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Abstract
The research proposes some improvements in the efficiency, the robustness, the bal-

ancing of the cells and the fault tolerance ability of the Multicellular Converters. This
work is divided into two stages. The fist stage proposes a control method for multicellu-
lar converters for balancing the cell variables, regulating the output variable and giving
to the converter the ability to insert or remove cells during operation. The controller
is composed of three sections, a balancing controller, a global regulator, and a bypass
system. The balancing controller compares the cell variable with the cell variable of the
neighbors and compensates for the error with a classical controller. The global regula-
tor is a classical controller that regulates the output variable with the desired reference
and the bypass system allows to skip a cell when the cell is not available. This control
is implemented in the flying-capacitor multilevel converter and a cascaded full-bridge
multilevel converter. In the flying-capacitor multilevel converter, the objective is to bal-
ances the cell voltages and to regulate the output current. The controller decouples the
cell voltages and the output variable completely, allowing that disturbances in the cell
variable do not disturb the global variable and vice vera. Simulation and experimental
tests validate the performances of the theory of control method in this topology. In the
cascaded full-bridge multilevel converter the objective is to balance the output voltage
of the Full-Bridges and to regulate the output current of the converter. In this case,
the controller unties the output variable from the cell variables, while the cell variable
depends on the balancing controller that balances the cell variables and the global reg-
ulator that fixes the trajectory of the cell voltages. Results developed in simulation and
experimentations validates the control method in the cascaded full-bridge multilevel
converter, having good responses in all the tests.

The other contribution of the research corresponds to a control law for any sym-
metric Multilevel inverter modulated by a Selective Harmonic Elimination strategy.
Typically, when a low frequency modulation strategy is implemented, there is no feed-
back for adjusting the switching angles, because of the complexity of the math process.
The design of this controller is based on the obtention of a polynomial equation system
and its conversion to its Groebner Basis of the system. To find the roots of the polyno-
mial system, obtained by the Groebner basis conversion, an adaptation of the Newton
Raphson method is implemented, emulating a virtual dynamical system. Furthermore,
a PI controller is implemented to compensate for the error between the sensed har-
monics and the harmonic reference when a disturbance is produced. This controller
is validated in simulation and experimentation, disturbing some parameter, presenting
good responses in all the tests
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Resumen
Este trabajo propone mejoras en la eficiencia, robustez, balance de las celdas y

tolerancia a fallas de los convertidores multicelulares. La investigación está dividida
en dos secciones. La primera parte de este trabajo propone una ley de control para
convertidores multicelulares que balancea un de las variables de las celdas, regula la
variable de salida y brinda al convertidor la habilidad de insertar o remover células
mientras el sistema está en funcionamiento. La estrategia de control está compuesta de
tres partes, un control de balanceo de las variables celulares, un regulador de salida y un
sistema de derivación. El control de balance compara una variable de una célula con la
variable de las celdas vecinas y compensa el error con un control clásico. El regulador
de salida es un control clásico que compara la variable de salida con una referencia
y el sistema de derivación permite omitir la célula cuando esta no está disponible.
Este control se implementa en dos convertidores, el convertidor de capacitores flotantes
y convertidor de puentes H en cascada. En el convertidor de capacitores flotantes
el objetivo es balancear los voltajes de las células y regular la corriente salida. El
controlador desacopla completamente los voltajes de las células de la corriente de salida.
Esto produce que una perturbación en los voltajes de las células no afecte la corriente
de salida y viceversa. Simulaciones y pruebas experimentales validan la veracidad de
la teoŕıa en este convertidor. Acerca de la implementación del control en el convertidor
de puentes H en cascada, el objetivo es balancear los voltajes de salida de los puentes
H (variable de la célula) y regular la corriente de salida. En este caso el control desliga
la corriente de salida de las variables celulares, mientras que las variables celulares,
depende del control de balance, y del regulador de salida quien fija la trayectoria de las
variables de las células. Los resultados desarrollados en simulación y experimentación
validan la teoŕıa, obteniendo buenos desempeños en todas las pruebas.

La segunda contribución de este trabajo es un control para inversores multinivel
modulado mediante la eliminación selectiva de armónicas, que es una técnica de mod-
ulación a baja frecuencia. Normalmente técnicas de modulación a baja frecuencia no
tiene realimentacion debido a la complejidad matemática para ajustar los ángulos de
conmutación en tiempo real. El diseño de este controlador se basa en la obtención
de un modelo polinómico y su conversión en sus bases de Groebner. Para obtener
las soluciones de este sistema convertido a las bases de Groebner, una variante del
método de Newton Raphson es propuesta, convirtiendo este sistema estático en un sis-
tema dinámico virtual. Además, un control PI es implementado para compensar las
variaciones entre las armónicas de referencias y las armónicas sensadas. Este control es
validado con pruebas en simulación y experimentación, insertando carga al sistema y
perturbando los voltajes de entrada, obteniendo buen desempeño en todas las pruebas.
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Résumé
La recherche propose quelques améliorations de l’efficacité, de la robustesse, de

l’équilibrage des cellules et de la capacité de tolérance aux pannes des convertisseurs
multicellulaires. Ce travail est divisé en deux étapes. La première étape propose une
méthode de contrôle des convertisseurs multicellulaires pour équilibrer les variables de
cellule, réguler la variable de sortie et donner au convertisseur la possibilité d’insérer ou
de retirer des cellules pendant le fonctionnement. Le contrôleur est composé de trois
sections, un contrôleur d’équilibrage, un régulateur global et un système de dérivation.
Le contrôleur d’équilibrage compare la variable de cellule avec la variable de cellule des
voisins et compense l’erreur avec un contrôleur classique. Le régulateur global est un
contrôleur classique qui régule la variable de sortie avec la référence souhaitée, et le
système de bypass permet de sauter une cellule lorsque la cellule n’est pas disponible.
Cette commande est implémentée dans le convertisseur multiniveau à condensateur
volant et un convertisseur multiniveau en pont complet en cascade. Dans le convertis-
seur multiniveau à condensateur volant, l’objectif est d’équilibrer les tensions des cellules
et de réguler le courant de sortie. Le contrôleur dissocie complètement les tensions de
cellule et la variable de sortie, ce qui permet que les perturbations dans la variable de
cellule ne perturbent pas la variable globale et vice-versa. Des tests de simulation et
expérimentaux valident les performances de la théorie de la méthode de contrôle dans
cette topologie. Dans le convertisseur multiniveau à pont complet en cascade, l’objectif
est d’équilibrer la tension de sortie des ponts complets et de réguler le courant de sortie
du convertisseur. Dans ce cas, le contrôleur délie la variable de sortie des variables
de cellule. En revanche, la variable de cellule dépend du contrôleur d’équilibrage qui
équilibre les variables de cellule et du régulateur global qui fixe la trajectoire des ten-
sions de cellule. Les résultats développés en simulation et expérimentations valident
la méthode de contrôle dans le convertisseur multiniveau à pont complet en cascade,
ayant de bonnes réponses dans tous les tests. L’autre contribution de la recherche corre-
spond à une loi de contrôle pour tout onduleur multiniveau symétrique modulé par une
stratégie d’élimination harmonique sélective. En règle générale, lorsqu’une stratégie de
modulation à basse fréquence est mise en œuvre, il n’y a pas de rétroaction pour ajuster
les angles de commutation en raison de la complexité du processus mathématique. La
conception de ce contrôleur est basée sur l’obtention d’un système d’équations poly-
nomiales et sa conversion en sa base Groebner du système. Pour trouver les racines
du système polynomial, obtenues par la conversion de base Groebner, une adapta-
tion de la méthode Newton Raphson est implémentée, émulant un système dynamique
virtuel. De plus, un contrôleur PI est implémenté pour compenser l’erreur entre les har-
moniques détectées et la référence harmonique lorsqu’une perturbation est produite. Ce
contrôleur est validé en simulation et expérimentation, perturbant certains paramètres,
présentant de bonnes réponses dans tous les tests
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Chapter 1
Introduction

In the last decades, the power electronics have been used in several applications,
such as energy conversion and transmission, electrical traction and storage systems.
In all of these cases, the power converters have a key role, converting the energy of
the source into a suitable one for the load. There are many types of power converters
according to the application as: step up, step down, DC/AC or AC/DC converters.

Power converters consist mainly of passive elements, such as inductors and capac-
itors, and a set of switching devices such as MOSFETs, IGBTs, GTOs, Diodes, SCRs
[1, 2]. For low and medium voltage applications, MOSFETs and IGBTs are relatively
fast and offer the advantages of controlling the turning ON and turning OFF of devices.
While SCRs can be used for high voltage and high power, with the disadvantage that
turns them off might be complicated. Concerning to GTOs, they are straightforward
to turn ON and OFF. In addition, they support high voltage and high power. How-
ever, both GTOs and SCRs have a relatively slow switching time of around hundreds
of microseconds, making them inappropriate for high-frequency applications.

Another solution for high power/voltage management is the use of Multi-Cellular
Converters (MCC). The idea of MCCs is to “divide and rule”. These converters consist
of an arrangement of several cells connected in parallel, in series or in cascaded, which
allows distributing the voltage or current at the input or the output. There are many
types of MCCs, such as the Flying Capacitor Multilevel Converter (FCMC), where the
input voltage is distributed among the cell voltages, Cascaded Full Bridge Multilevel
Converter (CFBMC), where the total output voltage is distributed in the output voltage
of each Full Bridge (FB), Multiphase Buck Converter where the output current is the
sum of the leg currents. In all these cases the energy is distributed among the cells,
allowing the use of low or medium power devices for high power applications. This
fact is a great advantage because normally low power devices are faster and more
efficient than high power ones. High current MOSFETs are usually slower than low
current MOSFETs, producing high switching losses. While high voltage MOSFETs
have higher internal resistance than low voltage MOSFETs, increasing the conductive
losses. Therefore, MCCs allow managing high power conversion with low power and
fast switching devices. Besides, over the years, the size of Multi-Cellular converters
has been significantly reduced due to the reduction of input/output ripples thanks to
increase of apparent frequency, reduction of losses leading to shrink of cooling systems,
increasing power density.

Another feature of the multicellular converters is that it is possible to implement
a high-frequency modulation strategy that increases the output frequency, either for
DC/AC or DC/DC converters, reducing the size of the output filter. Furthermore for
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DC/AC converters, it is possible to implement multicellular converters using either high
or low-frequency modulation strategies. Low-frequency modulation strategies allow
reducing the THD or eliminating the most relevant harmonics.

MCCs offer many advantages, however, there are a lot of challenges to be solved for
these topologies. One of them is the ability to balance one variable of the cells according
to the application. In FCMC it is very useful that the cell voltages are equalized. This
produces that the supplied power is distributed equally in all the cells. Furthermore,
it produces a suitable ripple output voltage [3–5]. In the case of Multiphase Buck,
balancing the leg current produces a suitable distribution of the output current of the
system [6]. For the case of CFBMC, it is possible to balance the output voltages of each
FB for maintaining equalized the power delivered by each FB [7–10], or if the sources
are batteries, to balance the input current of each FB to maintain well balanced the
charging or discharging of the batteries. Furthermore, it is possible to balance the State
Of Charge (SOC) of the batteries. All these cell-variables balancing strategies can turn
very complicated if the number of cells increases significantly.

Another challenge for Multicellular converters is the ability to change the number
of cells during operation. This challenge is addressed because the modular structure
of these converters provides redundancy and allows for the design of a system that
reconfigures the number of cells during operation. This means that if one or more
cells fail, these cells can be removed while the system is in operation. Besides, with
this reconfiguration capability, a cell can be inserted during operation to increase the
power capability or leads to improve the global efficiency of the system. In [3, 8, 11]
the proposed controllers allow insertion and removal cells during operation and present
interesting results.

Another challenge is the ability to control a large number of variables, because if
the number of cells increases, the number of variables to be controlled also increases.
Therefore, the control method to keep stable the system can be very complex in some
cases. In [3, 8, 11] the theory indicates that these controllers can be implemented in a
large number of cells.

The last challenge that is taken into account in this work is the implementation
of a control method for the low frequency modulation strategy of multilevel inverters
(MIs) that regulates the output voltage if disturbances occur at the sources. The main
advantage of low-frequency modulation strategies is that the efficiency of the inverter
increases significantly. These strategies may have different objectives such as minimizing
THD [12, 13] or eliminating some harmonics [14, 15] by switching a finite number of
times per period. The main problem with these strategies is the complexity of finding
the switching angles. Therefore, these angles are often obtained off-line. However, if
there is a disturbance at the input sources, the switching angles must be recalculated.
These calculations can be highly complex to develop in real-time and may take excessive
processing time.

This work proposes a first solution for balancing the cell variables and regulating an
output variable. Furthermore, the proposed solution has the ability to insert or remove
cells during operation. This is carried out by a decentralized control method for a wide



range of MCCs able to regulate the output of the MCC, to balance any number of cell
variables and to implement a reconfiguration system for changing the number of cells.

Furthermore, this work also proposes a second solution for controlling the switching
angles in a low-frequency modulation strategy that adjusts the angles when a distur-
bance in the input sources is produced.

This work is presented as follows: Chapter two of this manuscript presents an
overview of the most popular topologies of the multicellular converters and the most
used modulation techniques for these converters. Furthermore, the chapter introduces
the most used control techniques to regulate the output of the MCCs, balance the
cell variables of different topologies and describes some reconfiguration methods that
allow a fault tolerance ability in some converters. Additionally, the chapter explains the
most relevant low-frequency modulation strategies and some solving methods for finding
the switching angles. Finally, some control techniques for low-frequency modulation
strategy is presented, showing their advantages and drawbacks.

In the third chapter a decentralized control method for several MCC topologies
is proposed which regulates the output, balances the cell variables and gives to the
converter a reconfiguration ability, being able to insert or remove cells during opera-
tion. This control method is validated, using two different topologies, an FCMC and
a CFBMC. Simulation and experimental results in both converters are also presented,
showing good performance in all the cases.

The fourth chapter presents an in-depth study of the behavior of the harmonics,
according to the switching angles and based on this study a control method for ad-
justing in real-time the switching angles when the input sources change. This theory
is validated in simulation and experimentation, presenting good performance in all the
tests. Finally, the fifth chapter presents the conclusion of all the research and also the
future works.

1.1 Research proposal
The introduction shows that MCCs present many advantages due to its modular struc-
ture, such as the capability to manage high voltage or high power. However, considering
its complexity, there are performance characteristics that are not completely developed
yet, as the balancing of the cell variables, fault tolerance and the capability of insertion
or removing cells during the operation. Furthermore, also, due to the modular struc-
ture, some issues can be minimized as the power losses in the cells, that for Multilevel
Inverter can be the implementation of a low-frequency modulation strategy. However,
the complexity of the solving process makes difficult to find the solution, when the pa-
rameters of the Inverter change. Based on these performance characteristics and issues
there are two proposals in this research:

The first one is the design of a decentralized controller for a wide range of Multi-
cellular Converter that balances the same variable of each cell and controls the output
variable, with the capability to insert or remove a cell during the operation, auto-



balancing the system, improving the robustness and implementing a fault tolerance
system. The results of it, are validated by simulation and experimentation in two
different MCCs, balancing different cell variables, inserting and removing cells, and
disturbing parameters.

The second proposal is addressed to the efficiency of a Multilevel Inverter, using
low-frequency modulation strategies, and it is the design of a controller for Selective
Harmonic Elimination (SHE) strategy, adjusting the angles when a disturbance is pro-
duced. The theory of the control is generalized for any symmetric Multilevel Inverter
ofN positives levels and it will be validated by simulation and experimentation in one
symmetric Multilevel Inverter, disturbing the input voltage and changing the load.

1.2 General Objective
The main objective of this research is to improve the performance, the efficiency of
Multicellular Converters, taking advantage of its modular structure, making the system
more flexible and tolerable to faults, increasing the robustness and balancing the power
on each cell according to the application.

1.3 Specific Objectives
Concerning the control strategies developed and proposed in the thesis, the specific
objectives are:

• To propose a generalized structure of a decentralized controller to be implemented
in a wide range of Multi-Cell Converter, balancing the same variable of each cell,
controlling a specific output variable and having the ability to insert or remove
cells.

• To design similar decentralized controllers for different applications in two Multi-
Cell Converters based on the proposed generalized structure.

• To design a control law for Selective Harmonic Elimination Modulation Strat-
egy implemented in any Symmetric Multilevel Inverter, able to compensates the
disturbances produced by the input voltages and load changes, recalculating the
switching angles in real-time.

• To validate the designed controllers by simulation and experimentation, disturbing
parameters.



Chapter 2
Literature Review

This chapter introduces and presents the topologies of some MCCs, in which the pro-
posed control strategies will be implemented. Furthermore, this chapter presents also
the most known modulation techniques used in these converters. Finally, an overview of
previous works developed for controlling the MCCs, for high/low frequency modulation
strategies is presented.

2.1 Topologies of Multicellular Converters
Multicellular converters are made of several cells, each cell is formed of switching de-
vices, passive elements such as inductors and capacitors, and in some cases local power
supplies. There are several topologies of MCCs, as Fig. 2.1 shows.

(a) (b)

(c)

Figure 2.1: Different Topologies of Multilevel Converters. (a) Cascaded Full Bridge
Multilevel Converter, (b) Multiphase Buck Converter, (c) Flying-Capacitor Multilevel
Converter

17



Fig. 2.1 shows the three topologies that are detailed in this work that are: Multi-
phase buck [6, 11, 16], Flying-Capacitor Multilevel Converter [3–5, 17, 18], and Cas-
caded Full Bridge Multilevel Converter [19–22].

2.1.1 Cascaded Full Bridge Multilevel Converter
Fig. 2.1(a) shows the schematic of a Cascaded Full Bridge Multilevel Converter, where
each cell is a Full Bridge (FB), and is composed of two legs of switching devices fed
by an input voltage source vek. Skν and Skν are the switches, where Skν receives the
opposite control signal of Skν , and ν represents the branch, a and b for the left and right
leg respectively. In some cases, there is an input LC filter between the input source and
the FB, for smoothing the input current.

Furthermore, it can be observed in Fig. 2.1(a) that the cells are connected in serial,
in which vs is the sum of all the output voltages of the FBs, vHk. These topologies are
widely useful to generate high output voltage if there are several low voltage sources
such as solar panels or batteries. Based on Fig. 2.1(a), table 2.1 shows the state of
each FB (vHk) according to the position of the switches.

Table 2.1: vek vs Ska, Skb
Ska Skb vHk
0 0 0
0 1 −vek
1 0 vek
1 1 0

According to Table 2.1, if one FB is present, 3 voltage levels are available. (−vek, 0, vek),
producing positive and negative voltages. For that reason this topology is mostly used
for DC/AC. Fig. 2.2 shows vHk according to the position of Ska and Skb.

Figure 2.2: Waveform of the output of a FB converter



CFBMC can be classified according to the ratio between the input sources in [23]:
Cascaded Equal Multilevel Inverter (CEMI), where ve1 = ve2 = · · · = veN = ve [20, 22],
producing voltage from −Nve to Nve passing by 0, meaning 2N + 1 levels, Unary
Hybrid Multilevel Inverter (UHMI), where vek = kve, producing a maximum voltage of
N(N + 1)

2 ve and generating (N + 1)2 − N levels, Binary Multilevel Inverter (BHMI)
where vek = 2k−1ve [24, 25], having a maximum voltage level of (2N − 1)ve producing
2N+1 − 1 levels, and Trinary Hybrid Multilevel Inverter (THMI), where vek = 3k−1ve

with a vsmax = 1
2(3N −1)ve and 3N levels [26–29]. It can be inferred that one advantage

of having different input voltages on the input sources is to produce more levels per
FB [23]. THMI is the topology that produces the most levels, l, per number of FBs, N,
as [29, 30] demonstrates. References [26, 27, 29] explain in more detail the principle of
THMI. Knowing that each FB can generate 3 levels, Fig. 2.3(a) shows the waveform of
the output voltage of a CEMI with 2 FBs and Fig. 2.3(b) shows the waveform of the
output voltage of a THMI with 2 FBs.

(a) (b)

Figure 2.3: Output waveform of Cascadeds Full Bridge Multilevel Inverters (a) Cas-
caded Equal Multilevel Inverter, (b) Trinary Hybrid Multilevel Inverter

Fig. 2.3 shows the 5 voltage levels in the CEMI and the 9 voltage levels in THMI,
validating that THMI presents more levels per FB than CEMI. However, THMI is more
complex to modulate than CEMI. In the following section, some modulation techniques
are explained, for these two topologies. Cascaded Equal Multilevel Inverter is the most
used CFBMCs, because of its straightforwardness to modulate and its availability to
balance the power in each FB without affecting the value of the step voltage.



2.1.2 Flying-Capacitor Multilevel Converter
According to Fig. 2.1(c), the Flying-Capacitor Multilevel Converter is made of cells that
have a pair of switching devices and a capacitor [3–5, 17, 18]. The cells are connected
in cascade, meaning that the input of the k + 1th cell supplies the kth cell and the
input sources, ve, feeds the N th cell, while the output of the first cell is shorted. It
is possible to define a cell-voltage as the difference of the adjacent capacitor voltages
vk = vCk−vCk−1, leading to the sum of all the cell-voltages is equal to the input voltage.
If Sk is OFF-state, the voltage across the switch is vk, otherwise 0. This topology is
commonly used when there are high input voltages and low/medium output voltage
such as train applications [4, 5]. In this topology, the kth capacitor is charged and
discharged according to the position of Sk and Sk+1. Table 2.2 shows the behavior of
the current capacitor according to the position of its adjacent switching devices

Table 2.2: Current through the kth capacitor
Sk+1 Sk iCk
0 0 0
0 1 −io
1 0 io
1 1 0

Notice that when the switch Sk is ON, the capacitor is discharged and while Sk+1 is
ON, Ck is charged. Table 2.3 shows the behavior of the output voltage vs of the FCMC
when N=3.

