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Abstract

Microbial cells are used in many industrial applications and geared towards userset products of interest. These biological processes are conducted in aerated and agitated reactors, the suspended solid biotic phase being exposed to both liquid turbulence and gas ow.

In many occasions, scaling up the process is a key issue because the performances of the biocatalyst cannot be maintained as the reactor size increases. The main reason for this loss of performance is the spatial heterogeneity in the sugar, oxygen, pH and temperature elds. In this context, microbial cells travelling in large scale industrial bioreactors are frequently exposed to concentration uctuations. These timevarying signals trigger various biological responses that can be conated into adaptation or stress. Roughly speaking, many peripheral metabolic reactions are activated; the living cost increases and the targeted biological transformation's yield is impacted.

The ability to adapt to a uctuating environment singularises biological systems in comparison with chemical ones. Taking into account this feature requires some insight into the dynamics of the biological processes. Indeed the biological machinery's rendition is a function of both the microbial cells' environment and their physiological state. The latter is the result of the cells' history, in other words their trajectory inside the heterogeneous reactor. Microbiologists would call on a memory eect, chemical engineers would refer to the multiphase nature of the system along with nonequilibrium concepts while mathematicians describe this aspect as the Markovian feature of the cells' journey inside the fermenter.

One intriguing aspect of a cell's functioning is the uncoupling between uptake and growth rate.

One of the fundamental laws in biology is the so called Monod law which states that the growth rate is a function of the limiting nutrient concentration. In fact, in a steadystate continuous culture, it is observed that the uptake rate and the growth rate are proportional, the proportionality constant being christened yield coecient. It grossly reects the idea that some cells are produced out of some nutrients. It is also known that the glucose to biomass yield is actually not constant but slightly depends on the growth rate: the higher the growth rate, the poorer the conversion rate. This can be understood as the necessity to optimise the conversion processes when the nutrients are scarce, whereas nutrient abundance allows the microbial cells to set in motion their comfort (less constraining, so to say) metabolic regime. Overall, both the number of internal bioprocess and their conversion eciency are impacted by the nutrient availability. All these considerations result from experimental observations of steadystate continuous cultures. When exposed to a sudden change in their environment, the cells' transient response deviates from the said steadystate laws.

For example, the instantaneous uptake rate in the following of a nutrient limitation relief can be ve to ten times the maximum uptake rate in a nutrient rich environment: one shall then consider a nonlocal equilibrium between the microorganisms and their environment over short time scales.

Although such a behaviour is wellknown in the microbial reign, it is hardly ever taken into account in the modelling of microbial cell population dynamics.

Another key feature in microbial dynamics is the cell division, through which the cell number exponentially increases until resource depletion. This mechanism introduces some heterogeneity among the population of cells: the time lapse between two consecutive division events is not constant, neither is the cell birth or divisionsize. Laws of conservation of matter apply when extensive quantities like mass or enzymatic content are allocated to nth generation cells from their (n-1)th generation ancestors. On the other hand, the distribution in intensive quantities is more chaotic and yields consequential uctuations from mother to daughtercells and between sister cells. A population's heterogeneity can then manifest in properties such as lengthening rate, genetic expression, ... Modelling population dynamics requires to pick a few insightful properties which distribution best ts the outputs from reallife experiments. To this end, not only the number of potential candidates is large but the dynamics for these internal properties is not a priori known. Thus, a precise denition of the model's objectives is of primary importance in order to focus on a limited but meaningful set of internal cell properties. Analysiswise, most of these quantities have to be compactly supported given that a material balance in a nite size fermenter must lead to nite individual cell mass, enzymatic content, ... The mathematical theory of microbial populations consecrates a R + setting though, what is a hazardous framework and a quite inconvenient assumption if numerical methods like nite volume are to be implemented to solve a population balance equation.

Regarding this latter remark, some tricks are traditionally enforced by applied mathematicians like setting an articial upper bound to the integration domain, giving rise to conservative or non conservative truncations depending on the simulation's aims. A nonconservative truncation has proven handy to address the physics of gelation in uid mechanics for example. However, this does not seem sound in the context of biological populations for which rupture must happen with probability 1 at a (rather small) nite size, prompting the need to formulate the population balance, not its truncation, over a bounded subset of R p , if p variables of interest are considered. In this case, the analysis is signicantly complicated by the preliminary assumption, similarly as solving a Partial Dierential Equation over a bounded subset in comparison with solving it over R p . The modelling does not only consist in picking the most insightful variables and their domain, but also in formulating their dynamics as functions of both the microorganisms' physiological state and their environment. Multiple time scales are involved depending on the function of the tracked compound in the organisms' organisational structure: an enzyme that testies to the cellliquid transfer has to adapt way faster to environmental uctuations than a cofactor which solely dictates the synthesis of growthinducing bers. In the former case, the enzyme's activity level can be seen almost at equilibrium with the extracellular medium. In the latter case, it would be quite dubious to claim that the cofactor's rate of activity is at any time a mere function of the substrate oer.

With these considerations in mind, a comprehensive biological model must somehow report the wide range of time scales some parts of a bacterium adapt to their environment at, in line with the experimentalists' observations. Advanced modelling and simulation of bioreactors considering cell population dynamics is therefore a multidisciplinary subject blending mathematics, microbiology and chemical engineering aspects.

The following work will be split into ve chapters. The rst one will consist in a presentation of bibliographic references pertaining to population dynamics from mathematical, numerical or biological perspectives. Reviewing the analysis contributions gives an insight into the current advancement in the theory of structured models, whereas the microbiology production aims at inspiring the formulation of the most relevant while economical model that captures the bacteria's reported dynamical behaviour when exposed to an eveructuating environment.

The second part will consecrate the mathematical analysis of age and sizestructured models.

Both frameworks are signicantly dierent in the sense that nothing a priori bounds the cells' age whereas their mass, amongst others, is nite by assumption. The division process being rst and foremost dictated by the cells' size, the divergence of the rupture function at a nite length is a compulsory assessment in the statement of any existence/uniqueness result regarding sizestructured models. What singles out the existence and uniqueness result for the eigenelements associated with the transportfragmentation equation lies in the use of the generational redistribution operator's regularising property that allows to conclude on the Lipschitzregularity of the Malthus eigenfunction which shapes the steadystate solution. The age distribution can be calculated analytically and informs on the interdivision time distribution too. Rigourous relationships between their respective moments provide an answer to a 60 yearold debate that was still an unsettled issue in the biology community.

The third segment focuses solely on the multiscale modelling of biological reactors. The work bears upon picking the most insightful variables to reproduce at the least cost the standard microbiology experiments, along with their domain and time evolution. Two major factors impact the individuals' dynamical behaviour: their metabolism and the substrate availability. Tackling the former aspect involves a minimal set of biochemical reactions which numerical solution can be implemented using two methods, the algebraic one being much faster than the logical one. Taking into account the hydrodynamics as the fermenter is treated as one homogeneous compartment leads to an original submesh renement that precludes any numerical instability when microbial cultures are simulated in an open reactor.

The penultimate chapter is dedicated to the description of the numerical methods to solve the previous chapter's model. Lagrangian, eulerian, and deterministic/stochastic algorithms are confronted for a litmus test consisting in setting a continuous reactor to steady state, with identical dilution rate and substrate feed. The quicker code exhibit signicant dierences in comparison with the data retrieved by its two counterparts, leaving the question of the best pricequality ratio wide open.

To round o this thesis, a few microbiology experiments which conclusions can be found in the pertaining literature are numerically simulated. Four litmus tests provide as many discussions of the transient states following each of these perturbations and evidence the limits of chapter 3's model. Only qualitative features are evaluated in this work, the quantitative adequacy between numerics and experimental measurements falls within the competence of biological engineers.

Résumé

Résumé Des bactéries sont utilisées dans de nombreux dispositifs industriels dans l'optique de synthétiser un certain nombre de produits d'intérêt. Ces procédés biologiques se déroulent traditionnellement en réacteur aéré et agité, la phase biologique en suspension étant exposée à la fois à la turbulence de la phase liquide et à la circulation de la phase gazeuse. Dans de nombreuses occasions, la montée en échelle du procédé est une question cruciale car les rendements de conversion de la phase biologique sont amenés à être aectés lorsque la taille du réacteur augmente. La principale raison de cette baisse de performance est l'hétérogénéité spatiale des champs de sucre, d'oxygène, de pH ou de température. Dans ce contexte, des microorganismes transportés dans un réacteur industriel de grande capacité sont fréquemment exposés à des concentrations uctuantes. Ces signaux, variables dans le temps, déclenchent diverses réponses biologiques que l'on peut qualier d'adaptation ou de stress. Plus spéciquement, il est question de réactions métaboliques périphériques ; le coût énergétique de base de la vie de l'organisme augmente et le rendement de la réaction biochimique recherchée s'en trouve aecté. La capacité d'adaptation à un environnement changeant distingue les systèmes biologiques des systèmes chimiques, mais nécessite de ce fait de se pencher sur la réponse propre du vivant. En eet, la performance de l'appareil biologique dépend à la fois de l'environnement des cellules et de leur état de santé. Ce dernier est une manifestation de l'histoire des cellules, c'est à dire leur trajectoire dans le réacteur hétérogène.

Ce phénomène est qualié d'eet de mémoire dans la communauté des biologistes, alors que le génie chimique a consacré les termes de caractère multiphasique d'un système et de déséquilibre et que la notion de processus markovien est invoquée par les mathématiciens pour décrire le séjour des cellules dans la cuve agitée.

Un aspect intéressant du fonctionnement des cellules est le découplage entre leur capacités d'assimilation et de croissance. L'une des lois fondamentales de la biologie est due à Monod et stipule que le taux de croissance d'une population est une fonction de la concentration du nutriment limitant. Dans les faits, il est observé que les taux d'assimilation et de croissance sont proportionnels, ce qui traduit l'idée que le substrat assimilé est source de biomasse. Il est également acquis que le rapport sucre sur biomasse est légèrement moins bon lorsque le taux de croissance augmente. La cause de ce moindre taux de conversion peut s'expliquer par le besoin d'optimiser le fonctionnement des microorganismes en cas de défaut de nutriments, tandis qu'une abondance de substrat leur donne toute latitude pour fonctionner selon leur régime métabolique préférentiel (c'est à dire le moins contraignant de leur point de vue). La disponibilité des métabolites impacte à la fois le nombre de processus internes mis en jeu par les bactéries et leur rendement. Bien sûr, ces observations sont issues de conclusions expérimentales portant sur des cultures continues en régime permanent. Lorsqu'elles sont exposées à une modication soudaine de leur environnement, les cellules se comportent autrement qu'elles le feraient à l'équilibre. Ainsi, la vitesse instantanée d'assimilation dans la foulée de la limitation d'un nutriment peut atteindre cinq à dix fois la valeur maximale d'assimilation dudit métabolite présent dans un système en excès : il est donc indispensable de rendre compte d'un équilibre nonlocal entre les organismes et leur environnement sur des échelles de temps courtes.

Bien que ce comportement soit intrinsèque au règne animal, il est trop souvent négligé dans la modélisation de dynamiques de populations biologiques.

Un autre élément incontournable de la dynamique de populations microbiennes est la division cellulaire, à travers laquelle le nombre de cellules augmente exponentiellement jusqu'à épuisement des ressources oertes. Ce mécanisme introduit de l'hétérogénéité au milieu d'une population cellulaire : l'intervalle de temps entre deux événements consécutifs de division cellulaire n'est pas constant d'un individu à l'autre, pas plus que la taille à la naissance ou à la division. Les lois de conservation peuvent porter sur des quantités extensives telles que la masse ou le contenu en enzymes entre générations n et n + 1. D'un autre côté, la redistribution des grandeurs intensives est plus anarchique et peut amener à des comportements sensiblement diérents d'une cellulemère à ses celluleslles ainsi qu'entre deux celluless÷urs. De la sorte, une population peut être distribuée en vitesse d'allongement, taux d'expression des gènes, ... Modéliser la dynamique d'une population nécessite de choisir les variables dont la distribution reète au mieux les données extraites de la littérature. Dans ce contexte, non seulement le nombre de candidats potentiels est élevé mais la loi d'évolution de ces propriétés internes relève de l'inconnu. Par conséquent, il est d'une importance capitale de dénir précisément les objectifs du modèle pour se concentrer sur un nombre restreint et signicatif de dimensions. Du point de vue analytique, la plupart de ces quantités se doivent d'être à support compact, étant entendu qu'un bilan matière dans un réacteur de capacité nie ne peut conduire à une masse ou un contenu enzymatique par individu innis. Cependant, en analyse de populations microbiennes, le cadre naturel est R + tout entier et soulève deux questions pratiques : le poids accordé à des tailles de cellules qui ne peuvent être encontrées au cours d'une expérience et le traitement du bord supérieur du support d'une distribution si l'équation de transportfragmentation est amenée à être résolue, par exemple, par méthode de volumes nis. Ce dernier point trouve traditionnellement des réponses dans la communauté des mathématiciens, l'une d'elles étant l'imposition d'un bord supérieur articiel au domaine d'intégration, ce qui donne lieu à des troncatures conservatives ou nonconservatives selon les attentes de la simulation. C'est ainsi qu'une troncature nonconservative s'avère très ecace pour modéliser un processus de gélation en mécanique des uides par exemple. En revanche, cette approche n'est pas saine dans le cas de populations de bactéries pour lesquelles la rupture se produit avec une probabilité 1 à une taille nie (voire microscopique), ce qui amène à formuler l'équation de bilan de population sur un compact de R p (p désignant le nombre de variables), et non sur l'espace tout entier. L'hypothèse de support borné complique sensiblement l'analyse cependant, de même que résoudre une Équation aux Dérivées Partielles sur un borné est traditionnellement plus problématique que la résoudre sur R p .

Le travail de modélisation ne porte pas uniquement sur le choix des variables les plus à propos et leur domaine de dénition ; il s'agit aussi de mettre en équation leur dynamique, qui dépend non seulement de l'état physiologique des cellules mais aussi de l'ore du milieu de culture. De nombreuses échelles de temps sont impliquées selon la fonction du composé ciblé dans le fonctionnement de la bactérie : une enzyme qui participe du transfert liquidecellule doit s'adapter bien plus rapidement à des oscillations de concentration qu'un cofacteur impliqué dans la synthèse de bres protéiques responsables de la croissance de la cellule. Dans le premier cas, le niveau d'activation de l'enzyme peut être supposé presque à l'équilibre avec son environnement immédiat. également sur la distribution en temps d'interdivision d'une population biologique. Un lien rigoureux entre leurs moments respectifs permet de répondre à un débat vieux de 60 ans que les biologistes n'avaient pas réussi à trancher.

Le troisième volet traite uniquement d'aspects de modélisation multiéchelle de réacteurs biologiques. Le travail porte sur le choix de variables permettant de reproduire à moindre coût les expériences standard exposées dans la littérature, ainsi que sur leur domaine de dénition et leur évolution temporelle. Deux facteurs inuencent le comportement dynamique des microorganismes : leur métabolisme et la disponibilité de leur substrat de prédilection. Concernant le premier aspect, un nombre minimal d'équations biochimiques est intégré à un code de calcul via deux routines, le traitement algébrique du modèle étant considérablement plus rapide que son pendant logique. La prise en compte de l'hydrodynamique dans un réacteur assimilé à un seul compartiment donne lieu à un ranement original de sousmaille qui évite toute instabilité numérique lors de la simulation de la dynamique de populations en réacteur ouvert.

Le quatrième segment est dédié à la description des outils numériques mis en oeuvre pour résoudre le modèle explicité au chapitre 3. Une méthode lagrangienne, une méthode eulérienne, ainsi qu'un algorithme hybride déterministe/statistique sont confrontés dans le cas test de la mise en régime d'un réacteur ouvert à mêmes taux de dilution et alimentation en substrat à l'entrée du réacteur. La méthode la plus rapide témoigne de diérences assez notables avec les données produites par les deux autres codes, ce qui laisse la question du meilleur rapport qualitéprix à l'appréciation de l'utilisateur.

Enn, cette thèse se conclut sur la simulation d'expériencestype de microbiologie dont les conclusions peuvent être trouvées dans la littérature. Quatre cas test donnent lieu à autant d'interprétations des états transients issus de chacune des perturbations et montrent les limites du modèle exposé au chapitre 3. Seul le comportement est ici évalué, l'adéquation quantitative entre données numériques et mesures de la littérature relevant de la communauté de génie biologique.

Chapter 1

State of the art 1.1 Biological considerations

Here and below, interest will be taken in typical rodshape cells such as isherihi oli, fillus sutilis, hromyes pome which physiology has been the topic of a multitude of biology articles. In some cases, experimental observations made on the baker's yeast, hromyes ervisie, are also presented for they reveal microbiological behaviours that seem to be shared by many microbial strains. One constant diculty is related to the absence of fundamental laws governing biological processes. A second specicity is that individual observations (at the single cell level) are extremely demanding and must be repeated or parallelised in order to gain statistically converged information at the macroscopic (or population) scale. The multiplicity of individual parameters making any cell dierent from each other makes for another complicating factor.

The cell cycle

It is wellknown now that the cell cycle breaks down into 3 to 4 phases: quiescence (traditionally denoted G0), growth (G1), DNA replication and division (M, often preceded by a DNA repair phase called G2). Depending on the organisms under consideration, the cell cycle counts into tens of minutes to hours. The end of the cycle is characterised by the division of the mother cell into two daughtercells. The cell cycle duration is often referred as the interdivision time or generation time, that is the time elapsed between two consecutive divisions. On the other hand, the cells' growth is continuous throughout their lifetime, hinting at a signicantly shorter time scale in comparison with the interdivision time. The said growth in mass has to be preceded by an uptake of organic compounds from the culture medium and their transformation through dierent sets of independent biochemical processes, the purpose thereof ranging from buildingblocks formation for the membrane to DNA replication to energy supply. It emerges from these general considerations that several characteristic time scales usher the cell cycle dynamics. any other extensive cell parameter will double but the time course of each process may be partly uncorrelated. Borrowed from [7].

According to Boye and Nordstrom, the vision of a cycle is not the most appropriate. It is more relevant to consider that several independent events have to take place before a cell divides and that checkpoints ensure that one particular event can not start before a given set of biochemical process is completed. In standard conditions, each step must be performed once before the cell divides but this does not mean that they are strictly consecutive as suggested from the cyclic representation.

Moreover, some cell properties (such as mass) evolve continuously through the cell cycle whereas some others such as length and DNA content may be associated to one particular phase in the cycle.

Several processes can take place simultaneously and might overlap. However the cell cycle will be maintained for the sake of convenience with reference to the repetitive nature of the entire process, keeping in mind that the duration of each step may vary from one cell to another. Indeed, some proteins and small signalling molecules have been identied as regulators of the cell cycle, however it is not clear whether they only perform as gatekeepers (allowing one particular step to begin) or contribute to the rate of the biochemical reactions. In the specic case of isherihi oli, these authors explain that ...guanosine tetraphosphate (ppGpp) and cyclic AMP are involved in the regulation of the cell cycle which provides links between the cell cycle and the general nutritional status of the cell.

It will be shown in the following of this manuscript that the same molecules are also produced when isherihi oli cells are exposed to changes in the nutrient availability. This indicates that when a cell perceives a modication in its environment it produces some compounds that will tend to alter the duration of the cell cycle.

The cells' morphology

It has been known for some time now that a distribution in cell size exists within a population of microbial cells, even under steadystate conditions. This distribution basically results from the fact that cells elongate and divide. A few insights into these two essential features of cell growth and multiplication will be provided hereafter. The cells are assumed cylindrical with constant diameter d and variable length l, so that both their surface πdl, their volume π d 2 4 l and mass 1 will be linear functions of the cell length.

Cell lengthening

The lengthening rate can take various shapes, but two options have been prominently considered thus far in the literature: linear (see Kubitschek & Friske's [START_REF] Kubitschek | Determination of Bacterial Cell Volume with the Coulter Counter[END_REF] for instance) and exponential (notably by Schaechter & al. [START_REF] Schaechter | Growth, Cell and Nuclear Divisions in some Bacteria[END_REF]) growth throughout the cell cycle.

The mean dry mass accumulation of iF oli has been reported as increasing linearly, and cell length growth has been described as linear, bilinear and trilinear, and exponential. The size of the budding yeast F erevisie has been observed to increase exponentially by some approaches, but to have a nonexponential and cell cycledependent growth curve by others. [START_REF] Godin | Using buoyant mass to measure the growth of single cells[END_REF] According to Godin & al.'s [START_REF] Godin | Using buoyant mass to measure the growth of single cells[END_REF] contribution featuring microuidic experiments to track iF goli cells with respect to time, both patterns are suitable and the behaviour is highly likely to be dictated by the culture conditions and the duration of the experiment (see Figure 1.2). Note that their conclusion arise from a direct measurement of cell buoyant mass m c = V c (ρ c -ρ f ), with V c the cell volume and ρ c , ρ f the respective cell and uid densities. Recent microscopic observations on the cell shape dynamics of iF oli cells indicate that elongation at the cell scale is most likely bilinear rather than exponential. This also points to the importance of the very denition of a cell's length, distance between its two caps or length of its cell membrane [START_REF] Reshes | Cell shape dynamics in Escherichia coli[END_REF]. Nobs and Maerkl have reported a constant elongation rate in their study of F pome (a rodshaped yeast) involving microuidic devices and particle tracking techniques [START_REF] Nobs | Long-Term Single Cell Analysis of S. pombe on a Microuidic Microchemostat Array[END_REF] (see gure 1.3). Robert & al. [START_REF] Robert | Division in Escherichia Coli is triggered by a size-sensing rather than a timing mechanism[END_REF] have evidenced a sublinear growth pattern from crossing a certain critical length until rupture becomes inevitable.

However, it seems that the gain in mass is continuous while the elongation may occur during a limited period of the total interdivision time only.

1. under the assumption of a constant density compared with raw measurements. Over a doubling time, the dierence between the two ts appears too tenuous to formulate an unassailable conclusion. Right: further supplementary data tend to point towards a straight line growth pattern. Borrowed from [START_REF] Godin | Using buoyant mass to measure the growth of single cells[END_REF].

As a consequence, any modelling of the cell growth is suitable depending on the core experimental dataset and dwell upon these considerations from a quantitative point of view would in essence fuel a long lasting debate in the biophysical community. It is worth noticing that the exponential growth at the population scale does not depend on the growth features at the cell scale for it results from the division into two daughter cells in a nite time. 

Cell division

When they divide, all mothercells give birth to two daughtercells with conservation of mass.

All other quantities are assumed randomly distributed and some experimental data like Tanouchi & al.'s [START_REF] Tanouchi | A noisy linear map underlies oscillations in cell size and gene expression in bacteria[END_REF] tend to hint at the conclusion that the redistribution of a mother cell's volume has little to no inuence on the lengthening rate of the daughtercells. Several models have been proposed

to relate the division frequency to the cell properties. One of them, named timer model relates the cell division to the cell age. Robert & al. have ruled out the timer initiator for the septation due to its poor matching to experimental data and concluded that the rupture process is in essence a sizerelated phenomenon. The takeaway from Campos & al.'s contribution [9], is that division is triggered by a length gain from a cell's size at inception, what the biologists have christened adder mechanism. TaheriAraghi & al.'s measurements for various strains of iF goli [START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF] tend to conrm this claim. This conclusion comes out from the fact that a better correlation is found when considering the added length rather than the length itself. However, TaheriAraghi & al.'s claim is highly unlikely to mesh with a compactly supported length distribution. Convergence towards a stable size distribution was actually obtained under the hypothesis that equal length partition takes place at division. However, should the redistribution of a cell's cytoplasm be unequal (what is an undeniable fact), lineages of evergrowing organisms for generations on end would inevitably manifest themselves. Along with the hypothesis of a linear relationship between individual growth rate and cell mass, extremely large cells would represent an ever growing fraction of the total cell population. To date, there is no real consensus regarding the very reason a cell divides.

Cells do not divide before some specic events have occurred, some of them being correlated with a gain in mass or length. Obviously the gain in mass is somehow related to their ability to uptake nutrients and proceed to their biochemical transformation. It comes from the considerations on cell lengthening and cell division that these two phenomena require an adequate and robust modelling in order to avoid illposed problems.

Individual and ensemble observations

Yesteryear out of reach, information at the cell's scale is now accessible through cytometry [15,16,[START_REF] Hewitt | Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter ow cytometry: Eect of a changing microenvironment with respect to glucose and dissolved oxygen concentration[END_REF][START_REF] Looser | Flow-cytometric detection of changes in the physiological state of E. coli expressing a heterologous membrane protein during carbon-limited fedbatch cultivation[END_REF][START_REF] Srienc | Cytometric data as the basis for rigorous models of cell population dynamics[END_REF] and single cell culture systems [START_REF] Krommenhoek | Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration[END_REF][START_REF] Li | Single cell Raman spectroscopy for cell sorting and imaging[END_REF][START_REF] Van Heerden | Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli[END_REF][START_REF] Yasuda | Algebraic and geometric understanding of cells: Epigenetic inheritance of phenotypes between generations. righ esolution wiroil ingle gell enlytis[END_REF]. These new experimental facts conrm that it is unlikely that all individuals of the same species are in the same physiological state (see gures 1.4, 1.5 and 1.6). First of all, not all individuals have the same age, understood as age within the cell cycle, that is, the time elapsed since the last division. Then, two cells with the same age do not necessarily have the same mass or the same composition, and from there, dierent internal reaction rates may be observed even though they are in the same uid medium.

As a consequence, it is unlikely that individual organisms exhibit the same growth rate. However, a majority of experimental observations presented in the literature deal with averages over a large number of individuals with dierent ages and compositions.

Figure 1. 4 The cell length at division varies from one cell to another amid the same lineage, along with the lengthening rate. The elongation rate is seemingly exponential in some cases or rather linear (B). When a cell divides, the internal content is not equally distributed among the two daughter cells (C). Observations performed over a collection of extant cells in the cultivation reveal a distribution in cell age, volume at birth, and volume at rupture (D) [START_REF] Van Heerden | Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli[END_REF].

Cell cultures normally are heterogeneous due to factors such as the cell cycle, inhomogeneous cell microenvironments, and genetic dierences. However, distributions of cell properties usually are not taken into account in the characterization of a culture when only population averaged values are measured. [START_REF] Kacmar | Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated ow cytometry[END_REF] Figure 1.5 Age (A) and size (B) distribution in two continuous culture of iF goli. Borrowed from [START_REF] Robert | Division in Escherichia Coli is triggered by a size-sensing rather than a timing mechanism[END_REF]. cell partitioning at division are not. Borrowed from [START_REF] Nobs | Long-Term Single Cell Analysis of S. pombe on a Microuidic Microchemostat Array[END_REF].

From these experimental observations, a natural conclusion is that individuals are all dierent from one another. Because of that, the use of the concept of population balance to describe the evolution of a population of living organisms might seem self-evident. Hatzis, Srienc and Fredrickson explain that Although continuum models [i.e. models based on macroscopic properties] have been proven adequate for many practical situations, they do not constitute the natural framework for the description of microbial population phenomena. Fredrickson and coworkers [. . . ] recognized that population models must acknowledge the segregated or corpuscular nature of microbial populations as well as the subcellular structure and composition of individual cells. [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF] In addition to its conceptual appeal to deal with the case of multiphase and heterogeneous systems, the population balance framework allows for a detailed examination of the rationale behind a population's evolution, the characteristic times of these physical and biological phenomena, with the aim of studying the dynamic interactions between a population and its environment. However, the extreme complexity of living systems, the multitude of variables required for describing them, and the diculties in solving population balance equations will be met. This also raises the question of the trigger for the diversity observed within a population, leading to an investigation of the generational redistribution in intracellular content and the environment's uctuations amongst others.

The question of the mainstay of a cell's dynamic adaptation is still very open and encompasses a spectrum of intricated time scales, the founding principles thereof bearing upon the most constituent laws of fundamental biology. Evidently, a better description of the coupling between mass transfer, energy and biochemical transformation is required.

Denitions of growth:

The macroscopic denition:

Historically, the specic growth rate of a cell culture was dened with reference to its doubling time. This denition assumes that the culture has entered the socalled exponential growth phase, which in mathematical terms means that the distribution of any cell property is selfsimilar. [START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF] X

(t) = X 0 e µt µ = ln 2 τ d (1.1)
X being the cell concentration (number or mass per unit volume), X 0 its value at time t = 0, µ (time unit -1 ) the population's specic growth rate, τ d its doubling time. Provided that all necessary resources are available to the growing cells, one can identify a maximum specic growth rate (µ max ) at the population scale. Typical values are around 1h -1 for fast growing bacteria such as isherihi oli and 0.5h -1 for yeast.

In practice, the population doubling time is estimated from the slope of a curve plotting the logarithm of the cell number (or mass) as a function of time, as shown in Figure 1.7. In the graph regarding the growth of filus sutilis a lagphase, corresponding to the equilibration of the population with its environment is clearly visible before t = 250min. Such a behaviour is very common, consitutive of microbial cells and reects the time necessary for adapting the internal enzymatic reactions [START_REF] Monod | The Growth of Bacterial Cultures[END_REF]. Microscopic observations conrm that the total length increases because of cell division. Under constant mean density hypothesis, the total elongation rate is proportional to the population growth rate in mass.

As illustrated in Figure 1.6, a distribution of interdivision time exists within a population and it is important to recognise that its doubling time is not the rst moment of the normalised interdivision time distribution p(τ ):

τ d ≠ ∞ 0 τ p(τ )dτ (1.2) 
The reason for that was presented as early as 1956 by Powell [START_REF] Powell | Growth Rate and Generation Time of Bacteria, with Special Reference to Continuous Culture[END_REF], and will lead to further remarks later in this document. For the moment it may be sucient to observe that the fraction of the population having a smaller interdivision time will produce more cells than the other ones in the time interval τ d .

Cell scale and population scale denitions: It is also possible to propose a denition of a specic growth rate at the individual scale in terms of elongation or mass change, leading to:

v l = 1 l dl dt v m = 1 m dm dt (1.3)
From there a population specic growth rate through a summation over all individuals can be dened, provided that the probability density function p(l) is accessible.

µ l = v l p(l)dl (1.4)

The cells' biochemistry

All the cells' physiological processes (lengthening, rupture, ...) are highly energyconsuming, prompting a permanent need for available nutrients in their immediate environment. More than the organisms' length, their capability to uptake the available substrate and convert it into useful growthinducing proteins is the main cause for their lengthening, as shown for example by Lambert & Kussell [START_REF] Lambert | Memory and Fitness Optimization of Bacteria under Fluctuating Environments[END_REF]. The mediumcell transfer is the result of two mechanisms operating at drastically dierent scales: the userset culture conditions, enforcing a reactorscale availability of substrate, and the organisms' uptake strategy to extract the best of their vicinity.

Uptake of carbonaceous substrates

In the sequence of events leading to cell multiplication, the uptake of nutrient occurs ahead of cell growth. A specicity of living systems is the regulation of the liquidcell mass transfer at the expense of energy consumption. This allows them to either select their nutrients or to upperbound the rate of biochemical reactions, as a function of their needs, through the activation/deactivation of specic and nonspecic transport systems. Ferenci's results [23,2527] on the assimilation mechanisms of carbonaceous substrates (mainly in isherihi oli bacteria) are reproduced here.

An illustration of these mechanisms is presented on gure 1.8. and symporter (right) (reworked from Ferenci [24]) Three groups of mechanisms responsible for substrate transport have been identied in the case of Gramnegative bacteria:

1. A socalled high anity system (ecient at low concentrations) drawing its energy from ATP hydrolysis and involving a binding protein located in the periplasm (the external part of the cell membrane), called permease. It is an active transport type system.

2. A PhosphoTransferase System (PTS) with intermediate anity for the substrate. This system is controlled by the ratio of two compounds (phosphoenolpyruvate and pyruvate). Two types of modelling are proposed for this system: a. A MichaelisMenten law q S = q S,max S K S + S (1.5) q S standing for the specic substrate uptake rate (in g S .g -1 X .h -1 ), S the substrate concentration in the liquid phase, K S an apparent constant, named anity or halfsaturation constant and q S,max an experimental constant dening the maximum uptake rate. b. A more precise formulation explicitly involves the concentration ratio of two intracellular compounds: (phosphoenolpyruvate / pyruvate), [10].

q S = q S,max S Cpep Cpyr K 1 + (K 2 + S) Cpep Cpyr + K 3 S 1 + G G6P K 4 (1.6)
K i being constants, C pep , C pyr , G G6P the concentration of three internal compounds: phosphoenolpyruvate, pyruvate and glucose6phosphate, respectively. Without going into the details, a low ratio pep pyr impacts negatively the cell uptake capacity. On the other hand, a ratio of 1 makes this model rather similar to the previous one. The accumulation of glucose6phosphate reduces the cell uptake capacity.

3. A low anity system (eective at high concentrations), called symporter, in which the transport of the substrate is coupled with an ion exchange through the membrane.

It should be noted that not all sugar transport systems are specic; a cell thus acquires the means to assimilate a multitude of carbon compounds [START_REF] Lendenmann | Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag ?[END_REF]. This is especially true when the nutrient is scarce and the cell actively regulates its dierent uptake systems in order to scavenge nutrient renmants. In case of nutrient excess, the cell actually limits its uptake capacity, most probably because processing too large amounts of nutrients at the same time is detrimental to its tness.

It also appears that these systems work in parallel, with overlapping working ranges, in order to provide the most ecient system depending on the nutrient availability. A closer look into the main pathways which carbon sources are processed through will help understanding the main features of the regulation mechanisms.

A few words on central carbon metabolism Central carbon metabolism uses a complex series of enzymatic steps to convert sugars into metabolic precursors. These precursors are then used to generate the entire mass of the cell [START_REF] Noor | Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy[END_REF].

Two illustrations of the central metabolism in iF oli and F ervisie are provided in gure 1.9 and 1.10. These chemical routes, or pathways, constitute the backbone of the cell metabolism and a minimal description is required to better understand the various modelling approaches used to describe them.

Figure 1.9 Glycolysis pathway of F erevisie. Metabolites feature in capital letters, enzymes in bold font. [START_REF] Van Heerden | Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells[END_REF] In F erevisie, the upper and lower glycolysis pathways are connected at the FBP (Fructose 1,6 biphosphate)GAP (Glyceraldehyde3Phosphate) node. At equilibrium, the uxes in the upper and lower parts are equal. A too massive ux in the upper part results in carbon excess to be processed towards glycerol production. This will also create an accumulation of all compounds in the upper glycolysis. Interestingly, the accumulation of FBP promotes an increase in the rate of the reaction converting phosphoenolpyruvate into pyruvate within the lower glycolysis (dashed arrow in Figure 1.9). This can be regarded as a way to improve the carbon processing capacity of the lower glycolysis pathway. In the meantime, the accumulation of G6P (another compound of the upper glycolysis) amplies the accumulation of intracellular glucose (Glc int ) through the inhibition of the enzymes, glk/hk, which in the end negatively impacts the glucose uptake rate. This constitues a negative feed back loop aiming a reducing the ux entering the upper glycolysis if the processing capacity of the lower part is not sucient. A noticeable point is that the three processes involved in the response to an excessive carbon ux in the upper glycolysis leads to the production of a common compound P i that is polymerised and stored within the cell. As a result, a pyruvate accumulation is similarly responsible for a decrease in the uptake capacity as reported for the yeast, what justies the model for the glucose uptake rate presented earlier. Now, a focus is made on the connection with two other groups of reactions: the TCA cycle which partakes in the production of many building blocks essential for the cell growth and the mixed acid pathway (B) that manages the consequences of a disequilibrium between carbon uxes in the glycolysis and TCA cycle. Here it is visible that pyruvate occupies a key position as it connects the three pathways. In this gure, red dashed arrows reveal a positive forward loop: higher amounts of pyruvate activate the TCA cycle. On the other hand, the excess of pyruvate resulting from a disequilibrium between the glycolytic ux and the TCA cycle ux can be diverted in the mixed Figure 1.11 Details of mixedacid fermentation and overow metabolic pathways in iF oli [START_REF] Xu | Modeling of Overow Metabolism in Batch and Fed-Batch Cultures of Escherichia coli[END_REF] acid pathway leading to the production of various acids (lactate, formate and mainly acetate). In the general case of a non modied strain (wild type), acetate reconsumption might take place if the carbon ux from the glycolysis is not sucient to satisfy the requirements for the TCA cycle ( [START_REF] Van Heerden | Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells[END_REF]).

Further details on acetate production in iF oli are presented in Figure 1.11. This bacterium is able to produce its energy using oxygen (aerobic metabolism). Under aerobic conditions, some acetate may be produced through overow when acetylCoA accumulates as a result of an imbalance between glycolytic and TCA uxes. iF oli is also able to produce its energy through fermentation (without oxygen), a process which nal products include acetate, ethanol, succinate, lactate and carbon dioxide. Overall, experimental data hint at the conclusion that, at equilibrium, a fraction of the assimilated sugar turns into biomass at a roughly constant yield. When suddenly unhinged though, the organisms lose in eciency in comparison and manifest their discomfort by excreting byproducts (mainly acetate) in the medium. These less energetic sources of carbon can be reconsumed if S proves in default. All in all, a urry of biochemical pathways continuously contribute to an apparent growth rate, only a few of them being actually accessible in real time to the experimentalists.

To sum up, the cell uptake can be regarded as the input of the upper glycolysis while the cell growth is the output of the TCA cycle. Some signalling molecules are involved in regulation loops either directly or through a modication of the gene activity which produces enzymes controlling the reaction rates (see gure 1.12). A negative feedback loop is present in the upper glycolysis and results in a decrease in the uptake capacity if the assimilated carbon ux exceeds the cell needs. In iF oli, this relative excess is detected through the accumulation of pyruvate. Within the glycolysis pathway a positive forward loop increases the reaction rate of puyruvate synthesis in the lower part when the upper part faces an excessive carbon ux. Another positive forward loop, starting from pyruvate, controls the reaction rates in the TCA cycle. Owing to these three loops, the bacterium is able to regulate its uptake as a function of its needs:

Insucient uptake rate causes a pyruvate depletion which, in turn, reduces the growth capacity. In the meantime, this low level of pyruvate acts as a signal to try and improve the Figure 1.12 Global feedback loop architecture connecting growth to uptake through metabolism.

[56] uptake capacity.

Excessive uptake rate causes a pyruvate accumulation which acts as a signal for increasing the activity in the TCA cycle (higher growth capacity). In the meantime, a too high level of pyruvate will inhibit the uptake capacity.

Depending on the availability of oxygen, the dierence between the mass uxes processed the glycolysis and the TCA cycle, is diverted into by products through mixed acid pathways or overow metabolism.

Many examples of regulation loops can be found in the microbiological literature. In general, multiple loops act in a coordinated way to ensure some stability at the cell level (homeostasis) and therefore imply a limited number of key compounds (such as pyruvate). However, interconnected loops can also play a ltering or switching role in the cell's machinery. Brandman explains that linking fast and slow positive feedback loops creates a dual-time switch that is both rapidly inducible and resistant to noise in the upstream signaling system [8]. In the end, one may keep in mind the illustration presented in gure 1.12 which shows that at the global level, the metabolic activity is regulated in order to adapt the biochemical reaction rates to the incoming nutrient uxes through the modulation of enzymes concentrations.

Modelling Bioreactions

The fact that some reactions might be turned on and o whilst their rate constant is depending on the concentration of an enzyme makes the description of biological reactions extremely complex.

The sophistication of bioreaction models has evolved in parallel with the experimental techniques, from black box model based on macroscopic conversion of nutrients into new cells up to genome scale models encompassing all levels of internal biochemistry (genes, transcription factors, proteins, metabolites).

Modelling a continuous bioreactor using an unstructured kinetic model

Biological populations dynamics in a fermenter are traditionally considered in a close (batch) or open (chemostat) system. In a continuous culture, some substrate and cells are drained out of the tank at the same ow rate as the inlet feed to keep the liquid volume constant. At the inlet, some substrate is poured into the reactor and mixed in order that nutrients are available to the cells.

On the face of it, the simplest model consists in writing mass balances for both biomass and substrate leading to a system of ordinary dierential equations:

dS dt = D(S f -S) -q S X dX dt = (µ -D)X (1.7)
S (g S ⋅ L -1 ) standing for the substrate (usually glucose) concentration and X (g X ⋅ L -1 ) for the biological phase concentration. S f (g S ⋅ L -1 ⋅ h -1 ) stands for the substrate concentration in the feed and D (h -1 ) for the owtovolume or dilution rate that ushers the renewal of both the biotic and the abiotic phase. µ (g X ⋅g -1 X ⋅h -1 ) is the population's growth rate in mass calculated at the reactor scale, that lters all the underlying mesoscopic/microscopic phenomena. At the scale this modelling is aimed at, it must be assumed that growth in mass is tantamount to growth in cell number. q S (g S ⋅ g -1 X ⋅ h -1 ) is the global uptake rate once again at the macroscopic scale. The standard modelling thereof is engineered with the idea of tting steadystate experimental data.

The analysis of a collection of steadystate experimental observations leads to the following conclusions:

i. A dierent couple, {X, S} D , is found depending on the dilution rate ii. The growth rate equals the dilution rate iii. The uptake rate is proportional to the growth rate iv. A simple relationship can be established between the growth rate and the residual sugar concentration, a customary t consisting in a Monod law featuring straindependent saturation

µ max (g S ⋅ g -1 X ⋅ h -1
) and anity K S constants.

These observations have been translated into mathematical expressions such as :

µ = D µ = q S Y SX µ = µ max S K S + S (1.8)
where Y SX (g S ⋅ g -1 X ) is a reactorscale substratetocell ratio, once again dreamed up from steady state mass balances.

Y SX = S f -S X (1.9)
However, in equation (1.8), writing ⟨µ⟩ D rather than µ would be more appropriate since the identied growth rate is actually an average growth rate at the population scale (hence the ⟨⟩ notation), observed at steady state (hence the bar over the ensemble average), for one particular value of the dilution rate (hence the subscript D). Similarly, q S and Y SX in equation (1.8) and (1.9) are also experimental, population averaged, steadystate quantities.

Unfortunately, these subtleties have not been considered with enough care, or misunderstood, and the set of relationships (1.8) and (1.9) has been routinely used as if they were fundamental laws describing the macroscopic dynamics of a cell population. The system's equilibrium depicts a manifold indexed by the dilution rate D and the following relationships strictly hold only if S = S D , X = X D the respective substrate and biomass concentrations at steady state:

µ max S D K S + S D = D ⇔ S D = DK S µ max -D D(S f -S D ) = Y SX DX D ⇔ X D = 1 Y SX S f - DK S µ max -D (1.10)
A rigorous examination of the facts indicates that these are only correlations between experimental data identied at steady state. Whether the steadystate (1.8) framework holds at transient state is debatable, the Monod equation implying that the biological response to an eveructuating medium is instantaneous and solely dictated by the said medium.

Similarly, it also emerges from that approximation that the cell number is completely determined by the total biomass in the reactor, neglecting that a cell's mass or volume is signicantly impacted by its history or its age in the cell cycle. Even if a constant cell number per gram seems, on average, a reasonable assumption at steady state, any perturbation like a substrate injection in the fermenter shall have progressive, noticeable repercussions on the population's behaviour, due to the nature of the cell cycle. Indeed, the cell cycle operates at a time scale that cannot compare, for example, with the substrate uptake or the lengthening throughout the cell's lifetime. Hence, the system 1.7 and its closure laws, Y SX and µ = f (S), that lters too much information below the macroscopic threshold is not suited to address the intrication of processes which manifest when experiences are performed.

Unstructured kinetic models

Unstructured models describe biological transformations using constant conversion yields and a description of reaction rates based on the concentration of nutrients in the liquid phase.

r X = µ(S)X r S = - 1 Y SX r X r P = 1 Y SP r S (1.11)
X is the cell concentration (in general mass per unit volume), S the concentration of the carbon source and P a product of the cell metabolism. Y ij is a constant conversion yield in grams of j produced par gram of i consumed (<1) and µ is the population specic growth rate (as dened in equation 1. 

µ = µ max S K S + S O 2 K O + O 2 (1.12)
where µ is the growth rate and has a dimension of a time inverse, K S is named halfsaturation or anity constant and µ max is the maximum growth rate. The product of two hyperbolic functions expresses the fact that both sugar S and oxygen O 2 are required for growth. In practice however none of the parameters are actually constant and their value vary from one study to another because they are essentially tting parameters and also because they are impacted by any nonmodelled aspect of the intracellular functioning. This crude description is not applicable to the study of detailed or transient microbial response, it is limited to steadystate or pseudo steadystate studies. However this type of model, because of its simplicity and similarity with classical description of chemical reactions, is widely used.

Structured kinetic models

Structured models incorporate some information related to the biological phase. This information may involve physical properties, composition, rate of intracellular processes and physiology.

Thus, it becomes possible to distinguish between individuals with respect to their internal properties. We will rst think in terms of nonsegregated structured kinetic models: same set of dynamic internal properties for all individuals, also named verge ell pproh.

From a fundamental point of view, these models consist in writing mass balances over the biotic phase incorporating intracellular reactions for most metabolites and additional uptake and excretion uxes for a few of them actually involved in the mass transfer between the cell and its medium. As one might expect, the intracellular concentrations are coupled through nonlinear equations because of the numerous consecutive, competitive or cyclic reaction schemes. Such models are formulated in terms of a set of ordinary dierential equations describing the evolution of the mass of internal metabolites. It has been known for sometimes now that nonlinear dynamic systems can exhibit complex dynamic behaviours such as steadystate multiplicity, bifurcations or sustained oscillations.

Owing to this approach, the rate of the biochemical transformations now depends on both the external conditions and the cell's physiological state. Indeed, the denition of interfacial mass uxes typically involves both extracellular and intra cellular concentrations [2,[START_REF] Michael | Cell ensemble modeling of metabolic oscillations in continuous yeast cultures[END_REF]. Also, the list of all intracellular concentrations can be considered as a vector of internal state variables which dene the physiologil stte of the cell. This type of model can be used to describe the average concentration representing the behaviour of an verge ell. It can also be used as a single cell model along with cell ensemble approach to get a populationscale description. However, Henson showed that the long term asymptotic behavior leads to a identical state vector for all cells. The convergence in time is related to the initial distribution and the time constants of the kinetic model.

In order to produce a real population model, it was proposed to sample the maximum reaction rate (k j in gure 1.13 from a gaussian distribution. Thus, all cells share the same set of reactions but with slightly dierent rate constants.

The accuracy in the cell's dynamics description increases with the number of internal reactions but so does also the dimension of the problem and the number of kinetic laws and parameters to set or identify. Indeed, in practice it is impossible to describe comprehensively the internal biochemistry through a set of elementary reactions with known stoichiometry. Alternatively, some equivalent reactions are build up considering an ensemble of elementary processes: energy production, building block synthesis, etc. A simple example is illustrated in gure 1.13: uptake, energy production though oxidative or fermentation pathways (catabolism), ethanol production (P 2 ) and new cell synthesis (anabolism) are described in terms of ve chemical transformations. Note that equation is not chemically balanced and the α, β, γ coecient incorporate some experimental knowledge like the ATP production for the glucose oxidation. Figure 1.13 The kinetic structured model for aerobic growth of hromyes erevisie. The rst equation describes sugar uptake, the second and third are energy producing reactions, the fourth one yields ethanol (the product P 2 ) and the last one denes the biomass growth rate [2].

In comparison to the unstructured approach, structured kinetic models are superior insofar as they will produce dierent apparent conversion yields Y i,j depending on the actual fate of the substrate within the cell various pathways. However, the usually large number of internal variables makes it dicult to use them in conjunction with transport equations for the uid phase. Also, the algebraic relationship between external and internal sugar concentration which is often used in these models is questionable.

Metabolic models

The general idea of metabolic models is to avoid the calculation of metabolite concentrations and estimate directly the mass uxes in the dierent pathways of a metabolic network. The unknowns of the problem are the reaction rates which obey a linear system of equations issuing from mass balances. This system results from the underlying hypothesis that no accumulation takes place for most metabolites which are only intermediates. The dimension of this system is generally high because a large number of reactions are considered and the system itself is underdetermined.

Its resolution involves an optimisation step along with the denition of objectives (generally the maximization of growth rates) and constraints (upper and lower bounds for the mass uxes). leads to a linear system of equations dealing with rates. Generally underdetermined, this system is solved via an underconstrained optimisation procedure. Reproduced from Llaneras and Pico [START_REF] Llaneras | Stoichiometric modelling of cell metabolism[END_REF].

The level of details is very high compared with lumped kinetic models but this nonaccumulation hypothesis seriously limits the ability of such model to describe the cell dynamics:

The key distinction between conventional chemical reaction systems and metabolic networks, which is often missing in kinetic metabolic network models, is the inuence of regulation and control. In conventional chemical reaction systems, knowledge of the kinetics completes the treatment of the system. In biological systems, however, all levels of metabolic function (i.e. transcription, translation, and catalytic activity) are tightly integrated and coordinated with the global environment of the organism, hence yielding adaptability in the face of changing conditions. Thus, the `conventional' mathematical treatment of a metabolic network, encompassing only the kinetics and stoichiometry, is often hard pressed to correctly predict system adaptation because it lacks a description of the forces driving the adaptation. This capability, however, is exactly what is required for the reengineering of physiology [START_REF] Varner | Application of cybernetic models to metabolic engineering: Investigation of storage pathways[END_REF] In order to tackle these issues (underdetermination and adaptability), Pigou and Morchain [START_REF] Pigou | Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models[END_REF] proposed to a metabolic modestructured model. The cell metabolism is described in terms of modes, each one implying several chemical reactions and being balanced mass and energywise.

Beside the denition of the metabolic modes, the cell state is dened by its maximum potential growth rate µ p . The knowledge of that rate lowers the level of indetermination of the metabolic model that can now be solved using an algebraic procedure. The dynamic is obtained through an equation describing the adaptation of the cell growth capacity:

dµ p dt = 1 T µc (µ ⋆ (C L ) -µ p ) (1.13)
T µ p being a time constant for growth adaptation and µ ⋆ (C L ) the mean growth rate of a population being at equilibrium with its environment dened by C L , the vector of liquid phaseconcentrations (Equation 1.12 is an example).

This approach was used in combination with a hydrodynamic model to study the eects of large scale heterogeneities on the metabolic response of a cell population [START_REF] Pigou | wodélistion du omportement inétiqueD des phénomènes de mélngeD de trnsfert loux et des e'ets d9hétérogénéité de popultion dns les fermenteurs industrielsF Génie des Procédés et de l'Environnement[END_REF]. The whole metabolic rate calculation depends on the calculation of the uptake rates φ(C) in gure 1.14. In most published works, it is assumed that the sugar uptake rate of each cell is equal to the populationaveraged uptake at equilibrium q S = q S,max S K S + S (1.14) However, the fate of that sugar is dierent because each cell requirements for growth is dierent. In a population, depending on their potential growth rate, some cells may perieve the environment as limiting while some other will perieve that nutrients are present in excess (relative to their needs).

