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Abstract

At the basis of the marine food chain, plankton play a key role in ocean ecology.
Due to their daily vertical migration of several hundred meters, some of these or-
ganisms play an important role in the vertical mixing of the ocean. Far from being
passive, many planktonic organisms are motile and able to perceive their environ-
ment and react accordingly.

Focusing on the representative example of unidirectional migration, this thesis
aims to demonstrate that these motor and sensory skills, useful for predation, are
also advantageous for navigating their turbulent environment.

Limited by the measure of local variations of velocity, the inability of plankton
to directly sense the flow velocity makes this navigation problem particularly chal-
lenging. By considering non-inertial organisms swimming at constant speed and
able to reorient instantaneously in response to their flow sensing, we propose a new
strategy that derives from an optimal solution in a linear flow. Taking advantage of
nearby updrafts to ascend faster, this strategy is called “surfing”.

This strategy is first characterized in various simple flows and then tested in tur-
bulent flow simulations in which “surfers” are observed to migrate vertically twice
as fast as simulated plankters that do not react actively to the local flow. We then
relax the assumptions of the model to demonstrate the robustness of this strategy
to various plankter limitations before comparing it to various other navigation ap-
proaches, involving various optimization algorithms. Finally we discuss of the ben-
efit that such strategy could provide to real-life plankton and propose experimental
approaches that would help finding out whether surfing is a realistic strategy for
planktonic navigation before discussing the perspectives of the study.
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Résumés

Constituant la base de la chaîne alimentaire marine, le plancton joue un rôle pri-
mordial pour l’écologie océanique. De par leurs migrations verticales journalières
de plusieurs centaines de mètres, certains de ces organismes participent grande-
ment au mélange vertical océanique. Loin d’être passifs, les planctons sont, pour
beaucoup, capables de nager, de percevoir leur environnement et d’y réagir.

Au travers de l’exemple de la migration verticale, cette thèse vise à démontrer
que ces capacités motrices et sensorielles, utiles à la prédation, leur donnent égale-
ment un avantage pour naviguer leur environnement turbulent.

Limité par la mesure des variations locales de vitesse, et non la mesure directe
de la vitesse de l’écoulement, ce problème de navigation devient particulièrement
difficile. En considérant des organismes non inertiels nageant à vitesse constante
et pouvant se réorienter instantanément en réponse à leur mesure de l’écoulement,
nous proposons une nouvelle stratégie qui découle d’une solution optimale dans
un écoulement linéaire. Permettant d’atteindre les courants ascendants à proximité
pour se faire porter par l’écoulement, cette stratégie est nommée le “surf”.

Cette stratégie est tout d’abord caractérisée grâce à des écoulements simples
avant d’être testée dans des simulations d’écoulements turbulents, dans lesquels les
surfeurs parviennent à migrer verticalement deux fois plus vite que des planctons
ne réagissant pas à l’écoulement. Nous démontrons la robustesse de cette stratégie
de navigation aux diverses limitations auxquelles les planctons sont soumis avant
de comparer le “surf” à d’autres méthodes de navigation impliquant divers algo-
rithmes d’optimisation.

Enfin nous quantifions l’avantage que pourrait procurer cette stratégie à de
vrais planctons dans leur habitat turbulent et proposons des approches expérimen-
tales qui permettraient de vérifier la capacité du plancton à surfer, avant de discuter
des perspectives de cette étude.
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Introduction

1.1 | What are plankton?
The word “plankton” is derived from the ancient greek planktós, that means wandering.
This term regroups all organisms that live in water while being unfit to swim against
currents. This designation can refer to any kind of organisms in practice. It includes
many micro-organisms such as viruses, bacteria, algae, animal larvae and small crus-
taceans but also slowly swimming jellyfishes (Fig. 1.1). An individual organism of this
group is called a plankter. Plankton are generally separated into two groups: phyto-
plankton that describe the algae performing photosynthesis and zooplankton composed
of animals that predate on other plankters.

1.2 | Why are plankton important?

1.2.1 | Their role in the marine food-web
Planktonic organisms are at the base of most of marine food-webs. They constitute
the food of many larger organisms that constitute themselves the food of even larger
organisms. Moreover, they are the direct food source of some large mammals such as
baleen whales. Their role is then essential to sustain fisheries and marine ecology in
general.

1.2.2 | The threat of climate change
In a world where the climate is actively changing due to the global warming, under-
standing how planktonic organisms respond to it is primordial. This necessity moti-
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100µm

Figure 1.1: Illustration of marine plankton. Picture of a part of the con-
tents of a hand net. We can see a wide variety of plankters, ranging from
phytoplankton (cyanobacteria, diatoms, ...) to zooplankton (copepods,
dish eggs, crab larvae, worm larvae ...). Adapted from Nadeau et al.
(2016) cba v4.0.

vates numerous efforts to monitor plankton at a global scale (Batten et al., 2019; Brander
et al., 2003) and use them as a cue of the ocean “health” (Suthers et al., 2019). The cli-
mate change impacts on plankton ecology are numerous (Hays et al., 2005; McKinnon
et al., 2007). For instance, in addition to its direct physiological impact on plankters, wa-
ter temperature influences the nutrient concentration of surface water (Bouman et al.,
2003; Doney, 2006; Richardson, 2008). Low temperatures favour the ocean mixing that
brings nutriments near the surface. This leads to the development of large phytoplank-
ton communities. These conditions are particularly favourable for the development of
large crustaceans. Cold waters become then a rich environment that sustains life-dense
seas. On the contrary hotter water surface tends to stratify the upper ocean layers and
prevent vertical mixing. The absence of ocean mixing avoids sinking nutrients to get
carried back to the surface. This hinders the development of a phytoplankton commu-
nities that impact then the whole food-web.

Another consequence of climate change is the acidification of oceans. This is due to
the growing amount of carbon dioxide released in the atmosphere that is now dissolving
in the ocean. Caldeira and Wickett (2003) predict that the oceanic pH will drop by 0.3
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units by 2100. Among other effects, this acidification of the oceans especially affects
organisms that rely on calcifying (Flynn et al., 2012; Orr et al., 2005). This acidification
causes the decrease of calcium carbonate saturation at ocean surfaces, that is needed by
some plankton species (and corals) to form their external carbonate skeletons, necessary
to their development. Moreover, many plankton communities do not have the time to
migrate as fast as these modifications occur. As a consequence, some plankton species
are at the verge of extinction (Lowery et al., 2020; Trubovitz et al., 2020): a risk shared
by all marine life that feeds on them.

1.2.3 | Their role on climate itself: the biological pump
In addition to their impact on the marine food-web, plankton have an important role in
the absorption of carbon dioxide from the atmosphere. The plankton ecosystem acts as
a “biological pump” that drags the carbon of the atmosphere and fix it on organic mater
that sediments in the depth of the ocean. This phenomenon entails a large variety of
physical and biological processes briefly summarized here (Fig. 1.2). The ocean absorbs
carbon molecules through dissolution. This phenomenon can be further enhanced by
flow perturbations at the free surface, increasing air-water mixing. The dissolved car-
bon molecules are then consumed by plankton species through photosynthesis but also
through calcification to build outer shells and skeletons. By grazing on them, other
plankton species contribute to the vertical transport of carbon through their vertical
migrations. In addition, their excretion tend to aggregate with other ocean debris form-
ing larger particles, called marine snow (Alldredge and Silver, 1988; Turner, 2015), that
settle. During their sedimentation, these aggregates may break down due to their inter-
actions with plankters that may feed on them. The marine snow that makes it through
and sediments in the ocean depths contributes to long term carbon trapping into solid
sediments. The oceanic flow comes into play on top of these processes. It contributes
to plankton transport and mixing, the formation of aggregates and their break up, as
much as the direct advection of dissolved carbon.

The biological pump is then an essential part of the carbon cycle. This process has
led to the formation of carbon materials, such as chalk that is composed of prehistoric
dead plankters (Farouk et al., 2020). More importantly, this process makes the ocean the
largest carbon sink on earth (Hinge et al., 2020; Lal, 2008). The comprehension of the bio-
logical pump is then essential to model long term global climate. On top of that, plank-
ton can also influence local weather. They release organic matter in the atmosphere,
such as organic sulfur molecules. Acting as nucleation cores for water vapour, these
particles eventually lead to the formation of clouds (Charlson et al., 1987; Szyrmer and
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Figure 1.2: Illustration of the biological pump. Adapted from Duck-
low et al. (2001). This cartoon lists the main processes of the biological
pump. We focus in particular on the plankton dynamics that influence
this physical process. Starting from the top, carbone dioxide is dissolved
into the ocean water through exchanges with the atmosphere. Inside wa-
ter, CO2 may react to form various carbonate species. This dissolved car-
bonates molecules may then be assimilated by planktonic organisms, ei-
ther through photosynthesis or calcification for example. Through their
movements in the flow, they actively participate to the dissemination
of carbone in the water column. By grazing on theme, other plankters
further contribute to the transport of carbon molecules, in particular for
those that perform daily vertical migrations. At the same time, the excre-
tion of zooplankton tends to aggregate with other marine debris form-
ing larger particles called marine snow that sediment into the depth of
the ocean. Concentrating nutriments, this aggregates may attract hungry
plankters that bring back some of the carbon molecules to the surface.
However the particles that reach the oceans can be trapped for huged
amount of time. The biological pump then contributes greatly to the
global carbon trapping.
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Zawadzki, 1997). This phenomenon is particularly important when local high concen-
tration of plankton occur, called plankton blooms (Behrenfeld and Boss, 2014; Creamean
et al., 2019; Park et al., 2017). Its impact on weather remains to be fully quantified (Quinn
and Bates, 2011) and motivates ongoing research on the topic. For instance the Plankton,
Aerosol, Cloud, ocean Ecosystem mission of the NASA (Werdell et al., 2019) is expected
to provide important satellite observations that will help understand and quantify these
effects.

1.3 | Planktonic navigation problems
Due to their implications in these various physical processes, modelling plankton is key
to understand these important phenomena. However modelling plankton is not trivial:
(1) many plankters are motile and (2) react actively to their environment. This motility
contributes greatly to the processes described above. Their active behavior and their
responses to the environment are then key elements of plankton dynamics, that remain
to be understood and accurately modelled (Franks et al., 2022). The objective of the
current manuscript is to contribute to improve our understanding of the response of
plankton to their flow environment.

During their life, planktonic organisms have to face numerous survival tasks. For
instance, planktonic larvae have to disperse horizontally in the ocean to increases their
chances to find a suitable settling habitat. Plankters also have to forage for food and pre-
date on other planktonic organisms, while having to escape their own predators. Many
zooplankton also perform diel vertical migrations: they travel to the oceans depths to
avoid visual predators during the day. Then, during the night when predators cannot
see them, they get back to the ocean surface to feed on phytoplankton. These previously
described tasks involve reaching a target (either positional or directional) in a complex
flow environment. As such, these tasks can be considered as planktonic navigation
problems.

It is not yet completely understood how plankters solve these problems. Therefore
navigation problems are the main interest of this study. As we expect organisms to
have evolved effective navigation strategies through natural selection, we investigate
this issue using an optimality driven approach (Smith et al., 2011): we look for efficient
navigation strategies in the context of plankton migration, in the aspiration it may lead
to plankton behavior models in the future.

1.3.1 | How do plankton perceive their environment?
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1.3.1.1 | Plankton are riddled with inboard sensors!

To address these planktonic navigation problems, the first question that arises is: how
do plankters perceive their environment? Many organisms, such as copepods [group of
crustaceans sometime called the “insects of the sea” due to their abundance and variety
(Schminke, 2007)], are equipped with a primitive eye used to measure light intensity
(Fig. 1.3). This organ is however too underdeveloped to actually let them “see” their
environment. Therefore, to perceive their environment, copepods mostly rely on hair-
like sensilia (sensory organs) on their antennules (antennae-shaped appendages). Part
of these sensilia are dedicated to flow measures, called setae, while others, called aes-
thetascs, enable chemical sensing (Heuschele and Selander, 2014). Many planktonic
larvae, such as oyster larvae, are also able to measure the direction of gravity thanks to
their stotachists (Fuchs et al., 2015b). These organs function similarly to our internal ear
that enable us to remain balanced. Stotachists are sac-like organs containing a mobile
mineralized component (statolith) that rolls in the organ when subject to acceleration
or gravity (Fig. 1.5). The statolith then triggers the setae (mechano-sensory cilia) that
covers the organs internal walls. Therefore, planktonic organisms equipped with this
organ are able to measure their orientation with respect to gravity.

1.3.1.2 | Focus on flow sensing

1mm

eye
antennules

Figure 1.3: Annotated pic-
ture of copepod (Female adult
Acartia Clausi). Original pic-
ture by Minami Himemiya
cba v3.0.

We now focus on the flow sensing of planktonic organisms. How
does their perception of the flow differ from that of marine nav-
igators on boats? How does it differ from that of other animals
such as flying insects, fishes or birds?

Marine navigators in charge of boat routing have access to
weather forecasts and large scale ocean measures. They can rely
on this global information to plan their navigation route. On
the contrary, animals only react to the local information they can
measure with their onboard sensors. But planktonic organisms
are even more limited than larger animals as they drift with the
flow. This property prevent them to directly measure the flow
speed. They are rather able to sense the difference of flow veloc-
ity between different parts of their body (gradients).

As humans, we are also subject to this phenomenon when we go swimming in the
ocean. It is easy to feel the impact of the waves and small scale currents on our body.
But if we do not visually pay enough attention to the shore, we hardly realize the large
scale currents that may push us away from it.
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setae

Figure 1.4: Illustration of the measure
process of the flow strain rate.

statocyst

g⃗

Figure 1.5: Illustration of the measure
process of flow vorticity.

For the readers that had the chance to take a ride in a hot air balloon, they may
also have noticed they hardly felt any wind during their flight. The only way to no-
tice movement and apprehend the wind’s presence is through the view of landscape
passing below. While flying insects, fishes and birds can assess their speed similarly
using similar vision skills, most of planktonic organisms rely only on their measure of
small flow perturbations (velocity gradients) due to their poor vision capabilities. The
measure of the flow speed and therefore, of their own total speed, is then out of reach.

Depending on their sensory organs, the flow information plankters have access to
may be even more limited. Even when equipped with setae (mechano-sensors) they
would not be able to measure flow rotation (vorticity) as they would rotate with it as
much as they drift with it. This limits the part of the flow they can measure to pure
strain (Fig. 1.4). Moreover as sensing depends on the alignement of the atennules with
shear, plankters orientation with respect to the flow strongly impacts sensing capabil-
ities (Fields, 2010). If they are equipped with stotachists (gravity sensing) however, as
illustrated in Fig 1.5, the flow vorticity (rotation rate of the flow) can be computed from
their tilting angle with the vertical (Fuchs et al., 2015a). Note that these organs may
also let plankters react to strong flow accelerations. Overall, when having only one or
the other of these sensory organs, having access to the whole flow velocity gradients is
challenging.

On the one hand, if one relies only on setae, like most copepods, one could over-
come this difficulty with bottom-heaviness. Having a heavy bottom causes immersed
plankters to reorient and align with the vertical. If the effect is strong enough, this
may prevent them to rotate with the flow thus enabling them to measure flow vorticity.
However, this may limit their own active rotation capabilities.

On the other hand, if one only relies on statochists, having a non spherical shape
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could be helpful. The rotation of non spherical particles is also influenced by the shear
part of the flow. However the challenge then lies in separating the part of rotation due
to flow vorticity from the part due to pure strain1.

Despite these limitations, many plankton species, such as copepods, are known to
use this partial flow information to detect mates, preys and predators (Jiang et al., 2002;
Kiørboe, 2018; Kiørboe and Visser, 1999; Kiørboe et al., 1999)2. Oyster larvae are even
known to be able to measure and forage underwater sounds (Williams et al., 2022). But,
coming back to navigation, could plankters also use their flow sensing to travel faster
towards their objective?

1.3.2 | Examples of planktonic navigation problems
To answer this question, we need to define and formalize the planktonic navigation
problem we address. In practice a given problem depends on various parameters: the
nature of the target to reach (or from which to escape), the sensory information available
and the motivation to navigate. Figure 1.6 lists and illustrates these different planktonic
navigation problems that are described below.

1.3.2.1 | Close range navigation: predation and escape

As a first example, we consider the case of prey hunting or predator escape when detec-
tion occurs thanks to local flow sensing. The detection process controls the short range
nature of the problem: from three to ten body lengths in calm water (Fields, 2010). This
implies that hydrodynamical interactions, such as lubrification forces, need to be ac-
counted for. Then the behaviour of the prey or the predator also influences the problem.
Is it possible to predict its behavior? Is stealth an option rather than running away? Fi-
nally the motivation: either avoiding being eaten or feeding. To avoid death, the prey is
motivated to react regardless of the energy used whereas the predator needs to ensure
catching the prey is worth the energy consumed to catch it.

Similar navigation problems, accounting for various of the previously described ef-
fects, have already been addressed either using physics-based strategies and reinforce-
ment learning models. For instance, accounting for hydrodynamical interactions, Zhu
et al. (2022) show that optimal control can be used to find the optimal navigation strat-
egy that enables to catch a non-motile point. They also showed that efficient strategies

1Note that pure strain (also called pure shear) is not to be confused with simple shear that contains a
vortical part.

2The title of this thesis is an homage to the excellent book of Kiørboe (2018), that inspired greatly this
whole study.
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Short range navigation:

How to escape the predator?

How to catch the prey?

hydrodynamic detection

Medium-range navigation:

How to follow the odor trail to the mate?

chemical detection

Long range navigation:

How to navigate to the preys?

visual detection

Very long range navigation:

Vertical migration

Horizontal dispersion

Figure 1.6: Non exhaustive list and illustrations of planktonic navigation
problems.

can be found using reinforcement learning to catch finite-size preys and characterize the
effect of the size of the prey on the navigation strategy. Borra et al. (2022) additionally
account for prey behavior and show that prey-predator systems can display complex
dynamics.

However, these strategies do not account for an external flow gradient that could
further modify navigation. This is one of the aspects that could be explored in future
research. Note that from this problem also rise the questions of hydrodynamical detec-
tion strategies and hydrodynamical stealth strategies, also motivating ongoing research
(Ren et al., 2021).

1.3.2.2 | Navigating to an odor source: finding a mate

Another example consists of mate finding through chemical trails. Particularly in the
copepod group, the females of some plankton species leave a chemical trail behind as
they swim (Bagøien and Kiørboe, 2005; Weissburg et al., 1998; Yen and Lasley, 2010).
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This odor trail is aimed to attract males that need to follow it to find their mate (phe-
nomenon called chemotaxis). This enables medium range sensing: up to ≈ 30 body
lengths (Bagøien and Kiørboe, 2005) in quiescent water.

This complex navigation task is particularly challenging in the presence of a flow
field that deforms that chemical trail. Flow sensing can then be used to either try to
find quicker path to the target but also to assess how the odor trail was deformed. Note
that tracking through chemical sensing is not exclusive to mate finding. Experimental
evidences show that odor sensing can be used by zooplankton to forage marine snow
aggregates (Lombard et al., 2013). The sperm cells of some marine invertebrates are also
known to perform chemotaxis to reach egg cells (Lange and Friedrich, 2021). On the
contrary, many plankters display chemophobic responses to the detection of predator-
mediated chemicals (Hay, 2009). This planktonic navigation problem is similar, yet dif-
fers from odor tracking performed by flying insects (Cardé and Willis, 2008; Willis et al.,
2011) due to the inability of most plankters to use visual references.

In different contexts, odor tracking has received increasing attention in the last years
These problems have been addressed using physics based models: Vergassola et al.
(2007) proposes a very efficient strategy called infotaxis to track the position of a scalar
source without relying on local gradients. The method however requires a spatial refer-
ences and extensive memory. This is relevant for complex organisms that can use spa-
tial references using advanced vision to visualize their environment but this approach
is out of reach for most plankters. Furthermore this method does not account for flow
sensing that could help to find the source. On the contrary, Lange and Friedrich (2021)
proposes a simple chemotactic behavior based on gradient ascent that explains how ex-
ternal planktonic sperm cells find egg cells in the ocean. Other studies rely on simple
data-driven approaches. For instance Koehl et al. (2007) deduced a simple on/off model
parameterized with experiments. This model was then used in simulations to under-
stand how planktonic larvae increased their migration towards coral reefs in response
to the chemical cues they emit.

Finally reinforcement learning methods are also a popular approach to address this
problem (Fischer-Tenhagen et al., 2017; Jing et al., 2021; Liberzon et al., 2018; Loisy and
Eloy, 2022; Lu and Luo, 2011; Rigolli et al., 2022). Overall, reinforcement learning are
shown to be a promising tool to solve this kind of navigation problems. However most
of these learning-based studies either consider simple flow environments (rather than
chaotic environments such as turbulence) or consider large memory organisms with
spatial reference (not applicable to the planktonic version of the problem). Furthermore,
most of these studies do not consider local flow sensing, then the question of how this
information could be used to improve navigation remains to be addressed.
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1.3.2.3 | Point to point navigation: hunting a bioluminescent target

Yet another example of planktonic point to point navigation consists of target tracking
sing basic light sensing. The oceans contain numerous bioluminescent organisms (or-
ganisms that emit light): 76% of the organisms recorded by Martini and Haddock (2017)
had bioluminescent capabilities with very little variations with depth. Despite their
poor vision skills, many zooplankton react to these visual cues and trigger phototac-
tic (attraction) or photophobic (repulsion) responses. For instance, dinoflagellate flash-
ing luminescence has been observed to trigger escape responses from certain species of
copepods (Buskey and Swift, 1983). It has been suggested the dinoflagellates evolved to
copy the warning signal of bioluminescent copepods to avoid being grazed (Buskey and
Swift, 1985). On the contrary, many zooplankton species are observed to be phototactic
and attracted by sunlight (Ringelberg, 1999), artificial light (Jékely et al., 2008; Krafft and
Krag, 2021; Stearns and Forward, 1984) or illuminated particles (Tanaka et al., 2019).

Bioluminescence has an important role in marine ecology. It is used by marine or-
ganisms to predate, defend themselves and even to attract potential living habitats by
bioluminescent bacteria (Haddock et al., 2010). It also has a large impact on the carbon
biological pump as bioluminescent organisms often aggregate in marine snow, then at-
tracting organisms that feed on them. In the context of planktonic navigation, biolumi-
nescent organisms constitute detectable long range positional targets.

This navigation problem drawed attention in recent studies. For instance in the
context of the flight of flies, Fabian et al. (2018) showed that a proportional feedback
control [called proportional navigation, also used to control the navigation of modern
missiles (Shneydor, 1998)] can successfully model the interception of aerial targets by
flies. However no flow exploitation is considered. Flow sensing could lead to the for-
aging of beneficial currents that could be used to reach (or escape) that visual target
faster. Reinforcement learning has also been shown to be a promising tool to solve this
problems in simplified flow fields (Gunnarson et al., 2021) and using the information of
the whole flow field (Biferale et al., 2019). However, these approaches are challenged
in more complex flows such as time-dependant 3D turbulence (Alageshan et al., 2020b;
Qiu et al., 2022c), more representative of the complexity of plankton environment.

1.3.2.4 | Navigating to explore: plankton horizontal dispersion

The population of many marine organisms is solely redistributed at their planktonic lar-
vae stage. As adults they fixate on surfaces preventing them to disperse anymore. The
dispersion of their larvae when a new generation births is then essential for the migra-
tion of these marine species. While simple passive Lagrangian models are often used to
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model larval dispersion (Siegel et al., 2003), it has been shown that larval behavior can
strongly affect the horizontal distribution of larvae (Morgan et al., 2021; Naylor, 2006;
Vikebø et al., 2007). The horizontal dispersion problem consists then of a long range
navigation problem where larvae need to maximize horizontal dispersion to ensure the
largest settlement area is explored so the species gets the best chances of survival.

1.3.2.5 | Directional navigation: plankton vertical migrations

Finally, we can consider the plankton vertical migrations. It is yet another essential
navigation problem that many plankters have to face. The research on vertical migra-
tions initiated two hundreds years ago when they were first observed by Cuvier (1817).
Plankton vertical migration generally occurs either daily or seasonally (Bandara et al.,
2021).

The former, called diel vertical migrations, are generally performed by grazing zoo-
plankton that migrate to the surface during the night to graze on other plankters.3 Then
they flee the light at dawn to avoid getting caught by visual predators (such as fishes).
These migrations are generally triggered by variations of light intensity (Richards et al.,
1996; van Haren and Compton, 2013). More frequent migration can even be triggered
due to cloud cover (Omand et al., 2021), moon light (Last et al., 2016) and eclipses (Ad-
hikari et al., 2018).

Seasonal vertical migration however, occur on much larger time scale. Various plank-
tonic organisms swim to the ocean depths at the beginning of winter to wait the end of
the season in a dormant stage (Kaartvedt, 1996; Næss and Nilssen, 1991). The cold water
of the depths keeps their metabolism slow while they wait for the time to migrate back
to the surface when spring comes. Seasonal vertical migration can also be part of larval
dispersion (Kim et al., 1994; McManus and Woodson, 2012; Vikebø et al., 2007). Some
larvae may migrate near the surface to benefit from stronger currents that disperse over
larger distances.

Overall vertical migration translates to a long range vertical navigation problem:
Antarctic krill may migrate over one kilometer distance (Hamner et al., 1983), corre-
sponding to one hundred thousand time their body length!

Overall this navigation problem shines by its simplicity: plankters just have migrate
in a constant direction. In addition, plankton vertical migration is an essential part
of plankton dynamics and the biological pump. Both of these reasons make of this
problem, a good first candidate to start investigating planktonic navigation.

3Note that all diel vertical migrations are not synchronous, and asynchronous migrations are also ob-
served (Cottier et al., 2006).
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Note that, in different contexts, similar problems has already been addressed in the
past. For instance solutions have been deduced in simple flows thanks to reinforcement
learning (Colabrese et al., 2017; Gustavsson et al., 2017). The efficiency of reinforcement
learning remains however to be demonstrated in more complex flows such as time-
dependant 3D turbulence (Alageshan et al., 2020b). Moreover the link between these
navigation strategies and the modeling of plankton migration remains unclear due to
the “black box” effect of learning methods that challenges their physical interpretation.
Therefore a physics-based approach is used in this study.

1.4 | Thesis structure
Due to the essential importance of vertical migrations in plankton dynamics (and the bi-
ological pump) (Archibald et al., 2019; Bianchi et al., 2013), the simplicity of the naviga-
tion problem and the lack of comparative physics-based model performing in complex
flow environments, this thesis focuses on the navigation related to planktonic vertical
migration. The key question is to understand to what extent local flow information can
be used to improve navigation through complex flow environments.

To address this problem, in Chap. 2, we first simplify the process of plankton ver-
tical migrations to formalize the problem into an idealized navigation problem. We
then derive an optimal solution in linear flow, which we call the surfing strategy, and
assess its performance in simple non-linear flows. In Chap. 3, we introduce the physics
and features of turbulence. We then assess the performance of the previously derived
surfing strategy in turbulent environments. In Chap. 4, we relax the previously made
assumptions to assess how robust would the strategy remain to biological constraints.
Surfing is then compared to alternative navigation methods in Chap. 5. This motivates
a generalisation of the surfing strategy that can be applied with more flow information.
The surfing strategy is then discussed in the context of marine biology in Chap. 6. We
demonstrate it to be beneficial over a wide range of plankton habitats and present po-
tential experiments that could be performed to help verifying its relevance for actual
plankters. Finally we conclude and discuss of the various perspectives of this study in
Chap. 7.
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2

The Surfing Strategy

In this chapter, we first describe the physical model used to characterize plankter mo-
tion. We then present formally the problem of planktonic vertical migration and derive
its optimal solution in linear flows. The resulting “surfing” strategy is then character-
ized in various linear flows before it is evaluated in simple non-linear flows.

2.1 | Formulating the problem
We consider a plankter in a flow. Its task is to go as fast as possible in a target direction,
which is chosen to be ˆ⃗z, the vertical, without loss of generality. We model the plankter as
an active particle with position X⃗(t), swimming in direction ˆ⃗p(t) in a flow velocity field
u⃗(⃗x, t) of vorticity ω⃗(⃗x, t) = ∇⃗ × u⃗. The first question that arises is that of the plankter
model. How can we describe the motion of a plankter?

To answer this question, we first assume the plankter to be neutrally buoyant (this
assumption is discussed in App. A, Sec. A.2.1). In that case, weight and buoyancy play
no part in the problem. Applying the second Newton law, we express the plankter
acceleration

Mp
d2X⃗
dt2 = F⃗flow. (2.1)

with Mp the mass of the plankter and F⃗flow the resultant force exerted by the flow on the
plankter.

To compute this force, we need to describe the fluid motion around the plankter. The
fluid flow, composed of a single liquid phase, is considered incompressible of constant
kinematic viscosity ν and density ρ f . The flow velocity u⃗ and pressure p of such a flow
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are then described by the the incompressible Navier-Stokes equations,

∂u⃗
∂t

+
(

u⃗ · ∇⃗
)

u⃗ = − 1

ρ f ∇⃗
p + ν∇2u⃗ +

1
ρ f

f⃗ext (2.2a)

∇⃗ · u⃗ = 0, (2.2b)

where Eq. (2.2a) describes momentum conservation while Eq. (2.2b) is the result of mass
conservation and incompressibility. Each term of Eq. (2.2a) corresponds to different
physical effects. The term (u⃗ · ∇⃗) u⃗ describes flow inertia, the term ν∇2u⃗ corresponds to
momentum diffusion due to flow viscosity and the term (1/ρ f )∇⃗p characterizes pres-
sure effects. The term f⃗ext may include all external forcings, due to gravity for example.

Figure 2.1: Illustra-
tion of the Stokes
flow around a spheri-
cal particle.

To further simplify the problem, the plankter is assumed to be
spherical and small compared to the smallest scale of the flow. In
this context, we can define the particle Reynolds number Rep. This
number is the result of the ratio of the intensity of the inertial and vis-
cous term of the Navier-Stokes momentum equation (2.2), at the scale
of the plankter

Rep ∼
|u⃗− (dX⃗/dt)| d

ν
(2.3)

with dX⃗/dt the actual plankter speed and d the plankter diameter. The
term u⃗− (dX⃗/dt) denotes the slip velocity: the difference between the
local flow velocity and the plankter actual velocity.

If Rep ≪ 1, the flow in the immediate proximity of the plankter
can be modeled by neglecting the inertial terms of the Navier-Stokes
equations [Eq (2.2)]. We then obtain the Stokes equation

ν∇2u⃗ =
1
ρ f
∇⃗p− 1

ρ f
f⃗plank., (2.4)

where f⃗plank. denotes the volumic force exerted by the plankter on the flow. Note that
the force exerted by the flow on the plankter F⃗flow matches the volume integral of the
volumic force exerted by the plankter on the flow F⃗flow = −

∫∫∫
f⃗plank.dV.

Thanks to the spherical shape of the plankter and the linearity of Stokes equation,
the nearby flow velocity can be computed analytically (illustrated in Fig. 2.1). This leads
to the expression of the force exerted on the plankter (Stokes et al., 1851)

F⃗flow. = 3πµd

(
u⃗− dX⃗

dt

)
, (2.5)
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with µ the dynamic viscosity of the flow. Injecting Eq (2.5) into the equation of motion
[Eq (2.1)], we obtain

d2X⃗
dt2 =

1
τdelay

[
u⃗− dX⃗

dt

]
with τdelay =

(ρp + ρ f /2)d2

18µ
, (2.6)

with ρp = πd3/(6Mp) the density of the plankter, assumed to be homogeneously dis-
tributed in the body of the plankter. The value τdelay denotes the characteristic time
needed for the particle to reach a constant velocity when u⃗ varies in time1. If this time
is small compared to the flow time scale (τdelay ≪ τη), the acceleration phase of the
plankter can be neglected. This comparison of the particle relaxation time τdelay and the
characteristic time of flow variation (corresponding to the Kolmogorov time scale τη in
turbulent flows, defined in Eq. 3.6 in Chap. 3, Sec. 3.1.2) defines the Stokes number

St =
τdelay

τη
. (2.7)

This number characterizes the ability of flow particles to follow streamlines (Fig. 2.2).

St≫ 1

St≪ 1

Figure 2.2: Illustra-
tion of the influence
of the Stokes number.

The Stokes number St is first considered small (St ≪ 1) mean-
ing the plankter considered is inertialess. This hypothesis is relaxed
and discussed in App. A, Sec. A.2.2. Additionally plankters are also
assumed to swim at constant speed Vswim. Under the limit of these
assumptions, the translation kinematics of plankters are reduced to

dX⃗
dt

= u⃗(X⃗, t) + Vswim ˆ⃗p, (2.8)

with u⃗ the flow velocity field and ˆ⃗p the current swimming direction of
the plankter.

The swimming direction ˆ⃗p of a plankter is controlled by its rotation
kinematics

d ˆ⃗p
dt

= Ω⃗× ˆ⃗p, (2.9)

with Ω⃗ the angular velocity of the plankter.
To model the rotation dynamics of the spherical plankter we consider, one can simi-

larly compute the viscous torque on a sphere (Lamb, 1945)

T⃗flow = πµd3
(

1
2

ω⃗− Ω⃗

)
(2.10)

1Strictly speaking, Eq. (2.6) is only valid in a steady uniform flow. Unsteadiness and irregularities cause
the apparition of other flow induced forces (Maxey, 1987b; More and Ardekani, 2020; Wang and Ardekani,
2012).
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with ω⃗ the flow vorticity. Using the conservation of total angular momentum, one can
express the rotation motion of a spherical plankter

dΩ⃗

dt
=

1
τθ,delay

[
1
2

ω⃗(X⃗, t)− Ω⃗

]
with τθ,delay =

ρpd2

60µ
. (2.11)

Similarly to the translation dynamics, if τθ,delay ≪ τη , the rotation dynamics of a passive
plankter reduce to its kinematics and

d ˆ⃗p
dt

= Ω · ˆ⃗p, (2.12)

where Ω = skew ∇⃗u⃗ is the skew symmetric part local velocity gradient tensor ∇⃗u⃗. Note
that bold symbols denote matrices.

Then to take into account active reorientation, we use the model proposed by Pedley
and Kessler (1992)

d ˆ⃗p
dt

= Ω · ˆ⃗p +
1

2τalign

[
ˆ⃗n− ( ˆ⃗n · ˆ⃗p) ˆ⃗p

]
, (2.13)

with ˆ⃗n the preferred orientation of the plankter and τalign the active reorientation time
scale. The smaller τalign, the stronger is the plankter able to reorient. Originally designed
to model bottom-heavy plankters (with ˆ⃗nb−h = ˆ⃗z, and the subscript b−h referring to
bottom-heavy), this expression is the result of the balance of the viscous torque exerted
by the flow and the gravity torque. Despite its origin, this model is commonly used
to model particles that reorient actively (Colabrese et al., 2017; Gustavsson et al., 2017;
Lange and Friedrich, 2021). We discuss the choice of this model in Chap. 4, Sec. 4.2.3.2.

X⃗(T)

X⃗(0)

(X⃗
(T

)−
X⃗

(0
))
·ˆ⃗ z

Figure 2.3: Illustration of
performance evaluation.

Assuming for now that the reorienting torque is strong enough,
then τalign ≪ τη and the plankter can be assumed to reorient instanta-
neously. As a consequence, the swimming direction is always aligned
with the preferred direction [ ˆ⃗p(t) = ˆ⃗n(t)]. The complete set of equations
that describe plankter motion then reads

dX⃗
dt

= u⃗(X⃗, t) + Vswim ˆ⃗p, (2.14a)

ˆ⃗p(t) = ˆ⃗n(t). (2.14b)

This hypothesis, assumed for most of the study, is relaxed and dis-
cussed in Chap. 4, Sec. 4.2.3. Finally, while more general swimming behaviors could
eventually be considered (cf. App. C, Sec. C.2), at this stage, the plankter swimming
speed Vswim is assumed constant.
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■ Vswim constant
■ inertialess
■ neutrally buoyant
■ mass homogeneously distributed in the plankter body
■ small compared to the smallest flow scale
■ instantaneous reorientation ( ˆ⃗p = ˆ⃗n)
■ sensing limited to ˆ⃗z and ∇⃗u⃗
■ memoryless

Table 2.1: List of the problem assumptions.

Concerning sensing, we assume the plankter sense the full local flow velocity gra-
dient tensor ∇⃗u⃗(X⃗, t), simply noted ∇⃗u⃗ below, and the vertical direction ˆ⃗z. The plank-
ter then responds instantaneously to this information by choosing a preferred direction
ˆ⃗n(∇⃗u⃗, ˆ⃗z), without any memory. All of these assumptions are summed up in Tab. 2.1.

The metric used to quantify the performance of the plankters is the effective velocity,
Veff. (Fig. 2.3), defined as the long-time average velocity along ˆ⃗z

Veff. = lim
T→∞

X⃗(T)− X⃗(0)
T

· ˆ⃗z. (2.15)

In the language of control theory (resp. reinforcement learning), ˆ⃗n(∇⃗u⃗, ˆ⃗z) is the control
(resp. policy) and Veff. is the objective function (resp. return).

2.2 | Optimal solution in linear flows: surfing

2.2.1 | Derivation of the surfing strategy
To derive the surfing strategy, we start from the equation of motion of an inertialess
active particle (2.14). The fluid flow u⃗ at position X⃗ and time t can be approximated
using a linear approximation

u⃗(⃗x, t) ≈ u⃗0 + (∇⃗u⃗)0 ·
(

x⃗− X⃗0

)
+
(

∂u⃗
∂t

)

0
(t− t0) (2.16)

for which the 0 subscript denotes evaluation at t = t0 and x⃗ = X⃗0 [i.e. u⃗0 = u⃗(X⃗0, t0)].
Without loss of generality, we can assume t0 = 0 and X⃗0 = 0⃗ and drop the 0 subscript
in the following. By substituting this expression into Eq. (2.14), we obtain the linear
approximation

dX⃗(t)
dt
≈ u⃗ + ∇⃗u⃗ · X⃗(t) +

(
∂u⃗
∂t

)
t + Vswim ˆ⃗n(t). (2.17)
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Integrating this first-order differential equation leads to the following solution for
the displacement

X⃗(T) =
[
exp

(
T∇⃗u⃗

)
− Id

]
· (∇⃗u⃗)−1 ·

[
u⃗ + (∇⃗u⃗)−1 ·

(
∂u⃗
∂t

) ]

− T(∇⃗u⃗)−1 ·
(

∂u⃗
∂t

)
+ Vswim

∫ T

0
exp

(
(T − t)∇⃗u⃗

)
· ˆ⃗n(t) dt, (2.18)

with Id, the identity matrix, T the final time and exp the matrix exponential2. The
problem consists in finding the control ˆ⃗n such that the displacement along ˆ⃗z at time T is
maximum, that is

Find ˆ⃗n such that X⃗(T) · ˆ⃗z is maximum. (2.19)

Since ˆ⃗n only appears in the last term of Eq. (2.18), the problem reduces to

Find ˆ⃗n such that
∫ T

0
exp

[
(T − t)∇⃗u⃗

]
· ˆ⃗n(t) · ˆ⃗z dt is maximum. (2.20)

This is done by maximizing the integrand, which can be conveniently rewritten

Find ˆ⃗n such that
(

exp
[
(T − t)(∇⃗u⃗)T

]
· ˆ⃗z
)
· ˆ⃗n(t) is maximum. (2.21)

The solution to the problem of Eq. (2.21) is colinear with exp[(T − t)(∇⃗u⃗)T] · ˆ⃗z. This
solution gives the surfing strategy

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf = exp

[
(T − t)(∇⃗u⃗)T

]
· ˆ⃗z. (2.22)

Defining τ = T− t, as the duration left before performance evaluation, the surfing strat-
egy can be formulated as follows

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf = exp

[
τ(∇⃗u⃗)T

]
· ˆ⃗z. (2.23)

Surfing is optimal in a linear flow. In a nonlinear flow however, we expect the lineariza-
tion to break down after a finite time horizon. This time horizon τ then becomes a free
parameter of the surfing strategy which needs to be optimized. While there is no way
to guess easily the optimal value of this time horizon τ without more information, we
expect it to crucially depend on the temporal statistics of the flow.

