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M. Serge Cantat Université de Rennes I président du jury
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O.V.



4



Remerciements

Pour commencer, j’aimerais remercier Andrés pour avoir été un directeur dévoué pendant ces trois
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candidatures. Enfin, je remercie Anna Wienhard pour l’intérêt qu’elle porte à mon travail et pour son
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Abstract

In this thesis, we construct Zariski-dense surface subgroups in some higher rank lattices. More pre-
cisely, we exhibit infinitely many commensurability classes of both uniform and non-uniform lattices
of SL(n,R), SO(k + 1, k), Sp(2n,R) and G2 that contain images of representations in higher rank
Teichmüller spaces.

In the first part, we construct Hitchin representations with image in lattices. One of our main
results is the classification of lattices that contain the image of a Fuchsian representation. The proof
relies on the classification of forms of algebraic groups using non-abelian Galois cohomology. A “bend-
ing” deformation then allows us to construct Zariski-dense surface subgroups in those lattices, and
using the Strong Approximation Theorem we show that these deformations give infinitely many dif-
ferent subgroups. As a corollary, combined with [LT20] who deal with the case SL(p,Z), we obtain
that all non-uniform lattices of SL(p,R), where p ̸= 2 is a prime, admit Zariski-dense Hitchin repre-
sentations. Furthermore, every lattice of Sp(2n,R), except Sp(2n,Z), contains Zariski-dense Hitchin
representations. Together with [LT18] for the case Sp(4,Z), this implies that all lattices of Sp(4,R)
admit Zariski-dense surface subgroups. Similar results hold for SO(k + 1, k) and G2.

In the second part, we apply the above ideas to maximal representations in Sp(2n,R) and classify
lattices that contain the image of a diagonal maximal representation. We then show that all lattices
of Sp(2n,R), except Sp(2n,Z) when n is odd, contain infinitely many mapping class group orbits of
Zariski-dense maximal representations that are not Hitchin. In particular, Sp(4k,Z) admits Zariski-
dense surface subgroups for all k ≥ 1.
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Résumé

Dans cette thèse, nous construisons des sous-groupes de surface Zariski-denses dans certains réseaux
en rang supérieurs. Plus précisément, nous exhibons une infinité de classes de commensurabilité de
réseaux à la fois uniformes et non-uniformes de SL(n,R), SO(k+1, k), Sp(2n,R) et G2 qui contiennent
les images de représentations dans des espaces de Teichmüller de rang supérieur.

Dans la première partie, nous construisons des représentations Hitchin dont l’image est dans un
réseau. Un de nos résultats principaux est la classification des réseaux qui contiennent l’image d’une
représentation Fuchsienne. La preuve repose sur la classification des formes des groupes algébriques
via la cohomologie de Galois non-abélienne. Une déformation par “pliage” nous permet ensuite de
construire des sous-groupes de surface Zariski-dense dans ces réseaux, et en utilisant le Théorème
d’Approximation Forte nous montrons que ces déformations donnent une infinité de sous-groupes
différents. Comme corollaire, combiné avec [LT20] qui trâıte le cas SL(p,Z), nous obtenons que tous
les réseaux non-uniformes de SL(p,R) , où p ̸= 2 est premier, admettent des représentations Hitchin
Zariski-denses. En outre, tout réseau de Sp(2n,R), excepté Sp(2n,Z), contient des représentations
Hitchin Zariski-denses. Avec [LT18] pour le cas Sp(4,Z), cela implique que tout réseau de Sp(4,Z)
contient des sous-groupes de surface Zariski-denses. Des résultats similaires sont valables pour SO(k+
1, k) et G2.

Dans la deuxième partie, nous appliquons les idées ci-dessus aux représentations maximales dans
Sp(2n,R) et classifions les réseaux qui contiennent l’image d’une représentation diagonale maximale.
Nous montrons ensuite que tout réseau de Sp(2n,R), excepté Sp(2n,Z) quand n est impair, contient
une infinité d’orbites par le mapping class group de représentations maximales Zariski-denses qui ne
sont pas Hitchin. En particulier, Sp(4k,Z) admet des sous-groupes de surface Zariski-denses pour
tout k ≥ 1.
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Introduction

Thin groups

Let G be a semisimple Lie group. A lattice is a discrete subgroup Λ of G such that Λ\G has finite
volume for the Haar measure of G. Lattices have been proven to be a central object in Riemannian
geometry as they model finite-volume manifolds with interesting geometric properties. There is a
systematic way to construct lattices using arithmetic. A major breakthrough in the 70’s was made by
Margulis who showed that in higher rank, all lattices come from this construction [Mar91], allowing
one to classify them. However, subgroups of lattice are far less understood and are a very active field
of research.

Borel’s Density Theorem (Theorem 2.1.8 below) states that, under some mild assumptions, lattices
are Zariski-dense in G. Being Zariski-dense is a generic property for subgroups of G. In particular,
Zariski-dense discrete subgroups of Lie groups receive a lot of interest.

However, if a Zariski-dense subgroup Γ is contained in an arithmetic lattice, numerous number-
theoretic questions arise. For instance, the reduction of Γ makes sense and it satisfies the Strong
Approximation Theorem, which we states in the simple case of SL(n,Z) but which holds more gener-
ally, see Theorem 2.5.5.

Theorem 0.1 (Matthews−Vaserstein−Weisfeiler [MVW84]). Let Γ < SL(n,Z) be a Zariski-dense
subgroup. Then for all but finitely many primes p, Γ surjects onto SL(n,Fp).

More importantly, it satisfies the Super-strong Approximation Theorem [GV12] which has nu-
merous applications in Diophantine analysis. For example, the Apollonian group is a Zariski-dense
subgroup of an arithmetic lattice of SO(3, 1) and its number-theoretic properties are related to con-
jectures on circle packings, see [Kon13].

If Λ is a lattice, its finite-index subgroups are still lattices, hence Zariski-dense. However, there
exists subgroups of Λ that are Zariski-dense but not lattices themselves. These subgroups are said to
be thin and attracted a lot of attention recently [KLLR19].

Definition 0.2 (Sarnak [Sar14]). A subgroup of Λ is said to be thin if it is infinite index and Zariski-
dense in G.

A theorem of Tits ([Tit72, Theorem 3]) states that Λ contains thin non-abelian free subgroups.
Among Gromov-hyperbolic groups, the next step after free groups are surface groups: fundamental
groups of a closed connected orientable surfaces of genus at least 2. Surface subgroups of lattices
have been proven to be of major importance in topology. The study of 3-manifolds, for instance, has
lead to the investigation of surface subgroups of lattices of SO(3, 1). In their celebrated work [KM12],
Kahn and Markovic exhibit surface subgroups in all uniform lattices of SO(3, 1), using the dynamical
properties of lattices.

Theorem 0.3 (Kahn−Markovic [KM12]). Let M be a closed connected 3-dimensional hyperbolic
manifold. Then π1(M) contains a surface subgroup.

Theorem 0.3 was a major tool in the proof of the Virtual Haken conjecture by Agol [Ago13]. In an
attempt to generalize this theorem, the following question has been the subject of numerous researches.

Question 0.4. Let Λ be a lattice of G. Does Λ contain a thin surface subgroup?

15
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It is generally believed that, outside of some obvious restrictions, the answer to Question 0.4 should
be positive. Using tools from [KM12], Hamenstädt proved that when G is a simple non-compact rank 1
Lie group not isomorphic to SO(2n, 1), all uniform lattices ofG contain a surface subgroup [Ham15], see
also [Dou22a]. Kahn, Labourie and Mozes [KLM18] extended this result for several other semisimple
Lie groups, notably the complex ones. However, as explained in §1.2 of [KLM18], their constructions
do not work when G is real split, i.e. when the real rank of G is equal to its complex rank.

The case we are interested in is the one of lattices of split real Lie groups. In [LRT11], Long, Reid
and Thistlethwaite first constructed explicit examples of thin surface subgroups in SL(3,Z). Long and
Thistlethwaite then generalized this to SL(4,Z) and Sp(4,Z). More recently, they showed that for all
k ≥ 1, SL(2k + 1,Z) contains a thin surface subgroup [LT20]. These results are proven by means of
Hitchin representations, see below. It is still unknown whether SL(2k,Z) has thin surface subgroups
for k ≥ 3. However, we prove that Sp(4k,Z) does for k ≥ 1, see Theorem F.

In this thesis, we construct thin surface subgroups in some lattices of split real Lie groups, see
below for precise statements. The lattices that appear in our theorems were all known to contain
surface subgroups. However these subgroups are not even irreducible.

Finally, we mention that other groups have been proven to be thin subgroups of lattices. See for
instance Ballas and Long [BL20] and [Bal20] for fundamental groups of hyperbolic manifolds inside
SL(n,R) and Douba [Dou22b] for right-angled Coxeter groups in O(p, q).

The Hitchin component

For any g ≥ 2, denote by Sg a closed connected orientable surface of genus g ≥ 2. The Teichmüller
space of Sg is the space of marked hyperbolic structures on the surface up to isotopy. This space
is a the intersection of various mathematical fields and has been studied extensively. In [Gol82],
Goldman showed that the Teichmüller space of Sg is naturally isomorphic to a connected component
of Hom(π1(Sg),PSL(2,R))/PSL(2,R) where all representations are faithful and with discrete image.

Whenever G is a Lie group, we can endow Hom(π1(Sg), G) with the compact-open topology. We
denote by

X(Sg, G) = Hom(π1(Sg), G)/G

the quotient by the action of G by conjugation and call it the character variety. As analogy with the
Teichmüller space of Sg, one can look for “special” connected components of the character variety and
try to understand their geometric meaning. This lead to the following definition.

Definition 0.5 (Wienhard [Wie18]). A higher rank Teichmüller space is a connected component of
X(Sg, G) that consists only of discrete and faithful representations.

In [Hit92], Hitchin showed that the character variety X(Sg,PSL(n,R)) has 3 connected components
for n ≥ 3 odd and 6 connected components for n ≥ 4 even. One of them is homeomorphic to
R2(n2−1)(g−1): this is the Hitchin component. More precisely, for n is even, there are two Hitchin
components.

For any n ≥ 2 denote by τn : SL(2,C)→ SL(n,C) the representation where(
a b
c d

)
∈ SL(2,C)

acts on the space of homogeneous polynomials in two variables X and Y of degree n− 1 as(
a b
c d

)
Xn−i−1Y i = (aX + cY )n−i−1(bX + dY )i

for every 0 ≤ i ≤ n− 1. We call τn the irreducible representation. Up to conjugation, this is the only
n-dimensional representation of SL(2,C). Denote also by τn : PGL(2,C) → PGL(n,C) the induced
representation.

Definition 0.6. A Fuchsian representation is a representation of the form τn ◦ ρ where ρ : π1(Sg)→
PSL(2,R) is discrete and faithful.
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The Hitchin component is a connected component of X(Sg,PSL(n,R)) that contains a Fuchsian rep-
resentation.

When n = 3, Goldman and Choi proved in [Gol90] and [CG93] that the Hitchin component
parametrizes marked convex projective structures on Sg. This geometric interpretation of the Hitchin
component implies that it consists only of discrete and faithful representations. Using τ3, the Te-
ichmüller space sits naturally in the Hitchin component of PSL(3,R). This reflects the fact that
hyperbolic structures are particular cases of convex projective strutures.

More generally, the Hitchin component is the prototypical example of a higher rank Teichmüller
space, as shown by Labourie and Fock-Goncharov.

Theorem 0.7 (Labourie [Lab06] Fock-Goncharov [FG06]). Hitchin representations are discrete and
faithful.

The geometric interpretation of the Hitchin component is still investigated. Guichard and Wienhard
[GW08] proved that when n = 4 the Hitchin component parametrizes properly convex foliated pro-
jective structures on the unit tangent bundle of Sg. Furthermore, it is conjectured that for all n the
Hitchin component corresponds to higher complex structures on the surface, see [FT21] and [Nol22].

Hitchin representations in lattices

The major result of this thesis is the construction of Zariski-dense Hitchin representations in lattices
of some split real Lie groups. The proof technique is completely different then the one presented in
Kahn and Markovic [KM12] since our construction is arithmetic.

In the first part, we classify the lattices that contain the image of a Fuchsian representation.
It is stated in the following theorem. We say that two subgroups of G are widely commensurable,
abbreviated w.c., if one is commensurable with a conjugate of the other.

Theorem A. For every lattice Λ of G listed in Table 1, there exists g ≥ 2 such that Λ contains the
image of a Fuchsian representation of π1(Sg). Furthermore, up to wide commensurability, these are
the only lattices of G that contain the image of a Fuchsian representation.

G n or k Λ

SO(k + 1, k) k ≥ 2, k ≡ 1, 2[4] Every lattice not w.c. with SO(q0,Z)

SO(k + 1, k) k ≥ 3, k ≡ 0, 3[4] SO(qF ,OF )

G2(R) Every lattice

Sp(2n,R) n ≥ 2 Every lattice not w.c. with Sp(2n,Z)

SL(2k + 1,R) k ≥ 1 SL(2k + 1,Z) or SU(I2k+1, σ;OF [
√
d])

SL(2n,R) n ≥ 2 SL(n,O) or SU(In, ⊗ σ;O ⊗OF [
√
d])

Table 1: Here F is any totally real number field, OF its ring of integers and d any element of OF which
is not a square and is positive at exactly one real place of F , say ι. Moreover O is any order of any
quaternion division algebra over F which splits exactly at ι. If k ≡ 0, 3[4], let qF be a non-degenerate
quadratic form of rank 2k+1 over F that has trivial discriminant, trivial Hasse invariant at each finite
place of F , which is positive definite at all real places of F except one where it has signature equal to
(k + 1, k) if k ≡ 0[4] or to (k, k + 1) if k ≡ 3[4]. If k ≡ 1, 2[4], let q0 be a non-degenerate quadratic
form of rank 2k + 1 over Q that has trivial discriminant, trivial Hasse invariant at each odd prime,
non-trivial Hasse invariant at 2, signature equal to (k, k+1) if k ≡ 1[4] or to (k+1, k) if k ≡ 2[4]. See
Section 2.3 for definitions.

See Example 2.3.8 for a uniform lattice of SL(3,R) that is not in Table 1. This Theorem implies
that, up to finite cover, the corresponding locally symmetric space K\G/Λ, where K is a maximal
compact subgroup of G, contains a totally geodesic surface of irreducible type, i.e. such that the copy
of the hyperbolic plane in K\G comes from an irreducible embedding of SL(2,R) in G.
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Theorem A is proven using non-abelian Galois cohomology. This cohomology theory allows one to
reformulate the question in number theoretic terms. When G = SO(k+1, k) for instance, it relates to
the classification of quadratic forms over number fields. For G = Sp(2n,R), it reduces to classifying
certain -Hermitian forms over quaternion algebras. With G2(R) one needs to study octonion algebras
over number fields. Etc.

Let Λ be a lattice in G as in Table 1. Following Theorem A, it contains a Fuchsian representation
ρ. Its image is not Zariski-dense since it lies in a principal SL(2,R). To construct Zariski-dense
Hitchin representations in Λ, we deform ρ using a “bending” deformation. The bending technique was
introduced by Johnson and Millson [JM86] and has already been used to construct thin subgroups,
see [LT20] or [BL20]. To bend, we need to find a simple closed curve on the surface which has a big
enough centralizer in Λ. For Λ = SL(2k + 1,Z) or Λ = SL(n,O) for an order O, this is not possible.
Since the deformed representations lie in the Hitchin component, they are still faithful and their image
is thus a surface subgroup. To control their Zariski-closure, we make use of the following classification.

Theorem 0.8 (Guichard [Gui], see also Sambarino [Sam20]). Let ρ : π1(S)→ PSL(n,R) be a Hitchin
representation. Then the Zariski-closure of ρ is either PSL(n,R), a principal SL(2,R) or conjugated
to one of the following:

• PSp(2k,R) if n = 2k,

• SO(k + 1, k) if n = 2k + 1,

• G2(R) if n = 7.

Denote by MCG(Sg) the mapping class group of Sg, i.e. the group of orientation preserving
homeomorphisms of the surface up to isotopy. Homeomorphisms of the surface induce automorphisms
of the fundamental group. Hence MCG(Sg) acts naturally on the character variety by precomposition.
The action of MCG(Sg) on the Hitchin component is properly discontinuous [Lab08]. Given a Hitchin
representation in a lattice, one can use the action of the mapping class group to produce infinitely
many other Hitchin representations in this lattice. It is more involved to construct representations that
are not in the same orbit. Using the Strong Approximation Theorem (Theorem 0.1) we prove that the
bending procedure gives rise to infinitely many mapping class group orbits of Hitchin representations.

Theorem B. Let Λ be a lattice of G listed in Table 1. Suppose that Λ is not widely commensurable
with SL(2k + 1,Z) or SL(n,O) for any order O. Then there exists g ≥ 2 such that Λ contains the
image of infinitely many MCG(Sg)-orbits of Zariski-dense Hitchin representations of π1(Sg).

For a given lattice Λ, the genus g in Theorem B agrees with the genus g in Theorem A. Theorem B
should be compared to the result of Borel which states that for all g ≥ 2, there are only finitely many
Teichmüller representations of Sg in arithmetic subgroups of PSL(2,R) up to MCG(Sg) (Theorem
11.3.1 in [MR03]).

Note that surface subgroups have to be of infinite index in the lattices considered here because
the virtual cohomological dimension of a surface group is 2 and the virtual cohomological dimension
of the lattices is at least 3, see Aramayona, Degrijse, Mart́ınez-Pérez and Souto [ADMPS17]. Hence
the image of representations constructed in Theorem B are thin surface subgroups.

The lattice SL(2k + 1,Z) has been shown to contain infinitely many conjugacy classes of thin
Hitchin representations by Long and Thistlethwaite [LT20]. This result was also announced by Burger,
Labourie and Wienhard, see Theorem 24 in [Wie18] and [Bur15].1 Together with Theorem B, this
implies the following.

Corollary C. Let p ̸= 2 be a prime. All non-uniform lattices of SL(p,R) contain Zariski-dense
Hitchin representations.

This corollary is a generalization of a theorem of Long, Reid and Thistlethwaite that states that all
non-uniform lattices of SL(3,R) contain infinitely many conjugacy classes of Zariski-dense Hitchin
representations, see [LRT11] and [LR14]. Theorem B together with Long and Thistlethwaite [LT18]
for Sp(4,Z) give the following corollary.

1Precisely, they announced that for k ≥ 2, SL(2k + 1,Z) contains infinitely many MCG(Sg)-orbits of Zariski-dense
Hitchin representations for all g ≥ 2.
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Corollary D. All lattices of Sp(4,R) contain Zariski-dense Hitchin representations.

Maximal representations in Sp(2n,R)

Endow the symmetric space Sp(2n,R)/U(n) with its unique Hermitian metric ω of minimal holomor-
phic sectional curvature −1. Let ρ : π1(Sg) → Sp(2n,R) be a representation. There exists a smooth
ρ-equivariant map f : S̃g → Sp(2n,R)/U(n). The form f∗ω is invariant under the covering action of
π1(Sg) and thus defines a form on Sg. Define the Toledo invariant of ρ as

T(ρ) =
1

2π

∫
Sg

f∗ω.

It is an integer and satisfies the following inequality

(2− 2g)n ≤ T(ρ) ≤ (2g − 2)n

see [Tur84]. A representation is said to be maximal if T(ρ) = ±(2g − 2)n. For instance, Hitchin
representations with image in Sp(2n,R) are maximal. More generally, we have the following.

Theorem 0.9 (Burger−Iozzi−Wienhard [BIW10]). Maximal representations are discrete and faithful.

Consider the diagonal embedding

ϕn : SL(2,C)→ Sp(2n,C)

A 7→

A
A

.
We denote also by ϕn the induced embedding of PGL(2,C) in PSp(2n,C). If ρ : π1(Sg)→ SL(2,R) is
a discrete and faithful representation, ϕn ◦ρ is a maximal representation. In this thesis, we call such a
representation a maximal diagonal representation. Since the Toledo invariant is constant on connected
components, any continuous deformation of a maximal diagonal representation is also maximal. Hence
it lies in a higher rank Teichmüller space.

In the last part of this thesis, we construct Zariski-dense maximal representations that are con-
tinuous deformations of maximal diagonal representations. The following proposition is analogous to
Theorem A.

Proposition E. Every lattice of Sp(2n,R), not widely commensurable with Sp(2n,Z) when n is odd,
contains the image of a maximal diagonal representation of some genus. Conversely, when n is odd,
Sp(2n,Z) does not contain the image of a maximal diagonal representations of any genus.

See Proposition G for a more precise version of this proposition. The situation here is quite different
to the one of Theorem A because the image of ϕn has a big centralizer in the symplectic group while
the image of τn has a finite centralizer. Because of this, the classification is more subtle than in the
Hitchin setting. Deforming those maximal diagonal representations, we prove the following.

Theorem F. Let n ≥ 2 and Λ be a lattice of Sp(2n,R), not widely commensurable with Sp(2n,Z)
when n is odd. Then there exists g ≥ 2 such that Λ contains infinitely many MCG(Sg)-orbits of
Zariski-dense maximal representations of π1(Sg). Furthermore these representations are continuous
deformations of maximal diagonal representations.

In particular, for all k ≥ 1, Sp(4k,Z) contains infinitely many non-conjugate Zariski-dense surface
subgroups. The proof of Theorem F is similar to the one of Theorem B, with the necessary adaptations.
In the proof of Theorem B the trace of the bend representations is sufficient to distinguish the mapping
class group orbits. However, this is no longer true for diagonal maximal representations and one need
a finer control on the reduction of the bend representations to finite fields.
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Method

Theorem A and Proposition E are established by considering representations of lattices of SL(2,R)
that are arithmetic, i.e. lattices that are the “integer points” of an algebraic group over Q. Given
an arithmetic lattice Γ of SL(2,R), we classify which lattices contains the image of τn(Γ) or ϕn(Γ).
For the case of ϕn(Γ), the classification is described in the following proposition. It is a more precise
version of Proposition E which takes into account the arithmetic data given by Γ.

Proposition G. Let Γ be an arithmetic lattice in SL(2,R) which is commensurable with the elements
of norm 1 in an order OΓ of a quaternion algebra over a totally real number field F .

If n is even, ϕn(Γ) < SU(In, ;O), up to wide commensurability, for any order O in any quaternion
algebra over F that splits at exactly one place of F . Furthermore, up to wide commensurability, these
are the only lattices of Sp(2n,R) that contain ϕn(Γ).

If n is odd, ϕn(Γ) < SU(In, ;OΓ), up to wide commensurability. Furthermore, up to wide com-
mensurability, this is the only lattice of Sp(2n,R) that contains ϕn(Γ).

To illustrate this proposition, let p ≡ 3[4] be a prime. Then

Γp =

{(
x0 + x1

√
p x2

√
p+ px3

x2
√
p− px3 x0 − x1

√
p

) ∣∣∣ xi ∈ Z, x20 − px21 − px22 + p2x23 = 1

}
is an arithmetic lattice of SL(2,R) which is a surface group (it is build out of the quaternion division
algebra (p, p)Q, see Example 2.3.4). Even thought ϕn(Γp) lies in Sp(2n,Z[

√
p]), Proposition G implies

that it can be conjugated within Sp(2n,Z) if and only if n is even.
This proposition has analogues in the Hitchin setting, see Propositions 3.2.2 for SO(k+1, k), 3.3.1

for G2, 3.4.1 for SL(2k + 1,R), 3.6.1 for Sp(2n,R) and 3.7.1 for SL(2n,R). To prove Proposition G,
or any of the aforementioned propositions, we reformulate the problem in terms of algebraic groups
using the following fact. If F is a number field and f : G → H is a F -morphism, then f(G(OF ) lies
inside H(OF ) up to finite index, see Proposition 2.2.6.

We can then appeal to non-abelian Galois cohomology which classifies algebraic groups. More
precisely, for a number field F , the first Galois cohomology set H1(Gal(Q /F ),Aut(G(Q)) is in bijection
with isomorphism classes of F -forms, i.e. F -algebraic groups that become isomorphic to G over Q
(Proposition 1.6.9 below).

Let Γ be an arithmetic subgroup of SL(2,R). It is the “integer points” of a F -form of SL2 for a
totally real number field F . The latter corresponds to a 1-cocycle ξ ∈ H1(Gal(Q /F ),Aut(SL(2,Q))).
The goal is to classify 1-cocycle of H1(Gal(Q /F ),Aut(Sp(2n,Q))) such that the corresponding F -form
contains ϕn(Γ). Note that there is at least the 1-cocycle ϕn ◦ ξ. For n odd, this is the only one, but
for n even there are many others. We then have to determine the F -forms of Sp2n associated to such
1-cocycles.

Let G be an F -form of Sp2n as above. As explained above, ϕn(Γ) is contained in G(OF ) up to
finite index. For G(OF ) to be a lattice of Sp(2n,R), we need that the R-points G(Rσ) are compact
for all embeddings σ : F ↪→ R except for one which satisfies G(Rσ) ≃ Sp(2n,R). This is checked case
by case.

Organization of the thesis

The first two chapters provide the necessary background. In Chapter 1, we present the number
theoretic tools that will be used throughout all this manuscript: number fields, quaternion algebras,
linear algebraic groups. We end this chapter by presenting non-abelian Galois cohomology. The latter
will be of major importance in this thesis. In Chapter 2 we define the notion of arithmetic subgroup
of a Lie group. They are particular examples of lattices and as such play a major role in geometry.
We give several examples of arithmetic groups that were mentioned in Table 1. Finally, we present
some classification results for arithmetic subgroups.

The next two chapters present a construction of Hitchin representations in lattices. We establish
Theorem A in Chapter 3. For each Lie group of Table 1, we give a more precise version of the theorem:
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Proposition 3.2.2 for SO(k + 1, k), Proposition 3.3.1 for G2(R), Proposition 3.4.1 for SL(2k + 1,R),
Proposition 3.6.1 for Sp(2n,R) and Proposition 3.7.1 for SL(2n,R). The proof relies mainly on
number theoretic considerations. The main goal of Chapter 4 is to prove Theorem B. We first deal
with the Zariski-closure of Hitchin representations. This requires us to determine the centralizer of a
given simple closed curve in the given lattice. This is done using Galois cohomology, or for uniform
lattices using a geometric argument. Lastly, we use the Strong Approximation Theorem to guarantee
that our construction provides infinitely many mapping class group orbits of Hitchin representations.
Corollaries C and D are proven in this chapter.

Chapter 5 is dedicated to constructing maximal representations in lattices of Sp(2n,R) that are
deformation of a maximal diagonal representation. Using Galois cohomology, we first prove Proposition
E, see Proposition G for a finer version. We then adapt the considerations of the previous chapter to
this setting. We finish this thesis with the proof of Theorem F.
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Chapter 1

Forms of algebraic groups

In this chapter we present the number theoretic background necessary to construct and classify arith-
metic subgroups. After number fields, we define quaternion algebras and more generally central simple
algebras. These allow us to give examples of linear algebraic groups. We then deal with exceptional
groups of type G2. Finally, we introduce Galois cohomology and how it classifies forms of algebraic
groups. The main reference here is Platonov and Rapinchuck’s book [PR94].

1.1 Number fields

Definition 1.1.1. A number field F is a field that is a finite dimensional Q-vector space. The degree
of F is the dimension of F as a Q-vector space.

