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Abstract xi

PHYSICS-AWARE DEEP LEARNING AND DYNAMICAL SYSTEMS: HYBRID MODELING AND GENER-
ALIZATION

Abstract

Deep learning has made significant progress in various fields and has emerged as a promising tool
for modeling physical dynamical phenomena that exhibit highly nonlinear relationships. However,
existing approaches are limited in their ability to make physically sound predictions due to the lack
of prior knowledge and to handle real-world scenarios where data comes from multiple dynamics
or is irregularly distributed in time and space. This thesis aims to overcome these limitations
in the following directions: improving neural network-based dynamics modeling by leveraging
physicalmodels through hybridmodeling; extending the generalization power of dynamicsmodels
by learning commonalities from data of different dynamics to extrapolate to unseen systems;
and handling free-form data and continuously predicting phenomena in time and space through
continuous modeling. We highlight the versatility of deep learning techniques, and the proposed
directions show promise for improving their accuracy and generalization power, paving the way
for future research in new applications.

Keywords: deep learning, dynamical system, physical phenomenon, neural network, hybrid
modeling, generalization, adaptation, out-of-distribution, continuous dynamics modeling

APPRENTISSAGE PROFOND POUR LA PHYSIQUE ET LES SYSTèMES DYNAMIQUES : MODéLISATION
HYBRIDE ET GéNéRALISATION

Résumé

L’apprentissage profond a fait des progrès dans divers domaines et est devenu un outil prometteur
pour modéliser les phénomènes dynamiques physiques présentant des relations hautement non
linéaires. Cependant, les approches existantes sont limitées dans leur capacité à faire des prédictions
physiquement fiables en raison du manque de connaissances préalables et à gérer les scénarios
du monde réel où les données proviennent de dynamiques multiples ou sont irrégulièrement
distribuées dans le temps et l’espace. Cette thèse vise à surmonter ces limitations dans les directions
suivantes : améliorer lamodélisation de la dynamique basée sur les réseauxneuronaux en exploitant
des modèles physiques grâce à la modélisation hybride ; étendre le pouvoir de généralisation des
modèles de dynamique en apprenant les similitudes à partir de données de différentes dynamiques
pour extrapoler vers des systèmes invisibles ; et gérer les données de forme libre et prédire
continuellement les phénomènes dans le temps et l’espace grâce à la modélisation continue. Nous
soulignons la polyvalence des techniques d’apprentissage profond, et les directions proposées
montrent des promesses pour améliorer leur précision et leur puissance de généralisation, ouvrant
la voie à des recherches futures dans de nouvelles applications.

Mots clés : apprentissage profond, système dynamique, phénomène physique, réseau de neu-
rones, modélisation hybride, généralisation, adaptation, hors distribution, modélisation
dynamique continue

Institut des Systèmes Intelligents et de Robotique
Campus Pierre et Marie Curie – Pyramide, Tour 55 – 4, place Jussieu – 75005 Paris –
France
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Symbols

Symbol Name Description
𝑑𝜃 , 𝑑𝛼 dimension of a vector
𝑒 environment
E set of environments 𝑒 ∈ E
Ψ flow
𝑓 , 𝑔 function
F ,G set of functions 𝑓 ∈ F , 𝑔 ∈ G
𝑧 function input
Z set of function inputs 𝑧 ∈ Z
𝑦 function output
Y set of function outputs 𝑦 ∈ Y
L loss function
ℓ sample-wise loss function
𝜃 model parameter
Θ set of parameters 𝜃 ∈ Θ
R regularization function
𝑥 spatial coordinates
𝑝 dimension of the spatial domain Ω ⊂ ℝ𝑝

Ω spatial domain 𝑥 ∈ Ω
X discretized spatial domain X ⊂ Ω
𝑡 temporal coordinate
I temporal domain 𝑡 ∈ I ⊂ ℝ,∃𝑡0 ∈ I
T discretized temporal domain T ⊂ I
𝑢 continuous trajectory
𝑢|T discretized trajectory
𝜌D trajectory of distribution
𝛤 set of continuous trajectories 𝑢 ∈ 𝛤
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Symbol Name Description
D dataset of discretized trajectories 𝑢|T ∈ D
𝐾 number of frames per sequence
𝑁 number of sequences in a dataset
𝑢𝑡 state at time 𝑡
𝑑 number of variables in a state #(𝑢𝑡 (𝑥)) = 𝑑
U set of states 𝑢𝑡 ∈ U
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1.1 Motivating Dynamics Modeling with Data
Dynamics modeling is a fundamental area of study in science, spanning centuries of
research across multiple disciplines. At its core, dynamics modeling seeks to explain and
predict themovement or changes of objects through observation and analysis. The insights
gained from this understanding have led to the development of effective models that can
predict howaphenomenonwill evolve over time, andhow itmay respond to changes in the
environment or other conditions. Today, efforts to model dynamical systems cover a wide
spectrum of methods, involving varying degrees of first principles: from sophisticated
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numerical models, relying on a full knowledge of physics, to purely data-driven models
without any prior physical knowledge. We illustrate the relationship between different
modeling modes in Figure 1.1.

In this thesis, we contribute to the recent trend of applying deep learning (DL) to dynamics
modeling. Following the breakthroughs made by deep learning in various fields (He et al.,
2016; Goodfellow et al., 2020; Devlin et al., 2019; Brown et al., 2020), the versatility of deep
learning has started being exploited for various aspects of dynamics modeling, as shown
in Figure 1.1. However, this research domain is still at an early stage of development.

Our goal is to enhance the generality and adaptability of data-driven DL models by
considering physical or distributional priors in their underlying assumptions. We aim to
exploit DL approaches to obtain models that can efficiently extract information from the
data close to real-world scenarios. This introductory chapter emphasizes the importance
of modeling with data and motivates the different problems we want to address, to match
model capabilities with numerical methods.

Collect by 
observing

Conceptualize
Simplify

Dynamical 
System

Hybrid 
Model

Differential 
Equation

Data-driven 
Model

Data

Predict by solving Predict

Adjust

Learn

Predict

Numerical 
Model

Discretize
Specialize

Prior Data-driven
Deep Learning This thesis

Identify

Figure 1.1: Three paradigms of dynamics models: (a) numerical models, based on math-
ematical differential equations formulated from first-principles laws, are then solved by
numerical solvers. Theymust first be identified from the data and then solved bynumerical
solvers to be able to predict; (b) data-driven models, which learn dynamics from data
automatically and can predict after being trained; (c) hybrid models, which combine the
two previous types of model.
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1.1.1 Understanding Nature with Differential Equations
The study of dynamics began with the development of mathematical models, aiming to
understand the movements of objects by modeling physical laws. From Galileo to the
present day, scientists have attempted to explain the observed phenomena by constructing
dynamics models that express, e.g., laws of motion, with object properties, e.g., mass,
length, and density. These models have been created with concepts abstracted from the
observations and based on the human perception of both reality and physical laws.

For example, as illustrated in Figure 1.2, when modeling the behavior of a moving object,
instead of exhaustively describing every evolution trajectory of the object’s position, one
studies the velocity, i.e., the rate of change of position, and the acceleration, i.e., the rate
of change of the velocity. As a result, the rules concerning these rates of change, i.e.,
differential equations, provide a clear, concise, and conceivable ideal description of the
temporal evolution of the phenomena and are considered as laws of physics.

Credit: Maschen, CC0, via Wikimedia Commons

Figure 1.2: A classical particle of mass𝑚moves through space along the trajectory Þ. The
quantities describing the kinetic state: position 𝑟 Þ, velocity 𝑣Þ, acceleration 𝑎Þ.

To date, a large number of dynamics models formulated as differential equations have
been proposed in various disciplines. For example, in physics, Navier-Stokes equations
(Stokes, 1851) describe the motion of viscous fluids, e.g., water, air; reaction-diffusion
equations (Pearson, 1993) describe how one or more chemical substances react locally
and spread in space (Feinberg, 2019); epidemiological dynamics studying how infectious
diseases spread in a population (Martcheva, 2015). They rely on a profound understanding
of the underlying dynamical phenomena.

If an analytical solution to the differential equation is available, we can use it to predict
what will happen. However, since most dynamical systems are nonlinear, their behavior

https://commons.wikimedia.org/wiki/File:Kinematics.svg
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cannot be fully described by analyticalmethods alone. As a result, we usually have to resort
to numerical methods to be able to make use of the differential equations, which has led to
the development of numericalmodels that can provide an approximation to the intractable
analytical solution.

1.1.2 Numerical Models

A numerical model is a discretized or simplified version of the differential equation. These
models are then solved through a numerical solver. The approximate solutions provided by
the numerical models and their solvers retain the physical properties of the phenomenon
and are used for a wide range of applications.

The numerical models have the following robustness and flexibility properties, which
will greatly influence the capability requirements when proposing other types of models,
including DL approaches:

• They are often robust to state changes. The close link to the differential equationmakes
the numericalmodels applicable to a large range of state values. This allows the same
model to be applied under different conditions.

• They describe different systems, obeying the same physical laws under different contexts,
often parametrized by a few parameters. Switching from one system to another can
be done directly by modifying parameters. For example, when moving a pendulum
for the Earth to the planet Mars, it is enough to change the gravity in the equation
to predict the pendulum’s movements in the new environment.

• The approximations are close to physical reality and reflect important properties of the
dynamics. When predicting physical quantities, the solutions should also respect
basic physical laws. For example, symmetries in time and space for state changes;
conservation of volume and energy; incompressibility for fluid, etc.

However, confronting reality is never easy. Despite many efforts to build realistic dif-
ferential equations, numerical models, and solvers, many bottlenecks still hinder their
application to real-world forecasting:

• Rare consensus on modeling and solving the same phenomenon. For many phenom-
ena, it is almost impossible to obtain equations that are unanimously accepted by
scientists. For example, for shallow water equations, a.k.a. Saint-Venant equations,
there is no consensus on the realistic modeling of the friction (Delestre, 2010,
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Chapter 3). A collection of models is proposed to describe the epidemic dynamics
of the same phenomenon (Schneckenreither et al., 2008). Sometimes the model and
the solver should be adapted for each parametrization or even tailored for different
conditions. For example, to solve the Navier-Stokes equation, different numerical
models should be selected depending on the physical parameters of the model such
as the kinetic viscosity, the domain shape/geometry, the initial flow velocity, etc.

• A numerical model can only describe a part of reality. Differential equations and
numerical dynamics models are constructed with varying degrees of simplification
of the reality. Due to practical constraints, the numerical models are often over-
simplified w.r.t. the observed dynamics, making them unsuitable for long-term
prediction in the real world.

• High-quality predictions require significant computational power. When dealing with
complex phenomena that require consideration of small-scale details, achieving
high-quality predictions often demands significant computational power. One such
instance is solving the Navier-Stokes equations, which entails densely discretizing
the domain to ensure accurate predictions. In the experiments of direct numerical
simulation, it may require a discretized domain with over 1011 degrees of freedom
(Lee et al., 2013), and handling the resulting computational cost and memory load
demands the use of extremely powerful computing resources, even at medium
Reynolds numbers (the higher the Reynolds number, the more chaotic the fluid
dynamics).

These bottlenecks limit the real-world applications of numerical models and drive scien-
tists to seek assistance to better describe reality, reduce the cost of running these models,
and search for complementary counterparts or even alternatives to numerical models.

1.1.3 Modeling with Data: Toward Broader Applications

In the past decades, the increasing availability of data, generated either by observing the
real phenomenon of dynamical systems or by solving equations with numerical models,
fostered the development of data-driven machine learning (ML) approaches. Depending
on the data source and the goals of the community, different paths have been proposed.

The first type of data consists of information collected by observing real phenomena,
such as satellite images of the ocean or the Earth’s atmosphere. The data is used to
guide numerical models to make plausible predictions consistent with new observations.
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The process is called data assimilation (DA) (Kalman, 1960; Courtier et al., 1994), and
is a sequential time-stepping procedure. The common strategy involves two steps that
are repeated at each update: the numerical model provides a short-term forecast that
is compared with newly received observations, and the model state is then updated to
reflect the observations. DA has been successfully used in large-scale weather forecasting
systems such as the European Centre for Medium-Range Weather Forecasts (ECMWF;
Bonavita and Lean, 2021) and operational ocean monitoring and forecasting systems such
as MERCATOR Océan (Ferry et al., 2007). DA can effectively find the best estimate of the
reality from the numerical model forecast w.r.t. the data. However, the information from
data plays the role of correction to the numerical model, not as a part of it.

The second type of data concerns numerical model solutions. Simulations may be used
to build emulator models that are less complex and less computationally expensive than
numerical models while maintaining a reasonable quality of the solutions. Compared to
the original numerical models, namely full-order models (FOMs), the data-driven reduced
order models (ROMs) extract a model of lower complexity from a set of solutions given
by FOMs. ROMs are mainly related to dimension reduction techniques accompanied by
physical assumptions. For dynamical systems, there are techniques like proper orthogonal
decomposition (POD) to find the best low-dimensional approximation of the FOM (Choi
et al., 2021), and dynamic mode decomposition (DMD) for the best linear approximation
of nonlinear dynamics (Kutz et al., 2016). They provide mathematical representations for
real-time analysis, but the most effective ones are often limited to linear reduction and
linear modeling, which limits their application scenarios and requires extensions to more
flexible modeling.

1.1.4 Deep Learning and Dynamics Modeling

Although neural networks were proposed over half a century ago, it is only since the 2010s
that they have been widely popularized and that this branch of study, under the name of
deep learning, has become the most influential machine learning research topic so far.
Thanks to flexible algorithms, enormous amounts of available data, advanced versatile
software, and powerful hardware for large-scale model deployment, etc., researchers have
achieved multiple breakthroughs in various tasks, e.g., image recognition (He et al., 2016),
generation (Goodfellow et al., 2020), text representation (Devlin et al., 2019), generation
(Brown et al., 2020). Deep learning highlights the versatile and flexible neural network
algorithms for modeling any nonlinear mapping between the given data and the desired
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output, achieving operational ML models that were not possible before. This provides a
path to effectively extract highly nonlinear complex dynamics directly from data.

In the pre-deep learning era, therewere already attempts to propose neural network-based
predictive models for dynamical systems. Combining neural networks with numerical
integration schemes was also considered. However, learning dynamical systems driven
by linear or nonlinear ordinary differential equation (ODE) or partial differential equation
(PDE), e.g., Rico-Martínez and Kevrekidis (1993), remained relatively confidential at that
time.

Thanks to the advances in the general deep learning industry, recent efforts have reju-
venated this research, namely deep learning for dynamical systems. Pioneering work has
been done on the integration of physical prior information into the DL/ML models for
dynamical systems (Long et al., 2018b; de Bézenac et al., 2018; Raissi et al., 2019; Brunton
and Kutz, 2022) by focusing on the use of DL techniques.

From the deep learning side, the connection between dynamical systems and modern neu-
ral network architectures has been highlighted by the residual neural networks (ResNets;
He et al., 2016), popular in computer vision (CV). Indeed, residual connections implement
a forward Euler time step method. Authors, notably E (2017), use this relationship to
motivate the use of neural network as solvers for ODEs:

𝑧𝑡+𝛿𝑡 = 𝑧𝑡 + 𝑓𝜃 (𝑡, 𝑧𝑡) vs.
d𝑧

d𝑡
(𝑡) = 𝑓𝜃 (𝑡, 𝑧𝑡)

Following this path, architectures were proposed exploiting ODE theories that guarantee
certain physical properties, such as system stability or energy conservation (Haber and
Ruthotto, 2017; Ruthotto and Haber, 2020).

The work that first attracted the attention of both the deep learning and dynamics
modeling communities is neural ordinary differential equation (Neural ODE; Chen et al.,
2018). By replacing traditional ResNets with a numerical solver, it sparked the interest of
both communities and reignited the idea of integrating neural networks into differentiable
solvers. As a result, the field of DL modeling for dynamical systems and differential
equations has experienced a significant growth spurt and continues to make impressive
advancements to this day.

Today, deep learning intervenes in almost every type of dynamics modeling shown in
Figure 1.1:
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• Act as a purely data-driven forecasting model. This is the basic setting in deep learning:
discovering laws from data. Models are trained from observed spatiotemporal
trajectories to forecast future observations (Chen et al., 2018; Pfaff et al., 2021; Li
et al., 2021b; Brandstetter et al., 2022);

• Act as a numerical model. This objective here is to find alternatives to numerical
models and their solvers. One uses the fully known differential equation and
conditions to find the unknown solution without data, such as Sirignano and
Spiliopoulos (2018); Raissi et al. (2019) and similar work;

• Act as part of a hybrid model. To enhance low-cost numerical models to approximate
high-precision numerical simulation (Belbute-Peres et al., 2020; Kochkov et al.,
2021) or to complement a numerical model by providing some components of this
model (de Bézenac et al., 2018; Ayed et al., 2022).

1.2 Real-World Challenges
Despite recent breakthroughs in deep learning for physical modeling, several problems
related to the capabilities of learned dynamics models and training data remain under-
addressed.

1.2.1 Challenges in Model Requirements
ML dynamics models have become increasingly important in various scientific and engi-
neering fields. However, they face several challenges in terms of accuracy and adaptability,
which are critical for their successful application:

Model should be applicable to unseen situations. A fundamental aspect of a success-
ful ML model is its ability to generalize well. This entails using a trained model to make
accurate predictions even in situations it has not seen before, which is essential for real-
world applications. In the case of a dynamical system, this means that the model should be
able to make accurate predictions even when presented with new initial states that it has
not encountered during training. In other words, the model should, in particular, be able
robust to changes in the distribution of the initial states over time.

Model should be easily adaptable to unseendynamics. In addition, a good dynamics
model should also be able to adapt to changes in the underlying dynamics of the system. If
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the dynamics slightly change in the future, or under other circumstances, themodel should
be able to be adapted quickly with few observed data, without complete retraining of the
model.

Model should output physically sound predictions. The estimated states should not
only visually resemble reality, but they should also complywith the properties indicated by
the laws of physics and real measurements of quantities of interest. For instance, accurate
predictions of key physical quantities at the boundary layer of an airfoil are critical and
necessitate precise forecasts in specific regions. Guaranteeing that the model produces
physically sound predictions is essential to ensure its practical applicability, especially in
contexts where accuracy and reliability are critical.

1.2.2 Challenges in Data
ML methods learn dynamics from data. However, the data in the real world is complex
and we face also multiple challenges associated with it, in terms of their quantity, variety,
and irregularity:

Data is not always abundant in certain scenarios. Given the complexity of modern
neural network architectures and their nonlinear nature, most DL methods are prone to
generalization issues, especiallywhen training data is scarce. This is still the case of interest
to us because, in many scenarios, it is still difficult and costly to obtain data for realistic
dynamical systems due to the computational infrastructure, e.g., supercomputers for large-
scale simulations. In addition, even if the data exists, it might be owned by governmental
and industrial entities, and its availability is limited by confidentiality policies, a.k.a. the
closed source data problem. This situation is very different from the problems in other
subfields, such as computer vision and natural language processing (NLP), which have a
large amount of openly available data thanks to the Internet, forcing us, at least for the next
decade, to consider less data-intensive models containing more regularities that favor the
application to new data.

Data is from heterogeneous sources. In most cases, the retrieved data need not be
uniformly distributed in the space of input-output pairs. This means we should come
across data from different sources, of different quality/resolution, and even from different
dynamics. Especially in the latter case, we often retrieve data of the same physical phe-
nomenon from different environments, where each environment has its own instantiated
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dynamics. For example, we observe epidemics spreading various infectious diseases in
countries. They all follow the same general law, but the observed values depend on some
factors, such as the infectiousness of the disease and the population structure. This means
that even with the same initial condition, the resulting evolution trajectories will vary
according to system instances, which may depend on the parameterization of the system:

• They may differ in evolution laws. This means that the underlying dynamics are
fundamentally different. For example, ocean dynamics at different locations have
the corresponding Coriolis force depending on the latitude on Earth. This will be
one of the main subjects of this thesis.

• Theymay differ in conditions determining the trajectory. Evenwith the same dynamics,
varying certain conditions causes changes in the trajectory space. For example,
changing the temperatures on the domain boundary of the heat equations will lead
to different solutions.

• They may differ in shape and geometry of the system state. Modeling spatiotemporal
dynamics can be challenging, particularly when dealing with complex geometries.
For example, the fluid dynamics around an airfoil, e.g., an airplane wing or a boat
sail, depends not only on the properties of the fluid but also on the shape of the
object, which defines the spatial domain of the trajectories.

The challenge then lies in efficiently leveraging heterogeneous data sources to discover
commonalities across the data, particularly in cases where the data exhibit different
dynamics. A key objective is then to develop models that generalize well to new data with
similar dynamics, once the model is trained on existing data.

Data is observed irregularly in space and time. Real-world data is rarely retrieved on
a predefined grid at specific locations. The phenomenon of interest is rarely fully observed
and is subject to discretized measurements. Given the unpredictable availability of the
sensors, models must be able to handle the data retrieved from them and be robust to any
change that may occur. This then requires models to impose fewer restrictions on the
input/output format, in both space and time.
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1.3 Contributions of the Thesis
In this thesis, we have addressed some of these challenges through the following problems:
(a) developing a sound, formal framework for hybrid modeling (APHYNITY); (b) dealing
with the generalization problems (LEADS and CODA); and (c) mesh-free modeling (DINO).

We summarize below our contributions, which will be discussed successively in Part II:

APHYNITY, Yin et al. (2021b) Due to the generalization issues, purely data-driven
approaches are arguably insufficient. We focus on making the numerical and data-
driven models work together to forecast complex dynamical phenomena where
only partial knowledge of their dynamics is available. In this work, we introduce
the APHYNITY framework, which consists of decomposing the dynamics into two
components: a physical component formulated from partially known first princi-
ples, and a data-driven one that complements the previous physical component by
describing the dynamics that cannot be captured by the physical model, no more,
no less. APHYNITY enhances the capabilities of both components: the hybrid
model predicts well under new conditions, achieves better generalization than
either method alone, and helps to identify the appropriate incomplete numerical
model instance from a large set of candidates. This not only provides the existence
and uniqueness of this decomposition but also ensures interpretability and benefits
generalization. Experiments on various phenomena show that APHYNITY can
efficiently use incomplete physical models to accurately forecast the evolution of
the system and correctly identify relevant physical parameters.

Yuan Yin*1, Vincent Le Guen*, Jérémie Donà*, Emmanuel de Bézenac*, Ibrahim
Ayed*, Nicolas Thome, and Patrick Gallinari. Augmenting physical models with
deep networks for complex dynamics forecasting.

Oral at the 9th International Conference on Learning Representations, ICLR 2021.
Also published in Journal of Statistical Mechanics: Theory and Experiment, JSTAT.
ä See Chapter 4.

LEADS, Yin et al. (2021a) When modeling dynamical systems from real-world data
samples, the distribution of the data often changes according to the environment
in which it is captured, and the dynamics of the system itself vary from one
environment to another, suggesting that under the same condition, trajectories

1The equality of contribution between the authors is indicated by an asterisk (*).
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change in different environments. In this case, generalizing across environments
thus challenges the conventional ML frameworks. The classical settings suggest
either considering data as i.i.d. and learning a single model to cover all situations or
learning environment-specificmodels. Both are sub-optimal: the former disregards
the discrepancies between environments leading to biased solutions, while the latter
does not exploit their potential commonalities and is prone to scarcity problems. In
this work, we propose LEADS, a novel framework that leverages the commonalities
and discrepancies among known environments to improve model generalization in
the phenomenon. This is achieved with a tailored training formulation aiming at
capturing common dynamics within a shared model while additional terms capture
environment-specific dynamics. We ground our approach in theory, exhibiting a
decrease in sample complexity w.r.t. classical alternatives. We show how theory
and practice coincide in the simplified case of linear dynamics. Moreover, we
instantiate this framework for neural networks and evaluate it experimentally on
representative families of nonlinear dynamics. This new setting can exploit knowl-
edge extracted from environment-dependent data and it improves generalization
for both known and novel environments, allowing us to take a first step toward
efficient adaptation to new dynamics.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, Patrick Galli-
nari. LEADS: Learning dynamical systems that generalize across environments.

The 35th Conference on Neural Information Processing Systems, NeurIPS 2021.
ä See Chapter 5.

CODA, Kirchmeyer et al. (2022) Following the previous contribution, we move to-
ward the adaptation to a new dynamical system based on the data of a set of known
dynamics. Data-driven approaches to modeling physical systems fail to generalize
to unseen systems that share the same general dynamics as the training data but
correspond to different physical contexts, e.g., parameters of the dynamics. In
this work, we propose a new framework to address this key problem, context-
informed dynamics adaptation (CODA), which takes into account the distributional
shift across systems for fast and efficient adaptation to new dynamics. CODA
leverages multiple environments, each associated with a different dynamic, and
learns to condition the dynamics model on contextual parameters, specific to each
environment. The conditioning is performed via a hyper-network, learned jointly
with a context vector from observed data. The proposed formulation constrains
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the search hypothesis space for fast adaptation and better generalization across
environments with few samples. We theoretically motivate our approach and show
state-of-the-art generalization results on a set of nonlinear dynamics, representative
of a variety of application domains. We also show, on these systems, that new system
parameters can be inferred from context vectors with minimal supervision.

Matthieu Kirchmeyer*, Yuan Yin*, Jérémie Donà, Nicolas Baskiotis, Alain Rako-
tomamonjy, andPatrickGallinari. Generalizing to newphysical systems via context-
informed dynamics model.

Spotlight at the 39th International Conference on Machine Learning, ICML 2022.
ä See Chapter 6.

DINO, Yin et al. (2023) We tackle the problem of learning dynamics with irregularly
sampled data in space and in time. Effective data-driven PDE forecasting methods
often rely on fixed spatial and/or temporal discretization. This raises limitations
in real-world applications like weather prediction where flexible extrapolation
at arbitrary spatiotemporal locations is required. We address this problem by
introducing a new data-driven approach, DINO, that models a PDE’s flow with
continuous-time dynamics of spatially continuous functions. This is achieved by
embedding spatial observations independently of their discretization via Implicit
Neural Representations in a small latent space temporally driven by a learned ODE.
This separate and flexible treatment of time and space makes DINO the first data-
driven model to combine the following advantages. It extrapolates at arbitrary
spatial and temporal locations; it can learn from sparse irregular grids or manifolds;
at test time, it generalizes to newgrids or resolutions. DINOoutperforms alternative
neural PDE forecasters in a variety of challenging generalization scenarios on
representative PDE systems.

Yuan Yin*, Matthieu Kirchmeyer*, Jean-Yves Franceschi*, Alain Rakotomamonjy,
and Patrick Gallinari. Continuous PDE dynamics forecasting with implicit neural
representations.

Spotlight (notable-top-25%) at the 11th International Conference on Learning Represen-
tations, ICLR 2023.
ä See Chapter 7.
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Other Contributions

Yin et al. (2019) Yuan Yin, Arthur Pajot, Emmanuel de Bézenac, and Patrick Gallinari.
Unsupervised inpainting for occluded sea surface temperature sequences.

The 9th International Workshop on Climate Informatics, CI 2019.

Yin et al. (2020) Yuan Yin, Arthur Pajot, Emmanuel de Bézenac, and Patrick Gallinari.
Unsupervised spatiotemporal data inpainting.

Preprint.

Migus et al. (2022) Léon Migus, Yuan Yin, Jocelyn Ahmed Mazari, and Patrick Galli-
nari. Multi-scale physical representations for approximating PDE solutions with
graph neural operators.

ICLR 2022 Workshop on Geometrical and Topological Representation Learning

1.4 Structure of the Thesis
The thesis is organized as follows. In Chapter 2, we provide an overview of dynamical
systems and deep learning, and discuss basic deep learning models for dynamics learning
and their limitations, alongside corresponding research topics. In Chapter 3, we dive
into each topic and present their related work: physics-data-driven hybrid modeling,
multiple dynamics modeling, and continuous modeling. In Part II, we present our main
contributions in separate chapters: APHYNITY (Chapter 4), LEADS (Chapter 5), CODA
(Chapter 6), and DINO (Chapter 7). In Part III, we provide a conclusion (Chapter 8) and
sketch a perspective on promising research directions forDLdynamicsmodels (Chapter 9).



Chapter 2

Background

We first introduce basic concepts of dynamical systems and the fundamentals of deep
learning for dynamical system modeling. We then motivate our research questions,
starting from the limitations of current mainstream approaches.

2.1 Dynamical Systems 17
2.2 Basic Setting of Dynamics Modeling with Data 22
2.3 Deep Learning for Dynamics Modeling 23

2.3.1 Deep Learning in a Nutshell . . . . . . . . . . . . . . . . 23
2.3.2 Learning Mappings in Dynamics Models with Neural Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Neural Dynamics Models . . . . . . . . . . . . . . . . . . 35
2.3.4 Neural Solvers . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Limitations 39
2.5 Research Questions 41

2.1 Dynamical Systems
Adynamical physical phenomenon is typically describedwith a state that evolves over time,
and the description of such an evolution is referred to as a dynamical system. To better
understand this concept, let us consider an example system.

17
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displacement

velocity

System Trajectory (Orbit) Phase Space Portrait

time

Credit: Krishnavedala, CC BY‑SA 4.0, via Wikimedia Commons

Figure 2.1: Illustration of an ideal pendulum.

An ideal pendulum is shown in Figure 2.1. On the left, we have the pendulum system
observed in the physical world: in our example, it is a ball suspended from a fixed point.
If we release the ball at the initial position in the figure with zero initial velocity, it will
oscillate between two end positions under the influence of gravity. This phenomenon
evolves according to time. The state of the pendulum system, an element in a phase space or
state space, is described by the displacement/position and velocity of the ball at each time
stamp. The beginning of the phenomenon is called the initial state. It evolves according
to an evolution function, i.e., the dynamics. During this evolution, we can collect a series
of states at each time up to some horizon, namely a trajectory, as shown in the middle of
Figure 2.1. On the right, this trajectory is represented in the form of a phase space portrait
(only possible for state vectors of 2 or 3 dimensions), which shows the characteristics of
the system’s behavior.

This conceptualization allows us to introduce the formal definition of a dynamical system.
In this thesis, we are interested in continuous-time dynamical systems.

Definition 2.1 (Continuous-time dynamical system). Following the example above,
we say that a dynamical system evolves according to:

• I ⊂ ℝ, 𝑡0 ∈ I , an interval in the set of real numbers and each 𝑡 ∈ I is a
timestamp. The time interval include an initial time 𝑡0, often fixed at 𝑡0 = 0 by
convention,

• U , a non-empty set called phase space or state space, and the system state at any

https://commons.wikimedia.org/wiki/File:Pendulum_phase_portrait_illustration.svg
https://creativecommons.org/licenses/by-sa/4.0
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time 𝑡 is an element of this space 𝑢(𝑡) ∈ U ,

• Ψ : I × U → U , a function that describes the evolution of the state, s.t. 𝑢(𝑡) =
Ψ (𝑡, 𝑢(0)). For any 𝑡 and 𝑡′, 𝑢(𝑡 + 𝑡′) = Ψ (𝑡′, Ψ (𝑡, 𝑢(0))).

A trajectory is a sequence of states, 𝑢 = {∀𝑡 ∈ I , 𝑢(𝑡) = Ψ (𝑡, 𝑢(0))}, starting from an
initial state 𝑢(0) ∈ U . Typically, the trajectory is viewed as a continuous function on
the interval I and belongs to a space of trajectories denoted as 𝛤 : I → U .

For the sake of simplicity, we often denote 𝑢(𝑡) as 𝑢𝑡 when we interpret it as a state at 𝑡.

Below we present two families of dynamical systems which are the main objects dealt with
in this thesis: ordinary differential equation (ODE), for an initial value problem (IVP), and
time-dependent partial differential equation (PDE), for an initial boundary value problem
(IBVP).

ODEand IVP. If the state spaceU is a subset of the 𝑑-dimensional real or complex vector
spaceℝ𝑑 orℂ𝑑 , the flow of the system can be written in the form of an IVP for an ODE:

(ODE)
d𝑢

d𝑡
= 𝑓 (𝑡, 𝑢) on I , (IC) 𝑢(𝑡 = 0) = 𝑢0 ∈ U , (2.1)

where 𝑢0 is an initial condition (IC), 𝑓 is a differential operator describing the rate of change
of the value of the solution function𝑢 at every time 𝑡. The solution is a function𝑢 : I → ℝ𝑑

for the IVP. Throughout the thesis, we interpret 𝑓 as a vector field, which is a mapping from
the state space to its tangent bundle, i.e., 𝑓 : I×U → TU mapping each state𝑢(𝑡) ∈ U to the
corresponding the rate of change of the state 𝑓 (𝑡, 𝑢(𝑡)) ∈ TU . The dynamics represented
by 𝑓 can either change with time, denoted by d𝑢

d𝑡 = 𝑓 (𝑡, 𝑢), or remain constant, denoted
by d𝑢

d𝑡 = 𝑓 (𝑢). It is important to note that this should not be confused with the changes in
states. The latter case is referred to as an autonomous system and is themain case considered
in this thesis.

Example 2.1 (Ideal pendulum). For example, in the IVP of an ideal pendulum, the state
is a vector with two values: angular position w.r.t. a rest position 𝛼 and velocity d𝛼

d𝑡 , s.t.(
𝛼(𝑡), d𝛼

d𝑡 (𝑡)
)
∈ ℝ2. The dynamics write as:

d2𝛼

d𝑡2
= −𝜔2 sin 𝛼, 𝛼(𝑡 = 0) = 𝛼0,

d𝛼

d𝑡
(𝑡 = 0) = ¤𝛼0 (2.2)

It describes the flow with the initial angle of the pendulum as 𝛼(𝑡 = 0) when released
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with the initial velocity d𝛼
d𝑡 (𝑡 = 0). The flow can be written as:[

𝛼(𝑡)
d𝛼
d𝑡 (𝑡)

]
= Ψ

(
𝑡,

[
𝛼0
¤𝛼0

])
=

[
𝛼0
¤𝛼0

]
+

∫ 𝑠=𝑡

𝑠=0

[
d𝛼
d𝑡 (𝑠)

−𝜔2𝛼(𝑠)

]
d𝑠 (2.3)

If 𝛼0, ¤𝛼0 are small, the equation is linearized and the analytical solution of the flow is:

𝛼(𝑡) = 𝛼0 cos(𝜔𝑡) +
¤𝛼0
𝜔
sin(𝜔𝑡)

d𝛼

d𝑡
(𝑡) = −𝜔𝛼0 sin(𝜔𝑡) + ¤𝛼0 cos(𝜔𝑡)

(2.4)

The system is considered autonomous because the operations in the equation remain
constant over time, regardless of any changes in the system’s state.

If we add a driving forcing term to the system, for example,

d2𝛼

d𝑡2
= −𝜔2 sin 𝛼 + cos(𝜔ext𝑡) (2.5)

The system then becomes a driven pendulum and is no longer autonomous.

Time-dependent PDE and IBVP. If U is a subset of a function space, defined on a
spatial domain Ω (which is commonly a closed subset of ℝ𝑝) and outputs a vector in ℝ𝑑

orℂ𝑑 , then the flow of the system writes as an IBVP for a time-dependent PDE:

(PDE)
𝜕𝑢

𝜕𝑡
= 𝑓 (𝑡, 𝑢), on I × Ω (IC) 𝑢(𝑡 = 0, ·) = 𝑢0 ∈ U (2.6)

Similar to the IVP, the IBVP requires an initial condition 𝑢0, which is now a function
defined over the spatial domainΩ. The PDE governs the evolution of the solution at every
position 𝑥 ∈ Ω. The solution 𝑢 : I × Ω → ℝ𝑑 is a function defined in both space and
time.

Example 2.2 (Wave equation). For example, the scalar wave equation in Ω ⊂ ℝ2 is
defined as follows:

𝜕2𝑢

𝜕𝑡2
= 𝑐2

(
𝜕2𝑢

𝜕𝑥2
1

+ 𝜕
2𝑢

𝜕𝑥2
2

)
= 𝑐2Δ𝑢 (2.7)

where 𝑢 : I × Ω → ℝ is a scalar field which is a wave solution for scalar physical
quantities, such as pressure in the air when a sound wave passes through, or the
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displacement of a string or a surface from its resting position. 𝑐2 is the speed of
propagation of the wave. The Laplace operator 𝜕2

𝜕𝑥2
1

+ 𝜕2

𝜕𝑥2
2

or in its vector notation Δ,
describes the diffusion behavior of the system.

In addition to these components, boundary conditions (BCs) should be also considered:

(BC) 𝐵(𝑢) = 0 on I × 𝜕Ω (2.8)

They add constraints on the spatial boundary of the solutions. We describe here the most
common BCs considered in dynamical systems.

Example 2.3 (Common types of BC).
• Dirichlet BC specifies the value at the boundary with a function 𝑓𝑏

𝑢𝑡 (𝑥) = 𝑓𝑏(𝑥) (2.9)

For example, for the 1D wave equations on a string, the Dirichlet BC specifies the
positions of the ends of the string.

• Neumann BC specifies the value of the normal derivative, which is the directional
derivative taken in the direction orthogonal to 𝜕Ω, of the solution function:

𝜕𝑢𝑡
𝜕𝑛
(𝑥) = 𝑓𝑏(𝑥) (2.10)

where 𝑛 denotes the normal to the boundary. For example, the Neumann BC
describes the forces on the string at the endpoints for the 1D wave equations.

• Periodic BC supposes that the phenomenon lives in a domain repeated infinitely in the
entire space. For 2D domainℝ2 with period (𝑟1, 𝑟2) in two directions,

𝑢𝑡 (𝑥1, 𝑥2) = 𝑢𝑡 (𝑥1 − 𝑟1, 𝑥2) = 𝑢𝑡 (𝑥1, 𝑥2 − 𝑟2) (2.11)

It projects the phenomenon on a torus 𝕋 2.

Boundary conditions can have a profound impact on the behavior of a system, particularly
when dealing with complex interactions. In many cases, the subdomain around the
boundary requires dense discretization to accurately capture the nuances of the dynamics,
which can be influenced by various factors such as viscosity. For instance, in the context
of viscous fluid dynamics, fluid flow near a boundary is significantly slower due to the
viscosity, leading to zero velocity at the boundary. This phenomenon is known as the
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boundary layer, which is often characterized by the emergence of turbulence.

2.2 Basic Setting of Dynamics Modeling with Data
We present the basic setting of data-driven dynamics modeling. To show the data with
the intuitions on the discretization, we consider the trajectory space 𝛤 as in Definition 2.1
that contains trajectories continuous in time and space. We generate the training data by
sampling points on these continuous trajectories. If they are only temporal, i.e., each state
𝑢𝑡 ∈ ℝ𝑑 is a vector, we sample the reference solution on a discrete set of time T ⊂ I . The
resulting dataset D is organized as follows,

D =
{
𝑢(𝑖) |T

��� 𝑢(𝑖)0 ∼ 𝜌0(U ), 𝑢(𝑖) ∈ 𝛤} 𝑖∈È1,𝑁É (2.12)

which is a set of discretized trajectories on T with the initial condition provided. We
sample the trajectories by sampling initial conditions according to a distribution 𝜌0.

For spatiotemporal data, the state 𝑢𝑡 : Ω → ℝ𝑑 is a spatial function, so the trajectory is
sampled both on a discrete set of timestamps T ⊂ I and spatial coordinatesX ⊂ Ω.

D =
{
𝑢(𝑖) |T ×X

��� 𝑢(𝑖)0 ∼ 𝜌0(U ), 𝑢(𝑖) ∈ 𝛤} 𝑖∈È1,𝑁É (2.13)

The aim is to map the initial condition 𝑢0 to the corresponding trajectory 𝑢|𝑡≥0, which may
be continuous. The ideal learned dynamics model takes the form of:

DynamicsModel𝜃 : U → (I → U )
𝑢0 ↦→ (𝑡 ↦→ 𝑢𝑡)

(2.14)

The modeling assumption described above will be a key factor in the generalization
problems investigated in this thesis. Specifically, we will examine two aspects of the
model’s performance: robustness to changes in initial conditions and adaptation of the
mapping toward the output trajectory.

In practice, the predicted state spaceU is often discretized. The output can be a sequence of
states evaluated on a discrete timestamp grid. Additionally, it is important to note that the
data used for learning and evaluation may have different time and/or space grids, which
further complicates the modeling process. Nonetheless, we will carefully analyze these
issues and propose effective solutions throughout this thesis.
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2.3 Deep Learning for Dynamics Modeling

This section outlines the current approach to modeling dynamics using deep learning
(DL). We first introduce the fundamental deep learning algorithms in Section 2.3.1. Subse-
quently, we describe the neural spatial and temporal architectures that are commonly used
in deep dynamics models in Sections 2.3.2 and 2.3.3, respectively.

2.3.1 Deep Learning in a Nutshell

We provide here a brief overview of the essentials of deep learning from a supervised
learning perspective.

Supervised learning. As we presented in Chapter 1, we are interested in acquiring
the knowledge given by an objective through some learning process, which is supervised
learning. Here, we focus on learning with parametrized models. During this learning
process, a.k.a. training, the model is adjusted based on the information given by a finite
set of data, consisting of pairs of input 𝑧 ∈ Z and output 𝑦 ∈ Y , known as a training set
Dtr = {(𝑧(𝑖) , 𝑦 (𝑖))}𝑖∈È1,𝑁trÉ. A parametrized model 𝑓 : Z ×Θ→ Y provides an output 𝑦̃ ∈
Y in the output space of the training set. For convenience, we write 𝑦̃ = 𝑓 (𝑥, 𝜃) = 𝑓𝜃 (𝑥).
This allows us to compare the model output with the desired output given by the training
setDtr. The model can be evaluated by a sample-wise loss function ℓ : Y ×Y → ℝ+ on this
training set.

Suppose that the model is a single function 𝑓𝜃 parametrized by 𝜃 that estimates 𝑦̃ = 𝑓𝜃 (𝑧(𝑖))
and that our primary objective is to fit the data Dtr. In this case, we can construct an
aggregated empirical loss function L for the entire dataset distribution:

L(𝑓𝜃 ,Dtr) =
𝑁tr∑
𝑖=1

ℓ (𝑓𝜃 (𝑧(𝑖)), 𝑦 (𝑖)) (2.15)

where ℓ is a loss function measuring the discrepancy between 𝑦 and 𝑦̃. For instance, mean
square error (MSE) is defined as ℓMSE(𝑓𝜃 (𝑧(𝑖)), 𝑦 (𝑖)) = ‖𝑓𝜃 (𝑧(𝑖)) − 𝑦 (𝑖) ‖22. Other alternative
loss functions can be used under different modeling hypotheses.
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For a spatiotemporal dynamics model defined in Eq. (2.14), the total loss takes the form of

L(DynamicsModel𝜃 ,Dtr) =
𝑁tr∑
𝑖=1

∑
𝑡∈T

∑
𝑥∈X

ℓ (DynamicsModel𝜃 (𝑢
(𝑖)
0
)(𝑡, 𝑥), 𝑢(𝑡, 𝑥)). (2.16)

with DynamicsModel𝜃 : (X → ℝ𝑑) → (T × X → ℝ𝑑). Once the model has been
evaluated on the training data, we can define an optimization objective to search for a
candidatemodelwithin an eligible function space of 𝑓𝜃 ∈ F thatmeets this objective. In the
case of a parametrized model, we search for the best set of parameters 𝜃∗ in the parameter
space Θ:

𝜃∗ = argmin
𝜃∈Θ

L(𝑓𝜃 ,Dtr) (2.17)

After obtaining the optimal parameters, we evaluate the quality of the learned model by
testing it on unseen data, which is typically organized as a separate test setDts.

However, it is worth noting that the best model according to the optimization problem
above is not necessarily unique in deep learning and may perform poorly on the test set.
This is known as the generalization problem, which can be attributed to several factors,
such as an insufficient quantity of data, a.k.a. the regime of data, an imbalanced distribution
of data, an over-parametrized model, or inadequate modeling assumptions.

Feedforward neural networks. Generally speaking, feedforward neural networks are
differentiable functions, composed of an alternating cascade between linear transforma-
tions and nonlinear activation functions from input to output. The repetitive structure in
the network is called a layer. The following example is the basic structure of a sequential
feedforward neural network:

𝑦 = 𝑓 (𝑧) = 𝜎 (𝐿) ◦ 𝑇 (𝐿)︸      ︷︷      ︸
layer 𝐿

◦ · · · ◦ 𝜎 (1) ◦ 𝑇 (1) (𝑧) (2.18)

In this 𝐿-layer network, each layer 𝑙 is composed of a linear transformation𝑇 (𝑙) : Z (𝑙−1) →
Z (𝑙) , and a local element-wise activation function 𝜎 (𝑙) : Z (𝑙) → Z (𝑙) . The input and
output spaces are denoted by Z = Z (0) and Y = Z (𝐿) respectively. Linear maps
𝑇 (𝑙) are parameterized, while activation functions 𝜎 (𝑙) are generally nonlinear and not
parameterized (see some exceptions in Example 2.4). More complex structures have been
derived from the sequential feedforward neural networks, such as those used in ResNet
and U-Nets (cf. Examples 2.5 and 2.6). When evaluating the function 𝑓𝜃 at the input 𝑧, a
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forward pass is performed, resulting in a prediction at that point.

Linear maps are chosen according to the format of the input, and several examples are pre-
sented in Section 2.3.2. Activation functions, on the other hand, are typically considered
as hyperparameters. Here are some commonly considered activation functions:

Example 2.4 (Common activation functions). For simplicity, 𝑧 is a real number.

𝜎 (𝑧) = 𝑧 linear (2.19)

𝜎 (𝑧) = 1

1 + 𝑒−𝑧 logistic, sigmoid (2.20)

𝜎 (𝑧) = tanh(𝑧) hyperbolic tangent (2.21)

𝜎 (𝑧) = max(0, 𝑧) rectified linear unit (ReLU) (2.22)

𝜎 (𝑧) = 𝑧

1 + 𝑒−𝛽𝑧
Swish (𝛽 learnable) (2.23)

If 𝑧 has multiple values, i.e., vector, matrix, tensor, the activation function is applied
element-wise.
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Figure 2.2: Activation functions.

Common activation functions used in hidden layers (𝑙 < 𝐿) include sigmoid-like
functions, or ReLU and its variants (e.g., GELU, Hendrycks and Gimpel, 2016, Swish,
Ramachandran et al., 2017). For the final layer (𝑙 = 𝐿), activation functions are chosen
based on the desired output value range.

Optimization. Given the nature of the model, the landscape of the loss w.r.t. parameter
is very high dimensional and highly non-convex (or non-concave for the maximization
problem), making it challenging to find a global minimum. Therefore, one may use local
information to find a local minimum that performs reasonably well instead. Starting from
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an initialization 𝜃0, the parameter is iteratively updated using gradient descent (GD) to
reach the nearest local minimum:

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 − 𝜂∇𝜃L(𝑓𝜃 ,Dtr) or
d𝜃

d𝑡
= −∇𝜃L(𝑓𝜃 ,Dtr) (2.24)

When the dataset is much too large, stochastic gradient descent (SGD) can be used instead
by randomly sampling a subset D𝑡 ⊂ Dtr, a.k.a. a batch, from the complete dataset.
Methods such as Adam (Kingma and Ba, 2015) propose per parameter adaptative learning
rate using historic gradient and momentum. To compute the gradient, backpropagation,
a.k.a. the reverse mode of automatic differentiation (AUTODIFF), is used, which efficiently
calculates the derivatives w.r.t. an evaluation point by constructing a computational graph.

2.3.2 Learning Mappings in Dynamics Models with Neural Net-
works

In dynamics models, it is necessary to learn a nonlinear mapping between two vector
spaces, such as a transition between states 𝑢𝑡 ↦→ 𝑢𝑡+𝛿𝑡 . In this context, we briefly present
the neural network architectures often used in DL dynamicsmodeling. Specially, we focus
on learning functions from discrete spatiotemporal data sampled from continuous signals,
as our data is expected to be in this form.

Recall that in a feedforward neural network, we learn a mapping 𝑓𝜃 : 𝑧 ∈ Z ↦→ 𝑦 ∈ Y .
If the input signal is a vector 𝑧 ∈ ℝ𝑑𝑧 without any specific structure, we can apply matrix
linear maps to transform the input and formulate the network as follows:

Multi-layer perceptron (MLP). The neural network uses matrices to perform linear
mapping. The transformation at layer 𝑙 writes as follows:

𝑧(𝑙) = 𝜎 ◦ 𝑇 (𝑙) (𝑧(𝑙−1)) = 𝜎
(
𝑊 (𝑙)𝑧(𝑙−1) + 𝑏(𝑙)

)
(2.25)

where 𝑧(𝑙−1) ∈ ℝ𝑑
𝑧 (𝑙−1) is hidden layer feature coming from the previous layer, 𝑊 (𝑙) ∈

ℝ𝑑
𝑧 (𝑙)×𝑑𝑧 (𝑙−1) is the matrix linear transformation between 𝑙−1th and 𝑙th layers, 𝑏(𝑙) is the bias.

See Figure 2.3 for the illustration of an MLP.

Although MLPs can handle any high-dimensional input vector in theory, they often fail to
perform well on signals like digital images. This is because MLPs lack prior knowledge
about the structure of the input signal and do not account for invariances under common
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Figure 2.3: Illustration of a 3-layer MLP.

transformations like translation.

∗ ∗ ∗

To address these limitations, researchers have developed regularized versions of this
general architecture thatmake assumptions about the form or structure of the input signal.
For example, images can be represented as collections of local vectors sampled at different
spatial points. In this case, the input vector image can be viewed as a discretized version
of the continuous vector-valued function 𝑧 : Ω → ℝ𝑑 (𝑑 is often called the number of
channels), where it is only sampled at positions 𝑥 ∈ X ⊂ Ω. We will explore some of the
architecture developed for this type of data.

Convolutional neural network (ConvNet). ConvNets are MLPs regularized for
multi-channel signals regularly sampled on a rectangular domain Ω, e.g., digital color
images. Here, the sampled position X is a regular grid with sample interval 𝛿𝑥𝑖 for each
dimension 𝑖. The size #X is the sampling resolution.

Figure 2.4: Illustration of the conventional
convolution in ConvNet.

Figure 2.5: Illustration of convolution with
MPNN.
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After evaluating 𝑧 on the grid X , the input 𝑧 |X ∈ ℝ#X×𝑑 is under the form of a tensor,
e.g., for a 64-by-64 RGB image 𝑧 |X ∈ ℝ64×64×3. Hidden layer features are also in the
same form and potentially discretized on a specific grid X (𝑙) of the 𝑙th layer, i.e., 𝑧(𝑙)𝑗 |X (𝑙) .
One common method of transitioning between grids involves the use of downsampling
(pooling) or upsampling techniques.

To perform the linear transformation in a ConvNet, the discretized input feature 𝑧(𝑙)𝑗 |X (𝑙)
is convolvedwith a kernel, i.e., a local parameterized function𝑤(𝑙)𝑗𝑘 : Ω→ ℝ from the input
channel 𝑗 to the output channel 𝑘. In ConvNets, the kernel has non-zero values only in a
closed subset, often a rectangular region, of the input domain. This kernel is discretized
on a local grid N (𝑙) with the same sample interval 𝛿𝑥𝑖 as X (𝑙) , and evaluated on N (𝑙) to
obtain the kernel matrix 𝑤(𝑙)𝑗𝑘 |N (𝑙) ∈ ℝ

#N . For example, a 3-by-3 two-dimensional kernel

results in 𝑤(𝑙)𝑗𝑘 |N (𝑙) ∈ ℝ
3×3. See Figure 2.4 for an illustration.

Then at each point 𝑥 ∈ X (𝑙) , the transformation from channel 𝑗 to 𝑘 at the 𝑙th layer writes
as follows:

𝑧(𝑙)𝑘 (𝑥) = 𝜎 ◦ (𝑇
(𝑙)
𝑗𝑘 (𝑧

(𝑙−1)
𝑗 |X (𝑙−1) )(𝑥) = 𝜎

( ∑
𝑥′∈N (𝑙)

𝑧(𝑙−1)𝑗 (𝑥 − 𝑥′)𝑤(𝑙)𝑗𝑘 (𝑥
′) + 𝑏(𝑙)𝑗𝑘

)
(2.26)

which is a weighted mean of 𝑧(𝑙−1)𝑗 |X (𝑙−1) in the neighborhood defined by N (𝑙) . Because
the kernel is always evaluated on the same grid template, the kernel matrix 𝑤|N contains
only a limited number of weights and does not change with the spatial discretization of
the input.

The resolution of the convolved signal is normally very high w.r.t. the number of points in
the kernel, then the kernel operates in a very local zone, e.g., the conventional kernel size
3-by-3 compared to the 1024-by-1024 images. If one needs to perform transformations
at larger scales, the feature 𝑧(𝑙)𝑗 should be subsampled on a coarser grid, e.g., by average
pooling or maximum pooling.

Most modern DL architectures for images are constructed upon this convolutional back-
bone. We here present residual neural network (ResNet; He et al., 2016) and U-Net
(Ronneberger et al., 2015), two remarkable examples often used for dynamics prediction.

Example 2.5 (ResNet; He et al., 2016). Originally motivated to mitigate the problem of
vanishing gradient encountered when training deeper convolutional neural networks,
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Figure 2.6: ResNet architecture. The gray boxes delineate the convolution blocks, which
are typically sequential ConvNets. For each block, a skip connection is added between the
input and the output, indicated by a green arrow. The gray boxes are repeated sequentially
by the number of times indicated below.

ResNet uses skip connections every few layers to allow for direct gradient flow, enabling
successful training of very deep networks. Figure 2.6 illustrates a typical ResNet for an
image classification problem.

ResNet’s convolution layers are grouped into residual blocks, as illustrated in Figure 2.6
with the gray boxes. A residual block consists of multiple convolutional layers, forming
a sub-network. The input of the block is added to its output as follows:

𝑧(𝑙+Δ𝑙) = 𝑧(𝑙) + 𝑓 (𝑙)
𝜃
(𝑧(𝑙)) (2.27)

where 𝑓 (𝑙)
𝜃

is the sequential sub-network the residual block, Δ𝑙 is the number of layers in
the sub-network. The skip connection bears a strong resemblance to the forward Euler
numerical scheme and has been subsequently associated with ODEs, as demonstrated
in Example 2.12.

Example 2.6 (U-Net; Ronneberger et al., 2015). Initially designed for medical image
segmentation, the U-Net architecture (shown in Figure 2.7) has evolved into a widely
used multi-scale approach for image-to-image mapping.

https://github.com/HarisIqbal88/PlotNeuralNet/issues/24#issuecomment-1099096978
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Figure 2.7: U-Net architecture. Each block represents the feature maps after transforma-
tions. “| |” signifies the concatenation of feature maps along the channel axis.

The network follows an encoder-decoder structure, where the encoder is composed
of a cascade of upscaling convolutional blocks that reduce the resolution from 𝑟2 to
(𝑟/16)2. This allows the network to extract feature maps at different predefined scales.
The decoder, on the other hand, performs the opposite operation, upsampling the
feature maps and reusing the features at the same scale through residual connections.
This approach enables the network to effectively leverage multi-scale information and
generate images with fine details.

It is worth noting the significant architectural bias inherent in ConvNets. The resolution
of the input and the convolutional layers in a ConvNet are structurally linked due to the
kernel weights possessing the same resolution (𝛿𝑥𝑖) as the input. Consequently, modifying
the input resolution can have an impact on the performance and accuracy of the network.

Graph neural network (GNN). GNNs are a family of architectures that operate on
inputs represented by a graph. They are closely related to the geometry of the input since
the graph is one of its representations (Bronstein et al., 2021). In this context, we consider
the input to be a Euclidean graphwith geometrical nodes that represent points in a domain
Ω, and edges that have lengths equal to the Euclidean distance between the corresponding
points. This type of graph is often used to represent unstructured mesh grids used in
solving PDEs.

https://github.com/HarisIqbal88/PlotNeuralNet/blob/e96bc852189c2089dd500527a0a01a5a36e8977e/examples/Unet_Ushape/Unet_ushape.tex
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In general, the graph nodes represent a finite set of positions X given by the input grid.
This neighborhood relation can be established using a predefined connectivitymatrix, also
known as an adjacency matrix. Alternatively, the neighborhood relation can be defined
based on other criteria. For example, in the case of distance-based neighborhoods, the
neighbors of a node 𝑥 can be identified by including all nodes within a (hyper)sphere of
radius 𝑟 centered at 𝑥. This yields the set of neighbors N𝑟 (𝑥) = {𝑥′ ∈ X | 𝑑(𝑥, 𝑥′) ≤ 𝑟},
where 𝑑 is a distance function.

Here, we present the concept of GNNs, starting with the graph convolutional network
(GCN). Given a grid X and node connectivity defined for each 𝑥 ∈ X by N (𝑥), a GCN
computes at each layer a weighted sum of features in the neighborhood N (𝑥) to update
the feature at 𝑥, similar to a fixed convolution kernel in a ConvNet.

Example2.7 (GCN;Kipf andWelling, 2017). TheGCNwas introduced toperformnode
classification in a graph, where labels are available only for a small subset of nodes. The
𝑙th layer writes as:

𝑧(𝑙) (𝑥) = 𝜎
(
𝑊 (𝑙)

( ∑
𝑥′∈N (𝑥)

𝑐𝑥𝑥′𝑧
(𝑙−1) (𝑥′)

))
(2.28)

where 𝑐𝑥𝑥′ is a specific weight determined by the graph’s adjacency matrix, which is not
learnable and depends on the connectivity of the graph, and𝑊 (𝑙) is a trainable weight
matrix that transforms the aggregated information from the neighborhood. 𝜎 is the
activation function resulting in the output feature map 𝑧(𝑙) (𝑥).

We observe that the convolutional coefficients in the GCN only consider connectivity. In
dynamics modeling, it is also important to incorporate the distance between two nodes
to differentiate interactions of various ranges. In this case, the architectures should also
be able to incorporate edge properties between graph nodes. One of the most commonly
used architectures for this purpose is the message passing neural network (MPNN).

Example 2.8 (MPNN). We present the general framework of an MPNN. At the 𝑙th layer,
the transformation of node features at the position 𝑥 in a neighborhoodN is:

𝑧(𝑙) (𝑥) = 𝑔 (𝑙)
(
𝑧(𝑙) (𝑥),

∑
𝑥′∈N (𝑥)

𝑓 (𝑙)
(
𝑧(𝑙−1) (𝑥), 𝑧(𝑙−1) (𝑥′), 𝑒𝑥𝑥′

))
(2.29)
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where 𝑓 (𝑙) is a neural network that transforms node features at previous layer
𝑧(𝑙−1) (𝑥), 𝑧(𝑙−1) (𝑥′) and edge features 𝑒𝑥𝑥′ into a message from the node at position 𝑥′

to 𝑥. 𝑔 (𝑙) transforms the node features by conditioning the network with aggregated
messages from all neighbors.

In the original MPNN (Gilmer et al., 2017), Eq. (2.29) is implemented as follows:

𝑧(𝑙) (𝑥) = 𝜎
(
𝑊 (𝑙)𝑧(𝑙−1) (𝑥) +

∑
𝑥′∈N (𝑥)

𝑧(𝑙−1) (𝑥′) ·MLP
(𝑙)
𝜃
(𝑒𝑥𝑥′)

)
(2.30)

The edge feature 𝑒𝑥𝑥′ can contain any input involving the relation between two nodes,
e.g., the difference between two node positions 𝑥 − 𝑥′, or between two input node
features 𝑢(𝑥) − 𝑢(𝑥′), or values conditioning the relation such as priorly known equation
parameters. This more flexible modeling is adopted by most recent graph-based neural
PDE dynamics models, such as (Li et al., 2020; Iakovlev et al., 2021; Brandstetter et al.,
2022).

However, incorporating these edge features introduces a sampling bias into the convolu-
tion kernels. If the network is trained on a dense sampling with a small neighborhood, it
may not perform well when tested on a sparse sampling with a large neighborhood.

