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Abstract

Online machine learning-based predictive maintenance for the railway industry

by Minh Huong Le Nguyen

Being an effective long-distance mass transit, the railway will continue to flourish for its limited carbon
footprint in the environment. Ensuring the equipment’s reliability and passenger safety brings forth
the need for efficient maintenance. Apart from the prevalence of corrective and periodic maintenance,
predictive maintenance has come into prominence lately. Recent advances in machine learning and the
abundance of data drive practitioners to data-driven predictive maintenance. The common practice is
to collect data to train a machine learning model, then deploy the model for production and keep it un-
changed afterward. We argue that such practice is suboptimal on a data stream. The unboundedness of
the stream makes the model prone to incomplete learning. Dynamic changes on the stream introduce
novel concepts unseen by the model and decrease its accuracy. The velocity of the stream makes man-
ual labeling infeasible and disables supervised learning algorithms. Therefore, switching from a static,
offline learning paradigm to an adaptive, online one is necessary, especially when new generations of
connected trains continuously generating sensor data have already been a reality. We investigate the
applicability of online machine learning for predictive maintenance on typical complex systems in the
railway. First, we develop InterCE as an active learning-based framework that extracts cycles from an
unlabeled stream by interacting with a human expert. Then, we implement a long short-term memory
autoencoder to transform the extracted cycles into feature vectors that are more compact yet remain
representative. Finally, we design CheMoc as a framework that continuously monitors the condition
of the systems using online adaptive clustering. Our methods are evaluated on the passenger access
systems on two fleets of passenger trains managed by the national railway company SNCF of France.
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Résumé

Maintenance prévisionnelle basée sur l’apprentissage automatique en ligne dans le secteur

ferroviaire

par Minh Huong Le Nguyen

Le transport ferroviaire permet de transporter de nombreux passagers tout en laissant une faible em-
preinte carbone dans l’environnement, ce qui en fait un mode de transport en commun efficace et
écologique. Donc, le chemin de fer continuera à se développer dans les décennies suivantes, d’où le
besoin d’une maintenance efficace. La maintenance est une fonction support essentielle car elle aide à
assurer la fiabilité des équipements, la disponibilité du service, et la sécurité des humains. Dans le fer-
roviaire, la maintenance corrective et la maintenance préventive périodique sont dominantes. Le pre-
mier vise à mettre en place les interventions urgentes ayant lieu après l’occurrence d’une panne dans
le système, alors que le dernier a pour l’objectif de planifier des inspections par intervalles régulières
pour prévenir toutes défaillances potentielles.

Récemment, émerge une nouvelle stratégie de maintenance qui est la maintenance prévisionnelle.
Cette stratégie émet des ordre de maintenance en s’appuyant sur l’état actuel d’un système, révélé
par la surveillance en continu de l’état du système, et sur la prévision de ses conditions futures. La
maintenance prévisionnelle a attiré une attention croissante des praticiens du domaine, en particulier
dans l’ère de l’Industrie 4.0 où les systèmes sont équipés de capteurs qui génèrent un flux de données
en temps réel, facilitant la surveillance en continue de l’état des systèmes. Les techniques réalisant la
maintenance prévisionnelle peuvent se diviser en deux catégories: l’approche basée sur les connais-
sances et l’approche basée sur les données. Pour cette thèse, nous nous concentrons sur le dernier,
pour lequel l’apprentissage automatique (machine learning) a pris de l’importance.

Pourtant, l’apprentissage automtique se fait souvent demanière hors-ligne. C’est-à-dire, unmodèle
s’apprend sur un ensemble de données collectées préalablement en plusieurs itérations jusqu’à sa con-
vergence, puis le modèle est deployé en ligne pour émettre ses prédictions sur les nouvelles données.
En dépit des nouveautés sur un flux de données, le modèle déployé restant constant et ses paramètres
ne changent pas, même si les caractéristiques des données ont dévié largement de celles utilisées pen-
dant l’apprentissage du modèle. Ceci demande un ré-entraînement du modèle, ce qui est inefficace,
considéran que les systèmes connectés produisent de nouvelles données rapidement.

Considérant ces désavantages de l’apprentissage automatique hors-ligne, nous portons l’attention
sur l’apprentissage automatique en ligne, qui consiste à apprendre de façon continue, en mettant à jour
le modèle incrémentalement sur chaque nouvel exemple de données, et à s’adapter automatiquement
aux nouveautés sur le flux de données. Par résultat, l’apprentissage automatique en ligne permet aussi
à un modèle d’interagir avec les humains en collectant leur retour pour ajuster ses paramètres si néces-
saire. Cette thèse étudie l’applicabilité de l’apprentissage automatique en ligne pour la maintenance
prévisionnelle dans le ferroviaire, utilisant les données des systèmes d’accès passager sur deux flottes
de trains NAT et R2N, fournies par la SNCF de la France, comme cas d’études.

Donc, la question de recherche de cette thèse est comme suit : étant donné que l’apprentissage au-
tomatique en ligne peut surmonter des limites de l’apprentissage automatique hors ligne traditionnel,
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pourrions-nous utiliser l’apprentissage automatique en ligne pour atteindre les résultats satisfaisant
pour la maintenance prévisionnelle dans le ferroviaire ? Afin d’implémenter l’apprentissage automa-
tique en ligne pour la maintenance prévisionnelle dans le ferroviaire, il faut considérer les contraintes
opérationnelles et caractéristiques spécifiques aux ferroviaire. Nous les divisons en quatre blocs: gran-
ularité, cyclicité, indicateurs, et santé, pour lesquels nous proposons dix hypothèses. La validation de
ces hypothèses est basée sur les résultats expérimentaux collectés sur les données des systèmes d’accès
passager de deux flottes de trains NAT et R2N. À présent, nous supposons une analyse au niveau de
la flotte pour répondre à l’hypothèse de la granularité. Nous avons conçu une méthode pour les blocs
restant : cyclicité, indicateurs, santé.

Pour entamer les hypothèses de cyclicité, nous avons proposé InterCE (Interactive Cycle Extrac-
tion) pour automatiser l’extraction des cycles à partir d’un flux de donnés, en appliquant le principe de
l’apprentissage actif pour apprendre à extraire des cycles au fur et à mesure. InterCE s’appuie sur la
communication asynchronisée pour pouvoir traiter de nouveaux fichiers binaires tout en attendant les
réponses des experts sans blocage. Les résultats montrent que InterCE atteint une précision supérieure
à celle d’un système expert, ce qui valide le fait qu’un algorithme d’apprentissage est utilise pour
améliorer la performance de base des humains. Pourtant, la réactivité de InterCE n’est pas supérieure
à sa version hors-ligne en terme du temps à convergence, mais InterCE reste compétitif.

Pour entamer les hypothèses du bloc indicateurs, nous avons implémenté le modèle LSTM-AE
(Long short-term memory autoencoder) pour apprendre des indicateurs de façon non-supervisée à
partir des cycles détectés. Non seulement à reconstruire un cycle, nous cherchons aussi à appren-
dre au modèle à classer le contexte d’un cycle, pour but de rendre le modèle plus robuste contre les
bruits contextuels. Cela a abouti à deux versions du LSTM-AE: l’une avec seulement le décodeur, et
l’autre avec un classeur partageant le même encodeur avec le décodeur. Les résultats montrent que le
LSTM-AE hors-ligne produit la meilleure reconstruction, tandis que la version en ligne aboutit à une
reconstruction encore fautive et nécessite un temps d’entrainement plus long que la version hors-ligne.
Toutefois, le LSTM-AE surpasse le système expert pour sa capacité de préserver les informations après
l’encodage des cycles, ce qui confirme que le LSTM-AE apprend des indicateurs qui sont plus fidèles
aux cycles d’origine que les indicateurs identifiés manuellement par le système expert.

Pour entamer les hypothèses de santé, nous avons développé CheMoc (Continuous Health Moni-
toring using Online Clustering) qui découvre les profils de santé sur le flux de données et qui calcule
un score de santé adaptatif pour chaque système. Nous avons utilisé DenStream comme l’algorithme
de clustering central de CheMoc pour détecter et maintenir les profils de santé sous forme de clusters
évoluant. Nous avons apporté quelques ajustements à DenStream pour l’aligner avec les contraintes
opérationnelles dans le ferroviaire. Nous avons aussi proposé des formules pour calculer, à n’importe
quel moment donné, le degré d’anomalie d’un cluster, le score d’anomalie liée à un profil de santé
spécifique d’un système, et le score de santé d’un système. Les résultats expérimentaux montrent que
CheMoc est capable de capter les profils de santé pertinents de la flotte, qui sont vérifiés et confir-
més par un expert du domaine. Pour mesure la réactivité du clustering en ligne contre le clustering
hors-ligne, nous avons comparé la vitesse de convergence de CheMoc contre celle de DBSCAN. Un
algorithme converge s’il produit des clusters de bonne qualité, mesurée par les indices de validité de
clusters (Davies-Bouldin et Xie-Beni). Les résultats montrent que CheMoc et DBSCAN sont compétitifs
en réactivité et ni l’un ni l’autre se montre gagnant décidément.
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1 Motivation

Railway enables mass transit on long distance and alleviates the burden of traffic during rush hours.
Being the most decarbonized terrestrial mass transportation, railway will undoubtedly continue to
grow, bringing forth the need for efficient maintenance. Because rail transport interacts directly with
humans (passengers, drivers, technicians), maintenance is crucial to ensure equipment reliability, ser-
vice availability, and human safety. For railway maintenance, corrective maintenance and preventive
maintenance are prevalent. The former fixes a failure after it has happened and incurs expensive re-
pair costs, discontinued service, or even fatal consequences; the latter regularly performs systematic
inspections to reduce the frequency of failures at the expense of higher inspection costs (Figure 1.1).

Figure 1.1: Maintenance strategies: corrective maintenance, time-based preventive
maintenance, predictive maintenance

Recently, a novel strategy emerges: predictive maintenance [256]. Predictive maintenance monitors
the target systems to predict critical failures, enabling near-corrective maintenance before a failure
occurs. Predictive maintenance also monitors functional degradation and equipment maladjustment
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to optimize preventive maintenance. Yet, it does not mean to replace the other two strategies; rather,
predictive maintenance enhances them to optimize maintenance management as a whole.

We focus on data-driven predictive maintenance for which machine learning has become a major
player [54]. Machine learning encompasses statistical algorithms that “teach”, or “train”, a model to
perform an intended task given a set of relevant observations. Training a machine learning model is to
find the most appropriate model parameters by optimizing an objective function on the observations
to reach the desired goal, for instance, to classify whether an equipment is normal or faulty with a
satisfactory accuracy.

To apply machine learning to predictive maintenance, the common practice is to collect data, such
as sensor signals, maintenance logs, failure alerts, on which a suitable machine learning model is
trained. After training, the model predicts failures on unseen data. Its parameters remain constant
afterwards, until the model is retrained to learn new parameters from scratch. This is the offline ap-
proach, because the model is trained on static data and does not account for new samples during its
training. Although this approach works for many predictive maintenance applications [48], we argue
that it is suboptimal.

On the one hand, sensorized systems in operation never stop producing data, thus forming an
infinite data stream. Using the offline approach, we must sample data from the stream, but it is unlikely
that such sample represents the stream adequately. If the sample mainly contains data generated by
systems operating in a normal1 state, a model trained on these ideal data will not recognize those
generated by degraded systems and will issue inaccurate predictions. This is known as data drifting
[75]. Consequently, the model must be retrained once the incoming data deviate largely from the
sample used for training. Model retraining can be done on only new data examples (old knowledge
that was learned is forgotten as a result), or on a new training set that accumulates both old and new
data. However, the training set will become excessively large over time, due to the unboundedness of
the data stream.

On the other hand, streaming data challenge the creation of labels. For a machine learning task,
a label is the value of a desired output and is assigned individually to each sample. Labeling a data
stream is infeasible, as the human annotators cannot cope with the speed and volume of the stream.
Also, in the railway, each occurrence of a failure is followed by the FRACAS2 procedure to prevent it
from re-occurring, and this failure label will not be seen again from the stream. It hinders the use of
supervised learning techniques that require otherwise a vast amount of labeled data.

Because sensorized systems producing data infinitely have already become a reality on new gen-
erations of connected trains, the offline approach will not keep up with this new horizon. We turn our
attention to online machine learning to enable incremental model update, adaptation to data novelties,
querying for unknown phenomena and learning from feedback.

Therefore, we investigate the applicability of online machine learning for railway predictive main-
tenance in this thesis, using the passenger access systems on two fleets of passenger trains as study
cases. The data sets used to design and evaluate our methods are supplied by the French national
railway company SNCF3.

Prior to our research work, an expert system for predictive maintenance was developed and de-
ployed on the passenger access systems [227–229, 233]. An expert system is a program hard-coded by

1By normal, we mean the state in which a system functions correctly under expected conditions.
2Failure reporting, analysis and corrective action system.
3Société nationale des chemins de fer français.
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a domain expert based on their extensive domain understanding to simulate and automate an expert’s
judgment, but there are several shortcomings.

• Crafting an expert systems demands time, varying from two to six months depending on the
complexity of the systems.

• An expert system does not learn. Its coverage is limited by the human knowledge. It may miss
behaviors unexpected to the humans yet observable from the data.

• An expert system uses static rules that do not detect nor adapt to changes from the data stream.
For instance, a system might undergo a functional upgrade which modifies the behaviors en-
coded in the expert system. This requires modifying or rewriting the entire program.

Offline machine learning can improve an expert system because it can generalize on other systems
and can detect hidden patterns from the data, but it is also non-adaptive: data drifting obliges a model
to be retrained, which incurs computational cost, model validation effort, and interrupted usage during
retraining. Meanwhile, online machine learning can amend these issues.

• Online machine learning is incrementally updatable on new data, enabling lifelong learning and
overcoming the training bottleneck.

• Via incremental learning, online machine learning can adapt to novelties from the stream, which
otherwise will fail an offline model that do not see these novelties during its training.

• Online machine learning implements lightweight models that perform on-the-fly update using
moderate computational resources, adding a bonus on efficiency. Note that this may come with
a trade-off of approximate instead of exact results.

Given the advantages of online machine learning, we propose novel methods that address the
requirement of predictive maintenance on typical railway complex systems and evaluate them against
offline models. The results obtained with this thesis will serve as a baseline and proof-of-concept of
the potentials of online machine learning for railway predictive maintenance.

The research question we study in this thesis is the following:

Given that online machine learning can overcome certain limits of traditional ma-
chine learning, could we use online machine learning to achieve satisfactory re-
sults for railway predictive maintenance?

Because the railway in itself is a complex system and entails many operational constraints, we
formulate the hypotheses that address the research question while respecting such constraints.

2 Contributions

Given the research question, the works conducted during this thesis implement each stage in a pre-
dictive maintenance solution using online machine learning. We summarize and schematize our con-
tributions in Figure 1.2. Given an input stream of raw sensor data 𝐷(𝑇 ) from a fleet of 𝑀 systems, we
craft four modules to process the stream to produce predictive maintenance alerts.

First, we propose Interactive Cycle Extraction (InterCE) as an active learning-based framework
to automate the extraction of cycles, which are repeating patterns, from raw sensor data (Chapter 4).

• InterCE leverages active learning to query for human feedback on inputs from which it does not
know how to extract cycles.
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Figure 1.2: Our contributions in the form of a pipeline of four modules, each tackling
one stage in a predictive maintenance solution

• The human feedback is used to update InterCE’s understanding of the cycles and to improve its
extraction capacity.

• We use an ensemble of extractors in InterCE, one based on the idleness/activeness of data signals
and one based on a neural network.

• We implement a heuristical, motif matching-based mechanism for querying strategy.

Secondly, we propose a long short-termmemory autoencoder (LSTM-AE), jointly trained with
a classifier, to learn relevant features from the extracted cycles (Chapter 5).

• We implement, in the LSTM-AE, a decoder that learns to reconstruct a cycle, and a classifier
that learns to map the cycle to its own contextual information, in order to learn features that are
robust to contextual noises.

• We devise three training settings for the LSTM-AE: offline, online on each example, and online
incremental on mini-batches.

Thirdly, we propose Continuous Health Monitoring using Online Clustering (CheMoc) as a
framework that uses online clustering to estimate the evolution of the systems’ condition (Chapter 6).

• We use DenStream [44] as the core clustering of CheMoc to capture evolving clusters that rep-
resent the set of possible conditions of the monitored systems.

• Wemake importantmodifications to DenStream to align it to the railway operational constraints:
adaptive density threshold, cluster features per system, pruning and offline clustering omitted.

• We devise formula to assess the condition of a system, computable at any given moment.

3 Publications

The publications we have made in conferences include:

• Minh Huong Le Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Chal-
lenges of Stream Learning for Predictive Maintenance in the Railway Sector”. In: IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learn-
ing. Communications in Computer and Information Science. Springer International Publishing,
2020, pp. 14–29. isbn: 978-3-030-66770-2. doi: 10.1007/978-3-030-66770-2_2,

• MinhHuong Le Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “A Complete
Streaming Pipeline for Real-time Monitoring and Predictive Maintenance”. In: Proceedings of the
31st European Safety and Reliability Conference. 2021, p. 2119. doi: 10.3850/978-981-18-
2016-8_400-cd,

https://doi.org/10.1007/978-3-030-66770-2_2
https://doi.org/10.3850/978-981-18-2016-8_400-cd
https://doi.org/10.3850/978-981-18-2016-8_400-cd
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• Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Real-time
learning for real-time data: online machine learning for predictive maintenance of railway sys-
tems”. In: Transport Research Arena (TRA). Lisbon, Portugal, Nov. 2022,

• Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Contin-
uous Health Monitoring of Machinery using Online Clustering on Unlabeled Data Streams”.
In: 2022 IEEE International Conference on Big Data (Big Data). Dec. 2022, pp. 1866–1873. doi:
10.1109/BigData55660.2022.10021002,

• Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Exploring
the potentials of online machine learning for predictive maintenance: A case study in the railway
industry”. In: Applied Intelligence (Springer) (under review).

The following publications are not included in this thesis but are contributed to by the candidate:

• Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen,
and Albert Bifet. “A Survey on Semi-supervised Learning for Delayed Partially Labelled Data
Streams”. In: ACM Computing Surveys 55.4 (Nov. 2022), 75:1–75:42. issn: 0360-0300. doi: 10.
1145/3523055. url: https://dl.acm.org/doi/10.1145/3523055,

• Jacob Montiel, Hoang-Anh Ngo, Minh-Huong Le-Nguyen, and Albert Bifet. “Online Clustering:
Algorithms, Evaluation, Metrics, Applications and Benchmarking”. In: Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD ’22. New York, NY,
USA: Association for Computing Machinery, Aug. 2022, pp. 4808–4809. isbn: 978-1-4503-9385-
0. doi: 10.1145/3534678.3542600. url: https://doi.org/10.1145/3534678.3542600.

4 Outline

This doctoral thesis is organized as follows.

Chapter 2 (Literature review) studies the related literature on predictive maintenance, online ma-
chine learning, the combination of both, from which we position our work on the current direction of
research on online machine learning for predictive maintenance.

Chapter 3 (Hypotheses) formulates the hypotheses to approach the research question. It also pro-
vides a description of the passenger access systems as the main study case of this thesis.

Chapter 4 (Cycle extraction) presents the framework InterCE that implements a solution to detect
and identify cycles automatically from a stream of raw sensor data.

Chapter 5 (Feature learning) presents the LSTM-AE that learns to determine relevant statistical
features from the extracted cycles and produces feature vectors that serve as the ingredients to unveil
the underlying condition of the systems.

Chapter 6 (Health detection) presents the framework CheMoc that assesses the condition of the
monitored systems via a set of continuously evolving clusters discovered from the stream of feature
vectors. Detecting a system’s current condition is the baseline allowing us to project its condition in
the future and to prepare the ground for failure prediction.

Chapter 7 (Prognostics) sketches the idea we have established to implement a framework for esti-
mating the remaining useful life of a system to achieve failure prediction. The framework has not been
finalized at the end of the thesis and will be developed in future works.

Chapter 8 (Conclusion and Perspectives) concludes theworks carried out during this thesis, reviews
the proposed methods and their shortcomings, and envisions future improvements of our methods.

https://doi.org/10.1109/BigData55660.2022.10021002
https://doi.org/10.1145/3523055
https://doi.org/10.1145/3523055
https://dl.acm.org/doi/10.1145/3523055
https://doi.org/10.1145/3534678.3542600
https://doi.org/10.1145/3534678.3542600
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Summary

We review the literature landscape of predictive maintenance in the railway, separated
into four aspects: the fundamental notions related to maintenance research, the literature
body on predictive maintenance, the industrial standards for maintenance operations, and
the current progress on online machine learning. We discover that a majority of previous
works on data-driven predictive maintenance focus on training an intricate model offline
then deploying it for online failure prediction, bu very few works use online machine learn-
ing directly to train and test the models on a data stream.
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In this chapter, we review works that are related to our research topic on online machine learning
for railway predictive maintenance. Firstly, we introduce the foundational concepts underlying re-
search on machinery maintenance of complex systems (Section 1). Secondly, we analyze the literature
body on predictive maintenance to position our work with respect to the current progress of the re-
search community (Section 2). Thirdly, we present several industrial standards related to maintenance
operations and emphasize on OSA-CBM, a de-facto standard for condition-based/predictive mainte-
nance (Section 3). Finally, we describe online machine learning on data streams, which is an emerging
learning paradigm extending the traditional offline learning (Section 4). The literature study allows us
to grasp the current progress of online machine learning applied to railway predictive maintenance,
based on which we can propose methodologies that bridge the gap in the literature.

1 Foundational concepts of maintenance

This section introduces foundational concepts making up the basis of maintenance research in complex
systems: the definition of complex systems (Section 1.1), reliability theory (Section 1.2), andmaintenance
strategies (Section 1.3).

1.1 Complex systems

A system is an inextricable whole made of interconnected parts that satisfy the following requirements:
it is a collection of at least two parts, there are interactions between the parts, and the collection
contains no independent subgroups of parts, that is, each part has an inseparable role in the collection.
Systems are omnipresent in multiple domains. In computer science, a software, hardware, or platform
is a system. In mechanics, a steam engine or a motor is a system designed to generate power. In
astronomy, the Solar system is formed by planets that orbit the Sun via gravitational force and function
in perfect harmony since billion years ago.

Complexity has various definitions depending on the discipline in which it is studied. Complexity
can be measured by size, entropy, degree of hierarchy, computational capacity, or algorithmic informa-
tion content [160]. The term “complexity” is used to characterize the behavior of a collection of parts
that are entwined, and the collective behavior from individual parts is unpredictable.

A complex system is a system that exhibits complexity and is formally defined as [160]:

Definition 1.1 (Complex system). A complex system is a system in which large network of compo-
nents with no central control and simple rules of operation give rise to complex collective behavior,
sophisticated information processing, and adaptation via learning or evolution.

Examples of complex systems include but not limited to physical systems studied in condensed
matters, ecosystems and biological evolution, human societies, economics and markets, pattern for-
mation and collective motion [166]. Transportation systems, such as railway, airlines, or highways,
are also complex systems, although the system does not evolve by itself but via maintenance and/or
upgrade carried out by human technicians.

In our work, the definition of complexity is based on the railway transportation network. The
railway network is a complex system and is composed of other complex subsystems: signaling, infras-
tructure, energy, maintenance, and the rolling stock (Figure 2.1).

• Trains moving on fixed rails are prone to collision which may cause catastrophic consequences.
Railway signaling controls and collaborates the trains to ensure the safety and fluidity of traffic.
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Figure 2.1: Components of a railway network

• The infrastructure is the skeleton that supports railway operation and comprises tracks (mono-
rail, magnetic tracks, overhead tracks), rails (bolted rails, continuous welded rails), sleepers
(wood, steel, concrete), ballast (stone, gravel), and switches. The switches are indispensable
for signaling because they redirect and guide the trains from one track to another at junction
points while maintaining continuous movement of the trains.

• A rolling stock draws power from a source of energy to operate. Nowadays, most locomotives
use fossil fuel (diesel trains) or electricity (electric trains). The appropriate infrastructure is in-
stalled according to the type of the energy source. For example, electric trains draw from a third
rail or from the caternary.

• Maintenance aims to prevent equipment failures and tomaximize productivity. It plays a crucial
role to ensure the availability, reliability, and safety of the transportation services.

• The rolling stock refers to any vehicles that run on the rails, such as locomotive, passenger
cars, freight cars. A train is a sequence of connected rolling stocks. A train itself is a complex
(sub)system of the rail network because it is composed of multiple interacting parts allowing
it to move (wheels, bogies, pantographs), to stop (brakes), to ensure passenger safety (doors,
windows). This thesis focuses on passenger trains. Because the passengers interact with a train
directly, the rolling stock is a critical system and timely maintenance is required to guarantee its
reliability. Figure 2.2 illustrates the components of an electric rolling stock.

Figure 2.2: Typical components of an electric train vehicle: the pantograph transfers
electricity from the catenary to the battery box; the energy stored in the battery powers
the motor, which rotates the wheels and moves the train; the brake stops the train;
the doors give access to the train; the HVAC, compressors, and condensers are part
of the air ventilation system that enhances the passengers’ comfort. Source: http:

//www.railsystem.net/rolling-stock-components

http://www.railsystem.net/rolling-stock-components
http://www.railsystem.net/rolling-stock-components
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1.2 Reliability theory

Reliability theory lays the foundation of research in maintenance. We cover shortly the basic concept
of reliability function, the failure rate function, and the mean time between failures.

1.2.1 Reliability theory

Reliability is the probability that an asset functions correctly over a specified period 𝑡 [62]. Let 𝑇 be
the moment where a failure occurs, the reliability function 𝑅(𝑡) is 𝑅(𝑡) = 𝑃(𝑇 > 𝑡), such that 𝑅(𝑡) ≥ 0,
𝑅(0) = 1, lim

𝑡→∞
𝑅(𝑡) = 0. Let 𝐹(𝑡) = 1 − 𝑅(𝑡) be the probability that a failure occurs before 𝑡, such that

𝐹(0) = 0 and lim
𝑡→∞
𝐹(𝑡) = 1. 𝐹(𝑡) is therefore the cumulative function of the failure distribution.

From 𝑅(𝑡) and 𝐹(𝑡), let 𝑓 (𝑡) be a function that describes the shape of the failure distribution of the
asset, 𝑓 (𝑡) is therefore the probability density function of the failure distribution, such that 𝑓 (0) = 0
and ∫ ∞0 𝑓 (𝑡) 𝑑𝑡 = 1 (2.1).

𝑓 (𝑡) =
𝑑𝐹(𝑡)
𝑑𝑡

= −
𝑑𝑅(𝑡)
𝑑𝑡

(2.1)

1.2.2 Failure rate function

If an asset has survived until time 𝑡 ⩽ 𝑇 , the conditional probability of failure of this asset within the
interval 𝑡 + Δ𝑡 is given in (2.2). Dividing (2.2) by Δ𝑡 × 𝑅(𝑡) yields the failure rate, that is, the conditional
failure probability per unit of time, from which we define the failure rate function 𝜆(𝑡) (2.3), also known
as the hazard function in survival analysis. 𝜆(𝑡) can be increasing, decreasing, or non-monotonic.

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡 ∣ 𝑡 ≤ 𝑇 ) = 𝑅(𝑡) − 𝑅(𝑡 + Δ𝑡) (2.2)

𝜆(𝑡) = lim
Δ𝑡→0

𝑅(𝑡) − 𝑅(𝑡 + Δ𝑡)
Δ𝑡 ⋅ 𝑅(𝑡)

= lim
Δ𝑡→0

−
𝑅(𝑡 + Δ𝑡) − 𝑅(𝑡)

Δ𝑡
⋅
1
𝑅(𝑡)

= −
𝑑𝑅(𝑡)
𝑑𝑡

⋅
1
𝑅(𝑡)

(2.1)=
𝑓 (𝑡)
𝑅(𝑡)

(2.3)

Figure 2.3: The bathtub curve, where 𝜆(𝑡) is the failure rate function [62]

The famous bathtub curve (Figure 2.3) is one of the forms of the failure rate function [127]. The
curve states that an equipment is prone to infant mortality and is more susceptible to failure at the
starting point, then failures may occur randomly throughout the equipment life until it reaches the
wear-out period, where the degradation continuously worsens. Besides the bathtub curve, there exists
many other failure patterns that appear much more frequently. A study on civil aircraft showed that
only 4% of the equipment parts conform to the bathtub shape [164].
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1.2.3 Mean time between failures

Themean time between failures (MTBF) is the average amount of time between two consecutive failures
of a repairable equipment. Commonly used with the MTBF is themean time to repair (MTTR), estimat-
ing the average amount of time that elapses since a failure until the system recovers to a functional
state. Another well-known incident metrics is the mean time to failure (MTTF) that is the amount of
time since the start until the definitive end of the lifecycle of the equipment. Mathematically, theMTTF
is the expected time 𝑇 until a failure (2.4) and is characterized by the probability density function of
the failure distribution 𝑓 (2.1).

𝑀𝑇𝑇𝐹 = 𝔼(𝑇 ) = ∫
∞

0
𝑡 × 𝑓 (𝑡) 𝑑𝑡 = ∫

∞

0
𝑅(𝑡) 𝑑𝑡 (2.4)

Figure 2.4 illustrates how the MTTF, MTTR, and MTBF are measured. An equipment starts its
lifecyle at 𝑅1 until 𝐹3 where it encounters a complete failure and requires replacement. After 𝑅1, the
first failure 𝐹1 occurs. The equipment is repaired and recovers to a functional state at 𝑅2. The time that
elapses between 𝐹1 and 𝑅2 is first time to repair (𝑇 𝑇𝑅1). The equipment continues to function until a
second failure 𝐹2 and requires a second repair until its recovery at 𝑅3. The interval between 𝑅2 and 𝐹2
is the first time between failures (𝑇𝐵𝐹 1). The equipment is functional again at 𝑅3 until a total failure
at 𝐹3 permanently ends its lifecycle. The time to failure (𝑇 𝑇 𝐹 ) is the entire duration from 𝑅1 to 𝐹3. The
MTBF is the sum of the TBFs during the equipment lifecycle divided by the number of failures, i.e.,
𝑀𝑇𝐵𝐹 = 𝑇𝐵𝐹1+𝑇𝐵𝐹22 , and similarly for MTTR. The MTTF applies for the entire lifecycle of an equipment
and the mean is computed over the number of equipment.

Figure 2.4: An example of computing the MTBF, MTTR, and MTTF on a system (TTR
= time to repair, TBF = time between failures, TTF = time to failure

The equipment is therefore available during 𝑅2–𝐹2 and 𝑅3–𝐹3 (yellow regions). The available of an
equipment is equal to 𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅 . The goal of maintenance is to maximize the availability by reducing
𝑀𝑇𝑇𝑅 (more efficient maintenance inspections) and/or increasing𝑀𝑇𝐵𝐹 (more resistant equipment).

1.3 Maintenance strategies

A system is designed to fulfill its functions within a minimum standard of performance. Its inability
to fulfill the functions to the predefined standard is called a functional failure, or failure for short
[164]. Maintenance prevents these failures from occurring or rids of those that already happened.
Maintenance is a set of necessary operations, including checking, repairing, replacing parts, to prevent
a functional failure of the system [40].

In the railway, the safety of the passengers is of utmost priority. Therefore, maintenance is a crucial
support function to guarantee the reliability of equipment, which ensures human safety and improves
the availability of services. Research on maintenance started to emerge in the 60’s [164]. Recently, the
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abundance of data and rapid development of computing hardwares are encouraging the experimental
use of Internet of Things, big data technologies, and artificial intelligence in maintenance research
[119, 135].

(a) Officially adopted by a maintenance standard [40],
this categorization insists on the level of reactivity:
maintenance is either corrective (completely reactive)
or preventive (proactive) [1, 6, 8, 15, 56, 69, 170].

(b) This variant views condition-based maintenance the
same as predictive maintenance [42, 48, 119, 179, 214]

(c) Condition-based maintenance may encompass condi-
tion monitoring, diagnostics, and prognostics, which is also

viewed as predictive maintenance [113, 183].
(d) The corrective strategy may be omitted [10,

129]

(e) All four strategies considered independent with predictive maintenance seen as the most futuristic [95, 235]

Figure 2.5: Different categorizations of maintenance strategies

The literature of maintenance research proposes a variety of categorizations of maintenance strate-
gies, listed in Figure 2.5. There are three primary maintenance strategies, namely corrective mainte-
nance (CM), time-based preventive maintenance (PM), condition-based maintenance (CBM), sometimes
used interchangeably with predictive maintenance (PdM). The variation arises from how researchers
group one strategy under another. Overall, CM and PM are always separated, whereas the distinction
between CBM and PdM diverges. In this work, we adopt the categorization of Figure 2.5b and con-
sider PdM the same as CBM, since they both share the common requirements: maintenance orders are
emitted when needs arise, based on an empirically defined threshold, on a set of rules given by domain
experts, or on the predictions of potential failures. The sections that follow provide a brief overview
on the key principles of CM, PM, and PdM.

1.3.1 Corrective maintenance

Corrective maintenance (CM) performs unscheduled reparations that restore the system after a fault
already occurred [28]. It is also called reactive maintenance, breakdown maintenance, or run-to-failure.
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Despite its simplicity, it may incur expensive costs, particularly on complex railway equipment. It
leaves little to no time for planning and likely leads to delay of services, costly reparation, or even fatal
consequences [225]. For instance, the unexpected malfunctioning of a train paralyzes the entire track
section allocated to that train, resulting in the lateness of the next ones.

Nevertheless, the simplicity of CM makes it more practical in non-critical systems in which equip-
ment breakdown results in small costs, slight consequences of failure, quick restoration, and without
safety risk [212]. In the railway, CM is to be avoided to limit serious consequences and redundancy is
implemented for critical systems.

1.3.2 Time-based preventive maintenance

To compensate the drawbacks of the corrective strategy, preventive maintenance (PM) is a schedule-
based strategy, commonly known as time-based maintenance [6, 234]. By implementing PM, com-
panies can plan maintenance inspections at regular intervals while the systems are still functioning
to prevent failures. Such interval is estimated from the expected lifetime of the system, which is in-
ferred from historical failures using reliability modeling tools such as the bathtub curve or the Weibull
distribution [116]. Until today, PM remains a popular choice in railway management.

The inconvenience of PM is the unnecessary intervention and premature replacement of equip-
ment. In reality, the time to failure of equipment is not totally predictable and varies by equipment
despite identical working conditions [91]. Besides, PM cannot prevent random failures that may occur
between two consecutive inspections, therefore the system is still prone to unexpected shutdown.

1.3.3 Predictive maintenance

Predictive maintenance (PdM) is gaining popularity because systems are becoming increasingly con-
nected and generate data for training failure-predicting models. Maintenance under PdM is carried
out only when needs arise. Hence, it allows to schedule inspections efficiently, maximize service avail-
ability, minimize costs, and reduce the stress from urgent interventions. An effective PdM solution
must guarantee accurate predictions to avoid false positives and emit the alerts soon enough to leave
sufficient time for maintenance preparation.

Condition-based maintenance (CBM) occupies a important place in the literature body of mainte-
nance research. CBM deduces the equipment condition via condition monitoring to detect faults and
predict failures when certain conditions are met before any failures occur [204]. Condition monitor-
ing collects and interprets relevant equipment parameters such as vibrations, temperatures, humidity,
to capture the evolution of the equipment health [240]. From the outputs of condition monitoring,
decision-making of CBM includes diagnostics and prognostics. Diagnostics performs localization, de-
tection, and identification of faults that are already present in the system. Prognostics predicts the
chance of failure occurring in the system [113].

To the best of our knowledge, there is no clear distinction between CBM and PdM. PdM is a rather
recent term for CBM, coupled with the application of machine learning in late times. Noman, Nasr,
Al-Shayea, and Kaid [172] claimed that PdM is an early term for CBM, and both have been used in-
terchangeably ever since. Yet, we reckon that a boundary exists: CBM relies on predefined thresholds
to decide when a system crosses an alarming state and needs maintenance, whereas PdM learns such
thresholds by itself from the data. In this work, we consider CBM and PdM the same and only use the
term PdM. The categorization we adopt is the one shown in Figure 2.5b.
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Summary

In this section, we introduce the fundamental concepts of maintenance research in complex systems.
A complex system is a system with multiple components cooperating without a central control that
gives rise to a collective behavior, information communication, and adaptation via evolution. A rail-
way network falls within the definition of complex systems given its number of heavily intertwining
components. Such complexity has an impact on the difficulty of implementing railway maintenance.
For maintenance, reliability theory is the foundation brick. Reliability is the probability that an asset
functions correctly over a specified period of time. The most basic notions of reliability theory are the
reliability function, the failure rate function, and themean time between failure. Finally, we present the
maintenance strategies and mention different categorizations. Generally, the two most distinguished
strategies are corrective maintenance and time-based preventive maintenance. We consider predictive
maintenance the same as condition-based maintenance.

2 Review of predictive maintenance

This section reviews the methods used to implement PdM to identify the main approaches and to
position our work in the literature body. Our literature study is by no means exhaustive and more
comprehensive surveys on PdM [95, 113, 123, 137, 172, 183] have been done prior to this research.

Following is the relevant terminology to PdM.

• Failure, or functional failure, is a state in which the system is “unable to fulfill a function to a
standard of performance which is acceptable to a user” [164].

• Fault is the “state of an item characterized by its inability to perform a required function” [40].
A fault is a state, whereas a failure is an event. A fault is therefore the result of a failure.

• Diagnostics is the process of handling faults that have already occurred or precursors of faults
that deviate the system from its nominal state. Diagnostics include fault detection (detecting the
presence of anomalies), fault isolation (locating the faulty components), and fault identification
(identifying the nature of the faults) [113].

• Prognostics performs fault prediction and estimates how soon and how likely a fault will occur
[113]. Fault prediction estimates the remaining useful life at a given moment 𝑡 and/or the prob-
ability of occurrence of impending faults. For example, a prognostics result can be "there is 75%
chance that fault A will happen in four days".

• Remaining useful life (RUL) is the amount of time that remains until a failure from a given
moment 𝑡. Let 𝑋(𝑡) be the degradation of a system at 𝑡 and 𝑤 the threshold of satisfactory
performance, a system starts anew at 𝑡 = 0 (𝑋(0) = 0) and gradually degrades over time. When
𝑋(𝑡) ⩾ 𝑤, the system encounters a functional failure. The RUL 𝑇 estimated at 𝑡 is the time
remaining during which the system can work properly until 𝑡𝑓 (2.5). Any maintenance taken
before 𝑡𝑓 is preventive or predictive by nature, and becomes corrective when it approaches or
passes 𝑡𝑓 .

𝑇 = inf { 𝑡 ∶ 𝑋(𝑡𝑛𝑜𝑤) + 𝑡 ⩾ 𝑤 ∣ 𝑋(𝑡𝑛𝑜𝑤) < 𝑤 } (2.5)

We categorizes the techniques used to implement PdM in two classes, depending on the type of
available resources (Figure 2.6). The knowledge-based class relies on the knowledge solicited from the
domain experts. The data-driven class leverages the operational data to extract insights on the system
condition with limited domain knowledge.
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Figure 2.6: Categorization of PdM techniques.

2.1 Knowledge-based approach

The knowledge-based approach solicits domain experts to build mathematical models based on the
underlying physics of the systems (physical models), or to formalize domain knowledge in form of
rules that enable automatic reasoning and inference (expert systems).

2.1.1 Physical models

A physical model uses mathematical equations to describe explicitly the degradation mechanics in the
monitored system, combining extensive mechanical knowledge and domain expertise [183]. The three
most common types of degradation are creep, fatigue, and wear [53, 222].

Creep Creep is the permanent deformation in amaterial under high temperature for a long duration
of time [53]. It is a slow and time-dependent process, divided in three regions (Figure 2.7): the first
region is the primary creep with an accelerating creep rate at the beginning, followed by the secondary
phase with a stable creep rate, then the creep rate accelerates during the tertiary region that ultimately
leads to a rupture of operation.

Figure 2.7: Three regions of the creep curve [222].

The lifetime of a component under creep degradation is the time until its rupture. Because the
second region spans most of the component lifetime, it is highly important to capture the creep rate
within this region, for which the Norton creep law (2.6) can be of use. The creep rate in the second
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region is denoted Δ𝜖Δ𝑡 , where 𝑡 is the time and 𝜖 the extent of deformation, and it is affected by the stress
level 𝜎, the temperature 𝑇 , with 𝐴, 𝑛, 𝑚 being material-dependent constants. Baraldi, Mangili, and Zio
[24] estimate the RUL of turbine blades under creep using the Norton creep law. The degradation level
measured by the Norton law at each time step form the training data of an ensemble model, coupled
with a Kalman filter to aggregate the RUL estimates of individual models and to filter out noises.

Δ𝜖
Δ𝑡
= 𝐴𝑇 𝑛𝜎𝑚 (2.6)

Another method to estimate the time to rupture is the Larson-Miller parameter (LMP) (2.7), where
𝑇 is the temperature in Kelvin, 𝐶 an experimental constant, and 𝑡 the time until rupture. LMP is a
parametric model that extrapolates the creep rate of engineering materials under steady-state condi-
tions. It enables the use of short-term creep life data under high temperature or high load conditions
for estimation, thus overcomes the long testing time [117]. Kandare, Feih, Lattimer, and Mouritz [117]
model creep rupture using LMP to determine the failure time and failure temperature of aluminum
exposed to fire. Vasudevan, Venkadesan, Sivaprasad, and Mannan [230] study the influence of thermal
aging on the hardness of cold-worked stainless steel used in fast breeder reactions, focusing on the
adequate choice of the constant 𝐶 on different cold-work levels. Loghman and Moradi [147] investi-
gate the time-dependent creep damage and remnant life of a thick-walled spherical reactions using the
LMP correlation.

𝐿𝑀𝑃 = 𝑇 (𝐶 + log 𝑡) (2.7)

Fatigue Fatigue occurs in components subjected to high cyclic loading (repetitive rotations or vi-
brations). The lifetime of a component under fatigue is the number of cycles until failure. Models for
fatigue modeling include the S-N curve, the Basquin law [175], theManson-Coffin law [211], the cumu-
lative damage rule [39]. Qiu, Seth, Liang, and Zhang [191] use the cumulative damage rule to develop
a prognostic model for bearing fatigue by correlating the natural frequencies and their amplitude to
the stiffness of the system.

A common consequence of long-term fatigue damage is crack. The crack growth has three regions
(Figure 2.8). The first region is when a crack is initiated in the component as micro-crack (crack ini-
tiation). Then, it is propagated due to the continuous cyclic loading of the component, resulting in a
constant and significant growth rate (crack propagation). The final region is when the crack grows
rapidly until a fracture occurs. Prognostics under crack degradation projects the crack propagation to
the future degradation of the component to estimate the time to failure.

A famous formula for crack growth modeling is the Paris law [180]. It estimates the growth of
the crack length 𝑎 over the number of running cycles 𝑁 , where Δ𝐾 is the intensity of the crack in
one loading cycle, 𝐶0 and 𝑛 are material-depending constants (2.8). The Paris law only applies to the
second region of the crack, but because this region occupies the majority of the lifetime of a component
under crack, the Paris law is sufficient to model the degradation of a system under crack fatigue [222].
Oppenheimer and Loparo [178] perform diagnostics and prognostics in rotor shafts via crack growth
modeling using a modified version of the Paris law to calculate the crack in both regions II and III.

𝑑𝑎
𝑑𝑁
= 𝐶0(Δ𝐾)𝑛 (2.8)
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Figure 2.8: The crack growth divided in three regions [222].

Another equation for crack growth modeling is proposed by Hoeprich [97]. In place of the crack
length, the severity of the crack defect is characterized by the growth of the crack surface 𝐷 over the
number of running cycles 𝑁 (2.9), with 𝐶0 and 𝑛 being material-dependent constants. Li, Billington,
Zhang, Kurfess, Danyluk, and Liang [139] propose a recursive adaptive algorithm to predict the defect
propagation rate over time via vibration measurement following Hoeprich’s formula.

Δ𝐷
Δ𝑁

= 𝐶0𝐷𝑛 (2.9)

Wear Wear is a gradual degradation at the surface due to the friction between two components
in sliding motions, resulting in a loss of material of at least one of the components. There are four
wear mechanisms: adhesive wear, abrasive wear, corrosive wear, and surface fatigue [19]. Modeling
component wear is challenging because external factors, such as environmental conditions, have an
important impact on the contact of the surfaces [53].

The Archard’s law is applicable to all types of wear [18]. It defines 𝑉 as the total wear volume,
proportional to the load 𝑃 and the sliding distance Δ𝑠, 𝐾 the wear coefficient depending on the material
and 𝐻 the material hardness (2.10). Wear is a dynamic process and wear prediction is formulated as
an initial value problem solvable with the Archard’s law [203, 208]. Silva and Pintaude [208] model
the wear of surfaces in contact by formulating an initial value problem using the Archard model, using
random variables and stochastic processes to capture the uncertainty in wear coefficient. Shen, Cao,
and Li [203] use the Archard law to study sliding wear via numerical simulation on pin-on-disk tests
between aluminum alloy plate and self-lubricating linear.

𝑉 =
𝐾𝑃
𝐻
Δ𝑠 (2.10)

Strengths and limits Physical models tackle lifetime prediction via physics-induced equations
to describe the degradation affecting the system, with the help of domain expertise and mechanical
knowledge. The parameters of the equations are fine-tuned by minimizing the residuals (difference
between the predictions and true measurements collected during tests) [183]. A suitable model reflects
accurately the physical behavior of the system, providing reliable insights into its condition and long-
term behavior [16].
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However, real-life systems are often too complex to be modeled correctly. A physical model is
tailored to one specific system and cannot be generalized or easily adapted to another. Even if phys-
ical models require less data for validation, the parameter fine-tuning requires disruptive tests in the
system. To avoid this issue, practitioners opt for recursive algorithms to update the models in real-
time without re-processing at the arrival of new measurements [139, 191]. Still, these models require
extensive expert knowledge, which may not be accessible nor cover all possible scenarios.

2.1.2 Expert systems

An expert system (ES) consists of a knowledge base containing facts, rules, heuristics, and an inference
engine for automatic reasoning and query answering [182]. An ES can be rule-based, case-based, or
model-based [113].

Rule-based reasoning formalizes human expertise as a set ofmachine-analyzable and -understandable
rules for reasoning. Chande and Tokekar [49] develop a rule-based ES for fault anticipation, fault re-
covery, and components calibration in embedded systems, coupled with a Markovian chain to dictate
the preferred course of actions when facing a fault. Tang and Wang [216] implement a framework
of two rule-based ES to diagnose a cutting and delivering system: an offline fault analyzer and an
an online fault diagnosis and prevention. Four artificial neural networks are trained to approximate
the dynamic parameters and an explanation module is provided to convert the inference results from
digital to linguistic form.

Case-based reasoning reuses the solutions in past scenarios and learns from the experience to
handle new problems. Bengtsson, Olsson, Funk, and Jackson [27] performs sound analysis to diagnose
audible faults on industrial robots using a case-based ES in combination with the nearest neighbor
approach. The recorded sound is preprocessed for filtering and noise removal. Then, the ES identifies
relevant features and classifies them based on previously classified measurements (case library).

Model-based reasoning builds a model of the physical system on which it performs inference. Tur-
gis, Auder, Coutadeur, and Verdun [226] estimates the RUL of electric doors on passenger trains using
rules deduced from the doors’ mechanics. The preventive maintenance threshold is dynamically ad-
justed to issue alerts with the correct severity.

Strengths and limits An ES profits from domain knowledge, hardware computation power, and
reasoning algorithms to generate solutions faster than human experts. It is one of the first successful
forms of artificial intelligence capable to deduce new knowledge for reasoning and for problem solving
on their own. ESs are traditionally used for fault diagnostics in CBM applications [182, 187].

Although domain knowledge is available and reliable, converting it to machine rules demands
immense effort. Modeling a complex system requires a large set of rules, consequently it causes the
“combinatorial explosion” in computation problems. In particular, some relationships between system
variables cannot be expressed by a simple IF-ELSE rule [216], so more intricate modeling is needed
to properly formulate such relationships. By nature, an ES cannot handle unexpected situations not
covered by the rules.

Knowledge-based approach: Discussion

The knowledge-based approach consists of physical models and expert systems that are constructed
with extensive understanding of the target systems. Physical models explicitly describe the physics of
a system and of the fault mechanism via mathematical equations. Expert systems formalize domain
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knowledge into a set of rules and perform inference to diagnose a system. These models prove their
strengths if domain knowledge is available, reliable, and complete. The explainability of knowledge-
based models is also a considerable advantage. Expert systems have been widely used in the mainte-
nance of the railway industry as well [20, 58, 72, 228, 238, 247].

Regardless, converting domain expertise to a machine-comprehensible language remains challeng-
ing. Tailoring a solution that approximates the behavior of a real-world complex system requires a
substantial amount of effort. The result is a system-specific model and is hardly generalizable from
one system to another.

2.2 Data-driven approach

Besides domain knowledge, operational data such as historical failures, event logs, or condition mon-
itoring measurements can provide rich information about the health of systems [206]. Data-driven
approach exploits these data to learn failure patterns and issue prediction. Data-driven methods fall
into either machine learning or stochastic modeling category.

2.2.1 Machine learning

Machine learning (ML) has become a major player in PdM applications given its versatile use. ML
is the study of algorithms and statistical tools to produce a model that performs a specific task it is
trained for. Overall, we can divide machine learning paradigms into three dominant groups, namely
supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning Supervised learning (SL) learns an arbitrary function that maps an input
space  to an output space . The learning process is guided by the output data. From a mathematical
point of view, supervised learning requires a dataset 𝑆 = { 𝑥𝑖, 𝑦𝑖 }1⩽𝑖⩽𝑁 with 𝑥𝑖 ∈ ℝ𝐷, where 𝑁 denotes
the number of samples, 𝐷 the data dimension, and 𝑦𝑖 ∈ 𝐿 (if 𝐿 = 1, it is a single-output task, else it is a
multi-output prediction). Depending on the type of 𝑦𝑖, we distinguish two kinds of tasks: classification
for discrete output values, and regression for continuous output values. For classification, if |𝑦𝑖| = 2, it
is a binary classification, else if |𝑦𝑖| > 2 it is a multiclass classification.

Classification In PdM scenarios, the outputs are the states of the system as a function of the
inputs. Decision trees, support vector machines, logistic regression, ensembling, neural networks,
have been extensively studied and remarkably improved in recent years. In particular, deep neural
networks have been widely applied to solving PdM problems in the last few years, to cite a few [84,
85, 93, 202, 250, 252].

Although classification is intuitive for revealing the system’s state, it does not extrapolate the its
state in the future, as future measurements cannot be obtained in current time. A possible workaround
is to classify the system’s state for a time window instead of for each individual measurement sam-
ple [214]. Phillips, Cripps, Lau, and Hodkiewicz [185] use binary logistic regression to classify the
condition of oil engines as good or not good. Inturi, Shreyas, Chetti, and Sabareesh [104] frame the
diagnostics of wind turbine gearbox as a multi-level classification problem using adaptive neural fuzzy
inference system: the first level classifies the speed stage of the defected gearboxes, the second level
locates the defect, the third level identifies the type of defect, and the fourth level quantifies the severity
of the identified defect (25%, 50%, 75%, 100%).
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Nevertheless, it may be difficult to train a classification model for critical systems because of class
imbalance due to rare failure data. Failures in highly critical systems such as aircraft [129] are catas-
trophic andmaintenance operations are often scheduled ahead of failuremoments, making occurrences
of failed state rarely appear in the data.

Regression For regression, the prediction target is a real-value number. It can be the probability
that a sample falls in a certain class, or the target value of a continuous function. The most relevant
application of regression in PdM is RUL estimation. Baptista, Sankararaman, Medeiros, Nascimento,
Prendinger, and Henriques [23] combine sequential learning of autoregressive–moving-average model
(ARMA) with an ML algorithm to train a regressor on life usage data. The predicted failure times and
additional statistical features are used to train an RUL regressor that predicts the next failure time for
unseen instances. Recurrent neural networks (RNN) are also a popular choice to deal with regression
on temporal data. Heimes [94] customizes an RNN that combines the extended Kalman filter and
an evolutionary algorithm to reduce the impact of noises for efficient training. Korvesis, Besseau, and
Vazirgiannis [129] learn a function that quantifies the risk of an event of interest (e.g., failure) occurring
in the near future via multiple learning instance from event logs in post flight reports.