The field Q is the only number field of degree 1. Other examples of number fields include Q(
√
2)

which has degree 2 or Q( 3
√
2) which has degree 3. On the opposite, Q, the field of algebraic numbers,

is not a number field since it is infinite dimensional over Q.

Definition 1.1.2. The ring of integers of a number field F is

OF = {α ∈ F | ∃P ∈ Z[X] monic such that P (α) = 0}.

Examples 1.1.3. • Q has for ring of integers Z

• Q(
√
2) has for ring of integers Z[

√
2]

• Q(i
√
3) has for ring of integers Z[1+i

√
3

2 ]

• Q( 3
√
2) has for ring of integers Z[ 3

√
2]

Definition 1.1.4. Let F be a number field. A field homomorphism σ : F ↪→ C is called an embedding
in C. It is said to be real if σ(F ) ⊂ R, complex otherwise.

If σ : F ↪→ C is a complex embedding, its conjugate σ : F ↪→ C is another complex embedding.
Note that a field homomorphism is always injective.

Examples 1.1.5. • Q has one real embedding

• Q(
√
2) has two real embeddings which are σ1(a+ b

√
2) = a+ b

√
2 and σ2(a+ b

√
2) = a− b

√
2

• Q(i
√
3) has two complex embeddings that are conjugate

• Q( 3
√
2) has one real embedding and two complex embedding that are conjugate

Proposition 1.1.6. The degree of a number field F is equal to the number of embeddings of F in C.

Definition 1.1.7. A number field is said to be totally real if all its embeddings in C are real.

For instance, Q and Q(
√
2) are a totally real number fields while Q(i

√
3) and Q( 3

√
2) are not. Note

that there exists totally real number field of every degree.

25
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Definition 1.1.8. A place of a number field is either an embedding in C or a prime ideal of its ring
of integers.

Definition 1.1.9. Let P be a prime ideal of OF . The valuation associated to P is

νP : F → Z,
a

b
7→ max{m ∈ Z | a ∈ Pm}

max{m ∈ Z | b ∈ Pm}

where a and b are in OF . The absolute value associated to P is

|x|P = N−νP(x)

where N =
∣∣OF /P

∣∣.
The number field F is not complete for the absolute value |.|P . We denote by FP the completion

of F for this absolute value. It is a field extension of F .

Example 1.1.10. We present a description of the completions of Q. The prime ideals of Z are of the
form (p) for a prime number p. The valuation of Q associated to p is

νp : Q→ Z,
a

b
7→ max{m ∈ Z | pm|a}

max{m ∈ Z | pm|b}
.

The absolute value is |x|p = p−νp(x). It satisfies

|x+ y|p ≤ max(|x|p, |y|p)

for all x, y ∈ F . For this absolute value, the sequence pn for n ∈ N converges to 0. The completion of
Q for this absolute value is denoted by Qp. It is a locally compact field.

1.2 Quaternion algebras

Definition 1.2.1. Let K be a field of characteristic different from 2. A quaternion algebra over K is
a 4-dimensional K-algebra which admits a basis {1, i, j, k} such that 1 is the identity element and

i2 = a1, j2 = b1 and ij = −ji = k (1.1)

with a, b ∈ K×. We denote such an algebra by (a, b)K .

A quaternion algebra is necessarily non commutative. It is implicit in the definition that it is
associative. Note that the center of a quaternion algebra is the subspace spanned by 1 which can be
identified with K.

For any choice of a, b ∈ K there exists a unique quaternion algebra satisfying (1.1), up to isomor-
phism. Indeed, one can always define a quaternion algebra by considering the formal vector space

K ⊕Ki⊕Kj ⊕Kk,

defining a multiplicative structure on it following (1.1) and extending it linearly. However, for a given
quaternion algebra A there are several a, b ∈ K× such that A ≃ (a, b)K . For instance, one always have

(a, b)K ≃ (b, a)K ≃ (a,−ab)K ≃ (ax2, by2)K (1.2)

for any x, y ∈ K×.

Examples 1.2.2. • For any field K, M2(K) is a quaternion algebra. The following basis satisfies
(1.1) with a = b = 1:

1 =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
and k =

(
0 1
−1 0

)
.
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• The Hamiltonian quaternions H is a quaternion algebra over R. It is defined as H = R⊕Ri⊕
Rj ⊕Rk where

i2 = j2 = k2 = ijk = −1.

Proposition 1.2.3. If K is algebraically closed, the only quaternion algebra over K is M2(K).

Proof. Let (a, b)K be another quaternion algebra. Since a and b are squares in K, (1.2) implies that
(a, b)K ≃ (1, 1)K which is isomorphic to M2(K).

Proposition 1.2.4. Let a, b ∈ R×. Then

(a, b)R ≃
{

M2(R) if a or b is positive
H if both a and b are negative.

Proof. Let (a, b)R be a quaternion algebra. If both a and b are positive, they are squares in R.
Hence (a, b)R ≃ (1, 1)R ≃ M2(R). If a is positive and b is negative then (a, b)R ≃ (a,−ab)R which
is isomorphic to M2(R) as we previously said. If both of them are negative then their opposite are
squares so that (a, b)R ≃ H.

In the Hamiltonian quaternions H, every non zero element is invertible. Indeed, the inverse of an
element x = x0 + x1i+ x2j + x3k is

x

x20 + x21 + x22 + x23
.

Definition 1.2.5. We say that a quaternion algebra is a division quaternion algebra if every non zero
element is invertible.

Theorem 1.2.6. If A is a quaternion algebra over K then either A is M2(K) or A is a division
algebra.

It is a consequence of Theorem 1.3.4 which we will see later.

Definition 1.2.7. Let (a, b)K be a quaternion algebra over K. We define the conjugation on (a, b)K
as the map

x = x0 + x1i+ x2j + x3k 7→ x = x0 − x1i− x2j − x3k.

We define the reduced norm of a quaternion as Nrd(x) = xx ∈ K. We denote by A1 the elements of
A of reduced norm equal to 1.

The conjugation does not depend on the choice of the basis {1, i, j, k} of the quaternion algebra
A. Indeed, the subspace of A spanned by i, j and k can be characterized as the set of element that
are not in the center of A but which squares are in the center of A.

Example 1.2.8. In M2(K) the conjugate of a matrix is the transpose of its cofactor matrix and the
reduced norm is the determinant.

Definition 1.2.9. Let L be a field extension of K. We say that A splits over L if A⊗K L ≃ M2(K).
Otherwise we say that A ramifies over L.

To establish that two quaternion algebras over Q are non isomorphic, one can show that they are
not isomorphic over R or over Qp for a certain prime p.

Theorem 1.2.10 ([MR03, Theorem 2.6.6]). Let F be a number field and P a prime ideal of OF that
does not contain 2. Let a, b ∈ OF . Then

• if a, b ̸∈ P then (a, b)F splits over FP ,

• if a ̸∈ P and b ∈ P \ P2 then (a, b)F splits over FP if and only if a is a square modulo P,
• if a, b ∈ P \ P2 then (a, b)F splits over FP if and only if −a−1b is a square modulo P.
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Example 1.2.11. Let p ≡ 3[4] be a prime and consider the quaternion algebra (−1, p)Q. Since −1 is
not a square modulo p, (−1, p)Q ramifies over Qp and does not ramify over Ql for l ̸= p odd. Hence
the quaternion algebras (−1, p)Q are pairwise non isomorphic.

Using local invariants, on e can classify quaternion algebras over number fields.

Theorem 1.2.12 ([MR03, Theorem 7.3.6]). Let F be a number field.

• The set of places of F where A ramifies is finite of even cardinality.

• Two quaternion algebras over F are isomorphic if and only if they ramify at the same places.

• For any set S of places of F with even cardinality containing no complex embedding, there exists
a quaternion algebra over F that ramifies exactly at S.

1.3 Central simple algebras

Definition 1.3.1. Let K be a field of characteristic different from 2. A central simple algebra is a
finite dimensional associative unital algebra which center is K1 and which has no proper two-sided
ideals. We say that it is a division algebra if every non zero element is invertible.

Remark 1.3.2. Central simple algebras are not necessarily commutative.

Examples 1.3.3. • The field K itself is a central simple algebra.

• The matrix algebra Mn(K) is a central simple algebra of dimension n2.

• Quaternion algebras overK are central simple algebras of dimension 4. Indeed, if I is a two-sided
ideal of a quaternion algebra K and if K is the algebraic closure of K, I ⊗K K is a two-sided
ideal of A ⊗K K ≃ M2(K). Conversely, since K is not of characteristic 2, any central simple
algebras of dimension 4 is a quaternion algebra (see Theorem 2.1.8 of [MR03]).

• If A is a quaternion algebra over K, then Mn(A) is a central simple algebra of dimension 4n2

over K.

• Let α = 2 cos(2π7 ). It satisfies α3+α2−2α−1. Hence Q(α) is a number field of degree 3. Denote
by σ the field automorphism of Q(α) defined by σ(α) = 2 cos(4π7 ). We let

D = Q(α)⊕Q(α)v ⊕Q(α)v2

and define multiplication by v3 = 5 and vx = σ(x)v for all x ∈ Q(α). It is a division algebra of
dimension 9 over Q.

Theorem 1.3.4 (Wedderburn [MR03, Theorem 2.9.6]). Any central simple algebra over K is isomor-
phic to Mn(D) with D a division algebra over K.

Remark 1.3.5. The integer n and the division algebra D are uniquely determined by the central
simple algebra.

Proposition 1.3.6. If K is algebraically closed, the only central simple algebras over K are Mn(K)
for n ≥ 1.

Proof. By Wedderburn’s Theorem, Theorem 1.3.4, we need to prove that the only division algebra
over K is K itself. Let D be a division algebra over K. Let x ∈ D and consider the left multiplication
by x. Denote by µx(X) =

∏
(X − λi) its minimal polynomial with λi ∈ F . Then∏

(x− λi) = 0

and since D is a division algebra, x = λi for some i. Finally, x ∈ K.

If A is a central simple algebra over K and if L is a field extension of K, A ⊗K L is a central
simple algebra over L. Applying this to the algebraic closure of K, we deduce that the dimension of
any central simple algebra over K is a square.
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Definition 1.3.7. The degree of a central simple algebra A over K is the square root of its dimension.

Definition 1.3.8. Let A be a central simple algebra over K and denote by K an algebraic closure of
K. Pick an isomorphism ϕ : A⊗K K → Mn(K). We define the reduced norm as

Nrd : A→ K, x 7→ det(ϕ(x)).

It has image in K since is image is fixed under Galois conjugation. Moreover, it does not depend
on the isomorphism ϕ since any two such isomorphism are conjugated, see Theorem 2.9.8 in [MR03].

Definition 1.3.9. Let A1 and A2 be central simple algebras over K, not necessarily of the same
dimension. Suppose that A1 ≃ Mn1(D1) and A2 ≃ Mn2(D2) with D1 and D2 division algebras over
K. We say that A1 and A2 are Brauer equivalent if D1 ≃ D2.

Example 1.3.10. For any central simple algebra A, Mn(A) is Brauer equivalent to A.

Definition 1.3.11. The Brauer group of K is the group of Brauer equivalence classes of central simple
algebras over K with the law induced by the tensor product. We denote it Br(K).

The neutral element is the class of K. The inverse of the class of A is the class of the opposite
algebra of A. As the tensor product is symmetric, Br(K) is an abelian group. One can show that
every element of Br(K) has finite order (Corollary 4.4.8 in [GS17]).

Examples 1.3.12. • If K is algebraically closed, Br(K) is trivial.

• The Brauer group of R is a group of order 2 with the non trivial element being represented by
the class of the Hamiltonian quaternions H (Theorem 4.3 in Chapter VII of [Per82]).

• Over a finite field K, the only division algebra is K itself (Theorem 4.9 in Chapter III of [Per82]).
Hence Br(K) is trivial.

• Since (−1, p)Q for p ≡ 3[4] are pairwise non isomorphic division quaternion algebras, see Example
1.2.11, Br(Q) is infinite. In fact, the Brauer group of Q can is described using an exact sequence
of the form

1→ Br(Q)→
⊕
p

Br(Qp)→ Q/Z→ 1

see §1.5 in [PR94].

Since Br(K) is abelian, its elements of 2-torsion form a group. Quaternion algebras are elements of
2-torsion in the Brauer group. In general, there are other elements of 2-torsion. However, for number
fields, on has the following.

Proposition 1.3.13 ([Alb61, Theorem 20 in Chapter X]). Let F be a number field. Every element
of order 2 in Br(F ) is Brauer equivalent to a quaternion algebra.

1.4 Linear algebraic groups

In this section, all algebras are taken to be commutative, unless they are central simple algebras.

Definition 1.4.1. Let K be a field. A (linear) algebraic group over K is a functor

G : K-algebra→ group

such that there exists a K-algebra A which is finitely generated and such that

G(·) ≃ HomK-alg(A, ·)

as functors to sets.

Note that field extensions of K are K-algebras. As we can see in the following examples, the
K-algebra A encodes the fact that G is defined by polynomial equations with coefficients in K.
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Examples 1.4.2. • SL2 : R → SL(2,R) = {M ∈ M2(R)|det(M) = 1} is a Q-algebraic group
with

A = Q[a, b, c, d]/(ad− bc− 1).

• The following functor G

R→
{(

x0 +
√
3x1

√
3x2 + 3x3√

3x2 − 3x3 x0 −
√
3x1

)
| x20 − 3x21 − 3x22 + 9x23 = 1, xi ∈ R

}
is a Q-algebraic group with

A = Q[x0, x1, x2, x3]/(x
2
0 − 3x21 − 3x22 + 9x23 − 1).

In fact, G(R) is isomorphic to the group of norm 1 elements of the non-commutative algebra
(3, 3)Q ⊗R, where the reduced norm is defined as in Definition 1.2.7 by extending it R-linearly.

This generalizes in the following way.

Proposition 1.4.3 (§2.3.1 in [PR94]). For any central simple algebra A over a field K, the functor

R→ {x ∈ A⊗K R | Nrd(x) = 1}

is a linear algebraic group.

At first sight, one might think that Definition 1.4.1 is too general to exclude any meaningful
example. We include the following proposition to show the opposite.

Proposition 1.4.4. The functor

PSL2 : Q-algebra→ group

R→ PSL2(R) = SL(2,R)/Z(SL(2,R))

is not a linear algebraic group.

Proof. Suppose that there exists a Q-algebra A such that PSL2 ≃ Hom(A, ·) as functors to sets.
Denote by σ : C→ C the complex conjugation. It induces a morphism

fσ : Hom(A,C)→ Hom(A,C)

which is the post-composition by σ. The morphisms that are fixed by fσ are the elements of
Hom(A,R) ≃ PSL2(R). However, the matrix(

i 0
0 −i

)
is fixed by σ in PSL2(C) but does not lie in PSL2(R).

Definition 1.4.5. Let K be a field. A morphism of algebraic groups ϕ : G1 → G2 is the data of a
morphisms of groups

ϕ(R) : G1(R)→ G2(R)

for every K-algebra R such that for all morphisms of K-algebras f : R→ R′ we have

ϕ(R′) ◦G1(f) = G2(f) ◦ ϕ(R).

Definition 1.4.6. Let K be a field and L an extension of K. Let G be a linear algebraic group over
K. We denote by GL the L-linear algebraic group defined by GL(R) = G(R) for any L-algebra R.

Definition 1.4.7. Let L/K be a field extension. Let G be an L-algebraic group. A K-algebraic group
H is said to be an L/K-form of G if HL ≃ G. If L is the separable closure of K, we call L/K-forms
of G simply K-forms of G.
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Example 1.4.8. The Q-algebraic group G defined in Examples 1.4.2 is not isomorphic to the Q-
algebraic group SL2 yet GR is isomorphic to the R-algebraic group SL2. Hence G is a Q-form of
SL2.

More generally, central simple algebras provide a way to construct forms of SLn.

Example 1.4.9. Let A be a central simple algebra of dimension n2 over a number field F . Denote
by

G : R→ (A⊗K R)1 := {x ∈ A⊗K R | Nrd(x) = 1}

the associated linear F -algebraic group. Since A⊗F Q ≃ Mn(Q), G is an F -form of SLn.

Not all forms of SLn are of this type.

Example 1.4.10. Let d ∈ Q which is not a square. Denote by σ the automorphism of Q defined by
σ(
√
d) = −

√
d. Let Gd be the Q-algebraic group

R→ SU(I3, σ,Q(
√
d)⊗Q R) = {M ∈ SL(3,Q(

√
d)⊗Q R) | σ(M)⊤M = I3}

where we extend σ by R-linearity. Then Gd is a Q-form of SLn. Indeed, if R is a Q-algebra then

Q(
√
d)⊗Q R ≃ Q(

√
d)⊗Q Q⊗QR ≃ Q(

√
d)⊗Q R ≃ (Q⊕Q)⊗Q R ≃ R⊕ R

such that σ corresponds to the involution (x, y) 7→ (y, x) of R⊕ R. Thus

Gd(R) ≃ {M ∈ SL(3,R⊕ R) | σ(M)⊤M = I3}
≃ {(M1,M2) ∈ SL(3,R)2 | (M2,M1)

⊤(M1,M2) = (I3, I3)}
≃ {(M1,M

−⊤
1 ) |M1 ∈ SL(3,R)}

≃ SL(3,R).

1.5 Exceptional groups of type G2

Definition 1.5.1. An octonion algebra over a field K of characteristic not equal to 2 is a unital
but non-associative and non-commutative algebra of dimension 8 over K, such that there exists a
nondegenerate quadratic form N on the algebra satisfying

N(xy) = N(x)N(y)

for all x, y. An octonion algebra is said to be split if N is isotropic.

Example 1.5.2. Let A be a quaternion algebra over K with conjugation and a ∈ K×. Then A⊕A
with the product

(x, y)(z, w) = (xz + awy,wx+ yz)

is an octonion algebra over K. Then norm is defined by N((x, y)) = Nrd(x)− aNrd(y). Reciprocally,
all octonion algebras over K are of this form, see Theorem 1.6.2 in [SV00].

Theorem 1.5.3 ([SV00, Theorem 1.8.1]). For any field K of characteristic not equal to 2, there is a
unique split octonion algebra over K up to isomorphism.

Example 1.5.4. • Over C all quadratic forms in 8 variables are isotropic. Hence there is only
one octonion algebra: the split one. Its automorphism group is isomorphic to the complex Lie
group of type G2.

• Over R, there are two isomorphism classes of octonion algebras. The non-split one has a positive
define quadratic form. Its automorphism group is the compact Lie group of type G2. The split
one has a quadratic form of signature (4, 4) and its automorphism group is the centerless split
real Lie group of type G2. Note that the latter is not simply connected and has a universal cover
of degree 2. Its universal cover is not the automorphism group of an octonion algebra.
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Octonion algebras give rise to linear algebraic groups as follows.

Theorem 1.5.5 ([SV00, Theorem 2.3.5]). Let O be an octonion algebra over K. Then the functor

AutO : K-algebra→ group

R→ Aut(O⊗K R)

is a K-algebraic group of type G2.

Remark 1.5.6. Let G be the linear algebraic group associated to the unique octonion algebra over
K. If O is any octonion algebra over K then AutO is a K-form of G. Conversely, any K-form of G is
of this form.

We now give an alternative description of the linear algebraic groups associated to the unique split
octonion algebra over Q. To do so, we introduce the following seven dimensional cross product, which
could also be defined in terms of quaternion algebras.

Definition 1.5.7. Let R be a ring. We denote by × : R7 × R7 → R7

x1
x2
x3
x4
x5
x6
x7


,



y1
y2
y3
y4
y5
y6
y7


7→



3(x1y4 − x4y1)− 2(x2y3 − x3y2)
12(x1y5 − x5y1)− 3(x2y4 − x4y2)
30(x1y6 − x6y1)− 3(x3y4 − x4y3)

60(x1y7 − x7y1) + 10(x2y6 − x6y2)− 4(x3y5 − x5y3)
30(x2y7 − x7y2)− 3(x4y5 − x5y4)
12(x3y7 − x7y3)− 3(x4y6 − x6y4)
3(x4y7 − x7y4)− 2(x5y6 − x6y5)


.

The choice of the coefficients in the above definition is justified by the following proposition that
will be useful later on. Recall that τ7 is the seven dimensional irreducible representation of SL(2,C)
defined in the introduction.

Proposition 1.5.8. For any M ∈ SL(2,C) and any x, y ∈ C7,

τ7(M)(x× y) = τ7(M)x× τ7(M)y.

Proof. Since SL(2,Z) is Zariski-dense in SL(2,C), it suffices to prove the result for M ∈ SL(2,Z).
The latter is proven with tedious computations using explicit generators of SL(2,Z).

We can now define the linear algebraic group G2.

Definition 1.5.9. Define

G2 : Q-algebra→ group

R→ {M ∈ SO(J7,R)|M(x× y) =Mx×My, ∀x, y ∈ R7}

where J7 = Diag(720,−120, 48,−36, 48,−120, 720).

Proposition 1.5.10. G2 ≃ AutO where O is the unique split octonion algebra over Q.

Proof. Consider the 8-dimensional algebra over Q defined as O = Q⊕Q7 where the product is

(t, v)(s, w) = (ts− v⊤J7w, tw + sv + v × w)

for all t, s ∈ K and v, w ∈ Q7. The unit is (1, 0). The quadratic form

N : (t, v) 7→ t2 + v⊤J7v

is nondegenerate. We can check that
v⊤J7(v × w) = 0
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and
(v × w)⊤J7(v × w) = (v⊤J7v)(w

⊤J7w)− (v⊤J7w)
2

for all v, w ∈ Q7. These two properties together imply that N(xy) = N(x)N(y). Hence O is an
octonion algebra over Q. Since N is isotropic (Corollary 2 in §3 of Chapter 4 in [Ser73]) O is split.

Let R be a Q-algebra. Pick M ∈ G2(R) and define its action on O ⊗Q R by M(t, v) = (t,Mv)
for all (t, v) ∈ O ⊗Q R. Then for all x, y M(xy) = M(x)M(y). Thus M defines an automorphism of
O⊗Q R. Reciprocally let ϕ ∈ Aut(O⊗Q R). Then ϕ(1, 0) = (1, 0) and thus ϕ fixes R⊕ {0}. Since

N(t, v) = (t, v)(t,−v)

N(ϕ(x)) = N(x) for all x. This implies that ϕ has to preserve the orthogonal of R⊕ {0} for N , i.e. ϕ
preserves {0} ⊕ R7. For any v, w ∈ R7 we have

ϕ(0, v)ϕ(0, w) = ϕ((0, v)(0, w))

=⇒ (0, ϕ|R7(v))(0, ϕ|R7(w)) = ϕ(−v⊤J7w, v × w)

=⇒ (−ϕ|R7(v)⊤J7ϕ|R7(w), ϕ|R7(v)× ϕ|R7(w)) = (−v⊤J7w, ϕ|R7(v × w))

which imply that ϕ|R7 ∈ G2(R). Finally, we showed that the restriction induces an isomorphism
G2(R) ≃ Aut(O⊗QR). One can check that this isomorphism give rise to an isomorphism of algebraic
groups.

1.6 Galois cohomology

Let G be a topological group acting continuously by automorphism on a discrete group M which is
not necessarily abelian.

Definition 1.6.1. A 1-cocycle is a continuous map ζ : G →M that satisfies

ζ(st) = ζ(s)s(ζ(t))

for all s, t ∈ G.

Note that if the action of G on M is trivial, 1-cocycles are just the continuous homomorphisms.

Examples 1.6.2. • The map ζ : G → M which associates to every element of G the neutral
element of M is a 1-cocycle. We call it the trivial cocycle.

• The map ξ : Gal(C/R)→ PGL(2,C)

σ 7→


I2 if σ is the identity,(

0 1
−1 0

)
if σ is the complex conjugation

is a 1-cocycle.

• If G acts on M , it also acts on Aut(M) by conjugation. One can see that a 1-cocycle ζ : G →
Aut(M) define actions of G on M by g ·m = ζ(g)(g(m)).

Definition 1.6.3. We say that two 1-cocycles ζ and ζ ′ are equivalent if there exists an elementm ∈M
such that

ζ ′(s) = m−1ζ(s)s(m)

for all s ∈ G. We denote by H1(G,M) the set of equivalence classes of 1-cocycles and call it the first
cohomology set of G (with coefficient in M).

The first cohomology set is not a group in general. It is a set with distinguished element, the
distinguished element being the trivial cocycle. When M is an abelian group however, it has a
canonical group structure and we recover usual group cohomology.
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Proposition 1.6.4. Let N be a subgroup of the center of M . Then there is a long exact sequence of
sets with distinguished elements

H1(G, N)→ H1(G,M)→ H1(G,M/N)
δ−→ H2(G, N)

where H2(G, N) is defined via the usual group cohomology.

The morphism of sets with distinguished element δ is called a connecting morphism. It is defined
in the following way. Pick a 1-cocycle ζ : G → M/N . For each σ ∈ G choose a lift mσ ∈ M of ζ(σ).
Then

δ(ζ)σ,τ = mσσ(mτ )m
−1
στ ∈ N

for all σ, τ ∈ G.
We are mainly interested in the setting where G is a Galois group and M is a group of auto-

morphisms of algebraic structures. The following important result is a major tool to compute Galois
cohomology sets. Recall that an algebraic field extension L/K is Galois if the field fixed by Aut(L/K)
is K.

Theorem 1.6.5 (Hilbert 90). Let L/K be a Galois extension. For any n ≥ 1

H1(Gal(L/K),GLn(L)) = {1}.

In other words, for every 1-cocycle ζ : Gal(L/K) → GLn(L) there exists a matrix S ∈ GLn(L)
such that for all σ ∈ Gal(L/K) one has ζ(σ) = S−1σ(S). It will of crucial importance to be able to
compute S later on. Fortunately, the proof provides an algorithm to compute such S. Note that the
matrix S is not unique.

Proof. Suppose that L/K is a finite extension. Define

f : Ln → Ln, x 7→
∑

σ∈Gal(L/K)

ζ(σ)σ(x).

We show that f is surjective. Let ϕ be a L-linear form on Ln such that ϕ vanishes on Im(f). Then
for all λ ∈ L and x ∈ Ln

0 = ϕ(f(λx)) =
∑

σ∈Gal(L/K)

ϕ(ζ(σ)σ(λx))

=
∑

σ∈Gal(L/K)

σ(λ)ϕ(ζ(σ)σ(x)).

It follows from Dedekind’s lemma, Lemma 5.1 in [Coh89], that for any x ∈ Ln and any σ ∈ Gal(L/K)
ϕ(ζ(σ)σ(x)) = 0, i.e. ϕ = 0. Hence there exist v1, . . . , vn ∈ Ln such that (f(v1), . . . , f(vn)) is a basis
of Ln. Denote S = (f(v1)| . . . |f(vn))−1. Since σ(f(v)) = ζ(σ)−1f(v), we have S−1σ(S) = ζ(σ).

If L/K is an infinite Galois extension,

H1(Gal(L/K),GL(n,L)) = lim−→H1(Gal(F/K),GL(n, F )) = {1}

where F runs through all finite Galois extensions F of K. This concludes the proof.

The Brauer group of a field (recall Definition 1.3.11) has a cohomological interpretation.

