
HAL Id: tel-04164622
https://theses.hal.science/tel-04164622

Submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Internet-Scale Route Tracing Capture and Analysis
Matthieu Gouel

To cite this version:
Matthieu Gouel. Internet-Scale Route Tracing Capture and Analysis. Networking and Internet Ar-
chitecture [cs.NI]. Sorbonne Université, 2023. English. �NNT : 2023SORUS160�. �tel-04164622�

https://theses.hal.science/tel-04164622
https://hal.archives-ouvertes.fr


Sorbonne Université
Laboratoire d’Informatique de Paris 6 (UMR 7606)

Internet-Scale Route Tracing Capture and Analysis

Présentée par Matthieu Gouel

Pour le grade de Docteur de Sorbonne Université

Soutenue le 12 juin 2023 devant le jury composé de :

Mme. Clémence Magnien Directrice de Recherche, Sorbonne Université Présidente du jury
M. Chadi Barakat Directeur de Recherche INRIA, Université Côte d’Azur Rapporteur
Mme. Cristel Pelsser Professeure, Université Catholique de Louvain Rapporteuse
M. Jordan Augé Chercheur, Cisco Systems France Examinateur
M. Timur Friedman Maître de Conférences, Sorbonne Université Co-encadrant
M. Olivier Fourmaux Professeur, Sorbonne Université Directeur de thèse



Acknowledgments

I would like to express my gratitude to the French Ministry of Defense for
fully funding my thesis and professional experiences during this period.

Many thanks to Olivier Fourmaux and Timur Friedman for your trust and
guidance throughout my research and teaching work. Thanks a lot to Robert
Beverly and Justin P. Rohrer for hosting me at the Naval Postgraduate School
during an unforgettable two-month period and for their involvement in all
our collaborations. Thanks to Chadi Barakat, Cristel Pelsser, Jordan Augé
and Clemence Magnien for accepting to be members of my thesis committee
and for their thorough review of my dissertation. Thanks to Matthieu Latapy
and Kavé Salamatian for agreeing to be on the follow-up committee and
for their many pieces of advice. Huge thanks to my colleagues from LIP6
Maxime Mouchet, Hugo Rimlinger, Berat Şenel, Kevin Vermeulen, as well
as all my colleagues from LINCS, for their unconditional support, exciting
exchanges, and inspiring work.

I am also deeply grateful to my friends who have followed me through
my ups and downs since high school with kindness and patience. The same
goes for my family and particularly my brothers, parents, and grandparents,
who cultivated my passion for science and gave me everything to pursue my
dreams.

Lastly, I want to express all my deepest love and gratitude to my partner,
Lucie, who supported me every day of this long but exciting adventure.

Merci.

i



Abstract

English version

The Internet is one of the most remarkable human creations, enabling com-
munication among about two thirds of the global population. This network
of networks spans the entire globe and is managed in a highly decentralized
way, making it impossible to fully comprehend at IP-level. Nonetheless, for
over two decades, researchers have been devising new techniques, developing
new tools, and creating new platforms to capture and provide more precise
and comprehensive maps of the Internet’s topology. These efforts support
network operators in the industry and other researchers in improving core
features of the Internet such as its connectivity, performance, security, or
neutrality.

This thesis presents new contributions that improve the scalability of
Internet topology measurement. It introduces a state-of-the-art measurement
platform that enables the use of high-speed probing techniques for IP route
tracing at Internet scale, as well as a reinforcement learning approach to
maximize the discovery of the Internet topology. Because the analysis of the
route tracing data collected requires additional metadata, the evolution of
IP address geolocation over a 10-year period in a widely used proprietary
database is examined, and lessons are provided to avoid biases in studies
using this database. Finally, a large-scale analysis framework is developed to
effectively utilize the large number of collected data and augmented metadata
from other sources, such as IP address geolocation, to produce insightful
studies at the Internet scale.

This work aims to considerably improve the study of the Internet topology
by providing tools to collect and analyze large amounts of Internet topology
data. This will allow researchers to better understand how the Internet is
structured and how it evolves over time, leading to a more comprehensive
understanding of this complex system.
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French version

Le réseau Internet est l’une des réalisations les plus remarquables de notre
civilisation, permettant la communication entre environ deux tiers de la popu-
lation mondiale. Ce réseau de réseaux a une portée internationale et est géré
de manière hautement décentralisée, rendant sa représentation globale impos-
sible au niveau IP. Cependant, depuis plus de deux décennies, les chercheurs
ont développé de nouvelles techniques, construit de nouveaux outils et créé
de nouvelles plateformes pour capturer et fournir des cartes plus précises
et complètes de la topologie de l’Internet, soutenant ainsi les opérateurs
réseau de l’industrie et les autres chercheurs dans l’amélioration des com-
posantes essentielles du réseau Internet comme sa sécurité, ses performances,
sa connectivité ou sa neutralité.

Cette thèse présente de nouvelles contributions visant à améliorer la
mesure de la topologie de l’Internet à grande échelle. Elle introduit une
plateforme de mesure permettant l’utilisation d’un traçage à grande vitesse
des routes IP, ainsi qu’une approche d’apprentissage par renforcement pour
optimiser la découverte de la topologie de l’Internet. L’analyse des données des
routes de l’Internet collectées nécessitant des métadonnées supplémentaires,
cette thèse étudie également l’évolution de la géolocalisation des adresses IP
dans une base de données privée couramment utilisée sur une période de 10
ans et fournit des conseils pour éviter les biais dans les études utilisant cette
base de données. Enfin, un cadre d’analyse à grande échelle a été développé
pour exploiter de manière efficace cette grande quantité de données collectées,
ainsi que les métadonnées supplémentaires provenant d’autres sources telles
que la géolocalisation des adresses IP, afin de produire des études pertinentes
à l’échelle de l’Internet.

Ce travail vise à considérablement améliorer l’étude de la topologie de
l’Internet en proposant des méthodes et des outils pour la collecte et l’analyse
de quantités massives de données sur la topologie IP de ce réseau. Cette ap-
proche permettra une meilleure compréhension de la structure et de l’évolution
de l’Internet, facilitant ainsi la compréhension de ce système complexe.
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Chapter 1

Introduction

The Internet has become a ubiquitous communication infrastructure connect-
ing an estimated 5.3 billion people worldwide in 2022, representing about two
thirds of the global population [84]. However, due to its highly distributed
nature, no single entity has a comprehensive understanding of the entire
Internet, and especially at the IP-level granularity. This vast network consists
of tens of thousands of networks of varying sizes and degrees of interconnec-
tivity, known as Autonomous Systems (ASes)[106]. For over two decades, the
Internet measurement research community has been publishing papers on
improving tools and techniques for capturing more accurate and complete
information about the Internet topology [14, 16, 18]. To this end, numerous
measurement platforms have been developed over the years [26, 148, 110], to
enhance the scalability and convenience of Internet measurements.

In this introduction, we aim to motivate the need to develop new platforms
and algorithms to facilitate and optimize the use of Internet-scale probing
techniques [21, 168, 79]. Additionally, we stress the importance of designing
and implementing frameworks to efficiently process the vast amount of data
collected. We also present the contributions of our work towards addressing
these challenges.

1.1 Motivation

To produce meaningful and comprehensive results, the Internet measurement
community must be capable of capturing data at the scale of the Internet
and also be able to interpret the data collected. These results support the
study of multiple aspects of the Internet such as its connectivity [4, 163],
performance [103], security [181] or neutrality [180]. The ability to produce
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CHAPTER 1. INTRODUCTION 2

Internet-scale IP-level maps of the Internet more frequently is crucial in order
to understand the dynamics of the Internet topology and potentially uncover
short-term changes, and so improve our reactiveness to connectivity and
security events.

Recently, a new set of probing tools, such as Yarrp [21], Diamond-
Miner [168], and FlashRoute [79], have been developed, which enable high-
speed probing of the Internet’s IP-level topology. These tools allow for
probing the routes from each source at a higher probing rate, enabling one to
collect more snapshots of the Internet topology in the same amount of time.
But the use of these tools can present challenges in terms of scale, due to the
amount of measurement data to collect and to process.

This work revolves around this issue of scale. The first question we aim
to address is how to collect comprehensive and accurate route tracing data at
the scale of the Internet. The second question is how to effectively analyze the
dynamics of Internet data, particularly IP geolocation data, to avoid errors
in subsequent analysis. Finally, we explore how to efficiently analyze the
vast amounts of collected data, including additional metadata, to generate
valuable insights for the Internet measurement community and fully capitalize
on this wealth of information.

1.2 Contributions

This thesis presents three major contributions to the capture and the analysis
of route tracing data at Internet-scale. It follows the regular flow of data,
from data collection (Chap. 3) to data processing (Chap. 4 and Chap. 5).

First, we present a resilient reinforcement learning approach to distributed
IP route tracing (Chap. 3), which improves the capture of the IP-level Internet
topology thanks to Iris, a new resilient and high-speed probing platform and
Zeph, a reinforcement learning approach for choosing the IP routes to probe.
With Iris and Zeph, we are able to discover 3 times more nodes and 10 times
more links for the same number of prefixes in a shorter period of time than
the state of the art. This work has led to two per-reviewed publications: one
in the ACM SIGCOMM Computer Communication Review (CCR) journal in
the issue of January 2022 [71] and one at the CoRes conference in 2022 [70].
In addition, we have released Iris software, Zeph software, as well as the
evaluation analyses of the papers as a free, open-source and liberally licensed
code [159]. We also maintain a production system [160] that is available to
the scientific community.

Then, we propose a longitudinal study (Chap. 4), which analyze 10-
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year data dynamics of a geolocation database popular in research work as
well as in industry. This large-scale study allows us to find short-term
dynamics of IP geolocation data in this database that could introduce bias
in prior research study’s results. These lessons found in this study lead us
to propose recommendations to appropriately use the data of this database
in research. This work has led to a per-reviewed publication at the Network
Traffic Measurement and Analysis (TMA) conference in 2021 [68] as well as
a technical report [69].

Also, we present a framework for traceroute processing (Chap. 5), which
allows performing large-scale analysis of IP route tracing data, augmented
with external metadata such as IP-to AS information or IP geolocation. With
this framework, we are able to analyze millions of traceroutes in a few seconds
to study incomplete AS paths because of stars in traceroutes. Also, MetaTrace
enables us to perform a longitudinal study on Internet flattening over 5 years
on 6 billion traceroutes, reappraising the results of previous studies on this
topic. We are preparing this work for a peer-reviewed submission and we
released MetaTrace as a free, open-source and liberally licensed code [159].

In conclusion, we present a perspective section (Chap. 6) that discusses
the development of more ethical measurement platforms that can benefit
from high-speed probing while avoiding harm to the network. We define
a beneficent platform as one that minimizes rate limit violations defined
by network operators. We also discuss the challenges in building such a
beneficent system and suggest ways to overcome them. This work has been
accepted for publication after a per-review process at the CoRes conference
in 2023.



Chapter 2

State of the art

This chapter presents the prior works in the Internet measurements necessary
to fully comprehend the basics of this thesis and the context in which this
work has been conducted. In addition to this state of the art, each chapter
of the thesis that presents a research contribution (Chap. 3 to Chap. 5) that
contains a related work section specific to the addressed subject.

This chapter follows the same overall approach as the thesis, i.e., going
from data collection to data analysis.

We will first develop general knowledge about IP route tracing tools and
algorithms in order to collect the most accurate and comprehensive Internet
topology data with a high-probing rate. Then, we will review the current
state-of-the-art platforms and which tools and algorithms they use. These
two sections will help us to understand the motivation behind the creation of
the Iris platform and Zeph algorithm in Chap. 3.

The third section will present the various types of metadata that enhance
IP route tracing data to provide additional context and information for
analysis. One example of such metadata is the physical geolocation of IP
addresses, which can be inferred through geolocation databases or various
probing techniques. This section is related to Chap. 4, where we examine
the data dynamics of a geolocation database that is extensively used in both
research papers and the industry.

The fourth section will focus on the analysis of IP route tracing data and
metadata, presenting the data format defined by the probing platforms and
the standard methods used for analysis. This section is especially relevant for
understanding the motivation behind MetaTrace, our data analysis framework
presented in Chap. 5.

4
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2.1 IP route tracing tools and algorithms

In this section we present general concepts, tools and techniques for IP route
tracing, relevant to understand the challenges in discovering accurate and
comprehensive IP-level topology of the Internet.

IP route tracing is the action of measuring the IP route between two
Internet hosts. Usually, the two hosts are composed of a source, i.e., the host
executing the measurement, and a destination, which is a routable host in
the measured network. In the literature, the source host is also named the
vantage point. The IP route is a succession of router interfaces. We call the
ingress interface an interface of a router facing the source and the egress
interface an interface facing the destination.

Figure 2.1: Single-path route between the source VP and the destination DT

In the example of Fig. 2.1, we can see a route between the source VP
and a destination DT. This route is defined as single-path as there is only
one possible ordered list of router interfaces that create a path between the
source and the destination.

Figure 2.2: Multi-path route between the source VP and the destination DT

Fig. 2.2 shows an example of a multi-path route between the source VP
and the destination DT. Here, the router with the ingress interface A balances
the traffic between two of its egress interfaces. These routers are called load
balancers. This can be done at the router-level with a manual configuration, or
automatically by using the Equal Cost Multipath Protocol (ECMP) mechanism.
At the end of the route, the router with ingress interfaces E and H is merging
the two paths and all the packets towards DT are routed to the same egress
interface. This structure between the first router and the last one is called
a diamond [14]. Vermeulen et al. [168] found that multi-path routes are
prevalent in their measurements, where 64% of the traces towards all of the
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/24 prefixes contain at least one load balancer. The maximum width of a
diamond, which refers to the number of unique interfaces at a given TTL,
can be several dozen. Meanwhile, the length of a diamond, which refers to
the size of the longest path, can exceed 20 [169].

2.1.1 Introduction of traceroute

In 1988, i.e., 7 years after the publication of the RFC 791 [49] that defined
the Internet Protocol, Van Jacobson established the main principles of the
traceroute program still implemented today in UNIX operating systems [85].

The idea behind traceroute is to measure the route from a source host
to a destination host by sending probes towards the destination. It relies
on exploiting the Time to Live (TTL) field of the IPv4 header. This 1-byte
header field is typically used to prevent routing loops. When an IP packet
is routed by a router, the router decrements the TTL by one. When the
TTL reaches 0, the router discards the packet and sends a notification to the
source. This notification takes the form of an ICMP time exceeded message,
with, in most cases, the ingress router interface listed as the source IP address
and the vantage point IP listed as the destination address.

The IP address used as the source IP address of the reply packet may
occasionally be different from the ingress router interface, such as a loopback
address or the IP address of another interface, depending on the router
configuration. Also, with this methodology, traceroute will not measure the
egress interfaces of the route.

Traceroute sends multiple probes to a destination by incrementally setting
the TTL value from 1, then 2, and so on, until it reaches the destination.
With each probe, traceroute records the interface of the router at each TTL,
also known as a hop. Finally, when a probe reaches the destination, the
destination sends a notification different from an ICMP time exceeded, and
the ICMP notification type will vary depending on the protocol type of
probe sent by the source. In cases where the destination does not respond,
traceroute provides a maximum TTL option to end the measurement.

Van Jacobson’s traceroute was initially implemented using UDP probes.
In this setup, the destination would send an ICMP destination unreachable
because the destination port used by traceroute is typically high and not open
at the destination host. However, the same approach can be used with ICMP
or TCP probes. With ICMP probes, the source sends ICMP echo request
probes, and the destination responds with an ICMP echo reply notification.
With TCP, the source sends a TCP segment with the SYN flag raised, and
the destination responds with a TCP segment with the RST flag raised if
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the destination port is closed or with SYN+ACK flags if the port is open.
Luckie et al. [108] studied how these different traceroute probe methods affect
destination reachability and IP link discovery.

Although the initial implementation of Van Jacobson was developed for
IPv4, the same principles can be easily applied to IPv6. In IPv6, the TTL
field is replaced by the Hop Limit field, and ICMP notifications are replaced
with ICMPv6 notifications.

2.1.2 Improving traceroute reliability

This version of traceroute works as expected with single-path routes (Fig. 2.1)
but may yield unreliable results in case of multi-path routes.

Let’s illustrate the issue with traceroute measuring the route of Fig. 2.2.
For clarity, we will pretend that traceroute sends only one probe per TTL,
instead of 3 probes by default, but the issue remains the same.

At hop 1, traceroute will discover A. At hop 2, traceroute will discover
either B or F. At hop 3, traceroute will discover either C or G. At hop 4,
traceroute will discover either D or H. At hop 5, traceroute will discover
either E or the destination DT. Finally, at hop 6, traceroute will only discover
the destination DT. Thus, traceroute may discover paths that do not actually
exist, such as VP - A - B - G - D - DT.

These errors are caused by load balancers. In Fig. 2.2, there is one load
balancer, which has the ingress interface A. To resolve the issue, one should
ensure that traceroute will trace only one of the possible paths towards the
destination, i.e., VP - A - B - C - D - E - DT and VP - A - F - G - H
- DT in this example.

To achieve this, one must be aware of how a load balancer selects the pos-
sible egress interface if multiple ones are available. The paper of Augustin et
al. [14] shows that there are mainly 3 types of load balancers.

• Per-packet, where the packet will be routed based on a policy that does
not depend on the packet fields (for instance, a round-robin policy)

• Per-destination, where the packet will be routed based on its destination
IP address. As a result, all packets with the same destination will take
the same path.

• Per-flow, where the packet is routed based on the five-tuple fields of the
packet. These fields include the source and destination IP addresses,
the protocol fields in the IPv4/v6 header, and either the source and
destination port fields for UDP and TCP or the code and checksum
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fields for ICMP. In consequence, all packets belonging to a same session,
or a same flow, will take the same path.

Almeida et al. [5] confirmed that per-destination and per-flow load bal-
ancers are prevalent for all types of transport layer (UDP, TCP and ICMP).
The per-packet load balancers represent at most 0.3% of the load balancer
classification.

Paris-Traceroute [14] utilizes this information by fixing the header fields
that are responsible for per-flow and per-destination load-balancing for all
the probes in a single trace. By doing so, Paris-Traceroute can ensure that
the measured path is correct when the route only includes this type of load
balancer. Since per-packet load balancers are uncommon, this technique is
considered safe and widely used in the networking community today.

2.1.3 Improving traceroute completeness

Paris-Traceroute provides accurate traceroute results for routes that contain
load-balanced paths. The next logical step is to extend this capability to
enable tracing of all paths for a given route.

Augustin et al. developed a technique called the Multipath Detection
Algorithm (MDA) first presented as a poster and a workshop [15, 17], then
presented at IMC in 2007 [16] and finally mathematically strengthened at
INFOCOM in 2009 [165].

The MDA works on a hop-by-hop basis. For each interface r at hop h− 1,
the MDA selects flows that are expected to reach r and uses them to probe
the successor interfaces or r at hop h (referred to as the nexthops of r). The
MDA sends enough probes to be certain at a confidence level 1− ε that it
has discovered all the nexthops of r. Initially, the MDA sends enough probes
to ensure with 100 ∗ (1− ε)% confidence that there is at most one nexthop to
r. If it discovers one interface after n1 probes, then r is considered resolved.
If it discovers k > 1 interfaces, it sends nk probes and continues to do so
until it sends nk without discovering any new interfaces.

