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Abstract

Recording higher quality medical images either requires expensive new devices,

poses health risks to the patient, or is limited by physical boundaries. Therefore

post-processing resolution enhancement is preferred. The degradation model of the

recorded images considered in this thesis assumes a blurred, down-sampled, noisy

version of the high-resolution object. Generic super-resolution algorithms estimate

this object from a single degraded image (SISR) instead of a series of images or

multiple modalities. State-of-the-art reconstruction-based minimization techniques

are computationally efficient for 2D images, but not for 3D medical images. In this

thesis new algorithms applied to the 3D SISR problem are proposed. The efficiency

of the techniques is demonstrated on dental computed tomography (CT) images

of extracted teeth. In endodontic treatments the higher resolution CT image is

necessary for precise mapping of the dental cavity.

First deep learning was investigated as a possible SISR technique. A subpixel

network and the U-net have been considered and applied successfully for the slice-

by-slice resolution enhancement of the dental CT image volume.

In the second group of proposed algorithms tensor-decomposition techniques

gave the backbone of the 3D SISR frameworks. They are capable of conserving

3D information in a lightweight algorithm structure, while remarkably speeding up

the enhancement. Canonical polyadic and Tucker decompositions were investigated,

and a semi-blind system-parameter estimation was also implemented.

Compared to the state of the art, the results of both methods suggested better

detection of medically salient features such as the size, shape, or curvature of the

root canal. The use of deep learning and tensor decompositions in medical 3D SISR

was a pioneering work, opening up new perspectives in the field.
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6.3 Új tudományos eredmények . . . . . . . . . . . . . . . . . . . . . . . 88

iii



List of Figures

2.1 Frequency of CT imaging . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 CT sampling geometries . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 The Radon-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Analytic and iterative reconstructions . . . . . . . . . . . . . . . . . . 10

2.5 CT image quality under different radiation doses . . . . . . . . . . . . 11

2.6 Modulation transfer function . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Spatial resolution from line pair structures . . . . . . . . . . . . . . . 13

2.8 Interpolation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Fully connected neural network . . . . . . . . . . . . . . . . . . . . . 24

2.11 Structure of a convolutional neural network . . . . . . . . . . . . . . 25

2.12 State of the art deep learning SR networks . . . . . . . . . . . . . . . 26

2.13 Fibers of a third-order tensor . . . . . . . . . . . . . . . . . . . . . . 27

2.14 Illustration of the mode-1 product . . . . . . . . . . . . . . . . . . . . 28

2.15 Mode-1 matricization of a third-order tensor . . . . . . . . . . . . . . 29

2.16 Illustration of the canonical polyadic decomposition . . . . . . . . . . 30

2.17 Illustration of the Tucker decomposition . . . . . . . . . . . . . . . . 33

3.1 Background artifacts of the dataset . . . . . . . . . . . . . . . . . . . 37

3.2 Feret’s diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The U-net structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 The subpixel structure . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Loss of the DL networks . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Effect of background removal in the DL dataset . . . . . . . . . . . . 46

iv



3.7 DL results on selected image slices . . . . . . . . . . . . . . . . . . . 50

3.8 Segmentation results of DL . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Tensor rank and image complexity . . . . . . . . . . . . . . . . . . . 58

4.2 Sectional results with CPD-SISR . . . . . . . . . . . . . . . . . . . . 61

4.3 Segmentation results with CPD-SISR . . . . . . . . . . . . . . . . . . 63

4.4 Qualitative effects of parameters in CPD-SISR . . . . . . . . . . . . . 64

4.5 Quantitative effects of parameters in CPD-SISR . . . . . . . . . . . . 64

4.6 Qualitative results with CPD-SISR-blind . . . . . . . . . . . . . . . . 69

4.7 Singular values of the Tucker decomposition - simulation . . . . . . . 73

4.8 Singular values with Tucker decomposition - real data . . . . . . . . . 74

4.9 Qualitative results of TD-SISR . . . . . . . . . . . . . . . . . . . . . 76

v



List of Tables

3.1 Quantitative DL enhancement results . . . . . . . . . . . . . . . . . . 47

3.2 Quantitative Dl segmentation results . . . . . . . . . . . . . . . . . . 48

4.1 Parameters in CPD-SISR . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Quantitative results of the CPD-SISR image enhancement . . . . . . 62

4.3 Quantitative results of CPD-SISR segmentation . . . . . . . . . . . . 62

4.4 CPD-SISR-blind parameters and quantitative results . . . . . . . . . 70

4.5 Quantitative results in TD - simulation . . . . . . . . . . . . . . . . . 74

4.6 Quantitative results in TD - real data . . . . . . . . . . . . . . . . . . 75

vi



Notations

For easier distinction, scalars are denoted by Greek letters or italic lowercase letters

(e.g. α or a), one-dimensional arrays are denoted by bold lowercase letters (e.g. a),

2-dimensional matrices by uppercase letters (e.g. A) and three-dimensional tensors

by bold uppercase letters (e.g. A). Any of the above with an overline denotes a
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Chapter 1

Introduction

1.1 Motivation

For precise medical diagnosis the doctor often needs to see inside the body to

have a better understanding of the underlying bodily state. For avoiding the compli-

cations of surgical interventions, non-invasive medical imaging techniques (referred

to as modalities) are preferred. Depending on the tissue type, body function, or

life processes one would like to image there are multiple imaging techniques at the

disposal of healthcare providers.

Ultrasound imaging is a cost-effective and safe technique, where the resolution

and penetration depth are inversely proportional – while high-frequency images of

the skin have excellent resolution (<0.5 mm [1, p. 23]) , the quality of fetal scans or

cardio-vascular flowmetry is moderate (<3 mm [1, p. 23]).

Conventional X-ray and computed tomography (CT) imaging provide important

information, especially in the case of air pockets and hard tissue. It is widely used

both in preventive and diagnostic imaging (with a resolution of 1̃ mm [1, p. 23]) for

a relatively low price. This modality is ionizing, therefore should be used only after

considering the possible health risks. An increased radiation dose or higher number

of scans give better quality images, but also aggravates its hazardous effects.

Magnetic resonance imaging (MRI) is a safe modality when used in a secure

environment, but is relatively expensive. Its long scanning time makes this technique

sensitive to motion artefacts, posing an additional challenge to radiologists. It gives

1



detailed images (resolution 1̃ mm [1, p. 23]) of soft tissues rich in water molecules,

where CT usually fails. It can also be used for following bodily functions, namely

brain activity (fMRI).

Positron emission tomography (PET) and single photon emission computed to-

mography (SPECT) give an insight on the metabolism of the body using radioactive

substances. They have relatively bad resolution (>2 mm [2]) but give information on

bodily functions, which cannot be provided by other modalities. These techniques

demand the highest operation cost and has to be used in combination with CT or

MRI imaging to register the function with the anatomy.

As explained above, all imaging modalities have a boundary on their achievable

resolution, either caused by a physical limit, health risks, or imaging artifacts. As a

consequence, upgrading the hardware to obtain a better resolution is either expen-

sive, might imperil the patient or is physically not possible at all. Post-processing

resolution enhancement algorithms offer a solution to these problems. A widespread

and easy technique is interpolation, providing limited enhancement. Reconstruction-

based minimization techniques are the state of the art in terms of image quality,

providing a computationally efficient method in the case of two-dimensional (2D)

images. However, most medical images are three-dimensional (3D) (or have even

higher dimensionality), where state-of-the-art techniques fail to give computation-

ally efficient results.

The aim of this thesis is to offer new resolution enhancement methods, partic-

ularly for 3D medical images using a single scan. In particular, deep learning, and

tensor implementations of the reconstruction-based minimization is investigated.

The algorithms presented may be used in different modalities, however, they are

validated through a dental CT application. Root canal treatment is a common pro-

cedure in dentistry, which requires the precise mapping of the 3D canal structure.

Currently used dental CT imaging does not always provide sufficient resolution for

the treatment. Increased radiation dose gives more detailed scans, but is potentially

carcinogenic, making post-processing applications good candidates for enhancing

dental image quality.

In the light of the above, the central research question investigated are:

2



1. Is deep learning a viable method for dental CT single image super-resolution?

2. How is tensor factorization applicable in 3D single image super-resolution?

3. Do tensor implementations of the 3D single image super-resolution problem

offer faster algorithms than the current state of the art does?

4. Can the system parameters be estimated within a tensor framework of the 3D

single image super-resolution problem?

1.2 Overview of the thesis

This section provides a brief overview of the current thesis.

Chapter 2, is an overview of the background to the topic and underlying the-

ory. As the main scope of the thesis is CT imaging, Section 2.1 reviews the

physics, image reconstruction and quality, and endodontic use of this technique.

Section 2.2 presents common resolution enhancement methods, such as interpola-

tion, deconvolution-based minimization, and deep learning. Finally, Section 2.3

introduces the basics of tensor algebra and decompositions, providing the basis of

the proposed algorithms in Chapter 4.

Chapter 3 is the first contribution of the current thesis. The topics of Section 3.1

are the dental CT images, estimated system impulse response and applied metrics,

which were used for testing the proposed algorithms. The rest of the chapter in-

troduces a deep learning algorithm for the resolution enhancement of the CT slices,

together with its novel results.

The second group of proposed algorithms are listed in Chapter 4. Section 4.1

introduces the image degradation model of the dental CT images. The first algo-

rithm using canonical polyadic decomposition is described in Section 4.2, which is

extended with a semi-blind system function estimation in Section 4.3. In Section

4.4, Tucker-decomposition is used for the resolution enhancement.

Chapter 5 answers the posed research questions in Section 5.1 and elaborates on

the opened perspectives of the introduced work in Section 5.2.

3



Finally, in Chapter 6 the new scientific results are summarized in the form of

thesis points in English, French and Hungarian.
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Chapter 2

Background and Theory

2.1 Computed tomography imaging

CT is a wide-spread diagnostic imaging tool that uses 2D X-ray projections to

reconstruct a 3D map of the scanned object. It is used for, without any claim to

completeness, detecting bone trauma, fractures, inflammations, tissue death after

stroke, tumors, lesions of the lung, or the state of the cardio-vascular system through

angiography. This large set of applications makes it one of the most frequently used

medical imaging modalities. In Hungary 122.5 (in 2017), in France 189.7 (in 2017),

Figure 2.1: Number of CT scans acquired per 1000 inhabitants in France, Hungary and the United

States. The increasing number of scans is controversial, as apart from granting a more precise

diagnosis, the radiation also poses a health risk. The data was taken from [3].
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in the United States 271 (in 2018) scans were acquired per 1000 inhabitants [3]. The

growing number of exams in the three countries can be seen in Fig. 2.1. However,

the increased radiation dose in these patients increases the carcinogenic potential

[4]. This is especially true for children, where CT scans have been found to triple

the risk of developing leukemia, brain tumor and bone marrow cancer [5]. Thus,

decreasing the dose of the ionizing radiation would be beneficial for making this

otherwise extremely useful diagnostic tool safer.

2.1.1 Physics of CT imaging

In a CT machine the X-ray beam is generated in a vacuum tube. It penetrates the

object to be examined. As it interacts with the atoms of the examined object, it will

be partially absorbed and scattered. The X-ray photons (photon with a frequency

in the range 30 × 1015 Hz - 30 × 1018 Hz) exiting the object will be collected on a

detector grid, resulting in a scan. As the generator-detector pair rotates around the

object, multiple scans will be recorded, which will be used for the reconstruction of

the 3D volume.

Generation of X-rays

In the X-ray vacuum tube, a cathode emits, an anode collects electrons, resulting

in a flow of electrical current, the beam. A characteristic of the system is the

kilovoltage peak (kVp, [kV]), the amplitude of the potential connected to the anode-

cathode pair, accelerating the flow of electrons. As these accelerated electrons collide

with the anode, they will be decelerated. The difference in kinetic energy will

be turned into 99% heat and 1% X-ray photons, called Bremsstrahlung (breaking

radiation), perpendicular to the direction of the beam. This effect is presented as

a continuous line on the radiation spectrum. Further X-ray photons are generated

when the high-speed electrons collide with atomic inner-shell electrons. The excited

atomic electron leaves the shell and a higher-energy outer-shell electron fills the

vacancy. The energy difference between the two shells will leave the atom in the

form of an X-ray photon. The wavelength of these photons is characteristic to the

material it is fabricated from (usually tungsten, molybdenum or copper), adding
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sharp peaks to the spectrum [6].

Interaction of X-rays with tissue

Photoelectric absorption of the X-ray photons happens similarly to their gener-

ation [7, Section 3.3]. As they collide with atoms of the examined object, they may

transfer their energy to orbital electrons, causing their ejection from the hosting

atom. This electron will ionize neighboring atoms. The vacancy left on the hosting

atom will start a chain reaction, as it will be filled by a higher-energy electron from

outer shells, generating a new X-ray photon, colliding with a lower-energy electron,

until the excess energy dissipates. When Compton (incoherent) scattering happens,

the photon changes direction upon colliding with an electron, transferring part of

its energy to the electron, depending on the scattering angle. This scattered photon

may hit the detector from odd angles, leading to contradiction in the reconstruction.

Deterministic effects of radiation happen above a threshold intensity in every

patient, within hours or days. Such consequences include skin irritation, burn,

sterility, damage of the eye lenses, or even death. Stochastic effects cannot be linked

to a standard threshold, risk increases with dose, and develop over years after the

exposure. Genetic modifications and cancer are such disorders.

CT machine designs

In the first CT machines a single detector element collected a small portion of the

beam, approximating a single line of projection. The source-detector element was

translated over time along a line, resulting in a parallel sampling geometry (Fig. 2.2

a). This relatively slow design was subject to movement artifacts, so engineers came

up with new concepts. In the fan-beam geometry detector elements are positioned

along an arc, recording multiple rays emitted at the same instant (Fig. 2.2 b). Cone

beam CT (CBCT) uses an either flat or curved 2D detector array, utilizing a larger

portion of the beam (Fig. 2.2 c). This reduces motion artifacts and radiation dose,

but requires more complex reconstruction algorithms.

In CBCT usually a single rotation of 200° is covered. For dose reduction a

smaller range or sparser sampling might be applied, however, this results in heavy
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Figure 2.2: Sampling geometries used in CT. a) Parallel beam, b) fan beam, c) cone beam. Image

source: [8, pp. 44].

artifacts. With the fan-beam geometry the projection set might be acquired in a

step-and-shoot manner, where a predefined number of slice scans are taken. In the

helical acquisition used with fan-beam the patient or source-detector pair is moved

continuously, resulting in a spiral trajectory. This allows fast scanning with reduced

motion artifacts, but requires more complex reconstruction techniques. In multi-

slice CT multiple (2-64) detector arcs are installed, so multiple scans are recorded

under one rotation, offering better resolution under the same radiation level, but for

a higher hardware cost.

Medical CT machines use relatively low radiation doses to limit the ionizing

effect. Micro-CT (µCT) machines operate on a higher radiation dose to give a well-

detailed map of small objects, and can also be useful in medical ex vivo applications.

2.1.2 Reconstruction of the 3D volume

While in X-ray imaging the detector might be a film, in CT machines it is

a digital grid, allowing the computational reconstruction of the 3D volume. The

mathematical descriptor of the imaging process is the Radon-transform (RT) or

forward projection, which in 2D form is [9]

P (θ, t) = −ln

(
I(θ, t)

Io

)
= RT(X) =

∫
lθ,t

X(x, y)ds(x, y), (2.1)

where P (θ, t) is the projection data (sinogram) acquired under angle θ at coordinate

t on the projection axis. I(θ, t) is the intensity measured at the same point, I0 is

the source intensity. The line integral of the attenuation function X along the

projection line equals the value at P (θ, t). The ray intensity is attenuated along this
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Figure 2.3: The Radon-transform. The attenuation function X(x, y) is transformed to the sinogram

domain, resulting in P (θ, t). θ is the projection angle and t is the detector element (this notation

originates from the translation of a single detector element in Fig. 2.2 a). Thus the line integral

along a yellow ray (θ, t) of X(x, y) is calculated for a point of P (θ, t).

line from the source, which is compensated by taking the logarithm of the normalized

measured intensity. The RT is illustrated in Fig. 2.3.

The basic concept of direct reconstruction methods is to simply back-project (BP)

the measured values onto the imaged volume:

X(x, y) =

∫ π

0

P (θ, x · cos(θ), y · sin(θ))dθ. (2.2)

In the inverse Radon-transform (iRT) the backprojection is accompanied by a ramp

filtering step (filtered backprojection, FBP) - it arises from the coordinate transfor-

mation (x, y)→ (θ, t). This filter is prone to intensifying high-frequency noise [10],

and is in practice often combined with a Hamming, Hanning, Cosine or the Shepp-

Logan filter. In 3D reconstruction usually the 2D iRT is used to reconstruct planes

of the 3D object. The more complex 3D RT requires rotations around two angles

for a full data-set, and plane integrals are considered.

Incomplete information or low signal-to-noise ratio SNR makes iRT unstable. In

this case iterative techniques offer better solution for the reconstruction, which is

demonstrated on the Shepp-Logan phantom in Fig. 2.4.

In iterative algebraic reconstructions the system is assumed to be fully numerical,

considering discrete pixels and projections. The RT is written in the form of a system

9



Figure 2.4: FBP becomes unstable under noise or limited information. The upper row shows

analytic FBP and iterative DART reconstructions from projections taken under 160° (red arc), the

lower row under 60°. 40 dB noise was added to the projection set. The error of the reconstructions

is printed above the images.

of linear equations, which in matrix-vector form is

vec(P ) = W · vec(X), (2.3)

where vec(P ) is the lexicographical vectorization of N × 1 measured values on the

detector elements, vec(X) is the discretized and vectorized function of attenuation

values of size M × 1, and W is an M ×N matrix where element W ij represents the

contribution of jth image-pixel to the ith detector element [Au1,Au2]. This matrix W

is called the projection operator or system matrix [9]. The task is to recover X from

the known projection data P and system matrix W . The algorithms iteratively

update the unknown coefficients in X by minimizing the difference between the

measured and forward projected detector values.