Theorem 1.6.6 ([GS17, Theorem 4.4.7]). Let K be a field with separable closure L. Then Br(K) ≃
H2(Gal(L/K), L×).

The isomorphism is constructed in the following way. From an equivalence class [(as,t)s,t] ∈
H2(Gal(L/K), L×) we construct a central simple algebra as follows. Since

H2(Gal(L/K), L×) = lim−→H2(Gal(F/K), F×)
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where F runs through all finite Galois extensions ofK, there exists such an F and a element [(bs,t)s,t] ∈
H2(Gal(F/K), F×) such that [(as,t)s,t] is the image of [(bs,t)s,t]. We then consider the central simple
algebra over K whose underlying vector space is⊕

σ∈Gal(F/K)

Fvσ

and multiplication defined by

(xvσ)(yvτ ) = xσ(y)bσ,τvστ for all σ, τ ∈ Gal(F/K).

Remark 1.6.7. Note that if K is of characteristic 0 then the separable closure of K is exactly the
algebraic closure of K.

We now show how these theorems help computing Galois cohomology sets in a specific example.

Example 1.6.8. The first cohomology set H1(Gal(C/R),PGL(2,C)) has only two elements: the class
of the trivial cocycle and the class of ξ as defined in Examples 1.6.2. Those two are not equivalent
since the trivial cocycle lifts to a cocycle in GL(2,C) while ξ does not. To show that these are the
only 1-cocycle up to equivalence consider the following exact sequence, see Proposition 1.6.4,

H1(Gal(C/R),GL(2,C))→ H1(Gal(C/R),PGL(2,C))
δ−→ H2(Gal(C/R),C×).

Theorem 1.6.5 states that H1(Gal(C/R),GL(2,C)) is trivial. Using this together with a “twisting” ar-
gument, see §1.3.2 in [PR94], one can show that δ is injective. It follows that H1(Gal(C/R),PGL(2,C))
cannot have more elements than H2(Gal(C/R),C×) ≃ Br(R) which has two elements, see Examples
1.3.12.

Galois cohomology sets classify forms of algebraic structures. Let L/K be a Galois field extension
and G be aK-algebraic group. As Proposition 1.6.9 below asserts, there is a one-to-one correspondence
between H1(Gal(L/K),Aut(G(L))) and L/K-forms of GL. By Aut(G(L)) we mean the group of
automorphism of G(L) that come from algebraic automorphisms of GL. Let H be a L/K-form of GL

and ϕ : HL → GL be an isomorphism, then the map

Gal(L/K)→ Aut(G(L))

σ 7→ ϕ(L) ◦ σ ◦ ϕ(L)−1 ◦ σ−1

is a 1-cocycle. This gives one direction of the following proposition.

Proposition 1.6.9 ([Ser02]). Assuming L/K is Galois, the map that associates to a L/K-form of
GL a 1-cocycle defines a bijection between the set of isomorphism classes of L/K-forms of GL and
H1(Gal(L/K),Aut(G(L))).

For ζ ∈ H1(Gal(L/K),Aut(G(L))), we denote by ζG the corresponding L/K-form. Concretely,
for any K-algebra R

ζG(R) = {g ∈ G(L⊗K R) | ζ(σ)(σ(g)) = g ∀σ ∈ Gal(L/K)}.

If a cocycle has values in Inn(G(L)), then we say this cocycle is inner.

Example 1.6.10. Since Aut(SL2(C)) = PGL(2,C), Example 1.6.8 implies that there are only two
real forms of the C-algebraic group SL2. The real form corresponding to the trivial cocycle is the
R-algebraic group SL2. The other real form is ξSL2 whose real points are

ξSL2(R) =

{(
a b
c d

)
∈ SL2(C)

∣∣∣∣∣
(
0 1
-1 0

)(
a b
c d

)(
0 -1
1 0

)
=

(
a b
c d

)}

=

{(
a b

-b a

) ∣∣∣∣∣ a, b ∈ C, aa+ bb = 1

}
≃ SU(2).

Note that SU(2) is the norm 1 elements of Hamiltonian quaternions H. Hence any R-form of SL2 is
the norm 1 elements of a quaternion algebra.
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One can generalize the argument of Example 1.6.8 and Example 1.6.10 ot prove the following.

Proposition 1.6.11. Let K be field. Then K-forms of SL2 are isomorphic to

R→ (A⊗K R)1

for a quaternion algebra A over K.

In this thesis, we will be mainly interested in R/F -forms of algebraic groups where F is a number
field. Unfortunately, the extension R/F is not Galois, nor is C/F , since its is not algebraic. One can
still use non-abelian Galois cohomology to classify its R/F -forms thanks to the following proposition.

Proposition 1.6.12 ([Ser02, Proposition 2, Chapter III, §1]). Let V be a finite dimensional vector
space over F and T be a tensor of V . Consider the following F -algebraic group

G : R→ Aut(V ⊗F R, T ).

Then R/F -forms of G are Q /F -forms of G.

Note that all algebraic groups that will be considered in this thesis are the automorphism group of
some tensor. If T is a non-degenerate bilinear form, its automorphism group is an orthogonal group.
Similarly, tensors of type (1, 2) define an algebra structure on V .



Chapter 2

Arithmetic subgroups

In this chapter, we introduce a specific class of discrete subgroups of Lie groups: lattices. Thanks
to Borel−Harish-Chandra’s Theorem, Theorem 2.2.1 below, there is an arithmetic construction that
provides explicit examples of lattices. Subgroups that arise from this construction are called arithmetic
subgroups. Margulis Arithmeticity Theorem, Theorem 2.2.14, states that for higher rank simple Lie
groups, all lattices come from this construction. This allows to classify lattices in higher rank. Fi-
nally, we discuss the Strong Approximation Theorem which describe the reductions of a Zariski-dense
subgroup of an arithmetic groups to finite fields. The main reference is Witt Morris’ book [Mor15].

2.1 Lattices

Proposition 2.1.1. Let G be a Lie group. There exists a unique, up to scalar, Borel measure σ-finite
on G which is invariant under left-translation and finite on compact sets.

Definition 2.1.2. A subgroup Λ < G of a Lie group is a lattice if Λ is discrete and Λ\G has finite
volume, i.e. there is a fundamental domain for the action of Λ on G with finite volume. If Λ\G is
compact then Λ is said to be cocompact or uniform.

Examples 2.1.3. • SL(n,Z) < SL(n,R) is a non-uniform lattice

• Sp(2n,Z) < Sp(2n,R) is a non-uniform lattice

• π1(S
3\K8) < PSL(2,C) discrete with K8 the figure 8 knot is a non-uniform lattice

If Γ < Λ < G with Γ of finite index in Λ then Γ is a lattice if and only if Λ is a lattice. If Λ < G
is a lattice then any of its conjugate is a lattice in G. Using the classification of topological surfaces,
one can describe the group structures of lattices of SL(2,R) easily. A property of a group is virtually
true if it is true for one of its finite index subgroup.

Proposition 2.1.4. Let Λ < SL(2,R) be a lattice. If Λ is non-uniform then it is virtually a non-
abelian free group. If Λ is uniform then it is virtually a surface group.

Let Λ < SO(n, 1) be a discrete subgroup. It acts properly discontinuously on the real hyperbolic
space Hn. Then Λ is a lattice if and only if the orbifold Λ\Hn has finite volume. It is uniform if and
only if Λ\Hn is compact. Hence fundamental groups of compact hyperbolic manifolds are lattices of
SO(n, 1). Conversely, any uniform lattice of SO(n, 1) is virtually the fundamental group of a compact
hyperbolic manifold of dimension n. Indeed, all lattice contain a finite index torsion free subgroup.
This is the content of Selberg’s Lemma, stated as follows.

Theorem 2.1.5 (Selberg [Mor15, Theorem 4.8.2]). Let Λ be a lattice of a linear Lie group. Then Λ
admits a finite index subgroup that is torsion free.

We now present a simple criterion to determine when a lattice is uniform.

Theorem 2.1.6 (Každan−Margulis [KM68, Theorem 2]). Let G be a semisimple Lie group and Λ < G
be a lattice. Then Λ is non-uniform if and only if Λ contains non-trivial unipotent elements.

37
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Example 2.1.7. The element (
1 1
0 1

)
∈ SL(2,Z)

is a non-trivial unipotent element. Hence SL(2,Z) is non-uniform.

The following theorem is called Borel’s Density Theorem.

Theorem 2.1.8 (Borel [Bor60]). Let G < GL(n,R) be a connected semisimple Lie group without
compact factors. Let Λ < G be a lattice. Then Λ is Zariski-dense in G, i.e. if P ∈ R[x11, ..., xnn]
satisfies P (Λ) = 0 then P (G) = 0.

2.2 Definition

Theorem 2.2.1 (Borel−Harish-Chandra [BHC62, Theorem 9.4]). Let G be a linear semisimple Q-
algebraic group. Then G(Z) is a lattice of G(R).

Since Z is not a Q-algebra, G(Z) doesn’t make sense a priori. To define it we pick an embedding
ρ : G ↪→ GLn and define G(Z) = G(Q) ∩ ρ−1(GLn(Z)). The group G(Z) does depend on ρ, but two
different embeddings yield commensurable subgroups.

Corollary 2.2.2 (Borel [Bor63]). Let G be a connected semisimple Lie group. Then G admits a
lattice.

As an example, consider the case G = SO(n, 1). We define the Q-algebraic group G = SO(x21 +
. . . + x2n − x2n+1, ·) so that G(R) ≃ G. Hence G(Z) is a lattice in G. The Borel−Harish-Chandra
Theorem can be generalized to algebraic groups over a number field in the following way.

Theorem 2.2.3 (Borel−Harish-Chandra [BHC62, Theorem 12.3]). Let G be a linear semisimple
algebraic group over a number field F . Then G(OF ) is a lattice in∏

σ:F ↪→R
G(Rσ)×

∏
{σ;σ}

σ:F ↪→C
σ(F )̸⊂R

G(Cσ).

Remarks 2.2.4. • The notation {σ, σ} means that for each pair of conjugate complex embed-
dings, there is only one factor G(Cσ) where we pick σ to be any of the two embeddings.

• There are various way to see R as a F -algebra, depending on the embedding σ chosen to embed
F in R. In the previous theorem, we denote Rσ instead of R to keep track of this F -algebra
structure on R. For two different embeddings of F in R the group G(Rσ) may differ (see Example
2.2.9).

• The group G(OF ) is embedded in the following way. Since G is a functor, for every embedding
σ : F ↪→ C we get an embedding G(F ) ↪→ G(Cσ). Informally, it consists of applying σ to the
entries of the matrix g ∈ G(F ). We then consider the product of all those embeddings.

Examples 2.2.5. • SL(2,Z[−1+i
√
3

2 ]) < SL(2,C) is a non-uniform lattice. Hence PSL(2,Z[−1+i
√
3

2 ])
is a lattice of PSL(2,C). It contains π1(S

3 \K8) as an index 12 subgroup, see [MR03] §1.4.3.

• SLn(Z[
3
√
2]) < SLn(R)× SLn(C) is a lattice

The following proposition states that “integer-points” of Q-algebraic groups behave well under
morphisms. It will be used several times in this thesis.

Proposition 2.2.6 ([Mil13, Proposition 5.2 Appendix A]). Let f : G → H be a homomorphism of
algebraic groups over a number field F . Up to commensurability, f(G(OF )) < H(OF ).

Proposition 2.2.7. Let F be a number field and G be a semisimple F -algebraic group. If there is an
embedding σ : F ↪→ R such that G(Rσ) is compact then G(OF ) is uniform.
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Proof. Let σ : F ↪→ R be an embedding such that G(Rσ) is compact. Let g ∈ G(OF ) be a unipotent
element. Then σ(g) is unipotent of a compact group. Hence it is trivial. By Theorem 2.1.6, G(OF ) is
uniform.

The following lemma gives us a way to extend the construction of the Borel−Harish-Chandra
Theorem.

Lemma 2.2.8 ([MR03, Lemma 8.1.3]). Let Λ < G1 × G2 be a lattice with G2 compact. Then the
projection of Λ on G1 is a lattice.

Example 2.2.9. Consider the Q(
√
7)-algebraic group

G = SO(x2 + y2 −
√
7z2, ·).

Borel-Harish-Chandra Theorem states that SO(x2 + y2 −
√
7z2,Z[

√
7]) is a lattice of

SO(x2 + y2 −
√
7z2,R)× SO(x2 + y2 +

√
7z2,R) ≃ SO(2, 1)× SO(3).

Since SO(3) is compact, it is also a lattice of SO(2, 1). By Corollary 2.2.7, it is virtually a surface
group.

We can finally define what is an “arithmetic” subgroup of G. Informally, it is a lattice build by
arithmetic techniques. We want the definition to be as general as possible. In particular the definition
should not depend on the presence of compact factors in G.

Definition 2.2.10. Let H be a semisimple R-algebraic group. A subgroup Λ < H(R) is arithmetic
if there exist a number field F , a semisimple algebraic group G over F and a surjective Lie group
morphism ∏

σ:F ↪→R
G(Rσ)×

∏
{σ;σ}

σ:F ↪→C
σ(F )̸⊂R

G(Cσ)
ϕ−→ H(R)

such that ker(ϕ) is compact and Λ is commensurable with ϕ(G(OF )).

Remark 2.2.11. Thanks to Theorem 2.2.3 and Lemma 2.2.8, arithmetic subgroups of H(R) are
lattices of H(R).

Examples 2.2.12. • SL(n,Z) is an arithmetic subgroup of SL(n,R)

• SO(x2 + y2 −
√
7z2,Z[

√
7]) is an arithmetic subgroup of SO(2, 1), see Example 2.2.9

• More generally, if p is a prime number, SO(x21+· · ·+x2n−
√
px2n+1,Z[

√
p]) is a uniform arithmetic

subgroup of SO(n, 1). For distinct primes p, these lattices are not commensurable. Hence there
exists infinitely many compact hyperbolic manifold of dimension n without common covering.

Almost all semisimple Lie groups that we will discuss in this thesis are the R-points of an R-
algebraic group. However, PSL(n,R) or the connected component of the identity of SO(p, q) are not.
The definition can be generalized in this cases easily

Margulis gave a criterion to determine when a lattice is arithmetic. It is called the Margulis
commensurability criterion.

Theorem 2.2.13 (Margulis [Mar91, Chapter 9 Theorem 1.12]). Let G be a connected semisimple Lie
group with no compact factors which is the R-points of an R-algebraic group. Let Λ < G be a lattice.
Then Λ is arithmetic if and only if

{g ∈ G | gΛg−1 is commensurable with Λ}

is dense in G.

Margulis Arithmeticity Theorem will be of fundamental importance in this thesis. It allows one
to classify lattices in higher rank simple Lie groups. We give instances of this classification in section
2.4.
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Theorem 2.2.14 (Margulis [Mar91, Chapter 9 Theorem 1.11]). Let G be a simple Lie group which
is the R-points of a R-algebraic group. Assume that the real rank of G is at least 2. Then any lattice
of G is arithmetic.

On the other hand, lattices of SL(2,R) are very rarely arithmetic. For instance, there is a contin-
uum of lattices of SL(2,R) isomorphic to π1(Sg) for a fixed g ≥ 2 but, up to conjugation, only finitely
many are arithmetic.

The connected simple Lie groups of rank 1 are, up to cover, SO0(n, 1), SU(n, 1), Sp(n, 1) and the
exceptional group F−20

4 . For the latter two, Gromov and Schoen extended Margulis Arithmeticity
Theorem.

Theorem 2.2.15 (Gromov−Schoen [GS92]). All lattices of Sp(n, 1), n ≥ 2 and F−20
4 are arithmetic.

However in SO(n, 1), Gromov and Piatetski-Shapiro constructed non-arithmetic lattices for all
n ≥ 2, [GPS87]. To the author’s knowledge, non-arithmetic lattices are known in SU(2, 1) and
SU(3, 1) [Mos80], [DM93], [DPP16], [DPP21] and [Der20]. It is not known whether or not there exist
non-arithmetic lattices in SU(n, 1) for n ≥ 4.

2.3 Examples

Definition 2.3.1. Let F be a number field and A a central simple algebra over F . An order of A is
a finitely generated OF -submodule of A containing 1 which generates A as a vector space and which
is a subring of A.

Example 2.3.2. Let a, b ∈ OF be non-zero. Then OF [1, i, j, k] is an order of (a, b)F .

Let O be an order of a quaternion algebra A over a totally real number field F . Suppose that
there exists exactly one real place σ of F over which A splits. Then

O1 := {x ∈ O | Nrd(x) = 1} < (A⊗F R
σ)1 ≃ SL(2,R)

is an arithmetic subgroup.

Proposition 2.3.3. The lattice O1 is uniform if and only if A is a division algebra.

Proof. Suppose that A is a division algebra. By the multiplicative properties of the reduced norm,
every non-zero element of A has norm non-zero. Let x ∈ O1 be a unipotent element. Then there
exists l ≥ 1 such that (x − 1)l = 0. Hence 0 = Nrd((x − 1)l) = Nrd(x − 1)l so that Nrd(x − 1) = 0
which implies that x = 1.

Conversely, if A is not a division algebra then A ≃ M2(F ). Since A is ramified at all real places
of F except one, we must have F = Q. Finally, O1 is commensurable with SL(2,Z) which is not
uniform.

Example 2.3.4. Let a, b ∈ Z be non-zero and consider the quaternion algebra (a, b)Q. Let {1, i, j, k}
be a basis satisfying i2 = a, j2 and ij = −ij = k. We can embed (a, b)Q in M2(Q) as{(

x0 +
√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ Q
}
. (2.1)

The subring Z[1, i, j, k] is an order in (a, b)Q. Its elements of norm 1 are{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ Z, det = 1

}

which is thus an arithmetic lattice of SL(2,R). It is uniform if and only if (a, b)Q ̸≃ M2(Q), i.e. the
equation ax2 + by2 = 1 has no solution (x, y) ∈ Q2, see Theorem 8.2.7 in [MR03].



2.4. CLASSIFICATION 41

Let n ≥ 2. Recall that there is a well defined norm Nrd on Mn(A) that is defined as the composition
of Mn(A) ↪→ M2n(Q) with the determinant. We denote by

SL(n,O) = {M ∈ Mn(O) | Nrd(M) = 1}.

It is a lattice of SL(2n,R) which is uniform if and only if F ̸= Q.

Definition 2.3.5. Let A be a central simple algebra. An anti-involution of A is a map ∂ : A → A
such that for all a, b ∈ A

∂(a+ b) = ∂(a) + ∂(b), ∂(ab) = ∂(b)∂(a) and ∂2(a) = a.

Note that an anti-involution can be non-trivial on the center of A, and thus is not necessarily
F -linear. For instance, the conjugation on a quaternion algebra is an anti-involution.

Definition 2.3.6. Given an anti-involution ∂ : A → A of a central simple algebra, we say that a
matrix B ∈ Mn(A) is ∂-Hermitian if ∂(B)⊤ = B. In this case, we define

SU(B, ∂;A) = {M ∈ SL(n,A) | ∂(M)⊤BM = B}.

Further more, if O is an order of A, define SU(B, ∂;O) = SU(B, ∂;A) ∩ SL(n,O).

Examples 2.3.7. • Let A be a quaternion algebra over a totally real number field F that splits
at exactly one real place of F . Let O be an order of A. Pick B ∈ GL(n,A), n ≥ 2, a -Hermitian
matrix. Then SU(B, ;O) is an arithmetic subgroup of Sp(2n,R). It is uniform if and only if
F ̸= Q.

• Let d ∈ OF not a square which is positive at exactly one real place of F . Let σ ∈ Gal(F (
√
d)/F )

be the non-trivial element. Pick B ∈ GL(n, F ) a σ-Hermitian matrix for n ≥ 3. Then
SU(B, σ;OF [

√
d]) is an arithmetic subgroup of SL(n,R). It is uniform if and only if F ̸= Q.

• Suppose that A splits at the place where d is positive. Denote by

⊗σ : A⊗F F (
√
d)→ A⊗F F (

√
d)

x⊗ λ→ x⊗ σ(λ).

It is an anti-involution of A⊗F F (
√
d). Pick B ∈ GL(n,A⊗F F (

√
d)), n ≥ 2, a ⊗σ-Hermitian

matrix. Then SU(B, ⊗σ;O⊗OF
OF [
√
d]) is an arithmetic subgroup of SL(2n,R). It is uniform

if and only if F ̸= Q.

One can also construct lattices from orders of central simple algebras of higher degree.

Example 2.3.8. Recall that we defined in Example 1.3.3 a division algebra D of degree 3 over Q as
D = Q(α)⊕Q(α)v⊕Q(α)v2 for α = 2 cos(2π7 ). Let O be an order of D. Then O1 is a uniform lattice
of SL(3,R). Concretely, O1 is commensurable with

 x y z
5σ(z) σ(x) σ(y)
5σ2(y) 5σ2(z) σ2(x)

∣∣∣∣∣ x, y, z ∈ Z[α], det = 1


where σ is the automorphism of Q(α) defined by σ(α) = 2 cos(4π7 ).

2.4 Classification

In this section, we present the classification of lattices for some simple real Lie groups. Thanks to
the following proposition, it suffices to classify algebraic groups over totally real number fields F that
are isomorphic to G over some real place of F . For a number field F , denote by VF the set of its
embeddings in C where we identify a complex embedding and its conjugate.
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Proposition 2.4.1 ([Mor15, Corollary 5.5.16]). Let G be a non-compact simple Lie group and let Λ
be an arithmetic subgroup of G. Then there exists a number field F and an F -algebraic group H such
that

• there is v ∈ VF and an isogeny
ϕ : H(Fv)0 → Ad(G0)

such that ϕ(H(OF ) ∩H(Fv)0) is commensurable with Ad(Λ ∩G0) and

• for all w ∈ VF not v, H(Fw) is compact with the euclidean topology.

The classification of forms of classical algebraic groups is stated in [Mor15] §18.5. We include it
here for completeness.

Theorem 2.4.2 ([Mor15, §18.5]). Let F be a number field which admits a real embedding. Fix a real
embedding σ : F ↪→ R.

• The R/F -forms of SLn are either of type SL(m,D) for D a division algebra over F of degree
d such that n = md and D splits over σ, or of type SU(B, ∂;D) for a division algebra D over
a quadratic extension L of F such that L is real over σ and D ⊗F R

σ ≃ Mn(R) ⊕Mn(R), ∂
an anti-involution of D that induces a non-trivial automorphism on L and B a non-degenerate
∂-Hermitian form of rank n over D.

• The R/F -forms of SO(p, q) are of type SO(B,F ) for B a quadratic form of signature over F
such that σ(B) has signature (p, q).

• The R/F -forms of Sp2n are of type SU(B, ;A) for A a quaternion algebra over F that splits
over σ and B a non-degenerate -Hermitian form of rank n over A.

We will need a more precise version of this classification. We provide proofs when needed.

Proposition 2.4.3. Let p ̸= 2 be prime. Non-uniform lattices of SL(p,R) are widely commensurable
with SL(p,Z) or with SU(Ip, σ;Z[

√
d]) for d ∈ N not a square and σ ∈ Gal(Q(

√
d)/Q) non-trivial.

To prove Proposition 2.4.3, we need the classification of σ-Hermitian forms.

Proposition 2.4.4 (See Lewis [Lew82, §4] or Milnor [Mil69, Example 5 of §1]). Let F be a number field
and d ∈ OF be not a square. Let σ ∈ Gal(F (

√
d)/F ) be the non-trivial element. Then σ-Hermitian

forms on F (
√
d) are classified by their rank, their discriminant and their signatures at each real place

v of F satisfying F (
√
d)⊗F Fv ≃ C.

Proof of Proposition 2.4.3. Let Λ be a non-uniform lattice of SL(p,R). By Margulis’ Arithmeticity
Theorem (Theorem 2.2.14) Λ is arithmetic. Since Λ is non-uniform, Proposition 2.2.7 implies that it
is commensurable with the integer points a R/Q-form of SLp. From the classification of R/Q-forms
of SLp (Theorem 2.4.2) Λ can only be of two kinds.

Firstly, Λ can be widely commensurable with SL(m,O) for O an order of a division algebra D of
degree r over Q satisfying D ⊗Q R ≃ Mr(R). Here we must have rm = p. If (r,m) = (1, p) then
Λ is widely commensurable with SL(p,Z). If (r,m) = (p, 1) then Λ is widely commensurable with
SL(1,O). However, the latter is a uniform lattice (see §18.5 in [Mor15]).

Secondly they can be widely commensurable with SU(B, ∂;O) for O an order of a division algebra
D of degree r over a real quadratic extension L of Q, satisfying D⊗Q L ≃ Mr(R)⊕Mr(R), ∂ an anti-
involution of D whose restriction to L is the non-trivial element σ ∈ Gal(L/Q) and B ∈ GLm(D) a ∂-
Hermitian matrix. Once again we must havemr = p. If (r,m) = (1, p) then Λ is widely commensurable
with SU(B, σ;Z[

√
d]) where L = Q(

√
d). If (r,m) = (p, 1) then Λ is widely commensurable with

SU(B, ∂;O), but this is a uniform lattice (see §18.5 in [Mor15]).
It remains to show that all subgroups of the form SU(B, σ;Z[

√
d]) widely commensurable with

SU(In, σ;Z[
√
d]). Since d > 0, Proposition 2.4.4 implies that, up to scalar multiplication, there

is only one non-degenerate σ-Hermitian form on Q(
√
d)p. Hence SU(B, σ;Z[

√
d]) is conjugate to

SU(In, σ;Z[
√
d]).
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To state the precise version of the classification of lattices of SO(k + 1, k) or of Sp(2n,R), we
need the following lemma. It follows from the fact that F is dense in the product of its archimedean
completions. We provide a proof of the statement we need for completeness.

Lemma 2.4.5. Let F be a totally real number field. Fix a subset V ⊂ VF . There exists λ ∈ F such
that for all ι ∈ V , ι(λ) < 0 and for all ι ̸∈ V ι(λ) > 0.

Proof. First suppose that V = {σ}. We use σ to identify F with a subfield of R. There is an element
α0 ∈ Q such that F = Q(α0). Denote α1, .., αm its conjugates. Up to relabeling, we can suppose that

α0 < α1 < ... < αm.

Let r ∈ Q such that α0 < r < α1. Then we let λ = α0 − r. Then λ < 0 and the conjugates of λ are
αi − r which are all positive.

Let V be any subset of VF . For all σ ∈ V let λσ be an element of F such that σ(λσ) < 0 and for
all ι ̸∈ VF \ {σ}, ι(λσ) > 0. Let

λ =
∏
σ∈V

λσ.

Then for all ι ∈ V we have ι(λ) < 0 and for all ι ̸∈ V ι(λ) > 0.

Proposition 2.4.6. Let n = 2k+1 ≥ 5 be odd. Lattices of SO(k+1, k) are widely commensurable with
SO(B,OF ) for OF the ring of integers of a totally real number field F and B ∈ SL(n, F ) a symmetric
matrix satisfying:

• the signature of B at one real place of F is (k + 1, k) if k is even and (k, k + 1) if k is odd, and

• B is positive definite at all other real places of F .

Furthermore, they are non-uniform if and only if F = Q.

