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ABSTRACT

As the basis of oceanic food webs and a key component of the biological 
carbon pump, planktonic organisms play major roles in the oceans. 
However, their small-scale distribution − governed by biotic interactions 
between organisms and interactions with the physico-chemical properties 
of the water masses in their immediate environment − are poorly described 
in situ due to the lack of suitable observation tools. New instruments 
performing high resolution imaging in situ in combination with machine 
learning algorithms to process the large amount of collected data now 
allows us to address these scales.

An intelligent segmentation pipeline based on Convolutional Neural 
Networks has been developed to detect planktonic organisms from raw 
images. In comparison to other naive segmentation methods, our pipeline 
had the best compromise between accurate detection of planktonic 
organisms and relatively low pollution from non planktonic objects. In a 
second step, a CNN classifier has been trained to classify plankton images 
into taxonomical or morphological categories, improving classification 
performance compared to classic classifiers but only noticeably on poorly 
represented (a few hundred images) classes, and highlighting the need to 
take into account other metrics than the global accuracy when performing 
classification on unbalanced datasets.

Then, numerical ecology tools have been applied to study plankton 
distribution at different scales. Using a global dataset of 2500 vertical CTD 
profiles equipped with an Underwater Vision Profiler 5 (UVP5), the global 
distribution of large plankton community types was resolved and found to 
be mostly driven by basin-scale environmental conditions. Next, a 5-month 
campaign operating a glider equipped with a UVP6 was conducted across 
the Ligurian front (NW Mediterranean) to understand plankton distribution 
across a mesoscale front during the spring bloom. Data analysis revealed a 
shift in particle abundance and size during the bloom that could be 
explained by changes in the plankton community. Finally, leveraging high 
frequency in situ imaging data, we investigated the fine scale distribution 
and undisturbed position of Rhizaria, a group of understudied, fragile 
mixotrophic protists. We brought to light differences in vertical distribution 
between subgroups, likely underpinned by different life strategies, as well 
as preferential orientation of some organisms, and observations of 
presumptive steps of the poorly known Collodaria life cycle. Overall, these 
studies have revealed the need for further research to understand 
biophysical interactions in plankton and distribution patterns at small 
scales.
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Résumé En tant que base des réseaux trophiques océaniques et
élément clé de la pompe à carbone biologique, les organismes planc-
toniques jouent un rôle majeur dans les océans. Cependant, leur dis-
tribution à petite échelle, régie par les interactions biotiques entre
organismes et les interactions avec les propriétés physico-chimiques
des masses d’eau de leur environnement immédiat, est mal décrite in
situ, en raison du manque d’outils d’observation adaptés. De nouveaux
instruments d’imagerie in situ à haute résolution, combinés à des algo-
rithmes d’apprentissage automatique pour traiter la grande quantité de
données collectées, nous permettent aujourd’hui d’aborder ces échelles.

La première partie de ce travail se concentre sur le développement
méthodologique de deux pipelines automatisés basés sur l’intelligence
artificielle. Ces pipelines ont permis de détecter efficacement les or-
ganismes planctoniques au sein des images brutes, et de les classer
en catégories taxonomiques ou morphologiques. Dans une deuxième
partie, des outils d’écologie numérique ont été appliqués pour étudier
la distribution du plancton à différentes échelles, en utilisant trois jeux
de données d’imagerie in situ. Tout d’abord, nous avons mis en évi-
dence un lien entre les communautés planctoniques et les conditions
environnementales à l’échelle globale. Ensuite, nous avons décrit la
distribution du plancton et des particules à travers un front de méso-
échelle, et mis en évidence des périodes contrastées pendant le bloom
de printemps. Enfin, grâce aux données d’imagerie in situ à haute
fréquence, nous avons étudié la distribution à fine échelle et la position
préférentielle d’organismes appartement au groupe des Rhizaria, des
protistes fragiles et peu étudiés, dont certains sont mixotrophes.

Dans l’ensemble, ce travail démontre l’efficacité de l’imagerie in situ
combinée à des approches d’intelligence artificielle pour comprendre
les interactions biophysiques dans le plancton et les conséquences sur
sa distribution à petite échelle.
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Abstract As the basis of oceanic food webs and a key component
of the biological carbon pump, planktonic organisms play major roles
in the oceans. However, their small-scale distribution – governed
by biotic interactions between organisms and interactions with the
physico-chemical properties of the water masses in their immediate
environment – are poorly described in situ due to the lack of suitable
observation tools. New instruments performing high resolution imag-
ing in situ in combination with machine learning algorithms to process
the large amount of collected data now allows us to address these
scales.

The first part of this work focuses on the methodological develop-
ment of two automated pipelines based on artificial intelligence. These
pipelines allowed to efficiently detect planktonic organisms within raw
images, and classify them into taxonomical or morphological categories.
Then, in a second part, numerical ecology tools have been applied to
study plankton distribution at different scales, using three different in
situ imaging datasets. First, we investigated the link between plankton
community and environmental conditions at the global scale. Then, we
resolved plankton and particle distribution across a mesoscale front,
and highlighted contrasted periods during the spring bloom. Finally,
leveraging high frequency in situ imaging data, we investigated the
fine-scale distribution and preferential position of Rhizaria, a group of
understudied, fragile protists, some of which are mixotrophic.

Overall, these studies demonstrate the effectiveness of in situ imag-
ing combined with artificial intelligence to understand biophysical
interactions in plankton and distribution patterns at small-scale.
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Part I

General introduction

Plankton (from ancient greek πλαγκτός, "drifter") – organ-
isms that live in a large body of water and are unable to
swim against currents.





1
Context and state of the art

This chapter introduces the main notions underpinning this work. Start-
ing with space and time scales in oceanic processes, I then address
plankton ecology and its study methods and describe a few computa-
tional methods to process and analyse large ecological datasets. Finally,
I present the main ecological questions tackled in this work, as well as
the datasets used to attempt to address them.

1.1 Scales in oceanic processes

The 1.3 billion cubic kilometres of water of the world ocean are in The oceans are in
motion at a
variety of scales:

perpetual motion across a large range of spatio-temporal scales (Fig-
ure 1.1), from kilometres to centimetres and from centuries to seconds,
length and time scales being roughly correlated.

1.1.1 Physical processes, from larger to smaller scales

Currents flow throughout all the oceans, they cover great distances and
their combination creates a permanent global-scale circulation some-
times referred to as the “global conveyor belt”. At this scale, the oceans
are put in motion by two processes: a thermohaline circulation and a
wind-driven circulation [328]. Wind-driven currents are typically re-
stricted to the upper layers of the oceans (a few hundred meters), while
interior mixing is driven by gradients of density mediated by changes
in temperature and salinity. Tides also play an important role as a
source of turbulent mixing in conjunction with winds. These currents global circulation,

transport huge amounts of heat, and thus have a major effect on climate,
so that changes in currents are today the best hypothesis to explain the
abrupt changes in climate observed during the Earth’s history [329],
and in a positive feedback loop, the currents could in turn be impacted
by global changes. Likewise, global currents are responsible for large
temperature differences between ocean basins at a given latitude [329].

3
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Figure 1.1: Physical (black) and biological (green) oceanic processes cover large
spatio-temporal scales. From Chai et al. [72].
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Nowadays, large-scale climate variations occur periodically such as
El Niño–Southern Oscillation (ENSO). This phenomenon caused by a
variation in winds and sea surface temperatures in the eastern tropical
Pacific affects climatic conditions across tropical and subtropical zones.

Mesoscale – O(10 - 100 km) – motions mainly consist of eddies and
fronts. Eddies are rotating columns of water, spanning from 10 to
500 km in diameter, over periods of days to months [334]. Mesoscale mesoscale eddies,

eddies can be static when caused by the presence of a fixed obstacle,
or mobile when generated by a baroclinic instability. For example,
growing meanders associated with large currents, such as the Gulf
Stream or the Antarctic Circumpolar Current, end up separating from
the current, generating eddies [256, 267]. As the water mass inside
the eddy is trapped at eddy formation, its properties differ more and
more from the surrounding water as the eddy moves away from its
origin location, which can result in a biological hotspot [92]. Due to the
Coriolis effect, water is pushed away from the centre in cyclonic eddies,
resulting in an upwelling of nutrient-rich, cold water. The opposite
applies to anticyclonic eddies, resulting in a downwelling [267]. Fronts
are zones where two bodies of water with different properties (e.g.
temperature, salinity, turbidity, oxygen) meet [26]. They occur at a fronts,

wide variety of spatial and temporal scales but some of them are
permanent [26]. Frontal zones are often associated with a surface
convergence flow, resulting in an increased diversity and biomass
across all trophic levels. Other zones of important productivity are
coastal upwellings. In such zones, cold and nutrient-rich waters are
brought from the depth to the ocean surface – on a permanent or
seasonal basis – in response to wind-driven offshore displacement of coastal

upwellings,surface water [197]. In addition, coastal upwellings are often associated
with a geostrophic current flowing parallel to the coast, possibly paired
with an upwelling front.

Mesoscale features described above carry a lot a kinetic energy and
significantly impact the global oceanic circulation [209]. However, the
satellite observations do not quite fit the classical geostrophic turbu-
lence theories, and smaller-scale structures have been identified as submesoscale

dynamicsshadow players [209], potentially involved in the global heat bud-
get [389]. Overlooked for a long time due to their short-lived and
spatially restricted nature, submesoscale dynamics – O(1 - 10 km) –
now become better resolved thanks to new observation tools (e.g. floats,
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Figure 1.2: Submesoscale frontal dynamics. The front is represented by the
oblique isopycnals, delimiting cold and salty waters offshore from warm and
fresh waters inshore. A cross-frontal ageostrophic circulation (yellow arrows)
takes place in the direction of flattening the isopycnals. From Lévy, Franks,
and Smith [230].

gliders, high-resolution satellite imagery) [229]. In addition, numerical
models have confirmed their importance for the intensity of the vertical
velocity field [228]. Submesoscale dynamics are commonly associated
with mesoscale fronts (Figure 1.2), where a cross-frontal ageostrophic
circulation can drive vertical displacements of waters.

At slightly smaller scales, internal waves [138] vertically disturb
isopycnals, inducing vertical displacement of waters and organisms
within [139]. Finally, multifaceted and complex microscale motionsand small-scale

motions. occur at even smaller scales – O(1 mm). Their contribution to larger
processes is not fully understood, even though progress has been made
in understanding these turbulent dynamics [281]. As the processes
described above cover 9 to 10 orders of magnitude, multiple observation
tools are required to monitor them (Figure 1.1). In addition, all these
processes affect the life of all ocean inhabitants, from the largest to the
smallest.
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1.1.2 Effects on marine life

The effects are particularly visible on human-exploited resources, such
as fisheries periodically affected by ENSO [2]. Similarly, fronts have
long been targeted by fishermen [297] because they aggregate har-
vestable fish. Top predators including tuna, elephant seals and birds [352] Life is shaped by

physical processes
at all scales,

seem to also exploit mesoscale and submesoscale oceanic features. Such
biological hotspots could result from an enrichment at all trophic lev-
els [304]. Indeed, submesoscale dynamics associated with mesoscale
fronts generate vertical motions affecting the phytoplankton growth
rate by redistributing phytoplankton cells and nutrients [230, 252]. In-
crease in phytoplankton at fronts can propagate to the zooplankton
community [275, 294] and even forage fish [32]. However, we still
lack information regarding submesoscale distribution of intermediate
trophic levels organisms (forage fish, zooplankton) in order to better but submesoscale

processes might be
particularly
critical.

understand how the whole ecosystem is affected by mesoscale and
submesoscale processes [230]. Because they can modulate phytoplank-
ton growth rates and occur at comparable time scales, submesoscale
dynamics are particularly relevant to phytoplankton productivity and
planktonic ecosystems, even though they are restricted in time and
space [230, 252]. The importance of these effects for planktonic organ-
isms is further discussed below at paragraph 1.3.1.

Thus, if all inhabitants of the oceans seem to be affected by these
processes, this is all the more true for those who drift and cannot swim
efficiently against currents and thus cannot choose their habitat.

1.2 Plankton: drifters of the oceans

1.2.1 Plankton diversity

The niche-based definition of plankton encompasses a very large di-
versity of organisms, not only in terms of taxonomy (Figure 1.3) but Plankton is very

diverse both in
size and
taxonomy.

also in terms of size [69, 186] (Figure 1.4). Indeed, plankton ranges
from infra-micrometer virioplankton to meter-long Cnidarians. As
a consequence, various trophic modes exist in the planktonic world.
A typical distinction occurs between autotrophic phytoplankton and
heterotrophic zooplankton, but some planktonic organisms are also
mixotrophic.
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Figure 1.3: Tree of life highlighting the taxonomic diversity of plankton. Plank-
tonic organisms can be found in all major taxonomic groups except land plants.
The animal clade (red) is represented with more details than others. Adapted
from Sardet [349].
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Figure 1.4: Size diversity of plankton. Plankton covers a size range from
0.01 µm to 1 m. Drawings by J. Descamps.

1.2.2 Ecological importance of plankton

Photosynthetic phytoplanktonic organisms are primary producers at
the basis of marine food webs [125], and zooplankton is a major trophic
link between these and higher trophic levels such as fish, marine Planktonic

organisms play
key roles in the
oceans. . .

mammals and birds [413] (Figure 1.5). Phytoplankton is responsible for
about half of the primary production on Earth and captures CO2 from
the atmosphere [131]. The produced organic carbon is then consumed
by zooplankton and partly exported at depth through the biological
carbon pump, making plankton a key link in the biogeochemical carbon
cycle [246].

Planktonic organisms are very sensitive to the environmental condi-
tions they experience in the water masses they are embedded in, and . . . and are good

indicators of
ecosystems’ health.

are thus good indicators of environmental changes [172]. For these
reasons, plankton biomass and diversity were endorsed as essential
oceanic variables [273, 284], essential biodiversity variables [312] and
essential climate variables [44].

1.2.3 Global patterns of plankton distribution

Because of their sensibility to their environment, their distribution and Large-scale
patterns of
plankton
distribution are
well known. . .

diversity are largely driven by environmental conditions, including
temperature, oxygen, nutrients and light [172]. As these conditions
vary greatly with latitude, the distribution of planktonic organisms



10 Context and state of the art

Figure 1.5: Planktonic organisms play key roles in oceanic ecosystems. Source:
National Data Science Bowl.
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is also related to latitude: diversity is larger in warm and nutrient-
poor environments located at low latitudes [188, 340, 345, 399], while
biomass is higher in nutrient-rich high latitudes environments [190].

Thus, while large-scale distribution patterns of plankton are resolved
to a certain extent, much remains to be known regarding fine-scale
distribution, especially for zooplankton. Knowledge gaps regarding . . . but gaps persist

in fine-scale
distribution
knowledge.

the fine-scale distribution of plankton partly stems from the difficulty
to adequately sample it at such a small scale. Indeed, traditional plank-
ton collection methods such as pumps, nets, and bottles (Figure 1.6)
lack spatio-temporal resolution as they typically integrate organisms
over some vertical and/or horizontal distance and make it difficult to
associate organism concentrations with their immediate environmental
context [30, 243, 330]. Finally, resolving fine-scale distribution associ-
ated to small and short-lived spatial features requires fast and repeated
sampling of these features. Such an approach would be costly, generate
a lot of data and thus pose challenges for data analysis.

(A) (B)

Figure 1.6: Traditional plankton sampling tools. (A) Niskin bottles fixed on a
rosette, (B) plankton net deployed from a ship.
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1.3 Distribution of plankton at fine-scale

1.3.1 Why should we study plankton distribution at submesoscale?

Submesoscale dynamics are known to influence the distribution of
phytoplanktonic organisms: vertical currents may affect nutrients andRelevant processes

to explain
plankton

distribution take
place at fine-scale.

cell distribution relative to the euphotic zone where photosynthesis
occurs, thus affecting growth rates, while horizontal currents can stir
patches into filaments. These changes are expected to propagate to
higher trophic levels (zooplankton, fish, etc.) [230]. Indeed, the trophic
and reproductive interactions of zooplankton occur at the scale of or-
ganisms (µm to cm). Therefore, a local concentration of phytoplankton,
in a thin layer for example, has more immediate consequences on the
survival and development of zooplanktonic grazers than the average
chlorophyll a concentration in the region. Thus, studying zooplankton
distribution at fine-scales, in relation with submesoscale dynamics, be-
comes relevant to understanding the processes driving its distribution
at regional scale.

1.3.2 How to study plankton distribution at submesoscale?

As explained above, traditional plankton tools are not adapted to
resolve fine-scale distribution. In addition, most of them damage fragile
organisms and then fail to adequately estimate their abundance [330].
The development of in situ imaging tools partially overcame some ofIn situ imaging

enables fine-scale
studies. . .

these limitations: not only they can resolve the exact in situ position
of organisms and can sample the environmental conditions in the
immediate vicinity of organisms, but they also allow investigating
fragile planktonic objects such as Rhizaria [42, 104], gelatinous plankton
(e.g. Cnidaria, Ctenophora) [250] or even marine snow particles [161,
162, 401].

Diverse in situ imagers were developed over time, with varying spec-
ifications (Figure 1.7) (see [243] for a detailed list). Some of them – the
Imaging FlowCytoBot (IFCB) [298] and the Underwater Vision Profiler
6 (UVP6) [318] – can be deployed on fixed, long-term moorings. Others. . . thanks to a

wide range of
instruments.

such as the In Situ Ichthyoplankton Imaging System (ISIIS) [85] and the
Video Plankton Recorder (VPR) [95] perform a sawtooth-like profile
while being towed by a ship (i.e. a “tow-yo” pattern). The UVP5 [317],
the UVP6 [318] and the Lightframe On-sight Keyspecies Investigation
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(LOKI) [359] can also be deployed from a ship, along vertical profiles.
Finally, recent advances have been made towards the integration of
in situ cameras on remotely operated or autonomous vehicles (glid-
ers, floats. . . ). This concerns the Zooglider [293] or the UVP6. Taken
together, they cover a substantial part of the planktonic size range
(Figure 1.8) and allow us to consider many sampling strategies.

The high spatio-temporal resolution data generated by these instru-
ments enables tackling questions that used to be out of reach. Indeed,
in situ imaging can resolve fine-scale plankton distribution in relation
to environmental conditions: McClatchie et al. [265] detected increased
primary and secondary production in a frontal zone in the Southern
California Bight, Greer et al. [154] and Briseño-Avena et al. [59] ob-
served contrasted distribution patterns of planktonic organisms on both
sides of frontal zones at George Bank (NE Atlantic) and in the Central
Oregon Coast respectively. Luo et al. [248] investigated the distribution
of gelatinous plankton across a front in the Southern California Bight
and reported low effect of the front. Similarly, in situ imaging data col-
lected across the Ligurian Front (NW Mediterranean) revealed plankton
distributions constrained by the front [124]. Furthermore, Christiansen
et al. [77] reported the abundance of a polychaete annelid in a mesoscale
eddy in the tropical Atlantic Ocean, in association with very low parti-
cle concentrations. In situ imaging also revealed a variation of patch They provide

insight on
ecological
questions that
could not be
resolved from nets
or bottles. . .

properties (frequency, density, size) across planktonic groups and water
masses [337]. In addition, most detected patches were small (10 - 30 m),
highlighting the necessity of high resolution imaging to detect such
features. Several studies tackled interactions between zooplankton
and phytoplankton thin layers: Greer et al. [156] demonstrated that
copepods and appendicularians had contrasted distributions in rela-
tion with a phytoplankton thin layer, while ctenophores aggregated
inside the layer. Similarly, doliolids and copepods were found to be
distributed differently with respect to a phytoplankton thin layer [153].
In the Arctic, Schmid and Fortier [355] detected dissimilar distributions
of two copepod species around a subsurface chlorophyll maximum.
Moreover, larval fish interactions with their preys or predators were
shown to be affected by physical features such as an eddy front [354],
tidal plumes [395] or internal waves [155]. Finally, interactions (compe-
tition, parasitism, predation, commensalism) were reported directly in
in situ images [152].
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(A) (B)

(C)

(D)

Figure 1.7: Examples of in situ plankton imaging instruments. (A) Underwater
Vision Profiler (UVP5) mounted on a rosette, (B) UVP6 deployed on its own,
(C) UVP6 mounted on a glider, (D) In Situ Ichthyoplankton Imaging System
(ISIIS).
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Figure 1.8: Size range in Equivalent Spherical Diameter (ESD) covered by
common plankton imaging instruments. Dashed lines represent the total oper-
ational size range from commercial information while the red line represents
the practical size range which is efficient to obtain quantitative information.
Blue arrows indicate in situ imagers. From Lombard et al. [243].
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In addition, some of these cameras (e.g. ISIIS, VPR, UVP, zooglider)
can capture images of planktonic organisms without disturbance, thus
potentially revealing in situ position, behaviour or interactions with
other organisms [299]. Indeed, multiple studies reported the feeding. . . and even shed

light on plankton
behaviour.

behaviour of copepods [276, 291, 293]. Similarly, preferential orienta-
tion [140] and apparent feeding behaviour [258] were also detected in
Rhizaria (unicellular Eukaryotes). Beyond behaviour, individual traits
(e.g. size, opacity, apparent activity) can also be captured from in situ
imaging: Vilgrain et al. [409] reported contrasted size and activity pat-
terns around an Arctic ice melt zone; Sonnet et al. [370] recorded both
seasonal and inter-annual variations in phytoplankton morphology
from a 2 years time series of IFCB data collected in Narragansett Bay
(NW Atlantic). Yet, trait investigations are not limited to planktonic
organisms and revealed morphology changes in marine snow particles
during the phytoplankton bloom [401].

Although in situ imagers typically sample smaller volumes than
nets [243] (with the exception of the ISIIS, generally > 100 L s-1), theirFace the data flood.

increasing number and ease of use generate an increasing volume of
data, resulting in a data processing bottleneck [253]. For example, a
UVP images about 1.5 million objects per year (~8.6 billion pixels per
year), while an hour of ISIIS deployment generates 100 billion pixels
(~11 million objects) [192]. To efficiently process such a large amount
of data, ecologists must now turn to computational methods.

1.4 Numerical plankton ecology

Numerical ecology comprises the development and application of
statistical methods and tools to describe and interpret datasets in order
to answer ecological questions [226]. With the perpetual development of
new means of observation (e.g. satellites, imagery, genomics) leading toNumerical

ecology: the
application of

computational
methods to answer

ecological
questions.

an even increasing amount of observational data, these approaches are
becoming more and more relevant [315]. Indeed, gaining knowledge
from observational data is very different from analysing experimental
data: observational data requires a thorough exploration and analyses
before conclusions can be drawn. One main difference compared to
experimental science is that neither the analyses to be conducted nor the
nature of the results are necessarily known in advance. Actually, in this
era of Big Data, data-driven science could even constitute a new science
paradigm based on large datasets and statistical exploration [179, 208].
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Figure 1.9: Overview of artificial intelligence and related fields: machine
learning, deep learning and data mining.

As computing power becomes more and more accessible, new methods
are developed and computational ecology becomes even more cost-
and time-effective [323]. Despite this progress, data processing and
analysis rates remain superseded by the rate of data acquisition [253].

Numerical ecology encompasses a wide variety of methods (e.g. mod-
eling, machine learning, deep learning), some of which are described
below and their relations presented in Figure 1.9.

1.4.1 Methods

1.4.1.1 Data mining

Data mining consists of extracting fundamental insights and knowl-
edge from large amounts of data [54, 424]. It relies on various fields,
including database systems, statistics, machine learning (addressed
hereafter) and pattern recognition. Data mining is just a step in the Data mining:

finding knowledge
in a flood of data.

larger data analysis process: it is typically preceded by a pre-processing
phase including data extraction and cleaning, and eventually data fu-
sion, reduction and features construction. Data mining is then followed
by post-processing steps such as visualisation, pattern and model in-
terpretation, and finally hypothesis confirmation or refutation [424].
This process is highly iterative and interactive, taking the form of a
succession of trial and error. In the field of plankton research, data min-
ing approaches such as ordination methods were used to investigate
morphological traits of copepods [409] and marine snow particles [401].



18 Context and state of the art

1.4.1.2 Artificial intelligence

Artificial Intelligence (AI) is intelligence – such as perceiving, synthe-
sizing, and inferring information – demonstrated by machines. TheAI: intelligence

demonstrated by
machines.

first AI challenge was to establish an appropriate definition to evaluate
the intelligence of a machine. In 1950, Turing introduced a test in
order to evaluate whether a machine was able to exhibit intelligent
behaviour [403], establishing a base concept of AI. The term “artificial
intelligence” as a scientific field was coined a few years later at the
Dartmouth workshop [264]. After a period of optimism supported byEarly stages of AI

took place in the
50s, but the theory

could not be
applied because of

computational
constraints.

limited success – only trivial problems could be solved – AI was heav-
ily criticized, funds were cut and the entire field was put aside [344].
Indeed, expectations had been set too high and the difficulties had
been underestimated. At the time, the main obstacles were the limited
computer power, as well as the lack of large databases. AI was reborn
only in the 90s, thanks to technological unlocking, opening the way to
new approaches. Nowadays, AI is omnipresent in our everyday life,
from our phones to hoovers.

1.4.1.3 Machine learning

Within AI, Machine Learning (ML) algorithms identify patterns in
training data and eventually predict outcomes for new data. Here, theML finds patterns

by itself in deluges
of data.

algorithm has the ability to learn without being explicitly programmed
for, by finding generalizable patterns. Many types of models can be
used in ML: from the simple linear regression to more elaborated
models such as support vector machines (SVM) [81] or random forests
(RF) [169] to name only the most famous.

Many applications of ML to plankton ecology have been identi-
fied [192]. ML regression models such as Boosted Regression Trees
(BRT) or RF are widely used in species distribution models, which con-
sist of relating the distribution of a taxonomic group to environmental
or geographical data [116]. Such models can be used to estimate the
continuous distribution of organisms from discrete sampling: Pinker-
ton et al. [320] and Pinkerton et al. [321] respectively estimated thePlankton ecology

already benefits
from ML,. . .

distribution of Oithona and of six planktonic groups in the Southern
Ocean. These models also allow to understand the drivers of such dis-
tribution, by identifying the most contributing variables in the model.
Indeed, current speed and direction were identified as main drivers of
Oithona and larval fish distribution in the Straits of Florida [354]; while
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temperature and light explained most of picophytoplankton abundance
in the South China Sea [74]. In the Southern California Bight, Luo
et al. [248] linked gelatinous zooplankton abundances to environmental
conditions and found that drivers were taxon-specific. Yet, predictions
are not limited to abundances: Leathwick et al. [221] linked species
richness to the environment in the SW Pacific and identified depth as
the main driving variable. Similarly, Drago et al. [111] predicted the
global plankton biomass from ~2,500 UVP5 profiles.

In addition, ML can significantly improve the speed of image data
processing, e.g. for the identification of planktonic organisms from
images [192] (Figure 1.10). Indeed, ML models are widely used to au- . . . and ML is very

useful to accelerate
data processing.

tomatically classify images of planktonic organisms, including Support
Vector Machines (SVM) [185, 250, 372] or RF [149]. However, these
classic ML models cannot process raw images, either for learning or
prediction. Instead, features describing image properties (size, gray
levels. . . ) have to be manually extracted before being fed to the model
in the form of a vector of numbers. Of course, the quality and number
of these features will strongly impact model performance, highlighting
the importance of data pre-processing. Nowadays, ML algorithms
are widely used because they are easy to use, flexible and not too
demanding in terms of computational power, which is a very desirable
property for models running in energy constrained environments such
as the embedded classification model integrated into UVP6 sensors [78].
However, classic ML classification algorithms are now outperformed
by more recent and more complex models.

1.4.1.4 Deep Learning

Deep Learning (DL) is a subset of ML based on artificial neural net-
works (ANN) with multiple layers: multilayer perceptrons (MLP) [309]. DL is ML using

neural networks
with multiple
layers.

The term “deep” refers to the hidden layers. While the theory was de-
veloped in the 50s [341], the first application dates back from 1971 [193].

The architecture of ANN was inspired by the functioning of the
animal brain, in which neurons are the base units, connected together
through synaptic connections. Hence, the base unit of a MLP is the
neuron. Similarly to biological neurons, each neuron receives inputs
and transmits outputs depending on the inputs received (Figure 1.11)
as well as the activation function. Neurons are then combined together
in layers, every neuron of one layer is connected to all the neurons
of the adjacent layers by weights, determining the strength of the
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Figure 1.10: Machine learning applications for plankton images classification.
(1) use of the features without classification (2) manual classification (no ML),
(3) manual validation after machine classification, (4) machine classification
without human validation. From Irisson et al. [192].
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connection. The first layer corresponds the input layer, i.e. data to be
fed to the model. Then come the hidden layers, whose number and Many neurons

connected together
form a network.

size can be changed as desired: the more layers and neurons, the more
complex the model. This likely results in better performance but also
requires more data to ensure an efficient training. Finally, the last layer
corresponds to the output of the model, which can be a single value
in case of a regression, or a vector in the case of classification (the
length of the vector being equal to the number of classes among which
to distinguish). Although longer to train than classical ML models,
DL models are particularly appropriate to process large amounts of
unstructured data (e.g. images, text, audio. . . ).

MLP are very versatile and were applied to various tasks in plankton
ecology: Sauzède et al. [351] were able to retrieve the vertical distri-
bution of phytoplankton class sizes from in situ vertical profiles of DL has various

applications in
plankton ecology.

chlorophyll fluorescence. MLP were also applied to plankton image
classification tasks after extracting hand-crafted features [89, 119, 367,
416]. However, contrary to classic ML models, MLP can use the raw
images as inputs. Below is a brief example of application.

Let us place ourselves in the case of the application of a MLP to
tackle the recognition of hand-written digits (0-9) on 28×28 pixels
images of the MNIST dataset [102], widely used to benchmark image
classifiers. Because the MLP takes vectors as inputs and not arrays, the
28×28 image must first be flattened into a 784 element long vector. By DL models can

process raw
images.

adding two hidden layers of size 600, and an output layer on size 10
(number of digit classes), the number of parameters reaches 837,610
(784 × 600 + 600 × 600 + 600 × 10 weights and 600 + 600 + 10 biases).
Such a model is easily trained on a relatively recent personal computer.
However, a 28×28 image is ridiculously small compared to today’s
images. If using the same model as previously on a 400×400 image
(still small compared to typical images), the input layer would be
160,000 long, for ~96 million parameters. Here we reach the limits of
what is possible with a MLP, but more recent architectures now allow
to deal with this kind of input.

Convolutional Neural Networks Convolutional Neural Networks
(CNN) are a specific type of artificial NN, mostly used in pattern recog- CNN: a problem

shared is a
problem halved.

nition tasks (e.g. image classification). The architecture of a CNN is
inspired from the animal visual cortex: each neuron responds to stimuli
from a restricted region of the image and the number of parameters
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(A)

(B)

Figure 1.11: Architecture of a deep neural network. (A) Schematic representa-
tion of a biological neuron. (B) A multilayer perceptron with two hidden layers:
the circles represent neurons and gray lines are the connections between the
output of one neuron to the input of another (i.e. weights). This model takes
vectors of three values as input and outputs a vector of size two. 36 weights
(3×4 + 4×4 + 4×2) are represented by the gray lines, but each neuron receiving
inputs has it owns bias, adding 10 parameters to the network, for a total of 46
parameters.
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Figure 1.12: Schematic representation of a CNN performing plankton image
classification. Conv = convolutional layer, Pool = pooling layer, Fully con-
nect. = fully connected layer, Classif. = classification layer. For visualisation
purposes, only a few connections are represented. Credits: JO Irisson.

is drastically reduced by taking advantage of spatial autocorrelations
in images and applying given filters to all receptive fields. The typical
architecture of a CNN consists of two main parts (Figure 1.12). The
first part – also referred as the feature extractor – consists of a set of
convolutional layers and pooling layers. As its name suggests, this part The combination

of a feature
extractor and a
classifier.

extracts relevant features from the image and stores them in a vector.
The second part consists of fully connected layers, i.e. a MLP. Finally,
the output layer corresponds to the classification or regression output.
A great advantage of CNNs is that there is no need to manually extract
features anymore: the model itself finds the most appropriate features
to distinguish between the classes.

While the first application of a CNN to image recognition dates back
to 1989 [220] (on handwritten digits), they became very popular after The current state

of the art for image
analysis tasks. . .

the first and significant success of a CNN at the 2012 ImageNet Large
Scale Visual Recognition Challenge [213, 343]. CNNs have now become
the state of the art method for image classification [222], but they could
soon be superseded by transformers [408].

Hence, CNNs can improve data processing in plankton ecology, and
were used in numerous studies to sort plankton images [59, 77, 93, 118,
124, 224, 247, 249, 327, 337, 354, 395], but CNN applications go beyond
simple classification. Indeed, a wide variety of tasks exist in computer
vision and can be applied to plankton imaging (Figure 1.13). Among
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(A) (B)

(C) (D)

Figure 1.13: Different detection and segmentation tasks achievable by CNNs
on a plankton image from the ISIIS. (A) raw input, (B) object detection, (C)
semantic segmentation, (D) instance segmentation. In (C) and (D), the back-
ground was intentionally left blank although it constitutes a class on its own.
Four plankton classes are represented: Scyphozoa ephyra (Cnidaria) in yel-
low, Acantharia (Rhizaria) in brown, Doliolida in blue and Rhopalonematidae
(Cnidaria) in green.

the most common, object detection consists in detecting instances of
objects of a certain class (Figure 1.13B), while image segmentation
consists in delimiting regions by assigning each pixel of an image
to a class (e.g. background vs. object). In semantic segmentation,. . . and many

possible
applications for

plankton imaging.

every pixel of the same class belongs to the same region (Figure 1.13C),
whereas instance segmentation detects distinct instances of the same
class (Figure 1.13D). These approaches are rather novative in plankton
images processes, and only a few studies targeted the topic [75, 199,
232, 299] Nonetheless, object detection and/or segmentation methods
are already widely used in fish ecology [8, 109, 277].

Thus, these computational approaches now enable to process large,
complex datasets, but this progress would not have been possible
without the evolution of computational tools.
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Figure 1.14: Progress in computational power over the last 30 years. Note that
the y axis is log-transformed. GPU: graphical processing unit. Source: Nvidia.

1.4.2 Tools

1.4.2.1 Computational power

According to Moore’s law [278], computational power doubles approx-
imately every two years while the cost of computers is halved in the
same time. Since the 1970s, the power of computers has doubled every Computational

power: to infinity
and beyond?

year or every year and a half: today’s computers are millions of times
more powerful than their ancestors of 50 years ago. While the trend
continues (Figure 1.14), the development of Graphic Processing Units
(GPU) – and more recently of Tensor Processing Units (TPU) – was
particularly important for the success of CNNs [73]. Indeed, CNNs
rely on a lot of simple unitary computations that can easily be run in
parallel, a task for which GPUs are particularly adapted.

1.4.2.2 Large, public available datasets

The success of DL also relies on the availability of large datasets of
several million annotated images such as ImageNet [101], Coco [238] No data, no

knowledge. . .or Pascal VOC [122]. These large datasets enable training complex
models, but are also used to benchmark model performance [343]. The
availability of such datasets is the sine qua none condition for the appli-
cation of deep learning to a given field. In plankton imaging, only three . . . including for

plankton.datasets were publicly released so far (Table 1.1) and used in several
studies. Thus, although we still lack systematic comparison for ML ap-
plication to plankton ecology [192], the move towards standardization
and intercomparison is ongoing.
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Table 1.1: Plankton images benchmark datasets.

Name References Imaging instrument Composition
Images Classes

WHOI-plankton [301, 373] IFCB 3.5 M 103
ZooScanNet [115] ZooScan 1.4 M 93
PlanktonSet 1.0 [86] ISIIS 30,336 121

1.4.2.3 Open source libraries

Beyond computational power and data, the third pillar of DL is the
availability of open source turnkey libraries such as Tensorflow [1],DL made as easy

as assembling
bricks.

Pytorch [308] or ScikitLearn [310]. These libraries allow to design and
to train conventional or custom ML/DL models, and also enable data
preprocessing, visualisation and model evaluation.

1.4.2.4 A fast evolving field

DL is an actively developing field, with new and more powerful tools
constantly released. To provide some context, one of the tools at
the core of this work was not released yet when the PhD started inTools are evolving

very quickly. September 2019. When it was published in February 2020, our then
3-year-old computation server (12 (24 logical) CPU cores, 126 GB of
RAM, Tesla K20 GPU) was outdated to run it. Computations were
partly performed on a new computation server (36 (72 logical) CPU
cores, 192 GB of RAM, Ampere Quadro RTX8000 GPU), as well as on
the Jean-Zay supercomputer (Figure 1.15) and a computation server
belonging to the Roscoff Bioinformatics platform ABiMS.

1.5 Aim of this work

1.5.1 Ecological questions

By focusing on plankton distribution across a large range of scales,
from the global to the submesoscale, this work aims to advance ourInvestigating the

drivers of plankton
distribution from

global to
submesoscale. . .

knowledge mostly of the drivers of plankton distribution. (i) First,
I investigate the large types of plankton communities in the open
ocean, as well as their difference between the epipelagic and upper-
mesopelagic layers, and their relation with environmental factors. (ii)
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Figure 1.15: The Jean-Zay supercomputer. A substantial part of computa-
tions performed in the context of this work were run on this computer. ©
Photothèque CNRS / Cyril Frésillon.

Then, I explore how plankton and particles distribution vary during
the spring bloom across a mesoscale front, and how these variations
relate to changes in the environment. (iii) Finally, at submesoscale, I . . . using three

different datasets.strive to link plankton distribution to local conditions and to assess
biological interactions between planktonic organisms, including taxa
co-occurences as well as prey-predator relationships. To answer these
questions, I leverage in situ plankton imaging data from three datasets,
at three different scales.

1.5.2 Datasets

1.5.2.1 The global UVP5 dataset

This global dataset encompasses oceanographic campaigns that de-
ployed the UVP5 on vertical profiles down to 6000 m, in combination
with environmental sensors (temperature, salinity, oxygen, and fluo-
rescence). This dataset was recently published [205], but only focusing
on particles. In this work I used a slightly modified version containing A worldwide,

global dataset.2517 profiles, performed between 2008 and 2019 and spanning the
world ocean. A total of 6.8 million objects were imaged with the UVP5
during these profiles, of which 330,000 were identified as planktonic
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Table 1.2: Size of the VISUFRONT dataset.

Transects
Along-current Cross-current Lagrangian Total

Duration (H:m:s) 16:29:33 51:26:10 22:26:54 90:22:37
Image length (×109 px) 1.7 5.2 2.3 9.1
Image length (km)* 8.5 26.4 11.5 46.5
Flattened image length (×1012 px)** 3.4 10.6 4.6 18.7
Flattened image length (×103 km) 17.4 54.2 23.6 95.2†

Observed volume (m3) 6,412.3 19,998.4 8,728.9 35,138.6‡

Storage size (TB) 2.5 9.2 4.1 15.8
*Given that 1 px = 51 µm.

**This is also the total number of pixels.
†This corresponds to one fourth of the lunar distance.
‡This represents the volume of water contained in about 14 Olympic-size swimming
pools.

organisms. This data allowed us to resolve the global typology of
zooplankton communities in the upper 500 m of the ocean (i).

1.5.2.2 The VISUFRONT dataset

At a much restricted scale, the VISUFRONT campaign took place
during one week in July 2013 and targeted the Ligurian front (NW
Mediterranean Sea). Sampling consisted of transects across and along
the front, as well as “Lagrangian” transects following a water mass.
This campaign made use of the ISIIS, a high resolution in situ imaging
instrument with a very high sampling rate (> 100 L s-1), originally
designed to image fish larvae, but even more effective to image other
kinds of plankton. The dataset was partially analysed in a previousA fine-scale,

summer snapshot
dataset.

PhD thesis [123] (2012-2015) focusing on fish larvae, but tools were not
powerful enough to unlock its huge potential. Developing such tools
constituted a substantial part of this PhD (presented in Part ii), and al-
lowed a thorough exploitation of the very large and dense VISUFRONT
dataset (Table 1.2). Data analysis revealed the fine-scale distribution
as well as in situ behaviour of Rhizaria (iii). However, this dataset
only presents a summer snapshot of plankton distribution, without any
insight regarding the temporal aspects.
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1.5.2.3 The glider + UVP6 dataset

To fill the gap between the global and fine-scale dataset, a third, in-
termediate dataset was collected. Indeed, with the aim to capture
temporal dynamics of plankton and particles distribution across the
Ligurian front during the spring bloom (ii), we conducted a 5-month An intermediate

dataset, both in
time and space.

campaign involving a SeaExplorer glider equipped with a UVP6, for
a sampling rate between 0.35 and 0.9 L s-1. The campaign took place
between January 28th and June 28th, and consisted of repeated tran-
sects across the front. Ten missions were conducted, each mission (12
to 14 days) consisting of two round trips each, separated by a few days
dedicated to maintenance but also dictated by weather conditions for
deployment. During these 5 months, the glider performed more than
5,000 profiles, for a total of 1,123,123 images captured by the UVP6.

However, data science tools to thoroughly analyse the VISUFRONT
dataset were not available yet and had to be developed. These method-
ological developments constituted a substantial part of this work.

1.5.3 Methodological developments

To make the most of the very large VISUFRONT dataset, it was first
required to be able to detect and identify planktonic organisms from
images. The optical properties that give the ISIIS its qualities as a
plankton imager also tend to complicate data processing: huge amounts
of images are collected, with a constantly changing background. This
prevents both human-based detection of organisms – except at the cost Analysing these

datasets required
methodological
developments in
data science.

of a severe subsampling – and the application of a classic threshold
detecting dark objects on a white background. Thus, a pipeline was
developed to tackle this challenging detection task and allowed us to
extract several millions of planktonic organisms from the raw ISIIS
images. However, these millions of objects then had to be sorted
into taxonomic or morphological classes, a daunting task which once
again cannot be completed by a human being. Hence, a classification
model had to be trained to recognise between plankton classes and sort
collected images.



30 Context and state of the art

1.5.4 Work structure

This work is divided into four main parts: this introduction, method-
ological developments, ecological results and discussion of our findings
in regards to existing knowledge. Part ii addresses the implementation
of an AI-based two steps pipeline to process the huge amount of data
collected during the VISUFRONT campaign. Chapter 2 tackles the
detection of planktonic organisms in raw ISIIS images and Chapter 3
presents a comparison of plankton image classifiers, including the
classifier that was used to sort planktonic organisms detected in ISIIS
images. Part iii covers ecological results that emerged from this work,
from the largest to the smallest scale. Chapter 4 focuses on the world-
wide distribution of plankton community types. Chapter 5 describes
the spring dynamics of plankton and particles across a mesoscale front.
Chapter 6 highlights the very fine-scale distribution and behaviour of
planktonic organisms. Finally, Part iv is dedicated to the discussion of
our results, both methodological and ecological.



Part II

Artificial intelligence for ISIIS data processing

This section discusses the processing of ISIIS imagery data.
Segmentation, i.e. the detection of planktonic organisms
in the raw images, is the first step of this fully automated
processing. The second step consists of the taxonomic iden-
tification of the previously detected planktonic organisms,
using a classification model. The methods are described in
the two papers included in this chapter.





2
Content-aware segmentation of
objects spanning a large size
range: application to plankton
images

This chapter tackles the detection of planktonic organisms in images
captured by the ISIIS during the VISUFRONT campaign. This task, far
from being trivial, due to the imaging properties of the ISIIS, required
the development of apeep1, an ISIIS-specific and intelligent segmenta-
tion pipeline. In this paper, we describe this pipeline and perform a
comparison with two other segmentation methods. Overall, although
our pipeline was not the fastest and required quite a heavy set-up, it
achieved the best compromise between accurate detection of planktonic
organisms and relatively low pollution from non planktonic objects.
The segmentation of the whole VISUFRONT data required ~2600 hours
of computation on GPU and was achieved thanks to the deployment
of apeep on three supercomputers. Indeed, besides the computation
server available at the LOV, computing resources were provided by the
IDRIS on the Jean-Zay supercomputer and by the Roscoff Bioinformat-
ics platform ABiMS. In the end, a total of ~160 million objects were
detected by the segmentation pipeline.

Thelma Panaïotis, Louis Caray–Counil, Ben Woodward, Moritz S
Schmid, Dominic Daprano, Sheng Tse Tsai, Chris Sullivan, Robert
K Cowen and Jean-Olivier Irisson
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Abstract

As the basis of oceanic food webs and a key component of the bio-
logical carbon pump, planktonic organisms play major roles in the
oceans. Their study benefited from the development of in situ imaging
instruments, which provide higher spatio-temporal resolution than
previous tools. But these instruments collect huge quantities of images,
the vast majority of which are of marine snow particles or imaging
artefacts. Among them, the In Situ Ichthyoplankton Imaging System
(ISIIS) samples the largest water volumes (> 100 L s-1) and thus pro-
duces particularly large datasets. To extract manageable amounts of
ecological information from in situ images, we propose to focus on
planktonic organisms early in the data processing pipeline: at the
segmentation stage. We compared three segmentation methods, partic-
ularly for smaller targets, in which plankton represents less than 1%
of the objects: (i) a traditional thresholding over the background, (ii)
an object detector based on maximally stable extremal regions (MSER),
and (iii) a content-aware object detector, based on a Convolutional
Neural Network (CNN). These methods were assessed on a subset of
ISIIS data collected in the Mediterranean Sea, from which a ground
truth dataset of > 3,000 manually delineated organisms is extracted.
The naive thresholding method captured 97.3% of those but produced
~340,000 segments, 99.1% of which were therefore not plankton (i.e.
recall = 97.3%, precision = 0.9%). Combining thresholding with a CNN
missed a few more planktonic organisms (recall = 91.8%) but the num-
ber of segments decreased 18-fold (precision increased to 16.3%). The
MSER detector produced four times fewer segments than thresholding
(precision = 3.5%), missed more organisms (recall = 85.4%), but was
considerably faster. Because naive thresholding produces ~525,000
objects from 1 minute of ISIIS deployment, the more advanced seg-
mentation methods significantly improve ISIIS data handling and ease
the subsequent taxonomic classification of segmented objects. The cost
in terms of recall is limited, particularly for the CNN object detector.
These approaches are now standard in computer vision and could be
applicable to other plankton imaging devices, the majority of which
pose a data management problem.

https://doi.org/10.3389/fmars.2022.870005
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Résumé

En tant que base des réseaux trophiques océaniques et élément clé de
la pompe à carbone biologique, les organismes planctoniques jouent un
rôle majeur dans les océans. Leur étude a fortement bénéficié du déve-
loppement d’instruments d’imagerie in situ, qui offrent une résolution
spatio-temporelle plus élevée que les outils précédents. Néanmoins, ces
instruments collectent d’énormes quantités d’images, dont la grande
majorité sont des images de particules de neige marine ou des artefacts
d’imagerie. Parmi eux, l’In Situ Ichthyoplankton Imaging System (ISIIS)
échantillonne possède le plus grand taux d’échantillonnage (> 100 L s-1)
et génère donc de très grandes quantités de données. Pour extraire
des quantités raisonnables d’informations écologiques à partir de ces
images in situ, nous proposons de nous concentrer sur les organismes
planctoniques dès le début du processus de traitement des données,
c’est-à-dire à l’étape de la segmentation. Nous avons comparé trois
méthodes de segmentation, en nous focalisant sur les cibles les plus
petites, pour lesquelles le plancton représente moins de 1% des objets :
(i) un seuillage naïf d’image, (ii) un détecteur d’objets basé sur les
régions extrémales maximalement stables (maximally stable extremal
regions, MSER), et (iii) un détecteur d’objets sensible au contenu, basé
sur des réseaux de neurones à convolutions (convolutional neural net
ork, CNN). Ces méthodes ont été évaluées sur un sous-ensemble de
données ISIIS collectées dans la mer Méditerranée, dont est extrait un
ensemble de données de vérité terrain de plus de 3 000 organismes ma-
nuellement détourés. La méthode naïve de seuillage a détecté 97,3% de
ces organismes, mais a produit environ 340 000 segments, dont 99,1%
n’étaient donc pas du plancton (rappel = 97,3%, précision = 0,9%).
En combinant le seuillage avec un CNN, quelques organismes planc-
toniques supplémentaires ont été manqués (rappel = 91,8%) mais le
nombre de segments a été divisé par 18 (la précision passant à 16,3%).
Le détecteur MSER a produit quatre fois moins de segments que le
seuillage (précision = 3,5%) mais a manqué plus d’organismes (rap-
pel = 85,4%), en étant toutefois considérablement plus rapide. Étant
donné que le seuillage naïf produit ~525 000 objets à partir d’une mi-
nute de déploiement ISIIS, les méthodes de segmentation intelligentes
améliorent considérablement le traitement des données ISIIS et faci-
litent la future classification taxonomique objets segmentés, pour un
coût limité en termes de rappel, en particulier pour la méthode CNN.
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Ces approches sont désormais standard en vision par ordinateur et
pourraient être applicables à d’autres dispositifs d’imagerie du planc-
ton, dont la majorité partagent un problème de gestion et traitement
d’une grande quantité de données.