Unsupervised learning Supervised learning is only feasible if labeled data exist, but real-life
use cases are seldom so ideal. First, creating labeled data is a tedious, costly, and time-consuming
process. In particular, for connected systems with sensors that may capture hundreds of readings in
seconds, manual annotation on such high-speed data stream is almost infeasible. Secondly, highly
critical systems are maintained regularly to avoid catastrophic failure. If the system is always restored
before a failure could occur, there will be no data of the exact failure time, also known as right-censoring
data in survival analysis.

When labeled data are scarce, unsupervised learning is a better fit to discover patterns without
knowing the desired output, but it will require more effort to evaluate the results. Examples of unsu-
pervised learning tasks include, but not limited to, clustering, anomaly detection, association rules, and
dimensionality reduction (mostly for data preprocessing).

Clustering Clustering is the process of assigning objects into groups, such that the similarity is
high betweenmembers in the same group (high cohesion) and low for those from different groups (high
separation). Amruthnath and Gupta [15] conduct fault detection and fault prediction using density
estimation via Gaussian mixture models and K-Means to detect three system states: healthy, faulty,
and reset. Lima, Paredes Crovato, Goytia Mejia, Rosa Righi, Oliveira Ramos, André da Costa, and
Pesenti [143] decomposes sensor signals to detect deterioration trends of the machines and uses K-
Means to produce clusters of meta-trends. The condition of a machine is assessed via the Euclidean
distances between clusters. This process is repeated periodically on new sensor measurements. Luo,
Fong, Sun, and Leung [151] use K-means to discover failure patterns for fault detection and diagnosis
of chilled water systems. The Davies-Bouldin index [55] is used to identify the optimal number of
clusters from the sensor readings. To deal with high-dimensional input data, Gao, Kang, Tian, Wu, and
Pecht [76] combines subspace clustering with locality-preserving latent low rank recovery for fault
diagnostics.

Anomaly detection Anomaly detection identifies objects that are significantly different from
the majority of the data. For PdM, anomaly detection separates odd behaviors from typical ones to
enable fault detection. Zhao, Kurihara, Tanaka, Noda, Chikuma, and Suzuki [251] detects an occurrence
of anomaly if the correlation coefficients from the sensor data deviate from the reference clusters,
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obtained from normal sensor data and their correlation coefficients. Aydemir and Acar [21] use the
Cumulative Sum (CUSUM) to detect anomalies from machinery. The sensor signals are continuously
monitored and an anomaly alert is emitted when the signals exceed the limits of healthy operation,
which also triggers a posterior failure prediction operation. CUSUM is simple to use, but such simplicity
hinders the analysis on a finer granularity.

Reinforcement learning In a reinforcement learning (RL) setup, an agent interacts with an
environment via a set of actions, such that each action 𝐴𝑡 is associated to a reward 𝑅𝑡 dictated by a
reward function and may modify the state of the environment 𝑆𝑡 , where 𝑡 denotes the timestep (Fig-
ure 2.9). The complete specification of the environment constitutes a task [215]. The agent learns
by taking sequences of actions that maximizes the total rewards within a number of timesteps. The
reward function should ensure a balance of exploitation-exploration.

Figure 2.9: The setup of reinforcement learning [215].

Kozjek, Malus, and Vrabič [130] use RL to adjust the raw RUL estimations returned by random
forest such that the final estimations satisfy multiple objectives: high utilization, effective maintenance
planning, and safety. The reward function penalizes RUL alerts that are too early or late. RL being an
optimization task, it can also recommend the appropriate course of maintenance actions. Hoong Ong,
Niyato, and Yuen [99] develop a double deep Q-learning network on sensor data to self-learn optimal
maintenance policies and to issue actionable recommendations. The agent is given a limited credit of
repair frequency and repair cost, then learns how to choose the effective maintenance policy among
repair, replace, or hold. To push the efficiency of RL further, Yao, Lu, and Zhang [242] integrate deep
Q-learning network (DQN) in a recurrent neural network combined with transfer learning to adapt an
agent trained to estimate RUL in one tool to another. Zhang, Gupta, Farahat, Ristovski, and Ghosh [248]
formulate equipment monitoring as a credit assignment problem, using a model-based approach with
Markov decision process to derive the value function and a model-free approach with a bootstrapping
algorithm to learn the value function without implicit modeling. The system states are the outputs of
the learned value function. The outputted states are then used to train a regressor for RUL estimation
on run-to-failure data.

Strengths and limits ML is able to search for patterns that intrinsically reflect the states of an
equipment and to perform failure prediction based on past data. There are different paradigms of ML:
learning a function that maps the input space to the output space (supervised learning), separating
individuals into groups or detecting anomalous individuals (unsupervised learning), or finding the
optimal policy to solve a problem (reinforcement learning).

So far, the most robust class of ML algorithms are still the supervised ones. This implies that a
significant volume of labels is needed to produce an accurate model. Moderate to long training time is
to be expected. Adequate hyperparameters are crucial to the model’s accuracy. For example, artificial
neural networks must be set up with the optimal network architecture, number of layers, number of
neurons, activation functions, weight initializers, and so on. Hyperparameter tuning is usually the
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most time-consuming and critical process for ML. Explainability is an open issue. Simple models such
as logistic regression or decision trees can produce human-understandable explanation of a prediction,
but it is not the case for any ML models, such as random forests or deep neural networks, even if the
latter has been widely applied to PdM lately.

2.2.2 Stochastic modeling

We distinguish two types of failures. A hard failure is a random event that abruptly interrupts the
system and can only be remedied by corrective maintenance. On the contrary, a soft failure is a gradual
deterioration in the system performance until the outcome is unsatisfactory and the system fails to
fulfill its purpose. The latter can be handled by stochastic modeling.

System degradation is a stochastic process because it contains small, random changes over time.
Let { 𝑋(𝑡) ∶ 𝑡 ⩾ 0 } be a stochastic process. To model 𝑋(𝑡), Markovian methods apply when the
degradation is studied in a finite state space. Otherwise, Lévy processes such as Wiener and Gamma
processes are commonly used for continuous stochastic processes. For Lévy processes, an important
notion is the first hitting time (FHT) that points to the moment where the degradation level exceeds a
stress threshold, over which the system performance is no longer satisfactory. Then, RUL estimation
is equivalent to finding the FHT from the current time to project the future degradation of the system.

Markov models Markov models are suitable if the degradation is represented by a finite set of
discrete states Θ = { 0, 1, … , 𝑁 }, with 0 being a perfectly normal state and 𝑁 the failure state. For
example, Liang and Parlikad [141] build two Markovian state transition models to tackle maintenance
of insulation paper in a power transformer: one model describes the transition between the equipment
states (healthy, aged, defective, faulty, failure) according to the degradationmodes (normal, accelerated
chemical aging, accelerated mechanical aging), and the other describes the transition between the
equipment states according to the maintenance methods (no maintenance needed, minor maintenance,
major maintenance, minor preventive maintenance). The authors conclude that Markov models help
to optimize the maintenance of power transformers by minimizing the cost of periodic inspections and
maximizing the availability of the equipment.

Wiener processes The Wiener process supposes independent increments Δ𝑋(𝑡) of alternate in-
creases and decreases. It is also known as the Brownian motion with drifts. A system that experiences
non-monotonic degradation over time - due to increased or reduced intensity of use, can be modeled
by the Wiener process. However, it is not suitable for systems under monotonous, irreversible deteri-
oration. Si, Wang, Hu, Chen, and Zhou [205] address RUL estimation using the Wiener process. They
argue that the conventional Wiener process exhibits Markovian property and does not consider the
entire history of the data. To circumvent this problem, they formulate the drift parameter 𝜆 as a hidden
state space. A Kalman filter updates 𝜆 recursively to account for past data without requiring full data
storage. Other hidden parameters are estimated using the expectation-maximization algorithm.

Gamma processes The Gamma processes are designed for stochastic processes with monotonic
trends, that is, for systems with irreversible degradation. Since a degradation is likely irreversible in
nature, the Gamma processes are more applicable. Liao, Elsayed, and Chan [142] propose a condition-
based policy focusing on the asset availability, assuming perfect monitoring (the true state of the asset
is immediately revealed when needed) and imperfect maintenance (the maintenance actions do not
restore the asset to an as-good-as-new state). The asset degradation is modeled with a Gamma process.
The optimization function finds the optimal preventive threshold 𝐷∗𝑃𝑀 above which a maintenance
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action must take place, and the optimal number of maintenance actions 𝑁 ∗ allowed in a cycle, after
which a complete replacement of the asset is performed. The replacement must occur before a failure
causes damage to the asset.

Strengths and limits Stochastic modeling tackles PdM via stochastic processes with small, ran-
dom changes over time, which fits the nature of machinery degradation. This approach also allows
to project the equipment degradation in the future, thus implementing both monitoring and failure
prediction. Depending on the state space (discrete or continuous), the choice of models varies. Once
a model is chosen, its parameters can be estimated from the available data. It is worth to note that
the parameters of a stochastic model are different from the hyperparameters of a machine learning
model. While some ML models are assumed model-free and the hyperparameters are not related to
any distribution (e.g., the tree depth of a decision tree), stochastic models are more restrained and the
parameters define a distribution.

The main challenge of stochastic models is its heavy use of mathematical modeling, contrary to
the plug-and-play characteristic of some ML models. A sufficient amount of data stays necessary to
estimate the parameters for the models. Stochastic modeling is dedicated to discrete or continuous
data, for instance, from sensor readings. Meanwhile, ML can also be used for texts [128] and images
[132], making it more versatile.

Data-driven approach: Discussion

The data-driven approach has two subcategories: machine learning and stochastic modeling. Machine
learning employs statistical learning methodology such as tree-based techniques, neural networks,
support vector machines, to discover patterns from the data (supervised/unsupervised learning) or to
find the optimal policy for a problem (reinforcement learning). Stochastic models consider the system
degradation a stochastic process with small temporal increments or decrements. Markov models are
suitable for discrete-state degradation, whereas Gamma andWiener processes are used for continuous
degradation.

Asmachines are being increasingly sensorized, they generatemore operational data, which encour-
ages the use of data-driven approach. It does not require a comprehensive knowledge of the physics
of the system and of the faults to implement PdM solutions. Nonetheless, a basic understanding of
the system is preferable to facilitate (hyper)parameter tuning. The quality and amount of data are
essential for the successful realization of data-driven PdM. A model is trained for a moderate or long
time and must be updated regularly as new data become available, if machine learning is used. Then,
many models are black-boxes: algorithms such as neural networks are not easily explained to humans
because of their intricate learning process.

The evolution of the system state can be framed as a gradual degradation process. Such process
can be effectively modeled with stochastic tools such as the Markov models and its variants (hidden
Markov models or semi-hidden Markov models), Gamma processes, or Wiener processes. The choice
of tools depends on the degradation state space. The available data aid parameter tuning, making the
models more accurate and robust. However, stochastic modeling is more complicated than machine
learning and requires a strong mathematical background to correctly apply and fine-tune the models.
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Methodology for PdM: A summary

In this section, we review the methodologies for PdM and propose a categorization that divides the
existing methods into two categories, namely the knowledge-based approach and the data-driven ap-
proach. This categorization insists on the type of resources used to implement PdM solutions. Using
a knowledge-based approach, a practitioner solicits domain experts to craft a representation of the
target equipment via physics-induced mathematical equations (physical models), or to formalize the
domain knowledge in form of machine-processable rules for automatic inference and reasoning (ex-
pert systems). Nonetheless, humans are not perfect and their understanding may not cover all possible
scenarios. Operational data and data-driven algorithms can compensate what the humans may miss.
The data are fed to a statistical learning algorithm to discover the failure patterns of an equipment
and/or to select the optimal course of actions (machine learning). The data can also be fitted to a
stochastic model to monitor the equipment degradation as a random process with small increments or
decrements over time (stochastic modeling).

Table 2.1 summarizes the knowledge-based and data-driven approaches to solve PdM.

Table 2.1: Predictive maintenance approaches

Knowledge-based Data-driven

Physical models Expert systems Machine learning Stochastic models

Principles Build an explicit mathemat-
ical model to simulate the
physics of the faults

Build a knowledge base of
rules and use an inference
engine to generate diagnosis
and prognosis

Train a model to discover
failure patterns from the data

Construct a stochastic model
to monitor the degradation
process of the equipment

Examples Paris law Knowledge base Tree-based methods Markovian models
Archard law Neural networks Gamma process
Crack growth modeling Support vector machines Wiener process

Clustering
Anomaly detection

Strengths High accuracy Automatic inference from a
large set of rules

Robust and accurate models Accurate degradation mod-
els

Physical meaning of health
indicators

More accurate inference
than human experts

Many off-the-shelf libraries
available

More realistic modeling of
the degradation process

Ability to predict the long-
term behavior of the system

Highly versatile

Limits Tailored for a specific system Difficult to formalize human
knowledge

Time-consuming training
and parameter tuning

Difficult parameter tuning

Interruptive tests required to
estimate the parameters

Inability to adapt to cases not
covered by the rules

Limited labeled data to train
robust models

Complicated mathematical
modeling

Inability to model some
degradation modes

Combinatorial explosion in
case of large sets of rules

We now shift our attention to the industrial standards that define the expected functionalities of
a PdM framework. These standards give us a guideline to formulate the hypotheses that conform to
both the academic and industrial expectations of a PdM solution.

3 Standards for predictive maintenance

In this section, we draw our attention to the standardization of PdM. Specifically, we will address the
following questions.
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Q1: What is a standard? A standard is a body of knowledge of a specific domain, compiled and con-
densed by domain experts [184]. A standard provides the definition of terminology, the guidelines
for implementation, and common practices to undertake in order to systematically and effectively
solve a problem. Organizations and associations such as ISO1, IEC2, and IEEE Standards Associa-
tion (IEEE-SA)3 have been working on standardization for almost a century.

Q2: Why is standardization beneficial for the application of PdM in industry? The motiva-
tion arises from the intrinsic complexity of maintenance management. A system designed for
managing maintenance operations can grow extremely complex: a large number of measurement
variables to be processed and aggregated, hidden precursors of impending faults, the uncertainty
in identifying and estimating the current health state, the data exchange within the system, et
cetera. Combined together, these factors result in a sophisticated system that should be able to
perform computations smoothly, timely, and accurately. When building a maintenance manage-
ment system, an enterprise may choose to integrate third-party solutions, also called Commercial
Off-The-Shelf (COTS) products. However, COTS products from different suppliers likely have
conflicting interfaces, which complicate software and hardware integration. That is why stan-
dardization becomes essential for the progress of PdM. Standardization ensures the mutual com-
patibility of products, services, components, software and hardware programs originated from
different suppliers [119]. Standards development is especially relevant in the context of Indus-
try 4.0, in which intelligent manufacturing systems become increasingly interconnected and the
amount of generated data grow exponentially.

Q3: What are the existing standards related to PdM? At present, PdM has harvested significant
research results and application cases in several areas, such as railway, wind turbines, aerospace,
andmilitary, etc. [41, 43, 129, 138, 226]. Organizations that develop PdM-related standards include
ISO, IEEE-SA, MIMOSA4, IEC, VDMA5, SAE6, and FAA7.

The rest of this section discusses the existing standards dedicated to PdM. We will first describe
MIMOSA OSA-CBM as the de facto open standard for CBM [119] (Section 3.1). The popularity of
OSA-CBM has led to the development of other standards that extend, customize, or complement it
(3.2). Finally, we point out the usefulness of each standard and propose how they can be of use to
develop a highly compliant platform for PdM (Section 3.2.3).

3.1 OSA-CBM as the de facto standard

OSA-CBM [158], short forOpen SystemArchitecture – Condition BasedMaintenance, is an open standard
architecture for data processing and communication within a CBM system. It encompasses a full range
of functionalities, from data collection to result visualization. Before discussing OSA-CBM, it is worth
to mention ISO 13374 - the foundation of OSA-CBM.

3.1.1 ISO 13374

ISO 13374 offers guidance for the implementation of condition monitoring and diagnostics (CM&D)
systems that facilitates the integration of various software packages for processing, communicating,
and displaying CM&D-related data [108–111]. It comprises four parts:

1International Organization for Standardization. https://www.iso.org/home.html
2International Electrotechnical Commission. https://www.iec.ch/index.htm
3Institute of Electrical and Electronics Engineers. https://standards.ieee.org/
4Machinery Information Management Open System Alliance. https://www.mimosa.org/
5Mechanical Engineering Industry Association (Germany). https://www.vdma.org/
6Society of Automotive Engineers. https://www.sae.org/
7Federal Aviation Administration. https://www.faa.gov/

https://www.iso.org/home.html
https://www.iec.ch/index.htm
https://standards.ieee.org/
https://www.mimosa.org/
https://www.vdma.org/
https://www.sae.org/
https://www.faa.gov/
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• ISO 13374-1:2003 - General guidelines
• ISO 13374-2:2007 - Data processing
• ISO 13374-3:2012 - Communication
• ISO 13374-4:2015 - Presentation

ISO 13374-2 introduces the notion of functional blocks. A functional block is a computation unit that
processes the input data, produces the outputs as required, and flags the outputs with the appropriate
assessment. For a CM&D system, ISO 13374-2 specifies six functional blocks numerated from 1 to 6, as
the procedure follows a sequential order (Figure 2.10). The objectives, input, and output of each block
are summarized in Table 2.2.

Figure 2.10: Six functional blocks defined by ISO 13374-2, numbered from 1 to 6.

It is possible to implement a functional block with more than one instance. For example, the PA
block may have many instances that use different models and algorithms for prognostics to increase
the richness and variety of functionalities in a CM&D system.

3.1.2 OSA-CBM

OSA-CBM implements the specifications of ISO 13374 by adding data structures and interface meth-
ods to the functional blocks. Therefore, we may say that OSA-CBM is the realization of ISO 13374.
OSA-CBM uses the term layers rather than blocks. The full architecture of OSA-CBM is illustrated in
Figure 2.11, showing an almost identical architecture to ISO 13374-2, except the additional Presentation
layer that provides data visualization to the end-users.

Figure 2.11: The standard architecture proposed by OSA-CBM.
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Table 2.2: Objective, input, and output of each functional block

Block Objective Input Output

Data Acquisition Collect and digitize raw signals Analog input Digitized data
(DA) Digital input Timestamps

Manual input
Data Manipulation Process the digitized data to extract

relevant indicators
DA output Indicators

(DM)
State Detection Perform condition monitoring: DA outputs State indicators

(e.g. “good",
“warning", “faulty")

(SD) - Baseline comparison DM outputs
- Evaluate the current health state Other SD outputs
- Generate threshold-based alerts

Health Assessment Perform diagnostics: DA outputs Current health state
(HA) - Determine the current health DM outputs Diagnosis of faults

- Diagnose existing faults SD outputs
Other HA outputs

Prognostics
Assessment (PA)

Perform prognostics: DA outputs Future health state
- Project the future health state DM outputs Future usage profile
- Project future failure modes SD outputs RUL estimation
- Estimate the RUL HA outputs

History failure data
& operational data

Advisory
Generation (AG)

Integrate the outputs from previous
blocks and operational constraints to
recommend optimized actions to
applicable personnel and resources

Outputs from previ-
ous blocks

Operation & Mainte-
nance advisories

Other AG outputs
Constraints

The main difference between OSA-CBM and ISO 13374 them is the products they offer. OSA-
CBM provides UML schemas, XML schemas, binary reference data, a software development kit for
.NET including a developer guide, C# .NET scaffolding for OSA-CBM layers, and web services to make
connection to any OSA-CBM layer. Meanwhile, ISO 13374 are simply documents that elaborate on the
expected functionalities of a CM&D system.

The second difference is the accessibility of each standard. ISO 13374 is proprietary, in contrary
to OSA-CBM being open access. This accessibility issue may explain the popularity of OSA-CBM. The
first version of OSA-CBM was released in 2001. The latest version of OSA-CBM was published in June
2010 and is publicly accessible on the website of MIMOSA8.

OSA-CBM has been used by the research community on maintenance thematics. Amaya and Al-
vares [11] construct a rule-based expert system for intelligent maintenance of hydroelectric machinery
by covering layer 1 to 6 of OSA-CBM. Niu and Yang [169] propose a data fusion-based system imple-
menting Layer 2 to 5 of OSA-CBM to perform online condition monitoring and data-driven prognostics
on methane compressors in petrochemical industry, but health assessment and diagnostics (Layer 4)
are not mentioned in their work. Later, Niu, Yang, and Pecht [171] improve the work of Niu and Yang
[169] by incorporating the philosophy of reliability-centered maintenance in the system to maximize
the system reliability while reducing the implementation cost. Thurston, Lebold, and Box [220] prove

8https://www.mimosa.org/mimosa-osa-cbm/

https://www.mimosa.org/mimosa-osa-cbm/
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the benefits gained from applying OSA-CBM in an Integrated Vehicle Health Management system9,
via benchmarking results that show an increased scalability and flexibility of hardware and software
integration. Byington, Watson, Roemer, Galie, McGroarty, and Savage [41] discuss the design of a
modular prognostic software as part of the Navy’s Integrated Condition Assessment System (ICAS)
to enable maintenance troubleshooting and planning for shipboard machinery systems. ICAS is not
solely built on OSA-CBM, but it makes use of the OSA-CBM specifications to facilitate the interfacing
with other programs that are OSA-CBM compliant. Thus, this demonstrated the remarkable benefit of
standardization: it allows a flexible communication with other third-party programs without requiring
the understanding of how they operate.

3.2 Other maintenance-related standards

OSA-CBM provides an architecture covering the core functionalities a proper CBM system, without
details about algorithms or models. We will present in this section other standards that cover one
or more maintenance functionalities defined by OSA-CBM or aim to extend, customize, or formulate
OSA-CBM differently.

3.2.1 Standards for condition monitoring

In OSA-CBM, the SD block is responsible for condition monitoring. Condition monitoring is the process
of observing and comparing new data to a baseline profile to detect abnormalities in the equipment
and to generate warnings based on predefined thresholds. Condition monitoring is the first barrier
that prevents unanticipated failures by alerting of faults or precursors of faults at an early stage.

VMDA 24582 Developed by the VDMA association, VDMA 24582 focuses on condition monitoring
in automated systems [231, 237]. Similar to ISO 13374-2, VDMA 24582 uses functional blocks to en-
capsulate condition monitoring computations (Figure 2.12). A functional block processes the input to
generate an enumerated status indicating the current state of the monitored equipment, for example,
normal, warning, or faulty. External variables such as parameters, reference values, and predefined
thresholds can be passed to the block to configure the processing algorithm. The outputs of one block
may become the inputs of another (if any).

Figure 2.12: A functional block of VDMA 24582 [231].

9Integrated Vehicle Health Management is a system that provides the tools and assets to enable efficient, reliable, and
autonomous vehicles. It makes use of large datasets collected from sensors and processes these data on-board and off-board
to monitor the condition of the vehicle.
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Additionally, VDMA 24582 decouples condition monitoring in three views, forming a hierarchy
from the lowest to highest level:

(1) The function view defines the conditionmonitoring-related functions, formulated by functional
blocks. This view addresses the question “what is to be monitored”.

(2) The application view defines the relationships between functions. It dictates how the outputs
of separate components of the equipment can be aggregated to produce an overall report.

(3) The automation view describes how and where the function blocks can be physically deployed
within the automation system.

VDMA 24582 was published in 2014 and has since remained active.

MIMOSA OSA-EAI OSA-EAI, short for Open System Architecture – Enterprise Asset Integration, is
another open standard developed by MIMOSA since 1998 and has been regularly updated, with the
latest release in May 201410. OSA-EAI defines the data structures for storing and exchanging infor-
mation about all aspects of equipment, e.g., health report, monitoring values, operational records, into
enterprise applications [159]. OSA-EAI complements OSA-CBM by providing reference schemas and
data elements. OSA-CBM is responsible for the processing and analysis of equipment operational data,
whereas OSA-EAI is in charge of data exchange and storage.

However, OSA-EAI suffers an excessive normalization that increases the complexity and reduces
the flexibility of analysis in a CBM system [155]. Furthermore, the lack of documentation makes it
difficult to fully grasp the concepts of this standard, as very few explanations are given on the official
website of MIMOSA OSA-EAI.

ISO 13373 ISO 13373 draws close attention to the monitoring of vibration signals. Vibration signals
are emitted by rotating machinery, one of the most common classes of machines [95]. Given the impor-
tance of vibration signals in detecting rotating machinery health, ISO develops ISO 13373 dedicated to
the multifaceted vibration condition monitoring. It comprises nine parts, some of which are still under
development (Table 2.3). The first three parts give general guidelines for analysis of vibration data
and vibration diagnosis. The remaining parts focus on the diagnostic techniques for different types of
rotating machinery.

Table 2.3: Nine parts of ISO 13373

Part Name Latest release

13373-1 General procedures 2002
13373-2 Processing, analysis, and presentation of vibration data 2016
13373-3 Guidelines for vibration diagnosis 2015
13373-4 Diagnostic techniques for gas and steam turbines with fluid-

film bearings
2021

13373-5 Diagnostic techniques for fans and blowers 2020
13373-6 N/A N/A
13373-7 Diagnostic techniques for machine sets in hydraulic power

generating and pump-storage plants
2017

13373-8 N/A N/A
13373-9 Diagnostic techniques for electric motors 2017

10https://www.mimosa.org/mimosa-osa-eai/

https://www.mimosa.org/mimosa-osa-eai/
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The guidelines of ISO 13373 are useful if the targeted equipment is a type of rotating machinery.
Otherwise, ISO 13374 and OSA-CBM can be applied for any type of equipment.

3.2.2 Standards for diagnostics

The HA block of OSA-CBM covers diagnostics. Diagnostics is the process of examining the symptoms
observed from the equipment to determine the nature of the faults or failures [106]. From the outputs
of condition monitoring, a diagnostics determines the current health of the equipment and investigates
the faults or failures that may already occur. Diagnostics indicates whether an abnormality is occurring
in the system (fault detection), locate the faulty components (fault isolation), and determine the nature
of the fault (fault identification) [113].

ISO 13379 ISO 13379 describes the diagnostic procedures and techniques with an emphasis on the
data-driven approach. First, a preliminary study of the machine characteristics prepare the technical
requirements and make clear of the major components and functions of the targeted equipment, its
maintainability and criticality, the analysis of its failure modes, causes and symptoms, and a list of
measurements fromwhich relevant indicators can be derived for diagnostics. These tasks can be carried
out using the Failure Mode Symptoms Analysis (FMSA) process.

Figure 2.13: Two approaches of diagnostic techniques, according to ISO 13379.

After the study, a diagnostic approach must be selected. ISO 13379 categorizes diagnostic tech-
niques into two approaches (Figure 2.13). The knowledge-based approach relies on fault models and
requires sufficient understanding of the machine characteristics and of the fault propagation mecha-
nism. Two possible techniques to establish a fault model are the Faults/Symptoms approach and the
Causal Tree approach. On the other hand, the numerical approach requires a learning period on a large
dataset using methods such as statistical learning, neural networks, pattern recognition, to name a few.
This approach, also referred to as data-driven, is the main focus of ISO 13379-2 [107].

IEEE 1232 The full name of IEEE 1232 is the IEEE Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments, or AI-ESTATE. AI-ESTATE standardizes the exchanging of diagnos-
tic information in test environments and provides a framework that identifies the information required
for diagnostics and how this information can be expressed in a machine-processable way [101].
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Specifically, AI-ESTATE proposes a set of formal models of diagnostic information (Figure 2.14).
Based on the object-oriented paradigm, these models are structured such that a Common Element
Model (parent class) defines the common elements and attributes for all test and diagnostic information,
and a set of derived models (child class) inherit and specialize the constructs of their parent class using
different diagnostic reasoners for specific applications.

Figure 2.14: Structure of diagnostic models in IEEE AI-ESTATE [101]

AI-ESTATE was first published in 1995 and has been revised several times, with the latest ver-
sion released in 2010. It is branched out to other subparts such as IEEE 1232.1 (Data and Knowledge
Specification in 1997), IEEE 1232.2 (Service Specification in 1998), and IEEE 1232.3 (Use Guide in 2014).

3.2.3 Standards for prognostics

In OSA-CBM, the PA block takes charge of prognostics. Prognostics is the analysis of the symptoms
of faults to predict future condition and residual life within design parameters [106]. In other words,
prognostics determine how soon and how likely a fault will occur, given the current usage profile of
the equipment. Prognostics is often linked to the estimation of the RUL, i.e., the amount of time from
the current instant to the moment a fault is predicted to occur.

ISO 13381 ISO 13381 provides the guidance for the development and application of prognostics,
determines the types of necessary data, and proposes appropriate approaches, namely performance
changes approaches (13381-2), cyclic-driven life usage techniques (13381-3), and useful-life-remaining
models (13381-4).

At present, only the first part (ISO 13381-1 [112]) is published, while the others are still under
development. ISO 13381-1 defines prognostics as a sequential process of four steps (Figure 2.15).

Figure 2.15: Four steps of prognostics (FM = Failure Modes)

(1) Preprocessing prepares the data for prognostic analysis. The failure modes (FM) are identified
along with their relations, symptoms, parameters, and relevant indicators.

(2) Existing FM prognostics studies the existing FM in the equipment and their severity. Then, it
estimates the time to the next occurrences of the existing FM.
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(3) Future FM prognostics predicts the future FM that may be the consequences of the existing
ones in step (2). An estimated time to failure is also given for each potential FM.

(4) Post-action prognostics recommends maintenance actions to undertake to avoid, reduce, or
delay the FM effects. Additionally, it re-evaluates the prognosis result if these actions are taken.
The confidence level of the estimated time to failure is calculated based on the outputs of the
previous steps.

ISO 13381 suggests a systematic procedure to undertakewhen implementing the prognosticmodule
of a CBM system. It assists practitioners to gain more understanding of the prognostic process, the
details of which are not included in the description of the PA block in OSA-CBM.

IEEE 1856 IEEE 1856 is dedicated to Prognostics and Health Management (PHM) of electronic sys-
tems [102]. It is a recent standard published in 2017. According to IEEE 1856, PHM is “the approach
to protect the integrity of equipment and avoid unanticipated operational problems leading to mission
performance deficiencies, degradation, and adverse effect onmission safety”. PHM is meant to “encom-
pass both the monitoring and data processing functions [...] used to proactively manage and restore
the system health”. Hence, the goal of PHM coincides significantly with that of CBM/PdM. We may
regard PHM as a systematic framework, while CBM/PdM is a philosophy of performing maintenance
that can exist within PHM.

IEEE 1856 classifies the core principles of PHM in electronic systems via a normative framework.
It helps practitioners to select the proper strategies for implementing PHM and the appropriate per-
formance metrics to evaluate the PHM results. IEEE 1856 defines five core operational processes of a
PHM system (Figure 2.16). Each process includes one or more functional blocks, some of which are
already defined in ISO 13374 (DA, DM, SA, HA, PA, AG). Two new functional blocks added by IEEE
1856 are Sense (S) and Health Management (HM).

Figure 2.16: Overview of the operational processes of a PHM system

(1) Sense is a low-level process that manages the sensors. (Sensor functional block)
(2) Acquire collects and digitizes raw signals (DA). It applies signal processing algorithms and other

statistical methods to derive indicators from the processed signals (DM).
(3) Analyze carries out condition monitoring (SD), performs diagnostics to detect faults (HA) and

prognostics to predict future faults (PA).
(4) Advise generates optimal actions considering the result of the Analyze process (AG).
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(5) Act transforms the suggestions from theAdvise process to real-life actions, such asmaintenance
schedule, spare parts allocation, and worker assignment.

Overall, IEEE 1856 maintains the specification of OSA-CBM/ISO 13374 and adds more functionali-
ties to construct a complete PHM framework. Since IEEE has developed a series for its standard 1451
on smart transducer interface for sensors and actuators, it may explain why IEEE 1856 extends the
PHM framework to low-level processing like the Sense process. This process is normally not covered
in other standards.

PdM standardization: A summary

In this section, we discuss the standardization of PdM and present some maintenance-related stan-
dards. MIMOSAOSA-CBM is the de facto, public standard for condition-based/predictivemaintenance.
It covers a full range of functionalities: data acquisition, data manipulation, state detection, health as-
sessment, prognostics assessment, and advisory generation. We will apply the principle of OSA-CBM
to the implementation of PdM in this thesis.

There are other standards developed by different organizations: ISO, IEEE, VDMA, IEC, SAE, to
name a few. They aim at customizing, extending, or detailing one or more functionalities described
in OSA-CBM. VDMA 24582, ISO 13373, and MIMOSA OSA-EAI focus on condition monitoring, em-
phasizing different aspects. ISO 13379 and IEEE 1232 AI-ESTATE dive into the detail of the diagnostic
process. ISO 13381 and IEEE 1856 concentrate on the prognostic process. Table 2.4 summarizes the
standards we have mentioned in this section and the year of their latest release.

Generally, there are very few standards for the advisory and maintenance action scheduling. It is
an important functionality that valorizes the outputs of condition monitoring, diagnostics, and prog-
nostics. It suggests a set of optimized actions according to the analysis results and guides practitioners
towards a good maintenance of their equipment. The lack of standardization in these aspects can be
complemented by the Computerized Maintenance Management Systems (CMMS). CMMS are software
solutions that manage databases of information about an organization’s maintenance operations. Ex-
amples of such information are work orders, worker scheduling, parts allocation, inventory control,
purchase plans and budgets, et cetera.

Having reviewed the techniques for PdM and the PdM-related industrial standards, we discover
that online learning has not had many applications in this domain. In the next section, we will discuss
the principles of online learning, review several representative algorithms of the field, and explain how
online learning can be beneficial for PdM in the railway industry.

4 Online learning on data streams

In most common scenarios, data are processed offline and by batches. Offline batch processing means
the entirety of data are processed at once and the outputs are returned at the end. The same principle
applies for offline batch machine learning: a model reads a complete batch of data and iterates over
the data until the training finishes. However, the assumption that the data are bounded is not realistic.
A company running a business that produces data today will continue producing data tomorrow if it
maintains its operation, therefore the data are unbounded and arrive ceaselessly. This is referred to as
a stream: the data that are continuously made available over time [126].

Streaming data are a derivation of big data: both are characterized by a huge amount of data that
are too large to be fully loaded in memory for processing. The key difference is the unboundedness of
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Table 2.4: Summary of the standards and the year of their latest release

Release Standard Title

2002 ISO 13373-1 Condition monitoring and diagnostics of machines – Vibration condi-
tion monitoring – Part 1: General procedures

2003 ISO 13374-1 Condition monitoring and diagnostics of machines – Data processing,
communication and presentation – Part 1: General guidelines

2007 ISO 13374-2 Condition monitoring and diagnostics of machines – Data processing,
communication and presentation – Part 2: Data processing

2010 IEEE 1232 IEEE Standard for Artificial Intelligence Exchange and Service Tie to All
Test Environments (AI-ESTATE)

MIMOSA OSA-CBM Open System Architecture - Condition-Based Maintenance
2012 ISO 13379-1 Conditionmonitoring and diagnostics ofmachines –Data interpretation

and diagnostics techniques – Part 1: General guidelines
ISO 13374-3 Condition monitoring and diagnostics of machines – Data processing,

communication and presentation – Part 3: Communication
2014 VDMA 24582 Fieldbus neutral reference architecture for ConditionMonitoring in pro-

duction automation
MIMOSA OSA-EAI Open System Architecture – Enterprise Asset Integration

2015 ISO 13379-2 Conditionmonitoring and diagnostics ofmachines –Data interpretation
and diagnostics techniques – Part 2: Data-driven applications

ISO 13374-4 Condition monitoring and diagnostics of machines – Data processing,
communication and presentation – Part 4: Presentation

ISO 13381-1 Condition monitoring and diagnostics of machines – Prognostics – Part
1: General guidelines

ISO 13373-3 Condition monitoring and diagnostics of machines – Vibration condi-
tion monitoring – Part 3: Guidelines for vibration diagnosis

2016 ISO 13373-2 Condition monitoring and diagnostics of machines – Vibration condi-
tion monitoring – Part 2: Processing, analysis and presentation of vi-
bration data

2017 IEEE 1856 IEEE Standard Framework for Prognostics and Health Management of
Electronic Systems

ISO 13373-7 Condition monitoring and diagnostics of machines – Vibration condi-
tion monitoring – Part 7: Diagnostic techniques for machine sets in hy-
draulic power generating and pump-storage plants

ISO 13373-9 Condition monitoring and diagnostics of machines – Vibration condi-
tion monitoring – Part 9: Diagnostic techniques for electric motors

streaming data: a stream is generated continuously, infinitely, and possibly at high speed. Examples
of data streams are web clicks of users on a website, sensor data generated by equipment in operation,
medical ECG signals of a patient, and so on. Streaming is associated to real-time services, therefore,
reactivity and availability are crucial factors. Dynamic changes may appear on the stream, making the
distribution of the data shifts over time, a phenomenon coined as concept drift, thus adaptivity is also
a requirement facing dynamic changes.

Five requirements of learning from data streams are identified to handle each of the aforementioned
characteristics (Figure 2.17).
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Figure 2.17: Mapping data streams’ special characteristics to the requirements for learn-
ing.

• Single pass processing. The incoming data are processed once and discarded11 to make place
for newly arriving data.

• Time constraint. Unlike batch learning, a highly available online learning model must learn
from new data quickly, depending on the arrival rate of the data.

• Memory constraint. Memory consumption may also be an issue if the learning algorithm is
deployed on devices with low computing capacity, such as sensors for edge learning. Lightweight
data structure and efficient algorithms are a necessity.

• Anytime response. An online learning model must enable anytime-response to handle real-
time queries.

• Adaptivemechanism. To cope with concept drifts, an online learning algorithmmust be aware
of changes and react quickly to these novelties from the stream.

4.1 Terminology

Wemay encounter different terms in the literature of learning from data streams: incremental learning,
stream learning, and online learning. Sometimes these are used interchangeably. Losing, Hammer, and
Wersing [148] define an incremental learning algorithm as one that generates a sequence of models ℎ1
to ℎ𝑡 from a stream of 𝑡 data instances from 𝑠1 to 𝑠𝑡 . They view online learning as incremental learning
bounded by time and memory constraint, which enables endless learning on a device with restricted
resources. Meanwhile, Gomes, Read, Bifet, Barddal, and Gama [81] associate all three terms to leaning
algorithms that update the models immediately as new data become available without revising his-
torical data. Gama [73] states that, to perform stream learning, incremental learning is necessary but
not sufficient; although incremental algorithms can incorporate new data into the models, they do not
cope very well with non-stationary data. Karp [118] notes that an online algorithm is one that performs
an action immediately after receiving a new request. Hoi, Sahoo, Lu, and Zhao [98] consider online
learning a subfield of machine learning that comprises learning techniques “devised to learn models
incrementally from data in a sequential manner”, while incremental learning is to learn a model from
a data source with memory and time constraints. Incremental learning can work in both online and
batch setting. Incremental learning in batch setting is relevant when the amount of data cannot fit in
the memory all at once.

In the scope of our work, we consider incremental learning the foundation of learning on data
streams, as all algorithms for learning on data streams are incremental in nature. We refer to learning

11By “discarded”, it means the data are not kept in memory, but they can be persisted in hard disks.
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on data streams as online learning (or online machine learning), which encompasses incremental
techniques with time and memory constraints and concept drift awareness.

4.2 Paradigms of online learning

We review the techniques for online learning (OL) in different paradigms in online setting. As it is a
vast research field, we do not intend to make a comprehensive survey and cover only the learning algo-
rithms. More in-depth analyses on various aspect of mining from data streams, such as preprocessing
or feature transformation, are found in the following surveys.

Hoi, Sahoo, Lu, and Zhao [98] comprehensively review OL on a large range of learning tasks,
such as online transfer learning, bandit online learning, online active learning, and particularly em-
phasizes the theoretical guarantee and mathematical formulation of OL algorithms, backed by three
major theory communities, namely learning theory, optimization theory, and game theory. Gomes,
Read, Bifet, Barddal, and Gama [81] establish a wide landscape of techniques for data stream mining,
ranging from stream processing (feature scaling, dimensionality reduction), to learning algorithms and
handling drifts. Bahri, Bifet, Maniu, and Gomes [22] focus on dimensionality reduction techniques and
investigate how they could be made incremental and online-compatible. Losing, Hammer, and Wers-
ing [149] review and benchmark eight incremental learning algorithms. For specific tasks, Carnein and
Trautmann [47] conduct an extensive study of 51 stream clustering algorithms, and Salehi and Rashidi
[200] study algorithms for online anomaly detection.

Next, we will formulate the problem of online learning from data streams, show how an OL al-
gorithm is usually evaluated in the online setting, and present the OL algorithms divided in different
paradigms.

Let 𝐷 = ( (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑡 , 𝑦𝑡) )𝑡→∞ be a stream of infinite number of data instances12. Each
instance (𝑥𝑡 , 𝑦𝑡) is a tuple of the instance features 𝑥𝑡 ∈ ℝ𝐷, and (if available) the label(s) 𝑦𝑡 ∈ 𝐿
classifying 𝑥𝑡 . Given the label(s) 𝑦𝑡 ∈ 𝐿, if 𝐿 = 1, it is a single-output prediction task. If 𝐿 > 1, it is a
multi-output prediction task. If  ⊆ ℕ, it is a classification task. If | | = 2, it is a binary classification,
else a multiclass classification. If  ⊆ ℝ, it is a regression task.

On a continuous stream, traditional evaluation settings commonly used for batch learning such as
k-fold cross validation or train-test splitting are not applicable. To evaluate OL algorithms, two main
approaches arise [34]:

• Holdout evaluation. A single set of data instances is put aside for testing once the learner has
been trained. This approach is useful when a train-test set has been well-defined for a given data
set, thus allowing the comparisons of different OL methods [34].

• Prequential evaluation. For each incoming data instance 𝑥𝑡 , the learner first issues a prediction
𝑦̂𝑡 , then 𝑦̂𝑡 is compared to the real label 𝑦𝑡 to compute the prediction loss (𝑦𝑡 , 𝑦̂𝑡). The learner is
finally updated on both 𝑥𝑡 and(𝑦𝑡 , 𝑦̂𝑡) (Figure 2.18). This approach allows the learner to monitor
its own performance continuously [74].

We classify OL techniques based on the amount of labels available for learning. The three primary
classes are supervised learning (fully labeled data), semi-supervised learning (partially labeled data),
and unsupervised learning (no labeled data) (Figure 2.19). In addition, active learning, which queries for
labels from an external agent, is a subclass of semi-supervised learning. Notable subclasses of unsu-
pervised learning are clustering and anomaly detection. On a data stream 𝐷 = ( (𝑥1, 𝑦1), … (𝑥𝑡 , 𝑦𝑡) ]𝑡→∞,

12We use the terms “data instances”, “data examples”, and “data points” interchangeably.
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Figure 2.18: Prequential (test-then-train) evaluation: 𝐻𝑡 denotes the model updated at
the instant 𝑡.

a supervised task is applicable if 𝑦𝑡 is available for each 𝑥𝑡 . For a semi-supervised task, some 𝑥𝑡 may
not have 𝑦𝑡 . Unsupervised tasks have no information about 𝑦𝑡 .

Figure 2.19: Classification of OL techniques.

Online learning on data streams may propose various ways to deal with concept drifts. Details
about concept drift handling will be given in Section 4.3.

4.2.1 Supervised learning

In this section, we review supervised techniques for online classification and online regression, sup-
posing that a label is available for each data example.

Classification Similar to traditional batch learning, OL classification techniques include tree-
based methods, linear models, Naïve Bayes, nearest neighbors, support vector machines, and neural
networks.

Tree-based methods The most well-known tree-based online classifier is the Very Fast Decision
Tree (VFDT) [60], often referred to as the Hoeffding tree, dated back to 2000. VFDT is built incremen-
tally by exploiting the Hoeffding’s bound to select the best splitting attribute. Let 𝑋𝑎 and 𝑋𝑏 the best
and second-best attributes at a node, 𝐺̄ the average observed thus far of a predefined heuristic measure
(e.g., information gain) on that node, and 𝛿 the error tolerance threshold, the Hoeffding bound guar-
anteed that Δ𝐺̄ = 𝐺̄(𝑋𝑎) − 𝐺̄(𝑋𝑏) > 𝜖 and 𝑋𝑎 is thus the best splitting attribute with the probability
1 − 𝛿 (𝛿 preferably very small), where 𝜖 =

√
𝑅2 ln(1/𝛿)
2𝑛 defines the confidence interval of the true mean

𝐺 = 𝐺̄ ± 𝜖, 𝑛 the number of instances seen on that node thus far, 𝑅 the value range of the data.

However, recent works found out that the Hoeffding bound was incorrectly used in [60] and pro-
posed other bounds to correct it [156, 197]. Tomake the Hoeffding tree more adaptive to time-changing
streams, Hulten, Spencer, and Domingos [100] propose an extension of the Hoeffding called CVFDT
(Concept-adapting VFDT) by creating and replacing alternative subtrees when a change in the data
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distribution is detected, thus maintaining the tree consistent with the current sliding window. Bifet
and Gavaldà [32] further improve CVFDT by incorporating a concept drift detector in each node of the
tree, eliminating the need for a fixed-size sliding window over the stream.

Linear models Perceptron [194] is the oldest algorithm for online learning [98]. A perceptron
defines a linear hyperplane that separates the instances into two classes. For each incoming instance
x = (𝑥1, ..., 𝑥𝑁 ) ∈ ℝ𝑁 , the perceptron predict its label by computing 𝑓 (x) = sign(⟨𝑤,x⟩) and classifies
𝑦̂ = +1 if 𝑓 (𝑥) > 0, and 𝑦̂ = −1 otherwise (Figure 2.20). The perceptron maintains a set of weight
w = [𝑤1, … , 𝑤𝑁 ]𝑇 and updates it based on the Hinge loss of the prediction 𝑦̂ and true label 𝑦 (2.11). If
the loss is 0, meaning the prediction 𝑦̂ = 𝑓 (x) is correct, no update is needed. Otherwise, the weights
w are updated such that 𝑤𝑡+1 = 𝑤𝑡 + 𝜂𝑦x, with 𝜂 being the learning rate.

(w; (x, 𝑦)) =

{
0 if 𝑦⟨𝑤, 𝑥⟩ ≥ 1
1 otherwise

(2.11)

Figure 2.20: A simplified view on the perceptron model.

Based on perceptron learning, another margin-based linear technique is the Passive Aggressive
(PA) algorithm [52]. Its goal is to maintain 𝑤𝑡 as close as possible to 𝑤𝑡−1 to retain information learned
previously (passive), while striving to classify the example x𝑡 with a sufficiently high margin to clearly
separate the classes (aggressive). To achieve it, the PA algorithm modifies the weight update rule by
framing it as a constrained optimization problem (2.12). For simplicity, we set (w; (x𝑡 , 𝑦𝑡)) = 𝑡 .
The optimization problem in (2.12) has a simple close-form solution as shown in (2.13). The update is
passive when 𝑡 = 0, that is,w𝑡+1 = w𝑡 , and the weights are kept intact when the prediction is correct.
Otherwise, it aggressively forces w𝑡+1 to satisfy 𝑡 = 0 to teach the learner to correctly classify the
example.

w𝑡+1 = argmin
𝑤 ∈ℝ𝑁

1
2
||w −w𝑡 ||2 such that 𝑡 = 0 (2.12)

w𝑡+1 = w𝑡 + 𝜏𝑡𝑦𝑡x𝑡 where 𝜏𝑡 =
𝑡
||x𝑡 ||2

(2.13)

Naïve Bayes Naïve Bayes assumes independence between the attributes and uses Bayes’ rule to
predict the most likely class for a given example [115]. Given an instance x = (𝑥1, … 𝑥𝑁 ) and the classes
𝐶 = (𝑐1, … 𝑐𝐿), the probability that x belongs to a class 𝑐 can be updated using the Bayes’ rule (2.14),
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where 𝑝(𝐶 = 𝑐) is the fraction of a class label 𝑐 over the entire sample, 𝑝(𝑋 = x) is normally not directly
estimated, instead, a normalization makes the conditional probabilities of each class sum up to 1. By
the independence assumption: 𝑝 (X = x ∣ 𝐶 = 𝑐) = 𝑝 ( ⋂

1⩽𝑖⩽𝑁
𝑋𝑖 = 𝑥𝑖 ∣ 𝐶 = 𝑐) = ∏𝑁𝑖=1 𝑝 (𝑋𝑖 = 𝑥𝑖 ∣ 𝐶 = 𝑐),

which is easily computed by counting the value occurrence of an attribute 𝑋𝑖 by the class 𝑐.

𝑝(𝐶 = 𝑐|X = x) =
𝑝(𝐶 = 𝑐) 𝑝(X = x ∣ 𝐶 = 𝑐)

𝑝(X = x)
(2.14)

Naïve Bayes is online-compatible. It suffices to store the count of each attribute value by classes. It
is time andmemory efficient, as instances need not to be stored explicitly to make it work. Nonetheless,
attribute independence is a strong assumption that does not always hold in practice. Naïve Bayes risk to
wrongly predict instances of an emerging class, for example, a class 𝑐𝑁+1 that appears recently. Because
the count associated to 𝑐𝐿+1 has not been sufficiently accumulated, Naïve Bayes does not return the
correct class probability, in contrary to batch Naïve Bayes that has access to all the instances to collect
the correct counts.

Nearest neighbors K-Nearest Neighbors (kNN) classifies an instance x by aggregating the class
label of the 𝑘 closest neighbors to x. It is a lazy learning method because it only issues predictions
when requested and no learning is involved in the process. Beringer and Hüllermeier [30] apply kNN
to online classification with a sliding window to make the learner detect to concept drifts. A set of 𝑘
nearest neighbors 𝐶 is retrieved for each new instance x𝑡 . Half of the oldest examples in 𝐶 are put to
a statistical test to check for drifting. If a change is detected, these oldest neighbors are discarded.

The vital requirement and also the most important weakness of kNN is data storage to retrieve
neighbors for any new instance. Yet, it is infeasible to store the entire stream. Usually, only a window
of moderate size can be maintained and all the past points are forgotten, which is problematic because
past data may reflect the stable characteristics of the stream. On the other hand, storing too many
instances can slow down the search considerably, affecting the efficiency of kNN.

Support vector machines Support vector machines (SVM) is a margin-based classifier that sep-
arates the examples of two classes by finding the hyperplane that maximizes the distance from all
training examples, also called the margin (Figure 2.21). Let 𝑥 be a training example, 𝑤 the normal vec-
tor of 𝑥 to the hyperplane 𝑤𝑥 − 𝑏 = 0, SVM aims to maximize the margin 2

||𝑤|| , i.e., to minimize ||𝑤||.
Thus, SVM solves the following optimization problem:

min ||𝑤|| subject to 𝑦𝑖(𝑤𝑇 𝑥𝑖 − 𝑏) ⩾ 1, ∀𝑖 = 1… 𝑛

The support vectors are those that lie near the hyperplane and whose position significantly affect
the position of the hyperplane, denoted 𝑥𝑖. So, SVM in online settings must incrementally update
these support vectors. One of the issues is the exploding number of support vectors if the data keep
coming over time. Agarwal, Vijaya Saradhi, and Karnick [3] propose amethod that occasionally discard
support vectors to fit in the memory limit. Kivinen, Smola, and Williamson [125] leverage stochastic
gradient descent to make kernel-based learning, including SVM, more efficient in an online setting.