Operator learning. As previously mentioned, when modeling PDE dynamics, the
learned mapping between input and output states is typically discretized on a spatial grid
X . The model’s parameterization is inherently biased toward — even tied to — the
structure of the input grid. However, in many applications, it is desirable to generalize
the model beyond the grid and have free-form input and output. This objective is akin to
learning function-to-function mapping, which is what an operator does analytically. In
this idealized model, it is assumed that both the input and the output of the mapping are
continuous objects. This assumption has led to recent neural methods that partially fulfill
these objectives.

Here we present two representative families of methods that address the aforementioned
objectives. The first approach emphasizes achieving a free-form output.

Example 2.9 (DeepONet; Lu et al., 2021). DeepONet is built upon an architecture that
has been proven to be a universal operator approximator (Chen and Chen, 1995). It
takes an input function 𝑧 : Ω → ℝ observed on a fixed irregular grid X , where each
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Figure 2.8: Illustration of DeepONet.

𝑥 ∈ X is a sensor, and maps it to an output function 𝑦 : Ω → ℝ. The output function
𝑓𝜃 is a continuous function that can be evaluated at any position 𝑥 ∈ Ω.

𝑦(𝑥) = 𝑓𝜃 (𝑥, 𝑧 |X ) (2.31)

𝑓𝜃 is constructed by the following two subnets:

• Branch net: 𝑣𝑧BRANCH = BRANCH( 𝑧 |X ), a neural network that transforms the input
𝑧 |X into a vector 𝑣BRANCH ∈ ℝ𝑞;

• Trunk net: 𝑣𝑥TRUNK = TRUNK(𝑥), a neural network that takes coordinates 𝑥 ∈ Ω

as input and outputs a vector 𝑣TRUNK ∈ ℝ𝑞 at that position, aligned with the
dimension of the branch net output.

The branch and the trunk net are usually implemented with MLPs. The branch net
encodes the input function into a 𝑞-dimensional vector, the trunk net provides the
evaluation of 𝑞 basis functions at a point. The output is obtained by a dot product
between the two vectors above:

𝑦(𝑥) = 〈TRUNK(𝑥), BRANCH(𝑧 |X )〉 = 〈𝑣𝑥TRUNK, 𝑣
𝑧
BRANCH〉 (2.32)

whichmeans that the output function is a linear combination of the basis functionswith
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coefficients conditioned by 𝑧 |X .

As a result, the output function can be evaluated at any point in the domain. The input
encoder is bound to the input grid if the encoder is a simple MLP.

The second family, called neural operator (NO;Kovachki et al., 2021), proposes alternatives
to conventional convolution kernels from a functional viewpoint. We present here Fourier
neural operator (FNO; Li et al., 2021b), an effective and also the most influential instance
of the family. It addresses the need for large kernels in certain phenomena, such as
incompressible Navier-Stokes, where the time derivative at each position depends on
information across the entire domain.
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Figure 2.9: Illustration of an FNO layer.

Example 2.10 (FNO; Li et al., 2021b). The FNO replaces the conventional convolution
kernels of a classical ResNet with ones discretized in Fourier space. The signals to
be convolved are transformed with discrete Fourier transform (DFT), allowing for
convolution to be performed directly in Fourier space. In FNO, the spatial grids X can
be aligned consistently during inference and can be adjusted to different resolutions as
needed. The spectral space kernel is defined given a finite set of frequencies 𝜔 ∈ Π ⊂ ℝ𝑝

for the 𝑗th input channel to the 𝑘th output channel. An FNO layer writes as:

𝑧(𝑙−1)𝑗 (𝜔) =
∑
𝑥∈X

𝑧(𝑙−1)𝑗 (𝑥)𝑒−𝑖〈𝜔,𝑥〉 ∀𝜔 ∈ Π (DFT) (2.33)
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𝑎̂(𝑙)𝑘 (𝜔) = 𝑤̂
(𝑙)
𝑗𝑘 (𝜔) · 𝑧

(𝑙−1)
𝑗 (𝜔) ∀𝜔 ∈ Π|𝜔|≤𝑐 (Conv. with low-pass filtered kernel)

(2.34)

𝑎(𝑙)𝑘 (𝑥) =
1

#Π

∑
𝜔∈Π

𝑎̂(𝑙)𝑘 (𝜔)𝑒
𝑖〈𝜔,𝑥〉 ∀𝑥 ∈ X (Inverse DFT) (2.35)

𝑧(𝑙) (𝑥) = 𝜎 (𝑊 (𝑙)𝑧(𝑙−1) (𝑥) + 𝑎(𝑙) (𝑥)) (Skip connection) (2.36)

where 𝑧 𝑗 is the DFT-transformed input 𝑧 𝑗, 𝑤̂𝑗𝑘 is the kernel from the input channel 𝑗 to
the output channel 𝑘 in spectral space, filtered with a maximum frequency 𝑐. The pre-
activation feature 𝑎̂(𝑙)𝑘 is brought back to the spatial domain 𝑎(𝑙)𝑘 with the inverse DFT.
To perform the skip connection, the layer input is point-wise linearly transformed as
in Eq. (2.36). The layer is illustrated in Figure 2.9. The low-pass filtered kernel allows
learning large kernels in space. In practice, to ensure computational efficiency, the DFT
is implemented using the fast Fourier transform (FFT) with a regular grid in both the
physical domain and the spectral domain.

Variants have been proposed around the FNO (cf. Kovachki et al., 2021 for a thorough
review).

Although these methods assume continuous modeling, they may still necessitate inflexible
spatial discretization in certain regions of themodel. DeepONet, for instance, only accepts
input on a fixed grid, rendering it unusable when the input is sampled at other locations.
Likewise, while FNO employs the FFT to circumvent the quadratic time complexity of the
brute force DFT, this choice restricts the input format to regular grids, constraining the
model’s flexibility. Additionally, the skip connections in NOs link the input grid to the
output grid, limiting the freedom to evaluate the output.

2.3.3 Neural Dynamics Models

We introduce two major families of neural dynamics models: discrete-time models, such
as classical neural autoregressive models, and continuous-time models, which include
neural differential equations. These models originate from statistical machine learning
and numerical analysis, respectively, and have gained significant attention in recent years.
We denote the time by the following rule: 𝑡 is an arbitrary time; 𝜏 is an arbitrary time
interval; 𝛿𝑡 is a fixed, predetermined time interval (as a model hyperparameter).
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Discrete-timemodels. Dynamical systems have temporal dependencies, meaning that
the current state depends on the previous state(s), propagating information in time. This
brings to mind the similarity to autoregressive models, which estimate a state according
to its history, which is a factorization of the entire temporal process:

𝑝(𝑢) =
∏
𝑡∈T

𝑝(𝑢𝑡 | 𝑢|T<𝑡) (2.37)

If the dynamical system is autonomous, the autoregressivemodel does not need to account
for direct long-term dependencies. In this case, the current state only depends on the
previous state:

𝑝(𝑢𝑡 | 𝑢𝑡−𝛿𝑡) (2.38)

This can be materialized with the following iteration implemented with a neural network
mapping 𝑢𝑡 = 𝑓𝜃 (𝑢𝑡−𝛿𝑡). Recent approaches to PDEs implement this with MLP, ConvNet,
or GNN, cf. Long et al. (2018b); de Bézenac et al. (2018); Pfaff et al. (2021); Li et al. (2021a);
Brandstetter et al. (2022).

Many other approaches extend the dependency to a small window of past 𝑐 frames,

𝑝(𝑢𝑡 | 𝑢|T𝑡−𝑐𝛿𝑡≤𝜏<𝑡) (2.39)

Similar to the previous model, it can be implemented as 𝑢𝑡 = 𝑓𝜃 (𝑢𝑡−𝛿𝑡 , 𝑢𝑡−2𝛿𝑡 , . . . , 𝑢𝑡−𝑐𝛿𝑡).
This structure has been adopted by, e.g., Li et al. (2021b).

Recurrent neural network (RNN) can also implement this process given its temporal
nature. They depend on a (hidden) state 𝑠𝑡 that evolves in time, with a temporal input
𝑧𝑡 .

Example 2.11 (Elman RNN; Elman, 1990). This fully-connected RNN writes as:

𝑠𝑡 = 𝜎𝑠(𝑊𝑠𝑠𝑡−𝛿𝑡 +𝑈𝑧𝑧𝑡 + 𝑏𝑠) (2.40)

𝑦𝑡 = 𝜎𝑦 (𝑊𝑦𝑠𝑡 + 𝑏𝑦) (2.41)

Eq. (2.40) describes the hidden discretized dynamics 𝑠𝑡 perturbed by the input 𝑧𝑡 . The
decoding in Eq. (2.41) can take place at any time 𝑡 to project the state into the output
space 𝑦𝑡 .

Variants have been proposed tomitigate the problemof vanishing and exploding gradients,
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e.g., long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) and gated
recurrent unit (GRU; Cho et al., 2014). Convolutional versions of the previous networks
are proposed for spatiotemporal prediction (Shi et al., 2015), known as ConvLSTM.

WhenRNN is used as an autoregressivemodel for sequential prediction, at each timestamp
𝑡, given the input 𝑧𝑡 B 𝑢𝑡 , the corresponding output is the state at the next time step
𝑦𝑡 B 𝑢𝑡+𝛿𝑡 and it will serve as the next input 𝑧𝑡+𝛿𝑡 B 𝑢𝑡+𝛿𝑡 . PredRNNs (Wang et al., 2017,
2018) are suchmodels built uponConvLSTM.Note that RNNs is also one of the first neural
models considered for controlled dynamical systems (Pearlmutter, 1989; Funahashi and
Nakamura, 1993).

Continuous-timemodels. Directly inspired by solvers proposed in numerical analysis,
this family of approaches replaces the dynamics with neural networks and solves them
to learn the dynamics. Originally, the numerical methods solve a given differential
equation and output the unknown solution under initial or boundary conditions. In neural
differential equations, the objective is finding the differential equation with a learnable
differentiable function by fitting observed data. We demonstrate this idea with neural
ordinary differential equation (Neural ODE; Chen et al., 2018).

Example 2.12 (Neural ODE; Chen et al., 2018). Popularized by Chen et al. (2018) but
alsomentioned inRico-Martínez andKevrekidis (1993); Raissi et al. (2018), NeuralODE
suppose that the data can be modeled with an ODE d𝑢

d𝑡 = 𝑓𝜃 (𝑡, 𝑢). It is interpreted as a
vector field, represented by a differentiable function 𝑓𝜃 : I × U → TU .

Given an initial condition 𝑢0 ∈ U , the solution at 𝑡 ∈ I is given by iterating the
numerical integration with a numerical IVP scheme 𝑆

𝑢𝑡+𝜏 = 𝑢𝑡 +
∫ 𝑠=𝑡+𝜏

𝑠=𝑡
𝑓𝜃 (𝑡, 𝑢𝑠)d𝑠 ≈ 𝑢𝑡 + 𝑆(𝑡, 𝑡 + 𝜏, 𝑓 , 𝑢𝑡 , 𝑢𝑡+𝜏) (2.42)

The simplest scheme is the explicit forward Euler:

𝑢𝑡+𝜏 ≈ 𝑢𝑡 + 𝜏 · 𝑓𝜃 (𝑡, 𝑢𝑡) (2.43)

This scheme is strongly linked to the ResNet + Example 2.5 . Expanding the numerical
schema 𝑆 with finer time steps leads to more advanced methods, such as the explicit
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4th-order Runge-Kutta:

𝑢𝑡+𝜏 ≈ 𝑢𝑡 +
𝜏

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), (2.44)

where 𝑘1 = 𝑓𝜃 (𝑡, 𝑢𝑡), 𝑘2 = 𝑓𝜃 (𝑡 + 𝜏/2, 𝑢𝑡 + 𝜏 · 𝑘1/2), 𝑘3 = 𝑓𝜃 (𝑡 + 𝜏/2, 𝑢𝑡 + 𝜏 · 𝑘2/2), 𝑘4 = 𝑓𝜃 (𝑡 +
𝜏, 𝑢𝑡 + 𝜏 · 𝑘3). The gradient w.r.t. the parameter ∇𝜃L(𝑓𝜃 ,D) can be computed with the
reverse mode AUTODIFF directly through the operations in the numerical scheme 𝑆 or
indirectly with the adjoint statemethod by solving an augmented system in reverse time
as shown in Chen et al. (2018).

This approach can also be extended to predict time-dependent PDEs by employing a neural
network that achieves an image-to-image mapping for 𝑓𝜃 , such as a ConvNet or an FNO.
By using a numerical scheme, it is possible to compute the trajectory’s states at any time 𝑡.

Numerous neural differential equation methods have been proposed for systems that
have a numerical solver (Rackauckas et al., 2020). In addition to dynamical systems, they
have been applied to other temporal prediction tasks, such as time series prediction, as
demonstrated in Dupont et al. (2019); Kidger et al. (2020); Norcliffe et al. (2021).

2.3.4 Neural Solvers
Here we briefly mention a related but distinct type of neural method, which is not within
the scope of this thesis but is related to the contribution in Chapter 7 (cf. Section 3.3
for discussions). They aim to directly solve a given differential equation with known
conditions, similar to conventional solvers, without the need for data. They have gained
popularity in scientific communities because of their accessible concepts and easy-to-use
community implementations. The dominant method is known under the name of physics-
informed neural networks (PINNs; Raissi et al., 2019) and has been proposed in parallel as
deep Galerkin method (DGM; Sirignano and Spiliopoulos, 2018).

Example 2.13 (Sirignano and Spiliopoulos, 2018; Raissi et al., 2019). The approach finds
a solution to a boundary value problem (BVP) or IBVP.Bywayof example, let us consider
the following IBVP:

(PDE) 𝐹 (𝑢) = 𝜕𝑢

𝜕𝑡
− 𝑓 (𝑡, 𝑢) = 0, on I × Ω (IC) 𝑢(0) = 𝑢0 ∈ U

(BC) 𝑢𝑡 (𝑥) = 𝑓𝑏(𝑥) on 𝑥 ∈ 𝜕Ω
(2.45)
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The unknown solution 𝑢 is represented by a parametrized function 𝑢𝜃 (𝑡, 𝑥) that is
continuously differentiable and typically implemented as anMLPwith coordinate input
for (𝑡, 𝑥) ∈ I × Ω. This solution is then optimized with an objective loss function
reformulated from Eq. (2.45). By sampling 𝑥 and 𝑡 resp. on Ω and I , the loss L is
composed of, the PDE, the IC and the BC losses based on resp. 𝐹, 𝑢0, 𝑓𝑏 of Eq. (2.45):

L(𝑢𝜃 , [𝐹, 𝑢0, 𝑓𝑏]) = LPDE(𝑢𝜃 , 𝐹) + 𝜆ICLIC(𝑢𝜃 , 𝑢0) + 𝜆BCLBC(𝑢𝜃 , 𝑓𝑏) (2.46)

where

LPDE(𝑢𝜃 , 𝐹) = 𝔼𝑡,𝑥∼𝜌(I×Ω) ‖ 𝐹 (𝑢𝜃) | (𝑡,𝑥) ‖22 (2.47)

LIC(𝑢𝜃 , 𝑢0) = 𝔼𝑥∼𝜌(Ω) ‖𝑢𝜃 (0, 𝑥) − 𝑢0(𝑥)‖22 (2.48)

LBC(𝑢𝜃 , 𝑓𝑏) = 𝔼𝑡,𝑥∼𝜌(I×𝜕Ω) ‖𝑢𝜃 (𝑡, 𝑥) − 𝑓𝑏(𝑥)‖22 (2.49)

In brief, the ideal solutionminimizes the lossL to 0 tomatch the PDEand the conditions.
The core technique of the approach is the way to calculate 𝐹 (𝑢𝜃) in LPDE. For example,
if 𝐹 contains 𝜕

𝜕𝑥 and 𝜕
𝜕𝑡 , one can firstly calculate 𝑢𝜃 (𝑡, 𝑥) with a forward pass of the neural

network, then retrieve the derivative at 𝑡, 𝑥 with AUTODIFF w.r.t. 𝑡, 𝑥, i.e., 𝜕𝑢𝜃𝜕𝑥 (𝑡, 𝑥) and
𝜕𝑢𝜃
𝜕𝑡 (𝑡, 𝑥). For higher-order derivatives, it suffices to do a second AUTODIFFwith previous
first-order derivatives.

With the support of sampling in coordinate space, the differential equation and conditions
intervene in the form of a loss function in PINNs. The idea has since been adopted by
a range of physical methods, e.g., Wandel et al. (2021); Wang and Perdikaris (2021); Li
et al. (2021c); Goswami et al. (2022). Later data-driven approaches, such as implicit neural
representations (INRs) (cf. Section 3.3.3), share a similar idea, but the difference lies in the
loss function, which is based on data rather than the differential equation and conditions.

2.4 Limitations

Despite the efforts, the currentmainstreamof data-drivenDL approaches still faces several
under-addressed issues, which hinder the application to real-world scenarios and limit
their generalization capabilities compared to numerical methods. In this section, we
highlight these issues in detail.
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What if the conditions change in the same dynamics? Here, we discuss the gen-
eralization w.r.t. to the input of the dynamics model, i.e., initial conditions, for a single
dynamics. We expect our dynamics model to be robust to the change in the initial input.
This is themost straightforward requirementwhen applying aDLdynamicsmodel because
we want the model to make accurate predictions on unseen conditions after training. For
example, when the underlying PDE dynamics remain unchanged, the dynamics model
should be able to correctly predict the future, even when the initial conditions change.
This challenge is directly related to the concept of generalization error inmachine learning
(ML). However, like any data-driven ML method, purely data-driven neural methods are
inherently biased toward the observed data. The problem here may arise due to the lack
of sufficient inductive bias in current models, which requires the development of new
approaches that allow the injection of other prior information into the model and its
solutions.

What if the dynamics change? The current data-driven dynamics models focus on
data from a single system of dynamics, assuming that the underlying dynamics do not
change. With the current dominating learning scheme, empirical riskminimization (ERM),
the modeling assumption is limited to the data from a single system of dynamics. The
learnedmodel canonly predict the trajectories of the systemsimilar to the ones seenduring
training. However, if the data represents multiple dynamics, the learned dynamics model
would be invalid and unusable for any other dynamics.

What if the spatial sampling changes? In most cases, we need to discretize the
continuous spatial states in PDE dynamics into vectors. However, this poses a challenge
due to the inherent bias present in existing neural network architectures. As discussed
in Section 2.3.2, at the end of the presentation of each architecture, these architectures
typically have a strong structural bias toward a specific spatial sampling type and strict
input-output grid coupling. While such models can extrapolate toward the future, they
lack the flexibility of true continuous models which do not impose such constraints but
cannot predict the future. This presents a need for new alternatives that can predict with
more flexibility in space and time, as discussed in Section 3.3.
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(a) Generalization in trajectory space 𝛤 . (b) Continuous modeling in spatial
domain Ω.

Figure 2.10: Problems considered in this thesis.

2.5 Research Questions
We frame our exploration of the above questions through the following research questions.
We are positioned in a low-data regime where we always have non-abundant data for
training, corresponding to most real-world situations.

How tomake a neural network cooperate with a numerical model? It’s important
to recognize the limitations of purely data-drivenDLapproaches, especiallywhenworking
with limited data. Solutions produced by such models may lack regularity, requiring
the model to be constrained to provide physically meaningful outcomes. Conversely,
when a first-principles parametrized numerical model is incomplete, it cannot be used to
predict the future or to identify its parameters. To address these limitations, we propose
investigating how can achieve the efficient cooperation of these two models to enhance
the capabilities of both.

In this case, we assume that we have also access to a neural network and a set of incomplete
numerical models parameterized with optimizable variables. This setup requires not only
learning the neural network but also determining and identifying the numerical model.
Therefore, our research question is twofold: first, how can these two models cooperate to
produce a more accurate solution, and second, how can we define the specific roles of each
model to achieve this cooperation?

How can we effectively use data from different dynamics to help data-driven
models generalize better? We focus on modeling dynamics with data from different
sources that reflect changing dynamics. Among the limitations mentioned in Section 2.4,
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we highlight the casewhere the dynamics in the same phenomenon differ in the parameter-
ization of its differential equation. In such cases, we are faced with scarce and insufficient
data in each system to train a high-performing neural network-basedmodel. In this regard,
our research question is how to effectively share knowledge across systems while the
model is still capable of predicting trajectories in those systems.

How to adapt learned models to new dynamics? To ensure the practicality and
applicability of the learned model, we need to consider its adaptability to new dynamics
within the same phenomenon. Ideally, the model should be able to quickly and efficiently
adapt to new systems with only a limited amount of data. Therefore, the question we ask
is how to make the learned model transferable to new dynamics, while minimizing the
amount of data needed for adaptation.

How to make the model structure less dependent on spatial and temporal sam-
pling? To overcome the architectural bias limitations in current neural network archi-
tectures, we aim to develop a type of continuousmodeling that only introduces bias related
to data sampling and is introduced solely during the training process, rather than being
dictated by the choice of features or architecture design. By doing so, we aim to increase
the flexibility of the model while retaining the same predictive ability and enabling it to
generalize and predict beyond the time range it has been trained on.

∗ ∗ ∗

In the next chapter, we will provide context to these questions by surveying existing
methods both in dynamics modeling and general machine learning, thus setting the stage
for our main contributions in Part II.



Chapter 3

RelatedWork

In this chapter, we provide an overview of the existing approaches, in dynamics learn-
ing and general machine learning, as they relate to the research problems we address.
Section 3.1 deals with hybrid modeling using machine learning techniques to support
numerical models. Section 3.2 reviews the approaches to learning models from different
data sources and links them to invariance learning. Section 3.3 summarizes current
approaches to modeling spatiotemporal dynamics, intending to highlight their limitations.
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3.1 Physics-Enriched Deep Dynamics Models
In this section, we explore the current research avenues for integrating numerical and
machine learning (ML)models. We categorize these schemes as shown in Figure 3.1, based
on the level of involvement of the data-driven model components. The schemes range
from the least to the most involvement:

(a) Data-driven model replacing a
component of numerical model.

(b) Data-driven model correcting the numerical
solver’s output.

(c) Data-driven model as a
complement to the numerical

model inside the solver.

(d) Data-driven model using
elements of numerical model.

Figure 3.1: Major hybrid modeling schemes. A model can be called several times in the
solver (marked with⟳).

(a) The data-driven model replaces components of a numerical model. For example,
Kochkov et al. (2021) use a neural network to replace an underperforming compo-
nent in a low-fidelity numerical model.

(b) The data-driven model corrects the solution of a numerical model. It takes the output
given by a numerical model through a solver and refines it by correcting errors, as
shown in Belbute-Peres et al. (2020); Um et al. (2020).

(c) The data-driven model plays a complementary role to the numerical model within the
solver. Both models are part of the overall dynamics model and predict the future
together, for example, in de Bézenac et al. (2018), the neural network estimates
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an unobserved variable of the dynamics, in Yin et al. (2021b), both models use the
previous state to predict corresponding part of the time derivative for the solver.

(d) The data-driven model uses elements of a numerical model. It may consider using
differential operators to calculate physically meaningful features without knowing
the equation of the underlying phenomenon, as in Long et al. (2019).

Note that these schemes can be applied together within the same framework. It is also
worth noting that in (b), the data-driven model rectifies the results of the numerical solver
for a numerical model without interfering with the numerical model, whereas in (c), the
data-driven model is part of the model to be solved. In the following, we will elaborate on
the example methods belonging to these categories.

3.1.1 Correction and Acceleration of Numerical Models
Online correction: Data assimilation (DA). In DA, the expert prior model is used for
calibrating the prediction according to incoming data. It has been tackled by traditional
statistical calibration techniques, which often rely on Bayesian methods (Pernot and Cail-
liez, 2017). For data assimilation techniques, e.g., the Kalman filter (Kalman, 1960; Becker
et al., 2019), 4D-Var (Courtier et al., 1994), prediction errors are modeled probabilistically,
and a correction using observed data is applied after each prediction step to update the
estimate of system states.

Example 3.1 (4D-Var; Courtier et al., 1994). 4D-Var supposes that the dynamical system

is under the form of an initial value problem (IVP):

d𝑢

d𝑡
= 𝑓 (𝑢)

𝑢(0) = 𝑢0
where only the initial

condition is unknown, 𝑓 is known and implemented through a numerical model. We
find an estimate of this initial condition based on the observations {𝑜𝑡}𝑡 at different times
𝑡 ∈ T in an assimilation window and on the corresponding observation operators {𝐻𝑡}𝑡
by minimizing the following loss function:

L(𝑢0) = (𝑢0 − 𝑢𝑏0)>B−1(𝑢0 − 𝑢𝑏0)︸                        ︷︷                        ︸
initial state loss

+
∑
𝑡∈T
(𝑜𝑡 − 𝐻𝑡 (𝑢𝑡))>R−1𝑡 (𝑜𝑡 − 𝐻𝑡 (𝑢𝑡))︸                                       ︷︷                                       ︸

observation loss

where B, {R𝑡}𝑡 are error covariance matrices. 𝑢𝑏0, which is called background state, can
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be the previous prediction of the model until 𝑡 = 0. 𝑢𝑡 is the prediction with a numerical
model that implements 𝑓 , until time 𝑡. Operators {𝐻𝑡}𝑡 are supposed to be known.

There is no training in this two-stage process, and the data component is not part of the
dynamics model but rather used only to calibrate the numerical model.

Learn to correct toward learn to accelerate. In a different scenario, instead of
correcting the simulation based on observed data, one branch of study considers closing
the gap between a low-accurate and low-computationally-expensive model and a highly
accurate but computationally expensive numerical model with neural networks (NNs).

In these approaches, we suppose that two numerical models exist to solve the same
differential equation, but we have only access to: (a) The low fidelity model 𝑆LOW, (b) A
dataset D = {𝑢HIGH,(𝑖)}𝑖 from a reference model, of higher fidelity. The goal is to
approximate higher-fidelity solutions by correcting the numerical errors when solving
the low-fidelity model with a neural network. It is important to note that high-fidelity
results do not necessarily mean high resolution. The fidelity of a numerical model refers
to how accurately it represents the true solutions it is intended to model. These methods
then learn a mapping 𝑓𝜃 that intervenes at each time step when solving the lower-fidelity
𝑆LOW.

Example 3.2 (CFD-GCN; Belbute-Peres et al., 2020). CFD-GCN proposes an approach
where the neural network is conditioned by the results of a differentiable numerical
solver. Given some physical parameters 𝜃P, a graph neural network (GNN) 𝑓𝜃 takes a
dense mesh X HIGH as input and predicts steady-state fluid velocity and pressure fields
𝑢HIGH. A low-fidelity solution is given by the solver on a coarse mesh X HIGH. It is then
upsampled and concatenated to the intermediate features of the neural network.

𝑢LOW = 𝑆LOW(X LOW, 𝜃P)
𝑢HIGH = 𝑓𝜃 (X HIGH, 𝑢LOW, 𝜃P)

A differentiable solver enables the gradient calculation w.r.t. the input mesh via auto-
matic differentiation (AUTODIFF) for eventually adjusting it to optimize the solver and
neural network solutions.

Example 3.3 (Solver-in-the-Loop; Um et al., 2020). Solver-in-the-Loop proposes to
correct the results of a low-fidelity solver by alternating between the solver and the
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neural network at every time step as follows:

𝑢HIGH
𝑡+1 ≈ 𝑢𝑡+1 = 𝑓𝜃 ◦ 𝑆LOW(𝑢𝑡)

At each time step, the solver provides a low-fidelity solution that is then corrected by
the neural network 𝑓𝜃 . The refined prediction 𝑢𝑡+1 should be close to the high-fidelity
data 𝑢HIGH

𝑡+1 .

Example 3.4 (Kochkov et al., 2021). This approach combines two techniques to improve
the performance of a low-fidelity numerical model: (a) correcting the solver by a similar
procedure as described in Example 3.3, and (b) replacing the underperforming unbiased
components in the numerical model with the data-biased ones. The latter is achieved by
replacing the unbiased interpolation module, such as cubic interpolation, with a neural
network that predicts local interpolation coefficients based on previous states. These
coefficients are biased toward the data to favor better prediction of high-fidelity states.

These approaches are applicable when the numerical model is fully determined, and only
spatial discretization affects the quality or fidelity of the solution to real physics. ML plays
the complementary role by producing the high-fidelity solution and reducing the high
computational cost associated with numerical simulations.

3.1.2 Regularizing Neural Networks with Prior Knowledge
There have been several attempts in deep learning (DL) to design architectures for pre-
dicting partial differential equation (PDE) dynamics with regularized conventional neural
architectures. The main goal is to reinforce certain properties that are present in target
PDEs, either in the solutions or in the architectures.

Network parameter regularization. Some approaches choose to directly approxi-
mate differential operators by imposing hard constraints on convolution kernels. For
instance:

Example 3.5 (PDE-Net; Long et al., 2018b). PDE-Net predicts a time-dependent PDE
using a forward Euler schema 𝑢𝑡+𝛿𝑡 = 𝑢𝑡+ 𝛿𝑡 · 𝑓𝜃 (𝑢𝑡). Long et al. (2018b) propose a way to
learn the state transition of a 2D PDE by imposing constraints on convolution kernels
in a convolutional neural network (ConvNet) to exploit spatial partial derivatives. For
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example, to approximate the 1st-order spatial derivatives we apply two 3-by-3 convolu-
tion kernels 𝑤10, 𝑤01, s.t., 𝜕𝑢𝑡𝜕𝑥1

≈ 𝑤10 ∗ 𝑢𝑡 , 𝜕𝑢𝑡𝜕𝑥2
≈ 𝑤01 ∗ 𝑢𝑡 , 𝑤10 =

[
0 0 ★
1 ★ ★
★ ★ ★

]
, 𝑤01 =

[
0 1 ★
0 ★ ★
★ ★ ★

]
where ★ designates unconstrained value. From 𝑢𝑡 , with special kernels corresponding
to spatial derivatives { 𝜕𝑢𝑡𝜕𝑥1

, 𝜕𝑢𝑡𝜕𝑥2
, 𝜕

2𝑢𝑡
𝜕𝑥2

1

, 𝜕
2𝑢𝑡

𝜕𝑥1𝑥2
, 𝜕

2𝑢𝑡
𝜕𝑥2

2

, . . . } are calculated. These derivatives are
used as building blocks to output the temporal change with a forward Euler schema at
every 𝑥: 𝑢𝑡+𝛿𝑡 (𝑥) = 𝑢𝑡 (𝑥) + 𝛿𝑡 · 𝑓

(
𝑥, 𝑢𝑡 ,

𝜕𝑢𝑡
𝜕𝑥1
, 𝜕𝑢𝑡𝜕𝑥2

, 𝜕
2𝑢𝑡
𝜕𝑥2

1

, 𝜕
2𝑢𝑡

𝜕𝑥1𝑥2
, 𝜕

2𝑢𝑡
𝜕𝑥2

2

, . . .
)
, where 𝑓 can be an

multi-layer perceptron (MLP) applied point by point or an equation on the spatial grid.

This way of extracting basic PDE differential operator features has been adopted by several
methods aiming to regularize dynamicswhen forecasting partially physical spatiotemporal
sequences. For example, in Le Guen and Thome (2020) this module is combined with a
recurrent neural network (RNN).

Symmetry and equivariance. Other approaches are to inject symmetry and invari-
ance. In this regard, Wang et al. (2021c) proposed a method where the physical phe-
nomenon’s symmetry groups are identified, and architecture choices aremade accordingly
to implement each group’s properties. The following are some examples: (a) If the equation
describing the dynamics does not change with time, the predictor should give the same
prediction after the same given state, regardless of when it is applied. This time translation
equivariance can be implemented with autoregressive models; (b) For the neural network
implementing the state transition function in autoregressive models, the output should
be translated by the same offset when the input state is translated in space. This spatial
translation equivariance can be implementedwith any convolutional neural network; (c) If
the equation contains operators describing non-directional changes in space, the output
should be rotated by the same amount when the input state is rotated by a certain amount.
This rotation translation equivariance can be implemented with ConvNet (Weiler and
Cesa, 2019); (d) If the state changes are to be equivariant w.r.t. the spatial scale, then the
convolution kernels should be adjusted according to the scale and the value. The input and
the output should also be scaled at the same rate. Similar approaches have been extended
to GNN by applying equivariant architectures, such as in (Horie and Mitsume, 2022).

Prior on the structure of the dynamics. This branch of predictive modeling aims to
incorporate structural prior knowledge of the dynamics and causality of the dynamics into
the model construction. These structures often reflect the interactions and dependencies
between different components of the dynamics.

To achieve this, researchers have designed deep learning architectures thatmimic the form
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of the desired first-principles models. For example, Long et al. (2018a) and Saha et al.
(2021) separate stochastic perturbations or source terms from the main dynamics in their
architectures. For conservative systems, Greydanus et al. (2019); Chen et al. (2020b) have
implemented the Hamiltonian as an NN to ensure the conservation of energy throughout
the dynamics.

3.1.3 Unobserved System Parameter or State Estimation
In the pre-DL era, researchers proposed various ways to estimate the physical parameters
in ordinary differential equation (ODE) systems using neural networks. For example,
Psichogios and Ungar (1992) predicts the time-evolving parameters in a known numerical
physical model, where the parameters depend on the current state of the system, while
Thompson andKramer (1994) directly estimate the unknown termof the incompleteODE
numerical model with time-evolving parameters. In Rico-Martinez et al. (1994), an NN
was trained for systems with known parameters, and used to identify new systems with
unknown parameters.

One of the pioneering DL methods, de Bézenac et al. (2018), explicitly incorporates
differential operators into an end-to-end deep learning pipeline. The NN estimates a
vector field over a powerful ConvNet backbone.

Example 3.6 (De Bézenac et al., 2018). We suppose that the observed sea surface
temperature (SST) sequences 𝑢 are governed by an advection-diffusion:

𝜕𝑢

𝜕𝑡
= −(𝑣 · ∇)𝑢 + 𝐷Δ𝑢,

where 𝑣𝑡 is an unknown vector field defined over the spatial domain Ω. One must then
estimate the unknown 𝑣𝑡 to use this previously known dynamical system.

At each time 𝑡, de Bézenac et al. (2018) use aU-Net + Example 2.6 to output an estimate
𝑣̃𝑡 from the current and history SST states 𝑢≤𝑡 . Then, the advection-diffusion is applied
with the pseudo-spectral method, at every 𝑥 ∈ Ω:

𝑢𝑡+𝛿𝑡 (𝑥) =
∑
𝑥′∈Ω

𝑘(𝑥 − 𝑣̃𝑡 (𝑥), 𝑥′)𝑢𝑡 (𝑥′).

The interpretation is that to obtain the prediction at 𝑡 + 𝛿𝑡 we backtrack the position at
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the previous time 𝑡 (advection) according to the velocity field, i.e., 𝑥 − 𝑣̃𝑡 (𝑥), and apply
to 𝑢𝑡 a radial basis function (RBF) kernel 𝑘 around that point (diffusion).

In this example, the NN estimates the vector field 𝑣𝑡 , an unknown physical quantity, given
the history of observed states. In a larger context, since the vector field 𝑣𝑡 is itself driven
by some unobserved dynamics, e.g., Navier-Stokes in the case above, the problem can also
be seen as predicting a partially observed system, as done in Ayed et al. (2022); Donà et al.
(2022).

3.2 Learning Dynamics with Data from Multiple Sys-
tems

We review the approaches considering the casewhere the data distribution does not follow
the i.i.d. hypothesis and undergoes significant changes depending on the environment from
which it is retrieved. To enhance the generalization ability of purely data-driven ML
methods, we search for invariants across data from different environments by preserving
information about the environment. This prior information is often weak, and the only
knowledge about the environment is its identity. Note that while these concepts exist
in the general ML community, they have primarily been applied to classification and
regression problems and require further exploration for dynamics models.

Figure 3.2: Difference between the invariance found with OoD, meta-learning, and multi-
task learning. For OoD (left), the invariance is obtained by forcing the regressor 𝑔 ◦ 𝑓
to ignore the environment-related features which should not influence the output. For
gradient-based meta-learning, the invariance is stored in a pre-trained initialization 𝑓 . For
multi-task learning, the invariance is learned by sharing a part of the information 𝑓 in the
model.
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3.2.1 Learning Invariance for Out-of-Distribution Generalization

We first examine the existing out-of-distribution (OoD) approaches for multi-source data.
Unlike empirical risk minimization (ERM), they assume that, in addition to the data itself,
the environment 𝑒 ∈ E from which it is sampled is also known. There is only a label to
distinguish data from different sources. These approaches aim to find a single function
(in our case a single dynamics model) that predicts well invariantly across environments E
with the power to extrapolate outside the known distributions. Their abstract objective is
to minimize the following OoD loss:

LOoD(𝑓𝜃 ,D) = max
𝑒∈E

L(𝑓𝜃 ,D𝑒) (3.1)

Here, we illustrate one approach to achieve this goal using the idea of invariant risk
minimization (IRM).

Example 3.7 (IRM; Arjovsky et al., 2019). To achieve the goal of finding the features
that achieve consistent performance in any environment, Arjovsky et al. (2019) define
a function comprising of a representation function 𝑓rep and a classifier 𝑓cls. The role of
𝑓rep is to generate a common representationwhen the input fromdifferent environments
should have the same output. The IRM’s optimization problem is formulated as follows,

min
𝑓rep,𝑓cls

∑
𝑒∈Etr

L(𝑓cls ◦ 𝑓rep,D𝑒)

subject to 𝑓cls ∈ argmin
𝑓 ′cls

L(𝑓 ′cls ◦ 𝑓rep,D
𝑒) for all 𝑒 ∈ Etr

(3.2)

which means that at convergence the classifier 𝑓cls should perform equally well in every
single training environment given a representation function 𝑓rep. The entire prediction
function 𝑓cls ◦ 𝑓rep remains the same across all environments.

Following the previous idea, Krueger et al. (2021) propose to attribute a larger weight to
the environment with the highest training loss than other environments or minimize the
variance of losses across environments. Teney et al. (2021) insteadminimize the variance of
the last layer parameters of the classifiers across environments. These approaches assume
that there is a single underlying process independent of the environment that generates
data across all environments, and aim to identify and discard spurious information that is
specific to each environment, as shown in Figure 3.2.
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However, in the context of dynamics modeling, the observations are often environment-
dependent, and therefore, the models must be conditioned on the environment. This
means that the differences between environments are not necessarily spurious and should
be explicitly taken into account to build environment-aware models.

3.2.2 Learning Invariance with Meta-Learning and Multi-Task
Learning

As illustrated in Figure 3.2, modeling multiple dynamics is more closely related to ap-
proaches that address multiple tasks. Although the definition of tasks is often unclear
in the proposed methods, our problem falls within this scope, where each of our tasks
corresponds to a dynamical system. We adopt the same notation for environments 𝑒 ∈ E
to represent the tasks. As always, the environment is still used only to distinguish the data
sources.

Meta-learning. We focus on the optimization-based meta-learning approaches, a.k.a.
gradient-based meta learning (GBML), which are primarily concerned with NNs. These
approaches learn a model parameter initialization by bi-level optimization for a param-
eterized model 𝑓𝜃 . The resulting initialization is then biased toward the distribution
of the target tasks, and it can be adapted to perform a new task with a few parameter
updates. The standardGBMLmethod ismodel-agnosticmeta learning (MAML; Finn et al.,
2017).

Example 3.8 (MAML; Finn et al., 2017). Finn et al. (2017) suppose there exists a
distribution of environments 𝑒 ∼ 𝜌(E), where each environment is presented as a task in
the original paper. The goal is to find an initialization according to the gradient direction
indicated by each of the tasks. This optimization problem can be formulated as follows:

𝜃∗ = argmin
𝜃

∑
𝑒∈Etr

L(𝑓𝜃𝑒 ,D𝑒
tr)︸                       ︷︷                       ︸

outer loop

, where 𝜃𝑒 = 𝜃 − 𝜂inner∇𝜃L(𝑓𝜃 ,D𝑒
tr)︸                     ︷︷                     ︸

inner loop

(3.3)

In practice, MAML involves two levels of optimization: the inner loop and the outer loop.
The inner loop involves taking a gradient step from the original point 𝜃 to each task
with the corresponding learning rate 𝜂inner, i.e., 𝜃𝑒. Then, the outer loop aggregates the
gradients at these new positions w.r.t. the original parameter. The trained initialization
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can then be adapted to the new task by standard parameter optimization.

This idea has been extended in various directions, including but not limited to:

• Optimization. The single-step inner loop can be replaced by multiple gradient
updates, such as stochastic gradient descent (SGD). For outer loop optimization,
there are different choices for computing the gradient w.r.t. the starting point of
the inner loop. One approach involves computing higher-order derivatives, as
proposed in Finn et al. (2017). Another approach involves considering only the last
inner loop update, which focuses only on first-order information. This approach
was explored in Nichol et al. (2018).

• Inner loop gradient preconditioning. Instead of directly using the gradient directions
in the inner loop with a learning rate shared for each parameter, preconditioning
methods aim to apply per-dimension modifications to the gradient to improve
adaptation efficiency. For example,Meta-SGD (Li et al., 2017; Park et al., 2019)meta-
learns dimension-wise inner-loop learning rates. Lee and Choi (2018) constrain the
inner-loop update in a learned subspace. Flennerhag et al. (2020) propose a general
wrapping scheme instead of the linear ones in previous examples.

• Architectural constraints. Depending on the task at hand, it is possible to choose
which model parameters should be enabled for meta-learning. For example, ANIL
(Raghu et al., 2020) the scope of MAML to the last layer of a classifier; Chen et al.
(2020a) study how the neural network adapts to tasks in different problems (e.g.,
classification, text-to-speech conversion) and restrict meta-learning to the most
frequently updated layers.

• Contextual meta-learning. Directly related to the previous point, some methods
concentrate the adaptation in a context vector, while keeping the NN parameter
invariant across tasks. For instance, Zintgraf et al. (2019); Garnelo et al. (2018) par-
tition the parameters into two groups: the context parameters, which are adapted
to each task, and the meta-trained parameters, which are shared across tasks.

In general, these methods do not focus on exploiting the commonalities and discrepancies
in the data, as the discrepancies are discarded with each update. Adaptation from the
learned initialization point can also suffer from overfitting on training tasks, called meta-
overfitting (Mishra et al., 2018).
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Multi-task learning (MTL). Another related but distinct approach to learning from
multiple tasks is MTL. It involves training multiple models for different tasks simultane-
ously. The models are designed to share common information across tasks, One of the
most common approaches is to share parameters of a certain part of the neural network,
a.k.a. hard parameter sharing. For example, Caruana (1998) suggests sharing the first layers
of the neural network.

Example 3.9 (Caruana, 1998; Baxter, 2000). Hard parameter sharing was first intro-
duced for multi-class classification problems with application to neural networks. A
MLP for binary classification illustrated in Section 2.3.2 can be separated into two parts:
a feature map 𝑓feat : ℝ𝑑in → ℝ𝑑feat and a binary classifier 𝑓cls : ℝ𝑑feat → [0, 1] , i.e.,
𝑓 = 𝑓cls ◦ 𝑓feat.

To predict all 𝐶 classes, the prediction for each class is output with a common 𝑓feat and
a set of binary classifiers {𝑓 𝑐cls}𝑐∈È1,𝐶É for an input 𝑧:

[𝑓 1cls ◦ 𝑓feat(𝑧), 𝑓
2
cls ◦ 𝑓feat(𝑧), · · · , 𝑓

𝐶
cls ◦ 𝑓feat(𝑧)]

> (3.4)

This hard-sharing technique becomes a part of the standard DL modeling for classifica-
tion problems. The same inspiration was then revived in the DL era. In recent years,
researchers have proposed extensions of this approach tomore efficient learning from sets
of related tasks, such as those presented in (Rebuffi et al., 2017, 2018). These extensions
have primarily focused on classification problems, as seen in (Requeima et al., 2019; Wang
et al., 2021a). Soft parameter sharing, on the other hand, preserves individual parameters
while regularizing the parameters that are intended to be shared (Yang and Hospedales,
2017).

However, MTL does not address adaptation to new tasks in new environments. Recently,
there has been some work showing similarities between GBML and MTL. For example,
Wang et al. (2021a) use the neural tangent kernel theory framework to analyze this
relationship.

Context-aware neural networks. When learning dynamics models from multiple
environments, our goal is to capture the underlying function that describes the dynamics
in each environment. When these environments share a large amount of information and
differ only in some characteristics, it is beneficial to represent the functions in a finite-
dimensional latent space to facilitate the transfer of dynamics from one environment to
another.
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One way of achieving this is by using a context vector. This is a common intuition when
modeling different dynamics of the same natural phenomenon in physics. For example, a
common physical model, i.e., the incompressible Navier-Stokes equation, conditioned on
a few parameters (such as fluid viscosity), can describe the incompressible fluid dynamics
of different materials, such as water, honey, and molten metal.

To discover the latent space where the context vectors for the observed dynamics reside,
two operations should be modeled: (a) from the dynamics to the context vector, a.k.a.
encoding, and (b) from the context vector to the dynamics, a.k.a. decoding, making the
context useful in practice. However, two important challenges arise from these processes:
discovering the context vector space and integrating context vectorswith neural networks.

The first problem is how to find the context vectors for a set of observed functions {𝑓 }
through encoding. With NNs, the context vectors 𝛼 can be found via auto-encoding or
auto-decoding, as shown in Figure 3.3. The difference between these two options is how the
codes are learned. In auto-decoding, the code is obtained directly by optimizing through
a decoder DECODER𝜙:

argmin
{𝛼 (𝑖) }È1,𝑁trÉ,𝜙

𝑁tr∑
𝑖

‖DECODER𝜙(𝛼(𝑖)) − 𝑓 (𝑖) ‖2 (3.5)

Once the decoder is trained, the auto-decoder uses gradient descent to find a code for a new
function. In auto-encoding, the codes are adapted indirectly by the encoder ENCODER𝜑, in
cooperation with DECODER𝜙:

argmin
𝜙,𝜑

𝑁tr∑
𝑖

‖DECODER𝜙 ◦ ENCODER𝜑(𝑓 (𝑖)) − 𝑓 (𝑖) ‖2 (3.6)

The encoder can directly output a code 𝛼 for a new incoming 𝑓 .

For auto-encoding, all the codes can be updated simultaneously with the decoder by
updating the encoder, but it often suffers from the underfitting problem, and it is not easy
to implement an encoder that has similar flexibility to the decoder; for auto-decoding, we
do not need to define an encoder, but the codes must be stored in memory and the updates
should be well synchronized with the update of the decoder.

The second problem relates to how we can condition a neural network relates to a context
vector. One common method is to concatenate the context vector with the input directly,
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Figure 3.3: Auto-encoding vs. auto-decoding. 𝑓 is the high-dimensional vector or a
function to be encoded, 𝛼 is the corresponding context code, and 𝑓 is the decoder’s
prediction.→ is the forward pass,d calculates gradient w.r.t. adjustable parameters.

as seen in Isola et al. (2017); Zintgraf et al. (2019); Huang et al. (2021). This simple approach
modifies the first layer’s bias with a linear transformation of the context. Alternatives have
been discovered, e.g., for classification tasks adding the context to the last layer is preferred.
These approaches condition the neural network at some hand-picked specific layerswhich
may be suboptimal and not universally suitable for every problem.

A more universal approach is presented in Ha et al. (2017), where the parameter of a neural
network is generated directly from the codes through ameta neural network. Thismethod
is more flexible and does not require the context to be added at specific layers.

Application to DL dynamics modeling. Meta-learning methods have recently been
applied to dynamical systems. The objective of these mothers is to train a single model
that can be quickly adapted to new dynamics with a few data points with a limited number
of training steps. Lee et al. (2021) apply MAML directly to Hamiltonian neural networks
(Greydanus et al., 2019) for conservative systems.

One of the rare context-aware MTL approaches for the physical environment is FT-RNN
(Spieckermann et al., 2015), where they propose an RNN conditioned by a hard one-hot
encoding of a set of environments E . This fixed encoding for known environments limits
the ability to adapt to new environments. Another work, DyAd (Wang et al., 2022), adapts
the dynamics model by decoding a time-invariant context obtained by encoding observed
states. The context is weakly supervised on some hand-picked physical quantities thatmay
be correlated with parameters in the underlying dynamics.
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3.3 DynamicsModelingwithRegularly and Irregularly
Sampled Data

In this section, we focus on the limitations of current neural dynamics models regarding
their ability to take sample data in space and time. We will revisit the architectures
introduced in Section 2.3.2 and the types of dynamics models they support. As a reminder,
in our notation, 𝑡 represents an arbitrary point in time, 𝜏 represents an arbitrary time
interval, and 𝛿𝑡 represents a fixed, predetermined time interval.

3.3.1 Sequential Spatially Discretized Models

Most sequential dynamics models are trained on a fixed observed grid X at training time
and use spatially discretized models, e.g., ConvNet or GNN, to process the observations.
However, thesemodels fail experimentallywhenmaking predictions onnewgridsX ′ ≠ X
because they are biased towards the training gridX .

Learning mapping with ConvNet. One of the limitations of ConvNets (cf. p. 26) is
that they are designed to operate on observations arranged on a regular grid. Once the
dynamics are learned, the weights of the convolutional layers are fixed to the resolution
seen during training, as the grid on which the convolution kernel is discretized cannot be
changed later. This poses a challengewhen dealingwith data on irregular grids, as the only
way to apply ConvNet-based models is to interpolate the observations to the regular grid
and run the model on these interpolated values, as shown in Chae et al. (2021). However,
the interpolation step introduces additional error, which can adversely affect the overall
performance of the model.

Learning mapping with GNN. GNNs, especially message passing neural network
(MPNN) + Example 2.8 are slightlymore flexible because they can handle irregular grids,
albeit at a higher computational and memory cost. It is worth noting that GNNs are still
biased towards the structure of the graphs, which can limit their generalization capability.
For example, in the MPNN used in Brandstetter et al. (2022), messages are passed based on
the difference between the positions of neighbors, which can lead to limited generalization
to modified graphs.
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Temporal modeling with discretized mapping. Most temporal models are limited
in their spatial flexibility by previous backbone architectures for spatial signals but can
extrapolate beyond the training horizon due to their sequential nature. Either using
autoregressive models 𝑢0 |X ↦→ (𝑢𝑡 |X ↦→ 𝑢𝑡+𝛿𝑡 |X )∞ as in Long et al. (2018b); de Bézenac
et al. (2018); Pfaff et al. (2021); Brandstetter et al. (2022). Thesemodels predict the sequence
from 𝑡 only with uniform time steps of 𝛿𝑡 and not for intermediate time steps. Other
time-continuous extensions using numerical solvers, such as neural ordinary differential
equation (Neural ODE; Chen et al., 2018) + Example 2.12 , remove this rigid grid in time
by predicting the entire trajectory 𝑢0 |X ↦→ (𝑡 ∈ [0,∞) ↦→ 𝑢𝑡 |X ), e.g., in Yin et al. (2021b);
Iakovlev et al. (2021).

3.3.2 Operator Learning

As discussed in Chapter 2, the research on operator learning aims to propose contin-
uous alternatives to the existing deep architectures for continuous signals by finding a
parameterized mapping between functions. However, despite the continuous modeling
assumption, the concrete implementations often include architectural choices and tricks
that remove the theoretically desired continuous properties, such as free-from input and
free-form output evaluation.

DeepONet (Lu et al., 2021). DeepONet + Example 2.9 uses a coordinate-based neural
network to output a prediction at arbitrary locations in time and space. This implementa-
tion allows complete freedom in evaluating the output. However, the input function is still
observed on a (randomly sampled) grid in space and/or in time that cannot be changed later
during the test. Recent work has attempted to overcome this limitation using attention
mechanisms, as seen in Prasthofer et al. (2022).

Neural operators (NOs; Kovachki et al., 2021). NOs (see p. 34) are proposed as
alternatives to the conventional convolutions in residual neural network (ResNet; He et al.,
2016) (see p. 28) with a more flexible discretization of the convolution kernel. However,
despite their flexibility in terms of discretization, NOs still rely on residual connections
that align the input grid to the output grid, limiting their ability to freely evaluate the output
function as in DeepONet.

Additionally, NOs are still subject to architectural biases that further limit their flexibility.
For example, Graph neural operator (GNO; Li et al., 2020) suggests a convolution kernel
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that is always discretized in space, implemented viaMPNN,which inherits the same bias as
discussed in Section 3.3.1. Fourier neural operator (FNO;Li et al., 2021b) + Example 2.10 ,
on the other hand, applies a convolution kernel discretized in the spectral domain via
the fast Fourier transform (FFT), which limits the architecture to uniform Cartesian
observation grids on a rectangular domain. Replacing the efficient FFT with the less
efficient discrete Fourier transform (DFT) can address this limitation (as shown in Li et al.,
2022), but it leads to an increase in computational complexity.

Temporalmodeling in operator learning. Three types of temporalmodels have been
considered for operator learning, each with its own set of limitations.

• A model derived directly from the formulation of NOs learns a mapping from an
initial state to some final state at a given time 𝑡 ∈ [0, 𝑇] , i.e., 𝑢0 ↦→ 𝑢𝑡 within the
training horizon (Li et al., 2020);

• A time-continuous version 𝑢0 ↦→ (𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ↦→ 𝑢𝑡 (𝑥)) can be derived
fromDeepONet. It allows for the prediction of solutions at arbitrary time and space
locations. The input of the DeepONet’s branch net (see Example 2.9) is the initial
condition 𝑢0, and the output is given by a neural network taking space and time
coordinates as input.

• Sequential autoregressive prediction model 𝑢0 ↦→ (𝑢𝑡 ↦→ 𝑢𝑡+𝛿𝑡)∞ as proposed in Li
et al. (2021a). It maps an initial state 𝑢0 to a sequence of solutions 𝑢𝑡 at time steps
𝛿𝑡, 2𝛿𝑡, . . . by recursively predicting each next state based on the previous one.

The first two approaches mentioned above are limited to the trajectory horizon 𝑇 and
cannot generalize beyond it. The last model, on the other hand, overcomes this limitation
but is restricted to predicting solutions at fixed time steps of 𝛿𝑡 and is unable to predict
solutions in-between those intervals.

3.3.3 Spatiotemporal Implicit Neural Representations
Another class of models makes also use of coordinate-based NNs, which is called implicit
neural representations (INRs). The idea originates from the need of representing a 3D
object with a neural network.

Example 3.10 (SIREN; Sitzmann et al., 2020). The idea is to encode a signal by using a
neural network. A signal 𝐼 sampled on a coordinate gridX ⊂ Ω can be represented as a
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Figure 3.4: Illustration of an INR.

set of coordinate-value pairs, where 𝐼 |X = {(𝑥, 𝐼 (𝑥)) | 𝐼 : Ω→ ℝ𝑑 , 𝑥 ∈ X }. As shown
in Figure 3.4, to approximate this signal, an NN 𝐼𝜃 takes the coordinates on the input,
outputs the value at the corresponding coordinates and optimizes the parameter s.t.

argmin
𝜃

∑
𝑥∈X

ℓ (𝐼𝜃 (𝑥), 𝐼 (𝑥)).

SIREN is an example of an INR, which is implemented as an MLP with sine activation:

𝐼𝜃 (𝑥) = 𝑇 (𝐿) ◦ sin ◦𝑇 (𝐿−1) · · · sin ◦𝑇 (2) ◦ sin ◦𝑇 (1) (𝑥), where 𝑇 (𝑙) (𝑧(𝑙)) = 𝑊 (𝑙)𝑧(𝑙) + 𝑏(𝑙)

There are variousways to implement an INR. Tancik et al. (2020) embed the inputwith sine
and cosine functions to generate Fourier features. These features are defined as 𝐼𝜃 (𝛾 (𝑥)) =
𝐼 (𝑥), where 𝛾 (𝑥) = [𝑎 � sin(2𝜋𝐵𝑥), 𝑎 � cos(2𝜋𝐵𝑥)]>, � is the element-wise product,
and the resulting embedding is fed into an MLP with ReLU activation. Another approach,
presented in Fathony et al. (2021), replaces the activation function by multiplications
with sinusoidal functions. Although the representation of space-continuous functions
is a distinct area of research, it shares a similar goal to operator learning: generating a
continuous function. Additionally, it is possible to apply INRs to spatiotemporal data by
incorporating time as an input parameter alongside the spatial coordinates, i.e., 𝐼𝜃 (𝑥 |𝑡).

Note that this idea is also used by the physics-informed neural networks (PINNs; Raissi
et al., 2019) + Example 2.13 . The only difference is that PINNs calculate a physical loss,
allowing the neural network to solve an unknown physical function. On the other hand,
INRs represents a function that is known from data. However, both types of models are
restricted to representing a single solution.

Recent extensions for multi-sequence learning have been proposed, particularly with
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context-aware neural networks, e.g., for video generation (Yu et al., 2022; Skorokhodov
et al., 2022) or compression (Chen et al., 2021). Thesemodels learn a latent vector obtained
from an initial condition 𝑢0 and let it condition the prediction until the training horizon,
i.e., 𝑢0 ↦→ (𝑡 ∈ [0, 𝑇] ↦→ 𝑢𝑡). In the field of physics, Fresca et al. (2020) propose INR
approaches to building reduced order models (ROMs). Notably, these models can predict
at an arbitrary time 𝑡 in the training horizon without unrolling a sequential model up to 𝑡.
However, since they only learn mappings from an initial condition 𝑢0 to a function of time
𝑢𝑡 within the training domain [0, 𝑇] , they fail to predict beyond the training conditions.
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Chapter 4

Hybrid Modeling with Neural Networks
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

In this chapter, we present our first contribution to making a neural-network-based
model cooperate with an undetermined, incomplete numerical model. The objective is
to correctly predict the evolution of the dynamics and identify the incomplete numerical
model. This chapter led to a conference paper at ICLR 2021.

YuanYin*, Vincent LeGuen*, JérémieDonà*, Emmanuel de Bézenac*, IbrahimAyed*,
Nicolas Thome, and Patrick Gallinari. Augmenting physical models with deep
networks for complex dynamics forecasting. ICLR 2021.
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4.1 Introduction
Modeling and forecasting complex dynamical systems is a major challenge in domains
such as environment and climate (Rolnick et al., 2019), health science (Choi et al., 2016),
and in many industrial applications (Toubeau et al., 2018). model-based (MB) approaches
typically rely on partial differential equation (PDE) or ordinary differential equation (ODE)
and stem from a deep understanding of the underlying physical phenomena. machine
learning (ML) and deep learning (DL) methods are more prior agnostic yet have become
state-of-the-art for several spatiotemporal prediction tasks (Shi et al., 2015; Wang et al.,
2018; Oreshkin et al., 2020; Donà et al., 2021), and connections have been drawn between
deep architectures and numerical ODE solvers, e.g., neural ODEs (Chen et al., 2018; Ayed
et al., 2022). However, modeling complex physical dynamics is still beyond the scope of
pure ML methods, which often cannot properly extrapolate to new conditions as MB
approaches do.

Combining the MB and ML paradigms is an emerging trend to develop the interplay
between the two paradigms. For example, Brunton et al. (2016) and Long et al. (2018b)
learn the explicit form of PDEs directly from data, Raissi et al. (2019) and Sirignano and
Spiliopoulos (2018) use neural networks (NNs) as implicit methods for solving PDEs,
Seo et al. (2020) learn spatial differences with a graph network, Ummenhofer et al.
(2020) introduce continuous convolutions for fluid simulations, de Bézenac et al. (2018)
learn the velocity field of an advection-diffusion system, Greydanus et al. (2019) and
Chen et al. (2020b) enforce conservation laws in the network architecture or in the loss
function. The large majority of aforementioned MB/ML hybrid approaches assume that
the physical model adequately describes the observed dynamics. This assumption is,
however, commonly violated in practice. This may be due to various factors, e.g., idealized
assumptions and difficulty to explain processes from first principles (Gentine et al., 2018),
computational constraints prescribing a fine grain modeling of the system (Ayed et al.,
2019), unknown external factors, forces and sources which are present (Large and Yeager,
2004). In this paper, we aim at leveraging prior dynamical ODE/PDE knowledge in
situations where this physical model is incomplete, i.e., unable to represent the whole
complexity of observed data. To handle this case, we introduce a principled learning
framework to Augment incomplete PHYsical models for ideNtIfying and forecasTing
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complex dYnamics (APHYNITY). The rationale of APHYNITY, illustrated in Figure 4.1
on the pendulum problem, is to augment the physical model when—and only when—it
falls short.