2.1 Introduction

2.1.1 Plankton imaging enables fine scale studies

As detailed in the general introduction (section 1.2.2), planktonic or-
ganisms play crucial roles in the ocean: photosynthetic phytoplankton
is responsible for about half of the primary production of the bio-
sphere [131] and is the basis of oceanic food webs [125]; zooplanktonPlankton is

diverse both in
terms of taxonomy

and size.

acts as a trophic link between phytoplankton and higher trophic lev-
els [136, 413] and is a key component of the biological carbon pump,
sequestering organic carbon at depth [246]. Plankton comprises or-
ganisms from very diverse taxonomic groups [105] that span from
micrometer scale picoplankton to meter-long Cnidarians [243]. Given
this very wide size range, plankton sampling instruments cannot tackle
all organisms at once and typically target a reduced size range in-
stead [243].

The power law underlying plankton or marine snow particle size
spectra means that concentration drastically increases when size de-
creases: the relationship is linear in log-log form [243, 362, 363, 380].
The larger organisms, which each contribute significantly to biomass,
are rare but easy to detect. Yet, it is critical to also focus on the smallerThe planktonic

world is
dominated by

small organisms.

objects, to avoid artificially cutting the effective size range of any in-
strument, thus potentially discarding the most numerous objects in the
sample [243]. Moreover, as marine snow particles cannot grow past a
few centimetres because of disaggregation [6, 7], the ratio of particles to
plankton also decreases with increasing size. Therefore, while targeting
small planktonic organisms is desirable, it comes with the difficulty of
separating them from the largely dominant particles within the same
size range.

While large scale plankton distribution patterns are resolved to a
certain extent [55, 188, 340, 345, 399], much remains to be discovered
regarding fine scale distribution, in particular for zooplankton. For
phytoplankton, submesoscale dynamics are known to influence their
distribution and concentration: vertical currents may affect nutrient



2.1 Introduction 37

and cell distribution relative to the euphotic zone, thus affecting growth
rates, horizontal currents can stir patches into filaments. These changes Understanding

plankton
distribution at
submesoscale is
essential.

are expected to propagate to higher trophic levels (zooplankton, fish,
etc.) [230]. Indeed, the trophic and reproductive interactions of zoo-
plankton occur at the scale of organisms (µm to cm). Therefore, a
local concentration of phytoplankton, in a thin layer for example, has
more immediate consequences on the survival and development of
zooplanktonic grazers than the average chlorophyll a concentration in
the region. Thus, studying zooplankton distribution at fine scales, in
relation with submesoscale dynamics, becomes relevant to understand
the processes driving its distribution at regional scale.

Our lack of knowledge regarding the fine-scale distribution of plank-
ton partly stems from the difficulty to adequately sample it at such a Nets and pumps

do not have
sufficient
resolution and
damage fragile
organisms.

small scale. Traditional plankton collection methods such as pumps,
nets, and bottles typically integrate organisms over some vertical
and/or horizontal distance and make it difficult to associate organism
concentrations with their immediate environmental context [30, 243,
330]. Moreover, most damage fragile organisms and fail to sample
some of them properly [330].

As an alternative, in situ pelagic imaging instruments such as the
Imaging FlowCytoBot (IFCB) [298], the In Situ Ichthyoplankton Imaging
System (ISIIS) [85], the Underwater Vision Profiler (UVP) [317], and
the Scripps Plankton Camera (SPC) [302] (see [243] for a detailed
list) allow studying plankton distribution at all scales: from the fine
ones they resolve in each sample to long time scales and global spatial
coverage through the accumulation of individual samples [133, 192, 337,
382]. As a non-destructive sampling approach, these instruments allow Many plankton

imaging
instruments exist,
they allow
sampling fragile
organisms. . .

investigating fragile planktonic objects, such as Rhizaria [40, 42, 104],
Cnidaria and Ctenophora [248], or marine snow aggregates [161, 162].
Still, in situ imaging systems typically sample smaller volumes than
plankton nets [243], limiting their quantitative application to abundant
taxa. To quantify rarer planktonic groups, sampling effort has to be
increased to improve the chances of detection. For example the ISIIS
was initially developed with a very high sampling volume to study the
very sparsely distributed fish larvae. Because of this, all in situ imaging
instruments collect vast amounts of data, although the acquisition rate
varies from one instrument to the next. ISIIS, for instance, collects up to
11 million objects per hour of sampling, while IFCB collects images at a
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rate of ~10,000 per hour [372]. Thus all these systems need efficient and
automated data processing approaches, albeit with different stringency.

In addition, high resolution sampling is required to tackle questions
that used to be out of reach, such as fine-scale plankton distribution. . . and resolving

fine scale plankton
distribution.

in relation to environmental conditions [59, 154, 265], plankton patch
structure [337], interactions between zooplankton and phytoplankton
fine layers [153, 156, 355] or co-occurrences revealing biological interac-
tions such as predation [152, 155, 354, 395].

2.1.2 Objects need to be extracted automatically from pelagic images

The first data processing step is separating relevant organisms and
particles from the background in raw images, i.e. image segmentation.
Various segmentation methods have been applied for images collectedThe main

processing step is
segmentation of
organisms from

raw images.

by commonly used in situ imaging devices: the UVP relies on a fixed
grey level threshold [317], the IFCB uses an algorithm based on edge
detection [298], the SPC [302] runs a canny edge detector to initialise the
segmentation of its dark-field microscopy images. To segment images
generated by the Zooglider, a glider equipped with a shadowgraph,
Ohman et al. [293] also applied a canny edge detector. Finally, to
segment shadowgrams from the ISIIS, Tsechpenakis, Guigand, and
Cowen [402] and Iyer [194] used statistical modelling of the background
of the image and identified anomalies over this background as objects
of interest.

The ISIIS is deployed in an undulating manner, between the surface
and a given depth [85]. It targets organisms in the range 250 µm - 10 cm.
Together with greyscale images, it continually records environmental
variables (temperature, salinity, fluorescence, dissolved oxygen and
irradiance). The use of shadowgraphy combined with a specific lens
and lighting system provide a large depth of field and allow a high
sampling rate (28 kHz line scan camera). Therefore, the ISIIS is capable
of sampling volumes of waters larger than all other in situ imaging
instruments (> 100 L s-1; [243]). This optical design also ensures that theISIIS requires an

adapted processing
because it uses

shadowgraphy and
generates more
data than other

instruments.

organism’s size is not affected by its position within the depth of field.
Shadowgraphs are also able to detect heterogeneities in the medium
that is traversed by the light, which makes them excellent to image
transparent organisms such as plankton, gelatinous organisms in partic-
ular. But it also makes them sensitive to other sources of heterogeneity,
such as suspended particles or water density changes. ISIIS may thus
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Figure 2.1: ISIIS frames in clean waters (A-C) and across a density change (D-F).
The signature of this density change is similar to what a shadowgraph would
image in air, above a burning candle. The panels are: (A, D) raw output; (B, E)
after flat-fielding; (C, F) after contrasting. The camera scans vertically and the
image is acquired from the right edge, as ISIIS moves through the water. In
panel A, the scale bar represents 1 cm and is applicable to other panels.

generate noisy images when deployed in turbid waters [151, 249] or
across strong density gradients (Figure 2.1D-F) [124]. Furthermore, the
use of a line scan camera means that marks or dust on the lens cause
continuous streaks in the generated images (the line continuously scans
the same speckle; Figure 2.1A, D). Those can be partially removed by
applying a flat-fielding procedure, whereby the average grey value
computed per row over a few thousand scanned lines is subtracted
from the incoming new values (Figure 2.1B, E) [124, 151, 249].

The very characteristics that give the ISIIS its qualities as a plankton
imager (large sampling volume, high speed, ability to detect transpar-
ent objects) also mean that it creates a huge amount of images, the
background of which is often non-uniform. This makes segmentation
of planktonic objects from raw images far from trivial. To perform this
segmentation, the processing pipeline was initially based on anomalies
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Table 2.1: Threshold in object area (number of pixels considered as part of the
object) in studies exploiting ISIIS data. The conversion factor from area (px) to
Equivalent Spherical Diameter (ESD, mm) depends on the ISIIS configuration.

Reference Area threshold (px) ESD (mm)

[354] 7 0.2
[249] 50 0.53
[124] 250 0.92
[158] 400 0.95
[153] 900 1.4
[152] 2000 3.0
[151] 5000 5.4

from a gaussian mixture model of the background grey levels with-
out flat-fielding [402] and later on k-harmonic means clustering on
flat-fielded images [194]. This latter method was used in several stud-
ies [151, 249, 354] and the full pipeline was open sourced in order to
make plankton imaging more accessible and lower entry barriers [353].
Other studies relied on flat-fielding followed by segmentation above aSeveral

segmentation
methods were

applied to ISIIS
data but they all

required
discarding a

non-negligible
part of the data.

fixed grey level [124, 153, 158]. However, most of these studies focused
on the larger end of the size range targeted by the ISIIS, by considering
only objects above a given size threshold (Table 2.1), often because
those were desirable targets, not noise. Similarly, for their canny edge
detector applied to ZooGlider images, Ohman et al. [293] considered
objects larger than 100 pixels (Equivalent Spherical Diameter, or ESD of
0.45 mm). However, the algorithm failed when too many particles were
present and had to fall back to a less sensitive (i.e. higher) grey thresh-
old. As shown above, both planktonic organisms and particles are
much more abundant towards the smaller end of the spectrum, mean-
ing that such methods had to ignore a non-negligible part of planktonic
organisms and marine snow in order to discard the background noise.

2.1.3 Marine snow and imaging artefacts dominate in situ images
and complicate plankton detection

Marine snow particles are much more abundant than plankton in
the ocean [243], which means that the vast majority (often > 85%) of
images captured by in situ plankton imaging instruments are actually
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of various marine snow items (faecal pellets, large aggregates, small
organism pieces, etc.; [317, 380, 383]). Therefore, for plankton ecology
studies, the bottleneck has often become the processing and filtering of
collected images [192]. To reduce the proportion of detrital particles
and focus on photosynthetic plankton, the IFCB and the FlowCam ISIIS images are

strongly
dominated by
noise and marine
snow. . .

can use fluorescence image triggering, hence imaging only items that
contain chlorophyll [365, 372]. This is not possible over the large
volumes and for the non-photosynthetic organisms that ISIIS or other
zooplankton imagers target. Furthermore, density anomalies lead to
the characteristically noisy shadowgrams presented above (Figure 2.1D-
F), from which numerous artefactual “particles” are detected by the
usual image processing pipelines. Those artefacts or noise, together
with marine snow, can constitute 99% of the objects detected. Such
an extreme class imbalance makes the automatic classification of these
objects through machine learning a very arduous task [224].

Even for a trained human operator, the differentiation of some plank-
tonic classes from the proteiform marine snow aggregates and noise,
as well as distinction between marine snow and noise themselves, can
be very challenging. Towards the smaller end of the size spectrum it . . . which can be

difficult to
distinguish.

becomes virtually impossible. Indeed, once these small objects are seg-
mented out, the low pixel count combined with the lack of information
regarding their context in the image makes their identification very
difficult, for humans and computers alike [307]. Hence, one solution
could be to focus solely on planktonic organisms from the segmenta-
tion step already and try to avoid segmenting non-planktonic objects,
thanks to their broader context in the image, still accessible at this Thus, one solution

is to detect
plankton only.

step. This should result in a much more manageable amount of data
to classify and a lesser class imbalance. This approach requires the
development of specific and “intelligent” segmentation methods that
target specific objects only. The purpose of this work was (i) to develop
such “intelligent” segmentation approaches and (ii) to compare them
with classic methods to test whether they significantly improve the
data processing pipeline. With this in mind, we benchmarked three
segmentation methods against a ground-truth human segmentation us-
ing a dataset collected by the ISIIS in the North-Western Mediterranean
Sea.
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2.2 Materials and methods

2.2.1 Image segmentation methods

2.2.1.1 Threshold-based segmentation

The simplest segmentation method is to threshold pixels below a given
grey level: adjoining pixels darker than the threshold are considered as
segments. This threshold can be a value fixed a priori or dynamically
computed from the properties of each image. For example, the classic
method of Otsu [303] is to examine the histogram of intensity levels
and define the threshold so that it separates pixels into two relatively
homogeneous intensity classes. Here either a fixed threshold was set orA classic

segmentation
method consists of

detecting dark
objects.

the threshold was defined based on a quantile of the histogram of grey
levels. This quantile-based approach resulted in a darker segmentation
threshold on noisy images, such as those captured around the strong
density gradient induced by the thermocline (Figure 2.1 D-F), which
were richer in dark pixels. It was well adapted to limit the number
of artefact segments generated from these images. Moreover, the first
quartile is barely affected by the presence of relatively large dark objects
such as jellyfish tentacles, making the segmentation threshold robust
to these natural occurrences. After thresholding, segments defined by
connected components were dilated by 3 pixels and eroded by 2 pixels
to fill potential holes in transparent organisms and reconnect thin
appendages to the organisms bodies. Finally, only segments larger than
50 pixels (400 µm in ESD) were retained, because it was the minimum
size at which taxonomists could recognise organisms.

2.2.1.2 Threshold-MSER (T-MSER) segmentation

This approach uses a signal-to-noise ratio (SNR) cutoff, calculated on
images after flat-fielding, to determine whether the frame should beAlternatively, a

blob-detection
algorithm detects
regions that differ

in properties.

processed using a Maximally Stable Extremal Region approach (MSER,
[261]), or if areas of high noise should first filtered out using a naive
thresholding approach before applying MSER. MSER was successfully
applied to the segmentation of ZOOVIS imagery [37, 76]. SNR can
be used to determine the relative noise level in an image and was
computed as
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SNR = 20 × log
(

S
N

)
where S is the signal, defined as the mean of the input data, and N is

the noise, computed as the standard deviation around that mean. Here,
flat-fielded frames with low SNR (i.e. high noise) were binarised using
a fixed thresholding in order to extract continuous regions of interest
with darker pixel values. The regions identified in this way were then
extracted using a mask and subsequently re-segmented using the MSER
approach. MSER detects stable connected regions in images, which
are areas that stay nearly unchanged over a wide range of greyscale
thresholds. MSER can be tuned to allow for varying degrees of stable
region area and the range of pixel grey values tested in the dynamic
thresholding. High SNR frames are directly segmented using the MSER
approach (Figure 2.2 skip from step B to step D). Going from a pure
MSER approach to the threshold+MSER (T-MSER) on low SNR (< 50)
frames increased the recall on the test data from 65% to 85%, while
also substantially increasing precision. This SNR and MSER method
is written in C++17. The OpenCV and OpenMP Python packages
were used for general computer vision and parallel processing for high
processing efficiency, respectively.

2.2.1.3 Threshold-CNN (T-CNN) segmentation

Another solution is to use Convolutional Neural Networks to either
detect (i.e. define bounding boxes around) or segment (i.e. define a
pixel mask of) objects of interest. Such approaches open the possibility
to focus the detection on some types of objects (here, plankton) and
ignore others (here, marine snow and artefacts); this is also called
content-aware object detection or segmentation. However, CNNs tend Another method is

to use an
intelligent detector
to target
planktonic
organisms only. . .

to underperform at detecting objects across a large size range, espe-
cially for objects starting from a few dozen pixels [65]. They work best
when the target objects are of the same size as the receptive field of
the model [114]. Thus, the development of detectors implementing
receptive fields of various sizes constituted a major improvement, as
they allowed detecting objects across a larger size range [65]. In par-
ticular, we chose the Detectron2 library [420] developed by Facebook
AI Research, which provides state-of-the-art object detection and seg-
mentation algorithms, as well as pre-trained models for such tasks.
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Figure 2.2: Example MSER segmentation of a noisy raw frame (with low SNR).
(A) Raw output; (B) after flat-fielding; (C) regions of interest created through
naive thresholding; (D) regions of interest and their bounding boxes created
by applying MSER to (C). In a low SNR frame such as the one above the
processing steps are A-B-C-D, while in a high SNR frame the processing steps
are A-B-D. In panel A, the scale bar represents 1 cm and is applicable to other
panels.
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Detectron2 includes a feature pyramid network [236] backbone that
extracts feature maps across multiple scales to enable the detection
of objects of various sizes, which was critical in our application to
plankton images. Yet, this was not enough to cover the very large
size range of organisms imaged by the ISIIS (from 50 to hundreds of
thousands of pixels in area).

As explained above, marine snow particles and density-induced
imaging artefacts are especially dominant compared to plankton in
the smaller size classes. Therefore, our CNN pipeline was set up to . . . in the size

range dominated
by marine snow
and noise.

segment the smaller objects, from 50 to 400 pixels in area, where the
ability to specifically segment plankton makes the most difference.
Above 400 pixels, the quantile-based threshold approach, with dilation
and erosion, was used because it was simple and did not generate too
many non-plankton segments.

In Detectron2, we used Mask R-CNN [173], which allows simulta-
neous bounding box detection and instance segmentation. The model
was initialised with weights trained on the COCO reference dataset2

but, for it to detect planktonic organisms on ISIIS images, it had to be
fine-tuned on a dataset of ground truth bounding boxes and masks
of such organisms. This dataset was generated by manually delin-
eating all recognisable planktonic organisms in a set of ISIIS images,
using a digital pen on a tablet computer. This produced 23,197 ground
truth masks, from which bounding boxes were computed. Among
those, 10,878 objects were in the 50-400 pixels area range and usable. A A training dataset

was generated by
manually
delineating
planktonic
organisms.

524×524 pixels crop was generated around every ground truth object
(pushing the crop back inside the image when it crossed the edges).
The choice of this particular size is a trade-off between the maximum
size of planktonic organisms that can be detected and the memory
available on the graphics card. Moreover, it is in line with common
input sizes for segmentation models and was convenient to generate a
tiling on ISIIS images. Several objects could be present in a crop. The
crops were then split into 70% for training, 15% for validation, and 15%
for testing. This split was stratified by the average grey level of the
crop to ensure that both noisy (darker) and clean (lighter) images were
present in each split, so that the model was presented with all kinds of
images during training. Indeed, a model trained on clean images only
would have performed poorly on noisy ones.

2 https://github.com/facebookresearch/detectron2/blob/main/configs/
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
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Detectron2 can perform both multiclass object detection or segmenta-
tion, meaning that objects are both detected/segmented and classified
in a single step. However, it requires sufficient examples in each class
for training. This condition could not be satisfied here, given howOne-class object

detection was
chosen over

multiclass
detection.

time-consuming it was to obtain pixel-level masks for every object and
because plankton samples are usually dominated by a few abundant
taxa while most others are very rare [361]. Since the focus of this
study is on segmentation, we decided to perform one-class object de-
tection/segmentation, thus training the model to recognise planktonic
organisms of any taxon. This implies that classification needs to be done
after segmentation. Once an object is detected, this sequential, rather
than concurrent, approach does not affect the result of the classification,
since the same information is available to the subsequent classifier as
to the concurrent one. Furthermore, focusing on segmentation only is
also more comparable with the two other methods described above.

The model was trained for 30,000 iterations, and evaluation was run
on the validation set every 1,000 iterations to ensure that the validation
loss reached a plateau. The learning rate was set to 0.0005 initially and
decreased 10 fold after 10,000 and 20,000 iterations. To increase the
generality of the detector, data augmentation was used in the form ofThe CNN

segmenter was
first fine-tuned on
the training set. . .

random resizing of the 524 pixels crops (to 640, 672, 704, 736, 768 or 800
pixels) and random horizontal flipping. The test set was used to assess
theoretical performance after training and guide the choice of model
settings; the actual performance was assessed on a separate, real-world
dataset (presented below).

To apply the trained model to new images, a tiling of 524×524
pixels crops (the size used during model training) was generated over
each input image, resulting in an overlap of 143 pixels vertically and
135 pixels horizontally. The overlap ensured that detectable objects
spread over two crops were not missed. Crops were upscaled to
900×900 pixels to improve detection of small objects [114]. For each. . . before it could

be applied to new
images.

crop, the model predicted the bounding boxes of objects and their
masks. We only considered the boxes, resolved overlaps in detections
caused by overlapping crops, and submitted each box to exactly the
same quantile-based thresholding as what was used above 400 pixels.
This was preferred over using Detectron’s mask proposals because
their outline was not as detailed or replicable as the threshold-based
ones. Furthermore, it also ensured that morphometric measurements
performed on the masks (area in particular) were exactly comparable
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between the objects that went through the CNN and those above 400
pixels that were defined by simple thresholding. For each bounding
box proposal, the model computes a confidence score. We retained all
boxes with a score over 0.1, which is a quite low confidence threshold
designed to increase the chance of detecting all objects of interest
(i.e. favour recall) at the cost of some false positive detections (i.e.
lower precision). Those false positives (i.e. segmented objects that are
not plankton) will have the opportunity to be eliminated later, when
segments are classified taxonomically.

The CNN was coded in Python with PyTorch, the original im-
plementation library for Detectron2. Training was conducted on a
Nvidia Quadro RTX 8000 GPU. The code is available at https://

github.com/ThelmaPana/Detectron2_plankton_training. The com-
bined CNN and threshold segmentation pipeline is implemented in
https://github.com/jiho/apeep and this was run in several Linux-
based environments, using various Nvidia GPUs.

2.2.2 Application to ISIIS data from VISUFRONT campaign

We evaluated these segmentation methods on ISIIS data collected dur-
ing the VISUFRONT campaign, which sampled the Ligurian current
front (NW Mediterranean Sea), in the 0-100 m depth range, during
July 2013. Towed at a speed of 2 m s-1 (4 kts) and set for a 28 kHz The segmentation

methods are
applied to ISIIS
data from the
VISUFRONT
campaign.

scanning rate, the ISIIS sampled 108 L per second. The 2048 pixels
high continuous image strip created by the line scan camera moving
in the water was cut in 2048×2048 pixels frames for storage. The ISIIS
captured marked volutes caused by water density variations (Figure 2.1
D-F), mostly driven by temperature changes around the thermocline,
previously described by Faillettaz et al. [124].

The continuous image strip was reassembled from the stored frames
(2048×2048 pixels). Each line of pixels was flat-fielded by subtracting
the row-wise average over a 8000 pixels moving window, hence re-
moving streaks (Figure 2.1 A to B, D to E). The cleaned image was cut Images were

pre-processed
before
segmentation.

into 10,240 pixels long images (5 frames, instead of 1) to reduce the
probability of cutting objects across images while keeping the memory
footprint of each image manageable. Finally, the image was contrasted
by stretching the intensity range between percentiles 0 and 40 (Figure
2.1 B to C, E to F). These values were chosen by iteration, through
discussions with the taxonomist in charge of delineating planktonic

https://github.com/ThelmaPana/Detectron2_plankton_training
https://github.com/ThelmaPana/Detectron2_plankton_training
https://github.com/jiho/apeep
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organisms from raw images, as to achieve the highest distinguishability
for those.

A ground truth dataset was generated by manually delineating all
planktonic organisms (using a digital pen and tablet) in 106 10,240×2048
pixels images, regularly spread across a full transect, hence represen-
tative of different environments. This resulted in 3,356 objects thatAn independant

benchmark dataset
was generated by

manually
detouring

planktonic
organisms.

were later taxonomically sorted into 24 taxa (Figure 2.3), in the Ecotaxa
web application [316]. This dataset was completely independent from
the one that was used to train, validate and test the Detectron2 model.
Some images were checked by two independent operators to check
their consistency; when this was done, no differences were found.

Segments from each of the three automated methods were matched
with ground truth segments of the same image. A bounding box
intersection over union (IoU) score higher than 10% was considered
as a match between segments. This threshold was set after manuallyOutputs of

segmentation
methods are

compared to the
human

ground-truth
segmentation. . .

inspecting a set of potential matches with various IoU values and
was found to be the best value to discriminate between true and false
matches. In case a ground truth segment matched multiple automatic
segments, only one match was retained, to avoid inflating artificially
the number of matches from the automated pipelines. In case an
automatic segment matched multiple ground truth segments, the match
was not counted either because it corresponded to a large segment
that encompassed several organisms likely belonging to different taxa,
which would make it unexploitable ecologically. Both choices made the
match metrics conservative.

From these matches, global precision and recall were computed
to summarise performance. Precision was computed as the propor-
tion of automatic segments that matched ground truth segments. A
100% precision means that the algorithm only extracted ground truth
segments. Recall was computed as the proportion of ground truth
segments detected by the automated segmentation algorithm. A 100%. . . and metrics

were computed to
compare

performance.

recall means the algorithm did segment every manually delineated
organism. Precision and recall scores were also computed per size
class, where size was defined as the length of the diagonal of the
bounding box; size classes were defined as intervals of 10 pixels, from
10 to 100 pixels, plus a class > 100 pixels. These size classes do not
aim at reflecting any ecological groups but were designed to split seg-
ments into roughly balanced classes. Recall was also computed for
each taxonomic group defined in the ground truth segments. Preci-
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Figure 2.3: (Caption on next page)
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Figure 2.3: Examples of planktonic organisms imaged by the ISIIS. (A) Acan-
tharea; (B) Actinopterygii; (C) Annelida; (D) Appendicularia; (E) Appendic-
ularia (house only); (F) Appendicularia (body only); (G) Aulacanthidae; (H)
Bacillariophyceae; (I) Chaetognatha; (J) solitary Collodaria; (K-L) Hydrozoa;
(M) Crustacea (other than Harpacticoida, Copepoda and Eumalacostraca); (N)
Harpacticoida; (O) Copepoda (other than Harpacticoida); (P) Eumalacostraca;
(Q) Echinodermata (pluteus larva); (R) colonial Collodaria; (S) Ctenophora; (T)
Doliolida; (U) Mollusca; (V) Pyrocystis; (W) Rhizaria (other than Acantharea;
Aulacanthidae and Collodaria); (X) Siphonophorae.

Table 2.2: Number of segments generated by each pipeline on the 106 bench-
mark images and estimation of the amount of segments they would produce
on one minute of ISIIS data.

Segmentation
pipeline

Number of segments on
benchmark images

Average number of segments per
minute of ISIIS deployment

Ground truth 3,356 ~5,000

Threshold 339,907 ~525,000

Threshold-MSER 82,731 ~130,000

Threshold-CNN 19,048 ~30,000

sion does not make sense for taxonomic groups since it would only
reflect the performance of the classification, not of the segmentation.
The particle matching and metric computation code is available at
https://github.com/ThelmaPana/segmentation_benchmark.

2.3 Results

2.3.1 Number and size distribution of segments

On the 106 images of the segmentation benchmark dataset, 3,356 or-
ganisms were manually segmented, whereas the automated pipelines
generated many more segments, especially the threshold-based one
(Table 2.2).Automated

pipelines
generated more
segments than

manually
detected. . .

The normalised abundance size spectra (NASS) (Figure 2.4) displays
the expected linear decrease of abundance with size in log-log scale. For
the ground truth segments, the curve dips below this linear relationship
for objects of 25 pixels in diagonal and smaller (dotted vertical line
on Figure 2.4). Since this dataset specifically targeted recognisable
planktonic organisms, this dip highlights that not all organisms below

https://github.com/ThelmaPana/segmentation_benchmark
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Figure 2.4: Normalised abundance size spectra (NASS) of all segments gen-
erated by the benchmarked pipelines and ground truth segmentation. To
compute the NASS, segments were grouped into size classes on a log2 scale,
each class size being two times wider than the previous one. Normalised abun-
dance was computed by dividing the number of segments in each class by the
size class width, resulting in an adimensional quantity (number of segments)
divided by a length (mm here). The double x-axis is the length of the diagonal
bounding box displayed both in pixels and after conversion in mm. The dotted
vertical line highlights the slope discontinuity in the size spectrum of ground
truth segments. Note that both axes use log10 scaling. T = threshold-based,
T-MSER = threshold-MSER, T-CNN = threshold-CNN.

this size could be detected by a human taxonomist upon detailed
examination of the images [243]. The discontinuity is towards smaller
diagonal sizes in the automated pipelines, but likely because many of
the small segments are of non-plankton objects.

All automated pipelines have NASS curves above the ground truth,
which highlights the fact that they segmented non-plankton objects.
This was true over the entire size range but was particularly pronounced
for the smaller size classes. Above 10 mm/200 pixels in diagonal, the . . . especially at

the bottom edge of
the segmentation
size range.

T-MSER pipeline produced a number of segments comparable to the
ground truth, which is satisfying, although it does not guarantee that
those are of the same objects (it might have missed some plankton
and segmented marine snow/artefacts in the same size range; see
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precision and recall performance for the largest size class in Figure 2.5
below). From the maximal size down to ~70 pixels in diagonal, the
T and T-CNN pipelines produced the same segments. This coincides
with the critical size of 400 pixels in area at which the segmentation
method switched from threshold-based to content-aware. Indeed, the
conversion from area to bounding box diagonal is not linear because
it depends on the shape of the objects. For an object of 400 pixels in
area, the bounding box diagonal is between 30 and 70 pixels. This
shows that the T-CNN pipeline was effective in reducing the number of
segments compared to naive thresholding, because the NASS diverges
below that size.

A linear regression performed on the linear portion of the NASS
(diagonal values between 30 and 500 pixels) followed by an analysis ofNASS slopes are

different. covariance demonstrated significant difference in slopes between the
segmentation methods: F(3,105) = 133.07; p < 0.001 (Table S2.1). Post
hoc analysis showed a significant difference between all segmentation
methods (p < 0.001 for all pairs) (Table S2.2).

2.3.2 Global performance statistics

Overall, the three pipelines demonstrate good recall: when looking at
the total number of segments, they all captured over 85% of the ground
truth organisms. The T-CNN pipeline largely outperformed both the
threshold-based and T-MSER pipelines in terms of precision (Table 2.3).
In other words, although it segmented almost all planktonic objects,The T-CNN

pipeline had a
better global

precision.

the threshold-based pipeline generated mostly non-plankton segments
(~99%), composed of both marine snow and density volutes artefacts.
The T-CNN pipeline also produced non-planktonic segments but they
“only” represented 84% of segments, while still segmenting a good
proportion of planktonic objects. The T-MSER performed somewhere
in between those two extremes.

2.3.3 Performance per size class

Because the behaviour of the pipelines seems to vary with size (Figure
2.4), it seems relevant to break down the matching statistics per size
class. With the threshold-based pipeline, precision decreased with size:
smaller segments included a lower proportion of planktonic organisms
than larger ones (Figure 2.5A). The T-CNN pipeline had better precision
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Table 2.3: Precision and recall values of the automated pipelines evaluated
against the 3,356 ground truth organisms.

Pipeline Precision Recall

Threshold 0.9% 97.3%
Threshold-MSER 3.5% 85.4%
Threshold-CNN 16.3% 91.9%

than the others for small segments while T-MSER had a better precision The T-CNN
pipeline improved
precision for small
segments, but
recall performance
were independent
of class size.

for larger segments. In terms of recall, the threshold-based pipeline
always performed better than the others, regardless of size class (Figure
2.5B). The T-MSER pipeline performed as well as the T-CNN pipeline
on middle size classes, but achieved a lower recall for both very small
and very large segments.

2.3.4 Performance per taxonomic group

In the ground truth dataset, half of the 24 detected taxa were repre-
sented by fewer than 18 individuals (median is 18.5), hence inducing
little resolution and large variance in the performance statistics of seg- Taxonomic-wise

performance do
not seem linked to
organisms size.

mentation pipelines. Among the other half of the taxa, the recall of
the T-CNN pipeline was lower than that of the threshold pipeline by
more than 10% for only two taxa (Bacillaryophycea and Doliolida) and
for only four in the case of the T-MSER pipeline (Bacillariophyceae,
Ctenophora, Acantharea, and other Rhizaria; Figure 2.6). The lowest
recall values were reached for Bacillariophyceae and Ctenophora, for
all pipelines. In concordance with the consistent recall performance
across size classes, taxa-wise recall performance of the T-CNN pipeline
do not seem linked to organism size: small organisms (e.g. Acantharea,
Pyrocystis) were accurately detected.

2.4 Discussion

2.4.1 Summary of results

The threshold-based pipeline performed an exhaustive segmentation:
planktonic organisms were almost all properly detected, yet they were
drowned in the overwhelming majority of non-planktonic objects (Table
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Figure 2.5: Precision (A) and recall (B) scores per size class. In B, n indicates the
number of segments per size class for the ground truth dataset. T = threshold-
based, T-MSER = threshold-MSER, T-CNN = threshold-CNN.
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Figure 2.6: (Caption on next page)
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Figure 2.6: Recall scores per taxon. n is the number of individuals from
each taxon in the 106 benchmark images and taxa are sorted in decreasing
order of abundance. T = threshold-based, T-MSER = threshold-MSER, T-
CNN = threshold-CNN.

2.2). The T-CNN pipeline reduced this problem, significantly increasingThe T-CNN
pipeline generated

much fewer
non-planktonic

segments and still
detected plankton

accurately.

precision (Table 2.3, Figure 2.5A) while still achieving a very good
detection of plankton across the entire size range targeted by ISIIS.
The T-MSER pipeline also reduced the segmentation of non-planktonic
objects, especially at the top-end of the size range, but detected fewer
planktonic organisms than the other pipelines (Figure 2.5B). Despite the
large decrease in number of segmented objects, for most taxa, the MSER
or CNN pipelines reduced recall by less than 10% (Figure 2.6). One
explanation for these differences is that naive thresholding captured a
lot of noise (i.e. density volutes) and, additionally, broke it into many
small segments. The use of either MSER or a CNN allowed ignoring
these noise segments and/or not breaking them apart, hence producing
much fewer non-planktonic segments.

The decrease in abundance below the expected slope at the smaller
end of the size spectrum of ground truth segments (Figure 2.4) suggests
that identification of planktonic organisms becomes non-exhaustiveGround-truth

segmentation
established a

size-cutoff for
detectability.

below 25 pixels in bounding box diagonal. Below this size, which
amounts to 600 µm in ESD on average, some organisms can still be
detected. This means that relative concentrations between locations or
times can likely be exploited within a taxon but that further filtering
and corrections are needed to reach absolute concentrations.

The statistical difference between NASS slopes (Figure 2.4) indicates
that they segment different kinds and amounts of non-planktonic
objects, compared to the all-plankton ground truth. This implies thatOutputs of

different
segmentation

methods should
not be merged.

the output of different segmentation approaches should not be directly
compared in terms of size distribution. Segmentation methods were
already shown to have an impact on the definition of particle size
and shape, which propagates to subsequent analyses such as particle
flux estimates [142]. This slope discrepancy as well as the vastly
larger intercept of the NASS of automated pipelines compared to the
ground truth means that the computation of an appropriate plankton
size spectrum requires a classification step that would exclude non-
planktonic objects.
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2.4.2 Targeted organisms

Some taxa were systematically less often detected than others. Some of
the not detected Bacillariophyceae were large, blurry, and too translu-
cent (Figure 2.3H) to be caught by the threshold-based branch of the
T-CNN pipeline or by the T-MSER method. The other, smaller, ones
that were missed by the content-aware branch of T-CNN were not
detected because they were quite different from the ones used dur-
ing training (blurrier). Integrating more representative examples of
Bacillariophyceae for CNN training could have improved performance
on this taxon. Similarly, doliolids (Figure 2.3T), that were often large, The T-CNN and

T-MSER pipelines
struggled to detect
some taxa.

should have been segmented by the threshold-based branch of T-CNN
as well as by T-MSER. The ones missed, mostly by T-CNN, were also
blurry and too translucent for intensity-based thresholding with a sin-
gle threshold. Ctenophores (likely of the Mertensiidae family, Figure
2.3S) displayed thin, translucent tentacles that were often missed by
threshold-based methods. Therefore, only the body was segmented,
which resulted in a bounding box IoU value < 0.1, too low to be consid-
ered a match with the ground truth segment that included the tentacles.
Still, a later CNN classifier should be able to correctly identify even
such portions of organisms, as CNNs were shown to mostly rely on
local shape and texture features instead of on the global shape [16, 17].
Finally, the T-MSER pipeline resulted in a lower recall for Acantharea
and other Rhizaria (Figure 2.3A, W). This seems to stem from a too
aggressive thresholding step in low SNR high noise frames, the pre-
processing step before MSER is applied. Further fine-tuning would
likely allow it to retain more or all Acantharea and other Rhizaria
images.

In the present study, we aimed at performing an exhaustive detection The segmentation
pipeline should be
adapted to the
targeted
organisms.

of every planktonic organism across the size range targeted by the ISIIS.
However, in general, the segmentation algorithm should be chosen
according to the target organisms. For example, to focus on organisms
towards the larger end of the ISIIS size range (e.g. > 10 mm), where
particles – mostly marine snow aggregates – are much less abundant, a
simple grey-level threshold seems sufficient.
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2.4.3 Processing time and cost

The quantile-based thresholding pipeline ran on a single CPU core at
a rate of 30 minutes of processing for 1 minute of ISIIS data (0.03x),
on an Intel Xeon E5-2643 v3 (3.40 GHz). Its memory requirements
were limited so it was easy to run simultaneous processing of multiple
batches of data on a multi-core/multi-processor machine, but the
treatment of ISIIS data as a continuous stream for flat-fielding prevented
automatic multithreading. The T-CNN pipeline required a GPU withEach pipeline had

its benefits but
required specific

hardware.

sufficient memory (48 GB, on a Nvidia Quadro RTX 8000 in our case) to
efficiently train the CNN portion and to fit ISIIS images in at evaluation
time. It processed data at the same rate as the threshold-based pipeline
(30 min processing for 1 min of data, or 0.03x). The T-MSER pipeline
was optimised for speed and utilised the 8 cores of an AMD Ryzen
3700, processing one minute of ISIIS data in 50 seconds (1.2x), or 6 min
40 s of processing for 1 min of ISIIS data (0.15x) when considering
running on one core.

The MSER implementation followed [261] closely. The optimisation
of the T-MSER approach stems from adding the SNR switch, which
leads to the pre-processing of high-noise images with naive threshold-
ing, while going straight to the MSER-based detection in low noise
images. Adding these changes increased segmentation recall from 65%The T-MSER

pipeline could be
improved to be

even faster.

to 85%. Further optimisation included making the code multi-thread
ready for deployment on High Performance Computing infrastructures.
Using the specialised CPUs of these infrastructures, such as the AMD
EPYC 7742 (64 cores, 128 threads) performance could improve well
above 1.2x. At current data collection rates of 75-100 h of ISIIS data
per scientific cruise, a real time or faster than real time segmentation
approach constitutes a substantial benefit.

At first glance, the T-CNN pipeline seems expensive in terms of set up
and architecture: it requires a GPU with sufficient memory to operate,A CNN may seem

laborious to set
up. . .

implies the use of relatively new deep learning coding frameworks and
the preparation of a training set with manual delineation of thousands
of planktonic organisms. But these costs are offset by the time gained
not processing a multitude of particles in each image, resulting in a. . . but it is worth

it. processing rate comparable to that of the pure threshold-based pipeline,
as stated above. Furthermore, the fact that T-CNN produced 20 times
fewer segments will also considerably reduce the classification time
(often CNN based too). Finally, since recall barely decreased, the objects
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ignored were mostly the dominant non-plankton objects, as per design;
this will diminish the imbalance among classes that classifiers are
sensitive too, further improving the classification step. Moreover, both Artificial

intelligence tools
and computational
power are more
and more
accessible.

the Detectron2 library and the baseline model on which the T-CNN
pipeline relies are easily downloadable and well documented3. With
GPU resources becoming increasingly available for scientific research
and the associated frameworks becoming easier to use, such tools are
poised to become more powerful and accessible.

2.4.4 Detection of small objects by CNN models

The detection of objects measuring just a few pixels is still a research
problem in its own right in computer sciences [113], coined very low
resolution recognition problems [412]. They are characterised by tar-
gets smaller than 16×16 pixels, which can be challenging even for CNN have

difficulties at
detecting small
objects. . .

the perceptual abilities of human experts. They target applications
for company logo detection [113, 114], face recognition from video
surveillance, or text recognition [412]. The receptive fields of common
object detection architectures match the target object size and range
from 50×50 to 450×450 pixels which is much larger than the small
objects targeted in low resolution studies [113]. Here, the smallest
organisms targeted had an area of 50 pixels, which corresponded to a
bounding box diagonal of 12 pixels, or an 8x8 pixels square. Thus the
exhaustive detection of plankton organisms in ISIIS images, including
the smaller ones, clearly falls in the domain of very low resolution
recognition. A common solution is image upscaling, as highlighted by . . . but a few

workarounds
exist.

Eggert et al. [114], which we implemented in the present work. The
524×524 pixels crops were upscaled to 900×900 pixels before evaluation
in the Detectron2 model. The 900 pixels size is a compromise between
detection accuracy, usage of the GPU memory, and processing time.
Other approaches for multi-scale object detection are described by Cai
et al. [65] and include magnification of regions susceptible to contain
small objects [114] or the integration of contextual information outside
of regions of interest [28].

No automated segmentation method is perfect; depending on their
settings, they either avoid objects other than their targets but miss some
objects of interest (high precision, low recall) or detect most objects
of interest but also many others (high recall, low precision). If the

3 https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2
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segmentation or object detection task is followed by a classification step,
which is always the case for plankton imaging, we advocate in favourFavour recall over

precision to
extract a

maximum of
organisms.

of recall over precision during segmentation, provided that the amount
of data remains manageable. Hence, a maximum number of planktonic
objects have the opportunity to be classified. The precision can be
improved after classification, by filtering out low confidence, usually
error prone, predictions based on the score given by the classifier [124,
249].

To extract planktonic organisms of various taxa from ISIIS images,
full instance segmentation would have been the most elegant approach,
outputting classified mask instances in a single step [94]. Several
obstacles still lay ahead for this approach to be applicable. First, trainingFull instance

segmentation of
ISIIS images is

not for today.

an instance segmentation model to recognise each taxonomic group
would require hundreds to thousands of ground truth (i.e. human-
produced) masks of all taxa. Given the long tailed distribution of
taxa concentrations in the planktonic world, with many rare taxa, in
particular the largest ones, this would require a considerable amount
of searching and labelling effort. Indeed, assembling enough examples
to train classifications models is already challenging [192] and manual
delineation of each organism is much more time consuming than
manual classification. A second obstacle is the size range of organisms
imaged by ISIIS. Although Detectron2 does produce multi-scale feature
maps through a Feature Pyramid Network in order to apply receptive
fields of multiple size, the ratio between the largest and the smallest
feature maps is only 16. Here, the ratio between the smallest and
largest bounding box diagonals of manually segmented organisms is
65 and can reach > 180 in more exhaustive ISIIS datasets. To tackle this
span, one could theoretically set up an ensemble of detectors, fed with
crops of different sizes, each one targeting a restricted size range. Yet,
this would be a particularly computationally demanding and complex
set up, for a gain yet to be determined since, for larger sizes, the
proportion of non-plankton objects, and therefore the advantage of
a CNN-based segmentation, diminishes. Finally, masks generated
by instance segmentation models currently lack both precision (their
outline is smoothed, not matching the fine appendages of plankton) and
reproducibility (because of the randomness included during training
to avoid overfitting, two models trained on the same data will output
different masks). These drawbacks are particularly critical for plankton
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application, where the size of the organisms, computed from their
masks, is often of interest.

2.5 Conclusion and perspectives

We developed combined segmentation pipelines able to detect plank-
tonic organisms spanning a broad size range. The fact that all methods
comprised a deterministic, threshold-based segmentation ensured that
particle shapes and measurement were consistent over the whole size
range. Still, the segmentation method affected the shape of the size
spectrum and additional processing steps (including classification) are
needed to extract the correct size structure of living organisms. The The T-CNN

segmentation
pipeline
successfully
detected
plankton. . .

MSER method limited over-segmentation of background noise objects
and extracted more consistent segments, at a very high processing rate.
This speed opens the possibility for near-real time processing, which is
particularly relevant for adaptive sampling during a cruise or an early
warning system in a time series context. Although at the lower limit of
the detection capabilities of CNNs, our content-aware approach was
able to detect planktonic organisms among an overwhelming number
of marine snow and noise images, exhibiting the best recall of the three
methods. Therefore, the ideal segmentation approach depends on the
study objectives and operational constraints.

These approaches seem relevant for imaging studies focused on
living planktonic organisms, since they reduce the number of objects
from non-plankton classes that are extracted. In turn, this dampens
the imbalance towards these classes, laying the foundations for easier, . . . and paved the

way towards
easier object
classification.

faster, and more accurate subsequent object classification by (i) reducing
the amount of work needed to generate a training set with similar class
distribution, which is essential to avoid the caveat of dataset shift [280];
(ii) decreasing the computation time because there are fewer objects;
and (iii) limiting the contamination of the rare planktonic classes by
the dominant, non-plankton, ones.

Although CNN-based object detection may seem overwhelming at
first, both in terms of set up and processing time, it actually is fast
enough and within the reach of marine ecologists, particularly now that
artificial intelligence frameworks and GPU computing are being made
more accessible. This work constitutes a step towards the “intelligent”
segmentation of ecological images, even at low resolution, which could
find even wider applications such as the automated separation of
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objects overlapping onto each other on an image for more accurate
species counts, the detection and classification in a single step forCNN-based

detection is a
convenient tool

with many
potential

applications in
plankton

research. . .

more automated surveys, or the extraction of individual-level traits to
track e.g., reproductive organs development, for a richer exploitation of
ecological images [299]. Such tasks are in no way limited to plankton
images and are common in data collected by trawl cameras, benthic
observations or surveying cameras, vessel monitoring cameras, etc.

In this era of data-driven oceanography, the volume of data col-
lected is increasing sharply, thanks to technological advances such as
high frequency imagery, autonomous instruments (e.g. floats, gliders),
satellite-based methods as well as environmental -omics approaches. . . in an era of

data abundance. permitted by high throughput sequencing. In this context of abundant
data, the development of automated and efficient data processing tech-
niques becomes a key element in drawing a holistic understanding of
oceanic ecosystems; it is needed to provide an extensive description
of biodiversity, including species distributions as well as estimates of
biomass and abundance).
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Supplementary materials

Table S2.1: Effect of segmentation method on NASS slopes assessed through
an ANCOVA.