In order to compute the values nk, the MDA makes multiple assumptions:
(1) no routing change; (2) load-balancing is uniform to all nexthops; (3) all
probes are answered; and (4) there is no per-packet load-balancing.

The number of probes to send to reach the statistical guarantees nk are
given in a table for ε = 0.05. Later, Jacquet et al. [86] gave a general formula
to compute the values nk in function of ε.

The MDA varies the flow of the probes by changing the port numbers or
the ICMP checksum only. So in this initial implementation, the MDA can
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only work with per-flow load balancers and not with per-destination load
balancers. But the MDA can be extended by targeting a destination prefix
instead of a destination address [18] and then create flow by varying the
destination address instead of the port numbers. This way the MDA would
be compatible with per-flow and per-destination load-balancing.

In 2018, Vermeulen et al. [169] developed MDA-Lite, which saves probes
for certain topologies and falls back to the regular MDA when necessary, thus
reducing the number of required probes.

In 2020, Almeida et al. [5] generalized the MDA, by varying any of
IPv4/v6 and TCP/UDP/ICMP field and thus characterizing the different
load balancers in the wild. They determined that the vast majority of load
balancers are per-flow or per-destination. They also observed that a small
fraction of per-flow load balancers are in fact “per-application” where only
the transport port (in TCP/UDP) participates in the load-balancing.

2.1.4 Improving traceroute throughput

In an effort to map the Internet routes more exhaustively and rapidly, one
would want to send traceroute probes at a high probing rate. But the
implementations presented so far are: (1) stateful, because traceroute has to
match the probe sent with the reply; and (2) sequential, because traceroute
implementation operates hop-by-hop with a low degree of parallelism. Thus,
the implementations presented so far rarely exceed 100 pps.

Yarrp [21] dramatically increases single-path traceroute throughput thanks
to two mechanisms. First, it encodes meaningful information, such as the
probe’s TTL and sent timestamp, in probe fields to match the ICMP time
exceeded reply and the probe without state in the sender. This information
is retrieved in the quotation of the ICMP reply. Second, it shuffles the probes
to send in the space destination * TTL, instead of a sequential hop-by-hop
approach. It allows sending at high speed without putting too much pressure
on a particular path or interface. Yarrp6 [23] is an extension of Yarrp for
IPv6 support.

FlashRoute [79] builds upon Yarrp principles but reintroducing carefully
managed states with the aim of removing redundancy in the probing. It
leverages ideas from DoubleTree [57] that explore routes in the backward
direction and stopping when reaching an already probed interface.

But Yarrp and FlashRoute only probe one path per route and so are not
using the MDA. Diamond-Miner [168] leverages Yarrp principles but adapts
the MDA to be used with no state during probing. It works by conducting
rounds of probing in which probes are sent using the methodology of Yarrp.
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But the flows to be sent in each round are computed based on the results of
previous rounds, with the goal of meeting the statistical guarantees of the
MDA. As a result, it allows performing multi-path traceroutes while reaching
high probing rates.

Lessons Decades of research in Internet measurements have led to the
development of tools and techniques that improve the reliability, completeness,
and speed of route tracing data. The use of these tools repeatedly shows [133,
47, 64] that routes over the Internet are globally stable on a daily scale.
However, no tool currently utilizes previous measurement data to speed up
or improve the completeness of upcoming measurements. In this thesis, we
contribute to this effort by developing Zeph (see Chap. 3), a new scheduling
algorithm that uses a reinforcement learning approach to select the next IP
routes to probe from each vantage point, maximizing the discovery of the
Internet topology at high throughput.

2.2 IP route tracing platforms

Up until now, we have discussed techniques and tools that can improve the
correctness, completeness, and throughput of traceroute-style measurements.
All of these tools, such as Yarrp, FlashRoute, and Diamond-Miner, can be
used as standalone solutions on a single vantage point. However, to perform
large-scale, multi-vantage-point measurements of the Internet topology, with
the goal of monitoring and studying its dynamics and changes over time,
these tools need to be integrated into a probing platform.

A platform is hardware and software infrastructure that enables the ex-
ecution of one or multiple probing tools from one or more vantage points.
Additionally, the platform facilitates the collection and storage of data gath-
ered by the probing tools, and provides a means to share or query the stored
measurement data.

Besides these main components of probing execution, data storage, and
data sharing, a platform often includes precise monitoring of measurements
and vantage points, facilitates system maintenance with software resilience,
and stores additional measurement metadata such as the tool used, its
parameters, and measurement timestamps.

Many platforms have appeared and disappeared over the years [55]. In
this section though we will focus on the platforms that are still in use at the
time of writing.



CHAPTER 2. STATE OF THE ART 11

CAIDA’s Archipelago (Ark) [26] uses its 110 vantage points to issue single-
path Paris-Traceroute measurements at a probing rate of 100 pps. It follows a
cycle of measurements that last roughly a day, where all the routed IPv4 /24
prefixes are shared among the vantage points. As a result, one should find
inside a cycle one and only one traceroute towards a particular destination.
Ark’s vantage points are globally located and conduct regular measurements
of the Internet topology, which benefit the Internet measurement community.
They also allow researchers to perform measurements with their on-demand
topology measurement service Vela [29].

RIPE Atlas [148] allows its user to perform pings and single-path Paris-
Traceroute at a low probing rate from around 10,0000 vantage points located
in many Autonomous Systems. In addition, RIPE Atlas performs regular
traceroute mesh measurements between their “anchors” vantage points and
towards particular destinations such as Domain Name System (DNS) root IP
addresses.

M-Lab [110] issues multi-path Paris-Traceroute measurements towards
each client in reaction to a Network Diagnostic Tool (NDT) [111] test towards
their platform. They allow the community to use the data collected, after
anonymization, from their Google’s BigQuery database [66].

These three main probing platforms are all implementing Paris-Traceroute,
with or without the MDA capabilities. Ark and M-Lab are using Scam-
per [102], a prober software developed by CAIDA that supports the regular
and the MDA traceroute, whereas RIPE Atlas uses their own implementation
of Paris-Traceroute.

Lessons Numerous probing platforms have emerged from various organiza-
tions, each with different models. However, it is worth noting that no existing
platform uses the latest tools such as Yarrp, Diamond-Miner or FlashRoute,
that can improve the throughput of route tracing measurements. This thesis
introduces Iris (see Chap. 3), a new probing platform that is compatible
with Yarrp and Diamond-Miner, relies on open-source software, and can be
audited and replicated by any actor in the Internet measurement community.

2.3 Data augmentation

In the previous sections, we talked about traceroute-style probing techniques,
tools that implement these techniques and in-use platforms using some of
these tools.

Once the routes traced, one would want to use this data to perform
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analysis that increase our understanding of the Internet. Quite often, though,
IP-level topological data is not sufficient. Additional data, or metadata, will
help to complete the view and gives context of route structure and dynamics.
We analyzed the papers published in the IMC, PAM and TMA conferences
from 2017 and 2021. We automatically extracted the papers that contain the
world traceroute and then manually investigated these papers. Among them,
74% use at least one of the following metadata sources to analyze traceroute
data: reverse DNS resolution (20%), IP geolocation (19%), alias resolution
(19%), IP-to-PoP resolution (31%) and IP-to-AS resolution (62%).

In this section, we give an overview of this metadata and how to acquire
them.

2.3.1 Reverse DNS resolution

Reverse DNS resolution is the process of resolving a domain name from an
IPv4 or IPv6 address. This is achieved by performing a reverse DNS lookup
in the Domain Name System and retrieving the PTR records associated with
the IP address. Unlike other types of metadata, reverse DNS resolution is
publicly accessible, and no particular techniques are required to access this
information. However, performing lookups on millions of IP addresses can be
challenging if the information is needed for large-scale studies. One possible
solution is to use tools such as ZDNS [184], which enable high-speed DNS
lookups.

2.3.2 IP geolocation

Numerous techniques have been developed over the last 20 years to physically
geolocate IP addresses. Some of these techniques are based on latency
measurements [48, 75, 78, 177]. These techniques can be performed on every
routable IP addresses but can suffer from lack of precision due to routing
detours or routing path asymmetry.

Others combine latency measurements with topology measurements to
better constraints the geolocation [89, 171, 58] These techniques are more
precise than techniques only relying on delay measurements but require
sending more probes.

Others are based on finding hints in the reverse DNS record of each IP
address [81, 151, 107]. These techniques do not require performing active
measurements but can be used only if a reverse DNS is present for the IP
address to geolocate and if geolocation hints are present inside the DNS
record.
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Finally, multiple commercial services offer geolocation databases [118, 127,
83, 82] that map IP prefixes into geolocation, often along with a confidence
level, but do not disclose their methodology to gather geolocation data.

2.3.3 Alias resolution

Alias resolution involves grouping IP addresses that belong to the same router,
allowing the production of router-level topology maps. Like IP geolocation,
alias resolution techniques must balance precision and coverage by using both
active and passive measurement data.

Some techniques rely on signature to group IP addresses together like
the source IP address [130, 72], IPv4 identifier [161, 20, 94], IPv4 times-
tamp option [156, 116], IPv6 source routing [143, 144], IPv6 fragmentation
identifier [104], or ICMP rate limiting [167]. Some other techniques rely
on IP topology information such as traceroute information [76, 93] or IPv4
record route option [157]. Finally, other techniques uses reverse DNS infor-
mation [161, 95].

2.3.4 IP-to-PoP resolution

Another approach is to map the Internet topology by Point of Presence (PoP).
A PoP is a physical location where network operators place their routers to
provide connectivity to their customers. Two or more ASes (Autonomous
Systems) can also share the same PoP, which is called an Internet Exchange
Point (IXP), where they exchange peering information and traffic between
their networks.

PeeringDB [137] is a non-profit, free and collaborative database that
stores networks data, IXP interconnection and geolocation data. It is meant
to facilitate interconnection decisions as a network operator.

Apart from PeeringDB database, numerous techniques were developed to
cluster IP addresses or aliased routers into PoPs by using active [154, 178] or
passive measurements [8] or by using reverse DNS record [161, 113].

2.3.5 IP-to-AS resolution

The most zoomed out level of the Internet topology is the representation of
the graph as a collection of Autonomous Systems (AS). In this representation,
nodes in the graph represent ASes, while links between them represent the
peering relationships between the ASes. An AS is a group of IP prefixes that
are under the control of a single organization, which is identified by a unique
Autonomous System Number (ASN). The AS-level topology can be obtained
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using passive measurements of BGP updates, by analyzing the AS-paths of
these updates. Collectors are used to collect these BGP updates, which are
transmitted to them via peering links [164, 150]. Each link between two ASes
in the AS-level graph represents a pair of successive ASes in the AS-path of
a BGP update.

Another technique to obtain the AS-level topology consists in starting
from the IP route level topology and perform an IP-to-AS resolution. It can
be done by also looking at BGP updates and mapping IP prefixes to its origin
AS [13].

More refined techniques allow to better map the IP address at the bound-
ary of the AS making it more accurate [105, 115, 117] using IP topology
information and alias resolution techniques.

Lessons We discussed the four main types of metadata that are typically
used to analyze route tracing measurement data. Researchers often rely
on datasets provided by the private sector or by other researchers who
present a new technique for obtaining a certain type of metadata. However,
no studies have analyzed the temporal evolution of data in these datasets,
or the potential impact that changes in data could have on research that
utilizes these datasets. In this thesis, we conduct a study on the most widely
used IP geolocation database in both industry and research, and discovered
that significant changes occur between snapshots of this database. These
changes could potentially introduce bias into studies that rely on this database
(see Chap. 4).

2.4 Data analysis

The data structure used to share and analyze IP route tracing data depends
on the probing platform. Ark [26] is using the Warts format which is the
native output file format of Scamper. It is a binary format holding all of the
information regarding the measurement itself, and the results associated with
it. The warts files of each of Ark’s vantage points can be downloaded from
their FTP server [27]. CAIDA developped Fantail [1] that uses Apache Spark
and Elasticsearch to query their own data. RIPE Atlas [148] uses JSON [88]
format, with the possibility to fetch one’s measurement data from their public
API or aggregated as files from their FTP server [149]. RIPE Atlas also
developped a system based on Apache Spark on Hadoop [2] to query their
own data and also pushes their data to Google’s BigQuery database [66].
M-Lab [110] is using BigQuery to store all its data, which can be fetched
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from BigQuery’s API. The heterogeneity of these data formats makes the
analysis of multiple sources of data difficult because no common standard
exists.

Moreover, we saw that the analysis of route tracing data is usually done
using additional metadata such as IP geolocation or IP-to-AS resolution.
This adds another layer of complexity to analyze the massive number of data
produced by probing platforms in an effective way.

The tools used to analyze traceroute data are usually adopted at the
discretion of the authors and not advertised in research projects, being
considered as a technical detail. As far as we know, based on discussion
with peers, evaluation tools are made with custom in-house scripts, that will
manipulate the data in memory [64], in a relational database [91, 166] or a
graph database [113].

To the best of our knowledge, no research paper has contributed to an
open-source framework with a robust, bug-free, and efficient implementation
for analyzing the large amount of data produced by the various actors in the
field of Internet measurement research.

Lessons Multiple route tracing platforms exist, each with its own data
structure for storing traceroute data, which produce massive amounts of
data over time. Additionally, there are a large number of metadata datasets
necessary for analyzing this route tracing data. Also, with the development of
new tools and platforms that allow for probing the Internet topology at a high
rate, the amount of data collected is likely to increase in the next few years.
In this thesis, we contribute to the analysis of large amounts of traceroute
data by proposing MetaTrace (see Chap. 5), an open-source framework that
allows for large-scale heterogeneous traceroute data processing, augmented
with metadata.



Chapter 3

Efficient distributed IP route
tracing

This first chapter presents two contributions to accelerate the capture of the
Internet IP-level topology: (1) Zeph, an algorithm based on a reinforcement
learning approach coordinates route tracing efforts across agents in order to
optimize the topology discovery; and (2) Iris, a new fault tolerant system for
orchestrating high-speed Internet measurements across distributed agents of
heterogeneous probing capacities.

3.1 Introduction

Mapping the Internet’s topology has been a challenge for the research com-
munity for more than two decades. Topological knowledge underpins our
understanding of issues such as security [181], connectivity [163, 4], and
performance [103]. It also leads to better models of the Internet that aid
in the design of new protocols [175]. The IP-level Internet topology, in
particular, is an essential input for building other Internet datasets [31],
such as AS-relationships [65, 87], MPLS tunnel detection [56, 109], alias
resolution [123, 104] and IP geolocation [90].

Systems that measure the topology at the IP level, i.e., the addresses and
the traceroute [85] style links from one address to the next, face a tension be-
tween completeness of discovery and overhead in the number of probe packets
sent. Recent high-speed probing tools Yarrp [21], Diamond-Miner [168], and
FlashRoute [79] are capable of tracing towards all routable IPv4 prefixes from
a single vantage point at rates exceeding 100,000 packets per second (pps).
Probing at these rates enables the creation of Internet topology maps in a

16
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reduced time, avoiding staleness of data due to routing changes. However,
very few probing agents with such capacity are available to the community;
agents deployed on Ripe Atlas [162], PlanetLab Europe [138], or Archipelago
(Ark) [35], for instance, are constrained either by machine resources or by
operator policy. Nonetheless, probing from multiple vantage points can bring
important marginal gains for topology discovery [19]. Therefore, so as to
maximize total discovery given a set of vantage points, we are challenged to
design an algorithm that intelligently allocates probing directives, i.e., the
instructions to an agent to conduct a route trace towards a specific /24 prefix.

This chapter presents Zeph, a reinforcement learning algorithm for allocat-
ing probing directives to agents, and Iris, the generic distributed measurement
orchestration system that supports Zeph.

Our contributions are:

• The Zeph algorithm, that learns how to ameliorate the allocation to
agents at multiple vantage points of the destination prefixes that each
should probe (Sec. 3.4). We find that discoveries increase by 57% for
the nodes and 90% for the links in 10 cycles of learning, showing the
importance of selecting the right prefixes to probe from each vantage
point. Moreover, our system discovers 3 times more nodes and 10 times
more links for the same number of prefixes in a shorter period of time
than the state-of-the-art system Ark [35] (Sec. 5.6).

• The Iris system, a robust and scalable measurement system, built from
free open-source software, that supports multi-vantage-point measure-
ment techniques, and that Zeph can ask to perform single-path or
multipath route traces (Sec. 3.5).

• Publicly available code and data [159], along with a production deploy-
ment of Zeph and Iris to serve the research community with data series
and the ability to perform one’s own measurements [160]. The results
in this chapter are fully reproducible on commercial cloud instances via
the Jupyter notebooks that we provide.1

3.2 Related Work

Measurement systems that have been deployed to map and characterize the
Internet’s IPv4 IP-level topology based on traceroute-like [85] measurements

1Instructions for reproducing this work: https://github.com/dioptra-io/zeph-evaluation

https://github.com/dioptra-io/zeph-evaluation
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from distributed vantage points around the globe historically include Rocket-
fuel [161], Dimes [154], and iPlane [113]. Today’s production systems include
Ripe Atlas [162], which performs single-path Paris-Traceroutes from its over
10,000 low-power hardware agents and software agents running at end user’s
homes and work premises; and M-Lab [110], which issues a multipath Paris-
Traceroute [165, 169] towards each client that performs an NDT test [111].
Today’s longest-running and most used production topology mapping system
is Caida’s Ark [35], which utilizes agents at over 110 vantage points to
perform single-path Paris Traceroutes [14] to one random destination per
routed /24 prefix.

Two longstanding challenges face any system that aims to maximize
coverage of the Internet’s paths, i.e., to run at the scale of the entire IPv4
Internet: how to trace more efficiently and more rapidly.

More efficient tracing Doubletree [57] exploited path commonality to
terminate measurements when they converged on a previously probed path.
iPlane [113] used BGP data to aggregate destinations by common AS path,
and Beverly et al. proposed a series of primitives for more efficient mapping
(e.g., subnetting inferences) [22]. Our Zeph algorithm aims for a more efficient
assignment of probe destinations to probing agents.

High speed topology discovery techniques Yarrp [21] introduced high
speed topology mapping: it encodes sufficient state in each probe packet
for the returning ICMP replies, which contain the first bytes of the probe
packets, to be self-identifying, thereby eliminating the need to probe slowly
in order to associate replies with probes. Whereas Yarrp traces single paths
from source to destination, Diamond-Miner [168] added multipath probing.
FlashRoute [79] reduces the overhead of Yarrp by first estimating the TTL,
i.e., the hop count, to the destination. Our production system uses Diamond-
Miner high speed probing.

More recent work has focused on the dynamics of Internet routes and
the challenge this presents to obtaining up-to-date data. Cunha et al. [47]
designed DTrack to predict the stability of network paths, helping to determine
when to initiate new path measurements and thereby optimize the probing
budget. Giotsas et al. [64] designed techniques to detect traceroute staleness,
reducing the number of traceroutes to reissue. By tracing quickly, our system
aims to keep stale data to a minimum.
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3.3 Overview

Iris is our new measurement platform (Sec. 3.5) that exposes a Rest API
allowing a client to request that measurements such as Ping, Yarrp [21], or
Diamond-Miner [168] be performed from distributed agents, and to obtain
the measurement results. We have implemented the Zeph algorithm (Sec. 3.4)
as a Python-based client that pilots Iris so as to survey the IPv4 IP-level
topology of the Internet, learning to improve the probing directives that it
issues over the course of successive cycles of measurements.

