Deep reinforcement learning uses simulators as abstract oracles to interact with the environment. In continuous domains of multi-body robotic systems, differentiable simulators have recently been proposed, still, they are yet underutilized, even though we have the knowledge to make them produce richer information. This problem when juxtaposed with the usually high computational cost of exploration-exploitation in high dimensional state space can quickly render reinforcement learning algorithms less effective. In this thesis, we propose to combine learning and simulator-based optimization such that the quality of both increases while the need to exhaustively search the state space decreases. We propose to learn value function and state, and control trajectories through locally optimal runs of a trajectory optimizer. The learned value function, along with estimates of optimal state and control policies, is subsequently used in the trajectory optimizer: the value function estimate serves as a proxy for shortening the preview horizon, while the state and control approximations serve as a guide in policy search for our trajectory optimizer. The proposed approach demonstrates a better symbiotic relation, with superlinear convergence, between learning and simulators, that we need for end-to-end learning of complex poly articulated systems.

Résumé

L'apprentissage profond par renforcement utilise des simulateurs comme oracles abstraits pour interagir avec l'environnement. Dans les domaines continus des systèmes robotiques multi-corps, des simulateurs différentiables ont récemment été proposés mais sont encore sous-utilisés, même si nous avons les connaissances v nécessaires pour leur faire produire des informations plus riches. Ce problème, lorsqu'il est juxtaposé au coût de calcul élevé de l'exploration-exploitation dans un espace d'état de haute dimension, peut rapidement rendre les algorithmes d'apprentissage par renforcement impraticables. Dans cette these, nous proposons de combiner l'apprentissage et les simulateurs de sorte que la qualité des deux augmente, tandis que la nécessité d'explorer exhaustivement l'espace d'état diminue.

Nous proposons d'apprendre la fonction de valeur, l'état et les trajectoires d'etat et de contrôle à travers les exécutions localement optimales de l'optimiseur de trajectoire.

La fonction d'valeur apprise, ainsi qu'une estimation des politiques optimales d'état et de contrôle, est ensuite utilisée dans l'optimiseur de trajectoire l'estimation de la fonction d'valeur sert de proxy pour raccourcir l'horizon de prévision, tandis que les approximations d'état et de contrôle servent de guide dans la recherche de politiques pour notre optimiseur de trajectoire. L'approche proposée démontre une meilleure relation symbiotique, avec une convergence super linéaire, entre l'apprentissage et les simulateurs, dont nous avons besoin pour l'apprentissage de bout en bout de systèmes polyarticulés complexes. vi 1 "I just sit at a typewriter and curse a bit.

-P G Wodehouse

The theory of Reinforcement Learning (RL) provides a normative method of animal behavior based on psychological and neuro-scientific learning mechanisms [SB18;

Wat89; Bar97]. These methods then define how an agent can optimize and achieve optimal control of its environment. The resulting control is optimal with respect to an objective function -the objective function is either written positively as a reward to maximize or negatively as a cost to minimize and is usually combined with constraints on state and control that characterize behavior. The key characteristics of RL algorithms -online adaptability, self-learning of features, and sequential decision-making under uncertainties -often underpin their successful deployment in robotics. RL has been successfully used to rotate valves with multi-fingered robotic hands [START_REF] Zhu | Dexterous manipulation with deep reinforcement learning: Efficient, general, and low-cost[END_REF], construct dynamic locomotion policies for legged robots [START_REF] Xie | Iterative reinforcement learning based design of dynamic locomotion skills for cassie[END_REF], and learn vision-based dynamic manipulation skills with scalable self-supervised vision-based RL frameworks [START_REF] Kalashnikov | Scalable deep reinforcement learning for vision-based robotic manipulation[END_REF].

However, the brittleness of the RL agent restricts its applicability to domains where useful features can be handcrafted or to domains with fully observed, lowdimensional state space. In continuous high dimensional state space of robotics, the RL agent may either altogether fail to converge to the optimal solution due to curse of dimensionality [START_REF] Moore | The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces[END_REF] or requires clever sampling solutions [START_REF] Strens | A Bayesian framework for reinforcement learning[END_REF][START_REF] Kumar | On the sample complexity of actor-critic method for reinforcement learning with function approximation[END_REF]. The overall goal is to learn the solution of an optimal control problem and in the general landscape of robot learning this can quickly lead to extensive trials and errors. In this thesis, we propose a radically different formulation of RL for robotics. Our objective is to define a basis on which new algorithms more closely related to numerical optimization methods can be formulated with guarantees of convergence and accuracy that are necessary for tasks that involve learning complex poly-articulated behavior. This establishes a broad road map for our research. Consequently, we explore the various aspects of building a framework that binds trajectory optimization and learning -from the architectural design of neural networks, quantities that can be learned, theoretical guarantees on learning, and details of practical implementation of the subsequent framework.

Motivation

Using RL requires an exhaustive exploration of the environment and in highdimensional robotic systems computing large enough datasets can quickly become infeasible. Consequently providing guarantees of reliability and accuracy can become challenging. A key feature of our proposition is to take advantage of the capabilities of Trajectory Optimization (TO) solvers. Trajectory Optimization methods [START_REF] Witkin | Spacetime constraints[END_REF] also solve an optimal control problem, although they typically do not seek an explicit representation of the optimal policy but rather for an optimal trajectory. While a trajectory is a far less expressive object than a policy -in particular, being only able to lead to open-loop behaviors if not systematically reevaluated -it can also often be represented in lower dimensions than a policy. This is easy to see -typically a few polynomials can sufficiently encode information about the trajectory while deep neural networks are now the standard representations for policy.

Consequently, trajectory optimizers are able to provide local optimum with a few trials and errors and can reach arbitrary levels of convergence and accuracy. These are the two criteria not met by RL algorithms. In addition, trajectory optimizers can also handle explicit constraints on the robot state which can then be used to certify the behavior of physical systems in real conditions. A key element to acquiring these properties is the use of derivatives of the objective function within the evolution model of the system: the derivatives can be evaluated efficiently through differentiable simulators. Yet close-loop behaviors then also imply permanent reoptimization of the robot trajectory given the observed situation and consequently, the solver may also fall in local minimum with disastrous consequences.

Overall we observe that the limiting factors of both RL and TO hamper efforts to develop a robust reliable framework for predictive control. This forms the core issue we tackle in this thesis learning complex poly articulated behavior -1. with few demonstrations or trials inside a differentiable simulator

with high accuracy of predictions

The main question is how to fully exploit the knowledge about the system to learn in order to improve the efficiency of our algorithm. In this thesis, we try to answer this question by searching for a new algorithm that can exploit both RL and TO for better performance.

Contributions

To achieve our stated objectives, we combine TO with a reinforced learning loop. This is accomplished by setting an iterative loop in the backdrop of the recursivity of Bellman's optimality principle [START_REF] Bellman | Dynamic programming[END_REF] such that learning depends on the data provided by TO, while the efficient computation of optimal trajectories over a preview horizon by TO depends on accurate learning. In an abstract way, we can think of this as a synergistic coupling between learning and trajectory optimization where the coupling is explicitly formulated to improve trajectory optimization through learning and vice-versa. We do not try to improve one at the cost of other.

Intuitively, we can reason that since the value function defines a partial ordering over policies, it can then be said that some policy is better than other policies if its expected return is greater than the expected return of other policies (from the same state) -the expected return is, of course, encapsulated in value functions. Therefore,

Contributions

if the optimal value function can be estimated, it becomes relatively easy to estimate the corresponding optimal policy -if the optimal value function at some state is known, then the corresponding actions after 1 step search will then be optimal.

Therefore optimal actions from some state can be selected without knowing all possible future behaviour, if the optimal value function at that state is known. This is the guarantee provided by Bellman´s optimality equations.

Furthermore, we explicitly focus on learning with high accuracy and with reduced rollouts. We use trajectory optimization to give us state-value pairs and state-control trajectories which we learn in a supervised phase using three neural networks representing the value function, policy function, and the predicted optimal trajectory. The estimates of value function are subsequently used inside TO at the terminal position, while the approximation of the optimal policy serves as a guide for TO.

The road-map we set for ourselves is as follows:

• Estimate global value function given a time-dependent estimate of value function.

• Learn an accurate representation of state-control trajectories that can be used to warmstart.

• Establish optimality criteria on learning.

• Develop means to use additional information provided by the TO during the learning phase.

While the algorithm presented in this thesis can be used with any TO, we used Differential Dynamic Programming (DDP) [May73; XLH17], a particular class of trajectory optimization. The choice of using DDP is primarily due to its ability to compute 1 st and 2 nd order derivatives of the value function. We explicitly use gradients of the value function during training and we will show that that enables us to learn with high accuracy and in fewer trials.

Thesis Structure

This thesis is organized into two parts. In part 1 corresponding to Chapters 2-4 we present the theoretical aspects of our work. Chapters 2 focuses on the state-of-art and background, while in Chapter 3 we present our algorithm.

In the next part, from Chapters 4-6 we present the experimental evaluations of our work. We summarize and conclude in Chapter 7.

Chapter 2

In this chapter, we first establish notations and foundations that we will use throughout this thesis. We then present an overview of optimal control and Reinforcement Learning. We also discuss hybrid methods that combine learning and trajectory optimization.

Chapter 3

In this chapter, we first describe the general optimal control problem setup. Then we follow it up with a brief description of the Differential Dynamic Programming algorithm.

We then describe the algorithms that we developed during the course of this thesis -DVP, ∆PVP, ∂PVP. Then we define a form of constrained learning -Sobolev Regression -that we use to learn value function. We give a general introduction to using 1st order regression methods using target gradients. This chapter marks the end of the theoretical section of our work.

Chapter 4

This is a short standalone chapter where we describe the robots we used to evaluate our algorithm.