Designing a general method for combining MB and ML approaches is still a wide-open
problem, and a clear problem formulation for the latter is lacking (Reichstein et al., 2019).
Our contributions towards these goals are the following:

• We introduce a simple yet principled framework for combining both approaches.
We decompose the data into a physical and a data-driven term such that the
data-driven component only models information that cannot be captured by the
physical model. We provide existence and uniqueness guarantees (Section 4.2.2) for
the decomposition given mild conditions and show that this formulation ensures
interpretability and benefits generalization.

• We propose a trajectory-based training formulation (Section 4.2.3) along with an
adaptive optimization scheme (Section 4.2.4) enabling end-to-end learning for both
physical and deep learning components. This allows APHYNITY to automatically
adjust the complexity of the neural network to different approximation levels of the
physical model, paving the way to flexible learned hybrid models.

• We demonstrate the generality of the approach on three use cases (reaction-
diffusion, wave equations, and the pendulum) representative of different PDE fam-
ilies (parabolic, hyperbolic), having a wide spectrum of application domains, e.g.,
acoustics, electromagnetism, chemistry, biology, physics (Section 4.3). We show that
APHYNITY is able to achieve performances close to complete physical models by
augmenting incomplete ones, both in terms of forecasting accuracy and physical
parameter identification. Moreover, APHYNITY can also be successfully extended
to the partially observable setting (see discussion in Section 4.4).

4.2 Model

4.2.1 Problem Setting

In the following, we study dynamics driven by an equation of the form:

d𝑢

d𝑡
= 𝑓 (𝑢) (4.1)
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(a) Data-driven Neural ODE
MSE = 1.5×10−1

(b) Simple physical model
MSE = 7.6×10−1, Error

𝑇0 = 12.9%

(c) Simple physical model
MSE = 1.9×10−4, Error

𝑇0 = 0.3%

Figure 4.1: Predicted dynamics for the damped pendulum vs. ground truth (GT) trajecto-
ries d2𝛼

d𝑡2
+ 𝜔20 sin 𝛼 + 𝛾 d𝛼d𝑡 = 0. We show that in (a) the data-driven approach (Chen et al.,

2018) fails to properly learn the dynamics due to the lack of training data, while in (b)
an ideal pendulum cannot take friction into account. The proposed APHYNITY shown
in (c) augments the over-simplified physical model in (b) with a data-driven component.
APHYNITY improves both forecasting (MSE) and parameter identification (Error 𝑇0)
compared to (b).

defined over a finite time interval [0, 𝑇] , where the state 𝑢𝑡 is either vector-valued, i.e., we
have 𝑢𝑡 ∈ ℝ𝑑 for every 𝑡 (pendulum equations in Section 4.3), or 𝑢𝑡 is a 𝑑-dimensional
vector field over a spatial domain Ω ⊂ ℝ𝑝 with 𝑝 ∈ {2, 3}, discretized on a grid
X ⊂ Ω, i.e., 𝑢𝑡 (𝑥) ∈ ℝ𝑑 for every (𝑡, 𝑥) ∈ [0, 𝑇] × Ω (reaction-diffusion and wave
equations in Section 4.3). We suppose that we have access to a set of observed trajectories
D = {𝑢(𝑖) |T | 𝑢(𝑖)0 ∈ U , 𝑢(𝑖) ∈ 𝛤}, where U is the set of 𝑢𝑡 values (either ℝ𝑑 or discretized
vector fieldℝ𝑑×#X ). In our case, the unknown 𝑓 has U as domain and we only assume that
𝑓 ∈ F , with (F , ‖ · ‖) a normed vector space.

4.2.2 DecomposingDynamics into Physical andAugmented Terms

As introduced in Section 4.1, we consider the common situation where incomplete
information is available on the dynamics, under the form of a family of ODEs or PDEs
characterized by their temporal evolution 𝑓P ∈ FP ⊂ F . The APHYNITY framework
leverages the knowledge of FP while mitigating the approximations induced by this
simplified model through the combination of physical and data-driven components. F
being a vector space, we can write:

𝑓 = 𝑓P + 𝑓A
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where 𝑓P ∈ FP encodes the incomplete physical knowledge and 𝑓A ∈ F is the data-
driven augmentation term complementing 𝑓P. The incomplete physical prior is supposed
to belong to a known family, but the physical parameters, e.g., propagation speed for the
wave equation, are unknown andneed to be estimated fromdata. Both 𝑓P and 𝑓A parameters
are estimated by fitting the trajectories fromD.

The decomposition 𝑓 = 𝑓P+𝑓A is in general not unique. For example, all the dynamics could
be captured by the 𝑓A component. This decomposition is thus ill-defined, which hampers
the interpretability and the extrapolation abilities of the model. In other words, one wants
the estimated parameters of 𝑓P to be as close as possible to the true parameter values of
the physical model and 𝑓A to play only a complementary role w.r.t. 𝑓P, so as to model only the
information that cannot be captured by the physical prior. For example, when 𝑓 ∈ FP, the data
can be fully described by the physical model, and in this case it is sensible to desire 𝑓A to
be nullified; this is of central importance in a setting where one wishes to identify physical
quantities, and for the model to generalize and extrapolate to new conditions. In a more
general setting where the physical model is incomplete, the action of 𝑓A on the dynamics,
as measured through its norm, should be as small as possible.

This general idea is embedded in the following optimization problem:

min
𝑓P∈FP,𝑓A∈F

‖𝑓A‖ subject to ∀𝑢 ∈ D,∀𝑡 ∈ T , d𝑢
d𝑡

= (𝑓P + 𝑓A)(𝑢) (4.2)

The originality of APHYNITY is to leverage model-based prior knowledge by augmenting
it with neurally parametrized dynamics. It does so while ensuring optimal cooperation
between the prior model and the augmentation.

The first key question is whether the minimum in Eq. (4.2) is indeed well-defined, in
other words whether there exists indeed a decomposition with a minimal norm 𝑓A. The
answer actually depends on the geometry of FP, and is formulated in the following
proposition:

Proposition 4.1 (Existence of aminimizing pair). IfFP is a proximinal set1, there exists
a decomposition minimizing Eq. (4.2).

+ Proof in Appendix A.2, p. 180

1A proximinal set is one from which every point of the space has at least one nearest point. A Chebyshev
set is one from which every point of the space has a unique nearest point. More details in Appendix A.1.
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Proximinality is a mild condition that, as shown through the proof of the proposition,
cannot be weakened. It is a property verified by any boundedly compact set. In particular,
it is true for closed subsets of finite dimensional spaces. However, if only existence is
guaranteed, while forecasts would be expected to be accurate, non-uniqueness of the
decomposition would hamper the interpretability of 𝑓P and this would mean that the
identified physical parameters are not uniquely determined.

It is then natural to ask under which conditions solving problem Eq. (4.2) leads to a
unique decomposition into a physical and a data-driven component. The following result
provides guarantees on the existence and uniqueness of the decomposition under mild
conditions.

Proposition 4.2 (Uniqueness of the minimizing pair). If FP is a Chebyshev set1,
Eq. (4.2) admits a unique minimizer. The 𝑓P in this minimizer pair is the metric projection
of the unknown 𝑓 onto FP.

+ Proof in Appendix A.2, p. 180

The Chebyshev assumption condition is strictly stronger than proximinality but is still
quite mild and necessary. Indeed, in practice, many sets of interest are Chebyshev,
including all closed convex spaces in strict normed spaces, and, if F = 𝐿2, FP can be any
closed convex set, including all finite-dimensional subspaces. In particular, all examples
considered in the experiments are Chebyshev sets.

Propositions 4.1 and 4.2 provide, under mild conditions, the theoretical guarantees for the
APHYNITY formulation to infer the correct MB/ML decomposition, thus enabling both
recovering the proper physical parameters and accurate forecasting.

4.2.3 Solving APHYNITY with Deep Neural Networks

In the following, both terms of the decomposition are parametrized and are denoted as 𝑓 𝜃PP

and 𝑓 𝜃AA . Solving APHYNITY then consists in estimating the parameters 𝜃P and 𝜃A. 𝜃P are
the physical parameters and are typically low-dimensional, e.g., 2 or 3 in our experiments
for the considered physical models. For 𝑓A, we need sufficiently expressive models able
to optimize over all F : we thus use deep neural networks, which have shown promising
performances for the approximation of differential equations (Raissi et al., 2019; Ayed et al.,
2022).

When learning the parameters of 𝑓 𝜃PP and 𝑓 𝜃AA , we have access to a finite dataset of trajectories
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discretized with a given temporal resolution 𝛿𝑡: Dtrain = {𝑢(𝑖) |T̂ }𝑖∈È1,𝑁É, where T =
{𝑘𝛿𝑡}𝑘∈È0,𝑇/𝛿𝑡É. Solving Eq. (4.2) requires estimating the state derivative d𝑢(𝑡)

d𝑡 appearing
in the constraint term. One solution is to approximate this derivative using, e.g., finite
differences as in Brunton et al. (2016); Greydanus et al. (2019); Cranmer et al. (2020).
This numerical scheme requires high space and time resolutions in the observation space
in order to get reliable gradient estimates. Furthermore, it is often unstable, leading to
explosive numerical errors as discussed in Appendix A.4. We propose instead to solve
Eq. (4.2) using an integral trajectory-based approach: we compute 𝑢̃(𝑖) |T from an initial
state 𝑢(𝑖)

0
using the current 𝑓 𝜃PP + 𝑓 𝜃AA dynamics, then enforce the constraint 𝑢̃(𝑖) |T = 𝑢(𝑖) |T .

This leads to our final objective function on (𝜃P, 𝜃A):

min
𝜃P,𝜃A



𝑓 𝜃AA


 subject to ∀𝑖 ∈ È1, 𝑁É, 𝑡 ∈ T , 𝑢̃(𝑖)𝑡 = 𝑢(𝑖)𝑡 (4.3)

where 𝑢̃(𝑖)𝑡 is the approximate solution of the integral 𝑢(𝑖)
0
+
∫ 𝑠=𝑡
𝑠=0
(𝑓 𝜃PP + 𝑓 𝜃AA )(𝑢(𝑠))d𝑠 obtained

by a differentiable ODE solver.

In our setting, where we consider situations for which 𝑓 𝜃PP only partially describes the
physical phenomenon, this coupled MB + ML formulation leads to different parameter
estimates than using the MB formulation alone, as analyzed more thoroughly in Ap-
pendix A.3. Interestingly, our experiments show that using this formulation also leads to
better identification of the physical parameters 𝜃P than when fitting the simplified physical
model 𝑓 𝜃PP alone (Section 4.3). With only an incomplete knowledge of physics, the 𝜃P
estimator will be biased by the additional dynamics which need to be fitted in the data.
Appendix A.6 also confirms that the integral formulation gives better forecasting results
and a more stable behavior than supervising over finite difference approximations of the
derivatives.

4.2.4 Adaptively Constrained Optimization

Algorithme 1 : APHYNITY
Initialization: 𝜆 ≥ 0, 𝜂1 > 0, 𝜂2 > 0

for j in È1, 𝑁epochsÉ do
for iter in È1, 𝑁iterÉ do

𝜃 ← 𝜃 − 𝜂1∇
[
‖𝑓A‖ + 𝜆Ltraj(𝑓

𝜃𝑝
P , 𝑓

𝜃A
A )

]
// update 𝜃 = (𝜃p, 𝜃a)

𝜆← 𝜆 + 𝜂2Ltraj(𝑓
𝜃𝑝
P , 𝑓

𝜃A
A ) // update 𝜆
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The formulation in Eq. (4.3) involves constraints that are difficult to enforce exactly in
practice. We considered a variant of the method of multipliers (Bertsekas, 1996) which
uses a sequence of Lagrangian relaxations L𝜆 𝑗 (𝑓

𝜃P
P , 𝑓

𝜃A
A ):

L𝜆 𝑗 (𝑓 𝜃PP , 𝑓
𝜃A
A ) = ‖𝑓 𝜃AA ‖ + 𝜆 𝑗 · Ltraj(𝑓 𝜃PP , 𝑓

𝜃A
A ) (4.4)

where Ltraj(𝑓 𝜃PP , 𝑓
𝜃A
A ) =

∑
𝑢∈D

∑
𝑡∈T ‖𝑢(𝑖)𝑡 − 𝑢̃

(𝑖)
𝑡 ‖.

This method needs an increasing sequence (𝜆 𝑗) 𝑗 such that the successive minima of L𝜆 𝑗

converge to a solution (at least a local one) of the constrained problem Eq. (4.3). We select
(𝜆 𝑗) 𝑗 by using an iterative strategy: starting from a value 𝜆0, we iterate, minimizingL𝜆 𝑗 by
gradient descent2, then update 𝜆 𝑗 with: 𝜆 𝑗+1 = 𝜆 𝑗+𝜂2Ltraj(𝜃 𝑗+1), where 𝜂2 is a chosen hyper-
parameter and 𝜃 = (𝜃P, 𝜃A). This procedure is summarized in Algorithm 1. This adaptive
iterative procedure allows us to obtain stable and robust results, in a reproducible fashion,
as shown in the experiments.

4.3 Experimental Validation
Wevalidate our approach on 3 classes of challenging physical dynamics: reaction-diffusion,
wave propagation, and the damped pendulum, representative of various application do-
mains such as chemistry, biology or ecology (for reaction-diffusion) and earth physic,
acoustic, electromagnetism, or even neurobiology (for waves equations). The two first
dynamics are described by PDEs and thus in practice should be learned from very high-
dimensional vectors, discretized from the original compact domain. This makes the
learning much more difficult than from the one-dimensional pendulum case. For each
problem,we investigate the cooperation betweenphysicalmodels of increasing complexity
encoding incomplete knowledge of the dynamics (denoted Incomplete physics in the follow-
ing) and data-driven models. We show the relevance of APHYNITY (denoted APHYNITY
models) both in terms of forecasting accuracy and physical parameter identification.

4.3.1 Experimental Setting

We describe the three families of equations studied in the experiments. In all experiments,
F = 𝐿2(U ) where U is the set of all admissible states for each problem, and the 𝐿2 norm is

2Convergence to a local minimum isn’t necessary, a few steps are often sufficient for successful optimiza-
tion.



4.3. Experimental Validation 73

computed on Dtr by ‖𝑓 ‖2 ≈ ∑
𝑖,𝑡 ‖𝑓 (𝑢(𝑖)𝑡 )‖2. All considered sets of physical functionals FP

are closed and convex in F and thus are Chebyshev. In order to enable the evaluation
of both prediction and parameter identification, all our experiments are conducted on
simulated datasets with known model parameters. Each dataset has been simulated using
an appropriate high-precision integration scheme for the corresponding equation. All
solver-based models take the first state 𝑢0 as input and predict the remaining time-steps by
integrating 𝑓 through the same differentiable generic and common ODE solver (4th order
Runge-Kutta)3. Implementation details and architectures are given in Appendix A.5.

Reaction-diffusion equations. Weconsider a 2DFitzHugh-Nagumo typemodel (Klaa-
sen and Troy, 1984). The system is driven by the PDE

𝜕𝑣

𝜕𝑡
= 𝑎Δ𝑣 + 𝑣 − 𝑣3 − 𝑘 − 𝑤

𝜕𝑤

𝜕𝑡
= 𝑏Δ𝑤 + 𝑣 − 𝑤

where 𝑎 and 𝑏 are respectively the diffusion coefficients of 𝑣 and𝑤,Δ is theLaplace operator.
The local reaction terms are (𝑣−𝑣3−𝑘−𝑤) for 𝑣, and (𝑣−𝑤) for𝑤. The state is 𝑢𝑡 = (𝑣𝑡 , 𝑤𝑡)
and is defined over a compact rectangular domain Ω with periodic boundary conditions.
The considered physical models are:

• Param PDE (𝑎, 𝑏), with unknown (𝑎, 𝑏) diffusion terms and without reaction terms:

FP = {𝑓 𝑎,𝑏P : (𝑣𝑡 , 𝑤𝑡) ↦→ (𝑎Δ𝑣𝑡 , 𝑏Δ𝑤𝑡) | 𝑎, 𝑏 ∈ [𝜖,+∞)};

• Param PDE (𝑎, 𝑏, 𝑘), the full PDE with unknown parameters:

FP = {𝑓 𝑎,𝑏,𝑘P : (𝑣𝑡 , 𝑤𝑡) ↦→ (𝑎Δ𝑣𝑡 + 𝑣𝑡 − 𝑣3𝑡 − 𝑘 − 𝑤𝑡 , 𝑏Δ𝑤𝑡 + 𝑣𝑡 − 𝑤𝑡 | 𝑎, 𝑏, 𝑘 ∈ [𝜖,+∞)}.

Damped wave equations. We investigate the damped-wave PDE:

𝜕2𝑤

𝜕𝑡2
− 𝑐2Δ𝑤 + 𝛾 𝜕𝑤

𝜕𝑡
= 0

3This integration scheme is then different from the one used for data generation, the rationale for this
choice being that when training a model one does not know how exactly the data has been generated.
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where 𝛾 is the damping coefficient. The state is 𝑢𝑡 =
(
𝑤𝑡 ,

𝜕𝑤𝑡
𝜕𝑡

)
and we consider a compact

spatial domain Ω with Neumann homogeneous boundary conditions. Note that this
damping differs from the pendulum, as its effect is global. Our physical models are:

• Param PDE (𝑐), without damping term:

FP =

{
𝑓 𝑐P :

(
𝑤𝑡 ,

𝜕𝑤𝑡
𝜕𝑡

)
↦→ 𝜕𝑤𝑡

𝜕𝑡
, 𝑐2Δ𝑤𝑡 | 𝑐 ∈ [𝜖,+∞) with 𝜖 > 0

}
;

• Param PDE (𝑐, 𝑘):

FP =

{
𝑓 𝑐,𝑘P :

(
𝑤𝑡 ,

𝜕𝑤𝑡
𝜕𝑡

)
↦→

(
𝜕𝑤𝑡
𝜕𝑡
, 𝑐2Δ𝑤𝑡 − 𝛾

𝜕𝑤𝑡
𝜕𝑡

)
| 𝑐, 𝑘 ∈ [𝜖,+∞) with 𝜖 > 0

}
.

Damped pendulum. The evolution follows the ODE

d2𝛼

d𝑡2
+ 𝜔20 sin 𝛼 + 𝛾

d𝛼

d𝑡
= 0,

where 𝛼𝑡 is the angle, 𝜔0 the proper pulsation (𝑇0 the period) and 𝛾 the damping coefficient.
The state 𝑢𝑡 =

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
. Our physical models are:

• Hamiltonian (Greydanus et al., 2019), a conservative approximation, with

FP =

{
𝑓HP :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
𝜕 ¤𝛼𝑡H

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
,−𝜕𝛼𝑡H

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

))
|H ∈ 𝐻1(ℝ2)

}
,

where 𝐻1(ℝ2) is the first order Sobolev space.

• Param ODE (𝜔0), the ideal, frictionless pendulum:

FP =

{
𝑓 𝜔0P :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
d𝛼𝑡
d𝑡
,−𝜔20 sin 𝛼𝑡

)
| 𝜔0 ∈ [𝜖,+∞) with 𝜖 > 0

}
;

• Param ODE (𝜔0, 𝛾), the full pendulum equation:

FP =

{
𝑓 𝜔0,𝛼P :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
d𝛼𝑡
d𝑡
,−𝜔20 sin 𝛼𝑡 − 𝛾

d𝛼𝑡
d𝑡

)
| 𝜔0, 𝛼 ∈ [𝜖,+∞) with 𝜖 > 0

}
.
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Baselines. As purely data-driven baselines, we use neural ordinary differential equation
(Neural ODE; Chen et al., 2018) for the three problems and PredRNN++ (Wang et al.,
2018, for reaction-diffusion only) which are competitive models for datasets generated by
differential equations and for spatio-temporal data. As MB/ML methods, in the ablations
studies (see Appendix A.6), we compare all problems, to the vanilla MB/ML cooperation
scheme found in Wang et al. (2019); Mehta et al. (2021). We also show results for True
PDE/ODE, which corresponds to the equation for data simulation. This does not lead to
zero error due to the difference between simulation and training integration schemes. For
the pendulum, we compare to Hamiltonian neural networks (Greydanus et al., 2019; Toth
et al., 2020) and to the deep Galerkin method (DGM; Sirignano and Spiliopoulos, 2018).
See additional details in Appendix A.5.

4.3.2 Results
We analyze and discuss below the results obtained for the three kind of dynamics. We suc-
cessively examine different evaluation or quality criteria. The conclusions are consistent
for the three problems, which allows us to highlight clear trends for all of them.

Forecasting accuracy. The data-driven models do not perform well compared to True
PDE/ODE (all values are test errors expressed as log MSE): −4.60 for PredRNN++ vs.
−9.17 for reaction-diffusion, −2.51 vs. −5.24 for wave equation, and −2.84 vs. −8.44 for
the pendulum in Table 4.1. The Deep Galerkin method for the pendulum in complete
physics DGM (𝜔0, 𝛾), being constrained by the equation, outperforms Neural ODE but
is far inferior to APHYNITY models. In the incomplete physics case, DGM (𝜔0) fails to
compensate for the missing information. The incomplete physical models, Param PDE (𝑎, 𝑏)
for the reaction-diffusion, Param PDE (𝑐) for the wave equation, and Param ODE (𝜔0) and
Hamiltonianmodels for the damped pendulum, have even poorer performances than purely
data-driven ones, as can be expected since they ignore important dynamical components,
e.g., friction in the pendulum case. Using APHYNITY with these imperfect physical
models greatly improves forecasting accuracy in all cases, significantly outperforming
purely data-driven models, and reaching results often close to the accuracy of the true
ODE, when APHYNITY and the true ODE models are integrated with the same numerical
scheme (which is different from the one used for data generation, hence the non-null errors
even for the true equations), e.g., −5.92 vs. −5.24 for the wave equation in Table 4.1. This
clearly highlights the capacity of our approach to augment incomplete physical models
with a learned data-driven component.
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Table 4.1: Forecasting and identification results on the (a) reaction-diffusion, (b) wave equation, and (c) damped pendulum
datasets. We set for (a) 𝑎 = 1×10−3, 𝑏 = 5×10−3, 𝑘 = 5×10−3, for (b) 𝑐 = 330, 𝑘 = 50 and for (c) 𝑇0 = 6, 𝛾 = 0.2 as true
parameters. logMSEs are computed respectively over 25, 25, and 40 predicted timesteps. %Err param. averages the resultswhen
several physical parameters are present. For each level of incorporated physical knowledge, equivalent best results according
to a Student t-test are shown in bold. — corresponds to non-applicable cases.

Dataset Method logMSE %Err param. ‖𝑓A‖2

(a) Reaction-diffusion Data-driven Neural ODE −3.76±0.02 — —
PredRNN++ −4.60±0.01 — —

Incomplete physics Param PDE (𝑎, 𝑏) −1.26±0.02 67.6 —
APHYNITY Param PDE (𝑎, 𝑏) −5.10±0.21 2.3 67

Complete physics Param PDE (𝑎, 𝑏, 𝑘) −9.34±0.20 0.17 —
APHYNITY Param PDE (𝑎, 𝑏, 𝑘) −9.35±0.02 0.096 1.5×10−6

True PDE −8.81±0.05 — —
APHYNITY True PDE −9.17±0.02 — 1.4×10−7

(b) Wave equation Data-driven Neural ODE −2.51±0.29 — —

Incomplete physics Param PDE (𝑐) 0.51±0.07 10.4 —
APHYNITY Param PDE (𝑐) −4.64±0.25 0.31 71

Complete physics Param PDE (𝑐, 𝑘) −4.68±0.55 1.38 —
APHYNITY Param PDE (𝑐, 𝑘) −6.09±0.28 0.70 4.54

True PDE −4.66±0.30 — —
APHYNITY True PDE −5.24±0.45 — 0.14

→ Continued on next page
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Table 4.1: Continued

Dataset Method logMSE %Err param. ‖𝑓A‖2

(c) Damped pendulum Data-driven Neural ODE −2.84±0.70 — —

Incomplete physics Hamiltonian −0.35±0.10 — —
APHYNITY Hamiltonian −3.97±1.20 — 623

Param ODE (𝜔0) −0.14±0.10 13.2 —
Deep Galerkin Method (𝜔0) −3.10±0.40 22.1 —
APHYNITY Param ODE (𝜔0) −7.86±0.60 4.0 132

Complete physics Param ODE (𝜔0, 𝛾) −8.28±0.40 0.45 —
Deep Galerkin Method (𝜔0, 𝛾) −3.14±0.40 7.1 —
APHYNITY Param ODE (𝜔0, 𝛾) −8.31±0.30 0.39 8.5

True ODE −8.58±0.20 — —
APHYNITY True ODE −8.44±0.20 — 2.3
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Physical parameter estimation. Confirming the phenomenonmentioned in the intro-
duction anddetailed inAppendixA.3, incomplete physicalmodels can lead to bad estimates
for the relevant physical parameters: an error respectively up to 67.6% and 10.4% for
parameters in the reaction-diffusion and wave equations, and an error of more than 13%
for parameters for the pendulum in Table 4.1. APHYNITY is able to significantly improve
physical parameters identification: 2.3% error for the reaction-diffusion, 0.3% for thewave
equation, and 4% for the pendulum. This validates the fact that augmenting a simple
physical model to compensate for its approximations is not only beneficial for prediction
but also helps to limit errors for parameter identification when dynamical models do not
fit data well. This is crucial for the interpretability and explainability of the estimates.

Ablation study. We conduct ablation studies to validate the importance of the APHY-
NITY augmentation compared to a naive strategy consisting in learning 𝑓 = 𝑓P + 𝑓A
without taking care of the quality of the decomposition, as done in Wang et al. (2019) and
Mehta et al. (2021). Results shown in Table A.4 of Appendix A.6 show a consistent gain
of APHYNITY for the three use cases and for all physical models: for instance for Param
ODE (𝑎, 𝑏) in reaction-diffusion, both forecastingperformances (logMSE=−5.10 vs. −4.56)
and identification parameter (Error = 2.33 % vs. 6.39 %) improve. Other ablation results
are provided in Appendix A.6 showing the relevance of the trajectory-based approach
described in Section 4.2.3 (vs. supervising over finite difference approximations of the
derivative 𝑓 ).

Flexibility. When applied to complete physical models, APHYNITY does not degrade
accuracy, contrary to a vanilla cooperation scheme (see ablations in Appendix A.6). This
is due to the least action principle of our approach: when the physical knowledge is
sufficient for properly predicting the observed dynamics, the model learns to ignore the
data-driven augmentation. This is shownby the normof the trained neural net component
𝑓A, which is reported in Table 4.1 last column: as expected, ‖𝑓A‖2 diminishes as the
complexity of the corresponding physical model increases, and, relative to incomplete
models, the norm becomes very small for complete physical models (for example in the
pendulum experiments, we have ‖𝑓A‖ = 8.5 for the APHYNITY model to be compared
with 132 and 623 for the incomplete models). Thus, we see that the norm of 𝑓A is a good
indication of how imperfect the physical models FP are. It highlights the flexibility of
APHYNITY to successfully adapt to very different levels of prior knowledge. Note also
that APHYNITY sometimes slightly improves over the true ODE, as it compensates for
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the error introduced by different numerical integration methods for data simulation and
training (see Appendix A.5).

(a) Param PDE (𝑎, 𝑏),
diffusion-only

(b) APHYNITY Param PDE (𝑎, 𝑏) (c) Ground truth simulation

Figure 4.2: Comparison of predictions of two components 𝑢 (top) and 𝑣 (bottom) of the
reaction-diffusion system. Note that 𝑡 = 4 is largely beyond the dataset horizon (𝑡 = 2.5).

(a) Neural ODE (b) APHYNITY Param PDE (𝑐) (c) Ground truth simulation

Figure 4.3: Comparison between the prediction of APHYNITY when 𝑐 is estimated and
NeuralODE for the dampedwave equation. Note that 𝑡 = 32 is already beyond the training
time horizon 𝑇 = 25.

Qualitative visualizations. Results in Figure 4.2 for reaction-diffusion show that the
incomplete diffusion parametric PDE in Figure 4.2a is unable to properly match ground
truth simulations: the behavior of the two components in Figure 4.2a is reduced to simple
independent diffusions due to the lack of interaction terms between 𝑣 and 𝑤. By using
APHYNITY in Figure 4.2b, the correlation between the two components appears together
with the formation of Turing patterns, which is very similar to the ground truth. This
confirms that 𝑓A can learn the reaction terms and improve prediction quality. In Figure 4.3,
we see for thewave equation that the data-drivenNeuralODEmodel fails at approximating
d𝑤
d𝑡 as the forecast horizon increases: it misses crucial details for the second component
d𝑤
d𝑡 which makes the forecast diverge from the ground truth. APHYNITY incorporates a
Laplacian term as well as the data-driven 𝑓A thus capturing the damping phenomenon and
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succeeding in maintaining physically sound results for long-term forecasts, unlike Neural
ODE.

Extension to non-stationary dynamics. We provide additional results in Ap-
pendix A.7 to tackle datasets where the physical parameters of the equations vary in each
sequence. To this end, we design an encoder able to performparameter estimation for each
sequence. Results show that APHYNITY accommodates well to this setting, with similar
trends as those reported in this section.

Additional illustrations We give further visual illustrations to demonstrate how the
estimation of parameters in incomplete physical models is improved with APHYNITY.
For the reaction-diffusion equation, we show that the incomplete parametric PDE under-
estimates both diffusion coefficients. The difference is visually recognizable between the
poorly estimated diffusion (Figure 4.4a) and the true one (Figure 4.4c) while APHYNITY
gives a fairly good estimation of those diffusion parameters as shown in Figure 4.4b.

(a) 𝑎 = 0.33×10−3, 𝑏 = 0.94×10−3,
diffusion estimated with Param

PDE (𝑎, 𝑏)

(b) 𝑎 = 0.97×10−3, 𝑏 = 4.75×10−3,
diffusion estimated with

APHYNITY Param PDE (𝑎, 𝑏)

(c) 𝑎 = 1.00×10−3, 𝑏 = 5.00×10−3,
true diffusion

Figure 4.4: Diffusion predictions using coefficient for reaction-diffusion, either learned
with (a) incomplete physicalmodel ParamPDE (𝑎, 𝑏), or (b) APHYNITY-augmented Param
PDE (𝑎, 𝑏), compared with the (c) true diffusion.

4.4 Conclusion
In this work, we introduce the APHYNITY framework that can efficiently augment
approximate physical models with deep data-driven networks, performing similarly to
models for which the underlying dynamics are entirely known. We exhibit the superiority
of APHYNITY over data-driven, incomplete physics, and state-of-the-art approaches
combiningML andMBmethods, both in terms of forecasting and parameter identification
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on three various classes of physical systems. Besides, APHYNITY is flexible enough to
adapt to different approximation levels of prior physical knowledge.

An appealing perspective is the applicability of APHYNITY in partially-observable settings,
such as video prediction. Besides, we hope that the APHYNITY framework will open up
the way to the design of a wide range of more flexible MB/ML models, e.g., in climate
science, robotics, or reinforcement learning. In particular, analyzing the theoretical
decomposition properties in a partially-observed setting is an important direction for
future work.
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Chapter 5

Learning to Generalize in Known Systems
Learning Dynamical Systems that Generalize across Environments

In this chapter, we present our contribution on leveraging the common knowledge in data
retrieved from different dynamics. The goal is to show how the commonalities in the
multi-source data can be exploited to improve the generalization in both known and novel
dynamics. This work resulted in a conference paper at NeurIPS 2021 and paved the way
for our next contribution in Chapter 6.

YuanYin, IbrahimAyed, Emmanuel de Bézenac, Nicolas Baskiotis, PatrickGallinari.
LEADS: Learning dynamical systems that generalize across environments. NeurIPS
2021.
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5.1 Introduction
Data-driven approaches offer an interesting alternative and complement to physical-based
methods for modeling the dynamics of complex systems and are particularly promising in
a wide range of settings: for example, if the underlying dynamics are partially known or
understood, if the physical model is incomplete, inaccurate, or fails to adapt to different
contexts, or if external perturbation sources and forces are not modeled. The idea of
deployingmachine learning (ML) tomodel complex dynamical systemspickedmomentum
a few years ago, relying on recent deep learning progresses and on the development of new
methods targeting the evolution of temporal and spatiotemporal systems (Brunton et al.,
2016; de Bézenac et al., 2018; Chen et al., 2018; Long et al., 2018b; Raissi et al., 2019; Ayed
et al., 2022; Yin et al., 2021b). It is already being applied in different scientific disciplines
(see Willard et al. (2023) for a recent survey) and could help accelerate scientific discovery
to address challenging domains such as climate (Reichstein et al., 2019) or health (Fresca
et al., 2020).

However, despite promising results, current developments are limited and usually postu-
late an idealized setting where data is abundant and the environment does not change, the
so-called “i.i.d. hypothesis”. In practice, real-world data may be expensive or difficult
to acquire. Moreover, changes in the environment may be caused by many different
factors. For example, in climate modeling, there are external forces, e.g., Coriolis, which
depend on the spatial location (Gurvan et al., 2022); or, in health science, parameters
need to be personalized for each patient as for cardiac computational models (Neic et al.,
2017). More generally, data acquisition and modeling are affected by different factors such
as geographical position, sensor variability, measuring circumstances, etc. The classical
paradigm either considers all the data as i.i.d. and looks for a global model, or proposes
specific models for each environment. The former disregards discrepancies between
the environments, thus leading to a biased solution with an averaged model which will
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usually perform poorly. The latter ignores the similarities between environments, thus
affecting generalization performance, particularly in settings where per-environment data
is limited. This is particularly problematic in dynamical settings, as small changes in initial
conditions lead to trajectories not covered by the training data.

In this work, we consider a setting where it is explicitly assumed that the trajectories
are collected from different environments. Note that in this setting, the i.i.d. hypothesis
is removed twice: by considering the temporality of the data and by the existence of
multiple environments. In many useful contexts, the dynamics in each environment share
similarities, while being distinct which translates into changes in the data distributions.
Our objective is to leverage the similarities between environments in order to improve the
modeling capacity and generalization performance, while still carefully dealing with the
discrepancies across environments. This brings us to consider two research questions:

RQ1 Does modeling the differences between environments improve generalization error
w.r.t. classical settings: ONE-FOR-ALL, where a unique function is trained for all
environments; and ONE-PER-ENV., where a specific function is fitted for each
environment? (cf. Section 5.4 for more details)

RQ2 Is it possible to extrapolate to a novel environment that has not been seen during
training?

We propose LEarning Across Dynamical Systems (LEADS), a novel learning methodology
decomposing the learned dynamics into shared and environment-specific components. The
learning problem is formulated such that the shared component captures the dynamics
common across environments and exploits all the available data, while the environment-
specific component only models the remaining dynamics, i.e., those that cannot be ex-
pressed by the former, based on environment-specific data. We show, under mild con-
ditions, that the learning problem is well-posed, as the resulting decomposition exists and
is unique (Section 5.2.2). We then analyze the properties of this decomposition from a
sample complexity perspective. While, in general, the bounds might be too loose to be
practical, a more precise study is conducted in the case of linear dynamics for which
theory and practice are closer. We then instantiate this framework for more general
hypothesis spaces and dynamics, leading to a heuristic for the control of generalization
that will be validated experimentally. Overall, we show that this framework provides
better generalization properties than ONE-PER-ENV., requiring less training data to reach
the same performance level (RQ1). The shared information is also useful to extrapolate to
unknown environments: the new function for this environment can be learned from very
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little data (RQ2). We experimentwith these ideas on three representative cases (Section 5.4)
where the dynamics are provided by differential equations: ODEs with the Lotka-Volterra
predator-prey model, and PDEs with the Gray-Scott reaction-diffusion and the more
challenging incompressible Navier-Stokes equations. Experimental evidence confirms
the intuition and the theoretical findings: with a similar amount of data, the approach
drastically outperforms ONE-FOR-ALL and ONE-PER-ENV. settings, especially in low data
regimes. To our knowledge, it is the first time that generalization in multiple dynamical
systems is addressed from an ML perspective.

5.2 Approach

5.2.1 Problem Setting

We consider the problem of learning models of dynamical physical processes with data
acquired from a set of environments E . Throughout the paper, we will assume that the
dynamics in an environment 𝑒 ∈ E are defined through the evolution of differential equa-
tions. This will provide in particular a clear setup for the experiments and the validation.
For a given problem, we consider that the dynamics of the different environments share
common factors while each environment has its own specificity, resulting in a distinct
model per environment. Both the general form of the differential equations and the
specific terms of each environment are assumed to be completely unknown. 𝑢𝑒𝑡 denotes
the state of the equation for environment 𝑒, taking its values from a bounded set U , with
evolution term 𝑓𝑒 : U → TU , TU being the tangent bundle of U . In other words, over a
fixed time interval I = [0, 𝑇] , we have:

d𝑢𝑒

d𝑡
= 𝑓𝑒(𝑢𝑒) (5.1)

We assume that, for any 𝑒, 𝑓𝑒 lies in a functional vector space F . In the experiments, we
will consider one ordinary differential equation (ODE), in which case U ⊂ ℝ𝑑 , and two
partial differential equations (PDEs), in which case U is a 𝑝-dimensional vector field over
a bounded spatial domain Ω ⊂ ℝ𝑝 discretized on a regular grid X ⊂ Ω. The term of
the data-generating dynamical system in Eq. (5.1) is sampled from a distribution for each
𝑒, i.e. 𝑓𝑒 ∼ 𝑄. From 𝑓𝑒, we define 𝛤𝑒, the distribution of time-continuous trajectories 𝑢𝑒

verifying Eq. (5.1), induced by a distribution of initial states 𝑢𝑒0 ∼ 𝜌0(U ). The data for this
environment is then composed of 𝑁 trajectories sampled from 𝛤𝑒, they are also discretized
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on a set of timestamps T ⊂ I = [0, 𝑇] , and is denoted asD𝑒 = {𝑢𝑒,(𝑖) |T | 𝑢𝑒0 ∼ 𝜌0(U ), 𝑢𝑒 ∈
𝛤 𝑒}𝑖∈È1,𝑁É. We will denote the full dataset byD =

⋃
𝑒∈E D𝑒.

The classical empirical risk minimization (ERM) framework suggests modeling the data
dynamics either at the global level (ONE-FOR-ALL), taking trajectories indiscriminately
from D, or at the specific environment level (ONE-PER-ENV.), training one model for each
D𝑒. Our aim is to formulate a new learning framework with the objective of explicitly
considering the existence of different environments to improve the modeling strategy
w.r.t. the classical ERM settings.

5.2.2 LEADS Framework

We decompose the dynamics into two components where 𝑓 ∈ F is shared across
environments and 𝑔𝑒 ∈ F is specific to the environment 𝑒, so that

∀𝑒 ∈ E , 𝑓𝑒 = 𝑓 + 𝑔𝑒 (5.2)

Since we consider functional vector spaces, this additive hypothesis is not restrictive and
such a decomposition always exists. It is also quite natural as a sum of evolution terms can
be seen as the sum of the forces acting on the system. Note that the sum of two evolution
terms can lead to behaviors very different from those induced by each of those terms.
However, learning this decomposition from data defines an ill-posed problem: for any
choice of 𝑓 , there is a {𝑔𝑒}𝑒∈E such that Eq. (5.2) is verified. A trivial example would be
𝑓 = 0 leading to a solution where each environment is fitted separately.

Our core idea is that 𝑓 should capture as much of the shared dynamics as is possible, while
𝑔𝑒 should focus only on the environment characteristics not captured by 𝑓 . To formalize
this intuition, we introduce R(𝑔𝑒), a penalization on 𝑔𝑒, which precise definition will
depend on the considered setting. We reformulate the learning objective as the following
constrained optimization problem:

min
𝑓 ,{𝑔𝑒}𝑒∈𝐸

∑
𝑒∈E

R(𝑔𝑒)

subject to ∀𝑢𝑒,(𝑖) ∈ D,∀𝑡 ∈ T ,
d𝑢𝑒,(𝑖)𝑡

d𝑡
= (𝑓 + 𝑔𝑒)(𝑢𝑒,(𝑖)𝑡 )

(5.3)

MinimizingR aims to reduce 𝑔𝑒s’ complexity while correctly fitting the dynamics of each
environment. This argument will be made formal in the next section. Note that 𝑓 will
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be trained on the data from all environments contrary to 𝑔𝑒s. A key question is then to
determine underwhich conditions theminimum inEq. (5.3) iswell-defined. The following
proposition provides an answer:

Proposition 5.1 (Existence and Uniqueness). AssumeR is convex, then the existence of
a minimal decomposition 𝑓★, {𝑔★𝑒 }𝑒∈E ∈ F of Eq. (5.3) is guaranteed. Furthermore, if R
is strictly convex, this decomposition is unique.

+ Proof in Appendix B.1, p. 197

In practice, we consider the following relaxed formulation of Eq. (5.3):

min
𝑓 ,{𝑔𝑒}𝑒∈E

∑
𝑒∈E

(
1

𝜆
R(𝑔𝑒) +

𝑁∑
𝑖=1

∑
𝑡∈T





d𝑢𝑒,(𝑖)𝜏

d𝑡
− (𝑓 + 𝑔𝑒)(𝑢𝑒,(𝑖)𝑡 )





2) (5.4)

where 𝑓 , 𝑔𝑒 are taken from a hypothesis space F̂ approximating F . 𝜆 is a regularization
weight and the integral term constrains the learned 𝑓 + 𝑔𝑒 to follow the observed dynamics.
The form of this objective and its effective calculation will be detailed in Section 5.4.4.

5.3 Improving Generalization with LEADS
Defining an appropriate R is crucial for our method. In this section, we show that the
generalization error should decrease with the number of environments. While the bounds
might be too loose for neural networks (NNs), our analysis is shown to adequately model
the decreasing trend in the linear case, linking both our intuition and our theoretical
analysis with empirical evidence. This then allows us to construct an appropriate R for
NNs.

5.3.1 General Case

After introducing preliminary notations and definitions, we define the hypothesis spaces
associated with our multiple environment framework. Considering a first setting where
all environments of interest are present at training time, we prove an upper bound of their
effective size based on the covering numbers of the approximation spaces. This allows us
to quantitatively control the sample complexity of our model, depending on the number
of environments 𝑚 and other quantities that can be considered and optimized in practice.
We then consider an extension for learning in a new and unseen environment. The bounds
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here are inspired by ideas initially introduced in Baxter (2000). They consider multi-task
classification in vector spaces, where the task-specific classifiers share a common feature
extractor. Our extension considers sequences corresponding to dynamical trajectories,
and a model with additive components instead of function composition in their case.

Definitions. Sample complexity theory is usually defined for supervised contexts,
where for a given input 𝑧 we want to predict some target 𝑦. In our setting, we want to
learn trajectories 𝑢𝑒

��
T starting from an initial condition 𝑢0. We reformulate this problem

and cast it as a standard supervised learning problem: 𝛤𝑒 being the data distribution of
trajectories for environment 𝑒, as defined in Section 5.2.1, let us consider a trajectory
𝑢𝑒 ∼ 𝛤𝑒, and time 𝑡 ∈ T ∼ Unif([0, 𝑇]); we define system states 𝑧 = 𝑢𝑒𝑡 ∈ U as input,
and the corresponding values of derivatives 𝑦 = 𝑓𝑒(𝑢𝑒𝑡 ) ∈ TU as the associated target. We
will denoteP𝑒 the underlying distribution of (𝑧, 𝑦), and P̂𝑒 the associated dataset of size 𝑛.

We are searching for 𝑓 , 𝑔𝑒 : U → TU in an approximation function space F̂ of the original
spaceF . Let us define Ĝ ⊆ F̂ the effective function space from which the 𝑔𝑒s are sampled.
Let 𝑓 + Ĝ B {𝑓 + 𝑔 : 𝑔 ∈ Ĝ} be the hypothesis space generated by function pairs
(𝑓 , 𝑔), with a fixed 𝑓 ∈ F̂ . For any ℎ : U → TU , the error on some test distribution P𝑒

is given by erP𝑒 (ℎ) =
∫
U×TU ‖ℎ(𝑧) − 𝑦‖

2dP𝑒(𝑧, 𝑦) and the error on the training set by
êrP̂𝑒
(ℎ) = 1

𝑛

∑
(𝑧,𝑦)∈P̂𝑒

‖ℎ(𝑧) − 𝑦‖2.

LEADS sample complexity. Let CĜ (𝜀, F̂) and CF̂ (𝜀, Ĝ) denote the capacity of F̂ and
Ĝ at a certain scale 𝜀 > 0. Such capacity describes the approximation ability of the space.
The capacity of a class of functions is defined based on covering numbers, and the precise
definition is provided in Appendix B.2.2, Table B.1. The following result is general and
applies for any decomposition of the form 𝑓 + 𝑔𝑒. It states that to guarantee a given average
test error, the minimal number of samples required is a function of both capacities and the
number of environments 𝑚, and it provides a step towards RQ1:

Proposition 5.2. Given𝑚 environments, let 𝜀1, 𝜀2, 𝛿 > 0, 𝜀 = 𝜀1+𝜀2. Assume the number
of examples 𝑛 per environment satisfies

𝑛 ≥ max

{
64

𝜀2

(
1

𝑚

(
log

4

𝛿
+ log CĜ

( 𝜀1
16
, F̂

))
+ log CF̂

( 𝜀2
16
, Ĝ

))
,
16

𝜀2

}
(5.5)

Then with probability at least 1 − 𝛿 (over the choice of training sets {P̂𝑒}), any learner
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(𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚) will satisfy 1
𝑚

∑
𝑒∈E erP𝑒 (𝑓 + 𝑔𝑒) ≤ 1

𝑚

∑
𝑒∈E êrP̂𝑒

(𝑓 + 𝑔𝑒) + 𝜀.

+ Proof in Appendix B.2.2, p. 200

The contribution of F̂ to the sample complexity decreases as 𝑚 increases, while that of
Ĝ remains the same: this is due to the fact that shared functions 𝑓 have access to the data
from all environments, which is not the case for 𝑔𝑒. From this finding, one infers the basis
of LEADS: when learning from several environments, to control the generalization error
through the decomposition 𝑓𝑒 = 𝑓 + 𝑔𝑒, 𝑓 should account for most of the complexity of 𝑓𝑒 while
the complexity of 𝑔𝑒 should be controlled and minimized. We then establish an explicit link
to our learning problem formulation in Eq. (5.3). Further in this section, we will show for
linearODEs that the optimization ofR(𝑔𝑒) in Eq. (5.4) controls the capacity of the effective
set Ĝ by selecting 𝑔𝑒s that are as “simple” as possible.

As a corollary, we show that for a fixed total number of samples in D̂, the sample
complexity will decrease as the number of environments increases. To see this, suppose
that we have two situations corresponding to data generated respectively from𝑚 and𝑚/𝑏
environments. The total sample complexity for each case will be respectively bounded
by 𝑂(log CĜ (

𝜀1
16
, F̂) + 𝑚 log CF̂ (

𝜀2
16
, Ĝ)) and 𝑂(𝑏 log CĜ (

𝜀1
16
, F̂) + 𝑚 log CF̂ (

𝜀2
16
, Ĝ)). The

latter being larger than the former, a situation with more environments presents a clear
advantage. Figure 5.4 in Section 5.4 confirms this result with empirical evidence.

LEADS sample complexity for novel environments. Suppose that problem Eq. (5.3)
has been solved for a set of environments E , can we use the learned model for a new
environment not present in the initial training set (RQ2)? Let 𝑒′ be such anewenvironment,
P𝑒′ the trajectory distribution of 𝑒′, generated fromdynamics 𝑓𝑒′ ∼ 𝑄, and P̂𝑒′ an associated
training set of size 𝑛′. The following results show that the number of required examples
for reaching a given performance is much lower when training 𝑓 + 𝑔𝑒′ with 𝑓 fixed on this
new environment than training another 𝑓 ′ + 𝑔𝑒′ from scratch.

Proposition 5.3. For all 𝜀, 𝛿 with 0 < 𝜀, 𝛿 < 1 if the number of samples 𝑛′ satisfies

𝑛′ ≥ max

{
64

𝜀2
log

4C ( 𝜀
16
, 𝑓 + Ĝ)
𝛿

,
16

𝜀2

}
, (5.6)

then with probability at least 1 − 𝛿 (over the choice of novel training set P̂𝑒′ ), any learner
𝑓 + 𝑔𝑒′ ∈ 𝑓 + Ĝ will satisfy erP𝑒′ (𝑓 + 𝑔𝑒′) ≤ êrP̂𝑒′

(𝑓 + 𝑔𝑒′) + 𝜀.
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+ Proof in Appendix B.2.2, p. 200

In Proposition 5.3 as the capacity of F̂ no longer appears, the number of required samples
now depends only on the capacity of 𝑓 + Ĝ. This sample complexity is then smaller than
learning from scratch 𝑓𝑒′ = 𝑓 + 𝑔𝑒′ as can be seen by comparing with Proposition 5.2 at
𝑚 = 1.

From the previous propositions, it is clear that the environment-specific functions 𝑔𝑒 need
to be explicitly controlled. We now introduce a practical way to do that. Let 𝜔(𝑟, 𝜀) be a
strictly increasing function w.r.t. 𝑟 such that

log CF̂ (𝜀, Ĝ) ≤ 𝜔(𝑟, 𝜀), 𝑟 = sup𝑔∈Ĝ R(𝑔) (5.7)

MinimizingRwould reduce 𝑟 and then the sample complexity of our model by constrain-
ing Ĝ. Our goal is thus to construct such a pair (𝜔,R). In the following, we will first
show in Section 5.3.2, how one can construct a penalization termR based on the covering
number bound for linear approximators and linear ODEs. We show with a simple use case
that the generalization error obtained in practice follows the same trend as the theoretical
error bound when the number of environments varies. Inspired by this result, we then
propose in Section 5.3.3 an effective R to penalize the complexity of the neural networks
𝑔𝑒.

5.3.2 Linear Case: Theoretical Bounds Correctly Predict the Trend
of Test Error

Results in Section 5.3.1 provide general guidelines for our approach. We now apply them
to a linear system to see how the empirical results meet the tendency predicted by the
theoretical bound.

Let us consider a linearODE d𝑢𝑒

d𝑡 = L𝑭𝑒 (𝑢𝑒)whereL𝑭𝑒 : 𝑢𝑡 ↦→ 𝑭𝑒𝑢𝑡 is a linear transformation
associated to the square real-valued matrix 𝑭𝑒 ∈ 𝑀𝑑,𝑑 (ℝ). We choose as hypothesis
space the space of linear functions F̂ ⊂ L(ℝ𝑑 ,ℝ𝑑) and instantiate a linear LEADS
d𝑢𝑒

d𝑡 = (L𝑭 + L𝑮𝑒)(𝑢𝑒), L𝑭 ∈ F̂ , L𝑮𝑒 ∈ Ĝ ⊆ F̂ . As suggested in Bartlett et al. (2017), we
have that:

Proposition 5.4. If for all linear maps L𝑮𝑒 ∈ Ĝ, ‖𝑮‖2𝐹 ≤ 𝑟, if the input space is bounded



92 CHAPTER 5. Learning to Generalize in Known Systems

s.t. ‖𝑢‖2 ≤ 𝑏, and the mean square error (MSE) loss function is bounded by 𝑐, then

log CF̂ (𝜀, Ĝ) ≤
⌈
𝑟𝑐𝑑(2𝑏)2

𝜀2

⌉
log 2𝑑2 =: 𝜔(𝑟, 𝜀) (5.8)

+ Proof in Appendix B.2.3, p. 203

𝜔(𝑟, 𝜀) is a strictly increasing function w.r.t. 𝑟. This indicates that we can chooseR(L𝑮) =
‖𝑮‖𝐹 as our optimization objective in Eq. (5.3). The sample complexity in Eq. (5.5) will
decrease with the size the largest possible 𝑟 = supL𝑮∈Ĝ R(L𝑮). The optimization process
will reduce R(L𝑮) until a minimum is reached. The maximum size of the effective
hypothesis space is then bounded and decreases throughout training thanks to the penalty.
Then in linear case Proposition 5.2 becomes:

Proposition 5.5. If for linear maps L𝑭 ∈ F̂ , ‖𝑭 ‖2𝐹 ≤ 𝑟
′, L𝑮 ∈ Ĝ, ‖𝑮‖2𝐹 ≤ 𝑟, ‖𝑢‖2 ≤ 𝑏,

and if the MSE loss function is bounded by 𝑐, given 𝑚 environments and 𝑛 samples per
environment, with the probability 1 − 𝛿 , the generalization error upper bound is

𝜀 = max


√
(𝑝 +

√
𝑝2 + 4𝑞)
2

,

√
16

𝑛

 (5.9)

where 𝑝 = 64
𝑚𝑛 log

4
𝛿 and 𝑞 =

64
𝑛

⌈( 𝑟′

𝑚𝑙2
+ 𝑟
(1−𝑙)2

)
𝑐𝑑(32𝑏)2

⌉
log 2𝑑2 for any 0 < 𝑙 < 1.

+ Proof in Appendix B.2.3, p. 203

In Figure 5.1, we take an instance of linear ODE defined by 𝑭𝑒 = 𝑸𝚲𝑒𝑸> with the diagonal
𝚲𝑒 specific to each environment. After solving Eq. (5.3) we have at the optimum that
𝑮𝑒 = 𝑭𝑒 − 𝑭★ = 𝑭𝑒 − 1

𝑚

∑
𝑒′∈E 𝑭𝑒′ . Then we can take 𝑟 = max{L𝑮𝑒 }R(L𝑮𝑒) as the norm

bound of Ĝ when R(𝑔𝑒) is optimized. Figure 5.1 shows on the left the test error with
and without penalty and the corresponding theoretical bound on the right. We observe
that, after applying the penalty R, the test error is reduced as well as the theoretical
generalization bound, as indicated by the arrows from the dashed line to the concrete one.
See Appendix B.2.3 for more details on this experiment.

5.3.3 Nonlinear Case: Instantiation for Neural Networks

The above linear case validates the ideas introduced in Proposition 5.2 and provides an
instantiation guide and an intuition on the more complex nonlinear case. This motivates
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Figure 5.1: Test error compared with the corresponding theoretical bound. The arrows
indicate the changes after applyingR(𝑔𝑒) penalty.

us to instantiate the general case by choosing an appropriate approximating space F̂ and
a penalization function R from the generalization bounds for the corresponding space.
Appendix B.2.4 of the Appendix contains additional details justifying those choices. For F̂ ,
we select the space of feed-forward neural networks with a fixed architecture. We choose
the following penalty function:

R(𝑔𝑒) = ‖𝑔𝑒‖2∞ + 𝛼‖𝑔𝑒‖2Lip (5.10)

where ‖𝑔‖∞ = ess sup |𝑔 | and ‖ · ‖Lip is the Lipschitz semi-norm, 𝛼 is a hyperpa-
rameter. This is inspired by the existing capacity bound for NNs (Haussler, 1992) (see
Appendix B.2.4 for details). Note that constructing tight generalization bounds for neural
networks is still an open research problem (Nagarajan and Kolter, 2019); however, it
may still yield valuable intuitions and guide algorithm design. This heuristic is tested
successfully on three different datasetswith different architectures in the experiments (Sec-
tion 5.4).

5.4 Experiments

Our experiments are conducted on three families of dynamical systems described by three
broad classes of differential equations. All exhibit complex and nonlinear dynamics. The
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first one is an ODE-driven system used for biological system modeling. The second
one is a PDE-driven reaction-diffusion model, well-known in chemistry for its variety
of spatiotemporal patterns. The third one is the more physically complex Navier-Stokes
equation, expressing the physical laws of incompressible Newtonian fluids. To show the
general validity of our framework, we will use 3 different NN architectures: multi-layer
perceptron (MLP), convolutional neural network (ConvNet), and Fourier neural operator
(FNO; Li et al., 2021b). Each architecture is well-adapted to the corresponding dynamics.
This also shows that the framework is valid for a variety of approximating functions.

5.4.1 Dynamics, Environments, and Datasets

Lotka-Volterra. This classical model (Lotka, 1925) is used for describing the dynamics
of interaction between a predator and a prey. The dynamics follow the ODE:

d𝑥

d𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦,

d𝑦

d𝑡
= 𝛿𝑥𝑦 − 𝛾 𝑦

(5.11)

with 𝑥(𝑡), 𝑦(𝑡) the number of prey and predator, 𝛼, 𝛽, 𝛾, 𝛿 > 0 defining how the two species
interact. The system state is 𝑢𝑒(𝑡) = (𝑥𝑒(𝑡), 𝑦𝑒(𝑡)) ∈ ℝ2

+. The initial conditions 𝑢𝑖0, 𝑣
𝑖
0

are sampled from a uniform distribution 𝜌0(U ). We characterize the dynamics by 𝜃P =
(𝛼/𝛽, 𝛾/𝛿) ∈ ΘP. An environment 𝑒 is then defined by parameters 𝜃𝑒P sampled from a uniform
distribution over a parameter setΘP. We then sample two sets of environment parameters:
one used as training environments for RQ1, the other treated as novel environments for
RQ2.

Gray-Scott. This reaction-diffusion model is famous for its complex spatiotemporal
behavior given its simple equation formulation (Pearson, 1993). The governing PDE is:

𝜕𝑣

𝜕𝑡
= 𝐷𝑣Δ𝑣 − 𝑣𝑤2 + 𝐹𝑟 (1 − 𝑣)

𝜕𝑤

𝜕𝑡
= 𝐷𝑤Δ𝑤 + 𝑣𝑤2 − (𝐹𝑟 + 𝑘𝑟)𝑤

(5.12)

where the 𝑣, 𝑤 represent the concentrations of two chemical components in the spatial
domainΩwith periodic boundary conditions, the state at time 𝑡 is𝑢𝑒𝑡 = (𝑣𝑒𝑡 , 𝑤𝑒𝑡 ) ∈ ℝ2×32×32

+ ,
spatially discretized on a 32-by-32 regular grid. 𝐷𝑣, 𝐷𝑤 denote the diffusion coeffi-
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cients respectively for 𝑣, 𝑤, and are held constant, and 𝐹𝑟 , 𝑘𝑟 are the reaction parameters
determining the spatiotemporal patterns of the dynamics (Pearson, 1993). As for the
initial conditions (𝑣0, 𝑤0) ∼ 𝜌0(U ), we consider uniform concentrations, with three 2-
by-2 squares fixed at other concentration values and positioned at uniformly sampled
positions in Ω to trigger the reactions. An environment 𝑒 is defined by its parameters
𝜃𝑒 = (𝐹𝑟,𝑒, 𝑘𝑟,𝑒) ∈ ΘP. We consider a set of 𝜃𝑒 parameters uniformly sampled from the
environment distribution 𝑄 on ΘP.

Navier-Stokes. We consider the Navier-Stokes PDE for incompressible flows:

𝜕𝑤

𝜕𝑡
= −𝑣 · ∇𝑤 + 𝜈Δ𝑤 + ℎ ∇ · 𝑣 = 0 (5.13)

where 𝑣 is the velocity field, 𝑤 = ∇ × 𝑣 is the vorticity, both 𝑣, 𝑤 lie in a spatial domain
Ω with periodic boundary conditions, 𝜈 is the viscosity and ℎ is the constant forcing term
in the domain Ω. The discretized state on a regular grid X at time 𝑡 is the vorticity 𝑢𝑒𝑡 =
𝑤𝑒𝑡

��
X ∈ ℝ32×32. Note that 𝑣 is already contained in 𝑤 and can be recovered from it. We

fix 𝜈 = 10−3 across the environments. We sample the initial conditions 𝑤𝑒0 ∼ 𝜌0(U ) as in
Li et al. (2021b). An environment 𝑒 is defined by its forcing term ℎ𝑒 ∈ ΘP. We uniformly
sampled a set of forcing terms from 𝑄 on ΘP.