3.4 Zeph scheduling algorithm

In designing Zeph, we reasoned that the relatively static nature of much
routing in the Internet [64] would allow a topology discovery system to learn
to achieve good node and link coverage on the basis of its experience with the
results of its own probing directives (Sec. 3.4.1). But experience would not
be a completely reliable guide due to the existence of routing changes and
their unpredictable nature [47, 46, 64], meaning that continuous exploration
of new directives would also be required. In considering learning systems
that combine experience with exploration so as to select among many choices
that offer uncertain rewards, we turned to reinforcement learning [99]. Zeph
proceeds across a series of cycles, with the directives for each cycle being
based in large part upon the success of the directives that were used in the
previous cycle. New directives are also tried out each cycle, with the overall
aim being to improve the completeness of coverage over successive cycles. In
reinforcement learning terms, the reuse of directives is exploitation and the
trying out of new directives is exploration.

Zeph’s challenge is to best use the probing budgets of its agents, i.e.,
choose which directives to issue to each agent so as to obtain the overall most
complete route trace picture possible within a cycle. There are many ways of
conceiving of “completeness”, and the one adopted here is to maximize coverage
of the traceroute-style directed links that are available to be discovered, a
directed link consisting in an ordered pair of IP addresses.

Alg. 1 describes the high-level loop of the Zeph algorithm. The parameter
ε specifies the minimum portion of each agent’s probing budget that is set
aside for exploration. Each cycle i of Zeph involves a series of interactions
with the Iris API, culminating (line 9) with Zeph sending Iris a collection
of probing directives Di. These directives are prepared on the basis of the
results Ri−1 of the preceding cycle of probing (line 2). Following the first
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Algorithm 1: Zeph
Input: ε : Fraction of budget per agent reserved for exploration

1 for i = 1 to ∞ do
2 Ri−1 ← ResultsFromPreviousCycle(Iris)
3 Ai ← AgentsWithBudgets(Iris)

/* Assign exploitation directives to agents Ai */

4 if i > 1 then
5 Di ← Exploitation(Ai, Ri−1)

6 Di ← PossibleExplorationDirectives(Iris)
7 for a in Ai do

/* Assign exploration directives to agent a */

8 Di,a ← Exploration(Di,Di,a, ε)

9 Probe(Iris, Di)

cycle, which consists in random directives, there are previous results to build
upon, and Zeph starts assembling the collection of probing directives on the
basis of exploiting those results (line 5). Once the exploitation directives have
been assigned, Zeph proceeds agent by agent to round out the assignments
with exploration directives (line 8). The remainder of this section describes
these steps in detail.

3.4.1 Agents, directives and results

In each of its cycles i, Zeph instructs Iris’s available agents Ai to follow a
collection of probing directives Di the size of which depends on the agent’s
probing budget. It receives from Iris in return a collection of results, which
appears in the subsequent cycle, after i has been incremented, as Ri−1.

As Zeph operates over days and weeks, we can expect that the set of
Iris agents that are available to it will vary over time; some agents will go
down, and others will arrive. As it begins each cycle i, Zeph queries Iris for
the currently available set of agents, Ai, along with their associated probing
budgets (line 3).

The universe Di of possible exploration directives that Zeph obtains from
Iris for each cycle i (line 6) potentially includes all /24 prefixes extracted from
all public unicast IPv4 address blocks. So as to avoid sending unnecessary
probes towards non-routed prefixes, we restrict Zeph to blocks obtained from
Oregon Route Views [164].

Zeph only considers ICMP Time Exceeded replies as relevant to its results,



CHAPTER 3. EFFICIENT DISTRIBUTED IP ROUTE TRACING 21

as our survey focuses on routing infrastructure, not end-systems. Individual
probe replies are assembled into traceroute-style directed links, which are
pairs (v1, v2) of IPv4 addresses. In the event that one of the two probes did
not receive a reply (in common traceroute parlance, a star), (v1, null) and
(null, v2) are also considered to be valid links. These links are matched with
their initial directives, so that the results that Zeph receives consist of sets of
links, each set associated with the agent and the directive that resulted in its
being discovered.

3.4.2 Exploitation

If routing and routers’ readiness to reply to probes were to remain unchanged
from one cycle to the next, having an agent repeating its directives from the
previous cycle would cause it to discover precisely the same set of links as
before. Even under these ideal conditions, any given link might be discovered
by multiple agents and it might be discovered multiple times by the same
agent, and this redundancy potentially leaves room for improvement, as is
well known from earlier route tracing work [72, 57]. If the same results can
be obtained by executing fewer directives, a portion of some agents’ probing
budgets can be redirected towards trying out new directives. Zeph therefore
sorts each agent’s directives, giving highest priority to the directives that,
in the prior round, are judged by a heuristic to have made the greatest
contribution to link discovery. The aim of this sorting is to discard directives
that the heuristic judges to make little or no marginal contribution.

From the results of the previous cycle Ri−1, Zeph considers only the
agents that are available for the current cycle i. For each such agent, it sorts
the directives, and the set of sorted directives for all agents in Ai constitutes
the collection Di (line 5). It uses the Cormode et al. Disk-Friendly Greedy
algorithm (DFG) [43] as the heuristic means of sorting the directives, which
is an approximation of the greedy algorithm to solve the set cover problem
for large datasets. At each iteration, instead of selecting the directive that
covers the most uncovered results (classic greedy algorithm), DFG groups
the directives into buckets of similar size. Starting from the bucket with the
directives that provide the biggest number of results, if the number of results
of a directive added to the cover set of results is greater than a parametrized
threshold, the results are added to C and the directive is added to Di. DFG
terminates when all prior results have been covered, i.e., C = Ri−1.
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3.4.3 Exploration

When the time comes for Zeph to designate the exploration directives, the
agents that were present in the previous cycle will each have an ordered set
of exploitation directives that were assigned by the heuristic described above.
To round out these directives, and to assign a complete set of directives
to agents that were not present in the previous round, Zeph calls upon
the universe of possible exploration directives Di (line 6). As previously
described, this consists in all of the routable /24 IPv4 prefixes. As opposed to
the heuristic employed for choosing exploitation directives, where knowledge
about previous results allows a directive chosen for one agent to preclude the
choice of a directive for another agent, the exploration choices are made in
relative ignorance of their consequences, and are therefore conducted agent
by agent, considering each agent a ∈ Ai separately (line 7).

The parameter ε enters into play here, to ensure that this portion of each
agent’s directives are reserved for exploration. If, perchance, the portion of
directives assigned for exploitation exceeds 1− ε, a sufficient number of lowest
priority exploitation directives are removed to make room for exploration.

Having rounded out the probing budget of each agent with exploration
directives (line 8), the cycle’s collection of directives Di =

⋃
a∈Ai

Di,a is ready
to be sent to Iris (line 9).

3.5 Iris measurement platform

The Iris system, shown in Fig. 3.1, allows us to run Zeph, but it has been
designed to run any sort of Internet measurement algorithm that requires
access to geographically distributed probing agents. At the moment, three
tools are available in Iris: Diamond-Miner [168], Yarrp [21], and Ping. More
tools can easily be added in the future. Moreover, Iris works the same with
IPv4 and IPv6 addresses.

Workflow A client such as Zeph submits an HTTPS request to run a
measurement via Iris’s Rest API. The API informs the message broker
Redis [145] of the measurement request. The message broker chooses an
inactive worker from an available pool. This worker maintains the state of
the measurement throughout its life in the system. The worker registers
the measurement parameters in the ClickHouse [37] database and asks the
agents to perform the measurement. When the measurement is completed
by an agent, it sends the results to an object storage MinIO [120], an open-
source alternative to Amazon S3 [7]. Then the worker pulls the results
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from the object storage and inserts the results into the database. When
the measurement is finished, the worker updates the measurement state to
mark it as ready to be pulled by the client. All of the components described
above generate logs that are stored with a monitoring stack built from the
combination of Prometheus [142] for storing the system’s metrics, Loki [74]
for storing the system’s logs, and Grafana [73] to allow visualizations of these
metrics and logs.

Fig. 3.1 shows this workflow visually. Arrows symbolize the connections
between the components (e.g., the worker connects to the database). Purple
shows dataplane flow (e.g., compressed CSV files) while green shows control
plane flow (e.g., measurement parameters to execute a measurement tool on
an agent). Yellow shows log and metric collection.

Database
(ClickHouse)

REST
API

Worker

Agent

Client
Requests

Message Broker 
(Redis)

Object Storage
(MinIO)

Grafana

Worker
Worker

Prometheus

Loki

Controller

Monitoring

Agent
Agent

Internet

Figure 3.1: Iris architecture with arrows indicating which component initiates
each connection; each box is a self-contained Docker container. Colors indicate
the type of data flows: purple for dataplane, green for control plane, and
yellow for logs.
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3.5.1 Design considerations

The Iris was designed to meet the following demands:

1. As Zeph measurements can last for days, Iris needs to be robust to
agents crashing, or being unreachable, and provide the ability to restart
an agent’s measurements if and when it returns (resilience).

2. Zeph will work from as many vantage points as it can access, so Iris
should scale well with the number of agents (agent scalability).

3. Zeph supports Internet scale high speed topology measurement tech-
niques, generating billions of ICMP replies. Iris should scale well with
this amount of data (data scalability)

4. We continue to improve Zeph, so Iris should support easy deployment
of new control algorithms and probing software (continuous delivery).

5. To improve affordability and maintainability, Iris should be built as
much as possible from free open-source software (maintainability).

We chose Docker [54], and Redis to improve the resilience of the system:
each of Iris’s components runs in its own Docker container. Moreover, a
failed container is automatically reintegrated without external intervention
and retrieves the measurements states from Redis. Two aspects of Redis
improve the message broker’s resilience. First, its persistence feature [146]
regularly saves its own current state to disk, preserving context in case of
failures and restarts. Second, it maintains connection state, which Iris uses
to alert workers to the departure of any agent. Any worker with an ongoing
measurement stops waiting for that agent to send data, and no further
measurements can be requested of the agent until it reconnects to the broker.
A new worker is automatically created from the worker pool to carry on the
measurement algorithm from the point where the failed worker had left it.

We chose Redis and MinIO for agent scalability: Redis can handle mil-
lions of simultaneous connections; MinIO has proven capable, with Zeph, of
supporting transfer of data files in the hundreds of gigabytes;

We chose the ClickHouse database for data scalability: it is a database
optimized for insert and read operations, which are the only operations Iris
perform on the result data. ClickHouse has supported tables containing up to
5 billion rows, and the in-base calculation language provided by ClickHouse’s
arrays [36] feature reduces computation times.

Redis, MinIO and ClickHouse scale “horizontally”, meaning that it is
possible to deploy multiple message brokers, multiple object storage containers,



CHAPTER 3. EFFICIENT DISTRIBUTED IP ROUTE TRACING 25

and multiple replicas of the database to support a larger number of agents.
Scaling beyond one instance each was not necessary in order for Iris to support
Zeph, but the potential is there.

We chose Docker for continuous delivery: As we move forward, this will
ease large-scale deployment by lifting many constraints on the machines and
VMs that can host an Iris agent. Also, Iris takes advantage of such containers’
ability to run unchanged over a wide variety of operating systems.

Finally, all the components of the system are free and open source,
improving maintainability.

3.6 Evaluation

There are three main results: (1) Zeph, requesting Diamond-Miner multipath
route traces from Iris, provides the most comprehensive view to date of the
IPv4 Internet in terms of nodes and links discovered in a short period of
time. Once it has been trained, a single cycle of Zeph discovers more than 3
times as many nodes and 10 times as many links as does a single cycle of the
state-of-the-art Ark platform (Sec. 3.6.3); (2) When compared on single-path
route traces, as performed by Ark, Zeph’s reinforcement learning approach
outperforms Ark’s random exploration strategy (Sec. 3.6.2); and (3) Zeph
saves 50% of the probing budget, dividing the probing time by 2, compared
to an exhaustive strategy of tracing multipath routes towards every prefix
from every agent (Sec. 3.6.3), while maintaining nearly the same number of
discoveries.

3.6.1 Vantage points and setup

All of the measurements are run on the EdgeNet [44] platform with nodes
hosted in 5 different Google Compute Engine (GCE) [67] zones: asia-east2-a
(Hong Kong), asia-northeast1-a (Tokyo), asia-southeast1-a (Singapore),
europe-west6-a (Zurich) and southamerica-east1-a (São Paulo). The
measurements can be fully reproduced on nodes in the same locations by
applying our open-source evaluation code. The instances use the standard
network tier which allows the packets to exit to the Internet as soon as possi-
ble, instead of the default premium tier which privileges Google’s internal
network to the public Internet.
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3.6.2 Topology discovery

We perform two experiments to evaluate Zeph’s performance: (1) a comparison
of Zeph’s prefix allocation strategy with other approaches, performed from
the same agents, with common parameter settings; and (2) a comparison of
the maximum raw discoveries by Zeph on Iris against Ark system for the
same number of prefixes probed and the same number of probes sent.

Zeph’s reinforcement learning approach outperforms random allo-
cation

We compare Zeph’s prefix allocation strategy with that used by the state-
of-the-art topology discovery system Ark [35]. Ark applies what we call
constrained random allocation, which consists in allocating the /24 prefixes
of the IPv4 space uniformly at random over the different agents, each prefix
being probed by exactly one agent (the constraint). Zeph’s reinforcement
learning approach splits the probing directives of each agent into two subsets
for exploitation (Sec. 3.4.2) and exploration (Sec. 3.4.3). Zeph exploration
differs from the Ark’s random allocation by allowing a same prefix to be
probed by multiple agents. We call Zeph’s exploration strategy unconstrained
random allocation.

Experiment We run 10 cycles of different combinations of probing tech-
niques simultaneously: exploitation and unconstrained random allocation
(Zeph with ε = 0.1), constrained random allocation (Ark’s approach), un-
constrained random allocation, and exploitation and constrained random
allocation (ε = 0.1). Unconstrained random allocation allows us to evaluate
Zeph’s exploration alone, while exploitation and constrained random alloca-
tion allow us to evaluate Zeph’s exploration in combination with exploitation.

On August 4th, 2021, we extracted 11.9M /24 prefixes from the routed
prefixes provided by Route Views. Dividing these among the 5 agents, at
each cycle, and for all four approaches, each agent probes 2.4M prefixes. We
run the approaches simultaneously and the agent for each approach probes at
100,000 packets per second using single path tracing [21] with ICMP probes
up to TTL 32. Each cycle takes around 15 minutes to complete, running
from August 5th to 6th, 2021.

Results Fig. 3.2 shows the results of the different strategies. The main
result is that exploitation together with exploration using unconstrained
random allocation (Zeph’s approach) outperforms all of the other approaches
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Figure 3.2: Zeph outperforms random exploration strategies.

once Zeph has had ten cycles during which to learn. In particular, it discovers
18% more nodes and 42% more links than constrained random allocation
(Ark’s approach). The other result is that constrained random allocation
outperforms unconstrained random allocation by 12% more nodes and 6%
more links over each cycle. This highlights that it is the combination of the
exploitation and the unconstrained allocation together that allows Zeph’s
strategy to perform well.

Zeph/Iris conducting multipath traceroutes perform competitively
with respect to the current state-of-the-art Internet scale topology
discovery system.

In the previous section, we have shown that Zeph’s prefix allocation strategies
outperforms others when limited to the same single-path probing budget.
But Zeph and Iris are capable of discovering more than what is shown in
Fig. 3.2. To use their full capacity, we perform 10 cycles of measurement with
multipath route traces (i.e., capturing the load-balanced paths) obtained by
Diamond-Miner [168] with ICMP probes at 100,000 pps. We retrieved routed
prefixes from Route Views on January 21st, 2022 and broke them down into
12M /24 prefixes, each of the five agents receiving a per-cycle budget of 2.4M
/24 prefixes. The measurements were gathered from January 22th to 28th,
2022. Each cycle took between 10 hours, 12 minutes (cycle 1) and 15 hours,
14 minutes (cycle 10) to complete.

Fig. 3.3 shows that Zeph also works with multipath traceroutes: the
number of nodes improves by 57% (+1,2M) the number of links improves by
90% (+9.4M) between cycle 1 and cycle 10. Note that an agent crashed at
cycle 4, reducing the number of links found in that cycle, but Zeph adapted
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Figure 3.3: Node and link discoveries in multipath probing

and the discoveries resumed increasing in cycle 5.

Table 3.1: Comparison of node and link discoveries between the tenth cycle of
Zeph + Iris, and a cycle of the Ark platform for the same number of prefixes
probed (12 million, second row) and the same number of probes sent (12
billion, third row).

Time Nodes Links
Zeph + Iris 15h15 3,288,325 19,890,422
Ark (prefixes) 19h12 1,009,738 2,087,903
Ark (probes) 45 days 3,597,042 9,241,146

Finally, we compare raw discoveries of Zeph + Iris and Ark platform.
Tab. 3.1 shows the number of nodes and links discovered during the last Zeph
cycle and the number and nodes and links discovered by Caida’s Ark [30]
platform (1) when the same number of prefixes is probed, and (2) when the
same number of probes is sent. Zeph with Iris takes 20% less time to probe
all routed /24 prefixes but discovers more than 3 times more nodes and 10
times more links. Moreover, Ark discovers 10% more nodes and around two
times fewer links with the same number of probes sent, but takes 45 days
instead of less than 15 hours to do so.

3.6.3 Zeph probe savings

This section describes the tradeoff between reducing the number of prefixes
probed by each agent (and therefore reducing the duration of a cycle and the
number of probes sent) and discovery.
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Experiment

We collect 10 cycles of 4 Zeph runs where each agent probes 10%, 25%,
50% or 75% of the routed /24 prefixes. In addition, we run an exhaustive
measurement, with all the agents probing 100% of the routed /24 prefixes.
The measurements for each budget were performed from August 2nd to 4th,
2021. We use the same Route Views data as in Sec. 3.6.2. Each agent runs
Yarrp at 100,000 pps with ICMP probes. Depending on the budget, each
cycle lasts between 10 minutes and 1 hour and 30 minutes. In this experiment,
we reduce the number of prefixes that are probed by each agent to simulate a
more constrained budget but keep a high probing rate. We could also reduce
the probing rate, but this would have significantly increased the time of the
experiment.

Results
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Figure 3.4: Number of nodes and links discovered over Zeph cycles for different
budgets: Zeph with 50% finds almost the same number of nodes and links as
with 100% of the budget.

Fig. 3.4 shows the number of nodes and links discovered by all the agents
together for the different budgets. The main result is that Zeph discovers 98%
of the nodes and 95% of the links that the exhaustive approach discovers when
just 50% of the prefixes are probed by the agents. The 25% (10%) curves
show that even with a significantly reduced probing budget, Zeph is able to
discover 94% (87%) of the nodes and 86% (71%) of the links. Additionally,
reducing the number of probes also reduces the time of a cycle. With 50%
(25%, 10%) of the prefixes, 10 cycles took 7.4 hours (3.6, 1.5), compared to
the 12.5 hours of the exhaustive approach.
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3.6.4 Reinforcement learning analysis

Finally, we dive into one measurement of Sec. 3.6.3 where the budget is
25% of the routed prefixes, to understand more about the contributions of
exploitation and exploration.