We tested our algorithm in two steps during our thesis. Step 1 consisted in learning only the global value function, and the second step involved learning state-control 1. 3 Thesis Structure trajectories along with the global value function. Therefore, we split our results into two parts with each part presented in the next two chapters respectively.

Chapter 5

In this chapter, we will present the results of learning value function. We will discuss the issues of singularities and empirically demonstrate the robustness and generalization capabilities of our algorithm.

Chapter 6

This chapter will present our results on learning a good initialization of the TO solver.

We will compare the quality of the predictions of our algorithm and show that it can achieve super-linear convergence in the number of attempts required to compute and refine a (locally) optimal trajectory.

Chapter 7

Perspectives and Conclusion

Notations

The work presented in this thesis lies at the intersection of Reinforcement Learning and Trajectory Optimization. It is then necessary to define a common vocabulary that can be used to elucidate ideas with enough clarity.

We will first concretely define certain terms that we use throughout this thesis.

• Robot -A machine capable of carrying out a complex series of actions automatically either autonomously or semi-autonomously. Alternatively, in RL literature, a robot can be thought of as an agent in an environment. We will use the words robot and agent interchangeably.

• Environment -The world where the agent/robot lives. In Optimal Control formulation, the environment is typically referred to as system. The environment can either be :

1. Fully observable -The agent can determine the state of the environment at all times.

2. Partially observable -The agent is partially aware of the state of the environment.

We refer to the model of the environment as Ω.

10

Contents

• State Space -The state space is the space of possible values that the agent in the environment can take. The agent assumes a state within the environment and can traverse the environment by changing its state. The state space can either be discrete or continuous. We refer to the state space as X .

• Control Space -The control space is a set of controls that are permissible for the agent in a given environment. In RL literature, this is referred to as the Action Space. The control space can also be either discrete or continuous. The control space is referenced with U.

• State Transition Function -The state transition function governs the evolution of the system. We will refer to the state transition function as a function f that takes the current state and action x, u at the current timestep t and returns the next state x + of the agent in the environment, i.e x + = f (x, u, t, Ω) where x, x + ∈ X and u ∈ U. The optimal control problem can be defined with a stochastic evolution, however, in this thesis, we concern ourselves with deterministic models -in a deterministic setting the probability of the next state in the state space reached by the robot is either 1 or 0. In OCP literature the state transition function, f , is often called the system dynamics and is defined by numerical integration schemes such as Euler or Runge-Kutta methods through an initial value problem formulated from a mechanical study of the physical state [START_REF] Carpentier | The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF][START_REF] Featherstone | Rigid body dynamics algorithms[END_REF]. In a more general term, f is a simulator of the agent behavior.

We will use these basic notations to establish further definitions.

In the next Section, we give a formal description of Optimal Control.

Generalized Optimal Control -Problem Formulation

In its generalized formulation, optimal control problems involve the minimization of some cost functions. The resulting optimization problem can be written as

minimize x, u L(x, u, Ω) (2.1a)
subject to

x 0 = x, (2.1b
)

x t+1 = f (x t , u t)∀t, (2.1c)
x t ∈ X , (2.1d)

u t ∈ U, (2.1e
)

g t (x t , u t) ≥ 0, (2.1f) g T (x T) ≥ 0 (2.1g)
In the continuous formulation, the state and control variables x, u are infinitedimensional vectors in the corresponding state and control space. The starting state of the system is x 0 and x : t ∈ [0, T] → x t and u : t ∈ [0, T] → u t and f is the state transition function.

We will drop Ω from hereon.

Cost The cost function in (2.1a) is typically defined as an integral over some efficiency criteria and is usually written as :

L(x, u) = T 0 ℓ(x t , u t)dt + ℓ T (x T) (2.2)
where ℓ(.) is the integral cost (Lagragian term) and ℓ T (.) is the terminal cost (Mayer term). This particular form is mostly used in practice and will lead to the resulting sequential decision problem. The shape of the cost term can be different however classical algorithms demand the Markovian property to function [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF].

Initial Constraint

The initial state of the system in (2.1b) is assumed to be given :

x 0 = x.
12 Contents Dynamics Constraints The constraints in (2.1c) impose limitations over the dynamical evolution of the system for all time.

State and Control Constraints Additionally, constraints on state and control in (2.1f) and (2.1g) can be put on the system for instance, to prevent slippage if contact sequences are being considered. In general, any other equality or inequality constraint can be formulated, in particular on the terminal state. We will barely consider that in this thesis.

Solutions

The generalized optimal control problem is a functional optimization problem where the inputs themselves are functions and the resolution of the problem lies in determining that particular input function and trajectory that optimizes some cost functional.

To further elucidate, the problem in (2.1) is an optimality decision problem, it is not a (static) optimization program -often called Non-Linear Programming (NLP)

[Ber97; BSS13] -as it involves an infinite number of variables under an infinite number of constraints. The optimality conditions are formally described by a set of partial differential equations (PDEs) -the Hamilton-Jacobi-Bellman equations (HJB) [START_REF] Peng | A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation[END_REF]. When possible directly integrating the HJB PDEs gives the complete solution of OCP in (2.1), yet it is rarely feasible in practice.

There are two methods for solving the optimal control problem in practice:

1. Indirect Methods -The OCP is rewritten under some kind of differential equation whose complexity can be numerically handled, typically using more convenient optimality criteria such as Pontyagrin Maximum Principle [START_REF] Kopp | Pontryagin maximum principle[END_REF].

2. Direct Methods -Transcribe the problem into a static optimization problem by discretizing x and/or u to find the minimum of the objective cost function.

Generalized Optimal Control -Problem Formulation

Both RL and TO can be classified as Direct Methods -TO considering polynomials/discretization of x, u and RL considers a neural network as an approximation of the optimal policy π. To better understand the connection with RL, we will first reformulate (2.1) into a deterministic MDP.

Dynamic Programming and Markov Decision

Process

The overall optimality problem in (2.1) can also be solved via Dynamic Programming.

Based on Hamilton-Jacobi-Bellman equations [START_REF] Subbaram | Optimal control systems[END_REF], dynamic programming uses value function to model the interactions of the robot with the environment and proceeds to solve the overall optimal control problem by breaking it down into simpler subproblems in a recursive manner. Note that Dynamic Programming uses recursion to solve problems by breaking it into smaller sub-problems. It can be used

to not only solve Markov Decision Problems but problems in general where it is possible to nest sub-problems recursively inside larger problems -this implies that there is relation between the value of the sub-problems and the value of the overall problem [START_REF] Th | Introduction to Algorithms[END_REF].

Reinforcement Learning aims to find the solution to a subset of optimal control processes solved via dynamic programming that can also be described as a Markov Decision Process.

Formally, a (deterministic) Markov Decision Process is defined as a tuple of (X , U, f, l, γ)

• f is the state transition function and next state x + reached by the robot under the application of control u in state x where x + , x ∈ X and u ∈ U.

• ℓ is the feedback obtained by the robot at time t for moving from state x to x + . In RL this is canonically called the reinforcement, r, obtained on 14 Contents transitioning to x + from x under u. Alternately the reinforcement can be written as r(x + |x, u) = -ℓ(f (x, u), u).

• γ is the discount factor. γ ∈ (0, 1).

A policy is therefore a decision rule π that maps states to controls :

π : x ∈ X → u = π(x) ∈ U (2.3)
As discussed before, in this thesis we consider a deterministic formulation. π can also be considered stochastic which is convenient to handle multi-modalities however the proposed algorithms cannot yet handle stochasticity.

Informally, the goal of an RL agent is to search for a policy that optimizes the discounted sum of rewards over a horizon. The horizon itself can be :

• Finite time horizon T : The problem is characterized by a deadline T and the RL agent only focuses on the sum of rewards up to that time.

• Infinite time horizon: The problem never terminates but the agent will either reach a termination state or rewards closer in time will receive higher importance or the agent will seek to maximize the average of rewards.

We consider the case of the finite-time horizon to establish two further definitions.

State-Value function

In the finite-horizon case, the state value function is written as :

V (x, t) = T -1 s=t ℓ(x s , π x (x s)) + ℓ T (x T)|x t = x; π (2.4)
where ℓ T is the reward function for the final/terminal state at the end of the horizon.

From hereon, we will denote the state value function as the value function -we can 2.3 Dynamic Programming and Markov Decision Process also write the value function as a function of π, as is done in RL literature, however for the remainder of this thesis, we will keep this notation.

Note that this value function is time-dependent. We will later use this to show an equivalence between dynamic programming and trajectory optimization. We would also note that a related quantity called that state-control value function or quality function -Q function -can also be defined, but is not necessary for the ideas in this thesis. We show the Q function in the Appendix 8.1

Optimal Value Function and Optimal Policy

The solution to MDP is an optimal policy π * that satisfies :

π * ∈ argmax π∈Π V (2.5)
in all states x ∈ X , where Π is some policy of interest. The corresponding value function is then the optimal value function: V * = V . Furthermore, there is always atleast one policy that satisfies the above optimality criteria. We denote π * as the collection of all policies that maximize the the value function. Alternatively, we can think of an optimal policy as any policy that is greedy with respect to V * .

Note that MDPs are usually formulated as a maximization problem while OCP is formulated as a minimization problem however maximization of rewards is identical to the minimization of cost. The difference is largely anecdotal. We will use the minimization form in this thesis. • Critic-only methods such as Q-learning [START_REF] Christopher | Q-learning[END_REF] or SARSA [START_REF] Gavin | On-line Q-learning using connectionist systems[END_REF] learn the Q function without any explicit function for the policy. These methods tend to show a lower variance in estimates of expected return [START_REF] Richard S Sutton | Learning to predict by the methods of temporal differences[END_REF]. In turn, the policy is then derived by selecting greedy actions -actions for which the expected reward is maximum [START_REF] Schoknecht | Optimality of reinforcement learning algorithms with linear function approximation[END_REF]. This results in Critic-only methods being computationally intensive -if the action space is continuous then one needs to resort to some optimization procedure in every state to find the action that maximizes value.