The strength of the iterative methods over analytic techniques is their flexibil-

ity, making prior knowledge easy to be incorporated into the algorithm. Such an

information can be the non-negativity of the image, as no negative attenuation will

be present in the reconstruction field. Another method is to predefine the number

of possible discrete attenuation levels, as in the discrete algebraic reconstruction
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Figure 2.5: CT image noise from 270 mAs and 100 mAs scans of a phantom. The lower tube

current (hence radiation dose) causes a lower SNR. Image was taken from [12]

technique (DART).

2.1.3 X-ray dose and image quality

The absorbed dose is the radiation energy (joule, [J]) deposited over a unit mass

of tissue [kg], and its measure is gray [Gy]. The absorbed dose is usually weighted

by tissue-specific constants in order to find the equivalent dose, measured in sievert

[Sv], indicating the likely deterministic and stochastic biological effects.

Both definitions of dose are calculated using the radiation energy, product of the

tube current [mA], exposure time [s] and kVp [kV]. For achieving a good penetration

and (SNR), a high number and high intensity of X-ray photons is necessary. The

number of photons is proportional to the tube current and kVp, while the intensity

depends on the kVp. For a constant detector exposure and radiation dose the kVp

and tube current need to be changed inversely. However, high energy photons are

more likely to be scattered than absorbed, which effect is less tissue-dependent,

leading to low-contrast images [11]. In Fig. 2.5 the contrast is kept constant by only

decreasing the tube current, leading to lower radiation dose and higher noise level.

The diagnosis depends heavily on the quality of the CT image, and different

clinical tasks need different SNR. Detecting a solid nodule in the lung or calcium

in the coronary artery requires a high image quality, while abdominal or diffuse

lung diseases are usually detectable under low SNR [13]. This resolution is limited

by diffraction, aberration, the focal spot size of the beam, the detector size, the
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slice thickness, noise, the reconstruction algorithm, the applied filters, or patient

movement [14].

Figure 2.6: Calculation of the MTF, using a cylinder phantom. In a) one-dimensional profiles

are taken through the center of the cylinder, in b) these aligned profiles are averaged. In c) the

average profile is differentiated, and its Fourier transform, the MTF is calculated in d), shown for

two different aperture settings. Image source: [14].

For measuring the resolution of a radiological system two conventions are used in

the standards. The modulation transfer function (MTF) is measured on the edge of

a cylinder as explained in Fig. 2.6. The MTF is normalized to one, and the spatial

frequency is given in line pairs over mm (LP/mm). This provides the contrast

amplitude as a function of spatial resolution. The second approach measures the

contrast of alternating line pair structures against air, as depicted in Fig. 2.7.

The contrast level at different LP/mm is directly calculated. Manufacturers usually

express the resolution of the system as [n LP/mm at m% MTF]. Following the above

description it means that n line pairs stacked within 1 mm will be distinguishable

at m % contrast level.
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Figure 2.7: Calculation of the spatial resolution from air-material line pair structures. The gray

profile is extracted along the structure lines. The contrast factor is calculated from the average

difference of its minima (at cut-outs, air), and maxima (material bridges), normalized by the

amplitude difference of undisturbed material NA and undisturbed air NC . Image source: [14].

2.1.4 Relevance of resolution enhancement in dental CT

Endodontics is the dental specialty concerned with the maintenance and treat-

ment of the dental pulp, formed by nerves, blood vessels and connective tissues

within the root canal. According to [15], it is an indispensable prerequisite to iden-

tify the root canal before the treatment, so tools of adequate length and diameter

can be chosen, allowing precise disinfection and obturation (hermetic sealing by fill-

ing empty spaces) of the cavity. Even though endodontic treatment is one of the

most common procedures, epidemiological studies show success rates of only 60-85%

for general practice [16, 17]. Consequences are periapical diseases and their conse-

quences on health, such as the future of the treated teeth, the prosthetic replacement

of the extracted tooth on the jaw, or the impact on cardiovascular and diabetic dis-

eases. The reduction of endodontic therapeutic failures require new techniques for

improving the quality of endodontic treatments [18–22]. In dentistry the 3D struc-

ture of the tooth is visualized using CBCT, where the typical resolution is around

500 µm [23]. When the exact position of the dental canal has to be determined for

root canal treatment, these images are difficult to work with, since the diameter

of the canal is usually in the range of 0.16-1.6 mm [24]. The European Commis-

sion on Radiation Protection concluded in 2012 that further research to establish

the diagnostic accuracy of dental CBCT devices in identifying root canal anatomy

is necessary to justify their indication in endodontic treatment [25]. Ex vivo µCT
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gives a sufficient resolution for precise segmentation of the pulp cavity but can be

used only on extracted teeth due to size limitations of the hardware, long acquisi-

tion time, and high radiation dose. An algorithmic solution for approximating the

resolution of µCT images from CBCT acquisitions would therefore be advantageous.

2.2 Resolution enhancement techniques

The resolution enhancement may happen either on the hardware or on the soft-

ware side. In CT a naive way to improve the image quality in terms of reduced noise

could therefore be to increase the radiation dose, which would, on the other hand,

also increase the hazardous effects on health and negatively influence the contrast

level.

Post-processing has the advantage of increasing the image quality without chang-

ing the hardware. The output high-resolution (HR) image is estimated from input

low-resolution (LR) images(s). Widespread interpolation methods are merely the

upsampling of the image, only handling supposed aliasing effects caused by a down-

sampling of the detector grid. On the other hand, super-resolution (SR) algorithms

aim to mitigate the problem of downsampling, blurring , and added noise introduced

during recording [Au3]. SR algorithms can be sorted into three groups depending on

the input. This input can be a series of LR images, as in the case of 4D CT, where

a sequence of scans is used, compensating for the respiratory movement artifact

[26]. In the second group images from different modalities are used, like the slightly

different acquisitions of spectroscopic (multi-energy) CT [27]. However, the most

common application uses one single capture of the 3D volume (the enhancement

named hence single image super-resolution, SISR), marking SISR as the scope of

this thesis [28–30], [J1,J2]. Most SISR algorithms are implemented for 2D applica-

tions. 3D images, like a CT-scan, pose additional difficulties, as these large image

files require increased computational capacity in terms of memory and time. For

this reason the implementation of 2D algorithms for 3D applications demand new

calculation methods.

This section gives an overview of 3D resolution enhancement techniques, starting
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with the interpolation techniques, followed by state-of-the-art reconstruction-based

SR techniques, and finally introducing deep learning solutions, supporting the first

contribution of this thesis.

2.2.1 Interpolation

Interpolation methods are relatively cost-efficient and data-independent solutions

for resolution enhancement, but only upsample the image. It is commonly a step

of more advanced SR algorithms, which methods also deal with added noise and

blurring. During interpolation unknown data points of the new grid are estimated

as values of a function fitted to the known samples.

In the nearest neighbor method each unknown grid point is assigned the value

of the closest known sample. This results in piece-wise constant areas around the

known samples, giving the impression of larger image pixels.

The linear interpolation in one dimension fits a straight line to the two neigh-

boring known samples, and evaluates this function at the unknown grid point. For

higher dimensions the same steps are repeated in the remaining directions.

The one-dimensional cubic interpolation fits a third degree polynomial on four

neighbouring known samples, and evaluates this function in the unknown grid point.

For higher dimensions it is also repeated along the remaining directions. This

method is commonly used in many applications, as it gives sharper outputs compared

to nearest neighbor and linear interpolation, and is still relatively computationally

efficient.

Other functions, as higher order polynomials, splines and sinc retain more infor-

mation, but are computationally more demanding. All these techniques suffer from

artifacts such as aliasing (visible on the edges of Fig. 2.8 b), blurring (see the edges

and low contrast of Fig. 2.8 c), or edge halo (the dark contour around the white

edges of Fig. 2.8 d). Adaptive interpolation techniques attempt to eliminate or min-

imize these artifacts at the cost of more complex computations and adding spurious

pixels to the image (single pixels near the edges of Fig. 2.8 e), which may or may

not improve the overall quality of the enhancement, depending on the texture. New

edge directed interpolation (NEDI) is a commonly used example, which estimates
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Figure 2.8: Interpolation techniques presented on the Shepp-Logan phantom. Left to right the low

resolution image, the nearest neighbors, linear, cubic, edge-directed interpolations and the high

resolution image is shown. The NEDI was not implemented for 3D and is evaluated on a single

slice, the rest of the algorithms were run on the 3D Shepp-Logan volume.

the image edges form the local covariance and tunes the interpolation coefficients

accordingly, preserving the image edges [31].

2.2.2 Reconstruction-based SR methods

Reconstruction-based algorithms are among the most popular SR techniques [29,

30]. In the following the image degradation model is defined for 3D images using the

tensor -notation (generalization of the vector to higher dimensions). These methods

assume that the observed LR image Y can be thought of as a blurred, downsampled

(denoted by operator ↓ {}), and noisy (added Gaussian noise, N ) version of the HR

image X. The blurring effect is generally modelled as a convolution with a spatially-

invariant point-spread function (PSF, denoted by H). With this assumption the

degradation model can be written as

Y =↓ {H ∗X}+ N . (2.4)

The degradation model has to be inverted in order to obtain X. In case the

inverse of this function does not exist, is not unique or is not continuous, it yields

an ill-posed problem. In case of the degradation model, the added noise and the

down-sampling make X not directly recoverable, the problem is ill-posed.

For solving ill-posed inverse problems, regularization is applied for noise-robust

results. The prior information of the regularization might be similar known images

— usually difficult to obtain,— or some properties of the image, like sparseness in
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a given domain, or possible value ranges. Common regularizers are total variation

(TV) promoting piece-wise constant solutions [32], low rank [29], wavelet frames

[33] or patch-based structural similarity constraint [34]. Candes et al. have shown

that even highly incomplete images can be exactly reconstructed through convex

optimization given the sparseness of the image in the gradient domain [35].

The fast SISR algorithm for 2D images

Zhao et al. gave a solution for the 2D SISR problem [30]. The cyclic convolu-

tion is written as a multiplication by a block circulant matrix with circulant blocks

(BCCB, denoted by H), and the downsampling is also realized by a matrix multi-

plication with D written as

vec(Y ) = DHvec(X) + vec(N), (2.5)

where 2D matrices Y ,X and N are lexicographically vectorized. The image X is

estimated by solving the minimization problem

min
X

1

2
‖vec(Y )−DHvec(X)‖22 + τφ(Avec(X)), (2.6)

where the first term is establishing data fidelity using the `2-norm (‖·‖2), and the

second imposes some regularization φ(·) derived from the prior information, as TV,

low rank, wavelet transform norm, etc. The constant τ balances the two terms, and

A stabilizes the function φ. The authors in [30] proposed a fast analytical solution

when the regularizer term is the `2-norm

φ(Avec(X)) = ‖Avec(X)− v‖22 . (2.7)

A general solution aims to solve the problem for different regularizers, as the

TV-norm (‖·‖TV with horizontal and vertical derivatives [∂h, ∂v] of the 2D image)

φ(Avec(X)) = ‖X‖TV =

√
‖∂hX‖22 + ‖∂vX‖22, (2.8)

the `1-norm (‖·‖1) in the wavelet domain (with a transformation matrix W)

φ(Avec(X)) = ‖Wvec(X)‖1 , (2.9)
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or with learning-based regularization, jointly training an LR and an HR patch-

dictionary. This general algorithm1 uses the alternating direction method of multi-

pliers (ADMM) framework. This method turns the problem into several subproblems

with variable splitting, where some of the subproblems will be in the form of (2.7),

leading to a computationally efficient, fast and smoothly converging solution for 2D

images.

Low rank - total variation 3D SISR algorithm

Among the relatively small collection of 3D SISR techniques, LRTV provided

competitive results compared to other popular methods (cubic interpolation, non-

local means, TV-based up-sampling) [29]. It uses low-rank and total-variation reg-

ularizers, minimizing the following cost-function

X̂ = argmin
X

‖↓ {H ∗X} − Y ‖2 + λRRank(X) + λTV ‖X‖TV , (2.10)

where λR and λTV are hyperparameters. The Rank() regularizer builds on 2D

matrix norms. It sums the trace norms (sum of singular values, denoted by ‖·‖∗)

of the matricized 3D image (X(n), explained later in (2.25)) along each direction

(n ∈ {1, 2, 3}) as

Rank(X) =
3∑

n=1

∥∥∥X(n)
∥∥∥
∗
. (2.11)

The low rank condition helps to recover missing values based on global information

of known pixels. Similarly to (2.8), ‖X‖TV becomes

‖X‖TV =

√
‖∂hX‖2 + ‖∂vX‖2 + ‖∂dX‖2, (2.12)

where ∂h and ∂v are the partial derivatives defined for (2.8) and ∂d is the partial

derivative in the depth-direction, the third dimension. This condition helps to keep

local information, preserving edges and promoting piece-wise constant patches.

The minimization problem (2.10) is solved in the ADMM framework, by rewriting

1The Matlab code associated with fast 2D SISR is available at

www.irit.fr/ Adrian.Basarab/codes.html
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(2.10) as

min
X,{Mn}3n=1,{Ln}3n=1

‖↓ {H ∗X} − Y ‖2 + λR

3∑
n=1

∥∥∥Mn
(n)
∥∥∥
∗

+ λTV ‖X‖TV +
3∑

n=1

ρ

2
(‖X −Mn + Ln‖2 − ‖Ln‖2),

with the splitting of

X = Mn for n = {1, 2, 3},

(2.13)

where {Ln}3n=1 are Lagrangian parameters, and ρ is a penalty term. The problem

(2.13) is optimized in nADMM iterations by minimizing sequentially for X (using

gradient descent with iteration number ngrad and an update rate dt), {Mn}3n=1, and

{Ln}3n=1 (the latter two having closed-form solutions).

The gradient descent and extensive matrix-operations make this algorithm2 com-

putationally inefficient, and the many parameters are difficult to tune. However,

these two regularizers help to combine local and global information, a successful

solution to the higher dimension SISR problem.

2.2.3 Deep learning

Deep neural networks – in particular convolutional neural networks (CNNs) –

have been shown to be powerful tools in image processing in the last couple of

decades. In biomedical imaging CNNs are mainly used for classification, segmenta-

tion and detection. Some examples for these kinds of tasks are differential diagnosis

between Alzheimer’s and Huntington’s diseases on MRI data [36], tumor segmenta-

tion with multiscale analysis [37], striatum segmentation [38], or tumor and lesion

detection [39], classification [40].

While deep learning is increasingly practiced in the above areas of biomedical

imaging, its use in image enhancement is less investigated. Deep learning has been

used so far for image denoising [41], image generation, as constructing CT images

from MRI data [42], or artifact removal from sparse-view [43, 44] and limited-angle

2The Matlab code associated with LRTV is available at

https://bitbucket.org/fengshi421/superresolutiontoolkit
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CT images [45]. Before [J1], biomedical image resolution enhancement with deep

learning has only been implemented using multi-input frameworks - the input was

either an LR cardiac MRI sequence [46, 47] or multichannel MRI data (T1- , T2-

weighted and Fluid Attenuated Inversion Recovery images [48]). Most of the previ-

ously mentioned biomedical applications tend to use CNNs [36–40,42,46].

In the following the basics of deep learning algorithms will be introduced.

A network of artificial neurons

The base unit of a neural network is an artificial neuron, with a workflow shown

in Fig. 2.9. These working units can be connected in a network, organized in layers .

A neuron takes as an input the output of single neurons from the previous layer.

Usually the deeper the network, the more complex tasks can be learned.

Figure 2.9: The artificial neuron takes the weighted (wn) sum of its inputs (blue squares), shifts it

by a bias (b), and following a non-linear function gives an output (pink square).

The weights and biases of the network (together denoted by parameters ξ) are

trained using a learning set of known input-output pairs (T for a single training

input and G for corresponding ground truth output). During an iteration a network

output (O) is generated using the current ξ, by passing T through the connected

neural functions of the network (denoted by N ) as

O = N (ξ, T ). (2.14)

The error between O and G is calculated using a selected loss function, and is

backpropagated with a gradient-descent-type algorithm to update the parameters of

the network.
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Activation function

Each artificial neuron gives its output using a non-linear function, called activa-

tion function. This function and its derivative should be easy to compute, as they

are applied on each node of the network. A common example is the rectified linear

unit (ReLU), written as

ReLU(x) =

 x if x ≥ 0

0 if x < 0,
(2.15)

where x is the weighted, biased sum within the neuron. This function is, however,

prone to the dying ReLU problem, which happens when a neuron outputs zero,

and will keep giving zero response throughout the training. This is caused by the

derivative of ReLU, which gives zero gradient for such neural outputs during back-

propagation. Leaky implementations of ReLUs have been shown to provide higher

accuracy and avoid the dying ReLU problem by providing a non-zero gradient for

the constantly inactive neurons in the network [49]. The function of the leaky-ReLU

(LReLU) is

LReLU(x) =

 x if x ≥ 0

αx if x < 0,
(2.16)

where α is a parameter defining leakage of the ReLU over negative responses, which

provides a gradient to compensate for wrongly initialized or trained values. Param-

eter α is typically a small positive number.