Datasets. For training, we create two datasets for Lotka-Volterra by simulating trajecto-
ries of 𝐾 = 20 successive points with temporal resolution 𝛿𝑡 = 0.5. We use the first one as
a set of training dynamics to validate the LEADS framework. We choose 10 environments
and simulate 𝑁tr = 8 trajectories, i.e., 𝑛 = 8 · 𝐾 states, per environment for training. We
can then easily control the number of data points and environments in experiments by
taking different subsets. The second one is used to validate the improvement with LEADS
while training in novel environments. We simulate 𝑁tr = 1 trajectory (𝑛 = 1 · 𝐾 states)
for training. We create two datasets for further validation of LEADS with Gray-Scott and
Navier-Stokes. For Gray-Scott, we simulate trajectories of 𝐾 = 10 steps with 𝛿𝑡 = 40.
We choose 3 parameters and simulate 𝑁tr = 1 trajectory (𝑛 = 1 · 𝐾 states) for training.
For Navier-Stokes, we simulate trajectories of 𝐾 = 10 steps with 𝛿𝑡 = 1. We choose 4
forcing terms and simulate 𝑁tr = 8 trajectories (𝑛 = 8 · 𝐾 states) for training. For test-
time evaluation, we create for each equation in each environment a test set of 𝑁ts = 32

trajectories (32 ·𝐾) data points. Note that every environment dataset has the same number
of trajectories and the initial conditions are fixed to equal values across the environments
to ensure that the data variations only come from the dynamics themselves, i.e., for the 𝑖-th
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trajectory in P̂𝑒, ∀𝑒, 𝑢𝑒,(𝑖)0
= 𝑢(𝑖)

0
. Lotka-Volterra and Gray-Scott data are simulated with the

DOPRI5 solver in NumPy (Dormand and Prince, 1980; Harris et al., 2020). Navier-Stokes
data is simulated with the pseudo-spectral method as in Li et al. (2021b).
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Figure 5.2: Left: final states for Gray-Scott and Navier-Stokes predicted by the two
best baselines (ONE-PER-ENV. and FT-NODE) and LEADS compared with ground truth.
Different environments are arranged by row (3 in total). Right: the corresponding MAE
error maps, the scale of the error map is [0, 0.6] for Gray-Scott, and [0, 0.2] for Navier-
Stokes; darker is smaller. (See Appendix B.4 for full sequences)
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Figure 5.3: Test predicted Lotka-Volterra trajectories in phase space with two baselines
(ONE-PER-ENV. and FT-NODE) and LEADS compared with ground truth for 4 environ-
ments, one per figure from left to right. Quantity of the prey 𝑣 and the predator 𝑤
respectively on the horizontal and the vertical axis. The initial state is the rightmost end-
point of the figures and it is common to all the trajectories.

5.4.2 Experimental Settings and Baselines
We validate LEADS in two settings: in the first one all the environments in E are available
at once and then 𝑓 and all the 𝑔𝑒s are all trained on E . In the second one, training has been
performed on E as before, and we consider a novel environment 𝑒′ ∉ E : the shared term 𝑓

being kept fixed, the approximating function 𝑓𝑒′ = 𝑓 + 𝑔𝑒′ is trained on the data from 𝑒′ (i.e.,
only 𝑔𝑒′ is modified).

All environments available at once. We introduce five baselines used for comparing
with LEADS:
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(a) ONE-FOR-ALL: learning on the entire dataset P̂ over all environments with the sum
of a pair of NNs 𝑓 + 𝑔, with the standard ERM principle, as in Ayed et al. (2022).
Although this is equivalent to using only one function 𝑓 , we use this formulation to
indicate that the number of parameters is the same for this experiment and for the
LEADS ones.

(b) ONE-PER-ENV.: learning a specific function for each dataset P̂𝑒. For the same reason
as above, we keep the sum formulation (𝑓 + 𝑔)𝑒.

(c) Factored Tensor RNN or FT-RNN (Spieckermann et al., 2015): it modifies the
recurrent neural network to integrate a one-hot environment code into each linear
transformation of the network. Instead of being encoded in a separate function 𝑔𝑒
like in LEADS, the environment appears here as an extra one-hot input for the RNN
linear transformations. This can be implemented for representative SOTA (spatio-
)temporal predictors such as GRU (Cho et al., 2014) or PredRNN (Wang et al., 2017).

(d) FT-NODE: a baseline for which the same environment encoding as FT-RNN is
incorporated in a neural ordinary differential equation (Neural ODE; Chen et al.,
2018).

(e) Gradient-based meta learning (GBML) like method: we propose a GBML-like
baseline which can directly compare to our framework. It follows the principle
of model-agnostic meta learning (MAML; Finn et al., 2017), by training ONE-FOR-
ALL at first which provides an initialization near the given environments like GBML
does, then fitting it individually for each training environment.

(f) LEADS NO MIN.: ablation baseline, our proposal without theR(𝑔𝑒) penalization.

A comparison with the different baselines is proposed in Table 5.1 for the three dynamics.
For concision, we provide a selection of results corresponding to 𝑁tr = 1 training
trajectory per environment for Lotka-Volterra and Gray-Scott and 𝑁tr = 8 for Navier-
Stokes. This is the minimal training set size for each dataset. Further experimental results
when varying the number of environments from 𝑁tr = 1 to 𝑁tr = 8 are provided in
Figure 5.4 and Table B.3 for Lotka-Volterra.

Learning on novel environments. We consider the following training schemes with
a pre-trained, fixed 𝑓 :

(a) PRE-TRAINED-𝑓 -ONLY: only the pre-trained 𝑓 is used for prediction; a sanity
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check to ensure that 𝑓 cannot predict in any novel environment without further
adaptation.

(b) ONE-PER-ENV.: training from scratch on {P̂𝑒′} as ONE-PER-ENV. in the previous
section.

(c) PRE-TRAINED-𝑓 -PLUS-TRAINED-𝑔𝑒: we train 𝑔 on each dataset P̂𝑒′ based on pre-
trained 𝑓 , i.e., 𝑓 + 𝑔𝑒′ , leaving only 𝑔𝑒′s adjustable.

We compare the test error evolution during training for the three schemes above for a
comparison of convergence speed and performance. Results are given in Figure 5.5.

5.4.3 Experimental Results
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Figure 5.4: Test error for Lotka-Volterra w.r.t. the number of environments. We apply the
models in 1 to 8 environments. 4 groups of curves correspond to models trained with 1 to
8 trajectories per environment. All groups highlight the same tendencies: increasing ONE-
FOR-ALL, stable ONE-PER-ENV., and decreasing LEADS. More results of baselines methods
in Appendix B.4.

All environments available at once. We show the results in Table 5.1. For Lotka-
Volterra systems, we confirm first that the entire dataset cannot be learned properly with a
singlemodel (ONE-FOR-ALL) when the number of environments increases. Comparedwith
other baselines, our method LEADS reduces the test MSE over 85% w.r.t. ONE-PER-ENV.
and over 60% w.r.t. LEADS NO MIN., we also cut 50%-75% of error w.r.t. other baselines.
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Table 5.1: Results for Lotka-Volterra, Gray-Scott, and Navier-Stokes datasets, trained on 𝑚 environments with 𝑛 data points per
environment.

Method Lotka-Volterra Gray-Scott Navier-Stokes
(𝑚 = 10, 𝑛 = 1 · 𝐾) (𝑚 = 3, 𝑛 = 1 · 𝐾) (𝑚 = 4, 𝑛 = 8 · 𝐾)

MSE train MSE test MSE train MSE test MSE train MSE test

ONE-FOR-ALL 4.57E−1 5.08±0.56E−1 1.55E−2 1.43±0.15E−2 5.17E−2 7.31±5.29E−2
ONE-PER-ENV. 2.15E−5 7.95±6.96E−3 8.48E−5 6.43±3.42E−3 5.60E−6 1.10±0.72E−2
FT-RNN 5.29E−5 6.40±5.69E−3 8.44E−6 8.19±3.09E−3 7.40E−4 5.92±4.00E−2
FT-NODE 7.74E−5 3.40±2.64E−3 3.51E−5 3.86±3.36E−3 1.80E−4 2.96±1.99E−2
GBML-like 3.84E−6 5.87±5.65E−3 1.07E−4 6.01±3.62E−3 1.39E−4 7.37±4.80E−3
LEADS NO MIN. 3.28E−6 3.07±2.58E−3 7.65E−5 5.53±3.43E−3 3.20E−4 7.10±4.24E−3
LEADS (Ours) 5.74E−6 1.16±0.99E−3 5.75E−5 2.08±2.88E−3 1.03E−4 5.95±3.65E−3
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Figure 5.3 shows samples of predicted trajectories in test, LEADS follows very closely
the ground truth trajectory, while ONE-PER-ENV. under-performs in most environments.
We observe the same tendency for the Gray-Scott and Navier-Stokes systems. The error
is reduced by: around 2⁄3 (Gray-Scott) and 45% (Navier-Stokes) w.r.t. ONE-PER-ENV.; over
60% (Gray-Scott) and 15% (Navier-Stokes) w.r.t. LEADS NO MIN.; 45-75% (Gray-Scott) and
15-90% (Navier-Stokes) w.r.t. other baselines. In Figure 5.2, the final states obtained with
LEADS are qualitatively closer to the ground truth. Looking at the error maps on the
right, we see that the errors are systematically reduced across all environments compared
to the baselines. This shows that LEADS accumulates fewer errors through the integration,
which suggests that LEADS alleviates overfitting.

We have also conducted a larger scale experiment on Lotka-Volterra (Figure 5.4) to analyze
the behavior of the different training approaches as the number of environments increases.
We consider three models ONE-FOR-ALL, ONE-PER-ENV. and LEADS, 1, 2, 4 and 8 environ-
ments, and for each such case, we have 4 groups of curves, corresponding to𝑁tr = 1, 2, 4, 8

training trajectories per environment. We summarize the main observations. With ONE-
FOR-ALL (blue), the error increases as the number of environments increases: the dynamics
for each environment being indeed different, this introduces an increasingly large bias, and
thus the data cannot be fitted with one single model. The performance of ONE-PER-ENV.
(in red), for which models are trained independently for each environment, is constant as
expected when the number of environments changes. LEADS (green) circumvents these
issues and shows that the shared characteristics among the environments can be leveraged
so as to improve generalization: it is particularly effective when the number of samples
per environment is small. (See Appendix B.4 for more details on the experiments and on
the results).

Learning on novel environments. We demonstrate how the pre-trained dynamics
can help to fit a model for novel environments. We took an 𝑓 pre-trained by LEADS on
a set of Lotka-Volterra environments. Figure 5.5 shows the evolution of the test loss during
training for three systems: a 𝑓 function pre-trained by LEADS on a set of Lotka-Volterra
training environments, a 𝑔𝑒 function trained from scratch on the new environment and
LEADS that uses a pre-trained 𝑓 and learns a 𝑔𝑒 residue on this new environment. PRE-
TRAINED-𝑓 -ONLY alone cannot predict in any novel environment. Very fast in the training
stages, PRE-TRAINED-𝑓 -PLUS-TRAINED-𝑔𝑒 already surpasses the best error of the model
trained from scratch (indicated with a dotted line). Similar results are also observed with
the Gray-Scott and Navier-Stokes datasets (cf. Appendix B.4, Table B.5). These empirical
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results clearly show that the learned shared dynamics accelerate and improve learning in
novel environments.

5.4.4 Training and Implementation Details
Discussion on trajectory-based optimization. Solving the learning problemEq. (5.2)
in our setting, involves computing a trajectory loss (integral term in Eq. (5.4)). However,
in practice, we do not have access to the continuous trajectories at every instant 𝑡 but
only to a finite number of snapshots for the state values 𝑢|T on the time grid T =
{𝑘𝛿𝑡}𝑘∈È0,𝐾=𝑇/𝛿𝑡É with the fixed time step 𝛿𝑡 . From these observed discrete trajectories, it
is still possible to recover an approximate derivative 𝑑Λ𝑡 ' d𝑢

d𝑡 (𝑡) using a numerical scheme
Λ. The integral term for a given sample in the objective Eq. (5.4) would then be estimated
as

∑
𝑡∈T



𝑑𝑆𝑡 − (𝑓 + 𝑔𝑒) (𝑢𝑡)

2. This is not the best solution and we have observed much
better prediction performance for all models, including the baselines, when computing the
error directly on the states, using an integral formulation

∑
𝑡∈T ‖𝑢𝑡 − 𝑢̃𝑡‖2, where 𝑢̃𝑡 is the

solution given by a numerical solver approximating the integral𝑢𝑡−𝛿𝑡+
∫ 𝑠=𝑡
𝑠=𝑡−𝛿𝑡 (𝑓 + 𝑔𝑒) (𝑢̃𝑠)d𝑠

starting from 𝑢𝑡−𝛿𝑡 . Comparing directly in the state space yields more accurate results for
prediction as the learned network tends to correct the solver’s numerical errors, as first
highlighted in Yin et al. (2021b).

CalculatingR. Given finite data and time, the exact infinity norm and Lipschitz norm
are both intractable. We opt for more practical forms in the experiments. For the infinity
norm, we chose to minimize the empirical norm of the output vectors on known data
points, this choice ismotivated inAppendix B.3. In practice, we found out that dividing the
output normby its input normworks better: 1

𝑛

∑
𝑖,𝑡 ‖𝑔𝑒(𝑢𝑒,(𝑖)𝑡 )‖2/‖𝑢

𝑒,(𝑖)
𝑡 ‖2, where the𝑢𝑒,𝑖𝑡 are

known states in the training set. For the Lipschitz norm, as suggested in Bietti et al. (2019),
we optimize the sum of the spectral norms of theweight at each layer

∑𝐷
𝑙=1 ‖𝑊

𝑔𝑒
𝑙 ‖

2. We use
the power iteration method in Miyato et al. (2018) for fast spectral norm approximation.

Implementation. Weused 4-layerMLPs for Lotka-Volterra, 4-layer ConvNets forGray-
Scott and FNO for Navier-Stokes. For FT-RNN baseline, we adapted gated recurrent unit
(GRU; Cho et al., 2014) for Lotka-Volterra and PredRNN (Wang et al., 2017) forGray-Scott
andNavier-Stokes. We apply the Swish function (Ramachandran et al., 2017) as the default
activation function. Networks are integrated in timewith RK4 (Lotka-Volterra,Gray-Scott)
or Euler (Navier-Stokes), using the basic back-propagation through the internals of the
solver. We apply an exponential Scheduled Sampling (Bengio et al., 2015)with an exponent
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of 0.99 to stabilize the training. We use the Adam optimizer (Kingma and Ba, 2015)
with the same learning rate 1×10−3 and (𝛽1, 𝛽2) = (0.9, 0.999) across the experiments.
For the hyperparamters in Eq. (5.10), we chose respectively 𝜆 = 5×103, 1×102, 1×105
and 𝛼 = 1×10−3, 1×10−2, 1×10−5 for Lotka-Volterra, Gray-Scott and Navier-Stokes. All
experiments are performed with a single NVIDIA Titan Xp GPU.

5.5 Discussions
Limitations Our framework is generic and could be used in many different contexts.
On the theoretical side, the existence and uniqueness properties (Proposition 5.1) rely
on relatively mild conditions covering a large number of situations. The complexity
analysis, on the other side, is only practically relevant for simple hypothesis spaces (here
linear), and then serves for developing the intuition on more complex spaces (NNs here)
where bounds are too loose to be informative. Another limitation is that the theory
and experiments consider deterministic systems only: the experimental validation is
performed on simulated deterministic data. Note however that this is the case in the
vast majority of the ML literature on ODE/PDE spatiotemporal modeling (Raissi et al.,
2019; Long et al., 2019; Li et al., 2021b; Yin et al., 2021b). In addition, modeling complex
dynamics from real-world data is a problem in itself.

Conclusion We introduce LEADS, a data-driven framework to learn dynamics from
data collected from a set of distinct dynamical systems with commonalities. Experimen-
tally validated with three families of equations, our framework can significantly improve
the test performance in every environment w.r.t. classical training, especially when the
number of available trajectories is limited. We further show that the dynamics extracted
by LEADS can boost learning in similar new environments, which gives us a flexible
framework for generalization in novel environments. More generally, we believe that this
method is a promising step towards addressing the generalization problem for learning
dynamical systems and has the potential to be applied to a large variety of problems.
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Chapter 6

Learning to Adapt to Unknown Systems
Generalizing to New Physical Systems via Context‑Informed Dynamics Model

In this chapter, following the previous promising results on adaptation, we turn our focus
on how to make the adaptation simpler, more efficient, and potentially more interpretable.
We propose a model that achieves these goals through a contextual decoder-only model.
This work resulted in a conference paper at ICML 2022.

Matthieu Kirchmeyer*, Yuan Yin*, Jérémie Donà, Nicolas Baskiotis, Alain Rako-
tomamonjy, and Patrick Gallinari. Generalizing to new physical systems via
context-informed dynamics model. ICML 2022.
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6.1 Introduction
Neural network (NN) approaches to modeling dynamical systems have recently raised the
interest of several communities leading to an increasing number of contributions. This
topic was explored in several domains, ranging from simple dynamics, e.g., Hamiltonian
systems (Greydanus et al., 2019; Chen et al., 2020b) to more complex settings, e.g., fluid
dynamics (Kochkov et al., 2021; Li et al., 2021b; Wandel et al., 2021), earth system science
and climate (Reichstein et al., 2019), or health (Fresca et al., 2020). NN emulators are
attractive as they may for example provide fast and low cost approximations to complex
numerical simulations (Duraisamy et al., 2019; Kochkov et al., 2021), complement existing
simulationmodels when the physical law is partially known (Yin et al., 2021b) or even offer
solutionswhen classical solvers fail, e.g., with very high number of variables (Sirignano and
Spiliopoulos, 2018).

A model of a real-world dynamical system should account for a wide range of contexts
resulting from different external forces, spatiotemporal conditions, boundary conditions,
sensors characteristics, or system parameters. These contexts characterize the dynamics
phenomenon. For instance, in cardiac electrophysiology (Neic et al., 2017; Fresca et al.,
2020), each patient has its own specificities and represents a particular context. In the
study of epidemics’ diffusion (Shaier et al., 2022), computational models should handle a
variety of spatial, temporal or even sociological contexts. The same holds formost physical
problems, e.g., forecasting of spatial-location-dependent dynamics in climate (de Bézenac
et al., 2018), fluid dynamics prediction under distinct external forces (Li et al., 2021b), etc.
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The physics approach for modeling dynamical systems relies on a strong prior knowledge
about the underlying phenomenon. This provides a causal mechanism which is embedded
in a physical dynamics model, usually a system of differential equations, and allows the
physical model to handle a whole set of contexts. Moreover, it is often possible to adapt
the model to new or evolving situations, e.g., via data assimilation (Kalman, 1960; Courtier
et al., 1994).

In contrast, empirical risk minimization (ERM) based machine learning (ML) fails to gen-
eralize to unseen dynamics. Indeed, it requires i.i.d. data for training and inference while
dynamical observations are non-i.i.d. as the distributions change with initial conditions or
physical contexts.

Thus any ML framework that handles this question should consider other assumptions. A
common one used, e.g., in domain generalization (Wang et al., 2021b), states that data come
from several environments a.k.a. domains, each with a different distribution. Training is
performed on a sample of the environments and test corresponds to new ones. Domain
generalization methods attempt to capture problem invariants via a unique model, assum-
ing that there exists a representation space suitable for all the environments. This might
be appropriate for classification, but not for dynamical systems where the underlying
dynamics differs for each environment. For this problem, we need to learn a function
that adapts to each environment, based on a few observations, instead of learning a single
domain-invariant function. This is the objective of meta-learning (Thrun and Pratt, 1998),
a general framework for fast adaptation to unknown contexts. The standard gradient-
based methods (e.g. Finn et al., 2017) are unsuitable for complex dynamics due to their bi-
level optimization and are known to overfit when little data is available for adaptation, as
in the few-shot learning setting explored in this paper (Mishra et al., 2018). Like invariant
methods, meta-learning usually handles basic tasks e.g. classification; regression on static
data or simple sequences and not challenging dynamical systems.

Generalization for modeling real-world dynamical systems is a recent topic. Simple sim-
ulated dynamics were considered in Reinforcement Learning (Lee et al., 2020; Nagabandi
et al., 2019) while physical dynamicsweremodeled in recentworks (Yin et al., 2021a;Wang
et al., 2022). These approaches consider either simplified settings or additional hypotheses
e.g. prior knowledge and do not offer general solutions to our adaptation problem (details
in Section 3.2).

We propose a newML framework for generalization in dynamical systems, calledContext-
Informed Dynamics Adaptation (CODA). Like in domain generalization, we assume
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availability of several environments, each with its own specificity, yet sharing some
physical properties. Training is performed on a sample of the environments. At test
time, we assume access to example data from a new environment, here a trajectory. Our
goal is to adapt to the new environment distribution with this trajectory. More precisely,
CODA assumes that the underlying system is described by a parametrized differential
equation, either an ordinary differential equation (ODE) or a partial differential equation
(PDE). The environments share the parametrized form of the equation but differ by the
values of the parameters or initial conditions. CODA conditions the dynamics model on
learned environment characteristics a.k.a. contexts and generalizes to new environments
and trajectories with few data. Our main contributions are the following:

• We introduce a multi-environment formulation of the generalization problem for
dynamical systems.

• We propose a novel context-informed framework, CODA, to this problem. It
conditions the dynamics model on context vectors via a hypernetwork. CODA
introduces a locality and a low-rank constraint, which enable fast and efficient
adaptation with few data.

• We analyze theoretically the validity of our low-rank adaptation setting for model-
ing dynamical systems.

• We evaluate two variations of CODA on several ODEs/PDEs representative of a vari-
ety of application domains, e.g. chemistry, biology, physics. CODA achieves state-of-
the-art generalization results on in-domain and one-shot adaptation scenarios. We
also illustrate how, with minimal supervision, CODA infers accurately new system
parameters from learned contexts.

The paper is organized as follows. In Section 6.2 we present our multi-environment
problem. In Section 6.3 we introduce the CODA framework. In Section 6.4 we detail how
to implement our framework. In Section 6.5 we present our experimental results.

6.2 Generalization for Dynamical Systems

We present our generalization problem for dynamical systems, then introduce our multi-
environment formalization.
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6.2.1 Problem Setting

We consider dynamical systems that are driven by unknown temporal differential equa-
tions of the form:

d𝑢

d𝑡
= 𝑓 (𝑢), (6.1)

where 𝑡 ∈ ℝ is a time index, 𝑢(𝑡) is a time-dependent state in a space U and 𝑓 : U → TU a
function that maps 𝑢(𝑡) ∈ U to its temporal derivatives in the tangent space TU . 𝑓 belongs
to a class of vector fields F . U ⊆ ℝ𝑑 (𝑑 ∈ ℕ★) for ODEs or U is a function space defined
over a spatial domain Ω ⊂ ℝ𝑝, e.g., 2D or 3D Euclidean space, for PDEs.

Functions 𝑓 ∈ F define a space 𝛤 𝑓 of state trajectories 𝑢 : I → U , mapping 𝑡 in an interval
I including 0, to the state𝑢(𝑡) ∈ U . Trajectories are defined by the initial condition𝑢(0) B
𝑢0 ∼ 𝜌0(U ) and take the form:

∀𝑡 ∈ I , 𝑢(𝑡) ∈ U = 𝑢0 +
∫ 𝜏=𝑡

𝜏=0
𝑓 (𝑢(𝜏))d𝜏 (6.2)

They are often observed on a fixed time grid T = {0, 𝐾 = 𝑇/𝛿𝑡} ⊂ I of resolution 𝛿𝑡. In
the following, we assume that 𝑓 ∈ F is parametrized by some unknown attributes, e.g.,
physical parameters, and external forcing terms which affect the trajectories.

6.2.2 Multi-Environment Learning Problem

We propose to learn the class of functions F with a data-driven dynamics model 𝑔𝜃
parametri-zed by 𝜃 ∈ ℝ𝑑𝜃 . Given 𝑓 ∈ F , we observe 𝑁 trajectories in D𝑓 (cf. Eq. (6.2)).

The standard ERM objective considers that all trajectories are i.i.d. Here, we propose
a multi-environment learning formulation where observed trajectories of 𝑓 form an
environment 𝑒 ∈ E . We denote 𝑓 𝑒 and D𝑒 the corresponding function and set of 𝑁
trajectories. We assume that we observe training environments Etr, consisting of several
trajectories from a set of known functions {𝑓 𝑒}𝑒∈Etr . The full datasetD =

⋃
𝑒∈E D𝑒

The goal is to learn 𝑔𝜃 that adapts easily and efficiently to new environments Ead, corre-
sponding to unseen functions {𝑓 𝑒}𝑒∈Ead (“ad” stands for adaptation). We define ∀𝑒 ∈ E the
mean square error (MSE) loss, overD𝑒 as

L(𝑔𝜃 ,D𝑒) B
∑
𝑢∈D

∑
𝑡∈T
‖𝑓 𝑒(𝑢𝑒,(𝑖) (𝑡)) − 𝑔𝜃 (𝑢𝑒,(𝑖) (𝑡))‖22 (6.3)
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In practice, 𝑓 𝑒 is unavailable and we can only approximate it from discretized trajectories.
We detail later in Eq. (6.11) our approximation method based on an integral formulation.
It fits observed trajectories directly in state space.

6.3 The CODA Learning Framework
We introduce CODA, a new context-informed framework for learning dynamics in multi-
ple environments. It relies on a general adaptation rule (Section 6.3.1) and introduces two
key properties: locality, enforced in the objective (Section 6.3.2) and low-rank adaptation,
enforced in the proposed model via hypernetwork-decoding (Section 6.3.3). The validity
of this framework for dynamical systems is analyzed in Section 6.3.4 and its benefits are
discussed in Section 6.3.5.

6.3.1 Adaptation Rule
The dynamics model 𝑔𝜃 should adapt to new environments. Hence, we propose to condi-
tion 𝑔𝜃 on observed trajectories D𝑒,∀𝑒 ∈ E . Conditioning is performed via an adaptation
network 𝐴𝜋 , parametrized by 𝜋 , which adapts the weights of 𝑔𝜃 to an environment 𝑒 ∈ E
according to

𝜃𝑒 B 𝐴𝜋 (D𝑒) B 𝜃𝑐 + 𝛿 𝜃𝑒, 𝜋 B {𝜃𝑐, {𝛿 𝜃𝑒}𝑒∈E } (6.4)

𝜃𝑐 ∈ ℝ𝑑𝜃 are shared parameters, used as an initial value for fast adaptation to new
environments. 𝛿 𝜃𝑒 ∈ ℝ𝑑𝜃 are environment-specific parameters conditioned onD𝑒.

6.3.2 Constrained Optimization Problem
Given the adaptation rule in Eq. (6.4), we introduce a constrained optimization problem
which learns parameters 𝜋 such that ∀𝑒 ∈ E , 𝛿 𝜃𝑒 is small and 𝑔 fits observed trajectories. It
introduces a locality constraint with a norm ‖ · ‖:

min
𝜋

∑
𝑒∈E
‖𝛿 𝜃𝑒‖2 s.t. ∀𝑢𝑒 ∈ D,∀𝑡 ∈ T , d𝑢

𝑒(𝑡)
d𝑡

= 𝑔𝜃𝑐+𝛿 𝜃𝑒 (𝑢𝑒(𝑡)) (6.5)

We consider an approximation of this problem which relaxes the equality constraint with
the MSE loss L in Eq. (6.3).

min
𝜋

∑
𝑒∈E

(
L(𝜃𝑐 + 𝛿 𝜃𝑒,D𝑒) + 𝜆‖𝛿 𝜃𝑒‖2

)
(6.6)
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𝜆 is a hyperparameter. For training, we minimize Eq. (6.6) w.r.t. 𝜋 over training environ-
ments Etr. After training, 𝜃𝑐 is freezed. For adaptation, we minimize Eq. (6.6) over new
environments Ead w.r.t. {𝛿 𝜃𝑒}𝑒∈Ead .

The locality constraint in the training objective Eq. (6.6) enforces 𝛿 𝜃𝑒 to remain close to
the shared 𝜃𝑐 solutions. It plays several roles. First, it fosters fast adaptation by acting as a
constraint over 𝜃𝑐 ∈ ℝ𝑑𝜃 during training, s.t., minimas {𝜃𝑒★}𝑒∈E are in a neighborhood
of 𝜃𝑐, i.e., can be reached from 𝜃𝑐 with few update steps. Second, it constrains the
hypothesis space at fixed 𝜃𝑐. Under some assumptions, it can simplify the resolution of the
optimization problem w.r.t. 𝛿 𝜃𝑒 by turning optimization to a quadratic convex problem
with an unique solution. We show this property for our solution in Proposition 6.1. The
positive effects of this constraint will be illustrated on an ODE system in Section 6.3.3.

6.3.3 Context-Informed Hypernetwork
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Figure 6.1: Illustration of Context-Informed Dynamics Adaptation (CODA).

Eq. (6.6) involves learning 𝛿 𝜃𝑒 for each environment. For adaptation, 𝛿 𝜃𝑒 should be
inferred from few observations of the new environment. Learning such high-dimensional
parameters is prone to over-fitting, especially in low data regimes. We propose a
hypernetwork-based solution (Figure 6.1) to solve efficiently this problem. It operates on
a low-dimensional space, yields fixed-cost adaptation and shares efficiently information
across environments.

Formulation We estimate 𝛿 𝜃𝑒 through a linear mapping of conditioning information,
called context, learned from D𝑒 and denoted 𝜉𝑒 ∈ ℝ𝑑𝜉 . 𝑊 = (𝑊1, · · · ,𝑊𝑑𝜉 ) ∈ ℝ𝑑𝜃×𝑑𝜉 is
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the weight matrix of the linear decoder s.t.

𝐴𝜋 (D𝑒) B 𝜃𝑐 +𝑊𝜉𝑒, 𝜋 B {𝑊, 𝜃𝑐, {𝜉𝑒}𝑒∈E } (6.7)

The weight matrix 𝑊 is shared across environments and defines a low-dimensional
subspaceW B Span(𝑊1, · · · ,𝑊𝑑𝜉 ), of dimension at most 𝑑𝜉 , to which the search space of
𝛿 𝜃𝑒 is restricted. 𝜉𝑒 is specific to each environment and can be interpreted as learning rates
along the rows of𝑊 . In our experiments, 𝑑𝜉 � 𝑑𝜃 is small, at most 2. Thus, adaptation to
new environments only requires learning very few parameters, which define a completely new
dynamics model 𝑔.

𝐴𝜋 corresponds to an affine mapping of 𝜉𝑒 parametrized by {𝑊, 𝜃𝑐}, a.k.a. a linear hyper-
network. Note that hypernetworks (Ha et al., 2017) have been designed to handle single-
environment problems and learn a separate context per layer. Our formalism involves
multiple environments and defines a context per environment for all layers of 𝑔.

Linearity of the hypernetwork is not restrictive as contexts are directly learned through
an inverse problem detailed in eqs. (6.8) and (6.9), s.t. expressivity is similar to a nonlinear
hypernetwork with a final linear activation.

Objectives We derive the training and adaptation objectives by inserting Eq. (6.7) into
Eq. (6.6). For training, both contexts and hypernetwork are learned with Eq. (6.8):

min
𝜃𝑐 ,𝑊,{𝜉𝑒}𝑒∈Etr

∑
𝑒∈Etr

(
L(𝜃𝑐 +𝑊𝜉𝑒,D𝑒) + 𝜆‖𝑊𝜉𝑒‖2

)
(6.8)

After training, 𝜃𝑐 is kept fixed and for adaptation to a new environment, only the context
vector 𝜉𝑒 is learned with:

min
{𝜉𝑒}𝑒∈Ead

∑
𝑒∈Ead

(
L(𝜃𝑐 +𝑊𝜉𝑒,D𝑒) + 𝜆‖𝑊𝜉𝑒‖2

)
(6.9)

Implementation of eqs. (6.8) and (6.9) is detailed in Section 6.4. We apply gradient descent.
In Proposition 6.1, we show for ‖·‖ = ℓ2, that Eq. (6.9) admits anunique solution, recovered
from initialization at 0with a single preconditioned gradient step, projected onto subspace
W defined by𝑊 .



6.3. The CODA Learning Framework 111

Proposition 6.1. Given {𝜃𝑐,𝑊 } fixed, if ‖ · ‖ = ℓ2, then Eq. (6.9) is quadratic. If 𝜆′𝑊>𝑊
or 𝐻̄𝑒(𝜃𝑐) = 𝑊>∇2

𝜃
L(𝜃𝑐,D𝑒)𝑊 are invertible then 𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊 is invertible except

for a finite number of 𝜆′ values. The problem in Eq. (6.9) is then also convex and admits
an unique solution, {𝜉𝑒★}𝑒∈Ead . With 𝜆′ B 2𝜆,

𝜉𝑒∗ = −
(
𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊

)−1
𝑊>∇𝜃L(𝜃𝑐,D𝑒) (6.10)

+ Proof in Appendix C.2, p. 224

Interpretation We now interpret CODA by visualizing its loss landscape in Figure 6.2a
and comparing it to ERM’s loss landscape in Figure 6.2b. We use the package in Li et al.
(2018b) to plot loss landscapes around 𝜃𝑐 and consider the Lotka-Volterra system, described
in Section 6.5.1.

In Figure 6.2a, loss values of CODA are projected onto subspace W , where 𝑑𝜉 = 2.
We make three observations. First, across environments, the loss is smooth and has a
single minimum around 𝜃𝑐. Second, the local optimum of the loss is close to 𝜃𝑐 across
environments. Finally, the minimal loss value onW around 𝜃𝑐 is low across environments.
The two first properties were discussed in Section 6.3.2 and are a direct consequence of
the locality constraint on W . When ‖ · ‖ = ℓ2, it makes the optimization problem in
Eq. (6.8) quadratic w.r.t. 𝜉𝑒 and convex under invertibility of 𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊 as detailed
in Proposition 6.1. We provided in Eq. (6.10) the closed-form expression of the solution.
It also imposes small ‖𝜉𝑒‖ s.t. when minimizing the loss in Eq. (6.8), 𝜃𝑐 remains close to
the local optima of all training environments. The final observation illustrates that CODA
finds a subspaceW with environment-specific parameters of low loss values, i.e., low-rank
adaptation performs well.

In Figure 6.2b, loss values of ERMare projected onto the span of the two principal gradient
directions. We observe that, unlike CODA, ERM does not find low loss values. Indeed, it
aims at finding 𝜃𝑐 with good performance across environments, thus cannot model several
dynamics.

6.3.4 Validity for Dynamical Systems
We further motivate low-rank decoding in our context-informed hypernetwork approach
by providing some evidence that gradients at 𝜃𝑐 across environments define a lower-
dimensional subspace. We consider the lossL in Eq. (6.3) and define the gradient subspace
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Figure 6.2: Loss landscapes centered in 𝜃𝑐, marked with ×, for 3 Lotka-Volterra environ-
ments. ∀𝑒, → points to the local optimum 𝜃𝑒★ with loss value reported in yellow.

in Definition 6.1.

Definition 6.1 (Gradient directions). With L in Eq. (6.3), ∀𝜃𝑐 ∈ ℝ𝑑𝜃 parametrizing
a dynamics model 𝑔𝜃𝑐 , the subspace generated by gradient directions at 𝜃𝑐 across
environments E is denoted G𝜃𝑐 B Span({∇𝜃L(𝜃𝑐,D𝑒)}𝑒∈E ).

We show, in Proposition 6.2, low-dimensionality of G𝜃𝑐 for linearly parametrized sys-
tems.

Proposition 6.2 (Low-rank under linearity). Given a class of linearly parametrized
dynamics F with 𝑑P varying parameters, ∀𝜃𝑐 ∈ ℝ𝑑𝜃 , subspace G𝜃𝑐 in Definition 6.1 is
low-dimensional and dim(G𝜃𝑐) ≤ 𝑑P � 𝑑𝜃 .

+ Proof in Appendix C.2, p. 224

The linearity assumption is not restrictive as it is present in a wide variety of real-world
systems e.g. Burger or Korteweg–De Vries PDE (Raissi et al., 2019), convection-diffusion
(Long et al., 2018b), wave and reaction-diffusion equations (Yin et al., 2021b) etc.

Under nonlinearity, we do not have the same theoretical guarantee, yet, we show empir-
ically in Appendix C.4 that the low-dimensionality of parameters of the dynamics model
still holds for several systems. This property is comforted by recent work that highlighted
that gradients are low-rank throughout optimization in single-domain settings, i.e., that
the solution space is low-dimensional (Gur-Ari et al., 2018; Li et al., 2018a,b). In the same
spirit as CODA, this property was leveraged to design efficient solutions to the learning
problems (Frankle and Carbin, 2019; Vogels et al., 2019).
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6.3.5 Benefits of CODA

We highlight the benefits of CODA. CODA is a general time-continuous framework that
can be used with any approximator 𝑔𝜃 of the derivative Eq. (6.3). It can be trained with a
given temporal resolution and tested on another; it handles irregularly-sampled sequences.
The choice of the approximator 𝑔𝜃 defines the ability to handle different spatial resolutions
for PDEs, as further detailed in Section 6.5.3.

Compared to related adaptation methods, CODA presents several advantages. First, as
detailed in Appendix C.1.1, the adaptation rule in Eq. (6.4) is similar to the one used in
gradient-based meta-learning; yet, our first order joint optimization problem in Eq. (6.6)
simplifies the complex bi-level optimization problem (Antoniou et al., 2019). Second,
CODA introduces the two key properties of locality constraint and low-rank adaptation
which guarantee efficient adaptation to new environments as discussed in Section 6.3.3.
Third, it generalizes contextualmeta-learningmethods (Garnelo et al., 2018; Zintgraf et al.,
2019), which also perform low-rank adaptation, via the hypernetwork decoder (details
in Appendix C.1.2). Our decoder learns complex environment-conditional dynamics
models while controlling their complexity. Finally, CODA learns context vectors through
an inverse problem as Zintgraf et al. (2019). This decoder-only strategy is particularly
efficient and flexible in our setting. An alternative is to infer them via a learned encoder
of D𝑒 as Garnelo et al. (2018). Yet, the latter was observed to underfit (Kim et al., 2019),
requiring extensive tuning of the encoder and decoder architecture. Overall, CODA is easy
to implement and maintains expressivity with a linear decoder.

6.4 Framework Implementation

We detail how to perform trajectory-based learning with our framework and describe two
instantiations of the locality constraint. We detail the corresponding pseudo-code.

Trajectory-BasedFormulation As derivatives in Eq. (6.3) are not directly observed, we
use in practice for training a trajectory-based formulation of Eq. (6.3). We consider a set of
𝑁 trajectories,D𝑒. Each trajectory is discretized over a uniform temporal and spatial grid
T ,X .
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Our loss is written as:

L(𝑔𝜃 ,D𝑒) =
∑
𝑢∈D𝑒

∑
𝑥∈X

∑
𝑡∈T




𝑢𝑒,(𝑖) (𝑡, 𝑥) − 𝑢̃𝑒,(𝑖) (𝑡, 𝑥)


2
2

where 𝑢̃𝑒,(𝑖) (𝑡) = 𝑢𝑒,(𝑖)
0
+

∫ 𝑠=𝑡

𝑠=0
𝑔𝜃

(
𝑢̃𝑒,(𝑖) (𝑠)

)
d𝑠

(6.11)

𝑢𝑒,𝑖(𝑡, 𝑥) is the value in the 𝑖th trajectory from environment 𝑒 at the spatial coordinate 𝑥
and time 𝑡. 𝑢𝑒,𝑖(𝑡)

��
X is the state vector in the 𝑖th trajectory from environment 𝑒 over the

spatial domain at time 𝑡 and 𝑢𝑒,𝑖
0

is the corresponding initial condition. To compute 𝑢̃𝑒,𝑖(𝑡),
we apply for integration a numerical solver (Hairer et al., 2000) as detailed later.

Locality Constraint Instead of penalizing 𝜆‖𝑊𝜉𝑒‖2 in Eq. (6.8), we found it more
efficient to penalize separately𝑊 and 𝜉𝑒. We thus introduce the following regularization:

R(𝑊, 𝜉𝑒) B 𝜆𝜉R𝜉 (𝜉𝑒) + 𝜆𝑊R𝑊 (𝑊 ) (6.12)

It involves hyperparameters 𝜆𝜉 , 𝜆𝑊 and resp. two norms R𝜉 (𝜉𝑒),R𝑊 (𝑊 ) which depend
on the choice of ‖ · ‖ in Eq. (6.6). MinimizingR(𝑊, 𝜉𝑒)minimizes an upper-bound to ‖ · ‖,
derived in Appendix C.5 for the two considered variations of ‖ · ‖:

• CODA-ℓ2 sets ‖ · ‖ = ℓ2(·) andR𝜉 = R𝑊 = ℓ22 , constraining𝑊𝜉𝑒 to a sphere.

• CODA-ℓ1 sets ‖ · ‖ = ℓ1(·) and R𝜉 = ℓ22 ,R𝑊 (𝑊 ) = ℓ1,2 over rows, i.e., R𝑊 (𝑊 ) =∑𝑑𝜃
𝑖=1 ‖𝑊𝑖,:‖2 to induce sparsity and find most important parameters for adaptation.

ℓ1,2 constrains W to be axis-aligned; then the number of solutions is finite as
dim(W) is finite.

Pseudo-Code We solve Eq. (6.8) for training and Eq. (6.9) for adaptation using eqs. (6.11)
and (6.12) and Algorithm 2. We back-propagate through the solver with torchdiffeq
(Chen, 2021) and apply exponential Scheduled Sampling (Bengio et al., 2015) to stabilize
training.

6.5 Experiments
Wevalidate our approach on four classes of challenging nonlinear temporal and spatiotem-
poral physical dynamics, representative of various fields, e.g., chemistry, biology, and fluid
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Algorithme 2 : CODA Pseudo-code

Training
Initialization: Etr ⊂ E , {D𝑒tr}𝑒tr∈Etr with
∀𝑒tr ∈ Etr, #D𝑒tr = 𝑁tr, 𝜋 = {𝑊, 𝜃𝑐, {𝜉𝑒tr}𝑒tr∈Etr} where𝑊 ∈ ℝ𝑑𝜃×𝑑𝜉 , 𝜃𝑐 ∈ ℝ𝑑𝜃

randomly initialized and ∀𝑒tr ∈ Etr, 𝜉
𝑒tr = 0 ∈ ℝ𝑑𝜉

while true do
𝜋 ← 𝜋 − 𝜂∇𝜋

( ∑
𝑒tr∈Etr

L(𝜃𝑐 +𝑊𝜉𝑒tr ,D𝑒tr) +R(𝑊, 𝜉𝑒tr)
)

Adaptation
Initialization: 𝑒ad ∈ Ead,D𝑒ad with #D𝑒ad = 𝑁ad
while true do

𝜉𝑒ad ← 𝜉𝑒ad − 𝜂∇𝜉𝑒ad
(
L(𝜃𝑐 +𝑊𝜉𝑒ad ,D𝑒ad) +R(𝑊, 𝜉𝑒ad)

)
dynamics. We evaluate in-domain and adaptation prediction performance and compare
them to related baselines. We also investigate how learned context vectors can be used for
system parameter estimation. We consider a few-shot adaptation setting where only a few
trajectories (𝑁ad) are available at adaptation time in new environments.

6.5.1 Dynamical Systems

We consider four ODEs and PDEs described in Appendix C.6.1. ODEs include Lotka-
Volterra (Lotka, 1925) and Glycolitic-Oscillator (Daniels and Nemenman, 2015), modeling
respectively predator-prey interactions and the dynamics of yeast glycolysis. PDEs are
defined over a 2D spatial domain and include Gray-Scott (Pearson, 1993), a reaction-
diffusion system with complex spatiotemporal patterns and the challengingNavier-Stokes
system (Navier-Stokes, Stokes, 1851) for incompressible flows. All systems are nonlinear
w.r.t. system states and all but Glycolitic-Oscillator are linearly parametrized. The analysis
in Section 6.3.4 covers all systems butGlycolitic-Oscillator. Experiments on the latter show
that CODA also extends to nonlinearly parametrized systems.

6.5.2 Experimental Setting

We consider forecasting: only the initial condition is used for prediction. We perform
two types of evaluation: in-domain generalization on Etr (In-domain) and out-of-domain
adaptation to new environments Ead (Adaptation). Each environment 𝑒 ∈ E is defined
by system parameters and 𝜃𝑒P ∈ ℝ𝑑P denotes those that vary across E . 𝑑P represents the
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degrees of variations in F ; 𝑑P = 2 for Lotka-Volterra, Glycolitic-Oscillator, Gray-Scott
and 𝑑P = 1 for Navier-Stokes. Appendix C.6.1 defines for each system the number of
training and adaptation environments (#Etr and #Ead) and the corresponding parameters.
Appendix C.6.1 also reports the number of trajectories 𝑁tr per training environment in
Etr and the distribution 𝜌0(U ) from which are sampled all initial conditions (including
adaptation and evaluation initial conditions). For Adaptation, we consider 𝑁ad = 1

trajectory per new environment in Ead to infer the context vector with Eq. (6.9). We
consider more trajectories per adaptation environment in Section 6.5.7.

Evaluation is performed on 32 new test trajectories per environment. We report, in our
tables, the mean and standard deviation of MSE across test trajectories (Eq. (6.11)) over
four different seeds. We report, in our figures, mean absolute percentage error (MAPE) in
% over trajectories, as it allows us to better compare performance across environments
and systems. We define MAPE(𝑧, 𝑦) between a 𝑑-dimensional input 𝑧 and target 𝑦 as
1
𝑑

∑
𝑗=1...𝑑:𝑦𝑗≠0

|𝑧 𝑗−𝑦𝑗 |
| 𝑦𝑗 | . Over a trajectory, it extends into

∑
𝑡∈T MAPE(𝑢̃(𝑡), 𝑢(𝑡))d𝑡, with 𝑢̃

defined in Eq. (6.11).

6.5.3 Implementation of CODA

Weused for 𝑔𝜃 multi-layer perceptrons (MLPs) forODEs, a resolution-dependent convolu-
tional neural network (ConvNet) for Gray-Scott and a resolution-agnostic Fourier neural
operator (FNO; Li et al., 2021b) for Navier-Stokes that can be used on new resolutions.
Architecture details are provided in Appendix C.6.2. We tuned 𝑑𝜉 and observed that
𝑑𝜉 = 𝑑P, the number of system parameters that vary across environments, performed
best (cf. Section 6.5.6). We use Adam optimizer Kingma and Ba (2015) for all datasets;
RK4 solver for Lotka-Volterra,Gray-Scott,Glycolitic-Oscillator and Euler solver forNavier-
Stokes. Optimization and regularization hyperparameters are detailed in Appendix C.6.2.

6.5.4 Baselines

We consider three families of baselines, compared in Appendix Figure C.1 and detailed
in Section 3.2. First, gradient-based meta learning (GBML) methods MAML (Finn et al.,
2017), ANIL (Rusu et al., 2019) and Meta-SGD (Li et al., 2017). Second, the Multi-Task
Learning method LEADS (Yin et al., 2021a). Finally, the contextual meta-learning method
CAVIA (Zintgraf et al., 2019), with conditioning via concatenation (Concat) or linear
modulation of final hidden features (FiLM, Perez et al., 2018). All baselines are adapted
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Table 6.1: Test MSE (↓) in training environments Etr (In-Domain), new environments Ead (Adaptation). Best in bold; second
underlined.

Lotka-Volterra Glycolitic-Oscillator Gray-Scott Navier-Stokes

In-domain Adaptation In-domain Adaptation In-domain Adaptation In-domain Adaptation

MAML 6.03±0.13E−4 3.15±0.94E−2 5.73±0.21E−3 1.08±0.06E−2 3.67±0.53E−3 2.25±0.39E−3 6.80±0.80E−3 5.11±0.40E−3
ANIL 3.81±0.76E−3 4.57±2.39E−2 7.45±1.15E−3 1.69±0.23E−2 5.01±0.80E−3 3.95±0.11E−3 6.17±0.43E−3 4.86±0.32E−3
Meta-SGD 3.27±1.26E−4 7.22±4.58E−2 4.23±0.69E−3 1.57±0.41E−2 2.85±0.54E−3 2.68±0.20E−3 5.39±2.81E−3 4.43±2.71E−3
LEADS 3.70±0.27E−5 4.76±1.25E−4 3.14±0.33E−3 1.14±0.42E−2 2.90±0.76E−3 1.36±0.43E−3 1.40±0.16E−3 2.86±0.72E−3

CAVIA-FiLM 4.38±1.15E−5 8.41±3.20E−5 4.44±1.46E−4 3.87±1.28E−4 2.81±1.15E−3 1.43±1.07E−3 2.32±1.21E−3 2.26±0.99E−3
CAVIA-Concat 2.43±0.66E−5 6.26±0.77E−5 5.09±0.35E−4 2.37±0.23E−4 2.67±0.48E−3 1.62±0.85E−3 2.55±0.63E−3 2.60±0.82E−3

DINO-ℓ2 1.52±0.08E−5 1.82±0.24E−5 2.45±0.38E−4 1.98±0.06E−4 1.01±0.15E−3 7.70±0.10E−4 9.40±1.13E−4 1.03±0.15E−3
DINO-ℓ1 1.35±0.22E−5 1.24±0.20E−5 2.20±0.26E−4 1.86±0.29E−4 9.00±0.57E−4 7.40±0.10E−4 8.35±1.71E−4 9.65±1.37E−4
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to be dynamics-aware i.e. time-continuous: they consider the loss in Eq. (6.11), as CODA.
Moreover, they share the same architecture for 𝑔𝜃 as CODA.

6.5.5 Generalization Results
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Figure 6.3: Adaptation results with CODA-ℓ1 on Lotka-Volterra. System parameters 𝜃P =
(𝛽, 𝛿) are sampled in [0.25, 1.25]2 on a 51 × 51 uniform grid, leading to 2601 adaptation
environments Ead. • are training environments Etr. We report MAPE (↓) across Ead (top).
On the bottom, we choose four of them (×, 𝑒1–𝑒4), to show the ground-truth (blue) and
predicted (green) phase space portraits. 𝑥, 𝑦 are respectively the quantity of prey and
predator in the system in Eq. (C.12).

In Table 6.1, we observe that CODA improves significantly test MSE w.r.t. our baselines
for both In-Domain and Adaptation settings. For PDE systems and a given test trajectory,
we visualize in Figures C.3 and C.4 in Appendix C.7 the predicted MSE by these models
along the ground truth. We also notice improvements for CODA over our baselines.
Across datasets, all baselines are subject to a drop in performance between In-Domain
and Adaptation while CODA maintains remarkably the same level of performance in both
cases. In more detail, GBML methods (MAML, ANIL, Meta-SGD) overfit on training In-
Domain data especially when data is scarce. This is the case for ODEs which include fewer
system states for training than PDEs. LEADS performs better than GBML but overfits
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ℓ1. “★” is the smallest MAPE.

Table 6.2: Locality and In-Domain test MSE (↓). Best in bold, the second underlined.

Lotka-Volterra Glycolitic-Oscillator

CODA W/o ℓ2 With ℓ2 W/o ℓ2 With ℓ2
Full 2.28±0.29E−5 1.52±0.08E−5 2.98±0.71E−4 2.45±0.38E−4
First-Layer 2.25±0.29E−5 2.41±0.23E−5 2.38±0.71E−4 2.12±0.55E−4
Last-Layer 1.86±0.24E−5 1.27±0.03E−5 2.84±0.06E−3 2.84±0.06E−3

for Adaptation as it does not adapt efficiently. CAVIA-Concat/FiLM perform better than
GBML and LEADS, as they leverage a context, but are less expressive than CODA. Both
variations of CODA perform best as they combine the benefits of low-rank adaptation
and locality constraint. CODA-ℓ1 is better than CODA-ℓ2 as it induces sparsity, further
constraining the hypothesis space.

We evaluate in Figure 6.3 CODA-ℓ1 on Lotka-Volterra for Adaptation over a wider range of
adaptation environments (#Ead = 51 × 51 = 2601). We report mean MAPE over Ead (top).
We observe three regimes: inside the convex hull of training environments Etr, MAPE is
very low; outside the convex hull,MAPE remains low in a neighborhood ofEtr; beyond this
neighborhood, MAPE increases. CODA thus generalizes efficiently in the neighborhood
of training environments and degrades outside this neighborhood. We plot reconstructed
phase space portraits (bottom) on four selected environments and observe that the learned
solution (green) closely follows the target trajectories (blue).
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6.5.6 Ablation Studies

We perform two studies on Lotka-Volterra and Glycolitic-Oscillator. In a first study in
Table 6.2, we evaluate the gains due to using ℓ2 locality constraint on In-Domain evaluation.
On line 1 (Full), we observe that CODA-ℓ2 performs better than CODA without locality
constraint. Prior work perform adaptation only on the final layer with some performance
improvements on classification or Hamiltonian system modeling (Raghu et al., 2020; Chen
et al., 2020a). In order to evaluate this strategy, we manually restrict hypernetwork-
decoding to only one layer in the dynamics model 𝑔𝜃 , either the first layer (line 2) or
the last layer (line 3). We observe that the importance of the layer depends on the
parametrization of the system: for Lotka-Volterra, linearly parametrized, the last layer
is better while for Glycolitic-Oscillator, nonlinearly parametrized, the first layer is better.
CODA-ℓ1 generalizes this idea by automatically selecting the useful adaptation subspace
via ℓ1,2 regularization, offering a more flexible approach to induce sparsity.

In a second study in Section 6.5.5, we analyze the impact on MAPE of the dimension
of context vectors 𝑑𝜉 for CODA-ℓ1. We recall that 𝑑𝜉 upper-bounds the dimension of
the adaptation subspace W and was cross-validated in Table 6.1. In the following, 𝑑P is
the number of parameters that vary across environments. We illustrate the effect of the
cross-validation on MAPE for 𝑑P = 2 on Lotka-Volterra and Glycolitic-Oscillator as in
Section 6.5.5 and additionally for 𝑑P = 4 on Lotka-Volterra. We observe in Section 6.5.5
that the minimum of MAPE is reached for 𝑑𝜉 = 𝑑P with two regimes: when 𝑑𝜉 < 𝑑P,
performance decreases as some system dimensions cannot be learned; when 𝑑𝜉 > 𝑑P, per-
formance degrades slightly as unnecessary directions of variations are added, increasing
the hypothesis search space. This study shows the validity of the low-rank assumption and
illustrates how the unknown 𝑑P can be recovered through cross-validation.

6.5.7 Sample Efficiency

We handled originally one-shot adaptation (𝑁ad = 1), the most challenging setting. We
vary the number of adaptation trajectories 𝑁ad on Lotka-Volterra in Table 6.3. With more
trajectories, performance improves significantly forMAML;moderately for LEADS;while
it remains flat for CODA. This highlights CODA’s sample-efficiency and meta-overfitting
for GBML (Mishra et al., 2018).
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Table 6.3: Test MSE (↓) in new environments Ead (Adaptation) on Lotka-Volterra according
to the number of adaptation trajectoires. Best for each setting in bold.

Number of adaptation trajectories 𝑁ad

1 5 10

MAML 3.15±0.94E−3 2.39±0.16E−3 1.73±0.10E−3
LEADS 4.76±1.25E−4 1.99±0.72E−4 1.94±0.35E−4
CODA-ℓ1 1.24±0.20E−5 1.21±0.18E−5 1.20±0.17E−5

Table 6.4: Parameter estimation MAPE (↓) for DINO-ℓ1 on Lotka-Volterra (#Etr = 9), Gray-
Scott (#Etr = 4) and Navier-Stokes (#Etr = 5).

In-convex-hull Out-of-convex-hull Overall

MAPE (%) #Ead MAPE (%) #Ead MAPE (%)

Lotka-Volterra 0.15±0.11 625 0.73±1.33 1976 0.59±1.33
Gray-Scott 0.37±0.25 625 0.74±0.67 1976 0.65±0.62
Navier-Stokes 0.10±0.08 40 0.51±0.35 41 0.30±0.33

6.5.8 Parameter Estimation

We use CODA to perform parameter estimation, leveraging the links between learned
context and system parameters.

Empirical observations

In Figure 6.5a (left), we visualize on Lotka-Volterra the learned context vectors 𝜉𝑒 (red)
and the system parameters 𝜃𝑒P (black), ∀𝑒 ∈ Etr ∪ Ead. We observe empirically a linear
bijection between these two sets of vectors. Such correspondence is being learned in the
training environments, we can use the correspondence to verify if it still applies to new
adaptation environments. Said otherwise, we can check if our model is able to infer the
true parameters for new environments.

We evaluate in Table 6.4 the parameter estimation MAPE over Lotka-Volterra, Gray-Scott
and Navier-Stokes. Figure 6.5 displays estimated parameters along estimation MAPE.
Experimentally, we observe low MAPE inside and even outside the convex hull of training
environments. Thus, CODA identifies accurately the unknown system parameters with
little supervision.
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Theoretical motivation

We justify these empirical observations theoretically inProposition6.3 under the following
conditions:

Assumption 6.1. The dynamics in F are linear w.r.t. inputs and system parameters.

Assumption 6.2. Dynamics model 𝑔, hypernet 𝐴 are linear.

Assumption 6.3. ∀𝑒 ∈ E , parameters 𝜃𝑒P ∈ ℝ𝑑P are unique.

Assumption 6.4. Context vectors have dimension 𝑑𝜉 = 𝑑P.

Assumption 6.5. The system parameters 𝜃P of all dynamics 𝑓 in a basis B of F are
known.

Proposition 6.3 (Identification under linearity). Under Assumptions 6.1 to 6.5, system
parameters are perfectly identified on new environments if the dynamics model 𝑔 and
hypernetwork 𝐴 satisfy ∀𝑓 ∈ B with system parameter 𝜃P, 𝑔𝐴(𝜃P) = 𝑓 .

+ Proof in Appendix C.3, p. 226

Intuitively, Proposition 6.3 says that given some observations representative of the de-
grees of variation of the data (a basis of F ) and given the system parameters for these
observations (Assumption 6.5), we are guaranteed to recover the parameters of new
environments for a family systems. This strong guarantee requires strong conditions.
Assumptions 6.1 and 6.2 state that the systems should be linear w.r.t. inputs and that the
dynamics model should be linear too. Linearity of the hypernetwork is not an issue as
detailed in Section 6.3.3. Assumption 6.3 applies to several real-world systems used in our
experiments (cf. Appendix C.3, lemmas C.1 and C.2). Assumption 6.4 is not restrictive as
we showed that 𝑑P is recovered through cross-validation (Section 6.5.5).

We propose an extension of Proposition 6.3 in Proposition 6.4 to nonlinear systems
w.r.t. inputs and nonlinear dynamics model 𝑔. This alleviates the linearity assumption in
Assumptions 6.1 and 6.2 and better fits our experimental setting.

Proposition 6.4 (Local identification under nonlinearity). For linearly parametrized
systems, nonlinear w.r.t. inputs and nonlinear dynamics model 𝑔𝜃 with parameters output
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by a linear hypernetwork 𝐴, ∃𝛼 > 0 s.t. system parameters are perfectly identified ∀𝑒 ∈ E
where ‖𝜉𝑒‖ ≤ 𝛼 if ∀𝑓 ∈ B with parameter 𝜃P, 𝑔𝐴(𝛼 𝜃P

‖ 𝜃P ‖ )
= 𝑓 .

+ Proof in Appendix C.3, p. 226

Proposition 6.4 states that systemparameters are recovered for environmentswith context
vectors of small norm, under a rescaling condition on true system parameters. Proposi-
tion 6.4 explains why estimation error increases when system parameters differ greatly
from training ones, as these systems are more likely to violate the norm condition.