Proof. Margulis’ Arithmeticity Theorem (Theorem 2.2.14) implies that all lattices of SO(k+1, k) are
arithmetic. From the classification of R/F -forms of SO(k+1, k) (Theorem 2.4.2) lattices of SO(k+1, k)
are widely commensurable with SO(B,OF ) for OF the ring of integers of a totally real number field
F and B ∈ GL(n, F ) a symmetric matrix with signature (k + 1, k) at one real place of F and such
that B is positive or negative definite over all other real places of F .

Let V ⊂ VF be the set of real places of F where B is negative definite. By Lemma 2.4.5, there
exists λ ∈ F such that for all ι ∈ V ι(λ) < 0 and for all ι ̸∈ V ι(λ) > 0. Then λB is positive definite
for all real places except one where it has signature (k + 1, k) and SO(B,OF ) = SO(λB,OF ). Up to
replacing B with λB we can assume that V is empty.

Up to replacing B with det(B)B, we can assume that det(B) is a square. Then up to congruence,
we can assume B has determinant 1.

We now prove the last statement. If F = Q, Meyer’s Theorem (Corollary 2 in §3 of Chapter 4 in
[Ser73]) implies that B is isotropic over Q since n ≥ 5. Thus SO(B,Z) is non-uniform, see §18.5 in
[Mor15]. If F ̸= Q, Corollary 2.2.7 implies that SO(B,OF ) is uniform.

Proposition 2.4.7. Let n ≥ 2. Lattices of Sp(2n,R) are widely commensurable with SU(In, ;O) for
O an order of a quaternion algebra A over a totally real number field F such that A splits at exactly
one real place of F . Furthermore, they are non-uniform if and only F = Q.

Note that

SU(In, ;M2(Z)) = {M ∈ SLn(M2(Z)) |M
⊤
M = In}

= {M ∈ SL2n(Z) | K−1
n M⊤KnM = In} = Sp(Kn,Z)

where Kn is the block-diagonal anti-symmetric matrix with blocks equal to

(
0 1
−1 0

)
.
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Proof. Margulis’ Arithmeticity Theorem (Theorem 2.2.14) implies that all lattices of Sp(2n,R) are
arithmetic. From the classification of R/F -forms of Sp2n (Theorem 2.4.2) lattices of Sp(2n,R) are
widely commensurable with SU(B, ;O), where O is an order of a quaternion algebra A over a totally
real number field F , A ramifies at all ι ∈ VF \ {σ} and B is a non-degenerate -Hermitian matrix over
A such that for all ι ∈ VF \ {σ} ι(B) ∈ GL(H) has signature (n, 0) or (0, n). Denote by

V +
F = {ι ∈ VF | ι(B) has signature (n, 0)}.

Let λ ∈ F such that ι(λ) > 0 for all ι ∈ V +
F and ι(λ) < 0 for all ι ̸∈ V +

F . It exists by Lemma
2.4.5. Then the -Hermitian matrix λIn has the same signature as B for all real embeddings of F ,
except maybe σ. As explained in [Lew82] §5, non-degenerate -Hermitian forms on A are classified
by the set of signatures at all real embeddings of F except σ. Hence SU(B, ;O) is conjugate to
SU(λIn, ;O) = SU(In, ;O).

If F = Q then SU(In, ;O) is non-uniform since -Hermitian forms over quaternion algebras are
always isotropic, see Lemma 6.2.3 in [Knu91]. If F ̸= Q, Corollary 2.2.7 implies that SU(In, ;O) is
uniform.

In order to give the classification of arithmetic subgroups of G2(R), we introduce some notations.

Definition 2.4.8. Let R be a ring and let a, b ∈ R be non-zero. Denote by × : R7 × R7 → R7

x1
x2
x3
x4
x5
x6
x7


,



y1
y2
y3
y4
y5
y6
y7


7→



3a(x7y4 − x4y7)− 2(x2y3 − x3y2)− 2a(x6y5 − x5y6)
12b(x3y1 − x1y3) + 12ab(x7y5 − x5y7)− 3a(x6y4 − x4y6)
30(x2y1 − x1y2) + 30a(x7y6 − x6y7)− 3a(x5y4 − x4y5)
120b(x1y7 − x7y1) + 20(x2y6 − x6y2)− 8b(x3y5 − x5y3)
30(x1y6 − x6y1)− 30(x7y2 − x2y7)− 3(x3y4 − x4y3)
12b(x3y7 − x7y3) + 12b(x1y5 − x5y1)− 3(x2y4 − x4y2)
3(x1y4 − x4y1)− 2(x2y5 − x5y2)− 2(x6y3 − x3y6)


.

Definition 2.4.9. Let F be a number field and a, b ∈ F×. Define

Ga,b
2 : F -algebra→ group

R→ {M ∈ SO(Ja,b
7 ,R)|M(x× y) =Mx×My, ∀x, y ∈ R7}

where Ja,b
7 = Diag(−1440b, 240,−96b,−36a, 96ab,−240a, 1440ab).

The F -algebraic group Ga,b
2 is simple of type G2. Indeed if

S =


√
b

√
ab

1
√
a√

b
√
ab√

a

−
√
b

√
ab

−1
√
a

−
√
b

√
ab


−1

,

then S−1Ga,b
2 (C)S = G2(C). For any a, b ∈ R× which are both negative Ga,b

2 (R) is isomorphic to the

compact Lie group of type G2. If either a or b is positive, S−1Ga,b
2 (R)S = G2(R), recall Definition

1.5.9.
Suppose that F is a totally real number field and fix an embedding σ : F ↪→ R. Let a, b ∈ F×

which are both negative at all real embeddings of F except σ. Denote by ΛF = S−1Ga,b
2 (OF )S. It is

a lattice of G2(R).

Lemma 2.4.10. Up to wide commensurability, ΛF does not depend on the choice of a and b.

Proof. Wide commensurability classes of lattices of G2(R) are in bijection with isomorphism classes
of Q /F -forms of G2 that are compact over all real embeddings of F except σ. This is in bijection
with isomorphism classes of octonion algebras over F that do not split at any real embedding of F
except σ. As explained in §1.10 of [SV00], there is a unique such octonion algebra over F . Hence,
different choice of a and b yields isomorphic Q /F -forms of G2 and widely commensurable arithmetic
subgroups.
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Proposition 2.4.11. Let Λ be lattice in G2(R). Then Λ is widely commensurable with ΛF for some
totally real number field F .

Proof. By Margulis’ Arithmeticity Theorem, Theorem 2.2.14, Λ is arithmetic. By Proposition 2.4.1,
there exists a semisimple F -algebraic group H such that H(Fv) is compact for all archimedean places
v except one, denoted v0, where we have an isogeny

ϕ : H(Fv0)→ G2(R)

satisfying that ϕ(H(OF )) is commensurable with Λ. The group H(Fv0) cannot be the universal cover
of G2(R) since the latter is not algebraic. Hence ϕ is an isomorphism and H is an R/F -form of G2.
Those are classified by R/F -forms of the split octonion algebra over R which are determined by their
norm, see Theorem 1.7.1 in [SV00]. The norm associated to H is positive definite over all real places

of F except one. So up to scalar multiplication, it is equivalent to Ja,b
7 for some a, b ∈ F× which are

both negative at all real places of F except one. Thus the octonion algebras associated to H and Ga,b
2

are isomorphic which implies that H ≃ Ga,b
2 . Finally Λ is widely commensurable with ΛF .

2.5 Strong Approximation

In this section we discuss the Strong Approximation Theorem. It will appear later in the proof of
Theorem B and Theorem F. Since its statement requires new definitions, we start by describing for
SL(n,Z).

Let n ≥ 2 and p be a prime. One can show that the reduction

rp : SL(n,Z)→ SL(n,Fp)

is surjective by considering a suitable set of generators of SL(n,Fp). Thus given a subgroup Γ <
SL(n,Z), we can ask for which primes p does rp(Γ) = SL(n,Fp). This question arises naturally when
one tries to measure the density of Γ in the profinite completion of SL(n,Z).

Example 2.5.1. For k ≥ 1 consider the subgroup of SL(2,Z)

Γk =

〈(
1 2k

0 1

)
,

(
1 0
2k 1

)〉
.

For k ≥ 2, Γk is Zariski-dense but infinite index in SL(2,Z). Via rp, Γk surjects SL(2,Fp) for any
prime p ̸= 2. Indeed, pick x ∈ Fp. By the Chinese Remainder Theorem there exists m ∈ Z such that
m ≡ x mod p and m ≡ 0 mod 2l. Then

rp

((
1 m
0 1

))
=

(
1 x
0 1

)
.

By the same argument for the transpose, Γk surjects SL(2,Fp) since

SL(2,Z) =

〈(
1 x
0 1

)
,

(
1 0
x 1

) ∣∣∣∣∣ x ∈ Fp

〉
.

These examples are instances of the Strong Approximation Theorem which we stated in the Intro-
duction.

Theorem 0.1 (Matthews−Vaserstein−Weisfeiler [MVW84]). Let Γ < SL(n,Z) be a Zariski-dense
subgroup. Then for all but finitely many primes p, Γ surjects onto SL(n,Fp).

Theorem 0.1 holds more generally for arithmetic subgroups commensurable with the integer points
of connected almost simple and simply connected Q-algebraic groups, see [MVW84].

Definition 2.5.2. Let K be a subfield of C and G be a linear algebraic group G over K. We say that
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• G is almost simple if G(C)/Z(G(C) is simple,

• G is connected if G(C) is connected with the euclidean topology and

• G is simply connected if G(C) is simply connected with the euclidean topology.

For instance, the Q-algebraic group Sp2n is connected, almost simple and simply connected. However,
for a quadratic form of rank n ≥ 3 over Q, the Q-algebraic group SO(q) is connected, almost simple
(except if n = 4) but not simply connected. Note that if G has any of the above properties, so does
any K-form of G.

Weisfeiler extended Theorem 0.1 to other number fields. Note that the naive analogue of Theorem
0.1 does not hold over number fields, as shown by the following example.

Example 2.5.3. The ideal (3) is prime in Z[
√
2] and has for residue field F9. Consider the reduction

r(3) : SL(n,Z[
√
2]) → SL(n,F9). Then r(3)(SL(n,Z)) = SL(n,F3) yet SL(n,Z) is Zariski-dense in

SL(n,Z[
√
2]).

Weisfeiler showed that the right replacement for Z is not the ring of integers of F but the ring generated
by the traces of Γ. To state Weisfeiler’s result, we need the following definition.

Definition 2.5.4. Let R be a ring. A (linear) group scheme over R is a functor

G : R-algebra→ group

such that there exists a R-algebra A which is finitely generated and such that

G(·) ≃ HomR-alg(A, ·)

as functors to sets.

For example, the functor

SLn : Z-algebra→ group, R→ {M ∈ Mn(R) | det(M) = 1}

is a linear group scheme with A = Z[x11, x12, . . . , xnn]/(det−1).
If R is a ring and a ∈ R \ {0} is a non-nilpotent element, then we denote by Ra the localization of

R at the multiplicative set {an|n ∈ N}. The ideals in Ra are in bijective correspondence with ideals
of R that do not contain any power of a.

Theorem 2.5.5 (Strong Approximation, Weisfeiler [Wei84]). Let G be a connected Q-algebraic group
which is almost simple and simply connected. Let Γ be a finitely generated Zariski-dense subgroup of
G(Q). Denote by

R = Z[Tr(Ad(Γ))].

Then there exists a ∈ R, a finite index subgroup Γ′ < Γ and a structure of a group scheme G0 over Ra

that become isomorphic to G over Q such that Γ′ < G0(Ra) and Γ′ is dense in

lim←−
|Ra/I|<∞

G0

(
Ra/I

)
,

where the projective limit is over ideals of Ra.

Remark 2.5.6. In the context of Theorem 2.5.5, let I be an ideal of Ra such that Ra/I is finite and
denote by

π : G0(Ra)→ G0

(
Ra/I

)
the canonical map. The theorem implies that π(Γ′) = G0(Ra/I).

Note that Theorem 2.5.5 requires G to be simply connected. For groups that are not simply
connected, such the orthogonal group, Nori proved that one still has control on the reduction of
Zariski-dense subgroup. For a subgroup G of GL(n,Fp) denote by G+ the subgroup generated by the
elements of G with order p.

Theorem 2.5.7 (Nori [Nor87]). Let G be a linear Z-group scheme such that G(C) is connected with
the euclidean topology. For a prime p, denote by rp : G(Z)→ G(Fp) the reduction map. Let Γ < G(Z)
be a Zariski-dense subgroup. Then for all but finitely many primes p

G(Fp)
+ < rp(Γ) < G(Fp).
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Chapter 3

Fuchsian representations in lattices

In this chapter, we establish Theorem A. Recall that a Fuchsian representation is a representation of
the form τn ◦ ρ for ρ : π1(Sg)→ PSL(2,R) discrete and faithful.

Theorem A. For every lattice Λ of G listed in Table 1, there exists g ≥ 2 such that Λ contains the
image of a Fuchsian representation of π1(Sg). Furthermore, up to wide commensurability, these are
the only lattices of G that contain the image of a Fuchsian representation.

G n or k Λ

SO(k + 1, k) k ≥ 2, k ≡ 1, 2[4] Every lattice not w.c. with SO(q0,Z)

SO(k + 1, k) k ≥ 3, k ≡ 0, 3[4] SO(qF ,OF )

G2(R) Every lattice

Sp(2n,R) n ≥ 2 Every lattice not w.c. with Sp(2n,Z)

SL(2k + 1,R) k ≥ 1 SL(2k + 1,Z) or SU(I2k+1, σ;OF [
√
d])

SL(2n,R) n ≥ 2 SL(n,O) or SU(In, ⊗ σ;O ⊗OF [
√
d])

Table 3.1: Here F is any totally real number field, OF its ring of integers and d any element of
OF which is not a square and is positive at exactly one real place of F , say ι. Moreover O is any
order of any quaternion division algebra over F which splits exactly at ι. If k ≡ 0, 3[4], let qF be
a non-degenerate quadratic form of rank 2k + 1 over F that has trivial discriminant, trivial Hasse
invariant at each finite place of F , which is positive definite at all real places of F except one where
it has signature equal to (k + 1, k) if k ≡ 0[4] or to (k, k + 1) if k ≡ 3[4]. If k ≡ 1, 2[4], let q0 be
a non-degenerate quadratic form of rank 2k + 1 over Q that has trivial discriminant, trivial Hasse
invariant at each odd prime, non-trivial Hasse invariant at 2, signature equal to (k, k + 1) if k ≡ 1[4]
or to (k + 1, k) if k ≡ 2[4]. See Section 2.3 for definitions.

The proof is essentially contained in [Aud22] and [Aud23]. Using Proposition, 2.2.6, the problem
reduces to classifying F -forms of SLn, Sp2n, SO or G2 that contain the image of an F -form of SL2

under τn, for all totally real number fields F . With the help of Galois cohomology, we start by
reformulating the problem in terms of τn-compatible cocycles. We classify these cocycles. We then
determine, case by case, the associated F -form. This requires to compute the arithmetic invariants of
the cocycles, such as the Hasse invariant for cocycles in the orthogonal group.

3.1 Compatible cocycles

Let F be a totally real number field. Any F -form of SL2 is of the isomorphic to

R→ (A⊗F R)1

49
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for A a quaternion algebra over F , see Proposition 1.6.11. Let a, b ∈ F such that A ≃ (a, b)F . Pick
square roots of a and b in Q. We can embed A in M2(Q) with the following isomorphism

A ≃

{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ F
}
.

Since Aut(SL2(Q)) = PGL2(Q), F -forms of SL2 are classified by elements of the first Galois cohomol-
ogy set H1(Gal(Q /F ),PGL2(Q)) (Proposition 1.6.9). Explicit computation shows that the 1-cocycle
associated to A1 is

T a,b : Gal(Q/Q)→ PGL(2,Q)

σ 7→



I2 if σ(
√
a) =

√
a and σ(

√
b) =

√
b(

1 0
0 -1

)
if σ(
√
a) =

√
a and σ(

√
b) = −

√
b(

0 1
1 0

)
if σ(
√
a) = −

√
a and σ(

√
b) =

√
b(

0 1
-1 0

)
if σ(
√
a) = −

√
a and σ(

√
b) = −

√
b.

For simplicity we will often write Tσ or T a,b
σ instead of T a,b(σ). Note that we identify PGL(2,Q) with

Aut(SL(2,Q)) via the map M 7→ (X 7→MXM−1).

Hence we have the following.

Lemma 3.1.1. For every 1-cocycle ξ : Gal(Q/F ) → PGL(2,Q), there exist a, b ∈ F such that

ξ is equivalent to T a,b, i.e. there exists P ∈ SL(2,Q) such that ξ(σ) = P−1T a,b
σ σ(P ) for every

σ ∈ Gal(Q/F ).

Let ξ : Gal(Q /F )→ Aut(SL(2,Q)) be a 1-cocycle.

Definition 3.1.2. Let n ≥ 3 and let G be an F -algebraic subgroup of SLn. We say that a 1-cocycle
ζ : Gal(Q /F )→ Aut(G(Q)) is τn-compatible with ξ if

τn(ξSL2(F )) < ζG(F ).

Equivalently, for any matrix M ∈ SL(2,Q) that satisfies ξ(σ)(σ(M)) =M for all σ ∈ Gal(Q /F ), one
has ζ(σ)σ(τn(M)) = τn(M) for all σ ∈ Gal(Q /F ).

To describe the 1-cocycles τn-compatible with ξ, we introduce the following bilinear form.

Definition 3.1.3. For all n ≥ 3 define

Jn =


(n− 1)!

(−1)i−1(n− i)!(i− 1)!

(−1)n−1(n− 1)!

.

It satisfies τn(M)⊤Jnτn(M) = Jn for all M ∈ SL(2,C), see for instance McGarraghy [McG05].
Note that when n is odd, it is a symmetric matrix of signature (k + 1, k) if n ≡ 1[4] and (k, k + 1) if
n ≡ 3[4]. When n is even, Jn is antisymmetric.

We denote by ω the automorphism of SL(n,Q) defined as ω(M) = (M⊤)−1 where M−⊤ is the
transpose of the inverse of the matrix M . In the following proposition, we give an explicit description
of the 1-cocycles τn-compatible with ξ. It will be used repeatedly in this chapter.
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Proposition 3.1.4. For any n ≥ 3, a 1-cocycle ζ : Gal(Q /F )→ Aut(SL(n,Q)) is τn-compatible with

ξ : σ 7→ P−1T a,b
σ σ(P ) if and only if either

ζ : σ 7→ Inn(τn(P
−1T a,b

σ σ(P ))) (3.1)

or there exists a quadratic field extension F (
√
d) of F such that

ζ : σ 7→

{
Inn(τn(P

−1T a,b
σ σ(P ))) if σ(

√
d) =

√
d

Inn(τn(P
−1T a,b

σ )J−1
n ) ◦ ω ◦ Inn(τn(σ(P ))) if σ(

√
d) = −

√
d.

(3.2)

Proof. Up to equivalence of cocycles, we can assume that P = I2. Suppose that

τn(ξSL2(F )) < ζSLn(F ).

From now on, we fix σ ∈ Gal(Q/F ). Since Aut(SLn(Q)) = Inn(SLn(Q)) ⋊ ⟨ω⟩, see Theorem 2.8 in
[PR94], ζ(σ) is either inner or the composition of an inner automorphism with ω.

Suppose that ζ(σ) = Inn(Aσ) for some Aσ ∈ PGL(n,Q). Then, by definition, all M ∈ ξ SL2(F )
satisfy

τn(Tσσ(M)T−1
σ ) = τn(M) = Aσσ(τn(M))A−1

σ

=⇒ Aστn(T
−1
σ )τn(M) = τn(M)Aστn(Tσ)

−1

since τn ◦ σ = σ ◦ τn. Hence Aστn(Tσ)
−1 commutes with τn(ξSL2(F )) thus with its Zariski-closure

which is τn(SL2(Q)). Schur’s lemma implies that Aσ = τn(Tσ). It follows that if ζ is inner, it is of the
form of (3.1).

Suppose that ζ(σ) = Inn(Aσ) ◦ ω for some Aσ ∈ PGL(n,Q). Then for all M ∈ ξSL2(F )

τn(Tσσ(M)T−1
σ ) = τn(M) = Aσω(σ ◦ τn(M))A−1

σ

=⇒ τn(Tσσ(M)T−1
σ ) = τn(M) = AσJnσ(τn(M))J−1

n A−1
σ

=⇒ AσJnτn(Tσ)
−1τn(M) = τn(M)AσJnτn(Tσ)

−1.

By the argument as above we get Aσ = τn(Tσ)J
−1
n .

Since Jn is in PGL(n, F ) and Tσ has a representative in PGL(2, F ), for every σ, the automorphism
ζ(σ) is fixed under the action of Gal(Q/F ). Applying the 1-cocycle formula we see that

ζ(στ) = ζ(σ)ζ(τ)

for all σ, τ ∈ Gal(Q/F ) that is, ζ is group homomorphism.
Suppose ζ is not inner. Then ζ−1(Inn(SLn(Q))) is an index 2 subgroup of Gal(Q/F ). It is moreover

closed and open because ζ is continuous. Thus its fixed field is a quadratic extension of F which we
denote F (

√
d) for some d ∈ F , see Theorem 5.4.10 in [Wei06]. Finally we have shown that ζ is of the

form of equation (3.2).
Reciprocally, all maps defined by (3.1) or (3.2) are 1-cocycles as shown by computation using the

fact that τn(Tσ) and Jn commute.

Finally, we compute the central simple algebra associated to inner τn-compatible cocycles. This
is the first step towards the classification of F -forms associated to τn-compatible cocycles. For every
1-cocycle ζ : Gal(Q /F )→ Inn(SL(n,Q)) ≃ PGL(n,Q) define

ζMn(F ) = {M ∈ Mn(Q) | ζ(σ)(σ(M)) =M ∀σ ∈ Gal(Q /F )}.

It satisfies ζMn(F )⊗F Q ≃ Mn(Q).

Proposition 3.1.5. Let ζ : Gal(Q /F )→ PGL(n,Q) be a 1-cocycle τn-compatible with ξ. Then

ζMn(F ) ≃
{

Mn(F ) if n is odd
Mn

2
(ξM2(F )) if n is even.
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In particular, τn(ξSL2(F )) can be conjugated to lie inside SLn(F ) if and only if n is odd.

Proof. Recall that, by assumptions, ζ is inner. Consider the following short exact sequence

1→ Q
∗ → GLn(Q)

π−→ PGLn(Q)→ 1.

By Proposition 1.6.4, this gives rise to a long exact sequence of sets with distinguished elements

H1(Gal(Q /F ),GLn(Q))→ H1(Gal(Q /F ),PGLn(Q))
δ−→ H2(Gal(Q /F ),Q

∗
).

Hilbert 90, Theorem 1.6.5, shows that H1(Gal(Q /F ),GLn(Q)) is trivial. A “twisting” argument,
see Lemma 1.4 in [PR94] implies that δ is injective. Hence ζMn(F ) is uniquely determined by

δ(ζ) ∈ H2(Gal(Q /F ),Q
∗
) ≃ Br(Q), see Theorem 1.6.6. We thus only need to determine the Brauer

equivalence class of δ(ζ).
For every σ ∈ Gal(Q/F ) chooseMσ ∈ GL2(Q) such that π(Mσ) = ξ(σ). Define aσ,τ =Mσσ(Mτ )M

−1
στ

for every σ, τ ∈ Gal(Q/F ). Note that ζ(σ) = τn(ξ(σ)) for all σ. Then we have

ζ(σ) = τn(ξ(σ)) = τn(π(Mσ)) = π(τn(Mσ))

for every σ ∈ Gal(Q/F ). Thus we see that

τn(Mσ)σ(τn(Mτ ))τn(M
−1
στ ) = τn(Mσσ(Mτ )M

−1
στ )

for every σ, τ ∈ Gal(Q/F ), so δ(ζ) is the 2-cocycle given by (aσ,τ )
n−1. Define

ψ : Gal(Q/F )→ Q
∗

σ 7→ det(Mσ)

and note that

ψ(σ)σ(ψ(τ))ψ(στ)−1 = det(Mσ)σ(det(Mτ )) det(Mστ )
−1

= det(Mσσ(Mτ )M
−1
στ )

= det(aσ,τI2) = (aσ,τ )
2

for all σ, τ ∈ Gal(Q/F ). If n is odd then (aσ,τ )
n−1 = ψ(σ)lσ(ψ(τ))lψ(στ)−l where l = n−1

2 so (aσ,τ )σ,τ
is actually trivial in H2(Gal(Q/F ),Q

∗
). If n is even then (aσ,τ )

n−1 = ψ(σ)lσ(ψ(τ))lψ(στ)−laσ,τ where
l = n−2

2 so (aσ,τ )
n−1 is equivalent to aσ,τ in H2(Gal(Q/F ),Q

∗
). Since δ is injective, ζ is trivial if n is

odd and ζ is equivalent to the cocycle associated to Mn
2
(ξM2(F ))) if n is even.

3.2 The orthogonal group

The goal of this section is to classify the lattices of SO(Jn,R) that contain the image of a Fuchsian
representation, i.e. Theorem A for SO(k + 1, k). Isomorphism classes of F -forms of SO(Jn) are in
correspondence with equivalence classes of quadratic forms over Fn that have the same discriminant
as Jn, see Theorem 2.4.2. To a quadratic form B, the associated F -form is SO(B). Hence to determine
an F -form it suffices to characterize the corresponding quadratic form.

Quadratic forms over F are classified up to equivalence by global and local invariants. The main
reference for this subject is Serre’s book [Ser73], that deals with the case F = Q. See also [O’M00]
§66. Let q be a non-degenerate quadratic form over F of rank n and P be a prime ideal of OF . Choose
a basis of Fn such that q(x) =

∑
aix

2
i . Define its Hasse invariant in FP as

EP(q) =
⊗
i<j

(ai, aj)FP ∈ Br(FP).

To compute the Hasse invariant for quadratic forms of large rank, we use the following fact. If q and
q′ are two quadratic forms on Fn and Fm respectively, denote by q ⊥ q′ the induced quadratic form
on Fn ⊕ Fm. Then for all prime ideals P,

EP(q ⊥ q′) = EP(q)⊗ EP(q′)⊗ (disc(q), disc(q′))FP .
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The Hasse-Minkowski Theorem, Theorem 9 in Chapter IV of [Ser73], states that two quadratic
forms over F are equivalent if and only if they have the same discriminant, the same signature and
the same Hasse invariant in FP for all primes P.

Proposition 3.2.1. Let F be a totally real number field and a, b ∈ F×. Let n = 2k+1 ≥ 3. Consider
the 1-cocycle

ζ : Gal(Q /F )→ Aut(SO(Jn,Q)), σ → τn(T
a,b
σ ).

The F -form associated to ζ is SO(B) for B ∈ SL(n, F ) a symmetric matrix such that

• at one real place of F , B has signature equal to (k + 1, k) if k is even and (k, k + 1) if k is odd,

• B is positive definite at all other real places of F and

• B has Hasse invariant

EP(B) =

{
1 if k ≡ 0, 3[4]
(a, b)FP ⊗ (−1,−1)FP if k ≡ 1, 2[4]

for every prime ideal P of OF .