Neural networks Neural networks are compatible for incremental learning because they can
learn from a small batch of data at a time. The weights can be updated incrementally using stochastic
gradient descent (SGD). SGD is a simplification of the traditional gradient descent (2.15), which updates
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Figure 2.21: Support vector machine (source: https://commons.wikimedia.org/w/
index.php?curid=73710028)

theweights𝑤 by adding the gradient of the loss(𝑓 (𝑋), 𝑌 ) between the prediction 𝑓 (𝑥𝑖) and the ground
truth 𝑦𝑖 computed over the entire dataset in one epoch 𝑡, attenuated by a learning rate 𝜂. But for large-
scale training, it may be infeasible to iterate through the entire data set to compute gradients, therefore
SGD simplifies the process by picking one random data example at a time to update the weight (2.16)
[37]. However, SGD applied to non-convex loss functions does not benefit from convergence guarantee
and is sensitive to the initial value of the weights [83].

w𝑡+1 = w𝑡 − 𝜂
1
𝑛

𝑛
∑
𝑖=1
∇w(𝑓 (𝑥𝑖), 𝑦𝑖) (2.15)

w𝑡+1 = w𝑡 − 𝜂∇w(𝑓 (𝑥𝑡), 𝑦𝑡) (2.16)

Powerful as they are, deep neural networks are data-hungry , which contradicts the memory con-
straint of OL. Besedin, Blanchart, Crucianu, and Ferecatu [31] implement a generative neural network
(GAN) to generate new labeled samples from few real labeled examples to overcome the need for data
storage. These synthetic samples are then inputted to a deep convolutional network for online learning
and classification of real unlabeled samples. Sahoo, Pham, Lu, and Hoi [199] address online deep learn-
ing with hedge backpropagation (HBP). The key idea of HBP is to start with an overcomplete network
(many layers) then adapt the network depth dynamically. Pratama, Ashfahani, Ong, Ramasamy, and
Lughofer [188] propose a deep evolving denoising autoencoder that adds and discards hidden units
on-the-fly using a novel network signification (NS) measure. The network is trained with SGD in a
single-pass in one epoch. The network is evaluated in a prequential fashion and achieves competitive
results with other benchmarking algorithms.

Overall, online deep neural networks remains an open challenge, since most of the research ef-
fort aims at training complex networks offline on large amount of data. Ongoing research consists of
adaptively changing the network structure, efficiently update the networks on-the-fly, avoiding catas-
trophic forgetting via continual learning [87, 232].

Regression Regression algorithms for data streams can be tree-based, rule-based, or adapted from
support vector machines, called the support vector regression.

https://commons.wikimedia.org/w/index.php?curid=73710028
https://commons.wikimedia.org/w/index.php?curid=73710028
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Tree-based Ikonomovska, Gama, and Džeroski [103] present the Fast Incremental Model Trees
with Drift Detection (FIMT-DD) that has become a popular regression tree algorithm for data streams.
It shares the same principle as the Hoeffding tree: the tree is grown continuously on new data and the
best splitting attributes are chosen using the Hoeffding’s bound. In each leaf, a simple linear model
is updated when a new instance is routed there and performs regression for any unlabeled instance
that falls in this leaf. Gomes, Barddal, Boiko Ferreira, and Bifet [79] develop an adaptive random forest
using the FIMT-DD as the base learner and enhance the model with an external change detector to
cope with drifting.

Rule-based Almeida, Ferreira, and Gama [9] propose the AdaptiveModel Rules fromHigh Speed
Data Streams (AMRules), a one-pass algorithm for learning regression rules from time-evolving streams.
It starts with an empty set and expands or removes rules based on new data. Each rule contains a linear
model trained with incremental gradient descent on the examples covered by this rule. The regression
estimates given by all the rules that cover an unlabeled example are averaged to make the final regres-
sion.

Support vector regression Ma, Theiler, and Perkins [152] is the first to propose online support
vector regression (SVR) that updated a trained SVR on new data. SVR has three parameters: the kernel
, the regularization term 𝐶 to control the bias-variance tradeoff, and the slack variables 𝜖𝑖 for each
data example x𝑖 that allow an instance to be on the wrong side of the hyperplane, such that the sum of
all 𝜖𝑖 is bounded by 𝐶. However, these parameters are constant and cannot cope with potential drifts
from dynamic streams. Omitaomu, Jeong, and Badiru [177] amend this by devising a weight function
to adaptively update 𝐶 and 𝜖𝑖 when drifts are detected. Yu, Lu, and Zhang [246] develop a continuous
SVR for non-stationary data streams by learning a series of regressors 𝑓𝑖 from the sliding windows 𝑡𝑤𝑖
on the stream and keeping only one regression 𝑓𝑖 in memory for prediction. Knowledge learned from
the previous window 𝑡𝑤𝑖−1 was transmitted to the classifier in the current window 𝑡𝑤𝑖 instead of being
dropped completely. They also devise a way to incrementally update the Lagrange multipliers on one
data example per timestep.

4.2.2 Semi-supervised learning

Assuming that a data stream is fully labeled is unrealistic, because the data may arrive so fast that
manual labeling is practically infeasible to cope with the stream speed. There is also the problem of
mislabeling or delayed arrival of the labels. The latter occurs when a data example arrives first then its
label only reaches the stream several instants later, possibly due to network delay. Therefore, a stream
could hardly fit in a supervised scenario in practice.

Oneway to overcome this difficulty is to train amodel solely on labeled examples and formulate the
problem as supervised learning, but the amount of unlabeled data may greatly exceed that of labeled
data. Another way is to use semi-supervised learning (SSL) to leverage both labeled and unlabeled data
to produce better classifiers than those that rely solely on limited amount of labeled data. There are
many approaches to tackle SSL, including co-training [35], self-training [243], or active learning [201].

Active learning Active learning is a human-in-the-loop learning paradigm that interacts with an
oracle to annotate unlabeled data instances. Usually, the instances to be labeled are the most uncertain,
for example, a point lying close to the discriminative hyperplane. The oracle’s answer can then bring
the highest value to the learning process. Under a budget constraint, the active learner aims to achieve
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high accuracy using as few labeled instances as possible, thereby minimizing the cost of collecting
labeled data [201].

There are several concerns regarding this approach. First, it assumes that any instance can be
labeled, which may not be true (it depends on the domain). Secondly, it includes one or multiple
humans experts in the learning process to manually label queried instances, but they may not cope
well with the speed and the volume of a real-time data streams, not to mention that humans may
sometimes give incorrect labels and not give any labels at all [218].

Two traditional sampling strategies that perform well in stationary settings are random (R) and
fixed uncertainty (FU). Nonetheless, R is a naïve strategy that requested labels randomly with a pre-
defined probability, whereas FU might issue labeling requests excessively and soon exhaust the label-
ing budget. Žliobaitė, Bifet, Pfahringer, and Holmes [255] propose two novel online active learning
strategies - variable uncertainty (VU) and randomized uncertainty (RU), that explicitly handle concept
drift while keeping the budget balanced. VU chooses the least certain instances according an adaptive
threshold to align with the budget. RU randomizes the labeling threshold to select both the instances
close to the boundary and distant instances to amend the common issue of uncertainty strategies that
tend to select instances near the decision boundary while changes occurring remotely from the bound-
ary are likely missed.

Zhu, Zhang, Lin, and Shi [254] propose an ensembling based active learning framework using the
minimal variance principle. Instances that cause the highest expected predictive error are selected for
labeling. When a new data chunk 𝑆 arrived, the learner predicts the label for all unlabeled instances
𝐼 ∈ 𝑆, then it calculates the variance of 𝐼 over all the class labels to obtain the expected ensemble
variance. The unlabeled instance with the largest variance is sent to the oracle for labeling.

Singh and Chandak [210] implement ActMiner and make use of incremental ensembling to handle
data streams and concept drift. Concept evolution occurs when novel classes appear on the stream.
Instead of requiring all instances of the emerging class to be labeled, ActMiner only picks the instances
that cause the highest expected error for manual labeling.

Haque, Khan, and Baron [89] argue that dividing a stream into fixed-size chunks fails to capture
concept drift quickly if the chunk size is too large, or suffers from unnecessary updates during stable
period if the chunk size is too small. They propose SAND and use an explicit change detector to detect
drifts and to determine the chunk size dynamically. When a change is detected, a drift signal is emitted
and the chunk boundary is determined immediately. SAND forms the training data from the current
chunk including available labeled data and requesting true labels from human experts for the examples
on which the model achieves weak prediction confidence. However, SAND is time-consuming due to
its exhaustive invocation of the change detection module. An extension of SAND [90] amends this
problem by exploiting dynamic programming and selective execution of the change detection module.

4.2.3 Unsupervised learning

Unsupervised learning applies when no information about the labels is available. This scenario is par-
ticularly relevant for machinery monitoring. It is not feasible to assign a label indicating the machinery
health to each data example in the stream. An equipment or a fleet of equipment that has just started
its operation have not yet produced any labels regarding its condition or failure time. Hence, unsuper-
vised learning can be the starting point of learning from data streams. In this section, we review the
two most prominent unsupervised learning tasks, which are clustering and anomaly detection.
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Clustering Online clustering has been extensively studied for the past few years [13, 46, 47, 78,
209, 257]. Based on these surveys, we divide the clustering techniques in three primary classes: hierar-
chical, partition-based, and density-based. Then, we review the most representative algorithms of each
class.

Hierarchical techniques Hierarchical techniques store the information about the cluster in a
hierarchy, most often in the form of a tree. BIRCH [249] and ClusTree [131] are two well-known
algorithms of this class.

BIRCH [249] is the first to propose the cluster feature to summarize a cluster, which is a tuple of
three statistics: 𝑁 the number of points in this cluster, 𝐿𝑆 ∈ ℝ𝐷 the linear sum of all points, and 𝑆𝑆 ∈ ℝ𝐷
the squared sum (𝐷 being the dimension of the data). The cluster features are maintained in a tree that
is built incrementally. Starting from the root, a new data example descends the tree by following the
child of its closest cluster at each branch until it reaches a leaf. Then, either the example is merged to
the cluster at this leaf, or a new cluster is created.

ClusTree [131] is a parameter-free algorithm that automatically adapts to the speed of the stream.
It relies on the index structure R-Tree to store and maintain a compact view of the current cluster
features. It addresses the issue of fast streams where there may not be enough time to descend to the
leaf or to split the node when inserting a new example (a split occurred when a node is full). If a leaf
is reached and there is not enough time for a split (a new example arrived), the two closest entries are
merged. If a new example arrives when the leaf has not yet been reached, the current example is stored
in a temporary buffer at its current node and waits hitchhike with another example that descends the
same branch.

Partition-based techniques Partition-based clustering splits the data into a predefined number
of clusters (partitions) based on the distance between the examples [257]. These techniques are some-
times called distance-based techniques. Representative algorithms of this class are CluStream [5] and
SWClustering [253].

CluStream [5] is the first to employ a two-phase clustering process for clustering data streams. The
online phase efficiently captures and maintains summary statistics of the stream via micro-clusters.
The offline phase applies a traditional clustering algorithm, such as k-means, on the micro-clusters to
return official clusters if requested. CluStream extends the cluster features from BIRCH by adding the
pyramidal timeframe that allowed the clustering over different time horizons.

SWClustering [253] uses the cluster features of BIRCH and the pyramidal timeframe of CluStream
but it maintains these statistics in an exponential histogram to store the data efficiently in different
levels of granularity, such that recent data are stored in greater details while older data are grouped
and summarized.

Density-based techniques Density-based techniques examine the density of a region to group
the examples together. Techniques of this class do not require a predefined number of clusters and can
find clusters of arbitrary shape, in contrary to partition-based techniques that usually find spherical
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clusters. Two most popular density-based online clustering algorithms are DenStream [45] and D-
Stream [50]13.

DenStream [45] is an extension of its offline counterpart DBSCAN [64]. DenStreammaintains a set
of potential micro-clusters (PMC) and outlier micro-clusters (OMC) to detect real clusters and isolate
outliers. Pruning is performed periodically to demote a PMC to an OMC if the PMC does not receive
any new points recently, to promote an OMC to a PMC if the OMC has become dense, and to discard
OMC that are noises.

D-Stream [50] divides the data space into small grids of fixed size and distinguishes dense, sparse,
and transitional grids depending on their density. Dense grids that share adjacent facets constitute a
cluster. Periodic pruning is performed to remove infrequent or empty grids.

DBSTREAM [88] studies closely low-density areas between two high-density areas to avoid mis-
takenly merging two separate clusters together. It introduces the shared density graph to explicitly
capture the density area between micro-clusters. The shared density is updated via competitive learn-
ing: each time a new data example appears on the stream, all clusters that are in the vicinity of that
example slightly inch closer to that example. Eventually, areas of high density may collapse and make
DBSTREAM able to gradually adapt to concept drifts.

Anomaly detection Anomaly detection findings anomalous points with respect to the dominant
data distribution of the data stream. Detecting anomalies from data streams directly relates to real-time
monitoring, such as network intrusion detection and fault detection inmachinery. Extensive studies on
online anomaly detection have been conducted by Duraj and Szczepaniak [61], Gupta, Gao, Aggarwal,
and Han [86], and Salehi and Rashidi [200].

Ahmad, Lavin, Purdy, and Agha [7] make use of the Hierarchical Temporal Memory (HTM) al-
gorithm to detect outliers from noisy and drifting streams. By design, HTM cannot directly model
anomalous objects from the input. The authors adapt HTM by stacking two additional components
to the output of the HTM. The first component, “Prediction errors”, measures the deviation of the
HTM predictions to the real input, producing a prediction error. A distribution of prediction errors is
modeled by the “Anomaly likelihood” component to assess whether an input is indeed an anomaly.

Manzoor, Lamba, and Akoglu [153] propose xStream to perform density-based anomaly detection
in a feature-evolving data stream, that is, a stream where an instance does not arrive entirely with its
full set of attributes, but the attributes arrive bit by bit over time. xStream uses a hash algorithm to
project the instances to a low-dimensional space, then updates the half-space chains to compute the
outlier score of an instance.

4.3 Concept drift

Concept drift occurs in non-stationary environments where the relation between the data and the
target variable changes over time. This variability is often encountered in real-world applications,
for example, in a recommendation system where the users may change their preferences over time.
Concept drift may manifest in four forms [75] (Figure 2.22):

• Sudden drifts: the change occurs abruptly.
13Other authors may classify D-Stream as a grid-based technique. We consider density-based and grid-based techniques in

the same category because they both cluster the data based on the density of local regions. While density-based techniques
rely on distance metrics to estimate the density, grid-based techniques divide the data space into small grids, such that
adjacent dense grids constitute a cluster.
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• Incremental drifts: the relation changes little by little over time.
• Gradual drifts: the drift alternates between the new and old concepts.
• Reoccurring/Recurrent drifts: the new concept occurs temporarily, then recedes.

Sometimes, a sudden change in the data may not be a real drift but is a fleeting perturbation caused
by noisy examples from the streams.

Figure 2.22: Concept drift in four forms: sudden, incremental, gradual, and reoccurring
[75]

Concept drift is not the only type of dynamic changes on data streams. Other types of drift are
feature drift (a subset of features becomes or ceases to be relevant to the learning task), feature evolution
(new features become available or old features disappear), concept evolution (new class labels appear
or existing class labels disappear) [81].

Naturally, an incremental algorithm can adapt to incremental drifts by continuously incorporating
new data to the learning process. However, it may struggle to handle other forms of drifts. A sudden
drift can decrease the model accuracy significantly until it receives enough data to finally adapt to
the new concept. The same thing happens with recurrent drifts until the previous concept returns.
Gradual drifts are most difficult to deal with - the worst scenario is when the model can never adapt
because the concepts varies constantly [75].

Adapting to the arising of new concepts is realized via twomechanisms: learning new concepts and
forgetting outdated ones. By design, learning new concepts from the stream is the default behavior of
online algorithms. Within a limited memory space, incorporating new knowledge implies discarding
the old one. Incremental learning and forgetting can be realized by the windowing techniques or via
explicit drift detectors incorporated in a learner.

4.3.1 Time window model

Using a time window, a number of instances within a timeframe is retained to update the model at a
time (learning). Any instances that fall out of this timeframe are discarded and forgotten by the model
(forgetting). Three main types of windowing14 are sliding window, landmark window, and damped
window [47] (Figure 2.23).

Sliding window model A number of most recent examples from the stream is accumulated in a
window of fixed or variable length. The model is kept up to date with the data stored in this window.
Old instances are removed from the window to make space for more recent ones. The window size is
a crucial parameter: a small window increases the model sensitivity to changes from the stream but
it also causes frequent model updates, thus violating the time and memory constraints. Meanwhile, a
large window implies slower adaptation to drifts, but the model performance is more stable when the
stream is stationary.

14There is a fourth type of time window model which is the pyramidal timeframe, proposed by Aggarwal, Han, Wang, and
Yu [5], but it is not commonly used.
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Figure 2.23: From left to right: sliding window, landmark window, damped window.

Landmark window model A landmark window is a window that stores all the examples from a
landmark point. The landmark can be an event that signals a change in the stream. When a landmark
occurs, all the examples prior to it are forgotten and the window start accumulating the data anew.
A landmark window may contain all the data from the beginning of the stream if no other landmark
point is specified during the learning process, but this is infeasible for infinite streams.

Damped window model Instead of fixing a limited budget to store the examples, the damped
window model assigns to each example a relevance weight that decreases over time using exponential
decay [45]. After each interval Δ𝑡, the weight 𝑤 is decreased by an amount of 2−𝜆Δ𝑡 , i.e., 𝑤𝑡+Δ𝑡 =
𝑤𝑡 × 2−𝜆Δ𝑡 , where 𝜆 > 0 is the decay factor. A high value of 𝜆 means the data are quickly forgotten to
place more importance to recent data.

4.3.2 Drift detectors

Adapting to drifts can be done implicitly via the windowing technique to let a model slowly forget old
concepts, but the drift is not explicitly detected. Indicating where a drift occurs may bring insightful
discoveries on the stream characteristics. This section presents explicit change detectors that identify
and quantify change points.

Cumulative sum (CUSUM) CUSUM is a simple, memoryless change detection test that measures
the changes accumulated over time. In (2.17), 𝑔𝑡 measures the cumulative changes, 𝑥𝑡 the prediction
error produced by a streaming model, 𝛿 the allowed magnitude of change. Then, 𝑥𝑡 − 𝛿 expresses how
much the new data instance deviates from an acceptable value. If the new data 𝑥𝑡 is constantly superior
to 𝛿 (𝑥𝑡 − 𝛿 > 0), it will increase the cumulative changes 𝑔𝑡 until 𝑔𝑡 exceeds the user-defined threshold
𝜆. A change detection alarm will be triggered, after which 𝑔𝑡 is reset to 0.

𝑔𝑡 = max(0, 𝑔𝑡−1 + (𝑥𝑡 − 𝛿)) (2.17)

CUSUM only takes into account positive change and neutralizes negative changes. Despite its
simplicity, CUSUM requires the change threshold 𝜆which is domain-specific and difficult to determine
in case there are multiple change criteria to measure.

Page-Hinkley (PH) The PH test is a variant of the CUSUM test. It measures the cumulative dif-
ferences between the deviation of the new values 𝑥𝑡 from the mean 𝑥𝑡 = 1

𝑇 ∑
𝑇
𝑡=1 𝑥𝑡 with respect to an

acceptable magnitude 𝛿 (2.18). The measurement to monitor is 𝑚𝑡 − 𝑀𝑇 , where 𝑀𝑇 is the minimum
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value of all the values of 𝑚𝑡 up to time 𝑇 (𝑀𝑇 = min1…𝑇 𝑚𝑡 ). A change detection alarm is triggered
when 𝑚𝑇 − 𝑀𝑇 > 𝜆, with 𝜆 being the user-defined change threshold.

𝑚𝑡 =
𝑇
∑
𝑡=1
(𝑥𝑡 − 𝑥𝑡 − 𝛿) (2.18)

Similar to CUSUM, the PH test also needs a correctly defined threshold 𝛿 in order to detect changes.

AdaptiveWindow (ADWIN) Different from CUSUM and PH, ADWIN is a window-based change
detection algorithm [33]. The inputs of ADWIN is a data stream inwhich the values are boundedwithin
the interval [0, 1], and a confidence value 𝛿 ∈ (0, 1). Algorithm 2.1 describes how ADWIN works.

Algorithm 2.1: ADWIN Change Detection Algorithm

1 Initialize 𝑊
2 foreach 𝑥𝑡 from the stream do

3 𝑊 ← 𝑊 ∪ {𝑥𝑡} # add 𝑥𝑡 to the head of 𝑊
4 repeat

5 drop elements from 𝑊
6 until | 𝜇̂𝑊0 − 𝜇̂𝑊0 | < 𝜖𝑐𝑢𝑡 ;

ADWIN slides awindow𝑊 over the last 𝑛 instances from the streams and further splits this window
into two subsequent windows𝑊0 of size 𝑛0 and𝑊1 of size 𝑛1 such that 𝑛0+𝑛1 = 𝑛. ADWIN detects drift
if 𝑊0 and 𝑊1 exhibit “distinctive enough” averages. By “distinctive enough”, it means the difference
of the means of these two subsequent windows 𝜇̂𝑊0 and 𝜇̂𝑊1 is superior than the threshold 𝜖𝑐𝑢𝑡 =√
1
2𝑚 × log

4
𝛿′ , where 𝑚 =

1
1
𝑛0
+ 1𝑛0

is the harmonic mean of 𝑛0 and 𝑛1, and 𝛿′ = 𝛿
𝑛 . When a change is

detected, the old subwindow within 𝑊 is dropped, thus shrinking the size of 𝑊 . In the contrary, if
no change is detected, the data are continuously appended to 𝑊 . This is how ADWIN dynamically
adapts the window size: 𝑊 shrinks when changes are detected to discard stale data, but 𝑊 may grow
infinitely when the stream is static.

4.4 Online machine learning for predictive maintenance

Online learning can be applied to predictive maintenance to enable lifelong learning of the machinery
health without expensive model retraining. The learner is constantly updated on new data collected
from the equipment to monitor its condition over time, while being able to detect drifts. A drift in
machinery data may signal the precursors of failure. Works that fully use online learning algorithms
are still scarce at the moment.

Sahal, Breslin, and Ali [198] do a comprehensive review of open-source big data solutions and
their applicability to predictive maintenance (Figure 2.24), illustrated by two case studies on railway
and wind turbines maintenance.

Canizo, Onieva, Conde, Charramendieta, and Trujillo [43] implement a predictive maintenance
application for wind turbines using big data technologies: Apache Spark for data processing and offline
model training and online monitoring using the trained model, HDFS for data storage, Apache Mesos
for cluster management and resource sharing, Apache ZooKeeper for load balancing in the cluster.
However, the models are trained offline and remain unchanged on incoming data.
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Figure 2.24: Open source big data technologies [198]

Su and Huang [213] predict hard disk drives failures in data centers, using Apache Spark for real-
time data analytics and Hadoop for batch processing. The models are trained offline using random
forest. Apache Spark preprocesses new data in real-time to extract features, to remove out-of-bound
values, to treat missing values, then fetches the processed data to the model for prediction. The system
deployment on cluster is managed by Hadoop YARN.

Ribeiro, Pereira, andGama [193] addresses failure prediction of automatic train doors via sequential
anomaly detection. Sensor signals are transformed into feature vectors via binning. These vectors are
classified into normal or abnormal classes from a semi-supervised or unsupervised anomaly detection.
Finally, a low-pass filter runs through the classification outputs to produce the final anomaly alert,
considering the temporality of sequential anomalies.

In general, the common approach for online predictive maintenance is to train a model offline on
a static batch of data, then to deploy it online for real-time prediction. The model stays unchanged, or
is made adaptable on new instances.

Online learning: A summary

In this section, we make an overview on the different facets of online learning. We identify the re-
quirements for an online learning algorithm to handle learning from data streams, namely single-pass
processing, time and memory constraint, anytime response, and adaptive mechanism. We distinguish
various terms related to learning on data streams (incremental learning, online learning, stream learn-
ing) and decide to adopt the term “online learning” in our work. We divide online learning in three
classes (supervised learning, semi-supervised learning, unsupervised learning), and we present the
most representative examples of each category. We discuss the concept drift phenomenon on dynamic
streams and how to handle it, via time window models or explicit drift detectors. Finally, we look for
related works that use online machine learning for predictive maintenance to position our research in
the literature body.

In the next section, we will conclude the literature review and discuss how the domains we have
covered in this chapter can be combined in order to leverage online learning to enhance predictive
maintenance in the railway industry.
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5 Conclusion

In this chapter, we review four relevant aspects to online machine learning for predictive maintenance
in the railway.

Firstly, we discuss some foundational concepts that revolve around the context of this thesis, which
are complex systems, reliability theory, andmaintenance strategies. Because a railway system is a com-
plex system, its complexity casts an impact on the maintenance methods to be implemented. Reliability
is the probability that an asset functions correctly over a specified period of time, and reliability theory
is the foundation brick of maintenance methodology. We also present the primary maintenance strate-
gies: corrective, preventive, and condition-based/predictive maintenance. The last one is the most
recent form of maintenance that only interferes when needs arise via monitoring and fault prediction.

Secondly, we study the techniques to implement predictive maintenance and divide them into two
categories: knowledge-based and data-driven. The knowledge-based approach relies on expert knowl-
edge to create a model simulating the fault mechanism (physical models) or to create a set of IF-THEN
rules that simulate the reasoning of a human expert (expert systems). On the contrary, data-driven
approach leverages the data collected from the equipment to extract insightful information without
domain knowledge. Statistical techniques such as random forest, neural networks are used to train a
predictive model (machine learning), or the machinery degradation is formulated as a stochastic pro-
cess to be modeled with the appropriate tools (stochastic models).

Thirdly, we review a number of standards designed for predictive maintenance. For the develop-
ment of a maintenance management system, standardization is essential to facilitate the integration of
hardware and software products from third-party suppliers. MIMOSA OSA-CBM is the de factor stan-
dard for condition-based/predictive maintenance. It defines an architecture that encompasses the full
range of maintenance functionalities, from data collection to advisory generation. Besides OSA-CBM,
we also mention other standards that specialize one or more functionalities defined by OSA-CBM.

Lastly, we tackle online (machine) learning on data streams which differs significantly from the
traditional offline, batch learning. Generally, online learning methods are adapted from their offline
counterpart to be able to learn incrementally. Change detectors play a crucial role to detect concept
drifts from continuous streams.

Predictive maintenance has come into prominence lately, as industrial equipment is being increas-
ingly sensorized and consequently produce data abundantly. Coupled with the rapid advancement of
artificial intelligence and big data technologies, predictive maintenance will continue to be the well-
sought research topic and will see its applications in many domains. Although machine learning has
achieved significant performance for predictive maintenance, there are issues to be addressed. Being
data-hungry, machine learning algorithms need a large volume of labeled data to train robust models.
In practice, such amount of data are not always available in advance (for example, a system has just
been sensorized), neither are the labels. This is the first and foremost obstacle of applying machine
learning to predictive maintenance. In addition, complex systems such as those used in the railway
network evolve differently. Two systems of the same nature do not always degrade the same way due
to various factors. Degradation causes a drift in the data of a system, because a system of good health
generates data that different than those in a degraded state. Machine learning models that have not
seen such drift during their training phase will fail to capture it when deployed in production. More-
over, systems may undergo functional upgrade, which modifies their behavior. Using static machine
learning algorithms, the models remain unchanged facing these changes. As a result, we must wait
until sufficient data of the new behaviors have been collected to launch a retraining process.
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These issues can be addressed by online learning, which consists of incremental algorithms that
update the models continuously on new data and are able to adapt to drifts without forcing model
retraining. In this thesis, we study the applicability of online learning to predictive maintenance in the
railway industry. Chapter 3 discusses in detail the challenges of predictive maintenance in the railway
and formulates the hypotheses that address these challenges.
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Summary

This doctoral thesis studies the applicability of online machine learning to railway pre-
dictive maintenance and investigates to which extent online machine learning can improve
traditional batch learning. Because new generations of connected rolling stocks produce sen-
sor data infinitely, we focus on the scenario of having a data stream as inputs. Given a fleet of
sensorized systems (systems that are equipped with sensors), the goal is to develop methods
that learn continuously from a sensor data stream to monitor the condition of the systems in
order to achieve predictive maintenance. We expose the challenges associated to handling
railway data and discuss how to tackle these challenges via online machine learning. Having
studied the literature body of online machine learning and predictive maintenance, we state
the research question and formulate the hypotheses that address the research question.
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1 Introduction

The motivation backing this thesis is the enhancement of predictive maintenance in the railway indus-
try by means of online learning models that work on connected systems that regularly produce data.
The majority of works on data-driven predictive maintenance relies on creating an intricate model
offline on static data and fixing the model’s parameters afterwards. However, railway being the scope
of this thesis, such approach is not fitting.

First of all, we may not have access to the data produced by a system that has just been commis-
sioned or recently sensorized. For a newly commissioned system, some data may have been generated
during the testing phase, but these data do not fully represent the real working condition of the sys-
tem. Therefore, it is not guaranteed that a batch of high-quality static data exist beforehand for offline
model training. Meanwhile, the systems are already in operation and may have started degrading.

Secondly, sensor data are unlabeled. For maintenance purpose, labels are any annotation that
indicates the working condition of a system, such as functional, degraded, or faulty. Although the
labels may become available over time, the amount of labeled data will be heavily dominated by that
of unlabeled data. In the railway, only few labels are given by the human experts to sufficiently identify
a type of faults in a system. In the contrary, traditional machine learning expects one label for each
data instance.

Thirdly, a system changing from one state to another (e.g., from a functional to a degraded state)
causes a drift in the data, because the data it produces in different states exhibit different properties.
These dynamic changes will affect the accuracy of themodel trained on the data without these changes.
Traditional machine learning that does not modify a model after training cannot adapt to novelties
arriving from the stream.

As a result, using traditional machine learning (TML) to handle railway predictive maintenance is
lacking in several aspects.

• TML is data-hungry and requires data to be available in advance to train a model.
• TML can deal with scenarios where few labels are available, but not when labels arrive gradually
over time.

• Learning an accurate TMLmodel demands that the training data contain exhaustive information
about all possible faults and/or precursors of failure. This is not always guaranteed.

• TML produces non-adaptive models, yet novelties from the data stream require the models to be
updated continuously.

• Over the course of its lifecycle, a systemmay undergo multiple software updates or functionality
upgrades that modify its behavior. A trained TML model thus becomes obsolete and must be
retrained, for which a sufficient amount of new data must be collected (again).

In other words, TML is not proactive, for it stops the learning at the end of the training process,
whereas a system in operation never stops evolving and never ceases to produce data that possibly
carry new properties. To address predictive maintenance, we argue that online machine learning is a
more suitable approach, because its core principle is to learn and update a model continuously from an
infinite stream of data. Online machine learning can incorporate novelties (new data and new labels)
from the stream in the models and make the models adapt to changes.

Although our primary focus is on data-driven predictive maintenance, expert systems are also a
well-established approach in the railway industry. Expert systems are noteworthy for their explain-
ability via the explicit rules defined by domain experts, and can perform anomaly detection and fault
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identification, but an expert system also suffers the same weakness as TML: an expert system is not
adaptive. The set of rules is fixed and does not change. If a software update or functional upgrade
change the behaviors of the systems, an expert system will fail to recognize those changes and must
be modified manually.

Hence, we investigate the following research question:

Given that online machine learning can overcome certain limits of traditional ma-
chine learning, could we use online machine learning to achieve satisfactory re-
sults for railway predictive maintenance?

By satisfactory, we expect the results obtained with online machine learning will outperform, or
at least are competitive to, those yielded by offline machine learning and the expert system (if any)
hand-crafted for the target systems.

This chapter is organized as follows. Section 2 describes the passenger access systems on passen-
ger trains as our study cases and explains how the data are generated. Then, Section 3 formulates
the hypotheses to tackle the research question while respecting the railway operational constraints.
Finally, Section 4 summarizes the hypotheses to be validated in the form of a schema.

2 The passenger access systems

To study the applicability of online machine learning for railway predictive maintenance, we focus on
the electric passenger access systems (PAS)1 on two fleets of passenger trains, namely the NAT and
R2N fleets. A PAS is a complex system and is representative of many other systems in the railway, such
as the batteries, the HVAC, or the compressors. Therefore, if we reach a viable predictive maintenance
solution for the PASs using online machine learning, we can generalize the approach and apply it on
other types of systems.

In this section, we describe the PASs, explain how the data are generated, and highlight the chal-
lenges associated to such data sets. Since a PAS works similarly on both fleets, we describe the PAS of
the R2N trains specifically as an illustrative example.

2.1 Operating mechanism

An R2N train has 16 doors in total, with eight on each side (Figure 3.1). Opening the doors on the left,
on the right, or on both side depends on the configuration of a train station.

Figure 3.1: Position of the PASs in an R2N train. Dotted boxes indicate the cars that
have PASs.

The PAS has one primary function, multiple security functions, and several secondary functions,
described as follows.

1We will use the terms “PAS” and “doors” interchangeably.
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Primary function. The primary function of the PAS is to allow passengers to board and to leave
the train at any stop, which makes it the system that interacts with the passengers the most on a train.
To perform its primary function, the PAS opens and closes when the train completely stops at a station.
The duration of the opening is 3 ± 0.25 seconds, and of the closing is 3.25 ± 0.25 seconds. The width
of a fully opened door is 1600 millimeters. Without electrical power, the maximal force required to
manually open the door is 150 N.

Security functions. The PAS is a critical system on a train because it ensures the safety of the
passengers. A PAS has several security functions.

(1) The doors must be closed and locked when the train is running to safely enclose the passengers
it is carrying.

(2) A train is not authorized to leave a station if any of its doors is not closed and locked.
(3) In the case of an emergency, the PAS must allow a manual opening for evacuation even if the

train is not connected to power.
(4) The PAS must not cut into the gauge while the train is running.

Secondary functions. The PAS has several secondary functions for the comfort of the passengers.

(1) The PAS must be waterproof to be resilient against meteorological phenomena such as heavy
rains or flood.

(2) The PAS must enable access to people of reduced mobility (e.g., wheelchair users) as part of the
normative obligation. To this end, a PAS may have a mobile footstep that deploys automatically
for reduced-mobility users. The doors and the footsteps are two separate subsystems that are
part of the PAS. The data collected from the PAS include the signals from both the doors and the
footsteps, stored in separate sets of variables.

Figure 3.2 depicts the components of a PAS. The opening of the door is triggered if the button (3)
is pressed or if the train stops at a station on a high platform. If there is a large gap between the train
an the platform, the footstep is deployed before the door opens. The closing of the door is commanded
by the train driver or automatically triggered when the internal timer of the PAS expires. The lights
(11) and (19) flash when the door is closing and the footstep is retreating. In the case of an emergency,
the doors can be manually opened by inserting a special key to the lock (4).

The PAS has two symmetric panels, on the left and on the right, that are swaying and sliding.
During the opening, the panels first move out of their position with an angle of 45° for 77.4 millimeters,
then they slide linearly along the body of the car for 722.6 millimeters. Figure 3.3) illustrates the
movement of one panel when the door opens, from a top-down view.

To open and close the PAS, the components in each door panel follows a fixed order of mechanical
movement. Figure 3.4 shows the order of movement when the door is opening, as it moves from
“mechanical stop (closing)” to “mechanical stop (opening)”. The reverse order applies for the closing.

Obstacles may obstruct the closing or opening of the doors. The PAS has a mechanism to detect
obstacles before closing or opening for safety reason.

• Detecting obstacles during the closing is realized by measuring the over-current of the motor.
– In case of a centralized closing commanded by the train driver, if an obstacle is detected,

the doors stop in their track for two seconds before attempting to close again. If an obstacle
is detected three times, a fault code2 is sent to the control network in the train as the door

2A fault code is a unique identifier assigned to one type of anomaly of the systems (unrelated to machinery degradation),
for example, when system fails to detect if a platform is accessible for wheelchair users, or when the door cannot be closed.
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Figure 3.2: Components of a PAS with a mobile footstep

Figure 3.3: The movement of the door panels during the opening

attempts to close at slow speed, given that the closing command is always maintained.
– In case of a slow or timed closing, if an obstacle is detected, the door reopens completely

and triggers a timer for the next closing attempt. If the number of obstacles is odd, the
timer is set to 90 seconds for a PAS without the mobile footstep and 180 seconds for one
with the footstep. Otherwise, the timer is 10 minutes for all PAS.

• Detecting obstacles during the opening is similar to the mechanism used for the centralized
closing. If an obstacle is detected, the door halts its opening, remains idle for 2 seconds, then
attempts to open again. The door renews its attempt until the third obstacle detection and stays
idle afterwards. It is possible to trigger the opening or closing again, but a fault code will be sent
to the control network in the train.

2.2 Data acquisition process

Each PAS has a Door Control Unit (DCU) that processes the commands sent by the central train net-
work and records the sensor signals in the form of binary files. In addition, each train has a computer
made specifically for condition-based maintenance purpose to collect the files generated by the DCU of
each PAS and transmit them to a processing server. The computer is powered by the train and cannot
function when the train is not connected to power.
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Figure 3.4: The mechanical movement of the door panels during an opening (blue ar-
rows) and a closing (orange arrows)

For transmission efficiency, the data are first sent to an intermediary server on the edge, then sent
to the final processing server (Figure 3.5). The transmission is scheduled to send a batch of all files
collected every two hours. In other words, there is a delay of at least two hours between the creation
time and the processing time of the data.

Figure 3.5: The files generated by the DCU on each PAS are sent to the onboard server
in the train, then transmitted to an offboard server for temporary storage, before being

sent to the final processing server for maintenance-related analysis.

The data acquisition starts when the train enters a station and all the PASs receive the opening
authorization command. Then, all the signals produced by the PASs are recorded until the doors are
completed closed and the train prepares to depart. The signals of one PAS are written and encoded into
one binary file, waiting for transmission. One file is generated by each PAS at each station (Figure 3.6).

Each file contains a time series with both analog and boolean variables. The most interesting
boolean variables are:
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Figure 3.6: Every time a train enters and leaves a station, each door generates one new
data file.

• whether an opening (or closing) command is sent to the PAS, which records the state of the
command throughout the entire opening (or closing),

• whether the limit switch has been activated,
• the state of the locking (whether the PAS is correctly locked and the train is allowed to leave).

There are over 60 boolean variables in one data file. Analog variables come from the electric motor
of the PAS and of the mobile footstep, including the position of the panels (Figure 3.3), the intensity
in the motor, and the voltage in the motor. There are six analog variables in total, among which three
record the signals from the door and three from the footstep. The analog variables are of type integer.

As long as a train remains in operation, the data are generated continuously by its PASs. Over time,
an entire fleet creates a stream of data in near real-time, in which each data unit is a binary file produced
by one PAS on one train at a given moment. On the stream, the files are organized in chronological
order by their creation time (the moment the file is created by the DCU). Therefore, online machine
learning appears suitable in this scenario.

3 Hypotheses

Given the data acquisition process of the PASs, we expect to receive as input a data stream of raw
sensor signals and to return as output maintenance alerts. The input stream contains the signals from
multiple PASs mixed together. The output should return one maintenance alert for one system.

At the time of writing, an expert system was developed and deployed in production for both the
PASs of R2N and NAT trains (one expert system for each type of train) [227–229, 233]. One fleet of
PASs forms one data set. We consider the expert system of each fleet the performance baseline for
each data set. The solution using online machine learning is expected to perform superior to, or at
least on-par with, the existing expert system on both fleets. In addition, online machine learning must
be competitive to its offline counterpart. Therefore, we will compare the performance of the expert
system (ES), offline learning methods (OF), and online learning methods (OL) on the data of the PASs
on the R2N and NAT fleets. Please bear in mind that when we compare OF to OL, the online and offline
algorithms share the same principle, but each is run differently if it is put in a batch setting (OF) or in
an online setting (OL). This is to enable a fair comparison between the two paradigms.

In the following subsections, we elaborate on the hypotheses on applying online machine learning
for implementing predictive maintenance on the PASs.
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3.1 Granularity

Since we have multiple PASs to monitor, the input stream mixes the signals from all the PASs, only
ordered by their creation time. Thus, it poses the question on the granularity of analysis.

3.1.1 Definition

The granularity of analysis is the level on which we analyze the data: on a fleet level or on an individual
level. The former analyzes the data from all the systems in the same pipeline, whereas the latter
analyzes the data of each system independently in its own pipeline.

Figure 3.7: Granularity of analysis on an individual level (Option 1) or on a fleet level
(Option 2).

We can also think of a third hybrid approach that performs the analysis on groups of systems. It
is possible that in the fleet, some systems are more closely related between them than to others. For
example, systems that are commissioned at approximately the same time, or systems that operate in
similar conditions (weather, terrains, and so on), should degrade similarly. The analysis results of the
groups can be aggregated to provide a global understanding of the fleet. To implement this approach,
a similarity metrics on the systems must be crafted and requires further investigation. We save this for
post-thesis future works.

3.1.2 Challenges

All PASs are manufactured identically but degrade differently, depending on their operational environ-
ment. There can be a large number of systems in a fleet. The fleet approach and individual approach
have their own strengths and weaknesses.

Fleet-level analysis On a fleet level, the individuality of a system is erased. Training a single
model on the data of multiple systems implies that we consider the fleet as an inseparable whole and
that there exists a set of common behaviors shared by all the PASs. Even if each PAS evolves differently,
it does not deviate largely from the shared behaviors identified from the fleet. As a consequence, the
particular evolution of one system can be shrouded by the patterns of the mass.

Individual-level analysis The individual approach creates one model for each system and
learns from the data of this system exclusively. Therefore, it regards each system on a finer granu-
larity and captures patterns that are specific to one system. However, it misses the information that
has been learned from other systems and must learn it again. For instance, a newly commissioned PAS
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encounters a problem, which is novel to it but was already identified from other PASs in operation, but
the new PAS does not have access to such information.

3.1.3 Hypothesis

Between the fleet-level approach and individual-level approach, we see that the former is a more viable
choice. A large number of systems makes the individual approach infeasible to scale. There can be
thousands of systems in a fleet, but maintaining thousands of models is inefficient. Furthermore, a
model learned on the data of uniquely one system risks to overfit and/or to learn incoherent patterns.
Consider a PAS that is defective from its commission and does not produce any “normal” data, the
model learned on this system’s data mistakenly views the patterns of defective state as normal and
does not issue any maintenance alerts, which only worsens the situation.

(𝐇𝐠) Fleet-level analysis produces more consistent results on the condition of systems and is
more efficient than individual-level analysis.

3.2 Cyclicity

Given the characteristics of the PAS, we expect the data to arrive in the form of files containing raw
sensor signals (Section 2.2). One file contains the signals from only one system. In each file, the signals
generated when the system performs different functions are mixed together. For example, the signals
when a PAS is opening and when it is closing are saved in the same file. Yet, a problem that occurs
during an opening phase differs from that during a closing phase. That is why we must separate
the signals of different functions prior to analysis. Thereafter, we refer to the duration during which
the system performs one function as a cycle. Informally, a cycle can be seen as the lowest common
denominator, or the smallest analysis unit, in the data of the systems.

3.2.1 Definition: cycles

Semantically, a cycle is a realization of a function of a system. Technically, a cycle is a segment of
signals created when the system is performing one function, which is also a time series. If multiple
variables are collected simultaneously, a cycle is a multivariate time series; otherwise, it is a univariate
time series. For the PASs, we are dealing with multivariate time series. Railway systems have cyclic
behavior because a system in the railway is designed to repeatedly perform a set of intended func-
tions. Consequently, a cycle is a time series whose motif appears frequently in the input data stream.
Figure 3.8 illustrates an example of one input file generated by a PAS. Two cycles (colored lines) are
extracted from the raw signals (gray, dotted lines). The first cycle is an opening cycle of the PAS and
is labeled “op”3. The second one is a closing cycle and is labeled “fp”4.

Because the cycles record the behaviors of a system in operation, they carry the information of the
system’s condition and are the ingredient of analysis. The foremost tasks are (i) to extract from the
data stream any segment that forms a cycle, and (ii) to associate an extracted cycle to a corresponding
function (closing or opening in the case of the PASs). We refer to (i) as cycle detection and to (ii) as cycle
identification. Together, the two tasks constitute cycle extraction.

3“op” is short for“ouverture porte”, translated to “door opening” in English.
4“fp” is short for “fermeture porte”, translated to “door closing” in English.
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Figure 3.8: Example of two cycles (colored lines) extracted from an input file

3.2.2 Challenges

To extract cycles from a data stream using expert systems or offline learning, the common practice
is to collect a batch of data from the stream, then train a model on this batch. This process must be
repeated if the model is to be modified. The challenges associated to cycle extraction on a data stream
are threefold.

Challenge C.1 Collecting data followed by model training incurs a delay, starting from the arrival
of the first cycle until model validation, during which no cycles are returned.

Challenge C.2 There is no labels about cycles from the stream: we do not know in advance the
shapes of expected cycles, nor the list of functions of a system, nor how to map a cycle to a function.
Without labels, it is difficult to use supervised learning methods.

Challenge C.3 Changes can occur and modify the cycles. Cycles of rare shape that are not in-
cluded in the training set may appear only after a while. Existing cycles may have their shape changed:
if the systems are functionally modified, the generated cycles are also impacted and no longer corre-
spond to those that have been learned by the model.

3.2.3 Hypotheses

Considering the aforementioned challenges, we formulate the hypotheses to address cycle extraction
on the data stream generated by the fleet of PASs.

Reactivity To address the challenge C.1, we make use of online learning algorithms. These al-
gorithms learn continuously and incrementally. They are able to adapt their parameters on-the-fly
on incoming data examples, and their learning process never stops. As a result, an online algorithm
can start extracting cycles from the first input signals on the stream. Nevertheless, it will have un-
stable performance until it reaches convergence, that is, it has received enough data to perform well.
Meanwhile, offline learning does not return anything until the training process finishes.

(𝐇𝟏𝐜) Using online learning to learn to extract cycles has a higher reactivity than using offline
learning.

We measure the reactivity of an algorithm by the time from the reception of the first data example
until the time the algorithm reaches a stable performance. We do not include the expert systems in
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this hypothesis because an expert system performs modeling instead of learning. An expert system
can take more than two months to be validated, but it is readily usable after its validation.

Accuracy To address the challenges C.2 and C.3, we implement human-in-the-loop online learning.
In other words, a human participates in the learning process and returns feedback to any query issued
by the online algorithm. Such feedback becomes the labels that enrich the knowledge of the algorithm
about the cycle shapes and types. Any novel cycle types that were not previously seen by the model
are sent to the human as query. Therefore, the online model does not run into the risk of failing
to recognize unknown cycles, making it robust against dynamic changes on the stream. In contrast,
offline learning and expert systems are static and cannot change unless manual modification is made.

(𝐇𝟐𝐂) Online learning that enables model update via human feedback performs superior to,
or on-par with, a static expert system in accuracy.

To evaluate the accuracy of online learning, we compare it to the baseline performance of the
expert system. To measure accuracy, we consider both the correctness of cycle detection and cycle
identification by counting the number of correctly detected and identified cycles for each approach
(online learning versus expert system).

3.3 Features

The cycles are the main ingredient of the analysis, because they reflect the underlying condition of a
system when it performs its functions. By nature, a cycle is a time series. Although time series analysis
is an established research field, element-wise comparison between time series remains computationally
expensive, because we must compare the data across both the timesteps and variables. The cycles can
be of different length as well, since the duration of the same function may vary. Processing variable-
length series induces additional complexity.

Let us consider an example of computing the Euclidean distance. The time complexity of computing
the Euclidean distance between two vectors of 𝐾 elements is 𝑂(𝐾). Meanwhile, the Euclidean distance
between two time series of 𝐾 timesteps and 𝐷 variables is the average of the Euclidean distances
between each univariate series, and the complexity is thus 𝑂(𝐾𝐷) that increases with the number of
variables 𝐷 collected in each cycle. This applies to space complexity as well.

Meanwhile, we can collapse a time series to a vector of indicators. Such transformation has several
advantages: it compresses the series to a more compact form to accelerate the computation, it benefits
from vectorial optimization offered bymany programming libraries, it maintains sufficient information
of the original cycle by means of summary indicators. Hence, transforming a cycle to a vector of
indicators, also called feature vector, is beneficial to the ensuing analysis.

3.3.1 Definition: features and feature vectors

A feature is a statistic extracted from a cycle, for instance, the cycle length, the mean value, the number
of peaks, and so on. A feature vector comprises a number of features and corresponds to uniquely one
cycle. In other words, a feature vector is another representation of a cycle. All feature vectors have the
same number of elements.

To extract features from a cycle, an expert system relies on domain expertise to identify features
relevant to the working condition of the systems, examples of which are the area under the curve, the
duration of various phases in the cycle, the mean values in each phase, et cetera. This is the basis of
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Figure 3.9: Transforming a cycle to a feature vector (“op” = door opening)

feature engineering. Different from feature engineering, feature learning, which is applicable to both
online learning and offline learning, learns the features from the cycles, either by determining a direct
mapping from the cycle space to the feature space, or by estimating the latent distribution that best
describes the original cycle space. Feature learning is especially useful if one does not have access to
domain expertise to identify important features.

3.3.2 Challenges

We identify four challenges for extracting features from cycles.

Challenge F.1 We do not know which features are important to extract. The set of extracted
features may be incomplete and lacks important features, or it can be overcomplete and contains re-
dundant features. Moreover, existing features may lose or gain relevance over time, known as feature
evolution [81].

Challenge F.2 Contextual noises affect the quality of the features. A system always operates
within a context, which encompasses every factor that surrounds the system, such as environmental
conditions, current workload, or curvature of the station. A context may make a normal cycle appear
abnormal, or vice-versa.

Challenge F.3 If offline learning or expert systems are used, sufficient data must be collected to
train a model. Data collection and model validation both incur delay.

Challenge F.4 Information loss is inevitable, as we embed data from higher dimension (time se-
ries) to a lower dimension (vectors). It is crucial to minimize information loss.

3.3.3 Hypotheses

Considering the aforementioned challenges, we formulate the hypotheses to address feature learning
on the stream of cycles generated by the cycle extraction task.

Accuracy The challenges F.1 and F.2 concern the learning capacity of the model. The priority is
thus to prove that a feature learning algorithm is able to learn features that are representative and
robust against noises. Because feature learning is an unsupervised task and human feedback is not
straightforward to collect and use in this scenario, we will employ the same algorithm to learn features
offline and online, with some adaptation to make the algorithm offline-compatible. The following
hypothesis only concerns the learning algorithms and exclude the expert system.
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(𝐇𝟏𝐟 ) Online feature learning performs superior to, or at least on part with, offline feature
learning in terms of accuracy.

Accurate features are those that summarize well the original cycles. The question is to quantify
the extent of how well the features represent the cycles. Usually, the performance of feature learning
is assessed via a downstream task. For example, given a classification task, we compare the predictions
issued by a model trained with the original data to those by a model trained with the learned features.
If the latter outperforms the former, it means the features are well learned. But because we do not
have labeled data, we evaluate the feature quality by performing a cycle-feature ranking. Intuitively,
if the features accurately summarize the cycles, anomalous cycles should yield anomalous features. If
the top k anomalous features correspond to the top k anomalous cycles, it means the feature learning
algorithm attains a high accuracy.

Reactivity The challenge F.3 is linked to the reactivity of a model: when themodel is ready to issue
usable features. Offline learning and expert systems must wait for data collection and model validation
before deployment, while online learning is ready to return features from the first few examples but
its performance fluctuates until it has reached convergence. Even if that is the case, we want to prove
that an online model converges to a stable performance faster than an offline model. We exclude the
expert system from this hypothesis for the same reason as explained in Section 3.2.3.

(𝐇𝟐𝐟 ) Online feature learning is more reactive than offline feature learning.

The reactivity of a model is measured by the time from the arrival of the first cycle to the time the
model can return features accurately (convergence).

Information loss To tackle the challenge F.4, we must show that feature learning results in less
information loss than feature engineering. Because feature learning leverages all information it can
mine from the data, it has a lower risk to miss out features. Once we have compared online feature
learning to offline feature learning (𝐇𝟏𝐟 ), we compare it to an expert system.

(𝐇𝟑𝐟 ) Feature learning results in better information preservation than feature engineering.

The extent of information loss can be assessed by the accuracy of the features, as described previ-
ously, or by reconstructing the original cycles if the feature learning algorithm allows so.