6.6 Conclusion
We introduced CODA, a new framework to learn context-informed data-driven dynamics
models in multiple environments. CODA generalizes with little retraining and few data
to new related physical systems and outperforms prior methods on several real-world
nonlinear dynamics. Many promising applications of CODA are possible, notably for
spatiotemporal problems, e.g., partially observed systems, reinforcement learning, or NN-
based simulation.
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Chapter 7

Modeling Continuous Dynamics
Continuous PDE Dynamics Forecasting with Implicit Neural Representations

In this final chapter of contributions, thanks to recent advances in representing continuous
signals, we search for discovering a path toward completely continuous modeling of
the spatiotemporal dynamics. We focus on orchestrating the time-continuous dynamics
predictor and the space-continuous function representing the state signal via contextual
techniques, inspired by previous efforts to link dynamics learning and contextual neural
networks. This work resulted in a conference paper at ICLR 2023.

Yuan Yin*, Matthieu Kirchmeyer*, Jean-Yves Franceschi*, Alain Rakotomamonjy,
and Patrick Gallinari. Continuous PDE dynamics forecasting with implicit neural
representations. ICLR 2023.
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7.1 Introduction

Modeling the dynamics and predicting the temporal evolution of physical phenomena is
paramount in many fields, e.g., climate modeling, biology, fluid mechanics, and energy
(Willard et al., 2023). Classical solutions rely on a well-established physical paradigm: the
evolution is described by differential equations derived from physical first principles, and
then solved using numerical analysis tools, e.g., finite elements, finite volumes, or spectral
methods (Olver, 2014). The availability of large amounts of data from observations or
simulations has motivated data-driven approaches to this problem (Brunton and Kutz,
2022), leading to the rapid development of the field with deep learning methods. The
main motivations for this research track include developing surrogate or reduced order
models that can approximate high-fidelity full order models at reduced computational
costs (Kochkov et al., 2021), complementing classical solvers, e.g., to account for additional
components of the dynamics (Yin et al., 2021b), or improving low fidelity models (Belbute-
Peres et al., 2020).

Most of these attempts rely on workhorses of deep learning like convolutional neural
networks (ConvNets) (Ayed et al., 2022) or graph neural networks (GNNs) (Li et al., 2020;
Pfaff et al., 2021; Brandstetter et al., 2022). They all require prior space discretization either
on regular or irregular grids, such that they only capture the dynamics on the training grid
and cannot generalize outside it. Neural operators, a recent trend, learnmappings between
function spaces (Li et al., 2021b; Lu et al., 2021) and thus alleviate some limitations of prior
discretization approaches. Yet, they still rely on fixed grid discretization for training and
inference: e.g., regular grids for Li et al. (2021b) or a free-form but predetermined grid for
Lu et al. (2021). Hence, the number and/or location of sensors have to be fixed across train
and test which is restrictive in many situations (Prasthofer et al., 2022). Mesh-agnostic
approaches for solving canonical partial differential equations (PDEs) are another trend
(Raissi et al., 2019; Sirignano and Spiliopoulos, 2018). In contrast to physics-agnostic grid-
based approaches, they aim at solving a known PDE as usual solvers do, and cannot cope
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with unknown dynamics. This idea was concurrently developed for computer graphics,
e.g., for learning 3D shapes (Sitzmann et al., 2019; Mildenhall et al., 2020; Tancik et al.,
2020) and coined as implicit neural representations (INRs).

When used as solvers, these methods can only tackle a single initial value problem and
are not designed for long-term forecasting outside the training horizon. Because of these
limitations, none of the above approaches can handle situations encountered in many
practical applications such as different geometries, e.g., phenomena lying on a Euclidean
plane or an Earth-like sphere; variable sampling, e.g., irregular observation grids that may
evolve at train and test time as in adaptive meshing (Berger and Oliger, 1984); scarce
training data, e.g., when observations are only available at a few spatiotemporal locations;
multi-scale phenomena, e.g., in large scale-dynamics systems as climate modeling, where
integrating intertwined subgrid scales, a.k.a. the closure problem, is ubiquitous (Zanna and
Bolton, 2021). These considerations motivate the development of new machine learning
models that improve existing approaches on several of these aspects.

In our work, we aim at forecasting PDE-based spatiotemporal physical processes with a
versatile model tackling the aforementioned limitations. We adopt an agnostic approach,
i.e., not assuming any prior knowledge on the physics. We introduce DINO (Dynamics-
aware Implicit Neural representations), a model operating continuously in space and time,
with the following contributions.

Continuous flow learning. DINO aims at learning the PDE’s flow to forecast its solu-
tions, in a continuous manner so that it can be trained on any spatial and temporal
discretization and applied to another. To this end, DINO embeds spatial observa-
tions into a small latent space via INRs; then it models continuous-time evolution
by a learned latent ordinary differential equation (ODE).

Space-time separation. To efficiently encode different sequences, we propose a novel
INR parameterization, amplitude modulation, implementing a space-time separa-
tion of variables. This simplifies the learned dynamics, reduces the number of
parameters and greatly improves performance.

Spatiotemporal versatility. DINO combines the benefits of prior models (cf. Table 7.1).
It tackles new sequences via its amplitude modulation. Sequential modeling with
an ODE makes it extrapolate to unseen times within or beyond the training horizon.
Thanks to INRs’ spatial flexibility, it generalizes to new grids or resolutions, predicts
at arbitrary positions, and handles sparse irregular grids or manifolds.
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Table 7.1: Comparison of data-driven approaches to spatiotemporal PDE forecasting.

Model Reference
1. PDE-agnostic

prediction on new
initial conditions

2. Train /
test space grid
independence

3. Evaluation at
unobserved spa-

tial locations

4. Free-form spatial
domain (manifold,
irregular mesh)

5. Time
continuous

6. Time
extrapolation

Discrete
{
NODE Chen et al. (2018) 3 7 7 7 3 3
MP-PDE Brandstetter et al. (2022) 3 7 7 3 7 3

Operator
{
Markov neural operator (MNO) Li et al. (2021a) 3 3 7 7 7 3
DeepONet Lu et al. (2021) 3 7 3 3 3 7

INRs
{
PINNs Raissi et al. (2019) 7 3 3 3 3 7
DINO Ours 3 3 3 3 3 3
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Empirical validation. We demonstrate DINO’s versatility and state-of-the-art perfor-
mance vs. prior neural PDE forecasters, representative of grid-based, operator, and
INR-based methods, via thorough experiments on challenging multi-dimensional
PDEs in various spatiotemporal generalization settings.

7.2 Problem Description
Problem Setting. We aim at modeling, via a data-driven approach, the temporal evo-
lution of a continuous fully-observed deterministic spatiotemporal phenomenon. It is
described by trajectories 𝑢 : ℝ → U in a set 𝛤 ; we use 𝑢𝑡 B 𝑢(𝑡) ∈ U . We focus on
Initial Value Problems, where only 𝑢𝑡 at any time 𝑡 is required to infer 𝑢𝑡′ for 𝑡′ > 𝑡. Hence,
trajectories share the same dynamics but differ by their initial condition 𝑢0 ∈ U . ℝ is the
temporal domain and U is the functional space of the form Ω → ℝ𝑑 , where Ω ⊂ ℝ𝑝 is a
compact spatial domain and 𝑑 the number of observed values. In otherwords, 𝑢𝑡 is a spatial
function of 𝑥 ∈ Ω, with vectorial output 𝑢𝑡 (𝑥) ∈ ℝ𝑑; cf. examples of Section 7.4.1.

Table 7.2: Notation for the observation grids in space and time.

Training Test Comments

Spatial grid Xtr = X Xts ∈ {X ,X ′} X ,X ′ ⊂ Ω,X ≠ X ′
Temporal grid Ttr = T Tts ∈ {T , T ′} T ∈ I , T ′ ∈ I′, T ≠ T ′

To this end, we consider the setting illustrated in Figure 7.1. We observe a finite training
set of trajectories D, with a free-form spatial observation grid Xtr ⊂ Ω and on discrete
times 𝑡 ∈ T ⊂ I = [0, 𝑇]. At test time, we are only given a new initial condition 𝑢0,
with observed values 𝑢0 |Xts on a new observation grid Xts, potentially different from Xtr.
Inference is performed on both train and test trajectories given only the initial condition,
on a new free-form grid X ′ ⊂ Ω and times 𝑡 ∈ T ′ ⊂ I′ = [0, 𝑇 ′]. Inference grid
X ′ comprises observed positions (respectively Xtr and Xts for train and test trajectories)
and unobserved positions corresponding to spatial interpolation. Note that the inference
temporal horizon is larger than the train one: 𝑇 < 𝑇 ′.

For simplicity, In-s refers to data in X ′ on the observation grid (Xtr for train / Xts for
test), Out-s to data in X ′ outside the observation grid; In-t refers to times within the train
horizon T ⊂ [0, 𝑇] , and Out-t to times in T ′ \ T ⊂ (𝑇,𝑇 ′] , beyond 𝑇 , up to inference
horizon 𝑇 ′.
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Evaluation scenarios. The desired properties in Section 7.1 call for spatiotemporally
continuous forecasting models. We select six criteria that our approach should meet;
cf. column titles of Table 7.1. First, the model should be robust to the change of initial
condition 𝑢0, i.e., generalize to test trajectories (col. 1). Second, it should extrapolate
beyond the train conditions: in space, on a test observation grid that differs from the train
one, i.e., X ′ = Xts ≠ Xtr (In-s, col. 2), and outside the observed train and test grid, i.e.,
on X ′ \ Xts,X ′ \ Xtr (Out-s, col. 3); in time, between train snapshots (col. 5) and beyond
the observed train horizon 𝑇 (Out-t, col. 6). Finally, it should adapt to free-form spatial
domains, i.e., to various geometries (e.g., manifolds) or irregular grids (col. 4). See also
Figure 7.1.

Objective. To satisfy these requirements, we learn the flow Ψ of the physical system:

Ψ : (U ×ℝ) → U ,
𝑢𝑡 , 𝜏 ↦→ Ψ𝜏 (𝑢𝑡) = 𝑢𝑡+𝜏 ∀𝑢 ∈ 𝛤, 𝑡, 𝜏 ∈ ℝ+.

(7.1)

Learning the flow is a common strategy in sequential models to better generalize beyond
the train time horizon. Yet, so far, it has always been learned with discretized models,
which poses generalization issues violating our requirements.

7.3 Model

We present DINO, the first space/time-continuous model that tackles all prediction tasks
of Section 7.2, without the above limitations. We specify DINO’s inference procedure
(Section 7.3.1), illustrated in Figure 7.2 (left), then introduce each of its components
(Section 7.3.2) and how they are trained (Section 7.3.3, Figure 7.2 (right)). Finally, we detail
our implementation based on amplitude modulation, a novel INR parameterization for
spatiotemporal data which performs the separation of variables (Section 7.3.4).

7.3.1 Inference Model

As explained in Section 7.2, we aim at estimating the flow Ψ in Eq. (7.1), so that our model
can be trained on an observed grid Xtr and perform inference given a new one Xts, both
possibly irregular. To this end, we leverage a space- and time-continuous formulation,
independent of a given data discretization.
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Figure 7.1: (Left) We represent time contexts. The train trajectory consists of training
snapshots (■), observed in a train interval [0, 𝑇] denoted In-t. The line (—) in continuation
is a forecasting of this trajectory beyond In-t, in (𝑇,𝑇 ′] denoted Out-t. The line below
(—, test) is a forecasting from a new initial condition 𝑢0 (■) on In-t and Out-t. (Middle and
right) We illustrate spatial contexts. (Middle) Dots (•) correspond to the train observation
gridXtr, denoted In-s. Out-s denotes the complementary domainΩ\Xtr. (Right) New test
observation grid Xts, used as an initial point for forecasting (left).
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Figure 7.2: Proposed DINO model. Inference (left): given a new initial condition observed
on a gridXts, 𝑢0 |Xts , forecasting amounts at decoding 𝛼𝑡 to 𝑢̃𝑡 , by unrolling 𝛼0 with a time-
continuous ODE dynamics model 𝑓𝜓 . Train (right): given an observation grid Xtr and a
space-continuous decoder 𝐷𝜙, 𝛼𝑡 is learned by auto-decoding s.t. 𝐷𝜙(𝛼𝑡) |Xtr = 𝑢𝑡 |Xtr . Its
evolution is then modeled with 𝑓𝜓 .
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At inference, DINO starts from a single initial condition 𝑢0 ∈ U and uses a flow to forecast
its dynamics. DINO first embeds spatial observations from 𝑢0 into a latent vector 𝛼0 of
small dimension 𝑑𝛼 via an encoder of spatial functions 𝐸𝜑 : U → ℝ𝑑𝛼 (ENC). Then, it unrolls
a latent time-continuous dynamicsmodel 𝑓𝜓 : ℝ𝑑𝛼 → ℝ𝑑𝛼 given this initial condition (DYN).
Finally, it decodes latent vectors via a decoder𝐷𝜙 : ℝ𝑑𝛼 → U into a function of space (DEC).
At any time 𝑡, 𝐷𝜙 takes as input 𝛼𝑡 and outputs a function 𝑢̃𝑡 : Ω→ ℝ𝑛. This results in the
following model, illustrated in Figure 7.2 (left):

(ENC) 𝛼0 = 𝐸𝜑(𝑢0), (DYN)
d𝛼

d𝑡
= 𝑓𝜓 (𝛼), (DEC) ∀𝑡, 𝑢̃𝑡 = 𝐷𝜙(𝛼𝑡). (7.2)

7.3.2 Components
We now further detail each component involved at inference from Eq. (7.2).

Encoder: 𝛼𝑡 = 𝐸𝜑(𝑢𝑡). The encoder computes a latent vector 𝛼𝑡 given observation 𝑢𝑡 at
any time 𝑡. It is used in two different contexts, respectively for train and test. At train
time, given an observed trajectory 𝑢|T , it will encode any 𝑢𝑡 into 𝛼𝑡 (see Section 7.3.3).
At inference time, only 𝑢0 is available, and then only 𝛼0 is computed to be used as the
initial value for the dynamics. Given the decoder 𝐷𝜙, 𝛼𝑡 is a solution to the inverse
problem𝐷𝜙(𝛼𝑡) = 𝑢𝑡 . We solve this inverse problemwith auto-decoding (Park et al., 2019).
Denoting ℓdec(𝜙, 𝛼𝑡; 𝑢𝑡) = ‖𝐷𝜙(𝛼𝑡) − 𝑢𝑡‖22 the decoding loss where ‖·‖2 is the euclidean
norm of a function and 𝑆 the number of update steps, auto-decoding defines 𝐸𝜑 as:

𝐸𝜑(𝑢𝑡) = 𝛼𝑆𝑡 , where ∀𝑖 > 1, 𝛼𝑖𝑡 = 𝛼
𝑖−1
𝑡 − 𝜂∇𝛼𝑡 ℓdec(𝜙, 𝛼𝑖−1𝑡 ; 𝑢𝑡) and 𝜑 = 𝜙. (7.3)

In practice, we observe a discretization (Xtr,Xts) and accordingly approximate the norm
in ℓdec as in Eq. (7.6). Compared to auto-encoding, auto-decoding underfits less (Kim et al.,
2019) and is more flexible: without requiring specialized encoder architecture, it handles
free-formed (irregular or on a manifold) observation grids as long as the decoder shares
the same property.

Decoder: 𝑣̃𝑡 = 𝐷𝜙(𝛼𝑡). We define a flexible decoder using a coordinate-based INR
network with parameters conditioned on 𝛼𝑡 . An INR 𝐼𝜃 : Ω → ℝ𝑛 is a space-continuous
model parameterized by 𝜃 ∈ ℝ𝑑𝜃 defined on domain Ω. It approximates functions
independently of the observation grid, e.g., it handles irregular grids and changing obser-
vation positions, unlike FNO and DeepONet. Thus, it constitutes a flexible alternative
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Figure 7.3: Decoding via INR – Eq. (7.4) Figure 7.4: Amplitude modulation –
Eq. (7.9). 𝑧(𝑙−1)𝑡 is input to the 𝑙th linear layer
and combined with the spatial basis 𝑠𝜔(𝑙) via
Hadamard product.

to operators suitable for auto-decoding. To implement the conditioning of the INR’s
parameters, we use a hypernetwork (Ha et al., 2017) ℎ𝜙 : ℝ𝑑𝛼 → ℝ𝑑𝜃 , as illustrated in
Figure 7.3. It generates high-dimensional parameters 𝜃𝑡 ∈ ℝ𝑑𝜃 of the INR given the low-
dimensional latent vector 𝛼𝑡 ∈ ℝ𝑑𝛼 . In summary, the decoder 𝐷𝜙, parameterized by 𝜙, is
defined as:

∀𝑥 ∈ Ω, 𝑢̃𝑡 (𝑥) = 𝐷𝜙(𝛼𝑡)(𝑥) B 𝐼ℎ𝜙 (𝛼𝑡) (𝑥). (7.4)

The decoder’s predictions at all spatial locations 𝑥 ∈ Ω thus all depend on 𝛼𝑡 . We provide
further details on the precise implementation in Section 7.3.4.

Dynamics model: d𝛼𝑡
d𝑡 = 𝑓𝜓 (𝛼𝑡). Finally, the dynamics model 𝑓𝜓 : ℝ𝑑𝛼 → ℝ𝑑𝛼 defines a

flow via an ODE in the latent space. The initial condition can be defined at any time 𝑡 by
encoding with 𝐸𝜑 the corresponding input function 𝑢𝑡 .

Overall flow. Combined together, our components define the following flow in the
input space that can approximate the data flow Ψ in Eq. (7.1):

∀𝑡, 𝜏 ∈ ℝ+, (𝑢𝑡 , 𝜏) ↦→ 𝐷𝜙
(
𝐸𝜑(𝑢𝑡) +

∫ 𝑡+𝜏
𝑡

𝑓𝜓 (𝛼𝑠)d𝑠
)

where 𝛼𝑡 = 𝐸𝜑(𝑢𝑡). (7.5)
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To summarize, DINO defines a time-continuous latent temporal model with a space-
continuous emission function 𝐷𝜙, combining the flexibility of space and time continuity.
This is fully novel to our knowledge, as prior latent approaches are discretized (cf. Fraccaro
(2018) for state-space models).

7.3.3 Training

Given components (ENC), (DEC), (DYN), we present their training procedure, illustrated in
Figure 7.2 (right). We use a simple two-stage optimization process, close to recent works
in video prediction (Yan et al., 2021). Given the train sequences D, we first apply auto-
decoding to obtain the latent vectors 𝛼T = {𝛼𝑢𝑡 }𝑡∈T ,𝑢∈D and the decoder parameters 𝜙. We
then learn the parameters of the dynamics 𝜓 by modeling the latent flow over 𝛼𝑢𝑡 ,∀𝑢 ∈
D. We detail this procedure in Appendix D.3.1, which can be formalized as a two-stage
optimization problem that we solve in parallel without inducing training instability (cf.
Appendix D.3.2):

min
𝜓

ℓdyn(𝑓𝜓 , 𝛼T ) B
∑
𝑢∈D

∑
𝑡∈T



𝛼𝑢𝑡 − (
𝛼𝑢0 +

∫ 𝑡

0

𝑓𝜓 (𝛼𝑢𝑠 )d𝑠
)

2

2

s.t. 𝛼T , 𝜙 = argmin
𝛼T ,𝜙

ℓdec(𝐷𝜙, 𝛼T ) B
∑
𝑢∈D

∑
𝑥∈Xtr

∑
𝑡∈T



𝑢𝑡 (𝑥) − 𝐷𝜙(𝛼𝑢𝑡 ) (𝑥)

22. (7.6)

7.3.4 Decoder Implementation via Amplitude-Modulated INRs

Wenow specify our implementation of decoder𝐷𝜙 in Eq. (7.4). This includes the definition
of the INR architecture 𝐼𝜃 and of the hypernetwork ℎ𝜙. We introduce for the latter a
new method called amplitude modulation, which implements a space-time separation of
variables.

𝐼𝜃 as FourierNet. We implement 𝐼𝜃 as a FourierNet, a state-of-the-art INR architecture,
which instantiates a multiplicative filter network (MFN). A FourierNet relies on the
recursion in Eq. (7.7), where 𝑥 ∈ Ω is an input spatial location, 𝑧(𝑙) (𝑥) is the hidden feature
vector at layer 𝑙 for 𝑥 and 𝑠𝜔(𝑙) (𝑥) = [cos(𝜔(𝑙)𝑥), sin(𝜔(𝑙)𝑥)] is a Fourier basis:{

𝑧(0) (𝑥) = 𝑠𝜔(0) (𝑥), 𝑧(𝐿) (𝑥) = 𝑊 (𝐿−1)𝑧(𝐿−1) (𝑥) + 𝑏(𝐿−1) ,
𝑧(𝑙) (𝑥) =

(
𝑊 (𝑙−1)𝑧(𝑙−1) (𝑥) + 𝑏(𝑙−1)

)
� 𝑠𝜔(𝑙) (𝑥) for 𝑙 ∈ È1, 𝐿 − 1É,

(7.7)
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where we fix 𝑊 (0) = 0, 𝑏(0) = 1, 𝑠𝜔(0) (𝑥) = 𝑥. Denoting 𝑊 = [𝑊 (𝑙)]𝐿−1𝑙=1 , 𝑏 =
[𝑏(𝑙)]𝐿−1𝑙=1 , 𝜔 = [𝜔(𝑙)]𝐿−1𝑙=1 , we fit a FourierNet to an input function 𝑣 observed on a grid
X by learning {𝑊, 𝑏, 𝜔} s.t. ∀𝑥 ∈ X , 𝑧(𝐿) (𝑥) = 𝑣(𝑥). In practice, we observe that fixing 𝜔
uniformly sampled performs similarly to learning them, so we exclude them from training
parameters.

FourierNets are interpretable, a property we leverage to separate time and space via
amplitude modulation. Fathony et al. (2021) show that ∃𝑀 � 𝐿 ∈ ℕ,∃{𝑐(𝑚)𝑗 }𝑀𝑚=1 a set
of coefficients that depend individually on {𝑊, 𝑏} and ∃{𝛾 (𝑚)}𝑀𝑚=1 a set of parameters
that depend individually on those of the filters 𝜔 s.t. the 𝑗th dimension of 𝑧(𝐿) (𝑥) can be
expressed as:

𝑧(𝐿)𝑗 (𝑥) =
𝑀∑
𝑚=1

𝑐(𝑚)𝑗 𝑠𝛾 (𝑚) (𝑥) + bias (7.8)

Eq. (7.8) involves a basis of spatial functions {𝑠𝛾 (𝑚) }𝑀𝑚=1 evaluated on 𝑥 and the amplitudes
of this basis {𝑐(𝑚)𝑗 }𝑀𝑚=1. Note that Eq. (7.8) can be extended to other choices of 𝑠𝜔(𝑙) (Fathony
et al., 2021).

ℎ as amplitude modulation. ℎ generates the INR’s parameters 𝜃𝑡 given 𝛼𝑡 to model a
target input function 𝑢𝑡 . We implement ℎ as element-wise shift and scale transformations
(FiLM; Perez et al., 2018) of the linear layers parameters𝑊, 𝑏 (excluding those of the filters
𝜔). Then, in Eq. (7.8), amplitudes 𝑐(𝑚)𝑗 only depend on time while the basis functions
𝑠𝛾 (𝑚) only depend on space: this corresponds to a modeling assumption of separation of
variables (Le Dret and Lucquin, 2016) in 𝑢. We call our technique amplitude modulation.
In practice, as Dupont et al. (2022), we consider latent shift transformations (Figure 7.4),
detailed in Eq. (7.9). Eq. (7.9) extends Eq. (7.7) by introducing a shift term 𝜇(𝑙−1)𝑡 at each
layer 𝑙, defined as 𝜇(𝑙−1)𝑡 = 𝑊 ′(𝑙−1)𝛼𝑡 , where𝑊 ′ = [𝑊 ′(𝑙−1)]𝐿−1𝑙=1 is another weight matrix:

𝑧(𝑙)𝑡 (𝑥) =
(
𝑊 (𝑙−1)𝑧(𝑙−1)𝑡 (𝑥) + 𝑏(𝑙−1) + 𝜇(𝑙−1)𝑡

)
� 𝑠𝜔(𝑙) (𝑥). (7.9)

The INR’s parameters are defined as ℎ𝜙(𝛼𝑡) = {𝑊 ; 𝑏 + 𝑊 ′𝛼𝑡; 𝜔} where 𝜙 = {𝑊, 𝑏,𝑊 ′}
are ℎ’s parameters. Thus, amplitude modulation separates time and space. We show in
Table D.1 that it significantly improves performance, particularly time extrapolation.
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7.4 Experiments
We assess the spatiotemporal versatility of DINO, following Section 7.2. We introduce our
experimental setting (Section 7.4.1), which includes a variety of challenging PDE datasets,
state-of-the-art baselines, and forecasting tasks. Then, we present and comment on the
experimental results (Section 7.4.2).

7.4.1 Experimental Setting

Datasets. We consider the following PDEs defined over a spatial domainΩ, with further
details in Appendix D.3.

• 2DWave equation (Wave) is a second-order PDE 𝜕2𝑣
𝜕𝑡2

= 𝑐2Δ𝑣. 𝑣 is the displacement
w.r.t. the rest position and 𝑐 is the wave traveling speed. We consider its first-order
form, so that 𝑢𝑡 = (𝑣𝑡 , 𝜕𝑣𝑡𝜕𝑡 ) has a two-dimensional output (𝑑 = 2).

• 2D Navier Stokes (Navier-Stokes, Stokes, 1851) corresponds to an incompressible
fluid dynamics 𝜕𝑤𝜕𝑡 = −𝑣∇𝑤+ 𝜈Δ𝑤+ 𝑓 , 𝑤 = ∇×𝑣,∇𝑣 = 0, where 𝑣 is the velocity field
and 𝑤 the vorticity. 𝜈 is the viscosity and 𝑓 is a constant forcing term. The input has
only one channel, i.e., 𝑑 = 1.

• 3D Spherical shallowwater (Shallow-Water, Galewsky et al., 2004): it involves the
vorticity𝑤, tangent to the sphere’s surface, and the thickness of the fluid ℎ. The input
is 𝑢𝑡 = (𝑤𝑡 , ℎ𝑡) (𝑑 = 2).

Baselines. We reimplement representative models from Section 3.3 and table 7.1 and
adapt them to our multi-dimensional datasets.

• CNODE (Ayed et al., 2022) combines a ConvNet and an ODE solver to handle
regular grids.

• MP-PDE (Brandstetter et al., 2022) uses a GNN to handle free-formed grids, yet
is unable to predict outside the observation grid. We developed an interpolative
extension, I-MP-PDE, to handle this limitation; it performs bicubic interpolation
on the observed grid, and training is done on the resulting interpolation.

• MNO (Li et al., 2021a): an autoregressive version of Fourier neural operator (FNO;
Li et al., 2021b) for regular grids; MNO can be evaluated on new uniform grids.
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• DeepONet (Lu et al., 2021), considered autoregressively (Wang and Perdikaris,
2021)wherewe remove time from the trunknet’s input. DeepONet can be evaluated
on new spatial locations without interpolation.

• SIREN (Sitzmann et al., 2019) andMFN (Fathony et al., 2021) are two INR methods
that we extend to fit our setting. We consider an agnostic setting, i.e., without
the knowledge of the differential equation, and perform sequence conditioning to
generalize to more than a trajectory. This is achieved by learning a latent vector
with auto-decoding; it is then concatenated to the spatial coordinates.

Tasks. We evaluate models on various forecasting tasks which combine the evaluation
scenarios of Section 7.2. Performance is measured by the prediction mean square error
(MSE) given only an initial condition.

• Space and time generalization. We consider a uniform grid X ′ for inference.
Training is performed on different observations gridsXtr subsampled fromX ′with
different ratios, 𝑠 ∈ {5%, 25%, 50%, 100%} where 𝑠 = 100% corresponds to the full
inference grid, i.e., Xtr = X ′. In this setting, we consider that all trajectories (train
and test) share the same observation grid Xtr = Xts. We evaluate MSE error on X ′

over the train time interval (In-t) and beyond (Out-t) at each subsampling ratio.

• Flexibility w.r.t. input grid. We vary the test observation grid, i.e., Xts ≠ Xtr and
perform inference on X ′ = Xts, i.e., on the test observation grid (In-s) under two
settings:

⊲ Generalizing across grids: Xtr,Xts are subsampleddifferently from the same
uniform grid; 𝑠tr (resp. 𝑠ts) is the train (resp. test) subsampling ratio.

⊲ Generalizing across resolutions: Xtr,Xts are subsampled with the same
ratio 𝑠 from two uniform grids with different resolutions; the train resolution
is fixed to 𝑟tr = 64while we vary the test resolution 𝑟ts ∈ {32, 64, 256}.

• Data onmanifold. We consider a PDE on a sphere and combine several evaluation
scenarios, as described later.

• Finer time resolution. We consider an inference time grid T ′ with a finer
resolution than the train one T .
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Table 7.3: Space and time generalization. Train and test observation grids are equal and subsampled from an uniform 64×64
grid, used for inference. We report MSE (↓) on the inference time interval T ′, divided within training horizon (In-t, T ) and
beyond (Out-t, outside T ) across subsampling ratios.

Model

Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

𝑠 = 5% subsampling ratio

Discrete
{
I-MP-PDE 8.154E−3 8.166E−3 7.926E−3 8.225E−3 7.055E−4 7.097E−4 1.138E−3 1.116E−3

Operator
{
DeepONet 3.330E−3 7.370E−3 1.346E−2 1.408E−2 8.331E−4 9.295E−3 1.692E−2 3.256E−2

INR
{
SIREN 8.741E−3 1.767E−1 4.303E−2 2.126E−1 2.738E−3 1.818E−2 3.339E−2 6.964E−2
DINO 1.029E−3 1.655E−3 1.326E−3 1.813E−3 4.088E−5 4.121E−5 6.415E−5 7.392E−5

𝑠 = 25% subsampling ratio

Discrete
{
I-MP-PDE 3.135E−4 7.245E−4 3.476E−4 7.658E−4 3.293E−5 1.108E−4 5.142E−5 1.545E−4

Operator
{
DeepONet 9.016E−4 5.936E−3 9.376E−3 1.328E−2 5.722E−4 1.061E−2 1.757E−2 3.221E−2

INR
{
SIREN 5.180E−3 2.175E−1 2.436E−1 3.861E−1 8.995E−4 1.292E−2 1.783E−2 5.143E−2
DINO 1.020E−4 4.504E−4 2.646E−4 5.951E−4 3.949E−6 4.436E−6 1.089E−5 1.174E−5

𝑠 = 100% subsampling ratio

Discrete
{
CNODE 2.319E−2 9.652E−2 2.305E−2 1.143E−1 2.337E−5 5.280E−4 3.057E−5 7.288E−4
MP-PDE 1.140E−4 5.500E−4 1.785E−4 5.856E−4 1.718E−7 1.993E−5 9.256E−7 4.261E−5

Operator
{
MNO 3.190E−5 8.678E−4 2.763E−4 8.946E−4 9.381E−6 4.890E−3 1.993E−4 6.128E−3
DeepONet 1.375E−3 6.573E−3 9.704E−3 1.244E−2 6.431E−4 1.293E−2 1.847E−2 3.317E−2

INR


SIREN 1.066E−3 4.336E−1 3.874E−1 1.037E0 3.674E−4 9.956E−3 3.013E−2 7.842E−2
MFN 1.651E−3 1.037E0 2.106E−1 1.059E0 1.408E−4 1.763E−1 4.735E−3 2.274E−1
DINO (no sep.) 3.235E−4 1.593E−3 7.850E−4 1.889E−3 2.641E−6 4.081E−5 5.977E−5 2.979E−4
DINO 8.339E−5 3.115E−4 2.092E−4 4.311E−4 3.309E−6 3.506E−6 9.495E−6 9.946E−6
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Table 7.4: Flexibility w.r.t. input grid. Observed test / train grid differ (Xts ≠ Xtr). We report test MSE (↓) for Navier-Stokes on
X ′ = Xts (In-s). Green Yellow Red mean excellent, good, poor MSE.

(a) Generalization across grids: Xtr,Xts are subsampled with different ratios 𝑠tr ≠ 𝑠ts among {5, 50, 100}% from the same
uniform 64×64 grid.

Subsampling Test→ 𝑠ts = 5% 𝑠ts = 50% 𝑠ts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t

𝑠tr = 5%
MP-PDE 1.330E−1 3.852E−1 1.859E−1 6.680E−1 2.105E−1 7.120E−1
DINO 1.494E−3 2.291E−3 1.257E−3 1.883E−3 1.287E−3 1.947E−3

𝑠tr = 50%
MP-PDE 4.494E−2 9.403E−2 4.793E−3 1.997E−2 6.330E−3 3.712E−2
DINO 2.470E−4 4.697E−4 2.073E−4 4.284E−4 2.058E−4 4.361E−4

𝑠tr = 100%
MP-PDE 1.358E−1 3.355E−1 1.182E−2 2.664E−2 1.785E−4 5.856E−4
DINO 2.495E−4 4.805E−4 2.109E−4 4.325E−4 2.092E−4 4.311E−4

(b) Generalization across resolutions: Xts (resp.Xtr) are subsampled at the same ratio 𝑠 ∈ {5, 100}% from different
uniform grids with resolution 𝑟ts ∈ {32, 64, 256} (resp. 𝑟tr = 64).

Test resolution→ 𝑟ts = 32 -Xts ≠ Xtr 𝑟ts = 64 -Xts = Xtr 𝑟ts = 256 -Xts ≠ Xtr

Subsampling ↓ In-t Out-t In-t Out-t In-t Out-t

𝑠 = 5%
MP-PDE 3.209E−1 6.472E−1 2.465E−4 1.105E−3 2.239E−1 8.253E−1
DINO 5.308E−3 9.544E−3 2.533E−4 8.832E−4 1.991E−3 2.942E−3

𝑠 = 100%

MNO 4.547E−3 9.281E−3 1.277E−4 8.525E−4 2.174E−3 4.975E−3
MP-PDE 4.194E−2 9.109E−2 1.597E−4 6.483E−4 4.648E−2 1.381E−1
DINO 2.321E−4 6.386E−4 2.320E−4 6.385E−4 2.322E−4 6.385E−4
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7.4.2 Results

Space and time generalization. We report prediction MSE in Table 7.3 for varying
subsampling ratios 𝑠 ∈ {5%, 25%, 100%} on Navier-Stokes and Wave. Appendix D.1
provides a fine-grained evaluation inside the train observation grid (In-s) or outside (Out-
s) and reports additionally the results for 𝑠 = 50%. We visualize some predictions in
Appendix D.2. DINO is compared to all baselines when 𝑠 = 100%, i.e., X ′ = Xtr = Xts,
and otherwise it is compared only to models which handle irregular grids and prediction
at arbitrary spatial locations (DeepONet, SIREN, MFN, I-MP-PDE).

• General analysis. We observe that all models degrade when the subsampling ratio
𝑠 decreases. DINO performs competitively overall: it achieves the bestOut-t perfor-
mance on all subsampling settings, outperforms all the baselines on low subsampling
ratios, and performs comparably to the competitive discretized alternatives (MP-
PDE, CNODE) and operator (MNO) when 𝑠 = 100%, i.e., when observation and
inference grids are equal. Note that this fully observed setting is favorable for
CNODE, MP-PDE, and MNO, designed to perform inference on the observation
grid. This can be seen in Table 7.3, where DINO is slightly outperformed only
for a few settings. MP-PDE is significantly better only on Wave for In-t. Overall,
ConvNets and GNNs exhibit good performance for spatially local dynamics like
Wave, while INRs (like DINO) and MNO are more adapted to global dynamics like
Navier-Stokes.

• Analysis per model. MP-PDE is the most competitive baseline across datasets
as it combines a strong and flexible encoder (GNNs) to a good dynamics model;
however, it cannot predict outside the observation grid (Out-s). To keep a strong
competitor, we extend this baseline into its interpolative version I-MP-PDE on
subsampled settings. I-MP-PDE is competitive for high subsampling ratios, e.g.,
𝑠 ∈ {50%, 100%} but underperforms w.r.t. DINO at lower subsampling ratios due
to the accumulated interpolation error. MNO is a competitive baseline on Navier-
Stokes, performing on parwithMP-PDE andDINO inside the training horizon (In-t);
its performance on Out-t degrades more significantly compared to other models,
especially DINO. DeepONet is more flexible than MP-PDE as it can predict at
arbitrary locations. As no interpolation error is introduced, it outperforms I-MP-
PDE for 𝑠 = 5% on train data. Yet, we observe that it underperforms especially on
Out-t w.r.t. its alternatives. Finally, we observe that SIREN and MFN fit correctly
the training horizon In-t on train, yet generalize poorly outside this horizonOut-t or
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onnew initial conditions (test). This is in accordancewith our analysis of Section 3.3;
we highlight that this is not the case for DINO which extrapolates temporally and
generalizes to new initial conditions thanks to its sequential modeling of the flow.
Thus, DINO is currently the state-of-the-art INR model for spatiotemporal data.

• Modulation. We observe that modulating both amplitudes and frequencies (row
DINO (no sep.) in Table 7.3) degrades performance w.r.t. DINO (row DINO in
Table 7.3) that only modulates amplitudes. Amplitude modulation enables long
temporal extrapolation and reduces the number of parameters. Hence, as opposed
to DINO (no sep.) which is outperformed by some baselines, time-space variable
separation in DINO is an essential ingredient of the model to reach state-of-the-art
levels.

Flexibilityw.r.t. input grid. Weconsider inTable 7.4Navier-Stokes and compareDINO
to the most competitive baselines, MP-PDE and MNO (with 𝑠 = 100% subsampling ratio).

• Generalizing across grids. In Table 7.4a, we consider that the test observation
gridXts is different from the train oneXtr. This occurs when sensors differ between
two observed trajectories. We vary the subsampling ratio for the train observation
grid 𝑠tr and the test one 𝑠ts. We report test MSE on new grids X ′ = Xts. We observe
that DINO is very robust to changing grids between train and test, while MP-PDE’s
performance degrades, especially for low subsampling ratios, e.g., 5%. For reference,
we report in Table D.2 Appendix D.1 (col. 3) the performance whenX ′ = Xtr, where
MP-PDE is substantially better.

• Generalizing across spatial resolutions. In Table 7.4bwe vary the test resolution
𝑟ts. We train at a resolution 𝑟tr = 64 and perform inference at resolutions 𝑟ts ∈
{32, 64, 256}. For that, we build a high-fidelity 256×256 simulation dataset and
downscale it to obtain the other resolutions. We observe that DINO’s performance
is the stablest across resolutions in the uniform or irregular setting. MNO is also
relatively stable but is only applicable to uniform gridswhileMP-PDE is particularly
brittle, especially for a 5% ratio.

Data on manifold. We consider in Figure 7.5 Shallow-Water in a super-resolution
setting: test resolution is twice the train one, close to weather prediction applications. We
observe an irregular 3D Euclidean coordinate grid Xtr = Xts ⊂ ℝ3 shared for train and
test. It samples uniformly Euclidean positions on the sphere, via the quasi-uniform skipped
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Model In-t Out-t

I-MP-PDE 1.908E−3 7.240E−3
DINO 1.063E−4 6.466E−4

Figure 7.5: Data on manifold. DINO’s Shallow-Water super-resolution test prediction
against the reference (left); testMSE comparison (↓) (right).

latitude-longitude grid (Weller et al., 2012). We predict the PDE on test trajectories with
a conventional latitude-longitude inference grid X ′. At Earth scale, Xtr corresponds to a
resolution of about 300 km, andX ′ to 150 km. DINO significantly outperforms I-MP-PDE,
making it a viable candidate for this complex setting.

Table 7.5: Finer time resolution. TestMSE (↓) under T ′ forNavier-Stokes.

Model In-t Out-t

I-DINO (linear) 3.459E−4 5.598E−4
I-DINO (quadratic) 2.165E−4 4.473E−4
DINO (ODE solve) 2.151E−4 4.388E−4

Finer time resolution. We consider in Table 7.5 a longer and 10 times finer test time
grid T ′ than the training grid T on Navier-Stokes. We observe the same spatial uniform
grid across train and test and perform inference on this grid. We compare DINO that
performs prediction with an ODE solver, to interpolating coarser predictions obtained
at the train resolution (I-DINO). We report the corresponding test MSE. We observe that
the ODE solver accurately extrapolates outside the train temporal grid, outperforming
interpolation. This confirms that DINO benefits from its continuous-time modeling of
the flow, providing consistency and stability across temporal resolutions.
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7.5 Conclusion
We propose DINO, a novel space- and time-continuous data-driven forecasting model for
PDEs. DINO handles settings encountered in many applications, where existing methods
fail. We assess its extensive spatiotemporal generalization abilities on a variety of PDEs
and its generalization to unseen sparse irregular meshes and resolutions. Its competitive
results over recent PDE forecasters make it a strong alternative for real-world settings
with free-formed spatiotemporal conditions. There are many promising extensions, e.g.,
improving generalization to new parameters (Kirchmeyer et al., 2022).
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Chapter 8

Conclusion

In this thesis, we have addressed several problems that arise when applying data-driven
neural dynamicsmodels in real-world scenarios. Wehave analyzed and clarified these long-
ignored issues and have paved the way for extending the capabilities of current models,
notably in their generality and adaptability.

Wefirst focusedon the scenariowherewehave a single source of data fromsingle dynamics.
Following the trend of incorporating physical priors into deep learning pipelines, we
discussed how to make the neural network cooperate with a numerical model yet to be
identified. We proposed a way to automatically calibrate the contribution of both parts,
which maximizes the advantages of two counterpart models. The hybrid model benefits
from the flexibility of neural networks and the regularity of first-principles numerical
models, making it more performant than learning from data with neural networks alone.
In practice, this calibration also helps to better identify the undetermined numerical
model.

Then we dealt with multi-environment data that reveal different dynamics. We exploited
the data from two different perspectives: generalization in known dynamical systems
and adaptation to novel systems. For the first, we were inspired by the intuition from
differential equations: if different systems have only marginal changes w.r.t. each other, it
is always possible to find a common neural network. This common term is trained using
all data. The ability to predict in each system is preserved by a constrained environment-
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dependent neural network.

By migrating the reflections from the functional space to the parameter space, we were
then able to propose an efficient, minimal adaptation through a low-dimensional learnable
context vector. The context-based approach was inspired by the way the numerical
method is parameterized. This not only reduces the cost of adaptation to new systems but
also simplifies adaptationby convexifying the loss surface for similar systems. By analyzing
the resulting contexts, we also found that they are directly related to the physical parameter
of the phenomenon and can be used to identify the parameter of a new system.

With such adaptation techniques, we turned our focus to continuous modeling with free-
form spatially discretized data for a single system. By representing the system states in
a latent space through a continuous spatial decoder and learning a continuous dynamics
model only in this space, we obtained a predictive model that is continuous in space and
time and capable of predicting beyond the horizon of the training data.

In conclusion, this thesis has made contributions to improving the performance and
adaptability of data-driven neural dynamics models for real-world applications. By
addressing various challenges and proposing novel techniques, we have expanded the
capabilities of currentmodels and paved theway for future developments in this field. The
proposed approaches for incorporating physical priors and adapting to new systems have
the potential to significantly improve the accuracy and efficiency of these models, while
the continuousmodeling technique offers a powerful tool for predicting complex dynamic
systems.

This thesis contributes to the field of neural dynamics modeling, presenting new oppor-
tunities for research and applications. Drawing upon established literature on neural
dynamics models, machine learning, and deep learning techniques such as model-based/
machine-learning hybrid physicsmodeling,meta-learning,multi-task learning, contextual
deep learning, etc., the thesis demonstrates the potential of general machine learning
frameworks for dynamicsmodeling. The positive results and potential impact of thiswork
make it an exciting direction for further exploration. In the upcoming chapter, we will
highlight several under-explored paths with potential for future investigation.
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Perspective

This chapter discusses several challenges in the field of dynamical systems and proposes
potential research directions to address them. The challenges include handling various
boundary conditions, learning dynamics on non-rectangular domains, designing efficient
encoders for dynamical systems, handling partially-observed systems, and finding alterna-
tives to neural solvers for spatiotemporal dynamics.

Handling various boundary conditions. The boundary condition of a system plays
a crucial role in determining the possible trajectories and dynamics of the system. In
some cases, it can even change the nature of the system’s behavior. This challenge is akin
to the problem of learning from multiple dynamics, as discussed in this thesis (refer to
Figure 2.10a). However, existing approaches have limitations in adapting to new boundary
conditions since they tightly integrate the boundary condition with the dynamics model.
For example, circular padding is often used in ConvNet to handle periodic boundary
conditions. Only a few explorations have been made in recent literature like Wang et al.
(2021b); Karlbauer et al. (2022). To overcome these implementation biases, more flexible
dynamics models are needed that can handle a wide range of boundary conditions.

Learning dynamics on geometries. Learning dynamics on non-rectangular domains
is a challenging problem that arises from the need to generalize across boundary condi-
tions. In addition to the function that determines the boundary condition, the shape of the
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spatial domain Ω itself also poses a challenge.

Most neural dynamics models are based on established architectures such as ConvNet and
learn dynamics in a rectangular domain (de Bézenac et al., 2018; Li et al., 2021b; Kochkov
et al., 2021), which is only compatible with image-like data. However, in many scenarios,
the dynamics should be learned in the domainwith a different shape. Inmany applications,
the spatial domain can be a non-rectangular subset of ℝ𝑝, and sometimes even harder,
a non-convex subset, e.g., the airflow around an airfoil or an aircraft should be solved
in a spatial domain with a hole inside which correspond to the shape of the object (See
Figure 9.1c for an example); the simulation of the phenomena on Earth surface.

Most approaches attempting to solve this problem are based on graphs, e.g., Iakovlev et al.
(2021); Pfaff et al. (2021); Grattarola and Vandergheynst (2022), and are therefore limited
by the structure of the graph to connect the values, not by the geometry itself. The learned
model is biased towards the graph as presented in Section 3.3. Others, by projecting the
non-rectangular domain onto a rectangular on which the existing models can be applied,
e.g., Li et al. (2022), without an explicit encoding of the geometry. Although the INRs have
the potential to address the topic, they are currently in an underdeveloped state.

GYassineMrabetTalk, CC BY‑SA 3.0, via Wikimedia Commons

(a) A torus. The periodic boundary
conditions on the Euclidean plane
generate such a topology in space.

Geek3, CC BY‑SA 3.0, via Wikimedia Commons

(b) A sphere. Phenomena at the
surface of a planet consider the

spherical geometry.

Credit: NASA, Public domain, via Wikimedia Commons

(c) A simulation of the fluid
dynamics around a model of the

space shuttle. The airflow is
simulated around the solid aircraft.

Figure 9.1: Common types of geometry for dynamics modeling.

Efficient encoding for a dynamical system. The importance of context learned from
data through encoding is emphasized inPart II.However, existing encodersmaynot always

https://commons.wikimedia.org/wiki/File:Simple_Torus.svg
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Sphere_wireframe.svg
https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:CFD_Shuttle.jpg


CHAPTER 9. Perspective 151

be suitable for our data and can act as bottlenecks in the overall pipeline. To address this
issue, we employ auto-decoders, which offer advantages such as the ability to combine a
neural network with a differential equation solver or to be evaluated at any position in the
spatial domain without structural bias in weights, as demonstrated in CODA and DINO,
respectively.

Despite these advantages, the training of auto-decoders is more difficult and the code
generation for new incoming functions requires optimization, which is impractical for
broader applications. Auto-encoders with explicit encoders have the advantage of simpli-
fying the optimization problemduring training procedures and adapting to new situations
using new inputs without the need for retraining. Therefore, designing new encoders
that match the capabilities of decoders is an exciting research direction. Graph-based
approaches are often used for free-form input encoding, but they still face generalization
issues. A recent study by Prasthofer et al. (2022) sheds light on this problem.

Hybridmodeling forpartially-observeddynamical systems. The study of partially-
observed dynamical systems poses a significant challenge in the field of dynamical systems,
as much of the current research is focused on completely observed systems. In many real-
world scenarios, such asweather prediction, the dynamics are only partially observed,mak-
ing it difficult to accurately predict their behavior. This is because only certain observable
quantities are available, while others remain hidden. For example, in weather prediction,
while changes in temperature, pressure, and other variables at different altitudes can
be directly measured, the full velocity field that drives the weather phenomena remains
unobserved.

Purely data-driven methods can struggle to accurately model partially-observed systems
due to their lack of physical bias. Hybrid modeling, which combines data-driven ap-
proaches with known parts of the dynamics, offers a promising solution to this problem.
Recent attempts to apply this approach to real-world applications, such as theworkofAyed
et al. (2022); Donà et al. (2022), have yielded promising results. However, there are still
several challenges to be addressed in bridging the gap between current research and real-
world deployment. For instance, to enable more flexible modeling with neural networks,
the physical solvers may need to be reimplemented using differentiable programming
tools, which will require significant domain-specific scientific and engineering expertise.
Nonetheless, overcoming these challenges is crucial to realize the full potential of hybrid
modeling for addressing the complexities of partially-observed dynamical systems in a
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range of real-world applications.

Alternatives to neural solvers. In recent years, neural solvers have gained popularity
as a promising approach to solving differential equations. The current dominant approach,
known as physics-informed neural networks (PINNs; Raissi et al., 2019), integrates the
physical signal with a loss function to produce an unknown solution for a differential
equation. The physical signal is encoded in the neural solution through gradient-based
optimization.

While PINNs have been applied to many differential equations, they still face challenges
in optimization due to the highly nonconvex nature of the physical loss. Furthermore,
this approach has been underexplored for spatiotemporal dynamics, and currently, there
are no efficient neural alternatives for spatiotemporal dynamics solvers. This highlights
the need for further research in this area to develop new and innovative solutions that
can efficiently handle the complexities of spatiotemporal dynamics. Overcoming these
challenges will require a combination of advanced optimization techniques, innovative
architectures, and novel loss functions. Despite these challenges, the potential benefits of
neural solvers for spatiotemporal dynamics are immense, making this an exciting area of
research with significant potential for real-world impact.

∗ ∗ ∗

With the rapid development of machine learning techniques and the growing interest
in physical modeling, the field is poised for exciting new developments in the coming
years. The future of dynamical systems modeling with machine learning looks bright,
with numerous opportunities for interdisciplinary collaborations and the potential for
significant advancements.
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Definition A.1. A proximinal set of a normed space (𝐸, ‖ · ‖) is a subset C ⊂ 𝐸 such
that every 𝑥 ∈ 𝐸 admits at least a nearest point in C.

Definition A.2. A Chebyshev set of a normed space (𝐸, ‖ · ‖) is a subset C ⊂ 𝐸 such
that every 𝑥 ∈ 𝐸 admits a unique nearest point in C.

Proximinality reduces to a compacity condition in finite-dimensional spaces. In general,
it is a weaker one: boundedly compact sets verify this property for example.

In Euclidean spaces, Chebyshev sets are simply closed convex subsets. The question of
knowing whether it is the case that all Chebyshev sets are closed convex sets in infinite
dimensional Hilbert spaces is still an open question. In general, there exist examples of
non-convex Chebyshev sets, a famous one being presented in Johnson (1987) for a non-
complete inner-product space.

Given the importance of this topic in approximation theory, finding the necessary condi-
tions for a set to be Chebyshev and studying the properties of those sets have been the
subject of many efforts. Some of those properties are summarized below:

• The metric projection on a boundedly compact Chebyshev set is continuous.

• If the norm is strict, every closed convex space, in particular any finite-dimensional
subspace is Chebyshev.

• In a Hilbert space, every closed convex set is Chebyshev.

A.2 Proof of Propositions 4.1 and 4.2
Weprove the following result which implies propositions 4.1 and 4.2 in the article:

Proposition A.1. The optimization problem:

min
𝑓P∈FP,𝑓A∈F

‖𝑓A‖ subject to ∀𝑢 ∈ D, 𝑡 ∈ T , d𝑢𝑡
d𝑡

= (𝑓P + 𝑓A) (𝑢𝑡) (A.1)

is equivalent a metric projection onto FP.

If FP is proximinal, Eq. (A.1) admits a minimizing pair.

If FP is Chebyshev, Eq. (A.1) admits a unique minimizing pair which 𝑓P is the metric
projection.

Proof. The idea is to reconstruct the full functional from the trajectories of D. By
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definition, UD is the set of points reached by trajectories inD so that:

UD = {𝑢(𝑡) ∈ ℝ𝑑 | ∃𝑢 ∈ D,∃𝑡 ∈ T }

Then let us define a function 𝑓D in the following way: For 𝑢𝑡 ∈ UD , we can find 𝑢 ∈ D and
𝑡. Differentiating 𝑢 at 𝑡, which is possible by definition of D, we take:

𝑓D (𝑢(𝑡)) = d𝑢

d𝑡
(𝑡)

For any (𝑓P, 𝑓A) satisfying the constraint in Eq. (A.1), we then have that (𝑓P + 𝑓A) (𝑢(𝑡)) =
d𝑢
d𝑡 (𝑡) = 𝑓D (𝑢(𝑡)) for all 𝑢(𝑡) ∈ U . Conversely, any pair such that (𝑓P, 𝑓A) ∈ FP × F and
𝑓P + 𝑓A = 𝑓D , verifies the constraint.

Thus we have the equivalence between Eq. (A.1) and the metric projection formulated as:

min
𝑓P∈FP



𝑓D − 𝑓P

 (A.2)

IfFP is proximinal, the projection problem admits a solution which we denote 𝑓★P . Taking
𝑓★A = 𝑓D − 𝑓★P , we have that 𝑓★P + 𝑓★A = 𝑓D so that (𝑓★P , 𝑓★A ) verifies the constraint of Eq. (4.2).
Moreover, if there is (𝑓P, 𝑓A) satisfying the constraint of Eq. (4.2), we have that 𝑓P + 𝑓A = 𝑓D
by what was shown above and ‖𝑓A‖ = ‖𝑓D − 𝑓P‖ ≥ ‖𝑓D − 𝑓★P ‖ by definition of 𝑓★P . This
shows that (𝑓★P , 𝑓★A ) is minimal.

Moreover, ifFP is a Chebyshev set, by uniqueness of the projection, if 𝑓P ≠ 𝑓★P then ‖𝑓A‖ >
‖𝑓★A ‖. Thus the minimal pair is unique.

□

A.3 Parameter Estimation in Incomplete PhysicalMod-
els

Classically, when a set FP ⊂ F summarizing the most important properties of a system
is available, this gives a simplified model of the true dynamics and the adopted problem is
then to fit the trajectories using this model as well as possible, solving:

min
𝑓P∈FP

𝔼𝑢∼D 𝑙(𝑢̃, 𝑢)

subject to ∀𝑢0 ∈ I ⊂ U , and ∀𝑡 ∈ T , d𝑢̃𝑡
d𝑡

= 𝑓P(𝑢̃𝑡) (A.3)

where 𝑙 is a discrepancy measure between trajectories. Recall that 𝑢 is the resulting
trajectory of an ODE solver taking 𝑢0 as initial condition. In other words, we try to find
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a function 𝑓P which gives trajectories as close as possible to the ones from the dataset.
While the estimation of the function becomes easier, there is then a residual part that is
left unexplained and this can be a non-negligible issue in at least two ways:

• When 𝑓 ∉ FP, the loss is strictly positive at the minimum. This means that reducing
the space of functions FP makes us lose in terms of accuracy.1

• The obtained function 𝑓P might not even be the most meaningful function from FP
as it would try to capture phenomena that are not explainable with functions in
FP, thus giving the wrong bias to the calculated function. For example, if one is
considering a dampened periodic trajectory where only the period can be learned
in FP but not the dampening, the estimated period will account for the dampening
and will thus be biased.

This is confirmed in the paper in Section 4.3: the incomplete physical models augmented
with APHYNITY get different and experimentally better physical identification results
than the physical models alone.

Let us compare our approach with this one on the linearized damped pendulum to show
how estimates of physical parameters can differ. The equation is the following:

d2𝛼

d𝑡2
+ 𝜔20 sin 𝛼 + 𝛾

d𝛼

d𝑡
= 0

For simplicity, let us take 𝛼0 � 1, the equation is then reduced to

d2𝛼

d𝑡2
+ 𝜔20𝛼 + 𝛾

d𝛼

d𝑡
= 0

We take the same notations as in the article and parametrize the simplified physical models
as:

𝑓 𝜔0P :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
d𝛼𝑡
d𝑡
,−𝜔20𝛼𝑡

)
The corresponding prediction for an initial state 𝑢0 = (𝛼0, d𝛼0d𝑡 ) = (𝛼0, 0) can then written
explicitly as:

𝛼̂𝑡 = 𝛼0 cos 𝜔0𝑡

Let us consider damped pendulum solutions 𝑢written as:

𝛼𝑡 = 𝛼0𝑒
−𝑡 cos 𝑡

1This is true in theory, although not necessarily in practice when 𝑓 overfits a small dataset.
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which corresponds to the system where 𝜔20 = 𝛾 = 2:

𝑓 :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
d𝛼𝑡
d𝑡
,−2𝛼𝑡 − 2

d𝛼𝑡
d𝑡

)
It is then easy to see that the estimate of 𝑎 with the physical model alone can be obtained
by minimizing: ∫ 𝑇

0

|𝛼̂𝑡 − 𝛼𝑡 |2 =
∫ 𝑇

0

| cos 𝜔0𝑡 − 𝑒−𝑡 cos 𝑡 |2

This expression depends on 𝑇 and thus, depending on the chosen time interval and the
way the integral is discretized will almost always give biased estimates. In other words, the
estimated value of 𝑎will not give us the desired solution 𝑡 ↦→ cos 𝑡.

On the other hand, for a given 𝜔0, in theAPHYNITY framework, the residualmust be equal
to:

𝑓A :

(
𝛼𝑡 ,

d𝛼𝑡
d𝑡

)
↦→

(
0,−(2 − 𝜔20)𝛼𝑡 − 2

d𝛼𝑡
d𝑡

)
in order to satisfy the fitting constraint. Minimizing its norm, we obtain 𝜔20 = 2 which
gives us 𝑓 = 𝑓A + 𝑓 𝜔0=

√
2

P and the desired solution for 𝛼0:

𝛼𝑡 = 𝛼0𝑒
−𝑡 cos 𝑡

with the right period.

A.4 Discussion on Supervision over Derivatives
To find the appropriate decomposition (𝑓P, 𝑓A), we use a trajectory-based error by solving:

min
𝑓P∈FP,𝑓A∈F

‖𝑓A‖

subject to ∀𝑢0 ∈ I ⊂ U ,∀𝑡 ∈ T , d𝑢̃𝑡
d𝑡

= (𝑓P + 𝑓A)(𝑢̃𝑡)

∀𝑢 ∈ D, L(𝑢, 𝑢̃) = 0 (A.4)

In the continuous setting where the data is available at all times 𝑡, this problem is in fact
equivalent to the following one:

min
𝑓P∈FP

𝔼𝑢∼D

∫ 𝑇

0





d𝑢𝜏d𝑡 − 𝑓P(𝑢𝜏)



d𝜏 (A.5)

where the supervision is done directly over derivatives, obtained through finite-difference
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schemes. This echoes the proof in Appendix A.2 where 𝑓 can be reconstructed from the
continuous data.

However, in practice, data is only available at discrete times with a certain time resolution.
While Eq. (A.5) is indeed equivalent to Eq. (A.4) in the continuous setting, in the practical
discrete one, the way error propagates is not anymore: For Eq. (A.4) it is controlled over
integrated trajectories while for Eq. (A.5) the supervision is over the approximate deriva-
tives of the trajectories from the dataset. We argue that the trajectory-based approach is
more flexible and more robust for the following reasons:

• In Eq. (A.4), if 𝑓A is appropriately parameterized, it is possible to perfectly fit the data
trajectories at the sampled points.

• The use of finite differences schemes to estimate 𝑓 as is done in Eq. (A.5) necessarily
induces a non-zero discretization error.

• This discretization error is explosive in terms of divergence from the true trajecto-
ries.