The advantages of this approach are: Cell dynamics is considered through the adaptation of each cell maximum potential growth rate.

The eective growth rate is either limited by the cell potential or by the external mass transfer of nutrients [START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF].

The dierence between the amount of uptaken sugar and the maximum sugar consumption for growth provides a quantication of the disequilibrium between a cell and its environment.

It allows the calculation of the rate of sidereactions and serves as the driving force for the growth rate's adaption.

The drawbacks of this approach are:

It is dicult to justify how each cell can sense the average growth rate of the entire population.

The uptake rate is identical for all cells and calculated from the concentrations in the environment from populationscale information.

Dynamic responses of a cell population

In this section are presented some experimental results illustrating the essential features regarding the response of a microbial cell population to some environmental changes. The intrinsic complexity of the biological system is such that the responses may conate a multitude of various forms. A comprehensive review of these multiple responses is virtually out of reach and the talk will therefore focus on the time characteristics of a few phenomena that require a particular interest in the context of bioreactor modelling.

Growth rate

Before getting into the details, it is worth recalling the words of Jacques Monod inspired by Hinshelwood, regarding the question of bacterial adaptation. Early works on bacterial growth focused on the socalled lag phase, a period of time during which the population growth rate progressively increases before it reaches a stable value revealing the stationary growth phase.

A broader approach to the problem of relations between lag and enzymatic adaptation should also be considered. As emphasized by Hinshelwood, the lag and acceleration phases represent essentially a process of equilibration, the functioning of a regulatory mechanism, by virtue of which certain enzyme balance inside the cell is attained. That such a mechanism must exist is obvious, since in its absence, the cell would not survive even slight variations of the external environment. [START_REF] Monod | The Growth of Bacterial Cultures[END_REF] Therefore, the stationary growth phase should rather be regarded as the state of equilibrium of a dynamic system that manifests at the cell population scale. Even though an algebaric relationship is found between the population growth rate and the residual substrate concentration in a chemostat 22 culture at steady state, there is no reason why this equilibrium law should apply at the cell scale or under transient conditions. This logical reasoning is conrmed by the theoretical work of Perret [START_REF] Perret | A new kinetic model of growing bacteria population[END_REF] and evidenced through many experimental observations [START_REF] Guillou | Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae[END_REF][START_REF] Kätterer | Transient responses of continuously growing yeast cultures to dilution rate shifts: A sensitive means to analyze biology and the performance of equipment[END_REF]. kinetic models (dashed lines). Experimental data from [START_REF] Kätterer | Transient responses of continuously growing yeast cultures to dilution rate shifts: A sensitive means to analyze biology and the performance of equipment[END_REF], simulation data from [START_REF] Pigou | wodélistion du omportement inétiqueD des phénomènes de mélngeD de trnsfert loux et des e'ets d9hétérogénéité de popultion dns les fermenteurs industrielsF Génie des Procédés et de l'Environnement[END_REF].

A dilution rate stepup leads to a sudden increase in the nutrient availability and a reduction of the average residence time in the reactor. On the one hand more resources are available (and the sugar concentration generally increases from a few mg/L to several g/L) but on the other hand the slower growing cells are washed out and the overall cell mass in the reactor decreases for some time before the cells adapt their growth rate and recover. It is clear that in the transient phase, the population's growth rate is rst lower then higher than the (new) dilution rate. The usual unstructured approach that relates algebraically the growth rate to the sugar concentration predicts a rapid gain in biomass concentration as well as a practically constant sugar concentration. These predictions do not match with experimental observations. In contrast, assuming some inertia in the growth rate adaptation (as proposed in equation 1.13) allows a much better description of the transient response.

Another interesting example is provided for the yeast hromyes erevisie by the experimental data from Guillou & al. regarding a stepup in dilution rate [START_REF] Guillou | Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae[END_REF]. The step increase of the dilution rate is rather moderate entailing a sugar concentration increase from 10 to 60 mg/L) and in front of this limited perturbation, cells mobilise their internal storage. The authors explain that mobilisation of storage carbohydrates participates in the progression of the cell cycle by providing a surplus of ATP (energy) required at the bud emergence. Indeed, the fraction of budding cells increases signicantly after the dilution shift. Observing a higher oxygen consumption and carbon dioxide production, they concluded that the consumption of internal storage provides an apparent increased capacity to convert the glucose surplus into biomass by increasing the carbon ow into respiration. It is important to note that the dilution shift is moderate, leading to a three fold increase in the glucose inux which does not result in a saturation for the glycolytic pathway. [START_REF] Guillou | Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae[END_REF] To sum up, the magnitude of the dilution upshift is critical in the analysis of the cell response.

A moderate increase of the glucose inux can be damped through a fast mobilisation of internal storage allowing rapid energy production whereas a larger stepup leads to the saturation of the cell capacity to process glucose that accumulates signicantly in the liquid phase.

Uptake rate

Basically, the uptake rate should be regarded as the mass transfer rate between the liquid phase and the biotic phase. As already stated, this mass transfer does not depend on the thermodynamic properties and concentration solely. In microbial systems, the mass transfer is regulated by the cell itself at the expense of energy consumption. However, whatever the cell uptake capacity, the actual uptake rate can be limited by the rate of external transport towards the cell membrane.

Uptake dynamics with nite resources

We consider here the experiments facts reported by NotleyMcRobb & al. [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF] regarding the adaptation of sugar transport systems in batch culture. In this system, cells are cultivated in a closed reactor and consume an initial amount of sugar until its depletion. The rate of change in the sugar concentration results from the uptake by the microbial cells only. In the experiments, these authors tracked the induction of genes, measured the uptake rates and the production of some internal metabolites such a cAMP inside and outside the cell. Their results are presented in gure 1.17 for two dierent iF oli strains. Sugar and biomass concentrations are visible on the upper graphs, the intracellular and extracellular level of cAMP on the lower graphs. It is remarkable that cAMP production takes place well before the glucose exhaustion (0.3mM or56mg L) and is accompanied by a massive increase in the cell potential uptake rate (middle graph, left column). The measure of the potential uptake rate was performed independently, via cell sampling and exposure to a glucose rich medium. A very surprising and questioning point is that the threshold concentration that triggers the activation of the alternate transport system, about 50mg.L 1 , is far above the usual value of the K S constant of the PTS system. In other words, the PTS system is still fully active, capable of uptaking sugar at its maximum rate, and yet the cell perceives that it is time to activate scavenging uptake capacities. Note also that these extra capacities are not exploited right away since no change in the slope of the glucose concentration curve is visible. It can be remembered that cAMP was identied as a regulator of the cell cycle. Figure 1.17 A massive spike in cAMP goes with a slump in extracellular substrate, hinting at a change in the cells' uptake strategy (borrowed from NotleyMcRobb & al. [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF]). Indeed, as mentioned in [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF], cAMP contributes to the improved scavenging ability of bacteria growing on micromolar concentrations of glucose.

Scale-down experiments

In the eld of biochemical engineering, one of the most popular experiment for the study of the cell response to spatiotemporal uctuations is the socalled scaledown system consisting in a twostage bioreactor. In order to mimic the concentration changes as experienced by microbial cells in large scale bioreactors, George and his coworkers imagined a loop made of two bioreactors [START_REF] George | A scale-down two-compartment reactor with controlled substrate oscillations: Metabolic response of Saccharomyces cerevisiae[END_REF]. In the rst one, the volume thereof benig very large compared to the second, the sugar concentration is low (see gure 1.18 right). The carbonaceous substrate is fed at the inlet of the second reactor, generally a tubular reactor equipped with static mixers for intense mixing between the cell suspension and the concentrated sugar feed. Hence a sudden increase in the sugar concentration is experienced by a cell which enters the tubular reactor. The residence time in this reactor is relatively small (around 2 minutes). As cells are sent back to the rst reactor, the sugar concentration suddenly turns limitinglow due to dilution. As a result, this type of reactor produces a bimodal concentration distribution that resembles that observed in large scale bioreactors. As they circulate in the loop, cells experience high concentration events of two minutes each interrupted by starvation periods which duration goes with the exponential residence time distribution in the large bioreactor. Although this system was originally designed to study the consequences of imperfect macromixing, it was further improved to investigate the glucose uptake rate dynamics through the addition of sampling ports in the tubular reactor. Indeed, Neubauer, Häggström and Enfors used this reactor to quantify the glucose consumption of iF oli cells in the wake of a sudden increase in its concentration [START_REF] Neubauer | Inuence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF]. The main experimental results are visible in Figure 1.19 where the concentration proles for glucose, acetate and formate along the tubular reactor at dierent instants of the fedbatch culture are presented. The cultivation started in batch mode (only the rst reactor is used) and switched to fedbatch mode through opening the loop and feeding in the tubular reactor.

In the present case, a constant sugar feeding rate was used. Each column of the gure corresponds to successive observations performed shortly and then every two hours after the switch. On the top right corner of each graph, is reported the growth rate and the cell concentration (in g.L -1 ). The growth rate decreases with respect to time because the feed rate is constant while the number of cell keeps increasing. To end up with the description of these graphs, the right column corresponds to experiments where oxygen enriched air was injected in the tubular reactor in order to prevent oxygen exhaustion. The red dashed lines indicate the expected concentration prole assuming the steadystate uptake law apply.

q S = q S,max S K S + S (1.15) It is remarkable that the instantaneous uptake rate in the 25 seconds (0.4 minute) following the glucose shoot is in fact much larger than the observed maximum value when cells are continuously exposed to high concentration (in a batch culture, for example). This initial overshoot characterised by q S (t) > q S,max is followed by a relapse period where q S (t) ≈ 0 < q S,max . Analysing the existing literature at that time, the authors postulated that such a behavior could be explained by the existence of multiple transport systems. The repeated exposure to starvation periods would activate additional transporters responsible for the overassimilation, above the observed value when only one type of transporter is active.

The temporal resolution of the experimental sampling system has to be suciently high in order to actually detect the two-step uptake process: the nal glucose concentration at the outlet of the tubular reactor (after 2 minutes) is quite similar to the prediction that could be obtained using the steadystate uptake law (red dashed line). Several other studies [START_REF] Lendenmann | Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag ?[END_REF][START_REF] Leegwater | Apects of microbial physiology in relation to process control[END_REF] showed that the sugar uptake rate of various cells (not only iF goli) suddenly exposed to high concentrations does not depend on the growth rate. In these studies, cells cultivated in a chemostat (at steady state) were exposed to high glucose levels. Uptake and growth during the rst minute following the change were measured and plotted against the growth rate prior to the perturbation (see gure 1.20 for an illustration). In Neubauer's experiment, the microbial cells were forced to lower their growth rate because of ever increasing limitation in terms of glucose availability (because of the constant feed). So, in Neubauer's experiment, the microbial population is not at steady state when it faces the glucose stepup. The bacteria's growth rate is only their current growth rate and is not stationary. Thus the apparent contradiction in the reported observations is indeed related to the history of the culture. It reveals that multiple dynamics are at work: in a transient regime both the growth rate and the uptake rate are responding to the external concentration changes, but they do so on distinct time scales. It is of paramount importance to observe that the uptake rate is proportional the growth rate in a chemostat culture at steady state whereas this is no longer the case when the equilibrium is disrupted. The excess uptake rate is independent on the sugar concentration, the excess growth rate is not proportional to the growth rate prior to the perturbation neither is the uptake rate proportional to the growth rate. In other words, the steadystate uptake law (1.15) is not applicable to the transient response of a microbial population to glucose concentration changes.

The duration of the high concentration events is constant whereas the time lapse in between is not. Thinking in terms of dynamic systems, it is likely that population heterogeneity results from the convolution of the residence time distribution in the large reactor and the dynamic response of the biological system. Note also that the ow rate between the two reactors impacts the frequency of high concentration events, the duration of the said events but also the homogeneity of the entire system. Indeed, the higher the ow rate in the loop, the more spatially homogeneous the multistage reactor. The complex interplay between the spatial and temporal dimensions makes the experiments very dicult to design and their modelling a very challenging task.

Metabolic response

In their 1993 article on scaledown reactor, George & al. concluded that FFFrepeted @shortA residene times in zones of high sugr onentrtion hve n in)uene on the miroil metolism nd therey on the ioretor performne. From the previously mentioned results, it is clear that the uptake rate in highly concentrated zone increases far above the cell's requirements for growth.

Depending on the magnitude of this dierence the perturbation is damped or not. In this section, several experimental results related to the metabolic response following a strong perturbation will be examined.

The BioScope experiment

BioScope is the name of an experimental device allowing a higher temporal resolution of the cell response to a sudden change in the external glucose concentration [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF]. Cells are sampled from a continuous culture at steady state (D = 0.1 h -1 ), quickly mixed with some sugar and transported at a known ow rate in a silicon tube, permeable to oxygen and carbon dioxide. Multiple sampling points are distributed along the tube in order to measure the concentration of external metabolites, produced by the cells and excreted in the liquid phase (see gure 1.21). Typical results are presented Figure 1.21 Principle of a bioscope: cells cultivated in a continous stirred reactor are sampled, mixed with glucose and ushed into a tube. Sampling is performed along the tube to collect and measure the cell response at xed times after the perturbation [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] in gure 1.22. The authors identied two dierent phases in the response, the rst one corresponding to an increase in the acetate and formate production rates and the second one being characterised by a much lower production rate. In the aerobic case, the oxygen concentration was maintained at a high level during the experiment. Minor amounts of acetate and formate were produced. In the anaerobic case, the oxygen concentration was zero in the tube and the results presented in Figure 1.23 show that the production of mixed acids was in that case continuous and much more signicant. This metabolic response is typical of mixed acid fermentation which aim is to provide the organism Figure 1.22 Instantaneous response of iF goli cells to a sudden exposure to a 16mM glucose concentration (2.88 g.L -1 ) under aerobic conditions. The instantaneous glucose uptake rate is given by the slope of the glucose prole. Two phases are visible: the rst one is characterised by a signicant production of acetate and formate, the second one is marked by a much lower production of these compounds.

with energy.

The authors could measure the instantaneous glucose and oxygen uptake rate right after the glucose pulse, the results featuring on Table 1.1. The steadystate values are in line with given by the slope of the glucose prole. The production of mixed acids is in that case continuous [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] previously published data [START_REF] Kayser | Metabolic ux analysis of Escherichia coli in glucose-limited continuous culture. sF qrowthErteEdependent metoli e0ieny t stedy stteF wiroiology[END_REF]. The glucose uptake rate after the aerobic pulse is signicantly higher (50 %) than the maximum value that can be measured in a batch culture (q S,batch ≈ 2g S .g -1 X .h -1 assuming a maximum growth rate of 1h -1 and Y SX ≈ 0.5g X .g -1 S [49, 99]). In the anaerobic pulse the instantaneous uptake rate is even twice larger than in the aerobic experiment indicating that the cells' actual uptake capacity can be as high as several grams of sugar per gram of biomass and per hour as also reported in the Neubauer's experiment. Clearly such high values can not be explained if a single transport system is considered. It is very likely that multiple transporters having dierent maximum uptake capacities are active at the same time. Depending on the culture conditions, they contribute to various fractions of the total uptake. Table 1.1 Specic glucose and oxygen uptake rates before and after the addition of sugar [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] q S (g S .g -1 This raises the question of whether the oscillating changes from low to high glucose concentration in the twocompartment reactor support the enrichment of intracellular components which are responsible for the uptake of glucose [START_REF] Neubauer | Inuence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF].

X .h -1 ) q O 2 (g O 2 .g -1 X .h -1 )

Glucose pulse in a chemostat

At the Toulouse Biotechnology Institute, Sunya, Delvigne (Louvain, Belgium), Uribelarrea, MolinaJouve and Gorret studied the transient responses of isherihi oli to a glucose pulse of various intensities in an aerated chemostat culture [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]. Dissolved oxygen, pH and metabolites concentrations in the liquid phase as well as ogas composition were measured. The intensity of the glucose pulses was 0.08g.L -1 (green curves), 0.4g.L -1 (blue curves) and 1g.L -1 (red curves).

Figure 1.24 depicts the evolution of glucose, acetate and formate in the wake of the pulse.

Considering the short duration of the transient period (maximum 25 min) compared to the residence time (> 6h), these data can be regarded as the response of the metabolism only, disregarding the washout due to dilution. Thus, one observes that the uptake and production rates are constant and similar in all experiments. Secondly, acetate reconsumption takes place once the surplus of glucose was assimilated. This indicates that the cells complement their need for carbon through acetate uptake. The produced formate is not reconsumed.

The examination of the dissolved oxygen prole in Figure 1.25 reveals that the addition of sugar entails a sudden drop in the liquid phase oxygen concentration, which remains almost zero until glucose is depleted. Thus, the whole response of the culture is under inuence of a limiting oxygen ux. Indeed contrary to what a concentrationbased approach would suggest, an oxygen concentration close to zero does not mean that the oxygen uptake rate is null. Reasoning in terms 1. Reference [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] 2. Reference [START_REF] Neubauer | Inuence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF] Figure 1.24 Time evolution of the glucose, acetate, and formate in the wake of a pulse of various intensities, 0.08g.L -1 (green curves), 0.4g.L -1 (blue curves) and 1g.L -1 (red curves), imposed in a steadystate chemostat (D = 0.15h -1 ) (borrowed from [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]).

of uxes is more appropriate: in the wake of the glucose pulse the oxygen demand increases so much that the oxygen uptake rate becomes limited by the gasliquid transfer rate. After glucose exhaustion, the oxygen concentration rises up to the steady state value at a dierent rate depending on the amount of acetate present in the liquid phase. This indicates that acetate is probably engaged in an oxidative pathway. The slump in oxygen is accompanied by a decrease in the oxygen concentration and an increase in the carbon dioxide concentration in the gas phase.

In order to identify which metabolic pathways are activated, the respiratory ratio, dened as the rate of carbon dioxide production to the rate of oxygen consumption is often used. A value of one is indicative of oxidative metabolism, whereas a value higher than one indicates that fermentation takes place, glucose being used in the mixedacid pathway to produce energy. The results presented on gure 1.26 indicates that the metabolism is purely oxidative prior to the pulse. Right after the pulse, the oxygen uptake rate correlates with the carbon dioxide production rate, the latter being more pronounced. This reveals as the authors state that a combination of overow and fermentation is at work. From these data, the authors could estimate the instantaneous glucose uptake rate. In that case the glucose uptake rate was only 71% of the maximum uptake rate in unlimited culture.

However, it seems that this value is an average over the entire pulse rather that the instantaneous uptake rate in the few second following the glucose addition as in Lara's and Neubauer's works.

Nevetheless, this result indicates that the availability of oxygen plays an important role in the regulation of the glucose uptake.

Conclusion on biological considerations

The individuals' adaption to an eveructuating environment is in essence a membrane feature.

From experimental grounds like Neubauer's [START_REF] Neubauer | Inuence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF], dierent types of transmembrane enzymes are thought to contribute to the cells' substrate uptake capability. A handful of such transporters were evidenced in the 1990s, which are classied into two main categories: moleculespecic, highanity and nonspecic, lowanity systems. To relieve the reader of some modelling burden, only one specic (called PTS throughout this work) and one nonspecic (christened permease from now on) transporters will be addressed, without loss of generality considering the observed halfsaturation constant for all these enzymatic compounds. PTS are considered the routine uptake system. They allow the wellnourished cells to cherrypick their favorite source of carbon when the individuals are free to put all other substrates aside. Permeases are considered the scavenger uptake system. They operate like porins and are built to complement the total uptake rate should the PTS fall short of the backbone machinery's needs, what happens when the substrate is scarce at the cell's neighbourhood.

It is understood that the PTS activation exerts a negative feedback on the permeases' functioning at high S, this knockon eect waning as S is decreasing. The nonspecic system is deemed less desirable to the organisms than its prime counterpart, as it lets other compounds entering the following the pulse (D = 0.15h -1 ) (borrowed from [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]).

cytoplasm. Amplitudewise though, the permease capacity is thought to overreach (by a factor of 5 according to Neubauer [START_REF] Neubauer | Inuence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF]) the largest glucoseunlimited (that is batch) PTS uptake rate. This behavior is probably induced by repeated exposure to starvation conditions. Following the sudden relief of starvation conditions, the glucose uptake rate becomes much larger than the cell needs and the whole metabolism can be aected over several generation times. The magnitude of the metabolic disorder is highly dependent on the actual physiological state of the cell, the magnitude of the perturbation and the availability of oxygen.

Population Balance Equations 1.4.1 Overview

The concept of Population Balance Equations (PBEs) originates from the eld of uid mechanics, Smoluchowski [START_REF] Smoluchowski | Drei Vorträge über Diusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen[END_REF] establishing the coagulation equation in his seminal 1916 publication. It is not only the master equation when it comes to rupture/coalescence of liquid droplets and bubbles but also a standard framework in social sciences (cf. Kuhn & al. [61]), chemistry (polymerisation for instance, see Lebaz & al. [68]), physics (see Hulburt & Katz [45] for an application in crystallisation), meteorology (for example Scott's [START_REF] Scott | Analytical studies of Cloud Droplet Coalescence[END_REF]) and biology, with special reference to cell cycle physiology (the latter will be further detailed in an appropriate section).

PBEs aim at discriminating a population with respect to inner coordinates which are assumed a representative singularisation of each and every individual. Concretely, to address a variety of bubbles (further pertaining information features, for example, in Laupsien's [START_REF] Laupsien | rydrodynmisD wss rnsfer nd wixing indued y fule lumes in isous pluids[END_REF] work) or ocks (such an approach is provided, amongst others, by Guérin & al. [START_REF] Guérin | Dynamics of aggregate size and shape properties under sequenced occulation in a turbulent Taylor-Couette reactor[END_REF]) that emerges from an experiment, each element of the set is supposed comprehensively determined by their characteristic size and morphology. When living organisms are considered instead, the modelling requires a shot at the interaction between the biotic and abiotic phases and no unicist formulation has been set in stone thus far. On the contrary, these questions are still under construction, as recent literature is rife with model developments which aim at shedding light on experimental observations (cf. Stamatakis & Zygourakis [START_REF] Stamatakis | A mathematical and computational approach for integrating the major sources of cell population heterogeneity[END_REF], Fadda & al. [22], Morchain & al. [START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF] for a non-exhaustive overview). From a historical point of view, the quantities of interest have been age and size which knowledge was the only information at the reach of the experimentalists. It was well understood in the microbiology community (notably by Powell [START_REF] Powell | Growth Rate and Generation Time of Bacteria, with Special Reference to Continuous Culture[END_REF] or Koch [START_REF] Koch | A Model for Statistics of the Cell Division Process[END_REF]) that the redistribution of a dividing cell's content aects the maturity of the subsequent daughtercells, potentially distributing the organisms' growth rate as a result. Such a cellscale feature could not be captured with macroscopic sets of ODEs like (1.7), prompting the need for more powerful mathematical tools aiming at blending growth and redistribution.

General formulation of PBE

The standard PBE is a transport equation that can capture, depending on the case study, non linear (like coagulation) or linear (like fragmentation) processes which aect the description of a population. In all generality, such an equation reads:

∂ ∂t n(t, x, ξ) + ∇ x ( ẋn(t, x, ξ)) + ∇ ξ ( ξn(t, x, ξ)) = Ω ξ G(x, ξ ′ , n(t, x, ξ ′ ))n(t, x, ξ ′ )dξ ′ (1.16)
Hereinafter, n is called number density function and reports how a population is distributed into a certain number of inner variables which comprise the vector ξ. x stands for the vector of spatial coordinates. By denition, n(t, x, ξ)dξ stands for the number of prtiles per unit volume (of the physical space), having their properties in an innitesimal domain, dξ, of the state space Ω ξ . The entire space domain consists in a N d dimensional rectangular domain (Ω ξ =

N d ⊗ i=1 Ω ξ i ).
Thus, the second term on the lefthand side of equation (1.16) represents the transport in the physical space, the third one stands for the transport in the space of inner variables (particle properties). The righthand side term depends on the specic processes whereby particles appear and disappear from the system. G the gathering of all other (linear or nonlinear) physical phenomena which can modify the fate of the particles under consideration. Further appropriate boundary conditions are usually inferred from physical considerations; in crystallisation for example, negative or nullvolume individuals are supposed nonexistent.

In the socalled homogeneous case, the number density function does not depend on the space coordinates burt only on the organisms' inner properties. In this context, an integration of (1.16)

over the whole reactor leads to:

∂ ∂t n(t, ξ) + ∇ ξ ( ξn(t, ξ)) + Σx ẋn(t, x, ξ)dΣ x = Ω ξ G(ξ ′ , n(t, ξ ′ ))n(t, ξ ′ )dξ ′ (1.17)
The third term on the left hand side of equation (1.17) stands for the uxes through the boundaries, Σ x , of the physical volume Ω x ; it is null if a closed system is considered, but not if the culture operates in a continuous fermenter for which the draining plays a role in the population balance.

For a closed cultivation system the equation reads:

∂ ∂t n(t, ξ) + ∇ ξ ( ξn(t, ξ)) = Ω ξ G(ξ ′ , n(t, ξ ′ ))n(t, ξ ′ )dξ ′ (1.18)
and for an open cultivation system with a dilution rate D (in h -1 ) it turns into: 

∂ ∂t n(t, ξ) + ∇ ξ ( ξn(t, ξ)) + Dn(t, ξ) = Ω ξ G(ξ ′ , n(t, ξ ′ ))n(t, ξ ′ )dξ ′ (1.
C 0 (R + , L 1 (R + ))
, provided that the rupture and agregation functions are continuous and bounded) was proven in 1956 by Melzak [START_REF] Melzak | A Scalar Transport Equation[END_REF]. A similar result to Melzak's for the system (1.22) was stated in the mid-1980s by Dawidowicz and Loskot [14].

Similarly, the mathematics literature is fraught with technical results for the eigenproblem which purpose is a better understanding of the asymptotic solution. In this context, a primal equation is satised by the eigenfunction (with no loss of generality, this function will be christened N throughout this work) that carves the geometrical shape of the steadystate solution, and the corresponding eigenvalue λ (the socalled Malthus parameter) dictates the rate of convergence towards the aforementioned eigenvector. A dual equation is contrived in the distribution sense, the solution thereof involving the same eigenvalue as the primal equation and an eigenfunction φ which denition is loosened by a mere integrability condition. The standard procedure consists in applying KreinRutman's theorem to a regularised problem which solution breaks down into a manifold of eigenelements and ensuring that limits can be taken with the help of a priori estimates.

Such results have been published in the context of equal redistribution (see Perthame & Ryzhik's 2004 paper [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]) and constant (N ∈ S(R + ), φ ≡ 1)

or bounded (N ∈ W 1,∞ (R + ), φ ∈ C 1 (R + ))
rupture function, unequal redistribution (cf. Michel's 2005 work [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF]) and locally bounded, locally integrable rupture function (where

N ∈ L 1 (R + ) ∩ L ∞ loc (R + ))
, with constant time evolution of the inner variables. In Doumic & Gabriel's 2010 contribution [20], the latter assumption is loosened without a hitch, and ξN ∈ W 1,1 (R + ), φ ∈ L ∞ (R + , (1 + ξ k )) for a certain k > 0 can be proven.

Numerical resolution of the PBEs

Beyond the cases in point which serve as insights more than descriptions of physical phenomena, no analytical solutions to PBEs are available for the time being, making the development of light and accurate numerical algorithms a mandatory step to investigate applied problems.

From numerical perspectives, deterministic and statistical tools have been implemented to solve (1.22). Two approaches (lagrangian and eulerian) complement each other to the extent that neither can capture the populationscale information in its entirety. Thus far, the most popular methods to solve (1.22) have been the Finite Volume, Finite Element and MonteCarlo procedures. A brief excerpt is presented for the sake of clarity.

The Finite Volume method

This deterministic eulerian method relies on the socalled conservative form of ( It can happen that a reasonable accuracy for those algorithms is obtained with a relaxation of the condition touching upon the conservation of the moments of the solution. For instance, if M 0 stands for the integral ∫ Ω ξ n(ξ)dξ and M 1 for ∫ Ω ξ ξn(ξ)dξ, M 0 only or M 1 only conserving schemes can be implemented with satisfying precision to solve various physical processes.

The subtleties of all these algorithms have been explained in all generality by LeVeque [START_REF] Leveque | pinite olume wethods for ryperoli rolems[END_REF] for hyperbolic PDEs. In the context of PBEs, Finite Volume methods for Smoluchowski's equation have been introduced by Filbet & Laurençot [START_REF] Filbet | Numerical simulation of the Smoluchowski coagulation equation[END_REF] in one dimension, their algorithm consisting in a secondorder resolution in both t and ξ to simulate the coagulation of particles of nite size into a particle of innite size. The said algorithm was extended to a twodimensional PBE by Qamar & Warnecke [START_REF] Qamar | Solving population balance equations for twocomponent aggregation by a nite volume scheme[END_REF]. A very simple M 0 and M 1 conserving Finite Volume scheme for a pure breakage PBE was thereafter published by Saha & al. [123], using an appropriate weighting for both the redistribution and the breakage terms. It was shown to be secondorder accurate in ξ regardless the mesh. A meshing along the characteristic curves associated to (1.22) was also engineered by Abia & al. [1] with proven secondorder accuracy should the lengthening rate be 3 times dierentiable and the rupture and redistribution functions 2 times dierentiable.

The Finite Element method

This deterministic eulerian method relies on the socalled weak form of (1.22): for any ϕ ∈ D(Ω ξ ), an integration over the phase space reads:

Ω ξ ∂ ∂t n(t, ξ)ϕ(ξ)dξ - Ω ξ ξn(t, ξ)ϕ ′ (ξ)dξ + Ω ξ γ(ξ)n(t, ξ)ϕ(ξ)dξ = Ω ξ ϕ(ξ) Source dξ (1.21)
using the fact that ϕ has compact support to ditch the boundary term emerging from the use of Green's theorem in the transport term.

Once a suitable shaperegular mesh Ω h has been built and the right Sobolev space to solve the weak form of the PDE has been identied (say W k,p , p ≥ 1), a nite element space is dened as the nitedimentional subspace of W k,p that is spanned by a userset number of L 2 orthonormal basis functions (usually polynomials) on Ω h . The order of the method is given by the cardinality of the polynomial basis. This method has been extensively implemented to solve PBEs. A Finite Elements algorithm using (1.21) along with a RK4 time integration was proposed by Mantzaris & al. [79]. In Ganesan's contribution [START_REF] Ganesan | An Operator-Splitting Galerkin/SUPG Finite Element Method for Population Balance Equations: Stability and Convergence[END_REF], a coercive form of the weak formulation of a transportdiusion equation for crystallisation was engineered with the help of local stabilisation parameters and solved with an operatorsplitting Galerkin/SUPG method.

The MonteCarlo method

This statistical lagrangian method consists in tracking ctitious particles which inner coordinates are updated using the dynamical laws for ξ. It allows a circumvention of the (1.22) PDE at each time step and is the bestsuited method for highdimensional PBEs. In detail, the PDF is approached by the sum:

n(t, ξ) ≈ I Σ i=1 1 I δ ξ-ξ i (t)
where ξ i (t) is the markovian consequence of the i-th particule's history in the system from its inception at time t i0 . I can be set constant, meaning that no death process is implemented and each birth event in the system goes with the removal of one of the extant particles. In the case of birthanddeath processes though, I is another markovian marker of the state of the population at a certain time.

Applied to PBEs, this method would break down into two main processes. The transport term is deterministically computed as it comes down to an integration along the characteristic curves passing through the state at birth. The time evolution of the particle number is the result of a stochastic treatment of the physical phenomena the PBE aims at reporting (rupture, coalescence, dilution, ...). More precisely, the drawing of appropriate random numbers for each individual can determine whether or not the particle will be aected by the said phenomena.

This method was engineered as early as 1949 by Kendall [START_REF] Kendall | An articial realization of a simple "birth-and-death" process[END_REF] and its rst reference in the context of biological population dynamics features in Shah & al.'s 1976 article [START_REF] Shah | Monte Carlo Simulation of Microbial Population Growth[END_REF]. From the central limit theorem, the method's accuracy is wellknown to scale as I -1 2 only, requiring a substantial sample to ensure reliable numerics. However, the avoidance of an eulerian integration of (1.22) provides numerical diusionfree outputs, what is quite commendable since the method's uncertainty is only determined by the usercontrolled population number I, enabling a consequential gain in accuracy at the reasonable expense of a rise in I. 

Other methods

The Finite Dierence method is a deterministic, eulerian method based on the strong form of the (1.22) PDE. The solution is updated from the knowledge of n at the nodes of a N d dimensional mesh and Taylor's formula to calculate, for any ξ i :

n(t + δt, ξ i ) = n(t, ξ i ) + δt ∂ ∂t n(t, ξ i ) + 1 2 δt 2 ∂ 2 ∂t 2 n(t, ξ i ) + ...
with the denition of ∂ k n ∂t k emerging from Leibniz's rule. Just like the Finite Volume case, the method's order is dictated by the truncation and a CFL condition must be satised to guarantee the algorithm's stability. Such a numerical solution to a massstructured model was presented by Mantzaris [START_REF] Nikolaos | Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration[END_REF] and invokes halftime step intermediate solutions between the grid points, the computation thereof resulting from the LaxFriedrichs scheme. More of the same was laid out by Mantzaris & al. [77], where the aforementioned hybrid scheme is compared with higherorder explicit and implicit Finite Dierence algorithms, computational time and stabilitywise. From theoretical perspectives, convergence and error estimates for this method have been thoroughly investigated by Kostova [START_REF] Kostova | Numerical Solutions to Equations Modelling Nonlinearity Interacting Age-Dependent Populations[END_REF], the case study being an agestructured model.

A similar approach, albeit less timeconsuming, is the Lattice Boltzmann method. It comes down to tracking a particle density which, at time t and position x, is geared towards a predened number of neighbours x q , q ∈ {1, ..., Q}, ecah jump occuring at velocity v q = (x q -x) δt. It has been proven (see Dubois's [21] analysis and references therein) that this process is tantamount to an upwind dierencing scheme for a standard transport equation. Numerical simulations making use of this technique were performed by Majumder & al. [76] in the context of sizestructured PBEs for crystallisation.

Spectral methods were implemented by Mantzaris & al. [78] to solve PBEs. In this case, n is expanded onto a L 2 orthogonal (typically Legendre or Tchebychev) polynomial basis:

n(t, ξ) = Σ i≥1 ω i (t)p i (ξ)
An Ith order truncation thereof turns (1.22) into a set of I dierential equations involving the ω i at each time step. To this end, each dierential equation is multiplied by p j ∫ p i p j and integrated with respect to ξ to isolate the time evolution of the ω i s by virtue of the orthogonality relationship between the p i s. In [START_REF] Nikolaos | Numerical solution of multi-variable cell population balance models: II. Spectral methods[END_REF], spectral Galerkin and similar tau methods are compared with pseudo spectral collocation methods which require that the Ith order approximation of the solution to (1.22) satises the PBE at I socalled collocation points.

The method of classes (cf. Kumar & Ramkrishna's 1995 articles [START_REF] Kumar | On the solution of population balance equations by discretizationI. A xed pivot technique[END_REF][START_REF] Kumar | On the solution of population balance equations by discretizationII. A moving pivot technique[END_REF] or Morchain & al.'s work [START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF]) involves once again a N d dimensional meshing of the phase space, over which (1.22) can be approached by a weighted Dirac function centered on a (xed or moving) pivot. In order to compute both the weights and the pivots at each time step, discrete equations for two integral quantities (number and mass, typically) have to be derived from the PBE. It has been proven a reliable asset inasmuch as both the particle number and the total mass are conserved, with the advantage of exibility regarding the meshing (cartesian, geometric, nonregular) of the phase space.

The method of moments consists in a priori assuming the shape of n (beta, Weibull, exponential, ...) and tracking as many moments of the distribution as necessary to update all the shape/scale parameters that characterise the presumed distribution. This quite ecient method poses numerical problems when it comes to the computation of the normalising factor, for instance in the beta case where a β(75, 75) distribution cannot be restituded by the current stateoftheart processers. A way around this untoward hindrance could consist in a Quadrature Method of Moments, that is an approximation of the solution to (1.22) by a sum of Dirac functions:

n(t, ξ) = J Σ j=1 ω j δ ξ-ξ j
with exact calculation of the ω j , ξ j from the knowledge of the 2J rst moments of n, whatever its shape. Numerical tools have been developed to this end, notably Wheeler's [START_REF] Wheeler | Modied Moments and Gaussian Quadratures[END_REF] algorithm, and an exhaustive review of this technique is provided by Marchisio & Fox [START_REF] Marchisio | gomputtionl wodels for olydisperse rtiulte nd wultiphse ystems[END_REF]. However, one distribution is dened by no less than an innite sequence of moments, prompting a cautious need to ensure the realisability of the outputs of the numerics (see Nguyen & al. for such an example [START_REF] Trung Nguyen | Solution of population balance equations in applications with ne particles: mathematical modeling and numerical schemes[END_REF]).

Takeaway

One dimensional structured models have been thoroughly investigated over the last decades, resulting in a luxuriant literature pertaining to the PBE analysis. With no analytical solution to (1.22) at the researchers' reach, the implementation of numerical methods has made up the bulk of the scientic production since the 1970s. These algorithms are engineered to simulate ever more complex (nonlinear, multivariate, ...) problems emerging from the eld of physics, chemistry, or biology. Before focusing on the use of population balance equations to describe microbial populations, some experimental considerations have to be explained beforehand.

Population Balances in biology

Two dierent formulations are found for biological population dynamics depending on whether the cell age is considered or not. A standard PBE in biology would take the following shape:

∂ ∂t n(t, ξ) + ∇ ξ ⋅ ξn(t, ξ) + γ(ξ)n(t, ξ) + D(ξ)n(t, ξ) = S n , ξ ∈ Ω ξ n(t, ξ) ξ∈Σ ξ = (BC) n(0, ξ) = n 0 (ξ) , ξ ∈ Ω ξ (1.22) D(ξ) (h -1
) is an overall disappearance rate combining cellular (death) and environmental (hydraulic dilution) factors. Here, Σ ξ is a part of Ω ξ 's boundary and γ (time unit -1 ) is the rupture function or cell division frequency.

S n and (BC) take dierent shape depending on the chosen inner coordinates. If one element of ξ is the cell age, then S n = 0 and the boundary condition reads

(BC) = 2 Ω ξ γ(ξ ′ )P (ξ, ξ ′ )n(t, ξ ′ )dξ ′
with P the redistribution kernel that models the probability that mothercells of state ξ ′ give birth to daughtercells of state ξ. The factor 2 signals that one dividing cell gives birth to two daughtercells.

On the other hand, if ξ does not take the age into account, S n will be a redistribution integral:

S n = 2 Ω ξ γ(ξ ′ )P (ξ, ξ ′ )n(t, ξ ′ )dξ ′
and (BC) a Neumann or Dirichlet condition.

Analytical results

Agestructured models

Biological agestructured models are shaped from the McKendrickvon Foerster equation:

∂ ∂t n(t, a) + ∂ ∂a n(t, a) = -d(a)n(t, a) , f ∶ R + → R + n(t, 0) = ∞ 0 γ(a)n(t, a)da (1.23)
for which analytical solutions exist using the method of characteristics (cf. Trucco's seminal [START_REF] Trucco | Mathematical Models for Cellular Systems. The Von Foerster equation[END_REF] article). d (time unit -1 ) is the death function.

As early as 1983, an existence and uniqueness result in L ∞ (R + , L 1 (R + )) for age-dependent population dynamics was derived by Chipot [11] when the rupture function is measurable. Existence and uniqueness of a solution (in C 0 (R + , L 1 (R + ))) and eigenelements to the age PBE have been proposed by Clairambault & al. [13]. It has also been demonstrated by Bartlomiejczyk & al. [3] that the redistribution operator is a contraction with respect to a Bielecki norm, provided the rupture function is bounded in the space of the inner coordinates. Overall, the mathematical theory for agestructured models is now wrapped up, taking into account that the organisms' age belongs to R + as a whole and has no reason to be restricted to a bounded interval. Indeed, as explained by Hjortso & Nielsen [START_REF] Hjortso | Population balance models of autonomous microbial oscillations[END_REF], a cell will not divide if substrate is not abundant enough to allow its preliminary growth, protracting its division age with no limit.

Modellingwise, agePBEs represent a massive step forward in describing the behaviour of biological populations in reactors to the extent that bacteria age proles can be retrieved from (1.23).

Indeed, the only reported time scale at the reach of the 1.7 set of ODEs is given by the dilution rate D, prompting the need to formulate any cellscale characteristic time as a function of D.

A quantity which analysis has proven fruitful for is the interdivision time (or age at division), even though this variable does not explicitly feature in the equations. The denition of growth introduced at the beginning of the manuscript along with the unstructured kinetic model for a continuous bioreactor would lead to the following calculation for a population's doubling time

2X = X exp(Dτ d ) ⇔ τ d = ln(2) D (1.24)
However, from physical grounds, it seems evident that as soon as interdivision times are distributed in a population, some organisms will divide more than once in an interval of Lebesgue measure τ d whereas some will not generate any descendent in the meantime. In other words, the healthier cells are to contribute more to a population's doubling, in such a way that a recorded mean interdivision time must be less than or equal to τ d . The equality would be tantamount to a non-distribution of the interdivision times in the population that does not seem plausible. The population's doubling time must not be conated with the mean interdivision time.

Before the formal statement of PBEs, Powell conjectured from his own measurements that a population's mean interdivision time has to be less than τ d [START_REF] Powell | Growth Rate and Generation Time of Bacteria, with Special Reference to Continuous Culture[END_REF][START_REF] Powell | A Note on Koch & Schaechter's Hypothesis about Growth and Fission of Bacteria[END_REF]. From physical grounds, when interdivision times are measured in a culture, the healthier cells are granted the larger weight and their consecutive division events must sway the interdivision time distribution to the left. However, these connections between mean interdivision time and τ d have stirred a protracted debate since Right: Age over mean age PDFs for the same bacteria. Borrowed from [START_REF] Jafarpour | Bridging the Timescales of Single-Cell and Population Dynamics[END_REF].

Sizestructured models

In his book on PBEs for biology, Perthame claims :

For unicellular organisms the renewal equation does not apply, mainly because age is not the most relevant parameter that determines mitosis (the reproduction stage). The mass of the cell, its length, its DNA content, the level of certain proteins as cyclins or some other biological parameters are often more relevant. [START_REF] Mischler | Stability in a Nonlinear Population Maturation Model[END_REF] Studying sizestructured models for biological populations was topical in the biophysics community in the 1960s, analytical solutions emerging from heavily simplifying hypotheses only. Typically, formulae for equal redistribution and linear or exponential growth have been derived by Kubitschek [START_REF] Kubitschek | Growth during the bacterial cell cycle: analysis of cell size distribution[END_REF] from probabilistic arguments and by Beyer [5] from a generation expansion.

When the growth function is not prescribed, Diekmann & al. [18] have derived an existence and uniqueness result in C 0 ([0, T ] × [l min , l max ]) ∀T > 0 in the context of equal redistribution, where the support [l min , l max ] of the size distribution is shaped by the assumption that the minimal length at rupture is 2l min and an arbitrary denition of l max that forces an exponential shape of the rupture function.

It must be put to the reader's attention that to close a sizestructured PBE: 

∂ ∂t n(t, ξ) + ∂ ∂ξ ξn(t, ξ) + γ(ξ)n(t, ξ) = 2 ∞ ξ γ(ξ ′ )P (ξ, ξ ′ )n(t, ξ ′ )dξ ′ n(t, 0) = 0 = lim ξ→∞ n(t,

Age in the cycle and maturity rate 2-D structured model

Age is sometimes ditched from PBEs in favour of the bounded degree of maturity (see Rubinow's [START_REF] Rubinow | A Maturity-Time Representation For Cell Population[END_REF]) that is understood by Rotenberg [START_REF] Rotenberg | Selective Synchrony of Cells of Diering Cycle Times[END_REF] as the normalised age in the cell cycle. 

∂ ∂t n(t, µ, v) + v ∂ ∂µ n(t, µ, v) = ∞ 0 r(µ, v, v ′ )n(t, µ, v ′ ) -r(µ, v ′ , v)n(t, µ, v)dv ′ + δ µ S n (t, v) S n (t, v) = vn(t, µ, v) µ=0
with µ the age in the cell cycle, v its time derivative, and r the transition rate in v.

Modellingwise, this framework is particularly well suited to the synchronisation of tumorous cells as part of chemotherapy treatments (see [START_REF] Rotenberg | Selective Synchrony of Cells of Diering Cycle Times[END_REF] and references therein), and, among other results, a Green function is retrieved by Rotenberg [START_REF] Rotenberg | Transport Theory for Growing Cell Populations[END_REF] from the assumption that the time evolution of the cells' maturity is bounded and the transition rate of one rate of maturity to any other is constant.

This formulation has even drawn the attention of mathematicians: a characterisation of the Malthus eigenelements was published by Mischler & al. in 2004 [90] under the assumption that the rupture function is uniformly bounded. Rotenberg's formalism sheds light on the dierent perspectives of modelling the cell division and incorporating it in a PBE. When the age is normalised to the extent that rupture always occurs at age = 1, the time derivative of this socalled degree of maturity is obviously not equal to 1, meaning that cell division occurs at any maturity rate and maturity rate transitions occur at any time. In other words, when the cell cycle duration is set, the maturity velocity is not anymore: both variables can be seen as dual.

A review of popular structured PBE

In this section will be provided a brief description of increasingly complex formulations of a structured PBE. In particular, special emphasis will be placed on the coupling between the PBE for the biological population and the mass conservation of nutrients. These classes of models are referred to as structured models including extracellular environment. Clearly, the introduction of a coupling with the liquid phase considerably increases the complexity of the whole model since it involves a twoway coupling. Each cell responds with its own dynamics to the changes in the external concentration whereas the nutrients concentration in the liquid phase results from the contribution of all cells.

Sizestructured models

∂ ∂t n(t, ξ) + ∂ ∂ξ (r(ξ, S)n(t, ξ)) + (γ(ξ, S) + D)n(t, ξ) = 2 ∞ ξ γ(ξ ′ , S)P (ξ, ξ ′ )n(t, ξ ′ )dξ ′ ∂S(t) ∂t = D(S f -S(t)) - ν(ξ, S)r(ξ, S)n(t, ξ)dξ n(t, ξ = 0) = 0 S(t = 0) = S 0 (1.25)
ξ standing for the cell size (length, volume or mass), D for the dilution rate (h -1 ), and S f for the sugar concentration in the feeding current. r(ξ, S) is the individual cell growth rate (in the unit of ξ) and ν(ξ, S) plays a similar role as Y SX in unstructured models. D is equal to Q/V for a chemostat, that is a reactor of volume V ushed by the ow rate Q. Setting D to zero and S 0 to a positive value leads to a set of equations for a batch culture.

An illustration of such a model is proposed by Subramanian, Ramkrishna, Fredrickson and Tsuchiya in their 1970's paper, where ξ corresponds to the cell mass [START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF]. Using the notation of the present manuscript, their model turns into (1.25) with

r(ξ, S) = φ ξ S K S + S ξ (1.26) ν(ξ, S) = 0.75 (1.27)
At the cell level exponential growth is considered and the substratetobiomass yield is constant.

In Perthame's presentation of this type of model ν(ξ, S) is implicitly set to one meaning that a gain in mass of the suspended biological phase results from a corresponding mass loss in the liquid phase. The real situation is more complex and this will actually constitute one of this work's key issues. In general, ν(ξ, S) is not equal to one because cells consume and excrete some products (for example microbial cells consume sugar and oxygen to produce new cells and carbon dioxide).

Subramanian and coworkers considered this fact in the simplest possible manner using a constant value for ν(ξ, S) but the crucial point is that the ratio between the substrate uptake rate and the growth rate (rate of mass change) is not constant in the transient regime as shown in the rst part of this chapter (Section 1.3.2, page 27).

The rupture and mass distribution functions were expressed as:

γ(ξ, S) = f (ξ c , S).r(ξ, S) (1.28) P (ξ, ξ ′ ) = 30 ξ 2 (ξ ′ -ξ) 2 ξ ′5 (1.29)
where ξ c is a data based constant which indicates the mean cell mass at division. In the same vein, the exponents in the mass distribution law are extracted from experimental data or simply hypothesised. Sizestructured PBE remain the most popular framework in the biochemical engineering community in particular because the cell size is experimentally accessible. The main diculty lies in relating the cells' metabolic behaviour to their size which is obviously not the most relevant quantity to do so [START_REF] Heins | Experimental and in silico investigation of population heterogeneity in continuous Saccharomyces cerevisiae scale-down fermentation in a two-compartment setup[END_REF].

Age in the cycle (and size) structured models A few papers were dedicated to the description of the cell cycle with ξ = a the age in the cycle [13] or ξ = {a, m} age and cell mass [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF]. In that case, I number density functions are described i ∈ {1, I} and an equivalent number of transition functions from one phase of the cycle to the next one have to be dened. Note that the transition function from phase I to phase 1 can be regarded as a boundary condition.

∂ ∂t n i (t, ξ) + ∂ ∂ξ (r i (ξ)n i (t, ξ)) + (γ i (ξ) + D i )n i (t, ξ) = 0 n i (t, ξ) ξ=0 = ∞ 0 γ i-1 (ξ)n i-1 (t, ξ)dξ 2 ≤ ξ ≤ I -1 n 1 (t, ξ) ξ=0 = 2 ∞ 0 γ I (ξ)n I (t, ξ)dξ (1.30)
In each phase of the cycle, cells start at age 0 and are aging with speed r i . More details on the identication of γ i from experimental data and analytical solution can be found in [6].

The particular case treated by Hatzis consists in taking the age into account in the rst and last phases of the cycle only and the sole mass in the intermediate phase. Accordingly the transition from phase 1 to 2 is agedependent, the second being a function of the organisms' mass only and the third one an agedependent function. Although these transition functions can be identied from experimental data, Hatzis pointed out that these measurements are made under steadystate conditions and more than likely will not reect the transient population features. Further investigations aiming at giving a general form to the model are provided in [START_REF] Fredrickson | Population balance equations for cell and microbial cultures revisited[END_REF][START_REF] Fredrickson | A new set of population balance equations for microbial and cell cultures[END_REF] Cell compositionstructured models

As previously stated, the cell growth rate depends on the availability of some nutrients in the extracellular environment. A biologyinspired renement is to consider that the growth rate is the consequence of many biochemical reactions involving intracellular compounds (namely metabolites and enzymes). Therefore a more realistic model would also consider intracellular composition to formulate an expression for the growth and uptake rates, leading to ξ = {c, e} where c stands for a vector of metabolites concentration and e a vector of enzymes that control the rate of intracellular reaction. The dimension of this very problem increases with the number of internal metabolites to the point where in practice, the continuous approach is no longer feasible. Ordinary dierential equations are written for the real or cybernetic variables and population eects are accounted for through the addition of randomness in the model parameters (maximum reaction rates and anity constants) [START_REF] Michael | Dynamic modeling and control of yeast cell populations in continuous biochemical reactors[END_REF][START_REF] Dhinakar | Cybernetic Modeling of Microbial Growth on Multiple Substrates[END_REF][START_REF] Jerey | Cybernetic Modeling and Regulation of Metabolic Pathways. Gowth on Complementary Nutrients[END_REF][START_REF] Young | Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control[END_REF].

