41.6, pp. 391–407.

Dupret, Georges and Benjamin Piwowarski (2013). “Model Based Com-
parison of Discounted Cumulative Gain and Average Precision.” In:
J. of Discrete Algorithms 18, pp. 49–62.

Epstein, Robert and Ronald E. Robertson (2015). “The search engine
manipulation effect (SEME) and its possible impact on the outcomes
of elections.” In: Proceedings of the National Academy of Sciences 112.33,
E4512–E4521. eprint: https://www.pnas.org/doi/pdf/10.1073/
pnas.1419828112.

Finn, Chelsea, Sergey Levine, and Pieter Abbeel (2016). “Guided cost
learning: Deep inverse optimal control via policy optimization.” In:
International conference on machine learning, pp. 49–58.

Foerster, Jakob,Gregory Farquhar, TriantafyllosAfouras,NantasNardelli,
and Shimon Whiteson (May 2017). “Counterfactual Multi-Agent Pol-
icy Gradients.” en. In: arXiv:1705.08926 [cs]. arXiv: 1705.08926.

Forgues, Gabriel, Joelle Pineau, Jean-Marie Larchevêque, and Réal Trem-
blay (2014). “Bootstrapping dialog systems with word embeddings.”
In: Nips, modern machine learning and natural language processing work-
shop. Vol. 2. NIPS’14. Red Hook, NY, USA: Curran Associates Inc.

Formal, Thibault, Benjamin Piwowarski, and Stéphane Clinchant (2021).
“SPLADE: Sparse Lexical and Expansion Model for First Stage Rank-
ing.” In: Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’21. Virtual
Event, Canada: Association for ComputingMachinery, pp. 2288–2292.

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/2008.07559
https://www.microsoft.com/en-us/research/publication/indexing-by-latent-semantic-analysis/
http://dx.doi.org/10.1016/j.jda.2012.10.002
http://dx.doi.org/10.1016/j.jda.2012.10.002
http://dx.doi.org/10.1073/pnas.1419828112
http://dx.doi.org/10.1073/pnas.1419828112
http://dx.doi.org/10.1073/pnas.1419828112
https://www.pnas.org/doi/pdf/10.1073/pnas.1419828112
https://www.pnas.org/doi/pdf/10.1073/pnas.1419828112
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
http://www.cs.cmu.edu/~apparikh/nips2014ml-nlp/camera-ready/forgues_etal_mlnlp2014.pdf

bibliography 114

Frej, Jibril, Philippe Mulhem, Didier Schwab, and Jean-Pierre Chevallet
(2020). “Learning Term Discrimination.” In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’20. Virtual Event, China: Association for
Computing Machinery, pp. 1993–1996.

Gabeur, Valentin, Chen Sun, Karteek Alahari, and Cordelia Schmid
(Aug. 2020). “Multi-modal Transformer for Video Retrieval.” In:
ECCV 2020 - European Conference on Computer Vision. Vol. 12349. Lec-
ture Notes in Computer Science. Glasgow, United Kingdom: Springer,
pp. 214–229.

Gao, Jianfeng, Michel Galley, and Lihong Li (July 2018). “Neural Ap-
proaches to Conversational AI.” In: Proceedings of the 56th AnnualMeet-
ing of the Association for Computational Linguistics: Tutorial Abstracts.
Melbourne, Australia: Association for Computational Linguistics,
pp. 2–7.

Gao, Luyu, Zhuyun Dai, and Jamie Callan (June 2021). “COIL: Revisit
Exact Lexical Match in Information Retrieval with Contextualized In-
verted List.” In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Online: Association for Computational Linguistics,
pp. 3030–3042.

Gao, Yongqing, Guangda Huzhang, Weijie Shen, Yawen Liu, Wen-Ji
Zhou, Qing Da, and Yang Yu (2021). Imitate TheWorld: A Search Engine
Simulation Platform.

Garg, Vikas K., Inderjit S. Dhillon, and Hsiang-Fu Yu (2019). “Mul-
tiresolution Transformer Networks: Recurrence is Not Essential for
Modeling Hierarchical Structure.” In: arXiv: 1908.10408.

Geng, Qian, Ziang Chuai, and Jian Jin (2022). “Webpage retrieval based
on query by example for think tank construction.” In: Information
Processing & Management 59.1, p. 102767.

Gershoum, Anatole (1981). “Figuring out What the User Wants: Steps
toward an Automatic Yellow Pages Assistant.” In: Proceedings of the
7th International Joint Conference on Artificial Intelligence - Volume 1.
IJCAI’81. Vancouver, BC, Canada: Morgan Kaufmann Publishers Inc.,
pp. 423–425.

Goyal, Anirudh, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron
Courville, and Yoshua Bengio (2016). “Professor Forcing: A New
Algorithm for Training Recurrent Networks.” In: Proceedings of the
30th International Conference on Neural Information Processing Systems.
NIPS’16. Barcelona, Spain: Curran Associates Inc., pp. 4608–4616.

Graves, Alex (2013). “Generating Sequences With Recurrent Neural
Networks.” In: CoRR abs/1308.0850. arXiv: 1308.0850.

Groza, Adrian and Loredana Coroama (2019). “A mentalist agent for
identifying characters using dynamic query strategies.” In: 2019 IEEE
15th International Conference on Intelligent Computer Communication and
Processing (ICCP). IEEE, pp. 319–326.

http://dx.doi.org/10.48550/ARXIV.2107.07693
http://dx.doi.org/10.48550/ARXIV.2107.07693
https://arxiv.org/abs/1908.10408
http://dx.doi.org/https://doi.org/10.1016/j.ipm.2021.102767
http://dx.doi.org/https://doi.org/10.1016/j.ipm.2021.102767
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850

bibliography 115

Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville (2017). “Improved Training of Wasserstein
GANs.” In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., pp. 5769–5779.

Gür, Izzeddin, DilekHakkani-Tür, Gokhan Tür, and Pararth Shah (2018).
“User modeling for task oriented dialogues.” In: 2018 IEEE Spoken
Language Technology Workshop (SLT). IEEE, pp. 900–906.

Gyöngyi, Zoltán,HectorGarcia-Molina, and Jan Pedersen (2004). “Com-
bating Web Spam with Trustrank.” In: Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases - Volume 30. VLDB ’04.
Toronto, Canada: VLDB Endowment, pp. 576–587.

Hagen, Matthias, Jakob Gomoll, Anna Beyer, and Benno Stein (2013).
“From Search Session Detection to Search Mission Detection.” In: Pro-
ceedings of the 10th Conference on Open Research Areas in Information Re-
trieval. OAIR ’13. Paris, FRA: Centre de hautes études internationales
d’informatique documentaire, pp. 85–92.

Harman, Donna (1993). “Overview of the First TREC Conference.” In:
Proceedings of the 16th Annual International ACM SIGIR Conference on
Research andDevelopment in Information Retrieval. SIGIR ’93. Pittsburgh,
Pennsylvania, USA: Association for ComputingMachinery, pp. 36–47.