This last point is quite important, especially when time sampling is sparse (even though we
do observe this adverse effect empirically in our experiments with relatively finely time-
sampled trajectories). The following gives a heuristical reasoning as to why this is the case.
Let 𝑓 = 𝑓 + 𝜖 be the function estimated from the sampled points with an error 𝜖 such that
‖𝜖‖∞ ≤ 𝑐. Denoting 𝑢̃ the corresponding trajectory generated by 𝑓 , we then have, for all
𝑢 ∈ D:

∀𝑡 ∈ T , d(𝑢 − 𝑢̃)𝑡
d𝑡

= 𝑓 (𝑢𝑡) − 𝑓 (𝑢̃𝑡) = 𝑓 (𝑢𝑡) − 𝑓 (𝑢̃𝑡) − 𝜖(𝑢̃𝑡)

Integrating over T = [0, 𝑇] and using the triangular inequality as well as the mean value
inequality, supposing that 𝑓 has uniformly bounded spatial derivatives:

∀𝑡 ∈ [0, 𝑇] , ‖(𝑢 − 𝑢̃)𝑡‖ ≤ ‖∇𝑓 ‖∞
∫ 𝑡

0

‖𝑢𝜏 − 𝑢̃𝜏 ‖d𝜏 + 𝑐𝑡

which, using a variant of the Grönwall lemma, gives us the inequality:

∀𝑡 ∈ [0, 𝑇] , ‖𝑢𝑡 − 𝑢̃𝑡‖ ≤
𝑐

‖∇𝑓 ‖∞
(exp(‖∇𝑓 ‖∞𝑡) − 1)

When 𝑐 → 0, we recover the true trajectories 𝑢. However, as 𝑐 is bounded away from 0

by the available temporal resolution, this inequality gives a rough estimate of the way 𝑢̃
diverges from them, and it can be an equality in many cases. This exponential behavior
explains our choice of a trajectory-based optimization.
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A.5 Implementation Details
We describe here the three use cases studied in the paper for validating APHYNITY. All
experiments are implemented with PyTorch (Paszke et al., 2019) and the differentiable
ODE solvers with the adjoint method implemented in torchdiffeq.2

A.5.1 Reaction-Diffusion Equations
The system is driven by a FitzHugh-Nagumo type PDE (Klaasen and Troy, 1984)

𝜕𝑣

𝜕𝑡
= 𝑎Δ𝑣 + 𝑣 − 𝑣3 − 𝑘 − 𝑤, 𝜕𝑤

𝜕𝑡
= 𝑏Δ𝑤 + 𝑣 − 𝑤

where 𝑎 and 𝑏 are respectively the diffusion coefficients of chemical components 𝑣 and 𝑤,
Δ is the Laplace operator. The local reaction terms are (𝑣 − 𝑣3 − 𝑘 − 𝑤) and (𝑣 − 𝑤).

The state 𝑢𝑡 = (𝑣𝑡 , 𝑤𝑡) is defined over a compact rectangular domain Ω = [−1, 1]2 with
periodic boundary conditions. Ω is spatially discretized with a 32× 32 2D uniform square
mesh grid. The periodic boundary condition is implementedwith circular padding around
the borders. Δ is systematically estimated with a 3 × 3 discrete Laplace operator.

Dataset Starting from a randomly sampled initial state 𝑢0 ∈ [0, 1]2×32×32, we generate
states by integrating the true PDE with fixed 𝑎, 𝑏, and 𝑘 in a dataset (𝑎 = 1 × 10−3, 𝑏 =
5× 10−3, 𝑘 = 5× 10−3). We firstly simulate high time-resolution (𝛿𝑡sim = 0.001) sequences
with explicit finite differencemethod. We then extract states every 𝛿𝑡data = 0.1 to construct
our low time-resolution datasets.

We set the time of random initial state to 𝑡 = −0.5 and the time horizon to 𝑡 = 2.5. 1920
sequences are generated, with 1600 for training/validation and 320 for test. We take the
state at 𝑡 = 0 as 𝑢0 and predict the sequence until the horizon (equivalent to 25 time steps)
in all reaction-diffusion experiments. Note that the sub-sequence with 𝑡 < 0 are reserved
for the extensive experiments in Appendix A.7.1.

Neural network architectures. Our 𝑓A here is a 3-layer convolution network (Con-
vNet). The two input channels are (𝑣𝑡 , 𝑤𝑡) and two output ones are ( 𝜕𝑣𝑡𝜕𝑡 ,

𝜕𝑤𝑡
𝜕𝑡 ). The purely

data-driven Neural ODE uses such ConvNet as its 𝑓 . The detailed architecture is provided
in Table Table A.1. The estimated physical parameters 𝜃P in 𝑓P are simply a trainable vector
(𝑎, 𝑏) ∈ ℝ2

+ or (𝑎, 𝑏, 𝑘) ∈ ℝ3
+.

Optimization hyperparameters. We choose to apply the same hyperparameters for
all the reaction-diffusion experiments: 𝑁iter = 1, 𝜆0 = 1, 𝜂1 = 1 × 10−3, 𝜂2 = 1 × 103.

2https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq
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Table A.1: ConvNet architecture in reaction-diffusion and wave equation experiments,
used as data-driven derivative operator in APHYNITY andNeuralODE (Chen et al., 2018).

Module Specification

2D Conv. 3 × 3 kernel, 2 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3 × 3 kernel, 16 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3 × 3 kernel, 16 input channels, 2 output channels, 1 pixel zero padding

A.5.2 Wave Equations

The damped wave equation is defined by

𝜕2𝑤

𝜕𝑡2
− 𝑐2Δ𝑤 + 𝛾 𝜕𝑤

𝜕𝑡
= 0

where 𝑐 is the wave speed and 𝛾 is the damping coefficient. The state is 𝑢𝑡 = (𝑤𝑡 , 𝜕𝑤𝑡𝜕𝑡 ).

We consider a compact spatial domain Ω represented as a 64 × 64 grid and discretize the
Laplacian operator similarly. Δ is implemented using a 5 × 5 discrete Laplace operator in
simulationwhereas in the experiment is a 3×3Laplace operator. NullNeumann boundary
conditions are imposed for generation.

Dataset. 𝛿𝑡 was set to 0.001 to respect Courant number and provide stable integration.
The simulation was integrated using a 4th order finite difference Runge-Kutta scheme for
300 steps from a Gaussian field initial state, i.e. for every sequence at 𝑡 = 0, we have:

𝑤(𝑥, 𝑦, 𝑡 = 0) = 𝐶 exp

(
(𝑥 − 𝑥0)2 + ( 𝑦 − 𝑦0)2

𝜎 2

)
(A.6)

The amplitude𝐶 is fixed to 1, and (𝑥0, 𝑦0) = (32, 32) to make the Gaussian curve centered
for all sequences. However, 𝜎 is different for each sequence and uniformly sampled in
[10, 100]. The same 𝛿𝑡 was used for train and test. All initial conditions are Gaussian with
varying amplitudes. 250 sequences are generated, 200 are used for training and 50 are
reserved as a test set. In the main paper setting, 𝑐 = 330 and 𝑘 = 50. As with the reaction-
diffusion case, the algorithm takes as input a state 𝑢0 = (𝑤0, d𝑤d𝑡 (0)) and predicts all states
from 𝑡0 + 𝛿𝑡 up to 𝑡0 + 25𝛿𝑡.
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Neural network architectures. The neural network for 𝑓A is a 3-layer convolution
neural network with the same architecture as in Table A.1. For 𝑓P, the parameter(s) to be
estimated is either a scalar 𝑐 ∈ ℝ+ or a vector (𝑐, 𝑘) ∈ ℝ2

+. Similarly, NeuralODEnetworks
are built as presented in Table Table A.1.

Optimization hyperparameters. We use the same hyperparameters for the experi-
ments: 𝑁iter = 3, 𝜆0 = 1, 𝜂1 = 1 × 10−4, 𝜂2 = 1 × 102.

A.5.3 Damped Pendulum
We consider the non-linear damped pendulum problem, governed by the ODE

d2𝛼

d𝑡2
+ 𝜔20 sin 𝛼 + 𝛾

d𝛼

d𝑡
= 0

where 𝜃(𝑡) is the angle, 𝜔0 = 2𝜋
𝑇0

is the proper pulsation (𝑇0 being the period) and 𝛾 is the
damping coefficient. With the state 𝑢 = (𝛼𝑡 , d𝛼d𝑡 (0)), the ODE can be written as d𝑢

d𝑡 = 𝑓 (𝑢)
with 𝑓 : 𝑢𝑡 ↦→ ( d𝛼d𝑡 ,−𝜔20 sin 𝛼 − 𝛾

d𝛼
d𝑡 ).

Dataset. For each train/validation/test split, we simulate a dataset with 25 trajectories
of 40 timesteps (time interval [0, 20] , timestep 𝛿𝑡 = 0.5) with fixed ODE coefficients
(𝑇0 = 12, 𝛾 = 0.2) and varying initial conditions. The simulation integrator is the
Dormand-PrinceRunge-Kuttamethodof order (4)5 (DOPRI5; Dormand andPrince, 1980).
We also add a small amount of white Gaussian noise (𝜎 = 0.01) to the state. Note that
our pendulum dataset is much more challenging than the ideal frictionless pendulum
considered in (Greydanus et al., 2019).

Neural network architectures. We detail in Table Table A.2 the neural architectures
used for the damped pendulum experiments. All data-driven augmentations for approxi-
mating the mapping 𝑢𝑡 ↦→ 𝑓 (𝑢𝑡) are implemented by multi-layer perceptron (MLP) with
3 layers of 200 neurons and ReLU activation functions (except at the last layer: linear
activation). The Hamiltonian (Greydanus et al., 2019; Toth et al., 2020) is implemented
by an MLP that takes the state 𝑢𝑡 and outputs a scalar estimation of the Hamiltonian H of
the system: the derivative is then computed by an in-graph gradient of H w.r.t. the input:
𝑓 (𝑢𝑡) =

(
𝜕H

𝜕(d𝛼/d𝑡) ,−
𝜕H
d𝛼

)
.

Optimization hyperparameters. The hyperparameters of the APHYNITY optimiza-
tion algorithm (𝑁𝑖𝑡𝑒𝑟, 𝜆0, 𝜂1, 𝜂2) were cross-validated on the validation set and are shown
in Table A.3. All models were trained with a maximum number of 5000 steps with early
stopping.
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Table A.2: Neural network architectures for the damped pendulum experiments. —
corresponds to non-applicable cases.

Method Physical model Data-driven model

Neural ODE — MLP(in=2, units=200, layers=3, out=2)

Hamiltonian MLP(in=2, units=200, layers=3, out=1) —
APHYNITY Hamiltonian MLP(in=2, units=200, layers=3, out=1) MLP(in=2, units=200, layers=3, out=2)

Param ODE (𝜔0) 1 trainable parameter 𝜔0 —
APHYNITY Param ODE (𝜔0) 1 trainable parameter 𝜔0 MLP(in=2, units=200, layers=3, out=2)

Param ODE (𝜔0, 𝛾) 2 trainable parameters 𝜔0, 𝜆 —
APHYNITY Param ODE (𝜔0, 𝛾) 2 trainable parameters 𝜔0, 𝛾 MLP(in=2, units=200, layers=3, out=2)

Table A.3: Hyperparameters of the damped pendulum experiments.

Method 𝑁iter 𝜆0 𝜂1 𝜂2

APHYNITY Hamiltonian 5 1 1 0.1
APHYNITY Param ODE (𝜔0) 5 1 1 10
APHYNITY Param ODE (𝜔0, 𝛾) 5 1000 1 100

A.6 Ablation Study
We conduct ablation studies to show the effectiveness of APHYNITY’s adaptive optimiza-
tion and trajectory-based learning scheme.

A.6.1 Ablation to Vanilla MB/ML Cooperation
In Table A.4, we consider the ablation case with the vanilla augmentation scheme found
in Le Guen and Thome (2020); Wang et al. (2019); Mehta et al. (2021), which does not
present any proper decomposition guarantee. We observe that the APHYNITY cooper-
ation scheme outperforms this vanilla scheme in all cases, both in terms of forecasting
performances, e.g., logMSE= -0.35 vs.-3.97 for theHamiltonian in the pendulum case, and
parameter identification, e.g., Err Param=8.4% vs. 2.3% for Param PDE (𝑎, 𝑏) for reaction-
diffusion. It confirms the crucial benefits of APHYNITY’s principled decomposition
scheme.

A.6.2 Detailed Ablation Study
We conduct also two other ablations in Table A.5:

• Derivative supervision: inwhich 𝑓P+𝑓A is trainedwith supervision over approximated
derivatives on ground truth trajectory, as performed in Greydanus et al. (2019) and
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Cranmer et al. (2020). More precisely, APHYNITY’s Ltraj is here replaced with
Lderiv = ‖ d𝑢𝑡d𝑡 − 𝑓 (𝑢𝑡)‖ as in Eq. (A.5), where d𝑢𝑡

d𝑡 is approximated by finite differences
on 𝑢𝑡 .

• Non-adaptive optim.: in which we train APHYNITY by minimizing ‖𝑓A‖ without
the adaptive optimization of 𝜆 shown in Algorithm 1. This case is equivalent to
𝜆 = 1, 𝜂2 = 0.

We highlight the importance to use a principled adaptive optimization algorithm (APHY-
NITY algorithm described in the paper) compared to a non-adaptive optimization: for
example in the reaction-diffusion case, log MSE= -4.55 vs.-5.10 for Param PDE (𝑎, 𝑏).
Finally, when the supervision occurs on the derivative, both forecasting and parameter
identification results are systematically lower than with APHYNITY’s trajectory-based
approach: for example, log MSE=-1.16 vs.-4.64 for Param PDE (𝑐) in the wave equation.
It confirms the good properties of the APHYNITY training scheme.

A.7 Additional Experiments

A.7.1 Reaction-Diffusion Systems with Varying Diffusion Parame-
ters

We conduct an extensive evaluation on a setting with varying diffusion parameters for
reaction-diffusion equations. The only varying parameters are diffusion coefficients, i.e.
individual 𝑎 and 𝑏 for each sequence. We randomly sample 𝑎 ∈ [1 × 10−3, 2 × 10−3] and
𝑏 ∈ [3 × 10−3, 7 × 10−3]. 𝑘 is still fixed to 5 × 10−3 across the dataset.

To estimate 𝑎 and 𝑏 for each sequence, we use here a ConvNet encoder 𝐸 to estimate
parameters from 5 reserved frames (𝑡 < 0). The architecture of the encoder 𝐸 is similar to
the one in Table A.1 except that 𝐸 takes 5 frames (10 channels) as input and 𝐸 outputs
a vector of estimated (𝑎̃, 𝑏) after applying a sigmoid activation scaled by 1 × 10−2 (to
avoid possible divergence). For the baseline Neural ODE, we concatenate 𝑎 and 𝑏 to each
sequence as two channels.

In Table A.6, we observe that combining data-driven and physical components outper-
forms the pure data-driven one. When applying APHYNITY to Param PDE (𝑎, 𝑏), the
prediction precision is significantly improved (log MSE: -1.32 vs.-4.32) with 𝑎 and 𝑏
respectively reduced from 55.6% and 54.1% to 11.8% and 18.7%. For complete physics
cases, the parameter estimations are also improved for Param PDE (𝑎, 𝑏, 𝑘) by reducing
over 60% of the error of 𝑏 (3.10 vs. 1.23) and 10% to 20% of the errors of 𝑎 and 𝑘 (resp.
1.55/0.59 vs. 1.29/0.39).

The extensive results reflect the same conclusion as shown in themain article: APHYNITY
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Table A.4: Ablation study comparing APHYNITY to the vanilla augmentation scheme (Wang et al., 2019; Mehta et al., 2021) for
the reaction-diffusion equation, wave equation, and damped pendulum.

Dataset Method logMSE %Err Param. ‖𝑓A‖2

Reaction-diffusion Param. PDE (𝑎, 𝑏) with vanilla aug. −4.56±0.52 8.4 7.5E1
APHYNITY Param. PDE (𝑎, 𝑏) −5.10±0.21 2.3 6.7E1

Param. PDE (𝑎, 𝑏, 𝑘) with vanilla aug. −8.04±0.03 25.4 1.5E−2
APHYNITY Param. PDE (𝑎, 𝑏, 𝑘) −9.35±0.02 0.1 1.5E−6

True PDE with vanilla aug. −8.12±0.05 — 6.1E−4
APHYNITY True PDE −9.17±0.02 — 1.4E−7

Wave equation Param PDE (𝑐) with vanilla aug. −3.90±0.27 0.5 88.66
APHYNITY Param PDE (𝑐) −4.64±0.25 0.3 71.0

Param PDE (𝑐, 𝑘) with vanilla aug. −5.96±0.10 0.7 25.1
APHYNITY Param PDE (𝑐, 𝑘) −6.09±0.28 0.7 4.54

Damped pendulum Hamiltonian with vanilla aug. −0.35±0.10 — 837
APHYNITY Hamiltonian −3.97±1.20 — 623

Param ODE (𝜔0) with vanilla aug. −7.02±1.70 4.5 148
APHYNITY Param ODE (𝜔0) −7.86±0.60 4.0 132

Param ODE (𝜔0, 𝛼) with vanilla aug. −7.60±0.60 4.7 35.5
APHYNITY Param ODE (𝜔0, 𝛼) −8.31±0.30 0.4 8.5

Augmented True ODE with vanilla aug. −8.40±0.20 — 3.4
APHYNITY True ODE −8.44±0.20 — 2.3
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Table A.5: Detailed ablation study on supervision and optimization for the reaction-diffusion equation, wave equation, and
damped pendulum.

Dataset Method logMSE %Err Param. ‖𝑓A‖2

Reaction-diffusion Augmented Param. PDE (𝑎, 𝑏) derivative supervision −4.42±0.25 12.6 68
Augmented Param. PDE (𝑎, 𝑏) non-adaptive optim. −4.55±0.11 7.5 76
APHYNITY Param. PDE (𝑎, 𝑏) −5.10±0.21 2.3 67

Augmented Param. PDE (𝑎, 𝑏, 𝑘) derivative supervision −4.90±0.06 11.7 0.19
Augmented Param. PDE (𝑎, 𝑏, 𝑘) non-adaptive optim. −9.10±0.02 0.21 5.5E−7
APHYNITY Param. PDE (𝑎, 𝑏, 𝑘) −9.35±0.02 0.096 1.5E−6

Augmented True PDE derivative supervision −6.03±0.01 — 3.1E−3
Augmented True PDE non-adaptive optim. −9.01±0.01 — 1.5E−6
APHYNITY True PDE −9.17±0.02 — 1.4E−7

Wave equation Augmented Param PDE (𝑐) derivative supervision −1.16±0.48 12.1 2.4E−4
Augmented Param PDE (𝑐) non-adaptive optim. −2.57±0.21 3.1 43.6
APHYNITY Param PDE (𝑐) −4.64±0.25 0.31 71.0

Augmented Param PDE (𝑐, 𝑘) derivative supervision −4.19±0.36 7.2 1.2E−4
Augmented Param PDE (𝑐, 𝑘) non-adaptive optim. −4.93±0.51 1.32 5.4E−2
APHYNITY Param PDE (𝑐, 𝑘) −6.09±0.28 0.70 4.54

Augmented True PDE derivative supervision −4.42±0.33 — 6.02E−5
Augmented True PDE non-adaptive optim. −4.97±0.49 — 0.23
APHYNITY True PDE −5.24±0.45 — 0.14

Damped pendulum Augmented Hamiltonian derivative supervision −0.83±0.30 — 642
Augmented Hamiltonian non-adaptive optim. −0.49±0.58 — 165
APHYNITY Hamiltonian −3.97±1.20 — 623

(Continued on next page→)



192
APPEN

D
IX

A.Appendix
ofC

hapter4

Table A.5: (Continued)

Dataset Method logMSE %Err Param. ‖𝑓A‖2

Augmented Param ODE (𝜔0) derivative supervision −1.02±0.04 5.8 136
Augmented Param ODE (𝜔0) non-adaptive optim. −4.30±1.30 4.4 90.4
APHYNITY Param ODE (𝜔0) −7.86±0.60 4.0 132

Augmented Param ODE (𝜔0, 𝛼) derivative supervision −2.61±0.20 5.0 3.2
Augmented Param ODE (𝜔0, 𝛼) non-adaptive optim. −7.69±1.30 1.65 4.8
APHYNITY Param ODE (𝜔0, 𝛼) −8.31±0.30 0.39 8.5

Augmented True ODE derivative supervision −2.14±0.30 — 4.1
Augmented True ODE non-adaptive optim. −8.34±0.40 — 1.4
APHYNITY True ODE −8.44±0.20 — 2.3
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Table A.6: Results of reaction-diffusion with varying (𝑎, 𝑏). 𝑘 = 5E−3 is shared across the dataset.

Method logMSE %Err 𝑎 %Err 𝑏 %Err 𝑘 ‖𝑓A‖2

Data-driven Neural ODE (Chen et al., 2018) −3.61±0.07 — — — —

Incomplete physics Param PDE (𝑎, 𝑏) −1.32±0.02 55.6 54.1 — —
APHYNITY Param PDE (𝑎, 𝑏) −4.32±0.32 11.8 18.7 — 4.3E1

Complete physics Param PDE (𝑎, 𝑏, 𝑘) −5.54±0.38 1.55 3.10 0.59 —
APHYNITY Param PDE (𝑎, 𝑏, 𝑘) −5.72±0.25 1.29 1.23 0.39 5.9E−1

True PDE −8.86±0.02 — — — —
APHYNITY True PDE −8.82±0.15 — — — 1.8E−5

Table A.7: Results for the damped wave equation when considering multiple 𝑐, sampled uniformly in [300, 400] in the dataset.
𝑘 is shared across all sequences and 𝑘 = 50.

Method logMSE %Error 𝑐 %Error 𝑘 ‖𝑓A‖2

Data-driven Neural ODE 0.056±0.340 — — —

Incomplete physics Param PDE (𝑐) −1.32±0.27 23.9 — —
APHYNITY Param PDE (𝑐) −4.51±0.38 3.2 — 171

Complete physics Param PDE (𝑐, 𝑘) −4.25±0.28 3.54 1.43 —
APHYNITY Param PDE (𝑐, 𝑘) −4.84±0.57 2.41 0.064 3.64

True PDE (𝑐, 𝑘) −4.51±0.29 — — —
APHYNITY True PDE (𝑐, 𝑘) −4.49±0.22 — — 5E−4
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improves prediction precision and parameter estimation. The same decreasing tendency
of ‖𝑓A‖ is also confirmed.

A.7.2 Additional Results for the Wave Equation
We conduct an experimentwhere each sequence is generatedwith a differentwave celerity.
This dataset is challenging because both 𝑐 and the initial conditions vary across the
sequences. For each simulated sequence, an initial condition is sampled as described
previously, along with a wave celerity 𝑐 also sampled uniformly in [300, 400]. Finally, our
initial state is integrated with the same Runge-Kutta scheme. 200 of such sequences are
generated for training while 50 are kept for testing.

For this experiment, we also use a ConvNet encoder to estimate the wave speed 𝑐 from
5 consecutive reserved states (𝑤, 𝜕𝑤𝜕𝑡 ). The architecture of the encoder 𝐸 is the same
as in Table A.1 but with 10 input channels. Here also, 𝑘 is fixed for all sequences and
𝑘 = 50. The hyper-parameters used in these experiments are the same than described
in Appendix A.5.2.

The results when multiple wave speeds 𝑐 are in the dataset are consistent with the one
present when only one is considered. Indeed, while prediction performances are slightly
hindered, the parameter estimation remains consistent for both 𝑐 and 𝑘. This extension
provides elements attesting to the robustness and adaptability of our method to more
complex settings. Finally, the purely data-driven Neural-ODE fails to cope with the
increasing difficulty.

A.7.3 Damped Pendulum with Varying Parameters
To extend the experiments conducted in the paper (section Section 4.3) with fixed pa-
rameters (𝑇0 = 6, 𝛼 = 0.2) and varying initial conditions, we evaluate APHYNITY on a
much more challenging dataset where we vary both the parameters (𝑇0, 𝛼) and the initial
conditions between trajectories.

We simulate 500/50/50 trajectories for the train/valid/test sets integrated with DOPRI5.
For each trajectory, the period 𝑇0 (resp. the damping coefficient 𝛼) are sampled uniformly
in the range [3, 10] (resp. [0, 0.5]).

We train models that take the first 20 steps as input and predict the next 20 steps. To
account for the varying ODE parameters between sequences, we use an encoder that
estimates the parameters based on the first 20 timesteps. In practice, we use a recurrent
encoder composed of 1 layer of 128 GRU units. The output of the encoder is fed as
additional input to the data-driven augmentation models and an MLP with final softplus
activations to estimate the physical parameters when necessary (𝜔0 ∈ ℝ+ for Param ODE
(𝜔0), (𝜔0, 𝛼) ∈ ℝ2

+ for Param ODE (𝜔0, 𝛼)).
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In this varyingODE context, we also compare to the state-of-the-art univariate time series
forecasting method N-Beats (Oreshkin et al., 2020).

Results shown in Table Table A.8 are consistent with those presented in the paper.
Pure data-driven models Neural ODE (Chen et al., 2018) and N-Beats (Oreshkin et al.,
2020) fail to properly extrapolate the pendulum dynamics. Incomplete physical models
(Hamiltonian and ParamODE (𝜔0)) are even worse since they do not account for friction.
Augmenting them with APHYNITY significantly and consistently improves forecasting
results and parameter identification.



196
APPEN

D
IX

A.Appendix
ofC

hapter4

Table A.8: Forecasting and identification results on the damped pendulum dataset with different parameters for each sequence.
logMSEs are computed over 20 predicted time-steps. For each level of incorporated physical knowledge, equivalent best results
according to a Student t-test are shown in bold. — corresponds to non-applicable cases.

Method logMSE %Error 𝑇0 %Error 𝛾 ‖𝑓A‖2

Data-driven Neural ODE (Chen et al., 2018) −4.35±0.90 — — —
N-Beats (Oreshkin et al., 2020) −4.57±0.50 — — —

Incomplete physics Hamiltonian (Greydanus et al., 2019) −1.31±0.40 — — —
APHYNITY Hamiltonian −4.70±0.40 — — 5.6

Param ODE (𝜔0) −2.66±0.90 22 ± 19 — —
APHYNITY Param ODE (𝜔0) −5.94±0.70 5.0±1.8 — 0.49

Complete physics Param ODE (𝜔0, 𝛼) −5.71±0.40 4.1±0.8 152±129 —
APHYNITY Param ODE (𝜔0, 𝛼) −6.22±0.70 3.3±0.6 62±27 5.39E−10

True ODE −8.58±0.10 — — —
APHYNITY True ODE −8.58±0.10 — — 2.15E−4
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is strictly convex, this decomposition is unique.

197
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Proof. The optimization problem is:

min
𝑓 ,𝑔𝑒∈F

∑
𝑒∈E

R(𝑔𝑒) subject to ∀𝑢𝑒,(𝑖) ∈ D,∀𝑡 ∈ I ,
d𝑢𝑒,(𝑖)𝑡

d𝑡
= (𝑓 + 𝑔𝑒)(𝑢𝑒,(𝑖)𝑡 ) (5.1)

The idea is to first reconstruct the full functional from the trajectories ofD. By definition,
Û 𝑒 ⊂ U is the set of points reached by trajectories in D from environment 𝑒 so that:

Û 𝑒 = {𝑧 ∈ ℝ𝑑 | ∃𝑢𝑒
��
T ∈ D,∃𝑡 ∈ T , 𝑧 = 𝑢

𝑒
𝑡 }

Then let us define a function 𝑓 data𝑒 in the following way, ∀𝑒 ∈ E , take 𝑧 ∈ Û 𝑒, we can find
𝑢𝑒

��
T ∈ D and 𝜏 such that 𝑢𝑒𝜏 = 𝑧. Differentiating 𝑢𝑒 at 𝑡0, which is possible by definition of

T̂ , we take:

𝑓 data𝑒 (𝑧) = d𝑢𝑒

d𝑡

����
𝑡=𝑡0

For any (𝑓 , 𝑔𝑒) satisfying the constraint in Eq. (5.1), we then have (𝑓 + 𝑔𝑒)(𝑧) = d𝑢𝑡
d𝑡

��
𝑡0
=

𝑓 data𝑒 (𝑧) for all 𝑧 ∈ Û 𝑒. Conversely, any pair such that (𝑓 , 𝑔𝑒) ∈ F × F and 𝑓 + 𝑔𝑒 = 𝑓 data𝑒 ,
verifies the constraint.

Thus we have the equivalence between Eq. (5.1) and the following objective:

min
𝑓∈F

∑
𝑒

R(𝑓 data𝑒 − 𝑓 ) (B.1)

The result directly follows from the fact that the objective is a sum of (strictly) convex
functions in 𝑓 and is thus (strictly) convex in 𝑓 . □

B.2 Further Details on the Generalization with LEADS
In this section, we will give more details on the link between our framework and its gener-
alization performance. After introducing the necessary definitions in Appendix B.2.1, we
show theproofs of the results for the general case in Section 5.3. Then inAppendixB.2.3we
provide the instantiation for linear approximators. Finally, we show how we derived our
heuristic instantiation for neural networks in Eq. (5.10) in Section 5.3.3 from the existing
capacity bound for neural networks.
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Table B.1: Capacity definitions of different sets by covering number with associated metric or pseudo-metric.

Capacity Metric or pseudo-metric Mentioned in

C (𝜀,ℍ𝑚) :=
supP N (𝜀,ℍ𝑚, 𝑑P )

𝑑P ((𝑓+𝑔1, . . . , 𝑓+𝑔𝑚), (𝑓 ′+𝑔′1, . . . , 𝑓 ′+𝑔′𝑚)) =
∫
(U×TU )𝑚

1
𝑚 |

∑
𝑒∈E ‖(𝑓+

𝑔𝑒)(𝑧𝑒) − 𝑦𝑒‖2 −
∑
𝑒∈E ‖(𝑓 ′ + 𝑔′𝑒)(𝑧𝑒) − 𝑦𝑒‖2 |dP (z, y)

Theorem B.1 and proposi-
tion B.1

CĜ (𝜀, F̂) :=
supP N (𝜀, F̂ , 𝑑[P ,Ĝ])

𝑑[P ,Ĝ] (𝑓 , 𝑓 ′) =
∫
U×TU sup𝑔∈Ĝ |‖ (𝑓 + 𝑔) (𝑥) − 𝑦‖2 − ‖(𝑓 ′ + 𝑔)(𝑥) −

𝑦‖2 |dP (𝑥, 𝑦)
Propositions 5.2, B.1
and B.4 and corollary B.5

CF̂ (𝜀, Ĝ) :=
supP N (𝜀, Ĝ , 𝑑[P ,F̂ ])

𝑑[P ,F̂ ] (𝑔, 𝑔′) =
∫
U×TU sup𝑓∈F̂ |‖ (𝑓 + 𝑔)(𝑧) − 𝑦‖2 − ‖(𝑓 + 𝑔′) (𝑧) −

𝑦‖2 |dP (𝑧, 𝑦)
Propositions 5.2, B.1
and B.3

C (𝜀, 𝑓 + Ĝ) :=
supP N (𝜀, 𝑓 + Ĝ , 𝑑P )

𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′) =
∫
U×TU |‖ (𝑓 + 𝑔)(𝑧) − 𝑦‖2 − ‖(𝑓 + 𝑔′) (𝑧) −

𝑦‖2 |dP (𝑧, 𝑦) Proposition 5.3

C (𝜀, Ĝ , 𝐿1) :=
supP N (𝜀, Ĝ , 𝑑𝐿1 (P))

𝑑𝐿1 (P) (𝑔, 𝑔′) =
∫
ℝ𝑑 ‖(𝑔 − 𝑔′) (𝑧)‖1dP (𝑧)

Proposition B.3 and theo-
rem B.3

C (𝜀, Ĝ , 𝐿2) :=
supP N (𝜀, Ĝ , 𝑑𝐿2 (P))

𝑑𝐿2 (P) (𝑔, 𝑔′) =
√∫

ℝ𝑑 ‖(𝑔 − 𝑔′) (𝑧)‖22dP (𝑧)
Proposition 5.4
and lemma B.2
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B.2.1 Preliminaries
Table B.1 gives the definition of the different capacity instances considered in the paper for
each hypothesis space, and the associated distances. We say that a spaceH is 𝜀-covered by a
set 𝐻 , with respect to a metric or pseudo-metric 𝑑(·, ·), if for all ℎ ∈ H there exists ℎ′ ∈ 𝐻
with 𝑑(ℎ, ℎ′) ≤ 𝜀. We define byN (𝜀,H, 𝑑) the cardinality of the smallest 𝐻 that 𝜀-coversH,
also called covering number Shalev-Shwartz and Ben-David (2014). The capacity of each
hypothesis space is then defined by the maximum covering number over all distributions.
Note that the loss function is involved in every metric in Table B.1. For simplicity, we
therefore omit the notation of loss function for the hypothesis spaces.

As in Baxter (2000), covering numbers are based on pseudo-metrics. We can verify that all
distances in Table B.1 are pseudo-metrics:

Proof. This is trivially verified. For example, for the distance 𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′) given in
Table B.1, which is the distance between 𝑓 + 𝑔, 𝑓 + 𝑔′ ∈ 𝑓 + Ĝ , it is easy to check that the
following properties do hold:

• 𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′) = 0 (subtraction of same functions evaluated on same 𝑥 and 𝑦)

• 𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′) = 𝑑P (𝑓 + 𝑔′, 𝑓 + 𝑔) (evenness of absolute value)

• 𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′) ≤ 𝑑P (𝑓 + 𝑔, 𝑓 + 𝑔′′) + 𝑑P (𝑓 + 𝑔′′, 𝑓 + 𝑔′) (triangular inequality of
absolute value)

Other distances in Table B.1 can be proven to be pseudo-metrics in the same way. □

B.2.2 General Case
Proof of Proposition 5.2

Proposition 5.2. Given𝑚 environments, let 𝜀1, 𝜀2, 𝛿 > 0, 𝜀 = 𝜀1+𝜀2. Assume the number
of examples 𝑛 per environment satisfies

𝑛 ≥ max

{
64

𝜀2

(
1

𝑚

(
log

4

𝛿
+ log CĜ

( 𝜀1
16
, F̂

))
+ log CF̂

( 𝜀2
16
, Ĝ

))
,
16

𝜀2

}
(5.5)

Then with probability at least 1 − 𝛿 (over the choice of training sets {P̂𝑒}), any learner
(𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚) will satisfy 1

𝑚

∑
𝑒∈E erP𝑒 (𝑓 + 𝑔𝑒) ≤ 1

𝑚

∑
𝑒∈E êrP̂𝑒

(𝑓 + 𝑔𝑒) + 𝜀.

Proof. We introduce some extra definitions that are necessary for proving the proposition.
Let H = 𝑓 + Ĝ defined for each 𝑓 ∈ F̂ , and let us define the product space H𝑚 = {(𝑓 +
𝑔1, . . . , 𝑓 + 𝑔𝑚) : 𝑓 + 𝑔𝑒 ∈ H}. Functions in this hypothesis space all have the same 𝑓 ,
but not necessarily the same 𝑔𝑒. Let ℍ be the collection of all hypothesis spaces H = 𝑓 +
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Ĝ ,∀𝑓 ∈ F̂ . The hypothesis space associated to multiple environments is then defined as
ℍ𝑚 :=

⋃
H∈ℍH𝑚.

Our proof makes use of two intermediary results addressed in Theorem B.1 and Proposi-
tion B.1.

Theorem B.1 (Baxter, 2000, Theorem 4, adapted to our setting). Assuming ℍ is a
permissible hypothesis space family. For all 𝜀 > 0, if the number of examples 𝑛 of each
environment satisfies:

𝑛 ≥ max

{
64

𝑚𝜀2
log

4C ( 𝜀
16
,ℍ𝑚)
𝛿

,
16

𝜀2

}
Then with probability at least 1− 𝛿 (over the choice of {P̂𝑒}), any (𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚) will
satisfy

1

𝑚

∑
𝑒∈E

erP𝑒 (𝑓 + 𝑔𝑒) ≤
1

𝑚

∑
𝑒∈E

êrP̂𝑒
(𝑓 + 𝑔𝑒) + 𝜀

Note that permissibility (as defined inBaxter (2000)) is aweakmeasure-theoretic condition
satisfied by many real world hypothesis space families Baxter (2000). We will now express
the capacity of ℍ𝑚 in terms of the capacities of its two constituent component-spaces F̂
and Ĝ , thus leading to the main result.

Proposition B.1. For all 𝜀, 𝜀1, 𝜀2 > 0 such that 𝜀 = 𝜀1 + 𝜀2,

log C (𝜀,ℍ𝑚) ≤ log CĜ (𝜀1, F̂) + 𝑚 log CF̂ (𝜀2, Ĝ) (B.2)

Proof of Proposition B.1. To prove the proposition it is sufficient to show the property
of covering sets for any joint distribution defined on all environments P on the space
(U × TU )𝑚. Let us then fix such a distribution P . and let P̄ = 1

𝑚

∑
𝑒∈E P𝑒 be the average

distribution.

Suppose that 𝐹 is an 𝜀1-cover of (F̂ , 𝑑[P̄ ,Ĝ]) and {𝐺𝑒}𝑒∈E are 𝜀2-covers of (Ĝ , 𝑑[P𝑒,F̂ ]). Let
𝐻 = {(𝑥1, . . . , 𝑥𝑚) ↦→ ((𝑓 + 𝑔1) (𝑥1), . . . , (𝑓 + 𝑔𝑚) (𝑥𝑚)), 𝑓 ∈ 𝐹, 𝑔𝑒 ∈ 𝐺𝑒}, be a set built
from the covering sets aforementioned. Note that by definition |𝐻 | = |𝐹 | ·∏𝑒∈E |𝐺𝑒 | ≤
CĜ (𝜀1, F̂) · CF̂ (𝜀2, Ĝ)𝑚 as we take some distribution instances.

For each learner (𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚) ∈ ℍ𝑚 in the hypothesis space, we take any 𝑓 ′ ∈ 𝐹 such
that 𝑑[P̄ ,Ĝ] (𝑓 , 𝑓 ′) ≤ 𝜀1 and 𝑔′𝑒 ∈ 𝐺𝑒 for all 𝑒 such that 𝑑[P𝑒,F̂ ] (𝑔𝑒, 𝑔

′
𝑒) ≤ 𝜀2, and we build

(𝑓 ′ + 𝑔′1, . . . , 𝑓 ′ + 𝑔′𝑚). The distance is then:

𝑑P ((𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚), (𝑓 ′ + 𝑔′1, . . . , 𝑓 ′ + 𝑔′𝑚))
≤ 𝑑P ((𝑓 + 𝑔1, . . . , 𝑓 + 𝑔𝑚), (𝑓 ′ + 𝑔1, . . . , 𝑓 ′ + 𝑔𝑚))
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+ 𝑑P ((𝑓 ′ + 𝑔1, . . . , 𝑓 ′ + 𝑔𝑚), (𝑓 ′ + 𝑔′1, . . . , 𝑓 ′ + 𝑔′𝑚))
(triangular inequality of pseudo-metric)

≤ 1

𝑚

[∑
𝑒∈E

𝑑P𝑒 (𝑓 + 𝑔𝑒, 𝑓 ′ + 𝑔𝑒) +
∑
𝑒∈E

𝑑P𝑒 (𝑓 ′ + 𝑔𝑒, 𝑓 ′ + 𝑔′𝑒)
]

(triangular inequality of absolute value)

≤ 1

𝑚

∑
𝑒∈E

𝑑[P𝑒,Ĝ] (𝑓 , 𝑓
′) + 1

𝑚

∑
𝑒∈E

𝑑[P𝑒,F̂ ] (𝑔𝑒, 𝑔
′
𝑒) (by definition of 𝑑[P𝑒,Ĝ] and 𝑑[P𝑒,F̂ ] )

= 𝑑[P̄ ,Ĝ] (𝑓 , 𝑓
′) + 1

𝑚

∑
𝑒∈E

𝑑[P𝑒,F̂ ] (𝑔𝑒, 𝑔
′
𝑒) ≤ 𝜀1 + 𝜀2

(mean of the distance on different P𝑒 is the distance on P̄ )

To conclude, for any distributionP , when 𝐹 is an 𝜀1-cover of F̂ and {𝐺𝑒} are 𝜀2-covers of
Ĝ , the set 𝐻 built upon them is an (𝜀1 + 𝜀2)-cover of ℍ𝑚. Then if we take the maximum
over all distributions we conclude that C (𝜀1 + 𝜀2,ℍ𝑚) ≤ CĜ (𝜀1, F̂)CF̂ (𝜀2, Ĝ)𝑚 and we have
Eq. (B.2). ■

We can now use the bound developed in Proposition B.1 and use it together with
Theorem B.1, therefore concluding the proof of Proposition 5.2. □

Proof of Proposition 5.3
Proposition 5.3. For all 𝜀, 𝛿 with 0 < 𝜀, 𝛿 < 1 if the number of samples 𝑛′ satisfies

𝑛′ ≥ max

{
64

𝜀2
log

4C ( 𝜀
16
, 𝑓 + Ĝ)
𝛿

,
16

𝜀2

}
, (5.6)

then with probability at least 1 − 𝛿 (over the choice of novel training set P̂𝑒′ ), any learner
𝑓 + 𝑔𝑒′ ∈ 𝑓 + Ĝ will satisfy erP𝑒′ (𝑓 + 𝑔𝑒′) ≤ êrP̂𝑒′

(𝑓 + 𝑔𝑒′) + 𝜀.

Proof. The proof is derived from the following theoremwhich can be easily adapted to our
context:

Theorem B.2 (Baxter, 2000, Theorem 3). LetH a permissible hypothesis space. For all
0 < 𝜀, 𝛿 < 1, if the number of examples 𝑛 of each environment satisfies:

𝑛 ≥ max

{
64

𝑚𝜀2
log

4C ( 𝜀
16
,H)

𝛿
,
16

𝜀2

}
Then with probability at least 1 − 𝛿 (over the choice of dataset P̂ sampled from P ), any
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ℎ ∈ H will satisfy
erP (ℎ) ≤ êrP̂ (ℎ) + 𝜀

Given that P̂𝑒′ is sampled from the same environment distribution 𝑄, then by fixing the
pre-trained 𝑓 , we fix the space of hypothesis to 𝑓 + Ĝ , and we apply Theorem B.2 to obtain
the proposition. □

B.2.3 Linear Case
Weprovide here the proofs of theoretical bounds given in Section 5.3.2. See the description
in Appendix B.4 for detailed information on the example linear ODE dataset and the
training with a varying number of environments.

Proof of Proposition 4

Proposition 5.4. If for all linear maps L𝑮𝑒 ∈ Ĝ, ‖𝑮‖2𝐹 ≤ 𝑟, if the input space is bounded
s.t. ‖𝑢‖2 ≤ 𝑏, and the MSE loss function is bounded by 𝑐, then

log CF̂ (𝜀, Ĝ) ≤
⌈
𝑟𝑐𝑑(2𝑏)2

𝜀2

⌉
log 2𝑑2 =: 𝜔(𝑟, 𝜀) (5.8)

Proof. Let us take𝐺 an 𝜀
2
√
𝑐
-cover of Ĝ with 𝐿2-distance: 𝑑𝐿2 (P) (see definition in Table B.1).

Therefore, for each L𝑮 ∈ Ĝ take 𝑔′ ∈ 𝐺 such that 𝑑𝐿2 (L𝑮 , L𝑮′) ≤ 𝜀
2
√
𝑐
, then

𝑑[P ,F̂ ] (L𝑮 , L𝑮′)

=
∫
U×TU

sup
L𝑭∈F̂
|‖ (𝑭 + 𝑮)𝑧 − 𝑦‖22 − ‖(𝑭 + 𝑮′)𝑧 − 𝑦‖22 |dP (𝑧, 𝑦)

≤
∫
U×TU

sup
L𝑭∈F̂
‖(𝑮 − 𝑮′)𝑧‖2(‖(𝑭 + 𝑮)𝑧 − 𝑦‖2 + ‖(𝑭 + 𝑮′)(𝑧) − 𝑦‖2)dP (𝑧, 𝑦)

≤
√∫

U
‖(𝑮 − 𝑮′)𝑧‖2dP (𝑧)

√∫
U×TU

sup
L𝑭∈F̂
(‖(𝑭 + 𝑮)𝑧 − 𝑦‖2 + ‖(𝑭 + 𝑮′)𝑧 − 𝑦‖2)2dP (𝑧, 𝑦)

≤2
√
𝑐

√∫
ℝ𝑑
‖(𝑮 − 𝑮′)𝑥‖2dP (𝑥) ≤ 𝜀

We have the CF (𝜀, Ĝ) ≤ C ( 𝜀
2
√
𝑐
, Ĝ , 𝐿2). According to the following lemma:
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Lemma B.2 (Bartlett et al., 2017, Lemma 3.2, Adapted). Given positive reals (𝑎, 𝑏, 𝜀)
and positive integer 𝑑. Let vector 𝑧 ∈ ℝ𝑑 be given with ‖𝑧‖𝑝 ≤ 𝑏, Ĝ = {L𝑮 : 𝑮 ∈
ℝ𝑑×𝑑 , ‖𝑮‖2𝐹 ≤ 𝑟} where ‖ · ‖𝐹 is the Frobenius norm. Then

log C (𝜀, Ĝ , 𝐿2) ≤
⌈
𝑟𝑑𝑏2

𝜀2

⌉
log 2𝑑2

And we obtain that

log CF̂ (𝜀, Ĝ) ≤
⌈
𝑟𝑐𝑑(2𝑏)2

𝜀2

⌉
log 2𝑑2 =: 𝜔(𝑟, 𝜀)

where 𝜔(𝑟, 𝜀) is a strictly increasing function w.r.t. 𝑟. □

Proof of Proposition 5

Proposition 5.5. If for linear maps L𝑭 ∈ F̂ , ‖𝑭 ‖2𝐹 ≤ 𝑟
′, L𝑮 ∈ Ĝ, ‖𝑮‖2𝐹 ≤ 𝑟, ‖𝑢‖2 ≤ 𝑏,

and if the MSE loss function is bounded by 𝑐, given 𝑚 environments and 𝑛 samples per
environment, with the probability 1 − 𝛿 , the generalization error upper bound is

𝜀 = max


√
(𝑝 +

√
𝑝2 + 4𝑞)
2

,

√
16

𝑛

 (5.9)

where 𝑝 = 64
𝑚𝑛 log

4
𝛿 and 𝑞 =

64
𝑛

⌈( 𝑟′

𝑚𝑙2
+ 𝑟
(1−𝑙)2

)
𝑐𝑑(32𝑏)2

⌉
log 2𝑑2 for any 0 < 𝑙 < 1.

Proof. This can be derived from Proposition 5.2 with the help of Proposition 5.4 for linear
maps. Ifwe take the lower bounds of two capacities log CF̂ (

𝜀1
16
, Ĝ) and log CĜ (

𝜀2
16
, F̂) for the

linearmaps hypothesis spaces F̂ , Ĝ , then the number of required samples per environment
𝑁 now can be expressed as follows:

𝑁 = max

{
64

𝜀2

(
1

𝑚
log

4

𝛿
+ 1

𝑚

⌈
𝑟′𝑐𝑑(32𝑏)2

𝜀2
1

⌉
log 2𝑑2 +

⌈
𝑟𝑐𝑑(32𝑏)2

𝜀2
2

⌉
log 2𝑑2

)
,
16

𝜀2

}
To simplify the resolution of the equation above, we take 𝜀1 = 𝑧𝜀 for any 0 < 𝑧 < 1, then
𝜀2 = 𝜀 − 𝜀1 = (1 − 𝑧)𝜀. Then by resolving the equation, the generalization margin is then
upper bounded by 𝜀 with:

𝜀 = max


√
𝑝 +

√
𝑝2 + 4𝑞
2

,

√
16

𝑛


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where 𝑝 = 64
𝑚𝑛 log

4
𝛿 and 𝑞 = 64

𝑛

⌈(
𝑟
𝑚𝑧2
+ 𝑟′

(1−𝑧)2
)
𝑐𝑑(32𝑏)2

⌉
log 2𝑑2. □

B.2.4 Nonlinear Case: Instantiation for Neural Networks
We show in this section howwe design a concretemodel for nonlinear dynamics following
the general guidelines given in Section 5.3.1. This ismainly composed of the following two
parts: (a) choosing an appropriate approximation space and (b) choosing a penalization
function R for this space. It is important to note that, even if the bounds given in the
following sections may be loose in general, it could provide useful intuitions on the design
of the algorithms which can be validated by experiments in our case.

Choosing approximation space F̂

We choose the space of feed-forward neural networks with a fixed architecture. Given the
universal approximation properties of neural networks Kidger and Lyons (2020), and the
existence of efficient optimization algorithms Chizat and Bach (2018), this is a reasonable
choice, but other families of approximating functions could be used as well.

We then consider the function space of neural networks with 𝐷-layers with inputs and
outputs in ℝ𝑑: F̂NN = {𝜈 : 𝑥 ↦→ 𝜎𝐷 (𝑊𝐷 · · · 𝜎1(𝑊1𝑥))) : 𝑥, 𝜈(𝑥) ∈ ℝ𝑑}, 𝐷 is the depth
of the network, 𝜎 𝑗 is a Lipschitz activation function at layer 𝑗, and𝑊𝑗 weight matrix from
layer 𝑗 − 1 to 𝑗. The number of adjustable parameters is fixed to 𝑊 for the architecture.
This definition covers fully connected neural networks (NNs) and convolutional NNs.
Note that the FNO used in the experiments for Navier-Stokes can be also covered by the
definition above, as it performs alternatively the convolution in the Fourier space.

Choosing penalizationR

Now we choose an R for the space above. Let us first introduce a practical way to bound
the capacity of Ĝ ∈ F̂NN. PropositionB.3 tells us that for a fixedNNarchitecture (implying
constant parameter number 𝑊 and depth 𝐷), we can control the capacity through the
maximum output norm 𝑅 and Lipschitz norm 𝐿 defined in the proposition.

PropositionB.3. If for all neural network 𝑔 ∈ Ĝ, ‖𝑔‖∞ = ess sup |𝑔 | ≤ 𝑅 and ‖𝑔‖Lip ≤
𝐿, with ‖ · ‖Lip the Lipschitz semi-norm, then:

log CF̂ (𝜀, Ĝ) ≤ 𝜔(𝑅, 𝐿, 𝜀) (B.3)

where 𝜔(𝑅, 𝐿, 𝜀) = 𝑐1 log 𝑅𝐿
𝜀 + 𝑐2 for 𝑐1 = 2𝑊 and 𝑐2 = 2𝑊 log 8𝑒

√
𝑐𝐷, with 𝑐 the bound

of MSE loss. 𝜔(𝑅, 𝐿, 𝜀) is a strictly increasing function w.r.t. 𝑅 and 𝐿.
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Proof. To link the capacity to some quantity that can be optimized for neural networks,
we need to apply the following theorem:

Theorem B.3 (Haussler, 1992, Theorem 11, Adapted). With the neural network func-
tion space F̂NN, let 𝑊 be the total number of adjustable parameters, 𝐷 the depth of the
architecture. Let Ĝ ⊆ F̂NN be all functions into [−𝑅, 𝑅]𝑑 representable on the architecture,
and all these functions are at most 𝐿-Lipschitz. Then for all 0 < 𝜀 < 2𝑅,

C (𝜀, Ĝ , 𝐿1) ≤
(
2𝑒 · 2𝑅 · 𝐷𝐿

𝜀

)2𝑊
Here, we need to prove firstly that the F̂-dependent capacity of Ĝ is bounded by a scaled
independent capacity on 𝐿1 of itself. We suppose that the MSE loss function (used in the
definitions in Table B.1) is bounded by some constant 𝑐. This is a reasonable assumption
given that the input and output of neural networks are bounded in a compact set. Let us
take 𝐺 an 𝜀

2
√
𝑐
-cover of Ĝ with 𝐿1-distance: 𝑑𝐿1 (P) (see definition in Table B.1). Therefore,

for each 𝑔 ∈ Ĝ take 𝑔′ ∈ 𝐺 such that 𝑑𝐿1 (𝑔, 𝑔′) ≤ 𝜀
2
√
𝑐
, then

𝑑[P ,F̂ ] (𝑔, 𝑔
′) =

∫
U×U ′

sup
𝑓∈F̂
|‖ (𝑓 + 𝑔)(𝑧) − 𝑦‖22 − ‖(𝑓 + 𝑔′)(𝑧) − 𝑦‖22 |dP (𝑧, 𝑦)

≤
∫

U×TU

sup
𝑓∈F̂
‖(𝑔 − 𝑔′) (𝑧)‖2(‖(𝑓 + 𝑔) (𝑧) − 𝑦‖2 + ‖(𝑓 + 𝑔′) (𝑧) − 𝑦‖2)dP (𝑧, 𝑦)

≤2
√
𝑐

∫
ℝ𝑑
‖(𝑔 − 𝑔′) (𝑥)‖1dP (𝑧) ≤ 𝜀

Then we have the first inequality CF (𝜀, Ĝ) ≤ C ( 𝜀
2𝑐 , Ĝ , 𝐿

1). As we suppose that ‖𝑔‖∞ ≤ 𝑅
for all 𝑔 ∈ Ĝ , then for all 𝑔 ∈ Ĝ , we have 𝑔(𝑥) ∈ [−𝑅, 𝑅]𝑑. We now apply Theorem B.3 on
Ĝ , we then have the following inequality

log C
(
𝜀

2
√
𝑐
, Ĝ , 𝐿1

)
≤ 2𝑊 log

8𝑒
√
𝑐𝐷𝑅𝐿

𝜀
(B.4)

where 𝑒 is the base of the natural logarithm, 𝑊 is the number of parameters of the
architecture, 𝐷 is the depth of the architecture. Then if we consider𝑊, 𝑐, 𝐷 as constants,
the bound becomes:

log C
(
𝜀

2
√
𝑐
, Ĝ , 𝐿1

)
≤ 𝑐1 log

𝑅𝐿

𝜀
+ 𝑐2 = 𝜔(𝑅, 𝐿, 𝜀) (B.5)

for 𝑐1 = 2𝑊 and 𝑐2 = 2𝑊 log 8𝑒
√
𝑐𝐷. □
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This leads us to choose for R a strictly increasing function that bounds 𝜔(𝑅, 𝐿, 𝜀). Given
the inequality (Eq. (B.3)), this choice for R will allow us to bound practically the capacity
of Ĝ.

MinimizingRwill then reduce the effective capacity of the parametric set used to learn 𝑔𝑒.
Concretely, we choose forR:

R(𝑔𝑒) = ‖𝑔𝑒‖2∞ + 𝛼‖𝑔𝑒‖2Lip (7)

where 𝛼 > 0 is a hyper-parameter. This function is strictly convex and attains its unique
minimum at the null function.

With this choice, let us instantiate Proposition 5.2 for our familly of NNs. Let 𝑟 =
sup𝑔∈Ĝ R(𝑔), and 𝜔(𝑟, 𝜀) = 𝑐1 log

𝑟
𝜀
√
𝛼
+ 𝑐2 (strictly increasing w.r.t. the 𝑟) for given

parameters 𝑐1, 𝑐2 > 0. We have:

Proposition B.4. If 𝑟 = sup𝑔∈Ĝ R(𝑔) is finite, the number of samples 𝑛 in Eq. (5.5),
required to satisfy the error bound in Proposition 5.2 with the same 𝛿 , 𝜀, 𝜀1 and 𝜀2 becomes:

𝑛 ≥ max

{
64

𝜀2

(
1

𝑚
log

4CĜ (
𝜀1
16
, F̂)

𝛿
+ 𝜔

(
𝑟,
𝜀2
16

))
,
16

𝜀2

}
(B.6)

Proof. IfR(𝑔𝑒) ≤ 𝑟, we have 2 log 𝑅 ≤ log 𝑟 and 2 log 𝐿 + log 𝛼 ≤ log 𝑟, then

log 𝑅𝐿 ≤ log
𝑟
√
𝛼

We can therefore bound 𝜔(𝑅, 𝐿, 𝜀) by

𝜔(𝑅, 𝐿, 𝜀) = 𝑐1 log
𝑅𝐿

𝜀
+ 𝑐2 ≤ 𝑐1 log

𝑟

𝜀
√
𝛼
+ 𝑐2 = 𝜔(𝑟, 𝜀)

The result follows from Proposition B.3. □

This means that the number of required samples will decrease with the size the largest
possible R(𝑔) = 𝑟. The optimization process will reduce R(𝑔𝑒) until a minimum
is reached. The maximum size of the effective hypothesis space is then bounded and
decreases throughout training. In particular, the following result follows:

Corollary B.5. Optimizing Eq. (5.4) for a given 𝜆, we have that the number of samples 𝑛
in Eq. (5.5) required to satisfy the error bound in Proposition 5.2 with the same 𝛿 , 𝜀, 𝜀1 and
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𝜀2 is:

𝑛 ≥ max

{
64

𝜀2

(
1

𝑚
log

4CĜ (
𝜀1
16
, F̂)

𝛿
+ 𝜔

(
𝜆𝜅,

𝜀2
16

))
,
16

𝜀2

}
(B.7)

where 𝜅 =
∑
𝑒∈E

𝑁∑
𝑖=1

∑
𝑡∈T




d𝑢𝑒,(𝑖)𝑡

d𝑡




2.
Proof. Denote L𝜆 (𝑓 , {𝑔𝑒}) the loss function defining Eq. (5.4). Consider a minimizer
(𝑓★, {𝑔★𝑒 }) of L𝜆. Then:

L𝜆 (𝑓★, {𝑔★𝑒 }) ≤ L𝜆 (0, {0}) = 𝜅

which gives:
∀𝑒, R(𝑔★𝑒 ) ≤

∑
𝑒

R(𝑔★𝑒 ) ≤ 𝜆𝜅

Defining Ĝ = {𝑔 ∈ F̂ |R(𝑔) ≤ 𝜆𝜅}, we then have that Eq. (5.4) is equivalent to:

min
𝑓∈F̂ ,{𝑔𝑒∈Ĝ}𝑒∈E

∑
𝑒∈E

(
R(𝑔𝑒)
𝜆
+

𝑁∑
𝑖=1

∑
𝑡∈T







d𝑢𝑒,(𝑖)𝑡

d𝑡
− (𝑓 + 𝑔𝑒) (𝑢𝑒,(𝑖))






2d𝜏ª®¬ (B.8)

and the result follows from Proposition B.4. □

We can then decrease the sample complexity in the chosenNN family by: (a) increasing the
number of training environments engaged in the framework, and (b) decreasingR(𝑔𝑒) for
all 𝑔𝑒, withR(𝑔𝑒) instantiated as in Section 5.3.1. R provides a bound based on the largest
output norm and the Lipschitz constant for a family ofNNs. The experiments (Section 5.4)
confirm that this is indeed an effective way to control the capacity of the approximating
function family. Note that in our experiments, the number of samples needed in practice
is much smaller than suggested by the theoretical bound.

B.3 OptimizingR in Practice
In Section 5.3.3, we developed an instantiation of the LEADS framework for neural net-
works. We proposed to control the capacity of the 𝑔𝑒s components through a penalization
function R defined as R(𝑔𝑒) = ‖𝑔𝑒‖2∞ + 𝛼‖𝑔𝑒‖2Lip. This definition ensures the properties
required to control the sample complexity.

However, in practice, both terms in R(𝑔𝑒) are difficult to compute as they do not yield an
analytical form for neural networks. For a fixed activation function, the Lipschitz-norm
of a trained model only depends on the model parameters and, for our class of neural
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Table B.2: Details for the results of evaluation error in test on linear systems in Figure 5.1.