Growth ratestructured models

In face of the diculty to establish the constitutive laws for the dynamics of all intracellular variables, and considering the extremely large number of internal compounds that should be taken into account, Morchain proposed to use the growth rate as an internal variable of the PBE [START_REF] Morchain | A structured model for the simulation of bioreactors under transient conditions[END_REF][START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF].

Note that, here again, the cell size is no longer part of the inner variables:

∂ ∂t n(t, µ) + ∂ ∂µ ( μn(t, µ)) + (γ(µ, S) + D)n(t, µ) = ∞ µ γ(µ ′ , S)P (µ, µ ′ )n(t, µ ′ )dµ ′ ∂S(t) ∂t = D(S f -S(t)) - ∞ 0 q S (µ, S)n(t, µ)dµ + S 0 n(t, µ = 0) = 0 S(t = 0) = S 0 (1.31)
A constant value was used for ν(µ, S) and the partition function P (µ, µ ′ ) was picked among lognormal distributions (see [START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF]) in line with Yasuda's experimental data [START_REF] Yasuda | Algebraic and geometric understanding of cells: Epigenetic inheritance of phenotypes between generations. righ esolution wiroil ingle gell enlytis[END_REF] regarding steady state interdivision time distributions in a perfused reactor. With this formulation, the diculty establishing a sounded relationship between cell mass and metabolic reaction rates is circumvented since the known specic growth rate serves as an input for the metabolic model. By the way, the degree of freedom is lowered by one which allows for a direct calculation of the metabolic rates. Hence, one avoids a timeconsuming optimisation step along with the denition of objective functions that often invoke the fact that cell would tend to optimise their growth rate.

As already mentioned when presenting metabolic models, the previously proposed formulation for μ incorporates some information regarding the average population growth rate at equilibrium.

μ = 1 T µ (µ ⋆ (S) -µ) (1.32)
T µ being a time constant for growth adaptation and µ ⋆ (S) the mean growth rate of a population being at equilibrium with its environment.

Another limitation of this formulation is that the cellscale uptake rate is algebraically retrieved from the growth rate whereas uptake rate and growth rates are not coupled in the transient regime.

1.6 Synthesis and Objectives

Synthesis Biological aspects

It is quite obvious to anyone observing a population that individuals are all dierent. Their interactions with their environment determine the macroscopic behaviour of the population. For years this has been the only information accessible to the microbiologists. In the late 1990s headway in experimental techniques (microscopy and ux cytometry) allowed to evidence the distribution of any biological trait within a microbial cell population. From an experimental point of view, this opened a new eld of investigation and it was shown that age, size, biochemical content, elongation rate, reaction rates are dynamic properties of any cell. Three main sources of evolution can be identied:

1. The partitioning of the cell content at division.

2. The interactions with the environment (exchanges or signal)

The genetic mutations 2

As a consequence, cell properties may vary from one cell cycle to the other and they may also vary within the duration of a cell cycle. The macroscopic behaviour is the result of a multitude of coupled biochemical reactions and it is observed that the response to external perturbations can not always be predicted using populationaveraged properties. The response is highly dependent on the magnitude of the perturbation, the initial conditions and the culture's history. In some cases, spontaneous oscillations of macroscopic properties are observed. Clearly, nonlinear dynamics are at work in biological systems and several time scales have to be considered. Because of that, many general principles in the standard biology have to be reexamined:

The denition of growth rate.

The stationary feature of a microbial population.

The rate of exchange between a cell and its environment.

The scope of application of ensemble and timeaveraged general lws of fiology.

Compiling the advances in various elds it seems necessary to take into account the existence of multiple transport systems working in parallel. These transporters determine the uptake capacity of the cell and thus the mass uxes fueling the cell metabolism. The uptake rate is tightly connected to the rate of some metabolic reactions and the whole machinery is responding in a synchronised way to external uctuations and internal requirements.

In multiphase systems, thermodynamic laws of equilibrium can be used to connect the concentration on both sides of the interface; no such constitutive laws have been formulated for biological systems and a mixed approach combining mass and energy conservation principles, biophysical, physiological considerations along with experimental observations is the only way to go ahead.

Because the number of internal properties is considerable and the interactions with each other incomplete, it is not possible to proceed to a direct simulation of the individual cell behaviour.

PBE modelling

From their inception in the rst half of the 20th century, PBEs were addressed to treat measurable features of a population as continua. These variables of interest had to be traceable (size or age) in order to compare the numerics with the experiments. As the transportfragmentation framework was getting quite common in the biophysics community in the 1960s, the very rst age sizestructured model was developed by Bell & Anderson [4] and steadystate cell volume proles were deemed satisfying in view of the accuracy of the thenavailable experimental measurements.

This paved the way for similar applications to agesize PBEs in closely related research elds (see Shah and Ramkrishna's [START_REF] Shah | Monte Carlo Simulation of Microbial Population Growth[END_REF] article for an application to droplet morphological proles). How to capture the aforementioned biological complexity in a PBE is still an open problem though, mostly because the bacteria's adaption to their medium is still experimentally intangible. Predictions of 2. These will be put aside in this work the composition of a medium go beyond an accurate description of the cells' mechanics, prompting the need to somehow introduce some biochemistry in a population balance model. To this end, dierent strategies were carried out to make headway towards the modelling of industrial bioreactors, the accomplishments thereof making up the next section. Sizestructured models have been a substantial source of inspiration in the bioreactor modelling community since the 1960s [START_REF] Stamatakis | Cell Population Balance, Ensemble And Continuum Modeling Frameworks: Conditional Equivalence And Hybrid Approaches[END_REF]), or even cytoplasmic content (most notably by Mantzaris, whom proposes in [START_REF] Mantzatis | Stochastic and deterministic simulation of heterogeneous cell population dynamics[END_REF] a dierentiation with respect to one generic variable that can dene RNA or protein content). In this context, both growth and rupture functions have been picked among polynomials [START_REF] Mantzaris | From Single-Cell Genetic Architecture to Cell Population Dynamics: Quantitatively Decomposing the Eects of Dierent Population Heterogeneity Sources for a Genetic Network with Positive Feedback Architecture[END_REF], enforcing the assumption that the size distribution is supported over the whole R + .

In (1.22), the righthand side's integral involves a redistribution kernel which formulation is an attempt to t experimental measurements. Inductive reasonings in addition to ever more sensitive data have fueled the chemical engineering literature dealing with population balances. Dierent redistribution kernels have been tested: dirac (in [4] for example), beta (see Hatzis & al.'s [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF] article or Fadda & al.'s [22] contribution) and even normal (notably by Henson [START_REF] Michael | Dynamic modeling and control of yeast cell populations in continuous biochemical reactors[END_REF] and Zhang & al. [START_REF] Zhang | Nonlinear model reduction for dynamic analysis of cell population models[END_REF], although a gaussian law is wellknown to be supported over R as a whole, giving some weight to negative values of a positive quantity (mass in Henson's case).

When age is considered, a standard renement of the classical (1.22) equation is a multistaged approach involving a set of coupled PBEs pertaining to the dierent phases of the cell cycle (cf.

Hatzis & al.'s [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF] approach). In Billy & al.'s [6], experimental and numerical data have led to the conclusion that the duration of the consecutive phases is well modelled using a gamma law. On the other hand, formulating an agedependent rupture function has been deemed an inaccuracy by Robert & al. [119] when compared with a sizedependent counterpart, the current trend being a turning away from age onlyPBE.

As mentioned by Subramanian & al. [START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF], a single parameter such as cell mass or cell age cannot adequately represent the physiological state of the organism if it is desired to take into account the fact that the response of a cell to the external environment depends on the cell's origin.

Researchers have been well aware that more biology needs to be introduced in the modelling to allow a multiphase simulation of industrial fermenters, dierent pathways having been explored over the last decades.

The coupling with the culture medium

In the perspective of coupling the biotic phase with the abiotic phase, one idea would lie in socalled cybernetic modelling (see Kompala & al.'s [START_REF] Dhinakar | Investigation of Bacterial Growth on Mixed Substrates: Experimental Evaluation of Cybernetic Models[END_REF][START_REF] Dhinakar | Cybernetic Modeling of Microbial Growth on Multiple Substrates[END_REF] and Young & al.'s [START_REF] Young | Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control[END_REF]) and consist in predicting the dominance of complementary/competing metabolic pathways in a certain culture condition among a userset amount of ux modes with the aim of optimising an objective function.

More precisely, cybernetic variables (traditionally the fraction of resources allocation and the activation of the said resources, as mentioned by Straight & Ramkrishna [START_REF] Jerey | Cybernetic Modeling and Regulation of Metabolic Pathways. Gowth on Complementary Nutrients[END_REF]) aim at favouring the uxes with the highest return on investment in terms of growth rate. This strategy is connected to advances in genomescale metabolic models and has to be devoted a substantial amount of computational time in any numerical implementation of PBEs in biology.

Another option would be a stochastic treatment of this biochemical burden that provides degrees of freedom on the modelling of unmeasurable quantities like gene expression levels (cf. Marguet & al.'s work in progress [START_REF] Marguet | Inheritance and variability of kinetic gene expression parameters in microbial cells: modeling and inference from lineage tree data[END_REF]). In this case, engineering evolution equations for each of these unmeasurable coordinates is still in the todo list, most of the variability in these quantities bearing upon the sole generational redistribution.

Finally, the derivation of datatting single-cell models has been so far the most popular attempt at reducing this biochemical complexity. In this case, the structuring of the population involves a userset number of intracellular metabolites which mass balance is thought to massively impact the cell cycle or provide an insight into experimental observations. Mantzaris's [START_REF] Mantzaris | A cell population balance model describing positive feedback loop expression dynamics[END_REF] for example, consecrates a lacpermease expression levelstructured model to study the dynamics of the distribution of lac operon activity. Henson's [START_REF] Michael | Cell ensemble modeling of metabolic oscillations in continuous yeast cultures[END_REF] application to yeasts respiration consists in tracking intracellular chemical compounds which dynamics are dictated by interphase uxes, the tting parameters emerging from experimental measurements. This viewpoint has been further deepened by Stamatakis [START_REF] Stamatakis | Cell Population Balance, Ensemble And Continuum Modeling Frameworks: Conditional Equivalence And Hybrid Approaches[END_REF] with the aim of reducing the computational time of a N d PBE featuring size and N d -1 chemical compounds through a transformation into a sizePBE and a transport equation satised by the intracellular concentrations which solution can be calculated with the method of characteristics. Traditionally, a metabolic model must be formulated in order to close the PBE, the stoichiometry thereof coming from macroscopic mass balances with little consideration to the chemical feature of the reactions. A historical review of this strategy is presented by Nielsen & Villadsen [START_REF] Nielsen | Modelling of Microbial Kinetics[END_REF].

Overall, such approaches would be excessively timeconsuming if the vector of inner coordinates was to make room for all the growthinducing chemical compounds; indeed, ξ would then have to include the sources of carbon (glucose, lactose, acetate), of phosphore (ATP/ADP), the coenzymes, ... . Here, the coupling with transport equations describing the motion of biological particles in the physical space is out of reach beacuse the dimension of the vector of inner properties is too large. In this context, further model reductions aiming at reporting reactorscale outcomes of these metabolic maps through ad hoc quantities have been of seminal importance lately. One of these quantities (see Morchain & Fonade's [START_REF] Morchain | A structured model for the simulation of bioreactors under transient conditions[END_REF], Morchain & al.'s [START_REF] Morchain | Coupling of biokinetic and population balance models to account for biological heterogeneity in bioreactors[END_REF] and references therein) is the commonlynamed specic growth rate and is dened as the populationaveraged gain in mass, what can be seen as an attempt at intertwining the cell and population scales. In [START_REF] Morchain | Coupling of biokinetic and population balance models to account for biological heterogeneity in bioreactors[END_REF], the circumvention of the microscopic complexity allows an integration of a one-dimensional PBE with a minimum number of classes and a large enough time step to implement (1.22) in a CFD code.

Another source of interest in the chemical engineering community pertains to the inuence of the level of mixing on the substrate availability to the biotic phase. A continuous reactor is traditionally fed at one point by a highly concentrated solution which monomers diuse throughout the system in a second phase. In this context, the macromixing consists in an evaluation of the abiotic phase's scattering in the fermenter and the micromixing in its homogeneity in an innitesimal domain of the system. Cellwise, the available substrate at an individual's neighbourhood can be enough to satisfy its needs, what will be christened biological regime or a bad level of macro/micromixing can cause local scarcities and hamper the cells' cruise speed: this is labelled physical regime. A thorough topical discussion can be found in [START_REF] Morchain | wodélistion des ioréteurs[END_REF]. Even though mixing issues are unlikely to cause problems in a 1L bioreactor, their massive inuence on 10 5 L industrialscale cultures are signicant enough to require a particular attention in any modelling of biological reactors.

Objectives

The general objective in this work is to propose a population balance equation based modeling framework which combines a description of the nutrient uptake dynamics at the cell scale, the prediction of growth and products rates based on a metabolic model and the adaptation of internal cell properties in response to major changes in the cell environment.

Attention will be paid to the predictive capacity of the whole model. In other words, one must avoid or eliminate any populationbased information when dening the cells' dynamics. In this context, a fundamental distinction between the cell potential and eective rates will be introduced.

Rather than the usual formulation, based on concentrations in each phases, previous works showed than reasoning in terms of uxes is much more sounded. Heterogeneous catalysis concepts such as external (physical) vs. internal (biological) limitation, introduced in previous works of the group, [START_REF] Morchain | A population balance model for bioreactors combining interdivision time distributions and micromixing concepts[END_REF][START_REF] Pigou | Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models[END_REF] allow a general denition of limitation without referring to arbitrary constants.

The second chapter is based on an inductive mathematical approach to the topic. From general modelling assumptions the literature has consecrated (compactly supported distribution in size, singular rupture function), the wellposedness of the problem is rst addressed. The order relation between measured mean doubling time and τ d is also proven, along with exact relationships linking the moments of the distributions in age and interdivision time in batch and continuous culture.

The third chapter features an attempt to capture this biological burden into an allterrain model. The fth chapter contains the simulation of various types of classical microbiology experiments which serve as a validation of the proposed approach. When possible a quantitative comparison is made. In other cases, simulations reveal some trends which require a dedicated experiment to assess their validity.

Chapter 2

Mathematical analysis of dierent structured models 2.1 Agestructured models (reference [START_REF] Vincent Quedeville | A critical analysis of Powell's results on the interdivision time distribution[END_REF])

The main analytical results will be provided with the joint article. In order to introduce it, ξ will be a twodimensional vector ξ = (l, a), with a ∈ R + and l upperbounded to report the absence of macroscopic size bacteria. Imposing such a physical limit does not impact the following results in any way, the subtleties behind this modelling assumption being the topic of the next section. The (1.22) system reads in this context:

∂ ∂t n(t, l, a) + ∂ ∂l ln(t, l, a) + ∂ ∂a n(t, l, a) + γ(l, a)n(t, l, a) + Dn(t, l, a) = 0 (2.1) n(t, l, 0) = 2 ∞ 0 l l P (l, l ′ , a ′ )γ(l ′ , a ′
)n(t, l ′ , a)dl ′ da , n(t, l, a) a=∞ = 0 and ln(t, l, a) l∈{0, l} = 0 n(0, l, a) = n 0 (l, a)

From the PDE, one can dene two PDFs. Firstly, the age distribution f corresponds to the frequency of cells of a certain age in a population:

f (t, a) = ∫ n(t, l, a)dl ∬ n(t, l, a)dlda = N (t, a) N (t) (2.2)
where N (t, a) = ∫ n(t, l, a)dl and N (t) = ∬ n(t, l, a)dlda. Its moments will be christened ⟨a k ⟩, k ≥ 1.

The interdivision time distribution time g is also understood as a frequency, but the latter is taken as the fraction of cells which divide at a certain age among the cells which divide at any time in the population. γ being the cell-division frequency, the denition of g becomes obvious:

g ∶ R + → R + a ↦ g(a) = ∫ γ(l)n(t, l, a)dl ∬ γ(l)n(t, l, a)dlda (2.3)
Its moments will be denoted by ⟨τ k ⟩ = ∫ R+ a k g(a), da, k ≥ 1. The interdivision time is dened as the cell age at rupture, which corresponds to the measured cell-cycle duration in experiments. In other words, g(a)da is the probability that a cell which divides in the reactor does so between age a and a + da, not the probability that a cell divides between age a and a + da, the latter being tantamount to a life expectation distribution.

Setting h the life expectancy distribution, the dierences between g and h will manifest themselves in the article, and a protracted debate that regards the treatment of experimental measurements will be put to an end. Analytical formulae derived from the relationship between f and g will further enhance the theory of agestructured models.

A takeaway from this publication is the crucial impact of a reactor's dilution rate on a population's observed biological outputs. One stands for the age-at-rupture PDF and is experimentally observable, whereas the other is the probability density that a cell divides at a certain age and is unobservable. From Powell's results pertaining to the unobservable interdivision-time PDF, Painter and Marr derived an inequality that is true but is incorrectly used by experimentalists to analyse single-cell data.

Unfortunately, the confusion between these two PDFs persists. To dissipate this confusion, exact relationships between the cell-age and the interdivision-time PDFs are derived in this work from an age-structured model, which can be used by experimentalists to analyse cell growth in batch and continuous culture modes.

Background

Understanding biological population dynamics in a fermenter has been of crucial importance in bioprocess engineering and many other elds, such as pharmacology, that require a mass production of metabolic by-products. A strain will grow dierently in a batch or continuous fermenter, to the extent that one population will exhibit dierent characteristics depending on the culture conditions and the observed features cannot be compared. In particular, in an open system, the fermenter dilution rate, D, will determine the ensemble-averaged behaviour, such as the mean age or mean interdivision time, in other words the cell-cycle duration. As early as 1956 Powell [14] hinted at the seminal conclusion that a continuous culture's observed mean interdivision time, τ , must be less that the so-called population doubling time, meaning that as soon as the interdivision-time distribution is asymmetric, the healthier cells will contribute more to maintaining a steady-state cell number than their less active counterparts. To date, that article has been cited in 372 research works, with signicant interest from mathematicians [24], physicists [9], chemists [10] and biologists [1] on a variety of perspectives pertaining to the cell-cycle dynamics and the marginal distributions in dierent observable properties such as age, size or cell content. In the last decade, the development of microuidic devices has broadened the biologists' horizons and given more accurate statistical information regarding the cell-cycle processes [11,22,25,26], allowing modelling assumptions to be tested against experimental results. However, Powell's logical reasoning leading to τ ≤ ln 2/D The very notion of interdivision-time distribution can embrace dierent quantities in spite of a common denition of the concept (i.e. the time elapsed between two consecutive division events of an observed organism), and no consensus has been reached to date on the relationship between these quantities. Consequently, some semantics are required to provide a framework for the analytical results presented in this work and for their comparison with experimental data.

• A cell's age is dened as the time elapsed since the division event that produced it (that is the age in the cycle), entailing that the quantity is reset to zero after each recorded rupture.

It does not encompass the lineage's longevity that will be called the age in the system.

The latter is tantamount to the abiotic phase's lifespan because this time interval is just the residence time in the fermenter.

• An observable interdivision-time distribution, g, stands for a collection of recorded cell-cycle durations for which labels such as generation time [14] or doubling time [11] exist in the literature. The vocabulary is here borrowed from [26] so that interdivision time will be synonymous with the cell's age at rupture. As a consequence, g refers to Powell's so-called carrier distribution and g(a)da denes the conditional probability that a cell that has divided has done so between age a and a + da. It is essential to notice that g captures the Markovian nature of the cell cycle process and reports the fact that a cell has reached age a in the system.

Throughout the article, ag(a)da will be called τ obs .

• The unobservable interdivision-time distribution h, used by Powell [14], is such that h(a)da is the probability that a newly formed organism will have a generation time in the range [a, a + da]. Its rst moment ah(a)da will be called τ uno .

Powell sheds light on the dissimilitudes between these two interdivision-time distributions. This distinction is relevant for both batch and continuous conditions for dierent reasons. In an open fermenter, a cell's biological development must be considered along with its residence time so an organism's interdivision time could refer to an unobservable and, hence, unmeasurable event (for instance from statistical considerations, from any steady-state group of tracked particles, half of them will be washed out before dividing). In batch culture, the younger elements outnumber their ancestors due to the biotic phase's exponential growth and the statistical extra weight conferred on the less probable quicker interdivision times over a much larger share of the population pushs the age-at-rupture distribution to the left. Experimentally, the available data regarding interdivision time pertain to the age at rupture, and the PDF's rst moment is well approximated by the data set's arithmetic mean, provided the collected data set is large enough. In 1956, Powell [14] claimed he did produce an experimental equivalent for h and tted the histogram with a Pearson type-III distribution. However, he remarked in 1964 [15] that the generation times of the organisms which have, at a given time, completed their life span during the previous history of the culture do not compose h; they compose the carrier distribution g. In fact, only information regarding the cell's age at rupture is available to experimentalists and, hence, it cannot be interpreted with analytical results intended for the unobservable interdivision-time PDF h. In 1967, Painter & Marr [12] extracted a lower bound on the rst moment of Powell's interdivision-time distribution τ uno and confused it with the observable mean interdivision time τ obs , prompting some equivocal assertions (a very good recent example being [25]) by lack of consensus. Keeping these considerations in mind, this work aims to reconcile the persistent misunderstanding about these distinct paradigms, and on presenting exact analytical results regarding the observable interdivision-time distribution that are accessible to experimentalists. To illustrate the most important points, numerical examples are provided from MonteCarlo simulations of a population balance model. Furthermore, unlike [13] or [22] where the so-called timer or adder models are given prominence, by virtue of [18] the rupture process will be assumed to be a function of the cell length.

The rst part of the paper presents the general framework of population balance modelling in the context of microbial populations, the particular population balance equation (PBE) chosen

for the present study and the mathematical denition of the age and observable interdivision-time distributions. The second part is devoted to analytical results leading to relationships valid for the age and interdivision-time PDFs that are observable from batch and chemostat experimental measurements. These analytical results are further underpinned by numerical simulations using a MonteCarlo algorithm. In the discussion, the results from the previous section are compared to experimental data from the literature. A resolution of the seemingly contradictory conclusions in Powell's and Painter and Marr's works is provided.

2 Mathematical background and denitions

General formulation of a PBE for biological populations

Beginning with work in the 1960s [5,20], PBEs have provided a general framework to describe the biological response to a user-dened experimental set-up. In this context, an inner coordinate is understood as a marginal variable and its law is retrieved through integration with respect to all other dimensions. When biological modelling of a continuous fermenter is addressed, the agestructured PBE takes the form

∂ ∂t n(t, a, ξ) + ∂ ∂a n(t, a, ξ) + ∇ • ξn(t, a, ξ) + γ(a, ξ)n(t, a, ξ) + D n(t, a, ξ) = 0 n(t, 0, ξ) = 2 Ω ξ ∞ 0 γ(a , ξ )K(ξ, ξ , a )n(t, a , ξ )da dξ ξn(t, a, ξ)| ξ∈∂Ω ξ = 0, a ∈ [0, +∞[ (1) 
with ξ ∈ Ω ξ ⊂ R n , n ≥ 1, the vector of inner coordinates, ξ their rate of change, K the redistribution kernel, and n(t, ξ)dξ the cell number in an innitesimal domain of Lebesgue measure dξ. In (1) γ

(time unit -1
) is the rupture function, or simply the cell-division frequency, and D (time unit -1 ) stands for the so-called dilution rate that drives both the input feed and cell washout to maintain the medium volume. In general, ξ is a function of both ξ and the organisms' environment, but its formulation has no impact on the section's results. Hereinafter, D will be assumed constant and washout is assumed uniform with respect to any inner coordinate (i.e., the fermenter is perfectly mixed).

In a continuous fermenter, an equilibrium will be reached when the time derivative in (1) vanishes and this condition is referred to as steady state. In a batch fermenter, the absence of a washout term will allow the cell number to grow at will as soon as the initial conditions have faded away.

This equilibrium is thoroughly discussed in [20] and will be referred to as self-similar exponential growth. The time derivative in (1) does not vanish in this case, and the stability property will relate to the marginal distribution's geometrical shape. In other words, the scaled quantity n(t, a, ξ)

Ω ξ n(t, a, ξ)dξ will be constant (or self similar) for any ξ ∈ Ω ξ .

Application to E. coli population dynamics

Without loss of generality, this section will consecrate a two-dimensional PBE, ξ standing for the cells' length l ∈ [0, l[ (m), where l is the maximum possible cell length before division. In this section, no laws for l are yet required. Nonetheless, it is understood that such a process must be a decreasing function of l since it involves the internal transport of membrane proteins from the cytoplasm, which takes longer as the cell grows larger. Indeed, as noted by Nobs & Maerkl [11],

synthesis of cell-membrane components could be one such factor setting limits on the cell-doubling time, what seems universal enough to feature in any biological population modelling. Other patterns are conceivable though (as mentioned in [25]) but the lack of experimental data makes any consensus unattainable.

Also, the redistribution kernel obeys l 0 P (l, l , a )dl = 1, which is the mathematical counterpart of the biological hypothesis that a given cell give birth to only two daughter cells during the division process.

Hence, (1) reads in this case:

∂ ∂t n(t, l, a) + ∂ ∂l ln(t, l, a) + ∂ ∂a n(t, l, a) + γ(l, a)n(t, l, a) + D n(t, l, a) = 0 n(t, l, 0) = 2 l >l γ(l , a )P (l, l , a )n(t, l , a )dl da ln(t, l, a)| l=0 = 0 = ln(t, l, a)| l=l (2) 
In the system (2), a null-ux condition is assumed at the domain boundary in length, what is tantamount to the claim that no cell can grow beyond a certain length that challenges its biomechanical structure. From physical grounds, it will similarly be assumed that no cells will reach innite age.

Denition of PDFs

Considering that n(t, l, a) refers to the number density of cells with length l, age a at time t in a continuous reactor and γ is the cell-division frequency, the function [14] and corresponds to the observed cell-cycle duration.

g : R + → R + a → g(a) = γ(l, a)n(t,
Furthermore, the cell-age PDF f can be retrieved by integrating (2) with respect to l:

f (t, a) = n(t, l, a)dl n(t, l, a)dlda = N (t, a) N (t) (4) 
where N (t, a) = n(t, l, a)dl and N (t) = n(t, l, a)dlda. Thus f (a)da is the probability that a cell in the reactor has an age between a and a + da, and f is therefore tantamount to Powell's φ in his 1956 article [14].

Comparing (3) to (4), we observe that the interdivision-time PDF is weighted by the cell-division frequency, while the cell-age PDF is not. At steady state, or under self-similar conditions, both PDFs will be independent of t.

Analytical and numerical results

In this section, we establish exact results concerning the interdivision-time and cell-age PDFs arising from the solution to the PBE introduced above.

Steady-state relation between f and g in a continuous fermenter

From the denition of f provided in (4), one gets:

∂ ∂t f (t, a) = 1 N (t) ∂ ∂t N (t, a) - f (t, a) N (t) ∂ ∂t N (t) (5) 
The rst term on the right-hand side of ( 5) is obtained through an integration of (2) with respect to l, i.e. The second term on the right-hand side of ( 5) is retrieved from the double integral of (2):

∂ ∂t n(t, l, a)dlda + ∂ ∂l ln(t, l, a) dlda + ∂ ∂a n(t, l, a)dlda + γ(l, a)n(t, l, a)dlda + D n(t, l, a)dlda = 0
The same reasoning as before entails the conclusion that the rst term on the left-hand side is in fact N (t)'s time derivative and the second term is null. Use of Fubini's theorem and the fact that there is no cell with an innite age in the system turns the third term into

∂ ∂a n(t, l, a)dadl = [n(t, l, a)] ∞ a=0 dl = -2 γ(l , a )P (l, l , a )n(t, l , a )dl da dl = -2 γ(l, a)n(t, l, a)dlda (8)
Consequently,

∂ ∂t N (t) - γ(l, a)n(t, l, a)dlda + D N (t) = 0 (9) 
Combining ( 9) and ( 7) in ( 5) and referring to the denition of f in (4) yields an equation for the time evolution of f :

∂ ∂t f (t, a) = - ∂ ∂a f (t, a) - γ(l, a)n(t, l, a)dl N (t) - f (t, a) N (t) γ(l, a)n(t, l, a)dlda (10) 
A steady-state relationship between f and g can be derived from this equation. Indeed, at steady state, f 's derivative with respect to time vanishes (removing the time dependence) and it also follows from (9) that γ(l, a)n(l, a)dlda = DN

Therefore, from (10) df da

(a) = - γ(l, a)n(l, a)dl N -Df (a) = - γ(l, a)n(l, a)dl γ(l, a) n(l, a)dlda γ(l, a)n(l, a)dlda N -Df (a) (12) 
The last step consists in using (3), the denition of g, and ( 11) in (12) to get the desired relationship:

f (a) = -Dg(a) -Df (a) (13) 
3.2 An analytical solution for the cell-age distribution at steady state in a continuous fermenter

The dierential equation ( 13) can be solved using Duhamel's formula and yields

f (a) = f (0)e -Da -De -Da a 0 e Da g(a )da (14) 
One only needs to provide f (0) to completely dene f . From the denition of f , given in (4), the null-age relation provided in (2) and the steady-state relation (11), the boundary condition reads:

f (0) = n(l, 0)dl n(l, a)dlda = 2 γ(l , a )P (l, l , a )n(l , a )dl da dl N = 2DN N = 2D (15) 
Consequently the cell-age distribution at steady state reads:

f (a) = 2De -Da -De -Da a 0 e Da g(a )da (16) 
This result extends Ramkrishna's [17] work dealing with analytical and numerical solutions of age and size PBMs in a closed bioreactor. It is worth mentioning that ( 15) and ( 16) echo Powell's equation ( 9) [14]. Both derivations complement each other since the cell-age PDF denitions are in fact identical (Powell's φ is equivalent to our f ). However, Powell's results involve an interdivisiontime distribution that is unobservable from experiments contrary to our g.

For a continuous fermenter at steady state

τ obs ≤ ln(2)/D.
This result is obtained from rearranging (16) and taking the limit a → ∞. One can rst check that the application a : → exp(Da)f (a) is strictly decreasing on R + . Indeed:

d da (exp(Da)f (a)) = D exp(Da)f (a) + exp(Da)(-Df (a) -Dg(a)) = -D exp(Da)g(a) < 0
since g is strictly positive on R + . As 0 is an obvious lower bound to a → exp(Da)f (a), the latter converges to a nite limit λ ≥ 0. As a consequence: Then, developing the exponential into a power series and making use of Jensen's inequality leads to:

k≥0 D k k! ∞ 0 a k g(a )da = k≥0 D k k! τ k = 2 - λ D ≥ k≥0 D k k! τ k obs and thus to 2 - λ D ≥ e Dτ obs ⇔ τ obs ≤ ln(2 -λ D ) D ≤ ln(2) D (17) 
The last inequality does not prevent τ obs from being equal to ln(2)/D, which would happen if all moments τ k were equal to τ k obs . This would basically force g to be a Dirac delta function:

δ a-ln(2)/D . In this case though, the observable and unobservable distributions are identical and mirror the behaviour of an unstructured model. A preliminary conclusion was rst formulated by

Tyson & Hannsgen [24], but the authors missed Powell's [15] remark pertaining to the dierence between the two interdivision-time distributions, preventing their result from being applicable to actual experimental data.

An additional conclusion that stems from ( 14) is that the outlet-age prole (that must be tantamount to the fermenter's because of the uniform washout assumption) diers signicantly from the liquid phase's (i.e., De -Da ), because the biological phase renewal is a consequence of two competing phenomena: dilution and cell division. A graphic comparison between the two residence time distributions is shown in gure 1.

3.4 For a continuous fermenter at steady state a + τ obs = 1/D.

Taking the rst moment of ( 16 

Using ( 17), an upper bound to τ obs is obtained:

τ obs ≤ a ln(2) 1 -ln(2) ≈ 2.259 a (19) 
The same reasoning yields a relation between the second-order moments of f and g:

a 2 = ∞ 0 a 2 f (a)da = 2D ∞ 0 a 2 e -Da da -D ∞ 0 a 2 e -Da a 0 e Da g(a )da da = -2a 2 e -Da ∞ 0 + 2 ∞ 0 2ae -Da da - ∞ 0 e Da g(a ) ∞ a Da 2 e -Da dada = 4 D 2 - ∞ 0 e Da g(a ) -a 2 e -Da ∞ a da - ∞ 0 e Da g(a ) ∞ a 2ae -Da dada = 4 D 2 -τ 2 - ∞ 0 e Da g(a ) - 2 D ae -Da ∞ a da - ∞ 0 e Da g(a ) ∞ a 2 D e -Da dada = 4 D 2 -τ 2 - 2 D τ obs - 2 D 2 = 2 D 2 -τ 2 - 2 D τ obs yielding: a 2 = 2 D a -τ 2 obs ( 20 
)
Consider now an age-synchronised population, i.e., no variance in age is observed ( a 2 = a 2 ).

Then using (18) and ( 20) one can determine whether a non-zero variance can exist in the interdivisiontime distribution.

τ 2 -τ 2 obs = 2 D a -a 2 - 1 D 2 -a 2 + 2 D a = -2 a 2 + 4 D a - 1 D 2 
The second-order polynomial would vanish for D a ∈ 1 -√ 2/2, 1 + √ 2/2 , the latter value being impossible given that 1 + √ 2/2 > 1. However, if a were equal to (1 -√ 2/2)D, the mean interdivision time τ obs would be

√ 2 2D > ln(2)
D , which is not possible according to (17). In other words, an age-synchronised steady-state population has to exhibit some variance in its interdivision time.

As a consequence it can not remain age synchronised in a continuous fermenter, a result that was already conjectured by Yasuda [26]. This well-known result was also thoroughly discussed in [2,8].

3.5 For a self-similar batch fermenter τ obs ≤ a ln(2)/(1ln 2).

In 

∂ ∂t N (t, a) + ∂ ∂a N (t, a) + γ(l, a)n(t, l, a)dl = 0 entailing f 's dynamics: ∂ ∂t f (t, a) = - ∂ ∂a f (t, a) - γ(l, a)n(t, l, a)dl N (t) - f (a) N (t) γ(l, a)n(t, l, a)dlda (21) 
For self-similar growth,

• f must be independent of t, which forces (21)'s left-hand side to vanish.

• γ(l, a)n(t, l, a)dlda/N (t) reaches a constant value that was called ν m by Powell.

Thus, for self-similar growth, (21) reads

df da (a) = -ν m f (a) - γ(l, a)n(t, l, a)dl N (t)
and the initial condition takes the form

f (0) = 1 N (t) 2 γ(l , a )P (l, l , a )n(t, l , a)dl da = 2ν m
Once again, by virtue of Duhamel's theorem,

f (a) = 2ν m e -νma - 1 N (t) e -νma a 0 e νma γ(l, a )n(t, l, a )dlda (22) 
The similarity between ( 22) and ( 16), with ν m playing the same role as D, allows the immediate conclusion

a + τ obs = 1 ν m (23) 
and is accessible as soon as the cell-age and interdivision-time PDFs are measured. Furthermore, the same reasoning as in the previous paragraph yields the conclusion

τ obs ≤ ln(2) ν m ⇔ τ obs ≤ a ln(2) 1 -ln(2) (24)
which is the same relation between τ obs and a as (19). The equality would hold if all cells were equally healthy. If this situation cannot be strictly ruled out, it was not observed experimentally by Powell and is highly unlikely to occur.

Numerical examples.

In this part, which deals with E. coli, all cells will be assumed cylindrical with constant diameter d (m) (in accordance with [26]), so that both a cell's surface and volume are functions of l only. The same assumptions regarding the cell geometrical feature can also be made for Bacillus subtilis (as discussed in [25]). In order to put our results to the test, a comprehensive model must be formulated and simulated using either Eulerian or Lagrangian methods. We draw the reader's attention to the fact that Lagrangian methods allow the removal of the cell age from the PBE (1) because this very feature is accessible as soon as a cell is tracked in time. In fact, MonteCarlo methods make the model one dimension smaller and, as a result, are preferable from a computational perspective. Our MonteCarlo simulation aims at illustrating more complex metabolic features and involves more than two variables. Notwithstanding, this has no inuence on the section's results dealing with agerelated PDFs, because these extra variables can always be taken out through partial integrations.

In the model used in our MonteCarlo simulations, ξ reads l = q S ρV Y SX 1 -l l η q S = q S 1 + q S 2 with dynamics:

q S 1 = 1 τ 1 [f 1 (S) -q S 1 ] q S 2 = 1 τ 2 [f 2 (S)f 3 (q S 1 ) -q S 2 ]
where S is the substrate concentration in the fermenter, ρ a cell's mass density (∼ 10 3 kg/m 3 ),

V its volume (a linear function of l), Y SX (g/g) a (constant) substrate-to-mass ratio, and τ 1 , τ 2 (hr) characteristic times of the respective mechanism's adaptation. The functions f 1 and f 2 are of Monod shape and associate S to respective q S 1 and q S 2 . The function f 3 serves at a restricting factor that aims at accounting for q S 1 's inhibiting inuence over q S 2 in accordance with [4]. This renement aims at uncoupling the substrate uptake and lengthening at the cell scale, but is not needed for steady-state conditions. The model for l ensures that a cell divides before crossing the l = l border and the close-to-zero exponent guarantees that the lengthening phenomenon is almost linear with respect to l for most of the cell cycle.

Furthermore, the division frequency model is The idea that γ depends only on l is borrowed from Robert & Al. [18]. Other assumptions have been investigated recently in the literature, such as an adder model [22], which seems less convenient from a numerical simulation perspective. Indeed, due to the non-equivalent redistribution in length at rupture, such a mechanism could allow fractions of the population to grow more and more for generations on end until non-physical cell lengths are encountered.

γ(l) = 1 T (l-l) κ -(l-l inf ) κ (l-lc) κ -(l-l inf ) κ if l inf ≤ l < l 0 if l / ∈ [l inf , l[
For completeness, the redistribution kernels in l and q S are assumed independent, beta and symmetric. To explain the rst hypothesis, it is inferred from raw experimental data for two dierent E. coli strains [23] that the growth rate and the length at birth are relatively independent . With little appropriated cell-scale information to the authors' knowledge, full uncorrelation was considered, easing the analysis of the model's sensibility to this factor. The parameters employed are given in table 1. It can be demonstrated that the inequality -κ + η > 1 entails the mathematical well-posedness of the problem. From physical grounds, this condition ensures that the rupture process overtakes lengthening as the cell length approaches the upper bound l .

Other elongation rate formulations, including linear or exponential laws can be found in the literature [7,18,22,25]. These laws are generally based on tting single-cell measurements. In general none of these formulations suits the data better than the others [7]. Furthermore, Robert et al.

evidence a sublinear elongation as the cell length approaches a critical value, what seems reasonable considering that it turns increasingly dicult for any organism to maintain their growth rate as feeding an ever-growing cell membrane at a constant rate would likely end up mustering more resources than is available to them. Also, from a practical point of view, it is worth noticing that any experimental device introduces a bias against the older cells that are also most probably the longest.

Modelling-wise, the linear and exponential formulations imply that nothing restrains the cell elongation. In any case, the choice of the lengthening rate model must be consistent with the division frequency in order to prevent the production of cells with an innite length. Our l and γ respect this constraint, even though other combinations are valid as long as the above restriction is met.

In the end, however, the analytical results derived in this work do not depend on any particular choice. With these considerations in mind, the algorithm consists in tracking the cell's inner coordinates with respect to time, from random clipped-Gaussian initial samples. Then the division and washout events are determined by sampling two random numbers u, x:

• Let u ∼ U [0,1]
sampled for each cell at each time step: mitosis occurs if 1e -γ(l)δt < u

• Let x ∼ E( 1 D
) sampled for each cell at birth: washout occurs should the cell's age be greater than x.

When a cell divides, its inner properties are redistributed according to the kernel K, and each new cell is given a residence time drawn from E( 1 D ). The cell age is reset to zero for one of the daughter cells, making room for a new lineage in the fermenter, whereas the other daughter keeps the record of the mother-cell's lineage. All algorithms are coded in C++11 and the data are processed with Matlab R2016a.

Comparison between analytical and Monte-Carlo simulations results

The MonteCarlo simulation reaches a steady state after 4 to 5 times the slowest characteristic time D -1 ≈ 6.667 hr. From this point onwards, consecutive division events are recorded for 1,003,306 cells over the course of 37.5 hr. Around 50% (501,322) divide at least twice and 25% (250,402) divide three times or more. This substantial database yields a numerical accuracy of approximately 10 -3 for estimating averages. As can be seen from gure 1, the steady-state cell-age PDF matches many well-known results (see [6,19] for instance), and its rst moment is a ≈ 2.360 hr. In gure 2, the corresponding interdivision-time and length-at-division PDFs are provided, and it can be seen that both PDFs exhibit a right-skewed shape. Furthermore, the mean interdivision time can be retrieved and is approximately τ obs ≈ 4.314 hr. It is worth noting that

• a + τ obs ≈ 6.673 hr. This value diers from 1/D by less than 0.1%.

• ln(2)/D ≈ 4.621 hr > τ obs and a ln(2)/(1ln(2)) ≈ 5.331 hr > τ obs . Batch-culture simulations (cf. gure 3) exhibit a fairly similar pattern once exponential growth is reached. In this context, ν m is retrieved from the population's growth in mass (that is tantamount to its growth in number as mentioned in [15,16]) over a certain time interval:

ν m = ln m(t+∆t) m(t) ∆t = ln N (t+∆t) N (t)
∆t with t, t+∆t belonging to the so-called log phase. In the MonteCarlo simulation, ∆t = 3.28925 hr, cell mass was multiplied by 2.471 to three decimal places, and ν m ≈ 0.276 hr -1 . The mean cell age and interdivision time satisfy the properties:

• τ obs ≈ 2.327 hr < ln(2)/ν m • a ≈ 1.302 hr > (1 -ln(2))/ν m • a + τ obs ≈ 3.629 hr.
In comparison, 1/ν m ≈ 3.636 hr, which diers from a + τ obs by less than 0.2%.

4.1 Powell's analytical results in a continuous, well-mixed fermenter.

Before PBE tools were developed to address a population's variability in dierent inner properties, the marginal distributions were retrieved from innitesimal computations and Cauchy problems were extracted to be solved analytically and confronted with experimental data. Powell's seminal article [14] is no exception, and a relation coupling the cell-age and interdivision-time PDFs is discussed for both batch and continuous fermenters. However, ( 16) is not exactly the formula Powell retrieved from his own innitesimal calculus, because the two interdivision-time PDFs do not share the same denition. Indeed, g is the conditional probability that, given a cell divides, it does so at age a, whereas Powell's interdivision-time PDF relates to the probability that a cell divides at age a, the latter being less convenient in practice because it disregards the available memory from cells that reach age a and do not fully embrace the Markovian nature of the cell-cycle process. In the following, Powell's f distribution will be labelled h for the sake of clarity. One immediately obtains f (a) = -Df (a) -Dg(a), which mirrors (13), showing that this result is independent from the calculation methodology. It is remarkable that the reference to g eliminates the need to compute any conditional probability.

However, if Powell's denition of h, which contains all interdivision times, is used to establish a conservation equation for the number of cells with age a in a reactor then one has to check that a cell has actually reached that age a in the system. This leads to a conditional probability and Bayes' theorem leads to

P (interdivision time ≤ a + δt|age ≥ a) = P (interdivision time ≤ a + δt ∩ interdivision time ≥ a) P (interdivision time ≥ a) = ∞ a h(a )da - ∞ a+δt h(a )da ∞ a h(a )da = 1 - ∞ a+δt h(a )da ∞ a h(a )da
In order to reach age a + δt, any cell has to reach age a, remain in the system for at least δt and not divide between a and a + δt. An innitesimal calculation using Taylor's formula entails:

f (a + δt) = f (a) exp(-Dδt) ∞ a+δt h(a )da ∞ a h(a )da = f (a) (1 -δtD + o(δt))( ∞ a h(a )da + δt ∂ ∂a ∞ a h(a )da + o(δt) ∞ a h(a )da )
Developing and simplifying the second-order terms leads to:

f (a + δt) = f (a) 1 -δtD + δt -h(a) ∞ a h(a )da + o(δt) ⇔ f (a + δt) -f (a) δt = f (a) -D - h(a) ∞ a h(a )da + o(1) = f (a) -D + ∂ ∂a ln( ∞ a h(a )da ) + o(1) ⇔ δt→0 f (a) = f (a) -D + ∂ ∂a ln( ∞ a h(a )da ) (26) 
Straightforward computations then result in Powell's proposed law for the relationship between the cell-age PDF and h, which is indeed consistent given his memoryless function h.

f (a) = 2D exp(-Da) exp(ln( ∞ a h(a )da ) = 2De -Da 1 - a 0 h(a )da (27) 
While all relations described in [14] are true in both batch and continuous culture, it is of crucial importance to draw the reader's attention to a fallacious reasoning involving Powell's denition of h. The latter aims at evaluating the probability that a cell's interdivision time is more or less than its residence time, which is determined by the relation coupling f and h in [START_REF] Ferenci | Bacterial Physiology, Regulation and Mutational Adaptation in a Chemostat Environment[END_REF]: This must be compared to Powell's assumption that a cell has a probability of 1/2 of yielding two daughter cells before washout occurs, and the same probability that a cell is washed out before it begins a division event. Indeed, given that the residence time t res in a well-mixed fermenter obeys an exponential law:

a = 2 D -2D ∞ 0 h(a ) ∞ a ae -Da dada = 2 D -2D ∞ 0 h(a) 1 D ae -Da + 1 D 2 e -Da da = 2 D -2 ∞ 0 ae -Da h(a)da - 2 
t res (t) = De -Dt it follows that P (interdivision time < residence time) = ∞ 0 De -Dt t 0 h(a)dadt
Then, using once again Fubini's theorem,

P (interdivision time < residence time) = ∞ 0 h(a) ∞ a De -Dt dtda = ∞ 0 e -Da h(a)da = 1 2
which is consistent with Powell's result based on physical grounds.

Furthermore, the mean interdivision time is obviously not equal to ∞ 0 ah(a)da because Powell's denition of h does not match the observable interdivision-time PDF. To convince oneself, the relations coupling the cell-age PDF with g (16) or h [START_REF] Ferenci | Bacterial Physiology, Regulation and Mutational Adaptation in a Chemostat Environment[END_REF] entail the conclusion immediately:

f (a) = 2De -Da -De -Da a 0 e Da g(a )da f (a) = 2De -Da -2De -Da a 0 h(a )da    ⇔ g(a) = 2e -Da h(a)
which provides the relation between g and h in a well-mixed fermenter. g(a) is conspicuously greater than h(a) if e -Da > 1/2 ⇔ a < ln(2)/D, the reverse inequality holding if a > ln(2)/D.

To conclude the discussion of continuous cultures, the dierences between g and h are shown in Referring to Painter and Marr's work, van Heerden and co-workers produced a slightly biased t of their experimental interdivision-time PDF. Hence, their data analysis procedure involving h instead of g, lead a + τ f it to be greater than D -1 by a signicant 7% margin and τ f it to be greater than 2.259 a . However, using their raw data for B. subtilis, we nd that τ obs , a and D agree with both ( 18) and (19). Moreover, their Supplementary Data regarding E. coli are in complete agreement with a + τ obs = D -1 . This analysis conrms that analytical, numerical and experimental results are in perfect agreement provided that equation ( 16) is used instead of [START_REF] Ferenci | Bacterial Physiology, Regulation and Mutational Adaptation in a Chemostat Environment[END_REF] when dealing with a set of measured interdivision times. To conclude this discussion, it is pointed out that the experimental procedure itself aects the observed interdivision-time distribution. In Yasuda's experiments using an optical tweezer to remove cells from the growth chamber following their division, no cell is washed out before dividing. Therefore, an interdivision-time distribution from such measurements resembles h more than the one stemming from a continuous system.

Concluding remarks

The exact results developed in this work throw light on the equivocal interpretations of the notion of interdivision time appearing in the literature where two dierent PDFs were considered from the analytical and experimental perspective. Starting from a PBE, rigorous mathematical results for the observable interdivision-time distribution have been established (complementing recent work by Jafarpour et al. [9] for instance), and numerical examples are provided to supplement the theoretical results. As expected, the steady-state PDFs from the MonteCarlo simulations proved to be in accordance with the analytical expressions. This paradigm is more suitable than Painter and Marr's when it comes to experimental data treatment. Indeed their conclusions were based on the rst moment of the unobservable cell interdivision-time distribution. The relationships provided in this work match the experimental data by van Heerden and co-workers regarding E. coli and B. subtilis.

Analysis-wise, no expression for the PDF of the cell length is accessible because the integral γ(l )P (l, l )n(t, l )dl has no specic shape. Furthermore, with two relations pertaining to P : 1. P (l, l ) = P (ll, l ) 2. l 0 P (l, l )dl = 1 one can extract the dynamics of the length distribution's zeroth and rst-order moments only, with the help of integrations by parts and Fubini's theorem. However, no additional formulae are available if no other relations constrain P .

Sizestructured models

Throughout this section, ξ = l ∈]0, l[ will denote the cells' inner coordinate and (1.22) will read:

∂ ∂t n(t, l) + ∂ ∂l ln(t, l) + γ(l)n(t, l) + Dn(t, l) = 2 l l γ(l ′ )P (l, l ′ )n(t, l ′ )dl ′ n(t, l) l∈{0, l} = 0 2.2.
1 Growth in mass or growth in number?