Loss function

The error between the network and expected output is the cost function J(·, ·)

of the network,

J(O,G) = J(N (ξ, T ), G). (2.17)

For applying the gradient descent-type backpropagation algorithms for updating w

and b, this cost (or loss) function needs to be fully differentiable. In the following

some possible error functions are listed.
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The so-called `1 loss is the absolute difference,

`1(O,G) = |O −G| , (2.18)

while the `2 loss is the squared difference (notice the analogy with the `1- and `2-

norm), written as

`2(O,G) = (O −G)2. (2.19)

The `1 loss is generally better for SR problems as well as for texture and image

generation, since `2 loss is often dominated by outlier pixels on the ground truth

images [50]. On the other hand, while `2 is twice, `1 is only once differentiable

(except for the origin, where O = G and the `1 function is not differentiable at all).

Huber loss [51] combines the advantages of the `1 (2.18) and `2 (2.19) loss func-

tions, helping the network to avoid local minima during training. The twice differ-

entiable and smoother loss function `1s is:

`1s(O,G) =

 δ|O −G| − (1− c)δ2 if |O −G| > δ

c(O −G)2 if |O −G| ≤ δ,
(2.20)

where δ is the point where the quadratic and absolute value functions are joining

and c is a scaling factor. The original definition of the Huber loss uses c = 1
2
.

Optimization

Backpropagation is an efficient optimization algorithm, where the derivative of

the cost function is calculated with respect to each parameter (∂ξi) using the chain-

rule. The updated parameters in iteration k are obtained by

ξki = ξk−1i − η

M

M∑
n=1

∂ξi{J(N (ξk−1, Tn), Gn)}, (2.21)

where η is the learning rate, and M is the number of samples used in the update.

Higher learning rates yield unstable convergence trapping in local minima, while

small values will slow the training down. Depending on M , the below listed opti-

mizations are distinguished.

1. In gradient descent each update step uses all samples – M equals the size of

the training set. This technique may get trapped in local minima, needs large

memory and converges slowly.
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2. In stochastic gradient descent a random single sample is chosen at a time, M =

1, leading to frequent updates and faster convergence. It is computationally

less demanding, but is sensitive to outliers and the loss function converges

with high variance.

3. The error may be calculated on so-called batches. A small set of sample images

(usually M = 4..64) are passed through the network, and the loss function is

averaged over this set. The ideal batch size uses moderate memory, updates

frequently, and yields a relatively smooth convergence.

These definitions give rise to the term epoch, the number of optimization steps when

the whole training set was once used to update the network.

The Adam optimizer [52] is the most popular algorithm in computer vision tasks.

It boosts the above gradient descent algorithms with weight-specific adaptation of

the learning rate.

ξki = ξk−1i − η√
v̂k + ε

m̂k, (2.22)

where m̂ and v̂ are the estimated mean and momentum of the gradient within an

exponential moving window. The original paper suggests default settings for the

exponential decay and learning rate parameters, which are widely used ever since.

Fully connected network

A conventional design is the fully connected network , when all the outputs of a

layer are connected to all the neurons of the upcoming layer (Fig. 2.10).

This design leads to an extremely high number of variables, especially in the

case of deep networks. Too many tuning parameters compared to the size of the

learning dictionary may lead to overfitting of the network. It means that the network

learns the random noise and nonspecific details of the training set, and is frequently

incorrect on unpresented samples, as the learned concepts do not apply to them.

This is usually tested with a smaller subset of the learning dictionary, which is not

used for error backpropagation. This way the training can be stopped after a given

iteration number, avoiding overfitting. Finding an appropriate network structure for
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Figure 2.10: In the fully connected neural network all outputs of a layer are inputs to all neurons

in the subsequent layer. In this example the input has only 4 pixels, but the first layer already

contains 15 tuning parameters, with only 3 outputs, showing the intensive memory requirement of

the network design. The final output can be a single or multiple values.

the given learning task - which is complex enough but does not lead to overfitting -

is therefore essential.

Convolutional neural network

CNN is a popular neural network structure containing convolutional layers along

with other optional layers. The units within a convolutional layer are organized in

such a way that the multiplication of input pixels with their corresponding weights

implements a convolution process followed by a non-linear activation operator, pass-

ing a series of filtered images (features) to the upcoming layer (Fig. 2.11). The

output of the convolutional layers can be directly an image, or can be reduced to

a classification decision using a subsequent fully connected network. This kind of

arrangement allows for good feature extraction with a relatively small set of weights,

as the extraction of one feature requires only as many weights, as large the kernel

size is. An example for a feature in the first layer can be an edge map of the input

image. This structure is favored in image processing tasks.
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Figure 2.11: The training of the CNN requires a large learning dictionary with known input-output

pairs. The weights are represented as convolutional kernels, giving multiple (N1, N2, etc.) outputs

(features) in each layer which are passed to a non-linear function. These outputs are the inputs of

the next layer. The final output is compared to the expected output, and the error between them is

used to update the weights of the network.

Deep learning in the SR problem

Many different approaches have been investigated for the enhancement of train-

ing in terms of quality and speed in the SR task. An overview of such techniques is

given in [53], and was used as a basis for this summary.

In the pioneering, 2014 work of Dong et al. [54] a three layer, rather shallow

network, super-resolution CNN (SRCNN) was designed – with convolutional patch

extraction, non-linear mapping, and reconstruction (Fig. 2.12 a). Kim et al. have

shown that the number of layers can increase the performance, so that their very

deep SR CNN, VDSR (20 layers with small filters) highly outperforms the shallow

ones (Fig. 2.12 b) [55]. A skip connection was also applied between the input and

estimated output images in order to learn the residual instead of direct learning of

the HR image, giving a more stable convergence. Kim et al. have further devel-

oped this network using recursive blocks in deeply-recursive convolutional network

(DRCN), meaning multiple convolutional layers use the same kernel weights as a

way of parameter reduction (Fig. 2.12 c) [56].

However, the previous networks use the upsampled (eg. by bicubic interpolation)

LR image as an input, leading to a large number of parameters. A more efficient
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Figure 2.12: State of the art deep learning SR networks. a) The first SR network with 3 con-

volutional layers. b) Very deep SR network with skip connections and c) recursive convolutional

layers. d) Fast SRCNN modifies a) by upscaling the image only in the final layer with transposed

deconvolution. e) Uses convolutional blocks with dense skip connections, and upscales the image

only in the final layers.

solution, fast SRCNN (FSRCNN) uses transposed convolution as an extension of

SRCNN (Fig. 2.12 d) in [57]. In a different solution Shi et al. upsample the image

in the final layer, re-channeling the multiple features into the HR-image [58, 59].

This structure will be detailed in Chapter 3.

The reduction of parameters using these deconvolution steps, and the efficiency

provided by skip connections gave rise to more complex networks. These properties

are combined for solving the SISR problem in a densely connected network (Fig.

2.12 e) [60]. The skip connections are concatenating outputs of former blocks, and

the output of the dense blocks is fed to a deconvolution layer. Similar skip connec-

tions and transposed convolution are used in an interesting structure called U-net,

introduced for biomedical image segmentation and artifact removal, where features

at different scales are learned efficiently [44, 61]. This structure will be introduced

in Chapter 3, the first contribution of this thesis. The Reader is referred to [53] for

some further techniques which are out of the scope of this summary, as they were

developed in parallel or after our work.
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2.3 Tensor algebra

Tensor algebra is used in the proposed methods of Chapter 4. Its basic notations

and operations are overviewed in this section. This section builds on [J2], [Au4].

Readers may refer to [62] and [63] for further details.

2.3.1 Tensor operations

Order, fibers, pure tensors

A tensor is a generalization of vectors and matrices, where the order of the tensor

indicates its dimensionality. A 3D image volume is a third-order tensor X ∈ RI×J×K

from which one dimensional fibers can be extracted. Depending on which indices are

fixed, there are mode-1 fibers denoted by X(:, j, k) vectors (columns, Fig. 2.13.a),

mode-2 fibers denoted by X(i, :, k) vectors (rows, Fig. 2.13.b) and mode-3 fibers

denoted by X(i, j, :) vectors (Fig. 2.13.c).

Figure 2.13: Fibers of a third-order tensor - a) mode-1 fibers (columns), b) mode-2 fibers (rows),

and c) mode-3 fibers.

The outer product (denoted by ⊗) between one mode-1, one mode-2 and one

mode-3 array forms a rank-1 (also called pure) third order tensor, written as

X =u⊗ v ⊗w, where X(i, j, k) = u(i)v(j)w(k),

u ∈ RI,v ∈ RJ,w ∈ RK,X ∈ RI×J×K.
(2.23)

Mode product

Next, the multiplication between a 2D matrix and a 3D tensor referred to as

the mode product is defined. This multiplication can be performed along all three

dimensions, and in each case the mode-n fibers of the tensor are extracted and are
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pre-multiplied by the matrix one-by-one. The mode-n products (n ∈ {1, 2, 3}) of

X ∈ RI×J×K with P1 ∈ RI∗×I, P2 ∈ RJ∗×J, P3 ∈ RK∗×K are denoted by ×n, and are

defined as

Figure 2.14: Illustration of the mode-1 product. The mode-1 fibers of the 3D tensor are extracted

and pre-multiplied by the 2D matrix.

X ×1 P1 = X1 ∈ RI∗×J×K,where X1(:, j, k) = P1X(:, j, k)

X ×2 P2 = X2 ∈ RI×J∗×K,where X2(i, :, k) = P2X(i, :, k)

X ×3 P3 = X3 ∈ RI×J×K∗
,where X3(i, j, :) = P3X(i, j, :)

(2.24)

where I∗, J∗,K∗ are arbitrary integer numbers. In Fig. 2.14, the principle of the

mode-1 product, X ×1 P1 = X1 is illustrated, where the columns of the tensor are

pre-multiplied by P1, leading to a shrinkage along the first dimension.

Matricization

Finally, the matricization or unfolding of the tensor X ∈ RI×J×K from 3D to

2D is defined. Note that this matricization can be realized again along the three

dimensions. For a mode-n matricization the mode-n fibers are extracted and form

the columns of X(n) in lexicographical order expressed as

X(1)=[X(:, 1, 1),X(:, 2, 1), ...X(:, J, 1),X(:, 1, 2)...,X(:, J,K)]

X(2)=[X(1, :, 1),X(2, :, 1), ...,X(I, :, 1),X(1, :, 2)...,X(I, :,K)]

X(3)=[X(1, 1, :),X(2, 1, :), ...,X(I, 1, :),X(1, 2, :)...,X(I, J, :)]

X(1) ∈ RI×JK,X(2) ∈ RJ×IK,X(3) ∈ RK×IJ.

(2.25)

The mode-1 matricization is illustrated in Fig. 2.15.

28



Figure 2.15: Mode-1 matricization of a third-order tensor. The extracted mode-1 fibers are put in

lexicographical order to form the 2D matrix.

Decomposition

Matrix and tensor decomposition (also called factorization) are operations that

help to decompose a matrix or tensor into constituent elements, which offer easier

implementations of complex algorithms. Solving a system of linear equations, or

calculating the inverse are problems calling for such decompositions.

A group of tensor decomposition are different generalizations of the matrix sin-

gular value decomposition (SVD), which is

A = UΣV ∗ (2.26)

where U and V are unitary matrices, Σ is a rectangular diagonal matrix, and (V ∗)

is the complex conjugate of V . The diagonal elements of Σ are the singular values of

the matrix, and the number of non-zero entries is the rank of the matrix. Following

the different generalizations it is shown in the upcoming sections, that higher order

tensors have different definitions of ranks depending on the factorization. Kolda and

Bader gave a comprehensive summary of these generalized decomposition techniques

in [63], hereafter two of them will be introduced.

2.3.2 Canonical polyadic decomposition

The smallest number of rank-1 tensors that can sum up to form tensor X is

called the tensor rank of X, denoted by F . The resulting factorization of X is

called the canonical polyadic decomposition (CPD) of X expressed as

X =
F∑
f=1

U1(:, f)⊗ U2(:, f)⊗ U3(:, f),

where X(i, j, k) =
F∑
f=1

U1(i, f)U2(j, f)U3(k, f).

(2.27)
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U = {U1, U2, U3} is a set of three 2D matrices,
{
U1 ∈ RI×F , U2 ∈ RJ×F , U3 ∈ RK×F},

known as the decomposition of the tensor X. For illustration, the reader may refer

to Fig. 2.16. In the following, the operation in (2.27) will be denoted by

[[U1, U2, U3]] =
F∑
f=1

U1(:, f)⊗ U2(:, f)⊗ U3(:, f). (2.28)

Figure 2.16: Illustration of the CPD. F is the number of outer products formed by mode-1 (U1
i :=

U1(:, i)), mode-2 (U2
i := U2(:, i)) and mode-3 (U3

i := U3(:, i)) fibers summing up to a tensor with

rank F .

Using the factorization of X in (2.27) and (2.28) the mode-n products (2.24)

can also be written as

X ×1 P1 ×2 P2 ×3 P3 = [[P1U1, P2U2, P3U3]]. (2.29)

The matricization can also be realized using the CPD U of X. For this the column-

wise Khatri-Rao product is necessary (denoted by A�B = C, where A ∈ RI×F , B ∈

RJ×F , C ∈ RIJ×F ). It operates on matrices having the same number of columns, and

calculates their column-wise Kronecker-product (vectorized outer product). Using

this notation the matricization (2.25) can be written as

X(1) = U1(U3 � U2)
T

X(2) = U2(U3 � U1)
T

X(3) = U3(U2 � U1)
T .

(2.30)

This matricization and (2.29) allows the construction of efficient algorithms for find-

ing the corresponding CPD. Usually an alternating least square (ALS) algorithm is
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used, as proposed in [64]. The subproblems are

min
U1

||X(1) − U1(U3 � U2)
T ||F

min
U2

||X(2) − U2(U3 � U1)
T ||F

min
U3

||X(3) − U3(U2 � U1)
T ||F,

(2.31)

using the Frobenius-norm ‖·‖F defined for a third order tensor as

||X||F =

(
I∑
i=1

J∑
j=1

K∑
k=1

(X (i, j, k))2
)1/2

(2.32)

A solution for (2.31) is given by

U1 = X(1)[(U3 � U2)
T ]†

U2 = X(2)[(U3 � U1)
T ]†

U3 = X(3)[(U2 � U1)
T ]†,

(2.33)

where (†) is a pseudoinverse. In the algorithm only one dimension is updated at a

time, the others are fixed, until the solution converges.

An important property of the CPD is that this decomposition is essentially

unique (allowing permutations within U1, U2, U3). Thus U can be identified al-

most surely if its tensor rank F is smaller than an upper bound. Chiantini et al.

[65] proved that if I ≥ J ≥ K, with F ≤ 2blog2Jc+blog2Kc−2, the CPD of the rank-F

tensor X ∈ RI×J×K is essentially unique. This condition allows identifiability of

the CPD even for tensors with high rank. For example, a typical CT volume with

260 × 260 × 300 pixels can be decomposed uniquely even if the tensor rank of the

image is as high as 214 = 16384.

However, a main difference between the matrix rank and the above tensor rank

F is that for the calculation of the tensor rank there is no straightforward algorithm,

as this task is NP-hard. This explains why a relaxed form of the tensor rank, (2.11)

is used in the LRTV method. Usually multiple decompositions are tried with fixed

R number of components to approximate X

X ≈ X̂ = [[Û1, Û2, Û3]] =
R∑
i=1

Û1(:, i)⊗ Û2(:, i)⊗ Û3(:, i). (2.34)
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If R < F , a denoising or data compression might be realized.

The original algorithm [64] was used in psychometrics, analyzing multiple sim-

ilarity, dissimilarity matrices. It was also used in the modeling of fluorescence

excitation-emission data [66], in the analysis of fMRI data [67] and time-varying

electroencephalogram data [68].

With some modification the algorithm was used for image compression and clas-

sification [69], data fusion in multi- and hyperspectral imaging [62]. This fusion

technique combines a multispectral image (with high spatial and low spectral reso-

lutions) and a hyperspectral image (with low spatial and high spectral resolution)

to obtain an SR image (with high spatial and high spectral resolutions). One ad-

vantage of the tensor-based method of [62] is that it does not need to unfold the

image of interest into a 2D matrix [29], or take only slices of the volume [J1]. As

a consequence, this method avoids any loss of information about the locality of the

image pixels and does not require to introduce spatial regularization (such as the TV

of the image). Our proposed algorithm for SISR uses a similar method in Section

4.2 and 4.3.

2.3.3 Tucker decomposition

The n-rank of a tensor is the number of its independent mode-n fibers. It can

be obtained as the rank of the mode-n matricized tensor. For a third-order tensor

three such values, {1-rank, 2-rank, 3-rank} can be defined. These n-ranks should

not be confused with the rank F of the tensor, defined by the CPD.

The Tucker decomposition TD (also called higher order SVD, or multi-linear

SVD) is the multidimensional generalization of the 2D SVD, written as

X = Σ×1 V1 ×2 V2 ×3 V3, (2.35)

where Σ ∈ RR1×R2×R3 is a core tensor , and V1 ∈ RI×R1 , V2 ∈ RJ×R2 , V3 ∈ RK×R3

are the (usually orthonormal) bases of the subspaces spanned by the mode-n fibers

[63]. If Rn (in particular R1, R2, R3) equal the n-ranks of X, the decomposition is

exact, but for lower numbers and in the presence of noise it becomes inexact, and

gives only an approximation X̃. The CPD can be viewed as a special case of the
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TD, with R1 = R2 = R3.

Figure 2.17: Illustration of the exact Tucker decomposition, a generalization of the 2D SVD. A

core tensor Σ is multiplied along the corresponding modes by base matrices V1, V2, V3.