Effect DF effect DF error F-value p-value

segmentation 3 105 133.075 < 106

Table S2.2: Pairwise comparisons between segmentation methods using the es-
timated marginal means. p-values were adjusted using the Bonferroni method.

Group 1 Group 2 DF Statistic Adjusted p-value

Ground truth T-MSER 105 -8.289040 < 106

Ground truth T 105 -18.752253 < 106

Ground truth T-CNN 105 -14.670739 < 106

T-MSER T 105 -10.094835 < 106

T-MSER T-CNN 105 -6.093500 < 106

T T-CNN 105 4.081515 < 106



3
Benchmark of image
classification using several large
plankton datasets: Convolutional
Neural Networks improve
detection of rare taxa

In this second methodological chapter, we apply and compare two
classification methods for plankton images. This chapter does not Here we describe

image
classification
methods. . .

only focus on ISIIS data but performs classification comparison for
six widely used and commercially available in situ plankton imagers.
Overall, we highlight the superiority of deep models in the detection
of rare plankton classes, and demonstrate the importance to go beyond
the often solely used global accuracy when performing classification
on unbalanced datasets. In accordance to the results presented here, . . . which were

later applied to the
VISUFRONT
dataset. . .

all the objects detected in the VISUFRONT data by the segmentation
pipeline were then classified using a CNN model. This was made
possible by the production of three datasets of annotated objects: a
training dataset of ~120,000 objects enriched in planktonic objects (40%
of plankton vs. 60% of detritus); a validation dataset of ~1 million
objects with realistic proportions and a test set of ~1.3 million objects
with realistic proportions too. As described in the following, the model
was fitted on the training dataset and results were regularly checked
on the validation dataset to limit overfitting. Finally, the model was . . . in order to

produce fully
annotated data
ready for scientific
analysis.

assessed on the never-seen-before test set. To further improve the
precision of the classifier, objects below a 90% probability threshold
(established on the validation set) were ignored [124]. After ignoring
non planktonic classes, this resulted in a fully annotated dataset of
~50 million planktonic organisms, with 86% precision and 89% recall
averaged across weighted plankton classes.
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Abstract

Plankton imaging instruments generate an ever increasing volume of
data which is mostly processed through machine learning algorithms.
However, classifying plankton images is a challenging computer science
task in its own right: datasets are strongly unbalanced; the dominant
classes are often not biologically interesting (artefacts, bubbles) and/or
very heterogeneous looking (marine snow); and images span a large
size range. Despite a wealth of reports on the performance of auto-
matic plankton images classifiers, we still do not have a definitive idea
regarding how methods compare with each other and where they can
systematically be trusted. This is mostly because those reports rely
on rather small unpublished datasets, not necessarily representative
of real-life biological samples in terms of size, number of classes and
proportions. Here we report the performance of a classic classifica-
tion method (Random Forest on handcrafted image features) and a
more recent one (a Convolutional Neural Network) on large publicly
released datasets, from six widely used plankton imaging instruments.
We show that using a CNN improves classification performance but
only noticeably on poorly represented (a few hundred images) classes.
Finally, we showcase the difference between the predictions of the two
classifiers and a human-checked truth on several real-world datasets,
to give insights regarding which ecological questions can or cannot be
studied from computer-generated classifications only.

Résumé

Les instruments d’imagerie du plancton génèrent un volume toujours
croissant de données qui sont pour la plupart traitées par des algo-
rithmes d’apprentissage automatique. Cependant, la classification des
images de plancton est une tâche informatique difficile en soi : les jeux
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de données sont fortement déséquilibrés ; les classes dominantes sont
souvent sans intérêt biologique (artefacts, bulles) et/ou d’aspect très
hétérogène (neige marine) ; et les images couvrent une large gamme
de tailles. Malgré de nombreux rapports sur les performances des clas-
sifieurs automatiques d’images de plancton, il reste difficile de savoir
comment les méthodes se comparent entre elles et pour quelles tâches
on peut s’y fier. Ceci est principalement dû au fait que ces rapports
s’appuient sur des jeux de données non publiés et souvent petits, qui
ne sont pas nécessairement représentatifs d’échantillons biologiques
réels en termes de taille, de nombre de classes et de proportions. Nous
présentons ici les performances d’une méthode de classification clas-
sique (Random Forest sur des propriétés extraites manuellement des
images) et d’une méthode plus récente (un réseau de neurones à convo-
lutions) sur de grands jeux de données ayant vocation à être publiés,
provenant de six instruments d’imagerie du plancton largement utilisés.
Nous montrons que l’utilisation d’un réseau de neurones à convo-
lutions améliore les performances de classification, mais seulement
de façon notable sur les classes peu abondantes (quelques centaines
d’images). Enfin, nous montrons la différence entre les prédictions des
deux classifieurs et une validation manuelle par un expert taxonomiste
sur plusieurs ensembles de données du monde réel, afin de donner un
aperçu des questions écologiques qui peuvent ou ne peuvent pas être
étudiées à partir de classifications automatiques uniquement.

3.1 Introduction

Plankton is defined as the ensemble of organisms unable to swim
against current. This definition, based on motility and ecological niche
rather than phylogeny, encompasses mary taxonomic groups [397].
Furthermore, within those groups, plankton is known to be particularly
diverse [186]. Thus, planktonic organisms cover a broad spectrum of Plankton plays key

ecological roles.size (from a few micrometers to several meters), shape, opacity, colour,
etc. While a few planktonic groups are ubiquitous (e.g. copepods),
many others are sparsely distributed and rare even when they are
present [361]. Planktonic organisms are key elements of the oceanic sys-
tem: they are the basis of oceanic food webs [125, 413], they contribute
to the sequestration of organic carbon into ocean depths [246], and are
responsible for half of the primary production of the biosphere [131].
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Their diversity and ecological importance have made them the focus of
scientific research for centuries [314].

Historically, plankton diversity was studied by sampling with nets
and pumps followed by identification and counting by taxonomists.
This very accurate but time-consuming method is now getting comple-
mented with quantitative imaging and automated identification. Many
plankton imaging instruments have been developed and now generate
quantitative plankton observations [243]. Some of these instrumentsPlankton data

collection used to
be time consuming
but now integrates

automation.

proceed by imaging collected samples, for example the ZooScan [149],
the FlowCAM [365] or the ZooCAM [79]. Others acquire images in situ,
for example the Underwater Vision Profiler (UVP) [317, 318], the In
Situ Ichthyoplankton Imaging System (ISIIS) [85], the Imaging FlowCy-
tobot (IFCB) [298] or the ZooGlider [293]. The increasing number and
ease of use of instruments generates an increasing volume of plankton
imaging data. This data is mostly processed through machine learning
algorithms. But, often, the software pipelines did not progress as fast
as the hardware, resulting in a data processing bottleneck [253].

3.1.1 Plankton image classification

Typically, the automatic classification of plankton images proceeds by
training machine learning models on handcrafted features extracted
from the images and representative of the morphology of objects to
classify (e.g. size, texture, grey levels). The classification algorithms in-
clude Support Vector Machines (SVM) [185, 250, 372], Random Forests
(RF) [149] or Multi-Layer Perceptrons (MLP) [89]. A few studies per-Automatic

identification
plankton images

initially involved
models learning

from handcrafted
features. . .

formed comparisons of classifier performances [43, 117, 118, 149, 160],
with varying results depending on the dataset, but in the end perfor-
mance was comparable. This suggests that classifiers’ performance is
not only driven by the classifier but rather by the features (number,
diversity. . . ) that are fed to the classifier: models perform better when
they are trained from a richer set of features [43].

Among these models, RFs are an ensemble learning method suitable
for both classification and regression tasks. Their good performance,
flexibility and ease of use contributed to their popularity [169]. RFs
are based on decision trees averaging, but with the specificities of
bootstrapping on the training data and random subsetting of features
to compute each tree node, resulting in more robust models while
reducing overfitting [57]. According to Fernández-Delgado et al. [129]
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who evaluated the performances of nearly 180 classifiers on various
datasets, RFs perform better than other classifiers. This conclusion was . . . of which the

random forest is a
special case of
decision trees.

previously reached by Gorsky et al. [149], resulting in a wide use of
RF classifiers to sort ZooScan data. Later on, the IFCB data processing
software switched from SVM to RF [13]. Finally, EcoTaxa [316], a web
application dedicated to the taxonomic annotation of images, initially
implemented a RF classifier to generate classification predictions for
unlabelled images.

However, since 2015, an increasing proportion of plankton image
classification studies are using deep learning approaches, in particular
Convolutional Neural Networks (CNN). CNNs are a specific type of
artificial neural network, mainly used in pattern recognition (image
classification, image segmentation, language processing, etc.). Their CNNs are a

different class of
models. . .

architecture is inspired from the animal visual cortex: each neuron
responds to stimuli from a restricted region. In the case of an image
classification task, a CNN directly takes an image as input, transforms
it in a way similar to what the visual cortex would do, and outputs
a label (i.e. a class name) for that image. Compared to the two steps
approach above, here the model simultaneously extracts features from
the image and uses them to classify it. Its training therefore results in
both a classifier adapted to the classes in the training set and features
that are optimised for this classifier to perform well.

The first application of a CNN to image recognition dates back
to 1990 [223], but their usage strongly intensified after the first and
significant success of a CNN at the 2012 ImageNet Large Scale Visual . . . of which

application to
image
identification is
quite recent. . .

Recognition Challenge [213, 343]. This success was made possible by
the availability of several million annotated images (ImageNet) [101]
and the progress in computational power, especially the use of Graphic
Processing Units (GPU) [73]. CNNs have now become the state of the
art method for image classification [222].

Their application to the classification of plankton images stems from
a plankton images classification challenge hosted by the online plat-
form Kaggle in 2015 (https://www.kaggle.com/c/datasciencebowl/).
Since then, multiple works highlighted the success of CNNs for plank-
ton images recognition [77, 93, 118, 124, 224, 247, 249, 354]. CNNs . . . and even more

in the case of
plankton
identification.

were shown to outperform the classic approach of feature extraction
followed by classification with both RF [192, 300, 301] and SVM [118],
on multiple plankton images datasets. Currently, CNNs dominate the
new literature on plankton image classification [192]. However, these

https://www.kaggle.com/c/datasciencebowl/
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studies only compared coarse metrics such as accuracy or mean scores
(precision, recall, F1-score), and focused on a single classification task.
As we still lack systematic comparison regarding the application of
CNNs to plankton image classification tasks [118, 192], we aim to fill
this knowledge gap with an in-depth comparison on tasks of various
difficulties, providing more detailed metrics in order to understand
where the differences in performance lie between CNNs and RFs.

Whether with traditional or deep approaches, classifying plankton
images is a challenging computer science task. First, plankton datasets
are often strongly unbalanced, with a few dominating classes and many
poorly represented ones [224, 254, 357]. This is actually a characteristicIdentifying

plankton from
images is difficult

for various
reasons.

of planktonic communities: as mentioned above, some taxa are ubiqui-
tous while others are scarcely found [361]. This characteristic contrasts
with common benchmark datasets where classes are more evenly dis-
tributed: between 732 and 1300 images for each of the 1000 classes in
ImageNet [343]. It creates a problem for rare taxa because classification
performance decreases with the number of examples per class [407].
And indeed, rare planktonic taxa are often poorly predicted [249, 357].
Second, as explained above, planktonic organisms come from a wide
range of taxa and constitute a morphologically heterogeneous group,
of various sizes, shapes and opacities. This can result in a non negligi-
ble intragroup morphological variability [160], susceptible to induce
confusion between groups, complicating plankton image classification.
Finally, real-world plankton images datasets contain a large proportion
of non-living objects such as marine snow aggregates or bubbles [30];
these classes often constitute the majority of the datasets [118, 192, 357].
Moreover, plankton images are typically small and often greyscale, and
thus not very rich in terms of information to extract.

So far, over 175 papers addressed the topic of automated plankton
image identification [192]. As shown above, a few explicitly compared
models, with sometimes diverging results. But, overall, these 100+
studies used many different datasets, most of them not released pub-
licly, of various compositions in terms of classes and number of images,
while both strongly affect performance. They also reported differentAssessing the

evolution of
performance at

plankton images
classification is

difficult.

performance metrics and the one most commonly reported (accuracy)
is flawed in the case of unbalanced datasets [192]. From a broad per-
spective, classification performance seems to have stayed quite stable
over time, while the numbers of taxa to sort, hence the difficulty of
the task, increased [192]. This would indicate that classifiers did im-
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Table 3.1: Common plankton images benchmark datasets.

Name References Imaging instrument Composition Relevant publications
Images Classes

WHOI-plankton [301, 373] IFCB 3.5 M 103 [87, 93, 224, 300]

ZooScanNet [115] ZooScan 1.4 M 93 [254, 357]

PlanktonSet 1.0 [86] ISIIS 30,336 121 [107, 327, 338, 405]

prove. But the two reasons stated above make it impossible to quantify
it. Nonetheless, three benchmark datasets were published and used
in several studies (Table 3.1), while a few other studies focused on
smaller versions of these datasets [93, 247, 429], so the move towards
standardisation and intercompatibility is ongoing.

The purpose of this work is to report the performance of a classic
approach, using handcrafted features and a RF classifier, and of an We propose a

standardized
comparison of two
classifiers on large,
public, reference
datasets.

easy-to-train CNN on large, publicly released, datasets from six com-
monly used plankton imaging instruments. This study compares the
two classifiers, to objectively discuss the merits of CNNs compared
to the traditional approach. It also provides baseline results for the
development of future plankton images classifiers.

3.2 Material and methods

3.2.1 Datasets

3.2.1.1 Imaging tools

Among the six widely used plankton imaging instruments from which
we draw datasets, three are deployed in situ while the three others
image plankton ex situ. The ISIIS [85] is a ship-towed system that
undulates between the surface and a specified depth. It uses trans-
mitted light, which allows a long depth of field and is particularly
suitable for the imaging of small and transparent organisms. The size
of targeted organisms ranges from less than 1 mm to several cm. A
tow at 4 kts with a scanning rate of 28 kHz allows a high sampling rate
of > 100 L s-1 [124]. The UVP6 [318] can be deployed on CTD-Rosette The datasets come

from six
commonly used
plankton imaging
instruments.

systems, long-term moorings or autonomous underwater vehicles, such
as floats and gliders. It targets organisms between 620 µm and a few
cm. The IFCB [298] is a flow imaging instrument, targeting phytoplank-
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ton between 10 and 100 µm. It continuously operates underwater and
can be deployed for months, making it adapted to long-term surveys.
Image capture is usually triggered by the detection of chlorophyll flu-
orescence so that dead particles are not imaged. The ZooScan [149]
allows operators to scan preserved plankton samples in the lab. It
targets organisms larger than 200 µm. The FlowCAM [365] is a flow
imaging instrument that can be used in the lab or on a ship. It targets
phytoplankton and microzooplankton ranging from 20 to 200 µm. A
pump flows the sample at a rate of 20 mL min-1 to the flow chamber
where organisms are imaged one by one using transmitted light. Simi-
larly to the FlowCAM, the ZooCAM is a flow imaging instrument but
it targets larger organisms, mostly zooplankton and fish eggs larger
than 300 µm. A pump drives the sample, complemented with filtered
seawater, to a flow cell where objects are imaged. The ZooCAM also
uses transmitted light but has a higher flow rate than the FlowCAM:
from 0.28 to 1.7 L min-1 [79].

3.2.1.2 Image processing

Each imaging tool had its specific image processing and feature extrac-
tion pipeline. ISIIS data was processed with Apeep [306] and features
were extracted using Scikit-image [411]. The IFCB data processing
relied on multiple MatLab scripts [372] to extract various feature types.
The UVPapp application [318] was developed to process UVP6 im-Each dataset had

its own features
set.

ages and to extract features. Both ZooScan and FlowCAM data were
processed with Zooprocess [149] that generated crops of individual
objects together with a set of features. ZooCam data processing was
very similar to ZooScan and FlowCAM processing [79]. Thus, for
all datasets, each greyscale image was associated with a set of hand-
crafted features (which depended on the instrument and its processing
pipeline) computed from the image, and a label.

3.2.1.3 Datasets assembling and composition

All datasets were created in a similar way: real-world samples were
sorted by human operators; classifications were checked by one opera-
tor for each dataset; full samples particularly rich in some rare classes
were added (except for IFCB and ZooCAM); classes still containing
fewer than ~100 objects were merged to a taxonomically and/or mor-
phologically neighbouring class. When no relevant merging class could
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Table 3.2: Datasets composition in terms of the numbers of images, classes and
handcrafted features as well as the proportion of plankton.

Instrument Composition

# images [min; max per class] Classes Features % plankton

FlowCAM 301,247 [74 ; 69,085] 93 47 36.2

ISIIS 408,166 [70 ; 321,335] 32 31 15.3

UVP6 634,459 [87 ; 508,817] 54 62 7.7

ZooCAM 1,286,590 [81 ; 204,132] 93 48 67.8

ZooScan 1,451,745 [90 ; 241,731] 120 48 71.2

IFCB 1,592,196 [90 ; 1,177,499] 69 72 12.6

be found, objects were assigned to a miscellaneous class, along with
other objects in the same situation or impossible to classify. Thus, every Datasets are

representative of
the real-world.

single object was included in the classification task, ensuring that the
metrics computed on those datasets are as relevant to a real-world
situation as possible. While the homogeneous processing and cross-
checking does not guarantee the absence of mistakes, it should still
result in very consistent classes. The IFCB images were sourced from
Sosik, Peacock, and Brownlee [371] (years 2011-2014); the images for
other instruments were sourced from EcoTaxa [316], with the permis-
sion of their owner. The number of images in the resulting datasets
ranged from 301,247 to 1,592,196, in 32 to 120 classes (Table 3.2). As
expected, the datasets collected in situ (ISIIS, UVP6, and IFCB) were
particularly rich in marine snow and other non-living objects, resulting
in a low proportion of plankton.

To assess performance at a coarser taxonomic level, which could
be sufficient in some applications scenari and is more comparable to
most older papers, each class was assigned to a larger ecological group
(Table S3.2). Then, each class/group was categorised as plankton or not- Modification of

datasets for
machine learning.

plankton, which allows to compute metrics for planktonic organisms
only, without the, sometimes dominant, non-living objects (Table 3.2).
Datasets were split into 70% for training, 15% for validation and 15%
for testing. These splits were stratified by class to guarantee a good
representation of each class in all datasets and they remained identical
for all experiments.
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3.2.2 Classification models

Each dataset was classified with a classical approach (Random Forest
working on the handcrafted features) and with a modern ConvolutionalBoth models were

trained and
evaluated

following the same
procedure.

Neural Network. The training procedure was similar for both and was
replicated exactly for each dataset: (i) models were fitted on the training
split, according to a loss metric, (ii) various sets of hyperparameters
were assessed based on that same loss metric but computed on the
independent validation split to limit overfitting, (iii) the model with
optimal hyperparameters was used to predict the never-seen-before
test split, once, and various performance metrics were computed.

The RF classifier was implemented with Scikit-learn [310]. The CNN
model was implemented with Tensorflow [1]. Training and evaluationImplementation

technical details. were performed on a Linux machine, running Ubuntu Linux 20.04
and Python 3.8.10, sporting two 18 cores Intel Xeon Gold 6240 (72
logical cores) and a Quadro RTX 8000 GPU. The code to reproduce
all results is available at https://github.com/ThelmaPana/plankton_

classif_benchmark.

3.2.2.1 Random Forest

The RF classifier was trained on the handcrafted features extracted from
images by the software dedicated to each instrument. Their number
ranged from 31 to 72 depending on that software (Table 3.2). SeveralThe RF learns

from handcrafted
features.

types of features exist: most features are global features computed
on the whole image; morphological features are computed on the
object silhouette, and texture features are computed as co-occurrence
matrices on grey levels. The diversity of these features is determinant
for classifier performance [43].

The loss metric used during training and validation was the categori-
cal cross-entropy, which does not optimise accuracy directly but rather
the quality of the probability to be in the correct class, output by the
classifier. Hyperparameters for the RF classifier were evaluated using aThe RF has its

specificities
(hyperparameters,

criterion).

grid search procedure over specified values for: (i) number of trees (100,
200, 350, 500), (ii) number of features to use to compute each split (the
default for classification is the square root of the number of features;
here 4, 6, 8, 10 were tested) and (iii) minimum number of samples
required to attempt the split of a node (the default for classification is
5; here 2, 5, 10 were tested) [169]. For each combination of values (48
in total), the RF model was fitted on the training split and evaluated

https://github.com/ThelmaPana/plankton_classif_benchmark
https://github.com/ThelmaPana/plankton_classif_benchmark
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on the validation split. The model with the lowest validation loss was
chosen as the best.

3.2.2.2 Convolutional Neural Network

Because our goal here is to assess the performance of an easy-to-use
CNN, that most research teams should be able to deploy, we used The CNN learns

directly from
images but they
have to be
prepared.

transfer learning from a rather small model, pre-trained on ImageNet
and then fine-tuned on each dataset.

The feature extractor portion of the CNN is from a MobileNetV21

[347]. The depth multiplier is 1.4, the input size is 224×224×3 and the
output is a 1792-elements vector. Therefore, images were reformatted
to match the input size, while preserving their aspect ratio: each image
was resized so that its longest side was 224 pixels, then padded to
224×224 pixels using the median value of border pixels (to keep the
background homogeneous), finally the greyscale channel was replicated The CNN

consisted of a
feature
extractor. . .

to create three identical channels and reach the shape of 224×224×3
pixels. As training a CNN from scratch is usually a power and time-
consuming process and requires a large volume of training data, we
applied transfer learning by using a feature extractor pre-trained on
the ImageNet dataset. The pre-trained feature extractor can be used as
it is, as features extracted by a model trained on generic datasets are
also relevant for other tasks [422], such as plankton classification [300,
338]; but can also be fine-tuned for better performance [422].

After the feature extractor, we added a dropout layer (rate = 0.5), a
fully connected layer of size 680 and a classification head whose size . . . followed by

fully connected
layers.

depends on the number of classes to predict, for a total of ~5.6 million
parameters. A few initial tests showed that increasing the size of the
fully connected layer, or using two layers, did not improve performance
while it complexified the model. The drop-out layer ensured that
the model did not rely on a few key neurons only, thus reducing
overfitting [378].

To improve the generalisation ability of the model and the perfor-
mance, especially for rare classes, images from the training set were
augmented with random vertical and horizontal flip, zoom in and out
(by 20% maximum) and shearing (by 15° maximum). Images were
not rotated as objects from a few classes had specific orientation (e.g.
vertical-lines in the ISIIS dataset or some organisms that display a given
orientation in datasets collected in situ). Like for the RF, the loss metric

1 https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/feature_vector/4

https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/feature_vector/4
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was the categorical cross entropy. At the end of each training epoch
(i.e. a complete run over all images in the training split), both loss and
accuracy were computed on the validation split, to check for overfit-
ting, and model parameters were saved. The feature extractor, fullyCNN training

specifics. connected and classification layers were trained for 35 to 60 epochs,
depending on the dataset. This was shown a posteriori to be enough for
the training to be exhaustive: for all experiments, the validation loss
did not improve for at least the last 9 epochs. The optimiser used the
Adam algorithm, with a decaying learning rate from an initial value
of 0.001 and a decay rate of 0.35 per epoch. Given that training each
CNN took several hours, an extensive hyperparameter search was not
performed, but the number of training epochs, at least, was optimised
through early stopping to reduce overfitting [368]: the parameters of
the model at the epoch with minimum validation loss were selected as
the final model.

3.2.2.3 Class weights

In an imbalanced dataset, more importance is given to well represented
classes, because examples from those classes come more often in the
computation of the loss, while very small classes are almost negligible.
As a result, the performance on those small classes is often very bad.Class weights were

used to overcome
class imbalance.

An efficient workaround is to rebalance the importance of all classes
by weighting the loss function in such a way that misclassification of
small classes has a higher cost than that of common ones, thus forcing
the model to perform better on small classes.

A common for of weighting is by “inverse frequency” : the weight of
class i is computed as

Wi =
max(c)

ci

where max(c) is the number of objects in the largest class and ci the
number of objects in class i. However, this method can lead to veryInverse frequency

weighting was too
strong.

heavy weights for very small classes, in highly imbalanced datasets,
with potential negative side effects [88]. Thus we chose a smoother dis-
tribution of weights and used the square root of the inverse frequency,
which gives, for class i:
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Wi =

√
max(c)

ci

We trained both non weighted and weighted CNN and RF models
on the same datasets to explore the effects of weighted training.

3.2.2.4 Model evaluation

After training and choosing the best model for each approach, each
dataset, with and without class weight, each resulting model was Classic metrics

were computed to
assess model
performance. . .

evaluated on the test split, which had never been used beforehand, and
the following usual metrics were computed: accuracy score (percentage
of objects correctly classified), class-wise precision (percentage correct
in the predicted class) and recall (percentage correct within the true
class).

However, in datasets with a strong class imbalance such as many
plankton datasets, the accuracy value can be misleading. For exam-
ple, in a strongly biased dataset composed of 99% of objects in the
same class, a dummy model classifying every object in this class is . . . but accuracy

on unbalanced
datasets is
misleading.

completely useless but still has 99% accuracy. In a dataset with three
classes with proportions 98%, 1% and 1%, a classifier assigning classes
at random but following those proportions still has an accuracy of
~96%. Therefore, to more honestly gauge the quality of our models on
imbalanced datasets, performance metrics were also computed on the
output of such a random classifier. In addition, the balanced accuracy
value, computed as the macro-average of per-class recall scores, was
also computed since it is a better estimate of model performance in
such a scenario [200].

Moreover, in the case of plankton datasets dominated by non plank-
tonic classes (e.g. detritus), the accuracy value is mostly driven by this
class and, therefore, does not provide information on the performance
on plankton classes, which are often the topic of study. To focus on Wwe also

computed
plankton-focused
metrics.

those classes, we also computed the average of per-class precisions and
recalls, weighted by the number of objects in the class, and only using
plankton classes. Averaged plankton recall provides a direct indication
of the proportion of planktonic organisms that were correctly predicted.
Averaged plankton precision gives an indication of how “pure” the
predicted plankton classes are.
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3.3 Results

3.3.1 Hyperparameter choices and training time

Training and evaluation time was always shorter for RFs than for CNNs.
When running on 12 CPU cores, the RF on the smallest dataset (ISIIS,
~400,000 objects) took less than one hour for gridsearch, training and
evaluation, while it took a few hours on the IFCB dataset (~1.6 M
objects). Regarding the CNN, it took 16 h to train the model for 40RF was faster to

train than CNN. epochs on the ISIIS dataset but 78 h for the same number of epochs
on the IFCB dataset, using a Quadro RTX 8000 GPU. All CNN models
were trained long enough so that the best epoch according to the
validation split was reached at least 9 epochs before the end of training.
The gridsearch performed to choose RF hyperparameters selected
models with a high number of trees (500, Table S3.1), numerous features
considered for each split (10 in most cases) but rather shallow trees as
splits could only be performed in nodes containing a certain number
of objects (10 in most cases).

3.3.2 Classification performance

The performance metrics of all models on all datasets are presented in
Figure 3.1.
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Figure 3.1: Metrics computed on the test split of each dataset for each model
(random, RF, CNN; NW = non weighted, W = weighted). Thick bars show the
value of each metric on the finest taxonomic level, thin bars show the value
after regrouping objects in broader ecological classes.
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In terms of overall accuracy, CNNs performed only a bit better than
RFs on all datasets (Figure 3.1). The use of class weights slightly
decreased both CNNs and RFs accuracies, as it focused training onOverall, CNN

performed slightly
better than RF.

small classes, paying less attention to large classes that account for
more in the computation of accuracy. Note that a random classifier
achieved 56.2%, 62.3% and 65.0% of accuracy on the detritus-dominated
IFCB, ISIIS and UVP6 datasets, respectively. While the accuracies of our
models are all higher (94.9%, 96.3% and 94.6% for the non-weighted
version of the CNN), they must be gauged in terms of the increase
compared to the random model and not in absolute terms.

CNNs had much better balanced accuracy than RFs, with and with-
out weights (Figure 3.1). The random classifier performed very poorlyFor classification

of poorly
represented classes,

CNN strongly
outperformed RF.

for all datasets, because this metric is indeed more sensitive to small
classes, where RFs performed worse than CNNs. Class weights im-
proved balanced accuracy for both CNNs (up to +8.2% for the UVP6
dataset) and RFs (up to +18.0% for the UVP6 dataset). Thus, as ex-
pected, weighting small classes more did enhance their learning, espe-
cially for RF models.

CNNs outperformed RFs in terms of averaged plankton precision, on
all datasets, regardless of weight use (Figure 3.1, Table 3.3). However,CNN classification

resulted in cleaner
plankton classes

than RF.

weighting small classes decreased precision on plankton classes for
both models, in all datasets. Models paid less attention to large classes,
resulting in a stronger pollution of plankton classes, that is: a lower
precision.

On the other hand, the use of class weights did improve the recall
of plankton classes for all CNNs and RFs with the exception of the
CNN on the FlowCam dataset. This improvement is not surprisingCNN performed

better at detecting
planktonic
organisms.

since plankton classes, usually smaller than non plankton classes (e.g.
detritus), are therefore weighted more and this reduces the number
of false negatives, i.e. increases the recall. For all datasets, all CNN
models – weighted or not – gave much better results than RF models
(Figure 3.1, Table 3.3).

3.3.3 Performance on coarser groups

Regrouping classes into larger ecological groups increased all perfor-
mance metrics on all datasets (Figure 3.1). Indeed, such regrouping
made the classification task easier because there were fewer groups
to classify but it could also induce more diversity per class, thus de-
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creasing performance of certain classes. The performance increase
was stronger for RF models, particularly on the ZooCam and ZooScanUnsurprisingly,

regrouping classes
led to better

performances.

datasets. This result highlights the fact that RFs make frequent confu-
sions among the finer scale taxa within large ecological groups. A good
example is Copepoda, which accounts for 22 classes in the ZooCam
dataset and 20 in the ZooScan dataset, and make up 38% and 34% of
images in each dataset, respectively. This is further supported by the
strong increase in performance for the random classifier too, on both
the ZooCam and ZooScan datasets.

CNN performance improvement compared to RF was stronger whenCNN improved
performance even

better when the
classification task

was harder.

the taxonomic level was more detailed (Figure 3.2), i.e. when there
were more classes to predict, thus when classes were smaller and the
prediction task was harder. This also suggests that CNNs are better
than RFs to distinguish between rare classes.

3.4 Discussion

3.4.1 Cost and benefits of using CNNs

3.4.1.1 Main result: CNNs improve the detection of rare classes

When looking at accuracy only, RFs performance appeared to be lower
but close to CNNs performance. However, balanced accuracy andCNNs performed

better than RFs at
detecting rare

plankton classes.

metrics on plankton classes highlighted that CNNs performed better
in the classification of objects in low abundant classes, especially when
class weights were used. This makes the use of CNNs particularly
relevant for plankton classification tasks where datasets are often biased
towards non planktonic classes.

3.4.1.2 Considerations on computation cost

CNNs took longer to train than RFs. However, training a RF model
from images only requires first to extract features from images, which
can take a non negligible time depending on the size of the dataset and
the type of features. Nonetheless, the computational cost of CNNs isCNNs are more

costly to train
than RFs.

higher as they require a GPU to train efficiently [73]. This restricts their
use to powerful enough computers and impeaches their application to
onboard plankton classification tasks for now. But CNN training time
heavily depends on the number of parameters of the model, here we
selected a lightweight CNN model (5.5 million trainable parameters),
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of which training was fast (less than 100 hours) compared to larger
models [426]. As both deep-learning libraries such as Tensorflow
or Pytorch become easier to use and GPU resources are becoming
more available for the scientific community, these powerful tools are
becoming more accessible [253].

3.4.1.3 The model choice depends on classification goals

Before training a model for plankton classification, it is important to
determine the goals of such a task. If one wants to maximise overall
accuracy on a balanced dataset with no irrelevant classes, methods to The classification

model should be
chosen according
to classification
goals.

deal with class imbalance are not relevant and should not be applied.
In such a case, a classic model with shorter training time and lower
computation cost might perform almost as well as a CNN. On the
other hand, if the goal is to maximise the detection of rare plankton
classes or to perform classification on confusing classes, a CNN will
likely perform better than a classic classification model, especially in
combination with class imbalance methods. Moreover, CNNs were
shown to perform better than RF to predict low abundances even when
training data is abundant [192].

3.4.2 Potential improvements

3.4.2.1 CNNs do not account for size but could be added

While CNNs performed better than RFs, a well known drawback of
CNNs is that they do not account for object size, as all input images
must be resized to the same dimension. A solution to avoid every object
to have the same size is to proceed to resizing for images larger than
input dimension and to use padding instead of resizing for smaller
images. However, this may become a risky practice in the presence of
very small objects: they might just be reduced to 1 pixel after a few
convolutions and all information would be lost. Another and more CNNs do not

account for object
size but a few
workarounds
exist.

robust solution is to use mixed models: size information (e.g. area,
feret) can be concatenated with the fully connected layers to produce a
model accounting both for images and objects size properties. However,
this does not necessarily provide a strong improvement in classification
performance: Kerr et al. [202] report a small improvement when con-
catenating geometric features, while Kyathanahally et al. [214] report
negligible gain. Ellen, Graff, and Ohman [118] assessed the effect of
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concatenating various types of context metadata (geometric, geotempo-
ral and hydrographic) into fully connected layers: geometric features
did not improve model performance while geotemporal and hydro-
graphic (and combination of them) did improve model performance.
However, the use of such metadata for organisms classification forbids
any later analysis linking these organisms with their environment as
a correlation between organisms and environment is induced at the
classification step. The weak to negligible improvement induced by
the concatenation of size features could be explained by the fact that
CNN classifiers mostly rely on local texture and shape features [16],
thus they should be able to correctly predict an object regardless of its
resizing.

3.4.2.2 Changes to the datasets

Plankton datasets are often imbalanced with plankton classes being the
smallest ones, while largest classes are often made of non living objectsImbalance in

plankton datasets
can be

overcome. . .

such as detritus. The datasets used in this study are no exception.
Both “algorithm-level” methods and “data-level” methods exist to deal
with class imbalance and avoid training being dominated by larger
classes [212].

Algorithm-level methods include the use of class weights to artifi-
cially give more importance to poorly represented classes in the loss
computation [88]. This is the method we implemented in our work. An-. . . with

algorithms. . . other algorithm-level method is to use a loss function such as sigmoid
focal cross entropy [237] which penalises more hard examples (small
classes) than easy ones (large classes). We tested the implementation of
focal cross entropy instead of a categorical cross entropy for our CNNs
but it did not significantly improve performance.

Data-level methods include oversampling small classes and under-
sampling large classes, thus modifying the distribution of classes in the
training set [212]. This practice can lead to bad performances when. . . or at the data

level. evaluating the model on an imbalanced test set because the model also
learned the class distribution. Thus, when using a model trained on an
idealised training set to classify objects from a new dataset, prediction
may be of poor quality [145], a problem known as dataset shift [280].
Algorithm-level and data-level methods can be used concurrently to
alleviate the effect of imbalanced datasets.

Another difficulty in plankton classification tasks is to generate a
training set with all potential objects that can be detected with the
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instrument. Indeed, the model will not be able to predict a class that We need
exhaustive
datasets.

has never been seen before. As a consequence, when training a classifier
with a fixed list of classes, all objects are inevitably predicted in one of
these classes, impeding the discovery of new types of objects [254, 357].

3.5 Conclusion and perspectives

In the end, we show that CNN models perform slightly better than RF
models at the global scale. Furthermore, the use of a class-weighted
CNN model remarkably improves detection of poorly represented
(a few hundred images), where a class-weighted RF model fails to CNN performed

better than RF on
rare classes.

overcome dataset imbalance. Our results show that both RF and CNN
predictions can be trusted to answer ecological questions regarding
abundant plankton, as long as the model was adequately trained and
tested. However, one should be careful when looking at rare plankton
with smaller-scale differences in concentrations (whether in time or
space): if CNN can be a good indicator, they cannot be fully trusted on
poorly represented classes, where manual validation by an operator is
still required [192].

Finally, our work highlights the importance of not only considering
the global accuracy when assessing model performances, especially in
the case of an unbalanced dataset biased towards classes outside of the
main topic area; but rather to consider metrics focusing on classes of
interest. The results presented here are in line with the shift towards Consider other

metrics than
global accuracy.

the use of deep learning models for plankton classification tasks [189],
which was made possible thanks to the advances in computational
power, an easier access to dedicated hardware, the release of large
enough datasets and the development of deep learning turnkey libraries
such as Tensorflow [1] or Pytorch [308]. All the datasets used in this
study which are not released yet will be made publicly available to
facilitate benchmark of new classification methods.
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Supplementary materials

Table S3.1: Selected hyperparameters by RF gridsearch for each RF training

Dataset Class weights Hyperparameters

Number of trees Max features Min sample split

IFCB NW 500 10 5

W 500 8 10

ISIIS NW 500 10 10

W 500 6 10

UVP6 NW 500 10 10

W 500 6 10

ZooScan NW 500 10 5

W 500 10 10

FlowCAM NW 500 10 5

W 500 10 10

ZooCAM NW 500 10 5

W 500 10 10
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Part III

Plankton distribution at various scales

The distribution of planktonic organisms was investigated
at different spatial and temporal scales. Each chapter in this
section focuses on the distribution of plankton at a given
scale, starting from the largest – the global scale – to finer
scales – meso and submesoscale.





4
Three mesoplanktonic worlds
resolved by in situ imaging in
the upper 500 m of the global
ocean

In this chapter, I leverage a global dataset of UVP5 profiles performed
worldwide to investigate large types of plankton community through-
out the world’s ocean. Such dataset was obtained by assembling and
homogenising in situ imaging data collected during various oceano-
graphic campaigns, deploying the UVP5 along vertical profiles. The
6.8 million imaged objects were pre-classified with the assistance of
a machine learning algorithm and manually reviewed by a human
operator. A total 330,000 objects were identified as planktonic organ-
isms, either large zooplanktonic organisms and phytoplankton colonies.
Then, data mining approaches were applied to characterise plankton
community types and understand how they relate to environmental
conditions. This work brings to light the importance of unexpected
groups such as Trichodesmium (cyanobacteria) and Rhizaria (unicellular
eukaryote) as structuring elements of plankton communities. Moreover,
the distribution of these plankton communities seems to be mostly
driven by basin-scale environmental conditions. These results call for
studying the distribution of plankton communities on smaller scales
too in order to obtain a thorough understanding of their distribution.

Thelma Panaïotis, Marcel Babin, Tristan Biard, François Carlotti, Lau-
rent Coppola, Lionel Guidi, Helena Hauss, Lee Karp-Boss, Rainer Kiko,
Fabien Lombard, Andrew MP McDonnell, Marc Picheral, Andreas
Rogge, Anya M Waite, Lars Stemmann and Jean-Olivier Irisson

Manuscript in preparation to be submitted to Global Ecology and
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Abstract

Aim Ocean biogeographies are mainly based on biogeochemical sig-
natures combining in situ optical data, remote sensing, and sometimes
biogeochemical model output. However, the consistency between these
regionalisations and the distribution of planktonic organisms remains
an open question.

Location Global ocean, 0-500 m depth.

Time period 2008-2019

Major taxa studied 28 groups of planktonic organisms, covering
Metazoa, Rhizaria and cyanobacteria.

Methods Using in situ imaging, we studied the global distribution of
meso- and macro-planktonic organisms (> 600 µm Equivalent Spherical
Diameter). We used a global data set of 2500 vertical profiles making
use of an Underwater Vision Profiler 5 (UVP5). Among the 6.8 million
imaged objects, 330,000 were large zooplanktonic organisms and phy-
toplankton colonies, while the rest were mainly marine snow particles.
Multivariate statistical ordination and regression methods were used
to describe patterns in community composition and their correlation
with environmental variables in the epipelagic and upper mesopelagic
layers.

Results Epipelagic plankton communities were dominated by Tri-
chodesmium in the intertropical Atlantic, by Copepoda at high latitudes
and in upwelling areas, and by Rhizaria in oligotrophic areas. In the
mesopelagic layer, Copepoda-dominated communities were also found
at high latitudes and in the Atlantic Ocean, Rhizaria-dominated com-
munities prevailed in the Peruvian upwelling system and a few mixed
communities were found elsewhere. The comparison between the dis-
tribution of these communities and a set of existing regionalisations
of the ocean suggested that the structure of plankton communities de-
scribed above is mostly driven by basin-level environmental conditions
rather than the conditions in the immediate vicinity of the sampling
site.
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Main conclusions In both layers, three types of plankton communi-
ties emerged and seemed to be mostly driven by regional environmental
conditions. This work sheds light on the role not only of metazoans,
but also of unexpected large protists and cyanobacteria in structuring
plankton communities.

Keywords biogeography, global ocean, in situ imagery, plankton
communities, spatial distribution

Résumé

But Les biogéographies océaniques sont principalement basées sur
des signatures biogéochimiques combinant in situ des données optiques,
la télédétection et parfois les résultats de modèles biogéochimiques.
Cependant, la cohérence entre ces régionalisations et la distribution
des organismes planctoniques reste une question ouverte.

Location Océan mondial, profondeur de 0 à 500 m.

Time period 2008-2019

Principaux taxons étudiés 28 groupes d’organismes planctoniques,
comprenant des Metazoa, des Rhizaria et des cyanobactéries.

Méthodes En utilisant l’imagerie in situ, nous avons étudié la distri-
bution globale des organismes méso- et macro-planctoniques (> 600 µm
de diamètre sphérique équivalent). Nous avons utilisé un jeu de don-
nées global de 2500 profils verticaux en utilisant un profileur de vision
sous-marine 5 (UVP5). Parmi les 6,8 millions d’objets imagés, 330 000
étaient des organismes zooplanctoniques ou des colonies de phyto-
plancton, tandis que le reste était principalement des particules de neige
marine. Des méthodes statistiques multivariées d’ordination et de ré-
gression ont été utilisées pour décrire les modèles de composition des
communautés et leur corrélation avec les variables environnementales
dans les couches épipélagiques et mésopélagiques supérieures.

Résultats Les communautés planctoniques épipélagiques étaient
dominées par des Trichodesmium dans l’Atlantique intertropical, par
les copépodes aux hautes latitudes et dans les zones d’upwelling, et
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par Rhizaria dans les zones oligotrophes. Dans la couche mésopéla-
gique, les communautés dominées par les copépodes ont également
été trouvées à des latitudes élevées et dans l’océan Atlantique, les
communautés dominées par rhizaires ont prévalu dans le système
d’upwelling péruvien et quelques communautés mixtes ont été trou-
vées ailleurs. La comparaison entre la distribution de ces communautés
et un ensemble de régionalisations existantes de l’océan suggère que la
structure des communautés planctoniques décrites ci-dessus est princi-
palement déterminée par les conditions environnementales au niveau
du bassin plutôt que par les conditions à proximité immédiate du site
d’échantillonnage.

Principales conclusions Dans les deux couches, trois types de com-
munautés planctoniques sont apparus et semblent être principalement
déterminés par les conditions environnementales régionales. Ce travail
met en lumière le rôle non seulement des métazoaires, mais aussi des
grands protistes inattendus et des cyanobactéries dans la structuration
des communautés planctoniques.

Mots clés biogéographie, océan global, imagerie in situ, communau-
tés planctoniques, distribution spatiale

4.1 Introduction

Biological communities are heterogeneously distributed: this is key for
ecosystem functioning [226]. Biogeography is a science describing and
trying to understand these distributions and how they aggregate in
distinct ecosystems [60, 245]. This produces continuous distributionBiogeography aims

to describe spatial
biodiversity

patterns.

maps or delimitation of regions homogeneous in composition (i.e.,
regionalisations; [226]). Although global species distributions have been
described for over two centuries [61], biogeography remains a relevant
topic. Beyond species distribution, it includes the traits distribution
(dispersal, polyploidy. . . ); [10, 63, 332], providing new insights into
organisms’ ecology and evolution. In the marine realm, recent studies
suggested new regionalisations based on the environment alone [428]
but also regarding species distribution, either for phytoplankton [180]
or for 65,000 species across phyla [83], highlighting great endemicity in
marine phyla.
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Plankton – organisms drifting with currents – are incredibly di-
verse and cover a large size range [69, 186]. It supports oceanic food
webs [125, 413], plays a major role in biogeochemical cycles through the
biological pump [246]. Phytoplankton contributes to primary produc- Plankton is

diversified and
sensitive to its
environment, thus
well appropriate
for biogeography.

tion [131]. As drifters, planktonic organisms are distributed worldwide
but their distribution is shaped by the conditions of the water mass they
are embedded in [172]. Because these conditions vary with latitude,
the corresponding variations in plankton distribution are well-known:
higher diversity towards low latitudes [188, 340, 345, 399] and higher
biomass towards higher latitudes [190]. They are sensitive to envi-
ronmental conditions: planktonic organisms are also global change
sentinels [20, 22, 172]. Studying plankton biography is relevant to
understand anthropocene pelagic ecosystems.

In terrestrial biogeography, biomes rest on vegetation types, but also
coincide with climatic zones and soil type distribution: they constrain
plant growth [60]. Compared to the terrestrial realm, assessing oceanic
biogeography presents inherent difficulties: costly global scale offshore
sampling; observing distribution varying in time and space in a three-
dimensional and opaque environment. . . Early ocean biogeographies Marine

regionalisations
can be based on
species
distribution and
on biogeochemical
conditions.

considered various taxa’s distribution, including copepods, euphausi-
ids, Rhizaria or phytoplankton [375]. Simultaneously, non-biological
regionalisations were based on the physical environment: ocean cur-
rents, temperature, salinity, ice conditions [375]. Novel technologies,
such as satellites, fostered ecological ocean geography: using surface
chlorophyll a concentration computed from ocean colour – proxy for
phytoplankton concentration – new regionalisations emerged. However,
most new approaches ignore organisms distribution: the 56 Longhurst
Provinces [244, 245] considered physical forcing (sea surface tempera-
ture, mixed layer depth. . . ) as phytoplankton distribution regulators.
A widely used global synthetic regionalisation is based on latitudinal
bands [375]. As explained above, it correlates with major environmental
variables (temperature, light intensity. . . ). Other regionalisations, the
Word Marine Ecoregions [376] or the Large Marine Ecosystems [364]
include biotic data, but focus on coastal areas only. In contrast, Costello
et al. [83] delineated marine biogeographic realms using the distri-
bution of marine animals, plants, and Hofmann Elizondo et al. [180]
defined biomes using phytoplankton distribution. Furthermore, these
regionalisations focus on the epipelagic layer: not suitable for less
described deeper ocean, harder to sample and not necessarily linked
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to surface characteristics [84, 375]. Few regionalisations targeted the
mesopelagic: Reygondeau et al. [331] suggested dividing it into 13
provinces, based on environmental variables, while introducing the
definition of the mesopelagic layer dynamic top and bottom boundaries,
based on environmental conditions (light, density, carbon flux. . . ).

Briefly, ocean biogeography was described through regionalisations,
but about the epipelagic layer or coastal areas; delineation is basedAre these

regionalisations
coherent with

plankton
distribution?

on physical and biogeochemical variables. Widespread and under-
sampled offshore areas, however, are crucial for biogeochemical cy-
cles [120] and target conservation through developing protected marine
areas. Although a few organisms’ groups’ spatial distribution – cope-
pods [23, 340, 418], microorganisms [137, 183, 233] or larger species
assemblages [55, 345, 374, 399] – were described previously, consistency
between these and biogeochemistry-based regionalisations remains
unexplored.