This analysis shows that, in the limit of a linear flow, the flow velocity gradient
tensor ∇⃗u⃗ is the only information needed to locally optimize the plankter trajectory.

2The inversibility of the gradient tensor ∇⃗u⃗ is assumed to be able to write this solution conveniently
but the gradient inversibility is not required to derive the following in practice.
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While some plankters are able to sense the local flow acceleration (∂u⃗/∂t) (Fuchs et al.,
2015b, 2018), Eq. (2.23) shows that it would not be of any direct use for the problem we
consider3.

2.2.2 | Physical interpretation of the strategy
The surfing strategy is mainly described by a matrix exponential [Eq. (2.23)]. The matrix
exponential is actually defined as a series. The surfing strategy can then also alterna-
tively be expressed as

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf =

[
∞

∑
k=0

τk

k!

(
∇⃗u⃗
)k
]T

· ˆ⃗z. (2.24)

The resulting surfing direction then appears as a weighted averaged over several direc-
tions corresponding to the terms of the series. The value of the surfing time horizon
τ controls which term of the series predominates over the others. For τ = 0, the first
term of the series predominates. When τ increases, the next terms of the series gain
importance.

To further detail the implications of this exponential, we rewrite conveniently the
first terms of the series

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf = ˆ⃗z + τ ∇⃗uz +

1
2

τ2 ∇⃗
(

u⃗ · ∇⃗uz

)
+ · · · , (2.25)

with uz = u⃗ · ˆ⃗z. The first term of the series simply corresponds to the target direction
ˆ⃗z [Fig. 2.4(a)]. It translates the fact that a surfer partly swims directly in the target di-
rection. The second term is in the direction of the gradient of the vertical velocity ∇⃗uz

[Fig. 2.4(b)]. This term corresponds to a gradient ascent of the vertical flow velocity uz.
It characterizes the fact that surfers, seeking to get carried by the flow, also swim in the
direction that leads to the nearest beneficial current, in the direction of ∇⃗(u⃗ · ∇⃗uz). So
to maximize vertical displacement, surfer also have to maximize displacement in the
direction ∇⃗(u⃗ · ∇⃗uz). And thus to do so, the next term of the series takes the form of the
gradient of the velocity component in that direction [Fig. 2.4(c)]. Not content with the
exploitation of ascending currents, given a large enough surfing time horizon τ, surfers
also seek to exploit horizontal currents that would push them towards those upwellings.

3Note however that since acceleration and velocity gradients are correlated in flows (through the
Navier-Stokes equation 2.2), acceleration may still provide indirect information that could be exploited.
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increasing τ

Figure 2.4: Physical interpretation of the surfing strategy. The surfing
strategy can be interpreted as a compromise between swimming straight
to the target and an iterative gradient ascent method that forages benefi-
cial currents based on local gradients.

Each of the next term of the series actually corresponds to the gradient of the flow ve-
locity component in the direction of their precedent term.4 The tendency to lead plank-
ters to “surf” local flow features gives its name to this strategy.

2.2.3 | Surfing in linear flows
A linear flow is defined by a velocity u⃗0 at x⃗ = 0⃗ and t = 0, a constant acceleration ∂u⃗/∂t
and a constant flow velocity gradient tensor ∇⃗u⃗. For the sake of simplicity, we consider
steady linear flows in the following: ∂u⃗/∂t = 0⃗. The steady flow velocity can then be
expressed as the following:

u⃗(⃗x) = u⃗0 + ∇⃗u⃗ · x⃗. (2.26)

The surfing strategy [Eq. (2.23)] is the exact solution of the vertical migration problem in
any linear flow. Thus, such flows already provide an interesting framework to assess the
behavior of the surfing strategy. For that purpose, we compare surfer trajectories [ ˆ⃗p =
ˆ⃗nsurf, Eq. (2.23)], to bottom-heavy swimmers trajectories, which always swim upwards
( ˆ⃗pb−h = ˆ⃗z), and to passive particle trajectories (Vswim = 0).

Trajectories are integrated numerically using a fifth-order Runge-Kutta method (Dor-
mand and Prince, 1980) thanks to the scipy.integrate.solve_ivp function of the scipy python
library 5. A description of the principle of the Runge-Kutta method is provided in
App. D. Unless mentioned otherwise, all trajectories integrated in 2D flows through-

4This observation also leads to an alternative expression of the surfing strategy based on a recursion:
ˆ⃗nsurf = n⃗surf/|⃗nsurf| with n⃗surf = ∑∞

k=0 n⃗k, with n⃗0 = ˆ⃗z and ∀k > 0, n⃗k = 1
k τ[∇⃗u⃗]T · n⃗k−1.

5The various Python scripts used to integrate 2D trajectories are provided at http://www.github.
com/C0PEP0D.

22

http://www.github.com/C0PEP0D
http://www.github.com/C0PEP0D


Chapter 2. The Surfing Strategy 2.2. Optimal solution in linear flows: surfing
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Figure 2.5: The surfing strategy performing in linear flows. Comparison
of simulated surfers trajectories with bottom-heavy swimmers and pas-
sive particle trajectories in various linear flows. Simulations parameters
are provided in Tab. 2.2. Note that τ = T − t is time dependant.
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0.5

(
0
0
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1.4

Table 2.2: Parameters of the simulations presented in Fig. 2.5.
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out this study are performed using this same procedure (as opposed to the 3D flows
introduced below). As incompressibility is an important property of plankton flow en-
vironment, we further restrict our initial analysis to steady 2D incompressible linear
flows.

Figure 2.5(a) shows a counter intuitive solution where the surfer (red) starts by
swimming downwards going around the vortex to end up in a beneficial current that
propels it upwards. Note how this strategy helps avoiding being trapped in the vortex
as the bottom-heavy swimmer (blue) that ends up being propelled downwards while
always swimming upwards. This illustrates how flow information can be used to op-
timize navigation significantly. However in Fig. 2.5(b) and Fig. 2.5(c), we observe very
similar trajectories for surfers and bottom-heavy swimmers. The two cases correspond
to very singular case where shear is strong compared to vorticity and the stretching
direction of the flow is either almost parallel or orthogonal to the target direction ˆ⃗z.
However in a less singular cases where the stretching direction is neither parallel nor
orthogonal to ˆ⃗z, the benefit of surfing is significant [Fig. 2.5(d)]. Yet, surfing in such a
strain dominated flow remains less beneficial than surfing in vortical flow such as the
one presented in Fig. 2.5(a).

To better understand how linear flow characteristics can influence surfing perfor-
mance, one can decompose the flow into two contributions: a symmetric one, of gradi-
ent S ≡ sym ∇⃗u⃗ and a skew symmetric one, of gradient Ω ≡ skew ∇⃗u⃗, both defined as
follows:

S ≡ sym ∇⃗u⃗ =
1
2

[
∇⃗u⃗ + (∇⃗u⃗)T

]
, Ω ≡ skew ∇⃗u⃗ =

1
2

[
∇⃗u⃗− (∇⃗u⃗)T

]
, (2.27)

This decomposition is commonly used to distinguish rotating regions, |Ω| ≫ |S|, from
strain regions, |S| ≫ |Ω|, of the flow (Fig. 2.6). The skew symmetric part of the gra-
dient is responsible for the rotation of fluid parcels while the symmetric part describes
extension and contractions axes of the flow. Each part is known to behave differently in
turbulence (Fang et al., 2015; Meneveau, 2011).

2.2.3.1 | Pure strain

2D case. Assuming the flow is symmetric ∇⃗u⃗ = S, one can write all quantities in the
orthonormal basis ( ˆ⃗eα, ˆ⃗eβ), composed of the flow velocity gradients eigenvectors6. We
choose this basis so that their respective eigenvalues are sorted in descending order:
α ≥ β. Due to incompressibility, the second eigenvalue is the opposite of the first one:
δ ≡ α ≥ 0 and β = −δ. The direction ˆ⃗eα then represents the extension axis of the flow

6This claim is the result of Cauchy’s finite-dimensional spectral theorem, (Hawkins, 1975).
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ˆ⃗eα

ˆ⃗eβ

= +

u⃗ = u⃗0 + ∇⃗u⃗ · x⃗ u⃗ = u⃗0 + Ω · x⃗ u⃗ = u⃗0 + S · x⃗

Figure 2.6: Illustration of the decomposition of a linear flow into its skew
symmetric part Ω and symmetric part S. The vectors ˆ⃗eα and ˆ⃗eβ corre-
sponds to the eigenvectors of S, corresponding also to the extension and
compression axes of the flow.

while ˆ⃗eβ represents the compression axis (Fig. 2.6). So in a 2D symmetric linear flow, the
surfing direction, Eq. (2.23), is reduced to

ˆ⃗nsurf(τ) =
eδτzα

ˆ⃗eα + e−δτzβ
ˆ⃗eβ√

e2δτz2
α + e−4δτz2

β

. (2.28)

with zα = ( ˆ⃗z · ˆ⃗eα) and zβ = ( ˆ⃗z · ˆ⃗eβ). We note that for a large enough time horizon τδ ≫ 1,
the surfing strategy aligns with the extension axis (Fig. 2.7)

lim
τ→+∞

ˆ⃗nsurf =
zα

|zα|
e⃗α = sgn(zα) ˆ⃗eα. (2.29)

As a consequence, in a symmetric linear flow, the optimal swimming direction is a bal-
ance between the target direction ˆ⃗z and the stretching direction of the flow sgn(zα) ˆ⃗eα.
This alignment is controlled by the time horizon τ.

As illustrated in Fig. 2.7(b), for small values of the time horizon τ, the optimal di-
rection is ˆ⃗z. As τ increases the surfing direction tends to align with the stretching axis
sgn(zα) ˆ⃗eα. Furthermore, note that the surfing direction ˆ⃗n converges exponentially to this
limit making it almost independent of τ for large enough vales of τδ.

3D case. In 3D, one can still consider the orthonormal basis of the velocity gradi-
ent composed of the flow velocity gradients eigenvectors ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ), and its respective
eigenvalues so that α ≥ β ≥ γ. If α > β, as for the 2D case, the surfing direction tends
to align with the maximal extension axis

lim
τ→+∞

ˆ⃗nsurf =
zα

|zα|
e⃗α = sgn(zα) ˆ⃗eα. (2.30)
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Figure 2.7: In a pure strain flow, the surfing direction tends to align with
the extension axis. Influence of the time horizon τ on the surfing strategy
in a pure strain flow. (a) Comparison of surfers trajectories for various
final times T. (b) Surfing direction as a function of the surfing time hori-
zon τ. Simulations parameters are provided in Tab. 2.3. For reference, the
bottom-heavy case is evaluated for Tδ = 5.
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0.5

(
0
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Table 2.3: Simulations parameters in arbitrary units of the navigation
simulation presented in Fig. 2.7.

In the singular case where α = β, the surfing strategy tends towards the direction ˆ⃗z
projected on the stretching plane

lim
τ→+∞

ˆ⃗nsurf =
ˆ⃗z− ˆ⃗eγ

| ˆ⃗z− ˆ⃗eγ|
. (2.31)

Overall surfers essentially exploit the symmetric part of the velocity gradients by
swimming in the direction of maximal stretching sgn(zα) ˆ⃗eα. While bottom-heavy swim-
mers still end up being pushed along the upward stretching direction, surfers, by swim-
ming actively in that direction, maximize their displacement along the stretching axis,
thus maximizing the upward velocity they can extract from flow stretching.

2.2.3.2 | Vortex

Now for a pure vortex flow ∇⃗u⃗ = Ω, surfing can be written

ˆ⃗nsurf(τ) = R ˆ⃗ω(−ωτ/2) · ˆ⃗z, (2.32)
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Figure 2.8: In a pure vortex, the surfing direction reduces to a rotation
opposing to the vorticity. Influence of the time horizon τ on surfing in a
pure vortex flow. (a) Comparison of surfers trajectories for various final
times T. The trajectory of a bottom-heavy (b-h) swimmer is plotted for
reference. (b) Surfing direction as a function of the time horizon τ. Simu-
lations parameters are provided in Tab. 2.4.
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Table 2.4: Simulations parameters in arbitrary units of the navigation
simulation presented in Fig. 2.8.

with R ˆ⃗ω(−ωτ/2) the rotation matrix of angle−ωτ/2 with ω = |∇⃗ × u⃗|, the norm of flow
vorticity, and of axis ˆ⃗ω = ∇⃗ × u⃗/ω, the normalized vorticity. As illustrated in Fig. 2.8,
the optimal solution corresponds to the target direction ˆ⃗z rotated by an angle −ωτ/2
along the vorticity axis.

Note that even though the matrix exponential seems highly non linear and compu-
tationally expensive, in the case of a skew symmetric flow, the surfing strategy reduces
to a linear response to vorticity. Indeed, if θsurf denotes the angle of ˆ⃗nsurf with respect to
the vertical ˆ⃗z and oriented so that the the rotation axis matches the direction of vorticity,
then the surfing strategy can be written as the following linear expression

θsurf(τ) = −ωτ/2. (2.33)

Furthermore, when compared to the expected trajectory of a bottom-heavy swimmer
that would be trapped in the vortex [Fig. 2.8(a)], the surfing strategy is highly beneficial
as it enable surfers to escape such vortices.
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Figure 2.9: Alignment of shear direction with the target direction ˆ⃗z im-
pacts surfing performance. Comparison of surfers trajectories for vari-
ous final times T. (a) ˆ⃗z is aligned with the shear axis. (b) ˆ⃗z is not aligned
with the shear axis: θγsh. = π/4. Swimming speed is set to Vswim = 0.5
(arbitrary units). For reference, the bottom-heavy case is evaluated for
Tγsh. = 3.

2.2.3.3 | Simple shear

The simple shear flow is a simple combination of a symmetric flow and a skew symmet-
ric flow. Its velocity gradient tensor is characterized by its shear value γsh.

∇⃗u⃗ =

(
0 0

γsh. 0

)
=

1
2

(
0 γsh.

γsh. 0

)
+

1
2

(
0 −γsh.

γsh. 0

)
. (2.34)

In such a flow, the surfing strategy reduces to the following

ˆ⃗nsurf(τ) =
n⃗surf

|⃗nsurf|
with n⃗surf = ˆ⃗z + τ∇⃗(u⃗ · ˆ⃗z) = ˆ⃗z + τγsh. cos θγsh.

ˆ⃗ex (2.35)

where θγsh. is the angle of the target direction ˆ⃗z with respect to the shear direction ˆ⃗ey. In
this case, the surfing strategy reduces to a weighted average of ˆ⃗z and the direction of the
gradient ∇⃗(u⃗ · ˆ⃗z). The normalized surfing time horizon τγsh. cos θγsh. then acts simply as
an averaging weight between these two directions. Figure 2.9(a) shows trajectories for
various final times T. As T increases surfers penetrate further the upstream region by
swimming almost horizontally at the beginning. The surfing strategy is more beneficial
when the target direction is aligned with shear. If it is not the case, as we observe in
Fig. 2.9(b), a surfer may have to swim initially backwards with respect to ˆ⃗z to exploit
the shear velocity gradient.
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2.3 | Surfing in simple nonlinear flows

2.3.1 | Surfing on the Taylor–Green vortices
The Taylor-Green vortex flow is an exact solution of the 2D Navier-Stokes equations
introduced by Taylor and Green (1937). This solution may arise from thermal conven-
tion and wind induced Langmuir (1938) circulations (Woodcock, 1941). In the context
of plankton settling, Stommel (1949) showed the propensity of inertialess plankters to
get trapped in such flow structures. This flow is still currently used to characterize
properties of vortical flows (Samant et al., 2021) and is used as a model flow to study
navigation problems (Colabrese et al., 2017; Qiu et al., 2022b).

This flow is characterized by its maximal flow velocity umax and maximal vorticity
ωmax = 2umax/L

u⃗(⃗x) = umax

(
cos(x/L) sin(y/L)
− sin(x/L) cos(y/L)

)
, with x⃗ =

(
x
y

)
. (2.36)

with πL the size of the flow cells.
Now applied in a non-linear flow, the surfing strategy is expected to be sub-optimal.

The surfing time horizon τ, originally corresponding to the duration until the end of the
simulation τ = T − t, becomes a constant free parameter of the surfing strategy. This
time corresponds to the time horizon over which the measured flow velocity gradient
can be considered constant. Finding the value of τ that maximizes vertical migration is
crucial to solve the problem. The larger the value of τ, the more surfers exploit the flow.
But if the surfing parameter τ is too large, the linear approximation used to derive the
surfing strategy breaks down and we expect performance to drop significantly.

The problem depends a priori on seven parameters: the plankter Vswim, the surf-
ing time horizon τ, the final time T, the maximal flow velocity umax, the maximal flow
vorticity ωmax and the starting position x⃗start. Using Buckingham π theorem, one can re-
duce the number to four dimensionless parameters: the dimensionless swimming veloc-
ity Vswim/umax (also called swimming number), the dimensionless surfing time horizon
τωmax, the dimensionless final time Tωmax and the dimensionless initial position x⃗start/L
with L = 2ωmax/umax (Bertrand, 1878; Buckingham, 1914; Vaschy, 1892). While another
choice would have been possible, we choose here the flow scales to non-dimensionalize
the problem. Flow scales are systematically chosen to normalize the problem parame-
ters throughout this study.

In Fig. 2.10, we plot surfers trajectories in a stationary Taylor-Green vortex flow. We
vary the surfing time horizon τ to observe its influence on surfer trajectories and perfor-
mance. We observe that increasing τ results in wider turns around vortices [Fig. 2.10(a)].

29



Chapter 2. The Surfing Strategy 2.3. Surfing in simple nonlinear flows

ˆ⃗z

b-h τωmax = π/2 π 2π

ˆ⃗z

start

ˆ⃗z ˆ⃗z ˆ⃗z

(a) (b) (c) (d) (e)

Figure 2.10: Initial position impacts surfing performance. Comparison
of surfer trajectories [ ˆ⃗p = ˆ⃗nsurf, Eq. (2.23)] with variation of the parame-
ter τ, for various initial positions. Trajectories of perfectly bottom-heavy
plankters ( ˆ⃗p = ˆ⃗z) are plotted in blue for reference. The plankter swim-
ming speed Vswim = umax/2 and the final time T = 22/ωmax are kept
constant for each simulation. Initial positions are provided in Tab. 2.5.
Note that for clarity, the end of the trajectories of the case τumax = 2π are
not displayed when they get out of the displayed domain (occurring in
(b) and (c)).
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Table 2.5: Initial position of the swimmers for the simulations presented
in Fig. 2.10.

We can further notice, especially for τωmax = 2π, how differently surfers behave in vor-
tex regions (|Ω| ≫ |S|) of the flow compared to strain regions (|S| ≫ |Ω|), leading to
sharp turns when one passes from one to the other. This effect is further emphasized in
Fig. 2.11 where we plot the surfing direction ˆ⃗nsurf as a function of position in a Taylor-
Green cell for τωmax = π/2. Note how ˆ⃗nsurf aligns with the target direction ˆ⃗z in-between
vortices, corresponding to pure strain regions. The surfing strategy is unable to exploit
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ˆ⃗z

Figure 2.11: Surfing direction [ ˆ⃗nsurf, Eq. (2.23)] as function of position in
Taylor-Green vortices for τωmax = π/2.

much these regions as they correspond to the particular case for which the extension
axis ˆ⃗eα (cf. Sec. 2.2.3.1) is either parallel or orthogonal to the target direction ˆ⃗z. In vor-
tical regions however, the surfing direction deviates from ˆ⃗z in response to local flow
vorticity ω and leads surfers to beneficial currents.

We are interested in the value τ∗ of the surfing time horizon τ that maximizes the
vertical displacement. The strong symmetries that characterize this velocity field lead
to preferential trajectories that strongly depend on the starting position, influencing the
optimal value of τ [Fig. 2.10(a-d)]. In practice, we cannot expect a particular plankter
starting position. As a consequence, we are more interested in a value τ∗ that is optimal
in average for various starting positions rather than a position specific optimum. Thus,
in the following, the performance metric Veff., corresponding to the vertical effective
velocity, is averaged over N = 600 random starting positions. This average is noted ⟨·⟩N
throughout the study.

The final time T is also an important parameter of the problem. Indeed in Fig. 2.12,
we first observe surfers falling behind bottom-heavy swimmers that go straight verti-
cally as they need some time to forage upwards currents. Then once found, upwards
currents let surfers catch up and eventually outdistance bottom-heavy swimmers in
the long run. Performance of surfers increase as function of time before converging
towards a constant value for large times [Fig. 2.12(a)]. As a consequence, we notice
in Fig. 2.12(b) that the value of τ for which the performance is maximal changes as a
function of the final time T. Note that in practice, migrating planktonic organisms may
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Figure 2.12: For large enough values of the final time T, performance of
the surfing strategy becomes independent of T. (a) Performance conver-
gence as a function of time for various values of the surfing parameter τ.
Note that the x axis is in log scale. (b) Surfer performance as a function
of τ for various final simulation time T. Swimmers swimming speed is
set to Vswim = umax/2.

travel through the water column over a large distance Λ (Hardy and Bainbridge, 1954;
Prairie et al., 2012; Williamson et al., 2011). We focus then on the case of large distance
migration (Λ→ ∞) corresponding to large final times (T = Λ/Veff. → +∞) in the follow-
ing [Eq. (2.15)]. We observe that surfers reach effective velocities Veff./Vswim ≈ 1.7 for
T → ∞ while bottom-heavy swimmers are unable to harness favorable flow currents so
that their effective velocity is approximately equal to their swimming velocity.

The swimming speed of actual planktonic organisms varies over several orders of
magnitudes, from 10−3 cm.s−1 for bacteria to 1 cm.s−1 for fish larvae (Fuchs and Gerbi,
2016; Peters and Marrasé, 2000). So, how does this strategy adapts to this range of
swimming speed? First, as one increase its swimming speed with respect of the flow
velocity, one may expect upwards currents being less beneficial. Indeed the larger the
swimming speed, the weaker is the flow compared to their own swimming skills. As
a consequence, performance increase due to flow exploitation should drop, until it be-
comes marginal.

This effect is observed in Fig. 2.13(a) where we plot surfing performance Veff. as
function of the surfing time horizon τ for various plankter swimming speeds Vswim.
Note furthermore how the maximal performance shifts towards lower values of τ when
swimming velocity Vswim increases. As a faster swimmer samples faster the flow, its
measure of the flow velocity gradients ∇⃗u⃗ varies faster with time. Thus the optimal time
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Figure 2.13: Swimming speed Vswim impacts surfing performance and
the optimal value of the surfing parameter τ∗. Surfing performance as
function of the surfing parameter τ for various swimming speeds Vswim,
with the target direction ˆ⃗z (a) oriented vertically. (b) oriented randomly
for each microswimmer considered.

horizon τ∗, corresponding to the time limit of validity of the linearization, decreases.

Another parameter of the problem is the orientation of the flow compared to the
target direction ˆ⃗z. As previously described for linear flows in Sec. 2.2.3.1, alignment of
stretching axes with respect to the target direction ˆ⃗z strongly influences surfing perfor-
mance. In the context of navigation in Taylor-Green vortices, this effect is observed from
surfer trajectories plotted in Fig. 2.14 for various flow orientation.

In the ocean however, we may not expect actual planktonic organisms to experi-
ence preferential alignment of vortices with the vertical. Therefore Fig. 2.13(b) shows
performance of surfers averaged over both starting positions and flow orientation (or
seamlessly over various target direction ˆ⃗z). Compared to the constant target direction
case, this averaged performance, noted ⟨Veff.⟩N, ˆ⃗z, slightly decreases. The optimal surf-
ing time horizon τ∗ increases however. Not necessarily aligned with the target direction
ˆ⃗z, beneficial currents are certainly harder to exploit. Moreover, the increase of τ∗ means
that surfers tend to align more with the stretching directions. This is in agreement with
the observations made previously in linear flows: the pure strain part (symmetric) of
the flow cannot be exploited if stretching is either parallel or orthogonal to ˆ⃗z. Note that
the performance (Veff./Vswim) remains larger than 2 for the optimal time horizon τ and
for the slowest swimmers Vswim = umax/4.

Overall, even though the surfing strategy does not guarantee optimality in non-
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ˆ⃗z

b-h τωmax = π/2 π 2π

ˆ⃗z ˆ⃗z

(a) (b) (c)

Figure 2.14: Alignment of the flow to the target direction ˆ⃗z impacts surf-
ing performance. Comparison of surfer trajectories [ ˆ⃗p = ˆ⃗nsurf, Eq. (2.23)]
with variation of the parameter τ, for various flow orientation ϕ ˆ⃗z with re-
spect to ˆ⃗z. Trajectories of perfectly bottom-heavy plankters ( ˆ⃗p = ˆ⃗z) are
plotted in blue for reference. The plankter swimming speed Vswim =
umax/2, the plankter initial position X⃗0 = (0 0) and the final time
T = 22/ωmax is kept constant for each simulation. Additional simula-
tions parameters are provided in Tab. 2.6.

Fig. 2.14 (a) (b) (c)
ϕ ˆ⃗z 0 π/8 π/4

Table 2.6: Initial position of the swimmers for the simulations presented
in Fig. 2.14.

linear flows, these results still demonstrates its applicability in such flow: this behavior
already leads to large navigation performance enhancement compared to bottom-heavy
swimmers in Taylor-Green vortices. We also showed that navigation performance is
also strongly influenced by the alignment of flow structures with the target direction, of
particular importance in Taylor-Green vortices.
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b-h surf

ˆ⃗z
start

(a)

0 1
0

1

u/umax

y/
h

ˆ⃗z

(b)

b-h τ(dux/dy)max = 1 2 8

ˆ⃗z(c)

Figure 2.15: Surfing may induce movement towards or away from
walls in a Poiseuille flow. Comparison of surfer trajectories [ ˆ⃗p = ˆ⃗nsurf,
Eq. (2.23)] with variation of the parameter τ, for various initial positions.
Trajectories of perfectly bottom-heavy plankters ( ˆ⃗p = ˆ⃗z) are plotted in
blue for reference. Simulations parameters are provided in Tab. 2.7.

Fig. 2.15 ˆ⃗z Vswim/umax T(dux/dy)max
(a) transverse 1 8
(b) downstream 0.5 20
(c) upstream 0.5 20

Table 2.7: Initial position of the swimmers for the simulations presented
in Fig. 2.15.

2.3.2 | Surfing in the Poiseuille flow
The Poiseuille flow is a laminar solution of the Navier-Stokes equations (Poiseuille,
1844). This solution characterizes a laminar flow between two parallel plates placed
at y = 0 and y = h. This solution takes the form of the following parabolic velocity
profile

u⃗(⃗x) = 4umax

(
y/h− (y/h)2

0

)
with x⃗ =

(
x
y

)
. (2.37)

This parabolic velocity profile is characteristic of near-boundaries regions of flows and
may be relevant as a simple model to study navigation near the sea floor or around
oceanic obstacles.

Similarly to the precedent case, we choose umax and (dux/dy)max = 4umax/h to non
dimensionalize the problem. Figure 2.15(a) illustrates a surfer trajectory in a Poiseuille
flow when the target direction ˆ⃗z is orthogonal to the flow. As the flow velocity gradient
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is completely aligned with the target direction, the flow cannot be exploited in any way
and a surfer will behave exactly as a perfectly bottom-heavy swimmer. In Fig. 2.15(b)
however, ˆ⃗z is aligned with flow velocity and surfers are able to follow the gradient
until they reach the center-line of the flow for which the velocity is maximal. Finally
in Fig. 2.15(c), ˆ⃗z is aligned against flow velocity. The surfing strategy enables surfers
to reach the wall thus avoiding drifting with the current as it would be the case for a
bottom-heavy swimmer always swimming in the direction ˆ⃗z.7

This emphasizes the ability of the surfing strategy to adapt to various non-linear
flows, and further stresses the importance of the alignment of flow features with the
target direction.

2.4 | Summary
We conclude this chapter by summing up key elements discussed previously:

■ planktonic organisms can use effectively local flow information to enhance navi-
gation

■ the planktonic vertical migration navigation problem has an approximate analyt-
ical solution which we called the surfing strategy, described by Eq. (2.23). This
strategy

– is an exact solution of the problem in linear flows [Eq. (2.23)].

– tends to align the swimming direction with stretching axes of the local flow

– tends to rotate the swimming direction oppositely to flow vorticty

– is shown to be effective in non-linear flows such as Taylor-Green Vortices and
Poiseuille flow.

– is controlled by the surfing time horizon τ for which an optimal value τ∗

exists.

■ the strategy is sensitive to the parameters of the problem, in particular the ratio
between the swimming speed Vswim and the typical flow speed.

7Note however that all near-wall effects on the plankter have been neglected from the simulation that
lead to the trajectories in Fig. 2.15. In practice, we would expect the presence of walls to affect plankter
dynamics in non-trivial ways that have not been taken into account in this illustrative example [Refer for
example to Zöttl and Stark (2012) for details].
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Surfing on turbulence

Turbulence is an important feature of the flow environment relevant to many plankton
species (Fuchs and Gerbi, 2016). For instance, turbulent flow velocity fluctuations are
known to increase plankton contact rates (Rothschild and Osborn, 1988). On the other
hand, flow disturbances generated by turbulent flows might also alter plankton sensing
and, as a consequence, influence prey/predator interactions (Pécseli et al., 2019; Saiz
and Kiørboe, 1995) and mate finding (Michalec et al., 2020). Inertial and active parti-
cles are known to preferentially concentrate (Gustavsson et al., 2016; Monchaux et al.,
2012) in turbulence, then displaying macroscopic density distribution patterns. Overall,
turbulence lead to important consequences on the development of plankters, such as
altering their growth rate (Peters and Marrasé, 2000). Note however that some recent
studies demonstrated that plankton may experience weaker turbulence than previously
considered (Franks et al., 2022).

Despite these numerous studies, the role of turbulence in plankton dynamics re-
mains to be fully understood, in particular in regard of plankton active response to tur-
bulence (Franks et al., 2022). In this chapter, we discuss the surfing strategy, presented
in Chap. 2, in the context of navigation in turbulent flows.

We first discuss the features of turbulent flows and explain how the turbulent en-
vironments are simulated in this study. Then we assess surfing performance in homo-
geneous isotropic turbulence for various turbulence intensities. Finally we propose an
estimate of surfing performance based upon the analysis of surfing performance re-
stricted to various parts of the flow. Some of the results presented in this chapter have
been published in Monthiller et al. (2022) but original results are also included.
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3.1 | Modeling the turbulent environment

3.1.1 | Turbulent flows
Eulerian

Lagrangian

Figure 3.1: Illustra-
tion of the differences
of Eulerian and
Lagrangian specifica-
tion.

As previously described in Chap. 2, we consider the plankter environ-
ment as an single phase incompressible fluid flow of constant kine-
matic viscosity ν and density ρ. The flow velocity u⃗ and pressure p of
flow are described by the the Navier-Stokes equations,

∂u⃗
∂t

+
(

u⃗ · ∇⃗
)

u⃗ = −1
ρ
∇⃗p + ν∇2u⃗ +

1
ρ

f⃗ext (3.1a)

∇⃗ · u⃗ = 0. (3.1b)

Flows can be studied through two different specifications: The Eu-
lerian one or the Lagrangian one. In the Eulerian approach, the flow
field is described as a function of position x⃗ and time t. In the La-
grangian approach however, the observer follows the motion of fluid
particles along their trajectory (Fig. 3.1). The flow field is then repre-
sented as a function of time and the particle selected. One can link
flow kinematics in both specifications through the material derivative

Du⃗
Dt

=
∂u⃗
∂t

+
(

u⃗ · ∇⃗
)

u⃗. (3.2)

The operator D·/Dt describes the time derivative in the Lagrangian specification (fol-
lowing a fluid particle trajectory) and ∂·/∂t describes the time derivative in the Eulerian
specification (at a fixed position in space).

Since we are interested in particles advected by a turbulent flow, each approach are
useful and advantageous depending on the context. In this study, the turbulent velocity
fields are solely the result of Eulerian simulations. However as our problem is inherently
Lagrangian (as plankters are advected by the flow), some Lagrangian properties of these
flows are also considered in this study.

In fluid dynamics, turbulence is the state of a fluid flow characterized by its strong
irregularity. Contrary to the smooth nature of laminar flows, turbulent flows present
small scales fluctuations on top of large scale motion (Fig. 3.2).

The turbulent nature of a flow is quantified by the Reynolds number Re. This num-
ber is the result of the ratio of the intensity of the inertial and viscous terms of the
Navier-Stokes momentum equation (3.1)

Re ∼
|
(

u⃗ · ∇⃗
)

u⃗|
|ν∇2u⃗| ∼ UD

ν
. (3.3)
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0 1/2 1 3/2|u⃗|/Ub

Turbulent case: Re≫ 1Laminar case: Re≪ 1

Figure 3.2: Illustration of differences between a laminar flow and turbu-
lent flow. Colors indicate the norm of planar flow velocity normalized by
the bulk velocity (average velocity). The turbulent case is plotted from
data of the Johns Hopkins Turbulence Database turbulent channel flow
(Li et al., 2008; Perlman et al., 2007).

This number is generally evaluated using a flow velocity scale U and a flow length scale
D. This choice is however not unique and depends on the problem. Contrary to the
particle Reynolds number Rep introduced in Chap. 2, Sec. 2.1, defined at the scale of the
plankter, this Reynolds number characterizes the large scale flow motion, independent
of the plankter movements.

For a large Reynolds number (Re ≫ 1), inertial effects prevail over viscous effects.
In that case, viscous effects are too weak to dissipate large structures directly. This cause
large structures to continuously break down into smaller ones down until the small-
est possible scale is reached, where viscous dissipation occurs. This phenomenon, dis-
cussed below, is characteristic of turbulent flows and is generally called the "inertial
cascade" described below.

3.1.2 | Homogeneous isotropic turbulence
We can characterize the small scales of the flow through the description of the inertial
cascade (Richardson, 1922). This phenomenon is well characterized by the Kolmogorov
theory (Kolmogorov, 1941a,b,c,d). In addition to the single phase and incompressible
properties of the flow, this theory relies on important additional assumptions:

■ The flow is isotropic, meaning the flow must be, on average, the same in every
direction.

■ The flow is homogeneous, meaning the flow must be, on average, the same at any
point in space.
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■ The energy transfer must occurs locally, meaning eddies only interact with other
eddies of similar size.

While turbulent flows are rarely isotropic at large scales, small scales tend towards
isotropy and homogeneity in turbulent flows (Frisch and Kolmogorov, 1995). As a con-
sequence, for large enough Reynolds number flows Re ≫ 1, small enough scales exist
in the flow for which this assumption is valid.

We note the turbulent dissipation rate of the kinetic energy

ϵ = 2ν|S|2, (3.4)

that describes the energy dissipated by the smallest scales of the flow. Due to the en-
ergy conservation, for the process to be stationary, the small scales of the flow must
draw the same amount of energy from larger scales of the flow as the amount of energy
dissipated. Thus as transfers occur locally (assumption previously stated), ϵ then also
corresponds to the energy transfer rate through flow scales and the energy rate injected
in the flow at large scales.

Assuming then ϵ is independent of the flow viscosity ν, one can assume by dimen-
sional analysis that ϵ = u3

l /l for each flow length scale l ≪ L, with L the integral scale.
The integral scale L is defined as the scale for which the energy is injected in the sys-
tem. Note that, flow behavior at integral scale L is highly dependent of the problem
and is not described by this theory. One can then deduce the scale of the flow for which
viscous effects take over inertial effects [the length scale η so that Reη = 1, Eq. (3.3)]

η =
(

ν3

ϵ

)1/4

, (3.5)

from which we can also deduce a time scale and a velocity scale

τη =
√

ν

ϵ
, uη = (νϵ)1/4 . (3.6)

These scales, called the Kolmogorov microscales, describe the scales of the smallest flow
features of turbulence.

While the scale of Kolmogorov η corresponds to the smallest scale of turbulence, dis-
sipation starts to occur at larger scales. The scale for which gradients starts to contribute
to viscous dissipation is characterized by the Taylor microscale (Taylor, 1935)

λ =
√

15
ν

ϵ
urms, (3.7)
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E
(k

)

k = 2π/l

Large scale forcing
(energy injection)

(energy transfer)
Inertial cascade

∝ ϵ2/3k−5/3

kη = 2π/η

Viscouss dissipation
(energy dissipation

into heat)

l

Figure 3.3: Illustration of the dynamics of 3D homogeneous isotropic tur-
bulence. Energy is injected in the system through a large scale forcing.
Turbulent energy is then transferred through the energy cascade to ever
smalle scales until the Kolmogorov scale η is reached: scale for chich vis-
couss dissipation occurs.

with urms =
√
⟨|u⃗|2⟩x,t the root mean square velocity of the flow. Defined by the statistics

of the flow, this length scale is often used to define the Taylor Reynolds number

Reλ =
urmsλ

ν
. (3.8)

This definition removes the ambiguity of the choice of the length scale D and velocity
U of the Reynolds number in Eq (3.3).

The Kolmogorov theory also leads to the description of the spectral energy density
E(k), associated to a wavenumber k, of turbulence in the inertial cascade. The spectral
energy density is defined as

E =
1
2

∫ ∣∣∣∣
du⃗
dk

∣∣∣∣
2

4πk2dk =
∫

E(k)dk, (3.9)

with E the total kinetic energy of the flow, |du⃗/dk| the module of the spatial Fourier
transform of the flow velocity and k = 2π/l the norm of the wavenumber considered.
Based on the same hypothesis of independence of ν and locality, by dimensional analy-
sis, Kolmogorov theory predicts the spectral energy density to follow

E(k) = CKϵ2/3k−5/3. (3.10)
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CK is the Kolmogorov constant, supposedly independent of the flow kinematic viscosity
and the large scale forcing. Experimentally, this constant has been determined to be of
the order of unity, CK ≈ 1.5 (Sreenivasan, 1995). The basics of 3D turbulence dynamics
are summed up in Fig 3.3.

Note that this theory is only valid for 3D turbulence, case of interest here. 2D flows
have different properties (for example due to the absence of vortex stretching) that gen-
erate different dynamics . This causes 2D turbulence to behave rather differently. For
instance, we can observe an inverse energy cascade where energy is transferred to larger
scales than the scale of energy injection.

The description of turbulence by Kolmogorov theory is however limited to this spec-
tral energy density E(k). To model and capture all the complexity of small scale turbu-
lence relevant for planktonic organisms, one must rely on direct numerical simulations.