The very notion of growth rate comes as a spurious spin to the (1.7) system that cannot discriminate between cell number and cell mass, both quantities being supposed completely proportional at such a macroscopical scale the set of ODEs is designed to. However, an integration of the 0-th order moment of (1.22) boils down to:

l 0 ∂ ∂t n(t, l)dl + l 0 γ(l)n(t, l)dl + D l 0 n(t, l)dl = 2 l 0 l l P (l, l ′ )γ(l ′ )n(t, l ′ )dl ′ dl
A use of Fubini's theorem allows to switch integrals in the righthand side term to yield:

l 0 l l P (l, l ′ )γ(l ′ )n(t, l ′ )dl ′ dl = l 0 l ′ 0 P (l, l ′ )dlγ(l ′ )n(t, l ′ )dl ′ = l 0 γ(l ′ )n(t, l ′ )dl ′
Then, if N (t) stands for the total cell number at time t, its dynamics is determined by:

dN (t) dt = -DN (t) + l 0 γ(l)n(t, l)dl (2.4) That is, if µ N ∶= ∫ l 0 γ(l)n(t, l)dl ∫ l 0 n(t, l)dl
stands for the population's growth rate in number:

dN (t) dt = (µ N -D)N (t) (2.5) 
On the other hand, since it was assumed that a cell's mass is linearly correlated to its length, integrating the rstorder moment of (1.22) will yield the dynamics of the reactor's biomass:

l 0 l ∂ ∂t n(t, l)dl - l 0 ln(t, l)dl + l 0 lγ(l)n(t, l)dl + D l 0 ln(t, l)dl = 2 l 0 l l l P (l, l ′ )γ(l ′ )n(t, l ′ )dl ′ dl
given that the Dirichlet condition at l ∈ {0, l} forces the boundary term to vanish. Another use of Fubini's theorem will transform the righthand side into:

l 0 l l lP (l, l ′ )γ(l ′ )n(t, l ′ )dl ′ dl = l 0 l ′ 0 lP (l, l ′ )dlγ(l ′ )n(t, l ′ )dl ′ = l 0 l ′ 0 (l ′ -l)P (l, l ′ )dlγ(l ′ )n(t, l ′ )dl ′ = l 0 l ′ γ(l ′ )n(t, l ′ )dl ′ - l 0 l ′ 0 lP (l, l ′ )dlγ(l ′ )n(t, l ′ )dl ′ l 0 l ′ 0 lP (l, l ′ )dlγ(l ′ )n(t, l ′ )dl ′ = 1 2 l 0 l ′ γ(l ′ )n(t, l ′ )dl ′
Therefore, the rst moment of the length distribution obeys the equation:

d dt l 0 ln(t, l)dl = -D l 0 ln(t, l)dl + l 0 ln(t, l)dl (2.6)
and, as previously, a populationscale growth rate in mass µ m can be dened to set the equivalence with the population's growth in number:

µ m = ∫ l 0 ln(t, l)dl ∫ l 0 ln(t,

l)dl

Hence:

d dt l 0 ln(t, l)dl = (µ m -D) l 0 ln(t, l)dl (2.7)
These results hint at previous conclusions from Doumic's analysis regarding massstructured models [19], that is the cell number can only grow by division, whatever the elongation function, whereas the cell mass can only grow by lengthening. Of course, the conservation of mass at division is a key assumption leading to the (2.6) equation, allowing the simplication of the rupturerelated terms and the (2.7) denition of µ m .

Equations (2.4) and (2.6) are extremely similar, so much so growth in mass and growth in number will prove equivalent when µ N and µ m are actual doppelgangers. This happens when steadystate is reached in a chemostat, respectively turning (2.4) and (2.6) into µ N = D and µ m = D = µ N . Also, exponential growth in batch culture is notably characterised by the invariance of the population's mean length with respect to time. In other words, µ N = µ m = µ, which denition comes this time mainly from physical grounds. A comprehensive division pertaining to the approximation ∫ l 0 ln(t, l)dl ≈ µ m ∫ l 0 ln(t, l)dl is provided in the appendix, section 4.

As informative as (2.4) and (2.6) are, the equations are geared towards macroscopic features only. A size prole is not available from (1.22) unless the integrals ∫ l ′ 0 l k P (l, l ′ )dl can be calculated for k ≥ 2, what is not an option if P is not given. On the other hand, even if P was known beforehand, say P ∼ β(p, p), p ≥ 1, the following recursive equation for the kth moment of the size distribution would read: These hypotheses being too restrictive to make for a convenient modelling, the following section will concentrate on more general analytical results that do not require any information on the kernel P .

∂ ∂t l 0 l k n(t, l)dl -k l 0 l k-1 ln(t, l)dl + D l 0 l k n(t, l)dl = 2 k-1 Π j=0 p + j 2p + j -1 l 0 l k γ(l)n(t,

Existence and uniqueness result

As was mentioned in the rst section, the sizePBE (1.22) is traditionally (cf. Doumic's [19]) solved in the C 0 (R + , L 1 (R + )) functional space provided that the rupture function belongs to L ∞ (R + )

and the growth function is C 1 b over its domain. Modellingwise, this case study is not a satisfying working assumption, being agreed that no cell of macroscopic size is to be observed by microbiologists. A remedy could consist in the denition of an articial l upper bound to the cell length and the formulation of appropriate γ and l functions, like:

γ(l) = C 1 - l l α-1 and l = K 1 - l l β
Obviously, γ has to be singular to express the absence of evergrowing cells, enforcing the α < 1 assumption. Similarly, l is forced to converge to 0 as l → l to annihilate any possibility of growth beyond l, in other words one expects β > 0. Hereinafter, for the sake of convenience, the rest of the talk will involve a normalised variable

x = l l ∈ [0, 1[, turning the denition of l into ẋ = K ′ (1 -x) β , K ′ = K l.
As counterintuitive as it seems, not every (α < 1, β > 0) combination is suitable within this framework because a cell cluster could form at the impassible l boundary should the γ function be not steep enough. The following theorem gives meaning to a solution of (1.22) when the α and β coecients are adequately chosen. Theorem 2.2.1. gonsider the fi

∂ ∂t n(t, x) + ∂ ∂x [ ẋn(t, x)] + γ(x)n(t, x) + Dn(t, x) = 2 1 x γ(x ′ )P (x, x ′ )n(t, x ′ )dx ′ D (t, x) ∈ R + × [0, 1] n(0, x) = n 0 (x)D x ∈ [0, 1] (2.8) 
n(t, 0) = 0D t ≥ 0 uppose tht P is ontinuous proility density kernel suh tht

P (0, x) = 0 ∀x ≥ 0 nd n 0 ∈ C 0 ([0, 1[)F sf γ nd ẋ re suh thtX γ(x) = C(1 -x) α-1 nd ẋ = K ′ (1 -x) β with 0 < α < 1D 0 < β nd β > αD then unique solution to (1.22) exists in C 0 (R + × ([0, 1]))F purthermoreD for ny t ≥ 0D n(t, x) → x→1 -0F roofF

Sketch of the proof:

Without loss of generality, t 0 can be set equal to 0 (at the expense of a change τ = tt 0 of variables).

The result will rely on a splitting operator scheme, consisting in injecting a solution of the linear equation:

∂ ∂t n(t, x) + ∂ ∂x [ ẋn(t, x)] + γ(x)n(t, x) + Dn(t, x) = 0 (2.9) with initial condition n(t 0 , ⋅) = n 0 (⋅) ∈ L ∞ ([0, 1])
and boundary condition n(⋅, 0) = 0 in the equation:

∂ ∂t n(t, x) = 2 γ(x ′ )P (x, x ′ )n(t, x ′ )dx ′ .
(2.10)

(2.9) can be solved using the method of characteristics, yielding a semigroup S t that satises n(t, ⋅) = S t (n 0 (⋅)). In other words, S t is the operator that transports a solution along the characteristic curve passing through the associated initial condition. This part of the proof follows closely 

n(t, ⋅) = S t (n 0 )(⋅) + t 0 S t-s (I(n)) (s, ⋅)ds if I stands for the integral operator I ∶ n(t, x) ↦ 2 ∫ 1 x γ(x ′ )P (x, x ′ )n(t, x ′ )dx ′ .
Then, the crucial step to ensure the problem's wellposedness lies in I's continuity (equivalently, its boundedness) property as a C 0 → C 0 operator. More precisely, from Hölder's inequality:

I(n)(t, x) ≤ γ L 1 max 0≤x≤x ′ <1 P (x, x ′ ) n(t, ⋅) L ∞ ([0,1])
and the application of Picard's xedpoint theorem follows as soon as it is proven that S t ∶ C 0 → C 0 is continuous. Indeed, it will entail the existence of a real T > 0 such that the operator

A ∶ n(t, ⋅) ↦ S t (n 0 (⋅)) + ∫ t 0 S t-s (I(n)(s, ⋅))ds is a contraction on [0, T ].
Applying the same reasoning to the [nT, (n + 1)T ] intervals with n ≥ 1 will be straightforward. Solving (2.9)

For ẋ = K ′ (1 -x) β , γ(x) = C(1 -x) α-1 , (2.9) comes down to : ∂ ∂t n(t, x) -βK ′ (1 -x) β-1 n(t, x) + K ′ (1 -x) β ∂ ∂x n(t, x) + C(1 -x) α-1 n(t, x) + Dn(t, x) = 0
Using the method of characteristics, the relation between x and t is given by the Cauchy system:

dX dt = K ′ (1 -X) β X(0) = x 0 ⇒ - (1 -X) 1-β 1 -β X(t,x 0 ) x 0 = K ′ t ⇔ (1 -β)K ′ t = (1 -x 0 ) 1-β -(1 -X(t, x 0 )) 1-β Finally, X(t, x 0 ) = 1 -(1 -x 0 ) 1-β -(1 -β)K ′ t 1 1-β , for t ≤ (1 -x 0 ) 1-β K ′ (1 -β) (2.11)
The (2.2.2) equation cuts the R + × [0, 1] plan into two parts:

If (t, x) is such that x < 1 -[1 -(1 -β)K ′ t] 1 
1-β : then no characteristic curve passes through the (t, x) point since it would involve a negative x 0 . Therefore n can only be identically zero.

If (t, x) is such that x ≥ 1 -[1 -(1 -β)K ′ t] 1 
1-β : then one characteristic curve passes through (t, x) and its origin x 0 = X -1 (t, x) is unique. If ñ stands for the solution to (2.8), that is ñ(t, x 0 ) = n(t, X(t, x 0 )), tracking it along the characteristics passing through (0, x 0 ) leads to:

dñ dt = ∂ ∂t n(t, X(t, x 0 )) + K ′ (1 -x 0 ) 1-β -(1 -β)K ′ t β 1-β ∂ ∂x n(t, X(t, x 0 ))
that is, given the (2.2.2) denition of X(t, x 0 ):

dñ dt (t, x 0 ) = ∂ ∂t n(t, X(t, x 0 )) + K ′ (1 -X(t, x 0 )) β ∂ ∂x n(t, X(t, x 0 ))
A substitution into equation (2.9) comes down to:

dñ dt (t, x 0 ) = -D + βK ′ (1 -X(t, x 0 )) β-1 -C(1 -X(t, x 0 )) α-1 ñ(t, x 0 )
Expressing the X(t, x 0 ) ow from (2.2.2) turns the latter dierential equation into:

dñ dt (t, x 0 ) = -D + βK ′ [(1 -x 0 ) 1-β -(1 -β)K ′ t] -C (1 -x 0 ) 1-β -(1 -β)K ′ t α-1 1-β ñ(t, x 0 )
Since this ODE is linear, an integration yields immediately:

ñ(t, x 0 ) = ñ(0, x 0 )e -Dt exp t 0 βK ′ [(1 -x 0 ) 1-β -(1 -β)K ′ s] -C (1 -x 0 ) 1-β -(1 -β)K ′ s α-1 1-β ds
This formula leads to the analytical solution for n(t, x) once the integrals have been calculated:

t 0 βK ′ [(1 -x 0 ) 1-β -(1 -β)K ′ s] ds = - β 1 -β ln((1 -x 0 ) 1-β -(1 -β)K ′ s) t 0 = β 1 -β ln (1 -x 0 ) 1-β (1 -x 0 ) 1-β -(1 -β)K ′ t) and t 0 -C (1 -x 0 ) 1-β -(1 -β)K ′ s α-1 1-β ds = C (α -β)K ′ (1 -x 0 ) 1-β -(1 -β)K ′ s α-β 1-β t 0 = C (β -α)K ′ (1 -x 0 ) α-β -(1 -x 0 ) 1-β -(1 -β)K ′ t α-β 1-β
It remains to make use of the denition of x(t) along the characteristic curve to remove x 0 from the solution. Hence:

n(t, x) = n 0 (x 0 ) exp(-Dt) ((1 -x(t)) 1-β + (1 + β)K ′ t) β 1-β (1 -x(t)) β exp C (β-α)K ′ ((1 -x(t)) 1-β + (1 + β)K ′ t) α-β 1-β exp C (β-α)K ′ (1 -x(t)) α-β (2.12)
The only remaining part of the proof consists in ensuring the continuity (that is, the boundedness) of the S t operator over a certain [0, T ] time interval. In other words, an evaluation of n(t, x) for

x ∈ [0, 1[ and its x → 1 limit have to be retrieved from (2.12). To this end, the variations of the

x → (1 -x) -β exp(-C (K ′ (β -α))(1 -x) α-β ) function are studied: d dx (1 -x) -β exp - C K ′ (β -α) (1 -x) α-β = β(1 -x) -1-β - C K ′ (1 -x) α-2β-1 exp - C(1 -x) α-β K ′ (β -α) = 0 i x = x ⋆ = 1 - βK ′ C 1 α-β < 1 < 0 i x > x ⋆ As a consequence, the x → (1-x) -β exp(-C (K ′ (β-α))(1-x) α-β
) function is bounded, ensuring the boundedness of (2.12)'s righthand side. Furthermore, given that

(1 -x) -β exp(-C (K ′ (β -α))(1 - x) α-β ) is of the form 1 X exp(-1 X), its X → 0 limit is wellknown, meaning that the convergence to 0 of the (1 -x) -β exp(-C (K ′ (β -α))(1 -x) α-β ) quantity is guaranteed for x → 1.
The only uncertainty pertains to the case x 0 (= (1 -x(t)) 1-β + (1 + β)K ′ t) = 1 for which the characteristic curve is restricted to the (0, x 0 ) singleton. In the latter conguration, the nal three factors on (2.12)'s righthand side are equal to 1 though, as the lefthand side is obviously equal to n 0 (x 0 ).

At the end of the day, a positive

C T constant such that S t (n 0 ) L ∞ ([0,1]) ≤ C T n 0 L ∞ ([0,1]
) for any t ∈ [0, T ] is accessible, wrapping the proof of n's boundedness up.

Solving (2.10) This section is a mere development of the steps mentioned in the sketch of the proof. It is mentioned as a reminder that, following Duhamel's principle, the operatorsplitting induced solution of (1.22) reads :

n(t, x) = S t (n 0 ) + t 0 S t-s (I(n)(s, ⋅))
with S t the semigroup associated to the solution to (2.9) and I the integral operator dened as

I ∶ n(t, x) ↦ 2 ∫ 1 x γ(x ′ )P (x, x ′ )n(t, x ′ )dx ′ . From the previous paragraph's results, S t continuously maps C 0 ([0, 1]) into C 0 ([0, 1]): there exists a certain C T > 0 such that S t (n 0 ) L ∞ ≤ C T n 0 L ∞ . Therefore, a solution to (1.22) exists in C 0 (R + × [0, 1[) if the redistribution integral is a contraction in L ∞ ([0, 1]).
Indeed, using the linearity of operator A dened as:

A(n)(t, x) = S t (n 0 ) + t 0 S t-s (I(n))(s, ⋅)ds
for two solutions n 1 , n 2 to the sizePBE, the dierence n = n 1 -n 2 satises the equation:

A(n)(t, x) = t 0 S t-s (I(n))(s, ⋅)ds
The theorem is proven if, for a certain T > 0 there exists η < 1 such that

t 0 S t-s (I(n))(s, ⋅)ds ≤ η max 0≤t≤T n(t) L ∞ ([0,1]))
Applying Hölder's inequality will entail:

t 0 S t-s (I(n))(s, ⋅)ds ≤C T t 0 2 1 x γ(x ′ )P (x, x ′ )n(s, x ′ )dx ′ ds ≤ 2T C T γ L 1 max 0≤x≤x ′ <1 P (x, x ′ ) max 0≤t≤T n(t) L ∞ ≤ η max 0≤t≤T n(t) L ∞ i T ≤ η 2C S γ L 1 max 0≤x≤x ′ <1 P (x, x ′ )
what proves that I is a continuous operator and the integral dening I is convergent for any x ∈ [0, 1]. Also, from the P (0, x) = 0 ∀x ∈ [0, 1] assumption, one retrieves I(n)(t, 0) = 0. P being uniformly continuous probability density kernel, I(n 

)(t) is continuous over [0, 1].

Discussion

• The restricting condition β > 0 has major implications when it comes to modelling an organism's growth rate. If the lengthening is assumed linear with respect to time (that is ẋ = K ′ ), dening γ using the equation:

γ(x) = C (1 -x) 1 2
entails the obvious characteristics:

X(t, x 0 ) = x 0 + K ′ t
and the exact same calculations as above would yield:

ñ(t, x 0 ) = n 0 (x 0 ) exp(-Dt) exp(-C t t 0 1 -(x 0 + K ′ (s -t 0 )) -1 2 ds) n(t, x) = n 0 (x 0 ) exp(-Dt) exp 2C K ′ √ 1 -x - √ 1 -x + K ′ t
the latter converging to the positive quantity n 0 (x 0 ) exp (-Dt) exp -2C K ′ √ K ′ t > 0 as x tends to 1. This nonsensical condition is tantamount to an accumulation of the population at the x = 1 value. In other words, such a modelling assumption will inevitably turn n to a δ 1 NDF.

More generally, unbounded rupture functions as proposed by Mantzaris [START_REF] Mantzatis | Stochastic and deterministic simulation of heterogeneous cell population dynamics[END_REF] or Chrysinas [12] are forbidden to ensure that the support of the solution to (1.22) is relatively compact. The assumption of sublinear lengthening comes from Robert & al.'s raw experimental data and seems the most relevant when population balance equations are considered to describe the cell cycle. Indeed, it is thought increasingly dicult for any organism to maintain their growth rate constant as feeding an evergrowing cell membrane at a constant rate would likely end up mustering more resources than is available to them..

• If n is dened on a compact subset of R + , the result n(t, ⋅) ∈ L ∞ ([0, 1[) ∀t is stronger than n ∈ L 1 ([0, 1[), because obviously n(t, ⋅) L 1 [0,1[ ≤ l n(t, ⋅) L ∞ [0,1
. However, it does not contradict Perthame's [START_REF] Perthame | rnsport iqutions in fiology[END_REF] or Gabriel's [START_REF] Gabriel | Équtions de trnsportEfrgmenttion et pplitions ux mldies à prions[END_REF] in any way. Furthermore, this stronger result does not require some of the assumptions featuring in Doumic & Gabriel's [20]. Firstly, ẋ vanishes at x = 1. Also, there exists no real k γ such that γ(x)(1 -x) -kγ is bounded on [0, 1[. It remains to understand how the framework of the theorem aects the solution to the sizestructured eigenproblem.

• Consider now an exponential growth framework, that is ẋ reads:

ẋ = K ′ (1 -x) -β
with β > 0. The exact same calculations as enforced above yield:

K ′ t = 1 β + 1 (1 -x 0 ) β+1 -(1 -x(t)) β+1 ⇔ X(t, x 0 ) = 1 -(1 -x 0 ) β+1 -(β + 1)K ′ t 1 β+1
Then, with the same notations:

dñ dt (t, x 0 ) = ∂ ∂t n(t, X(t, x 0 )) + K ′ (1 -x 0 ) β+1 -(β + 1)K ′ t -β β+1 ∂ ∂x n(t, X(t, x 0 )) = ∂ ∂t n(t, X(t, x 0 )) + K ′ (1 -x(t)) -β ∂ ∂x n(t, X(t, x 0 ))
And the following linear dierential equation will be solved:

d dt ñ(t, x 0 ) = -Dñ(t, x 0 ) - βK ′ (1 -x 0 ) β+1 -(β + 1)K ′ t ñ(t, x 0 ) -γ(X(t, x 0 ))ñ(t, x 0 )
It remains to evaluate the conditions under which the rupture process trumps the cell growth. If γ simply reads γ(x) = C(1 -x) α , then:

n(t, x) = n 0 (x 0 ) exp(-Dt) exp - t 0 βK ′ (1 -x 0 ) β+1 -(β + 1)K ′ s + C (1 -x 0 ) β+1 -K ′ s(β + 1) α β+1 ds
In the righthand side's integral, the rst term will once again evidence a logarithm term:

exp - t 0 βK ′ (1 -x 0 ) β+1 -(β + 1)K ′ s ds = 1 -x(t) 1 -x 0 β
and the second term yields:

exp -C (1 -x 0 ) β+1 -K ′ s(β + 1) α β+1 ds = exp C K ′ (α + β + 1) [(1 -x(t)) α+β+1 -(1 -x 0 ) α+β+1 ]
At the end of the day, the righthand side will be of form X exp(-X) (consequently tamed over the [0, 1] interval) if and only if α < -1 -β. In this case, the rupture function does not belong to L 1 though, making it impossible to apply Hölder's inequality to conclude on I's contracting property using Picard's xed point theorem. If α ≥ -1 -β on the other hand, an inevitable accumulation of cells at x = 1 will lead to an innite cell number at this particular value.

This remark echoes a previous brief aside mentioned in Diekmann & al.'s [17], but it is shown here that the α < 0 condition is not a necessary assumption for the existence of a solution to (1.22).

Existence and uniqueness of Malthus eigenelements

Consider again the transport equation:

∂ ∂t n(t, x) + ∂ ∂x [ ẋn(t, x)] + γ(x)n(t, x) + Dn(t, x) = 2 1 x γ(x ′ )P (x, x ′ )n(t, x ′ )dx ′ (2.13) n(t, 0) = 0 = n(t, 1)
For t → ∞, the solution to (2.13) will be aligned with the eigenvector corresponding to the transport fragmentation operator's largest eigenvalue (as known as Malthus parameter). An existence and uniqueness result can be proven relying on KreinRutman's theorem for a regularised problem (allowing the strict positivity of the transportfragmentation operator) and passing to the limit once convenient a priori bounds are extracted to this end. Two features of the rupture function must be gingerly addressed. Firstly, it diverges for x → 1, requiring a truncation to ensure that KreinRutman's theorem holds. Secondly, its support will not be [0, 1[ in practice, rather it will be assumed that no division is possible below a certain strictly positive threshold, preventing some of these events from being recorded at microscopic lengths. γ would read, for instance:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if x ≤ x ε C (1 -x) α-1 -(1 -x ε ) α-1 if x ≥ x ε , x ε > 0.
In this case, it must be proven that the distribution does not concentrate in the outside of the support of γ to such an extent that the NDF turns to a Dirac delta n(t, l) = δ l .

In a general way, the eigenelement problem breaks down into a primal and a dual equation:

∂ ∂x [ ẋN (x)] + γ(x)N (x) + (D + λ)N (x) = 2 1-ζ x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ , 0 ≤ x ≤ x ′ ≤ 1 -ζ (2.14) N (0) = 0, 1-ζ 0 N (x)dx = 1, N ≥ 0 - ẋ ∂ ∂x φ(x) + γ(x)φ(x) + (D + λ)φ(x) = 2γ(x) x 0 P (x ′ , x)φ(x ′ )dx ′ , 0 ≤ x ′ ≤ x ≤ 1 -ζ (2.15) 1-ζ 0 N (x)φ(x)dx = 1, φ ≥ 0
Without loss of generality, one can set λ = λ + D. The following theorem will be proven in the rest of the section: Theorem 2.2.2. gonsider the system (2.14) E (2.15)F uppose tht P is proility density kernelF

sf γ redsX γ(x) = C(1 -x) α-1 nd ẋ redsX ẋ = K(1 -x) β
with 0 < α < β < min(2α, 1)D then the system dmits unique triplet (λ, N, φ) solutionD nd we hveX

N ∈ L 1 ∩ C 1 ([0, 1[) φ ∈ L 1 ∩ L ∞ ([0, 1[) λ ≤ ẋ(0)
roofF

Sketch of the proof

The proof will involve the regularised problem:

∂ ∂x ẋN ζ ε (x) + γ ζ ε (x)N ζ ε (x) + (D + λ ζ ε )N ζ ε (x) = 2 1-ζ x γ ζ ε (x ′ )P (x, x ′ )N ζ ε (x ′ )dx ′ , 0 ≤ x ≤ x ′ ≤ 1 -ζ (2.16) N ζ ε (0) = 0, 1-ζ 0 N ζ ε (x)dx = 1, N ζ ε ≥ 0 - ẋ ∂ ∂x φ ζ ε (x) + γ ζ ε (x)φ ζ ε (x) + (D + λ ζ ε )φ ζ ε (x) = 2γ ζ ε (x) x 0 P (x ′ , x)φ ζ ε (x ′ )dx ′ , 0 ≤ x ′ ≤ x ≤ 1 -ζ (2.17) φ ζ ε (1 -ζ) = 0, 1-ζ 0 N ζ ε φ ζ ε (x)dx = 1, φ ζ ε ≥ 0 with γ ζ ε a strictly positive function on the interval [0, 1 -ζ]. A rupture function with support on [0, 1 -ζ] could consist, for instance, in γ ζ ε (x) = γ(x) -γ(x ε ), 0 ≤ x ≤ 1 -ζ,
γ being dened as in the previous section, x ε < 0. It is worth mentioning that this renement has absolutely no impact on its integrability: γ ζ ε L 1 ≤ γ L 1 . By the way, such a strategy has already been employed by Doumic in [19]. Finally, D + λ ζ ε can be renamed λζ ε .

Applying KreinRutman's theorem in the L ∞ space has already been achieved by Doumic & Gabriel (cf. [20]) for a very similar eigenproblem as (2.16)-(2.17), meaning that despite the dierences in the respective frameworks, it should be done with no diculties in the beginning of the proof. In order to estimate the W 1,∞ norm of the dierence between two solutions of (2.16), more regularity has to be somehow retrieved from the said dierence, the idea consisting in exploiting the regularising feature of the redistribution integral to upperbound it with more precision than Hölder's inequality allows.

Then, to take the limits in ε and ζ in both (2.16) and (2.17), very similar estimates are retrieved from the equations and Ascoli's theorem will be used in both cases to conclude. The β < 2α inequality will manifest from the necessity to bound (1 -x) 2α-β on the [0, 1[ interval that appears as a mandatory step to estimate the solution to (2.16) in W 1,∞ . Such an estimate is out of reach of the solution to (2.17) that is only equicontinuous, what does not prevent from using Ascoli's theorem anyway. Finally, given that the operator

R ∶ N → ∂ ∂x N is linear, R(N ζ ε ) is continuous if and only if it is bounded, meaning that proving N ζ ε 's C 1 regularity comes down to the proof of N ζ ε ∈ W 1,∞ .
Demonstrating the uniqueness of the solutions exploits the Generalised Relative Entropy (GRE) principle and the proof is in fact identical to Michel & al.'s contribution in the context of closely related biological systems (cf. [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF]).

Application of KreinRutman's theorem

The rst step of the proof consists in ensuring that KreinRutman's theorem applies to the regularised problem (2.16). The framework is here the functional space W 1,∞ [0, 1 -ζ], that is obviously equipped with the norm: 

⋅ W 1,∞ [0,1-ζ] = max 0≤x≤1-ζ (⋅(x)) + max 0≤x≤1-ζ (⋅(x)). Consider to this end an operator O : M ↦ N ζ ε such that: ∂ ∂x ẋN ζ ε (x) + γ ζ ε (x)N ζ ε (x) + (µ + D)N ζ ε (x) = 2 1-ζ x γ ζ ε (x ′ )P (x, x ′ )M (x ′ )dx ′ , 0 ≤ x ≤ x ′ ≤ 1 -ζ (2.18) N ζ ε (0) = 0, N ζ ε (x) ≥ 0 ∀x ∈ [0, 1 -ζ], 1-ζ 0 N ζ ε (x)dx = 1 A unique
N ζ ε,1 = O(M 1 ), N ζ ε,2 = O(M 2 ) are two distinct solutions to (2.18), the dierence N ζ ε,1 -N ζ ε,2 satises the equation: ∂ ∂x ẋ(N ζ ε,1 -N ζ ε,2 )(x) + γ ζ ε (x)(N ζ ε,1 -N ζ ε,2 )(x) + (µ + D)(N ζ ε,1 -N ζ ε,2 )(x) = 2 1-ζ x γ ζ ε (x ′ )P (x, x ′ )(M 1 -M 2 )(x ′ )dx ′ with (N ζ ε,1 -N ζ ε,2 )(0) = 0,
∂ ∂x ẋ N ζ ε,1 -N ζ ε,2 (x) + γ ζ ε (x) N ζ ε,1 -N ζ ε,2 (x) + (µ + D) N ζ ε,1 -N ζ ε,2 (x) ≤ 2 1-ζ x γ ζ ε (x ′ )P (x, x ′ ) M 1 -M 2 (x ′ )dx ′ with obviously N ζ ε,1 -N ζ ε,2 ( 
0) = 0. One can integrate this inequality making use of Grönwall's lemma and Duhamel's formula:

∂ ∂x N ζ ε,1 -N ζ ε,2 (x) ≤ - 1 ẋ ∂ ẋ ∂x + γ ζ ε (x) + µ + D N ζ ε,1 -N ζ ε,2 (x) + 2 ẋ 1-ζ x γ ζ ε (x ′ )P (x, x ′ ) M 1 -M 2 (x ′ )dx ′ ⇒ N ζ ε,1 -N ζ ε,2 (x) ≤ N ζ ε,1 -N ζ ε,2 (0) exp x 0 - 1 ẋ ∂ ẋ ∂x + γ ζ ε (x ′ ) + µ + D dx ′ (2.19) + x 0 exp x x ′ - 1 ẋ ∂ ẋ ∂x + γ ζ ε (x ′′ ) + µ + D dx ′′ 2 ẋ 1-ζ x ′ γ ζ ε (x ′′ )P (x ′ , x ′′ ) M 1 -M 2 (x ′′ )dx ′′ dx ′ On (2.2.
3), the righthand side's rst term vanishes due to the boundary condition. Given our hypotheses pertaining to γ and ẋ, the second term can be bounded from the following steps:

• x x ′ - 1 ẋ(x ′′ ) ∂ ẋ(x ′′ ) ∂x dx ′′ = ln ẋ(x ′ ) ẋ(x) • x x ′ - γ ζ ε (x ′′ ) ẋ(x ′′ ) dx ′′ = C K ′ (β -α) (1 -x ′ ) α-β -(1 -x) α-β + x x ′ γ(x ε ) ẋ(x ′′ ) dx ′′ x x ′ - γ ζ ε (x ′′ ) ẋ(x ′′ ) dx ′′ ≤ C K ′ (β -α) (1 -x ′ ) α-β -(1 -x) α-β • x x ′ - µ + D ẋ(x ′′ ) dl ′′ = (µ + D) K ′ (1 -β) (1 -x) 1-β -(1 -x ′ ) 1-β • 1-ζ x ′ γ ζ ε (x ′′ )P (x ′ , x ′′ ) M 1 -M 2 (x ′′ )dx ′′ ≤ 1-ζ 0 γ ζ ε (x ′ )P (x, x ′ ) M 1 -M 2 (x ′ )dx ′ ≤ A M 1 -M 2 L ∞ γ ζ ε L 1 with A = sup x ′ ≤x ′′ ,0≤x ′′ ≤1-ζ P (x ′ , x ′′ )
, provided that P is a probability density kernel. Therefore:

N ζ ε,1 -N ζ ε,2 (x) ≤ 2A M 1 -M 2 L ∞ γ ζ ε L 1 K ′ (1 -x) -β x 0 exp C K ′ (β -α) (1 -x ′ ) α-β -(1 -x) α-β exp (µ + D) K ′ (1 -β) (1 -x) 1-β -(1 -x ′ ) 1-β dx ′
Hereinafter, the following notations will be used:

E(x) = exp C K ′ (β -α) (1 -x) α-β F (x) = exp (µ + D) K ′ (1 -β) (1 -x) 1-β
meaning that one can rewrite:

N ζ ε,1 -N ζ ε,2 (x) ≤ 2A M 1 -M 2 L ∞ γ ζ ε L 1 K ′ (1 -x) -β F (x) E(x) x 0 E(x ′ ) F (x ′ ) dx ′
Then, multiplying and dividing by (1 -x ′ ) β yields:

N ζ ε,1 -N ζ ε,2 (x) ≤ 2A M 1 -M 2 L ∞ γ ζ ε L 1 K ′ (1 -x) -β F (x) E(x) x 0 (1 -x ′ ) β E(x ′ )(1 -x ′ ) -β 1 F (x ′ ) dx ′ ≤ 2A M 1 -M 2 L ∞ γ ζ ε L 1 max 0≤x ′ ≤x (1 -x ′ ) β E(x ′ ) (1 -x) β E(x) F (x) x 0 1 K ′ F (x ′ ) (1 -x ′ ) -β dx ′
once Hölder's inequality has been used in the righthand side's integral. Firstly, the resulting integral can be analytically calculated:

x 0 1 K ′ F (x ′ ) (1 -x ′ ) -β dx ′ = 1 µ + D 1 F (x) - 1 F (0) 86 
Then, one has to evaluate the critical points of the function:

f ∶ x ↦ (1 -x) β E(x)
Indeed, if f admits a minimum on the interior of the [0, 1[ interval, the upper bound to max

0≤x ′ ≤x (1-x ′ ) β E(x ′ ) (1-x) β E(x)
will be immediately established. For instance, if f is strictly increasing on [0, 1[, for any x ′ ≤ x, then f (x ′ ) f (x) will be less than 1. In this context, the calculation of f 's derivative follows:

f ′ (x) = E(x) C K ′ (1 -x) α-1 -β(1 -x) β-1 and vanishes at x = x ⋆ = 1 -C βK ′ 1 β-α
. It is worth mentioning that:

• f (0) = exp C K ′ (β -α) > 0 • f ′ (0) = exp C K(β -α) C -K ′ β K ′
which sign depends on the very quantity (C -K ′ β) that determines the sign of x ⋆ . In this context, two options have to be considered:

• C ≥ K ′ β: in this case, x ⋆ ≤ 0 and f is increasing on [0, 1[ in all generality. Therefore:

x ′ ≤ x ⇔ f (x ′ ) ≤ f (x) and: max 0≤x ′ ≤x f (x ′ ) f (x) = 1 
• C < K ′ β: in this case, 0 < x ⋆ < 1 and the function is decreasing on [0, x ⋆ ] then increasing on [x ⋆ , 1[. Therefore:

max 0≤x ′ ≤x f (x ′ ) f (x) = f (0) f (x ⋆ )
and one can conclude that:

N ζ ε,1 -N ζ ε,2 (x) ≤ 2A M 1 -M 2 L ∞ Ξ γ ζ ε L 1 µ + D 1 - F (x) F (0) ≤ 2A M 1 -M 2 L ∞ Ξ γ ζ ε L 1 µ + D because 0 ≤ F (x) F (0) ≤ 1,
where Ξ is dened as:

Ξ = max 1, f (0) f (x ⋆ )
Hence, there exists a large enough µ to retrieve the inequality:

N ζ ε,1 -N ζ ε,2 L ∞ ≤ 1 2 M 1 -M 2 L ∞ (2.20)
As a consequence, only the L ∞ estimate on the derivative ∇

x (N ζ ε,1 -N ζ ε,2
) is missing to conclude on the application of KreinRutman's theorem. In this case, a tighter upper bound will be required beforehand: 

N ζ ε,1 -N ζ ε,2 (x) ≤ 2 K ′ (1 -x) -β F (x) E(x) x 0 E(x ′ ) F (x ′ ) 1 x ′ C(1 -x ′′ ) α-1 P (x ′ , x ′′ ) M 1 -M 2 (x ′′ )dx ′′ dx ′ 87 
(M 1 -M 2 )(x) + 1-ζ x ∇ x (M 1 -M 2 )(x ′ )dx ′ = 0 ⇔ (M 1 -M 2 )(x) ≤ L(1 -x)∀ζ > 0, x ∈ [0, 1[
with L the Lipschitz constant for M 1 -M 2 . Hence:

1 x ′ C(1 -x ′′ ) α-1 P (x ′ , x ′′ ) (M 1 -M 2 )(x ′′ ) dx ′′ ≤ CLA α + 1 (1 -x ′ ) α+1 (2.21)
By the way, this calculation entails the estimate on the last term of:

∇ x N ζ ε,1 -N ζ ε,2 (x) ≤ -ln( ẋ(x)) + γ ζ ε (x) ẋ(x) + µ + D ẋ(x) N ζ ε,1 -N ζ ε,2 (x)+ 2 ẋ 1 x γ(x ′ )P (x, x ′ ) M 1 -M 2 (x ′ )dx ′
To treat the rst term of the said estimate, it can be seen as a sum of powers of (1 -x) multiplied by n, so much so taming its most constraining contribution is enough to conclude. To this end, see that:

(1 -x) α-1-β N ζ ε,1 -N ζ ε,2 (x) ≤ 2 K ′ (1 -x) α-1-2β CLA α + 1 F (x) E(x) x 0 (1 -x ′ ) α+1 E(x ′ ) F (x ′ ) dx ′
Then, multiplying and dividing by (1 -x ′ ) 2β-2α and using once again that x ′ ≤ x yield:

(1 -x) α-1-β N ζ ε,1 -N ζ ε,2 (x) ≤ 2 K ′ (1 -x) α-2β-1 CLA α + 1 F (x) E(x) x 0 (1 -x ′ ) 1+2β-α (1 -x ′ ) 2α-β (1 -x ′ ) -β E(x ′ ) F (x ′ ) dx ′
Once again, applying Hölder's inequality would boil down to:

(1 -x) α-1-β N ζ ε,1 -N ζ ε,2 (x) ≤ 2CLA K ′ (α + 1) F (x) max 0≤x ′ ≤x (1 -x ′ ) 1+2β-α E(x ′ ) (1 -x) 1+2β-α E(x) (2.22) x 0 (1 -x ′ ) 2α-β (1 -x ′ ) -β 1 F (x ′ ) dx ′
The crucial point of the proof consists in remarking that the quantity (1 -x ′ ) 2α-β is upper bounded by 1 on the [0, x] interval if and only if 2α -β > 0. Then, proceeding as above to calculate the integral:

x 0 (1 -x ′ ) -β 1 F (x ′ ) dx ′ = K ′ µ + D 1 F (x) - 1 F (0)
the bulk of the calculation will bear upon the maximum of the remaining factor of (2.22)'s right hand side. A similar calculation as above would yield:

d dx (1 -x) 1+2β-α E(x) = (1 -x) 1+2β-α E(x) -(1 + 2β -α)(1 -x) -1 + C K ′ (1 -x) α-β-1
Obviously, the inection point is this time

x ⋆ = 1 - C K ′ (1+2β-α) 1 β-α
, which sign will dene the behaviour of the quantity of interest. A similar maximum Ξ ′ can be found, turning the L ∞ estimate into:

(1 -x) α-1-β N ζ ε,1 -N ζ ε,2 (x) ≤ 2CLAΞ ′ (µ + D)(α + 1)
Hence, there exists a large enough µ to retrieve the inequality:

N ζ ε,1 -N ζ ε,2 W 1,∞ ≤ η M 1 -M 2 W 1,∞ , η < 1
meaning that KreinRutman's theorem guarantees the existence of a solution to the regularised eigenproblem.

Passing to the limit in the primal equation

In order to take the limits x ε → 0 and ζ → 0 to conclude on the existence of solutions to (2.16) and (2.17), one has to extract appropriate a priori bounds on the solution. In this case, for x ε → 0, ζ → 0, N ζ ε has to be uniformly upperbounded in ε and ζ in the L ∞ space along with ∇ x N ζ ε .

First, an upper bound to λ comes from an integration of (2.16)'s rstorder moment:

(1 -ζ) ẋ(1 -ζ)N ζ ε (1 -ζ) - 1-ζ 0 ẋ(x)xN ζ ε (x)dx + λζ ε 1-ζ 0 xN ζ ε (x)dx = 0 λζ ε 1-ζ 0 xN ζ ε (x)dx ≤ 1-ζ 0 x ẋN ζ ε (x)dx ≤ ẋ(0) 1-ζ 0 xN ζ ε (x)dx ⇒ λζ ε ≤ ẋ(0) = K
Secondly, an estimate for the integral ∫

1-ζ 0 γ ζ ε (x)N α ε (x)
dx comes from the use of the zerothorder moment of (2.16):

ẋ(1 -ζ)N ζ ε (1 -ζ) + 1-ζ 0 γ ζ ε (x)N ζ ε (x)dx + λζ ε 1-ζ 0 N ζ ε (x)dx = 2 1-ζ 0 1-ζ x ′ γ ζ ε (x ′′ )P (x ′ , x ′′ )N ζ ε (x ′′ )dx ′′ dx ′ ⇔ 1-ζ 0 γ ζ ε (x)N ζ ε (x)dx = λζ ε + ẋ(1 -ζ)N ζ ε (1 -ζ) ≤ λζ ε + ζ β N ζ ε (1 -ζ)
N ζ ε being positive and integrable by assumption on the compact [0,

1 -ζ], N ζ ε (1 -ζ)
is necessarily a nite quantity to the point where one can set a real Λ > 0 such that:

1-ζ 0 γ ζ ε (x)N ζ ε (x)dx ≤ Λ Then, the uniform L ∞ bound on N ζ
ε is an immediate consequence of the properties satised by the rupture and lengthening functions. Indeed, proceeding as above:

∂ ẋ ∂x N ζ ε (x) + ẋ ∂N ζ ε (x) ∂x + γ ζ ε (x)N ζ ε (x) + λζ ε N ζ ε (x) = 2 1-ζ x γ ζ ε (x ′ )P (x, x ′ )N ζ ε (x ′ )dx ′ ∂N ζ ε (x) ∂x = - 1 ẋ(x) ∂ ẋ ∂x + γ ζ ε (x) + λζ ε N ζ ε (x) + 2 ẋ 1-ζ x γ ζ ε (x ′ )P (x, x ′ )N ζ ε (x ′ )dx ′
If P is a probability density kernel (once again, set A = max 0≤x≤x ′ ≤1-ζ P (x, x ′ )), the upper bound to the righthand-side's second term immediately comes from Hölder's inequality. Then, another use of Grönwall's lemma along with Duhamel's formula yields:

∂N ζ ε (x) ∂x ≤ - 1 ẋ(x) ∂ ẋ ∂x + γ ζ ε (x) + λζ ε N α ε (x) + 2AC ẋ(x) Λ. Hence, after integration N ζ ε (x) ≤ N ζ ε (0) exp - x 0 1 ẋ(x ′ ) ∂ ẋ ∂x + γ ζ ε (x ′ ) + λζ ε dx ′ + x 0 2AC ẋ(x ′ ) Λ exp - x x ′ 1 ẋ(x ′′ ) ∂ ẋ ∂x + γ ζ ε (x ′′ ) + λζ ε dx ′′ dx ′ ⇒ N ζ ε (x) ≤ 2ACΛ ẋ(x) G(x) E(x) x 0 E(x ′ ) G(x ′ ) dx ′ (2.23)
using the denition of G:

G ∶ x ↦ exp ⎛ ⎝ λζ ε (1 -β)K ′ (1 -x) 1-β ⎞ ⎠
On the model of the previous proof, the L ∞ estimate to N ζ ε is immediate once (2.2.3)'s righthand side is multiplied and divided by (1 -x ′ ) β . The same approach amounts to integrate (1 -x) -β G(x) and study the quantity (1 -x) β E(x), which leads to the denition of a real Ξ such that:

N ζ ε (x) ≤ 2ACΛΞ (2.24) 
The next step consists in bounding the quantities

1 ẋ N ζ ε and γ ζ ε ẋ N ζ ε in L ∞ ([0, 1 -ζ]).
As previously remarked, these quantities amount to mere (1 -x) ⋅ N ζ ε expressions. Hence, only the estimate for γ ζ ε ẋN ζ ε will be retrieved. To this end, from the same starting point:

γ ζ ε ẋ N ζ ε (x) ≤ 2C K ′ (1 -x) α-2β-1 G(x) E(x) x 0 E(x ′ ) G(x ′ ) 1-ζ x ′ (1 -x ′′ ) α-1 P (x ′ , x ′′ )N ζ ε (x ′′ )dx ′′ dx ′
One rst treats the last integral with Hölder's inequality:

1-ζ x ′ (1 -x ′′ ) α-1 P (x ′ , x ′′ )N ζ ε (x ′′ )dx ′′ ≤ 2A 2 CΛΞ 1 α + 1 (1 -x ′ ) α+1
and injects this upper bound into the previous inequality constraining

γ ζ ε ẋN ζ ε : γ ζ ε ẋ N ζ ε (x) ≤ 4C 2 A 2 ΛΞ K ′ (α + 1) (1 -x) α-2β-1 G(x) E(x) x 0 E(x ′ ) G(x ′ ) dx ′
As was previously done, a further multiplication/division by (1 -x ′ ) 2α-2β will lead to the denition of a constant Ξ ′ such that:

γ ζ ε ẋ N ζ ε (x) ≤ 4C 2 A 2 ΛΞΞ ′ K ′ (α + 1) (2.25)
Using the same reasoning to bound

1 l ∂ l ∂l N ζ ε would come down to 1 l ∂ l ∂l N ζ ε (l) ≤ 4C 2 A 2 ΛΞΞ ′′ K ′ (α + 1)
with Ξ ′′ dened as:

Ξ ′′ = max 0≤x ′ ≤x (1 -x ′ ) 1+β E(x ′ ) (1 -x) 1+β E(x)
Therefore, the W 1,∞ bound to N ζ ε is guaranteed given that this quantity is the sum of bounded quantities. Furthermore, none of these depends on x ε , to the point where taking the limit x ε → 0 will be straightforward.

On the other hand, the ζ → 0 limit will be taken without a hunch either, because in this case, the estimate for ∫ 1 0 γ ζ (x)N ζ (x)dx will be more amenable once the primal equation is integrated:

0 -0 + 1 0 γ ζ (x)N ζ (x)dx + λζ = 2 1 0 γ ζ (x)N ζ (x)dx ⇔ 1 0 γ ζ (x)N ζ (x)dx = λζ (2.26)
and the same calculations as above can be carried out with no diculty.

The family ( λζ ε ) ε≥0,ζ≥0 is relatively compact in R + , therefore BolzanoWeierstrass's theorem guarantees that it admits a subsequence that converges to the transportfragmentation operator's (2.14) largest eigenvalue λ. The same reasoning applies to the (N ζ ε ) ε≥0,ζ≥0 family, using its uniform boundedness in W 1,∞ [0, 1 -ζ]: by virtue of Ascoli's theorem, there exists a subsequence that converges to a limit N that is also Lipschitz continuous. N is by construction a solution to (2.14) on [0, 1[.

Passing to the limit in the dual equation

Regarding the dual (2.15) equation, the same type of estimate can be retrieved from the dual equation (2.17), and 4 steps are required to conclude:

• φ ζ ε ∈ L ∞ ([0, 1[):
from the denition of (2.17), one gets:

∂ ∂x φ ζ ε = γ ζ ε ẋ φ ζ ε + λ ẋ φ ζ ε -2 γ ζ ε ẋ x 0 φ ζ ε (x ′ )P (x ′ , x)dx ′ meaning that ∂ ∂x φ ζ ε x=0 > 0. Therefore, if φ ζ ε had a singularity at x = 0, the condition ∫ 1 0 N ζ ε φ ζ ε dx = 1 could
not be met: the integral would be divergent. This forces φ ζ ε to be L ∞ (and consequently L 1 ).

• Using once again Duhamel's rule to integrate (2.17), an analytical expression for φ ζ ε is forthcoming:

φ ζ ε (x) = χ exp x 0 λ ẋ(x ′ ) + γ ζ ε (x ′ ) ẋ(x ′ ) dx ′ - x 0 exp x x ′ λ ẋ(x ′′ ) + γ ζ ε (x ′′ ) ẋ(x ′′ ) dx ′′ 2 γ ζ ε (x ′ ) ẋ(x ′ ) x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′
with χ a constant that is obviously determined by the boundary condition φ

ζ ε (1 -ζ) = 0: χ = 1-ζ 0 exp - x ′ 0 λ ẋ(x ′′ ) dx ′′ - x ′ 0 γ ζ ε (x ′′ ) ẋ(x ′′ ) dx ′′ 2 γ ζ ε (x ′ ) ẋ(x ′ ) x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′
yielding, having introduced the quantity H such as:

H ∶ x ↦ exp λ K ′ (1 -β) (1 -x) 1-β : φ ζ ε (x) = 2C K ′ E(x) H(x) 1-ζ x H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ (2.27)
• φ ζ ε is equicontinuous: consider a real δ > 0 and the ball B(x, δ) ⊂ [0, 1-ζ]. From (2.27), one remarks after adding/substracting the quantity

2C K ′ E(x) H(x) ∫ 1 x+δ H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 ∫ x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ that the dierence φ ζ ε (x) -φ ζ ε (x + δ) reads: φ ζ ε (x) -φ ζ ε (x + δ) = 2C K ′ E(x) H(x) x+δ x H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ + 2C K ′ E(x) H(x) - E(x + δ) H(x + δ) 1-ζ x+δ H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′
From the triangle inequality, taking the absolute value on both sides yields:

φ ζ ε (x) -φ ζ ε (x + δ) ≤ 2C K ′ E(x) H(x) x+δ x H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ + 2C K ′ E(x) H(x) - E(x + δ) H(x + δ) 1-ζ x+δ H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′
The righthand side's integrals with respect to x ′′ will be upperbounded by

φ ζ ε L ∞ ([0,1[) since ∫ x ′ 0 P (x ′′ , x ′ )dx ′′ = 1.
The rst term will be bounded in δ to the extent that, for any > 0, there exists a δ( ) > 0 small enough to guarantee that:

2C K ′ φ ζ ε L ∞ ([0,1[) E(x) H(x) x+δ x H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 dx ′ ≤ 2 ∀x ′ ∈ B(x, δ( )) ⊂ [0, 1 -ζ]
In order to bound the second term, one gets once again from the (2.27) denition of φ ζ ε :

1-ζ x+δ H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ = K ′ 2C φ ζ ε (x + δ) H(x + δ) E(x + δ)
and, using the facts that φ ζ ε ∈ L ∞ and a b = ab :

2C K ′ E(x) H(x) - E(x + δ) H(x + δ) 1-ζ x+δ H(x ′ ) E(x ′ ) (1 -x ′ ) α-β-1 x ′ 0 φ ζ ε (x ′′ )P (x ′′ , x ′ )dx ′′ dx ′ ≤ φ ζ ε L ∞ ([0,1[) 1 - E(x) H(x) H(x + δ) E(x + δ)
Once again, for any > 0, the last factor on the righthand side of the estimate can be bounded in δ( ), meaning that Ascoli's theorem can be applied to the (φ ζ ε ) ε≥0,ζ≥0 . As a consequence, a subsequence of (φ ζ ε ) ε≥0,ζ≥0 converges to a solution φ to (2.15) on the interval [0, 1 -ζ].