Table 2.3: vo vs S1, S2, S3

S3 S2 S1 vo as vCk vo as vk
0 0 0 0 0
0 0 1 vC1 v1
0 1 0 vC2 − vC1 v2
0 1 1 vC2 v2 + v1
1 0 0 vC3 − vC2 v3
1 0 1 vC3 − vC2 + vC1 v3 + v1
1 1 0 vC3 − vC1 v3 + v2
1 1 1 vC3 v3 + v2 + v1

Fig. 2.4 shows the output voltage vs when the switches are closed 50 % of the period
Ts and the pulse of the switch Sk is delayed Ts/N from the switch Sk−1.



Figure 2.4: Waveform of vo and S1, S2, S3

Notice that the apparent output frequency is equal to the switching frequency multi-
plied by the number of cells (in this case three). However, each step voltage is different.
Furthermore, according to Fig. 2.4, S3 has to sustain a higher voltage than S2 and
S2 sustain a higher voltage than S1. These effects can be minimized if vCk = kve

N
. In

that case, all the switches sustain the same voltage, vk = ve/N . Additionally, the step
voltages of vs are identical, ve/N . Therefore, it is possible to conclude that balancing
the cell-voltages two advantages are obtained: The switches have to sustain the same
voltage and the ripple of the output voltage is minimized. In the next sections, a sum-
marize of the modulation strategies for obtaining this balancing effect is developed and
the appropriate controllers to balance the cell-voltages are detailed.

2.1.3 Multiphase Buck Converter
According to Fig. 2.1(b), a Multiphase Buck is composed of N half-FBs connected in
parallel, whose the switching-node is connected to an inductor. The inductors of the
legs are connected to a load, producing that the sum of the leg currents, ik, is equal to
the output current io. This topology is very useful when it is necessary to produce high
output current with low or medium input voltage [6, 11, 16]. According to Fig. 2.1(b)
if one leg is analyzed, it is a buck converter. Hence, if vs is constant:

Table 2.4: kth current vs the Sk
Sk

dik
dt

1 (ve − vs)
1
L

0 −vs
1
L



According to table 2.4, Fig. 2.5 shows the waveform of ik if the current at the end
of the period is the same as the beginning of the period.

Figure 2.5: Waveform of the leg current in one period of switching

where Ts is the switching period and d is the duty-cycle (percentage of the period
in which Sk is in ON-state). According to Fig. 2.5, the peak-to-peak amplitude of the
current waveform in Continue-Current-Mode of the current is:

∆I = dTs
ve − vs
L

−∆I = (1− d)Ts
vs
L

(2.1)

Obtaining that d = vs
ve

for remaining the same value of the current at the end and
the beginning of the period. Remaining that the output current io is the sum of all the
leg currents. Fig. 2.6 shows the waveform of the leg current and the output current of
the system, where N = 3 and the switching time of S2 and S3 are delayed Ts/3 and
2Ts/3 from the switching time of S1 respectively. In [6, 16] develop a Multiphase Buck
Converter for different applications. Furthermore, in chapter 3 a brief explanation of the
model of a Multiphase Buck is introduced. The next section explains some modulation
strategies for all the topologies described in this section.

Figure 2.6: Leg currents and output current of a Multiphase Buck Converter with 3
legs



2.2 Modulation Strategies for MCCs
There exist many modulation strategies for Multicellular Converters [14, 27, 31, 32],
especially for Multilevel Inverters. This section explains the most relevant strategies
and the ones used in this research. Modulation strategies can be classified in low and
high-frequency techniques. Low-frequency modulation strategies are commonly used
for DC/AC converters, while high-frequency strategies are used for DC/DC, DC/AC
of AC/DC converters.

2.2.1 High-frequency Modulation Strategies
One of the most used high-frequency modulation strategies for power converters is the
Pulse Width Modulation (PWM), which is used for 2 levels DC/DC converters. Based
on this technique, other modulation techniques are designed for DC/ACs and MCCs.
PWM modulation has as output a binary signal, vpwm, and has as inputs a triangular
or sawtooth signal, vtri, called the carrier, and a DC value, vm, where:

vpwm =
{

0 ; vtri > vm
1 ; vtri ≥ vm

(2.2)

Fig. 2.7 shows the waveform of vpwm, vm and vtri:

Figure 2.7: Waveform of vpwm, vm, vtri, using PWM

where Ts is the period and d is the percentage of the period which vpwm is equal to
1. d is also called the duty cycle, because it corresponds to the percentage of the period
in which the switching device is ON.

Based on PWM techniques, some modulation methods for different application are
proposed. One of them is the Sinusoidal PWM (SPWM) [1, 32], that consists in a
PWM where vm is a sinusoidal wave. SPWM can be bipolar or unipolar SPWM.
Bipolar SPWM [1, 2] is a strategy in which according to Fig. 2.1(a), Ska is modulated
by dka and Skb = Ska. Producing only two available levels, vek and −vek, with no level



in 0 V. Fig 2.8 shows vHk, employing bipolar SPWM with vm = A

2 sin(ωt) + 1
2, where

A=0.8, ω = 2π
T

and T is the period of vm.

Figure 2.8: Bipolar SPWM

Notice that the waveform generated by the average of vHk in one switching period
Ts is close to a sine wave. Furthermore, as Fig. 2.8 shows, vHk presents only two values,
−vek, vek, it generates that the RMS value of vHk is ve and the fundamental component,
v1, is approximately Avek. Hence, the Total Harmonic Distortion of this modulation is:

THD =

√√√√( vRMS

v1RMS

)2

− 1

THD =

√√√√√ vek
Avek√

2

2

− 1

THD =
√

2
A2 − 1

THD = 145.77%

(2.3)

Eq. (2.3) shows that bipolar modulation presents a high THD. Furthermore, (2.3)
allows inferring that bipolar modulation has always a THD higher than 100 %, except-
ing overmodulation cases (|vm − 0.5| > 0.5). For validating this statement, Fig. 2.9
presents the Fourier analysis of vHk, using bipolar SPWM



Figure 2.9: Fourier analysis of vHk using bipolar SPWM

Where fs = 1
Ts

and f = 1
T

. Fourier analysis shows that the component at fs is
higher than the fundamental component at f . For that reason the THD is higher than
the 100 %.
Unipolar SPWM techique is a PWM strategy where the duty cycle of Ska is dka = vm
and the duty cycle of Skb is dkb = 1 − dka. Fig. 2.10 shows the waveform of vs, using
this modulation with the same vm used in bipolar modulation.

Figure 2.10: Unipolar SPWM

Notice that the frequency of vHk is twice of the carriers and there are 3 levels (±vek
and 0). The THD of vHk for unipolar SPWM is 77.37%. Fig. 2.11 shows the Fourier
analysis of unipolar SPWM. Notice that the Fourier components corresponding to the
odd multiples of fs are removed, validating the considerable reduction of the THD.



Figure 2.11: Fourier Analysis of unipolar SPWM

Unipolar SPWM Strategy is the most used modulation strategy for inverters using
only one FB and it is the base for some modulation strategies of multilevel inverters.

There are many high-frequency modulation strategies for MCCs, the most popular
are the multicarrier PWM modulation strategies, where each cell has its carrier. The
most known multicarrier PWMs are Level-Shifted Multicarrier PWM (LSPWM) and
Phase-Shifted Multicarrier PWM (PSPWM). In LSPWM the carrier of the kth cell is
shifted one level upper of the previous cell carrier. Fig. 2.12 shows a LSPWM applied
to a FCMC of 3 cells where the capacitor voltages are well balanced, meaning that
vk = ve

N
.

Figure 2.12: Level-shifted multicarrier PWM applied for a FCMC

Notice that the switching frequency of vs is the same as the carrier one, with vs
switching between two adjacent levels. This fact reduces the Fourier component at fs.
For the case of symmetric CFBMC with the same input voltages, each leg of the FBs
has his carrier. Fig. 2.13 shows the carriers of the switching devices and the output
voltage vs with 3 FBs.



Figure 2.13: Level-shifted multicarrier PWM for a Inverter

Notice that the switching frequency of vs is the same as the frequency of the carriers,
with the advantage that the switching steps of vs is only one voltage level. To highlight
the benefits of this modulation, Fig. 2.14 shows the Fourier analysis of vs with this
modulation strategy.

Figure 2.14: Fourier Analysis of a Level-shifted Multilevel PWM applied to a Inverter

Notice that the component at fs is reduced considerably, compared to the bipolar
modulation. Additionally, the THD of vs is 24.34 %. This fact validates the bene-
fits of this strategy. There are some improved modulations of this strategy as Phase
Opposition Disposition (POD) or Alternative Phase Opposition Disposition (APOD)
[33, 34].



The other Multicarrier Modulation Strategy is Phase-shifted Multicarrier Modula-
tion Strategies [22, 35], where each cell is modulated by PWM and the carrier of the
kth cell is shifted in phase φ = 360

(
k−1
N

)◦
. Fig. 2.15 shows the waveform of vs of a

FCMC of 3 cells using this strategy when the cells are well balanced.

Figure 2.15: vs of a FCMC modulated by Phase-shifted Multicarrier PWM

Notice that the frequency of vs is increased three times respect to the frequency of
the carrier, it is mean that the harmonic components are shifted to higher frequencies,
allowing a reduction of the inductance and the capacitance of the output filter. For
the case of Multilevel Inverters, to modulate with this strategy, vtri(k+1) is shifted φ =
180

(
k−1
N

)◦
of vtrik . Fig. 2.16 shows the results produced by a unipolar phase-shifted

multicarrier SPWM.

Figure 2.16: vs of a CFBMC modulated by a Phase-shifted Multicarrier SPWM



Notice that the switching frequency of vs is considerably higher than the frequency
of the carriers. Fig. 2.17 shows the Fourier analysis of this modulation.

Figure 2.17: Fourier Anlysis of vs of a CFBMC modulated by a Phase-shifted Multi-
carrier SPWM

Fig. 2.17 shows that the Fourier components are shifted to frequencies 6 times
higher than the carrier frequency (three times because there are three FBs and two
times because it is a unipolar modulation strategy). There are other kinds of mul-
ticarrier modulation strategies where a third harmonic is injected or where vm has a
trapezoidal shape. All these modulation strategies are suitable for symmetric MCCs
and are not adequate for asymmetric inverters such as THMI. References [26, 27, 36]
propose modulation strategies for asymmetric inverter topologies.

2.2.2 Low Frequency Modulation Strategies
Low frequency modulation strategies are the other techniques implemented in multilevel
inverters. These techniques are based on turning ON and OFF the switching devices a
finite number of times during one period, minimizing the THD [12, 13], or eliminating
the most significant harmonics [14, 15, 37]. The main advantage of these techniques
is the low switching losses due to the few numbers of switchings for the same power
transistor during a period of the modulating signal. Then, it is possible to use slower
power devices, which normally support more voltage than the faster ones, allowing them
to work with higher voltages. The main issue of these strategies is the complexity in the
math computations because the process to find the switching angles are either based on
a minimization problem [12] or it is necessary to solve complexes trigonometric system
equations by iteration methods [38].

Fig. 2.18 shows the waveform of the output using low frequency modulation strate-
gies, using a CFBMC where each FB changes once per quarter of the period.

The objective of low frequency modulation strategies is to find the switching angles
that minimize the THD or minimize or eliminate the most significant harmonics.



Figure 2.18: Waveform of vs with low frequency modulation strategy

According to appendix A, the fundamental component of the Fourier analysis when
all the sources are identical is:

h1 =
N∑
k=1

4ve
π

cos (θk) (2.4)

And the RMS voltage is:

v2
RMS = 2

π

(
v2
e (θ2 − θ1) + (2ve)2 (θ3 − θ2) + (3ve)2 (θ4 − θ3) + · · ·

+ ((N − 1) ve)2 (θN − θN−1) + (Nve)2
(
π

2 − θN
))

v2
RMS =2v2

e

π

(
−θ1 − 3θ2 − 5θ3 − · · · − (2N − 1)θN +N2π

2

)

vRMS =ve

√√√√N2 − 2
π

N∑
k=1

(2k − 1) θk

(2.5)

Hence, the cost function to be minimized is the difference between the square of the
RMS value of vs and the RMS of the fundamental component, constrained to a desired
fundamental component, h∗1

min
θ1···θN

v2
e

(
1− 2

π

N∑
k=1

(2k − 1) θk
)
− h∗21

2

subject to
N∑
k=1

4ve
π

cos (θk)− h∗1

(2.6)



There exist many optimization methods that solve this problem as numerical techniques
and search methods as genetic algorithms or swarm particles [39]. The other relevant
low frequency modulation technique which this chapter explains corresponds to a Selec-
tive Harmonic Elimination (SHE), in which the objective is to fix a desired fundamental
component and to eliminate some desired harmonics. For that reason, it is necessary
to express the waveform of Fig. 2.18, as the sum of its Fourier components, as follows:

vHk
=

∞∑
m=1

(bkm sin (mωt) + akm cos (mωt)) (2.7)

Appendix A describes the values of the mth harmonic produced by the kth FB as:

bkm =


4ve
mπ

cos (mθk) ; m is odd

0 ; m is even

akm = 0

(2.8)

Hence the output voltage, vs, expressed as its Fourier components is:

vs =
N∑
k=1

vHk
k = {1, · · · , N} (2.9a)

vs =
N∑
k=1

∞∑
m=1

(bkm sin (mωt) + akm cos (mωt))k = {1, · · · N} , m = {1, 3, · · · } (2.9b)

vs =
N∑
i=1

∞∑
m=1

4ve
mπ

cos (mθk) sin (mωt) k = {1, · · · N} , m = {1, 3 · · · } (2.9c)

vs =
∞∑
m=1


4ve
mπ

N∑
k=1

(cos (mθk))︸ ︷︷ ︸
hm

sin (mωt)

 k = {1, · · · N} , m = {1, 3 · · · } (2.9d)

Hence, the mth harmonic, hm, is:

hm = 4ve
mπ

N∑
k=1

(cos (mθk)) (2.10)

Hence, if there are N switching angles, it is possible to generate a system equation from



(2.10) replacing m to a desired values:

hm1 = 4ve
m1π

N∑
k=1

(cos (m1θk))

hm2 = 4ve
m2π

N∑
k=1

(cos (m2θk))

hmN
= 4ve
mNπ

N∑
k=1

(cos (mNθk))

(2.11)

where hmk
is the value adjusted for the mth

k harmonic. Hence, it possible to adjust the
fundamental component and to eliminate N − 1 desired harmonics, replacing m1 = 1,
hm1 = h∗1, hmk

= 0 for the harmonics to be eliminated. There are many methods to solve
this system equation such as numeric methods as Newton Raphson [38] or minimization
techniques [40], or search methods as genetic algorithms or Swarm Particle or General
Pattern Search [14, 37, 41]. However, if the initial conditions are not suitable, the
methods may not find the solution, and there is no manner to know if the system has
no feasible solution.

Furthermore, they can take excessive time to be implemented in real-time. Finally,
there are algebraic methods that find all the set of solutions of the system equation [15,
42–44], without initial condition. [15, 43, 44] convert the trigonometric system equation
to a polynomial system, based on cos (nθ) = Tn (cos (θ)). In [42] the polynomial system
equation is solved based on that the system corresponds to a symmetric polynomial,
and in [15, 43] a conversion to its Groebner Basis is implemented, uncoupling the
system equation. Groebner Basis is explained in detail in [43, 45]. In [44] a unification
of [43] and [42] are developed. These methods allow also to know if the solutions
are feasible. However, the main problem of these methods is the complexity of the
solving process in real-time, because, the roots of the polynomial system equation must
be found in real-time, taking into account the disturbances in the input voltages, or
designing a feedback system that compensates the disturbances. For that reason, most
of these methods find the solution with pre-processing techniques. Nevertheless, if
a disturbance in the input voltages is produced, there is no manner to readjust the
angles for canceling the harmonics with the new appropriate values. One solution to
solve this issue is to embed a look-at-table in the processor. However, if a robust
system is required it is necessary to use a look-at-table with a lot of information,
that may overload the processor. Another solution is to implement a control law to
this modulation strategy as [40, 46] propose, using the Jacobian of the harmonics for
implementing a linear controller. However, if a disturbance in the input voltage is
too high this control strategy using on-the-fly updated values might make the system
unstable. As conclusion, low frequency modulation strategies are very efficient and can
be implemented in symmetric inverters. However, the complexity of the equations is
an issue and does not allow an online computation implementation. Moreover, if a
disturbance occurs in the inverters, the time required to update the switching angles
can introduce excessive delays and make the system unstable.



2.2.3 Control techniques for Multilevel Converters
In MCCs there are many objectives to achieve, as balancing the cell-variable (CV),
regulating a global variable (GV), having fault tolerance ability, minimizing or equal-
izing the step voltage size in asymmetric inverters, suitable start-up, etc. In some
cases, these objectives are achieved with a right modulation strategy such as happen in
[26, 27], where generating a piece-wise function for each switching device, the equalized
step size is achieved in a THMI. In other cases, as in a Flying-Capacitor Multilevel
Converter, adding some extra circuits in the hardware [47] balances the cell-variables
and also produces a soft start-up. In the case of THMI, a right modulation produces a
right step size as shown in [26, 27, 36], minimizing the ripple of the current, improving
the acquisition of this signal to control.

Most of MCCs present an input filter in the input of the system for smoothing the
input current, generating oscillations in the input voltages. This fact disturbs the out-
put variable and in some cases unbalances the cell-variable. For that reason, a balancing
controller is necessary to maintain balanced the desired cell-variables. Furthermore, an
output global regulator is necessary for maintaining the desired references if the load
or the input voltage change. To regulate the output global variable, there exist several
types of controllers that in some cases are designed for a two-level converter but can
be generalized to MCCs. Reference [48, 49] proposes a backstepping controller for a
FB inverter working as a stand-alone or grid-tied mode. The backstepping controller
consists of a Recursive Lyapunov Controls, ensuring the stability of the variables by
stages. In [50] an Adaptive Sliding Mode Controller (SMC) is implemented for an in-
verter working either as isolated or grid-tied mode, controlling the output voltage or
current respectively. SMCs are also applied in a Flying-Capacitor Multilevel Converter
presenting a good response. Either back-stepping and SMC controllers have the advan-
tage that they use the nonlinear model of the converter and have a nonlinear control
law, improving the robustness and the performance. SMCs are based on a sliding sur-
face, which is a function of the states of variables equalized to zero and presents two
stages, a continuous stage, and a switching stage. When the function of the state of
variables is out from the sliding surface, the switching action acts. The main issue of
SMCs is the chattering effect, produced by the switching part, which consists of high-
frequency oscillations in the system. Chattering effect is increased in the Multicellular
converters, especially in asymmetric inverters. In [51] a variation of SMC is proposed
where no switching stage is present, having a tolerable operating region, where the
stability is not ensured. However, this region can be reduced to a range that can be
acceptable. This controller is validated in [26], implementing it in a THMI in grid-tied
mode, having good experimental and simulation results, disturbing the input voltages
and changing the phase and amplitude of the current reference.

Other controllers very interesting that are used in power converters are the predictive
control or MPC, which produces a horizon of events. Based on this horizon, a control
law is designed, minimizing a cost function that is related to the error of the variables
to be controlled and the variation of the input. These controllers take into account the



physical restrictions as the bounds of the inputs or the maximum tolerable error.
To balance the cell-variables there exist many interesting balancing controllers de-

signed either for CFBMC, FCMC or Multiphase Buck. In [52] a reference for each
cell-variable is generated and a predictive controller is synthesized. The main issue of
generating a reference to each cell-variable is that if a disturbance in any parameters
is produced, or if a cell is inserted or removed, the references of each CV could have to
be recalculated as happen in the Flying-Capacitor Multilevel Converter when the input
voltage changes. In [7, 10], another strategy for balancing of cell-variables is proposed
for CEMI, comparing the local cell variable to the neighbors. These techniques are
based on a drop controller, emulating the converter to a Thevenin circuit, in which
the output impedance of each FB is compared with its neighbors. There exist other
balancing controllers the FBs as [9]. For the Multiphase Buck, an Adaptive Voltage
Positioning (AVP) control method is designed in [6, 11, 16]. This controller allows
regulating the output voltage and balancing the leg currents. To balance the leg cur-
rents, each current is compared to the neighboring currents, and to regulate the output
voltage, a drop control is implemented. For the Flying-Capacitor Multilevel Converter,
in [3] a decentralized local controller is proposed, which consists of three stages: bal-
ancing the CVs, regulating the output current and a bypass circuit used to manage a
reconfiguration order. A similar control method is implemented in [8], for a CFBMC in
a grid-tied mode, balancing the output voltage of the FBs and controlling the output
current. [3, 8] are based on this thesis.

About the control for low frequency modulation strategies, in [40, 46] a linear con-
trol is proposed for a SHE, finding the switching angles offline, and using a Tailor
approximation of the harmonics.

H =
 ∂H
∂Θ

∣∣∣∣∣
(Ho,Zo)

 (Θ−Θo) + Ho (2.12)

Where Ho are the operating point values of the harmonics that are controlled,
and Θo are the operating point values of the switching angles. Based on (2.10) a PI
controller is implemented. This control works well if small disturbances are produced.
However, if a high disturbance occurs, the controller can turn the system unstable.



Chapter 3
Decentralized controller for a Multi
Cell Converter

Most of the time, multicellular converters require to implement a specific control
loop to balance either the inductor current for the parallel topologies or the capacitor
voltages for the serial ones. There exist many types of balancing methods depending
on the types of converter topology addressed [3, 6–11, 16]. However, the complexity
increases when the number of cells increases. Moreover, several methods exist also to
regulate the GV of the MCC. Nevertheless, it is possible that when it is necessary to
control other variables like balancing CVs, the action of each controller can disturb the
other loops and affects the stability.