– (2010). “Is the Cranfield Paradigm Outdated?” In: Proceedings of the
33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR ’10. Geneva, Switzerland: Association
for Computing Machinery, p. 1.

Harman, Donna et al. (2019). “Information retrieval: the early years.”
In: Foundations and Trends® in Information Retrieval 13.5, pp. 425–577.

Hassan Awadallah, Ahmed, Ryen W. White, Patrick Pantel, Susan T.
Dumais, and Yi-Min Wang (2014). “Supporting Complex Search
Tasks.” In: Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. CIKM ’14. New
York, NY, USA: ACM, pp. 829–838.

He, He, Derek Chen, Anusha Balakrishnan, and Percy Liang (2018).
“Decoupling Strategy and Generation in Negotiation Dialogues.” In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing. Brussels, Belgium: Association for Computational
Linguistics, pp. 2333–2343.

He, Qi, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee-Peng
Lim, and Hang Li (2009). “Web Query Recommendation via Sequen-
tial Query Prediction.” In: Proceedings of the 2009 IEEE International
Conference on Data Engineering. ICDE ’09. Washington, DC, USA: IEEE
Computer Society, pp. 1443–1454.

Hearst, Marti A. (2009). Search User Interfaces. Cambridge University
Press.

Ho, Jonathan and Stefano Ermon (2016). “Generative Adversarial Im-
itation Learning.” In: Proceedings of the 30th International Conference

https://dl.acm.org/doi/10.5555/2491748.2491769
https://doi.org/10.1145/2661829.2661912
https://doi.org/10.1145/2661829.2661912
http://dx.doi.org/10.1109/ICDE.2009.71
http://dx.doi.org/10.1109/ICDE.2009.71
http://dx.doi.org/10.1017/CBO9781139644082

bibliography 116

on Neural Information Processing Systems. NIPS’16. Barcelona, Spain:
Curran Associates Inc., pp. 4572–4580.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term
Memory.” In: Neural Comput. 9.8, pp. 1735–1780.

Howard, Jeremy and Sebastian Ruder (July 2018). “Universal Language
Model Fine-tuning for Text Classification.” In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics. Vol. 1:
Long Papers. Melbourne, Australia: ACL, pp. 328–339.

Hu, Huang, Xianchao Wu, Bingfeng Luo, Chongyang Tao, Can Xu, Wei
Wu, and Zhan Chen (2018). “Playing 20 question game with policy-
based reinforcement learning.” In: arXiv preprint arXiv:1808.07645.

Huang, Chien-Kang, Lee-Feng Chien, and Yen-Jen Oyang (May 2003).
“Relevant Term Suggestion in Interactive Web Search Based on Con-
textual Information in Query Session Logs.” In: Journal of the American
Society for Information Science and Technology 54.7, pp. 638–649.

Huang, Jeff and Efthimis N. Efthimiadis (2009). “Analyzing and Evalu-
ating Query Reformulation Strategies in Web Search Logs.” In: Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Man-
agement. CIKM ’09. Hong Kong, China: Association for Computing
Machinery, pp. 77–86.

Information Science in Transition (2009). Facet.
Jaeger, Herbert (2002). “Tutorial on training recurrent neural networks,

covering BPPT, RTRL, EKF and the echo state network approach.” In.
Jain, Alpa, Umut Ozertem, and Emre Velipasaoglu (2011a). “Synthesiz-

ing High Utility Suggestions for Rare Web Search Queries.” In: The
34th International ACM SIGIR Conference on Research & Development in
Information Retrieval. SIGIR ’11. New York, NY, USA: ACM, pp. 805–
814.

– (2011b). “Synthesizing High Utility Suggestions for Rare Web Search
Queries.” In: The 34th International ACM SIGIR Conference on Research
& Development in Information Retrieval. SIGIR ’11. New York, NY, USA:
ACM, pp. 805–814.

Jang, Kyoung-Rok, Junmo Kang, Giwon Hong, Sung-Hyon Myaeng,
Joohee Park, Taewon Yoon, and Heecheol Seo (Nov. 2021). “Ultra-
High Dimensional Sparse Representations with Binarization for Effi-
cient Text Retrieval.” In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta Cana, Do-
minicanRepublic: Association forComputational Linguistics, pp. 1016–
1029.

Jawahar, Ganesh, Benoît Sagot, and Djamé Seddah (July 2019). “What
Does BERT Learn about the Structure of Language?” In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: ACL, pp. 3651–3657.

Jiang, Jyun-Yu and Wei Wang (2018). “RIN: Reformulation Inference
Network for Context-Aware Query Suggestion.” In: Proceedings of

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/P18-1031
https://www.aclweb.org/anthology/P18-1031
http://books.google.com/books?vid=ISSN1532-2882
https://doi.org/10.1002/asi.10256
http://books.google.com/books?vid=ISSN1532-2882
https://doi.org/10.1002/asi.10256
http://dx.doi.org/10.29085/9781856049986
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024
https://doi.org/10.1145/2009916.2010024
https://www.aclweb.org/anthology/P19-1356
https://www.aclweb.org/anthology/P19-1356
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808

bibliography 117

the 27th ACM International Conference on Information and Knowledge
Management. CIKM ’18. New York, NY, USA: ACM, pp. 197–206.

Joachims, Thorsten, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay (2005). “Accurately Interpreting Clickthrough Data as Im-
plicit Feedback.” In: Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’05. Salvador, Brazil: Association for Computing Machinery,
pp. 154–161.

Johnson, Jeff, Matthijs Douze, and Hervé Jégou (2019). “Billion-scale
similarity search with GPUs.” In: IEEE Transactions on Big Data 7.3,
pp. 535–547.

Kai, Atsuhiko, Yoshifumi Hirose, and Seiichi Nakagawa (1998). “Deal-
ing with out-of-vocabulary words and speech disfluencies in an n-
gram based speech understanding system.” In: The 5th International
Conference on Spoken Language Processing. ISCA.

Karlsen, Randi and Anders Andersen (2019). “Recommendations with
a Nudge.” In: Technologies 7.2.

Khattab, Omar andMatei Zaharia (2020). “ColBERT: Efficient and Effec-
tive Passage Search via Contextualized Late Interaction over BERT.”
In: Proceedings of the 43rd International ACM SIGIR Conference on Re-
search andDevelopment in Information Retrieval. SIGIR ’20. Virtual Event,
China: Association for Computing Machinery, pp. 39–48.

Kiesel, Johannes, Arefeh Bahrami, Benno Stein, Avishek Anand, and
Matthias Hagen (2018). “Toward Voice Query Clarification.” In: The
41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association for
Computing Machinery, pp. 1257–1260.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for
Stochastic Optimization.” In: International Conference on Learning Rep-
resentations.

Kitaev, Nikita, Lukasz Kaiser, and Anselm Levskaya (2020). “Reformer:
The Efficient Transformer.” In: International Conference on Learning
Representations.