• One cannot yet pass to the limit though, since φ has to be estimated on [1 -ζ, 1[. To this end, following [20,[START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] amongst others, a supersolution to (2.15) has to be engineered before uniformly estimating φ. In this case, one remarks that ∶ x ↦ (1 -x) 1+β-α is indeed a supersolution to (2.15):

∂ ∂x (1 -x) 1+β-α - C K ′ (1 -x) α-β-1 (1 -x) 1+β-α - λ K ′ (1 -x) -β (1 -x) 1+β-α + 2C K ′ (1 -x) α-β-1 x 0 (1 -x ′ ) 1+β-α P (x ′ , x)dx ′ ≥ (1 + β -α)(1 -x) β-α - λ K ′ (1 -x) 1-α + C K ′
having noticed that, 1 + βα being positive:

x ′ ≤ x ↔ (1 -x ′ ) 1+β-α ≥ (1 -x) 1+β-α
The fact that β < 1 allows the existence of a real x thr < 1 that satises:

(1 + β -α)(1 -x) β-α ≥ λ K ′ (1 -x) 1-α ∀x ≥ x thr
allowing to conclude that x ↦ (1-x) 1+β-α is a supersolution to (2.15). Considering that φ decreases faster than (1-x) 1+β-α for x close to 1, the L ∞ bounds to each of the terms of (2.15) follow instantly. Furthermore, none of these bounds depends on ε, meaning that taking the limit ε → 0 ↔ x ε → 0 is straightforward, wrapping up the proof of the existence theorem.

Uniqueness of the solution to (2.16)-(2.17)

The uniqueness of the eigenelements is proven using a carbon copy of previously published reasonings by Perthame & Ryzhik [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] and Michel [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF]. If (λ, N , φ), (λ ′ , N ′ , φ ′ ) are two solutions to (2.14)-(2.15), N ′ φ satises the dierential equation:

∂ ∂x ẋN ′ (x)φ(x) + (λ ′ -λ)N ′ (x)φ(x) =2φ(x) 1 x γ(x ′ )P (x, x ′ )N ′ (x ′ )dx ′ -2γ(x)N ′ (x) x 0 φ(x ′ )P (x ′ , x)dx ′
And an integration from 0 to 1 boils down to:

(λ ′ -λ) 1 0 N ′ (x)φ(x)dx = 2 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx - 1 0 γ(x)N ′ (x) x 0 φ(x ′ )P (x ′ , x)dx ′ dx
A use of Fubini's theorem to treat the last term of the righthand side entails:

(λ ′ -λ) 1 0 N ′ (x)φ(x)dx = 2 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx - 1 0 φ(x ′ ) 1 x ′ γ(x)N ′ (x)P (x ′ , x)dxdx ′ = 0 meaning that λ ′ = λ.
To wrap the proof up, the uniqueness of the eigenvectors exploits the notion of general relative entropy (cf. Michel & al.'s [START_REF] Michel | General entropy equations for struc-tured population models and scattering. gomptes endus de l9edémie des ienes de ris[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF]), and has already been inked in Doumic & Gabriel's shot at a very similar PBE [20]. The backdrop is a study of the quantity N ′ (x) -CN (x), with C > 0 a real number. Indeed, N is unique i for any N ′ that satises (2.14): (1) sgn(N ′ (x) -CN (x)) = 0 ∀ x ∈ [0, 1[, and (2) C = 1.

Remark rst that:

1 0 ∂ ∂x ⎛ ⎝ N ′ (x) N (x) -C ẋN (x)φ(x) ⎞ ⎠ dx = 0 = 1 0 N ′ (x) N (x) -C ∂ ∂x ( ẋN (x)φ(x))dx + 1 0 ∂ ∂x N ′ (x) N (x) sgn N ′ (x) N (x) -C ẋN (x)φ(x)dx
Then, since the product ẋN φ satises the dierential equation:

∂ ∂x ( ẋ(x)N (x)φ(x)) = 2φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ -2N (x)γ(x) x 0 P (x ′ , x)φ(x ′ )dx ′
injecting this into the penultimate equation entails:

0 = 1 0 N ′ (x) N (x) -C 2φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx - 1 0 N ′ (x) N (x) -C 2N (x)γ(x) x 0 P (x ′ , x)φ(x ′ )dx ′ dx + 1 0 ∂N ′ (x) ∂x - N ′ (x) N (x) ∂N (x) ∂x sgn N ′ (x) N (x) -C ẋφ(x)dx
The next step is the use of the relationship x = xsgn(x) ∀x to get rid of all absolute values:

0 = 1 0 N ′ (x) N (x) sgn N ′ (x) N (x) -C 2φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx -C 1 0 sgn N ′ (x) N (x) -C 2φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx - 1 0 N ′ (x) N (x) sgn N ′ (x) N (x) -C 2γ(x)N (x) x 0 P (x ′ , x)φ(x ′ )dx ′ dx +C 1 0 sgn N ′ (x) N (x) -C 2γ(x)N (x) x 0 P (x ′ , x)φ(x ′ )dx ′ dx + 1 0 2 1 x γ(x ′ )P (x, x ′ ) N ′ (x ′ ) - N ′ (x) N (x) N (x ′ ) dx ′ sgn N ′ (x) N (x) -C φ(x)dx
The righthand side can be simplied by gathering its rst term with its last one:

0 = -2C 1 0 sgn N ′ (x) N (x) -C φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ )dx ′ dx -2 1 0 N ′ (x) N (x) sgn N ′ (x) N (x) -C γ(x)N (x) x 0 P (x ′ , x)φ(x ′ )dx ′ dx +2C 1 0 sgn N ′ (x) N (x) -C γ(x)N (x) x 0 P (x ′ , x)φ(x ′ )dx ′ dx + 1 0 2 1 x γ(x ′ )P (x, x ′ )N ′ (x ′ )dx ′ sgn N ′ (x) N (x) -C φ(x)dx ′ dx
A use of Fubini's theorem in the second and third terms follows, allowing to combine the rst and third terms on the one hand, the second and fourth terms on the other hand:

0 = -2C 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ ) sgn N ′ (x) N (x) -C -sgn N ′ (x ′ ) N (x ′ ) -C dx ′ dx +2 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N ′ (x ′ ) sgn N ′ (x) N (x) -C -sgn N ′ (x ′ ) N (x ′ ) -C dx ′ dx Finally: 0 = 2 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ ) N ′ (x ′ ) N (x ′ ) -C sgn N ′ (x) N (x) -C -sgn N ′ (x ′ ) N (x ′ ) -C dx ′ dx = 2 1 0 φ(x) 1 x γ(x ′ )P (x, x ′ )N (x ′ ) N ′ (x ′ ) N (x ′ ) -C sgn N ′ (x) N (x) -C sgn N ′ (x ′ ) N (x ′ ) -C -1 dx ′ dx Hence ∀ x ∈ [0, 1[, x ′ > x, sgn N ′ (x ′ ) N (x ′ ) -C = sgn N ′ (x)
N (x) -C and N ′ (x) ≥ CN (x). Both being positive and summing up to 1 by denition, C can only be equal to 1, that is N ′ ≡ N . The same reasoning evidences that φ ′ ≡ φ and ends the proof of the uniqueness of the eigenelements.

Discussion

This abovementioned theorem holds only because of the generational redistribution operator's regularising property (cf. equation (2.21)), that was already mentioned when the existence of a solution to the PBE (1.22) was proven. Hence, the physics of the populational dynamics lies only in the right pick for γ and P . The case l ∈ R + was extensively studied by Perthame & Ryzhik [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] and Doumic & Gabriel [20] and the requirements are γ and P polynomial. In the present case, γ being singular at a certain l provides a new insight at the dynamics, but l is an adhoc upper bound which physical meaning could be questioned when confronted with experimental data.

Lengtheningwise, the sublinear assumption is not satised for instance in Yasuda's [START_REF] Yasuda | Algebraic and geometric understanding of cells: Epigenetic inheritance of phenotypes between generations. righ esolution wiroil ingle gell enlytis[END_REF] experiment evidencing organellebased enhancing when cells are individually cultivated on a chip. On the other hand, the latter case is observed in a seemingly ideal environment that is not encountered in an industrial reactor.

The 2α -β > 0 inequality is not necessary to ensure the application of KreinRutman theorem in the L ∞ space, but allows to conclude on the existence of a solution to (2.16) in the space of Lipschitzcontinuous functions. This condition can easily be met, as will be shown in the modelling part of this work. The α < β inequality, on the other hand, is nothing but the translation of a fundamental assumption from Diekmann & al.'s [18] existence and uniqueness theorem for size structured models. In fact, the proven result is a slight improvement from what Diekmann & al.

have retrieved using the strong continuity property of the transportfragmentation operator seen as a semigroup.

Chapter 3

Multiscale modelling of a biological reactor

The main goal of this chapter is the formulation of a biological model that can be run to simulate environmental perturbations of a fermenter which experimental measurements exist for.

The current stateoftheart observations of the biological responses to uctuating environments make a case for a breakdown into three main time scales. One of the quickest responses belongs to the substrate uptake process, operating at the cellliquid border within a secondslong time interval. A typically slow (i.e. counting in hours) time scale characterises the rate of anabolism's adaption: its prerequisites include gene induction, transcription, new enzyme synthesis and so on. In between these extrema, the cell cycle is in the order of a few dozens of minutes, meaning that the individuals' progress in the cell cycle counts in minutes. The corresponding modelling must consecrate some of or all these characteristic times. A naive approach could consist in focusing on longterm consequences of an everchanging medium, that is treating the overall uptake as an algebraic function of S and distributing the cell length and lengthening rate only. A more demanding framework could lie in the distribution of all the aforementioned quantities, what requires a convenient formulation for the dynamics of all these coordinates. Also, as mentioned in the rst chapter, the level of mixing can impact the substrate availability at the cell scale in real life industrial cultures, prompting the need to capture this hindering feature in an allterrain model.

In this chapter, several versions of a multivariable structured model will be presented and a vedimensional population balance model will emerge from the dismissal of more primitive formulations. An attempt at closing the substrates mass balance using the cells' metabolism will also be enforced.

Mass balances in the reactor

Here and below, the case study will consecrate a 1L glucose and oxygenfed Continuous Stirred Tank Reactor (CSTR) or chemostat. It will be assumed perfectly mixed to allow its treatment as one hydrodynamic compartment, without hindering the possibility of a submesh renement to take into account the interaction between the biological phase and its medium.

At the reactor scale, mass conservation equations dictate the time evolution of glucose, oxygen, and byproducts in the liquid and/or gas phase. It is worth mentioning that when biological populations are addressed, these equations have to explicitly report the mass transfer between the medium and the biotic phase. 

∂ ∂t n(t, ξ) + ∇ ⋅ ξn(t, ξ) + γ(ξ)n(t, ξ) + Dn(t, ξ) = 2 Ω ξ γ(ξ ′ )P (ξ, ξ ′ )n(t, ξ ′ )dξ ′
with appropriate (Dirichlet in the present case study) conditions at the boundary of Ω ξ .

The cell division procedure is speciesdependent and shall not be inuenced by the proposed modelling of the organisms' uptake. From experimental grounds, the growth pattern is assumed sublinear to report the diculty to maintain a growth rate constant as it is understood that the longer a cell gets, the more its biomechanics will be challenged by the eort to support its structure.

Even though this view is not consensus, it is underpinned by recent raw data like Robert & al.'s [START_REF] Robert | Division in Escherichia Coli is triggered by a size-sensing rather than a timing mechanism[END_REF] and seems more plausible than unrestrained exponential growth. It consequently allows a denition of the rupture function γ over [0, l[ by:

γ ∶ l ↦ 1 T 1 ( l-l) υ - 1 ( l-l inf ) υ 1 ( l-lc) υ - 1 ( l-l inf ) υ 1 l inf ≤l< l (3.1)
as it was proven in section 2.2.3 that a singularity at l = l does not prevent the regularity of the eigenelements if υ is chosen in agreement with the parameter dictating the sublinearity of the lengthening process. Furthermore, considering that K has to be symmetric and the PBE's variables are compactly supported, the redistribution kernel will be picked among β(p, p) beta laws with p > 1. K will also be assumed a tensor product of onedimensional redistribution kernels to avoid the formulation of hazardous couplings between the partition of dierent quantities, any experimental smoking gun being out of reach for the time being.

Liquid phase mass balances

The computation of the said liquidmass transfer involves a population balance approach taking into account the variability in physiological state among a collection of cells which marker is their own history in the system.

dS dt = D(S f -S) - n(ξ)q S (ξ)dξ (3.2) dO 2 dt = D(O e 2 -O 2 ) + K L a(O ⋆ 2 -O 2 ) - n(ξ)q O 2 (ξ)dξ (3.3) dAc dt = -DAc + n(ξ)q Ac (ξ)dξ (3.4) dCO 2 dt = D(CO e 2 -CO 2 ) + K L a(CO ⋆ 2 -CO 2 ) - n(ξ)q CO 2 (ξ)dξ (3.5)
In the rst equation, DS f (g S L h) stands for the userset external supply, DS (g S L h) for the washout term, and q S (g S h) for the cellscale glucose uptake. In the second one, q O 2 (g O 2 h) is the cellscale oxygen uptake rate (respiratory capability), K L a (h -1 ) the gasliquid mass transfer rate and O ⋆ 2 (g L) the oxygen concentration at equilibrium emerging from Henry's law. O e 2 (g L) is the dissolved oxygen concentration in the feed, its carbon dioxide counterpart being called CO e 2 (g L) in the fourth equation.

In (3.2)-(3.5), q O 2 is necessarily a positive quantity whereas q CO 2 (g CO 2 h) is of negative sign, in line with the assumption that iF goli feeds its backbone machinery from respiration. On the other hand, q Acetate (g Acetate h) has no predened sign due to the versatile role of acetate in the cells' metabolism. The molecule is understood to be excreted when glucose has been overuptaken and reconsumed in case of glucose shortage.

Gas phase mass balances

In (3.3) and (3.5), O 2g (g L) and CO 2g (g L) are the respective ogas oxygen and carbon dioxide concentrations, which conservation in the reactor reads:

d dt O 2g = 2 V g Q g (O 2g,in -O 2g ) -K L a O ⋆ 2,g -O 2 V (3.6) d dt CO 2g = 2 V g Q g (CO 2g,in -CO 2g ) -K L a CO ⋆ 2,g -CO 2 V (3.7)
with V g (L) the volume fraction of the gas phase in the fermenter, Q g (L h) the gas ow rate and O 2g,in (g L) and CO 2g,in (g L) its oxygen and carbon dioxide content. All these parameters are supposed constant throughout the simulations. The equilibrium osygen cocnentration in the liquid Indeed, the gas feed consists in bubbles which transfer soluble gases to the liquid phase at a surface dependent rate as they are steered out. If the reactor is small enough to limit the bubbles' residence time to a few seconds, the exponential decay of the gas phaseoxygen concentration can be supposed ane justifying the above mentioned calculation of an average concentration in the gas phase.

phase is obtained through in O ⋆ 2 = H e,
1. no such thermodynamic constant exists at the liquidcell interface leading to modelling issues addressed in this work

Three dierent strategies for the calculation of q S

A urry of formulations for q S can be cooked up depending on the desired attention to the details. Due to the cost of integrating a PBE in one hydrodynamic compartment, a balance must be stricken between level of biological complexity and computational power at the disposal of the researchers. [START_REF] Vincent Quedeville | A two-dimensional population balance model for cell growth including multiple uptake systems[END_REF])

A two-dimensional Population Balance Model (reference

Presentation of the model

In this article, that is attached for the sake of clarity, the distributed variables are the cells' size l (m) and their growth rate v (h -1 ), with dynamics:

l =a min(v, v ⋆ ) with v ⋆ = µ max S K S + S O 2 K O 2 + O 2 (3.8) v = 1 T + v (v ⋆ -v) if v ≤ v ⋆ 1 T (v ⋆ -v) if v ≥ v ⋆ In (3.8), v ⋆ (h -1
) can be thought of as a maximal populationaveraged lengthening potential given the (S, O 2 ) environmental oer, µ max (h -1 ) coming from batch (i.e. exponentially growing) culture experimental measurements. Halfsaturation constants K S (g S L) and K O 2 (g O 2 L) also come from experimental observations, in steadystate CSTR this time. a (h -1 ) and T (h -1 ) consecrate the dierence in temporal response to perturbations of a steadystate population.

If neither q P nor q p are distributed, algebraic formulae for both contributions to the total glucose uptake rate have to be contrived from the variables at disposal: q S = q P + q p = q P (l, v, S) + q p (l, v, S)

with no loss of generality. q P is assumed a combination of the individuals' rate of anabolism and the whole population's growth rate. q p is linked to a ctitious membrane permeability α which modelling involves populationaveraged values of rate of anabolism (ṽ) and uptake qS . Also, the substrate tomass ratio Y SX (g S g X ) is assumed constant, meaning that all the uptaken glucose translates into biomass with equal eciency, whatever the cells' history in the reactor or the environment oer. In other words, the metabolism is assumed xed and identical for all the organisms. q O 2 is a decreasing algebraic function of the biomass which maximum is set to q S . Finally, the micromixing's inuence on the substrate availability to the individuals is taken into account via the introduction of a S c parameter obeying the algebraic equation:

S c = Y SX t M ṽX (3.9)
where t M (h) stands for a micromixing time constant and X the biomass. Then, q S is corrected using a 1 -exp(-S S c ) factor.

Numerical implementation

The response of the said uptake mechanisms to userset medium conditions is depicted in gure 3.1. The respective PTS and permease contributions to the overall uptake rate as functions of S are plotted, the trend being in line with 1990s experimental observations by Ferenci and co workers [24,26] or KovárováKovar & Egli [START_REF] Kovàrovà-Kovar | Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics[END_REF]: the higher the residual concentration, the bigger the contribution of the PTS system to the individuals' overall uptake rate, the permease activity adapting via the inhibiting feature of its PTS counterpart. In gure 3.2 representing the bacterium scale uptake features as functions of the enforced dilution rate, the permeability prole testies to a permease induction (respectively inactivation) when the substrate proves scarce (respectively plentiful) at the cells' vicinity.

Figure 3.1 Total uptake q S (solid line) and respective PTS (dashed line) and permeases (dotted line) contributions as functions of the residual S (log scale). Borrowed from [START_REF] Vincent Quedeville | A two-dimensional population balance model for cell growth including multiple uptake systems[END_REF]. NDF in rate of anabolism for the case D = 0.15 h -1 is superimposed to evaluate the consequential importance of q P and q p at steady state. The function α α max (light grey dashed line) controls the permease induction for slow growing cells. Borrowed from [START_REF] Vincent Quedeville | A two-dimensional population balance model for cell growth including multiple uptake systems[END_REF].

Limitations

Two observations have to be discussed to evaluate (3.8)'s performance:

The assumptions formulated here have yet to allow the riddance to averaged quantities (like Y SX ) q S still obeys an algebraic Monodshape law, despite the eort to make a step into the microscopical scale, at least regarding the cells' biomechanics.

From the former remark, one consequence is that no acetate consumption/production can be predicted due to the constant Y SX (meaning that Sunya & al.'s [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF] results are out of the reach of such a model). The latter remark leads to two unpleasantnesses when dynamical simulations are performed: the instantaneous adaption to the environment precludes any chance of overuptake in the wake of a perturbation like a glucose pulse, unless the permeability is tampered with. Indeed, any permease regime/PTS regime transition would be instantaneous but the cells' uptake in profuse environmental conditions comes down to q S ≈ q P that can never overreach its maximum batch value by construction. Such an example is provided in gure 3.3 where the overall and marginal uptake proles in the wake of a 1g glucose pulse in a steadystate reactor are computed using (3.8).

Another inconvenience pertains to the inuence of a low residual substrate concentration on the cellscale features. It can happen that S is scarce because the feed perfectly suits the organisms' needs, in other words no waste is washed out of the reactor albeit the individuals are not short of substrate: in this case, Monod laws modelling q S translate into a potentially misevaluated slender uptake capacity. Thus, as light and computational time-wise aordable it is, this unsatisfying model cannot be implemented in a computational uid dynamics code to couple the biological behaviour to micro and macro mixing.

A three-dimensional Population Balance Model Presentation of the model

An improvement from the previous paragraph's model could consist in distributing both sources of glucose uptake over the whole population, giving birth to a 3-dimensional model involving l, q P , q p . The inner coordinates are computed via the dierential equations:

l = q S K conv Y SX 1 - l l κ (3.10) q P = 1 τ P q Pmax S K P + S -q P qp = 1 τ p ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ψ max S K p + S q P q Pmax -1 2 -q p ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
Y SX (g S g X ) standing once again for the substratetobiomass ratio. q Pmax (g S h) is the maximum uptake capability the PTS system is allowed, ψ max (g S h) being its permease counterpart. K conv (g X m X ) is a lengthtomass conversion ratio that allows q S (K conv Y SX ) to be homogeneous to l. κ is chosen in accordance with the value for (3.1)'s υ dictating the rate of rupture. In this framework, the dynamics of the cells' uptake is captured by the τ P , τ p constants but the metabolism is still xed: Y SX is a constant. (3.8)'s v variable is understood as l l in this case, meaning that (3.10)'s longest characteristic time scale is missing from the population's dynamics. As a consequence, (3.10) is geared towards shorttime transient responses to a change in the culture conditions and one of its weaknesses is its inability to quantitatively predict longterm variations in biomass or cell number.

In (3.10), K P (g S h) is the PTS anity constant to glucose, its permease counterpart being called K p (g S h). q P and q p have a dierent anity to glucose, the PTS allowing the organisms to cherrypick their favorite source of organic carbon when it is in excess, whereas permeases allow both glucose and less desirable chemical species into the cytoplasm. One has thus to expect K P K p . Also, the shutting term (q P /q Pmax -1) 2 testies that the PTS system inhibits its permease counterpart when sugar proves in excess. Without loss of generality, K S can be set equal to the anity constant of the standard uptake system K P . The micromixing's inuence on the substrate availability to the biotic phase is once again corrected using a (1 -exp(-S S c )) factor, the computation of S c coming from the (3.9) denition of a limiting substrate concentration in physical regime.

Numerical implementation

The 3D model's adequacy with the established microbiological claims regarding iF goli can be assessed similarly to the previous section's approach. Figure 3.4 compiles the numerical steady state values for q S from a collection of chemostat simulations using a mean individual version of (3.10). Once again, the numerics are sound with regards to Ferenci & al. [24] and KovárováKovar & al. [START_REF] Kovàrovà-Kovar | Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics[END_REF]'s conclusions: q P is an increasing function of S and its inhibiting inuence on q p when S is large enough to allow the PTS system to thrive is conspicuous. It is worth a mention that even though v ≈ l l is a function of q S , both quantities are signicantly uncorrelated due to v's dependence on l: at xed q S , the shorter cells will exhibit a much larger apparent growth rate than their longer counterparts. Hence, no equivalent of 3.2 is at the reach of (3.10). 

A ve-dimensional Population Balance Model

In both (3.8) and (3.10), two structural aws were making the models unusuable: the immutability of Y SX and the lack of degrees of freedom regarding q S 's dynamics. In response, a renement of (3.10) will touch upon q p and a reduced metabolic model to get rid of the untoward Y SX parameter. Permeasewise, both their number N p and activity A p shall have their own dynamics to account for the fact that adjusting a degree of openness is a much easier task than fabricating / dismantling transmembrane sites.

Moreover, each individual is characterised by their own maximum lengthening capacity v p (m h), which serves as a markovian marker of their history in the reactor, and the variable's trend marks the environment oer over longer periods of time since it is understood that adapting a cell's growth rate to the resource at their neighbourhood requires deep structural transmutations which time scale is comparable to the organism's lifetime at least. As a result, the following model is proposed to describe the inuence of the uptake capability on the rate of anabolism:

l = v e 1 - l l κ (3.11) ȦP = 1 τ P S K S + S -A P Ṅp = 1 τ i K S K S + S + 1 τ d S K S + S N max K S K S + S -N p Ȧp = 1 τ A1 q P q Pmax + 1 τ A2 1 - q P q Pmax 1 - q P q Pmax -A p vp = 1 τ vp q S Y SX -v p
In (3.11), v e (m h) is the lengthening rate that emerges from a metabolic model, A P stands for the PTS eciency and τ i , τ d , τ A1 , τ A2 (h) the characteristic times of the upward / downward responses to external uctuations. Since A p denes a degree of opening, it is assumed ranging from 0 to 1. N max is an arbitrary constant and is essentially linked to ψ max (g S h), to the extent that the product N p ψ max must be understood as a cellscale permease density.

Then, the total uptake rate q S is simply the sum q P + q perm and its dierent contributions are computed using:

q P = A P q Pmax S K P + S (3.12) q p = N p A p ψ max S K p + S
In (3.11), all the inner variables but l obey a rstorder dynamics of restoring force type. One can easily notice q P 's negative feedback on q p via A p and the complementary inuence of S on the steadystate value for A P and N p , A p .

With ψ max still equal to 5 q Pmax and K p = 10 K P , see which steadystate substrate concentration the equality q p = q P is satised for:

q Pmax S K P + S S K P + S = 5q Pmax K S K P + S 1 - S K P + S S K P + S S K p + S ⇔ S = 5K S K p + S K S K S + 2S K S + S ⇔ S 3 + (K P + K p )S 2 -5K P 3 = 0
With K P = 0.001 g/L and K p = 0.01 g/L, this thirdorder polynomial has only one positive root S ≈ 0.0006550 g/L, that is a much more satisfying result than its (3.10) counterpart. Thus, this uptake model is the simplest formulation that can reproduce the experimental behaviours which were compiled in the introduction.

Remark: κ = 0.05 is consistent with the parameter υ = 0.04 introduced in section 3.1.1. This allows the steadystate solution to the model a convenient Lipschitz regularity.

3.3 Calculation of the cell uptake features 3.3.1 Treatment of the glucose uptake rate: a submesh hydrodynamic renement

It is unreasonable to claim the substrate concentration in the neighbourhood of a thriving organism is exactly equal to the reactoraveraged value, even though the said reactor is assumed perfectly mixed. Indeed, the glucose uptake by everfeeding cells has to translate into a slight concentration dip at the biotic phase/abiotic phase boundary and force a consequential gradient of concentration to stem the inhomogeneity. Hence, albeit the fermenter is treated as one hydrodynamic compartment, the glucose concentration at a particle's reach is rened using a subgrid description at the cell's vicinity. This translates into solving the equation:

1 t m (S -S @p ) - q S (S @p )n dξ = 0 (3.13)
S @p (g S L) standing for the actual carbon concentration at the cell's neighbourhood and t m (h) for a micromixing characteristic time, in line with Morchain's [START_REF] Morchain | wodélistion des ioréteurs[END_REF].

The idea behind the calculation of S @p consists in determining q e S = q S (S @p ) (g S h) that is the actual glucose uptake taking into account a potential limitation by the external liquidcell mass transfer. The procedure to solve (3.13) is detailed in section 3.3.3.

Treatment of the oxygen and acetate uptake rate

For the sake of completeness, q O 2 and q Ac are compared with the environmental oer before the algorithms are run. Oxygenwise, the material transfer to the cells operates in two steps: the gas dissolves from bubbles into the liquid phase before its use by the bacteria as an electron transmitter in the glucose dissimilation. Integrating the gasliquid transfer leads to an estimation of the oxygen quantity the bacteria can pick up from the liquid phase, rening the actual value of q O 2 via:

q p O 2 = min q O 2 , O 2 + δtK L a(O ⋆ 2 -O 2 ) + D(O e 2 -O 2 ) δtN cell (3.14) with N cell = ∫ Ω ξ ndξ. q p O 2 (g O 2 h
) being a ux, it is interesting to remark that it does not necessarily tend to 0 as O 2 → 0. Indeed, a small residual oxygen concentration in the liquid phase could indicate that the consumption is comparable with the inux with neither waste nor limitation to be reported.

Acetate is a light twocarbon molecule that is assumed diusing without a hunch through the organisms' membrane. Indeed, as mentioned by Wolfe in [START_REF] Wolfe | The Acetate Switch[END_REF], Because acetate freely permeates the membrane in its undissociated form (...), assimilation does not require a dedicated transport system. However, under certain circumstances acetate uptake is saturable, suggesting that such a system exists. Hence, the acetate uptake rate has to be upperbounded by a straindependent constant q Acmax (g Ac h) within the limits of the medium oer, leading to the following modelling proposition:

q p Ac = min q Acmax , Ac(1 -Dδt) δtN cell (3.15)
.

Calculation of S @p

(3.13) amounts to solve in x the equation:

1 t m (S -x) - (q S (x)n) dξ = 0
The integral term is basically the cell number in the reactor multiplied by a populationaveraged glucose uptake rate qS . The latter is given by the following equation:

qS (x) = ∫ A P (x)n(t, A P )dA P ∫ n(t, A P )dA P q Pmax x K P + x + ∬ N p (x)A p (x)n(t, N p , A p )dN p dA p ∬ n(t, N p , A p )dN p dA p ψ max x K p + x ∶= ÃP q Pmax x K P + x + (N p A p )ψ max x K p + x
S p is consequently one root of the thirdorder polynomial:

0 = (S -x)(K P + x)(K p + S p ) t m -ÃP q Pmax x(K p + x)N cell -ψ max (N p A p )x(K P + x)N cell = x 3 + x 2 t m q Pmax ÃP N cell + t m ψ max (N p A p ) ndξ -S + K P + K p (3.16) +x t m q Pmax K p ÃP N cell + t m ψ max (N p A p )K P N cell -SK P -SK p + K P K p -SK P K p ⇔ 0 = x 3 + αx 2 + βx + γ
with the obvious denitions:

α = t m q Pmax ÃP N cell + t m ψ max (N p A p )N cell -S + K P + K p β = t m q Pmax K p ÃP N cell + t m ψ max (N p A p )N cell K P -SK P -SK p + K P K p γ = -SK P K p (3.3.
3) will be solved using Cardan's method. To this end, the thirdorder polynomial in S p is simplied using the change of variables Θ = S p + α 3 :

0 = S 3 p + αS 2 p + βS p + γ = Θ 3 + β - α 2 3 Θ + 2α 3 27 - αβ 3 + γ = Θ 3 + aΘ + b
having, still obviously, dened the quantities: a = βα 2 3 b = 2α 3 27 -αβ 3 + γ Therefore, the solution will be picked in accordance with the value of ∆ = b 2 + 4a 3 27:

If ∆ > 0: only one solution of the polynomial in Θ is real ⇒ Θ = 2 -1 3 -b + √ ∆ 1 3 + -b - √ ∆ 1 3
If ∆ = 0: the polynomial in Θ has two distinct roots, one of them only being positive ⇒ Θ = max((-b 2)

1 3 , -1 2((-b 2) 1 3 ) 109 
If ∆ < 0: the polynomial in Θ has two distinct roots, and the calculation of S p follows the short algorithm: k = 0

Step 1: S p = 2 -a 3 cos

⎛ ⎜ ⎜ ⎜ ⎝ 2kπ + arccos 3b 2a -3 a 3 ⎞ ⎟ ⎟ ⎟ ⎠ - α 3 
Step 2:

If S p < 0 or S p > S ∶ k = k + 1. Then restart Step 1
This renement is implemented to treat the micromixing issues that disrupt the computation of S(t). The dierence between S and S p is shown on gure 3.7

Figure 3.7 S @p compared with S for small (between 10 -6 g/L and 0.001 g/L) and larger (between 0.001 and 0.02 g/L) values of S. When S is scarce, so is S p and the conclusion S p → S→0 0 is obvious.

On the other hand, when S is plentiful, the cellscale consumption is ridiculous compared with the medium's supply, meaning that S p@ ≈ S. The largest dierence is recorded around 0.001 g/L, that is the standard residual substrate concentration in a chemostat. The level of mixing, which manifests itself in the modelling through the value of t m , can signicantly cut the substrate concentration at a cell's vicinity down to 64 % of S (when t m = 1s, indicating a bad micromixing at the fermenter scale).

The need for such a renement was conspicuous to update the permeaserelated quantities according to their extremely quick response time. It has to be enforced to integrate q P 's dynamics but this is not as crucial due the slower behaviour of this very mechanism, at least as long as S is not limiting. In an open industrialscale fermenter, it is likely that the PTS system will not have as much time as its permease counterpart to adjust to the everchanging substrate concentration at the cell's vicinity, prompting the assumption that q P can equally be calculated as a function of S @p or S.

A metabolic model

To close the (3.11)(3.12) set of equations, a metabolic model is formulated to summarise the main pathways which glucose is drawn to as a function of the cells physiological state:

S + ν 11 O 2 r 1 → ν 12 X + ν 14 CO 2 (1) S r 2 → ν 23 Ac + ν 22 X (2) S + ν 31 O 2 r 3 → ν 33 Ac + ν 34 CO 2 (3) Ac + ν 41 O 2 r 4 → ν 42 X + ν 4 CO 2 (4) 
with ν ij the yield coecient for the j reagent/product involed in reaction i, which experimental data are known for (cf. [START_REF] Xu | Modeling of Overow Metabolism in Batch and Fed-Batch Cultures of Escherichia coli[END_REF]). The ν ij s report the stoichiometry in mass at the pathway scale.

In essence, the fundamental way to consume glucose is its combustion into energy and growthinducing proteins, that is the mode (1). Mode (2) depicts the glucose fermentation into biomass should oxygen prove limiting. Mode ( 3) is the overow mechanism that degrades the sugar into acetate if the central metabolism's needs are satised. Finally, mode (4) occurs in case S is in default: acetate is consumed to oset the glucose scarcity, even though it proves much less energetic than glucose.

Due to the nature of the ν ij coecients, the ( 1)-( 4) set of equations shall not be understood as chemical reactions. Indeed, the modes depict a substantial reduction of actual elementary reactions involving cofactors, ATP/ADP, coenzymes..., the main quantity of interest thereof being their resulting biomass production in the context of this work.

In this metabolic model, the known is made of the cells' inner properties v p , q e S , q p O 2 and q p Acmax , its outputs being the rate of the reactions given the organisms' potential. This formulation consists in an original closure of the metabolic model. In fact, v p plays the role of an objective function which environmentconstrained maximisation is the main goal of the cells' biochemical strategy. This is not a cybernetic variable to the extent that it is an initial datum; instead, the optimisation procedure bears upon the r i reaction rates, i ∈ {1, ..., 4}.

Finally, the CO 2 excretion has been assumed proportional to the oxygen consumption, 1 per 1 in terms of amount of substance (i.e. 44 32 in terms of mass), meaning that the ν i4 featuring on reactions (1), ( 3) and ( 4) are linearly correlated to the ν i1 standing for the required oxygen consumption. Both q Ac and q O 2 are arbitrarily upperbounded, q Acmax and q O 2 max coming from ts to experimental data like Sunya & al.'s [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF].

Two numerical computations of the outputs of (1)-(4)

At this stage, the inputs of the metabolic model comprise the cellscale uptake features q e S , q p O 2 and q p Ac along with the maximal lengthening capability v p resulting from the bacteria's history in the fermenter. This dataset being given, the metabolites trac is directed according to the cells' readiness to process the uptaken compounds. Figure 3.8 illustrates this procedure from a reagentbased standpoint, but the approach is extremely similar whatever the algorithm enforced.

A reactionbased scheme

The actual consumption rates over the course of an interval of Lebesgue measure δt can be calculated using the following algorithm:

Each particle is determined by its own uptake and growth capabilities:

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S q p O 2 q p Ac v p ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
. From this inputs, the scheme's purpose is the calculation of the actual uptake and growth rates q e O 2

, q e Ac and v e as functions of the cells' potential capacities. Because q S has already rened in section 3.3.1 through the calculation of an eective glucose concentration at the organisms' disposal, the computed q e S stands for the individuals' real glucose uptake over the considered time interval. It is worth a mention that q e Ac has no predened sign because acetate can be either excreted (via mode (3), if S and O 2 are abundant enough to allow some overow or mode (2) should the oxygen supply be the limiting contribution to the actual growth rate) or consumed in case reaction ( 4) is set forth (when S does not suce to satisfy a cell's v p through the sole reaction ( 1)).

◇ The glucose oxidation rate r 1 , referring to the individuals' preferred source of energy, is determined by the limiting mechanism (glucose uptake, oxygen uptake, or anabolism rate):

r 1 = min q e S , q O p 2 ν 11 , v p K conv ν 12
with K conv (g X m X ) the masstolength ratio. Then:

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S q p O 2 q p Ac v p ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ → ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 q p O 2 -r 1 ν 11 q p Ac v p -r 1 Kconv ν 12 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
◇ A real number r 2 , standing for the fermentation rate, is computed using the equation:

r 2 = min q e S -r 1 , 1 ν 22 v p - r 1 K conv ν 12 K conv Then: ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 q p O 2 -r 1 ν 11 q p Ac v p -r 1 Kconv ν 12 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ → ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 -r 2 q p O 2 -r 1 ν 11 q p Ac v p -r 1 Kconv ν 12 -r 2 Kconv ν 22 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
◇ The overow rate r 3 is computed using the equation:

r 3 = min q e S -r 1 -r 2 , 1 ν 31 (q p O 2 -r 1 ν 11 )
Then:

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 -r 2 q p O 2 -r 1 ν 11 q p Ac v p -r 1 Kconv ν 12 -r 2 Kconv ν 22 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ → ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 -r 2 -r 3 q p O 2 -r 1 ν 11 -r 3 ν 31 q p Ac v p -r 1 Kconv ν 11 -r 2 Kconv ν 22 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
◇ Finally, the acetate oxidation rate r 4 is computed using the equation:

r 4 = min q p Ac , 1 ν 41 q p O 2 -r 1 ν 11 -r 3 ν 31 , 1 ν 42 v p - r 1 K conv ν 12 - r 2 K conv ν 22 K conv Then: ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 -r 2 -r 3 q p O 2 -r 1 ν 11 -r 3 ν 31 q p Ac v p -r 1 Kconv ν 12 -r 2 Kconv ν 22 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ → ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ q e S -r 1 -r 2 -r 3 q p O 2 -r 1 ν 11 -r 3 ν 31 -r 4 ν 41 q p Ac -r 4 v p -r 1 Kconv ν 12 -r 2 Kconv ν 22 -r 4 Kconv ν 42 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
Consequently, the outputs of the metabolic model are recorded in the table:

q e S = r 1 + r 2 + r 3 q e O 2 = r 1 ν 11 + r 3 ν 31 + r 4 ν 41 q e Ac consumption = r 4 q e Ac excretion = r 2 ν 23 + r 3 ν 33 v e = r 1 ν 12 + r 2 ν 22 + r 4 ν 42 with q e O 2 (g O 2 h
) the actual oxygen uptake rate, that is less than or equal to q p O 2

, q e O 2 = q p O 2 meaning that oxygen is a limiting strand of the cell's growth.

A reagentbased scheme

This formulation in modes is not the only way to compute the cellspecic metabolic yields from the S, O 2 , Ac inputs, a formulation in reagents can also be considered, which consists in comparing the cells' own capabilities with the environmental oer rst and evaluating the limiting strand before computing the desired outputs once the preliminary tests have allowed to pick out the appropriate conguration. An illustration of the algorithm is proposed for the sake of clarity and the implementation of the code is provided to the interested reader at the end of the chapter.

However, after a run of both algorithms, it has been observed that this logical formulation in interlocked tests is not as ecient as its algebraic modebased counterpart and has consequently been ditched in the simulations.

The ν ij s intervening in the algorithm are recorded in the following Table 3.1. 

Discussion

• Many impairments of this very simple model are questionable. For instance, temperature and pH were not taken into account among the dynamic variables, albeit having a wellknown inuence on the cells' metabolic capacity. Also, the CO 2 's negative impact on the organisms' health was neglected in spite of its massive importance when experiments are carried out. This is partly due to the fact that the aim is a comparison with data collected in caseinpoint experiments. Also, metabolic modelling is out of the scope of this work which mainly focuses on the use of structured models in biology. Metabolic models as they stand (given the limited knowledge at the disposal of mathematicians / engineers) involve culture mediumspecic reaction rates and their coupling with an eveructuating hydrodynamic environment is not an option.

• The reactor is assumed perfectly aerated, what is reasonable in a labscale fermenter. The gasliquid transfer from a bunch of bubbles to the medium can be supposed linear in this context with a satisfying accuracy. This gross approximation originates in the reasoned choice to primarily address the liquidsolid transfer. A renement of this model would consist in a computation of the gasliquid transfer term from a population balance treatment of the gas phase, what would ratchet the computational time up to unreasonable durations.

• One of the features of such an individual-based approach is the denition of the cell growth rate from crossed moments of the PBE:

∂ ∂t n(t, l, ξ -l ) + ∂ ∂l ln(t, l, ξ -l ) + ∇ ⋅ ξ -l n(t, l, ξ -l + γ(l)n(t, l, ξ -l ) + Dn(t, l, ξ -l ) = 2 l l γ(l ′ )P (l, l ′ ) P (ξ -l , ξ ′ -l )n(t, l ′ , ξ ′ -l )dξ ′ -l dl ′
with ξ -l standing for the relative complement of l in ξ. Given the (3.11) denition of l = l(l, A P , N p , A p , v p ), the cellscale growth rate reads:

ll n(t, l, ξ -l )dξ -l dl = v e (A P , N p , A p , v p ) 1 -l l κ l n(t, l, ξ -l )dξ -l dl ≠ ∫ ∫ ln(t, l, ξ -l )dξ -l dl ∫ ln(t, l)dl • It could be understood that the maximum of the variable v p is q Pmax +ψmaxNmax Y SX Kconv
. However, q S overruns q Pmax in the wake of a perturbation only, and the uptake's return to normal is massively quicker than any change in v p since max(τ A1 , τ A2 ) << τ vp , imposing a v max p (q Pmax ) upper bound to v p that does not depend on ψ max . An illustration of this physical conclusion will feature in section 5.4.

• In (3.11), the permease system's characteristic time ranges between 1 and 10 s. In comparison, the mesomixing / micromixing characteristic time t m is estimated at roughly 50 ms, that is two orders of magnitude faster. In this context, the bulk of the computation cost lies in the renement (3.3.3).

• Neither q P nor its permease conterpart are Monod-shaped functions of S. It is of very little importance though, as evidenced in a urry of biotechnology publications such as Luong's [START_REF] Luong | Generalization of Monod Kinetics for Analysis of Growth Data with Substrate Inhibition[END_REF] or Koch's [START_REF] Arthur | Multistep Kinetics: Choice of Models for the Growth of Bacteria[END_REF]. More problematic is the fact that q Pmax and ψ max are asymptotic values that have no reason to elude the hale and healthy bacteria. More generally, this remark raises the question of the relevance of saturation functions in enzymology, the shortcoming thereof being an assumption that optimal functioning is unattainable whatever the culture condition or the organisms' history.

First lessons from an unstructured model

The unstructured denomination comes from the eld of mathematics and might confuse the biologists who interpret the notion of structured model as a cellscale one, distributed or not.

Without any semantic consensus, unstructured will be synonymous with nondistributed here and below.

A collection of continuous cultures simulated using (3.11) is shown in gure 3.9. Throughout this part, the metabolic scheme is rst coupled with a nonsegregated or average individual model that only keeps a record of the populationaveraged state variables:

ȦP = 1 τ P S K S + S -A P (3.17) Ṅp = 1 τ i K S K S + S + 1 τ d S K S + S N max K S K S + S -N p Ȧp = 1 τ A1 q P q Pmax + 1 τ A2 1 - q P q Pmax 1 - q P q Pmax -A p vp = 1 τ vp q S Y SX K conv -v p
At the population scale, the mass conservation translates into the balance:

dX dt = v e K conv N -DX N = XR N X
with N the cell number and R N X a constant cell number per gram. This abuse of process is forced by the formulation of l that forbids the existence of an equilibrium point on [0, l[, meaning that with no size distribution to report a population's variability in progress of the cell cycle, the total biomass has to be retrieved from a correlation with an assumed mean cell length.

In this context, the glucose concentration S obeys the subsequent dierential equation:

dS dt = D(S f -S) -A P q Pmax S K P + S + N p A p ψ max S K p + S N
with a similar approximation concerning the other compounds.

Steadystate solution

It is understood that steadystate is characterised by the property v e = v p , given that acetate consumption or excretion signal an imbalance in the organism's metabolism. In other words, only mode (1) is operational. This way, the equilibrium values are analytically retrieved and depict a manifold indexed by D:

v e = 4D 10 3 ρπd 2 R N X = v p = 4q S 10 3 ρπd 2 Y SX ⇔ q S = DY SX R N X = q P + q p (3.18) A P = S K P + S , N p = N max K P (K P + 2S) (K P + S) 2 , A p = K P (K P + 2S) (K P + S) 2 q Pmax S K P + S 2 + ψ max N max K P (K P + 2S) (K P + S) 2 2 S K p + S = D S f -S N cell
At the end of the day, the dilution ratedependent steadystate solution reads:

• q P = q Pmax S D K P + S D 2 • N p = N max K P (K P + 2S D ) (K P + S D ) 2 • A p = K P (K P + 2S D ) (K P + S D ) 2 • v e = 4 10 3 ρπd 2 Y SX q Pmax S D K P + S D 2 + N max (K P (K P + 2S D )) 2 (K P + S D ) 4 S D K p + S D
As discussed before, the set (3.17) is not closed because X's dynamics do not provide any information regarding X. At the end of the day, one single equation (q S = DY SX R N X ) connects S to X. ). For the sake of clarity, the value of the dierent parameters is mentioned in Table 3.2. x axis: residual substrate concentration, y axis: steadystate values of q P and q perm . Right: steadystate biomass and sugar concentration associated for the same (3.11) set of equations, D ranging from 0.02 h -1 to 0.36 h -1 . Some standard trends like those evidenced in [START_REF] Valgepea | Systems biology approach reveals that overow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase[END_REF] can be retrieved from the aforementioned unstructured model though. Figure 3.9 highlights two conclusions that have been discussed in the literature:

The lefthand side shows that the permease mechanism allows starving cells some extra substrate (as was inferred by Neubauer & al. in [99]). It accounts for the majority of the total uptake when S < 0.001 g/L and is inhibited by the PTS mechanism when S > 0.01 g/L. The righthand side illustrates the existence of a maximum growth rate beyond which any steadystate continuous culture will be abiotic only. It emerges from the assumption that q P (S) satises a MichaelisMenten prole, to the point where the population is washed out

as soon as D > R N X q Pmax Y SX
. As a consequence, the chemostat's stability obeys an allornone logic: either the whole population subsists, should the mean individual be capable of so, or it is washed out at an exponential rate. Obviously, the continuous selection process is out of the reach of the unstructured model that does not discriminate among the elements of the biotic phase. , q e Ac and v e as functions of q e S , q p O 2

, q p Ac and v p breaks down into the following sequence of logical tests:

⋆ If ∫ q e S nδt < S p + Dδt(S f -S p ) (glucose is in excess) ◇ If ∫ q p O 2 nδt < O 2 + δtK L a (O ⋆ 2 -O 2 ) -δtD(O e 2 -O 2 ) (oxygen is in excess)
• Then, at the cell scale, the following mechanism is implemented : 1) is enough to ensure the cell's growth potential): ⋅ v e = v p (the growth potential is ensured; the remaining nutrients will be involved in mode (3)).

• If min q e S , q p O 2 ν 11 ≥ 1 ν 12 K conv v p (mode (
⋅ q Ac excretion = ν 33 min(q e S -1 (1) will not ensure the cell's growth potential): ⋅ If q e S > q p O 2 ν 11 (the oxygen uptake proves limiting ⇒ mode (2) will be enforced):

ν 12 v p K conv , 1 ν 31 q p O 2 -ν 11 ν 12 v p K conv ) • If min q e S , q p O 2 ν 11 < 1 ν 12 K conv v p (mode
v e → v e + min(v p -v e , ν 22
Kconv q e S -

q p O 2 ν 11 ) Acetate → Acetate + δtq Ac excretion = Acetate + δtν 23 min q e S - q p O 2 ν 11 , 1 ν 22 K conv (v p -v e ) ⋅ If q e
S < q p O 2 ν 11 (the glucose uptake proves limiting ⇒ mode (4) will be enforced):

v e → v e + min(v p -v e , ν 42 Kconv q p Ac , ν 42 ν 41 Kconv (q p O 2 -ν 11 q e S )) Acetate → Acetate-δtq Ac consumption = Acetate-δt min q p O 2 -ν 11 q e S ν 41 , q p Ac , 1 ν 42 K conv (v p -v e ) ◇ If ∫ q p O 2 δt > O 2 + δtK L a (O ⋆ 2 -O 2 ) + Dδt(O e 2 -O 2 ) (oxygen is in default) • The same algorithm repeats itself, albeit q p O 2
is potentially hindered by the environment availability: the actual oxygen uptake takes the shape:

min(q p O 2 , 1 N cell (O 2 + δtK L a (O ⋆ 2 -O 2 ) + Dδt(O e 2 -O 2 )))
⋆ If ∫ q e S δt > S p + Dδt(S f -S p ) (glucose is in default): ◇ The same algorithm repeats itself, albeit q e S is potentially hindered by the environment avail- ability: the actual glucose uptake takes the shape:

min(q e S , 1 
N cell (S p + δtD(S f -S p ))
Chapter 4

Numerical methods

This chapter aims at breaking down the codes associated with the structured model.

A MonteCarlo method

The numerical procedure

As mentioned in the introduction, the algorithm consists in a deterministic transport of a userset amount of ctional particles which division or departure are stochastically treated. More precisely, an initial population of articial cells which inner coordinates are sampled from normal laws (the procedure being repeated should the corresponding value be negative) are tracked with respect to time. In other words, for a given initial number of MC particles, a matrix of as many rows is lled with random inputs, the columns including l, q P , N p , A p , v p , along with the organisms' residence time in the reactor that obeys an exponential law:

x ∼ E(D -1 ) for each cell

The age is also tracked for the sake of comparison with the aforementioned sampled residence time.

In a second phase, the inner coordinates are updated at each time step using (3.11) for each cell and the chemical compounds' concentrations in the CSTR are calculated calling section 3.4's metabolic model. The (3.13) hydrodynamic renement has to be enforced to guarantee that the bacteria's glucose uptake rate does not lead to a negative substrate concentration. From the oxygen and acetate availability, the individuals' potential uptake rates are corrected more coarsely if necessary, to ensure the said concentrations remain nonnegative at the end of the operation. The formulation in reactions has been preferred from a computional time point of view, its reagents based counterpart consisting in consecutive loops burdening the code with unnecessary logical tests.