3.1.3 | Direct Numerical Simulations
3.1.3.1 | Snoopy simulations

In computational fluid dynamics, direct numerical simulations are used to solve a discrete
version of the Navier-Stokes equations [Eq. (2.2)] directly. On the contrary, Reynolds
average numerical simulations or large eddy simulations do not solve turbulence down to
the smallest scales and require a turbulence model (Lesieur, 2014).

To capture the complex small scale dynamics of plankton-turbulence interaction,
we rely on direct numerical simulations to simulate the plankter environment. We use
the pseudo-spectral, open-source solver Snoopy (Lesur and Longaretti, 2007, 2005) to
simulate homogeneous isotropic turbulence. We solved the Navier-Stokes equations for
an incompressible fluid with kinematic viscosity ν, varying from 0.002 to 0.02 (arbitrary
unit), in a tri-periodic domain of size l = 1 (arbitrary unit) with resolution of n× n× n
with n = 64 or n = 128. The flows were made statistically steady thanks to an external
forcing delta-correlated in time and localized in spectral space (3/2 < |⃗k|l < 5/2, with k⃗
the wavevector). These simulated turbulent flows are characterized by their root mean
square velocity urms and their integral length scale L, computed as follows

L =
π

2urms

∫ E(k)
k

dk, (3.11)

where E is the spectral energy density [Eq. (3.9)].
The parameters of the simulations performed with Snoopy are summed up in Tab. 3.1.

Note that capturing the smallest features of the flow requires the spatial and the tem-
poral resolution to be small enough dx = L/n ≲ η and dt ≲ τη . As the size of the Kol-

42



Chapter 3. Surfing on turbulence 3.1. Modeling the turbulent environment

Reλ n kmaxη L/η TL/τη urms/uη

1.6 64 1.9 11 17 0.6
3.6 64 1.2 18 17 1.0
11 128 1.1 35 19 1.8
21 128 0.66 56 22 2.4

Table 3.1: Flow parameters and characteristics of the homogeneous
isotropic turbulence simulations performed using Snoopy.

mogorov scales decrease with the turbulence intensity (η/L ∝ Re−3/2
λ , τη/TL ∝ Re−1

λ ),
the computation time increases with Re5/2

λ .

However, since our approach to compute plankter dynamics is inherently Lagrangian
(cf. Chap. 2, Sec. 2.1), we have to store all of the velocity components over many snap-
shots in order to be able to reconstruct the particle dynamics. As the required memory
size scales as L3TL/η3τη ∝ Re17/8

λ to save all necessary snapshots, limitations in terms of
storage is therefore the main reason behind these low resolutions instead of actual com-
putational costs of the simulations, hence the modest resolution used here (compared to
modern standards). Strictly speaking, for the lowest values of Reλ, the simulations do
not result in actual turbulent flows but rather in 3D chaotic flows. Nevertheless, navi-
gating in these flows remains (1) challenging and (2) relevant for plankton as the do not
always experience very turbulent flows.

3.1.3.2 | Johns Hopkins Turbulence Database

To complete our study and reach a higher Reynolds number Re, we use the Johns Hop-
kins turbulence database (Li et al., 2008; Perlman et al., 2007). This database provides
open access to high quality, high Reynolds number simulated turbulent flows.

The forced homogeneous isotropic case has been generated from a direct numerical
simulation using a pseudo-spectral code. It reproduced the case of isotropic turbulence
forced by keeping constant the total energy of the lowest modes of flow (k ≤ 2). The
problem has been solved on a 10243 periodic grid of dimension 2π × 2π × 2π. The
database gives access to five large-eddy turnover times TL = L/urms, with urms the root
mean square velocity and L the integral scale.

The parameters of the simulation are summed up in Tab. 3.2. More details are pro-
vided at http://turbulence.pha.jhu.edu/Forced_isotropic_turbulence.
aspx. A visualization of the flow is provided in Fig. 3.4.
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2.80 5.6
|u⃗|/urms

Figure 3.4: Visualization of the vertical centerplane velocity field of the
3D forced homogeneous isotropic turbulence simulation of the Johns
Hopkins Turbulence Database. Colors indicate the norm of the flow ve-
locity normalized by the root mean square velocity. The visualisation
is adapted from data of the Johns Hopkins Turbulence Database homo-
geneous isotropic turbulence simulation (Li et al., 2008; Perlman et al.,
2007).

Reλ n kmaxη L/η TL/τη urms/uη

418 1024 1.35 487 46.9 10.4

Table 3.2: Flow parameters and characteristics of the forced homoge-
neous isotropic turbulence simulation of the Johns Hopkins Turbulence
Database (Li et al., 2008; Perlman et al., 2007).
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3.2 | Problem description and surfing strategy
We remind briefly the description of the navigation problem addressed in this study
(see Chap. 2, Sec. 2.1 for details).

We consider a plankter whose task is to go as fast as possible in a target direction,
which is chosen to be ˆ⃗z, the vertical. We model the plankter as an active particle with
position X⃗(t), swimming in direction ˆ⃗p(t) at constant swimming speed Vswim in a flow
velocity field u⃗(⃗x, t) of vorticity ω⃗(⃗x, t) = ∇⃗ × u⃗. The plankter is assumed to be inertia-
less, neutrally buoyant, and small compared to the Kolmogorov scale η [the scale of
the smallest turbulent features (Frisch and Kolmogorov, 1995)]. It actively controls its
orientation by choosing a preferred direction ˆ⃗n. We start by assuming that the swim-
ming direction ˆ⃗p is always aligned with this preferred direction ˆ⃗n (assumption of in-
stantaneous reorientation). We will lift this assumption and examine the effects of a
finite reorientation time below. Under these assumptions, the equations of motion are

dX⃗
dt

= u⃗(X⃗, t) + Vswim ˆ⃗p, (3.12a)

ˆ⃗p(t) = ˆ⃗n(t). (3.12b)

We assume that the plankter senses the local flow velocity gradient ∇⃗u⃗ and the
vertical direction ˆ⃗z. It responds to this information by choosing its preferred direction
ˆ⃗n(∇⃗u⃗, ˆ⃗z), without any memory.

The metric used to quantify the performance of the plankters is the effective velocity,
Veff., defined as the long-time average velocity along ˆ⃗z (Fig. 2.3).

Veff. = lim
T→∞

X⃗(T)− X⃗(0)
T

· ˆ⃗z. (3.13)

As derived in Chap. 2, Sec. 2.2.1, this navigation problem has an approximate solu-
tion based on a local optimization. This solution, called the surfing strategy, is formu-
lated as follows

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf =

[
exp

(
τ∇⃗u⃗

)]T
· ˆ⃗z, (3.14)

with ˆ⃗nsurf the chosen preferred direction, τ the sole free parameter of the surfing strategy,
∇⃗u⃗ the measured flow velocity gradients and ˆ⃗z the target direction.

To assess the relevance of this strategy to real life planktonic organisms and deter-
mine its possible benefit, we need to demonstrate its efficiency in biologically relevant
environments such as turbulent flows. To this end, we first evaluate the performance
of surfers in homogeneous isotropic turbulence, compared to bottom-heavy swimmers
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that are always aligned with the vertical. We thus compare ˆ⃗p = ˆ⃗nsurf [Eq. (3.14)] for
surfers and ˆ⃗p = ˆ⃗nb−h = ˆ⃗z for bottom-heavy swimmers in Eq. (3.12). Then, based on
the previous observation that surfer behave differently in pure strain than in pure vor-
tices (Chap. 2, Sec. 2.2.3), we push the analysis further to assess which component of
the flow contributes the most to surfing performance and attempt to estimate surfing
performance based on this analysis.

3.3 | Evaluation of surfing performance
In the following, the performance of surfers is assessed in homogeneous isotropic tur-
bulence. Despite turbulence rarely being rigorously isotropic and homogeneous in the
oceans, we expect nevertheless the insight gained in this model flow to be of great inter-
est due to the universality of turbulence at small scales (Frisch and Kolmogorov, 1995).
Homogeneous isotropic turbulence is a simplification of real turbulent flows but still
captures most of their complexity.

To assess their navigation performance, surfers are simulated in numerical simu-
lations of turbulence. Initially placed randomly in the virtual domain, the trajectories
of plankters are integrated over time (illustrated in Fig. 3.5). Due to the complexity of
the expression of the flow velocity field u⃗ in 3D turbulence, the equations of motion
Eq. (3.12) must be integrated numerically. To this end we use our own in-house open-
source code Sheld0n1. The code can be setup to integrate plankter trajectories by auto-
matically querying various flow fields of John Hopkins turbulence database at plank-
ton positions through simulations. It is also able to use local flow databases generated
from Snoopy simulations (or from any fluid solver with the same output format) by in-
terpolating the flow field at plankter positions. In this study, we used a fourth-order
Lagrange polynomial interpolation to integrate trajectories in our own flow databases
while a sixth-order interpolation is performed on query when using the Johns Hopkins
turbulence database.

Unless mentioned otherwise, the performance is evaluated using Eq. (2.15) after a
time T larger than five large eddy turnover times T ≳ 5TL, and averaged over N plank-
ton with random initial positions. This average is noted ⟨·⟩N . The number of plankters
N varies from 10 for Vswim = 20uη to 16384 for Vswim = uη/2, so that uncertainties on
performance are independent of swimming velocity Vswim.

The vertical migration performance of plankters is then evaluated as the effective ve-
locity, Veff. [Eq. (3.22)], evaluated at the end of the time span available (T ≈ 5TL). Plank-

1Our in-house code is available at http://www.github.com/C0PEP0D/sheld0n.
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surfer

bottom-heavy
passive

z0

Figure 3.5: Visualization of 3D trajectories obtained in the simulations of
plankters migrating vertically in turbulence. The gray line shows the
depth of the initial positions and circles show the average final verti-
cal position for the same turbulent flow. For the same simulation time,
surfers migrated further upwards in average compared to bottom-heavy
swimmers.

ter performance is evaluated in simulations of variable turbulence intensity through-
out the study. The simulations are referred to using the value of their corresponding
Reynolds number Reλ (see Sec. 3.1 and Tabs. 3.1 and 3.2 for more details).

We plot in Fig. 3.6 the maximal performance of surfers, evaluated as the effective
vertical velocity Veff. for the optimal value of τ, compared to that of bottom-heavy swim-
mers in two simulations of turbulence (Reλ = 418 and Reλ = 11). For the most turbulent
case, we show that surfers can reach an effective velocity as large as twice their swim-
ming speed (Veff. ≈ 2Vswim) when Vswim ≲ uη . Therefore, they systematically outper-
form bottom-heavy swimmers, for which turbulence only acts as a random noise of zero
mean and whose performance is Veff. = Vswim. In contrast, surfers exploit the turbulent
flow by biasing the sampling of vertical flow velocities.

This bias is illustrated in Fig. 3.7(a), where we show the distribution of the vertical
velocity component of the turbulent flow sampled by surfers, bottom-heavy swimmers,
and passive particles. One can see that the Gaussian distribution of the vertical compo-
nent is not centered on zero but shifted towards positive values for surfers. The positive
shift is approximately equal to the Kolmogorov velocity scale uη . The velocity being less
widely distributed in weak turbulence (Reλ = 11), this effect is even more apparent in
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Figure 3.6: The surfing strategy may double migration speed in turbu-
lence. Effective upward velocity [Veff., Eq. (2.15)] as a function of the
swimming velocity (Vswim) for a surfer ( ˆ⃗p = ˆ⃗nsurf with optimal time hori-
zon τ ≈ τ∗) and for a bottom-heavy swimmer that always swims up-
wards ( ˆ⃗p = ˆ⃗nb−h = ˆ⃗z) for (a) Reλ = 418 and (b) Reλ = 11. Velocities are
normalized either by the Kolmogorov velocity [uη , Eq. (3.6)] (bottom x-
axis) or by the root-mean-square velocity urms (top x-axis). The same data
is presented in (c) and (d), but effective upward velocity is normalized by
the swimming velocity. The solid line represents Veff. = Vswim. Shaded ar-
eas correspond to 95% confidence intervals.

48



Chapter 3. Surfing on turbulence 3.3. Evaluation of surfing performance

(a): Reλ = 418

p(
U

=
u)

(b): Reλ = 418

(c): Reλ = 11

u⃗z/uη

p(
U

=
u)

(d): Reλ = 11

uy/uη

−30 −15 0 15 3010−3

10−2

10−1

−30 −15 0 15 30

−4 −2 0 2 4
10−2

10−1

100

−4 −2 0 2 4

passive bottom-heavy surfer

Figure 3.7: The surfing strategy induces preferential sampling of the flow
velocity. Probability density function of the vertical flow velocity sam-
pled along trajectories of passives particles, bottom-heavy swimmers and
surfers. The swimming speed of simulated plankters is set to Vswim = uη

and the surfing parameter is set to its optimal value τ ≈ τ∗ (τ = 5τη for
Reλ = 418 and τ = 2τη for Reλ = 11).

Fig. 3.7(c).

On the contrary, as illustrated in Fig. 3.7(b) and Fig. 3.7(d), the horizontal compo-
nent of the sampled flow velocity is mainly unchanged. We still notice a slightly wider
spreading of the sampled horizontal flow velocity distribution for surfers in Fig. 3.7(d).
As noted in Chap. 2, Sec. 2.2.2, surfers also seek to exploit horizontal currents to reach
vertical ones faster. This would lead to a slight accumulation of surfers at the maxima
of horizontal velocity, hence the wider distribution of the sampled horizontal velocity.
This shows that sensing flow gradients is beneficial for navigation in turbulence and
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Figure 3.8: The surfing strategy induces preferential sampling of the flow
velocity gradients. Probability density function of the flow velocity gra-
dients components, for bottom-heavy swimmers and surfers. The flow
simulation corresponds to the case Reλ = 11. The swimming speed of
simulated plankters is set to Vswim = uη and the surfing parameter is set
to its optimal value τ ≈ τ∗ (τ = 2τη).

that surfing allows plankton to exploit this information in order to sample beneficial
currents.

The preferential sampling of the vertical flow velocity is the desired effect. However,
surfing also causes weak yet significant preferential sampling of the gradients (Fig. 3.8).
First we observe narrower distributions of the horizontal gradients of uz [Fig. 3.8(g,h)].
As maxima of the vertical velocity are located where its gradient is minimum, the pref-
erential sampling of the vertical velocity leads to the preferential sampling of smaller
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values of ∂uz/∂x and ∂uz/∂y. In a similar way, we also note a slight preferential sam-
pling of smaller values of ∂ux/∂y [Fig. 3.8(b)] and ∂uy/∂x [Fig. 3.8(d)] that result directly
of the slight preferential sampling of high horizontal velocity observable in Fig. 3.7(d).

We also observe a positive shift of the distributions of ∂ux/∂x [Fig. 3.8(a)] and ∂uy/∂y
[Fig. 3.8(e)] that indicates a preferential sampling. To explain these shifts, one may con-
sider the behavior of the surfing strategy in a linear symmetric flow (component of
the flow responsible for compression and extension axes). As described in Chap. 2,
Sec. 2.2.3.1, in such a flow, surfers swim horizontally to exploit the maximal extension
axis of the flow by tilting in its direction. This preferential swimming direction in the
horizontal plane certainly leads to this preferential sampling of ∂ux/∂x [Fig. 3.8(a)] and
∂uy/∂y [Fig. 3.8(e)]. Due to incompressibility, the vertical compression axis is also pref-
erentially sampled causing a negative shift of ∂uz/∂z [Fig. 3.8(i)].

Overall, the surfing behavior may double migration speed in turbulence. This ef-
fect is explained by the preferential sampling of upward vertical flow velocity that also
causes a weak preferential sampling of the velocity gradients.

3.3.1 | Surfing time horizon τ

We recall that the surfing strategy depends on a free parameter: the time horizon τ.
All previous results correspond to the surfing performance of surfers using the optimal
horizon time, noted τ∗. This value has been determined numerically: for a given swim-
ming speed Vswim, we looked for the value that maximizes performance when τ varied
in the range [0, 8τη] [Fig. 3.9]. For all swimming velocities Vswim, the performance Veff.

has a clear maximum at τ∗(Vswim) = O(τη). When τ ≪ τη , surfers do not use gradient
sensing and swim upwards [Eq. (3.14)]. Acting as bottom-heavy swimmers, their per-
formance is Veff. = Vswim. When τ ≫ τη , the steady linear approximation of the flow,
given in Eq. (2.16), breaks down and the planned route becomes irrelevant. The optimal
value τ∗ can thus be interpreted as the duration over which the steady linear approxi-
mation of the flow is reasonable. For Vswim = uη , the optimal time horizon is τ∗ ≈ 4τη

for Reλ = 418 and τ∗ ≈ 3τη for Reλ = 11. Note the similitude of these results with those
obtained in Taylor-Green vortices (Chap. 2, Sec. 2.3.1, Fig. 2.13). A similar phenomena
occurs here but rather than surfing on Taylor-Green cells, plankters surf on Kolmogorov
eddies.

Despite Fig. 3.9(b) showing a weak Reynolds dependence of both surfing perfor-
mance and the value of the optimal parameter τ∗, we expect our conclusions to be qual-
itatively independent of Reλ, because of the universality of turbulence at small scale
in the limit of large Reλ (Frisch and Kolmogorov, 1995). This assumption is discussed
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Figure 3.9: Influence of the time horizon on the surfing strategy. Ef-
fect of the time horizon [τ, Eq. (3.14)] on the effective velocity [Veff.,
Eq. (3.22)], for different swimming velocities Vswim and Reynolds num-
bers Reλ. Shaded area represents the 95% confidence interval. Solid lines
represent a fit with Chebyshev polynomials of degree 3.

below.
To characterize the dependence of the time evolution of the flow sampled by plank-

ters, we plot in Fig. 3.10(a) the square root of the module of the temporal Fourier trans-
form I(ω f ) of Tr([∇⃗u⃗]2), an invariant of the flow velocity gradients

I(ω f ) =

√∣∣∣∣
d

dω f
Tr([∇⃗u⃗]2)

∣∣∣∣, (3.15)

measured along trajectories of plankters with various swimming velocities. The sym-
bol ω f denotes the temporal pulsation associated to the module I(ω f ). The derivative
d/dω f then denotes that it is the Fourier transform of the invariant that is considered
(independent on time but dependant on ω f ). As expected, the intensity I(ω f ) shifts from
low to high frequencies as the swimming velocity increases.

Supported by this observation, we hypothesize that the optimal time horizon τ∗

scales as a correlation time τcorr.. We define τcorr. as the average of the period 2π/ω f ,
weighted by I(ω f ) (averaged over all trajectories of plankters: ⟨I(ω f )⟩N)

τcorr.(Vswim) =

∫ 〈
I(ω f )

〉
N (2π/ω f ) dω f∫ 〈

I(ω f )
〉

N dω f
. (3.16)

Figure 3.10(b) shows that, up to a multiplicative constant, τcorr. is a good predictor of
the optimal time horizon with τ∗ ≈ 0.55τcorr..
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Figure 3.10: Influence of the swimming speed on the time correlations
of the flow sampled by plankters. (a) Invariant intensity [I, Eq. (3.15)]
as a function of the pulsation ω f for various plankter swimming speed.
(b) Correlation time τcorr., defined in Eq. (3.16), and optimal time horizon
τ∗ as a function of swimming velocity (τ∗ is evaluated using the fitted
polynomial). The optimal time horizon τ∗ is compared to the correlation
time τcorr. [Eq. (3.16)] for various definitions of I(ω f ) (Tab. 3.3) and to the
model given by Eq. (3.18). The simulation case is Reλ = 418.

I(ω f ) Ib(ω f ) Ic(ω f )√∣∣∣∣
d

dω f
Tr
[
∇⃗u⃗
]2
∣∣∣∣

∣∣∣∣
d

dω f

ˆ⃗z · ∇⃗u⃗ · ˆ⃗z
∣∣∣∣

∣∣∣∣
d

dω f
|∇⃗u⃗ · ˆ⃗z|

∣∣∣∣

Table 3.3: Various possible definitions of I(ω f ) based on different invari-
ants of the flow velocity gradients.

The choice of I(ω f ) in Eq. (3.16) is not unique, any invariant of the gradient matrix
could be used. Figure 3.10(b) shows the differences obtained using the alternative def-
initions of I(ω f ) given in Tab. 3.3. While we observe differences on τcorr. for alternative
invariants, τ∗ is always approximately proportional to any definition of the correlation
time.

To attempt to capture the dependence of the optimal time horizon τ∗ ∝ τcorr. on
swimming velocity Vswim we start from the observation that, passing faster through the
flow, fast micro-swimmers increase the temporal derivative of the velocity gradients
they measure d∇⃗u⃗/dt. The correlation of the flow sampled, and thus τ∗, should then

53



Chapter 3. Surfing on turbulence 3.3. Evaluation of surfing performance

scale as τ∗ ∝ |∇⃗u⃗|/|d∇⃗u⃗/dt|. We expect the evolution of this lagrangian measure to be
controlled by a viscous diffusive flux and an advection flux controlled by the swimming
speed. The time scale of the diffusion process should scale with τη while the advection
process is controlled by Vswim|∇⃗(∇⃗u⃗)|. Assuming ∇⃗u⃗ ∝ 1/τη and ∇⃗ ∝ 1/η, |d(∇⃗u⃗)T/dt|
should then scale as follows

∣∣∣∣∣
d∇⃗u⃗

dt

∣∣∣∣∣ ∝
1
τ2

η

+ αswim
Vswim

ητη
=

1
τ2

η

(
1 + αswim

Vswim

uη

)
(3.17)

with αswim a dimensionless parameter that characterises the importance of the swim-
ming advection process over the viscous diffusion. Note that this model does not ac-
count for any of the complex spatial and temporal correlations prescribed by turbulence.
Due to the apparent complexity it would imply, we favor simplicity here. Note well
more advanced models exist that describe the temporal correlations of the Lagrangian
gradient tensor (Chevillard and Meneveau, 2011; Fang et al., 2015; Yu and Meneveau,
2010a). However, these models do not account for an active swimming velocity Vswim.
The optimal time horizon should then scale as

τ∗ ∝∼
τη

1 + αswim(Vswim/uη)
. (3.18)

The value of αswim ≈ 0.08 and the prefactor 4.368 are fitted to our data. Plotted in
Fig. 3.10(b), this model provides a fair prediction in the range of parameters explored
here but the simplicity of the model fails to capture all features observed: the concav-
ity of the function for small swimming velocities for instance. Therefore models that
account for more effects, such as the complex spatial distribution of flow features in
turbulence, should be considered in the future.

Overall, the optimal horizon time τ∗ has then two properties: (1) τ∗ is always of the
order of the Kolmogorov time scale and (2) increasing the swimming velocity tends to
reduce τ∗ (due to shorter Lagrangian decorrelation time induced by Doppler-shifting of
frequencies).

3.3.2 | Influence of the Reynolds number Reλ

Oceanic turbulence intensity varies widely with ocean regions and weather (Fuchs and
Gerbi, 2016). Thus, plankton may experience very different Reynolds numbers depend-
ing on their habitat. While for large Reynolds numbers (Reλ ≫ 1), the universality of
turbulence at small scales ensures weak dependence of performance on the Reynolds
number (Frisch and Kolmogorov, 1995), this is not the case for small Reynolds numbers
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Figure 3.11: Surfing performance increases with the Reynolds number
Reλ. Effective velocity [Veff., Eq. (3.22)] as function of the surfing time
horizon τ, for various Reynolds numbers Reλ. The swimming speed of
simulated plankters is set to Vswim = uη . Shaded area represents the 95%
confidence interval. Evaluated for Vswim = uη .

Reλ ≲ 1. If there is no mean flow ⟨u⃗⟩x,t = 0⃗, temporal and spatial flow fluctuations de-
crease directly with Reλ. Surfing performance is then expected to drop as Reλ decreases,
down to the performance of bottom-heavy swimmers for Reλ = 0 for which the fluid
would be quiescent.

To assess the effect of the Reynolds number on performance, surfers with swimming
speed Vswim = uη , are simulated in flows of various Reλ (Fig. 3.11). As expected, starting
from a low (yet significant) maximal performance of +8% at Reλ = 1.4, surfing per-
formance increases with Reλ for low turbulence levels and seems to plateau for larger
values of Reλ. Furthermore, we observe that the Reynolds number Reλ has little influ-
ence on the optimal surfing time horizon τ∗ that remains of the order of τη : it ranges
from τ∗ ≈ τη for Reλ = 1.4 to τ∗ ≈ 4τη for Reλ = 418. We note particularly that very
little differences are observed between our most extreme simulations with the Snoopy
solver (Reλ = 21) and the Johns Hopkins turbulence databases (Reλ = 418) in regard of
the large Reynolds number difference.
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3.4 | Estimating surfing performance
Now that we demonstrated the surfing strategy to be effective, we look for a proper
quantification of surfing performance. To do so, we push further our analysis to deter-
mine the role of the symmetric component of the flow and of the skew symmetric one.
This lets us first assess which component of the flow is responsible for most of the surf-
ing performance. Build upon this assessment, we then estimate surfing performance.
Based on the simplified formulation of the surfing strategy in both a simple vortex flow
and a pure strain flow (cf. Chap. 2, Sec. 2.2.3) we then estimate surfing performance.

3.4.1 | Partial surfing performance
Based on the observation that the surfing strategy behaves differently in a vortex flow
than in a pure strain flow, we can expect that different components of the flow con-
tributes differently to surfing performance. In linear flows (cf. Chap. 2, Sec. 2.2.3), when
the flow corresponds to pure strain (symmetric), ∇⃗u⃗ = S, surfers perform only slightly
better than bottom-heavy swimmers. On the contrary, in a vortex flow (skew symmet-
ric), ∇⃗u⃗ = Ω, bottom-heavy swimmers get trapped into the vortex. Surfers are however
able to escape from it and perform much better. Based on the observation made for
linear flows, we already expect the rotation rate Ω to contribute more to surfing perfor-
mance. But how does these observations translate to a turbulent flow? To answer this
question, the surfing strategy can be adapted by directly replacing the gradients ∇⃗u⃗ by
one of these components in Eq. (3.14).

3.4.1.1 | Performance of symmetric surfers: S

Starting with the strain rate tensor S = sym ∇⃗u⃗, surfing can be adapted

ˆ⃗nsurf,S =
n⃗surf,S
|⃗nsurf,S|

, with n⃗surf,S = [exp (τ S)]T · ˆ⃗z. (3.19)

This limited strategy is referred to as symmetric surfing below.
In Fig. 3.12, we show that even though performance drops drastically compared to

surfers using the full velocity gradients (for which ⟨Veff.⟩N (τ∗) ≈ 2Vswim), such limited
surfers are still able to perform 25% better than bottom-heavy swimmers for both the
turbulence intensities presented. Note how the optimal surfing parameter τ∗ for which
surfing performance is maximal is shifted towards larger values compared to a fully
informed surfer. For example, in the case Reλ = 418, τ∗S ≈ 7τη for symmetric surfers
whereas τ∗ ≈ 4τη for fully informed surfers. Moreover, for τ ≳ τη the dependence on
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Figure 3.12: The use of the rotation rate tensor Ω is enough to capture
most of surfing performance. Performance of surfers compared to surfers
limited to the measure of components of the velocity gradients tensor.
The swimming speed of plankters is set to Vswim = uη . Shaded area rep-
resents the 95% confidence interval.

the free parameter τ is weak: for the case Reλ = 418, performance does not vary much
from τ ≈ 2τη to τ ≈ 15τη . Similarly for Reλ = 11, performance of symmetric surfers
is weakly dependant of τ from τ ≈ 2τη to τ ≈ 8τη . An explanation for this effect is
provided below.

This shows that even limited to the measure of the strain rate tensor, the flow re-
mains exploitable. Less sensitive to τ, the parametrization of the surfing strategy even
becomes easier. However, the overall performance is much smaller than the fully in-
formed surfing, further highlighting the importance of the rotation rate component of
the flow to navigate.

3.4.1.2 | Performance of skew symmetric surfers: Ω

Now investigating the impact of the rotation rate Ω = skew ∇⃗u⃗, the surfing direction
can be adapted to

ˆ⃗nsurf,Ω =
n⃗surf,Ω
|⃗nsurf,Ω|

, with n⃗surf,Ω = [exp (τ Ω)]T · ˆ⃗z. (3.20)

This is referred to skew-symmetric surfing below. Surfers using the rotational part of the
velocity gradients are almost performing as well as fully-informed surfers: for Reλ =
418, ⟨Veff.,Ω⟩N(τ∗) ≈ 1.7Vswim (Fig. 3.12). However, contrary to symmetric surfers, per-
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formance drastically drops when the surfing time horizon τ exceeds its optimal value
for wich performance is maximal. For Reλ = 11, large values of τ ≳ 5τη can lead to poor
performance to the point where ⟨Veff.,b−h⟩N < Vswim. Such surfers would be better off
not reacting to the flow at all.

This shows that most of the surfing performance can be captured by reacting to the
rotation rate tensor (flow vorticity). However in that case, the choice of the surfing time
horizon τ is critical as it strongly influences performance.

3.5 | Performance estimation
We now look for an estimate of surfing performance. As it is shown below, the previ-
ously described partial surfing behaviors enable to simplify the expression of the surfing
directions. We first account for these simplifications to deduce models of surfing per-
formance of symmetric surfers and skew-symmetric surfers. We then build upon these
models to estimate the performance of fully informed surfers.

3.5.0.1 | The strain rate tensor: S

In the following, we look for an estimate of symmetric surfing performance as a function
of τ. We remind the reader that, in a linear flow, the position of a swimmer can be
integrated as follows (cf. Chap. 2, Sec. 2.2.1)

X⃗(T) =
[
exp

(
T∇⃗u⃗

)
− Id

]
· ∇⃗u⃗−1 ·

[
u⃗ + ∇⃗u⃗−1 ·

(
∂u⃗
∂t

) ]

− T∇⃗u⃗−1 ·
(

∂u⃗
∂t

)
+ Vswim

∫ T

0
exp

[
(T − t)∇⃗u⃗

]
· ˆ⃗n(t) dt. (3.21)

We model the flow as a succession of random linear flows that do not change over a time
T. Then averaging over all possible values of u⃗ and ∂u⃗/∂t, the last term is the only term
that does not cancel out. Based on this hypothesis, the expected effective swimming
velocity can be estimated as

⟨Veff.⟩u⃗,∂u⃗/∂t = Vswim

∫∫
p(∇⃗u⃗, τ∇⃗u⃗)

([
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗n(τ)

]
· ˆ⃗z
)

d∇⃗u⃗ dτ∇⃗u⃗, (3.22)

with p(∇⃗u⃗, τ∇⃗u⃗) the joint probability density function of the gradient tensor ∇⃗u⃗ and the
duration τ∇⃗u⃗ = T − t corresponding to the time left before ∇⃗u⃗ changes.

We now want to model the term [exp(τ∇⃗u⃗∇⃗u⃗) · ˆ⃗n(τ)] · ˆ⃗z in the case ˆ⃗n = ˆ⃗nsurf,S. We fur-
ther assume that the symmetric surfing direction ˆ⃗nsurf,S is independent of the rotational
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part of the flow velocity gradients Ω. In practice, both parts of the symmetric decom-
position of the gradient tensor are known to be correlated (Buaria and Pumir, 2022) but
here our ambition is to obtain a tractable model of surfing performance.

After averaging over possible values of Ω, the exponential term is expected to be
proportional to its value in a pure strain flow

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf,S(τ)

]
· ˆ⃗z
〉

Ω
∝
[
exp (τSS) · ˆ⃗nsurf,S(τ)

]
· ˆ⃗z, (3.23)

where τS is the time left before S changes. We can then write everything in the eigen
orthonormal basis of S = sym ∇⃗u⃗, noted ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ) with its respective eigenvalues α ≥
β ≥ γ (We have γ = −(α + β) ≤ 0 due to flow incompressibility). Symmetric surfing can
then be formulated as follows

ˆ⃗nsurf,S(τ) =
eατzα

ˆ⃗eα + eβτzβ
ˆ⃗eβ + e−(α+β)τzγ

ˆ⃗eγ√
e2ατz2

α + e2βτz2
β + e−2(α+β)τz2

γ

, (3.24)

with zα = ˆ⃗z · ˆ⃗eα, zβ = ˆ⃗z · ˆ⃗eβ and zγ = ˆ⃗z · ˆ⃗eγ. Then injecting Eq. (3.24) into Eq. (3.23), we
obtain the following proportionality relation

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf,S(τ)

]
· ˆ⃗z
〉

Ω
∝

eα(τS+τ)z2
α + eβ(τS+τ)z2

β + e−(α+β)(τS+τ)z2
γ√

e2ατz2
α + e2βτz2

β + e−2(α+β)τz2
γ

(3.25)

In turbulence, the eigenvalue β is on average positive (Lund and Rogers, 1994), thus
ˆ⃗eβ is most likely an extension axis. Furthermore, the most likely state is δ ≡ α = β and
γ = −2δ. Evaluating ⟨[exp(τ∇⃗u⃗S) · ˆ⃗nsurf,S(τ)] · ˆ⃗z⟩Ω in this mostly likely state reduces the
previous expression to

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf,S(τ)

]
· ˆ⃗z
〉

Ω
∝

eδ(τS+τ)
[
z2

α + z2
β

]
+ e−2δ(τS+τ)z2

γ√
e2δτ

[
z2

α + z2
β

]
+ e−4δτz2

γ

(3.26)

To continue the analysis, one needs to make yet another assumption: e−4δτ ≪ e2δτ.
This assumption reduces the model to large enough values of the surfing time horizon,
δτ ≫ 1. In this case, the expression further simplifies to

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf,S(τ)

]
· ˆ⃗z
〉

Ω
∝

eδτS

[
z2

α + z2
β

]
+ e−2δτS−3δτz2

γ√[
z2

α + z2
β

] (3.27)
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One may then average this value over all possible orientations of the target direction ˆ⃗z
in the basis ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ). Writing ˆ⃗z in spherical coordinates, we obtain

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf,S(τ)

]
· ˆ⃗z
〉

Ω, ˆ⃗z
∝

1
4π

∫ 2π

0

∫ π

0

(
eδτS sin2 θ + e−2δτS−3δτ cos2 θ

)
dθ dϕ

(3.28)

∝
π

4

(
eδτS + e−2δτS−3δτ

)
(3.29)

Coming back to the estimation of the effective vertical velocity, if we inject this expres-
sion into Eq. (3.22), we obtain

〈
Veff.,S

〉
u⃗,∂u⃗/∂t, ˆ⃗z

∝ Vswim
π

4

∫∫
p(δ, τS)

(
eδτS + e−2δτS−3δτ

)
dδ dτS, (3.30)

where δ ≈ |∇⃗u⃗|/2 is a characteristic stretching value of the flow sampled by the mi-
croswimmers and τS is the duration for which a specific gradient can be considered
constant, linked to the correlation time of the measured velocity gradient tensor.

The joint probability density function p(δ, τS) is not obvious to model. First, δ and
τS might be correlated. Indeed, one can actually expect τS to decrease when δ increase
as the local dissipation increases [cf. the Navier-Stokes equations, Eq. (2.2)]. Then the
statistics of the velocity gradient tensor are known to display complex non-Gaussian dy-
namics in turbulence (Li and Meneveau, 2005). Finally, the distribution of the stretching
value δ might be affected by the surfer behavior.

In practice, one could evaluate the probability density function p(δ, τS) numerically
in simulations. But, given the already strong assumptions made previously, we look for
the simplest model that would capture an estimation of performance. Thus, constant
characteristic values of δ and τS are considered. Both values then become free parame-
ters of our model. Even though these parameters are free in practice, these are linked to
the properties of the flow sampled by swimmers: δ characterizes the intensity of flow
stretching, while τS characterizes the time correlation of measured velocity gradient ten-
sor. Under this assumption, symmetric surfing performance follows

〈
Veff.,S

〉
u⃗,∂u⃗/∂t, ˆ⃗z

∝ Vswim
π

4

(
eδτS + e−2δτS−3δτ

)
. (3.31)

Now, the proportionality coefficient remains to be evaluated. To this end, we use
the fact that for τ = 0, the bottom-heavy strategy is retrieved ˆ⃗nsurf,S(0) = ˆ⃗nb−h = ˆ⃗z. If
continuous reorientation is assumed, the swimming direction of a bottom-heavy swim-
mer is completely uncorrelated with the flow, meaning

〈
Vb−h

eff.

〉
u⃗,∂u⃗/∂t, ˆ⃗z

= Vswim. Using

the same approach, one may evaluate the surfing performance as a function of δ and
τS. Note however that Eq. (3.31) is only valid for δτ ≫ 1. To evaluate ⟨Veff.,b−h⟩u⃗,∂u⃗/∂t, ˆ⃗z,

60



Chapter 3. Surfing on turbulence 3.5. Performance estimation

one needs to start back from Eq. (3.26). Evaluating for τ = 0 and similarly averaging all
possible orientations of ˆ⃗z, we obtain

⟨Veff.,b−h⟩u⃗,∂u⃗/∂t, ˆ⃗z ∝
Vswim

3

[
2eδτS + e−2δτS

]
(3.32)

Now, if the rotational (skew symmetric) part of the flow, Ω = skew ∇⃗u⃗, impacts
bottom-heavy swimmers and symmetric surfers in the same way, the proportionality
coefficient should be the same in Eqs. (3.31) and (3.32). As surfing may induce pref-
erential sampling of Ω, this assumption is not obvious but as shown in Sec. 3.3, this
preferential sampling is weak. This leads to this final estimation of performance for
symmetric surfers

〈
Veff.,S

〉
u⃗,∂u⃗/∂t, ˆ⃗z

≈ Vswim
3π

4
1 + e−3δ(τS+τ)

2 + e−3δτS
, (3.33)

This model is shown in Figs. 3.13(a) with δ ≈ 0.02/τη and τS ≈ 15τη . It shows good
agreement with the simulations results for symmetric surfers performance in the limit
δτ ≫ 1.

3.5.0.2 | Rotation rate tensor: Ω

In the case of skew-symmetric surfers, the arguments are similar to the symmetric case.
Starting from Eq. (3.22), we look for an estimate of the same exponential in the case
ˆ⃗n = ˆ⃗nsurf,Ω.

Similarly to the symmetric case, one may average over all possible values of the pure
strain part, S, to obtain the following proportionality relation

〈[
exp

(
τ∇⃗u⃗ ∇⃗u⃗

)
· ˆ⃗nsurf,Ω(τ)

]
· ˆ⃗z
〉

S
∝
[
exp (τΩΩ) · ˆ⃗nsurf,Ω(τ)

]
· ˆ⃗z, (3.34)

where τΩ corresponds the time left before Ω changes. We can then write our equations
in a basis, noted ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ), so that ˆ⃗eβ is aligned with the vorticity. In this basis, the
effective velocity can be expressed as

〈[
exp

(
τ∇⃗u⃗ ∇⃗u⃗

)
· ˆ⃗nsurf,Ω(τ)

]
· ˆ⃗z
〉

S
∝ Vswim cos

(ω

2
[τΩ − τ]

) (
z2

α + z2
γ

)
+ z2

β (3.35)

with ω the norm of the flow vorticity. If a constant vorticity norm ω is considered,
this expression is directly linked to the estimated effective velocity Veff.,Ω. Moreover,
averaging over all possible orientations of the direction ˆ⃗z leads to the expression

〈
Veff.,Ω

〉
∝

Vswim

3

[
2 cos

(ω

2
[τΩ − τ]

)
+ 1
]

. (3.36)
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Similarly to the symmetric case, the proportionality coefficient can be found by evaluat-
ing this expression for τ = 0 (corresponding to bottom-heavy swimmers)

⟨Veff.,b−h⟩ ∝
Vswim

3

[
2 cos

(ω

2
τΩ

)
+ 1
]

(3.37)

This leads to the expression of performance for skew-symmetric surfers

〈
Veff.,Ω

〉
≈ Vswim

2 cos (ω[τΩ − τ]/2) + 1
2 cos (ωτΩ/2) + 1

(3.38)

This model is plotted in Figs. 3.13(a) with τΩ ≈ 4.25τη and ω ≈ 0.65/τη . While this
model captures fairly well the qualitative behavior of performance for small values of
τ however its oscillating nature differs from the actual observed performance of skew
symmetric surfers.