As opposed to the 2D SVD, Σ is not diagonal, but its elements show the level of

interaction between the different modes. Due to orthonormality, it can be obtained

as

Σ = X ×1 V
T
1 ×2 V

T
2 ×3 V

T
3 , (2.36)

The shorthand of TD is

X = [[Σ;V1, V2, V3]]. (2.37)

Singular values similar to the 2D case (SVn for n = 1, 2, 3) can be defined,

showing the relevance of the individual base vectors. These are calculated as the

Frobenius norms (2.32) of 2D slices taken from the core tensor Σ, along mode-n,

fixing the index of the component in question as

SV1(i) = ‖Σ(i, :, :)‖F

SV2(j) = ‖Σ(:, j, :)‖F

SV3(k) = ‖Σ(:, :, k)‖F .

(2.38)

When Rn < n-rank(X), it is called the truncated TD. While for 2D matrices

the truncation of the SVD gives an optimal approximation of the matrix in the least

square sense, it is not true for higher order tensors, but gives a good starting point

for further ALS algorithms. Furthermore, TD is not unique, giving flexibility in the

composition of Σ.

The algorithm was first introduced and further improved by Tucker and Levin

[70]. In some cases the decomposed form requires significantly less memory than

the original tensor does [71]. The decomposition was also used in facial recog-

nition in [72], for image fusion to overcome the problem of limited depth-of-field
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camera pictures [73], for the resolution enhancement of color images [74]. The

truncated version was applied for the denoising of MRI scans [75]. TD was used

in the hyperspectral-multispectral super-resolution problem with success [76]. The

proposed SISR algorithm in Section 4.4 also uses TD.
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Chapter 3

Proposed deep learning - based

image enhancement

The resolution of dental CBCT images is limited by detector geometry, sensi-

tivity, patient movement, the reconstruction technique and the need to minimize

the radiation dose. Recently, the use of CNN architectures has shown promise as a

resolution enhancement method. In the current work, two CNN architectures – a

subpixel network and the so called U-net – have been considered for the resolution

enhancement of 2D CBCT image slices of ex vivo teeth. To do so, a training set of

5680 cross-sectional slices of 13 teeth and a test set of 1824 slices of 4 structurally

different teeth were used. Two existing reconstruction-based super-resolution meth-

ods using `2-norm and TV regularization were used for comparison. The results were

evaluated with different metrics (peak signal-to-noise ratio, structure similarity in-

dex, and other objective measures estimating human perception) and subsequent

volume-segmentation-based analysis. In the evaluation, µCT images were used as

ground truth. The results suggest the superiority of the proposed CNN-based ap-

proaches over reconstruction-based methods in the case of CBCT images, allowing

better detection of medically salient features such as the size, shape, or curvature of

the root canal.

35



3.1 Experimental setup

This section introduces the CT images, metrics, PSF-estimation method used in

the contributions of this thesis.

3.1.1 Dataset

As the methods presented in this thesis were tested on the same dataset, the

images will be described in this section.

Images of 17 intact freshly extracted teeth (incisors, canines, premolars, and mo-

lars for structural diversity) were acquired. These teeth were donated anonymously

for research and had been extracted for reasons unrelated to the current study. A

Carestream 81003D limited CBCT system, currently used in clinics, was used for

the LR image acquisition, and a Quantum FX µCT system from Perkin Elmer for

the HR images. Imaging was performed at Life Imaging Facility of Paris Descartes

University (Plateforme Imageries du Vivant - PIV) on µCT Platform site (EA2496,

Montrouge, France). The resolution of the CBCT machine was 1 LP/mm at 50%

MTF (this term is explained in Section 2.1.3), defining a linewidth of 500 µm. The

reconstructed voxel size was 75 µm3. For the µCT machine the resolution was 10

LP/mm at 50% MTF (a linewidth of 50 µm), the reconstructed voxel size was 40

µm3.

The acquired CBCT images were automatically registered onto the µCT volume

with the 3D Slicer tool [77–79], using linear interpolation in the rescaling step. Note

that in addition to being geometrically aligned, both sets of images had a common

voxel size of 40 µm3 after the registration process. The axial cross-sectional slices

were saved as single images for both types of volumes. The reason for transforming

the CBCT images to the pixel resolution of the µCT images (rather than the other

way round) was to avoid degradation of the intrinsic resolution of the µCT images

and thereby reducing the training sample number.

The noise and the reconstruction errors in the background of the images are

structurally different on the two modalities. This difference is investigated in Fig.

3.1 where on a log-scale the noise in the background is clearly visible, both on the
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CBCT and on the µCT images. On the mean histograms of the training sets it can

be seen that the pixels of the background and those of the foreground are easily

separable with global thresholds (dashed lines). The result of this thresholding can

be seen on the example images as masks of the tooth. After thresholding, the pixel

intensities were normalized between 0 and 1. It was qualitatively and quantitatively

investigated how the deep learning SR algorithms handle this difference in noise

patterns, and how do they perform after background removal.

Figure 3.1: Background artifacts. A.: background artifacts on the CBCT image on log scale

B.: mask of the tooth from A. C.: mean histogram of CBCT images from TRL, with the global

threshold used for background removal (dashed line). The same threshold was used for masking

on B. D.: background artifacts on the µCT image on log scale E.: mask of the tooth from D. F.:

mean histogram of µCT images from TRH , with the global threshold used for background removal

(dashed line). The same threshold was used for masking on E.

,

13 teeth were selected for the training sets, and four other teeth (an incisor, a

premolar and two molars) provided the test sets. The training set of low-resolution

CBCT and high-resolution µCT image slices are denoted by TRL and TRH , and

the corresponding test sets by TEL and TEH , and the corresponding sets of the 3D

volumes by TRL, TRH , TEL, TEH .
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3.1.2 PSF estimation for the model-based algorithms

The blurring effect is generally modelled as a convolution with a spatially invari-

ant PSF. In practice the PSF is unknown, so it needs to be measured or estimated.

Its measurement for experimental data is a very difficult task, therefore it is es-

timated from data in many existing works (see [32] for an example). The SISR

degradation model (2.4) assumes that the CBCT images are low-pass filtered ver-

sions of the ideal µCT images, where the blurring kernel is Gaussian and its standard

deviation was estimated from the observed data. Employing direct inverse filtering

on each sample image, the µCT volume was divided frequency-wise by the CBCT

volume in the Fourier-domain, to obtain the PSF (the constant λ was used to avoid

division by zero). The high-frequency band was suppressed by a 3D Hamming-

window before computing the inverse Fourier-transform. The training sets were

used to estimate an averaged PSF, in order to reduce noise. The 3D PSF was thus

obtained as:

F(PSF) =
1

|TRL|

∑
k∈TRL

F(TRL{k})� [F(TRH{k}) + λ · J ],

PSF = F−1(Hamming(PSF)).

(3.1)

where F denotes the Fourier transform operator, |TRL| is the cardinality of the set,

k is the training image index, � is the element-wise Hadamard division, λ is a small

positive real number, and J is a matrix of ones having the same size as the images.

The division here is to be considered element-wise. A Hanning-window was applied

to the estimated PSF, suppressing high-frequency noise due to edge effects.

Finally a 3D Gaussian function was fitted to the averaged PSF to estimate the

standard deviations σ ({σ1, σ2, σ3} for the three dimensions).

3.1.3 Metrics

As LP/mm resolution of the images can be accurately calculated only on the

standard phantom (2.1.3), the enhancement of the biological images has to be mea-

sured with other metrics.
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The first one measures the peak signal-to-noise ratio (PSNR) between the input

A and reference R (µCT, whose values have been normalized between 0 and 1) image

volumes. It is calculated by dividing the square of the dynamic range (difference

between the maximum and minimum values of the input image, maxA−minA) with

the mean square error (MSE) between A and R, expressed in dB as

PSNR = 10log10
(maxA −minA)2

MSEA/R

, (3.2)

where

MSEA/R =
1

I · J ·K

I∑
i=1

J∑
j=1

K∑
k=1

(A(i, j, k)−R(i, j, k))2. (3.3)

The structural similarity index (SSI) was designed to better reflect subjective

evaluation [80]. It combines the luminance (l(i, j, k)), contrast (c(i, j, k)), and struc-

tural measures (s(i, j, k)), and can be calculated for each pixel as the SSI map

(SSIM) as

SSIM(A,R) = [l(A,R)] · [c(A,R)] · [s(A,R)], (3.4)

with

l(A,R)] =
2µAµR + C1

µ2
A + µ2

R + C1

,

c(A,R)] =
2σAσR + C2

σ2
A + σ2

R + C2

,

s(A,R)] =
2σAR + C3

σAσR + C3

,

(3.5)

where µA, µR, σA, σR, σAR are local means, standard deviations and cross-covariance

taken in small neighborhoods of each pixel. C1, C2, and C3 are regularization values

to avoid division by zero. For the whole image an average of the single values can

be taken, denoted by SSI.

The information fidelity criterion (IFC) quantifies the mutual information be-

tween two images. The images are first transformed into the wavelet domain, and a

Gaussian scale mixture model is fitted to the coefficients. The conditional mutual

information is calculated between these models. The resulting measure is correlating

with the human perceptual quality without parameters [81].
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Figure 3.2: The Feret’s diameter is the longest distance between two parallel straight lines that are

tangent to the shape.

The noise quality measure (NQM) analyzes A and R using a contrast pyramid

in the spatial and frequency domains [82]. It quantifies spatially varying non-linear

visual effects as variation in contrast sensitivity and local luminance, contrast inter-

action between spatial frequencies, and contrast masking effects.

The enhanced images were also compared as 3D volumes for a more application-

oriented evaluation. The canal root was segmented from the 3D volume (Acanal,Rcanal)

using a dedicated adaptive local thresholding described in [83]. For each root, the

canal area and the Feret’s diameter were estimated for all the radicular axial recon-

structions, as suggested in [83]. The Feret’s diameter defines the longest distance

between two parallel straight lines that are tangent to the shape, as shown in Fig.

3.2. The comparison of Feret’s diameter on corresponding slices is evaluated using

the mean of differences. It shows whether there is a systematic error or bias between

the two images. The segmented volumes were also measured, showing the absolute

differences with the ground-truth µCT images in percentages, and using the Dice

coefficient [84]

Dice(Acanal,Rcanal) = 2 · |Acanal ∩Rcanal|
|Acanal|+ |Rcanal|

, (3.6)

where |Acanal ∩Rcanal| is the number of common canal-pixels of segmented A and

R, and |Acanal|+ |Rcanal| are the number of all canal-pixels in A and R.

Finally MeVisLab [85] was used for visualizing the segmentation results.
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3.2 Realizations of the CNN

To investigate the potentials of deep learning in dental CT image enhancement,

two architectures of CNNs were created. In the discussion that follows, the organi-

zation of the layers for each of the two architectures will be first presented, followed

by a description of the error metric used to train the networks. The term features

will refer to channels of the CNN along the usual definition of its processing pipeline

which act as implicit features in the reconstruction process.

3.2.1 U-net

One of the investigated architectures was inspired by the U-net architecture [61]

which is commonly used for domain-to-domain transformation, especially in medical

imaging. The number of pixels was the same in the TRL–TRH and TEL–TEH image

pairs after the registration step of Section 3.1.1, but the whole dataset had to be

scaled to the same dimensions (400 × 400 pixels) as the network uses a universal

weight-structure for all the inputs.

The implemented structure contains four successive downsampling layers on the

original input image, continued by four upsampling steps which were implemented

by transposed convolutions. This arrangement grants feature extraction using two-

two convolutional layers at different scales. At each size-level lateral connections

concatenating the downsampled image features to the upsampled ones were also

made, keeping feature information of all scales, combining local and global features.

Our implementation altered the original U-net by completing the convolutional

layers (Section 2.2.3) with circular boundary conditions, batch normalization (fixing

the input mean and variance between convolutions [86]) and LReLU (Section 2.2.3),

with α = 10−3 as defined in (2.16). The number of convolutions – different features

– were half of those published in the original paper in order to better fit our small

dataset: 32,64,128,256 in the downsampling layers, 256,128,64,32 in the upsampling

layers, and two convolutions with 512 features in the lowest resolution.

It has been shown in various problems that the application of smaller kernel sizes

can result in a lower number of parameters and higher accuracy [87]. Therefore, the
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size of all the kernels employed here was 3× 3.

A detailed block diagram of this architecture can be seen in Fig. 3.3.

Figure 3.3: Depiction of the U-net structure as a domain-to-domain transformation converting the

input image with size 400x400x1 to an image of similar shape but different features. As it can be

seen on the figure this structure is good to process local and global features together. The neurons

in the deeper layers have larger and larger receptive fields. The numbers in the bottom right corner

of the layers indicate the number of features stored. Image was modified from [61].

3.2.2 Subpixel network

The second architecture evaluated for image enhancement was motivated by the

subpixel networks implemented by Shi [58], where deconvolution is realized as a

tiling operator, instead of transposed convolutions [59]. Here all the inputs of TRL

and TEL were scaled to 200 × 200 pixels, while the expected outputs of TRH and

TEH to 400 × 400 pixels.

A commonly used six layer CNN structure was implemented, as opposed to the

three layers of the original implementation. It contained convolution, ReLU, and

batch normalization in each layer, with 16, 32, 32, 64, 64, 4 features respectively. The

last layer with four features is needed for the depth-to-space operation to give space

to the higher resolution on a higher number of pixels (by a factor of two compared

to the image size of the original input). The retiling operation that rearranges the

elements of an I× J×Kr2 tensor A to a tensor with a shape of (rI× rJ×K) – and

as such is responsible for the upscaling – can be defined as:

retiling {A} (x, y, z) = A(bx/rc , by/rc ,K · r ·mod(y, r) + K ·mod(x, r) + z), (3.7)
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where x, y and z are the width, height and depth indices of the input image, r is

the upsampling factor (in this case 2), K is the input depth of the image, b·c is the

floor function, and mod(·) is the modulo operation. The processing pipeline of this

retiling can be seen in Fig. 3.4.

Figure 3.4: Depiction of the retiling (depth-to-space) operation which was tested for enhancing

image quality. The image was taken from [59], showing an upsampling factor of three.

3.2.3 Training

The training sets TRL and TRH contained 5680 slices of the 13 teeth, and four

other teeth (an incisor, a premolar and two molars) provided 1824 slices for the test

sets TEL and TEH . In spite of the small number of teeth, the large variability of

the slices allowed more precise measurements on a greater set of independent 2D

images. The CBCT and µCT images were uniformly normalized using the highest

and lowest pixel values found in the training sets TRL and TRH accordingly.

For training the networks on the TRL and TRH sets, the Adam optimizer algo-

rithm (Section 2.2.3) was used with dynamic learning rate initially set to 10−4. The

network was trained with randomly initialized weights using the Xavier method as

it is described in [88], and there were no significant differences in training depend-

ing on the weight and parameter settings. Similarly the initial learning rate of the

used Adam optimizer did not have effect on overall reconstruction accuracy of the

network. Random batches of 64 images for the subpixel architecture and those of

16 images for the U-net structure were used.

For visualizing the evolution of error between the expected and network outputs,

the `1 loss and the the Huber loss `1s were implemented (as introduced in Section

2.2.3, (2.20) with c = 1, δ = 1). For the Adam optimizer the `1s loss was set. Note
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that for image normalization in the first layers and also between the layers batch

normalization was employed [86]. This method ensures that input data in training

batches is transformed to zero mean and unit variance. Examining the `1s loss in

(2.20) it can be seen, that those images and regions where a larger variance appeared

fall into the |O −G| ≥ 1 region, penalizing the difference moderately. To the best

of our knowledge this method is the most commonly used normalization method for

deep learning image applications.

The neural networks were realized using the open-access deep learning framework

TensorFlow 1.3.0 [89], running on an NVIDIA GK210GL (Tesla K80 with 12 GB

RAM) GPU. The training of a network took two days. In inference mode both

trained networks super-resolve a slice in 0.5 s, a whole volume in 2.5 min on average.

The structure of the two networks along with the algorithms and chosen param-

eters used for the training can be found on GitHub [link to source code].

3.3 Results

Four SISR algorithms – the fast SISR algorithm (Section 2.2.2) with `2 (SRR-`2)-

norm, and TV (SRR-TV) regularizations, and CNNs with the subpixel and U-net

architecture – were applied on the test set, TEL for evaluation of the proposed

methods.

3.3.1 Evolution of the loss function

Figure 3.5 shows a comparison of convergences regarding the loss using the `1

(upper plot) and `1s (lower plot) functions. The network was trained for 20 epochs,

the loss converged and did not change significantly after 10 epochs. The reconstruc-

tion error of the U-net architecture was much lower using both loss functions, but

as it will be discussed later, this result does not agree with the conclusion based

on image quality metrics. When applying background removal, the loss values of

the networks decrease for both loss functions (Fig. 3.5). Thus, background re-

moval helped both networks to decrease the reconstruction error and to speed up

the convergence.
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3.3.2 Effect of background noise

The effect of the background noise was investigated qualitatively and quantita-

tively. An example slice can be seen in Fig. 4.2 for qualitative evaluation. It can be

observed, that the SRR methods led to an amplification of this error, and were also

causing artifacts on the edges. This latter phenomenon persisted after background

removal too. On the other hand, the CNNs – especially the U-net – learned the

shape of the background-noise on the µCT image, but estimated a blurred version

of its pattern. As the lower row indicates, this problem can also be solved with

background removal.

Figure 3.5: Loss of the different networks during training according to the `1 and `1s metrics.

To help visualize the general trends without the short-time randomness of the training algorithm,

exponentially smoothed values are shown in dark, and the original values are plotted in semi-

transparent colors.

The quantitative effect of the background noise can be seen in Table 3.1. The

values were calculated against the ground truth images on the four teeth of the test

set. All the measures apart from the IFC showed an improvement after background

removal.