The new outputs are recorded as the basis for the next time step.

Then the mitosis and washout events are determined by the sampling of a random number u

for each cell and the following comparisons:

Let u ∼ U [0,1] : mitosis occures in case 1 -exp(-γ(l)δt) < u
Washout occurs as soon as the cell's age overbears x 120 When a cell divides, its inner properties are redistributed according to the kernel K (involving one random number dening the redistribution in length due to the assumed conservation of mass and four another ones pertaining to the daughtercells' A P and A p , v p being assumed equal to the mothercell's for each newborn and N p redistributed in proportion to l), and each new cell is given a residence time drawn from an E(D -1 ) distribution. The cell age is reset to zero for one of the daughter cells, making room for a new lineage in the fermenter, whereas the other daughter keeps the record of the mothercell's lineage. In the following numerical simulations, the redistribution in A P will be assumed following a β(6, 6) law supported over the whole [0, 1] (meaning that P A P (A P , A P ′ ) does not in fact depend on A P ′ ), its length counterpart will be modelled with a β(10, 10), and the daughtercells' A p will be sampled from a U [0,1] law. With no experimental data allowing to discriminate between the dierent admissible laws though, an endless number of models can be picked equivalently with little to no consequence to the marginal NDFs. Indeed, whatever the redistribution in A P , N p or A p at a mothercell's rupture, the characteristic time of their dynamics is signicantly shorter than the daughtercells' expected interdivision time, meaning that a cell's state at birth will be of little relevance during the majority of its lifetime. The most crucial modelling assumption bears upon P v p (v p , v p ′ ) given the characteristic time of this variable's adaption to the organism's environment. Although it has been supposed in this model that a generational transition should have little inuence on the daughtercells' growth properties, experimental measurements of consecutive interdivision times amid one lineage (cf. Yasuda's [START_REF] Van Heerden | Statistics and simulation of growth of single bacterial cells: Illustrations with B. subtilis and E. coli[END_REF][START_REF] Yasuda | Algebraic and geometric understanding of cells: Epigenetic inheritance of phenotypes between generations. righ esolution wiroil ingle gell enlytis[END_REF]) hint at signicant gaps in sistercells length prole with respect to time. It is worth a mention that from biological grounds, there is no reason to suspect that the lengthening rate the daughtercells are handed down is limited by an unsurpassable threshold such as the socalled maximum batch culturegrowth rate, the latter standing for a populationaveraged datum but shall not bind a cellscale quantity.

Of course, one ctional MonteCarlo particle carries the information of a certain N corr actual cells in such a way that the product N corr × Number of MC particles = ∫ Ω ξ n(ξ)dξ.

In the eld of population dynamics, the massive advantage of lagrangian simulations is the lineagetracking that makes it possible to extract some information that is out of the PBM's reach.

Hence, this knowledge shall not be interpreted as an analytical result but as a methoddependent benet. For example, considering a PBM which inner variables are the cells' mass and metabolism related quantities, following the particles with respect to time makes it possible to extract their age and their (possibly consecutive) interdivision times until their residence time in the reactor is reached. In other words, n + 2 cellscale data are within the reach of a n-dimensional PBM. 

The technical details

In order to draw real numbers from various probability laws, the sampling process follows a BoxMuller style algorithm which consists in algebraic transformations of uniform lawsampled numbers.

As an example, beta numbers are engineered using the lemmas:

Lemma: Let (u n ) n∈{1,...,N } ∼ U [ 0, 1]. Then - N Σ n=1 ln(u n ) ∼ Γ(N )
roofF The proof will rst be given for N = 1, the extension to N > 1 is a consequence of a following lemma. Let f be a bounded continuous function. Then the transfer theorem yields:

1 0 f (u)du = v=-ln(u) ∞ 0 f (v)e -v dv
that is well an exponential law shape.

Lemma:

Let u ∼ Γ(N ), v ∼ Γ(M ). Then u u+v ∼ β(N, M ) roofF
The proof is once again a consequence of the transfer theorem. Let f be a bounded continuous function. The following integral will be transformed:

1 Γ(N )Γ(M ) ∬ R+×R+ f (u, v)e -u e -v u N -1 v M -1 dudv
via a change of variables (x, y) = (u + v, u u+v ), which jacobian reads: Remark: Given uniformsampled random numbers, the transfer theorem helps generating random numbers distributed according to many classic probability laws which emerge from the eld of modelling. A nonexhaustive review of the algebraic transformations that are supported by these algorithms features on table 4.1. 

1 1 1 u+v -u (u+v) 2 -u (u+v) 2 = 1 u + v ⇒ dxdy = 1 u + v dudv ⇔ dudv = xdxdy 122 So: 1 Γ(N )Γ(M ) ∬ R+×R+ f (u, v)e -u e -v u N -1 v M -1 dudv = 1 Γ(N )Γ(M ) ∬ R+×R+ f (x, y)e -x x N -1 y N -1 x M -1 (1 -y) M -1 xdxdy = ∬ R+×R+ f (x, y)x N +M -1 e -x 1 Γ(N )Γ(M ) y N -1 (1 -y) M -1 dxdy
N : (u n ) 1≤n≤N - N Σ n=1 ln(u n ) Beta(N , M ) N + M : (u n ) 1≤n≤N , (v m ) 1≤m≤M N Σ n=1 ln(un) N Σ n=1 ln(un)+ M Σ m=1 ln (vm) 
N (0, 1) 2: u, v -2 ln(u) cos(2π ln(v))

or -2 ln(u) sin(2π ln(v))

Weibull(n, α)

1: u -1 α ln(u) 1 n
Log-normal(µ, σ 2 ) 2: u, v exp µ + σ( -2 ln(u) cos(2π ln(v)))

or exp µ + σ( -2 ln(u) sin(2π ln(v))) Chi-2(N ) 2N : (u n ) 1≤n≤N , (v n ) 1≤n≤N N Σ n=1 -2 ln(u n ) cos(2π ln(v n )) or N Σ n=1 -2 ln(u n ) sin(2π ln(v n )) Pareto(α, n) 1: u α u 1 n

A Finite Volume method

Without loss of generality, the PBE reads:

∂ ∂t n(t, ξ) + ∇ ξ ξn(t, ξ) + γ(ξ)n(t, ξ) + Dn(t, ξ) = 2 Ω ξ ′ γ(ξ ′ )K(ξ, ξ ′ )n(t, ξ ′ )dξ ′ (4.2)
with the obvious denition of ξ = (l, A P , N p , A p , v p ) and

Ω ξ ′ = [l, l[×[0, 1]×[0, N max ]×[0, 1]×[0, v max p ]. 123 
The time order is dened by the discretisation of the numerical scheme with respect to t. A standard explicit Euler scheme would be consistent with a rstorder method in time, whereas a RungeKutta method to go forward in time would ratchet the time order of the scheme at will.

In this section, a rstorder explicit Euler scheme is proposed, meaning that the evolution of n between t m and t m+1 in each volume O of the phase space obeys:

n m+1 O = n m O + t m+1 t m ∂ ∂t n O (t)dt
and the spotlight will once and for all be set on the righthand side's integral.

The transport term

In this context, n is not known at each point of the phase space; instead, only the mean value n O (t) = 

O t m+1 t m ∂ ∂t n O (t)dt ≈ (t m+1 -t m ) - ∂O ξn(t, ξ) dσ - O γ(ξ)n(t, ξ)dξ + 2 O Σ O ′ l ′ ≥l O ′ γ(l ′ )K(ξ, ξ ′ )n(t, ξ ′ )dξ ′
The boundary integral over ∂O is understood as a sum over all the OO ′ interfaces where O ′ stands for a volume neighbouring O in any direction. If ν OO ′ is the outward unit normal at the OO ′ interface, then:

∂O ξn(t, ξ) = Σ O ′ O OO ′ ξn + O (t) + ξn - O ′ (t) ν OO ′ (4.3) 
Indeed, since the value of n is not known at any OO ′ interface, the desired quantity has to be interpolated from the known values of the NDF at each cell centre. The signs are consistent with the observation that an outward ux (( ξn) + O ν OO ′ > 0) reports a transfer of matter from the cell under consideration towards its neighbour, the converse assessment translating into ( ξn

) - O ′ ν OO ′ < 0. Set a meshing of the [0, l]×[0, 1]×[0, N max ]×[0, 1]×[0, v max p ] domain in N l ×N A P ×N Np ×N Ap × N v p cells and ve integers 0 ≤ i < N l , 0 ≤ j < N A P , 0 ≤ k < N Np , 0 ≤ o < N Ap , 0 ≤ r ≤ N v p (
for the sake of simplicity, the mesh can be uniformly drawn in each dimension): the F x,m ⋅,⋅,⋅,⋅,⋅ numerical uxes ẋn ⋅,⋅,⋅,⋅,⋅ at time t m will be calculated from (4.3) using a similar scheme as Nessyahu & Tadmor's [START_REF] Nessyahu | Non-oscillatory Central Dierencing for Hyperbolic Conservation Laws[END_REF]. Treating only one arbitrary dimension x, it will explicitly read:

1 ∆x max( ẋι+1 m , 0) n(x ι ) m - t m+1 -t m 2∆x ∆F x,m x∈[xι,x ι+1 ] + min( ẋι+1 m , 0) n(x ι+1 ) m - t m+1 -t m 2∆x ∆F x,m x∈[x ι+1 ,x ι+2 ] (4.4) -max( ẋι m , 0) n(x ι-1 ) m - t m+1 -t m 2∆x ∆F x,m x∈[x ι-1 ,xι] -min( ẋι m , 0) n(x ι ) m - t m+1 -t m 2∆x ∆F x,m x∈[xι,x ι+1 ]
for any ι, with the quantity ∆F being computed via the superbee ux limiter:

∆F xι,m = Superbee( ẋι+1 m n(x ι+1 ) -ẋι m n(x ι ), ẋι m n(x ι ) -ẋι-1 m n(x ι-1 ))
the Superbee (a, b) function being dened by the formula:

Superbee(a, b) = max[0, max(min(2a, b), min(a, 2b))]
Obviously, given the containment condition, no outward normal points to the exterior of the nite volume domain: in other words, the Superbee function is equal to

0 if ν OO ′ is directed towards Ω c ξ .
It is worth mentioning that the mesh has been built regularly in all the dimensions (downgrading the algorithm to a mere nite dierence scheme), the rationale behind this choice being the massive dependence of the NDF on the dilution rate. Any renement of the mesh would have to be concomitant with the update of the NDF (D being given once and for all), what would ratchet the computation time of an already timeconsuming method.

The dilution and fragmentation terms

Once n has been transported using the (4.2) numerical scheme, the loss in each M i,j,k,o,r mesh cell due to the fragmetation process is computed using a midpoint rule:

M i,j,k,o,r γ(l)n(t, ξ)dξ ≈ γ 1 2 (l i + l i+1 ) M i,j, k,o,r n(t, ξ)dξ (4.5) (4.5 
) is further used to compute the redistribution integral on the Ω ξ ′ domain:

Ω ξ ′ γ(l ′ )K(ξ, ξ ′ )n(t, ξ ′ )dξ ′ = Σ (i ′ ,j,k,o,r) l i ′ >l i M i ′ ,j,k,o,r γ(l ′ )K(ξ, ξ ′ )n(t, ξ ′ )dξ ′
A few simplications can speed the calculation of the righthand side up. For instance, v p is not redistributed at the division because a division event is unlikely to improve or alter the daughter cells' health. A bonanza emerging from the xed mesh framework lies in the observation that if P A P (A P , A P ′ ) is not contingent upon A P ′ , the fraction of the newlyforrmed orgainsms landing in each M i,j,k,o,r for 0 ≤ j < N A P can be calculated before running the Finite Volume code and only needs to be called at the time the redistribution integral is computed. A p being uniformly picked and also independent on A p ′ , only the estimation of P l and P Np need further consideration. These kernels can be viewed as N l × N l and N Np × N Np matrices, which respective entries are:

l i+1 l i l i ′ +1 l i ′ P l (l, l ′ )dl ′ dl and Np k+1 Np k Np k ′ +1 Np k ′ P Np (N p , N p ′ )dN p ′ dN p P l ∼ β(10, 10 
), P Np ∼ β(10, 10) being known beforehand (they are symmetric and close to gaussian pdfs) and the integrals being computed using a secondorder trapezoidal method involving ≈ 2000 points each.

For the sake of exhaustiveness, the dilution term is implicited at the tail end of the code, meaning that the cell number in each mesh cell is multiplied by 1 -D(t m+1 -t m ). The rest of the algorithm follows the MonteCarlo method, consisting in enforcing the (3.13) hydrodynamic renement before calling the reactionbased metabolic model to update the chemical compounds' concentration. It is worth mentioning that given that ξ depends (directly or indirectly, through q S for instance) on S, the time step ends with a revision of the numerical uxes which will be employed on the [t m+1 , t m+2 ] time interval. dimensions, say v p . At a given time t, the ux in the l direction transfers (in red) some organisms from a M i,j cell to its M i+1,j neighbour, some individuals coming up from the M i-1,j volume in the meantime. The same procedure involving the M i,j-1 , M i,j and M i,j+1 in the v p direction is pictured in cyan. A few bacteria are washed out between time t and time t + δt, the process being depicted in green. Finally, the cell division aecting the balance in each of the mesh's cell is represented in blue, the population's initial state at time t + δt featuring on the righthand side of the gure.

A hybrid Finite Volume -Method of Moments

In order to solve the PBE (4.2), a numerical method could consist in a call to two dierent schemes: a Finite Volume algorithm to solve the transport equation:

∂ ∂t n(t, ξ) + ∂ ∂l ln(t, ξ) + ∂ ∂A P ȦP n(t, ξ) + ∂ ∂A p Ȧp n(t, ξ) + ∂ ∂v p vp n(t, ξ) = 0 (4.6)
and a Quadrature Method of Moments to treat the fragmentation equation:

∂ ∂t n(t, ξ) + ∂ ∂N p Ṅp n(t, ξ) + Dn(t, ξ) = 2 Ω ξ ′ γ(l ′ )K(ξ, ξ ′ )n(t, ξ ′ )dξ ′ (4.7) 
The election of N p as the variable to enforce QMOM on is not insignicant: indeed its dynamics does not depend on any other of the model's inner coordinates, alleviating the transport of the moments that comes from the treatment of (4.7)'s second term as will be seen below.

The solution of (4.6) follows from the previous section, and is transported over the time interval [t m , t m+1 ] to give birth to n(t m+1 ). A potential use of n as an initial condition to (4.7) has to be gingerly considered because each celltocell ux modies the moments inside the receiving mesh element. More precisely, when the FV method is run, transfers between a M i,j,o,r mesh cell and its immediate neighbours M i±1,j,o,r , M i,j±1,o,r , M i,j,o±1,r , M i,j,o,r±1 do not only aect the cell number in each volume; indeed, given that the moments associated to each organism inside a mesh cell are independently updated at each time step, the said transfers amount to mixing particles having a certain NDF in N p with organisms emerging in the cell with their own distribution in N p .

As a consequence, before the Wheeler algorithm is called to address the fragmentation equation, one would have to recalculate the corresponding moments of the permease number NDF having taken into account the actual state of the population once processed by the FV scheme.

In the context of this particular method, one distribution in permease density is assumed in each cell of the mesh in l, A P , A p , v p , and is approached by a sum of Dirac deltas:

n(t, v) = I Σ i=1 ω i δ Np-Np i
The (ω i ) i∈{1,...,I} weights and (N pi ) i∈{1,...,I} nodes are computed from the 2I rst moments of the PDE. The 0th moment of equation (4.7) Ñp 0 satises the dierential equation:

∂ ∂t M i,j,o,r Nmax 0 n(t, ξ)dξ + M i,j,o,r Nmax 0 γ(l)n(t, ξ)dξ + D M i,j,o,r Nmax 0 n(t, ξ)dξ = 2 M i,j,o,r Nmax 0 l ′ 0 P l (l, l ′ )dl P A P (A P , A P ′ )dA P P Np (N p , N p ′ )dN p P Ap (A p , A p ′ )dA p P v p (v p , v p ′ )dv p γ(l ′ )n(t, ξ ′ ) dξ ′
That is:

d dt Ñp 0 + M i,j,o,r Nmax 0 γ(l)n(t, ξ)dξ + D Ñp 0 = 2 M i,j,o,r Nmax 0 l ′ 0 P l (l, l ′ )dl (4.8) 
P A P (A P , A P ′ )dA P P Np (N p , N p ′ )dN p P Ap (A p , A p ′ )dA p P v p (v p , v p ′ )dv p γ(l ′ )n(t, ξ ′ ) dξ ′
where in (4.8), for the sake of clarity, the mesh cell

[l i , l i+1 ] × [A P j , A P j+1 ] × [A po , A p o+1 ] × [v p r , v p+1 r ] has been christened M i,j,o,r . The same reasoning is enforced to calculate the quantities Ñp u = ∫ M i,j,o,r ∫ Nmax 0 N p u n(t, ξ)dξ, u ≥ 1.
A twonode quadrature will require the computation of Ñp 1 , Ñp 2 and Ñp 3 , with respective dynamics:

∂ ∂t Ñp 1 - M i,j,o,r Nmax 0 Ṅp n(t, ξ)dξ + M i,j,o,r Nmax 0 N p γ(l)n(t, ξ)dξ + D Ñp 1 = 2 M i,j,o,r
Nmax 0 (4.9)

P A P (A P , A P ′ )dA P N p P Np (N p , N p ′ )dN p P Ap (A p , A p ′ )dA p P v p (v p , v p ′ )dv p γ(l ′ )n(t, ξ ′ ) dξ ′
The computation of the appropriate weights and abscissas obeys the following procedure. To get started, one has to nd a L 2 orthogonal polynomial basis on the support of the distribution of interest (in this case [0, N max [) through a GramSchmidt method. The {1, x, x 2 , x 3 } family (which yields a twonode quadrature) is orthonormalised for the scalar product ⟨⋅, ⋅⟩ such that ⟨P, Q⟩ = ∫ Nmax 0 P (x)Q(x)dx into:

P 0 (x) = 1 P 1 (x) = x -N max 2 ∫ Nmax 0 x -N max 2 dx P 2 (x) = x 2 -N max x + (N max ) 2 6 ∫ Nmax 0 x 2 -N max x + (N max ) 2 6 dx P 3 (x) = x 3 -3 2 N max x 2 + 3 5 (N max ) 2 x -(N max ) 3 20 ∫ Nmax 0 x 3 -3 2 N max x 2 + 3 5 (N max ) 2 x -(N max ) 3 20 dx (4.12)
In Wheeler's algorithm, unitary polynomials are of particular interest, meaning that all denominators will be ditched in order to establish the recursive relation between polynomials of consecutive order:

P k+1 (x) = (x -a k )P k (x) -b k P k-1 (x) ∀k ≥ 0 (4.13)
considering that P -1 ≡ 0.

Secondly, all the quantities ∫ P j (x)P k (x)n(t, x)dx are gathered in the M = (M j,k ) 1≤j≤I,1≤k≤2I matrix. In accordance with (4.13):

M j+1,k = Nmax 0 (x -a j )P j (x)P k (x)n(t, x)dx - Nmax 0 b j P j-1 (x)P k (x)n(t, x)dx = Nmax 0 P j (x) (P k+1 + a k P k (x) + b k P k-1 (x)) n(t, x)dx -a j M j,k -b j M j-1,k = M j,k+1 + (a k -a j )M j,k +b k M j,k-1 -b j M j-1,k
and M is lled row after row. Subsequently, the intermediate Jacobi matrix is computed:

J = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ J 11 J 12 0 0 0 0 0 ... J 21 J 22 J 23 0 0 0 0 ... 0 J 32 J 33 J 34 0 0 0 ... ... ... ... 0 J j-1,k J j,k J j+1,k 0 ... ... ... J I-1,I J I,I ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ with J i,i = a i - M i-1,i M i-1,i-1 + M i,i+1 M i,i , i ∈ {1, ..., I} , J i,i+1 = M i,i M i-1,i-1 = J i+1,i , i ∈ {1, ..., I -1}
in line with [START_REF] Marchisio | gomputtionl wodels for olydisperse rtiulte nd wultiphse ystems[END_REF]. J's eigenvalues are the actual nodes x i , i ∈ {1, ..., I} of the gaussian quadratures, and the weights ω i , i ∈ {1, ..., I} are computed using the rst component of its eigenvectors v i :

ω i = v 2 i,1 .
It is worth mentioning that in the case of a two-node quadrature, the Jacobi matrix simply reads: J = a b b c

and its eigenelements can be analytically calculated, allowing the riddance of the highly timeconsuming matrix inversion. First, the recursive coecients read:

a k = N max 2 ∀k ∈ {0, ..., 2} and b 1 = (N max ) 2 12 , b 2 = (N max ) 2 15 
Then, the outputs of the Jacobi matrix inversion read:

x 1 = 1 2 a + c + (a -c) 2 + 4b 2 and x 2 = 1 2 a + c -(a -c) 2 + 4b 2 v 1 ∝ ⎛ ⎝ 1 1 2b c -a + (c -a) 2 + 4b 2 ⎞ ⎠ and v 2 ∝ ⎛ ⎝ 1 1 2b c -a -(c -a) 2 + 4b 2 ⎞ ⎠ ⇔ω 1 = 4b 2 (4b 2 + (c -a) + (c -a) 2 + 4b 2 )) and ω 2 = 4b 2 (4b 2 + (c -a) -(c -a) 2 + 4b 2 )) having enforced the condition v i 2 = 1, i ∈ {1, 2}.

Discussion

• Obviously, a three-node quadrature involving the growth rate PDF's six rst moments would involve a 3 x 3 Jacobi matrix, which (real) eigenvalues are explicitly calculable for with the help of Cardan's method. The corresponding eigenvectors would be obtained through straightforward calculations. In the following though, a two-node quadrature will be enough to retrieve some steadystate information to cross-validate the MonteCarlo and nite volume algorithms.

• Other methods of moments could have been implemented instead of this quadrature based -Wheeler algorithm; for instance, the shape of the distribution could be a priori prescribed in each mesh cell, and considering that the growth rate PDF has a compact support, a shooin would be a beta law β(p, q), which moments would be tracked with respect to time in accordance with (4.8)-(4.9). Then, the PDF's parameters would be algebraically calculated from its moments:

p = ⟨N ⟩ N max ⟨N ⟩N max -⟨N 2 ⟩ ⟨N 2 ⟩ -⟨N ⟩ 2 and q = p N max ⟨N ⟩ -p
In this case, the reconstruction of the PDF from its moments would be straightforward. However, when p and / or q is large enough (meaning the distribution is relatively close to a Dirac), Γ(p + q) cannot be calculated numerically, a machine being unable to handle numbers approaching ∼ 10 308 . If p and q were picked around 80 for instance, a standard computer could not produce the corresponding beta law, although such a beta distribution would exhibit a signicant variance (≈ 0.00155), what would be problematic if this method was to be used in the context.

4.4 A test case: a chemostat convergence to steadystate

A stability analysis

In this section, a simulation of (3.11) with the metabolic model is performed at a dilution rate D = 0.2h -1 . The aim of this paragraph is a crossvalidation of the dierent numerical schemes.

The abovementioned numerical methods are set to give a ± satisfying approximation of the (1.22)-(3.11) combination given a userdened computational time. The stability criteria dier depending on the numerical method (a CFL condition must be satised to ensure exploitable FV numerics, whereas the MC rate of accuracy is signicantly determined by the number of ctional particles).

The lagrangian method consisting in tracking ctional particles along characteristic curves, only the local truncation error (O(δt

)) coming from the use of Euler's method to update the scalars of interest is made in the process. The statistical error over the population's features is comprehensively determined by the number of ctional MC particles: the said population being reconstructed from ∼ 350000 particles, the methoddependent error scales as 1 √ 350000 ≈ 0.17

%. The MC code is consequently considered as a reference algorithm any other tool can be tested against.

The time step for all the simulations (δt = 2.75 ⋅ 10 -6 h) is dictated by the micromixing time constant t m = 50 ms ≈ 1.389 ⋅ 10 -5 h. In the FV code, gross approximations of the maximal rates of change of the variables yield:

δl = 9 ⋅ 10 -8 m, max( l) ≈ 3 ⋅ 10 -6 m δA P = 0.1, max( ȦP ) ≈ 1 τ P = 72 δN p = 20, max( Ṅp ) ≈ max 1 τ i , 1 τ d N max = 7200 δA p = 0.1, max( Ȧp ) ≈ max 1 τ A 1 , 1 τ A 2 = 720 δv p = 1.5 ⋅ 10 -7 m/h, max( vp ) ≈ 1 τ v p q Pmax Y SX Kconv ≈ 2.954 ⋅ 10 -6 m/h ⇒ δt 5 Σ i=1 ξi δξ i ≈ 5.096 ⋅ 10 -3 << 1
meaning that the FV scheme's stability is guaranteed. In particular, the outputs of the MC simulation can be compared with the FVgenerated distributions using dimensionless quantities like:

σ x,y = Σ i (x i -y i ) 2 Σ i x 2 i Σ i y 2 i if (x i )
i and (y i ) i stand for the respective datasets. A FVMC comparison of the length PDFs translates into σ x,y = 5.81 ⋅ 10 -3 , meaning that the distributions are close enough to validate the MC scheme. σ x,y is even lower (3.50 ⋅ 10 -3 ) when the MC numerics are compared with the FV QMOM outputs, testifying to an acceptable implementation of the hybrid algorithm. All steady state distributions are displayed in gure 4.3, evidencing the accordance between the results of the dierent methods. The width of the FVretrieved NDFs, which are supported over 2 (in q P and N p ) to 4 (in A p and v p ) nodes, is presumably a result of the numerical diusion in the phase space.

Increasing the method's order to at least secondorder would most likely narrow the NDFs down to similar dirac distributions as their MC counterparts. 

A comparison of the schemes' numerical eciency

In this paragraph, the dierent numerical methods are run to sort them out timeconsumingwise.

It shall be reminded that the formulation of (3.11) and its non-linear combination with the residual substrate concentration makes any exhaustive characterisation of a steadystate population a delusion. Indeed, the mean length has been proven to satisfy the equation:

⟨l⟩ = 1 D ln dξ
At steady state, the cells are supposed in equilibrium with their immediate environment to the point where no acetate should be consumed or produced in the fermenter. All the uptaken glucose should be converted into biomass, entailing the conclusion v e = v p . In this context, the previous formula can be simplied:

⟨l⟩ = 1 D v p 1 - l l κ n(t, l, v p )dv p dl
but evidence an obvious non-linear dependence of ⟨l⟩ on l. Another non-linearity manifests itself if ⟨v p ⟩ is linked to the metabolic model:

⟨q S ⟩(S) = ⟨v p ⟩ Y SX K conv = ⟨q P ⟩(S) + ⟨q p ⟩(S)
From the numerical data, an analytical value of S can only be estimated from the highly non-linear equation:

q Pmax ⟨A P ⟩ S K P T S + S + ψ max ⟨N p A p ⟩ S K p + S = D(S f -S)
each of the populationaveraged quantities depending on S. As a consequence, the validity of the dierent numerics is accessible from out-of-thin-air correlations only.

In the MonteCarlo simulation, from the steadystate glucose concentration (≈ 0.00173 g/L), a guesstimate of the populationaveraged inner coordinates follows:

⟨q P ⟩ ≈ 2.067 ⋅ 10 -12 g/h ⟨A p ⟩ ≈ 0.598 ⟨N p ⟩ ≈ 74.
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The other equilibrium data are ⟨l⟩ ≈ 8.043 ⋅ 10 -6 m, ⟨v e ⟩ ≈ 1.659 ⋅ 10 -6 m/h and ⟨v p ⟩ ≈ 1.660 ⋅ 10 -6 m/h. Of course:

⟨l⟩ = ⟨ l⟩ D = ⟨v p 1 -l l κ ⟩ D ≈ 8.043 ⋅ 10 -6 m ≠ 8.056 ⋅ 10 -6 m ≈ ⟨v p ⟩ 1 - ⟨l⟩ l κ D
as expected. With these raw data, a calculation of the total cell mass and cell number is available.

Considering that what has gone in the reactor without going out has been eaten, a trivial mass balance on a time interval of Lebesgue measure ∆t would yield:

Cell number × ⟨q S ⟩∆t ≈ D(S f -S)∆t ⇒ Cell number ≈ 7.474 ⋅ 10 11 and given their average length:

Cell mass ≈ 4.722g

The same computations can be carried out for the Finite Volume and FVQMOM steadystate numerics:

For the FV code: S ≈ 0.00168325 g/L ⇒ ⟨q P ⟩ ≈ 2.025 ⋅ 10 These gross estimations are here to give the reader an order of magnitude of the dierent variables featuring in the simulations. The following table 4.2 sums up the settings of the dierent computations: A comparison between gures 4.4 and 4.6 or 4.7 which depict the convergence to equilibrium at both cell and reactorscales points to seemingly noised MonteCarlo data when compared with their FV or FVQMOM counterparts. However, the oscillations in the steadystate values of residual substrate do not exceed 1.2 ⋅ 10 -5 g/L (roughly 0.7 % of S) over the last 5h of culture, whereas the biomass does not stray from a 1.15 ⋅ 10 -2 g/L interval in the meantime, corresponding to a 0.2 % variation. It might happen that steady state has yet to be reached in the chemostat, but the amplitude of the oscillations is only emphasised by the time window the plot zeroes in. Similar remarks can be made regarding the statistic error on the population's mean length and lengthening rate for instance, although the trends are in agreement with the FV and FVQMOM numerics. The top right plot of each gure highlight similar uptake and byproducts proles, with the exception of sporadic lowamplitude acetate excretion periods.

The conclusion of this performance comparison highlights the benets of the MonteCarlo method to solve multivariate PBEs. Indeed, it compares favourably with the Finite Volume solution while operating more than 4 times quicker than its eulerian counterpart. The method's main aw is its intrinsic stochastic noise, but its range is controlled by the number of ctional MC particles (roughly 0.2 % if 350000 particles are tracked in the system). The hybrid FVQMOM algorithm which operates ≈ 5 times as fast as the FV one at the expense tracking 5 times fewer abscissas in the N p variable does not lead to the same steadystate numerics as the other aforementioned codes, probably because a two nodeapproximation of the permease number NDF does not provide enough information to retrieve the complete prole with satisfying accuracy. The mean permease number (≈ 73.29) is indeed 5.6 % below the equivalent MonteCarlo datum and 7.9 % under its Finite Volume counterpart, whereas the respective dierences in terms of permease activity, for example, amount to 3.8 % and 5.9 %. Making up an attempt to strike a balance between computational time and precision, this method should not be fastened to the point where it can be run on a standard 8 corecomputer though, leaving wide open the problem of implementing light and accurate numerical methods to solve PBEs. In this context, the MonteCarlo tool will be preferred in the next chapter dedicated to numerical simulations of dierent litmus testexperiments.

featuring a sizerelated inner coordinate; by the way, this property has also been claimed by Doumic [19] amongst others.

Simulations of the metabolic model

In order to evidence the primary eld of each biochemical equation of the ( 1)-( 4) set page 111, the metabolic model is run using a nondistributed version of (3.11), the outputs being plotted on gures 5.2 and 5.3. More precisely:

The cell number is calibrated to match the expected biomass at steady state once a mean length has been assumed for each bacterium.

The environmental oer is dened before the run, S and O 2 being set to arbitrary non limiting values.

q S (respectively q O 2 ) varies between 0 and q Pmax (respectively q O 2 max ), scanning its domain in arbitrary steps v p is xed (v p = 1.6 ⋅ 10 -6 m h) in each case. Two cases are considered: a 10 -4 g/L residual acetate concentration is available to the bacteria (the corresponding numerics featuring on gure 5.2) and no acetate in the fermenter (the pertaining data being plotted on gure 5.3)

Given this setup, the function returns v e which is compared with the predened v p and q Ac which sign indicates acetate production (q Ac > 0) or consumption (q Ac < 0). Whether the v e = v p equality is satised or not results from the strategy the cells are allowed to ambition, considering both their physiology and the substrate availabilty at their neighbourhood. The sign of q Ac hints at the pathways the individuals have followed to make the best of the uptaken substrate.

On gures 5.2 and 5.3, v e = v p (in red on both gures) is achieved from glucose oxidation (reaction (1)) if the organisms' q S and q O 2 allow it (top right quarter of both plots). In this case, acetic fermentation (reaction (3)) can be enforced to the point where some acetate is excreted in the medium, in other words q Ac > 0. The dierence between the two simulated cases manifests through: the involvement of acetate oxidation (reaction (4), top left quarter of gure 5.2's plots) if q S does not suce to achieve v e = v p , at the expense of acetate consumption though. The consequence is q Ac < 0 as soon as some acetate is available to the cells the impossibility to oset the glucose uptake deciency in case of acetate shortage. On gure 5.3, q Ac = 0 translates into v e < v p . Anaerobic growth on glucose (reaction (2)) is set in motion when q O 2 is the element that prevents v e from reaching v p from reaction (1) only (bottom of both plots). In line with the involved compounds, some acetate is produced in proportion to the glucose assimilation, and v e > 0; v e = v p is assured when a little oxygen can be uptaken from the culture medium. It is worth a mention that acetate excretion is triggered by both overuptake and contingency metabolic modes, but not by the (1) standard biochemical reaction, leading to a transitioning zone between the primary elds of the ( 2) and (4) peripheral pathways.

Finally, it is worth a mention that the position of the frontiers between the dierent primary elds depends signicantly on the cells' needs through their v p , as can be seen from gure 5.4 representing similar plots involving the same environmental oer with the exception of v p = 2.5⋅10 -6 m/h instead of 1.6 ⋅ 10 -6 m/h. (3.11). Left: v e as a function of q S and q O 2 . Right: q Ac as a function of q S and q O 2 . In this case, the environment consists in S = 0.0001 g L, O 2 = 0.0001 g L, and Acetate = 0.0001 g L. (3.11). Left: v e as a function of q S and q O 2 . Right: q Ac as a function of q S and q O 2 . In this case, the environment consists in S = 0.0001 g/L, O 2 = 0.0001 g/L, and Acetate = 0 g/L. (3.11). In this case, v p is set equal to 2.5 ⋅ 10 -6 m/h. The environment consists in S = 0.0001 g/L, O 2 = 0.0001 g/L, and Acetate = 0.0001 g/L on the top swathe, 0 g/L on the bottom one. The lefthand side plots feature v e (color bar) as a function of q S and q O 2 , the righthand side being made of q Ac (q S , q O 2 ).

In the standard approach of biological population modelling, the substratetobiomass ratio is xed whatever the organisms' physiological state, whereas the (1)(4) metabolic model suggests that this populationaveraged quantity is retrieved from the cells' q S v e quotient, the latter exhibiting a massive dependence on the individuals' v p . With these considerations in mind, the said model aims at evidencing the response to strong perturbations in terms of acetate production (reaction (3)) when the equilibrium S → X pathway is saturated, this raw loss of eciency having been conrmed by a urry of experiments such as Sunya & al.'s [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF] glucose pulse. Moreover, it is illustrated that the concept of limiting concentration encompasses considerations of both heterogeneous catalysis and metabolism. On top of that, the proposed metabolic model is not geared towards a maximisation of the bacteria's lengthening rate, contrary to the customary hypothesis that the cells' strategy is the best returnoninvestment growthwise (cf. [START_REF] Young | Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control[END_REF]). The latter standpoint is tantamount to the claim that the living cells can instantaneously adapt to a sudden change in their environment, what would once again go against the observed latency in their response to strong perturbations. supplies enough glucose for the cells' needs, with a slight anticipation of the looming shortage that characterises the individuals' proactive behaviour in a closed system, what is qualitatively in line with NotleyMcRobb & al.'s [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF] raw data (cf. gure 1.17).

Albeit identical processwise, two batch experiments involving a dierent terminal biomass concentration will lead to a dierent analysis. More precisely, if the trends are expected to be similar (q P skyrocketing and q p falling in the preexponential phase, all cellscale features reaching their feast mode equilibrium as the exponential phase starts, the permease trying to take over as S is plunging, ...), the data are a point for discussion in themselves to the extent that at the end of the culture, the larger the cell mass, the shorter the growth deceleration, the shorter the time given to the permeases to compensate the nose dive in q P . In order to illustrate this claim, similar data are plotted on gures 5.5 and 5.6, with X(t = 0) ≈ 0.055 g and S(t = 0) = 8 g in the former case, whereas X(t = 0) ≈ 0.001 g and S(t = 0) = 0.5 g in the latter. If X is around 3.5 g at the time of substrate depletion, N p does not overreach N max /8 and A p is roughly equal to 2/3; on the other hand, a 0.45 g terminal biomass does not exhaust the reactor at the same pace, allowing time for N p to reach 40 % N max and for A p to skyrocket to more than 3/4. Another look at the bacteria's behaviour in front of the substrate depletion is provided on gure 5.7, emphasising the inuence of the culture's terminal conditions on the cellscale features when S → 0. The q p uptick appears insignicant if X(S → 0) ≈ 3.5 g/L but can be observed if X(S → 0) ≈ 0.45 g/L. The values of both q S and v e need to be discussed too. At the tail end of the simulation, for a given substrate concentration in the fermenter (say 10 -4 g/L), the more the population has grown, the more the substrate oer is limiting, the closer q P is to 0. On the other hand, the socalled lag (that is preexponential) phase goes with a much larger acetate excretion when the initial census is more numerous, the consequence being the possibility to sustain for a longer period of time the crusing exponential growth rate. The takeaway is the massive dependence of the observed transient and terminal behaviours on the initial conditions: in particular, a comparison between two batch experiments for which X(S = 0) varies 10fold needs particular caution since the environmental oer will necessarily yield dierent responses from the aected organisms.

The glucose pulse experiment

In this section, the steadystate from section 4.4 is the starting point for a disruption consisting in the sudden injection of 1g of glucose in a steadystate continuous reactor. Sunya & al.'s [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF] experiments have been carried out at a dilution rate of 0.15h -1 but the talk will mostly involve the trend in the response, quantitative ts being out of the scope of this present work. Uptakewise, this conguration should yield comparable qualitative responses with Lara & al.'s [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] BioScope setup that is described in section 1.3.3. The sudden injection of substrate makes the cells' neighbourhood suddenly much richer and the organisms which were not prepared for such a disruption burned some of the uptaken carbon into CO 2 while dissimilating a fraction of it into acetate.

The response breaks down into two parts. Quantitatively, the rst phase of the perturbation (glucoe consumption and acetate production) lasts slightly less than 30 minutes, entailing the gross estimations:

1 + 0.5DS f ≈ 2.1g of glucose are introduced in the system over the course of the perturbation. D ∫ t+0.5h t S(s)ds ≈ 0.01g are washed out of the reactor. ≈ 0.75g are dissimilated into ≈ 0.5g acetate. ≈ 1.3g make 0.59g of new cells, while roughly D ∫ t+0.5h t X(s)ds ≈ 0.48g of cells are washed out. X has hence increased by slightly more than 0.1g over the course of the experiment, what proves quite undetectable by the experimentalists given the measurement technique (Optical Density at 500 nm for instance). ≈ 0.41g of oxygen has been consumed to burn the uptaken carbon in total, translating into a 0.57g carbon dioxide production (≈ 21 % of the total carbon).

As glucose becomes scarcer in the second phase of the response, the lately wellnourished bacteria are goaded to reconsume the available acetate in order to compensate the limiting glucose oer.

Quantitatively, over the 1hour 30minlong period: ∫ t+1.5 t DAc(t)dt ≈ 0.075g of acetate are washed out of the fermenter. Hence, ≈ 0.43g are reconsumed to yield ≈ 0.25g of biotic output. ∫ t+1.5 t DX(t) ≈ 1.5g of biomass are eliminated from the reactor, meaning that roughly 1.7g of new cells have been produced in the meantime. ∫ t+1.5 t DS f = 3.24g of sugar are injected in the system, a negligible fraction of it being dragged out. Out of this raw glucose absorption, 1.46g of cells would result given the assumed ν 12 metabolic ratio.

At the end of the day, the mass balance is in complete agreement with the abovementioned set of biochemical reactions. Figure 5.8 sums up the time evolution of both cellscale features (q S , l, v p , v e , N p and A p ) and reactorscale quantities (X , S) which satisfy the mass conservation when 1g of glucose is injected in the system. A closer look at this dynamic evolution of both uptake and growth throughout the pulse is plotted on gure 5.9. q p starts skyrocketing (clockwise) as S is set to 1g L, meaning that S (K p + S) ≈ 1, what drives q S accordingly. The apparent highest uptake rate overreaches the maximum batch value by roughly 50 %, in agreement with Lara & al.'s [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF] experimental measurements. Then, as q P starts hiking (counterclockwise), A p decreases under the weight of the 1 -q P q Pmax factor contributing to its dynamics, and N p follows suit due to the K S (K S + S) ≈ 0 contribution in its dynamics. As the perturbation proceeds, q S ≈ q P similarly to a batch culture until S plunges, what signals a necessary change in the cells' uptake strategy.

By the end of the disruption, the population's mean rate of anabolism has been raised by ≈ 1 3, far from what is claimed in [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF], partly because the authors probably mistook the uptake rate for the growth rate. Indeed, not all the assimilated carbon yields new cells, due to the necessary latency that comes with the adaption from a glucoseconstrained extracellular medium to an unlimited environment. Uptakewise, the permease activation is not anticipated when S turns scarce because as the origin of the perturbations is this time external, the bacteria can only react to the uctuations in substrate concentration which trigger is, before all, the draining circuit.

One shortcoming in the metabolic model manifests itself through a slight glitch in the oxygen and carbon dioxide concentration at the start of the perturbation, the lack of biological reactions being to blame. Indeed, being agreed that the equilibrium at the population scale has nothing to do with the equilibrium at the cell scale, the macroscopic marker of steady state (negligible residual acetate in a reactor) is in fact a consequence of the quantitative equivalence between acetate production from the elements which overuptake and consumption from the starving organisms.

Whatever the cells' v p , a substantial fraction of them are poised to burn some oxygen to set in motion either mode (3) or mode (4) of the socongured biochemical network, both reactions requiring O 2 . When S is ratcheted up, with little to no eect on v p , a massive amount of sugar will be dissimilated into acetate (what should be expected) via the metabolic model's mode (2) ... which does not require O 2 at all. Hence, the big picture is an early slump in oxygen consumption in luxuriant culture conditions, what does not hinge upon any biological considerations. Albeit dubious, this biological oversimplication can be found in the pertaining literature (Pigou & al.'s [111] being an appropriate example) and has yet to be questioned to date. Figure 5.9 q S , v e and v p as the surplus S (log scale) is being consumed.

To conclude on the uptake prole, the amplitude of the permease response to the pulse is massively determined by the residual substate concentration at steady state, pointing to the crucial role of the dilution rate in setting the chemostat up: the lower the dilution rate, the measlier the residual glucose, the higher the permease induction, the more pronounced the response to a perturbation like a 1g glucose pulse. Indeed, the permease activation in a steadystate continuous reactor is the result of the individuals' strategy in the face of the external substrate oer, the latter being impacted by the userset D and S f parameters: in this context, the 50 % q Pmax overuptake could be massively overreached should the reactor's dilution rate be feeble enough to make for a small S in comparison with the PTS range of application.

Inuence of the micromixing time on the numerics

In section 3.3.1, a characteristic mixing time was introduced in the modelling to account for possible mass transfer limitations, what led to a distinction between physical and biochemical regime.

In this section, the consequence of an imperfect mixing on the cell uptake dynamics and overall metabolism is discussed. It is recalled that solving in S @p the (3.13) equation yields an expected glucose concentration at the cells' vicinity given their uptake capacity and the degree of mixing inside the fermenter. The t m time constant models the eciency of the micromixing inside one hydrodynamic compartment: the smoother the monomer supply to the bacteria, the smaller t m . As a consequence, S @p is expected to be extremely close to S when t m ranges between 10 to 100 ms, indicating a satisfying micromixing inside the system under consideration (only the organisms' uptake is playing a role in this case), whereas S @p can be massively hampered by the hydrodynamics should t m approach 1s. In the latter case, the cells can be considered in permanent imbalance, having to compensate their subpar glucose uptake with acetate absorption at certain times, the consequential slump in q S triggering a sudden excess in S they take advantage of by excreting acetate until the next dearth.

Figure 5.10 reports these claims in a test case consisting in setting a chemostat to equilibrium (D = 0.2h -1 ) with t m = 1s. It is visible from the top left plot that the variation in biomass is around 0.5 % of the overall value over the [6.5 × D -1 , 10 × D -1 ] time interval, what exceeds the method's intrinsic noise (≈ 0.2 %) by a too signicant margin to attribute these oscillations to the MC scheme's accuracy. The mean uptake rate (bottom plot) exhibits a 0.65 % oscillation around its time average over the same window, these variations playing a conspicuous role in the acetate concentration in the reactor, the overuptake going with acetate excretion by virtue of the metabolic model's equation (3). On the top right plot that makes for a closeup of the time evolution of both q P and q p with respect to time, the respective uctuations in comparison with the time averages (1 % and 0.46 %) illustrate the imbalance that characterises a population which individuals face a continual glucose gradient. Figure 5.11 testies to the inuence of this neverending imbalance on the cells' lengthening rate. The lefthand side plot, which depicts the substantially uctuating acetate concentration (up to 0.002 g/L) in the system for t m = 1s, the organisms' average v p is shown varying in a 0.5 % range around its equilibrium value, the oscillations in v e being even larger in proportion to the time average (0.6 %). On the righthand side plot that features two acetate upticks only (the amplitude thereof remaining below the 10 -4 g/L level), the respective variations amount to 0.01 % and 0.08 % and could be attributed to the MC algorithm's precision. Both the acetate prole and the lengthening rate look much less chaotic, what heads to the conclusion that an imperfect degree of mixing in a reactor is perceived as a constant perturbation by the suspended organisms. All in all, section 3.3.1's modelling of the imperfect degree of mixing in one compartment provides a rst overview of the hydrodynamics' inuence on the bacteria's response to eveructuating concentrations when cultivated in 10 5 Lindustrial fermenters. Considering that the amplitude of the substrate gradients is much more signicant in the latter case than in a 1Llaboratory reactor, incorporating such a hydrodynamic renement has to be considered a mandatory step towards the simulation of biological population dynamics in industrialscale tanks. 5.6 The dilution rate stepup experiment 5.6.1

D = 0.2 h -1 → 0.3 h -1
From the steady state that made up the talk of section 4.4, a hike in the dilution rate from 0.2h -1 to 0.3h -1 is enforced. In this case, the reader has to cautiously consider one of the pillars of the MonteCarlo algorithm. A cell's residence time in the reactor is sampled at its inception from a E(D) probability law, meaning it will be determined by the value of D at this very moment. It is also recalled that the removal of a cell from the reactor results from the comparison between its age and its sampledatbirth residence time. If D was suddenly ratcheted up to a certain D ′ , signalling a brutal washout in the culture, the residence time of a group of extant cells would be on average larger than the lifetimes the new culture condition would oer. As a consequence, many organisms would stay in the system longer than they should and the big picture would be a nonphysical initial gain in biomass at transient state. In order to correlate the organisms' residence times to the newly eective dilution rate, a scalar must be redrawn for each MC particle from the new E(D ′ ) exponential law. The population is tracked over the course of 13.75 h following the perturbation, that is slightly more than 4 times the longest characteristic time featuring in the modelling (1 D). In other words a new equilibrium is manifesting itself and can be investigated. The evolution towards the new equilibrium features in gure 5.12. Given the residual substrate concentration in the reactor (0.01814 g/L > K P ), the PTS system has to account for the overwhelming majority of the glucose uptake and reduce its permease counterpart to almost nothing. This is indeed predicted by the model and the numerical values could also be grossly be evaluated as in section 4.4. A massive acetate excretion goes with the disruption while the bacteria's lengthening rate adapts to the suddenly glucoseenriched culture medium.

As the reactor's renewal time has consequentially dropped, the fraction of the population with the smaller lifetime in the system is washed out of the fermenter, leaving the cells with the larger sampled residence time only. These extant cells have been able to raise their v p at will, prompting a shift to the right in the rate of anabolism NDF, in line with the observed uptick in the distribution's rst moment featuring on gure 5.12's bottom left plot.

For the sake of clarity, a comparison between the D = 0.2 h -1 and D = 0.3 h -1 number density functions in the 5 inner coordinates is provided in gure 5.13. As was visible from the mean values, the NDF in q P is shifted to the right as D is increased, to the extent that S turns abundant. The shift to the left of the N p and A p NDFs is not surprising either, considering the little interest from the cells' perspective in sustaining a scavenging uptake mechanism when S is plentiful in the CSTR. prole that features on gure 5.12's top left plot. The plotted lengthening rate NDFs suggest that in comparison with the D ′ inducedequilibrium (red linespoints, at approximately t = 53h), the population catches up this biomass loss over the next 8h due to a luxuriant external supply. Interestingly, its meeting with the v e steadystate prole does not proceed due to the introduction of an averaged population growth rate (contrary to equation (1.32) involving a µ ⋆ real number, page 48), but the n(v e ) distribution is attracted to its newlyinduced steadystate through the slump in substrate uptake that goes with the continuous decrease of S following the said 8hlong period of overuptake.

The transient X(t) pattern has been experimentally evidenced in the literature, such data having been provided for instance by Yun & al. in [START_REF] Shik | Regulation of Ribosome Synthesis in Escherichia coli Eects of Temperature and Dilution Rate Changes[END_REF]. The biologists' measurements testify to a return to normal after roughly 10 h following a D = 0.2 h -1 → 0.6 h -1 upshift, the apparent specic growth rate countering the challenging draining rate in less than 5 hours as can be seen from gure 5.14. This means that as long as the bacteria are capable of withstanding the userdened dilution rate, the rate of virtually all the biological processes occurring in the reactor, uptake included, is completely dictated by D -1 . The latter claim could be explained by the very denition of a maximal growth rate: as a populationaveraged quantity, it could allow for organisms which instantaneous anabolic rate v e is higher than the supposedly impassable maximal batch value. The lengthening rate being distributed among the individuals comprising the observed population, it has no reason to be bounded by a populationscale datum. In this context, following a strong perturbation in an open fermenter, the fraction of the organisms exhibiting the v e > v max p property would dominate in the system at the expense of their less active counterparts. The v e > v max p feature could not be maintained over time, otherwise an exponentially growing population would stray from its dilution rateimposed equilibrium, what is not observed in the experiments. Presumably, a cell which v e overreaches v max p would exhaust most of its resources to do so and be likely to give birth to one (or two) less active daughtercell(s) when it divides. This would be tantamount to setting a more asymmetric P v p (v p , v p ′ ) redistribution kernel, without hampering the rest of the modelling. This is in agreement with experimental measurements provided by Yasuda [START_REF] Yasuda | Algebraic and geometric understanding of cells: Epigenetic inheritance of phenotypes between generations. righ esolution wiroil ingle gell enlytis[END_REF] pointing to the interdivision time distribution of a constantlyfed population in a perfused reactor: even though some of the extant organisms are thriving, they can give birth to much less active daughtercells which interdivision time is twice the mothercell's. The data are provided on gure 5.15 for the sake of clarity.