Exploitation and exploration budgets

In choosing a reinforcement learning approach for Zeph, we anticipated that
many of each agent’s directives could be repeated (exploitation) from one
cycle to the next, and that complementing these directives with new ones
(exploration) would aid in improving overall discovery. We find that the
exploitation directives were indeed capable of discovering most of the links
previously discovered, and that exploration did indeed lead over time to
better overall discovery.
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Figure 3.5: Exploitation counts for 95% of the nodes and 90% of the links
discoveries.
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Fig. 3.5 shows the number of nodes (Fig. 3.5a) and links (Fig. 3.5b)
that are discovered by exploitation and in total. The main result is that
reinforcement learning works: exploitation improves over time, going from
739k nodes at cycle 2 to 921k nodes at cycle 10 (+25%) and 1.2M links
at cycle 2 to 1.9M links at cycle 10 (+48%). In Fig. 3.5c, exploitation is
responsible for most of the discoveries, i.e., 95% of the nodes and 90% of the
links. Interestingly, although we allocated 90% of the budget to exploitation,
Zeph actually used only 10% for it. We interpret this result as a consequence
of the high redundancy of Internet paths, and leave the study of the optimal
value of ε for future work.

3.7 Conclusion

Zeph is a new algorithm for distributed tracing at the IP level of the routes
that packets take through the IPv4 Internet. It learns the probing directives
to allocate to the vantage points in order to maximize topology discovery.
Zeph is platform agnostic, and independent of the probing tool used and the
agent’s capacities.

Iris is a distributed Internet measurement system based on a modern
resilient architecture that exposes an API that allows various algorithms,
including Zeph, to be run. Together, Zeph and Iris discover 3 times more
nodes and 10 times more links than the state-of-the-art Ark platform for the
same number of prefixes probed.

All of the code of Iris and Zeph and data of the evaluation are publicly
accessible and we now offer regular Zeph Internet topology data series to the
community and the ability to perform one’s own measurements.

In future work, we will extend Zeph to IPv6 and analyze in depth the
dynamics of the Internet topology.



Chapter 4

Longitudinal study of a
geolocation database

IP geolocation is one of the forms of metadata that can be used in MetaTrace
(Chap. 5) to leverage the large amount of data collected by Iris and Zeph
(Chap. 3), or other in-use probing platforms. In this chapter, we present
a 10-year data study of a widely used IP geolocation database, MaxMind.
We find that significant differences can exist even between two successive
weekly snapshots, a previously underappreciated source of potential error for
analysis that use this source of data.

4.1 Introduction

Determining the physical location of Internet hosts is important for a range of
applications including, but not limited to, advertising, content and language
customization, security and forensics, and policy enforcement [90, 80, 172].
However, the Internet architecture includes no explicit notion of physical
location and hosts may be unable or unwilling to share their location. As a
result, the process of third-party IP geolocation – mapping an IP address to
a physical location – emerged as a research topic [129] more than two decades
ago and has since matured into commercial service offerings [118, 83, 82].

IP addresses represent network attachment points, thus IP geolocation is
often inferential. Commercial geolocation providers compete, so the method-
ologies for creating their databases are proprietary. State-of-the-art techniques
include combining latency constraints [75], topology [90], registries [129], pub-
lic data [59], and privileged feeds [96].

This work takes a fresh look at IP geolocation data from a temporal

32
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perspective. Specifically, we examine the longitudinal stability of locations
in an IP geolocation database, the characteristics of location changes when
they do occur, and the extent to which a particular instance of a geolocation
database impacts conclusions that depend on locations. To wit, network
and systems researchers frequently utilize available IP geolocation database
snapshots. However, the date of the snapshot may only loosely align with the
time of the lookup operation, or the lookups may span multiple snapshots,
e.g., a long-running measurement campaign. We show that snapshots of
the same geolocation database separated even closely in time can have a
non-trivial effect on research results and findings.

For example, across database snapshots in a three month window, we find
up to 22% of IP addresses move more than 40km, while coverage (the simple
presence or absence of an address in the database) varies by as much as
18%. Despite this temporal sensitivity, the date of the geolocation database
snapshot is rarely reported in the academic literature – an omission that we
show confounds scientific reproducibility.

We use 10 years of data from the most popular, publicly available, and
frequently used database: MaxMind [118]. We use this large collection of
snapshots to examine the longitudinal evolution of its location mappings and
address coverage, as well as to conduct a reproducibility case study. Our
contributions include:

• A survey of how recent systems and networking literature utilizes and
depends on IP geolocation data.

• The first longitudinal study of a widely used IP geolocation database
where we find significant short-term dynamics.

• A case study of prior research that depended on geolocation, showing
that the results fundamentally differ based on the instance of the
geolocation database used.

• Recommendations for the sound use of IP geolocation data in research.

Our findings provide several tangible lessons for the broader network research
community:

• IP locations in geolocation databases can be highly dynamic, with
non-negligible coverage and movement differences even over short (< 3
month) time scales.
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• Despite this variation, published network research frequently omits
specific details of the geolocation snapshot. Not only does this hinder
reproducibility, research results that depend on IP geolocation can
significantly differ depending on the instance of the snapshot used.

• Researchers should ensure they publish details of the IP geolocation
database, align lookups with measurements, and investigate the sensi-
tivity of their results to different instances of the database.

4.2 Related work

Mapping IP addresses to the physical world is an important topic that has
seen two decades of research. Early efforts used landmarks, hosts with known
position, to assign locations to unknown targets at coarse granularity [129].
Landmark-based geolocation was subsequently enhanced to use latency con-
straints [75], network topology [90], and population densities [59] to improve
accuracy. Because the accuracy of latency-based techniques is often propor-
tional to the distance between the target and its nearest landmark, Wang et
al. developed techniques to find and utilize additional landmarks [172].

IP geolocation has since matured, with several competing commercial
offerings including [118, 83, 82]. While the exact methodology of these
commercial services is proprietary, they likely use a combination of databases
(e.g., whois and DNS), topology, latency, and privileged data feeds from
providers [96].

Even so, the inference-based nature of IP geolocation imparts errors
and inaccuracies even in commercial databases [80, 155], demonstrated by
several prior analyses. For instance, Poese et al. found 50-90% of ground-
truth locations to be geolocated with greater than 50km of error [139]; most
recently Komosnỳ et al. studied eight commercial geolocation databases and
found mean errors ranging from 50-657km [97]. Geolocation of network
infrastructure, including routers, is known to be particularly problematic [81,
61]. However, as shown in Sec. 4.3, MaxMind is still widely used, for the
simple reason that there exists no other alternative than geolocation database
to get an Internet scale IP geolocation mapping.

Our work looks at IP geolocation through a novel lens by analyzing the
longitudinal characteristics of a popular geolocation database. By showing
the stability of locations at different granularities and timescales, we offer a
first look at the error bounds for particular classes of applications that utilize
geolocations, as well as offer practical lessons for consumers of IP geolocation
data.
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4.3 Motivation

To better understand IP geolocation as used in the network and systems
research community, we surveyed the academic literature. We performed full-
text queries, over all time, on four popular digital libraries for three common
geolocation databases, MaxMind [118], NetAcuity [127], and IP2Loc [82].
Tab. 4.1 shows the number of papers in each library. MaxMind is clearly
the most popular by an order of magnitude. Therefore the analysis in the
reminder of this work focuses on MaxMind.

4.3.1 MaxMind

Founded in 2002, MaxMind is a commercial entity specializing in IP geoloca-
tion and related services. MaxMind offers two IP geolocation databases, one
that is free (GeoLite) and one that requires a license (GeoIP). The academic
literature uses both GeoLite and GeoIP. GeoLite is available as a complete
database “snapshot”. Snapshots are currently updated weekly and available
for public download. GeoLite snapshots contain variable length IP prefixes,
each with an associated geolocation. The geolocation may include country,
city, latitude/longitude, and accuracy (in km); however many prefixes only
provide a geolocation at the country granularity. This work studies the
IPv4 GeoLite databases. Henceforth, we refer to GeoLite (and its successor,
GeoLite2) informally as “MaxMind” for simplicity.

4.3.2 Survey Methodology

We characterized the use of MaxMind across nine systems, security and
networking conferences during the five year period from 2016-2020. To find
papers in the literature using MaxMind, as well understand how it is used,
we adopt a semi-automatic method: first, for a given conference venue, we
obtain the complete proceedings and perform a case-insensitive search for
the string “maxmind.” We manually inspect each paper found to contain
“maxmind” to determine whether the work utilizes the database or is simply
referencing MaxMind. For example, in [98], “maxmind” appears only as a
citation to the sentence “Current IP-based geolocation services do not provide
city-level accuracy. . .” Only those papers that used MaxMind’s database for
their research are included.

Keeping in mind the variety of research questions and geolocation require-
ments inherent in the various papers, we sought to distinguish what was being
geolocated and at what granularity. We manually extract from each paper
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Table 4.1: References to geolocation databases

ACM IEEE arXiv.org Springer
MaxMind 171 373 96 162
NetAcuity 10 10 8 7

IP2Loc 3 3 0 0

Table 4.2: Literature survey of MaxMind use in academic venues (2016-2020).
“Affected” column specifies if MaxMind was used in methodology (Y) or for
validation (V).

MaxMind Affected
Snapshot

date
specified

Free (F)
Paid(P)
(N/A)

Granularity IP type Y V Y N F P N/A
Conference Area Papers AS Country City All End user End host

infrastructure Router

IMC Meas. 16 1 13 3 2 5 8 1 12 4 1 15 8 3 6
PAM Meas. 6 0 2 4 1 3 2 0 5 1 0 6 3 1 2
TMA Meas. 4 1 0 3 3 0 1 0 3 1 2 2 1 2 1
USENIX Sec Security 10 0 7 3 0 4 7 0 10 0 2 8 1 4 5
CCS Security 6 2 1 3 0 1 2 3 6 0 0 6 2 3 1
SIGCOMM Systems 3 0 1 2 0 3 1 0 2 1 0 3 0 3 0
NSDI Systems 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1
CoNEXT Systems 2 1 1 0 1 0 1 0 2 0 0 2 1 0 1
WWW Web 10 0 7 3 0 4 7 0 10 0 2 8 2 2 6
Total All 58 7 30 22 8 22 28 6 51 7 6 52 18 20 23

the granularity required (country, city, or AS) and the type of IP addresses
geolocated (all, end users, end host infrastructure, and router). The “end user”
category contains IP addresses belonging to residential users (e.g., [128]), or,
more broadly, end users issuing web traffic (e.g., [131]). The “end host infras-
tructure” category includes addresses belonging to Internet infrastructure,
typically web [51], proxies [174], or DNS [136] servers. “Routers” include the
IP addresses of network router interfaces. Finally, the “all” category contains
papers that geolocate all types of addresses such as [100, 176]. Note that these
sets are mutually exclusive, but a paper can use MaxMind on several types
of IP addresses. For instance, [9] studies the Mirai botnet where the infected
IP addresses can belong to both end users and end host infrastructure.

4.3.3 MaxMind in the Literature

Tab. 4.2 summarizes our findings. We follow the rhetorical structure of
Scheitle et al. [152] to classify the impact of MaxMind on the paper’s results.

- Affected “Y” are papers that use MaxMind in their methodology to
obtain a result. For example, Papadopoulos et al. [131] use MaxMind
to build a classifier to infer how much advertisers pay to reach users.

- Affected “V” are papers that do not use MaxMind to obtain results,
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but rather to compare their results. For example, Weinberg et al. [174]
compare their inferred proxy locations to MaxMind’s locations.

The “Date” column indicates whether or not the paper explicitly provides the
MaxMind snapshot date. The last column indicates which MaxMind version
is used: either free, paid or if the info was not available.

From a macro perspective, MaxMind is both used at country (53%) and
city (37%) granularity. Second, it is mostly used to geolocate end users
(38%) and end host infrastructure (49%) rather than routers (9%). Then,
the majority of papers (86%) use MaxMind to obtain results, and few (11%)
provide the snapshot date. Finally, we see that free and paid version of
MaxMind are equally used by the community. Note that the totals do not
sum to the number of papers as, e.g., a paper may use MaxMind for both
AS and country information [100], or use both the free and paid version [61].

Lesson MaxMind is the most popular geolocation database to support other
research. Further, the results of many papers may be sensitive to geolocation
variation, especially given the lack of snapshot dates, large windows of
measurement or data, and no explicit alignment between data collected and
the geolocation snapshot.

4.4 Metrics

This section defines metrics used to characterize the impact of selecting one
geolocation database snapshot rather than a different snapshot in time. We
assume that snapshots contain IP prefixes and their associated locations.
For all IP prefixes, we expand them to their constituent set of individual
addresses.

We define metrics using two concepts for comparing two geodatabase
snapshots: coverage difference and distance distribution. For these definitions:

- Let A be a set of IPv4 addresses (either all address, or a population
e.g., addresses known to be router interfaces).

- Let L be the set of locations present in a geodatabase (either latitude-
longitude pairs, cities, or countries).

- Let M be a snapshot of this database, defined as a set of pairs (a, l)
that map addresses to locations.

- Let AM ⊂ A be the set of addresses that appear in snapshot M that
belong to population A.
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4.4.1 Coverage difference

Intuitively, coverage difference means the portion of IP addresses that appear
in one snapshot or another, but not both. Two identical snapshots have
a coverage difference of zero while the coverage difference is one for two
snapshots with no IP addresses in common.

Formally, coverage difference is an extension of the concept of ‘coverage’,
which for snapshot M with respect to a set of IPv4 addresses A is:

coverage(M) =
|AM |
|A|

(4.1)

The coverage difference between two snapshotsMi andMj on A is the Jaccard
distance between AMi and AMj :

covdiff(Mi,Mj) =
|(AMi

⋃
AMj )− (AMi

⋂
AMj )|

|AMi

⋃
AMj |

(4.2)

4.4.2 Distance distribution

An address a can appear in a location in one geodatabase snapshot and
different location in a second snapshot. Let dist(a,Mi,Mj) be the Haversine
distance [32] between the locations of a inMi andMj , using latitude-longitude
values for each location. The distance distribution between the two snapshots
is the set of distances, one for each address that appears in both snapshots:

Ddist(a,Mi,Mj) = {dist(a,Mi,Mj) | a ∈ AMi

⋂
AMj} (4.3)

The definitions above serve to define the differences between two snapshots.
Because we are not interested in only comparing two snapshots, but also
knowing the average difference between two snapshots or the worst case, we
need to compare those differences. For coverage, we can sort the pairs of
snapshots by their Jaccard distance. To compare two distance distributions,
we define the following metric:

distdiff(Mi,Mj) = (mean({log10(dist(a,Mi,Mj))

| a ∈ AMi

⋂
AMj})

(4.4)

By taking the mean of the log of the distances, we prevent outliers (e.g.,
distances potentially up to 20,000 km) from disproportionately outweighing
lower, but nonetheless meaningful, distances, e.g., on the order of 100 km.
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Figure 4.1: Hilbert heatmap of maximum distance (Eq. (4.6)) in 2018 (left)
2019 (center) and absolute difference (right) for the entire IPv4 address space
(log scale; each pixel represents a /24). MaxMind exhibits a high degree of
global geolocation dynamics and year-to-year variation.

Note that while the median is a more robust statistic, typically more than
50% of the address have zero distance, i.e., did not move between snapshots
(Sec. 4.6.3). Thus, the mean provides a meaningful non-zero measure. Other
metrics that we define on the distance distributions are the quantiles of a
distribution, along with the maximum value.

For both coverage and distance, the higher the metric, the larger the
difference is between the two snapshots.

4.4.3 Distance

Our survey looks at the distribution of distance values per address. We
define the maximum distance of an address a as being the maximum distance
between two of its locations. Formally, the distribution of distances of a is:

D(a) = {dist(li, lj) : li, lj ∈ La}} (4.5)

where La is the list of locations of a in a considered set of snapshots. The
maximum distance of a is then:

max(D(a)) (4.6)
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4.5 Data

4.5.1 MaxMind snapshots

We collect 214 MaxMind snapshots spanning the ten year period from January
2010 to December 2019. There are two primary challenges in the raw data:
(1) the snapshots we obtain are not uniformly distributed in time; and (2) IP
addresses appear within prefixes of different networks and lengths over time.
To utilize this data within the framework of our methodology and metrics,
we pre-processed it.

Sampling the snapshots for time uniformity

Sec. 4.4 assumes a uniform distribution of snapshots in time. Our evaluation
examines a ten year span from 2010-2019. Within this ten year period, we
have at least one snapshot per month, but sometimes as many as one snapshot
per week. Therefore to ensure uniformity, we simply down-sample so that the
ten year period includes one snapshot per month. Our evaluation is conducted
on this subset of snapshots such that they are uniformly distributed in time.

Prefixes of different lengths

A MaxMind snapshot contains a mapping of prefix blocks to geolocation.
However, these prefixes may split, be aggregated, or even overlap in time.
While our analysis is at the per-IP address granularity, rather than prefix,
maintaining the geolocation for all IP addresses over time is inefficient. Our
first step then is to find a data structure to efficiently store and query the
snapshots. Over all prefixes in all snapshots, we construct the set of covering
longest length prefixes and construct a Patricia trie [158]. We build one
Patricia trie for each geolocation granularity: country, city, and coordinates.
The Patricia trie contains, per prefix, all its locations over the period of time.

To handle prefix variation over time, we insert into the Patricia trie the
longest prefixes seen in the snapshots. The resulting fine-grained prefixes
will be inserted in a database. As an example, consider the prefix 1.0.0.0/23
located in London in the snapshot s1. On the other hand, in the snapshot s2,
the prefix 1.0.0.0/24 is located at London and the prefix 1.0.1.0/24 is located
at Paris. We place the two /24 prefixes in the trie for each of the snapshots,
London being inserted for the two prefixes of the snapshot s1.

The prefixes considered in our database therefore do not necessarily
correspond to BGP prefixes nor are the same as the initial prefixes on
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MaxMind snapshots. The resulting prefix lengths vary between /9 and /32,
the most common being /29 with 19.2% of the total prefixes.

4.5.2 Different types of IP addresses

Sec. 4.3 has shown that researchers use MaxMind to locate three classes of
IP addresses: end users, end hosts infrastructure and routers. We therefore
collect and label three sets of IP addresses corresponding to these three types.

• End users: M-Lab [110] performs and records measurements to end
users requesting performance tests (i.e., a “speedtest”). From the M-
Lab public datasets we extract targets in the year 2019. We randomly
sample these targets to obtain 6.7M IPv4 addresses in approximately
2M unique /24 prefixes.

• End host infrastructure: For end host infrastructure, we extract the
daily top list made available by [152]. We perform an intersection of all
2019 lists in order to minimize the number of IP addresses that could
be reassigned for other purpose. Because these top lists are volatile, our
filtering for high-confidence end host infrastructure addresses produces
26,231 IP addresses in 16,942 /24 prefixes.

• Routers: We leverage both CAIDA ITDK dataset [28] and Diamond-
Miner [168] public Internet topology datasets to collect IP addresses
belonging to router interfaces. Both datasets are the result of Internet-
wide traceroute style probing. We take the intersection of 2019-01,
2019-04 ITDK and 2019-08 Diamond-Miner datasets and obtain 730k
IP addresses in more than 177k different /24 prefixes. By taking the
intersection over time, the aim is again to ensure the likelihood that
the addresses indeed belong to routers.

