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Abstract

Epistemic social choice deals with the problem of unveiling a hidden ground truth state from a
set of possible states, given the votes cast by some agents, that can be seen as noisy reports on the
ground truth. The correlation between these reports and the ground truth is modelled by a noise
model, sometimes tuned by a parameter reflecting the competence (expertise, reliability) of the
voters. While some classical anonymous rules have been shown to output the maximum likeli-
hood estimator of the ground truth under some assumptions, the aggregation rule may sometimes
assign different weights to the voters according to their expertise.

We focus on a particular kind of input, consisting of approval votes, where each voter selects a
subset of alternatives, and we propose and test novel methods to optimally weigh the voters with
the aim of tracking a simple (single-winner) or composite (multi-winner) truth via maximum
likelihood estimation, with a particular interest in applications to crowdsourcing.

First, we focus on single-winner epistemic approval voting, and argue for the size matters princi-
ple. It states that more reliable voters tend to select fewer alternatives, hence voting rules should
assign more weight to smaller ballots. We characterize a large family of Mallows-like approval
noise distributions based on this principle. Moreover, for the specific case of a Condorcet-like
approval noise, we design a simple method to estimate voters’ reliabilities by simply observing
the size of their ballots. We test these aggregation methods on different real crowdsourced an-
notations datasets, and show that they outperform standard approval voting in single-question
wisdom of the crowd situations.

Second, we deal with multi-winner epistemic approval voting, where the truth consists of a set of
objective winners (sentiments in a text, objects in an image, best three papers at a conference..).
In such contexts, there may be several interpretations of the size of the output. One of the
contributions of the thesis is to distinguish and discuss two different interpretations, leading to
different solutions.

In the first interpretation, we suppose that we have a prior knowledge on the ground truth, consist-
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ABSTRACT

ing of a lower and an upper bound on its cardinality. After positing a parameterized noise model
that incorporates this prior information, we propose an iterative procedure that intertwines the
estimation of the parameters and the ground truth. We test the algorithm on an annotation dataset
that we collected, and show that incorporating the prior knowledge into the estimation process
significantly enhances its accuracy.

In the second interpretation, we focus on cases where some exogenous size constraints bear upon
the number of winners in the output, even though the size of the ground truth may lie outside
this interval (e.g., accepting up to thirty student applying to a master program, even though there
might be more than thirty good applicants). Whilst the usual aim of epistemic voting rules is to
uncover the “whole” ground truth, here the decision consists in outputting the objectively best
subset of alternatives. To this aim we introduce two solution concepts, which we test on synthetic
data, and we prove that they outperform a baseline.

keywords: Epistemic approval voting, Maximum likelihood estimation, Crowdsourcing, Data
Labeling.
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Résumé

Nous nous concentrons sur un type particulier d’entrée, consistant en votes par approbation, où
chaque votant sélectionne un sous-ensemble d’alternatives, et nous proposons et testons de nou-
velles méthodes pour pondérer de manière optimale les votants dans le but de retrouver une vérité
simple (vainqueur unique) ou composite (vainqueurs multiples) via l’estimation du maximum de
vraisemblance, avec un intérêt particulier pour les applications au crowdsourcing.

Tout d’abord, nous nous concentrons sur le vote par approbation épistémique à un seul gagnant
et défendons le principe "size matters". Il stipule que les électeurs les plus fiables ont tendance à
sélectionner moins d’alternatives, et que les règles de vote devraient donc accorder plus de poids
aux bulletins de vote plus petits. Nous caractérisons une grande famille de distributions de bruit
d’approbation de type Mallows basée sur ce principe. De plus, pour le cas spécifique d’un bruit
de type Condorcet, nous concevons une méthode simple pour estimer la fiabilité des électeurs
en observant simplement la taille de leurs bulletins. Nous testons ces méthodes d’agrégation
sur différents ensembles de données d’annotations réelles provenant du crowdsourcing, et nous
montrons qu’elles sont plus performantes que le vote d’approbation standard dans les situations
de sagesse de la foule à question unique.

Deuxièmement, nous traitons le vote par approbation épistémique à plusieurs vainqueurs, où la
vérité consiste en un ensemble de gagnants objectifs (sentiments dans un texte, objets dans une
image, les trois meilleurs articles d’une conférence...). Dans de tels contextes, il peut y avoir
plusieurs interprétations de la taille de la sortie. Une des contributions de cette thèse est de
distinguer et de discuter deux interprétations différentes, menant à des solutions différentes.

Dans la première interprétation, nous supposons que nous avons une connaissance préalable sur
la vérité objective, consistant en une borne inférieure et supérieure sur sa cardinalité. Après
avoir posé un modèle de bruit paramétré qui incorpore cette information a priori, nous proposons
une procédure itérative qui entrelace l’estimation des paramètres et de la vérité. Nous testons
l’algorithme sur un ensemble de données d’annotation que nous avons collecté, et nous mon-
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RESUME

trons que l’incorporation de la connaissance a priori dans le processus d’estimation améliore
considérablement sa précision.

Dans la deuxième interprétation, nous nous concentrons sur les cas où certaines contraintes de
taille exogènes pèsent sur le nombre de gagnants dans la sortie, même si la taille de la vérité
peut se situer en dehors de cet intervalle (par exemple, accepter jusqu’à trente étudiants postulant
à un programme de master, même s’il peut y avoir plus de trente bons candidats). Alors que
l’objectif habituel des règles de vote épistémique est de découvrir la "totalité" de la vérité de
base, la décision consiste ici à produire le meilleur sous-ensemble objectif d’alternatives. Nous
introduisons deux concepts de solution, que nous testons sur des données synthétiques, et nous
prouvons qu’ils sont plus performants qu’une base de référence.

mots-clefs: Vote d’approbation épistémique, Estimation du maximum de vraisemblance, Crowd-
sourcing, Labellisation des données.
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Introduction

Computational social choice deals with the problem of collective decision making. It is an area of
research at the intersection of computer science, political science, economics and mathematics,
that focuses on aggregating individual inputs into a single collective outcome. Many subareas of
social choice concern the design of methods for handling these preferences in different settings
ranging from matchings and stable coalition formation to fair division and voting, the latter being
the focal point of the thesis.

Social choice theorists distinguish between two interpretations of voting: classical and epis-
temic. In classical voting, we aggregate preferences, while in epistemic voting we aggregate
beliefs. The typical instance of the classical view is a political election, where a number of can-
didates (persons or lists) run for candidacy, and an electorate gets to decide on to whom it will
concede all or some of the political power at stake. Forming this decision, arising from an often
heterogeneous population, and usually conflicting opinions and interests, while democratically
guaranteeing equal chances and treatment to all the political stake-holders alike (anonymity of
voters and neutrality with regards to candidates), is where the design of the voting procedure
crucially intervenes. Besides such high-stake and low-frequency contexts, voting is often used to
decide on matters at a smaller scale such as company boards or hiring committees. It is even be-
coming more and more incorporated into our routinal tasks including the scheduling of meetings
via dedicated online platforms 1.

Nonetheless, besides aggregating subjective preferences, partially determined by ideological
stances and perceived interests, voting can also mediate different attempts towards unveiling
an objective truth. These truth-tracking attempts, yielding beliefs about the truth, are called epis-
temic votes. They represent the second voting interpretation discussed since early in the 18th
century [Condorcet, 1785] and followed by a large body of research, where this thesis is located.
A classical example is a jury deliberation over a convict’s trial: normally a judge does not prefer

1Such as https://doodle.com/ or https://whale.imag.fr/.

17

https://doodle.com/
https://whale.imag.fr/


INTRODUCTION

that the prosecuted be called guilty (or innocent) but she believes it should be the case given the
evidence and according to the applicable law. Condorcet initially established the wisdom of the
majority principle, which became known as Condorcet jury theorem, stipulating that the major-
ity’s opinion about a two-outcome issue tends to be correct when the population is large enough.
While the jury is mostly guided in her truth-tracking by her moral, social and professional duties,
other contexts directly align the voters’ economic incentives to their truthfulness: it is the case
in Blockchain block validations and in crowdsourcing data labeling platforms 2. In Blockchain
block validation, a validator gets to vote on which final block is correct when the chain is tem-
porarily forked into two or more ramifications, and would risk seeing her energy cost (or her
staked money, depending on the protocol) lost for nothing if she approves the wrong block. On
crowdsourcing platforms, a worker risks her reputation (and her payments) to be harmed if she
deliberately picks the wrong labels when annotating some instances.

In the epistemic setting, a voter can express her beliefs in different ways. For instance, she
can give her most plausible alternative, or else she can order the alternatives from the most to the
least probably correct. This dissertation deals with an intermediate format called approval voting,
where voters can select any number of alternatives that they seem possible. Although approval
ballots are more informative than a single alternative vote and less cognitively burdening than
ranking all the alternatives, approval voting has attracted less attention in the epistemic social
choice literature.

Another advantage of approval voting is its compatibility with both a simple and a composite
truth. As classical voting distinguishes single-winner voting (presidential elections, scheduling
a meeting ..) and multi-winner voting (parliamentary elections, recruitment shortlisting..), we
will similarly distinguish whether the truth consists of a single alternative (the city in which a
photo is taken, the language in which a speech is spoken ..) or of multiple alternatives (the
notes in transcribed chord, the objects in an image, the sentiments in a text, the objectively best
applicants for a position.. ). In both cases, voters are able to express their beliefs by approving
the alternatives they think might be correct and disapprove the others. The interpretation of the
size of the output in the multi-winner context is not as straightforward as in classical voting: it
might express a prior knowledge on the number of objectively true alternatives, or an exogenous
constraint bearing upon the output of the rule (e.g. selecting applicants for a limited number of
scholarships) regardless of the true size of the ground truth.

One of the questions we try to address in this thesis is whether aggregating epistemic approval
votes should respect anonymity (treating all voters equally) and neutrality (treating all alterna-
tives equally). There are obvious situations where treating all the voters equally is sub-optimal
in terms of the efficient uncovery of the ground truth: it is justifiable to put more emphasis on
the beliefs of expert voters than on those who are less informed on the matter. Moreover, an al-
ternative might be privileged over the others if some prior knowledge or exogenous signs, other
than the votes, suggest that it is more likely to be objectively true.

The main two challenges are: how to efficiently assess the voters’ expertise without eliciting

2Such as https://www.clickworker.com/clickworker/ or https://www.mturk.com/.
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any further information about them but their votes, and how to incorporate any prior knowledge
or external signs into the truth uncovering to correctly privilege some alternatives to others. In
the upcoming chapters, we propose different solutions, with an emphasis on their truth-tracking
performances on real-world annotation data, namely:

• We assess a voter’s reliability by observing the number of alternatives that she selects. We
assume that the larger it is, the less likely is the voter well-informed about the question.
This principle goes beyond the wisdom of the majority, and might, for instance, avoid
succumbing to the judgement of an erroneous majority facing a tricky question.

• In case of a composite truth, we propose a more sophisticated iterative procedure which
incorporates both weighing the voters and taking into account certain kinds of prior infor-
mation about the ground truth. Typically, we focus on a specific prior knowledge, consist-
ing of lower and upper bounds limiting the number of correct alternatives. These bounds
might for instance arise from domain knowledge.

• Sometimes the decision we want to make based on the estimation of the ground truth is
constrained by some exogenous factors. The typical situation is when we desire to keep
the objectively eligible alternatives and discard the non-eligible ones, but the number of
available places is limited (e.g. a master program’s committee selecting applicants based
on the likelihood of their success). We show that the optimal aggregation rules in such
situations depend on the utility (respectively, cost) of correctly including (respectively,
discarding) a correct alternative and discarding (respectively, including) a wrong one.

Manuscript organization
The thesis is organised as follows:

• Chapter 1 introduces the main concepts of voting theory. The basic notions relating to
elections with different natures of input (rankings or approvals) and different output for-
mats (single alternative, multiple alternatives or rankings) are presented. For each case, we
list the most important families of voting rules and illustrate them with examples.

• Chapter 2 reviews the epistemic social choice literature. We begin by presenting the semi-
nal Condorcet Jury Theorem and its extensions and ramifications, along with works deal-
ing with the sampling complexity problem. Then we proceed to reviewing the subsequent
works which studies optimal rules for aggregating voters’ beliefs in order to uncover a
ground truth of different natures.

• Chapter 3 deals with single-winner epistemic approval voting. Its driving idea is that the
most reliable voters tend to select fewer alternatives. We consider a family of approval
noise models and prove that under certain conditions the alternative maximizing the likeli-
hood of being the ground truth is the winner by a weighted approval rule, where the weight
of a ballot decreases with its cardinality. These rules are shown to outperform the standard
approval rule on crowdsourced image annotation datasets.
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• Chapter 4 deals with multi-winner epistemic approval voting. It considers contexts where
the truth consists of a set of objective winners, knowing a lower and upper bound on its car-
dinality. Aggregation methods which incorporate this prior knowledge into the estimation
procedure are then defined and tested on crowdsourced data.

• Chapter 5 also tackles the problem of multi-winner epistemic approval voting. Nonethe-
less, unlike Chapter 4, the inequality size constraints are not interpreted as a prior knowl-
edge, but rather as exogenous limitations imposed on the output of the aggregation rule.
Two solution concepts are introduced, and optimal estimation methods are defined for each
of them.

• Appendix 6 (not formally part of the thesis work) addresses the social ranking problem,
which was the topic I covered in my master’s thesis [Allouche et al., 2020]. It considers
situations where the we have an ordinal record of the performances of different subsets of
agents (e.g., workers in a crowdsourcing platforms) and the goal is to deduce an order over
individual performances (e.g., to reward the agents accordingly).
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1
Voting

1.1 Introduction
Voting is a way to deal with the problem of collective decision making. It handles individual
preferences or beliefs and aggregates them into a single collective outcome. It can be faced in a
range of different situations, namely:

• Political elections: This was the initial motive for the first advances in Social Choice the-
ory starting with the earlier works of Marquis de Condorcet [Condorcet, 1785] and Jean-
Charles de Borda [de Borda, 1781] and the seminal works of Kenneth Arrow [Arrow,
1950] and Gibbard and Satterthwhaite [Gibbard, 1973b, Satterthwaite, 1975a]. In a politi-
cal election, voters are given a number of candidates over whom they are asked to submit
their preferences. There are several possible input formats for electoral systems: each
voter can for instance order the candidates from the most to the least preferred, give her
approval for a subset of candidates or cast an evaluation (or grade) for each one of them
(choosing between good, average and bad for example) as suggests, for instance, [Balinski
and Laraki, 2007]. The nature of the outcome can also vary: in presidential elections the
outcome would be a single candidate, whereas the outcome of a parliamentary election is
a subset of more than one candidate.

• Meeting scheduling platforms: Some platforms like Doodle1 or Whale2 offer users the
possibility of organizing events on the date that fits most of the concerned people. After
creating a poll that offers a number of possible time slots, each user selects her availabilities
or the slots that fit her most [Zou et al., 2015]. Usually the slot that suits the greatest
number of participants is selected.

• Crowdsourcing: Supervised learning algorithms need labeled data to be trained on. Some-
times, labelling the dataset’s instances is costly and companies might decide to outsource

1https://doodle.com/
2https://whale.imag.fr/
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Figure 1.1: Image annotation task example [Shah et al., 2015]

it. Some platforms like Amazon Mechanical Turk3 pay workers to perform some Human
Intelligence Tasks (HITs) like image annotation, speech transcription and translation. In
the image annotation task show in Figure 1.1, each voter (worker) has to select the alterna-
tives (in this example, animals) that she believes might be the correct one. After collecting
a certain number of answers, it remains to find an efficient way of aggregating them to
recover the correct label which will be discussed more in details in later chapters.

• Ensemble learning: In order to improve the predictive power of supervised learning al-
gorithms, ensemble learning techniques like Bagging [Breiman, 1996] are used. Roughly
speaking, they consist in training numerous base learners, and aggregating their individ-
ual outputs at the moment of prediction by voting. Notice here that the agents (voters) are
algorithms and not people.

Notice that in the examples above, voting scenarios may differ with regards to many aspects like:

• The nature of the input: it can be a single alternative, a complete or partial ranking of alter-
natives, a subset of alternatives, a numerical or qualitative evaluation of each alternative.

• The nature of the output: it can be a single alternative, a set of alternatives, a ranking over
alternatives, a probability distribution over alternatives.

• The interpretation of a vote: in elections a vote is an expression of a preference. Whilst in
the crowdsourcing and ensemble learning frameworks, a vote is the expression of a belief
about an objective truth.

In Section 1.2 we will formalize the different natures of inputs in voting contexts and we will
define voting rules for different output types.

1.2 Voting Rules
We usually consider a set N of n voters and a set X of m alternatives, or candidates. To express
their preferences (or beliefs) about the alternatives, voters may cast a vote in different forms.

3https://www.mturk.com/
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In this section we will formally define the two voting formats that we’ll use in the upcoming
chapters: rankings and approval ballots, and list some of the common voting rules for each of
them. The aggregation rules will be partitioned based on the nature on the input (ranking-based
or approval-based) and the nature of the output (ranking, single-winner or multi-winner).

1.2.1 Ranking-based Aggregation Rules

1.2.1.1 The Ranking Framework

Voters orders the candidates from their most to the least preferred one. Rankings are also math-
ematical objects called orders.

Definition 1.1. A linear order ≻ over the elements of X is a binary relation over X ×X , which
is:

• transitive: ∀a, b, c ∈ X , a ≻ b and b ≻ c =⇒ a ≻ c.

• complete: ∀a ̸= b, a ≻ b or b ≻ a.

• asymmetric: ∀a, b ∈ X , a ≻ b =⇒ not b ≻ a.

In Table 1.1 we explicit all the 6 possible linear orders over the set X = {a, b, c} of 3 alternatives.

Linear orders
a ≻ b ≻ c
a ≻ c ≻ b
b ≻ a ≻ c
b ≻ c ≻ a
c ≻ a ≻ b
c ≻ b ≻ a

Table 1.1: All linear orders over 3 alternatives

It is worth mentioning that in some settings, voters can cast incomplete preferences, which can
be represented by partial orders.

Example 1.1. In a crowdsourcing scenario, imagine a voter is given three capital cities: Cairo,
Jakarta and Tunis, and is asked to order them from most to least populated. Then the crowd-
sourcing platform can give the worker the possibility of expressing uncertainty by casting a
partial order. Let’s imagine that the worker knows that both Cairo and Jakarta are way more
populated than Tunis, but is still unable to which one is bigger. In this case, her truthful vote
would be the following partial order, containing only two pairwise comparisons, one between
Tunis and Jakarta, and another between Tunis and Cairo:

Ri = {Cairo ≻i Tunis, Jakarta ≻i Tunis}
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A subfamily of partial orders is top-k truncated queries, where each voter only provides the
top-k ranked alternatives from her complete order for some k ≤ m. For instance, consider a
voter whose complete preference is a ≻ b ≻ c ≻ d ≻ e. Her top-3 truncated order would be
a ≻ b ≻ c.

In a voting situation, every voter i ∈ N casts her ranking ≻i∈ L(X ), where L(X ) is the set of
linear orders, or ⪰i∈ W (X ), where W (X ) is the set of partial orders. The collection of the n
rankings is called the profile of votes or preferences and is denoted P = (≻1, . . . ,≻n).

A ranking election is then a triplet (N,X , P ), and can be presented as in Table 1.2.

v1 : a ≻1 b ≻1 c
v2 : a ≻2 c ≻2 b
v3 : a ≻3 c ≻3 b
v4 : b ≻4 a ≻4 c

Table 1.2: Election with 4 voters and 3 alternatives

1.2.1.2 Single-winner Rules

Definition 1.2 (Social Choice Correspondence). A social choice correspondence is a function f
which, for each election E, assigns a non-empty set of co-winners S ⊆ X :

f : P = L(X )n −→ 2X \ ∅
P = (≻1, . . . ,≻n) 7−→ S ⊆ X , S ̸= ∅

Definition 1.3 (Social Choice Rule). A social choice rule is a function f which, for each election
E, assigns a single (winner) alternative a ∈ X :

f : P = L(X )n −→ P(X )
P = (≻1, . . . ,≻n) 7−→ a ∈ X

Social choice correspondence are also called irresolute rules, whereas social choice functions
are referred to as resolute rules. The latter are usually constructed from composing an irresolute
rule with a tie-breaking mechanism either by using an exogenous predefined priority relation
on candidates or a predefined priority relation on voters. It is worth mentioning that such tie-
breaking methods violate either anonymity (all voters are a priori interchangeable) or neutrality
(all candidates are a priori interchangeable).

We describe now two families of rules: Positional scoring rules and Pairwise comparison rules.

Definition 1.4 (Positional Scoring Rules). Consider an m-length vector of real numbers s⃗ =
(s1, . . . , sm), such that s1 ≥ · · · ≥ sm and s1 > sm. The positional scoring function fs⃗ maps
each profile P to the (co-)winner(s):

fs⃗ : P 7→ arg max
a∈X

S(a)
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where the score S of each alternative is:

S(a) =
∑
i∈N

sri(a)

with ri(a) being the rank of a in ≻i:

ri(a) = m− |x ∈ X , a ≻i x|

Some of the most common scoring functions are:

• Plurality: The scoring vector of the Plurality rule is s⃗Plurality = (1, 0, . . . , 0). The Plural-
ity function simply selects the alternative ranked in first position by the largest number of
voters.

• Borda: The scoring vector of the Borda rule is s⃗Borda = (m−1,m−2, . . . , 0). The Borda
function is known to output the alternative with highest average position in the individual
rankings.

• Harmonic: The scoring vector of the Harmonic rule is s⃗Harmonic = (1, 1/2, . . . , 1/m).

Example 1.2. Consider the following voting profile:

v1 : a ≻1 b ≻1 c

v2 : a ≻2 b ≻2 c

v3 : c ≻3 b ≻3 a

v4 : b ≻4 c ≻4 a

Considering the positional scoring voting rules associated to the Plurality, Borda and Harmonic
scores, the alternatives would have the following scores:

Candidate a b c
Plurality 2 1 1

Borda 4 5 3
Harmonic 8/3 5/2 13/6

The three rules yield the following outcomes:

fPlurality(P ) = a

fBorda(P ) = b

fHarmonic(P ) = a
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In order to introduce the next two rules we need to define the notion of Majority graph.

Definition 1.5 (Majority Graph). For an election E = (N,X , P ), and for any two alternatives
a, b ∈ X , letNP (a, b) = ♯{i ∈ N, a ≻i b} be the number of voters preferring a to b. The majority
graph associated to P is a directed graph M(P ) whose vertices are X and with a directed edge
between a and b if and only if NP (a, b) > NP (b, a).

Definition 1.6 (Copeland Rule [Copeland, 1951]). For an alternative a ∈ X , let S(a) be the
outdegree of a in M(P ) plus half the number of alternatives b with no edge between a and b :

S(a) = ♯{b ∈ X , NP (a, b) > NP (b, a)}+ 1
2♯{b ̸= a,NP (a, b) = NP (b, a)}

The Copeland rule outputs the alternative with the highest score S(a).

Definition 1.7 (Kramer-Simpson Rule [Kramer, 1977, Simpson, 1969]). For an alternative a ∈
X , let S(a) be the minimum pairwise majority margin of a :

S(a) = min
b ̸=a

NP (a, b)

The Kramer-Simpson (also known as Maximin) rule outputs the alternative with the highest
score.

Example 1.3. Recall the election presented in Example 1.2. The pairwise comparisons are as
follows: 

NP (a, b) = 2
NP (a, c) = 2
NP (b, c) = 3

The alternatives have thus the following Copeland scores:

S(a) = 1
2 + 1

2 = 1, S(b) = 1
2 + 1 = 3

2 , S(c) = 1
2

The winner is b.

For the Kramer-Simpson rule, the scores are:

S(a) = min{2, 2} = 2, S(b) = min{2, 3} = 2, S(c) = min{2, 1} = 1

Two winners a and b are irresolute.

1.2.1.3 Social Welfare Functions

Put simply, a Social Welfare Function (SWF) takes as input a preference profile P and aggregates
it into a single linear order ≻∗∈ L(X ).
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Definition 1.8 (Social Welfare Function). Consider a set N of n voters and a set X of m alter-
natives. A social welfare function (SWF) f is function that maps every preference profile to a
linear order:

f : P = L(X )n −→ L(X )
P = (≻1, . . . ,≻n) 7−→ ≻∗

We will list some usual SWFs.

Definition 1.9 (Modal SWF [Caragiannis et al., 2014]). The modal social welfare function is the
function that maps each profile to its most frequently cast order:

fmode(≻1, . . . ,≻n) = arg max
≻∈L(X )

♯{i ∈ N,≻i=≻}

Example 1.4. Recall the preference profile P in Table 1.2. The ranking a ≻ b ≻ c was cast
by one voter, a ≻ c ≻ b was cast by two voters, b ≻ a ≻ c was cast by one voter, and all the
remaining orders were cast by none of the voters. The most frequent ranking in the profile is thus
a ≻ c ≻ b:

fmode(P ) = a ≻ c ≻ b

Another family of SWFs is based on the positional scoring functions presented in Definition 1.4,
but instead of outputing the alternative with the highest score, the associated SWF would rank
the candidates according to their scores.

Definition 1.10 (Positional Scoring SWF). Consider an m-length vector of real numbers s⃗ =
(s1, . . . , sm), such that s1 ≥ · · · ≥ sm and s1 > sm. The positional scoring function fs⃗ maps
each profile P to a ranking ≻ such that:

a ⪰ b ⇐⇒ S(a) ≥ S(b), fora all a, b ∈ X

Example 1.5. Recall the example election in Example 1.2. Suppose that we fix an exogenous
tie-breaking priority as follows:

a ▷ b ▷ c

The outcome of the three rules are:

fPlurality(P ) = a ≻Pl b ≻Pl c

fBorda(P ) = b ≻B a ≻B c
fHarmonic(P ) = a ≻H b ≻H c

Definition 1.11 (Kemeny SWF). The Kemeny SWF is the function fK that maps every preference
profile P to the linear order that minimizes the average Kendall-Tau distance to the voters’
rankings:

fK(P ) = arg min
≻∈L(X )

1
n

∑
i∈N

dKT (≻i,≻)
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where the Kendall-Tau distance is given by:

dKT (≻,≻′) = 1
2
∑
a,b∈X

1 {a ≻ b} × 1 {b ≻′ a}

Example 1.6. Recall the profile in example 1.5. The Kemeny SWF yeilds the following linear
order:

fK(P ) = a ≻K b ≻K c

Remark. Notice that by changing the distance Kendall-Tau into another distance on L(X ) like
the swap distance, or by changing the ℓ1 norm used in averaging the distance into any other norm
like ℓ∞ or ℓ2, we can navigate a whole family of Kemeny-like social welfare functions [Elkind
et al., 2016].

1.2.1.4 Multi-winner Rules

There are some situations where a group of alternatives needs to be elected at once. The most
classical example is the parliamentary elections, but other use-cases occur in different domains
such that:

• Recruiting team shortlisting job applicants for interviews: the recruiter begins by ordering
the applicants based on their submitted resumes. Some of them are then selected to proceed
to the next round of the recruitment process, based on their excellence without violating
some diversity constraints.

• Multi-label base-classifiers aggregating their outputs: given a multi-label classification
task, a group of simple classifier algorithms are trained, their output is then aggregated to
predict the correct labels.

• Crowdsourcing multi-label annotations tasks: for instance, participants are shown a video
clip and are asked to rank the sentiments that each of them feels when watching it. The
votes are aggregated to estimate the true sentiments expressed in the video.

First we will define elections and voting rules for rankings, then we will present the main families
of multi-winner rules.

Definition 1.12 (Multi-winner Ranking-based Election). An election E is a quadruple E =
(X , N, P, k) where:

• X is the set of m candidates.

• N is the set of n voters.

• P = (≻1, . . . ,≻n) is the preferences profile consisting of n linear orders over X .

• k ≤ m is the committee-size, representing the size of the desired outcome.
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Definition 1.13 (Multi-Winner Voting Rule). A voting rule is a mapping f that maps each elec-
tion to a subset of X with cardinality k representing the winning committee.

Depending on the context of the election, [Elkind et al., 2017] and [Faliszewski et al., 2017]
distinguish three main types of voting rules:

• Excellence-based: In this case, the rule is supposed to elect the “best” candidates, regard-
less of their interactions, according to the judgement of the voters.

• Diversity-based: The aim of such rules is to select a committee which is as diverse as
possible.

• Proportionality-based: This is illustrated by the application of multi-winner voting to par-
liamentary elections, for which the winning committee should represent the views of the
society proportionally. Hence alternatives cannot be considered independently.

Similarly as for single-winner elections, in case ties exist, we might either consider irresolute
rules whose output is a set of tied winning committees, or use tie-breaking procedures which are
applied after the voting rule.

Examples of some multi-winner voting rules will be given below with their main properties and
illustrated with examples.

Definition 1.14 (Single Transferable Vote). Given an election E the STV rule proceeds in dif-
ferent steps. First, a quota is fixed. Different quotas are studied (see [Lundell and Hill, 2007]),
among the most used ones is the Droop quota q =

⌊
n
k+1

⌋
+ 1. Then, several rounds are executed

until k members are elected. Each round begins by checking if some candidate is ranked first by
at least q voters. If so, the candidate is elected. Her surplus votes, that is, the votes she got above
the quota, are then transferred to subsequent candidates. Different proportional surplus transfer-
ring methods exist [Wikipedia contributors, 2022]. The elected candidate is also removed from
the preferences of the remaining voters. If there is no such candidate, then we eliminate the one
who is ranked first by the smallest number of voters. We iterate the process until k candidates
have been elected.

Example 1.7. Consider the election E with 4 candidates X = {a, b, c, d} and 12 voters whose
preferences are presented in the table below:

ranking number of voters
a ≻ b ≻ c ≻ d 6
b ≻ a ≻ c ≻ d 3
c ≻ a ≻ b ≻ d 2
d ≻ b ≻ a ≻ c 1

We set the target committee size to k = 2. The STV rule proceeds as follows: First we compute
the quota given by q =

⌊
n
k+1

⌋
+ 1 = 5. Then several rounds are executed:

• Round 1: The candidate a is ranked first by 6 voters, she is thus elected. 5 of her voters
are removed, and she is also removed from the preference of the remaining one (who is
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henceforth ranking b first).

• Round 2: No candidate is ranked first by 5 voters. So we remove d from the preferences
since she is ranked first by the smallest number.

• Round 3: The candidate b has 5 voters ranking her first so she gets elected.

The winning committee is the pair {a, b}.

Scoring rules are based on scoring functions that assign a value to each committee from each
single voter. The rules then sum up all the individual scores and pick the committee with the
highest one.

Definition 1.15 (Committee Position). Let≻ be a preference order and S be a k-sized committee.
The position of S w.r.t ≻ is the vector pos≻(S) = (i1, . . . , ik), the vector of positions of the
members of S in the total order given by ≻ sorted in an increasing manner.

Definition 1.16 (Committee Scoring Functions, [Elkind et al., 2017]). A committee scoring func-
tion γm,k : [m]k 7→ R (where [m]k the set of possible committee positions) is function that maps
each committee position to a score such that

∀I, J ∈ [m]k, Il ≤ Jl,∀l =⇒ γm,k(I) ≥ γm,k(J)

There exists numerous committee scoring functions (see [Faliszewski et al., 2017] for a survey).
These are two simple examples:

• k-Borda (excellence-based): γm,k(i1, . . . , ik) = ∑k
t=1 βm(it), where βm(i) = m − i is the

individual Borda score.

• Chamberlin-Courant (diversity-based): γm,k(i1, . . . , ik) = βm(i1)

Now we can proceed to defining the family of voting rules which are based on scoring in the
multi-winner framework.

Definition 1.17 (Committee Scoring Rules). A committee scoring rule f associated to the family
of scoring functions (γm,k), is the rule that to each election E associates the winning committee
defined as:

W ∗ = arg max
|W |=k

scoref (W ) = arg max
|W |=k

∑
i∈N

γm,k(pos≻i
(W ))

Simply put, the scoring rule selects the committee that maximizes the sum of the scores it gets
from all the voters. We will apply this type of rules to an example both with the k-Borda and the
Chamberlin-Courant scores.

Example 1.8. Recall that for the k-Borda rule, the score function is γm,k(i1, . . . , ik) = ∑k
t=1 m−

it. Consider the election with X = {a, b, c}, N = {v1, . . . , v5}, k = 2 and all the voters apart
from v5 share the same preference profile: a >v c >v b whereas v5 holds the preference b >v5
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c >v5 a. The scores of the 2−sized committees are:
scorek−borda(a, b) = 10
scorek−borda(a, c) = 13
scorek−borda(b, c) = 7

Hence, the k-Borda rule selects the winning committee W ∗ = {a, c}.

Example 1.9. The score function for Chamberlin-Courant is γm,k(i1, . . . , ik) = βm(i1). For the
same previous example 1.8 the scores of the 2−sized committees are:

scoreCC(a, b) = 4× (3− 1) + (3− 1) = 10
scoreCC(a, c) = 9
scoreCC(b, c) = 6

The winning committee is thus W ∗ = {a, b}.

Other families of rules, generalizing the Condorcet consistency property to multi-winner domains
have also been defined (see for instance [Gehrlein, 1985], [Coelho, 2004] and [Elkind et al.,
2015]).

1.2.2 Approval-based Aggregation Rules
1.2.2.1 The Approval Framework

A simpler way of expressing preferences (or beliefs) is selecting a subset of alternatives. Instead
of ranking all the candidates, a voter may approve as many candidate as she wishes, which is
less cognitively challenging. This mode of voting is called approval voting [Brams and Fish-
burn, 2007]. An approval ballots can be interpreted in multiple ways: it can reflect dichotomous
preferences (voters only approve the time slots corresponding to their availabilities on a meeting
scheduling platform), or in case a voter has an underlying ordinal preference (or cardinal utili-
ties), the ballot might consist of the alternatives which are above some threshold (starting from a
ranking over all the candidates, a voter might only approve her top-3 preferred alternatives).

Given the set of m alternatives X , each voter i ∈ N cast her approval ballot Ai ⊆ X . The
n−uple of such subsets A = (A1, . . . , An) is called an approval profile, and an approval election
is simply a triplet (N,X , A). In Table 1.3 we present an approval-based election with 4 voters
and 3 candidates.

v1 : {a, b, c}
v2 : {b, c}
v3 : {b, c}
v4 : {c}

Table 1.3: Approval-based election with 4 voters and 3 alternatives

We give a concrete example of an approval profile in meeting scheduling context in Figure 1.2.
We can see that each voter participating in the Doodle poll ticks the slots that he or she prefers.
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Figure 1.2: Approval profile in a Doodle poll

1.2.2.2 Single-winner Rules

Definition 1.18 (Single-winner Approval-based Rule). Consider a set N of n voters and a set X
of m alternatives. A single-winner approval rule f is function that maps every approval profile
to a single alternative:

f : P(X )n −→ X
A = (A1, . . . , An) 7−→ a∗

The most intuitive rule based on approvals is Standard Approval Voting (SAV), which outputs
the alternative which is approved by the greatest number of voters.

Definition 1.19 (SAV). Given an approval profile A = (A1, . . . , An) ∈ P(X )n, fSAV outputs:

fSAV(A) = arg max
a∈X

app(a)

where:

app(a) =
n∑
i=1
1 {a ∈ Ai} = |i ∈ N, a ∈ Ai|

We can generalize SAV to its weighted version, where anonymity among voters is violated, and
the importance given to the vote of each of them differs.

Definition 1.20 (Weighted Approval Rule). Consider an n-length vector w⃗ = (w1, . . . , wn) of
weights. Given an approval profile A = (A1, . . . , An) ∈ P(X )n, fw⃗ outputs the alternative:

fw⃗(A) = arg max
a∈X

appw(a)

where:

appw(a) =
n∑
i=1
1 {a ∈ Ai}wi =

∑
i:a∈Ai

wi
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Remark. Weighted variants of most of the rules that were presented in the previous sections can
also be defined similarly. We chose to focus on approval voting since we will heavily use it in the
next chapters.

Example 1.10. Consider the following the approval profile with n = 5 and m = 3:

v1 : {a, b, c}
v2 : {b, c}
v3 : {a, b}

v4, v5 : {c}

We will compute the output of these election when SAV, weighted approval and size-decreasing
approval are applied:

• SAV: The approval scores of the alternatives are as follows:

app(a) = 1, app(b) = 3, app(c) = 4

so the winner by standard approval voting is candidate c.

• weighted AV: Imagine that the voters are weighted according to w⃗ = (1, 1, 2, 1, 0.5), so the
approval of voter 3 counts twice as that of the remaining voters. The weighted approval
scores are thus:

appw(a) =1 + 0 + 2 + 0 + 0 = 3
appw(b) =1 + 1 + 2 + 0 + 0 = 4
appw(c) =1 + 1 + 0 + 1 + 0.5 = 3.5

So the winning alternative is b.

Whilst weighted approval voting rules violate anonymity by assigning pre-defined weights to the
voters, another family of rule called size-decreasing approval rules and introduced in [Alcalde-
Unzu and Vorsatz, 2009], assign a weight to each approval ballot (and not to the voter) accord-
ing to its cardinally: smaller ballots are assigned bigger weights. We will investigate, in later
chapters, some situations where the use of size-decreasing approval rules is an efficient way of
estimating a ground truth.

Definition 1.21 (Size-decreasing Approval Rule). Consider a function

f : P(X )n −→ X
(A1, . . . , An) 7→ f(A1, . . . , An)

that, for each approval profile A = (A1, . . . , An), assigns a winning alternative f(A1, . . . , An)
in X . We say that f is a size-decreasing approval rule if there exists a vector w⃗ = (w0, . . . , wm)
in Rm+1 verifying wj > wj+1 for all 1 ≤ j ≤ m− 2, such that:

f(A1, . . . , An) = arg max
a∈X

appw⃗(a)
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where appw⃗ is the weighted approval score defined by:

appw⃗(a) =
∑
i:a∈Ai

w|Ai|

Example 1.11. Recall the election of Example 1.10. Consider the satisfaction approval rule
[Brams and Kilgour, 2015], which is a size-decreasing approval rule that, for a ballotAi, assigns
a weightwAi

= 1
|Ai| . For instance,A1 = {a, b, c} contains three alternatives and will be assigned

a weight 1
3 . The alternatives’ scores are then:

appw(a) =1
3 + 1

2
appw(b) =1

3 + 2× 1
2

appw(c) =1
3 + 1

2 + 1

The winner is thus alternative c.