This chapter presents a control strategy that can be implemented in a wide range
of symmetric MCCs of N levels. As mentioned in the introduction, MCC is composed
of an arrangement of cells that can be connected in parallel or series. Furthermore,
several state-variables, i.e. the CVs and the GV, are linked together depending on
the topology of the MCC. The proposed control strategy allows to balance one of the
CVs, depending on the application and to regulate a Global Variable with the desired
reference. Furthermore, this control strategy introduces a bypass system that allows
the user to insert or remove very easily an active cell of the converter during operation,
giving the opportunity to manage the fault tolerance concern in a more straightforward
manner. Before introducing the decentralized control concept, an overview of the several
MCC topologies is presented and their similarities in terms of state-variables (i.e. energy
storage) local and global are discussed and highlighted.

3.1 Model of three Topologies of Multicellular Con-
verters

To have a general idea of the similarities and the differences of multicellular converters,
this section describes the model of three topologies of MCCs, which are the Flying-
Capacitor Multilevel Converter, The cascaded Full-Bridge Multilevel Converter, and
the Multiphase Buck converter.

3.1.1 Model of the flying-Capacitor Multilevel Converter
This section models a CFBMC connected to a Inductive- resistive load, as Fig. 3.1
shows:
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Figure 3.1: Schematic of a Flying-Capacitor Multilevel Converter

where S ′k is the opposite control signal of Sk. According to Fig. 3.1 the current
through the capacitors flows as mentioned in Fig. 3.2
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Figure 3.2: Current flowing through the flying-capacitor

Based on Fig. 3.2, the switching dynamic model of the capacitor voltages are:

v̇swCk
= iswo
Ck

(Sk+1 − Sk) ;k =
{

1 2 · · · N − 1
}

(3.1a)

v̇swCN
= v̇e (3.1b)

Considering the values of the capacitor voltages, the expression of the output current
(iswo ) can be obtained based on the topology shown in Fig. 3.1:

Loi̇
sw
o =S1

(
vswC1 − v

sw
C0

)
+ S2

(
vswC2 − v

sw
C1

)
+ S3

(
vswC3 − v

sw
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)
+ · · ·+ SN

(
vswCN
− vswCN−1

)
−Roi

sw
o

Loi̇o
sw =

N∑
k=1

Sk
(
vswCk
− vswCk−1

)
+ S1v

sw
C1 −Roio

(3.2)



where vC0 = 0. In order to obtain the average model, lets define φ(t) as the moving
average from t to t+ Tsw of φsw(t):

φ(t) = 1
Tsw

∫ t+Tsw

t
φsw(τ)dτ (3.3)

Hence, applying the moving average to (3.1), the average model becomes:

v̇Ck
= io
Ck

(dk+1 − dk) ;k =
{

1 2 · · · N − 1
}

(3.4a)

v̇CN
= v̇e (3.4b)

And the average model of (3.2) is:

Loi̇o =
N∑
k=1

dk
(
vCk
− vCk−1

)
−Roio (3.5)

where dk is the average of the switching state Sk, that also corresponds to the
duty-cycle of Sk.

Expressing (3.4) and (3.5) in a matrix form, it follows:
V̇C = ioC−1AoD + Ev̇e (3.6a)

i̇o = 1
Lo

DTTVVC −
Ro

Lo
io (3.6b)

where VC =
[
vC1 vC2 · · · vCN

]T
; D =

[
d1 d2 · · · dN

]T
; E =

[
0 · · · 0 1

]T

C =


C1 · · · 0 0
...

. . .
...

...
0 · · · CN−1 0
0 · · · 0 CN

 ; Ao =


−1 1 · · · 0

0 . . .
. . .

...
...

. . . −1 1
0 · · · 0 0

 ; TV =


1 0 · · · 0

−1 1 . . .
...

...
. . .

. . . 0
0 · · · −1 1


Defining C = CoΓ, where Co = CN and

Γ =


γ1 · · · 0 0
...

. . .
...

...
0 · · · γN−1 0
0 · · · 0 1


and γk = Ck

CN
. Rearranging the equations it follows:

V̇C = io
Co

Γ−1AoD + Ev̇e (3.7a)

i̇o = 1
Lo

DTTVVC −
Ro

Lo
io (3.7b)



In order to apply the decentralized control method to balance the CVs, it is necessary
to perform a change of variable, replacing the capacitor voltages in the previous equation
by the cell-voltages, vk, defined as the difference of the adjacent capacitor voltages of
the cells. Therefore, the kth cell-voltage is described as:

vk = vCk
− vCk−1 ; k =

{
1 2 · · · N

}
(3.8)

Expressing the cell-voltages as a matrix form:

V = TVVC (3.9)
Obtaining the derivative of V respect to the time it follows:

V̇ = TVV̇C (3.10)
Replacing by (3.7a)

V̇ = io
Co

TVΓ−1Ao︸ ︷︷ ︸
AT

D + v̇e��
��:ETVE (3.11)

where

AT =
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−
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1
γ2

+ 1
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)
. . .

. . . 0
...

. . .
. . .

. . . − 1
γN−2

0

0 · · · 0 1
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−
(

1
γN−2

+ 1
γN−1

)
1

γN−1

0 0 · · · 0 1
γN−1

− 1
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
Notice in AT that the sum of the elements of each column and row are equal to 0,

meaning that AT is a graph, according to [53, 54]
Inserting (3.9) in (3.6b), it follows:

i̇o = 1
Lo

DTV− Ro

Lo
io (3.12)



Finally, according to (3.11) and (3.12), the the average model expressed with the
cell-voltage variable of the FCMC is:

V̇

i̇o

 =


io
Co

ATD + Ev̇e

1
Lo

DTV− Ro

Lo
io

 (3.13)

Based on (3.13), it is possible to represent the converter behavior with the following
equivalent circuit :
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Figure 3.3: Equivalent circuit of the Flying-Capacitor Multilevel Converter

According to Fig. 3.3, it can be observed that:

N∑
k=1

vk = ve (3.14)

Expressed as a matrix form, means:

V1
TV = ve (3.15)

where V1 =
[
1 1 · · · 1

]T
. Furthermore, Fig. 3.3 shows a strong link between the

output current and cell-voltages. Fig. 3.4 shows more clearly the link between the
cell-voltage and the output current:



Figure 3.4: Block diagram of the equivalent model of the flying capacitor

In order to apply the decentralized control method, it is necessary to linearize the
average model. Hence, Defining the small and the DC value:

V = V̄ + V̂ D = D̄ + D̂
io = īo + îo ve = v̄e + v̂e

(3.16)

the small signal model is:


˙̂V

˙̂io

 =


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Co

ATD̂ + îo
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ATD̄ + E ˙̂ve

1
Lo

D̄T V̂ + 1
Lo

D̂T V̄− Ro

Lo
îo

 (3.17)

With the DC equations is:

0 = io
Co

ATD̄ (3.18a)

0 = D̄TV−Roio (3.18b)

Solving (3.18a):

d1 = d2 = · · · = dN = d (3.19)
where d is the average value of the duty-cycle applied to all the cells. Expressed as a
matrix form, it follows:

D = dV1 (3.20)
Replacing (3.20) in (3.18b):

0 = dV1
TV−Roio (3.21)



Taking into account that (3.15) is also valid for DC and small signals, it follows:

d = Roio
v̄e

(3.22)

As it is mentioned at the beginning of this work, one the objective is to balance the
cell-voltages, Hence:

v̄1 = v̄2 = · · · = v̄N = v (3.23)
where v is the average value of all the cell-voltages. Expressing as a matrix form, it
follows:

V = vV1 (3.24)
Based on (3.15), it follows:

v̄e = V1
TV (3.25a)

v̄e = v���
��:NV1

TV1 (3.25b)

v = v̄e
N

(3.25c)

Inserting all the obtained average values in the small signal model described in (3.17)
it follows:


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îo

 (3.26)

Expressing (3.26) in a LAPLACE domain:

V(s)

Io(s)

 =


io
Cos

ATD(s) + EVe(s)

1
Los+Ro

(
v̄e
N

V1
TD(s) + dVe(s)

)
 (3.27)

Notice that according to (3.27), both V(s) and Io(s) are affected by disturbances in
Ve(s). Furthermore, both cell-voltages and output current depend on the small signal
of the duty-cycles. However, cell-voltage and output current do not affect each other.
Fig. 3.5 shows a block diagram of the small-signal model of the converter. Notice that
the variables are decoupled. However, both depend on the duty-cycle. The cell-voltage
depends on the duty-cycles of the neighbors and the duty-cycle of its cell, while the
output current depends on the sum of the duty-cycles.



Figure 3.5: Block Diagram of the small signal model of the converter

In order to have a better understanding of the system, Fig. 3.6 shows the equivalent
circuit of the small signal model.

Figure 3.6: Equivalent circuit of the small signal model of the flying-capacitor multilevel
converter

It can be observed that in the circuit, that just the duty cycles affect the cell-voltages
and the output current without correlation between them.

The next topology that is modeled is the cascaded Full-Bridge Multilevel Converter.

3.1.2 Model of the cascaded Full-Bridge Multilevel Converter
The System is composed of N Full-Bridges, supplied by independent voltage sources
ve1, ve2, ..veN , where vek has a nominal value equals to ve. Each FB has an input filter
required to smooth the current delivered by the voltage sources. Indeed, with the input
voltage sources used Lithium-ion batteries, the current they deliver need to not change
too fast. There exist many advantages for using CFBMC as the reduction of the output
filter because of the increment of the apparent output frequency and also the 2N + 1
levels obtained at the output of the converter thanks to the N cascaded full-bridges,
reducing the THD. In this work, the CFBMC is connected to an output inductance and
a resistive load as shown in Fig. 3.7.



Figure 3.7: Cascaded Full-Bridge Multilevel Converter of N levels

Where Skν and Skν are the switches of the inverter. Skν receives the opposite control
signals of Skν . k = {1, 2, · · · , N} and represents the cell. ν = {a, b} represents the
branch, a for the left and b for the right branch. To increase the apparent frequency
of the voltage ripple at the output, vs, a phase shift multi-carrier SPWM modulation
strategy is used for this work. It allows the implementation of a small output inductance
or the minimization of the ripple of the output current. This modulation strategy shifts
the carrier of the kth Full-Bridge (FBk)

180
N

(k−1)◦. Reference [26, 27] shows the simu-
lation and experimental results in open-loop of this modulation strategy, implemented
in two prototypes, one made of GaN and the other made of Si power transistors. The
objective of this topology is to balance the power supplied by each FB and to regulate
the output current. For modeling the converter, Fig. 3.8 illustrates the kth FB of the
converter, according to the different states of the switches.

Figure 3.8: One cell of the Cascaded Full-Bridge Multilevel Converter.



Based on Fig. 3.8 the switching model of the capacitor voltage vCk, the input current
ik and the output voltage fo the FB, vHk, is:

Li̇swk = vek −Riswk − vswCk
Cv̇swCk = iswk − (Ska − Skb) iswo

vswHk = (Ska − Skb) vswCk

(3.28)

Analogously to (3.28) and according to 3.7 the switching dynamical model of the
output current, iswo , and the output voltage, vsws , are:

Loi̇
sw
o = vsws −Rsi

sw
o −Roi

sw
o (3.29a)

vsws =
N∑
k=1

vswHk (3.29b)

where R is the DC Resistance (DCR) of L and Rs = 2NRDS + RLo . RLo is the
DCR of Lo and RDS is the Drain Source ON resistance of the switching devices Skν .
Inserting (3.29b) in (3.29a) it follows:

Loi̇
sw
o =

N∑
k=1

vswHk −Rsi
sw
o −Roi

sw
o (3.30)

Obtaining the average model of (3.28) and (3.30), based on the moving average
defined in (3.3), it follows:

Li̇k = vek − vCk −Rik (3.31a)
Cv̇Ck = ik − (dka − dkb) io (3.31b)

Loi̇o =
N∑
k=1

vHk −Rsio −Roio (3.31c)

vHk = (dka − dkb) vCk (3.31d)

where d kν represents the duty-cycle of the switch Skν .
Defining dk as:

dk = dka − dkb (3.32)
which −1 < dk < 1. Hence, replacing (3.32) in (3.31)

Li̇k = vek − vCk −Rik (3.33a)
Cv̇Ck = ik − dkio (3.33b)

Loi̇o =
N∑
k=1

vHk −Rsio −Roio (3.33c)

vHk = dkvCk (3.33d)



Expressing as a matrix form it follows:

Lİ = Ve −VC −RI (3.34a)
CV̇C = I− ioD (3.34b)
Loi̇o = DTVC −Rsio −Roio (3.34c)
VH = D�VC (3.34d)

Where I =
[
i1 i2 · · · iN

]T
, VC =

[
vC1 vC2 · · · vCN

]T
, Ve =

[
ve1 ve2 · · · veN

]T
,

D =
[
d1 d2 · · · dN

]T
, VH =

[
vH1 vH2 · · · vHN

]T
,

and � represents the Hadmard product [55, 56], that is the product point to point
of the vectors involved. Eq. (3.34) corresponds to the average dynamic model of a
CFBMC. Based on (3.34), the equivalent circuit of the average model is:

Figure 3.9: Equivalent Circuit of a CFBMC

Fig. 3.9 shows the link between each FB and the output current. Furthermore, it
can be observed the contribution of each FB. Additionally, it is possible to infer that
the output current of each FB is the same, io. Hence, if all the output voltage of the
FBs are balanced, the output power is also balanced. For that reason, the CV to be
balanced in this topology is vHk. Fig. 3.10 shows the block diagram of the system.

Notice the link existing between the CV, VH, and the GV, io. It can be seen that io
affects VH and vice versa. In order to design the controller, it is necessary to linearize
the model. However, because of this converter can be used either as an inverter or as a
DC/DC converter, the common linearization around an operation point is not suitable.
Another linearization method is to apply a DQ transform and then linearize around the
operation point. Nevertheless, DQ transform, generates 2 output currents, direct and
quadrature currents and the control method that is going to be proposed manage only



Figure 3.10: Block Diagram of a CFBMC.

GV. For that reason, the linear model implemented in this research is the one used in
[26, 51], which consists in define δvCk

as the oscillation voltage in the capacitor where:

δvCk
= Li̇k −Rik (3.35)

With:

vCk
= vek + δvCk

(3.36)
Taking into account that in this topology all the input sources have the same value,

ve1 = ve2 = · · · = veN = ve. Inserting (3.36) in (3.33a) and (3.33b), it follows:

Loi̇o =
N∑
k=1

dkve +
N∑
k=1

dkδvCk
−Rsio −Roio (3.37a)

vHk = dkve + dkδvCk
(3.37b)

According to [26, 51], if all the inputs dk are bounded and periodic, δvCk
can be defined

as a bounded and periodic disturbance. Defining δvHk
as:

δvHk
= δVCk

dk (3.38)

and replacing (3.38) in (3.37) it follows

Loi̇o =
N∑
k=1

dkve +
N∑
k=1

δvHk
− (Rs +Ro) io (3.39a)

vHk = dkve + δvHk
(3.39b)



It can be observed that (3.39) corresponds to a linear model, where δvHk
represents

the oscillation produced by the kth input filter as a disturbance. It has to mention that
because of δVCk

and dk are bounded, δvHk
is also bounded.

Eq. (3.40) shows the linear model as a matrix form:

Loi̇o = veV1
TD + V1

T∆VH − (Rs +Ro) io (3.40a)
VH = veD + ∆VH (3.40b)

Converting the model in the LAPLACE domain it follows:

Io(s) = 1
Los+ (Ro +Rs)

(
veV1

TD(s) + V1
T∆VH(s)

)
(3.41a)

VH(s) = veD(s) + ∆VH(s) (3.41b)

Notice that the output current depends on the sum of the duty-cycles, while the output
voltage of the FBs depends on the duty-cycle of it cell. (3.41) can be also expressed as:

Io(s) = 1
Los+ (Ro +Rs)

VH(s) (3.42a)

VH(s) = veD(s) + ∆VH(s) (3.42b)

Notice that in this case the output current depends on the sum of the output voltage
of the FBs. Either (3.41) or (3.42) represent the linear model of a CFBMC, able to
work as a DC/DC converter and as an inverter. Fig. 3.11 shows the equivalent circuit
of the system.

Figure 3.11: Equivalent circuit of the linear model



Figure 3.12: Block Diagram of the Linear model

In Fig. 3.11 it can be seen the contribution of each cell to the system and also how
do they affect the output current. Fig. 3.12 shows a block diagram of the proposed
linear model.

The next topology modeled correspond to the Multiphase Buck

3.1.3 Model of the Multi-Phase Buck Converter
This topology is composed of an arrangement of several branches connected in parallel,
fed by one source voltage. Each branch is composed of half FB, which in the middle
point is connected to an inductance. The output of each branch is connected in parallel
and connected to a LC load. Fig. 3.13 presents to topology.

Figure 3.13: Multi-Phase Buck Converter

Where S ′k receives the opposite control signal of Sk, for k = 1, 2, · · ·N . The
objective of this converter is to balance the currents through the inductances and to
regulate the output voltage which corresponds to the voltage of the capacitor. This
converter is modulated with a phase-shifted multi-carrier PWM modulation. Therefore,
the carrier of the kth branch is shifted 360

N
(k − 1). According to Fig. 3.13, the voltage

of the inductance of the kth branch follows:



Figure 3.14: States of the Multi-Phase Buck Converter

Hence, the switching dynamical model of the current of the inductance of the kth
branch is:

Li̇swk = veSk − vswC −Riswk (3.43)
where R is the DCR of the inductances of the branches. According to Fig. 3.13, the
model of the voltage of the capacitor, vswC is:

Cv̇swC =
N∑
k=1

iswk −
vswC
Ro

(3.44)

Obtaining the moving average of (3.43) and (3.44), it follows:

Li̇k = vedk − vC −Rsik

Cv̇C =
N∑
k=1

ik −
vC
Ro

(3.45)

where dk is the duty-cycle of Sk. Expressing (3.45) as a matrix form

Lİ = veD− vCV1 −RI

Cv̇C = V1
T I− vC

Ro

(3.46)

Fig. 3.15 presents the equivalent circuit of the the model described in (3.45)



Figure 3.15: Equivalent circuit of the model of the Multi-Phase Buck Converter

It can be seen in (3.46), that the system is already linear. Hence, there is no
necessary to linearize the model. Therefore, converting the model to a LAPLACE
domain, it follows:

I(s) = 1
(Ls+R) (veD(s)− VC(s)V1)

VC(s) = Ro

(RoCs+ 1)V1
T I

(3.47)

Based on (3.47), Fig. 3.16 shows the block diagram of the model:

Figure 3.16: Block diagram of the Multi-Phase Buck Converter

It can be observed that the branch currents depend on the duty-cycle of its cell, while
the output voltage depends on the sum of the branch currents. Based on the model of
the three converters, it is possible to propose a model that involves these topologies.
The next section summarizes the main aspects of the models of these topologies and
proposes a generalized model.



3.2 General Model of the studied topologies
In order to present the decentralized control strategy which has been implemented with
success on two different MCC topologies. To introduce this strategy using a general
model of MCC is proposed. It should be noted that it is not mandatory to use the
general model in practice. Table 3.1 shows the main aspects of the topologies:

Table 3.1: Summarize of the three analyzed converter

To obtain a model for the CVs, that involves these three topologies it has to take
into account the three models. According to table 3.1, the model of the CV of the
FCMC, receives the difference of the duty-cycles of the neigbors and the duty-cycle
of its cell. For the case of the N th cell, it receives the differences of the duty-cycle
between its cell the the cell N − 1, and in the case of the first cell, the CV depends on
the difference of the duty-cycle of it cell and the cell 2. The model of the CVs of the
CBBMC, receives the duty-cycle of its cell and the model of the CVs of the Multiphase
Buck, receives the duty-cycle of it cell and also receives the GV. Fig. 3.17 presents a
block diagram of the model of the CVs of the three topologies.



(a)

(b)

(c)

Figure 3.17: Cell structures

Based on these models, it is possible to proposes a general CV model, combining
the three CV models, as Fig. 3.18 shows.

Hc(s)Hbk(s)Ha(s)

-+

+

-

Xk(s)

+ +

dk(s)

Hc(s)Ha(s)

+

-

XN(s)

Hc(s)Hb1(s)Ha(s)

-+

+

d2(s)

X1(s)

Cell 1
+ +

d1(s)

+

dN(s)Y(s)

dk+1(s)

Cell k Cell N

Figure 3.18: General model of the cell-variable



According to Fig. 3.18

X1(s) =Ha(s)dk(s) +Hb1(s) (d2(s)− d1(s))
+Hc(s)Y (s)

Xk(s) =Ha(s)dk(s) +Hbk(s) (dk+1(s)− dk(s))
−Hbk−1k (dk − dk−1) +Hc(s)Y (s)

, k = {2, 3, · · · , N}

XN(s) =Hc(s)Y (s) +Ha(s)dN(s)
+HbN−1(s) (dN(s)− dN−1(s))

(3.48)

Expressing as a matrix form, it follows:

X(s) = (Ha(s)I + HB(s)) D(s) +Hc(s)Y (s)V1 (3.49)

where X(s) =
[
X1(s) X2(s) · · · XN(s)

]T
, I is the identity matrix of N dimension

and

HB(s) =



−Hb1(s) Hb1(s) 0 · · · 0

Hb1(s) − (Hb1(s) +Hb2(s)) Hb2(s) . . .
...

0 Hb2(s) . . .
. . . 0

...
. . .

. . . − (HbN−2(s) +HbN−1(s)) HbN−1(s)

0 · · · 0 HbN−1(s) −HbN−1(s)


It has to mention that according to [53, 54], −HB(s) represents the Laplacian matrix

of a graph because the sum of the elements of each row is equal to 0, as same as the sum
of the elements of each column, producing one eigenvalue equals to 0 and the other ones
all greater than 0 or all lower than 0. This information must be taken into account for
balancing the CV. Table 3.2 shows the expressions of Ha(s), HB and Hc(s) according
to the topology.