Kolomiyets, Oleksandr and Marie-Francine Moens (2011). “A survey
on question answering technology from an information retrieval
perspective.” In: Information Sciences 181.24, pp. 5412–5434.

Kotov, Alexander, Paul N. Bennett, Ryen W. White, Susan T. Dumais,
and Jaime Teevan (2011). “Modeling and Analysis of Cross-Session
Search Tasks.” In: Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR
’11. Beijing, China: Association for Computing Machinery, pp. 5–14.

Kreyssig, Florian, Iñigo Casanueva, Paweł Budzianowski, and Milica
Gašić (July 2018). “Neural User Simulation for Corpus-based Policy
Optimisation of Spoken Dialogue Systems.” In: Proceedings of the
19th Annual SIGdial Meeting on Discourse and Dialogue. Melbourne,
Australia: Association for Computational Linguistics, pp. 60–69.

http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://www.isca-speech.org/archive/icslp_1998/i98_0785.html
http://dx.doi.org/10.3390/technologies7020045
http://dx.doi.org/10.3390/technologies7020045
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

bibliography 118

Kuenzer, Alexander, Christopher Schlick, FrankOhmann, Ludger Schmidt,
Holger Luczak, et al. (2001). “An empirical study of dynamic bayesian
networks for user modeling.” In: Proc. of the UM’2001 Workshop on
Machine Learning for User Modeling. Citeseer, pp. 1–10.

Kumar,Manoj, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn,
Sergey Levine, Laurent Dinh, and Durk Kingma (2020). “VideoFlow:
A Conditional Flow-Based Model for Stochastic Video Generation.”
In: International Conference on Learning Representations.

Landthaler, Jörg, BernhardWaltl, DominikHuth,Daniel Braun, Christoph
Stocker, Thomas Geiger, and Florian Matthes (2017). “Extending The-
sauri Using Word Embeddings and the Intersection Method.” In:
ASAIL@ ICAIL 8.1, pp. 112–119.

Le, Quoc and Tomas Mikolov (2014). “Distributed Representations of
Sentences and Documents.” In: Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32.
ICML’14. Beijing, China: JMLR.org, pp. II–1188–II–1196.

Lei, Wenqiang, Xiangnan He, Yisong Miao, Qingyun Wu, Richang
Hong, Min-Yen Kan, and Tat-Seng Chua (2020). “Estimation-action-
reflection: Towards deep interaction between conversational and rec-
ommender systems.” In: Proceedings of the 13th International Conference
on Web Search and Data Mining, pp. 304–312.

Levine, Nir, Haggai Roitman, and Doron Cohen (2017). “An Extended
Relevance Model for Session Search.” In: The 40th International ACM
SIGIR Conference on Research & Development in Information Retrieval.
SIGIR ’17. New York, NY, USA: ACM, pp. 865–868.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettle-
moyer (July 2020). “BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Translation, and Compre-
hension.” In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. ACL, pp. 7871–7880.

Li, Ruirui, Liangda Li, Xian Wu, Yunhong Zhou, and Wei Wang (2019).
“Click Feedback-Aware Query Recommendation Using Adversarial
Examples.” In: The World Wide Web Conference. WWW ’19. San Fran-
cisco, CA, USA:Association for ComputingMachinery, pp. 2978–2984.

Li, Xiujun, Zachary C. Lipton, Bhuwan Dhingra, Lihong Li, Jianfeng
Gao, andYun-NungChen (2016). “AUser Simulator for Task-Completion
Dialogues.” In: p. 14.

Li, Ziming, Julia Kiseleva, Alekh Agarwal, Maarten de Rijke, and Ryen
W White (2020). “Optimizing Interactive Systems via Data-Driven
Objectives.” In: arXiv preprint arXiv:2006.12999.

Liu, Bing and Ian Lane (2017). “Iterative policy learning in end-to-end
trainable task-oriented neural dialogmodels.” In: 2017 IEEEAutomatic
Speech Recognition and Understanding Workshop (ASRU), pp. 482–489.

Liu, Binsheng, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper
(2021). “Generalizing Discriminative Retrieval Models Using Genera-

https://openreview.net/forum?id=rJgUfTEYvH
https://openreview.net/forum?id=rJgUfTEYvH
https://doi.org/10.1145/3077136.3080664
https://doi.org/10.1145/3077136.3080664
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.microsoft.com/en-us/research/publication/user-simulator-task-completion-dialogues/
https://www.microsoft.com/en-us/research/publication/user-simulator-task-completion-dialogues/
https://doi.org/10.1145/3442381.3449863
https://doi.org/10.1145/3442381.3449863

bibliography 119

tive Tasks.” In: Proceedings of theWeb Conference 2021. WWW ’21. Ljubl-
jana, Slovenia: Association for Computing Machinery, pp. 3745–3756.

Liu, Jingjing and Nicholas J. Belkin (2010). “Personalizing Information
Retrieval for Multi-Session Tasks: The Roles of Task Stage and Task
Type.” In: Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’10. Geneva,
Switzerland: Association for Computing Machinery, pp. 26–33.

Liu, Mengyang, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma
(2019a). “Investigating Cognitive Effects in Session-Level Search User
Satisfaction.” In: Proceedings of the 25th ACM SIGKDD International
Conference onKnowledgeDiscovery&DataMining. KDD ’19. Anchorage,
AK, USA: Association for Computing Machinery, pp. 923–931.

Liu, Qian, Yihong Chen, Bei Chen, Jian-Guang Lou, Zixuan Chen, Bin
Zhou, and Dongmei Zhang (July 2020a). “You Impress Me: Dialogue
Generation via Mutual Persona Perception.” In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, pp. 1417–1427.

Liu, Xiaodong, Yelong Shen, Kevin Duh, and Jianfeng Gao (July 2018).
“Stochastic Answer Networks for Machine Reading Comprehension.”
In: Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics. Vol. 1: Long Papers. Melbourne, Australia: ACL,
pp. 1694–1704.

Liu, Xiaodong et al. (July 2020b). “The Microsoft Toolkit of Multi-Task
Deep Neural Networks for Natural Language Understanding.” In:
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations. ACL, pp. 118–126.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov (2019b). “RoBERTa: A Robustly Optimized BERT Pretraining
Approach.” In: arXiv: 1907.11692.

Liu, Zheng and Yingxia Shao (2022). “Retromae: Pre-training retrieval-
oriented transformers via masked auto-encoder.” In: arXiv preprint
arXiv:2205.12035.

Lohmann, Steffen, J.WolfgangKaltz, and Jürgen Ziegler (2006). “Model-
Driven Dynamic Generation of Context-Adaptive Web User Inter-
faces.” In: Proceedings of the 2006 International Conference on Models
in Software Engineering. MoDELS’06. Genoa, Italy: Springer-Verlag,
pp. 116–125.

Luan, Yi, Jacob Eisenstein, Kristina Toutanova, and Michael Collins
(2021). “Sparse, Dense, and Attentional Representations for Text Re-
trieval.” In: Transactions of the Association for Computational Linguistics
9, pp. 329–345.