3.4 Health

The feature vectors extracted from the stream of cycles form a stream of feature vectors. This stream
is the input of the analysis to unveil the health of the monitored systems.

3.4.1 Definition: system health

Inspired by the literal definition of “health”[189], we define the health of a system its extent of being
free from anomaly. Originally, the health is understood as a state [189], but we stress on the term
“extent” because we want to quantify the system health: instead of simply being normal or degraded,
the system health should be more nuanced to be located on the spectrum from normal to faulty, e.g.,
normal, somewhat normal, somewhat degraded, severely degraded, et cetera.
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Then, we define anomaly as any deviation from what is normal. From the hypothesis of fleet-level
granularity (Section 3.1), the normal health is observed from the majority of the fleet, because in the
railway, we strive to maintain the systems in such a way that a large part of the fleet is functional to
ensure minimum operational service. Only a small fraction of the systems is tolerated to be anomalous
at any give time. Furthermore, because the PASs are designed to work in a unique nominal state, the
normal health is uniquely defined.

Beside a health score that is attributed to one system at a time, we seek to discover the health pro-
files of the fleet. A health profile is an envelope of characteristics of the systems in the same condition,
such that the data in one health profile are more similar to each other than to those in different pro-
files. Intuitively, we can regard one health profile as one cluster that groups the data generated by the
systems impacted by a particular anomaly. Because the normal health is uniquely defined, there exists
one unique normal health profile that is the reference profile. A health profile is defined by the data
from multiple systems in the fleet, and it changes if the systems undergo a functional modification.
One fleet has a finite number of health profiles. Figure 3.10 illustrates an example, where the data that
are around the mean of the feature distribution (in green) constitute the reference cluster, and those
that fall out of the normal range form anomalous health profiles.

Figure 3.10: Example of health profiles captured from the data [229]

Intuitively, the health of a system is computed from the health profiles into which the system
generates data. As a result, accurate discovery of health profiles is crucial as it is the basis to compute
the system health.

3.4.2 Challenges

We distinguish two challenges related to estimating the health of a system, one linked to discovering
the health profiles of the fleet and the other linked to computing the system health.

Challenge H.1 The health profiles of the fleet must be discovered automatically without domain
knowledge. Any evolution of the health profiles on the stream must be detected in a timely manner to
ensure an accurate assessment of the system health.

Challenge H.2 Given the set of discovered health profiles, the health of a system must be com-
putable at any given moment while taking into account all the profiles, under the influence of which
the system currently is. Also, the system health must be computed efficiently to avoid expensive re-
computation and to enable real-time health monitoring.
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3.4.3 Hypotheses

We formulate the hypotheses to address the aforementioned challenges.

Accuracy First and foremost, we focus on the capacity of the model to accurately discover the
health profiles and identify the health of a system at any give moment.

Accuracy of the health profiles The health profiles are the basis on which we compute the
health score of any system at any time. Due to the lack of labels and a priori knowledge, we use
clustering as an unsupervised method to distinguish different profiles of the fleet. This hypothesis
addresses partly the challenge H.1.

(𝐇𝟏𝐝) The clusters represent the health profiles of the fleet.

As the expert system does not find the health profiles but creates clusters on the systems (one data
point is one PAS), we do not compare our clusters to those of the expert system. Instead, the accuracy
of the health profiles in the form of clusters will be validated by a domain expert.

Accuracy of the health score Given the set of health profiles learned from all systems in the fleet,
the health of an individual system is computed from the amount of data it creates in each health profile.
It implies that the health of a system may be impacted by multiple health profiles simultaneously. This
is consistent with the reality that a system may be impacted by multiple anomalies at the same time.
This hypothesis addresses partly the challenge H.2.

(𝐇𝟐𝐝) Computing the health score by considering the data a system creates in the health
profiles results in an accurate health detection, within an observable perimeter from the
data.

Currently, we do not have a ground-truth against which we can assess the precision of the resulting
health scores, therefore we rely on the quality of the health profiles as clusters to deduce whether the
health scores are correctly estimated.

Reactivity Clustering can be done online or offline. As the input is a stream of feature vectors, we
employ online clustering to build the health profiles incrementally from a continuous stream of data
to address the challenge H.1. In contrast, offline clustering does not work on incoming data. It must
wait for a sufficient volume of data before building the health profiles.

(𝐇𝟑𝐝) Online clustering reaches convergence earlier than offline clustering, if no drift occurs.

In this context, convergence is themomentwhen the clusters become stable (not undergoing drastic
changes in the absence of drifts) and reflect the underlying physics of the PASs. Reactivity is measured
via the time elapsed from the reception of the first feature vector to the moment of convergence.

Continuity An advantage of online clustering is that it maintains the continuity of the cluster
evolution, such that a cluster at a time 𝑡 is preceded by a cluster at a time 𝑡 − 1, unless it is a newly
created cluster. Online clustering allows us to monitor the evolution of the clusters, and thus of the
health profiles. As a result, the evolution of any system’s health scores can also be continuously mon-
itored, by tracking the amount of data that a system generates in the evolving profiles. Meanwhile,
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offline clustering must be rerun on each new batch of data. The clusters between two offline runs are
completely disconnected from each other: any connection between two “snapshots” of health profiles
is lost and/or requires a complicated mapping to link them together.

(𝐇𝟒𝐝) Online clustering keeps track of the temporal evolution of the health profiles via cluster
updates, while offline clustering cannot.

This hypothesis addresses both the challenges H.1 and H.2. To validate it, we will evaluate the qual-
ity of the clusters maintained online on the data stream and those obtained with an offline clustering
algorithm on small batches of data.

3.5 An industrial solution for predictive maintenance on data streams

We have introduced cyclicity, features, and health as the building blocks of this research. The imple-
mentation of the hypotheses elaborated in the previous sections will result in a solution that enables a
continuous monitoring of the health of the systems on a stream of sensor signals. Hence, a byproduct
industrial outcome of this thesis is an end-to-end, modular pipeline for processing a sensor data stream
for the purpose of machinery maintenance. Figure 3.11 shows the pipeline and its four modules.

Figure 3.11: The end-to-end pipeline that functions on the basis of online machine
learning

Our pipeline is inspired by the OSA-CBM standard that is the de facto standard for condition-based
maintenance [158]. It proposes a modular architecture for implementing necessary functionalities
in a condition-based maintenance framework: data acquisition, data manipulation, state detection,
diagnostics, prognostics, advisory generation, and presentation (Section 3.1). Our solution covers four
of the seven OSA-CBM modules: data manipulation, state detection, diagnostics, and prognostics. We
omit data acquisition, advisory generation, and presentation, because of the following reasons.

• We focus solely on analyzing the data that are provided to us. Installation and sensor manage-
ment are the responsibility of the data providers.

• Recommending optimal maintenance actions is a complex planning and optimization task, and
goes beyond the scope of this thesis.

• Presenting and visualizing the analysis results are a matter of UX/UI design. We will only output
maintenance alerts.

The modules Cycle extraction and Feature learning preprocess raw sensor data (Data manipula-
tion). The module Health detection combines both State detection and Health assessment to detect and
identify anomalies. The module Prognostics predicts failures by estimating the remaining useful life
(Prognostics assessment). Table 3.1 explains how our modules map to the blocks of OSA-CBM.

Let  = { 𝑆1, ..., 𝑆𝑀 } be the fleet of 𝑀 systems subject to maintenance. We denote 𝐷(𝑇 ) the input
stream containing all the data from any system 𝑆𝑚 ∈  received thus far, from 𝑡 = 1 to 𝑡 = 𝑇 , in
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Our pipeline OSA-CBM

Cycle extraction Data manipulation
Feature learning

Health detection State detection
Health assessment

Prognostics Prognostics assessment

Table 3.1: Matching our modules to the blocks of OSA-CBM

chronological order. 𝐷(𝑇 ) can be seen as a snapshot of all the data that have been generated from the
beginning of the stream until 𝑡 = 𝑇 . Beside the input stream 𝐷(𝑇 ) containing the data generated as is
by the fleet, the input-output flow between the modules also constitutes a stream by itself. Therefore,
we redefine 𝐷(𝑇 ) at each stage to fit it to the tasks encapsulated by the module.

The following sections describe the task of each module.

3.5.1 Cycle extraction

The module Cycle extraction performs cycle detection and cycle identification, as described in Section
3.2. It works on a stream of raw sensor signals in the form of data files5. Each file contains the signals
generated by one PAS when it was performing its function.

We denote𝐶𝑇𝑆𝑚 a cycle generated by a system 𝑆𝑚 ∈  at a time 𝑇 . One ormultiple cycles can be found
in one data file from the stream 𝐷(𝑇 ). There may also be no cycle at all, due to data acquisition errors.
Because multiple systems function simultaneously, there can be many cycles at the same timestamp 𝑇 ,
but the identifier of any system 𝑆𝑚 suffices to uniquely identify the cycles.

We define the input stream 𝐷𝐶𝐸(𝑇 ) to the module Cycle extraction as a sequence of time series 𝐹 𝑡𝑆𝑚
read from a file that has variable length and a fixed number of variables 𝐷. The length of 𝐹 𝑡𝑆𝑚 depends
on how long the system took to complete writing a file.

𝐷𝐶𝐸(𝑇 ) = (𝐹 𝑡𝑆𝑚 ∣ 𝑆𝑚 ∈  , 1 ⩽ 𝑡 ⩽ 𝑇 , 𝐹
𝑡
𝑆𝑚 = [a

(1), … , a(𝑁 )] where a
(𝑛) ∈ ℝ𝐷)

3.5.2 Feature learning

The module Feature learning receives a stream of cycles 𝐷𝐹𝐿(𝑇 ) and transforms each cycle 𝐶𝑇𝑆𝑚 to a
feature vector 𝑋 𝑇𝑆𝑚 (Section 3.3). We define the input stream 𝐷𝐹𝐿(𝑇 ) to the module Feature learning as
a sequence of cycles created by the the fleet  , ordered by their creation time, and each cycle is a small
time series.

𝐷𝐹𝐿(𝑇 ) = (𝐶𝑡𝑆𝑚 ∣ 𝑆𝑚 ∈  , 1 ⩽ 𝑡 ⩽ 𝑇 , 𝐶
𝑡
𝑆𝑚 = [a

(1), … , a(𝐾)] where a
(𝑘) ∈ ℝ𝐷)

For each cycle 𝐶𝑇𝑆𝑚 of 𝐾 timesteps6 and𝐷 variables, its feature vector𝑋 𝑇𝑆𝑚 has 𝑃 elements (𝑋 𝑇𝑆𝑚 ∈ ℝ
𝑃 )

such that 𝑃 ≪ 𝐾 × 𝐷.
5The files are usually encoded to a binary format to enable efficient transmission. The decoder must be supplied to us by

the data provider to transform the files to a comprehensible content.
6The number of timesteps varies across cycles.
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3.5.3 Health detection

The module Health detection monitors the health of the systems, keeps track of the evolution of any
anomaly manifesting in the systems, and quantifies the deviation of the systems from an expected
health profile. It learns and updates the health profiles from a stream of feature vectors 𝐷𝐻𝐷(𝑇 ), and
recomputes the health scores of the systems continuously.

We define the input stream𝐷𝐻𝐷(𝑇 ) to themoduleHealth detection as an sequence of feature vectors
produced by the systems in  in chronological order, that is:

𝐷𝐻𝐷(𝑇 ) = (𝑋 𝑡𝑆𝑚 ∣ 𝑆𝑚 ∈  , 1 ⩽ 𝑡 ⩽ 𝑇 , 𝑋
𝑡
𝑆𝑚 ∈ ℝ

𝑃)

We denote 𝐻𝑆𝑚(𝑇 ) the health score of the system 𝑆𝑚 computed at the moment 𝑇 .

3.5.4 Prognostics

The module Prognostics estimates the time until the next failure of a system, which is by definition
its remaining useful life (RUL). However, it is not common to leave a system operate until it fails, thus
we may not have the exact moment of a system’s definite failure. Therefore, we loosen the goal and
instead, aim to predict the next time the system encounters an anomaly that may lead to a failure.

This module receives a stream of health scores 𝐷𝑃𝐺(𝑇 ) as input, defined in the following:

𝐷𝑃𝐺(𝑇 ) = (𝐻𝑆𝑚(𝑡) ∣ 𝑆𝑚 ∈  , 1 ⩽ 𝑡 ⩽ 𝑇 , 0 ⩽ 𝐻𝑆𝑚(𝑡) ⩽ 1)

We denote 𝑅𝑈𝐿𝑇𝑆𝑚 the remaining useful life of the system 𝑆𝑚 at the moment 𝑇 . The value 𝑅𝑈𝐿𝑇𝑆𝑚 is
part of the maintenance alert 𝐴𝐿𝑆𝑚(𝑇 ) sent to the maintenance technicians. An alert 𝐴𝐿𝑆𝑚(𝑇 ) is created
for each system 𝑆𝑚 at a time 𝑇 and contains additional information such as the health scores as a curve
and the anomalies manifesting in 𝑆𝑚 until 𝑇 .

4 Conclusion

This thesis investigates the applicability of online learning for railway predictive maintenance. We
perform a study case on the passenger access systems on the fleets of R2N and NAT trains, managed
by SNCF. We schematize our following hypotheses by dividing them into four building blocks linked
to the characteristics of the PASs: granularity, cyclicity, features, and health (Figure 3.12).

Granularity concerns the level at which we analyze the data from the systems in a fleet. This block
has one hypothesis:

(𝐇𝐠) Fleet-level analysis produces more consistent results on the condition of systems and
is more efficient than individual-level analysis.

Cyclicity is due to the cyclic behavior of railway complex systems that produce repeating patterns.
These patterns describe the behavior of a system when it performs a function and as such reflect its
underlying health. The cyclicity block has two hypotheses:
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Figure 3.12: List of all hypotheses, organized in four main blocks: granularity, cyclicity,
features, health

(𝐇𝟏𝐜) Using online learning to learn to extract cycles has a higher reactivity than using offline
learning.

(𝐇𝟐𝐜) Online learning that enables model update via human feedback performs superior to,
or on-par with, a static expert system in accuracy.

Once the cycles are extracted from the sensor data stream, a feature vector must be extracted from
each cycle to compress the cycle while retaining relevant information. The features block has three
hypotheses:

(𝐇𝟏𝐟 ) Online feature learning performs superior to, or at least on part with, offline feature
learning in terms of accuracy.

(𝐇𝟐𝐟 ) Online feature learning is more reactive than offline feature learning.
(𝐇𝟑𝐟 ) Feature learning results in better information preservation than feature engineering.

Finally, the health of each system is estimated from the stream of feature vectors. To calculate the
system health, a set of health profiles must first be discovered from the stream in the form of clusters.
We formulate four hypotheses for this block.
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(𝐇𝟏𝐝) The clusters represent the health profiles of the fleet.
(𝐇𝟐𝐝) Computing the health score by considering the data a system creates in the health

profiles results in an accurate health detection, within an observable perimeter from
the data.

(𝐇𝟑𝐝) Online clustering reaches convergence earlier than offline clustering, if no drift occurs.
(𝐇𝟒𝐝) Online clustering keeps track of the temporal evolution of the health profiles via clus-

ter updates, while offline clustering cannot.

Given the industrial need accommodating this thesis, validating the hypotheses will result in an
end-to-end processing pipeline of four modules: Cycle extraction, Feature learning, Health detection,
and Prognostics.
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Cycle extraction
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Summary

Systems with cyclic behavior generates repeating cycles on the stream of sensor signals.
The cycles reflect the condition of a system andmust be correctly extracted. Yet, the stream is
unannotated: no information about the shape of cycles nor their type is available beforehand.
We propose an active learning-based algorithm called Interactive Cycle Extraction (InterCE)
that learns to extract cycles by querying a domain expert when necessary and uses such
feedback for self-improvement. InterCE addresses the hypotheses 𝐻 1𝑐 and 𝐻 2𝑐 .

The experimental results show that InterCE achieves an accuracy superior to that of
the expert system. Its reactivity is competitive to its offline counterpart. As for efficiency,
InterCE is able to process one file per second, and its querying strategy succeeds to limit the
number of queries to less than 0.1% over the total number of files.
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1 Introduction

In the railway, most systems have cyclic behavior. A system is designed to perform one or more
functions repeatedly during its lifetime. The realization of one function constitutes a cycle that repeats
over time as the system continues to perform such function. For instance, a PAS opens and closes,
performing the opening cycles and closing cycles.

If a system is equippedwith sensors, the onboard sensors record the signalsmeasured on the system
continuously or periodically, creating a stream of sensor data. Because a system has a cyclic behavior,
repetitive patterns exist on the stream as cycles. As an example, Figure 4.1 shows the raw data from
an input file. We see the same pattern repeating many times. The occurrences of this pattern are the
cycles we want to extract.

Figure 4.1: Many occurrences of the same pattern appear in this input. Each occurrence
is a cycle to be extracted and labeled.

The behavior of a system in operation affects the shape of the cycles it creates. Therefore, the
cycles shed a light on the condition of a system and must be extracted accurately because they are the
primary ingredient of the analysis.

One solution is to define a set of fixed rules that identify the boundary of the cycles based on domain
knowledge [226]. However, these rules do not adapt to changes in the data. For example, a system
may have undergone an update that changes its functionality and alters its cycles. Consequently, the
expert must revise the rules and/or redefine them. Furthermore, there may be cycles whose shape is
unknown to the expert, possibly due to an unexpected event occurring in the systems. If the static rules
cannot catch these unexpected cycles, a fault may be undetected, which leads to undesired problems
and inefficient maintenance. Therefore, we devise a framework that learns to extract the cycles and to
identify their function (e.g., assigning a label “opening” to an opening cycle), such that this algorithm
starts learning from scratch and adapts itself to changes in the data.

Nonetheless, the model cannot learn to detect and label cycles by itself at the beginning, because
the sensor stream is unannotated with cycle information. Although identifying the boundary of a
cycle is possible via unsupervised techniques, labeling a cycle according to its function is impossible
without prior knowledge. That is why the input from the domain experts is indispensable to give the
framework some labeled examples to learn from.

As a result, we develop the framework Interactive Cycle Extraction (InterCE) to extract cycles from
an unlabeled stream using an active learning approach [201]. When the first inputs arrive, InterCE
does not have any information about the task, so it issues queries to a human (a domain expert) to ask
for guidance. Once the human sends their feedback, InterCE updates its understanding of the task and
learns to extract and label the cycles on its own.
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The hypotheses to be validated for this task are:

(𝐇𝟏𝐜) Using online learning to learn to extract cycles has a higher reactivity than using offline
learning.

(𝐇𝟐𝐜) Online learning that enables model update via human feedback performs superior to, or on-
par with, a static expert system in accuracy.

Besides reactivity and accuracy, efficiency is a key criterion to handle the volume and speed of the
stream. We assess the efficiency of InterCE via its processing time and the number of queries issued.

We evaluated InterCE on the data sets from two fleets of PASs described in 2. The results show
that InterCE improves substantially the baseline performance of the expert system. The reactivity of
InterCE is not superior to its offline counterpart but remains competitive. InterCE processes in average
one input file per second, and the querying strategy allows InterCE to reduce the number of queries
sent to the human: in both data sets, InterCE reaches a query ratio less than 1% over 100000 data files.

This chapter is organized as follows. Section 2 reviews the techniques usable for detecting repeating
patterns in a time series. Section 3 describes InterCE. Section 4 dives into the experimental evaluation
of InterCE on the sensor data from the PASs on the R2N and NAT fleets. Finally, Section 5 concludes
the works done for the module Cycle extraction.

2 State of the art

Translated to data, a cycle is a subsequence of signals that reoccurs on the stream. The number of cycle
types1 depend on the number of functions a system performs, but a cycle has only one type. Cycles of
the same type may vary slightly but should share a closely similar shape and value range.

Cycle detection consists of detecting the boundary of a cycle from raw data, while cycle identifica-
tion maps an extracted cycle to the string describing the associated function. Cycle extraction consists
of cycle detection followed by cycle identification. Applicable techniques for cycle extraction are re-
lated to time series analysis, because a cycle per se is a time series. The techniques we studied for this
task are change point detection, motif discovery, and discretization.

2.1 Change point detection

Change points are sudden changes in time series data [14] and can be individual points or subsequences
between two windows (Figure 4.2). Change point detection (CPD) is the task of finding such changes.

Figure 4.2: Pink lines indicate states whose boundaries are change points [14]

1We also refer to the type of a cycle as its class or label.
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CPD can be online or offline. Online CPD detects changes on-the-fly on newly arriving data, thus
being more reactive. Offline CPD receives the entire batch of data and identifies whether a change has
occurred and at what position in the data [14].

Machine learning for CPD can be supervised or unsupervised. Supervised CPD learns a multiclass
classifier that assigns a state label to each subsequence, or a binary classifier that gives a binary label to
each subsequence: state-transition or within-state sequences [51, 57, 70]. Unsupervised CPD does not
require prior training, and some examples are likelihood ratio [145], Gaussian and Bayesian processes
[2], kernel-based methods [38], or comparison of the underlying distributions between consecutive
subsequences [124].

A representative algorithm for CPD is Prune Exact Linear Time (PELT) [124]. PELT finds change
points that optimize the following cost function:

𝑚+1
∑
𝑖=1

 (𝑦(𝜏𝑖−1+1∶𝜏𝑖)) + 𝛽𝑓 (𝑚) (4.1)

where 𝑦 is the time series of 𝑛 points, 𝑚 the number of change points, 𝜏𝑖 the 𝑖𝑡ℎ change point,
(𝑦(𝜏𝑖−1+1∶𝜏𝑖)) the cost of one segment from 𝑦𝜏𝑖−1+1 to 𝑦𝜏𝑖 , and 𝛽𝑓 (𝑚) a penalty term to avoid overfitting.
Killick, Fearnhead, and Eckley [124] use optimal partitioning to search for the optimal values of 𝜏∗ that
minimizes (4.1) combined with a dynamic pruning scheme to eliminate candidate values of 𝜏∗ that can
never be the optima. It gives an exact solution with a computational cost linear to 𝑛.

2.2 Motif discovery

Torkamani and Lohweg [223] definemotif discovery as the task to “find frequent unknown patterns in
a time series without any prior information about their locations or shapes”. Figure 4.3 illustrates the
case where two motifs are found from a telemetry stream. Motif discovery appears suitable for cycle
extraction because it can detect repetitive patterns from an input time series.

Figure 4.3: Two motifs in red and blue found in a steam flow telemetry [223].

Matrix profile [244] is a prominent research direction for motif discovery, with a growing research
body since 2016 and implementations in different programming languages2. A matrix profile 𝑀𝑃 is
a vector computed from a time series 𝑇 such that each element 𝑀𝑃 𝑖 stores the Euclidean distance
between the subsequence 𝑇𝑖,𝑚, starting at the timestamp 𝑖 of length 𝑚, to its nearest neighbor 𝑇𝑗 ,𝑚. To
facilitate nearest neighbor retrieval, a matrix profile is accompanied by a matrix profile index 𝐼 such
that 𝐼𝑖 = 𝑗 means that the nearest neighbor to the subsequence 𝑇𝑖,𝑚 is is 𝑇𝑗 ,𝑚.

2https://matrixprofile.org

https://matrixprofile.org
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Figure 4.4 shows how a matrix profile 𝑃 is computed on a time series 𝑇 for a query 𝑄, via an
intermediate computation of the distance profile 𝐷. The distance profile is a vector on a query 𝑄 of
length 𝑚 that stores, for each element, the Euclidean distance between 𝑄 to all the subsequences of
length 𝑚 in 𝑇 . The motifs that are most similar to 𝑄 is the ones whose element in the matrix profile
has the lowest value.

Figure 4.4: An example of the distance profile and the matrix profile [244]

To use matrix profile for cycle extraction, we need to determine the desired length of the cycles.
However, one matrix profile is computed specifically for one query (one subsequence), but at the be-
ginning we do not have any example of the cycles we wish to extract. Two solutions arise: (i) we ask
an expert to extract one example cycle from an input and use it as the query to compute the matrix
profile, or (ii) given a desired length, we compute the matrix profile for all subsequences of such length
from the input data, then manually examine the resulting motifs to pick the correct cycles.

2.3 Discretization

Discretization is a task that finds a symbolic representation of a time series [144]. Discretization col-
lapses continuous values in the input series and returns a simpler series with symbolic values that
distinguish segments of different characteristics. Discretization is somewhat related to change point
detection. For cycle extraction, discretization may return a representation that makes a cycle clearly
stand out from the input data.

There are three approaches to time series discretization [121]:

• Sliding window: A segment is grown until it crosses an error bound. Algorithms of this type are
simple, intuitive, and online-compatible.

• Top-down: The input series is recursively partitioned until the stopping criteria are met. Real
data with noise may results in overly fragmented segments. These algorithms cannot run online.

• Bottom-up: Small segments are merged until the stopping criteria are met. Like top-down algo-
rithms, bottom-up algorithms cannot run online.

SAX [144] is a classic algorithm for segmenting time series. SAX transforms a time series to a
discrete sequence of letters such that the lower bound of the distance measure is guaranteed in both
the original and symbolic spaces. SAX first uses Piecewise Aggregate Approximation (PAA) trans-
formation [120] to reduce the dimensionality of the series, then assigns symbolic letters to the PAA
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Figure 4.5: The PAA representation of a time series mapped into symbolic letters by
the SAX algorithm [144]

representation based on breakpoints to ensure a high equiprobability of symbols within a SAX word
(Figure 4.5).

2.4 Preliminary results

Having studied available approaches in the literature, we experimentwith one representative algorithm
of each category to see which approaches are the most suitable for InterCE. The algorithms chosen for
the test are PELT [124] (change point detection), matrix profile [244] (motif discovery), and SAX [144]
(discretization). We test each method on an example of data, displayed in Figure 4.6.

Figure 4.6: The signals in one input with multiple cycles (dotted lines = boundary of
desired cycles)

The following subsections show the preliminary results obtained with PELT, matrix profile, and
SAX on this example data.

2.4.1 Change point detection with PELT

We use the implementation of PELT from the ruptures library [224]. We test different values of
penalty and finally obtain a good extraction on a penalty of 20 (Figure 4.7). Nevertheless, PELTmisiden-
tifies the last cycle by dividing it into two smaller cycles. Increasing the penalty onlyworsens the result.
The penalty is thus a substantial hyperparameter to fine-tune.

Change point detection is intuitive for tackling cycle extraction because it is straightforward to
apply and does not require to post-process the results to obtain the cycles.

2.4.2 Matrix profile

Matrix profile is a powerful tool to discover motifs or anomalies from time series data, but using it to
detect multiple occurrences of the same motif is not so simple. Because the matrix profile stores only
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Figure 4.7: The change points detected by PELT on different penalties

the distance between one subsequence and its nearest neighbor, we can only detect two occurrences
of a cycle at most.

We use the matrix profile implemented in the Python package MPA [29]. The window size decides
largely the shape of the cycles. Setting the window size requires a good understanding of the systems
because different functions of the systems do not last for the same duration. Even if the window size is
set to the exact duration, the matrix profile does not guarantee an accurate extraction: it may recognize
that a smaller motif exists in a big motif instead of finding the correct cycle shape we want to identify
(Figure 4.8). We use various window sizes to try to capture the cycles where the Var 3 has an ascending
trend, but the matrix profile fails to find them.

Another drawback is that the matrix profile works only on univariate time series, while cycles are
multivariate time series. One matrix profile produces one extraction result for one variable in the raw
signals. Therefore, it requires a post-processing that aggregates individual extractions, which is not a
simple task to automate.

2.4.3 Discretization with SAX

We use the implementation of SAX in the pyts package [66]. Figure 4.9 shows the SAX representation
for each variable in the input data. The dots indicate the symbol chosen by SAX to represent a signal
value at one timestep. The raw signals are the faded lines. SAX does not recognize any separate
segments in Variable 1, as it is highly noisy. Meanwhile, SAX does recognize several segments in
Variable 2 and Variable 3. A long segment indicates a potential cycle while a short one is a transition
period. The long segments in Variable 2 correspond to the cycles we want to extract, whereas the ones
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(a) Window size = 80 (b) Window size = 100

(c) Window size = 120 (d) Window size = 140

Figure 4.8: Applying matrix profile on different window sizes from 80 to 140. The red
dot indicates the smallest value in the matrix profile, i.e., the smallest distance between

one subsequence (the motif) and its nearest neighbor (its occurrence).

in Variable 3 group two consecutive cycles in the same segment. The results do not change even when
we increase the bin size.

Similar to the matrix profile, SAX works only on univariate time series. Post-processing is nec-
essary to aggregate individual discretization results to product the correct cycles. The same post-
processing rules may not be easily generalized to other data sets.

2.4.4 Observations

From these preliminary results, we discover that change point detection is the most fitting approach
because its results are intuitive: a detected change point marks the boundary of a cycle without fur-
ther post-processing. PELT is a good candidate for InterCE, but its results are not always accurate,
therefore we also include other extraction algorithms in InterCE to mitigate the mistakes of individual
algorithms. In other words, we use an ensemble of extraction algorithms to detect cycles, as ensemble
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Figure 4.9: SAX representation (dots) of the raw signal (faded line)

learning is effective in reducing the variance of individual learners and increasing the overall accu-
racy, by aggregating the results from all learners [186]. The other extraction algorithms we develop
also adopt the principle of change point detection.

3 InterCE: Interactive Cycle Extraction

In this section, we describe the framework InterCE that uses an active learning-based approach to
query for human feedback on inputs it does not know how to process, and to detect and label cycles
automatically otherwise.

First, we formulate the problem of cycle extraction on the data stream generated by a fleet of PASs
(Section 3.1). Then, we detail the implementation of InterCE (Section 3.2). The nomenclature used in
this section is given in Table 4.1.

3.1 Problem formulation

First, we formally define a cycle. Let  = { 𝑆1, … , 𝑆𝑀 } be the fleet of 𝑀 systems (the PASs) being
monitored. Each PAS is equipped with a sensor that generates a data file every time the train, on which
this PAS is located, enters a station. Each data file contains a multivariate time series of 𝐷 variables
and varying timesteps that records the cycles performed by this PAS. The number of timesteps in each
file varies, depending on how long the train stays in a station. Over time, the continuous generation
of these files forms a stream of data files, each of which contains a multivariate time series generated
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Table 4.1: Nomenclature of InterCE

Cycle

 = { 𝑆1, … , 𝑆𝑀 } A fleet of 𝑀 monitored systems
𝐶𝑇𝑆𝑚 A cycle created by a system 𝑆𝑚 at an instant 𝑇
𝑦𝑇𝑆𝑚 A label indicating the type of a cycle 𝐶𝑇𝑆𝑚
𝑐𝑡𝑥𝑡𝑇𝑆𝑚 A set of context variable associated to a cycle 𝐶𝑇𝑆𝑚

Input and Ouput

𝑋 The input to InterCE (a data file, a time series, etc.)

̂(𝑋) The set of extracted cycles

Ensemble of extractors

 = { 𝐸1, … , 𝐸𝐽 } An ensemble of 𝐽 extractors
𝐸𝑗 (𝑋) The cycles extracted from 𝑋 by an extractor 𝐸𝑗
ℂ(𝑋) =
{𝐸1(𝑋), … ,𝐸𝐽 (𝑋) }

The candidates proposed by all extractors in 

The inner memory of InterCE

 The memory component
𝑄𝑟(𝑋) A query to an input 𝑋

The knowledge of InterCE

 The knowledge component
𝐹𝑏(𝑄𝑟(𝑋)) A feedback answering the query 𝑄𝑟(𝑋)

by a system 𝑆𝑚 ∈  at a time 𝑇 . From such stream, we want to extract cycles representing different
functions of 𝑆𝑚. A cycle 𝐶𝑇𝑆𝑚 is defined as follows.

Definition 3.1 (Cycle). A cycle created by a system 𝑆𝑚 at an instant 𝑇 , denoted 𝐶𝑇𝑆𝑚 , is a sequence
of 𝐾 𝐷-dimension data points, that is, 𝐶𝑇𝑆𝑚 = [a

(1), … ,a(𝐾) ] where a(𝑘) ∈ ℝ𝐷. A cycle is always
associated to a label 𝑦𝑇𝑆𝑚 indicating its type and to a context 𝑐𝑡𝑥𝑡

𝑇
𝑆𝑚 .

A context is a set of variables that record the information surrounding the system in operation,
such as the outside temperature, the mission code3, or the train station. We assume that the context
is explicitly known and can be easily extracted (for instance, from metadata accompanying the input
data, or from a database). We do not handle hidden contexts in the scope of this work.

3.2 Implementation

We use an active learning-based approach to implement InterCE. An interface to interact with a human
is essential. Figure 4.10 describes the components of InterCE. Given a new input𝑋 (a data file), InterCE
feeds 𝑋 to the ensemble of extractors  , which produces a set of candidate cycles ℂ(𝑋). To check
whether it has sufficient information to select the best cycles from ℂ(𝑋), InterCE verifies if its memory
 has already processed inputs similar to 𝑋 . If such is the case, it uses its knowledge  to select
the best cycles among those proposed in ℂ(𝑋). Otherwise, it issues a query 𝑄𝑟(𝑋) to the human

3A mission of a train dictates the sequence of stations it stops by.
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expert (Human mode). Once receiving the feedback 𝐹𝑏(𝑄𝑟(𝑋)), InterCE incorporates 𝐹𝑏(𝑄𝑟(𝑋)) to the
knowledge and updates its understanding of the task. The final cycles ̂(𝑋) are returned and fed to
the next module.

Figure 4.10: The components of InterCE

Further details of each component are given in the following sections.

3.2.1 Ensemble of extractors 

We use an ensemble of 𝐽 extractors  = [ 𝐸1, … , 𝐸𝐽 ] to handle the variations in the cycles. Due to var-
ious factors, such as the operational context or data acquisition errors, the cycles of the same function
are not always identical. Preliminary experiments show that a single extractor does not always succeed
to capture all the correct cycles (Figure 4.11). “Expert system”, “Auto Encoder”, and “Simple extractor”
are the names of three extractors we implement and will be explained shortly. We see that no extractor
is able to capture the best cycles on all three examples. Therefore, we leverage ensemble learning to
reduce the variance of individual extractors and to increase the overall accuracy. In InterCE, we use
all three extractors and select the best cycles among their extraction results.

Figure 4.11: Each extractor (rows) yields a different extraction on three inputs
(columns). The dotted box indicates the ground-truth extraction of each input.

The cycles extracted by the extractors in  constitutes the candidates ℂ𝑋 . For example, in Fig-
ure 4.11, the ensemble  produces three candidates for the input A, with one candidate from each
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extractor. We denote 𝐸𝑗 (𝑋) = { 𝐶
(𝑗 ,1)
𝑆𝑚 (𝑋), … , 𝐶

(𝑗 ,𝑛𝑗 )
𝑆𝑚 (𝑋) } the set of cycles extracted from 𝑋 by an ex-

tractor 𝐸𝑗 ∈  , where (𝑗 , 1), … , (𝑗 , 𝑛𝑗 ) denotes the first to the 𝑛𝑗 -th4 cycle in 𝑋 detected by 𝐸𝑗 . The
candidates ℂ(𝑋) is therefore:

ℂ𝑋 =
{
𝐸1(𝑋), … ,𝐸𝐽 (𝑋)

}

=
{{
𝐶(1,1)𝑆𝑚 (𝑋), … , 𝐶

(1,𝑛1)
𝑆𝑚

}
,… ,
{
𝐶(𝐽 ,1)𝑆𝑚 (𝑋), … , 𝐶

(𝐽 ,𝑛𝐽 )
𝑆𝑚

}}
(4.2)

We implement three extractors, therefore | | = 𝐽 = 3, but more extractors can be easily integrated
in  to diversify the learners in the ensemble.

Activity-based extractor This extractor relies on the data acquisition mechanism: the signals
are only recorded by the sensors when the system is performing an activity. A system in idle state does
not produce any signals (for example, a PAS stays open when the train stops at a station), during which
a segment of null values is observed from the data. The activity-based extractor identifies segments of
non-zero consecutive data points separated by a segment of null values as cycles (Figure 4.12).

Figure 4.12: The activity-based extractor identifies two cycles in blue and orange, sep-
arated by a segment of null signals (dotted).

Figure 4.13: A perturbation in the data acquisition causes the loss of some data points,
cutting the second cycle (orange) to two smaller cycles (orange and green).

This is a simple extractor and requires no learning at all (thus its alternative name “Simple extrac-
tor”). Despite its simplicity, it workswell in some cases (NAT data), exceptwhen there are perturbations
during data acquisition that remove some data points in a cycle, consequently separating this cycle into
multiple non-consecutive segments (Figure 4.13).

Autoencoder-based extractor Lee, Ortiz, Ko, and Lee [136] propose to use an autoencoder to
detect cycles5 from time series by comparing their learned representation. First, a time series is cut into

4𝑇 indicates real-life time whereas 1, … , 𝑛𝑗 ∈ ℕ∗ are just the counts. This is to simplify the notation.
5They coined the task as “time series segmentation”, but in nature it is the same as cycle detection, without cycle identi-

fication.
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small subsequences. An autoencoder is trained on these subsequences and returns the representation of
each subsequent. Then, the distances between the representation of pairs of consecutive subsequences
is computed and forms a distance curve. Any peak in the distance curve indicates the start of a new
cycle.

Figure 4.14: Three steps of the Autoencoder-based extractor

This extractor is learning-based, but the size of the subsequences must be correctly determined.
Yet, the cycles of different types or even of the same type do not always have the same length. An
inadequate choice of the subsequence size leads to an incorrect extraction. It is not easy to define this
parameter, even with domain knowledge. An input may contain cycles of many types (and of various
length), but the autoencoder-based extractor uses a unique value to attempt to find all the cycles, which
may cause the errors in Figure 4.15: the blue and orange cycles are correctly identified, but the other
two cycles are not. The green cycle has a large gap of null signals at the beginning, while the last cycle
is cut into two smaller cycles, colored red and purple.

Figure 4.15: Setting the subsequence length incorrectly leads to an incorrect extraction
of cycles (only the blue one and orange one are correct).

The primary drawback of this extractor is that we need to train it before using it to extract repre-
sentations. Two options to tackle this issue are (i) to extract some subsequences from a training set and
train the autoencoder on it before putting InterCE to use, or (ii) to train the autoencoder incrementally
on new data, but it cannot be used until it has reached convergence. In our experiment, we pick the
first option to avoid suboptimal performance of this extractor, which would add more uncertainty to
the evaluation.
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Expert system extractor The expert system is a set of rules hand-crafted by a domain expert.
An expert system can capture most of the expected occurrences of cycles, but it may fail to recognize
cycles that are unknown even to the human experts (Figure 4.16). Machine learning helps to catch
these cycles by learning patterns from the data.

Figure 4.16: Unexpected cycles (those mixed in the first segment in blue) are not rec-
ognized by the expert system.

For any new use case (batteries, air-conditioning, traction, etc.), a new expert systemmust be made
from scratch. Developing an expert system takes two to six months, depending on the complexity of
the data. Machine learning helps to alleviate the workload of the human experts because the same al-
gorithm can be applied on new data sets without major changes, only with different hyperparameters.

3.2.2 A memory  to keep track of previously processed data

Whether to process an input 𝑋 in the Human mode or in the Auto mode relies on a memory 
that stores the unique patterns of past inputs. We denote the set of stored patterns (or motifs) as  .
By design, a system performs a fixed number of functions, and repeating patterns of these functions
frequently appear in the data. InterCE issues queries only when it does not know how to process an
input. If the feedback to such inputs is provided, InterCE memorizes the patterns in its memory.

Searching for similar motifs The memory  retains one representative series as a motif of
future inputs that may share the same pattern (Figure 4.17). When a new input 𝑋 arrives, InterCE
computes the distance from 𝑋 to ∀𝑚 ∈  . If 𝑋 is different from all the motifs in  , 𝑋 is a new pattern
and is added in  , and InterCE issues a new query for 𝑋 . Otherwise, 𝑋 is processed automatically.

Figure 4.17: The inputs may have similar patterns, represented by a single query. Two
patterns that will be stored in  are those in highlighted boxes.
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Because a brute-force search for the closest motif 𝑚 ∈  to 𝑋 is time-consuming, we devise a
heuristic search based on the intra-distances between motifs. We maintain in  a set of motifs 
and the intra-distances between each motif to all the other motifs in  , that is, 𝑖𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑚𝑖] =
𝑚𝑜𝑡𝑖𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖, 𝑚𝑗 ), ∀𝑚𝑖, 𝑚𝑗 ∈  . As illustrated in Figure 4.18, a new input 𝑋 is a new motif if the
distance from 𝑋 to the motif𝑚1 closest to 𝑋 is greater than the distance from𝑚1 to all the other motifs
in  . Otherwise, 𝑋 might be an existing motif with noises.

Figure 4.18: Heuristic decision on the novelty of a motif based on the intra-distances
between motifs in 

We also rely on the length ratio between an input𝑋 and a motif𝑚 ∈  to decide whether a distance
computation should be executed. We useDynamic timewarping [165] to compute the distance between
two series because it is more accurate than the Euclidean distance, but unfortunately, it is also more
computationally expensive. Therefore, we want to limit the call to the distance computation as much
as possible. We only compute the distance if 𝑋 and 𝑚 are sufficiently different in length, gauged by
a length threshold 𝜏𝐿 ∈ [0, 1]. The length ratio between two series is the length of the shorter series
divided by that of the longer one.

Algorithm 4.1 describes how an input 𝑋 is recognized as a novel or existing motif, combining the
heuristics of intra-distances and of length ratio.

• If there is no motif in  , we add 𝑋 as a new motif (line 2–4). Adding a new motif also updates
the intra-distances between existing motifs (if any) and computes the intra-distances of the new
motif to the existing ones (Algorithm 4.2).

• If there is only one motif 𝑚 ∈  and if the length ratio between 𝑋 and 𝑚 is smaller than 𝜏𝐿, we
add 𝑋 as a new motif (line 5–10).

• Otherwise, we compute the distances between each motif𝑚 ∈  to 𝑋 and store them in an array
𝑑𝑖𝑠𝑡 initialized to NaN values. We only compute the distances if the length ratio between 𝑋 and
𝑚 is sufficiently large (line 13–15).

• After the distance computation, if all the values in 𝑑𝑖𝑠𝑡 are NaN, all motifs in  are different to
𝑋 in terms of length, and we add 𝑋 as a new motif (line 16–18).

• Otherwise, we retrieve the closest motif 𝑚𝑋 to 𝑋 and verify whether the distance between 𝑋
and 𝑚𝑋 are greater than all the intra-distances of 𝑚𝑋 to other existing motifs. If it is the case, 𝑋
is sufficiently different from all motifs in  and is added as a new motif; else, 𝑋 is an existing
motif (line 20–25).

Queries and feedback If an input 𝑋 is ruled as a new motif, InterCE creates a new query for
𝑋 and sends it to the human annotator via an interactive interface. Upon receiving a new query, the
human annotator selects the cycles they deem most correct from the candidates ℂ𝑋 and assign a label
to each cycle. We define the query 𝑄𝑟(𝑋) and the feedback 𝐹𝑏(𝑄𝑟(𝑋)) in (4.3) and (4.4), respectively.
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Algorithm 4.1: Verify whether an input is a known motif (hasSeenData)
Data: An input 𝑋
Input: A similarity threshold 𝜏 ∈ [0, 1], a length ratio threshold 𝜏𝐿 ∈ [0, 1]
Output: True if 𝑋 has been processed, False otherwise

1  ←𝑀 .retrieveAllMotifs()
2 if | | = 0 then
3 𝑀 .addNewMotif(𝑋 )
4 return False
5 else if | | = 1 then
6 lenRatio← computeLengthRatio(𝑋 , 𝑃[0])
7 if lenRatio < 𝜏𝐿 then
8 𝑀 .addNewMotif(𝑋 )
9 return False

10 else return True
11 else

12 dist← [𝑁𝑎𝑁 …𝑁𝑎𝑁] /* array of all NaN values of length  */
13 foreach 𝑚 in 𝑃 do

14 lenRatio← computeLengthRatio(𝑋 , 𝑚)
15 if lenRatio ≥ 𝜏𝐿 then dist[m]← motifDistance(𝑋 , 𝑚)
16 if all values in dist are NaN then

17 𝑀 .addNewMotif(𝑋 )
18 return False
19 else

20 𝑚𝑋 ← arg min
𝑚𝑖𝑛

dist
21 intraDist← intraDistances[idx]
22 if dist[𝑚𝑋 ] > all values in intraDist then
23 𝑀 .addNewMotif(𝑋 )
24 return False
25 else return True

Algorithm 4.2: Add new motif and update the intra-distances (addNewMotif)
Data: A new motif 𝑚

1  ←𝑀 .retrieveAllMotifs()
2  ←  ∪ {𝑚}
3 newIntraDist← ∅
4 foreach 𝑝 ∈  {𝑚} do
5 intraDist←𝑀 .intraDistances[𝑝] /* retrieve the intra-distance of 𝑝 */
6 motifDist← motifDistance(𝑚, 𝑝) /* distance between 𝑚 and 𝑝 */
7 intraDist← intraDist ∪ {motifDist} /* new entry to the intra-distances of 𝑝 */
8 newIntraDist← newIntraDist ∪ {motifDist} /* new entry to the intra-distances of 𝑚 */

9 𝑀 .intraDistances[𝑚]← newIntraDist

We denote 𝑦(𝑗 ,𝑖)𝑆𝑚 the label of the cycle 𝐶(𝑗 ,𝑖)𝑆𝑚 given by the human expert to the 𝑖𝑡ℎ cycle found in 𝑋 by
the extractor 𝐸𝑗 .
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𝑄𝑟(𝑋) = ⟨ 𝑋, ℂ(𝑋) ⟩ (4.3)

𝐹𝑏(𝑄𝑟(𝑋)) =
{
⟨𝐶

(𝑗 ,𝑖)
𝑆𝑚 (𝑋), 𝑦

(𝑗 ,𝑖)
𝑆𝑚 ⟩

}
1⩽𝑗⩽𝐽
1⩽𝑖⩽𝑛𝑗

(4.4)

In practice, a human is not always available to answer a query. InterCE must not wait for the
answer while blocking incoming inputs. To circumvent this issue, we implement an asynchronous
communication that allows InterCE to continue processing new inputs while queuing unanswered
queries. InterCE will solve these queries once the feedback arrives.

Yet another issue arises. InterCE risks to create queries similar to those that have not been an-
swered. Algorithm 4.1 switches InterCE to the Auto mode if it verifies that the input 𝑋 is similar to
another input 𝑌 that has been seen previously. But, if 𝑄𝑟(𝑌 ) has not been answered, InterCE does not
have sufficient information to solve 𝑄𝑟(𝑋) either, thus it creates a redundant query 𝑄𝑟(𝑋).

Figure 4.19: Only official queries (in bold) of two distinct patterns 𝑋 and 𝑌 are sent to
the humans. Buffered queries (in italic) are solved automatically based on the feedback

to their official query.

To avoid sending repetitive queries, we distinguish official queries from buffered queries. Queries
of similar inputs are grouped and represented by one official query, whereas the others are buffered
(hence the name “buffered” queries). Only the official query is sent to the human. Once the feedback
to an official query arrives, all of its buffered queries are solved automatically using this feedback
(Figure 4.19).

3.2.3 Knowledge  to select the best cycles

The knowledge  has two roles: maintaining the feedback in the form of clusters and automatically
selecting cycles.

To learn the typical cycle shape of a function, we use clusters to collect both the cycle signals and
the associated labels. A feedback 𝐹𝑏(𝑄𝑟(𝑋)) contains the cycles selected by the human experts from
a query 𝑄𝑟(𝑋). Once receiving a feedback,  updates the clusters by assigning the selected cycles
in the corresponding clusters, such that a cluster is constituted of cycles of similar shape and thus is
representative of a function.

We do not use a clustering algorithm to group the feedback cycles to avoid cascading unwanted
inaccuracy in . Instead, we assume that the human always extracts and labels the cycles correctly,
so we simply group the feedback cycles by the labels assigned to them. All the cycles having the
same label are grouped into one cluster. Each cluster is represented by a centroid that is the average
computed across the timesteps of the cycles in this cluster.
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It is possible to update the clusters incrementally, by recomputing a cluster’s centroid every timewe
add the cycles in a new feedback to this cluster. We store the clusters directly in memory to enable fast
access when  automatically selects the cycles. The memory space dedicated to storing the clusters
can potentially grow large, as InterCE works on an infinite data stream. Nonetheless, because the
systems perform a limited number of functions, they produce a limited number of unique cycle types.
We expect InterCE to run mostly in Auto mode and ask fewer queries after it has seen most of the
common data motifs.

Algorithm 4.3 describes how  determines the best cycles from the candidates ℂ𝑋 of an input 𝑋 .
First, it computes the average distance between all the cycles 𝐶𝐸𝑗 detected by an extractor 𝐸𝑗 ∈  to
estimate how far 𝐶𝐸𝑗 is from the feedback cycles learned by (line 2–7). Then, the extractor producing
cycles closest to the feedback cycles (i.e., having the smallest average distance) is picked as the best
one (line 8). All of its cycles are retained and labeled according to the cluster closest to each of its cycle
(line 9–13). Finally, the labeled cycles are returned as final extraction result.

Algorithm 4.3: Selecting cycles from ℂ(𝑋) in Auto mode (selectCycles)
Data: The candidates ℂ(𝑋)
Output: The final cycles ̂(𝑋)

1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← ∅
2 foreach candidate 𝐸𝑗 (𝑋) do
3 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸𝑗 ] ← 0
4 foreach cycle 𝐶(𝑗 ,𝑖)𝑆𝑚 (𝑋) in 𝐸𝑗 (𝑋) do
5 𝑐 ← 𝐾.findClosestCluster(𝐶(𝑗 ,𝑖)𝑆𝑚 (𝑋))
6 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸𝑗 ] ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸𝑗 ] + distance(𝐶(𝑗 ,𝑖)𝑆𝑚 , 𝑐)

7 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸𝑗 ] ←
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝐸𝑗 ]

𝑛𝑗
/* 𝑛𝑗 is the number of cycles detected by 𝐸𝑗 */

8 ̂(𝑋) ← arg min
𝐸𝑗 ∈ℂ(𝑋)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠

9 𝑅 ← ∅ /* the set contains the detected cycles and its label */

10 foreach cycle 𝐶𝑇𝑆𝑚 ∈ ̂(𝑋) do
11 𝑐 ← 𝐾.findClosestCluster(𝐶𝑇𝑆𝑚(𝑋))
12 𝑦𝑇𝑆𝑚 ← 𝑐.getLabel()
13 𝑅 ← 𝑅 ∪ { (𝐶𝑇𝑆𝑚 , 𝑦

𝑇
𝑆𝑚) }

14 return 𝑅

For now,  selects the cycles from a single extractor. We have not yet enabled  to select cycles
from different extractors in ℂ(𝑋). This will be addressed in future works.

3.3 Full algorithm of InterCE

The logic of InterCE is explained in Figure 4.20, accompanied by Algorithm 4.4 and 4.5. The query
management and feedback management in InterCE communicate asynchronously.

The querying side of InterCE creates queries for new inputs and decides whether a query should
be marked as official and sent to humans, or should be buffered to be solved in bulk once the feedback
to the reference query is available (Algorithm 4.4 and the parts linked by solid lines in Figure 4.20).

The feedback side continuously waits for new feedback. Once a feedback is available, it updates
the knowledge and solves queued queries, both the official and buffered ones (Algorithm 4.5 and the
parts linked by the dotted line in Figure 4.20). InterCE solves an official query 𝑄𝑟(𝑋) by simply taking
all the cycles and labels indicated the human in 𝐹𝑏(𝑄𝑟(𝑋)) to update the clusters in . InterCE solves
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the buffered queries 𝑄𝑟(𝑋 ′) linked to 𝑄𝑟(𝑋) by running Algorithm 4.3 on 𝑄𝑟(𝑋 ′) using the clusters
that were updated on 𝐹𝑏(𝑄𝑟(𝑋)).