Let us explain how one can reconstruct the quadratic form from the 1-cocycle. The embedding
Aut(SO(Jn,Q)) ≃ SO(Jn,Q) ↪→ GL(n,Q) induces a map

H1(Gal(Q/F ),Aut(SO(Jn,Q)))
i−→ H1(Gal(Q/F ),GL(n,Q)).

The 1-cocycle i(ζ) is trivial by Hilbert Theorem 90 (Theorem 1.6.5). Thus there exists S ∈ GL(n,Q)
such that for all σ ∈ Gal(Q/F ) we have i(ζ)(σ) = S−1σ(S). The associated symmetric matrix
is S−⊤JnS

−1. To determine the matrix S we use the algorithm described in the proof of Hilbert
Theorem 90 (Theorem 1.6.5).

Proof of Proposition 3.2.1. We will exhibit a symmetric matrix, denoted Ja,b
n , which is in the F -

equivalence class associated to ζ, i.e. in the F -equivalence class of the matrix B in the Proposition.

Let L = F (
√
a,
√
b). Then ζ ∈ H1(Gal(L/F ),SO(Jn, L)). We define

f : Ln → Ln, x 7→
∑

σ∈Gal(L/F )

τn(T
a,b
σ )σ(x).

If L is a degree 2 extension of F let σ ∈ Gal(L/F ) be the non-trivial element. If L is a degree 4
extension of F , let σ ∈ Gal(L/F ) be such that σ(

√
a) = −

√
a and σ(

√
b) =

√
b and let τ ∈ Gal(L/F )

be such that τ(
√
a) =

√
a and τ(

√
b) = −

√
b. We denote by (e1, ..., en) the canonical basis of Ln.

To start, suppose n ≡ 1[4]. If L = F then the symmetric matrix associated to ζ is Jn. We
suppose that L is a degree 2 extension of F . If a or b is a square, then (a, b)F ≃ M2(F ) and up to
change of basis we can assume both of them is are squares. This has been treated in the previous
case. Suppose that a and b are not squares. We have

f : Ln → Ln, x 7→ x+

(
1

−1
...

1

)
σ(x).

We then define for all 1 ≤ i ≤ k
2

v2i−1 =
e2i−1 + e2k−2i+3

2
, v2i =

e2i − e2k−2i+2

2
,

v2k−2i+2 =

√
ae2i +

√
ae2k−2i+2

2
, v2k−2i+3 =

√
ae2i−1 −

√
ae2k−2i+3

2



54 CHAPTER 3. FUCHSIAN REPRESENTATIONS IN LATTICES

and vk+1 =
ek+1

2 . Denote

S−1 = (f(v1), . . . , f(vn)) =



1
√
a

1
√
a

... ...
1

... ...
−1

√
a

1 −
√
a


.

The symmetric matrix associated to ζ is S−⊤JnS
−1, see (3.3), whose Hasse invariant in FP , for any

prime P, is

(−1,−1)
n−1
4

FP
⊗

⊗
j=1,3,...,k−1

(a,−j(n− j))FP ≃ (−1,−1)
n−1
4

FP
⊗ (a, (−1)

n−1
4 )FP ,

since
∏

j=1,3,...,k−1 j(n−j) is a square as can be shown by induction. Thus if n ≡ 1[8], then S−⊤JnS
−1

has trivial Hasse invariant in FP . If n ≡ −3[8] then S−⊤JnS
−1 has for Hasse invariant (−1,−1)FP ⊗

(a, a)FP for all primes P.
We suppose that L is a degree 4 extension of F . Then f : Ln → Ln

x 7→ x+

(
1
−1

...
1

)
τ(x) +

(
1

1
...

1

)
σ(x) +

(
1

−1
...

1

)
σ(τ(x)).

For all 1 ≤ i ≤ k
2 we let

v2i−1 =

√
ae2i−1

2
, v2i =

√
be2i
2

,

v2k−2i+2 = −
√
ab

2
e2k−2i+2, v2k−2i+3 =

e2k−2i+3

2

and vk+1 =
ek+1

4 . Denote by

S−1 = (f(v1), . . . , f(vn)) =



√
a 1√

b
√
ab

... ...
1

... ...√
b −

√
ab

−
√
a 1


.

The symmetric matrix associated to ζ is S−⊤JnS
−1, see (3.3), whose Hasse invariant in FP , for any

prime P, is

(−1,−1)
n−1
4

FP
⊗

⊗
j=1,3,...,k−1

(a, bj(n− j))FP ≃ (−1,−1)
n−1
4

FP
⊗ (a, b

n−1
4 )FP .

Thus if n ≡ 1[8], S−⊤JnS
−1 has trivial Hasse invariant in FP . If n ≡ −3[8], S−⊤JnS

−1 has for Hasse
invariant (−1,−1)FP ⊗ (a, b)FP for all primes P.

Finally, if n ≡ 1[4], we let Ja,b
n be the diagonal matrix defined by

(Ja,b
n )ii =


−2a(n− i)!(i− 1)! if i ≤ k and i is odd,
−2b(n− i)!(i− 1)! if i ≤ k and i is even,
k!k! if i = k + 1,
2ab(n− i)!(i− 1)! if i ≥ k + 2 and i is even,
2(n− i)!(i− 1)! if i ≥ k + 2 and i is odd.

(3.3)
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From now on, suppose n ≡ 3[4]. If L = F , the symmetric matrix associated to ζ is Jn. We
assume that L is a degree 2 extension of F . If a or b is a square then (a, b)F = 1 and up to change of
basis we can assume both of them are squares. This has been treated in the previous case. Assume
none of them is a square. We have

f : Ln → Ln, x 7→ x+

(
1

−1
...

1

)
σ(x).

We then define for all 1 ≤ i ≤ k+1
2

v2i−1 = e2i−1, v2i = e2i,

v2k−2i+2 =
√
ae2k−2i+2, v2k−2i+3 = −

√
ae2k−2i+3

and vk+1 =
√
aek+1

2 . Denote

S−1 = (f(v1), . . . , f(vn)) =



1
√
a

1
√
a

... ...√
a

... ...
−1

√
a

1 −
√
a


.

The symmetric matrix associated to ζ is S−⊤JnS
−1, see (3.4), which has Hasse invariant

(−1,−1)
n+1
4

FP
⊗ (a,−2a)FP ⊗

⊗
j=1,3,...,k

(a,−j(n− j))FP ≃ (−1,−1)
n+1
4

FP
⊗ (a, (−1)

n−3
4 a)FP

for all primes P since 2
∏

j=1,3,...,k j(n−j) is a square as can be shown by induction. Thus if n ≡ −1[8]
then S−⊤JnS

−1 has trivial Hasse invariant in FP . If n ≡ 3[8] then S−⊤JnS
−1 has Hasse invariant

(−1,−1)FP ⊗ (a, a)FP .
We suppose that L is a degree 4 extension of F . Then f : Ln → Ln

x 7→ x+

(−1
1
...

−1

)
τ(x) +

( −1
−1

...
−1

)
σ(x) +

(
1

−1
...

1

)
σ(τ(x)).

We then define for all 1 ≤ i ≤ k+1
2

v2i−1 =

√
be2i−1

2
, v2i =

e2i
2
,

v2k−2i+2 =

√
ae2k−2i+2

2
, v2k−2i+3 =

√
abe2k−2i+3

2

and vk+1 =
√
aek+1

4 . Denote

S−1 = (f(v1), . . . , f(vn)) =



√
b

√
ab

1
√
a

... ...√
a

... ...
−1

√
a

−
√
b

√
ab


.

The symmetric matrix associated to ζ is S−⊤JnS
−1, see (3.4), which has Hasse invariant

(−1,−1)
n+1
4

FP
⊗ (a, 2)FP ⊗

⊗
j=1,3,...,k

(a, bj(n− j))FP ≃ (−1,−1)
n+1
4

FP
⊗ (a, b

n+1
4 )FP
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for all primes P. Thus if n ≡ −1[8], S−⊤JnS
−1 has trivial Hasse invariant in FP . If n ≡ 3[8],

S−⊤JnS
−1 has for Hasse invariant (−1,−1)FP ⊗ (a, b)FP .

Finally, if n ≡ 3[4], we let Ja,b
n be the diagonal matrix defined by

(Ja,b
n )ii =


−2b(n− i)!(i− 1)! if i ≤ k and i is odd,
2(n− i)!(i− 1)! if i ≤ k and i is even,
−ak!k! if i = k + 1,
−2a(n− i)!(i− 1)! if i ≥ k + 2 and i is even,
2ab(n− i)!(i− 1)! if i ≥ k + 2 and i is odd.

(3.4)

Proposition 3.2.2. Let Γ be an arithmetic subgroup of SL(2,R). Let F be a totally real number field
and a, b ∈ F× such that Γ is commensurable with the norm 1 elements of an order of (a, b)F .

Let n = 2k+1 ≥ 3 be odd. Then τn(Γ) lies in a subgroup of SO(Jn,R) widely commensurable with
SO(B,OF ) for B ∈ SL(n, F ) a symmetric matrix such that

• at one real place of F , B has signature equal to (k + 1, k) if k is even and (k, k + 1) if k is odd,

• B is positive definite at all other real places of F and

• B has Hasse invariant

EP(B) =

{
1 if k ≡ 0, 3[4]
(a, b)FP ⊗ (−1,−1)FP if k ≡ 1, 2[4]

for every prime ideal P of OF .

Furthermore these are the only arithmetic subgroups of SO(Jn,R) that contain τn(Γ) up to wide
commensurability.

Proof. Let ξ : Gal(Q /F )→ PGL(2,Q) be a 1-cocycle such that Γ is commensurable with ξSL2(OF ).

Up to equivalence, we can assume that ξ : σ → T a,b
σ . Since the 1-cocycle ζ : Gal(Q /F ) →

Aut(SO(Jn,Q)), σ → τn(T
a,b
σ ) is τn-compatible with ξ, Proposition 2.2.6 guarantees that τn(Γ) lies

in a lattice widely commensurable with SO(Ja,b
n ,OF ). Here Ja,b

n is the symmetric matrix defined in

the proof of Proposition 3.2.1. Note that SO(Ja,b
n ,OF ) is indeed a lattice of SO(Jn,R) since Ja,b

n is
positive definite over all real embeddings of F in R except one, see Equations (3.3) and (3.4) in the
proof of Proposition 3.2.1.

Conversely, suppose that an Λ is an arithmetic subgroup of SO(Jn,R) that contains τn(Γ). Since
SO(Jn,R) is simple Proposition 2.4.1 implies that Λ is widely commensurable the “integer points” of
a R/L-form of SO(Jn) for a number field L. Proposition 1.6.12 shows that R/L-forms of SO(Jn) are
Q /L-forms of SO(Jn). Hence Λ is commensurable with ηSO(Jn)(OL) for η : Gal(Q /L)→ SO(Jn,Q)
a 1-cocycle. By Proposition 3.2.3 below, we can assume that L = F .

We show that η is τn-compatible with ξ. For every σ ∈ Gal(Q /F ) denote by

τσn : SL2(Q)→ SO(Jn,Q), g 7→ η(σ) ◦ σ ◦ τn ◦ (ξ(σ) ◦ σ)−1(g).

This is an algebraic morphism that coincides with τn on a finite index subgroup of Γ. Since any finite
index subgroup of Γ is Zariski-dense in SL2(Q), τn = τσn . This means that τn(ξSL2(F )) < ηSO(Jn)(F ).
Proposition 3.1.4 concludes the proof.

Proposition 3.2.3. Let F be a number field and let VF denote the set of its embeddings in C. Pick
v ∈ VF . Let H be a connected F -algebraic group such that H(Fw) is compact for all w ̸= v, and
G < H(Fv) be a Zariski-closed semisimple subgroup. Let Γ < G be a lattice such that Γ < H(OF ).
Then there exists an F -algebraic subgroup G of H such that

• G(Fv) = G,

• for all w ∈ VF not v, G(Fw) is compact with the euclidean topology and
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• Γ is commensurable with G(OF ).

Proof. The group G ∩ H(F ) contains Γ so is Zariski-dense in G. The proof of Proposition 5.1.8 in
[Mor15] implies that there exists an F -algebraic subgroup G of H satisfying G(Fv) = G. For all
w ∈ VF not v, G(Fw) is a closed subgroup of the compact group H(Fw), hence is compact. Finally,
since G(Fw) is compact for all archimedean places of F except one, G(OF ) is a lattice in G. It contains
Γ up to finite index which implies that it is commensurable to Γ.

3.3 The exceptional group G2

Proposition 3.3.1. Let Γ be an arithmetic subgroup of SL(2,R). Let F be a totally real number field
and a, b ∈ F× such that Γ is commensurable with the norm 1 elements of an order of (a, b)F . Then

τ7(Γ) lies in a subgroup of G2(R) widely commensurable with Ga,b
2 (OF ). Furthermore the latter is

the only arithmetic subgroup of G2(R) that contains τ7(Γ) up to wide commensurability.

Proof. Let ξ : Gal(Q/F )→ PGL(2,Q), σ 7→ T a,b
σ . It is a 1-cocycle and ξSL2(OF ) is widely commen-

surable with Γ. Let
ζ : Gal(Q/F )→ G2(Q), σ 7→ τ7(T

a,b
σ ).

It makes sense thanks to Proposition 1.5.8. It satisfies τ7(ξSL2(F )) < ζG2(F ).

We need to determine ζG2(F ). Hilbert’s 90, Theorem 1.6.5, shows that there exists S ∈ GL7(Q)

such that for all σ ∈ Gal(Q /F ) ζ(σ) = S−1σ(S). As computed in the proof of Proposition 3.2.2, we
can take

S =


√
b

√
ab

1
√
a√

b
√
ab√

a

−
√
b

√
ab

−1
√
a

−
√
b

√
ab


−1

.

Hence for M ∈ ξSL2(F ), Sτ7(M)S−1 ∈ SL(7, F ). It appears that τ7(ξSL2(F )) preserves the

quadratic form J7. Hence Sτ7(ξSL2(F ))S
−1 preserves the quadratic form S−⊤JnS

−1 = Ja,b
n . Proposi-

tion 1.5.8 implies that Sτ7(ξSL2(F ))S
−1 preserves × as defined in Definition 2.4.8. It follows that

Sτ7(ξSL2(F ))S
−1 < Ga,b

2 (F ).

Since there is a unique 1-cocycle τ7-compatible with ξ that has values in G2(Q), see Proposition
3.1.4, there is only one F -form of G2(Q) that contains τ7(ξSL2(F )). We deduce that ζG2(F ) ≃
Ga,b

2 (F ). Proposition 2.2.6 shows that τ7(Γ) is contained in ζG2(OF ) ≃ Ga,b
2 (OF ) up to finite index.

The converse statement is proven as in the proof of Proposition 3.2.2.

3.4 The special linear group, odd dimension

Proposition 3.4.1. Let Γ be an arithmetic subgroup of SL(2,R). Let F be a totally real number field
and A a quaternion algebra over F such that Γ is commensurable with the norm 1 elements of an
order of A.

Let n ≥ 3 be odd. Then τn(Γ) lies in a subgroup of SL(n,R) widely commensurable with the lattice
SU(In, σ;OF [

√
d]) for every d ∈ OF which is positive at exactly the same real place of F where A

splits and σ ∈ Gal(F (
√
d)/F ) non-trivial. If F = Q, then τn(Γ) also lies in a subgroup of SL(n,R)

widely commensurable with SL(n,Z).
Furthermore these are the only arithmetic subgroups of SL(n,R) that contain τn(Γ) up to commen-

surability.

Proof. Let a, b ∈ F× such that A ≃ (a, b)F . Let ξ : Gal(Q/F ) → PGL(2,Q), σ 7→ T a,b
σ . It is a

1-cocycle such that ξSL2(OF ) is widely commensurable with Γ. Let ζ : Gal(Q/F )→ Aut(SLn(Q)) be
a τn-compatible 1-cocycle.
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If ζ is inner then Proposition 3.1.5 shows that ζSLn(F ) ≃ SL(n, F ). However, SL(n,OF ) is a lattice
of SL(n,R) if and only if F = Q.

Suppose from now on that ζ is not inner. Denote by F (
√
d) the associated quadratic extension of

F . Recall from Proposition 3.1.4 that M ∈ ζSLn(F ) if and only if

τn(Tσ)σ(M)τn(Tσ)
−1 =M

for all σ ∈ Gal(Q /F ) such that σ(
√
d) =

√
d and

τn(Tσ)J
−1
n σ(M)−⊤Jnτn(Tσ)

−1 =M

for all σ ∈ Gal(Q /F ) such that σ(
√
d) = −

√
d. Since σ 7→ τn(Tσ) is a trivial cocycle, as proven in

Proposition 3.1.5, there exists S ∈ GL(n,Q) such that τn(Tσ) = S−1σ(S). The first set of equations
is equivalent to

SMS−1 ∈ SL(n, F (
√
d)).

Secondly, for all σ ∈ Gal(Q /F ) such that σ(
√
d) = −

√
d

τn(Tσ)J
−1
n σ(M)⊤Jnτn(Tσ)

−1 =M−1

⇔ τn(Tσ)
−⊤σ(M)⊤τn(Tσ)

⊤JnM = Jn

since τn(Tσ) and Jn commute and since τn(Tσ)
−⊤ = τn(Tσ),

⇔ σ(SMS−1)⊤S−⊤JnS
−1(SMS−1) = S−⊤JnS

−1.

As explained in the proof of Proposition 3.2.2, we can take S such that S−⊤JnS
−1 = Ja,b

n . Thus

S ζSLn(F )S
−1 = SU(Ja,b

n , σ;F (
√
d))

with σ ∈ Gal(F (
√
d)/F ) non-trivial. From Proposition 2.4.4, we see that σ-Hermitian forms over

F (
√
d) are classified up to equivalence by their rank, their discriminant and their signatures at real

places of F where d is negative. Hence Ja,b
n is equivalent to In. Proposition 2.2.6 shows that τn(Γ) is

contained in ζSLn(OF ) which is widely commensurable with SU(In, σ;OF [
√
d]).

The converse statement is proven as in the proof of Proposition 3.2.2.

Example 3.4.2. Consider the quaternion algebra A = (3, 3)Q with basis {1, i, j, k} satisfying the
relations of Equation (1.1). Denote by O = Z[1, i, j, k]. It is an order of A. Embedding A in SL(2,R),
O1 is conjugated to

Γ =

{(
x0 + x1

√
3 x2

√
3 + 3x3

x2
√
3− 3x3 x0 − x1

√
3

) ∣∣∣∣∣ xi ∈ Z, det = 1

}
.

Since 3x2 +3y2 = 1 has no solution (x, y) ∈ Q2, Γ is a uniform lattice of SL(2,R). On can check that
it is torsion-free, so it is actually a surface group. For any γ ∈ Γ we have

τ3(γ) =

 (x0 +
√
3x1)

2 (x0 +
√
3x1)(

√
3x2 + 3x3) (

√
3x2 + 3x3)

2

2(x0 +
√
3x1)(

√
3x2 − 3x3) x20 − 3x21 + 3x22 − 9x23 2(

√
3x2 + 3x3)(x0 −

√
3x1)

(
√
3x2 − 3x3)

2 (x0 −
√
3x1)(

√
3x2 − 3x3) (x0 −

√
3x1)

2

 .

Hence τ3(Γ) does not lie in SL(3,Z). However, letting

P =

1 0
√
3

0
√
3 0

1 0 -
√
3

 ,

we have

P−1τ3(γ)P =

x20 + 3x21 + 3x22 + 9x23 3x0x2 + 9x1x3 6x0x1 − 18x2x3
4x0x2 − 12x1x3 x20 − 3x21 + 3x22 − 9x23 −12x0x3 + 12x1x2
2x0x1 + 6x2x3 3x0x3 + 3x1x2 x20 + 3x21 − 3x22 − 9x23


which lies in SL(3,Z).
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3.5 Standard cocycle

In even dimension, the determination of the forms is more involved. This section is here to set up
some technical results that will be useful in the next sections.

Let F be a totally real number field. Let a, b ∈ F× and

ζ : Gal(Q /F )→ PGL(2n,Q), σ 7→ τ2n(T
a,b
σ ).

We will show that ζ is equivalent to the following “standard” 1-cocycle.

Definition 3.5.1. The 1-cocycle defined by η : Gal(Q /F )→ PGL(2n,Q), σ 7→ ϕn(T
a,b
σ ) is called the

standard 1-cocycle associated to (a,b).

Recall that ϕn : SL(2,C) → SL(2n,C), M 7→ ϕn(M) where ϕn(M) is the block-diagonal matrix
with each block on the diagonal being equal to M .

Computations show that ηM2n(F ) are 2-by-2 block matrices with each block of the form(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

)
for some xi ∈ F .

The 1-cocycle ζ does not lift to SL(2n,Q), preventing us to use Hilbert’s 90, Theorem 1.6.5. To
resolve this issue, we consider the following 1-cocycle.

Lemma 3.5.2. The map ζη−1 : Gal(Q /F )→ ηPGLn(Q), σ 7→ ζ(σ)η(σ)−1 is a 1-cocycle.

Note that in ηPGLn(Q) the action of the Galois group is twisted by η, i.e. for σ ∈ Gal(Q /F ) and

M ∈ ηPGLn(Q) we have σ · M = η(σ)σ(M)η(σ)−1.

Proof. For all σ, τ Gal(Q /F )

ζη−1(στ) = ζ(σ)σ(ζ(τ))σ(η(τ))−1η(σ)−1

= ζ(σ)η(σ)−1(η(σ)σ(ζ(τ)η(τ)−1)η(σ)−1)

= ζη−1(σ)σ · ζη−1(τ).

The 1-cocycle ζη−1 lifts to a 1-cocycle χ : Gal(Q /F )→ ηSL2n(Q)

σ 7→



I2n if σ(
√
a) =

√
a

1 0
0 1

1 0
0 1

 if σ(
√
a) = −

√
a.

Hilbert’s 90, Theorem 1.6.5, tells us that there exists P ∈ GL(n,Q) such that for all σ, ζη−1(σ) =
P−1η(σ)σ(P )η(σ)−1 and its proof gives an algorithm to determine such a matrix P . The algorithm is
described in section 3.2. We give here the conclusions. If a is a square, let P = I2n. Assume a is not
a square. If n is even, let

P =
1

2



I2 I2

I2 I2
1√
a
I2 - 1√

a
I2

1√
a
I2 - 1√

a
I2


.
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If n is odd, let

P =
1

2



I2 I2

I2 I2
2I2

1√
a
I2 - 1√

a
I2

1√
a
I2 - 1√

a
I2


.

For all σ ∈ Gal(Q /F ), ζ(σ) = P−1η(σ)σ(P ). In particular ζ and η are equivalent.

3.6 The symplectic group

Proposition 3.6.1. Let Γ be an arithmetic subgroup of SL(2,R). Let O be an order of a quaternion
algebra over a totally real number field such that Γ is widely commensurable with O1. Let n ≥ 2. Then
τ2n(Γ) lies in a subgroup widely commensurable with SU(In, ;O). Furthermore, this is the only lattice
of Sp(2n,R) that contains τ2n(Γ) up to commensurability.

Proof. Let F be a totally real number field and a, b ∈ F× such that O is an order of (a, b)F . We can

assume that a, b ∈ OF . Let ξ : Gal(Q /F ) → PGL(2,Q), σ 7→ T a,b
σ . It is a 1-cocycle such that Γ is

commensurable with ξSL2(OF ). Let

ζ : Gal(Q /F )→ PSp2n(J2n,Q)

be the τ2n-compatible 1-cocycle. We want to determine ζSp2n(J2n)(F ).
Denote η the standard 1-cocycle associated to (a, b), see Definition 3.5.1. Recall from §3.5 that

ζ(σ) = P−1η(σ)σ(P ) for all σ ∈ Gal(Q /F ). Then ζSp2n(J2n)(F )

= {M ∈ Sp2n(J2n)(Q) | ζ(σ)σ(M)ζ(σ)−1 =M ∀σ ∈ Gal(Q /F )}
= {M ∈ Sp2n(J2n)(Q) | η(σ)σ(PMP−1)η(σ)−1 = PMP−1 ∀σ ∈ Gal(Q /F )}
= {X ∈ ηSL2n(F ) | X⊤P−⊤J2nP

−1X = P−⊤J2nP
−1}.

Denote by A the quaternion algebra{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ F
}
.

It is isomorphic to (a, b)F . Further more ηSL2n(F ) = SL(n,A). Denote by the conjugation of A and
let

K = ϕn

((
0 1
−1 0

))
.

Then for all M ∈ ηSL2n(F ), M
t
= (KMK−1)⊤ where M t is the matrix obtained by transposing M

as an element of SL(n,A). We emphasize that only the position of its 2-by-2 blocks changes, those
blocks are not themselves transposed. Hence

ζSp2n(J2n)(F ) = {M ∈ ηSL2n(F ) | M
t
J∗
2nM = J∗

2n}.

where J∗
2n = KP−⊤J2nP

−1. Computations show that J∗
2n is a -Hermitian matrix. We now show that

J∗
2n is equivalent as a -Hermitian matrix to −I2n. If n is even, let

N =



I2 I2

I2 I2
-D D

-D D


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with

D =

(
1√
a

0

0 − 1√
a

)
.

If n is odd, let

N =



I2 I2

I2 I2
2I2

-D D

-D D


.

Then N
t
J∗
2nN is the diagonal matrix defined by

(N
t
J∗
2nN)ii =

{
−4(2n− i− 1)!i! if i is odd
−4(2n− i)!(i− 1)! if i is even.

Since Γ is an arithmetic subgroup of SL(2,R), F is totally real and A ramifies at all embeddings of F
except one, which we denote by ι. As we can see in §5 of [Lew82], non-degenerate -Hermitian forms
on A are classified by their signatures at all real embeddings of F except ι. Here the set of signatures
is always (0, 2n). Hence −J∗

2n is equivalent as a -Hermitian form to I2n. Finally

ζSp2n(J2n)(F ) ≃ SU(In, ;A).1

Proposition 2.2.6 shows that τ2n(Γ) is contained in ζSp2n(J2n)(OF ) which is widely commensurable
with SU(In, ;O).

The converse statement is proven as in the proof of Proposition 3.2.2.

3.7 The special linear group, even dimension

Proposition 3.7.1. Let Γ be an arithmetic subgroup of SL(2,R). Let O be an order of a quaternion
algebra A over a totally real number field F such that Γ is widely commensurable with O1.

Let n ≥ 2. Then τ2n(Γ) lies in a subgroup of SL(2n,R) widely commensurable with SU(In, ⊗σ;O⊗
OF [
√
d]) for every d ∈ OF which is positive exactly at the real place where A splits and σ ∈ Gal(F (

√
d)/F )

non-trivial. If F = Q then τ2n(Γ) also lies in a subgroup of SL(2n,R) widely commensurable with
SL(n,O).

Furthermore, those are the only lattices of SL(2n,R) that contain τ2n(Γ) up to commensurability.

Proof. Let a, b ∈ OF such that A ≃ (a, b)F . Let ξ : Gal(Q /F ) → PGL(2,Q), σ 7→ T a,b
σ . It is a

1-cocycle such that Γ is commensurable with ξSL2(OF ). Let ζ : Gal(Q /F ) → Aut(SL2n(Q)) be a
τ2n-compatible 1-cocycle. We want to determine ζSL2n(F ).