Luo, Jiyun, Xuchu Dong, and Hui Yang (Sept. 2015). “Session Search
by Direct Policy Learning.” In: Proceedings of the 2015 International
Conference on The Theory of Information Retrieval. ICTIR ’15. New York,
NY, USA: Association for Computing Machinery, pp. 261–270.

https://doi.org/10.1145/3442381.3449863
https://doi.org/10.1145/3442381.3449863
https://doi.org/10.1145/3442381.3449863
https://www.aclweb.org/anthology/P18-1157
https://www.aclweb.org/anthology/2020.acl-demos.16
https://www.aclweb.org/anthology/2020.acl-demos.16
https://arxiv.org/abs/1907.11692
http://dx.doi.org/10.1162/tacl_a_00369
http://dx.doi.org/10.1162/tacl_a_00369

bibliography 120

Luo, Jiyun, Sicong Zhang, Xuchu Dong, and Hui Yang (2015). “De-
signing States, Actions, and Rewards for Using POMDP in Session
Search.” en. In: Advances in Information Retrieval. Ed. by Allan Han-
bury, Gabriella Kazai, Andreas Rauber, and Norbert Fuhr. Lecture
Notes in Computer Science. Cham: Springer International Publishing,
pp. 526–537.

MacAvaney, Sean, Andrew Yates, Arman Cohan, and Nazli Goharian
(2019). “CEDR: Contextualized Embeddings for Document Rank-
ing.” In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR’19. Paris,
France: Association for Computing Machinery, pp. 1101–1104.

Makhzani, Alireza and Brendan J Frey (2015). “Winner-Take-All Au-
toencoders.” In: Advances in Neural Information Processing Systems.
Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett.
Vol. 28. Curran Associates, Inc.

Mallia, Antonio, Omar Khattab, Torsten Suel, and Nicola Tonellotto
(2021). “Learning Passage Impacts for Inverted Indexes.” In: Proceed-
ings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’21. Virtual Event, Canada:
Association for Computing Machinery, pp. 1723–1727.

Maxwell, David and Leif Azzopardi (2016a). “Agents, Simulated Users
and Humans: An Analysis of Performance and Behaviour.” In: Pro-
ceedings of the 25th ACM International on Conference on Information
and Knowledge Management. CIKM ’16. Indianapolis, Indiana, USA:
Association for Computing Machinery, pp. 731–740.

– (2016b). “Simulating Interactive Information Retrieval: SimIIR: A
Framework for the Simulation of Interaction.” In: Proceedings of the
39th International ACMSIGIR Conference on Research andDevelopment in
Information Retrieval. SIGIR ’16. Pisa, Italy: Association for Computing
Machinery, pp. 1141–1144.

Mehrotra, Rishabh and Emine Yilmaz (2017). “ExtractingHierarchies of
Search Tasks& Subtasks via a BayesianNonparametricApproach.” In:
The 40th International ACMSIGIR Conference on Research &Development
in Information Retrieval. SIGIR ’17. New York, NY, USA: ACM, pp. 285–
294.

Mei, Qiaozhu, Dengyong Zhou, and Kenneth Church (2008). “Query
Suggestion Using Hitting Time.” In: Proceedings of the 17th ACM Con-
ference on Information and KnowledgeManagement. CIKM ’08. NewYork,
NY, USA: ACM, pp. 469–478.

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig (2013). “Linguistic
Regularities in Continuous Space Word Representations.” In: Proceed-
ings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Atlanta,
Georgia: Association for Computational Linguistics, pp. 746–751.

Mitra, Bhaskar and Nick Craswell (2015). “Query Auto-Completion
for Rare Prefixes.” In: Proceedings of the 24th ACM International on

https://doi.org/10.1145/3077136.3080823
https://doi.org/10.1145/3077136.3080823
https://doi.org/10.1145/1458082.1458145
https://doi.org/10.1145/1458082.1458145
https://doi.org/10.1145/2806416.2806599
https://doi.org/10.1145/2806416.2806599

bibliography 121

Conference on Information and Knowledge Management. CIKM ’15. New
York, NY, USA: ACM, pp. 1755–1758.

Mnih, Volodymyr et al. (2015). “Human-level control through deep
reinforcement learning.” In: Nature 518.7540, pp. 529–533.

Muhammad, Aliyu (Nov. 2017). “Efficiency of Boolean Search strings
for Information Retrieval.” In:American Journal of Engineering Research
6, pp. 216–222.

Mustar, Agnès, Sylvain Lamprier, and Benjamin Piwowarski (July 2020).
“Using BERT and BART for Query Suggestion.” In: Joint Conference
of the Information Retrieval Communities in Europe. Vol. 2621. CEUR
Workshop Proceedings. Samatan, France: CEUR-WS.org.

– (2021). “On the study of transformers for query suggestion.” In:ACM
Transactions on Information Systems (TOIS) 40.1, pp. 1–27.

Mustar, Agnès, Sylvain Lamprier, and Benjamin Piwowarski (2022).
“IRnator: A Framework for Discovering Users Needs from Sets of
Suggestions.” In: Proceedings of the 2022 ACM SIGIR International Con-
ference on Theory of Information Retrieval. ICTIR ’22. Madrid, Spain:
Association for Computing Machinery, pp. 138–143.

Mysore, Sheshera, Tim O’Gorman, Andrew McCallum, and Hamed
Zamani (2021). “CSFCube - A Test Collection of Computer Science
Research Articles for Faceted Query by Example.” In: Thirty-fifth Con-
ference onNeural Information Processing SystemsDatasets and Benchmarks
Track (Round 2).

Nakano, Reiichiro et al. (2021). “WebGPT: Browser-assisted question-
answering with human feedback.” In: CoRR abs/2112.09332. arXiv:
2112.09332.

Negi, Suraj, Shakhaf Joseph, Cydnelle Alemao, and Vincy Joseph (2020).
“Intuitive User Interface for Enhanced Search Experience.” In: 2020
3rd International Conference on Communication System, Computing and
IT Applications (CSCITA), pp. 115–119.

Ng, Andrew Y., Daishi Harada, and Stuart J. Russell (1999). “Policy
Invariance Under Reward Transformations: Theory and Application
to Reward Shaping.” In: Proceedings of the Sixteenth International Confer-
ence on Machine Learning. ICML ’99. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 278–287.

Nguyen, Tri, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary,
Rangan Majumder, and Li Deng (2016). “MS MARCO: A Human
Generated MAchine Reading COmprehension Dataset.” In: Proceed-
ings of the Workshop on Cognitive Computation: Integrating neural and
symbolic approaches 2016 co-located with the 30th Annual Conference on
Neural Information Processing Systems. Vol. 1773. CEUR Workshop
Proceedings (NIPS’ 2016).

Nogueira, Rodrigo Frassetto and Kyunghyun Cho (2019). “Passage Re-
ranking with BERT.” In: CoRR abs/1901.04085. arXiv: 1901.04085.