An overview of Reinforcement Learning in robotics

• Actor-Critic methods [Gro+12; Aru+17] combine the advantages of actor-only and critic-only methods approaches. The parameterized actor brings the advantage of computing continuous actions while the critic supplies the actor with low-variance knowledge of the performance. However, these methods often require a large number of samples [START_REF] Tan | Sim-to-Real: Learning Agile Locomotion For Quadruped Robots[END_REF] followed by considerable tuning.

To mitigate these problems, in [START_REF] Haarnoja | Learning to Walk Via Deep Reinforcement Learning[END_REF] an extension to soft actor-critic approach [START_REF] Haarnoja | Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor[END_REF] is developed to counter over-sensitivity to hyper-parameters [START_REF] Henderson | Deep reinforcement learning that matters[END_REF]. The quality of predictions of the actor itself was examined in [START_REF] Hoeller | Deep Value Model Predictive Control[END_REF] with the conclusion that the actor learns better when learning to act optimally over a horizon rather than learning the next optimal state. On the whole, however, actor-critic methods usually show better convergence properties than critic-only methods [START_REF] Vijay | Onactor-critic algorithms[END_REF].

At Deep Deterministic Policy Gradient [START_REF] Timothy P Lillicrap | Continuous control with deep reinforcement learning[END_REF] was trained to track the optimal route while [START_REF] Long | Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning[END_REF] presented an a safe and efficient collision avoidance policy while route tracking. Reducing the probability of collision remains an important task in RL. In [START_REF] Wang | Look before you leap: Bridging model-free and model-based reinforcement learning for planned-ahead vision-and-language navigation[END_REF] a hybrid RL model is presented that solves a real-world vision language navigation task.

RL in robotics is thus characterized by wide-ranging datasets and high sampling complexity and a primary challenge is then to learn with fewer demonstrations and trials. A possible way to ameliorate this problem is through the use of underlying geometric structures of the robotic datasets, for instance recasting inference in Riemannian or Grassman manifolds as shown in [START_REF] Sylvain Calinon | Gaussians on Riemannian manifolds: Applications for robot learning and adaptive control[END_REF] can provide a principled way of using data in robotics. Similarly, decomposing complex robotic movements into a series of simpler movement primitives and formulating the learning process as an information fusion problem to generate complex movement was explored in [START_REF] Pignat | Learning from demonstration using products of experts: Applications to manipulation and task prioritization[END_REF].

18

Contents Either way learning in robotics is characterized by two key issues -sampling in high dimensional spaces [START_REF] Dulac-Arnold | Challenges of real-world reinforcement learning: definitions, benchmarks and analysis[END_REF] and hypersensitivity to parameters (although hypersensitivity is a far more pervasive problem). This is the primary motivating factor behind this thesis. These difficulties are studied and analyzed in [Mah+18a;

Mah+18b] over 450 independent experiments which took over 950 hours of robot usage with the conclusion that learning performance can be highly sensitive to different elements of the task setup such as the control space, the control cycle time (defined as the time between two subsequent application of controls), and system delays. A possible way to counter the over-sensitivity problem [START_REF] Henderson | Where did my optimum go?: An empirical analysis of gradient descent optimization in policy gradient methods[END_REF] is through Maximum Entropy Deep Reinforcement Learning [START_REF] Haarnoja | Reinforcement learning with deep energy-based policies[END_REF][START_REF] Haarnoja | Acquiring diverse robot skills via maximum entropy deep reinforcement learning[END_REF].

MEDRL provides a basis for constructing hierarchical strategies through probabilistic reasoning that can eliminate the need for extensive tuning.

Conclusion

When compared with TO, RL is less prone to getting stuck in local minima and is much faster at run-time than TO. However, its sample efficiency, bloated convergence time, and accuracy of predicted policies with respect to HJB optimality of substructures [START_REF] Bellman | Dynamic programming[END_REF] criteria stand in contrast to that of TO. Whereas TO strongly integrates the simulator with numerical optimization, RL tends to idealistically decouple the algorithm from the simulator by considering it as an abstract oracle. This presents a case to more tightly couple the simulator and the learning algorithm.

Direct Methods -Transcription and Resolution

Transcription

To solve the optimality problem described in 2.1 with finite resources, we first need to transcribe it as an NLP such that a static discretized optimal control problem can be formulated. There are two classes of transcription methods used to convert the optimality problem into a general constrained optimization problem -shooting and 2.4 Direct Methods -Transcription and Resolution simultaneous [START_REF] Kelly | Transcription Methods for Trajectory Optimization: a beginners tutorial[END_REF]. Either of these two methods first transforms the continuous problem in Section 2.2 into a non-linear programming problem [START_REF] John | Practical methods for optimal control and estimation using nonlinear programming[END_REF]. The primary difference between shooting and simultaneous methods lies in their implementation of constraints on system dynamics -shooting methods use simulations to explicitly enforce the dynamics of the system while simultaneous methods enforce dynamics at a series of points along the trajectory. Once the problem has been transcribed various solvers such as SNOPT [START_REF] Philip E Gill | SNOPT: An SQP algorithm for large-scale constrained optimization[END_REF], IPOPT [START_REF] Wächter | On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[END_REF], FMINCON [START_REF]Matlab[END_REF] or ACADO [START_REF] Houska | ACADO toolkit-An open-source framework for automatic control and dynamic optimization[END_REF] can be used to compute the solution.

Shooting Methods Shooting methods fall into two classes -single-shooting [START_REF] Gerdts | Direct shooting method for the numerical solution of higher-index DAE optimal control problems[END_REF] and multiple-shooting [START_REF] Diehl | Fast direct multiple shooting algorithms for optimal robot control[END_REF]. Single-shooting methods, also known as Initial

Value Approach [Isl+15], the dynamical system is solved by a numerical integrator.

Typically, it involves some function such zero-order-hold, piecewise linear, piecewise cubic, or orthogonal polynomials to approximate the control trajectory [START_REF] Rösmann | Time-optimal nonlinear model predictive control[END_REF].

Multiple-shooting methods [START_REF] Hans | A multiple shooting algorithm for direct solution of optimal control problems[END_REF] such as Differential Dynamic Programming [START_REF] David Q Mayne | Differential dynamic programming-a unified approach to the optimization of dynamic systems[END_REF] work by breaking up a trajectory into a series of segments and using single shooting to compute the solution for each segment as shown in Figure 2.1. As these segments get shorter, the relationship between decision variables and the objective function to be minimized becomes more linear. Usually, in multiple-shooting, the end of a segment will not necessarily match the beginning of the next segment.

This difference is known as defect or gap [START_REF] Hans | A multiple shooting algorithm for direct solution of optimal control problems[END_REF] and is added to the constraint function such that gaps decrease.

Simultaneous Methods Simultaneous methods represent state trajectory using decision variables [START_REF] James | Simultaneous optimization and solution methods for batch reactor control profiles[END_REF]. The solution is then computed in a way such that the constraints on dynamics are satisfied only as special points along the trajectory. Two commonly used simultaneous methods are direct transcription [START_REF] Vasile | Finite elements in time: a direct transcription method for optimal control problems[END_REF] and direct collocation [START_REF] Gede | The direct collocation method for optimal control[END_REF]. To understand the differences between these methods, we first need to note that the dynamics constraints can be represented in either derivative or integral form. The derivative method of representing constraints requires that 20 Contents Fig. 2.1.: Single vs Multiple-Shooting [START_REF] Matthew | Transcription methods for trajectory optimization[END_REF]. Note that multiple-shooting consists of a series of single shooting methods but with defect/gap constraints added to make the resulting trajectory continuous.

the derivative of state with respect to time must be equal to the system dynamics:

ẋ = f (x, u).
The integral method requires state trajectory to match the integral of the dynamics with respect to time:

x = f (x, u).
Direct transcription uses the integral form of the dynamics constraint and the control and state trajectories are then represented through piecewise-constant and piecewise-linear functions. Direct collocation methods are slightly different in that they represent input as a piecewise-linear function of time and the state trajectory is piecewise-cubic. The value of the state and control at each knot/node point along a trajectory is then modeled as decision variables. Orthogonal collocation is another simultaneous method that uses orthogonal polynomials to approximate state and control function. These methods tend to be fast and lead to accurate numerical interpolation, differentiation, and integration of the polynomial [START_REF] Berrut | Barycentric lagrange interpolation[END_REF]. These methods are very popular in building quick prototypes since they provide great flexibility. Yet they tend to be very sensitive to hyperparameters.

2.4 Direct Methods -Transcription and Resolution

Trajectory Optimization -A literature review

Once the problem has been transcribed, TO solves the optimal control problem while allowing for the full exploitation of the system dynamics within a prediction horizon.

In a discretized transcription, L(X, U) can be written as an infinite sum of running cost, ℓ(x, u):

L(X, U) = +∞ k=0 ℓ(x k , u k) (2.6)
where ℓ(x, u) : X × U → R.

Given some initial condition x 0 and some input control trajectory u t over a finite time interval T , trajectory optimization methods [RMM94; AHM22] computes the long-term but finite-horizon cost of executing that trajectory using standard additivecost optimal control objective. For finite time horizon problems of length T , the

L(X, U) is split in two parts: L(X, U) = T -1 k=0 ℓ(x k , u k) + ℓ T (x T) (2.7)
where ℓ T (x T) is the cost at the terminal state. We denote X * , U * as the optimal solution to this minimization problem over a finite time horizon T and from the initial starting state x 0 .