1.2.2.3 Multi-winner Rules

Definition 1.22 (Multi-winner Approval Election [Lackner and Skowron, 2020a]). An election
E is a quadruplet E = (X , N,A, k) where:

• X is the set of m candidates.

• N is the set of n voters.

• A = (A1, . . . , An) is the approval profile consisting of either n subsets of X (approval-
based voting), representing the preferences of each voter.

• k ≤ m is the committee-size.

Definition 1.23 (Multi-Winner Voting Rule). A voting rule is a mapping f that maps each elec-
tion to a subset of A with cardinality k representing the winning committee.

The approval-based voting framework differs from the ranking-based one by its simpler input:
each voter casts a ballot Ai ⊂ A containing all the alternatives (or candidates) that the voter
approves of.

We’ll begin by introducing the simple top-k rule, which ignores any interaction among the can-
didates, and selects the k alternatives with the largest approval scores.

Definition 1.24 (Top-k AV Rules). Given an approval profile A = (A1, . . . , An) ∈ P(X )n and
a committee-size k, and suppose that app(a1) > · · · > app(am) the top-k rule outputs:

ftop−k(A) = {a1, . . . , ak}
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Notice that this definition can naturally be extended to a weighted top-k rule as in Definition
1.20.

We will present a family of approval voting rules, introduced for the first time more than a century
ago.

Definition 1.25 (w-AV Rules [Thiele, 1895]). Let w = (w1, . . . , wj) be a family of vectors such
that wj consists of j real numbers. The w-AV rule associated to this family is the rule that for an
election E selects the committee maximizing the w-AV score given by:

Scorew−AV (S) =
∑
i∈N

|S∩Ai|∑
j=1

wkj ,∀S ⊂ X , |S| = k

Each voter assigns a score
∑|S∩Ai|
j=1 wkj to the committee S which only depends on the number

of members of S whom the voter approves. The overall score is simply the sum of the voters’
scores.

Example 1.12.

• The Approval Voting (AV) method is a w-AV rule associated to the sequence of vectors
wj = (1, . . . , 1). So the score a voter assigns to a committee is simply the number of its
members he approves.

• The Proportional Approval Voting (PAV) method is a w-AV rule associated to the sequence
of vectors wj = (1, 1

2 , . . . ,
1
j
).

Another family of rules with a load-balancing approach was introduced by Lars Edvard Phrag-
mén [Brill et al., 2017a]. For example, the max-Phragmen rule [Brill et al., 2017b] consists in
optimizing a load distribution among voters, and has nice properties with regards to proportion-
ality.

Although we solely defined elections with a pre-fixed committee-size k, some works have con-
sidered the case when no such constraint is imposed [Kilgour, 2016]. Some rules adequate for a
variable number of winners have been introduced (for instance, the net approval rule [Kilgour,
2010] and the net satisfaction approval rule [Brams and Kilgour, 2015]).
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2
Epistemic Voting

Abstract
We review the existing literature related to epistemic social choice. We begin with the first devel-
opment initiated by the Condorcet Jury Theorem which states that the majority vote of equally
reliable voters asymptotically uncovers the ground truth almost certainly. Then we list subse-
quent works which extend it into broader settings: heterogeneous voters’ competencies, corre-
lated votes and approval-based votes. We also review works dealing with the related problem
of sampling complexity, studying the number of required votes to uncover the truth with a given
error tolerance using a fixed aggregation rule. Moreover, we present the approaches defining the
optimal estimation rules in different settings going from binary issues to more complex forms
of votes. We partition them according to the nature of the input: single alternative, rankings,
partial orders, pairwise comparisons, truncated top-k approvals, approval ballots and CP-nets.
The last section presents some other epistemic voting research directions that have been studied
like designing proper incentive mechanisms or axiomatic analysis of collective annotations.

2.1 Condorcet Jury Theorem
Epistemic social choice witnessed its initial development with Marquis de Condorcet, dating
back to the 18th century. It considers votes as noisy signals of an objective ground truth, and
uses maximum likelihood estimation techniques to uncover the latter. The initial seminal result,
known as Condorcet Jury Theorem, proved in Condorcet’s original paper [Condorcet, 1785]
by a combinatorial argument lead to the later ramifications and extensions. It considers two
alternatives, with one candidate being objectively better than the other, but the two of them are
a priori equally likely to be the best one. It also considers n independent voters that are equally
reliable, i.e they are equally likely to select the objectively best alternative, and states that if every
voter votes for the correct alternative with probability p > 1

2 , then the majority rule maximizes
the likelihood of coinciding with the ground truth among all estimators and that it outputs the
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correct decision with a probability that increases with the number of voters and tends to 1 when
the latter grows to infinity. Formally, the theorem can be stated as follows:

Theorem 2.1 (Condorcet Jury Theorem). Consider a set of two alternatives X = {a, b} and a
set of n voters N where n is odd. We suppose that there is a true ranking over the alternatives
(called the ground truth), denoted ≻∗, and we suppose that the two possibilities are a priori
equally likely:

P (a ≻∗ b) = P (b ≻∗ a) = 1
2

Each voter casts a pairwise comparison ≻i over X independently of the other voters, with the
following conditional probability:

P (a ≻i b|a ≻∗ b) = P (b ≻i a|b ≻∗ a) = p

where p > 1
2 . Let Mn be the outcome of the simple majority rule:

Mn =
{
a ≻ b if |i ∈ N, a ≻i b| > n

2
b ≻ a else.

Then we have that
P (Mn =≻∗) < P (Mn+2 =≻∗)

and that:
lim

n−→+∞
P (Mn =≻∗) = 1

The CJT has been since generalised in many directions, a survey can be found in [Elkind and
Slinko, 2016].

2.1.1 Heterogeneous Reliabilities
[Owen et al., 1989] extend the CJT for a group of heterogeneous voters. Still in a dichotomous
situation, with two a priori equally likely alternatives X = {a1, a2}, and an unknown ground
truth a∗ ∈ X , the n independent votersN (where n is odd) no longer have a common competence
level p ∈ (1

2 , 1) but each voters i ∈ N has her own reliability pi ∈ (0, 1):

P (Ai = a∗|a∗) = pi

The main result states that regardless of the reliabilities’ distribution, it suffices that the averaged
competence across all voters exceeds 1

2 to guarantee the asymptotic part of the CJT.

Theorem 2.2 (Distribution-free Generalization of CJT). Let p be the average reliability of the
group of n voters N , and let Mn be the outcome of the majority vote, then:

• If p > 1
2 then lim

n−→+∞
P (Mn = a∗) = 1.

• If p < 1
2 then lim

n−→+∞
P (Mn = a∗) = 0.

• If p = 1
2 then 1− e− 1

2 < lim
n−→+∞

P (Mn = a∗) < e− 1
2 .
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2.1.2 Correlated Votes
The independent votes assumption has also been relaxed. In [Shapley and Grofman, 1984],
the authors present some situation of statistically dependent votes where majority is no longer
optimal. Consider a dichotomous situation with three voters. Suppose that we know for sure
that one of them is wrong (we do not know exactly which one), while the two others have a
high probability p of being correct. We can check that the probability of the majority outcome
to coincide with the ground truth is equal to p2. Now consider the rule that follows majority in a
two-to-one situation but opposes it in case of unanimity. Its probability of uncovering the ground
truth is equal to p2 + (1− p)2, which makes the majority rule suboptimal.

[Ladha, 1995] studies different probabilistic distributions of correlated votes. For equally reliable
voters in a binary issue settings, with reliability p ∈ (0.5, 1), let ρij be the correlation coefficient
of voters i, j ∈ N , it is proved that as long as the average correlation is less than a given threshold,
the majority outcome is more likely to uncover the ground truth than any single vote.

Proposition 2.3. Let ρ be the average correlation coefficient. Then it suffices to have:

ρ < 1− n

n− 1
p− 0.25

p2

to guarantee that:
P (Mn = a∗) > p

Example 2.1. Consider a set of correlated 20 voters N with a common reliability p = 0.8. To
guarantee that the majority outcome is more likely to coincide with the ground truth than any
single vote, it suffices that:

ρ < 1− n

n− 1
p− 0.25

p2 = 0.095

If the 20 voters are more reliable p = 0.95 than it suffices that:

ρ = 0.184

It is also shown that provided that this average correlation goes to 0 as the number of voters grows
to infinity, the probability P (Mn = a∗) will tend to 1. Similar results are given for unimodal
symmetric distributions of votes, as well as the hypergeometric and Polya distributions.

2.1.3 More than Two Alternatives
[List and Goodin, 2001] extends the CJT to the case with arbitrarily many alternatives. Let
X = {a1, . . . , am} be the set of alternatives with m ≥ 2, a priori, equally likely to be the ground
truth a∗. Consider a set of n independent voters N . Suppose that there exist p1, . . . , pm ∈ (0, 1)
where pj represents the probability that voter i ∈ N selects the alternative aj . The result states
that if voters are more likely to select the ground truth than any other alternative, then the plurality
outcome will most likely coincide with a∗ than any other alternative, and this with a probability
that grows to 1 as the number of voters grows to infinity.
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Theorem 2.4. Let j∗ be the index of the ground truth alternative, and let Pln be the outcome of
plurality. If pj∗ > pj,∀j ̸= j∗ then:

• P (Pln = aj∗) > P (Pln = aj),∀j ̸= j∗.

• lim
n−→+∞

P (Pln = aj∗) = 1

2.1.4 Approval Profiles

In [Everaere et al., 2010] the CJT is formulated in belief merging framework. It is proven, among
other results, that for a set of n homogeneous voters and m alternatives X , if the voters submit
approval profiles, than the SAV rule would output the ground truth with probability approaching
1 as n grows to infinity, provided that the voters are competent enough: a voter is competent
when the probability of including the ground truth alternative in her ballot is strictly higher than
that of including any other alternative.

Theorem 2.5. For any voter i ∈ N , suppose that:

P (a∗ ∈ Ai) > P (a ∈ Ai),∀a ̸= a∗

Then:
lim

n−→+∞
P (SAVn = a∗) = 1

where SAVn is the winner by standard approval voting.

2.1.5 Abstract Voting Rules: General Results

By introducing a class of abstract voting rules, the mean partition rules, [Pivato, 2017] provides
generalizations of CJT to settings unifying approval voting, rankings and quantitative assess-
ments. The author considers the set of alternatives X to be a metric space and the set of possible
votes (inputs) V to be a subset of an inner-product space. After defining the mean partition rules,
which are functionally determined by the average vote, a general notion of noise model is in-
troduced: each voter has a behaviour model ρi : X −→ ∆(V) which describes the probability
distribution of the voter’s input given each true state. These behaviour models are elements of
some family of distributions referred to as populace. In the case of independent votes, it is proven
that if the variance of all the behaviour models is bounded and if the expected vote for all the
possible distributions is such that it is interpreted by the mean partition rule as the ground truth
state, then the probability of this rule to output the ground truth grows to 1 as the number of
voters goes to infinity. This results holds even if there are infinitely many possible states. An ex-
tension to the case of correlated votes is also provided. It is proven that mean partition rules will
asymptotically output the true state if the profile is sampled from a distribution which guarantees
that the average voter’s input is correct, that its variance is bounded and also that the correlations
among the voters’ errors vanish as their number grows to infinity.
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2.1.6 Sampling Complexity
Sampling complexity is the problem of estimating the number of votes needed to uncover the
ground truth with high probability via a specific voting rule, under a given noise model.

[Caragiannis et al., 2016] suppose the existence of a true ranking ≻∗ over a set of m alternatives
X . A set of n (which is not fixed) voters submit their opinions about the ground truth as a profile
of linear orders π = (≻1, . . . ,≻n). For a given social welfare function (SWF) r the authors
define its worst-case accuracy as the minimum probability that it succeeds in uncovering the
ground truth by aggregating a given set of n votes:

Accr(n) = min
≻∗∈L(X )

∑
π∈L(X )n

P (π| ≻∗)P (r(π) =≻∗)

For some ϵ > 0, let N r(ϵ) = min{n|Accr(n) ≥ 1 − ϵ} be the minimum number of samples
needed to uncover the ground truth by a probability greater than 1− ϵ. The results concern votes
generated from a Mallows noise model [Mallows, 1957] where the probability of casting an order
≻ given a ground truth ranking ≻∗ is:

P (≻ | ≻∗) = 1
β
ϕdKT (≻,≻∗)

with dKT being the Kendall-Tau distance, ϕ a common reliability parameter, and β its associated
normalization factor:

β =
∑

≻∈L(X )
dKT (≻,≻∗)

It is first proven that given Mallows noise model and any tolerance ϵ > 0, the Kemeny rule has
the optimal sample complexity.

Theorem 2.6. For any number of alternatives m and any tolerance ϵ > 0, given noisy samples
generated from a Mallows model, the Kemeny rule has the optimal sampling complexity:

NKemeny(ϵ) ≤ N r(ϵ)

for any social welfare function r.

More generally, the paper defines a family of rules that contains the Kemeny rule (along with
Copeland and other rules), called Pairwise-Majority consistent rules (PM-c): whenever there
exist a ranking ≻ over X such that a majority of votes agree with ≻ on every pair of alternatives
a, b ∈ X , a PM-c rule must output ≻. These rules only require a logarithmic number of samples
in m and 1

ϵ
to uncover the truth under a Mallows noise model.

Theorem 2.7. For any tolerance ϵ > 0 and any number of alternatives m, a PM-c rule deter-
mines the true ranking with a probability at least 1 − ϵ given O(log m

ϵ
) votes from a Mallows

distribution.

Furthermore, it is shown that voting rules cannot do better: the logarithmic sampling complexity
is proven to be a lower bound for all the voting rules for ϵ ≤ 1

2 .
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Theorem 2.8. For a tolerance 0 < ϵ ≤ 1
2 , any voting rule requires Ω(log m

ϵ
) votes issued from a

Mallows model to uncover the ground truth with probability higher than 1− ϵ.

The paper [Caragiannis and Micha, 2017] supposes a ground truth ranking, noisy rankings gen-
erated from Mallows distribution and truncated approval ballots as input, where each voter ap-
proves the top k alternatives in her underlying ordinal preference. The paper focuses on sampling
complexity where the ground truth is a ranking and the rule ranks the alternatives according to
their approval scores. A negative result is first given, stating that an exponential number of votes
is needed to uncover the true ranking via k-approval voting (ranking the alternatives according to
the number of approvals they get from the top-k truncated approval ballots) for any k ∈ [m− 1].
Formally, for any ϵ ∈ [0, 1/4] at least O(ϕ−m/2) Mallows k-approval ballots are needed to uncover
the true ranking with probability at least 1−ϵ. Nevertheless, when each voter is asked to approve
r alternatives, where r is each time drawn uniformly at random, this complexity becomes linear
even for cases where voters’ reliabilities are heterogeneous.

Theorem 2.9. For any ϵ > 0, when the average reliability is equal to p∗, it suffices to have n
voters such that:

n ≥ 2(m− 1)2

(2p∗ − 1)2 ln
(
m

ϵ

)
to uncover the ground truth ranking with probability at least 1 − ϵ via randomized approval
voting.

Example 2.2. Consider n voters with average reliability p∗ = 0.8 who face m = 5 alternatives.
It suffices to have:

n ≥ 2(m− 1)2

(2p∗ − 1)2 ln
(
m

ϵ

)
= 347.73

votes to uncover the ground truth ranking with probability 1− ϵ = 0.9 via randomized approval
voting. If the average reliability is p∗ = 0.95 and the number of alternatives is m = 4 than
randomized approval voting uncovers the ground truth ranking with probability 1 − ϵ = 0.9 if
the number of voters is greater than n = 82.

These bounds are then assessed on simulated data.

When the ground truth is a single alternative a∗ ∈ X , the input are approval ballots submitted
by n heterogeneous independent voters (A1, . . . , An) and the estimation rule is the standard
approval voting rule, [Karge and Rudolph, 2022] offer a tight lower-bound on the number of
needed experts to guarantee a minimal probability Pmin of uncovering the ground truth. This
bound holds when the voters are supposed to be ∆p-reliable, meaning that the average probability
of approving the ground truth alternative a∗ is at least higher by ∆p than the average probability
of approving any other alternative b ̸= a∗:

1
n

n∑
i=1

P (a ∈ Ai|a∗ = a) ≥ ∆p+ 1
n

n∑
i=1

P (b ∈ Ai|a∗ = a)
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Theorem 2.10. In a ∆p > 0 reliable group of n voters with m alternatives X , the worst case
approval vote success probability is at least Pmin whenever:

n ≥ min
(

2
∆p2 logQ, 1 + ( 1

∆p2 − 1)Q
)

where:
Q = 2 m− 1

1− Pmin

Example 2.3. If voters face 5 alternatives while being ∆p = 0.1 reliable then it would suffice
to have n = 877 voters to guarantee at least a probability Pmin = 0.9 of uncovering the ground
truth alternative via approval voting.

2.2 Optimal Estimation Rules
Whereas the previous section focused on existing works dealing with CJT-like results showing
under which conditions certain known rules are able to uncover the ground truth with a large
enough number of voters, this section will address another direction: given some settings (voters,
alternatives and input profiles) which rule is the most likely to output the ground truth?

Since Maximum Likelihood Estimation is the most widely used technique to answer this ques-
tion, we begin this section by briefly introducing it.

2.2.1 Brief Refresher on Maximum Likelihood Estimation
When the studied phenomenon is assumed to follow a parametric probability distribution (the
parameters being a priori unknown and used to approximately model the behaviour of the quan-
tity at hand), we define the likelihood function as the probability of observing some realisations
of the random phenomenon for different values of the parameter. Hence, once the observations
are fixed, two different model parameters would yield two different data likelihoods. The prob-
ability distribution associated to the parameter with a greater likelihood is then more likely to
be representative of the underlying model if we base our information solely on the considered
sample.

Maximum likelihood estimation is thus a statistical method for estimating these parameters once
we observe some data samples. The idea is to take the parameters’ value that would make the
observed data most likely given that it does follow the assumed probabilistic model.

Formally, suppose that a set of observations y1, . . . , yn is sampled from a joint parametric prob-
ability distribution fθ where θ ∈ Θ is unknown. The goal is to determine θ̂ that makes the
joint probability of the observed samples maximal. We thus define the likelihood of the sample
y1, . . . , yn given a parameter θ as:

L(y1, . . . , yn; θ) = fθ(y1, . . . , yn)
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In most cases we will encounter in the next sections, the samples y1, . . . , yn are independent and
identically distributed according to an unknown Pθ. The likelihood then reads:

L(y1, . . . , yn; θ) =
n∏
i=1

Pθ(yi)

The Maximum Likelihood Estimator (MLE) is defined as:

θ̂ = arg max
θ∈Θ

L(y1, . . . , yn; θ)

Example 2.4. Suppose that we toss a biased coin three times independently. The probability
of the unfair coin to yield a Head is unknown and our goal is to estimate it from the observed
realisations y1, y2, y3. We thus introduce the parameter θ ∈ [0, 1] where θ = Pθ(Y = Head). We
want to find θ̂ that maximizes the likelihood of the observed sample:

θ̂ = arg max
θ∈Θ

L(y1, . . . , yn; θ) =
3∏
i=1

Pθ(yi)

First suppose that all the tosses gave a Head: y1 = y2 = y3 = Head:

L(y1, . . . , yn; θ) =
3∏
i=1

Pθ(yi) = θ3

The likelihood is then maximal if and only if θ = 1 so θ̂ = 1. Similarly, if all the tosses gave a
Tail, then the maximum likelihood estimator would be θ̂ = 0.

Now suppose that y1, y2 = Head and y3 = Tail. We have:

L(y1, . . . , yn; θ) = θ2 × (1− θ)

This function reaches a unique maximum in θ̂ = 2
3 .

Since in epistemic social choice the votes are seen as noisy estimates of a correct state, the prob-
ability distribution which the votes follow depend on the ground truth. Each different possible
value of the ground truth is associated to a different likelihood of the actual votes. The model is
then parameterized (we will see that the parameter sometimes includes other variables than the
ground truth such as the voters’ reliabilities), and the maximum likelihood estimation method is
often used to uncover these parameters, hence the ground truth.

2.2.2 Voting on Binary Issues
In [Nitzan and Paroush, 1982], each voter has a probability pi ∈ (0, 1) of selecting the correct
alternative among the two possibilities. The maximum likelihood estimation rule is shown to be
a weighted majority which assigns the weight wi = log pi

1−pi
to each voter i ∈ N .

[Ben-Yashar and Nitzan, 1997] generalizes this line of research on three axes:
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• There are distinct payoffs (or costs) for the four different combinations of ground truth
and chosen alternative: the objective is hence to maximize this payoff rather than simply
maximizing the likelihood.

• The prior probabilities of alternatives differ.

• Voters’ reliabilities (which are heterogeneous) depend on the ground truth.

Formally, the paper considers a set of n independent voters N . The set of alternatives is X =
{−1, 1}, where 1 represents a good project worthy of investment. Each voter casts a response
xi ∈ X and has a two parameter reliability:

pi = P (xi = 1|a∗ = 1), 1− qi = P (xi = −1|a∗ = −1)

The prior probability that the project is good is denoted P (a∗ = 1) = α. The payoff/cost of
selecting a project by the committee is as follows:

• Selecting a good project: u(1, 1)

• Rejecting a good project: u(−1, 1)

• Selecting a bad project: u(1,−1)

• Rejecting a bad project: u(−1,−1)

Theorem 2.11. The aggregation rule f : (x1, . . . , xn) 7→ x ∈ X that maximizes the expected
payoff is given by:

f(x1, . . . , xn) = sign
(

n∑
i=1

β1
i + β2

i

2 xi + ψ + γ + δ

)

where: 

β1
i = log pi

1−pi

β1
i = log 1−qi

qi

ψ = 1
2
∑n
i=1 log pi(1−pi)

qi(1−qi)
γ = log α

1−α
δ = log u(1,1)−u(−1,1)

u(−1,−1)−u(1,−1)

Example 2.5. Consider a set of n = 3 votersN , deciding whether to invest in a project which has
a prior probability of being good equal to α = 0.6. The voters have the following heterogeneous
expertise parameters:

(p1, q1) = (0.9, 0.4), (p2, q2) = (0.6, 0.1), (p3, q3) = (0.7, 0.3)

Let us suppose that the utility are:

u(1, 1) = 2, u(−1, 1) = −1
2 , u(−1,−1) = 1, u(1,−1) = −1
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To find the decision that maximizes the expected payoff we need to compute the parameters
β1
i , β

2
i , ψ, γ and δ. We have:

(β1
1 , β

2
1) = (2.19, 0.4), (β1

2 , β
2
2) = (0.4, 2.19), (β1

3 , β
2
3) = (0.85, 0.85)

and:
ψ = 0, γ = 0.4, δ = 0.22

If only the voter v1 approves the project, that is, if:

x1 = 1, x2 = −1, x3 = −1

the optimal decision is:

f(1,−1,−1) = sign
( 3∑
i=1

β1
i + β2

i

2 xi + ψ + γ + δ

)
= sign(−0.23) = −1

which means that the project should be rejected.

If the voter v2 changes her mind and approves the project then the optimal decision is:

f(1, 1,−1) = sign
( 3∑
i=1

β1
i + β2

i

2 xi + ψ + γ + δ

)
= sign(2.36) = 1

which means that they should invest in the project.

More recent work [Halpern et al., 2021] relaxed the assumption that voters’ reliabilities are
totally known to the aggregation mechanism. The paper supposes that only a ranking over the
voters according to their expertise is given. The set of alternatives is X = {0, 1}, and the voters’
reliabilities p = (p1, . . . , pn) are unknown but are supposed to be greater than 1

2 . Since a ranking
over the voters is given, let Pn be the set of reliabilities compatible with it. Each voter casts an
answer xi ∈ {0, 1}. The selected alternative by the committee is denoted y. Three objectives are
defined:

• Minimizing the distortion given by:

sup
p∈Pn

P (x1, . . . , xn|a∗ = 1− y, p)
P (x1, . . . , xn|a∗ = y, p)

It is the worst-case ratio, among all feasible reliabilities, of the likelihood of a wrong
estimate to the likelihood of picking the correct one. The optimal rule for this criterion is
given by:

f(x1, . . . , xn) = arg max
y∈{0,1}

s(y)

where :

s(y) = max
k∈{0,...,n}

k∑
i=1

(1[xi = y]− 1[xi = 1− y])
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• Maximizing the pessimistic likelihood:

inf
p∈Pn

P (x1, . . . , xn|a∗ = y, p)

It is the worst-case likelihood of selecting the correct alternative. It is proven that the
optimal rule for this objective function is the one that outputs the majority decision. In
case of ties, the opposite of the less expert voter’s answer is output.

• Maximizing the optimistic likelihood:

sup
p∈Pn

P (x1, . . . , xn|a∗ = y, p)

A polynomial-time algorithm is presented to maximize this objective.

2.2.3 Input Profiles are Full Rankings
While the initial Condorcet article focused on the two alternative settings, it did nonetheless
propose a noise model for generating rankings over more than two alternatives consisting of the
following procedure:

• All the votes are independent.

• For any two alternatives, the voter compares them correctly with a probability p > 1/2.

• These pairwise comparisons are mutually independent.

• The votes are transitive.

However [Young, 1986, Young, 1988, Young, 1995] noticed the possible inconsistency within
the previous assumptions (independent pairwise comparisons might yield intransitive relations
over the alternatives). Nevertheless, when the ground truth is a ranking, Young has proven that
the Kemeny rule is the maximum likelihood estimation rule for homogeneously reliable voters
following the Mallows noise model. Recall that the probability of casting an order ≻ given a
ground truth ranking ≻∗ for this distribution is:

P (≻ | ≻∗) = 1
β
ϕdKT (≻,≻∗)

with dKT being the Kendall-Tau distance, ϕ a common reliability parameter, and β its associated
normalization factor:

β =
∑

≻∈L(X )
dKT (≻,≻∗)

2.2.4 Input Profiles are Partial Orders
[Xia and Conitzer, 2011] defines noise models that tolerate partial orders (transitive and antisym-
metric binary relation) as input. For a set of alternatives X = {a1, . . . , am} and a finite set of
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outcomes (possible ground truths) O (single alternatives, rankings or a subset of alternatives),
the n voters cast partial orders by independently making pairwise comparisons with possible
incomparability:

P (aj ⪰i ak|o) + P (ak ⪰i aj|o) + P (aj ∼i ak|o) = 1,∀o ∈ O

The correspondent maximum likelihood estimation rule for such noise models, whenever they
satisfy neutrality, is a neutral pairwise scoring rule r where for any profile of partial orders P :

r(P ) = arg max
o∈O

∑
i∈N

∑
(aj ,ak)∈⪰i

s(aj, ak, o)

where s : X × X × O → R is a pairwise scoring function satisfying s(a, a, o) = 0, for every
alternative a ∈ X and outcome o ∈ O.

In the paper’s last section, the multi-winner selection problem is also tackled. The input consist
of partial orders and the set of possible ground truth is Sk = {S ⊆ X , |S| = k}. A noise
model is defined where, given the correct set of k alternatives, a voter is more likely to rank a
winner alternative better than a loser one than the opposite. The optimal rule is then proven to
be a pairwise scoring rule. The main result of the section is a complexity result, stating that the
decision version of the problem L-EVALUATION is NP-complete. In L-EVALUATION we are
given a committee-size k and a likelihood threshold t and a profile P and asked whether there
exist a committee S with a likelihood greater than t.

2.2.5 Input Profiles are Pairwise Comparisons
[Procaccia et al., 2012] consider a ground truth ranking ≻∗, with a winning alternative a∗, dif-
ferent input forms and different objectives. A general noise model, called noisy choice model
is introduced where the probability of a dataset (rankings, or collection pairwise comparisons)
given the ground truth is as follows:

P (D| ≻∗) = γd(≻∗,D)

Zγ

where:
d(≻∗, D) =

∑
a,b∈X :a≻∗b

nba

and where nba is the number of voters preferring b to a in the input D. This model generalizes
both the Condorcet pairwise model and the Mallows ranking model. The paper also considers
three different objectives, namely:

• Objective 1: Finding a subset of size k that maximizes the probability of containing the
winning alternative in the ground truth ranking a∗.

• Objective 2: Finding a subset of size k with highest likelihood of coinciding with the top-k
alternatives in the ground truth ranking.
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• Objective 3: Finding the ordered tuple of k alternatives with highest likelihood of coin-
ciding with the k ordered top alternatives in the ground truth.

All three of the above objectives are proved to be NP-Hard. Nonetheless, it is also proved that in
high noise settings, intuitive and tractable rules are able to retrieve the optimal sets. The authors
introduce the extended scoring rules which, given a dataset D, assigns to each alternative a ∈ X
the score:

s(a) =
∑
b ̸=a

nab

Theorem 2.12. For all n and m, there exist a noise level γ′ < 1 such that for all γ ≥ γ′, the
optimal solutions to Objective 1 and Objective 2 are within the sets of k alternatives with highest
scores s(a).

For Objective 3, the scored tuples method is defined: for a k-tuple of alternatives (a1, . . . , ak)
the score is:

s(a1, . . . , ak) =
k∑
j=1

∑
b ̸=aj

najb −
∑

1≤j<l≤k
nalaj

Theorem 2.13. For all n and m, there exist a noise level γ′ < 1 such that for all γ ≥ γ′, the
optimal solutions to Objective 3 are within:

arg max
(a1,...,ak)∈Xk

s(a1, . . . , ak)

[Elkind and Shah, 2014] argues that both the ground truth and the votes might contain intransitive
cycles (e.g. when alternatives are compared with regards to multiple criteria). The ground truth
is thus a tournament T ∗ (a set of pairwise comparisons on X ). The n independent voters N also
cast votes as tournaments. The noise model is a generalization of the Mallows distribution: given
T ∗ and for each pair of alternatives a, b ∈ X , a voter has a probability p of retaining the same
comparison of a and b as in T ∗, and a probability 1 − p of flipping it. The probability of a vote
Ti is thus:

P (Ti|T ∗) = p(
m
2 )−d(Ti,T

∗)(1− p)d(Ti,T
∗)

The paper first proves that whenever a Condorcet winner exists in T ∗, it can be estimated by
maximum likelihood estimation in polynomial time. Two extreme cases are then considered:

• When voters are accurate (p −→ 1): the MLE of the tournament winner is a refined
Tideman winner, where the Tideman rule outputs the alternative with lowest score s(a)
given by the expression:

s(a) =
∑
b̸=a

max(0, nba − nab)

The estimate can be computed in polynomial time.

• When voters are inaccurate (p −→ 0): the MLE of the tournament winner is a refined
Borda count winner and can also be computed in polynomial time.
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2.2.6 Input Profiles are Truncated k-Approval Votes
[Procaccia and Shah, 2015] consider a k-approval framework where the ground truth is a full
ranking over the set of alternatives X and while each voter has also a full ranking ≻i, they only
cast a k-approval ballot consisting of their top-k alternatives. The paper considers variants of the
Mallows noise model with homogeneous reliability ϕ:

P (≻i | ≻∗) = 1
β
ϕd(≻i,≻∗)

where d is a distance over permutations L(X ), namely, the Kendall Tau, Spearman, Maximum
Displacement, Cayley and Hamming distances. The authors prove that for the specific case
of the Mallows model with Kendall Tau distance, the maximum likelihood estimators of the
winning alternative given k-approval ballots coincide exactly with the set of winning alternatives
by standard approval voting. However, for the remaining distances, they construct profiles where
it is not the case. Nonetheless, for any neutral noise model respecting mild assumptions about
the voters’ reliability, approval voting is optimal given plurality (k = 1) and veto (k = m − 1)
votes. The paper concludes with experiments on synthetic and real data that shows that approval
voting is close to optimal in practice.

2.2.7 Input Profiles are Approval Votes
[Ben-Yashar and Paroush, 2001] consider the problem of selecting k fromm projects given some
committee of experts’ opinions. The set of projects is T = {t1, . . . , tm}, and the ground truth is a
subset of objectively “good” projects. Each project has a hidden true ground truth sj ∈ {−1, 1},
where 1 means that the project is good. Project tj has a prior probability αj of being good. Each
voter i ∈ N casts an opinion xji ∈ {−1, 1} on each project. The noise model has two parameters
per voter and per project (pji , q

j
i ):

P (xji = 1|sj = 1) = pji , P (xji = 0|sj = 0) = 1− qji
The utility/cost of selecting or rejecting a good/bad projects are defined exactly like in [Ben-
Yashar and Nitzan, 1997]. The goal is to select the k projects that maximize the expected payoff.
The article proves that the optimal rules select the k projects with the highest ∆j where:

∆j = αj(u(1, 1)− u(−1, 1))gj(x, 1)− (1− αj)(u(−1,−1)− u(1,−1))gj(x,−1)
αjgj(x, 1) + (1− αj)gj(x,−1)

where: 
gj(x, 1) = ∏

i:xj
i =1

pji
∏

i:xj
i =0

(1− pji )

gj(x,−1) = ∏
i:xj

i =1
qji

∏
i:xj

i =0
(1− qji )

Example 2.6. Consider n = 2 voters facing m = 3 projects {t1, t2, t3}. They have to chose
k = 2 projects to invest in. Suppose that voters’ reliabilities are:

(p1, q1) = (0.9, 0.4), (p2, q2) = (0.7, 0.3)
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The projects have the following prior probabilities of being good:

α1 = 0.9, α2 = 0.5, α3 = 0.4

The utilities are:

u(1, 1) = 2, u(−1, 1) = −1
2 , u(−1,−1) = 1, u(1,−1) = −1

Suppose that voter v1 approves {t2, t3}, whereas voter v2 only approves {t3}. We have:

∆1 = 0.59,∆2 = −11.5,∆3 = 2.06

Thus the optimal decision is to invest in projects t1 and t3.

Another work where the noise models produce random approval votes from a ground truth con-
sisting of a set of alternatives is [Caragiannis et al., 2020]. The paper focuses on the robust-
ness of the class of Approval-based Counting Choice (ABCC) rules introduced in [Lackner and
Skowron, 2021] and described by a bi-variate function f such that f(x, y) is the score that a
committee S gets from a ballot of size y containing x elements of S.

A general family of noises is also considered, where the probability of an approval ballot given
the ground truth committee is related to their distance according to some distance metric d as
follows:

P (A|S∗) > P (B|S∗) ⇐⇒ d(A, S∗) < d(B, S∗)

where A,B are two approval ballots and S∗ is the ground truth subset of alternatives. Such
noise is said to be d-monotonic. Examples of such distances are the Jaccard, Hamming or Dice
distances [Choi et al., 2010]. The idea is that the closer a subset is to the ground truth, the
more likely it is to be submitted by a voter. The main result of the work states that the modal
rule (outputting the most often selected committee) is the only ABCC rule which is monotone
robust against all d-monotonic noise models for all distance metrics d. This means that, for any
such noise model, the probability of uncovering the ground truth via the the modal rule grows
to 1 as the number of voters approaches infinity. A characterization of the distances to which
SAV is robust is given, then it is proven that it is a necessary and sufficient condition for a rule
that f(k, k) > f(k − 1, k) to be monotone robust against all natural distances, where a natural
distance simply verifies:

|A| = |B| and |A ∩ S| > |B ∩ S| =⇒ d(A, S) ≤ d(B, S)

Moreover, the paper states that any non-trivial ABCC rule is robust against any similarity dis-
tance, where a similarity distance is such that:

|A| = |B| and |A ∩ S| > |B ∩ S| =⇒ d(A, S) < d(B, S)
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2.2.8 Input Profiles are Preferences on Directed Hypercubes
[Xia et al., 2010] study the maximum likelihood approach in multi-issue domains. For a set
I = {x1, . . . , xp} of p issues, each xi taking values in a domain Di, the set of alternatives is
X = D1×· · ·×Dp. In the first sections, the paper studies whether issue-by-issue and sequential
voting rules can be MLEs for some noise models.

Then it focuses on the special case of binary issues which is related to the problem of multi-
winner epistemic approval voting given the common nature of their outputs. A voter’s condi-
tional preferences can be represented by a hypercube with directed edges in a p-dimensional
space: each vertex represents an alternative, and two adjacent vertices represent two alternatives
differing on only one issue. For any issue i ≤ p, and for any d−i ∈ D−i, the edge is directed
from (0i, d−i) to (1i, d−i) if and only if (0i, d−i) is preferred to (1i, d−i).

A distance-based noise model is defined on such preferences: there exist some probabilities
q0, . . . , qp−1 such that for any ground truth d∗ and for any a−i ∈ D−i where |ai−d∗

−i| = k ≤ p−1,
the probability of having the local conditional preference a−i : di ≻ di is:

π
a−i

d∗ (di ≻ di) = qk

where |a−i − d∗
−i| is the Hamming distance separating a−i and d∗

−i.

For a subfamily of distance-based noise, called distance-based threshold noise models, where
there exist some 1 ≤ k ≤ p and q > 1

2 such that for any i ≤ k, qi = q and qi = 1
2 for i > k,

it is shown that the maximum likelihood estimator of the ground truth given a profile P is the
alternative with the highest the sum of the consistencies of degree k with all inputs in the profile.

In case of binary issues, each possible outcomes can be assimilated to a subset of alternatives.

2.2.9 Summary
We can partition the above cited papers according to the nature of the input (the votes to be
aggregated) and the nature of the output (whether be it the full ranking ground truth, the winner
alternative, a set of winners etc..). This partition is shown in Table 2.1.

2.3 Other Directions

2.3.1 The Converse Problem: Which Rules Correspond to MLEs?
In [Conitzer and Sandholm, 2005, Conitzer et al., 2009], the converse path is considered, as
instead of fixing a probabilistic model and finding its associated maximum likelihood rule, the
authors aim to answer the question of knowing for which common voting rules there exist a noise
model such that the rule is the MLE. The paper considers a set of m alternatives X with a ground
truth ranking ≻∗ and a ground truth winner a∗. A group of n homogeneously reliable voters

1Only in the case of binary issues, where each outcome can be assimilated to a set of winning alternatives.
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Input
Output

winning alternative ranking set of winners

single
alternative

[Nitzan and Paroush, 1982]
[Ben-Yashar and Nitzan, 1997]

[Halpern et al., 2021]

ranking
[Young, 1986]
[Young, 1988]
[Young, 1995]

partial order [Xia and Conitzer, 2011]
pairwise comparisons [Elkind and Shah, 2014] [Procaccia et al., 2012]
truncated approvals [Procaccia and Shah, 2015]

approval
ballots

[Ben-Yashar and Paroush, 2001]
[Caragiannis et al., 2020]

directed hypercubes [Xia et al., 2010]1

Table 2.1: Optimal rules according to the nature of their input-output

cast orders (≻1, . . . ,≻n). First it is proven that any voting rule is a maximum likelihood rule
for some noise model which tolerates inter-dependence among the votes. The paper than restrict
the noise distributions to the models with independent voters. Some interesting results are then
stated.