4.5.3 Ethical Considerations

Our work does not involve human subjects, questionnaires, or personally
identifiable information, and, hence, does not meet the standards for IRB
review. The MaxMind data we analyze is covered by the Creative Com-
mons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license which
permits adaption of the database: “remix, transform, and build upon the
material for any purpose, even commercially.” Beginning in January 1, 2020,
MaxMind adopted a more restrictive policy in order to comply with GDPR
requirements [119]; our research does not analyze any data after 2019.
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4.6 Evaluation
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(c) Routers

Figure 4.2: Comparing pairs of database snapshots by city coverage difference
(Eq. (4.2)). Across all classes of IP addresses, there are significant coverage
differences, even on among snapshots closely separated in time.

This section presents an evaluation of the MaxMind data snapshots from
2018 to 2019 using the metrics defined in the methodology. We examine the
extent and impact of both location movement and coverage across several
dimensions. Primary results are presented here, while a more exhaustive
evaluation, including the full 10 years of longitudinal data, is available in an
accompanying technical report [69].

4.6.1 Limitations

Our primary contribution in this work is to define metrics that characterize the
dynamics of IP geolocation databases, and understand how these dynamics
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can impact network research that depends on geolocation. We keenly recognize
that location changes within the database may be genuine or may be artifacts
of the geolocation system’s methodology. We do not investigate the root
causes of the dynamics we observe. Indeed this limitation is fundamental –
MaxMind’s algorithm is proprietary so that we cannot provide true causal
analysis. Rather, we focus on providing lesson for how researchers should
view and utilize geo-databases.

4.6.2 Visualizing Internet-wide geo movement

Fig. 4.1 shows an exhaustive representation of the maximum distance change
for each /24 of the entire IPv4 space for 2018 and 2019, as well as the absolute
difference between the two years. Each pixel represents a /24, and the color
represents the maximum distance between two locations; black pixels indicate
that the IP address is not present in the database. If the /24 contains more
specific entries in the MaxMind database, we take the maximum of the
maximum distance of the IP addresses within the /24.

We see that the visualization of 2019 differs from 2018: Many of the
various registries in the bottom center right and top left part of the plots
have a maximum distance of more than 1000km in 2018, whereas they did
not move in 2019. There is also a red square in the prefixes belonging to
Level3, that had a maximum distance of 20,000km in 2018 but did not move
in 2019. Surprisingly, there are also some IP addresses that were covered in
2018 (i.e., in this case, having lat/long coordinates) which are not covered in
2019. This is the case of some blocks of IP addresses in the bottom center
left of the graph belonging to APNIC and AFRINIC.

All these differences between the two years are highlighted by the map
on the right: we clearly see the center and the bottom left mainly colored
in orange and red as well as some big prefixes on the top right. It reveals a
significant dynamic change not only along the prefixes but also through time.

Overall, by looking at the Hilbert representations of each year over the
10 years dataset, it is difficult to perceive a trend that could lead us to say
that prefixes are experiencing bigger or smaller distance change over years.

Lesson These visualizations confirm not only the high degree of global
geolocation dynamics, but also the presence of year-to-year variation
in geolocation movement. An IP address can experience a maximum
distance change of 0km in 2018 and more than 1000km in 2019, and vice
versa.
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4.6.3 Impact

While the preceding analysis demonstrates how our metrics can shed light on
the underlying dynamics of a geolocation database, we conclude this section
with an analysis of the potential impact of selecting a particular snapshot of
MaxMind versus a different snapshot, for instance as a researcher seeking to
geolocate a population of IP addresses under study. To bound our results, we
compare pairs of snapshots from 2019 within three time windows: when the
snapshots differ by less than 3 months, between 3 to 6 months, and between
6 to 12 months. We evaluate the impact across the three IP classes: end
users, end host infrastructure, and routers.
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Figure 4.3: Comparing pairs of database snapshots by IP address distance
difference (Eq. (4.3)). Up to 22% of addresses move more than 40km among
snapshots in a three month window.
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Coverage (Fig. 4.2)

For coverage we show results at the city level as we find no country level
coverage differences between snapshots; almost all IP addresses, across all
classes of addresses, have a country geolocation present in the database.

Not unexpectedly, for all types of IP addresses, we observe that the
coverage difference increases with time between the two snapshots. As shown
in our tech report (Fig.5 of [69]), the overall coverage is globally constant,
therefore this cannot be imputed to an increase of the total coverage.

We see that even for two snapshots created within less than three months
of each other, there is a significant coverage difference, up to 6%, 11% and
20% for end users, end host infrastructure and routers respectively. As seen
in Fig. 4.2c, there is a 50% probability of more than 12% coverage difference
between two snapshots created less than three months apart. Between two
snapshots of more than six months and less than a year, the difference can
be even worse, up to 9%, 17% and 30%.

Distance (Fig. 4.3)

We first sort the pairs of snapshots by the metric defined in Eq. (4.4), the
mean of the logarithmic distances (MLD). Recall, the higher the MLD, the
more the snapshots differ. We compute distance across pairs of snapshots
within the same time ranges as for coverage: less than three months, between
three and six months, and between six and twelve months. From the MLD
distribution, we then show the pair of snapshots corresponding to the median.
For example, in Fig. 4.3a, one should read: On the end users dataset, 15% of
the IP addresses moved by at least 40km. This corresponds to the median
result for a pair of snapshots that are less than three months apart.

Fig. 4.3 shows two trends. First, as one might expect, for all types of
IP addresses, the more time between two snapshots, the more IP addresses
move. Then, the percentage of IP addresses moving depend on the type of
IP addresses. We observe that end users tend to move more than routers and
end host infrastructure. In details, for a pair of snapshots that are more than
six months apart, we have 28%, 8% and 18% of IP addresses that move more
than 40km for respectively end users, end host infrastructure, and routers.

If we consider that 40km corresponds to most metropolitan areas [61],
this implies that a non-trivial portion of IP addresses experience a location
change out of the metro area – a significant change. However, distances
greater than 1000km are rare, accounting for less than 5% of IP addresses
across all addresses classes.
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Lesson There are non negligible differences in both coverage and distance of
movement even for database snapshots created closely in time (< 3 months).
Therefore: we recommend, insofar as possible, aligning geolocation
database snapshots with the measurements that produced them, for
instance by programmatically using an API to lookup IP addresses on-demand
as they are gathered. Further, one should look at several snapshots closely
spaced in time over the measurement period and more deeply investigate
IP addresses that experienced significant changes.

4.6.4 A longitudinal study

Due to space constraints, we leave the 10 year longitudinal study for our
accompanying tech report [69] and associated research [45]. In this chapter,
we define new metrics and extend the ones defined in Sec. 4.4 to enable
the comparison of an arbitrary number of snapshots and the analysis of the
dynamics of the geolocation of an IP address over time. One of the main
results is that we find that a majority of IP addresses are mapped to at least
two locations far from 40 km (a metropolitan area) within a year, with a
high variance depending on the country and the type of IP address. This
reinforces our call to be very cautious about the usage of MaxMind when
data are collected during a period longer than few weeks.

4.7 Use Case

Previous sections have shown two things. MaxMind is a widely used database
(Sec. 4.3), and selecting a particular snapshot in a time period can have a
significant impact on the results (Sec. 5.6). In this section, we concretely
demonstrate the potential impact on research that depends on MaxMind by
reproducing the results from Gharaibeh et al. ’s IMC 2017 work [61] with
different MaxMind snapshots. Gharaibeh et al. study the accuracy of different
databases for router geolocation, including MaxMind. Using the author’s
publicly available ground truth, we reproduce their accuracy results (see Sec.
5.2, Fig. 2 of [61]).

Surprisingly, the MaxMind snapshot that produces the largest impact
on the results was created within only two months of the snapshot used by
the authors. This snapshot shifts the median of the distance distribution to
ground truth from more than 100 km to 40 km, which is close to the results
of the paid version. Given this variability, the claim that the free version
of MaxMind is worse than the paid version seems to depend on the specific
instance studied.
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4.7.1 Dataset

The Gharaibeh dataset consists of 16,586 router interface IP addresses with
corresponding ground truth locations inferred either with RTT-based measure-
ments or DNS-based techniques. The authors do not mention which specific
snapshot of MaxMind they used, however: “The databases are accessed again
on early July 2016, to geolocate the ground truth.” We inquired with the
authors for the exact snapshot date, but unfortunately they could not be
more specific. We therefore select the closest snapshot as our reference, from
July 8, 2016. Sec. 4.7.2 confirms that the results of this snapshot are very
close to those presented in the original paper.

The measurement period for the ground-truth collection and validation,
however, spanned a larger time period. As stated in the paper: “Overall,
between May 2016 and September 2017, 8,197 (69.1%) [...] have different
hostnames, and 6.9% no longer have rDNS records.” We therefore restrict
our comparison between snapshots belonging to this period of time, on which
the authors consider that the ground truth is valid.

4.7.2 Results
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Figure 4.4: Reproducing result of [61] with different snapshots demonstrates
the sensitivity of the results to the instance of the geo database. The median
distance of addresses used shifted over 100km and coverage differed by up to
30%
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Distance to ground truth

We compute the distance to ground truth distribution of all the snapshots from
May 2016 to September 2017. We then compare each of these distributions to
the distribution of the reference snapshot, using the Kolmogorov-Smirnov (KS)
test [101]. The KS test quantifies the dissimilarity between two distributions,
with higher values indicating less similarity. Fig. 4.4a shows the distance to
ground truth distribution of the snapshots corresponding to the 5th, 25th,
50th, 75th, and 100th percentiles of the KS distribution. We also show the
reference snapshot.

First, we compare Fig.2 of Gharaibeh et al. with our reference snapshot.
We infer that on Fig.2 of Gharaibeh et al. ∼8%, 47%, 50%, 55%, and 96%,
are located at less than respectively 1, 40, 100, 1,000, and 10,000km from
the ground truth, whereas it is 8%, 46%, 49%, 56% and 97% in our reference
snapshot. Overall, the qualitative shape of the distribution is identical to the
original figure, giving us confidence in our ability to reproduce the author’s
results.

However, we observe significant differences between results derived from
the other snapshots versus the reference. The median shifts from 167km in
the reference snapshot to respectively 57, 51, 41, 40 and 40km for the 5th,
25th, 50th, 75th and 100th percentile.

When we consider the snapshots dates with these percentiles, it is sur-
prising to observe that the 100th percentile was created only two months
after the reference snapshot, whereas the 5th percentile is a snapshot taken
one month later and the 25th percentile corresponds to a snapshot taken
nine months later. This implies that MaxMind did not improve over time for
these addresses, but also that there are significant differences in the results
within a relatively short time.

Finally, we look at the comparison between the free and paid version of
MaxMind. On Fig.2 of Gharaibeh et al. we infer that the paid version has a
median between 30 and 40km, so that the difference between this distribution
and the different snapshots of Fig. 4.4a is less pronounced than the difference
between the free and paid version of their graph. Therefore the conclusion
that the paid version performs better than the free one should be taken with
caution.

Coverage

Finally, we examine coverage variability. In Gharaibeh et al. , the authors
only compute the distance to ground truth if the IP address is covered by
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MaxMind at the city level.
Fig. 4.4b shows the distribution of the coverage difference (Eq. (4.2))

as we did in Sec. 4.6.3, but only comparing snapshots with the reference
snapshot. We observe that even with snapshots taken three months apart
from the reference snapshot, 30% of the snapshots have more than 10% of
coverage difference. It is even worse for snapshots between 3 and 6 months and
snapshots with more than 6 months of difference, with a coverage difference
up to 30%.

Lesson Work is being published in the network research community without
specifying the MaxMind snapshot dates. Had the authors used a different
snapshot, the set of IP addresses over which they would have computed
their accuracy measures – and, hence, their results – would have significantly
changed.

4.8 Conclusion

Physical mapping of Internet hosts and resources is critical in this day and age.
Techniques to perform IP geolocation have matured into commercial offerings.
While the accuracy of these geolocation databases has been extensively
studied, little attention has been paid to understand the way they have
evolved over time. Our work demonstrates that a commonly used geolocation
database, MaxMind, exhibits significant changes in address coverage and
locations, especially when considering particular subsets of addresses.

These changes can occur even on short timescales, including on the order
of a typical measurement study duration. In this way we highlight the
importance of geolocation lookups that are contemporaneous with the time
an IP address is measured, observed, or gathered. Via a case study, we
demonstrate the potential for a large discrepancy in results depending on the
particular date of a geolocation snapshot. Similar large variances in auxiliary
data sources at short time scales have been demonstrated in the past, e.g.,
for DNS and Internet top lists [152]. Thus, a take-away of our work is to
encourage alignment of geolocation lookups with measurements, publishing
the exact date of a geolocation snapshot or lookup methodology, and rigorously
investigating addresses that change geolocation significantly over the course of
a measurement study. In the spirit of similar measurement best practices [135],
we hope to encourage more sound and reproducible measurement research.
Because MaxMind does not provide access to historical data, we provide
historical snapshots on demand to the community.
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In future work, we plan to more deeply investigate the root causes of the
geolocation movement we observe, characterize IPv6 geolocation, and work
toward integrating our findings into more robust geolocation services.



Chapter 5

Large-scale heterogeneous
traceroute data processing

In Chap. 3 we presented contributions to efficiency collect IP-level topology
at Internet-scale. However, this new state-of-the-art infrastructure deployed
in production collects a large amount of data, and it is difficult to analyze
with classical approaches. In addition, the analysis of this kind of data
often requires use of additional metadata such as IP-to-AS resolution or IP
geolocation. In Chap. 4 we studied one type of metadata, IP geolocation,
offered by a widely used commercial database, and give best practices to
avoid bias in studies using this geolocation data. In this chapter we study how
to use large-scale heterogeneous route tracing data. To this end, we present
MetaTrace, a framework to process large-scale route tracing data efficiently.
This framework allows us to conduct studies on millions of traceroutes in
a few seconds and demonstrate the potential of MetaTrace by analyzing
incomplete AS paths due to stars in traceroutes and by examining Internet
flattening over 5 years of route tracing data.

5.1 Introduction

Today, measurement platforms such as Ark [26], RIPE Atlas [162] and M-
Lab [110] perform millions of traceroutes per day and make them publicly
available for researchers and operators. In parallel, recent work has designed
high-speed traceroute tools that are able to collect hundreds of millions of
traceroutes per day from a single server [21, 168, 79].

These millions of traceroute measurements contain very useful information
to analyze and troubleshoot Internet paths, but this information is not easy to

51
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extract: no publicly available framework exists to store and query traceroutes.
Indeed, public traceroutes platforms and tools provide traceroutes in different
formats, such as JSON, warts, or CSV, leaving the burden to implement
specific drivers for each format on the user side. If analyzing thousands of
traceroutes can be done with the basic technique of loading all the traceroutes
in memory, this approach falls short when the number of traceroutes increases
orders of magnitude.

Moreover, traceroute data is often augmented with higher-level informa-
tion (e.g., AS), or metadata, to reveal information from Internet paths. For
instance, AS paths inferred from traceroute IP-level paths serves as a basis
to answer more complex questions, such as: “Are paths becoming shorter
because of Internet flattening?”, or “What are the peering relationships be-
tween ASes?”. As we lack a framework to query traceroutes, we also lack a
framework to add the metadata to the traceroutes and perform queries on
them.

In this chapter, we go deeper into IP route tracing analysis and propose
MetaTrace, a framework that combines traceroute mechanisms and database
design choices to optimize traceroute storage and queries. Based on the goals
of the system derived from the needs for operators to troubleshoot their paths
and the research community to perform large-scale studies (Sec. 5.3), we
identify the two types of queries that MetaTrace should serve: queries to
filter a subset of traceroutes, called predicate queries, and queries to compute
aggregated metrics on traceroutes, called aggregated queries. We make our
database design choices to build MetaTrace to better serve those queries:
choosing the right format under which MetaTrace stores the traceroutes, the
order in which MetaTrace stores them, and which database mechanisms we
set up to optimize query processing (Sec. 5.4). In short, MetaTrace uses
a column-oriented format based on traceroute replies, a sorting key based
keeping traceroutes with the same (source, destination) pair contiguous, and
a general mechanism of auxiliary tables indexed on the columns that serve
for filters, where these columns can be any column of the traceroute reply or
an arbitrary metadata.

Finally, we demonstrate the usefulness of MetaTrace with two use cases:
a study of how stars in traceroutes can hide entire ASes from the AS paths
(Sec. 5.7), and a study of Internet flattening over 5 years on the Ark dataset
(Sec. 5.8).

Our contributions are:

• The MetaTrace framework and its implementation.

• A study of how stars in traceroutes can hide entire ASes.
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• A study of Internet flattening on 6 billion traceroutes over 5 years.

• An open-source release of MetaTrace [159] available for the research
community.

Our main results include that MetaTrace is more than 500 times faster
than a hand-crafted Rust solution and more than 3 times faster than a raw
database solution to filter traceroutes based on a condition; MetaTrace scales
linearly and is able to compute aggregate metrics per path on 202 million
traceroute in 11 seconds. In our study of stars in traceroute, we find that at
least 9.7% and 17.5% of the (source, destination) traceroute pairs in IPv4
and IPv6 can have incomplete AS paths because of stars. Finally, we find
surprising results on Internet flattening, showing that there is no statistical
evidence that Tier 1 influence is decreasing or paths are shortening between
2016 and 2021.

5.2 Related Work

Today’s production systems performing traceroutes include RIPE Atlas [162],
M-Lab [110], Iris [71] and CAIDA Ark [26]. Typically, measurement data
is shared as JSON, CSV, binary Warts files or BigQuery [66] datasets and
must be manually refined by the end user. MetaTrace provides a unified
format transparent to the user with drivers transforming JSON, CSV, Warts
or BigQuery traceroutes into MetaTrace’s format.

More generally, any system using traceroute measurements [113, 112, 46,
64, 91] had to develop its own implementation to process the traceroutes.
For instance, some used a custom Python implementation [64] with each
traceroute being represented as a JSON object, a raw database [91, 166], or
a graph representation of traceroute paths [113].1 In any case, these systems
would benefit from MetaTrace to scale up.

Studies to highlight potential errors returned by traceroute and improve
its accuracy and coverage include the inference of false links in presence of load
balancing [15], techniques to reveal hidden MPLS tunnels [109], or detecting
forwarding loops [170]. To the best of our knowledge, we are the first to
propose a methodology to detect and characterize the stars corresponding to
missing AS hops.

Internet flattening has been studied for more than a decade [63] with
different approaches. Some looked for structural property change of the

1Private communication with the authors of the different papers.
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Internet topology [53, 173], while some ran specific traceroutes to uncover
peering links [34, 12] and better capture the new peering ecosystem [33]. The
work closest to ours looked at the properties of the Internet paths aggregated
over time [25]. Our methodology differs: instead of computing metrics
aggregated per year on a set of paths in arbitrary snapshots of traceroutes
not necessarily composed of the same (source, destination) pairs, we compute
the trend with an evaluation per path of (source, destination) pairs having
been repeatedly measured for 5 years.