Equivalence with MDP This minimization problem is exactly equivalent to the maximization of the accumulated sum of rewards problem over a time discrete finitehorizon, albeit a discount factor. The additive cost function can then be thought of as a negative cumulative reward or negative reinforcement over a horizon. Under these conditions, the search for an optimal policy in RL can be said to be equivalent to the search for an optimal control trajectory in TO [KZG22; Ber12; Ber97].

22

Contents

Model Predictive Control

The solution computed by TO is a fixed trajectory that cannot be directly applied in open-loop due to the problem of robustness when modeling any relevant robotic dynamical system. A controller is then hand-tuned to rigidly track if the accuracy is acceptable in the operation context. Yet the optimal policy can be evaluated by systematic re-evaluation of a new trajectory for each new measured state, x. Model Predictive Control methods use trajectory optimization as feedback policy. MPC methods execute the following steps sequentially :

1. Measure the current state x 2. Optimize trajectory from that current state.

3. Execute the first action, u 0 , from that optimized trajectory.

Allow dynamics to evolve for one step and repeat.

A standard approach is to use trajectory optimization for optimization over a horizon longer than T through receding horizon MPC. Since the trajectory optimization problem is formulated over a finite-horizon, then it is typical to continue solving for T step horizon problem at each evaluation of the controller. Despite their wide use, several challenges need to be addressed :

1. Non-linearities in the robot model can force TO in local minima [START_REF] Boyd | Convex optimization[END_REF]. This automatically leads to suboptimal solutions. Escaping from these local minima can be done through Entropy-based DDP [START_REF] So | Maximum entropy differential dynamic programming[END_REF] or RRT [START_REF] Noreen | Optimal path planning using RRT* based approaches: a survey and future directions[END_REF].

2.

A problem which we also tackle in this thesis is to reduce the number of iterations needed by the solver to converge to a (locally) optimal solution. This is usually done by either reformulating the OCP as a convex optimization problem or providing the solver with a good guess. Warmstarting the solver typically involves either learning offline some representations of the optimal behavior via Reinforcement Learning (RL) or supervised regression [Man+18;

Lem+20; Lid+22a], or re-using the solution computed in the previous control cycle as warmstart [START_REF] Diehl | A real-time iteration scheme for nonlinear optimization in optimal feedback control[END_REF].

3. The computational cost is also a function of the complexity of the task which scales with the cube of the dimensionality of the system, with the result that MPC has mostly been applied to systems with fewer degrees of freedom

[Neu+16; GM16; HD10].
Recent works such as [Hut+17; Dan+21] have tried to target more complex robots such as quadrupeds or bipeds by focusing on a more accurate modeling of system dynamics and a more advanced (stronger, more robust, faster) simulation of poly-articulated behavior [TET12; HLH18]. The computational efficiency also scales with the preview horizon of the OCP. This is easy to see -the computational cost of computing a locally optimal trajectory over a

24

Contents larger preview horizon is much higher than the cost incurred in computing trajectories over a short preview horizon.

4. Particular care must be put on an efficient implementation of rigid body dynamics, for instance for complex systems more efficient numerical optimal controls such as [Car+19; Kim+19] that can work at higher frequencies are needed.

Hybrid Methods

Hybrid solutions lie at the intersection of learning and TO. Combinations of these can be divided broadly into two categories depending on their goals.

Learning some function to enhance the performance of TO In this approach, the primary goal is to boost the performance of TO either by speeding up the computation time or by improving the quality of computed solutions. Either way, this usually involves learning a function offline through a library and subsequently using it online inside TO: the library of representations itself is generated through simulations or through offline solving of OCP.

The learned function can represent the dynamics of the system to alleviate the problem of designing controllers for tasks with complex non-linear dynamics [START_REF] Lenz | DeepMPC: Learning deep latent features for model predictive control[END_REF] or a cost function to allow for re-planning with hindsight [START_REF] Tamar | Learning from the hindsight plan-episodic mpc improvement[END_REF] or value function either to improve the quality in sampling-based planning [START_REF] Bharatheesha | Distance metric approximation for state-space RRTs using supervised learning[END_REF] or reducing planning horizons [START_REF] Lowrey | Plan online, learn offline: Efficient learning and exploration via model-based control[END_REF].

Much closer to our work is [START_REF] Zhong | Value function approximation and model predictive control[END_REF], where the authors propose to learn the global value function through Gaussian Mixture Models (GMM) and Nearest Neighbor through (locally) optimal runs of TO. The learned value function is then used inside TO as a proxy for terminal cost. This is also the primary reason why we chose to learn the global time-independent value function -estimates of the global value The idea was further refined in [START_REF] Zhang | Learning deep control policies for autonomous aerial vehicles with mpc-guided policy search[END_REF] where the offline trajectory optimization phase was replaced with MPC. A similar variant of GPS uses path integral to optimize the individual instance trajectories and later combines them into a single policy [START_REF] Chebotar | Path integral guided policy search[END_REF]. In [START_REF] Viereck | Learning a structured neural network policy for a hopping task[END_REF] guided policy search was used to learn contact-rich dynamics for underactuated systems along locally optimal trajectories in a sample-efficient

26

Contents manner and was tested on real robots. In [START_REF] Mordatch | Combining the benefits of function approximation and trajectory optimization[END_REF], the authors combine a trajectory optimizer with a policy learning phase through the Alternative Direction Method of Multipliers.

The key limiting factor here is the use of canonical methods of RL and its dependency on the quality of guiding samples. This is where our method differs from previous works on learning a good initialization. We use supervised regression to learn guiding samples provided by DDP while the value function approximator refines the quality of trajectories computed by DDP.

Discussion

In the preceding sections, we showed the equivalence of discrete-time optimal control problem with shooting transcription and Markov Decision Process in the deterministic case. Under this equivalence, we can establish a notion of complementarity between RL and TO -search for an optimal policy can be thought of as a search of optimal trajectory.

Then, we discussed methods that explicitly solve discrete-time OCP through TObased methods while solutions to MDP were discussed under RL approaches. The primary advantages of RL: speed of inference, and the ability to approximate complex policies: are negated by slow convergence and over-sensitivity to hyper-parameters leading to brittleness and sample inefficiency. The sample inefficiency in RL also comes from using differentiable simulators as abstract oracles and failing to fully exploit the available knowledge of the system, whereas TO combines optimization algorithms with simulators. This is the central theme of this thesis -exploit the knowledge of the system as much as possible -for an end-to-end learning framework. We think this is a good direction to explore. To that end, we combine TO in a reinforced learning loop with the aim of improving the quality of TO while improving the accuracy of predictions. The work we present in this thesis is much more aligned with the hybrid solutions we discuss

Discussion

in Section 2.5. Our proposed method learns value functions and warmstarts for model predictive control which gets improved iteratively. We learn value functions primarily because of its importance.

In a Markov Decision Process value functions are unique fixed points of Bellman operators and govern interactions of RL agent with its environment [START_REF] Kamihigashi | Existence and uniqueness of a fixed point for the Bellman operator in deterministic dynamic programming[END_REF]. This is where the algorithmic implementations of RL fail to realize its mathematical foundations: an extensive analysis in [START_REF] Ilyas | A closer look at deep policy gradients[END_REF] showed that value function estimates never match the true value function and only marginally guide the search for the policy. The mathematical foundation is the maximization of some stochastic objective function based on the governing dynamics of the system and RL usually proceeds by estimating the 0 th order gradient of that objective [START_REF] Richard | Reinforcement learning: An introduction[END_REF][START_REF] Schulman | Proximal policy optimization algorithms[END_REF]. This is also where our implementation of the learning process slightly differs from the canonical methods used in robot learning or learning in general. We explicitly use 1 st order Sobolev regression [START_REF] Czarnecki | Sobolev training for neural networks[END_REF] to learn the value function [START_REF] Parag | Value learning from trajectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear convergence properties[END_REF]. Learning in Sobolev Spaces has the added benefit of imparting more interpretability to the hidden layers and minimizes the problem of local minima1 . There are three canonical ways to view the DDP algorithm :

Part I

• As a 2-pass algorithm • As sparse sequential quadratic programming -Sparse SQP.

-Optimal way of using sparsity in quadratic programming by solving a sequence of optimization subproblems, each of which optimizes a

32

Contents quadratic model of the objective function subject to a linearization of the constraints to induce sparsity [START_REF] John | Trajectory optimization using sparse sequential quadratic programming[END_REF].

DDP is a second-order shooting method that can admit quadratic convergence under mild assumptions for any system with smooth dynamics. It has also been shown to have convergence properties similar or better than Newton's methods performed in the entire control sequence [START_REF] Liao | Advantages of differential dynamic programming over Newton's method for discrete-time optimal control problems[END_REF].

Recall that under shooting transcription, the optimal control objective is exactly equivalent to a Markov Decision Process. The objective function to be minimized is :

L(X, U) = T -1 k=0 ℓ(x k , u k) + ℓ T (x T) (3.1)
where ℓ T (x T) is the cost at the terminal state and X * , U * are the optimal solution pairs to this minimization problem over a finite time horizon T and from the initial starting state x 0 .

DDP takes advantage of the recursivity of Bellman's Optimality Principle [START_REF] Bellman | Dynamic programming[END_REF] by adding the condition, V T (x T) = ℓ T (x T), where V T (x T) is the value function at the terminal step x T . In each iteration, it numerically solves the optimal control problem described above by performing a backward and a forward pass on the current estimate of the state-control trajectories (X, U) : a backward phase to estimate the value function as quadratic fit along the current candidate trajectory, a forward phase to refine the candidate trajectory based on the value function.