Theorem 2.14. Any scoring rule (e.g. Borda or Plurality) is a maximum likelihood estimation of
the winner under i.i.d votes (MLEWIV) and a maximum likelihood estimation rule of the ranking
under i.i.d votes (MLERIV).

Theorem 2.15. The STV rule is a MLERIV but not MLEWIV rule.

Theorem 2.16. The Copeland rule is neither a MLEWIV nor a MLERIV rule.

2.3.2 Axiomatic Analysis for Collective Annotations
The axiomatic analysis approach usually taken in the social choice literature have been adopted
in [Kruger et al., 2014] and applied to the collective annotations framework (use-cases include
voters detecting sentiments in a speech, or extracting keywords from a text etc..). The authors
consider a group of voters annotating a number of items. Each voter can select a category to each
item (or abstain), then an aggregator F is applied to try to uncover the correct category for each
item. Axioms accounting for different aspects are introduced such that:

• Decisiveness: Exactly one category is assigned to each item by F . A weaker version is
also presented for cases where no voter annotated the item, in which case the aggregator
can simply discard it.

• Groundedness: F assigns to an element a category appearing in at least one voter’s anno-
tation. This axiom implies Unanimity.
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• Independence: The category of each item is solely determined by its annotations.

• Monotonicity: If a category is accepted, than any additional support it gets wouldn’t change
it.

The plurality rule aggregator is then characterized with some of the previous axioms with addi-
tional neutrality and anonymity properties. It is also proven that an aggregator is nontrivial and
grounded if and only if it is a weighted plurality rule. Some aspects of biased votes were also
taken into account with axioms such that over-use and under-use sensitivity. The idea is that
when a voter is seen to assign different categories across the items, it is evidence that she is less
biased towards any of the categories and more confidence must be put upon her vote. The authors
then define a class of bias-correcting aggregators which satisfies these axioms and give some ex-
amples. These rules are show to outperform the simple plurality rule on collected telephone calls
annotations via Amazon Mechanical Turk. In [Qing et al., 2014], some of these bias-correcting
rules are also compared, across different linguistic datasets, to another agreement-based rule
whose idea consists in estimating the annotator’s reliability via its agreement with the plurality
output, and then applying weighted voting accordingly.

2.3.3 Incentives
[Shah et al., 2015] focuses on the incentives aspect of epistemic approval voting. They consider
a set of instances (questions) T each of which has m ≥ 2 possible options. Among the instances
there is a subset G of gold standard questions whose ground truth is known to the mechanism
designer. The idea is basically to uniformly mix these instances and evaluate the participants
according to them. The goal of the paper is to define payment functions that incentivizes the
voter to cast exactly the support of her beliefs about each instance (exactly the alternatives she
believes might be the correct one), where a voter’s belief on question t ∈ T is a probability
distribution over the m options pti = (pti1, . . . , ptim). Its support is simply the set:

{j ≤ m, ptij ̸= 0}

Although the authors begin by stating an impossibility result showing that no payment function
can be incentive compatible in the previous sense, they nonetheless restrict the domain of the
voters’ beliefs and propose an adequate mechanism. Backed by insights from an extensive lit-
erature in psychology, the authors assume that the probability of any option for any question,
according to the worker’s belief, is either zero or greater than a positive threshold ρ: the voters
are said to have coarse beliefs. Formally, the assumption reads ptij ∈ {0}∪(ρ, 1] for some known
and fixed ρ ∈ (0, 1/m). The paper then defines a payment scheme that is optimal in the sense that
there is no other incentive-compatible mechanism that expends as small an amount on a worker
who does not attempt any question. The payment is given by the expression:

f(x1, . . . , xG) = α(1− ρ)
∑G

t=1(xt−1)
G∏
t=1
1 {xt ≥ 1}

where α is the payment due to a perfect answer, and xt ∈ {−m + 1, . . . ,−1, 1, . . . ,m} is the
number of alternatives selected by a voter, given a negative sign if and only if her ballot does
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not contain the correct answer. Notice though that whenever the participant fail to approve the
correct alternative in one of the questions, her payment would be zero, regardless of the quality
of her answers to the remaining questions.

Interestingly, it was shown that, even for a voter with arbitrary beliefs, the above payment func-
tion incentives her to approve the alternatives for which her relative beliefs are above some
threshold that depends on ρ.

Theorem 2.17. Under the payment function f , a voter with beliefs 1 ≥ p1 ≥ · · · ≥ pB ≥ 0 is
incentivized to approve the alternatives options 1, ..., k where:

k = arg max
z≤m

(
pz∑z
l=1 p

i
> ρ

)

Example 2.7. Consider a crowdsourcing task with G = 2 accessible gold standards. Suppose
that we want to incentivize voters to select options one by one in decreasing order of their beliefs
as long as the selected option contributes a fraction more than 0.5 to the total belief of the
selected options. If we are willing to pay the voter that gets all the answers correct 2 dollars then
the optimal payment function is:

f(x1, x2) = 2× 0.5x1+x2−2 × 1 {x1 ≥ 1} × 1 {x2 ≥ 1}

Now suppose that the set of alternatives is {a, b, c, d}, and that for both gold standards, the
ground truth is the alternative a. Consider a voter who approves A1 = {a} in the first question,
and A2 = {a, b, c} for the second one. Her reward is:

f(1, 3) = 1$

2.3.4 The Surprisingly Popular Method
[Prelec et al., 2017] tackles the single-question wisdom of the crowd problem. The main chal-
lenge is to achieve high quality aggregated labels even when the majority of the participants are
not experts, which is a case when most of the classical methods fail. The idea behind the SP (sur-
prisingly popular) method is to elicit additional information, consisting of the voter’s predictions
about the remaining voters’ answers, and to then select the alternative that actually gets reported
more than collectively predicted. SP was tested on four real datasets of Yes/No questions re-
lated respectively to state capitals, general knowledge, lesion assessing by dermatologists and art
judging. It was proven to significantly outperform other baselines such as confidence-weighted
majority voting.

Recently [Hosseini et al., 2021] extend the surprisingly popular method to the rankings frame-
work, with an adapted elicitation protocol. The method needs to not only gather each voter’s
ranking, but also her prediction on the remaining voters’ answers. The paper doesn’t require
voters to submit a probability distribution over all rankings (which would require m! entries)
but only the ranking most frequently submitted by the remaining participants. This method is
shown to outperform conventional aggregation rules such as Borda, Plurality and Copeland on
crowdsourced datasets.
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2.3.5 Judgment Aggregation
[Pigozzi and Hartmann, 2007] consider a set of n agents N making their judgments on a given
set of finite set of logical propositions. They focus on the case (P ∧ Q ⇐⇒ R). They posit a
probabilistic model with the following assumptions:

• The prior probabilities that P and Q are true are equal to some q ∈ (0, 1).

• The voters have a common competence p ∈ (0, 1) to assess the truth of P and Q.

• P and Q are logically and probabilistically independent.

• The voters’ judgments are logically consistent.

Hence the set of alternatives is X = {S1, S2, S3, S4}, where:
S1 = (1, 1, 1) = {P,Q,R}
S1 = (1, 0, 0) = {P,¬Q,¬R}
S1 = (0, 1, 0) = {¬P,Q,¬R}
S1 = (0, 0, 0) = {¬P,¬Q,¬R}

The paper then compares the truth tracking capabilities of three merging methods:

• Premise-based procedure: Each voter votes for P and Q (excluding her conclusion R). R
is deduced for each vote and the majority decision is output.

• Conclusion-based procedure: Each voter privately decides on P and Q and then submits
her judgment on the conclusion R.

• Fusion procedure: The majority fusion operator selects the model that minimizes the Ham-
ming distance to the individual bases.

It was shown that the fusion procedure outperforms the two other operators for low and mid-
dling competence values p, and that the premise-based method is the best truth-tracker for high
competence voters.

[Terzopoulou and Endriss, 2019] considers the problem of uncovering the truth of a binary con-
clusion depending on two independent premises (with uniform prior) from noised judgments of
some agents, either on one or both of the premises. the authors suppose that the precision of an
agent decreases when multi-tasking. The optimal rule in such a context is a weighted majority
rule where the weight of voter only depends on whether she answers one or two questions. The
strategic and elicitation aspects are then considered.
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Introduction
The next three chapters will present our contributions to the epistemic voting literature.

In Chapter 3, we consider a single-winner approval voting setting, where a set N of n voters
approve subsets of a set of m ≥ 2 alternatives X = {a1 . . . , am}, one of which is a hidden
ground truth a∗.

Our main goal is to propose a one-shot estimation method, where the mere observation of the
voters’ answers to one question (consisting in approval ballots) suffices to estimate their hetero-
geneous reliabilities which are not priorly known. The voters are then weighted accordingly in
an optimal fashion and their votes are aggregated via the corresponding weighted approval voting
rule.

In order to estimate a voter’s expertise given her ballot, we make the assumption that reliable
voters tend to cast smaller ballots (i.e they approve a smaller number of alternatives). We prove
that this hypothesis holds theoretically under a large family of usual noise models. We also
assess its efficiency in recovering the ground truth compared to a baseline aggregator for multiple
crowdsourced image annotation datasets.

In Chapter 4 and Chapter 5, we move to a more general and less studied problem, namely, multi-
winner epistemic approval voting. We begin by transferring the notion of committee-size from the
classical to the epistemic voting framework. Though in classical voting, it is usually expressed
as a integer k representing the number of alternatives to be elected, we define as an inequality
constraint stating that the output’s size must be greater than some given lower-bound l and less
than a given upper-bound u (l = u = k is a particular case).

Whilst in single-winner epistemic voting, the interpretation of the ground truth is clear: there is
one correct alternative — the only one that is true in the real world — and the aim is to identify
it. In multi-winner voting, things become more complicated.

Recall that the input of a multi-winner voting instance consists of a set of votes and a constraint
on the committee size. Now, two different interpretations of this constraint on committee size
coexist, which call for different solutions. The main difference between both interpretations is
whether the constraints on the cardinality of the set of alternatives to be identified bear on the
ground truth itself, or on the output.

Under the first interpretation, for which Chapter 4 is devoted, this constraint represents some
prior knowledge on the cardinality of the ground truth, that is, on the number of winning alter-
natives. Here are two examples:

• Consider a guitar chord transcription task: participants hear a chord and are asked to select
the set of notes that constitute it from a total of 8 alternatives. We know a priori that the
true set of notes is made of at least 3 and at most 6 alternatives.

• Consider a crowdsourcing problem where participants are showed a picture of a football
match, where they have to identify the team(s) appearing in it. Here we know that there
must be either one or two teams in the ground truth.
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Under the second interpretation, studied in Chapter 5, this constraint bears on the number of
winners in the output. That is, whatever the ground truth is, we have to output a number of
alternatives in a given interval, even though the number of alternative in the ground truth may lie
outside this interval; the aim is to identify an admissible set of alternatives closest to the ground
truth, in some sense to be defined later. Here are three examples:

• alternatives are students who apply to a master program. The ground truth consists of those
students who have objectively a good enough level to graduate. The number of students to
be accepted in the program is however constrained to be in an interval [l, u]: we need at
least l for the program to open, and at most u because of the size of classrooms.

• alternatives are papers submitted to a conference. Again we have a minimal and maximal
number of papers to be accepted.

• alternatives are papers to be given an award. The conference chair give exactly three
awards. In that case the ground truth consists of the papers that truly deserve the award,
and the output consists of the best three papers. A variant of the problem would allow the
conference chairs to give at most three awards, so that they avoid giving an award to papers
that do not deserve it.

• Alternatives are Covid-19 patients in urgent need of intensive care; there is a limited num-
ber of intensive care units.

Under this interpretation, committee size plays the role of an exogenous size constraint that
specifies the minimum and maximum number of allowed winning alternatives. It remains to
define precisely what we mean by being closest to the ground truth; we will propose two different
solution concepts.

Although this distinction between two interpretations would already make sense in single-winner
epistemic voting, we will show that in this special case they lead to the same solution: they are
technically identical. This will however not be the case in the general case; therefore we shall
develop solutions for each of these two interpretations separately.
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3
Single-winner Truth-Tracking

Abstract
Epistemic social choice aims at unveiling a hidden ground truth given votes, which are interpreted
as noisy signals about it. We consider here a simple setting where votes consist of approval
ballots: each voter approves a set of alternatives which they believe can possibly be the ground
truth. Based on the intuitive idea that more reliable votes contain fewer alternatives, we define
several noise models that are approval voting variants of the Mallows model. The likelihood-
maximizing alternative is then characterized as the winner of a weighted approval rule, where the
weight of a ballot decreases with its cardinality. We have conducted an experiment on three image
annotation datasets; they conclude that rules based on our noise model outperform standard
approval voting; the best performance is obtained by a variant of the Condorcet noise model.

Most of the results and notions introduced in this chapter were published in [Allouche et al.,
2022b].

3.1 Introduction
Epistemic social choice deals with the problem of unveiling a hidden ground truth state from
a set of some possible states, given the reports of some voters. Votes are seen as noisy reports
on the ground truth. The distribution of these reports is modelled by a noise model, sometimes
tuned by some parameter reflecting the competence (expertise, reliability) of these voters.

The space of frameworks for epistemic social choice varies along two dimensions: the nature
of the ground truth and the format of the reports (ballots expressed by voters). Depending on
the framework chosen, the ground truth may be a single alternative, a set of alternative or a
ranking over alternatives. We assume the simplest form of ground truth: it is a single alternative
(the unique correct answer). Still depending on the framework, ballots may also contain a single
alternative, a set of alternatives, or a ranking over alternatives. We assume that they are subsets of
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alternatives, that is, approval ballots. Requiring voters to give only one answer (that is, a single
alternative) is often too constraining because voters may be uncertain and believe that several
alternatives may possibly be the ground truth. This is the path followed by [Procaccia and Shah,
2015, Shah et al., 2015, Caragiannis and Micha, 2017].

Beyond social choice, collective annotation has also been studied in the machine learning com-
munity. [Dawid and Skene, 1979] used an expectation-maximization (EM) approach for retriev-
ing true binary labels. This approach has been improved along with other methods namely in
[Raykar et al., 2010, Welinder et al., 2010, Bonald and Combes, 2017, Tao et al., 2018].

While some classical anonymous rules have been shown to be optimal under some assumptions,
the aggregation rule may, when possible, assign different weights to the voters according to their
expertise. Whilst this is doable if we have additional information about voter expertise or when
we keep a record of their answers to different questions, estimating the individual expertise gets
complicated when we have no prior information about voters and when the sole information we
have are votes on a single issue. This leads to the single-question wisdom of the crowd problem
for which the seminal work [Prelec et al., 2017] proposes a novel solution, namely selecting
the alternative which is surprisingly popular. Although it proved to be an efficient way to get
around the problem of estimating the voters’ reliabilities, its major drawback is that it requires
the elicitation of further information: each voter has to report her answer and her beliefs about
the answers of the remaining voters.

Now we suggest that there is an alternative approach that does not require this surplus of infor-
mation and that simply relies on the truthfulness of voters.

[Shah et al., 2015] have defined a proper mechanism to incentivize the participants to select an
alternative if and only if they believe it can be the winning one. An intuitive idea might be to
consider that smaller ballots, i.e. answers that contain less alternatives, are more reliable: a voter
who knows the true answer (or, more generally, who believes to know it) will probably select only
one alternative and a voter who selects all alternatives has probably no idea whatsoever of the
correct answer. For instance, if voters hear a speech and are asked to detect the language in
which it is spoken, we may give more weight to a voter approving Arabic and Hebrew than to
one approving Arabic, Hebrew, Persian and Turkish.

Based on this intuition, more weight must be assigned to smaller ballots. Rules that work this
way, which we call size-decreasing approval rules, are part of the family of size approval rules
[Alcalde-Unzu and Vorsatz, 2009]. Our goal is to motivate the use of such rules from an epis-
temic social choice point of view. To this purpose, we will study a family of noise models which
are approval voting variants of the Mallows model, and prove that in many cases the optimal rule
is size-decreasing.

The chapter is structured as follows. In Section 3.2 we define the framework and the family
of noise models we consider. Section 3.3 characterizes all anonymous noises whose associated
optimal rule is size-decreasing. In Section 3.4, we consider a more general noise where voters
have different noise parameters, prove that under some mild assumption, the expected number of
selected alternatives grows when the voter is less reliable, and then give an explicit expression
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for the expected size of the ballot as a function of the reliability parameter of a voter for a
Condorcet-like noise model. Section 3.5 focuses on real datasets on which first we test the
hypothesis that smaller ballots are more reliable then we apply different size-decreasing rules
associated to various noise models to assess their performances. Section 3.6 concludes.

3.2 Framework
Consider a set N of n voters and a set of m ≥ 2 alternatives X = {a1 . . . , am}.

The (hidden) ground truth consists of a single alternative a∗. Voters cast approval ballotsAi ⊆ X
consisting of their noisy estimates of the ground truth. Voters who approve no alternative or all
alternatives do not bring any meaningful information, therefore without loss of generality, we
assume that for all i, Ai ̸= ∅ and Ai ̸= X .

All along this paper, we will model the distribution of these approval ballots by approval vot-
ing variants of the Mallows noise model. The Mallows distribution was originally defined on
rankings: we adapt it to subsets of alternatives, keeping the idea that the probability of a sub-
set decreases as its distance from a central point increases, the dispersion being modelled by a
parameter ϕ.

In general, we will call an approval Mallows noise model any model where voters’ ballots are
independent (we keep this hypothesis all along the paper) and there exist n parameters ϕi ∈
(0,+∞) and a function d : X × P(X ) 7→ R such that and for any voter i ∈ N :

Pϕi,d(Ai|a∗ = a) = 1
Zi
ϕ
d(a∗,Ai)
i ,∀a ∈ X

where Zi is the corresponding normalization factor. If ϕi = ϕ for all i ∈ N , we say the model is
anonymous.

In the remaining of the paper we will only focus on neutral noise models. The neutrality of a
noise is defined as its invariance by any permutation of the alternatives:

∀π ∈ σ(X ), Pϕ,d(A|a∗ = a) = Pϕ,d(π(A)|a∗ = π(a))

We can immediately see that a Mallows noise is neutral if and only if its associated function d is
neutral (invariant by a permutation of the alternatives).

A noise model is neutral if d(a,A) depends only on |a ∩ A| (that is, 1 if a ∈ A and 0 if a /∈ A)1

and |A|:

Proposition 3.1. A noise model associated to a function d is neutral if and only if there exists a
unique function2:

ψd : {0, 1} × {0, . . . ,m} \ (1, 0) 7→ R

1We omit the curly brackets and write a ∩A for {a} ∩A.
2(1, 0) is excluded from the domain of ψd simply because (|A| = 0 and |a ∩A| = 1) is impossible.

65



CHAPTER 3. SINGLE-WINNER TRUTH-TRACKING

such that:

d(a,A) = ψd(|a ∩ A|, |A|)

Proof. If d(a,A) = ψd(|a ∩ A|, |A|) then since ψd is neutral, d is neutral.
Conversely, assume d is neutral. We claim that for any two pairs (a,A) and (b, B):

(|a ∩ A|, |A|) = (|b ∩B|, |B|) =⇒ d(a,A) = d(b, B)

Assume first a ∈ A (and therefore, b ∈ B). Consider a permutation π such that π(a) = b and
π(A) = B. Then:

d(b, B) = d(π(a), π(A)) = d(a,A)

The argument for the case a /∈ A (and b /∈ B) is similar. Thus, d(a,A) depends only on |a ∩ A|
and |A|, which means that there is a function:

ψd : {0, 1} × {0, . . . ,m} \ (1, 0) 7→ R

such that d(a,A) = ψd(|a ∩ A|, |A|).
Uniqueness is immediate.

Example 3.1. For the Hamming distance we have that:

dH(a,A) = |a ∩ A|+ |a ∩ A| = 1− 2|a ∩ A|+ |A|

so dH(a,A) = ψdH
(|a ∩ A|, |A|), where:

ψdH
(t, j) = 1− 2t+ j

dH(a,A) takes its minimal value 0 for A = {a} and its maximal value m for A = X \ {a}.

Example 3.2. For the Jaccard distance [Jaccard, 1901] we have:

dJ(a,A) = |a ∩ A|+ |a ∩ A|
|a ∩ A|+ |a ∩ A|+ |a ∩ A|

so dJ(a,A) = ψdJ
(|a ∩ A|, |A|) where:

ψdJ
(t, j) = 1− t

1− t+ j

dJ(a,A) takes (again) its minimal value 0 forA = {a} and its maximal value 1 forA = X \{a}.
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3.3 Anonymous Noise and Size-decreasing Approval Rules
In this section, we suppose that voters share a common (unknown) noise parameter ϕ ∈ (0, 1)
and that there exists some function d : X ×P(X ) 7→ R and its associated function ψd such that,
for any a ∈ X :

Pϕ,d(Ai|a∗ = a) = 1
Z
ϕd(a∗,Ai) = 1

Z
ϕψd(|a∗∩Ai|,|Ai|)

After formally defining the notion of size-decreasing rules, we state the main result of this section
which characterizes all the Mallows anonymous noises (that is, all functions d) whose associated
maximum likelihood rule is size-decreasing. We will see that this is the case for some natural
functions d, that we will test later on in the experiments.

Definition 3.1 (Size Approval Rule). Consider a function

v : P(X )n −→ X
(A1, . . . , An) 7→ v(A1, . . . , An)

that, for each approval profileA = (A1, . . . , An), assigns a winning alternative v(A1, . . . , An) ∈
X . We say that v is a size approval rule if there exists a vector w = (w0, . . . , wm) ∈ Rm+1 such
that:

v(A1, . . . , An) = arg max
a∈X

appw(a)

where appw is the weighted approval score defined by:

appw(a) =
∑
i:a∈Ai

w|Ai|

A size approval rule v is size-decreasing if its associated vector w = (w0, . . . , wm) ∈ Rm+1 is
such that wj > wj+1 for all 1 ≤ j ≤ m− 2.

Example 3.3. The size approval rule associated to the vector of weights given by wj = nm−j is
size-decreasing in the most extreme sense, as it is lexicographic: it outputs the alternative which
appears most often in singleton ballots, in case of ties it considers ballots of size 2 and so on.

Definition 3.2 (Maximum Likelihood Estimation Rule). We define the function:

ζd : P(X )n −→ X
(Ai)i∈N 7→ arg max

a∈X
Pd(A1, . . . , An|a∗ = a)

which given an approval profile outputs the maximum likelihood estimator of the ground truth
alternative.

The next theorem aims to characterize the functions d for which the maximum likelihood esti-
mation rule ζd is a size-decreasing approval rule.
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Theorem 3.2. For n ≥ 3, the maximum likelihood estimation rule ζd is a size-decreasing ap-
proval rule if and only if the function

∆ψd : j 7→ ψd(0, j)− ψd(1, j)

is decreasing.

Proof. First, for any approval profile A = (A1, . . . , An),

ζd(A) = arg max
a∈X

n∏
i=1

1
Z
ϕd(a,Ai) = arg max

a∈X
ϕ

n∑
i=1

d(a,Ai)

= arg min
a∈X

n∑
i=1

d(a,Ai)

= arg min
a∈X

n∑
i=1

ψd(|a ∩Ai|, |Ai|)

= arg min
a∈X

∑
i:a∈Ai

ψd(1, |Ai|) +
∑
i:a/∈Ai

ψd(0, |Ai|)

= arg min
a∈X

n∑
i=1

ψd(0, |Ai|)︸ ︷︷ ︸
constant

−
∑
i:a∈Ai

ψd(0, |Ai|)− ψd(1, |Ai|)︸ ︷︷ ︸
∆ψd(|Ai|)

= arg max
a∈X

∑
i:a∈Ai

ψd(0, |Ai|)− ψd(1, |Ai|)

= arg max
a∈X

∑
i:a∈Ai

∆ψd(|Ai|)

⇐= : If ∆ψd is decreasing then we can immediately prove that ζd is a size-decreasing approval
rule with a weight vector w such that wj = ∆ψd(j) for any 1 ≤ j ≤ m− 1.

=⇒ : Suppose that ζd is a size-decreasing approval rule. Thus, there exists a weight vector
w = (w0, . . . , wm) ∈ Rm+1 such that wj > wj+1 for 1 ≤ j ≤ m− 2 and for any approval profile
A = (A1, . . . , An) we have:

ζd(A) = arg max
a∈X

∑
i:a∈Ai

w|Ai|

If m = 3: Let X = {a, b, c}. To prove that ∆ψd(1) > ∆ψd(2) consider the following approval
profile: 

A1 = {a}
Ai = {a, b} ,∀i ∈ {2, . . . , n− 1}
An = {b, c}

Which yields the following weighted approval scores:
appw(a) = w1 + (n− 2)w2
appw(b) = (n− 1)w2
appw(c) = w2
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Since w1 > w2 we have ζd(A) = a, which implies that arg maxe∈X
∑
i:e∈Ai

∆ψd(|Ai|) = a. In
particular: ∑

i:a∈Ai

∆ψd(|Ai|) >
∑
i:b∈Ai

∆ψd(|Ai|)

So:
∆ψd(1) + (n− 2)∆ψd(2) > (n− 1)∆ψd(2)

which implies that ∆ψd(1) > ∆ψd(2).

If m > 3: Let X = {a, b, c, e1, . . . , em−3}. To prove that ∆ψd(1) > ∆ψd(2) we use the same
approval profile as above. To prove that ∆ψd(j) > ∆ψd(j+ 1) for j ≥ 2, consider the following
approval profile: 

A1 = {a, e1, . . . , ej−1}
Ai = {a, b} ,∀i ∈ {2, . . . , n− 1}
An = {b, c, e1, . . . , ej−1}

Which yields the following weighted approval scores:
appw(a) = wj + (n− 2)w2
appw(b) = wj+1 + (n− 2)w2
appw(c) = wj+1
appw(el) = wj + wj+1 l ∈ {1, . . . , j − 1}

Since w2 > wj > wj+1 we have ζd(A) = a, which implies that arg maxe∈X
∑
i:e∈Ai

∆ψd(|Ai|) =
a. In particular, we have ∑

i:a∈Ai

∆ψd(|Ai|) >
∑
i:b∈Ai

∆ψd(|Ai|)

So:
∆ψd(j) + (n− 2)∆ψd(2) > ∆ψd(j + 1) + (n− 2)∆ψd(2)

which implies that:
∆ψd(j) > ∆ψd(j + 1)

Interpretation: Consider an anonymous noise Pϕ,d, where d is such that ∆ψd is decreasing.
Now consider any alternative a ∈ X , and for any k ∈ [1,m− 2], let Ak, Ak+1, Bk, Bk+1 be four
sets such that a ∈ Ak∩Ak+1 and a /∈ Bk∪Bk+1 and |Ak| = |Bk| = k and |Ak+1| = |Bk+1| = k+
1. We can easily check that since ϕ ∈ (0, 1) and d(a,Bk)− d(a,Ak) < d(a,Bk+1)− d(a,Ak+1),
we have

Pϕ,d(Bk|a∗ = a)
Pϕ,d(Ak|a∗ = a) <

Pϕ,d(Bk+1|a∗ = a)
Pϕ,d(Ak+1|a∗ = a)

which implies the following:

• If it is more likely that a voter casts a k-sized ballot not containing the ground truth than
a k-sized ballot that contains it, then it is even more likely that she casts a (k + 1)-sized
ballot not containing the ground truth than a (k + 1)-sized ballot that contains it.
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• If it is more likely that a voter casts a (k+ 1)-sized ballot containing the ground truth than
a (k+1)-sized ballot that does not, then it is even more likely that she casts a k-sized ballot
containing the ground truth than a k-sized ballot that does not.

We now give some examples with some usual functions d. We will see that the maximum
likelihood estimation rule associated to the Jaccard distance is size-decreasing with weights
w|A| = 1

|A| , and that the maximum likelihood estimation rule associated to the Hamming dis-
tance is not size-decreasing.

Example 3.4. Consider the Jaccard distance given by:

dJ(a,A) = ψdJ
(|a ∩ A|, |A|) = 1− |a ∩ A|

|A| − |a ∩ A|+ 1

which gives:
∆ψdJ

(j) = ψdJ
(0, j)− ψdJ

(1, j) = 1/j

By Theorem 3.2, we conclude that the maximum likelihood estimation rule ζdJ
is a size-decreasing

approval rule with weights wj = 1/j.

Example 3.5. Consider a strictly concave function g : R+ −→ R and let:

d(a,A) = g(dHam(a,A))

be a concave transformation of the Hamming distance dHam(a,A) = |a∩A|+ |a∩A|. Then ζd
is a size approval rule with weights wj = g(j + 1)− g(j − 1).

By Theorem 3.2 it suffices to prove that ∆ψd is decreasing. Let 1 ≤ x ≤ m − 2. We have
ψd(0, x) = g(x+ 1) and ψd(1, x) = g(x− 1). Now let y > x. We have

∆ψd(y)−∆ψd(x)
y − x

= g(y + 1)− g(x+ 1)
y − x

− g(y − 1)− g(x− 1)
y − x

= τ gx+1(y + 1)− τ gx−1(y − 1)
= τ gx+1(y + 1)− τ gx+1(y − 1) + τ gx+1(y − 1)− τ gx−1(y − 1)
= τ gx+1(y + 1)− τ gx+1(y − 1)︸ ︷︷ ︸

<0

+ τ gy−1(x+ 1)− τ gy−1(x− 1)︸ ︷︷ ︸
<0

where:

τ gx (y) = g(y)− g(x)
y − x

is the change rate of g at x, evaluated in y. For instance, consider the Euclid distance dEuc(a,A) =√
dH(a,A). We have that the associated maximum likelihood estimation rule ζd is a size approval

rule with weights:
wj =

√
j + 1−

√
j − 1
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Example 3.6. Consider the Hamming distance given by:

dH(a,A) = |a ∩ A|+ |a ∩ A| = 1 + |A| − 2|a ∩ A|

Which gives us that:
∆ψdH

(j) = ψdH
(0, j)− ψdH

(1, j) = 2
Therefore, the maximum likelihood estimation rule ζdH

is a size approval rule with constant
weights: it is the standard approval rule (SAV), that selects the alternative with the maximum
number of approvals. It can be seen immediately that SAV is not size-decreasing; however, it is,
so to say, size-non-increasing, and thus can be seen as the limit of size-decreasing rules.

As a consequence of Theorem 3.2, we can easily prove that, for an anonymous noise, the maxi-
mum likelihood estimation rule associated to a function d defined as a linear combination of the
quantities |a∩A| and |A| is not a size-decreasing rule (this is the case for the Hamming distance).
More generally, this applies to any function d such that ψd can be additively separated into two
terms ψd(|a∩A|, |A|) = f(|a∩A|) + g(|A|). In the next section, we will consider this particular
family of separable functions with a non-anonymous noise, where each voter has her own noise
parameter ϕi.

3.4 Non-anonymous Separable Noise

3.4.1 The General Case
Consider a set of m alternatives X = {a1, . . . , am} and a ground truth answer a∗. Consider also
a neutral function d : X × P(X ) −→ R with an associated function ψd : {0, 1} × {0, . . . ,m} \
(1, 0) 7→ R which can be separated into two quantities:

ψd(|a ∩ A|, |A|) = f(|a ∩ A|) + g(|A|)

We define a non-anonymous Mallows noise model, where for each voter i ∈ N there exists a
parameter ϕi ∈]0,+∞[ such that, for any a ∈ X :3

Pϕi,d(Ai|a∗ = a) = 1
Zi
ϕ
f(|a∗∩Ai|)+g(|Ai|)
i

Notice that in this case, a bigger individual noise parameter ϕi models a less reliable voter (her
distribution is less condensed around the ground truth). The aim of the next result is to motivate
the use of size-decreasing approval rules to aggregate approvals generated from such distribu-
tions. More precisely, the goal is to find sufficient conditions on f and g that makes the expected
size of the voter’s ballot Eϕ,d[|Ai|] grow as the voter becomes less reliable (i.e. as her noise
parameter ϕi grows).

We will denote f(1) = f1, f(0) = f0 and ∆f = f0 − f1 which would naturally be positive
∆f > 0. We will also denote by ∆gk,t = g(k)− g(t).

3Recall that voters cannot cast empty or full approval ballots. Therefore we suppose that P (∅|a∗ = a) =
P (X |a∗ = a) = 0.
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Theorem 3.3. If for every 1 ≤ t < k ≤ m− 1 we have that:

∆gk,t ≥
k − t

2 ∆f

Then:
∂Eϕ,d[|Ai|]

∂ϕ
≥ 0

Proof. Consider a voter in N with a noise distribution:

Pϕ,d(A|a∗ = a) = 1
Z
ϕ
f(|a∗∩A|)+g(|A|)
i

For any prior distribution on a∗, it suffices to prove that for any a ∈ X we have that

∂Eϕ,d[|Ai||a∗ = a]
∂ϕ

≥ 0

since
Eϕ,d[|Ai|] =

∑
a∈X

Eϕ,d[|Ai||a∗ = a]P (a∗ = a)

Let a ∈ X . First let us compute Z:

Z =
∑

A/∈{∅,X}
P̃ (A|a∗ = a) =

m−1∑
t=1

P̃ (|A| = t|a∗ = a)

=
m−1∑
t=1

∑
a∗∈A
|A|=t

P̃ (A|a∗ = a) +
∑
a∗ /∈A
|A|=t

P̃ (A|a∗ = a)

=
m−1∑
t=1

(
m− 1
t− 1

)
ϕf1+g(t) +

(
m− 1
t

)
ϕf0+g(t)

=
m−1∑
t=1

ht(ϕ)

where

ht(ϕ) =
(
m− 1
t− 1

)
ϕf1+g(t) +

(
m− 1
t

)
ϕf0+g(t)

We have that:

Eϕ,d[|Ai||a∗ = a] =
m−1∑
t=1

tP (|Ai| = t|a∗ = a) =
m−1∑
t=1

t× ht(ϕ)
m−1∑
k=1

hk(ϕ)
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Thus we have that:

∂Eϕ,d[|Ai||a∗ = a]
∂ϕ

=

m−1∑
t=1

th′
t(ϕ)

m−1∑
k=1

hk(ϕ)−
m−1∑
t=1

tht(ϕ)
m−1∑
k=1

h′
k(ϕ)(

m−1∑
k=1

hk(ϕ)
)2

︸ ︷︷ ︸
>0

∝
m−1∑
t=1

m−1∑
k=1

th′
t(ϕ)hk(ϕ)−

m−1∑
t=1

m−1∑
k=1

tht(ϕ)h′
k(ϕ)

∝
m−1∑
t=1

m−1∑
k=1

th′
t(ϕ)hk(ϕ)−

m−1∑
t=1

m−1∑
k=1

khk(ϕ)h′
t(ϕ)

∝
m−1∑
t=1

m−1∑
k=1

(t− k)h′
t(ϕ)hk(ϕ)

∝
m−2∑
t=1

m−1∑
k=t+1

(k − t)︸ ︷︷ ︸
>0

[h′
k(ϕ)ht(ϕ)− h′

t(ϕ)hk(ϕ)]︸ ︷︷ ︸
∆hk,t(ϕ)

We can already notice that to guarantee that ∂Eϕ,d[|Ai||a∗=a]
∂ϕ

≥ 0 it suffices that:

∆hk,t(ϕ) = [h′
k(ϕ)ht(ϕ)− h′

t(ϕ)hk(ϕ)] ≥ 0, ∀1 ≤ t < k ≤ m− 1

We have that:

h′
k(ϕ)ht(ϕ) =

[
(g(k) + f1)

(
m− 1
k − 1

)
ϕg(k)+f1−1 + (g(k) + f0)

(
m− 1
k

)
ϕg(k)+f0−1

]

×
[(
m− 1
t− 1

)
ϕf1+g(t) +

(
m− 1
t

)
ϕf0+g(t)

]

= (g(k) + f1)
(
m− 1
k − 1

)(
m− 1
t− 1

)
ϕg(k)+g(t)+2f1−1

+ (g(k) + f1)
(
m− 1
k − 1

)(
m− 1
t

)
ϕg(k)+g(t)+f1+f0−1

+ (g(k) + f0)
(
m− 1
k

)(
m− 1
t

)
ϕg(k)+g(t)+2f0−1

+ (g(k) + f0)
(
m− 1
k

)(
m− 1
t− 1

)
ϕg(k)+g(t)+f1+f0−1

So we have that:

∆hk,t(ϕ) =
(
m− 1
k − 1

)(
m− 1
t− 1

)
ϕg(k)+g(t)+2f1−1 [g(k)− g(t)]
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+
(
m− 1
k

)(
m− 1
t

)
ϕg(k)+g(t)+2f0−1 [g(k)− g(t)]

+
(
m− 1
k

)(
m− 1
t− 1

)
ϕg(k)+g(t)+f0+f1−1 [g(k)− g(t) + f0 − f1]

+
(
m− 1
k − 1

)(
m− 1
t

)
ϕg(k)+g(t)+f0+f1−1 [g(k)− g(t)− f0 + f1]

= ϕg(k)+g(t)+f0+f1−1
(
m− 1
k − 1

)(
m− 1
t− 1

)
︸ ︷︷ ︸

>0

×
[
ϕ−∆f∆gk,t + m− k

k

m− t
t

ϕ∆f∆gk,t

+
(
m− k
k

+ m− t
t

)
∆gk,t +

(
m− k
k
− m− t

t

)
∆f
]

∝
[
r(ϕ) + m− k

k
+ m− t

t

]
∆gk,t −

(
m− t
t
− m− k

k

)
∆f

where:
r(ϕ) = ϕ−∆f + m− k

k

m− t
t

ϕ∆f

We show that:

r(ϕ) ≥ 2
√
m− k
k

√
m− t
t

To do so, we study the variations of the function r and its derivative. In fact, denote by α =
m−k
k

m−t
t

. We have that:
r′(ϕ) = −∆fϕ−∆f−1 + α∆fϕ∆f−1

So:
r′(ϕ) = 0 ⇐⇒ −ϕ−∆f−1 + α∆fϕ∆f−1 = 0

Thus:
r′(ϕ) = 0 ⇐⇒ −1 + αϕ2∆f = 0 ⇐⇒ ϕ = α

1
2∆f

Since r is continuous on ]0,+∞[ and lim
ϕ→0+

r(ϕ) = lim
ϕ→+∞

r(ϕ) = +∞ and r′ vanishes in exactly

one point ϕmin = α
1

2∆f , then:

min
ϕ∈]0,+∞[

r(ϕ) = r(ϕmin) = 2
√
α = 2

√
m− k
k

√
m− t
t

So to guarantee that ∆hk,t(ϕ) ≥ 0 it suffices that:2

√
m− k
k

√
m− t
t︸ ︷︷ ︸

r(ϕmin)

+m− k
k

+ m− t
t

∆gk,t −
(
m− t
t
− m− k

k

)
∆f ≥ 0
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Since we have that:2

√
m− k
k

√
m− t
t

+ m− k
k

+ m− t
t

∆gk,t −
(
m− t
t
− m− k

k

)
∆f

=

√m− k
k

+
√
m− t
t

2

∆gk,t −
(
m− t
t
− m− k

k

)
∆f

∝
[√

k(m− t) +
√
t(m− k)

]
∆gk,t −

[√
k(m− t)−

√
t(m− k)

]
∆f

if we prove that
√
k(m−t)−

√
t(m−k)√

k(m−t)+
√
t(m−k)

≤ k−t
2 then we would have that:

[√
k(m− t) +

√
t(m− k)

]
∆gk,t −

[√
k(m− t)−

√
t(m− k)

]
∆f ≥ ∆gk,t −

k − t
2 ∆f

Thus, since we want to prove that having ∆gk,t ≥ k−t
2 ∆f is a sufficient condition to guarantee a

positive derivative of the expected ballot’s size it only remains to prove that:
√
k(m−t)−

√
t(m−k)√

k(m−t)+
√
t(m−k)

≤
k−t

2 .