Figure 4.20: Flowchart of InterCE

Algorithm 4.4: Full algorithm of InterCE (managing queries)
Data: An input 𝑋
Output: The final cycles ̂(𝑋) or a query 𝑄𝑟(𝑋)

1 ℂ(𝑋) ←  .extract(𝑋 )
2 if 𝑀 .hasSeenData(𝑋 ) is True then
3 if 𝑀 .hasProcessedQueryOf(𝑋 ) then ̂(𝑋) ← 𝐾 .selectCycles(ℂ(𝑋))
4 else

5 𝑄𝑟(𝑋) ← 𝑀 .createQuery(𝑋 , ℂ(𝑋))
6 markBuffered(𝑄𝑟(𝑋))

7 else

8 𝑄𝑟(𝑋) ← 𝑀 .createQuery(𝑋 , ℂ(𝑋))
9 markOfficial(𝑄𝑟(𝑋))

10 sendToHuman(𝑄𝑟(𝑋))

Algorithm 4.5: Full algorithm of InterCE (processing feedback)
Output: The final cycles to an official query and to the linked buffered queries
/* run in loop to always wait for feedback */

1 while True do
2 𝐹𝑏(𝑄𝑟(𝑋)) ← detectNewFeedback()

3 ̂(𝑋) ← 𝐾 .solveOfficialQuery(𝑄𝑟(𝑋))
4  ← 𝐾 .getBufferedQueriesOf(𝑄𝑟(𝑋))
5 foreach 𝑄𝑟(𝑋 ′) ∈  do ̂(𝑋 ′) ← 𝐾 .selectCycle(𝑄𝑟(𝑋 ′))
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4 Experimental results

To validate the hypotheses 𝐻 1𝑐 and 𝐻 2𝑐 , InterCE must be able to reach convergence earlier than its of-
fline counterpart (𝐻 1𝑐 ), and to perform on-par or superior to the expert system in terms of accuracy
(𝐻 2𝑐 ). Efficiency being a crucial criterion, we test InterCE on two additional criteria that are the pro-
cessing time per input and the query ratio. Therefore, we evaluated InterCE against four criteria: (i)
the extraction accuracy, (ii) the convergence time, (iii) the execution time, and (iv) the ratio of queries
over the total data.

To assess (i) and (ii), we involve a human in the experiments and run the experiments on 1000 data
files. The accuracy is the number of cycles correctly detected and labeled. The expert system serves as
the baseline performance. The convergence time is the time from the reception of the first input file
until InterCE attains a stable extraction accuracy6.

We evaluate (iii) and (iv) by running InterCEwithout human annotation on a large stream of 100000
files. The human annotators are not involved for the following reasons. First, it is tedious for a human
to deal with such volume of data; even if the number of queries may not be high, it is still time-
consuming to wait until the end of the experiments. Secondly, human annotation is stochastic: they
may choose to annotate queries in any order randomly, which does not guarantee reproducible results.

We run the experiments on NAT and R2N data sets, using a Windows 10 machine with an Inter(R)
Core(TM) i7-8850H CPU @ 2,60GHz 2,59GHz, with 16GB RAM. No GPU is used for the experiments.

4.1 Extraction accuracy

To assess the accuracy of InterCE, we count the number of cycles that are correctly extracted by InterCE
and divide it by the total number of expected cycles. We examine each data file manually. From a file,
we first find the expected cycles. Then, we check if InterCE succeeds to extract these cycles. The full
experiment results are accessible on this site.

For both InterCE and the expert system, the score is attributed as follows.

• We assign a count of one to one cycle that is correctly detected and labeled.
• If a cycle is undetected or detected but mislabeled, we assign a count of zero.
• If InterCE detects a cycle that includes other cycles (e.g., a big cycle with one closing and one
opening cycle), we consider it wrong and assign a count of zero.

• If InterCE detects more cycles than there should be, we assign a count that is equal to the number
of true cycles minus the number of excess cycles.

Figure 4.21 shows the extraction results of InterCE and of the expert systems on two data files,
one with a simple motif (top row) and another with a complicated motif involving many opening and
closing cycles (bottom row). In Figure 4.21a, the expert system succeeds to extract two cycles correctly,
while InterCE fails to detect the first opening cycle. However, when the data file contains a complicated
motif (Figure 4.21b), InterCE correctly detects and labels 11 out of 12 expected cycles, while the expert
system does not find any. It shows that InterCE is not always correct, but it helps with difficult cases.
Meanwhile, if only the expert system is used, there may have been a lot of undetected cycles.

6Another way to define convergence is when InterCE does not create more queries. However, because novel data motifs
may arrive from the stream (which will prompt InterCE to create new queries) and we do not know in advance whether
InterCE has learned all the motifs exhaustively, we cannot define convergence as such.

https://drive.google.com/drive/folders/19LYhSjceHne2GMGbNrk5D04izSIkTUko?usp=sharing
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(a) A simple data file with one opening and one closing cycle (fp means door closing in French).

(b) A data file with complicated motif involving many opening-closing cycles. This may happen if an obstacle prevents
the door from completely closing. (flp means slow closing in French, a special case of closing cycles.)

Figure 4.21: Examples of extraction results of InterCE and the expert system.

Following our scoring protocol, InterCE has a score of 1 and the expert system a score of 2 in the
example in Figure 4.21a, and 11 and 0 respectively in Figure 4.21b. The accuracy of each method is the
total score divided by the total number of correct cycles.

Figure 4.22 shows the accuracy of InterCE versus that of the expert system on theNAT and R2N data
sets. We mark the number of correct cycles grouped by extractor chosen by InterCE. In many cases,
all extractors are able to find several correct cycles, but ultimately InterCE only picks the extractor
with the most number of correct cycles. It should not be mistaken that, for example, in the case of R2N
data, the activity-based extractor does not find any cycles. It instead means that in many cases, this
extractor does not find the best set of cycles among all the extractors.

Because InterCE includes the expert system in its ensemble, it achieves by definition the accuracy
level of the expert system. The added accuracy comes from the other two extractors (activity-based
and autoencoder-based), which significantly increases the number of correct cycles. Interestingly, the
activity-based extractor and autoencoder-based extractor behave inversely on two use cases. A possible
reason is that in NAT data, different cycles are almost always separated by a segment of inactivity that
is easy to detect, which is not the case for the R2N data set. Meanwhile, the autoencoder appears to
have learned better than on R2N data.

We also plot the number of correct cycles by each extractor, regardless which extractor is picked
by InterCE as the best one for each data file. Figure 4.23 shows the number of correct cycles found by
each extractor over 1000 data files. The difference in the performance of the activity-based extractor
and the autoencoder-based extractor is shown starkly: in a data set, only one of them performs well.
These extractors are possibly tailored specifically for one fleet and do not generalize well to the other.
This issue can be overcome by adding more extractors to the ensemble of InterCE.
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Figure 4.22: Number of cycles correctly extracted with only the expert system versus
combining all three extractors in InterCE

Figure 4.23: Number of correct cycles by each extractor in InterCE. The first column in
each plot is the number of expected cycles (ground-truth).

Given that InterCE improves the baseline performance of the expert system substantially in both
NAT and R2N data sets, the hypothesis 𝐻 2𝑐 is validated.

4.2 Reactivity

InterCE converges when it reaches a stable extraction accuracy. To reveal the convergence time of
InterCE, we plot its accuracy over time. The accuracy of cycle extraction at a time 𝑇 is equal to the
number of cycles InterCE has correctly extracted thus far from 𝑡 = 1 until 𝑡 = 𝑇 divided by the total
number of expected cycles thus far.

Beside the convergence of InterCE, we also evaluate its offline counterpart. The offline version of
InterCE has a training and a testing phase. We take the first 𝑁 input files as training data, and the rest
of the 1000−𝑁 files for testing. During the training phase, InterCE only creates queries. All the queries
are shown to the human annotator at the end of the training phase; their feedback is used to update
the knowledge of InterCE all at once. Afterwards, InterCE extracts cycles from new inputs from the
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stream and no longer processes feedback. As a consequence, InterCE will not create queries for novel
motifs and will attempt to extract all the cycles by itself.

The offline version of InterCE is run with various number of training examples: 𝑁 = 100, 𝑁 = 200,
and 𝑁 = 300; we denote them offline-100, offline-200, and offline-300 respectively. Because
offline InterCE does not return any result before it finishes training, the accuracy only shows after the
first testing examples. Since InterCE must see at least more files than the number of unique motifs, we
select these numbers of training files (100, 200, 300) to ensure InterCE has seen most of the common
motifs for a fair comparison. It is difficult to guarantee a definitive number of motifs, as we never know
if (and when) novel motifs may eventually arrive from the stream.

The accuracy of InterCE and its offline counterpart are shown in Figure 4.24. The performance of
InterCE on the two data sets is notably different. Because NAT data are simpler than R2N data as the
former contains less perturbations, the overall accuracy of InterCE on NAT data is higher and more
stable than that on R2N data. Generally, in both data sets, the online and offline versions of InterCE
struggle at the beginning, but they eventually converge.

Figure 4.24: Accuracy of online InterCE, of offline InterCE, and of the expert system
recorded over time

It is not evident to conclude on the superior reactivity of online InterCE. On NAT data, there is
a fall in the accuracy of online InterCE shortly after the 100𝑡ℎ data example, but its accuracy rises
afterwards. The same phenomenon also occurs to offline-100. It is possibly caused by some difficult
data exampleswhere the datamotifs vary largely from the common cases. However, both offline-200
and offline-300 are able to reach a very high accuracy just after their training phase. On R2N data,
the performance of all learners fluctuate. The overall accuracy of online InterCE is highest among all
the learners starting from the 300𝑡ℎ input. Nevertheless, they all seem to converge toward an accuracy
around 0.8. In both data sets, the accuracy of the expert system decreases over time, indicating that
the expert system cannot cope with the variations of the cycles on the stream.

Because the results are not conclusive on the higher reactivity of online InterCE, the hypothe-
sis 𝐻 1𝑐 is not validated. Despite not having a significant superior reactivity, online InterCE remains
competitive to its offline counterpart.
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4.3 Processing time

To assess the efficiency of InterCE, we run it on a stream of 100000 input files for each data set, without
providing feedback. Figure 4.25 shows the total execution time of InterCE on NAT and R2N data sets.
We also decompose it to the execution time of two submodules: the time for the memory  to find
similar motifs, and the time for the ensemble  to extract candidate cycles. We observe that the latter
is dominant in both data sets. The execution is much longer for R2N because R2N data contain more
motifs than NAT data. We will analyze the motifs shortly.

Figure 4.25: Execution time of InterCE on NAT and R2N data sets, from 104 to 105 files

Figure 4.26: Execution time per input file

We break down the execution time per input file (Figure 4.26). The time occupied by the ensemble
 is negligible. Meanwhile, finding a similar motif takes around 0.24 second per input file for NAT
data and 1.0 second for R2N data (median values). The execution time is stable for NAT whereas it is
much more variable for R2N, but the fluctuation remains relatively small. This can be improved with
parallelization.
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Time complexity To estimate the time complexity of InterCE on a new input 𝑋 , let us denote 𝑁
the number of timesteps in 𝑋 , 𝐷 the number of variables in 𝑋 , 𝑃 the number of motifs stored in, 𝐾
the number of cycle clusters in,𝑊 the window size of the autoencoder-based extractor, 𝐽 the size of
 , and 𝑁𝑗 the worst-case number of cycles an extractor 𝐸𝑗 may produce (we assume the same 𝑁𝑗 for
all extractors in  ). The time complexity of InterCE is the complexity of its primary operations:

• for the ensemble  to extract candidate cycles: 𝑂(𝑁+ 𝑁𝑊 +𝐴), where𝐴 is the inference complexity
of the autoencoder7;

• for the memory to search for a similar motif to the input: 𝑂(𝑃𝐷𝑁);
• for the knowledge  to automatically select cycles: 𝑂(𝐽𝑁𝑗𝐾𝐷𝑁).

Therefore, the total time complexity of InterCE is:

𝑂(𝑁 +
𝑁
𝑊
+ 𝐴 + 𝑃𝐷𝑁 + 𝐽𝑁𝑗𝐾𝐷𝑁)

where 𝑂(𝐷𝑁) is due to the distance computation between two multivariate series (a cycle to a
motif or a cycle to a feedback cluster). The most important factor in the complexity term is the number
of timesteps 𝑁 , because 𝑁 can be up to more than a thousand in some files, albeit unusually. The
second-most important factor is the number of motifs 𝑃 , because on an infinite stream, 𝑃 may keep
growing as novel motifs arrive. An complex autoencoder in  will also prolong the execution time.

4.4 Querying efficiency

We strive to send as few queries as possible, by issuing only those that come from unique data motifs
unseen by the memory . Figure 4.27 visualizes the number of official queries and the ratio of the
number of official queries over the number of input files. For 100000 files of NAT data, 25 queries are
issued in total. The number of queries are 40 in the case of R2N data, because there are more distinct
motifs in R2N data files. In fact, the number of official queries is guaranteed to be equal to the number
of motifs stored in, as we only create an official query if an input 𝑋 has never been processed.

Figure 4.27: Number of official queries and the ratio of the number of such queries over
the number of input files

Figure 4.28 shows the number of buffered queries associated to an official query, sorted in the
descending order. A buffered query is create if an input 𝑋 has a motif stored in the memory  but

7Since the inference complexity of a neural network comprises many factors such as the number of layers, number of
hidden units in each layer, we do not explicit its full complexity.
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the official query created for such motif has not been solved. Given the no-feedback setup, the number
of buffered queries is also the number of input files sharing the same motif as the associated official
query. We see that very few motifs are frequently seen in the data. For each data set, only one or two
motifs are the most common. By buffering queries, we avoid issuing an exploding number of queries.

Figure 4.28: Number of buffered queries associated to an official query, sorted in the
descending order

As for the number of motifs, there are 25 motifs found in 100000 files of NAT data and 40 motifs in
100000 files of R2N data (Figure 4.29 and 4.30). We also note the number of buffered queries associated
to each motif. Note that some motifs appear only once as an official query and have no associated
buffered query (motif 36 and 37 in R2N data). In both data sets, the most common motifs are ones
with an opening cycle followed by a closing cycle. Otherwise, the motifs either include many opening-
closing cycles, or are anomalous. Some motifs have only a closing or an opening, possibly due to data
acquisition errors. We note a substantial number of redundant motifs in NAT data. This is due to the
memory  failing to recognize known motifs with slight variations. For example, in NAT data, the
motif 2 and motif 1 have almost the same shape, but differ in length (six seconds versus eight seconds).
It requires that our method to search for similar motifs (Algorithm 4.1) needs improvement.

5 Conclusion

In this chapter, we address the challenge of cyclicity in railway complex systems by proposing InterCE
(Interactive Cycle Extraction) as a solution to automatically detect and identify cycles from a stream
of raw sensor signals. Using an active learning-based approach, we implement a feedback loop al-
lowing InterCE to incorporate human feedback in its learning process. As a result, InterCE learns the
shapes and types of expected cycles on-the-fly without requiring a priori knowledge about the task.
We evaluate InterCE on the NAT and R2N data sets to validate the following hypotheses:

(𝐇𝟏𝐜) Using online learning to learn to extract cycles has a higher reactivity than using offline
learning.

(𝐇𝟐𝐜) Online learning that enables model update via human feedback performs superior to, or on-
par with, a static expert system in accuracy.

The experimental results show that InterCE achieves an accuracy superior to that of a static expert
system, tested on 1000 data files: InterCE reaches an accuracy of 98.2% on NAT data set and 78.3% on
R2N data set, in comparison to that of the expert system which is 42.3% and 40.6%, respectively. This
result validates 𝐻 2𝑐 . As for reactivity, InterCE does not decisively outperform its offline counterpart
but remains competitive, thus 𝐻 1𝑐 cannot be validated.
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Figure 4.29: 25 motifs found in 100000 NAT data files

In addition to the reactivity and accuracy, we also evaluate the efficiency of InterCE via its process-
ing time, tested on 100000 data files per data set. On NAT data, InterCE processes one input file within
less than 0.5 seconds, whereas it takes about 1.5 seconds to process one R2N data file. The processing
time per input is dominated by the time spent to find a motif most similar to a new input file. This is
an important bottleneck that we will amend in future works.

Moreover, we aim for an efficient querying strategy: InterCE should learn the most possible from
the fewest queries. The query ratio of InterCE on NAT data and on R2N data is 0.025% and 0.04%,
respectively, which are modest with respect to the total number of files (100000 files per data set).
It shows that the query strategy succeeds to reduce the number of queries and makes the manual
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annotation less tedious for the human experts.

The primary shortcomings of InterCE are the following:

• Although InterCE updates its knowledge on human feedback, the update occurs at the labeling
functionality, that is, which cycle shape maps to which function of the systems, but it does not
update the learners in the ensemble, which is crucial to ameliorate the detection accuracy.

• Finding similar motifs is an important bottleneck in InterCE. The accuracy of motif matching is
also a concern, as we want to avoid sending redundant queries to the human annotators.

Generally, InterCE functions bymemorizing instead of truly learning from the data. It is preferably
to have a proper learning principle backing InterCE’s logic. For example, instead of memorizing the
motifs of the input data, the memory of InterCE could learn the features of these motifs to quickly
conclude whether a motif has been seen or not, thus re-framing motif matching as a classification task
instead of a searching task. Then, instead of simply grouping cycles sharing the same label, InterCE
could use a classifier, or a clustering algorithm, to perform a better mapping. And most notably, the
learners in the ensemble should be updatable. This could be done in two ways: we may enable InterCE
to update the hyperparameters of the learners on new feedback, or the learners themselves become
adaptive to changes on the stream8.

Finally, the cycles extracted by InterCE will become the input of the next task: feature learning.
The aim is to learn relevant features from cycles and to represent a cycle in a form that is more compact
while preserving the information of the original cycle.

8The two options can be confusing. Let us look at an example of a random forest. When we change the hyperparameters
of a random forest, we modify the maximum number of trees, the maximum depth of each tree, et cetera. If the random
forest itself is adaptable, it can select which trees to drop, create new trees, modify its own hyperparameters, or assign and
re-calibrate the relevance weights of the trees.
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Figure 4.30: 40 motifs found in 100000 R2N data files
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Summary

Cycles extracted from the stream are analyzed to unveil the condition of the systems, but
using the cycles as time series is not efficient. Element-wise comparison between millions of
cycles is time- and memory-consuming. Meanwhile, a learning algorithm can detect unique
statistical features from the cycles to summarize them compactly. To this end, we implement
a long short-termmemory autoencoder (LSTM-AE) that learns features by reconstructing its
own inputs in an unsupervised fashion, and is jointly trained with a classifier mapping the
cycle to its own contextual information, making the LSTM-AE robust against noises. This
chapter addresses the hypotheses 𝐻 1𝑓 , 𝐻 2𝑓 , and 𝐻 3𝑓 .

The experimental results shows that the LSTM-AE features are better at preserving the
cycle information than manually engineered features. After training the LSTM-AE in three
settings - offline, online, and online incremental, we find out that the offline version of the
LSTM-AE outperforms its online counterparts, both in terms of reconstruction capacity and
convergence time, possibly because the training configuration unfairly favors the offline
paradigm. We will address this in the future works.
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1 Introduction

A cycle per se is a multivariate time series: it contains multiple measurements, each recorded over
multiple timesteps. But an element-wise comparison betweenmillions of time series is computationally
costly. Meanwhile, a comparison on their features, such as the mean, the skewness, or the length,
suffices to deduce the normality of a cycle. It also reduces the computational costs for time series
mining. Therefore, we transform a cycle to a feature vector for the ensuing analysis. There are multiple
approaches to extract features from a time series.

A straightforward solution is to let a domain expert define the relevant statistics using a set of
fixed rules. Nonetheless, the domain experts may miss useful features of the cycles that can unveil the
condition of the systems.

Another solution is time series decomposition. It decomposes a series into several individual com-
ponents, such as the trend and seasonality. For instance, the Fourier transform decomposes a complex
time series into different components in the time and frequency domains, which are recorded as fea-
tures. However, this also requires domain expertise to identify which components are relevant among
those decomposed.

Alternatively, the features can be learned from the data without extensive domain expertise using
representation learning. Representation learning is a task that produces representations of the inputs
that are useful for other downstream tasks [26]. For representation learning, autoencoders have re-
cently become popular. An autoencoder is a neural network that learns to reconstruct its own inputs
in an unsupervised manner. As our goal is to learn a compact yet representative form of the input
cycles without labels, autoencoders are a promising method.

Furthermore, since cycles are time series which are sequential data, regular densely-connected
layers may not fully capture the temporal information from the cycles. We use a recurrent architec-
ture to emphasize their temporality. Among the existing recurrent architectures, we choose the long
short-term memory architecture [96], because it overcomes the exploding gradient phenomenon often
encountered in a regular recurrent network.

Therefore, we propose a Long short-termmemory autoencoder (LSTM-AE) to extract feature vectors
from cycles such that the resulting vectors are more compact than the original cycles but are equally
representative. Precisely, we expect that the embedding feature space is coherent with the cycle space,
such that an anomalous cycle produces an anomalous feature vector.

The LSTM-AE is expected to validate these hypotheses:

(𝐇𝟏𝐟 ) Online feature learning performs superior to, or at least on part with, offline feature learning
in terms of accuracy.

(𝐇𝟐𝐟 ) Online feature learning is more reactive than offline feature learning.
(𝐇𝟑𝐟 ) Feature learning results in better information preservation than feature engineering.

We evaluate the LSTM-AE on the cycles extracted from the NAT and R2N data sets. We compare
three versions of the LSTM-AE - offline, online, and online incremental, on their learning performance
and reactivity. Then, we take the best model among those three and compare the features it produces
to the indicators identified by an expert system to see which approach produces features that are more
truthful to the original cycles. The results show that the offline version of the LSTM-AE achieves the
best performance, both in terms of reconstruction capacity and convergence time. Also, the features
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extracted by the LSTM-AE outperform the expert indicators in almost all cases, except on the opening
cycles of the NAT data set, but with only a small gap in performance.

This chapter is organized as follows. Section 2 reviews the existing methods of representation
learning, focusing on autoencoders. Section 3 describes the LSTM-AE in detail. Section 4 shows the
experimental results. Finally, Section 5 concludes the works in this chapter.

2 State-of-the-art: Representation learning

In this section, we cover the state-of-the-art of representation learning. We focus on the unsuper-
vised paradigm because our aim is to learn representations from cycles without guidance from domain
expertise.

Representation learning, also known as feature learning, is the task of extracting discriminative
features from a data set as an intermediary step for a downstream task, for instance, for classification
or regression [26, 173]. Originally, representation learning was implicitly included in neural network
training. During training, a neural network forwards the input data through multiple hidden layers
and in the process transforms the inputs into complex features that improve the predictions. Recently,
representation learning has become a relevant field on its own following the development of deep
learning.

Representation learning is useful for dimensionality reduction, because it embeds high dimensional
inputs to a lower dimensional space by retaining only the most relevant features. Principal Compo-
nent Analysis is the most well-known technique for dimensionality reduction; it is also a method of
representation learning, although it can only produce a linear mapping of the features. Deep learning,
which consists of training a neural network with multiple layers, applies multiple non-linear transfor-
mations to yield more abstract representations. In fact, neural networks learn a hierarchy of abstract
features, such that the features at one layer are combined from those learned at the previous layer.

For one input example (for instance, a time series, an image, an audio), a representation learning
model returns one feature vector as a representation of this example. There are three paradigms to
tackle representation learning: probabilisticmodeling, neural networks via autoencoders, andmanifold
learning [26].

Probabilistic modeling terms learning representation as finding a set of latent variables ℎ that best
describes a distribution over the training data 𝑥 , that is, to model 𝑝(ℎ, 𝑥). Learning features is to find the
model parameters that maximize the likelihood of the training data. However, the feature vectors are
not readily usable at the end of the learning process but must be derived from the estimated posterior
distribution 𝑝(ℎ ∣ 𝑥).

An autoencoder is a neural network that learns to reconstruct its own inputs. An autoencoder
optimizes its parameters (network weights) by minimizing the difference between the inputs and their
reconstruction. Different to probabilistic modeling, autoencoders learn a direct mapping from the
inputs to their representation and return a feature vector for each input example.

Manifold learning is built on themanifold hypothesis, stating that real-world data in high-dimensional
space are expected to concentrate in the vicinity of a manifold of much lower dimensionality [67]. The
goal of manifold learning is to model the low-dimensional structure on which lie the data. A few ex-
amples of manifold learning methods include: multidimensional scaling (projecting samples on a low-
dimensional space while translating as much information of pairwise distances as possible) ISOMAP
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(extending multidimensional scaling by factoring in the distances among neighbors and geodesic dis-
tances) [219], local linear embedding (linearly constructing each point from its neighbors to maintain
local structure) [195].

Given the complexity to make probabilistic modeling and manifold learning online-compatible and
online-efficient, we turn our attention to autoencoders. The following subsections provide more details
about autoencoders and some popular variants.

2.1 Autoencoders

An autoencoder is a neural network that reconstructs its own input. It is composed of an encoder 𝑓
and a decoder 𝑔 (Figure 5.1). We denote W𝑓 and W𝑔 the weights of the encoder and of the decoder,
respectively. The encoder receives an input 𝑥 and forwards it through the hidden layers, compressing 𝑥
in the process via non-linear transformation. The last layer of the encoder produces the final features
ℎ = 𝑓 (𝑥), also called the representation. The decoder passes the features ℎ through its own hidden
layers to reconstruct the original input at the final layer, i.e., 𝑥̂ = 𝑔(ℎ) = 𝑔(𝑓 (𝑥)).

Figure 5.1: In an autoencoder, the encoder encodes an input 𝑥 to a representation ℎ,
and the decoder reconstructs 𝑥̂ from ℎ

A reconstruction error is calculated on the difference between 𝑥 and 𝑥̂ and is backpropagated in the
network to update the weights between the layers, such that the new weights reduce the reconstruc-
tion error in the next iteration. Training an autoencoder consists of adjusting W𝑓 and W𝑔 iteratively
until the reconstruction errors are minimized over all the training examples. Once the autoencoder
has found the optimal weight values and the reconstruction error cannot be reduced further, the au-
toencoder has converged and knows how to extract a set of features that allow it to reconstruct the
inputs accurately. After convergence, we only use the encoder to extract features.

The reconstruction error is calculated by a loss function. Let  be the loss function that com-
putes the difference between 𝑥 and 𝑥̂ , the goal is to find the parameters 𝜃̂ = [W𝑓 ,W𝑔] such that the
reconstruction error averaged over all 𝑁 training examples is minimized (5.1).

𝜃̂ = argmin
𝜃∈Θ

1
𝑁

𝑁
∑
𝑖=1

 (𝑥(𝑖), 𝑔(𝑓 (𝑥(𝑖)))) (5.1)

(5.1) is sometimes written to (5.2), where 𝐽 (𝜃; 𝑋 , 𝑦) indicates the objective function with respect to
the parameters 𝜃 and the data𝑋 . The objective function is a more generalized form of the loss function.
For autoencoders, we only have the inputs 𝑋 without accompanying labels 𝑦.
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𝜃̂ = argmin
𝜃∈Θ
𝐽 (𝜃; 𝑋) (5.2)

The choice of the loss function depends on the types of the input data. For instance, mean squared
error is commonly used for continuous inputs, while negative log-likelihood is often used for binary
inputs and cross-entropy loss for discrete inputs.

Usually, an autoencoder has a bottleneck architecture, also called an undercomplete architecture,
where the representation size is smaller than the input size. It forces the autoencoder to compress
the original data to a more compact form while preserving the representation capacity. In addition, an
autoencoder can be regularized tomake it insensitive to small changes in the inputs, and also to prevent
it from learning the identity function. This leads to several variants of regularized autoencoders.

2.1.1 Variants of regularized autoencoders

Several forms of regularized autoencoders exist, among which the three most popular variants are
sparse autoencoders, denoising autoencoders, and variational autoencoders.

Sparse autoencoders Sparse autoencoders are autoencoders with sparsity constraint, in which
most entries in the feature vectors are zero or close to zero. Such sparse representation contains few
active units, but those units are learned from unique statistical features from the input data. Sparse
autoencoders are obtained by adding a penalty on the representation ℎ [26]:

𝐽 (𝜃; 𝑋) = 𝐽 (𝜃; 𝑋) + 𝛼Ω(ℎ) (5.3)

where 𝛼 > 0 dictates the influence of the penalty. A large 𝛼 means stronger penalization and adds
more sparsity to the resulting representations.

Denoising autoencoders Denoising autoencoders attempt to learn the input distribution while
undoing the effect of injected noises. The inputs are corrupted with noise and the autoencoder must
try to reconstruct the original, non-corrupted inputs. Given a corruption process 𝑞(𝑥̃ ∣ 𝑥) that produces
a noisy data sample 𝑥̃ from an original sample 𝑥 , a denoising autoencoder is trained on pairs of (𝑥, 𝑥̃)
to optimize the objective function (5.4):

𝐽 (𝜃; 𝑋) =
𝑁
∑
𝑖=1
𝔼𝑞(𝑥̃(𝑖) ∣𝑥(𝑖))[(𝑥

(𝑖), 𝑔(𝑓 (𝑥̃(𝑖)))] (5.4)

such that the expected loss on the errors between the inputs 𝑥(𝑖) and the reconstruction from the
corrupted version 𝑥̃(𝑖) is minimized.

Variational autoencoders Variational autoencoders penalize the representations by using the
Kullback-Leibler divergence to impose a distribution on the feature space. Different from sparse and
denoising autoencoders, variational autoencoders are generative: instead of learning a direct paramet-
ric mapping from the input space to the encoding space, it learns the parameters of the distribution
modeling the input data. In other words, a variational autoencoder learns a latent space model of the
input space.
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The encoder approximates the posterior distribution 𝑝(𝑧 ∣ 𝑥), where 𝑧 is a data example sampled
from the latent distribution modeling 𝑥 . Given a data example 𝑥 , the encoder outputs the parameters
that define 𝑝(𝑧 ∣ 𝑥). For example, if we constraint the latent space to be Gaussian, the encoder will
output the mean 𝑧̄ and the variance 𝜎2, from which a sample 𝑧 can be randomly drawn from 𝑝(𝑧 ∣ 𝑥).
Then, the decoder maps the sample points 𝑧 back to the original input space by approximating the
conditional distribution 𝑝(𝑥 ∣ 𝑧).

𝐷𝐾𝐿(𝑃 ∣∣ 𝑄) = 𝔼𝑥∼𝑃 [𝑙𝑜𝑔
𝑃(𝑥)
𝑄(𝑥)]

(5.5)

A variational autoencoder is optimize on two loss functions: one is the reconstruction loss (e.g.,
mean squared error, cross-entropy), and the other is the Kullback-Leibler divergence between the la-
tent space and the input space. The Kullback-Leibler divergence measures the distance between two
distributions 𝑃 and 𝑄 (5.5), which in this case is 𝑝(𝑧 ∣ 𝑥) and 𝑝(𝑥). The Kullback-Leibler divergence
acts as a regularization term that encourages 𝑧 to be sampled from many values close to 𝑥 , instead of
being collapsed to one single point that most likely generates 𝑥 , in order to construct a well-formed
latent space [82].

2.1.2 Evaluation of learned representations

A good representation is one that disentangles the underlying factors of variation in the input data
[26]. However, because autoencoders work in unsupervised scenarios and are not interpretable (the
resulting features are numerical values with no explicit meaning), it is difficult to conclude on the
quality of the learned representations using common metrics such as accuracy or precision. Still, it
is possible to indirectly assess the quality of the learned features. The reconstruction errors are the
foremost metrics that reflect the goodness of the representations, but an autoencoder with a large
capacity1 can produce a small error on the test set even if it does not generalize well.

Another evaluation approach is to test the learned representations on a downstream supervised
task, such as classification or regression. If the downstream model returns better results using the
learned representations than using the original inputs, it means the autoencoder generalizes well and
succeeds to learns useful latent features.

One can also visualize the learned features to spot the structure of the embedding and to verify
whether it is consistent with the structure of the original inputs. However, because low-dimensional
visualization often rely on dimensionality reduction techniques which require their own hyperparam-
eters, selecting inappropriate parameters will impact the results.

There exist several setups for evaluating a representation learning model but there is no standard
way to evaluate the representations learned by autoencoders [173]. In many cases, the evaluation is
application-dependent.

3 Long short-term memory autoencoder

We now detail the implementation of the long short-term memory autoencoder (LSTM-AE). First, we
define a feature vector as follows.

1The capacity of a model is its ability to approximate multiple functions mapping an input space to an output space. For
neural networks, their capacity is defined by the number of layers and nodes in their architecture.
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Definition 3.1 (Feature vector). A feature vector𝑋 𝑇𝑆𝑚 obtained from a cycle 𝐶𝑇𝑆𝑚 by a system 𝑆𝑚 ∈ 
at the time 𝑇 is a vector of 𝑃 real-valued numbers, i.e., 𝑋 𝑇𝑆𝑚 = [𝑥

(1), ..., 𝑥(𝑃)] ∈ ℝ𝑃 , and is associated to
one cycle type 𝑦𝑇𝑆𝑚 and one set of context variables 𝑐𝑡𝑥𝑡

𝑇
𝑆𝑚 .

The architecture that combines the long short-termmemory cells in each layer of the autoencoder is
described in Section 3.1. Then, we extend it by including the contextual information to train the LSTM-
AE to reconstruct its inputs and to classify the context simultaneously, making it aware of context-
induced perturbations (Section 3.2).

3.1 A simple encoder-decoder architecture

In principle, a layer in an autoencoder can have any neural architecture. It can be a densely-connected
layer, a convolutional layer, a recurrent layer, et cetera. As we work with cycles, we chose a recurrent
architecture to handle sequential data adequately. Multiple variants of recurrent architectures exist,
for instance, simple recurrent neural networks, long short-term memory (LSTM), and gated recurrent
units. Through experimentation, we pick the LSTM architecture because it overcomes the exploding
gradients phenomenon and produces the most satisfactory reconstruction. An LSTM architecture con-
tains recurrent cells, connected one to another in chain (Figure 5.2). Each cell has four gates to drive
the information flow in the LSTM network.

Figure 5.2: The inner structure of an LSTM cell [176]

• The forgetting gate regulates the amount of information allowed to enter this cell from the pre-
vious one via a sigmoid function (0 means that no information is allowed and is all forgotten,
while 1 means that all the information is kept).

• The update gate and the information gate, respectively, decide which position in the input data
is to be updated (via the sigmoid function) and by how much (via the tangent function).

• The output gate combines the information from the forgetting gate and the aggregation of the
update and information gates to compute the output of this cell which is then fed to the next
cell.

Each hidden layer in the LSTM-AE adopts the LSTM architecture, such that each layer is one block
of a LSTM unit2 (Figure 5.2) and the dimension of the output ℎ𝑡 can be customized. The output dimen-
sion of consecutive layers is decreasing to form a bottleneck architecture.

The full architecture of the LSTM-AE is shown in Figure 5.3. We build a network of seven layers
for the encoder and seven layers for the decoder. The dimension of the output decreases from 160 to
40, with 40 being the size of the final feature vectors. We select this architecture empirically: we test

2According to the implementation of the LSTM layer on keras (link to source code)

https://github.com/keras-team/keras/blob/e6784e4302c7b8cd116b74a784f4b78d60e83c26/keras/layers/rnn/lstm.py#L46
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different architectures with varying number of layers and dimensions and compare the reconstructed
cycles of each candidate. Finally, we choose the architecture shown in Figure 5.3 because it is the one
that retains most information from the input cycles.

Figure 5.3: The LSTM-AE has an encoder (top row, blue) and a decoder (bottom row,
green). The feature vector is obtained in the last layer of the encoder (orange). The input
layer (yellow) receives a cycle𝑋 and the output layer (yellow) returns the reconstruction

𝑋̂ of 𝑋 . The numbers denote the dimension of each cell.

However, this architecture ignores contextual information of the cycles. Yet, the context plays an
important role in distinguishing a false anomaly from a real anomaly. For example, the data generated
by a PAS in two train stations may differ slightly due to the different configurations in these stations,
but in both cases the PAS is in a normal condition. Excluding the context from the training of the
LSTM-AE may incorrectly produce anomalous features for normal cycles. Therefore, we extend this
architecture by incorporating the contextual information in a joint classifier.

3.2 LSTM-AE with self-supplied labels

To make the LSTM-AE aware of the contextual information, we connect to the encoder a classifier
mapping a cycle to its own context. By doing so, the LSTM-AE simultaneously learns to represent a
cycle and to classify the cycle’s context. As a result, the weights of the encoder are adjusted by both
the reconstruction accuracy and the context classification accuracy. The intuition is that, from a cycle,
the autoencoder learns to extract features that are representative (good reconstruction) and map well
to the context in which this cycle is generated (good context recognition).

There are several context variables associated to a cycle. We choose the train stations as the target
label for classification, because the stations are an important factor that cause noises in the cycles,
according to a railway expert. Because the station information is always available for each cycle, we
always have the labels for the classifier of the LSTM-AE. Thus, no annotation effort is needed.

The joint architecture is shown in Figure 5.4. Beside the decoder, the LSTM-AE has an additional
branch connected to the last layer of the encoder (pink). This branch has two layers: one dense layer
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of 40 units, followed by another dense layer that returns the classification labels of the context. We
denote 𝑔𝑐 the function of the classifier, andW𝑐 its weight matrix.

Figure 5.4: The joint architecture of the LSTM-AE that connects both the decoder and
the context classifier to the last layer of the encoder

Let 𝑔 be the loss function of the decoder, 𝑐 the loss function of the classifier, 𝑁 the number
of training examples, 𝑃 the size of the feature vector, and 𝐶 the number of class labels (the number
of train stations), we choose the mean squared error (MSE) for 𝑔 (5.6) because the decoder outputs
real-valued vectors, and categorical cross-entropy (CCE) for 𝑐 (5.7) because the classifier deals with
multiclass classification. We denote 𝑥(𝑖) the 𝑖𝑡ℎ training cycle and 𝑥̂(𝑖) its reconstruction by the decoder,
𝑦(𝑖) the true station of the 𝑖𝑡ℎ training cycle and 𝑦̂(𝑖) the prediction issued by the classifier.

The original formula of the MSE is:

𝑀𝑆𝐸 (𝑥(𝑖), 𝑥̂(𝑖)) =
1
𝑁

𝑁
∑
𝑖=1
(𝑥(𝑖) − 𝑥̂(𝑖))

2

but because a cycle is a multivariate time series of 𝐷 measurements, the MSE of a cycle and its
reconstruction is the average of the MSE of each univariate series in the cycle, and the MSE of each
univariate series is the averaged MSE over the 𝐾 timesteps3 in the cycle (5.6).

𝑔 (𝑥(𝑖), 𝑥̂(𝑖)) =
1
𝐷

𝐷
∑
𝑗=1
𝑀𝑆𝐸(𝑖)𝑗 =

1
𝐷

𝐷
∑
𝑗=1(

1
𝐾

𝐾
∑
𝑘=1
(𝑥
(𝑖)
𝑗 [𝑘] − 𝑥̂

(𝑖)
𝑗 [𝑘])

2

)
(5.6)

For the CCE loss (5.7), the metrics is not computed directly on the value of 𝑦(𝑖) and 𝑦̂(𝑖), but on the
probability 𝑝(𝑖)𝑘 associated to each 𝑘𝑡ℎ train station of the 𝑖𝑡ℎ example (1 ⩽ 𝑘 ⩽ 𝐶).

3As cycles may differ slightly in length, we pad them with 0.0 to have equal-length cycles.
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𝑐 (𝑦(𝑖), 𝑦̂(𝑖)) = −
𝐶
∑
𝑘=1
𝑝(𝑖)𝑘 log 𝑝̂

(𝑖)
𝑘 (5.7)

The objective function to find the optimal parameters 𝜃̂ = [W𝑓 ,W𝑔 ,W𝑐] of the joint LSTM-AE is
thus the sum of the MSE and CCE losses over all the training examples (5.8). To update the weights 𝜃
at each iteration, the gradient used for backpropagation is the gradient of the sum of the two losses,
and by linearity, is also the sum of the gradient of each loss.

𝐽 (𝜃; 𝑋 , 𝑦) =
1
𝑁

𝑁
∑
𝑖=1
[𝑔 (𝑥(𝑖), 𝑥̂(𝑖)) + 𝑐 (𝑦(𝑖), 𝑦̂(𝑖))] (5.8)

Once the model converges, we only use the encoder to extract features.

4 Experimental results

To validate the hypotheses of the features block, the LSTM-AE is expected to yield similar reconstruc-
tions of cycles in both offline and online settings (𝐻 1𝑓 ), be ready to issue usable features earlier than
an LSTM-AE operating in offline mode (𝐻 2𝑓 ), and produce features that maintain their characteristics
with respect to the original cycles (𝐻 3𝑓 ).

We test the LSTM-AE, with and without a classifier, on the NAT and R2N data sets. We refer to the
version without a classifier as a plain model, and the other the joint model. We run the experiments
on a Windows 10 machine with an Inter(R) Core(TM) i7-8850H CPU@ 2,60GHz 2,59GHz, 16GB RAM,
and an NVIDIA GPU Quadro P3200. The models are implemented with tensorflow [154].

We train one LSTM-AE for each cycle type of each data set. We form the training set by retaining
the least noisy cycles from a random sample of tens of thousands of cycles:

1. We filter out cycles whose length lie outside of [ 𝑄1−1.5×𝐼𝑄𝑅, 𝑄3+1.5×𝐼𝑄𝑅 ] of the sample’s cycle
lengths, where 𝑄1 and 𝑄3 denote the first and third quartile, 𝐼𝑄𝑅 = 𝑄3 −𝑄1 is the inter-quartile.

2. We compute the area under the curve4 of the remaining cycles and remove the cycles whose area
lie outside of the interval [ 𝑄1 − 1.5 × 𝐼𝑄𝑅, 𝑄3 + 1.5 × 𝐼𝑄𝑅 ] of the sample’s areas.

The cycles remaining after these preprocessing steps form the training set. The testing set does
not include any of the training cycles. Table 5.1 shows the number of cycles of the training and testing
sets of each type of cycles on each data set.

Table 5.1: Number of training and testing cycles of each data set

NAT R2N

Door opening Training set 12,671 13,456

Testing set 23,316 21,181

Door closing Training set 13,729 14,224

Testing set 23,123 11,851

4A curve in this context means a univariate time series in a cycle. A cycle being a multivariate time series, the area under
the curve of one cycle is the average of the areas of the univariate series.

https://www.tensorflow.org/
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Because the cycles may slightly differ in duration, we pad them such that all cycles of the same type
have the same number of timesteps5. We also scale the data to make the signals from all the variables
close in value range. The final profiles and envelopes of each variable of each cycle type are shown in
Figure 5.5a and 5.5b, for NAT and R2N data respectively. The profile of a cycle type is the average at
each timestep for each variable of all the cycles of this type. The envelope of a cycle type shows the
maximum and minimum value a cycle may have at each timestep for each variable. The profile and the
envelope are computed independently for each variable. In the cycles, we keep only analog variables
from which features are learned: the position of the electric motor, the voltage of the electric motor,
the current of the electric motor, locked limit switch (LLS), and closed limit switch (CLS).

(a) NAT training cycles

(b) R2N training cycles

Figure 5.5: Profile and envelope of the opening and closing cycles (padded) from NAT
and R2N data sets.

In the following sections, we describe the experiments carried to validate the hypotheses 𝐻 1𝑓 , 𝐻 2𝑓 ,
and 𝐻 3𝑓 .

4.1 Reconstruction capacity

In this experiment, we verify whether an LSTM-AE trained online converges to the same performance
as that of an LSTM-AE trained offline in batch mode. We show the results on the joint model only,
because the observations obtained with the joint model also apply to the plain model. We train the
online and offline versions of the LSTM-AE in three ways, respectively noted OFF, ONL, and OLI.

The offline version (OFF) is trained in a traditional batch setting: all the training cycles are fed to
the LSTM-AE at once and the network is trained on 300 epochs. A training cycle is processed 300 times
and the weights 𝜃 are adjusted 300 times on the gradients of the losses from tens of thousands cycles.
During training, the LSTM-AE does not return any features.

5We pad the opening and closing cycles separately.
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The online version (ONL) is trained sequentially on each incoming cycle. The LSTM-AE is updated
once on each new cycle. There is no training phase for the online version and the LSTM-AE returns
the feature vector for each incoming cycle. The ONL model is updated much more frequently than the
OFF model, but each update of the former includes far fewer training examples.

We train another model in an online incremental fashion (OLI) so that for each incoming cycle,
the network is updated on the new cycle and 299 previous cycles, i.e., the network is updated on a
mini-batch of 300 cycles at a time. Therefore, each training cycle is processed 300 times as well. Our
intention is to align as much as possible the online version to the offline version for fairness.

Figure 5.6 and 5.7 show the training losses of these three versions on the opening and closing cycles
of NAT and R2N data, as well as the reconstruction capacity of each version on an example cycle. Note
the difference in the number of iterations between OFF versus ONL and OLI: the number of iterations of
OFF is the number of training epochs, while ONL and OLI are trained on-the-fly on incoming instances,
thus the number of iterations of these two models is the number of training cycles.

Figure 5.6: Training losses and reconstruction of one example cycle of OFF, ONL, and
OLI models on NAT cycles

In all cases, OFF returns the closest reconstruction to the original cycle and achieves the lowest
losses among the three models. It implies that it is preferable to update the weight 𝜃 on the entire
training data in each iteration than to update it partially. On the side of online models, OLI is slightly
better than ONL, but its superiority is not significant.

In this setup, the hypothesis 𝐻 1𝑓 is not validated, as the training configuration seems to favor the
offline model (OFF) over the online ones (ONL, OLI).
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Figure 5.7: Training losses and reconstruction of one example cycle of OFF, ONL, and
OLI models on R2N cycles

4.2 Reactivity of offline and online feature learning

In Chapter 4, we evaluate the reactivity of InterCE by observing its temporal accuracy, and a model
that reaches a stable accuracy earlier is the one with a superior reactivity. However, we cannot apply it
to this experiment. The three models are trained in starkly different settings: while the offline model is
trained on all training examples over multiple epochs, the online models are trained continuously on
a single small batch of examples for one epoch. Also, the performance of the offline model is notably
superior to that of the two online models (Section 4.1). Even if an online model converges faster than
the offline one, the features of the former are not truly usable due to its weak reconstruction ability.

Therefore, for this experiment, we consider that a model is only usable after it has processed all the
training examples, and regard the training time of each model as its time to convergence. Figure 5.8

Figure 5.8: Training time of each model on both data sets
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plots the training time of each model, for each cycle, of each data set. In both cases, OLI has the longest
training time. ONL and OFF are close in training time on NAT data, but the gap is larger on R2N data,
with OFF finishing its training much faster - we do not yet know the reason behind its fast execution.

Unfortunately, the hypothesis 𝐻 2𝑓 is not validated, as the offline version of the LSTM-AE achieves
a better performance both in terms of reconstruction capacity and of convergence time.

4.3 Reduced information loss

In this experiment, we compare whether the features learned by the LSTM-AE reduce information loss
better than the indicators identified by a human expert. For the feature vectors, we use the offline
LSTM-AE to extract the features, since it outperforms its online counterparts. The expert indicators
are extracted by an existing expert system that was made for both data sets. The size of the feature
vectors by LSTM-AE and of the expert indicator vectors is displayed in Table 5.2.

Table 5.2: The size of the feature vectors and of the expert indicator vectors

NAT R2N

Door opening LSTM-AE 40 40

Expert indicators 25 83

Door closing LSTM-AE 40 40

Expert indicators 24 70

Because the original cycles cannot be reconstructed solely from the expert indicators, we cannot
directly quantify the amount of information loss via the reconstruction loss used to train the LSTM-AE.
Instead, we assess the information loss via a ranking evaluation. The intuition is that, if the features
are truthfully learned from the original cycles, anomalous cycles will result in anomalous features, and
normal cycles will result in normal features. Not only the abnormality should be preserved, but the
degree of abnormality should be maintained as well. In other words, the top k most anomalous cycles
should map to the top k most anomalous features.

Let 𝑘 = [ 𝐶(1), … , 𝐶(𝑘) ] and 𝑘 = [𝑋 (1), … , 𝑋 (𝑘) ] respectively be the ranking of the 𝑘 most anoma-
lous cycles and 𝑘 most anomalous features, such that ∀𝑖, 𝑗 ∈ [1, … , 𝑘], 𝑖 < 𝑗 , 𝐶(𝑖) is more anomalous
than 𝐶(𝑗), and similarly for 𝑋 (𝑖) and 𝑋 (𝑗). Our goal is to verify whether the ordering of 𝑘 matches with
that of 𝑘 . We further distinguish the ranking of expert indicators 𝐸 from the ranking of LSTM-AE
features 𝐿.

Let 𝐶 be the reference profile of clean cycles that are used to train the LSTM-AE (Table 5.1), 𝑋𝐸 the
profile of clean expert indicators extracted from the clean cycles, and 𝑋𝐿 that of the LSTM-AE features.
The cycles used for testing are all excluded from this clean set. The ranking of the cycles, of the expert
indicators, and of the LSTM-AE features are obtained as follows.

• The abnormality of a cycle is computed by the area under the curve of this cycle to the profile
𝐶. The greater the area is, the more this cycle deviates from 𝐶 and the more anomalous it is.

• The abnormality of an expert indicator vector is the Euclidean distance between this vector to
the profile 𝑋𝐸 . The greater the distance is, the more anomalous this vector is with respect to 𝑋𝐸 .

• The abnormality of an LSTM-AE feature vector is the Euclidean distance between this vector to
the profile 𝑋𝐿. The greater the distance is, the more anomalous this vector is with respect to 𝑋𝐿.
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The experiment is set up as shown in Figure 5.9. The ground-truth ranking  is obtained by sorting
the cycles in the test set (𝐶𝑡𝑒𝑠𝑡 ) by their area under the curve to the profile 𝐶 in the descending order.
The ranking of the LSTM-AE feature vectors 𝐿 is obtained by sorting the distance of the test feature
vectors 𝑋̂𝐿 to 𝑋𝐿, similarly for 𝐸 via 𝑋̂𝐸 and 𝑋𝐸 . We want to see, between 𝐸 and 𝐿, which ranking
is closer to the ground-truth 𝐶.

Figure 5.9: Configuration of the cycle-feature ranking experiment

To compare two rankings, we use the normalized discounted cumulative gain (nDCG) [114] that
evaluates the quality of an algorithm-based ranking with respect to a ground-truth ranking. The score
is bounded between 0 and 1, with 1 being the perfect match. The nDCG is commonly used in informa-
tion retrieval and assesses the quality of a ranking of items based on the relevance score (also called
gain) of each item and their position. An item with a higher relevance score is more relevant to the
user query and should be placed near the top of the ranking.

First, the discounted cumulative gain of the top 𝑘 items is computed by summing, for each position
from 1 to 𝑘, the cumulative gain (relevance score) divided by a logarithmic discount factor (5.9). The
idea is that the lower the position of a document, the less likely a user consults it, thus the need of a
rank-based discount factor. The logarithm base can be any value; we choose the common base 2.

𝐷𝐶𝐺@𝑘 =
𝑘
∑
𝑖=1

𝐺𝑖
log2(𝑖 + 1)

= 𝐺1 +
𝑘
∑
𝑖=2

𝐺𝑖
log2(𝑖 + 1)

(5.9)

The ideal discounted cumulative gain (iDCG) is computed similarly, but the relevance score 𝐺𝑖 at
each position 𝑖 is replaced by the relevance score of the ground-truth ranking. The iDCG returns the
maximum amount of gain on an ideal ranking. The nDCG score is equal to 𝐷𝐶𝐺@𝑘

𝑖𝐷𝐶𝐺@𝑘 .

In this experiment, the relevance score of each item is the area under the curve of the cycles in 𝑘 .
The ranking of the cycles and of the vectors are obtained by sorting the cycles/vectors in a descending
order of their area/distance. That is, we rank the test cycles by their area to the profile 𝐶, the test
indicator vectors and the test feature vectors by their Euclidean distance to the profiles 𝑋𝐸 and 𝑋𝐿,
respectively. We refer to the ranking of cycles, of the indicator vectors, and of the feature vectors
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respectively as , 𝐸 , and 𝐿. We omit the notation 𝑘 as in top 𝑘 because the ranking is done on the
entirety of the test data.