Nogueira, Rodrigo, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin (Nov.
2020). “Document Ranking with a Pretrained Sequence-to-Sequence

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://dl.acm.org/doi/fullHtml/10.1145/3470562
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://aclanthology.org/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63

bibliography 122

Model.” In: Findings of the Association for Computational Linguistics:
EMNLP 2020. Online: Association for Computational Linguistics,
pp. 708–718.

Nogueira, Rodrigo, JimmyLin, andAI Epistemic (2019). “Fromdoc2query
to docTTTTTquery.” In: Online preprint 6.

Nogueira, Rodrigo, Wei Yang, Jimmy Lin, and Kyunghyun Cho (2019).
“Document Expansion by Query Prediction.” In: arXiv: 1904.08375.

Ozertem,Umut,Olivier Chapelle, PinarDonmez, andEmreVelipasaoglu
(2012a). “Learning to Suggest: A Machine Learning Framework for
Ranking Query Suggestions.” In: The 35st International ACM SIGIR
Conference on Research & Development in Information Retrieval. New
York, NY, USA: ACM, pp. 25–34.

– (2012b). “Learning to Suggest: A Machine Learning Framework for
Ranking Query Suggestions.” In: The 35th International ACM SIGIR
Conference on Research & Development in Information Retrieval. SIGIR
’12. New York, NY, USA: ACM, pp. 25–34.

Pallagani, Vishal and Biplav Srivastava (2021). “AGeneric Dialog Agent
for Information Retrieval Based on Automated Planning Within a
Reinforcement Learning Platform.” In: Bridging the Gap Between AI
Planning and Reinforcement Learning (PRL).

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (July
2002). “Bleu: a Method for Automatic Evaluation of Machine Trans-
lation.” In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics. Philadelphia, Pennsylvania, USA: ACL,
pp. 311–318.

Pasquale, Frank (2015). The Black Box Society: The Secret Algorithms That
Control Money and Information. USA: Harvard University Press.

Paulus, Romain, Caiming Xiong, and Richard Socher (2017). “A deep
reinforced model for abstractive summarization.” In: arXiv preprint
arXiv:1705.04304.

Phillips, Heather (Sept. 2010). “The Great Library of Alexandria?” In:
Library Philosophy and Practice 2010.

Pogacar, Frances A., Amira Ghenai, Mark D. Smucker, and Charles L.A.
Clarke (2017). “The Positive and Negative Influence of Search Results
on People’s Decisions about the Efficacy of Medical Treatments.” In:
Proceedings of the ACM SIGIR International Conference on Theory of Infor-
mation Retrieval. ICTIR ’17. Amsterdam, TheNetherlands: Association
for Computing Machinery, pp. 209–216.

Pradeep, Ronak, RodrigoNogueira, and JimmyLin (2021). “TheExpando-
Mono-DuoDesign Pattern for Text Rankingwith Pretrained Sequence-
to-Sequence Models.” In: CoRR abs/2101.05667. arXiv: 2101.05667.

Punera, Kunal and Srujana Merugu (2010). “The anatomy of a click:
modeling user behavior on web information systems.” In: Proceedings
of the 19th ACM international conference on Information and knowledge
management, pp. 989–998.

https://aclanthology.org/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63
https://arxiv.org/abs/1904.08375
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://doi.org/10.1145/2348283.2348290
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
http://books.google.com/books?vid=ISBN0674368274
http://books.google.com/books?vid=ISBN0674368274
https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667

bibliography 123

Purves, Ross and Christopher Jones (2011). “Geographic Information
Retrieval.” In: SIGSPATIAL Special 3.2, pp. 2–4.

Qiao, Yifan, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu (2019).
“Understanding the Behaviors of BERT in Ranking.” In: arXiv: 1904.
07531.

Qu, Chen, Chenyan Xiong, Yizhe Zhang, Corby Rosset, W. Bruce Croft,
and Paul Bennett (2020). “Contextual Re-Ranking with Behavior
Aware Transformers.” In: Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’20. Virtual Event, China: Association for Computing Machin-
ery, pp. 1589–1592.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever (2019). “Language models are unsupervised mul-
titask learners.” In: OpenAI blog.

Radlinski, Filip and Nick Craswell (2017). “A Theoretical Framework
for Conversational Search.” In: Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval. CHIIR ’17. Oslo,
Norway: Association for Computing Machinery, pp. 117–126.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu (2020).
“Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer.” In: Journal of Machine Learning Research 21.140, pp. 1–67.

Ramsdell, Jordan and Laura Dietz (2020). “A Large Test Collection for
Entity Aspect Linking.” In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 3109–3116.

Reddy, Pritika, Bibhya Sharma, andKaylashChaudhary (2020). “Digital
Literacy: A Review of Literature.” In: Int. J. Technoethics 11.2, pp. 65–
94.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks.” In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, pp. 3982–3992.

Rich, Elaine (1979). “User modeling via stereotypes.” In: Cognitive Sci-
ence 3.4, pp. 329–354.

Robertson, Stephen and K. Sparck Jones (1976). “Relevance weighting
of search terms.” In: Journal of the American Society for Information
Science 27, pp. 129–146.

Robertson, Stephen, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford (1994). “Okapi at TREC-2.” In: The Second Text REtrieval
Conference (TREC-2). Gaithersburg, MD: NIST, pp. 21–34.

Rocchio, Joseph (1971). “Relevance feedback in information retrieval.”
In: The Smart retrieval system-experiments in automatic document process-
ing, pp. 313–323.

http://dx.doi.org/10.1145/2047296.2047297
http://dx.doi.org/10.1145/2047296.2047297
https://arxiv.org/abs/1904.07531
https://arxiv.org/abs/1904.07531
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://dx.doi.org/10.4018/IJT.20200701.oa1
http://dx.doi.org/10.4018/IJT.20200701.oa1
http://dx.doi.org/https://doi.org/10.1016/S0364-0213(79)80012-9
https://www.microsoft.com/en-us/research/publication/relevance-weighting-of-search-terms/
https://www.microsoft.com/en-us/research/publication/relevance-weighting-of-search-terms/

bibliography 124

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986).
“Learning representations by back-propagating errors.” In: Nature
323, pp. 533–536.

Ruotsalo, Tuukka, Giulio Jacucci, Petri Myllymäki, and Samuel Kaski
(2014). “Interactive Intent Modeling: Information Discovery beyond
Search.” In: Commun. ACM 58.1, pp. 86–92.

Sadikov, Eldar, Jayant Madhavan, Lu Wang, and Alon Halevy (2010).
“Clustering Query Refinements by User Intent.” In: Proceedings of the
19th International Conference on World Wide Web. WWW ’10. New York,
NY, USA: ACM, pp. 841–850.

Salton, G. (1971).The SMARTRetrieval System—Experiments in Automatic
Document Processing. USA: Prentice-Hall, Inc.

Salton, G., A. Wong, and C. S. Yang (1975). “A Vector Space Model for
Automatic Indexing.” In: Commun. ACM 18.11, pp. 613–620.