To construct a quadratic fit of the value function, DDP measures the deviations from the current candidate trajectory through Taylor's expansion [START_REF] Xie | Differential dynamic programming with nonlinear constraints[END_REF], discarding terms beyond second-order. It then returns a quadratic approximation of the cost-togo and the hessian, gradient at every step along the preview horizon. In the next few sections, we quickly formulate the quadratic approximation and comment on the overall complexity of the DDP algorithm.

3.1 Differential Dynamic Programming Let Q(δx, δu) be the measure of deviation of l(x i , u i) + V i+1 (f (x i , u i)) around the current candidate state-control trajectories x i , u i . The Q function is a scalar function taking vector inputs and expresses the change in cost that results from perturbing a point in the nominal trajectory. The goal of the DDP algorithm is to find perturbations that minimize the Q function.

Therefore,

Q(δx, δu) = l(x i + δx, u i + δu) -ℓ(x i , u i) + V i+1 (f (x i + δx, u i + δu)) -V i+1 (f (x i , u i)) (3.2)
With a quadratic approximation and dropping terms beyond the 2 nd order, DDP rewrites Q(δx, δu) as :

Q(δx, δu) ≈       1 δx δu       T       0 Q T x Q T u Q x Q xx Q xu Q u Q ux Q uu             1 δx δu       (3.3)
where the expansion coefficients are :

34 Contents Q x = ℓ x + f T x V ′ x Q u = ℓ u + f T u V ′ x Q xx = ℓ xx + f T x V ′ xx f x + V ′ x f xx Q uu = ℓ uu + f T u V ′ xx f u + V ′ x f uu Q ux = ℓ ux + f T u V ′ xx f x + V ′ x f ux (3.4)
The subscripts {} x , {} u , {} xx , {} uu , {} ux are the 1 st , 2 nd order derivatives with respect to the state and control variables. The primes denote the values at the next time step.

Minimizing the quadratic approximation in (3.3) with respect to δu, we have :

δu * = arg min δu Q(δx, δu) = k + Kδx (3.5)
where k = -Q -1 uu Q u and K = -Q -1 uu Q ux are the feed forward and feedback terms. The corresponding recursive updates to the 1 st and 2 nd derivatives of the value function, which we denote by V x (i), V xx (i) are done as follows :

V x (i) = Q x + K T Q uu k + K T Q u + Q T ux k V xx (i) = Q xx + K T Q uu K + K T Q u + K T Q ux + Q T ux K (3.6)
At the end of this backward pass, we now know the quadratic approximation of the value function along the horizon.

3.1 Differential Dynamic Programming

Line Search

Once the backward pass is completed, the proposed locally-linear policy is evaluated with a forward pass by integrating the dynamics along the computed feed-forward and feedback terms k, K :

ûi = u i + αk i + K i (x i -x i) xi+1 = f (x i , ûi) (3.7)
where This method works by introducing a step-size parameter α that is applied to the control policy. The purpose of α is to regularize the trajectory and ensure that the new trajectory is of lower cost than the previous one. Note that if α = 0, the state and control trajectories are not modified. This backward-forward process is repeated until convergence to the (locally) optimal trajectory.

Complexity and Regularization

DDP uses the value function V along with its derivatives V x , V xx to iteratively invert the block diagonal components. The inverted Hessian also characterizes the direction during Newton's descent. The line search then computes the next candidate trajectories for the optimal solution based on the descent direction. While typically, this is done by approximating the dynamics x t+1 = f (x t , u t) as linear, DDP performs the forward pass on the exact non-linear dynamics and not its linearized version. This is done to ensure the feasibility of the corresponding solutions, unlike 36 Contents the classical Newton step which tends to produce discontinuities in the solution.

Under a linearized approximation of dynamics, the DDP solution is identical to the Newton Step. Although DDP searches in the space of control trajectories U ∈ R m×N , it solves the m dimensional problem N times. This difference is even more apparent when considering N Hessians of size m × m rather than a larger N m × N m matrix.

This immediately shows that the factorization complexities are of the order O(N m 3)

and O(N 3 m 3).

Furthermore, in order to guarantee a descent direction, additional regularization is used when the hessian loses positive definiteness, for instance by adding a Tikhonov regularization term [START_REF] Golub | Tikhonov regularization and total least squares[END_REF] in (3.5). Additionally when the cost terms are least squares residuals, then the Hessians can be approximated through the square of the Jacobian, i.e ℓ xx ≈ r T x r, where r is the residual that models the cost. We also use this idea to design the architecture of our neural networks. This approximation corresponds to the Gauss-Newton variation and is referred to as iLQR. The regularization parameter and α are adapted online following a Levenberg-Marquardt heuristic [START_REF] Moré | The Levenberg-Marquardt algorithm: implementation and theory[END_REF].

Discussion

DDP is an iterative improvement scheme that finds a locally optimal trajectory from a fixed starting point. In every iteration, a quadratic approximation of the time-dependent value function is constructed over some horizon of length T . By iteratively moving toward the minima of the quadratic approximations, the trajectory is progressively improved toward a local optimum with superlinear convergence.

The DDP algorithm is relatively cheap and simple to implement and also takes advantage of the sparsity pattern of the problem. Additionally, it also provides, along with the solution, a linear feedback term that can be used to correct the control sequence when the observed trajectory deviates from the optimal one. In particular, this allows the solution to be robust to some amount of external noise.

Differential Dynamic Programming

However, DDP based methods provide limited convergence guarantees (no globalization strategies) or require a significant amount of iterations of the DDP algorithm to converge to a feasible solution. This forms a major limiting factor in the deployment of DDP for online Model Predictive Control for instance. The reader is also invited to consult [START_REF] Budhiraja | Crocoddyl: a fast and flexible optimal control library for robot control under contact sequence[END_REF] for a tutorial on the DDP solver.

DDP exploits the 1 st and 2 nd order estimates of the value function. This then allows access to the superlinear convergence rate if we are able to provide derivatives of ℓ and f along the preview horizon. In practice, DDP computes time-dependent estimates of the value function along a finite preview horizon. The time dependence of the value function makes DDP unsuitable for infinite-horizon problems and leads to significant performance degradation. This limitation was examined and an alternate scheme to estimate the global timeindependent value function was proposed in [START_REF] Lowrey | Plan online, learn offline: Efficient learning and exploration via model-based control[END_REF] through a plan online and learn offline -POLO -framework. POLO tightly couples local trajectory optimization with global value function learning to overcome the drop in performance when using an approximate value function. Computing the optimal value function exactly is not tractable except in a few cases such as LQR [START_REF] Pierre | Constrained linear quadratic regulation[END_REF]. The POLO framework overcome intractability by using the popular fitted-value iteration [START_REF] Lutter | Value iteration in continuous actions, states and time[END_REF] to approximate the global value function through locally optimal runs of a trajectory optimizer.

The trajectory optimization computes the solution over some predefined horizon of length T which then generates the targets for fitting the value approximation. -Supervised Sobolev descent -using gradients in training.

-Learning state-control trajectories for warmstarting.

Differential Value Programming -DVP

To estimate the value function at an infinite-horizon such that the finite-horizon problem can be turned into an infinite-horizon MPC, we first need to formulate and subsequently exploit, the algorithmic principles of Bellman's Optimality conditions to build DVP.

Algorithmic Principles

Bellman's principle of optimality [Bel66; Bel54; Dre02] divides a sequential decision process into a series of smaller subproblems. Formally it can be stated as follows :

3.2 Differential Value Programming -DVP

The Principle of Optimality

An optimal policy has the property that whatever the initial state and the initial decision is, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

The optimality principle allows us two insights.

The first insight is that we do not need to consider the past when optimizing the OCP from any given state. This allows us to define a cost-to-go or the net objective cost from some given state x i as :

J i (x i , u i:T -1) = T -1 t=i ℓ(x t , u t) + ℓ T (x T) (3.8)
where u i:T -1 are the decisions taken from x i to arrive at the terminal state x T .

This is due to a forward simulation of the system dynamics. The optimality principle can be restated as -the optimal trajectory from some x i only depends on finding the optimal control sequence u i:T -1 . In turn, this allows us to define the value function V i as the minimum cost-to-go from the state x i :

V i (x i) = min u:i:T -1 J i (x i , u i:T -1) (3.9)
The second insight lies in the optimality of substructures: if we consider the optimal trajectory from some state x 0 to x T , then any sequence of sub-trajectory x i , ..., x T of this optimal trajectory is also optimal.

The optimality of sub-structures along with the value function, Equation 3.9, allows us to make recursive decisions of the form :

40 Contents V i (x i) = min u i [ℓ(x i , u i) + V i+1 (f (x i , u i))] (3.10)
The recursivity provided by Bellman's optimality principle associates a value function V i to each feasible state x i for the optimization problem. Therefore V 0 is the solution for the OCP at state x 0 . This property of recursive optimality is important. To estimate the global value function, we use an approximation of the value function as a proxy to represent the truncated horizon end, ℓ T (x T). This implies that we should be able to evaluate an approximation of the value function and its first and second order derivatives at the end of the horizon. The solver will then return a refined approximation of the value function at the beginning of the horizon, and its derivatives.

Algorithm

Cost-to-go learning The first iteration of DVP simply generates a batch of optimal trajectories of horizon length T . We then learn the value function by supervised learning. The result of this first iteration is a neural network approximating the cost-to-go for a horizon of T, denoted by V i=0 α . The superscript of V i α denotes the V α at iteration i.

Iterative value learning DVP then proceeds by iteratively building upon its estimates of value functions. In the subsequent iterations, we replace the terminal cost with the approximated value predicted by the neural network. So at the end of every iteration, (3.10) is changed to:

V i (x) = min u T -1 k=0 l(x k , u k) + V i-1 α (x T) (3.11)
where i is the iteration number, i ≥ 2, V Estimating the global value function and providing guarantees on its convergence to the infinite-horizon effectively removes time dependence from the value function.