For k ≥ t+ 2, we have that:

k − t
2 ≥ 1 ≥

√
k(m− t)−

√
t(m− k)√

k(m− t) +
√
t(m− k)

For k = t+ 1, we have to prove that:√
−t2 + (m− 1)t+m−

√
−t2 + (m− 1)t√

−t2 + (m− 1)t+m+
√
−t2 + (m− 1)t

≥ 1
2

For this it suffices to prove that:√
−t2 + (m− 1)t+m ≤ 3

√
−t2 + (m− 1)t

which is equivalent to proving that:

8t2 − (m− 1)t+m ≤ 0

We can prove that this function decreases to reach a minimum in t0 = m−1
2 then increases. We

also have that it is negative in t = 1 (equals −8m) and for t = m− 2 (equals −8(m− 2)2 +m).

This gives us the sufficient condition to have ∂Eϕ,d[|Ai||a∗=a]
∂ϕ

≥ 0.
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Example 3.7. For α, β > 0 define the distance:

dα,β(a,A) = α|a ∩ A|+ β|a ∩ A|
= −(α + β)|a ∩ A|+ β + α|A|

which generalizes the Hamming distance in the same way the Tversky index [Tversky, 1977]
generalizes Jaccard’s. dα,β is associated to the separable function:

ψdα,β
(x, k) = −(α + β)x+ β + αk = f(x) + g(k)

where f(x) = −(α + β)x+ β and g(k) = αk. We have:

∆gk,t = α

α + β
(k − t)∆f

So for every dα,β such that α ≥ β we have that:

∂Eϕ,dα,β
[|Ai|]

∂ϕ
≥ 0

3.4.2 The Hamming Distance Case - Condorcet Noise Model
The prototypical example of a separable noise is the noise associated to the Hamming distance,
which is equivalent to the Condorcet-like noise model. We will prove that for this specific noise,
we can express the expected size of a voter’s ballot E[|Ai|] as a linear function of her reliability
parameter. This enables us to estimate this parameter directly from the actual size of the ballot,
without any prior belief about the ground truth.

Formally, consider the Condorcet noise model where for each voter i ∈ N there exists a noise
parameter pi ∈ (0, 1) such that:

Ppi
(a ∈ Ai|a = a∗) = Ppi

(a /∈ Ai|a ̸= a∗) = pi,∀a ∈ X

and where the belonging or not of different alternatives to the voter’s ballot are independent
events. Notice that the model supposes equal error-rates for false positives and false negatives. In
particular, voters who select many alternatives would ipso facto have a low pi (since their ballots
contain many false positives) which can even be below 0.5. Moreover, we can easily prove that in
this case, the noise model is a non-anonymous Mallows noise model with the Hamming distance
and with ϕi = 1−pi

pi
(We can have ϕi ≥ 1 since pi can be below 0.5):

Ppi
(Ai|a = a∗) = pmi

(
1− pi
pi

)dH(a∗,Ai)

,∀a ∈ X

We will show that in this particular case, we can give an explicit formula of the expected size of
a voter’s approval ballot as a linear function of her precision parameter pi.
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Theorem 3.4. For m ≥ 2, we have that:

Ep[|Ai|] = (m− 1)− (m− 2)p

Proof. Let a ∈ X :

Ep[|Ai||a∗ = a] = E[
∑
b∈X

1{b ∈ Ai}|a∗ = a]

=
∑
b∈X

P (b ∈ Ai|a∗ = a)

= P (a ∈ Ai|a∗ = a) +
∑
b̸=a

P (b ∈ Ai|a∗ = a)

= p+ (m− 1)(1− p)
= (m− 1)− (m− 2)p

Thus we have that:

Ep[|Ai|] =
∑
a∈X

Ep[|Ai||a∗ = a]P (a∗ = a)

=
∑
a∈X

[(m− 1)− (m− 2)p]P (a∗ = a)

= (m− 1)− (m− 2)p

Theorem 3.4 gives us a simple approach to estimate pi by maximum likelihood estimations given
some observations of Ai without a need to know the ground truth a∗. In a single-question sce-
nario, we would only access a single observation of the voter’s ballot Ai, and the estimation
would not be statistically significant. Nonetheless, we show in the next section that it yields
accurate ground truth estimations on real annotation datasets.

3.5 Experiments
We took the three image annotation datasets, originally collected in [Shah et al., 2015] for
incentive-design purposes4, and used them to test our hypothesis and to assess the accuracy
of different aggregation rules of interest.

Each dataset consists of a set of approval profiles of a number of voters (participants) who had
to select all the alternatives that they thought were correct in a number of instances (images),
namely:

• Animal task: 16 images/questions and 6 alternatives, see Figure 3.1.

4Accessible on the author’s webpage: https://cs.cmu.edu/~nihars/data/data_approval.zip
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Figure 3.1: Instance from the Animals task [Shah et al., 2015]

• Texture task: 16 images/questions and 6 alternatives, see Figure 3.2.

• Language task: 25 images/questions and 8 alternatives, see Figure 3.3.

From now on, a dataset denotes the setN of n voters, X = {a1, . . . , am} the set of alternatives, L
approval profiles Az = (Az1, . . . , Azn) each associated to an image z with ground truth alternative
a∗
z.

3.5.1 Ballot Size and Reliability

To test the hypothesis that smaller ballots are more reliable, we introduce the size-normalized
accuracy which is defined for each dataset and each k ∈ [1,m− 1] as:

SNA(k) = 1
k

| {Azi , |Azi | = k, az∗ ∈ Azi } |
| {Azi , |Azi | = k} |

It can be interpreted as the probability of recovering the ground truth after drawing randomly
(uniformly) an alternative from a ballot of size k. Notice that if smaller ballots were not more
reliable, one would expect that, for instance, ballots of size 2 are twice more probable to contain
the ground truth than ballots of size 1, so the chance of finding the ground truth after randomly
picking an alternative from a 2-sized ballot is equal to the chance that a singleton ballot selects
the ground truth. So we would expect that SNA is almost constant for all k.

However when we compute the SNA for the three datasets (see Figure 3.4) we can clearly see
that it decreases for the bigger ballots, which confirms that the alternatives selected in smaller
approval ballots are more likely to coincide with the ground truth.
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Figure 3.2: Instance from the Textures task [Shah et al., 2015]

Figure 3.3: Instance from the Languages task [Shah et al., 2015]
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Figure 3.4: Size-normalized accuracy for three datasets
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3.5.2 Aggregation
Since we are mostly interested in the single-question wisdom of the crowd problem, we will only
consider aggregation rules that operate question-wise (voters’ answers on different questions do
not affect the output of the rule for a given question). We will use the following aggregation
methods (we include more methods in the Appendix) 5 :

Condorcet: For each instance with approval profile Az = (Az1, . . . , Azn) and ground truth a∗
z,

we suppose that each voter has a precision parameter pzi such that:

Ppz
i
(a ∈ Azi |a = a∗

z) = Ppz
i
(a /∈ Ai|a ̸= a∗

z) = pzi , ∀a ∈ X

and where the belonging or not of different alternatives to the voter’s ballot are independent
events. We know that if these parameters were known, then the maximum likelihood estimation
rule returns the alternative âz such that:

âz = arg max
a∈X

∑
i:a∈Az

i

ln pzi
1− pzi

To estimate the parameters pzi , we will make use of the expression in Theorem 3.4 that states
that:

Epz
i
[|Azi |] = (m− 1)− (m− 2)pzi

and set:

p̂zi = proj
[ε,1−ε]

m− 1− |Azi |
m− 2

where proj is the projection operator on the corresponding interval. The projected quantity is
simply the maximum likelihood estimation of pzi with a single sample (the actual observation of
the voter’s ballot). We project it into a closed interval to avoid having p̂zi = 1 (which yields an
infinite weight to the voter) whenever |Azi | = 1, and p̂zi = 0 whenever |Azi | = m − 1. So the
aggregation rule finally outputs:

âz = arg max
a∈X

∑
i:a∈Az

i

ln p̂zi
1− p̂zi

which is size-decreasing.

Jaccard: Here we suppose that for each instance Az = (Az1, . . . , Azn), the noise model is as
follows:

Pϕ,dJ
(Azi |a∗

z = a) = 1
Z
ϕdJ (a∗

z ,A
z
i ),∀a ∈ X

where dJ(a,A) = 1− |a∩A|
|A|+1−|a∩A| .

We saw in Example 3.4 that the maximum likelihood estimation rule ζdJ
is a size approval rule

with weights wj = 1/j.
5The code can be found at https://github.com/taharallouche/Truth_Tracking-via-AV
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Simple approval: We will compare all these rules to the benchmark SAV rule where for each
instance Az = (Az1, . . . , Azn): âz = arg maxa∈X | {Azi , a ∈ Azi } |

3.5.3 Results
For each task, we took 25 batches for each different number of voters, and applied the aforemen-
tioned rules. We measure the accuracy of each rule, outputting the estimates âz for each instance,
defined as

1
L

L∑
z=1
1{a∗

z = âz}

The results are shown in Figures 3.5a, 3.5b and 3.5c respectively for the Animals, Textures and
Languages datasets.

Observations: First we notice that for all the three datasets, the aggregation rules associated to
Jaccard anonymous noise show slightly better accuracy than the simple approval rule especially
for small number of voters.

We can also see that the aggregation rule associated to the non-anonymous Condorcet noise
show significant improvement in the accuracy compared to this rule for Animals and Languages
(specially for relatively big numbers of voters). However it fails to outperform it for the Textures
dataset, where it only shows similar accuracies to the standard rule as the number of voters grows.
This can be the result of the poor estimation quality which uses only one sample.

3.6 Conclusion
We propose a novel approach for epistemic approval voting based on the intuition that more re-
liable votes contain fewer alternatives. First, we show that for different anonymous variants of
Mallows-like noise models, the maximum likelihood rule is size-decreasing, i.e it assigns more
weight to smaller ballots. Then we consider non-anonymous noises and give a sufficient con-
dition to have an expected size of the ballot which increases as a voter gets less reliable. In
particular, we prove that for a Condorcet-like noise, the expected number of approved alterna-
tives decreases linearly with the voter’s precision. Finally, we conduct experiments to test our
hypothesis on real data and to assess the performances of different aggregation rules.

These methods may fail in two possible scenarios. First, if the voters do not respond truthfully. In
this case, a voter can select a single alternative even though she doesn’t know the correct answer
at all. Second, if a large enough group of non-expert voters are mistakenly over-self-confident,
whereas the experts are uncertain about their responses.
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Figure 3.5: Accuracy of different rules on real-life datasets
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4
Multi-winner Epistemic Voting: Committee-size as

Prior Knowledge

Abstract
Epistemic voting interprets votes as noisy signals about a ground truth. We consider contexts
where the truth consists of a set of objective winners, knowing a lower and upper bound on its
cardinality. A prototypical problem for this setting is the aggregation of multi-label annotations
with prior knowledge on the size of the ground truth. We posit noise models, for which we define
rules that output an optimal set of winners. We report on experiments on multi-label annotations
(which we collected).

The results of this chapter were published in [Allouche et al., 2022a].

4.1 Introduction
The epistemic view of voting assumes the existence of a ground truth which, usually, is either
an alternative or a ranking over alternatives. Votes reflect opinions or beliefs about this ground
truth; the goal is to aggregate these votes so as to identify it. Usual methods define a noise model
specifying the probability of each voting profile given the ground truth, and output the alternative
that is the most likely state of the world, or the ranking that is most likely the true ranking.

Now, there are contexts where the ground truth does not consist of a single alternative nor a
ranking, but of a set of alternatives. Typical examples are multi-label crowdsourcing (find the
items in a set that satisfy some property, e.g. the sport teams appearing on a picture) or finding
the objectively k best candidates (best papers at a conference, best performance in artistic sports,
k patients with highest probabilities of survival if being assigned a scarce medical resource).
Beyond social choice, collective multi-label annotation was first addressed in [Nowak and Rüger,
2010], which studies the agreement between experts and non-experts in some multi-labelling
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tasks, and in [Deng et al., 2014], where a scalable aggregation method is presented to solve the
multi-label estimation problem.

The alternatives that are truly in the ground truth are called ‘winning’ alternatives. Depending on
the context, the number of winning alternatives can be fixed, unconstrained, or more generally,
constrained to be in a given interval. This constraint expresses some prior knowledge on the
cardinality of the ground truth. Here are some examples:

• Picture annotation via crowdsourcing: participants are shown a picture taken from a soccer
match and have to identify the team(s) appearing in it. The ground truth is known to contain
one or two teams.

• Guitar chord transcription: voters are base classifier algorithms [Nguyen et al., 2020]
which, for a given chord, select the set of notes constitute it. The true set of notes can
contain three to six alternatives.

• Jury: participants are members of a jury which has to give an award to three papers pre-
sented at a conference: the number of objective winners is fixed to three. (In a variant, the
number of awards would be at most three.)

• Resource allocation: participants are doctors and alternatives are Covid-19 patients in
urgent need of intensive care; there is a limited number k of intensive care units. The
ground truth consists of those patients who most deserve to be cured (for example those
with the k highest probabilities of survival if cured).

We assume that voters provide a simple form of information: approval ballots, indicating which
alternatives they consider plausible winners. These approval ballots are not subject to any car-
dinality constraint: a voter may approve a number of alternatives, even if it does not lie in the
interval bearing on the output. This is typically the case for totally ignorant voters, who are
expected to approve all alternatives.

Sometimes, the aggregating mechanism has some prior information about the likelihood of al-
ternatives and the reliability of voters. We first study a simple case where this information is
specified in the input: in the noise model, each voter has a probability pi (resp. qi) of approving
a winning (resp. non-winning) alternative, and each alternative has a prior probability to be win-
ning. This departs from classical voting, where voters are usually treated equally (anonymity),
and similarly for alternatives (neutrality).

This simple case serves as a building component for the more complex case where these param-
eters are not known beforehand but estimated from the votes: votes allow to infer information
about plausibly winning alternatives, from which we infer information about voter reliabilities,
which leads to revise information about winning alternatives, and so on until the process con-
verges. Here we move back to an anonymous and neutral setting, since all alternatives (resp.
voters) are treated equally before votes are known.

The outline of the chapter is as follows. We introduce the model (Section 4.2) and give an
estimation algorithm (Section 4.3), first in the case where the parameters are known, and then in

86



CHAPTER 4. MULTI-WINNER EPISTEMIC VOTING: COMMITTEE-SIZE AS PRIOR
KNOWLEDGE

the case where they are estimated from the votes. In Section 3.5 we present a data gathering task
and analyse the results of the experiments. Section 4.6 concludes.

4.2 The Model
Let N = {1, . . . , n} be a set of voters, and X = {a1, . . . , am} a set of alternatives (possible
objects in images, notes in chords, papers, patients...). Consider a set of L instances: an instance
z consists of an approval profileAz = (Az1, . . . , Azn) whereAzi ⊆ X is an approval ballot for every
i ∈ N . For example, in a crowdsourcing context, a task usually contains multiple questions, and
an instance comprises the voters’ answers to one of these questions.

For each instance z ∈ L, there exists an unknown ground truth S∗
z belonging to S = 2X , which is

the set of objectively correct alternatives in instance z. It is common knowledge that the number
of alternatives in each of them lies in the interval [l, u]: S∗

z ∈ Sl,u = {S ∈ S, l ≤ |S| ≤ u}, for
given bounds 0 ≤ l ≤ u ≤ m.

Our goal is to unveil the ground truth for each of these instance using the votes and the prior
knowledge on the number of winning alternatives. We define a noise model consisting of two
parametric distributions, namely, a conditional distribution of the approval ballots given the
ground truth, and a prior distribution on the ground truth. Here we depart from classical noise
models in epistemic social choice, as we suppose that the parameters of these distributions may
be unknown and thus need to be estimated.

For each voter i ∈ N , we suppose that there exist two unknown parameters (pi, qi) in (0, 1) such
that the approval ballot Azi on an instance z ∈ L is drawn according to the following distribution:
for each a ∈ A,

P (a ∈ Azi |S∗
z = S) =

{
pi if a ∈ S
qi if a /∈ S

where pi (resp. qi) is the (unknown) probability that voter i approves a correct (resp. incorrect)
alternative. Then we make the following assumptions:

(1) A voter’s approvals of alternatives are mutually independent given the ground truth and
parameters (pi, qi)i∈N .

(2) Voters’ ballots are mutually independent given the ground truth.

(3) Instances are independent given the parameters (pi, qi)i∈N and the ground truths.

To model the prior probability of any set S to be the ground truth S∗, we define parameters
tj = P (aj ∈ S∗). tj can be understood as the prior probability of aj to be in the ground truth
set S∗ before the cardinality constraints are taken into account. Let t = (t1, . . . , tm) be the
vector of all m prior parameters. These, together with an independence assumption on the events
{aj ∈ S∗}, gives:

P (S = S∗) =
∏
aj∈S

tj
∏
aj /∈S

1− tj
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Note that the choice of the parameters tj is not crucial when running the algorithm for estimating
the ground truth: we will see in Section 4.3.3 that it converges whatever their values. The
distribution conditional to the prior knowledge on the size of the ground truth can be seen as a
projection on the constraints followed by a normalization:

P̃ (S) = P (S∗ = S|l ≤ |S∗| ≤ u) = P (S∗ = S ∩ |S∗| ∈ [l, u])
P (|S∗| ∈ [l, u])

It follows:

P̃ (S) =


1

β(l,u,t)
∏
aj∈S

tj
∏
aj /∈S

(1− tj) if S ∈ Sl,u

0 if S /∈ Sl,u
where:

β(l, u, t) =
∑

S∈Sl,u

∏
aj∈S

tj
∏
aj /∈S

(1− tj)

The ground truths associated with different instances are assumed to be mutually independent
given the parameters.

Two particular cases are worth discussing.

• When (l, u) = (0,m), the problem is unconstrained and we have β(0,m, t) = P (|S∗| ∈
[0,m]) = 1, so P̃ (S) = P (S = S∗). In this case the problem degenerates into a series of
independent binary label-wise estimations (see Subsection 4.3.1).

• In the single-winner case (l, u) = (1, 1), we have:

P̃ ({aj}) = P ({aj} = S∗||S∗| = 1) =
tj
∏
h̸=j 1− th
β(1, 1, t)

therefore, for any approval profile A:

P (S∗ = {aj}|A, |S∗| = 1) ∝ tj
1− tj

P (A|S∗ = {aj})

We recover the same estimation problem if we simply introduce αj = P (S∗ = {aj}) with∑
αj = 1 as in [Ben-Yashar and Paroush, 2001], in which case we have:

P (S∗ = {aj}|A, |S∗| = 1) ∝ αjP (A|S∗ = {aj})

4.3 Estimating the Ground Truth
Our aim is the intertwined estimation of the ground truth and the parameters via maximizing the
total likelihood of the instances:

L(A,S, p, q, t) =
L∏
z=1

P̃ (Sz)
n∏
i=1

P (Azi |Sz)
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where:
P (Azi |Sz) = p

|Az
i ∩Sz |

i q
|Az

i ∩Sz |
i (1− pi)|Az

i ∩Sz |(1− qi)|Az
i ∩Sz |

To this aim, we will introduce an iterative algorithm whose main two steps will be presented in
sequence, in the next subsections, before the main algorithm is formally defined and its conver-
gence shown. These two steps are:

• Estimating the ground truths given the parameters.

• Estimating the parameters given the ground truths.

Simply put, the algorithm consists in iterating these two steps until it converges to a fixed point.

4.3.1 Estimating the Ground Truth Given the Votes and the Parameters
Since instances are independent given the parameters, we focus here on one instance with ground
truth S∗ and profile A = (A1, . . . , An). Before diving into maximum likelihood estimation
(MLE), we introduce some notions and prove some lemmas. In this subsection, we suppose that
the parameters (pi, qi)i∈N and (tj)j∈X are known (later on, these parameters will be replaced
by their estimations at each iteration of the algorithm). Thus, all in all, input and output are as
follows:

• Input: approval profile A; parameters (pi, qi)i∈N and (tj)j∈X .

• Output: MLE of the ground truth S∗.

Definition 4.1 (weighted approval score). Given an approval profile (A1, . . . , An), noise param-
eters (pi, qi)1≤i≤n and prior parameters (tj)1≤j≤m, define:

appw(aj) = ln

(
tj

1− tj

)
+

∑
i:aj∈Ai

ln

(
pi(1− qi)
qi(1− pi)

)

The scores appw(aj) can be interpreted as weighted approval scores for a (n + m)-voter profile
where:

• for each voter 1 ≤ i ≤ n: i has a weight wi = ln
(
pi(1−qi)
qi(1−pi)

)
and casts approval ballot Ai.

• for each 1 ≤ j ≤ m: there is a virtual voter with weightwj = ln
(

tj
1−tj

)
who casts approval

ballot Aj = {aj}.

While the weight of each voter i ∈ N depends on her reliability, each prior information on an
alternative plays the role of a virtual voter who only selects the concerned alternative, with a
weight that increases as the prior parameter increases.

From now on, we suppose without loss of generality that the alternatives are ranked according to
their score:

appw(a1) ≥ appw(a2) ≥ · · · ≥ appw(am)
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Definition 4.2 (threshold and partition). Define the threshold:

τn =
n∑
i=1

ln

(
1− qi
1− pi

)

and the partition of the set of alternatives in three sets:
Sτn
max = {a ∈ A, appw(a) > τn}
Sτn
tie = {a ∈ A, appw(a) = τn}
Sτn
min = X\(Sτn

max ∪ Sτn
tie)

and let kτn
max = |Sτn

max|, kτn
tie = |Sτn

tie|, kτn
min = |Sτn

min|.

The next result characterizes the sets in S that are MLEs of the ground truth given the parameters.

Theorem 4.1. S̃ ∈ arg maxS∈S L(A, S, p, q, t) if and only if there exists k ∈ [l, u] such that S̃ is
the set of k alternatives with the highest k values of appw and:{

|S̃ ∩ Sτn
max| = min(u, kτn

max)
|S̃ ∩ Sτn

min| = max(0, l − kτn
tie − kτn

max)
(4.1)

So the estimator S̃ is made of some top-k alternatives, where the possible values of k are deter-
mined by Eq. (4.1). The first equation imposes that S̃ includes as many elements as possible from
Sτn
max (without exceeding the upper-bound u), whereas the second one imposes that S̃ includes

as few elements as possible from Sτn
min (without getting below the lower-bound l).

Proof. Since P̃ (S) > 0 ⇐⇒ S ∈ Sl,u, we have that arg maxS∈S L(S) = arg maxS∈Sl,u
L(S).

Using the assumption on the ballots’ independence, we can write:

L(S) ∝ P̃ (S)
n∏
i=1

P (Ai|S)

which, by using the independence assumption on alternatives, becomes, for any S ∈ Sl,u: More-
over, we have that for any S ∈ Sl,u:

L(S) = P̃ (S)
n∏
i=1

p
|Ai∩S|
i q

|Ai∩S|
i (1− pi)|Ai∩S|(1− qi)|Ai∩S|

= P̃ (S)
n∏
i=1

p
|Ai∩S|
i q

|Ai|−|Ai∩S|
i (1− pi)|S|−|Ai∩S|(1− qi)|Ai|−|S|+|Ai∩S|

∝ P̃ (S)
n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)
qi(1− pi)

]|Ai∩S|

∝ 1
β(l, u, t)︸ ︷︷ ︸

>0

∏
aj∈S

tj
∏
aj /∈S

(1− tj)
n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)
qi(1− pi)

]|Ai∩S|
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∝
∏
aj∈X

(1− tj)︸ ︷︷ ︸
>0

∏
aj∈S

tj
1− tj

n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)
qi(1− pi)

]|Ai∩S|

∝
∏
aj∈S

tj
1− tj

n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)
qi(1− pi)

]|Ai∩S|

Thus, with C a constant stemming from previous simplifications, the log-likelihood reads:

l(S) =
∑
aj∈S

ln tj
1− tj

+
n∑
i=1
|S| ln 1− pi

1− qi
+ |Ai ∩ S| ln

pi(1− qi)
qi(1− pi)

+ C

=
∑
aj∈S


l(aj)︷ ︸︸ ︷

ln tj
1− tj

+
∑

i:aj∈Ai

ln pi(1− qi)
qi(1− pi)︸ ︷︷ ︸

appw(aj)

−
n∑
i=1

ln 1− qi
1− pi︸ ︷︷ ︸
τn

+ C

=
∑
aj∈S

[appw(a)− τn] + C

=
∑
aj∈S

l(a) + C

This means that a ∈ Sτn
max if and only if l(a) > 0 , a ∈ Sτn

min if and only if l(a) < 0 and a ∈ Sτn
tie

if and only if l(a) = 0.

Now, let SM be a maximizer of the likelihood. Since l(aj) ≥ l(ah) ⇐⇒ appw(aj) ≥ appw(ah)
we have that SM , which maximizes

∑
aj∈S l(aj), is made of top-k alternatives for some k ∈

[l . . u].

Furthermore, |SM ∩ Sτn
min| = max(0, l − kτn

tie − kτn
max).

In fact, start by noticing that |SM ∩ Sτn
min| ≥ max(0, l − kτn

tie − kτn
max), since:

|SM ∩ Sτn
min| ≥ l − |SM ∩ Sτn

max| − |SM ∩ Sτn
tie| ≥ l − kτn

max − kτn
tie

Now suppose that |SM ∩ Sτn
min| > max(0, l − kτn

tie − kτn
max). In this case we have that |SM | > l

because otherwise, if |SM | = l, then:

|SM ∩ Sτn
max|+ |SM ∩ Sτn

tie| = l − |SM ∩ Sτn
min| < kτn

max + kτn
tie

which would mean that there are elements in Sτn
tie and Sτn

max which are not in SM , which is a
contradiction since |SM ∩ Sτn

min| > 0 and SM is a top-k set.
Now consider a ∈ SM ∩ Sτn

min, we have that |SM\{a}| ≥ l and l(SM) = l(SM\{a}) + l(a) <
l(SM\{a}) which is a contradiction.
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With the same idea we can prove that |SM ∩ Sτn
max| = min(u, kτn

max). In fact, it is obvious that
|SM ∩ Sτn

max| ≤ min(u, kτn
max) since:

|SM ∩ Sτn
max| ≤ |Sτn

max| = kτn
max and |SM ∩ Sτn

max| ≤ |SM | ≤ u

Now suppose that |SM ∩ Sτn
max| < min(u, kτn

max). First, notice that |SM | < u since if |SM | = u
then |SM ∩ Sτn

max| < |SM | and |SM ∩ Sτn
max| < kτn

max which would mean that SM cannot be made
of top-k alternatives since it would have had to contain alternatives from Sτn

tie and Sτn
min while

omitting some alternatives from Sτn
max.

Now consider a ∈ Sτn
max\SM , we have that |SM ∪ {a}| ≤ u and l(Sm ∪ {a}) = l(SM) + l(a) >

l(SM) which is a contradiction.

Conversely, consider a set SM = {a1, . . . , ak} such that:
k ∈ [l, u]

|SM ∩ Sτn
max| = min(u, kτn

max)
|SM ∩ Sτn

min| = max(0, l − kτn
tie − kτn

max)

and let us prove that it maximizes the likelihood. To do so, consider S ′ ∈ arg maxS∈Sl,u
P (S∗ =

S|A), so by the first part of the proof there exists some k′ such that S ′ = {a1, . . . , ak′} such that:
k′ ∈ [l, u]

|S ′ ∩ Sτn
max| = min(u, kτn

max)
|S ′ ∩ Sτn

min| = max(0, l − kτn
tie − kτn

max)

Since |S ′ ∩ Sτn
max| = |SM ∩ Sτn

max| and |S ′ ∩ Sτn
min| = |SM ∩ Sτn

min| and given the structure
of S ′ = {a1, . . . , ak′} and SM = {a1, . . . , ak}, we have that S ′ ∩ Sτn

max = SM ∩ Sτn
max and

S ′ ∩ Sτn
min = SM ∩ Sτn

min.
Given the expression of the likelihood of a set of alternatives, and given that l(a) = 0 for any
a ∈ Sτn

tie we have that l(SM) = l(S ′), which implies that SM ∈ arg maxS∈Sl,u
P (S∗ = S|A).

Notice that when (l, u) = (0,m), the problem degenerates into a collection of label-wise prob-
lems, one for each alternative: aj is selected if aj ∈ Sτn

max, rejected if aj ∈ Sτn
min, and those that

are on the fence can be arbitrarily selected or not.

Example 4.1. Consider the following situation:

• 5 alternatives X = {a, b, c, d, e}.

• 10 voters N .

• All voters share the same parameters (p, q) = (0.7, 0.4)

We thus have that all voters share the same weight:

w = ln

(
p(1− q)
q(1− p)

)
= 1.25
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and the threshold is

τn =
n∑
i=1

ln

(
1− q
1− p

)
= 6.93

We consider the constraints (l, u) = (1, 4):

First, suppose that td = 0.6 and that tj = 0.5 for all the remaining candidates. Consider also
the approval counts (and weighted approval scores) in the table below.

Candidate a b c d e
Approval count 9 8 7 5 5

appw 11.25 10 8.75 6.65 6.25

We can easily check, by Theorem 4.1 that S̃ = arg maxS∈S P (S = S∗|A) = {a, b, c}. We have
that Sτn

max = {a, b, c}, Sτn
tie = ∅ and Sτn

min = {d, e}. We know that there exists some k ∈ [1, 4]
such that S̃ would consist of the top k alternatives. We also have that:{

|S̃ ∩ Sτn
max| = min(u, kτn

max) = 3 =⇒ {a, b, c} ⊆ S̃
|S̃ ∩ Sτn

min| = max(0, l − kτn
tie − kτn

max) = 0 =⇒ d, e /∈ S̃

So the only possibility is S̃ = {a, b, c}.

Now suppose that tj = 0.5 for all the alternatives aj ∈ X . We also change the approval counts:

Candidate a b c d e
Approval count 5 4 3 2 2

appw 6.25 5 3.75 2.5 2.5

We have that Sτn
max = Sτn

tie = ∅ and Sτn
min = {a, b, c, d, e}, so the MLE must verify that |S̃∩Sτn

min| =
max(0, l − kτn

tie − kτn
max) = 1, which means that S̃ consists of a single alternative belonging to

Sτn
min. Since the MLE is a top-k set (in this case it is top-1), we get that S̃ = {a}.

Again, if we change the approval count in the following way:

Candidate a b c d e
Approval count 9 8 7 7 6

appw 11.25 10 8.75 8.75 7.5

We have that Sτn
max = {a, b, c, d, e} and Sτn

tie = Sτn
min = ∅, which implies that |S̃ ∩ Sτn

max| =
min(u, kτn

max) = 4. The MLE is that made of the top-4 alternatives so S̃ = {a, b, c, d}.

4.3.2 Estimating the Parameters Given the Ground Truth
4.3.2.1 Estimating the prior parameters over alternatives

Once the ground truths are estimated at one iteration of the algorithm, the next step consists
in estimating the prior parameters (tj)j∈X , with the ground truths being given (in Subsection
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4.3.3 the ground truth will be replaced by its estimation at each iteration). The next proposition
explicits the closed-form expression of the MLE of the prior parameter of each alternative given
the ground truth of each instance S∗

z once the prior parameters of all other alternatives are fixed.

• Input: Approval profile (A1, . . . , An), ground truths S∗
z for all z ∈ L, and all but one prior

parameters (th)h̸=j .

• Output: MLE of tj .

Proposition 4.2. For every aj ∈ X :

arg max
tj∈(0,1)

L(A, S, p, q, tj, t−j) = occ(j)αj
(L− occ(j))αj + occ(j)αj

where:



αj = ∑
S∈Sl,u

aj∈S

∏
ah∈S
h̸=j

th
∏

ah /∈S
(1− th)

αj = ∑
S∈Sl,u

aj /∈S

∏
ah∈S

th
∏

ah /∈S
h̸=j

(1− th)

occ(j) = |z ∈ {1, . . . , L}, aj ∈ Sz|

Notice that:
αj = P (l ≤ |S∗| ≤ u|aj ∈ S∗)

and that:
αj = P (l ≤ |S∗| ≤ u|aj /∈ S∗)

so β(l, u, t) = αjtj + αj(1− tj).

Notice also that occ(j) is the number of instances whose ground truth contains aj .

Proof. Fix all sets Sz ∈ Sl,u and all the noise parameters (pi, qi)i and all the prior parameters th
but for one tj for some j ≤ m, and let tj ∈ (0, 1):

L(tj, t−j) ∝
L∏
z=1

1
β(l, u, t)

∏
ah∈Sz

th
∏

ah /∈Sz

(1− th)

∏
i∈Nz

p
|Al

i∩Sz |
i q

|Az
i ∩Sz |

i (1− pz)|Az
i ∩Sz |(1− qi)|Az

i ∩Sz |

∝
L∏
z=1

1
β(l, u, tj, t−j)

∏
ah∈Sz

th
∏

ah /∈Sz

(1− th)

∝
(

1
β(l, u, t,t−j)

)L ∏
z:aj∈Sz

t

︸ ︷︷ ︸
tocc(j)

∏
z:aj /∈Sz

(1− t)
︸ ︷︷ ︸

(1−t)L−occ(j)

∝
(

1
β(l, u, tj, t−j)

)L
t
occ(j)
j (1− tj)L−occ(j)
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Taking the log we can write the function as:

ℓ(tj) = −L log β + occ(j) log tj + (L− occ(j)) log(1− tj)

Its derivative reads:

∂l

∂tj
= −L

αj − αj
αjtj + αj(1− tj)

+ occ(j) 1
tj

+ (occ(j)− L) 1
1− tj

Canceling it, we obtain:

tj = occ(j)αj
(L− occ(j))αj + occ(j)αj

The derivative vanishes in a single point in (0, 1) and limtj→0 ℓ(tj) = limtj→1 ℓ(tj) = −∞ thus
ℓ reaches a unique maximum.

We will see later that the algorithm applies Proposition 4.2 sequentially to estimate the alterna-
tives’ parameters one by one (see Example 4.2).

4.3.2.2 Estimating the voter parameters

Once the ground truths are known (or estimated), we can estimate the voters’ parameters (p, q).

• Input: Instances (A1, . . . , AL), ground truths (S∗
1 , . . . , S

∗
L).

• Output: MLE of voter reliabilities (p, q).

The next result simply states that the maximum likelihood estimator of pi of some voter is the
fraction of alternatives that the voter approves and that actually belong to the ground truth; the
estimation of qi is similar. See Example 4.2.

Proposition 4.3. Fix sets Sz ∈ Sl,u and prior parameters t. Then:

arg max
(p,q)∈(0,1)2×n

L(A, S, p, q, t) = (p̂, q̂)

where:

p̂i =
∑
z∈L |Azi ∩ Sz|∑

z∈L |Sz|
, q̂i =

∑
z∈L |Azi ∩ Sz|∑

z∈L |Sz|
,∀i ∈ N

Proof. The independence assumptions in the noise model made the likelihood expression sepa-
rable voter-wise such that for any voter i ∈ N :

arg max
p

L(A, S, p, q, t) = arg max
p

∏
z∈L

p|Az
i ∩Sz |(1− p)|Az

i ∩Sz |

so, applying the log to the expression, we see that it suffices to maximize:

h(p) =
L∑
z=1
|Azi ∩ Sz| log p+ |Azi ∩ Sz| log(1− p)
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whose derivative reads for all p ∈ (0, 1):

h′(p) =
L∑
z=1
|Azi ∩ Sz|

1
p
− |Azi ∩ Sz|

1
1− p

We have that:

h′(p) = 0 ⇐⇒
L∑
z=1
|Azi ∩ Sz|(1− p)− |Azi ∩ Sz|p = 0

⇐⇒
(

L∑
z=1
|Azi ∩ Sz|

)
(1− p) =

(
|Azi ∩ Sz|

)
p

⇐⇒ p =
∑L
z=1 |Azi ∩ Sz|∑L

z=1 |Azi ∩ Sz|+ |Azi ∩ Sz|

⇐⇒ p =
∑L
z=1 |Azi ∩ Sz|∑

z∈L |Sz|
⇐⇒ p = p̂i

The derivative vanishes in a single point in (0, 1) and limp→0 h(p) = limp→1 h(p) = −∞ thus h
reaches a unique maximum.

We proceed exactly in the same way for the estimation of qi.