Table 3.2: Transfer functions of the model of the CVs according to the topology
Topology Ha(s) HB(s) Hc(s)

Flying-Capacitor Multilevel Converter 0 io
s

AT 0
Cacaded Full-Bridge Multilevel Converter ve 0 0
Multi-Phase Buck Converter ve

Ls+R
0 − 1

Ls+R

Analogously with the CVs, to model the GV it has to take into account the three
models. Based on table 3.1, the GV model of the FCMC depends on the sum of the
duty-cycles, while the GV model of the Multi-phase Buck depends on the sum of the
CVs. The GV model of the CFBMC has two options, which can depend on the sum
of the CVs or the sum of the duty-cycles. Fig. 3.19 describes the model of the GV of
these topologies.

(a) (b)

Figure 3.19: Models of the GVs of the converters

Hence, the GV of the CFBMC, Io(s), is modeled as 3.39, the GV of the Multi-Phase
Buck, Vc(s), is modeled as 3.19(b) while the GV of the FBMC, Io(s) can be modeled
by both. Combining the two models, it follows:

Figure 3.20: General model of the global variable

According to 3.20 the general model of the GV is:

Y (s) = Fa(s)
N∑
k=1

dk(s) + Fb(s)
N∑
k=1

Xk(s) (3.50)



expressing as a matrix form:

Y (s) = Fa(s)V1
TD(s) + Fb(s)V1

TX(s) (3.51)

Table shows the value of Ha(s), HB and Hc(s) according to the topology.

Table 3.3: Transfer Functions of the model of the GV according to the topology
Topology Fa(s) Fb(s)
Flying-Capacitor Multilevel Converter ve

Lo +Ro

0
Cacaded Full-Bridge Multilevel Converter ve 0
Multi-Phase Buck Converter 0 Ro

RoLC + 1

Eq. (3.49) and (3.51) shows the proposed generalized models of the CV and the
GV respectively. Now, inserting (3.49) in (3.51) and leaving Y (s) expressed only as a
function of D(s) it follows:

Y (s) =Fa(s)V1
TD(s) + Fb(s)Ha(s)V1

TD(s)︸ ︷︷ ︸
M1(s)

+Fb(s)V1
THB(s)D(s)︸ ︷︷ ︸
M2(s)

+ Fb(s)Hc(s)V1
TV1Y (s)︸ ︷︷ ︸

M3(s)

(3.52)

M2(s) can be expressed as its transposed. Hence:

M2(s) = Fb(s)Hc(s)DT (s)HB
TV1 (3.53)

HB(s)TV1 corresponds to the sum of the elements to each row of HB(s)T , meaning
the sums of the the elements of each column of HB(s) which are equals to 0. Hence,
HB

TV1 = 0, where 0 =
[
0 0 . . . 0

]T
. Consequently M2(s) = 0.

M3(s) presents a dot product of V1, producing that M3(s) = NFb(s)Hc(s).
Based on the simplifications explained before, it follows:

Y (s) = (Fa(s) + Fb(s)Ha(s)) V1
TD(s) +NFb(s)Hc(s)Y (s) (3.54)

Solving Y (s):

Y (s) = Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

V1
T

︸ ︷︷ ︸
GGV (s)

D(s) (3.55)

Notice that (3.55) represents Y (s) only as a function of the sum of the inputs. It
means that for Y (s) the action of the difference between neighbors is canceled. GGV (s)
is the transfer function of the GV model.



In order to obtain the model of the CV, (3.55) is inserted in (3.49):

X(s) =


Ha(s)I︸ ︷︷ ︸

contribution

of

itself

+ HB(s)︸ ︷︷ ︸
contribution

of

neighbors

+Hc(s)
Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

V1V1
T

︸ ︷︷ ︸
contribution of the output variable


︸ ︷︷ ︸

GCV(s)

D(s) (3.56)

It can clearly observed the contribution of the duty cycle of it cell, the contribution
of the duty cycle of the neighbors cells and the contribution of the GV, that is a function
of the sum of all the duty cycles. GCV (s) is the transfer function of the CV model.

Eq. (3.55) and (3.56) represent the proposed linear model of any symmetric MCC.
Fig. 3.21 shows the sensitized block diagram of (3.55) and (3.56).

Figure 3.21: Synthesized model of a Symmetric MCC

Based on this general model the decentralized control method is proposed.

3.3 Design of the decentralized control method
The proposed control strategy, presented here, corresponds to a decentralized control
method that can be used for any type of MCC topology that can be modeled as (3.55)



and (3.56). Fig. 3.22 shows the diagram of the three studied MCCs with the control
method to be designed

(a) (b)

(c)

Figure 3.22: Control strategy with the studied topologies. (a) Control Method with
the Multi-Phase Buck, (b) Control Method with the Cascaded Full-Bridge Multilevel
Converter, (c) Control method with the Flying-Capacitor Multilevel Converter

This control method has to implement three main functions which are: To balance
the CVs, to regulate the GV and to give a straightforward ability to insert or remove
cells during operation. Fig. 3.23 shows a block diagram of the synthesized model of
the MCC model with the proposed decentralized controller.



Figure 3.23: Block diagram of the synthesized model of the MCC with the decentralized
controller

As Fig. 3.23 shows, the control receives its CV, the CVs of its neighbors and GV
for being regulated. For the case of the cell 1 the controller receives the CV from the
cell 2 and the cell N , while the cell N receives the CV from the cell N − 1 and the
cell 1, closing the circular chain. The control method is composed of three stages: The
bypass system, the balancing controller and the GV regulator. Fig. 3.24 shows a block
diagram of the proposed control method.



Figure 3.24: Block diagram of the local controller

The bypass system provides the MCC the ability to work if a cell is inserted or
removed without being interrupted. This capability allows the converter to manage
the number of active cells during operation; to increase the available power during
operation, increasing the cell number for instance or to reconfigure the topology in case
of fault occurrence. Fig. 3.25 shows the block diagram of the bypass system

Bypass

Xak-1(s)

Xbk+1(s)

Xbk(s)

Xak(s)

Xk(s)

enk

Xbk+1(s)

Xak-1(s)

Xk(s)

0

01

1

Figure 3.25: Structure of the Bypass System

According to Fig. 3.25 the bypass system of the kth cell depends on an enable signal
enk, where if the enk = 1, the cell is active and the bypass system sends to its neighbors
the value of its own cell-variable (Xk(s)). If enk = 0, the cell is not available and the
bypass system sends the to the cell k+1, the value received by the cell k−1. Similarly,
the bypass system sends to the cell k−1 the value received by the cell k+1. According
to Fig. 3.23, for cells 1 and N , the controller closes the circular chain sending XN(s) to
cell 1 and X1(s) to cell N . Eq. 3.57 shows as an analytic function the bypass system



operation.
[
Xak

Xbk

]
=



[
Xk

Xk

]
; enk = 1[

Xak−1

Xbk+1

]
; enk = 0

(3.57)

The next stage of the control method is the balancing controller, that compares the
cell-variables sent from the neighbors with the local cell-variable. Then, this error is
canceled using a local controller. Fig. 3.26 shows the block diagram of the balancing
control.

Balancing 

Controller

KX(s)X+
-

-

Xbk+1(s)

Xak-1(s)

Xk(s)

dXk(s)

enk

Figure 3.26: Block Diagram of the Balancing Controller

According to Fig. 3.26, if all the N cells are available:

dXk
(s) =


KX(s) (2X1(s)−X2(s)−XN(s))
KX(s) (2Xk(s)−Xk+1(s)−Xk−1(s)) ; k =

{
2 3 · · · N − 1

}
KX(s) (2XN(s)−X1(s)−XN−1(s))

(3.58)

The last stage of the control method corresponds to the GV regulator. Fig. 3.27
shows the block diagram of this stage.

KY(s)

Output 

Regulator

dY (s)

Y(s)

Yref(s) -
+

Figure 3.27: Block diagram of the GV regulator

This regulator is a classical one, that compares the output variable with a reference
and compensates the error. According to Fig. 3.27, it follows:

dY (s) = KY (s) (Yref (s)− Y (s)) (3.59)

Based on the three stages, the entire block diagram of the control method is:
Based on Fig. 3.28

dk(s) = dY (s) + dXk
(s) (3.60)



Bypass

Balancing

Controller

KX(s)X+
-

-

Xak-1(s)

Xbk+1(s)

Xbk(s)

Xak(s)

Xk(s)

enk

0

01

1

dXk(s)

KY(s)

Output 

Regulator

dY (s)

Y(s)

Yref(s) -
+

dk(s)

+
+

Figure 3.28: Detailed Block Diagram of the Controller

Replacing (3.58) and (3.59) in (3.60) it follows:

dk(s) = KY (s) (Yref (s)− Y (s)) +KX(s) (2Xk(s)−Xk+1(s)−Xk−1(s)) (3.61)

Equation (3.61) expresses the duty-cycle of each cell. Expressing 3.61 as a matrix
form, it follows:

D(s) = KX(s)DiffX(s) +KY (s) (Yref (s)− Y (s)) V1 (3.62)

where Diff =



2 −1 0 . . . −1

−1 2 −1 . . .
...

0 . . .
. . .

. . . 0
...

. . . −1 2 −1
−1 . . . 0 −1 2


The matrix Diff represents the several connections for communication between the

N local controllers. Notice that in Diff the sum of the elements of each column are
equals to 0, alike the sum of the elements of each row. It confirms that Diff is a graphs
as matrix HB(s).

Equation (3.61) represents the main strategy for any MCC to implement a decen-
tralized balancing controller. In the next section, the controller is inserted into the
general model and the closed-loop system is analyzed

3.4 Analysis of the Closed-loop
This section analyzes the generalized model of a MCC with the proposed decentralized
control method. This is done, inserting the proposed control law defined in the general
model. Fig. 3.29 shows a block diagram of the closed loop.



Figure 3.29: Closed-loop diagram of the generalized model

Inserting (3.62) in the GV regulator model of the MCC defined in (3.55) it follows:

Y (s) =Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

KX(s)
(
V1

TDiffX(s)
)

︸ ︷︷ ︸
M4(s)

+ Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

KY (s) (Yref (s)− Y (s)) V1
TV1

(3.63)

As M2(s) = 0 because of HB(s) is a graph, M4(s) = 0 because of Diff is also a
graph and the sum of each of its columns and its rows are equal to 0. Furthermore,
V1

TV1 = N . Hence, Openning the feedback of Y (s)

Figure 3.30: Closed-loop diagram of the generalized model, opening the loop of the GV

Y (s) = −NKY (s)
(
Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

)
︸ ︷︷ ︸

FolY (s)

(Y ′(s)− Yref (s)) (3.64)

where Y ′(s) is the sensed variable of Y (s), and FolY (s) represents the open-loop transfer
function of the GV regulator. Notice that concerning the GV the contribution of the



balancing controller is canceled, and just depends on the GV regulator. It means that
for any differential disturbances produced in the CV, the GV is not affected.

The design of KY (s) depends on the transfer functions of the MCC that are linked
to the topology of the converter to be controlled.

Analogously as the insertion of the controller to the GV model, (3.65) shows the
insertion of the controller to the CV model.

X(s) =KX(s) (Ha(s)I + HB(s)) DiffX(s)

+KX(s)Hc(s)
Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

V1��
���:

0
V1

TDiffX(s)

+KY (s)
(
Ha(s)V1 +����:

0HBV1

)
(Yref (s)− Y (s))

+KY (s)Hc(s)
Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

V1��
���:NV1
TV1 (Yref (s)− Y (s))

(3.65)

Opening the feedback of X(s), it follows:

Figure 3.31: Closed-loop diagram of the generalized model, opening the loop of the CVs

Hence, (3.65) leads to:

X(s) =KX(s) (Ha(s)I + HB(s)) Diff︸ ︷︷ ︸
FolX(s)

X′(s)

+KY (s)
(
Ha(s) +NHc(s)

Fa(s) + Fb(s)Ha(s)
1−NFb(s)Hc(s)

)
V1 (Yref (s)− Y (s))

(3.66)

where X′(s) is the sensed variable of X(s). Notice that inserting the control law,
the CV model depends on the balancing control and the GV regulator. However, the
balancing control only compensates the sensed CV (X(s)), while the GV regulator acts
over the sensed GV. It is valid to mention that the open-loop transfer function of the
CV model (FolX(s)) is a product between a graph (Diff) and a linear combination of



a graph (HB(s)) and the identity matrix. It is simple to prove that this product is
also a graph or a graph multiplied by -1, as Appendix B explains. Because of that,
one of its eigenvalues is equal to 0. Graph theory is explained in more details in
[53, 54]. Furthermore, graph theory indicates that the steady-state of a dynamical
system represented by a graph Laplacian is the average of the initial condition of the
states. Hence, according to (3.66) the first part of the controller balances the cells, and
the second stage fixes the trajectory of the CVs. Also, it can be seen that it is not
necessary that HB(s) has the form expressed in (3.49) because all the computations
are developed assuming that HB(s) is a Laplacian of a graph, without care the form.
Consequently, if a MCC has a model represented as a linear combination between an
identity matrix and a Laplacian of a graph in the CV model, the proposed control
method works.

The design of the balancing controller and its gains are based on the modal response
of FolX(s) that depends on Ha(s) and HB(s). These transfer functions are obtained
based on the topology of the MCC.

In order to prove this control method, it is applied in the Flying -Capacitor Multi-
level Converter and the Cascaded Full-Bridge Multilevel Converter modeled previously.

3.5 Control method applied in the Flying-Capacitor
Multilevel Converter

For the FCMC, the CV, Xk(s) corresponds the the cell-voltage, Vk(s) and the GV,
Y (s), corresponds to Io(s), KV (s) is KX(s) and Kio(s) is KY (s). Hence, according to
(3.61), the control method applied to this topology is described as:

dk(s) = KV (s) (−Vk−1 + 2Vk(s)− Vk+1) +Kio(s) (Iref (s)− I ′o(s)) (3.67)

Expressing the controller as a matrix form:

D(s) = KV (s)DiffV +Kio(s) (Iref (s)− Io(s)) V1 (3.68)
Based on table 3.2, table 3.3, (3.66) and (3.64) the model of the CFBMC with the

proposed control method is:

V(s) = KV (s) īo
Cos

ATDiff︸ ︷︷ ︸
FolV(s)

V′(s) + EVe(s) (3.69a)

Io(s) = Kio(s)

G(s)︷ ︸︸ ︷
v̄e

Los+Ro︸ ︷︷ ︸
Folio

(s)

(Iref (s)− I ′o(s)) + uo
Los+Ro

Ve(s) (3.69b)



Notice that because of Ha(s) and Hc(s) are equal to 0, KY (s) does not affect the
cell model, decoupling the cell-voltage from the output current. Furthermore, the GV
regulator does not affect the cell-voltage. About the output current model, as it is
demonstrated in subsection 3.3, the proposed control law decouples the GV from the
CV. For these reasons, it is possible to affirm that in the linear model of the Flying-
Capacitor Multilevel Converter, the CVs and the GV are completely decoupled between
them. Hence, theoretically, a disturbance in CVs does not affect the GV and vice versa.
This effect allows the design of the controller Kio(s) regardless of the behavior of the
cell-voltage loop and KV (s) without caring about the output current loop.

The design of the GV regulator is based on the bode analysis of the open-loop
transfer function of the GV (Folio

), which depends on the topology G(s) and the GV
regulator Kio(s). In this study the proposed controller for the GV is a PI controller.
Hence:

Figure 3.32: Bode diagram of G(s), KV (s) and Folio(s)

Where the Bωio is the bandwidth of the output current loop. Based on the bode
diagram:

Bωio = kiv̄e
Ro

(3.70)

The bandwidth of the system should be less than 10 times the switching frequency.



3.5.1 Modal Analysis of the Balancing Controller
To synthesizes the balancing controller it is necessary to analyze the modal responses
of the open-loop transfer function of the cell-voltages FolV(s). Hence:

FolV(s) = īo
Cos

KV (s) ATDiff︸ ︷︷ ︸
VeigΛV−1

eig

(3.71)

where Λ is the Diagonal matrix of ATDiff . It should be noted that one eigenvalue
of ATDdiff is equal to 0, because it is a Laplacian of a graph

Λ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λN

;λ1 = 0 (3.72)

Therefore,

FolV(s) = VeigKV (s) īo
Cos

Λ︸ ︷︷ ︸
Π(s)

V−1
eig (3.73)

Π(s) represents the open-loop transfer function of the modal response, defined as:

Π(s) = KV (s)


p1(s) 0 . . . 0

0 p2(s) . . .
...

...
. . .

. . . 0
0 . . . 0 pN(s)

 (3.74)

and pk(s) is defined as:

pk(s) = īoλk
Cos

(3.75)

Hence the open-loop transfer function of the kth mode is:

Folmk
(s) = KV (s)pk(s) (3.76)

The controller is designed to ensure stability to all the open-loop transfer functions
of the modes, using the bode diagram pk(s), KV (s) and Folmk

(s). Because of all the
Folmk

(s)s present an integrator, the chosen controller could be a Proportional controller.
However, due to the resistivity losses in serial and parallel in the capacitors, a PI
controller is the best option for KV (s). Based on (3.69a), Π(s) depends on AT, that
depends on the capacitance values. Hence, the eigenvalues λk depend on the value
of the capacitor. Based on the eigenvectors and eigenvalues, and taking into account



Figure 3.33: Bode diagram of KV (s) and pk(s)

that the proposed controller is a PI, Fig. 3.33 shows the Bode diagram of the transfer
functions pk(s) for k={2 . . . 5} and KV (s), where p1(s) = 0 because λ1 = 0.

The points xk presented in |pk(jω)|, is solved in (3.77), corresponding to the mag-
nitude at ω = ki

kp
, that corresponds to the zero of the PI controller, KV (s).

xk = λkiokp
Coki

(3.77)

Knowing the values of xk, Fig. 3.34 shows the bode diagram of the open-loop
transfer function of each mode, Folmk

(s)

Figure 3.34: Bode diagram of the open-loop transfer functions of the modes

Finally, the proportional gain of the balancing controller is:



λkiok
2
p

Coki
= ωBkkp

ki
(3.78a)

kp =ωBmaxCo
λmaxio

(3.78b)

where ωBmax represents the bandwidth of the fastest mode, which corresponds to the
highest λk, which is λmax. The criterion applied to dimension the gains is that the fastest
modal response must have a bandwidth 50 times less than the switching frequency fsw.

kp = 2πfswCo
50λmaxio

(3.79)

It should be mentioned that this analysis is based on the linear model, ensuring the
stability around the operation point. However, it is possible to demonstrate that the
converter with the control method is stable according to Lyapunov, as shown in Ap-
pendix C.

In order to validate the proposed theory for this topology, two cases are analyzed.
The first one corresponds to the case when all the values of the capacitance are identical,
and the second one consists of a specific arrangement of values of the capacitance
adopted in the real prototype.

3.5.2 Results
The results presented in this subsection correspond to the modal analysis of the two
cases. Additionally, simulation and experimental results for the second case. Both,
simulation and experimental results are provided for three different types of transent
responses. The first one corresponds to a disturbance in the load, the second one is a
disturbance in the input voltage and the last test describes the insertion of a cell during
operation. All the results are developed with the parameters of the real prototype,
implemented in the laboratory, described in table 3.4.

Table 3.4: Parameters of the Flying Cap
Parameters Value
Number of Cells (N) 5
Input Voltage (ve) 450 V to 3.5 kV
Nominal power 10kW - 50 kW
Switching frequency (fsw) 10 kHz
Capacitance Co 21 µF
Output inductance Lo) 200 µH
Output Resistance (Ro) 18.75 Ω
Load Current (io) 15 A



3.5.2.1 Modal response of the first case

The first case analyzes the modal respond corresponding to the Flying-Capacitor Mul-
tilevel Converter when all the capacitors have the same capacitance, C1 = C2 = . . . =
CN = Co. Hence:

ATDiff =


−3 3 −1 0 1

4 −6 4 −1 −1
−1 4 −6 4 −1
−1 −1 4 −6 4

1 0 −1 3 −3

 (3.80)

Obtaining the diagonal matrix and the eigenvectors:

Λ =


0 0 0 0 0
0 −0.59 0 0 0
0 0 −1.91 0 0
0 0 0 −8.41 0
0 0 0 0 −13.09

 (3.81a)

Veig =


−1.00
−1.00
−1.00
−1.00
−1.00︸ ︷︷ ︸

Veig(λ1)

−1.05
−1.19

0.00
1.19
1.05︸ ︷︷ ︸

Veig(λ2)

1.14
−0.44
−1.41
−0.44

1.14︸ ︷︷ ︸
Veig(λ3)

0.89
−1.31

0.00
1.31
−0.89︸ ︷︷ ︸

Veig(λ4)

0.44
−1.14

1.41
−1.14

0.44


︸ ︷︷ ︸
Veig(λ5)

(3.81b)

It can be seen that the eigenvalue related to the common mode is equal to 0. Then,
in steady-state, the average values of the cell-voltages are all equals.

Based on these parameters, the gains of the controllers are defined as:

kp = 1.32× 10−4V −1 (3.82a)

ki = 80V −1s−1 (3.82b)

Using the computed gains it is possible to validate in simulation the response of each
separate mode, initializing the cell voltages with one of the eigenvectors. It produces
that only the mode related to this eigenvector acts, observing that the system decreases
exponentially as a first order system. Then, it is possible to obtain the time constants
of each mode by the simulations, and compare these values with the theoretical ones.
The obtention of the time constant in simulation assumes that each mode behaves
as a 1st order low-pass filter. Thus, the kth time constant is evaluated at the level
∆Vmod (τk) = 63%Veig(λk). Next, it is compared to the theoretical value, i.e. τk =

1
ωBk

. Fig. shows the simulation of the CV model in closed-loop with the balancing
controller, being initialized with the eigenvectors.



Figure 3.35: Modal response of the FCMC

Notice that, the cell-voltages decreases exponentially. This fact validates that only
one mode acts according to the initial condition of the simulation. Table 3.5 shows the
comparison between theory and simulation for each mode. Notice that the simulation
and theoretical time-constants are very close. This fact demonstrates the relevance of
the modal analysis to guarantee both the stability and the prediction of the dynamic
responses of the converter. Concerning to the common-mode (λ1 = 0), τ1 = ∞, it
means that the vk never decreases. This fact occurs when all the eigenvector has the
same elements, meaning that the system is well balanced.