Santos, Rodrygo L.T., CraigMacdonald, and Iadh Ounis (2011). “Intent-
Aware Search Result Diversification.” In: Proceedings of the 34th Inter-
national ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR ’11. Beijing, China: Association for Computing
Machinery, pp. 595–604.

Schatzmann, Jost, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve
Young (Apr. 2007). “Agenda-Based User Simulation for Bootstrap-
ping a POMDP Dialogue System.” In: Human Language Technologies
2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Companion Volume, Short Papers. Rochester,
New York: Association for Computational Linguistics, pp. 149–152.

Schatzmann, Jost and Steve Young (2009). “The Hidden Agenda User
Simulation Model.” In: IEEE Transactions on Audio, Speech, and Lan-
guage Processing 17.4, pp. 733–747.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov (2017). “Proximal policy optimization algorithms.” In:
arXiv preprint arXiv:1707.06347.

Schuster, M. and K.K. Paliwal (1997). “Bidirectional recurrent neural
networks.” In: IEEE Transactions on Signal Processing 45.11, pp. 2673–
2681.

Scialom, Thomas, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo
Staiano (Nov. 2019a). “Answers Unite! Unsupervised Metrics for Re-
inforced Summarization Models.” In: 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). ACL
Anthology. Hong Kong, China: Association for Computational Lin-
guistics, pp. 3237–3247.

– (Nov. 2019b). “Answers Unite! Unsupervised Metrics for Reinforced
Summarization Models.” In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: ACM, pp. 3246–3256.

http://dx.doi.org/10.1145/2656334
http://dx.doi.org/10.1145/2656334
https://doi.org/10.1145/1772690.1772776
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1109/TASL.2008.2012071
http://dx.doi.org/10.1109/TASL.2008.2012071
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
https://www.aclweb.org/anthology/D19-1320
https://www.aclweb.org/anthology/D19-1320

bibliography 125

Sekaran, Kaushik, P Chandana, J Rethna Virgil Jeny, Maytham N Meq-
dad, and Seifedine Kadry (2020). “Design of optimal search engine
using text summarization through artificial intelligence techniques.”
In: TELKOMNIKA (Telecommunication Computing Electronics and Con-
trol) 18.3, pp. 1268–1274.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (Aug. 2016). “Neu-
ral Machine Translation of Rare Words with Subword Units.” In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational
Linguistics. Vol. 1: Long Papers. Berlin, Germany: ACM, pp. 1715–
1725.

Shah, Pararth, Dilek Hakkani-Tür, Gökhan Tür, Abhinav Rastogi, Ankur
Bapna, Neha Nayak, and Larry P. Heck (2018). “Building a Con-
versational Agent Overnight with Dialogue Self-Play.” In: CoRR
abs/1801.04871. arXiv: 1801.04871.

Sherstinsky, Alex (2020). “Fundamentals of Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) network.” In: Physica
D: Nonlinear Phenomena 404, p. 132306.

Singhal, Amit and Fernando Pereira (1999). “Document Expansion for
Speech Retrieval.” In: Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’99. Berkeley, California, USA: Association for Computing Ma-
chinery, pp. 34–41.

Sloan, Marc, Hui Yang, and Jun Wang (Apr. 2015). “A Term-Based
Methodology for Query Reformulation Understanding.” In: Informa-
tion Retrieval Journal 18.2, pp. 145–165.

Song, Yang, Dengyong Zhou, and Li-wei He (2011). “Post-Ranking
Query Suggestion by Diversifying Search Results.” In: The 34th In-
ternational ACM SIGIR Conference on Research & Development in In-
formation Retrieval. SIGIR ’11. New York, NY, USA: ACM, pp. 815–
824.

Sordoni, Alessandro, Yoshua Bengio, Hossein Vahabi, Christina Li-
oma, Jakob Grue Simonsen, and Jian-Yun Nie (2015). “AHierarchical
Recurrent Encoder-Decoder for Generative Context-Aware Query
Suggestion.” In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management. CIKM ’15. New York, NY,
USA: ACM, pp. 553–562.

Strohman, Trevor, Donald Metzler, Howard Turtle, and W Bruce Croft
(2005). “Indri: A language model-based search engine for complex
queries.” In: Proceedings of the international conference on intelligent
analysis. Vol. 2. 6. Citeseer, pp. 2–6.

Sussillo, David and Omri Barak (Mar. 2013). “Opening the Black Box:
Low-Dimensional Dynamics in High-Dimensional Recurrent Neural
Networks.” In: Neural Computation 25.3, pp. 626–649. eprint: https:
//direct.mit.edu/neco/article-pdf/25/3/626/881886/neco_a\

_00409.pdf.

https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1801.04871
https://arxiv.org/abs/1801.04871
http://dx.doi.org/https://doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/https://doi.org/10.1016/j.physd.2019.132306
http://books.google.com/books?vid=ISSN1386-4564
http://books.google.com/books?vid=ISSN1386-4564
https://doi.org/10.1145/2009916.2010025
https://doi.org/10.1145/2009916.2010025
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1162/NECO_a_00409
http://dx.doi.org/10.1162/NECO_a_00409
https://direct.mit.edu/neco/article-pdf/25/3/626/881886/neco_a_00409.pdf
https://direct.mit.edu/neco/article-pdf/25/3/626/881886/neco_a_00409.pdf
https://direct.mit.edu/neco/article-pdf/25/3/626/881886/neco_a_00409.pdf

bibliography 126

Tabarcea, Andrei, Najlah Gali, and Pasi Fränti (2017). “Framework for
location-aware search engine.” In: Journal of Location Based Services
11.1, pp. 50–74. eprint: https://doi.org/10.1080/17489725.2017.
1407001.

Tan, Zhixing, Mingxuan Wang, Jun Xie, Yidong Chen, and Xiaodong
Shi (2018). “Deep semantic role labeling with self-attention.” In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Tangelder, J.W.H. and R.C. Veltkamp (2004). “A survey of content based
3D shape retrieval methods.” In: Proceedings Shape Modeling Applica-
tions, 2004. Pp. 145–156.

Tay, Yi, Luu Anh Tuan, and Siu Cheung Hui (2018). “Hyperbolic repre-
sentation learning for fast and efficient neural question answering.”
In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pp. 583–591.

Tedesco, Roberto, Peter Dolog, Wolfgang Nejdl, and Heidrun Allert
(2006). “Distributed Bayesian networks for user modeling.” In: E-
Learn: World Conference on E-Learning in Corporate, Government, Health-
care, and Higher Education. Association for the Advancement of Com-
puting in Education (AACE), pp. 292–299.

Thomas, Paul, AlistairMoffat, Peter Bailey, and Falk Scholer (Aug. 2014).
“Modeling decision points in user search behavior.” In: Proceedings
of the 5th Information Interaction in Context Symposium. IIiX ’14. New
York, NY, USA: Association for Computing Machinery, pp. 239–242.

Trippas, Johanne R., Damiano Spina, Paul Thomas, Mark Sanderson,
Hideo Joho, and Lawrence Cavedon (2020). “Towards a model for
spoken conversational search.” In: Information Processing & Manage-
ment 57.2, p. 102162.