If ζ is inner, Proposition 3.1.5 shows that ζSL2n(F ) ≃ SL(n,A). However, SL(n,O) is a lattice of
SL(2n,R) if and only if F = Q.

Suppose that ζ is not inner. Denote by F (
√
d) the corresponding quadratic extension, see Propo-

sition 3.1.4. We can suppose that d ∈ OF . Let
√
d be a square root of d.

Recall that for any M ∈ SL(2n,Q), M ∈ ζSL2n(F ) if and only if

τ2n(Tσ)σ(M)τ2n(Tσ)
−1 =M

for all σ ∈ Gal(Q /F ) such that σ(
√
d) =

√
d and

τ2n(Tσ)J
−1
2n σ(M)−⊤J2nτ2n(Tσ)

−1 =M

1Here In is viewed as a matrix with entries in A. Hence it is the matrix I2n when we see elements of A as 2-by-2
matrices.
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for all σ ∈ Gal(Q /F ) such that σ(
√
d) = −

√
d. In §4.1 we proved that τ2n(Tσ) = P−1η(σ)σ(P ).

Hence M ∈ ζSL2n(F ) if and only if PMP−1 ∈ ηSL2n(F (
√
d)) ≃ SL(n,A ⊗F F (

√
d)) and for all

σ ∈ Gal(Q /F ) such that σ(
√
d) = −

√
d

σ(M)⊤J2nσ(P )
−1η(σ)−1PM = J2nσ(P )

−1η(σ)−1P

⇔ σ(PMP−1)⊤σ(P )−⊤J2n(η(σ)σ(P ))
−1PMP−1 = σ(P )−⊤J2n(η(σ)σ(P ))

−1

⇔ σ(PMP−1)⊤η(σ)P−⊤J2nP
−1(PMP−1) = η(σ)P−⊤J2nP

−1

by applying σ(·)⊤ to each side of the equation since σ2(PMP−1) = PMP−1. We will show that this set
of equations is equivalent to the defining equation of a group conjugated to SU(In, ⊗σ;A⊗F F (

√
d)).

Denote by

K = ϕn

((
0 1
−1 0

))
.

The quaternion algebra A is isomorphic to{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ F
}
.

We use this isomorphism to embed A in M2(Q). Then for all X ∈ ηSL2n(F (
√
d)), X

t
= (KXK−1)⊤

where Xt is the matrix obtained by transposing X as an element of SL(n,A ⊗F F (
√
d)). For any

σ ∈ Gal(Q /F ) denote by

σ∗ : ηSL2n(F (
√
d))→ ηSL2n(F (

√
d))

the map defined on 2-by-2 blocks by(
x0+

√
ax1

√
bx2+

√
abx3√

bx2−
√
abx3 x0−

√
ax1

)
7→
(

σ(x0)+
√
aσ(x1)

√
bσ(x2)+

√
abσ(x3)√

bσ(x2)−
√
abσ(x3) σ(x0)−

√
aσ(x1)

)
.

Fix σ ∈ Gal(Q /F ) such that σ(
√
d) = −

√
d. Let τ ∈ Gal(Q /F ) such that τ(

√
d) = −

√
d and denote

by s = σ−1τ . Then for all X ∈ ηSL2n(F (
√
d))

τ(X)⊤η(τ)P−⊤J2nP
−1X = η(τ)P−⊤J2nP

−1

⇔ η(σs)−1σs(X)⊤η(σs)P−⊤J2nP
−1X = P−⊤J2nP

−1

⇔ η(σ)−1σ(η(s)−1s(X)⊤η(s))η(σ)P−⊤J2nP
−1X = P−⊤J2nP

−1,

since η(σ)η(s) = η(s)η(σ) ∈ PGL(2n,Q)

⇔ η(σ)−1σ(η(s)s(X)η(s)−1)⊤η(σ)P−⊤J2nP
−1X = P−⊤J2nP

−1

⇔ η(σ)−1σ(X)⊤η(σ)P−⊤J2nP
−1X = P−⊤J2nP

−1,

since s(
√
d) =

√
d

⇔ σ(η(σ)Xη(σ)−1)⊤P−⊤J2nP
−1X = P−⊤J2nP

−1

⇔ σ∗(X)⊤P−⊤J2nP
−1X = P−⊤J2nP

−1,

since σ(η(σ)Xη(σ)−1) = σ∗(X)

⇔ σ∗(KXK−1)⊤KP−⊤J2nP
−1X = KP−⊤J2nP

−1

⇔ σ∗(X)tJ∗
2nX = J∗

2n,

where J∗
2n = KP−⊤J2nP

−1.

The matrix J∗
2n is a ⊗σ-Hermitian matrix. Let N be the matrix introduced in the proof of Proposition

3.6.1. Since σ∗(N) = N , σ∗(N
t
)J∗

2nN is the diagonal matrix defined by

(σ∗(N)tJ∗
2nN)ii =

{
−4(2n− i− 1)!i! if i is odd
−4(2n− i)!(i− 1)! if i is even.
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We can see in §7 of [Lew82] that ⊗σ-Hermitian forms over A⊗F F (
√
d) are classified by their rank,

their signatures at real places of F and their discriminant. Hence J∗
2n is equivalent to −I2n. We

conclude that

ζSL2n(F ) ≃ SU(In, ⊗σ;A⊗F F (
√
d)).

Proposition 2.2.6 shows that τ2n(Γ) is contained in

ζSL2n(OF ) ≃ SU(In, ⊗ σ;O ⊗OF [
√
d])

up to finite index. This is a lattice of SL(2n,R) if and only if d is positive exactly at the real place
where A splits.

The converse statement is proven as in the proof of Proposition 3.2.2.

3.8 Proof of Theorem A

Proof of Theorem A. Let G be SO(k + 1, k), Sp(2n,R), G2(R) or SL(n,R) with k ≥ 2 and n ≥ 3.
Let Λ be a lattice of G that contains the image of a Fuchsian representation ρ : π1(Sg)→ G for some
g ≥ 2. By definition, ρ = τn ◦ j for a suitable n where j is a discrete and faithful embedding of π1(Sg)
into SL(2,R). Hence j(π1(Sg)) is a lattice in SL(2,R).

By Margulis Arithmeticity Theorem, Theorem 2.2.14, Λ is arithmetic. By Proposition 2.4.1, there
exists a totally real number field F such that Λ is commensurable with the OF -points of an F -
algebraic group which is compact at all real places of F except one. Applying Proposition 3.2.3 to
τn(GL(2,R)) < G, the same holds for j(π1(Sg)).

Let Γ = j(π1(S)). There exists a quaternion algebra A over F such that Γ is commensurable with
the norm 1 elements of an order of A. We classified the lattices of G that contain τn(Γ) in Proposition
3.2.2 for G = SO(k+1, k), Proposition 3.3.1 for G = G2(R), Proposition 3.4.1 for G = SL(2k+1,R),
Proposition 3.6.1 for G = Sp(2n,R) and Proposition 3.7.1 for G = SL(2n,R).

To deduce Theorem A, we proceed as above for all arithmetic lattices Γ of SL(2,R) which are
cocompact. We thus consider all quaternion algebras A that ramifies at all real embeddings of F but
one, for all totally real number fields F , except M2(Q) when F = Q. Indeed, Γ is non-cocompact only
in the case F = Q and A ≃ M2(Q). The classification of Table 1 follows from the classification of
lattices of G2(R) in Proposition 2.4.11 and the classification of lattices Sp(2n,R) in Proposition 2.4.7.
The case where G = SO(k + 1, k) with k ≡ 1, 2[4] is more delicate.

Suppose that k ≡ 1, 2[4]. The classification of lattices of SO(k+1, k) is stated in Proposition 2.4.6.
Let SO(B,OF ) be such a lattice and consider σ : F ↪→ R to be the embedding under which B is not
positive definite. Denote by S the set of finite places P of F such that

EP(B)⊗ (−1,−1)P ̸= 1.

Let VF denote the set of infinite places of F . We now show that S ∪VF \ {σ} has even cardinality. By
Hilbert’s Reciprocity Law (Theorem 0.9.10 in [MR03]), Ev(B)⊗ (−1,−1)v ̸= 1 at an even number of
places v of F . The number of infinite places v ∈ VF where Ev(B)⊗ (−1,−1)v ̸= 1 is |VF | − 1 since

Ev(B) =

{
1 if v ̸= σ
−1 if v = σ.

Hence |S| ≡ |VF |−1 [2] which implies that S∪VF \{σ} has even cardinality. We deduce from Theorem
1.2.12 that there exists a unique, up to isomorphism, quaternion algebra A over F that ramifies exactly
at the places S∪VF \{σ}. Then A ≃ M2(Q) if and only if S∪VF \{σ} is empty. This case corresponds
to the quadratic form q0.
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Chapter 4

Zariski-dense Hitchin representations
in lattices

The goal of this chapter is to prove Theorem B. Recall that a Hitchin representation is a representation
that is the continuous deformation of a Fuchsian representation is the character variety.

Theorem B. Let Λ be a lattice of G listed in Table 1. Suppose that Λ is not widely commensurable
with SL(2k + 1,Z) or SL(n,O) for any order O. Then there exists g ≥ 2 such that Λ contains the
image of infinitely many MCG(Sg)-orbits of Zariski-dense Hitchin representations of π1(Sg).

Given an arithmetic lattice Γ of SL(2,R), we classified in Chapter 3 the lattices that contain
τn(Γ) up to wide commensurability. When Γ is a surface group, τn is a Fuchsian representation of
Γ. In this chapter, we “bend” these representations. This technique requires to find a simple closed
curve on the surface Sg which has a big centralizer in the lattice. When the lattice is uniform, this is
done in Lemma 4.2.1 by a topological argument which relies on the fact that the image of a Fuchsian
element only consists of regular elements. For non-uniform lattices, however, we use non-abelian
Galois cohomology to compute explicitly the centralizer of a curve. For the lattices SL(2k+1,Z) and
SL(n,O), the centralizer does not contain enough elements to perform a single bending.

We then present the Strong Approximation Theorem, a theorem that will help us prove that
bending procedure provides infinitely many mapping class group orbits of Hitchin representations.
We gathered in Section 4.5 some results about matrix groups over finite fields for which we did not
find a reference in the litterature.

4.1 Bending Fuchsian representations

Let Γ be a cocompact arithmetic subgroup of SL(2,R). Let G be SL(n,R), Sp(2n,R), SO(k+1, k) or
G2. Propositions 3.2.2, 3.3.1, 3.4.1, 3.6.1 and 3.7.1 tell us that there exists an arithmetic subgroup Λ
of G such that τn(Γ) < Λ. By Selberg’s Lemma (Theorem 2.1.5) there exists a finite index subgroup
of Γ which is torsion free and hence a surface group. Thus τn induces a representation of a surface
group into an arithmetic subgroup of G which, by definition, is a Fuchsian representation.

The image of this representation is not Zariski-dense in G since it lies in τn(GL(2,R)). We will
deform it so that it becomes Zariski-dense. The technique used is called bending, as introduced by
Johnson and Millson [JM86]. The Zariski-closure of Hitchin representations have been classified by
Guichard, see Theorem 0.8.

Let S be a closed orientable surface of genus at least 2 and γ be a simple closed curve on S. We
say that γ is separating if the complement of its image has two connected components, otherwise it is
non-separating. Let j : π1(S) → PSL(2,R) be a discrete and faithful representation. Let ρ = τn ◦ j.
Choose B ∈ PSL(n,R) which commutes with ρ([γ]).

Suppose γ is separating and denote by C and D the two connected components of the complement
of its image. Van Kampen’s theorem tells us that the fundamental group of S is an amalgamated
product:

π1(S) = π1(C) ∗[γ] π1(D)

65
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Denote by

ρ1 : π1(C)→ PSL(n,R) g 7→ ρ(g)

ρ2 : π1(D)→ PSL(n,R) g 7→ Bρ(g)B−1

Together they induce a new representation

ρB : π1(S)→ PSL(n,R).

Suppose γ is non-separating and denote by C the complement of its image. Then the fundamental
group of S is an HNN-extension of the fundamental group of C. More precisely let T be a tubular
neighborhood of the image of γ in S. The curve γ separates T into two connected components which
we denote by T1 and T2. Denote by i : T1 ↪→ C the inclusion. Pick p1 ∈ T1, p2 ∈ T2 and η : [0; 1]→ S
a path from p1 to p2 that does not intersect γ. Let

ϕ : π1(T2, p2)
∼−→ π1(T1, p1), [γ] 7→ [η−1 ◦ γ ◦ η].

Suppose π1(C, p1) = ⟨g1, ..., gk⟩. Then

π1(S) = ⟨g1, ..., gk, s | i∗(ϕ(g)) = s−1i∗(g)s ∀g ∈ π1(T1, p1)⟩.

Denote by

ρ1 : π1(C, p1)→ PSL(n,R), g 7→ ρ(g)

ρ2 : ⟨s⟩ → PSL(n,R), sk 7→ (Bρ(s))k

Together they induce a representation

ρB : π1(S)→ PSL(n,R)

since elements of i∗(π1(T1, p1)) are actually powers of γ.

We call ρB the bending of ρ using B.

Lemma 4.1.1. The group ρB(π1(S)) lies in a conjugate of τn(SL(2,R)) if and only if B ∈ τn(GL(2,R)).

Proof. Suppose ρB(π1(S)) lies in Pτn(PSL(2,R))P
−1 for some P ∈ PSL(n,R). The group ρB(π1(C))

is Zariski-dense in τn(PSL(2,R)), since j(π1(C)) is Zariski-dense in PSL(2,R). Hence the equality

τn(PSL(2,R)) = Pτn(PSL(2,R))P
−1.

Thus Inn(P ) induces an automorphism of τn(PSL(2,R)). We deduce that there exists X ∈ PGL(2,R)
such that τn(X)P−1 commutes with all elements of τn(PSL(2,R)) which is an absolutely irreducible
subgroup of PSL(n,R). Schur’s lemma implies that P = τn(X). Consequently ρB(π1(S)) lies in
τn(PSL(2,R)).

Suppose now γ is separating. Then ρB(π1(D)) = Bρ(π1(D))B−1 lies in Bτn(PSL(2,R))B
−1 which

is thus equal to τn(PSL(2,R)). By the above argument we get that B ∈ τn(PGL(2,R)). Suppose γ is
non-separating, then Bρ(s) ∈ τn(PSL(2,R)) so B ∈ τn(PSL(2,R)).

Lemma 4.1.2. The group ρB preserves a bilinear form represented by a matrix J ∈ PGL(n,R) if and
only if Jn = B⊤JnB in PGL(n,R) and in that case J = Jn.

Proof. Suppose ρB preserves J . Then for all s ∈ π1(C)

J−1Jn = ρ(s)−1J−1Jnρ(s)

so J−1Jn commutes with ρ(π1(C)), and so with τn(PSL(2,R)). The latter is absolutely irreducible,
so Schur’s lemma implies that J is a scalar multiple of Jn. Finally ρB preserves Jn.
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Suppose γ is separating. For all s ∈ π1(D) we have

(Bρ(s)B−1)⊤Jn(Bρ(s)B
−1) = Jn

=⇒ ρ(s)⊤B⊤JnBρ(s) = B⊤JnB

so ρ(π1(D)) preserves Jn and B⊤JnB which thus must be equal in PGL(n,R) by the same argument
as above. Suppose γ is non-separating. Then

(Bρ(s))⊤Jn(Bρ(s)) = Jn =⇒ B⊤JnB = Jn.

Lemma 4.1.3. The group ρB(π1(S)) lies in a conjugate of G2(R) if and only if B ∈ G2(R).

Proof. Suppose ρB(π1(S)) ⊂ PG2(R)P
−1 for some P ∈ PSL(n,R). Then ρ(π1(C)) lies in PG2(R)P

−1

and so does τ7(PSL(2,R)). Thus

P−1τ7(PSL(2,R))P

is a Lie subgroup of G2(R). Denote by h = dI7τ7(sl2(R)) and g2 the Lie algebra of G2(R). The
algebra h is a principal sl2-subalgebra of g2 in the sense of Kostant §5 [Kos59] since it acts irreducibly1

on R7. There exists g ∈ G2(R) such that

P−1hP = ghg−1

since all autormorphisms of g2 are inner, as can be seen in Gündogan [Gü10]. We can deduce that
X 7→ PgX(Pg)−1 induces an inner autormorphism of h. There exists M ∈ PSL(2,R) such that
for all X ∈ h we have gPX(gP )−1 = τ7(M)Xτ7(M)−1 which implies that τ7(M)−1gP commutes
with all elements of h. We conclude that g−1τ7(M) = P since h acts absolutely irreducibly on
R7 and P ∈ G2(R). We have shown that ρB(π1(S)) ⊂ G2(R). Suppose γ is separating. Then
Bρ(π1(D))B−1 ⊂ G2(R) and its Zariski closure, which is Bτ7(GL(2,R))B−1, is also in G2(R). By
the same argument as above, we show that B ∈ G2(R). If γ is non-separating, then Bρ(s) ∈ G2(R)
so B ∈ G2(R).

4.2 A simple closed curve and its centralizer in Λ

We saw in the last section how to bend a Fuchsian representation ρ by a matrix B such that ρB is
Zariski-dense. However, if ρ has image in a lattice Λ, it is not clear that there exists B such that ρB is
Zariski-dense and has image in Λ. One thus needs to find a simple closed curve on the surface which
has a big enough centralizer in Λ. This is the object of this section.

The image of a Hitchin representation in G contains only regular elements, i.e. elements whose
centralizer has dimension rankR(G), see Labourie [Lab06]. If Λ is uniform, the centralizer of regular
elements in Λ is always of rank as big as possible.

Lemma 4.2.1. Let G be a semisimple Lie group of non-compact type and let Λ be a uniform lattice
of G. Let γ ∈ Λ be regular. Then CommΛ(γ) := {g ∈ Λ | gγ = γg} is an abelian group of rank equal
to rankRG.

Remark 4.2.2. The proof of this lemma follows an argument of Hamenstädt that appears in her talk
[Ham17]. See also Prasad and Raghunathan [PR72] for similar results.

Proof. Let X be the symmetric space of G. It has nonpositive curvature. Since Λ is cocompact, there
exists r > 0 such that for all p ∈ X, the covering map π : X→ X/Λ is a diffeomorphism between the
balls B(p, r) and B(π(p), r).

1One can show that a sl2-subalgebra that acts irreducibly on R7 is principal by using Theorem 5.3 in [Kos59] and
using the Hasse diagram of the representation of G2(R) for the fundamental weight associated to the short root, see for
example Figure 1 in [Sam20].
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Let a be the Cartan subalgebra of the Lie algebra of G such that γ ∈ exp(a). It is unique since γ
is regular. Then a embeds in X as a maximal flat. It turns out that

{g ∈ Λ | Ad(g)a = a} = CommΛ(γ).

For simplicity, we suppose that Λ is torsion-free. We can do so by Selber’s Lemma (Theorem 2.1.5).
Consider M := a/CommΛ(γ). It is a flat manifold and as such isometric to Rl × (S1)s where l + s =
dim(a) = rankR(G). In fact s is the rank of CommΛ(γ). Thus we want to show that l = 0.

Suppose that l ≥ 1. Thus there is a copy of R in M . Pick a geodesic representative of γ in M .
It is a circle. Denote by γn the translate of γ by length n along a fixed copy of R. We now see M
as immersed in X/Λ. Since X/Λ is compact Arzelà–Ascoli’s Theorem tells us that the sequence of
geodesics γn converges uniformly in X/Λ. Hence there exist n < m such that the Hausdorff distance
between γn and γm is less that r

2 .

Pick a lift of γn in a and denote it γ̃n. Consider a lift of γm in X which is at distance less than
r
2 from γ̃n at some point and denote it γ̃m. The curve γ̃m have to stay in a tubular neighborhood of
γ̃n of radius r

2 . The Flat Strip Theorem (Proposition 5.1. in [EO73]) implies that γ̃n and γ̃m lie in a
maximal flat of X. Since γ̃n is regular, it has to be a.

Since the (m−n)-translate of γn is γm, there exists an element g ∈ Λ that sends the (m−n)-translate
of γ̃n to γ̃m. Because γ̃m lies in a, g preserves a and g ∈ CommΛ(γ). On the other hand, translates of
γ in M are supposed to be at distance at least 1 from each other. This is a contradiction.

When Λ is non-uniform previous the lemma does not hold. However, using Galois cohomology, we
can describe the commutator of a particular simple closed curve. This could also be used for uniform
lattices and allows one to avoid Lemma 4.2.1.

Let A be a quaternion division algebra over a totally real number field F that splits over exactly
one real place of F . Up to isomorphism, it is of the form (a, b)F with a, b ∈ OF not squares. Denote
by {1, i, j, ij} a basis of A such that i2 = a, j2 = b and ij = −ji. We embed A in M2(Q) using the
map defined by

1 7→ I2, i 7→
(√

a 0
0 −

√
a

)
, j 7→

(
0
√
b√

b 0

)
, ij 7→

(
0

√
ab

−
√
ab 0

)
. (4.1)

Thus SL(1, A) corresponds to the obtained matrices which have determinant 1.

Let O be the order OF [1, i, j, k]. Then

SL(1,O) ≃

{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣∣∣∣ xi ∈ OF , det = 1

}
.

Diagonal elements of this group are in bijective correspondence with the solutions of the Pell equation
x20 − ax21 = 1 and are thus infinite in number by Dirichlet Unit’s Theorem (see Theorem 0.4.2. in
[MR03]).

By Selberg’s Lemma (Theorem 2.1.5), SL(1,O) contains a finite index subgroup Γ which is torsion
free. This group has to be a surface group since SL(1,O) is cocompact. Hence Γ ≃ π1(Sg) for a surface
Sg of genus g ≥ 2.

Lemma 4.2.3. There exists a simple closed curve on Sg whose representative in Γ is diagonal for the
canonical basis.

Proof. We will show that the generator of the diagonal subgroup of SL(1,O) represents a simple closed
curve. First of all, there exists diagonal elements in Γ because it is a finite index subgroup of SL(1,O).
Diagonal elements in Γ form a cyclic group. Let D be a generator and denote by γ the closed curve
it represents. Then γ is simple if and only if its lifts to H2 are disjoints from each other. We identify

∂H2 = P(R2)
∼−→ R̂, [x : y] 7→

{ x
y if y ̸= 0

∞ otherwise.
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The curve γ has a lift α which is the geodesic joining 0 to ∞ since D is diagonal. To check if γ is
simple we only need to check that the images of this lift under Γ are either α or do not intersect α.
Let

g =

(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

)
be an element of Γ which is not diagonal. The image of α under g is the geodesic joining g(0) to g(∞).
Note that neither of those can be 0 or ∞ since Γ is a discrete subgroup. We need to prove that the
product g(0)g(∞) is positive. Computation gives

g(0)g(∞) =
(x0 +

√
ax1)(

√
bx2 +

√
abx3)

(
√
bx2 −

√
abx3)(x0 −

√
ax1)

< 0

⇔ (x20 − ax21)(bx22 − abx23) < 0

⇔ (x20 − ax21)(x20 − ax21 − 1) < 0 because det(g) = 1,

⇔ 0 < x20 − ax21 < 1.

Since x20 − ax21 ∈ OF , its Galois norm, i.e. the product of its embeddings into C, lies in Z. So we
cannot have 0 < σ(x20 − ax21) < 1 for all embeddings σ. However, for all embeddings σ except one,
σ(a) < 0 and σ(b) < 0. For these embeddings 0 < σ(x20 − ax21) = σ(1 + bx22 − abx23) < 1.

Let F be a number field. Denote by ξ : Gal(Q/F ) → PGL(2,Q), σ 7→ T a,b
σ . Let ζ : Gal(Q/F ) →

Aut(SLn(Q)) be 1-cocycle τn-compatible with ξ. We compute the centralizer of a proximal diagonal
element in ζSLn(F ). Let w1

wn

, ∏
i

wi = 1 (4.2)

be a diagonal matrix.

Lemma 4.2.4. If ζ is inner, the diagonal elements of ζSLn(F ) are of the form (4.2) with wi ∈ F (
√
a)

and σ(wi) = wn−i+1 for all i with σ ∈ Gal(F (
√
a)/F ) non-trivial.

If ζ is not inner let F (
√
d) be the associated extension of F . Then:

• if
√
a ∈ F (

√
d) then the diagonal elements of ζSLn(F ) are of the form (4.2) with wi ∈ F (

√
a)

and wiσ(wi) = 1 for all i with σ ∈ Gal(F (
√
a)/F ) non-trivial;

• if
√
a /∈ F (

√
d) then the diagonal elements of ζSLn(F ) are of the form (4.2) with wi ∈ F (

√
a,
√
d),

σ(wi) = wn−i+1 for all i with σ ∈ Gal(F (
√
a,
√
d)/F (

√
d)) non-trivial and wiτ(wn−i+1) = 1 for

all i with τ ∈ Gal(F (
√
a,
√
d)/F (

√
a)) non-trivial.

Proof. Since ζ is τn-compatible with ξ, Proposition 3.1.4 describes ζ explicitly.
First suppose ζ is inner. We are looking for diagonal matrices D ∈ SL(n,Q) such that ζ(θ)◦θ(D) =

D for all θ ∈ Gal(Q/F ), i.e.
τn(Tθ)θ(D)τn(Tθ)

−1 = D.

If θ fixes
√
a the previous equation tells us that D has coefficients in F (

√
a). If θ does not fix

√
a

then the equation tells us that θ(wn−i+1) = wi for all i. Hence the result.
Suppose now that ζ is not inner. We are looking for diagonal matrices D ∈ SL(n,Q) such that

ζ(θ) ◦ θ(D) = D for all θ ∈ Gal(Q/F ), i.e.

τn(Tθ)θ(D)τn(Tθ)
−1 = D

whenever θ fixes
√
d and

τn(Tθ)J
−1
n θ(D)−1Jnτn(Tθ)

−1 = D

whenever θ doesn’t fix
√
d.

Suppose that
√
a ∈ F (

√
d). The first equation tells us that D has coefficients in F (

√
a) and the

second that wiθ(wi) = 1 for θ ∈ Gal(F (
√
a)/F ) non-trivial.
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We assume that
√
a /∈ F (

√
d). If θ fixes

√
d then we conclude as in the previous case that D

has coefficients in F (
√
a,
√
d). If θ doesn’t fix

√
d and doesn’t fix

√
a then the equation we get is

θ(wn−i+1)
−1 = wi for all i. The case where θ fixes

√
a but not

√
d can be deduced from the previous

equation. Hence the result.

Remark 4.2.5. One can show that for every closed curve γ ∈ Γ, there exists a basis {1, i, j, k} of A
satisfying Equation (1.1) such that γ ∈ F (i), see Theorem 2.9.8 in [MR03]. Hence the rank of the
centralizer of a curve in Λ is independent of the curve and can be read of Lemma 4.2.4.

4.3 Strong Approximation Theorem

In this section we recall the Strong Approximation Theorem and set up some technical lemmas so
that we can apply the theorem to the representations we will build. It will be needed in the last part
to prove that our constructions provide infinitely many mapping class group orbits of representations.

Recall that if R is a ring and a ∈ R \ {0} is a non-nilpotent element, then we denote by Ra the
localization of R at the multiplicative set {an|n ∈ N}.