Samples
per env. Method 𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 8

𝑛 = 2 · 𝐾 LEADS NO MIN. 8.13±5.56E−2 6.81±4.44E−2 4.92±4.26E−2 4.50±3.10E−2
LEADS (Ours) 8.13±5.56E−2 5.11±3.20E−2 3.93±2.88E−2 2.10±0.96E−2

𝑛 = 4 · 𝐾 LEADS NO MIN. 4.08±2.57E−2 3.96±2.56E−2 3.10±2.08E−2 2.23±1.44E−2
LEADS (Ours) 4.08±2.57E−2 2.74±1.96E−2 1.61±1.24E−2 1.02±0.74E−2

networks, can be bounded by the spectral norms of the weight matrices, as described in
Section 5.4.4. This allows for a practical implementation.

The infinity normon its side depends on thedomaindefinitionof the function andpractical
implementations require an empirical estimate. Since there is no trivial estimator for the
infinity norm of a function, we performed tests with different proxies such as the empirical

𝐿𝑞 and 𝐿∞ norms, respectively defined as ‖𝑔𝑒‖𝐿𝑞 (P̂𝑒) =
(
1
𝑛

∑
𝑧∈P̂𝑒
|𝑔𝑒(𝑧) |𝑞

)1/𝑞
for 1 ≤ 𝑞 < ∞

and ‖𝑔𝑒‖𝐿∞ (P̂𝑒) = max𝑧∈P̂𝑒
|𝑔𝑒(𝑧) |. Here | · | is an ℓ2 vector norm. Note that on a finite

set of points, these norms reduce to vector norms ‖(|𝑔𝑒(𝑧1) |, . . . , |𝑔𝑒(𝑧𝑑) |)>‖𝑞. They are
then all equivalent on the space defined by the training set. Table B.4 shows the results of
experiments performed on LV equation with different 1 ≤ 𝑞 ≤ ∞. Overall we found that
𝐿𝑞 for small values of 𝑞worked better and chose in our experiments set 𝑞 = 2.

Moreover, using both minimized quantities ‖𝑔𝑒‖2𝐿2 (P̂𝑒)
and the spectral norm of the

product of weight matrices, denoted 𝐿(𝑔𝑒) and Π(𝑔𝑒) respectively, we can give a bound
onR(𝑔𝑒). First, for any 𝑧 in the compact support ofP𝑒, we have that, fixing some 𝑧0 ∈ P̂𝑒:

|𝑔𝑒(𝑧) | ≤ |𝑔𝑒(𝑥) − 𝑔𝑒(𝑥0) | + |𝑔𝑒(𝑧0) |

For the first term:

|𝑔𝑒(𝑧) − 𝑔𝑒(𝑧0) | ≤ ‖𝑔𝑒‖Lip |𝑧 − 𝑧0 | ≤ Π(𝑔𝑒) |𝑧 − 𝑧0 |

and the support of P𝑒 being compact by hypothesis, denoting by 𝛿 its diameter:

|𝑔𝑒(𝑧) − 𝑔𝑒(𝑧0) | ≤ 𝛿Π(𝑔𝑒)

Moreover, for the second term:

|𝑔𝑒(𝑧0) | =
√
|𝑔𝑒(𝑧0) |2 ≤

√
𝐿(𝑔𝑒)
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and summing both contributions gives us the bound:

‖𝑔𝑒‖∞ ≤ 𝛿Π(𝑔𝑒) +
√
𝐿(𝑔𝑒)

so that:
R(𝑔𝑒) ≤ (𝛿 + 𝛼)Π(𝑔𝑒) +

√
𝐿(𝑔𝑒)

Note that this estimation is a crude one and improvements can be made by considering
the closest 𝑧0 from 𝑧 and taking 𝛿 to be the maximal distance between points not from the
support of P𝑒 and P̂𝑒.

Finally, we noticed that minimizing ‖ 𝑔𝑒𝑖𝑑 ‖2𝐿2 (P̂𝑒)
in domains bounded away from zero gave

better results as normalizing by the norm of the output allowed to adaptively rescale the
computed norm. Formally, minimizing this quantity does not fundamentally change the
optimization as we have that:

∀𝑢, 1

𝑀2
|𝑔𝑒(𝑧) |2 ≤

���� 𝑔𝑒(𝑧)𝑧 ����2 ≤ 1

𝑚2
|𝑔𝑒(𝑧) |2

meaning that:
1

𝑀2
𝐿(𝑔𝑒) ≤




 𝑔𝑒
𝑖𝑑




2
𝐿2 (P̂𝑒)

≤ 1

𝑚2
𝐿(𝑔𝑒)

where 𝑚, 𝑀 are the lower and upper bound of |𝑧 | on the support of P𝑒 with 𝑚 > 0 by
hypothesis (the quantity we minimize is still higher than 𝐿(𝑔𝑒) even if this is not the case).

B.4 Additional Experimental Details

B.4.1 Details on the Environment Dynamics

Lotka-Volterra. The model dynamics follow the ODE:

d𝑥

d𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦

d𝑦

d𝑡
= 𝛿𝑥𝑦 − 𝛾 𝑦

with 𝑣, 𝑤 the number of prey and predator, 𝛼, 𝛽, 𝛾, 𝛿 > 0 defining how the two
species interact. The initial conditions 𝑣𝑖0, 𝑤

𝑖
0 are sampled from a uniform distribution

𝑃0 = Unif( [1, 2]2). We characterize the dynamics by 𝜃 = (𝛼/𝛽, 𝛾/𝛿) ∈ Θ =
{0.5, 1, 1.44, 1.5, 1.86, 2}2. An environment 𝑒 is then defined by parameters 𝜃𝑒 sampled
from a uniform distribution over the parameter set Θ.
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Gray-Scott. The governing PDE is:

𝜕𝑣

𝜕𝑡
= 𝐷𝑣Δ𝑣 − 𝑣𝑤2 + 𝐹𝑟 (1 − 𝑣)

𝜕𝑤

𝜕𝑡
= 𝐷𝑤Δ𝑤 + 𝑣𝑤2 − (𝐹𝑟 + 𝑘𝑟)𝑤

where the 𝑣, 𝑤 represent the concentrations of two chemical components in the spatial
domain Ω with periodic boundary conditions. 𝐷𝑣, 𝐷𝑤 denote the diffusion coefficients
respectively for 𝑣, 𝑤, and are held constant to 𝐷𝑣 = 0.2097, 𝐷𝑤 = 0.105, and 𝐹𝑟 , 𝑘𝑟 are
the reaction parameters depending on the environment. As for the initial conditions
(𝑣0, 𝑤0) ∼ 𝑃0, we place 3 2-by-2 squares at uniformly sampled positions in Ω to trigger
the reactions. The values of (𝑣0, 𝑤0) are fixed to (0, 1) outside the squares and to (1 − 𝜖, 𝜖)
with a small 𝜖 > 0 inside. An environment 𝑒 is defined by its parameters 𝜃𝑒 = (𝐹𝑟,𝑒, 𝑘𝑟,𝑒) ∈
Θ = {(0.037, 0.060), (0.030, 0.062), (0.039, 0.058)}. We consider a set of 𝜃𝑒 parameters
uniformly sampled from the environment distribution 𝑄 on Θ.

Navier-Stokes. We consider the Navier-Stokes PDE for incompressible flows:

𝜕𝑤

𝜕𝑡
= −𝑣 · ∇𝑤 + 𝜈Δ𝑤 + 𝑓 fc. ∇ · 𝑣 = 0

where 𝑣 is the velocity field, 𝑤 = ∇ × 𝑣 is the vorticity, both 𝑣, 𝑤 lie in a spatial domain Ω
with periodic boundary conditions, 𝜈 is the viscosity and ℎ is the constant forcing term in
the domain Ω. We fix 𝜈 = 10−3 across the environments. We sample the initial conditions
𝑤𝑒0 ∼ 𝑃0 as in Li et al. (2021b). An environment 𝑒 is defined by its forcing term 𝑓 fc.𝑒 ∈ Θ𝑓 fc. =
{𝑓 fc.1 , 𝑓

fc.
2 , 𝑓

fc.
3 , 𝑓

fc.
4 } with

𝑓 fc.1 (𝑥1, 𝑥2) = 0.1(sin(2𝜋 (𝑥1 + 𝑥2)) + cos(2𝜋 (𝑥1 + 𝑥2)))
𝑓 fc.2 (𝑥1, 𝑥2) = 0.1(sin(2𝜋 (𝑥1 + 𝑥2)) + cos(2𝜋 (𝑥1 + 2𝑥2)))
𝑓 fc.3 (𝑥1, 𝑥2) = 0.1(sin(2𝜋 (𝑥1 + 𝑥2)) + cos(2𝜋 (2𝑥1 + 𝑥2)))
𝑓 fc.4 (𝑥1, 𝑥2) = 0.1(sin(2𝜋 (2𝑥1 + 𝑥2)) + cos(2𝜋 (2𝑥1 + 𝑥2)))

where 𝑥 = (𝑥1, 𝑥2) ∈ Ω is the position in the domain Ω. We uniformly sampled a set of
forcing terms from 𝑄 on Θℎ.

Linear ODE. We take an example of linear ODE expressed by the following formula:

d𝑢

d𝑡
= L𝑸𝚲𝑸> (𝑢) = 𝑸𝚲𝑸>𝑢
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where 𝑢𝑡 ∈ ℝ8 is the system state, 𝑸 ∈ 𝑀8,8(ℝ) is an orthogonal matrix such that 𝑸𝑸> =
1, and 𝚲 ∈ 𝑀8,8(ℝ) is a diagonal matrix containing eigenvalues. We sample 𝚲𝑒 from a
uniform distribution on Θ𝚲 = {𝚲1, . . . ,𝚲8}, defined for each 𝚲𝑖 by:

[𝚲𝑖] 𝑗 𝑗 =
{
0, if 𝑖 = 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 8},
−0.5, otherwise.

which means that the 𝑖-th eigenvalue is set to 0, while others are set to a common value
−0.5.

B.4.2 Choosing Hyperparameters
As usual, the hyperparameters need to be tuned for each considered set of systems. We
therefore chose the hyperparameters using standard cross-validation techniques. We
did not conduct a systematic sensitivity analysis. In practice, we found that: (a) if
the regularization term is too large w.r.t. the trajectory loss, the model cannot fit the
trajectories, and (b) if the regularization term is too small, the performance is similar to
LEADS NO MIN. The candidate hyperparameters are defined on a very sparse grid, for
example, for neural nets, (103, 104, 105, 106) for 𝜆 and (10−2, 10−3, 10−4, 10−5) for 𝛼.

B.4.3 Details on the Experiments with a Varying Number of Envi-
ronments

We conducted large-scale experiments respectively for linear ODEs (Section 5.3.2, Fig-
ure 5.1) and LV (Section 5.4, Figure 5.4) to compare the tendency of LEADS w.r.t. the
theoretical bound and the baselines by varying the number of environments available for
the instantiated model.

To guarantee the comparability of the test-time results, we need to use the same test set
when varying the number of environments. We therefore propose to firstly generate a
global set of environments, separate it into subgroups for training, then we test these
separately trained models on the global test set.

We performed the experiments as follows:

• In the training phase, we consider𝑀 = 8 environments in total in the environment
set Etotal. We denote here the cardinality of an environment set E by card(E), the
environments are then arranged into 𝑏 = 1, 2, 4 or 8 disjoint groups of the same size,
i.e. {E1, . . . , E𝑏} such that

⋃𝑏
𝑖=1 E𝑖 = Etotal, card(E1) = · · · = card(E𝑏) = b𝑀/𝑏c C

𝑚, where 𝑚 is the number of environments per group, and E𝑖 ∩ E𝑗 = ∅ whenever
𝑖 ≠ 𝑗. For example, for 𝑚 = 1, all the original environments are gathered into one
global environment, when for 𝑚 = 8 we keep all the original environments. The
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methods are then instantiated respectively for each E𝑖. For example, for LEADS
with 𝑏 environment groups, we instantiate LEADS1, · · · , LEADS𝑏 respectively on
E1, · · · , E𝑏. Other frameworks are applied in the same way.

Note thatwhen𝑚 = 1, having 𝑏 = 8 environment groups of one single environment,
ONE-FOR-ALL, ONE-PER-ENV. and LEADS are reduced to ONE-PER-ENV. applied on
all 𝑀 environments. We can see in Figure 5.4 that each group of plots starts from
the same point.

• In the test phase, the performance of the model trained with the group E𝑖 is tested
with the test samples of the corresponding group. Thenwe take themean error over
all 𝑏 groups to obtain the results on all𝑀 environments. Note that the result at each
point in figs. 5.1 and 5.4 is calculated on the same total test set, which guarantees the
comparability between results.

B.4.4 Additional Experimental Results
Experiments with a varying number of environments We show in Tables B.2
and B.3 the detailed results used for the plots in Figures 5.1 and 5.4, compared to baseline
methods.

Learning in novel environments We conducted same experiments as in Section 5.4.3
to learn in unseen environments for Gray-Scott and Navier-Stokes datasets. The test MSE
at different training steps is shown in Table B.5.

Full-length trajectories Weprovide in figures S1-S4 the full-length sample trajectories
forGray-Scott andNavier-Stokes of Figure 5.2.
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(a) ONE-PER-ENV.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure B.1: Full-length prediction comparison of Figure 5.2 forGray-Scott. In each figure,
from top to bottom, the trajectory snapshots are output respectively from 3 training
environments. The temporal resolution of each sequence is 𝛿𝑡 = 40.
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(a) Difference between ONE-PER-ENV. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure B.2: Full-length error maps of Figure 5.2 for Gray-Scott. In each figure, from top
to bottom, the trajectory snapshots correspond to 3 training environments, one per row.
The temporal resolution of each sequence is 𝛿𝑡 = 40.
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(a) ONE-PER-ENV.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure B.3: Full-length prediction comparison of Figure 5.2 for Navier-Stokes. In each
figure, from top to bottom, the trajectory snapshots correspond to 3 training environments.
The temporal resolution of each sequence is 𝛿𝑡 = 1.
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(a) Difference between ONE-PER-ENV. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure B.4: Full-length error maps of Figure 5.2 for Navier-Stokes. In each figure, from
top to bottom, the trajectory snapshots correspond to from 3 training environments. The
temporal resolution of each sequence is 𝛿𝑡 = 1.
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Table B.3: Detailed results of evaluation error in test on Lotka-Volterra systems for
Figure 5.4. For the case of 𝑚 = 1, all baselines except FT-RNN are equivalent to ONE-
PER-ENV.. The arrows indicate that the table cells share the same value.

Samples
per env. Method 𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 8

𝑛 = 1 · 𝐾 ONE-FOR-ALL 7.87±7.54E−3 0.22±0.06 0.33±0.06 0.47±0.04
ONE-PER-ENV. 7.87±7.54E−3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 4.02±3.17E−2 1.62±1.14E−2 1.62±1.40E−2 1.08±1.03E−2
FT-NODE 7.87±7.54E−3 7.63±5.84E−3 4.18±3.77E−3 4.92±4.19E−3
GBML-like 7.87±7.54E−3 6.32±5.72E−2 1.44±0.66E−1 9.85±8.84E−3
LEADS (Ours) 7.87±7.54E−3 3.65±2.99E−3 2.39±1.83E−3 1.37±1.14E−3

𝑛 = 2 · 𝐾 ONE-FOR-ALL 1.38±1.61E−3 0.22±0.04 0.36±0.07 0.60±0.11
ONE-PER-ENV. 1.38±1.61E−3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 7.20±7.12E−2 2.72±4.00E−2 1.69±1.57E−2 1.38±1.25E−2
FT-NODE 1.38±1.61E−3 9.02±8.81E−3 1.11±1.05E−3 1.00±0.95E−3
GBML-like 1.38±1.61E−3 9.26±8.27E−3 1.17±1.09E−2 1.96±1.95E−2
LEADS (Ours) 1.38±1.61E−3 8.65±9.61E−4 8.40±9.76E−4 6.02±6.12E−4

𝑛 = 4 · 𝐾 ONE-FOR-ALL 1.36±1.25E−4 0.19±0.02 0.31±0.04 0.50±0.04
ONE-PER-ENV. 1.36±1.25E−4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 8.69±8.36E−4 3.39±3.38E−4 3.02±1.50E−4 2.26±1.45E−4
FT-NODE 1.36±1.25E−4 1.74±1.65E−4 1.78±1.71E−4 1.39±1.20E−4
GBML-like 1.36±1.25E−4 2.57±7.18E−3 2.65±3.26E−3 2.36±3.58E−3
LEADS (Ours) 1.36±1.25E−4 1.10±0.92E−4 1.03±0.98E−4 9.66±9.79E−5

𝑛 = 8 · 𝐾 ONE-FOR-ALL 5.98±5.13E−5 0.16±0.03 0.35±0.06 0.52±0.06
ONE-PER-ENV. 5.98±5.13E−5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 2.09±1.73E−4 1.18±1.16E−4 1.13±1.13E−4 9.13±8.31E−5
FT-NODE 5.98±5.13E−5 6.91±4.46E−5 7.82±6.95E−5 6.88±6.39E−5
GBML-like 5.98±5.13E−5 1.02±1.68E−4 1.41±2.68E−4 0.99±1.53E−4
LEADS (Ours) 5.98±5.13E−5 5.47±4.63E−5 4.52±3.98E−5 3.94±3.49E−5

Table B.4: Test MSE of experiments on Lotka-Volterra (𝑚 = 4, 𝑛 = 1 · 𝐾) with different
empirical norms.

Empirical Norm 𝐿𝑞 𝑞 = 1 𝑞 = 2 𝑞 = 3 𝑞 = 10 𝑞 = ∞
Test MSE 2.30E−3 2.36E−3 2.34E−3 3.41E−3 6.12E−3



B.4. Additional Experimental Details 219

Table B.5: Results on 2 novel environments for Lotka-Volterra, Gray-Scott, and Navier-
Stokes at different training steps with 𝑛 data points per env. The arrows indicate that the
table cells share the same value.

Dataset Training Schema Test MSE at training step

50 2500 10000

Lotka-Volterra
(𝑛 = 1 · 𝐾)

PRE-TRAINED-𝑓 -ONLY 0.360 −−−−−−−−−−−−−−−−−→
ONE-PER-ENV. from scratch 0.230 8.85E−3 3.05E−3
PRE-TRAINED-𝑓 -PLUS-TRAINED-𝑔𝑒 0.730 1.36E−3 1.11E−3

Gray-Scott
(𝑛 = 1 · 𝐾)

PRE-TRAINED-𝑓 -ONLY 5.44E−3 −−−−−−−−−−−−−−−−−→
ONE-PER-ENV. from scratch 4.20E−2 5.53E−3 3.05E−3
PRE-TRAINED-𝑓 -PLUS-TRAINED-𝑔𝑒 2.29E−3 1.45E−3 1.27E−3

Navier-Stokes
(𝑛 = 8 · 𝐾)

PRE-TRAINED-𝑓 -ONLY 1.75E−1 −−−−−−−−−−−−−−−−−→
ONE-PER-ENV. from scratch 6.76E−2 1.70E−2 1.18E−2
PRE-TRAINED-𝑓 -PLUS-TRAINED-𝑔𝑒 1.37E−2 8.07E−3 7.14E−3
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C.1 Discussion
We discuss in more detail the originality and differences of CODA w.r.t. several multi-task
learning (MTL) and gradient-based meta learning (GBML) or contextual meta-learning
methods illustrated in Figure C.1. We consider CAVIA (Zintgraf et al., 2019), MAML
(Finn et al., 2017), ANIL (Raghu et al., 2020), hard-parameter sharingMTL (Caruana, 1998;
Ruder, 2017), LEADS (Yin et al., 2021a).
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C.1.1 Adaptation Rule
We compare the adaptation rule in Eq. (6.4) w.r.t. these work.

GBML Given 𝑘 gradient steps, Model-agnostic meta learning (MAML; Finn et al., 2017)
defines

𝜃𝑒 = 𝜃𝑐 + (−𝜂
𝑘∑
𝑖=0

∇𝜃L(𝜃𝑒𝑖 ,D𝑒)) (C.1)

where

{
𝜃𝑒𝑖+1 = 𝜃𝑒𝑖 − 𝜂∇𝜃L(𝜃𝑒𝑖 ,D𝑒) 𝑖 > 0

𝜃𝑒0 = 𝜃𝑐 𝑖 = 0

With 𝛿 𝜃𝑒 B −𝜂∑𝑘
𝑖=0 ∇𝜃L(𝜃𝑒𝑖 ,D𝑒), Eq. (6.4) thus includes MAML. ANIL and related GBML

methods (Lee et al., 2019; Bertinetto et al., 2019) restrict Eq. (C.1) to parameters of the final
layer while the remaining parameters are shared.

Figure C.1: Illustration of representative baselines for multi-environment learning.
Shared parameters are blue, environment-specific parameters are red. (a) CAVIA-Concat
acts upon the bias of the first layer with conditioning via concatenation. (b) MAML
acts upon all parameters without penalization nor prior structure information. (c) ANIL
restricts meta-learning to the final layer. (d) Hard-sharing MTL train the final layer from
scratch, while the remaining is a hard-shared. (e) LEADS sums the output of a common and
a environment-specific network. (f) CODA acts upon a subspace of the parameter space
with a locality constraint.
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MTL MTL models can be identified to Eq. (C.1). They fix 𝜃𝑐 = 0, removing the ability
to perform fast adaptation as parameters are retrained from scratch instead of being
initialized to 𝜃𝑐. Hard-parameter sharing MTL restricts the sum in Eq. (C.1) to the final
layer, as ANIL. LEADS sums the outputs of a shared and an environment-specific network,
thus splitting parameters into two independent blocks that do not share connections.

C.1.2 Decoding for Context-Informed Adaptation

We show that conditioning strategies in contextual meta-learning for decoding context
vectors 𝜉𝑒 into 𝛿 𝜃𝑒 are a special case of hypernetwork-decoding. The two main approaches
are conditioning via concatenation and conditioning via feature modulation a.k.a. FiLM
(Perez et al., 2018).

Conditioning via Concatenation

We show that conditioning via concatenation is equivalent to a linear hypernetwork 𝐴𝜙 :

𝜉𝑒 ↦→ 𝑊𝜉𝑒 + 𝜃𝑐 with 𝜙 = {𝜃𝑐,𝑊 } that only predicts the bias of the first layer of 𝑔𝜃 .

We assume that 𝑔𝜃 has 𝐿 layers and analyze the output of the first layer of 𝑔𝜃 , omitting the
nonlinearity, when the input 𝑢𝑡 ∈ ℝ𝑑 in an environment 𝑒 ∈ E is concatenated to a context
vector 𝜉𝑒 ∈ ℝ𝑑𝜉 . We denote 𝑢𝑡‖𝜉𝑒 the concatenated vector, 𝑑ℎ the number of hidden units
of the first layer,𝑊 (1) ∈ ℝ𝑑ℎ×(𝑑𝑥+𝑑𝜉 ) and 𝑏(1) ∈ ℝ𝑑ℎ the weight matrix and bias term of the
first layer,𝑊 (2) , · · · ,𝑊 (𝐿) and 𝑏(2) , · · · , 𝑏(𝐿) those of the following layers. The output of
the first layer is

𝑦 (1) = 𝑊 (1) (𝑢𝑡‖𝜉𝑒) + 𝑏(1) (C.2)

We split𝑊 (1) along rows into two weight matrices,𝑊 (1)𝑢 ∈ ℝ𝑑ℎ×𝑑 and𝑊 (1)
𝜉
∈ ℝ𝑑ℎ×𝑑𝜉 s.t.

𝑦 (1) = 𝑊 (1)𝑢 𝑢𝑡 +𝑊 (1)𝜉
𝜉𝑒 + 𝑏(1) (C.3)

𝑏(1)
𝜉
B 𝑊 (1)

𝜉
𝜉𝑒 + 𝑏(1) does not depend on 𝑥 and corresponds to an environment-specific

bias. Thus, concatenation is included in Eq. (6.4) when

𝜃𝑐 B {𝑊 (1)𝑥 , 𝑏(1) ,𝑊 (2) , 𝑏(2) , · · · ,𝑊 (𝐿) , 𝑏(𝐿)}
𝛿 𝜃𝑒 B { 0 , 𝑏(1)

𝜉
, 0 , 0 , · · · , 0 , 0}

(C.4)

where 𝛿 𝜃𝑒 is decoded via a hypernetwork with parameters {𝜃𝑐,𝑊 B (0,𝑊 (1)
𝜉
, 0, · · · , 0)}.
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Conditioning via Feature Modulation

We show that conditioning via FiLM is equivalent to a linear hypernetwork 𝐴𝜙 : 𝜉
𝑒 ↦→

𝑊𝜉𝑒 + 𝜃𝑐 with 𝜙 = {𝜃𝑐,𝑊 } that only predicts the batch norm (BN) statistics of 𝑔𝜃 .

For simplicity, we focus on a single BN layer and denote {ℎ𝑖}𝑀𝑖=1, 𝑀 feature maps output
by preceding convolutional layers. These feature maps are first normalized then rescaled
with an affine transformation. Rescaling is similar to a FiLM layer that transforms linearly
{ℎ𝑖}𝑀𝑖=1 with:

∀𝑖 ∈ {1, · · · , 𝑀}, FiLM(ℎ𝑖) = 𝛾𝑖 � ℎ𝑖 + 𝛽 (C.5)

where 𝛾, 𝛽 ∈ ℝ𝑀 are output by a NN 𝑓𝜓 conditioned on the context vectors 𝜉𝑒 i.e. [𝛾, 𝛽] =
𝑓𝜓 (𝜉𝑒). In general, 𝑓𝜓 is linear s.t. 𝑓𝜓 (𝜉𝑒) B 𝑊𝜉𝜉

𝑒 + 𝑏𝜉 , with 𝜓 = {𝑊𝜉 , 𝑏𝜉}. Then 𝛾 =

𝑊
𝛾
𝜉
𝜉𝑒 + 𝑏𝛾

𝜉
, 𝛽 = 𝑊 𝛽

𝜉
𝜉𝑒 + 𝑏𝛽

𝜉
.

Thus, for this layer, modulation is included in Eq. (6.4) when

𝛿 𝜃𝑒 B 𝑊𝜉𝑒 = {𝑊 𝛾
𝜉
𝜉𝑒,𝑊

𝛽
𝜉
𝜉𝑒}

𝜃𝑐 B 𝑏𝜉 = {𝑏𝛾𝜉 , 𝑏
𝛽
𝜉
}

where 𝛿 𝜃𝑒 is decoded via hypernetwork 𝑓𝜓 B 𝐴𝜙 with parameters 𝜙 = {𝜃𝑐 B 𝑏𝜉 ,𝑊 B
𝑊𝜉}.

C.2 Proofs
Proposition 6.1. Given {𝜃𝑐,𝑊 } fixed, if ‖ · ‖ = ℓ2, then Eq. (6.9) is quadratic. If 𝜆′𝑊>𝑊
or 𝐻̄𝑒(𝜃𝑐) = 𝑊>∇2

𝜃
L(𝜃𝑐,D𝑒)𝑊 are invertible then 𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊 is invertible except

for a finite number of 𝜆′ values. The problem in Eq. (6.9) is then also convex and admits
an unique solution, {𝜉𝑒★}𝑒∈Ead . With 𝜆′ B 2𝜆,

𝜉𝑒∗ = −
(
𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊

)−1
𝑊>∇𝜃L(𝜃𝑐,D𝑒) (6.10)

Proof. When ‖ · ‖ = ℓ2, we consider the following second order Taylor expansion of
Lr(𝜃,D𝑒) B L(𝜃,D𝑒) + 𝜆‖𝜃 − 𝜃𝑐‖22 at 𝜃𝑐, where 𝛿 𝜃𝑒 = 𝜃 − 𝜃𝑐 = 𝑊𝜉𝑒.

Lr(𝜃𝑐 + 𝛿 𝜃𝑒,D𝑒) = L(𝜃𝑐,D𝑒)+

∇𝜃L(𝜃𝑐,D𝑒)>𝛿 𝜃𝑒 + 1

2
𝛿 𝜃𝑒>

(
∇2𝜃L(𝜃

𝑐,D𝑒) + 2𝜆Id
)
𝛿 𝜃𝑒 + 𝑜(‖𝛿 𝜃𝑒‖32) (C.6)

With 𝛿 𝜃𝑒 = 𝑊𝜉𝑒, we expand Eq. (C.6) into
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Lr(𝜃𝑐 +𝑊𝜉𝑒,D𝑒) = L(𝜃𝑐,D𝑒)+

(𝑊>∇𝜃L(𝜃𝑐,D𝑒))>𝜉𝑒 + 1

2
𝜉𝑒>(𝑊>∇2𝜃L(𝜃

𝑐,D𝑒)𝑊 + 2𝜆𝑊>𝑊 )𝜉𝑒 + 𝑜(‖𝛿 𝜃𝑒‖32) (C.7)

i.e. with 𝐻̄𝑒(𝜃𝑐) = 𝑊>∇2
𝜃
L(𝜃𝑐,D𝑒)𝑊 and 𝜆′ = 2𝜆

Lr(𝜃𝑐 +𝑊𝜉𝑒,D𝑒) = L(𝜃𝑐,D𝑒)+

(𝑊>∇𝜃L(𝜃𝑐,D𝑒))>𝜉𝑒 + 1

2
𝜉𝑒>

(
𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊

)
𝜉𝑒 + 𝑜(‖𝛿 𝜃𝑒‖32) (C.8)

Eq. (C.8) is quadratic. If 𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊 is invertible, then the problem is also convex
with a unique solution

𝜉𝑒∗ = −
(
𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊

)−1
𝑊>∇𝜃L(𝜃𝑐,D𝑒) (C.9)

𝐻̄𝑒(𝜃𝑐) and 𝜆′𝑊>𝑊 are two square matrices. The application 𝑝 : 𝜆′ ↦→ det(𝐻̄𝑒(𝜃𝑐) +
𝜆′𝑊>𝑊 ) is well-defined and forms a continuous polynomial. Thus either it equals zero
or it has a finite number of roots. If 𝐻̄𝑒(𝜃𝑐) or 𝜆′𝑊>𝑊 is invertible, then 𝑝(0) =
det(𝐻̄𝑒(𝜃𝑐)) ≠ 0 or 𝑝(∞) ∼ det(𝜆′𝑊>𝑊 ) ≠ 0. Thus 𝑝 ≠ 0 has a finite number of roots,
i.e., 𝐻̄𝑒(𝜃𝑐) + 𝜆′𝑊>𝑊 is invertible ∀𝜆′ except for a finite number of values corresponding
to the roots of 𝑝. □

Proposition 6.2 (Low-rank under linearity). Given a class of linearly parametrized
dynamics F with 𝑑P varying parameters, ∀𝜃𝑐 ∈ ℝ𝑑𝜃 , subspace G𝜃𝑐 in Definition 6.1 is
low-dimensional and dim(G𝜃𝑐) ≤ 𝑑P � 𝑑𝜃 .

Proof. We define the linear mapping 𝜓 : 𝜃P ∈ ℝ𝑑P → 𝑓 ∈ F from parameters to dynamics
s.t.𝜓 (ℝ𝑑P) = F . Given this linearmapping, wefirst prove the following lemma: dim(F) ≤
𝑑P. The proof is based on the surjectivity of𝜓 ontoF , given by definition. Wedefine {𝑏𝑖}𝑑P𝑖=1
a basis ofℝ𝑑P . Given 𝑓 ∈ F ,∃𝜃P ∈ ℝ𝑑P , 𝜓 (𝜃P) = 𝑓 . We note 𝜃P =

∑𝑑P
𝑖=1 𝜆𝑖𝑏𝑖 where∀𝑖, 𝜆𝑖 ∈ ℝ.

Then 𝜓 (𝜃P) =
∑𝑑P
𝑖=1 𝜆𝑖𝜓 (𝑏𝑖). We extract a basis from {𝜓 (𝑏𝑖)}𝑑P𝑖=1 and denote 𝑑𝑓 ≤ 𝑑P the

number of elements in this basis. This basis forms a basis ofF , i.e., 𝑑𝑓 = dim(F) ≤ 𝑑P.

Now, given 𝜃 ∈ ℝ𝑑𝜃 and 𝑓 𝑒 ∈ F . We precise that given a (probability) measure 𝜌U on
U ⊂ ℝ𝑑 , the function spaceF ⊂ 𝐿2(𝜌𝑥 ,ℝ𝑑), then

L(𝜃,D𝑒) B
∫
X
‖(𝑓 𝑒 − 𝑔𝜃)(𝑢𝑡)‖22d𝜌U (𝑢𝑡) = ‖𝑓 𝑒 − 𝑔𝜃 ‖22 (C.10)
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The gradient of L(𝜃,D𝑒) is then

∇𝜃L(𝜃𝑐,D𝑒) = ∇𝜃
∫
U
‖𝑓 𝑒(𝑢𝑡) − 𝑔𝜃𝑐 (𝑢𝑡)‖22d𝜌U (𝑢𝑡)

(By definition of the derivative loss function)

=
∫
U
∇𝜃 ‖𝑓 𝑒(𝑢𝑡) − 𝑔𝜃𝑐 (𝑢𝑡)‖22d𝜌U (𝑢𝑡) (Linearity of the gradient operator)

= −2
∫
U
J𝜃 𝑔𝜃𝑐 (𝑢𝑡)>(𝑓 𝑒(𝑢𝑡) − 𝑔𝜃𝑐 (𝑢𝑡))d𝜌U (𝑢𝑡) (Chain rule)

= −2𝐷𝜃 𝑔
>
𝜃𝑐 (𝑓

𝑒 − 𝑔𝜃𝑐) (Rewritten)

where J𝜃 𝑔𝜃 (𝑢) is the Jacobian matrix of 𝑔𝜃𝑐 w.r.t. 𝜃 at point 𝑢. 𝜃 ↦→ 𝐷𝜃 𝑔𝜃𝑐 is the differential
of 𝑔𝜃 . Note that 𝐷𝜃 𝑔𝜃𝑐 : ℝ

𝑑𝜃 → F is a linear map (analog of the Jacobian matrix). 𝐷𝜃 𝑔
>
𝜃𝑐
:

F★ → ℝ𝑑𝜃 denotes its adjoint (analog of the transposedmatrix), which is also a linearmap.

As G𝜃𝑐 ⊆ Im(𝐷𝜃 𝑔
>
𝜃
), then according to Rank-nullity theorem,

dim(G𝜃𝑐) ≤ dim(Im(𝐷𝜃 𝑔
>
𝜃𝑐)) = dim(F) − dim(Ker(𝐷𝜃 𝑔

>
𝜃𝑐)) ≤ dim(F) ≤ 𝑑P. (C.11)

□

C.3 System Parameter Estimation
Proposition 6.3 (Identification under linearity). Under Assumptions 6.1 to 6.5, system
parameters are perfectly identified on new environments if the dynamics model 𝑔 and
hypernetwork 𝐴 satisfy ∀𝑓 ∈ B with system parameter 𝜃P, 𝑔𝐴(𝜃P) = 𝑓 .

Proof. We define the linear mapping 𝜓 : 𝜃P ∈ ℝ𝑑P → 𝑓 ∈ F from parameters to dynamics
s.t. 𝜓 (ℝ𝑑P) = F (Assumption 6.1). Unicity of parameters (Assumption 6.3) implies that 𝜓
is bijective with inverse 𝜓−1, thus dim(F) = dim(ℝ𝑑P) = 𝑑P. Given a basis B = {𝑓𝑖}𝑑P𝑖=1
of F , we denote 𝜃P,𝑖 = 𝜓−1(𝑓𝑖). We fix 𝑔, 𝐴 s.t. ∀𝑖 ∈ {1, ..., 𝑑P}, 𝑔𝐴(𝑝𝑖) = 𝑓𝑖 = 𝜓 (𝜃P,𝑖). This
is possible as 𝑓𝑖 and 𝑔 are linear w.r.t. inputs (Assumptions 6.1 and 6.2) and 𝜃P,𝑖 are known
(Assumption 6.5).

𝑔 and 𝐴 are both linear (Assumption 6.2), thus 𝑔𝐴(·) is linear with inputs in ℝ𝑑𝜉 . Then,
dim(Im(𝑔𝐴(·))) ≤ 𝑑𝜉 . Moreover, ∀𝑖 ∈ {1, · · · , 𝑑P}, 𝑓𝑖 ∈ Im(𝑔𝐴(·)), thus F ⊂ Im(𝑔𝐴(·)) i.e.
𝑑P ≤ dim(Im(𝑔𝐴(·))). Thus, 𝑑P ≤ dim(Im(𝑔𝐴(·))) ≤ 𝑑𝜉 . Assumption 6.4 states that 𝑑𝜉 = 𝑑P,
s.t. dim(Im(𝑔𝐴(·))) = 𝑑P. AsF ⊂ Im(𝑔𝐴(·)) and dim(F) = dim(Im(𝑔𝐴(·))),F = Im(𝑔𝐴(·))
i.e. 𝑔𝐴(·) is surjective onto F . As dim(F) = 𝑑𝜉 , the dimension of the input space, 𝑔𝐴(·) is
bijective.
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By bijectivity of𝜓, {𝜃P,𝑖}𝑑P𝑖=1 forms a basis ofℝ𝑑P . 𝑔𝐴(·) and𝜓map this basis to the same basis
{𝑓𝑖}𝑑P𝑖=1 ofF . As both mappings are bijective, this implies that 𝑔𝐴(·) = 𝜓 (·). This means that
∀𝑒 ∈ E , 𝑔𝐴−1(𝑓 𝑒) = 𝜓−1(𝑓 𝑒) i.e. system parameters 𝑝𝑒 are recovered. □

Proposition 6.4 (Local identification under nonlinearity). For linearly parametrized
systems, nonlinear w.r.t. inputs and nonlinear dynamics model 𝑔𝜃 with parameters output
by a linear hypernetwork 𝐴, ∃𝛼 > 0 s.t. system parameters are perfectly identified ∀𝑒 ∈ E
where ‖𝜉𝑒‖ ≤ 𝛼 if ∀𝑓 ∈ B with parameter 𝜃P, 𝑔𝐴(𝛼 𝜃P

‖ 𝜃P ‖ )
= 𝑓 .

Proof. On environment 𝑒 ∈ E , 𝑔𝜃𝑒 is differentiable w.r.t. 𝜃𝑒 = 𝐴(𝜉𝑒) = 𝜃𝑐 +𝑊𝜉𝑒 ∈ ℝ𝑑𝜃 . We
perform a first order Taylor expansion of 𝑔𝐴(·) around 0. We note 𝛼 > 0, s.t.∀𝜉𝑒 ∈ ℝ𝑑𝜉 that
satisfy ‖𝜉𝑒‖ < 𝛼, we have 𝑔𝜃𝑒 = 𝑔𝜃𝑐 + ∇𝜃 𝑔𝜃𝑐𝑊𝜉𝑒. 𝑔𝐴(·) is then linear in the neighborhood
of 0 defined by 𝛼. ∀𝑖 ∈ È1, 𝑑PÉ, 𝛼 𝜃P,𝑖

‖𝜃P,𝑖‖ belongs to this neighborhood s.t. the proof of
Proposition 6.3 applies to this neighborhood if ∀𝑖 ∈ È1, 𝑑PÉ, 𝑔𝐴(𝛼 𝜃P,𝑖

‖ 𝜃P,𝑖 ‖
) = 𝑓𝑖, where

B = {𝑓𝑖}𝑑P𝑖=1 is a basis ofF . □

We now show the validity of the unicity condition (Assumption 6.3) for two linearly
parametrized systems.

Lemma C.1. There is a unique set of parameters in ℝ4 for a Lotka-Volterra (Lotka-
Volterra) system.

Proof. With 𝜓 : 𝑐 B (𝛼, 𝛽, 𝛿 , 𝛾) ↦→
[(

𝑥𝑡
𝑦𝑡

)
↦→

(
𝛼𝑥𝑡 − 𝛽𝑥𝑡 𝑦𝑡
𝛿𝑥𝑡 𝑦𝑡 − 𝛾 𝑦𝑡

)]
a surjective linear

mapping from ℝ4 to F (all Lotka-Volterra systems are parametrized). Injectivity of 𝜓 i.e.
𝜓 (𝑐1) = 𝜓 (𝑐2) ⇐⇒ 𝑐1 = 𝑐2 will imply bijectivity i.e. unicity of parameters for a Lotka-
Volterra system. As 𝜓 is linear, injectivity is equivalent to 𝜓 (𝑐) = 0 ⇐⇒ 𝑐 = 0, shown
below:

𝜓 (𝑐) = 0 ⇐⇒ ∀
( 𝑥𝑡
𝑦𝑡

)
,
( 𝑥𝑡 (𝛼 − 𝛽 𝑦𝑡)
(𝛿𝑥𝑡 − 𝛾) 𝑦𝑡

)
=

(
0

0

)
⇐⇒ ∀

( 𝑥𝑡
𝑦𝑡

)
,
( 𝛼 − 𝛽 𝑦𝑡
𝛿𝑥𝑡 − 𝛾

)
=

(
0

0

)
⇐⇒ 𝑐 = (𝛼, 𝛽, 𝛿 , 𝛾) = (0, 0, 0, 0)

□

Lemma C.2. There is a unique set of parameters in ℝ𝑑+1, where 𝑑 is the grid size, for a
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Navier-Stokes (Navier-Stokes) system.

Proof. With 𝜓 : 𝑐 B (𝜈, 𝑓 ) ↦→
[
𝑤 ↦→ −𝑣∇𝑤 + 𝜈Δ𝑤 + ℎ

]
, a surjective linear mapping

fromℝ𝑑+1 toF (allNavier-Stokes systems are parametrized), bijectivity of 𝜓 is induced by
injectivity i.e. 𝜓 (𝑐1) = 𝜓 (𝑐2) ⇐⇒ 𝑐1 = 𝑐2, shown below:

𝜓 (𝑐1) = 𝜓 (𝑐2)
⇐⇒ ∀𝑤,−𝑣∇𝑤 + 𝜈1Δ𝑤 + ℎ1 = −𝑣∇𝑤 + 𝜈2Δ𝑤 + ℎ2
⇐⇒ ∀𝑤, (𝜈1 − 𝜈2)Δ𝑤 = −(ℎ1 − ℎ2)
⇐⇒ (𝜈1, 𝑓1) = (𝜈2, 𝑓2) ⇐⇒ 𝑐1 = 𝑐2

□

C.4 Low-Rank Assumption
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(a)Glycolitic-Oscillator: 𝑘1 and 𝐾1 vary across E .
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(b) Sinusoidal.

FigureC.2: Ranked singular values of the gradients across environmentsEtr,G𝜃𝑐 forCODA-
ℓ1.

When the systems are nonlinearly parametrized, we show empirically with Figure C.2 that
the low-rank assumption is still reasonable for two different systems.

Glycolitic-Oscillator We first consider the Glycolitic oscillator system described in
AppendixC.6.1, which is nonlinearw.r.t. 𝐾1. We vary parameters 𝑘1, 𝐾1 in Eq. (C.13) across
environments. We observe in Figure C.2a that there are three main gradient directions
with SVD. The first is the most significant one while the second and third ones are orders
of magnitude smaller.
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Sinusoidal We consider a sinusoidal family of functions 𝑆(𝑁) = {𝑓 : ℝ → ℝ | 𝑓 (𝑥) =∑𝑁
𝑖=1 𝜆𝑖 sin(𝜔𝑖𝑥 + 𝜙𝑖)}. We sample 20 environments, each corresponding to different

amplitudes 𝜆𝑖 ∼ Unif( [0, 1]), frequencies𝜔𝑖 ∼ Unif( [0, 10]) and phases 𝜙𝑖 ∼ Unif([0, 𝜋]).
We depict in Figure C.2b the evaluation of the singular values at initialization. Figure C.2b
shows that the number of directions to consider for convergence is small and that a
single direction accounts for a significant amount of the variance in the gradients. This
corroborates the low-rank assumption.

C.5 Locality Constraint
We derive the upper bounds to ‖ · ‖ for two variations.

‖ · ‖ = ℓ2: we apply triangle inequality to obtainR𝑊 = ℓ22

‖𝑊𝜉𝑒‖22 ≤ ‖𝑊 ‖22 · ‖𝜉𝑒‖22

‖ · ‖ = ℓ1: we apply Cauchy-Schwartz inequality to obtain R𝑊 (𝑊 ) = ℓ1,2(𝑊 ) =∑𝑑𝜃
𝑖=1 ‖𝑊𝑖,:‖2

‖𝑊𝜉𝑒‖1 =
𝑑𝜃∑
𝑖=1

|𝑊𝑖,:𝜉
𝑒 | ≤ ‖𝜉𝑒‖2

𝑑𝜃∑
𝑖=1

‖𝑊𝑖,:‖2

Eq. (6.12) minimizes the log of the above upper-bounds.

C.6 Experimental Settings
We present in Appendix C.6.1 the equations and the data generation specificities for all
considered dynamical systems.

C.6.1 Dynamical Systems
Lotka-Volterra (Lotka, 1925) The system describes the interaction between a prey-
predator pair in an ecosystem, formalized into the following ODE:

d𝑥

d𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦

d𝑦

d𝑡
= 𝛿𝑥𝑦 − 𝛾 𝑦

(C.12)

where 𝑥, 𝑦 are respectively the quantity of the prey and the predator, 𝛼, 𝛽, 𝛿 , 𝛾 define how
two species interact.
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We generate trajectories on a temporal grid with 𝛿𝑡 = 0.5 and temporal horizon 𝑇 =
10. We sample on each training environment 𝑁tr = 4 initial conditions for training
from a uniform distribution 𝜌0(U ) = Unif([1, 3]2). We sample for evaluation 32 initial
conditions from 𝜌0(U ). Across environments, 𝛼 = 0.5, 𝛾 = 0.5. For training, we consider
#Etr = 9 environments with parameters 𝛽, 𝛿 ∈ {0.5, 0.75, 1.0}2. For adaptation, we
consider #Ead = 4 environments with parameters 𝛽, 𝛿 ∈ {0.625, 1.125}2.

Glycolytic-Oscillator (Daniels andNemenman, 2015) Glycolitic-Oscillator describes
yeast glycolysis dynamics with the ODE:

d𝑆1
d𝑡

= 𝐽0 −
𝑘1𝑆1𝑆6

1 + (1/𝐾𝑞
1
)𝑆𝑞

6

d𝑆2
d𝑡

= 2
𝑘1𝑆1𝑆6

1 + (1/𝐾𝑞
1
)𝑆𝑞

6

− 𝑘2𝑆2(𝑁 − 𝑆5) − 𝑘6𝑆2𝑆5

d𝑆3
d𝑡

= 𝑘2𝑆2(𝑁 − 𝑆5) − 𝑘3𝑆3(𝐴 − 𝑆6)
d𝑆4
d𝑡

= 𝑘3𝑆3(𝐴 − 𝑆6) − 𝑘4𝑆4𝑆5 − 𝜅(𝑆4 − 𝑆7)
d𝑆5
d𝑡

= 𝑘2𝑆2(𝑁 − 𝑆5) − 𝑘4𝑆4𝑆5 − 𝑘6𝑆2𝑆5
d𝑆6
d𝑡

= −2 𝑘1𝑆1𝑆6

1 + (1/𝐾𝑞
1
)𝑆𝑞

6

+ 2𝑘3𝑆3(𝐴 − 𝑆6) − 𝑘5𝑆6

d𝑆7
d𝑡

= 𝜓𝜅(𝑆4 − 𝑆7) − 𝑘𝑆7

(C.13)

where 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7 represent the concentrations of 7 biochemical species. We
generate trajectories on a temporal grid with 𝛿𝑡 = 0.05 and temporal horizon 𝑇 = 1.
We sample on each training environment 𝑁tr = 32 initial conditions for training from a
uniform distribution 𝑝0(U ) defined in Table 2 in (Daniels and Nemenman, 2015). Across
environments, 𝐽0 = 2.5, 𝑘2 = 6, 𝑘3 = 16, 𝑘4 = 100, 𝑘5 = 1.28, 𝑘6 = 12, 𝑞 = 4, 𝑁 =
1, 𝐴 = 4, 𝜅 = 13, 𝜓 = 0.1, 𝑘 = 1.8. For training, we consider #Etr = 9 environments with
parameters 𝑘1 ∈ {100, 90, 80}, 𝐾1 ∈ {1, 0.75, 0.5}. For adaptation, we consider #Ead = 4

environments with parameters 𝑘1 ∈ {85, 95}, 𝐾1 ∈ {0.625, 0.875}.

Gray-Scott (Pearson, 1993) The PDE descibes a reaction-diffusion system with com-
plex spatiotemporal patterns through the following 2D PDE:

𝜕𝑣

𝜕𝑡
= 𝐷𝑣Δ𝑣 − 𝑣𝑤2 + 𝐹 (1 − 𝑣)

𝜕𝑤

𝜕𝑡
= 𝐷𝑤Δ𝑤 + 𝑣𝑤2 − (𝐹𝑟 + 𝑘𝑟)𝑤

(C.14)
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where 𝑣, 𝑤 represent the concentrations of two chemical components in the spatial domain
Ωwith periodic boundary conditions. 𝐷𝑣, 𝐷𝑤 denote the diffusion coefficients respectively
for 𝑣, 𝑤 and 𝐹𝑟 , 𝑘𝑟 are the reaction parameters.

We generate trajectories on a temporal grid with 𝛿𝑡 = 40 and temporal horizon 𝑇 = 400.
Ω is a 2D space discretized on a regular grid of dimension 32 × 32 with spatial resolution
of 𝛿𝑥𝑖 = 2. We define initial conditions (𝑣0, 𝑤0) ∼ 𝜌0(U ) by uniformly sampling three
two-by-two squares in Ω. These squares trigger the reactions. (𝑣0, 𝑤0) = (1 − 𝜖, 𝜖) with
𝜖 = 0.05 inside the squares and (𝑣0, 𝑤0) = (0, 1) outside the squares. We sample on each
training environment 𝑁tr = 1 initial conditions for training. Across environments, 𝐷𝑣 =
0.2097, 𝐷𝑤 = 0.105. For training, we consider #Etr = 4 environments with parameters
𝐹𝑟 ∈ {0.30, 0.39}, 𝑘𝑟 ∈ {0.058, 0.062}. For adaptation, we consider #Ead = 4 environments
with parameters 𝐹𝑟 ∈ {0.33, 0.36}, 𝑘𝑟 ∈ {0.59, 0.61}.

Navier-Stokes (Stokes, 1851) Navier-Stokes describes the dynamics of incompressible
flows with the 2D PDE:

𝜕𝑤

𝜕𝑡
= −𝑣∇𝑤 + 𝜈Δ𝑤 + 𝑓 fc. where 𝑤 = ∇ × 𝑣

∇𝑣 = 0

(C.15)

where 𝑣 is the velocity field, 𝑤 = ∇ × 𝑣 is the vorticity. Both 𝑣, 𝑤 lie in a spatial domain
Ω with periodic boundary conditions, 𝜈 is the viscosity and 𝑓 is the constant forcing term
in the domain Ω. We generate trajectories on a temporal grid with 𝛿𝑡 = 1 and temporal
horizon 𝑇 = 10. Ω is a 2D space of dimension 32 × 32 with spatial resolution of 𝛿𝑥 = 1.
We sample on each training environment 𝑁tr = 16 initial conditions for training from
𝜌0(U ) as in Li et al. (2021b). Across environments, 𝑓 fc.(𝑥1, 𝑥2) = 0.1(sin(2𝜋 (𝑥1 + 𝑥2)) +
cos(2𝜋 (𝑥1 + 𝑥2))). For training, we consider #Etr = 5 environments with parameters
𝜈 ∈ {8×10−4, 9×10−4, 1×10−3, 1.1×10−3, 1.2×10−3}. For adaptation, we consider #Ead = 4

environments with parameters 𝜈 ∈ {8.5×10−4, 9.5×10−4, 1.05×10−3, 1.15×10−3}.

C.6.2 Implementation and Hyperparameters
Architecture We implement the dynamics model 𝑔𝜃 with the following architectures:

• Lotka-Volterra,Glycolitic-Oscillator: 4-layer MLPs with hidden layers of width 64.

• Gray-Scott: 4-layer ConvNets with 64-channel hidden layers, and 3×3 convolution
kernels

• Navier-Stokes: FNOs with 4 spectral convolution layers. 12 frequency modes and
hidden layers with width 10.
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We apply Swish activation (Ramachandran et al., 2017). The hypernet 𝐴 is a single affine
layer NN.

Optimizer We use the Adam optimizer (Kingma and Ba, 2015) with learning rate 10−3

and (𝛽1, 𝛽2) = (0.9, 0.999). We apply early stopping. All experiments are performed
with a single NVIDIA Titan Xp GPU on an internal cluster. We distribute training by
batching together predictions across trajectories to reduce running time. States across
batch elements are concatenated.

Hyperparameters We define the hyperparameters for the following models: (a) CODA:
• Lotka-Volterra: 𝜆𝜉 = 10−4, 𝜆ℓ1 = 10−6, 𝜆ℓ2 = 10−5 • Glycolitic-Oscillator: 𝜆𝜉 = 10−3,
𝜆ℓ1 = 10−7, 𝜆ℓ2 = 10−7 • Gray-Scott: 𝜆𝜉 = 10−2, 𝜆ℓ1 = 10−5, 𝜆ℓ2 = 10−5 • Navier-Stokes:
𝜆𝜉 = 110−3, 𝜆ℓ1 = 2×10−3, 𝜆ℓ2 = 2×10−3 (b) LEADS: we use the same parameters as Yin
et al. (2021a). (c) GBML: the outer-loop learning rate is 10−3, we apply a 1-step inner-loop
update for training and adaptation tomaintain low running times. The inner-loop learning
rate for each system is: •Lotka-Volterra: 10−1 •Glycolitic-Oscillator: 10−2 •Gray-Scott: 10−3

•Navier-Stokes: 10−3. These values are also used to initialize the per-parameter inner-loop
learning rate in Meta-SGD.

C.7 Trajectory Prediction Visualization
Wevisualize in FiguresC.3 andC.4 the predictionMSEbyMAML, LEADS,CAVIA-Concat
and CODA-ℓ1 along ground truth trajectories on the PDE systemsNavier-Stokes andGray-
Scott. We consider a new test trajectory on an Adaptation environment 𝑒 ∈ Ead with
parameters defined in the caption.
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Figure C.3: Adaptation to new Gray-Scott system - (𝐹𝑟 , 𝑘𝑟 , 𝐷𝑣, 𝐷𝑤) =
(0.033, 0.061, 0.2097, 0.105). Ground-truth trajectory and prediction MSE per frame for
MAML, LEADS, CAVIA-Concat and CoDA.
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Figure C.4: Adaptation to new Navier-Stokes system - 𝜈 = 1.15×10−3. Ground-truth
trajectory and prediction MSE per frame for MAML, LEADS, CAVIA-Concat, and CoDA.
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D.1 Full Results
We provide in Table D.1 a more detailed version of Table 7.3 for the space-time extrapo-
lation problem where we report the performance In-s (on the observation grid) andOut-s
(outside). We add 𝑠 = 50%.

Then, we report in Table D.2, a more detailed version of Table 7.4a, which includes the
results of Xts = Xtr. This corresponds to our generalization across grids problem.
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Table D.1: Space and time generalization. The train and test observation grids are equal; they are subsampledwith a ratio 𝑠 from
a uniform 64×64 grid fixed here to be the inference grid X ′. We report MSE (↓) on X ′ (on the observation grid In-s, outside
Out-s or on both Full) and the inference time interval T ′, divided within training horizon (In-t, T ) and beyond (Out-t, outside
T ) across subsampling ratios 𝑠 ∈ {5%, 25%, 50%, 100%}. Best in bold and second best underlined.

Model
Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

𝑠 = 5% subsampling

In-s I-MP-PDE 3.525E−5 1.295E−3 4.554E−4 1.414E−3 1.824E−6 8.672E−5 1.113E−5 1.987E−4
DeepONet 4.778E−4 4.517E−3 1.060E−2 1.059E−2 2.546E−4 8.831E−3 1.501E−2 3.196E−2
SIREN 5.966E−3 1.769E−1 4.082E−2 2.150E−1 1.690E−3 1.707E−2 2.951E−2 6.955E−2
DINO 1.016E−4 6.945E−4 3.623E−4 8.306E−4 2.250E−6 5.283E−6 7.530E−6 2.146E−5

Out-s I-MP-PDE 8.550E−3 8.515E−3 8.306E−3 8.571E−3 7.412E−4 7.414E−4 1.195E−3 1.163E−3
DeepONet 3.475E−3 7.515E−3 1.361E−2 1.426E−2 8.624E−4 9.318E−3 1.702E−2 3.259E−2
SIREN 8.882E−3 1.767E−1 4.314E−2 2.124E−1 2.791E−3 1.823E−2 3.359E−2 6.965E−2
DINO 1.076E−3 1.704E−3 1.375E−3 1.863E−3 4.285E−5 4.304E−5 6.703E−5 7.659E−5

Full I-MP-PDE 8.154E−3 8.166E−3 7.926E−3 8.225E−3 7.055E−4 7.097E−4 1.138E−3 1.116E−3
DeepONet 3.330E−3 7.370E−3 1.346E−2 1.408E−2 8.331E−4 9.295E−3 1.692E−2 3.256E−2
SIREN 8.741E−3 1.767E−1 4.303E−2 2.126E−1 2.738E−3 1.818E−2 3.339E−2 6.964E−2
DINO 1.029E−3 1.655E−3 1.326E−3 1.813E−3 4.088E−5 4.121E−5 6.415E−5 7.392E−5

𝑠 = 25% subsampling
(Continued on next page→)
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Table D.1: (Continued)

Model
Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

In-s I-MP-PDE 1.447E−4 5.677E−4 1.763E−4 6.147E−4 6.754E−7 8.251E−5 9.253E−7 1.227E−4
DeepONet 7.500E−4 5.779E−3 9.227E−3 1.300E−2 5.196E−4 1.058E−2 1.743E−2 3.246E−2
SIREN 4.786E−3 2.178E−1 2.461E−1 3.884E−1 8.478E−4 1.282E−2 1.733E−2 5.104E−2
DINO 8.295E−5 4.273E−4 2.444E−4 5.735E−4 3.194E−6 3.747E−6 8.907E−6 1.029E−5

Out-s I-MP-PDE 3.678E−4 7.748E−4 4.026E−4 8.143E−4 4.330E−5 1.200E−4 6.764E−5 1.648E−4
DeepONet 9.503E−4 5.987E−3 9.423E−3 1.337E−2 5.891E−4 1.062E−2 1.762E−2 3.213E−2
SIREN 5.305E−3 2.173E−1 2.428E−1 3.853E−1 9.159E−4 1.295E−2 1.798E−2 5.156E−2
DINO 1.081E−4 4.578E−4 2.711E−4 6.021E−4 4.192E−6 4.657E−6 1.153E−5 1.220E−5

Full I-MP-PDE 3.135E−4 7.245E−4 3.476E−4 7.658E−4 3.293E−5 1.108E−4 5.142E−5 1.545E−4
DeepONet 9.016E−4 5.936E−3 9.376E−3 1.328E−2 5.722E−4 1.061E−2 1.757E−2 3.221E−2
SIREN 5.180E−3 2.175E−1 2.436E−1 3.861E−1 8.995E−4 1.292E−2 1.783E−2 5.143E−2
DINO 1.020E−4 4.504E−4 2.646E−4 5.951E−4 3.949E−6 4.436E−6 1.089E−5 1.174E−5

𝑠 = 50% subsampling

In-s I-MP-PDE 1.153E−4 5.016E−4 1.594E−4 6.043E−4 2.200E−7 3.179E−5 8.843E−7 5.854E−5
DeepONet 6.214E−4 4.277E−3 5.699E−3 1.082E−2 7.581E−4 1.187E−2 1.649E−2 3.378E−2
SIREN 4.911E−3 6.815E−1 1.607E−1 6.889E−1 5.134E−4 1.481E−2 3.086E−2 8.196E−2
DINO 8.151E−5 2.920E−4 2.004E−4 4.283E−4 3.277E−6 3.659E−6 8.978E−6 9.572E−6

Out-s I-MP-PDE 1.186E−4 5.010E−4 1.626E−4 6.132E−4 9.638E−7 3.153E−5 2.367E−6 5.574E−5
DeepONet 6.851E−4 4.343E−3 5.740E−3 1.099E−2 7.842E−4 1.185E−2 1.679E−2 3.391E−2
SIREN 5.067E−3 6.867E−1 1.599E−1 6.845E−1 5.354E−4 1.492E−2 3.113E−2 8.333E−2

(Continued on next page→)
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Table D.1: (Continued)

Model
Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DINO 9.175E−5 3.041E−4 2.116E−4 4.409E−4 3.277E−6 3.659E−6 8.978E−6 9.572E−6
Full I-MP-PDE 1.170E−4 5.013E−4 1.611E−4 6.088E−4 6.021E−7 3.166E−5 1.646E−6 5.710E−5

DeepONet 6.541E−4 4.311E−3 5.720E−3 1.091E−2 7.715E−4 1.186E−2 1.665E−2 3.385E−2
SIREN 4.995E−3 6.841E−1 1.603E−1 6.867E−1 5.246E−4 1.486E−2 3.100E−2 8.265E−2
DINO 8.677E−5 2.982E−4 2.062E−4 4.348E−4 3.380E−6 3.751E−6 9.251E−6 9.710E−6

𝑠 = 100% subsampling

Full CNODE 2.319E−2 9.652E−2 2.305E−2 1.143E−1 2.337E−5 5.280E−4 3.057E−5 7.288E−4
MP-PDE 1.140E−4 5.500E−4 1.785E−4 5.856E−4 1.718E−7 1.993E−5 9.256E−7 4.261E−5
MNO 3.190E−5 8.678E−4 2.763E−4 8.946E−4 9.381E−6 4.890E−3 1.993E−4 6.128E−3
DeepONet 1.375E−3 6.573E−3 9.704E−3 1.244E−2 6.431E−4 1.293E−2 1.847E−2 3.317E−2
SIREN 1.066E−3 4.336E−1 3.874E−1 1.037E0 3.674E−4 9.956E−3 3.013E−2 7.842E−2
MFN 1.651E−3 1.037E0 2.106E−1 1.059E0 1.408E−4 1.763E−1 4.735E−3 2.274E−1
DINO (no sep.) 3.235E−4 1.593E−3 7.850E−4 1.889E−3 2.641E−6 4.081E−5 5.977E−5 2.979E−4
DINO 8.339E−5 3.115E−4 2.092E−4 4.311E−4 3.309E−6 3.506E−6 9.495E−6 9.946E−6
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Table D.2: Generalization across grids. Xtr,Xts are subsampled with different ratios 𝑠tr ≠ 𝑠ts ∈ {5, 50, 100}% from the same
uniform 64×64 grid. We report testMSE withinX𝑡𝑠 (In-s). Best in bold.