The first value to consider is the NQM, as it directly shows the quality of the

noise. This value increased significantly with background removal for all the meth-

ods. When calculating the MSE, the differences on the relatively large area of the

background led to a high error-rate, and thus to a lower PSNR. It also caused a
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Figure 3.6: Effect of background removal on noise amplification. The columns stand for the four

different enhancement methods along with the original CBCT and µCT images. The upper row

shows an example slice with intact background, while on the lower row background-removal was

carried out. It can be seen that the SRR methods amplify the noise, while the deep learning methods

are trying to learn the background-pattern of the µCT image. After background removal this problem

no longer holds, only edge-effects of the SRR methods can be observed. The display range was

stretched to [0,1].

higher (and different) variance of the compared backgrounds, which effected nega-

tively the SSI values. This effect is less significant on the results with the CNNs,

as they learned a similar noise pattern. The decrease of the IFC value following

background removal is supposed to be due to the decrease in image variance.

When performing SRR-`2 and SRR–TV methods not all measures show improve-

ment after background removal. Sometimes background removal seems to negatively

affect reconstruction at the edges. Although it results in a visually better image

with higher contrast, not all quality metrics can capture this improvement. The

deep learning methods, however, do not suffer from this effect, significantly outper-

forming the traditional methods in every case - even when the contrast is lower than

that of the SRR images. It should be noted, that the contrast of the CNN methods

is still higher than on the CBCT images.
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Table 3.1: Quantitative DL enhancement results

Average Values of PSNR (dB), SSI, IFC and NQM for the Test Set compared to

the µCT images. Best Results are Marked in Bold

Metric background CBCT SRR:`2 SRR:TV CNN:U-net CNN:Subpixel

PSNR
yes 22.48 23.62 23.60 23.79 24.50

no 45.56 64.15 64.80 67.58 66.60

SSI
yes 0.3801 0.5474 0.5869 0.8045 0.8182

no 0.9145 0.8688 0.8830 0.9304 0.9346

IFC
yes 0.3217 0.3348 0.3313 0.5472 0.5536

no 0.2605 0.1908 0.2268 0.4159 0.4186

NQM
yes 6.93 7.26 6.85 8.07 8.64

no 9.28 8.02 8.43 9.93 11.54

3.3.3 Resolution enhancement on background-removed im-

ages

As the validity of background-removal was qualitatively and quantitatively dis-

cussed, from hereon only the results obtained with the modified (without back-

ground) images will be examined. The values of Table 3.1 confirm the superiority of

the proposed deep learning-based methods. The average PSNR increased by 18.59

and 19.24 dB for the SRR methods (`2 and TV respectively), while with deep learn-

ing this improvement was higher, 21.04 dB with the subpixel and 22.02 dB with the

U-net structure. If the SSI and IFC values ([0,1]) are considered as percentages, they

improved compared to the CBCT by 1.59–2.01% and 15.54–15.81% respectively.

The PSNR value is the only metric where the U-net slightly outperforms the

subpixel structure. As this metric uses the MSE, this fact relates to the previous

result regarding the `1s loss function, where the U-net performs better than the

subpixel structure. It shows that the subpixel CNN can grasp the inner structure

of the image better, and the `1- and `1s-type losses training the networks are not

directly the best measures for perceptually correct metrics.

47



3.3.4 Comparison of 3D segmented images

Table 3.2: Average Values of Canal Segmentation Metrics

Metric (against µCT) CBCT SRR:`2 SRR:TV CNN:U-net CNN:Subpixel

Area, mean difference (mm2) 0.0510 0.0674 0.0634 0.0500 0.0327

Feret, mean difference (µm) 120.57 115.16 145.19 119.61 114.26

Difference of the canals (%) 12.39% 12.25% 12.40% 10.12% 6.07%

Dice coefficient 0.8891 0.8852 0.8913 0.8998 0.9101

The quantitative results of the segmentation can be seen in Table 3.2. The

CBCT images and the results of the four enhancement methods were compared to

the µCT images. In the table the averages of the absolute results on the four test

teeth are shown.

The subpixel method clearly improved all the measures, which is most con-

spicouos with the difference of the volumes and mean of differences. The U-net

gave better results too, but these were less considerable. The SRR techniques could

slightly enhance some of the measures (see the Feret diameter for the SRR-`2, Dice

coefficient for the SRR-TV method), but gave worse results than the CNN tech-

niques.

As the quantitative results showed the subpixel method as the best technique, it

was chosen for 3D-visualization. The segmented canal structures of the CBCT-µCT

and subpixel-µCT volume pairs were compared. Fig. 3.8 shows three teeth from the

test set with a color bar indicating the differences between the segmentation pairs. It

can be seen that on the apical side of the root, where the diameter is smaller making

the imaging and image segmentation more difficult, the deep learning technique

estimated the structure more precisely. On the molar tooth a thinner lateral canal

could be reconstructed.

Similarly to Section 3.3.2, where the performance metrics showed the CNN meth-

ods to be superior to SRR methods despite the lower contrast, the metrics here show

that the segmentation was not affected by the lower contrast of the CNN methods.
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3.4 Conclusion

In this chapter two different deep learning-based SISR methods were imple-

mented for dental CBCT image enhancement. The techniques showed better results

than state-of-the-art reconstruction-based SR approaches both in terms of quality

metrics and subsequent image-segmentation-based analysis. It has been observed

that the `1s loss function of the network is not directly the best measure for percep-

tually correct metrics like the SSI, IFC or PSNR. Even though the current method

operates on slices of the volume, it offers a compatible solution in terms of speed

and quality against the state of the art.
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Figure 3.7: Result of SR methods on different slices from the test set. On the left of the first column

the type of the tooth and the depth of the slice from the apex of the root is displayed. The columns

stand for the four enhancement methods along with the original CBCT and µCT images. The

enhancement was carried out after background-removal. It can be observed, that the SRR methods

are tending to overestimate the size of the canal. In many cases the U-net shows a morphologically

different shape. The result of the subpixel CNN is the most similar to the ground truth, as the

metrics in Table 3.1 suggest. A 2 mm-scalebar is displayed on the µCT images. The display range

is stretched to [0,1].
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Figure 3.8: Volumetric segmentation of the root canal on the test set (an upper incisor, a lower

premolar tooth and a lower molar). The colored area shows the difference between CBCT and µCT

(on the left) and between the subpixel CNN and µCT segmentations. The highlighted areas show

the apical end of the root, where the precision of the segmentation is more important during root

canal treatment.
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Chapter 4

Proposed tensor factorization -

based image enhancement

In this chapter, 3D tensor-decomposition-based algorithms proposed during this

PhD thesis for the SISR problem are introduced. First the CBCT image degradation

model is defined for the µCT-CBCT images in form of a matrix-vector equation,

which is used throughout the chapter. The first algorithm in Section 4.2 (written

based on [J2]) uses the canonical polyadic decomposition for denoising, integrating

it with the blurring and downsampling of the image in a single minimization term.

This algorithm is extended with a semi-blind PSF estimation in Section 4.3, based

on [C1]. In Section 4.4 the Tucker decomposition is applied in succession with a

deblurring step to superresolve the CT images, based on the work in [C2]. All these

methods show computationally lightweight solutions with qualitatively equivalent

or better results compared to the state of the art introduced in Section 2.2.2.

4.1 The CBCT image degradation model

The image degradation model considered herein is the one classically used in

SISR methods, which was introduced in Section 2.2.2, specifically in (2.4). The

model relates the LR image (CBCT in the case of the current dental applica-

tion) to an HR image (considered to be close to the µCT). The HR image X ∈

RI×J×K is corrupted by decimation (with rate r), blurring, and some added noise
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N ∈ RI/r×J/r×K/r, resulting in the LR image Y ∈ RI/r×J/r×K/r. The corresponding

matrix-vector equation is

vec(Y ) = DH vec(X) + vec(N ). (4.1)

We assume that H ∈ RIJK×IJK is the BCCB version of the 3D Gaussian kernel H

to account for circular convolution. A 3D Gaussian kernel H is separable along

the three dimensions to one-dimensional kernels as H = h1 ⊗ h2 ⊗ h3 and is usu-

ally assumed for a blurring PSF [90]. For Gaussian convolutional arrays h1,h2,h3

with standard deviations σ = {σ1, σ2, σ3} the corresponding BCCB matrices are

H1 ∈ RI×I, H2 ∈ RJ×J, H3 ∈ RK×K. The decimation matrix D ∈ R(I/r·J/r·K/r)×IJK

downsamples the image by an integer number, by averaging blocks of r neighboring

pixels in each direction. This matrix is also separable for the three dimensions as

D1 ∈ RI/r×I, D2 ∈ RJ/r×J, D3 ∈ RK/r×K. This formulation of D corresponds for

instance to the physical process of a large CBCT detector element collecting rays

over a larger area, than µCT does. This matrix also has better inversion properties

compared to the regular decimation operator which discards pixels at a rate r.

4.2 CPD for 3D SISR

Available super-resolution techniques for 3D images are either computation-

ally inefficient prior-knowledge-based iterative techniques or deep learning methods

which require a large database of known low- and high-resolution image pairs. A

recently introduced tensor-factorization-based data fusion approach offers a fast so-

lution without the use of known image pairs or strict prior assumptions. In this

work this factorization framework is investigated for single image resolution en-

hancement with an off-line estimate of the system PSF. For this purpose the 3D

SISR minimization problem is formulated using the tensor CPD, and a computa-

tionally efficient analytical solution is given. The connection between the tensor

rank and image complexity is also briefly investigated. The technique is applied

to 3D CBCT dental image resolution enhancement. To demonstrate the efficiency

of our method, it is compared to a recent state-of-the-art iterative technique using
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low-rank and total variation regularizations [29]. In contrast to this comparative

technique, the proposed reconstruction technique gives a 2-order-of-magnitude im-

provement in running time – 2 minutes compared to 2 hours for a dental volume

of 282×266×392 voxels. Furthermore, it also offers slightly improved quantitative

results (PSNR, segmentation quality). Another advantage of the presented tech-

nique is the low number of hyperparameters. As demonstrated in this work, the

framework is not sensitive to small changes of its parameters, proposing an ease of

use.

4.2.1 Problem formulation

The herein presented CPD-SISR algorithm follows the idea of [62], where CPD

is used for the fusion of multi- and hyper-spectral images (detailed at the end of

Section 2.3.2). It is different from the minimization problem of [62] in the following

aspects. First, only one measured data volume is used here in contrast to the two

measurements in the fusion problem. Second, here the degradation happens in all

three dimensions between the HR and LR image, while in [62] the hyperspectral

measurement is degraded in the first two dimensions, the multispectral volume in

the third dimension.

As the real rank F of X is unknown, it will be estimated by R. Let Û ={
Û1 ∈ RI×R, Û2 ∈ RJ×R, Û3 ∈ RK×R

}
be the estimated CPD of X, following (2.27),

(2.28), and (2.34). The image degradation problem can be rewritten following (2.29)

using the separated kernel and decimation matrices as

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 + N

≈ X̂ ×1 D1H1 ×2 D2H2 ×3 D3H3 + N

= [[D1H1Û1, D2H2Û2, D3H3Û3]] + N .

(4.2)

The SISR task can be defined as finding the set of matrices U that is the solution

of the following minimization problem

min
Û

∥∥∥Y − [[D1H1Û1, D2H2Û2, D3H3Û3]]
∥∥∥2
F
. (4.3)

As problem (4.3) is NP-hard, an alternating optimization method is investigated

for minimizing the cost function for Û1, Û2, Û3, similarly to (2.31). Building a tensor
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from its decomposition (2.27) consists of a summation of R outer products. Min-

imizing this sum for Ûn would yield in R(R−1)
2

+ R terms, leading to a complex

cost-function. To understand this, remember that the square of the sum has to be

taken, and
(∑N

n=1 ai

)2
consists of N(N−1)

2
terms of 2aiaj (with i 6= j) and N terms

of a2i .

Instead when minimizing for Ûn, the tensors are mode-n-matricized using (2.25)

and (2.30) leading to

min
Û1

1

2

∥∥∥Y (1) −D1H1Û1(D3H3Û3 �D2H2Û2)
T
∥∥∥2
F

min
Û2

1

2

∥∥∥Y (2) −D2H2Û2(D3H3Û3 �D1H1Û1)
T
∥∥∥2
F

min
Û3

1

2

∥∥∥Y (3) −D3H3Û3(D2H2Û2 �D1H1Û1)
T
∥∥∥2
F
.

(4.4)

Note that the unfolding is performed in each direction sequentially, conserving the

3D local information. The three minimizations in (4.4) can be analytically solved

using the least-square estimator, obtained by the Moore-Penrose pseudo-inverse as

shown generally in (2.33). However, the inversion proved to be unstable on our

dataset, and called for some regularization, namely a regularized Moore-Penrose

pseudo-inverse (†) defined as

A† = (ATA+ ε2I)−1AT , (4.5)

where ε is a hyper-parameter used to provide a stable inverse (this procedure is

classically referred to as Tikhonov regularization [91]). This can be mathematically

derived by adding regularizers of the component norms to (4.3) as

min
Û

∥∥∥Y − [[D1H1Û1, D2H2Û2, D3H3Û3]]
∥∥∥2
F

+ ε2
(∥∥∥Û1

∥∥∥2 +
∥∥∥Û2

∥∥∥2 +
∥∥∥Û3

∥∥∥2) . (4.6)

This can be unfolded similarly to (4.4) as

min
Û1

1

2

∥∥∥Y (1) −D1H1Û1(D3H3Û3 �D2H2Û2)
T
∥∥∥2
F

+ ε2
∥∥∥Û1

∥∥∥2
min
Û2

1

2

∥∥∥Y (2) −D2H2Û2(D3H3Û3 �D1H1Û1)
T
∥∥∥2
F

+ ε2
∥∥∥Û2

∥∥∥2
min
Û3

1

2

∥∥∥Y (3) −D3H3Û3(D2H2Û2 �D1H1Û1)
T
∥∥∥2
F

+ ε2
∥∥∥Û3

∥∥∥2 .
(4.7)
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For simplicity, the derivation is continued only with the first equation, with the

substitution Y = Y (1), B = D1H1, X = Û1, C = (D3H3Û3 �D2H2Û2)
T as

min
X
‖Y −BXC‖2F + ε2 ‖X‖2 , (4.8)

which after vectorization is

min
vec(X)

‖vec(Y )− vec(BXC)‖2F + ε2 ‖vec(X)‖2 . (4.9)

The vectorization of BXC can be written using the generalized outer product (Kro-

necker product) as

vec(BXC) = (CT ⊗B)x (4.10)

where vec(X) = x. After substituting this into (4.9)

min
x

∥∥y − (CT ⊗B)x
∥∥2 + ε2 ‖x‖2 (4.11)

is obtained. The slope of the function is zero at the minimum, written as

∂

∂x

∥∥y − (CT ⊗B)x
∥∥2 + ε2 ‖x‖2 = 0

−2
[
(CT ⊗B)Ty − (CT ⊗B)T (CT ⊗B)x+ ε2x

]
= 0[

(CT ⊗B)T (CT ⊗B)− ε2
]−1

(CT ⊗B)y = x.

(4.12)

This is exactly the Tikhonov-regularized Moore-Penrose pseudo-inverse from (4.5)

with A = (CT ⊗B), thus

(CT ⊗B)†y = (C†T ⊗B†)y = x. (4.13)

Using (4.10) it can be rewritten in the matrix form as

B†Y C† = X. (4.14)

With back-substituting the values of B and C, and repeating these steps for the

minimization of Û2 and Û3 from (4.7), the analytical solution implemented for (4.6)

is

Û1 = (D1H1)
†Y (1)(D3H3Û3 �D2H2Û2)

†T

Û2 = (D2H2)
†Y (2)(D3H3Û3 �D1H1Û1)

†T

Û3 = (D3H3)
†Y (3)(D2H2Û2 �D1H1Û1)

†T .

(4.15)
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Note that this standard inversion method provided good results for the appli-

cation considered in this work. However, other solutions could be of interest and

would deserve to be investigated in future work.

The computational complexity of the above solution is relatively low, as the

pseudo-inverses (which is the bottleneck of the algorithm) require the inversion only

of I × I, J × J , K ×K and R×R matrices. For an n× n matrix the inversion has

a complexity of O(n3) or somewhat lower, depending on the inversion algorithm.

Throughout the algorithm (DnHn)† does not change, their pseudo-inverse has to be

calculated only once. However, (DnHnÛn �DmHmÛm)† changes on each iteration,

so three inversions with a complexity of O(R3) have to be calculated to update these

values.

The proposed CPD-SISR method was implemented using some basic tensor func-

tions from the TensorLab toolbox [92] in Matlab 2017b, namely the tensor structure,

the Khatri-Rao product, the CPD initialization and the building of a tensor from

its CPD. In the algorithm Û was initialized with elements from the standard normal

distribution and Û1, Û2, Û3 were updated iteratively several times as described in

Algo. 1.

Algorithm 1 CPD-SISR algorithm [link to source code]

Input: Y ∈ RI/r×J/r×K/r, R, [σ1, σ2, σ3], r, ε

1: Initialize Û =
{
Û1 ∈ RI×F , Û2 ∈ RJ×F , Û3 ∈ RK×F

}
with normally distributed val-

ues

2: D1, D2, D3 ← decimation operator with a factor r

3: H1, H2, H3 ← Gaussian kernels with standard deviations [σ1, σ2, σ3]

4: while stopping criteria is not met do

5: Û1 ← Y (1), Û2, Û3

6: Û2 ← Y (2), Û1, Û3 (.) update using (4.15)

7: Û3 ← Y (3), Û1, Û2

8: end while

9: X̂ ← Û (.) build using (2.27)

Output: X̂, the estimated high resolution image
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4.2.2 Connection between the tensor rank and the image

complexity

Figure 4.1: Tensor rank and image complexity. In example a) a single dark pixel (representing 1)

in the white (representing 0) volume can be expressed by one outer product. In b) two neighboring

pixels are dark, making one outer product sufficient for their description. In c) the pixel value

is printed on the cell, equals 0 if not present. Two fibers are linearly dependent (2× [21,35] =

[42,70]), so the volume can be decomposed using a tensor rank of F = 1.