Tsai, F.S., Minoru Etoh, Xing Xie, Wang-Chien Lee, and Qiang Yang
(2010). “Introduction to Mobile Information Retrieval.” In: IEEE In-
telligent Systems 25.1, pp. 11–15.

Tsukuda, Kosetsu, Tetsuya Sakai, Zhicheng Dou, and Katsumi Tanaka
(2013). “Estimating Intent Types for Search Result Diversification.”
In: Information Retrieval Technology. Ed. by Rafael E. Banchs, Fabrizio
Silvestri, Tie-Yan Liu, Min Zhang, Sheng Gao, and Jun Lang. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 25–37.

Turney, Peter D. and Patrick Pantel (2010). “From Frequency to Mean-
ing: Vector Space Models of Semantics.” In: J. Artif. Int. Res. 37.1,
pp. 141–188.

Uc-Cetina, Victor, Nicolás Navarro-Guerrero, Anabel Martin-Gonzalez,
Cornelius Weber, and Stefan Wermter (2022). “Survey on reinforce-
ment learning for language processing.” In: Artificial Intelligence Re-
view, pp. 1–33.

Van Opijnen, Marc and Cristiana Santos (2017). “On the Concept of
Relevance in Legal Information Retrieval.” In: Artif. Intell. Law 25.1,
pp. 65–87.

http://dx.doi.org/10.1080/17489725.2017.1407001
http://dx.doi.org/10.1080/17489725.2017.1407001
https://doi.org/10.1080/17489725.2017.1407001
https://doi.org/10.1080/17489725.2017.1407001
https://ieeexplore.ieee.org/document/7410368
https://doi.org/10.1016/j.ipm.2019.102162
https://doi.org/10.1016/j.ipm.2019.102162
http://dx.doi.org/10.1109/MIS.2010.22
http://books.google.com/books?vid=ISSN1076-9757
http://books.google.com/books?vid=ISSN1076-9757
http://dx.doi.org/10.1007/s10506-017-9195-8
http://dx.doi.org/10.1007/s10506-017-9195-8

bibliography 127

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin
(2017). “Attention is All You Need.” In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., pp. 6000–6010.

Wang, Hongning, Cheng Xiang Zhai, Feng Liang, Anlei Dong, and Yi
Chang (2014). “User modeling in search logs via a nonparametric
Bayesian approach.” English (US). In: WSDM 2014 - Proceedings of
the 7th ACM International Conference on Web Search and Data Mining.
WSDM 2014 - Proceedings of the 7th ACM International Conference
on Web Search and Data Mining. 7th ACM International Conference
on Web Search and Data Mining, WSDM 2014 ; Conference date: 24-
02-2014 Through 28-02-2014. Association for Computing Machinery,
pp. 203–212.

Wang, Ju-Chiang, Yu-Chin Shih, Meng-Sung Wu, Hsin-Min Wang, and
Shyh-Kang Jeng (2011). “Colorizing tags in tag cloud: a novel query-
by-tag music search system.” In: Proceedings of the 19th ACM interna-
tional conference on Multimedia, pp. 293–302.

Wang, Sinong, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma
(2020). “Linformer: Self-Attention with Linear Complexity.” In: arXiv:
2006.04768.

Wenzlaff, Karsten and Sebastian Spaeth (2022). “Smarter thanHumans?
Validating how OpenAI’s ChatGPT model explains Crowdfunding,
Alternative Finance and Community Finance.” In: Validating how
OpenAI’s ChatGPT model explains Crowdfunding, Alternative Finance
and Community Finance.(December 22, 2022).

Wu, Bin, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu (2018a).
“Query Suggestion with Feedback Memory Network.” In: Proceedings
of the 2018WorldWideWeb Conference.WWW ’18. Republic andCanton
of Geneva, CHE: InternationalWorldWideWeb Conferences Steering
Committee, pp. 1563–1571.

Wu, Xianchao, HuangHu,MomoKlyen, Kyohei Tomita, and Zhan Chen
(2018b). “Q20: Rinna riddles your mind by asking 20 questions.” In:
Japan NLP.

Xie, Qing, Feng Xiong, Tian Han, Yongjian Liu, Lin Li, and Zhifeng Bao
(2018). “Interactive resource recommendation algorithm based on
tag information.” In: World Wide Web 21.6, pp. 1655–1673.

Yan,Ming, Chenliang Li, Bin Bi,WeiWang, and SongfangHuang (2021).
“A Unified Pretraining Framework for Passage Ranking and Expan-
sion.” In: Proceedings of the AAAI Conference on Artificial Intelligence
35.5, pp. 4555–4563.

Yang,Hui, Dongyi Guan, and Sicong Zhang (2015). “TheQueryChange
Model: Modeling Session Search as a Markov Decision Process.” In:
ACM Trans. Inf. Syst. 33.4.

Yang, Liu, Minghui Qiu, Chen Qu, Cen Chen, Jiafeng Guo, Yongfeng
Zhang, W. Bruce Croft, and Haiqing Chen (2020). “IART: Intent-

https://dl.acm.org/doi/10.5555/3295222.3295349
https://arxiv.org/abs/2006.04768
https://doi.org/10.1145/3178876.3186068
http://dx.doi.org/10.1609/aaai.v35i5.16584
http://dx.doi.org/10.1609/aaai.v35i5.16584
http://dx.doi.org/10.1145/2747874
http://dx.doi.org/10.1145/2747874

bibliography 128

Aware Response Ranking with Transformers in Information-Seeking
Conversation Systems.” In: Proceedings of The Web Conference 2020.
WWW ’20. Taipei, Taiwan: Association for Computing Machinery,
pp. 2592–2598.

Yang,Min,Weiyi Huang,Wenting Tu, Qiang Qu, Ying Shen, and Kai Lei
(2021a). “Multitask Learning and Reinforcement Learning for Person-
alized Dialog Generation: An Empirical Study.” In: IEEE Transactions
on Neural Networks and Learning Systems 32.1, pp. 49–62.

Yang,Wei, Haotian Zhang, and Jimmy Lin (2019). “Simple Applications
of BERT for Ad Hoc Document Retrieval.” In: arXiv: 1903.10972.

Yang, Yatao, Biyu Ma, Jun Tan, Hongbo Deng, Haikuan Huang, and
Zibin Zheng (2021b). “FINN: Feedback Interactive Neural Network
for Intent Recommendation.” In: Proceedings of theWeb Conference 2021.
WWW’21. Ljubljana, Slovenia: Association for ComputingMachinery,
pp. 1949–1958.

Yu, Lili, Howard Chen, Sida Wang, Yoav Artzi, and Tao Lei (2019).
“InteractiveClassification byAsking InformativeQuestions.” In: arXiv
preprint arXiv:1911.03598.

Zamani, Hamed, Susan Dumais, Nick Craswell, Paul Bennett, and Gord
Lueck (2020). “Generating Clarifying Questions for Information Re-
trieval.” In: Proceedings of The Web Conference 2020. WWW ’20. New
York, NY, USA: ACM, pp. 418–428.