Theorem 2.5.5 (Strong Approximation, Weisfeiler [Wei84]). Let G be a connected Q-algebraic group
which is almost simple and simply connected. Let Γ be a finitely generated Zariski-dense subgroup of
G(Q). Denote by

R = Z[Tr(Ad(Γ))].

Then there exists a ∈ R, a finite index subgroup Γ′ < Γ and a structure of a group scheme G0 over Ra

that become isomorphic to G over Q such that Γ′ < G0(Ra) and Γ′ is dense in

lim←−
|Ra/I|<∞

G0

(
Ra/I

)
,

where the projective limit is over ideals of Ra.

Theorem 2.5.5 will be used to distinguish mapping class groups orbits of representations. The
problem is that the ring R depends on Γ. We thus need to show that, in our setting, this dependence
can be removed. This is done in Proposition 4.3.4.

Definition 4.3.1. Let F be a number field. An order of F is a subring R ⊂ OF which is also a
Z-module of rank [F : Q].

Lemma 4.3.2. Let F be a totally real number field and G be a connected semisimple F -algebraic
group which is compact over all real places of F except one. Let Γ < G(OF ) be a finitely generated
subgroup which is Zariski-dense in G. Then Z[Tr(Ad(Γ))] is an order of F .

Proof. Denote by K = Q(Tr(Ad(Γ))) ⊂ F . We want to show that K equals F . By Theorem 1 in
Vinberg [Vin71], there is a C-basis β of g, the Lie algebra of G(C), such that for all γ ∈ Γ

Matβ(Ad(γ)) ∈ GL(n,K) with n = dimC g.

Since Γ is Zariski-dense in G, Ad(Γ) is Zariski-dense in Ad(G). Hence Ad(G) is defined over K,
see Theorem 14.4 in Chapter AG of Borel [Bor91]. Denote by σ the real place of F such that G(Fσ)
is non-compact. Suppose K ̸= F . There is a real place ι of F different from σ such that σ|K = ι|K .
Since G is defined over K, G(Fσ) is isomorphic to G(Fι) while over R one is compact and the other
is not. This is a contradiction. Hence K equals F .

Now Z[Tr(Ad(Γ))] is a finitely generated torsion free Z-module, so it is free. Since

Z[Tr(Ad(Γ))]⊗Z Q ≃ Q(Tr(Ad(Γ))),

Z[Tr(Ad(Γ))] = F is of rank [F : Q]. Thus it is an order of F .
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Lemma 4.3.3. Let R ⊂ OF be an order of a number field F . Then for all but finitely many prime
ideals P ⊂ OF

R/R ∩ P = OF/P. (4.3)

Proof. Suppose not. Since R is an order of F , the index of R in OF is finite. Denote it by n. Let
P ⊂ OF be a prime ideal that does not satisfy (4.3) such that its residue field has characteristic p > n.
It exists since for every prime number, there is only finitely many prime ideals in OF that contain it.

One has

R/R ∩ P ⊂ OF/P.

As a subring of a finite field, R/R ∩ P is a field. Recall that

RP/P ≃ R/R ∩ P.

Hence (
OF/P

)/(
R/R ∩ P

)
≃
(
OF/P

)/(
RP/P

)
≃ OF/RP.

The latter must contain at least p elements, so OF /R contains at least p elements. This is a contra-
diction.

The following proposition is an adaptation of the Strong Approximation Theorem, Theorem 2.5.5,
to our context.

Proposition 4.3.4. Let F be a totally real number field and G be a connected almost simple and simply
connected F -algebraic group which is compact over all real places of F except one. Let Γ < G(F ) be
a finitely generated Zariski-dense subgroup. There exists a finite index subgroup Γ′ < Γ, a ∈ OF and
a group scheme structure G0 over (OF )a on G such that Γ′ < G0((OF )a) and for all prime ideals P
of OF but finitely many, Γ′ surjects onto

G0

(
OF/P

)
.

Remark 4.3.5. The above makes sense since for all prime ideals P of OF that do not contain a,

(OF )a/Pa ≃ OF/P.

Proof. Let R = Z[Tr(Ad(Γ))]. By the Strong Approximation Theorem, Theorem 2.5.5, there exists
a ∈ R, a finite index subgroup Γ′ < Γ and a group scheme structure G0 over Ra on G such that
Γ′ < G0(Ra) and Γ′ is dense in

lim←−
|Ra/I|<∞

G0

(
Ra/I

)
.

Since R ⊂ OF we can also consider G0 as a group scheme over (OF )a. Let P be a prime ideal in OF

that does not contain a and such that

R/R ∩ P = OF/P.

Since R is an order of F (see Lemma 4.3.2), Lemma 4.3.3 implies that there is only finitely many
prime ideals that do not satisfy both of those assumptions. As explained in Remark 2.5.6, Γ′ surjects
onto

G0

(
Ra/(R ∩ P)a

)
≃ G0

(
R/(R ∩ P)

)
≃ G0

(
OF/P

)
.
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4.4 Proof of Theorem B

Recall that we would like to prove that every lattice Λ in G as in Table 1, which is not widely
commensurable with SL(2k + 1,Z) or SL(n,O) for any order O, contains infinitely many mapping
class group orbits of Zariski-dense Hitchin representations, for some fixed genus. The case SL(2k+1,Z)
and SL(n,O) are excluded since the computations of Lemma 4.2.4 show that the centralizer of the
given curve lie in SO(k + 1, k) or Sp(2n,R) depending on the parity of n. This prevents us from
bending the representation in a Zariski-dense one with image in those lattices. Note that in [LT20],
Long and Thistlethwaite settled the case SL(2k + 1,Z) using two consecutive bendings.

Proof of Theorem B for G = Sp(2n,R). Let n ≥ 2. Let Λ < Sp(2n,R) be a lattice. By Proposition
2.4.7 there exists a quaternion division algebra A ≃ (a, b)F over a totally real number field F and an
order O of A such that Λ is widely commensurable with SU(In, ;O). Proposition 3.6.1 shows that
τ2n(O1) lies in a lattice widely commensurable with Λ.

Let S be the quotient H2/O1. Up to finite cover, it is a closed surface of genus at least 2. We
begin by exhibiting one Zariski dense representation of π1(S) in Λ.

Denote by ρ the Fuchsian representation of π1(S) induced by τ2n. We embed O1 in SL(2,R) using
the map defined in Equation (4.1). Let γ be the simple closed curve on S given by Lemma 4.2.3. By
Lemma 4.2.4, there exists B ∈ Λ which commutes with ρ(γ), has only positive eigenvalues and such
that B ̸∈ τ2n(GL(2,R)). For instance, one can take

B = Diag(w2, . . . , w2, σ(w)2, . . . , σ(w)2)

where w ∈ OF [
√
a]× is an infinite order element and σ ∈ Gal(F (

√
a)/F ) is non-trivial. The bent

representation ρB of ρ by B along γ has Zariski-dense image in Sp(2n,R), see Theorem 0.8 and
Lemma 4.1.1.

We now exhibit infinitely many Mapping Class Group orbits of representations of π1(S) in Λ.
The sequence of representations ρBk are Zariski-dense for all k ≥ 1. We will show that this sequence
give rise to infinitely many MCG(S)-orbits of Hitchin representations. Let k ≥ 1 and denote by Γk

the image of ρBk . Since F -forms of Sp2n are simply connected, see §2.1.13 in [PR94], the Strong
Approximation Theorem, specifically Proposition 4.3.4, implies that a finite index subgroup Γ′

k < Γk

surjects onto Sp(2n,OF /P) for all but finitely many prime ideals P of OF . Hence

Tr(Γ′
k) ≡ OF mod P

for all but finitely many P since Tr(Sp(2n,Fq)) = Fq for all q a power of an odd prime. A proof of
the latter is provided in the Appendix, Lemma 4.5.1.

Suppose that {ρBk , k ≥ 1} is contained in a finite number of orbits under MCG(S). Then for all
but finitely many prime ideals P, the reduction of Tr(Γ′

k) modulo P is surjective for all k ≥ 1. Note
that there exists P ∈ Z[X] of degree at least 2, such that Tr(τ2n(M)) = P(Tr(M)) for all M . There
exists infinitely many prime ideals P such that

OF/P → OF/P, x 7→ P(x)

is not a surjection. Indeed, if q ≡ 1 mod m with m ≥ 2, there are no polynomial of degree m that
induces a bijection of Fq, see Corollary 1.8 in [Sha12]. Pick a prime ideal P such that the above map
is not a surjection and such that the reduction Tr(Γ′

k) modulo P is surjective for all k ≥ 1. Let k ≥ 1
such that Bk is trivial modulo P. Then

Tr(Γ′
k) = Tr(ρ(π1(S))) = P(Tr(O1)) mod P

which is not OF /P. This is a contradiction.

Proof of Corollary D. The corollary follows from Theorem B where we proved that all lattices of
Sp(4,R) not widely commensurable with Sp(4,Z) contain Zariski-dense Hitchin representations. The
case Sp(4,Z) is settled in [LT18].
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Proof of Theorem B for G = SL(2k + 1,R). Let n = 2k+1 ≥ 3 be odd. Let F be a totally real number
field and d ∈ OF which is positive at exactly one real place of F . Let A ≃ (a, b)F be any division
algebra over F and O be an order in A. Proposition 3.4.1 implies that τn(O1) lies in a subgroup Λ
of SL(n,R) which widely commensurable with SU(In, σ;OF [

√
d]) where σ ∈ Gal(F (

√
d)/F ) is non-

trivial.
The quotient S := H2/O1 is a closed surface of genus at least 2 up to finite cover. Let ρ be the

Fuchsian representation of π1(S) induced by τn. We embed O1 in SL(2,R) using the map defined in
Equation (4.1). Let γ be the simple closed curve on S given by Lemma 4.2.3. By Lemma 4.2.4, there
exists B ∈ Λ which commutes with ρ(γ), has only positive eigenvalues and such that B ̸∈ SO(Jn,R).
If
√
a ∈ F (

√
d) one can take

B = Diag(w4, 1, . . . , 1, w−2, w−2)

where w ∈ OF [
√
a]× is an infinite order element. Suppose that

√
a ̸∈ F (

√
d). Denote by σ ∈

Gal(F (
√
a,
√
d)/F ) the element that satisfies σ(

√
a) = −

√
a and σ(

√
d) =

√
d. Denote by τ ∈

Gal(F (
√
a,
√
d)/F ) the element that satisfies τ(

√
a) =

√
a and τ(

√
d) =

√
d. Let θ ∈ OF [

√
d]× be an

infinite order element. Then θσ(θ)τ(θ)σ(τ(θ)) = ±1 and σ(θ) = θ so θ2τ(θ)2 = 1 and θ2σ(θ)2 = θ4 ̸= 1.
Hence one can take the matrix

B = Diag(θ2, θ−2, 1, . . . , 1, θ−2, θ2).

The bent representation ρB of ρ by B along γ has Zariski-dense image in SL(n,R), see Lemma 4.1.2.
We now show that the sequence of representations ρBl give rise to infinitely many MCG(S)-orbits.

Let l ≥ 1 and denote by Γl the image of ρBl . Since F -forms of SLn are simply connected, the Strong
Approximation Theorem (Theorem 2.5.5 and Proposition 4.3.4) implies that for all but finitely many
prime ideals P of OF , a finite index subgroup Γ′

l < Γl surjects onto{
SLn

(
OF/P

)
if d is a square in OF/P

SU
(
In, σ0;OF/P[

√
d]
)

if d is not a square in OF/P

for
σ0 ∈ Gal

(
OF/P(

√
d)/OF/P

)
non-trivial. Lemmas 4.5.1 and 4.5.2 in the Appendix show that

Tr(Γ′
l) =

{
OF/P mod P if d is a square in OF/P
OF/P[

√
d] mod P if d is not a square in OF/P

for all but finitely many prime ideals P.
Suppose that {ρBl , l ≥ 1} is contained in a finite number of orbits under MCG(S). Then for all

but finitely many prime ideals P, the reduction of Tr(Γ′
l) is surjective modulo P for all l ≥ 1. As

before, there exists P ∈ Z[X] such that Tr(τn(M)) = P(Tr(M)) for all M . By our assumption, there
is a prime ideal P such that the reduction of Tr(Γ′

l) is surjective for all l ≥ 1 and the map

OF/P → OF/P, x 7→ P(x)

is not a surjection (see Corollary 1.8 in [Sha12]). Let l ≥ 1 such that Bl is trivial modulo P. Then

Tr(Γ′
l) = Tr(ρ(π1(S))) = P(Tr(O1)) mod P.

This is a contradiction.

Proof of Corollary C. The corollary follows from Theorem B for G = SL(p,R) together with [LT20]
and Proposition 2.4.3.

Proof of Theorem B for G = SL(2n,R). Let n ≥ 2. Let F be a totally real number field. Let A be a
quaternion algebra over F which splits at exactly one real place σ among the real places of F and O
be an order of A. Let d ∈ OF which is positive exactly at σ. Proposition 3.7.1 shows that τ2n(O1)
lies in a lattice Λ of SL(2n,R) widely commensurable with SU(In, ⊗σ;O⊗OF [

√
d]). The proof now

follows exactly the argument of the proof of Theorem B for G = SL(2k + 1,R).
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Proof of Theorem B for G = G2(R). Let Λ be a lattice in G2(R). By Proposition 2.4.11, there exists
a totally real number field F and a, b ∈ OF such that for all embeddings σ : F → R except one, σ(a)

and σ(b) are negative and Λ is widely commensurable with Ga,b
2 (OF ). Let A = (a, b)F if F = Q and

A be any quaternion division algebra over Q otherwise. Let O be an order of A. Proposition 3.3.1
shows that τ7(O1) lies in Λ up to wide commensurability.

The proof follows the argument of Theorem B for G = Sp(2n,R), using Lemma 4.5.4 in the
Appendix.

Since F -forms of SOn are not simply connected, we cannot apply the Strong Approximation
Theorem as stated in Proposition 4.3.4. We will instead use Theorem 5.1 in Nori [Nor87]. Before
doing so, we need to prove the following lemma.

Lemma 4.4.1. Let Γ be a group and G1, . . . , Gn be centerless connected simple Lie groups. For all
1 ≤ i ≤ n, let ρi : Γ → Gi be a Zariski-dense representation. Suppose that there does not exist i ̸= j
and a continuous isomorphism ϕ : Gi → Gj satisfying ϕ ◦ ρi = ρj. Then

ρ1 × · · · × ρn : Γ→ G1 × · · · ×Gn

is Zariski-dense.

Proof. We will show the lemma by induction on n ≥ 1. The case n = 1 is clear. Let n ≥ 2 and assume
the result has been shown for n−1. Denote by H the Zariski-closure of the image of ρ := ρ1×· · ·×ρn.
We want to show that H is equal to G := G1 × · · · ×Gn.

Let πi : G→ Gi be the projection onto the i-th coordinate. By Lemma 3.1 in [DK02], πi(H) = Gi.
Let pi : G → G/Gi be the projection that forgets about the i-th coordinate. Using the induction
hypothesis and Lemma 3.1 in [DK02], pi(H) = G/Gi.

Denote by

Hi = H ∩ ({e} × ...× {e} ×Gi × {e} × ...× {e})
πi
↪−→ Gi.

Let h ∈ Hi and g ∈ Gi. There exists k ∈ H such that πi(k) = g. Hence

gπi(h)g
−1 = πi(khk

−1) ∈ πi(Hi)

which proves that πi(Hi) is normal in Gi.
Suppose that for some 1 ≤ i ≤ n, πi(Hi) = Gi. Denote by

Ki = H ∩ (G1 × · · · ×Gi−1 × {e} ×Gi+1 × · · · ×Gn)
pi
↪−→ G/Gi.

Pick g ∈ G/Gi. There exists h ∈ H such that pi(h) = g. Denote by hi its i-th coordinate. There
exists k ∈ Hi such that πi(k) = hi. Hence hk−1 ∈ Ki and is send to g under pi. This shows that
Ki ↪→ G/Gi is an isomorphism. Finally H = G.

Otherwise, suppose that πi(Hi) is trivial for all i. Pick g ∈ G/Gn. There exists a unique ϕ(g) ∈ Gn

such that (g, ϕ(g)) ∈ H. Indeed if (g, h) and (g, h′) are in H then (e, h−1h′) ∈ πn(Hn) which is trivial.
If follows from

(g, ϕ(g))(g′, ϕ(g′)) = (gg′, ϕ(g)ϕ(g′))

that ϕ is a group homomorphism. Since πn(H) = Gn, ϕ is surjective.
For each 1 ≤ i ≤ n − 1, the restriction of ϕ to Gi is either trivial or an isomorphism. Indeed

the image of Gi under ϕ is a normal subgroup of Gn. Hence there exists 1 ≤ i ≤ n − 1 such that
ϕ|Gi

: Gi → Gn is an isomorphism. Since its graph is closed, it is continuous. The same holds also for
its inverse. Finally ϕ|Gi

◦ ρi = ρj . Contradiction.

Proof of Theorem B for G = SO(k + 1, k). Let n = 2k + 1 ≥ 5.
We first deal with the case k ≡ 1, 2[4]. Let Λ be a lattice in SO(k+1, k) not widely commensu-

rable with ΛQ. Proposition 2.4.6 shows that it is widely commensurable to SO(Q,OF ) for F a totally
real number field, Q ∈ SL(n, F ) a symmetric matrix which is positive definite at all real places of F
except one such real place σ for which Q has signature equal to (k+ 1, k) if k is even and (k, k+ 1) if
k is odd.
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We want to apply Proposition 3.2.2 to an order of a suitable quaternion algebra over F . Denote
by S the set of finite places P of F such that

EP(Q)⊗ (−1,−1)P ̸= 1.

We show that S ∪ VF \ {σ} has even cardinality. By Hilbert’s Reciprocity Law, see Theorem 0.9.10
in [MR03], Ev(Q)⊗ (−1,−1)v ̸= 1 at an even number of places v of F . The number of infinite places
v ∈ VF where Ev(Q)⊗ (−1,−1)v ̸= 1 is |VF | − 1 since

Ev(Q) =

{
1 if v ̸= σ
−1 if v = σ.

Hence |S| ≡ |VF | − 1 [2] which implies that S ∪ VF \ {σ} has even cardinality.

Theorem 7.3.6 in [MR03] implies that there exists a quaternion algebra A over F that does not
split exactly at S ∪ VF \ {σ}. Let O be an order of A. Proposition 3.2.2 tells us that τn(O1) lies in a
subgroup of SO(Jn,R) which, up to wide commensurability, we can assume to be SO(Q,OF ).

Let S = H2/O1. Up to finite cover, we can assume that S is a closed surface of genus at least 2.
We embed O1 in SL(2,R) using the map defined in Equation (4.1). Let γ be the simple closed curve
on S given by Lemma 4.2.3. The map τn induces a Fuchsian representation ρ : π1(S) → SO(Jn,R).
Lemma 4.2.4 implies that there exists B ∈ SO(Q,OF ) which commutes with ρ(γ), has only positive
eigenvalues but which is not in τn(GL(2,R)). For instance, one can take

B = Diag(w2, σ(w)2, 1, . . . , 1, w2, σ(w)2)

where w ∈ OF [
√
a]× is an infinite order element and σ ∈ Gal(F (

√
a)/F ) is non-trivial. The bent

representation ρB of ρ by B along the curve γ has Zariski-dense image in SO(Jn,R) as Lemma 4.1.1
shows. Furthermore the sequence of representations ρBl are Zariski-dense for all l ≥ 1 and give rise
to infinitely many MCG(S)-orbits, as we will show now. Fix l ≥ 1 and let Γl = ρBl(π1(S)).

For every prime ideal P of OF , denote by

πP : SO(Q,OF )→ SO(Q,OF /P)

the reduction modulo P. Let Ω(Q,OF /P) be the commutator subgroup of SO(Q,OF /P). We first
prove that πP(Γl) contains Ω(Q,OF /P) for every prime ideal P except a finite number of them. Up
to multiplying Q be a constant, we can assume that it has coefficients in OF . Hence SO(Q) is an
OF -group scheme. Denote it by G to simplify the exposition. Now Γl < G(OF ) ≃ ResOF /ZG(Z)
which is a subgroup of GLnd(Z) where d is the degree of F . We have

Γl ↪→ ResOF /ZG(R) ≃ SO(σ1(Q),R)× · · · × SO(σd(Q),R)

γ 7→ (σ1(γ), . . . , σd(γ))

where the σi are the embeddings of F inR, see §2.1.2 in [PR94]. Since Γl is Zariski-dense in SO(Q,OF ),
it is Zariski-dense in SO(σi(Q),R) for every embedding σi : F ↪→ R. Suppose that there exists i ̸= j
such that σi ◦ ρBl is conjugated to σj ◦ ρBl . Then for all x ∈ Tr(Γl), σi(x) = σj(x). We showed
in Lemma 4.3.2 that F = Q(Tr(Ad(Γl))) ⊂ Q(Tr(Γl)). Hence σi and σj agree on F , which is not
possible. By Lemma 4.4.1, Γl is Zariski-dense in ResOF /ZG.

2

Let m ≥ 1 and p be a prime. For any subgroup A < GLm(Fp), we denote by A+ the subgroup of
A generated by the elements of A of order p. It is a normal subgroup. Let

rp : GLm(Z)→ GLm(Fp)

be the reduction map. Theorem 2.5.7 shows that for all but finitely many primes p

ResOF /ZG(Fp)
+ < rp(Γl) < ResOF /ZG(Fp).

2Note that Γl lies in the connected component of SO(k + 1, k).
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Recall that for any prime p

ResOF /ZG(Fp) ≃ G(Fp ⊗Z OF ) ≃ G(OF /pOF ) ≃
∏
P|p

G(OF /P)

where P are prime ideals in OF . For almost all prime ideals P

G(OF /P) ≃ SO(In,OF /P)

since for almost all prime ideals P, Q is non-degenerate over OF /P and is thus equivalent to In or to
λIn where λ is not a square in OF /P. Now

ResOF /ZG(Fp)
+ ≃

∏
P|p

SO(In,OF /P)+ =
∏
P|p

Ω(In,OF /P)

since Ω(In,OF /P) is a normal and simple index 2 subgroup of SO(In,OF /P), see Chapter 3 §5 in
[Suz82]. Thus

rp(Γl) ≃
∏
P|p

πP(Γl) =⇒ Ω(In,OF /P) < πP(Γl)

for almost all prime ideals P. Finally, using Lemma 4.5.3 in the Appendix, we conclude that the
reduction of Tr(Γl) modulo P is surjective for almost all prime ideals P. The proof ends the same
way as the proof of Theorem B for G = Sp(2n,R).

We now deal with the case k ≡ 0, 3[4]. Let F be a totally real number field. We want to
show that ΛF = SO(q,OF ), see the §2.3 for the definition, contains infinitely many mapping class
group orbits of Zariski-dense Hitchin representations. Let A to be any quaternion algebra over F that
splits exactly at the real place where q is not positive definite. Let O be an order in A and denote
S = H2/O1. From now on, the proof goes as in the case k ≡ 1, 2[4].

4.5 Appendix: traces over finite fields

In the proof of Theorem B, mapping class group orbits of Hitchin representations are distinguished by
their trace. Using the Strong Approximation Theorem, Theorem 2.5.5, we infer properties on traces of
representations from the trace of matrix groups over finite fields. This section is dedicated to establish
easy lemmas which we did not find in the literature. One can avoid these lemmas by proving the
analogous of Lemma 5.4.1, that will appear in the last chapter.

Let q be a power of an odd prime.

Lemma 4.5.1. For any n ≥ 1, Tr(Sp(2n,Fq)) = Fq.

Proof. For n = 1, the result is proven finding explicit matrices. For n ≥ 2, it follows from a block
embedding of Sp(2,Fq) in Sp(2n,Fq).

Let n ≥ 2. Denote by SU(In,Fq) = {M ∈ SL(n,Fq2)|σ(M)⊤M = In} with σ ∈ Gal(Fq2/Fq)
non-trivial.

Lemma 4.5.2. For any n ≥ 3, Tr(SU(In,Fq)) = Fq2.

Proof. We can embed SU(I3,Fq) in SU(In,Fq) for any n ≥ 3 using

M 7→
(
M

In−2

)
.

Hence it suffices to prove the result for n = 3.

The map

N : Fq2 → Fq, x 7→ xσ(x)
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is surjective. Indeed, any generator of the cyclic group F×
q2

is mapped under N to a generator of F×
q .

Let a ∈ Fq2 . There exists b ∈ Fq2 such that N(b) = −a− σ(a). Let

M =

 a b 1
σ(b) −1 0
1 0 0

 .

Then det(M) = 1 and σ(M)⊤JM = J where

J =

0 0 1
0 1 0
1 0 0

 .

Thus a conjugate of M lies in SU(I3,Fp). Since Tr(M) = a− 1, Tr(SU(I3,Fp)) = Fp2 .

Let n ≥ 1. We denote by Ω(In,Fq) the commutator subgroup of SO(In,Fq). It is an index 2
subgroup, see [Suz82] paragraph 5 chapter 3.

Lemma 4.5.3. For any n ≥ 4, Tr(Ω(In,Fq)) = Fq.

Proof. Suppose that n = 4. Pick a ∈ F×
q . Let

M =


0 0 −a a
0 0 1 0
1 1 0 0
a−1 0 0 0

 .

We can check that det(M) = 1 and that M⊤JM = J where

J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Since det(J) = 1, J is congruent to I4. Hence a conjugate of M2 lies in Ω(I4,Fq). Since Tr(M2) =
−2a+ 4 and Tr(I4) = 4, Tr(Ω(I4,Fq)) = Fq.

For n ≥ 4, the proof follows from an embedding of Ω(I4,Fq) in Ω(In,Fq).

Let G2(Fq) be the finite group of Lie type associated to the Dynkin diagram G2 embedded in
SL7(Fq) via its 7-dimensional irreducible representation.

Lemma 4.5.4. Tr(G2(Fq)) = Fq.

Proof. The group G2(Fq) is the automorphism group of the unique octonion algebra O over Fq, see
§1.10 of [SV00]. We can describe it as follows. As an Fq-vector space O = M2(Fq) ⊕M2(Fq). Let
denote the conjugation of the quaternion algebra M2(Fq). For any A ∈ M2(Fq), A is the transpose of
the cofactor matrix of A. The multiplication is defined by

(A1, B1) · (A2, B2) = (A1A2 −B2B1, B2A1 +B1A2),

see §1.5 in [SV00]. We endow O with the quadratic form

(A,B) 7→ det(A) + det(B).

An automorphism of O induces an element of G2(Fq) by its restriction to the orthogonal of ⟨(I2, 0)⟩.
Let a ∈ Fq and consider the following automorphism

φa : O→ O, (A,B)→ (A,XB) where X =

(
a 1
−1 0

)
.

It is an automorphism of O and thus defines an element of G2(Fq). Picking a basis of O, computations
show that it has trace a+ 3. Hence any element of Fq is the trace of an element of G2(Fq).



78 CHAPTER 4. ZARISKI-DENSE HITCHIN REPRESENTATIONS IN LATTICES



Part III

Maximal representations
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Chapter 5

Maximal representations in lattices

In this chapter, we first prove Proposition E. Recall that a maximal diagonal representation is a
representation of the form ϕn ◦ ρ for ρ : π1(Sg)→ PSL(2,R) discrete and faithful.