In this work, an estimate factorization of R components is calculated, as the ten-

sor rank F is NP-hard to obtain. In this section it is explained, how F is dependent

on the complexity of the image, and how the number of components is related to

the TV and low rank regularizers. The complexity of the image can be associated

with piecewise constant volumes and dependent fibers of the image. To explain this

claim, an illustrative set of examples is provided in Fig. 4.1. In these examples the

notations and dimensionality of (2.23) are used with I = J = K = 2. Fig. 4.1 a)

shows that the image with a single dark pixel (representing 1) in the white volume

(representing 0) has a tensor rank of F = 1. More precisely

ua ⊗ va ⊗wa = [1, 0]⊗ [0, 1]⊗ [1, 0] = Xa

X(3)
a =

0 1 0 0

0 0 0 0

 . (4.16)

In Fig. 4.1 b), two neighboring pixels are dark. This does not change the complexity

of the image, since one outer product can still describe this volume. Indeed, we have

ub ⊗ vb ⊗wb = [1, 0]⊗ [0, 1]⊗ [1, 1] = Xb

X
(3)
b =

0 1 0 1

0 0 0 0

 . (4.17)
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In Fig. 4.1 c), two fibers are linearly dependent with 2×[21,35]=[42,70], which also

makes one outer product sufficient for decomposing the tensor since

uc ⊗ vc ⊗wc = [5, 3]⊗ [1, 2]⊗ [7, 0] = Xc

X(3)
c =

35 70 0 0

21 42 0 0

 . (4.18)

This set of illustrative examples shows that for images with piecewise constant

regions (like the neighboring cells in Fig. 4.1 b)) or with low matrix rank (as the

linearly dependent fibers in Fig. 4.1 c)) a smaller tensor rank can be expected. More

generally, the tensor decomposition (2.27) tends to promote solutions with small

tensor ranks. This property is useful in the case of denoising, when independent

outlier pixels have to be eliminated. A degraded image may contain larger constant

areas, with higher dependency between neighboring rows and columns. It means that

describing these images will also be more efficient with a tensor of small rank. Thus

these simple examples allow us to understand why CBCT images can be represented

by a reduced number of rank-1 tensors, allowing identifiability of the decomposition.

This train of thought allows an insight into how Algo. 1 operates. A small R allows

the denoising of the volume with some low rank and TV properties on the output,

while the D and H matrices realize the deblurring and upsampling operations. As

these are incorporated into a joint minimization, the algorithm is expected to be

even more advantageous.

4.2.3 Results and discussion

Comparison to an existing 3D SISR method

The state-of-the-art LRTV introduced in Section 2.2.2 was used as a benchmark

to compare the performance of the proposed method. The parameters used for

testing can be seen in Table 4.1. They were tuned manually to get the highest

possible improvement of the PSNR. The tests were run on a standard personal

computer (PC) with an Intel(R) Core(TM) i7 2×2.5GHz processor and 16 GB of

RAM.
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Table 4.1: Parameters

LRTV CPD-SISR

nADMM = 5 nTF = 10

σ = [5.8, 5.3, 0.9] σ = [5.8, 5.3, 0.9]

λTV = 0.02 R = 500

λR = 0.05 ε = 1

ρ = 0.05

ngrad = 100

dt = 0.05

The two methods were tested for three samples from the dataset TEL, including

an incisor, a premolar and a molar. The sizes of the sample volumes, the PSNR

calculated against the µCT images from TEH and the execution times are provided

in Table 4.2. Compared to the CBCT images the PSNR improves similarly for

the LRTV (average of 1.2 dB) and the CPD-SISR (average of 1.5 dB) methods

with the chosen parameters. However, this enhancement is achieved at a much

lower computational cost: 10 iterations of CPD-SISR run 100 times faster than

5 iterations of LRTV. This faster execution time is important since it permits a

wider range of applications, including those requiring a rapid diagnosis during a

medical examination. In Fig. 4.2, the quality of the enhanced volumes is visualized,

showing that the canal is better defined and contrasted compared to the CBCT

image, suggesting better segmentation properties.

For further analysis the root canal was segmented from each volume, using the

segmentation method described in Section 3.1.3. Qualitative and quantitative results

are provided in Fig. 4.3 and in Table 4.3.

In particular, Table 4.3 shows differences between the estimates and the values

obtained using the µCT image for three parameters (Feret diameter, area of the

canal and Dice coefficient). The estimated Feret diameter improves similarly with

both SR techniques compared to the CBCT images with an averaged improvement

of 63 µm for LRTV and 81 µm for CPD-SISR. The second line of the table shows how

the area of the canal on the axial slices is changing from one method to another.

60



Figure 4.2: Results on Sample #1. In the rows the CBCT, LRTV output, CPD-SISR output and

µCT images can be seen, whereas the columns correspond to one axial, a coronal and a sagittal

slice. The CBCT image is shown at the higher scale of the HR images, for better comparison. The

location of the slices within the volume is illustrated on the CBCT images in colored lines.

Note that the LRTV method shows a higher difference compared to the original

CBCT (by 0.0256 mm2), suggesting that the TV regularization overestimates the

canal. This observation is also confirmed in Fig. 4.3, as the LRTV volumes have a

more blueish color corresponding to positive differences. The CPD-SISR provides

the best overall performance with an improvement of 0.0152 mm2 on average. The

last metric in the table is the Dice coefficient, also showing some improvement in

the overlap of the canals, by 1% using the LRTV and 2% with the CPD-SISR. Fig.

4.3 displays zoomed-in sections of the apical part of the canal, as this part is the

most important during the treatment. Considering these results, the CPD-SISR

method shows slightly better segmentation properties than the LRTV technique,

while offering a great reduction in running time.
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Table 4.2: Test results

Sample #1 Sample #2 Sample #3

tooth type upper incisor lower premolar lower molar

µCT image size 282×266×392 280×268×492 324×306×402

CBCT PSNR 23.17 dB 22.67 dB 24.14 dB

LRTV PSNR 24.32 dB 24.65 dB 24.61 dB

CPD-SISR PSNR 24.32 dB 24.48 dB 25.71 dB

LRTV time 6988 s 9059 s 10301 s

CPD-SISR time 71 s 92 s 104 s

Table 4.3: Canal Segmentation Metrics

method Sample #1 Sample #2 Sample #3 mean

Mean of Diff. -

Feret (µm)

CBCT 96 89 341 176

LRTV 74 71 196 113

CPD-SISR 50 57 177 95

Mean of Diff. -

Area (mm2)

CBCT 0.0463 0.0461 0.2492 0.1139

LRTV 0.0914 0.0920 0.2350 0.1395

CPD-SISR 0.0447 0.0271 0.2243 0.0987

Dice coefficient

CBCT 0.88 0.88 0.90 0.88

LRTV 0.87 0.88 0.90 0.89

CPD-SISR 0.90 0.91 0.91 0.90
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Figure 4.3: Segmentation results for CBCT, LRTV and CPD-SISR for the 3 samples. The color-

bar visualizes the distance between the estimated surface of the canal and the one obtained with

µCT segmentation.

Adjusting the parameters of the CPD-SISR method

The impact of the tensor rank and the iteration number was investigated using

Sample #1. Fig. 4.5 a) shows that the runtime increases linearly with the number

of iterations, as expected. Fig. 4.5 a) also shows that the PSNR converges rapidly to

its maximum value (close to 24.5), which is an interesting property of the proposed

method. Fig. 4.4 a) shows how the solutions qualitatively evolve with the iteration

number. For improved visibility the difference from the nTF = 10 case is shown

in the figure. In the case of nTF = 10 a second test was run, and the difference

was calculated compared to this result, as the random initialization of Û results in

slightly different outputs. It can be seen that as the iteration number increases, the
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Figure 4.4: Effect of the iteration number it and the estimated tensor rank R in the reconstructed

images. Sample #1 is visualized through 3 slices from the axial, coronal and sagittal directions.

In panel a) the difference compared to a result obtained after 10 iterations is shown. In case

of nTF=10, a second test run was used for calculating the difference (note that the algorithm

has random initialization, therefore different runs result in slightly different outputs). With more

iterations the difference becomes less structured, more random. In panel b) the change with R can

be seen: low numbers cause large blocks in the images, and the higher the tensor rank, the more

detailed the output is.

Figure 4.5: Effect of the iteration number and the estimated tensor rank on the PSNR and runtime.

The rest of the parameters are as in Table 4.1. In a) the PSNR saturates after a small number

of iterations, while the runtime increases linearly. In b) the runtime has am exponential growth

versus the estimated tensor rank and the PSNR saturates around R = 500.
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difference becomes less structured: in the third column the shape of the tooth is

almost invisible and it is lost in random noise.

The tensor rank F was estimated by R. According to the upper limit on F for

a unique CPD, in the case of Sample #1, R ≤ 214 should be efficient. However,

numbers higher than 2000 caused memory problems, and were therefore not tested.

Fig. 4.5 b) shows that the computational time increases exponentially with R since

the algorithm requires the inversion of larger matrices in Û . It can also be seen that

the PSNR stabilizes for R ≥ 500. Some sample images can be seen in Fig. 4.4 b)

showing that low values of R lead to large constant blocks in the image, which is

characteristic of a low-rank or TV regularization. For larger numbers finer details

become visible.

Note that our results indicate that neither of the above parameters have to be

estimated precisely. After a small number of iterations the result converges. R can

be considered as a prior information on the complexity of the image. Using higher

values a more natural result can be obtained, but above a threshold the method will

not give more precise outputs.

4.3 CPD for 3D SISR

with semi-blind PSF-estimation

A volumetric non-blind single image super-resolution technique using CPD has

been introduced in 4.2. In this section, a joint alternating recovery of the high-

resolution image – using the previously introduced CPD-SISR technique,– and of

the unknown PSF parameters – assuming a Gaussian function with standard devi-

ations from a pre-defined interval – is proposed. The method is evaluated on dental

computed tomography images. The algorithm was again compared to the LRTV

3D SISR, now combined with the same alternating PSF-optimization. The two

algorithms have shown similar improvement in PSNR, but our method converged

roughly 40 times faster, under 6 minutes both in simulation and on experimental

dental computed tomography data.
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4.3.1 Problem formulation

Let Û =
{
Û1 ∈ RI×F , Û2 ∈ RJ×F , Û3 ∈ RK×F

}
be the CPD of HR tensor X.

Using (2.29) and the separated kernels, (4.1) can be written as

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 + N

= [[D1H1Û1, D2H2Û2, D3H3Û3]] + N .
(4.19)

The semi-blind SISR task is now to find the set of matrices Û and parameters

σ = {σ1, σ2, σ3} which minimizes

min
Û ,σ

∥∥∥Y − [[D1H1(σ1)Û1, D2H2(σ2)Û2, D3H3(σ3)Û3]]
∥∥∥2
F
. (4.20)

As problem (4.20) is non-convex, an alternating optimization method is pro-

posed, minimizing (4.20) for Û1, Û2, Û3 and σ1, σ2, σ3, respectively.

Image estimation

The image estimation step is calculated as described in Section 4.2. Compared

to (4.4) the only difference is that the blurring BCCB matrices are recalculated in

each iteration from σ.

min
Û1

1

2

∥∥∥Y (1) −D1H1(σ1)Û1(D3H3(σ3)Û3 �D2H2(σ2)Û2)
T
∥∥∥2
F

min
Û2

1

2

∥∥∥Y (2) −D2H2(σ2)Û2(D3H3(σ3)Û3 �D1H1(σ1)Û1)
T
∥∥∥2
F

min
Û3

1

2

∥∥∥Y (3) −D3H3(σ3)Û3(D2H2(σ2)Û2 �D1H1(σ1)Û1)
T
∥∥∥2
F
.

(4.21)

The least-square estimator of (4.21) obtained with the Moore-Penrose pseudo-inverse

and Tikhonov regularization, with the recalculated blurring matrices is

Û1 = (D1H1(σ1))
†Y (1)(D3H3(σ3)Û3 �D2H2(σ2)Û2)

†T

Û2 = (D2H2(σ2))
†Y (2)(D3H3(σ3)Û3 �D1H1(σ1)Û1)

†T

Û3 = (D3H3(σ3))
†Y (3)(D2H2(σ2)Û2 �D1H1(σ1)Û1)

†T .

(4.22)

PSF estimation

The PSF estimation was implemented based on [93]. As H is a BCCB matrix,

H vec(X) of (4.1) can be rewritten using the Fourier transform F in its 3D version
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as

H vec(X) = F−1(FH̃ ◦ FX) (4.23)

where H̃ is the zero-padded, circularly shifted version of kernel H and the operation

(◦) is the element-wise matrix multiplication (Hadamard product). This formulation

radically reduces the size of the matrices to be multiplied. The kernel H̃ can be

expressed as

H̃(σ) =
1

σ1σ2σ3
√

2π
3 e

1
2

(
x2

σ1
+ y2

σ2
+ z2

σ3

)
, (4.24)

where x, y, z are the fixed 3D evaluation coordinates of the zero-padded, shifted

kernel. It can be assumed, based on prior knowledge depending on the application,

that all elements of σ are within a given interval. This is expressed by an indicator

function

1[a,b](σ) = 1[a1,b1](σ1) + 1[a2,b2](σ2) + 1[a3,b3](σ3), (4.25)

where

1[an,bn](σn) =

 0 if σn ∈ [an, bn]

β if σn /∈ [an, bn]
(4.26)

with n ∈ {1, 2, 3} and penalty β. Combining this with (4.23) and (4.24) the kernel

optimization problem can now be written as

min
σ

∥∥∥Y −F−1(FH̃(σ) ◦ FX)
∥∥∥2
F

+ 1[a,b](σ). (4.27)

Introducing a function G(σ) for the first, data fidelity term of (4.27), its compact

form becomes

min
σ
G(σ) + 1[a,b](σ). (4.28)

Knowing that the solution of the proximal operator for the above problem is a

projection (
∏

) onto the corresponding [a1, b1], [a2, b2], [a3, b3] intervals, the solution

of (4.27) will be the fixed point of

σ =
∏(

σ − γ dG(σ)

dσ

)
, (4.29)

where γ, the step size is a small enough coefficient (its value might be changed at each

iteration). In (4.29) the data fidelity term G(σ) is estimated with a gradient descent

step and the indicator function is taking effect through the projection operator.
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The CPD-SISR-blind algorithm

The image and kernel estimation steps were joined, denoted by CPD-SISR-blind

and shown in Algorithm 2. The two problems are minimized in an alternating

manner. The algorithm was implemented in Matlab 2017b, and for the basic tensor

operations and the tensor structure the TensorLab toolbox was employed [92].

Algorithm 2 CPD-SISR-blind algorithm [link to source code]

Input: Y , R, a1, b1, a2, b2, a3, b3σ0, r,N,M, ε

1: Initialize Û with normally distributed values

2: D1, D2, D3 ← decimation operator with a factor r

3: for i = 0:N do

4: H1, H2, H3 ← Gaussian kernels of σi

5: for j = 0:M do

6: Û1 ← Y (1), Û2, Û3

7: Û2 ← Y (2), Û1, Û3 (.) update using (4.22)

8: Û3 ← Y (3), Û1, Û2

9: end for

10: X̂← Û (.) build using (2.27)

11: Initialize diff= inf

12: while diff > ε do

13: σi+1 ← σi, X̂ (.) update using (4.29)

14: diff = max(σi+1 − σi)

15: end while

16: end for

Output: X, the estimated high resolution image

4.3.2 Results and discussion

Within the simulation the LR images were obtained by blurring and down-

sampling the µCT images (considered as the ground truth in CT imaging) without

added noise, with parameters listed in Table 4.4. In the experimental setting, the

LR input was the CBCT volume and its µCT pair was the ground truth HR volume.
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Figure 4.6: Image enhancement. On the left slices corresponding to the simulation, on the right

slices from the real-data volume can be seen. A coronal slice was chosen for demonstration. The

LR images are shown on the scale of the HR images using linear interpolation.

The proposed method was again compared with the LRTV method described

in Section 2.2.2. The original code was combined with the PSF estimation step

of (4.29). The method is further denoted as LRTV-blind. The CPD-SISR-blind

algorithm ran 3 overall iterations (N = 3), 5 image-update iterations in each loop

(M = 5), and the kernel update repeated until convergence. The initial step size

γ was set to 1e-5 and decreased linearly in the outer loop. The parameter setting

for the simulation and experimental data is listed in Table 4.4. The LRTV-blind

algorithm ran 3 overall iterations, in each loop running 3 LRTV iterations for image

update, followed by Gaussian parameter optimization until convergence. The hy-
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Table 4.4: CPD-SISR-blind parameters and quantitative results

Simulation Experiment

HR pixel number 287×266×392 274×278×474

chosen R 400

downsampling rate r 2

ground truth σ [6.0 6.0 6.0] –

initialized σ [8.0 8.0 7.0] [8.0 8.0 7.0]

σ with LRTV-blind [4.7 4.6 6.3] [7.6 6.5 7.4]

σ with CPD-SISR-blind [5.0 4.9 4.8] [8.5 7.8 6.5]

LR–HR PSNR 22.32 dB 19.42 dB

LRTV-blind PSNR 24.39 dB 25.63 dB

CPD-SISR-blind PSNR 26.53 dB 30.07 dB

LRTV-blind time 9087 s 11823 s

CPD-SISR-blind time 298 s 354 s

perparameters controlling the regularization were set to 0.07 for the low-rank and

0.02 for total variation. Note that for both methods, all the hyperparameters were

manually tuned to provide the best results possible in terms of visual inspection. In

both methods the initialization of σ is started from the values listed in Table 4.4,

and the [a1, b1], [a2, b2], [a3, b3] intervals of the projections are set corresponding to

the initialized σ as [σ − 4, σ + 2]. For the experimental data no ground truth value

of the Gaussian parameters was available.