Table 3.5: Time constants of the first case
τk Theoretical (ms) Simulated (ms)
τ2 0.81 0.8
τ3 1.26 1.3
τ4 5.6 5.7
τ5 17.86 17.2



3.5.2.2 Modal analysis of the second case

For the second case, the modal response corresponds to a flying-capacitor multilevel
converter in which the values of the capacitances are defined as: Ck = 2Co for k =
{1, 2, 3} and Ck = Co, for k = {4, 5}. Therefore, ATDiff is:

ATDiff =


−1.5 1.5 −0.5 0.0 0.5

2.0 −3.0 2.0 −0.5 −0.5
−0.5 2.0 −3.0 2.0 −0.5
−1.0 −0.5 2.5 −4.5 3.5

1.0 0.0 −1.0 3.0 −3.0

 (3.83)

Hence:

Λ =


0 0 0 0 0
0 −0.31 0 0 0
0 0 −1.16 0 0
0 0 0 −5.26 0
0 0 0 0 −8.27

 (3.84a)

Veig =


−1.00
−1.00
−1.00
−1.00
−1.00︸ ︷︷ ︸

Veig(λ1)

−1.11
−1.16

0.09
1.24
0.94︸ ︷︷ ︸

Veig(λ2)

1.13
−0.59
−1.45
−0.18

1.10︸ ︷︷ ︸
Veig(λ3)

−0.85
1.59
0.90
−0.59

0.75︸ ︷︷ ︸
Veig(λ4)

−0.80
0.42
0.91
1.66
−1.10


︸ ︷︷ ︸
Veig(λ5)

(3.84b)

As in the first case, the first eigenvalue is 0, indicating that only differential unbalances
have to be considered in the system, the common-mode value being fixed by the input
voltage value. Furthermore, it can be observed that the highest eigenvalue of this case
is lower than the highest eigenvalue of the first case. Additionally, the ratio between
the highest eigenvalue and the lowest, in this case, is greater than the ratio of those
eigenvalues in the first case.

This fact indicates that the time responses are lower than the second case. Based
on the diagonal matrix and the parameters of the converter, the controller for this case
is defined as:

kp = 2.08× 10−4V −1 (3.85a)

ki = 80V −1s−1 (3.85b)

In order to observe the time response of the system with the proposed controller, Fig.
3.36 shows the simulation of the modal response for the second case.



Figure 3.36: Modal response of the FCMC

Table 3.6 shows the comparison between theory and simulation for each mode for
the second case. It can be seen the similarity between the simulation and the theoretical
time constants. According to (3.81), λ1 = 0. Hence, τ1 = ∞, meaning that the vks

Table 3.6: Time constants of the second case
τk Theoretical (ms) Simulated (ms)
τ2 0.81 0.8
τ3 1.27 1.2
τ4 5.8 5.5
τ5 21.6 21.4

never decreases. It happen when the initial condition is Veig(λ1), in which all the vks
have the same initial value. This mean that when the system start well balanced, the
system maintain this operating point.



3.5.2.3 Simulation results

The first simulation correspond to the response of the system to a load transient, where
the load is changed from 18.75 Ω to 12 Ω whith a reference current iref = 12A. Fig.
3.37 shows the behavior of io, vs, vCk

and vk (respectively the output current, the output
voltage, the capacitor voltages and the cell-voltages) when the disturbance occurs.

Figure 3.37: simulation results of load transient test

First, it should be noticed in Fig. 3.37 that when the load transient occurs the output
current stabilizes in 3 ms, as expected. Moreover, the load step has been chosen so that
the output voltage vs switches between the two levels 270 V and 180 (Ro = 18.75Ω) V,
and 180 V and 90 V (Ro = 12Ω), respectively before and after the transient. It can be
noted that when the load transient occurs, the capacitor, vCk, and cell-voltages, vk, are
slightly disturbed. The disturbances on vCk are less than 2% and vk has an overshoot of
5 % in the worst case, with a settling-time close to 30 ms. These observations confirm
the previous theoretical results indicating the decoupling between the two loops (the
cell-voltage balancing and is regulation).

The second simulation corresponds to the converter response to an input voltage
step, ve stepping from 450 V to 500 V. According to the theory, the cell-voltage values
increase from 90 V to 100 V. Fig. 3.38 shows the waveform vs, vCk, is and vk. Notices
that all the cell-voltages and the capacitor voltages increase 10% as expected and are
stabilized in 30 ms as expected. Concerning the waveform of the current is, it presents
an overshoot and it is stabilized after 5 ms approximately. The signal vs also presents
an overshoot and always switches between the two levels vC2 and vC3 as expected.



Figure 3.38: Simulation result of input voltage disturbance test

The last simulation corresponds to the insertion of a “sleeping” cell. In order to
observe the behavior of the converter during a reconfiguration event, the test is carried
out starting the FCMC up with only four active cells (the cells 1, 2, 4 and 5) and one
sleeping cell (high-side and low-side transistors of cell 3 in ON-state). During operation,
the cell 3 is activated. Fig. 3.39 shows the simulation results of this test. First, the
value of the resistive load is chosen so that the output voltage vs is close to 225 V when
the current io is regulated to 12 A with an input voltage equals to 450 V. Then, using
only four active cells, five voltage levels are available. Due to that, the interleaving
of the carriers are designed for five cells, the converter output switches between the
three levels 112 V, 225 V, and 337 V and a sub-harmonic current component at the
switching frequency is observed when only four cells are activated. After the insertion
of cell 3, six voltage levels are now available and well interleaved, then the output can
switch only between the two levels 180 V and 270 V. Observing the waveform of the
cell-voltages, it should be noted that before the insertion of the cell 3, v3 is equal to
0 V and the other vk are close to ve/4 = 112.5V . After the cell insertion, v3 starts to
increase, balancing with the other cell-voltages at 450V/5 = 90V . The output current
is is almost not disturbed, validating the decoupling between the cell-voltage balancing
and the current regulation loops. It can be observed that vs switches between the levels
vC1, vC2 and vC3 before the insertion and between vC2 and vC3 after the cell insertion.



Figure 3.39: Simulation result of the cell insertion test

3.5.2.4 Experimental Results

The experimental results correspond to the same previous analysis and are performed
with the same parameters. These experimental tests are developed with a prototype
developed in LAPLACE-Lab, explained in [4, 5]. Fig. 3.40 shows the prototype of the
flying capacitor converter where the decentralized controller is implemented.

Figure 3.40: Prototype of the Flying-Capacitor Multilevel Converter



Fig. 3.41 shows the results of the load transient response analysis. The current
stabilizes in 4 ms approximately, validating the simulation results. This test also shows
that the output voltage vs presents the same waveform as those obtained in simulation,
switching between the levels vC3 and vC2 before the load step and switching between
the vC2 and vC1 after. Furthermore, vCk and vk signals stabilizes in 40 ms. Moreover,
the disturbances observed on vk and vCk signals are very low, validating the expected
decoupling between the cell-voltage balancing and the output current is equation loops,
as shown previously by the simulation.

Ts=5ms

Ts=40 ms

Scale: 20 ms/div, 10 A/div, 50 V/div

0 A

0 V

Figure 3.41: Experimental result of the load transient test

The second experimental test corresponds to the change in ve from 450 V to 500
V. Fig. 3.42 shows the experimental results obtained on the prototype by applying a
short transient on the input voltage of the converter (from 450V to 500V in 10 ms).
According to the theory vC1 = v1, the cell-voltage of cell 1. For that reason, v3 which
is the math channel computing VC3 − VC2, is compared with vC1. If the cell-voltages
are well balanced, these two signals have to be equal. It is observed that when the
disturbance occurs, vC1 and v3 stabilize around 100V. Furthermore, the three others
the capacitor voltages vC2, vC3, and vC4 increase toward the expected voltage levels,
showing a strong similarity with the simulation results, stabilizing at the levels 200 V,
300 V, and 400 V, respectively.



Scale: 4 ms/div, 50 V/div
Scale: 4ms/div, 5 A/div, 50 V/div

Ts=15 ms
Ts=5ms

0 A

0 V

0 A

0 V

Figure 3.42: Results of the input voltage disturbance test

Fig. 3.43 shows the last experimental test, corresponding to the cell insertion during
operation. Notices that the behavior of the cell and capacitor voltages are in concor-
dance with the simulation test. It can be observed that when the cell is inserted, the
system is stabilized after 40 ms. Furthermore, when the cell is inserted the ripple of
the current changes, while the average does not change.

Scale: 10 ms/div, 50 V/div

0 A

0 V

Scale: 20 ms/div, 10 A/div, 100 V/div

Ts=40ms

0 V

Figure 3.43: Results of the cell insertion test



3.6 Control method applied in the Cascaded Full-
Bridge Multilevel Converter

For the case of cascaded Full-Bridge multilevel converter, the GV is the output current,
Io(s) and the CV is the output voltage of the FB, VHk(s). Hence, the control method
for this converter is:

dk(s) = KVH
(s)

(
−VHk−1 + 2VHk

− VHk+1

)
+Kio(s) (Iref (s)− Io(s)) (3.86)

where, KVH
(s) and Kio(s) are KX(s) and KY (s) for this topology respectively. Ex-

pressing the controller as a matrix form:

D(s) = KVH
(s)DiffV′H +Kio(s) (Iref (s)− I ′o(s)) V1 (3.87)

According to (3.66), (3.64), table 3.2 and table 3.3, the model for VH(s) and Io(s)
with the control method is:

VH(s) = veKVH
(s)Diff︸ ︷︷ ︸

FolVH
(s)

V′H(s) + veKio(s) (Iref (s)− I ′o(s))︸ ︷︷ ︸
Trajectory of VH

V1 + ∆VH(s) (3.88a)

Io(s) = Kio(s)

G(s)︷ ︸︸ ︷
Nve

Los+Ro +Rs︸ ︷︷ ︸
Folio

(s)

(Iref (s)− I ′o(s)) + V1
T∆VH(s) (3.88b)

Notice that the duty-cycle obtained in each cell is the contribution of the GV regula-
tor computation and the local CV balancing controller, as mentioned in the introduction
to the decentralized control principle. It can be realized also that for this case, the de-
centralized controller decouples the GV from the CVs, as it is described in the theory
of section 3.3. Notice also that the GV affects the trajectory of the CVs

The design of the GV regulator is very similar of the GV regulator designed for
the FCMC, based on the bode analysis of the open-loop transfer function of the GV
(Folio), which depends on G(s) and the GV regulator Kio(s). In this case, the proposed
controller for the GV, is an I controller, Kio(s) = ki

s
, because is the most straightforward

controller that satisfies the stability of the system. The gain of the controller is based
on the bode diagram presented in Fig. 3.44



Figure 3.44: Bode diagram of G(s), KV H(s) and Folio(s) of the CFBC

where Rx = Ro +Rs. Based on Fig. 3.44 it follows:

kiNve
Rx

= Bωio

ki = BωioRx

Nve

(3.89)

The criterion employed the bandwidth is that it has to be 10 times less than the
switching frequency of the PWM of the MOSFETs.

3.6.1 Modal Analysis of the balancing Controller
As it is developed for the CFBMC, the design of the balancing controller for this
converter is also based on its modal response. Hence, decomposing FolVH(s) on its
modal and diagonal matrix, it follows:

FolVH(s) = veKVH
(s) Diff︸︷︷︸

VeigΛV−1
eig

(3.90)

where Λ is the diagonal matrix of Diff and has the same form of the diagonal matrix
defined in (3.72). Therefore,

FolVH(s) = VeigKV H(s)veΛ︸ ︷︷ ︸
Π(s)

V−1
eig (3.91)



For this topology the open-loop transfer function of the modal response Π(s) presents
the elements of the diagonal ,pk(s), defined as:

pk(s) = veλk (3.92)
Hence, the open-loop transfer function related to the kth mode is:

Folmk
(s) = veλkKV H(s) (3.93)

It has to mention that Diff corresponds a circulant matrix MC, which is described
as:

MC =


c0 c1 · · · cN−1

cN−1 c0
. . .

...
...

. . .
. . . c1

c1 · · · cN−1 c0

 (3.94)

Because of Diff is a circulant matrix, it is possible to obtain a expression of its
eigenvalues. According to [57] the eigenvalues of a circulant matrix is:

λk =
N−1∑
k=1

cke
2πk (k − 1)

N
î

(3.95)

where î =
√
−1. IT can be observed that for the case Diff , the coefficients, cks, are:

ck =


2 ; k = 0
−1 ; k =

{
1, N − 1

}
0 ; k =

{
2 3 · · · N − 2

} (3.96)

Therefore, according to (3.95), the eigenvalues of Diff are defined as:

λk =c0 + c1e
2π (k − 1)

N
î
+ cN−1e

2π (k − 1) (N − 1)
N

î

λk =2− e
2π (k − 1)

N
î
−���

��:1
e2π(k−1)̂ie

−
2π (k − 1)

N
î

λk =2− cos
(

2π (k − 1)
N

)
−
��

���
���

��
î sin

(
2π (k − 1)

N

)
− cos

(
−2π (k − 1)

N

)

−
���

���
���

��

î sin
(
−2π (k − 1)

N

)

λk =2
(

1− cos
(

2π (k − 1)
N

))

(3.97)

Notice that the first eigenvalue, λ1, is equal to 0, validating that it also represents
the Laplacian of a graph. Furthermore, notice that because of the symmetric proprieties



of the cosine, the kth eigenvalue is equal to the (N + 2 − k)th eigenvalue. Finally, the
highest eigenvalue is obtained for k = N

2 + 1, when N is even and k = N ± 1
2 + 1 when

N is odd. The maximum case is produced when N is even, generating a λmax = 4. The
design of the balancing controller is based on the possible maximum eigenvalue, λmax
and the minimum eigenvalue, λmin = λ1, which are λmax = 4 and λmin = 0.

λmin = 0 means that the system presents a pure integrator, that theoretically is sta-
ble. However, because of numeric approximations in the implementation, it is possible
that the system tent to be unstable after a large lapse. For that reason, the controller
selected corresponds to a low pass filter that ensures that the system is not unstable
with a pole located at very low frequency. Hence, the proposed controller is:

KV H(s) = kp

(
ki

s+ ki

)
(3.98)

In order to design the parameters of the controller, Fig. 3.45 shows the bode diagram
of KV H(s), pk(s), folmk(s).

Figure 3.45: Bode diagram of pmax, KV H(s) and Folmk(s) of the CFBC

Based on the bode diagram of Fig. 3.45, the bandwidth ωBV is:

veλmaxkpV = ωBV
kiV

kpV = ωBV
veλmaxkiV

(3.99)

The criterion of the selection of the bandwidth, ωBV is to be ten times less than
the switching frequency fsw. Because the converter can work as an inverter and as a
DC/DC converter, the pole p is selected 10 times less than the operating frequency of
the inverter. The next subsection presents the results obtained with the implementation
of the proposed controller in this topology.



3.6.2 Results
The results are obtained with a prototype that is developed at Javeriana University,
with the following parameters:

Table 3.7: Parameters of the CFBMC
Parameter Value Parameter Value
Number of FBs (N) 5 Load Resistance (Ro) 60 Ω − 100 Ω
Input Voltage (ve) 48 V Switching frequency (fsw) 12.5 kHz
Input Inductance (L) 1.8 mH Iref as a DC/DC converter 1.7 A
ESR of L (R) 200 mΩ Iref as an inverter 1.7 sin (2πft) A
Input Capacitance (C) 4 mF Frequency of the inverter (f) 60 Hz
DS ON Resistance (RDS) 58 mΩ

The gains and the pole of the controllers are:

Table 3.8: Parameters of the Controllers
Parameter Value
ki 1884 A−1s−1

kpV -39 V −1s−1

kiV 37.7 rads/s

These results correspond to the modal response of the closed-loop system. Both
simulation and experimental results are provided and discussed.

3.6.2.1 Modal response

As it is developed for the FCMC, for this case the modal response is obtained using
similar Modal matrix Veig and the diagonal matrix Λ. It has to take to into account that
in this case the matrix to be diagonalized is a circulant one, as it explained previously.
Hence, Λ is described as:

Λ =
√

5
2


0 0 0 0 0
0
√

5− 1 0 0 0
0 0

√
5 + 1 0 0

0 0 0
√

5 + 1 0
0 0 0 0

√
5− 1

 (3.100)

Notice that λ2 = λ5 and λ3 = λ4, as (3.97) indicates. Hence, expressing as numerical
form



Λ =


0 0 0 0 0
0 1.382 0 0 0
0 0 3.618 0 0
0 0 0 3.618 0
0 0 0 0 1.382

 (3.101)

And the modal matrix is:

Veig =


1.00
1.00
1.00
1.00
1.00︸ ︷︷ ︸

Veig(λ1)

1.00
−0.57
−1.35
−0.26

1.19︸ ︷︷ ︸
Veig(λ2)

1.00
−0.52
−0.16

0.78
−1.1︸ ︷︷ ︸

Veig(λ3)

1.00
−2.00

2.23
−1.61

0.38︸ ︷︷ ︸
Veig(λ4)

1.00
1.33
−0.18
−1.44
−0.72


︸ ︷︷ ︸
Veig(λ5)

(3.102)

Using the eigenvectors as the initial condition, Fig. 3.46 shows the modal respond
of the system

Figure 3.46: Modal response of the of the CFBMC with the decentralized controller



Based on Fig. 3.46, table 3.9 shows a comparison between the theoretical time
constants and the time constants obtained by simulation.

Table 3.9: Time constants of the CFBMC
τk Theoretical (ms) Simulated (ms)
τ2 0.384 0.38
τ3 0.146 0.14
τ4 0.146 0.14
τ5 0.384 0.38

Notice that because there are two pairs of similar eigenvalues, there are also two
pairs of two time constant, meaning that there are two double pole at these time
constants. Notice that simulated and theoretical values are very similar, validating the
performance of the controller.

3.6.2.2 Simulation Results

The following simulations correspond to three tests, implemented both for DC/DC
mode and DC/AC mode. The first test corresponds to a load transient from 95 Ω to
70 Ω. Fig. 3.47 shows vs and io when the converter works as a DC/DC.
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Figure 3.47: Simulation of the load transient transient response as a DC/DC



Notice that when the load is inserted, the current present an overshoot until 2.2
A, then, after 0.5 ms the current io and the voltages vHs are stabilized. This settling
time is in concordance with the bandwidth imposed by the parameters of the current
regulator. According to the theory, the disturbances in the current loop do not affect
the balancing of the CV. Only the trajectories of the CVs are affected because the
trajectory depends on the output current. This fact is validated in this simulation.
Furthermore, it can be observed that when the load step occurs, vs is adjusted from
160 V to 125 V, implying that vsws passes from switching between 150 V and 200 V,
from switching between 100 V and 150V.

The next simulation shown in Fig 3.48 corresponds to a load transient with the
converter working as a DC/AC converter.
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Figure 3.48: Load transient test as a DC/AC

Notice that the system presents a good response in a DC/AC mode. It can be
observed that before the disturbance, the system reaches 9 levels and after the distur-
bance, just 7 levels are required to regulate the current, indicating that the supplied
voltage has decreased for regulating the current. Notice also that the CVs are balanced
during all the simulation, before and after the disturbance, validating for DC/AC mode
that when a disturbance in the current occurs, the CVs are not unbalanced, only the
trajectory in the CVs are affected. Furthermore, the current is stabilized in a small
lapse, less than 1 ms.



The next simulation result, shown in Fig. 3.49, corresponds to an input voltage
disturbance from 40 V to 50 V, working in DC/DC mode with a resistive load of 77 Ω.
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Figure 3.49: Input voltage step response simulation as a DC/DC

Note that before the voltage step, there is an asymmetric ripple in the current due
to the different values in the input voltages. However, vHs are well balanced and the
average output current is well regulated. When one of the input voltage change to 50
V, the vHks are auto balanced, and the output current presents a small overshoot. This
test validates the expected behavior of the balancing controller when a change in one
source occurs.

The next simulation corresponds to a step voltage when the converter works as a
DC/AC. Fig. 3.50 shows the results of this test. Notice that the voltage disturbance
almost affects neither the output current io nor the output voltage vs, while the CVs are
auto balanced in 0.5 ms, as same as the output current. Fig. 3.50 also shows that when
one of the input voltage is 40 V, there exists an asymmetric ripple in ioi

sw and vsi
sw

and when the input voltage is 50 V, the ripples are equalized. However, the average
output current io and the vHks are well regulated and balanced, respectively.



Figure 3.50: Input voltage step response simulation as a DC/AC

The next simulation corresponds to a cell insertion during operation, passing from
4 FBs to 5 FBs, when the converter works as a DC/DC. Fig. 3.51 shows the results of
the vHks, io and vs. It can be noticed that before the cell insertion, io and vs present
a high ripple, because of there is no interleaving control in the carrier, and those are
designed for 5 cells. Perhaps the ripple is high, the average of the current is regulated
when there are 4 cells. When the fifth FB is inserted, io presents an overshoot and then
it is stabilized in less than vHks are balanced when there are 4 FBs and then, when the
5th cell is inserted, there are auto balanced, reaching a new operation point in 0.25 ms
approximately. The last simulation is a cell insertion when the converter works as an
inverter. Fig 3.52 shows the results. It can be observed in this test that the current
presents also a high ripple before the cell insertion, because there is no interleaving
control, as it is explained previously. However, the average current is regulated. After
the cell insertion, the current ripple is reduced significantly and the average of the
current is regulated. Furthermore, the FBs are balanced before the cell insertion and
after that, there are auto balanced in a new operation point, as same as it happens in the
DC/DC mode. This test validates by simulation the three functions of the controller,
the balancing of the CV, the regulation of the GV, and the bypass system.
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Figure 3.51: FB insertion simulation with a DC/DC conversion

Figure 3.52: FB insertion simulation with a DC/AC conversion



It can be inferred that all the simulation results are in concordance with the the
theory developed in this chapter, producing a good performance of the controller for
this topology, working either as a DC/DC or DC/AC mode.