Once we have the ranking, we use the areas as the relevance scores for nDCG@k. The ideal rele-
vance scores are the ranked areas of 𝐶. Then, we compare nDCG@k(𝐸 ,) to nDCG@k(𝐿,) with
varying values of 𝑘, on a small range [100, . . . , 1000] and on a large range [1000, . . . , 10000]. Figure 5.10
shows the results on the small range of 𝑘 on the first row, and on the large range of 𝑘 on the second
row. The features and indicators of the opening and closing cycles are evaluated independently. Please
note that the score range is different for each data set: for NAT data, the nDCG@k score is shown in
[0.8, 1.0], while for R2N data, the nDCG@k score is shown in [0.0, 1.0].

(a) Results on NAT cycles and features

(b) Results on R2N cycles and features

Figure 5.10: Evaluation of cycle-feature ranking via the nDCG@k metrics
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The LSTM-AE features outperform the expert indicators in almost all cases, except in the open-
ing cycles of NAT data, albeit by only a small gap (approximately 0.01 in nDCG score). This result
highlights the strength of the LSTM-AE over the expert system for learning features. As the LSTM-AE
produces features whose ranking is closer to that of the original cycles, its ability to preserve informa-
tion is better than manual feature engineering.

Both the LSTM-AE and the expert system perform very well on NAT data, achieving nDCG@k
scores above 0.85 for the opening and closing cycles. On R2N data, the expert system and the joint
LSTM-AE are less successful, but interestingly, the plain LSTM-AE achieves significantly higher scores
than the other two models. This is surprising, considering that R2N data contain more perturbations
than NAT data and have fewer train stations. Fairly speaking, the plain LSTM-AE has a competitive
performance to the joint version; even if the latter produces better features on NAT data, the difference
in performance is not substantial.

The LSTM-AE can be potentially improved by having more than 40 features, or by adding more
contextual variables in the classifier. For now, we only use the information of the train stations. Other
contextual variables can be of use, such the outside temperatures, the mission code of each train, the
creation time of the cycles (useful to recognize peak and off-peak hours), et cetera.

This experiment shows that the LSTM-AE is able to produce features whose characteristics are
closer to the original cycles than the expert system, and thus is better at reducing information loss.
Therefore, the hypothesis 𝐻 3𝑓 is validated.

5 Conclusion

In this chapter, we seek a method to learn relevant features from the cycles. To this end, we develop
two versions of a long short-term memory autoencoder (LSTM-AE). The plain version has the tra-
ditional structure of encoder-decoder and solely focuses on learning to reconstruct cycles. The joint
version connects a classifier that maps a cycle to its contextual train station to the encoder, in order
to encourage the encoder to learn features that are truthful to the original cycles and robust against
contextual noises. We evaluate both versions of the LSTM-AE on the NAT and R2N data sets to validate
the following hypotheses:

(𝐇𝟏𝐟 ) Online feature learning performs superior to, or at least on part with, offline feature learning
in terms of accuracy.

(𝐇𝟐𝐟 ) Online feature learning is more reactive than offline feature learning.
(𝐇𝟑𝐟 ) Feature learning results in better information preservation than feature engineering.

We implement three paradigms of the LSTM-AE for each version (plain and joint): offline, online,
and online incremental. The offline model is trained on the entirety of training cycles on multiple
(𝑘) epochs. The online model updates its weights once on each incoming training cycle. The online
incremental model updates its weights once on a small batch of training cycles, including the new one
and 𝑘 − 1 previous cycles.

The experimental results show that the offline model is the most performing, achieving the highest
reconstruction capacity and having a lower training time to the online counterparts. Unfortunately,
this means that 𝐻 1𝑓 and 𝐻 2𝑓 cannot be validated. On the other hand, the online incremental model is
better than the online model in terms of reconstruction capacity. This implies that it is better to update
a neural network on several training examples than on a single one.
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To study the hypothesis 𝐻 3𝑓 , we compare the features extracted by the (offline) plain and joint
LSTM-AE to the indicators engineered by an expert system. Information preservation means the char-
acteristics, or the anomalous ranking of cycles, should be preserved in their resulting features. We
evaluate this criterion via a ranking assessment. The results show that the LSTM-AE features are bet-
ter at preserving the ranking than the expert indicators in most cases, except for the opening cycles of
NAT data, but the gap is small (0.01 in difference via the normalized discounted cumulative gain score).
Therefore, 𝐻 3𝑓 is validated. Nonetheless, we note that the joint version does not largely outperforms
the plain version.

In conclusion, the experiments highlight that a learning algorithm can outperform the baseline
expert system in extracting good features in the offline setting. The online setting needs further im-
provement to close the gap between offline and online feature learning.

Also, we discover a crucial flaw that is inherent to autoencoders: it erases perturbations from the
inputs in favor of a smoother reconstruction. Because autoencoders aim to learn the most representa-
tive abstraction of the inputs, they tend to be invariant to perturbations, for instance, a sudden peak in
the signals. Yet, the noises in the input cycles may indicate an anomaly manifesting in a system. Fu-
ture works include, but not limited to, adding explanability to the LSTM-AE to interpret the magnitude
of change in the features with respect to the perturbations in the cycles, adjusting the loss function
and/or the architecture of the network to retain important perturbations and to improve the feature
quality, modifying the online training setting to make the online models competitive to the offline
counterparts.

Finally, the features extracted by the LSTM-AE become the inputs to the next task, which is health
detection. The goal is to discover and maintain a set of health profiles from the stream of feature
vectors, and from these health profiles, to continuously monitor the health of each system.
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Health detection
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Summary

To address adaptive and continuous learning for predictive maintenance on an unlabeled
stream of feature vectors, we propose Continuous Health Monitoring using Online Cluster-
ing (CheMoc) as an unsupervised method that captures evolving health profiles of the mon-
itored systems incrementally, assesses their working condition continuously via an adaptive
health score, and works efficiently on streaming data. The works in this chapter address four
hypotheses: 𝐻 1𝑑 , 𝐻 2𝑑 , 𝐻 3𝑑 , and 𝐻 4𝑑 .

The experimental results show that CheMoc succeed to discover a set of health profiles of
the systems that correspond to the underlying physics of the anomalies linked to the PASs,
as confirmed by a railway expert. CheMoc attains a satisfactory accuracy as it consumes
only a moderate amount of computational resource to process the entire stream. Although
we do not have a ground-truth to assess the accuracy of the health score computation, the
evolution of the scores is coherent to the data trajectory of the systems.
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1 Introduction

After cycle extraction and feature learning, we obtain a stream of unlabeled feature vectors from all
systems in the fleet. On this stream, we determine the evolving health of the systems and identify the
anomalies affecting them.

We define the health of a system as its extent of being free from anomaly (Section 3.4), quantified by
a score bounded between 0 and 1 that locates the system health on the spectrum of being normal (close
to 0) or being anomalous (close to 1). Because the railway operational constraint enforces that most
of the fleet must be functional at any time, the majority of the data from the fleet defines the normal
health. A normal system is one that produce data similar to the data of most systems in the fleet. We
refer to this normalcy as a reference or typical profile. An anomalous system is one whose data deviate
from the reference; an anomaly is any manifestation observable from the data that deviates a system
from the typical behavior.

Determining the health of a system can be tackled in various ways. A system can be classified
as “healthy” or “unhealthy” at a given moment. Alternatively, the health score can be projected via
regression. However, there are no labels related to the system health, and it is difficult to label the health
scores manually due to various factors (the amount of data, the speed of the stream, the uncertainty
in identifying a system health, human inaccuracy). As a consequence, supervised or semi-supervised
methods are not easily applicable in this scenario.

Therefore, we propose Continuous Health Monitoring using Online Clustering (CheMoc) as an
unsupervised method that employs online clustering to continuously monitor the system health on an
unlabeled stream of feature vectors. We formulate machinery health monitoring as a clustering task.
Our intuition is that the data of different systems under the same health profile form a cluster, and the
assignment of data in the clusters reflects not only the system health but also the type of manifesting
anomalies and their severity.

We use DenStream [44] as the core online clustering algorithm for CheMoc. Due to the complexity
of machinery health monitoring and railway operational constraints, we modify DenStream as follows:
we omit the offline clustering process because the online phase is sufficient to maintain relevant clus-
ters; we adjust the density parameters 𝜖 dynamically based on the radii of the clusters; we omit cluster
pruning to stabilize the learning of health profiles; we store, in a cluster, the summary statistics of each
system that produces data in it while ensuring fast and incremental cluster update.

The four hypotheses addressed in this chapter are:

(𝐇𝟏𝐝) The clusters represent the health profiles of the fleet.
(𝐇𝟐𝐝) Computing the health score by considering the data a system creates in the health profiles

results in an accurate health detection, within an observable perimeter from the data.
(𝐇𝟑𝐝) Online clustering reaches convergence earlier than offline clustering, if no drift occurs.
(𝐇𝟒𝐝) Online clustering keeps track of the temporal evolution of the health profiles via cluster up-

dates, while offline clustering cannot.

Due to the lack of ground-truth and manual examination of the clusters, we evaluate CheMoc only
on the R2N data set. The results show that CheMoc is able to capture relevant health profiles of the
fleet, as confirmed by a railway expert. Also, CheMoc finishes processing the data of one year with
more than 1 million data points in approximately one hour, using a total of 600 MB memory to store
internal data.
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This chapter is organized as follows. Section 2 reviews previous works on machinery health mon-
itoring. Section 3 describes CheMoc in detail. Section 4 shows the experimental evaluation. Section 5
concludes this chapter.

2 Related works

Machinery health monitoring is often studied under the lens of anomaly detection or fault diagnos-
tics. For these tasks, the ground truth is usually unavailable or is very limited. Relying on supervised
methods is not practical, as sensorized systems may generate an enormous volume of unlabeled data
in a short period of time, making manual labeling infeasible. Because the data arrive continuously,
repeatedly retraining an intricate model is suboptimal, in comparison to online methods that learn in-
crementally on infinite amount of data. Nonetheless, a substantial literature body in health monitoring
adopts the traditional offline approach.

Supervised offline learning is a popular choice if labeled data are available. Yang, Habibullah,
Zhang, Xu, Lim, and Nadarajan [241] trained a neural network on hand-picked features to learn a
smoothed non-linear approximation of the system health. Wei, Wu, and Terpenny [236] implemented
a Dynamic Variational AutoEncoder with a custom objective function to learn time-dependent health
index of complex systems and to estimate the remaining useful life. Zhang, Jiang, Li, and Zhang [250]
trained a multi-head self-attentive neural networks with gated recurrent units and variational mode
decomposition on run-to-failure data to build a health index for pumped storage units. Zhang, Gupta,
Farahat, Ristovski, and Ghosh [248] learned the health indicators as a credit assignment problem from
unlabeled sensor data using reinforcement learning, but assuming that failure data were available. A
regressor was trained on the learned indicators to estimate the remaining useful life. All models were
trained offline. In spite of significant results of supervised models, labeled data remain difficult to
obtain in practice.

On the other hand, works using unsupervised methods exist, but most are not online-compatible.
Lima, Paredes Crovato, Goytia Mejia, Rosa Righi, Oliveira Ramos, André da Costa, and Pesenti [143]
detected deterioration trends via signal decomposition and used k-means to group the extracted trends
into clusters and to build the health index, but the entire process must be rerun on new data. Melani,
Michalski, Silva, and Souza [157] used Moving Window Principle Component Analysis to detect atyp-
ical non-sudden changes in the monitored parameters and forwarded the output to a hand-crafted
Bayesian network to infer the most likely failure modes. Bayesian networks are not easy to build and
learning their parameters (conditional probability tables) is a non-trivial task. Feng, Weng, He, Han,
Lu, Ren, and Ouyang [68] estimated the state of health of Li-ion batteries by comparing new charging
data to the support vectors learned offline on clean data from fresh batteries cell. Diez, Khoa, Makki
Alamdari, Wang, Chen, and Runcie [59] detected structural damage in bridges via k-means clustering
on clean data preprocessed offline. The models were trained offline on past data before being deployed
online for damage detection and stayed constant. Later, Tian, Khoa, Anaissi, Wang, and Chen [221]
extended this work to perform real-time online damage detection using one-class support vector ma-
chines that classified new data as normal or anomalous. They coined the problem of online anomaly
detection as concept drift adaptation and devised the rules to incrementally update the support vectors.

The dominance of offline methods notwithstanding, works on health monitoring in fully online
scenario have started to emerge. Aydemir and Acar [21] detected machinery anomalies using a simple
control chart called Cumulative Sum (CUSUM). CUSUM continuouslymonitored the sensor signals and
issued an alert when the signals exceeded the predefined limits of healthy operation. Despite (or due to)
its simplicity, CUSUM disables finer analysis on the temporal evolution of the system health. Ben Ali,
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Saidi, Harrath, Bechhoefer, and Benbouzid [25] performed online monitoring of high-speed bearings of
wind turbines using Adaptive Resonance Theory 2 (ART2). Relevant features were extracted and fed to
an ART2 model to categorize the inputs as healthy, degraded, or failure. ART2 could run online and did
not require training data nor offline learning. However, it did not capture health profiles and focused
solely on classifying the system health into one of the three predefined states. Ribeiro, Pereira, and
Gama [193] predicted failure of train doors via sequential anomaly detection. The inputs were binned
and classified as normal or abnormal, then a low-pass filter smoothed the classification outputs to issue
the final anomaly alerts. They provided no insights into the degradation pattern. Most recently, Putina
and Rossi [190] employed DenStream to detect anomalies from streams of network telemetry data. The
emphasized on anomaly detection in a routing network rather than on monitoring the system health.
Still, their work provided us useful guidelines on hyperparameter selection for DenStream.

In general, previous works on this vein train complex offline models on past data or build online
unsupervised models with a primary focus on anomaly detection. To tackle machinery health moni-
toring, we use online clustering to discover the health profiles of a fleet on an unlabeled stream and
build a health index that quantifies the working condition of a system on the basis of these clusters.

We would like to note that our work goes beyond anomaly detection. Anomaly detection is the
task to find occurrences of data points that are “significantly different from the remaining data” [4].
Such anomaly often appears as a “peak” in the data. Examples of anomaly detection are fraud detection
in banking or network intrusion.

Machinery health monitoring has a larger scope than anomaly detection: beside detecting which
system is straying from a normal health, we also characterize the manifesting anomalies and quantify
their impact. Moreover, a degradation-induced anomaly occurs on the long run. It is not a peak that
suddenly appears; instead, it is a phenomenon that happens gradually and aggravates over time (if no
maintenance is carried out). We can also approach our task with sequential anomaly detection [36, 193],
the goal of which is to detect a sequence of anomalies from a larger sequence of data. Yet, sequential
anomaly detection assumes that only one anomaly is occurring, or makes no distinction on anomaly
types at all, whereas in the railway, a system can be impacted by multiple anomalies simultaneously
at different degrees.

3 Continuous health monitoring using online clustering

In this section, we introduce the fundamental concepts of CheMoc (Section 3.1) and explain how we
modify DenStream to align it to the railway constraints (Section 3.2). The input of CheMoc is a stream
of feature vectors. Hereafter, we refer to “feature vectors” and “data points” interchangeably.

The objective of CheMoc is twofold: to discover a set of evolving health profiles as clusters from
the stream, and to compute an any-time health score of any system using these clusters. To cluster
data streams, an algorithm must be able to update the clusters continuously, by creating a new clus-
ter, removing an outdated cluster, or growing/shrinking an existing cluster. CheMoc uses a modified
version of DenStream to evolve the clusters on the stream, then computes the adaptive health score of
the monitored systems from the statistics collected from these clusters (Figure 6.1).

The constraints on which we build CheMoc are the following:

• Fleet-level analysis: The data produced by systems of the same kind1 are analyzed in the same
pipeline. Despite being identically manufactured, these systems degrade differently due to their

1Two PASs are two systems of the same kind, but a PAS and a battery are two distinct types of system.
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Figure 6.1: From a stream 𝐷(𝑇 ) containing the data from all the systems in the fleet,
CheMoc uses a modified version of DenStream to update the clusters on new data, then

computes the health score 𝐻𝑆𝑚(𝑇 ) of each system 𝑆𝑚 adaptively.

diverse operational context. Using the data from all the systems allows to learn the common
behavior of the entire fleet. Even so, the health of each system is assessed individually.

• Cycle type distinction: The data describing one function of the systems is analyzed in its own
pipeline, because each cycle type is subject to different kinds of anomaly. For the PASs, we
analyze the data of the door opening cycles and of the door closing cycles independently.

• Multiple anomalies: A system can be affected by multiple anomalies simultaneously.
• Unique reference profile: As a system has only one normal behavior, we identify one unique
cluster of good health at any given time, denoted 𝐺.

3.1 Fundamental concepts

As a reminder,  = { 𝑆1, … , 𝑆𝑀 } is the fleet of 𝑀 systems. Each system produces cycles that are trans-
formed to feature vectors of dimension 𝑃 , and the sequence of feature vectors constitutes a data stream
𝐷(𝑇 ) containing the data from the fleet.

Definition 3.1 (Data stream). A data stream 𝐷(𝑇 ) is a sequence of data points produced by the
systems in  from 𝑡 = 1 to 𝑡 = 𝑇 , arriving in chronological order.

𝐷(𝑇 ) = (𝑋 𝑡𝑆𝑚 ∣ 𝑆𝑚 ∈  , 1 ⩽ 𝑡 ⩽ 𝑇 , 𝑋
𝑡
𝑆𝑚 ∈ ℝ

𝑃)

Partitioning the stream 𝐷(𝑇 ) yields a set of clusters characterizing normal and anomalous be-
haviors commonly encountered in the systems. 𝐷(𝑇 ) can be partitioned into 𝐾 evolving clusters
(𝑇 ) = { 𝐺1(𝑇 ), … , 𝐺𝐾 (𝑇 ) }, including 𝐺(𝑇 ).

Definition 3.2 (Cluster). A cluster 𝐺𝑘(𝑇 ) is a set of data points grouped together at the time 𝑇 , based
on a cluster membership condition 𝜙 depending on the algorithm being used.

𝐺𝑘(𝑇 ) = { 𝑋 𝑡𝑆𝑚 ∣ 1 ⩽ 𝑡 ⩽ 𝑇 , 𝑆𝑚 ∈  , 𝜙 }

To determine the degree of anomaly of a cluster, we assign a value 0 ⩽ 𝜔𝑘(𝑇 ) ⩽ 1 to each cluster
𝐺𝑘(𝑇 ). Intuitively, a cluster of few data hints an anomaly or a noise. Nonetheless, as new data arrive
from the stream, a small cluster at 𝑇 may precede the emergence of a new normal behavior. Judging
the abnormality of a cluster solely by its size is misleading; instead, the judgment should be based on
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the data contained in a cluster. Because an anomaly is a deviation from what is normal, the anomaly
degree of 𝐺𝑘(𝑇 ) is the difference between 𝐺𝑘(𝑇 ) and 𝐺(𝑇 ). To compute such deviation, each cluster
holds a statistic matrix that collects the statistics of the data grouped in this cluster until 𝑇 , denoted
𝑠𝑡𝑎𝑡𝑘(𝑇 ). The matrix of 𝐺(𝑇 ) is denoted 𝑠𝑡𝑎𝑡(𝑇 ).

Definition 3.3 (Statistic matrix). A statistic matrix 𝑠𝑡𝑎𝑡𝑘(𝑇 ) ∈ ℝ𝑁𝑠𝑡𝑎𝑡×𝑃 of a cluster 𝐺𝑘(𝑇 ) stores a
number of 𝑁𝑠𝑡𝑎𝑡 statistics collected incrementally for each of 𝑃 features from the data points in 𝐺𝑘(𝑇 ),
such that one entry 𝐴𝑖,𝑗 in the matrix is the 𝑖𝑡ℎ incremental statistic updated until 𝑇 of the 𝑗 𝑡ℎ feature.

𝑠𝑡𝑎𝑡𝑘(𝑇 ) = [ 𝐴𝑖,𝑗 ]1⩽𝑖⩽𝑁𝑠𝑡𝑎𝑡
1⩽𝑗⩽𝑃

The deviation of a cluster𝐺𝑘(𝑇 ) to the reference profile𝐺(𝑇 ) is the Frobenius norm of the difference
between their statistic matrix, denoted Δ𝑘(𝑇 ) (6.1).

Δ𝑘(𝑇 ) = || 𝑠𝑡𝑎𝑡(𝑇 ) − 𝑠𝑡𝑎𝑡𝑘(𝑇 ) ||𝐹 ⩾ 0 (6.1)

We scale Δ𝑘(𝑇 ) to the range of [0, 1] to make it the anomaly degree of 𝐺𝑘(𝑇 ). Because the clustering
algorithm may not find the perfect partitioning of the data, we are not always certain that a cluster is
truly an anomalous behavior. The anomaly degree of a cluster therefore implies the possibility that a
cluster is an anomaly, estimated by the deviation of this cluster from the reference 𝐺(𝑇 ).

Definition 3.4 (Anomaly degree). The anomaly degree 𝜔𝑘(𝑇 ) of a cluster 𝐺𝑘(𝑇 ) is the extent to
which 𝐺𝑘(𝑇 ) is an anomaly as observed so far on 𝐷(𝑇 ). A degree close to 1 means that 𝐺𝑘(𝑇 ) is very
likely an anomalous behavior, and inversely if close to 0. The anomaly degree of 𝐺(𝑇 ) is always 0.

𝜔𝑘(𝑇 ) =
Δ𝑘(𝑇 )

max
1⩽𝑘′⩽𝐾

Δ𝑘′(𝑇 )
∈ [0, 1] (6.2)

Because we define the health of a system its extent of being free from anomalies, the health of a
system 𝑆𝑚 at 𝑇 is aggregated from its anomaly scores. Let 𝐴𝑆𝑚𝑘 (𝑇 ) be the anomaly score that quantifies
the severity of an anomaly 𝐺𝑘(𝑇 ) that is occurring in 𝑆𝑚 at 𝑇 .

Definition 3.5 (Anomaly score). The anomaly score 𝐴𝑆𝑚𝑘 (𝑇 ) is a real-valued number in [0, 1] that
quantifies the severity of an anomaly 𝐺𝑘(𝑇 ) occurring in 𝑆𝑚 at 𝑇 , with 0 being the most normal and
1 being the most severe.

Intuitively, the anomaly is severe in 𝑆𝑚 if 𝑆𝑚 mainly produces data in 𝐺𝑘(𝑇 ) and fewer in 𝐺(𝑇 ). Let
𝐺𝑆𝑚𝑘 (𝑇 ) and 𝐺

𝑆𝑚(𝑇 ) be the set of data points from 𝑆𝑚 in 𝐺𝑘(𝑇 ) and in 𝐺(𝑇 ) respectively, the anomaly
score 𝐴𝑆𝑚𝑘 (𝑇 ) is the ratio of |𝐺𝑆𝑚𝑘 (𝑇 )| over the sum |𝐺

𝑆𝑚
𝑘 (𝑇 )| + |𝐺

𝑆𝑚
𝑘 (𝑇 )|. If 𝑆𝑚 produces very few data in

𝐺(𝑇 ), 𝑆𝑚 is functioning under the anomaly profile 𝐺𝑘(𝑇 ) at the time 𝑇 and its anomaly score will be
close to 1 (very anomalous); inversely, 𝐴𝑆𝑚𝑘 (𝑇 ) is close to 0 if 𝑆𝑚 primarily produces data in the reference
profile, thus being close to healthy. We do not compute the anomaly score on the reference cluster, so
𝐴̄𝑆𝑚(𝑇 ) does not exist.
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𝐴𝑆𝑚𝑘 (𝑇 ) =
|𝐺𝑆𝑚𝑘 (𝑇 )|

|𝐺𝑆𝑚𝑘 (𝑇 )| + |𝐺
𝑆𝑚(𝑇 )|

∈ [0, 1] (6.3)

Figure 6.2 illustrates an example, in which three monitored systems (𝑆𝐴, 𝑆𝐵, 𝑆𝐶) generate data that
are partitioned into a set of clusters (𝑇 ) =

{
𝐺(𝑇 ), 𝐺1(𝑇 ), 𝐺2(𝑇 ), 𝐺3(𝑇 )

}
(whose anomaly degree is

𝜔 = 0, 𝜔1 = 0.7, 𝜔2 = 0.3, 𝜔3 = 1.0, respectively), where 𝐺(𝑇 ) is the reference profile, and the others
represent anomaly profiles. In this example, we compute the anomaly scores of the system 𝑆𝐶 on three
types of anomaly 𝐺1, 𝐺2, and 𝐺3. Following (6.3), we have:

|𝐺𝑆𝐶 (𝑇 )| = 6 |𝐺𝑆𝐶1 (𝑇 )| = 3 |𝐺𝑆𝐶2 (𝑇 )| = 2 |𝐺𝑆𝐶3 (𝑇 )| = 1

and therefore, the anomaly scores 𝐴𝑆𝐶1 (𝑇 ), 𝐴
𝑆𝐶
2 (𝑇 ), and 𝐴

𝑆𝐶
3 (𝑇 ) are:

𝐴𝑆𝐶1 (𝑇 ) =
3
3 + 6

≈ 0.333 𝐴𝑆𝐶2 (𝑇 ) =
2
2 + 6

= 0.25 𝐴𝑆𝐶3 (𝑇 ) =
1
1 + 6

≈ 0.143

Figure 6.2: An example on how to compute the anomaly scores. We omit the notation
of time 𝑇 in the figure for simplicity.

However, (6.3) is solely based on the amount of data in the clusters, disregarding the temporality of
the data. Equation (6.3) considers old and recent data equally relevant, whereasmore recent data should
should be more relevant regarding the current health of the system. To insist on the data temporality,
we damp the anomaly score by a decay factor 𝑓 (𝑡) = 2−𝜆𝑡 , where 𝑡 is a time interval and 𝜆 > 0 dictates
how fast the data are forgotten (higher 𝜆means faster decay). We replace the count of data points in a
cluster by the sum of the decay factor of each data point in 𝐺𝑆𝑚𝑘 (𝑇 ) (6.4). The time interval to compute
the decay is between the timestamp of the latest data point from 𝑆𝑚 on𝐷(𝑇 ), denoted 𝑇𝑚, to the creation
time of each data point 𝑇𝑖 by 𝑆𝑚 in the cluster. We will explain why we take 𝑇𝑚 as the anchor point in
Section 3.2. In (6.4), 𝑖 denotes the 𝑖𝑡ℎ data point in 𝐺𝑆𝑚𝑘 and 𝑗 denotes the 𝑗 𝑡ℎ data point in 𝐺𝑆𝑚 .

𝐴𝑆𝑚𝑘 (𝑇 ) =
∑𝐺

𝑆𝑚
𝑘
𝑖 𝑓 (𝑇𝑚 − 𝑇𝑖)

∑𝐺
𝑆𝑚
𝑘
𝑖 𝑓 (𝑇𝑚 − 𝑇𝑖) + ∑

𝐺𝑆𝑚
𝑗 𝑓 (𝑇𝑚 − 𝑇𝑗 )

=
1

1 + ∑
𝐺𝑆𝑚
𝑗 𝑓 (𝑇𝑚−𝑇𝑗 )

∑
𝐺𝑆𝑚𝑘
𝑖 𝑓 (𝑇𝑚−𝑇𝑖)

∈ [0, 1] (6.4)

Finally, we define the health score. For a system 𝑆𝑚, we can estimate its health score 𝐻𝑆𝑚(𝑇 ) at a
moment 𝑇 by computing the average of the anomaly scores of 𝑆𝑚 on all clusters 𝐺𝑘(𝑇 ), in which 𝑆𝑚
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has produced at least one data point, weighted by 𝜔𝑘(𝑇 ). We exclude the reference profile 𝐺(𝑇 ) from
the health computation because the anomaly score is not computed on 𝐺(𝑇 ).

Definition 3.6 (Health score). The health score 𝐻𝑆𝑚(𝑇 ) of a system 𝑆𝑚 at a time 𝑇 expresses the
deviation of 𝑆𝑚 from the good health and is the weighted average of the anomaly scores computed
from the clusters in (𝑇 ) ⧵ 𝐺(𝑇 ).

𝐻𝑆𝑚(𝑇 ) =
1

𝐾 − 1

⧵𝐺
∑
𝐺𝑘
(𝜔𝑘(𝑇 ) × 𝐴𝑆𝑚𝑘 (𝑇 )) ∈ [0, 1] (6.5)

The anomaly degree𝜔𝑘(𝑇 ) nuances the impact of an anomaly such that clusters with higher degree,
i.e., those that are more likely anomalous, cast a larger impact to the health score. If 𝐻𝑆𝑚(𝑇 ) = 0, 𝑆𝑚
is free of all anomalies and is closest to the normal profile at the time 𝑇 . If 𝐻𝑆𝑚(𝑇 ) is close to 1, 𝑆𝑚 is
severely degraded and needs maintenance.

3.2 Online clustering with DenStream

From the fundamental concepts, we implement the core clustering in CheMocwith an online clustering
algorithm. We study a number of candidate online clustering algorithms against the following criteria:

(1) able to detect cluster evolution,
(2) being efficient (low execution time, low to moderate memory usage),
(3) having self-adaptive hyperparameters (adjusting the initial values dynamically).

We also include DBSCAN in the study for completeness, because DBSCAN is one of the most well-
known offline clustering algorithms and is the foundation of several online clustering algorithms.

Table 6.1 shows the list2 of online clustering algorithms we studied and checks whether they ad-
dress the aforementioned criteria. The first three algorithms include DBSCAN and its two extensions
with self-adaptive density (ADBCAN [122]) and incremental update (IDBSCAN [63]). The rest is online
clustering algorithms.

Table 6.1: Online clustering algorithms. (1) = incremental, (2) = cluster evolution, (3) =
efficient, (4) = self-adaptive hyperparameters

Algorithm Summary (1) (2) (3) (4)

DBSCAN [65] The cluster’s border is propagated to include data points that are reach-
able within a predefined radius (density-based). All points that are not
assigned to any cluster are noises. Single pass over all points.

IDBSCAN
(1998) [63]

Incremental version of DBSCAN to update the clusters on new data
points. Able to track the evolution of clusters. Scalable only if the
number of data points is bounded.

x x

ADBSCAN
(2018) [122]

Changes the density 𝜀 of DBSCAN at each iteration to capture clusters
of varying density. Start at a random value of 𝜀 and increment by 0.5 at
each iteration until 95% of the data are processed. All other unassigned
data points are noises. Requires a predefined number of clusters.

x

2This list is by no means exhaustive. We recommend checking these excellent surveys [13, 46, 47, 78, 209, 257] for an
extensive review on online clustering.
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Table 6.1: (continued)

Algorithm Summary (1) (2) (3) (4)

DenStream
(2006) [45]

A micro-cluster’s density is estimated via its weight and radius. Peri-
odic pruning discards outliers. Suboptimal values of parameters may
lead to a large number of clusters.

x x x

ESA-Stream
(2020) [140]

A cluster is a region of dense grids sharing borders. It defines three
self-adaptive parameters: upper and lower bound of grid density, and
a time gap to update the clusters. Lightweight, fully online.

x x x x

ClusTree (2009)
[131]

Adaptive to the speed of the stream. Using index structure (R-Tree*) to
store history of the stream in form of micro-clusters.

x x x

PDSDBCAN
(2012) [181]

Using disjoint sets to break the sequential access of DBSCAN to al-
low random access and parallelization, also enables to change the ob-
ject membership quicklywithout specific ordering. Achieve significant
speedup when running on 10+ cores.

x x x

C-DenStream
(2009) [196]

Similar to DenStream but requiring domain knowledge about instance-
level constraints ("must-link" versus "cannot-link").

x x x

OpticsStream
(2007) [217]

Extending cluster visualization from OPTICS [17] by considering time
a projecting dimension, allowing to track cluster evolution. Basing on
notions such as core distance, reachability distance, potential micro-
clusters.

x x x

D-Stream [50] Dividing the data space into small grids of fixed size and distinguishing
dense, sparse, and transitional grids depending on their density. Dense
grids that shared adjacent facets constituted a cluster. Performing pe-
riodic pruning was to remove infrequent or mostly empty grids.

x x x

DBSTREAM
[88]

Introducing the shared density graph to explicitly capture the density
area between micro-clusters. Updating the shared density graph via
competitive learning to adapt to concept drifting.

x x x

CluStream [5] Two-phase clustering. Capturing summary statistics of the stream via
micro-clusters in the online phase. Applying k-means in the offline
phase on the micro-clusters to return clusters at request time.

x x x

Young, Arel,
Karnowski,
and Rose [245]
(2010)

Incremental clustering that constraints the movement of centroids
once the clusters reach stability (a centroid is changing with very small
tolerance). Using competitive learning to adaptively set the learning
rate on new data. Assuming a fixed and known number of centroids.

x x

rDenStream
(2009) [146]

Outlier micro-clusters are saved and revised to verify their outlier-
ness. Three steps: online clustering (like DenStream), offline cluster-
ing (like DBSCAN), retrospect (using a classifier to classify outliers).
High memory usage and time-consuming because of the retrospect.
Improved accuracy, applicable for noisy stream.

x x

SDStream
(2009) [192]

Two-phase clustering, similar to DenStream. Using sliding windows
to discard clusters outside of the current window. Limited number of
clusters, low memory usage, exponential histograms.

x x

SOStream
(2012) [105]

Based on self-organizingmaps and competitive learning. Finding over-
lapping clusters via winner clusters and merging clusters if possible.
Full online to create, merge, and remove clusters. Dynamically defined
threshold, but it is time-consuming.

x x

HDDStream
(2012) [174]

Dealing with high-dimensional streams. Projecting micro-clusters on
a subspace of the feature space. Only the most varying variables are
considered. Time-consuming pruning process.

x x x
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Table 6.1: (continued)

Algorithm Summary (1) (2) (3) (4)

PreDeConStream
(2012) [92]

Extending HDDStream by expanding the clusters during the offline
phase. Expensive pruning process.

x x x

FlockStream
(2009) [71]

Bio-inspired from flocking models: agents move within a predefined
range, and if an agent visits another, a cluster is formed. Less compar-
isons between data points.

x x x

Re-DBSCAN
(2020) [161]

Differential update to the cluster using k-dist graph. Low execution
time but high memory usage to store the k-dist values.

x x

DUCStream
(2005) [77]

Grid-based clustering. Density of one unit is the number of points it
contains. A local dense unit may become a dense unit. A cluster is
a connected component of the graph, where the nodes are units, the
edges are the common border between two units.

x x

RepStream
(2009) [150]

Relying on a sparse, directed graph to store information about the re-
lationship between data points (a node is a data point, an edge is the
distance to the nearest neighbor of a point). Using a knowledge repos-
itory to reconstruct historic clusters.

x

HCDStream
(2014) [12]

Two-phase clustering. Combing DenStream and D-Stream (grid-like
density-based clustering).

x x x

Among these algorithms, some that appear most suitable are DenStream [44], D-Stream [50], and
ESA-Stream [140]. We favor density-based clustering algorithms because they do not require inputting
a predefined number of clusters, as the number of anomalies is unknown beforehand.

After considering these three algorithms, we decide to implement DenStream as the core clustering
of CheMoc, for the following reasons. First, DenStream is density-based and does not need a prede-
fined number of clusters. Secondly, DenStream relies on lightweight and decaying micro-clusters to
efficiently cope with dynamic changes; this simplicity makes DenStream the building block of many
other online clustering algorithms (SDSStream, rDenStream, C-DenStream, and so on). Thirdly, we
would like to obtain a baseline result with DenStream, from which we can try other clustering algo-
rithms to improve CheMoc; for instance, once the performance of CheMoc is confirmed using Den-
Stream, we can implement ESA-Stream as a next improvement.

In this section, we will first describe the methodology of DenStream, then discuss why it does not
fit completely to the railway constraints, and explain how we amend the misalignment.

3.2.1 DenStream

DenStream is a two-phase clustering algorithm. During the online phase, DenStream finds clusters
from a data stream by maintaining a special data structure called micro-clusters and evolves these
micro-clusters using a damping window model. On a stream, the importance of the data decreases
exponentially over time via a fading function 𝑓 (𝑡) = 2−𝜆𝑡 , 𝜆 > 0. A high value of 𝜆 makes past data
quickly forgotten. The offline phase of DenStream considers the center of the micro-clusters as virtual
data points and applies the traditional DBSCAN on these points to obtain the final clusters.

DenStreammaintains lightweight statistics from the stream in the form of micro-clusters. A micro-
cluster 𝑚𝑐𝑖 at a time 𝑡 for a group of 𝑛 points 𝑝𝑖1 , … , 𝑝𝑖𝑛 created at timestamps 𝑇𝑖1 , … , 𝑇𝑖𝑛 comprises the
cluster features { 𝑤, 𝐿𝑆, 𝑆𝑆 } including the weight (6.6), the weighted linear sum (6.7), and the weighted
squared sum (6.8). If the data points aremultidimensional (with 𝑃 variables), the linear sum and squared
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sum are computed for each dimension, that is, 𝐿𝑆 ∈ ℝ𝑃 and 𝑆𝑆 ∈ ℝ𝑃 .

𝑤 =
𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) (6.6)

𝐿𝑆 =
𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) 𝑝𝑖𝑗 (6.7)

𝑆𝑆 =
𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) (𝑝𝑖𝑗 )

2 (6.8)

From these cluster features, we can compute the center (6.9) and radius (6.10) of a micro-cluster at any
time. A micro-cluster is dense if its radius is lower than the density threshold 𝜖, inputted by the users.
Therefore, the density 𝜖 is the most important hyperparameter of DenStream because it defines the
desired density of the micro-clusters.

𝑐 = 𝐿𝑆 /𝑊 (6.9)

𝑟 =

√
𝑆𝑆
𝑊
− (
|𝐿𝑆|
𝑊 )

2

⩽ 𝜖 (6.10)

A micro-cluster is updated in two cases: when it receives a new data point and when it decays.

When a new data point 𝑝𝑛+1 is added in 𝑚𝑐𝑖 at a time 𝑡, because 𝑡 is also the creation time 𝑇𝑛+1 of
𝑝𝑛+1, we have 𝑓 (𝑡 − 𝑇𝑛+1) = 𝑓 (0) = 2−𝜆×0 = 1, the cluster features become:

𝑤′ =
𝑛+1
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) =

𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) + 𝑓 (0) = 𝑤 + 1

𝐿𝑆′ =
𝑛+1
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) 𝑝𝑖𝑗 =

𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) 𝑝𝑖𝑗 + 𝑓 (0)𝑝𝑖𝑛+1 = 𝐿𝑆 + 𝑝𝑖𝑛+1

𝑆𝑆′ =
𝑛+1
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) (𝑝𝑖𝑗 )

2 =
𝑛
∑
𝑗=1
𝑓 (𝑡 − 𝑇𝑖𝑗 ) (𝑝𝑖𝑗 )

2 + 𝑓 (0) (𝑝𝑖𝑛+1)
2 = 𝑆𝑆 + (𝑝𝑖𝑛+1)

2

When the micro-cluster does not receive any new data after an interval 𝛿𝑡, it is possible that this micro-
cluster is becoming obsolete and no longer corresponds to the current characteristics of the stream.
Consequently, its cluster features decay. The decay is implemented via 𝑓 (𝛿𝑡 + 𝑡 − 𝑇𝑖𝑗 ). For example,
decaying the weight 𝑤 of 𝑚𝑐𝑖 after an interval 𝛿𝑡 is done as follows.

𝑤′ =
𝑛
∑
𝑗=1
𝑓 (𝛿𝑡 + 𝑡 − 𝑇𝑖𝑗 ) =

𝑛
∑
𝑗=1
2−𝜆(𝛿𝑡+𝑡−𝑇𝑖𝑗 ) =

𝑛
∑
𝑗=1
2−𝜆𝛿𝑡2−𝜆(𝑡−𝑇𝑖𝑗 ) = 2−𝜆𝛿𝑡

𝑛
∑
𝑗=1
2−𝜆(𝑡−𝑇𝑖𝑗 ) = 2−𝜆𝛿𝑡𝑤

Similarly, we obtain the decayed cluster features for the linear sum and squared sum.

𝐿𝑆′ = 2−𝜆𝛿𝑡𝐿𝑆 𝑆𝑆′ = 2−𝜆𝛿𝑡𝑆𝑆
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Amicro-cluster receiving a new point (6.11) or decaying (6.12) is incrementally updatable, whichmakes
micro-clusters an efficient data structure for data stream clustering.

𝑚𝑐𝑖 = {𝑤 + 1, 𝐿𝑆 + 𝑝𝑖𝑛+1 , 𝑆𝑆 + (𝑝
2
𝑖𝑛+1) } (6.11)

𝑚𝑐𝑖 = {𝑤 × 2−𝜆𝛿𝑡 , 𝐿𝑆 × 2−𝜆𝛿𝑡 , 𝑆𝑆 × 2−𝜆𝛿𝑡 } (6.12)

DenStream distinguishes two types of micro-clusters, depending on their weight. Let 𝜇 > 0 be the
minimum weight defining a dense micro-cluster, 0 < 𝛽 ⩽ 1 the outlierness threshold:

• If 𝑤 ⩾ 𝛽𝜇, 𝑚𝑐𝑖 is a potential micro-cluster (PMC) of high density.
• If 𝑤 < 𝛽𝜇, 𝑚𝑐𝑖 is an outlier micro-cluster (OMC) that may evolve into a PMC or is a noise.

On the stream, a PMC may be demoted to an OMC if it is not updated after a while, or an OMC
can evolve into a PMC if it has become sufficiently dense. An OMC that is not updated after a while
will be discarded to free up space. These operations are performed during the periodic pruning phase
of DenStream, except promoting an OMC to a PMC that is done when merging a new data point in
an existing micro-cluster. The interval that dictates the pruning frequency is called the minimal time
span 𝑇𝑝 (6.13), and is determined by the equation 2−𝜆𝑇𝑝𝛽𝜇 + 1 = 𝛽𝜇, that is, the interval after which
a micro-cluster becomes dense enough (its weight equal to 𝛽𝜇). A PMC is demoted to an OMC if its
weight at the pruning time falls below 𝛽𝜇.

𝑇𝑝 = ⌈
1
𝜆
log(

𝛽
𝛽𝜇 − 1

)⌉ (6.13)

To decide which OMCs to discard, DenStream uses a lower weight limit 𝜉 (6.14) that is a function
of the current time 𝑡𝑐 and the creation time of the OMC 𝑡𝑝 . An OMC will not likely evolve into a PMC
if its weight is below 𝜉(𝑡𝑐 , 𝑡𝑜) and will be safely deleted.

𝜉(𝑡𝑐 , 𝑡𝑜) =
2−𝜆(𝑡𝑐−𝑡𝑜+𝑇𝑝) − 1
2−𝜆𝑇𝑝 − 1

(6.14)

The full algorithm of DenStream is described in Algorithm 6.1. For every new data point 𝑝 arriving
at a time 𝑡 from the stream, DenStream tries to add it to an existing PMC, only if the new radius of
this PMC with 𝑝 added is below the density 𝜖 (line 1–3). Otherwise, DenStream tries to add it in an
existing OMC using the same logic; if adding 𝑝 increases the weight of this OMC above 𝛽𝜇, DenStream
promotes this OMC to a PMC (line 5–10). If 𝑝 cannot be added to any existing OMC either, DenStream
initializes a newOMCwith 𝑝 (line 12–13). Every 𝑇𝑝 , DenStream performs a periodic pruning to demote
PMCs and to discard obsolete OMCs. Any PMC with a weight below 𝛽𝜇 is demoted to an OMC. Any
OMC with a weight below 𝜉(𝑡𝑐 , 𝑡𝑜) is discarded and forgotten.

During the offline phase, the PMCs are turned into virtual points by keeping their centroid. A
traditional DBSCAN is performed on these virtual points to return the official clusters when requested.
The OMCs are omitted during the offline phase.

3.2.2 Adjusting DenStream to the railway scenario

Using DenStream as it was originally proposed does not fit the constrains of railwaymaintenance. This
obliges us to modify DenStream to amend the misalignment.
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Algorithm 6.1: DenStream [44]
Data: A data point 𝑝 at a time 𝑡
/* add 𝑝 to an existing micro-cluster or create a new one */

1 𝑐𝑝 ← get nearest PMC to 𝑝
2 𝑟 ′𝑝 ← compute radius of 𝑐𝑝 if adding 𝑝
3 if 𝑟 ′𝑝 ⩽ 𝜖 then add 𝑝 to 𝑐𝑝
4 else

5 𝑐𝑜 ← get nearest OMC to 𝑝
6 𝑟 ′𝑜 ← compute radius of 𝑐𝑜 if adding 𝑝
7 if 𝑟 ′𝑜 ⩽ 𝜖 then
8 add 𝑝 to 𝑐𝑜
9 𝑤𝑜 ← weight of 𝑐𝑜 after adding 𝑝

10 if 𝑤𝑜 ⩾ 𝛽𝜇 then promote 𝑐𝑜 to PMC
11 else

12 𝑐𝑜 ← newOMC()
13 add 𝑝 to 𝑐𝑜

/* perform periodic pruning */
14 if 𝑡 % 𝑇𝑝 = 0 then
15 foreach PMC 𝑐𝑝 with weight 𝑤𝑝 do
16 decay 𝑐𝑝
17 if 𝑤𝑝 < 𝛽𝜇 then demote 𝑐𝑝 to OMC
18 foreach OMC 𝑐𝑜 with weight 𝑤𝑜 created at 𝑡𝑜 do
19 decay 𝑐𝑜
20 𝜉 ← 2−𝜆(𝑡−𝑡𝑜+𝑇𝑝)−1

2−𝜆𝑇𝑝−1
21 if 𝑤𝑜 < 𝜉 then delete 𝑐𝑜

(1) Offline clustering omitted Precisely, there are two offline processes in DenStream: one
to warm-start the clusters at the beginning and the other to do a traditional batch clustering on the
micro-clusters when requested, both using DBSCAN [65].

Warm-start We retain the warm-start to initialize CheMoc on a set of initial clusters. Through
experimentation, we notice that the warm-start stabilizes the growth of clusters by CheMoc. Without
it, CheMoc tends to create an excessive amount of OMCs and cannot discover meaningful clusters.
Because the warm-start is not time-consuming, we deem it not an important bottleneck of CheMoc.

Offline clustering We omit the second offline process on virtual points with DBSCAN because
we find out that the micro-clusters discovered online are sufficiently stable to monitor the systems.
DenStream uses this offline clustering phase to eliminate noises from the OMCs to produce a clean set
of clusters from the PMCs.

In the railway context, a system can only be in a finite set of health profiles and a system changes
from one profile to another gradually. Even if the change might be sudden, this abrupt change will be
mitigated by the data coming from other systems from  , which reduces the noisiness on the stream
and produces stable micro-clusters during the online phase. Not only unnecessary, offline clustering
can be harmful because it collapses one meaningful micro-cluster representing one health profile into
a single point, causing information loss.
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Furthermore, the clusters obtained between each offline clustering are disconnected. It is not easy
to conclude which clusters have evolved from the previous offline clustering. This disrupts the inherent
continuity of the evolving micro-clusters.

Considering these factors, we only maintain the warm-start and online phase of DenStream to
update the micro-clusters continuously. Thereafter, we refer to a micro-cluster as a cluster, since there
is no more distinction between an official cluster obtained offline and a micro-cluster captured online.

(2) Dynamic density threshold DenStream has a crucial hyperparameter 𝜖 that decides the
boundary of a cluster. Still, it is difficult to guess the true density of a data stream. Setting a high 𝜖 to
find the clusters on sparse data can lead to excessively large clusters that group data of different health
profiles together when the data become denser. Ideally, 𝜖 should be adjusted dynamically based on the
current density of the stream.

To this end, we adapt 𝜖 dynamically following Putina and Rossi [190], by revising 𝜖 continuously
based on the radius of the clusters. Let 𝑟 be a random variable that records the radii of the clusters
maintained thus far (from 𝑡 = 1 to 𝑡 = 𝑇 ), 𝑟 and 𝜎𝑟 the mean and the standard deviation of 𝑟 computed
incrementally, the new density is set to:

𝜖 = 𝑟 + 𝑘𝜎𝑟 with 𝑘 > 0 (6.15)

We set 𝑘 = 3 as recommended by Putina and Rossi [190].

(3) Pruning omitted To discards stale clusters, DenStream periodically prunes PMCs and OMCs
that have not been recently updated to limit the number of micro-clusters maintained online and to
retain only those consistent with the current characteristics of the stream. However, because we want
to learn the health profiles of the systems, discarding clusters is to be avoided.

A cluster not having received data for some time is not necessarily outdated; it is likely that no
system falls in that profile at a given period. This is a common scenario. If we prune idle clusters,
CheMoc loses the information about the health profiles and must relearn them if those profiles are
activated again in the future, leading to suboptimal behavior of CheMoc. As a result, we completely
omit the periodic pruning from DenStream. It implies that the clusters also do not decay over time
(Algorithm 6.1).

Nonetheless, we need to monitor the temporal evolution of the system health. Even if the clusters
do not lose their relevance over time, the data from a system do. A data point produced by a system
long ago no longer captures its current health. For instance, a system was healthy some weeks ago but
has degraded since. Hence, the decay must occur on the data themselves, such that old data contribute
less to the anomaly scores than recent data. This is effectively captured by (6.4): instead of simply
counting the number of data points in a cluster as in (6.3), (6.4) incorporates the decay factor in the
computation and decreases the impact of old data over time, thus addressing the adaptivity of CheMoc.

(4) Varying anchor timestamp by system The weight of a cluster 𝑚𝑐𝑖 of 𝑛 data points at 𝑡 is
𝑤 = ∑𝑛𝑗=1 𝑓 (𝑡 − 𝑇𝑖𝑗 ), where 𝑇𝑖𝑗 is the timestamp of the point 𝑝𝑖𝑗 in 𝑚𝑐𝑖. Normally, 𝑡 applies to all points
in 𝑚𝑐𝑖 such that a point 𝑝𝑖𝑗 has lower relevance the further its timestamp 𝑇𝑖𝑗 is to 𝑡. Nevertheless, a
system that does not produce new data for some time does not mean its data are less relevant than a
system that produces data more recently. It is possible that the former is put to rest and stops producing
data, while the latter continues working (Figure 6.3). In this case, the recency of the data on these two
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systems does not depend on a global timestamp, but it rather depends on the timestamp at which each
system produces the latest data point.

Figure 6.3: The system 𝑆𝐵 enters a depot center at 𝑇𝐵 and stops producing data, while
the system 𝑆𝐴 continues operating until 𝑇𝐴. The most recent data of 𝑆𝐵 are not indexed

at 𝑡 but at 𝑇𝐵.

Therefore, a global timestamp 𝑡 cannot be used to decay the data points from different systems
in 𝑚𝑐𝑖, but 𝑡 must vary by system. As a result, it leads to a different definition of a cluster 𝑚𝑐𝑖. As a
reminder,  = { 𝑆1, … , 𝑆𝑀 } is the set of 𝑀 systems being monitored. Let 𝑜𝑟𝑖𝑔(𝑝) be a function that
maps a point 𝑝 to the system that produces it. Let us define, for a cluster 𝑚𝑐𝑖:

𝑖 = { 𝑆𝑚 ∈  ∣ ∃𝑝 ∈ 𝑚𝑐𝑖, 𝑜𝑟𝑖𝑔(𝑝) = 𝑆𝑚 }

the set of𝑀𝑖 systems, such that each system 𝑆𝑖𝑚 ∈ 𝑖 produces at least one data point in𝑚𝑐𝑖 (𝑆𝑖𝑚 ∈ 𝑖,
𝑀𝑖 ⩽ 𝑀 , and 𝑖 ⊆ ). We denote 𝑖𝑚 the set of 𝑛𝑖𝑚 data points produced by a system 𝑆𝑖𝑚 in 𝑖.