Uptakewise, that scenario would make it necessary to release the q S ≤ q Pmax longterm constraint, for instance through the mobilisation of another glucose assimilation system which preferred eld of action overlaps the PTS's. Indeed, Ferenci [24] noted in his 1990s research works the existence of more than two dedicated membrane transporters, the socalled symporter playing a role in the overall substrate uptake should S be high enough at the cell's vicinity. One last remark from Yasuda's experimental data pertains to the dierence in size allocation among normal and elongated cells. It seems that the size redistribution is more asymmetric among the longer mothercells which happen to be the tter in the population, what could be explained by the little they are given to settle down and consolidate their lengthening poles before ceasing to exist. This observation hints at the conclusion that not only is the daugthercells' growth potential redistributed over a wide range if their mother is thriving, but the fraction of the dividing organism they are handed down is also massively impacted by the mothercell's tness: in other words, it is It is worth a mention that in equation (3.12), the bacteria's maximal uptake rate q Pmax has been picked in order to t the order of magnitude of the 1g glucose pulse's assimilation with Sunya & al.'s experiment operating at a similar dilution rate. It is possible though that the extant cells do not uptake the neighbouring glucose at the q Pmax rate to the extent that this liquidcell transfer is energy hence oxygenconsuming and the dissolved oxygen dwindles to almost 0 throughout the pulse according to [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]. This renement missing in the (1)(4) metabolic model, the value of q Pmax may be underestimated, explaining the seemingly measly maximal growth rate. This has no impact on the qualitative trends the (3.11) model is reproducing though.

The dilution rate stepdown experiment

Starting once again from section 4.4's data, a slump in the dilution rate from 0.2h -1 to 0.05h -1 is performed in this paragraph, the numerics featuring on gure 5.18. As S becomes scarce, the permease system attempts to oset the lack of eciency of the substrate-specic PTS mechanism. Nevertheless, it does not prevent a 5time decrease in the actual growth rate in starving conditions.

A closer look at gure 5.18 might deceive the reader who would hastily interpret from the numerics that acetate is transiently produced in an glucoseempty chemostat. This production is an statistical artifact that comes along with a proportional decrease in biomass due to the randomness in the cells' residence time, the MonteCarlo algorithm being the prime culprit in this glitch. More precisely the removal of, say, 0.1 % of the extant cells within a short time interval makes the same substrate oer slightly less restrictive, prompting some of the individuals to process the suddenly more profuse glucose into acetate, the converse phenomenon occuring when X increases due to the statistical noise in the MonteCarlo treatment of the biotic phase. t 0 + 1 will be given by the equation: The shape of the length distribution nds its root in the very small probability that a cell reaches a signicantly larger length than l c before dividing if D is responsible for a growthlimiting residual glucose concentration. The lower S in the reactor, the lower the individuals' lengthening rate, crippling the bacteria's growth beyond the presumed standard length at rupture l c . Such a behaviour is beyond the reach of (3.11), mostly because it is geared towards strong perturbations the biotic phase responds to with an observable latency. Indeed, if a stable chemostat is disrupted by a massive glucose pulse, the translation in terms of growth rate is measured in hours. However the progressive acceleration of the draining circuit is viewed by the organisms as a small perturbation they are most likely capable to deal with at rst through a mobilisation of some cytoplasmic resources. This feature could be included in the model via the addition of a stock variable with the aim of providing a contingency supply for a short period of time if required, the stock's feeding coming for instance from the diversion of some overuptaken glucose in case of abundant supply.

dl dt = v e 1 -l l 0.05 l(t 0 ) = l c ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ⇔ 1 - l c l 0.95
Chapter 6

Conclusion

Understanding bacteria population dynamics requires complementary standpoints with the aim of formulating evolution laws which numerical simulation allows for qualitative and quantitative comparisons with experimental measurements. In this context, this work has delved into dierent paths geared towards a ner understanding of biological PBEs.

Mathematical advances

From an analysis point of view, most of the results published in the literature were consecrating a bounded rupture function with little care to the ctitious weight that lies on nonphysical particle sizes, what has been corrected in part 2. The solution to a sizestructured model has been proven continuous with respect to both time and the inner coordinate, and it has been demonstrated that the Malthus eigenfunction associated to this integrodierential equation is C 1 under reasonable modelling assumptions, testifying to the wellposedness of the problem. A protracted debate concerning the relationship between the mean interdivision time in a reactor and the macroscopic time scale of the renewal has also been wrapped up and the following analytical formulae can be tested against microbiology experiments:

⟨τ ⟩ ≤ ln(2) D ⟨a⟩ + ⟨τ ⟩ = 1 D ⟨a 2 ⟩ + ⟨τ 2 ⟩ = 2 D ⟨a⟩
It must be put to the reader's attention that no expression for the cell length PDF is accessible because the integral ∫ γ(l ′ )P (l, l ′ )n(t, l ′ ) has no specic shape. More precisely, the introduction of the kernel P comes from experimental data tting but does not capture the biological triggers of the division phenomenon. Agestructured models are much better suited to this end, being agreed that one dividing cell gives birth to two nullage cells.

Modelling claims

Modellingwise, a 5D formulation has been proposed in chapter 3 with the idea of uncoupling growth and uptake by delving into the cells' inner machinery. Its inner coordinates are made of the bacteria's size, their lengthening rate and the main features of two membrane transport mechanisms: activity of the PTS system, permease number and degree of induction. A metabolic model reduction, essentially consisting in removing the intermediary metabolites (which balance is thought to be neutral at any time) from the operating biochemical pathways, was required for the computational time remain reasonable in view of the stateoftheart routine processors. Albeit aordable, this formulation is the source of two conclusions which experimental measurements make for supporting evidence. Firstly, due to their own markovian history in a reactor, all cells will respond to the same environmental oer according to their particular tness. Secondly, the organisms will not look for a maximisation of their growth rate but are geared towards the most energetic metabolic mode allowed at each time by their physiological state, the latter being highly unlikely to instantaneously adapt to the environmental oer. These original conclusions give rise to a cellcentred interpretation of the observed byproduct excretions in the wake of a strong environmental perturbation.

All the inner coordinates are described with a rstorder ODE, meaning that their adaption to the culture condition exhibits a necessary latency. This very delay is essential to capture the transient surges in substrate uptake in the seconds following a glucose pulse for instance, in line with [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]. It also allows for a removal of the standard algebraic relationships between residual substrate concentration and cellscale uptake and lengthening rate. Such algebraic formulae are retrieved at steady state though, but have to be viewed as a consequence of the environmental regulation of the individuals' features instead of intrinsic properties consecrated by the model.

The idea behind the said model reduction is a coupling with CFD codes to simulate real life experiments and predict yield coecients from industrialscale cultures. In this context, massive substrate concentration gradients have to be taken into account due to their inuence on the cells' tness. This consideration is addressed in section 3.3.1 in the context of one perfectly mixed hydrodynamic compartment. In a 10 5 L industrial fermenter, the physical regimes exhibit a much larger spectrum because some zones are hardly fed and the turbulence can aect the monomer transport at the mesoscopical scale too.

Numerical aspects

Three numerical methods (eulerian, lagrangian and statistical) have been implemented to solve the vedimensional PBE discussed in the third part of the document and crossvalidated in a test case consisting in a chemostat convergence to steady state. Both the numerical accuracy and the compuational time have been evaluated, entailing a preference for the MonteCarlo code throughout most of the fth chapter. The calculation of the cells' residence time has also been discussed in case a dilution rate shift is treated by the MonteCarlo algorithm.

Perspectives

Mathematical advances would mostly consist in attempting to nd similar relations pertaining to sizestructured models as chapter 2's formulae emerging from agestructured models. To this end, the formulation would have to be headed towards the removal of the datatting P l redistribution kernel, what probably requires the assessment of a fundamental biology principle that has yet to be understood.

Future works can evolve in many directions with the aim of striking a balance between computational time to solve the population dynamics and level of detail of the cells' metabolism.

Modellingwise, although the latency in the response to environmental perturbations is compulsory to explain the uncoupling between growth and uptake, experiments carried out in an accelerostat (cf. [START_REF] Nahku | Specic growth rate dependent transcriptome proling of Escherichia coli K12MG1655 in accelerostat cultures[END_REF]) tend to hint at an instantaneous increase in growth rate when a iF goli strain is submitted to a progressive speedup. This gears future research works towards the inclusion of a stock variable to leave some slack in the modelling. In parallel, the metabolic model could be enriched by considering the inclusion of the energetic cost associated with the S ext → S stock reaction, what would close the energy balance that goes with the material balance driven by the liquidcell transfer of chemical compounds.

The organisms' uptake can also be rened by taking into account the existence of 3 or more transport systems (cf. [24]), which preferred eld of action overlap, to release a maximal growth rate constraint that is thought to be challenged when a steadystate is disrupted by strong perturbations (cf. [START_REF] Shik | Regulation of Ribosome Synthesis in Escherichia coli Eects of Temperature and Dilution Rate Changes[END_REF]).

The generational redistribution in growth potential could be rened from experimental evidences bearing upon socalled elongated cells. It is thought that a thriving bacterium reaches its septation size too quickly to settle its lengthening poles before dividing, triggering an asymmetric size allocation in comparison with the normal case that involves a ≈ 1h time interval between two consecutive division events. Including some information pertaining to the mothercell's tness in the length redistribution and proposing a (potentially bimodal) P v p (v p , v p ′ ) kernel that heeds the microbiologists' conclusions are two examples of model improvements from the framework that constituted the foundation to chapter 5's numerical simulations.

If the biological model is to be incorporated in a CFD code to simulate a population's behaviour in an industrial tank, solving NavierStokes's equation in coupling with the PBE through a splitting method is a too timeconsuming approach as it stands, prompting the need to focus on a simplication of the hydrodynamics via algebraic methods such as Proper Orthogonal Decomposition to approach the vector eld by a few of its most revelating modes. The biology could also be simplied by assuming for instance that the uptake machinery adapts instantly to the substrate oer the bacteria are confronted to throughout their trajectory in the system, what is a convenient assumption if the time step of the solution to the PBE is much larger than the characteristic time of the transport. In the latter framework, both the cells' uptake and lengthening rate would be calculated from the summation of a function of the timeaveraged substrate concentration and a deviation from this integral quantity, emulating the socalled ReynoldsAveraged (RANS) numerical treatment of the NavierStokes equation. These are longterm perspectives, but the roadmap towards this ultimate goal appears more clearly and the steps to follow are already underway.

Introduction

From a chemical-engineering perspective, aerated bioreactors have to be regarded as three-phase reactors, and the prediction of mass transfer between phases is a central issue.

Given the abundance of literature pertaining to the gas-liquid aspects of the problem, this topic will be put aside here. One point specific to liquid-cell mass transfer is that there is no * Corresponding author.
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thermodynamic law to prescribe the relationship between the concentrations at the cell interface. Thus, in living systems, the mass-transfer intensity through the cell membrane is dynamically adjusted in order to fit the cell's needs (Ferenci, 1996). The latter can correspond to a maximum growth rate in a non-limiting environment, or be dictated by the environmental conditions such as the imposed dilution rate in a chemostat. As a consequence, in exponentially growing cultures (balanced-growth phase) and in chemostat cultures, a strict proportionality is observed between the mass-transfer rate (or uptake rate in the field of biochemical engineering) and the growth rate. Moreover the latter is correlated to the https://doi.org/ residual concentrations of nutrients in the liquid phase. These well-known observations led to the formulation of specific growth ( ) and uptake rates (q S ) as algebraic functions of the substrate concentration in the liquid phase:

= f (S), (1.1)

q S = Y SX ( ) , (1.2) 
where Y SX is the average mass of substrate required to yield 1 g of cells. Note that these models are relevant to fit experimental data (they are in fact empirical correlations), and thus are limited to the situation in which they are fitted. In particular, the steady-state or balanced-growth assumption implies that they are time-averaged laws.

In light of these remarks, we could preferably use a more explicit notation for the specific growth ( ¯ ) and uptake ( qS ) rates:

¯ = f (S) (1.3) qS = 1 t+ t q S (t) dt ≈ Y SX ( ¯ ) ¯ , (1.4) 
where the overbar indicates a time average. Clearly, the value of the time scale must be large enough so that the mean uptake rate becomes constant and proportional to the mean specific growth rate. These time-averaged quantities are relevant to describe the pseudo-steady-state dynamics, however they are not applicable to the transient response (over time scales shorter than ) because they assume an instantaneous adaptation of the living system [START_REF] Silveston | Forced modulation of biological processes: a review[END_REF]. In view of improving the dynamical modelling of bioreactors, it is important to be able to prescribe a substrate uptake model valid on the shortest time scale possible. As far as we know, there are only a few studies dedicated to this point. Chassagnole and co-workers derived a dynamic model for the glucose uptake through the PhosphoTransferase System (PTS) [START_REF] Chassagnole | Dynamic modeling of the central carbon metabolism of Escherichia coli[END_REF] based on a detailed description of the glycolysis and pentose-phosphate pathways. Even in its reduced form, this model involves five internal concentrations and requires a large number of parameters to be fitted. Moreover, Ferenci has identified the existence of multiple transport systems whose activity depends on the substrate concentration (Ferenci, 1996) and proposed that the uptake rate is computed as the sum of the contribution of each system (Ferenci, 1999a).

The experimental measurement of the substrate uptake rate has received much attention in the last decades. Neubauer's 1990s experimental work [START_REF] Neubauer | Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF] revealed that the instantaneous uptake rate of Escherichia coli cells, cultivated in a two-compartment (Continuous Stirred Reactor + Plug Flow Reactor) bioreactor operated in fed-batch mode and subject to repeated exposures to high glucose concentrations, could largely exceed the maximum uptake rate observed in a batch reactor. The experimental device was such that the first 120 s after the exposure to a glucose pulse could be observed with a temporal resolution of 30 s. More recently, Lara et al. (2009) using a bioscope measured the instantaneous uptake rate of E. coli cells sampled from a continuous stirred bioreactor. Their results confirmed in both aerobic and anoxic conditions that the uptake rate in the few seconds following the addition of glucose largely exceeds the maximum uptake rate measured in batch culture (based on the defini-tion of a substrate to biomass yield and a maximum specific growth rate). The temporal resolution here is raised up to ≈3 s and the duration of the observation limited to 90 s. These are experimental evidence that the correlation between growth, uptake and the substrate concentration established in nonlimiting or steady-state conditions is not valid on very short time scales ( < 10 s) when the transient response of the uptake system is involved. The results obtained by [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF] who examined the dynamic response of E. coli cells to glucose pulses in chemostat cultures, with a temporal resolution of ≈25 s over longer periods of time offer an opportunity to establish a closure model in the situation where ≈ 5-30 min. [START_REF] Natarajan | Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures[END_REF] examined the uptake of a glucose analogue at the cell level using cytometry. Their results revealed that the substrate uptake rate (after 5 min following a pulse addition) is distributed in the population of cells.

The use of the population balance concept to deal with the population dynamics has been identified as the most natural way to proceed, for some time [START_REF] Fredrickson | Continuous propagation of microorganisms[END_REF]. PBMs were first introduced by Smoluchowski (1916) to model the size of particles undergoing coalescence and rupture.

In biology, PBMs are rife to describe the dynamics of a cell property (age, size, mass, intracellular concentration of an enzyme representative of the cell's state) among a population of individuals. Such modelling of biological systems was introduced by Von [START_REF] Forster | Some Remarks on Changing Populations[END_REF] to take into account the influence of mortality over the age of a population. The cell-cycle effect was then emphasised by [START_REF] Bell | Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures[END_REF] under the assumption that one cell gives birth to two identical daughters. In the earliest works, 1-D PBM have been derived. Most of proposed models [START_REF] Eakman | Statistics and dynamics of microbial cell populations[END_REF][START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF][START_REF] Shah | Monte Carlo simulation of microbial population growth[END_REF], and the many papers these references have inspired, relate a cell's state to its mass or volume, which requires a formulation of other properties (such as age, growth and reaction rates, or substrate consumption for instance) as functions of the mass, which has proved insufficient and rather inconclusive (for all processes that are not related to mass in the cell functioning). Many other variables may turn out to be relevant depending on the biological behaviour of the cells under consideration. One of them is maturity, highlighted by Trucco (1965), and understood [START_REF] Lebowitz | A theory for the age and generation time distribution of a microbial population[END_REF] as the cytological age, a c ∈ [0, 1]. This formulation yields a boundary condition that connects the number density at a c = 0 and a c = 1: the production of new born cells (with a c = 0) equals the flux of cells reaching a c = 1. A unique solution in C 0 (R + , L 1 (˝)) (˝ once again standing for the internal variable's domain) is inferred from the initial condition.

In general, 1-D PBMs fail to provide a comprehensive perspective across different time scales. Models aimed at depicting the cell cycle (for which the internal variable may be mass, length or volume) are ill-adapted for explaining the variations in a population's total mass. On the other hand, when it comes to maturity (consequently the doubling time), all agerelated information is filtered and only phenomena driven by a characteristic time equating to cell growth are reachable.

An alternative is to develop a multi-dimensional PBM that includes many cell properties like DNA concentration [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF][START_REF] Stamatakis | A mathematical and computational approach for integrating the major sources of cell population heterogeneity[END_REF] or enzymes expression levels (Mantzaris, 2005), which has turned out to be a significant step forward regarding mathematical modelling in biology. However, the completeness of such a model is always subject to doubt, and due to the large number of internal variables they can quickly become computationally intractable. Rotenberg (1977Rotenberg ( , 1983) gave a complete 2-D model for the cell cycle, which includes age and growth rate as internal variables. [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF] extracted an eigenvector that geometrically shapes the steady-state solution and an eigenvalue (the so-called Malthus parameter) that drives the exponential steady-state growth in time. The existence and uniqueness of the solution in C 0 (R + , L 1 (˝)) is guaranteed provided the initial condition lies in L 1 (˝) and the fragmentation function in L ∞ . In other words the existence of a division phenomena at the cell level ensures that the number of cells will eventually grow exponentially with time after a transition period. This result is independent from the growth rate law rate prescribed at the cell level. Perthame's seminal work (Perthame, 2007) was enlightening regarding the L 1 exponential decay of the solution to a transport-fragmentation equation such as the cell cycle dynamics, along with bounded variation regularity, provided the breakage function lies in L ∞ on its domain.

At the end of the day, in order to have a description of both the cell-scale and population-scale behaviours, a PBM needs a minimum of two degrees of freedom. These observations argues for the development of a PBM describing the cell cycle as the result of the following steps: (i) transport of nutrients down to the cell membrane, (ii) substrate uptake, (iii) transformation into new cell constituents leading to cell elongation, and (iv) cell division.

The principal objective of this work is therefore to introduce a 2-D PBM for cell growth that allows to distinguish between growth in mass and growth in number. The present model can be regarded as an extension of a previously published 1-D model whose characteristic time scale is the inverse of the population maximum specific growth rate (Morchain et al., 2017). Introducing a second dimension allows the uncoupling of the growth in mass (related to substrate uptake) and the growth in number (related to cell division). In the first part of this paper, the 2-D model is presented along with the hypothesis and assumptions. Then some properties of the model are examined. In particular, we discuss the situations leading to the equivalence between growth in mass and growth in number. We also propose an integration of the 2-D PBM leading to a population-averaged model and we enlighten the consequences of such a simplification on the predictive capacity of the integrated model. In the third part, the issue of formulating an instantaneous uptake law is addressed. Finally, the proposed model is subjected to validation through the simulation of a pulse experiment in a chemostat for which data are available in the literature.

Modelling framework

Statement of assumptions regarding the biological system

(i) We consider in this work the case of rod-shaped cells having a constant diameter d and a varying length l. This assumption corresponds to various, widespread microorganisms such as E. coli [START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF] and Schizosaccharomyces pombe [START_REF] Nobs | Long-term single cell analysis of S. pombe on a microfluidic microchemostat array[END_REF]. Note that the cell volume d 2 4 l and surface d l are only functions of l. In this particular case, the ratio of the cell surface to the cell mass is constant A e = 4 c d where is the cell mass density.

(ii) Besides its length, each cell in the population is characterized by its elongation rate v. This rate is related to the physiological state of the microorganism and more specifically to the rate of anabolism. For a given strain, Nobs and Maerkl (2014) found that the elongation rate is cell-specific and constant throughout the cell cycle. (iii) The cell division is driven by a size mechanism, thus the probability that a cell divides is related to its length [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF]. When a cell of length l divides, two daughters of approximate size l/2 are formed. The sum of the daughters' lengths equals that of the mother cell, which can also be regarded as a conservation of the total cell mass through cell division. (iv) The elongation rate is redistributed at cell division, which means the two daughters may not be able to perform anabolic reactions at the same rate as their mother. If both newborn cells can thrive with an arbitrary rate of anabolism, the latter is reportedly distributed around that of the mother's. This is consistent with the fact that the cell content is not evenly distributed among the two daughters (for instance Stamatakis and Zygourakis (2010) assumed the redistribution follows a hypergeometric law). (v) In order to grow, cells uptake a carbon source (typically glucose) and oxygen. At steady state in a chemostat or in the balanced-growth phase of a batch culture, the specific growth rate of the entire population is correlated to the concentration of the substrate in the culture medium. This correlation takes the usual Monod form:

= max S K S + S O 2 K O 2 + O 2 . ( 2.1) 
where max is the maximum specific growth rate, K S the affinity constant for substrate and K O2 the affinity constant for oxygen. Note that these constants are empirically determined and correspond to population averaged values (Ferenci, 1999a).

(vi) At the cell scale, the uptake rates differ from one cell to another as revealed by [START_REF] Natarajan | Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures[END_REF]. However, as stated in the Introduction, the overall uptake rate is algebraically linked to the population growth rate at steady state. (vii) During the transition period, the population specific growth rate relaxes toward the equilibrium growth rate defined by Eq. (2.1). The shape of this adaptation in a biological-systems context is discussed in Morchain et al.

(2013) and Morchain (2017).

2-D population balance model

Let ∈ R 2 be a set of internal properties that fully characterize a cell's state. For the sake of completeness, the cell growth is explored in a continuous and perfectly mixed bioreactor, characterized by its dilution rate D (1/h). The PBM for such a population reads

∂ ∂t N(t, ) + ∇ • [ ˙ N(t, )] + DN(t, ) + ( )N(t, ) = 2 ( )K( , )N(t, ) • d (2.2) where = (l, v)
T is the vector of internal properties,

N is a number density function, and N(t, l, v)dldv is the number of cells with a rate of anabolism v and length l at time t > 0, ˙ is the vector of velocities in the space of internal variables, namely ˙l = ∂l/∂t and v = ∂v/∂t, ( ) is the rate of cell division, and K( , ) is a redistribution kernel that defines the probability that a cell in state gives birth to a cell in state .

The factor 2 on the right-hand side of the equation indicates that one mother cell produces to two daughter cells. The boundary condition assumes a regularity condition (i.e.

∂˝˙ k N(t, ) = 0 ∀k ∈ {1, . . ., n}), and the initial condition N(0, l, v) belongs to L 1 (R + , [0, v max ]).

In order to get the full set of equations for the dynamic simulation of a continuous bioreactor, the PBM is complemented with two mass balances for the carbon substrate, S, and the dissolved oxygen, O 2 :

dS dt = D(S f -S) - c d 2 4 q S lN(t, l, v) • dldv (2.3) dO 2 dt = K L a(O 2 -O 2 ) -DO 2 - c d 2 4 q O 2 lN(t, l, v) • dldv (2.4)
where c is the density of cells (assumed constant and equal to 1000 kg/m 3 ), q S and q O 2 are the substrate and oxygen specific uptake rates, respectively, S f is the substrate concentration in the feed (g/L), and O 2 is assumed constant and given by Henry's law. The reader should note that all mass densities are given in kg/m 3 , but are converted into g/L in the simulations. These mass balances are coupled to the PBM through the integral terms on the right-hand sides, which represent the contribution of the entire population. We may recall here that c d 2 l/4 is a cell mass.

Modelling the cell division

Many breakage laws have been implemented in the literature [START_REF] Hatzis | Multistaged corpuscular models of microbial growth: Monte Carlo simulations[END_REF][START_REF] Fadda | A novel population balance model to investigate the kinetics of in vitro cell proliferation: Part I. Model development[END_REF][START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF].

Here, following Mantzatis (2006), we take

(l) = l l c Ä (2.5)
where l c is a constant characteristic length and Ä, a shape parameter, is set to 5 as proposed by Mantzatis (2006). This smooth function allows cells to grow up to a length comparable to l c , and cell division is almost guaranteed at l = 2l c . However, it does not theoretically preclude the possibility that a cell never stops growing. The value of the parameter l c is set to 10 -5 m according to Nobs and Maerkl (2014).

Modelling velocities in the internal phase space

The length change is taken to be proportional to the rate of anabolism:

˙l = ∂l ∂t = a min(v, ). (2.6) 
This formulation ensures that a cell elongates at a rate proportional to the rate of anabolism under the condition that the medium is not depleted in carbon substrate and/or oxygen. The time scale associated with this elongation is the interdivi-sion time. Since the elongation rate v is a distributed property, it results that the combination of (2.5) and (2.6) will produce the experimentally observed interdivision time distribution (Yasuda, 2011;[START_REF] Nobs | Long-term single cell analysis of S. pombe on a microfluidic microchemostat array[END_REF].

The parameter a is a conversion constant that connects the rate of anabolism to the rate of elongation. This value is clearly strain dependent and, in the present work, it is adjusted to the total cell mass measured in the experiments simulated (see Table 1 for parameter values).

The relationships (1.3) and (1.4) reflect the well-established fact that the uptake rate is proportional to the specific growth rate at steady state. The latter is correlated to the residual substrate concentration. However there is much experimental evidence that the specific growth rate (and hence the elongation rate) is not correlated to the substrate concentration in the transient regime (see Perret, 1960 

v = ∂v ∂t = ⎧ ⎪ ⎨ ⎪ ⎩ 1 T + v ( -v) if v ≤ 1 T ( -v) if v ≥ ⎫ ⎪ ⎬ ⎪ ⎭ (2.7) 
where is given by Eq. (2.1). The value of the parameter T was found to be around 1.25/ max .

Modelling the redistribution kernels

The redistribution kernel K( , ) accounts for the probability that a mother cell with internal variables gives birth to a daughter with internal variables . Without precise empirical knowledge of the redistribution process of internal variables, we assume that the cell length and the rate of anabolism are independently redistributed at cell division. Thus, the redistribution kernel is a tensor product of two independent kernels, each one involving one internal variable. This leads to K( , ) = P(l, l )Q(v, v ) with P being the length redistribution kernel, and Q the rate of anabolism redistribution kernel.

In general, P(l, l ) and Q(v, v ) satisfy the following properties:

P(l, l ) = P(l -l, l ), l 0 P(l, l ) • dl = 1, vmax 0 Q(v, v ) • dv = 1. (2.8)
The first states that a cell gives birth to two daughters cells, and the two others are normalization constraints. In this work, the redistribution kernel in length is

P(l, l ) = l l m-1 1 - l l m-1 (2m -1)! (m -1)! 2 (2.9)
with m = 10, so that P is a beta distribution centred around l /2. We recall here that the cell division occurs around the characteristic length l c appearing in the definition of (l). The kernel for the rate of anabolism is such that the daughter's rate is distributed around that of the mother cell according to a truncated Gaussian distribution:

Q(v, v ) = exp -1 2 2 (v -v) 2 1 0≤v≤1 vmax 0 exp -1 2 2 (v -v) 2 dv . (2.10) 
The variance is set arbitrarily to = 10 -2 in order to limit the randomizing effect of cell division on the rate of anabolism. With few experimental data regarding this parameter, it was assumed here that v is evenly distributed by the daughter cells, which therefore inherit a state rather similar to their mother's.

Uptake rate models

The formulation of an suitable uptake model expressed as a function of the cell properties and the available substrate is a key issue. Indeed, the uptake model actually defines the rate of mass transfer between the abiotic and the biotic phases; it consequently plays the role of a closure law for the set of Eqs.

(2.2) and (2.3). In this paper, following Ferenci (1996), we consider here two mechanisms contributing to the glucose uptake at a cell's membrane:

(i) PTS are responsible for the substrate uptake at high S, (ii) Permeases are instead characterized by a smaller affinity constant, which makes this system more efficient at low S.

These processes ease the cell's adaptation to the local environment and take into account the anticipatory effect that allows cells to ratchet up/down their backbone metabolism. When glucose is omnipresent, cells favour the sugar specific PTS system, whereas starvation triggers the non-selective option that consists in increasing the membrane permeability to allow the uptake of various carbon sources into the cell.

Accordingly, in this work, it is proposed that the uptake capacity S of the cells takes the form

S = Y SX r PTS S k PTS + S + ˛(v, S) 4 d k cat S k Perm + S = PTS + perm .
(2.11)

The first term accounts for the PTS contribution to the overall substrate absorption. The second one models the permease transport system. Both correspond to active transport and are mediated by an enzymatic process with its own affinity constant. Therefore, k Perm and k PTS are defined at the cell scale. The ratio 4/( c d) corresponds to the cell surface-to-mass ratio, valid for rod-shaped cells. Thus ˛ indicates the permease density (number of permeases per surface unit), bounded above by a maximum value ˛max . k cat is a rate constant for the substrate uptake through one permease (g S permease -1 h -1 ). The value of these parameters have been set in order that both contributions are comparable in the interval S ∈ [k Perm , k PTS ] (see Table 1).

In (2.11), the PTS uptake rate is defined by

r PTS = + min(v, ) 2 (2.12) 
This formulation is inspired by the work of Chassagnole et al. (2002) in which the uptake through PTS was correlated to both the external glucose concentration and the ratio Phosphoenolpyruvate (PEP)/Pyruvate(PYR). The transformation of PEP into PYR is the node connecting the glycolysis pathway to the TCA Cycle. The carbon flux that can enter this cycle is dependent on the availability of an electron acceptor (namely oxygen, if present). In case of oxygen depletion, the assimilation capacity through the PTS system is thus hindered by the accumulation of PEP whose conversion is slower because of insufficient energy. However, on short time scales, the pool of PYR may allow a transient boost in the carbon uptake through the PTS system in response to a glucose pulse. Rather than using a complex dynamical model for this, we propose the formulation (2.12) in which the absence of oxygen will limit uptake whilst allowing a transient over-assimilation if oxygen is present. The dependence on v ensures that the uptake rate through the PTS system, r PTS , reaches an equilibrium value at steady state. At equilibrium, the population average specific growth rate ṽ equals the optimal growth rate . Thus one obtains that the equilibrium value of r PTS equals , reflect- ing that the PTS system adjusts itself to allow for the optimal growth rate under the given environmental conditions. In (2.11), the assumed permease density distribution is

˛(v, S) = ˛max exp - ˛max u v (2.13)
where ˛max is a constant parameter that reflects the cell's membrane permeability, and u obeys the dynamical equation

du dt = - 1 ( qS -Y SX ṽ) (2.14) 
with a constant characteristic time that controls the time scale of change in the membrane permeability. The driving force of this adaptation is the difference between the overall substrate uptake rate and the overall population need. Here the notation • stands for the average over the whole population.

Fig. 1 shows the cells' more efficient glucose uptake mechanism as a function of the residual substrate concentration. This figure is found from a simulation of chemostat cultures at various dilution rates leading to different residual substrate concentrations. At low S, the majority of the total capacity S is the contribution of the permeases, whereas the latter are inhibited by the PTS at high S, entailing a decrease in the perm during the PTS uptick. The rationale behind the above assumptions is that at the single-cell level, the available substrate that is likely to be absorbed is determined by phenomena operating at different scales: (a) meso/micromixing, (b) the effect of neighbouring cells, and (c) the cell's growth history (the so-called memory effect). The biological meaning of ˛ is to represent a multiscale quantity. Thus, it is a function of the cells internal properties, but is heavily influenced by the hydrodynamics that affect the available amount of substrate at the cell membrane. It consequently blends mesoscopic and microscopic phenomena and operates upon a mechanical and physiological boundary. The permease density distribution is implemented such that at small D (entailing a small ṽ), the substrate uptake is controlled by the permease (i.e. ˛( ṽ, S) is substantial), whereas at high D, ˛( ṽ, S) will be negligible in comparison to the PTS system that then yields the majority of the overall assimilation. These features fit the observations by reported by Ferenci (1996), Ferenci (1999b) and Kovàrovà-Kovar and Egli (1998).

Fig. 2 illustrates the contributions of PTS and permeases to the total uptake as a function of the rate of anabolism. Here, for demonstration purposes, it is assumed that the N(t, l, v) distribution is Gaussian and this distribution is normalized by its maximum value. The situation depicted is that of a population at steady state in a chemostat at D = 0.15 h -1 . Thus the distribution is centred around ṽ = 0.15 h -1 . The normalized function ˛(S, v)/˛m ax decreases and consequently limits the role of permeases in the substrate uptake for those cells with a high rate of anabolism. On the contrary, for those cells with a lower rate of anabolism (v = 0.15 h -1 ), the permeases contribute to two thirds of the total uptake capacity. This feature of the model allows an overshoot in the uptake rate when starving cells are exposed to high substrate concentrations as has been observed experimentally [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF][START_REF] Neubauer | Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[END_REF].

Interphase mass-transfer limitations

A salient feature of the substrate uptake model proposed here is that we distinguish between the uptake capacity of the cell, S , and the actual uptake, q S , which can be limited by the transport of the substrate down to the cell scale. This limitation is due to the meso/micromixing that can hamper the uptake regardless the cells' capability to consume the substrate. This modelling approach, which has already been presented in previous work (Morchain et al., 2017), is based on the ratio of uptake and micromixing times. It states that the uptake rate is defined by

q S = S 1 -exp - S S c (2.15) 
where the model for S is ((2.11). The characteristic substrate concentration S c is defined by (Morchain et al., 2017)

S c = t M Y SX ṽX (2.16)
with X the total biomass (calculated as an integral over the entire cell population), t M the micromixing time (set to 50 ms in this study), and ṽ is the mean rate of anabolism of the population.

Following the same logic the actual oxygen uptake rate definition includes the possible limitation by the gas-liquid mass transfer:

q O 2 = O 2 1 -exp - K L aO 2 X O 2
(2.17)

where K L a is a constant that takes into account the O 2 transfer from the gas phase to the liquid phase. Since O 2 is uptaken when glucose is absorbed by a cell and is not stored in the cytoplasm, O 2 is assumed equal to q S , the eventual glucose uptake (a ratio of 1 g of oxygen per gram of glucose is assumed).

Numerical methods

The population balance (2.2) is solved with both a first-order finite-volume (FV) method and a Monte-Carlo (MC) algorithm. Throughout this section, the redistribution kernels P(l, l ) and Q(v, v ) are chosen beta and Gaussian, respectively. All codes are implemented in C++14. 

The FV method

The domain on which the PBM is solved is assumed to be a rectangle [l min , l max ] × [0, v max ] and the PDF is computed on (N + 1) × (M + 1) nodes. In the following, N n i,j stands for the discrete approximation of N at time t n and nodes (l i , v j ) ∈ [0, N + 1] × [0, M + 1], and S n the substrate concentration computed at time t n . For the number density function, a classic local Lax-Friedrichs scheme was implemented:

N n+1 i,j = N n i,j - t l ⎛ ⎝ F n i+ 1 2 , j -F n i- 1 2 , j ⎞ ⎠ - t v ⎛ ⎝ G n i,j+ 1 2 
-G n i,j- According to the Rusanov scheme, the fluxes explicitly read The substrate concentration S(t) is computed using a Riemann sum, with first-order integration at the domain boundary and second-order inside: 

The MC method

This Lagrangian tool was used in a test case for comparison with the results given by the FV code. Given an initial number of cells N 0 at t = t 0 whose values were Gaussian distributed, the procedure is the following:

(1) Set t → t + t. An integer A is set equal to 0. A cell's residence time i is given by the value of D and a random number v i : i = -

log(v i ) D .
(2) Random numbers u i , i ∈ {0, . . ., N 0 -1} are drawn from a uniform distribution. A is then set equal to 0≤i≤N 0 -1 1 u i <1-exp(-t i ) . If this sum is equal to 0, go back to 1). (3) If A > 0, all magnitudes are computed using the explicit Euler method on the interval [t 0 , t]. All ages a i are also updated. Considering the set B = {i|u i < 1exp(-t i )}, all cells with subscript in B will give birth to a daughter cell whose length, rate of anabolism and residence time are computed using respectively P(l, l ), Q(v, v ) and D. N 0 is also updated: N 0 → N 0 + |B|. (4) Considering the set C = {i|a i > i }, all cells whose subscript lies in C are withdrawn from the reactor and N 0 → N 0 -|C|. (5) The last step is the update t 0 → t and the conservative resize with respect to the system's cardinal.

Fig. 3 illustrates the convergence of the two methods toward the same solution. The number of cells in the MC approach was limited to 20,000 which may explain the minor discrepancies. 

Moments of the population balance

In this section, the moments of the population balance are introduced and used to demonstrate some properties of the PBM.

Equivalence between growth in number and growth in mass

Solving Eq. (2.2) is equivalent to solving the infinite set of equations on its moments. The moments of the N(t, l, v) distribution are defined as follows: m p,q (t) = l p v q N(t, l, v) • dldv. Thus, the moment m 0,0 refers to the total number of cells, and the moment m 1,0 corresponds to the total mass, since the cell mass is proportional to the cell length. Let us establish the equation for these two moments. Starting from the general PBM (2.2), we obtain after some mathematical manipulation described in detail in Appendix A the following relationships: This equation can be rewritten in the same form as Eq. (4.6), so one condition for the growth in mass and in number to be equivalent is that the continuous culture is at steady state.

d dt N(t, l, v) • dldv = -D N(t, l, v) • dldv + (l)N(t, l, v) • dldv, (4.2) 
In a batch culture (D = 0), Eqs. Therefore, we have demonstrated that the population specific growth rate in number equals the population specific growth rate in mass if the culture is at steady state or if the population is growing exponentially.

On the relationship between the 2-D and population-averaged model

The usual unstructured model (or population-averaged model) takes the following form: In other words, the integral of the cell growth rate in mass over the population is roughly expressed as the product of the total mass multiplied by an average specific growth rate. This is only a rough approximation which, however, is justified if ˙l/l is constant, meaning that the growth is exponential. This observation clarifies the definition of as it appears in the standard unstructured model. For that model to be exact, should always be equal to ˙lN /m 1,0 (see Eq. (4.5)), whilst there is no information on the distribution in the unstructured modelling approach. It is therefore of no surprise that the unstructured model is not suitable to predict the transient behaviour of cell populations. One can further observe that cell division modifies the distribution N, but leaves the total mass unchanged. Because in Eq. (4.11) is defined on a mass basis, it is not possible to investigate the consequences of any process that would impact the cell number and the cell mass on separate time scales. Clearly, the mass transfer from the liquid to the cell (uptake) is one such phenomena since uptake obviously precedes cell division. As a matter of fact, it is a paramount interest to recall that the relationship between growth and uptake rates is made on a mass basis, whereas the exact definition of specific growth rate is made on a number basis, i.e., ¯ = ln 2/t d

The discussion above shows that (4.11) comes down to approximating an integral over the population by the product of the averaged quantities, the latter being only first-order accurate. This approximation is good for t → ∞, but it can be highly inaccurate if the system is disturbed from the outside, for instance if a pulse of substrate is injected into the reactor. The first-order approximation in this case is misleading for it states that the specific growth rate immediately ratchets up from an equilibrium value to an algebraic (S(t)). Because no distinction is made between cell mass and cell number, any gain in mass (uptake) is translated immediately into a higher specific growth rate which turns into a higher cell concentration which is simply inaccurate based on experimental observations.

5.

Results and discussion

In this part, we first perform a series of experiments to test our model behaviour in response to a pulse under fully aerobic conditions. Then we assess our model against experimental data obtained by [START_REF] Sunya | Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities[END_REF]. A population of E. coli cells is set to equilibrium in a chemostat. Pulsed addition of substrate with various intensities (0.08, 0.4 and 1 g/L) are imposed on the cell population. The macroscopic properties of cell growth were given by the authors ( max = 0.46 h -1 , apparent substrate affinity K S = 0.01 g/L, substrate to biomass yield at steady state Y XS = 0.42 g X /g S ). The oxygen concentration in the liquid phase was measured with a fast responding probe, the oxygen and CO 2 concentrations in the outlet gas flow were obtained from a gas analyser. Glucose, acetate and formate were also analyzed at high temporal resolution using a mass spectrometer.

The parameter values used in simulations are reported in Table 1.

Pulse addition without oxygen limitation

In this part, oxygen is set constant, equal to its saturation value so that it has no impact on the results. A continuous culture at D = 0.15 h -1 is simulated and a pulse of substrate of 1 g/L is imposed at t = 30 h. We present the evolution of the integral properties of the cell population (mass, number) as well as the distributions in length and rate of anabolism before the establishment of a steady-state. Interestingly, one can observe in Fig. 4 that the total mass and total number evolve separately and eventually tend to become proportional when the culture approaches steady state. From that point onward, examining the population growth on a number or on a mass basis becomes equivalent since the average cell mass is now time independent. Fig. 5 shows that the distributions in length and rate of anabolism become self-similar at the end of the preliminary phase that precedes the pulse addition.

The pulse addition of substrate results in a instantaneous increase in the cell mass because all cells can now elongate at their potential rate v instead of being limited by the environment (see Eq. (2.6)). However the evolution in terms of total cell number is not so sudden since cells have to elongate before they can divide into two daughter cells. Fig. 6 presents a closer view of this decoupling between growth in mass and growth in number.

These numerical results were theoretically predicted in Section 4. Note also that the slight differences in terms of number and mass between Figs. 4 and 6 are due to a change in the parameter lc which indirectly controls the average cell size and hence the total cell mass at steady-state.

Pulse addition with oxygen limitation: comparison to experimental data

In this part, glucose, oxygen, cell mass and cell number are calculated. A constant K L a = 300 h -1 was deduced from the experimental data at steady state prior to the glucose pulse. Integrating over the entire population leads to the total uptake rates for glucose and oxygen as well as the specific growth rate in number and the rate of mass change due to cell growth (elongation). Fig. 7 presents the evolution of the key variables of the dynamic response to a glucose pulse for the 0.4 g/L experiment. Just before the pulse, the PTS system contributes to approximately one third of the total glucose uptake (0.16 out of 0.37). Immediately after the pulse (t < 0.1 min), the total uptake rate jumps because of the PTS contribution. At that moment, oxygen is still present and this allows r PTS to step-up and to overtake the contribution of permeases to the total transport. Because the glucose uptake rate has increased but the cell had hardly no time to change its rate of anabolism, the total glucose uptake rate now exceeds the glucose consumption due to anabolism. The permeases start shutting down, because of that excess carbon flux, according to Eq. (2.14). Oxygen depletion takes place at t = 0.1 min. As explained in the model presentation, the lack of oxygen slows down the catabolic activity and r PTS falls down. Nevertheless, the still active permease system compensate the diminution of r PTS so that eventually the total uptake rate remains stable. The plateau following the initial overshoot is clearly visible in the experimental data but remained unexplained until now.

From 1 to 10 min, the glucose concentration linearly decreases which progressively reduces the demand for oxygen. Thus the dissolved oxygen concentration slightly increases, resulting in an increased catabolic activity. Hence r PTS goes up and permeases keep closing for the same reason as before (uptake exceeds the cell needs for anabolism). At substrate exhaustion, the rapid decrease of the sugar concentration creates a situation where q S becomes smaller than Y SX .v, so the cell receive a signal that the substrate flux into the cell becomes insufficient with respect to the cell needs (note that the concentration does not have to be extremely low for that message to be recorded by the cell (see Ferenci, 1996). This insufficient carbon flux signal triggers the increase in the permease activity. It is very interesting to observe that the dynamic model predicts that, as the sugar gets exhausted, the permease activity increases which explains how cells can anticipate the glucose exhaustion and manifest an apparent "anticipation capacity". This important characteristic of our model is clearly a benefit from a flux formulation in Eq. (2.14).

Fig. 8 shows the prediction of our numerical model compared to the experimental data for the three pulse intensities. In the simulation, the glucose uptake rate is slightly underestimated. The agreement is rather satisfying and we were particularly interested in understanding the origin of such similar uptake rates, irrespective of the pulse intensity. We came to the conclusion that the glucose uptake rate was in fact limited by the oxygen mass transfer during the experiments. Indeed, the maximum oxygen transfer rate is given by K L aO 2 . Considering the K L a value identified from the steady state concentrations, we conclude that the oxygen uptake rate is limited to 2.4 g O 2 L -1 h -1 which closely matches the observed glucose consumption rate in all experiments (0.4 g in 10 min or 1 g in 25 min). This observation supports the assumption made in the model that 1 g of oxygen is consumed per gram of substrate uptaken.

In the simulations, the glucose uptake is limited by the low concentration of oxygen (see the role of O 2 in r PTS ). Therefore the whole dynamics is controlled by this residual concentration of oxygen whose value is highly dependent on the constant K O2 . Fig. 9 shows the evolution of the dissolved oxygen concentration as predicted by the model. It is put to the reader's attention that O 2 approaching zero hampers the glucose uptake. This underestimation of the glucose uptake rate is therefore related to the low oxygen residual concentration. A lower K O2 would cause the oxygen concentration to be much closer to zero and this would also adversely reduce the r PTS . It appears that, the Monod kinetics states that the reaction stops if oxygen is zero whereas in fact the reaction rate would become limited by the gas-liquid mass transfer rate. This entails a caution related to the use of Monod laws to describe local phenomena in biology in general. The use of concentration in the kinetic law makes them unadapted to the situation where interphase mass transfer is the limiting phenomena. Actually, it would be preferable to avoid completely the use of Monod kinetics and to include a limitation of r PTS by the maximum oxygen transfer rate without any reference to the residual concentration of oxygen. Furthermore, the use of concentration based kinetic rates creates some numerical noise that could not completely avoided despite the semi-implicit strategy for the resolution. The behaviour after glucose exhaustion is not representative of the experiments because the oxygen uptake associated to the reconsumption of acetate is not included in our model. In this case, the permease contribution to the total q S is 2-3 times over its PTS counterpart. The permease system in that case is already almost saturated. At the beginning of the pulse, the PTS are immediately requested and their full-on functioning ratchets up the q S while the permeases' contribution does increase a little. In all cases, the instantaneous total uptake rate is multiplied by a factor 3 as reported in the experiments. Shortly after, the permeases' shutting leads to a plateau situation characterized by a PTS-only work. When S → 0, the PTS becomes less and less effective and the permeases relay the PTS until steady-state is reached once again.

Up to now, it was shown that the glucose uptake was correctly predicted, it was explained why it was slightly underestimated and it was also shown that the gain in the total cell mass following a pulse addition of a subsequent amount of carbon is in contrast very limited (see Fig. 6). So there is an apparent contradiction between the quantitative uptake of substrate and the small increase in the total cell mass. This is not surprising in our model since there is no carbon balance over the cell. Such a balance could be implemented through a minimal metabolic modelling and although it is possible (see [START_REF] Pigou | Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models[END_REF], it was not the central objective in this paper. Nevertheless, the question of the fate of the uptaken carbon remains and we will see now how the experimental data provide a way to confirm our model prediction. For this purpose, a carbon mass balance was established from the experimental measurements of the carbon dioxide in the gas outflow and the concentrations of by-products excreted during the pulse. Fig. 11 presents the difference between the concentration in the gas phase during the pulse and the concentration measured at steady state. Since the duration of the glucose exhaustion is relatively small compared to the resi-dence time, it can be assumed that the totality of the carbon transformed into CO 2 finally exits the reactor in the gas phase. We performed the integration of these curves and multiplied by the gas flow rate to quantify the amount of CO 2 produced during the pulse. Acetate and formate are also produced during the glucose excess period. However acetate is reconsumed and therefore also contribute to CO 2 production. This was taken into account in the mass balance. The results presented in Fig. 12 show that 65% of the total carbon uptaken is transformed into CO 2 , acetate and formate during the 1 g/L pulse experiment. This fraction goes up to 93% for the 0.08 g/L pulse. The simultaneous consumption of oxygen during the period of high glucose uptake confirms the fact that the first response of the biological system is to transform the glucose uptaken in excess into CO 2 . We can conclude that there is actually a significant uptake of carbon but a simultaneous release of CO 2 in the liquid phase. The carbon uptaken is not mainly metabolized to form new cells. Note that our model quantifies this excess through the difference q S -Y SX ṽ.

In the 1 g/L pulse experiment, it can be calculated from the growth yield on glucose that the amount of carbon available for growth would correspond to a maximum of 0.11 g of new cells (assuming that Y SX remains constant during the pulse). This value is obtained from the carbon mass balance excluding any storage, so it constitutes an upper limit. In our simulation, the boost in the uptake rate of substrate is not directly interpreted in terms of increase growth rate but we proposed that the dynamics of the population would be dictated by its rate of anabolism prior to the pulse. This hypothesis actually leads to a net production of biomass equal to 0.07 g after 25 min (glucose exhaustion). This results is therefore consistent with the carbon mass balance and confirms the fact that the substrate uptake rate was significant whilst the population gain in mass was in practice undetectable.

The instantaneous uptake rate can exceed its maximum value observed in batch

In order to model the permease contribution to the total q S , a value for k cat is inferred and entails an equilibrium value for ˛. Indeed, ˛kcat is a constant factor that emerges from the steady-state equation: where S stands for the residual substrate concentration at steady-state. Therefore (D being given and assumed constant), the surge in q perm in the wake of a glucose pulse is totally determined by k cat : the higher it is, the lower ˛ is at steady-state, the less is the permease overactivity following the disruption.

It is highlighted in [START_REF] Joseph | Approximative kinetic formats used in metabolic network modeling[END_REF] that "genetic interventions usually lead to very large changes in enzyme activity". In other terms, the cells' membrane permeability can be altered in order that the total q S overtakes the maximum value encountered in batch culture (here, v max /Y SX ≈ 1.095).

The model's equivalent would be a decrease in k cat that would lead to a higher value for ˛ before the disruption. Consequently, in the seconds following a glucose pulse, the q perm contribution to q S would be high enough to allow q S exceeding the maximum value in batch conditions. This is indeed predicted by the model. Fig. 13 is testament to the response of a population cultivated at low (0.05) D (meaning that the permease transport accounts for the majority of the total uptake) to a step in S. k cat was divided by 2 so that the permease are significantly open before the glucose step. The glucose uptake rate q S ratchets up in the wake of the injection and momentarily surpasses v max /Y SX . 