The next stage of this subsection presents the experimental results.

3.6.2.3 Experimental Results

As it is mentioned previously, the experimental results are developed with a proto-
type that is implemented in Javeriana University, which is composed of a Cascaded
Full Bridge Multilevel Converter of 5 FB, fed by Lithium Batteries of 48 V, with the
parameters described in table 3.7. Fig. 3.53 presents the developed prototype.
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Figure 3.53: Setup of the Cascaded Full-Bridge Multilevel Inverter

In order to compare the simulation and experimental results, the tests developed
here are the identical to the ones carried out in the previous simulations.

Fig. 3.54 shows the experimental results of first test corresponding to a load step (or
load transient) in a DC/DC mode. It can be seen that there exists a concordance with
the simulation result of this test, presenting similar overshoot in the current and similar
settling time of 0.5 ms approximately. Moreover, there is a similarity in the switching
levels of vs . Furthermore, as happened in the simulation, the operation points of vHks
before and after the load transient and changing from 32 V to 22 V approximately in
0. 5 ms without unbalance them. Furthermore, it is possible to observe that after the
load transient the duty-cycle of the vswH is reduced to adjust the average of vHs.



Figure 3.54: Load transient test in DC/DC mode

The next test presents the experimental results, changing the load when the con-
verter works as an inverter.

Figure 3.55: Load transient experimental test in DC/AC mode

Notice that as in the simulation test, the current and the vHs are stabilized in
0.5 ms and the vHks are well balanced during all the tests. When the load transient
in produced, vHks change their trajectory without being unbalanced, validating the
proposed theory. Furthermore, it can be observed that after the load transient there is
a change in the switching levels of vs as happen in the simulation test.

The next result corresponds to the disturbance in one input voltage when the system
works as a DC/DC. Fig. 3.56 shows the behavior of the vHks and Fig. shows shows the
output current vs and the output voltage vs



(a)

(b)

Figure 3.56: Voltage disturbance test in DC/DC mode (a) vHk and vswHk; (b) iswo and
vsws

Notice that there are soft changes in vHs. This is because the input filters pre-
sented in the converter smooth the effect of the voltage disturbance. However, it can
be observed the change of the duty-cycles before and after the voltage disturbance, val-
idating the performance of the balancing controller. Furthermore, it can be observed



that during all the experiments, vHs are well balanced, having a small transient and go-
ing back to the same operating point. This fact also validates the balancing controller,
maintaining the same output voltage of each FB even when the input voltages change.
Additionally, Fig. 3.56 shows that the output current and the output voltage present
an asymmetric ripple when vH5 = 40. Nevertheless, the output current is regulated.
When the voltage change occurs the ripple is equalized and also reduced because all
the veks are identical.

The next experimental result corresponds to a voltage disturbance when the con-
verter works as an inverter.

Figure 3.57: Voltage disturbance test in DC/AC mode

Notice that the step voltage is almost not detected due to the input filter, as happen
in the DC/DC test. Furthermore, it can be observed that vHs are well balanced during
the test and the output current is always regulated.

The next result corresponds to a FB insertion during operation, starting with 4
FB and inserting the 5th FB, when the system is working as a DC/DC converter. It
can be observed in Fig. 3.58, that when there are 4 FBs there exists an asymmetric
ripple in vs and io because of the no suitable interleaving for 4 cells. However, both
the output current and output voltage are regulated. After the insertion due to the
interleaving is designed for 5 cells, the ripples of vs and io are symmetric and it is
reduced. Furthermore, it can be observed how are equalized the CVs after the insertion,
reaching a new operation point with a settling time after 0.5 ms. These values are
in concordance with the time constants of the system and also there exists a strong
similarity with the simulation results.



(a)

(b)

Figure 3.58: FB insertion test in DC/DC mode (a) vHk and vswHk; (b) iswo and vsws

The last test, shown in Fig. 3.59 presents the results of a FB insertion during
operation when the converter works as a DC/AC converter. Notice that the current
follows the reference during all the experiments, presenting a small transient when the
FB is inserted. Furthermore, the vHs are balanced before and after the cell insertion,
with also a small disturbance in the transient. These two last tests validate the three
stages of the controller, the balancing controller, the GV regulator, and the bypass



system. It can be inferred that all the experimental tests are in concordance with the
simulation test and the theory developed in this chapter, producing a good performance
of the controller for this topology.

Figure 3.59: FB insertion test in DC/AC mode

3.7 Conclusions of this section
The proposed control methods allow balancing the cell variables, to regulate the output
variable and gives to the MCC the ability of insertion and removal of a cell during
operation if the MCC is modeled as the proposed model.

The control method is implemented in two different typologies of the multilevel
converter, a cascaded full-bridge multilevel converter, and a flying-capacitor multilevel
converter.

The performance of the control method is validated with simulation and experi-
mental tests obtaining good results disturbing the input voltage, stepping the load and
inserting a cell during operation, presenting concordance with the theory, the simulation
and the experimentation. This control is available for any multilevel converter if it can
be modeled as the proposed model. As future works, the implementation of this con-
trol method for balancing the state of charge of the batteries when those are the input
voltage of a cascade full bridge multilevel converter is being developed. Another future
work is the implementation of this control method in the multi-phase buck converter.



Chapter 4
Adaptive Selective Harmonic Elim-
ination Strategies for the control of
multilevel Inverters

The second core of the research deals with a control strategy for any symmetric
Multilevel Inverter, modulated by the Selective Harmonic Elimination (SHE) strategy.
This work is inspired by the complexity of having a feedback circuit to control the
output voltage in low frequency modulation strategies. All the theory is developed,
using a Cascaded Equal Full-Bridge Multilevel Inverter of 4 cells (FBs), generating 9
levels. However, it can be applied to any symmetric Multilevel Inverter of 9 levels, and
also it can be extrapolated or scaled for more levels. The aim of SHE is to adjust the
fundamental Fourier component to a reference, and to eliminate the N-1 most significant
harmonics, switching N times per quarter of a cycle. This chapter starts explaining the
obtention of the harmonics and the equations that rule SHE.

4.1 Description of the system
The system where the control is implemented corresponds to a Cascaded Equal Multi-
level Inverter (CEMI) shown in Fig. 2.1(a), composed of 4 FB (N=4) and connected
to a resistive load. Although the inputs are the same, it may exist some disturbances
or variation in the input. Low frequency modulation strategy is based on switching a
finite number times per period, adjusting the fundamental component and eliminating
some significant harmonics [14, 15, 37, 41, 43, 44], or minimizing the Total Harmonic
Distortion (THD) [12, 13]. In this work, each FB switches once per quarter of a cy-
cle, and the aims are to control the fundamental component and to eliminate as many
harmonics as possible. Fig.2.18 shows the waveform of the output voltage, dismissing
the effects of inductors and capacitors of the input filters. Notice that the waveform is
symmetric in both axes, where FBk switches at θk, π − θk, π + θk, 2π − θk.

4.1.1 Modeling the system
According to Appendix A, the Fourier components of the kth FB, when its respectively
sources have different values, are:
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akm = 0

bkm =


4vek
mπ

cos (mθk) ; m is odd

0 ; m is even

(4.1)

Hence, knowing that vs is the sum all the output voltages of the FBs, vHk, it follows:

vs =
4∑

k=1
vHk

k = {1, 2, 3, 4} (4.2a)

vs =
4∑

k=1

∞∑
m=1

(akm cos (mωt) + bkm sin (mωt))k = {1, 2, 3, 4} , m = {1, 2 · · · } (4.2b)

vs =
4∑

k=1

∞∑
m=1

4vek
mπ

cos (mθk) sin (mωt) k = {1, 2, 3, 4} , m = {1, 3 · · · } (4.2c)

vs =
∞∑
m=1

(
4
mπ

4∑
k=1

(vek cos (mθk)) sin (mωt)
)

︸ ︷︷ ︸
hm

k = {1, 2, 3, 4} , m = {1, 3 · · · } (4.2d)

According to (4.2) the mth Fourier components (hm) of vs, when m is odd, is defined
as:

hm = 4
mπ

4∑
k=1

(vek cos(mθk)) (4.3)

Considering that CEMI is symmetric, all the sources should be the same. However, in
practice small differences in the input voltage sources can be considered as disturbances:

vek = ve(1 + δk) (4.4)
Therefore,

hm = 4ve
mπ

4∑
k=1

((1 + δk) cos(mθk)) (4.5)

SHE strategy finds the switching angles that satisfies (4.5) for m = {1, 3, 5, 7}, for
a fundamental component h1 = href1 and h3 = h5 = h7 = 0. Many methods find the
switching angles for SHE as numeric methods [38], intelligent methods [14, 37, 41] and
algebraic methods [15, 42, 44, 58]. All these methods find the switching angles with pre-
processing techniques because the solving processes take considerable processing time.
However, if there is a disturbance in one of the input voltages, the harmonics change.
For that reason, this work proposes a control law, that uses the algebraic solving method
that [43, 44, 58] describe, which consists in to transform the trigonometric equation
system into a polynomial one, using the multiple-angle formula, that is cos(mθ) =
Tm(cos(θ)), where Tm(•) is the Chebyshev polynomial of the first kind of mth degree



which is defined as:

T0(x) =1
T1(x) =x

Tm+1(x) =2xTm(x)− Tm−1(x)
(4.6)

then:

h′m = 4
mπ

4∑
k=1

(1 + δk)Tm(xk) (4.7)

where xk = cos(θk) and h′m is the normalized harmonic defined as h′m = hm
ve

. Ref-
erence [59] describes in detail about Chebyshev polynomials in trigonometric equation
systems. As mentioned previously, the aims of this strategy are to adjust the funda-
mental component and to eliminate the most significant harmonics. In this work, those
harmonics correspond to the first 3 odd harmonics. Therefore, expanding Tm(xk) for
m = {1, 3, 5, 7} :

h′1 = 4
π

4∑
k=1

(1 + δk)xk

h′3 = 4
3π

4∑
k=1

(1 + δk)
(
4x3

k − 3xk
)

h′5 = 4
5π

4∑
k=1

(1 + δk)
(
16x5

k − 20x3
k + 5xk

)

h′7 = 4
7π

4∑
k=1

(1 + δk)
(
64x7

k − 112x5
k + 56x3

k − 7xk
)

(4.8)

Expressing as a matrix form:



h′1

h′3

h′5

h′7


︸ ︷︷ ︸
H′R

= 4
π



T1(x1) T1(x2) T1(x3) T1(x4)

1
3T3(x1) 1

3T3(x2) 1
3T3(x3) 1

3T3(x4)

1
5T5(x1) 1

5T5(x2) 1
5T5(x3) 1

5T5(x4)

1
7T7(x1) 1

7T7(x2) 1
7T7(x3) 1

7T7(x4)


︸ ︷︷ ︸

Π(X)





1

1

1

1


︸︷︷︸
V1

+



δ1

δ2

δ3

δ4


︸ ︷︷ ︸
∆



(4.9)

Where X =
[
x1 x2 x3 x4

]T
. Eq. (4.9) corresponds to a static model of the

system of the Fourier components as a function of the cosine of the switching angles X.



It can be observed that (4.8) is less complicated to solve than (4.5). However, it can be
complex, if the disturbances δks are high. Furthermore, solving (4.8) in real-time might
take considerable processing time. To solve this system, H′e is defined as the estimated
harmonics, corresponding to the harmonics if there are no disturbances, hence:

H′R =Π(X)(V1 + ∆) (4.10a)
Π(X)V1 =H′e (4.10b)

The next subsection focuses on the process to solve (4.10b). Then, with the closed-
loop the disturbances in the input voltages are compensated, satisfying (4.10a).

4.1.2 Solving the Polynomial equation
Notice that (4.10b) corresponds to a polynomial equation system, which is non-linear
because it is “polynomial”. If the objective is to find the cosine of the switching angles,
xk, the input variables are the harmonics, hm, and the output variables are the cosine
of the switching angles, xks.

It can be observed in (4.9), that all the equations present all the output variables,
xks, meaning that the equation system is coupled. Furthermore, there is no manner to
leave the output variables, xks, as a function of the input variables, hms. It means that
the system is implicit. Finally, it can be observed that this equation system is static
because the time is not present in the equation system. It can be concluded that the
equation system described in (4.9) corresponds to a static, non-linear, coupled, implicit
model.

This work uses an algebraic method that converts (4.9) into its Groebner Basis,
decoupling the equations, finding another polynomial equation system with the same
solution set, where the coefficients are other polynomial functions of H′e. The polyno-
mial obtained of the Groebner basis conversion follows the form:

p1(x1,H′e) = 0
p2(x1, x2,H′e) = 0

...

pN(x1, x2, · · ·xN ,H′e) = 0

(4.11)

Appendix D shows the Groebner basis conversion of (4.10b). This conversion aims to
decouple the output variable xks, simplifying the solving process of the system. Refer-
ences [45, 58] explain in more detail this polynomial conversion. Additionally, according
to [42, 43], (4.8) is made of symmetric polynomials, meaning that if a permutation of
xks is carried out, the polynomial equation system has the same solution set. It means
that the solution set of any xk is a permutation of the solution set of x1. For that
reason, solving p1(x1,H′e), the solutions of the others xks are also found. Therefore, it



is possible to define a system as:
q(x1,H′e) = 0

...

q(xN ,H′e) = 0

(4.12)

where q(xk,H′e) = p1(xk,H′e). According to Appendix D, q(xk,H′e), it follows:

p1(xk,H′e)
4∑
r=0

gr(H′e)xrk = 0 (4.13)

where:
g4(H′e) =26.88π4h′e1

6 − 16128π2h′e1
4 − 16128π2h′e1

3
h′e3 + 193536h′e1

2 + 193536h′e1h
′
e3

+ 193536h′e1h
′
e5 − 193536h′e3

2

g3(H′e) =− 67.2π5h′e1
7 + 4032π3h′e1

5 + 4032π3h′e1
4
h′e3 − 48384πh′e1

3 − 48384πh′e1
2
h′e3

− 48384πh′e1
2
h′e5 + 48384πh′e1h

′
e3

2

g2(H′e) =7.2π6h′e1
8 − 604.8π4h′e1

6 − 604.8π4h′e1
5
h′e3 + 16128π2h′e1

4 + 24192π2h′e1
3
h′e3

+ 8064π2h′e1
3
h′e5 − 145152h′e1

2 − 193536h′e1h
′
e3 − 193536h′e1h

′
e5 − 48384h′e1h

′
e7

+ 145152h′e3
2 + 48384h′e3h

′
e5

g1(H′e) =− 0.4π7h′e1
9 + 50.4π5h′e1

7 + 50.4π5h′e1
6
h′e3 − 2016π3h′e1

5 − 3024π3h′e1
4
h′e3

− 1008π3h′e1
4
h′e5 + 24192πh′e1

3 + 24192πh′e1
2
h′e3 + 36288πh′e1

2
h′e5

+ 12096πh′e1
2
h′e7 − 36288πh′e1h

′
e3

2 − 24192πh′e1h
′
e3h
′
e5 + 12096πh′e3

3

g0(H′e) = + 0.01π8h′e1
10 − 1.8π6h′e1

8 − 1.8π6h′e1
7
h′e3 + 100.8π4h′e1

6 + 151.2π4h′e1
5
h′e3

+ 50.4π4h′e1
5
h′e5 − 2016π2h′e1

4 − 3024π2h′e1
3
h′e3 − 2016π2h′e1

3
h′e5 − 1008π2h′e1

3
h′e7

+ 3024π2h′e1
2
h′e3h

′
e5 − 30.24π2h′e1h

′
e3

3 + 12096h′e1
2 + 24192h′e1h

′
e3 + 12096h′e1h

′
e5

+ 12096h′e7h
′
e1 − 12096h′e3h

′
e5 + 12096h′e3h

′
e7 − 12096h′e5

2

Expressing (4.12) a matrix form, it follows:
Q(X,H′e) = 0 (4.14)

The roots of (4.14) corresponds to the solution of all the cosine of the switch-
ing angles. In order to validates the equation for this application lets define ve =
48 V , a desired fundamental component (h1) equals 155 V , therefore h′e1 = 3.23 and
h′e5 , h

′
e3 , h

′
e7 = 0. Replacing the values of the normalized harmonics, the solutions

of this equation are: x1 = 0.9842, x2 = 0.8958, x3 = 0.6187, x4 = 0.0468, then the
switching angles are: θ1 = 0.1780 rads, θ2 = 0.4606 rads, θ3 = 0.9037 rads θ4 =
1.5240 rads. Fig. 4.1(a) shows the waveform of vs, vH1 , vH2 , vH3 and vH4 with the
respective switching angles, and Fig. 4.1(b) shows the Fourier analysis of vs. Notice
that the harmonics 3rd, 5th and 7th are eliminated, while the fundamental value is the
desired one.
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Figure 4.1: (a) Waveform of vs, vH1, vH2, vH3, vH4, (b) Fourier analysis of vs

4.2 Analyzing the solutions
This section carries out three analyses of the system described in (4.14). The first
analysis corresponds to the study of the behavior of the cosine of the switching angles,
X, vs the normalized fundamental component, h′1, when the harmonics 3, 5 and 7 are
equal to 0. The second study describes the behavior of the normalized Harmonics, H′R
vs small changes in the cosine of the angles, X, and the last study explains how do the
harmonics, H′R, are, when changes in δk occur.



4.2.1 Behavior of the X when h′1 changes
In Fig. 4.1 it can be seen that all the FBs present a positive step in the first quarter
of a cycle. However, for different fundamental components, some xks can be negatives,
greater than 1, lower than -1 or even complex. This subsection analyzes how does X
change according to the fundamental component.

In order to analyze the behavior of the solution set when the system eliminates
h′e3 , h

′
e5 , h

′
e7 , Fig. 4.3 shows X vs h′e1 when the harmonics 3, 5, and 7 are zero.

Figure 4.2: X vs h′1, when h′3, h′5, h′7 are 0

According to Fig. 4.3, there exists three regions where there is no feasible solution
of the system (1.19 < h′e1 < 1.52; 2.07 < h′e1 < 2.28 and h′e1 > 3.44). This fact is
produced because one xk is complex, higher than 1 or lower than -1. It has to remain
that if |xk| > 1 or if xk is complex, the associated switching angle, θk, is complex.

Fig. 4.2 also shows that there are three regions where some xks are negatives,
producing a switching angle greater than π/2 generating a negative step in vHk

during
the first quarter of a cycle.

In order to understand more clearly this phenomenon, Fig. 4.3 shows the behavior
of the waveform if xk < 0 or not.



Figure 4.3: waveform of vs and vH4, displacing x4

It can be inferred that when one xk is negative the waveform of vs decreases 2 levels,
one for the positive part and one in the negative one, meaning that one step is negative
in the positive semi cycle. Based on this analysis, applying the proposed theory, the
number of levels is not important and only the number of switching per quarter of
cycles is.

For the cases when X are complexes, lower than -1 or higher than 1, there are no
switching angles that satisfy the desired h′e1 and the nullity of h′e3 , h

′
e5 , h

′
e7 .

All this research is validated in the feasible region 2.28 < h′e1 < 3.44. However, this
theory can be implemented in the other regions. Notice that in this region the cosine
of the switching angle θ4, x4, can be negative, while the other cosines, xk, do not, being
able to produce 7 or 9 levels, according to the fundamental component.

In order to proof that the Groebner conversion is valid for cases where x4 < 0 and
the step of vH4 in the first quarter of cycle is negative. Fig. 4.4 shows vs and vHk

when
ve = 54 V and h1 = 155.5 V . With these parameters h′e1 = 2.88 and the solution set
of X is: x1 = 0.9797, x2 = 0.8661, x3 = 0.4744, x4 = −0.0582, generating a switching
angles of: θ1 = 0.2020 rads, θ2 = 0.5235 rads, θ3 = 1.0765 rads, θ4 = 1.629 rads,
being the last commutation a negative step in FB4 during the first quarter of cycle.
Notice that vH4 starts with a negative step and vs has 2 levels less than the vs previously
shown in Fig. 4.1. In order to validate these results, Fig. 4.4(b) shows the Fourier
analysis of Fig. 4.4(a), where the fundamental component does not change and the
harmonics h′e3 , h

′
e5 , h

′
e7 are eliminated again. This result indicates that it is possible

to analyze mathematically this system according to the number of switching angles
without taking into account the number of FBs, knowing that xk > 0 produces a
positive step in the first quarter of cycle and xk < 0 produces a negative step in the
first quarter of cycle. Nevertheless, the THD is higher than when vs has 7 levels than
when vs has 9 levels. Additionally, the harmonics 9 and 15 are lower for vs of 9 levels
than vs for 7 levels.
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Figure 4.4: (a) Waveform of vs, vH1, vH2, vH3, vH4, when θ4 > π/2 (b) Fourier analysis
of vs when θ4 > π/2

4.2.2 Sensitivity of the system
This subsection analyzes the changes of the outputs, produced by changes in the cosine
of the switching angles, xk for k = {1, 2, 3, 4}. Fig.4.5 shows the changes of h′1, and
Fig. 4.6 shows the changes in the harmonics hm, m = {1, 3, 5, 7}. Notice that the
fundamental component are linear with respect to all the cosine of the switching angles,
xk. In contrast, the harmonics are nonlinear with respect to the cosine of the switching
angles, even having locals maximum and minimum.
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It can be seen in Figs. 4.6b, 4.6d, 4.6f that h3 is nonlinear with respect to x3, while
in Figs. 4.6a, 4.6d, 4.6e, h5 is nonlinear with respect to x2. Finally, in Figs. 4.6a, 4.6b,
4.6d, 4.6e and 4.6f, h7 is highly nonlinear respect to x2 and x3. It can be inferred that
there is a linear relationship between all the harmonics and x1, x4, meaning that x4
and x1 are linear with respect to all the harmonics. This conclusion can be very useful
to simplify any control method. Furthermore, a maximum or minimum point of the
harmonics in the graphics means that the sensitivity changes its sing. This fact has to
be taken into account in the design of the controller, because a typical linear controller
without anything else produces that the system turns unstable.