Zhan, Jingtao, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma
(2020). “RepBERT: Contextualized text embeddings for first-stage
retrieval.” In: arXiv preprint arXiv:2006.15498.

Zhang, Ruiyi, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen, and
Lawrence Carin (2020). “Reward Constrained Interactive Recommen-
dationwithNatural Language Feedback.” In: arXiv preprint arXiv:2005.01618.

Zhao, Xiangyu, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang,
and Dawei Yin (2018). “Recommendations with negative feedback
via pairwise deep reinforcement learning.” In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1040–1048.

Zheng, Guoqing and Jamie Callan (2015). “Learning to Reweight Terms
with Distributed Representations.” In: Proceedings of the 38th Interna-
tional ACMSIGIR Conference on Research andDevelopment in Information
Retrieval. SIGIR ’15. Santiago, Chile: Association for Computing Ma-
chinery, pp. 575–584.

Zhou, Ke, RonanCummins,Mounia Lalmas, and JoemonM. Jose (2013).
“Which Vertical Search Engines Are Relevant?” In: Proceedings of the
22nd International Conference on World Wide Web. WWW ’13. Rio de
Janeiro, Brazil: Association for Computing Machinery, pp. 1557–1568.

Zhou, Xinyi and Reza Zafarani (2020). “A Survey of Fake News: Funda-
mental Theories, Detection Methods, and Opportunities.” In: ACM
Comput. Surv. 53.5.

http://dx.doi.org/10.1109/TNNLS.2020.2975035
http://dx.doi.org/10.1109/TNNLS.2020.2975035
https://arxiv.org/abs/1903.10972
https://arxiv.org/abs/1911.03598
https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3366423.3380126
http://dx.doi.org/10.1145/3395046
http://dx.doi.org/10.1145/3395046

bibliography 129

Zhu, Yukun, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler (2015). “Aligning Books
and Movies: Towards Story-Like Visual Explanations by Watching
Movies and Reading Books.” In: Proceedings of the IEEE international
conference on computer vision, pp. 19–27.

Zou, Jie and Evangelos Kanoulas (2019). “Learning to Ask: Question-
based Sequential Bayesian Product Search.” In: Proceedings of the 28th
ACM International Conference on Information and Knowledge Manage-
ment, pp. 369–378.

Zuiderveen Borgesius, Frederik, Damian Trilling, Judith Möller, Balázs
Bodó, Claes H De Vreese, and Natali Helberger (2016). “Should
we worry about filter bubbles?” In: Internet Policy Review. Journal on
Internet Regulation 5.1.

https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368
https://ieeexplore.ieee.org/document/7410368

	Dedication
	Remerciements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Information Retrieval
	1.1.1 The first IR researcher
	1.1.2 The IR boom
	1.1.3 IR research: current issues

	1.2 User-Machine Interactions
	1.2.1 Mutual influence between users and search engines
	1.2.2 Leveraging interactions
	1.2.3 Benefits of user modeling

	1.3 Towards user modeling in IR
	1.3.1 Cranfield experiments
	1.3.2 Premises of user modeling
	1.3.3 Questioning the ad-hoc retrieval and the Cranfield paradigm
	1.3.4 User models
	1.3.4.1 Rocchio algorithm
	1.3.4.2 Explicit user models

	1.4 Organization and contributions of the thesis

	2 Background and State of the Art
	2.1 Word, sentence and document representations
	2.1.1 Bag-of-words
	2.1.2 Word Embeddings
	2.1.3 Recurrent Neural Networks
	2.1.4 The Transformer architecture
	2.1.5 Pretrained Transformers
	2.1.5.1 Bert
	2.1.5.2 Bart
	2.1.5.3 T5

	2.1.6 Training Transformers
	2.1.6.1 Supervised training
	2.1.6.2 Training for complex objectives
	2.1.6.3 Use of RL for various NLP tasks

	2.2 Transformer for Information Retrieval
	2.2.1 Enhancing representations with Transformers
	2.2.1.1 Sparse retrieval models
	2.2.1.2 Dense retrieval models

	2.2.2 Ranking with Transformers
	2.2.2.1 Discriminative methods
	2.2.2.2 Generative methods

	2.3 User Modeling
	2.3.1 User simulation
	2.3.2 Partial user modeling
	2.3.2.1 Intent prediction
	2.3.2.2 Query suggestion
	2.3.2.3 Click model

	2.4 Personalized systems
	2.4.1 Interactive systems based on explicit feedback
	2.4.2 Interactive systems based on implicit feedback

	3 Self-Attention Based Query Prediction
	3.1 Motivations
	3.2 Query suggestions methods
	3.2.1 Formalization
	3.2.2 Co-occurence, graph and similarity
	3.2.3 RNN based methods
	3.2.3.1 Hred
	3.2.3.2 Acg

	3.2.4 Feedback

	3.3 Transformers for query suggestion
	3.3.1 Flat transformer
	3.3.2 Hierarchical transformer

	3.4 Experimental settings and results
	3.4.1 Datasets
	3.4.2 Transformer trained from scratch (TS)
	3.4.3 Compared models
	3.4.3.1 Non-tranformer models
	3.4.3.2 Fully trained transformer (TS)
	3.4.3.3 Pre-trained transformers
	3.4.3.4 Hierarchical transformers

	3.4.4 Metrics
	3.4.5 Query Suggestion Performance
	3.4.6 Generated queries
	3.4.7 Human evaluation

	3.5 Analysis of transformer for query suggestion
	3.5.1 Robustness of the transformer models
	3.5.1.1 Results on complex sessions
	3.5.1.2 Results on noisy sessions
	3.5.1.3 Sessions lengths

	3.5.2 Query generation
	3.5.2.1 The growing importance of queries
	3.5.2.2 The importance of the context's tokens
	3.5.2.3 Generating a new token

	3.6 Conclusion

	4 Interactive IR
	4.1 Introduction
	4.2 IRnator overview
	4.3 Positioning
	4.4 Problem formalization
	4.5 Challenges
	4.6 Learning to drive users towards goals
	4.6.1 Query suggestion process
	4.6.2 Iterative Supervision
	4.6.3 Reinforcement Learning

	4.7 Experiments
	4.7.1 Experimental Details
	4.7.2 Results

	4.8 Discussion
	4.8.1 Conclusion

	5 Conclusion
	5.1 Contributions
	5.2 Experimental work and perspectives
	5.2.1 Improved suggestion system
	5.2.2 Towards better user models
	5.2.3 Enhanced intent model

	5.3 Discussions and Broader vision
	5.3.1 Should search engines be conversational systems?
	5.3.2 Glimpse of the future of IR

	Appendix
	A Résumé
	A.1 Échanges utilisateur-machine
	A.2 Limites des systèmes actuels
	A.3 Influences mutuelles entre utilisateurs et machines
	A.4 Modèles utilisateurs
	A.5 Contributions

	 Bibliography