4.3.3 Alternating Maximum Likelihood Estimation
Now the estimation of the ground truths and that of the parameters are intertwined to maxi-
mize the overall likelihood L(A, S, p, q, t) by the Alternating Maximum Likelihood Estimation
algorithm. AMLE is an iterative procedure similar to the Expectation-Maximization procedure
introduced in [Baharad et al., 2011] but with two maximization steps per iteration, whose aim
is to intertwinedly estimate the voter reliabilities, the alternatives’ prior parameters and the in-
stances’ ground truths. The idea behind this estimation consists in alternating a MLE of the
ground truths given the current estimate of the parameters, and an updating of these parameters
via a MLE based on the current estimate of the ground truths.1 Each of these steps have been
discussed in the previous subsections and are now incorporated into Algo. 1.

The algorithm continues to run until a convergence criterion is met in the form of a bound on the
norm of the change in the parameters’ estimations. In practice we chose ℓ∞, but any other norm
could be used in Algorithm 1 as in finite dimensions, all norms are equivalent (if a sequence
converges according to one norm then it does so for any norm).

We define the vector of parameters θ̂(v) = (p̂(v), q̂(v), t̂(v)) containing the voters’ estimated noise
parameters as well as the prior information estimated parameters at iteration v. In particular θ̂(0)

1In case of ties between subsets when estimating the ground truth, a tie-breaking priority over subsets is used.
No ties occurred in our experiments.
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Algorithm 1 AMLE procedure
Input: Approval ballots (Azi )1≤z≤L,i∈N

Initial parameters θ̂(0),Bounds (l, u),Tolerance ε
Output: Estimations (Ŝz), (p̂i, q̂i), (t̂j)

repeat
for z = 1 . . . L do

Compute Ŝ(v+1)
z = {a1, . . . , ak} with k ∈ [l, u] and:{

|Ŝ(v+1)
z ∩ S(v)

max,z| = min(u, k(v)
max,z)

|Ŝ(v+1)
z ∩ S(v)

min,z| = max(0, l − k(v)
tie,z − k(v)

max,z)

end for
for i = 1 . . . N do

Update the parameters (pi, qi) given Ŝ(v+1):

p̂
(v+1)
i =

∑
z∈L
|Azi ∩ Ŝ

(v+1)
z |∑

z∈L
|Ŝ(v+1)
z |

, q̂
(v+1)
i =

∑
z∈L
|Azi ∩ Ŝ

(v+1)
z |

∑
z∈L
|Ŝ(v+1)
z |

end for
for j = 1 . . .m do

Update t̂(v+1)
j by:

t̂
(v+1)
j =

occ(v+1)(j)α(v+1)
j

occ(v+1)(j)α(v+1)
j + (L− occ(v+1)(j))α(v+1)

j

where : 
occ(v+1)(j) = ∑L

z=1 1{aj ∈ Ŝ(v+1)
z }

α
(v+1)
j = β((l − 1)+, u− 1, t̂(v+1)

<j , t̂
(v)
>j )

α
(v+1)
j = β(l, u, t̂(v+1)

<j , t̂
(v)
>j )

end for
until ||θ̂(v+1) − θ̂(v)|| ≤ ε
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is the input initial values. The choice of the exact initial values depends on the application at
hand.

Note that at convergence, only local optimality is guaranteed.

Theorem 4.4. For any initial values θ̂(0), AMLE converges to a fixed point after a finite number
of iterations.

Proof. First we have by Theorem 4.1 that L(A, Ŝ(v+1), θ̂(v)) = maxS∈S L(A, S, θ̂(v)), and we
have in particular that:

L(A, Ŝ(v+1), θ̂(v)) ≥ L(A, Ŝ(v), θ̂(v))

To prove that L(A, Ŝ(v+1), θ̂(v+1)) ≥ L(A, Ŝ(v+1), θ̂(v)) we use the fact that we update (p, q, t) by
their MLE. By Proposition 4.3 we have that:

(p̂(v+1), q̂(v+1)) = arg max
(p,q)

L(A, Ŝ(v+1), p, q, t̂(v))

Also by Proposition 4.2, and since we apply it sequentially to update tj we have:

L(A, Ŝ(v+1), θ̂(v+1)) ≥ L(A, Ŝ(v+1), θ̂(v))

To prove convergence, it suffices to show that Ŝ(v) = Ŝ(v+1) for some v (which guarantees the
estimators staying unchanged hereafter). Notice that the ground truth has a finite number of
possible values (exactly 2mL), leading the algorithm to cycle at some iteration. For the sake of
simplicity, suppose that this cycle is of length 2, in other words, suppose that Ŝ(v+2) = Ŝ(v) for
some v; this also implies that θ̂(v+2) = θ̂(v). So:

L(A, Ŝ(v), θ̂(v)) = L(A, Ŝ(v+2), θ̂(v+2)) ≥ L(A, Ŝ(v+1), θ̂(v))
By optimality of Ŝ(v+1), we have also that:

L(A, Ŝ(v+1), θ̂(v)) ≥ L(A, Ŝ(v), θ̂(v))
Hence, we get that:

L(A, Ŝ(v+1), θ̂(v)) = L(A, Ŝ(v), θ̂(v))
and thus, Ŝ(v+1) = Ŝ(v) = arg maxS∈Sl,u

L(A, S, θ̂(v)) and the estimators will remain the same
after any number of iterations following v.

Because L(A, Ŝ(v+1), θ̂(v+1)) ≥ L(A, Ŝ(v+1), θ̂(v)) ≥ L(A, Ŝ(v), θ̂(v)), the likelihood increases at
each step of the algorithm. This guarantees that whenever the execution stops, the likelihood is
closer to the maximum than it initially was. Therefore the algorithm can not only be run until
convergence, but it can also be run as an anytime algorithm.

Example 4.2. Take n = 3, m = 5, l = 1, u = 2, L = 4, and the following profile and initial
parameters: 

p̂
(0)
1 = 0.5 p̂

(0)
2 = 0.5 p̂

(0)
3 = 0.5

q̂
(0)
1 = 0.44 q̂

(0)
2 = 0.41 q̂

(0)
3 = 0.32

t̂
(0)
1 = · · · = t̂

(0)
5 = 0.5
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A1 A2 A3 A4

Voter 1 {a1, a4} {a1} {a3} {a1}
Voter 2 {a2} {a5} {a4} {a1}
Voter 3 {a2, a3, a4} {a2, a3, a5} {a2, a3} {a3}

Estimating the ground truth: The first step is the application of Theorem 4.1 to estimate the
ground truth of the instances given the initial parameters, yielding

Ŝ
(1)
1 = {a2, a4}, Ŝ(1)

2 = {a2, a5}, Ŝ(1)
3 = {a2, a3}, Ŝ(1)

4 = {a1, a3}

Estimating the voter reliabilities: In the next step we use these estimates of the ground truths
to compute the MLEs of the voter reliabilities. For instance:

• voter 1 has 2 false positive labels from a total of 12 negative labels so q̂(1)
1 = 2

12 = 0.17.

• voter 1 also has 3 true positive labels out of 8 positive ones so p̂(1)
1 = 3

8 = 0.38.

In the end, we get: {
p̂

(1)
1 = 0.38 p̂

(1)
2 = 0.38 p̂

(1)
3 = 0.88

q̂
(1)
1 = 0.17 q̂

(1)
2 = 0.08 q̂

(1)
3 = 0.17

Estimating the prior parameters: The final step of this iteration consists in updating the
estimations of the prior parameters by applying Proposition 4.2 sequentially. First we estimate
t̂
(1)
1 given Ŝ(1) and t̂(0)

2 , . . . , t̂
(0)
5 by maximum likelihood estimation. We first compute α1, α1 and

occ(a1): 
α1 = β(0, 1, t2, . . . , t5) = 0.3125
α1 = β(1, 2, t2, . . . , t5) = 1
occ(a1) = 1

Then the maximum likelihood estimation of t1 is:

t̂1 = occ(a1)α1

(L− occ(a1))α1 + occ(a1)α1
= 0.09

The next steps are to estimate t̂(1)
2 given t̂(1)

1 , t̂
(0)
3 , t̂

(0)
4 , t̂

(0)
5 and so on. Finally, we get:

t̂
(1)
1 = 0.09, t̂(1)

2 = 0.56, t̂(1)
3 = 0.28, t̂(1)

4 = 0.14, t̂(1)
5 = 0.20

Fix ε = 10−5. We repeat all steps until convergence (according to ℓ∞), after 5 full iterations. In
the fixed point, the estimations of the ground truths are:

Ŝ1 = {a2, a3}, Ŝ2 = {a2, a3}, Ŝ3 = {a2, a3}, Ŝ4 = {a3}
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4.4 Experiments

4.4.1 Experiment Design and Data Collection

We designed an image annotation task as a football quiz.2 We selected 15 pictures taken during
different matches between two of the following teams: Real Madrid, Inter Milan, Bayern Mu-
nich, Barcelona, Paris Saint-Germain. In each picture, it may be the case that players from both
teams appear, or players from only one team, therefore l = 1 and u = 2. Each participant is
shown the instances one by one, and is each time asked to select all the teams she can spot (see
Figure 4.3).

The images’ saturation and hue were edited in order to make the task less obvious (see the before
and after versions in Figure 4.1 and Figure 4.2 respectively 3).

We designed a simple incentive for participants, consisting in ranking them according to the
following principle:

• The participants get one point whenever their answer contains all correct alternatives for a
picture. They are then ranked according to their cumulated points.

• To break ties, the participant who selected a smaller number of alternatives overall is
ranked first.

We gathered the answers of 76 participants (only two of them spammed by simply selecting all
the alternatives). We show how the top participants are ranked in Figure 4.4

4.4.2 Descriptive Analysis of Collected Answers

To see how the participants behave given the ranking incentives that we defined in the foot-
ball quiz, we plotted the histogram of the sizes of the answers (see Figure 4.5). It appears that
although the platform enables to select every alternative, only two voters did so for all the ques-
tions. Moreover, figures 4.5b and 4.5a show that the majority of the voters tend to select exactly
the number of teams that appear in an image.

4.4.3 Anna Karenina’s Initialization

Inspired by the Anna Karenina Principle in [Meir et al., 2019], we devised an initialisation
strategy for the voters’ reliabilities. In his book, Leo Tolstoi stated that "Happy families are all
alike; every unhappy family is unhappy in its own way". In the same spirit, it seems reasonable to
make the hypothesis that accurate users tend to make similar answers, whereas inaccurate users
have each their own way of being inaccurate.

2The annotations dataset and the code are available at:
https://github.com/taharallouche/Football-Quiz-Crowdsourcing.

3Note that the difference is only visible on a coloured printout
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Figure 4.1: The images to be labeled before editing
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Figure 4.2: The images to be labeled after editing

102



CHAPTER 4. MULTI-WINNER EPISTEMIC VOTING: COMMITTEE-SIZE AS PRIOR
KNOWLEDGE

Figure 4.3: Example of Annotation Task

Figure 4.4: Top quiz scores
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(a) Two-winner instances
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(b) Single-winner instances
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Figure 4.5: Histogram of the ballots’ sizes

We use the following heuristic (see Algorithm 2) for the initialization. We used the Jaccard
distance given by:

dJacc(A,B) = |A ∩B|+ |A ∩B|
|A ∪B|

Algorithm 2 Initializing (pi, qi)i
Input: Approval ballots (Azi )z,i
Output: Initialization (p̂(0)

i , q̂
(0)
i )

-Compute wmax = n
1+n , wmin = 1

1+n
-Compute di = ∑

j ̸=i dJacc(Ai, Aj)
-Compute dmax = max di, dmin = min di
-Compute wi = (wmax − wmin)

( 1
di

− 1
dmax

1
dmin

− 1
dmax

)
+ wmin

-Fix p̂(0)
i = 1

2 and q̂(0)
i = 1− ewi −1

ewi +1
2

Remark. The formulas in Algorithm 2 guarantee that a voter’s parameters (p̂(0)
i , q̂

(0)
i ) are such

that her initial weight is equal to wi, and that wmax

wmin
= n which means that initially, the voter
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closest in average to the other voters counts n times the voter with biggest average distance.

Example 4.3. Consider following the approval profile (Table 4.1) for 3 voters, 5 alternatives and
4 Instances. Here we have that:

A1 A2 A3 A4

Voter 1 {a1, a4} {a1} {a3} {a1}
Voter 2 {a2} {a5} {a4} {a1}
Voter 3 {a2, a3, a4} {a2, a3, a5} {a2, a3} {a3}

Table 4.1: Approval Ballots of 3 Voters on 4 Instances

wmax = n

n+ 1 = 0.75, wmin = 1
n+ 1 = 0.25

First, compute the mean Jaccard distance of all voters: d1 = 1.71, d2 = 1.69, d3 = 1.65. So
dmax = d1 = 1.71 and dmin = d3 = 1.65, which means that voter 3 (the closest in average to all
the voters) will get the biggest weight w3 = wmax = 0.75 and voter 1 gets the smallest weight
w1 = wmin. Next, compute the weight that will be assigned to each voter, for instance:

w2 = (wmax − wmin)
1
d2
− 1

dmax

1
dmin
− 1

dmax

+ wmin = 0.38

Now we can set the initial values for the reliability parameters accordingly:

p̂
(0)
2 = 1

2 , q̂
(0)
2 =

1− ew2 −1
ew2 +1
2

We can check that these parameters are such that:

ln

[
p2(1− q2)
q2(1− p2)

]
= w2

After proceeding in the same fashion with all the voters, we get the initial parameters:{
p̂

(0)
1 = 0.5 p̂

(0)
2 = 0.5 p̂

(0)
3 = 0.5

q̂
(0)
1 = 0.44 q̂

(0)
2 = 0.41 q̂

(0)
3 = 0.32

Since the AMLE only guarantees convergence to a local maximum, which makes the result
depending on the initial point, we compared the results of this initialization (Anna Karenina) to
other procedures to motivate its choice, see Figure 4.6, namely we tested:

• Uniform weights: Initially all the voters in the batch are given the same weight.

• Random weights: Initially, for each voter in the batch, pi is randomly picked from (0.5, 1)
and qi is randomly picked from (0, 0.5).

We can notice that these two baseline procedures show very similar performances, and that they
are both outperformed by the Anna Karenina initialization.
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Figure 4.6: Accuracies of different initializations
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4.4.4 Time Complexity of AMLE
We assessed the execution time of the AMLE algorithm with and without constraints (refered
to as AMLE and AMLEf ), run on Intel Core i7-10610U CPU @1.80Ghz 4 cores, 8 threads and
32Gb RAM. Results are show in Figure 4.7. We can see that whereas the number of iteration
does not seem to grow as the number of voter increases, the execution time of AMLE does,
especially around 40 voters.

4.4.5 Results
4.4.5.1 Hamming and 0-1 Subset Accuracies

To assess the importance of prior information on the size of the ground truth, we tested the
AMLE algorithm with free bounds (l, u) = (0,m) (will be referred to as AMLEf ) and the
AMLEc algorithm with (l, u) = (1, 2).

We also apply the modal rule [Caragiannis et al., 2020] which outputs the subset of alternatives
that most frequently appears as an approval ballot

arg max
S∈S

|i ∈ N,S = Ai|

and a variant of label-wise majority rule which outputs the subset of alternatives S such that:

a ∈ S ⇐⇒ |i ∈ N, a ∈ Ai| >
n

2

If this subset is empty it is replaced by the alternative with highest approval count, and if it has
more than two alternatives then we only keep the top-2 alternatives.

We took 20 batches of n = 10 to n = 74 randomly drawn voters and applied the four methods to
all of them (see Figure 4.8a,4.8b).

As classically done in the literature [Nguyen et al., 2020], we use the Hamming accuracy:

1
mL

L∑
z=1

[
|S∗
z ∩ Ŝz|+ |S∗

z ∩ Ŝz|
]

and the 0/1 accuracy:
1
L

L∑
z=1
1{S∗

z = Ŝz}

as metrics and report their 0.95 confidence intervals.

We notice that the majority and the modal rule are outperformed by AMLE, which can be ex-
plained by the fact that they do not take into account the voters’ reliabilities. Comparing the
performances of AMLEc and AMLEf emphasizes the importance of the prior knowledge on the
committee size to improve the quality of the estimation.
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Figure 4.8: Accuracies of different aggregation methods
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4.4.5.2 Harmonic Loss

In addition to the Hamming and 0-1 subset accuracies, we introduced a new metric which can be
considered as an intermediate one. The Hamming metric considers each label independently and
the 0-1 subset loss considers them jointly in a strict fashion, whereas the harmonic accuracies
that we introduced considers all the instance’s labels jointly but with different convex weights
depending on the number of correctly predicted ones:

T (S, S∗) =
|S∩S∗|∑
k=1

1
6− k

So out of the 5 labels:

• if 0 labels are correct then T = 0.

• if 1 labels is correct then T = 1
5 .

• if 2 labels are correct then T = 1
5 + 1

4 .

• if 3 labels are correct then T = 1
5 + 1

4 + 1
3 .

• if 4 labels are correct then T = 1
5 + 1

4 + 1
3 + 1

2 .

• if 5 labels are correct then T = 1
5 + 1

4 + 1
3 + 1

2 + 1.

Defined as such, this accuracy favours the estimators that are able to correctly estimate most of
the instance’s labels without being as rigid as the 0-1 subset accuracy.

This metric is reminiscent of the Proportional Approval Voting rule for multi-winner elections,
which defines the score of a subset of candidates W for a voter as 1 + 1

2 + . . .+ 1
j
, where j is the

number of candidates in W approved by the voter. We could consider more generally a class of
metrics defined by a vector w⃗, such that T (S, S∗) = w|S∩S∗|. This class generalizes Hamming,
0-1 and Harmonic and is reminiscent of the class of Thiele rules (see for instance [Lackner and
Skowron, 2020b] for an extended presentation of multi-winner approval-based committee rules).

In Figure 4.9 we show the evolution of the Harmonic accuracies when the number of randomly
picked voters in each batch increase.

4.4.5.3 Comparing the accuracies

We show in Table 4.2 the accuracies of the considered methods when applied to the entire an-
notation dataset. The results show that AMLE outperforms the baselines according to the three
metrics. Moreover, when AMLE incorporates the prior knowledge, its accuracy increases.
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Figure 4.9: Normalized Harmonic accuracy

4.5 The Case of Fixed Committee-size: Extension of Theorem
3.4 to Multi-winner Settings

In this section, we extend the result presented in Theorem 3.4 to the classical multi-winner case
with fixed committee-size k.

4.5.1 Noise Model and Estimations
We suppose that the ground truth is a set of k alternatives S∗ ⊆ Sk = {S ⊆ X , |S| = k}. The
input still consists of approval ballots A = (A1, . . . , An). The approvals are generated from the
following noise model:

P (a ∈ Ai|S∗ = S) =
{
pi if a ∈ S
1− pi if a /∈ S

Theorem 4.5. For m ≥ 2 alternatives and for a committee-size k ≥ 1 , we have that:

Ep[|Ai|] = (m− k)− (m− 2k)p
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AMLEc AMLEf Modal Majority
Hamming 0.88 0.86 0.84 0.80
Harmonic 0.78 0.74 0.69 0.61
0/1 0.60 0.53 0.46 0.26

Table 4.2: Hamming and 0/1 accuracy for entire dataset

Just like in the single-winner case, this formula expressing the expected size of the ballot as a
linear function of the reliability p would enable us to have an estimation of this latter by only
observing the ballot, not needing any further information about the ground truth.

Proof. Let S ∈ Sk:

Ep[|Ai||S∗ = S] = E[
∑
b∈X

1{b ∈ Ai}|S∗ = S]

=
∑
b∈X

P (b ∈ Ai|S∗ = S)

=
∑
b∈S

P (b ∈ Ai|S∗ = S) +
∑
b/∈S

P (b ∈ Ai|S∗ = S)

= k × p+ (m− k)(1− p)
= (m− k)− (m− 2k)p

Thus we have that:

Ep[|Ai|] =
∑
S∈Sk

Ep[|Ai||S∗ = S]P (S∗ = S)

=
∑
S∈Sk

[(m− k)− (m− 2k)p]P (S∗ = S)

= (m− k)− (m− 2k)p

Remark. We recover the same expression as in Theorem 3.4 in the single-winner case k = 1.

4.5.2 Experiments
In the same fashion as in Section 3.5, we test this size-related weighting technique on real image
annotations. We used a subset of the football quiz dataset. We only kept instances where the
photo displays players from exactly two teams. Thus we have that k = 2.

We estimated the reliability parameter pzi of each voter for each single instance using Theorem
4.5 as follows:

p̂zi = proj
[ε,1−ε]

m− k − |Azi |
m− 2k
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The projected quantity is simply the maximum likelihood estimation of pzi with a single sample
(the actual observation of the voter’s ballot). We project it into a closed interval to avoid having
p̂zi = 1 or p̂zi = 0. The voters are then weighed accordingly, that is:

wzi = ln p̂zi
1− p̂zi

and we output the k alternatives with highest weighted approval scores.

We compared this method to two baseline multi-winner voting rules namely:

• Top-2: This rule simply outputs the two alternatives having the two greatest number of
approvals.

• Modal: This rule selects the ballot that was casted by the greatest number of voters.

The results are shown in Figure 4.10.

We observe that, just like the other two baseline rules, the size-decreasing rule has a tendency to
be more accurate, for both accuracy metrics, as the number of considered voters increases. It is
also clear that it significantly outperforms the baseline.

4.6 Conclusion
We study multi-winner approval voting from an epistemic point of view. We propose a noise
model that incorporates the prior belief about the size of the ground truth. Then we derive an
iterative algorithm to intertwinedly estimate the ground truth labels, the voter noise parameters
and the prior belief parameters and we prove its convergence. Our algorithm is based on a sim-
plification of Expectation-Maximization (EM), and its simple steps are more easily explainable
to voters than EM and other similar statistical learning approaches.

We also generalized the size matters principle to multi-winner situations with a fixed ground truth
size. We showed how to estimate the voters’ reliabilities by merely observing the size of their
ballots, and tested it on our image annotation dataset to prove that it outperforms the baselines.

Although we mainly considered a general multi-instance task that fits the collective annotation
framework, where each voter answers several questions on the same set of alternatives, we can
nonetheless apply the same algorithm to single-instance problems (such as the allocation of
scarce medical resources) where only one question is answered. In this case, the prior parameters
cannot be updated and it suffices to fix them once and for all and alternate between the estimation
of the ground truth and the voter parameters.

In some contexts (e.g., patients in a hospital), alternatives and votes are not observed at once
but streamed. To cope with this online setup we consider extending our AMLE algorithm in the
spirit of [Cappé and Moulines, 2009].
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5
Multi-winner Epistemic Voting: Committee-size as

Constraint

Abstract
Epistemic social choice considers votes as noisy estimates of a ground truth. In some contexts
the truth consists of a set of objective winners. Whilst the usual aim of epistemic voting rules is
the uncovering of the whole ground truth, we focus here on cases where some exogenous size
constraints bears upon the number of winners in the output even though the size of the ground
truth may lie outside this interval. The prototypical illustration of such cases is a master pro-
gram’s selection committee deciding on accepting or rejecting a number of applicants , based on
their academic excellence, with a limited number of seats. We introduce two solution concepts:
the most likely admissible utility maximizer and the admissible expected utility maximizer, that
we test on synthetic data.

5.1 Framework and Objective

5.1.1 Votes, Ground Truth and External Constraints
Consider a set of n voters N = {1, . . . , n} and a set of m alternatives X = {a1, . . . , am}.
Among these alternatives, there exists an unknown subset of objectively good/eligible alternatives
(patients really in need of medical resources, students admissible to a program, non-defective
products that can already be put on sale, promising job applicants in a shortlisting phase []..).
Voters are asked to approve all the alternatives that they think are eligible, which yields the
approval profile A = (A1, . . . , An).

We suppose in this chapter that due to some external requirements (limited resources, client order
satisfaction..), the number of alternatives to be selected in the output, once the approval ballots
of the voters have been aggregated, ought to be bounded by a given lower bound l and a given
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upper bound u. We say that a subset of alternatives is admissible if and only if satisfies these size
constraints. The annex problem of approval-based shortlisting of candidates has been studied in
[Lackner and Maly, 2021] with a classical (non-epistemic) voting approach.

The goal is hence to aggregate the votes in order to select the best admissible subset of alterna-
tives. To formally define what we mean by “best”, we define the following notion of utility.

5.1.2 Utility
Let α+, α−, β+, β− ∈ R such that α+ > α− and β+ < β−. For a ground truth subset S∗, we
define the utility of any subset of alternatives S as:

u(S|S∗) =
∑
a∈S

u+(a|S∗) +
∑
a/∈S

u−(a|S∗)

where:

u+(a|S∗) =
{
α+ if a ∈ S∗ True Positive
β+ if a /∈ S∗ False Positive , u−(a|S∗) =

{
α− if a ∈ S∗ False Negative
β− if a /∈ S∗ True Negative

So α+, α− can be interpreted as respectively the utility of selecting an alternative in S∗ and the
cost of not selecting it. From now on, we will denote u(S) instead of u(S|S∗) for ease of reading.
Notice that:

u(S) =
∑
a∈X

u−(a) +
∑
a∈S

[
u+(a)− u−(a)

]

We define f(a) = u+(a) − u−(a) which is equal to α = α+ − α− > 0 if a ∈ S∗ and is equal
to −β = β+ − β− < 0 if a /∈ S∗. We extend the domain of f to the set of all possible subsets
of alternatives S = 2X by defining f(S) = ∑

a∈S
f(a). We can notice that maximizing u(S) is

equivalent to maximizing f(S).

So all in all, we want to find an admissible subset in Sl,u = {S ⊆ X , l ≤ |S| ≤ u} which
maximizes f . However, the challenge is that the utility cannot be directly computed since it
depends on the ground truth S∗ which is unknown. To solve this issue, we will define a noise
model consisting of a prior distribution on S∗ and conditional distribution on the approval ballots
given the ground truth, which will be used later on to propose two solution concepts.

Remark. This problem can be seen as a generalization of a knapsack problem to situations
where the utility of each item is not a priori known, but is only accessible through the noisy
reports of voters.

5.1.3 The Noise Model
For all 1 ≤ j ≤ m, let tj = P (f(aj) = α) = P (aj ∈ S∗) the prior probability of aj being
eligible and suppose that the events {f(aj) = α} are mutually independent. This assumption
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is realistic because we do not have any prior on the size of S∗: so for instance the probability
of student s being objectively above the bar does not change once we learn about other students
being below or above the bar. Also letA = (A1, . . . , An) be the approval profile drawn according
to the following distribution:

P (a ∈ Ai|S∗ = S) =
{
pi if a ∈ S
qi if a /∈ S

where pi (resp. qi) is the probability that a voter approves an objectively good (resp. bad)
alternative. We also keep the following independence assumptions as in Chapter 4:

(1) Voters’ ballots are independent given the ground truth.

(2) A voter’s decisions to approve or not different alternatives are independent.

We suppose in this part that all the parameters (pi, qi)i∈N and (tj)j≤m are known. In practice this
parameters can be:

• Fixed by a central decision maker: For instance when a jury decides on the admission
of students to a master program, a central decision maker can choose to make the vote
anonymous and assign common reliabilities (p, q) to all the voters, and to make the vote
neutral she can assign equal prior t to all the candidates. This can also not be the case if she
prefers to put more weight on the approvals of some voters or to favor some candidates.

• Estimated from past observations: For instance in applications where the vote is repeated
through time. Consider a technical support center platform, where each time a client sub-
mits a question to a chatbot, different algorithms analyse the message and pick a set of
suitable solutions, then their votes are aggregated into a certain number of final sugges-
tions to be given to the client.

5.1.4 The Solution Concepts
Recall that we focus on finding solutions to estimate the admissible subset of alternatives max-
imizing f . In the following paragraphs we will introduce, study and compare two different
solution concepts:

• The most likely admissible utility maximizer: among all the possible sets of winners that
respect the size constraints, which one has the highest probability of maximizing the util-
ity?

• The expected utility maximizer: which admissible set of winners maximizes the expected
utility among all the possible sets that verify the size constraints?

Even though maximizing an expected utility is more common in decision making theory, we
chose to scout another method consisting of taking the decision that is the most likely optimal
among all possible actions. We will see that this method has some advantages like robustness to
inexact utility values.
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We will also see that there is a strong connection between this interpretation (committee-size as
constraint) and the former one (committee-size as prior knowledge). We will show that in the
case of equality constraints l = u = k, the two interpretations yield the same output, consisting
of the top-k alternatives according to their weighted approval scores.

Recall the definitions of section 4.2, namely the weighted approval score:

appw(aj) = ln

(
tj

1− tj

)
+

∑
i:aj∈Ai

ln

(
pi(1− qi)
qi(1− pi)

)

and the threshold

τn =
n∑
i=1

ln

(
1− qi
1− pi

)
and its associated partition of X into:

Sτn
max = {a ∈ A, appw(a) > τn}
Sτn
tie = {a ∈ A, appw(a) = τn}
Sτn
min = X\(Sτn

max ∪ Sτn
tie)

and let:
kτn
max = |Sτn

max|, kτn
tie = |Sτn

tie|, kτn
min = |Sτn

min|

We will suppose, without loss of generality, that:

appw(a1) ≥ · · · ≥ appw(am)

5.2 MLAUM: Most Likely Admissible Utility Maximizer
Let Ml,u = maxS∈Sl,u

f(S) be the unknown maximum value of f for the admissible sets of
alternatives. For a given admissible set of alternatives S we define ψ(S) = P (f(S) = Ml,u|A),
which is the probability of S maximizing the function f . Our goal is to estimate S ∈ Sl,u with
highest probability of f(S) = Ml,u, that is, we seek:

arg max
S∈Sl,u

P (f(S) = Ml,u|A) = arg max
S∈Sl,u

ψ(S)

We will now enumerate some results that will finally lead us into formulating the full algorithm
of estimation of the MLAUM. The first result is a reformulation of Theorem 4.1 with a slight
adaptation to this interpretation. It characterizes the admissible sets which are most likely to
coincide with the ground truth (but as we will see later, they do not always coincide with the
MLAUM, but are potential candidates).

Proposition 5.1. S̃ ∈ arg maxS∈Sl,u
P (S∗ = S|A) if and only if there exists k ∈ [l, u] such that

S̃ = {a1, . . . , ak} and: {
|S̃ ∩ Sτn

max| = min(u, kτn
max)

|S̃ ∩ Sτn
min| = max(0, l − kτn

tie − kτn
max)
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Proof. The likelihood of an admissible subset S ∈ Sl,u:

L(S) ∝
∏
aj∈S

tj
∏
aj /∈S

(1− tj)
n∏
i=1

[1− pi
1− qi

]|S| [pi(1− qi)
qi(1− pi)

]|Ai∩S|

Maximizing this likelihood coincides exactly with the optimization problem we solved in proof
of Theorem 4.1.

See Example 4.1 for an illustration.

Now we will state two lemmas that will lead to the final result on the estimation of the maximizer
of ψ. The first one expresses the conditional probability of some alternative being in the ground
truth, given the votes, as an increasing function (precisely, a logistic function) of its weighted
approval score. The second lemma explicits the probability of a given admissible set of alter-
natives S being a maximizer of the utility f , namely ψ(S), as a function of the aforementioned
alternatives’ probabilities.

Lemma 5.2. For any alternative aj ∈ X denote by:

Aj = (Aj1, . . . , Ajn) = (1{aj ∈ A1}, . . . ,1{aj ∈ An})

the answers of the voters concerning alternative aj . Also denote:

P j = P (aj ∈ S∗|Aj) = P (Aj|aj ∈ S∗)P (aj ∈ S∗)
P (Aj)

the posterior probability of aj being in the ground truth S∗. Then:

P j = exp(appw(aj)− τn)
1 + exp(appw(aj)− τn)

In particular, P j increases with appw(aj).

Proof. Let aj ∈ X . We have that:

P j = P (Aj|aj ∈ S∗)P (aj ∈ S∗)
P (Aj)

= P (Aj|aj ∈ S∗)P (aj ∈ S∗)
P (Aj|aj ∈ S∗)P (aj ∈ S∗) + P (Aj|aj /∈ S∗)P (aj /∈ S∗)

=
tj

∏
i:aj∈Ai

pi
∏

i:aj /∈Ai

(1− pi)

tj
∏

i:j∈Ai

pi
∏

i:aj /∈Ai

(1− pi) + (1− tj)
∏

i:aj∈Ai

qi
∏

i:aj /∈Ai

(1− qi)

=

tj
1−tj

∏
i:aj∈Ai

pi

qi

∏
i:aj /∈Ai

1−pi

1−qi

1 + tj
1−tj

∏
i:aj∈Ai

pi

qi

∏
i:aj /∈Ai

1−pi

1−qi
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But we have that:

∏
i:aj∈Ai

pi
qi

∏
i:aj /∈Ai

1− pi
1− qi

=
∏

i:aj∈Ai

pi(1− qi)
qi(1− pi)

n∏
i=1

1− pi
1− qi

So:
tj

1− tj
∏

i:j∈Ai

pi
qi

∏
i:j /∈Ai

1− pi
1− qi

= exp(appw(aj)− τn)

and we conclude that:

P j = exp(appw(aj)− τn)
1 + exp(appw(aj)− τn)

Example 5.1. Consider two voters and two alternatives X = {a, b, c}. We suppose that ta =
tb = tc = 0.6 and that the voters’ reliabilities are (p1, q1) = (0.9, 0.3) and (p2, q2) = (0.6, 0.4).
First, we can compute the weight of each voter:

w1 = ln

(
p1(1− q1)
q1(1− p1)

)
= 3, 04, w2 = ln

(
p2(1− q2)
q2(1− p2)

)
= 0.81

and the threshold:

τ =
2∑
i=1

ln

(
1− qi
1− pi

)
= 2.35

Suppose that A1 = {a, b, c} and A2 = {a}. The weighted approval score of the alternatives are:

appw(a) = 4.25, appw(b) = appw(c) = 3.44

Now, given the formula:

P j = exp(appw(aj)− τn)
1 + exp(appw(aj)− τn)

we can compute the posterior probabilities that each alternative is in the ground truth:

P 1 = 0.87, P 2 = P 3 = 0.75

Lemma 5.3. Suppose l < u. Then for any S ∈ Sl,u:

ψ(S) =



∏
aj /∈S

(1− P j) , if |S| = l∏
aj∈S

P j , if |S| = u∏
aj∈S

P j ∏
aj /∈S

(1− P j) , if l < |S| < u

where ψ(S) = P (f(S) = Ml,u|A) is the probability that the admissible subset S maximizes the
utility f .
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Proof. Suppose l < u and let S ∈ Sl,u:

- If |S| = l then f(S) = Ml,u ⇐⇒ S∗ ⊆ S: suppose that ∃b ∈ S∗ \ S such that f(b) = α > 0,
then f(S ∪ b) > f(S). The converse is immediate. So:

ψ(S) = P (A⋂(S∗ ⊆ S))
P (A) =

∑
S′⊆S

P (A⋂(S∗ = S ′))
P (A)

=
∑
S′⊆S

P (A ⋂
aj∈S′

(aj ∈ S∗) ⋂
aj /∈S′

(aj /∈ S∗))

P (A)

=
∑
S′⊆S

P (
m⋂
j=1

Aj
⋂

aj∈S′
(aj ∈ S∗) ⋂

aj /∈S′
(aj /∈ S∗))

P (
m⋂
j=1

Aj)

=
∑
S′⊆S

P ( ⋂
aj∈S′

((aj ∈ S∗)⋂Aj) ⋂
aj /∈S′

((aj /∈ S∗)⋂Aj))
P (

m⋂
j=1

Aj)

=
∑
S′⊆S

∏
aj∈S′

P ((aj ∈ S∗)⋂Aj)
P (Aj)

∏
aj /∈S′

P ((aj /∈ S∗)⋂Aj)
P (Aj)

=
∑
S′⊆S

∏
aj∈S′

P (aj ∈ S∗|Aj)
∏
aj /∈S′

P (aj /∈ S∗|Aj)

=
∑
S′⊆S

∏
aj∈S′

P j
∏
aj /∈S′

(1− P j) =
∏
aj /∈S

(1− P j)

- If |S| = u then f(S) = Ml,u ⇐⇒ S ⊆ S∗ (by similar argument). So:

ψ(S) = P (A ∩ (S ⊆ S∗))
P (A) =

∑
S⊆S′

P (A ∩ (S∗ = S ′))
P (A)

=
∑
S⊆S′

∏
aj∈S′

P j
∏
aj /∈S′

(1− P j) =
∏
aj∈S

P j

- If l < |S| < u then f(S) = Ml,u ⇐⇒ S = S∗: suppose that ∃b /∈ S such that f(b) = α > 0
then f(S ∪ b) > f(S), and if ∃a ∈ S such that f(a) = −β < 0 then f(S \ a) > f(S). The
converse is immediate. So

ψ(S) = P (A ∩ S = S∗)
P (A) =

∏
aj∈S

P j
∏
aj /∈S

(1− P j)

Example 5.2. Recall the settings of Example 5.1, and suppose that the bounds are (l, u) = (1, 3).
Since these bounds only bear on the size of the output, they do not affect the probabilities of the
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alternatives to be in the ground truth that we computed in Example 5.1. We will now compute
the probability that each admissible subset maximizes the utility. The empty set is the only non-
admissible subset. For every singleton {a}, {b} or {c}, the probability of maximizing the utility
f is : 

ψ({a}) = (1− P b)(1− P c) = 0.0625
ψ({b}) = (1− P a)(1− P c) = 0.0325
ψ({c}) = (1− P a)(1− P b) = 0.0325

The probabilities of the pairs of alternatives maximizing the utility are:
ψ({a, b}) = P aP b(1− P c) = 0.156
ψ({a, c}) = P aP c(1− P b) = 0.156
ψ({b, c}) = P bP c(1− P a) = 0.073

Finally, the probability that the set of all alternatives {a, b, c} maximizes f is:

ψ({a, b, c}) = P aP bP c = 0.467

Now we can state the main result. It claims that the MLAUM coincides either with the admissible
set that is most likely to be the ground truth (which were characterized in Proposition 5.1) or with
one of the sets of top-l or top-u alternatives according to their weighted approval score.