4.2.3 Behavior of the harmonics with changes in vek

This subsection shows the effects produced in the harmonics when changes in the input
voltages are carried out. The gradient of (4.10a) with respect to ∆ is:

∂HR

∂∆
= Π(X∗) (4.15)

where X∗ are the solution set that satisfies the desired estimated harmonics H′e,
meaning that the changes in the harmonics produced by changes in the sources are
linear.

Based on all these analyses, the control loop is proposed in the next section.

4.3 Closing the loop
Based on the three analyses, this section proposes a control law to ensure a desired
fundamental component and the nullity of some predefined harmonics, if a disturbance
in the sources occurs or if a voltage drop in the output exists due to a change in the
load. According to (4.5) and (4.10) the system is modeled as static one as:

Q(X,H′e) =0 (4.16a)
H′R =Π(X)(V1 + ∆) (4.16b)

The system is composed of two parts. The first stage, (4.16a), that based on
Q(X,H′e) obtains a solution set of X, receiving the estimated harmonics, H′e, as input.
The second stage of the system, described by (4.16b), corresponds to the computation
of the switching angles based on its cosines, X, and applying them to the inverter, gen-
erating the output voltage, vs, which is captured in the Digital Signal Processor (DSP).
Then the harmonics of vs are computed and normalized, dividing them by the nominal
value of the input voltages, ve, obtaining the normalized harmonics components, H′R.
Fig. 4.7 shows the schematics of the implemented system and the static model that
represents it.



Figure 4.7: static model and block diagram of the system

In Fig. 4.7, the input of the system is H′e, the output is H′R and the internal
variable is X. Furthermore, the model obtained in (4.16) is a static one and also is non-
linear because it is composed of Q(X,H′e), which is a polynomial system. Additionally,
Q(X,H′e) = 0 is an implicit system equation. For designing a controller it is necessary
to obtain an explicit and dynamical model. For converting this model into an explicit
one, X is found from Q applying the same principle of the Newton Rapson (NR)
method, for solving nonlinear system equation, with adaptations, because H′e behaves
as a variable parameter and not as a fixed one. Therefore:

�
�>

0
Qt = Qt−1 +

(
∂Q
∂X

∣∣∣∣∣
t−1

)
(Xt −Xt−1) +

(
∂Q
∂H′e

∣∣∣∣∣
t−1

)(
H′et −H′et−1

)
(4.17)

Hence,

Xt = Xt−1 −
(
∂Q
∂X

∣∣∣∣∣
t−1

)−1 (
Qt−1 +

(
∂Q
∂H′e

∣∣∣∣∣
t−1

)(
H′et −H′et−1

))
︸ ︷︷ ︸

F(Xt−1,H′et,H′et−1)

(4.18)

According to (4.18), if the harmonics do not change, the equation corresponds to
the solving process of the NR method. Hence, the new system corresponds to a virtual
dynamical system composed of the equation system that finds the cosine of the switch-
ing angles, X, by the adaptation of NR; and the static and explicit system equation
that represents the obtention of the switching angles, θks, based on its cosines, xks, the
sensed of the output voltage, vs, of the inverter, and the computation of the normal-
ized harmonics, H′R, of the output voltage, vs. Equation (4.19) shows the proposed
dynamical model of the system. Xt

H′Rt

 =

F(Xt−1,H′et,H′et−1)

Π(Xt)(V1 + ∆)

 (4.19)



Fig.4.8 expresses as a block diagram of (4.19)
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Figure 4.8: virtual dynamic model of the system

According to Fig. 4.8, the input of the dynamic system is the normalized estimated
harmonic, H′e, and the output of the system is the sensed normalized harmonics, H′R.
Based on this model, the proposed control law is composed of the desired normalized
harmonics plus a discrete PI controller, as (4.20) shows.

H′et = H′ref + a1ξt − a0ξt−1 (4.20)

where ξt = Href −HRt. Fig. 4.9 shows the block diagram of the closed-loop system.
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Figure 4.9: System in closed-loop system

Based on the closed-loop diagram represented in Fig. 4.9, inserting the control law
in (4.18), it follows:



Xt =Xt−1 −
(
∂Q
∂X

∣∣∣∣∣
t−1

)−1 (
Qt−1 +

(
∂Q
∂H′e

∣∣∣∣∣
t−1

)(
�
��H′ref + a1ξt − a0ξt−1

−���H′ref − a1ξt−1 + a0ξt−2

))
Xt =Xt−1 −

(
∂Q
∂X

∣∣∣∣∣
t−1

)−1 (
Qt−1 +

(
∂Q
∂H′e

∣∣∣∣∣
t−1

)
(����a1H′ref − a1H′Rt

−����a0H′ref + a0H′Rt−1 −���
�a1H′ref + a1H′Rt−1 +����a0H′ref − a0H′Rt−2

))
(4.21)

Hence, the closed-loop system is:

Xt =Xt−1 −
(
∂Q
∂X

∣∣∣∣∣
t−1

)−1 (
Qt−1 −

(
∂Q
∂H′e

∣∣∣∣∣
t−1

)(
a1H′Rt − (a1 + a0) H′Rt−1

+a0H′Rt−2

))
HRt =Π(Xt)(V1 + ∆)

(4.22)

Notice that, when the angles are found, Qt = 0 and the harmonics do not change.
Hence, X does not change, meaning that the system reaches the steady-state. Note,
that this controller works only in feasible regions of Fig.4.2 and is not able to pass from
one feasible region to another one.
To validate this control law, the next section shows the simulation and experimental
tests.

4.4 Results
The results correspond to simulation and experimental tests, developed with a prototype
with the parameters described in table 4.1.

Table 4.1: Parameters of the inverter
Parameter Value Parameter Value
ve 48 V Rx 100 mΩ
Lk 1.8 mH Ro 52 Ω
RLk

200 mΩ h1ref
145 V

Rs 200 mΩ Po 200 W
Ck 4 mF a1 0.12
RDS 58 mΩ a0 0.012

where RLk
is the DC Resistance (DCR) of the inductance Lk. Po is the output

power, RDS is the series ON resistance of the MOSFETs (IRFI4212). Rs and Rx are
the resistances associated with the wires in the input of each FB, and in the output of
the inverter, respectively. Fig. 4.10 shows the prototype where the experimental tests
are developed.
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Figure 4.10: Prototype of 200 W, ve = 48V , 5 cells

The sampling frequency of the acquisition of the output voltage, vs, is 15 kHz and
the frequency of the fundamental component is 60 Hz. To obtain the harmonics, the
output voltage is captured during 20 periods of vs, meaning that the time of the acting
of the controller is 3 Hz. This is carried out because according to the signal processing
theory shown in [60], for having a good accuracy, the acquisition frequency of a periodic
signal, must be 10 times less than the minimum frequency of the Fourier components
to be obtained.

The tests developed in simulation and experimental correspond to an insertion of a
load and a disturbance in one of the input voltages, as will be shown in the following
subsections.

4.4.1 Insertion of a 200 W load
These tests show the simulation and experimental results of the system, starting with
no load and inserting a load of 200W at t=7.5 seconds. Fig. 4.11 shows the simulation
result. Notice that before the load insertion, there is a negative step in the output
voltage of FB4, vH4, during the positive semi-cycle of vs, meaning that x4 must be
negative and θ4 > π/2. When the load is inserted, there is a drop in the amplitude of
the waveform because the impedance of the system starts to generate losses. Due to
this action, the controller compensates the amplitude of vs, adjusting the X, especially
x4, passing from a negative value to a positive one.



Figure 4.11: Simulation result of 200 W load insertion

To validate the result of the controller, Fig. 4.12 shows the behavior of the harmonics
3, 5, 7 and the fundamental component. In Fig. 4.12, it can be observed that h1
presents an undershoot due to the load insertion, and a settling time of 12.5 seconds,
approximately. Additionally, Fig. 4.12 shows that h3 presents a small overshoot during
the load insertion. However, it maintains a low value during the test. h5 and h7 are
not affected by the load insertion and are maintained close to 0 during the test. Note
that all the harmonics are between 0 and 0.5 V, which represents less than 0.34% of
the fundamental component.
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Figure 4.12: Harmonics behavior of the 200 W load simulation test

To validate the behavior of the cosine of the switching angles, Fig. 4.13 shows X
during the simulation. As mentioned previously, before the load insertion, x4 is negative
and after the insertion, x4 is positive, producing a negative step in vH4 before the load
insertion and a positive step after the load insertion. Furthermore, as predicted, if there
is a voltage drop in the wires, the system has to produce more voltage in all vHk

, being
more time turned on. It means that the switching angles, θks have to decrease and the
cosine of the switching angles, X, have to increase their values. Fig. 4.14 shows vs of
the experimental test, developed with the prototype, inserting the load of 200 W.
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Figure 4.13: Simulation of the cosine of the switching angles, xks
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Figure 4.14: Experimental result of 200 W load insertion



Notice that the same waveform produced in the simulation is obtained in the exper-
imental result, starting with a negative step in vH4 and passing to a positive step when
the load is inserted, to increase the voltage in vs.

Fig. 4.15 shows the behavior of the harmonics of the experimental result. Notice
that the fundamental component presents an undershoot similar to the simulation test
with a faster transient response than the simulation test. Furthermore, Fig. 4.15 shows
that the harmonics are also affected by the disturbances. However, all of them are
stabilized after 50 seconds. Harmonic 3 presents a remaining oscillation between 0 and
0.15, which represents less than 0.1% of the fundamental component. This experimental
test shows that the harmonics do not have similarity with the simulation test. Despite
the behavior of the harmonics differs from the simulation, variations are always below
0.4 %

138

140

142

144

146

h
1
 [

V
]

0.3

0.9

1.5

h
3
 [

V
]

0.1

0.3

0.5

h
5
 [

V
]

10 20 30 40 50 60 70 80 90 100

Time [s]

0.1

0.3

0.5

h
7
 [

V
]

Figure 4.15: Harmonics behavior of the 200 W load experimental test



4.4.2 Changes in one source
The test describes the system connected to 200 W load with a change in ve1 from 55 V
to 50 V at t=7.5 seconds. It is important to mention that ve1 is the source that supplies
the majority of power because θ1 is the smallest switching angle. Fig. 4.16 shows the
waveform of vs in this test. It can be seen that before the voltage change, the 4th FB
presents a negative step, and after the disturbance, this FB produces a positive step.

Figure 4.16: Simulation result of ve1 disturbance

For validating the result of this experiment, Fig. 4.17 shows the behavior of the
harmonics. Notice that there are overshoots in h1, h3, h5, representing the 4%, 1.1%
and 0.4% of the reference of h1, respectively, and h7 is almost not affected. h1 is
stabilized after 12.5 seconds. In this test the harmonics present a very low oscillation
that represents 0.34% of the fundamental component in the worst case, validating the
robustness of the controller. Fig. 4.18 shows the action of X when one of the input
voltages is disturbed. It can be seen that before the voltage disturbance, x4 is negative,
validating the negative step produced in vH4 during the test. When the input voltage
change, all the xks start to increase their values to increase the fundamental component
of vs, and x4 passes from a negative to a positive value. Fig. 4.19 shows the experimental
results of the output voltage vs when the disturbance in ve1 is produced, and Fig. 4.20
shows the behavior of the harmonics of vs.



138

140

142

144

146

h
1
 [

V
]

0.5

1.5

2.5

h
3
 [

V
]

0.2

0.4

0.6
h

5
 [

V
]

0 20 40 60 80 100

Time [s]

0.1

0.2

0.3

h
7
 [

V
]

Figure 4.17: Simulation of the transient of the harmonics after a disturbance in the ve1
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Figure 4.18: Simulation of the transient of X when a disturbance of ve1 is produced
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Figure 4.19: Experimental result of ve1 disturbance
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Figure 4.20: Harmonics behavior of ve1 disturbance experimental test



Notice that the experimental result presents a similarity to the simulation one,
before and after the change of the input source, starting with a negative step in x4, and
changing to a positive value after the voltage change. Fig. 4.20 describes that h1 has an
undershoot and a settling time of 12 s approximately. Furthermore, all the harmonics
present an overshoot, stabilizing the system after some seconds.

4.5 Conclusions of the chapter
The chapter presents a deep analysis of the behavior of the harmonics and the switching
angles, using SHE and also a control law applied to SHE, is proposed, regulating the
fundamental component and eliminating harmonics 3, 5 and 7.

Three analyses of the system are carried out. The first one corresponds to the
behavior of the cosine of the switching angles vs the fundamental components, while
the harmonics 3, 5 and 7 are 0, showing the regions which the system has or not a
solution. Furthermore, this analysis shows that it is not important the number of
FBs and only the number of switching cares. The second analyses correspond to the
sensitivity of the harmonics vs the cosine of the switching angles, showing that some
cosines of the angles have a quasi-linear relationship with the harmonics. This fact
allows in the future to improve the algorithm to find the solution of the angles. The
last analysis corresponds to the behavior of the harmonics when a disturbance in the
input voltage is produced, concluding that there is a linear relationship between the
input voltages and the harmonics.

The controller is composed of a PI controller and a virtual dynamical system. The
original model corresponds to a trigonometric equation system which is converted to a
polynomial equation system. Then, a transformation to its Groebner Basis is carried
out, generating a decoupled equation system. Finally, an adaption of the Newton
Raphson solving Method is applied for finding the roots of the polynomial system,
converting the static polynomial equation system into a virtual dynamical one. Then
the classical PI controller is implemented.

The experimental tests and simulations validate the good performance of this pro-
posed controller. Those tests correspond to a 200 W load insertion and a disturbance
in one of the input sources. Concerning the future works, the optimization of the
algorithm to find the cosine of the switching angles is being studied.



Chapter 5
Conclusions

Multicellular converters offer a large number of advantages as the increment of the
output frequency and the distribution of the power in the cells. Furthermore, these
converters present the capability to manage high voltage and high power because they
have a modular structure. Because of that, there are some challenges to improves some
functions of these topologies such as the balancing of the cell variables, the management
of several variables, fault tolerance ability and the improvement of efficiency. This
research proposes two solutions to these challenges and it is divided into two cores.

The first core proposes a control method that has three functions: To balance a cell
variable, to regulate a global variable and to implement a bypass system that allows
to insert or remove cells during operation. This control method is designed for a wide
range of multi-cellular converters that can be modeled as a proposed general model.
This control is implemented in two different converters, the flying-capacitor multilevel
converter, and the cascaded full bridge multilevel converter, obtaining good results in
simulation and experimentation. For the cases of the flying-capacitor multilevel con-
verter, the control method aims to balance the cell voltage and to regulate the output
current. The theory of the controller applied to the flying capacitor multilevel converter
indicates that the cell voltage and the output current are completely decoupled. This
is validated in simulation and experimental tests, with a prototype developed in the
LAPLACE lab, stepping the load, disturbing the input voltage and inserting a cell dur-
ing operation, obtaining good performances in all the tests, balancing the cell voltage,
regulating the output current in all the tests. For the case of the cascaded full-bridge
multilevel converter, the proposed controller aims to balances the output voltage of the
FBs and to regulate the output current. The theory for this topology indicates that
the output current is decoupled from the output voltage of the FBs, while the output
voltage of the FBs depends on the balancing stage and the GV regulator stage. The GV
regulator fixes the trajectory of the cell variables while the balancing controller com-
pensates for the differences between the cell variables. The control method is validated
in a prototype, that was carried out in Javeriana University, working as a DC/DC and
as a DC/AC converter, in simulation and experiments, stepping the load, disturbing
the input voltages and inserting a FB during operation, having good responses in all
the tests. Two future works are in mind with this control method. The first one is
the implementation of this controller for balancing the state of charge of the batteries
that are the input sources of a cascaded full bridge multilevel converter, and the sec-
ond future work is the implementation of this control method in a multi-phase buck
converter.

The second core of this research deals with an adaptive control method for a mul-
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tilevel inverter using Selective Harmonic Elimination modulation. This modulation is
a low frequency modulation technique that improves significantly the efficiency of the
inverter. However, the complexity of math computation makes difficult to implement
this technique online. This adaptive control is based on polynomials conversions and
iterative methods that convert the static system into a virtual dynamical one, that also
decouples the equation for finding the switching angles. Furthermore, the theory indi-
cates that it is not important the number of FBs, caring only the number of switching
angles. Additionally, this part of the research shows three analyses of this modulation
technique, which helps to understand the behavior of the harmonics according to the
switching angles. The theory is designed for a system of 4 switching angles, which
can produce a maximum of 9 levels. However, it is possible to extrapolate this the-
ory to more number of switching angles. The adaptive control method is validated in
a cascaded full-bridge multilevel inverter of 9 levels, that was developed in Javeriana
University, disturbing one of the input voltage and inserting a load, presenting good
responses in all the tests. A future work of this stage of the research is the optimization
of the algorithm to readjust the switching angles.



Appendix A
Fourier components of vek

Given the following waveform:

vHk =


vek ; θk < ωt < π − θk
−vek ; π + θk < ωt < 2π − θk
0 ; 0 < ωt < θk ∨ π − θk < ωt < π + θk ∨ 2π − θk < ωt < 2π

(A.1)

Expressing as the Fourier coefficients

vHk =
∞∑
m=1

amk cos (mωt) + bmk sin (mωt) (A.2)

where:

amk = 2
T

∫ T

0
f (ωt) cos (mωt)

bmk = 2
T

∫ T

0
f (ωt) sin (mωt)

(A.3)

Hence:

amk = 1
π

∫ 2π

0
vHk cos (mωt)

bmk = 1
π

∫ 2π

0
vHk sin (mωt)

(A.4)
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Therefore amk is:

amk = 1
π

(∫ π−θk

θk

vek cos (mωt)−
∫ 2π−θk

π+θk

vek cos (mωt)
)

amk = 1
π

(
vek
m

sin (mωt)
∣∣∣∣π−θk

θk

− vek
m

sin (mωt)
∣∣∣∣2π−θk

π+θk

)

amk = vek
mπ

(sin (mπ −mθk)− sin (mθk)− sin (2mπ −mθk)

+ sin (mπ +mθk))

amk = vek
mπ

(
���

��:0sin (mπ) cos (mθk)−((((((
((((cos (mπ) sin (mθk) −����

�sin (mθk)

−����
��:0

sin (2mπ) cos (mθk) +����
��:1

cos (2mπ)����
�sin (mθk) +����

�:0sin (mπ) cos (mθk)
+((((((

((((cos (mπ) sin (mθk)
)

amk = 0
Analogously, bmk is:

bmk = 1
π

(∫ π−θk

θk

vek sin (mωt)−
∫ 2π−θk

π+θk

vek sin (mωt)
)

bmk = 1
π

(
− vek

m
cos (mωt)

∣∣∣∣π−θk

θk

+ vek
m

cos (mωt)
∣∣∣∣2π−θk

π+θk

)

amk = vek
mπ

(− cos (mπ −mθk) + cos (mθk) + cos (2mπ −mθk)

− cos (mπ +mθk))

bmk = vek
mπ

(
− cos (mπ) cos (mθk)−����

�:0sin (mπ) sin (mθk) + cos (mθk)

+����
��:1

cos (2mπ) cos (mθk) +����
��:0

sin (2mπ) sin (mθk)− cos (mπ) cos (mθk)

+����
�:0sin (mπ) sin (mθk)

)
bmk = vek

mπ
(−2 cos (mπ) cos (mθk) + 2 cos (mθk))

bmk =2vek
mπ

(1− cos (mπ)) cos (mθk)

cos (mπ) =
{

1 ;m = even
−1 ;m = odd

bmk =
 0 ;m = even

2vek
mπ

cos (mθk) ;m = odd



Appendix B
Proof that a product of a graph and
a linear combination of a graph and
the identity matrix is also a graph

Lets define I as the identity matrix of n × n, and A and B, two matrices that
represents the laplacian of a Graph

A =


a11 a12 · · · a1n

a21 a22
. . . a2n

...
. . .

. . .
...

an1 a2n · · · ann

 B =


b11 b12 · · · b1n

b21 b22
. . . b2n

...
. . .

. . .
...

bn1 b2n · · · bnn


Hence, if A and B are laplacian of a graph, C = A (ffI + flB) is also a laplacian of a
graph.