5.3 Goals

We expect MetaTrace to be useful both for the operators troubleshooting
networks and for the research community conducting studies on the Internet.

Operational troubleshooting We want MetaTrace to be useful for a
network operator (e.g., a CDN or a Tier-1) to monitor the performance of
its routes towards its clients. As a rough estimate, to have a full view of the
paths between the CDN and the different ASes in the Internet, a CDN can
monitor the routes to each of the 900,000 announced BGP prefixes [11] at the
reasonable frequency of once every 15 minutes [52], so that a performance
degradation can be quickly detected. The number of traceroutes to process
every 15 minutes depends on the interval of the traceroutes to be kept before
deletion: if an operator wants to keep an entire day of traceroute, MetaTrace
must be able to process 1.3B traceroutes in a few minutes.

Research studies Unlike operational troubleshooting, there is no hard
constraint on the time to process traceroutes when performing a research
study. However, our goals are both to save debugging time for researchers
and allow researchers to study a large number of traceroutes (e.g., billions)
in a reasonable time. For instance, the Ark Prefix-Probing dataset [27]
contains daily traceroutes to every announced BGP prefix from a subset of
Ark monitors, starting from 2016, and containing 6B traceroutes between
2016 and 2021. We want researchers to be able to run studies on datasets
of this scale in a reasonable time (hours) with a single server with 256 GB
of RAM, 128 CPU threads and 20 TB of storage, which is what we used to
build and evaluate MetaTrace, and what we consider to be resources that are
accessible to a research team in our field.
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5.4 Design

To be clear, MetaTrace is not a new type of database designed to exclusively
process traceroutes. Rather, MetaTrace is the sound application of a set
of existing database optimization techniques for our particular use case of
analyzing traceroutes. Our methodology to answer the two aforementioned
goals is to translate them into different database design questions.

Overview MetaTrace serves two types of queries corresponding to the needs
of filtering traceroutes and aggregating statistics on them. The “aggregate”
queries compute aggregated metrics from traceroutes where a metric is
computed on a set of traceroutes with the same source and destination. The
“predicate” queries filter traceroutes based on a predicate (Sec. 5.4.1), e.g., if
an AS is crossed in a traceroute. MetaTrace stores the traceroutes in a column
based format ordered by the (source, destination, traceroute timestamp) key
where each row represents a reply received by a traceroute (Sec. 5.4.2). To
optimize queries filtering traceroutes based on a predicate, MetaTrace creates
auxiliary tables containing one field plus the columns forming the sorting
key, and creates subqueries from the predicates to optimize the usage of the
auxiliary tables (Sec. 5.4.4). Finally, MetaTrace uses radix trees to map
addresses to metadata, so that the metadata is just considered as another
column.

5.4.1 What queries should MetaTrace serve?

Based on our goals, we identified two types of queries that we want to serve:
(1) Compute aggregated statistics on traceroutes from the same source and
destination over time; and (2) finding all the traceroutes satisfying a predicate.
The predicate can either contain a field directly available from the traceroute
(e.g., source or destination) or metadata (e.g., the presence of an AS in the
path). We call these two types of queries the aggregate queries and the
predicate queries.

Both types of queries are useful for our goals or network monitoring
and research studies. For instance, an operator might want to monitor
latency degradation over repeated traceroutes between the same source and
destination. One would first issue an aggregate query to obtain latency
statistics per (source, destination) pairs. Then, one could issue predicate
queries to further troubleshoot. For a research study, one might want to
extract aggregate statistics such as the evolution of AS path length over time,
using an aggregate query, and then characterize the findings by AS type,
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using a predicate query.

5.4.2 How to represent a traceroute?

Table 5.1: Fields of MetaTrace flat format.

Name JSON Type Database Type

measurement_id String String
agent_id String String
traceroute_start ISO8601 String DateTime
probe_protocol Integer UInt8
probe_src_addr IPv6 String IPv6
probe_dst_addr IPv6 String IPv6
probe_src_port Integer UInt16
probe_dst_port Integer UInt16
probe_ttl Integer UInt8
quoted_ttl Integer UInt8
reply_ttl Integer UInt8
reply_size Integer UInt16
reply_mpls_labels Array(Integer) Array(UInt32)
reply_src_addr IPv6 String IPv6
reply_icmp_type Integer UInt8
reply_icmp_code Integer UInt8
rtt Integer UInt16

We choose a column-oriented format, where the columns are the fields of
the ICMP reply to a traceroute probe, and the fields uniquely identifying the
traceroute that issued the probe (source, destination, traceroute timestamp).
The full set of columns is shown in Tab. 5.1. A traceroute is then a set of
rows. Notice the presence in our set of columns of some port columns, which
can serve to distinguish between multiple traceroute paths in case of per-flow
load balancing [169, 168]. To that end, the key becomes (flow_information,
traceroute timestamp), where the flow typically corresponds to five columns
representing each field of the 5-tuple, which depends on the protocol. For
simplicity, we consider in the rest of this section that we manipulate single
path traceroutes.

Such a format is (1) adapted to all existing traceroute tools as it is the
lowest common denominator to all traceroute platforms and tools, as they use
the standard traceroute mechanism of sending TTL limited probes to elicit
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ICMP TTL exceeded messages from routers on the path; and (2) memory
efficient for predicate queries, so one only needs to load the column of the
predicate to find the rows matching a predicate [3]. At first sight, this format
introduces a lot of redundancy, as some fields (e.g., source and destination)
are repeated for each reply of a traceroute. However, we show that this
redundancy results only in a small disk usage overhead (Sec. 5.6.2) if we sort
the data properly (Sec. 5.4.3).

Ark and RIPE Atlas use row-oriented (each traceroute is a row), variable
length formats. These formats are suboptimal to store and analyze traceroutes.
First, they have no particular sorting order except the time at which the
traceroute was run, for instance RIPE Atlas provides daily dumps of all the
traceroutes run during that day. As a result, the compression is suboptimal
(Sec. 5.6.2). Second, without parsing traceroutes and inserting them in a
database, one cannot benefit from database optimizations, such as indexes,
and has to scan all the traceroutes to serve any predicate query. At most, as
Ark and RIPE Atlas traceroute file names contain a date, one could hand-craft
a solution to only look at the files corresponding to the dates of interest.

5.4.3 How to order the traceroutes?

Now that we have defined our column-oriented format to describe the tracer-
outes, we have to choose the sorting key, that is, the set of columns that
determines in which order the traceroute replies are stored.

The choice of the sorting key is important for two reasons. First, it deter-
mines the quality of the compression of columns, and a better compression
saves disk usage and reduces query time as it limits I/O calls and speeds up
loading the data in RAM during the queries. Second, different sorting keys
influence the resources needed to perform the queries, such as the time of the
queries, and the memory used.

In a column-oriented database (Sec. 5.4.2), each column is stored in
a different file and the compression is performed on each file. A column
has a good compression rate if there is a lot of redundancy between values
that are close in space. Most compression algorithms used by open-source
databases [122, 37] are derived from the LZ77 algorithm [183]. The idea of
the LZ77 algorithm is to read the file using a sliding window that keeps the
tokens (e.g., a character) and sequences of tokens that have been read in
that sliding window in memory. Each token or sequence of tokens is mapped
to a symbol taking less space than the token (typically an integer). When
a token is read, the algorithm looks into the map for the longest sequence
of tokens already appearing in the sliding window, and replaces it with its
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corresponding symbol. If no matching is found, the token is added to the
map. As a result, the closer redundant data the column has, the better it
will compress.

An ideal sorting key would be a key that gives a good compression rate
for the columns, reduces the time of aggregate and predicate queries and
minimizes their memory usage. Unfortunately, it is clear that no sorting key
can work for all predicate queries. Indeed, a sorting key on some metadata
(e.g., AS) will optimize the performance for predicate query on this metadata,
but not necessarily on another uncorrelated metadata (e.g., geolocation). As
the sorting key cannot satisfy the ideal goal of satisfying all the predicate
queries, we use other mechanisms to optimize the predicate queries (Sec. 5.4.4).

We are left to choose a sorting key that has at least a good compression
rate and limit memory usage and time for aggregate queries. Recall, aggregate
queries extract statistics over traceroutes with the same source and destination.
These queries influence the choice of our sorting key: aggregate queries
strongly benefit from traceroutes with the same source and destination being
contiguous. Indeed, it allows us to stream the data, and limit memory
usage. One can compute the statistic over the traceroutes of a (source,
destination) pair and then release the memory taken by the traceroutes
and go to the next pair. Natural choices for the sorting key are therefore
(source, destination, traceroute timestamp) or (destination, source, traceroute
timestamp). Conversely, the (traceroute timestamp, source, destination)
sorting key is not well suited for our aggregate queries per source destination,
as one would have to keep all the traceroutes in memory to compute the
aggregate statistic per source destination.

As a consequence, we choose the sorting key (source, destination, tracer-
oute timestamp) as it compresses better than the (destination, source, tracer-
oute timestamp) key (Sec. 5.6.2).

5.4.4 How to serve the queries?

This section describes the design choices to serve the aggregate and the
predicate queries, and the trade-offs between memory usage, disk usage, and
query time. Up to now, we have described how we store the traceroutes, each
reply corresponding to a row. This table, ordered by the sorting key (source,
destination, traceroute timestamp) is called the main table (as opposed to
auxiliary tables, that we describe next).
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How to perform aggregate queries?

An aggregate query looks like:

SELECT aggregate_statistic
FROM main_table
GROUP BY (source, destination)

These queries require a full scan of the main table and we can only
optimize for memory usage that is influenced by the choice of the sorting key
(Sec. 5.4.3).

How to filter traceroutes on a predicate?

Our sorting key does not optimize for filtering traceroutes on a predicate
(Sec. 5.4.3), as if the column to apply the predicate on does not appear
in the sorting key, the database will have to perform a full scan to find
the database to find the rows matching the predicate. We identify three
options to serve a predicate query with (one or more) fields: (1) having no
optimization; (2) having an index on each field of the main table; and (3)
having an auxiliary table for each field of the main table where the columns
are (field, source, destination, traceroute timestamp) and are sorted in this
order. These different choices represent a trade-off between query time and
disk usage, going from the highest query time and the lowest disk usage in
case (1) to the lowest query time and the highest disk usage in case (3). We
now explain the advantages and the drawbacks of each approach, and why
choice (3) is the most suited for our goals.

No optimization This choice incurs no storage overhead, but it also results
in a full scan of the data, which translates into query times at least 3x higher
than the solution (3) (Sec. 5.6).

Having an index on each field of the main table Putting an index
on each field can appear as the natural solution to reduce the number of
rows to scan. Let us take an example to explain why the performance of this
solution depends on the traceroute dataset. A common use case is to find
traceroutes going through a certain AS or a certain facility.

A first approach would be to use a hash index mapping an AS value
to the corresponding rows. However, such an approach does not scale with
billions of rows, as the index would consume too much space: assuming that



CHAPTER 5. LARGE-SCALE TRACEROUTE DATA PROCESSING 60

rows are numbered with 64-bit integers, indexing 7B rows (one day of RIPE
Atlas data) would consume 56 GB of memory.

Another approach is to use sparse indexes: one would store the distinct
AS values for each block of N lines, and use this index to discard blocks that
do not contain the relevant AS when filtering rows. However, the performance
of this index is dependent on the traceroute dataset. For instance, in a cycle
of Ark traceroutes between Ark’s sources and one destination in each BGP
prefix, Tier 1 ASes and ASes close to the sources appear in a lot of traceroutes,
whereas small stub ASes only appear in traceroutes to them. Conversely,
in the traceroute dataset of a study uncovering the peerings of Google [34],
only a few traceroutes contain Tier-1 ASes, as Google has built a whole
infrastructure to bypass Tier-1 ASes to directly peer with its clients. As
we cannot predict the performance of this approach that depends on the
traceroute dataset, we do not choose it.

Having auxiliary tables This is the approach selected in MetaTrace. The
idea is to have one auxiliary table with the columns (field, source, destination,
traceroute timestamp) sorted in that order for each field that can serve in
predicates. This table stores only deduplicated values. With these auxiliary
tables, predicate queries look like:

SELECT * FROM main_table WHERE sorting_key IN

(SELECT sorting_key FROM auxiliary_table_1 WHERE predicate_1)

AND sorting_key IN

(SELECT sorting_key FROM auxiliary_table_2 WHERE predicate_2)

AND sorting_key IN

...
(5.1)

This approach allows us to quickly select the sorting keys of the traceroutes
matching the predicates since the auxiliary tables are ordered by the predicates
fields. It is also fast to retrieve all the replies of these traceroutes since the
main table is ordered by the sorting key. Also, the disk usage overhead of
the auxiliary tables is acceptable compared to the solution with the indexes
given the 3.4x times overhead that we save in terms of query time (Sec. 5.6).

5.4.5 Adding metadata to the traceroutes

Metadata is the result of a mapping from IP addresses to other information,
such as ASes or geolocations. To generate an auxiliary table on metadata,
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we use a radix tree mapping a prefix to the metadata. This radix tree can be
parametrized by a date in order to use the most relevant metadata for each
traceroute. For each row of the main table, the column reply_src_addr is
mapped to its metadata, and we insert the unique (metadata, source, desti-
nation, traceroute timestamp) columns in the auxiliary table. The metadata
is just another column available for a predicate. This method is generic and
works with any mapping between IP addresses to other information. Also,
this method only requires one scan of the main table to generate all the
auxiliary tables.

5.5 Implementation

Sec. 5.4 describes the database concepts and techniques that we are using to
build MetaTrace, which are common to any relational database. MetaTrace
can be implemented on top of any relational database, and our implemen-
tation of MetaTrace lies on top of the ClickHouse database. We choose the
ClickHouse database after a benchmark between different relational databases,
including MySQL [122] and PostgreSQL [140], two standard SQL databases.
We give some more details of implementation, sometimes specifics to Click-
House, to make our methodology fully reproducible (Sec. 5.5.1). We also
give more details about MetaTrace’s currently supported traceroute formats
(Sec. 5.5.2) and how a user can interact with MetaTrace (Sec. 5.5.3).

5.5.1 Tables and metadata

Tables The main table is a standard ClickHouse table, while the auxiliary
tables are materialized views of the main table [40]. A materialized view is a
“view” of the main table in the sense that they are the results of a query on
the main table, but add the feature of when data are modified or inserted in
the main table, the view automatically updates as well. Materialized views
are well suited for predicate queries, and we can create one materialized view
per metadata on which we want to be able to run predicate queries. In query
5.1, auxiliary tables are just replaced by materialized views. Materialized
views are not specific to ClickHouse.

Metadata Metadata types are columns added to the main table usually
mapping IP addresses to some values, such as AS numbers or geolocation
information. If one could compute this metadata before the insertion, Click-
House allows us to compute them on the fly during the insertion by creating
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views on these data with the dictionary feature [38]. Dictionaries are special
tables allowing mapping keys to values, which is exactly what we need here.
For instance, the column reply_asn in the main table will have the following
type:

reply_asn UInt32 MATERIALIZED
dictGetUInt32(dict_asn, ’asn’, reply_src_addr)

This column type indicates that the reply_asn column should be obtained
by querying the dict dict_asn table, with the key reply_src_addr, asking
for the value asn. Moreover, ClickHouse has an IP trie layout [38], so that
dict_asn actually maps IP prefixes to values, not IP addresses, avoiding
to insert new entries in the dict_asn table when traceroutes with new IP
addresses are inserted in the main table.

This implementation choice is better than pre-computing the values of
the metadata because we can easily modify the values of this metadata, if
necessary (e.g., if some IP to AS technique is better than another one and
we want to change our IP to AS mapping). We would just have to change
the content dict_asn, or make the reply_asn points to another dictionary
table, and rematerialize the view [39]. Without this feature, we would have
to recreate the main table with new values for the reply_asn column, or
perform many updates, which are less performant and more error-prone.

5.5.2 Handling multiple platforms

MetaTrace provides a unified tool, PanTrace to download, parse and transform
traceroutes from formats from the most used platforms into our format
(Tab. 5.1) and insert them into ClickHouse. Our system currently supports
the Warts format offered by Ark, the line-delimited JSON format of RIPE
Atlas. We released PanTrace to the community that can convert traceroutes
from any (supported) format to another one [159].

5.5.3 Flow of a query

MetaTrace provides a Python API where a user can specify with a builder
pattern, for instance:

Table("ark_prefix_probing")
.start("2022-01-01").end("2022-01-02")
.filter(m.asn == 3356 and m.country == "France")
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Table 5.2: Query time on one day (June 12, 2022) of IPv4 and IPv6 RIPE Atlas data (202 million traceroutes). Time shown in seconds,
peak memory and disk usage shown in MB. Python, the database, and MetaTrace, are limited to 16 threads.

Insert Select by reply IP Select by ASN/Country Average S-D RTT

Method Disk Time Mem Read Time Mem Read Time Mem Read Time Mem Read

Python 71,778 0 0 0 945 21.38 71,778 918 206.57 71,778 1204 615.32 71,778
Rust 71,778 0 0 0 602 97.15 71,778 780 676,95 71,778 690 97.228 71,778
BigQuery - - - - 16 - 58,562 - - - 16 - 101,340
Database 28,707 3603 4176 71,778 3.68 59.96 4604 3.38 76.11 1958 11 1588 14,088
Database/index 29,270* 3603 4176 71,778 4.74 79.69 835 5.08 68.94 192 11 1588 14,088
MetaTrace 52,877** 3603 5295 71,778 1.09 55.14 63 1.13 75.64 50 11 1588 14,088
* Including 581 MB for the data skipping index on the reply IP, 25.58 MB for the reply ASN and 3.84 MB for the reply country.
** Including 14,612 MB for the auxiliary table on the reply IP, 5562 MB for the reply ASN and 3307 MB for the reply country.

This query requests all the traceroutes from the Ark table containing
traceroutes from January 1st to January 2nd going through AS 3356 (Level
3). If needed, the user can also directly execute SQL queries against the
database.

5.6 Evaluation

On a dataset of 202 million traceroutes from RIPE Atlas, MetaTrace takes 25%
less disk space than the compressed JSON source data (Sec. 5.6.2). MetaTrace
is able to serve predicate queries 552x faster than a naive multiprocessor
Rust solution, and is 3.4x faster than a raw database. On aggregate queries,
MetaTrace is 62x faster than an optimized Rust solution. Overall, MetaTrace
is able to serve both types of queries with a very reasonable 1.6 GB maximum
usage of memory. These results on queries are shown in Sec. 5.6.3. MetaTrace
scales linearly with the resources available and the number of traceroutes
(Sec. 5.6.3). This performance allows us to say that MetaTrace satisfies our
two goals (Sec. 5.3).

5.6.1 Dataset and setup

Our dataset is composed of all the IPv4 and IPv6 traceroutes performed
on RIPE Atlas on June 12, 2022. This dataset is downloadable from RIPE
Atlas’s FTP server [149] and is available on RIPE Atlas’s BigQuery project.
It contains 202 million traceroutes and 7.4 billion replies.

We implement five alternative solutions to evaluate the impact of our
design choices:

1. Python: this implementation represents the performance of a naive
multiprocessor Python implementation to analyze traceroutes.

2. Rust: the same implementation as Python but (supposedly) more
performant.
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3. Raw database: this implementation represents the performance of the
database that we used to implement MetaTrace (ClickHouse) without
any intelligence, just putting the traceroutes in our format and storing
them in a database.