Theorem 5.4. Suppose l < u and define S̃l = {a1, . . . , al} and S̃u = {a1, . . . , au} and S̃ =
arg maxS∈Sl,u

P (S∗ = S|A). We have that:

arg max
S∈Sl,u

ψ(S) = arg max
S∈S̃∪{S̃l,S̃u}

ψ(S)

Proof. Let S ∈ Sl,u:

If |S| = l then by Lemma 5.3 we have that ψ(S) = ∏
aj /∈S(1 − P j). We also know by Lemma

5.2 that P j increases with appw(aj) which implies that ψ(S) ≤ ψ(S̃l).
Similarly, if |S| = u then ψ(S) = ∏

aj∈S P
j ≤ ψ(S̃u).

Now, suppose that l < |S| < u, we have:

ψ(S) =
∏
aj∈S

P j
∏
aj /∈S

(1− P j) = P (S∗ = S|A)

So for any S̃ ∈ S̃ = arg maxS∈Sl,u
P (S∗ = S|A):

ψ(S) ≤ P (S∗ = S̃|A) ≤
∏
aj∈S̃

P j
∏
aj /∈S̃

(1− P j) ≤ ψ(S̃)
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Remark. If l = u = k, for any S ∈ Sk we have that:

f(S) = Mk ⇐⇒ S ⊆ S∗or (S ̸⊂ S∗and S ⊆ S∗)
⇐⇒ S ⊆ S∗or S∗ ⊊ S

So we can write:
ψ(S) = P (S ⊆ S∗|A) +

∑
S′⊊S

P (S∗ = S ′|A)

and we have that arg max
S∈Sk

ψ(S) = S̃k

These results enable us to define the following algorithm (see algorithm 3) for the estimation
of arg maxS∈Sl,u

ψ(S). It boils down to computing the most likely admissible set to coincide
with the ground truth, and then compare it to the top-l and top-u sets. The one with the highest
probability of maximizing the utility is output.

Algorithm 3 Estimation of arg maxS∈Sl,u
P (f(S) = Ml,u|A) in case l < u

Input: Approval ballots (Ai)1≤i≤N and bounds l < u

Output: Estimation Ŝ
-Compute appw(a) for each alternative a ∈ X , and threshold τn
-Rank alternatives according to appw(a): appw(a1) ≥ · · · ≥ appw(am)
-Apply Theorem 4.1 to compute S̃ = arg maxS∈Sl,u

P (S = S∗|A)
-Apply Lemma 5.3 to compute ψ(S̃l), ψ(S̃u) and ψ(S̃) for any S̃ ∈ S̃
return Ŝ = arg maxS∈S̃∪{S̃l,S̃u} ψ(S)

Example 5.3. Consider 5 students X = {a, b, c, d, e} applying to a scholarship and a selection
committee composed of 10 voters N all sharing the same parameters (p, q) = (0.7, 0.4). The
weight of each voter is w = ln p(1−q)

q(1−p) = 1.25 and τn = 6.93. We consider the constraints
(l, u) = (1, 4), where at least one scholarship must be accorded, and for budget limitations, the
department can only afford a maximum of four scholarships.

First, suppose that the candidate d is favored for some outstanding past achievement, so td = 0.6
and tj = 0.5 for all the remaining candidates a, b, c and e. Consider also the following approval
counts (and probabilities P j = P (aj ∈ S∗|Aj) = exp(appw(aj)−τn)

1+exp(appw(aj)−τn) ):

Candidate a b c d e
Approval count 9 8 7 5 5

P j 0.98 0.95 0.86 0.43 0.34

Noticing that in general aj ∈ Sτn
max if and only if P j > 0.5, we can easily check, by Proposition

5.1 that S̃ = arg maxS∈Sl,u
P (S = S∗|A) = {a, b, c}: we have that Sτn

max = {a, b, c}, Sτn
tie = ∅
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and Sτn
min = {d, e}, and we know that S̃ consists of the top-k alternatives, such that:

k ∈ [1, 4]
|S̃ ∩ Sτn

max| = min(u, kτn
max) = 3 =⇒ {a, b, c} ⊆ S̃

|S̃ ∩ Sτn
min| = max(0, l − kτn

tie − kτn
max) = 0 =⇒ d, e /∈ S̃

So the only possibility is S̃ = {a, b, c}. We also have S̃l = {a} and S̃u = {a, b, c, d}. We want to
find:

arg max
S∈Sl,u

ψ(S)

By Theorem 5.4, we only need to compare ψ of the three mentioned sets:
ψ(S̃l) = (1− P b)(1− P c)(1− P d)(1− P e) = 0.002
ψ(S̃u) = P a × P b × P c × P d = 0.34
ψ(S̃) = P a × P b × P c(1− P d)(1− P e) = 0.3

Since ψ(S̃u) > ψ(S̃) > ψ(S̃l), we have:

arg max
S∈Sl,u

ψ(S) = S̃u = {a, b, c, d}

Now suppose rather that tj = 0.5 for all the candidates. And that candidate e loses an approval:

Candidate a b c d e
Approval count 9 8 7 5 4

P j 0.98 0.95 0.86 0.34 0.12

We now have that:
ψ(S̃l) = (1− P b)(1− P c)(1− P d)(1− P e) = 0.004
ψ(S̃u) = P a × P b × P c × P d = 0.27
ψ(S̃) = P a × P b × P c(1− P d)(1− P e) = 0.46

Since ψ(S̃) > ψ(S̃u) > ψ(S̃l), we have:

arg max
S∈Sl,u

ψ(S) = S̃ = {a, b, c}

Surprisingly, estimating the most likely admissible utility maximizer does not depend on the
exact values of the utility. It only requires that α and β are positive, which means that the net
utility of a good alternative and the net cost of a bad alternative are positive. This makes the
MLAUM a suitable solution in situations where assessing the exact utility values is difficult. We
will see that this is not the case for the admissible expected utility maximizer.
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5.3 AEUM: Admissible Expected Utility Maximizer
Another natural approach, instead of searching the admissible set of alternatives S ∈ Sl,u with
maximum probability of maximizing f , would be to seek the admissible set maximizing the
expected value of f , that is:

arg max
S∈Sl,u

E [f(S)|A]

Definition 5.1. In light of Definition 4.2, we introduce a new threshold:

τ ′
n = τn + log β

α

where:

τn =
n∑
i=1

ln

(
1− qi
1− pi

)
We define also the associated partition:

Sτ
′
n
max = {a ∈ X , appw(a) > τ ′

n}
S
τ ′

n
tie = {a ∈ X , appw(a) = τ ′

n}
S
τ ′

n
min = X\Sτ ′

n
max ∪ S

τ ′
n
tie

We also denote kτ
′
n
max = |Sτ ′

n
max|, k

τ ′
n
tie = |Sτ

′
n
tie|, k

τ ′
n
min = |Sτ

′
n
min|.

In contrast with the threshold τn introduced in Definition 4.2, which is agnostic to the utility
levels α and β, the new threshold τ ′

n contains a new element log β
α

which calibrates its selectivity
according to the ratio of the (dis)utility of the alternatives:

• When β > α the cost of an objectively bad alternative is higher than the utility of an
objectively good alternative. In this case, we have that log β

α
> 0, and the threshold τ ′

n

is set higher than τn. This implies that it requires an alternative to be backed by more
approval votes or prior evidence to be considered as a potentially good one.

• When α > β the utility of an objectively good alternative exceeds the cost of an objectively
bad alternative. We have that log β

α
< 0, and the threshold τ ′

n is less risk-averse than τn
since the alternatives need less weighted approval scores to get above it.

Theorem 5.5. S̃ ∈ arg maxS∈Sl,u
E [f(S)|A] if and only if there exists k ∈ [l, u] such that

S̃ = {a1, . . . , ak} and: {
|S̃ ∩ Sτ ′

n
max| = min(u, kτ ′

n
max)

|S̃ ∩ Sτ
′
n
min| = max(0, l − kτ

′
n
tie − kτ

′
n
max)

Remark. In particular, if α = β then the set of admissible alternatives maximizing the expected
value of f coincides with the (admissible) set of alternatives most likely to be the ground truth
(characterized in Theorem 4.1):

arg max
S∈Sl,u

E [f(S)|A] = arg max
S∈Sl,u

P (S∗ = S|A)
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Proof. First, notice that for a set S, the possible values that f(S) can take is the set of quantities
α|S| − (α + β)v where v ∈ [|0, |S||] is the number of "non-eligible" alternatives in S. So the
expectation can be written as:

E [f(S)|A] =
|S|∑
v=0

(α|S| − (α+ β)v)P (|S ∩ S∗| = |S| − v|A)

=
|S|∑
v=0

(α|S| − (α+ β)v)×
∑

x∈{0,1}|S|∑
xj=|S|−v

∏
aj∈S

(P j)xj (1− P j)1−xj

Since the alternatives are ranked according to appw(aj) (and hence according to P j) it easy to
prove that for any k and S such that |S| = k we have that E [f(S)|A] ≤ E [f(Sk)|A] where
Sk = {a1, . . . , ak}. Moreover, if l < u we have that for any k ∈ [|l, u− 1|]:

E [f(Sk+1)|A] =
k+1∑
v=0

(αk + α− (α + β)v)P (|Sk+1 ∩ S∗| = k + 1− v|A)

=
k+1∑
v=0

(αk + α− (α + β)v)
∑

x∈{0,1}k+1∑
xj=k+1−v

∏
aj∈Sk+1

(P j)xj (1− P j)1−xj

=
k+1∑
v=0

(αk + α− (α + β)v)
∑

x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xjP k+1

+
k+1∑
v=0

(αk + α− (α + β)v)
∑

x∈{0,1}k∑
xj=k−v+1

k∏
j=1

(P j)xj (1− P j)1−xj (1− P k+1)

= P k+1
k∑
v=0

(αk − (α + β)v)
∑

x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

+ αP k+1
k∑
v=0

∑
x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

+ (1− P k+1)
k+1∑
v=1

(αk + α− (α + β)v)
∑

x∈{0,1}k∑
xj=k−v+1

k∏
j=1

(P j)xj (1− P j)1−xj

= P k+1E [f(Sk)|A] + αP k+1
k∑
v=0

∑
x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj
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+ (1− P k+1)
k∑
v=0

(αk − β − (α + β)v)
∑

x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

= P k+1E [f(Sk)|A] + αP k+1
k∑
v=0

∑
x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

+ (1− P k+1)E [f(Sk)|A]− β(1− P k+1)×
k∑
v=0

∑
x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

= E [f(Sk)|A] + ((α + β)P k+1 − β)
k∑
v=0

∑
x∈{0,1}k∑
xj=k−v

k∏
j=1

(P j)xj (1− P j)1−xj

︸ ︷︷ ︸
>0

So we have that:

E [f(Sk+1)|A] > E [f(Sk)|A] ⇐⇒ P k+1 >
β

α + β

⇐⇒ exp(appw(ak+1)− τ ′
n) ≥ β

α

⇐⇒ ak+1 ∈ Sτ
′
n
max

and:
E [f(Sk+1)|A] = E [f(Sk)|A] ⇐⇒ ak+1 ∈ Sτ

′
n
tie

Thus we can proceed exactly like in proof of Theorem 4.1 to characterize arg maxS∈Sl,u
E [f(S)|A].

Example 5.4. Recall the settings of Example 5.3 with 5 candidates and 10 voters N all sharing
the same parameters (p, q) = (0.7, 0.4). All the voters share the same weight w = 1.25, and the
threshold is equal to τn = 6.93. We keep the same constraints (l, u) = (1, 4), the same prior
information, namely td = 0.6 and ta = tb = tc = te = 0.5, and the same approval counts:

Candidate a b c d e
Approval count 9 8 7 5 5

Prior 0.5 0.5 0.5 0.6 0.5
appw 11.25 10 8.75 6.65 6.25

If we set α and β such that α = β we have that τ ′
n = τn and thus:

arg max
S∈Sl,u

E [f(S)|A] = arg max
S∈Sl,u

P (S = S∗|A) = {a, b, c}
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Now suppose that β = 10α, then τ ′
n = τn + ln(10) = 9.23, thus we have that Sτ

′
n
max = {a, b} and

S
τ ′

n
min = {c, d, e}. We can easily check that in this case:

arg max
S∈Sl,u

E [f(S)|A] = {a, b}

Recalling that the most likely admissible utility maximizer in this case is the set {a, b, c, d}, we
can see how the admissible expected utility maximizer {a, b} adapts to a disutility β which is
greater than the utility α by selecting fewer alternatives.

5.4 Simulations

In order to assess the efficiency of the two approaches for recovering an admissible set maximiz-
ing f , we generate artificial data, namely L instances (ground truths and approval profiles).
Assessing the performances of these methods on real data is challenging because, usually, the
ground truth is not accessible, and the decision that we make affects it. For instance, in the
master’s program selection problem, once an application is rejected, it is not possible to know
whether the candidate was objectively bad or wrongly discarded. Also, if we are deciding on
projects to allocate investments to, the decision of not supporting a project affects its performance
(it is more likely to fail for lack of available liquidity) regardless of whether it was objectively
promising or not.

We test and compare both methods with a simpler heuristic that we will introduce further, ac-
cording to two metrics:

• Hamming loss: the proportion of instances where each method succeeds in recovering a
set maximizing f :

1
L

L∑
z=1
1{f(Ŝz) = M z

l,u}

• Mean absolute error MAE: the mean absolute distance between the value of f for the
estimated set and the real maximum of f on the admissible sets:

1
L

L∑
z=1

∣∣∣f(Ŝz)−M z
l,u

∣∣∣

We follow the evolution of these metrics when:

• The number of voters grows.

• The upper bound grows with a fixed lower bound (the constraints loosen).
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5.4.1 Heuristics

A simpler heuristic that we will test consists in estimating the set of all eligible alternatives S∗,
then extracting an admissible set with a maximum number of eligible alternatives (according to
the estimation) and a minimum number of non-eligible alternatives. More precisely:

• If the size of this estimated set lies between the bounds l and u then it suffices to take all
its elements.

• If its size is smaller than the lower bound l, then we take all its elements and randomly
pick the remaining alternatives (l − |Ŝ| alternatives) to satisfy the constraint.

• If its size is bigger than the upper bound u than we randomly pick u elements from the
estimated set.

5.4.2 Generated Data and Parameters

We consider a set of 30 alternatives and we generate 1000 ground truths (binary vectors) with
uniform priors. After that, in Figure 5.1, we fix common values p = 0.6 and q = 0.3 for all the
voters and generate up to 100 votes on each instance and estimate the desired sets for l = 5 and
u = 10, whereas for Figure 5.2, we generate 20 votes and estimate the desired sets for a fixed
l = 5 and varying upper bound u going from l to m = 30.

5.4.3 Results and Observations

In coherence with the core spirit of epistemic social choice, as the number of voters grows, the
output of the three methods gets closer to the ground truth admissible maximizer of f .

For α = β (see Figures 5.2a,5.2b,5.1a,5.1b) the performances of the two solution concepts (most
likely maximizer of f or expectation maximizer) are nearly identical and are always better than
the results given by the heuristic.

For α ̸= β (see Figures 5.2c,5.2d,5.1c,5.1d) we can see that computing the most likely maximizer
performs better than computing the expectation maximizer w.r.t Hamming loss (see Figures 5.2c,
5.1c) whereas the opposite is true w.r.t MAE (see Figures 5.2d, 5.1d).

As the constraints get looser (see Figure 4.1) the heuristic’s performance gets closer to that of
computing the most likely maximizer.

So the experiments show that despite the fact that MLAUM is able to return the exact maximizer
of the utility more often than AEUM, on average, AEUM outputs subsets of alternatives whose
utilities are closer to the maximum. This means that AEUM is always close to the maximum
whereas MLAUM makes fewer, but more grosser, mistakes.
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(b) MAE α = β = 1
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(c) Hamm α = 5, β = 1
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(d) MAE α = 5, β = 1

Figure 5.1: Hamming loss and MAE for different number of voters
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(b) MAE α = β = 1
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(c) Hamm α = 5, β = 1
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(d) MAE α = 5, β = 1

Figure 5.2: Hamming loss and MAE for different constraints
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5.5 Conclusion
We tackled the problem of multi-winner epistemic approval voting with committee-size inter-
preted as exogenous size constraints. Under this interpretation, we consider the problem of,
given the approval votes, selecting a set of alternatives maximizing an a priori unknown under-
lying utility under size constraints (selecting students to a master program, selecting patients to
medical resources, selecting technical solutions to propose to a client..). To solve this problem
we suggest and characterize two solution concepts namely: most likely admissible utility max-
imizer and admissible expected utility maximizer. We tested these two solutions on synthetic
data and showed that they perform differently according to different metrics: although MLAUM
returns the exact utility maximizer more often than AEUM, on average, AEUM outputs subsets
of alternatives whose utilities are closer to the maximum. The next step would be to generalize
this study to cases with more sophisticated utilities than our two-level model, and to situations
with more flexible constraints.
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This thesis focuses on the epistemic view of approval voting with a particular interest in its
application to crowdsourcing collective annotations. After reviewing the existing literature on
the subject, we considered approval voting in two contexts, offering adequate novel solutions to
each of them, namely: the single-winner and the multi-winner cases.

First, we supposed that the ground truth consists of a single alternative (e.g, detecting the lan-
guage of a speech, guessing the city in a photo ...) and that each voter approves all the alternatives
that she believes might be the correct one. Driven by the intuition that smaller ballots are more
accurate, we studied aggregation rules which assign more weight to voters who select fewer al-
ternatives. Such rules are called size-decreasing rules. We begun by positing an approval variant
of the Mallows noise model, where the probability of casting some approval ballot depends on its
(set-)distance to the singleton ground truth, and we observed that when such noises are neutral,
this probability only depends on the size of the ballot and the belonging or not of the correct an-
swer to the ballot. When all the participants share the same level of expertise, we characterized
all the noises whose associated maximum likelihood estimation rule is size-decreasing, showing
that a necessary and sufficient condition is to have a distance where the importance of the be-
longing or not of the ground truth to the ballots decreases for the bigger ones. As an immediate
consequence, we proved that the rules associated to some usual distances such as Jaccard and
Dice are in fact size-decreasing with respective optimal weights wi = 1

|Ai| and wi = 2
1+|Ai| .

Nonetheless, all the additively-separable distances, including the well-known Hamming metric,
do not satisfy the condition. We thus focused on this family of noises and relaxed the assumption
of homogeneously reliable voters. In this context, we gave a sufficient condition to guarantee
that, for any voter, the expected number of approved alternatives increases as the voter gets less
reliable, which motivates the use of size-decreasing aggregations. Although the Hamming dis-
tance satisfies it, we proved that in its specific case, we can give an explicit closed form formula
of the expected size of the ballot as an affine decreasing function of the voter’s competence
Ep[|Ai|] = (m − 1) − (m − 2)p. This formula gives us a new approach to directly estimate the
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reliability of a voter by a mere observation of the size of her answer, with no information on the
ground truth and no iterative procedures, and then the voters are weighted accordingly with the
optimal weights wi = log pi

1−pi
. We compared these novel aggregation rules with standard ap-

proval voting on three image annotation datasets. The experiments shown that they outperform
the baseline most of the times, with a significant performance improvement for the rule associ-
ated to the Condorcet noise. However, we also noticed that these rules might fail in situation
where many incompetent participants are over-confident, that is, when they are mistakenly sure
they know the correct answer.

Second, we turned to the more general and less studied context of epistemic multi-winner ap-
proval voting. In classical social choice, the input in such situations is an approval profile and
a constraint on the committee-size usually defined as an integer k representing the number of
candidates to get elected. Our first departure from this is that we relax it into inequality size
constraints represented by a lower-bound l ≥ 1 and an upper-bound u ≤ m. This lead us to
distinguish two possible interpretations in the epistemic settings, depending on whether the con-
straints on the cardinality of the set of alternatives to be identified bear on the ground truth itself,
or on the output. We studied each interpretation and its optimal rules.

When the constraint plays the role of a prior knowledge on the number of correct alternatives, we
proposed methods to incorporate into the estimation procedure of the ground truths of multiple
related instances. In fact, we defined a noise model which capture the two types of possible errors
in the approval votes, along with a prior distribution which reflects the certainty that the ground
truth subset of alternatives has a cardinality that satisfies the constraints. Our first step was to
characterize the maximum likelihood estimator of the ground truth when the noise parameters
are known: we proved that there is a threshold τ on the weighted approval score of the alter-
natives which enables us to partition them into three sets; the "good", the "borderline, and the
"bad" ones, with the maximum likelihood estimator being a set of top-k candidates containing
as many as possible of "good" alternatives without violating the upper-bound u, and as few as
possible of "bad" alternatives as to satisfy the lower-bound l. The second step was to compute
the maximum likelihood estimator of the noise parameters given the ground truth. These two
steps were then incorporated into a single iterative procedure that we called alternating maxi-
mum likelihood estimation (AMLE), that alternates the two estimations, increasing the overall
likelihood at each step, until convergence to a fixed point after a finite number of iterations. To
assess the performance of AMLE, we collected a new dataset of image annotations. To this
end, we designed a football quiz asking voters to select the teams they think might appear in the
photos they are shown. We managed to gather the answers of 76 participants. The experiments
showed that AMLE outperforms the baselines (namely, the modal rule and an enhanced variant
of label-wise majority taking into account the size prior knowledge). They also demonstrated
that the incorporation of the size constraints in the model significantly increase the estimation
quality.

When the constraints bear on the size of the output of the voting rule we need to aggregate the
votes in a way that yields the best admissible subset of alternatives which maximizes some utility.
The challenge in such context is that the ground truth worth of each alternative is not known, but
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needs to be estimated given the voters’ input. For this aim, we propose two solution concepts.
The first possibility is to compute the subset of alternatives which is most likely to maximize the
utility. We proved that this set is either the top-l set or the top-u set or the admissible maximum
likelihood estimator of the ground truth set of all winning alternatives, and we showed how we
can compute this latter based on a strong connection with the results of the first size constraints’
interpretation. The second solution concepts consists in finding the subset which maximizes
the expected utility, and we demonstrated that such maximum can be computed in a similar
fashion, involving a threshold which, contrary to the previous solution concept, depends on the
ratio between the utility of an objectively good alternative and the cost (or dis-utility) of an
objectively bad one. We compared the two solution concepts, along with a heuristic approach on
artificially generated data and observed that whilst they both outperform it, their performances
differ according to the metric we use.

We showed all along the thesis how the use of statistical learning inspired techniques, namely
maximum likelihood estimation and expectation-maximization-like procedures can enhance our
understanding of the voters’ behaviours through probabilistic modeling, and thus ameliorate the
design of proper aggregation rules in the computational social choice field.

We also emphasised the importance of putting our novel voting rules to the test, confronting them
with real world annotation data. When data was not available we designed our own crowdsourc-
ing experiment to collect new annotations on image labeling tasks that we created. This further
supports the usability of the voting rules, backed by the theoretical guarantees that we provide.
It also reveals the limitations of the underlying noise models and might give insights into ways
to fit them more to reality.

The works in this dissertation paves the way to other future research direction such as:

• Whilst we studied methods that are fully agnostic to the participants attributes (age, gender,
ethnicity, socio-professional category ...) and only uses their mere votes, guaranteeing
an equal treatment ex ante, we can also study if eliciting some non-trespassing attributes
enhances the quality of the expertise estimation and thus the accuracy of the aggregation
rule.

• In light of the surprisingly popular, the Anna Karenina, and our size matters principles, we
can continue scouting methods for distinguishing the experts that go beyond the majority
principle.

• Applying epistemic voting to blockchain protocols to design efficient and strategy proof
block validation mechanisms [Caragiannis and Schwartzbach, 2022].

• While some works in the epistemic social choice literature study the case of correlated vot-
ers, modelling interaction among alternatives, beyond the size constraints, is a promising
direction for enhancing the estimation accuracy. In fact, in many applications, the inde-
pendence assumption is way too simplifying. For instance, in the chord transcription task,
the structure of the musical intervals within chords (triads, extensions ..) is an essential
feature and a source of strong interdependence between the notes.
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La théorie du choix social traite du problème de la prise de décision collective. Il s’agit d’un
domaine de recherche à l’intersection de l’informatique, des sciences politiques, de l’économie
et des mathématiques, qui se concentre sur le traitement des préférences ou des croyances indi-
viduelles et leur agrégation en un seul résultat collectif. De nombreux sous-domaines du choix
social concernent la conception de méthodes permettant de traiter ces préférences dans différents
contextes, allant des appariements (matchings) et des formations de coalitions stables aux divi-
sions équitables et au vote. La thèse considère uniquement des questions liés au vote. Ils peuvent
être rencontrés dans plusieurs situations telles que:

• Les élections politiques (parlementaires, présidentielles..): selon le système électoral, les
votants ont la possibilité de choisir leurs candidates préférés ou encore d’ordonner les
candidates selon leurs préférences.

• Les plateformes de planification des réunions: les participants votent sur la date d’un réu-
nion qui convient le plus.

• Les plateformes de crowdsourcing: les participants doivent annotés des instances (images,
vidéos, discours ..) en choisissant les labels correctes.

Il est à noter que dans les exemples ci-dessus, les scénarios de vote peuvent différer sur de
nombreux aspects, à savoir la nature du vote exprimé (approbation d’alternatives, classement
des alternatives ..), la nature du résultat (un unique candidat vainqueur, un ensemble de can-
didats, un classement d’alternatives ..) et l’interprétation même d’un vote, en effet, dans les
élections, un vote est l’expression d’une préférence alors que dans le cadre du crowdsourcing et
de l’apprentissage d’ensemble, un vote est l’expression d’une croyance sur une vérité objective.
La majeure partie de la thèse traite de cette seconde interprétation appelée vote épistémique.
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5.6 État de l’art sur le vote épistémique
Le choix social épistémique a connu son développement initial avec Marquis de Condorcet,
remontant au XVIII ème siècle. Il considère les votes comme des signaux bruités d’une vérité
de base objective, et utilise des techniques d’estimation du maximum de vraisemblance pour
découvrir cette dernière.

Le résultat initial, connu sous le nom de théorème du jury de Condorcet, démontré dans l’article
original de Condorcet [Condorcet, 1785] par un argument combinatoire a conduit aux ramifica-
tions et extensions ultérieures. Il considère 2 alternatives, avec un candidat étant objectivement
meilleur que l’autre, mais les deux sont a priori également susceptibles d’être le meilleur. Il
considère également n électeurs indépendants qui sont également fiables, c’est-à-dire qu’ils sont
également susceptibles de choisir la meilleure alternative, et affirme que si chaque électeur vote
pour la bonne alternative avec une probabilité p > 1

2 , alors la règle de la majorité maximise
la probabilité de coïncider avec la vérité de base parmi tous les estimateurs et qu’elle produit
la bonne décision avec une probabilité qui augmente avec le nombre d’électeurs et tend vers 1
lorsque ce dernier croît à l’infini. Formellement, le théorème peut être énoncé comme suit :

Theorem 5.6 (Jury de Condorcet). Soit un ensemble de deux alternatives X = {a, b} et un
ensemble de n électeurs N où n est impair. Supposons qu’il existe un classement réel des al-
ternatives (appelé vérité de base), noté ≻∗, et supposons que les deux possibilités sont a priori
également probables :

P (a ≻∗ b) = P (b ≻∗ a) = 1
2

Chaque électeur effectue une comparaison ≻i sur X indépendamment des autres électeurs, avec
la probabilité conditionnelle suivante :

P (a ≻i b|a ≻∗ b) = P (b ≻i a|b ≻∗ a) = p

où p > 1
2 . Soit Mn le résultat de la règle de la majorité simple :

Mn =
{
a ≻ b si |i ∈ N, a ≻i b| > n

2
b ≻ a sinon.

On a alors que:
P (Mn =≻∗) < P (Mn+2 =≻∗)

et que :
lim

n−→+∞
P (Mn =≻∗) = 1

Le TJC a depuis été généralisée dans de nombreuses directions à des contextes avec des votants
avec de compétences différentes [Owen et al., 1989], des votes corrélés [Shapley and Grofman,
1984, Ladha, 1995], plus que deux alternatives [List and Goodin, 2001], le vote par approbation
[Everaere et al., 2010] et à un cadre abstrait unifiant plusieurs résultats [Pivato, 2017]. Le prob-
lème annexe de savoir comment faut-il avoir de votants pour estimer la vérité avec une précision
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donné a aussi été étudier dans [Caragiannis et al., 2016] pour une vérité sous forme de classe-
ment des alternatives et des vote sous forme d’ordre linéaires aussi, dans [Caragiannis and Micha,
2017] pour un classement comme vérité de base mais des votes sous forme d’approbations tron-
qués, et dans [Karge and Rudolph, 2022] pour des bulletins d’approbations et un unique candidat
vainqueur.

Ces travaux traitent des résultats de type TJC montrant sous quelles conditions certaines règles
connues sont capables de récupérer la vérité de base avec un nombre suffisant de votants, le
tableau suivant résume grossièrement les papiers qui essayent de répondre à la problématique
suivante: étant donné certains paramètres (votants, alternatives et entrées), quelle règle est la
plus susceptible de produire la vérité de base?

Entrées
Résultat

winner alternative ranking set of winners

vainqueur-
unique

[Nitzan and Paroush, 1982]
[Ben-Yashar and Nitzan, 1997]

[Halpern et al., 2021]

classement
[Young, 1986]
[Young, 1988]
[Young, 1995]

ordre partiel [Xia and Conitzer, 2011]
comparaison par paires [Elkind and Shah, 2014] [Procaccia et al., 2012]
approbation tronquée [Procaccia and Shah, 2015]

approbation
[Ben-Yashar and Paroush, 2001]

[Caragiannis et al., 2020]
CP-nets [Xia et al., 2010]

Table 5.1: Règles optimales en fonction de la nature de leurs entrées-sorties

Dans les sections suivantes on présentera nos contributions sur ce sujet.

5.7 Vote par approbation épistémique à un seul gagnant : la
taille importe

On considère un ensemble de n votants N et un ensemble de m alternatives X = {a1, . . . , am}.
On suppose qu’il existe une unique alternative correcte a∗ ∈ X qui n’est pas a priori connu,
et que les votants soumettent un profil de votes par approbation (A1, . . . , An), où Ai ⊆ X est
l’ensemble d’alternatives qui peuvent coïncider avec la réalité objective selon le votant i ∈ N .

Pour agréger ces votes en vue d’estimer la bonne réponse, une idée intuitive pourrait être de con-
sidérer que les bulletins plus petits, c’est-à-dire les réponses qui contiennent moins d’alternatives,
sont plus fiables : un électeur qui connaît la vraie réponse (ou, plus généralement, qui croit la
connaître) ne sélectionnera probablement qu’une seule alternative et un électeur qui sélectionne
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toutes les alternatives n’a probablement aucune idée de la bonne réponse. En se basant sur cette
intuition, un poids plus important doit être attribué aux bulletins plus petits. Les règles qui fonc-
tionnent de cette manière, que nous appelons size-decreasing approval rules, font partie de la
famille des size approval rules. et ont été étudiées axiomatiquement dans [Alcalde-Unzu and
Vorsatz, 2009]. Notre objectif est de motiver l’utilisation de telles règles du point de vue du
choix social épistémique. À cette fin, nous étudierons une famille de modèles de bruit qui sont
des variantes de vote d’approbation du modèle de Mallows, et nous prouverons que dans de
nombreux cas, la règle optimale est size-decreasing.

5.7.1 Le modèle de bruit
Nous modéliserons la distribution de ces bulletins d’approbation par des variantes de vote d’approbation
du modèle de bruit Mallows. La distribution de Mallows a été définie à l’origine sur des rank-
ings : nous l’adaptons à des sous-ensembles d’alternatives, en conservant l’idée que la probabilité
d’un sous-ensemble diminue à mesure que sa distance par rapport à un point central augmente,
la dispersion étant modélisée par un paramètre ϕ.

En général, nous appellerons modèle de bruit de Mallows d’approbation tout modèle où les
bulletins des électeurs sont indépendants (nous conservons cette hypothèse tout au long de cette
section) et où il existe n paramètres ϕi ∈ (0,+∞) et une fonction d : X ×P(X ) 7→ R telle ques
pour tout électeur i ∈ N :

Pϕi,d(Ai|a∗ = a) = 1
βi
ϕ
d(a∗,Ai)
i ,∀a ∈ X

où βi est le facteur de normalisation correspondant. Si ϕi = ϕ pour tout i ∈ N , on dit que le
modèle est anonyme.

Dans la suite, nous nous concentrerons uniquement sur les modèles de bruit neutre. La neutralité
d’un bruit est, par définition, son invariance par toute permutation des alternatives:

∀π ∈ σ(X ), Pϕ,d(A|a∗ = a) = Pϕ,d(π(A)|a∗ = π(a))

On voit immédiatement qu’un bruit de Mallows est neutre si et seulement si sa fonction associée
d est neutre (invariante par une permutation des alternatives).

Un modèle de bruit est neutre si d(a,A) ne dépend que de |a ∩A| (c’est-à-dire 1 si a ∩A et 0 si
a /∈ A)1 et |A|:

Proposition 5.7. Un modèle de bruit associé à une fonction d est neutre si et seulement s’il existe
une fonction unique:

ψd : {0, 1} × {0, . . . ,m} \ (1, 0) 7→ R

tel que:
d(a,A) = ψd(|a ∩ A|, |A|)

1Nous omettons les accolades et écrivons a ∩A pour {a} ∩A.
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5.7.2 Cas d’un bruit anonyme
Dans cette sous-section, nous supposons que les électeurs partagent un paramètre de bruit com-
mun (inconnu) ϕ ∈ (0, 1) et qu’il existe une fonction d : X ×P(X ) 7→ R et sa fonction associée
ψd telle que, pour tout a ∈ X :

Pϕ,d(Ai|a∗ = a) = 1
β
ϕd(a∗,Ai) = 1

β
ϕψd(|a∗∩Ai|,|Ai|)

Après définir formellement la notion de règles décroissantes, nous énonçons le résultat principal
de cette sous-section qui caractérise tous les bruits anonymes de Mallows (c’est-à-dire toutes
les fonctions d) dont la règle de maximum de vraisemblance associée est size-decreasing. Nous
verrons que c’est le cas pour certaines distances usuelles d, que nous testerons plus tard dans les
expériences.

Definition 5.2 (Size Approval Rule). Considérons une fonction

v : P(X )n −→ X
(A1, . . . , An) 7→ v(A1, . . . , An)

qui, pour chaque profil d’approbation A = (A1, . . . , An), attribue une alternative gagnante
v(A1, . . . , An) dansX . Nous disons que v est une size approval rule s’il existe un vecteur w =
(w0, . . . , wm) ∈ Rm+1 tel que :

v(A1, . . . , An) = arg max
a∈X

appw(a)

où appw est le score d’approbation pondéré défini par :

appw(a) =
∑
i:a∈Ai

w|Ai|

La règle v est dite size-decreasing si son vecteur associé w = (w0, . . . , wm) ∈ Rm+1 est tel que
wj > wj+1 pour tout 1 ≤ j ≤ m− 2.

Theorem 5.8. Pour n ≥ 3, la règle d’estimation du maximum de vraisemblance ζd est size-
decreasing si et seulement si la fonction

∆ψd : j 7→ ψd(0, j)− ψd(1, j)

est strictement décroissante.

Nous donnons maintenant quelques exemples avec des fonctions usuelles d:

• La distance de Jaccard est définie comme suit:

dJ(a,A) = 1− |a ∩ A|
|A| − |a ∩ A|+ 1

La règle d’estimation du maximum de vraisemblance associée est size-decreasing avec des
poids w|A| = 1

|A| .
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• La distance de Dice est définie comme suit:

dDice(a,A) = 1− 2|a ∩ A|
|A|+ 1

La règle d’estimation du maximum de vraisemblance associée est size-decreasing avec des
poids w|A| = 2

|A|+1 .

Cependant la règle associé à la distance de Hamming:

dH(a,A) = |a ∩ A|+ |a ∩ A| = 1 + |A| − 2|a ∩ A|

n’est pas size-decreasing (elle est la règle Standard Approval Voting). Plus généralement, ceci
est vrai pour toute fonction d telle que ψd peut être décomposée additivement en deux termes
ψd(|a ∩ A|, |A|) = f(|a ∩ A|) + g(|A|). Dans la prochaine sous-section, nous allons considérer
cette famille particulière de fonctions décomposables avec un bruit où chaque électeur a son
propre paramètre de bruit ϕi.

5.7.3 Cas d’un bruit décomposable non-anonyme

Nous définissons un modèle de bruit de Mallows non anonyme, où pour chaque électeur i ∈ N ,
il existe un paramètre ϕi ∈]0,+∞[ tel que, pour tout a ∈ X :2

Pϕi,d(Ai|a∗ = a) = 1
βi
ϕ
f(|a∗∩Ai|)+g(|Ai|)
i

Il est à noter que dans ce cas, un paramètre de bruit individuel plus grand ϕi modélise un électeur
moins fiable (sa distribution est moins concentrée autour de la vérité de base). Le but du résul-
tat suivant est de motiver l’utilisation de règles d’approbation size-decreasing pour agréger les
approbations générées à partir de telles distributions. Plus précisément, le but est de trouver des
conditions suffisantes sur f et g qui font que la taille espérée du bulletin de l’électeur Eϕ,d[|Ai|]
croît à mesure que l’électeur devient moins fiable (i.e. à mesure que son paramètre de bruit ϕi
croît).

Theorem 5.9. Si pour chaque 1 ≤ t < k ≤ m− 1 on a:

g(k)− g(t) ≥ k − t
2 [f(0)− f(1)]

Alors:
∂Eϕ,d[|Ai|]

∂ϕ
≥ 0

2Rappellez-vous que les électeurs ne peuvent pas déposer des bulletins d’approbation vides ou pleins. Nous
supposons donc que P (∅|a∗ = a) = P (X |a∗ = a) = 0.
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On peut montrer que la distance de Hamming vérifie bien cette propriété. En plus, on remarque
que le bruit de Mallows avec une distance de Hamming est équivalent au bruit de Condorcet où
on a n paramètres de compétences pi ∈]0, 1[ tel que:

Ppi
(a ∈ Ai|a = a∗) = Ppi

(a /∈ Ai|a ̸= a∗) = pi,∀a ∈ X

L’appartenance ou pas des différentes alternatives au bulletin d’un votant étant supposé des
évènements indépendants. Cette forme équivalente nous permet de donner une formule explicite
de l’espérance du nombre d’alternatives qu’un votant sélectionnera Eϕ,d[|Ai|] en fonction de son
paramètre d’expertise pi.