To overcome the simplicity of this model, one may consider an non-trivial probabil-
ity density function of the vorticity norm ω

〈
Veff.,Ω

〉
∝

Vswim

3

∫
p(ω)

[
2 cos

(ω

2
[τΩ − τ]

)
+ 1
]

dω. (3.39)

Again, to obtain the simplest model possible, we consider the time τΩ constant and in-
dependent of ω, even though this is not expected to be as simple in practice. In addition,
the distribution p(ω) of vorticity is then chosen to be Gaussian. In practice, the distri-
bution of vorticity is known for its non-Gaussian properties (Meneveau, 2011) but this
assumption ensures tractability. This assumption then leads to

〈
Veff.,Ω

〉
∝

Vswim

3

[
2 exp

(
−1

8
[τΩ − τ]2σ2

ω

)
+ 1
]

, (3.40)

with σω the standard deviation of the vorticity.
Again, this expression can be evaluated for τ = 0, corresponding to bottom-heavy

swimmers, and effective velocity of skew-symmetric surfers is estimated to be

〈
Veff.,Ω

〉
≈ Vswim

2 exp
(
−[τΩ − τ]2σ2

ω/8
)

+ 1
2 exp (−τΩ

2σ2
ω/8) + 1

, (3.41)

where τΩ ≈ 4.25τη and σω ≈ 0.65/τη are fitted on the numerical data (Fig. 3.13(a)). The
model could certainly be improved further by using a better choice of the probability
density function.

3.5.0.3 | Full velocity gradient tensor: ∇⃗u⃗

Building upon the previous models, we now look for an estimate performance in the
case a fully-informed surfer. To this end, we restrict our analysis to a particular case: we
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Figure 3.13: The influence of parameters on surfing performance are not
yet fully understood. Performance of surfers compared to surfers limited
to the measure of components of the velocity gradients tensor. Perfor-
mance is also compared to the estimators derived in Sec.3.5. The swim-
ming speed of plankters is set to Vswim = uη . Shaded area represents the
95% confidence interval.

assume that vorticity is aligned with the second eigenvector ˆ⃗eβ of the gradient tensor ∇⃗u⃗
and that the eigenvalues of S = sym ∇⃗u⃗ are δ, δ and−2δ. This preferential alignment is a
property of 3D turbulence, partly due to vortex stretching (Ashurst et al., 1987; Gulitski
et al., 2007; Tsinober et al., 1992). With this assumption the gradient tensor, ∇⃗u⃗, has the
form

∇⃗u⃗ ≈




δ 0 ω

0 δ 0
−ω 0 −2δ


 , (3.42)

in the basis ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ) formed by the normed eigenvectors of S, with ω the norm of
vorticity. The basis is chosen so that ˆ⃗eβ · ω⃗ > 0.

As in the previous models, we look for an estimation of performance as a function of
the time horizon τ. We start by an estimation of the term [exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf(τ)] · ˆ⃗z. To

compute this estimation we use the following approximation for the matrix exponential

exp
(

τΩ∇⃗u⃗
)
≈ exp

(
τ∇⃗u⃗S

)
exp

(
τ∇⃗u⃗Ω

)
. (3.43)

This expression is exact if sym ∇⃗u⃗ and skew ∇⃗u⃗ commute, which is not the case here,
and is a first order approximation otherwise [O(τ∇⃗u⃗|∇⃗u⃗|)]. Note that higher order split-
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ting methods could be used, such as the Strang (1968) splitting method, to obtain a
higher order approximation.

Note that as already observed above, nothing guarantees that the duration τ∇⃗u⃗ is
the same for both the components S and Ω of the full velocity gradient tensor ∇⃗u⃗. As a
consequence, we consider two different values of this time: τS and τΩ corresponding to
each part of the flow velocity gradient. Using both Eq. (3.42) and Eq. (3.43), we obtain

[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf(τ)

]
· ˆ⃗z ∝

[
eδ(τS+τ)

[
zα (zα cos θ − zγ sin θ) + z2

β

]
+

e−2δ(τS+τ)zγ (zα sin θ + zγ cos θ)
]
/

√
e2δτ

[
z2

α + z2
β

]
+ e−4δτz2

γ, (3.44)

with θ ≡ [ω(τΩ − τ)/2]. Note the introduction of two different times τS and τΩ, both
linked to their corresponding part of ∇⃗u⃗.

We then use the same simplification as in the symmetric case (e2δτ ≫ e−4δτ). The
previous expression then reduces to

[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf(τ)

]
· ˆ⃗z ∝

[
eδτS

[
zα (zα cos θ − zγ sin θ) + z2

β

]
+

e−2δτS−3δτzγ (zα sin θ + zγ cos θ)
]
/
√

z2
α + z2

β. (3.45)

Then, we average over all possible orientation of ˆ⃗z in the basis ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ)

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nsurf(τ)

]
· ˆ⃗z
〉

ˆ⃗z
∝ eδτS

π

8

[(
1 + 2e−3δ(τS+τ)

)
cos (ω [τΩ − τ] /2) + 1

]
.

(3.46)
Similarly to the previous cases, we obtain a similar expression for bottom-heavy swim-
mers. Note that e2δτ ≫ e−4δτ cannot be assumed here, and we use Eq. (3.44) evaluated
for τ = 0

〈[
exp

(
τ∇⃗u⃗∇⃗u⃗

)
· ˆ⃗nb−h

]
· ˆ⃗z
〉

ˆ⃗z
∝

eδτS

3

[(
1 + e−3δτS

)
cos (ωτΩ/2) + 1

]
. (3.47)

Finally, as for the case of skew symmetric surfers, we integrate this expression over
a Gaussian distribution of the vorticity norm ω to obtain the following estimation of
performance

⟨Veff.⟩ ≈ Vswim
3π

8

(
1 + 2e−3δ(τS+τ)) exp

(
− (τΩ − τ)2 σ2

ω/8
)

+ 1

(1 + e−3δτS) exp (−τΩ
2σ2

ω/8) + 1
. (3.48)

Using the same values of δ, τS, σω and τΩ fitted for the previous models, this model
is plotted in Fig. 3.13(a-b). Despite its inability to capture correctly performance for
small and large values of the surfing time horizon τ, the model captures fairly well the
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maximal performance. This maximal performance is obtained for τ = τ∗ ≈ τΩ for which
performance is estimated as

⟨Veff.⟩ (τ∗) ≈ Vswim
3π

4
1 + e−3δ(τS+τΩ)

(1 + e−3δτS) exp (−τΩ
2σ2

ω/8) + 1
. (3.49)

Note well that this expression is only valid for τΩδ≫ 1.
Overall, depending on four parameters that require fitting, the model is not very

satisfactory to predict performance prior to the evaluation of surfers in turbulence. But
the final expression [Eq. (3.49)] can be used to guess qualitatively how maximal surfing
performance varies with flow properties. Based on this expression, one may expect
surfing performance to vary mainly with τΩσω.

Now assuming the swimming speed dependence of τS and τΩ is given by the model
described by Eq. 3.18, we may be able to capture the velocity dependence of maxi-
mal surfing performance. Replacing τS and τΩ by τS/[1 + αswim(Vswim/uη − 1)] and
τΩ/[1 + αswim(Vswim/uη − 1)], we obtain the model plotted in Fig 3.13(b). The model
overestimates surfing performance. This suggests that the influence of swimming ve-
locity Vswim on the problem is not completely understood. For instance, by inducing
preferential sampling of the gradients, Vswim could influence both parameters δ and σω.
Moreover, the evolution of τS and τΩ with swimming velocity Vswim might not be same
as opposed the assumption above. This highlights the importance for future research to
investigate how the statistics of the flow sampled by micro-swimmers are influenced by
their swimming velocity Vswim and behavior.

3.6 | Summary
We conclude this chapter by summing up key elements discussed previously

■ the flow can be exploited for navigation even in a turbulent flow regardless of
turbulence intensity

■ surfing performance is due to the preferential flow sampling of the flow

■ this strategy can lead to a vertical effective speed that is twice the actual swimming
speed: Veff. ≈ 2Vswim

■ the component of the flow that is responsible for most of the performance is the
rotational component Ω, which is the most difficult to sense for organisms (using
setae) because it does not yield body stretching (c.f. Chap. 1, App. 1.3.1.2)
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4

Surfing robustness and adaptation

While the surfing strategy has been shown to be effective in homogeneous, isotropic
turbulence, its relevance to actual plankters remains to be proven. Real life plankton
may have to face more complex environments and their sensing and locomotion skills
may not be perfect. In this chapter, we relax a number of assumptions to assess the
robustness of the surfing behavior in more realistic situations.

4.1 | Adapting to variations of turbulence intensity

4.1.1 | Adaptive surfing strategy
Up to this point, we considered forced homogeneous isotropic turbulence at a steady
state. Oceanic turbulence intensity is known however to fluctuate widely on short time
scales (Franks et al., 2022). Moreover turbulence is known to be particularly heteroge-
neous near flow obstacles and boundaries. This may appear as a problem since surfers
need to evaluate the value of τη of their local environment to choose the optimal time
horizon τ∗. But in practice τη can be estimated from the velocity gradient itself since
τη ∼ 1/|sym∇⃗u⃗| where |.| is the Frobenius norm (Yu and Meneveau, 2010b). This sug-
gests a refinement of the surfing strategy where τ in Eq. (3.14) is replaced by

τ =
α

|sym∇⃗u⃗|
, (4.1)

with α a dimensionless parameter, which can be viewed as a dimensionless time hori-
zon. In Fig. 4.1, we show that surfers using this adaptive strategy perform as well as
surfers with a constant time horizon τ with the additional benefit that they can adapt to
changes in turbulence intensity. For Vswim = uη , the optimal value of the parameter α is
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Figure 4.1: Turbulence adaptive surfers perform as well as surfers with a
constant time horizon. Performance [Veff., Eq. (2.15)] of adapative surfers
using a time dependent time horizon. Plotted as a function of the dimen-
sionless constant ατ [Eq. (4.1)] for various swimming velocities Vswim and
Reynolds numbers Reλ. Shaded area represents the 95% confidence inter-
val. Solid lines represent a fit with Chebyshev polynomials of degree 3.

α∗ ≈ 2 for Reλ = 418 and α∗ ≈ 1.5 for Reλ = 11. This value is presumably independent
of the turbulence intensity in the limit Reλ ≫ 1.

4.1.2 | Turbulence heterogeneity
To quantify the advantages of this adaptive surfing strategy, we can consider navigat-
ing in a flow where turbulence is not homogeneous. Planktonic navigation in heteroge-
neous flows is particularly relevant for numerous mollusks larvae that need to settle on
see beds to reach maturity.

As a model flow, we consider the case of a turbulent channel flow, corresponding
to the turbulent counterpart of the Poiseuille flow presented in Chap. 2, Sec. 2.3.2. To
evaluate the performance in such a flow, we also use the open access Johns Hopkins
turbulence database (Li et al., 2008; Perlman et al., 2007).

4.1.2.1 | Description of the channel flow simulation

The database represents a wall bounded flow with periodic boundary conditions in the
longitudinal and transverse directions. The direction of the mean flow is noted ˆ⃗e1, the
direction normal to the walls is noted ˆ⃗e2 and the transverse direction is noted ˆ⃗e3 (Fig. 4.2).
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2h

e⃗1

e⃗2
e⃗3

Figure 4.2: Schematic of the channel flow of the Johns Hopkins
Databases.

Reν Reb n1 × n2 × n3 l1/h

5186 1.25× 105 10240× 1536× 7680 8π

l2/h l3/h δν/h uτ/Ub

2 3π 1.9× 10−4 4.15× 10−2

Table 4.1: Flow parameters and characteristics of the turbulent channel
flow of the Johns Hopkins Turbulence Database (Li et al., 2008; Perlman
et al., 2007). Reν = uνh/ν and Reb = ubh/ν denote the friction velocity
Reynolds number and the bulk Reynolds number respectively.

The dimensions of the channel are l1× l2× l3 = 8πh× 2h× 3πh with h the half–channel
height (Fig. 4.2). No-slip boundary conditions are applied to both horizontal walls. The
data have been generated from a direct numerical simulation using a pseudo-spectral
method for the longitudinal and transverse direction and a seventh-order Basis-splines
collocation method is used in the wall normal direction. The flow is forced by applying
a time dependent uniform mean pressure gradient forcing term that ensures a constant
mass flux through the channel.

The channel flow is further characterized by its bulk velocity Ub (average flow ve-
locity in the channel) and its friction velocity uν

uν =

√
ν

〈
∂u1

∂x2

〉

x2=−h,t
(4.2)

evaluated at the bottom wall and δν = ν/uν the viscous length scale. Averaging over the
bottom plane and over time is noted ⟨·⟩x2=−h,t. The velocity u1 denotes u · ˆ⃗e1.

The parameters of the simulation are summed up in Tab. 4.1. More details are
provided at http://turbulence.pha.jhu.edu/Channel5200.aspx. A visual-
ization of the flow is provided in Fig. 3.2.
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4.1.2.2 | Evaluation of surfing performance

It should be noted that in our simulations, simulated plankters are able to reach and pass
through the walls thanks to their active swimming. When that occurs, the flow is also
considered periodic in the direction of the wall normals and these microswimmers thus
stay in the simulation. This enables to integrate trajectories over larger distances. As our
goal is simply to assess the effect of turbulence heterogeneity on surfing, all near-wall
effects on the plankter dynamics are neglected. The results near the flow boundaries
should then be taken carefully.

In such a flow, the turbulence heterogeneity develops along the wall normal (in the
direction ˆ⃗e2). Despite the shear being maximal near walls, the flow viscous effects cause
the flow to develop a viscous sublayer near the walls. In these laminar areas, the flow
is parallel to the walls. Just above this viscous sublayer, turbulence is generated due
to the strong shear and turbulent intensity peaks not far from the wall. The turbulence
intensity then decays slowly as one gets further from the wall.

This flow is used to assess the adaptability of surfing to turbulence heterogeneity,
the target direction for the migration problem is chosen to be the direction of the wall
normal ˆ⃗z ≡ ˆ⃗e2. This forces simulated plankters to pass through the turbulence intensity
profile. This direction is therefore referred to as the vertical in this section.

The effective swimming velocity Veff. for an optimal value of the time horizon τ = τ∗

is plotted as a function of swimming velocity in Fig. 4.3. Contrary to the Poiseuille
flow that surfers cannot exploit with such an alignment of ˆ⃗z (Chap. 2, Sec. 2.3.2), the
presence of turbulence enables surfers to exploit small flow fluctuations along the way,
regardless if the strategy is adaptive or not. This shows that this strategy is robust to
turbulence heterogeneities. Surprisingly however, the improvement provided by the
adaptive strategy is marginal.

To understand why, we need to look closer to how performance distributes along
the vertical position x2. We plot then the effective vertical velocity Veff. as a function
of the vertical position x2 for surfers with a constant time horizon τ in Fig. 4.4(a) and
for adaptive surfers in Fig. 4.4(b). Note the logarithmic scale of the vertical position.
The bottom of the figure corresponds to the near wall region and the top of the figure
corresponds to the centerline of the channel.

In addition, we plot the norm horizontal gradient of the vertical velocity |∇⃗xyuz| =
|∇⃗13u2| as a function of the vertical position x2 in Fig. 4.3(c). This quantity is normalized
by the Kolmogorov time scale ⟨τη⟩V averaged over the whole volume of the channel.
When there are no horizontal gradient of vertical velocity, the best one can do is to swim
straight in the target direction ˆ⃗z. This quantity then characterizes how much the flow
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Figure 4.3: In average, adaptive surfers perform almost as well as non-
adaptive surfers in turbulence heterogeneity. Evaluation of performance
for surfers and adaptive surfers in a channel flow with ˆ⃗z = ˆ⃗e2. Effective
upward velocity [Veff., Eq. (2.15)] as a function of swimming speed Vswim
for non-adaptive surfers and for adaptive surfers, evaluated for their op-
timal value of their respective parameter: τ∗ and α∗τ.
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Figure 4.4: Adaptive surfers show actual adaptation to turbulence het-
erogeneity in contrast to non-adaptive surfers. Performance of constant
time horizon surfers (a) and adaptive surfers (b) in a channel flow with
ˆ⃗z = ˆ⃗e2 as a function of the vertical position x2. In addition a Eulerian mea-
sure of flow exploitability is plotted in (c).
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can be exploited. Note however, as observed in Chap. 3, Sec.3.3.1, surfing performance
also depends on the flow correlation time. This correlation time is captured at first or-
der by the Kolmogorov time scale τη that also varies with vertical position. To capture
how much one can exploit the flow in more details, the intensity of the gradient |∇⃗xyuz|
is normalized by a local value of ⟨τη⟩x2(x2) averaged over a plane of constant altitude
x2. Close to the wall, in the viscous sublayer, the flow is completely parallel to the flow
hence no gradient of vertical velocity. As velocity fluctuations develop away from the
wall, the gradient intensity increase until a maximum is reached at x2 ≈ h/20. Higher,
the intensity of the gradient decrease until the centerline of the flow is reached. How-
ever, at the same time, the local Kolmogorov time scale of the flow ⟨τη⟩x2(x2) increases
with altitude and compensate for this decrease of the gradient intensity. Therefore the
value of |∇⃗xyuz|⟨τη⟩x2(x2) plateaus in the bulk of the flow. This predicts that maximal
surfing performance should be reached in the bulk of the flow.

Focusing first on surfers using a constant time horizon τ [Fig. 4.3(a)], we observe
a strong dependence of surfing performance with the vertical position x2. While as
expected, surfers achieve good performance in the bulk where turbulence intensity is
relatively homogeneous, we observe that surfing becomes disadvantageous (Veff. < 1)
in the transition region between the viscous sublayer and the bulk. The time horizon τ

being constant for the whole channel, surfers are unable to adapt to turbulence hetero-
geneity. Even though this parameter τ can be well tuned for the bulk, leading to even
better performance than adaptive surfers for x2 ≈ h/5, its value makes the strategy
overreacts to the gradient near the wall and causes this drastic performance drop.

On the contrary, the adaptive strategy [Fig. 4.3(b)] is able to adapt to local turbulence
intensity, remaining advantageous (Veff. ≥ 1) in the whole channel. The layer where
this difference occurs is however very thin (≈ h/20) compared to the actual bulk. As
the actual effective velocity is the result of the trajectories passing through the whole
channel, this small region does not account for much of the overall performance. That
is why this advantage is barely visible in Fig. 4.3.

To further emphasize the benefit of the adaptive surfing strategy, we evaluate the
maximal optimal parameter of both strategies, τ∗ and α∗, that lead to maximal perfor-
mance as a function of the surfer’s distance to the wall x2 (Fig. 4.5). As expected, the
optimal surfing parameter τ∗ strongly depends on depth x2 [Fig. 4.5(a)] compared to α∗

for the adaptive strategy. Note as the near flow region is not exploitable (|∇⃗xyuz| ≈ 0),
the performance is independent of the surfing parameter (τ or α), hence the almost ran-
dom value of α∗ we obtain for x2 ≲ 0.01h.

Overall this shows the proposed navigation strategy can be adapted to account for
variations of turbulence intensity. Evaluated in a turbulent channel flow, surfing re-

72



Chapter 4. Surfing robustness and adaptation 4.2. Accounting for limited plankter skills

Vswim =

(a)

τ∗/⟨τη⟩V

x 2
/

h

(b)

α∗τ

(c)

τη(x2)/⟨τη⟩V

2x
2/

δ ν

0 1 2 310−3

10−2

10−1

100

0 1 2 3 0 1 2 3101

102

103

104
Ub/20 Ub/10 Ub/5 2Ub/5

Figure 4.5: The optimal value of the free parameter of the adaptive strat-
egy (ατ) is almost constant in the channel. Optimal surfing parameter of
surfers (a) τ∗ and adaptive surfers (b) α∗τ in a channel flow with ˆ⃗z = ˆ⃗e2 as
a function altitude. In addition the Kolmogorov time scale is plotted as a
function of the vertical position in (c).

mains effective in heterogeneous turbulence, more representative of plankton habitats.

4.2 | Accounting for limited plankter skills
We expect the actual sensing, motor and processing skills of real planktonic organisms
to be limited. While these limitations are hard to evaluate quantitatively in practice, one
can evaluate the influence of such limitations in our simulations. In this section, we then
demonstrate the robustness of the surfing strategy to these various limitations in sim-
ulated homogeneous isotropic turbulence (cf. Chap. 3, Sec. 3.1.2). We first discuss the
limitation of processing skills by evaluating the performance of surfers that are limited
in the order of the computation of their surfing direction. Then we introduce limited
sensing through partial flow measures, filtered measures or noisy measures. Finally we
relax the assumption of instantaneous reorientation.

4.2.1 | Limited processing skills

Even if some plankters such as copepods have neurons, their “computational” skills are
definitely limited to some extent. The main processing challenge of the surfing strategy
[Eq. (3.14)] lies in the evaluation of the matrix exponential. The surfing strategy can be
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Figure 4.6: A first order computation of the matrix exponential is enough
to capture most of surfing performance. Effective upward velocity [Veff.,
Eq. (2.15)] as a function of the computational order n of the matrix expo-
nential. Shaded area represents the 95% confidence interval.

approximated by the following series (cf. Chap. 2, Sec. 2.2.2).

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf =

∞

∑
k=0

τk

k!

[
(∇⃗u⃗)k

]T
· ˆ⃗z = ˆ⃗z + τ ∇⃗u⃗z + · · · (4.3)

In practice, the series cannot be evaluated with an infinite number of terms and one has
to stop eventually after n + 1 term. Doing so result in an approximation of order n in
term of τ|∇⃗u⃗|. To assess the impact of a limited computational power, we performed
simulations for which the order n of the computation of the surfing direction varies
(Fig. 4.6).

We note that the high-order computations only lead to a slight increase of the re-
sulting effective swimming velocity Veff. compared to that achieved with the first order
n = 1. This is particularly true for the low turbulence case Reλ = 11. This discrepancy be-
tween the two turbulent environments can be understood as the value τ∗/τη , for which
this maximal performance is evaluated, is smaller for the case Reλ = 11 than for the case
Reλ = 418 (cf. Fig. 3.9). Being smaller a lower order computation is enough to obtain an
accurate estimate of the matrix exponential.

If the power consumption is directly linked to the processing complexity of the strat-
egy, we can expect power consumption to evolves linearly with n. Thus, for actual
plankters, we would expect the actual accuracy of the computation to be a compromise
between the computational cost of the strategy and its benefits. The performance en-
hancement of a high-order computation (n > 2) being marginal compared to n = 1,
even for a high Reynolds number, suggests the relevance of the reduction of surfing to
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its linear expansion

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf = ˆ⃗z + τ ∇⃗uz. (4.4)

The surfing direction ˆ⃗nsurf then reduces to the weighted average of the target direction ˆ⃗z
and the direction of the vertical velocity gradient ∇⃗uz where the surfing time horizon τ

acts as an averaging weight (also discussed in Chap. 2, Sec. 2.2.2). As such, the resulting
strategy only relies on the gradients of vertical velocity ∇⃗uz. That represents only three
components of the gradient ∇⃗u⃗, out of eight independent components (accounting for
incompressibility). Not content with reducing the processing power required, limiting
surfing to its linear expansion also reduces the amount of information that needs to be
measured.

Overall this shows that even with limited processing skills, turbulence could still be
exploited by plankters. However the strategy still requires at least to evaluate a linear
function which requires computational skills to apply it.

4.2.2 | Limited sensing skills
In this section, we continue the analysis of limited sensing already initiated in Chap. 3,
Sec. 3.4.1. While above we focused on the contribution of the various flow components,
the aim here is to show that limited sensing, that actual plankters would have to face,
can be accounted for in the strategy we propose.

4.2.2.1 | Partial measure of ∇⃗u⃗

In order to assess the contributions of flow components on navigation efficiency, sensing
was limited to both parts of the symmetric decomposition, S and Ω, of ∇⃗u⃗ in Chap. 3,
Sec. 3.4.1. We demonstrated the robustness of surfing performance to such limited per-
formance and highlighted how the measure of vorticity (equivalent to Ω) contributes to
the overall performance.

In this section, we further limit plankter sensing to match the discussion of Chap. 1,
Sec. 1.3.1.2. When the flow is perceived through the use of gravity sensing (thanks to
statochists for instance), flow sensing should be limited to horizontal vorticity rather
than measuring all components of vorticity (Ω) or the full measure of gradient tensor
∇⃗u⃗. To assess the impact of this limitation, we consider the surfing strategy limited to
the measure of horizontal vorticity. This behaviour is formally defined as

ˆ⃗nsurf,stat. =
n⃗surf,stat.

|⃗nsurf,stat.|
, with n⃗surf,stat. =

[
exp

(
τ Ω⊥

ˆ⃗z
)]T
· ˆ⃗z, (4.5)
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Figure 4.7: The sensing of horizontal vorticity is sufficient to navigate
efficiently in turbulence. Effective upward velocity [Veff., Eq. (2.15)] of
surfers limited to the measure of horizontal vorticity compared to surfers
using the full vorticty and the full velocity gradient tensor. The flow sim-
ulation corresponds to the case Reλ. Plotted as a function of the surfing
time horizon τ. The swimming speed of plankters is set to Vswim = uη .
Shaded area represents the 95% confidence interval.

with Ω⊥
ˆ⃗z = skew(ω⃗−ωz ˆ⃗z)/2 = Ω− [ ˆ⃗ey · (Ω · ˆ⃗ex)]( ˆ⃗ex ⊗ ˆ⃗ey)− [ ˆ⃗ex · (Ω · ˆ⃗ey)]( ˆ⃗ey ⊗ ˆ⃗ex).

Evaluated in our simulation of homogeneous isotropic turbulence of Reλ = 11, the
vertical effective velocity Veff. reached by such surfers (Ω⊥ ˆ⃗z) is plotted as a function of
the time horizon τ in Fig. 4.7. This performance is compared to that of surfers either
using the full vorticity (Ω) and the full velocity gradient tensor (∇⃗u⃗). The maximal
performance (for τ ≈ 2.5) is barely affected by this limitation when compared to the
performance of surfers that use the full vorticity. This can be understood by the fact
that vertical vorticity does not provide any information concerning gradients of verti-
cal velocity. As such the vertical vorticity component ω⃗z would only contribute to the
high-order terms (n > 1) of the surfing strategy. As shown in the previous section (cf.
Fig. 4.6), the high-order terms do not contribute much to the overall performance.

This further highlights the navigation importance of certain components of the flow
velocity gradients (ie. horizontal vorticity) relatively to other components (ie. gradients
of horizontal velocity).

To go further towards more accurate models of plankter flow sensing, one could
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take into account the influence of orientation. Indeed, in practice statochists can only
evaluate the angle with respect to vertical, therefore the actual single component of
vorticity such plankters can measure is the one along ˆ⃗p × ˆ⃗z and therefore depends on
their orientation. Moreover in the context of the measure of strain using setae it has
been shown that the orientation of plankters influences the detection of predators by
certain copepods (Fields, 2010). We would then expect a similar impact on navigation
that could be accounted for in future numerical studies.

4.2.2.2 | Filtered measure of ∇⃗u⃗

Our simulations are developed with the hypothesis that plankters are smaller than the
Kolmogorov scale η [Eq. 3.5]. While this hypothesis is reasonable for the smallest plank-
ters in most habitats, it is not necessarily true for bigger plankters, such as copepods
(0.1-10mm), in the most turbulent regions of the ocean η ≈ 1mm.

Among other effects, finite-size plankters would likely filter out small-scale flow
fluctuations (Capecelatro et al., 2014; Qureshi et al., 2007). This observation raises the
question of how a filtered measure of the flow would impact surfing performance.

To answer this question, we performed simulations of surfers, replacing directly the
flow velocity gradients ∇⃗u⃗ by its volume averaged value ∇⃗u⃗|l f defined as follows

∇⃗u⃗|l f (X⃗, t) =
1
l3

f

∫∫∫ −l f /2

−l f /2
∇⃗u⃗(X⃗ + x⃗, t) d3x, (4.6)

with l f the characteristic averaging length and X⃗ the position of the plankter. The vol-
ume averaged gradient tensor ∇⃗u⃗|l f actually corresponds to the value of ∇⃗u⃗ averaged
over a cube of side length l f around the position of the plankter. We do not expect the
shape of the averaging volume to influence much the qualitative conclusions, thus a
cube has been chosen for computational convenience. A sphere would have been an-
other sensible choice.

We plot the surfing performance as a function of the averaging length l f for various
plankter swimming speed Vswim for Reλ = 418 and Reλ = 11 in Fig. 4.8. Surprisingly,
the strategy displays remarkable robustness with respect to the averaging length l f ,
particularly for the case Reλ = 418. Still, for a smaller Reynolds number Reλ = 11,
performance decreases with l f for all swimming speeds Vswim, leading Veff. = Vswim

when l f = 8η. This largest filter length is actually of the order of half of the integral scale
L = 19η (Tab. 3.1). The filtering surfer then averages the gradient over a large part of
the flow and therefore the intensity of the measure itself should drop, that explains their
poor performance.
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Figure 4.8: An optimal filtering length l∗f exists for a given swimming
velocity Vswim. Effective upward velocity [Veff., Eq. (2.15)] of surfers
as a function of filtering length l f for various swimming speeds Vswim.
Shaded area represents the 95% confidence interval.

For Reλ = 418 however, the effective vertical velocity Veff. displays interesting fea-
tures [Fig. 4.8(a)]. First for the slowest swimming velocity Vswim = uη , as one would
expect, we observe that performance decrease with the filter length l f . Indeed, as the
averaging length l f increases, the measure of the flow is degraded: the gradient mea-
sured does not correspond exactly to the actual gradient at the position of the plankter,
hence the performance decreases. However, as swimming speed increases, Veff. is not
a monotonic function of l f anymore. Performance starts increasing with the averaging
length l f until an optimal value l∗f is reached for which the performance is maximal
(for instance l∗f = 4η for Vswim = 8uη). This suggests that averaging the flow measure
could actually be beneficial for the navigation of plankton given large enough swim-
ming speeds Vswim ≫ uη .

We propose a possible explanation for this phenomenon illustrated in Fig. 4.9. If
the plankter swimming speed Vswim ≪ η/τη [Fig. 4.9(a)] is small enough, the plankter
does not have the time to reach the limit of the flow feature before that structure is
dissipated after a time ∼ τη . This would lead to the foraging of a vertical velocity of
u⃗z(X⃗) ∝ Vswimτη |∇⃗xyuz|. If however the plankter swimming speed is large enough,
Vswim ≫ η/τη [Fig. 4.9(b)], the plankter reaches the limit of the flow feature before that
structure is dissipated. The surfing strategy then reaches a local optimum and as it
relies on gradient ascent method, it is not able to get out of it. This limits the foraging
of vertical flow velocity to u⃗z(X⃗) ∝ η|∇⃗xyuz|. If however the plankter is able to filter

78



Chapter 4. Surfing robustness and adaptation 4.2. Accounting for limited plankter skills

(a) (b) (c)

Vswimτη,corr.

η

uz(X⃗) ≈ l f |∇⃗xyuz|l f |

η

l f

uz(X⃗) ≈ η|∇⃗xyuz|
uz(X⃗) ≈ ˆ⃗pτl |∇⃗xyuz|

Figure 4.9: Illustrative cartoon that discusses the benefit of filtering for
fast surfers. We consider a plankter in a small flow structure of the size
of the Kolmogorov scale η (represented as simple shear here). This flow
feature has a given lifetime that scales with the Kolmogorov time scale τη .
(a) Case of slow swimming surfers Vswim ≪ ητη . (b) Case of fast surfers
Vswim ≫ ητη . (c) Case of fast filtering surfers.

the gradients [Fig. 4.9(c)], it may ignore the smaller gradients. This enables surfers to
exploit gradients on larger scales, thus enabling to forage a potential larger vertical flow
velocity that would scale with u⃗z(X⃗) ∝ l f |∇⃗xyuz|l f |.

The resolution of our simulations is however limited due to the challenging numeri-
cal computation of ∇⃗u⃗|l f they require. The averaging volume needs to be discretized to
query the actual value of the gradient tensor in several positions. The averaged gradient
is then computed by averaging all the values obtained. For each of these intermediate
positions, the value of the gradient is obtained either by interpolating the value in that
position in our flow database, either by querying the value of the gradients at that po-
sition in the Johns Hopkins turbulence database. These operations constitute the main
bottleneck of our simulation code Sheld0n in terms of computation time efficiency. In-
creasing the averaging length l f then drastically impacts the computational cost of our
simulations. This influenced the uncertainty of our results and the range of parameters
we explored. Note that flow filtering and gradient estimate could be done in Fourier
space to decrease time complexity.

Overall this result suggests that accessing larger scales of the flow could be beneficial
for navigation as the swimming speed of the organisms increases. This statement is yet
to be confirmed with future research, but if confirmed, this might have implications
when taking into account the size of the plankters.

4.2.2.3 | Noisy measures and control

Sensing and motor control of real organisms are subject to biological noise. These sens-
ing and control imperfection are completely left out of the previous simulations. In
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Figure 4.10: Demonstration of surfing robustness to various noise
sources. Performance as a function of noise intensity on: (a) the mea-
sure of ˆ⃗z, (b) the flow velocity gradients ∇⃗u⃗ sensing, (c) the control of the
swimming direction ˆ⃗p. The noise is modeled as a Gaussian white noise
of standard deviation σ. The shaded area represents the 95% confidence
interval. Parameters: Reλ = 11, Vswim = 4uη and τalign = 0.

order to quantify the impact of noise on navigation we assess here how robust is the
surfing strategy to various noise sources. We first evaluate robustness to noisy mea-
sures of (1) the target direction ˆ⃗z and (2) the velocity gradients ∇⃗u⃗. We also assess the
effect of noisy control of (3) the swimming direction ˆ⃗p.

To this end, we introduce an additive Wiener noise with standard deviation σ on
each of the components of the measure. For instance, the noisy measure of the target
direction is expressed as

ˆ⃗zmeasure =
z⃗measure

|⃗zmeasure|
, with z⃗measure = ˆ⃗z + ξ⃗σˆ⃗z

, (4.8)

with ξ⃗σ a Gaussian white noise so that
〈

ξ⃗i(t)⃗ξ j(t′)
〉

= σ2δi,jδ(t− t′).
Results are summarized in Fig. 4.10. Figure 4.10(a) illustrates the influence of a noisy

measure of the target direction. Below σˆ⃗z = 25%, noise has a low impact on performance.
When the noise intensity reaches the magnitude of the signal measured (σˆ⃗z = 100%), per-
formance of surfers and bottom-heavy swimmers decreases significantly. Real plankters
might measure ˆ⃗z using either gravity sensing or photoreceptors. As gravity sensing
would be based on a measure of acceleration, we could expect noise to be due to flow
acceleration. Note however that in the ocean, flow acceleration is at it strongest of the
order of 0.3 m.s−2 (Fuchs and Gerbi, 2016). That corresponds to a noise intensity of
σˆ⃗z = 3% and would not significantly impact performance in practice.

Robustness of the surfing strategy to a noisy measure of ∇⃗u⃗ is illustrated in Fig. 4.10(b).
A noise of intensity lower or equal to 25% leaves the performance essentially unchanged.
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However when the noise magnitude is equal to that of the signal measured (σ∇⃗u⃗/τη =
100%), performance of surfers decreases significantly.

The effect of a noisy control of the swimming direction ˆ⃗p is shown in Fig. 4.10(c).
Noise intensity has a low impact on performance until it reaches σ ˆ⃗p = 100%, when
performance decreases significantly.

Overall, surfing is robust to these various sources of noise: small noise intensities
leave the performance essentially unchanged, and the effective speed ⟨Veff.⟩N remains
greater than the swimming speed Vswim up to noise intensities of 25% of the signal in-
tensity.

4.2.3 | Limited reorienting skills
So far we assumed the instantaneous reorientation of plankters and that lead to the
equations of motion (3.12). This assumption holds for plankters that are able to exert a
large reorientation torque compared to the one induced by the flow.

4.2.3.1 | Finite reorientation time

When the active torque plankters can produce is limited compared to the flow induced
torque, the equation of plankter orientation, Eq. (3.12b), introduced in Chap. 2, Sec. 2.1,
should be replaced by (Pedley and Kessler, 1992)

d ˆ⃗p
dt

=
1
2

ω⃗(X⃗, t)× ˆ⃗p +
1

2τalign

[
ˆ⃗n− ( ˆ⃗n · ˆ⃗p) ˆ⃗p

]
, (4.9)

where τalign is a characteristic reorientation time that arises from the balance between
the viscous torque and the aligning torque (Chap. 2, Sec. 2.1). This aligning torque can
either arise from active orientation or passive reorientation due to bottom-heaviness
for instance. In this section, the preferred direction ˆ⃗n now differs from the swimming
direction ˆ⃗p that is described by Eq. (4.9).

The performance of surfers ( ˆ⃗n = ˆ⃗nsurf) and bottom-heavy swimmers ( ˆ⃗n = ˆ⃗nb−h = ˆ⃗z)
is plotted as a function of the reorientation time τalign in Fig. 4.11 for Reλ = 418 and
Reλ = 11. We observe for both turbulence intensities that the vertical effective velocity
Veff. decreases with τalign. This loss of performance is essentially due to the flow vor-
ticity, which acts as a noise tilting the plankters away from their preferred direction.
Note however that bottom-heavy swimmers (with τalign > 0) are also known to sample
preferentially downwelling regions of the flow (Durham et al., 2013; Kessler, 1985) that
also contributes to this poor performance. This effect is discussed further in App. A,
Sec. A.1.1. Nevertheless, surfers are still able to outperform bottom-heavy swimmers
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Figure 4.11: Demonstration of surfing robustness to finite reorientation
time τalign. Effective upward velocity [Veff., Eq. (2.15)] of surfers com-
pared to that of bottom-heavy plankters as a function of reorientation
time τalign. The swimming velocity of plankters is set to Vswim = uη .
Shaded area represents the 95% confidence interval.

for the same reorientation time τalign. Besides, as long as τalign ≲ τη , the maximal effec-
tive speed Veff. that surfers can reach remains larger that their swimming speed Vswim

for both Reynolds numbers considered. This observation demonstrates the robustness
of the surfing strategy to a finite reorientation time. A discussion about the relative
value of the alignment time and the Kolmogorov time for actual plankters is differed to
Chap. 6.

4.2.3.2 | Adapting the reorientation control

In the precedent section, we use the equation of (4.9) to model the evolution of orien-
tation of plankters. This model has been developed in the context of passively reori-
enting bottom-heavy microswimmers for which the reorientation dynamics are fixed.
However the orientation dynamics of actively reorienting plankters depend on their be-
havior. Applying the same optimality driven approach employed to derive the surfing
strategy, we can search for the optimal reorientation behavior that minimizes the time
to reach a target direction ˆ⃗ntarget.