Limited quantitative and basin-scale data about offshore planktonic
organism distribution is available. Because plankton was tradition-
ally sampled using nets, pumps. . . These methods require lengthyIn situ imaging is

particularly
appropriate to

study plankton
distribution.

taxonomic identification [30], partly subjective [90], therefore not scal-
ing well to large spatiotemporal scales biogeography. Besides, they
may damage fragile organisms [330]. New in situ cameras now image
planktonic organisms in their natural environment and resolve their
fine scale vertical distribution [385], while generating large datasets,
homogenised by reviewing images [192, 205]. These tools also allow
studying fragile taxonomic groups: Rhizaria, whose contribution to
global planktonic biomass was underestimated [42, 104]. These ap-
proaches lack in taxonomic identification fineness, but compensate with
identification and data quantity consistency.

Among these imaging systems, the Underwater Vision Profiler 5
(UVP5) images planktonic organisms and marine snow particles larger
than 600 µm Equivalent Spherical Diameter (ESD) along vertical pro-The UVP5: an in

situ imager and
particle counter
deployed along

vertical profiles.

files [317], therefore sampling large meso- and small macro-plankton,
mostly comprising animals and some large phytoplankton colonies.
Later, we call our study assemblage “plankton”, for simplicity. Con-
centration and biovolume estimates from the UVP5 proved coherent
with those from net samples for large (> 1 mm ESD) Arctic copepods,
while smaller organisms were underestimated [133]. Data from UVP5
was already used to estimate organic carbon vertical particle flux [162]
or study zooplankton distribution [42, 133, 385]. Leveraging net data
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from the Tara Oceans expedition Soviadan et al. [374] described a sharp
decrease in zooplankton concentration with depth, but lower parti-
cle flux attenuation in Oxygen Minimum Zones (OMZ). The opposite
occurs in other world regions. UVP5 can also provide planktonic organ-
isms’ individual traits information: different size and activity patterns
around Arctic ice melt zones [409]; or decrease in organisms’ sizes at
low latitudes [55], and in marine snow particles, highlighting consistent
particle types changes along two Arctic blooms [401]. Using a UVP5
biomass estimates regression on environmental climatologies, Drago
et al. [111] estimated global scale plankton biomass: it was dominated
by copepods peaks at high latitudes.

We study global scale plankton biogeography, leveraging a dataset
assemblage collected by UVP5. We address these questions: what are This study

provides new
insights on
plankton
community
distribution.

plankton communities large types in the open ocean; what differences
between epipelagic and upper-mesopelagic layers; what drivers behind
these community types distribution? We first (i) describe plankton
communities structures; their relation to their immediate physical
and biogeochemical environment. We then (ii) assess the ability of
various physics and biogeochemistry-based regionalisations to describe
these planktonic communities distribution and evaluate their ecological
description relevance.

4.2 Material and methods

4.2.1 Data collection

Data from multiple oceanographic campaigns (Figure S4.1, Table S4.1)
(2008 - 2019) – when UVP5 vertical profiles were performed – was
aggregated, creating a large dataset covering world’s oceans. This in situ The dataset

encompasses the
world ocean and
consists of
plankton and
marine snow
concentrations,
CTD. . .

imaging system captures objects within an approximately 1 L volume,
illuminated by two led beams - up to 20 Hz frequency during a CTD
cast descending part (Conductivity, Temperature, Depth sensor) [317].
All objects larger than 100 µm ESD were measured for area and grey
level. Images were saved for objects larger than ~600 µm ESD; this
paper focuses on the latter part. The CTD provided temperature,
salinity and, for most of the campaigns, also chlorophyll a fluorescence
and oxygen profiles.
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Satellite GlobColour1 products completed the environmental dataset:
averaged over one month on a 100×100 km area centred on UVP5’s
sampling site. Although this data resolution is low in terms of time
and space, using higher resolution data (8 days average, 20×20 km
area) provided a too great missing data proportion. Satellite data. . . and satellite

data. provided: surface chlorophyll a concentration; particulate backscatter-
ing coefficient (bbp); photosynthetically active radiation (PAR); diffuse
attenuation coefficient (KdPAR); particulate organic carbon (POC); partic-
ulate inorganic carbon (PIC). With these data, organism concentrations
were associated with specific environmental conditions.

4.2.2 Data processing

All UVP5 images entered the EcoTaxa web application [316]. They
were classified as marine snow, artefact, badfocus, unidentified; or into
several taxonomic groups according to the UniEuk taxonomic tree [34].
All objects were manually validated or corrected. Striving for consis-Images were

sorted into a
predefined set of

groups: plankton,
marine snow,

artefact,
unidentified.

tency, a taxonomic sorting guide was published and circulated; difficult
groups were reviewed by a single operator across all cruises. Human
operators fully checked the resulting dataset, often several for each
image. Data from 2500 fully validated profiles was retained (6.8 M
objects, 300,000 classified as plankton). Differences in classification tax-
onomic depth among cruises caused some groups to merge, obtaining
a lower common denominator. Then, other groups were merged, for
exhibiting similar patterns in preliminary analysis and were first not
well differentiated (e.g., Copepoda and Copepoda-like). The final list
contained 28 taxa (Figure 4.1).

Object counts per class and imaged water volume computed con-
centrations (L-1) per 5 m bins along each profile. Concentration andConcentrations

were computed
from individual

planktonic
organisms and

marine snow
objects.

biovolume were also computed for marine snow (objects larger than
600 µm identified as aggregates) and bulk particulate matter (all objects
> 100 µm ESD imaged by the UVP, including both plankton and marine
snow). Marine snow and bulk concentrations stood as environmental
variables, plankton organisms being related to them. They are proxies
for, respectively, organic matter amounts sinking from the upper layers
to ocean depths and the overall oligo- or eutrophic water mass state.

After removing abnormal values (codes for missing data, negative
salinity, oxygen concentration or fluorescence), more than 20% of miss-

1 http://globcolour.info

http://globcolour.info
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Figure 4.1: (Caption on next page)
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Figure 4.1: Examples of UVP5 images for selected taxonomic groups. 1: Acan-
tharea, 2: Actinopterygii, 3: Annelida, 4: Appendicularia (4a: Appendicularia
body, 4b: Appendicularia house), 5: Cephalopoda, 6: Chaetognatha, 7: Cnidaria
others, 8: Collodaria, 9: colonial Collodaria, 10: Copepoda, 11: Crustacea oth-
ers, 12: Ctenophora, 13: Doliolida, 14: Eumalacostraca, 15: Foraminifera, 16:
Gymnosomata, 17: Hydrozoa others, 18: Limacinidae, 19: Mollusca others,
20: Ostracoda, 21: Narcomedusae, 22: Nostocales, 23: Phaeodaria (23a: Coelo-
dendridae, 23b: Aulacantha, 23c: colonial Aulosphaeridae), 24: Pyrosoma,
25: Salpida, 26: Siphonophorae, 27: Thecosomata (27a: Cavoliniidae, 27b:
Creseidae), 28: Trichodesmium (28a: tuft, 28b: puff).

ing data profiles for any variable were ignored. All variables were
linearly interpolated at a 1 m vertical resolution. Outliers were detected
by computing the absolute deviation around a moving median along
the profile [231] and removed. Smoothing was performed using a mov-
ing average. Potential density and apparent oxygen utilisation (AOU)Additional

variables were
derived from

environmental
data.

were computed from temperature, salinity and oxygen concentration.
Thermocline, halocline and pycnocline depths were calculated as depth
of the largest variation in the relevant variable computed in a 5 m
sliding window. The mixed layer depth (MLD) was computed at depth
where density differed by more than 0.03 kg m-3 from reference density
in the 0-5 m surface layer [96]. The deep chlorophyll maximum (DCM)
and euphotic zone (Zeu) depths were computed from the chlorophyll
profile [279]. The stratification index was computed as the difference
in potential density between the surface and 250 m, deeper than pycno-
cline in most profiles. All 1 m precision profiles were binned over 5m
to match plankton data bins. Rare instances (1.7%) of missing satellite
data were replaced by the corresponding variable average value.

Plankton and environmental data were averaged over two layers:
epipelagic and upper mesopelagic. Instead of the commonly used
fixed boundary (200 m) between these two layers [82], we applied aA dynamic

computation of the
epipelagic-

mesopelagic
boundary was

performed.

dynamic definition. It was modified from Reygondeau et al. [331]
and meant to better represent the functional difference between the
two layers: the deepest value among the mixed layer depth and the
euphotic depth, hence delimiting the zone above which photosynthetic
plankton activity is highest. Result: an 88-metre median value for
the epi-mesopelagic boundary (quantile 25% = 52 m, 75% = 121 m,
Figure S4.2). As numerous UVP5 profiles were below 500 m, we set the
upper mesopelagic zone bottom at that depth. Any profile covering
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less than 80% of both layers’ thickness was removed (3% and 29% of
profiles for epipelagic and mesopelagic layers, respectively).

4.2.3 Global distribution of plankton communities

In each layer, the Hellinger transformation was applied to averaged
plankton concentrations, to focus on community composition differ-
ences among profiles, rather than on absolute concentrations differ-
ences [45]. This helped go beyond the well-known pattern of high lati- Plankton

community types
were defined and
described in terms
of composition and
environment.

tudes higher concentrations and lower ones around the equator, hence
optimizing the taxonomic identification effort, while reducing very high
abundances importance. To synthesise information, a principal com-
ponent analysis (PCA) was performed on the Hellinger-transformed
data. Environmental variables were projected into that space accord-
ing to their correlation with plankton concentrations, after a log n+1
transformation for marine snow and bulk concentrations, to avoid
over-representing some very high values. This helps visualise corre-
lations directly on the PCA biplot. Each profile’s scores on the first
five principal components (PC) helped perform a synoptic hierarchical
agglomerative clustering (HAC), using Ward’s criterion [226]. Using
the PC scores, not the original data, preserved most of the variance,
while removing noise. The resulting dendrogram (Figure S4.3) was
separated into some main branches, based on inertia jumps, identifying
broad plankton community types. Composition, in terms of each taxon
proportions, was computed for each plankton cluster.

Testing for potential diurnal and seasonal biases, we computed the
variance portion in plankton community composition, explained by
acquisition time or season. We used a redundancy analysis (RDA),
with Hellinger-transformed concentrations as response variables, and Seasonal and

circadian effects
were checked for.

a binary variable as explanatory, either day/night or productive/non-
productive season. Seasons were defined based on latitudes and sam-
pling months (Table S4.2) [215]. This model is based on light intensity
and nutrients availability. In polar regions, light availability is often
limited (namely in winter) but becomes sufficient after the summer
ice breakup, allowing productivity. In mid-latitudes, both light and
nutrients become available in spring and autumn, generating phyto-
plankton blooms. In tropical regions, productivity is limited all year by
nutrients and remains low. Diurnal effects were tested in both layers;
while seasonality was not tested in the mesopelagic layer since seasonal
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changes are weaker at depth [84]. In both cases, the portion of variance
explained was computed as R2.

4.2.4 Correspondence with ocean regionalisations

To assess various regionalisations ability to capture processes driving
plankton ecology, the variance part in plankton community composi-Multiple

regionalisations
were assessed for

their ability to
describe the

distribution of
planktonic

communities. . .

tion explained by each was computed. Tested regionalisations included
Longhurst provinces [245], 10° latitudinal bands, as well as mesopelagic
provinces [331], tested for the mesopelagic layer only. Besides these re-
gionalisations, often based on climatological averages, a regionalisation
based on each profile’s actual, immediate environment was generated
with a PCA performed on environmental data, followed by an HAC on
the first five PCs. The number of modalities was set to be similar to the
other regionalisations, for comparison.

The evaluation of the variance proportion explained was performed
analogously to the circadian or seasonal effects test: in each layer, an
RDA was performed, with Hellinger transformed concentrations as
response variables and a qualitative variable with regions from a given
regionalisation as explanatory variable. To ensure adequate represen-
tativeness, each region in each regionalisation had to contain at least
25 profiles for inclusion. This limited the number of regions used for. . . by computing

the explained
variance in

plankton
community, for

each
regionalisation.

each regionalisation, but (positively) resulted in similar region num-
bers throughout all tested regionalisations: all contained 12-18 regions
for the epipelagic and 9-11 regions regarding the mesopelagic zone
(Table 4.1). Important for comparison: the variance portion explained
by a categorical variable often increases with the number of modalities.
To quantify how much variance is explainable by a categorical variable
with those modalities numbers, a maximal model was built by com-
puting a regionalisation on plankton concentrations themselves, with a
similar groups number. We used the PCA on Hellinger-transformed
concentrations data, followed by the HAC on the first five PCs, de-
scribed in the previous section. Now, instead of cutting the tree based
on inertia jumps, the groups number was set as a middle ground be-
tween modalities numbers for other regionalisations (epipelagic: 14;
mesopelagic: 10). Note: in the epipelagic layer maximal model, the dif-
ference between 12 and 18 modalities is inconsequential: 12 modalities
explain 52.8% of variance, while 18 modalities explain 55.8% (+3% of
variance). Then, RDA was performed with this explanatory variable.
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Table 4.1: Variance in community composition explained by different regionali-
sations for the epipelagic and mesopelagic layers. 2,203 and 1,193 profiles were
included in the epipelagic and mesopelagic layers respectively. n = number of
groups for each regionalisation.

Regionalisation Epipelagic Mesopelagic
n R2 n R2

Maximal model 14 0.541 12 0.452
Null model 15 0.007 11 0.010
Longhurst provinces 18 0.264 12 0.134
Latitude bands 13 0.175 11 0.102
Local environment 13 0.170 9 0.102
Mesopelagic provinces - - 11 0.118

Since response and explanatory variables are built with the same data,
this RDA captures the maximum part of explainable variance. Finally,
we also compared these regionalisations to a null model: profiles were
randomly grouped into a similar number of clusters. If the variance
portion explained by a given regionalisation is similar to the null model
portion: this regionalisation does not capture plankton community
composition variations.

All analyses were conducted with R version 4.0.3 and the vegan

package version 2.5.7 [296].

4.3 Results

4.3.1 Circadian and seasonal cycles

Among profiles in the epipelagic layer analysis, 922 were performed by
night and 1595 by day. The RDA performed with the day/night binary
variable was significant (p < 0.001), probably because of numerous
observations (n = 2517), but explained a very small part of variance (R2 Circadian and

seasonal cycles
explained very low
variance.

= 1.1%). In the mesopelagic layer, where 659 profiles were performed
at night versus 1088 by day, the diel cycle explained the observed
variance even less (R2 = 0.9%, p < 0.001). On a global scale, diel vertical
migration little impacts community composition, while concentrations
changes can be significant [374]. About 30% of epipelagic profiles
(592) occurred during the productive season, while 1925 during a
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Figure 4.2: Dataset composition: total number of images per taxonomic group.
Rhizaria (unicellular eukaryotes) are highlighted in green, Cyanobacteria are
in purple and Metazoa in orange.

non-productive season (Table S4.2). The RDA was again significant
(p < 0.001) but only explained 1.3% of variance. Thus, seasonal impact
on studied plankton communities’ structures also seems negligible
compared space, at global scale.

4.3.2 Spatial distribution of plankton communities

Within the size range acquired in situ by UVP5 (600 µm to a few cm),
more than 330,000 organisms were detected. Three groups dominatedThree plankton

groups dominated
in UVP5 data.

in the dataset’s number of individual images: Copepoda (metazoan),
Trichodesmium (cyanobacteria) and Phaeodaria (Rhizaria subgroup, uni-
cellular eukaryote) (Figure 4.2). Apart from Rhizaria, Trichodesmium and
Nostocales (the latter both Cyanobacteria), all other imaged organisms
belonged to the Metazoa kingdom.

4.3.2.1 Epipelagic layer

To describe epipelagic plankton communities, 2517 profiles were in-
cluded. The first two PCs captured 41.8% of variance. The first PC
distinguished between Trichodesmium-rich communities and copepod-
rich ones. Trichosdesmium-dominated communities were associated
with warm and stratified waters. Copepods dominated in cold, high
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Figure 4.3: (Caption on next page)
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Figure 4.3: Plankton clusters within the epipelagic layer. (A) PCA performed
on Hellinger-transformed plankton concentrations, illustrated by a biplot in
scaling 2. Only taxa with a contribution higher than average are represented.
Environment variables are projected as supplementary variables. Points rep-
resent profiles and are coloured according to the cluster defined by the HAC.
(B) Map of epipelagic profiles, coloured as in (A). (C) Relative composition of
epipelagic plankton clusters. Note that the y axis is square root transformed.

chlorophyll and particle-rich waters (Figure 4.3A). The second PC sep-
arated these communities from a third community, associated with
collodarians (Rhizaria), extant in oligotrophic waters (with deep DCM
and Zeu). The HAC dendrogram was separated into 3 clusters (Fig-Three epipelagic

communities
emerged: copepod-

dominated,
Trichodesmium-
dominated and

mixed-type.

ure S4.3). Cluster composition (Figure 4.3C): cluster 1 characterised by
a co-dominance of multiple Rhizaria groups (Acantharea, Collodaria
and Phaeodaria), copepods, nostocales and Trichodesmium, although
Collodaria are the most structuring ones in PCA space. This com-
munity type was widely distributed in oceans but detected at lower
frequencies in high latitudes (Figure 4.3B). Cluster 2, dominated by
copepods, also had a widespread distribution but dominated the subpo-
lar North Atlantic and Arctic shelf seas, and upwelling areas (California
Current, Peruvian and Benguela upwellings). Cluster 3, dominated by
Trichodesmium, exists in the Atlantic Ocean’s intertropical band.

4.3.2.2 Mesopelagic layer

In the mesopelagic layer, 1747 profiles could describe plankton com-
munities. The first two PCs captured a 39.6% variance. The first PC
separated copepod-dominated waters from waters with Phaeodaria
(Figure 4.4A). Copepod-dominated waters were oxygen-rich, whileThree mesopelagic

communities
emerged:

phaeodarian-
dominated,

copepod-
dominated and

mixed-type.

Phaeodaria-dominated waters exhibited high biological activity (high
AOU) and significant stratification of the water column top. On the sec-
ond PC, a third Eumalacostraca pole emerged, associated with warmer,
saltier, more oligotrophic waters. The HAC dendrogram was again
split into 3 clusters (Figure S4.3). The first cluster, dominated by phaeo-
darians, with fewer copepods (Figure 4.4C), was emblematic of the
Peruvian upwelling, but also present in Mediterranean Sea and Pacific
Ocean profiles. Conversely, the Pheodaria-dominated cluster 2 existed
at high northern hemisphere latitudes; also present in the intertropical
band and south of the Atlantic (Figure 4.4B). Finally, cluster 3 was not
dominated by any taxon but had a diversified composition: Copepoda,
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Figure 4.4: (Caption on next page)
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Figure 4.4: Plankton clusters within the mesopelagic layer. (A) PCA performed
on Hellinger-transformed plankton concentrations, illustrated by a biplot in
scaling 2. Only taxa with a contribution higher than average are represented.
Environment variables are projected as supplementary variables. Points repre-
sent profiles and are coloured according to the cluster defined by the HAC. (B)
Map of mesopelagic profiles, coloured as in (A). (C) Relative composition of
mesopelagic plankton clusters. Note that the y axis is square root transformed.

Eumalacostraca, Foraminifera, Phaeodaria and Trichodesmium. Fewer
profiles were in this cluster but broadly distributed.

4.3.2.3 Comparison between epipelagic and mesopelagic layers

We compared each station’s plankton community type in epipelagic
and mesopelagic layers (Figure 4.5). Some stations, included in the
epipelagic analysis, had no corresponding mesopelagic samples: the
sea bottom or UVP maximum depth were too shallow. These stationsAn incomplete

similarity between
epi and

mesopelagic
plankton

communities.

are “NA” in Figure 4.5 mesopelagic row. Among the 1,122 profiles
where the epipelagic part contained a mixed-type community (cluster 1
epipelagic), the mesopelagic layer contained a phaeodarian-dominated
community (cluster 1 mesopelagic) in 49% of cases and a copepod-
dominated community (cluster 2 mesopelagic) in 33% of cases. In
copepod-dominated epipelagic community (cluster 2 epipelagic), most
profiles displayed a mesopelagic copepod-dominated community (52%,
cluster 2 mesopelagic). Finally, most profiles with a Trichodesmium-
dominated epipelagic layer (cluster 3 epipelagic) had a phaeodarian-
dominated mesopelagic community (75%, cluster 2 mesopelagic). Over-
all, this analysis highlights only an incomplete similarity between
epipelagic and mesopelagic plankton communities’ compositions, sug-
gesting they are driven by different processes, which confirms they
need studying separately.

4.3.3 Representativity of various ocean regionalisations

In both layers, the clustering built on the plankton data themselvesPlankton
community

distribution is
better explained by

regional rather
than immediate

conditions.

(maximal model) explained about half of variance in community com-
position (epipelagic: 54.1%; mesopelagic: 45.2%; Table 4.1). The limited
amount of variance explained unsurprisingly confirms plankton com-
munities’ diversity cannot be summarised in only 12 to 14 groups, but
also highlights that other regionalisations should be gauged relatively
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Figure 4.5: Comparison between epipelagic and mesopelagic plankton com-
munities. Horizontal coloured bars represent profiles, split according to their
plankton communities in each layer, as previously described in figures 2 and
3 (NA in the mesopelagic row represents stations with no mesopelagic por-
tion). Grey bands show the correspondence of plankton communities between
clusters in the epi and mesopelagic layer for each profile. Percentages show
the repartition of epipelagic plankton communities in the mesopelagic layer,
excluding profiles absent from the mesopelagic analysis (i.e., going in the NA
band).
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to these figures, not to 100% of variance explained. All regionalisa-
tions explained more variance than the random, null model (< 1%
of variance explained in both layers). Thus, all regionalisations were
relevant for explaining plankton communities’ distribution. Among
the tested regionalisations, Longhurst provinces explained more vari-
ance than others (epipelagic: 26.4%; mesopelagic: 13.4%), correspond-
ing to about half of the explainable variance in the epipelagic layer
and 1/3 in the mesopelagic zone. In the epipelagic layer, latitudinal
bands explained similar variance to the local environment; while in
the mesopelagic layer, Reygondeau’s mesopelagic provinces explained
some more variance than local environment and latitudinal bands. In
both layers, plankton community composition was better explained
by biogeochemical-based provinces than by the immediate and local
environment the plankton was sampled in.

4.4 Discussion

Briefly, three meso/macro plankton communities’ types were detected
in both epipelagic and mesopelagic layers. Their composition was
better explained by basin scale environmental conditions than by local
ones. Below, we first discuss methodological aspects to assess our
results’ robustness and then discuss our findings’ consequences in the
existing knowledge context.

4.4.1 Potential Biases

4.4.1.1 Seasonal and diel cycles effects

Many – mostly pluricellular – plankton taxa conduct Diel Vertical Mi-
grations [216]. Yet, our analysis showed no significant effect of this
migration on plankton community composition (i.e., relative concentra-
tions), in line with Soviadan et al. [374]’s findings. We performed anDVM,. . .

additional test in the California Current region, where extensive UVP
sampling was conducted and compared the five most abundant taxa’s
day and night absolute concentrations. Copepoda, Eumalacostraca
(p < 0.001) and Phaeodaria (p < 0.05) concentrations were higher at
night in the epipelagic zone (Figure S4.4), showing that DVM existed
in such data.
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Both phytoplankton and zooplankton concentrations also vary sea-
sonally: spring (and possibly autumn) blooms cause an increase in
productivity and plankton concentration [25]. But plankton may also
bloom outside seasonal blooms, due to favourable conditions follow-
ing water mass displacements [268]. These sudden events, restricted
spatially and temporally, are called intermittent blooms. For example, . . . seasonality,. . .

Trichodesmium can bloom locally in tropical and subtropical oceans [415]
and high Trichodesmium concentrations sometimes observed in our data
suggest multiple profiles in the Atlantic intertropical band occurred
during such blooms. However, although seasonality affects absolute
concentrations, our results suggested a negligible effect of season on
community composition.

Briefly, both diel and seasonal effects are detected on absolute con-
centrations. Their effects’ non-significance here is therefore due to . . . barely affected

our analyses
because we focused
on community
composition.

Hellinger’s transformation, focusing our analyses on relative rather
than absolute concentrations [226]. With such focus on community
composition and at the broad taxonomic level studied, the large-scale
geographical effect dominated over seasonal and diel cycles.

4.4.1.2 Quality of taxonomic identifications

UVP5 captures images of objects > 600 µm and, while larger than 1 mm
organisms are reliably differentiated from marine snow, identifying
smaller ones is trickier. Specific orientation or distinctive features are
often required for performing identification confidently; otherwise,
objects are classified as detritus, resulting in underestimating small
organisms’ concentrations. Normalised biomass size spectrum detects Taxonomic

identifications
were good enough.

underestimation, showing a deviation from expected linear trends
for the 600 µm - 1 mm size range [201]. Still, in our dataset, 80%
of organisms were over 1 mm in ESD, therefore accurately detected
by UVP5. Furthermore, provided underestimation was consistent
across taxonomic groups (we checked by inspecting dominant taxa’s
per-taxon size spectra), the community composition is little affected
by the absolute concentrations underestimation. Even for > 1 mm
organisms, UVP5 images’ taxonomic identification is difficult. We
applied (above) different measures for taxa identification consistency
(e.g., using a taxonomic guide, cross-checking among operators and
regrouping organisms at coarse taxonomic level, where confusions
are rarer). Finally, the same operator reviewed a random images
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subsample from each final taxonomic group, with error rates at < 10%
for all groups and < 2.5% for most [111].

4.4.1.3 Sampling effort heterogeneity

UVP5 profiles were distributed unevenly: some areas sampled inten-
sively (California Current, Peruvian upwelling, Mediterranean Sea),
others rarely visited (Indian Ocean, Southern Ocean). For results to
not be solely representative of oversampled areas, we randomly down-
sampled the dataset to contain a maximum of 50 profiles per 2º square
and conducted the same analyses again. Plankton community patternsThe heterogeneous

profile distribution
did not affect

plankton
community

patterns.

emerging from these analyses were similar to those conducted with
all profiles, thus showing they are robust. Furthermore, our analysis
does not explicitly consider location or date, only each sample’s com-
munity and environmental conditions; so, this relevant question: does
UVP sampling cover environmental conditions representative of global
scale variance? For this, we compared conditions distribution at UVP
samples’ locations to the same variables distribution at global scale. Of
course, simultaneous worldwide in situ observations are not available.
Instead, we used annual climatologies on a 1º grid from World Ocean
Atlas (WOA) [53] for important water characteristics: temperature,
salinity, and oxygen. We first checked that those climatologies were
representative of the in situ conditions at locations sampled by UVP5,
over the epipelagic and mesopelagic layers previously defined; this was
the case since correlations were good (all R2 > 0.84, except for AOU
in the epipelagic: R2 = 0.35, Figure S4.5). Then, we compared each
variable distributions from the WOA data at UVP5 profiles’ locations
vs. worldwide (Figure S4.6), for two depth layers (0-200 m; 200-500 m),
since the above dynamic boundary could not be computed from WOA
data. Distributions were similar, showing UVP samples covered diverse
enough environmental conditions, representative of worldwide oceans.

4.4.2 Plankton communities general structure

4.4.2.1 Epipelagic layer

Three plankton communities types emerged in the epipelagic layer,Three types of
epipelagic
plankton

communities.

mostly driven by water masses’ temperature and trophic statuses:
copepod-dominated communities in cold and productive waters; Tri-
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chodesmium-dominated communities in warm waters; and mixed-type
communities in oligotrophic ones.

Copepods’ large proportions in almost all pelagic ecosystems is
already documented [55, 188, 340, 374], more so in the rich and pro-
ductive Arctic waters [55, 111, 134, 374, 400]. Similarly to other zoo-
plankton, copepods’ diversity decreases with latitude [55, 188] and
with size increases [63, 182]. Brandão et al. [55] found a 400-500 µm
median ESD for copepods between 60°N and 60°S. UVP5 only detects Copepod-

dominated in
productive
environments.

copepods over 1 mm in ESD [133]. Tropical and temperate copepods’
concentrations were likely underestimated but (see above) in various
situations, conclusions on community composition are little affected,
since all taxa concentrations are similarly underestimated near UVP
target size range limits. Large changes in the biogeography, community
composition and diversity of calanoid copepods in the North Atlantic
Ocean are detected, as a result of global warming [20, 21]. As copepods
act as a trophic link between primary producers and higher trophic
levels [340], these changes might prove detrimental to marine resources,
like exploited fish stocks [21]. We show that, within the 600µm range
to a few cm, copepods largely dominate communities in polar waters
and, to a lesser extent, in temperate ones, but clearly not in tropical
ones.

Epipelagic plankton communities were also shaped by Trichodesmium,
a filamentous cyanobacteria found in (sub)tropical regions [66, 415] Trichodesmium-

driven in
oligotrophic
waters.

and previously observed with UVP5 in tropical waters [164, 346]. Tri-
chodesmium contribute to primary production and fixation of atmo-
spheric nitrogen [66] and can grow in nitrogen-limited environments,
unlike other phytoplankton types [415]. Their toxicity to several zoo-
plankton species [171] explain the quasi-exclusion of other types of
planktonic organisms in Trichodesmium-dominated communities.

Finally, the third cluster revealed a mixed plankton community, char-
acterised by copepods’ or Trichodesmium’s non-dominance. This cluster
contained profiles from diverse environments with varying conditions,
thus very diversified composition-wise. Its average composition (Fig-
ure 4.3) is skewed by high concentrations from a few profiles, therefore
not representative of every profile’ s composition aggregated in this
cluster. Although Collodaria emerged as a structuring group in PCA, Rhizaria-

dominated
elsewhere.

it did not dominate the cluster’s relative composition. Actually, six
groups were found, accounting for 85% of the composition: Acantharia
(Rhizaria), Collodaria (Rhizaria), Copepoda, Nostocales, Phaeodaria
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(Rhizaria) and Trichodesmium, highlighting the importance of various
rhizarian groups, recently highlighted by other in situ imaging-based
studies [42, 104]. Acantharia and Collodaria are symbionts-bearing
Rhizaria, widely distributed in oceans, but more abundant in tropical
oligotrophic surface waters, where their symbionts are photosynthet-
ically active [393], hence coherent with our observations. Collodaria
contributes significantly to the total organic matter in these environ-
ments [42, 393]. They can also form colonies, with tens to thousands
of cells embedded in a gelatinous matrix [393], but these colonial
forms are not as structuring as the solitary individuals for community
composition. Conversely, Phaeodaria are heterotrophic Rhizaria, lack-
ing symbionts [210], flux-feeders and thus usually found below the
epipelagic layer, where they feed on sinking particles [40]. However,
some species are common in surface layers [286]. Because Phaeodaria’s
mineral skeleton is made of silica, they can act as major biogenic silica
exporters [39] and their distribution could be restricted by silica avail-
ability [40, 286]. Finally, nostocales (Aphanizomenon, Dolichospermum,
and Nodularia) were identified contextually (i.e., not just based on as-
pect on images), only in the Baltic Sea, and at very high concentrations.
As a consequence, they account for 19% of the mixed-type community,
though they were found in only a few profiles.

4.4.2.2 Mesopelagic layer

In the mesopelagic layer, three types of plankton communities alsoThree types of
mesopelagic

plankton
communities.

emerged: Phaeodaria-dominated in cold and oxygen-depleted waters,
copepod-dominated in cold and oxygenated waters, and, again, a
mixed community in warmer waters.

In the latter, four groups accounted for 65% of organisms: Copepoda,
Eumalacostraca, Foraminifera, and Trichodesmium. Foraminifera, het-
erotrophic rhizarians, feed on mesopelagic plankton; typical of deep
and rather poorly oxygenated waters [40]. Various organisms wereA mixed-type

community. identified within the broad Eumalacostraca group in our dataset, de-
pending on the ecosystem sampled, resulting in a very heterogeneous
group. Thus, Eumalacostraca are not representative of any typical
environment, restricting ecological interpretations, and most likely
under-sampled.

In cold waters, the plankton community type was linked to oxy-
gen availability: copepods dominated when oxygen was available and
Phaeodaria in water masses, with high AOU and low oxygen concentra-
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tion, typical of Oxygen Minimum Zones. Major OMZs are found below
eastern-boundary upwelling systems, with particularly high primary
production. Many planktonic taxa’ concentrations, such as calanoid Oxygen

availability may
constrain
mesopelagic
plankton
community type.

copepods’, is reduced in OMZs [14, 184, 203, 374]. Associated with the
low oxygen and low plankton concentrations, and possibly caused by
it, the downward flux of particulate carbon is intense and less atten-
uated than elsewhere, resulting in high vertical export of the organic
matter photosynthesis produces at the surface [71, 121]. Conversely,
Phaeodaria are typical of deep, low oxygenated waters [40, 191] and al-
ready detected in OMZs [184]. Indeed, protists, like Phaeodaria, might
prove more tolerant to hypoxia, as their passive feeding mode requires
less oxygen than active feeding. In OMZs, they may therefore play a
disproportionate role in the regulation of the vertical flux compared to
elsewhere.

Although unexpected at first glance, the detection of Trichodesmium
in the mesopelagic layer is consistent with previous observations [29,
360, 410]. Here, the presence of Trichodesmium in the mesopelagic
layer could be partly explained by our dynamic definition of the epi-
mesopelagic boundary: it started at shallower than 50 m for 25% of Trichodesmium

was detected in the
mesopelagic layer.

profiles, a depth where the presence of Trichodesmium would not be
surprising. However, those were found mostly at higher latitudes
(Figure S4.2), where Trichodesmium is absent in the epilagic layer, too.
Its presence at a great depth could also result from downwelling and
subduction events, bringing colonies to deeper waters [164], or even
simply represent dead colonies sinking down.

4.4.2.3 Comparison between epipelagic and mesopelagic plankton communi-
ties

Conditions in the epipelagic layer impact those in the mesopelagic:
i.e., the epipelagic phytoplankton type influences particle sizes in Epipelagic

communities
should impact
mesopelagic
communities.

the mesopelagic [163]. Similarly, mesopelagic zooplankton biomass
is conditioned by the net primary production in the euphotic layer,
since it feeds on its remnants [178]. However, the results above show
a low similarity of plankton communities between epipelagic and
mesopelagic layers.

Where the plankton community is dominated by copepods and
the environment productive in the epipelagic layer, the mesopelagic
plankton community is usually copepod-dominated as well. This is
consistent with high secondary production in the mesopelagic, below
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subpolar surface waters hosting high primary production, which is
not true at subtropical latitudes [335]. Below oligotrophic Rhizaria-
dominated epipelagic communities, the mesopelagic community wasEpipelagic and

mesopelagic
plankton

communities had
contrasted

distribution
patterns. . .

mostly Phaeodaria-dominated in the eastern tropical South Pacific
OMZs but was copepod-dominated in the South Atlantic. The split
between these two mesopelagic communities therefore seems to be
driven by copepods’ oxygen limitation in OMZs [121]. In the South
Atlantic gyre, both epipelagic [366] and mesopelagic [392] layers are
considered as oligotrophic, consistent with a Rhizaria-dominated com-
munity in the epipelagic [393]. In the Peruvian upwelling system,
the epipelagic community was mostly Rhizaria-dominated; surprising,
since this environment is very productive [15]. Still, the presence of
Rhizaria was already reported there by Santander Bueno [348], within
a diverse zooplankton community over the region. This productive up-
welling area drives an OMZ in deeper waters [121, 204], which imposes
a Phaeodaria-dominated community in the mesopelagic. Within Tri-
chodesmium-dominated stations, only equatorial Atlantic stations were
sampled deep enough to be included in the epi/mesopelagic layers anal-
ysis. As Trichodesmium was almost absent from the mesopelagic layer
there, profiles that were Trichodesmium-dominated in the epipelagic had
to be distributed between the other two in the mesopelagic plankton
communities, and most seen as Phaeodaria-dominated.

The forcing environmental conditions associated with communities
in both layers are not the same: oxygen plays a role at depth but
less near the surface; light structures live near the surface but not. . . but this likely

results from
differences in

forcing factors
between these

layers.

in the mesopelagic layer, etc. Besides, the conditions that remain
structuring ones are less variable with increasing depth, leading to
a more homogeneous habitat with depth [82, 84]. This also shapes
the plankton community, which becomes less heterogeneous spatially.
This is consistent with Soviadan et al.’s results: mesopelagic plankton
communities are less spatially contrasted than epipelagic ones.

4.4.3 Plankton communities distribution was driven by regional
conditions

Among the regionalisations tested, the plankton communities distri-
bution was better explained by Longhurst provinces [245], a region-
alisation based on physical forcings as phytoplankton distribution
regulators, which might drive zooplankton communities, too. The
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regionalisation based on 10° latitudinal bands explained less variance,
though a latitudinal effect, caused by light availability and temper-
ature, was previously demonstrated on both plankton diversity and
biomass [190, 340]. In the mesopelagic, the regionalisation computed Large-scale

processes were
more important
than local
processes to drive
plankton
communities.

by Reygondeau et al. [331] – specifically for this layer and mainly based
on annual biogeochemical variables climatologies – did not explain
plankton community distribution better than Longhurst provinces, even
though it was supposed to be more appropriate. Yet, more importantly,
all these basin-scale regionalisations explained plankton community
distribution as well, or better, than a regionalisation based on local
conditions, at sampling time. This suggests the plankton communi-
ties’ spatial structure worldwide for our ~30 taxonomic groups, is
driven by regional environmental conditions more than by very lo-
cal and immediate conditions and processes. These findings agree
with those of Stemmann et al. [385], who showed that mesopelagic
macro-zooplankton communities were structured by large, basin-scale
processes. Genomic analyses also underlined regional scales processes’
importance in structuring plankton communities [333], especially for
meso-zooplankton [369].

4.5 Conclusion and perspectives

In both layers, three plankton communities types emerged and seemed
mostly driven by basin-level environmental conditions. Following on Plankton

communities were
structured by
diverse and
unexpected
groups.

studies investigating plankton distribution and diversity across life
kingdoms – from viruses to metazoans [105, 188, 390] – this work
highlights the role not only of metazoans, but also of unexpected
large protists and cyanobacteria in structuring over 600 µm plankton
organisms’ communities. This confirms underwater imaging relevance
to reveal the importance of otherwise overlooked plankton groups,
such as Rhizaria [42, 104].

Wide-ranging offshore areas regionalisations are highly desired for
conservation purposes, like the creation of protected marine areas.
However, they should not be restricted to oceans’ upper layers. In- Deeper

regionalisations
are also desirable.

deed, biological activity in the mesopelagic layer is key to mediate
the flux of organic carbon from the surface; the deep seafloor is also
heavily impacted by human activities (bottom fishing, waste disposal,
oil drilling or seafloor mining) [414]. Therefore, oceans’ deeper layers
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biogeographies, currently rare, are also required to balance between
human exploitation and ecological conservation.
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Supplementary materials

Figure S4.1: World map of included stations (whether in the epipelagic or
mesopelagic layer).
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Figure S4.2: Depth of dynamic the epi-mesopelagic boundary, computed as
the deepest value among the mixed layer depth and the euphotic depth. (A)
Histogram of the epipelagic layer depth per 30° of absolute latitude bands. The
peak at 180 m highlights cases of euphotic depth at 180 m and shallower mixed
layer depth. (B) World map of the epipelagic layer depth.
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Figure S4.3: HAC dendrograms based on the first five principal components
of profiles projection in the Hellinger’s transformed plankton PCA data, for
(A) epipelagic and (B) mesopelagic layers. Generated clusters are shown in the
same colours and numbers as they appear on figures 4.3, 4.4, 4.5
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Figure S4.4: Average epipelagic concentration of the five most abundant taxa
in California Current by day and by night. Note that the y axis is log-
transformed. Differences were tested with a Wilcoxon-Mann-Whitney test.
* = 0.05, *** = 0.001.

Figure S4.5: Correlation between in situ and annual WOA data at UVP5 profiles
locations in the epipelagic and mesopelagic layers.
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Figure S4.6: Distribution of annual WOA data all over the globe and at UVP5
profiles locations.
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Table S4.1: List of oceanographic campaigns included in the study.

Campaign Year Nb profiles UVP5

BOUM 2008 177 sd

CASSIOPEE 2015 13 sd

CCELTER 2008 2008 73 sd

CCELTER 2011 2011 56 zd

CCELTER 2012 2012 59 sd

CCELTER 2014 2014 60 sd

CCELTER 2017 2017 68 hd

DEWEX 2013 1 sd

MSM22 2012 101 sd

MSM23 2012 64 sd

M105 2014 8 sd

M106 2014 114 sd

M107 2014 71 sd

PS88b 2014 36 sd

M116 2015 74 sd

M121 2015 84 sd

M135 2017 138 sd

GreenEdge 2016 2016 121 hd

MSM060 2017 126 hd

IPS Amundsen 2018 2018 6 sd

JERICO 2017 2017 24 sd

KEOPS 2011 13 zd

LOHAFEX 2009 55 sd

MALINA 2009 16 sd

MooseGE 2015 3 sd

NAAMES02 2016 21 hd

OUTPACE 2015 193 sd

P16N 2015 14 sd

Sargasso 2014 84 sd

SOMBA 2014 6 sd

Tara Oceans 2009-2013 643 sd



4.5 Conclusion and perspectives 131

Table S4.2: Definition of productive (1) and non-productive (0) seasons based
on latitude and month.

Latitude band Month
J F M A M J J A S O N D

90°N - 66.5°N 0 0 0 0 0 1 1 1 0 0 0 0
66.5°N - 23.5°N 0 0 1 1 1 0 0 0 1 1 0 0
23.5°N - 23.5°S 0 0 0 0 0 0 0 0 0 0 0 0
23.5°S - 66.5°S 0 0 1 1 0 0 0 0 1 1 1 0
66.5°S - 90°S 1 1 0 0 0 0 0 0 0 0 0 1

This model is based on light intensity and nutrients availability. In polar regions,
light availability is often limited (namely in winter) but becomes sufficient after
the summer ice breakup, allowing productivity. In mid-latitudes, both light and
nutrients become available in spring and autumn, generating phytoplankton blooms.
In tropical regions, productivity is limited all year by nutrients and remains low.





5
Temporal evolution of particles
and plankton distributions
across a mesoscale front during
the spring bloom

Following the global scale study, we investigated plankton distribution
at the mesoscale during the spring bloom, across the Ligurian front.
We conducted the very first continuous, multi-month deployment of
a glider equipped with an imaging device, namely the UVP6, and
collected 1,123,123 images. During the 5 months of the campaign,
I personally contributed to glider deployment and retrieval, as well
as glider piloting, in the form of on-call duty of 3 days alternating
with another person, supported by on-call pilots from the Alseamer
company if needed. Overall, this experience was both very demanding
and rewarding.

The first success lies in the fact that we had no material damage
and that we did sample the Ligurian front for several months in a row,
after only one test deployment conducted a few months before. The
second achievement is that we collected enough data to resolve the
distribution of plankton and particles across the front, which is the
focus of this chapter. Again, machine learning methods were used to
facilitate image classification, while data mining approaches allowed to
extract ecological knowledge from the data.

Thelma Panaïotis, Antoine Poteau, Émilie Diamond-Riquier, Lucas
Courchet, Camille Catalano, Laurent Coppola, Marc Picheral and Jean-
Olivier Irisson

Manuscript in preparation to be submitted to Limnology and
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Abstract

The effect of mesoscale features on the distribution of planktonic organ-
isms are well documented. Yet, the interaction between these spatial
features and the temporal scale, which can result in sudden increases
of the planktonic biomass, is less known and not described at high
resolution.

We targeted a permanent mesoscale front in the NW Mediterranean
Sea that we repeatedly sampled between January and June 2021 using
a glider equipped with a UVP6, a versatile in situ imager. We aimed
to resolve mesoscale distribution of plankton and particle distribution
during the spring bloom, to assess whether the front was a location of
increased concentration for zooplanktonic organisms during the bloom,
and if it constrained the distribution of particles. During the 5 months,
the glider conducted more than 5,000 dives and the UVP6 collected 1.1
million images. We focused our analysis on shallow (300 m) transects,
which gave a horizontal resolution of 900 m. Images were sorted
manually, and predicted with a machine learning algorithm. In the
end, about 13,000 images of planktonic organisms were retained.

Ordination methods applied to particles and plankton concentrations
revealed contrasted periods during the bloom, in which changes in par-
ticle abundance and size could be explained by changes in the plankton
community. The front had a strong influence on particle distribution,
while the signal was not as clear for plankton, probably because of
the relatively small number of organisms imaged. In addition, we
also detected submesoscale features such as subduction events and
submesoscale coherent vortices. This work confirms the need to sample
both plankton and particles at fine scale to understand their interaction,
a task for which in situ imaging is particularly adapted.

Résumé

L’effet des dynamiques à mésoéchelle sur la distribution des organismes
planctoniques est relativement bien documenté. Cependant, l’interac-
tion entre ces dynamiques spatiales et l’échelle temporelle, qui peut
entraîner des augmentations soudaines de la biomasse planctonique,
est moins connue et encore moins décrite à haute résolution.

Nous avons étudié un front permanent de méso-échelle dans le nord-
ouest de la mer Méditerranée. Ce front a été échantillonné de manière
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répétée entre janvier et juin 2021 en utilisant un planeur équipé d’un
UVP6, un imageur in situ polyvalent. Nous nous sommes efforcés de
décrire la distribution à méso-échelle du plancton et des particules
pendant le bloom de printemps, afin d’évaluer si le front était un
lieu de concentration accrue pour les organismes zooplanctoniques,
et si cette structure contraint la distribution des particules.. Pendant
ces 5 mois, le planeur a effectué plus de 5 000 plongées et l’UVP6 a
collecté 1,1 million d’images. Nous avons concentré notre analyse sur
les transects peu profonds (300 m), avec une résolution horizontale
de 900 m. Certaines images ont été triées manuellement, et d’autres
prédites avec un algorithme d’apprentissage automatique. Au final,
environ 13 000 images d’organismes planctoniques ont été retenues.

Des méthodes statistiques d’ordination ont révélé des périodes contras-
tées pendant le bloom, au cours desquelles les changements dans
l’abondance et la taille des particules pouvaient être expliqués par les
changements dans la communauté planctonique. Le front a eu une
forte influence sur la distribution des particules, alors que le signal
n’était pas aussi clair pour le plancton, probablement en raison du
nombre relativement faible d’organismes imagés. En outre, nous avons
également détecté des structures à subméso-échelle telles que des évé-
nements de subduction et des tourbillons cohérents de subméso-échelle.
Ce travail confirme la nécessité d’échantillonner à la fois le plancton
et les particules à fine échelle pour comprendre leur interaction, une
tâche pour laquelle l’imagerie in situ est particulièrement adaptée.

5.1 Introduction

5.1.1 Particles, plankton and blooms

As drifters, planktonic organisms are drifters and are thus strongly
affected by the conditions of the water mass they are embedded in [172].
Therefore, both phytoplankton and zooplankton concentrations vary
locally and seasonally. These strong increases in productivity and Blooms are

temporal increases
of plankton
productivity and
biomass.

plankton concentration are called “blooming” phases [25]. Phyto-
plankton blooms typically occur at the end of winter, when hivernal
convection, which ensures the replenishment of nutrients into the sur-
face waters, stops and thermal stratification starts to settle [24, 417].
For zooplankton, blooms may occur through organisms aggregation
or in response to favourable conditions enabling an increased growth
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rate [150]. In the latter case, the zooplankton bloom takes place slightly
later than the phytoplankton bloom [174]. Plankton blooms also im-
pact the concentration, composition and morphology of marine snow
particles [401]. These aggregates are formed through a combination
of physical coagulation and zooplankton-mediated processes [64, 207].
Physical coagulation requires collision between particles, resulting
from brownian motion, differences in sinking velocity or fluid shear
depending on the size of particles. Zooplankton-mediated processes
include the production of faecal pellets (which are aggregates of con-
sumed particles) and mucus feeding webs (e.g. Appendicularia houses).
Thus, temporal processes shape both plankton and particle distribution,
but those hemisphere-wide processes are often interacting with local
physical structures at mesoscale.