Theorem 5.10. Pour m ≥ 2, on a:

Ep[|Ai|] = (m− 1)− (m− 2)p

Ce théorème nous donne une approche simple pour estimer pi par des estimations de maximum
de vraisemblance étant donné certaines observations de Ai sans avoir besoin de connaître la
vérité de base a∗.

5.7.4 Expériences
Nous avons utilisé les trois jeu de données d’annotation d’images, initialement collectés par
[Shah et al., 2015] à des fins de conception de mécanismes de payements optimaux, afin de tester
notre hypothèse et d’évaluer la précision de différentes règles d’agrégation d’intérêt. Chaque
ensemble de données consiste en un ensemble de bulletins d’approbation d’un certain nombre de
votants (participants) qui devaient sélectionner toutes les alternatives qu’ils pensaient être cor-
rectes dans un certain nombre d’instances (images), à savoir: des images d’animaux, de textures
ou de langues. Puisque nous nous intéressons principalement au problème de la sagesse de la
foule pour une seule question, nous ne considérerons que les règles d’agrégation qui fonction-
nent par question (les réponses des votants à différentes questions n’affectent pas le résultat de
la règle pour une question donnée). Nous utiliserons les méthodes d’agrégation suivantes:

• Condorcet: Le paramètre de fiabilité pi de chaque votant est estimé en observant la taille
de son bulletin par la formule:

p̂i = m− 1− |Ai|
m− 2

le poids assigné à chaque votant est log p̂i

1−p̂i
.

• Jaccard: Le poids de chaque est votant i ∈ N est égale à 1
|Ai| .

• SAV: Tous les votant sont pondérés de façon égale.

Pour chaque jeu de donnés, nous avons pris des lots de 25 pour chaque nombre différent de
votants, et appliqué les règles susmentionnées. Nous mesurons la précision de chaque règle
comme étant la fraction des instances dont la réponse juste à été correctement estimée. Les
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Figure 5.3: Précision des différentes règles d’aggrégation
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résultats apparaissent sur la figure 5.3. Nous remarquons tout d’abord que pour les trois jeux de
données, les règles d’agrégation associées au bruit anonyme de Jaccard montrent une précision
légèrement meilleure que la règle d’approbation simple, en particulier pour un petit nombre de
votants.

Nous pouvons également constater que la règle d’agrégation associée au bruit de Condorcet non-
anonyme présente une amélioration significative de la précision par rapport à cette règle pour
Animaux et Langues (en particulier pour des nombres relativement élevés de votants). Cepen-
dant, elle ne parvient pas à la surpasser pour le jeu de données de Textures, où elle ne montre que
des précisions similaires à la règle standard lorsque le nombre de votants augmente. Cela peut
être le résultat de la mauvaise qualité de l’estimation qui n’utilise qu’un seul échantillon ou à des
votant trop confiants mais qui se trompent.

5.8 Vote par approbation épistémique à vainqueurs multiples:
deux interprétations

Alors que dans le vote épistémique à vainqueur unique, l’interprétation de la vérité de base est
claire : il existe une seule alternative correcte — la seule qui soit vraie dans le monde réel — et
le but est de l’identifier. Dans le cas d’un vote à plusieurs gagnants, les choses se compliquent.

Rappelons que l’entrée d’une instance de vote multi-vainqueurs consiste en un ensemble de
votes et une contrainte sur la taille du comité. Or, deux interprétations différentes de cette
contrainte sur la taille du comité coexistent, qui appellent des solutions différentes. La prin-
cipale différence entre les deux interprétations est de savoir si les contraintes sur la cardinalité
de l’ensemble des alternatives à identifier portent sur la vérité terrain elle-même, ou sur la sortie
de la règle d’agrégation. Dans la première interprétation, cette contrainte représente une certaine
de connaissance préalable sur la cardinalité de la vérité de base, c’est-à-dire sur le nombre
d’alternatives gagnantes. Voici deux exemples :

• Considérons une tâche de transcription d’un accord de guitare : les participants entendent
un accord et doivent sélectionner l’ensemble des notes qui le constituent parmi un total de
8 alternatives. Nous savons a priori que le véritable ensemble de notes est composé d’au
moins 3 et d’au plus 6 alternatives.

• Considérons un problème de crowdsourcing dans lequel on montre aux participants l’image
d’un match de football, où ils doivent identifier la ou les équipes qui y figurent. Ici, nous
savons qu’il doit y avoir une ou deux équipes dans la vérité terrain.

Selon la deuxième interprétation, cette contrainte porte sur le nombre de gagnants dans la sor-
tie. En d’autres termes, quelle que soit la vérité de base, nous devons produire un nombre
d’alternatives dans un intervalle donné, même si le nombre d’alternatives dans la vérité de base
peut se situer en dehors de cet intervalle ; le but est d’identifier un ensemble d’alternatives ad-
missibles les plus proches de la vérité de base, dans un sens qui sera défini plus tard. Voici deux
exemples :
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• Les alternatives sont des étudiants qui postulent à un programme de master. La vérité
de base est constituée des étudiants qui ont objectivement un niveau suffisamment bon
pour être diplômés. Le nombre d’étudiants à accepter dans le programme est cependant
contraint d’être dans un intervalle [l, u] : il faut au moins l pour que le programme s’ouvre,
et au plus u à cause de la taille des salles de classe.

• Les alternatives sont des articles soumis à une conférence. Là encore, nous avons un
nombre minimal et maximal d’articles à accepter.

• Les alternatives sont les articles qui recevront un prix. Le président de la conférence
décerne exactement trois prix. Dans ce cas, la vérité de base est constituée des articles
qui méritent vraiment le prix, et le résultat est constitué des trois meilleurs articles. Une
variante du problème permettrait aux présidents de conférence de décerner au maximum
trois prix, afin d’éviter de décerner un prix à des articles qui ne le méritent pas.

Dans cette interprétation, la taille du comité joue le rôle d’une contrainte de taille exogène qui
spécifie le nombre minimum et maximum d’alternatives gagnantes autorisées. Il reste à définir
précisément ce que nous entendons par être le plus proche de la vérité du terrain ; nous pro-
poserons deux concepts de solution différents.

Bien que cette distinction entre deux interprétations ait déjà un sens dans le cas du vote épistémique
à un seul gagnant, nous montrerons que dans ce cas particulier, elles conduisent à la même solu-
tion : elles sont techniquement identiques. Ce ne sera cependant pas le cas dans le cas général ;
nous développerons donc des solutions pour chacune de ces deux interprétations séparément.

5.9 Vote par approbation épistémique à vainqueurs multiples:
les contraintes de taille comme information a priori

Soit N = {1, . . . , n} un ensemble de votants, et X = {a1, . . . , am} un ensemble d’alternatives
(objets possibles dans les images, notes dans les accords...). Considérons un ensemble de L
instances : une instance z consiste en un profil d’approbation Az = (Az1, . . . , Azn) où Azi ⊆ X est
le bulletin d’approbation de i ∈ N . Par exemple, dans un contexte de crowdsourcing, une tâche
contient généralement plusieurs questions, et une instance comprend les réponses des votants à
l’une de ces questions.

Pour chaque instance z ∈ L, il existe une inconnue vérité fondamentale S∗
z appartenant à S =

2X , qui est l’ensemble des alternatives objectivement correctes dans l’instance z. Bien que ces
ensembles de vérités fondamentales soient a priori inconnus, nous supposerons dans cette section
qu’il est communément admis que le nombre d’alternatives dans chacun d’eux se situe dans
l’intervalle [l, u] : S∗

z ∈ Sl,u = {S ∈ S, l ≤ |S| ≤ u}, pour des bornes données 0 ≤ l ≤ u ≤ m.
Notre objectif est de dévoiler la vérité de base pour chacune de ces instances en utilisant les votes
et la connaissance préalable du nombre d’alternatives gagnantes.
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5.9.1 Le modèle de bruit
Nous définissons un modèle de bruit constitué de deux distributions paramétriques, à savoir une
distribution conditionnelle des bulletins d’approbation conditionnellement à la vérité de base,
et une distribution a priori sur la vérité de base. Nous nous écartons ici des modèles de bruit
classiques dans le choix social épistémique, car nous supposons que les paramètres de ces distri-
butions peuvent être inconnus et doivent donc être estimés.

Formellement, nous supposons que pour chaque électeur i ∈ N , il existe deux paramètres in-
connus (pi, qi) dans (0, 1) de sorte que le vote d’approbation Azi sur une instance z ∈ L soit tiré
selon la distribution suivante, pour chaque a ∈ X ,

P (a ∈ Azi |S∗
z = S) =

{
pi if a ∈ S
qi if a /∈ S

où pi (resp. qi) est la probabilité (inconnue) que le votant i approuve une alternative correcte
(resp. incorrecte). Ensuite, nous faisons les hypothèses suivantes :

(1) Les approbations des alternatives par un électeur sont mutuellement indépendantes étant
donné la vérité de base et les paramètres (pi, qi)i∈N .

(2) Les bulletins de vote des électeurs sont mutuellement indépendants étant donné la vérité
de base.

(3) Les instances sont indépendantes étant donné les paramètres (pi, qi)i∈N et les vérités de
base.

Pour modéliser la probabilité a priori de tout ensemble S à être la vérité de base S∗, nous intro-
duisons des paramètres tj = P (aj ∈ S∗). tj peut être compris comme la probabilité antérieure
de aj d’être dans l’ensemble de vérité fondamentale S∗ avant la prise en compte des contraintes
de cardinalité. Celles-ci, avec une hypothèse d’indépendance sur les événements {aj ∈ S∗},
donnent :

P (S = S∗) =
∏
aj∈S

tj
∏
aj /∈S

1− tj

. La distribution conditionnelle à la connaissance préalable sur la taille de la vérité terrain peut
alors être vue comme une projection sur les contraintes suivie d’une normalisation :

P̃ (S) = P (S∗ = S|l ≤ |S∗| ≤ u) = P (S∗ = S ∩ |S∗| ∈ [l, u])
P (|S∗| ∈ [l, u])

. Il s’ensuit :

P̃ (S) =


1

β(l,u,t)
∏
aj∈S

tj
∏
aj /∈S

(1− tj) if S ∈ Sl,u

0 if S /∈ Sl,u
où :

β(l, u, t) =
∑

S∈Sl,u

∏
aj∈S

tj
∏
aj /∈S

(1− tj)
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Notre objectif est l’estimation conjointe de la vérité objective et des paramètres en maximisant
la vraisemblance totale des instances :

L(A,S, p, q, t) =
L∏
z=1

P̃ (Sz)
n∏
i=1

P (Azi |Sz)

où :
P (Azi |Sz) = p

|Az
i ∩Sz |

i q
|Az

i ∩Sz |
i (1− pi)|Az

i ∩Sz |(1− qi)|Az
i ∩Sz |

Dans ce but, nous allons introduire un algorithme itératif dont les deux principales étapes seront
présentées successivement, dans les prochaines sous-sections, avant que l’algorithme principal
ne soit formellement défini et sa convergence démontrée. Ces deux étapes sont :

• Estimation des vérités de base en fonction des paramètres.

• Estimation des paramètres en fonction des vérités de base.

En termes simples, l’algorithme consiste à itérer ces deux étapes jusqu’à ce qu’il converge vers
un point fixe.

5.9.2 Estimer la vérité objective étant donné les paramètres
Comme les instances sont indépendantes compte tenu des paramètres, nous nous concentrons ici
sur une instance avec une vérité de base S∗ et un profil d’approbations A = (A1, . . . , An). On va
introduire quelques notions avant d’énoncer le théorème caractérisant l’estimateur de maximum
de vraisemblance de la réalité.

Definition 5.3 (Score d’approbation pondéré). Étant donné un profil d’approbation (A1, . . . , An),
des paramètres de bruit (pi, qi)1≤i≤n et des paramètres a priori (tj)1≤j≤m, on définit:

appw(aj) = ln

(
tj

1− tj

)
+

∑
i:aj∈Ai

ln

(
pi(1− qi)
qi(1− pi)

)
.

Alors que le poids de chaque votant i ∈ N dépend de sa fiabilité, chaque information préalable
sur une alternative joue le rôle d’un votant virtuel qui ne sélectionne que l’alternative concernée,
avec un poids qui augmente à mesure que le paramètre a priori augmente.

A partir de maintenant, nous supposons sans perte de généralité que les alternatives sont classées
en fonction de leur score :

appw(a1) ≥ appw(a2) ≥ · · · ≥ appw(am)

Definition 5.4 (seuil et partition). Définissez le seuil :

τn =
n∑
i=1

ln

(
1− qi
1− pi

)
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et la partition de l’ensemble des alternatives en trois ensembles :
Sτn
max = {a ∈ A, appw(a) > τn}
Sτn
tie = {a ∈ A, appw(a) = τn}
Sτn
min = X\(Sτn

max ∪ Sτn
tie)

and let kτn
max = |Sτn

max|, kτn
tie = |Sτn

tie|, kτn
min = |Sτn

min|.

Le résultat suivant caractérise les ensembles dans S qui sont des EMV de la vérité de base étant
donné les paramètres.

Theorem 5.11. S̃ ∈ arg maxS∈S L(A, S, p, q, t) si et seulement si il existe k ∈ [l, u] tel que
TildeS est l’ensemble des k alternatives ayant les k valeurs les plus élevées de appw et:{

|S̃ ∩ Sτn
max| = min(u, kτn

max)
|S̃ ∩ Sτn

min| = max(0, l − kτn
tie − kτn

max)
(5.1)

Ainsi, l’estimateur S̃ est des top-k alternatives, où les valeurs possibles de k sont déterminées
par l’Eq. (5.1). La première équation impose que S̃ inclut autant d’éléments que possible parmi
Sτn
max (sans dépasser la borne supérieure u), tandis que la seconde impose que S̃ inclut aussi peu

d’éléments que possible parmi Sτn
min (sans descendre en dessous de la borne inférieure l).

5.9.3 Estimer les paramètres étant donné la réalité objective
Une fois les vérités fondamentales estimées à une itération de l’algorithme, l’étape suivante
consiste à estimer les paramètres (tj)j∈X , les vérités fondamentales étant données. La proposition
suivante explicite l’expression de l’estimateur de maximum de vraisemblance du paramètre tj de
chaque alternative étant donné S∗

z une fois que les paramètres t−j de toutes les autres alternatives
sont fixés.

Proposition 5.12. Pour tout aj ∈ X :

arg max
t∈(0,1)

L(A, S, p, q, t, t−j) = occ(j)αj
(L− occ(j))αj + occ(j)αj

où:



αj = ∑
S∈Sl,u

aj∈S

∏
ah∈S
h̸=j

th
∏

ah /∈S
(1− th)

αj = ∑
S∈Sl,u

aj /∈S

∏
ah∈S

th
∏

ah /∈S
h̸=j

(1− th)

occ(j) = |z ∈ {1, . . . , L}, aj ∈ Sz|

Nous pouvons aussi estimer les paramètres des votants (p, q) par maximum de vraisemblance.

Proposition 5.13. Pour Sz ∈ Sl,u et tj ∈ (0, 1) on a:

arg max
(p,q)∈(0,1)2n

L(A, S, p, q, t) = (p̂, q̂)
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où:

p̂i =
∑
z∈L |Azi ∩ Sz|∑

z∈L |Sz|
, q̂i =

∑
z∈L |Azi ∩ Sz|∑

z∈L |Sz|

5.9.4 Estimation de maximum de vraisemblance alternée

Maintenant, l’estimation des vérités fondamentales et celle des paramètres sont entrelacées pour
maximiser la vraisemblance globale L(A, S, p, q, t) par l’algorithme de l’Estimation de maxi-
mum de vraisemblance alternée (EMVA). EMVA est une procédure itérative similaire à la procé-
dure Espérance-Maximisation introduite dans [Baharad et al., 2011] mais avec une itération de
type coordinate-steepest-ascent, dont l’objectif est d’estimer de manière entrelacée la fiabilité
des électeurs, les paramètres a priori des alternatives et les vérités fondamentales des instances.
L’idée derrière cette estimation est assez intuitive, et consiste à alterner une EMV des vérités de
base étant donné l’estimation actuelle des paramètres, et une mise à jour de ces paramètres via
un EMV basé sur l’estimation actuelle des vérités de base. L’algorithme poursuit son exécution
jusqu’à ce qu’un critère de convergence soit satisfait sous la forme d’une borne sur la norme de
la variation des estimations des paramètres ||θ̂(v+1) − θ̂(v)||. En pratique, nous avons choisi ℓ∞,
mais toute autre norme pourrait être utilisée dans l’algorithme 4 car en dimension finie, toutes
les normes sont équivalentes (si une séquence converge selon une norme, alors elle le fait pour
toute norme). Nous avons prouvé que l’algorithme converge en un nombre fini d’itérations, mais
il est à noter que l’optimalité globale n’est pas garantie au point de convergence.

Theorem 5.14. Pour toute valeur initiale θ̂(0), EMVA converge vers un point fixe après un nombre
fini d’itérations.

5.9.5 Expériences

Nous avons conçu une tâche d’annotation d’images sous la forme d’un quiz de football. Nous
avons sélectionné 15 images prises lors de différents matchs entre deux des équipes suivantes :
Real Madrid, Inter Milan, Bayern Munich, Barcelone, Paris Saint-Germain (PSG). Sur chaque
photo, il se peut que des joueurs des deux équipes apparaissent, ou des joueurs d’une seule
équipe, donc l = 1 et u = 2. Chaque participant regarde les instances une par une et doit à
chaque fois sélectionner toutes les équipes qu’il peut repérer (voir figure 5.4). La saturation et la
teinte des images ont été modifiées afin de rendre la tâche moins évidente. Nous avons recueilli
les réponses de 76 participants (seuls deux d’entre eux ont fait du spamming en sélectionnant
simplement toutes les alternatives).

Inspirés par le Principe d’Anna Karénine dans [Meir et al., 2019], nous avons conçu une heuris-
tique d’initialisation pour la fiabilité des électeurs. Dans son livre, Léon Tolstoi affirme que "les
familles heureuses sont toutes semblables ; chaque famille malheureuse est malheureuse à sa
manière". Dans le même esprit, il semble raisonnable de faire l’hypothèse que les utilisateurs
compétents ont tendance à donner des réponses similaires, alors que les utilisateurs imprécis ont
chacun leur propre façon d’être imprécis.
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Algorithm 4 EMVA
Input: Bulletins d’approbations (Azi )1≤z≤L,i∈N

Paramètres initiaux θ̂(0),Bounds (l, u),Tolérance ε
Output: Estimations (Ŝz), (p̂i, q̂i), (t̂j)
1: repeat
2: for z = 1 . . . L do
3: Calculer Ŝ(v+1)

z = {a1, . . . , ak} with k ∈ [l, u] and:{
|Ŝ(v+1)
z ∩ S(v)

max,z| = min(u, k(v)
max,z)

|Ŝ(v+1)
z ∩ S(v)

min,z| = max(0, l − k(v)
tie,z − k(v)

max,z)

4: end for
5: for i = 1 . . . N do
6: Mettre à jour les paramètres (pi, qi) étant donné Ŝ(v+1):

p̂
(v+1)
i =

∑
z∈L
|Azi ∩ Ŝ

(v+1)
z |∑

z∈L
|Ŝ(v+1)
z |

, q̂
(v+1)
i =

∑
z∈L
|Azi ∩ Ŝ

(v+1)
z |

∑
z∈L
|Ŝ(v+1)
z |

7: end for
8: for j = 1 . . .m do
9: Mettre à jour t̂(v+1)

j :

t̂
(v+1)
j =

occ(v+1)(j)α(v+1)
j

occ(v+1)(j)α(v+1)
j + (L− occ(v+1)(j))α(v+1)

j

où : 
occ(v+1)(j) = ∑L

z=1 1{aj ∈ Ŝ(v+1)
z }

α
(v+1)
j = β((l − 1)+, u− 1, t̂(v+1)

<j , t̂
(v)
>j )

α
(v+1)
j = β(l, u, t̂(v+1)

<j , t̂
(v)
>j )

10: end for
11: until ||θ̂(v+1) − θ̂(v)|| ≤ ε
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Figure 5.4: Exemple de la tâche d’annotation d’images

Pour évaluer l’importance de l’information a priori sur la taille de la vérité de base, nous avons
testé l’algorithme EMVA avec des contraintes libres (l, u) = (0,m) (on l’appellera AMLEf )
et l’algorithme AMLEc avec (l, u) = (1, 2). Nous appliquons également la règle modale qui
retourne le bulletin le plus fréquent, et une variante de la règle de la majorité par label qui,
compte tenu d’un profil d’approbation (A1, . . . , An), produit le sous-ensemble d’alternatives S
tel que :

a ∈ S ⇐⇒ |i ∈ N, a ∈ Ai| >
n

2
. Si ce sous-ensemble est vide, il est remplacé par l’alternative ayant le plus grand nombre
d’approbations, et s’il a plus de deux alternatives, nous ne gardons que les deux premières.

Nous avons pris 20 lots de n = 10 à n = 74 électeurs tirés au hasard et nous avons appliqué les
quatre méthodes à chacun d’entre eux (voir figure 5.5a,5.5b).

On remarque que la règle de la majorité et la règle modale sont dépassées par EMVA, ce qui peut
s’expliquer par le fait qu’elles ne tiennent pas compte de la fiabilité des électeurs. La comparaison
des performances de AMLEc et de AMLEf souligne l’importance de la connaissance préalable
de la taille du comité pour améliorer la qualité de l’estimation.

5.10 Vote par approbation épistémique à vainqueurs multi-
ples: les contraintes de taille comme facteur exogène

Considérons un ensemble de n électeurs N = {1, . . . , n} et un ensemble de m alternatives
X = {a1, . . . , am}. Parmi ces alternatives, il existe un sous-ensemble inconnu d’alternatives ob-
jectivement "bonnes"/"éligibles" (patients ayant réellement besoin de ressources médicales, étu-
diants admissibles à un programme, produits non défectueux pouvant déjà être mis en vente...).
On demande aux votants d’approuver toutes les alternatives qu’ils pensent être éligibles, ce qui
donne le profil d’approbation A = (A1, . . . , An).
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Figure 5.5: Précisions de différentes méthodes d’agrégation
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Nous supposons dans cette section qu’en raison de certaines contraintes externes (ressources
limitées, satisfaction de la commande du client...), le nombre d’alternatives à sélectionner et à
produire, une fois que les bulletins d’approbation des votants ont été agrégés, doit être limité par
une borne inférieure donnée l et une borne supérieure donnée u.

L’objectif est donc d’agréger les votes afin de sélectionner le "meilleur" sous-ensemble d’alternatives
admissible (vérifiant la contrainte de taille). Pour définir formellement ce que nous entendons
par "meilleur", nous définissons la notion d’utilité suivante.

Soit α+, α−, β+, β− ∈ R tel que α+ > α− et β+ < β−. On définit l’utilité d’un sous-ensemble
S comme suit:

u(S) =
∑
a∈S

u+(a) +
∑
a/∈S

u−(a)

où:

u+(a) =
{
α+ if a ∈ S∗

β+ if a /∈ S∗ , u−(a) =
{
α− if a ∈ S∗

β− if a /∈ S∗

α+, α− peuvent donc être interprétés comme, respectivement, l’utlitité de prendre une alternative
dans S∗ et le coût de la laisser. Il est à noter que:

u(S) =
∑
a∈X

u−(a) +
∑
a∈S

[
u+(a)− u−(a)

]

On définit f(a) = u+(a)−u−(a) qui est égal à α = α+−α− > 0 si a ∈ S∗ et−β = β+−β− < 0
si a /∈ S∗. On étend f à l’ensemble des tous les sous-ensembles d’alternatives S = 2X en
définissant f(S) = ∑

a∈S
f(a). On peut remarquer que maximiser u(S) revient à maximiser f(S).

Donc, en somme, nous voulons trouver un sous-ensemble admissible dans Sl,u = {S ⊆ X , l ≤
|S| ≤ u} qui, dans un certain sens, maximise f . Cependant, le problème est que l’utilité ne peut
pas être calculée directement puisqu’elle dépend de la vérité S∗ qui est inconnue. Pour résoudre
ce problème, nous définirons un modèle de bruit composé d’une distribution préalable sur S∗ et
d’une distribution conditionnelle sur les bulletins d’approbation étant donné la vérité de base, qui
sera utilisée plus tard pour proposer deux concepts de solution.

5.10.1 Le modèle de bruit
Pour modéliser la fiabilité des votants, on utilise la même distribution de la section précédente à
savoir:

P (a ∈ Ai|S∗ = S) =
{
pi if a ∈ S
qi if a /∈ S

En outre, soit tj = P (f(aj) = α) = P (aj ∈ S∗) la probabilité a priori que aj soit admissible et
supposons que les événements {f(aj) = α} sont mutuellement indépendants. Cette hypothèse
est réaliste car nous n’avons pas de prior sur la taille de S∗: ainsi, par exemple, la probabilité que
l’étudiant s soit objectivement au-dessus de la barre ne change pas une fois que nous connaissons
le résultat (au-dessus ou au-dessous de la barre) d’un certain nombre d’autres étudiants. On

154



RESUME LONG EN FRANCAIS

suppose aussi l’indépendance des votants. Cependant, contrairement à la section précédente, on
va supposer que ces paramètres sont connus. Ils peuvent être fixés par une entité centrale ou
estimés à partir d’observations antérieures.

5.10.2 Deux objectives
Rappelons que nous nous concentrons sur la recherche de solutions pour estimer le sous-ensemble
admissible d’alternatives maximisant f . Dans les paragraphes suivants, nous allons présenter,
étudier et comparer deux concepts de solutions différents :

• Le maximiseur le plus probable de l’utilité.

• Le maximiseur de l’utilité espérée.

5.10.2.1 Le maximiseur le plus probable de l’utilité MPPU

Soit Ml,u = maxS∈Sl,u
f(S) la valeur maximale inconnue de f pour les ensembles d’alternatives

admissibles. Pour un ensemble admissible donné d’alternatives S, nous définissons ψ(S) =
P (f(S) = Ml,u|A), c’est-à-dire la probabilité que S maximise la fonction f . Notre objectif
est d’estimer S ∈ Sl,u avec la plus grande probabilité de f(S) = Ml,u, c’est-à-dire que nous
cherchons :

arg max
S∈Sl,u

P (f(S) = Ml,u|A) = arg max
S∈Sl,u

ψ(S)

Le premier résultat est simplement emprunté au théorème 5.11 avec une légère adaptation à cette
interprétation. Il caractérise les ensembles admissibles qui ont le plus de chances de coïncider
avec la vérité objectives (mais comme nous le verrons plus tard, ils ne coïncident pas toujours
avec la MPPU, mais sont des candidats potentiels).

Proposition 5.15. S̃ ∈ arg maxS∈Sl,u
P (S∗ = S|A) si et seulement si il existe un k ∈ [l, u] tel

que S̃ = {a1, . . . , ak} and:{
|S̃ ∩ Sτn

max| = min(u, kτn
max)

|S̃ ∩ Sτn
min| = max(0, l − kτn

tie − kτn
max)

Nous pouvons maintenant énoncer le résultat principal. Il affirme que la MPPU coïncide soit
avec l’ensemble admissible le plus susceptible d’être la vérité de base (qui ont été caractérisés
dans la Proposition 5.15), soit avec l’un des ensembles de top-l ou top-u alternatives en fonction
de leur score d’approbation pondéré.

Theorem 5.16. Supposons que l < u et soit S̃l = {a1, . . . , al} and S̃u = {a1, . . . , au} and
S̃ = arg maxS∈Sl,u

P (S∗ = S|A). On a:

arg max
S∈Sl,u

ψ(S) = arg max
S∈S̃∪{S̃l,S̃u}

ψ(S)
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5.10.2.2 Le maximiseur de l’utilité espérée MUE

Une autre approche naturelle, au lieu de rechercher l’ensemble admissible d’alternatives S ∈
Sl,u avec la probabilité maximale de maximiser f , serait de rechercher l’ensemble admissible
maximisant la valeur espérée de f , c’est-à-dire:

argmaxS∈Sl,u
E [f(S)|A]

A l’instar de la définition 5.4, on introduit un nouveau seuil:

τ ′
n = τn + log β

α
et la partition associée: 

Sτ
′
n
max = {a ∈ X , appw(a) > τ ′

n}
S
τ ′

n
tie = {a ∈ X , appw(a) = τ ′

n}
S
τ ′

n
min = X\Sτ ′

n
max ∪ S

τ ′
n
tie

et on dénote kτ ′
n
max = |Sτ ′

n
max|, k

τ ′
n
tie = |Sτ

′
n
tie|, k

τ ′
n
min = |Sτ

′
n
min|.

Theorem 5.17. S̃ ∈ arg maxS∈Sl,u
E [f(S)|A] si et seulement s’il existe k ∈ [l, u] tel que S̃ =

{a1, . . . , ak} et: {
|S̃ ∩ Sτ ′

n
max| = min(u, kτ ′

n
max)

|S̃ ∩ Sτ
′
n
min| = max(0, l − kτ

′
n
tie − kτ

′
n
max)

En particulier, si α = β, alors l’ensemble des alternatives admissibles maximisant la valeur
espérée de f coïncide avec l’ensemble (admissible) des alternatives les plus susceptibles d’être
la vérité de base (caractérisée dans le théorème 4.1) :

arg max
S∈Sl,u

E [f(S)|A] = arg max
S∈Sl,u

P (S∗ = S|A)

5.11 Conclusion
Après avoir passé en revue la littérature sur le choix social épistémique, nous avons proposé
différentes nouvelles méthodes pour traiter à la fois le cas à un seul gagnant et le cas à plusieurs
gagnants pour le vote par approbation.

Tout d’abord, nous avons introduit la méthode size-matters pour le cas à vainqueur unique, où
plus de poids est attribué aux votants qui approuvent moins d’alternatives, et nous avons prouvé
qu’elle pouvait surpasser les règles de base connues sur plusieurs jeu de donnés d’annotations
d’images collectives.

Ensuite, nous nous sommes intéressés au problème du vote à vainqueurs multiples et nous
avons distingué deux interprétations possibles de la notion de taille du comité dans le cadre
epistémique. Lorsque les contraintes de taille sont considérées comme des connaissances préal-
ables, nous avons montré comment nous pouvons les intégrer dans le modèle et les règles
d’agrégation. De même, lorsque les contraintes sont exogènes, nous avons défini deux concepts
de solution différents et proposé des règles optimales associées à chacun d’eux.
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6
Social Rankings Manipulability

This chapter presents the work I did during my master thesis, on the computational social choice
problem of social rankings, where the goal is to rank individual agents given a ranking of the
groups they form. For instance, given the records of collective performances of different crowd-
sourcing workers groups, social ranking rules rank the individuals from best to worst. The plat-
form may then reward them accordingly.

More precisely, we study the robustness of the social ranking solutions to strategic behaviours.
We focus on a particular kind of manipulation where an agent reaches a higher position in the
output by undermining the performance of the groups to which she belongs. Robustness to this
kind of malicious behaviour is crucial in a crowdsourcing setting [Kittur et al., 2008, Zhu and
Carterette, 2010, Le et al., 2010, Downs et al., 2010], where spammers, aiming to maximize
the payment they receive with minimum effort (e.g., by randomly approving alternatives in a
labelling task), can make the cost of acquiring labels very expensive and can potentially degrade
the quality of the collected annotations.

Hence, even though the topic of social ranking is not directly related to epistemic approval
voting, we include this work in the appendix because it has applications to the study of reward
mechanisms in crowdsourcing and data labelling.

The results of this chapter are published in [Allouche et al., 2020].

Abstract
We investigate the issue of manipulability for social ranking rules, where the goal is to rank
individuals given the ranking of coalitions formed by them and each individual prefers to reach
the highest positions in the social ranking. This problem lies at the intersection of computational
social choice and the algorithmic theory of power indices. Different social ranking rules have
been recently proposed and studied from an axiomatic point of view. In this article, we focus on
rules representing three classical approaches in social choice theory: the marginal contribution
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approach, the lexicographic approach and the (ceteris paribus) majority one. We first consider
some particular members of these families analysing their resistance to a malicious behaviour
of individuals. Then, we analyze the computational complexity of manipulation, and complete
our theoretical results with simulations in order to analyse the manipulation frequencies and to
assess the effects of manipulations.

6.1 Introduction
In decision making and social choice theory, a number of studies are devoted to ranking individ-
uals based on the performance of the coalitions formed by them. For instance, given values on
coalitions of individuals, power indices map these values of coalitions on values of individuals.
The seminal works of [Shapley, 1953] and [Banzhaf III, 1964] paved the way of a whole research
domain and a related literature with many issues, including axiomatization [Laruelle and Valen-
ciano, 2001, Holler and Packel, 1983], applications [Bilbao et al., 2002, Moretti and Patrone,
2008], algorithmic analysis [Matsui and Matsui, 2000] and computational complexity [Deng and
Papadimitriou, 1994, Bachrach and Rosenschein, 2009, Faliszewski and Hemaspaandra, 2009].
The non-manipulability (or strategy proofness) is another fundamental issue. In social choice,
since the seminal theorems of Gibbard and Satterthwaite ([Gibbard, 1973a] and [Satterthwaite,
1975b]), we know that every interesting social choice function is manipulable by misrepresen-
tation of preferences. The manipulability is also analysed for power indices. We quote in par-
ticular the literature on the paradoxical behaviour of power indices under the modification of
some elements of the game, like the number of players or the size of coalitions [Felsenthal et al.,
1998, Laruelle and Valenciano, 2005], or the study of manipulation in weighted voting games
[Aziz et al., 2011, Zuckerman et al., 2012]. In these models, players are analyzed from a strategic
perspective to establish under which conditions they can increase their power adopting malicious
behaviors like, for example, splitting or merging.

Power indices (and other indices of individual productivity based on the evaluation of revenues
generated by teams [Flores-Szwagrzak and Treibich, 2020]) require a numerical evaluation of
coalitions of individuals. Following classical situations in social choice where ordinal data are
provided (for instance, voting theory), several articles address the question of defining ordinal
notions of power indices when we only have ordinal information over coalitions. This has been
formalized as the social ranking from coalitions (SRC) problem, where the objective is to eval-
uate the “influence” of individuals involved in a collective decision process like an electoral
system, a parliament, a governing council, a management board, etc. ([Moretti, 2015, Moretti
and Öztürk, 2017]). Basically, an SRC problem consists of a finite set N of individuals and a
binary relation ⪰ over some subsets (hereafter called coalitions) of N ; the binary relation ⪰ is
called power relation and represents the relative power of coalitions in a decision process. A
solution or rule for an SRC problem is a “suitable” method aimed to convert the information
contained in a power relation ⪰ into a ranking over the single elements of N representing their
overall individual power.

Several solutions for SRC problems have been proposed in the literature. For instance, in the
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work by [Haret et al., 2018] (and the one by [Fayard and Öztürk, 2018]) two individuals are
compared using information from subsets ranking them under a ceteris paribus interpretation.
[Bernardi et al., 2019] axiomatically characterize a solution based on the idea that the most
influential individuals are those appearing more frequently in the highest positions of the power
relation. A rule based on the idea of ordinal marginal contribution and analogous to the Banzhaf
index has been recently introduced in the paper by [Khani et al., 2019].

Following these lines of research, in this chapter we are interested in the analysis of the strategic
manipulation of SRC rules, in the sense that an individual may be interested in behaving ma-
liciously within one or more teams (weakening their group’s effectiveness) in order to obtain a
better position in the individual ranking. The notion of manipulability for SRC considered in this
paper assumes that an individual can only weaken the ranking of teams to which she belongs.
In other words, an individual i cannot affect the performances of teams not containing i and, in
addition, cannot improve the position of a coalition already containing i.

Example 6.1. Consider a manager who must decide how to allocate two bonuses over three
employees (denoted by 1, 2 and 3). Suppose that she can only compare the performance of
teams in an ordinal way: {1, 2, 3} ≻ {1, 3} ≻ {1} ≻ {1, 2} ≻ {2, 3} ≻ {2} ≻ {3} ∼ ∅1.
Suppose the manager wants to keep into account the attitude of employees to cooperate. So, an
option is to count the number of (ordinal) positive and negative marginal contributions provided
by each employee to all possible coalitions, i.e. 1 contributes positively to four teams (i.e.,
{1, 2, 3} ≻ {2, 3}, {1, 3} ≻ {3}, {1, 2} ≻ {2} and {1} ≻ ∅), 3 contributes positively to
three coalitions while 2 also contributes positively to three coalitions, but negatively to coalition
{1, 2}. Therefore the manager would end up to award players 1 and 3. Such a rule could push
individual 2 to behave strategically and to undermine the cooperation within coalition {2, 3}.
So the new ranking being {1, 2, 3} ≻′ {1, 3} ≻′ {1} ≻′ {1, 2} ≻′ {2} ≻′ {2, 3} ≻′ {3} ∼′ ∅,
individuals 1 and 2 should now get the bonus.

To our knowledge, this chapter is the first one which investigates the manipulation for SRC
rules. As in social choice, the manipulability is an important issue in many real-world coalitional
frameworks. For instance, within a parliament, small political parties are often able to blackmail
a majority coalition by threatening to withdraw from the coalition or to run a candidate of their
own [Ferrara, 2004]. In international organizations, the capacity to block the proposals of a
group ensures a great visibility of the blocking state’s positions. In any organizational context,
like a business company or an academic institution, any perceived disparity about the merits of
a team’s members (e.g., over-remuneration of a leader) may engender internal competition, or
even the sabotage of the team by some of it’s members. As a sensible example of this kind of
behaviors, consider the situation following the Italian general election of March 2018, where no
political party got an absolute majority. After 3 months of negotiation, a coalition government
was finally formed by the two parties casting the highest number of votes, precisely, the Five
Star Movement and the League. However, such a government ended one year after, in August
2019, when the League withdrew its support to the coalition government. As a consequence,
the League substantially increased its position in the opinion polls done immediately after the

1≻ : strict preference, ∼ : indifference.
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government crisis [Chiaramonte et al., 2020].