The results are illustrated through one slice extracted from the volumes in Fig.

4.6. It can be seen that with LRTV-blind the image is contrasted, smoothed and

the root canal (dark region inside the tooth) is more dilated as a result of the TV

regularization, both in the simulation and on the experimental data. Note that no

such parameters need to be tuned in CPD-SISR-blind, resulting in more natural

images.

In Table 4.4 the quantitative results are listed. The enhancement was measured

quantitatively through the PSNR between the ground truth µCT and the LR, CPD-
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SISR-blind, LRTV-blind images respectively. In simulation the PSNR improved

by 18.9% in CPD-SISR and 9.3% in LRTV, while on the experimental data by

54.8% and 31.9% respectively. It can be seen that the Gaussian parameters of

the simulation converged to a lower value than used for blurring, because of the

non-convex nature of the problem. However, the most important improvement of

CPD-SISR-blind remains its runtime, being roughly 40 times faster compared to the

LRTV-blind on a standard PC with an Intel® CoreTM i7 2×2.5GHz processor and

16 GB of RAM.

4.4 TD for 3D SISR

Compared to the previously introduced CPD-SISR, here the added value brought

by Tucker decomposition was investigated. While CPD allows a joint implemen-

tation of the denoising and deconvolution steps of the SISR model, with Tucker

decomposition the denoising is realized first, followed by deconvolution. This way

the ill-posedness of the deconvolution caused by noise is partially mitigated. The

results achieved using the two different tensor decomposition techniques were com-

pared, and the robustness against noise was investigated. For validation the dental

images were used. The superiority of the proposed method is shown in terms of

PSNR, SSI, the canal segmentation accuracy, and runtime.

4.4.1 Problem formulation

The idea of the method proposed herein is to denoise the image before deblurring,

in order to stabilize the deconvolution operation, as earlier suggested in the literature

[94]. In this work [C2], the blurring kernel is assumed to be known, and is estimated

for the current application as explained in Section 3.1.2 as

As explained in Section 2.3.3, the SVn of each mode (SV1, SV2, SV3) can be

calculated from Σ. Similarly to the 2D case, by picking the relevant components

having a singular value higher than a threshold Rn, a denoised version of Y , Ŷ may
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be achieved [95].

Ŷ = Σ̃×1 Ṽ1 ×2 Ṽ2 ×3 Ṽ3

where

Ṽn = Vn(:, i) | SVn(i) ≥ Rn

Σ̃ = Y ×1 Ṽ1
T ×2 Ṽ2

T ×3 Ṽ3
T

(4.30)

Unlike in the 2D case, this truncated approximation might not be optimal in the

least squares sense, but gives a reasonable estimate [63].

After obtaining the denoised image, the deconvolution and upsampling is realized

using a Tikhonov-regularized deconvolution separated for the three modes.

X̂ = Ŷ ×1 (D1H1)
† ×2 (D2H2)

† ×3 (D3H3)
†. (4.31)

The algoritm is summarized in Algo. 3. The bottleneck of the computational

complexity in this solution is the calculation of the three SVDs for the unfolded

tensor for obtaining the basis matrices. This represents the calculation of SVDs for

IJ × K, IK × J and JK × I matrices, with O(IJK2), O(IJ2K) and O(I2JK)

complexity, which is higher compared to the complexity of CPD-SISR. However,

it has to be calculated only once, making this more efficient for smaller tensors,

but more dependent on the image size. It is also worth mentioning that fast SVD

algorithms do exist, which could accelerate both TD-SISR and CPD-SISR in future

research [96,97].

4.4.2 Results and discussion

Simulation results

In simulation the µCT scan of a lower premolar was chosen (280×268×492 pix-

els). It was blurred with a Gaussian kernel (standard deviation σ1=σ2=σ3=8),

downsampled (at r=2) and Gaussian noise was added (white noise at different SNR

levels) for its LR counterpart.

For CPD-SISR R = 500 was chosen, and in both methods ε = 1 was set for the

Tikhonov-regularization (4.5) following [J2]. As it can be seen in Fig. 4.7, the singu-
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Algorithm 3 TD-SISR algorithm [link to source code]

Input: Y ∈ RI/r×J/r×K/r, R1, R2, R3, [σ1, σ2, σ3], r, ε

Denoising block

1: Vn,Σ ← Y = [[Σ;V1, V2, V3]] (.) using (2.35) and (2.36)

2: SVn ← Σ (.) calculate using (2.38)

3: Ŷ ← Σ, Vn, SVn, Rn (.) denoise using (4.30)

Deconvolution block

4: D1, D2, D3 ← decimation operator with a factor r

5: H1, H2, H3 ← Gaussian kernels with [σ1, σ2, σ3]

6: X̂ ← Ŷ , Dn, Hn (.) deconvolve using (4.31)

Output: X̂, the estimated high resolution image

Figure 4.7: Simulation - singular values without added noise in all three modes, on a logarithmic

scale. The vertical lines represent the chosen truncation thresholds.

lar values decay rapidly (mind the logarithmic scale). For TD-SISR R1=R2=R3=40

(SVn values under 1) were chosen as they were generally sufficient for all noise levels.

Table 4.5 shows the quantitative results of the SISR methods. The PSNR is

improved for each case and both methods, compared to the simulated LR image.

TD-SISR gave better results, except for the extremely noisy, 20 dB case. The SSI

gave similar results, with no improvement in the 20 dB case. After these results the

segmentation was carried out at 25 dB. The improvement is confirmed by the Dice

coefficients, showing the superiority of the TD-SISR method.

Real data results

For real data experiments an upper molar (324×248×442 pixels) was used. The

LR images were the CBCT volumes, with estimated standard deviations of σ1=8.2,
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Table 4.5: Metrics in simulation

Simulated LR CPD-SISR TD-SISR

runtime - 17.96 s 1.86 s

PSNR (dB)

no noise 28.56 31.48 34.99

30 dB 28.45 31.17 34.39

25 dB 28.36 31.08 31.40

20 dB 27.98 30.01 29.33

SSI [0, 1]

no noise 0.9623 0.9680 0.9823

30 dB 0.9612 0.9650 0.9763

25 dB 0.9572 0.9595 0.9653

20 dB 0.9463 0.9453 0.9417

Segmentation at 25 dB

Dice 0.8976 0.9242 0.9425

σ2=7.5, σ3=1.3. The volumes naturally contain noise because of the measurements

and of the reconstruction algorithm. However, the level of noise is low for extracted

teeth due to the absence of surrounding structures. To mitigate this and to further

explore the robustness of the SISR algorithms to noise, Gaussian noise corresponding

to different SNRs was artificially added to the experimental data.

For the real data in CPD-SISR the same settings were used as in simulation, and

for TD-SISR R1, R2, R3 = 50 was set after plotting the SVs (Fig. 4.8).

Figure 4.8: Real data - singular values without added noise in all three modes, on logarithmic scale.

The vertical lines represent the chosen truncation thresholds.
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The metrics have shown milder improvements compared to the simulation, but

both PSNR and SSI improved in all cases with both methods, and TD-SISR gave

superior results. The volume of the segmented 25 dB images also improved regarding

the Dice coefficient.

Table 4.6: Metrics in real data

CBCT CPD-SISR TD-SISR

runtime - 17.71 s 1.46 s

PSNR (dB)

no noise 19.55 21.25 21.61

30 dB 19.30 20.84 21.57

25 dB 19.10 20.13 21.09

20 dB 18.91 20.21 20.29

SSI [0, 1]

no noise 0.8647 0.8907 0.8935

30 dB 0.8610 0.8870 0.8929

25 dB 0.8478 0.8784 0.8908

20 dB 0.8173 0.8555 0.8814

Segmentation at 25 dB

Dice 0.8939 0.9189 0.9304

Discussion

In contrast to the earlier CPD-SISR method no iterations are applicable in TD-

SISR. In TD-SISR 3 thresholds R1, R2, R3 have to be defined for the three modes,

while in CPD-SISR only one parameter, R influences the denoising step. However,

the singular values of TD-SISR correspond to the importance of the components,

while R in CPD-SISR bears no such meaning. This makes the setting of TD-SISR

parameters easier, and its efficiency is validated by the qualitative and quantitative

results. The runtime of TD-SISR is lower because of the lack of iterations, but

calculating the SVD for even larger volumes might be a bottleneck [98].
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Figure 4.9: Results of SISR methods under 25 dB noise, both in simulation and in real data. The

first row shows a single axial slice taken from the volumes. The second row shows the distance

between the segmented HR and LR, enhanced LR volumes.

4.5 Conclusion

In this chapter three contributions of this thesis were introduced, using tensor

factorization for solving the 3D SISR problem.

First a CPD-based method was proposed. I have embedded the SISR degra-

dation model into CPD, and provided the corresponding minimization-problem. I

gave a solution for the recovery of the HR image in the form of a compact ALS algo-

rithm, using Tikhonov-regularization. This method is showing interesting compu-

tational advantages compared to currently available regularization-based methods,

with slightly improved image quality compared to the investigated LRTV technique.

The runtime of this method was about 100 times faster than with LRTV, allowing a

wider field of applications. The method also uses significantly less parameters (ten-

sor rank and iteration number) that can be easily adjusted by visual inspection of

the reconstruction results. Dental CBCT volumes used as experimental data showed

higher PSNR and canal-segmentation values, with similar or improved results com-

pared to the LRTV method. Considering these results, the method was found to be

promising for 3D SISR.

A possible direction for improving the CPD-SISR algorithm is to embed a PSF-
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estimation into the framework. In the second proposed algorithm, I have introduced

a fast method for SISR with joint Gaussian kernel estimation. First I have formu-

lated the extended cost function of the problem, then implemented an iterative

solution, alternatingly minimizing for the HR image, and for the Gaussian parame-

ters. The algorithm managed to improve the image quality similarly to an existing

ADMM reconstruction method using LR and TV regularization. The main ad-

vantage of the algorithm is its speed, processing 3D volumes of 287×266×392 and

274×278×474 pixels in less than 5 minutes with standard Matlab implementation

on a PC (with Intel(R) Core(TM) i7 2×2.5GHz processor and 16 GB of RAM).

As CPD is not the only tensor factorization technique, a fair question is whether

CPD is the best choice. I have found that the Tucker decomposition may be used

for denoising the data. The framework of this decomposition did not allow embed-

ding the degradation model in it, but proved to be efficient in denoising the image

volume. This gave the idea of denoising the tensor before applying deconvolution.

Thus, in the third algorithm, I have proposed a new SISR technique, using Tucker

decomposition for the denoising, and a Tikhonov-regularized deconvolution for the

deblurring step. Even though two additional parameters have to be set, it gave faster

and quantitatively better results in noisy images compared to CPD-SISR. Images of

280×268×492 and 324×248×442 pixels were super-resolved under 2 s with standard

Matlab implementation, on the same PC.
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Chapter 5

Discussion

5.1 Answers to the posed questions

In this thesis the 3D SISR problem was investigated, to enhance the quality of

medical images, in particular that of dental CT scans. This is necessary for precise

mapping of the dental cavity prior to root canal treatments, as the success rate of

such procedures is only 60-85% in general practice.

It was shown that deep learning structures, the U-net and subpixel networks, can

be applied with success for enhancing the resolution of CBCT slices. Even though

the size of the data set and restriction of the GPU memory did not allow training

on 3D images, the quality of the slices (Table 3.1), and the precision of the 3D canal

segmentation (Table 3.2) are both improvable by the presented algorithms. The

improvement is most prominent in the apical region (Fig. 3.8), where treatments

usually fail. To our knowledge, this was the first application of deep learning super-

resolution in the field of dental images, and was followed by new researches like

[99–101].

Two different frameworks were designed using tensor decompositions to give so-

lution to the 3D SISR problem. This way the enhancement profits from the 3D

information of the structure, while state-of-the-art methods discard a dimension

when they unfold the volume. The algorithm using CPD decomposition updates

the solution in an alternating manner for the three dimensions, realizing simultane-

ous denoising and deblurring of the image. The method improved the overall image

78



and segmentation qualities (Tables 4.2 and 4.3). The strength of this algorithm is

its speed, which depends on the dimensional separability of the blurring and down-

sampling operators. In case of a tensor X ∈ RI×J×K it allows computations with

small matrices (e.g. H1 ∈ RI×I) compared to the generally used large system ma-

trices of unfolded volumes (H ∈ RIJK×IJK), allowing two-orders-of-magnitude faster

execution times. Furthermore, the algorithm proved to be robust to its parameters

(Fig. 4.5).

In the second framework it is shown that the TD can also be successfully applied

to the posed problem. In this case the denoising of noisy images is realized by

the decomposition step, followed by an efficient regularized deconvolution of the

volume. This solution is a generalized version of the 2D truncated SVD, offering

a semi-optimal (in the least squares sense), but fast solution - its runtime was an

order of magnitude less, than with the CPD decomposition, and offered improved

quality metrics both in simulation (Table 4.5) and on real data (Table 4.6).

Finally, a framework was constructed, where the PSF of the system and the HR

images are estimated jointly. In the previous tensor-based algorithms the PSF was

supposed to be known, and is estimated from the whole dataset. One not always

has the means to obtain such an estimate, therefore blind solutions are desired. The

standard deviations of the Gaussian kernel are supposed to be in a known interval,

hence the algorithm is semi-blind. The image is enhanced with the CPD-SISR

algorithm, offering an alternating optimization of the two terms. The algorithm

managed to improve the LR images giving good estimates of the HR images, both

in simulation and on real data (Table 4.4). Note that this blind deconvolution

technique is similar to deep learning techniques, as neither of them requires a pre-

defined PSF. However, while CPD-SISR-blind estimates the system function from a

single LR image, the neural networks learn the PSF implicitly from a set of LR-HR

image pairs.

Tensor implementation proved to be a strong tool in 3D SISR problems. The

main advantage of these algorithms is their speed, as it allows their diagnostic use

in real life settings. While state-of-the art algorithms super-resolve dental CBCT

scans (approximately 300×300×400 pixels) in hours, CPD-SISR does so in minutes,
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and TD in seconds, in Matlab on the same PC. Possible tracks for their further

investigation are introduced in the following section.

5.2 Perspectives

The work discussed in this thesis opened many possible paths for future research.

We have already started investigating some of these possibilities, others are loose

ends waiting to be continued.

5.2.1 Deep learning

As deep learning is gaining growing interest among researchers, further develop-

ment possibilities are published on a weekly (if not daily) basis.

In the proposed technique the most interesting direction would be an in vivo

application. A transient step toward this goal is the implantation of the extracted

teeth into a phantom jaw [102], adding realistic noise, tissue background to the

CBCT scans. Such images were already collected, and for the increased database

it was necessary to rewrite the algorithm to read and augment the data on-the-

fly. Recently the possibility was investigated whether the network could be trained

directly for a segmented HR output.

Even though neither the size of the dataset, nor the current hardware allows

the application of real 3D CNNs for this problem, the information retrieved from

neighboring slices could be crucial for obtaining a continuous dental cavity. As a

compromise, multiple slices could be used as the input of the network, similarly to

the color channels of [54].

We have concluded, that the chosen loss functions do not correspond to the

perceptual metrics applied. In this regard the efficiency of different loss-functions

and adversarial networks [103] could be investigated.
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5.2.2 Tensor factorization

Tensor factorization is also a popular topic, more and more papers dealing with

higher dimensional data in the form of tensors are being published.

In future work, exploring the domain of medical images that are of low tensor

rank (thus are identifiable using CPD-SISR or CPD-SISR-blind), and investigating

the influence of tensor rank on image recovery could be interesting. The prior

information in regularization-based techniques is often empirical and guides the

solution. Future work can investigate if such classical priors could be included in

these frameworks, and whether they would improve the result. Also, the connection

between the CPD-SISR and TD-SISR parameters along with their robustness, and

the general inverse problem including thresholding constraint can be investigated.

The application of the techniques on different modalities is also of interest. CPD-

SISR was already applied with success on MRI images in [104], where its speed is

acknowledged.
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Chapter 6

Summary

In this chapter the new scientific results are summarized in the form of thesis

points in English, French and Hungarian.

6.1 New scientific results

The resolution of dental cone beam computed tomography (CBCT) images is

limited by detector geometry, sensitivity, patient movement, the reconstruction tech-

nique and the need to minimize radiation dose. The corresponding image degrada-

tion model assumes that the CBCT image is a blurred (with a point spread function,

PSF), downsampled, noisy version of a high resolution image. The quality of the im-

age is crucial for precise diagnosis and treatment planning. The methods proposed

in this thesis aim to give a solution for the single image super-resolution (SISR)

problem. The algorithms were evaluated on dental CBCT and corresponding high-

resolution (and high radiation-dose) µCT image pairs of extracted teeth.

Thesis I: I have designed a deep learning framework for the SISR problem,

applied to CBCT slices. I have tested the U-net and subpixel neural networks, which

both improved the PSNR by 21-22 dB, and the Dice coefficient of the canal segmen-

tation by 1-2.2%, more significantly in the medically critical apical region.

Corresponding publication: [J1]

Convolutional neural networks have shown promising results for resolution en-
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hancement [54]. To our knowledge this was the first time that a deep learning

algorithm was used for biomedical SISR.