5.1.2 Frontal processes

As explained in section 1.1.1 of the introduction, physical processes
drive movements at a large number of scales in the oceans, from cen-
timetres to thousands of kilometres [106, 225] and these processesFronts are zones of

increased plankton
productivity and

biomass. . .

shape the structure of planktonic ecosystems [103, 170, 225, 251]. More
specifically, fronts and eddies are physical features influencing the
distribution of plankton [319] and particles [404]. Fronts are oceanic
features separating masses of waters with different properties. They
come in a wide variation of spatio-temporal scales: from a few hun-
dreds of metres to tens of kilometres, some are ephemeral while some
are permanent [130, 230, 304]. Frontal zones are oceanic hotspots, with
increased productivity and biomass across all trophic levels: phyto-
plankton, zooplankton and even top predators [230, 265, 304].

In a frontal-jet system, i.e. a relatively steady geostrophic current
associated with an along-current frontal structure and horizontal den-
sity gradients [290], the frontal structure can generate a submesoscale. . . due to by

submesoscale
dynamics.

cross-frontal ageostrophic circulation directed in the sense of flattening
the isopycnals [230]. Thus, enhanced plankton biomass at the front can
result either from passive aggregation of planktonic organisms [150] or
active mechanisms, such as an increased growth rate caused by the re-
distribution of nutrients induced by the cross-frontal recirculation [230].
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5.1.3 The Ligurian frontal-jet system

5.1.3.1 Physics

In this study, we focus on the northern frontal-jet system of the Ligurian
Sea (NW Mediterranean). The northern current is a geostrophic jet
flowing along the coast from NW to SE, located about 20 km offshore
and stronger between the surface and 150 metres, with an average
speed of 30-50 cm s-1 [290, 326]. A permanent mesoscale front – the The Ligurian

frontal-jet system:
a long-standing
case study.

Ligurian front – is associated with this current. The front, delineated
by the 38.2 and 38.8 isohalines [49] and going as deep as 200 m [290],
separates offshore colder and saltier waters from coastal warmer and
fresher water. Three zones can thus be distinguished: coastal, frontal
and central [326]. The Ligurian front and jet meander between 15 and
50 km away from the coast, moving at a speed of approximately 8 km
per day [322]. Since planktonic organisms are unable to swim against
currents, their distribution should be impacted by these physical fea-
tures. Resolving such mesoscale distribution of planktonic organisms
and physical properties during the plankton bloom requires to sample
at high spatial resolution for several months, which is not achievable
with ship-based sampling. Autonomous underwater vehicles, such as
gliders, can be deployed and sample continuously for weeks, resolve
submesoscale hydrologic features and integrate diverse miniaturised
sensors [342]. They thus seem to meet the requirements of such studies.

5.1.3.2 Plankton distribution across the front

Numerous studies have focused on plankton distribution across the
Ligurian frontal-jet system. Early studies highlighted the relation be-
tween the spatial distribution of planktonic organisms and the physical
structure of the front [48, 49]. More specifically, the front seems to Plankton

distribution is
constrained by the
front,. . .

act as a barrier, constraining organisms whether in coastal or offshore
waters [124, 219, 275, 311]. The front also seems to shape the distri-
bution of marine snow aggregates by acting as a barrier, constraining
the distribution of aggregates on the coastal side of the front [148, 384].
Finally, regarding vertical distributions, copepod communities strongly
vary between stratum [141]; and the distribution of pelagic tunicates
may reflect the junction of frontal convection cells [147].
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5.1.3.3 Plankton blooms in the Ligurian sea

Within the Mediterranean Sea, the Ligurian Sea is one of the locations
hosting a phytoplankton spring bloom and sometimes of a less intenseand by seasonal

dynamics. autumn bloom too [91, 262, 263]. The phytoplankton bloom later propa-
gates to higher trophic levels with larger concentrations of zooplankton,
such as copepods [110] or salps [292].

Besides, evidence suggests that the phytoplankton bloom is influ-
enced by the frontal features previously described. Goffart, Hecq, andFrontal

submesoscale
dynamics
constrain

phytoplankton, . . .

Prieur [144] found that the bloom was more intense at the front and that
phytoplankton is transported downward by the frontal convergence,
following the isopycnals. As described above, submesoscale frontal
features can influence phytoplankton distribution and growth [230]
and these effects were detected by a glider survey of the Ligurian
front, which showed the vertical transport of surface waters enriched
in chlorophyll [290].

Investigating how these effects propagate to higher trophic levels (e.g.
zooplankton, larval fish) thus requires to study the distribution of these
organisms at the same resolution as the one used for phytoplankton.
This fine-scale is the one at which interactions between planktonic. . . thus

zooplankton
distribution

should be
investigated at

this scale too.

organisms occur, as well as interactions with their physico-chemical
environment. A few studies already targeted zooplankton distribution
at such scales: both Luo et al. [248] showed that the distribution of
various groups of gelatinous organisms across a mesoscale front was
driven by temperature, depth, oxygen or chlorophyll a concentration
depending on the group. Similarly, Greer et al. [154] demonstrated by
both zooplankton and larval fish were more abundant on the shelf side
of a shelf-slope front. Finally, Greer et al. [156] revealed the interaction
between phytoplankton fine layers and zooplanktonic grazers. The
common denominator between these studies is that they rely on in situ
imaging.

5.1.4 Fine-scale plankton distribution through in situ imaging

As explained in section 1.2.3, traditional plankton sampling instruments
(nets and pumps) are not adapted to resolve fine-scale distribution of
planktonic organisms in relation to their immediate environment. They
lack spatio-temporal resolution because the organisms collected are
integrated over the distance and/or depth of the tow. Furthermore,
plankton sampling is often performed separately from the record-
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ing of environmental data [85, 243]. In addition, fragile organisms
can be damaged during sampling and thus their concentration un-
derestimated [330]. The development of in situ imaging instruments In situ imaging

resolves fine scale
plankton
distribution.

overcame some of these limitations: they resolve the fine-scale distri-
bution of planktonic organisms within their environment and allow
to detect physico-biological relationships. As no collection per se is
performed, organisms integrity is preserved and in situ behaviour can
be observed [258, 299, 409]. This comes at the cost of some taxonomic
resolution, since each organism cannot be manipulated and of a large
data processing effort. The Underwater Vision Profiler 6 (UVP6) [318] is
one of these in situ imagers. It counts particles from 70 µm and images
marine snow and plankton larger than 1 mm (meso and megaplankton),
thus mostly consisting of zooplankton and a few large phytoplankton
colonies. Compared to the previous generation (UVP5) [317], the UVP6
is smaller and can be deployed on autonomous vectors (e.g. float,
glider).

5.1.5 Aim of this study

In this work, we leverage in situ imaging using a glider in order to (i)
examine mesoscale and submesoscale physical and biological proper-
ties of the Ligurian front and (ii) investigate the dynamics of particles
and plankton distribution across the front during the spring bloom of
2021.

5.2 Materials and Methods

5.2.1 Glider and UVP6

Sampling was performed with a Seaexplorer (Alseamar) glider, an
unpropelled autonomous underwater vehicle (AUV) taking advan-
tage of buoyancy variations to glide forward through the water in
a sawtooth-like pattern, periodically coming to the surface between The UVP6 was

deployed on a
SeaExplorer glider.

dives to ensure data transmission and GPS positioning. The glider was
fitted with a set of sensors to record temperature, salinity, fluorescence,
particles backscattering at 700 nm (BB700), colour dissolved organic
matter (CDOM) and dissolved oxygen concentration. Besides environ-
mental sensors, the glider was equipped with a UVP6-LP, consisting
of a main camera and a light unit illuminating a slice of water for an



140 Plankton bloom across a mesoscale front

image volume of 0.7 L, with an imaging rate adaptable between 0.2
and 1.3 Hz [318]. With a pixel size of 73 µm, the UVP6-LP images
objects (plankton and marine snow particles) between 1 mm and 2 cm
and counts particles in 28 size classes between 102 µm and 2.6 cm in
equivalent spherical diameter (ESD). When embedded on a Seaexplorer
glider, the UVP6-LP is deployed in supervised mode and is completely
piloted by the glider, from power up to image acquisition.

5.2.2 Mission design

The glider was deployed outside of Villefranche Bay (43°39’18”N,
7°17’24”E, referred to as “coast” thereafter) and headed towards the Dy-
famed point (43°22’02”N, 7°55’59”E). Sampling consisted of repeated
transects, crossing nearly perpendicularly the Ligurian front. The gliderThe mission

targeted the
Ligurian front

during the spring
bloom.

performed round-trips between the coast and Dyfamed. From before
(28 Jan 2021) to after (28 June 2021) the spring bloom, ten missions of 12
to 14 days each were conducted (Figure 5.1), each mission consisting of
two round trips from the coast. On the way out, the glider’s trajectory
was turned slightly into the current. To avoid being too affected by this
strong surface (<150 m depth) jet, it was set to dive down to 600 m. On
the way back, the target depth was reduced to 300 m to increase hori-
zontal resolution: the median distance between two surfacing events
was 900 m. The UVP6 acquisition rate was set to 0.2 Hz below 220 m
and to 0.5 Hz above 220 m (1.3 Hz for the last two missions), resulting
in a sampling rate between 0.14 L s-1 and 0.91 L s-1. During the 10
missions, the glider spent 2790 h at sea and the UVP6 captured a total
of 1,123,123 images. However, 30% of these images were captured
near the coast when the glider was in virtual mooring waiting to be
recovered.

5.2.3 Data processing

5.2.3.1 Positional data

First, each transect was separated into “out” and “back” parts based
on surfacing position and only back parts (with higher horizontal
resolution) were retained for this study. This resulted in a total of 20Transects were

delimited. transects (Figure 5.1). Note that as a transect lasted more than 24 hours,
space and time (particularly daytime VS nighttime) are necessarily
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Figure 5.1: Schedule of the ten glider missions. Each mission consisted of two
round trips; darker parts represent back transects on which we focused our
analysis. Stars show transects selected for a synthetic visualisation in the rest
of the chapter.

entangled. As GPS positioning was only available when the glider was
surfacing, the geographical coordinates were linearly interpolated over
each dive. Each dive consisted of a down and an upcast. Latitude
and longitude were then used to compute the distance from shore
(reference point at Nice cape, 43°41’9”N, 7°18’17”E).

5.2.3.2 Plankton images

Images captured by the UVP6 during cruising (n = 785,405) were first
imported into the Morphocluster application [358] to quickly detect
large clusters of similar objects. This allowed sorting more than 400,000
objects, mostly detritus, in a few hours. In a second step, images col- Imaged organisms

were sorted with
the help of
machine
learning,. . .

lected during back transects, on which we focus our study (n = 434,129),
were imported onto the EcoTaxa web application [316] with their Mor-
phocluster label in order to be sorted at a finer scale into taxonomic or
morphological groups (marine snow, artefact, badfocus, reflection or
unidentifiable) with the help of a supervised machine learning algo-
rithm. Still, sorting all 400k+ images would have required a multiple
months effort and we instead decided to rely on the prediction of a
Random Forest classifier fed with both handcrafted and deep features
generated by a MobileNet V2 feature extractor previously finetuned
on UVP6 data (Chapter 3). We selected a RF classifier for the fol-
lowing reasons: RFs tend to produce good classification probability
estimates [289], they are faster to train than a full CNN stack and,
when trained with deep features, they perform as well as a full CNN
(E Amblard pers. comm.).
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Classification performance was assessed on an independent test set
of 42,595 objects not used for training. This test set was built to be
representative of the whole dataset by selecting 1 out of 10 profiles,
equally distributed across the mission. Unsurprisingly, the test set. . . but a few

groups required
inspection of all

images within.

was dominated by detritus (n > 40,000) but still contained around
100 objects or more per category for a few taxonomic groups (Cope-
poda, Appendicularia, Rhizaria, Salpida), allowing to compute reliable
enough classification performance metrics. This revealed relatively
poor precision performance for a few groups, including Appendicu-
laria and Rhizaria (Table S5.2). To improve precision, at the expense of
recall, and make sure that observed patterns were genuine, we applied
a probability [124] threshold on classification scores discarding the im-
ages for which the classifier was not confident enough, in order to aim
for 75% precision for all classes (Table S5.3). However, this approach
strongly decreased recall for Appendicularia and Rhizaria, to such a
point that it prevented the detection of any distribution pattern. We
thus decided not to apply the probability threshold to these classes,
instead to inspect and manually validate (n = 1500) all objects predicted
as Appendicularia or Rhizaria, so that precision of these classes would
reach 100% without decreasing their recall. Counts of objects per taxo-
nomic group and per particle size class were divided by water volumes
sampled to compute concentrations (# m-3) within 5 m bins along the
glider trajectory.

5.2.3.3 Environmental data

After discarding abnormal values (e.g. negative fluorescence), density
was computed from temperature and salinity. For each variable, outliersEnvironmental

data was processed
for visualisation.

were detected according to a criterion based on the deviation around
a moving median [231] and removed. Data was linearly interpolated
at 1 m resolution, hence filling the missing values. Each variable was
smoothed using a moving average within a window size of 25 m. Data
was then binned over 5 m to match the plankton and particles data
bins.
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5.2.4 Data analysis

5.2.4.1 Particles specificities

First, particle concentrations for 13 size classes between 102 µm and
2.05 mm (classes below 102 µm were too noisy to be retained) were
averaged onto 10 m × 1 km bins to reduce noise, and normalised with
log-transformation to avoid very high values. A principal component Large patterns of

particles. . .analysis (PCA) was then performed to summarise these concentrations,
scaled to unit variance so that each size class equally contributed to
the construction of the factorial space. Supplementary variables – not
used to compute the PCA space – were projected onto the PCA space
to help with the interpretation. This included biogeochemical variables
and metadata (coordinates, depth, distance from shore, day of year).
Finally, scores of objects were visualised on transects.

5.2.4.2 Plankton specificities

A PCA was also performed to synthesise plankton concentrations. Be-
cause of the scarcity of the plankton compared to the 70 µm - 2 mm par-
ticles, plankton concentrations were first averaged across 30 m × 5 km
bins, resulting in a median water volume of 373 L (Q25% = 183 L,
Q75% = 573 L) per bin. Still, plankton distributions were zero-inflated . . . and plankton

distribution were
extracted.

and numerous bins did not contain any planktonic organisms. We
thus decided to only focus on bins where plankton was present only,
and assigned the average value for each variable (i.e. concentrations
of plankton groups) to empty bins, so that they did not contribute to
the construction of the PCA space. All concentrations were log(n+1)-
transformed to normalise them and scaled to unit variance so that
each taxon contributed equally to the construction of the PCA space.
This PCA (Figure S5.8) highlighted the importance of a few taxonomic Four taxonomic

groups were
targeted.

groups: Copepoda and Eumalacostraca emerged on PC1, Salpida, Mol-
lusca and Appendicularia on PC2, and multiple Rhizaria subgroups
on PC3. We decided to focus our analyses on four groups based on
their abundance (Figure S5.7) and their importance in the PCA: Cope-
poda, Appendicularia, Salpida and Rhizaria (merging both Collodaria,
Foraminifera and other Rhizaria since they had close projections in the
PCA space).
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5.2.4.3 Visualisation

Out of the 20 available transects, four were selected as representative of
the dynamics and are represented in a synthetic view (Figure 5.1). AllFour transects

were selected for
visualisation.

the 20 transects are available as supplementary material (Figures S5.1,
S5.5 and S5.8).

All analyses were conducted with R version 4.1.2. Data processing
and interpolations were performed with packages dplyr and akima

respectively. Plots were generated with ggplot2 using the color-blind
friendly viridis and cmocean colour scales.

5.3 Results

5.3.1 Dataset composition

Among the 434,129 objects imaged by the UVP6 during the back tran-
sects, 305,294 were predicted with high enough confidence to be re-The dataset was

dominated by
Copepoda,
Rhizaria,

Appendicularia
and Salpida.

tained after probability thresholding. After discarding marine snow
particles, imaging artefacts and unidentifiable objects, 12,824 images of
planktonic organisms, sorted into 10 taxonomic groups, were retained.
Copepods dominated the dataset, followed by Rhizaria, Appendicularia
and Salpida (Figure S5.7).

5.3.2 Environment

During the first transect presented, which started on Feb 27th, the
temperature was rather homogeneous over the water column (Fig-
ure 5.2, S5.1). At the surface, the front was located between 20 and
3 km offshore, and separated fresher waters inshore from saltier waters
offshore, as expected. Fluorescence highlighted an intense bloom atEnvironmental

data successfully
captured

phytoplankton
bloom evolution as

well as
submesoscale

features.

the surface in offshore waters. A downwelling of chlorophyll was
detected down to 300 m and seemed to follow the front. This feature
was also clearly visible on salinity, oxygen and CDOM, strongly sug-
gesting a movement of a whole water mass. Finally, inshore waters
were well oxygenated down to 300 m. The second transect (March
20th) displayed similar features except for fluorescence: an important
mixing event was detected, down to 200 m, where no photosynthesis
can take place. This event was also visible on oxygen and CDOM
concentrations. This mixing event was likely caused by strong winds
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the day before (Figure S5.3). On the third transect (April 22nd), a weak
stratification started to appear in coastal waters and the front became
more horizontal. Fluorescence was lower at the very surface than in the
waters below, hinting at the formation of a deep chlorophyll maximum
(DCM). A lens of colder and fresher water was located 50 km offshore,
between 150 and 300 m depth, and was also characterised by higher
oxygen and lower CDOM. Finally, on June 24th, the water column
was well stratified, with sharp thermocline and pycnocline. The front
was nearly horizontal. The DCM was well established between 50 and
100 m (also visible on BB700), with higher chlorophyll concentration
offshore. Oxygenated waters were restrained to the surface, above the
DCM. These features are emblematic of the oligotrophic environment
during summer in the Ligurian Sea.

5.3.3 Particles distribution

For particles, the first two axes of the PCA captured 95.5% of vari-
ance, most of it (86.3%) being on the first axis (Figure 5.3A). This axis
separated high particle concentrations, associated with coastal waters
characterised by high BB700, oxygen and fluorescence, from low par-
ticle concentrations, associated with offshore, deep, salty and dense
waters. The second axis discriminated between size classes. The map Particles

concentration and
size strongly
varied during the
bloom.

of PC1 projections (Figure 5.3B) highlighted a decrease in particle con-
centration decrease over time. PC2 projections (Figure 5.3C) revealed
contrasted patterns in particle size. On Feb 27th and March 20th, parti-
cles were much more abundant near the coast, and large particles, in
particular, followed the downwelling event detected on fluorescence
(Figure 5.2). Particles were larger offshore than inshore (Figure 5.3C).
On April 22nd, particle concentration was much lower, except in very
coastal waters, highlighting the near absence of particle export. Large
particles were present in the 0-100 m depth layer, around the DCM that
was just forming, but not below. Finally, on June 24th, the DCM was
associated with abundant and small particles, likely phytoplankton
cells or particles produced through biological activity; while a rain of
larger particles was detected offshore, below the DCM. The circadian
cycle did not seem to affect neither particle distribution nor size in any
transect.
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Figure 5.2: Evolution of environmental conditions across 4 transects represen-
tative of the dynamics during the bloom. Each column is labelled according to
the starting date of the transect, with began offshore, on the right. Each transect
lasted about 2 days and grey rectangles in the plot background represent night
time. (A) temperature, (B) salinity with the 38.2 and 38.3 isohalines delimiting
the front, (C) potential density anomaly with the 28.6, 28.8 and 29 isopycnals,
(D) chlorophyll, (E) oxygen, (F) CDOM and (G) BB700. Plots for all transects
are presented in Figure S5.1.
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Figure 5.3: Evolution of particles distribution. (A) PCA performed on log-
transformed particle concentrations. Definition of size classes: class 21: 102-
128 µm, class 22: 128-161 µm, class 23: 161-203 µm, class 24: 203-256 µm,
class 25: 256-323 µm, class 26: 323-406 µm, class 27: 406-512 µm, class 28: 512-
645 µm, class 29: 645-813 µm, class 30: 813-1020 µm, class 31: 1020-1290 µm,
class 32: 1290-1630 µm, class 33: 1630-2050 µm. Maps of the projections of
bin scores on PC1 (B) and PC2 (C), for the four representative transects. The
38.2 and 38.3 isohalines delimiting the front are represented as black lines.
Grey rectangles in the plot background represent night time. PC1 and PC2
projections for all transects are presented in Figure S5.5.
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Figure 5.4: Evolution of plankton distribution for the four selected groups:
(A) Copepoda, (B) Appendicularia, (C) Salpida and (D) Rhizaria. The 38.2
and 38.3 isohalines delimiting the front are represented as black lines. Grey
rectangles in the plot background represent night time. Note that colour scales
are log-transformed. Scale bars represent 2 mm. All transects are presented in
Figure S5.9.

5.3.4 Plankton distribution

The concentration plots for the selected taxa highlighted changes in
the zooplankton community (Figure 5.4). February was dominatedPlankton

concentration
revealed a

succession of
various

zooplankton
communities.

by copepods and appendicularians close to the surface, especially off-
shore. In March, copepods were even more abundant, appendicularians
mostly disappeared but salps were abundant at the top of the water
column, particularly on the offshore side of the front. A second peak
in Appendicularia abundance occurred in March, while salps were
still present. In June, rhizarians became more abundant in the entire
water column while copepods, appendicularians and salps were less
abundant. Finally, at the considered scale, no effect of the circadian
cycle could be detected.
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5.4 Discussion

5.4.1 Plankton and sampled volumes

Due to the low sampling rate (≤ 0.9 L s-1), very few planktonic organ-
isms were imaged and only 13,000 of them could be predicted with
enough confidence to be included in our analysis. Thus, many sam-
pled bins did not contain plankton and the signal emerging from our
analyses was coarse compared to particles or environmental data. Over- We sampled too

few organisms to
resolve fine-scale
distribution.

all, only 17,000 objects were predicted as plankton, such that manual
validation of all plankton groups would have only added 4,000 organ-
isms (+ 30%), likely not affecting the results. Although the classifier
was biased towards the rare plankton classes, we cannot exclude that
planktonic organisms were predicted in non-plankton classes. Check-
ing this would have required the inspection of > 400,000 images to
salvage an unknown but likely small, number of images of planktonic
organisms, since the percentage of living objects is commonly < 10% in
UVP datasets (Chapter 3).

Although towards the end of the mission, sampling rate was in-
creased from 0.35 to 0.91 L s-1 (the maximum achievable for the UVP6-
LP) in the 0-220 m layer, this was still too low to investigate fine scale
plankton distribution. Resolving such scales would require a UVP6-HF
(high frequency) [318], but at the cost of higher energy consumption
and lower glider autonomy (only one transect per mission instead of
two).

5.4.2 Effects of the diel cycle

Space and time variations could not be disentangled. However, the
maps of PC projections did not seem affected by day/night varia-
tions. The diel cycle seemed to have little influence; yet two tests were
performed to investigate its potential effect. First, average plankton con- Little effect of

day/night
variations on our
results.

centrations along glider yos were computed, and differences between
day and night yos were investigated with a Wilcoxon test. This high-
lighted day/night differences in average concentration over 0-300 m
for several taxa (Figure S5.10A). Then, average vertical distributions
on 30 m bins were computed for day and night and compared with a
Kolmogorov-Smirnov test, revealing small significant differences for
Foraminifera only (Figure S5.10B). Moreover, during daytime, the UVP6
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was dazzled by the sunlight in the upper part of the water column
(depth < 30 m) when ascending, preventing the computation of any
particle or plankton concentrations in this zone. As we do not have day
concentration values to compare with night values at these depths, even
though many taxa are known to migrate within this depth range, we
tested the relative effect of both environmental variables and a binary
day / night variable on plankton concentration in the 30-60 m depth
range, using a non-linear model (Boosted Regression Trees). For each
of the 4 taxa we presented, the day/night effect explained less than 8%
of total variance. Overall, the little effect of the diel cycle on plankton
distributions likely results from the low number of detected organisms,
as well as the averaging across relatively large bins.

5.4.3 Dynamics of plankton and particles during the bloom

According to fluorescence data, the phytoplankton bloom seems to
have started around Feb 23rd, while UVP6 data shows that the zoo-
plankton bloom began between Feb 20th and Feb 27th, so very close to
the phytoplankton bloom (Figure S5.2). As described below, variationsParticle dynamics

could be related to
plankton

variations.

observed in particle abundance and size seems to indicate that particu-
late organic carbon (POC) export was affected by the composition of the
plankton community, as previously reported by numerous studies [51,
52, 163, 165]. Indeed, zooplanktonic organisms are directly involved
in the production of POC [379, 404]. Four phases emerged from the
analysis particle and plankton distribution and are discussed below.

5.4.3.1 Early bloom – February

In February, the early phase of the zooplankton bloom was charac-
terised by the presence of Appendicularia, including both inhabited
and discarded houses, mostly in the 0-200 m layer. Appendicularia
are filter-feeding pelagic tunicates. They grow a house made of mu-Appendicularia

produced a lot of
particles.

copolysaccharides and cellulose used as an external mucous filter to
collect food particles [4]. The house is disposable: when filters are
obstructed, the house is discarded and renewed, up to several times
a day [350]. These discarded houses are a major source of marine
snow aggregates [7]. These large (3 mm ESD on average) particles have
a relatively low sinking velocity (20-50 m d-1) during the first hours,
which then increases to 100 m per day after their initial deflation [242].
High Appendicularia abundance was previously linked to increased
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export of large particles, mostly through discarded houses [3]. Thus,
the sinking event of large particles, along the isopycnals (Figure 5.3)
could correspond to these discarded houses, or faecal pellets, from
Appendicularia.

5.4.3.2 Mid bloom – March

In a second phase, copepods were abundant in the 0-200 m layer while
salps occupied the 0-100 m layer. As previously, bigger particles were
found offshore but were less abundant than in February. Strong wind Copepods

dominated after a
mixing event
induced by wind.

was recorded a few days before this transect (Figure S5.3), causing a
mixing of the water column and a redistribution of phytoplankton,
particles (Figures 5.2DG, 5.3BC) and possibly zooplankton (see pat-
tern of copepods in Figure 5.4A). Such events have previously been
reported during spring and can result in community changes both for
phytoplankton [398] and zooplankton [339].

5.4.3.3 Late bloom – April

In April, the concentration of appendicularians increased, while that of
salps of copepods decreased. This gelatinous bloom could be the result
of favourable conditions in response to the gust of wind that took place
two weeks before (20th March), in line with the results of Ménard et al.
[270] who found that wind promoted blooms of salps, although this
result could not be confirmed by Licandro, Ibañez, and Etienne [235].
At the same time, stratification began in coastal waters and the DCM
started to form. The water column was mostly depleted in particles
(except for very coastal waters). Particles present in the 0-100 m layer Large particles

dominated in the
upper part of the
water column. . .

were big, a phenomenon that was found to originate from a decrease
in the concentration of small particles (Figure S5.6). Further analyses
showed that only 10% of objects in the 1-2 mm size range were living
organisms. These large particles are therefore indeed particles and
not planktonic organisms, such as appendicularians, which were more
abundant in the same depth range. Moreover, the distribution of these
large particles appeared to follow the isopycnals.

A first hypothesis to explain such observation could be a lack of
particle aggregation, so that organic matter would remain in the form of
particles to small to be detected by the UVP6 (< 70 µm). Backscattering
measurements, targeting smaller particles (~10 µm), also show low
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abundance in the water column on April 22nd (Figures 5.2, S5.1). Thus,
this explanation does not seem to be the most appropriate.

We thus suggest that the decrease in small particles was caused by
the presence of filter-feeding tunicates in the water column. Both salps
and appendicularia are suspension-feeders and contribute to removing
particles of various sizes (1 µm - 1 mm) from the water column [4] and
aggregate them into larger, sinking particles, explaining the relative
dominance of large particles. Faecal pellets produced by salps are. . . and were likely

discarded houses. relatively large (~5 mm) and sink at about 2000 m day-1 [62]. These
faecal pellets are thus not likely to remain in the water column and
cannot correspond to the large particles we observed in the 0-100 m
range. On the other hand, recently discarded houses of appendicu-
larians (containing faecal pellets) sink very slowly, at speeds typically
below 50 m day-1 [242]. These particles are thus much likely to reside
in the water column, by sitting on density gradients.

5.4.3.4 After bloom – June

Finally, both stratification and DCM intensified while zooplankton
concentration decreased. The zooplankton community was dominated
by Rhizaria. Some Rhizaria are mixotrophic and typical of oligotrophic
environments [42]. In our study, we mostly detected small unidentifi-
able Rhizaria and solitary Collodaria. The analysis of a time series ofThe end of the

bloom was
characterised by

the presence of
Rhizaria and a

DCM.

the complete plankton assemblage from net samples collected in Ville-
franche Bay highlighted a peak of Rhizaria in July [339], in oligotrophic
conditions that are comparable with our transect at the end of June.
The fine-scale distribution of these organisms during the oligotrophic
summer was studied across the Ligurian front in summer, using the
In Situ Ichthyoplankton Imaging System (ISIIS), an in situ imager with
very high sampling rate (> 100 L s-1) [85]. Solitary Collodaria precisely
followed the DCM, while Acantharia were mostly found on the coastal
side in the upper 50 m of the water column [124]. Further results emerg-
ing from data collected with the ISIIS will be presented in Chapter 6.
Such patterns could not be resolved with the UVP6, mostly because
of its lower sampling rate (< 1 L s-1), which required to aggregate
observations into broader taxomomic groups and onto a much coarser
spatial grid. Particle distribution revealed more abundant and smaller
particles around the DCM, which could correspond to large phyto-
planktonic cells (> 100 µm) of the accumulation of particles related to
biological activity.
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5.4.4 Mesoscale features

5.4.4.1 Particles

Previous studies reported a strong influence of the front on the distribu-
tion of particles with small aggregates being more abundant in coastal
waters while large aggregates were more abundant in the frontal zone,
suggesting that these aggregates are produced in this zone through
physical coagulation or biological transformation [146, 384]. In addi- Particle

distribution was
constrained by the
front.

tion, the fact that large particles are more abundant in surface waters
suggests that they are formed in these waters before being exported
to the depths [381]. Our findings also show this strong influence of
the front on the distribution of particles: small aggregates were more
abundant in coastal waters and the front acted as a barrier to particles
spreading offshore. Moreover, mean aggregate concentrations (0.75 L-1

in 512 µm - 1.02 mm; 0.09 L-1 in 1.02-2.05 mm) were also very close to
those found by Stemmann et al. [381]. However, while large aggregates
were sometimes more abundant under the frontal zone, this was not
always the case (Figure S5.5).

5.4.4.2 Plankton

Many studies detected an effect of the front on the distribution of
planktonic organisms, either an increase in abundance or biomass at
the front [48, 49, 234, 275] or different concentrations of certain taxa on
either side of the front [124, 219, 311]. Such effects were not as clear in We could not

show a strong
effect of the front
on plankton
distribution.

our data. First the coarse spatial resolution imposed by the sampling
rate made it difficult to identify processes “at the front”. Second
the coarse taxonomic resolution may have hidden some underlying
differences, within the broad group of copepods for example. Finally,
for most of the study period, the current was quite close to the coast
and coastal communities were little sampled, making them difficult to
contrast with offshore ones. Still, the concentration of several taxa were
higher in the offshore region than in the current or in the coastal one:
copepods in February and March, appendicurarians in February and
April, salps in March and April (Figure 5.4). This is compatible with a
barrier effect of the front.
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5.4.5 Submesoscale features

5.4.5.1 Cold lenses

A lens (referred hereafter as L3) of cold, fresh water with high oxygen
and low CDOM concentrations water of 9 km × 200 m was detected
during the back transect on April 22nd, between 46 and 55 km offshoreGlider sampling

also allowed
detecting

submesoscale
hydrological

features such as
submesoscale

coherent
vortices. . .

and from 130 to 330 m depth (Figure 5.2). It was barely visible on
density and BB700. Similar structures were looked for in the whole
dataset, including outgoing transects. The same lens was crossed 17 h
before on the outgoing transect on April 20th, but appeared smaller
(5 km width, labelled L2 on Figure S5.4). Another lens (L1), closer to
the coast, was detected on the same outgoing transect but not captured
before during the previous back transect which sampled the same area
25 h before. This gives us a clue to the speed of drift, which assuming
the same dimension in x and y, would be in the range of 5 to 10 cm s-1.

Such features are likely to be submesoscale coherent vortices (SCV),
previously detected in the area [46, 47]. A description of their physico-
biogeochemical properties showed differences in water properties be-
tween the SCV (more oxygen, less nutrients) and surrounding waters
to an extent that it affected the phytoplankton community. T his also. . . which did not

seem to affect the
distribution of

particles,. . .

highlighted reduced lateral exchanges between the core of the SCV and
the surroundings [47]. Yet, we did not detect any effect of the SCV on
the concentration or the size of particles (Figure S5.5), which suggests
that it did not act as a strong barrier for particles. Finally, changes in
the phytoplankton community inside the SCV are likely to propagate
to zooplankton, but the sampling resolution of planktonic organisms
was too coarse to detect any effect of the SCV.

5.4.5.2 Subducting water mass

On February 27th, a mass of high chlorophyll, high oxygen, low salinity,
low temperature and low CDOM water was recorded, down to a depth
of 300 m (Figures 5.2, S5.1). This water layer was about 3.8 km in. . . as well as

subducting water
masses. . .

width and 20 m in height, and was sinking towards the coast, following
the isopycnals along the front. This is coherent with a convergence
event [48], and was already observed by Niewiadomska et al. [290]
from glider data collected on a similar transect across the Ligurian
front in January. The water mass they observed had similar properties
and was 4 km wide, subducting down to a depth of 180 m. Analo-
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gous features were also detected during spring in the Corsican side
of the Ligurian current: phytoplankton produced in the surface layer
was carried downward along the isopycnals, resulting in a plume of . . . which, on the

contrary, brought
particles
downward.

chlorophyll down to 100 m [144]. Here, in addition, we were also able
to demonstrate that this subductiong water mass also carried more and
bigger particles from the surface towards the depth. Previously, it was
only suggested that food particles could be transported downward by
the frontal circulation along the isopycnals [147].

5.5 Conclusion

In conclusion, repeated sections across the Ligurian front with a glider
allowed us to resolve submesoscale hydrological features. A clear A strong link

emerged between
environment and
particles,. . .

linked emerged between the environment, the distribution of particles
and, to some extent, that of planktonic organisms, for example in a
subducting water mass and during a mixing event. Moreover, the accu-
mulation along isopycnals creates the DCM in April and July, which
is reflected in the distribution of particles. The temporal evolution of
the plankton community during the spring bloom was also related to
changes in the abundance and size of marine snow particles. While we . . . but was not

crystal clear for
plankton.

detected an influence of the front on the distribution of marine snow
particles, the signal was coarser for planktonic organisms, probably
due to the low sampling rate so that too few organisms were imaged.

Overall, these results confirm the need to study physics, biogeochem-
istry and biology at the same scale, by sampling both the environment,
particles and plankton at fine scale using in situ imaging. This ap-
proach should allow to better understand the biological responses to
submesoscale hydrological forcings.
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Supplementary Materials

Figure S5.1: (Figure continues)
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Figure S5.1: (Figure continues)
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Figure S5.1: (Figure continues)
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Figure S5.1: (Figure continues)
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Figure S5.1: Environmental data for all transects, arranged by date. (A) Febru-
ary, (B) March, (C) April, (D) May and (E) June. Each column corresponds to
a given date and rows are variables: temperature, salinity, potential density
anomaly, chlorophyll, oxygen, CDOM and BB700. White lines are the 38.2 and
38.3 isohalines delimiting the front, black lines are the 0.1 chlorophyll isoline,
pink lines are the 28.6, 28.8 and 29 isopycnals. Colour scales are shared among
subplots to ease comparison. Missing data are due to a CTD malfunction.
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Figure S5.2: Values of surface chlorophyll concentration detected from satellite
observations of ocean colour (OCEANCOLOUR_GLO_BGC_L4_MY_009_104) in the
area covered by glider sampling. The vertical line highlights a sudden increase
in chlorophyll concentration, indicating the beginning of the phytoplankton
bloom, on February 23rd.

Figure S5.3: Wind averaged over 10 mins for the duration of the campaign. Blue
rectangles represent the back transects. The strong wind event is highlighted
by the red arrow.
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Figure S5.4: Environmental data recorded by the glider during two round trips
between April 15th and 24th, showing three water lenses located around 200 to
400 m depth. (A) temperature, (B) oxygen, (C) salinity, (D) CDOM, (E) density,
(F) BB700. White triangle = coast, black triangle = Dyfamed.
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Figure S5.5: (Figure continues)
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Figure S5.5: Evolution of particle distribution. PC1 (A) and PC2 (B) projections
from the PCA performed on log-transformed particle data. The 38.2 and 38.3
isohalines delimiting the front are represented as black lines. Grey rectangles
in the plot background represent night time.
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Figure S5.6: Evolution of particle concentration in the offshore (distance to
coast > 20 km) top part (0 - 100 m) of the water column, for 4 size classes of
particles, showing a decrease in small particles in April.

Figure S5.7: Dataset composition: total number of images per taxonomic group
after probability thresholding.
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Figure S5.8: PCA performed on log-transformed plankton data: axes 1 and 2
(A) and axes 2 and 3 (B). Projections of bin coordinates on PC1 (C) replaced in
the four representative transects. The 38.2 and 38.3 isohalines delimiting the
front are represented as black lines. Grey rectangles in the plot background
represent night time.
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Figure S5.9: (Figure continues)
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Figure S5.9: (Figure continues)
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Figure S5.9: (Figure continues)
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Figure S5.9: Evolution of plankton concentration on all transects. (A) Copepoda,
(B) Appendicularia, (C) Salpida, (D) Rhizaria. The 38.2 and 38.3 isohalines
delimiting the front are represented as white lines. Grey rectangles in the plot
background represent night time.
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Figure S5.10: Comparison of day and night plankton concentrations. (A) Con-
centrations averaged along yos performed at day and night for each taxonomic
group. Differences in median concentrations were tested with a Wilcoxon test,
the significance of which is indicated by stars. (B) Distributions computed on
30 m vertical bins at day and night for each taxonomic group. Differences in
distributions were tested with a Kolmogorov-Smirnov test. * = 0.05, ** = 0.01,
*** = 0.001.
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Table S5.1: Missions summary.

Deployment Retrieval Time at

sea (h)

Number of images Acquisition frequency (Hz)

Total Back transects 0-220 m > 220 m

2021-01-28

10:21:08

2021-02-12

10:02:11
360 121,840 51,302 0.5 0.2

2021-02-18

13:33:39

2021-03-02

12:42:13
287 154,519 65,591 0.5 0.2

2021-03-04

14:37:08

2021-03-15

14:33:16
264 107,319 31,025 0.5 0.2

2021-03-17

11:55:48

2021-03-29

09:46:25
286 82,819 38,113 0.5 0.2

2021-03-31

12:45:47

2021-04-12

10:16:14
286 118,826 51,788 0.5 0.2

2021-04-14

12:00:36

2021-04-25

07:49:46
260 70,264 29,584 0.5 0.2

2021-04-28

12:49:31

2021-05-09

07:13:08
258 40,651 26,572 0.5 0.2

2021-05-12

10:23:28

2021-05-26

10:25:21
336 260,578 80,959 0.5 0.2

2021-06-02

10:13:56

2021-06-13

02:20:46
256 92,732 39,353 1.3 0.2

2021-06-16

13:16:54

2021-06-28

09:25:35
284 73,575 19,004 1.3 0.2
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Table S5.2: Classification performance before probability threshold. n test =
number of objects in test set.

Class Precision Recall n test

Annelida 75.0% 50.0% 12
Appendicularia 37.8% 59.3% 91
artefact 88.9% 63.9% 601
Cnidaria 50.0% 40.0% 5
Collodaria 94.8% 88.7% 62
Copepoda 60.6% 74.0% 918
detritus 98.6% 98.1% 40575
Eumalacostraca 50.0% 87.9% 33
Foraminifera 84.2% 84.2% 19
Mollusca 37.5% 75.0% 4
other_living 82.4% 31.8% 44
Rhizaria 44.3% 77.3% 141
Salpida 69.2% 92.2% 90
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Table S5.3: Classification performance after probability threshold. n test =
number of objects in test set. Most classes do reach 75% of precision, with
the exception of Cnidaria for which precision could not reach such a score,
because this class was polluted by many objects with higher prediction scores
than actual Cnidaria. As Appendicularia and Rhizaria had low recall, these
classes were instead manually validated.

Class Precision Recall n test

Annelida 71.4% 41.7% 12
Appendicularia 75.9% 24.2% 91
artefact 89.1% 63.9% 601
Cnidaria 0.0% 0.0% 5
Collodaria 94.7% 87.1% 62
Copepoda 75.2% 56.4% 918
detritus 98.6% 98.1% 40575
Eumalacostraca 77.4% 72.7% 33
Foraminifera 83.3% 78.9% 19
Mollusca 100.0% 25.0% 4
other_living 87.5% 31.8% 44
Rhizaria 83.3% 7.1% 141
Salpida 76.2% 88.9% 90





6
High throughput in situ imaging
reveals complex ecological
behaviour of giant mixotrophic
protists

To pursue our zoom towards smaller scales, the following chapter
tackles the fine-scale distribution of planktonic organisms across the
aforementioned Ligurian front. More specifically, we focus our study on
rhizarians, a group of understudied protists. Data supporting this work
was collected with the ISIIS during the VISUFRONT cruise, and fully
processed thanks to the AI-based pipelines presented in Chapters 2
and 3.

Taking advantage of the fact that in situ imaging enables to study
these fragile organisms in their undisturbed environment, we are able
to resolve meter-scale vertical distribution, as well as previously unre-
ported preferential orientation in multiple groups of Rhizaria. Finally,
we also provide new observations that are consistent with the current
knowledge regarding the life cycle of mixotrophic Rhizaria.

Thelma Panaïotis, Tristan Biard, Louis Caray–Counil, Robin Faillettaz,
Jessica Luo, Cedric M Guigand, Robert K Cowen and Jean-Olivier
Irisson

Manuscript in preparation to be submitted to PNAS

Abstract

Plankton play crucial roles in the oceans, both as the base of oceanic
food webs and a key link in global biogeochemical cycles. Although
planktonic organisms have been the topic of scientific research for cen-
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turies, some organisms have fallen through the cracks, such as Rhizaria.
Indeed, these unicellular eukaryotes are particularly delicate and often
crushed by classical plankton sampling instruments. Despite some
Rhizaria have been reported being mixotrophic and host photosyn-
thetic symbionts, gaps persist about their trophic ecology. Knowledge
regarding their reproductive cycle is even scarcer. Their substantial
contribution to the planktonic biomass was recently brought to light
thanks to in situ imaging. Such an approach allows the study of these
organisms in their undisturbed environment. Leveraging high fre-
quency in situ imaging data, we investigated the fine-scale distribution
and in situ position of ~230,000 organisms belonging to three groups of
Rhizaria, including taxa Acantharia, Collodaria and Phaeodaria. We
brought to light differences in vertical distribution between subgroups,
likely underpinned by different life strategies and contrasted abilities
for buoyancy control. We also detected a previously undocumented
preferential orientation of some organisms in each taxon. Finally, we try
to relate some of our observations to presumptive steps of the obscure
Collodaria life cycle, likely involving variations of buoyancy control to
reach new environments.

Résumé

Le plancton joue des rôles cruciaux dans les océans, à la fois en tant que
base des réseaux trophiques océaniques et en tant qu’élément essentiel
des cycles biogéochimiques globaux. Bien que les organismes planc-
toniques fassent l’objet de recherches scientifiques depuis des siècles,
certains organismes sont passés à travers les mailles du filet, comme les
Rhizaria. En effet, ces eucaryotes unicellulaires sont particulièrement
fragiles et souvent endommagés par les outils classiques d’échantillon-
nage. Bien que certains Rhizaria soient connus comme mixotrophes
hébergeant des symbiotes photosynthétiques, des lacunes persistent
quant à leur écologie trophique. Les connaissances concernant leur
cycle de reproduction sont encore plus rares. Toutefois, leur contribu-
tion substantielle à la biomasse planctonique a récemment été mise
en évidence grâce à l’imagerie in situ. En effet, cette approche permet
l’étude de ces organismes dans leur environnement non perturbé. En
exploitant les données d’imagerie in situ récoltées à haute fréquence,
nous avons étudié la distribution à fine échelle et la position in situ de
~230 000 organismes appartenant à trois groupes de Rhizaria (Acan-
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tharia, Collodaria et Phaeodaria). Nous avons mis en évidence des
différences dans la distribution verticale entre les sous-groupes, proba-
blement causées par des stratégies de vie différentes et des différences
de capacités dans le contrôle de la flottabilité. Nous avons également
détecté une orientation préférentielle, non documentée auparavant, de
certains organismes. Enfin, nous avons essayé de relier certaines de
nos observations aux étapes présumées du cycle de vie méconnu des
Collodaria, révélant potentiellement des variations du contrôle de la
flottabilité des organismes afin d’atteindre l’environnement dans lequel
se déroule l’étape suivante de leur cycle.

6.1 Introduction

Mixotrophy – the ability to use alternate sources of nutrients – ex-
ists in plants and metazoans but is much more widespread in plank-
tonic organisms such as protists (unicellular eukaryotes) [356]. Be- Different kinds of

mixotrophy
exist. . .

cause mixotrophy enables the occupation of many ecological niches,
mixotrophic planktonic protists, combining phototrophic and het-
erotrophic nutrition [67], are ubiquitous and dominate both freshwater
and marine ecosystems [274, 386]. Multiple variations of mixotro-
phy co-exist within protists [70]. Constitutive mixotrophs are photo-
synthetic protists with the ability to ingest prey, sometimes referred
to as “plant that eats” [227]. Non-constitutive mixotrophs become
mixotrophic thanks to the acquisition of phototrophy, which can be
mediated through the acquisition of specific free-living photosynthetic
protists (endosymbiosis) or by the retention of functional plasts (klep- . . . and are

widespread among
planktonic
protists. . .

toplastidy) from ingested preys. Non-constitutive protists – repre-
senting 40 to 60% of protists [227] – are diverse (e.g. Foraminifera,
Radiolaria, dinoflagellates, diatoms) [97, 387, 421] and common in all
oceanic biomes. Planktonic protists are the most abundant eukary-
otes in pelagic ecosystems and substantial contributors to the global
plankton biomass [70]. Involved in primary production, carbon seques- . . . which play key

ecological roles.tration through the biological carbon pump and linking trophic levels,
planktonic protists occupy critical ecological roles in the oceans [295,
419].