𝑖𝑚 = { 𝑝 ∈ 𝑚𝑐𝑖 ∣ 𝑜𝑟𝑖𝑔(𝑝) = 𝑆𝑖𝑚 }

Let 𝑚𝑐𝑖𝑚 = {𝑤𝑖𝑚 , 𝐿𝑆𝑖𝑚 , 𝑆𝑆𝑖𝑚 } be a tuple of cluster features that summarize the data points produced
by a system 𝑆𝑖𝑚 ∈ 𝑖 in 𝑚𝑐𝑖, such that 𝑤𝑖𝑚 is the weight by 𝑆𝑖𝑚 (6.16), 𝐿𝑆𝑖𝑚 the linear sum by 𝑆𝑖𝑚 (6.17),
and 𝑆𝑆𝑖𝑚 the squared sum by 𝑆𝑖𝑚 (6.18).

𝑤𝑖𝑚 =
𝑛𝑖𝑚
∑
𝑗=1
𝑓 (𝑡𝑚 − 𝑇 𝑗𝑖𝑚) (6.16)

𝐿𝑆𝑖𝑚 =
𝑛𝑖𝑚
∑
𝑗=1
𝑓 (𝑡𝑚 − 𝑇 𝑗𝑖𝑚) 𝑝

𝑗
𝑖𝑚 (6.17)

𝑆𝑆𝑖𝑚 =
𝑛𝑖𝑚
∑
𝑗=1
𝑓 (𝑡𝑚 − 𝑇 𝑗𝑖𝑚) (𝑝

𝑗
𝑖𝑚)
2 (6.18)

For the decay, 𝑡𝑚 is the timestamp of the latest point produced by 𝑆𝑖𝑚 on the stream 𝐷(𝑇 ). Because the
latest timestamp of a system 𝑡𝑚 is not local to any cluster, the index 𝑖 is omitted. Figure 6.4 illustrates
an example of the data from different systems assigned to the clusters at 𝑇 , where each point is marked
with its timestamp. The latest timestamp 𝑡𝑚 of a system 𝑆𝑚 is not the same as the global latest timestamp
𝑡 of the stream. In this example, we have 𝑡 = 26, 𝑡𝐴 = 7, 𝑡𝐵 = 7, 𝑡𝐶 = 12.

Having one tuple of cluster features for each 𝑆𝑖𝑚 in 𝑚𝑐𝑖, the cluster features of 𝑚𝑐𝑖 is the sum of all
such tuples by 𝑆𝑖.
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Figure 6.4: The data from three systems 𝑆𝐴, 𝑆𝐵, and 𝑆𝐶 are assigned to four clusters.
Each data point is marked with its creation timestamp. The timestamp of the latest data

point by a system is local to that system only (𝑡𝐴 = 7, 𝑡𝐵 = 7, 𝑡𝐶 = 12).

𝑚𝑐𝑖 = {𝑤, 𝐿𝑆, 𝑆𝑆 } =

{
𝑖
∑
𝑆𝑖𝑚

𝑤𝑖𝑚 ,
𝑖
∑
𝑆𝑖𝑚

𝐿𝑆𝑖𝑚 ,
𝑖
∑
𝑆𝑖𝑚

𝑆𝑆𝑖𝑚

}

(6.19)

This definition still enables incremental update of a cluster. Let us consider two cases of update: a
new point 𝑝 is added to a cluster 𝑚𝑐𝑖, and no new point is added so 𝑚𝑐𝑖 decays after a while.

If a point 𝑝 is added to 𝑚𝑐𝑖 at the time 𝑇 , 𝑝 may or may not come from a system that already has
data in 𝑚𝑐𝑖. We distinguish two sub-cases, where 𝑜𝑟𝑖𝑔(𝑝) ∈ 𝑖 and 𝑜𝑟𝑖𝑔(𝑝) ∉ 𝑖.

• Let 𝑜𝑟𝑖𝑔(𝑝) = 𝑆𝑖𝑚 be a system in 𝑖. When 𝑆𝑖𝑚 creates 𝑝, the reference timestamp 𝑡𝑚 of 𝑆𝑖𝑚 is
updated and is the same as the timestamp 𝑇 of 𝑝. Therefore, the decay factor when 𝑝 is merged
in 𝑚𝑐𝑖 becomes 𝑓 (𝑡𝑚 − 𝑇 ) = 𝑓 (0) = 1, and 𝑚𝑐𝑖𝑚 thus becomes:

{ 𝑤𝑖𝑚 + 1, 𝐿𝑆𝑖𝑚 + 𝑝, 𝑆𝑆𝑖𝑚 + 𝑝
2 }

Following (6.19), 𝑚𝑐𝑖 after merging 𝑝 is:

{ 𝑤 + 1, 𝐿𝑆 + 𝑝, 𝑆𝑆 + 𝑝2 } (6.20)

• If 𝑜𝑟𝑖𝑔(𝑝) = 𝑆𝑙 ∉  , the new cluster features of 𝑆𝑙 is:

𝑚𝑐𝑖𝑙 = {𝑤𝑖𝑙 , 𝐿𝑆𝑖𝑙 , 𝑆𝑆𝑖𝑙 } = { 1, 𝑝, 𝑝
2 }

Following (6.19), 𝑚𝑐𝑖 after merging 𝑝 (and 𝑆𝑙) is:
{

𝑖
∑
𝑆𝑖𝑚

𝑤𝑖𝑚 + 𝑤𝑖𝑙 ,
𝑖
∑
𝑆𝑖𝑚

𝐿𝑆𝑖𝑚 + 𝐿𝑆𝑖𝑙 ,
𝑖
∑
𝑆𝑖𝑚

𝑆𝑆𝑖𝑚 + 𝑆𝑆𝑖𝑙

}

= {𝑤 + 1, 𝐿𝑆 + 𝑝, 𝑆𝑆 + 𝑝2 } (6.21)

If no new point is added in𝑚𝑐𝑖 for a while,𝑚𝑐𝑖 decays, leading to the subsequent decay of its cluster
features. For each system 𝑆𝑖𝑚 ∈ 𝑖, let 𝛿𝑡𝑖𝑚 = 𝑡𝑚 − 𝑇𝑖𝑚 be the time interval from the latest point by 𝑆𝑖𝑚
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on the stream (𝑡𝑚) to the latest point of 𝑆𝑖𝑚 in a specific cluster 𝑚𝑐𝑖 (𝑇𝑖𝑚 ). To illustrate how to compute
𝛿𝑡𝑖𝑚 , consider the scenario in Figure 6.4. Suppose that the cluster features in 𝑚𝑐1 decay at the universal
time 𝑡 = 26, we have 𝛿𝑡1𝐴 = 𝑡𝐴 − 𝑇1𝐴 = 7 − 4 = 3 for the system 𝑆𝐴, and 𝛿𝑡1𝐶 = 𝑡𝐶 − 𝑇1𝐶 = 12 − 9 = 3 for
the system 𝑆𝐶 . The global timestamp 𝑡 = 26 does not play any role in the decay of the cluster features
of a specific system.

To decay 𝑚𝑐𝑖, we simply sum the decayed cluster features of each system in 𝑚𝑐𝑖. For example, the
decayed linear sum 𝐿𝑆′ of 𝑚𝑐𝑖 becomes:

𝐿𝑆′ =
𝑖
∑
𝑆𝑖𝑚

𝐿𝑆′𝑖𝑚 =
𝑖
∑
𝑆𝑖𝑚

𝑛𝑖𝑚
∑
𝑗=1
𝑓 (𝛿𝑡𝑚 + 𝑡𝑚 − 𝑇 𝑗𝑖𝑚)𝑝

𝑗
𝑖𝑚

=
𝑖
∑
𝑆𝑖𝑚

𝑛𝑖𝑚
∑
𝑗=1
2−𝜆(𝛿𝑡𝑚+𝑡𝑚−𝑇

𝑗
𝑖𝑚 )𝑝𝑗𝑖𝑚

=
𝑖
∑
𝑆𝑖𝑚

𝑛𝑖𝑚
∑
𝑗=1
2−𝜆𝛿𝑡𝑚2−𝜆(𝑡𝑚−𝑇

𝑗
𝑖𝑚 )𝑝𝑗𝑖𝑚

=
𝑖
∑
𝑆𝑖𝑚

2−𝜆𝛿𝑡𝑚
𝑛𝑖𝑚
∑
𝑗=1
2−𝜆(𝑡𝑚−𝑇

𝑗
𝑖𝑚 )𝑝𝑗𝑖𝑚

=
𝑖
∑
𝑆𝑖𝑚

2−𝜆𝛿𝑡𝑚𝐿𝑆𝑖𝑚

The squared sum 𝑆𝑆′ and weight 𝑤′ are decayed similarly. Therefore, 𝑚𝑐𝑖 after 𝛿𝑡 is:

{
𝑖
∑
𝑆𝑖𝑚

2−𝜆𝛿𝑡𝑚𝑤𝑖𝑚 ,
𝑖
∑
𝑆𝑖𝑚

2−𝜆𝛿𝑡𝑚𝐿𝑆𝑖𝑚 ,
𝑖
∑
𝑆𝑖𝑚

2−𝜆𝛿𝑡𝑚𝑆𝑆𝑖𝑚

}

(6.22)

It suffices to multiply the features { 𝑤𝑖𝑚 , 𝐿𝑆𝑖𝑚 , 𝑆𝑆𝑖𝑚 } of each system 𝑆𝑖𝑚 in 𝑚𝑐𝑖 to 2−𝜆𝛿𝑡𝑚 and sum the
decayed features of all the systems in 𝑚𝑐𝑖 to decay 𝑚𝑐𝑖 incrementally.

In conclusion, even if the cluster features are defined by system in a cluster, it is possible to update
a cluster on-the-fly efficiently via (6.20), (6.21), and (6.22).

3.2.3 Full algorithm

The algorithm of CheMoc is sketched in Algorithm 6.2. It works on a stream𝐷(𝑇 ) and requires as input
a buffer size 𝑊 to warm start CheMoc, a set of hyperparameters 𝜃 for the online clustering algorithm
(denoted𝑀), an alert threshold 𝛾 to issue maintenance alerts on the systems. 𝜃 depends on the chosen
algorithm clustering algorithm.

First, 𝑀 is initialized on 𝜃. An empty buffer 𝑊𝑆 is allocated to store the data for warm-starting
CheMoc. The warm-start process is done exactly as described in [44]. After the warm-start (line 5–8),
CheMoc updates the clusters on each new data point (line 10). Then, CheMoc reassesses the clusters
and recomputes the health score of the systems for every interval 𝑇𝑢3 During this reassessment phase
(line 12), 𝜖 is re-estimated using (6.15), a new reference cluster 𝐺(𝑇 ) (the one with the most data points)

3This can be done at every new data point or by micro-batch. Updating at every point follows the principle of real-time
monitoring, but it can cause a data communication bottleneck if the data must be persisted on hard disk. 𝑇𝑢 must be set
depending on the application.
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Algorithm 6.2: CheMoc
Data: A stream of data points 𝐷(𝑇 )
Input: Buffer size 𝑊 , clustering hyperparameters 𝜃, threshold 0 < 𝛾 < 1
Output: An alert if 𝐻𝑆𝑚(𝑇 ) > 𝛾 for a system 𝑆𝑚

1 𝑀.init(𝜃) /* init DenStream */
2 𝑊𝑆 ← ∅ /* init warm start buffer */

3 while stream D(T) is active do
4 𝑥 ← new data point from 𝐷(𝑇 )
5 if not yet warm started then /* warm start */
6 𝑊𝑆 ← 𝑊𝑆 ∪ {𝑥}
7 if |𝑊 𝑆| = 𝑊 then 𝑀.warmStart(𝑊𝑆)
8 else continue

9 else

10 𝑀.process(𝑥) /* update (𝑇 ) */
11 if is update time after an interval 𝑇𝑢 then
12 𝑀.reassessClusters()
13 𝑀.updateHealth()
14 foreach system 𝑆𝑚 ∈  do

15 if 𝐻𝑆𝑚(𝑇 ) > 𝛾 then Issue an alert on 𝑆𝑚

is re-elected. Once𝐺(𝑇 ) is identified, the cluster weight𝜔𝑘(𝑇 ) of each cluster𝐺𝑘(𝑇 ) is recomputed using
(6.1) and (6.2). Then, the health score of the systems are updated using (6.4) and (6.5) (line 13). If 𝑆𝑚
has a new health score that exceeds 𝛾 , an alert is issued (line 14–15).

4 Experimental results

The hypotheses addressed by CheMoc are:

(𝐇𝟏𝐝) The clusters represent the health profiles of the fleet.
(𝐇𝟐𝐝) Computing the health score by considering the data a system creates in the health profiles

results in an accurate health detection, within an observable perimeter from the data.
(𝐇𝟑𝐝) Online clustering reaches convergence earlier than offline clustering, if no drift occurs.
(𝐇𝟒𝐝) Online clustering keeps track of the temporal evolution of the health profiles via cluster up-

dates, while offline clustering cannot.

First, we explain how the experiments are set up using R2N data (Section 4.1). Then, we discuss how
we choose the hyperparameters (Section 4.2). Finally, we show the experimental results of CheMoc
and verify whether CheMoc validates the aforementioned hypotheses.

4.1 Experiment setup

To evaluate CheMoc, we only use the data of the R2N fleet, and we use the expert indicators instead
of the LSTM-AE features as a starting point, for the following reasons.

The foremost reason is that there is no readily available ground-truth to systematically compare
the health assessment results and the clusters of CheMoc. As a result, every time we conduct an
experiment, a domain expert must manually verify all the clusters produced by CheMoc. We adopt a
micro-batching approach to feed CheMoc the data of one week at a time. After CheMoc processes one
weekly batch, we log the cluster footprints in the database (MongoDB) and make one visualization
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to asses the clusters in this batch. An example cropped from one cluster visualization is shown in
Figure 6.5 and displays the profiles and envelops of the cycles each cluster contains4. Please note that
this visualization is for one week only. Each experiment of CheMoc is run on many weeks, therefore
after each experiment the domain expert must re-check the clusters across multiple batches, which is
a tedious and time-consuming task.

Figure 6.5: Visualization of some clusters obtained in one weekly batch. The columns
from left to right: the motor current intensity, the motor voltage intensity, the motor
position intensity, the mean and standard deviation of the expert indicators. The solid

lines are the profiles and the colored regions the envelopes of a variable.

We have a database of alerts associated to the R2N fleet, but it is incomplete and include only three
months of alerts, starting from September 2021. Meanwhile, we test CheMoc on the data of the full
year 2021. If we test CheMoc on the same three months, CheMoc will capture clusters that are very
different to those discovered from one year of data, which inevitably affects the health computation of
the systems. Furthermore, an alert in this database does not map directly to the threshold-based alert
of CheMoc. The former defines several levels of severity, which, unfortunately, is more sophisticated
than the simplicity of CheMoc’s alerting mechanism. Given these obstacles, we decide to limit the
experiment to one data set, and to one type of cycle (door closing).

Although in Chapter 5 we have demonstrated that the LSTM-AE features outperform the expert
indicators in terms of information preservation via a cycle-feature ranking, we use the expert indicators
to test CheMoc to ensure the cluster interpretability when the domain expert studies the results. The
expert indicators convey a clear, explicit meaning, whereas the feature vectors returned by the LSTM-
AE are non-interpretable and not human-understandable. A workaround is to visualize a cluster by
mapping the feature vectors it contains to the original cycles. We will consider this in future works.
For now, it is more practical to visualize both the cycles and the expert indicators that form a cluster.

4Due to the size of each figure we cannot show the full visualization with all the clusters here. The full figures are found
at this link.

https://drive.google.com/drive/folders/1D7cs9DVS0sdYTsW0WhBCpceWK9XURAZz?usp=sharing
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Once we can find a more robust evaluation framework and/or build a reliable ground-truth, man-
ually studying the clusters will no longer be necessary and we will expand the tests on both NAT and
R2N data sets. Also, we will carry out the experiments on the LSTM-AE features as well. The clusters
obtained with the expert indicators will then become the baseline.

Finally, we evaluate CheMoc on the data of R2N fleet, consisting of 1409 systems ( | | = 1409), col-
lected during the year 2021. There are 1074279 data points in total with 192 numerical and categorical
features hand-crafted by a domain expert. We remove all categorical features because DenStream is
not optimized to process categorical values. We also remove features with missing values. Finally, we
obtain a set of 70 non-trivial numerical features.

We feed these data to CheMoc continuously in the chronological order to simulate a stream. Instead
of performing the health reassessment at every data point (line 11–15 in Algorithm 6.2), we adopt a
micro-batching approach: CheMoc receives a batch of data of one week at a time, updates the clusters
on every data point in this one-week batch, reassesses the clusters, and updates the health scores at
the end of the batch. Because we log the data of CheMoc in a database (MongoDB) for post-analysis,
micro-batching reduces the bottleneck of the database writing procedure.

4.2 Hyperparameter tuning

First and foremost, we use the number of cycles as the time unit in CheMoc. Cao, Ester, Qian, and
Zhou [45] leaves time unit as an application-dependent choice. In the railway scenario, the number
of cycles are more relevant than the real-world time as in minutes or hours. A system only degrades
if it is in operation and continuously produces new cycles. In contrast, if the system is idle and does
not create any data, its degradation does not evolve even when real-world time elapses. Therefore, all
notions of time in CheMoc are in the unit of number of cycles.

Because CheMoc uses DenStream as its core clustering, four crucial hyperparameters are the de-
sired density 𝜖, the decay factor 𝜆 dictating how fast a data point is forgotten, the outlierness threshold
𝛽 to distinguish a PMC to an OMC, and the minimum weight 𝜇 for a cluster to be considered dense.
The hyperparameters of CheMoc are set as in Table 6.2.

Table 6.2: Hyperparameters (Param) of CheMoc

Param Value Meaning

𝜖 15 The initial density for the warm-start
𝜆 0.06 Forgetting a cycle after the 100 next cycles
𝛽 0.4 Threshold on the outlierness of a cluster
𝜇 5 Required number of points for a system in a cluster

To select the initial value of 𝜖, we compute the mean and standard deviation of the pairwise dis-
tances on a random sample of the data and set 𝜖0 = ⌈𝜇𝑑𝑖𝑠𝑡 + 𝜎𝑑𝑖𝑠𝑡⌉. Then, 𝜖 is continuously re-estimated
using (6.15).

𝜆 is computed such that a cycle is forgotten after a window of 100 next cycles, i.e., 𝛿𝑡 = 100, as
suggested by a domain expert. We consider that a cycle is forgotten if its weight 𝛽𝜇 = 0.01; the value
0.01 is our own choice. Hence, we have 2−𝜆𝛿𝑡 = 2−100𝜆 = 0.01 ⇒ 𝜆 ≈ 0.06.

As 𝛽 dictates whether a cluster is dense enough to become a PMC, we select the value 0.4 to be on
the tolerant side when promoting an OMC to a PMC. Based on the weight threshold 𝛽𝜇, the higher the
value of 𝛽 is, the denser a cluster must become to be considered a PMC.
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For 𝜇, instead of considering it as the minimum weight of a dense cluster, we define 𝜇 as the least
number of points a system must have in a cluster to be allowed to update the cluster features. It is to
eliminate noises from systems that have only one or two points in a cluster. Yet, even if a system does
not reach 𝜇, we still store its cluster features { 𝑤𝑖𝑚 , 𝐿𝑆𝑖𝑚 , 𝑆𝑆𝑖𝑚 } in the cluster, but we do not add them to
the final features of the cluster { 𝑤, 𝐿𝑆, 𝑆𝑆 }. It implies that a system with very few points is saved and
masked in the cluster containing it, until the number of data it creates exceeds 𝜇.

The data we stored in the local statistic matrices 𝑠𝑡𝑎𝑡𝑘(𝑇 ) and 𝑠𝑡𝑎𝑡(𝑇 ) are the mean of the data from
all the systems in the cluster, which is simply its centroid.

CheMoc iswarm-started on the first batch of data that has 1589 data points. Thewarm-start finishes
after three seconds.

4.3 Evaluation of CheMoc

To validate the hypotheses, we expect CheMoc to produce clusters relevant to the health profiles of
the systems (𝐻 1𝑑 ), to produce the health scores consistent with the data trajectory of the systems across
the clusters (𝐻 2𝑑 ), to reach a stable set of clusters earlier than an offline clustering algorithm (𝐻 3𝑑 ), and
to evolve the clusters according to the stream (𝐻 4𝑑 ). Moreover, because CheMoc works on a fast data
stream, it must be efficient, both in terms of execution time and memory usage.

4.3.1 Cluster analysis

CheMoc captures 12 clusters, among which 11 are PMCs (𝐺, 𝐺1–𝐺10) and one is an OMC (𝐺11). We use
PCA to embed the entirety of the data on a 3D space. The data appear to exist in a large cloud (Fig-
ure 6.6a), with significant outliers scattering on the border, but they do not exhibit intricate topology.
On these data, CheMoc discovers a set of tight-knit clusters (Figure 6.6c). We visualize the clusters ob-
tained after running CheMoc on the data of 2021. The cluster distribution implies that when a system
degrades, its health deviates gradually from the normal state but is not completely separated. The tem-
poral trajectory of each cluster shows that the clusters reach a stable state after the first few batches
and move slowly afterwards (Figure 6.6b).

Figure 6.6: (a) The distribution of one-year data; (b) The movement of the clusters over
batches; (c) The distribution of the clusters on one-year data.

A small 𝜖 is therefore suitable to detect the gradual trajectory of a system’s data via small clusters
that change their position over time. Dynamically adjusting 𝜖 makes it increasingly smaller, hinting
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that the clusters become denser over time (Figure 6.7b). Their radii concentrate around 0.5 to 1.5 and
plateau after the first few batches. From this observation, the clusters seem to have a stable structure.

Figure 6.7: 𝜖 dynamically adjusted based on the mean 𝑟 and standard deviation 𝜎𝑟 of
the clusters’ radii (the initial value 𝜖0 = 15 was adjusted is not included)

Then, we look into the anomaly degrees of the clusters and how they evolve temporally. The de-
grees remain stable without significant fluctuations and tend to increase slightly over time (Figure 6.8a).
Looking at the Euclidean distances between a cluster’s centroid to the reference’s centroid (Figure 6.8b),
we see that 𝐺1 is the most anomalous cluster in , because it is always the farthest from 𝐺, and the
second-most anomalous cluster is 𝐺7. This checks out with the observation that the anomaly degree
of 𝐺1 and 𝐺7 is the most and second-most highest among all the clusters.

Figure 6.8: The anomaly degrees of the clusters (a) and the distance between a cluster’s
centroid to the reference’s centroid (b).

We also ask for the domain expert’s opinion on the quality of the clusters by visualizing the cycles
and their indicator vectors each cluster contains. With CheMoc set up on the hyperparameters shown
in Table 6.2, the domain expert positively confirms that CheMoc has converged to a set of relevant
health profiles, and that the clusters reflect the underlying physics of known anomalies on the PASs.
Therefore, the hypothesis 𝐻 1𝑑 is validated.

Yet, we admit that these health profiles are far from perfect, as CheMoc does not allow merging
or splitting clusters, which could potentially refine the health profiles. These resulting clusters are as
best as one could get purely from the data without an expert’s guidance. In the future, we plan to
incorporate the expert’s feedback in CheMoc to enable a more sophisticated cluster fine-tuning.
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4.3.2 Health evolution

The interest of finding clusters is to track the evolving health of the monitored systems. The health
score of a given system at any moment is calculated using (6.5). Among 1409 systems, we pick one
whose health shows changes for analysis. We denote the system 𝑆𝑚. We test both the static version
(6.3) and decaying version (6.4) of the anomaly scores.

Figure 6.9 plots the health score𝐻𝑆𝑚 of 𝑆𝑚 updated at each batch against the amount and percentage
of data from 𝑆𝑚 in each cluster. Since 𝑆𝑚 mostly produces data in anomalous profiles, most notably in
𝐺6, 𝐻𝑆𝑚 is relatively high and is increasing as 𝑆𝑚 continues to produce data in anomalous profiles.

Figure 6.9: Health evolution of the system 𝑆𝑚: plotted against the amount (top) and
percentage (bottom) of data points 𝑆𝑚 has in each cluster.

Surprisingly, the weighted (decaying) and unweighted (static) scores are overlapping, meaning
there is little to no difference between the two versions. For this particular system, because it primarily
produces data in anomalous clusters, the term |𝐺𝑆𝑚𝑘 | in (6.3) and∑𝐺

𝑆𝑚
𝑘
𝑖 𝑓 (𝑇𝑚 − 𝑇𝑖) in (6.4) dominate over

|𝐺𝑆𝑚 | and ∑𝐺
𝑆𝑚

𝑗 𝑓 (𝑇𝑚 − 𝑇𝑗 ), respectively. Hence, the anomaly scores of both versions are very close to
1.0, and consequently it results in almost the same health scores (6.5). Another plausible reason is that
we did not choose an adequate decay factor 𝜆, so the data are not forgotten quickly enough.

To examine the type of anomalies under which 𝑆𝑚 might have been, we select one batch and visu-
alize the data in the clusters that contribute to 𝐻𝑆𝑚 . We choose the batch just before 03/05/2021, when
𝐻𝑆𝑚 starts rising. In this batch, 𝑆𝑚 appears in multiple clusters, so we visualize the most notable ones,
namely 𝐺1, 𝐺3, 𝐺4, and 𝐺6 (Figure 6.10); these four clusters do not appear dominant for 𝑆𝑚 in this par-
ticular batch, but will become so over time. We compute the profile and envelope of these clusters from
the cycles it contains, on three most relevant measurements: the current, the voltage, and the position
of the electric motor in the PAS. We plot both the profile of a cluster 𝐺𝑘 and that of the reference cluster
𝐺 for comparison.

Figure 6.10 shows that 𝐺1, 𝐺3, 𝐺4, and 𝐺4 display behaviors different from that of the normal profile
𝐺 (light gray), especially 𝐺4. The presence of 𝑆𝑚’s data in these clusters means that 𝑆𝑚 has started to
deviate from the good health and, consequently, has its score 𝐻𝑆𝑚 increased.
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Figure 6.10: Visualization of the profiles of 𝐺1, 𝐺3, 𝐺4, and 𝐺4 via the current, voltage,
and position measurements. Thick lines are the profiles, and colored regions are the

envelopes of the variables.

We can therefore validate the hypothesis 𝐻 2𝑑 , given that the health evolution is in accordance with
the trajectory of a system’s data in the health profiles. Since the clusters are confirmed by the domain
expert to represent the underlying physics of known anomalies, our formula used to estimate the health
score are able to assess a system’s condition at any given moment.

4.3.3 Reactivity and continuity of online clustering

The reactivity of CheMoc is assessed by the time elapsed since CheMoc receives the first data point
until it reaches a stable set of clusters. A stable cluster is one that does not undergo significant changes
on the stream in the absence of data drifting. To quantify the stability of the clusters, we use a cluster
validity index (CVI) and observe its evolution over time to determine CheMoc’s convergence. A CVI
evaluates a clustering result on a data set, either by matching it to a ground-truth (ideal partitioning),
or by assessing the cohesion and separation between clusters. The former is known as external CVI,
and the latter internal CVI. Due to the lack of ground-truth clusters, we work with internal CVIs only.

Among the existing internal CVIs, we pick the Davies-Bouldin (DB) index [55] and Xie-Beni (XB)
index [239]. The DB index (6.23) estimates the cluster cohesion based on the distance between centroids
and between each point to its centroid. The XB index calculates the ratio of compactness to separation
(6.24). Smaller values of DB and XB indicate better clustering. We denote 𝐾 the number of clusters, 𝑐𝑘
the centroid of a cluster 𝐺𝑘 , 𝑑(𝑥, 𝑦) the Euclidean distance between 𝑥 and 𝑦.
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𝐷𝐵 =
1
𝐾
∑
𝐺𝑘 ∈

max
𝐺𝑙 ∈⧵𝐺𝑘

𝑆(𝐺𝑘) + 𝑆(𝐺𝑙)
𝑑(𝑐𝑘 , 𝑐𝑙)

where 𝑆(𝐺𝑘) =
1
|𝐺𝑘 |

∑
𝑖 ∈ 𝐺𝑘

𝑑(𝑥𝑖, 𝑐𝑘) (6.23)

𝑋𝐵 =
𝑊𝐺𝑆𝑆/𝑁

min
𝑘 ≠ 𝑙
|| 𝑐𝑘 − 𝑐𝑙 ||22

where 𝑊𝐺𝑆𝑆 =
𝐾
∑
𝑘=1
∑
𝑖 ∈ 𝐺𝑘

|| 𝑐𝑘 − 𝑥𝑖 ||22 (6.24)

Because CheMoc uses DenStream as its core clustering and DenStream is based on DBSCAN [65],
we compare the reactivity of CheMoc to that of DBSCAN. We set 𝜖 of DBSCAN to 3.0 to make it
consistent to the dynamic density 𝜖 of CheMoc (Figure 6.7). CheMoc is more reactive than DBSCAN if
the DB and XB scores of CheMoc’s clusters become stable earlier than those of DBSCAN.

We collect the DB and XB scores of each method on two separate approaches: on the data as
a stream (all data accumulated from 𝑡 = 0), and on the data of weekly batches. We name the four
approaches CheMoc-inc, CheMoc-batch, DBSCAN-inc, and DBSCAN-batch. The DB and XB scores at
a time 𝑇 of each approach are calculated as follows.

• CheMoc-inc and DBSCAN-inc: the scores are calculated on all the clusters and data from the
beginning until 𝑇 .

• CheMoc-batch: the scores are calculated on all the clusters but considering the data in the cur-
rent batch only.

• DBSCAN-batch: the scores are calculated on the clusters obtained in one batch.

Figure 6.11 shows the scores alongside the number of clusters of each approach. The number of
clusters of CheMoc-batch is the number of new clusters that appears in a batch with respect to the
previous one.

Figure 6.11: Left to right: XB scores, DB scores, and number of clusters of CheMoc
versus DBSCAN

On the XB scores, DBSCAN-inc fluctuates strongly, implying that clusters obtained separately at
each batch do not have a strong connection from one batch to another. Meanwhile, the XB scores of
both version of CheMoc plateau quickly and are lower than those of DBSCAN.

In the contrary, the DB scores of DBSCAN are lower than those of CheMoc, but the number of
clusters of DBSCAN-inc is particularly high and rises up to 2000 clusters on the full data. This may
explain the low values of the DB scores: because the data are over-partitioned, each cluster has very
few data points, which makes the clusters denser and the centroids close to each other, consequently
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lowering the DB scores. The DB scores of DBSCAN-inc converge after the first five weeks, but the DB
scores of DBSCAN-batch and the XB scores of DBSCAN-batch and DBSCAN-inc do not converge at all.

Both scores have a consistent tendency for the clusters of CheMoc. They increase sharply after the
first warm-start batch, but become stable quickly after the first few weeks. The scores of CheMoc-inc
are smoother than those of CheMoc-batch. Despite producing substantially fewer clusters than DB-
SCAN, CheMoc results in CVI scores that are quite close to those of DBSCAN, which hint at a higher
quality of the clusters found by CheMoc.

Therefore, CheMoc is at least equally reactive to a traditional batch clustering. Even if DBSCAN-inc
seems to be competitive to or better than CheMoc, DBSCAN-incmust accumulate all data from the start
of the stream to perform a clustering, which does not scale in the long run because a stream is infinite,
whereas CheMoc is designed to learn incrementally. The hypothesis 𝐻 3𝑑 is partly5 validated.

This experiment also shows that CheMoc ensures the continuity of the cluster evolution by main-
taining the clusters to novelties on the stream, instead of re-creating the clusters at every batch like
DBSCAN-batch. The number of clusters by CheMoc is stable whereas that of DBSCAN-batch is erratic
and changes at every batch, without any indication that a cluster grows, shrinks, or disappears. Hence,
the hypothesis 𝐻 4𝑑 on the continuity of CheMoc is validated.

4.3.4 Time and memory efficiency

To monitor a large number of systems, CheMoc must be computationally efficient: updating the clus-
ters must be done quickly and consumes a reasonable amount of memory. As CheMoc is designed to
run on a server, we tolerate a moderate use of computational resource.

Because CheMoc uses DenStream as its inner clustering algorithm, it is able to quickly update the
clusters. Further analysis on the performance of DenStream can be found in [44].

The time complexity of CheMoc is estimated on a single data point 𝑥 arriving at 𝑇 and is the
complexity of its three main operations (Algorithm 6.2): updating the clusters (𝑇 ) on 𝑥 , reassessing
the clusters, recomputing the health score of all systems. Considering aworst-case scenario, we assume
that the last two operations are carried out for every new data point, e.g., 𝑇𝑢 = 1. Please note that we
use the decaying version of the anomaly score in this estimation.

Let us denote 𝐾 , 𝑁𝑝 , 𝑁𝑜 the number of clusters, of PMCs, and of OMCs maintained thus far such
that 𝑁𝑝 + 𝑁𝑜 = 𝐾 , 𝑁 = |𝐷(𝑇 )| the total data points from the stream until 𝑇 , 𝑀 = | | the number of
systems in the fleet  , 𝑁𝑠𝑡𝑎𝑡 and 𝑃 respectively the number of rows and columns of a statistic matrix.
The worst-case time complexity of each operation in CheMoc is:

• Updating (𝑇 ) on 𝑥: 𝑂(max(𝑁𝑝 , 𝑁𝑜)) = 𝑂(𝐾)6.
• Cluster reassessment: 𝑂(𝐾𝑁𝑠𝑡𝑎𝑡𝑃).
• Health score update: 𝑂(𝑀𝐾𝑁).

The overall worst-case time complexity of updating CheMoc on a single data point 𝑥 at a time 𝑇 is:

𝑂(𝐾 + 𝐾𝑁𝑠𝑡𝑎𝑡𝑃 + 𝑀𝐾𝑁) = 𝑂(𝐾𝑁𝑠𝑡𝑎𝑡𝑃 + 𝐾𝑁𝑀)
5It is validated only partly because we cannot prove that CheMoc outperforms DBSCAN on both CVIs.
6In the worst-case scenario, we may have all PMCs or all OMCs in (𝑇 ) and must iterate over all the clusters to merge a

data point to an existing one.
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which is non-scalable because it involves 𝑁 , due to (6.4) that requires computing ∑𝐺
𝑆𝑚
𝑘
𝑖 𝑓 (𝑇𝑚 − 𝑇𝑖)

and∑𝐺
𝑆𝑚

𝑖 𝑓 (𝑇𝑚 − 𝑇𝑖), both of which in the worst case become 𝑁 because a cluster may contain all data
from the stream. If we use the unweighted version of the anomaly score (6.3), the time complexity of
health recomputation becomes 𝑂(𝑀𝐾) because it only needs to store and access the number of points
by system in a cluster. There is an option to reduce𝑂(𝑀𝐾𝑁) to𝑂(𝑀𝐾) as well for the weighted version
(6.4), but it requires communicating with the maintenance workers which is not yet implemented at
this stage. It is part of our future works and we will discuss it at the end of this section.

Figure 6.12 shows the processing time and memory of CheMoc on each batch. The processing time
is consistent with the batch size: an update takes a constant time processing each data point. The total
execution time of CheMoc is almost entirely dominated by that of DenStream. A small gap exists due
to the time CheMoc takes to update the health scores of the systems. The only offline process is the
warm-start on the first batch and takes negligible time to finish (three seconds).

Figure 6.12: Processing time and memory usage of CheMoc

The memory usage of CheMoc tends to increase slightly. When data from unseen systems arrive,
CheMoc creates and stores the cluster features of new systems in the clusters, thus expanding the
memory usage over time, but not infinitely because the number of systems is finite. Processing the
data of an entire year from a fleet of 1409 systems requires only 600 MB in total.

Therefore, if we adapt amicro-batching approach (𝑇𝑢 ≠ 1), CheMoc is efficient in terms of execution
time and memory usage and can be used to monitor a fleet of systems generating a fast data stream.

4.4 Limits of CheMoc and potential improvements

Having studied CheMoc on the R2N data set, we have identified its three most important drawbacks.

4.4.1 Storing individual relevance weights

The first and foremost drawback of CheMoc is that it stores the data assignment in the clusters to
quickly compute the decaying anomaly scores (6.4). In the simple version without decaying (6.3),
storing the number of points per system is sufficient to compute the score via |𝐺𝑆𝑚𝑘 | and |𝐺

𝑆𝑚 |. However,
the decaying version (6.4) needs to access the relevance weight of individual data points. Although we
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store only the weight value of each point (instead of storing its entire data), this solution will not work
in the long run as data arrive infinitely.

It is possible to transform the terms in (6.4) to avoid storing individual relevance weights. Let
𝑑𝐺𝑆𝑚𝑘 = ∑

|𝐺𝑆𝑚𝑘 |
𝑖 𝑓 (𝑡𝑚 − 𝑇𝑖) be the sum of the relevance weights of all the points from 𝑆𝑚 in 𝐺𝑘 , where 𝑡𝑚

is the latest timestamp of 𝑆𝑚 on 𝐷(𝑇 ) and 𝑇𝑖 is the timestamp of the point 𝑝𝑖 of 𝑆𝑚 in 𝐺𝑘 .

𝑑𝐺𝑆𝑚𝑘 =
𝐺𝑆𝑚𝑘
∑
𝑖
𝑓 (𝑡𝑚 − 𝑇𝑖) =

𝐺𝑆𝑚𝑘
∑
𝑖
2−𝜆(𝑡𝑚−𝑇𝑖)

=
𝐺𝑆𝑚𝑘
∑
𝑖
2−𝜆𝑡𝑚+𝜆𝑇𝑖 =

𝐺𝑆𝑚𝑘
∑
𝑖
2−𝜆𝑡𝑚2𝜆𝑇𝑖

= 2−𝜆𝑡𝑚
𝐺𝑆𝑚𝑘
∑
𝑖
2𝜆𝑇𝑖 (6.25)

The term 2𝜆𝑇𝑖 in (6.25) can be computed incrementally by simply keeping the sum of 2𝜆𝑇𝑖 for each point
𝑝𝑖 from 𝑆𝑚 at 𝑇𝑖 in 𝐺𝑘 , overcoming the issue of storing individual relevance weights. This will reduce
the time complexity of health computation from 𝑂(𝑆𝑁𝑝𝑁) to 𝑂(𝑆𝑁𝑝) because we no longer need to
iterate over all the data points of a system to compute the anomaly scores. However, computing 2𝜆𝑇𝑖
becomes numerically infeasible as 𝑇𝑖 → ∞. To circumvent this, we introduce a “landmark” timestamp
𝑇𝑜 such that:

𝑑𝐺𝑆𝑚𝑘 =
𝐺𝑆𝑚𝑘
∑
𝑖
𝑓 ((𝑡𝑚 − 𝑇𝑜) − (𝑇𝑖 − 𝑇𝑜)) = 2−𝜆(𝑡𝑚−𝑇𝑜)

𝐺𝑆𝑚𝑘
∑
𝑖
2𝜆(𝑇𝑖−𝑇𝑜)

where 𝑇𝑖−𝑇𝑜 should be much smaller than 𝑇𝑖. Beside reducing the numerical value of 2𝜆𝑇𝑖 , 𝑇𝑜 brings
a subtlety to the anomaly scores: all the data recorded before 𝑇𝑜 have become obsolete and are ignored
when computing (6.4). Concretely, we can set 𝑇𝑜 to the timestamp at which a maintenance took place
and restored the health state of a system. 𝑇𝑖 − 𝑇𝑜 thus becomes the interval from the last-known time
of good health of a system to its current time. Without an explicit 𝑇𝑜, 𝑇𝑖 implies that the last-known
time of good health of a system is at 0, which is the start of its lifecycle. Nevertheless, 𝑇𝑜 is difficult to
obtain, because maintenance feedback is not always accessible in practice.

4.4.2 Refining the clusters on expert’s feedback

For now, CheMoc discovers and updates the clusters on its own. The resulting clusters are as good
as it could be solely from the data without help from the domain experts. To evaluate the clusters
of CheMoc, we collect the cluster footprints in each batch and show them to a domain expert. They
verify the clusters based on their understanding of the systems. We use their feedback to tweak the
hyperparameters of CheMoc in hope of finding better clusters.

It would be better to incorporate the feedback directly in CheMoc, forming a continuous feedback
loop that allows CheMoc to adapt itself. A feedback may trigger CheMoc to re-estimate the hyperpa-
rameters, to split and/or merge clusters. Reinforcement learning is a potential direction because it is
by nature compatible with the online learning paradigm having a feedback loop. We believe that the
expert’s feedback would improve CheMoc significantly. In the end, the purpose of CheMoc is not to
replace the experts completely but to be a tool that helps them in the decision-making process.
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Moreover, we plan to integrate a continuous monitoring of the cluster quality via multiple in-
cremental cluster validity indices. A sudden change in the indices likely indicates a drift in the data
distribution, which in turn may alter the clusters significantly. Once such drift is detected, CheMoc can
adapt its hyperparameters to novelties from the stream and/or query the expert on how the clusters
should be refined.

4.4.3 Fuzzy and/or hierarchical clustering

Given the multifault assumption, a system likely generates a cycle that is affected by multiple anoma-
lies simultaneously, thus one data point may belong to more than one cluster. Using fuzzy clustering
to soften cluster membership may improve the accuracy of the health profiles. Another way to in-
crease the clustering accuracy is by hierarchical clustering, because an anomaly can be part of another
high-level fault. This may require integrating prior information about system specifications, such as
expected types of fault, hierarchy of faults, or affected components in the systems.

5 Conclusion

Aiming at real-time machinery monitoring for the railway, we propose CheMoc as an unsupervised
method that employs online clustering to capture the health profiles of the monitored systems and to
assess their working condition continuously from a stream of unlabeled sensor data.

We use DenStream to detect online clusters via density propagation on the sensor stream. Because
the stream contains the data frommultiple systems, wemodify DenStream such that a cluster considers
the contribution of individual systems. We show that, even if the cluster features are separated by
system, the clusters remain incrementally updatable without explicit data storage. We omit the pruning
operation from DenStream to stabilize the discovery of online clusters, but we incorporate the decay
factor in the computation of the health scores to ensure the adaptivity of CheMoc.

We evaluate CheMoc on the data of the closing cycles of the R2N data set, using the expert in-
dicators for better explanability. Via experimental results, we see that CheMoc succeeds to discover
clusters that correspond to the underlying physics of known anomalies, which are positively confirmed
by a domain expert. These clusters form the health profiles from which CheMoc assesses the health
of individual systems accordingly. Being incremental, DenStream as the core clustering of CheMoc
continuously adapts the clusters on novelties from the stream and finds a stable set of clusters earlier
than the traditional offline DBSCAN. Therefore, the hypotheses 𝐻 1𝑑 , 𝐻 2𝑑 , and 𝐻 4𝑑 are validated on the
closing cycles of R2N data. The results obtained to validate 𝐻 3𝑑 are less conclusive, so we decide that
𝐻 3𝐷 is only partially validated.

Yet, there remains important shortcomings to be addressed. CheMoc stores the relevance weight
of the data points in memory to compute the anomaly scores quickly at the expense of non-scalable
time and space complexity. CheMoc cannot integrate human feedback that would have enabled it to
further refine the clusters. Adding incremental cluster validity indices to monitor the clusters would
allow timely drift detection, based on which we can prompt for expert feedback more efficiently. Be-
sides, under multifault assumption, hard partitioning is not the most suitable approach; instead, fuzzy
clustering will allow a greater flexibility to cluster the data stream. In addition, hierarchical clustering
will enhance the hierarchy of health profiles and add more diagnostics capacity to CheMoc. Overall,
future improvements seek to implement an interaction between CheMoc and railway experts.
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Chapter 7

Prognostics

In this chapter, we discuss shortly about prognostics and what it entails for predictive maintenance.
At the time of writing, our prognostics method has not been implemented, due to the lack of a well-
built ground-truth on the two data sets NAT and R2N for systematic evaluation. Once a ground-truth is
established for each data set, we will start implementing and evaluating the online prognostics method
to complete the pipeline for online predictive maintenance on complex railway systems.

Prognostics is the task of predicting failures [183], most commonly tackled by estimating the re-
maining useful life (RUL) of a piece of equipment [207]. RUL estimation is a regression task, which
belongs to the supervised learning paradigm and thus requires labels. In order to implement an on-
line regressor for estimating the RUL of any given system, it is crucial to have labeled data as inputs.
Nonetheless, the RUL labels are not abundant; in our case, it is unlikely to have one RUL label for each
cycle (in the form of feature vector) on the stream.

Firstly, it is infeasible to manually annotate the RUL for all data points on a fast stream. Sec-
ondly, the RUL labels must be supplied by the maintenance workers who know the moment where
a system fails or has severely degraded, but such feedback may not always be provided (incomplete
records or maintenance logs not digitized). Thirdly, the feedback may not be accurate due to human
errors, for instance, a system has a problem that is difficult to detect and is missed by the maintenance
team. As a workaround, we devise a self-supervised annotation scheme to create the RUL labels au-
tomatically without completely depending on the maintenance team’s feedback. Please note that the
self-annotation is done on each system independently.

Regarding the time unit of the RUL, the time in seconds or days is usually chosen. However, in the
railway, such time units are not the most intuitive. Let us consider a scenario as shown in Figure 7.1. at
an instant 𝑡, a system is put at rest for three hours, then it is put back to operation at 𝑡′ and generates
six cycles during 10 minutes before failing at 𝑡𝐹 . If we choose hours to be the RUL time unit, the RUL
of the system at 𝑡 is 3 hours 10 minutes, which appears less alarming than it should and does not leave

Figure 7.1: Starting from an instant 𝑡, a system is put at rest until it is back in operation
three hours later at 𝑡′, generates six cycles, then fails at 𝑡𝐹 .
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enough time to plan a maintenance inspection. On the contrary, if we choose the number of cycles as
the RUL time unit, the RUL at 𝑡 becomes six cycles, which is more relevant to the working condition of
the system and creates a sense of alertness to the maintenance team. Therefore, the RUL of a system
will be estimated in terms of the remaining number of cycles the system can still generate until its failure.

To self-annotate the RUL, we count the RUL backward from a cycle captured at a known moment
of failure (𝐶𝑡𝐹𝑘 ) and stops when reaching the cycle at the previous known moment of failure (𝐶𝑡𝐹𝑘−1 ).
Precisely, when a cycle of a system is recognized as “faulty” (when the health score of this system
reaches the maximum value), the RUL self-annotation starts immediately. First, it assigns the label
RUL = 0 to the cycle at 𝐶𝑡𝐹𝑘 . Then, it increments the RUL going backward on previous cycles and stops
once it reaches the cycle just before of the previous moment of known failure (𝐶𝑡𝐹𝑘−1 ).

Figure 7.2: From a cycle at a known moment of failure (𝐶𝑡𝐹𝑘 ), we increment the RUL
backward, starting from the value 0 at 𝐶𝑡𝐹𝑘 , until we reach the cycle of the previous

known moment of failure (𝐶𝑡𝐹𝑘−1 ). The annotation stops one cycle before 𝐶𝑡𝐹𝑘−1 .

These newly generated RUL labels, coupled with the associated feature vectors and health scores,
become the new training data for the online regressor. That is, a labeled data example (𝑋, 𝑦) to feed to
the regressor has the form ( [𝑋 𝑇𝑆𝑚 , 𝐻𝑆𝑚(𝑇 )], 𝑅𝑈𝐿𝑆𝑚(𝑇 ) ). Even if the self-annotation is done separately
for each system, the resulting labeled data are used to update a single online regressor1, so that the
regressor learns to recognize RUL patterns across different systems.

Nevertheless, two issues arise.

(i) Two failuresmay bemonths apart, with tens of thousands of cycles in between2. It is not intuitive
nor useful to create the RUL labels at such a magnitude.

(ii) The moments of failure are not always known. It is possible that a maintenance inspection
happens before a failure occurs, which shadows the real failure moment.

To tackle the issue (i), we limit the RUL backward count and stops it upon reaching the first anoma-
lous cycle since the previous failure. In other words, only anomalous cycles are assigned an RUL label,
while normal cycles are not annotated, or annotated with a neutral label indicating that the system is
in a good condition. It also implies that the self-annotation does not proceed until the previous known
failure 𝐶𝑡𝐹𝑘−1 , but only until the first cycle that is marked anomalous since 𝐶𝑡𝐹𝑘−1 . A cycle of a system is
anomalous if after processing it, the system’s health score exceeds a tolerance threshold, for instance,
when the health score crosses 0.5. From this point, we face two options. Wemay automatically consider
that all the cycles that follow this one are anomalous, but this risks false positives if the health score
then decreases below, or fluctuate around the threshold. The second option is that we only recognize
a cycle as the start of an anomaly if all the cycles that follow also maintain the health score above the
threshold, i.e., a sequential anomaly detection. We will study these options through experimentation.

1Following the logic of CheMoc, we have one regressor for each cycle type.
2Suppose that two failures are three months apart and that a cycle is created every three minutes, we will have 43200

cycles between two failures.
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To overcome the issue (ii), we replace the exact moments of failures by the moments a maintenance
inspection was carried out to be the anchor point. Nonetheless, a system is not always repaired after a
maintenance, if it is deemed sufficiently good to be put back in operation. In this case, the backward
count must not be started if the system does not undergo any change of state after an inspection.
In some cases, we may not receive any feedback about maintenance inspections, but a drift in the
data when the system switches from one state to another is a hint that an inspection has taken place.
Hence, the important factor is whether the health score of a system eventually reverses its trend, with
or without maintenance feedback. The self-annotation of a system 𝑆𝑚 only starts when such change is
detected from 𝐻𝑆𝑚(𝑇 ). Whether a maintenance feedback is made explicit or not decides the degree of
confidence in the RUL self-annotation.

• If 𝐻𝑆𝑚(𝑇 ) changes and a maintenance feedback is affirmed, the RUL annotation has the highest
degree of confidence.

• If 𝐻𝑆𝑚(𝑇 ) changes but there is no maintenance feedback, a degree of confidence is added to each
RUL annotation, depending on the magnitude of the change in 𝐻𝑆𝑚(𝑇 ).

• If a maintenance feedback is given but 𝐻𝑆𝑚(𝑇 ) remains on the same trajectory as before, the
maintenance might not have been done properly and the RUL self-annotation is not triggered.

Then, not only the RUL labels are given to the online regressor, but a degree of confidence 𝛾 ∈
[0, 1] is also included. Therefore, a training data example becomes ( [𝑋 𝑇𝑆𝑚 , 𝐻𝑆𝑚(𝑇 )], [𝑅𝑈𝐿𝑆𝑚(𝑇 ), 𝛾(Δ𝐻)] ),
where Δ𝐻 denotes the magnitude of change in the health scores.

Figure 7.3 describes the modified self-annotation scheme. Let 𝐶𝑡𝐹𝑘−1 and 𝐶𝑡𝐹𝑘 be two consecutive
failures associated to two cycles (we omit the notation of the system 𝑆𝑚 for simplicity), such that 𝐶𝑡𝐹𝑘−1
and 𝐶𝑡𝐹𝑘 are the last cycles generated by a system before it enters a failure state, or before amaintenance
inspection is carried out. Once 𝐶𝑡𝐹𝑘 is known, either via maintenance feedback or drift detection on
the health scores, the self-annotation is triggered and assigns the RUL labels backward to every cycle
preceding𝐶𝑡𝐹𝑘 until we reach𝐶𝑡𝐹𝑘−1 . However, explicit RUL labels are only assigned to anomalous cycles.
Other cycles belonging to the healthy region are labeled with a generic label, for instance, healthy or
∞, to distinguish them from anomalous cycles and/or to be excluded from updating the regressor.

Figure 7.3: The modified self-annotation scheme of the RUL, taking into account the
aforementioned issues

Having the self-annotated RUL labels, we use them to update the online regressor. Starting from
the beginning, the regressor is continuous updated on the training examples (including the feature
vectors, the health scores, the RUL labels, and the degree of confidence), until it attains a predefined
accuracy threshold at a time 𝑇 , starting fromwhich we can use the regressor to estimate the RUL of any
given system. The regressor is trained on the data of all systems from the fleet, but one RUL prediction
is linked to one individual system.
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Chapter 8

Conclusion and Perspectives

This chapter summarizes the works implemented thus far to address the central research question of
the thesis. We also discuss the perspectives for post-thesis works.