Starting from Eq. (4.9), we look for the the optimal control ˆ⃗n(t) that minimizes the
time to reach a target orientation ˆ⃗p = ˆ⃗ntarget. Note that in Eq. (4.9), the controlled pre-
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ferred direction ˆ⃗n(t) can always be chosen so that

d ˆ⃗p
dt

=
[

1
2

ω⃗ + Ω⃗swim(t)
]
× ˆ⃗p (4.10)

with |Ω⃗swim(t)| ∈ [−Ωmax
swim, Ωmax

swim] and Ωmax
swim = 1/(2τalign). As a consequence the prob-

lem reduces to finding Ω⃗swim(t) that maximizes the alignment with the target orientation
( ˆ⃗p · ˆ⃗ntarget) over time. In a linear flow, ˆ⃗p · ˆ⃗ntarget is maximized for

Ω⃗swim = min
(

Ωmax
swim, |Ω⃗∗swim|

) Ω⃗∗swim

|Ω⃗∗swim|
with Ω⃗∗swim =

θ ˆ⃗p, ˆ⃗ntarget

τreact

ˆ⃗p× ˆ⃗ntarget

| ˆ⃗p× ˆ⃗ntarget|
− 1

2
ω⃗⊥

ˆ⃗p,

(4.11)
with θ ˆ⃗p, ˆ⃗ntarget

the angle between ˆ⃗p and ˆ⃗ntarget, τreact the delay between two consecutive

choices of Ω⃗swim and ω⃗⊥ ˆ⃗p = ω⃗ − (ω⃗ · ˆ⃗p) ˆ⃗p the projection of the vorticity in the plane
orthogonal to ˆ⃗p. This expression actually matches the classic proportional control algo-
rithm (Bequette, 2003).

Note that when τreact → 0 and Ωmax
swim → +∞, we have

Ω⃗swim(t) = δ(t) θ ˆ⃗p0, ˆ⃗ntarget

ˆ⃗p0 × ˆ⃗ntarget

| ˆ⃗p0 × ˆ⃗ntarget|
− 1

2
ω⃗⊥

ˆ⃗p (4.12)

with δ the Dirac delta function. We then recover the assumption of instantaneous reori-
entation ( ˆ⃗p = ˆ⃗ntarget).

This improved active reorientation model [Eq. (4.11)] is tested in numerical simula-
tions of turbulence. To do so, we replace the finite reorientation dynamics described by
Eq. (4.9) with Eq. (4.10) for which the active velocity is prescribed by Eq. (4.11). Plankter
migration performance is then evaluated for ˆ⃗ntarget = ˆ⃗nsurf and ˆ⃗ntarget = ˆ⃗z and com-
pared to the migration performance of plankters that reorient using the classic orienta-
tion model of Pedley and Kessler (1992). Results are plotted in Fig. 4.12. We observe a
slight but significant increase of surfing performance for τalign > 0 which demonstrate
numerically the efficiency of this approach. This approach can be used regardless of
the strategy, and also leads to significant improvement even in the case of a naive strat-
egy aiming to swim upwards. This model provides an control-based alternative to the
widely used model of Pedley and Kessler (1992) for directional control by active reori-
entation (Colabrese et al., 2017; Gustavsson et al., 2017; Lange and Friedrich, 2021).

Note furthermore that when relaxing some of the assumptions concerning the plank-
ters we consider, such as the assumption of neutral buoyancy or the assumption of
spherical shape, other torques appear enriching the rotation dynamics. However, most
of this additional depend only on the local flow velocity gradients ∇⃗u⃗ and plankter pa-
rameters. These effects can then easily be accounted for in this model by replacing the
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Figure 4.12: Adapting the reorientation control further increase surfing
performance. Effective upward velocity [Veff., Eq. (2.15)] of surfers and
“naive” swimmers ( ˆ⃗n = ˆ⃗z) as a function of reorientation time τalign. Filled
symbols corresponds to proportional control, Eq. (4.11) and open symbol
to the “gyrotactic” model of Pedley and Kessler (1992). The swimming
velocity of plankters is set to Vswim = uη . Shaded area represents the 95%
confidence interval.

vorticity induced rotation −ω/2 by the overall flow induced rotation. Refer to App. A,
Sec. A.1 for additional details.

4.3 | Summary
In this chapter, we demonstrated that the surfing strategy

■ it is robust to variations of turbulence intensity (Chap. 4, Sec. 4.1):

– it can be adapted to account for these variations (Chap. 4, Sec. 4.1.1)

– it is robust to turbulence spatial heterogeneity (Chap. 4, Sec. 4.1.2)

■ it is robust to plankton limitations (Chap. 4, Sec. 4.2):

– it is robust to limited processing skills (Chap. 4, Sec. 4.2.1)

– it is robust to sensing limitation (Chap. 4, Sec. 4.2.2):

84



Chapter 4. Surfing robustness and adaptation 4.3. Summary

* it is robust to a partial measure of the velocity gradients ∇⃗u⃗ (Chap. 4,
Sec. 4.2.2.1)

* it is robust to a filtered measure of the velocity gradients ∇⃗u⃗ (Chap. 4,
Sec. 4.2.2.2)

* it is robust to various noise sources (Chap. 4, Sec. 4.2.2.3)

– it is robust to limited reorientation skills (Chap. 4, Sec. 4.2.3)

Furthermore, this analysis of surfing robustness brought to light the benefit of spatial
filtering of the measure of the gradients ∇⃗u⃗ for fast surfers. In addition, we propose
the use of a control-based active reorientation model to model the reorientation of
plankters.
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5

Alternative navigation approaches

Apart from planktonic navigation problems, the general study of navigation has been
subject to extensive interest for a long time. This chapter aims to review common navi-
gation problems and the methods used to address them. We further discuss how these
methods can be adapted to planktonic navigation problems. Compared to these meth-
ods, the benefits and drawbacks of the surfing strategy are highlighted.

Navigation is the art of monitoring and controlling the movement of an entity from
one place to another. Considered as one the seven mechanical arts in 12th century (Stahl,
1971; Taylor et al., 1961), it generally encompasses both the determination of the position
and the orientation of such entity and the planning of its course. The latter is specifically
called routing in marine navigation. Navigation can be specific to the mean of transport
(pedestrian, car, bike, boat, airplane...), and the terrain roamed (land, oceans, sky, outer
space ...).

Determining ones position already motivated extensive research and lead to the de-
velopment of numerous tool to help navigation. For instance, one of the earliest known
maps has been carved on a mammoth tusk, around 25,000 BC (Wolodtschenko and
Forner, 2007), which stresses the past interest that has been attached to this problem.
Beyond land cartography, navigators also mapped oceans currents and even oceans
swell patterns [started in the Marshall Islands (Bagrow, 2017)] that lead to the current
knowledge in marine cartography. On top of cartography, tools such as the sextant were
developed and offered accurate ways to determine ones position thanks to the observa-
tion of celestial objects. Since the implementation of global navigation satellite systems
(Galileo for the Europeans, GPS for the Americans, GLONASS for the Russians and
Beidou for the Chinese), determination of the position is particularly easy for marine
navigation.

The more accurate the maps and the measure of position became, the more the ques-
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tion of routing became relevant. Considering wind and ocean currents, what is the path
that leads to the destination in minimal time or at minimal cost?

One of the first formal step towards this goal was Mercator’s projection (Snyder,
1997). Mercator proposed a projection of earth maps where north is always oriented
up. This means a straight line on such map, a Rhumb line, corresponds to the trajec-
tory achieved with a constant bearing βbear.. The bearing βbear. is defined as the angle
between the vessels orientation and the north. Despite not being optimal, following
Rhumb lines was easier than great circle navigation.

Great circles are the shortest routes between two points on the surface of a spherical
object. Given the latitude θlat. and longitude ϕlong. of the vessel and the destinations
coordinates (θdest., ϕdest.). One can easily compute the bearing βbear., needed to follow a
great circle path that leads to destination

tan βbear. =
cos θdest. sin

(
ϕdest. − ϕlong.

)

cos θlat. sin θdest. − sin θlat. cos θdest. cos
(
ϕdest. − ϕlong.

) . (5.1)

As the Earth is slighlty spheroidal, the great circle has been generalized to spheroidal
objects, then called the great ellipse.

For marine navigation, these methods shine thanks to their simplicity but lack some
fundamental properties: they do not guaranty the path not to cross land and they do
not take into account the weather, and ocean currents, that could influence the ship
motion. While the great circle remains a reference for marine navigation, active research
continues to develop methods to face these drawbacks which we summarize below.

The routing problem can essentially by formalized in two different ways:

■ using a continuous control approach, one then relies on Pontryagin’s maximum
principle to solve the problem.

■ using a discrete control approach, one can then rely on the Bellman’s principle of
optimality to solve the problem.

In the context of navigation, this two approaches lead to two distinct navigation prob-
lems that are presented below:

■ the Zermelo navigation problem using a continuous approach.

■ the shortest path problem using a discrete approach.
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ˆ⃗z

b-h surf Zermelo, θ0 = 0 π/4 π/2 3π/4

Figure 5.1: Zermelo trajectories compared to surfing trajectories [ ˆ⃗p =
ˆ⃗nsurf, Eq. (2.23)] in Taylor-Green vortices (Chap. 2, Sec. 2.3.1) with Vswim =
umax/2 and τωmax = π/2 for various initial angles θ0 of the Zermelo tra-
jectories. Trajectories of perfectly bottom-heavy plankton ( ˆ⃗p = ˆ⃗z) are plot-
ted in blue for reference. The swimming speed is set to Vswim = umax/2,
the final time to Tωmax = 18 and the surfing time horizon to τωmax = π/2.

5.1 | Zermelo navigation problem

Formulated by the mathematician Zermelo (1931), the problem consists of finding the
best possible control for a boat (or any agent) of constant active velocity and navigating
in a given velocity field u⃗, to reach its destination in a minimal time. While the shortest
path is a straight line in the absence of currents, we expect the presence of currents to
alter the optimal path.

This problem can be addressed using the Euler–Lagrange equations and leads to the
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description of the boat’s steering θ by the following differential equation

dθ

dt
= sin2 θ

∂uy

∂x
+ sin θ cos θ

(
∂ux

∂x
− ∂uy

∂y

)
− cos2 θ

∂ux

∂y
with u⃗ =

(
ux

uy

)
(5.2)

known as the Zermelo equation. Written here for a 2D case, this equation can be gener-
alized to 3D cases (Guerrero and Bestaoui, 2013). Note that the Zermelo equation (5.2)
can also be written in terms of steering direction ˆ⃗n1

d⃗n
dt

= −
(
∇⃗u⃗
)T
· n⃗ with n⃗ =

(
cos θ

sin θ

)
. (5.3)

For the sake of simplicity, this equation is formulated so that it does not guarantee the
conservation of the norm. In a more formal way, one may use for example the method of
Lagrange multipliers to enforce this constraint. In practice, the proper optimal steering
direction ˆ⃗n is obtained by renormalizing n⃗ after integration.

This theory however solely describes the evolution of the control without express-
ing the initial value of the control, θ0, that actually leads to the target destination. In the
context of vertical migration, computing the optimal initial control θ∗0 requires to inte-
grate the trajectory for arbitrary values θ0 and select the value θ∗0 that maximizes vertical
displacement (θ∗0 ≈ π/2). This optimization can be done analytically if the flow veloc-
ity field is simple enough, but in most case one must rely on a numerical optimization
method. Brownlee (2011), among others, presents many algorithms that could be used
to this end. Zermelo trajectories obtained by integrating numerically Eq. (5.2) method
for various initial steering θ0 are compared to the surfing strategy in Fig. 5.1.

Due to the proven optimality of Zermelo trajectories, a Zermelo swimmer is indeed
able to perform better than a surfer if the initial control θ0 is well chosen. As obtaining
the optimal value θ∗0 relies on the integration of trajectories, one must know the whole
velocity field to apply this approach. And we show in Fig. 5.1, arbitrarily chosen θ0 can
lead anywhere.

Apart from the needed knowledge to apply this navigation method, the chaotic-
ity of flow velocity fields in nature prevents to integrate trajectories with absolute cer-
tainty. Thus in practice, this approach is mostly restricted to the context of idealized non-
chaotic flow velocity fields for which Eq. (5.2) can be integrated analytically (Liebchen
and Löwen, 2019). Moreover, despite some recent efforts to take into account a maximal
curvature constraint on trajectories (denoted as the Zermelo-Markov-Dubins problem),

1Note that this equation also governs the evolution of various other physical process. It describes the
orientation of the axis of symmetry inertialess oblate spheroids (Jeffery, 1922) or the orientation of the
normal of a high Peclet number scalar surface in a fluid flow (Martínez-Ruiz et al., 2018).
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rc = 1 rc = 2 rc = 3

Figure 5.2: Illustration of how the connectivity radius rc impacts the Di-
jkstra graph edges creation.

this approach remains rather difficult to adapt to variations of the problem (Caillau
et al., 2019; Sacchelli et al., 2021).

5.2 | Shortest path problem
Introduced by Dijkstra et al. (1959), the shortest path problem consists in finding the
shortest path between two vertices of a graph. For instance, such graph can represent a
road network in the context of land navigation, where roads are represented by graph
edges and crossroads by graph vertices. Then, which path should be taken to minimize
arrival time at destination?

The solution of Dijkstra et al. (1959), is now the basis of most personal navigation
assistant software. To formulate this solution, graph weights have to be associated to
graph edges and would correspond for example to road length between crossroads in
the land navigation analogy. This algorithm remains asymptotically the fastest known
single-source shortest-path algorithm for arbitrary directed graphs with unbounded
non-negative weights. In other words, it is the fastest algorithm that finds the short-
est itinerary from a single specific starting position for a graph where road lengths are
strictly positive. Note that faster options exists for specialized graphs (Dial, 1969; Tho-
rup, 2000).

In addition to its applications to land navigation problems, this method can also be
applied to any navigation problem. In the case of a marine navigation problem, one
needs to discretize space to define vertices. Then to define the edges of the graph, one
must define connectivity between vertices. In our illustrative simulations, the graph
connectivity is controlled by a discrete connectivity radius rc. Each vertex a are con-
nected to all vertices b within a radius rc∆x, with ∆x the step size between vertices
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(Fig 5.2).

The time Ta→b necessary to move from one vertex a to another vertex b on a straight
line then defines edges weights of the graph. This time Ta→b is deduced from the dis-
tance between the edges positions, the plankter swimming velocity and the flow veloc-
ity field and is expressed as

Ta→b =

√
|⃗xa − x⃗b|2

V2
swim − u2

+
[
(x⃗a − x⃗b) · u⃗
V2

swim − u2

]2

− (x⃗a − x⃗b) · u⃗
V2

swim − u2
, (5.4)

with x⃗a the position of the vertex a, x⃗b the position of the vertex b, Vswim the plankter
swimming velocity, u⃗ ≈ u⃗(⃗xa) ≈ u⃗(⃗xb) the local flow velocity and u = |u⃗| its norm. The
graph resolution must be fine enough to assume u⃗ ≈ u⃗(⃗xa) ≈ u⃗(⃗xb). In practice the local
flow velocity u⃗ may be evaluated as u⃗ = u⃗([⃗xa + x⃗b]/2). A negative value of Ta→b means
the vertex b is not reachable from the vertex a. Such edges are removed from the graph.
For the remaining edges, one also associates the actual control ˆ⃗na→b to apply in order to
reach a vertex b from a vertex a

ˆ⃗na→b =
1

Vswim

[
x⃗a − x⃗b

Ta→b
− u⃗

]
. (5.5)

Once the graph is generated, the Dijkstra algorithm can be applied. The principle of
the algorithm is explained in the following and is illustrated in Fig 5.3.

Starting from a given initial crossroad (initial graph vertex), all possible roads (graph
edges) starting their are first considered, each leading to a different intersections (other
graph vertices). For each of these next crossroads, the distance (edge weight) traveled
to reach these crossroads is noted and associated to them [Fig 5.3(b)]. The starting po-
sition is then tagged as explored. Then, based on the distances previously computed,
the unexplored intersection that is the closest to the starting position is selected next
[Fig 5.3(c)]. Again starting from the selected intersection, all possible roads leading to
unexplored intersection are considered. Again the distance from the initial position to
the associated edge is computed. This distance is calculated as the sum of the length of
this last road taken and the original distance of the selected intersection. If one of these
crossroads has already been reached and is already associated to a previously computed
distance, the newly computed distance and the previous one are compared. If the re-
cently computed distance is smaller than the original one, it means a new shorter path
leading to that previously reached intersection has been found. The new distance then
replaces the old one and the road that leads to it is now tagged as the best road to take to
lead to that intersection [Fig 5.3(d)]. These operations are then repeated until the whole
graph is explored.
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Figure 5.3: Illustration of four steps of the Dijkstra algorithm. Circles rep-
resent vertices. Arrows represent edges. Filled circles represent explored
vertices. Numbers represent edge weights in (a). Numbers represent
computed vertex distances in (b-d).

Originally designed to find the shortest path from a specific position to another,
the algorithm must be slightly adapted to match the vertical migration problem. For
instance, one may defined a final distance ΛDijk. and then define as targets all graph
vertices a located at x⃗a · ˆ⃗z = ΛDijk.. Applying the Dijkstra algorithm, one then obtains
all minimal paths that lead to each of these vertices and selects the path that minimizes
the time to reach one of these vertices. The algorithm, including this nuance, is formally
written as Alg. 1.

This method is compared to the surfing strategy in Fig. 5.4 for various spatial reso-
lutions of the Dijkstra algorithm. As expected, provided with the information of the full
flow velocity field, the Dijkstra algorithm leads to much better performance compared
to the surfing strategy in Taylor-Green vortices. Increasing the spatial resolution of the
Dijkstra algorithm smoothens the trajectory obtained that gets closer to the optimal.
This algorithm performs however at the cost of much larger time complexity, especially
when spatial resolution increases.

The result can be further smoothed by increasing the graph’s number of edges, in-
creasing at the same time the number of possible trajectories explored by the algorithm
(Fig. 5.2), observed in Fig. 5.5. Note that this enhancement is also at the cost of time
complexity discussed below.

The definition of the graph can be widely adapted to the needs of the navigation
problems. Highly flexible, this method enables edges weights to allow for any cost
function. While the method works for travel time minimization, one may also add for
instance fuel consumption and risk level into the equation. Particularly flexible, this
method further allows to remove the vertices of the graph with respect to various con-
straints. For instance, graph vertices corresponding to the harshest weather conditions
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Algorithm 1: Dijkstra’s algorithm (Dijkstra et al., 1959)
Data: G, graph representing the network, composed of vertices VG and edges EG
Data: s, source vertex to start the search from
Data: TG , set of target vertices
Result: p, previous vertex in the path that minimizes distance
/* initialization */
d← ∅ ; /* distance of vertices to the source s. */
p← ∅ ; /* previous vertex in the path. */
Q← ∅ ; /* queue containing unvisited vertices */
foreach vertex v in VG do

d[v]← ∞;
p[v]← unde f ined;
add v to Q;

end
d[s]← 0;
/* search */
while Q ̸= ∅ do

u← v so that d[v] = min {d[q]} , ∀q ∈ Q;
remove u from Q;
foreach neighbor v of u so that v ∈ Q do

a← d[u] + EG(u, v);
if a < d[v] then

d[v]← ∞;
p[v]← u;

end
end

end
t← v so that d[v] = min {d[v]} , ∀v ∈ TG ;
/* the optimal path can then be deduced from p, starting

from p[t] */

can be removed from the graph to ensure the safety of the planned route. In the context
of marine navigation, the presence of storm, wave risk or collision risk among others
can easily be taken into account.

The Dijkstra et al. (1959) algorithm is not the sole algorithm that solves shortest
path problems. Indeed this algorithm is actually a particular case of dynamic program-
ming introduced later by Bellman (1966). The Bellman–Ford algorithm (Bellman, 1958;
Ford Jr, 1956) for example is more general. At the cost of time complexity, it enables to
find shortest paths in graphs with negative edge weights.

This discrete approaches however raise an important issue, the computational cost
is function of the size and the complexity of the graph. Indeed the worst case, perfor-
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Figure 5.4: Impact of the graph resolution on the trajectories performed
by the Dijkstra algorithm. Dijkstra algorithm compared to the surfing
strategy [ ˆ⃗p = ˆ⃗nsurf, Eq. (2.23)] in Taylor-Green vortices (Chap. 2, Sec. 2.3.1)
with Vswim = umax and τωmax = π/2 for various resolutions of the Dijk-
stra algorithm. Trajectories of perfectly bottom-heavy plankton ( ˆ⃗p = ˆ⃗z)
are plotted in blue for reference. The grid illustrates the resolution of the
Dijkstra algorithm: line intersections represent graph vertices. The final
time is set to Tωmax ≈ 11.7 and the initial position to X⃗0/L = (π/4, 0).

mance complexity of the Dijkstra algorithm is O(|EG | + |VG | log|VG |) with |EG | the num-
ber of edges and |VG | the number of vertices (Fredman and Tarjan, 1987). The dynamic
programming approach is even worse, O(|EG ||VG |), using the Bellman–Ford algorithm
(Bellman, 1958; Ford Jr, 1956).

In the context of navigation, the accuracy of the trajectory obtained is directly related
to the resolution of the discretization. The higher the resolution is, the larger is the
graph necessary to represent the problem and leads to poor computational performance
using the Dijkstra algorithm. This issue is called the curse of dimensionality (Bellman and
Kalaba, 1957).

This observation motivated numerous approaches to minimize computational cost.
The first natural approach is to try to minimize the size of the graph as much as possi-
ble. Indeed, in the context of marine navigation, one solely discretizes space around the
great circle trajectory (Kobayashi et al., 2017). The size of the graph is thus minimized
drastically and leads to better computational performance. This approach however lim-
its the search of the optimal in a narrower region. The algorithm might then miss out
some advantageous wider trajectories.
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Figure 5.5: Impact of the connectivity radius on the trajectories per-
formed by the Dijkstra algorithm. Dijkstra algorithm compared to the
surfing strategy [ ˆ⃗p = ˆ⃗nsurf, Eq. (2.23)] in Taylor-Green vortices (Chap. 2,
Sec. 2.3.1) with Vswim = umax and τωmax = π/2 for various connectivity
radius rc of the Dijkstra algorithm. Trajectories of perfectly bottom-heavy
plankton ( ˆ⃗p = ˆ⃗z) are plotted in blue for reference. The grid illustrates the
resolution of the Dijkstra algorithm: line intersections represent graph
vertices. The final time is set to Tωmax ≈ 11.7 and the initial position to
X⃗0/L = (π/4, 0).

When the Dijkstra algorithm reaches the destination for a given path length, at least
all possible trajectories of the same length from the source are explored. This ensures the
optimality of the resulting trajectory but is time consuming. Without changing the size
of the graph, one can try to explore the graph in a particular way so that the smallest
possible part of the graph is explored. Doing so one achieves less computational cost
but one gives up on the insurance that the resulting trajectory is optimal.

For example, widely used in video games for land navigation, the A∗ algorithm uses
a heuristic to prioritize the progress through the graph (Hart et al., 1968). The distance,
as the crow flies, to the destination can be used as heuristic for instance. Then the A∗

algorithm prioritize the progress of paths through the graph that are the closest, as the
crow flies, from the destination rather than prioritizing the closest from the starting po-
sition. The algorithm then stops when the destination is reached even if the path found
is not the optimal one. This reduces drastically the proportion of the graph explored by
the algorithm.

In practice any kind of optimization algorithm can be used to minimize the explo-
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ration of such graph. A wide variety have been developed and tested in the context
of marine navigation. For instance many rely on genetic algorithms (Avgouleas and
Sclavounos, 2014; Vettor and Soares, 2016) while others on Powell’s method (Kobayashi
et al., 2017), on Nelder-Mead method (Pipchenko, 2011) and some even on ant colony
algorithm (Tsou and Cheng, 2013). Brownlee (2011), among others, describes numerous
additional algorithms that could be used to this end.

5.3 | Local methods
The methods previously described can be referred to global optimization methods (Todorov
and Tassa, 2009). While in theory, these methods lead to optimal solutions, they may
face the curse of dimensionality, previously described, and lead to poor performance in
practice.

To overcome this difficulty, an interesting approach involves reducing the global
problem to a “local” problem that can be solved at a lower cost. Solving such a prob-
lem iteratively along a swimmers trajectory leads to an approximate optimal solution.
Iterative dynamic programming and its derivatives lie into this class of solutions (Luus,
2019; Todorov and Tassa, 2009). While the solution is not guaranteed to be optimal any-
more, it solves the issue caused by the curse of dimensionality and is also widely used in
marine navigation (Avgouleas, 2008; Avgouleas and Sclavounos, 2014).

In the context of planktonic navigation, where the steering direction ˆ⃗n is actually the
swimming direction ˆ⃗p, these local approaches feel particularly relevant. Indeed, due to
their limited knowledge of the surrounding flow and their expected limited computa-
tional power, the global approaches are out of reach of such organisms.

5.3.1 | Local Dijkstra algorithm
We first discuss how the Dijkstra algorithm can be used locally to adapt it to solve plank-
tonic navigation problems. Starting from a given position X⃗ of a plankter, one first de-
fines a length horizon λDijk. (as opposed to the surfing time horizon τ) that controls the
distance of the local target vertices from the microswimmer position. Then a local graph
of size 2λDijk. × 2λDijk. is generated centered on the plankter position X⃗ and is updated
at all times when X⃗ changes. It is then fed to a Dijkstra algorithm that computes the
shortest path that leads to one of target edges of the graph. The control steering direc-
tion ˆ⃗nLoc.Dij.(t) is finally deduced from the control ˆ⃗na→b [Eq. (5.5)] corresponding to the
first graph edge a→ b of that shortest path.
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Figure 5.6: Local iterative Dijkstra algorithm compared to the surfing
strategy [ ˆ⃗p = ˆ⃗nsurf, Eq. (2.23)] in Taylor-Green vortices (Chap. 2, Sec. 2.3.1)
for various length horizons λDijk., with Vswim = umax, τωmax = π/2 for
surfers and rc = 4 for the local iterative Dijkstra algorithm. Trajectories
of perfectly bottom-heavy plankton ( ˆ⃗p = ˆ⃗z) are plotted in blue for refer-
ence. The grid illustrates the local graph of the Dijkstra algorithm: line
intersections represent graph vertices. This graph is regenerated locally
at each time step. The final simulation time is set to Tωmax = 18 and the
initial position to X⃗0/L = (π/4, 0).

To apply this algorithm to plaktonic navigation problems, an additional modifica-
tion is required when computing the graph using Eq. (5.4) and Eq. (5.5). Indeed as
stated in the problem description in Chap. 2, as they are advected by the fluid flow,
planktonic organisms are not able to measure directly the flow velocity u⃗(X⃗). Thus u⃗(⃗x)
is replaced by u⃗(⃗x)− u⃗(X⃗) in the expressions used to compute the graph2. Thankfully, as
proven below, the optimal control that leads to the maximization of vertical migration
is independent of u⃗(X⃗) and this limitation is not affecting navigation performance 3.

This local iterative implementation of the Dijkstra algorithm is compared to the surf-

2If written as a Taylor expansion, u⃗(⃗x)− u⃗(X⃗), can be directly computed from spatial derivatives of the
flow velocity.

3This is only valid in the context of vertical migration. If the aim of the plankter is to reach an Eulerian
target, u⃗(X⃗) is of primordial importance.
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ing strategy in Fig. 5.6 for various values of the length horizon λDijk. (dimension of the
graph). Similarly to surfing, a small value of the length horizon λDijk. also leads to
swimming straight up. Indeed if the target distance to reach is close to the plankter
(characterized by the value of λDijk.), one does not have the time to exploit the flow
before reaching its target distance. Thus the optimal swimming direction ˆ⃗p is along ˆ⃗z.
When λDijk. increases however, for λDijk. = πL/4, performance increases drastically and
this method outperforms the surfing strategy at the cost of a larger time complexity. Sur-
prisingly, when one further increases λDijk., we observe a weaker vertical displacement.
Similarly to the effect observed for surfing in Chap. 2, Sec. 2.3.1, we expect performance
to be affected by the finite final time T. For a small value of T, large values of λDijk.

may overanticipate the trajectory leading to weaker performance. However we would
always expect performance to increase with λDijk. for T → ∞.

Despite its attractiveness to solve planktonic navigation problems due to its better
vertical migration performance compared to the surfing strategy this method remains
very time consuming. Indeed, as discussed below in Chap. 3, Sec. 4.2.1 most of the
surfing strategy is captured by a first order computation of the matrix exponential. The
time complexity of the surfing strategy then scales as O(m2) with m the dimension of the
problem (m = 2 in 2D flows and m = 3 in 3D flows). The complexity of the local Dijkstra
approach depends however on the size of the graph generated. The initial bottleneck
of this method comes from the generation of the graph that requires the computation of
each graph edge weight based on Eq. (5.4). The complexity of the method then strongly
depends on the number of graph edges |E| and is approximately equal to πr2

c |V| in 2D
or 4πr3

c |V|/3 in 3D4. The number of graph vertices |V| depends directly on the length
horizon λDijk. and the resolution of the graph. The minimal graph resolution required
to get a correct description of the possible paths depends on the smallest flow scales
of the flow. The number of graph vertices |V| then scale as O([λDijk./L]m) in Taylor-
Green vortices (or O([λDijk./η]m) in turbulence). Finally the time complexity of the local
Dijkstra approach scales as O([rcλDijk./L]m). This illustrates the clear advantage in time
complexity of the surfing strategy, in particular in 3D flows (m = 3).

5.3.2 | Local Zermelo approach: a generalisation of surfing
A first way to approach the problem locally using a Zermelo derived method is to ap-
ply a similar idea than above. Rather than integrating Zermelo trajectories over a long
time, trajectories could be integrated over a short time τ. In a similar manner than the
original method, the trajectory that maximizes displacement in the desired direction is

4The actual number of vertices depends on the solution of Gauss lattice point problem (Guy, 2004).

99



Chapter 5. Alternative navigation approaches 5.3. Local methods

selected and followed. This protocol can then be applied iteratively to navigate effi-
ciently through the flow.

Note how similar this protocol reassembles the reasoning used to derive the surfing
strategy in Chap. 2. The only difference in both methods lies in that the surfing strategy
assumes that the flow is linear, therefore enabling the surfing to be expressed as a simple
reactive strategy. Therefore the surfing strategy can actually be seen as a local Zermelo
approach limited to τ ≤ τ∗ with τ∗ the optimal surfing time horizon. Based on this
observation, in this section, we look for a generalisation of the surfing strategy that
could extend the validity of the time horizon τ.

Starting from the directional Zermelo equation 5.3

d⃗n
dt

= −
(
∇⃗u⃗
)T
· n⃗ with n⃗ =

(
cos θ

sin θ

)
, (5.6)

we recognize a first order homogeneous differential equation, for which the solution
can be expressed as

n⃗(t) =
[

exp
(
−
∫ t

0
∇⃗u⃗ dt′

)]T

· ˆ⃗n0, (5.7)

with ˆ⃗n0 the initial control value, still unknown. We remind that ∇⃗u⃗ here represents the
value of the flow velocity gradients measured along the trajectory of the plankter rather
than a Eulerian measure.

When using this framework, maximizing the vertical migration over a time T (prob-
lem presented in Chap. 2) reduces to

Find ˆ⃗n0 such that X⃗(T) · ˆ⃗z is maximum. (5.8)

Knowing the optimal steering direction at the final time T would be ˆ⃗n(T) = ˆ⃗z, we obtain
the initial steering direction ˆ⃗n∗0 that maximizes vertical migration.

ˆ⃗n∗0 =
n⃗∗0
|⃗n∗0 |

, with n⃗∗0 =
[

exp
(∫ T

0
∇⃗u⃗ dt′

)]T

· ˆ⃗z. (5.9)

The optimal steering direction ˆ⃗n∗ can then be expressed as

ˆ⃗n∗ =
n⃗∗

|⃗n∗| , with n⃗∗(t) =
[

exp
(∫ T

t
∇⃗u⃗ dt′

)]T

· ˆ⃗z. (5.10)

Denoting τ = T− t as the time remaining until the end, the previous expression may
be rewritten as:

ˆ⃗n∗ =
n⃗∗

|⃗n∗| , with n⃗∗ =
[

exp
(∫ τ

0
∇⃗u⃗ dt

)]T

· ˆ⃗z. (5.11)
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We can then decompose the Lagrangian measure of the flow velocity gradients into
its Taylor expansion in time

∇⃗u⃗(t) = ∇⃗u⃗ +
d∇⃗u⃗

dt
t +

d2∇⃗u⃗
dt2

t2

2
+ · · · =

∞

∑
k=0

dk∇⃗u⃗
dtk

tk

k!
. (5.12)

The subscript 0 has been omitted for clarity. This leads to the expression of the optimal
steering direction as function of the Lagrangian time derivatives of the gradients at the
moment of the measure

ˆ⃗n∗ =
n⃗∗

|⃗n∗| , with

n⃗∗ =

[
exp

(
∞

∑
k=0

dk∇⃗u⃗
dtk

τk+1

(k + 1)!

)]T

· ˆ⃗z =

[
exp

(
∇⃗u⃗ τ +

d∇⃗u⃗
dt

τ2

2
+ · · ·

)]T

· ˆ⃗z. (5.13)

Note that this same expression can be obtained by directly expanding on the approach
used to derive the surfing strategy to higher orders.

While a plankter with no memory is limited to the first term of the series, with the
ability to memorize past measures, the time derivatives of the measure of the gradient,
dk∇⃗u⃗/dtk, should be accessible and could be used to further improve the performance
of the surfing strategy.

However, strictly speaking, the derivatives of the gradient tensor, dk∇⃗u⃗/dtk do not
depend only on the past but also on the current control n⃗∗. To highlight this dependence,
one may note that

dk∇⃗u⃗
dtk =

Dk∇⃗u⃗
Dtk + Vswim

∂k∇⃗u⃗
∂( ˆ⃗n∗)k

, (5.14)

with ∂k∇⃗u⃗/∂( ˆ⃗n∗)k the spatial derivative of ∇⃗u⃗ along ˆ⃗n∗ (for instance ∂∇⃗u⃗/∂ ˆ⃗n∗ = ˆ⃗n∗ · ∇⃗2u⃗
with ∇⃗2 the hessian tensor of the flow velocity). If no memory is provided but high
order spatial derivatives can be computed, one may then estimate the terms dk∇⃗u⃗/dtk

from local spatial derivatives. Doing so would result in an implicit expression of ˆ⃗n∗ that
could be solved iteratively.

Overall these analytic results show that:

■ the optimal control to this global navigation problem can be written as a function
of local information.

■ the knowledge of the flow velocity field u⃗(X⃗, t) is not necessary to apply this opti-
mal control.
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■ the surfing strategy is the simplification of a rigorously optimal solution: if the
flow velocity gradient tensor ∇⃗u⃗ is considered constant, the optimal solution in-
deed reduced to the surfing strategy [Eq. (2.22)].

■ memory and finer spatial measurements could be used to further improve navi-
gation performance.

5.4 | Reinforcement learning
Reinforcement learning methods have been successfully applied to learn efficient navi-
gation strategies in fluid flows. For instance, using reinforcement learning, Reddy et al.
(2016) show that turbulence fluctuations can be exploited to optimize bird flight [or
more generally optimize thermal soaring (Reddy, 2018; Reddy et al., 2018)]. In the con-
text of the vertical migration of microswimmers, Colabrese et al. (2017) demonstrates
that smart navigation is possible in Taylor-Green vortices through reinforcement learn-
ing. Since then studies looked to quantify the performance of these methods of point to
point navigation in more complex flows such as: 2D turbulent flows (Alageshan et al.,
2020b; Biferale et al., 2019; Qiu et al., 2022b), 2D cylinder vortical wakes (Gunnarson
et al., 2021), 2D random flow fields (Qiu et al., 2022b) and in the 3D ABC flow (Gustavs-
son et al., 2017) among others. Overall the results show reinforcement learning to be
a promising tool to solve such navigation problems. However, its application to more
complex flows such as 3D turbulence remains challenging (Alageshan et al., 2020b; Qiu
et al., 2022c). Moreover the resulting strategies are often difficult to interpret, known as
the “black box” issue.

Given the recent increasing interest for reinforcement learning approaches, the prin-
ciples of these methods is briefly explained here. In the context of the vertical migration
problem in turbulence, the performance of the surfing strategy is then compared to the
performance of the strategy proposed by Alageshan et al. (2020b), learned through re-
inforcement learning.

5.4.1 | Principle of reinforcement learning approaches
Throughout this section an explanatory example is used to describe the general prin-
ciples of reinforcement learning: we consider that someone, for instance myself, is in
charge of finding the shortest path from a shelter to the summit of a given mountain5

5Note that solving this kind of hiking optimal navigation problems is obviously important for moun-
taineers and is an active field of research: see Parkinson et al. (2018) for instance.

102



Chapter 5. Alternative navigation approaches 5.4. Reinforcement learning

s1,1 · · · s1,j · · ·

...

si,1 si,j

. . .
aN

aS

aW aE

Figure 5.7: Illustration of the problem of finding the best path from the
shelter (house) to the mountain summit (flag). The cell centers represent
the set of positions si,j ∈ S corresponding to the set space. The actions
correspond to the action of walking in any cardinal direction: aN (north),
aS (south), aW (west) and aE (east). As it is easy to get lost, walking in any
direction might not necessary lead to an adjacent state but might lead
somewhere else.

(Fig. 5.7). I am provided a map of that mountain, a gps device that let me know my po-
sition at all times and a notebook to take some notes. I have a given time limit, a week
for instance, to perform that task. To try to solve the problem, a first idea would be to
use Dijkstra algorithm presented above (Sec. 5.2). To do so one would need to define a
graph edges that maps the mountain and then assess the time needed to go from one
edge to another to define the graph edges weights. While this may be computed easily
for car navigation (based on the length of the road) and marine navigation (based on the
ocean currents), this is much harder to perform for the problem of hiking unexplored
mountain. The walking performance depends on the type of the terrain, its roughness,
the slope and many other factors which make this assessment impossible without actu-
ally experimenting the hike. To overcome this issue, I could just walk over the whole
mountain and try to assess this experimentally. Once done, this would let me define the
graph edges, necessary to apply the Dijkstra algorithm. This is however impossible for
two reasons. First it would take way too much time to hike the whole mountain by my-
self. Second the problem is not deterministic: if there is no trail to follow, I would never
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navigate through obstacle in the exact same way each time. As a consequence, starting
from the same approximate position, and deciding to go in the east direction would not
always lead me to the exact same position each time. These two particularities challenge
the application of the Dijkstra algorithm, and justify the need for other approaches such
as reinforcement learning. Note that this example can also be adapted to a problem of
navigation with local information if I am not provided a map. In that case, the state
space would be reduced to my local vision and the problem would certainly become
even more probabilistic.