Although planktonic organisms have been the topic of scientific re-
search for centuries [314], most research focused on larger organisms,
especially Metazoa [305], leaving aside a whole part of the planktonic
biodiversity. First described more than one century ago [166, 283],
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Rhizaria are a diverse group of protists belonging to the SAR super-
group. Most Rhizaria bear a mineral skeleton of which compositionRhizaria are

understudied. . . varies between taxa: strontium sulphate for Acantharia, calcium car-
bonate for Foraminifera, opaline silica for Phaeodaria and polycystine
Radiolaria [286, 393]. In addition, internal structures are specific to
the different groups: solitary Collodaria have a large central capsule
surrounded by bubble-like aveoli [12]; Phaeodaria also possess a central
capsule but also carry a phaeodium which is an aggregate of food and
waste vacuoles [210]. Overlooked for a long time, recent studies based
on underwater imaging shed light on their ecological roles [68], in
particular as key elements of carbon [165, 217], silica [36, 240] and
strontium [35] global biogeochemical cycles. Rhizaria ranges from tens. . . small

unicellular
Eukaryotes.

of micrometers to several millimetres [286, 393], but Collodaria are also
found under the form of large solitary cells (> 1 mm), consisting of a
central capsule and encompassed by a gelatinous matrix [12]. Despite
being unicellular organisms, all collodarian species exhibit colonial
forms with up to tens of thousands of single cells embedded in a gelati-
nous cytoplasmic matrix. The size of colonies ranges from millimetres
to meters [393]. Previously considered as different clades because of
obvious morphological differences, molecular analyses demonstrated
that solitary and colonial forms actually share the same molecular
signature, likely constituting the two phases the life cycle of the same
species [41].

Because Rhizaria are not cultivated in the lab – except for a few
species of Foraminifera [206] – the scarce knowledge we have of thisStill much to

discover about the
ecology of
Rhizaria.

group comes from in situ observation and sampling only, whether of
individuals or environmental DNA. Most Rhizaria are phagotrophs, i.e.
they feed on particles, living or dead, including a large variety of plank-
tonic organisms [38] or detritic material [12]. Epipelagic Rhizaria (e.g.
Acantharia, Collodaria) typically host photosynthetic symbionts [97],
resulting in mixotrophy. In such an association, endosymbionts pro-
vide nutritional resources to their host and benefit in return from a
favourable microenvironment, rich in nutrients and protected from
predators and parasites [421]. But the hosts have to preserve their sym-
bionts and transmit them to their offspring. Endosymbiotic cells can
multiplicate within the host to compensate for the loss of symbionts.
Photosymbionts can be very diverse, from Prokaryotes to unicellularTheir trophic

modes are diverse,
. . .

algae. Most Foraminifera and Radiolaria are obligate mixotrophs: adult
life-stages cannot survive without their symbionts [97]. In Acantharia
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the symbionts undergo severe and irreversible modifications of their
morphology and cellular machinery, suggesting energetic exploitation
by the host cell which is, the only one to benefit from this association,
that would rather be qualified as parasitism [406]. Phaeodaria, on
their side, do not host photosynthetic symbionts and are thus purely
heterotroph, likely feeding on suspended matter and other planktonic
organisms [286].

Knowledge regarding Rhizaria life cycle remains scattered for most
groups. The release of swarmers – small bi-flagellated cells (2–5 µm)
– has been reported across several taxa including Acantharia, Collo-
daria, Phaeodaria and Foraminifera [206, 286, 393], but whether these
swarmers are gametes remains unknown. Asexual reproduction by . . . and gaps

persist in their
reproduction cycle.

binary fission has also been reported in Foraminifera [50, 206], Phaeo-
daria [286] and Collodaria [11, 56]. During asexual reproduction by
mitosis of the host, symbionts can be transmitted to the daughter cells
through vertical transmission. As no vertical transmission has been
reported during sexual reproduction in planktonic symbioses, cells pro-
duced by fecundation are thought to acquire their symbionts de novo
in the environment [97], but how potential symbionts are specifically
recognized remains an open question.

Due to their fragility, Rhizaria are often damaged when sampled by Overlooked
because of
damaging
sampling
methods. . .

classic plankton sampling tools such as nets or pumps. As a conse-
quence, their abundance and biomass have been overlooked for a long
time [68]. Moreover, these sampling methods do not allow to resolve
fine-scale distribution in relation to environmental conditions [85, 243].
In situ plankton imaging overcomes some of these limitations by pro- . . . Rhizaria can

now be
investigated
through in situ
imaging. . .

viding high spatio-temporal resolution and preserving the relationship
between the organisms and their environment. Being non-destructive,
in situ imaging is more appropriate to sample fragile organisms such
as Rhizaria [42, 104, 285]. In the past 30 years, multiple in situ imagers
were developed with various specificities [243]. These approaches
revealed contrasted patterns in the distribution of these unicellular
organisms [40], but also highlighted their important contribution to the
oceanic carbon biomass [42, 111]. Some in situ imagers enable captur- . . . which also

enables the
investigation of
plankton
behaviour.

ing images of organisms without disturbing them, with the potential
to reveal specific position, behaviour or interactions between organ-
isms [299]. For example, copepods feeding behaviour was reported in
various environments [276, 291, 293, 409]. Similarly, Gaskell, Ohman,
and Hull [140] investigated planktonic Foraminifera and revealed the
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volume they occupied in situ and brought to light a preferential orien-
tation of these organisms.

Thus, many questions remain open regarding the ecology of Rhizaria:
which factors drive the fine-scale distribution of both mixotroph and
non-mixotroph? Are life stages and symbionts acquisition related to the
position in the water column? In this study, we leverage high resolution
in situ imaging data of planktonic Rhizaria from the NW Mediterranean,
across a front in an oligotrophic environment – a habitat where Rhizaria
are important – to (i) resolve the fine-scale distribution of these organ-
isms, especially comparing mixotrophic and non-mixotrophic ones, (ii)
reveal individual aspects, and (iii) fill gaps in ecological knowledge –
mostly reproduction cycle – of these organisms.

6.2 Results

6.2.1 An extensive dataset

A total of ~8 million planktonic organisms were imaged by the In Situ
Ichthyoplankton Imaging system (ISIIS) in the 0-100 m layer across
the Ligurian front, a permanent mesoscale front in the Ligurian Sea
(NW Mediterranean). Within these, ~230,000 Rhizaria were sorted
into 14 taxonomic and/or morphological categories, belonging to four
larger groups: Acantharia, Phaeodaria, solitary Collodaria and colonialDetected

organisms were
diverse in terms of
taxonomy and size.

Collodaria. Each group contained between 147 and 104,455 individuals,
covering a size range from 0.4 mm (equivalent spherical diameter) for
Acantharia to 35 mm for colonial Collodaria (Figure 6.1). Acantharia
(n ≈ 150,000) and Aulacanthidae (n ≈ 50,000; Phaeodaria) dominated
the dataset while Collodaria were less abundant (n ≈ 10,000 solitary;
n ≈ 15,000 colonies).

Organisms were distributed in a strongly stratified water column
(Figure S6.1), with a thermocline/pycnocline around 10 m depth. The
front was well marked, delimiting fresher water inshore from saltierEnvironmental

conditions were
emblematic of the

oligotrophic
summer period.

water offshore. The deep chlorophyll maximum (DCM) was located
between 50 m inshore and 75 m offshore where it was more spread
out. Finally, oxygenated waters were found between the thermocline
and the DCM and highlighted two tongues of downwelling waters,
also visible on temperature. Overall, these features are typical of the
oligotrophic summer period in the Ligurian Sea.
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Figure 6.1: Dataset composition. (A) Equivalent Spherical Diameter (ESD) dis-
tribution and number of organisms per taxonomic group. (B) Examples of ISIIS
images for each taxonomic group: (a) Arthracanthida, (b) Acantharia small, (c)
Acantharia other, (d) Aulacanthidae, (e) flat Aulacanthidae, (f) Aulosphaeridae,
(g) Collodaria solitary with vacuole, (h) Collodaria solitaryglobule, (i) Collo-
daria solitaryblack, (j) Collodaria solitaryblack like, (k) Collodaria budding, (l)
Collodaria proto colony, (m, n) Collodaria colonial.
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6.2.2 Vertical distribution of Collodaria depended on life stages

Collodaria

• solitary and colonial forms: two steps of the life cycle

• 100 µm - 3 m

• mixotrophic

• no shell

(A) (B) (C) (D)

Examples of Collodaria images in light microscope and
imaged by the ISIIS. (A, B) Solitary Collodaria, (C, D) colo-
nial Collodaria. (A) from Sardet [349], (C) from Biard and
Ohman [40].

Collodaria are mixotrophic and lack a shell. Beyond the typical
solitary and colonial forms, additional forms that could correspond
to the transition phase between these were also detected by the ISIIS
(Figure 6.2C). Overall, solitary forms were found close to the DCM,
with the exception of vacuole-bearing organisms found deeper below
the DCM; while colonies were more spread out in the water column
although still centred on the DCM (Figure 6.2D). Lastly, the vacuoles
of the 350 manually annotated solitary organisms demonstrated a clear
orientation towards the surface (Figure 6.2B) and their size increased
with depth (Figure 6.2A, S6.2).
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Figure 6.2: Collodaria distribution and vacuole properties. (A) Vacuole length
(shown as a red line in (D)) VS depth in solitary Collodaria. (B) Angle of
vacuoles position (shown in (D)) in solitary Collodaria. (C) Distribution relative
to DCM for Collodaria groups. (D) Forms of Collodaria detected with the ISIIS
and their putative chronological order.

6.2.3 Acantharia had disparate vertical distributions

Acantharia

• solitary only

• 50 µm - 1 mm

• mixotrophic

• strontium sulphate skeleton

(A) (B)

Examples of Acantharia images in light microscope and imaged
by the ISIIS. (A) from Biard and Ohman [40].
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Figure 6.3: Acantharia vertical distribution and orientation. (A) Distance to
DCM for Collodaria groups. (B) In situ orientation of Arthracanthida. (C)
Examples of Arthracanthida images.

Acantharia are also mixotrophic but are smaller than Collodaria and
bear a strontium sulphate skeleton. Three Acantharia subgroups were
identified and displayed distinct vertical distributions (Figure 6.3A):
Arthracanthida were found around the DCM, other Acantharia were
found well above the DCM, just below the surface, while small Acan-
tharia displayed an intermediate distribution between these, some
organisms being close to the surface while others were around the
DCM. Moreover, Arthracanthida displayed a preferential orientation
with their largest spicule oriented at the vertical (Figure 6.3BC).
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6.2.4 Phaeodaria differed from mixotrophic Rhizaria

Phaeodaria

• solitary only

• 100 µm - 3 mm

• heterotrophic

• siliceous skeleton

(A) (B) (C) (D)

Exemples of Phaeodaria images in light microscope and imaged
by the ISIIS. (A, B) Aulacanthidae, (C, D) Aulosphaeridaea. (A)
from Sardet [349], (C) from Biard et al. [39].

Unlike Collodaria and Acantharia, Aulacantha (Phaeodaria) lack
photosymbionts and are heterotrophic. The two subgroups of Aula-
canthidae were found around the DCM (Figure 6.4A), but seem to be
brought downwards by sinking waters: when oxygen concentration is
higher on the 28.7 isopycnal (corresponding to sinking water), Aulacan-
thidae concentration is lower (Figure 6.4B, S6.3). This was not the case
for other Rhizaria dwelling in the DCM (Figure S6.4). Some organisms
identified as Aulacanthidae had an ellipsoid shape and were bigger
than typical spherical Aulacanthidae. These organisms presented the
very same distribution as Aulacanthidae (Figure S6.3) but were all
oriented horizontally (Figure 6.4C). Aulosphaeridae were found deeper,
below the DCM (Figure 6.4A). In these organisms, the phaeodium
was found to be typically positioned towards the bottom of the cell
(Figure 6.4D).
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Figure 6.4: Phaeodaria distribution and orientation. (A) Distance to DCM for
Phaeodoaria groups. (B) Relative Aulacanthidae and oxygen concentration
along the 28.7 isopycnal. Red arrowheads highligth downwelling of high
oxygenated waters corresponding to lower concentration in Aulacanthidae. (C)
In situ orientation of flat Aulacanthidae. (D) Angle of phaeodium position in
Aulosphaeridae.
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6.3 Discussion

6.3.1 The complex life cycle of Collodaria

We observed Collodaria organisms with diverse morphology (solitary
with vacuoles, proto colonies. . . ). Here, we try to relate these obser- Our observations

may contribute to
filling gaps in the
Collodaria life
cycle.

vations to present knowledge regarding the life cycle of Collodaria,
although much remains to be known. Previous studies demonstrated
that solitary and colonial Collodaria are actually two steps in a complex
life cycle [41, 324, 427] and that colonies can emerge from solitary cells
by binary fission [56, 181]. Colonies have the ability to keep growing
by a succession of binary divisions [11].

Besides this ability for vegetative reproduction, multiple signs point
in the direction of a sexual reproduction in Collodaria. First, both
solitary and colonial forms of Collodaria have the ability to produce
small biflagellated cells called swarmers [12, 181]. Yet, there is no
evidence that these swarmers of unknown ploidy are gametes as there
is no report of fertilisation or offspring production [12]. Swarmer Collodaria, both

solitary and
colonial, produce
swarmers.

production was also reported in Acantharia [100], Foraminifera [206]
and Phaeodaria [210]. Second, sexual reproduction is common in
other phyla of Rhizaria [12, 206, 286] but remains more hypothetical
for Acantharia [98, 99]. Phaeodaria are thought to reproduce both
asexually and sexually, but their life cycle has never been completed
in situ [286]. Finally, as sexual reproduction is extremely widespread
in the Eukaryotic world and was already present in the last eukaryotic
common ancestor [377], it seems reasonable to suppose that Collodaria
engage in sexual reproduction.

In Collodaria, buoyancy loss and morphological changes occur con-
currently to swarmers release [12]. Although it is not clear where
swarmers are released exactly, there is indirect evidence that a hypo-
thetical fertilisation might occur at depth. First, in both Acantharia and
Foraminifera, fertilisation is thought to take place at depth [98, 206].
Second, Collodaria was previously detected at depth from metabar- Fecundation may

occur at depth.coding [126, 313] while all species host photosymbionts and therefore
typically dwell in the photic zone. Collodaria was also detected in the
picoplankton (0.2-2 µm fraction size) [282], while all Collodaria are
typically super-millimetric. These elements, very small and detected
at depth, could correspond to swarmers. Finally, Collodaria swarmers
were shown to contain a crystal of strontium sulphate in their cyto-
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plasm [423], which is lacking in the juvenile stages. While its precise
function remains obscure, it may play a role sometime between swarm-
ers release and the early stage of the next generation. This dense crystal
could act as a ballast facilitating the swarmer’s descent to depth [423].

If fertilisation does occur at depth, the newly formed organism then
has to reach the photic zone where adults live. Enter the vacuoles. The
vacuoles in Collodaria are thought to contain lipids [12, 128]. All the
vacuoles we detected in solitary Collodaria were oriented upwards,
suggesting that they bring positive buoyancy to the cell. Moreover,The offspring has

to ascend from the
depths.

vacuoles were smaller when approaching the surface, which is consis-
tent with a diminishing need for buoyancy when organisms reach their
target habitat. Thus, we hypothesise that vacuole-bearing cells could
correspond to newly formed organisms, migrating from the fertilisa-
tion location to their next dwelling place: the DCM. Furthermore, deep
(> 80 m) cells typically had one or two large vacuoles in the top half
of the cell, while in cells closer to the DCM, more smaller vacuoles
were present all around the cell (Figure S6.2). This could be a means
to reduce ascent speed and stabilise when the cell reaches the DCM, a
source of food and potential symbionts.

In Collodaria, the number of symbionts per cell or in the colony
varies a lot: a few hundreds in a solitary cell, several thousand for a
colony [38]. No vertical transmission of symbionts is likely in Rhizaria,The solitary cell

acquires
symbionts de novo

in the DCM.

since swarmers are too small to host symbionts from their parent
cell [99]. Moreover, Rhizaria often losing their symbionts just before
gametogenesis is also in line with symbionts acquisition at the next
generation [97]. This suggests a need for the de novo acquisition of
symbionts, which in the oligotrophic waters of the Mediterranean Sea
during summer, are only abundant in the DCM, where Collodaria
could also feed on various planktonic organisms [41].

Thanks to these acquired energetic resources, a solitary cell can enter
in a budding phase to create a new colony by vegetative multiplica-
tion [181] and the colony keeps growing through cell division [11]. In
the meantime, symbionts are able to reproduce within the host [97], soFrom a solitary

cell to a colony by
budding.

that, at some point, the host does not need to acquire new symbionts.
Our data highlighted that colonies are more spread out in the water
column than solitary cells, and this is coherent with previous observa-
tions [124]. This might result from a lower pressure to stay close to the
DCM, enabling the use of a larger habitat.
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Overall, we cannot demonstrate that these steps constitute the life
cycle of Collodaria, but our observations tell a coherent story. To
confirm it, vacuoles bearing organisms could be sampled in situ to
check for the absence of symbionts, since this stage is supposed to
occur before symbionts acquisition. Yet, this seems infeasible given How to turn the

hypothesis into
proofs?

the very small number of observations: ~350 solitary Collodaria with
vacuoles were detected in the 17×106 L sampled in 44 hours. Moreover,
the low proportion of vacuoles bearing cells compared to the total
number of solitary Collodaria (~10,000) suggests that the duration
of vacuole stage would be very short compared to the time spent
in the DCM. Another solution could be to use multispectral in situ
imaging to detect fluorescence within organisms [135, 239, 425], but,
once again, would require a very high sampling rate, of the same order
of magnitude as the ISIIS (> 100 L s-1).

6.3.2 Vertical distribution and buoyancy control in rhizarians

Although non-motile unicellular planktonic organisms were initially
thought to be freely suspended in the water column [19], diverse
buoyancy control mechanisms were later discovered, mostly consisting Many buoyancy

regulation
mechanisms exist
in the planktonic
world.

in the accumulation of substances modifying the cell density (e.g. lipid
droplets in Rhizaria) or active change of the cell shape and volume (e.g.
myoneme contraction in Acantharia [127]), but see [128] for a review.
Beyond protists, cyanobacteria such as Trichodesmium can regulate
their buoyancy through gas vacuoles [410], while density changes can
also occur in Cnidaria and Ctenophora in order to reach equilibrium
buoyancy [272].

Several Rhizaria categories had a vertical distribution centred around
the DCM – a potentially favourable environment (for feeding, sym-
biont acquisition) – which is a probable indicator of an active buoyancy Rhizaria actively

control their
buoyancy,. . .

control. Such active buoyancy control was previously reported in
Rhizaria [12, 128, 196, 271]. The solitary Collodaria vacuoles – system-
atically oriented towards the surface – and the relationship between
vacuole size and depth mentioned above are other elements in favour
of active buoyancy regulation.

The DCM is typically situated around the density gradient (Fig-
ure S6.1) that separates the nutrient depleted surface layer from a light-
limited deep layer [175], thus corresponding to favourable conditions
for phytoplankton growth. Still, neutral buoyancy and accumulation
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on density gradients of phytoplankton cells can also contribute to cre-
ating DCMs [241]. Therefore, a passive accumulation on the same. . . but passive

buoyancy cannot
be totally excluded

for Phaeodaria.

density gradient of other organisms also explains their distribution.
This is likely for Aulacanthidae (Phaeodaria), the distribution of which
seemed affected by small-scale downwellings, which could be a sign
of very limited buoyancy control. Still, Aulacanthidae are thought to
maintain their buoyancy thanks to a low carbon and biogenic silica
density (their test is porous) [388] and Coelodendrid (Phaeodaria) can
maintain neutral buoyancy in vitro [394]; to our knowledge, no active
buoyancy regulation mechanisms were reported in the literature for
Phaeodaria, contrary to other Rhizaria groups.

In contrast, those with photosymbionts should be close to the sur-
face for a maximal exposition of photosymbionts to sunlight, but this
environment is particularly depleted in nutrients, hence the impor-
tance of mixotrophy. Yet, the two mixotrophic groups we studied
(Acantharia and Collodaria) had very different distributions. Three
distinct vertical patterns were detected in Acantharia. However, the
limited pixel resolution of the ISIIS (1 px = 51 µm) prevented a finer
identification, which could have explained the bimodal distribution of
small Acantharia. Larger, likely symbionts bearing, Acantharia were
found very close to the surface, in concordance with literature [271].
Collodaria – also mixotrophic – had a very different distribution fromAcantharia and

Collodaria: two
mixotrophs with

different life
strategies.

Acantharia: solitary cells were located around the DCM while colonies
were more spread out (although colonies can accumulate close to the
surface [393]). Multiple hypotheses could explain these two different
strategies: Collodaria may not need as much sunlight exposition as
Acantharia, Collodaria could not provide their symbionts with suffi-
cient nutrients in such a depleted environment, or, Collodaria could
be at a higher predation risk near the surface because they are much
larger than Acantharia. Regarding the wider distribution of colonial
Collodaria, this could emerge from the lower habitat pressure and a
compromise between available nutrients at depth and exposition of
symbionts close to the surface, nor can it be ruled out that colonies
successively occupy these two habitats.

6.3.3 Preferential orientation of unicellular organisms

Similarly to vertical position, cell orientation in unicellular planktonic
organisms was considered to be random because of small-scale turbu-
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lence [132]. But cell orientation conditions various essential functions
such as reproduction, sensing, metabolism or locomotion and non-
uniform orientational distributions are the norm [19]. For non-motile
unicellular organisms with homogeneous density, cell orientation is Non-random

orientation is
involved in
various
functions. . .

mediated by fluid-cell interactions at the microscale, so that cells adopt
a hydrodynamically favourable orientation [19]. Otherwise, orientation
can be mediated through differences of density of inner structures.

Multiple studies targeted the orientation of particles of various na-
tures (marine snow aggregates, detrital material and phytoplankton,
including colonies). This revealed a preferential orientation at the hor-
izontal occurred in regions of low shear [288]. Moreover, time spent . . . and was

previously
investigated in
several unicellular
organisms.

horizontally increased with the aspect ratio of particles, in accordance
with predictions of Jeffery’s theoretical model [195]. Similar results
were reached on diatom chains in situ [255, 266, 396] and ex situ [198].
Moreover, the horizontal orientation of phytoplankton colonies seems
ecologically beneficial as it increases the area exposed to sunlight,
which could result in an increase of photosynthetic activity [58, 266].
In contrast, pennate diatoms were found to vertically reorient when
sinking from surface turbulent waters [132].

The use of in situ imaging with image captured from the side allowed
us to resolve in situ orientation of multiple organisms. We detected In situ imaging

can resolve
Rhizaria
orientation. . .

preferential orientation both from the shape of organisms (oblate or
prolate ellipsoid) or from the specific position of internal asymmetric
structures in spherical organisms (e.g. lipid vacuoles, phaeodium). For
example, positively buoyant lipid vacuoles were oriented towards the
top of the spherical solitary Collodaria cells; while the phaeodium, a . . . either of

internal
structures. . .

denser aggregate of waste and food [210], was located towards the
bottom of the also spherical Phaeodaria cells. In situ preferential
orientation was previously reported in protists, for Foraminifera that
have bubble capsules positioned towards the surface [140].

Regarding the shape of the organisms, this literature cited above
shows that a horizontal orientation is expected for non-motile plankton.
This was the case for our oblate, flat Aulacanthidae. Nonetheless, . . . or of the whole

organism.Arthracanthida (Acantharia) displayed different preferential orientation,
with the two longest and thickest spicules at the vertical. Their skeleton
is made of strontium sulphate, the densest known oceanic biomineral
(3.96×103 kg m-3) [259]. Their vertical orientation could result from a We detected both

horizontally and
vertically oriented
Rhizaria.

passive equilibrium imposed by the weight of the skeleton, although
the presence of an inner structure with a higher or lower density



194 Rhizaria behaviour from in situ imaging

influencing cell orientation cannot be excluded. Moreover, Acantharia
have been reported to actively deploy long cytoplasmic extensions that
could be involved in predation by catching food particles, but with
no certitude [258]. These structures could also be involved in other
functions, including buoyancy control.

In the end, our results are the opposite of the historical view of a to-
tally passive life of planktonic protists, even more so for the mixotrophic
ones.

6.3.4 New insights on mixotrophy

In 1851, Huxley was the first to describe yellow cells inside colonial
Collodaria [187], also described in other polycystine Radiolaria a few
years later [283]. But it was only later that these cells were identified
as symbionts [56], concomitantly to the description of symbiosis in
lichens. Since then, planktonic symbioses have received much less
attention than others, although they play critical ecological roles in the
oceans. Mixotrophy has appeared several times in the course of evolu-Mixotrophy offers

the possibility of
colonising new

habitats but
imposes a more

complex life cycle.

tion, notably within several groups of eukaryotes [387], highlighting
the benefits of this feeding strategy, although it comes with the need
for the host to maintain a favourable environment for the symbionts
to thrive. Here, we highlight that the transition between hetero and
mixotrophy could shape the life cycle and distribution of Collodaria.
We show that the mixotrophy enables the exploitation of habitat other-
wise unfavourable for photosynthesis, albeit with different trade off in
distribution in Acantharia and Collodaria. Finally, we also point out
unexpected and often neglected behaviour of unicellular organisms.

6.4 Material and methods

The ISIIS was deployed during the VISUFRONT cruise that took place
in July 2013 in the NW Mediterranean Sea, to study plankton distri-
bution across the Ligurian Front. Sampling consisted of six transectsData was collected

using the ISIIS
during the

VISUFRONT
cruise in summer

2013.

performed across the front, perpendicularly to the coast, for a duration
of 6 to 8 hours each, during which the ISIIS was deployed in a tow-yo
fashion between the surface and 100 meters. The ISIIS is an imaging
instrument targeting planktonic organisms from 250 µm to 10 cm in
size, i.e. meso- and megazooplankton. With a sampling rate > 100 L s-1.
Moreover, the shadowgraphy method used in the ISIIS is particularly
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appropriate to image transparent planktonic organisms, and their inner
structure. However, organisms may be horizontally distorted depend-
ing on the towing speed and the acquisition rate of the line scanning
camera of the ISIIS. In our case, organisms were laterally compressed
so that a circle appears as a vertical ellipse and organisms were thus
imaged smaller than in reality. This deformation was corrected when
estimating the size of the organisms. Finally, the ISIIS also continuously
records environmental data: temperature, salinity, fluorescence and
oxygen.

Nearly 44 hours (equivalent to a 185 million pixels long image) of
data was recorded with the ISIIS, the processing of which had to be
automated. The first processing step consisted of detecting planktonic
organisms in raw images. Using a content-aware segmentation pipeline
based on a convolutional neural network (CNN) [306], more than 20
million potential planktonic organisms were extracted. During a sec- Imaged planktonic

organisms were
automatically
detected and
taxonomically
sorted. . .

ond step, these organisms were automatically sorted into 24 taxonomic
groups using a CNN classifier (MobileNetV2) previously trained and
tested on ISIIS data (Chapter 3). The 1.8 M organisms sorted within
Rhizaria were selected for a finer classification step into 14 categories,
using a classification model specifically trained for this purpose (Fig-
ure 6.1). The identification of the 1.8 M images could not be manually
validated. Instead, uncertain predictions – below a probability thresh-
old computed so that 90% of mistakes occurred below this threshold –
were discarded. This method decreased recall but improved precision,
i.e. concentrations are underestimated but distribution patterns are
preserved [124].

After classification, each organism was characterised morphologi-
cally by measuring a set of features, including proxies for size (e.g. area, . . . and then

individually
measured for
morphological
features.

perimeter), transparency (e.g. mean grey level) and in situ position (e.g.
orientation of the major axis). Each element of the dataset consisted
of an image, a taxonomy label, a set of features and associated envi-
ronmental data, from which concentrations and vertical distributions
were computed. Additionally, the positions of specific structures of
three categories were detected manually using a keypoint annotation
tool1. About 350 solitary Collodaria displayed asymmetric vacuoles.
By recording the position of both the centre of the nucleus and the tip
of the largest vacuole, vacuole orientation and size were computed for
each organism. Similarly, the position of the phaeodium with respect

1 https://github.com/luiscarlosgph/keypoint-annotation-tool

https://github.com/luiscarlosgph/keypoint-annotation-tool
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to the centre of the organisms was recorded for 224 Aulosphaeridae
(Phaeodaria). Finally, the orientation of Arthracanthida (Acantharia)
was manually evaluated by recording the position of the extremities
of the longest spicule in 232 organisms. All orientation values were
corrected for the pitch of the ISIIS.

Abnormal environmental values (e.g. negative temperature and oxy-
gen) were first removed. Density was computed from temperature and
salinity. Finally, a bilinear interpolation of transects using distance fromEnvironmental

data was processed
to highlight the

main hydrographic
features.

shore in x (200 m steps) and depth in y (0.5 m steps) was performed
to obtain full images of transects. The DCM depth was computed on
interpolated data, as the depth of highest fluorescence. Because it high-
lighted well the downwelling of oxygenated waters, the depth of the
28.7 isopycnal was computed from interpolated density transects, and
oxygen and Rhizaria concentration values along this isopycnal were
extracted to investigate whether Rhizaria distribution was affected by
these vertical movements of water.

All analyses were conducted with R version 4.1.2. Data processing
and interpolations were performed with packages dplyr and akima

respectively. Plots were generated with ggplot2 using the color-blind
friendly viridis and cmocean color scales.
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Supplementary materials

Figure S6.1: Environmental data along one transect, representative of the other
transects. (A) temperature, (B) salinity with 38.2 and 38.3 isohalines delimiting
the front, (C) density anomaly with 28.7 isopycnal in pink, (D) fluorescence
with DCM represented as a white line, (E) oxygen.
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Figure S6.2: Schematic vertical distribution of size and shape of vacuoles in
solitary Collodaria.

Figure S6.3: Effect of downwelling waters on Aulacanthidae distribution along
a transect, representative of the other transects. Distributions of (A) Aulacan-
thidae and (B) Flat Aulacanthidae. (C) Oxygen concentration. Oxygen isolines
are drawn in white and the 28.7 isopycnal is drawn in pink.
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Figure S6.4: Absence of effect of downwelling waters on other Rhizaria. Dis-
tributions of (A) Arthracanthida and (B) solitaryglobule Collodaria. Oxygen
isolines are drawn in white and the 28.7 isopycnal is drawn in pink. Relative
(C) Arthracanthida, (D) solitaryglobule Collodaria and oxygen concentration
along the 28.7 isopycnal.



Part IV

General discussion

After a brief summary of the main results, these are dis-
cussed in the light of the existing literature. Some consid-
erations regarding the paradigm of data-driven science are
addressed. Finally, a few perspectives of this work and their
contributions to plankton ecology are examined.





7
Discussion and perspectives

7.1 Summary of key findings

In a first part, DL-based approaches were developed in order to ease
the processing of large amounts of in situ imaging data. A CNN- Deep learning

for. . .based intelligent segmentation pipeline, based on the Detectron2 library
providing state-of-the-art object detection and segmentation algorithms,
was shown to be efficient to detect planktonic organisms in raw, full
images. In comparison with other methods, this pipeline was not the
fastest and required a decent GPU to be run, but it achieved the best

. . . segmentation. . .compromise between accurate detection of planktonic organisms and
relatively low pollution from non-planktonic objects. We successfully
deployed and run this segmentation pipeline on several computing
servers with various GPUs. Moreover, the pipeline was made open
source1 for anyone to use it with images from the ISIIS instrument.

To sort objects detected by the segmentation pipeline into taxonom-
ical or morphological categories, we trained a classifier based on a
CNN. Compared to a classic classification model, the CNN improved . . . and

classification of
plankton images.

classification performance but only noticeably on poorly represented (a
few hundred images) classes. Moreover, the comparison with a dummy
random classifier highlighted the importance of assessing other met-
rics than the, often solely used, global accuracy when performing a
classification task on unbalanced datasets, such as plankton image
datasets.

In a second part, numerical ecology tools were applied to study Numerical ecology
to. . .plankton distribution at different scales. From a global dataset of

2,500 vertical profiles using the UVP5, an in situ imaging instrument,
we investigated the global distribution of large plankton community . . . characterise

global plankton
community
types,. . .

types in relation to their environment. Both in the epipelagic and
the mesopelagic layer, we detected three types of community and
concluded that they were driven more by basin-scale environmental

1 https://github.com/jiho/apeep

203

https://github.com/jiho/apeep


204 Discussion and perspectives

conditions than the very local conditions in which the profiles were
performed.

Next, a 5-month campaign operating a glider equipped with an. . . understand
plankton and

particles
distribution across

a mesoscale
front. . .

UVP6 was conducted across the Ligurian front (NW Mediterranean)
to investigate plankton distribution across this mesoscale front during
the spring bloom. During these five months, we detected large shifts in
particles concentration and size and related them to temporal variations
in the plankton community, during the bloom.

Finally, leveraging high frequency in situ imaging data collected
by the ISIIS, we investigated the fine-scale distribution as well as in
situ position of organisms belonging to the Rhizaria clade, a group. . . and resolve

fine-scale Rhizaria
distribution.

of understudied, fragile, mostly mixotrophic protists. We brought
to light differences in vertical distribution between subgroups, likely
underpinned by different life strategies. We also reported previously
undocumented preferential orientation of some organisms, as well as
observations of presumptive steps of the poorly known life cycle of
Collodaria. These undescribed forms suggest the existence of a fine
control of their buoyancy, even by these unicellular organisms, to reach
the location of the next step in their life cycle.

Overall, this work highlights how the processing of large amounts of
in situ imaging data can be made easier and faster thanks to artificialIn situ imaging +

AI = ♡ intelligence approaches; and demonstrates the effectiveness of in situ
imaging data to understand biophysical interactions in plankton and
distribution patterns at all scales.

7.2 In situ imaging to resolve plankton distribution
across scales

7.2.1 Microscale – O(1 mm)

Interactions between individual planktonic organisms and with their
environment occur at the microscale, O(1 mm) [19]. At such a small
scale, turbulence has many effects on plankton: nutrient uptake and
encounter rates are increased, but duration of contact is decreased andAt microscale, in

situ imaging can
resolve. . .

feeding currents generated by suspension feeders are weakened, thus
affecting growth rates and community composition [325]. Yet, few mi-
croscale studies were performed in situ, because few tools are adapted.
Still, Font-Muñoz et al. [132] resolved in situ orientation and mating
pairing of diatoms using Laser In Situ Scattering and Transmissometry
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(LISST-100×) [260]. Using in situ holography, Talapatra et al. [396] were
able to relate diatom chain orientation to mean shear rate; while Nayak
et al. [288] observed a preferential horizontal cell orientation in relation
with regions of low velocity shear. Indeed, holography can resolve the
3D position of planktonic organisms from a few microns to a few cen-
timetres within the imaged volume [287]. Moreover, recent systems are
now compact enough to be embedded on profiling or towed platforms,
as well as on AUVs.

With in situ imaging instruments of high enough resolution, we
can partially resolve microscale interactions (e.g. [152]) as well as the . . . individual

distances between
organisms. . .

individual positions of planktonic organisms. Indeed, when several
organisms are present in the field of view, distances between organisms
can be computed and potential interactions inferred.

In ISIIS images, we considered sets of five consecutive 2048×2048
pixels frames, referred to as “images”, corresponding to a volume of
52.5×10.5×50 cm3. For each taxon (e.g. Euchaeta (Copepoda)), we
selected images within which an individual was positioned in the
middle frame, so that a wide array of distances to the neighbouring
organisms could be computed before reaching the sides of the image.
One thousand such “target” individuals were selected, per taxon, and
distances from them to all others were computed. However, these . . . which we

investigated in
ISIIS data,. . .

distances were computed on a 2D images projected from a 3D volume,
hence inducing an error. To evaluate it, 1000 points were randomly
generated within the considered volume. One point, located in the
central part, was considered as the target and distances to all other
points were computed, either from the 3D position (true distance) or
the 2D projection (perceived distance). This was repeated 10 times
and revealed that perceived distances were well correlated to true
distances although they underestimated them (Figure 7.1A). Note that
the optical system of ISIIS is telecentric [85], which makes the projection
orthographic and therefore does not induce an additional parallax error.
Going back to organisms, our goal was to test whether some taxa were
closer to the target taxon than others, which required a null hypothesis.
We initially considered comparing to a random distribution of distances.
But this was deemed inappropriate since living organisms are rarely
infinitely close (they tend to “space out”) while this was possible with
a random distribution. We thus considered the average distance to
all neighbours as the comparison point: the null hypothesis can be
rejected if distances between the target and neighbours of a given taxon
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(A)

(B)

Figure 7.1: (Caption on next page)
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Figure 7.1: Individual distances computed within ISIIS images. (A) True vs
perceived distance for 10 sets of 1000 objects randomly distributed in a space
corresponding to one ISIIS image. Correlation was assessed with Spearman’s
rank. (B) Distribution of distances computed between Euchaeta (Copepoda, n
= 26,578) and individuals belonging to 8 other taxonomic groups. Distances
were standardised by the average distance to all objects, which is therefore
represented by the red vertical line at zero. For each neighbour taxon, a
Student’s t-test was performed to assess whether the standardised distances
differed from zero. * = 0.05, ** = 0.01, *** = 0.001. The colour bar shows how
many neighbours of each taxon were detected and used to compute statistics,
i.e. the sample size for each t-test. The black point represents the mean distance
and the segment corresponds to the confidence interval computed from the
t-test.

differ from distances to all neighbours, i.e. if distances minus the
average distance is not equal to zero. All computed distances were thus
standardised by subtracting the average distance between all targets
and all their neighbours. A Student’s t-test was then performed to
assess whether these standardised distances differed from zero. Overall,
for many taxa, we detected longer distances between organisms of the
same taxonomic group that with other kinds of organisms, as shown
for the Euchaeta in Figure 7.1B. This work was not mature enough to
be included as a chapter in this manuscript but is an interesting avenue
to follow up on, in the theoretical context of the ideal free distribution
of organisms.

Moreover, if image acquisition is performed from the side (e.g. ISIIS,
UVP6, zooglider) rather than from the top or the bottom, it gives access
to the orientation of organisms with respect to the vertical plane. We
took advantage of this in Chapter 6, where cell orientation of Rhizaria
was investigated. Similar observations were previously reported in
Foraminifera imaged with a zooglider [140]. Within ISIIS images, we . . . as well as in

situ orientation.also detected what seems to be a preferential orientation towards the
vertical in harpacticoid copepods (Figure 7.2A), but this has not been
further investigated yet. Such consistent orientation must provide
an environmental benefit, whether for feeding, escaping predators or
reproduction. For example, harpacticoids oriented towards the bottom
could be following the plume generated by the marine snow particles
they feed on [211], or could be harder to distinguish from the latter for
potential predators. A vertical orientation was also detected in fibres
imaged by the UVP6 (Figure 7.2B), which could correspond to the most
hydrodynamically favourable position for sinking fibres.
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(A)

(B)

Figure 7.2: (Caption on next page)
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Figure 7.2: Vertically oriented objects captured by in situ imaging presented
in the EcoTaxa web application [316]. (A) Vertically oriented harpacticoids
(Copepoda) detected by the ISIIS. Most of them are oriented towards the bottom
but a few of them are oriented towards the surface. (B) Vertically oriented
fibres detected by the UVP6 mounted on the SeaExplorer glider, likely sinking
(the larger part of the aggregate is located at the bottom, with a trail of matter
above it).

Thus, in situ imaging in combination with artificial intelligence ap-
proaches can resolve some processes within microscale plankton ecol-
ogy.

7.2.2 Fine-scale – O(1-10 m)

Plankton thin layers are features less than 5 m thick, in which plankton
concentration is 1.5 to 3 times higher than the background concentra-
tion, and can horizontally extend across kilometres [325]. Plankton thin In situ imaging

can be used to
investigate
plankton thin
layers,. . .

layers can be composed of diverse objects: phytoplankton, zooplankton,
marine snow aggregates. . . [5, 269]. They are typically associated with
vertical discontinuities in the water column (e.g. pycnocline) or found
in regions of reduced flow [269, 325]. Formation can be mediated
through biological mechanisms such as local growth or active swim-
ming behaviour, but also involves physical processes such as fluid flow
or accumulation on density gradients [112, 325]. Organisms of higher
trophic levels (e.g. zooplankton, fish) were found to be associated
with thin phytoplankton layers [31, 33], highlighting their potentially
important role for the ecology of these consumers [112]. The study of
the phytoplankton thin layers and their relation with zooplanktonic
organisms was a potential topic of investigation in the context of this
work, as the ISIIS data was of high enough spatial resolution for this
purpose [156]. However, we were not able to detect such thin layers . . . but such

features were not
detected during
the VISUFRONT
campaign.

during the VISUFRONT campaign. First, as explained in Chapter 2, di-
atom fibres were not efficiently detected by our segmentation pipeline
(Figure 2.3), notably because they are rather translucent and blend
with the background, but also because they are easily confused with
non-living fibres. Second, given the oligotrophic conditions that pre-
vail in the NW Mediterranean Sea in summer, it is unlikely that any
phytoplankton thin layer could form outside of the deep chlorophyll
maximum (DCM).
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Thicker than plankton thin layers [112], DCMs are also located
around discontinuities, at the interface between the nutrient-depleted
surface waters and the light-limited deep waters [175], where phyto-
plankton can grow. As an important source of food for zooplankton,
DCMs are often associated with enhanced concentrations of zooplank-
tonic grazers [246], which may in turn attract their predators. In addi-
tion, detritivorous zooplanktonic organisms were previously reportedSome Rhizaria

were associated
with the deep

chlorophyll
maximum,. . .

to occur just below the pycnocline [246], a favourable location to catch
sinking detritic particles formed inside the DCM. Passive accumulation
of phytoplankton cells on density gradients can also contribute to creat-
ing DCMs [241] and such accumulations can also affect the distribution
of zooplankton [150, 168]. In our study on the fine-scale distribution
of Rhizaria across the Ligurian Front (Chapitre 6), we detected a pref-
erential distribution of multiple Rhizaria groups centred around the
DCM. Multiple clues were in favour of active buoyancy control by
solitary Collodaria that allowed them to occupy the DCM; for them,
it constitutes a source of food and potential symbionts. Detritivorous
Aulacanthidae (Phaeodaria), on the other hand, were more likely to
be passively accumulated on the same density gradient that created
the DCM. Indeed, they were carried downwards by submesoscale
subducting water masses.

Beyond Rhizaria, Copepoda were also found to be more abundant
around the DCM (Figure C.1). A total of ~8,5 million copepods were
automatically extracted and identified from ISIIS images. We further. . . while copepod

distribution
around the DCM
was mediated by

their size.

separated them into five size classes between, 0.4 and 5 mm ESD
(Figure 7.3A) Their distribution with respect to the DCM shows that
smaller copepods tend to be above the DCM, while larger ones stay be-
low (Figure 7.3B), and despite the existence of a diel vertical migration
(DVM), this pattern was preserved at night. Such distribution patterns
were previously observed from in situ electronic zooplankton counter
data [176, 177], but high sampling-rate in situ imaging enables refining
these observations. The asymmetric distribution of copepods is likely
reflecting the distribution of phytoplancton cells, with smaller cells at
the top of the DCM and larger cells at the bottom [218].

7.2.3 Submesoscale – O(1-10 km)

As mentioned in the introduction, phytoplankton distribution is strongly
affected by submesoscale features, especially in frontal zones [230].
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Figure 7.3: Vertical distribution of copepods with respect to the DCM. (A)
Density estimate of copepods’s ESD and representation of the five size classes
chosen. The dotted vertical line at ESD = 0.55 mm highlights the size below
which copepods are not quantitatively detected. (B) Vertical density distribution
of five copepod size classes with respects to the DCM, at day and night. The
green line represents the DCM.

Thanks to the ISIIS data collected during the VISUFRONT campaign,
we were able to resolve the distribution of various plankton groups Resolving

plankton
distribution across
submesoscale
features,. . .

at the metre-scale. Among these, Aulacanthidae (Phaeodaria) were
the only organisms whose distribution was clearly affected by subme-
soscale recirculation (see Figure C.1 in the appendix). While it is not
surprising that swimming planktonic organisms can counter subme-
soscale vertical currents [269], it is much more striking for non-motile . . . such as

cross-frontal
circulation.

organisms (e.g. Rhizaria), and suggests active and efficient buoyancy
control, even for single-cell organisms, as we hypothesised for Collo-
daria (Chapitre 6). Vertical velocities of downwelling waters measured
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from acoustic Doppler current profiler (ADCP) would have been a great
help to investigate our hypotheses. Unfortunately, two malfunctions
prevented us from using this data: the ship’s GPS was not connected
to the ADCP and the gyroscope was not working, so that recorded
data could not be corrected for the movements of the boat and was not
usable for submesoscale analyses.

Here, only the data collected during the cross-front transects of the
VISUFRONT campaign were analysed. Besides cross-front transects
(n = 7), two other types of transects were performed to study other
aspects of plankton distribution (Figure 7.4). Along-front transects
(n = 7) were conducted both at dawn and dusk, in supposedlyBut there is still

much to extract
from the

VISUFRONT
dataset.

homogeneous environmental conditions, to observe the DVM as it
happened. The distributions of planktonic organisms imaged during
these transects are shown in Figure C.2. In addition, Lagrangian tran-
sects (n = 14) followed a water mass during 24h tagged with drifting
surface buoys, to investigate plankton community changes inside the
water mass and assess plankton swimming abilities. Distributions are
presented in Figure C.3. While environmental conditions and distribu-
tions are rather homogeneous for the first transects, the last ones clearly
crossed the front and this is reflected on the distribution of organisms,
but this would require more investigation. Thus, there is still a lot of
knowledge to extract from this extensive dataset.

7.2.4 Mesoscale – O(10-100 km)

As described in Chapter 5, fronts are often the location of planktonIn situ imaging
can resolve

plankton
distribution across

fronts. . .

aggregation [304]. While plankton distribution across large fronts can
be investigated with net sampling (e.g. [48, 49]), in situ imaging can
provide a more detailed view of such distributions [154, 248].

After performing repeated sampling across the Ligurian front during
the spring bloom, we were able to detect a potential increase in zoo-. . . provided that a

sufficient volume
is sampled,. . .

plankton in the frontal area, and possibly a constrained distribution of
planktonic organisms on one side or another of the front. Yet, the front
did act as a barrier for particle distribution, as previously reported [148,
384]. However, the sampling rate of the UVP6-LP was likely too low to. . . which was not

the case for our
glider-UVP6

campaign.

image enough planktonic organisms to definitely detect its effect.
Yet, when this very front was sampled at a much higher resolution

with the ISIIS (> 100 L s-1) during the VISUFRONT campaign, its effect
was much clearer, although this data is only a snapshot of summer
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Figure 7.4: Transects performed with the ISIIS during the VISUFRONT cam-
paign. Blue: cross-front transects, red: along-front transects, yellow: Lagrangian
transects. The cross-front transect with an angular trajectory was not retained
in our analyses. The green arrow represents the approximate location of the
Ligurian current during the Lagrangian transects.

conditions. Some organisms were indeed constrained on one side or When sampling is
intensive enough,
clear distribution
patterns are
detected.

another of the front: Appendicularia, Doliolida, Hydrozoa, Pyrocystis
and Siphonophorae were more abundant on the coastal side of the
front (Figure C.1), in accordance with previous results [124]. However,
this data did not highlight any accumulation of zooplankton at the
front either.

7.2.5 Basin scale – O(1000 km)

Finally, global plankton distribution can be investigated from in situ
imaging data by aggregating coherent datasets from various locations. Data aggregation

can build global,
coherent datasets.

Such an approach requires standardised, inter-calibrated, commercially
available instruments such as the UVP [317, 318]. For example, Kiko
et al. [205] published a global dataset of particle size distribution from
8,805 UVP5 profiles. A similar dataset for planktonic organisms imaged Global UVP5

datasets for
particles and
plankton.

by the UVP5 is nearing publication. This dataset supported the work
presented in Chapter 4 and allowed computing a global estimates of
carbon biomass from various taxa [111], a study in which I was also
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involved (see Appendix B). I personally contributed to the sorting effort
to build this dataset, by validating ~250,000 images with the help of a
taxonomic guide established specifically for UVP5.