This induces an invariance that can then be mathematically shown to force states at the end of the finite prediction horizon to be in some neighborhood of an invariant terminal region.

Another important point to note would be that in MDP formulation, value functions are the interactions between the agent and an external environment and are therefore unique fixed points of their corresponding Bellman operators. A fundamental property of the Bellman operator is that it is a contraction in the value function space in the ∞-norm [START_REF] Ml Puterman | Finite-horizon Markov decision processes[END_REF]. Therefore, starting from any bounded initial function, with repeated applications of the operator, the value function converges to the time-independent value function. This invariance effectively turns the prediction horizon from finite to infinite which is solvable with finite resources as long as V α can provide good enough estimates of value function at infinite-horizon. The guarantees on stability and convergence to the infinite horizon then involves proving that the Jacobian linearization of the system at the terminal region is stabilizable. While the full mathematical proof is beyond the scope of this thesis, the reader is invited to consult [START_REF] Chen | A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[END_REF].

42

Contents

The implementation of our algorithm merits discussion on three primary aspectsarchitecture of V α , sampling strategy, and choice of regression method. We discuss the choice of regression method in Section 3.3.

Architecture of V α

DDP is a second-order algorithm. It computes the 2 nd and 1 st order derivatives of the value function in the backward pass and therefore requires V ′ α and V ′′ α in every iteration of our algorithm. We had initially designed V α as a feed-forward network with one output that models the value function. However, double differentiating V α did not prove to be feasible. To overcome this, we initially reduced the size of V α -fewer hidden layers and fewer units -however the lack of depth in the network prevented us from obtaining a fair representation of the value function. Computing the hessian of a feed-forward network with one output proves to be computationally slow, especially for use in MPC and learning depends on the depth of the hidden layers, we use Gauss-Newton approximation to design V α as the squared sum of residuals : 2 (3.12)

V (x|α) = R(x|α)
This immediately allows us to write the 1 st and 2 nd order derivatives as :

V ′ (x|α) = 2R ′ (x|α) T R(x|α) (3.13) V ′′ (x|α) ≈ 2R ′ (x|α) T R ′ (x|α) (3.14)
We implement this with a feed-forward network with 3 hidden layers of 64 units and hyperbolic tangent activation applied to every layer. The final layer outputs a three-vector residual. Modeling the value function as the output of Gauss-Newton approximation seemingly imparts a more physical interpretation to the hidden layers as compared to a simple feed-forward network. It also provides us with the added 3.2 Differential Value Programming -DVP benefit of not having to resort to the time consuming automatic differentiation for computing the Hessian of V α , since now it can be estimated through (3.14).

DVP with Sobolev Descent -∆DVP

The DVP algorithm, in Algorithm 1, we initially developed was tested with classical regression. However, classical regression failed to improve the gradients of V α with respect to the input that DDP demands. In the majority of applications of deep neural networks, classical regression usually consists in receiving a dataset of input-output pairs from a ground truth function and computing a loss to encourage the network to generate the same output as the ground truth function for some given input. In the traditional supervised setting, many of these ground truth functions may have an unknown analytic form. However in many other scenarios we do know the analytic form or are able to compute the ground truth gradients (or higher order derivatives)

or the gradients are simply observables as is the case in [Rus+15; HVD+15; Jad+17; More formally, a Sobolev Space is a vector space of functions equipped with a norm that is a combination of L p norms of the functions together with its derivatives up to a given order [START_REF] Robert | Sobolev spaces[END_REF]. An interesting result provided in [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF] showed that a feed-forward network with sigmoid activation can approximate both the value of

44

Contents the target function and the derivatives of the function arbitrarily well. This is the key insight of Sobolev training -in the training phase, the neural network is not only trained on the output of the function but also the derivatives of the function.

Incorporating derivative information in function approximation to make more physics-informed neural networks has been previously explored in numerous contexts. In [START_REF] Wu | Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature[END_REF] Bayesian optimization is assimilated with information about the gradient and Hessian to improve the predictive power of Gaussian Processes. The derivatives of the approximators (with respect to inputs) have also been used

to either penalize model complexity [START_REF] Rifai | Higher order contractive auto-encoder[END_REF] for effective knowledge discovery or to encode invariances by making symmetry aware neural networks [START_REF] Simard | Tangent prop-a formalism for specifying selected invariances in an adaptive network[END_REF] or to provide additional learning in attention distillation for Convolutional Neural Networks [START_REF] Zagoruyko | Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[END_REF]. Somewhat closer to our approach is the use of Sobolev training in Reinforcement Learning to match the derivatives of the critic with the target derivatives using small sigmoid-based architectures [TE07; FAP12; FA12; Wer92].

Sobolev learning has been shown to lead to better generalization and imparts more interpretability to neural networks albeit at a higher computation cost, as it constrains training by forcing neural networks to fit a target slope [START_REF] Tom | Explanation-based neural network learning for robot control[END_REF]. However, encoding the target derivative information in neural networks has been shown, empirically, to increase robustness against noise, as proven in, [START_REF] Masuoka | Noise robustness of EBNN learning[END_REF] and mitigates the problem of increased computation cost by being more data efficient [START_REF] Lee | Hybrid learning of mapping and its Jacobian in multilayer neural networks[END_REF].

Sobolev Regression

Let f be a learnable function. For training points x i , we assume that we have access to the output values f (x i) and the j-th order derivatives of f with respect to x i .

The training dataset, therefore, consists of (K + 2) tuples :

{(x i , f (x i), D 1 x f (x i),, D K x f (x i)} N i=1 .
Let m be some neural network parameterized by θ. The loss function in this case is then composed of two terms:

l d = N i=1 K j=1 λ j (D j x m(x i |θ), D j x f (x i)) (3.15b) l f in (3.

Sampling the State Space

The classic control systems we use to establish the basic properties of our algorithm hardly require any clever sampling strategies. For computationally inexpensive systems such as Unicycle and Cart-Pole it is easy to compute large datasets by uniformly sampling for s initial configurations from the state space and keeping only the nodes estimated at horizon T .

The problem with this approach lies in the observation that V α is only used to provide the cost-to-go (along with derivatives) at the terminal state. The terminal state reached by the manipulator is invariably near the target: computing a dataset sampled uniformly from the state space, is wasteful if the trained approximator is only used at the terminal position. On the other hand, the obvious solution of sampling for starting configurations that are near the target position more often than not leads to over-fitting. A possible way to ameliorate this problem is through adaptive sampling. In Figure 3.2, we show adaptive sampling for the End Effector pose-reaching task. The state space is 14 dimensional and the goal is to reach the target from various initial configurations sampled from the state space.

Through adaptive sampling we define 3 bounded boxes, near the static target position, shown in red, to constrain the possible terminal state reached by DDP (EE position and velocity) to be in the vicinity of the target. For each possible target position, shown in blue, we apply inverse kinematics to establish the corresponding joint space samples. This subsequently allows us to define initial conditions for our OCP. The dataset so generated is extremely accurate. The primary problem with this approach lies in its use of inverse kinematics to generate samples, in every training iteration.

48

Contents

50

Contents state, the gradient of the value function and the hessian of the value function -V, V ′ , V ′′ . This value function is, of course, a time dependent quantity.

Therefore, for x 0 , DDP would compute v(x 0 |T), v ′ (x 0 |T), v"(x 0 |T). For x 1 , DDP computes v(x 0 |T -1), v ′ (x 0 |T -1), v"(x 0 |T -1) and so on for each x i in the trajectory.

For the terminal state, x T , the value function (and its gradient and hessian) would be estimated at a planning horizon of 1 :

v(x 0 |1), v ′ (x 0 |1), v"(x 0 |1).
Therefore, the state with the highest fidelity is x 0 and its corresponding {v x 0 , v ′ x 0 , v ′′ x 0 } since it is estimated over a planning horizon of T . The nodes nearer the target would be of lesser quality since they are estimated by DDP over shorter and shorter preview horizons. The terminal state, x T , with {v x T , v ′

x T , v

′′

x T } would be of the poorest quality since the corresponding preview horizon from x T is 1.

Effectively, for one run of DDP with a preview horizon T , we get T observations and T target triplets in decreasing order of precision. Therefore the subset of this instance of data with the highest fidelity would yield 1 target triplets. For s runs of DDP, the purest dataset would be of the order of s × 1.

To gauge the extent to which nodes with smaller preview horizons while not relying on adaptive sampling, we initially sample uniformly for s locally optimal trajectories. Of this, we sub sample the first k nodes, {x 0 , x 1 , ..., x k } from every state sequence for our training datasets. Thus the size of the training dataset is s × k. The terminal node/state, x T , from every state sequence is used in subsequent iterations as the initial starting configuration to sample for the new dataset. Figure 3.4 shows the distribution of the training datasets across the iterations in the End-Effector cartesian space for the manipulator pose estimation task. As we see, in higher iterations the data tends to become more concentrated around the target.

DVP with Sobolev Descent -∆DVP

Conclusion

Both Algorithm 1 and 2 focus on learning the value function -the first algorithm with classical regression and the second with Sobolev regression. The learned value function was then used in lieu of terminal cost.

An interesting point to note here would be using V α to provide the cost-to-go at every node along the state trajectory: effectively providing optimal value function estimates at every state and not just the terminal position. We did not do this for two reasons :

• DDP requires also requires 1 st and 2 nd order derivatives of the value function.

Therefore, using V α for next-step optimal control would also involve differentiating the neural network at every step. This would immediately increase the computation time.

Consider some (locally) optimal trajectory computed over a preview horizon of length T . Assuming that the solver took N iterations/roll-outs to compute and refine its estimates of that trajectory, then it is simple to see that if V α were substituted for cost-to-go at every step it would require differentiating the neural network at least T × N × 2 times.