Reinforcement learning refers to various optimization methods to solve a Markov
decision processes by trial and error. A Markov decision process is defined by a set of
states S , a set of possible actions A that can be performed by an agent. In the context of
the mountaineering problem, the set of states would correspond to positions mapped
over the mountain and the set of actions would correspond to the action of walking in
a cardinal direction for a given amount of time, one hour for instance. There is a given
probability Pa(s, s′) to transition from a state s ∈ S to another s′ ∈ S when performing
the action a ∈ A6. When performing an action a the agent is led from a state s to another
s′. The agent is then offered an instantaneous scalar reward Ra(s, s′). Its value can be
negative, corresponding then to a penalty rather than an actual reward. Note well that
the reward can also be probabilistic. In the case of our illustrative problem, the reward
could correspond to how closer to the summit I got.

The general idea of reinforcement learning is to find the policy π(a, s) that maximizes
the accumulated reward, generally called return, obtained over iterated action. The pol-
icy π(a, s) characterizes the probability to perform the action a given the state s. In other
words, it corresponds to how likely I am to choose to walk in the direction a when I am
at the position s on the map.

In practice, the principle of reinforcement learning is to use past experience to assess
the actions that maximizes the expected cumulative reward that will be obtained in the
future. Many different methods can be used to update the policy π(a, s) as function of
experience. As an example of these methods, we focus here one of the simplest approach
that exists out there: the Q-learning method. Despite its simplicity compared to more
advanced approaches, this method is actually widely used and is a good illustration of
the general principles of reinforcement learning. In addition, this method is the optimi-
sation approach used by (Alageshan et al., 2020b). As their results are to be compared
to the surfing strategy in our study, the principle of this reinforcement learning method
is to be understood.

6This is the property that makes a Markov decision problem different that the shortest path problem
presented above.
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TheQ-learning approach relies on the quality value functionQ(a, s). This value quan-
tifies the expected return (cumulative reward over iterations) obtained if the action a is
performed in the state s. In the context of the mountaineering problem, this function
quantifies how close to the summit I am going to get in the future if my current decision
is a at the gps position s. Given the knowledge of that function, the policy that maxi-
mizes reward is simply the policy that takes the action a∗ = argmaxa∈AQ(a, s) that max-
imizes Q(a, s) for a given state s. In other words the optimal policy reads π∗(a∗, s) = 1
and π∗(a, s) = 0 otherwise. However in the problem we consider, the exact value of the
functionQ is not known but must be assessed from experience. In practice, the value of
Q is first initialized (uniformly in general) and its values are updated at each iteration
using Bellman equation. If the action a of a given iteration led from the state s to the
state s′ and the rewardRa(s, s′) was offered, then Q is updated as follows

Q(a, s) 7→ (1− λlearn.)Q(a, s) + λlearn.

[
Ra(s, s′) + γlearn. max

a∈A
Q(a, s)

]
. (5.15)

The parameters λlearn. and γlearn. are two free parameters of the problem. The param-
eter λlearn. characterizes how fast Q(a, s) is updated. This boils down to averaging the
reward Ra(s, s′) approximately over 1/λlearn. iterations. If the problem is completely
deterministic, λlearn. is set to 1 as no average is needed but the more probabilistic it be-
comes, the lower the value λlearn. is set to enhance the learning process. The parameter
γlearn. characterizes the fact that rewards obtained late in the future are discounted with
respect to the rewards obtained in a close future. The method then only accounts for
an iteration horizon of the order of 1/γlearn. rather than looking for an optimal solution
over an infinite number of iterations.

We now know how the quality value Q can be built from experience. We also now
how to deduced the optimal policy π∗(a, s) (the final objective) once the value of Q is
assessed from experience. Now remains to be prescribed the actual policy π(a, s) that
enables for both exploration and assessment of the value Q and the exploitation of the
current knowledge of Q to avoid exploring the whole set of states. In the context of the
mountaineering navigation problem, how to choose my decisions so that I explore suf-
ficiently the mountain to look for new shorter paths but also use my current knowledge
to avoid having to explore the whole mountain?

There are many different ways to prescribe that policy. We present here a simple yet
popular approach: the ϵ-greedy approach. The policy can then be defined as

π(a, s) =





ϵlearn./|A| + (1− ϵlearn.) if a = argmaxa∈AQ(a, s)

ϵlearn./|A| otherwise,
(5.16)
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with ϵlearn. yet another free parameter. Its value characterizes how much likely the action
a = argmaxa∈AQ(a, s) that maximizes the expected return is to be chosen with respect to
the others. If ϵlearn. = 1, then this optimal action is always chosen preventing the agent
to improve its estimation of the quality functionQ. If ϵlearn. = 0, then the actions taken at
each state are completely random as the probability distribution given by π(a, s) would
be uniformly distributed. This concludes the full prescription of a Q-learning method.

While reinforcement techniques are tempting due to their very broad applicabil-
ity, the learning process is time consuming. Moreover, most reinforcement learning
methods are build upon numerous free parameters that need to be hand-tweaked to the
problem solved. Finally the convergence to an optimal solution is not guaranteed and
is especially challenging in the context of very stochastic problems (Alageshan et al.,
2020b).

The development of a reinforcement learning method is out of the scope of this study
that focuses on the previously described surfing strategy. Therefore, we use the result
of (Alageshan et al., 2020b) to compare the surfing strategy to reinforcement learning.

5.4.2 | Comparison to the surfing strategy
A recent study by Alageshan et al. (2020a) used reinforcement learning to solve a nav-
igation problem similar to ours. We sum up here the problem and characterize the
adversial Q-learning method they used. The navigation problem they introduce is the
problem of reaching a fixed target in a turbulent flow. The goal is to reach the target
(of a given size) in a minimal average time, starting from random initial positions. The
smart swimmers measure both the local flow vorticity ω⃗ and the direction to the target
ˆ⃗r at all times. The states s ∈ S of the problem are defined as 13 discrete space based
on the intensity of the local flow vorticity ω = |ω⃗| and the current orientation ˆ⃗p with
respect to the vorticity direction ˆ⃗ω and the direction towards the target [see Alageshan
et al. (2020b) for more details]. The possibles actions a ∈ A of the swimmers are defined
as 6 possible swimming directions colinear to each one of the following vectors: ˆ⃗r, − ˆ⃗r,
ˆ⃗r × ˆ⃗ω, − ˆ⃗r × ˆ⃗ω, ˆ⃗r × (ˆ⃗r × ˆ⃗ω) and − ˆ⃗r × (ˆ⃗r × ˆ⃗ω), with ˆ⃗r the direction to the target. The re-
ward is defined adversially meaning in this context that the reward given to the agent
is defined relatively to the performance of a naive microswimmer (bottom-heavy in the
direction of the target) starting at the same position. Whenever the agent changes of
space, the naive swimmer is then reset at the position of the smart agent. The reward is
then defined asR(t) = rnaive(t)− rsmart(t) with r the distance to the target.

Due to the more complex nature of the problem they address compared to the prob-
lem of vertical migration, the choice of a performance metric is not obvious. The metric
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Figure 5.8: Comparison between the surfing strategy (red symbols),
bottom-heavy plankters (blue line) and the “smart” strategy obtained by
Alageshan et al. (2020a) using reinforcement learning (green dashed line).
The performance of surfers is plotted as a function of the time horizon τ,
which is the only parameter to optimize. The swimmers have the same
characteristics: Vswim = 1.5 urms and τalign = 0.5 ω−1

rms.

chosen by Alageshan et al. (2020a) is the average time to reach the fixed target. This
metric requires the addition of a parameter, the size of the target. Moreover this metric
do not account for the agents that do not reach the target. To overcome these issues and
compare the performance of the learnt strategy they obtain to the surfing strategy, we
consider the target to reached is placed at infinity. In that case, the direction to target is
constant and ˆ⃗r = ˆ⃗z. The problem then falls back into a “vertical migration” problem.

Figure 5.8 shows the performance of surfers as a function of the time horizon τ (the
only parameter of our strategy) [the result of this comparative study have been pub-
lished in Monthiller et al. (2022)]. It is compared to the performance of the strategy
that Alageshan et al. (2020a) obtained through reinforcement learning in a 3D turbulent
flow of Reλ = 30. It shows that surfing outperforms their reinforcement learning strat-
egy: surfers swim 66% faster than bottom-heavy plankters, while reinforcement learn-
ing agents only swim 11% faster. Note that the surfing strategy is favoured compared
to their approach: ˆ⃗nsurf is a continuous function of a continuous measure of the flow ve-
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locity gradients ∇⃗u⃗. As opposed to their smart microswimmers that are limited to the
measure of the rotational part of the velocity gradients (the vorticity ω⃗), and for which
their control is discrete and function of a discrete state space. These limitations could
be lifted up in practice using more advanced reinforcement learning methods. Note
moreover that in the original paper of Alageshan et al. (2020a), trained agents reach the
target 19% faster than naive agents (which correspond to bottom-heavy plankters). The
discrepancy is likely due to the fact that their behavior has been trained in a different
simulation flow simulation (our Reynolds number Reλ = 21 is different from theirs) and
using a difference in performance metric.

Overall, surfing not only appears to be a competitive strategy, but it also provides a
baseline for future studies using reinforcement learning.

5.5 | Summary
We conclude this chapter by summing up key elements discussed in this chapter

■ navigation problems can be addressed either using the Zermelo equation or using
a dynamic programming approach

■ while these methods are originally based on the knowledge of the whole velocity
field, both of these approaches can be adapted to account for local knowledge of
the flow

■ both of these methods can lead to better performance than surfing in Taylor-Green
vortices but at the cost of greater computational time that would make them par-
ticularly challenging to apply to more complex flows

■ this comparative study leads to the generalisation of the surfing strategy than can
be seen as a reduction of a rigorously optimal navigation method

■ the generalized surfing strategy can further improve surfing performance given
that memory or finer spatial measures of the flow are provided

■ the surfing strategy is competitive with respect to reinforcement learning approaches
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6

Discussion of biophysical relevance

Throughout this study, we presented a mechanistic approach to plankton migration and
we developed a physics based strategy, called surfing, based on the optimal solution to
the problem in a linear flow (cf. Chap. 2). This strategy is described by the control

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf =

[
exp

(
τ∇⃗u⃗

)]T
· ˆ⃗z, (6.1)

where ˆ⃗nsurf is the preferred swimming direction, ∇⃗u⃗ is the local measure of the flow ve-
locity gradients, ˆ⃗z is the measure of the local direction. This behavior enables simulated
plankters to forage beneficial currents and get carried by them.

Based on an optimality-driven approach the expression given in Eq. 7.1 aims to
model plankter behavior in the context of vertical migrations. While we showed this
strategy to be beneficial in turbulence (Chap. 3) while being robust to various limi-
tations (Chap. 4), we observed surfing performance to be impacted by various param-
eters. In particular, performance is impacted by the ratio of the plankter swimming
velocity and the Kolmogorov velocity scale Vswim/uη and the ratio of the reorientation
time and the Kolmogorov time scale τalign/τη [the Kolmogorov scales correspond to the
smallest scales of turbulence defined in Chap. 3, Sec. 3.1, Eq. (3.6)].

As both these ratios are impacted by the local turbulence intensity and the plankter
properties, one need to check if these ratios corresponds to values for which surfing is
beneficial for actual plankters in actual plankton habitats. To do so, we assess surfing
performance as a function of the habitat for three characteristic planktonic organisms: a
dinoflagellate (single cell eukaryote of size d ≈ 0.03 mm), an invertebrate larvae (small
animal larvae of size d ≈ 0.2 mm that may evolve into larger animals: sea snails, oys-
ters and more) and a copepod (small crustacean of size d ≈ 1 mm). The size ratios are
represented in Fig 6.1. Then we discuss the question of optimality in marine biology
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and discuss the choice of vertical migration speed to evaluate performance while actual
plankters are expected to optimize their fitness to their environment. We finally pro-
pose an experiment that would help find out whether the surfing strategy is actually
performed by planktonic organisms in real life.

6.1 | How well would actual plankton perform?

copepod

larva

dinoflagellate

Figure 6.1: Visual
representation of the
size ratios of the typ-
ical plankters we con-
sider.

To answer the question of this section, we first need to evaluate
typical reorientation timescales of the characteristic planktonic or-
ganisms we consider. This timescales are first derived for both
actively reorienting surfing plankters (τalign,surf) and bottom-heavy
swimmers (τalign,b−h). Then we fit our numerical data to empiri-
cal models to obtain a rough yet continuous description of surfers
and bottom-heavy plankters performance as a function of both the
ratios Vswim/uη and τalign/τη .

6.1.1 | Estimation of the reorientation time τalign

We consider plankton as spheres in a viscous flow. The viscous
torque exerted on a rotating sphere is (Lamb, 1945)

Tµ = πµd3ω, (6.2)

with µ the dynamic viscosity, d the diameter of the plankter and ω its angular velocity.
The reorientation time can be estimated by balancing this viscous torque with either the
active swimming torque for surfers or the passive gravitational torque for bottom-heavy
swimmers. To swim at a constant speed Vswim, a microswimmer exerts a force opposite
to the Stoke’s drag of norm (Stokes et al., 1851)

Fswim = 3πµdVswim, (6.3)

From this force, we can estimate the active torque that such a microswimmer is able to
produce by multiplying it by the radius d/2

Tactive =
3
2

πµd2Vswim. (6.4)

Balancing the viscous torque Tµ, given in Eq. (6.2), with the active torque Tactive gives
a typical angular velocity ωactive. The reorientation time of surfers is then given as

τalign,surf =
1

2ωactive
=

1
3

d
Vswim

. (6.5)
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plankton d Vswim τalign,surf τalign,b−h
dinoflagellate 0.03 0.3 0.03 0.2
invertebrate larva 0.2 2 0.03 0.02
copepod 1 3 0.1 0.008

Table 6.1: Typical plankton characteristics: size d (in mm), swimming ve-
locity Vswim (in mm s−1), and reorientation time τalign (in s). The reorien-
tation time depends on the origin of the alignment torque. For surfers,
this torque is due to active swimming and τ

sur f
align = d/(3Vswim) with d

the plankter size. For bottom-heavy swimmers, it is due to gravity and
τ

sur f
align = 3ν/(gδg) (Pedley and Kessler, 1992) with g the acceleration of

gravity and δg the distance between the center of mass and the geometri-
cal center [we used δg = d/200, a typical for zooplankton based on (Fields
and Yen, 1997; Jonsson, 1989)]. The derivation of these reorientation times
is given in Sec. 6.1.1.

We see that this reorientation time only depends on the stride length Vswim/d, the num-
ber of body lengths traveled per second.

For bottom-heavy swimmers, the gravitational torque is

Tb−h =
1
6

πd3ρgδg, (6.6)

with ρ the fluid density, g the acceleration of gravity, and δg the distance between the
center of mass and the geometric center.

As for surfers, we can find τb−h
align, the reorientation time of bottom-heavy swimmers,

by balancing the gravitational torque with the viscous torque. We find

τalign,b−h = 3
ν

gδg
, (6.7)

with ν the kinematic viscosity of the fluid. This expression is identical to the one given
by Pedley and Kessler (Pedley and Kessler, 1992). These two expressions let us evaluate
the reorientation times of plankters based on physical parameters. We can then evaluate
the parameters required to quantify surfing performance for the three typical organisms
considered. Used below, the values of these parameters are presented in Tab. 6.1.

6.1.2 | Empirical model for typical plankton performance
As our attempt to estimate performance in Chap. 3, Sec. 3.4 failed to capture correctly
performance, we adopt a pragmatic approach here: we simply fit an empirical model
to our numerical data, both for surfers and for bottom-heavy swimmers to estimate
migration performance.
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Figure 6.2: Evaluation of the empirical models of surfing performance.
Comparison between the numerical results (symbols) and the empirical
fits (solid lines) given in Eqs. (6.8) and (6.9), for bottom-heavy swimmers
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swimmers (b) as a function of τalign for different Vswim. Performance of
surfers (c) and bottom-heavy swimmers (d) as a function of Vswim for
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Our previous numerical results suggests, the performance of surfers and bottom-
heavy plankters are influenced by both reorientation time τalign and the swimming
velocity Vswim. As noted in Chap. 4, Sec. 4.2.3, the previously observed drop of per-
formance as τalign time increases is mainly due to the fact that vorticity tend to tilt
swimmers away from their preferred direction ˆ⃗n ( ˆ⃗n = ˆ⃗nsurf for surfers and ˆ⃗n = ˆ⃗z for
bottom-heavy swimmers). Then, the larger their reorientation time τalign, the harder it is
for plankters to realign with their preferred direction causing the performance to drop.
However, when the plankter swimming speed Vswim increases, we observe that this ef-
fect is hindered, and faster bottom-heavy plankters tend to perform better than slower
ones. Passing quicker through the flow, faster swimmers are less affected by the local
vorticity as it decorrelates faster with time, hence the better performance. These two
effects should affect both surfers and bottom-heavy plankters in the same way. As a
consequence we first design an empirical model that accounts for these first two effects
and fit it to the simulations results of bottom-heavy swimmers.

We found that the following exponential function could adequately fit our data on
the whole range of τalign and Vswim studied (Figs. 6.2b and 6.2d)

⟨Veff.⟩
Vswim

≈ exp

(
−0.3

τalign/τη

0.88 + 0.12
(
Vswim/uη

)
)

. (6.8)

For surfers, one also need to account for the additional effect that surfing perfor-
mance decreases with swimming speed Vswim. Assuming the previously described ef-
fects affect the surfers similarly, we introduce this effect as another multiplicative term
in addition to the model of Eq. 6.8. Using the tanh function to fit our data gives the
following empirical model

⟨Veff.⟩
Vswim

≈
[

1.8 + 0.8 tanh

(
3.0−

(
Vswim/uη

)

9.9

)]
exp

(
−0.3

τalign/τη

0.88 + 0.12
(
Vswim/uη

)
)

.

(6.9)
The comparison between these empirical fits and the numerical results is shown in

Fig. 6.2. It shows a good agreement that allows to estimate roughly the performance of
plankton over a wide range of conditions (done below).

6.1.3 | Results: surfing performance and plankton habitat
We can now assess the expected benefit of the surfing strategy over bottom-heaviness
for vertical migration in different marine habitats. In this evaluation, we only account
for the effect of the swimming speed Vswim and the reorientation time τalign. Note that
the influence of the turbulence intensity is accounted for through their ratio with the
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Figure 6.3: The surfing strategy is beneficial over a wide range of plank-
ton habitats. Expected vertical migration speed (effective vertical veloc-
ity, Veff., Eq. (2.15), relative to swimming velocity Vswim) as a function of
the turbulence dissipation rate ϵ.We consider three typical plankton: a
copepod, an invertebrate larva, and a dinoflagellate, whose characteris-
tics are given in Tab. 6.1. Two strategies are compared: the proposed surf-
ing strategy (red) and bottom-heavy swimmers (blue) orienting upwards
due to gravity. In the upper panel, we indicate the range of turbulence in-
tensity for different marine habitats (data from (Fuchs and Gerbi, 2016))
and the corresponding range of Kolmogorov time τη and Kolmogorov
velocity uη , Eq. (3.6).
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values of the Kolmogorov scales uη and τη that depend on turbulence intensity. Con-
sidered as a second order effect, the influence of the Reynolds number, Reλ, is however
ignored. The two ratios Vswim/uη and τalign/τη are judged to be the most influent pa-
rameters. In practice, any of the parameters of Chap. 4 could be taken into account.
Note that the results of this subsection have been published in Monthiller et al. (2022).

We remind the reader that we consider here three typical plankton: a dinoflagellate,
an invertebrate larva and a copepod whose sizes, swimming speeds and reorientation
times are given in Tab. 6.1. Their migration performance is estimated using the empirical
models developed in Sec. 6.1.2. This performance is plotted in Fig. 6.3 as a function
of the turbulence dissipation rate ϵ [that controls the values of uη and τη defined in
Eq. (3.6)]. Although it has been suggested that oceanic turbulence might be weaker than
initially thought (Franks et al., 2022), this figure shows that typical zooplankton species
could benefit from the surfing strategy across a wide range of habitats where vertical
migration is crucial, in particular continental shelves, estuaries and open oceans (Fuchs
and Gerbi, 2016).

Note however that Fig. 6.3 is plotted based on (1) rough empirical models that (2)
do not account for all the effects described in Chap. 4. As a consequence there is room
for improvement for future research to find more satisfactory models of performance
(extending on Chap. 3, Sec. 3.5) and include more parameters to the model (for instance
the parameters explored in Chap. 4) to obtain a less idealized description of plankton
vertical migration speed.

6.2 | Optimality in marine biophysics
Throughout the whole study we address the problem of plankton vertical migration
problem as a navigation problem. Based on a optimality-driven approach, we designed
the surfing strategy that results from the optimal solution to the problem in a linear flow.
This strategy enables simulated plankters to increase their effective migration speed by
exploiting local flow features.

However the “optimality” of a plankter in not only driven by migration speed.
Other parameters have to be taken into account such as predation, reproduction and
food foraging (Smith et al., 2011). All these parameters influence the fitness of an or-
ganism to its environment: the essential concept of evolutionary theory. It describes the
capacity of an individual to reproduce and pass its genes to the next generation. As the
results of natural selection, the individuals that maximized their fitness survived and
reproduced which resulted ultimately in the current marine ecology. Therefore looking
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for strategies that maximize fitness could lead to models of plankter behavior. How-
ever the difficulty lies in the number of parameters that influence fitness to account for
(Smith et al., 2011): predation, food foraging, energy consumption among others. More-
over, the formal definition of fitness itself remains unclear.

In the context of plankton ecology, the following definition of fitness is commonly
used

gfit. =
Ein.

µmort.
, (6.10)

with Ein. the energy intake rate and µmort. the mortality rate (Visser, 2007). For instance,
accounting for predator pressure and food foraging, this fitness value has been shown
to control swimming speed and vertical positioning of plankters in tubulent environ-
nements (Visser et al., 2009).

This highlights that, in the context of planktonic navigation strategies and in par-
ticular in the context of vertical migration, numerous parameters have to be accounted
for to complete an optimality driven approach. Due to its complexity, accounting for
all aspects of fitness at the same time is particularly challenging, hence our approach
only accounting for vertical migration speed. However we show in this section that the
surfing strategy can be adapted to account for more effects to increase the complexity of
the model.

As it is highlighted in the definition of the fitness criteria gfit. [Eq. (6.10)] the energy
consumption is an important parameter to account for. Therefore we now focus on the
energy efficiency of the surfing strategy, ignoring predation and food foraging, to limit
the complexity of the problem.

Problem formulation. To quantify the energetic efficiency Eeff. of surfing, we define
the following metric

Eeff. =
⟨Veff.⟩
⟨Ptot.⟩

. (6.11)

with ⟨Veff.⟩ the average effective upward velocity and ⟨Ptot.⟩ the average power con-
sumed to achieve this effective upward velocity. Maximizing this quantity can be inter-
preted as maximizing the distance traveled for a given amount of available energy.

The power consumption Ptot. of plankton can be decomposed in three terms, Pswim

the swimming power consumption, Pturn the power consumption due to active rotation
and Pmeta. the power consumed by the metabolism at rest:

Ptot. = Pswim + Pturn + Pmeta.. (6.12)
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Considering planktonic organisms as small, spherical and inertialess swimmers, the ac-
tive power consumption can simply be computed

Pswim = 3πµdV2
swim/βeff. (6.13a)

Pturn = πµd3Ω2
swim/βeff., (6.13b)

with µ the dynamic viscosity of water, d the plankton diameter, Vswim the plankter swim-
ming speed and Ωswim its active angular velocity. The coefficient βeff. accounts for weak
efficiency of the conversion of biochemical energy to mechanic power. The estimate of
this coefficient range from less than 0.01% to 10% (Buskey, 1998; Minkina, 1981; Mor-
ris et al., 1985). Note that for a spherical swimmer, this active angular velocity can be
expressed as the following

Ωswim =

∣∣∣∣∣
d ˆ⃗p
dt
× ˆ⃗p− 1

2
ω⃗

∣∣∣∣∣. (6.14)

with ω⃗ the local flow vorticity. There is no clear way to evaluate the Pmeta. however.

Estimation of the metabolic power Pmeta.. One way to estimate the metabolic power
consumption Pmeta. is to use the Kleiber’s law (Kleiber et al., 1961). It is a known scaling
that states that metabolic power consumption Pmeta. evolves with the mass of the animal
M as M3/4. Note however that metabolic power depends on numerous parameters in
practice, therefore Kleiber’s law should only be used to obtain a global trend (Glazier,
2005). Fully aware of this limitation, we use here the scaling deduced from the data
of Gillooly et al. (2001): Pmeta. ≈ αmeta. M3/4 with αmeta. = 0.144 J.s−1.kg−3/4. This very
rough estimate of Pmeta. is mainly use to get an idea of the expected order of magnitude
of Pmeta.. Considering organisms as spheres, the metabolic power consumption can then
be computed as the following:

Pmeta. =
(π

6

)3/4
αmeta.ρ

3/4
p d9/4 (6.15)

with ρp = 6Mp/πd3 the density of the plankter. Then assuming that most planktonic
organisms are roughly as dense as water ρp ≈ ρwater, one can evaluate these coefficients
with µ = µwater = 10−3 kg m−1 s−1 and ρp ≈ ρwater = 103 kg m−3. In the limit of the
previously described assumptions, the total power is only function of the swimming
velocity Vswim, the active angular velocity Ωswim and the plankter size d.

To get an idea of the order of magnitudes of this total power for actual plankters, we
take the example of the larvae of the gastropod Crepidula fornicata (DiBenedetto et al.,
2022). These organisms are of size d ≈ 500× 10−6 m and swim at Vswim ≈ 7× 10−4

m.s−1. Furthermore, if these organisms are able to reorient, their active angular velocity
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could be estimated as Ωswim ≈ Vswim/d = 1.4 rad.s−1. Assuming the conversion from
biochemical power to mechanical power is of efficiency βeff. = 1% , we obtain the fol-
lowing estimates of power consumption Pmeta ≈ 6× 10−7 J.s−1, Pswim ≈ 2× 10−10 J.s−1

and Pturn ≈ 8× 10−11 J.s−1. Note that the resulting metabolic power is of the same or-
der of magnitude to that found commonly in literature: for instance Visser et al. (2009)
us Pmeta = 1.8× 10−7 J.s−1 in their study. We are then rather confident of the order of
magnitude of our estimate. Then, note that the active power consumption ends up com-
pletely negligible compared to the metabolic power: Pswim ≪ Pmeta and Pturn ≪ Pmeta.
Therefore the total power consumption is mostly due to the metabolic power and thus
Ptot. ≈ Pmeta. The surfing strategy would then remain beneficial as it results in increas-
ing significantly the effective vertical velocity Veff. at almost no energetic cost (compared
to Pmeta), therefore maximizing Eeff..

As a consequence, in the context of plankton vertical migration, and under the limit
of the previously stated assumptions we do not expect the active power consumption
to limit the use of an active reorientation and thus would not limit the use of the surf-
ing strategy. Note however many elements of fitness could be considered, for instance
stealth, that could be other reasons not to surf actively.

6.3 | Do plankton really surf?
All of these results suggests that (1) flow sensing plankters are able to “surf” on turbu-
lence and (2) doing so would be beneficial (even if energy consumption is taken into
account). Following our optimality-driven approach, we expect them to have evolved
to exploit the flow this strategy trough natural selection. If we are correct, the ability to
exploit the flow to migrate faster should be observable on real plankters.

To this end, we present below measurable cues that would help differentiate active
reorientation towards the surfing direction ˆ⃗nsurf, meaning flow informed navigation is
at play, from passive reorientation to the vertical ˆ⃗z through bottom-heaviness. We first
develop these cues with the experiment of DiBenedetto et al. (2022) in mind as the data
they generated could directly lead to the evaluation of these cues. We then discuss of
another experiment that could be performed to apply the same protocol on phototactic
plankters. Such experiment would provide a fine control on the direction of migration
of plankters through the placement of the light source.

6.3.1 | Larvae in turbulence
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Figure 6.4: Illustration of the experiment performed by DiBenedetto et al.
(2022) that aimed to monitor the behavior of veliger larvae of the gastro-
pod Crepidula fornicata in response to turbulence. The setup is mainly
composed of a large tank in which the larvae are placed. An homoge-
neous isotropic turbulent flow is generated at the center of the thanks to
eight jet generating pumps. The measures are performed in a vertical
centerplane of the tank, illuminated with a laser sheet from which is ex-
tracted the 2D flow velocity field in that plane and the trajectory of the
larvae.

6.3.1.1 | Brief description of the setup

DiBenedetto et al. (2022) observed the behavior of planktonic larvae, specifically the
veliger larvae of the gastropod Crepidula fornicata, in a jet-stirred turbulence tank (Fig. 6.4).
Both the larvae trajectories and two components of the flow velocity in a vertical center-
plane of the tank have been measured (refer to the original paper for details).

Experiments were conducted for various turbulence intensity to assess and differen-
tiate the response of these larvae to the local instantaneous flow from the to background
turbulence. They observed a response to the same local instantaneous cues from the
flow that differs with background turbulence. This observation suggests the ability of
these larvae to integrate information over time. Published along the paper, the data
generated by DiBenedetto et al. (2022) provide an interesting source of information con-
cerning the behaviors of these larvae in turbulence. Moreover, the larvae they consider
are in a early stage and therefore not ready to settle. As a consequence, we expect from
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these larvae to migrate vertically to seek for horizontal surface currents. The foraging
of these currents are believed to help larvae spread out horizontally and enhance their
chances of survival as a species (larval dispersal is further discussed in Sec. 7.2.1 and
App. B).

The setup is then similar to the problem studied throughout this thesis. Therefore it
offers a unique opportunity to compare the behavior of actual plankters with the surfing
strategy presented here.

The following is part of an ongoing collaboration with Michelle DiBenedetto, author
of the data. This collaboration aims to look closely to how the behavior of larvae corre-
lates with the local flow they experiment to assess if surfing is at play or not. Note that
the discussion presented here has broader significance as the methods described could
be applied to any similar experiment.

6.3.1.2 | Deducing plankter orientation from slip velocity

The data published along with this paper would let us evaluate the correlation of plank-
ters slip velocity (difference of the actual velocity of the plankter dX⃗/dt and the flow
velocity u⃗(X⃗) interpolated at the position of the plankter as if the later was not present)
with the local flow velocity gradients ∇⃗u⃗ around these plankters.

The cues proposed here mostly rely on the measure of the angle of the plankter
swimming direction with respect to the vertical ˆ⃗z. This angle is noted θ. Note that the
orientation of the plankter is not directly measured in the experiment but it is deduced
from the orientation of the slip velocity of the plankter. This slip velocity is evaluated as
the difference between the actual plankter velocity and the flow velocity that is interpo-
lated at the position of the plankter as if it did not exist

The estimated stokes number St, of these larvae ranges from St ≈ 10−1 to St ≈ 10−2
depending on the background turbulence imposed. This means no particle inertial ef-
fects are expected to influence this slip velocity. Therefore the observable slip velocity
should mostly be caused by swimming. The slip velocity should then be a good esti-
mate of the swimming velocity. However, the finite particle Reynolds number of the
larvae (of the order of unity) challenges this assumptions as it means fluid inertia effects
might come into play. This effect is not considered here as it is not expected to impact
significantly the orientation of the slip velocity.

6.3.1.3 | Proposed cues

Note that flow vorticity is a component of the flow that affects both the orientation
of spherical bottom-heavy swimmers, by tilting them away from the vertical, and the
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Figure 6.5: Evaluation of the proposed experimental cues in simulated
turbulence for both simulated surfers and bottom-heavy swimmers.
Note how these cues would let us differentiate an active surfing-like be-
havior from a passive bottom-heavy behavior.

orientation of surfers, that tend to reorient to oppose the effect of vorticity. As such,
the preferential orientation of plankters with respect to horizontal flow vorticity is a
promising cue that would help out discriminating bottom-heavy-like behaviors from
surfing-like behavior. The fact that the observation is limited to a single plane consti-
tutes the main challenge to address: the expected orientation of surfers and bottom-
heavy plankters must be projected in a single plane. Thankfully, this projection can be
readily evaluated in our numerical simulation.

The cues we propose are presented in Fig. 6.5, all of which are based on the binned
average components of the swimming direction ˆ⃗p projected in the plane ( ˆ⃗ex, ˆ⃗ez) as a
function of either the horizontal flow vorticity or the horizontal gradient of the verti-
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ˆ⃗zg

ˆ⃗z

Figure 6.6: Illustration of the proposed experiment: monitoring the corre-
lations between the behavior of phototactic plankters and the local flow
field. The target direction of plankters is controlled through the position
of light sensing. The camera and laser sheet are omitted for the sake of
clarity. (Refer to Fig. 6.4 for more details)

cal velocity. The angle θ⟨ ˆ⃗psurf⟩,y, corresponding to the angle of the average swimming
direction ⟨ ˆ⃗p⟩ with respect to the vertical in the plane ( ˆ⃗ex, ˆ⃗ez) oriented positively with
the axis ˆ⃗ey, is evaluated as arctan2(⟨ ˆ⃗psurf,x⟩, ⟨ ˆ⃗psurf,z⟩). Note how these cues would let us
differentiate an active surfing-like behavior from a passive bottom-heavy behavior.

6.3.2 | Phototactic surfing

A large number of planktonic organisms display a phototactic behavior (Tranter et al.,
1981; Wilhelmus and Dabiri, 2014), meaning they are attracted by light. These attraction
could be used to control the target direction ˆ⃗z of such a plankters, independently of the
direction of gravity ˆ⃗zg. Experiments similar to the one described above could then be
performed: by placing plankters in a water tank and analyse their response to the local
flow gradients in the presence of a directional target controlled by light source (Fig. 6.6).

While turbulent can also be considered in this context, one could consider simpler
flows, for instance in simple 2D Taylor-Green vortices, to simplify the analysis. Note
that the proposed experiment is similar to that of the recent study by Houghton et al.
(2018) (among others) with the addition of a prescribed measurable external flow.
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6.4 | Summary
In this chapter, we demonstrated that

■ the surfing strategy should be beneficial over a wide range of habitats,

■ its energetic cost is expected to be negligible compared to the metabolic cost

■ simple experiments could be performed to evaluate the ability of surfers to “surf”
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7

Conclusion and perspectives

The surfing strategy describes a reactive behavior that directly links the measures of the
vertical ˆ⃗z and the flow velocity gradients ∇⃗u⃗ to a preferred swimming direction ˆ⃗nsurf (cf.
Chap. 2)

ˆ⃗nsurf =
n⃗surf

|⃗nsurf|
, with n⃗surf =

[
exp

(
τ∇⃗u⃗

)]T
· ˆ⃗z. (7.1)

After characterizing this strategy in simple flow, we demonstrated its benefit in the con-
text of vertical migration in simulations of turbulence: it leads to +100% speedup of
vertical migration speed with respect to the actual swimming speed Vswim for small
swimming velocities relative to the scale of the smallest turbulent features Vswim ≲ uη

(cf. Chap. 3). Moreover, this “surfing performance” remains robust to (cf. Chap. 4):

■ variations of turbulence intensity (Chap. 4, Sec. 4.1):

– it can be adapted to account for these variations (Chap. 4, Sec. 4.1.1)

– it is robust to turbulence spatial heterogeneity (Chap. 4, Sec. 4.1.2)

■ plankton limitations (Chap. 4, Sec. 4.2):

– it is robust to limited processing skills (Chap. 4, Sec. 4.2.1)

– it is robust to sensing limitation (Chap. 4, Sec. 4.2.2):

* it is robust to a partial measure of the velocity gradients ∇⃗u⃗ (Chap. 4,
Sec. 4.2.2.1)

* it is robust to a filtered measure of the velocity gradients ∇⃗u⃗ (Chap. 4,
Sec. 4.2.2.2)

* it is robust to various noise sources (Chap. 4, Sec. 4.2.2.3)

– it is robust to limited reorientation skills (Chap. 4, Sec. 4.2.3)
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This demonstrated robustness strengthens the relevance of this strategy for biophysics:
it is expected to remain beneficial for actual, limited, plankters. We also compared qual-
itatively the surfing strategy to other navigation methods. We demonstrated that while
not being optimal, the surfing strategy is competitive with other navigation meth-
ods and has the advantage of simplicity (cf. Chap. 5). Finally, we evaluated the ex-
pected surfing performance in the ocean as a function of oceanic tubulence intensity
and demonstrated its potential benefit over a wide range of plankton habitats (Chap. 6,
Sec. 6.1, Fig. 6.3). Overall, this strategy highlights the role of the gradient ∇⃗u⃗ in the
choice of the preferred swimming direction ˆ⃗n, which could be used to evaluate experi-
mentally the ability of plankters to navigate efficiently in flows (Chap. 6, Sec. 6.3).

While the surfing strategy [ ˆ⃗nsurf, Eq. (7.1)] has been developed in the context of the
vertical migration problem, it may have broader significance. Indeed, this strategy is a
reactive behavior that directly links the measure of a target direction, ˆ⃗z, and the local
measure of the flow velocity gradients, ∇⃗u⃗, to the preferred swimming direction ˆ⃗n. Up
to this point, the target direction ˆ⃗z considered is independent of time and corresponds
to the vertical. However any target direction can be considered in practice. As a conse-
quence, by setting ˆ⃗z appropriately, one can use the surfing strategy to address additional
navigation problems. Note that in the case that ˆ⃗z also evolves in time (characterizing the
direction towards a prey to catch for instance), we expect the time horizon τ to depend
on temporal statistics of both the measures: τ ≲ min(1/|d ˆ⃗z/dt|, |∇⃗u⃗|/|d∇⃗u⃗/dt|).

We conclude this thesis by pointing out the main challenges that remain to be ad-
dressed towards the better description of the plankter behavior in response to local flow
measure. We first discuss of the fundamental question of the flow sampled by swim-
mers. Then we discuss of other navigation problems that could be addressed in a similar
way. Finally we discuss of the ability to upscale the use of the strategy for broader ap-
plications.

7.1 | Towards a better description of the flow sampled
Throughout our study, a large number of the phenomena we observed were related to
the statistics of the flow sampled by swimming plankters. We first faced the problem
in the context of the parameterization of the surfing strategy: its optimal time horizon
τ∗ is strongly dependant of the temporal statistics of the flow velocity gradients (∇⃗u⃗)
sampled along plankter trajectories (Chap. 3, Sec. 3.3). On top of the flow properties
themselves, the temporal statistics of the flow measured by simulated plankters are
strongly impacted by swimming speed, therefore influencing their navigation behav-
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ior. Furthermore we observed that the application of the surfing behavior influences the
flow velocity sampled by swimmers (effect the surfing strategy is designed for) but also
impacts its own measure of the flow velocity gradient ∇⃗u⃗ (effect the surfing strategy is
not designed for). Therefore, a better fundamental description of how moving particles
sample the flow velocity gradients ∇⃗u⃗ is essential for a broader understanding of most
of the phenomena described in this study. Furthermore, the statistics of the sampled ∇⃗u⃗
is directly linked to the flow information plankters may extract from the flow, regard-
less of their behavior in response to it. As a consequence the analysis of these statistics
is not limited to the study of plankton vertical migrations but is of broader significance:
it may be essential to the modelling of the general behavior of flow-informed plankters.

We also observed large differences in the response of surfers to the strain part of the
flow, S, velocity compared to the response to the rotational part of the flow, Ω (Chap. 2,
2.2.3). Furthermore, both these flow components do not contribute to the same extent
to navigation efficiency (Chap. 3, Sec. 3.4) while being known to behave differently in
turbulence (Buaria and Pumir, 2022). This suggests the need for an even finer analysis
that separates the different flow contributions to the flow velocity gradients sampled
by microswimmers. The horizontal flow vorticity, that contributes for the most part to
surfing performance (Chap. 4, Sec. 4.2.2.1), would constitute a first good candidate to
start such an analysis.