The U-net network [61] allows feature extraction on five different scales and com-

bines their information on the output. My implementation used batch normalization

for generalization, leaky rectified linear unit activation for avoiding inactive neurons,

and a modified Hubert-loss for more accurate training. The subpixel network [58]

extracts features directly from the low resolution image through six layers, and real-

izes the upsampling with a depth-to-space tiling operation in the last layer. It offers

a computationally lightweight, still efficient solution for SISR.

CBCT – µCT image pairs of 5680 axial slices taken from 13 teeth were used

for training, and 1824 slices of 4 teeth for testing the networks. Two existing

reconstruction-based super-resolution methods using `2-norm and total variation

regularization were used for comparison. The results were evaluated with different

metrics, as the peak signal-to-noise ratio, structural similarity index, and subsequent

3D image-segmentation-based analysis.

The results show the superiority of the proposed CNN-based approaches over

the state of the art in the case of dental CT images, allowing better detection of

medically salient features such as the size, shape, or curvature of the root canal. It

has been observed that the‘ chosen loss function of the network is not directly the

best measure for perceptually correct metrics, as they only moderately affirm the

visually observed enhancement.

Thesis II a: I have designed an algorithm for the 3D SISR problem, using the

canonical polyadic decomposition of tensors. This implementation conserves the 3D

structure of the volume, integrating the factorization-based denoising, deblurring with

a known PSF, and upsampling of the image in a lightweight algorithm with a low

number of parameters. It outperforms the state-of-the-art 3D reconstruction-based

algorithms with two orders of magnitude faster run-time and provides similar PSNR

(improvement of 1.2-1.5 dB) and segmentation metrics (Dice coefficient increased

on average to 0.89 and 0.90).

Corresponding publication: [J2]
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The canonical polyadic decomposition (CPD) of 3D tensors has recently been

used for the fusion of multi- and hyperspectral images [62]. CPD finds the smallest

set of pure tensors (outer product of three arrays), which sums up to the tensor in

question. In case a smaller set is used, a denoised tensor may be expressed.

The proposed CPD-SISR algorithm optimizes for the set of pure tensors, which

composes the denoised, upscaled, deblurred (with an estimated PSF) version of the

CBCT volume, and does so in a fused implementation only alternating among the

dimensions. The main advantage compared to the state of the art lies in the tensor-

implementation, avoiding the formulation of large, X ∈ RIJK×IJK matrices from

X ∈ RI×J×K tensors, still preserving the 3D information.

The results were compared to a state-of-the-art, reconstruction-based algorithm

with total variation and low rank regularization, LRTV. Because of the large ma-

trices this method is computationally extremely heavy, enhancing a sample volume

of 282 × 266 × 392 pixels in two hours, raising difficulties in the tuning of its six

parameters. The proposed algorithm executed for the same volume in a little over a

minute, using only three robust parameters. The PSNR increased similarly for the

two methods, while the segmentation was significantly better in case of CPD-SISR.

These results were promising enough for further research, as described in the follow-

ing thesis points.

Thesis II b: I have implemented a joint alternating recovery of the unknown

PSF parameters and of the high-resolution 3D image using CPD-SISR. The algo-

rithm was compared to a state-of-the-art 3D reconstruction-based algorithm, com-

bined with the proposed alternating PSF-optimization. The two algorithms have

shown similar improvement in PSNR, but CPD-SISR-blind converged roughly 40

times faster, under 6 minutes both in simulation and on experimental dental com-

puted tomography data.

Corresponding publication: [C1]

For the direct estimation of the PSF a dataset of known low- and high-resolution

image pairs, or dedicated measurements on a phantom are necessary, repeated for

any machinery of which the output images are to be enhanced. Otherwise the PSF
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has to be estimated along with the deblurred image in a joint manner.

In this work a semi-blind estimation was realized, assuming that the standard

deviations of the Gaussian PSF are within a known interval. The problem optimizing

for these parameters can be solved with gradient descent. This minimization for

the PSF and the CPD-SISR optimizing for the high-resolution image are repeated

alternating until convergence.

For comparison the LRTV algorithm was used as in Thesis II a, combined with

the proposed PSF-estimation in a similar alternating manner, denoted by LRTV-

blind. In simulation the PSNR improved by 18.9% in CPD-SISR and 9.3% in LRTV-

blind, while on the experimental data by 54.8% and 31.9% respectively. However,

the most important improvement of CPD-SISR-blind remains its runtime, being

roughly 40 times faster compared to the LRTV-blind.

Thesis II c: I have proposed a solution for the 3D SISR problem using the

Tucker decomposition (TD-SISR). The denoising step is realized first by TD in order

to mitigate the ill-posedness of the subsequent deconvolution. Compared to CPD-

SISR the algorithm runs ten times faster. Depending on the amount of noise, higher

PSNR (0.3 - 3.5 dB), SSI (0.58 - 2.43%) and segmentation values (Dice coefficient,

2% improvement) were measured. The parameters in TD-SISR are familiar from

2D SVD-based algorithms, so their tuning is easier compared to CPD-SISR.

Corresponding publication: [C2]

TD is the higher order generalization of the 2D singular value decomposition.

The basis vectors may be organized according to their importance in the factoriza-

tion. While the CPD defines a single rank that has to be estimated, TD uses the

n-rank, three different values in case of 3D tensors. By thresholding the singular

values with these estimated ranks, a denoised tensor can be composed. Here the

deblurring can not be incorporated into the factorization algorithm, therefore they

are implemented subsequently.

Even though two additional parameters have to be set, it gave faster and quan-

titatively better results in noisy images compared to the previous method, CPD-

SISR. Images of 280×268×492 and 324×248×442 pixels were super-resolved under
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2 s with standard Matlab implementation. The PSNR is improved under 20, 25, 30

dB added noise in both methods. TD-SISR outperformed CPD-SISR both in PSNR

and SSI values, except for the extremely noisy, 20 dB case. After these results the

segmentation was carried out at 25 dB. The improvement is confirmed by the Dice

coefficients, showing the superiority of the TD-SISR method.

6.2 Contributions de la thèse

La résolution spatiale des images acquises par tomographie volumique à faisceau

conique (CBCT) est limitée par la géométrie des capteurs, leur sensibilité, les mou-

vements du patient, les techniques de reconstruction d’images et la limitation de la

dose de rayonnement. Le modèle de dégradation d’image considéré dans cette thèse

consiste en un opérateur de flou avec la fonction d’étalement du système d’imagerie

(PSF), un opérateur de décimation, et du bruit, qui relient les volumes CBCT à une

image 3D super-résolue à estimer. Les méthodes proposées dans cette thèse (SISR -

single image super-resolution) ont comme objectif d’inverser ce modèle direct, c’est

à dire d’estimer un volume haute résolution à partir d’une image CBCT. Les algo-

rithmes ont été évalués dans le cadre d’une application dentaire, avec comme vérité

terrain les images haute résolution acquises par micro CT (µCT), qui utilise des

doses de rayonnement très importantes, incompatibles avec les applications clin-

iques.

Contribution I Nous avons proposé une approche de SISR par deep learn-

ing, appliquée individuellement à des coupes CBCT. Deux types de réseaux ont été

évalués : U-net et subpixel. Les deux ont amélioré les volumes CBCT, avec un gain

en PSNR de 21 à 22 dB et en coefficient de Dice pour la segmentation canalaire de

1 à 2.2%. Le gain a été plus particulièrement important dans la partie apicale des

dents, ce qui représente un résultat important étant donnée son importance pour les

applications cliniques.

Publication associée : [J1]
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Contribution II-a Nous avons proposé des algorithmes de SISR basés sur la

décomposition canonique polyadique des tenseurs. Le principal avantage de cette

méthode, lié à l’utilisation de la théorie des tenseur, est d’utiliser la structure 3D

des volumes CBCT. L’algorithme proposé regroupe plusieurs étapes: débruitage basé

sur la factorisation des tenseurs, déconvolution et super-résolution, avec un faible

nombre d’hyperparamètres. Le temps d’exécution est très faible par rapport aux al-

gorithmes existants (deux ordres de magnitude plus petit), pour des performances

légèrement supérieures (gain de 1.2 à 1.5 dB en PSNR).

Publication associée : [J2]

Contribution II-b La troisième contribution de la thèse est en lien avec la con-

tribution 2: l’algorithme de SISR basé sur la décomposition canonique polyadique des

tenseurs est combiné avec une méthode d’estimation de la PSF, inconnues dans les

applications pratiques. L’algorithme résultant effectue les deux tâche de manière al-

ternée, et s’avère précis et rapide sur des données de simulation et expérimentales.

Publication associée : [C1]

Contribution II-c La dernière contribution de la thèse a été d’évaluer l’intérêt

d’un autre type de décomposition tensorielle, la décomposition de Tucker, dans le

cadre d’un algorithme de SISR. Avant la déconvolution, le volume CBCT est débruité

en tronquant sa décomposition de Tucker. Comparé à l’algorithme de la contribution

2, cette approche permet de diminuer encore plus le temps de calcul, d’un facteur 10,

pour des performances similaires pour des SNR importants et légèrement supérieures

pour de faibles SNR. Le lien entre cette méthode et les algorithmes 2D basés sur une

SVD facilite le réglage des hyperparamètres comparé à la décomposition canonique

polyadique.

Publication associée : [C2]
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6.3 Új tudományos eredmények

A fogászati cone beam komptertomográfiával (CBCT) készült felvételek fel-

bontását a detektor geometriája, szenzitivitása, a páciens mozgása, a képrekonstrukciós

technika, és a sugárdózis szükségszerű minimalizása befolyásolja. A folyamatot léıró

degradációs modell a CBCT felvételre úgy tekint, mint a magas felbontású tárgy

alulmintavételezett, zajos, elmosódott (a rendszer szóróválasz függvényével, PSF)

párjára. A kezelések tervezéséhez és a pontos diagnózis érdekében elengedhetetlen a

jó minőségű kép. A jelen disszertációban közölt módszerek célja megoldást nyújtani

az egy felvételen alapuló szuper-rezolúciós problémára (SISR). Az algoritmusokat

eltávoĺıtott fogak CBCT felvételén validáltam, amikhez a magas felbontású (és

sugárdózisú) képpárt mikro-CT (µCT) felvételek szolgáltatták.

I. Tézispont: Az SISR probléma megoldására egy mélytanulási módszeren ala-

puló keretrendszert terveztem, melyet fogászati CBCT szeletekre alkalmaztam. Az

U-net és subpixel t́ıpusú neurális hálókat teszteltem, melyek mindketten jav́ıtották

a CBCT képek csúcs jel-zaj viszonyát (PSNR) 21-22 dB-lel, és a fogcsatorna szeg-

mentációjának Dice-koefficiensét 1-2.2%-kal – hangsúlyosabban az orvosilag kritikus

gyökércsúcsnál.

Kapcsolódó publikáció: [J1]

II. Tézispont – a.: A 3D SISR probléma megoldására algoritmust terveztem,

mely a tenzorok kanonikus poliadikus felbontását (CPD) használja. Ez az imple-

mentáció megőrzi a 3D objektum strukturális információját, egy költég-hatékony

és kevés paramétert használó algoritmusban ötvözve a tenzorfelbontáson alapuló za-

jszűrést, a PSF dekonvolúcióját és a kép felbontásának növelését. A korszerű rekon-

strukció-alapú algoritmusokhoz hasonló eredményeket két nagyságrenddel gyorsabban

ér el – a PSNR 1.2 -1.5 dB-lel, a szegmentáció Dice-koefficiense 0.89-0.90-re nőtt).

Kapcsolódó publikáció: [J2]
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II. Tézispot – b: Egy algoritmusban egyeśıtettem a 3D kép CPD-SISR-alapú

jav́ıtását és az ismeretlen PSF paraméterbecslését. A módszert egy korszerű rekon-

strukció-alaú, 3D-SISR módszerhez hasonĺıtottam, melyet az általam javasolt PSF-

becsléssel egésźıtettem ki. A módszerek hasonló javulást mutattak a PSNR szem-

pontjából mint szimulált, mind valós CBCT képeken, de a javasolt módszer körülbelül

40-szer gyorsabban konvergált, kevesebb, mint 6 perc alatt.

Kapcsolódó publikáció: [C1]

II. Tézispont – c: Javaslatot tettem a 3D-SISR probléma megoldására a

Tucker-dekompoźıció alkalmazásával (TD-SISR). Először a kép zajszűrését végzem el

a Tucker-dekompoźıció seǵıtségével, ı́gy jav́ıtható az ezt követő dekonvolúció rosszul

kond́ıcionáltsága. A CPD-SISR módszerhez képest 10-szer gyorsabban fut az algo-

ritmus. A zaj függvényében növekedik a PSNR (0.3 -3.5 dB) és az SSI (0.58 -

2.43%), és a szegmentáció pontosságát mérő Dice-koefficiens (2%). Az algoritmus-

ban használt paraméterek a 2D SVD-alapú zajszűrő algoritmusokéhoz hasonlóak, ı́gy

könnyebben álĺıthatóak a CPD-SISR-hez képest.

Kapcsolódó publikáció: [C2]
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tensor factorization method for 3-d super resolution with application to dental

ct,” IEEE transactions on Medical Imaging, vol. 38, no. 6, pp. 1524–1531, 2018.

(Cited on page(s): xii, 14, 27, 52, 72, 83, 87, 88)

90



Conference publications of the

thesis

[C1] J. Hatvani, A. Basarab, J. Michetti, M. Gyöngy, and D. Kouamé, “Tensor-
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volution of medical ultrasound images using a parametric model for the point

spread function,” in Ultrasonics Symposium (IUS), 2016 IEEE International.

IEEE, 2016, pp. 1–4. (Cited on page(s): 66)

[94] C. Tsutake and T. Yoshida, “Vaguelette-wavelet deconvolution via compressive

sampling,” IEEE Access, vol. 7, pp. 54 533–54 541, 2019. (Cited on page(s): 71)

[95] R. James, A. M. Jolly, A. C., and D. Michael, “Image denoising using adaptive

pca and svd,” in 2015 Fifth International Conference on Advances in Computing

and Communications (ICACC), Sep. 2015, pp. 383–386. (Cited on page(s): 72)

[96] M. Holmes, A. Gray, and C. Isbell, “Fast svd for large-scale matrices,” in

Workshop on Efficient Machine Learning at NIPS, vol. 58, 2007, pp. 249–252.

(Cited on page(s): 72)

104

https://www.tensorflow.org/
https://www.tensorlab.net
https://www.tensorlab.net


[97] Z. Drmac and K. Veselic, “New fast and accurate jacobi svd algorithm. i,” SIAM

Journal on matrix analysis and applications, vol. 29, no. 4, pp. 1322–1342, 2008.

(Cited on page(s): 72)

[98] A. K. Menon and C. Elkan, “Fast algorithms for approximating the singular

value decomposition,” ACM Trans. Knowl. Discov. Data, vol. 5, no. 2, Feb.

2011. [Online]. Available: https://doi.org/10.1145/1921632.1921639 (Cited on

page(s): 75)

[99] J. A. Grant-Jacob, B. S. Mackay, J. A. Baker, Y. Xie, D. J. Heath, M. Loxham,

R. W. Eason, and B. Mills, “A neural lens for super-resolution biological imag-

ing,” Journal of Physics Communications, vol. 3, no. 6, p. 065004, 2019. (Cited

on page(s): 78)

[100] Z. Zhou, Y. Wang, Y. Guo, Y. Qi, and J. Yu, “Image quality improvement of

hand-held ultrasound devices with a two-stage generative adversarial network,”

IEEE Transactions on Biomedical Engineering, vol. 67, no. 1, pp. 298–311, 2019.

(Cited on page(s): 78)

[101] M.-I. Georgescu, R. T. Ionescu, and N. Verga, “Convolutional neural networks

with intermediate loss for 3d super-resolution of ct and mri scans,” IEEE Access,

vol. 8, pp. 49 112–49 124, 2020. (Cited on page(s): 78)

[102] J. Michetti, A. Basarab, M. Tran, F. Diemer, and D. Kouamé, “Cone-beam
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Résumé - La résolution spatiale des images acquises par tomographie volumique á faisceau 

conique (CBCT) est limitée par la géométrie des capteurs, leur sensibilité, les mouvements du 

patient, les techniques de reconstruction d'images et la limitation de la dose de rayonnement. Le 

modéle de dégradation d'image considéré dans cette these consiste en un opérateur de ou avec la 

fonction d'étalement du systéme d'imagerie (PSF), un opérateur de décimation, et du bruit, qui 

relient les volumes CBCT á une image 3D super-résolue á estimer. Les méthodes proposées dans 

cette thése (SISR - single image super-resolution) ont comme objectif d'inverser ce modéle direct, 

c'est á dire d'estimer un volume haute résolution á partir d'une image CBCT. Les algorithms ont 

été évalués dans le cadre d'une application dentaire, avec comme verité terrain les images haute 

résolution acquises par micro CT (μCT), qui utilise des doses de rayonnement trés importantes, 

incompatibles avec les applications cliniques. 

Mots clés: tomodensitométrie, CBCT dentaire, image volumétrique, super-résolution, 

factorization tensorielle, apprentissage profond 
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Abstract - The resolution of dental cone beam computed tomography (CBCT) images is limited 

by detector geometry, sensitivity, patient movement, the reconstruction technique and the need to 

minimize radiation dose. The corresponding image degradation model assumes that the CBCT 

image is a blurred (with a point spread function, PSF), downsampled, noisy version of a high 

resolution image. The quality of the image is crucial for precise diagnosis and treatment planning. 

The methods proposed in this thesis aim to give a solution for the single image super-resolution 

(SISR) problem. The algorithms were evaluated on dental CBCT and corresponding 

highresolution (and high radiation-dose) μCT image pairs of extracted teeth. 

Keywords: Computed tomography, dental CBCT, 3D image, super-resolution, tensor 

factorization, deep learning 
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