While not as widespread as UVP, the ISIIS was nevertheless produced
in several copies that have been deployed in many ecosystems around
the world. This allowed the consolidation of a consistent enough dataset
to carry out comparative studies, including one on doliolids [159].A global ISIIS

dataset. For this study (Appendix B), I provided data for the Mediterranean
Sea (n ≈ 80,000 doliolid images). This data was processed by the
segmentation and classification pipelines presented in Chapters 2 and
3. Including data from six coastal ecosystems, this work revealed that
the strongest driver of doliolid abundances was temperature, followed
by chlorophyll a fluorescence and dissolved oxygen.

Thus, such datasets allow comparative studies at a much larger scale
than allowed from a single oceanographic campaign, even though
campaigns such as Tara Oceans [391] enabled studies at rather large
scales [55, 374]. However, a single campaign necessarily has a strong
spatio-temporal correlation, so that temporal effects are hard to disen-
tangle from spatial effects.

In the future, the new miniaturised UVP6 [318] embedded on au-
tonomous vectors such as gliders or floats will contribute to improving
both spatial and temporal coverages of in situ imaging, including in
harsh conditions that are difficult to sample with ships (e.g. winter
months at high latitudes). However, images cannot be sent through
satellite connection, along with other biogeochemical data collected be-
cause they are too big. Because floats are rarely recovered, images haveNovative

sampling methods
to improve

spatio-temporal
coverage.

to be classified onboard so that only numerical values of the concentra-
tions of a few taxa are sent by satellite (a much smaller volume of data).
Furthermore, the classification model must run in a power-limited
environment. This prevents the use of CNNs, leaving only the classical
approaches of extracting handcrafted features and using a simple classi-
fier (gradient boosted trees in this case), although we showed that they
were inferior, for small classes in particular (Chapter 3). Hence, only a
few (n = 20), broad classes were retained. At this time, performance
of embedded classification models on unbalanced datasets (as always
in plankton imaging) are not reliable enough, except for a few groups
(marine snow, copepods, Trichodesmium; F Ricour pers. comm.), so
that such data will likely be more relevant for e.g. biogeochemistry
studies but not for ecology. Both hardware and software progress will
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be required to improve embedded classification and enabling studies
of the plankton community.

7.3 Ecology in the era of big data

Just like our daily lives, ecology, as a field of research, has also entered
the era of big data.

7.3.1 High sampling rate imaging

Thanks to the ISIIS having the highest sampling rate of all plankton
imagers (> 100 L s-1, equivalent to one Olympic size swimming pool
imaged every ~7h), we collected millions of plankton images. Among Extensive

sampling opens
the door to
unexpected
discoveries.

those, we can highlight a few remarkable examples of delicate objects
(Figure 7.5). Beyond admiration and curiosity, it is, above all, an
opportunity to discover new species, or organisms with special or
unknown features. Indeed, given the long-tailed distribution of the
abundance of living, and by extension of plankton [361], a higher
sampling rate means a higher probability to sample rare organisms.
Still, this requires high efficiency processing pipelines, since detecting
rare objects can be like looking for a needle in a haystack. In our
case, vacuole bearing solitary Collodaria (described in Chapter 6) could
have past our attention if a well-informed eye (Tristan Biard’s in that
case) had not caught them, as they accounted for less than 3% of
solitary Collodaria, themselves representing a tiny fraction of imaged
organisms.

In the absence of such opportunistic detection, unexpected observa-
tions can be made through the meticulous examination of images. For
example, Greer et al. [157] investigated batesian mimicry in fish larvae, Increasing the

chances of making
new observations.

from ISIIS images. Detecting these unusual morphologies of fish larvae
required manually examining over 1 million images over hundreds of
hours, to spot only a few hundreds fish larvae. Similarly, the study
of Gaskell, Ohman, and Hull [140] relies on ~400 foraminifera, likely
representing a tiny fraction of objects imaged in the water volume
they observed(> 1000 m3). Still, this allowed them to detect previously
undocumented morphological features of these organisms.

To facilitate such observations, citizen science was explored for the
detection and classification of plankton organisms, within ISIIS images,
but the approach was not entirely conclusive, since most participants
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were not familiar with the task of classifying plankton images [336].
Finally, automated approaches such as the use of vector embeddings to
organise images in a reduced but meaningful space have the ability to
detect non-standard objects [254], thus constituting an efficient way to
discover previously unseen organisms.

7.3.2 Towards a data-driven ecology

The development of more effective, versatile and cost-effective obser-
vation tools goes beyond imaging instruments, and the rate of data
collection increased dramatically [208]. More and more observational
data becomes accessible to ecologists [167]. This opened the era of dataA deluge of

observation data driven ecology, based on the exploratory analysis of large amounts of
data to extract patterns and knowledge. It is considered as a fourth
major scientific paradigm [179, 208]. This approach seems particularly
adapted to address large-scale ecosystem questions [27]. In this context,
real-time approaches, such as the T-MSER segmentation of plankton
images presented in Chapter 2, are particularly appreciated. Numer-
ical ecology methods, presented in the introduction (Section 1.4), as
well as progress in computational power contribute to the ability to
handle large amounts of data. Moreover, to ensure the reproducibility
of studies in numerical ecology, ecologists should adhere to good prac-
tices. This involves coding according to best practices (e.g. uniform
naming conventions, code description, simple writing, organised folder
structure, version control), code sharing and data accessibility [9, 80].

Of course, the field of marine ecology is also affected by these
changes: more and more sensors are embedded onto autonomous
platforms [72] and, beyond plankton, instruments such as Baited Re-
mote Underwater Video Station [257] or fish trawling cameras [8] are
increasingly used. In plankton ecology, many imaging instruments ex-and the same goes

for oceanography. ist [243], and databases are growing exponentially [192]. At the time of
writing, 270 million objects are contained in the EcoTaxa database [316].
However, these imaging tools generate large amounts of data at the
cost of some taxonomic resolution (organisms cannot be manipulated)
and some objects even remain unidentified, which can lead to distorted
analyses. Increasing the pixel resolution of in situ imagers is one so-
lution to improve identifications. Moreover, when objects are imaged
by different imagers deployed in the same area, differences in imaging
techniques (e.g. reflected light for the UVP vs transmitted light for
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Figure 7.5: (Caption on next page)
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Figure 7.5: A few remarkable examples of delicate objects imaged by the ISIIS.
All scale bars represent 10 mm. (A) Appendicularia inside its house, with
visible filters, (B) Cestidae (Ctenophora), (C) Phronima inside its barrel, (D)
Annelida, (E) Foraminifera with expended pseudopods, (F) Thecosomata with
an external feeding mucous mesh (see [143]), (G) Prayidae (Siphonophorae), (H)
Doliolida nurse stage, with a cadophore carrying dozens of asexually produced
gonozoids, (I) exuviae of Eumalacostraca, (J) Diphyidae (Siphonophorae), (K)
Cydippida (Ctenophora), (L) Geryonia proboscidalis (Cnidaria).

the ISIIS) can bring complementary information to identify the objects.
Finally, sharing images with other researchers can help lift the doubt
on certain identifications, but is not always conclusive (Figure 7.6).

7.4 Methodological considerations

7.4.1 Efficient sorting of plankton images

This paragraph is a recollection on how we handled the processing
of UVP6 data, with the aim of highlighting what could have been
done more efficiently. During the 5 months at sea, the UVP6 collectedUVP6 image

classification could
have been better

handled.

1,123,123 images that had to be classified. Our initial plan was to
classify some of these images manually, train a classification model on
those, and then rely solely on model predictions for all other images.
But we had not anticipated which images should be manually validated,
nor how to ensure the quality of the predictions, resulting in a certain
waste of time. If I were to do it again, here is how (Figure 7.7).

First, one should determine if all images are going to be manually
validated or if predictions will be used without human verification.
In both cases, an automatic classification model is required, either toChoose a strategy.

make manual validation easier and faster, or to use its predictions. For
~1 million images, manual validation after prediction by a classification
model is achievable, but represents several months of work. Moreover,
it is important to consider that this automated classified will be dif-
ficult to train because plankton imaging datasets are often strongly
dominated by a few classes (marine snow particles in the case of the
UVP). Some of the consequences of such an imbalance in the datasets
were detailed in Chapter 3.

Then, in both cases, the second step is to generate a representative
subset of the data, e.g. by selecting 1 out of n samples (profile, sampling
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(A)

(B)

Figure 7.6: (Caption on next page)
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Figure 7.6: Two sets of morphologically coherent but unidentified objects
imaged in situ, presented in the EcoTaxa web application [316]. (A) Objects
imaged by the UVP5 during the 2008 BOUM campaign in the Mediterranean
Sea. They had a restricted distribution, in the centre of the basin, and were all
around 70 m depth. These are probably some kind of larva. (B) Objects imaged
by the UVP6 during the glider deployment conducted in across the Ligurian
front. Their depth varied from ~50 to 200 m.

date, . . . ) equally distributed all across the data, with n = 2k , k ∈ N.
marginparGenerate a representative subsample. This last rule allows to
easily inflate the subset later if needed, by selecting 1/ n

2 samples, thus
preserving the representativeness of the subset. At least part of this
subset will be used as a training set for the automatic classifier, after
being manually identified. Its size should be a compromise between
the manual effort required and the need for enough examples, which
depends on the selected strategy: at least ~100 objects per class of
interest to guide manual validation, at least ~500-1000 objects per class
of interest for robust predictions.

If the strategy is to fully validate the data, performance estimates of
the classification model are not needed, but training the model on a
representative subset of the data should result in better performance
than with a non representative learning set, for example generatedTrain a

classification
model. . .

by validating “easier” (e.g. large planktonic organisms) images. This
representativity is very important since automated classifiers tend to
learn classes distributions as well; therefore, their predictive power
diminishes when the class distribution is different between the train-
ing data and the new data to predict, a problem known as “dataset
shift” [280]. For the same reason, if disproportionate attention is given
to the validation of some classes, the model predictions will be biased
towards them and will include objects from other classes (hence reduc-
ing precision). This is particularly significant if the lesser validated
classes are the dominant marine snow particles: they will contaminate
all other plankton classes.

If the strategy is to rely on predictions, we need to estimate their
quality. Here, the fully validated subsample should be split into three. . . and assess its

performance on
new data if

predictions are to
be used.

parts, typically 70% for training, 15% for validation and 15% for testing.
It is usual to stratify this random sampling by taxon/category, to
ensure that, if the original subset is representative of the whole dataset,
the smaller validation and test sets also are. The validation set will
help to tune model parameters to get the best performance. The
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Figure 7.7: Suggestions for efficient pipelines for sorting plankton images.
Two strategies are possible: manually validate all images (green) or rely on
predictions generated by a classification model (blue).
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test set will be used to compute the final performance estimate. As
models tend to perform better on the data they were trained on, a
phenomenon called “overfitting” [108], it is crucial that this test set
is never seen by the model during training to avoid overestimating
model performance [192]. Finally, for this performance to be estimated
precisely, the test set should contain a sufficient number (~100) of
examples in classes of interest, which should be the case if the original
subset was large enough.

In both cases, if the quality of predictions is not satisfying, the initial
subsample can be inflated. It should continue to be representative ofInflate the

subsample if
needed.

the whole data: if the 1/n (e.g. 1/16) subsample was too small, the
1/ n

2 (e.g. 1/8) subsample can be easily generated and preserves both
previously validated objects as well as the representativeness of the
whole data.

7.4.2 Making the most of in situ imaging

Among the many things I was able to explore during this PhD, the
result I find the most striking is the differential distribution of the
life stages of Collodaria, especially the buoyancy control it involves.
Single-cell organisms, ascending from the depths, taking advantage ofThe striking

results we
obtained on

Collodaria. . .

bubble-like alveoli that appear to function like hot-air balloons; this is
fascinating. However, as explained in Chapter 6, we do not demonstrate
such process, we just tell a coherent story based on our observations. I
my opinion, refining these observations to confirm (or infirm!) our hy-
potheses would be a very interesting research topic. Besides, additional
questions arise: where do solitary Collodaria acquire their symbionts
when there is no DCM? How does their concentration vary seasonally?
Is sexual reproduction seasonal? Do colonial forms prevail when new
symbionts cannot be acquired?

As we have seen, the ISIIS is a great instrument to image large
volumes of water and thus detect rare organisms, without disturbing
them. Hence, this seems to be the perfect instrument for this kind
of study, as solitary cells with vacuoles were particularly scarce. Still,. . . deserve, in my

opinion, to push
our analyses

further.

an efficient detection algorithm should be developed to specifically
target Collodaria, both solitary and colonial forms, to efficiently go
through the large amounts of data ISIIS generates. In addition, it
would be particularly interesting to be able to resolve the composition
of phytoplankton community in the immediate proximity of Collodaria.
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This could be done with fluorescence sensors detecting other pigments
than chlorophyll a or with other imaging instruments targeting smaller
sizes and could bring information regarding the preferred potential
symbionts or food source of solitary cells. Surveys should be conducted
at various seasons to describe the variations in the concentrations of the
diverse phases of the life cycle of Collodaria through time. Moreover,
this could guide additional sampling to potentially detect Collodaria
swarmers, during the sexual reproduction phase. Finally, the icing on
the cake would be to physically sample one of these vacuole-bearing
cells intact and be able to look for symbionts inside. Although this
seems extremely challenging, it would contribute to demonstrating that,
as we suppose, these cells are newly formed and still free of symbionts.

Overall, I think that the combination of in situ imaging and AI-based
methods is a powerful approach, with a lot of potential to address
unresolved questions in plankton ecology.





Part V

Appendix

Additional elements that could not be included in the main
text of the manuscript are presented here. This includes
a summary of this work in French, an overview of col-
laborative works and the results of preliminary analyses
conducted on the VISUFRONT dataset.





A
Résumé de la thèse en français

Ce chapitre présente un résumé de la thèse en français. Après avoir in-
troduit les notions nécessaires à la compréhension du sujet, deux parties
de méthodologie traitent de l’application de méthodes d’intelligence
artificielle au traitement d’images de plancton. Suivent trois parties de
résultats écologiques abordant la distribution des organismes plancto-
niques à différentes échelles, de l’échelle globale à la subméso-échelle.
Enfin, les résultats sont discutés en regard de la littérature.

A.1 Introduction

A.1.1 Échelles dans les processus océaniques

A.1.1.1 De la circulation globale à la petite échelle

Les océans sont en mouvement à de nombreuses échelles spatiales et
temporelles [72]. À l’échelle globale, les océans sont mis en mouve-
ments par la circulation thermohaline [328]. Ces courants sont porteurs
de grandes quantités de chaleur et ont ainsi un effet majeur sur le
contrôle du climat [329]. À méso-échelle – O(10 - 100 km) – les mou- Des océans en

mouvement à
toutes les
échelles,. . .

vements prennent principalement la forme de tourbillons [334] et de
fronts [26]. Les fronts sont des zones de rencontre entre masses d’eau
avec des propriétés différentes. Ils existent à des échelles spatiales et
temporelles variées, mais certains sont permanents. Les zones frontales
sont souvent associées à des courants convergents de surface, résultant
en une augmentation de la diversité et de la biomasse à tous les niveaux
trophiques [26, 304]. Longtemps négligées, les structures à subméso-
échelle – O(1 - 10 km) – sont de mieux en mieux résolues grâce à des
moyens d’observations plus performants et à la modélisation [229]. Par
ailleurs, les dynamiques à subméso-échelle sont souvent associées à
des fronts à méso-échelle, où elles sont responsables de mouvements
d’eau verticaux [228, 230] (Figure A.1). Des mouvements existent aussi
à plus petite échelle – O(1 mm) – mais leur contribution aux processus

227
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Figure A.1 : Les dynamiques frontales à subméso-échelle. Le front est repré-
senté par les isopycnales obliques, délimitant des eaux froides et salées au
large d’eaux plus chaudes et moins salées à proximité de la côte. Une circu-
lation agéostrophique cross-frontale (flèches jaunes) a lieu dans le sens de
l’aplatissement des isopycnales. De Lévy, Franks et Smith [230].

à plus grande échelle reste peu comprise [281]. Ainsi, les processus
décrits ici couvrant 9 à 10 ordres de grandeur, des outils d’observations
complémentaires sont donc nécessaires à leur étude. De plus, tous ces
processus affectent les organismes peuplant les océans, des plus petits
aux plus grands.

A.1.1.2 Effets sur les organismes marins

Ces effets sont particulièrement remarquables sur les ressources exploi-
tées, telles que les pêcheries [297]. Les top prédateurs (thon, éléphant
de mer. . .) semblent aussi exploiter les structures à méso-échelle et
subméso-échelle pour leur prédation [352]. Les dynamiques à subméso-. . . ce qui se

répercute sur les
organismes
marins,. . .

échelle associées aux fronts génèrent des mouvements verticaux qui
affectent le taux de croissance du phytoplancton, via la redistribution
des cellules et des nutriments [230, 252]. Cette augmentation de bio-
masse du phytoplancton peut se propager aux niveaux trophiques
supérieurs dont les organismes zooplanctoniques [275, 294] ou le pois-
son fourrage [32]. Cependant, peu d’informations sont disponibles
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quant à la distribution à fine échelle de ces organismes. Or, de telles
informations permettraient de comprendre comment l’écosystème est . . . du

phytoplancton aux
niveaux
trophiques
supérieurs.

affecté par les dynamiques à subméso-échelle, qui bien qu’étant spa-
tialement et temporellement restreintes [230, 252], prennent place à
la même échelle que les processus de croissance du phytoplancton
et doivent donc tout particulièrement affecter la productivité de ce
dernier et par extension l’écosystème planctonique [230]. Ainsi, si tous
les organismes océaniques semblent être affectés par ces processus,
cela est d’autant plus vrai pour ceux qui dérivent et ne peuvent nager
efficacement contre les courants et ne peuvent ainsi choisir leur habitat.

A.1.2 Le plancton, dérivant au gré des courants

A.1.2.1 Importance écologique du plancton

Les organismes planctoniques sont définis comme étant incapables de
lutter contre les courants. Cette définition basée sur la niche écologique Une grande

diversité. . .englobe ainsi une grande diversité taxonomique, ainsi qu’une grande
diversité de taille [69, 186] (Figure A.2). Le plancton joue des rôles
écologiques clés : les organismes photosynthétiques du phytoplancton
produisent environ la moitié du dioxygène atmosphérique [131] et
sont les producteurs primaires à la base des réseaux trophiques océa-
niques [125]. Les organismes du zooplancton interviennent quant à eux . . . et des rôles

écologiques clés.dans la pompe à carbone biologique qui contribue à la séquestration du
carbone organique vers les profondeurs [246] et constituent également
un maillon trophique entre le phytoplancton et les niveaux trophiques
supérieurs [413]. Les organismes planctoniques sont particulièrement Le plancton est un

bon indicateur de
la santé des
écosystèmes.

sensibles aux conditions environnementales dans les masses d’eau dans
lesquelles ils sont insérés, et constituent donc de bons indicateurs de
potentiels changements [172].

A.1.2.2 Patrons globaux de la distribution du plancton

Ainsi, la distribution et la diversité du plancton sont largement gouver- Les schémas de
distribution du
plancton à grande
échelle sont
relativement
connus. . .

nées par les conditions environnementales (température, nutriments,
lumière. . .) [172]. Ces conditions variant fortement avec la latitude, il en
résulte des gradients de biomasse et de biodiversité liés à la latitude : la
biomasse est plus élevée aux hautes latitudes [190] tandis que l’inverse
est observé pour la diversité [188, 340, 345, 399].
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Figure A.2 : Gamme de taille en diamètre sphérique équivalent (ESD) couverte
par les principaux instruments d’imagerie du plancton. Les lignes pointillées re-
présentent la gamme de taille opérationnelle totale, tandis que les lignes rouges
représentent la gamme dans laquelle peuvent être obtenues des informations
quantitatives. Les flèches bleues indiquent les imageurs in situ. De Lombard

et al. [243].
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Bien que la répartition globale du plancton soit connue dans une
certaine mesure, il reste encore beaucoup à découvrir concernant
la distribution à fine échelle, notamment pour le zooplancton. Ce ...mais des lacunes

persistent dans la
connaissance de la
distribution à fine
échelle.

manque de connaissances provient essentiellement d’un échantillon-
nage non adapté à cette échelle : les outils classiques (pompes, filets. . .)
intègrent les organismes pendant le prélèvement et ne permettent pas
de connaître les conditions environnementales dans leur voisinage
immédiat [30, 243, 330]. De plus, l’étude de structures à fine échelle
spatiale et temporelle requerrait un échantillonnage répété, et donc
coûteux.

A.1.3 Distribution du plancton à fine échelle

A.1.3.1 Intérêt écologique

Les structures à subméso-échelle sont susceptibles d’influencer la dis-
tribution des organismes planctoniques : comme mentionné ci-dessus,
les courants verticaux peuvent redistribuer les nutriments et les cel-
lules phytoplanctoniques, les déplaçant dans ou en dehors de la zone Les processus

pertinents pour
expliquer la
distribution du
plancton se
déroulent à une
échelle fine.

euphotique dans laquelle se produit la photosynthèse, affectant le taux
de croissance du phytoplancton, tandis que les courants horizontaux
peuvent transformer les patchs en filaments. Ces changements sont sus-
ceptibles de se propager aux niveaux trophiques supérieurs (zooplanc-
ton, poissons. . .) [230]. En effet, les interactions trophiques et repro-
ductives du zooplancton se font à l’échelle des organismes (µm à cm).
Ainsi, une concentration locale de phytoplancton, par exemple dans
une couche fine [112], a des conséquences plus immédiates sur la survie
et le développement du zooplancton que la concentration moyenne
en chlorophylle a dans la région. Ainsi, l’étude de la distribution du
zooplancton à des échelles fines, en relation avec les dynamiques à
subméso-échelle, devient pertinente pour comprendre les processus
qui régissent sa distribution à l’échelle régionale.

A.1.3.2 Les outils à disposition

Comme mentionné auparavant, les outils classiques d’échantillonnage
du plancton ne sont pas adaptés pour étudier sa distribution à fine L’imagerie in situ

permet des études
à fine échelle...

échelle, sans compter que la plupart peuvent endommager certains
organismes qui sont alors sous-estimés [330]. Le développement d’ou-
tils d’imagerie in situ a permis de surmonter (au moins partiellement)
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ces limitations : tout d’abord ils permettent de connaître la position
exacte des organismes et peuvent échantillonner les conditions environ-
nementales au voisinage immédiat des organismes, mais ils permettent
également d’étudier des éléments fragiles comme les Rhizaria [42,
104], le plancton gélatineux (Cnidaria, Ctenophora) [250] ou même des
particules de neige marine [161, 162, 401].

De nombreux imageurs in situ ont été développés au fil du temps [243].
Ces outils sont très variés de par leur type de déploiement (long-terme,. . . grâce à une

large gamme
d’instruments.

profil vertical. . .), la gamme de taille ciblée, l’éclairage ou encore leur
intégration sur des plateformes autonomes. Ensemble, ils couvrent
une majeure partie de la gamme de taille du plancton (Figure A.2) et
permettent d’envisager des stratégies d’échantillonnage variées.

Les données à haute résolution spatiale et temporelle générées parIls permettent
d’aborder de

nouvelles
questions

écologiques. . .

ces instruments permettent d’aborder des questions écologiques qui
étaient auparavant hors de portée, telles que la distribution du plancton
à fine échelle en lien avec les conditions environnementales au niveau
de fronts [59, 124, 154, 248, 265] ou de tourbillons [77], les propriétés des
patchs de plancton [337], ou encore les interactions entre les couches de
zooplancton et de phytoplancton [153, 156, 355]. Enfin, des interactions
(compétition, parasitisme. . .) entre organismes ont pu être observées
directement dans les images in situ [152].

De plus, certains de ces instruments, comme l’In Situ Ichthyoplankton
Imaging Sytem (ISIIS) [85] ou l’Underwater Vision Profiler (UVP) [317,
318], peuvent capturer des images d’organismes planctoniques sans les
perturber, pouvant ainsi révéler une position particulière, un comporte-
ment ou des interactions avec d’autres organismes [299]. Par exemple,...et même faire la

lumière sur le
comportement du

plancton.

Ohman et al. [293] ont observé le comportement alimentaire des copé-
podes. Chez les rhizaires (Eucaryotes unicellulaires), une orientation
préférentielle [140] et un comportement de prédation potentielle [258]
ont également été détectés. Au-delà du comportement, les traits in-
dividuels (taille, opacité, statut reproducteur. . .) peuvent également
être mesurés à partir d’images in situ : la morphologie et l’activité des
copépodes varient avec la fonte de la glace en baie de Baffin [409], la
morphologie des particules de neige marine change pendant le bloom
de printemps [401].

Bien que les outils d’imagerie in situ échantillonnent généralement
de plus petits volumes que les filets [243] (à l’exception de l’ISIIS,
> 100 L s-1 en général), leur nombre croissant et leur facilité d’utilisationUne avalanche de

données à traiter. génèrent un volume de données de plus en plus important, si bien que
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le traitement de ces données devient un goulot d’étranglement [253].
Par exemple, une heure de déploiement d’ISIIS génère 100 milliards de
pixels (~11 millions d’objets) [192]. Pour traiter efficacement une telle
quantité de données, les écologistes doivent désormais se tourner vers
des méthodes numériques automatisées.

A.1.4 Écologie numérique du plancton

L’écologie numérique est un champ de recherche qui consiste à ap-
pliquer des méthodes statistiques et numériques pour répondre à des
questions écologiques [226]. Devant la quantité croissante de données L’écologie

numérique : les
statistiques au
service de
l’écologie.

collectées, ces approches sont de plus en plus pertinentes [315]. Les pro-
grès computationnels les rendent plus efficaces et accessibles [323], sans
pouvoir toutefois rattraper le taux d’acquisition des données [253]. De
nombreuses méthodes rentrent dans le cadre de l’écologie numérique,
dont certaines sont décrites ci-dessous.

A.1.4.1 Data mining

Le data mining – aussi appelé exploration de données – consiste à
extraire des connaissances à partir de grandes quantités de données [54, Data mining :

découvrir des
connaissances
dans une
avalanche de
données.

424]. Dans le cadre plus large du processus d’analyse des données, le
data mining est typiquement précédé par l’extraction et le nettoyage
des données, et suivi par la visualisation, l’interprétation du modèle
et la confirmation ou réfutation de l’hypothèse de travail [424]. Ces
approches ont été utilisées pour révéler les variations des traits morpho-
logiques des copépodes [409] et des particules de neige marine [401].

A.1.4.2 Intelligence artificielle

L’intelligence artificielle (Artificial Intelligence, AI) se définit comme
l’intelligence – percevoir, synthétiser et inférer des informations – mise AI : intelligence

mise en oeuvre par
une machine.

en oeuvre par une machine. Si la théorie fut développée dans les années
50 [264], seuls des problèmes triviaux purent être abordés en raison des
limites technologiques, conduisant à un désintérêt du domaine [344].
Ce n’est que dans les années 90 que le champ de l’AI revint sur le
devant de la scène, si bien qu’elle est aujourd’hui omniprésente dans
notre vie de tous les jours.
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A.1.4.3 Apprentissage machine

Au sein de l’AI, les algorithmes d’apprentissage automatique (Machine
Learning, ML) sont capables d’identifier des motifs dans des données
d’apprentissage et peuvent éventuellement effectuer des prédictionsLe ML trouve des

motifs dans les
données.

sur de nouvelles données. De nombreux types de modèles peuvent être
utilisés dans le cadre du ML : de la simple régression linéaire à des
modèles plus élaborés comme les Support Vector Machines (SVM) [81]
ou les Random Forests (RF) [169] pour ne citer que les plus célèbres.

Le ML a de nombreuses potentielles applications dans le domaine
de l’écologie planctonique [192]. Les modèles de régression tels queL’écologie du

plancton bénéficie
déjà de ML,...

les Boosted Regression Trees (BRT) ou les RF sont souvent utilisés pour
modéliser la distribution d’espèces [116], la richesse spécifique [221]
ou encore la biomasse planctonique en fonction des conditions envi-
ronnementales [111].

De plus, le ML peut considérablement faciliter le traitement des
données, par exemple l’identification automatique d’images de planc-
ton [192]. Si les SVM [185, 250, 372] ou les RF [149] peuvent être utilisés...et le ML est très

utile pour
accélérer le

traitement des
données.

pour classifier automatiquement des images d’organismes plancto-
niques, ils ne peuvent apprendre directement sur les images brutes,
mais utilisent à la place des propriétés (taille, niveaux de gris...) des
images. Ces modèles ont l’avantage d’être faciles à utiliser et peu coû-
teux en termes de puissance de calcul, mais sont aujourd’hui surpassés
par d’autres modèles plus récents et plus complexes.

A.1.4.4 Apprentissage profond

Le Deep Learning (DL) est une branche du ML basé sur des réseaux
neuronaux artificiels à plusieurs couches : les perceptrons multicouchesLe DL : du ML

basé des réseaux
neuronaux avec

plusieurs
couches,. . .

(multilayer perceptron, MLP) [309], le terme « profond » faisant référence
aux couches cachées. L’architecture de ces réseaux est inspirée de celle
du cerveau animal, dans lequel les neurones sont les unités de base,
reliées entre elles par des connexions synaptiques.

Les MLP étant très polyvalents, ils sont appliqués à diverses tâches
en écologie planctonique, et plus particulièrement à la classification
d’images [89, 119, 367, 416]. Bien que les MLP puissent travailler sur des. . . qui sont très

polyvalents. images brutes au contraire des approches de ML classique, le nombre
de connexions augmente de façon quadratique avec la taille de l’image,
limitant la taille des images pouvant être traitées. Des architectures
plus récentes permettent désormais de traiter ce type d’entrées.
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Figure A.3 : Représentation schématique d’en CNN dédié à la classification
d’images de plancton. Conv = couche de convolution, Pool = couche de poo-
ling , Fully connect. = couche complètement connectée, Classif. = couche de
classification. Pour simplifier la visualisation, seules quelques connexions sont
représentées. Crédits : JO Irisson.

Réseaux de neurones à convolution Les réseaux de neurones à
convolution (Convolutional Neural Network, CNN) sont un type spéci-
fique de réseau de neurones, dont l’architecture est inspirée du cortex
visuel animal, et tire parti de l’autocorrélation spatiale au sein des CNN : un

problème partagé
est un problème
réduit de moitié.

images pour réduire le nombre de connexions. Un CNN est composé
d’un feature extractor (extracteur de features) suivi de couches com-
plètement connectées (i.e. un MLP), et se termine par une couche de
sortie (Figure A.3). Ainsi, il n’est plus nécessaire d’extraire des features
manuellement : cette étape est intégrée dans le modèle. Développés
dans les années 90 [220], ces modèles sont devenus très populaires dans
les années 2010 [213, 343] et sont maintenant l’approche de référence
pour la classification d’images [222].

Par conséquent, les CNN sont particulièrement utilisés en écologie
du plancton, notamment pour automatiser le tri des images [59, 77, 93, De nombreuses

applications pour
l’écologie du
plancton.

118, 124, 224, 247, 249, 327, 337, 354, 395]. Toutefois, les applications
vont au-delà de la simple classification : les CNN permettent aussi de
détecter ou de segmenter des objets dans des images (Figure A.4).

Ainsi, ces approches numériques permettent aujourd’hui d’automa-
tiser le traitement de grandes quantités de données, et ce grâce à des
progrès notables dans les outils informatiques.
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(A) (B)

(C) (D)

Figure A.4 : Différentes tâches de détection et de segmentation pouvant être
effectuées avec des CNNs, sur des images de plancton collectées par l’ISIIS. (A)
image brute, (B) détection d’objet, (C) segmentation sémantique, (D) segmenta-
tion par instance. Pour (C) et (D), le fond a été laissé blanc intentionnellement
bien qu’il constitue une classe en lui-même. Quatre classes de plancton sont
représentées : Scyphozoa ephyra (Cnidaria) en jaune, Acantharia (Rhizaria) en
marron, Doliolida en bleu et Rhopalonematidae (Cnidaria) en vert.
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A.1.5 Les outils

Le succès de l’AI repose tout d’abord sur l’augmentation de la puis-
sance de calcul disponible : elle double environ tous les deux ans
tandis que le coût des ordinateurs est divisé par deux dans le même
temps [278]. Le développement des processeurs graphiques (GPU) Les 3 piliers de

l’AI : puissance de
calcul, grands
jeux de données,
librairies clé en
main.

[73] a été un élément clé pour le succès des CNN, puisque ces der-
niers reposent sur un grand nombre de calculs unitaires simples qui
peuvent facilement être exécutés en parallèle sur un GPU. De plus, la
disponibilité de grands jeux de données annotés comprenant plusieurs
millions d’images comme ImageNet [101] a été décisive pour entraîner
et évaluer les performances des modèles de classification. Finalement,
le troisième pilier est la disponibilité de bibliothèques open source
clé en main telles que Tensorflow [1] ou Pytorch [308], permettant de
concevoir et d’entraîner des modèles ML/DL.

Ces outils sont en développement perpétuel. Pour donner un peu de
contexte, l’un des outils au cœur de ce travail n’était pas encore publié
lorsque le doctorat a commencé en septembre 2019. Lorsqu’il a été Ces outils sont en

développement
constant.

publié en février 2020, notre serveur de calcul, alors âgé de 3 ans, était
dépassé pour son exécution. Les calculs ont été en partie réalisés sur un
nouveau serveur de calcul, ainsi que sur le supercalculateur Jean-Zay
et un serveur de calcul appartenant à la plateforme de bioinformatique
ABiMS de Roscoff.

A.1.6 Objectifs de la thèse

A.1.6.1 Questions écologiques

Ce travail vise à améliorer nos connaissances sur la distribution du
plancton et ses facteurs forçant, de l’échelle globale à la subméso-
échelle. (i) Tout d’abord, la typologie globale des communautés de Résoudre la

distribution du
plancton à
différentes
échelles.

plancton est étudiée à l’échelle globale, en relation avec les facteurs
environnementaux. (ii) Ensuite, la distribution des particules et du
plancton est étudiée à travers un front de méso-échelle, pendant le
bloom de printemps. (iii) Enfin, le lien entre la distribution d’orga-
nismes planctoniques mixotrophes et leur environnement est étudié
à subméso-échelle. Pour cela, trois jeux de données d’imagerie in situ,
collectés à trois échelles différentes, sont analysés (Table A.1).
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Table A.1 : Principales caractéristiques des jeux de données analysés.

Dataset Échelle Instrument Images

Temporelle Spatiale Total Plancton

UVP5 global 10 ans globale UVP5 6.8×106 330,000

glider + UVP6 5 mois méso-échelle UVP6 1.1×106 30,000

VISUFRONT 10 jours subméso-échelle ISIIS 1.6×108 1.3×107

A.1.6.2 Plan du travail

Ce travail se divise en quatre parties : cette introduction, les développe-
ments méthodologiques, les résultats écologiques et la discussion desCe travail

aborde. . . résultats par rapport aux connaissances existantes. La partie ii traite
de l’implémentation d’un pipeline en deux étapes basé sur l’AI pour
traiter la très grande quantité de données récoltées pendant la cam-
pagne VISUFRONT. Le chapitre 2 aborde la détection des organismes. . . des

développements
méthodolo-

giques. . .

planctoniques dans les images ISIIS brutes et le chapitre 3 présente
une comparaison de modèles de classification d’images de plancton,
dont celui utilisé pour trier les organismes planctoniques détectés dans
les images ISIIS. La partie iii couvre les résultats écologiques émanant
de ce travail, de la plus grande à la plus petite échelle. Le chapitre 4. . . et des analyses

écologiques. porte sur la répartition mondiale des types de communautés plancto-
niques. Le chapitre 5 décrit la dynamique printanière du plancton et
des particules à travers un front de méso-échelle. Le chapitre 6 met en
évidence la distribution et le comportement à très fine échelle des orga-
nismes planctoniques. Enfin, la partie iv est consacrée à la discussion
des résultats, tant méthodologiques qu’écologiques.

A.2 L’intelligence artificielle au service du traitement
des données ISIIS

Dans cette section, les deux étapes du traitement des données ISIIS
sont présentées. La segmentation, c’est-à-dire la détection des orga-
nismes planctoniques dans les images brutes, est la première étape deDeux étapes de

traitement :
segmentation et

classification.

ce traitement entièrement automatisé. La seconde étape consiste en
l’identification taxonomique des organismes planctoniques précédem-
ment détectés, en utilisant un modèle de classification. Les méthodes
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appliquées au cours de ces deux étapes sont décrites dans les deux
articles inclus dans ce chapitre.

A.2.1 Segmentation intelligente d’images de plancton

Comme expliqué dans l’introduction, les instruments d’imagerie in situ
collectent de grandes quantités d’images, dont la grande majorité sont
des images de particules de neige marine ou des artefacts d’imagerie.
Parmi eux, l’In Situ Ichthyoplankton Imaging System (ISIIS) possède Trouver les

organismes
planctoniques
dans un déluge de
neige marine. . .

le plus grand taux d’échantillonnage (> 100 L s-1) et génère donc
de très grandes quantités de données. Pour extraire des quantités
raisonnables d’informations écologiques à partir de ces images in situ,
nous proposons de nous concentrer sur les organismes planctoniques
dès le début du processus de traitement des données, c’est-à-dire
à l’étape de la segmentation. Nous avons comparé trois méthodes . . . grâce à des

méthodes basées
sur l’AI.

de segmentation, en nous focalisant sur les cibles les plus petites,
pour lesquelles le plancton représente moins de 1% des objets : (i) un
seuillage naïf d’image, (ii) un détecteur d’objets basé sur les régions
extrémales maximalement stables (maximally stable extremal regions,
MSER), et (iii) un détecteur d’objets sensible au contenu, basé sur des
réseaux de neurones à convolutions (CNN).

Ces méthodes ont été évaluées sur un sous-ensemble de données
ISIIS collectées dans la mer Méditerranée, dont est extrait un ensemble
de données de vérification de plus de 3 000 organismes manuellement
détourés. La méthode naïve de seuillage a détecté 97,3% de ces orga-
nismes, mais a produit environ 340 000 segments, dont 99,1% n’étaient
donc pas du plancton (rappel = 97,3%, précision = 0,9%). En combi- Les CNN ont

donné le meilleur
compromis pour
une détection
efficace du
plancton.

nant le seuillage avec un CNN, quelques organismes planctoniques
supplémentaires ont été manqués (rappel = 91,8%) mais le nombre de
segments a été divisé par 18 (la précision passant à 16,3%). Le détec-
teur MSER a produit quatre fois moins de segments que le seuillage
(précision = 3,5%) mais a manqué plus d’organismes (rappel = 85,4%),
en étant toutefois considérablement plus rapide. Étant donné que le
seuillage naïf produit ~525 000 objets à partir d’une minute de dé-
ploiement ISIIS, les méthodes de segmentation intelligentes améliorent
considérablement le traitement des données ISIIS et facilitent la future
classification taxonomique objets segmentés, pour un coût limité en
termes de rappel, en particulier pour la méthode CNN. Ces approches
sont désormais standard en vision par ordinateur et pourraient être ap-
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plicables à d’autres dispositifs d’imagerie du plancton, dont la majorité
partagent un problème de gestion et traitement d’une grande quantité
de données.

A.2.2 Classification d’images de plancton

Le traitement des images collectées par les instruments d’imagerie du
plancton est souvent automatisé via des algorithmes d’apprentissage
automatique. Cependant, la classification des images de plancton est
une tâche informatique difficile en soi : les jeux de données sont forte-
ment déséquilibrés ; les classes dominantes sont souvent sans intérêtTrier de grandes

quantités d’images
de plancton est

une tâche ardue.

biologique (artefacts, bulles) et/ou d’aspect très hétérogène (neige ma-
rine) ; et les images couvrent une large gamme de tailles. Malgré de
nombreux rapports sur les performances des classifieurs automatiques
d’images de plancton, il reste difficile de savoir comment les méthodes
se comparent entre elles et pour quelles tâches on peut s’y fier. Ceci est
principalement dû au fait que ces rapports s’appuient sur des jeux de
données non publiés et souvent petits, qui ne sont pas nécessairement
représentatifs d’échantillons biologiques réels en termes de taille, de
nombre de classes et de proportions.

Nous présentons ici les performances d’une méthode de classification
classique (Random Forest sur des propriétés extraites manuellement
des images) et d’une méthode plus récente (un réseau de neurones
à convolutions) sur de grands jeux de données ayant vocation à êtreComparé à une

approche
classique,. . .

publiés, provenant de six instruments d’imagerie du plancton large-
ment utilisés. Nous montrons que l’utilisation d’un réseau de neu-
rones à convolutions améliore les performances de classification, mais
seulement de façon notable sur les classes peu abondantes (quelques
centaines d’images). Enfin, nous montrons la différence entre les pré-. . . les CNN

améliorent la
détection des

classes peu
abondantes.

dictions des deux classifieurs et une validation manuelle par un expert
taxonomiste sur plusieurs ensembles de données du monde réel, afin de
donner un aperçu des questions écologiques qui peuvent ou ne peuvent
pas être étudiées à partir de classifications automatiques uniquement.

A.3 Distribution du plancton à différentes échelles

Ensuite, la distribution des organismes planctoniques a été étudiée à
différentes échelles spatiales et temporelles. Chaque chapitre de cette
section aborde la distribution du plancton à une échelle donnée, de
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la plus grande – l’échelle globale – aux échelles plus fines – méso et
subméso.

A.3.1 Typologie globale des communautés de plancton

Les océans sont généralement divisés verticalement en zones épi-
pélagique (< 200 m), mésopélagique (200-500 m) et bathypélagique
(> 500 m). Bien que plusieurs tentatives aient été faites pour partition- Les partitions

verticales et
horizontales de
l’océan. . .

ner les écosystèmes océaniques en grands biomes comme leurs homo-
logues terrestres, cela reste difficile en raison du manque d’observations
homogènes à l’échelle globale. Les biogéographies océaniques sont prin-
cipalement basées sur des données biogéochimiques combinant des
données optiques in situ (fluorescence, atténuation de la lumière), la . . . reflètent-elles

la distribution des
organismes
planctoniques ?

télédétection et parfois les résultats de modèles biogéochimiques. La
cohérence entre ces régionalisations, principalement biogéochimiques,
et la distribution spatiale des organismes planctoniques reste cependant
non résolue.

En utilisant l’imagerie in situ, nous avons étudié la distribution
globale des organismes méso- et macroplanctoniques (> 600 µm de
diamètre sphérique équivalent). Nous avons utilisé un jeu de données
global de 2500 profils verticaux CTD équipés d’un Underwater Vision
Profiler 5 (UVP5). Parmi les 6,8 millions d’objets imagés, 330 000 étaient À partir d’un jeu

de données global
d’imagerie in
situ. . .

des grands organismes zooplanctoniques ou des colonies de phyto-
plancton, tandis que le reste était principalement constitué de particules
de neige marine. En appliquant des méthodes statistiques multivariées
d’ordination et de régression, nous avons décrit les grands types de
communautés planctoniques ainsi que leur lien avec les conditions
environnementales dans les couches épipélagique et mésopélagique
supérieure.

Dans les deux couches, trois types de communautés planctoniques
ont été décrites. Les communautés planctoniques épipélagiques étaient
dominées par des Trichodesmium dans l’Atlantique intertropical, par
des copépodes aux hautes latitudes et dans les zones d’upwelling,
et par des rhizaires dans les zones oligotrophes. Dans la couche mé- . . . nous

caractérisons les
grands types de
communautés de
plancton.

sopélagique, les communautés planctoniques étaient dominées par
des copépodes aux latitudes élevées et dans l’océan Atlantique, par
les rhizaires dans le système d’upwelling péruvien, tandis que des
communautés mixtes ont été trouvées ailleurs. La comparaison entre
la distribution de ces communautés et un ensemble de régionalisa-
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tions existantes de l’océan suggère que la structure des communautés
planctoniques décrites ci-dessus est principalement déterminée par les
conditions environnementales régionales plutôt que par les conditions
à proximité immédiate du site d’échantillonnage.

A.3.2 Évolution temporelle de la distribution du plancton et des
particules à travers un front à méso-échelle pendant le bloom
de printemps

Comme vu dans l’introduction, l’effet des dynamiques à méso-échelle
sur la distribution des organismes planctoniques est relativement bienMais qu’en est-il

des plus petites
échelles ?

documenté. Cependant, l’interaction entre ces dynamiques spatiales et
l’échelle temporelle, qui peut entraîner des augmentations soudaines
de la biomasse planctonique, est moins connue et encore moins décrite
à haute résolution.

Nous avons étudié un front permanent de méso-échelle dans le nord-
ouest de la mer Méditerranée. Ce front a été échantillonné de manièreAu travers d’un

front à
méso-échelle. . .

répétée entre janvier et juin 2021 en utilisant un planeur équipé d’un
UVP6, un imageur in situ polyvalent. Nous nous sommes efforcés de
décrire la distribution à méso-échelle du plancton et des particules
pendant le bloom de printemps, afin d’évaluer si le front était un
lieu de concentration accrue pour les organismes zooplanctoniques,
et si cette structure contraint la distribution des particules. Pendant. . . échantillonné

de façon répétée à
l’aide d’imagerie

in situ pendant le
bloom de

printemps. . .

ces 5 mois, le planeur a effectué plus de 5 000 plongées et l’UVP6 a
collecté 1,1 million d’images. Nous avons concentré notre analyse sur
les transects peu profonds (300 m), avec une résolution horizontale
de 900 m. Certaines images ont été triées manuellement, et d’autres
prédites avec un algorithme d’apprentissage automatique. Au final,
environ 13 000 images d’organismes planctoniques ont été retenues.

Des méthodes statistiques d’ordination ont révélé des périodes contras-
tées pendant le bloom, au cours desquelles les changements dans
l’abondance et la taille des particules pouvaient être expliqués par les
changements dans la communauté planctonique. Le front a eu une. . . nous montrons

l’effet du front sur
la distribution des

particules et du
plancton.

forte influence sur la distribution des particules, alors que le signal
n’était pas aussi clair pour le plancton, probablement en raison du
nombre relativement faible d’organismes imagés. En outre, nous avons
également détecté des structures à subméso-échelle telles que des évé-
nements de subduction et des tourbillons cohérents de subméso-échelle.
Ce travail confirme la nécessité d’échantillonner à la fois le plancton
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et les particules à fine échelle pour comprendre leur interaction, une
tâche pour laquelle l’imagerie in situ est particulièrement adaptée.

A.3.3 Étude du comportement écologique complexe de mixotrophes
géants grâce à l’imagerie in situ

Bien que les organismes planctoniques fassent l’objet de recherches
scientifiques depuis des siècles, certains organismes sont passés à tra-
vers les mailles du filet, comme les rhizaires. En effet, ces eucaryotes L’imagerie in situ

permet d’étudier
des organismes
peu étudiés. . .

unicellulaires sont particulièrement fragiles et souvent endommagés
par les outils classiques d’échantillonnage. Bien que certains rhizaires
soient connus comme mixotrophes hébergeant des symbiotes photosyn-
thétiques, des lacunes persistent quant à leur écologie trophique. Les . . . tels que les

rhizaires.connaissances concernant leur cycle de reproduction sont encore plus
rares. Toutefois, leur contribution substantielle à la biomasse planc-
tonique a récemment été mise en évidence grâce à l’imagerie in situ.
En effet, cette approche permet l’étude de ces organismes dans leur
environnement non perturbé.