• V α is ultimately function approximation, therefore even small errors in estimates of value function could lead to divergence later on. Therefore, the safest way to incur as little divergence as possible seemed to be using V α only at the terminal position. To quote Aristotle -The least initial deviation from the truth is multiplied later a thousandfold. This leads us to the final contribution of the work presented in this thesis.

52

Contents

Differential Policy Value Programming -∂PVP

As noted before, in the first iteration of ∆DVP we simply compute a batch of optimal trajectories of horizon length T. We use this to learn the global value function.

Additionally, we can use this offline database to learn state and control trajectories which are then used to warmstart (i.e provide good initial guesses) DDP in the forward pass phase. This allows DDP in avoiding poor local optima while speeding up the convergence and also improves its performance in real-time in MPC.

Learning state-control trajectories along with global value function was the aim of our work. Our original goal was to bind TO and learning in a synergistic coupling through a reinforced loop and to accomplish that we build our algorithm in 3 steps over the course of numerous experiments. Algorithm 2 augments Algorithm 1 by adding a Sobolev loss term thereby taking advantage of additional information provided by the TO. This brings us to our final contribution which we call ∂PVP. The algorithmic implementation is shown in Algorithm 5, where we also learn state-control trajectories, along with the value function. This synergistic coupling is reinforced in that the performance of V α , X β , U γ depends on the quality of data provided by DDP and the quality of computations of DDP depends on accurate predictions from V α , X β , U γ .

By setting off an iterative loop, we force TO and learning to depend on each other.

The purpose of utilizing Bellman's optimality principle is to ensure that the quality of both TO and learning remains guided by optimality.

The parameters of Algorithm 5 show that the empirical convergence of ∂PVP is a function of T, s and i -given some initial planning horizon T , the neural network V α should approximate the value function over a horizon of T × i. Therefore, as we iteration, i.e as i increases, V α should, at least empirically, asymtote to the value function at infinite horizon.

Note that we can warmstart DDP in every iteration i > 1, however, this depends on the quality of learning and the capability to generalize which has to be established empirically. The iterations i are equivalent to the concept of episodes in RL. We will use iterations and episodes interchangeably.

Sampling -

The sampling strategies we employed in Algorithm 1 and 2 cannot be used with the complete algorithm in 5 since we now have to accommodate for learning state-control trajectories too. So we uniformly sample for s points in the state space as starting positions for DDP to compute an offline database for training.

Design of V α , X β , U γ

The primary difference between ∆DVP and ∂PVP is that in ∂PVP we are also learning warmstarts along with the value function. This brings us to the question how to design V α , X β , U γ such that learning is computationally efficient. We experimented with numerous designs of V α , X β , U γ some of which we now describe. Design 2 Connect V α , X β , U γ sequentially such that the output of the previous network is the input of the next network. In this design, V α models the relation x → v, X β learns the state trajectory from with input as v through v → XS and U γ infers the control sequence from the trajectory predicted by X β through XS → U S.

Design 3 As actor-critic esque setup between V α and X β , U γ , where the output from X β goes back to V α and V α predicts the value function associated with each node in every state trajectory. We could not find an efficient way to enforce this architecture -the corresponding loss computed by DDP could not be efficiently packed into a tensor architecture and back-propagated since gradient descent has now to account for the parameters, α, β of both V α and X β .

Design 4 Connect X β , U γ either through common hidden layers or through sequential connection either X β → U γ or through U γ → X β . V α is learned separately.

However, none of these experiments led to any conclusive results and more often than not led to severe performance degradation. Taking advantage of the rich information in common hidden layers proved too difficult. Similarly, we thought that by inducing any relation between V α , X β , U γ would lead to better performance.

However, it frequently led to either vanishing or exploding gradients problem [START_REF] Hochreiter | The vanishing gradient problem during learning recurrent neural nets and problem solutions[END_REF] which is a common problem in time series data since modeling the state trajectory and control trajectory can also be thought of as learning a time series data [START_REF] Wen | Time series data augmentation for deep learning: A survey[END_REF]. Inspired by the design of Long Term Short Memory (LTSM) architectures [START_REF] Yu | A review of recurrent neural networks: LSTM cells and network architectures[END_REF], we further explored adding specific time connections. This again proved to be extremely challenging as it required providing guarantees on the derivatives of LTSM. This has been a pervasive problem -designing complex architectures is easy 3.4 Differential Policy Value Programming -∂PVP teacher, gradually guiding the network toward better solutions. These two ideas form a core inspiration for our work. We use this as building blocks to formulate ∂PVP such that the performance of the optimal control solver can be enhanced by initializing the search, i.e warmstarts, and placing a guiding term in the cost function through an approximation of the global value function.

The importance of obtaining a fair representation of the global value function is primarily based on the view that RL-based approximations of the value function in robotics often suffer from the curse of dimensionality, low accuracy, and low efficiency. Additionally, using the value function as a final cost for the MPC computation is guaranteed to produce the optimal behavior as long as the trajectory terminates in an area where the terminal cost accurately reflects the value function [START_REF] Zhong | Value function approximation and model predictive control[END_REF] since it effectively turns the problem into infinite-horizon MPC [CA98; HL02]. Given a planning horizon, Bellman's equation yields a time-dependent value function, defined recursively as the optimal cost-to-go. This time dependence, however, implies that the planning horizon of states at the tail end of the trajectory is extremely short, which in turn may cause myopic behavior in these states. A fine-tuned terminal cost function, ℓ T , mitigates this problem by effectively informing the controller about all events that lie beyond its planning horizon. However, designing a handcrafted ℓ T is both problematic and difficult. On the other hand, replacing ℓ T with an approximation of V * leads to a quasi-infinite prediction horizon that guarantees convergence as was shown in [START_REF] Chen | A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[END_REF]. The guarantee of asymptotic stability is a huge improvement upon moving horizon methods [START_REF] Polak | Moving horizon control of linear systems with input saturation and plant uncertainty part 1. robustness[END_REF] or receding horizon approaches [START_REF] Mayne | An implementable receding horizon controller for stabilization of nonlinear systems[END_REF] or methods that place a terminal inequality constraint [START_REF] Michalska | Robust receding horizon control of constrained nonlinear systems[END_REF] such that the states are on the boundary of a terminal region at the end of a variable prediction horizon.

We note that while convergence guarantees can be made, the number of iterations required by ∂PVP to converge depends on primarily the initial planning horizon. It is easy to see that the length of the planning horizon corresponds to steps taken to reach infinite-horizon -the bigger the step the quicker you converge to a steady state. Once the terminal cost function has been replaced by the steady-state value 3.4 Differential Policy Value Programming -∂PVP function, the TO should dramatically improve its performance especially when it is warmstarted. This is what we will empirically test and demonstrate in the remainder of this thesis.

Conclusion

This marks the end of the theoretical section of the thesis. To summarize the important points of our algorithm ∂PVP :

• ∂PVP learns the global value function and warmstarts in an iterative manner by constantly replacing the terminal cost with the latest approximation of the global value function.

• Three different neural networks are used to represent the value function, state, and control trajectory from some given initial state -V α , X β , U γ .

• V α is a residual network that maps value functions as a squared sum of residuals and is trained through Sobolev regression.

• X β , U γ are trained through classical regression.

In the next chapters, we show the results of the empirical evaluation of ∂PVP. For This is a short standalone chapter where we describe the robot models we use to empirically evaluate ∂PVP -3 classic control systems and a manipulator arm. We then discuss the organization of the next chapters.

Unicycle

The Unicycle in Fig 4 .1 features a kinematic model of evolving on the 2D horizontal plane either driving forward or turning on the spot. Denoting the configuration vector q = (x, y, θ) of dimension n = 3, the Unicycle model reads: where the control u = (v, ω) includes the unconstrained longitudinal and angular velocities. The task is to reach the goal position q = (0, 0, 0) while minimizing the residual sum of errors:

L = w 1 ||q|| 2 + w 2 ||u|| 2 (4.4)
w 1 , w 2 represent the weights on q and u

The Unicycle system is inherently subject to non-holonomic constraints. This nonholonomy leads to instabilities in learning which we shall discuss later.

62

Contents The velocity that is reduced or increased by the applied force is not fixed and it depends on the angle the pole is pointing. The center of gravity of the pole varies the amount of energy needed to move the cart underneath it. The cost function to be minimized is:

L = w 1 ||x|| 2 + w 2 ||u|| 2 (4.5)
where x = (q, q) is the configuration and the control u is force exerted on the cart and w 1 , w 2 are the corresponding weights. The configuration space is 4 dimensional and describes the cart position and its velocity and the position and angular velocities of the pole.

Inverted Pendulum

The inverted pendulum 1 swing-up problem in

L = w 1 ||x|| 2 + w 2 ||u|| 2 (4.6)
where x = (q, q) is the configuration and the control u is joint torque exerted on the cart. The configuration space is 2 dimensional and describes the angle and angular velocity of the pendulum. The joint torque u is not explicitly limited in our case, although such constraints can be, in principle, enforced.

64

Contents

7 dof Manipulator Arm

The manipulator arm introduced by KUKA is based on the developments of the German Space Center (DLR) in targeting direct machine-human interactions. The manipulator arm has 7 joints with corresponding control units and consequently allows 1 redundant degree of freedom (6+1 in total). Therefore, the configuration space is 14 dimensional with x = (q, q)

We formulate the optimal control problem as a static End Effector (EE) pose reaching OCP task from an initial q 0 . We use a quadratic cost on translation and state limits.

Additionally, we regularize the state and torque controls :

min x,u w 1 ||q -q 0 || 2 + w 2 || q|| 2 + w 3 ||u|| 2 + w 4 ||p(q) -p * || 2 (4.7)
where q, q 0 are the joint position and the initial joint position respectively, u is the torque control term and p(q), p * denote the end-effector position and the desired end-effector position respectively. Note that w 1 , w 2 , w 3 , w 4 are weights.