Proposition E. Every lattice of Sp(2n,R), not widely commensurable with Sp(2n,Z) when n is odd,
contains the image of a maximal diagonal representation of some genus. Conversely, when n is odd,
Sp(2n,Z) does not contain the image of a maximal diagonal representations of any genus.

To do so, we classify ϕn-compatible cocycles and determine the F -forms of Sp2n associated to such
cocycles. We then establish Theorem F, which is the goal of this chapter.

Theorem F. Let n ≥ 2 and Λ be a lattice of Sp(2n,R), not widely commensurable with Sp(2n,Z)
when n is odd. Then there exists g ≥ 2 such that Λ contains infinitely many MCG(Sg)-orbits of
Zariski-dense maximal representations of π1(Sg). Furthermore these representations are continuous
deformations of maximal diagonal representations.

For this, we show that the commutator of a simple closed curve in the lattice can be described
as a lattice itself. We can then apply a bending deformation. We appeal to the classification of
Zariski-closures of maximal representations by Hamlet and Pozzetti [HP14] to prove that the bend
representations are Zariski-dense. Finally, using the Strong Approximation Theorem, we show that
this constructions provides infinitely many mapping class group orbits of representations. Contrary
to the proof of Theorem B, the traces of the bend representation is no longer sufficient to distinguish
mapping class group orbits.

5.1 Compatible cocycles

Let n ≥ 2. Define

K =

(
0 1
−1 0

)
andKn = ϕn(K). The latter induces a symplectic form that is preserved by the image of ϕn. From now
on, for any field k ⊂ C, we denote by Sp(2n, k) the group Sp(Kn, k) = {M ∈ SL(2n, k) | M⊤KnM =
Kn}.

The Kronecker product of two matrices A = (aij) ∈ Mn(C) and B ∈ Mm(C) is the matrix
A⊗B ∈ Mmn(C) defined by

A⊗B =

a11B . . . a1nB

an1B . . . annB

.
It satisfies (A⊗B)(C ⊗D) = AC ⊗BD and det(A⊗B) = det(A)m det(B)n. The map

O(In,C)× SL(2,C)→ Sp(2n,C)

(M,A) 7→M ⊗A.

is a Lie group homomorphism. Note that ϕn(A) = In ⊗A.

81
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Lemma 5.1.1. The centralizer of Im(ϕn) in Sp(2n,C) is O(In,C)⊗ I2.

Proof. It is clear that O(In,C) ⊗ I2 commutes with Im(ϕn). Reciprocally, if a matrix X commutes
with Im(ϕn) then each of its 2-by-2 blocks have to be scalar multiple of I2, i.e. X has to be of the
form M ⊗ I2. Then X ∈ Sp(Kn,C) if and only if M ∈ O(In,C).

Let F be a totally real number field and ξ : Gal(Q /F )→ PGL(2,Q) be a 1-cocycle. We say that
a 1-cocycle ζ : Gal(Q /F ) → PSp(Kn,Q) is ϕn-compatible with ξ if for all σ ∈ Gal(Q /F ) and all
A ∈ SL(2,Q)

ϕn(ξSL2(F )) < ζSp(Kn)(F )

For instance ϕn(ξ) : Gal(Q /F )→ PSp(Kn,Q) is a 1-cocycle ϕn-compatible with ξ.

Lemma 5.1.2. A 1-cocycle ζ : Gal(Q /F ) → PSp(Kn,Q) is ϕn-compatible with ξ if and only if
ζ = η ⊗ ξ where η : Gal(Q /F )→ PO(In,Q) is a 1-cocycle.

Proof. Let ζ : Gal(Q /F )→ PSp(2n,Q) be a 1-cocycle ϕn-compatible with ξ. Fix σ ∈ Gal(Q /F ). For
all A ∈ ξSL2(Q)

ζ(σ)σ(ϕn(A))ζ(σ)
−1 = ϕn(ξ(σ)σ(A)ξ(σ)

−1)

which implies that ϕn(ξ(σ))
−1ζ(σ) commutes with ϕn(ξSL2(Q)). The latter is Zariski-dense in Im(ϕn).

Hence for all σ ∈ Gal(Q /F )

ζ(σ) = ϕ(ξ(σ))(η(σ)⊗ I2) = η(σ)⊗ ξ(σ)

for some η(σ) ∈ PO(In,Q). Since ζ is a 1-cocycle, η : Gal(Q /F ) → PO(In,Q) is also a 1-cocycle.
Conversely for any such 1-cocycle η, η ⊗ ξ is ϕ-compatible with ξ.

5.2 Forms of Sp(2n,R)

The goal of this section is to compute the forms associated to compatible cocycles. We prove here
Proposition E.

Consider the short exact sequence of groups

1→ µ2 → Sp(2n,Q)→ PSp(2n,Q)→ 1

where µ2 is the group {±I2}. It induces a long exact sequence of sets with distinguished elements

1→ H1(Gal(Q /F ),PSp(2n,Q))
δ2n−−→ H2(Gal(Q /F ), µ2),

see §1.3.2 and Proposition 2.7 in [PR94]. Since PSp2n is simply connected, Theorem 6.20 in [PR94]
implies that δ2n is surjective.

Since µ2 is abelian, H2(Gal(Q /F ), µ2) is a group. Under the isomorphism described in Theorem
1.6.6, it is isomorphic to the 2-torsion of the Brauer group, denoted by 2Br(F ). Since F is a number
field, every element of 2Br(F ) is Brauer equivalent to a quaternion algebra (Theorem 20 in Chapter
X of [Alb61]).

Consider the short exact sequence of groups

1→ µ2 → O(In,Q)
π−→ PO(In,Q)→ 1. (5.1)

It induces a connecting map

H1(Gal(Q /F ),PO(In,Q))
∂n−→ H2(Gal(Q /F ), µ2). (5.2)

Contrary to δ2n, ∂n is not necessarily surjective since O(In,Q) is not a simply connected algebraic
group.

Lemma 5.2.1. If n is even, ∂n is surjective. If n is odd, ∂n is trivial.
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Before proving the lemma, we introduce a notation. Let a, b ∈ F× and pick square roots of a and
b in Q. Recall

T a,b : Gal(Q /F )→ PGL(2,Q)

σ 7→



I2 if σ(
√
a) =

√
a and σ(

√
b) =

√
b(

1 0
0 -1

)
if σ(
√
a) =

√
a and σ(

√
b) = −

√
b(

0 1
1 0

)
if σ(
√
a) = −

√
a and σ(

√
b) =

√
b(

0 1
-1 0

)
if σ(
√
a) = −

√
a and σ(

√
b) = −

√
b.

It is a 1-cocycle. Explicit computations show that

Ta,bM2(Q) =

{(
x0 +

√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

) ∣∣ xi ∈ F} ≃ (a, b)F .

Proof of Lemma 5.2.1. Suppose that n is even. Let a, b ∈ F×. Let

χn = ϕn
2
(T a,b) : Gal(Q /F )→ PO(In,Q).

For all σ ∈ Gal(Q /F ) pick a lift Mσ of χn(σ) ∈ O(In,Q). By construction of the connecting map, for
all σ, τ ∈ Gal(Q /F ), ∂n(χn)στ =Mσσ(Mτ )M

−1
στ . Then for all σ, τ

∂n(χn)στ = ∂2(χ2)στ .

Explicit computations show that, under the isomorphism H2(Gal(Q /F ), µ2) ≃ 2Br(F ), ∂2(χ2) corre-
sponds to (a, b)F . Since this is true for every a, b ∈ F×, ∂2 and hence ∂n is surjective.

Suppose that n is odd. Let η : Gal(Q /F )→ PO(In,Q) be a 1-cocycle. For all σ ∈ Gal(Q /F ) pick
Mσ ∈ O(In,Q) such that π(Mσ) = η(σ), where π is the map in (5.1). By construction of ∂n, for all
σ, τ ∈ Gal(Q /F )

∂n(η)στIn =Mσσ(Mτ )M
−1
στ ∈ µ2.

Define f : Gal(Q /F )→ Q, σ 7→ det(Mσ). Then for all σ, τ ∈ Gal(Q /F )

∂n(η)στ = f(σ)σ(f(τ))f(στ)−1

which implies that ∂n(η) is trivial.

Lemma 5.2.2. Let η : Gal(Q /F ) → PO(In,Q) and ξ : Gal(Q /F ) → PGL(2,Q) be two 1-cocycles.
Then

δ2n(η ⊗ ξ) = δ2(ξ)∂n(η).

Proof. For each σ ∈ Gal(Q /F ) pick Mσ ∈ O(In,Q) and Aσ ∈ SL(2,Q) such that the projectivization
of Mσ and Aσ are η(σ) and ξ(σ) respectively. Then Mσ⊗Aσ has for projectivization η(σ)⊗ ξ(σ). For
all σ, τ ∈ Gal(Q /F )

δ2n(η ⊗ ξ)στI2n = (Mσ ⊗Aσ)σ(Mτ ⊗Aτ )(Mστ ⊗Aστ )
−1

= (Mσσ(Mτ )M
−1
στ )⊗ (Aσσ(Aτ )A

−1
στ )

= ∂n(η)στIn ⊗ δ2(ξ)στI2

We can now prove Proposition G.
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Proposition G. Let Γ be an arithmetic lattice in SL(2,R) which is commensurable with the elements
of norm 1 in an order OΓ of a quaternion algebra over a totally real number field F .

If n is even, ϕn(Γ) < SU(In, ;O), up to wide commensurability, for any order O in any quaternion
algebra over F that splits at exactly one place of F . Furthermore, up to wide commensurability, these
are the only lattices of Sp(2n,R) that contain ϕn(Γ).

If n is odd, ϕn(Γ) < SU(In, ;OΓ), up to wide commensurability. Furthermore, up to wide com-
mensurability, this is the only lattice of Sp(2n,R) that contains ϕn(Γ).

Proof of Proposition G. The quaternion algebra of which OΓ is an order is of the form (a, b)F for
some a, b ∈ F×. The 1-cocycle In ⊗ T a,b : Gal(Q /F ) → PSp(2n,Q) is ϕn-compatible with T a,b.
Hence ϕn(Ta,bSL2(F )) < In⊗Ta,bSp2n(F ). By Proposition 2.2.6 ϕn(Γ) < In⊗Ta,bSp2n(OF ) up to wide

commensurability. For any M ∈ SL(2n,Q)

M ∈ In⊗Ta,bSp2n(F )

⇔(In ⊗ T a,b
σ )σ(M)(In ⊗ T a,b

σ )−1 =M

⇔
{
M ∈ Mn(Ta,bM2(F )) and
M⊤KnM = Kn

⇔
{
M ∈ Mn(Ta,bM2(F )) and

M
t
M = I2n

since M
t
= (KnMK−1

n )⊤, where is the conjugation on Ta,bM2(F ) and M t is the transposition
of M viewed as an n-by-n matrix. It follows that

In⊗Ta,bSp2n(OF ) is widely commensurable with

SU(In, ;OΓ). This proves one of the two implications for n odd.

Suppose that n is even. Let (c, d)F be a quaternion algebra over F . Let (ast) ∈ H2(Gal(Q /F ), µ2)
be a 2-cocycle that corresponds to the quaternion algebra (c, d)F . By Lemma 5.2.1 there exists a
1-cocycle η : Gal(Q /F ) → PO(In,Q) such that ∂n(η) = δ2(T

c,d)−1(ast). By Lemma 5.2.2 δ2n(η ⊗
T c,d) = (ast). By Lemma 5.1.2, η ⊗ T c,d is ϕn-compatible with T a,b. By Proposition 2.2.6, ϕ(Γ) <

η⊗T c,dSp2n(OF ) up to finite index. We now determine η⊗T c,dSp2n(OF ).

Consider the map

(η ⊗ ξ)(In ⊗ T c,d)−1 : Gal(Q /F )→ In⊗T c,dPSp2n(Q)

σ 7→ (η(σ)⊗ ξ(σ))(In ⊗ T c,d
σ )−1.

where we endow In⊗T c,dPSp2n(Q) with the action of Gal(Q /F ) defined by

σ ·M = (In ⊗ T c,d
σ )σ(M)(In ⊗ T c,d

σ )−1.

It is a 1-cocycle with respect to this action. Moreover, it lifts to a 1-cocycle in In⊗T c,dSp2n(Q) and

thus is trivial, see Proposition 2.7 in [PR94]. Hence there exists S ∈ Sp(2n,Q) such that for all
σ ∈ Gal(Q /F )

η(σ)⊗ T c,d
σ = S−1(In ⊗ T c,d

σ )σ(S).

It follows that M ∈ η⊗T c,dSp2n(F ) if and only if{
SMS−1 ∈ Mn(T c,dM2(F )) and
(SMS−1)⊤S−⊤KnS

−1(SMS−1) = S−⊤KnS
−1

⇔ SMS−1 ∈ In⊗T c,dSp2n(F )

since S⊤KnS = Kn. Finally η⊗T c,dSp2n(OF ) is widely commensurable with SU(In, ;O) for O an
order in (c, d)F . Note that the latter is a lattice of Sp(2n,R) if and only if (c, d)F splits at exactly one
real place of F .

Conversely, suppose that an Λ is an arithmetic subgroup of Sp(2n,R) that contains ϕn(Γ). Since
Sp(2n,R) is simple, Λ is widely commensurable with ζSp2n(OL) for L a number field and ζ : Gal(Q /L)→
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PSp2n(Q) a 1-cocycle. By Proposition 3.2.3 we can assume that L = F . We show that ζ is ϕn-
compatible with T a,b. For every σ ∈ Gal(Q /F ) denote by

ϕσn : SL2(Q)→ Sp(2n,Q), g 7→ ζ(σ) ◦ σ ◦ ϕn ◦ σ−1((T a,b
σ )−1gT a,b

σ ).

This is an algebraic morphism that coincides with ϕn on a finite-index subgroup of Γ. Since any finite-
index subgroup of Γ is Zariski-dense in SL2(Q), ϕn = ϕσn. This means that τn(Ta,bSL2(F )) < ηSp2n(F ).
Lemma 5.1.2 concludes the proof.

It implies Proposition E together with Proposition 2.4.7 and Lemma 3.2.3.

5.3 Commutator of a diagonal element

The representations that we will build in Section 5.5 will be bendings of a maximal diagonal repre-
sentations ρ along a simple closed curve γ. This requires to find such a γ with big enough centralizer
in Λ. In this section, we show that for suitable Λ, diagonal elements have a big centralizer in Λ.

Let λ > 1 and D = Diag(λ, λ−1) ∈ SL(2,R). The commutator of ϕn(D) in M2n(C) is the set of
matrices of the form 

a11 0 a12 0 . . . a1n 0
0 b11 0 b12 . . . 0 b1n
a21 0 a22 0 . . . a2n 0
0 b21 0 b22 . . . 0 b2n

. . .
an1 0 an2 0 . . . ann 0
0 bn1 0 bn2 . . . 0 bnn


(5.3)

where (aij), (bij) ∈ Mn(C).

Lemma 5.3.1. The commutator of ϕn(D) in Sp(Kn,C) is the group of matrices of the form (5.3)
where (aij) ∈ GL(n,C) and (bij) = (aij)

−⊤.

Proof. LetM ∈ Sp(Kn,C) that commutes with ϕn(D). Consider P the matrix defined on the canonical
basis of C2n by Pek = e2k−1 and Pen+k = e2k for all 1 ≤ k ≤ n. Then

P−1MP =

(
M1

M2

)
with M1,M2 ∈ Mn(C). The matrix M preserves Kn, i.e. M⊤KnM = Kn, if and only if P−1MP
preserves P⊤KnP . Since

P⊤KnP =

(
0 In
-In 0

)
,

M2 =M−⊤
1 .

Let (a, b)F be a quaternion algebra that splits at exactly one real place of F . Let η : Gal(Q /F )→
PO(In,Q) be a 1-cocycle.

Lemma 5.3.2. For all σ ∈ Gal(Q /F ), the commutator of ϕn(D) in Sp(2n,Q) is stable under conju-

gation by η(σ)⊗ T a,b
σ .

Proof. Fix σ ∈ Gal(Q /F ). The subgroup GL(n,Q) is stable by η(σ)⊗I2 since the latter is an element

of PGL(n,Q), seen in PSp(2n,Q). Moreover, GL(n,Q) is stable by In ⊗ T a,b
σ as shown by direct

computations. Hence GL(n,Q) is stable by their product.

Consider the F -algebraic group H that associated to any F -algebra R the subgroup of Sp(2n,R)
that consists of matrices of the form (5.3) with det((aij)ij) = 1. It is isomorphic to the F -algebraic
group SLn. The main result of this section is the following lemma.
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Lemma 5.3.3. Let σ0 be the only real place of F over which (a, b)F splits. Then H(Rσ0)∩
η⊗Ta,bSp2n(OF )

is a lattice in H(Rσ0).

Proof. For all σ ∈ Gal(Q /F ), η(σ)⊗ T a,b
σ induces an automorphism of H(Q). Hence η ⊗ T a,b defines

a 1-cocycle in Aut(H(Q)) and thus correspond to an F -form of H. Denote the latter by G. Since G
is semisimple, Borel-Harish-Chandra Theorem [BHC62] implies that G(OF ) is a lattice of∏

σ:F ↪→R
G(Rσ).

For all σ ̸= σ0, G(R
σ) is a closed subgroup of η⊗Ta,bSp2n(R

σ) which is a compact Lie group. Lemma
2.2.8 implies that G(OF ) is a lattice of G(Rσ0) = H(Rσ0).

5.4 Reduction to finite fields

To prove that the construction given in the next section gives rise to infinitely many mapping class
group orbits of representations, we again use the Strong Approximation Theorem, Theorem 2.5.5.
However, the argument used in the proof of Theorem B do not suffice to distinguish mapping class
group orbits in this setting. Let Γ be an arithmetic subgroup of SL(2,R). The key point of the proof
of Theorem B is that Tr(τn(Γ)) is not surjective modulo P for infinitely many prime ideals P of OF .
However, Tr(ϕn(Γ)) is surjective modulo P for almost all P. This is why we need a finer control on
the reduction of ϕn(Γ) modulo prime ideals.

Let O be an order of a quaternion algebra A over a number field F such that A splits at exactly
one real place of F . Let Γ < SU(In, ;O) be a Zariski-dense subgroup. Consider the F -algebraic group
defined as a functor from F -algebras to groups by

R 7→ SU(In, ;A⊗F R).

It is a connected almost simple and simply connected algebraic group. Hence the Strong Approxima-
tion Theorem, Theorem 2.5.5, implies that there exists a ∈ OF such that Γ surjects Sp(2n,OF /P) for
any prime ideal P not containing a.

Let P be a prime ideal not containing a. Denote by Fq its residue field and by π : SU(In, ;O)→
Sp(2n,Fq) the reduction map. It is not true that two Zariski-dense subgroups Γ1 and Γ2 of SU(In, ;O)
that are conjugate under Sp(2n,R) satisfy π(Γ1) ≃ π(Γ2). For instance, one can conjugate the
principal congruence subgroup of level 2 of SL(2,Z) into a subgroup which is no longer trivial modulo
2. Nevertheless, we have the following.

Lemma 5.4.1. Let Γ < SU(In, ;O) be a Zariski-dense subgroup and let g ∈ GL(2n,C) such that
gΓg−1 < SU(In, ;O). If π(Γ) = Sp(2n,Fq), then π(gΓg

−1) = Sp(2n,Fq).

Proof. We first show that there is a scalar multiple of g that lies in GL(n,A). Consider the following
F -algebra

FΓ = {
∑

aiγi | γi ∈ Γ} ⊂ Mn(A)

where the sums are finite. Proposition 2.2 in [Bas80] shows that FΓ is a central simple algebra of
dimension 4n2. Hence FΓ = Mn(A). It follows that the conjugation by g preserves Mn(A). Since all
automorphisms of Mn(A) are inner, see Corollary 2.9.9 in [MR03], we can assume that g ∈ GL(n,A).

Denote by FP the completion of F at P for the valuation νP and RP its ring of integers. We
can view Γ and g in GL(n,A ⊗F FP). Up to scaling, we can assume that g ∈ Mn(O ⊗OF

RP) and
that g is non-trivial modulo P. Let Nrd denote the reduced norm of GL(n,A⊗F FP). We claim that
νP(Nrd(g)) = 0.

There exists h ∈ Mn(O ⊗OF
RP) such that gh = Nrd(g). This follows from the fact that there

exists a polynomial P with coefficients in RP with constant term Nrd(g) such that P(g) = 0. Suppose
that νP(Nrd(g)) > 1. Let k ∈ N such that h is trivial modulo Pk but not modulo Pk+1. Reducing
gΓh ⊂ Nrd(g)Mn(O ⊗OF

RP) modulo P we have

g Sp(2n,Fq)h = 0.
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Since g ̸= 0, h = 0. Hence k ≥ 1.
From Nrd(g)2n−2gh = Nrd(h), we see that viewed in a splitting field of A ⊗F FP , Nrd(g)

2n−2g
is the cofactor matrix of h. If h is trivial modulo Pk, its cofactor matrix is trivial modulo P(2n−1)k.
Hence νP(Nrd(g)) > k. Let ω be a uniformizer of RP . Reducing the equation

gΓ
h

ωk
⊂ Nrd(g)

ωk
Mn(O ⊗OF

RP)

modulo P, we have that h
ωk is trivial. This is a contraction.

Hence νP(Nrd(g)) = 0, i.e. the reduction of g modulo P is invertible. This implies that π(gΓg−1) =
gπ(Γ)g−1 which concludes the proof.

5.5 Proof of Theorem F

Write the canonical decomposition
R2n = V1 ⊕ . . .⊕Vn

where Vi = R
2. Denote by ∆ the subgroup of Sp(2n,R) that preserves this decomposition. Explicitly

∆ =


A1

An

∣∣∣ Ai ∈ SL(2,R)

 .

Lemma 5.5.1. Let H be the Zariski closure of a maximal representation in Sp(2n,R). Suppose that
∆ < H and that H acts irreducibly on R2n. Then H = Sp(2n,R).

Proof. Corollary 4 in [BIW09] states that H is reductive and its associated symmetric space is Her-
mitian. Denote by h the Lie algebra of H that we see embedded in sp(2n,R). Since ∆ < H, the
centralizer of H in Sp(2n,R) has to be discrete. Hence h has no center and so is semi-simple.

Write h = k⊕ h0 where k is a maximal compact ideal in h. Consider a sl2(R)-subalgebra of h. We
denote by π the composition of the inclusion with the projection to k

sl2(R) ↪→ k⊕ h0 → k.

The kernel of π cannot be trivial since a compact algebra does not contain sl2(R). Since sl2(R) is
simple, π has to be trivial. Hence sl2(R) is a subalgebra of h0. The Lie algebra of ∆ is then also a
subalgebra of h0. This implies that k centralizes the Lie algebra of ∆, so k is trivial.

Corollary 4 in [BIW09] shows that the inclusion h ↪→ sp(2n,R) is tight, i.e. the norm of the Kähler
form on the symmetric space of Sp(2n,R) and the norm of its pullback are equal. Tight embeddings
are classified by Hamlet and Pozzetti in [HP14] §5.2. In particular, Table 6 and its interpretation
show that if h were non-simple then it would act reducibly on R2n. Knowing that H contains ∆, the
classification implies that H = Sp(2n,R).

We can now prove Theorem F.

Proof of Theorem F. Let n ≥ 2. Let Λ be a lattice in Sp(2n,R) not widely commensurable with
Sp(4k + 2,Z) for any k. By Proposition 2.4.7 and Proposition G, there exists a totally real number
field F and a quaternion division algebra A over F such that A splits over exactly one real place ι of
F and an order O of A satisfying

ϕ(O1) < Λ.

Since A is a division algebra, O1 embeds as a cocompact lattice in SL(2,R). Let S = H2/O1. Up to
finite cover, it is a closed surface.

Up to isomorphism, we can write A = (a, b)F with a, b ∈ OF such that a and b are positive at ι.
Hence, up to finite index, we can suppose that A1 is embedded in SL(2,R) with image in{(

x0 +
√
ax1

√
bx2 +

√
abx3√

bx2 −
√
abx3 x0 −

√
ax1

)
| xi ∈ F, det = 1

}
.
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Lemma 4.2.3 show that there exists a simple closed curve γ on S with image in SL(2,R) which is
diagonal. Note that A1 = Ta,bSL2(F ) and thus Λ = η⊗Ta,bSp2n(OF ).

Let g ≥ 2 and j : π1(S) → O1 be a injective morphism. There exists automorphism φi of π1(S),
1 ≤ i ≤ n, that fixes γ such such that the representations ji := j ◦ φi are pairwise non PGL(2,R)-
conjugate. These automorphism can be induced by Dehn twists along a simple closed curve disjoint
from γ. Define

ρ : π1(S)

∏
ji

↪−−→ SL(2,R)n ↪→ Sp(Kn,R)

where the last map is the diagonal embedding. The image of ρ is in Λ and has Zariski-closure SL(2,R)n

by Lemma 4.4.1.
Let SL(n,R) be the subgroup of Sp(2n,R) that consists of matrices of the form (5.3) with

det((aij)ij) = 1. By Lemma 5.3.3, the centralizer of ρ(γ) in Λ∩SL(n,R) is a lattice in SL(n,R). Hence
by Borel Density Theorem, Theorem 2.1.8, there exists B ∈ Λ ∩ SL(n,R) such that if I ⊂ {1, . . . , n}
satisfies

B(⊕i∈IVi) = ⊕j∈JVj

for some J ⊂ {1, . . . , n} then I = ∅ or I = {1, . . . , n}. We will deform the representation ρ by B
using a bending deformation. See Section 4.1 for the definition of the bend representation ρB. Since
B can be continuously deformed into In within SL(n,R), ρB can be continuously deformed into ρ.

We show that ρB acts irreducibly on R2n. Let V ⊂ R2n be an invariant subset of ρB. Since the
Zariski-closure of ρB contains ∆, V has to be invariant under ∆. Hence there exists I ⊂ {1, . . . , n}
such that V = ⊕i∈IVi. If γ is separating, BV has to be invariant by ∆. If γ is non-separating, V has
to be invariant by B. In any case, we conclude that V is either {0} or R2n. Hence ρB acts irreducibly
on R2n. Its Zariski-closure contains ∆ so Lemma 5.5.1 implies that ρB is Zariski-dense in Sp(2n,R).

We claim that the sequence of representations (ρBk)k≥1 give rise to infinitely many MCG(S)-orbits
of representations. Suppose not. Denote by Γk the image of ρBk . There exists k1, . . . , kl such that the
image every Γk is conjugated to the image of Γki for some 1 ≤ i ≤ l. By the Strong Approximation
Theorem, see Theorem 4.3.4, there exists a finite set Ω of prime ideals of OF such that for every
1 ≤ i ≤ l and every prime ideal P ̸∈ Ω, the reduction of Γki modulo P is Sp(2n,OF /P). By Lemma
5.4.1, the reduction of every Γk modulo P ̸∈ Ω is surjective. Pick P ̸∈ Ω and k such that Bk is
trivial modulo P. Then the reduction of ρBk modulo P is equal to the reduction of ρ and thus is not
surjective. This is a contradiction.
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[Gü10] Hasan Gündoğan. The component group of the automorphism group of a simple Lie
algebra and the splitting of the corresponding short exact sequence. J. Lie Theory,
20(4):709–737, 2010.
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