The need for this analysis also arose when accounting for the local spatial filtering of
the flow measure (Chap. 4, Sec. 4.2.2.2). Essential for the study of the settling of inertial
particles1 (Maxey and Corrsin, 1986; Tom and Bragg, 2019), the statistics of the coarse
grain gradients is the subject of recent interest, extensively discussed in Tom (2022) for
instance. But, even in the context of passive particles, the temporal statistics of the La-
grangian, locally filtered, velocity gradients remains to be described. Therefore, due to
the significant importance of these statistics in both the context of plankter behavior and
more generally the physics of particles in fluid flows, future research should continue
the efforts towards their accurate description.

7.2 | Towards other planktonic navigation problems
In this section we discuss the use of the surfing strategy in the context of additional
navigation problems. We start by discussing the problem of larval horizontal dispersion
and settlement. In particular, we show that the mean direction of the flow and the
direction to flow boundaries can be deduced from second order spatial derivatives of the

1Note that the settling of inertial particles is also discussed in App. A, Sec. A.2.2.

127



Chapter 7. Conclusion and perspectives 7.2. Towards other planktonic navigation problems

flow velocity. We then discuss long range navigation towards passive targets, detected
through vision. Finally we briefly discuss possible approaches to address the problem
of the plankton odor tracking problem.

7.2.1 | Larval horizontal dispersion and settlement
Many marine organisms, such as oysters and many of the sea snails, are sedentary dur-
ing their adult stage. Their only chance to disperse and find new habitats to settle in is
during their larval stage as plankters. It takes then a few generations for a population
to migrate. Larval dispersion is then essential to explore the widest horizontal surface
possible. To do so, many of these larvae navigate upwards when first released to escape
the seafloor and catch up with strong surface horizontal currents (Kingsford et al., 2002;
McEdward, 2020; Welch and Forward, 2001). When ready to settle, they navigate back
downwards to find a substrate. Understanding the dynamics of this phenomenon is es-
sential as it drives an important part of the behavior of planktonic larvae in nature and
controls their spatial distribution.

The larval dispersion dynamics can be decomposed in four phases corresponding to
different navigation problems:

■ the vertical migration to escape the seafloor,

■ the foraging of large scale horizontal currents,

■ the downward vertical migration to get closer to the seafloor,

■ and the proper settlement on the final substrate.

Vertical migration has already been extensively treated throughout this study. More-
over, the particular case of navigating in the direction of a idealized flow boundary has
been characterized in Chap. 4, Sec. 4.1.2.2 where we showed surfing to remain effective
despite turbulence heterogeneity.

However the issues of how to (1) forage for large scale horizontal currents and (2)
forage for substrates to settle on remain untreated in this study. The later is particularly
challenging in the case of the settlement of a vertical substrate. In that particular case
relying on gravity alone is not enough to find these potential settling habitats. Therefore
the ability of deducing the direction towards nearby vertical substrates from local flow
sensing would provide an essential evolutionary advantage.

These problems are particularly challenging in the perspective of navigation prob-
lems as it includes two aspects of navigation: (1) determining where the target is (2)
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and navigating efficiently towards it. While the later can be addressed using the surf-
ing strategy described above, the former needs to be addressed. Moreover both aspects
of the problem may interconnect so that the optimal solution might also define a tra-
jectory that favours flow sampling that helps the determination of the target. While a
first physics-based approach to address the problem is presented in App. B, room is
left for improvement in term of the complexity of the flow environment (simulate an
actual seabed) and of the strategy considered (how well would reinforcement learning
perform?).

7.2.2 | Navigating to a passive target

Navigating to a target is a common problem for planktonic organisms when they pre-
date on other plankters. The close range dynamics of this problem is complex: it re-
quires to account for hydrodynamic interactions between the prey and the predator.
Despite its complexity, this navigation problem has been addressed in various contexts
using either control theory (Zhu et al., 2022) or reinforcement learning (Borra et al., 2022;
Zhu et al., 2022). Even though the surfing strategy could be applied in this context, we
would expect poor performance compared to the previously cited approach as it would
neither account for the presence of hydrodynamic interactions, neither for the behavior
of the prey (if it has one).

r⃗(t)

s

r⃗(t + τcorr.)

Vdis.

θ

Figure 7.1: Illustration of
the effect of random walk
on the distance to a target.

However in the context of navigating towards a long
range target, for instance detectable through light sensing
if it is bioluminescent, those limitations may vanish. In that
case the surfing strategy can be straightforwardly adapted
by setting the target direction ˆ⃗z to point towards the prey.
However, note that the target direction, noted ˆ⃗zr in this con-
text, then becomes time dependant. Therefore, as stated
above, the optimal time horizon τ depends as much on the
temporal evolution of the local gradients, ∇⃗u⃗, as on that of
the local target direction ˆ⃗zr. Therefore the temporal varia-
tion of ˆ⃗zr need to be characterized to discuss the application
of the surfing strategy, as is, to this problem. To character-
ize this dependance as a function of the distance to the tar-
get r, a rough scaling in the inertial range can be deduced
from the Eulerian statistics of the flow velocity in turbu-
lence, characterized by the Kolmogorov spectrum (Eq. 3.10,
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Chap. 3, Sec. 3.1.2) ∣∣∣∣∣
d ˆ⃗zr

dt

∣∣∣∣∣ ∝ ϵ1/3r−1/6 + αr Vswimr−1, (7.2)

with ϵ the turbulence dissipation rate, Vswim the plankter swimming velocity and αr ≥
0 a coefficient that depends on plankter behavior and that quantifies how much the
plankter tends to swim orthogonally to ˆ⃗zr. The naive behavior of swimming strait in
the direction of the target would result in αr = 0 but any behavior that differs from it
would lead to αr > 0. Overall this highlights the expected dependence of the adapted
surfing strategy (or any navigation strategy) on the distance to the target ˆ⃗r. This already
highlight one of additional challenges of this problem.

Another challenge of this problem lies in particle dispersion. Two particle placed
in turbulence always eventually move away from each other. This phenomenon has
received extensive interest in past research, reviewed in Salazar and Collins (2009) for
instance.

A simple way to illustrate this phenomenon is to model it as a random walk prob-
lem: a plankter is placed in turbulence and the flow causes that plankter to move in
random direction as successive steps of distance s . Each step is separated by a time
τcorr., characterizing the time correlations of the flow. This correlation time can be de-
fined so that the step size is directly linked to the average velocity norm of the flow:
s = ⟨|u⃗|⟩x,tτcorr.. If now a target is given, and the distance r to the target is monitored,
how does r evolve with time? Illustrated in Fig. 7.1, even if the movement is random,
the plankter has more chances to end up further away from the target that closer. We
can then deduce an estimate of the dispersion velocity, Vdis.(r), that pushes the plankter
away from the target

Vdis.(r) =
⟨r(t + τcorr.)⟩ − r(t)

τcorr.
(7.3a)

⟨r(t + τcorr.)⟩ =
1

4π

∫ π

0

√
r2 + ⟨|d⃗r/dt|⟩2x,t + 2r ⟨|d⃗r/dt|⟩x,t cos θ sin θ dθ (7.3b)

with ⟨|d⃗r/dt|⟩x,t the average velocity difference between the predator and the target.
This dispersion velocity characterizes the dispersion effects that predators have to over-
come to reach their prey. As previously described this average velocity difference is also
expected to be a function of both r and the behavior of the plankton.

In the case of the dispersion of passive particle, the phenomenon of particle disper-
sion is fairly well understood (Salazar and Collins, 2009). But as highlighted above,
the active behavior of plankters may strongly influence the temporal statistics of the
flow they sample, thereby impacting the correlation time τcorr. for instance (discussed in
Chap. 3, Sec. 3.3.1).
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Figure 7.2: Simulation of a scalar filament in turbulence, as part of the
implementation of the diffusive sheet method, implemented in our home-
made code Sheld0n.

The significance of this predation problem for plankton ecology makes it interesting
to study in the context of navigation. However, the additional effects that are to be
accounted for makes it much more challenging to address than the vertical migration
problem addressed here. Furthermore, the dynamics of dispersion in turbulence alone
remains unclear in the context of actively swimming particles. The understanding of
these dynamics is therefore essential and would provide insight for future navigation
studies but also to interpret the results of past studies that address similar navigation
problems (Alageshan et al., 2020b).

7.2.3 | Navigating to an odor source
Following an odor trail is another common navigation problem that plankters have
to solve. For instance, some female copepods leave trails of pheromones for males
to follow (Bagøien and Kiørboe, 2005; Weissburg et al., 1998; Yen and Lasley, 2010).
These odor trails are often characterized by their very low diffusion (corresponding to a
high Péclet number Pe) that makes them particularly challenging to model numerically.
Therefore, the problem of the diffusion of these odors in turbulence itself is subject of
ongoing research (Roberts and Webster, 2002).

However the recent development of the diffusive sheet method (Martínez-Ruiz et al.,
2018) makes the numerical modeling of this diffusion regime accessible. This enables
the numerical modeling of the planktonic version of the odor tracking problem. As a
first step to address this problem, we implemented this method in our open-source code
Sheld0n (Fig. 7.2) ready to be used for future research.
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(a) (b)

Figure 7.3: Representation of the influence of chain formation on the
plankter alignment with the flow. No chain formed, (a), implies little
preferential alignment with the flow whereas, (b), long chains tend to
align with the extension axes of the flow.

Note that numerous line-following navigation methods receive recent interest in var-
ious context (Yao and Cao, 2020). The particularity of odor following and its main chal-
lenge is to account for flow disturbance of that “line”.

7.2.4 | Collective navigation
Numerous planktonic organisms are known for their collective behaviors (Mukherjee
et al., 2019; Tsang and Kanso, 2014). For instance, in the context of vertical migration,
Lovecchio et al. (2019) investigate the navigation advantage of collective chain forma-
tion. These chains are formed by cells remaining attached after cellular division. This
effect is observed over a wide range phytoplankton species. Illustrated in Fig. 7.3, it is
showed to influence significantly vertical migration. This effect is essentially explained
through the preferential alignment with the flow that is caused by shape elongation
(discussed in more details in App. A, Sec. A.1.2).

Overall, modeling the dynamics of plankton collective behavior is particularly im-
portant as they may also be responsible of part of the aggregation of planktonic or-
ganisms (Falgueras-Cano et al., 2022). Therefore it eventually causes the formation of
marine snow and may result in a large contribution to the “biological pump” (Chap. 1).

In the context of the surfing strategy proposed here, the flow generated by nearby
plankters have not been considered. Similarly to the exploitation of background turbu-
lence, this flow induced by nearby plankters could be exploited in the same way. We
would then expect surfers to display a drafting behavior, similar to that performed by
cyclists when racing. The characterization of this effect is essential to understand the
implications of a surfing-like behavior in weakly turbulent environments and its poten-
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tial impact on aggregation. To this end, the stokesian dynamics approach [extensively
described in (Townsend, 2017)], extended to the squirmer-like models (Ito et al., 2019),
could be used to characterizes these phenomena numerically.

7.3 | Surfing towards broader applications
As stated in our review (Chap. 5), the problem of navigation is the topic of interest of
numerous field in a multitude of different contexts. Despite its application here in the
context of the navigation of plankton, the surfing strategy, in its general form (Chap. 5,
Sec. 5.3.2)

ˆ⃗n∗ =
n⃗∗

|⃗n∗| , with n⃗∗ = exp




∞

∑
k=0

(
dk∇⃗u⃗

dtk

)T
τk+1

(k + 1)!
dt


 · ˆ⃗z, (7.4)

contributes to the list of optimal navigation strategies in the context of directional Zer-
melo navigation problem (ie. given a constant target direction ˆ⃗z to follow and a time τ

left before evaluation).
This solution has the fundamental advantage of directly linking the optimal pre-

ferred swimming direction (or steering direction) to a local flow measure. The local-
ity of the flow measure is an important limitation for plankton but also for any kind
of animal that contrary to humans cannot rely on flow information on a global scale
to navigate. Therefore, in contrast with recent approaches, such as that of Hays et al.
(2014) that uses Zermelo equation, this surfing strategy might also be of use to model
long range migrations of larger marine animals (Fossette et al., 2015; Hays et al., 2014;
Luschi, 2013; Putman et al., 2014), of aerial insects (Chapman et al., 2015) and of birds
(Wehner, 2001). On top of these alternative applications to marine biophysics, this strat-
egy could be readily implemented in unmaned vehicles with on-board controllers for
autonomous navigation to be used in association or challenged with current navigation
methods used in aerial (Reddy et al., 2018) or marine (Tranzatto, 2015) vehicles.

However attempting to upscale this strategy requires accounting for finite-size (and
finite-mass) effects from which plankters are exempted for the most parts. Even for
moderate size animals (such as fishes), the effects caused by finite-size are numerous,
some of which a reviewed in Brandt and Coletti (2022) in the context of idealized pas-
sive particles. Therefore we expect these effects to influence navigation and justify the
need to account for them in future studies. One of these effects is that small scale flow
fluctuations of smaller size than the size of the finite-size animal considered are filtered
out (already discussed to some extent in Chap. 4, Sec.4.2.2.2 by considering a filtered
measure of the gradients ∇⃗u⃗).
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Another of these effects is particle inertia. Among other effects, it may cause a delay
between the dynamics of the particle with respect to the dynamics of the flow. This
challenges the surfing strategy as its derivation assumes that the motion is described
by the kinematics alone of the swimmers (d2X⃗/dt2 = 0⃗). However we show in App. A,
Sec. A.2.2 (1) that in the limit of small inertia, a kinematic equation of motion can be
recovered that helps accounting for this effect and (2) that, even without accounting for
inertia the surfing strategy remains surprisingly beneficial in this inertial context. This
shows the surfing strategy to remain competitive in an inertial context and could be
further compared to other physics based approaches such as the one proposed by Bollt
and Bewley (2021) in the future. Despite this promising performance, the multitude of
effects that would need to be accounted for in practice leaves room for future research.
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A

Additional motion dynamics

The surfing strategy, described in Chap. 2 is the result of the choice of the swimming
direction ˆ⃗p based on a local measure of the flow velocity gradients ∇⃗u⃗. Applying this
strategy leads to beneficial preferential flow sampling (Chap. 2 Sec. 3.3) that leads to
increased vertical migration.

However, the surfing strategy has been derived in the limit of numerous assump-
tions stated in Tab. 2.1 in Chap. 2. While these assumptions are valid in many cases,
they limit significantly the richness of the underlying physics and the applicability of
our results. As a consequence, throughout this appendix, we review some additional
effects that could be accounted for and propose solutions to address these issues.

A.1 | Additional rotation dynamics
In this section, we first focus on the additional effects that could influence the orienta-
tion dynamics of surfers. We only account for the effects in the overdamped limit that
corresponds to St ≪ 1 defined in Eq. (2.7). Even more additional effects should be
considered if St ≳ 1.

We first list and describe the additional dynamics than can be accounted for. Then
we describe how these effects could taken into account in the active control.

A.1.1 | Bottom-heaviness
Bottom-heaviness denotes the characteristic of entities for which their center of mass
differs from their geometric center. This displacement, generally caused by an hetero-
geneos distribution of weight, causes immersed bodies to reorient passively and tend
to align microswimmers with the vertical. Affecting numerous planktonic organisms
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Figure A.1: Influence of the alignment time τalign on spherical bottom-
heavy swimmer effective upward velocity Veff.. Shaded area represents
the 95% confidence interval.

(Chan, 2012; Mogami et al., 2001; Wheeler et al., 2019), this phenomenon enables them
to swim preferentially upwards without reorienting themselves actively.

While we already discussed bottom-heaviness throughout this study, bottom-heaviness
was always separated from active reorientation. Then how can control be adapted to ac-
count for this passive reorientation effect?

As stated above, bottom-heaviness can be accounted in the overdamped limit and
leads to the equation of orientation Eq. (4.9) proposed by Pedley and Kessler (1992)
where ˆ⃗n is set to the vertical ˆ⃗z. This expression introduces the characteristic time τalign =
3ν/(gδ) that corresponds to the time required by a bottom-heavy particle to align with
the vertical in a quiescent fluid. This time depends of the displacement of the center of
mass, noted δ, and the fluid viscosity ν. The bigger the alignment time τalign, the weaker
the reorienting torque.

Simulating swimming bottom-heavy plankters in our simulations, we illustrate how
this effect impacts their vertical migrations. The results are plotted in Fig. A.1, where the
effective vertical velocity Veff. is presented as a function of the reorientation time τalign for
various swimming speeds Vswim and turbulence intensity. As presentend above, the ef-
fective velocity of such planktonic microswimmers drops as τalign increases because they
tilt away from their target. But note how this effect is hindered when swimming speed
Vswim increases. Passing faster through the flow, fast swimmers leave less time for flow
fluctuations to tilt them away from the vertical. However, as observed in experiments
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Figure A.2: Influence of the alignment time τalign on spherical bottom-
heavy swimmer’s vertical flow velocity sampled u ˆ⃗z(X⃗). Shaded area rep-
resents the 95% confidence interval.

and simulations (Durham et al., 2013; Kessler, 1985), bottom-heaviness also causes the
accumulation of microswimmers in downwelling flow regions, as illustrated above in
Fig. A.2. This effect further hinders the vertical migration process and constitute an
important drawback for effective navigation in flows. Moreover if bottom-heaviness is
strong enough, it would also constrain the reorientation capabilities of plankters making
it even more disadvantageous for actively reorienting swimmers.

A.1.2 | Spheroidal shape
Plankter shape is also known to influence the orientation dynamics of small plankters.
This also result in non trivial preferential flow sampling that may lead to enhanced
vertical migration performance if it is combined with bottom-heaviness. To study the
influence of shape, one may consider planktonic organisms of spheroidal shape, rather
than spherical, of aspect ratio λshape. The orientation kinematics are then described by
Jeffery’s orbits (Jeffery, 1922)

d ˆ⃗p
dt

= Ω · ˆ⃗p + Λshape

(
S · ˆ⃗p− [ ˆ⃗p⊗ ˆ⃗p] · S · ˆ⃗p

)
, (A.1)

with ˆ⃗p the symmetry axis of the spheroid and Λshape a parameter dependant of the
plankter shape

Λshape =
λshape − 1
λshape + 1

. (A.2)

137



Appendix A. Additional motion dynamics A.1. Additional rotation dynamics

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1
(a)

Λshape

⟨V
ef

f.
⟩ N

/
V s

w
im

(b)

Λshape
⟨u

z(
X⃗

)⟩ N
/

V s
w

im

Figure A.3: Influence of the shape parameter Λshape on spheroidal
bottom-heavy swimmer effective upward velocity. (a) Effective upward
velocity as a function of shape. (b) Average vertical velocity sampled
as a function of shape. The bottom-heavy reorientation time is set to
τalign = 2τη and the simulation case corresponds to Reλ = 11. Shaded
area represents the 95% confidence interval.

Note the additional term that is function of the symmetric part of the flow velocity gra-
dient sym ∇⃗u⃗. This term is the cause of the alignment of elongated spheroids (λshape > 1
or Λshape > 0) with the stretching axes of the flow. Combined with bottom-heaviness,
spheroidal microswimmers preferentially align with the upward maximal stretching di-
rection [sgn( ˆ⃗zα) ˆ⃗eα]. Similarly to symmetric surfing (cf. Chap. 3, Sec. 3.4.1), this alignment
leads to enhanced vertical migration performance. This effect is illustrated in Fig. A.3
where we observe enhanced vertical migration performance for elongated swimmers
(Λshape > 0) compared to spherical plankters (Λshape = 0).

This effect, already observed in numerous numerical simulations (Borgnino et al.,
2018; Gustavsson et al., 2016), is particularly well understood in the context of statistical
Gaussian flow models (Gustavsson et al., 2016) but its impact on vertical migration in
turbulent flows remains to be fully quantified. While an elongated shape can lead to
advantageous preferential flow sampling, its benefit is unclear in the context of active
reorientation as it further constrains the rotational dynamics of the plankter.

Other effects are to be accounted for if the plankter shape is not completely spheroidal,
further enriching the rotational dynamics. For instance the presence of plankter flagella
also induces significant passive torques (Kage et al., 2020).
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A.1.3 | Fluid inertial torque induced by settling
Recent studies brought attention to the importance of the fluid inertia torque on the ro-
tational dynamics of small particles in flows (Anand et al., 2020; Gustavsson et al., 2019;
Qiu et al., 2022a; Sheikh et al., 2020). This additional torque, generated from the set-
tling of anisotropic planktonic microswimmers in flows, further enriches the rotational
dynamics of small plankters. Including this effect, the orientation dynamics of such
particles reads

d ˆ⃗p
dt

= Ω⃗× ˆ⃗p with (A.3a)

Ω⃗ =
1
2

ω⃗ + Λshape

(
ˆ⃗p× S · ˆ⃗p

)
− Minert.V⊥term.

ν

[
Vswim −V∥term.( ˆ⃗z · ˆ⃗p)

]
( ˆ⃗z× ˆ⃗p) (A.3b)

with V⃗term., the orientation dependant terminal velocity reached by the plankter in a
quiescent fluid. This terminal velocity is composed of V⊥term. and V∥term.. These compo-
nents of the terminal velocity correspond to the terminal velocity reached either when
falling in the direction of the spheroids major axis (V∥term.) or when falling in the direc-
tion orthogonal to that axis (V⊥term.). The terminal velocity values V⊥term. and V∥term. can be
deduced from plankter and fluid properties and are proportional to (ρp− ρ f )gd2/µ with
coefficient of proportionality that depends only on the aspect ratio lambda λ (Ardekani
et al., 2017; Dahlkild, 2011; Gustavsson et al., 2019). The angular velocity of the plankter
is noted Ω⃗. The shape factor Minert. is dependant of the aspect ratio λshape alone. This
factor ranges from Minert. = 0 for spheres to Minert. ≈ 0.1 for elongated plankter shapes.
Its expression and the detailed derivation is given in Qiu et al. (2022a).

Note how the third term, corresponding to the fluid inertia torque, creates a gyro-
tactic torque [∝ −( ˆ⃗z× ˆ⃗p)] when Vswim > V⊥term.( ˆ⃗z · ˆ⃗p). This gyrotactic torque, is expected
to strongly influences orientation dynamics of actual elongated settling planktonic or-
ganisms (Qiu et al., 2022a). Moreover, this phenomenon enables plankton to passively
reorient upwards, and thus migrate vertically, without the need of bottom-heaviness.
However, similarly to bottom-heaviness, we expect this gyrotactic torque to induce neg-
ative preferential flow sampling that would hinder vertical migration. Again, while the
orientation dynamics are well understood (Qiu et al., 2022a), the implications of this
effect on vertical migration remain to be quantified.

A.1.4 | Implications for active control
As all previously described phenomena affect plankter rotation dynamics, if they occur
they need to be taken into account to develop a strategy for active reorientation control.
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All this induced torques only depend on plankter parameters (assumed to be known by
the plankter), the local velocity gradient tensor ∇⃗u⃗ and the direction ˆ⃗z, both assumed
to be measurable. Based on this information, surfers could account for these additional
passive torques and adapt their reorientation dynamics accordingly.

We note Ω⃗ the total angular velocity of the plankter. This angular velocity is decom-
posed in Ω⃗swim, resulting from active control, and Ω⃗pass., resulting from the sum of the
passive torques described above. The total angular velocity Ω⃗ then reads

Ω⃗ = Ω⃗swim + Ω⃗pass. (A.4a)

Ω⃗pass. =
1
2

ω⃗ (vorticity) (A.4b)

− 1
2τalign

( ˆ⃗z× ˆ⃗p) (bottom-heaviness) (A.4c)

+ Λshape

(
ˆ⃗p× sym ∇⃗u⃗ · ˆ⃗p

)
(Jeffery’s orbits) (A.4d)

− Minert.V⊥term.
ν

[
Vswim −V∥term.( ˆ⃗z · ˆ⃗p)

]
( ˆ⃗z× ˆ⃗p) (fluid inertia). (A.4e)

In order to maximize alignment with ˆ⃗nsurf plankters may use the control method
described in Sec. 4.2.3.2

Ω⃗swim = Ωmax
swim

Ω⃗∗swim

|Ω⃗∗swim|
with Ω⃗∗swim =

ˆ⃗p× ˆ⃗n
| ˆ⃗p× ˆ⃗n|

Ωmax
swim − Ω⃗

⊥ ˆ⃗p
pass., (A.5)

with Ωmax
swim the maximal active angular velocity reachable by the swimmer, and Ω⃗

⊥ ˆ⃗p
pass. =

Ω⃗pass.− (Ω⃗pass. · ˆ⃗p) ˆ⃗p the projection of Ω⃗pass. on the plane orthogonal to the current swim-
ming direction ˆ⃗p. Note that if Ωmax

swim ≫ |Ω⃗pass.|, the plankter can be assumed to reorient
instantaneously leading back to ˆ⃗p = ˆ⃗nsurf.

Overall, given that plankter can sense all necessary information, the rotational be-
haviour can be simply adapted to account for these richer rotation dynamics. The over-
all impact of these passive effects on vertical migration could then be quantitatively
evaluated in future numerical studies.

A.2 | Additional translation dynamics
In this section, we discuss off additional translational dynamics that could also be ac-
counted for in plankter dynamics. We first consider settling overdamped limit (St≪ 1)
but we then extend our study to heavy spherical microswimmers out of that limit.
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A.2.1 | Inertialess settling
As described above, settling induces rich rotational dynamics when plankters are not
spherical. But regardless of rotation dynamics, settling displays interesting dynamics
due to the orientation dependence of the settling velocity V⃗term.. This dependence is
actually important even in the case of instantaneous reorientation as it influences the
optimal swimming direction in a linear flow.

To account for different plankter shapes along with settling, the new optimal swim-
ming direction, noted ˆ⃗nsurf,set., is of particular interest to model the actual active behav-
ior of plankters. One can apply the same protocol used to derive the surfing strategy
accounting for this effect, and the problem results in finding ˆ⃗nsurf,set. that maximizes

f ( ˆ⃗n) =
([

VswimId−
(

V∥term. −V⊥term.

) (
ˆ⃗zg · ˆ⃗n

)
Id
]
· exp

[
τ
(
∇⃗u⃗
)T
]
· ˆ⃗z
)
· ˆ⃗n. (A.6)

Note the distinction between the actual vertical, noted ˆ⃗zg, corresponding to the direc-
tion of settling (oriented upwards), and the directional target of the migration ˆ⃗z. This
distinction is important as the optimal solution is dependent of the cases of upwards
vertical migration ˆ⃗z = ˆ⃗zg and downward vertical migration ˆ⃗z = − ˆ⃗zg.

The maximization of Eq. (A.6) is not trivial, but several specific cases can be consid-
ered. Starting with the case of a quiescent or uniform flow ∇⃗u⃗ = 0, the optimal solution
for upward vertical migration ( ˆ⃗z = ˆ⃗zg) is described by

ˆ⃗nsurf,set. · ˆ⃗z =
Vswim

2
(

V∥term. −V⊥term.

) if Vswim < 2
(

V∥term. −V⊥term.

)
(A.7a)

ˆ⃗nsurf,set. = ˆ⃗z otherwise (A.7b)

Note how the optimal swimming direction ˆ⃗nsurf,set. might differ from the vertical ˆ⃗z
for small swimming velocities Vswim. Indeed, if the difference of settling velocities is
large enough V∥term. − V⊥term., tilting away from the vertical reduces settling and might
be advantageous. However if the goal it to maximize settling ˆ⃗z = − ˆ⃗zg rather than
upward migration, this effect vanishes and the optimal orientation would simply re-
duce to ˆ⃗nsurf,set. = ˆ⃗z. Moreover note that when the flow is not quiescent, in the limit
Vswim ≫

(
V∥term. −V⊥term.

)
(corresponding to either no settling or a spherical shape), the

effect of settling vanishes and the optimal solution results simply in the surfing strategy
ˆ⃗nsurf,set. = ˆ⃗nsurf.

Even though Eq. (A.6) is not solvable analytically in the general case, it can easily
be solved using any optimization procedure. For example, one could use the Barzilai-
Borwein gradient ascent method (Barzilai and Borwein, 1988; Fletcher, 2005). The op-
timal value ˆ⃗nsurf,set. = limk→∞

ˆ⃗nk can then be formulated as the result of an iterative
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procedure

ˆ⃗nk+1 =
n⃗k+1

|⃗nk+1|

with n⃗k+1 = ˆ⃗nk +

∣∣∣
(

ˆ⃗nk − ˆ⃗nk−1

)
·
[
(∂ f /∂ ˆ⃗n)( ˆ⃗nk)− (∂ f /∂ ˆ⃗n)( ˆ⃗nk−1)

]∣∣∣
∣∣∣(∂ f /∂ ˆ⃗n)( ˆ⃗nk)− (∂ f /∂ ˆ⃗n)( ˆ⃗nk−1)

∣∣∣
2

∂ f
∂ ˆ⃗n

( ˆ⃗nk). (A.8)

Note that ∂ f /∂ ˆ⃗n can be computed from Eq. (A.6) resulting in

∂ f
∂ ˆ⃗n

( ˆ⃗n) = Vswimn⃗surf −
(

V∥term. −V⊥term.

) [(
ˆ⃗zg · ˆ⃗n

)
n⃗surf −

(
n⃗surf · ˆ⃗n

)
ˆ⃗zg

]
, (A.9)

with n⃗surf = exp[τ(∇⃗u⃗)T] · ˆ⃗z.
This result suggest that additional translation dynamics can significantly impact

navigation strategies in the context of plankton dynamics. Still inertialess settling can
be accounted for to find a new navigation strategy described by ˆ⃗nsurf,set.. In the con-
text of anisotropic settling plankters, the benefit of this settling-informed surfing strategy
( ˆ⃗n = ˆ⃗nsurf,set.) over the original surfing behavior ( ˆ⃗n = ˆ⃗nsurf) is yet to be quantified in
turbulence.

A.2.2 | Inertial motion
The dynamics of inertial settling particles in flows apply to numerous fields of physics.
In the context meteorology, the impact of turbulence-particle interactions on cloud for-
mation is actively investigated (Vaillancourt and Yau, 2000). Turbulence leads to higher
collision rates of cloud droplets and thus has an important role in their growth (De-
venish et al., 2012). The physics of settling particles in flows is also crucial in geophysics,
in particular to characterize sediment transport (Kok et al., 2012; Wallwork et al., 2022).
These effects are also studied in the field of astrophysics (Völk et al., 1980). The cluster-
ing effect of turbulent gas is part of the formation of planetesimals, themselves building
blocks for the formation of celestial objects (Hartlep and Cuzzi, 2020; Johansen et al.,
2014; Völk et al., 1980). Also relevant for industrial applications, one may find particle-
flow interaction as part of combustion problems, mixing problems, material design and
erosion problems (Balachandar and Eaton, 2010; Gustavsson and Mehlig, 2016; Silva
et al., 2015).

Discussed below, these abundant studies led to the discovery of inertial passive phe-
nomena that may either enhance or hinder settling. Able to influence vertical migration
performance, these inertial passive effects have to be discussed in regard of the surfing
strategy.
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While some effects might hinder particle settling such as vortex trapping (Tooby
et al., 1977) or loitering (Nielsen, 1993), generally the flow motion enhance the average
settling velocity of passive particles in turbulence via the preferential sweeping mecha-
nism, also called fast tracking (Nielsen, 1993).

This phenomena is successfully described by Maxey and Corrsin (1986) theory. Con-
sidering heavy (ρpart. ≫ ρfluid) particles of small size d ≪ η, Maxey and Corrsin (1986)
uses the following model to describe particles motion

d2X⃗
dt2 =

1
τdelay

[(
u⃗− dX⃗

dt

)
+ Vterm. ˆ⃗z

]
, (A.10)

with Vterm. = τdelayg the terminal settling velocity of particles in a quiescent fluid, and
τdelay = (1/18)πd2ρpart./µ the relaxation time needed to reach that terminal velocity.

Maxey and Corrsin (1986) first observed preferential sweeping from simulations of
inertial particles in randomly oriented Taylor-Green Vortices (Chap. 2, Sec. 2.3.1). The
maximal speed up observed was up to Veff. ≈ 8Vterm. for Vterm. ≈ 0.05umax and τdelay =
ωmax. Maxey (1987a) repeated the numerical experiment in a Gaussian random flow
field, representing turbulence, where a maximal speed up of Veff. ≈ (1/2)Vterm. has been
observed for Vterm. ≈ 0.4urms and τdelay ≈ TL with TL the large-eddy turnover time
(Chap. chap:numeric, Sec. chap:sec:numeric_hit). Inducing a centrifugal force, inertia
effects sweep away particles from vortices, propelling them in beneficial strain regions
of the flow.

Verified in direct numerical simulations of homogeneous isotropic turbulence, Wang
and Maxey (1993) show this effects to be particularly strong for Vterm./uη ≈ 1 and
τdelay/τη ≈ 1. In that case, they show settling can be sped up by 50%. Since then,
preferential sweeping has been observed in a wide variety of simulations (Bragg et al.,
2021; Ireland et al., 2016; Tom and Bragg, 2019) and experiments (Petersen et al., 2019;
Sumbekova et al., 2017) and in a few field measures (Li et al., 2021).

The motion of planktonic organisms, rarely much heavier than water, is not com-
pletely captured by the model of Eq. (A.10). However, this simple model is sufficiently
complex to display non trivial inertial effects that deserve attention as a first step to-
wards inertial planktonic navigation.

We define settling performance as a long term average downward displacement sim-
ilarly to the swimming performance [Chap. 2, Sec. 2.1, Eq. (2.15)]

Veff. = lim
T→∞

X⃗(T)− X⃗(0)
T

· ˆ⃗z, (A.11)

with X⃗ the particle position and ˆ⃗z = ˆ⃗g the vertical direction now oriented downwards.
Settling performance is plotted as a function of inertial delay A.11 in Fig. A.4. We ob-
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Figure A.4: Influence of the inertial delay τdelay on the settling speed of
particles. Shaded area represents the 95% confidence interval. Parame-
ters: Reλ = 11, Vterm. = uη .

serve a maximal settling enhancement of 17% for τdelay = 3τη/4 ≈ τη . This effect is
already well understood and described by the theory of Maxey (1987a) for small values
of the Stokes number St = τdelay/τη , that has been recently extended to larger Stokes
numbers by Tom and Bragg (2019).

Our aim here is to reinterpret this preferential sweeping effect in the context of the
surfing strategy. Surfing is an approximate solution of vertical migration (or settling)
maximization. The result in the context of a kinematic description of motion. Our re-
sults remain valid regardless of the kinematic motion mechanism, that can either be
active control, inertia or a combination of both. We then look for a kinematic equa-
tion motion able to describe correctly the motion of inertial particles. To do so, we use
a similar approach to that used in equilibrium-Eulerian methods to simulate particle
loaded flows (Balachandar and Eaton, 2010; Cerminara et al., 2016; Ferry and Balachan-
dar, 2001; Ferry et al., 2003). First, if τdelay ≪ τη , one can assume that d2X⃗/dt2 ≈ du⃗/dt.
If this assumption is used in the equation of motion described in Eq. (A.10), we obtain

(
Id + τdelay∇⃗u⃗

)
· dX⃗

dt
= u⃗ + Vterm. ˆ⃗z− τdelay

∂u⃗
dt

, (A.12)

with Id the identity matrix. This implicit expression can be be solved with any linear
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solver and in the case where the matrix (Id + τdelay∇⃗u⃗) is inversible, one obtain the
following kinematic formulation of the inertial motion of particles

dX⃗
dt

=
(

Id + τdelay∇⃗u⃗
)−1
·
(

u⃗ + Vterm. ˆ⃗z− τdelay
∂u⃗
dt

)
. (A.13)

This kinematic model is used to integrate particle trajectories in our simulation of tur-
bulence. We show in Fig. A.4 that this kinematic model enables to capture fairly well
the settling efficiency of inertial particles for moderate inertial delays τdelay ≲ τη . Note
the explosion of the uncertainty for the largest inertial delays. This is simply due to the
singularity of the model that occurs when Id + τdelay∇⃗u⃗ is close of not being inversible.
This singularity is discussed in Ferry and Balachandar (2001) and several methods can
be used to limit the effect of this singularity.

A.2.2.1 | Heavy inertial surfing strategy

Starting from Eq. (A.12), and deploying the same protocol that led to the surfing strat-
egy, one may take into account weak inertia to adapt the surfing direction

ˆ⃗nsurf,inert. =
n⃗surf,inert.

|⃗nsurf,inert.|
,

with n⃗surf,inert. =
[

exp
(

τ
[

Id + τdelay

(
∇⃗u⃗
)]−1

∇⃗u⃗
) [

Id + τdelay

(
∇⃗u⃗
)]−1

]T

· ˆ⃗z.

(A.14)

The performance of that new surfing strategy is then tested in our simulations and
compared to simple settling inertial particles and to inertial surfers that do not adapt
to their inertia (Fig. A.5). We observe even without anticipating, the surfing strategy
is already effective in an inertial context and can perform much better than passive
settling particles. On the contrary the inertial surfing strategy, while it provides a slight
advantage for small values of τdelay, the performance drops much faster than the actual
surfing strategy for large values of τdelay, as the kinematic model breaks down.

A.2.2.2 | Estimation of settling performance

To grasp a better understanding of these dynamics, we now look for an estimate of set-
tling performance in the context of inertial particles. To obtain this estimate, we apply
exactly the same protocol that is used in Chap. 3, Sec. 3.5 to estimate surfing perfor-
mance. The main idea is to model the flow experienced by these inertial particles as a
succession of linear flows that remain the same for a duration T. Considering a given
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Figure A.5: Influence of the inertial delay τdelay on surfing performance.
Shaded area represents the 95% confidence interval. Parameters: Reλ =
11, Vterm. = Vswim = uη .

linear flow of this succession, that flow is characterized by a velocity u⃗0 at x⃗ = 0⃗ and
t = 0, a constant gradient tensor ∇⃗u⃗ and a constant flow acceleration ∂u⃗/∂t. The flow
velocity field then reads

u⃗(⃗x, t) = u⃗0 + ∇⃗u⃗ · x⃗ +
∂u⃗
∂t

t. (A.15)

Injecting this expression in the kinematic equation of motion (A.13) leads to

dX⃗
dt

=
(

Id + τdelay∇⃗u⃗
)−1
·
[

u⃗0 + ∇⃗u⃗ · X⃗ + Vterm. ˆ⃗z + (t− τdelay)
∂u⃗
dt

]
. (A.16)

The trajectory of such can then be integrated obtaining a similar expression to that of
Eq. (2.18), used to derive the surfing strategy in Chap. 2, Sec. 2.2.1, that is then averaged
over all possible values of u⃗ and ∂u⃗/∂t
〈

X⃗(T)
〉

u⃗0 ,∂u⃗/∂t
= Vterm.

∫ T

0
exp

[
(T − t)

(
Id + τdelay∇⃗u⃗

)−1
∇⃗u⃗
]
·
(

Id + τdelay∇⃗u⃗
)−1
· ˆ⃗z dt,

(A.17)
with T the final time after which ∇⃗u⃗ changes.