Conclusion

This article highlights the relevance of a 2-D PBM formulated in terms of length (equivalent to mass for the rod-shaped cells) and rate of anabolism to investigate the population dynamics under transient conditions. The moments of the PBM were used to demonstrate that growth in mass and growth in number are only equivalent at steady-state in a continuous bioreactor and during the unlimited growth phase in a batch culture. In general, growth in mass is a matter of cell elongation (controlled by the rate of anabolic reactions) whereas growth in number is a matter of cell division (controlled by the cell division kernel). The proposed model allows for the description of transient behaviours of a cell population when growth in mass and growth in number are no longer equivalent. As an illustration, it is shown that the pulse addition of the carbon source in a substrate limited culture first causes an increase in the cell mass followed by an increase in the cell number. The second originality of this work is the formulation of an uptake law as the sum of two contributions standing for as many transport systems (PTS and permeases).

Taking into account multiple transport systems is certainly necessary when modelling bacteria populations. In the proposed model, the contribution of each system to the total uptake evolves because of the difference between the actual substrate uptake and the cell needs for growth (deduced from the rate of anabolism). The dynamics of each system obey different time scales. This model compares favourably with experimental results. It is also consistent with experimental observation such as the apparent capacity of cells to anticipate the substrate exhaustion (Ferenci, 1996) or the fact that the instantaneous substrate uptake rate may exceed the maximum uptake rate observed in batch culture [START_REF] Lara | Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses[END_REF]. As it is, the proposed model already appears as a valuable tool to understand and analyze one experimental data set existing in the literature. It could be observed that the dilution rate and pulse intensity are not sufficient to fully characterize the experiments. However, it is clear to the authors that some parts of the model need further improvements. A detailed sensitivity analysis has still to be conducted. It is also reasonable to include minimal energy and mass balances at the cell level. The ongoing works now concern the assessment of this model against various experimental data regarding substrate limited continuous culture at different dilution rate, different S/X ratio, inlet feed concentration and global mass transfer coefficients.

This model is now set to be implemented in a computational fluid dynamics (CFD) code to couple the biological behaviour to both micro and macro mixing. It will then be used as a tool to numerical simulations on a ∼10 5 L-reactor routinely put in place in many industrial processes.
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 11 Figure 1.1 Evolution of a cell's DNA content through the cell cycle. By the time the DNA doubles
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 12 Figure 1.2 Left: linear vs. exponential growth patterns for iF goli throughout their cell cycle,
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 13 Figure 1.3 Elongation is linear in time for F pome cells and makes for 77 % of the total cellcycle duration. [102].
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 16 Figure 1.6 Experimental evidence concerning the distribution in cell length (B) and cell cycle duration (C) in continuous cultures of hromyes pome. In each graph the upper and lower raws correspond to experimental results obtained at 30°C and 25°C respectively. Cell cycle durations (biochemical reaction rates) are impacted by a temperature change while physical properties and
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 17 Figure 1.7 Linear t of the log transformed total cell length gives access to the population growth rate in the stationary/exponential growth regime [141]. fF sutilis and iF oli are rodshaped cells.

Figure 1 . 8

 18 Figure 1.8 The functioning of three uptake membrane transporters: permease (left), PTS (middle)

Figure 1 .

 1 Figure 1.10 Central carbon metabolism of iF oli. The upper and lower glycolysis (G) appear in yellow, the Tricarboxylic Acid Cycle (TCA) in orange, the pentose phosphate pathway (A) in grey and the mixed acid pathway in green (B). Red dashed line arrows between the lower glycolysis and the TCA cycle indicate a regulation mechanism that controls the orientation of carbon uxes at the pyruvate note. Adapted from[START_REF] Yang | Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions[END_REF] 
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 1 Figure 1.14 Principle of a metabolic model based on stoichiometry. At the growth scale (over a long period of time), the hypothesis of nonaccumulation (or stationarity of the composition)
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 1 Figure 1.15 Response to a sudden increase of the dilution rate in a chemostat culture, 0.1 to 0.42 h -1 . Comparison of experimental data along with unstructured (dotted lines) and structured
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 1 Figure 1.16 Response to a sudden increase of the dilution rate, 0.05 to 0.15 h -1 , in a chemostat culture. The transient decrease in biomass concentration coincides with the consumption of internal carbohydrate storage accompanied by an increase in the number of new cells as reected by the budding index. Experimental data from[START_REF] Guillou | Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae[END_REF] 
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 1 Figure 1.18 Twostage bioreactor: the scale down experiment to simulate large scale gradients in heterogeneous bioreactors. Highly concentrated zones appear in red, depletion zones in dark blue.
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 1 Figure 1.19 Dynamic response of iF goli cells to a sudden exposure to high glucose concentrations measured in a twostage bioreactor operated in fedbatch mode

Figure 1 .

 1 Figure 1.20 Instantaneous uptake rate of chemostatcultivated iF oli cells in the wake of a sudden exposure to a 5mg.L -1 glucose concentration measured in a batch system.
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 1 Figure 1.23 Instantaneous response of iF goli cells to a sudden exposure to a 16mM glucose concentration (2.88 g.l -1 ) under anaerobic conditions. The instantaneous glucose uptake rate is

Figure 1 .

 1 Figure 1.25 Time evolution of dissolved oxygen, pH, O 2 and CO 2 in the exhaust gas (borrowed from [133]).

Figure 1 .

 1 Figure 1.26 Time evolution of the specic oxygen and carbon dioxide rate during the rst 8 minutes

  Furthermore, its numerical cost scales as IN d when N d variables are tracked among the population, what makes it quite aordable as a large number of variables have to be dealt with, in comparison with a Finite Volume algorithm which meshing can be viewed as a tensor product of N d contributions for instance.

Figure 1 .

 1 Figure 1.27 Illustration of a general MonteCarlo procedure to treat Smoluchowski's equation

  Powell provided his experimental conclusions in 1956. Painter & Marr[START_REF] Painter | Inequality of Mean Interdivision Time and Doubling Time[END_REF][START_REF] Painter | Mathematics of microbial populations[END_REF], emulating Powell's reasoning, concluded in an attempt to link age and interdivision timeproles that the rst moment of the interdivision time distribution must be greater than τ d . Few eyebrows have been raised since, apart Tyson & Hannsgen's[START_REF] Tyson | Cell growth and division: a deterministic/probabilistic model of the cell cycle[END_REF], but their reasoning over an isolated generation of organisms holds true in a closed system only and is far from universal.Agewise, it was proven as early as 1963 by Fredrickson & Tsuchiya that the age distribution is decreasing on its support [0, ∞[[START_REF] Fredrickson | Continuous Propagation of Microorganisms[END_REF]. Further developments have been derived by Lebowitz & Rubinow[START_REF] Lebowitz | A Theory for the Age and Generation Time Distribution of a Microbial Population[END_REF] from a generation expansion and Ramkrishna[START_REF] Ramkrishna | Statistical Models of Cell Populations[END_REF] using Laplace transform to solve the Volterra integral equation satised by the newborn cell density function. Comparisons with experimental measurements for gF £ resentus (which division process amount to swarming) feature in Jafarpour's 2018 work[START_REF] Jafarpour | Bridging the Timescales of Single-Cell and Population Dynamics[END_REF].

Figure 1 .

 1 Figure 1.28 Left: experimental (dotted lines) and numerical (full lines) age PDFs for gF £ resentus.

  For this very internal variable, slight dierences from the classic McKendrickVon Foerster equation are put to the reader's attention: the cell division translates into a source from cells of maximal age (which, without loss of generality, can be set to 1) to cells of age 0 and the redistribution integral concerns the change in the rate of maturity throughout the cell cycle. Rotenberg's equation explicitly reads:

  The bacteria's potential uptake rate and potential growth rate are no longer directly coupled to the environment. A subgrid mixing model is used to formulate a closure law at the cellliquid interface. Once the eective uptake rate is calculated, the fate of the uptaken carbon is obtained via a rudimentary metabolic model. The resulting cellscale model is submitted to litmus tests inspired by the literature.The fourth chapter is devoted to the numerical tools that are implemented from the perspective of simulating the abovementioned tests. Lagrangian and Eulerian methods are both required to cover a variety of experiments aiming at putting the model to the test.

  , l, a)dl + ∂ ∂l ln(t, l, a) dl + ∂ ∂a n(t, l, a)dl + γ(l, a)n(t, l, a)dl + D n(t, l, a)dl = 0 (6) In (6), the rst term on the left-hand side designates N (t, a)'s time derivative and the null-ux boundary condition forces the second term to vanish. Furthermore, ∂ ∂a n(t, l, a)dl = ∂ ∂a N (t, a) and D n(t, l, a)dl = D N (t, a) Hence, ∂ ∂t N (t, a) + ∂ ∂a N (t, a) + γ(l, a)n(t, l, a)dl + D N (t, a) = 0 (7)

a 0 e 0 e

 00 Da g(a )da = 2 -1 D e Da f (a) ⇒ lim a→∞ a Da g(a )da = 2 -λ D

e 2 ∞ 0 e 0 ee 2 D -τ obs - 1 D

 20021 Da g(a )da da = -Da da -D ∞ Da g(a ) Da g(a ) -ae -Da ∞ a + e Da g(a)da = and thus, a + τ obs = 1 D

  T (hr) a time constant, l inf (m) the minimal length at rupture, and l c (m) a characteristic division length.
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 1 Figure 1: Steady-state results for continuous culture with D = 0.15 hr -1 . Left: Cell-age PDF f from the MonteCarlo simulation (blue points), compared with the analytical solution (black line) (16) where a ≈ 2.360 hr. Right: Cell-age PDF (black line) compared with the uid residence-time PDF (green line).
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 2 Figure 2: MonteCarlo simulation results for continuous culture with D = 0.15 hr -1 . Left: Steadystate cell-age (red points) and interdivision-time g (cyan points) distributions where τ ≈ 4.314 hr. Right: Length distribution at division.
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 3 Figure 3: Batch culture results in exponential-growth regime from MonteCarlo simulation. Left: PDFs for cell age (blue points) and interdivision time, i.e. g (red points). Right: PDF for length at rupture.

A

  Powell-like dierential equation can be devised with our denition of g, by starting from a set of N cells of which N f (a)da belong to the age interval [a, a + da] at time t. Then, during an interval of Lebesgue measure δt, N f (a)(1e -Dδt ) cells are washed out and a+δt a γ(l)n(t, l, a )dlda = a+δt a g(a )da γ(l)n(t, l, a)dlda (25) produce daughter cells of age zero (from the (3) denition of g). Consequently, after division by N on both sides, f (a + δt)f (a) = -f (a)(1e -Dδt ) -D )da + o(δt) = -δtDf (a) + δtD d da ∞ a g(a )da + o(δt) = -δtDf (a) -δtDg(a) + o(δt)

  h(a)da = τ obs 2

gure 4 . 2 ∞ 0 [ 1 -

 4201 Because h records all interdivision times, it lends weight to cells that are highly unlikely to divide in a fermenter. The observable interdivision-time PDF g references actual rupture events, these divisions being less and less likely as a approaches ln(2)/D. This physical reasoning testies to the inequalities τ obs < ln(2)/D < ∞ 0 ah(a)da, and the relation g(a) = 2e -Da h(a) allows the conclusion g(a) > h(a) for a ∈ [0, ln(2)/D[, the inverse relation being satised for a > ln(2)/D.4.2 Painter & Marr's inequality for the unobservable PDF. In their 1967 article [12] addressing the interdivision-time PDF in a continuous, well-mixed fermenter, Painter & Marr incorrectly extracted the inequality τ obs ≥ ln(2)/D from Powell's relation 1 = 0 e -Da h(a)da. From their point of view, developing the exponential as a power series after factoring 2e -Dτ obs would reduce to 2e -Dτ obs ∞ 0 e -D(a-τ obs ) h(a)da = 1 and, using the fact that the exponential function is convex, 2e -Dτ obs ∞ D(aτ obs )]h(a)da ≥ 1 Then, Painter & Marr erroneously stated that ∞ 0 ah(a)da = τ obs to conclude. However, ∞ a ah(a)da is not τ obs but refers to τ uno ≥ τ obs instead. Once again, the confusing denition of the interdivisiontime distribution lends articial weight to zero-measure fractions of a population.

Figure 4 :

 4 Figure 4: Distributions of inter-division time in Powell's formalism: h (black dashed line) and its measurable counterpart g (black line). The numerical data retrieved from the Monte-Carlo code (red points) are shown for comparison. In general, h lends more weight to the older cells than g, so that ∞ 0 ag(a)da < ln(2)/D < ∞ 0 ah(a)da.

  Doumic's strategy (cf. [19]) to demonstrate the existence of a Malthus eigenfunction in C 1 b as soon as ẋ is a C 2 function and γ ∈ C 1 b .Concluding on the existence/uniqueness of the solution to (2.8) comes from an application of Picard's xedpoint theorem. First, the solution to (2.10) is forthcoming through a use of Duhamel's rule:

  Hence, by virtue of Picard's xed point theorem, a unique solution to (2.8) can be infered on [0, T ]. Repeating this iterative reasoning over the interval [nT, (n + 1)T ], n ∈ N, wraps up the proof of the existence and uniqueness result in C 0 (R + × [0, 1]).

  and the absolute value N ζ ε,1 -N ζ ε,2 will obey the inequation:
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 11 Preliminary: the treatment of the biotic phase Whatever the appropriate coordinates, their distribution among a population of cells obey the (1.22) PBE:
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 3 Figure 3.2 q S (full black line) and its PTS and permease contributions (black dashed lines) coming from a series of chemostat simulations at various dilution rates. The corresponding (normalised)
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 33 Figure 3.3 Normalised substrate uptake shortly before and after a 1g glucose pulse in a steadystate CSTR, obtained from a MonteCarlo simulation of the (3.8) model. Given that q S instantaneously adapts to the environmental conditions, the peremase regime/PTS regime transition does not translate into an overuptake in the wake of the pulse, contrary to Neubauer's 1990s [99] conclusions.

Figure 3 . 4

 34 Figure 3.4 Total uptake and its PTS and permease contributions for a collection of steadystate continuous cultures of varying dilution rate (D ∈ [0.02 h -1 , 0.34 h -1 ]), as functions of S (log scale).

Figure 3 . 5

 35 Figure 3.5 Rupture function γ (left axis, purple line) and lengthening function l (right axis, green line) with respect to l l (bottom axis). A typical length prole (black linespoints) is pictured on the right axis with respect to time (top axis). A cell is assumed born with length l 0 = 6µm and grows at constant rate (1.8 ⋅ 10 -6 m/h) for 7h. The sublinear pattern starts materialising towards the end of the time window).

Figure 3 . 6

 36 Figure 3.6 Simulation of a 1g glucose pulse in a steadystate fermenter (D = 0.2 h -1 ) running (3.10). Left: mean cellscale uptake features and length shortly before and after the disruption. If v = l, the cells' growth in mass is instantaneous and translates into a massive gain in biomass, at the expense of acetate production. Right: biomass and substrate concentrations throughout the perturbation. The glucose surplus translates into an overestimated proportional gain in mass.
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 38 Figure 3.8 An illustration of the reagentbased procedure to solve the metabolic model .
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 39 Figure 3.9 Left : simulation of continuous cultures with variable dilution rate (from 0.01 h -1 to 0.4 h -1). For the sake of clarity, the value of the dierent parameters is mentioned in Table3.2. x axis:

Figure 4 . 1

 41 Figure 4.1 An illustration of the MonteCarlo procedure

(4. 1 )

 1 At the end of the day, u + v ∼ Γ(N + M ) (what in earnest completes the proof of the rst lemma) and u u+v ∼ β(N, M ).

Figure 4 . 2

 42 Figure 4.2 An illustration of the Finite Volume procedure in two dimensions, the horizontal swathe pertaining to the length variable whereas the vertical one refers to any other of the model's
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 43 Figure 4.3 Distributions retrieved from the MonteCarlo, Finite Volume, and the Finite Volume Quadrature of Moments algorithms. Top left: length and rate of anabolism. Top right: q P and A p . Bottom: N p .
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 4445 Figure 4.4 MonteCarlo simulation of a convergence to steadystate. Left: biomass and glucose. Right: uptake and byproducts

Figure 4 . 6 Finite 135 Figure 4 . 7 Finite

 4613547 Figure 4.6 Finite VolumeQuadrature Method of Moments simulation of a convergence to steady state. Top left: biomass and glucose. Top right: uptake and byproducts. Bottom left: mean length and rate of anabolism. Bottom right: populationaveraged permease number and permease activity

Figure 5 . 2

 52 Figure 5.2 Outputs of the metabolic model using a nondistributed version of(3.11). Left: v e as a function of q S and q O 2 . Right: q Ac as a function of q S and q O 2 . In this case, the environment consists in S = 0.0001 g L, O 2 = 0.0001 g L, and Acetate = 0.0001 g L.
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 53 Figure 5.3 Outputs of the metabolic model using a nondistributed version of(3.11). Left: v e as a function of q S and q O 2 . Right: q Ac as a function of q S and q O 2 . In this case, the environment consists in S = 0.0001 g/L, O 2 = 0.0001 g/L, and Acetate = 0 g/L.

Figure 5 . 4

 54 Figure 5.4 Outputs of the metabolic model using a nondistributed version of (3.11). In this case,
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 55 Figure5.5 Batch culture simulation, with initial biomass ≈ 0.055 g and substrate concentration 8 g. Top left: X(t) and S(t). Top right: q S and its PTS/permease contributions as S is plunging. Centre left: substrates and byproducts with respect to time. Centre right: populationaveraged N p and A p at the nal moments of the glucose exhaustion. Bottom: exact (from (5.1)) growth rate and its approximation involving the organisms' v p .
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 56 Figure 5.6 Batch culture simulation, with initial biomass ≈ 0.001 g and substrate concentration 0.5 g. Top left: X(t) and S(t). Top right: q S and its PTS/permease contributions as glucose shortage is looming. Bottom left: substrates and byproducts with respect to time. Bottom right: populationaveraged N p and A p near substrate dearth.
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 57 Figure 5.7 Uptake and lengthening rate throughout a batch culture, represented as functions of S (log scale), involving two sets of initial conditions. Left: X 0 ≈ 0.05 g/L, S 0 = 8 g/L. Right: X 0 ≈ 0.001 g/L, S 0 = 0.5 g/L.
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 58 Figure 5.8 Simulation of a glucose pulse in a steadystate chemostat (D = 0.2h -1 ). Top left: X, S and Acetate shortly before and after the injection. Top right: the substrate uptake, looked at against the glucose / acetate concentration in the reactor. Centre left: the tracked chemical species over the course of the disruption. Centre right: the mean cell length and cell growth rate throughout the perturbation. Bottom left: mean N p and A p from steadystate to return to normal.

Figure 5 .

 5 Figure 5.10 MonteCarlo simulation of a chemostat convergence to steadystate (D = 0.2h -1 ), in case t m = 1s. Top left: biomass, glucose and acetate with respect to time. Top right: closeup of the populationaveraged q P and q p . Bottom: mean glucose uptake rate and liquid phase sugar, oxygen and carbon dioxide concentrations.

Figure 5 .

 5 Figure 5.11 MonteCarlo simulation of a chemostat convergence to steadystate (D = 0.2h -1 ), in case t m = 1s (left plot) and t m = 50ms (right graph). Evolution of the acetate concentration in the fermenter (blue lines), and the populationaveraged potential (yellow curves) and actual (black lines) lengthening rate as functions of S.

Figure 5 .

 5 Figure 5.12 Simulation of an instantaneous hike in dilution rate (D = 0.2h -1 → 0.3h -1 ). Top left: X, S and Acetate as functions of time. Top right: uptake compared with the time evolution of S, O 2 and CO 2 throught the perturbation. Bottom left: mean length and rate of anabolism towards the new steady state. Bottom right: mean permease number and permease activity with respect to time.
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 531 Figure 5.13 Equilibrium NDFs in all 5 inner coordinates of (3.11) for D = 0.2 h -1 and D = 0.3 h -1 , in: top left: q P ; top right: N p and A p ; bottom left: l and v p . Bottom right: distribution in v e towards the steadystate associated to D = 0.3 h -1 , as the disruption starts at 39.325 h.

Figure 5 .

 5 Figure 5.14 Left: experimental measurements of a D = 0.2 h -1 → 0.6 h -1 dilution rate increase in an iF goli K12 continuous culture, which maximal batch growth rate is estimated around 0.803 h -1 . Right: determination of the iF goli population's highest sustainable dilution rate in an open fermenter. Borrowed from Yun & al.'s [150].

Figure 5 .

 5 Figure 5.15 Interdivision time distribution of an elongated cell population, which individuals are constantly fed with glucose. The mean interdivision time is roughly 25 minutes, but the measurements span a wide value range (from 0 to 50 minutes), hinting at a heterogeneous distribution of the cells' tness from generation n to n + 1. Borrowed from [148].
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 5 Figure 5.16 Transient states associated to a D = 0.2 h -1 → 0.32 h -1 disruption. Top left: biomass, glucose and acetate shortly before and after the perturbation. Top right: populationaveraged uptake and gas with respect to time. Bottom left: mean length and lengthening capacity as functions of time. Bottom right: time evolution of the mean permease number and permease activity.

Figure 5 .

 5 Figure 5.17 Comparison in length (left) and rate of anabolism (right) NDFs following a D = 0.2 h -1 → 0.32 h -1 dilution rate increase.

  e l and a numerical application for v e ≈ 3.334 ⋅ 10 -7 m ⋅ h -1 leads to l(t 0 + 1) ≈ 11.34µm. In other words, v e is so small in a substrateless chemostat that one cannot expect the longer extant organisms to substantially overreach l c at division. A blatant illustration of this claim features on gure 5.19.
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 5 Figure 5.19 Comparison between D = 0.2 h -1 and D = 0.05 h -1 steadystate NDFs in all state variables of (3.11). Top left: q P . Top right: N p and A p . Bottom: l and v p .

Figure 5 .

 5 Figure 5.21 FV-QMOM simulation of a slope in dilution rate from 0.2 h -1 at t = 27 h, at a constant 0.0121 h -2 rate. Top left: biomass and glucose concentrations. Top right: uptake and byproducts. Bottom left: length and lengthening rate. Bottom right: permease number and permease activity.
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 1 Fig. 1 -Total uptake q S (solid) and respective contributions of the PTS (dashed) and permeases (dotted) as a function of residual substrate concentration S.

Fig. 2 -

 2 Fig. 2 -The function ˛(S, v)/˛m ax (light grey dashed line) controls the induction of permeases for slow growing cells.

  )P(l i , l i )Q(v j , v j )N n i ,j where F n • , • and G n • ,• are the discrete fluxes associated to the respective advection contributions F( ˙l, N) = ˙lN(t, l, v) and G( v, N) = vN(t, l, v).

S 2 ( 2 4

 22 n+1 = S n + t D(S f -S n ) -d 2 4 (l i + l i+1 1 i<N ) v j + min(v j , ) v j+1 + min(v j+1 , ) 2 1 j<M ) 1 (1 + 1 i<N )(1 + 1 j<M ) (N n i,j + N n i+1,j )1 i<N + N n i,j+1 1 j<M + N n i+1,j+1 1 i < N j<M When O 2 (t) reached small values, O n+12 was computed with the help of a semi-implicit scheme that removed the positivity challenge due to the termK L a(O 2 -O 2 ): lq O 2 N n i,j • dldv 1 + t(K L a + D)

Fig. 3 -

 3 Fig. 3 -Comparison of the length distribution in an unlimited environment using different numerical simulation approaches.

1 6 )

 16 t, l, v) • dldv = -D l N(t, l, v) • dldv + ˙l N(t, l, v) • dldv. (4.3)In other words, the notation • standing for the double integral over the entire population, (4.2) and (4.3) readdm 0,0 dt = -Dm 00 + N = -Dm 00 + N m 0,0 m 0,0 (4.4) dm 1,0 dt = -Dm 1,0 + ˙lN = -Dm 1,0 + ˙lN mIf the above condition holds, reasoning in terms of total cell mass or total cell number is equivalent.At steady state (N(t, l, v) = N), multiplying Eqs. (4.4) and (4.5) by the steady-state moments m1,0 and m0,0 , respectively, and equating the two right-hand sides leads to m1,0 -D m0,0 + N = m0,0 -D m1,0 + ˙l N (4.7)

9 )

 9 It was well documented inPerthame (2007) and references therein that the number density function converges to a distribution whose geometry is shaped by the eigenvector associated to the population balance equation's largest eigenvalue (the so-called Malthus parameter). Then, for unlimited growth, the distribution becomes self-similar[START_REF] Subramanian | On the mass distribution model for microbial cell populations[END_REF]

  S f -S) -Y SX X, = max S k PTS + S .

(4. 11 )

 11 Dividing Eq. (4.3) by the volume of liquid produces an equation for the cell concentration X (in g X /L) very similar to the corresponding equation of the standard unstructured model

( 4 .

 4 11). However, these two equations are not equivalent and the unstructured model equation results from an approximation used to simplify the last term of Eq. (4.3): ˙lN(t, l, v) • dldv = ˙l l lN(t, l, v) • dldv ≈ ˙l l lN(t, l, v) • dldv = X. (4.12)

Fig. 4 -

 4 Fig. 4 -Evolution of the total mass and total number of cell during the continuous culture.

Fig. 5 -Fig. 6 -

 56 Fig. 5 -Distribution in length (left) and anabolism rate (right) toward steady-state. A population is cultivated in a chemostat (D = 0.15). For the sake of simplicity, the distribution were inferred before the simulation so that the code was only run for three times the residence time 1/D ≈ 6.6 h. Red: initial pdf; green: at t = 2 h; blue: at t = 10 h; purple: at t = 18 h. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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 7 Fig. 7 -Dynamics of substrate uptake during the response to a pulse addition of 0.4 g/L of glucose in a chemostat at D = 0.16h -1 . A log scale is used for the abscissae to emphasize the first instants after the pulse. S and O 2 are represented in blue and green respectively, uptake rates are in light grey (PTS), dark grey (Permeases) and black (total).
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 8 Fig. 8 -Response to a pulse of substrate of various intensities in a chemostat. Comparison of the model prediction to the experimental data of Sunya et al. (2012).

Fig. 9 -

 9 Fig. 9 -Simulated oxygen concentrations in the liquid phase as a function of time, shortly before and after the pulses.

Fig. 10

 10 gives an insight at which transport phenomenon drives the glucose uptake in function of the substrate flux entering the cells. At steady-state, S ≈ 5 ×10 -3 g/L, i.e. 5 times the permease affinity constant k perm but only one half of k PTS .
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 10 Fig. 10 -Total substrate uptake rate, PTS and Permeases contributions, shortly before and after the pulse. Top right: 1 g/L, top left: 0.4 g/L, bottom left: 0.08 g/L.

Fig. 11 -

 11 Fig. 11 -Relative change in the concentration of CO 2 in the gas phase during the pulse experiments. Data from Sunya et al. (2012).
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 12 Fig. 12 -Carbon mass balance. Data from Sunya et al. (2012).

S

  + k Perm 1exp -S S c = D

Fig. 13 -

 13 Fig. 13 -Instantaneous total substrate uptake rate following a 1 g/L pulse at D = 0.05 h -1 .

  

  

  

  

  

  

  

  

  

  

  1, page 8). No information regarding the intracellular bioreactions is present in this type of model and the biological phase is thus treated as a black box which converts nutrients into new cells and products. The relationship between the growth rate and the nutrient concentration, as well as the conversion yields, must be regarded as correlations issuing from a collection of experimental data collected in batch or chemostat culture at steady state. gution must e pid to the ft tht the onversion yieldsD Y ij D do not orrespond to rel stoihiometri oe0ientsF One of the most famous example is the socalled Monod law :

  Over a volume O of the phase space Ω xi , an integration of (1.22) from time t to t + dt reads: The evaluation of this very term is the determinant of the Finite Volume method theory, the literature overowing with schemes of miscellanious orders to solve any type of PDE.

											1.22):
			∂ ∂t	n(t, ξ) + ∇ ξ ⋅ ξn(t, ξ) + γ(ξ)n(t, ξ) = (S n )
	O	n(t + δt, ξ)dξ =	O	n(t, ξ)dξ -	t	t+δt	O	∇ ξ ⋅ ξn(t, ξ) dξds
		-	t	t+δt	O	γ(ξ)n(t, ξ)dξds +	t	t+δt	O	(S n )dξds	(1.20)
	An application of Green's theorem turns the integral of the transport term into a dierence of uxes
	at ∂O. The method's stability is guaranteed should the CFL condition:
							δt i=1 N d Σ	ξi ∆ξ i	≤ 1
	be met, with ∆ξ i = OO ′ the distance between the center of volume O and its counterpart belonging to a neighbouring O ′ volume.

  ξ)an experimental information, P (ξ, ξ ′ ), is introduced in the modelling, what comes down to a somehow illformulated problem when it comes to calculating analytical solutions. The only exception is the equal redistribution case that turns the righthand side of the PBE into 4γ(2ξ)n(t, 2ξ), the riddance of P allowing Kubitschek's developments.

It results from this impediment that asymptotic size proles have been another research topic in the biophysics community. Bell & Anderson's seminal 1967 article

[4] 

features an eigenproblem which solution is made up of analytical formulae over an interval of interest and extrapolations from physical assumptions.

  The higher the dilution rate, the lower the mean interdivision time, what triggers a massive selection of the extant cells according to the health criterion. In particular, two continuous cultures of the same strain at a dierent dilution rate lter dierent fractions of the population and make any comparison quite dubious.

	A critical analysis of Powell's results on the interdivision time
		distribution	
	Vincent Quedeville	1,2 , Jérôme Morchain 2,* , Philippe Villedieu	3,4 , and Rodney O. Fox 5
	1 FERMAT, Université de Toulouse, CNRS, INPT, INSA, UPS, Toulouse, France
	2 Laboratoire d'Ingénierie des Systèmes biologiques et des Procédés, INSA de Toulouse, 135

  will designate the interdivision-time PDF as it is observed in experimental measurements. Its moments are denoted by τ k = a k g da, k ≥ 1, τ 1 coinciding with τ obs . It is brought to the reader's attention that g(a)da is not the probability that a cell divides between age a and a + da. Instead, g denotes what Powell called the carrier distribution C D in his 1956 article

	l, a)dl	(3)
	γ(l, a)n(t, l, a)dlda	

Table 1 :

 1 Parameter used in the simulations.

	Parameter	Value	Description	Reference
	D l inf l c l T	0.15 hr -1 7 × 10 -6 m 11 × 10 -6 m 18 × 10 -6 m 2 hr	Dilution rate Minimal length at rupture Standard length at rupture Maximal length at rupture Time scale in the cell division rate	From experiment [11] [11] [11] Assumed
	Y SX	1/0.42 ≈ 2.38 g/g	Substrate-to-mass ratio	[21]

  l)dl could be analytically calculated for certain l and γ functions only. For instance, the dierent terms are moments of the length NDF if and only if l and γ are polynomials in l, what has no reason to be true in all generality.

  because the redistribution integral will have to be estimated with more nesse than Hölder's inequality can aord. Without loss of generality, one can consider that M 1 -M 2 vanishes at 1 -ζ: indeed, O being a linear operator, replacing say, M 2 , withM 2 × M 1 (1 -ζ) M 2 (1 -ζ) would have absolutely no consequence on the estimation of N ζ ε,1 -N ζ ε,2 W 1,∞. This assessment being agreed, keeping in mind that M 1 -M 2 is Lipschitz, one can infer:

  O 2 ⟨O 2,g ⟩ and CO ⋆ 2 = H e,CO 2 ⟨CO 2,g ⟩. H e is the Henry constant dening the thermodynamic equilibrium at the gasliquid interface 1 . With satisfying accuracy (cf. Morchain's [92]), one can assume ⟨O 2,g ⟩ = 1 2 (O 2g,in + O 2g ) and ⟨CO 2,g ⟩ = 1 2 (CO 2g,in + CO 2g ).

Table 3 .

 3 

1 Metabolic ratios used in the simulations. Parameter value ν 11 0.40104 g O 2 g S ν 12 0.45091 g X g S ν 23 0.53378 g Ac g S ν 22 0.14404 g X g S ν 31 16/45 g O 2 g S ν 33 2/3 g Ac g S ν 41 0.23767 g O 2 g Ac ν 42 0.58600 g X g Ac Y SX = 1 ν 12 2.21774 g S g X

Table 3 .

 3 2 Parameters used in the simulations.

	Parameter	Value
	K P	0.001 g S L
	K p	0.01 g S L
	q Pmax ψ max	5.145 ⋅ 10 -12 g S h 1.28625 ⋅ 10 -13 g S h
	N max	200
	t m	0.05 s
	τ P	50 s
	τ i	100 s
	τ d	6 min
	τ A 1	5s
	τ A 2	15s
	τ v p	1h
	Appendix: A logical treatment of the (1)(4) metabolic model The reagentbased scheme to calculate q e O 2

Table 4 .

 4 1 Uniformgenerated numbers transformation.

	Law	Uniform numbers required	Algebraic transformation
	Gamma(N )		

  1 O ∫ O n(t, ξ)dξ ( ⋅ standing for the standard Lebesgue measure) is forthcoming at time t at the volume scale. An introduction of (4.2) into the integral leads to:

  -12 g/h, ⟨A p ⟩ ≈ 0.606, ⟨N p ⟩ ≈ 74.54 and Cell number ≈ 7.572 ⋅ 10 11 . ⟨l⟩ being equal to 7.940 ⋅ 10 -6 m, Cell mass is expected to be roughly 4.722 g. For the FVQMOM code: S ≈ 0.00196279 g/L ⇒ ⟨q P ⟩ ≈ 2.258 ⋅ 10 -12 g/h, ⟨A p ⟩ ≈ 0.561, ⟨N p ⟩ ≈ 67.50 and Cell number ≈ 7.131 ⋅ 10 11 . ⟨l⟩ being equal to 8.314 ⋅ 10 -6 m, Cell mass is expected to be roughly 4.656 g.

Table 4 .

 4 2 Operational set-ups.

	Method	Number of cells	Number of computation nodes	Time consumption for 10 6 time steps
	MC	≈ 350000 ctional particles 17	2 days
	FVMOM	40000 mesh cells	7	4 days
	FV	400000 mesh cells	17	9 days

  ; Abulesz and Lyberatos, 1989; Patarinska et al., 2000; Kätterer et al., 1986; Guillou et al., 2004 for the response to a step-up in the feed concentration or the dilution rate, and Adamberg et al. (2009) for the response to a gradual increase of the dilution rate). In fact, cells adapt their rate of anabolism in response to changes in environmental concentrations. The dynamics of such an adaptation has been investigated in previous works and the following expression was proposed and validated against experimental data (Morchain and Fonade, 2009; Morchain et al., 2017):

Table 1 -The parameter values used in the simulations.

 1 

	Name	Value	Units	Description	Ref.
	d	10 -6	m	Cell diameter	Assumed
	lc	10 -5	m	Critical length for the cell division rate	(Nobs and Maerkl, 2014)
	vmax	1	h -1	Maximal rate of anabolism	Assumed
	Ä	5	None	Stiffness in the cell division rate	(Mantzatis, 2006)
	a	6.51 × 10 -6	m	Cell lengthening	Assumed
		10 -2	None	Variance in the redistribution kernel for v	Assumed
	m	10	None	Parameter in the length redistribution kernel	Assumed
	T tM	1.25 max 50 × 10 -3	h s	Characteristic time of adaptation Micromixing time	(Morchain, 2017) (Morchain et al., 2017)
	kcat	6.15 × 10 -6	gS permease -1 h -1		Assumed
	˛max	100	permease/m 2	Maximum permease surface density	Assumed
	D	0.15	h -1	Dilution rate	Assumed
	kPTS	0.01	g/L	PTS affinity constant	(Ferenci, 1996)
	kPerm	10 -3	g/L	Permease affinity constant	(Ferenci, 1996)
	max	0.46	h -1	Maximum specific growth rate	(Sunya et al., 2012)
	KS	0.01	g/L	Macroscopic affinity constant for glucose	(Sunya et al., 2012)
	KO 2	10 -4	g/L	Macroscopic affinity constant for oxygen	Assumed
	YSX	1/0.42 = 2.38	gS/gX	Substrate into biomass yield	(Sunya et al., 2012)
	KLa	300	h -1	Global gas-liquid transfer rate	Identified (Sunya et al., 2012)
	O 2	8 × 10 -3	g/L	O2 partial pressure in the gas phase	Henry's law

Dans le deuxième cas, il semble plus incertain d'armer que le taux d'activité du cofacteur d'intérêt est à chaque instant une fonction algébrique de la quantité de substrat disponible. Compte tenu de ces considérations, un modèle biologique toutterrain doit rendre compte de l'étendue des échelles de temps impliquées dans l'adaptation d'une cellule à l'ore de son voisinage, sur la base de considérations de microbiologie.Ainsi, un travail de pointe de modélisation et simulation de bioréacteurs incluant la dynamique de la phase biologique nécessite des connaissances dans les domaines des mathématiques, de la microbiologie et du génie chimique.Le travail ciaprès sera divisé en cinq parties. La première d'entre elles constitue une présentation de références bibliographiques traitant de dynamique de population d'un point de vue mathématique, numérique ou biologique. Les articles d'analyse permettent de se rendre compte de la compréhension actuelle des équations de transportfragmentation, la production des microbiologistes servant à mettre en place la modélisation la plus sensée et économique permettant de rendre compte de leurs conclusions quant à la réponse dynamique de bactéries exposées à un environnement uctuant.Le deuxième chapitre consacre l'analyse mathématique de modèles structurés en taille et en âge. Les deux modèles sont fondamentalement diérents au sens où rien ne borne a priori l'âge d'une cellule alors que la masse d'un organisme, entre autres, est nie par hypothèse. Le processus de division étant d'abord lié à la taille des particules, la divergence de la fonction de rupture en une longueur nie est une condition préalable à tout énoncé de résultat d'existence d'un modèle structuré en taille. L'originalité du résultat proposé d'existence et unicité des éléments propres associés à l'équation de transportfragmentation tient en l'exploitation du caractère contractant de l'opérateur de redistribution générationnelle qui autorise à conclure de la Lipschitzcontinuité de la fonction propre de Malthus, cellelà même qui donne sa forme géométrique à la distribution d'équilibre de la population. La distribution en âge possède une expression analytique et renseigne
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Limitations

When computational time is addressed, such an approach is still aordable whatever the numerical tool to solve the PBE. Furthermore, many of the transient behaviours will be reproduced by the implementation of this set. For instance, the latency in the PTS response to a glucose pulse would translate into a crossing of the q S = q Pmax threshold over a time interval which measure would be dictated by τ P and τ p . From experimental grounds though, three conditions should be met in order to mesh the (3.10) set of ODEs with the biologists' claims: ψ max ≈ 5q Pmax K p ≈ 10K P q P ≈ q p around S ≈ 0.001 g/L.

At steady state, the analytical formulae are obvious:

See if the model respects all these quantitative constraints by solving the equation q P = q p in S:

The roots of the polynomial S 2 + 11K P S + 5K P 2 are easily calculable (S = K P 2 (-11 ± √ 101)), both of these being strictly negative. For this reason, (3.10) shall not be put into practice due to its unreasonable simplicity.

Furthermore, the absence of v from the model and the ensuing loss of any longterm time scale lead to doubtful outputs when (3.10) is run to simulate tens of minutes to hourslong perturbations in a steadystate chemostat. In gure 3.6, a 1g glucose pulse in a steadystate chemostat is run using (3.10), the lefthand side focusing on the cellscale state variables whereas the righthand side concentrates on the reactorscale biomass and substrate concentrations. A few inconsistencies between the microbiology theory and the numerics are highlighted: given the (3.10) framework, a hike in q S translates into an instantaneous adaption of the cells' growth rate and the material balance makes no room for byproducts (acetate, formate, ...) synthesis. The model is therefore at odds with the experimentalists' claim that acetate is synthetised in the wake of a glucose pulse, prompting the need to dissociate v from l. A resulting renement of the 3D model is then formulated in the next section.

and, for u ≥ 2:

Ṅp n(t, ξ)dξ

, u ≥ 1 obey the dierential equation:

all these quantities having been dened as above. Also, given the formulation of Ṅp , the expected steadystate distribution in N p has to be close enough to a dirac (the adaption to the environment induced value of N p for the newborn cells being driven by the rather small τ i , τ d time constants) to approximate it by moments up to order 3.

It is worth a mention that, should the QMOM algorithm involve A p instead of N p for instance, the second term of (4.11) for u = 2 would read:

-2

making the calculation of Ãp 2 signicantly harder than its Ñp 2 counterpart due to the nonlinearities binding A P with A p . A similar case can be made against the use of v p or A P as the QMOMprocessed dimension.

Regarding the QMOM procedure in itself, the computation of the weights and nodes comes rst, starting from the number density function n which moments are dened at time t m . Wheeler's algorithm is used for this purpose, and ensures that the corresponding output abscissas lie within the support of the length distribution. The main idea behind Wheeler's algorithm consists in exploiting the following theorem, as mentioned for instance in Marchisio & Fox's [START_REF] Marchisio | gomputtionl wodels for olydisperse rtiulte nd wultiphse ystems[END_REF]:

he pproximtionX

is gussin if nd only if its nodes x i oinide with the I roots of the polynomil P I orthogonl in Ω with respet to nF Then, once Wheeler's algorithm is enforced in each mesh cell, all the integrals on the righthand side of (4.9) and (4.10) are reduced to weighted sums and (4.11) is used to compute the NDF's moments at t = t m+1 .

Chapter 5

Simulations and comparison with experimental data 5.1 Growth in mass vs. growth in number Section 2.2.1's claim that a population's growth in number exhibits a latency in comparison with its growth in mass when disrupted is exemplied in gure 5.1. To illustrate this reasoning, the (3.10) model is run until steady state is reached, and the equilibrium is disrupted by a 1g glucose pulse in the reactor.

When a perturbation forces a population to stray from its equilibrium behaviour, growth in mass always precedes growth in number for obvious biological reasons. Indeed, if given the possibility, a cell will start lengthening before engaging in the division process. Hence, the gain in mass is dictated by the continuous evolution of the organisms' length, whereas the gain in number operates at the time scale of the cell cycle (the order of magnitude thereof being 1h). This uncoupling between the time scales is an integral part of any population balance model

The batch experiment

In this section, the MonteCarlo algorithm has been run to simulate the consumption of a dened quantity glucose by a userset initial biomass. Figure 5.5 illustrates the X 0 ≈ 0.05 g/L, S 0 = 8 g/L case, whereas gure 5.6 refers to a X 0 ≈ 0.001 g/L, S 0 = 0.5 g/L setup. Special caution will bear upon the qualitative cellscale features when S → 0 as one conclusion from NotleyMcRobb & al.'s [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF] raw data featuring on page 25's gure 1.17 is the cells' ability to anticipate a substrate dearth by setting in motion their contingency uptake mechanism. Obviously, the wellknown batch culture trends like exponential growth need to be looked at rst.

Exponential growth is reached from the moment v e reaches on average its maximum value. The latter is correlated to the population's maximum growth rate µ max via the equation:

In the context of simplifying the formulae for µ max that evidences nonlinearities binding v e to the state variables, a coarse but somehow informational approximation could consist in v e ≈ v p , turning (5.1) into a double integral:

Both the exact and the approached values of µ max are at the MonteCarlo code's reach and the values are:

µ maxexact ≈ 0.362h -1 and µ max approached ≈ 0.362h -1

It must be emphasised that as low at it seems, this value is massively inuenced by the cells' length and as a consequence the parameters l, l c and l inf which dictate the rupture process. It is also worth a mention that µ max pertains to an exponential growth situation that can be viewed as an equilibrium; whether or not it can be momentarily overreached in the wake of a massive environmental perturbation is still an open question in the biology community.

In this context, a more interesting datum could consist in the lengthening rate in exponential growth, which is also available from the MonteCarlo code ( lmax ≈ 2.834 ⋅ 10 -6 m/h). In terms of order of magnitude, this value is consistent with Zheng & al.'s claim (cf. [START_REF] Zheng | Interrogating the Escherichia coli cell cycle by cell dimension perturbations[END_REF]) that a bacterium's volume doubles in a ∼ 1 h time interval. Overall, lengthening rate seems to be the pivotal quantity for the sake of comparison between dierent experimental setups.

On the other hand, the above mentioned numerical values have no impact on the qualitative behaviour of the whole population, what is the topic of the present work.

The progressive substrate depletion by proactive organisms is illustrated on gure 5.5. Over the course of the batch experiment, exponential growth is achieved after 4 to 5h that is slightly less than 5 times the characteristic time of v p 's dynamics (1h). A negligible (< 0.02g) acetate excretion is associated with the transient regime, the surplus being available to the newlyborn cells which q P T S at birth is not enough to satisfy their v p . The permeases are inactive as soon as the PTS system reasonable to conjecture that P l (l, l ′ ) is also a function of v p ′ . 5.6.2

It would seem that this perturbation is quite similar to the change in dilution rate from 0.2 h -1 to 0.3 h -1 , entailing extremely resembling transient states. If the opening washout phase is taking place as expected, draining a larger (11 %) chunk of the total biomass though, the return to equilibrium obeys a dierent dynamics from the previous case to the extent that limiting the glucose uptake to a constant q Pmax prevents the maximal growth potential from crossing the q Pmax / (Y SX K conv ) barrier. More precisely, if the washout still operates at an exponential rate, the gain in biomass reads:

Even if v e was equal to its maximum value (q Pmax / (Y SX K conv )) for each cell, the biomass balance in the CSTR would read:

By virtue of the relationship between cell number and biomass (X = ∫ l 0 n(t, l)dlK conv ⟨l⟩):

and nally, all it would take to conclude on the rate of exponential growth would lie in the calculation of the righthand side's integral. Once the length prole has become selfsimilar, this computation would yield:

∫ l 0 n(t, l)dl dl ≈ 0.965 and ⟨l⟩ ≈ 8.791 ⋅ 10 -6 m and the righthand side's last term would amount to, roughly, 0.324 X. As a consequence, due to the introduction of q Pmax in the model, skyrocketing the reactor's dilution rate to demanding growth conditions leads to a somewhat unsatisfying observation: after a 5D -1 time interval, the biotic phase is miles from the expected steady state that would emerge from a reallife experiment. Also, from a quantitative point of view, the highest sustainable dilution rate is less than the maximal batch growth rate due to the tness variability observed in a population and experimentally quantied (cf.

Yasuda's measurements featuring on gure 5.15): a signicant chunk of little active cells are poised to be washed out at each generation whatever the culture conditions, making the more active cells' task to stabilise the open reactor impossible.

The hindering feature of q Pmax impacts the transient NDF in v e too, its shape being a δ q Pmax (Y SX Kconv) distribution and selfsimilar over the course of the return to normal. Also, n(t, v e ) being diracshaped tends to stabilise the transient size prole to the extent that l is a function of l only, hence identical for organisms of equal length. This claim is illustrated on gure 5.17. Bottom left: mean length and lengthening rate as the feed is reduced. Bottom right: mean permease number and permease activity while the perturbation proceeds.

A similar comparison as section 5.7's between D = 0.2 h -1 and D = 0.3 h -1 steadystate NDFs illustrates the seizure of power by the permease system when the residual substrate is too scarce to allow the PTS a noticeable contribution to the organisms' glucose uptake. A P drops to almost 0 for all cells and both NDFs in N p and A p exhibit a substantial shift to the right that is explained by the necessary need for every organism to scavenge the reactor for the elusive substrate.

A consequence of these assessments is the size distribution's shift to the left that can be understood by the treatment of the division procedure in the MonteCarlo code. To illustrate this claim, consider a cell of length l = l c (= 11µm) at a certain time t 0 , which γ(l) is equal to 1 for.

Suppose it is at equilibrium with its environment. If, in the MonteCarlo code, the rupture is triggered by the 1 -exp(-γ(l)δt) < u inequality for a randomly picked u, it is statistically likely that the bacterium will divide over a 1h time window. Its v e being constant, the cell's length at

The dilution rate slope experiment

In this paragraph, a continuous change in dilution rate aims at mimicking Nakhu & al.'s experiment [START_REF] Nahku | Specic growth rate dependent transcriptome proling of Escherichia coli K12MG1655 in accelerostat cultures[END_REF] in a socalled accelerostat. This constant increase in D makes the use of the MonteCarlo algorithm highly unpractical considering the residence time uptake procedure. Indeed, if D is incremented at each time step, a new residence time would have to be sampled for each organism and only the elements which residence time is less than the said time step would be washed out of the reactor. To avoid this hiccup, the hybrid FVQMOM code has to be run for this purpose, with no impact on the section's conclusions.

A continuous increase in dilution rate from 0.2 h -1 to roughly 0.3 h -1 over the course of 8.25 h is performed, the numerics being reported on gure 5.21. As the feed is ramped up, the extant cells are able to adapt their lengthening rate at will until they are dragged by the ow. Acetate reaches a maximum despite the continuous overow of substrate that turns the metabolic model's reaction (3) on. Indeed, as v p adjusts to the ever more profuse environment, the uptake surplus wanes while the washout waxes until the acetate outow ends up overtopping the production by the biological phase.

Because of the rstorder dynamics ushering the uptakerelated variables, the medium is always one step ahead of the biotic phase, contradicting the experiment presented by Nahku & al. [START_REF] Nahku | Specic growth rate dependent transcriptome proling of Escherichia coli K12MG1655 in accelerostat cultures[END_REF], the data thereof hinting at an instantaneous adaption of the growth rate to the dilution rate until the latter turns unsustainable to the organisms, in other words a biomass maintenance for hours of dilution acceleration. Figure 5.20 Experimental measurements of biomass (dashed lines), glucose (dashed, singledotted lines) and acetate (dashed, doubledotted lines) in an accelerostat. D increases from 0.3h -1 to 0.6h -1 at a 0.01h -2 rate. The population's growth rate (dots) starts following the dilution rate (lines) until the latter becomes unsustainable to allow the biotic phase to maintain in the reactor.

Borrowed from [START_REF] Nahku | Specic growth rate dependent transcriptome proling of Escherichia coli K12MG1655 in accelerostat cultures[END_REF] Contents lists available at ScienceDirect Regarding the cell number, an integration of (2.2) yields:
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Indeed, the regularity boundary condition imposed on v leads to Using the Fubini theorem to transform the right-hand side of (A.1) yields:

Recalling the properties (2.8), the right-hand side takes the shape of: Since it was assumed that a cell's mass is proportional to their length, an integration of the first moment on l of (2.