Xts = Xtr Xts ≠ Xtr

Subsampling Test→ 𝑠ts = 𝑠tr 𝑠ts = 5% 𝑠ts = 50% 𝑠ts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

𝑠tr = 5%
MP-PDE 1.967E−4 6.631E−4 1.330E−1 3.852E−1 1.859E−1 6.680E−1 2.105E−1 7.120E−1
DINO 3.623E−4 8.306E−4 1.494E−3 2.291E−3 1.257E−3 1.883E−3 1.287E−3 1.947E−3

𝑠tr = 50%
MP-PDE 1.346E−4 5.110E−4 4.494E−2 9.403E−2 4.793E−3 1.997E−2 6.330E−3 3.712E−2
DINO 2.004E−4 4.283E−4 2.470E−4 4.697E−4 2.073E−4 4.284E−4 2.058E−4 4.361E−4

𝑠tr = 100%
MP-PDE 1.785E−4 5.856E−4 1.358E−1 3.355E−1 1.182E−2 2.664E−2 1.785E−4 5.856E−4
DINO 2.092E−4 4.311E−4 2.495E−4 4.805E−4 2.109E−4 4.325E−4 2.092E−4 4.311E−4
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D.2 Prediction

We display the test prediction of DINO (Figure D.1) and I-MP-PDE (Figure D.2) for various
subsampling levels when X = Xtr = Xts. Predictions are performed on a 64×64 uniform
grid which defines the observation grid X via different subsampling rates. Yellow points
correspond to the observation grid X (In-s) while purple points indicate off-grid points
(Out-s). The prediction for I-MP-PDE at 𝑡 = 0 is the interpolated initial condition.

Subsampling
rate

Observation
gridX

Predicted trajectory
𝑡 = 0 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 ′

𝑠 = 5%

𝑠 = 25%

𝑠 = 100%

Ground Truth

Figure D.1: Prediction MSE per frame for DINO on Navier-Stokeswith its corresponding
observed grid X . For each model, the first row contains the predicted trajectory from 0

to𝑇 ′, the second row is the corresponding error maps w.r.t. the reference data (the darker
the pixel, the lower the error).
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D.3 Detailed Description of Datasets

We choose T (resp. T ′) on a regular grid in [0, 𝑇] (resp. [0, 𝑇 ′]) with a given temporal
resolution and fix𝑇 ′ = 2𝑇 . The range of𝑇 depends on the nature of the dataset; however,
we always consider 10 consecutive frames for In-t and 10 more for Out-t. We provide
further details on the choice of these parameters and other experimental parameters, such
as the number of observed trajectories.

2D Wave equation (Wave). It is a second-order PDE:

𝜕2𝑢

𝜕𝑡2
= 𝑐2Δ𝑢, (D.1)

where 𝑢 is a function of the displacement at each point in space w.r.t. the rest position, 𝑐 ∈
ℝ∗+ is the speedofwave travel. We transform the equation to a first-order form, considering
the input 𝑣𝑡 =

(
𝑢𝑡 ,

𝜕𝑢𝑡
𝜕𝑡

)
, so that the dimension of 𝑣𝑡 (𝑥) at each point 𝑥 ∈ Ω is 𝑛 = 2.

We generate our dataset for speed 𝑐 = 2 with periodic boundary conditions. The domain
is Ω = [−1, 1]2. For initial conditions 𝑣0 =

(
𝑢0,

𝜕𝑢𝑡
𝜕𝑡

���
𝑡=0

)
, the initial displacement 𝑢0 is a

Gaussian function:

𝑢0(𝑥; 𝑎, 𝑏, 𝑟) = 𝑎 exp
(
− (𝑥 − 𝑏)

2

2𝑟2

)
, (D.2)

where the height of the peak displacement is 𝑎 ∼ U (2, 4), the location of the peak
displacement is (𝑏1, 𝑏2) ∼ U (−1, 1), and the standard deviation is 𝑟 ∼ U (0.25, 0.3). The
initial time derivative is 𝜕𝑢𝑡

𝜕𝑡

���
𝑡=0

= 0. Each snapshot is generated on a uniformgrid of 64×64.
Each sequence is generated with fixed interval 𝛿𝑡 = 0.25. We set the training horizon
𝑇 = 2.25 and the inference horizon 𝑇 = 4.75. We generated 512 training trajectories and
32 test trajectories.

2D Navier Stokes (Navier-Stokes, Stokes, 1851). This dataset corresponds to incom-
pressible fluid dynamics described by:

𝜕𝑤

𝜕𝑡
= −𝑢∇𝑤 + 𝜈Δ𝑤 + 𝑓 fc., 𝑤 = ∇ × 𝑢, ∇𝑢 = 0, (D.3)

where 𝑢 is the velocity field and 𝑤 the vorticity. 𝑢, 𝑤 lie on a spatial domain with periodic
boundary conditions, 𝜈 is the viscosity and 𝑓 is a constant forcing term. The input 𝑣𝑡 is 𝑤𝑡
(𝑛 = 1). 𝜈 is the viscosity and 𝑓 is the constant forcing term in the domain Ω.



242 APPENDIX D. Appendix of Chapter 7

The spatial domain is Ω = [−1, 1]2, the viscosity is 𝜈 = 1×10−3, the forcing term is set as:

∀𝑥 ∈ Ω, 𝑓 fc.(𝑥1, 𝑥2) = 0.1(sin(2𝜋 (𝑥1 + 𝑥2)) + cos(2𝜋 (𝑥1 + 𝑥2))). (D.4)

The full spatial grid is of dimension 64×64 or 256×256 according to experiments in
Section 7.4. We sample initial conditions as in Li et al. (2021b) to create different
trajectories. The first 20 steps of the trajectories are cut off as they are too noisy and
not informative in terms of dynamics. Trajectories are collected with 𝛿𝑡 = 1. We set the
training horizon 𝑇 = 19 and the inference horizon 𝑇 ′ = 39. We generated 512 training
trajectories and 32 test trajectories.

3D spherical shallow water (Shallow-Water, Galewsky et al., 2004). The following
problem is originally presented for testing numerical models of global shallow-water
equations. The shallow water equations are written as:

d𝑢

d𝑡
= −𝑓 𝑘 × 𝑢 − 𝑔∇ℎ + 𝜈Δ𝑢,

dℎ

d𝑡
= −ℎ∇ · 𝑢 + 𝜈Δℎ.

(D.5)

where d
d𝑡 is the material derivative, 𝑘 is the unit vector orthogonal to the spherical surface,

𝑢 is the velocity field tangent to the surface of the sphere, which can be transformed into
the vorticity 𝑤 = ∇ × 𝑢, ℎ is the thickness of the sphere. Note that the data we observe at
each time 𝑡 is 𝑣𝑡 = (𝑤𝑡 , ℎ𝑡). 𝑓 , 𝑔, 𝜈,Ω are parameters of the Earth (cf. Galewsky et al., 2004
for details).

The initial conditions are slightly modified from Galewsky et al. (2004), detailed below, to
create symmetric phenomena in the northern and southern hemisphere. The initial zonal
velocity𝑢0 contains twonon-null symmetric bands in both hemispheres, which are parallel
to the circles of latitude. At each latitude and longitude 𝜙, 𝜃 ∈ [−𝜋/2, 𝜋/2] × [−𝜋, 𝜋]:

𝑢0(𝜙, 𝜃) =



(
𝑢max

𝑒n
exp

(
1

(𝜙 − 𝜙0)(𝜙 − 𝜙1)

)
, 0

)
if 𝜙 ∈ (𝜙0, 𝜙1),(

𝑢max

𝑒n
exp

(
1

(𝜙 + 𝜙0)(𝜙 + 𝜙1)

)
, 0

)
if 𝜙 ∈ (−𝜙1,−𝜙0),

(0, 0) otherwise.

(D.6)

where 𝑢max is the maximum velocity, 𝜙0 = 𝜋/7, 𝜙1 = 𝜋/2−𝜙0, and 𝑒n = exp(−4/(𝜙1 − 𝜙0 )2). The
water height ℎ0 is initialized by solving a boundary value condition problemas inGalewsky
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et al. (2004). It is then perturbed by adding the following ℎ′0 to ℎ0:

ℎ′0(𝜙, 𝜃) = ℎ̂ cos(𝜙) exp
(
−
(
𝜃

𝛼

)2) [
exp

(
−
(
𝜙2 − 𝜙
𝛽

)2)
+ exp

(
−
(
𝜙2 + 𝜙
𝛽

)2)]
. (D.7)

where 𝜙2 = 𝜋/4, ℎ̂ = 120m, 𝛼 = 1/3, 𝛽 = 1/15 are constants defined in Galewsky et al. (2004).

We simulate this phenomenon with Dedalus (Burns et al., 2020) on a latitude-longitude
(lat-lon) grid. The size of the grid is 128 (lat)×256 (lon). We take different initial conditions
by sampling 𝑢max ∼ U (60, 80) to generate long trajectories. These long trajectories are
then sliced into shorter ones. For simulation, we take one snapshot per hour (of internal
simulation time), i.e. 𝛿𝑡 = 1 h. We stop the simulation at the 320th hour. To construct a
dataset rich in dynamical phenomena, we take the snapshots within the last 160 h in a long
trajectory and slice them into 8 shorter trajectories. Also, note that the data is scaled into a
reasonable range: the height ℎ is scaled by a factor of 3×103, and the vorticity𝑤 by a factor 2.
In each short trajectory, 𝑇 = 9 h and 𝑇 ′ = 19 h. In total, we generated 16 long trajectories
(i.e. 128 short trajectories) for the train, and 2 for the test (i.e. 16 short trajectories).

D.3.1 Algorithm

We detail the algorithm of DINO for training and test via pseudo-code in Algorithm 3.
Training consists in solving Eq. (7.6) w.r.t. 𝜓, 𝛼T , 𝜙. Inference consists in only finding 𝛼0.

Algorithme 3 : DINO pseudo-code

Training
Input :D = {𝑢T }, {𝛼𝑢T }𝑢∈D ← {0}, 𝜙← 𝜙0, 𝜓 ← 𝜓0;
while not converged do

for 𝑢 ∈ D do 𝛼𝑢T ← 𝛼𝑢T − 𝜂𝛼∇𝛼𝑢T ℓdec(𝐷𝜙, 𝛼
𝑢
T ); /* Modulation */

𝜙← 𝜙 − 𝜂𝜙∇𝜙
(∑

𝑢∈D ℓdec(𝐷𝜙, 𝛼𝑢T )
)
; /* Hypernetwork */

𝜓 ← 𝜓 − 𝜂𝜓∇𝜓
(∑

𝑢∈D ℓdyn(𝑓𝜓 , 𝛼𝑢T )
)
; /* Dynamics */

Test
Input :D′0 = {𝑢0}, {𝛼𝑢0}𝑢∈D′ ← {0}, 𝜙★, 𝜓★, T ′ ≠ T ;
while not converged do

for 𝑢 ∈ D′ do 𝛼𝑢0 ← 𝛼𝑢0 − 𝜂∇𝛼𝑢0 ℓdec(𝐷
★
𝜙
, 𝛼𝑢0); /* Modulation */

for 𝑢 ∈ D′, 𝑡 ∈ T ′ do 𝛼𝑢𝑡 ← 𝛼𝑢0 +
∫ 𝑡

0
𝑓𝜓★ (𝛼𝑢𝜏 )d𝜏; /* Unroll dynamics */
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D.3.2 Convergence
Convergence analysis. In practice, we observe no training instability induced by the
two-stage learning process of Eq. (7.6) and Algorithm 3: the objectives are non-conflicting.
To assess this, we track the evolution of the auto-decoding loss ℓdec and the dynamics loss
ℓdyn throughout training on Navier-Stokes (𝑠 = 100%) in Figure D.4. We observe that both
losses smoothly converge until the end of training.

D.3.3 Time Efficiency
Our auto-decoding strategy coupled with a latent neural ODE makes DINO computation-
ally efficient compared to our best competitor MP-PDE.

Inferring 𝛼0 via auto-decoding. Given a decoder and an observation frame 𝑣0, finding
𝛼0 corresponds to solving an inverse problem, cf. Eq. (7.3). At inference, we use 300 steps
to infer 𝛼0; using less steps is possible but results in slight under-fitting. This represents
2.76 s for 64 trajectories on a single Tesla V100 Nvidia GPU. Note that, as we unroll
dynamics in the latent space, there is no need to relearn 𝛼𝑡 when 𝑡 > 0. Moreover, this
differs from training, where 𝛼𝑡 is continuously optimized for all 𝑡 ∈ [0, 𝑇] within the
train horizon, alternativelywith our INR decoder. Overall, we trainedMP-PDE andDINO
for approximately 7 days such that there is no major additional temporal training cost for
DINO.

LatentneuralODE. Unrolling the dynamicswith a neuralODE is efficient (0.35 s for 19
time predictions for 64 trajectories on a single Tesla V100 Nvidia GPU). Indeed, the latent
space is small (at most 100 dimension) and the dynamics models uses a simple four-layer
MLP for 𝑓𝜓 . With the same latent dynamics model, using an RK4 numerical scheme only
incurs four additional function evaluations over a discretized alternative, e.g., standard
ResNet. This incurs a minor computational cost but enables DINO to operate at different
temporal resolutions, unlike, e.g., MP-PDE.

In comparison, the official code ofMP-PDE takes 312 s for inference on the same hardware
for the same number of trajectories (vs 3 s for DINO). MP-PDE requires building an
adjacency matrix and incurs for this reason a high memory cost, especially as the number
of nodes increases. Interpolation also significantly increases inference time. This is not
the case for DINO, which is faster.

D.3.4 Additional Implementation details
We use PyTorch (Paszke et al., 2019) to implement DINO and our baselines. Hyperpa-
rameters are further defined in Appendix D.3.5. The dynamics model 𝑓𝜓 is a multilayer
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perceptron. Its input and output size are same as the size of latent space 𝑑𝛼 . All hidden
layers share the same size. DINO’s parameters are initialized with the default initialization
in PyTorch, defining 𝜙0, 𝜓0, 𝜔 in Algorithm 3. We recall that 𝜔 is fixed throughout training
to reduce the number of optimized parameters without loss of performance. As in related
work (Sitzmann et al., 2019; Fathony et al., 2021), the frequency parameters 𝜔 are scaled
by a factor, 𝜔s, considered as a hyperparameter. For dynamics learning, we use an RK4
integrator via torchdiffeq (Chen et al., 2018) and apply exponential Scheduled Sampling
(Bengio et al., 2015) to stabilize training. In practice, modulations 𝛼𝑡 are learned channel-
wise such that 𝐼𝜃 : Ω → ℝ𝑑𝑐 has separate parameters per output dimension to make
predictions less correlated across channels. We optimize all parameters 𝜙, 𝛼, 𝜓 using Adam
(Kingma and Ba, 2015) with decay parameters (𝛽1, 𝛽2) = (0.9, 0.999).

D.3.5 Hyperparameters
We list the hyperparameters of DINO for each dataset in Table D.3. In practice, we observe
it is beneficial to decay the learning rates 𝜂𝜙, 𝜂𝛼 when the loss reaches a plateau.

D.3.6 Baselines Implementation
We detail in the following the hyperparameters and architectures used in our experiments
for the considered baselines, which we reimplemented for our paper.

• CNODE is implementedwith four 2D convolutional layers with 64 hidden features,
ReLU activations, 3 × 3 kernel and zero padding. Learning rate is fixed to 10−3. We
use an adjoint method for integration like (Chen et al., 2018).

• MNO. We use the FNO architecture in Li et al. (2021b) with three FNO blocks,
GeLU activations, 12modes and a width of 32. Learning rate is fixed to 10−3.

• DeepONet. We consider an autoregressive formulation of DeepONet. We choose a
width of 1000 for hidden features with a depth of 4 for both trunk and branch nets
with ReLU activations. Learning rate is fixed to 10−5.

• MP-PDE. We adapt the implementation in Brandstetter et al. (2022) to handle 2D
and 3D PDEs. We use a time window of 1 with pushforward trick. Batch size and
number of neighbors are fixed to 8. Learning rate is fixed to 10−3. We use ReLU
activations.

• SIREN. To represent data in space and time, SIREN takes space and time coordi-
nates (𝑥, 𝑡) as input. To handle multiple trajectories, we concatenate an optimizable
per-trajectory context code 𝛼 to the coordinates like in DINO. We fix the hidden
layer size of SIREN to 256. We initialize the parameters and use the default input
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Table D.3: DINO’s hyperparameters.

Hyperparameter Navier-Stokes Wave Shallow-Water

Decoder 𝐷𝜙 = 𝐼ℎ𝜙
Number of layers 3 3 6

Number hidden channels 64 64 256

Frequency scale factor 𝜔s 64 64 64

Size of latent space 𝑑𝛼 100 50 300

Dynamics model 𝑓𝜓
Number of layers 4 4 4

Hidden layer size 512 512 800

Activation function Swish Swish Swish

Optimization
Learning rate 𝜂𝜙 10−2 10−2 10−2

Learning rate 𝜂𝛼 10−3 10−3 10−3

Learning rate 𝜂𝜓 10−3 10−3 10−3

Number of epochs 12 000 12 000 12 000
Batch size i.e. sequences per batch 64 64 16

scale as in Sitzmann et al. (2019). The size of the context code is 𝑑𝛼 = 800. The
learning rate is 10−3.

• MFN. Similarly to the previous SIREN baseline, we concatenate the per-trajectory
context code to space and time coordinates at the first layer. The hidden layer size
is fixed to 256 and we use the default parameter initialization with a frequency scale
𝜔s of 64 higher than DINO. The size of the context code is 𝑑𝛼 = 800. The learning
rate is 10−3.

D.4 Complementary Analyses
We detail in this section additional experiments, allowing us to further analyze and assess
the performance of DINO.

D.4.1 Long-Term Temporal Extrapolation
We provide in table D.4 an analysis of error accumulation over time for long-term extrap-
olation. More precisely, we generate a Navier-Stokes dataset with longer trajectories and
report MSE for 𝑇 ′ = 𝑇 + Δ𝑇 where Δ𝑇 ∈ {𝑇, 5𝑇, 10𝑇, 50𝑇}. Note that Δ𝑇 = 𝑇 is the
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setting in our initial submission (𝑇 ′ = 2𝑇 ).

We observe that DINO’s MSE in long-term forecasting is more than an order of magnitude
smaller than for (I-)MP-PDE. This demonstrates the extrapolation abilities of our model.

D.4.2 INRs’ Advantage Over Interpolation
We report in Table D.5 the MSE of bicubic interpolation, our FourierNet’s MSE (auto-
decodingwith amplitudemodulation butwithout dynamicsmodel) andDINO’sMSE (with
dynamics model) on train In-t for bothNavier-Stokes andWave. This corresponds to MSE
averaged over all training frameswithin the train horizon andnot only the initial condition
𝑣0.

We observe that FourierNet is better than interpolation. Indeed, interpolation is poorly
adapted to sparse observation grids: the interpolation errors are clearly visible in Fig-
ure D.2, first row (5% setting). Interestingly, DINO’s MSE is only slightly worse than the
FourierNet’s MSE, showing that we correctly learned the dynamics of latent modulations
𝛼𝑡 . I-MP-PDE, which combines bicubic interpolation with MP-PDE, is then expectedly
outperformed by DINO on this challenging 5% setting. This shows the advantage of using
INRs instead of standard bicubic interpolation to interpolate between observed spatial
locations.

D.4.3 Modeling Real-World Data
SST. We evaluate DINO on real-world data to further assess its applicability. Following
de Bézenac et al. (2018); Donà et al. (2021), we model the Sea Surface Temperature (SST)
of the Atlantic ocean, derived from the data-assimilation engine NEMO (Nucleus for
European Modeling of the Ocean, Gurvan et al., 2022) using E.U. Copernicus Marine
Service Information.1 Accuratelymodeling SSTdynamics is critical inweather forecasting
or planning of coastal activities. This problem is particularly challenging as SST dynamics
are only partially observed: several unobserved variables affecting the dynamics (e.g., the
sea water flow) need to be estimated from data.

For this experiment, we consider trajectories collected from three geographical zones (17
to 20) following the initial train / test split of de Bézenac et al. (2018). Notably, 𝑇 = 9 d,
which includes 𝜏 = 4 d of conditioning frames, i.e. models are tested to predict 𝑣𝑡∈È𝜏,𝑇É
from 𝑣𝑡∈È0,𝜏É.

Incorporating consecutive time steps. Tomodel SSTwhich includes non-Markovian
data and thus does not correspond to an Initial Value Problem as in Section 7.2, we modify

1https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_0
24/description

https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_024/description
https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_024/description
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Table D.4: Long term extrapolation performance of DINO and (I-)MP-PDE in the space
and time generalization experiment for test trajectories on Out-t (]𝑇,𝑇 ′ = 𝑇 + Δ𝑇]); cf.
Table 7.3 and section 7.4.1.

Subsampling ratio Model Δ𝑇 = 𝑇 Δ𝑇 = 5𝑇 Δ𝑇 = 10𝑇 Δ𝑇 = 50𝑇

𝑠 = 5% DINO 2.017E−3 4.895E−3 1.209E−2 1.440E−1
I-MP-PDE 8.387E−3 3.580E−2 3.356E−1 4.031E1

𝑠 = 100% DINO 4.617E−4 2.082E−3 6.901E−3 1.215E−1
MP-PDE 5.251E−4 3.524E−2 3.339E−1 9.755E1

Table D.5: MSE reconstruction error (In-s and Out-s) of train sequences within the
train horizon (In-t) for three different methods: interpolation of observed points in Xtr,
FourierNet learned over individual frames inXtr, and DINO (FourierNet with a dynamics
model).

MSE train In-t Interpolation FourierNet DINO

Navier-Stokes, 𝑠 = 5% 8.277E−3 9.673E−4 1.029E−3
Wave, 𝑠 = 5% 7.075E−4 4.085E−5 4.088E−5

our dynamics model in a similar fashion to Yıldız et al. (2019) to integrate a history of
several consecutive observations 𝑣𝑡∈È0,𝜏É instead of only the initial observation 𝑣0. In more
details, we define a neural ODE over an augmented state [𝛼𝑡 , 𝛼′𝑡] where 𝛼𝑡 is our auto-
decoded state and 𝛼′𝑡 is an encoding of 𝜏 = 4 past auto-decoded observations via a neural
network 𝑐𝜉 . We adjust our inference and training settings as follows:

• inference: we compute 𝛼′𝜏−1 = 𝑐𝜉 (𝛼0, · · · , 𝛼𝜏−1) and then unroll our neural ODE
from the initial condition [𝛼𝜏−1, 𝛼′𝜏−1] to obtain [𝛼𝑡 , 𝛼′𝑡] for all 𝑡 > 𝜏 − 1:

∀𝑡 ∈ È0, 𝜏 − 1É, 𝛼𝑡 = 𝑒𝜑(𝑣𝑡), 𝛼′𝜏−1 = 𝑐𝜉 (𝛼0, · · · , 𝛼𝜏−1),
d[𝛼𝑡 , 𝛼′𝑡]

d𝑡
= 𝑓𝜓 ([𝛼𝑡 , 𝛼′𝑡]);

• training: for all 𝑡, we infer 𝛼′𝑡+𝜏−1 = 𝑐𝜉 (𝛼𝑡 , · · · , 𝛼𝑡+𝜏−1) and fit the above neural ODE
on the [𝛼𝑡 , 𝛼′𝑡] obtained for all 𝑡 ∈ È0, 𝑇 − 𝜏 + 1É.

This experiment confirms that our space- and time-continuous framework can easily be
extended to incorporate refined temporal models.

Results. We report in Table D.6 test MSE for DINO and VarSep (Donà et al., 2021),
the current state-of-the-art on SST, retrained on the same training data. DINO notably
outperforms VarSep in prediction performance. This demonstrates DINO’s potential to
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Table D.6: SST test prediction performance for DINO and VarSep.

Method MSE

VarSep (Donà et al., 2021) 1.43
DINO 1.27

handle complex real-world spatiotemporal dynamics. We also provide some visualizations
of DINO’s train and test predictions in Figure D.5. We make two observations. First, DINO
fits very accurately the train data. Second, on the test, we observe that the dynamics on
low frequencies seem to be correctly modeled while the prediction of high frequencies
dynamics are less accurate. Larger scale experiments would be required to effectively
evaluate the model performance on this challenging dataset. Given the complexity of the
data, this is out of the scope of the paper. Yet, these experiments already demonstrate that
DINO behaves competitively w.r.t. the previous state-of-the-art.

Implementation choices. We choose a similar INR and dynamics architecture than for
our Shallow-water experiment. We use for 𝑐𝜉 , which takes as input four consecutive 𝛼𝑡s,
individual encodings of the 𝛼𝑡s through a four-layer fully connected network which are
then fed to a single linear layer.
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Subsampling
rate

Observation
gridX

Predicted trajectory
𝑡 = 0 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 ′

𝑠 = 5%

𝑠 = 25%

𝑠 = 100%

Ground Truth

Figure D.2: Prediction MSE per frame for I-MP-PDE on Navier-Stokes with its corre-
sponding observed gridX . For each model, the first row contains the predicted trajectory
from 0 to𝑇 ′, the second row is the corresponding error maps w.r.t. the reference data (the
darker the pixel, the lower the error).
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Predicted trajectory
𝑡 = 0 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 −−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑡 = 𝑇 ′

𝑠 = 5%

𝑠 = 25%

𝑠 = 100%

Ground Truth

FigureD.3: PredictionMSE per frame forDINO onWavewith its corresponding observed
grid X . For each model, the first row contains the predicted trajectory from 0 to 𝑇 ′, the
second row is the corresponding error maps w.r.t. the reference data (the darker the pixel,
the lower the error).
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FigureD.4: Learning curves of DINOonNavier-Stokes for ℓdec and ℓdyn throughout training
(pale lines) and corresponding exponential moving averages from epoch 500 with half-life
1000 (opaque lines).
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Figure D.5: DINO’s prediction examples on SST.
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Motiver la modélisation dynamique à l’aide de données
La modélisation dynamique est un domaine d’étude fondamental en science, qui s’étend
sur des siècles de recherche dans de multiples disciplines. À la base, la modélisation
dynamique cherche à expliquer et à prédire le mouvement ou les changements des objets
par l’observation et l’analyse. Les connaissances acquises grâce à cette compréhension
ont conduit à l’élaboration de modèles efficaces capables de prédire l’évolution d’un
phénomène dans le temps et sa réaction à des changements dans l’environnement ou dans
d’autres conditions. Aujourd’hui, les efforts de modélisation des systèmes dynamiques
couvrent un large éventail de méthodes, impliquant divers degrés de principes premiers
: des modèles numériques sophistiqués, reposant sur une connaissance complète de

255
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la physique, aux modèles purement fondés sur des données sans aucune connaissance
physique préalable.

Dans cette thèse, nous contribuons à la tendance récente qui consiste à appliquer
l’apprentissage profond (deep learning, DL) à la modélisation de la dynamique. Suite aux
percées réalisées par le DL dans divers domaines (He et al., 2016; Goodfellow et al., 2020;
Devlin et al., 2019; Brown et al., 2020), la polyvalence du DL a commencé à être exploitée
pour divers aspects de la modélisation de la dynamique. Néanmoins, ce domaine de
recherche en est encore à ses débuts.

Notre objectif est d’améliorer la généralité et l’adaptabilité des modèles d’apprentissage
profondpilotés par les données en tenant compte des a priori physiques oudistributionnels
dans leurs hypothèses sous-jacentes. Nous visons à exploiter les approches DL pour
obtenir des modèles qui peuvent extraire efficacement des informations des données
proches des scénarios du monde réel. Ce résumé souligne l’importance de la modélisation
avec des données etmotive les différents problèmes que nous voulons aborder, afin de faire
correspondre les capacités des modèles avec les méthodes numériques.

Comprendre la nature avec les équations différentielles
L’étude de la dynamique a commencé avec le développement de modèles mathématiques,
visant à comprendre les mouvements des objets en modélisant les lois physiques. De
Galilée à nos jours, les scientifiques ont tenté d’expliquer les phénomènes observés en
construisant desmodèles dynamiques qui expriment, p. ex., les lois dumouvement, avec les
propriétés des objets, p. ex., la masse, la longueur et la densité des objets. Ces modèles ont
été créés à partir de concepts abstraits des observations et basés sur la perception humaine
de la réalité et des lois physiques.

Par exemple, lors de la modélisation du comportement d’un objet en mouvement, au lieu
de décrire exhaustivement toutes les trajectoires d’évolution de la position de l’objet, on
étudie la vitesse, c.-à-d., le taux de variation de la position, et l’accélération, c.-à-d., le taux
de variation de la vitesse. Par conséquent, les règles concernant ces taux de changement, les
équations différentielles, fournissent une description idéale claire, concise et concevable de
l’évolution temporelle des phénomènes et sont considérées comme des lois de la physique.

À ce jour, un grand nombre de dynamiques formulées sous forme d’équations dif-
férentielles ont été proposées dans diverses disciplines. Par exemple, en physique, les
équations de Navier-Stokes (Stokes, 1851) décrivent le mouvement des fluides visqueux,
p. ex., l’eau, l’air ; les équations de réaction-diffusion (Pearson, 1993) décrivent com-
ment une ou plusieurs substances chimiques réagissent localement et se propagent dans
l’espace,(Feinberg, 2019) ; la dynamique épidémiologique étudie comment les maladies
infectieuses se propagent dans une population (Martcheva, 2015). Elles reposent sur une
compréhension approfondie des phénomènes dynamiques sous-jacents.
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Si une solution analytique à l’équation différentielle est disponible, nous pouvons l’utiliser
pour prédire ce qui va se passer. Cependant, comme la plupart des systèmes dynamiques
sont non linéaires, leur comportement ne peut pas être entièrement décrit par les seules
méthodes analytiques. Par conséquent, nous devons généralement recourir à des méth-
odes numériques pour pouvoir utiliser les équations différentielles, ce qui a conduit au
développement de modèles numériques capables de fournir une approximation de la
solution analytique intraitable.

Modèles numériques
Un modèle numérique est une version discrétisée ou simplifiée de l’équation différentielle.
Ces modèles sont ensuite résolus par un solveur numérique. Les solutions approximatives
fournies par les modèles numériques et leurs solveurs conservent les propriétés physiques
et sont utilisées pour un large éventail d’applications.

Les modèles numériques présentent les caractéristiques de robustesse et de flexibilité
suivantes, qui influenceront grandement les exigences en matière de capacité lors de la
proposition d’autres types de modèles, y compris les approches DL :

• Ils sont souvent robustes aux changements d’état. Le lien étroit avec l’équation
différentielle rend lesmodèles numériques applicables à une large gamme de valeurs
d’état. Cela permet d’appliquer le même modèle dans des conditions différentes.

• Ils décrivent des systèmes différents, obéissant aux mêmes lois physiques dans des
contextes différents, souvent paramétrisés par quelques paramètres. Le passage d’un sys-
tème à un autre peut se faire directement en modifiant les paramètres. Par exemple,
lorsqu’on déplace un pendule de la Terre vers la planète Mars, il suffit de modifier la
gravité dans l’équation pour prédire le pendule dans le nouvel environnement.

• Les approximations sont proches de la réalité physique et reflètent des propriétés impor-
tantes de la dynamique. Lorsqu’elle prédit des quantités physiques, la solution doit
également respecter les lois physiques fondamentales. Par exemple, les symétries
dans le temps et l’espace pour les changements d’état, la conservation du volume et
de l’énergie, l’incompressibilité des fluides, etc.

Cependant, il n’est jamais facile de se confronter à la réalité. Malgré de nombreux efforts
pour construire des équations différentielles, des modèles numériques et des solveurs réal-
istes, il existe encore de nombreux goulets d’étranglement qui entravent leur application à
la prévision dans le monde réel.

• Rare consensus sur la modélisation et la résolution d’un même phénomène. Pour de
nombreux phénomènes, il est presque impossible d’obtenir des équations unanime-
ment acceptées par les scientifiques. Par exemple, pour les équations des eaux
peu profondes, alias équations de Saint-Venant, il n’y a pas de consensus sur la
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modélisation réaliste du frottement (Delestre, 2010, Chapitre 3). Un ensemble de
modèles est proposé pour décrire la dynamique épidémique du même phénomène
(Schneckenreither et al., 2008). Parfois, le modèle et le solveur doivent être adaptés à
chaque paramétrage, voire à des conditions différentes. Par exemple, pour résoudre
l’équation de Navier-Stokes, différents modèles numériques doivent être sélection-
nés en fonction des paramètres physiques du modèle, de la forme du domaine, de la
vitesse initiale de l’écoulement, etc.

• Un modèle ne peut décrire qu’une partie de la réalité. Les modèles d’équations
différentielles et de dynamique numérique sont construits avec différents niveaux
de simplification de la réalité. Pour des raisons pratiques, la méthode numérique est
souvent trop simplifiée par rapport à la dynamique observée.

• Les prédictions de haute qualité nécessitent une puissance de calcul importante. Lorsque
le phénomène est intrinsèquement complexe, il nécessite une attention particulière
aux détails à petite échelle et entraîne souvent une charge de calcul extrêmement
élevée en termes de mémoire et de temps. Par exemple, lors de la résolution des
équations de Navier-Stokes, l’obtention d’une prédiction de haute qualité nécessite
souvent une discrétisation dense du domaine sur lequel l’équation doit être résolue.
Dans certaines expériences, comme la simulation numérique directe de l’équation
de Navier-Stokes, l’ensemble du domaine comporte plus de> 1011 degrés de liberté
(Lee et al., 2013). Même avec un nombre de Reynold moyen (plus le nombre est
élevé, plus les écoulements de fluides sont complexes), la résolution d’un tel modèle
numérique de Navier-Stokes induit des coûts de calcul et une charge de mémoire
considérables qui nécessitent une puissance de calcul extrêmement importante.

Ces goulets d’étranglement limitent les applications des modèles numériques dans le
monde réel et poussent les scientifiques à chercher de l’aide pour mieux décrire la réalité,
réduire le coût de fonctionnement de ces modèles et rechercher des contreparties complé-
mentaires ou même des alternatives aux modèles numériques.

Modélisation avec des données : Vers des applications plus larges
Au cours des dernières décennies, la disponibilité croissante des données, générées soit
par l’observation du phénomène réel des systèmes dynamiques, soit par la résolution
d’équations à l’aide de modèles numériques, a favorisé le développement d’approches
basées sur les données. En fonction de la source de données et des objectifs de la
communauté, différentes voies ont été proposées.

Le premier type de données consiste en des informations collectées par l’observation de
phénomènes réels, comme des images satellites de l’océan ou de l’atmosphère terrestre.
Ces données sont utilisées pour guider les modèles numériques afin qu’ils fassent des
prédictions plausibles et cohérentes avec les nouvelles observations. Ce processus est
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appelé l’assimilation des données (Kalman, 1960; Courtier et al., 1994), et il s’agit d’une
procédure séquentielle à pas de temps. La stratégie courante comporte deux étapes qui
se répètent à chaque mise à jour : le modèle numérique fournit une prévision à court
terme qui est comparée aux nouvelles observations reçues, et l’état du modèle est ensuite
mis à jour pour refléter les observations. L’assimilation des données a été utilisé avec
succès dans les systèmes de prévision météorologique à grande échelle tels que le Centre
européen pour les prévisions météorologiques à moyen terme (CEPMMT ; Bonavita and
Lean, 2021) et les systèmes opérationnels de surveillance et de prévision des océans tels
que MERCATOR Océan (Ferry et al., 2007). L’assimilation des données peut effectivement
trouver la meilleure estimation de la réalité à partir de la prévision du modèle numérique
par rapport aux données. Cependant, les informations provenant des données jouent le
rôle de correction du modèle numérique, et non de partie de celui-ci.

Le deuxième type de données concerne les solutions du modèle numérique. Les simu-
lations peuvent être utilisées pour construire des modèles émulateurs moins complexes
et moins coûteux en calcul que les modèles numériques, tout en maintenant une qualité
raisonnable des solutions. Par rapport aux modèles numériques originaux, à savoir les
modèles d’ordre complet (full-order model, FOM), les modèles d’ordre réduit (reduced-order
models, ROM) basé sur les données extraient un modèle de moindre complexité à partir
d’un ensemble de solutions données par les FOM. Les ROM sont principalement liées aux
techniques de réduction des dimensions accompagnées d’hypothèses physiques. Pour les
systèmes dynamiques, il existe des techniques telles que la décomposition orthogonale
aux valeurs propres (proper orthogonal decomposition, POD) pour trouver la meilleure
approximation à faible dimension du FOM (Choi et al., 2021), et la décomposition des
modes dynamiques pour la meilleure approximation linéaire de la dynamique non linéaire
(Kutz et al., 2016). Ils fournissent des représentations mathématiques pour l’analyse en
temps réel, mais les plus efficaces sont souvent limités à la réduction linéaire et à la
modélisation linéaire, ce qui limite leurs scénarios d’application et nécessite des extensions
pour une modélisation plus flexible.

Modélisation de l’apprentissage en profondeur et de la dynamique
Bien que les réseauxdeneurones aient été proposées il y a plus d’undemi-siècle, ce n’est que
depuis les années 2010 qu’elles ont été largement popularisées et que cette branche d’étude,
sous le nom du DL, est devenue le sujet de recherche le plus influent de l’apprentissage au-
tomatique (machine learning, ML) à ce jour. Grâce à des algorithmes flexibles, à d’énormes
quantités de données disponibles, à des logiciels polyvalents avancés et à du matériel
puissant pour le déploiement de modèles à grande échelle, etc., les chercheurs ont réalisé
de multiples percées dans diverses tâches, p. ex., la reconnaissance d’images (He et al.,
2016), la génération (Goodfellow et al., 2020), la représentation de texte (Devlin et al., 2019),
la génération (Brown et al., 2020). Le DL met en évidence les algorithmes de réseau de
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neurone polyvalents et flexibles pour modéliser toute correspondance non linéaire entre
les données données et la sortie souhaitée, réalisant des modèles ML opérationnels qui
n’étaient pas possibles auparavant. Cela permet d’extraire efficacement des dynamiques
complexes hautement non linéaires directement à partir des données.

Avant l’ère du DL, des tentatives ont déjà été faites pour proposer des modèles prédictifs
basés sur les réseaux de neurones pour les systèmes dynamiques. La combinaison des
réseaux de neurones avec des schémas d’intégration numérique a également été envisagée.
Cependant, l’apprentissage des systèmes dynamiques pilotés par des équations différen-
tielles ordinaires (EDO) ou les équations différentielles ordinaires (EDP) linéaires ou non
linéaires, p. ex., Rico-Martínez and Kevrekidis (1993) est resté relativement confidentiel à
cette époque.

Grâce aux progrès de l’industrie générale du DL, les efforts récents ont rajeuni cette
recherche, à savoir apprentissage en profondeur pour les systèmes dynamiques. Des travaux
pionniers ont été réalisés sur l’intégration d’informations préalables physiques dans les
modèles DL/ML pour les systèmes dynamiques (Long et al., 2018b; de Bézenac et al., 2018;
Raissi et al., 2019; Brunton andKutz, 2022) en se concentrant sur l’utilisation de techniques
DL.

Du côté du DL, le lien entre les systèmes dynamiques et les architectures de réseau de
neurones modernes a été mis en évidence par ResNet (He et al., 2016), populaire dans la
vision par ordinateur. Les connexions résiduelles mettent en œuvre une méthode de pas
de temps d’Euler en avant. Des auteurs, notamment E (2017), utilisent cette relation pour
motiver l’utilisation des réseaux de neurones comme solveur pour les EDO :

𝑧𝑡+𝛿𝑡 = 𝑧𝑡 + 𝑓𝜃 (𝑡, 𝑧𝑡) vs.
d𝑧

d𝑡
(𝑡) = 𝑓𝜃 (𝑡, 𝑧𝑡)

En suivant cette voie, des architectures ont été proposées en exploitant la théorie des EDO
qui garantit certaines propriétés physiques, telles que la stabilité ou la conservation de
l’énergie (Haber and Ruthotto, 2017; Ruthotto and Haber, 2020).

Le travail qui a le premier attiré l’attention des communautés de l’apprentissage profond et
de la modélisation dynamique est les neural ODE, les EDO neuronales. En remplaçant les
ResNet traditionnels par un solveur numérique, il a suscité l’intérêt des deux communautés
et relancé l’idée de l’intégration des réseaux neuronaux dans les solveurs différentiables. En
conséquence, le domaine de la modélisation avec le DL pour les systèmes dynamiques et
les équations différentielles a connu une croissance importante et continue de faire des
progrès impressionnants à ce jour.

Aujourd’hui, le DL intervient dans presque tous les types de modélisation dynamique :

• Agir comme un modèle de prévision purement piloté par les données. Il s’agit du cadre
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de base de l’apprentissage profond : découvrir des lois à partir de données. Les
modèles sont formés à partir des trajectoires spatiotemporelles observées dans le
but de prévoir les observations futures (Chen et al., 2018; Pfaff et al., 2021; Li et al.,
2021b; Brandstetter et al., 2022) ;

• Agir comme un modèle numérique. L’objectif est ici de trouver des alternatives aux
modèles numériques et à leurs solveurs. On utilise l’équation différentielle entière-
ment connue et les conditions pour trouver la solution inconnue sans données,
comme Sirignano and Spiliopoulos (2018); Raissi et al. (2019) et d’autres travaux
similaires ;

• Agir dans le cadre d’un modèle hybride. Améliorer les modèles numériques à faible
coût pour approcher la simulation numérique de haute précision (Belbute-Peres
et al., 2020; Kochkov et al., 2021) ou compléter un modèle numérique en fournissant
certains composants de ce modèle (de Bézenac et al., 2018; Ayed et al., 2022).

Défis du monde réel
Malgré les récentes percées dans le domaine de l’apprentissage profond pour la modélisa-
tion physique, plusieurs problèmes liés aux capacités des modèles dynamiques appris et
aux données d’entraînement ne sont toujours pas résolus.

Défis liés aux exigences en matière de capacité des modèles
Les modèles dynamiques en ML sont devenus de plus en plus importants dans divers
domaines scientifiques et techniques. Cependant, ils sont confrontés à plusieurs défis en
termes de précision et d’adaptabilité, qui sont essentiels pour leur application réussie :

Lemodèle doit être applicable à des situations inédites. Unaspect fondamental d’un
modèle d’apprentissage automatique réussi est sa capacité à bien se généraliser. Il s’agit
d’utiliser un modèle entraîné pour faire des prédictions précises même dans des situations
qu’il n’a jamais vues auparavant, ce qui est essentiel pour les applications du monde réel.
Dans le cas d’un système dynamique, cela signifie que le modèle doit être capable de faire
des prédictions précises même lorsqu’il est confronté à de nouveaux états initiaux qu’il n’a
pas rencontrés au cours de la formation. En d’autres termes, le modèle doit, en particulier,
être capable de résister aux changements dans la distribution des états initiaux au fil du
temps.

Le modèle doit s’adapter facilement à des dynamiques inédites. En outre, un bon
modèle dynamique doit également être capable de s’adapter aux changements dans la
dynamique sous-jacente du système. Si la dynamique change légèrement à l’avenir, ou
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dans d’autres circonstances, le modèle doit pouvoir être adapté rapidement avec peu de
données observées, sans qu’il soit nécessaire de procéder à un réapprentissage complet du
modèle.

Le modèle doit produire des prédictions physiquement fiables. Les états estimés
ne doivent pas seulement ressembler visuellement à la réalité, mais ils doivent également
respecter les propriétés indiquées par les lois de la physique et les mesures réelles des
quantités d’intérêt. Par exemple, des prévisions précises de quantités physiques clés au
niveau de la couche limite d’un profil aérodynamique sont essentielles et nécessitent des
prévisions précises dans des régions spécifiques. Il est essentiel de garantir que le modèle
produit des prévisions physiquement fiables pour assurer son applicabilité pratique, en
particulier dans les contextes où la précision et la fiabilité sont essentielles.

Défis liés aux données
Les méthodes ML apprennent la dynamique à partir des données. Cependant, dans le
monde réel, les données sont complexes et nous sommes confrontés à de multiples défis,
en termes de quantité, de variété et d’irrégularité :

Les données ne sont pas toujours abondantes dans certains scénarios. Compte
tenu de la complexité des architectures de réseau de neurones modernes et de leur nature
non linéaire, la plupart desméthodesDL sont sujettes à des problèmes de généralisation, en
particulier lorsque les données d’entraînement sont rares. Ce cas nous intéresse toujours
car, dans de nombreux scénarios, il est encore difficile et coûteux d’obtenir des données
pour des systèmes dynamiques réalistes en raison de l’infrastructure de calcul, par exemple
les superordinateurs pour les simulations à grande échelle. En outre, même si les données
existent, elles peuvent être détenues par des entités gouvernementales et industrielles, et
leur disponibilité est limitée par des politiques de confidentialité, a.k.a. le problème des
données à source fermée. Cette situation est très différente des problèmes rencontrés dans
d’autres sous-domaines, tels que la visionpar ordinateur et le traitement du langagenaturel,
qui disposent d’une grande quantité de données librement accessibles grâce à Internet,
ce qui nous oblige, au moins pour la prochaine décennie, à envisager des modèles moins
gourmands en données et contenant davantage de régularités qui favorisent l’application
à de nouvelles données.

Les données proviennent de sources hétérogènes. Dans la plupart des cas, les don-
nées récupérées ne doivent pas être uniformément réparties dans l’espace des paires entrée-
sortie. Cela signifie que nous devrions rencontrer des données provenant de différentes
sources, de différentes qualités/résolutions et même de différentes dynamiques. Dans
ce dernier cas en particulier, nous récupérons souvent des données relatives au même
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phénomène physique dans différents environnements, chaque environnement ayant sa
propre dynamique instanciée. Par exemple, nous observons des épidémies qui propagent
diversesmaladies infectieuses dans les pays. Elles suivent toutes lamême loi générale, mais
les valeurs observées dépendent de certains facteurs, tels que la contagiosité de la maladie
et la structure de la population. Cela signifie que même avec la même condition initiale,
les trajectoires d’évolution résultantes varieront en fonction des instances du système, qui
peuvent dépendre de la paramétrisation du système :

• Ils peuvent différer dans les lois d’évolution. Cela signifie que les dynamiques sous-
jacentes sont fondamentalement différentes. Par exemple, la dynamique des océans
à différents endroits a la force de Coriolis correspondante en fonction de la latitude
sur Terre. Ce sera l’un des principaux sujets de cette thèse.

• Ils peuvent différer dans les conditions qui déterminent la trajectoire. Même avec la
même dynamique, la variation de certaines conditions entraîne des changements
dans l’espace des trajectoires. Par exemple, la modification des températures sur
la frontière du domaine des équations de la chaleur conduira à des solutions dif-
férentes.

• Ils peuvent différer dans la forme et la géométrie de l’état du système. Lamodélisation de
la dynamique spatio-temporelle peut s’avérer difficile, en particulier lorsqu’il s’agit
de géométries complexes. Par exemple, la dynamique des fluides autour d’un profil
aérodynamique, d’une aile d’avion ou d’une voile de bateau, dépend non seulement
des propriétés du fluide mais aussi de la forme de l’objet, qui définit le domaine
spatial des trajectoires.

Le défi consiste à exploiter efficacement des sources de données hétérogènes afin de
découvrir des points communs entre les données, en particulier dans les cas où les
données présentent des dynamiques différentes. L’un des principaux objectifs est alors
de développer des modèles qui se généralisent bien à de nouvelles données présentant une
dynamique similaire, une fois que le modèle a été entraîné sur les données existantes.

Les données sont observées de manière irrégulière dans l’espace et le temps. Les
données du monde réel sont rarement récupérées sur une grille prédéfinie à des endroits
spécifiques. Le phénomène en question n’est presque jamais observé dans son intégralité
et fait l’objet de mesures discrétisées. Compte tenu de la disponibilité imprévisible des
capteurs, les modèles doivent être capables de traiter les données qui en sont extraites et
d’être robustes face à tout changement susceptible de se produire. Les modèles doivent
donc imposer moins de restrictions sur le format d’entrée/sortie, à la fois dans l’espace et
dans le temps.
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Contributions de la thèse
Dans cette thèse, nous avons abordé certains de ces défis à travers les problèmes suivants
: (a) développement d’un cadre formel solide pour la modélisation hybride (APHYNITY);
(b) traiter les problèmes de généralisation (LEADS et CODA) ; et (c) la modélisation sans
maillage (DINO).

Nous résumons ci-dessous nos contributions, qui seront examinées successivement dans
la thèse :

APHYNITY, Yin et al. (2021b) En raison des problèmes de généralisation, les ap-
proches purement axées sur les données sont sans doute insuffisantes. Nous nous
efforçons de faire fonctionner ensemble les modèles numériques et les modèles
guidés par les données afin de prévoir des phénomènes dynamiques complexes
pour lesquels on ne dispose que d’une connaissance partielle de leur dynamique.
Dans ce travail, nous présentons le cadre APHYNITY, qui consiste à décomposer la
dynamique en deux composantes : une composante physique formulée à partir de
premiers principes partiellement connus, et une composante pilotée par les données
qui complète la composante physique précédente en décrivant la dynamique qui
ne peut pas être capturée par le modèle physique, ni plus ni moins. APHYNITY
améliore les capacités des deux composantes : le modèle hybride prédit bien
dans de nouvelles conditions, atteint une meilleure généralisation que l’une ou
l’autre méthode seule et aide à identifier l’instance de modèle numérique incom-
plète appropriée à partir d’un grand ensemble de candidats. Cela permet non
seulement d’assurer l’existence et l’unicité de cette décomposition, mais aussi d’en
garantir l’interprétabilité et de favoriser la généralisation. Des expériences sur
divers phénomènes montrent qu’APHYNITY peut utiliser efficacement des modèles
physiques incomplets pour prévoir avec précision l’évolution du système et identi-
fier correctement les paramètres physiques pertinents.

LEADS, Yin et al. (2021a) Lors de la modélisation de systèmes dynamiques à partir des
échantillons de données du monde réel, la distribution des données change souvent
en fonction de l’environnement dans lequel elles sont capturées, et la dynamique
du système lui-même varie d’un environnement à l’autre, ce qui suggère que dans
les mêmes conditions, les trajectoires changent dans des environnements différents.
Dans ce cas, la généralisation à travers les environnements défie les cadres conven-
tionnels. Les cadres classiques proposent soit de considérer les données comme
identiques et d’apprendre un modèle unique pour couvrir toutes les situations,
soit d’apprendre des modèles spécifiques à l’environnement. Ces deux approches
sont sous-optimales : la première ne tient pas compte des différences entre les
environnements, ce qui conduit à des solutions biaisées, tandis que la seconde
n’exploite pas leurs points communs potentiels et est sujette à des problèmes de
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pénurie. Dans ce travail, nous proposons LEADS, un nouveau cadre qui exploite les
points communs et les différences entre les environnements connus afin d’améliorer
la généralisation du modèle dans le phénomène. Nous y parvenons grâce à une for-
mulation d’apprentissage sur mesure visant à capturer les dynamiques communes
au sein d’un modèle partagé, tandis que des termes supplémentaires capturent les
dynamiques spécifiques à chaque environnement. Nous fondons notre approche
sur la théorie, en démontrant une diminution de la complexité de l’échantillonnage
par rapport aux alternatives classiques. Nous montrons comment la théorie et la
pratique coïncident dans le cas simplifié de la dynamique linéaire. En outre, nous
instancions ce cadre pour les réseaux neuronaux et l’évaluons expérimentalement
sur des familles représentatives de dynamiques non linéaires. Cenouveau cadre peut
exploiter les connaissances extraites des données dépendantes de l’environnement
et améliore la généralisation pour les environnements connus et nouveaux, ce qui
nous permet de faire un premier pas vers une adaptation efficace à de nouvelles
dynamiques.

CODA, Kirchmeyer et al. (2022) En suivant la voie tracée par la contribution précé-
dente, nous nous dirigeons vers l’adaptation à un nouveau système dynamique
basé sur les données d’un ensemble de dynamiques connues. Les approches de
modélisation des systèmes physiques basées sur les données ne parviennent pas à
se généraliser à des systèmes inédits qui partagent la même dynamique générale
que les données d’apprentissage, mais qui correspondent à des contextes physiques
différents, c’est-à-dire à des paramètres différents de la dynamique. Dans ce travail,
nous proposons un nouveau cadre pour aborder ce problème clé, l’adaptation
dynamique informée par le contexte (CODA), qui prend en compte le changement
de distribution à travers les systèmes pour une adaptation rapide et efficace à de
nouvelles dynamiques. CODA exploite de multiples environnements, chacun asso-
cié à une dynamique différente, et apprend à conditionner le modèle de dynamique
sur des paramètres contextuels, spécifiques à chaque environnement. Le condition-
nement est effectué par l’intermédiaire d’un hyper-réseau, appris conjointement
avec un vecteur de contexte à partir de données observées. La formulation proposée
contraint l’espace des hypothèses de recherche pour une adaptation rapide et une
meilleure généralisation dans des environnements avec peu d’échantillons. Nous
motivons théoriquement notre approche etmontrons des résultats de généralisation
de pointe sur un ensemble de dynamiques non linéaires, représentatives d’une
variété de domaines d’application. Nous montrons également, sur ces systèmes, que
les nouveaux paramètres du système peuvent être déduits des vecteurs de contexte
avec une supervision minimale.

DINO, Yin et al. (2023) Inspiré par l’approche contextuelle précédente, nous abordons
le problème de l’apprentissage de la dynamique avec des données échantillonnées
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de manière irrégulière dans l’espace et dans le temps. Les méthodes de prédiction
efficaces basées sur les données reposent souvent sur une discrétisation spatiale et/
ou temporelle fixe. Cela pose des limitations dans les applications du monde réel,
comme les prévisions météorologiques, où une extrapolation flexible à des emplace-
ments spatio-temporels arbitraires est nécessaire. Nous abordons ce problème en
introduisant une nouvelle approche basée sur les données, DINO, qui modélise le
flux d’une EDP avec une dynamique en temps continu de fonctions spatialement
continues. Pour ce faire, les observations spatiales sont intégrées indépendamment
de leur discrétisation via des représentations neuronales implicites dans un petit
espace latent piloté temporellement par une EDO apprise. Ce traitement séparé et
flexible du temps et de l’espace fait deDINO le premiermodèle piloté par les données
à combiner les avantages suivants. Il extrapole à des emplacements spatiaux et
temporels arbitraires ; il peut apprendre à partir de grilles irrégulières peu denses ou
demanifolds ; aumoment du test, il se généralise à de nouvelles grilles ou résolutions.
DINO surpasse les prédicteurs neuronaux alternatifs dans une variété de scénarios
de généralisation difficiles sur des systèmes EDP représentatifs.
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PHYSICS-AWARE DEEP LEARNING AND DYNAMICAL SYSTEMS: HYBRID MODELING AND GENER-
ALIZATION

Abstract

Deep learning has made significant progress in various fields and has emerged as a promising tool
for modeling physical dynamical phenomena that exhibit highly nonlinear relationships. However,
existing approaches are limited in their ability to make physically sound predictions due to the lack
of prior knowledge and to handle real-world scenarios where data comes from multiple dynamics
or is irregularly distributed in time and space. This thesis aims to overcome these limitations
in the following directions: improving neural network-based dynamics modeling by leveraging
physicalmodels through hybridmodeling; extending the generalization power of dynamicsmodels
by learning commonalities from data of different dynamics to extrapolate to unseen systems;
and handling free-form data and continuously predicting phenomena in time and space through
continuous modeling. We highlight the versatility of deep learning techniques, and the proposed
directions show promise for improving their accuracy and generalization power, paving the way
for future research in new applications.

Keywords: deep learning, dynamical system, physical phenomenon, neural network, hybrid
modeling, generalization, adaptation, out-of-distribution, continuous dynamics modeling

APPRENTISSAGE PROFOND POUR LA PHYSIQUE ET LES SYSTèMES DYNAMIQUES : MODéLISATION
HYBRIDE ET GéNéRALISATION

Résumé

L’apprentissage profond a fait des progrès dans divers domaines et est devenu un outil prometteur
pour modéliser les phénomènes dynamiques physiques présentant des relations hautement non
linéaires. Cependant, les approches existantes sont limitées dans leur capacité à faire des prédictions
physiquement fiables en raison du manque de connaissances préalables et à gérer les scénarios
du monde réel où les données proviennent de dynamiques multiples ou sont irrégulièrement
distribuées dans le temps et l’espace. Cette thèse vise à surmonter ces limitations dans les directions
suivantes : améliorer lamodélisation de la dynamique basée sur les réseauxneuronaux en exploitant
des modèles physiques grâce à la modélisation hybride ; étendre le pouvoir de généralisation des
modèles de dynamique en apprenant les similitudes à partir de données de différentes dynamiques
pour extrapoler vers des systèmes invisibles ; et gérer les données de forme libre et prédire
continuellement les phénomènes dans le temps et l’espace grâce à la modélisation continue. Nous
soulignons la polyvalence des techniques d’apprentissage profond, et les directions proposées
montrent des promesses pour améliorer leur précision et leur puissance de généralisation, ouvrant
la voie à des recherches futures dans de nouvelles applications.

Mots clés : apprentissage profond, système dynamique, phénomène physique, réseau de neu-
rones, modélisation hybride, généralisation, adaptation, hors distribution, modélisation
dynamique continue
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