With τ = T − t the time remaining before a new value of the gradients ∇⃗u⃗ is set, the
average velocity of the settling particle is expressed as
〈

dX⃗
dt

〉

u⃗0 ,∂u⃗/∂t

= Vterm. exp
[

τ
(

Id + τdelay∇⃗u⃗
)−1
∇⃗u⃗
]
·
(

Id + τdelay∇⃗u⃗
)−1
· ˆ⃗z. (A.18)
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We now decompose the influence of the strain part of the flow (S = sym ∇⃗u⃗) and the
rotation part of the flow (Ω = skew ∇⃗u⃗) on the effective settling velocity Veff. of the
inertial particles. Refer to Chap. 2, Sec.2.2.3 for more details about this decomposition.

A.2.2.3 | Strain rate S

We first start by assessing the contribution of the strain rate tensor (S) on settling perfor-
mance. Similarly to the derivation of surfing performance, we need to consider that each
component of the gradient are independent of each other. This ensures the tractability
of the expression even though it is known that these components are correlated (Buaria
and Pumir, 2022). In the limit of this assumption, if the expression is averaged over all
possible values of Ω, we obtain the following proportionality relation

〈
dX⃗
dt

〉

u⃗0,∂u⃗/∂t,Ω

∝ Vterm. exp
[
τ
(

Id + τdelayS
)−1 S

]
·
(

Id + τdelayS
)−1 · ˆ⃗z. (A.19)

In practice the proportionality coefficient is a function of both the statistics of the rota-
tional part the gradient tensor Ω and the inertial delay τdelay. Nevertheless, the contri-
bution of Ω is ignored for now.

We now consider then the orthonormal basis of the velocity gradient composed of
the flow velocity gradients eigenvectors ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ). Their respective eigenvalues read
α ≥ β ≥ γ, with γ = −(α + β) due to flow incompressibility. In this case, for a given
orientation of the gradient tensor with respect to the settling direction ˆ⃗z, the particle
velocity then reads

〈
dX⃗
dt

〉

u⃗0 ,∂u⃗/∂t,Ω

∝ Vterm.

[
eτα/(1+τdelayα)

1 + τdelayα
zα

ˆ⃗eα +
eτβ/(1+τdelayβ)

1 + τdelayβ
zβ

ˆ⃗eβ +
e−τ(α+β)/(1−τdelay[α+β])

1− τdelay(α + β)
zγ

ˆ⃗eγ

]
.

(A.20)
Note the singularity for τdelay = α + β. Furthermore, in homogeneous isotropic turbu-
lence, the most probable state of the eigenvalues is for the two largest of them to be
equal: α = β (Lund and Rogers, 1994). With δ ≡ α = β and γ = −2δ , the expression
further reduces to
〈

dX⃗
dt

〉

u⃗0 ,∂u⃗/∂t,Ω

∝ Vterm.

[
eτδ/(1+τdelayδ)

1 + τdelayδ

(
zα

ˆ⃗eα + zβ
ˆ⃗eβ

)
+

e−2τδ/(1−2τdelayδ)

1− 2τdelay
zγ

ˆ⃗eγ

]
. (A.21)

We may then assess the coefficient of proportionality expecting the averaged velocity
of inertialess (τdelay = 0) spherical particles is Vterm. ˆ⃗z. The average velocity is then ex-
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pressed as
〈

dX⃗
dt

〉

u⃗,∂u⃗/∂t,Ω

≈ Vterm.

2eTδ + e−2Tδ

[
eτδ/(1+τdelayδ)

1 + τdelayδ

(
zα

ˆ⃗eα + zβ
ˆ⃗eβ

)
+

e−2τδ/(1−2τdelayδ)

1− 2τdelayδ
zγ

ˆ⃗eγ

]
.

(A.22)
From this expression can be evaluated an estimation of the contribution of the pure
shear part of the flow on settling performance by computing Veff. = ∂X⃗/∂t · ˆ⃗z. Averaging
this product over all possible orientations of ˆ⃗z with respect to the basis ( ˆ⃗eα, ˆ⃗eβ, ˆ⃗eγ) leads
to the final expression

⟨Veff.⟩u⃗0 ,∂u⃗/∂t,Ω, ˆ⃗z ≈
Vterm.

2eTδ + e−2Tδ

[
2eτδ/(1+τdelayδ)

1 + τdelayδ
+

e−2τδ/(1+τdelayδ)

1− 2τdelayδ

]
. (A.23)

As stated above, the proportionality coefficient should depend on the inertial delay
τdelay in practice, if the contribution of Ω is taken into account. This is ignored for
now. The final expression [Eq. A.22] is plotted in Fig. A.4. The values of δ and τ used
for the plot are those obtained by fitting in Chap. 3, Sec. 3.4.1. As shown in the figure,
the contribution of S actually hinders settling.

A.2.2.4 | Rotation rate Ω

We now focus on the contribution of the rotation rate of the flow (Ω) on settling per-
formance. We apply the same protocole than above, briefly summarized here. We first
note that

(
Id + τdelayΩ

)−1 =
Id− τdelayΩ

1 + (τdelayω/2)2 (A.24)

with ω = |ω⃗| the norm of vorticity. Accounting only for the contribution of the rotational
part of the flow, the average particle velocity is expressed as
〈

dX⃗
dt

〉

u⃗0 ,∂u⃗/∂t,S

∝
Vterm.

1 + (τdelayω/2)2 exp

[
τ
(
Ω− τdelayΩ2)

1 + (τdelayω/2)2

]
·
(

Id− τdelayΩ
)
· ˆ⃗z. (A.25)

After simplification, we can write this expression conveniently
〈

dX⃗
dt

〉

u⃗0 ,∂u⃗/∂t,S

∝
Vterm.

1 + (τdelayω/2)2 S⊥ ˆ⃗ω(e
ττdelay(ω/2)2

1+(τdelayω/2)2 ) · exp
(

τ Ω

1 + (τdelayω/2)2

)
·
(

Id− τdelayΩ
)
· ˆ⃗z,

(A.26)
where S⊥ ˆ⃗b

(a) = aId− (a− 1) (ˆ⃗b× ˆ⃗b) corresponds to a stretching transformation matrix

of intensity a in the plane orthogonal to the unit vector ˆ⃗b. Note the commutativity of
each of the matrix terms above and can be written in any particular order. Each of the
multiplicative terms contribute differently to the average particle motion:

148



Appendix A. Additional motion dynamics A.2. Additional translation dynamics

■ The term exp
(
τΩ/(1 + (τdelayω/2)2)

)
corresponds to the transformation matrix

causing a rotation of angle τω/(2 + 2(τdelayω/2)2) along the axis ˆ⃗ω. This term char-
acterizes the direct effect of flow vorticity on the trajectory and is the only term that
would also affect inertialess settling (τdelay = 0). Note however that inertia tend to
decrease this effect as τdelay increases.

■ If particles are weakly inertial τdelayω ≪ 1, the term Id − τdelayΩ actually cor-
responds to a counter rotation compared to the previous term Id − τdelayΩ =
exp

(
−τdelayΩ

)
+ O(τdelayω). Note the similitude with the skew-symmetric surf-

ing strategy: ˆ⃗nsurf,Ω = exp
(
−τdelayΩ

)
· ˆ⃗z. As previously described for surfing,

this term is responsible of preferential flow sampling that leads eventually to en-
hanced settling. This contribution is maximal for τdelay = τ. However, the settling
velocity is also influenced by the other two terms, that eventually impact the value
of τdelay for which settling is maximal.

■ The final matrix term S⊥ ˆ⃗ω(e
ττdelay(ω/2)2

1+(τdelayω/2)2 ) corresponds to a stretching transformation
in the plane orthogonal to the vorticity ω⃗. This stretching also contributes to faster
settling as it accentuates the movement of settling particles in plane orthogonal to
vorticity. Starting with no influence for inertialess particles τdelay = 0, this effect
becomes stronger as the inertial lag τdelay increases until a maximum is reached
for τdelay = 2/ω. For larger inertial delays τdelay → +∞, this effect disappears

eventually: e
ττdelay(ω/2)2

1+(τdelayω/2)2 ∼ eτ/τdelay → 1.

■ Finally the scalar term 1/[1 + (τdelayω/2)2] decreases with τdelay. This term con-
tributes to the overall compression of the particle trajectory that hinders the effec-
tive settling speed.

Note well that these result are based on the assumption that d2X⃗/dt2 = d2u⃗/dt2. This is
only expected to be valid for τdelay ≲ τ.

We now compute the expected settling speed by computing the dot product ∂X⃗/∂t ·
ˆ⃗z. Note that we use Id− τdelayΩ ≈ exp

(
−τdelayΩ

)
for the sake of simplicity. With this

simplification, we obtain

⟨Veff.⟩u⃗,∂u⃗/∂t,Ω,S ∝
Vterm.

1 + (τdelayω/2)2


e

ττdelay(ω/2)2

1+(τdelayω/2)2 cos
(

ω

[
τ

1 + (τdelayω/2)2 − τdelay

]
/2
)

z2
⊥ ˆ⃗ω + z2

ω


 .

(A.27)
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Appendix A. Additional motion dynamics A.2. Additional translation dynamics

When averaged over all possible orientation of ˆ⃗z, the settling reads

⟨Veff.⟩u⃗,∂u⃗/∂t,Ω,S, ˆ⃗z ∝
1
3

Vterm.

1 + (τdelayω/2)2


2 e

ττdelay(ω/2)2

1+(τdelayω/2)2 cos
(

ω

[
τ

1 + (τdelayω/2)2 − τdelay

]
/2
)

+ 1


 .

(A.28)
The proportionality coefficient is finally obtained by evaluating the performance for
inertialess particles and the settling speed is expressed as

⟨Veff.⟩u⃗,∂u⃗/∂t,Ω,S, ˆ⃗z ≈ Vterm.

2 e
ττdelay(ω/2)2

1+(τdelayω/2)2 cos
(

ω
[

τ
1+(τdelayω/2)2 − τdelay

]
/2
)

+ 1
[
1 + (τdelayω/2)2

]
[2 cos(ωτ/2) + 1]

. (A.29)

This model is plotted in Fig. A.4 with the value of ω and τ used for the plot are those
obtained by fitting in Chap. 3, Sec. 3.4.1. While the model completely overshoots the
settling performance, it shows that the contribution of the skew symmetric part of the
flow is the actual cause of enhanced settling performance.

Similarly to what has been done in Chap. 3, Sec. 3.4.1, one could improve the model
by assuming a Gaussian distribution of vorticity and one could apply a similar approach
to obtain an estimation that depend on both contributions at the same time. As this is
not the main interest of this study, we leave these aspects for future research.
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B

Larval dispersion and settlement

Many marine organisms, such as oysters and many of the see snails, are sedentary dur-
ing their adult stage. Their only chance to disperse and find new habitats to settle is
during their larval stage as plankters. It then takes a few generations for a population to
migrate. This larval dispersion is then essential to explore the widest horizontal surface
possible. To do so, many of these larvae navigate upwards when first released to escape
the seafloor and catch up with strong surface horizontal currents (Kingsford et al., 2002;
McEdward, 2020; Welch and Forward, 2001). When ready to settle, they navigate back
downwards to find a substrate.

The dynamics can then be decompose in four phases corresponding to different nav-
igation problems:

■ the vertical migration to escape the seafloor,

■ the foraging of large scale horizontal currents,

■ the downward vertical migration to get closer to the seafloor,

■ and the proper settlement on the final substrate.

Vertical migration has already been extensively treated throughout this study and wont
be further discussed in this section. Therefore the following discussion first focuses on
the settlement on a substrate. We particularly focus on the case of vertical substrate that
cannot be reached following gravity alone. We then discuss on how plankters could
forage large scale horizontal currents. We further show that, as is, the surfing strategy
can already be used to this end.

151



Appendix B. Larval dispersion and settlement B.1. Foraging walls: a turbophoretic strategy

B.1 | Foraging walls: a turbophoretic strategy
Numerous marine species need to settle immersed rocks or any other submerged solid
substrate in their larval stage to progress to their adult stage (Crimaldi et al., 2002; Eck-
man and Duggins, 1998; Fuchs et al., 2007). Oyster larvae, (Fuchs et al., 2013, 2015b) and
barnacle larvae (Larsson et al., 2016) are a few examples in many.

To do so, many larvae are know to display a sinking behavior in response to turbu-
lence while swimming upwards in quiescent waters (Crimaldi et al., 2002; Fuchs et al.,
2007). Oyster larvae even tend to actively dive in response to turbulence (Fuchs et al.,
2013). Their natural settling habitat being strongly turbulent, this sinking and diving be-
havior enhances the settling rate on the seafloor in suitable habitats. However, relying
on gravity alone is not enough to settle on vertical substrates. Therefore, if the direc-
tion towards a vertical substrate can be deduced from local flow sensing, this ability
would provide an essential evolutionary advantage that enables to find more suitable
habitats. So how can plankter use flow sensing be used to migrate towards these nearby
substrates?

2h
e⃗1

e⃗2 e⃗3

Figure B.1: Schematic of the
channel flow of the Johns Hop-
kins Databases.

Before addressing this question, we highlight that passive
mechanisms can reproduce the same effect. For instance heavy in-
ertial particles are well known to exhibit this very behavior, gen-
erally called turbophoresis (Caporaloni et al., 1975; Reeks, 1983).
This effect causes inertial particles to move out intense turbulent
regions. Such particles then eventually end up in the near-walls
viscous region (Guha, 1997, 2008; Johnson et al., 2020). Rather
than a passive effect, we look for an active behavior that causes
similar turbophoretic dynamics using only a local measure of the
flow.

To discuss this question, we consider the turbulent channel flow of the Johns Hop-
kins databases. We briefly describe this case here while extensive details have been
provided in Chap. 4 Sec. 4.1.2. The simulation case corresponds to the a fluid flow be-
tween two walls separated by a height of 2h. The boundary conditions are set periodic
in the longitudinal and transverse directions. We note, ˆ⃗e1 the direction of the mean flow,
ˆ⃗e2 the direction normal to the walls, and ˆ⃗e3 the transverse direction (Fig. B.1). We also
refer to ˆ⃗e2 as the vertical below.

The flow viscosity always imposes the velocity of flows to match the velocity of
their solid boundaries near them. Their presence in flows then causes the generation of
strong velocity gradients at proximity. Therefore, in general, the strongest flow velocity
gradients are found near solid flow boundaries. Given the ability to sense the flow,
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Appendix B. Larval dispersion and settlement B.1. Foraging walls: a turbophoretic strategy

plankters could then look for the direction ˆ⃗zturb. in which the gradient intensity, |∇⃗u⃗|,
increases. Using a gradient ascent approach, this direction is simply obtained by taking
the gradient of this quantity: ∇⃗|∇⃗u⃗|. The direction to follow can then be expressed as

ˆ⃗zturb. =
z⃗turb.

|⃗zturb.|
with zturb.,k =

1

|∇⃗u⃗|∑i
∑

j

∂ui

∂xj

∂2ui

∂xj∂xk
, (B.1)

with zturb.,k = z⃗turb. · ˆ⃗ek. Note that, depending on the turbophoretic behavior wanted, a
plankter may either swim in the direction ˆ⃗nturb. to search for solid substrates or try to
swim in the opposite direction and then getting away from them.

Note however that the evaluation of this direction however requires to measure the
second order spatial derivatives of the flow velocity field. Plankters should be able to
approximate these second order derivatives given that the flow velocity gradients ∇⃗u⃗
are measured at several positions on their body. Moreover, locating the source of a flow
intensity (and therefore, finding the maxima of gradient intensity) is a common problem
for prey or predator detection for which some pankters are known to be very effective
(Jiang et al., 2002; Kiørboe and Visser, 1999; Kiørboe et al., 1999). Therefore even though
such turbophoretic behavior may be more complex [for instance flow measure depends
on plankter orientation (Fields, 2010)] modelling turbophoretic plankters by making
them swim in the direction ˆ⃗zturb. should lead to the correct qualitative behavior overall.
The effect would however be overestimated if sensing limitations are not taken into
account. To model more complex and limited behaviors, one could use for instance the
triangulation behavior proposed by Redaelli et al. (2021).

This turbophoretic behavior based on local flow information inherits the same curse
that all gradient ascent possess: it leads towards the local maxima of the gradient tensor
intensity. Due to turbulent fluctuations, most of the time, these local maxima would not
correspond to the position of the wall, and ˆ⃗zturb. would not necessarily point towards the
wall at all times. This is illustrated in Fig. B.2(a) where we plot the instantaneous value
of ˆ⃗zturb. for various positions in the turbulent channel flow presented above. Therefore,
to be useful, this information has to be averaged either over time (either through mem-
ory or by repeatedly swimming in that direction over time) or over space if the size of
the sensors enables such average. This is illustrated in Fig. B.3(b) where we plot the
value of ⟨⃗zturb.⟩x3,t/|⟨⃗zturb.⟩x3,t| (average over the transverse direction and over time) for
various positions of the vertical centerplane in the turbulent channel flow presented
above.

Once the direction in which to go is determined, the question of how to control the
preferred swimming direction ˆ⃗n to migrate as fast as possible in that direction arises.
Therefore, combining the direction ˆ⃗zturb. with the surfing strategy leads to a first attempt
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Figure B.2: The turbophoresis direction ˆ⃗nturb. [Eq. (B.1)] give the direc-
tion to the nearest wall. (a) Instantaneous value ˆ⃗nturb. in the vertical cen-
terplane and (b) averaged value ⟨⃗nturb.⟩x3 ,t/|⟨⃗nturb.⟩x3 ,t| as a function of
position in the channel flow of the Johns Hopkins turbulence databases.

of simple physics-based navigation method that could be used to navigate efficiently to-
wards flow boundaries. This model may be further improved using an adaptive time
horizon proposed in Chap. 4 Sec. 4.1, as this problem implies navigation through hetero-
geneous turbulence. Accounting for this arguments, this would result in the following

ˆ⃗nsurf,turb. =
n⃗surf,turb.

|⃗nsurf,turb.|
, with n⃗surf,turb. =

[
exp

(
ατ∇⃗u⃗/|S|

)]T
· ˆ⃗zturb.. (B.2)

To complete the model, if an average value the average value ⟨⃗nturb.⟩/|⟨⃗nturb.⟩| cannot be
evaluted due to memory or filtering limitations, one may consider to modulate swim-
ming velocity Vswim,turb. ∝ |⃗zturb.| so that the average preferred swimming direction
reads 〈

Vswim,turb.
ˆ⃗nturb.

〉
X⃗,t

⟨Vswim,turb.⟩X⃗,t
= ⟨⃗zturb.⟩X⃗,t/|⟨⃗zturb.⟩X⃗,t| (B.3)

Beneficial surfing performance was observed when the target direction ˆ⃗z was oriented
normal to the flow boundaries (Chap. 4, Sec. 4.1.2), thus demonstrating the flow can also
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Appendix B. Larval dispersion and settlement B.2. Foraging large scale horizontal currents

be used to reach faster flow boundaries. However, the wall normal ˆ⃗e2 was directly given.
So how does this holds for an uncertain estimate of this direction ˆ⃗zturb., dependent of
the local flow measure? The strategy defined by Eqs. (B.2) and (B.3) could be used as a
reference navigation model to answer this question in future studies.

Note that turbophoresis is a navigation problem that has significance for larval dis-
persion but also to describe active responses of planktonic organisms to turbulence.
Indeed, many planktonic species are known to react to turbulence intensity. For exam-
ple, some copepod species exhibit turbulence escaping behaviors (Schmitt et al., 2011;
Visser et al., 2001). This behaviour is generally believed to mitigate their food foraging
efficiency with predation risks (Visser et al., 2009). When no mean flow is present, the
intensity of the flow velocity gradients is maximal in strong turbulence. Therefore a
strategy that maximizes or minimizes the gradient intensity, as the one described, could
lead to similar responses to turbulence.

Overall this navigation problem is particularly complex and interesting as it includes
two aspects of navigation: (1) determining where the target is (2) and navigating effi-
ciently towards it. In the model proposed above, both these aspects of the problem are
treated separately and combined afterwards to obtain the preferred swimming direction
ˆ⃗nsurf,turb.. Future approaches that do not rely on this separation would certainly bring to
light more intricate behaviors that account for the interdependence off these two aspects
of the problem. In regard of the recent advances, the use of reinforcement learning tech-
niques would certainly be particularly appropriate to this end, using the model above
as a reference comparative model.

B.2 | Foraging large scale horizontal currents
We now focus on the stage corresponding to the foraging of strong large scale currents,
which would contribute actively to the horizontal dispersion of planktonic larvae. For-
mally, our interest relies here in a single point dispersion problem where the horizontal
displacement with respect to an Eulerian initial position (corresponding to where the
larvae was released for instance) is to be maximized, after a large time T, regardless of
the horizontal direction of that displacement. We further focus on the case for which a
mean horizontal flow exists, represented by the turbulent channel flow given obtained
from the Johns Hopkins turbulence databases. Simplified by these assumptions, we also
separate the problem in two aspects: (1) finding the direction of the mean flow and (2)
maximizing the overall displacement in that direction.

Being unable to measure directly the flow velocity, computing the direction of the
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Figure B.3: Estimated flow direction ˆ⃗nflow [Eq. (B.4)] as function of a local
flow measure. (a) Instantaneous value ˆ⃗nflow in the vertical centerplane
and (b) averaged value ⟨⃗nflow⟩x3 ,t/|⟨⃗nflow⟩x3,t| as a function of position in
the channel flow of the Johns Hopkins turbulence databases.

mean flow from the flow velocity gradients alone requires to be crafty. We may start by
evaluating the previously described direction ˆ⃗zturb., that estimates the direction towards
the nearest wall. Knowing that the mean flow is orthogonal to the wall normal, we
expect an estimate of the mean flow direction to be expressed as a cross product of
ˆ⃗zturb.. Furthermore, as we expect the mean flow velocity gradient to form along the wall
normal, the mean flow vorticity is in the plane orthogonal to both the wall normal and
the mean flow velocity, therefore the mean flow velocity could be estimated as

ˆ⃗zflow =
z⃗flow

|⃗zflow|
with z⃗flow. = z⃗turb. × ω⃗ (B.4)

This expression is evaluated as a function of space in the vertical centerplane of the flow
in Fig. B.3(a). As a comparison, we also plot the average value of ⟨⃗nflow⟩x3 ,t/|⟨⃗nflow⟩x3 ,t|
in Fig. B.3(b).

In a similar manner as the previous section, we can deduce a model navigation strat-
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Figure B.4: Surfers are able to exploit the mean gradients in a channel
flow with ˆ⃗z = e⃗1 and accumulate in the center of the channel. (a) Centered
and normalized effective upward velocity as a function of the swimming
velocity Vswim. (b) Concentration of surfing plankters as a function of
height for various simulation times.

egy for the problem of horizontal dispersion

ˆ⃗nsurf,flow =
n⃗surf,flow

|⃗nsurf,flow|
, with n⃗surf,flow =

[
exp

(
ατ∇⃗u⃗/|S|

)]T
· ˆ⃗zflow (B.5a)

Vswim,turb. ∝ |⃗zflow| (B.5b)

As a first step towards the characterization of this navigation problem, we start
evaluating the performance of adaptive surfers (parameterized by the parameter ατ)
that surf along the direction of the mean flow. To further simplify the problem, the
direction of the mean flow is directly given to the surfers ˆ⃗z = ˆ⃗e1 rather than evalu-
ated using through the local evaluation of ˆ⃗zflow. As a consequence, their swimming
velocity, Vswim, is also fixed. We plot the resulting surfing performance, evaluated as
(⟨Veff.⟩N −Ub)/Vswim, as a function of Vswim in Fig. B.4(a). The performance metric cor-
responds to the average effective velocity ⟨Veff.⟩N reached by surfers in the direction
of the mean flow direction ˆ⃗ex centered by the bulk velocity Ub (mean flow averaged in
the whole channel) and normalized by the swimming velocity Vswim. This ensures that
the performance of passive particles (⟨Veff.⟩N = Ub) is 0 and that the performance of
plankters swimming straight (⟨Veff.⟩N = Ub + Vswim) is 1.

These results demonstrates the ability of surfers to exploit the flow, but how do
surfers do so? In a turbulent flow with no mean, surfers exploit the small turbulent
fluctuations to forages small, yet significant currents that carry surfers forward and en-
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hance the overall migration along the target direction ˆ⃗z. In this case, the presence of
a mean large scale gradients changes that if exploited, it would lead to the centerline
where the flow velocity is maximal. By successively applying the surfing strategy using
the local measure of the gradients, acting as a gradient ascent of u1, surfers should also
exploit the mean flow velocity gradient in average. Therefore, surfers should converge
towards the center of the channel. Indeed this is the effect we show in Fig. B.4(b) where
plot the concentration of surfers c as a function of the vertical position x2 for various
simulation times. The concentration starts initially homogeneous in the whole chan-
nel then surfers quickly concentrate towards the center of the channel by exploiting the
mean flow velocity gradient of the flow. This demonstrates then the ability of surfers
to not only exploit small scale flow fluctuations but also larger scale flow structures by
provoking a mean displacement in response to the mean flow velocity gradient.

Overall the larval dispersion provides a challenging problem to address in the con-
text of plankton migration, that might drive an important part of the behavior of plank-
tonic larvae in nature. While the first steps are presented to characterize this problem in
the context of the surfing strategy developed in this thesis, the case considered here is
overly simplified. There is room for improvement in term of the complexity of the flow
environment (simulate an actual seabed) and the strategy considered (how well would
reinforcement learning perform?).
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The energetic cost of surfing

It has been shown in Chap. 6, Sec. 6.2, that the metabolic power corresponds to the main
source of power consumption in the context of the vertical navigation problem. There-
fore we deduced that the application of the surfing strategy would cause be particularly
beneficial due to its low energetic cost. However (1) this deduction relies on strong as-
sumptions and (2) the surfing strategy can be applied in a broader context (such as the
navigation of artificial microswimmers). Therefore we consider below the case of low
metabolic power consumption (relative to the power consumption of the active power):
Pmeta. = 0.

C.1 | The cost of active reorientation
Considering the interesting limit for which Pswim ≫ Pmeta and Pturn ≫ Pmeta, we evalu-
ate numerically the value of ⟨Veff.⟩ and

〈
Ω2

swim
〉

from our numerical simulations for any
surfing parameter τ. Figure C.1(a) shows that Pturn evolves as τ2. This is expected due
to the linear dependence on τ of the swimming angular velocity Ωswim ≈ τ|d(∇⃗u⃗)T/dt|.
This can be deduced from the expression of the surfing strategy given in Eq (7.1) for
which the derivative can be expressed as the following

d ˆ⃗nsurf

dt
= τ

(
Id− ˆ⃗nsurf ⊗ ˆ⃗nsurf

)
·

d
(
∇⃗u⃗
)T

dt
· ˆ⃗nsurf. (C.1)

Moreover, one observes a strong dependence on the swimming velocity Vswim of the
power consumption. Passing faster through the flow, fast micro-swimmers increase the
temporal derivative of their measure. This force surfers to react faster to flow variations,
leading to a higher energetic cost.
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Figure C.1: Influence of the surfing parameter τ and swimming veloc-
ity Vswim on rotating energy consumption Pturn ∝ Ω2

swim [Eq. (6.13b)].
Shaded area represents the 95% confidence interval.

Using this computed value of Pturn., we then compare the energetic efficiency Eeff. of
surfers of various swimming speed Vswim in Fig. C.1(b) (still assuming that Pmeta. ≈ 0).
We observe that the maximal energetic performance is slightly shifted towards smaller
values of the surfing parameter τ, for instance τ∗ ≈ 2τη for Vswim = 4uη , compared
to the case without taking energetic cost into account, for which τ∗ ≈ 3τη for Vswim =
4uη (Fig. 3.9). Note furthermore that swimming speed itself, Vswim, has an important
impact on energetic performance Eeff., the smaller the swimming velocity, the best the
performance.

While surfing could enable plankton to migrate faster for higher values of τ, the
energetic cost may not be worth it. This discriminates the cases where power consump-
tion is important. However, if the metabolic power Pmeta. is high enough, the problem
is independent of the power consumption due to active orientation Pturn..

C.2 | The cost of swimming: the on/off strategy
Until now, the swimming velocity Vswim of plankters was imposed constant. However,
if a constant swimming speed Vswim is not prescribed, an energy efficient plankter may
modulate it to achieve energy efficient vertical migration. While the surfing strategy
remains the solution of the average swimming direction, one can ask how velocity could
be distributed around this average to minimize energy consumption.

As the general problem may be too challenging to address, we consider in this sec-
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tion a spherical swimming plankter with no preferred reorientation. The plankter is
neither bottom-heavy, neither controls actively its orientation. The evolution of its posi-
tion X⃗ and swimming axis ˆ⃗p is then described by

dX⃗
dt

= u⃗(X⃗, t) + Vswim(t) ˆ⃗p, (C.2a)

d ˆ⃗p
dt

=
1
2

ω⃗× ˆ⃗p, (C.2b)

with Vswim(t) the time dependent swimming speed and ω⃗ the flow vorticity at the plank-
ter’s position. Furthermore, we restrict the possible swimming speed to an off/off be-
havior. Swimming is then triggered when a measured quantity passes over a given
threshold. Commonly found in literature, it is often used to model plankton behavior
(Dodson et al., 1997; Wheeler et al., 2019; Yamazaki and Kamykowski, 2003). In our
study, we consider the following threshold:

Vswim(t) =





Vswim ∀ θ(t) > θth.

0 else
(C.3)

with θth. a threshold angle and θ = θ⟨ ˆ⃗n⟩θ,ϕ , ˆ⃗p the angle between ⟨ ˆ⃗n⟩θ,ϕ(∇⃗u⃗, ˆ⃗z) and ˆ⃗p with

⟨ ˆ⃗n⟩θ,ϕ the preferred average swimming direction of the swimmer.

ˆ⃗n

ˆ⃗p

waiting

swimming

Figure C.2: Illustration of
the optimal threshold an-
gle θ∗th..

We first asses the power consumption of such a swimmer. As we
consider a plankter with no reorientation torque, we can assume in
turbulence its orientation is uniformly distributed in all possible ori-
entations. The average swimming power consumed is then obtained
by integrating the swimming power consumed over all possible direc-
tions

⟨Pswim⟩θ,ϕ =
1

4π

∫∫
FswimVswim(θ) sin θ dθ dϕ

=
1
2

∫ θth.

0
3πµdV2

swim sin θ dθ

=
3
2

πµdV2
swim (1− cos θth.) . (C.4)

This results in a estimate of the swimming power as a function of both
the swimming velocity Vswim and the threshold angle θth.

The question is to swim as fast a possible in the direction ˆ⃗z for a given, prescribed
swimming power Pswim. The only parameter to optimize is the threshold angle θth.. We
first evaluate the swimming velocity Vswim as a function of θth. that ensures the same
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average power consumption ⟨Pswim⟩θ,ϕ

Vswim =

√
2 ⟨Pswim⟩θ,ϕ

3πµd(1− cos θth.)
. (C.5)

Then, we assess how the vertical effective swimming velocity evolves with θ. For naive
swimmers for which ˆ⃗n = ˆ⃗z, we expect the average effective vertical velocity Veff. being
directly proportional to cos θ. It can then be expressed as the following

⟨Veff.⟩naive =
Vswim

2

∫ θth.

0
cos θ sin θ dθ =

Vswim

4
sin2 θth. =

√
⟨Pswim⟩θ,ϕ

24πµd
sin2 θth.√

1− cos θth.
(C.6)

that is maximized for θ∗th. = arcos(1/3) ≈ 0.39π (Fig. C.2)
As for reorienting surfers, we expect on/off surfers ( ˆ⃗n = ˆ⃗nsurf) to perform bet-

ter than naive on/off swimmers. If the same improvement is obtained, we expect
⟨Veff.⟩surf /⟨Veff.⟩naive = αsurf ≈ 1.7 (Fig 3.9b) and

⟨Veff.⟩surf = αsurf

√
⟨Pswim⟩θ,ϕ

24πµd
sin2 θth.√

1− cos θth.
. (C.7)

To test this theory, we simulate numerical on/off plankton [Eq. (C.3)] in a turbulent
environment of Reynolds number Reλ = 11. Micro-swimmers are characterizes by their
strategy [ ˆ⃗n(t) = ˆ⃗z or ˆ⃗n(t) = ˆ⃗nsurf], their angular threshold [θth., Eq.(C.3)] and their average
swimming power ⟨Pswim⟩θ,ϕ. Both the naive upward strategy, ˆ⃗n = ˆ⃗z, and the surfing
strategy, ˆ⃗n = ˆ⃗nsurf, are tested varying θth. from π/10 to π/2.

To ensure the same swimming power is used by each micro-swimmer, their swim-
ming velocity when swimming is given by Eq. (C.5) with ⟨Pswim⟩θ,ϕ = Pswim,target. This
expression relies on the hypothesis of a uniform angular distribution. This assumption
may break down. Simulated micro-swimmers rotate with flow vorticity ω⃗. When swim-
ming velocity increases, the correlation time of ω⃗ sampled decreases. This should lead to
slightly smaller rotational diffusion, thus biasing the orientation distribution (Fig. C.3).
The swimming state being more probable than expected, the swimmers with the lowest
threshold θth. (and thus swimming the fastest instantaneously) should consume slightly
more swimming power. As observed in Fig. C.5(a), this decrease in rotational diffusion
is negligible and does not cause any effect on the average swimming power consump-
tion of the naive swimmer ( ˆ⃗n = ˆ⃗z).

However, the decrease of the correlation time of the flow velocity gradient ∇⃗u⃗ im-
pacts the surfers. Indeed, their flow measure controls their preferred direction ˆ⃗n = ˆ⃗nsurf.
When swimming ˆ⃗nsurf varies faster, thus reducing the time for which θ [Eq. (C.5)] re-
mains below the swimming threshold θth. (Fig. C.4). This decreases the overall time
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θ ˆ⃗n = ˆ⃗z
θth.

ω⃗

ˆ⃗p

still swimming

Figure C.3: Illustration of the rotational
diffusion reduction when swimming
cause a swimmer to swim more than
expected.

ˆ⃗n = ˆ⃗nsurf

ˆ⃗p

stopped swimming

Figure C.4: Illustration of the increase
of rotational diffusion of the surfing di-
rection causing a swimmer to swim less
than expected.
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Figure C.5: Influence of the angular threshold θth. [Eq. (C.3)] on swim-
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surfers and two target swimming powers. Shaded area represents the
95% confidence interval.
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Figure C.6: Influence of the angular threshold θth. [Eq. (C.3)] on effec-
tive upward velocity Veff. for naive swimmers and surfers and two target
swimming powers. Shaded area represents the 95% confidence interval.
Solid lines represent the theory [Eq. (C.7)].

spent in the swimming state compared to the waiting state, thus biasing orientation out
of a uniform distribution of orientation of ˆ⃗p with respect to ˆ⃗n. Eq. (C.5) thus underes-
timates the necessary swimming velocity to keep a constant average swimming power
Pswim,target.

We can then compare the effective vertical swimming velocity Veff. reached by on/off
naive swimmers and surfers for various swimming thresholds θth. (Fig. C.6). We first no-
tice that performance of naive swimmers is correctly predicted by the model described
in Eq. (C.6). The performance of surfers is however not completely captured by Eq. (C.7)
for the smallest values of θth.. This discrepancy is due to the dependence of surfing
performance with swimming velocity (which also caused low surfing performance in
Fig. C.6(b) corresponding to high swimming power). Indeed, αsurf was considered con-
stant to derive the model but in practice it varies and decreases with the swimming
velocity Vswim. As a consequence, compared to the model, performance slightly drops
for the lowest thresholds θth. corresponding to the highest swimming speeds.

Overall, the surfing framework can also be used to find efficient strategies in the
context of minimal power consumption.
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Runge kutta method

Numerical solvers are used to solve initial value problems of ordinary differential equa-
tions

dy⃗
dt

= f⃗ (t, y⃗), y⃗(t0) = y⃗0. (D.1)

Starting from t = t0 for which y⃗ = y⃗0 is known, we can directly compute the slope
k⃗1 = f⃗ (t0, y⃗0) of this function. Then approximating y⃗ to its linear approximation y⃗(t) ≈
y⃗0 + (t− t0) k⃗1, one can obtain the value y⃗1 = y⃗0 + ∆t k⃗ ≈ y⃗(t + ∆t) for a prescribed time
step ∆t. Performing this operation repeatedly leads to the integration of y⃗ using the
Euler method, defined by the following recursion equation

y⃗n+1 = y⃗n + ∆t f (yn, tn), (D.2)

where y⃗n = y(t + n ∆t) and tn = t + n ∆t. Despite the appeal due to its simplicity, this
method remains an first-order numerical integration method, meaning the error is pro-
portional to the step size ∆t. Any error produced by the method may accumulate over
iterations and lead to a large errors over time.

To overcome this issue, one can rely on higher orders methods such as the Runge-
Kutta method, that can be seen as a generalization of the Euler method. In this study,the
equation of motion is integrated numerically using a 4th order explicit Runge-Kutta
method. This method relies on the following recursion law

y⃗n+1 = y⃗n + ∆t
s

∑
i=1

bi⃗ki (D.3)

where bi are numerical coefficients, called weights, that are specific to each particular
Runge-Kutta method. The values ki correspond to the slope f⃗ evaluated for various
intermediate values in time between tn and tn+1 (Fig. D.1). These slope values are eval-
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f(
t)

k⃗1

t t + ∆tt + ∆t/2

k⃗2

∥ k⃗2

k⃗3

∥ k⃗3

k⃗4

Figure D.1: Illustration of the Runge-Kutta method.

uated as follows

ki = f (tn + ci∆t, yn + ∆t
i−1

∑
j=1

ai,jk j) (D.4)

with the coefficients ci called nodes and the coefficients ai,j named the Runge-Kutta
matrix. All coefficients are generally summed up into the Butcher table to describe a
method of the Runge-Kutta family (Tab. D.1). Note that the coefficients of the method
need to be chosen carefully so that it converges consistently towards the solution.

c1

c2 a2,1

c3 a3,1 a3,2
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table D.1: Butcher’s table.

In other words, while the Euler method only relies on a single
slope k⃗ evaluated at t = tn, the Runge-Kutta relies on s measures
of the slope k⃗i in between tn and tn+1. Moreover the Euler method

corresponds to the Runge-Kutta case
0

1
with s = 1.

In this study a fourth-order Runge-Kutta-Fehlberg method,
characterized by the Butcher’s table given in Tab. D.2 (Fehlberg,
1968), is used in our in-house open-source code SHELD0N 1, to
integrate the equation of motion. The code can be setup to inte-
grate plankter trajectories by automatically querying various flow
fields of John Hopkins turbulence database at plankton positions through simulations.
It is also able to use local flow databases generated from SNOOPY simulations (or from
any fluid solver with the same output format) by interpolating the flow field at plankter
positions. In this study, we used a fourth-order Lagrange polynomial interpolation to

1Our in-house code is available at http://www.github.com/C0PEP0D/sheld0n.
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0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40

16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

Table D.2: Butcher’s table of the Runge-Kutta-Fehlberg method. The first
row of bi coefficients at the bottom of the table gives a fifth-order method.
The second row corresponds to a fourth-order method.

integrate trajectories in our own flow databases while a sixth-order interpolation is per-
formed on query when using the Johns Hopkins turbulence database. Implementation
of various analytical flow velocity fields are also provided in which microswimmers
trajectories can be integrated.
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