4. Database with indexes: it is the raw database plus indexes on columns
used in the predicate queries.

5. MetaTrace: this is MetaTrace’s implementation as described in Sec. 5.4:
traceroutes are inserted in the format in the main table, and auxiliary
tables are created accordingly.

We chose to compare MetaTrace to these alternatives because they il-
lustrate well the trade-off that researchers usually face when processing
traceroutes: either implement a custom solution allowing fast prototyping but
somewhat inefficient (e.g., Python), or a more sound solution that requires
a lot of efforts to implement, but it saves a lot of time in future processing,
such as MetaTrace.

To be fair with the Python and Rust solution, we split the 202M tracer-
outes into multiple files such that the computation can be performed in
parallel. Moreover, the files are compressed using the LZ4 algorithm that is
used by default on column files by our database (reducing disk read overhead).
The raw database and the database with indexes solutions use MetaTrace’s
sorting key (Sec. 5.4.3). The indexes used by the database with indexes
solution are ClickHouse implementation of two types of indexes that are good
for range and equality queries [41], which are the equivalent of the B-Tree and
hash indexes used in other well-known databases [121, 141]. Each column
appearing in the predicate queries (Sec. 5.6.3) has one index of each type.

The evaluation is performed on a single server equipped with a 64-core
CPU, 256 GB of memory (but only 2 GB is used during the queries (Sec. 5.6.3))
and an SSD delivering ≈ 1 GB/s read performance. We restrict the five
alternatives to 16 CPU threads in order to evaluate MetaTrace on a server
that we consider accessible to any researcher.

5.6.2 MetaTrace storage efficiency

We first evaluate the compression of the main table when we use differ-
ent sorting keys. MetaTrace’s sorting key (source, destination, traceroute
timestamp) achieves better compression than (destination, source, traceroute
timestamp) and (traceroute timestamp, source, destination): the main table
takes respectively 28, 31, and 70 GB on disk.
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Then, we look at how MetaTrace compares to the original compressed
data. The compressed JSON files with LZ4 take 77 GB, whereas MetaTrace
takes 28 GB for the main table, plus 24 for three auxiliary tables (one ordered
by reply IP address, one by its ASN and one by its country), for a total of 52
GB disk space. This shows that adding auxiliary tables remains reasonable in
terms of disk space and that even with multiple auxiliary tables, MetaTrace
remains in the same order of magnitude as the original dataset.

5.6.3 MetaTrace performance on queries

We evaluate MetaTrace’s performance of three queries: two predicate queries,
one with a single field and one with multiple fields (Sec. 5.6.3), and an
aggregate query (Sec. 5.6.3).

We measure the time taken, the memory (RAM) used and the size of the
number of bytes read by each solution to serve the queries. The number of
bytes read by each solution is particularly important to consider for systems
with slow storage, as I/O disk reads can become a bottleneck.

Predicate queries

The query consists in finding the traceroutes going through a particular
interface and retrieving all of their content. As shown in Tab. 5.2, MetaTrace
outperforms the other solutions in terms of query time and data read, while
being very reasonable in memory. MetaTrace takes 1.09 seconds compared to
945 seconds for the Python solution and 602 seconds for the Rust solution, 3.68
seconds for the database and 4.74 for the database with indexes. MetaTrace
only reads 63 MB, whereas the Python and Rust solutions read 71.8 GB,
the database solution reads 4.604 GB, the database with indexes 835 MB.
Finally, MetaTrace memory usage stays under 60 MB, which is negligible on
modern computers. The difference in bytes read between the Python and Rust
solutions and solutions with the database comes from how a column-oriented
database works on queries with a predicate: it only loads the column(s) on
which there is a predicate, and then loads the other columns of the rows
matching that predicate. In the Python and Rust solutions, each row has
to be entirely read in order to filter on one column. We perform the same
comparison with a predicate on multiple fields, obtaining similar results
(Tab. 5.2).

We also provide as information the performance of BigQuery: we can-
not really provide an apple-to-apple comparison with MetaTrace, as we do
not know the details of BigQuery’s implementation nor its infrastructure.
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BigQuery takes 16 seconds, reads 58 GB of data, and more importantly,
amounts to $0.29 at a cost of $5 per TB. The information about memory
usage is unavailable on BigQuery. Queries on the country and ASN cannot
be performed as this metadata are not available on RIPE Atlas’s BigQuery
project.

Aggregate queries

The query consists in computing the mean RTT for each (source, destination)
pair. As expected, a raw database and a database with indexes perform as
well as MetaTrace as we gave them the same sorting key (Secs. 5.4.3 and 5.6.1)
where the query takes 11 seconds. The most important result comes from
the comparison with Python and Rust solutions. MetaTrace is 94x faster
than the Python solution and 62x faster than the Rust solution. Again, the
memory usage is reasonable with 1.6 GB. It is possible to even further reduce
the memory usage, as MetaTrace stores data ordered by (source, destination),
it can optionally stream the results per (source, destination) pair instead of
processing multiple (source, destination) pairs in parallel.

Insertion overhead

Unlike the Python or Rust solution, database solutions require loading the
data, once, in the database. MetaTrace takes 1 hour to insert the results.
However, given the number of predicate queries that one usually needs to
perform to study traceroutes (e.g., see Sec. 5.7, we ran dozens of predicate
queries), the benefit is worth the cost. The addition of auxiliary tables or
indexes has no discernible impact on the insertion time. However the use of
auxiliary tables requires an additional gigabyte of memory at insertion time.

MetaTrace scaling

Table 5.3: Time in milliseconds to compute the average RTT per origin-
destination pair.

1M 10M 100M 1B 7.4B rows

2 threads 21 124 1110 11,263 80,928
4 threads 18 74 577 5771 40,970
8 threads 18 44 302 2951 20,884

16 threads 12 34 167 1548 10,799
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We run the same aggregate query as in Sec. 5.6.3 on subsamples of 1M,
10M, 100M, 1B rows and the full table, with 2, 4, 8 and 16 CPU threads.
The results are displayed in Tab. 5.3. Above 100M, the scaling is linear in
both the number of threads and the number of rows.

5.6.4 MetaTrace vs alternative databases

In this section, we compare MetaTrace to a graph database, which is a
completely different approach than a relational database. A graph database
might sound like a good option to store traceroutes, as we can represent the
results of a traceroute as a directed graph where nodes are IP addresses and
edges are links between them. Rather than reinvent the wheel, we use the
Neo4j graph database [125], a well-known commercial graph database. We
use the community (free) edition in this evaluation, and our comparison is
therefore limited to this database.

Data schema

Traceroute

agent_id

measurement_id

probe_src_addr

probe_dst_addr

probe_src_port

probe_dst_port

traceroute_start

Metadata

reply_src_addr

ASN

Geo Country

Geo City

APPEARS_IN

probe_ttl

quoted_ttl

reply_ttl

reply_size

reply_mpls_labels

reply_icmp_type

reply_icmp_code

Figure 5.1: Our Neo4j data schema to store the traceroutes.The nodes
Metadata and Traceroute are represented in blue and the relationship AP-
PEARS_IN is represented in green. This schema allows us to fully rebuild a
traceroute and contains all the information in MetaTrace schema (Tab. 5.1)
and is optimized for predicate queries.

In Neo4j, data are stored into nodes and relationships between nodes. In
our case, we chose the following implementation, with two types of nodes:
Metadata and Traceroute, and one relationship between them, APPEARS_IN.
Nodes and relationships can have properties associated to them, and for us,
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the Metadata node properties are the metadata fields which can be used
in MetaTrace predicate queries, e.g., reply_src_addr or ASN. Traceroute
node properties are all the information relative to a particular traceroute
such as the source, the destination, and the timestamp of the measurement.
The APPEARS_IN relationship properties are all the information relative to
a particular reply in the traceroute, such as the probe_ttl. Fig. 5.1 details
this schema. With this schema, one can rebuild the original traceroute by
querying all the Metadata nodes that have an APPEARS_IN relationship with
this traceroute.

This schema is meant to optimize predicate queries. Indeed, for instance,
to find all the traceroutes going through a particular IP address, Neo4j needs
to find the Metadata node corresponding to the IP address, and then find all
the Traceroute nodes having a APPEARS_IN relationship with it. To make a
fair comparison between MetaTrace and our graph database, we put an index
on each field of the Metadata node, so the lookup of the Metadata node for
predicate queries should be faster.

Queries

Queries can be easily done with the Cypher query language of Neo4j [124]
and this data schema. For instance, the predicate query counting all the
traceroutes passing through a particular IP address, here 88.204.208.2 looks
like:

MATCH (Metadata {reply_src_addr:
"88.204.208.2"})-[APPEARS_IN]->(tr:Traceroute)
RETURN Count(tr);

Similarly, an aggregate query which computes the average RTT for each
(source, destination) pairs looks like:

MATCH (m:Metadata)-[a:APPEARS_IN]->(tr:Traceroute)
WHERE m.reply_src_addr = tr.probe_dst_addr
RETURN tr, avg(a.rtt);

Results

We insert our dataset (Sec. 5.6.1) in our Neo4j database using the Neo4j
administration tool. It resulted in creating 204 M nodes (2M Metadata and
202 M Traceroute) and more than 7 B relationships, corresponding to the
number of replies in the traceroutes.
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The insertion took almost 7 hours, compared to one hour for MetaTrace
(Sec. 5.6.3). The peak memory usage for the insertion was a reasonable 3.2
GB.

As we used the community version of Neo4j (as opposed to the enterprise
edition, which is not free), we are limited in terms of the features we can
use. In particular, we cannot monitor the memory used [126], as we did for
MetaTrace. What we do, though, is to look at the time taken by queries: the
predicate query SELECT by reply IP) (third column of Tab. 5.2) took 31
seconds, which is an order of magnitude worse than the 1.13 seconds taken
by MetaTrace. It’s even worse for aggregate queries. The query presented in
Sec. 5.6.3 (last column of Tab. 5.2) to get the average RTT group by (source,
destination) took multiple hours to complete.

5.7 Stars and missing AS hops in the traceroutes

Stars, or “ * ”, as they are represented in traceroutes, are one of the plagues
of traceroute measurements. Due to an absence of responses matching the
TTL limited probes sent by traceroute, it is hard to know the root cause of a
star. It could be due to a router unresponsive to traceroute probes, routers
performing ICMP rate limiting, or any other reason that could make the
reply not come back to the source. In some cases, stars can hide some entire
ASes of the paths, which can distort our understanding of the Internet: a
missing AS hop in an AS path increases the difficulty to troubleshoot bad
performance for operators, as they might miss the AS to contact, and can
confuse researchers trying to reason about AS path length, for instance to
understand Internet flattening or optimize anycast performance [179, 182].

Our main findings are that 9.7% and 17.5% of IPv4 and IPv6 (source,
destination) traceroute pairs can be affected by a missing AS hop, and that
for 3.5% of the (source, destination) pairs in IPv6, there is a probability
higher than 0.5 to have a missing AS hop when performing a traceroute. The
missing AS hops concerned a wide range of networks, from Tier 1s to small
providers. We discuss how MetaTrace help us to perform our study at the
end of the section.

5.7.1 Goals and challenges

To show that stars in traceroutes can distort our understanding of AS paths,
we want to characterize how frequent it is that we can miss entire ASes in AS
paths because of stars, and which ASes are concerned by this phenomenon,
for both IPv4 and IPv6.
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Table 5.4: Traceroutes measured at 15-minute intervals between two RIPE
Atlas anchors. Second traceroute contains a missing AS hop (AS 12657).

TTL T hops T’ hops T AS hops T’ AS hops
1 2001:67c:6ec:201:145:220:0:1 2001:67c:6ec:201:145:220:0:1 1101 1101
2 2001:67c:6ec:1101:192:12:54:241 2001:67c:6ec:1101:192:12:54:241 1101 1101
3 2001:610:fc7:0:145:145:2:218 2001:610:fc7:0:145:145:2:218 1103 1103
4 * * * *
5 2001:a60::89:303 2001:a60::89:303 8767 8767
6 2001:a60:0:217::1:1 2001:a60:0:217::1:1 8767 8767
7 2001:1578:0:ff::1:2 * 12657 *
8 2001:1578:400:111:1:0:85:1 2001:1578:400:111:1:0:85:1 35003 35003

Tab. 5.4 shows an example of two paths from the same (source, desti-
nation) pair measured at 15 minutes intervals with traceroute, with their
corresponding AS paths. Looking at hop 4, it is hard to say anything about
this star, as it appears in both traceroutes, so we have no hints that it could
correspond to a missing AS hop. However, at hop 7, it is probable that the
star at hop 7 of the second traceroute corresponds to the AS hop 12657 of
the first traceroute, and is a missing AS hop. If we remove this AS from
the AS path of the second traceroute, this AS does not appear in the AS
path anymore. Our goal is to find a methodology to have a high confidence
that hop 7 of the second traceroute is actually the same as hop 7 of the first
traceroute, but in the second traceroute appear as a star, as, for instance,
router at hop 7 performs rate limiting, so hop 7 sometimes appears as a
normal hop, and sometimes as a star.

So, to be clear, our study will give a lower bound of the number of
traceroutes with missing AS hops in the traceroutes, as we cannot say
anything about routers that are always unresponsive to traceroutes. They
could be missing AS hops, or not. Also, there could be invisible MPLS
tunnels [109] also hiding entire ASes from the AS path. In this study, we
focus on missing AS hops that are likely to be due to rate limiting or other
transient states of the router (e.g., , congestion which would deprioritized
ICMP(v6) traffic) which can cause it to not respond to traceroute, because
we can develop a methodology to have high confidence that these hops are
actually missing AS hops, as they sometimes appear as hops, and not always
as stars.

5.7.2 Methodology

In our case, we define a missing AS hop as follows: a missing AS hop is an AS
that does not appear in the AS path revealed by traceroute but is still crossed
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by the traceroute probe, and appears as a star in the path. Again, this does
not count all the hidden AS hops, but only those that our methodology is
capable of uncovering, which gives a lower bound of the phenomenon.

High level idea

To infer that a star corresponds to a missing AS hop, our idea is to use path
similarity between historical traceroutes in conjunction with evidence of no
path change. At high levels, for the same (source, destination) pair, if two
paths measured by two traceroutes close in time only differ at some TTLs and
the hops at those TTLs are replaced by stars, and we have high confidence
that there is no path change, the stars might correspond to missing AS hops.
This happens when a star causes an AS to disappear from an AS path.

Tab. 5.4 shows an example with two traceroutes between two RIPE Atlas
anchors measured at 15-minute intervals. The two paths are the same except
at hop 7 where the hop 2001:1578:0:ff::1:2 is replaced by a star. If we
have high confidence that there was no path change between the two anchors,
hop 7 is likely to correspond to 2001:1578:0:ff::1:2, which translates to
AS 12657. As 2001:1578:0:ff::1:2 is the only IP address in this path
belonging to AS 12657, it is a missing AS hop in the second traceroute.

To establish high confidence that there was no path change between the
source and the destination, we apply the following reasoning: if the root
cause of the apparition of a star is a path change, then the star corresponds
to a different IP address than 2001:1578:0:ff::1:2. So it could mean that
either AS 35003 changed its announcement for the destination prefix, or AS
8767 changed its best route to the prefix of the destination. In each case, AS
8767 should send a BGP update to its neighbors (here, AS 1103) to inform
them that the route to the destination prefix has changed. According to
the BGP protocol [147], for each AS on the path, the AS will propagate the
update to its neighbors if the BGP update is different than the last BGP
update sent for this prefix. And even if the update is the same, an AS might
still send the update to its neighbors, because it does not keep in memory
which update it has sent to a neighbor for a particular prefix (called BGP
duplicates) [77].

Conversely, if there are no BGP updates sent and received by the ASes
that appear before the star (in our example 1101, 1103, and 8767) on the AS
path, the root cause of the star is not a path change, and the star is certainly
due to a transient state of the router (e.g., rate limiting).
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Formalization

We formalize the high-level idea that we described in the previous paragraph.
For a given (source, destination) pair:

• Let pt and pt′ two paths measured by two traceroutes at time t and t′

with t < t′ .

• Let hpt1 , ..., h
pt
d and hpt′1 , ..., h

pt′
d′ the IP hops of pt and pt′ .

Let ASpt
1 , ...,ASpt

d and AS
pt′
1 , ...,AS

pt′
d′ the AS hops of pt and pt′ and

Apt and Apt′ the corresponding set of ASes.

• Let B the ensemble of BGP updates between t and t′ + 5 for the BGP
prefix of the destination where t and t′ are expressed in minutes.

We say that there is a missing AS hop in pt′ if the following conditions
are satisfied:

1. d = d′

2. ∀k ∈ [1..d′], hptk = h
pt′
k ∨ h

pt
k = “∗′′ ∨ hpt′k = “∗′′

3. ∃i ∈ [1..d], hpti 6= “∗′′ ∧ hpt′i = “∗′′ ∧ASpt
i /∈ Apt′

4. B = ∅

Conditions (1), (2) and (3) define what we have explained in the previous
paragraph. Each hop of path pt and pt′ must be identical except for stars,
and at least one hop in path in pt′ must be a star and an AS hop in pt not
appearing in pt′ AS path. Note that for condition (3), to not make notations
too heavy, we omit to formalize that pt and pt′ are interchangeable, but they
actually are. Condition (4) assumes that we have an oracle for all of the BGP
updates of the Internet and ensures that no BGP update has been made
for the prefix of the destination. In practice, we have partial visibility on
BGP updates, so we distinguish between two cases: whether we have a route
collector within one of the ASes or not. If we do, as we have explained in
the previous paragraph, it is highly likely that if there was a path change,
the route collector would have seen a BGP update, and conversely, if we see
no update in the route collectors, we are highly confident that there was no
path change. If we do not have a route collector in one AS of the AS path
with a star, we are less confident that there is no path change, as it could
be that there is a path change but our collectors are not seeing the update
because there is no path change for them. So we conservatively do not count
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these cases as traceroutes with missing AS hops. Finally, in our case, t and
t′ are separated by a 15-minute interval, as they are taken from the meshed
RIPE Atlas anchors measurements (see next section), so it is unlikely that
the update arrives at the route collector after t′ + 5, as the BGP convergence
time usually takes up to 2 minutes [114, 60].

Notice that our conditions are conservative in the number of traceroutes
with missing AS hops. For instance, it could be that condition (1) is not
respected, i.e., paths have different lengths, because of asymmetric load
balancing [169, 18] but still have a missing AS hop due to a star. Also, it
could be that a BGP update has been sent for the prefix of the destination,
but is not related to the star. For instance, if we have a route collector in AS
1101, in Tab. 5.4, AS 1103 could have sent a BGP update to AS 1101 for an
unrelated reason with the star, so our results provide a lower bound of how
our analysis is impacted by these missing AS hops in traceroutes.

5.7.3 Dataset

We collect 5 days of publicly available traceroutes from the RIPE Atlas
platform from their FTP [149] from the 28th of September to the 2nd of
October 2022, filtering the built-in traceroute measurements between anchors.
These measurements consist of running meshed traceroutes between the RIPE
Atlas anchors every 15 minutes. We only keep these recurrent traceroutes
as we need multiple traceroutes between the same source and destination
to be able to compare the paths close in time. We have a total of 576M
traceroutes, 321M for IPv4 and 255M for IPv6, which consists of 548K (source,
destination) pairs for IPv4 and 394K pairs in IPv6. We map the IP addresses
to their ASes using the state-of-the-art method bdrmapit [117].