En exploitant les données d’imagerie in situ collectées à haute fré-
quence, nous avons étudié la distribution à fine échelle et la position in Leur distribution à

fine-échelle a pu
être reliée. . .

situ de ~230 000 organismes appartenant à trois groupes de rhizaires
(Acantharia, Collodaria et Phaeodaria). Nous avons mis en évidence des
différences dans la distribution verticale entre les sous-groupes, proba- . . . à leur écologie

trophique. . .blement causées par des stratégies de vie différentes et des différences
de capacités dans le contrôle de la flottabilité. Nous avons également
détecté une orientation préférentielle, non documentée auparavant, de
certains organismes. Enfin, nous avons essayé de relier certaines de
nos observations aux étapes présumées du cycle de vie méconnu des . . . ainsi qu’aux

étapes de leur
cycle de vie.

Collodaria, révélant potentiellement des variations du contrôle de la
flottabilité des organismes afin d’atteindre l’environnement dans lequel
se déroule l’étape suivante de leur cycle.
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A.4 Discussion

A.4.1 L’imagerie in situ pour étudier la distribution du plancton à
de nombreuses échelles

A.4.1.1 Micro-échelle

Les interactions entre les organismes planctoniques et leur environ-
nement se produisent à micro-échelle, O(1 mm) [19]. Cependant, peuL’imagerie in situ

permet
d’aborder. . .

d’études à micro-échelle ont été réalisées in situ, car peu d’outils sont
adaptés, mais ils ne sont pas inexistants [132, 260]. Ces outils ont ainsi
permis d’étudier la position in situ des organismes planctoniques [288,
396]. Plus généralement, certains instruments d’imagerie in situ peuvent. . . les interactions

entre organismes
ou leur

orientation,. . .

être utilisés pour étudier les positions individuelles dans le plancton,
que cela soit pour en déduire des interactions [152] ou bien une orien-
tation préférentielle (Chapitre 6), à condition que l’image soit prise
par le côté et non par le dessus. C’est ainsi que Gaskell, Ohman et
Hull [140] ont pu mettre en évidence une orientation préférentielle
chez les foraminifères.

A.4.1.2 Fine-échelle

Les couches fines de plancton sont des structures de moins de 5 m
d’épaisseur, pouvant s’étendre horizontalement sur plusieurs kilo-
mètres [325], et sont composées de divers objets : phytoplancton, zoo-
plancton, agrégats de neige marine... [5, 269]. Leur formation se fait via. . . les agrégations

au niveau de
couches fines de

plancton. . .

des mécanismes biologiques (croissance locale, déplacement actif) ou
physiques (accumulation sur des gradients de densité) [112, 325]. Des
organismes zooplanctoniques ou des poissons sont souvent associés à
ces couches fines [31, 33], ce qui suggère un rôle écologique clé [112].
L’étude des couches fines de plancton a été envisagée au début de ce
travail, mais de telles structures n’ont pas été détectées dans les données
collectées pendant la campagne VISUFRONT. D’abord, l’algorithme de
segmentation était peu efficace pour détecter les fibres de diatomées
(Chapitre 2). Ensuite, étant donné les conditions d’oligotrophie en été
dans la mer Ligure, une couche mince n’aurait pu se former en dehors
du maximum profond de chlorophylle (Deep Chlorophyll Maximum,
DCM).

Plus épais que les couches minces [112], les DCM sont également
situés autour de discontinuités (e.g. pycnocline), à l’interface entre les
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eaux de surface pauvres en nutriments et les eaux profondes limitées
en lumière [175], c’est-à-dire un compromis entre la disponibilité en
nutriments et en lumière où le phytoplancton peut prospérer. Si l’ac- . . . ou au niveau

du DCM,. . .cumulation passive de cellules de phytoplancton sur les gradients de
densité peut contribuer à la création de DCMs [241], les organismes
zooplanctoniques peuvent aussi s’agréger sur des discontinuités [150,
168]. Dans notre étude sur la distribution à fine échelle des rhizaires à
travers le Front Ligure (Chapitre 6), nous avons détecté une distribution
préférentielle de plusieurs groupes de Rhizaria autour du DCM. Si de
nombreux indices étaient en faveur d’un contrôle actif de la flottabilité
pour les Collodaria solitaires occupant le DCM (source de nourriture et
de symbiontes potentiels), les Aulacanthidae (Phaeodaria) quant à eux
sont plus vraisemblablement soumis à une accumulation passive sur le
gradient de densité. Par ailleurs, les Aulacanthidae étaient entraînés
en profondeur par des mouvements d’eau descendants, ce qui est en
faveur d’un faible contrôle de leur flottabilité.

A.4.1.3 Subméso-échelle

Comme expliqué dans l’introduction, la distribution du phytoplanc-
ton est fortement affectée par des structures à subméso-échelles, en . . . les

déplacements
induits par des
mouvements de
masses d’eau,. . .

particulier dans les zones frontales [230]. Les données ISIIS collectées
pendant la campagne VISUFRONT nous ont permis d’étudier la dis-
tribution verticale des organismes planctoniques à l’échelle du mètre.
Parmi ceux-ci, les Aulacanthidae (Phaeodaria) ont été les seuls dont la
distribution était affectée par la recirculation à subméso-échelle (voir
Figure C.1 en annexe). Si ce résultat n’est pas tellement surprenant pour
les organismes planctoniques capables de se déplacer, il est beaucoup
plus frappant pour les organismes non motiles (e.g. les rhizaires), et
suggère une certaine capacité de contrôle de la flottabilité, comme nous
en avons fait l’hypothèse pour les Collodaria (Chapitre 6). Les vitesses
verticales des eaux descendantes mesurées à partir d’un courantomètre
acoustique à effet doppler (ADCP) auraient été d’une grande aide pour
confirmer ou infirmer nos hypothèses. Malheureusement, un dysfonc-
tionnement du système pendant la campagne a rendu les données
inutilisables pour une analyse à cette échelle.
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A.4.1.4 Méso-échelle

Comme décrit dans le chapitre 5, l’agrégation d’organismes plancto-
niques est habituelle au niveau des fronts [304]. Tandis que la distri-
bution du plancton peut être étudiée à l’aide d’un échantillonnage au
filet au travers de fronts relativement larges (e.g., [48, 49]), l’imagerie
in situ en donner une vue plus détaillée [154, 248]. En effectuant un. . . la distribution

au travers de
structures à

méso-échelle,. . .

échantillonnage répété au travers du front Ligure pendant le bloom
de printemps à l’aide d’un planeur sous-marin équipé d’un UVP6,
nous n’avons pu clairement mettre en évidence ni une accumulation de
zooplancton ou de chlorophylle au niveau du front, ni une distribution
des organismes d’un côté ou de l’autre du front, qui semblait bien
agir comme une barrière contraignant la distribution des particules,
comme précédemment rapporté [148, 384]. Cependant, le taux d’échan-
tillonnage de l’UVP6-LP était probablement trop faible pour imager
suffisamment d’organismes planctoniques et détecter un tel effet.

Mais ce même front avait déjà été échantillonné à une résolution
beaucoup plus élevée avec l’ISIIS (> 100 L s-1) lors de la campagne
VISUFRONT, bien que ces données ne montrent qu’un instantané
estival de la distribution du plancton. En ce qui concerne la distribution
à méso-échelle du plancton par rapport au front, certains organismes
(Appendicularia, Doliolida, Hydrozoa, Pyrocystis et Siphonophorae)
étaient contraints du côté côtier du front (Figure C.1), conformément
aux résultats précédents [124]. Cependant, ces données ne mettent pas
en évidence d’accumulation de plancton au niveau du front en été.

A.4.1.5 Échelle globale

Enfin, la distribution globale du plancton peut être étudiée à partir des
données d’imagerie in situ en agrégeant des jeux de données cohérents
collectés en divers endroits. Une telle approche nécessite des instru-
ments standardisés, inter-calibrés et disponibles dans le commerce tels
que l’UVP [317, 318]. Par exemple, Kiko et al. [205] a récemment publié. . . et enfin la

distribution
globale à condition
d’agréger des jeux

de données.

un jeu de données mondial (8 805 profils UVP5) sur la distribution de
la taille des particules. Un jeu de données similaire pour les organismes
planctoniques imagés par l’UVP5 est sur le point d’être publié. C’est
ce jeu de données qui a été utilisé dans le travail présenté dans le
chapitre 4 et qui a également permis d’estimer la biomasse globale
du plancton [111], une étude à laquelle j’ai contribué (voir l’annexe B).
J’ai personnellement participé à l’effort de tri pour construire ce jeu
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de données, en validant ~250 000 images de plancton, à l’aide d’un
guide taxonomique établi spécifiquement pour les images UVP5. Une
version antérieure, plus petite, de ce jeu de données a été utilisée pour
mettre en lumière la contribution inattendue des rhizaires à la biomasse
planctonique [42].

Pas aussi standardisé que l’UVP, l’ISIIS a néanmoins été produit
en plusieurs exemplaires qui ont été déployés dans de nombreux éco-
systèmes à travers le monde, permettant la construction d’un jeu de
données suffisamment cohérent pour mener des études comparatives,
par exemple sur les dolioles [159]. Pour cette étude (Annexe B), j’ai
fourni des données pour la mer Méditerranée (n ≈ 80 000 images de
dolioles). Ces données ont été traitées par les pipelines de segmentation
et de classification présentés dans les chapitres 2 et 3.

A.4.2 L’écologie à l’ère du big data

A.4.2.1 Échantillonner plus pour faire des découvertes

Grâce au taux d’échantillonnage de l’ISIIS, nous avons collecté des
millions d’images de plancton, ce qui est l’occasion d’échantillonner Un

échantillonnage
intensif permet de
trouver des objets
rares,. . .

des objets rares tels que des nouvelles espèces ou des organismes aux
caractéristiques particulières. Cependant, leur détection peut s’appa-
renter à la recherche d’une aiguille dans une botte de foin. Dans notre
cas, les collodaires solitaires porteurs de vacuoles (décrits au chapitre 6)
auraient pu passer entre les mailles du filet si un œil averti (celui de Tris-
tan Biard) ne les avait pas repérés. Ils représentaient moins de 3% des . . . de façon

fortuite,. . .collodaires solitaires, eux-mêmes représentant une fraction minuscule
des organismes imagés.

En l’absence d’une détection opportuniste, des observations inatten-
dues peuvent être faites grâce à un examen méticuleux des images. Par . . . via une

inspection
méticuleuse des
données,. . .

exemple, Greer et al. [157] ont étudié le mimétisme batésien chez les
larves de poissons à partir des images ISIIS, une étude qui a nécessité
l’examen de plus de 1 million d’images et demandé des centaines
d’heures, pour quelques centaines de larves de poissons détectées. La
science participative a été envisagée pour faciliter ces observations, mais
cette approche n’a pas été jugée entièrement concluante [336] Enfin, les . . . ou grâce à des

méthodes
automatisées.

approches automatisées telles que le vector embedding ont la capacité de
détecter efficacement des objets non détectés auparavant [254].
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A.4.2.2 Vers une science guidée par les données

Avec le développement d’outils d’observation plus efficaces, polyva-
lents et rentables, le taux de collecte de données augmente de façon
spectaculaire [208] et de plus en plus de données d’observation de-L’abondance des

données offre un
nouveau

paradigme
scientifique. . .

viennent disponibles pour les écologistes [167]. Nous sommes ainsi
entrés dans l’ère de l’écologie pilotée par les données (data-driven),
basée sur l’analyse exploratoire de grands jeux de données pour en ex-
traire des connaissances, une approche considérée comme le quatrième
paradigme scientifique [179, 208]. Cette approche requiert toutefois des
méthodes très efficaces pour traiter les grandes quantités de données
collectées [18]. Dans ce contexte, les approches en temps réel telles que
la segmentation T-MSER des images de plancton présentée dans le
chapitre 2 sont particulièrement appréciées. Les méthodes d’écologie
numérique, présentées dans l’introduction, ainsi que les progrès dans
la puissance de calcul contribuent à la capacité de traiter de grandes
quantités de données.

Bien entendu, le domaine de l’écologie marine n’échappe pas à ces
changements : de plus en plus de capteurs sont embarqués sur des pla-
teformes autonomes [72]. Divers instruments d’imagerie du plancton. . . auquel

l’écologie marine
n’échappe pas,. . .

existent [243], de telle sorte que les bases de données connaissent une
croissance exponentielle [192]. À l’heure actuelle, 201 millions d’objets
sont contenus dans la base de données EcoTaxa [316]. Cependant, ces
outils d’imagerie génèrent de grandes quantités de données au prix
d’une certaine résolution taxonomique (les organismes ne peuvent pas
être manipulés), et certains objets restent non identifiés. Malgré l’abon-. . . bien que des

progrès restent à
faire.

dance des données, nous manquons toujours de données annotées
et nettoyées pour entraîner et tester les modèles [192], bien que les
données d’entraînement peuvent être simulées [253]. Le traitement des
données étant devenu une étape critique, elle doit être réalisée aussi
efficacement que possible.

A.4.3 Considérations méthodologiques

A.4.3.1 Trier efficacement des images de plancton

Ce paragraphe est une réflexion sur la façon dont nous avons traité les
données collectées par l’UVP6, dans le but de mettre en évidence ce quiCommencer par

travailler sur un
sous-ensemble
représentatif. . .

aurait pu être fait plus efficacement. Pendant les 5 mois passés en mer,
l’UVP6 a collecté 1 123 123 images qui ont dû être triées. Bien que ce
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chiffre soit très faible comparé aux données ISIIS, le tri d’un tel nombre
d’images nécessite tout de même une stratégie bien pensée en amont.
En effet, notre plan initial consistait à trier certaines de ces images puis
nous fier aux prédictions d’un modèle pour les autres, sans toutefois
avoir réfléchi à quelles images valider manuellement, ni à la manière
de garantir la qualité des prédictions, ce qui a entraîné une certaine
perte de temps. Si cela était à refaire, ce paragraphe explique comment
je m’y prendrais.

Il faut tout d’abord choisir sa stratégie : validation de toutes les
images ou utilisation des prédictions sans vérification. Ensuite, quelle
que soit la stratégie, il faut générer un sous-ensemble représentatif
des données (e.g. 1/n profil régulièrement répartis sur l’ensemble
des données), qui sera validé entièrement et utilisé pour entraîner un . . . permet de

généraliser au
reste des
images,. . .

modèle de classification. Sa taille résulte d’un compromis entre l’effort
de validation requis et le besoin d’un nombre suffisant d’exemples
(~100 objets par classe d’intérêt pour la validation complète, ~500-1000
objets par classe d’intérêt pour les prédictions). Grâce l’échantillonnage
stratifié, sa composition devrait être proche de celle de l’ensemble des
données. Ce dernier point est très important car il permet d’éviter le
dataset shift qui se produit quand la distribution des nouvelles données
est différente de celle des données d’entraînement [280].

Pour la stratégie basée sur les prédictions, il convient d’être en
mesure d’estimer les performances du modèle de classification. Le . . . qu’elles soient

toutes inspectées
ou non.

sous-ensemble entièrement validé doit ainsi être divisé en deux parties :
un jeu d’entraînement avec ~70% des données, un jeu de validation
(15% des données) pour ajuster le modèle et un jeu de test (15% des
données) pour évaluer le modèle sur un jeu de données indépendant,
non vu par le modèle à l’entraînement, afin d’éviter d’en surestimer les
capacités [108, 192].

A.4.3.2 Tirer le meilleur de l’imagerie in situ

Parmi les nombreuses choses que j’ai pu explorer au cours de ce
doctorat, le résultat que je trouve le plus frappant est la distribution dif-
férentielle des stades de vie des Collodaria, et en particulier le contrôle De nombreuses

questions restent
sans réponse,. . .

de la flottabilité que cela implique. Des organismes unicellulaires, re-
montant des profondeurs à l’aide d’alvéoles qui semblent fonctionner
comme des montgolfières ; c’est fascinant. Cependant, comme expliqué
dans le chapitre 6, nous ne sommes pas en mesure de démontrer ce
processus, nous racontons simplement une histoire cohérente basée
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sur nos observations. À mes yeux, affiner ces observations pour confir-. . . par exemple
sur le cycle de vie

des collodaires.
mer (ou infirmer !) nos hypothèses serait un sujet de recherche très
intéressant. En outre, d’autres questions se posent : où les collodaires
solitaires acquièrent-ils leurs symbiotes lorsqu’il n’y a pas de DCM ?
Comment leur concentration varie-t-elle selon les saisons ? La reproduc-
tion sexuelle est-elle saisonnière ? Les formes coloniales prévalent-elles
lorsque de nouveaux symbiotes ne peuvent être acquis ?

Comme nous l’avons vu, l’ISIIS est un excellent instrument pour
imager de grands volumes d’eau et ainsi détecter des organismes rares,
sans les perturber. Il semble donc être l’instrument parfait pour ceL’imagerie in

situ. . . type d’étude, car les collodaires solitaires avec vacuoles étaient par-
ticulièrement rares. Néanmoins, un algorithme de détection efficace
devrait être développé pour cibler spécifiquement ces organismes, qu’il. . . combinée à

l’intelligence
artificielle. . .

s’agisse de formes solitaires ou coloniales, afin de parcourir efficace-
ment les grandes quantités de données générées par ISIIS. De plus,
il serait particulièrement intéressant de pouvoir résoudre la composi-
tion de la communauté phytoplanctonique à proximité immédiate des
collodaires. Ceci pourrait être fait avec des capteurs de fluorescence
détectant d’autres pigments que la chlorophylle a ou avec d’autres
instruments d’imagerie ciblant des tailles plus petites, et pourrait ap-
porter des informations concernant les symbiontes potentiels ou la
source de nourriture des collodaires solitaires. Un tel échantillonnage. . . semble

particulièrement
appropriée pour

aborder ces
questions.

devrait être effectué à différentes saisons afin de décrire les variations
en concentration des différentes phases du cycle de vie de Collodaria.
Enfin, la cerise sur le gâteau serait d’échantillonner physiquement une
cellule porteuse de vacuoles et de pouvoir rechercher des symbiotes
à l’intérieur. Bien que cela semble extrêmement difficile, cela contri-
buerait à démontrer que, comme nous le supposons, ces cellules sont
nouvellement formées et encore exemptes de symbiotes.
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B.1 Global Distribution of Zooplankton Biomass Esti-
mated by In Situ Imaging and Machine Learning

Laetitia Drago, Thelma Panaïotis, Jean-Olivier Irisson, Marcel Babin,
Tristan Biard, François Carlotti, Laurent Coppola, Lionel Guidi, Helena
Hauss, Lee Karp-Boss, Fabien Lombard, Andrew M. P. McDonnell,
Marc Picheral, Andreas Rogge, Anya M. Waite, Lars Stemmann and
Rainer Kiko

Frontiers in Marine Science 9
DOI: 10.3389/fmars.2022.894372

Abstract Zooplankton plays a major role in ocean food webs and
biogeochemical cycles, and provides major ecosystem services as a
main driver of the biological carbon pump and in sustaining fish com-
munities. Zooplankton is also sensitive to its environment and reacts
to its changes. To better understand the importance of zooplankton,
and to inform prognostic models that try to represent them, spatially-
resolved biomass estimates of key plankton taxa are desirable. In this
study we predict, for the first time, the global biomass distribution of
19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using
observations with the Underwater Vision Profiler 5, a quantitative in
situ imaging instrument. After classification of 466,872 organisms from
more than 3,549 profiles (0-500 m) obtained between 2008 and 2019
throughout the globe, we estimated their individual biovolumes and
converted them to biomass using taxa-specific conversion factors. We
then associated these biomass estimates with climatologies of environ-
mental variables (temperature, salinity, oxygen, etc.), to build habitat
models using boosted regression trees. The results reveal maximal
zooplankton biomass values around 60° N and 55° S as well as minimal
values around the oceanic gyres. An increased zooplankton biomass is
also predicted for the equator. Global integrated biomass (0-500 m) was
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estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%,
mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria
(16.4%, mostly in the intertropical convergence zone). The machine
learning approach used here is sensitive to the size of the training
set and generates reliable predictions for abundant groups such as
Copepoda (R2 ~20-66%) but not for rare ones (Ctenophora, Cnidaria,
R2 < 5%). Still, this study offers a first protocol to estimate global, spa-
tially resolved zooplankton biomass and community composition from
in situ imaging observations of individual organisms. The underlying
dataset covers a period of 10 years while approaches that rely on net
samples utilized datasets gathered since the 1960s. Increased use of
digital imaging approaches should enable us to obtain zooplankton
biomass distribution estimates at basin to global scales in shorter time
frames in the future.

B.2 In situ imaging across ecosystems to resolve the fine-
scale oceanographic drivers of a globally significant
planktonic grazer

Adam Greer, Moritz S Schmid, Patrick Duffy, Kelly Robinson, Mark
Genung, Jessica Luo, Thelma Panaïotis, Christian Briseño-Avena, Marc
Frischer, Su Sponaugle and Robert K Cowen

Limnology and Oceanography
DOI: 10.1002/lno.12259i

Abstract Doliolids are common gelatinous grazers in marine ecosys-
tems around the world and likely influence carbon cycling due to their
large population sizes and high growth and excretion rates. Aggre-
gations or blooms of these organisms occur frequently, but they are
difficult to measure or predict because doliolids are fragile, under sam-
pled with conventional plankton nets, and can aggregate on fine spatial
scales (1-10 m). Moreover, ecological studies typically target particular
regions that do not encompass the range of possible habitats favoring
doliolid proliferation. To address these limitations, we combined in
situ imaging data from six coastal ecosystems, including the Oregon
shelf, northern California, southern California Bight, northern Gulf
of Mexico, Straits of Florida, and Mediterranean Sea, to resolve and
compare doliolid habitat associations during warm months when en-

https://doi.org/10.1002/lno.12259
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vironmental gradients are strong and doliolid blooms are frequently
documented. Higher ocean temperature was the strongest predictor
of elevated doliolid abundances across ecosystems, with additional
variance explained by chlorophyll-a fluorescence and oxygen. The
relative abundance of the nurse stage tended to increase when total
doliolid abundance was low, but this pattern did not hold in upwelling
ecosystems, indicating that nurses occupy less favorable habitats in
established populations with wider shelf habitats. The doliolids tended
to be most aggregated in oligotrophic systems (Mediterranean and
southern California), suggesting that microhabitats within the water
column favor proliferation on fine spatial scales. Similar comparative
approaches can resolve the realized niche of fast-reproducing marine
animals, thus improving predictions of population changes in response
to oceanographic conditions.





C
Distribution maps of planktonic
organisms imaged during the
VISUFRONT campaign

C.1 Cross front transects

Seven cross front transects were performed between 23/07/2013 09:27:00
and 28/07/2013 18:51:00. As the name suggests, these transects were
performed perpendicularly to the front, starting either inshore or off-
shore, for a duration of 7-8 h each. Unfortunately, the first transect
had to be interrupted and was thus excluded from our analyses. Dis-
tribution maps for 22 taxonomic groups on the 6 retained cross front
transects are presented in Figure C.1.
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(A)

Figure C.1: (Figure continues)
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(B)

Figure C.1: (Figure continues)
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(C)

Figure C.1: (Figure continues)
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(D)

Figure C.1: (Figure continues)
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(E)

Figure C.1: (Figure continues)
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(F)

Figure C.1: Distribution maps of 22 taxonomic groups for cross front transects.
(A) Cross front 2 (nighttime), (B) Cross front 3 (daytime), (C) Cross front
4 (nighttime), (D) Cross front 5 (daytime), (E) Cross front 6 (daytime), (F)
Cross front 7 (nighttime). White lines represent the 38.2 and 38.3 isohalines
delineating the Ligurian front. Note that the colour scale is log-transformed.
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C.2 Along front transects

Besides cross front transects, 7 along front transects were performed
parallel to the front. Some were conducted at dawn or dusk to visualise
plankton diel vertical migration. Distributions are shown in Figure C.2.

(A)

Figure C.2: (Figure continues)
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(B)

Figure C.2: (Figure continues)
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(C)

Figure C.2: (Figure continues)
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(D)

Figure C.2: (Figure continues)
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(E)

Figure C.2: (Figure continues)
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(F)

Figure C.2: (Figure continues)
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(G)

Figure C.2: Distribution maps of 22 taxonomic groups for along front transects.
(A) Along front 1 (nighttime), (B) Along front 2 (dawn), (C) Along front 3
(daytime), (D) Along front 4 (dusk), (E) Along front 5 (daytime), (F) Along
front 6 (dusk), (G) Along front 7 (daytime). White lines represent the 38.2 and
38.3 isohalines delineating the Ligurian front. Note that the colour scale is
log-transformed.
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C.3 Lagrangian transects

Finally, 14 Lagrangian transects were conducted to follow a water mass
for 24 h and inspect potential changes in the plankton community
during this period. Unfortunately, both external drives (original and
back-up) containing the data collected during the 3rd transect had
malfunctions, so that data could not be retrieved. In addition, during
the 10th transect, the connection with ISIIS was lost, leading to a
premature end just after a few minutes of deployment. This transect is
thus absent from the data. Distribution for the 12 retained transects are
presented in Figure C.3.
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(A)

Figure C.3: (Figure continues)
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(B)

Figure C.3: (Figure continues)
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(C)

Figure C.3: (Figure continues)



C.3 Lagrangian transects 273

(D)

Figure C.3: (Figure continues)
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(E)

Figure C.3: (Figure continues)
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(F)

Figure C.3: (Figure continues)
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(G)

Figure C.3: (Figure continues)
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(H)

Figure C.3: (Figure continues)
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(I)

Figure C.3: (Figure continues)
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(J)

Figure C.3: (Figure continues)
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(K)

Figure C.3: (Figure continues)
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(L)

Figure C.3: Distribution maps of 22 taxonomic groups for Lagrangian transects.
(A) Lagrangian 1, (B) Lagrangian 2, (C) Lagrangian 4, (D) Lagrangian 5,
(E) Lagrangian 6, (F) Lagrangian 7, (G) Lagrangian 8, (H) Lagrangian 9, (I)
Lagrangian 11, (J) Lagrangian 12, (K) Lagrangian 13, (L) Lagrangian 14. White
lines represent the 38.2 and 38.3 isohalines delineating the Ligurian front. Note
that the colour scale is log-transformed.
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“Winter Picoplankton Diversity in an Oligotrophic Marginal
Sea”. In: Marine Genomics 42 (2018), pp. 14–24. doi: 10.1016/j.
margen.2018.09.002.

[283] J. X. Müller. Über Die Thalassicollen, Polycystinen Und Acanthome-
tren Des Mittelmeeres. Druckerei der Königlichen Akademie der
Wissenschaften, 1858.

[284] F. E. Muller-Karger et al. “Advancing Marine Biological Obser-
vations and Data Requirements of the Complementary Essential
Ocean Variables (EOVs) and Essential Biodiversity Variables
(EBVs) Frameworks”. In: Frontiers in Marine Science 5 (2018).

[285] Y. Nakamura, R. Somiya, N. Suzuki, M. Hidaka-Umetsu, A.
Yamaguchi, and D. J. Lindsay. “Optics-Based Surveys of Large
Unicellular Zooplankton: A Case Study on Radiolarians and
Phaeodarians”. In: Plankton and Benthos Research 12.2 (2017),
pp. 95–103. doi: 10.3800/pbr.12.95.

[286] Y. Nakamura and N. Suzuki. “Phaeodaria: Diverse Marine Cer-
cozoans of World-Wide Distribution”. In: Marine Protists: Diver-
sity and Dynamics. Ed. by S. Ohtsuka, T. Suzaki, T. Horiguchi,
N. Suzuki, and F. Not. Tokyo: Springer Japan, 2015, pp. 223–249.
isbn: 978-4-431-55130-0. doi: 10.1007/978-4-431-55130-0_9.

[287] A. R. Nayak, E. Malkiel, M. N. McFarland, M. S. Twardowski,
and J. M. Sullivan. “A Review of Holography in the Aquatic
Sciences: In Situ Characterization of Particles, Plankton, and
Small Scale Biophysical Interactions”. In: Frontiers in Marine
Science 7 (2021), p. 1256. doi: 10.3389/fmars.2020.572147.

[288] A. R. Nayak, M. N. McFarland, J. M. Sullivan, and M. S. Twar-
dowski. “Evidence for Ubiquitous Preferential Particle Orienta-
tion in Representative Oceanic Shear Flows”. In: Limnology and
Oceanography 63.1 (2018), pp. 122–143. doi: 10.1002/lno.10618.

[289] A. Niculescu-Mizil and R. Caruana. “Predicting Good Proba-
bilities with Supervised Learning”. In: Proceedings of the 22nd
International Conference on Machine Learning. ICML ’05. New York,
NY, USA: Association for Computing Machinery, 2005, pp. 625–
632. isbn: 978-1-59593-180-1. doi: 10.1145/1102351.1102430.

https://doi.org/10.1016/j.margen.2018.09.002
https://doi.org/10.1016/j.margen.2018.09.002
https://doi.org/10.3800/pbr.12.95
https://doi.org/10.1007/978-4-431-55130-0_9
https://doi.org/10.3389/fmars.2020.572147
https://doi.org/10.1002/lno.10618
https://doi.org/10.1145/1102351.1102430


Bibliography 315

[290] K. Niewiadomska, H. Claustre, L. Prieur, and F. d’Ortenzio.
“Submesoscale Physical-Biogeochemical Coupling across the
Ligurian Current (Northwestern Mediterranean) Using a Bio-
Optical Glider”. In: Limnology and Oceanography 53 (5part2 2008),
pp. 2210–2225. doi: 10.4319/lo.2008.53.5_part_2.2210.

[291] Y. Nishibe, K. Takahashi, T. Ichikawa, K. Hidaka, H. Kurogi,
K. Segawa, and H. Saito. “Degradation of Discarded Appen-
dicularian Houses by Oncaeid Copepods”. In: Limnology and
Oceanography 60.3 (2015), pp. 967–976. doi: 10.1002/lno.10061.

[292] P. Nival, F. Lombard, J. Cuzin, J. Goy, and L. Stemmann. “Zoo-
plankton II. Macroplankton and Long-Term Series”. In: The
Mediterranean Sea in the Era of Global Change 2. John Wiley
& Sons, Ltd, 2020, pp. 109–146. isbn: 978-1-119-70478-2. doi:
10.1002/9781119704782.ch4.

[293] M. D. Ohman, R. E. Davis, J. T. Sherman, K. R. Grindley, B. M.
Whitmore, C. F. Nickels, and J. S. Ellen. “Zooglider: An Au-
tonomous Vehicle for Optical and Acoustic Sensing of Zoo-
plankton”. In: Limnology and Oceanography: Methods 17.1 (2019),
pp. 69–86. doi: 10.1002/lom3.10301.

[294] M. D. Ohman, J. R. Powell, M. Picheral, and D. W. Jensen. “Meso-
zooplankton and Particulate Matter Responses to a Deep-Water
Frontal System in the Southern California Current System”.
In: Journal of Plankton Research 34.9 (2012), pp. 815–827. doi:
10.1093/plankt/fbs028.

[295] S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, and F. Not.
“Marine Protists”. In: Diversity and Dynamics. Springer, Tokyo
(Japan) (2015).

[296] J. Oksanen et al. Vegan: Community Ecology Package. 2018.

[297] D. B. Olson, G. L. Hitchcock, A. J. Mariano, C. J. Ashjian, G.
Peng, R. W. Nero, and G. P. Podestá. “Life on the Edge: Marine
Life and Fronts”. In: Oceanography 7.2 (1994), pp. 52–60.

[298] R. J. Olson and H. M. Sosik. “A Submersible Imaging-in-Flow
Instrument to Analyze Nano-and Microplankton: Imaging Flow-
Cytobot”. In: Limnology and Oceanography: Methods 5.6 (2007),
pp. 195–203. doi: 10.4319/lom.2007.5.195.

[299] E. C. Orenstein et al. “Machine Learning Techniques to Charac-
terize Functional Traits of Plankton from Image Data”. 2021.

https://doi.org/10.4319/lo.2008.53.5_part_2.2210
https://doi.org/10.1002/lno.10061
https://doi.org/10.1002/9781119704782.ch4
https://doi.org/10.1002/lom3.10301
https://doi.org/10.1093/plankt/fbs028
https://doi.org/10.4319/lom.2007.5.195


316 Bibliography

[300] E. C. Orenstein and O. Beijbom. “Transfer Learning and Deep
Feature Extraction for Planktonic Image Data Sets”. In: 2017
IEEE Winter Conference on Applications of Computer Vision (WACV).
2017 IEEE Winter Conference on Applications of Computer
Vision (WACV). 2017, pp. 1082–1088. doi: 10.1109/WACV.2017.
125.

[301] E. C. Orenstein, O. Beijbom, E. E. Peacock, and H. M. Sosik.
“WHOI-Plankton- A Large Scale Fine Grained Visual Recogni-
tion Benchmark Dataset for Plankton Classification”. 2015.

[302] E. C. Orenstein, D. Ratelle, C. Briseño-Avena, M. L. Carter,
P. J. S. Franks, J. S. Jaffe, and P. L. D. Roberts. “The Scripps
Plankton Camera System: A Framework and Platform for in
Situ Microscopy”. In: Limnology and Oceanography: Methods 18.11
(2020), pp. 681–695. doi: 10.1002/lom3.10394.

[303] N. Otsu. “A Threshold Selection Method from Gray-Level His-
tograms”. In: IEEE transactions on systems, man, and cybernetics
9.1 (1979), pp. 62–66.

[304] R. W. Owen. “Fronts and Eddies in the Sea: Mechanisms, Inter-
actions and Biological Effects”. In: Analysis of marine ecosystems
(1981), pp. 197–233.

[305] G.-A. Paffenhöfer. “On the Ecology of Marine Cyclopoid Cope-
pods (Crustacea, Copepoda)”. In: Journal of Plankton Research
15.1 (1993), pp. 37–55. doi: 10.1093/plankt/15.1.37.

[306] T. Panaïotis, L. Caray–Counil, B. Woodward, M. S. Schmid,
D. Daprano, S. T. Tsai, C. M. Sullivan, R. K. Cowen, and J.-O.
Irisson. “Content-Aware Segmentation of Objects Spanning a
Large Size Range: Application to Plankton Images”. In: Frontiers
in Marine Science 9 (2022). doi: 10.3389/fmars.2022.870005.

[307] D. Parikh, C. L. Zitnick, and T. Chen. “Exploring Tiny Images:
The Roles of Appearance and Contextual Information for Ma-
chine and Human Object Recognition”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 34.10 (2012), pp. 1978–
1991. doi: 10.1109/TPAMI.2011.276.

[308] A. Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 2019. doi: 10.48550/arXiv.1912.01703.

[309] J. Patterson and A. Gibson. Deep Learning: A Practitioner’s Ap-
proach. " O’Reilly Media, Inc.", 2017. isbn: 1-4919-1423-8.

https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.1002/lom3.10394
https://doi.org/10.1093/plankt/15.1.37
https://doi.org/10.3389/fmars.2022.870005
https://doi.org/10.1109/TPAMI.2011.276
https://doi.org/10.48550/arXiv.1912.01703


Bibliography 317

[310] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12.85 (2011), pp. 2825–
2830.

[311] M. L. Pedrotti and L. Fenaux. “Dispersal of Echinoderm Larvae
in a Geographical Area Marked by Upwelling (Ligurian Sea,
NW Mediterranean)”. In: Marine Ecology Progress Series 86.3
(1992), pp. 217–227.

[312] H. M. Pereira et al. “Essential Biodiversity Variables”. In: Science
339.6117 (2013), pp. 277–278. doi: 10.1126/science.1229931.

[313] M. C. Pernice, C. R. Giner, R. Logares, J. Perera-Bel, S. G. Acinas,
C. M. Duarte, J. M. Gasol, and R. Massana. “Large Variability
of Bathypelagic Microbial Eukaryotic Communities across the
World’s Oceans”. In: The ISME Journal 10.4 (4 2016), pp. 945–958.
doi: 10.1038/ismej.2015.170.

[314] F. Péron and C. A. Lesueur. “Tableau Des Caractères Génériques
et Spécifiques de Toutes Les Espèces de Méduses Connues
Jusqu’à Ce Jour”. In: Annales Du Muséum d’Histoire Naturelle.
Vol. 14. 1810, pp. 325–366.

[315] S. Petrovskii and N. Petrovskaya. “Computational Ecology as
an Emerging Science”. In: Interface Focus 2.2 (2012), pp. 241–254.
doi: 10.1098/rsfs.2011.0083.

[316] M. Picheral, S. Colin, and J.-O. Irisson. EcoTaxa, a Tool for the
Taxonomic Classification of Images. 2017. url: https://ecotaxa.
obs-vlfr.fr/ (visited on 11/13/2020).

[317] M. Picheral, L. Guidi, L. Stemmann, D. M. Karl, G. Iddaoud, and
G. Gorsky. “The Underwater Vision Profiler 5: An Advanced
Instrument for High Spatial Resolution Studies of Particle Size
Spectra and Zooplankton”. In: Limnology and Oceanography: Meth-
ods 8.9 (2010), pp. 462–473. doi: 10.4319/lom.2010.8.462.

[318] M. Picheral et al. “The Underwater Vision Profiler 6: An Imaging
Sensor of Particle Size Spectra and Plankton, for Autonomous
and Cabled Platforms”. In: Limnology and Oceanography: Methods
n/a.n/a (2021). doi: 10.1002/lom3.10475.

[319] S. Pinca and S. Dallot. “Meso- and Macrozooplankton Com-
position Patterns Related to Hydrodynamic Structures in the
Ligurian Sea (Trophos-2 Experiment, April-June 1986)”. In: Ma-

https://doi.org/10.1126/science.1229931
https://doi.org/10.1038/ismej.2015.170
https://doi.org/10.1098/rsfs.2011.0083
https://ecotaxa.obs-vlfr.fr/
https://ecotaxa.obs-vlfr.fr/
https://doi.org/10.4319/lom.2010.8.462
https://doi.org/10.1002/lom3.10475


318 Bibliography

rine Ecology Progress Series 126 (1995), pp. 49–65. doi: 10.3354/
meps126049.

[320] M. H. Pinkerton, A. N. H. Smith, B. Raymond, G. W. Hosie, B.
Sharp, J. R. Leathwick, and J. M. Bradford-Grieve. “Spatial and
Seasonal Distribution of Adult Oithona Similis in the Southern
Ocean: Predictions Using Boosted Regression Trees”. In: Deep
Sea Research Part I: Oceanographic Research Papers 57.4 (2010),
pp. 469–485. doi: 10.1016/j.dsr.2009.12.010.

[321] M. H. Pinkerton, M. Décima, J. A. Kitchener, K. T. Takahashi,
K. V. Robinson, R. Stewart, and G. W. Hosie. “Zooplankton in
the Southern Ocean from the Continuous Plankton Recorder:
Distributions and Long-Term Change”. In: Deep Sea Research
Part I: Oceanographic Research Papers 162 (2020), p. 103303. doi:
10.1016/j.dsr.2020.103303.

[322] L. Piterbarg, V. Taillandier, and A. Griffa. “Investigating Frontal
Variability from Repeated Glider Transects in the Ligurian Cur-
rent (North West Mediterranean Sea)”. In: Journal of Marine
Systems 129 (2014), pp. 381–395. doi: 10.1016/j.jmarsys.2013.
08.003.

[323] T. Poisot, R. Labrie, E. Larson, and A. Rahlin. Data-Based,
Synthesis-Driven: Setting the Agenda for Computational Ecology.
2018. doi: 10.1101/150128.

[324] S. Polet, C. Berney, J. Fahrni, and J. a. n. Pawlowski. “Small-
Subunit Ribosomal RNA Gene Sequences of Phaeodarea Chal-
lenge the Monophyly of Haeckel’s Radiolaria”. In: Protist 155.1
(2004), pp. 53–63. doi: 10.1078/1434461000164.

[325] J. C. Prairie, K. R. Sutherland, K. J. Nickols, and A. M.
Kaltenberg. “Biophysical Interactions in the Plankton: A Cross-
Scale Review”. In: Limnology and Oceanography: Methods 2 (2012),
pp. 121–145. doi: 10.1215/21573689-1964713@10.1002/(ISSN)
1541-5856.ECODAS-VI.

[326] L. Prieur, F. D’ortenzio, V. Taillandier, and P. Testor. “Physical
Oceanography of the Ligurian Sea”. In: The Mediterranean Sea in
the Era of Global Change 1. John Wiley & Sons, Ltd, 2020, pp. 49–
78. isbn: 978-1-119-70696-0. doi: 10.1002/9781119706960.ch3.

https://doi.org/10.3354/meps126049
https://doi.org/10.3354/meps126049
https://doi.org/10.1016/j.dsr.2009.12.010
https://doi.org/10.1016/j.dsr.2020.103303
https://doi.org/10.1016/j.jmarsys.2013.08.003
https://doi.org/10.1016/j.jmarsys.2013.08.003
https://doi.org/10.1101/150128
https://doi.org/10.1078/1434461000164
https://doi.org/10.1215/21573689-1964713@10.1002/(ISSN)1541-5856.ECODAS-VI
https://doi.org/10.1215/21573689-1964713@10.1002/(ISSN)1541-5856.ECODAS-VI
https://doi.org/10.1002/9781119706960.ch3


Bibliography 319

[327] O. Py, H. Hong, and S. Zhongzhi. “Plankton Classification with
Deep Convolutional Neural Networks”. In: 2016 IEEE Infor-
mation Technology, Networking, Electronic and Automation Control
Conference. 2016 IEEE Information Technology, Networking, Elec-
tronic and Automation Control Conference. 2016, pp. 132–136.
doi: 10.1109/ITNEC.2016.7560334.

[328] S. Rahmstorf. “Ocean Circulation and Climate during the Past
120,000 Years”. In: Nature 419.6903 (6903 2002), pp. 207–214. doi:
10.1038/nature01090.

[329] S. Rahmstorf. “Thermohaline Circulation: The Current Climate”.
In: Nature 421.6924 (6924 2003), pp. 699–699. doi: 10.1038/
421699a.

[330] A. Remsen, T. L. Hopkins, and S. Samson. “What You See Is
Not What You Catch: A Comparison of Concurrently Collected
Net, Optical Plankton Counter, and Shadowed Image Particle
Profiling Evaluation Recorder Data from the Northeast Gulf
of Mexico”. In: Deep Sea Research Part I: Oceanographic Research
Papers 51.1 (2004), pp. 129–151. doi: 10.1016/J.DSR.2003.09.
008.

[331] G. Reygondeau, L. Guidi, G. Beaugrand, S. A. Henson, P. Koubbi,
B. R. MacKenzie, T. T. Sutton, M. Fioroni, and O. Maury. “Global
Biogeochemical Provinces of the Mesopelagic Zone”. In: Journal
of Biogeography 45.2 (2018), pp. 500–514. doi: 10.1111/jbi.

13149.

[332] A. Rice, P. Šmarda, M. Novosolov, M. Drori, L. Glick, N. Sabath,
S. Meiri, J. Belmaker, and I. Mayrose. “The Global Biogeography
of Polyploid Plants”. In: Nature Ecology & Evolution 3.2 (2 2019),
pp. 265–273. doi: 10.1038/s41559-018-0787-9.

[333] D. J. Richter et al. “Genomic Evidence for Global Ocean Plank-
ton Biogeography Shaped by Large-Scale Current Systems”. In:
bioRxiv (2020), p. 867739. doi: 10.1101/867739.

[334] A. R. Robinson. “Overview and Summary of Eddy Science”.
In: Eddies in Marine Science. Ed. by A. R. Robinson. Topics in
Atmospheric and Oceanographic Sciences. Berlin, Heidelberg:
Springer, 1983, pp. 3–15. isbn: 978-3-642-69003-7. doi: 10.1007/
978-3-642-69003-7_1.

https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.1038/nature01090
https://doi.org/10.1038/421699a
https://doi.org/10.1038/421699a
https://doi.org/10.1016/J.DSR.2003.09.008
https://doi.org/10.1016/J.DSR.2003.09.008
https://doi.org/10.1111/jbi.13149
https://doi.org/10.1111/jbi.13149
https://doi.org/10.1038/s41559-018-0787-9
https://doi.org/10.1101/867739
https://doi.org/10.1007/978-3-642-69003-7_1
https://doi.org/10.1007/978-3-642-69003-7_1


320 Bibliography

[335] C. Robinson et al. “Mesopelagic Zone Ecology and Biogeo-
chemistry – a Synthesis”. In: Deep Sea Research Part II: Topical
Studies in Oceanography. Ecological and Biogeochemical Inter-
actions in the Dark Ocean 57.16 (2010), pp. 1504–1518. doi:
10.1016/j.dsr2.2010.02.018.

[336] K. L. Robinson, J. Y. Luo, S. Sponaugle, C. Guigand, and R. K.
Cowen. “A Tale of Two Crowds: Public Engagement in Plankton
Classification”. In: Frontiers in Marine Science 4 (2017).

[337] K. L. Robinson, S. Sponaugle, J. Y. Luo, M. R. Gleiber, and
R. K. Cowen. “Big or Small, Patchy All: Resolution of Marine
Plankton Patch Structure at Micro- to Submesoscales for 36
Taxa”. In: Science Advances 7.47 (2021), eabk2904. doi: 10.1126/
sciadv.abk2904.

[338] F. C. M. Rodrigues, N. S. Hirata, A. A. Abello, T. Leandro, D.
La Cruz, R. M. Lopes, and R. Hirata Jr. “Evaluation of Trans-
fer Learning Scenarios in Plankton Image Classification.” In:
VISIGRAPP (5: VISAPP). 2018, pp. 359–366.

[339] J.-B. Romagnan et al. “Comprehensive Model of Annual Plank-
ton Succession Based on the Whole-Plankton Time Series Ap-
proach”. In: PLOS ONE 10.3 (2015). Ed. by B. R. MacKenzie,
e0119219. doi: 10.1371/journal.pone.0119219.

[340] I. Rombouts, G. Beaugrand, F. Ibaňez, S. Gasparini, S. Chiba, and
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RÉSUMÉ

En tant que base des réseaux trophiques océaniques et élément clé de la 
pompe à carbone biologique, les organismes planctoniques jouent un rôle 
majeur dans les océans. Cependant, leur distribution à petite échelle, régie 
par les interactions biotiques entre organismes et les interactions avec les 
propriétés physico-chimiques des masses d'eau de leur environnement 
immédiat, est mal décrite in situ, en raison du manque d'outils 
d'observation adaptés. De nouveaux instruments d'imagerie in situ à haute 
résolution, combinés à des algorithmes d'apprentissage automatique pour 
traiter la grande quantité de données collectées, nous permettent 
aujourd'hui d'aborder ces échelles.

La première partie de ce travail se concentre sur le développement 
méthodologique de deux pipelines automatisés basés sur l'intelligence 
artificielle. Ces pipelines ont permis de détecter efficacement les organismes 
planctoniques au sein des images brutes, et de les classer en catégories 
taxonomiques ou morphologiques. Dans une deuxième partie, des outils 
d'écologie numérique ont été appliqués pour étudier la distribution du 
plancton à différentes échelles, en utilisant trois jeux de données d'imagerie 
in situ. Tout d'abord, nous avons mis en évidence un lien entre les 
communautés planctoniques et les conditions environnementales à l'échelle 
globale. Ensuite, nous avons décrit la distribution du plancton et des 
particules à travers un front de méso-échelle, et mis en évidence des 
périodes contrastées pendant le bloom de printemps.
Enfin, grâce aux données d'imagerie in situ à haute fréquence, nous avons 
étudié la distribution à fine échelle et la position préférentielle d’organismes 
appartement au groupe des Rhizaria, des protistes fragiles et peu étudiés, 
dont certains sont mixotrophes.

Dans l’ensemble, ce travail démontre l'efficacité de l'imagerie in situ 
combinée à des approches d’intelligence artificielle pour comprendre les 
interactions biophysiques dans le plancton et les conséquences sur sa 
distribution à petite échelle.
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