If A and B are laplacians of a graph, the sum of the elements of its columns and
its rows are zero, hence: ∑n

i=1 aij = 0 ;∑n
j=1 aij = 0∑n

i=1 bij = 0 ;∑n
j=1 bij = 0

Expressing as a matrix form it follows:

AV1 = 0 ; VT
1 A = 0T

BV1 = 0 ; BT
1 A = 0T

where V1 =
[
1 1 · · · 1

]T
, 0 =

[
0 0 · · · 0

]T
Therefore the sum of the elements

of the rows and the sum of the elements of the columns of of C can be represented as
CV1 and VT

1 C, respectively. Hence,

CV1 = A (αI + γB) V1

= αAV1 + γABV1

= α��
�*0

AV1 + γA�����:
0(BV1)

CV1 = 0
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and

VT
1 C = VT

1 A (αI + γB)
= αVT

1 A + γVT
1 AB

= α��
��*

0T

VT
1 A + γ

BT
��

��
�*0(

AVT
1

)T

VT
1 C = 0T



Appendix C
Proof of stability of the control law
in the Flying-Capacitor Multilevel
Converter with the nonlinear model

According to 3.13, the nonlinear model is:

V̇

i̇o

 =


io
Co

ATD + Ev̇e

1
Lo

DTV− Ro

Lo
io


Defining the new variables as e = io − Iref , z =

∫
edt, and Q =

∫
Vdt. Hence, the new

system is: 
V̇
Q̇
ė
ż

 =


e+Iref

Co
ATD + Ev̇e

V
1
Lo

DTV− Ro

Lo
(e+ Iref )

e


The control law expressed in time domain is:

D = kpV DiffV + kiV DiffQ− kpieV1 − kiizV1

Inserting the control law expressed in time domain into the nonlinear model, remaining
that DiffV1 = 0 and VTV1 = ve, is:


V̇
Q̇
ė
ż

 =


kpV (e+Iref)

Co
ATDiffV + kiV (e+Iref)

Co
ATDiffQ + Ev̇e

V
kpV

Lo
VTDiffV + kiV

Lo
VTDiffQ− kpivee− kiivez − Ro

Lo
(e+ Iref )

e


Let’s defining a Lyapunov function:

L = 1
2
(
α1VTV + QTP2Q + e2 + f(z)

)
> 0

where, f(z) > 0, z 6== 0, α1 > 0 and P2 is positive semi definitive and f(0) = 0. Hence;
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assuming that ve is constant and grater than 0:
L̇ = α1VTV̇ + QTP2Q̇ + eė+ ∂f

∂z
ż < 0

L̇ = kpV α1(e+Iref)
Co

VTATDiffV + kiV α1(e+Iref)
Co

VTATDiffQ + QTP2V + kpV e

Lo
VTDiffV

+ kiV e
Lo

VTDiffQ− kpivee2 − kiiveez − Ro

Lo
e (e+ Iref ) + ∂f

∂z
e < 0

kpV VT
(
α1(e+Iref)

Co
AT + e

Lo
I
)

︸ ︷︷ ︸
M

DiffV + VT

kiV
(
α1(e+Iref)

Co
AT + e

Lo
I
)

︸ ︷︷ ︸
M

Diff + PT
2

Q < 0(1)

− kpivee2 − kiiveez − Ro

Lo
e2 − Ro

Lo
eIref + ∂f

∂z
e < 0(2)

For (1), knowing that AT is semi definite because one eigenvalue is =0 and the
others are less than 0, and Diff is positive semi definite because one eigenvalue is 0 and
the others are greater than 0:

s =
(
α1(e+Iref)

Co
λ+ e

Lo

)
< 0

where s are the eigenvalues of M and λ are the eigenvalues of AT. Hence, it must be
an α1 that

α1 < −
eCo

Loλ (e+ Iref )
Taking into account that λ < 0 because AT is negative semi definite, α1 > 0, that

is in concordance with the first statement. Hence:

0 < α1 < −
eCo

Loλ (e+ Iref )
and

P2 = −kiV DiffMT

Due to M is negative semi definite and Diff is positive semi definite, P2 is positive
semi definite.

For (2)

e
(
−kiivez − Ro

Lo
Iref + ∂f

∂z

)
< 0

e > 0 ∧
(
−kiivez − Ro

Lo
Iref + ∂f

∂z

)
< 0

e < 0 ∧
(
−kiivez − Ro

Lo
Iref + ∂f

∂z

)
> 0

Solving the differential inequality

e > 0 ∧ f < kiivez
2 + 2Ro

Lo
Irefz

e < 0 ∧ f > kiivez
2 + 2Ro

Lo
Irefz

Hence, if f , α1 and P2 have the proposed form, a Lyapunov function that satisfies
stability for this system is obtained



Appendix D
Groebner basis conversion of Π(X)V1

p1(x1,He) = (26880π4h′e1
6 − 1612800π2h′e1

4 − 1612800π2h′e1
3
h′e3 + 19353600h′e1

2

+ 19353600h′e1h′e3 + 19353600h′e1h′e5 − 19353600h′e3
2)x1

4 + (−6720π5h′e1
7 + 403200π3h′e1

5

+ 403200π3h′e1
4
h′e3 − 4838400πh′e1

3 − 4838400πh′e1
2
h′e3 − 4838400πh′e1

2
h′e5

+ 4838400πh′e1h′e3
2)x1

3 + (720π6h′e1
8 − 60480π4h′e1

6 − 60480π4h′e1
5
h′e3 + 1612800π2h′e1

4

+ 2419200π2h′e1
3
h′e3 + 806400π2h′e1

3
h′e5 − 14515200h′e1

2 − 19353600h′e1h′e3 − 19353600h′e1h′e5
− 4838400h′e1h′e7 + 14515200h′e3

2 + 4838400h′e3h′e5)x1
2 + (−40π7h′e1

9 + 5040π5h′e1
7

+ 5040π5h′e1
6
h′e3 − 201600π3h′e1

5 − 302400π3h′e1
4
h′e3 − 100800π3h′e1

4
h′e5 + 2419200πh′e1

3

+ 2419200πh′e1
2
h′e3 + 3628800πh′e1

2
h′e5 + 1209600πh′e1

2
h′e7 − 3628800πh′e1h′e3

2

− 2419200πh′e1h′e3h′e5 + 1209600πh′e3
3)x1 + π8h′e1

10 − 180π6h′e1
8 − 180π6h′e1

7
h′e3 + 10080π4h′e1

6

+ 15120π4h′e1
5
h′e3 + 5040π4h′e1

5
h′e5 − 201600π2h′e1

4 − 302400π2h′e1
3
h′e3 − 201600π2h′e1

3
h′e5

− 100800π2h′e1
3
h′e7 + 302400π2h′e1

2
h′e3h

′
e5 − 302400π2h′e1h

′
e3

3 + 1209600h′e1
2 + 2419200h′e1h′e3

+ 1209600h′e1h′e5 + 1209600h′e7h′e1 − 1209600h′e3h′e5 + 1209600h′e3h′e7 − 1209600h′e5
2 = 0

p2(x1, x2,He) = (672π4h′e1
6 − 40320π2h′e1

4 − 40320π2h′e1
3
h′e3 + 483840h′e1

2 + 483840h′e1h′e3
+ 483840h′e1h′e5 − 483840h′e3

2)x2
3 + (672π4h′e1

6 − 40320π2h′e1
4 − 40320π2h′e1

3
h′e3

+ 483840h′e1
2 + 483840h′e1h′e3 + 483840h′e1h′e5 − 483840h′e3

2)x2
2x1 + (−168π5h′e1

7

+ 10080π3h′e1
5 + 10080π3h′e1

4
h′e3 − 120960πh′e1

3 − 120960πh′e1
2
h′e3 − 120960πh′e1

2
h′e5

+ 120960πh′e1h′e3
2)x2

2 + (672π4h′e1
6 − 40320π2h′e1

4 − 40320π2h′e1
3
h′e3 + 483840h′e1

2

+ 483840h′e1h′e3 + 483840h′e1h′e5 − 483840h′e3
2)x1

2x2 + (−168π5h′e1
7 + 10080π3h′e1

5

+ 10080π3h′e1
4
h′e3 − 120960πh′e1

3 − 120960πh′e1
2
h′e3 − 120960πh′e1

2
h′e5 + 120960πh′e1h′e3

2)x2x1

+ (18π6h′e1
8 − 1512π4h′e1

6 − 1512π4h′e1
5
h′e3 + 40320π2h′e1

4 + 60480π2h′e1
3
h′e3 + 20160π2h′e1

3
h′e5

− 362880h′e1
2 − 483840h′e1h′e3 − 483840h′e1h′e5 − 120960h′e1h′e7 + 362880h′e3

2 + 120960h′e3h′e5)x2

+ (672π4h′e1
6 − 40320π2h′e1

4 − 40320π2h′e1
3
h′e3 + 483840h′e1

2 + 483840h′e1h′e3 + 483840h′e1h′e5
− 483840h′e3

2)x1
3 + (−168π5h′e1

7 + 10080π3h′e1
5 + 10080π3h′e1

4
h′e3 − 120960πh′e1

3

− 120960πh′e1
2
h′e3 − 120960πh′e1

2
h′e5 + 120960πh′e1h′e3

2)x1
2 + (18π6h′e1

8 − 1512π4h′e1
6

− 1512π4h′e1
5
h′e3 + 40320π2h′e1

4 + 60480π2h′e1
3
h′e3 + 20160π2h′e1

3
h′e5 − 362880h′e1

2
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− 483840h′e1h′e3 − 483840h′e1h′e5 − 120960h′e1h′e7 + 362880h′e3
2 + 120960h′e3h′e5)x1 − π7h′e1

9

+ 126π5h′e1
7 + 126π5h′e1

6
h′e3 − 5040π3h′e1

5 − 7560π3h′e1
4
h′e3 − 2520π3h′e1

4
h′e5 + 60480πh′e1

3

+ 60480πh′e1
2
h′e3 + 90720πh′e1

2
h′e5 + 30240πh′e1

2
h′e7 − 90720πh′e1h′e3

2 − 60480πh′e1h′e3h′e5
+ 30240πh′e3

3 = 0

p3(x1, x2, x2,He) = (112π4h′1
6 − 6720π2h′1

4 − 6720π2h′1
3
h′3 + 80640h′1

2 + 80640h′1h′3
+ 80640h′1h′5 − 80640h′3

2)x3
2 + (112π4h′1

6 − 6720π2h′1
4 − 6720π2h′1

3
h′3 + 80640h′1

2

+ 80640h′1h′3 + 80640h′1h′5 − 80640h′3
2)x3x2 + (112π4h′1

6 − 6720π2h′1
4 − 6720π2h′1

3
h′3

+ 80640h′1
2 + 80640h′1h′3 + 80640h′1h′5 − 80640h′3

2)x3x1 + (−28π5h′1
7 + 1680π3h′1

5

+ 1680π3h′1
4
h′3 − 20160πh′1

3 − 20160πh′1
2
h′3 − 20160πh′1

2
h′5 + 20160πh′1h′3

2)x2

+ (112π4h′1
6 − 6720π2h′1

4 − 6720π2h′1
3
h′3 + 80640h′1

2 + 80640h′1h′3 + 80640h′1h′5
− 80640h′3

2)x2
2 + (112π4h′1

6 − 6720π2h′1
4 − 6720π2h′1

3
h′3 + 80640h′1

2 + 80640h′1h′3
+ 80640h′1h′5 − 80640h′3

2)x2x1 + (−28π5h′1
7 + 1680π3h′1

5 + 1680π3h′1
4
h′3

− 20160πh′1
3 − 20160πh′1

2
h′3 − 20160πh′1

2
h′5 + 20160πh′1h′3

2)x2 + (112π4h′1
6 − 6720π2h′1

4

− 6720π2h′1
3
h′3 + 80640h′1

2 + 80640h′1h′3 + 80640h′1h′5 − 80640h′3
2)x1

2 + (−28π5h′1
7

+ 1680π3h′1
5 + 1680π3h′1

4
h′3 − 20160πh′1

3 − 20160πh′1
2
h′3 − 20160πh′1

2
h′5

+ 20160πh′1h′3
2)x1 + 3π6h′1

8 − 252π4h′1
6 − 252π4h′1

5
h′3 + 6720π2h′1

4 + 10080π2h′1
3
h′3

+ 3360π2h′1
3
h′5 − 60480h′1

2 − 80640h′1h′3 − 80640h′1h′5 − 20160h′7h′1 + 60480h′3
2

+ 20160h′3h′5 = 0

p4(x1, x2x3, x4,He) = 4x1 + 4x2 + 4x3 + 4x4 − πh′1 = 0
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troller for a grid-tied, cascade multilevel inverter,” in 2019 IEEE Workshop on Power Electronics
and Power Quality Applications (PEPQA), May 2019, pp. 1–5.

[23] F. L. Luo and H. Ye, “Multilevel DC/AC Inverters,” in Advanced DC/AC Inverters: Aplications
in Renewable Energy. Boca Raton, FL: CRC Press, 2013, ch. 8, pp. 137–154.

[24] P. Jana, S. Chattopadhyay, S. Maiti, P. Bajpai, and C. Chakraborty, “Hybrid Modulation Tech-
nique for Binary Asymmetrical Cascaded Multilevel Inverter for PV Application,” in Interna-
tional Conference on Power Electronics, Drives and Energy Systems (PEDES). Trivandrum.
India: IEEE, 2016, pp. 1–6.

[25] S. Chattopadhyay and C. Chakraborty, “Three-phase hybrid cascaded multilevel inverter using
topological modules with 1:7 ratio of asymmetry,” IEEE Journal of Emerging and Selected Topics
in Power Electronics, vol. 6, no. 4, pp. 2302–2314, Dec 2018.

[26] M. Vivert, D. Patino, and R. Diez, “Modulation strategy and controller for grid-tied trinary
hybrid multilevel inverter,” IEEE Journal of Emerging and Selected Topics in Power Electronics,
pp. 1–1, 2019.

[27] D. P. Miguel Vivert, Rafael Diez, “Multicarrier modulation strategy for a trinary hybrid multilevel
inverter,” in ELECTRIMACS 2017, The International Conference on Modeling and Simulation
of Electric Machines, Converters and Systems, July 2017.

[28] F. L. Liu Yu, “Trinary hybrid 81-level multilevel inverter for motor drive with zero common-mode
voltage,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1014–1021, 2008.

[29] F. L. Luo and H. Ye, “Trinary Hybrid Multilevel Inverters,” in Advanced DC/AC Inverters:
Aplications in Renewable Energy. Boca Raton, FL: CRC Press, 2013, ch. 9, pp. 155–205.

[30] C. Rech, H. Pinheiro, H. A. Griindling, H. L. Hey, and J. R. Pinheiro, “Analysis and Compari-
son of Hybrid Multilevel Voltage Source Inverters,” in Power Electronics Specialists Conference.
Proceedings. IEEE, 2002, pp. 491–496.

[31] S. K. Sahoo and T. Bhattacharya, “Phase-shifted carrier-based synchronized sinusoidal pwm
techniques for a cascaded h-bridge multilevel inverter,” IEEE Transactions on Power Electronics,
vol. 33, no. 1, pp. 513–524, Jan 2018.

[32] Q. Huang and A. Q. Huang, “Feedforward proportional carrier-based pwm for cascaded h-bridge
pv inverter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4,
pp. 2192–2205, Dec 2018.

[33] E. T. Renani, M. F. M. Elias, and N. A. Rahim, “Performance evaluation of multicarrier pwm
methods for cascaded h-bridge multilevel inverter,” in 3rd IET International Conference on Clean
Energy and Technology (CEAT) 2014, Nov 2014, pp. 1–5.

[34] Tengfei Wang and Yongqiang Zhu, “Analysis and comparison of multicarrier pwm schemes applied
in h-bridge cascaded multi-level inverters,” in 2010 5th IEEE Conference on Industrial Electronics
and Applications, June 2010, pp. 1379–1383.

[35] S. Arazm, H. Vahedi, and K. Al-Haddad, “Phase-shift modulation technique for 5-level packed



u-cell (puc5) inverter,” in 2018 IEEE 12th International Conference on Compatibility, Power
Electronics and Power Engineering (CPE-POWERENG 2018), April 2018, pp. 1–6.

[36] R. A. Vargas, A. Figueroa, S. E. Deleon, J. Aguayo, L. Hernandez, and M. A. Rodriguez, “Analysis
of Minimum Modulation for the 9-Level Multilevel Inverter in Asymmetric Structure,” IEEE Latin
America Transactions, vol. 13, no. 9, pp. 2851–2858, 2015.

[37] A. Routray, R. Kumar Singh, and R. Mahanty, “Harmonic minimization in three-phase hybrid
cascaded multilevel inverter using modified particle swarm optimization,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 8, pp. 4407–4417, Aug 2019.

[38] N. Sahu and N. D. Londhe, “Optimization based selective harmonic elimination in multi-level
inverters,” in 2017 National Power Electronics Conference (NPEC), Dec 2017, pp. 325–329.

[39] S. Rao, Engineering Optimization: Theory and Practice: Fourth Edition. John Wiley and Sons,
6 2009.

[40] M. Ahmed, A. Sheir, and M. Orabi, “Real-time solution and implementation of selective harmonic
elimination of seven-level multilevel inverter,” IEEE Journal of Emerging and Selected Topics in
Power Electronics, vol. 5, no. 4, pp. 1700–1709, Dec 2017.

[41] K. Haghdar and H. A. Shayanfar, “Selective harmonic elimination with optimal dc sources in mul-
tilevel inverters using generalized pattern search,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 7, pp. 3124–3131, July 2018.

[42] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Zhong Du, “Elimination of harmonics in a
multilevel converter using the theory of symmetric polynomials and resultants,” IEEE Transac-
tions on Control Systems Technology, vol. 13, no. 2, pp. 216–223, March 2005.

[43] K. Yang, Q. Zhang, R. Yuan, W. Yu, and J. Wang, “Harmonic elimination for multilevel converter
with Groebner bases and symmetric polynomials,” 2015 IEEE Energy Conversion Congress and
Exposition, ECCE 2015, vol. 31, no. 4, pp. 689–694, 2015.

[44] K. Yang, Q. Zhang, J. Zhang, R. Yuan, Q. Guan, W. Yu, and J. Wang, “Unified selective harmonic
elimination for multilevel converters,” IEEE Transactions on Power Electronics, vol. 32, no. 2,
pp. 1579–1590, Feb 2017.

[45] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms. An introduction to computa-
tional algebraic geometry and commutative algebra. 2nd ed, 03 2015.

[46] H. Zhao, T. Jin, S. Wang, and L. Sun, “A real-time selective harmonic elimination based on a
transient-free inner closed-loop control for cascaded multilevel inverters,” IEEE Transactions on
Power Electronics, vol. 31, no. 2, pp. 1000–1014, Feb 2016.

[47] R. Stala, “The switch-mode flying-capacitor dc–dc converters with improved natural balancing,”
IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1369–1382, April 2010.

[48] E. Kolbasi and M. Seker, “Nonlinear robust backstepping control method approach for single
phase inverter,” in International Conference on Methods and Models in Automation and Robotics
(MMAR). Miedzyzdroje, Poland: IEEE, 2016, pp. 954–958.

[49] R.-J. Wai, C.-Y. Lin, H.-N. Huang, and W.-C. Wu, “Design of backstepping control
for high-performance inverter with stand-alone and grid-connected power-supply modes,”
IET Power Electronics, vol. 6, no. 4, pp. 752–762, 2013. [Online]. Available: http:
//digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0579

[50] R.-J. Wai, C.-Y. Lin, Y.-C. Huang, and Y.-R. Chang, “Design of High-Performance
Stand-Alone and Grid-Connected Inverter for Distributed Generation Applications,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1542–1555, 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6290376

[51] M. Vivert, D. Patino, and R. Diez, “Variation of a sliding mode control applied to a trinary hybrid
multilevel inverter,” in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Oct
2017, pp. 1–6.

[52] A. M. Llor and E. Solano, “Direct model-predictive control with variable commutation instant:
Application to a parallel multicell converter,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 8, pp. 5293–5300, Aug 2016.

[53] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, ser. Princeton

http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0579
http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0579
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6290376


Series in Applied Mathematics. Princeton University Press, vol. 1.
[54] F. Lewis, H. Zhang, K. Hengster, and A. Das, Coopertive Control of Multiagent system, 1st ed.,

ser. Communications and Control Engineering. Springer-Verlag London, vol. 1.
[55] F. Zhang, The Schur Complement and its Applications, ser. Numerical Methods and Algorithms.

New York: Springer, 2005, vol. 4.
[56] R. A. Horn and C. R. Johnson, The Hadamard product. Cambridge University Press, 1991, p.

298–381.
[57] R. M. Gray, Toeplitz and circulant matrices: a review. Now Publishers, 2006.
[58] K. Yang, Z. Yuan, R. Yuan, W. Yu, J. Yuan, and J. Wang, “A groebner bases theory-based

method for selective harmonic elimination,” IEEE Transactions on Power Electronics, vol. 30,
no. 12, pp. 6581–6592, Dec 2015.

[59] J. C. Mason and D. C. Handscomb, “Trigonometric definitions and recurrences,” in Chebyshev
polynomials. Boca Raton, FL: Chapman & Hall/Crc, 2003, ch. 1.2.

[60] J. G. Proakis and D. K. Manolakis, Digital Signal Processing (4th Edition), 4th ed. Prentice
Hall, 2006.


	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Research proposal
	1.2 General Objective
	1.3 Specific Objectives

	Chapter 2 Literature Review
	2.1 Topologies of Multicellular Converters
	2.1.1 Cascaded Full Bridge Multilevel Converter
	2.1.2 Flying-Capacitor Multilevel Converter
	2.1.3 Multiphase Buck Converter

	2.2 Modulation Strategies for MCCs
	2.2.1 High-frequency Modulation Strategies
	2.2.2 Low Frequency Modulation Strategies
	2.2.3 Control techniques for Multilevel Converters


	Chapter 3 Decentralized controller for a Multi Cell Converter
	3.1 Model of three Topologies of Multicellular Converters
	3.1.1 Model of the flying-Capacitor Multilevel Converter
	3.1.2 Model of the cascaded Full-Bridge Multilevel Converter
	3.1.3 Model of the Multi-Phase Buck Converter

	3.2 General Model of the studied topologies
	3.3 Design of the decentralized control method
	3.4 Analysis of the Closed-loop
	3.5 Control method applied in the Flying-Capacitor Multilevel Converter
	3.5.1 Modal Analysis of the Balancing Controller
	3.5.2 Results

	3.6 Control method applied in the Cascaded Full-Bridge Multilevel Converter
	3.6.1 Modal Analysis of the balancing Controller
	3.6.2 Results

	3.7 Conclusions of this section

	Chapter 4 Adaptive Selective Harmonic Elimination Strategies for the control of multilevel Inverters
	4.1 Description of the system
	4.1.1 Modeling the system
	4.1.2 Solving the Polynomial equation

	4.2 Analyzing the solutions
	4.2.1 Behavior of the X when h'1 changes 
	4.2.2 Sensitivity of the system
	4.2.3 Behavior of the harmonics with changes in vek 

	4.3 Closing the loop
	4.4 Results
	4.4.1 Insertion of a 200 W load
	4.4.2 Changes in one source

	4.5 Conclusions of the chapter

	Chapter 5 Conclusions
	Appendix A Fourier components of vek
	Appendix B Proof that a product of a graph and a linear combination of a graph and the identity matrix is also a graph
	Appendix C Proof of stability of the control law in the Flying-Capacitor Multilevel Converter with the nonlinear model
	Appendix D Groebner basis conversion of (X)V1
	Bibliography