We collect all the BGP updates from all the RIPE RIS collectors (RRC00
to RRC26) during the same days as the traceroutes, for a total of 2.58B and
2.26B updates for IPv4 and IPv6.

5.7.4 Results

We compute all the missing AS hops in the traceroutes of our dataset using
the methodology described in Sec. 5.7.2, where we compare each pair of
consecutive traceroutes for each pair of source and destination.

We find 1,773,680 and 3,245,881 traceroutes with at least a potential
missing AS hop (without condition (4) on BGP updates), and we only keep
1,613,904 and 2,719,671 for which there exists no BGP update and where
we have a BGP collector in the AS path before the star. These numbers
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Figure 5.2: Paths with a missing AS hop are more prevalent in IPv6 (left). All
types of ASes are missing in the traceroutes, from Tier 1s to small providers
(right).

represent a small percentage of the total number of traceroutes (0.5% for
IPv4 and 1.1% for IPv6). However 53,334 (9.7%) and 68,720 (17.5%) pairs
of source and destination contain at least one traceroute with one missing
AS hop for IPv4 and IPv6. It is higher for IPv6, and we believe this is
because the rate limiting is a mandatory feature in ICMPv6 [42, 6], whereas
it is optional in IPv4. We also remind that our methodology to infer that a
traceroute contains a missing AS hop is conservative. We also find that 99%
of the traceroutes with a missing AS hop have exactly one missing AS hop,
so multiple missing AS hops are very rare.

How prevalent are missing AS hops in the Internet?

The number of (source, destination) pairs with at least one traceroute with a
missing AS hop is both non-negligible for IPv4 (9.7%) and IPv6 (17.5%). The
next question that arises next is: are these paths prevalent? In other terms,
if we were to run a traceroute between a source and destination that can be
affected by a missing AS hop, how likely is it that it would actually contain
a missing AS hop? To answer this question, for each pair of source and
destination, we compute the prevalence of each path as originally defined by
Paxson [134], i.e., the frequency of this path during the five-day period. We
are interested in knowing what is the probability that if we run a traceroute,
it would contain a missing AS hop. The left plot of Fig. 5.2 shows the CDF
of prevalence of the set of paths with a missing AS hop for each pair of source
and destination. The prevalence of the set of paths with a missing AS hop
is the sum of the prevalence of the paths with a missing AS hop for a given
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(source, destination) pair. There are 15% and 20% of the IPv4 and IPv6
pairs of source and destination with the prevalence of paths with a missing
AS hop higher than 0.5, meaning that if we run a traceroute between these
(source, destination) pairs, we would get an incomplete AS path half of the
time. This represents 1.5% and 3.5% of the total of (source, destination)
pairs for IPv4 and IPv6, including the pairs without paths with missing AS
hops, so it is non-negligible, in particular in IPv6.

Which ASes might we miss because of stars?

The right plot of Fig. 5.2 shows the CDF of the rank of the missing ASes
in the traceroutes with a missing AS hop. The rank is obtained via the
CAIDA AS rank dataset [106], which rank the ASes based on the reversed
size of their customer cone, i.e., the number of ASes they can reach with only
provider-to-customer and peer-to-peer links. The bigger the rank, the smaller
the size of the customer cone. Both for IPv4 and IPv6, we observe that the
missing ASes can be either Tier 1 or small providers as, for instance, in IPv4,
20% of the missing ASes correspond to AS 3356 (Level3) ranked first, which
has a customer cone of 48,782, and 17% to ASes with a rank higher than
1000, corresponding to a customer cone smaller than 32.

5.7.5 Saving debugging time with MetaTrace

MetaTrace played an important role in data preprocessing, which is exactly
the purpose that we want it to serve: save the time of researchers from
performing tedious tasks. During the debugging of the code to build this
study, we identified a bug in RIPE Atlas anchors meshed measurement.
RIPE Atlas meshed measurements are supposed to happen every 15 minutes.
However, we found that some (source, destination) pairs had consecutive
traceroutes with very close timestamp (< 5 seconds). We remove these 3,476
pairs for IPv4 and 1,702 pairs for IPv6 from our dataset, corresponding to
3.1M and 1.4M traceroutes. After having reported this problem to RIPE
Atlas, they told us it was due to a bug with two instances of the program
launching the meshed traceroutes, which was fixed since. We had to run a
lot of predicate queries to find and confirm this bug in the data, once we had
found the suspicious pairs, so MetaTrace helped us to be fast in investigating
and characterizing this problem.

Second, to find the right formulation for our methodology, we had to
manually look at dozens of traceroute paths with potential missing AS hops,
to check at the end that the cases identified by the methodology were actually
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missing AS hops. To do so, we ran dozens of predicate queries, saving us
precious time compared to the time it would have taken with some manual
scripts (Sec. 5.6).

5.8 Can we see Internet flattening from Ark?

Earlier work defines Internet flattening as a “reduction in the number of
intermediary organizations on Internet paths” [33, 63]. However, more recent
work has shown that there was no clear reduction of the average AS path
length between 2007 and 2016, showing the emergence of new organizations
rather than the reduction of intermediary ones [33].

We reappraise these results with a more rigorous methodology: (1) we
do not choose arbitrary snapshots of traceroutes (Sec. 5.8.1); and (2) we
do not aggregate traceroutes per period of time, which suffers from missing
data due to the source and destination not being constant over time, but
rather identify trends per (source, destination) pairs (Secs. 5.8.1 and 5.8.2).
Surprisingly, we find that from 2016 to 2021, there is neither a clear trend in
AS path length evolution, nor in the evolution of the hierarchical structure
of the Internet paths in the Ark publicly available dataset.

5.8.1 Dataset

In this study, we consider the Ark Prefix-Probing dataset [27]. This dataset
contains daily2 traceroutes to every announced BGP prefix from a subset of
Ark monitors, starting from January 2016. To account for nodes being added
over time and destinations changing due to BGP dynamics, we conservatively
keep the (source, destination) pairs for which we have had at least 15 tracer-
outes reaching the destination, per month and since 2016. We map the IP
addresses to their AS using bdrpmapit [117]. We use windows of 15 days as
was used in the bdrmapit paper to map the IP addresses to their AS.

We obtain 9.7M pairs, where the destinations are in 39,477 ASes repre-
senting 83% of the Internet population, according to the APNIC dataset [10],
ensuring a large-scale coverage of the study.

5.8.2 Aggregate statistics and results

We make use of MetaTrace to compute two time series for each (source,
destination) pair: the AS path length and the number of tier 1 in the AS

2In practice, we find that the time interval between two traceroutes towards the same
prefix oscillates between one and two days.
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Figure 5.3: CDFs of the slope of the linear regression performed on time
series of AS path length (left) and number of Tier 1 in the AS path (right)
for All ASes, hypergiants, and all ASes but hypergiants.

path. Rather than aggregating these metrics per unit of time [24], which can
lead to missing AS hops in the AS paths (Sec. 5.7), we seek to capture the
trend on these time series. We compute a linear regression on the time series
and extract the slope and the correlation coefficient between the predicted
line and the actual time series. After 18 hours for inserting the 6B traceroutes
in MetaTrace, it takes 15 minutes to compute the two metrics on the whole
dataset.

Fig. 5.3 shows the CDF of the slope on the 847K (AS path length)
and 820K (Tier 1 in the AS path) (source, destination) pairs for which the
correlation coefficient is above 0.4, a threshold where the predicted line and
the actual time series are moderately correlated [153]. A negative slope
indicates that the metric is decreasing, while a positive slope indicates that
the metric is increasing. We show the results for all paths, paths going
to hypergiants [25] and paths to all ASes but hypergiants. There are two
takeaways. First, there is no clear trend showing that paths are shortening,
or turning into a less hierarchical structure, as there are for each metric at
least the same number of paths having a slope > 0 and a slope < 0. Second,
we observe that the metrics for paths to hypergiants are more stable than
paths to other ASes. For instance, 59% of the paths to hypergiants have
a slope of 0 for AS path length, against 27% for the other paths. This is
surprising, as we would expect hypergiants to be faster than other ASes to
make new peerings and reduce their Tier 1 dependency.

Limitations To be clear, these results are limited to Ark’s monitors, and
we are not denying here the existence of Internet flattening. Indeed, prior
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work has shown that Google could reach 76% of the ASes of the Internet in
one hop [12], and that they are continually expanding and limited the Tier
1’s influence [12, 62]. This study only sheds light on what we can find on AS
path length and Tier 1 influence with a more rigorous statistical method than
prior work on the Ark dataset over 5 years, i.e., that there is no evidence of
a decrease of the AS path length or of the influence of Tier 1s.

5.9 Conclusion

We presented MetaTrace, a framework for fast traceroute processing useful
for both operators and researchers. We showed that MetaTrace can serve
predicate queries more than 500 times faster than a multiprocessed Rust
implementation and more than 3 times faster than a raw database. With
MetaTrace, we show that a non-negligible number of source and destination
pairs, especially in IPv6, can experience stars that can hide entire ASes
from the AS path. Finally, MetaTrace allowed us to perform a study on
Internet flattening over 5 years on 6 billion traceroutes, and showed the lack
of statistical evidence of a trend where Tier 1 influence or AS path length
decreases.



Chapter 6

Conclusion

This chapter concludes the thesis by giving a summary of the contributions
and presenting the perspectives of this work.

6.1 Summary of contributions

This thesis presented contributions that scale the capture and the analysis of
route tracing data.

We first designed and developed Zeph, an algorithm based on a rein-
forcement learning approach to make the most of multiple vantage points
and maximize the discovery of IP-level topology. We also developed Iris, a
production-ready measurement platform based on open-source components
and code, which allows for the use of high-speed probing of single-path and
multi-path IP routes at Internet-scale. With the combination of Zeph and
Iris, we were able to capture 10 times more links than the previous state of
the art and now provide regular IP-level topology datasets to the Internet
measurement community.

The analysis of route tracing data requires to use additional metadata,
such as IP geolocation or IP-to-AS resolution, to conduct meaningful studies.
We have developed metrics and tools to study the data from a well-known
commercial IP geolocation database and have found that geolocation data
can be highly dynamic over time. We have shared these insights with the
community to help them use this valuable data without introducing bias into
their own studies.

Collecting a massive amount of traceroute data requires rethinking the
way we analyze it at scale. We designed and developed a new MetaTrace,
a large-scale traceroute processing framework, that handles the storage and

79
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querying of route tracing data along with additional metadata in an efficient
way. This enables us to fully benefit from data series such as Iris and Zeph,
as well as data from other platforms like Ark [26] and RIPE Atlas [148], and
metadata like IP geolocation and IP-to-AS resolution from various sources.
With MetaTrace, we analyzed incomplete AS paths due to stars in traceroutes
and examined Internet flattening over 5 years of route tracing data.

All of the presented tools are available to the community as free, open-
source and liberally licensed software [159].

6.2 Perspectives

The contributions presented in this thesis allow scaling the capture and the
analysis of the Internet topology. It leverages high-speed probing tools [21,
168, 79] that present both an opportunity and a danger. Probing faster enable
more complete maps or tracking changes at a smaller temporal granularity.
But these measurements can be considered harmful. Probed repeatedly,
routers may have to allocate a significant amount of resources to handle
probes and respond to it, potentially disrupting the traffic of other networks’
users. The measurements could also trigger Intrusion Detection System
(IDS) alarms that could disrupt the monitoring of network components of
the Internet. Network operators may use a rate limiting configuration on
router interfaces, which limit the number of packets per second crossing this
interface for a particular category of traffic. It usually has a default value
that can be tuned by network operators. When a probe is dropped by a
router interface due to rate limiting, no response is generated, so a traceroute
will display a star. This can lead to bias in the results of the measurements
themselves.

The Menlo Report [92] introduced the principle of Beneficence applied
to information and communication technology research. They described it
as “the concept of appropriately balancing probable harm and likelihood of
enhanced welfare resulting from the research”. In particular, they define
beneficence as “the maximization of benefits and minimization of harms”.
Partridge et al. [132] precised this concept to Internet measurement: “we
offer that a single ICMP echo request to an IP address constitutes at best
slight harm. Meanwhile, a persistent high-rate series of probes to a given IP
address may well be viewed as both an attack and create serious harm (e.g.,
by clogging a link precisely when it is needed for an emergency).”

In this perspective paragraph, we discuss on the ethics of Internet measure-
ments by: (1) proposing a definition of beneficence for ping and traceroute
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measurements based on rate limiting; and (2) stating the challenges for
making measurements that meet our definition.

6.2.1 Use of rate limiting as a beneficient proxy

Rate limiting is a way for operators to specify that traffic is abnormal.
Previous studies have shown that measuring below the router’s rate limit
moderate the use of resources and do not affect the results of external
measurements [167]. In this context, we propose to define that a ping or
traceroute measurement is beneficient if it minimizes the rate limit violations
of a device.

This definition is subject to debate, but has the quality of defining
a measurable value, chosen by each operator, as what it considers to be
abnormal traffic for its network. However, previous studies have shown that
a significant portion of operators uses a default rate limit value, which does
not reflect a desire to limit ping and traceroute traffic. To assist operators
in choosing this setting, previous studies have shown the impact of different
probing rates on the resources consumed by routers [167].

In favor of our definition, we mention that rate limiting is mandatory in
IPv6 [50], and thus the rate limit will be more and more a factor to be taken
into account by the different actors who make measurements in the Internet.

6.2.2 Challenges in building a beneficient system

The definition we propose for the particular case of ping and traceroute
measurements is more concrete than those proposed in previous works, but it
brings additional challenges. (1) Unless the operator discloses the rate limit
configured on its interfaces, whoever is measuring does not know the rate
limit a priori. The first challenge is therefore to measure the rate limit of the
interfaces. (2) If we know the rate limit of the interfaces, we still have to
design measurement algorithms that respect this rate. The second challenge
is to build a system which, with the knowledge of the limit rates, will carry
out its measurements to try to never exceed the limit rate.

We do not yet have definitive and evaluated solutions to meet these
challenges, but we do describe paths to building solutions and the problems
they will face.

How to measure the rate limit of an interface?

The rate limit can vary greatly from one interface to another, from a few
packets per second to tens of thousands [167].
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Since the signal for exceeding the rate limit is a loss (non-response to
a packet), solutions that seem interesting are adaptive algorithms such as
AIMD (additional increase, multiplicative decrease) of the TCP protocol.

In the case of ping type measurements, we can directly apply these algo-
rithms by probing the destinations, as it is the destinations themselves that
respond to the probed packets. In the case of traceroute type measurements,
the problem is different, because the measurements are indirect: the destina-
tion address of the probe packet is not the address that responds, and without
prior knowledge, we do not know which address will respond. A possible
solution is therefore to perform initial measurements with a conservative rate
(e.g., 100 pps) to find out which interfaces correspond to which correspond
to traceroute probes. We can then apply our TCP-inspired algorithms to
measure the rate limit. Note that although these algorithms work for any
rate limit, it seems obvious that setting a maximum rate is necessary. There
is no need to send tens of thousands of packets per second to an interface.

These techniques seem feasible, but raise several questions.
(1) can we scale up these techniques? From 6 measurement points, we

find in Chap. 3 that the Internet topology is composed of at least 3.3 million
interfaces. We propose the following rough estimate that corresponds to a
realistic infrastructure: we have 6 measurement points that can probe at
100,000 pps. We take an initial rate of 1 pps, a maximum rate of 128 pps and
a multiplication factor of 2. Assuming that no interface has a limiting rate
below 128 pps, and assuming that we can distribute the number of interfaces
between our 6 nodes, the number of probes to send per interface is therefore∑7

k=1 2k = 254, and so the total number is 838,200,000, or 1.397 seconds,
which is about 23 minutes, a time that seems reasonable.

(2) How can we be confident that a loss is due to self-induced rate limiting?
It is possible that a loss is due to other factors, such as congestion, or a path
change to a router that does not respond to probe packets. We can probably
use signals corresponding to the two phenomena mentioned above, such as
the increase in the variance of RTT for congestion, and BGP update messages
collected by public collectors, BGP communities, or even path changes in
public traceroutes [64].

(3) What if the initial measurements become invalid? Even if the Internet
paths are globally stable, it is possible that our initial measurements are
no longer valid. Indeed, with 10M prefixes /24 routed, one traceroute per
prefix, and on average one traceroute path with 15 interfaces, it takes about
17 days to complete these initial measurements. Recent work showed that
16% of the paths were invalid after 17 days [64]. In our case, we can just
check before launching the rate limit measurements that there is at least one
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traceroute probe per interface that is still valid to measure the rate limit of
this interface.

(4) What to do when the rate limit is implemented by routers in terms
of bandwidth used by ping and traceroute traffic? In this case, all ping or
traceroute traffic, past a certain limit will be lost on the path beyond the router
that applies to this rule. Preliminary studies show that this is not a common
phenomenon [167], but it can add time to the rate limit measurements of
interfaces on the paths after these routers because these routers represent
bottlenecks, and it may even make our rate limit measurements impossible
if the interfaces beyond these routers have a higher rate limit than these
routers.

How not to exceed the rate limit during a measurement?

Once the interface rate limit has been determined, the next step is to adapt
the measurement so that it does not trigger this rate limit. To do this, the
probes must be scheduled so that the probing rate of an interface does not
exceed the threshold rate, or even a fraction of the threshold rate to be even
more conservative.

As before, this is fairly straightforward to implement for ping probes, but
it is more complicated for traceroutes, because we don’t know in advance
which interface will respond to a traceroute probe. However, we can use the
results of the initial measurements to obtain the correspondence between
traceroute probes and respond interfaces.

Here, however, we run into several problems.
(1) As seen previously, the Internet paths are dynamic (although globally

stable), which can disturb our algorithm. Indeed, for example, if a path
changes and the traceroute probe now passes through an interface that we
previously probed that was close to its rate limit, this new probe can trigger
the rate limit. An imprecise but simple approach is to predict that the
interface that will respond is the one that responded previously. Given the
stability of the paths of the Internet, if we can get regular information about
traceroutes from the same source to the same destination (on a scale of a
few minutes), there is little risk of error. A more accurate approach, but one
that requires more thought, is to try to predict which interface will respond
to a traceroute. This is the most exploratory part of this future work, but
perhaps approaches based on learning about path changes is a way forward.
Indeed, we can restrict the set of possible paths to which a path can change
from the existing topology, assuming that one has a fairly complete view of
the paths from a source, a reasonable assumption given the stability of the
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paths from the Internet [64].
(2) The second problem is the same as for the measurement of interface

rate limits: How can one be confident that a loss corresponds to a rate limit
violation? The solution may lie in a statistical model based on previous
measurements to these interfaces, which could tell whether a certain loss rate
is likely or not.

(3) Finally, what to do when the rate limit is triggered despite our efforts?
In this case, we have to decrease the polling on some interfaces, which will
either lengthen the measurement time, or, if we decide not to send all the
probes, reduce the completeness of the data. It will then be necessary to
choose which probes we decide not to send. In this case, it will probably
be possible to give several use cases and choose the probes not to be sent
according to these cases (e.g., maximizing discovery in certain parts of the
network, or maximizing the number of complete paths).
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