The chapter is organized as follows. We present basic notions and notations in Section 6.2. In
Section 6.3, we introduce a formal definition of manipulability for an SRC rule and provide theo-
retical results on four social ranking rules: Copeland-like, Kramer-Simpson-like, Lexicographic
Excellence [Bernardi et al., 2019] and Ordinal Banzhaf [Khani et al., 2019]. These social rank-
ing rules display a wide variety of characteristics. The two first ones are based on ceteris paribus
comparisons and use the majority principle in a different way. Copeland-like solution is a kind of
flow analysis of majority graphs, whereas Kramer-Simpson is a minmax score. Ordinal Banzhaf
rule is based on a marginal contribution principle. Lexicographic Excellence (lexcel) considers
only information from the best ranked coalitions. We show that only lexcel is not manipulable.
In Section 6.4, we analyse the computational complexity of manipulating each of the three ma-
nipulable social ranking rules, and prove that for each of them determining whether an individual
can manipulate or not is an NP-hard problem. In Section 6.5, we present some simulation results
on manipulable social ranking rules showing the manipulation frequencies and their vulnerability
against the manipulation. Section 6.6 concludes the chapter.

6.2 Preliminaries
Let N = {1, . . . , n} be a finite set of elements called individuals and let R ⊆ N ×N be a binary
relation on N .

A preorder is a reflexive and transitive binary relation. A preorder that is total is called total
preorder. An antisymmetric2 total preorder is called linear order. We denote by T (N) the set
of all total preorders on N and by 2N the powerset of N , i.e. the set of all subsets (also called,
coalitions) of N . Let P ⊆ 2N be a non-empty collection of subsets of N . A power relation on
P is a total preorder ⪰⊆ P × P . We denote by T (P) the family of all power relations on every
non-empty collection P ⊆ 2N . Given a power relation ⪰∈ T (P) on P ⊆ 2N , we denote by ∼
its symmetric part (i.e. S ∼ T if S ⪰ T and T ⪰ S) and by ≻ its asymmetric part (i.e. S ⪰ T
and not T ⪰ S). So, for each pair of subsets S, T ∈ P , S ≻ T means that S is strictly stronger
than T , whereas S ∼ T means that S and T are indifferent.

Let ⪰∈ T (P) be of the form S1 ⪰ S2 ⪰ S3 ⪰ · · · ⪰ S|P|. The quotient order of ⪰ is denoted as
Σ1 ≻ Σ2 ≻ Σ3 ≻ · · · ≻ Σm in which the subsets Sj are grouped in the equivalence classes Σk

generated by the symmetric part of ⪰. This means that all the sets in Σ1 are indifferent to S1 and
are strictly better than the sets in Σ2 and so on. So, Σi = Si for any i = 1, . . . , |P| if and only if
⪰ is a linear order.

A social ranking solution or solution on N , is a function R : T (P) −→ T (N) associating to
each power relation ⪰∈ T (P) a total preorder R(⪰) (or R⪰) over the elements of N . By this
definition, the notion iR⪰j means that applying the social ranking solution to the power relation
⪰ gives the result that i is ranked higher than or equal to j. We denote by I⪰ the symmetric part

2∀i, j ∈ N , iRj and jRi⇒ i = j.
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of R⪰, and by P⪰ its asymmetric part. The social score pi(R⪰) of individual i ∈ N in R⪰ is
defined as the number of individuals in N \ {i} that are ranked lower than i minus the number of
individuals in N \ {i} that are ranked higher than i, that is

pi(R⪰) = |{j ∈ N \ {i} : iR⪰j}| − |{j ∈ N \ {i} : jR⪰i}|.

6.3 Manipulability
In this chapter we focus on a particular notion of manipulation, intended as the “unlimited”
capacity of individuals to undermine the position of coalitions to which they belong in a power
relation ⪰ on P ⊆ 2N .

Definition 6.1. Let ⪰∈ T (P) on P be a power relation with the associated quotient order ≻:

Σ1 ≻ Σ2 ≻ · · · ≻ Σj ≻ · · · ≻ Σm. (6.1)

Let i be an individual, and C ⊆ P be a collection of coalitions in P all containing i. For all
S ∈ C, let j(S) ∈ {1, . . . ,m} be such that S ∈ Σj(S)

3.

A manipulation of ⪰ by individual i via collection C is another power relation ⪰C on P with
⪰C ̸=⪰ and with the associated quotient order ≻C such that the following two conditions hold:

i) Σ1 \ C ≻C Σ2 \ C ≻C · · · ≻C Σj \ C ≻C · · · ≻C Σm \ C;

ii) T ≻C S for all S ∈ C and T ∈ ⋃i=1,...,j(S) Σi \ C.

A social ranking R is manipulable by i on a power relation ⪰ on P if there exists a collection of
coalitions C ⊆ P containing i, a manipulation ⪰C of ⪰ by i via C such that

pi(R⪰C) > pi(R⪰).

[recall that pi(R⪰)) = |{j, iR⪰j}| − |{j, jR⪰i}|.]

A social ranking solution R is manipulable on a power relation ⪰ if it is manipulable by some
individual i.

Condition (ii) says that⪰C is obtained from⪰moving each coalition S ∈ C from the equivalence
class to which it belongs in ⪰, to a strictly lower equivalence class (that can also be a new
singleton equivalence class containing only S in ⪰C), while the relation among all the other
coalitions not in C is maintained as in ⪰ (condition(i)). The family of all manipulations of ⪰ via
collection C is denoted by MC(⪰).

Example 6.2. Consider the power relation ⪰ such that4 23 ≻ (123 ∼ 12) ≻ 13 (hence,
Σ1 = {23},Σ2 = {123, 12},Σ3 = {13}). Imagine that individual 1 wants to manipulate by

3j(S) represents the rank of the equivalence class to which S belongs in the initial power relation ⪰.
4To avoid cumbersome notations later, sets will be written for short without commas and parentheses, e.g., 123

instead of {1, 2, 3}, and S ∪ i instead of S ∪ {i}.
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deteriorating the positions of coalitions in C = {12, 13}. Condition i) of Definition 6.1 im-
poses to maintain 23 ≻C 123, condition ii) imposes 23 ≻C 12, 23 ≻C 13, 123 ≻C 12 and
123 ≻C 13 . Hence, the family of all possible manipulations of ⪰ by 1 via collection C is
MC(⪰) = {⪰C

a,⪰C
b ,⪰C

c}, with 23 ≻C
a 123 ≻C

a 12 ≻C
a 13, 23 ≻C

b 123 ≻C
b 13 ≻C

b 12 and
23 ≻C

c 123 ≻C
c 12 ∼C

c 13.

We will now analyse the manipulability of different social ranking rules.

6.3.1 Copeland-like and Kramer-Simpson-like rules
Copeland-like and Kramer-Simpson (KS)-like rules are both based on Ceteris Paribus-majority
relation, where individuals i and j are ranked according to their relative success over comparisons
of coalitions of the type S ∪ i vs. S ∪ j (CP-comparisons), more precisely:

Definition 6.2 (CP-Majority [Haret et al., 2018]). Let ⪰∈ T (P). The Ceteris Paribus (CP-)
majority relation is the binary relation R⪰

CP ⊆ N ×N such that for all i, j ∈ N :

iR⪰
CP j ⇔ dij(⪰) ≥ dji(⪰),

where dij(⪰) represents the cardinality of the set Dij(⪰), the set of all coalitions S ∈ 2N−{i,j}

for which S ∪ i ⪰ S ∪ j5.

Example 6.3. Consider: (123 ∼ 12 ∼ 3 ∼ 1) ≻ (2 ∼ 23) ≻ 13. Then, we obtain:

1I⪰
CP2, 1P⪰

CP3, 2I⪰
CP3

For instance, 1I⪰
CP2 : D12(⪰) = {∅} (1 ≻ 2); D21(⪰) = {3} (23 ≻ 13).

The CP-Majority relation has a major drawback: it can generate cycles within the individual
ranking (except under some particular domain restrictions, as suggested in [Haret et al., 2018]).

For this reason, we investigate the manipulability of two transitive solutions derived from the
CP-Majority, which are inspired, respectively, by the Copeland [Copeland, 1951] and Kramer-
Simpson [Simpson, 1969] [Kramer, 1977] voting schemes. These two rules are known to be
Condorcet coherent, meaning that when a Condorcet winner (a candidate beating all the other
candidates by the majority rule) exists, it is chosen by them. Interestingly, while it can be easily
proved that CP-majority relation is not manipulable, Copeland like and KS like solutions are
manipulable.

6.3.1.1 Copeland-like method

Strongly inspired by the Copeland score of social choice theory, we define Copeland-like solution
based on the net flow of CP-majority graph. According to the Copeland solution, individuals are
ordered according to the number of pairwise winning comparisons, minus the one of pairwise
losing comparisons, over the set of all CP-comparisons.

5Note that S can be ∅.
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Definition 6.3 (Copeland-like solution). Let⪰∈ T (P). The Copeland-like relation is the binary
relation R⪰

Cop ⊆ N ×N such that for all i, j ∈ N :

iR⪰
Copj ⇔ Score⪰

cop(i) ≥ Score⪰
cop(j).

where Score⪰
cop(i) = pi(R⪰

CP ) =

|{j ∈ N \ {i} : iR⪰
CP j}| − |{j ∈ N \ {i} : jR⪰

CP i}|.

Theorem 6.1. The Copeland-like solution is manipulable.

Proof. See Example 6.4 for an instance of manipulation.

Example 6.4. Consider ⪰ of Example 6.3. Then,

Score⪰
cop(1) = 1, Score⪰

cop(2) = 0, Score⪰
cop(3) = −1.

Hence, the Copeland-like relation is: 1P⪰
Cop2P

⪰
Cop3.

Now imagine that 3 deteriorates the performance of 23 (C = {23})

(123 ∼C 12 ∼C 3 ∼C 1) ≻C 2 ≻C 13 ≻C 23.

Now we have: Score⪰C
cop(1) = 2, Score⪰C

cop(2) = −1, Score⪰C
cop(3) = −1.

So, now, 3 shares the second position with 2.

6.3.1.2 Kramer-Simpson-like method

Strongly inspired by the Kramer-Simpson method of social choice theory (Minmax), individuals
are ranked inversely to their greatest pairwise defeat over all possible CP-comparisons.

Definition 6.4 (Kramer-Simpson-like solution). Let ⪰∈ T (P). The KS-like relation (KS rela-
tion) is the binary relation R⪰

KS ⊆ N ×N such that for all i, j ∈ N :

iR⪰
KSj ⇔ Score⪰

KS(i) ≤ Score⪰
KS(j),

where Score⪰
KS(i) = maxj∈N(dji(⪰))

Theorem 6.2. The Kramer-Simpson (KS)-like solution is manipulable.

Proof. See Example 6.5 for an instance of manipulation.

165



CHAPTER 6. SOCIAL RANKINGS MANIPULABILITY

Example 6.5. Consider ⪰ : 2 ≻ (1 ∼ 3) ≻ 12 ≻ (13 ∼ 23) ≻ ∅ ≻ 123. Then, Score⪰
KS(1) =

1, Score⪰
KS(2) = 0, Score⪰

KS(3) = 2. Hence, KS-like solution is: 2P⪰
KS1P⪰

KS3. Now consider
the following manipulation operated by 1 on C = {12}:

2 ≻C (1 ∼C 3) ≻C (13 ∼C 23) ≻C 12 ≻C ∅ ≻C 123.

The new scores are: Score⪰C

KS(1) = 1, Score⪰C

KS(2) = 1, Score⪰C

KS(3) = 1. So, individual 1 now
gets the first position.

Remark. For n = 2, the Copeland-like solution and the KS-like solution coincide with the
CP-majority relation, hence these solutions are not manipulable for n = 2.

6.3.2 Ordinal Banzhaf
In the same spirit of the Banzhaf index [Banzhaf III, 1964], the ordinal Banzhaf solution is based
on counting the number of positive and negative ordinal marginal contributions.

Definition 6.5 (Ordinal marginal contribution [Khani et al., 2019]). Let ⪰∈ T (P). The ordinal
marginal contribution mS

i (⪰) of player i w.r.t. coalition S, i /∈ S, in power relation ⪰ is defined
as:

mS
i (⪰) =


1 if S ∪ {i} ≻ S,
−1 if S ≻ S ∪ {i},

0 otherwise.
(6.2)

Definition 6.6 (Ordinal Banzhaf relation). Let ⪰∈ T (P). The ordinal Banzhaf relation is the
binary relation R⪰

Banz such that for all i, j ∈ N :

iR⪰
Banzj ⇔ Score⪰

Banz(i) ≥ Score⪰
Banz(j),

where Score⪰
Banz(i) = u+,⪰

i − u−,⪰
i and u+,⪰

i (u−,⪰
i ) is defined as the number of coalitions S

with i /∈ S such that mS
i (⪰) = 1 (mS

i (⪰) = −1).

Theorem 6.3. The Ordinal-Banzhaf solution is manipulable.

Proof. See Example 6.6 for an instance of manipulation.

Example 6.6. Consider ⪰ : 13 ≻ 1 ≻ 12 ≻ 23 ≻ 2 ≻ 3 ≻ 123 ≻ ∅.

Then, 1I⪰
Banz3P

⪰
Banz2 since Score⪰

Banz(1) = 2, Score⪰
Banz(2) = 0, Score⪰

Banz(3) = 2 . However,
if 2 undermines the cooperation with 1 and 3 (C = {12, 23}): 13 ≻C 1 ≻C 2 ≻C 23 ≻C 3 ≻C

12 ≻C 123 ≻C ∅. Then the three individuals would have a null Banzhaf score and would be
ranked equally.
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6.3.3 Lexicographic excellence solution
The idea of lexicographic excellence is based on the lexicographic comparison of the frequency
of individuals within equivalence classes, and taking care to reward individuals within the most
excellent ones. Given the power relation ⪰ and its associated quotient ranking Σ1 ≻ Σ2 ≻ Σ3 ≻
· · · ≻ Σm, we denote by ik the number of sets in Σk containing i:

ik = |{S ∈ Σk : i ∈ S}|

for k = 1, . . . , l. Now, let θ⪰(i) be the l-dimensional vector θ⪰(i) = (i1, . . . , il) associ-
ated to ⪰. Consider the lexicographic order ≥L among vectors i and j: i ≥L j if either i =
j or there exists t : ir = jr, r = 1, . . . , t− 1, and it > jt.

Definition 6.7 (Lexicographic-excellence solution [Bernardi et al., 2019]). Let ⪰∈ T (P). The
lexicographic excellence (lexcel) relation is the binary relation R⪰

lexcel such that for all i, j ∈ N :

iR⪰
lexcelj ⇔ θ⪰(i) ≥L θ⪰(j).

Example 6.7. Consider the power relation of Example 6.2. We have θ⪰(1) = (0, 2, 1) (since 1
is twice in Σ2 and once in Σ3), θ⪰(2) = (1, 2, 0), θ⪰(3) = (1, 1, 1), which yields the following
lexcel ranking: 2P⪰

lexcel3P
⪰
lexcel1.

Theorem 6.4. The lexcel solution is not manipulable.

Proof. Let ⪰∈ T (P) be a power relation on P ⊆ 2N with the associated quotient order ≻:

Σ1 ≻ Σ2 ≻ · · · ≻ Σj ≻ · · · ≻ Σk · · · ≻ Σm, (6.3)

and let C = {S1, S2, . . . , Sl} ⊆ P and i ∈ N be such that i ∈ ⋂S∈C S (wlog, assume S1 ⪰ S2 ⪰
. . . ⪰ Sl).

Suppose there exists a manipulation ⪰C of ⪰ by i such that pi(R⪰C) ≥ pi(R⪰). Then there must
be some k ∈ N \ {i} such that

kR⪰
lexceli and iR⪰C

lexcelk. (6.4)

First, notice that there exists some coalition S ∈ C such that k /∈ S (otherwise, if i, k ∈ ⋂S∈C S,
the manipulation would have no impact on the relative comparison of i and k, since in this case
θ⪰(i) ≥L θ⪰(k)⇔ θ⪰C(i) ≥L θ⪰C(k)).

Now let S∗ ∈ C be a coalition not containing k with the smallest index in C, and let j(S∗) ∈
{1, . . . ,m} be such that S∗ ∈ Σj(S∗). Since kR⪰

lexceli, we distinguish two cases:

i) kI⪰
lexceli (k and i are indifferent in ⪰ according to the lexcel relation). Then, by Definition

6.7, θ⪰C
v (k) = θ⪰

v (k) = θ⪰
v (i) = θ⪰C

v (i) for all v < j(S∗), while θ⪰C

j(S∗)(k) > θ⪰C

j(S∗)(i). So,

kP⪰C

lexceli;
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ii) kP⪰
lexceli (k is strictly stronger than i in ⪰ according to the lexcel relation). So, let t be the

smallest index such that θ⪰
t (k) > θ⪰

t (i). Moreover, let q = min(t, j(S∗)). By Definition
6.7, θ⪰C

v (k) = θ⪰
v (k) = θ⪰

v (i) = θ⪰C
v (i) for all v < q and θ⪰C

q (k) > θ⪰C
q (i). So, again,

kP⪰C

lexceli.

In both cases we get a contradiction with the fact that iR⪰C

lexcelk by relation (6.4). Since C is an
arbitrary collection of coalitions in P , we have proved that the lexcel solution is not manipulable.

A drawback of the lexcel solution is that it makes use of a limited amount of information, giving
a quasi-dictatorial power to the best ranked coalitions. On the other hand, Copeland-like and KS-
like rules are based on the intuitive idea of ceteris paribus comparisons and have the advantage
of choosing the Condorcet winner (with respect to the CP-majority relation) when it exists. The
Ordinal Banzhaf rule, based on the intuitive notion of ordinal marginal contribution of individu-
als, also offers another interesting interpretation in terms of fairness. In order to further study the
effective impact of manipulation on these three appealing solutions, in Section 6.4 we analyse
the computational complexity of manipulation and in Section 6.5 we introduce some simulations
on several numerical instances.

6.4 Computational complexity of manipulation
As we have seen in the previous section, the Copeland-like solution, the KS-like solution, and
the Ordinal Banzhaf solution are manipulable. We strengthen these results in this section by
showing that, for each of these social ranking solutions, determining whether an individual can
manipulate or not is an NP-hard problem. Let us state the problem precisely. As an instance, we
have a set N = {1, . . . , n} of individuals with a manipulator t ∈ N , a set P ⊆ 2N , and a power
relation ⪰ on P . The question is to determine whether a given solution is manipulable by t on
P , as defined in Definition 6.1.

We prove in the next three theorems that the manipulation is NP-hard for the three solutions.

Theorem 6.5. For the Ordinal Banzhaf solution, the Manipulation problem is NP-hard.

Proof. We build the following instance of the manipulation problem under the Ordinal Banzhaf
solution. First, let us consider the following individuals:

• we associate to each edge ei ∈ E an individual that we call ei as well (for convenience),
and to each vertex v an individual that we call v as well (for convenience);

• two other individuals: t (the manipulator), and α.

For each vertex v, let us call Pv the set containing the subsets of individuals {v, α, t}, {v, t} and
all subsets {v, ei, α, t} for each edge ei incident to v. Pv is ordered as follows in ⪰: {v, α, t} is
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the first one (strictly preferred to any other sets in Pv), {v, t} is the last one, and all {v, ei, α, t}
are equivalent, ranked between {v, α, t} and {v, t}.

Note that each set in Pv contains v, so for the scores the relative positions of 2 sets in Pv and Pv′

do not matter; we do not specify it.

The contribution of these sets Pv to the scores are: +|V | for α (due to {v, α, t} ≻ {v, t} for each
vertex/individual v), −2 for each object ei (due to {v, α, t} ≻ {v, ei, α, t}, for each of the two
extremities of edge ei), and 0 for t (each set contains t).

The idea of the reduction is that, in order to manipulate, t has to become first (defeating α). To
do this she shall put {v, α, t} below {v, t} in some Pv. But doing this, the score of the edges
incident to v increases. t cannot do this for the two extremities of an edge, otherwise ei defeats
him.

To make this true, we need to add dummy individuals to adjust the initial scores of α and t. For
the score of α, we add λ = 2k− |V | individuals b1, . . . , bλ. For each bi, we order {bi, α} ≻ {bi}.
This gives an extra score of λ = 2k− |V | to α, while bi has score 0. Finally, we add an object γ,
and order {γ, t} ≻ {γ}, giving an extra score of 1 to the manipulator t.

Note that as previously we do not need to further specify ⪰, since the relative positions of sets
containing different bi, and/or γ, and/or in different Pv, does not matter with respect to the scores
(there is no other set inclusion).

To sum up, we have |E|+ |V |+ 2 + (2k− |V |) + 1 individuals: each individual ei has score −2,
individual t has score 1, and α has score |V |+ 2k− |V | = 2k. All dummy objects and objects v
have score 0. Note that the size of P is polynomial in the size of G.
We claim that t can manipulate if and only if there is an independent set of size k in G.
Suppose that there is an independent set S of size k in G. Then consider the manipulation where,
for each v in S, t puts {v, eji , α, t} down to the last position in Pv. Then the score of α decreases
by 2k and becomes 0. The score of ei is modified in at most one Pv, since S is an independent
set, so it is at most 0. The score of t is still 1, and t manipulated the election.
Conversely, suppose that t can manipulate. Note that t cannot increase her own score, so she
must make the score of α at most 1. This means that she has to put {v, α, t} in the last position
in at least k sets Pv. Let S be the corresponding set of vertices. If S contains both extremities of
one edge ei, then the score of ei becomes +2, and t is not better of. So, in order to manipulate,
the set S must be an independent set, and it is of size at least k.

Theorem 6.6. For the Copeland-like solution, the Manipulation problem is NP-hard.

Proof. We make a reduction from the NP-complete vertex cover problem where, given a graph
G = (V,E) and an integer k, the goal is to determine whether there exists a set C of k vertices
such that each edge has at least one endpoint in C (vertex cover).

Given a graph G and an integer k, we build an instance of the manipulation problem under
Copeland-like solution as follows. We first consider two individuals v, v for each vertex v, one
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individual ei for each edge ei, and three individuals t, α and j. t is the manipulator.

For each vertex v, we define Pv as the set containing the subsets of individuals {v, v, α, t},
{v, v, α, j} and all subsets {v, v, ei, t} for each edge ei incident to v. Pv is ordered as follows in
⪰: {v, v, α, t} is the first one, {v, v, α, j} is the second one, and all {v, v, ei, t} (ei incident to
v) are equivalent, in third position. Note that, since all sets in Pv contain v and v, the relative
positions of sets in Pv and Pv′ do not matter, and we do not specify them.

Up to now, we have: dtj = −djt = |V | (1 for each v), dαei
= −deiα = 2 (1 for each extremity of

ei). We also have non zero values for some deiej
but this will not matter.

Now, we add dummy individuals to modify djt: we add |V | − k − 1 pairs of individuals βi, βi
with {βi, βi, j} ≻ {βi, βi, t}. Then dtj = |V | + k + 1 − |V | = k + 1. In a similar manner, we
add dummy individuals to modify dαei

, in order to make dαei
= deiα = 0 for all edges ei.

Finally, we add dummy individuals in order to increase the (social) Copeland-scores of j, t and
α. In particular, the Copeland-scores of other individuals (including ei) will not matter, as they
are much lower. We add {δi, δi, α} ≻ {δi, δi, ϕi} for i = 1, . . . , 3|E|. This adds 3|E| to the
Copeland-score of α. Similarly, we add 2|E| to the Copeland-score of t, and 2|E| + 1 to the
Copeland-score of j. Then:

• All individuals up to j, α and t have Copeland-score at most |E|+ 1.

• t has Copeland-Score 1 + 2|E| (he defeats j), α has Copeland-Score 3|E| (he is tied with
all edges ei), and j has Copeland-Score −1 + 2|E|+ 1 = 2|E| (t defeats him).

Hence, t is ranked in second position (with no tie) according to Copeland-scores.

We claim that t can manipulate if and only if there is a vertex cover of size k in G.

If there is such a vertex cover C, let us consider the manipulation where t puts {v, v, α, t} in the
last position in Pv for each v ∈ C. Then: dtj decreases by k, so dtj = −djt = 1 and t still
defeats j. Since C is a vertex cover, for each edge ei dαei

decreased by at least one, and becomes
negative. So now each ei defeats α, and α has a Copeland-score of 3|E| − |E| = 2|E|, tied with
t. t is now ranked first, tied only with α, and is better of.

Suppose now that t can manipulate. Note that when manipulating, t cannot increase his Copeland-
score (the dik cannot increase). So, he must reduce the Copeland-Score of α by at least |E|. This
decreasing can only be obtained by putting some {v, v, α, t} below {v, v, ei, t} for each edge ei
(so that the global decreasing is |E|). Let us call C the set of vertices for which t makes such a
modification. Since it must affect each edge ei, C is a vertex cover of G. Suppose that it has size
|C| > k. Then dtj decreases by at least k + 1, so now dtj = djt ≤ 0. t has Copeland-Score (at
most) 2|E|, while j has Copeland-Score (at least) 2|E| + 1, and t is not better of in the global
ranking, a contradiction. So C is a vertex cover of G of size (at most) k.

Theorem 6.7. For Kramer-Simpson-like solution, the Manipulation problem is NP-hard.
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Proof. We reduce the independent set problem where, given a graph G = (V,E) and an integer
k, the goal is to determine whether there exists a set S of k pairwise non adjacent vertices
(independent set).

Given a graph G and an integer k, we build an instance of the manipulation problem under
Kramer-Simpson-like solution as follows. We first consider two individuals v, v for each vertex
v, two individuals ei, fi for each edge ei, and three individuals t (the manipulator), α and β.

For each vertex v, we define Pv as the set containing the subsets of individuals {v, v, α, t},
{v, v, β, t} and all subsets {v, v, ei, t} and {v, v, fi, t} for each edge ei incident to v. Pv is
ordered as follows in⪰: {v, v, α, t} is the first one, {v, v, β, t} is the last one, and all {v, v, ei, t},
{v, v, fi, t} (ei incident to v) are equivalent, between {v, v, α, t} and {v, v, β, t}. Note that, since
all sets in Pv contain v and v, the relative positions of sets in Pv and Pv′ do not matter, and we
do not specify them.

Up to now, we have: dαβ = |V | (1 for each v), dαei
= 2 (1 for each extremity of ei). We also

have non zero values for some other pairs of individuals but this will not matter.

Now, we add dummy individuals to modify the (social) KS-scores of some individuals. Let M
sufficiently large (say greater than |V | + 1). We add {δi, δi, µ} ≻ {δi, δi, t} for i = 1, . . . ,M .
This makes the KS-score of t equal to dµ,t = M .

For each ei we add {γj, γj, α} ≻ {γj, γj, ei} for j = 1, . . . ,M . This makes ScoreKS(ei) =
dαei

= M + 2. We do similarly with individuals fi, to get ScoreKS(fi) = dαfi
= M + 2.

Finally, we artificially make (with new individuals) ScoreKS(α) = dβα = M − k.

Note that t can modify the scores only for α, β and ei, fi. He cannot increase the score of β
(which is dαβ = |V |), so since M is larger, t is and will ever be worse than β. So, with respect
to manipulation, only the scores of α, t, ei and fi matter. Initially, their respective KS-scores are
M − k, M , M + 2 and M + 2.

We claim that there is an independent set of size k if and only if t can manipulate.

If there is an independent set S of size k, consider the manipulation where t puts {v, α, t} in
last position in Pv for each v in S. By doing this, dβα increases by k, and ScoreKS(α) = M =
ScoreKS(t). Since S in an independent set, dαei

decreases by at most 1 (idem for dαfi
), so

ScoreKS(ei) ≥M + 1, ScoreKS(fi) ≥M + 1, and t is better of.

Conversely, in order to manipulate t must increase the KS-score of α by at least k. To achieve
this, the unique possibility is to put {v, v, α, t} in last position in at least k sets Pv. Let S be the
corresponding set of vertices (of size at least k). Suppose that S is not an independent set. Then
for some edge ei, {v, v, α, t} is ranked last for both extremities. This means that for this edge
dαei

= dαfi
= M . Then ScoreKS(t) = M = ScoreKS(ei) = ScoreKS(fi), so t cannot be better

of (he may have won 2 by defeating α, but is no tied with ei and fi, loosing at least 2).
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6.5 Simulations
Inspired by previous works in voting theory [Chamberlin, 1985], we study to what extend the
three rules are manipulable. In other terms, based on computer simulations of various power
relations, we estimate the probability that a manipulation occurs and we analyse the vulnera-
bility of each solution to manipulation. We only consider situations with a single manipulator
and power relations on the whole set 2N . In order to perform our simulations we need to find
a manipulation strategy for each rule under the assumption that the manipulator has a complete
knowledge about the power relation.
To find a manipulation, we set up an integer linear programming (ILP) formulation of the prob-
lem, the variables of which represent the ranking after manipulation. This ILP is efficient enough
for small values of n, and we perform our simulation on total power relations over 2N up to n = 5,
i.e., power relations on up to 25 = 32 coalitions. The data generation is done using Monte Carlo
methods (see Algorithm 5), following uniform (impartial culture) model, which assumes that all
power relations over coalitions are equally likely to occur. For each number of individuals n, we
generated 1000 random total power relations.

Algorithm 5 Generate a random Power Relation PR over P ⊆ 2N

L = [S1, . . . , S|P |],PR = [ ],K = ∅,i = 1
Shuffle L to get a random order over P
while K ̸= P do

Randomly pick l ≤ |L| − |K| the size of the indifference class
PR←− [PR,L[i : i+ l − 1]]
i←− i+ l − 1
K ←− K ∪ L[i : i+ l − 1]

end while
return PR

6.5.1 Integer linear Program
For all the three social ranking solutions, the inputs are the same:

Inputs: We are given a power relation ⪰, the potential manipulator i and the set of individuals
N . From which we derive a matrix M ∈ {0, 1}2N ×2N that is defined as follows:

• M(S, S ′) = 1 ⇐⇒ S ⪰ S ′

The main variables of the program are also common to the three social ranking solutions:

Variables: A matrix M ′ ∈ {0, 1}2N ×2N describing the manipulation which is defined as fol-
lows:

• M ′(S, S ′) = 1 ⇐⇒ S ⊒ S ′
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From this matrix, we derive other variables:

• A vector of scores (Marginal contribution, Copeland (pi) or Kramer-Simpson score): s⊒ ∈
ZN

• A matrix of the social ranking R ∈ {0, 1}N×N such that: R(i, j) = 1 ⇐⇒ iR⊒j ⇐⇒
s⊒
i ≥ s⊒

j

The three solutions also share these common constraints:

Constraints: First we need to respect the definition of manipulation:{
M ′(S, S ′) = M(S, S ′), ∀S, S ′ /∈ Si condition (i)
M ′(S ′, S) ≥M(S ′, S) ∧M ′(S, S ′) ≤M(S, S ′), ∀S ∈ Si, S ′ /∈ Si condition (ii)

To maintain the reflexiveness, transitivity and completeness of the power relation:


M ′(S, S) = 1, ∀S reflexiveness
M ′(S, S”) ≥M ′(S, S ′) +M ′(S ′, S”)− 1, ∀S, S ′, S” ∈ 2N transitivity
M ′(S, S ′) +M ′(S ′, S) ≥ 1, ∀S, S ′ ∈ 2N total preorder

Moreover, to deduce the matrix of the individual social ranking we impose the following con-
straints: {

R(j, k) ≥ ϵ(s⊒
j − s

⊒
k + 1), ∀j, k ∈ N

R(j, k) ≤ 1− ϵ(s⊒
k − s

⊒
j ), ∀j, k ∈ N

where ϵ is a small constant chosen in such a way that |ϵ(s⊒
j − s

⊒
k + 1)| ∈ (0, 1).

Objective function Since the manipulator aims towards maximizing his social score, the ob-
jective function is:

max
∑

j∈N\{i}
R(i, j)−R(j, i)

In addition to that, in order to compute the vector of scores s⊒ each solution has its specific
constraints and intermediate variables.

6.5.2 Ordinal Banzhaf solution

We impose the following constraints to compute the marginal contributions:

∀k ∈ N, s⊒
k =

∑
S∈Sk

M ′(S, S\{k})−M ′(S\{k}, S)
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6.5.3 Copeland-like solution
First, we need to compute the matrix D ∈ NN×N such that Dij = |{S ∈ 2N\{x,y}, S ∪ {x} ⪰
S ∪ {y}}| is the number of coalitions preferring i to j:

∀j, k ∈ N,Djk =
∑

S∈2N\{j,k}

M ′(S ∪ {j}, S ∪ {k})

Next, we compute the matrix CP ∈ {0, 1}N×N such that CPij = 1 ⇐⇒ iR⊒
CP j, via constraints

exactly similar to those that calculate the matrix R from the vector of scores s⊒. The Copeland
score is, by definition, computed as follows:

∀j ∈ N, s⊒
j =

∑
k∈N

CPik − CPki

6.5.4 Kramer-Simpsonsolution: linearization of x = max(a, b)
We consider the case of 3 individual N = {1, 2, 3}. The matrix D is computed exactly like for
the Copeland-like solution. However, the score of j ∈ N is s⊒

j = maxk ̸=j Dkj . For example:
s⊒

1 = max(D21, D31). Hence, we have to linearize constraints like x = max(a, b).6

6.5.4.1 Linearize x = max(a, b)

We introduce the variables:

• (a− b)+, (a− b)− ∈ N, the postive and negative parts of (a− b)

• y ∈ {0, 1} such that y = 1 ⇐⇒ (a− b) ≥ 0

and the constraints: 

(a− b) = (a− b)+ − (a− b)−

y ≥ a−b
M
, |a− b| < M

y ≤ 1 + a−b
M

(a− b)+ ≤ Ay, |a− b| < A
(a− b)− ≤ A(1− y)
x− a+b

2 = (a−b)++(a−b)−

2

Since max(a, b, c) = max(max(a, b), c) we can uses this type of constraints to linearize the
constraints for 4 or more individuals.

Remark. The problem is always feasible since in the worst case for i, she can maintain the same
⪰.

6.5.5 Results
6.5.5.1 The proportion of manipulable cases:

A power relation is manipulable if there exists at least one individual who can manipulate it. The
results are shown in Figure 6.1. The probability of having a manipulable power relation increases

6For 4 or more agents we have to linearize constraints x=max(a,b,c)
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Figure 6.1: Proportion of manipulable cases

rapidly with the number of individuals for the three solutions, especially for the KS relation for
which it reaches 99.6% for n = 4 and 100% for n = 5. However, for Copeland it reaches 41%
and 92% for Banzhaf.

6.5.5.2 Number of possible manipulators:

We look at the number of possible manipulators for each manipulable case. The results are
shown in Figure 6.2. The proportion of manipulators grows with the number of individuals. We
note also that for Copeland solution, there are on average less possible manipulators for each
power relation, and thus has a lower probability of being actually manipulated by one of them.

6.5.5.3 Manipulating to be the best ranked:

We analyse in the following the probability of becoming the best ranked one (ties are possible)
thanks to a manipulation. See Figure 6.3.

6.5.5.4 Cross-simulation

We end our analysis by a cross simulation where for a given power relation we analyze the
manipulability with respect to each social ranking rule. Table 6.1 shows our results:
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Figure 6.2: Proportion of possible manipulators.

Table 6.1 is coherent with our previous results (see Figure 6.1). Based on the results of simu-
lations, it seems that if a power relation is manipulable by the Copeland-like solution, it is also
by the KS-like solution. The most common case is to be manipulable by ordinal the Ordinal
Banzhaf solution and the KS-like solution. For these reasons, our conjecture (suggested by the
experimental results) is that the Copeland-like solution is not manipulable alone.

6.6 Conclusion
We have studied the problem of manipulating social ranking solutions. We have shown that
lexcel is not manipulable and the manipulation of three other rules is NP-hard. Using simulation,
we have remarked that Copeland-like is more resistant to manipulation than the Ordinal Banzhaf
solution and the KS-like solution.

Our study opens the way for many future works. We quote some of them : An axiomatic char-
acterization of SRC rules taking into account strategy-proofness (like the one of Gibbard and
Satterhwaite ([Gibbard, 1973a] and [Satterthwaite, 1975b])), analysis of the impact on the ma-
nipulability of some domain restrictions, study of coalitional manipulation or of simultaneous
manipulation (game theoretical issues).
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Figure 6.3: Probability to be ranked first with manipulation.

manipulable by N = 3 N = 4 N = 5
Banz. +Cop. +KS 7.4 16.4 33.1
Banz. +Cop. 0 0 0
Banz. +KS 29.6 61.2 56.2
Banz. 1 0 0
Cop. +KS 0.2 0.4 4.7
Cop. 0 0 0
KS 28.7 22.0 6.0
none 33.1 0 0

Table 6.1: Percentage of manipulable power relations.
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RÉSUMÉ

Dans le vote par approbation épistémique, les agents sont confrontés à une question comportant plusieurs alternatives et
une vérité objective cachée. Les votants sélectionnent les alternatives qui, suivant leurs croyances, peuvent correspondre
à la vérité. Les croyances des votants sont agrégées pour estimer cette vérité. D’abord, nous considérons le cas où une
seule alternative est correcte. Nous recommandons des règles d’agrégation qui attribuent plus de poids aux votants ayant
sélectionné peu d’alternatives, car ils ont tendance à être plus précis. Il en découle de nouvelles méthodes fondées sur
des résultats théoriques et validées par des expériences numériques. Ensuite, nous considérons le cas où la vérité est
constituée de plusieurs alternatives (les notes d’un accord, les meilleurs candidats..). La taille de la sortie dans de telles
situations peut être connue au préalable ou limitée par une contrainte exogène. Nous proposons des solutions adaptées
à chacun de ces deux cas.

MOTS CLÉS

Vote d’approbation épistémique, Estimation du maximum de vraisemblance, Crowdsourcing, Labellisation
des données

ABSTRACT

In epistemic approval voting, there is a hidden ground truth, and voters select the alternatives which, according to their
beliefs, can correspond to the ground truth. These votes are then aggregated to estimate it. We first focus on tracking a
simple truth, where exactly one alternative is correct. We advocate using aggregation rules that assign more weight to
voters who select fewer alternatives, as they tend to be more accurate. This yields novel methods backed by theoretical
results and experiments on image annotation datasets. Second, we consider cases where the ground truth contains
multiple alternatives (e.g., notes in a chord, objectively best applicants). The size of the output can be either a prior
knowledge on the number of true alternatives, or an exogenous constraint bearing on the output of the rule regardless of
the true size of the ground truth. We propose suitable solution concepts for each of these two interpretations.

KEYWORDS

Epistemic approval voting, Maximum likelihood estimation, Crowdsourcing, Data Labeling.
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