1 Conclusion

The overall topic addressed in this thesis is the applicability of online machine learning to predictive
maintenance in the railway industry. To find the research question, we perform a literature study
on the current progress of data-driven predictive maintenance, the state-of-the-art in online machine
learning, and the related works linking these two domains. We also study the concepts surrounding
maintenance research, such as complex systems, reliability theory, existing maintenance strategies,
and industrial maintenance standards (Figure 8.1).

Figure 8.1: Our literature study covers four domains: (I) foundational concepts of main-
tenance research, (II) predictive maintenance, (III) industrial standards, (IV) and online

machine learning.

Our observations distilled after the literature study are published in:

� Minh Huong Le Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Chal-
lenges of Stream Learning for Predictive Maintenance in the Railway Sector”. In: IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learn-
ing. Communications in Computer and Information Science. Springer International Publishing,
2020, pp. 14–29. isbn: 978-3-030-66770-2. doi: 10.1007/978-3-030-66770-2_2,

and allow us to state the research question:

https://doi.org/10.1007/978-3-030-66770-2_2
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Given that online machine learning can overcome certain limits of traditional ma-
chine learning, could we use online machine learning to achieve satisfactory re-
sults for railway predictive maintenance?

To tackle the research question, we formulate the hypotheses by blocks of railway characteristics,
namely granularity, cyclicity, features, and health (Chapter 3). To test our hypotheses, we use two real-
world railway data sets collected from the passenger access systems on two fleets of passenger trains
NAT and R2N, supplied by SNCF - the national railway company of France. A hypothesis is validated
only if it reaches satisfactory results on both data sets.

At the time of writing, some hypotheses are validated, and some need further investigation. Fig-
ure 8.2 schematizes our hypotheses: the hypotheses in boxes with thick lines are fully validated, those
in boxes with dashed lines are not validated or only partially validated, those in boxes with no border
line are not yet addressed.

Research question

Health

Continuity

Reactivity

Health score

Clusters
𝐻 1𝑑

𝐻 2𝑑

𝐻 3𝑑

𝐻 4𝑑

Features

Information
preservation

Reactivity

Equal performance
𝐻 1𝑓

𝐻 2𝑓

𝐻 3𝑓

Cyclicity
Accuracy

Reactivity
𝐻 1𝑐

𝐻 2𝑐

Granularity Fleet-level
𝐻𝑔𝐻𝑔

𝐻𝑐

𝐻𝑓

𝐻𝑑

Figure 8.2: Thick lines are validated hypotheses, dashed lines are those that cannot be
validated or are only partly validated, and 𝐻𝑔 is not yet addressed

Studying and validating the hypotheses result in a byproduct processing pipeline for the purpose
of predictive maintenance. In Figure 8.3, one module maps to one block of railway characteristics and
is linked to several hypotheses. The input to this pipeline is a stream of sensor data generated by a fleet
of railway complex systems; the output is an alert issued for a system in which a problem is detected.
The results obtained thus far on implementing the pipeline are published in:

� Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Real-time
learning for real-time data: online machine learning for predictive maintenance of railway sys-
tems”. In: Transport Research Arena (TRA). Lisbon, Portugal, Nov. 2022,
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and the extended results are under review for:

� Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Albert Bifet. “Exploring
the potentials of online machine learning for predictive maintenance: A case study in the railway
industry”. In: Applied Intelligence (Springer).

Figure 8.3: The pipeline of four modules are the byproduct result of validating and
implementing the hypotheses, where each module is linked to a method that addresses

a set of hypotheses of one railway characteristics.

Cyclicity The cyclicity characteristic maps to the module Cycle extraction in the pipeline, with
the aim to detect and label cycles from a stream of sensor data. The hypotheses 𝐻 1𝑐 and 𝐻 2𝑐 address,
respectively, the reactivity and accuracy of onlinemachine learning for cycle extraction. We implement
the framework InterCE (Interactive Cycle Extraction) that learns to extract cycles from such stream
using an active learning-based approach (Chapter 4).

• Given a new input, InterCE sends a query to a human expert if the input contains a novel motif
that InterCE does not know how to process; otherwise, InterCE attempts to extract cycles from
this input automatically using past feedback.

• InterCE combines multiple extractors via ensemble learning to reduce the variance of individual
extractor and to increase the overall accuracy.

• InterCE relies on a memory that stores familiar data motifs so that queries are only created for
strictly unseen motifs, in order to limit the number of queries sent to the human expert.

• The experimental results show that:
é (𝐻 1𝑐 ) When compared to its offline counterpart, online InterCE does not show a clear supe-

riority in reactivity, but it remains competitive nonetheless. 𝐻 1𝑐 is only partially validated.
✓ (𝐻 2𝑐 ) InterCE substantially improves the baseline accuracy of the expert system on both

data sets, which validates 𝐻 2𝑐 .
� Linked publication: Minh Huong Le Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Al-

bert Bifet. “A Complete Streaming Pipeline for Real-time Monitoring and Predictive Mainte-
nance”. In: Proceedings of the 31st European Safety and Reliability Conference. 2021, p. 2119. doi:
10.3850/978-981-18-2016-8_400-cd.

Features The features blockmaps to the Feature learningmodule, the purpose of which is to extract
a compact yet representative feature vector from each cycle extracted by InterCE. The hypotheses 𝐻 1𝑓
and 𝐻 2𝑓 compare the performance of offline and online feature learning on two criteria - representation

https://doi.org/10.3850/978-981-18-2016-8_400-cd
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performance and reactivity, while 𝐻 3𝑓 answers whether learned features preserve information better
than manually engineered features (also called expert indicators). For this, we implement an LSTM-

AE (long short-term memory autoencoder) that leverages the LSTM cells in an autoencoder architecture
to learn representation from sequential data (cycles) (Chapter 5).

• In the LSTM-AE, each layer is an LSTM cell to capture the temporality of the cycles, which are
per se time series.

• We propose two versions of the LSTM-AE, including:
– a plainmodel that has a traditional encoder-decoder architecture and 14 layers in total, and
– a joint model that has an additional classifier connected to the encoder to map a cycle to

its context (train stations).
• We train both versions of the LSTM-AE in three settings, that are:

– the offline setting trains the LSTM-AE on all the training cycles over 𝐾 epochs (𝐾 = 300),
– the online setting trains the LSTM-AE on each incoming cycle over one epoch,
– the online incremental setting trains the LSTM-AE on a micro-batch, containing the incom-

ing cycle and 𝐾−1 previous cycles; the purpose is to let the LSTM-AE process one cycle as
many time as the number of epochs and to enact a fair comparison with the offline setting.

• The experimental results show that:
é (𝐻 1𝑓 and 𝐻 2𝑓 ) After comparing the results of the LSTM-AE on three learning settings, we see

that the offline version clearly outperforms the online versions in reconstruction capacity
and reactivity, therefore 𝐻 1𝑓 and 𝐻 2𝑓 cannot be validated.

✓ (𝐻 3𝑓 ) We assess the quality of the (offline) LSTM-AE features and the expert indicators via
a cycle-feature ranking evaluation and observe that the LSTM-AE features are better at
preserving the information of the cycles than the expert indicators, which validates 𝐻 3𝑓 .

Health We define the health of a system its extent of being free from anomaly. Identifying a sys-
tem’s health is linked to the Health detection module. The aim is to discover a set of evolving health
profiles in the form of adaptive clusters from the stream of feature vectors, then to compute the health
score of each system from these profiles. To monitor the health of a fleet of systems continuously, we
formulate four hypotheses: 𝐻 1𝑑 (health profiles as online, evolving clusters), 𝐻 2𝑑 (cluster-based health
score computation), 𝐻 3𝑑 (superior reactivity of online clustering to offline clustering), and 𝐻 4𝑑 (conti-
nuity in cluster evolution as an advantage of online clustering). We implement CheMoc (Continuous
Health Monitoring using Online Clustering) to tackle these hypotheses (Chapter 6).

• CheMoc uses DenStream as the core online clustering algorithm to capture the health profiles
of the fleet as evolving clusters.

• Using DenStream as it is does not align with the railway operational constraints, thus we modify
DenStream to amend the misalignment; the resulting algorithm still enables incremental update
of the clusters.

• Based on the clusters, CheMoc updates the health score of every system such that the scores
reflect the deviation of a system from a reference health profile.

• The experimental results show that:
✓ (𝐻 1𝑑 ) CheMoc succeeds to discover clusters that correspond to known anomalies of the

systems, as confirmed by a domain expert, which validates 𝐻 1𝑑 .
✓ (𝐻 2𝑑 ) Since the clusters are correctly identified, CheMoc uses them to compute the health

score of a system accordingly at any time, which validate 𝐻 2𝑑 .
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é (𝐻 3𝑑 ) When compared to the offline DBSCAN via two cluster validity indices, the reactivity
of CheMoc remains inconclusive, as it does not outperform DBSCAN in all cases, so 𝐻 3𝑑 is
only partially validated.

✓ (𝐻 4𝑑 ) Being incremental, CheMoc continuously adapts the clusters on novelties from the
stream, which its offline counterpart DBSCAN cannot, thus validating 𝐻 4𝑑 .

� Linked publication: Minh-Huong Le-Nguyen, Fabien Turgis, Pierre-Emmanuel Fayemi, and Al-
bert Bifet. “Continuous Health Monitoring of Machinery using Online Clustering on Unlabeled
Data Streams”. In: 2022 IEEE International Conference on Big Data (Big Data). Dec. 2022, pp. 1866–
1873. doi: 10.1109/BigData55660.2022.10021002.

Granularity The hypothesis 𝐻𝑔 that tackles the granularity of the analysis (fleet-level versus
individual-level) is not yet addressed, and will be included in future works.

General conclusion The works conducted in this thesis demonstrate the potentials of online
machine learning to enable adaptive and lifelong learning for predictivemaintenance, with applications
in the railway industry.

Among ten hypotheses that we formulated, five of them are fully validated (𝐻 2𝑐 ,𝐻 3𝑓 ,𝐻 1𝑑 ,𝐻 2𝑑 ,𝐻 3𝑑 ) and
highlight the superior accuracy of online, adaptive learning in comparison to offline, static learning.

• By incorporating human feedback on-the-fly, InterCE is able to update its knowledge on the task
without requiring prior training.

• CheMoc continuously updates the clusters on incoming data - this allows CheMoc to follow the
evolution of the health profiles and of a system’s health more accurately than an offline process.

• We would like to note that although 𝐻 3𝑓 is validated, the features are obtained from the offline
LSTM-AE, therefore online machine learning lags behind in all aspects for the features block.

– This could be due to choosing a neural network as a feature learner: since the current state-
of-the-art of neural network training favors training a complex model on a vast volume of
data over hundreds or even thousands epochs, a neural network is not likely optimized for
a continuous data stream.

– Future works may replace the LSTM-AE by another feature learning method other than
neural networks to enact a fairer comparison.

Nonetheless, we find it surprising that the reactivity of online machine learning is not higher than
that of offline machine learning, as the hypotheses that fail to be fully validated mostly concern the
reactivity of online machine learning (𝐻 1𝑐 , 𝐻 1𝑓 , 𝐻 2𝑓 , 𝐻 3𝑑 ), with an exception of 𝐻 1𝑓 that points out the low
accuracy a neural network learned online.

• For InterCE, LSTM-AE, and CheMoc, the online methods do not outperform, or at best are com-
petitive to, the offline ones.

– In terms of temporal accuracy, the offline version of InterCE outruns online InterCE on
NAT data, while online InterCE is slightly better on R2N data; because online InterCE is
not the clear winner on both data sets, we do not fully validate 𝐻 1𝑐 .

– The offline LSTM-AE has an approximately equal training time as the online ones, even
though the latter should be faster as they are trained on fewer data; however, we are not
certain if this is due to the nature of online learning, or to the technical implementation in
tensorflow that does not privilege online training; we made the conservative choice not
to validate 𝐻 2𝑓 .

https://doi.org/10.1109/BigData55660.2022.10021002
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– We compare the cluster quality by CheMoc and byDBSCAN via two cluster validity indices,
Xie-Beni (XB) and Davies-Bouldin (DB), and find out that the clusters of CheMoc are better
then those of DBSCAN on the XB index only, but lag behind on the DB index, although the
gap is not large; that is why 𝐻 3𝑑 is only partially validated.

• We believe this is related to the convergence of a learning algorithm:
– An offline learning algorithm is trained on a static batch of data until it reaches convergence

(e.g., the loss cannot be further reduced), after which it is deployed for online use and
maintains a stable accuracy, unless a drift occurs.

– An online learning algorithm is deployed online from the beginning and updates itself on
new data examples continuously, but its accuracy inevitably fluctuates until it has seen
enough data to perform the intended task properly.

Henceforth, we are facing a compromise: offline machine learning requires prior training but is
stable after validation yet demands retraining in the case of data drifting, whereas online machine
learning is unstable until reaching convergence but can adapt to drifts by itself.

Figure 8.4: A framework that combines a fast and slow learner to improve the overall
accuracy of data stream mining [162].

Given that both paradigms do not possess an absolute superiority, a potential direction is to have a
hybrid approach by creating a framework with two parallel systems: an online, highly reactive method
that adapts very fast to drifting, and an offline, retrospective method that carefully distills information
passed from the online method to yield more reliable results. This idea has been explored by Montiel,
Bifet, Losing, Read, and Abdessalem [162] (Figure 8.4), and we deem it very relevant to the future
research direction of reactive and accurate data-driven predictive maintenance.

2 Perspectives

There are multiple research directions opening at the end of this thesis. We will first discuss immediate
future works that aim to improve of InterCE, LSTM-AE, and CheMoc to overcome existing issues, and
to implement the missing methods (prognostics, granularity investigation). Then, we will look at the
perspectives of this thesis on a larger scope, such as implementing the human-in-the-loop mechanism
to each module to enable the methods to self-improve with the help of expert feedback, or realizing a
hybrid framework with the parallel online-offline learners.
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2.1 Improvements of each module

The methods we implemented are functional proof-of-concepts of the applicability of online machine
learning to railway predictive maintenance. Yet, improvements are necessary to make them more
robust and efficient to deal with real-world scenarios, where the input stream is no longer simulated
but comes from a fleet of railway equipment in operation in real-time.

InterCE InterCE relies heavily on memorizing instead of learning. Storing distinct data motifs and
labeled cycles from human feedback in memory are the backbone of InterCE. Instead of storing data
explicitly, we could implement proper learning mechanics in InterCE. For instance, the motifs are not
saved in memory as is but a classifier learns to recognize unique or seen motifs; the knowledge of
InterCE not only saves the feedback cycles based on their label but apply clustering on these cycles to
become more robust against human errors.

Then, the update on human feedback affects only the labeling functionality. The extractors cur-
rently used in InterCE are static: they do not adapt nor evolve and will likely repeat the same mistakes.
To improve the overall accuracy of InterCE, making the learners updatable is of utmost necessity. The
human feedback would serve as ground-truth to adjust the hyperparameters of the extractors in In-
terCE accordingly. Additional extractors could be developed to diversify the extraction algorithms in
the ensemble of InterCE.

The scalability of InterCE is also a concern. InterCE takes several hours to process 100000 data
files of NAT data and more than a day for R2N data. Adding parallelism could reduce the execution
time, but as long as the motif search remains a bottleneck, InterCE may not scale on fast, infinite data
streams. This stresses on the need to convert the memorizing-and-searching approach of InterCE to a
learning-driven approach.

LSTM-AE Although the LSTM-AE outperforms the expert system in information preservation, it is
by nature a black-box model and its features are not interpretable, unlike the expert indicators that
convey exact meaning. Explaining the LSTM-AE features is important to facilitate model debugging
and raise interpretability when presenting the results to the end-users.

In addition, the online training paradigm unfortunately does not lead to results that are more sat-
isfactory than its offline version. Despite being online-compatible, neural networks appear to reach
their best performance only when trained in the traditional offline setting, where the networks itera-
tively revise the same set of training examples until an optimum is found. We may think of a hybrid
approach, in which the LSTM-AE is trained offline until convergence, but it stays updatable on new
examples after deployment. This falls in the category of continual learning, the goal of which is to
ensure the neural network can continue to learn new data while not forgetting past data [87].

Most importantly, a crucial drawback of the LSTM-AE is that it erases perturbations from the data
to produce a smooth representation. Although this is desirable in some cases, for example, to denoise
the inputs, such perturbations may hint at an anomaly manifesting in the systems, and smoothing
out these perturbations leads to information loss. To amend this issue, we can adjust the LSTM-AE
architecture to make it more sophisticated, or craft a loss function that enables the network to retain
relevant perturbations.

CheMoc To quickly compute the decaying version of the anomaly score, CheMoc stores the rele-
vance weight of each data point in the clusters, but this will not scale as data arrive infinitely. Several



Chapter 8. Conclusion and Perspectives 156

solutions exist to circumvent this issue. We can compute the terms in the anomaly score formula cu-
mulatively and introduce a landmark timestamp to make it numerically feasible. The relevance scores
can be saved in a database and retrieved only when the health scores are recomputed, but this will
undoubtedly incur a delay. Or, we can simply use the static version of the anomaly scores, given
that the static and decaying versions make little difference in the health scores, as observed from the
experimental results.

Moreover, CheMoc does not have a feedback loop. Unlike InterCE that updates its knowledge on
human feedback, CheMoc discovers clusters by itself on the data stream, and the resulting clusters are
as good as it could get without human guidance. Even if the density threshold is dynamically adjusted,
there is no guarantee that the adjusted density reflects the true density of the data, as it is computed
based on the clusters and biases may be inevitable. Making CheMoc updatable on human feedback,
such that the density threshold can be reset on command, or a cluster is requested to split or to merge,
may bring significant improvement in building accurate health profiles.

Prognostics At the end of the thesis, an online prognostics method has not been implemented, but
we have sketched the idea of a self-annotating framework to learn an online regressor that estimates
the remaining useful life of a system on a stream of feature vectors and health scores. This is the
final module that will enable failure prediction and thus complete our predictive maintenance solution
based on online machine learning. This module partly relies on human feedback to identify the anchor
moment on which the self-annotation starts, therefore human-in-the-loop will play a crucial role in
our prognostics solution.

Granularity Once the prognostics method is implemented and thus completes the full pipeline,
we will study the hypothesis of granularity 𝐻𝑔 , by comparing the results of a fleet-level pipeline to
those of individual pipelines (one pipeline per system).

2.2 On a larger scope

Besides separate improvement by module, it is essential to have all modules integrated in a seamless
pipeline on a processing server - this is on the course of realization at IKOS Lab. The pipeline is being
integrated to the framework IKIM (IKOS Intelligent Maintenance) module by module. We would like
to note that our entire pipeline fits in the Analyzing node of IKIM (Figure 8.5) Currently, InterCE has
been deployed on IKIM and is undergoing extensive tests to prepare it for production.

Figure 8.5: The IKIM platform dedicated to big data processing for railway predictive
maintenance, under development at IKOS Consulting

Once the pipeline is fully deployed on IKIM - given that the prognostics module and the granularity
hypothesis have been validated, we will test the pipeline on the data from other railway complex



Chapter 8. Conclusion and Perspectives 157

systems, such as the batteries, compressors, or the heating, ventilation, and air conditioning systems,
to assess how well our methods generalizes to other types of systems.

Asmentioned, we also plan to integrate a feedback loopwith human experts to eachmethod, so that
the expert feedback will fine-tune the methods and, in overall, bring improvement to the accuracy of
the outputted maintenance alerts. We have shown that the human-in-the-loop approach helps InterCE
to attain an accuracy higher than that of the expert system. It is our expectation that such approach
will also strengthen LSTM-AE, CheMoc, and our prognostics method.

Furthermore, as we have observed that using only online machine learning or offline machine
learning is unlikely to yield optimal results in all cases, it is worth considering a hybrid approach that
has a fast, reactive learner to handle novelties from the data stream, and a robust, sophisticated learner
working in batch mode that aggregates results of the fast learner and past data to refine the results.
For example, the fast learner may detect changes from the incoming data and signals a potential drift;
the drift detection alert is sent to the batch learner (such as an expert system), and by revising past
patterns, the batch learner decides that it is a false alert caused by contextual noise and does not emit
maintenance orders. After the experimentations done in this thesis, we have come to the belief that
being fast is not equivalent to being accurate, and that a harmony between reactivity and retrospection
is necessary to guarantee reliable results.

To the best of our knowledge, there has been no previous work that tackles various stages in a
predictive maintenance solution using online machine learning, for both the training and prediction
phases. With this thesis, we have attempted to bridge this gap in the related literature. We hope that our
works will attract the attention of practitioners to online machine learning - a paradigm that enables
lifelong, adaptive learning and deserves much consideration, and its potentials yet to be explored for
predictive maintenance in the railway industry.
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1 Motivation

Le transport ferroviaire permet de transporter de nombreux passagers tout en laissant une faible em-
preinte carbone dans l’environnement, ce qui en fait un mode de transport en commun efficace et
écologique. Donc, le chemin de fer continuera à se développer dans les décennies suivantes, d’où le
besoin d’une maintenance efficace. La maintenance est une fonction support essentielle car elle aide à
assurer la fiabilité des équipements, la disponibilité du service, et la sécurité des humains. Dans le fer-
roviaire, la maintenance corrective et la maintenance préventive périodique sont dominantes. Le pre-
mier vise à mettre en place les interventions urgentes ayant lieu après l’occurrence d’une panne dans
le système, alors que le dernier a pour l’objectif de planifier des inspections par intervalles régulières
pour prévenir toutes défaillances potentielles.

Récemment, émerge une nouvelle stratégie de maintenance qui est la maintenance prévisionnelle. predictive
maintenanceCette stratégie émet des ordre de maintenance en s’appuyant sur l’état actuel d’un système, révélé

par la surveillance en continu de l’état du système, et sur la prévision de ses conditions futures. La
maintenance prévisionnelle a attiré une attention croissante des praticiens du domaine, en particulier
dans l’ère de l’Industrie 4.0 où les systèmes sont équippés de capteurs qui génèrent un flux de données data stream

en temps réel, facilitant la surveillance en continue de l’état des systèmes. Les techniques réalisant la
maintenance prévisionnelle peuvent se diviser en deux catégories: l’approche basée sur les connais-
sances et l’approche basée sur les données. Pour cette thèse, nous nous concentrons sur le dernier,
pour lequel l’apprentissage automatique a pris de l’importance. machine

learning
La pratique commune consiste à collecter un certain volume de données, puis à entraîner un mod-

èle sur ce lot de données. Après l’entraînement et la validation du modèle, celui-ci est déployé en pro-
duction pour émettre des prévisions de défaillances tout en restant constant, en dépit des nouveautés
venant de nouvelles données d’entrée. Cela est le paradigme hors-ligne de l’apprentissage automatique. offline machine

learningDans le contexte où les données sont générées en continu par les capteurs installés dans les systèmes
surveillés, les changements dynamiques peuvent affecter négativement la précision du modèle. Par
exemple, si le modèle ne voit que les données sur quelques modes de défaillance des systèmes, le mod-
èle échouera à reconnaître les autres modes de défaillances plus rares qui n’ont pas apparu dans les
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données d’entraînement. Un autre exemple est quand les modifications et améliorations fonctionnelles
sont implémentées dans les systèmes, ce qui change en conséquence leur comportement et les motifs
de données qu’il génèrent, le modèle doit être re-entraîné sur les nouvelles données, d’où un délai in-
évitable à re-collecter les données et l’effort à re-valider le modèle. Ce phénomène s’appelle la dérive data drifting

des données et arrive souvent sur un flux de données dynamique.

De l’autre côté, la nature infinie et rapide d’un flux de données entrave l’étiquetage des données. Pour data labelling

l’apprentissage automatique, une étiquette est une valeur associée à un exemple de données, par exem-
ple, l’état d’un système au moment où il produit cet exemple de données, ou la durée de vie résiduelle
à partir de cet exemple. Ces étiquettes permettent l’usage des algorithmes de l’apprentissage automa-
tique supervisé, qui est la classes des techniques les plus développées de l’apprentissage automatique.
Toutefois, la vitesse et le volume d’un flux de données rendent l’étiquetage manuel irréalisable. En
outre, dans le ferroviaire, chaque occurrence d’une défaillance est suivie par la procédure FRACAS1
pour empêcher sa réapparition; par conséquent, cette défaillance (et son étiquette) n’apparaîtra plus
dans les données, ce qui rend plus difficile l’application des algorithmes supervisés sur le flux de don-
nées ferroviaires.

Considérant ces désavantages de l’apprentissage automatique hors-ligne, nous portons l’attention
sur l’apprentissage automatique en ligne, qui consiste à apprendre de façon continue, en mettant à jour online machine

learningle modèle incrémentalement sur chaque nouvel exemple de données, et à s’adapter automatiquement
aux nouveautés sur le flux de données. Par résultat, l’apprentissage automatique en ligne permet aussi
à un modèle d’interagir avec les humains en collectant leur retour pour ajuster ses paramètres si néces-
saire. Cette thèse étudie l’applicabilité de l’apprentissage automatique en ligne pour la maintenance
prévisionnelle dans le ferroviaire, utilisant les données des systèmes d’accès passager2 sur deux flottes
de trains NAT et R2N, fournies par la SNCF de la France, comme cas d’études.

Donc, la question de recherche de cette thèse est comme suit.

Étant donné que l’apprentissage automatique en ligne peut surmonter des lim-
ites de l’apprentissage automatique hors ligne traditionnel, pourrions-nous utiliser
l’apprentissage automatique en ligne pour atteindre les résultats satisfaisant pour
la maintenance prévisionnelle dans le ferroviaire ?

2 Défis

Afin d’implémenter l’apprentissage automatique en ligne pour la maintenance prévisionnelle dans le
ferroviaire, il faut considérer les contraintes opérationnelles et caractéristiques spécifiques aux ferrovi-
aire. Nous les divisons en quatre blocs: granularité, cyclicité, indicateurs, et santé.

Granularité

La granularité de l’analyse concerne le niveau auquel nous analysons les données venant de toute la
flotte. Si les données de tous les systèmes sont analysées ensemble, cela est une analyse au niveau de la
flotte. Si les données de chaque système sont analysées indépendamment, cette analyse est au niveau
individuel. Chaque option a ses points forts et faibles.

1Failure reporting, analysis and corrective action system
2Un système d’accès passager est une porte électrique automatique sur une voiture.



Appendix A. Résumé en français 160

L’analyse au niveau de la flotte supprime l’individualité des systèmes et implique qu’il existe un
ensemble de comportements partagés par tous systèmes dans la flotte. Il faut noter que l’évolution par-
ticulière d’un système peut être cachée par l’information de la masse. L’analyse au niveau individuel
crée un modèle pour chaque système et entraîne ce modèle sur les données de ce système exclusive-
ment. En conséquence, un modèle peut capter les motifs particuliers à chaque système. Cependant, un
modèle peut rater l’information qui a été apprise par un autre modèle et doit tout re-apprendre.

En comparant les deux options, nous nous rendons compte que l’analyse au niveau de la flotte
est plus réalisable, car une flotte avec un grand nombre de systèmes rend l’autre option au niveau
individuel impossible à monter en échelle (milliers de modèles à maintenir séparément). En outre, un
modèle appris sur les données d’un seul système risque à être sur-ajusté ou à apprendre des motifs
incohérents. Donc, toutes les analyses effectuées pour cette thèse se font au niveau de la flotte.

Cyclicité

Tous les systèmes typiques dans le ferroviaire sont cycliques: ils sont conçus pour effectuer un nombre
de fonctions défini périodiquement. Par exemple, un système d’accès passager s’ouvre et se ferme, un
batterie se charge et se décharge, et cetera. Chaque réalisation d’une fonction par un système constitue
un cycle. Techniquement, un cycle est représenté par un segment de données dont le motif se répète cycle

sur le flux de données d’entrée. Un cycle est l’unité d’analyse la plus petite permettant de révéler l’état
d’un système, car un cycle enregistre le comportement d’un système pendant que celui-ci effectue une
fonction. Toutes anomalies peuvent se voir dans les cycles qu’un système génère.

Donc, la première tâche à accomplir est l’extraction des cycles à partir d’un flux de données. Une cycle extraction

extraction comprend deux tâches: il faut tout d’abord détecter la présence des cycles dans les données
de capteurs brutes, et puis il faut associer un cycle détecté à une fonction du système (le type du cycle).
Les défis liés à l’extraction de cycles sont:

Défi 1: Utiliser l’apprentissage automatique hors-ligne introduit un délai important car il faut col-
lecter assez de données sur tous les cycles puis entraîner et valider un modèle approprié.

Défi 2: Le flux de données ne contient pas d’étiquettes sur les types de cycles, ce qui complique la
mise en oeuvre des algorithmes d’apprentissage supervisés.

Défi 3: Nouveaux types de cycle peuvent émerger, ou les types existant peuvent changer en raison
d’unemise à jour fonctionnelle dans les systèmes. Unmodèle statique ne peut pas s’adapter
à ces changements et exige un re-entraînement.

L’entrée de la tâche de l’extraction de cycles est un flux de données brutes venant des capteurs,
contenant les données de tous les systèmes dans une flotte. La sortie attendue est tous les cycles
détectables sur ce flux et étiquetés avec leur type correspondant.

Indicateurs

Par nature, un cycle est une série temporelle multivariée. Bien qu’un cycle soit l’unité d’analyse la
plus petite dans les données, comparer les millions de cycles paire par paire n’est pas efficace, car la
comparaison doit se faire à travers des pas de temps et des variables, alors que comparer les cycles via
des indicateurs de résumé peut atteindre le même niveau de performance en réduisant les ressources features

de calcul. Donc, la deuxième tâche qui suit l’extraction des cycles est de les transformer en vecteurs
d’indicateurs, de manière que ces vecteurs soient plus compacts que les cycles d’origine tout en préser-
vant leur information. Nous appellons cette tâche l’apprentissage des indicateurs. feature learning

Les défis liées à l’apprentissage des indicateurs sont comme suit.
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Défi 1: Nous ne savons pas quels sont les indicateurs pertinents à extraire. L’ensemble des indica-
teurs identifiés peut être incomplet et manque des indicateurs importants, ou en contient
trop et produit des indicateurs redondants. En plus, un indicateur peut perdre et gagner
la pertinence au cours de temps - ce phénomène s’appelle l’évolution des indicateurs et fait feature evolution

partie de la dérive des données.
Défi 2: Les bruits venant du contexte opérationnel d’un système affectent aussi la qualité des indi-

cateurs. Un contexte est tous les facteurs qui entourent un système en opération, tels que
la température, la charge de travail, la courbure des rails. Un contexte peut faire un cycle
normal apparaître anormal, et vice-versa.

Défi 3: Comme un cycle est projeté d’une dimension plus haute (espace des séries temporelles) à
une dimension plus basse (espace des vecteurs), il faut réduire la perte d’information.

Défi 4: Utiliser l’apprentissage automatique hors-ligne introduit un délai important car il faut col-
lecter assez de cycles pour entraîner et valider un modèle d’apprentissage d’indicateurs
approprié.

Santé

Inspiré par la définition littérale de la santé [189], nous définissons la santé d’un système comme sa
mesure d’être exempt d’anomalie, quantifiée par un score de santé borné entre 0 et 1, dont 0 indique la
bonne santé (exempt de toute anomalie) et 1 indique la plus mauvaise santé (largement affecté par les
anomalies). Une anomalie est tout ce qui dévie du comportement normal, ou typique, déterminé par la
majorité des systèmes dans la flotte.

À part d’un score de santé calculé pour chaque système à un moment donné, nous cherchons aussi
à identifier les profils de santé de la flotte. Un profil de santé est une enveloppe de caractéristiques des
systèmes dans le même état de santé, tel que les données dans le même profil est plus similaire entre
elles que celles situés dans les différents profils de santé. Intuitivement, nous considérons un profil
de santé en tant qu’un cluster groupant les cycles (sous forme de vecteurs d’indicateurs) fortement
similaires. Puisqu’un système est conçu pour fonctionner dans un état nominal unique, la santé typique
est définie via un cluster de référence unique. Tous les autres clusters sont considérés des clusters
d’anomalie.

Il existe deux défis liés au calcul de santé d’un système sur un flux de donnés: un défi associé à la
découverte des profils de santé, et l’autre le calcul de la santé selon les profils détectés.

Défi 1: Les profils de santé doivent être découverts automatiquement sur le flux de données sans
connaissance du domaine. L’algorithme doit aussi pouvoir s’adapter à toute évolution des
profils de santé au cours du temps.

Défi 2: Étant donnés les profils de santé détectés, comment le score de santé d’un système peut-il
être calculé, de manière que le score reflète l’impact de toutes les anomalies qui affectent le
système à un moment donné? De plus, le score de santé doit être calculé de façon efficace
pour permettre la surveillance en temps réel de toute la flotte.

3 Contributions

Ayant considéré les défis susmentionnés, nous proposons dix hypothèses, divisées par bloc opéra-
tionnel du ferroviaire comme défini dans la section précédente. Figure A.1) montre ces dix hypothèses
et indique celles qui sont validées, celle qui ne sont pas validées et ne sont validées que partiellement.
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La validation de ces hypothèses est basée sur les résultats expérimentaux collectés sur les données des
systèmes d’accès passager de deux flottes de trains NAT et R2N.

Question de

recherche

Santé

Continuité

Réactivité

Score de santé

Clusters
𝐻 1𝑑

𝐻 2𝑑

𝐻 3𝑑

𝐻 4𝑑

Indicateurs

Préservation
d’information

Réactivité

Performance égale
𝐻 1𝑓

𝐻 2𝑓

𝐻 3𝑓

Cyclicité
Précision

Réactivité
𝐻 1𝑐

𝐻 2𝑐

Granularité Niveau de la flotte
𝐻𝑔𝐻𝑔

𝐻𝑐

𝐻𝑓

𝐻𝑑

Figure A.1: Les lignes épaisses sont des hypothèses validées. Les lignes en pointillé
sont celles qui ne sont pas validées et sont partiellement validées. 𝐻𝑔 n’est pas encore

adressée à la fin de cette thèse.

Les sections suivantes décrivent les méthodes que nous avons proposées pour valider les hy-
pothèses. Nous avons conçu une méthode pour chaque bloc thématique.

InterCE

Pour entamer les hypothèses de cyclicité, nous avons proposé InterCE (Interactive Cycle Extraction)
pour automatiser l’extraction des cycles à partir d’un flux de donnés, en appliquant le principe de
l’apprentissage actif [201] pour apprendre à extraire des cycles au fur et à mesure.

Étant donné une nouvelle entrée 𝑋 , InterCE décide s’il peut extraire des cycles à partir de 𝑋 au-
tomatiquement, selon la connaissance qu’il possède sur la tâche. Si 𝑋 est similaire à une entrée que
InterCE a vu dans le passé, InterCE cherche à extraire des cycles lui-même. Sinon, InterCE crée un
requête 𝑄𝑟(𝑋) et l’envoie à un humain qui s’engage activement à répondre aux requêtes. Une fois un
retour 𝐹𝑏(𝑄𝑟(𝑋)) pour la requête 𝑄𝑟(𝑋) est renvoyée à InterCE, InterCE met à jour sa connaissance
en ajoutant 𝑋 et des cycles potentiels qui s’y trouvent, et désormais InterCE sait comment traiter les
entrées similaires à 𝑋 sans envoyer des requêtes redondantes à l’humain.

Pour valider l’hypothèse 𝐻 1𝑐 , nous avons comparé InterCE à sa version hors-ligne sur 1000 fichiers
de données bruts. La version hors-ligne de InterCE est entraînée sur 100, 200, et 300 premiers fichiers,
aboutissant à trois modèles hors-ligne. Le modèle hors-ligne commence à retourner des cycles seule-
ment après avoir fini la phase d’entraînement. La réactivité se mesure par la durée depuis le début du
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flux de données (le premier fichier) jusqu’à la convergence du modèle (quand le modèle commence à
atteindre une précision acceptable de façon cohérente). Les résultats montrent que Inter en ligne n’est
pas supérieur à ses versions hors-ligne, mais leur réactivité est presque égale. Donc, l’hypothèse 𝐻 1𝑐
n’est validée que partiellement.

Pour valider l’hypothèse 𝐻 2𝑐 , nous avons comparé, sur 1000 fichiers, les cycles extraits par InterCE
et le système expert, déjà développé pour les deux flottes NAT et R2N. Les résultats montrent que
InterCE améliorer la base de performance du système expert significativement sur toutes les deux
flottes (98.2% de InterCE versus 42.53% du système expert pour la flotte NAT, et 78.3% de InterCE
versus 40.6% du système expert pour la flotte R2N). Donc, l’hypothèse 𝐻 2𝑐 est validée.

Nous avons aussi mesuré l’efficacité de InterCE via le temps d’exécution et le nombre de requêtes
créées, en testant InterCE sur 100000 fichiers de données de chaque flotte. Les résultats montrent que
InterCE met environ 1 - 1.5 seconds pour traiter un fichier. Cela peut être amélioré en parallélisant les
processus dans InterCE. Le ratio de requêtes par fichiers d’entrée est 0.03% et 0.04% pour les données
NAT et R2N, respectivement, par conséquent, InterCE émet un nombre très limité de requêtes et rend
la tâche d’annotation moins pénible pour les humains.

Cependant, InterCE fonctionne en mémorisant au lieu d’apprendre et généraliser. Par exemple,
pour l’instant, InterCE décide si une entrée 𝑋 doit être requêtée en cherchant dans son mémoire s’il
a déjà vu un motif similaire à 𝑋 ; si oui, InterCE confirme que 𝑋 est un motif connu, sinon, InterCE
sauvegarde 𝑋 dans son mémoire comme un nouveau motif. Il est préférable que InterCE soit capable
d’extraire des caractéristiques des motifs traités, à partir desquelles InterCE pourrait plus rapidement
décider si une entrée 𝑋 a été traitée en comparant les caractéristiques de 𝑋 à celles que InterCE a
appris, et donc nous pourrions re-cadrer la recherche de motifs en tant qu’une tâche de classification
et non qu’une tâche de recherche à force brute.

Une autre amélioration importante consiste à rendre les extracteurs individuels dans InterCE adap-
tatifs. À présent, l’adaptation de InterCE se trouve plutôt dans sa façon d’apprendre les nouveaux
types de cycle et les nouveaux motifs, mais InterCE utilise un ensemble d’extracteurs statiques qui
restent constants face aux nouveautés du flux de données. Cela pourrait se faire en deux manières: soit
nous autoriserions InterCE à ajuster les hyperparamètres de ses extracteurs dynamiquement grâce à
un détecteur de dérive, soit les extracteurs individuels eux-mêmes sont ajustables sans avoir besoin
d’intervention de InterCE.

LSTM-AE

Pour entamer les hypothèses du bloc indicateurs, nous avons implémenté le modèle LSTM-AE (Long
short-term memory autoencoder) pour apprendre des indicateurs de façon non-supervisée à partir des
cycles détectés.

Un LSTM-AE est un réseau neuronal qui apprend à reproduire ses propres entrées, ce qui y permet à
apprendre à déterminer les indicateurs abstraits capable à produire des reconstructions fidèles. Puisque
les cycles sont des données séquentielles (séries temporelles), nous avons renforcé l’architecture tradi-
tionnelle d’un autoencodeur en ajoutant les cellules long short-term memory dans les couches cachées
du réseau. Non seulement à reconstruire un cycle, nous cherchons aussi à apprendre aumodèle à classer
le contexte d’un cycle, pour but de rendre le modèle plus robuste contre les bruits contextuels. Cela
a aboutit à deux versions du LSTM-AE: l’une avec seulement le décodeur, et l’autre avec un classeur
partageant le même encodeur avec le décodeur.
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Pour valider l’hypothèse 𝐻 1𝑓 , nous voulons montrer que le LSTM-AE appris de façon incrémentale
produit les mêmes indicateurs que celui appris hors-ligne traditionnellement. La version apprise en
ligne met à jour ses poids sur un seul cycle ou un mini-lot de cycles chaque fois. Cependant, les
résultatsmontrent que le LSTM-AE hors-ligne produit lameilleure reconstruction, tandis que la version
en ligne aboutit à une reconstruction encore fautive. Donc, l’hypothèse 𝐻 1𝑓 n’est pas validée, et nous
avons effectués les autres tests en utilisant la version hors-ligne.

L’hypothèse 𝐻 2𝑓 a pour but de vérifier si le LSTM-AE en ligne peut atteindre la convergence, et
donc être capable de retourner des indicateurs utilisables, avant la version hors-ligne. Nous avons
mesure la convergence via le temps d’entraînement de chaque modèle. Encore une fois, le modèle
hors-ligne s’achève son entraînement plus vite que sa contrepartie en ligne. Donc, l’hypothèse 𝐻 2𝑓
n’est pas validée.

L’hypothèse 𝐻 3𝑓 cherche à montrer que le LSTM-AE arrive à réduire la perte d’information mieux
que le système expert. Nous avons quantifié la capacité de préservation d’information de chaque mod-
èle par une évaluation de rang: si unmodèle préserve bien l’information, il doit produire des indicateurs
anormaux pour des cycles anormaux, et vice-versa. Les résultats montrent que le LSTM-AE surpasse
le système expert dans ce cadre d’expérimentation, ce qui confirme que le LSTM-AE apprend des in-
dicateurs qui sont plus fidèles aux cycles d’origine que les indicateurs identifiés manuellement par le
système expert. Donc, l’hypothèse 𝐻 3𝑓 est validée.

Un défaut crucial des autoencodeurs est qu’ils ont tendance à écraser toutes petites perturbations
dans les données, pour but de produire des reconstructions plus lisses des données d’entrée. C’est pour
cette raison que les autoencodeurs sont souvent utilisés pour réduire la dimensionnalité des données
et pour débruiter les entrées. Toutefois, dans notre cas, les perturbations sont un facteur important
qui indique la présence probable d’une ou plusieurs anomalies dans un système. Un autoencodeur qui
supprime ces bruits risque de supprimer aussi les précurseurs de défaillances d’un système et affecte
la précision des prévisions de défaillances. Nos travaux futurs consisteront à modifier l’architecture
du réseau pour que ces bruits soient préservés et/ou à développer une fonction de perte qui atteint le
même objectif.

Le LSTM-AE entraîné hors-ligne surpasse sa contre-partie en ligne car la majorité de recherche
portée sur les réseaux neuronaux se concentrent sur la création d’un réseau sophistiqué, avec des mil-
lions et billions de paramètres, hors-ligne en utilisant un volume de données énorme, ce qui contredit
les contraintes de l’apprentissage automatique en ligne. Pour pouvoir mieux adapter le LSTM-AE au
paradigme en ligne, il faudrait favoriser l’entraînement du LSTM-AE de manière que la version en ligne
est mise à jour sur le même nombre (ou presque) d’exemples de données que sa version hors-ligne pen-
dant une itération. Nous pourrions aussi penser à ajouter l’explicabilité au LSTM-AE pour interpréter
la magnitude d’impact qu’une perturbation aurait dans les indicateurs appris, ce qui enrichirait les
prévisions de défaillances.

CheMoc

Pour entamer les hypothèses de santé, nous avons développé CheMoc (Continuous Health Monitoring
using Online Clustering) qui découvre les profils de santé sur le flux de données et qui calcule un score
de santé adaptatif pour chaque système.

Nous avons utilisé DenStream [44] comme l’algorithme de clustering central de CheMoc pour dé-
tecter et maintenir les profils de santé sous forme de clusters évoluant. Nous avons apporté quelques
ajustements à DenStream pour l’aligner avec les contraintes opérationnelles dans le ferroviaire. Nous
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avons aussi proposé des formules pour calculer, à n’importe quel moment donné, le degré d’anomalie
d’un cluster, le score d’anomalie liée à un profil de santé spécifique d’un système, et le score de santé
d’un système.

Nous avons évalué CheMoc sur les cycles de fermetures des systèmes d’accès passager de la flotte
R2N. Par manque de vérité terrain, nous avons décidé de laisser les tests sur la flotte NAT pour les
travaux futurs.

Les résultats expérimentaux montrent que CheMoc est capable de capter les profils de santé per-
tinents de la flotte, qui sont vérifiés et confirmés par un expert du domaine. Les clusters ont été aussi
contre-vérifiés par l’évolution de leur degré d’anomalie et leur distance au cluster de référence. Donc,
l’hypothèse 𝐻 1𝑑 est validée.

Pour savoir si la santé d’un système est correctement estimée, nous avons pris un système aléa-
toire et visualisé son évolution de santé. Nous avons observé que sa santé s’aggrave car ce système
a tendance à générer des données dans les profils d’anomalie. En visualisant les clusters où ce sys-
tème génère des données, nous avons vu que ceux-ci dévient effectivement du comportement typique
déterminé par le cluster de référence. Cependant, faute de vérité terrain, il est difficile à conclure
définitivement que la santé de ce système a été estimée bien correctement. Donc, l’hypothèse 𝐻 2𝑓 n’est
validée que partiellement.

Pour mesure la réactivité du clustering en ligne contre le clustering hors-ligne, nous avons comparé
la vitesse de convergence de CheMoc contre celle de DBSCAN [65]. Un algorithme converge s’il produit
des clusters de bonne qualité, mesurée par les indices de validité de clusters (Davies-Bouldin [55] et
Xie-Beni [239]). Les résultats montrent que CheMoc et DBSCAN sont compétitifs en réactivité et ni
l’un ni l’autre se montre gagnant décidément. Donc, l’hypothèse 𝐻 3𝑑 n’est validée que partiellement.

Le test décrit précédemment permet aussi d’examiner la continuité de CheMoc et DBSCAN. Le
nombre de clusters découverts par CheMoc reste stable et correspond à la nature des anomalies dans
les systèmes, tandis queDBSCAN a tendance à créer des clusters excessivement pour chaque lot de don-
nées et ne donne aucun indice pour connecter les clusters entre deux lots consécutifs. Donc, CheMoc
surpasse DBSCAN en continuité et l’hypothèse 𝐻 4𝑑 est validée.

Comme CheMoc a été développé en vue d’une surveillance en temps réel de la condition des sys-
tèmes, il est attendu queCheMoc soit efficace en termes de temps d’exécution et demémoire consommé.
Les résultats montrent que CheMoc est capable de traiter les données d’une année entière (avec plus
de 1 millions de points de données) dans approximativement une heure, en mettant environ 1 minute
pour chaque lot de données d’une semaine qui contient au moins 10000 exemples de données. Ensuite,
le mémoire vif consommée par CheMoc se mesure jusqu’à 600 Mo en total pour traiter les données
d’une année. Ainsi, CheMoc est efficace en sa demande computationnelle.

Une des améliorations importantes pour CheMoc est de permettre à un expert du domaine de don-
ner ses retours sur la construction de clusters, et d’ajuster les clusters par conséquent. Pour l’instant,
CheMoc découvre les clusters à partir des données sans être orienté par un expert du domaine. Donc,
les clusters sont aussi bons qu’ils pourraient l’être uniquement sur la base des données. Par exem-
ple, un expert peut demander de fusionner deux petits clusters qui doivent constituer le même profil
de santé, de diviser un cluster trop grand qui groupe beaucoup de sous-profils de santé ensemble, ou
d’ajuster la densité de détection pour pouvoir découvrir des clusters d’une plus fine granularité. L’idée
est d’implémenter une boucle de rétroaction comme ce qui a été fait pour InterCE.
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Étant donnée la supposition de multi-faute, un système peut générer un cycle affecté par plusieurs
anomalies simultanément. En conséquence, un cycle pourrait appartenir à plusieurs clusters, ce qui
n’est pas possible avec un algorithme de clustering du type partitionnement dur comme DenStream.
Au lieu de cela, utiliser les algorithmes de clustering flous donnerait une plus grande flexibilité à la
construction des clusters (et des profils de santé) et améliorerait la précision du calcul de santé des
systèmes. À part le clustering flou, le clustering hiérarchique est une autre direction de recherche po-
tentielle, car une anomalie peut faire partie d’une autre anomalie de plus haut niveau, ce qui permettrait
d’implémenter une meilleure identification de fautes.
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Titre: Maintenance prévisionnelle basée sur l’apprentissage automatique en ligne dans le secteur ferroviaire

Mots clés: maintenance prévisionnelle, ferroviaire, apprentissage automatique en ligne, flux de données

Résumé: En tant que moyen de transport en com-
mun efficace sur de longues distances, le chemin
de fer continuera de prospérer pour son empreinte
carbone limitée dans l’environnement. Assurer la
fiabilité des équipements et la sécurité des pas-
sagers fait ressortir la nécessité d’une maintenance
efficace. Outre la maintenance corrective et péri-
odique courante, la maintenance prédictive a pris de
l’importance ces derniers temps. Les progrès ré-
cents de l’apprentissage automatique et l’abondance
de données poussent les praticiens à la mainte-
nance prédictive basée sur les données. La pratique
courante consiste à collecter des données pour for-
mer un modèle d’apprentissage automatique, puis à
déployer le modèle pour la production et à le con-
server inchangé par la suite. Nous soutenons qu’une
telle pratique est sous-optimale sur un flux de don-
nées. Le caractère illimité du flux rend le modèle su-
jet à un apprentissage incomplet. Les changements
dynamiques sur le flux introduisent de nouveaux con-
cepts invisibles pour le modèle et diminuent sa préci-
sion. La vitesse du flux rend l’étiquetage manuel im-
possible et désactive les algorithmes d’apprentissage

supervisé. Par conséquent, il est nécessaire de
passer d’un paradigme d’apprentissage statique et
hors ligne à un paradigme adaptatif en ligne, en parti-
culier lorsque de nouvelles générations de trains con-
nectés générant en continu des données de capteurs
sont déjà une réalité. Nous étudions l’applicabilité de
l’apprentissage automatique en ligne pour la main-
tenance prédictive sur des systèmes complexes typ-
iques du secteur ferroviaire. Tout d’abord, nous
développons InterCE en tant que framework basé sur
l’apprentissage actif pour extraire des cycles d’un flux
non étiqueté en interagissant avec un expert humain.
Ensuite, nous implémentons un auto-encodeur à mé-
moire longue et courte durée pour transformer les cy-
cles extraits en vecteurs de caractéristiques plus com-
pacts tout en restant représentatifs. Enfin, nous con-
cevons CheMoc comme un framework pour surveiller
en permanence l’état des systèmes en utilisant le
clustering adaptatif en ligne. Nos méthodes sont éval-
uées sur les systèmes d’accès voyageurs sur deux
flottes de trains gérés par la société nationale des
chemins de fer SNCF de la France.

Title: Online machine learning-based predictive maintenance for the railway industry

Keywords: predictive maintenance, railway, online machine learning, data stream

Abstract: Being an effective long-distance mass
transit, the railway will continue to flourish for its
limited carbon footprint in the environment. Ensur-
ing the equipment’s reliability and passenger safety
brings forth the need for efficient maintenance. Apart
from the prevalence of corrective and periodic mainte-
nance, predictive maintenance has come into promi-
nence lately. Recent advances in machine learning
and the abundance of data drive practitioners to data-
driven predictive maintenance. The common practice
is to collect data to train a machine learning model,
then deploy the model for production and keep it un-
changed afterward. We argue that such practice is
suboptimal on a data stream. The unboundedness
of the stream makes the model prone to incomplete
learning. Dynamic changes on the stream introduce
novel concepts unseen by the model and decrease its
accuracy. The velocity of the stream makes manual
labeling infeasible and disables supervised learning

algorithms. Therefore, switching from a static, offline
learning paradigm to an adaptive, online one is neces-
sary, especially when new generations of connected
trains continuously generating sensor data have al-
ready been a reality. We investigate the applicability
of online machine learning for predictive maintenance
on typical complex systems in the railway. First, we
develop InterCE as an active learning-based frame-
work that extracts cycles from an unlabeled stream by
interacting with a human expert. Then, we implement
a long short-term memory autoencoder to transform
the extracted cycles into feature vectors that are more
compact yet remain representative. Finally, we de-
sign CheMoc as a framework that continuously moni-
tors the condition of the systems using online adaptive
clustering. Our methods are evaluated on the passen-
ger access systems on two fleets of passenger trains
managed by the national railway company SNCF of
France.
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