4.4 7 dof Manipulator Arm

Discussion

In this chapter, we presented the robot models that we will use to empirically evaluate our algorithm in the next two chapters. The classic control systems we use were decided based on their simplicity, however, non-holonomy and instability led to us to a much greater understanding of certain features regarding practical implementation. In Chapter 5 we discuss the results obtained in learning value function while in Chapter 6 we show the results obtained in learning warmstarts. In this Chapter, we show the results of learning the value function. We will discuss the convergence of our algorithm ∂PVP and the impact of Sobolev regression. In Section 5.1 we summarize the problem statement and establish the experimental setup. In Sections 5.2 we illustrate our results on classic control problems. Finally, in Section 5.4 we show the application of our algorithm on the more demanding 7 dof manipulator, which will be the topic of the next chapter.

66

Problem Statement and Experimental Setup

Recall that our primary algorithm for learning the value function is a composition of two algorithms -one to learn the global value function and the other to obtain fair estimates of warmstarts. The algorithmic formulation of ∂PVP that learns the global value function is ∂PVP v was shown in Algorithm 2. We also recall it here :

Algorithm 4: ∂PVP v
Algorithm parameters: horizon length T , iterations i, sample size s; Initialize V α ; Initialize DDP ; foreach i do Sample s locally optimal trajectories using DDP ; Train V α through (3.15b) ; Update DDP terminal cost ℓ T ← V α end foreach

The two primary hyperparameters are the size of the dataset -s -, and the initial planning horizon -T . For the classic control system, we typically set s = 100 in each iteration or episode i of ∂PVP v . The initial preview horizon, T , was set to 60 timesteps.

We also show the results of different preview horizons in Section 5.2.2. For the classic control systems, the starting positions (corresponding to x 0 in ddp problem in Crocoddyl shown in 8.2.1), were randomly sampled from their state space. For the 3 classic control systems, we computed a validation dataset V * by sampling for 68 Contents locally long optimal trajectories. We use this dataset V * to establish a ground truth reference.

For the manipulator arm, randomly sampling for starting positions from its space space would lead to infeasible configurations. For that reason, we use Inverse Kinematics [START_REF] Kucuk | Robot kinematics: Forward and inverse kinematics[END_REF] and Adaptive Sampling [START_REF] Christian | Adaptive sampling-an iterative fast Monte Carlo procedure[END_REF] at the beginning of ∂PVP v and subsequently use refined subsampling as mentioned in Chapter 3.3.2 to sample for starting configurations for the pose reaching task. The experiments performed in this Chapter did not involve learning warmstarts. For the Pendulum case, just 1 iteration is sufficient for ∂PVP v to achieve convergence.

Estimates of Value Function -Classic Control

Overall Convergence

For Cart-Pole, ∂PVP v takes a few more iterations to converge to a good enough approximation of the global value function. For systems with regions of local minima like unicycle, achieving convergence requires relatively more iterations. Figure 5.2 quantifies the convergence through validation loss at the end of every iteration. As noted before, we also used the idea of Bellman Residuals [START_REF] Bellman | Dynamic programming[END_REF] to establish a similarity measure between two successive approximations -i, i + 1 -of the value function through V α : where V i+1 α and V i α are the value function approximated by the neural network, V α , at iterations i + 1 and i.

ℓ i = ||V i+1 α -V i α || 2 (5.1) 5
This criteria helps us establish the convergence of ∂PVP v . In Figure 5.3 it is easy to see that as the value function estimates come closer to the optimal value function, the difference in successive estimates decreases. Residuals between two successive value functions can be a good indication of prediction. Upon or near convergence, the higher iterations of ∂PVP v should not show much difference between their behaviors. This residual quantifies the progress of the algorithm to an optimal estimate of V * and should be used as stopping criteria to end the ∂PVP v loop. We see that the algorithm easily reaches an accuracy of 1e -6 which is unusual for a typical RL algorithm, as discussed more comparatively in Section 5.3.

Influence of horizon length

In this Section, we discuss two results regarding the impact of the initial horizon length T . While convergence is readily achieved when T is higher as seen through Figures 5.4, 5.5 and 5.6 it can become increasingly difficult to achieve full convergence when ∂PVP v is started at lower values of T. We suspect that at lower T, the training data shown to the neural network is so corrupted that ∂PVP v finds it difficult to estimate V * . Short horizons lead to important differences between the cost-to-go and the value, hence to a poor approximation of the value in early iterations of ∂PVP v . This is illustrated in Figure 5.7, where the truncation to a short horizon leads to trajectories far from the optimum. Once the value is properly estimated, the bundle of trajectories converges closer to the optimum (on the unicycle, the convergence is not perfect despite an accurate convergence to the value, due to non-holonomy). The trajectories, shown in Figure 5.7, generated by ∂PVP v when trained under moderate to high horizons are far better than those computed by the solver alone.

Consequently, ∂PVP v converges faster when T increases. For the considered system, the typical duration of an episode (until system steady state) is 150 seconds, and 72 Contents ∂PVP v shows proper convergences for T ≥ 40. For smaller T , the convergence is slower or even fails to reach a global optimum.

Robust Convergence

We empirically establish the stability and robustness of our algorithm by forcing ∂PVP v to learn a corrupted dataset at the first iteration by adding a predefined perturbation to the optimal data sampled using DDP. We find that ∂PVP v requires only a few iterations to converge back to the ground truth. The goal is to reach the center/origin. The x, y axes denote q 1 , q 2 of the state space for Unicycle. The colors of the trajectory do not imply any properties.

Estimates of Value Function -Classic Control

in turn, confuses the solver. However, our experiments showed that it not trivial to narrow down the origin of causes that destabilize learning.

We, therefore, use the term 'singularities' as a blanket word that covers all situations that can destabilize learning -from pathological behaviour of the solver, inaccuracy of hessians computed by the solver, to issues due to initialization in short horizon.

This, of course, has the detrimental effect of not knowing precisely the nature or the cause of the problem, which, in turn, can be frustrating to resolve. This was one of the major problems we faced in estimating the global value function. Since the presence of these singularities seemed to destabilize learning, we modeled these points as outliers by tuning the cost weights in the corresponding optimal control problem such that the resulting value function computed by DDP was below 1. This normalization trick alleviated the problems associated with learning, however, it required extensive tuning.

Importance of Sobolev Loss

Our experiments with Sobolev learning corroborate the generalization capabilities and confirm that Sobolev regression requires fewer training epochs than classical regression, see Figure 5.12. Sobolev training requires only 64 samples to achieve a higher accuracy than classical regression on the 0 th order output.

The effect of Sobolev training is also seen in the improvement of the quality of gradients, especially with our residual network. As mentioned in Chapter 3 for our experiments with value function we designed V α as a 3 layered residual network with hyperbolic tangent as an activation function and 64 units in each hidden layers.

The final residual layer contains 3 units. Empirically, we find that the advantage of

Conclusion

We have established the basic properties of our algorithm in the preceding sections.

We have shown that ∂PVP v converges to V * (Section 5.2.1) with high accuracy even 5.2 Estimates of Value Function -Classic Control with short rollouts (Section 5.2.2) wrong initialization (5.2.3) and singularities (Section 5.2.4. We also showed that this is in part also due to the proper use of derivatives in learning and in the trajectory optimization through a residual network (Section 5.2.5.

We will now compare our algorithm with a classical algorithm of RL -the solver PPO.

Comparison with PPO

In Figure 5.14, shows the qualitative comparison of the value functions predicted for Unicycle, Pendulum, and Cart-Pole by ∂PVP v and PPO against ground truth V * . PPO properly captures the overall shape and the spread of the topology but overestimates it. This is to be expected since policy gradient methods often fail to accurately model value function as empirically established in [START_REF] Ilyas | A closer look at deep policy gradients[END_REF].

From our experience, PPO was also more sensitive to small changes, either to the environment parameters (e.g seed, discount factor, learning rate) or algorithm hyperparameters which limited the experiments we have been able to carry out. From a practical perspective, using the DDP solver to act as the environment for the PPO agent is not straightforward and required excessive and extremely time-consuming tuning from adjusting the discount factor to the learning rate. While theoretically, PPO should converge with any discount factor, we observed a performance degradation for discount factors below 0.9 or above 0.99. This is not a limitation we observe with ∂PVP v . Similarly, the training time for PPO is usually vastly greater than hand, this allows us to better evaluate the accuracy of our algorithm which manages to quickly reach accuracy levels out of the scope of derivative-free RL solvers.

We will now show how ∂PVP v scales to higher dimensional system.

84

Contents

Application to the 7 dof Manipulator Arm

In this section, we show the scaling of our algorithm1 . We consider a 7 dof manipulator, controlled in torque, where the robot state x = (q, q) concatenates at the joint configuration and velocity and u = Z q are the joint torques. Torque control [START_REF] Tahar | Torque control. BoD-Books on Demand[END_REF] is seen as an important feature that allows robots to physically interact with their environments rather than in the usual controlled settings of factories and laboratories. However, it also raises important challenges, in particular instability, to levels that are not meant for position-controlled robots. We know that RL algorithms are typically strongly impacted by this instability and this is the reason why we chose to quantify the performance of our algorithm on the torque-controlled manipulator arm. The optimal control task and the manipulator itself is described in more detail in Chapter 4.4. The dynamics are computed using Pinocchio [START_REF] Carpentier | The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF] and policy trials are validated with Bullet [CB21].

Results

Computing a huge validation dataset that can be used in lieu of V * is infeasible for the 7 dof manipulator arm. We have to rely on Bellman residuals to measure the convergence of ∂PVP v for the EE pose-reaching task. In each iteration of the supervised Sobolev training phase, 100 locally optimal samples of horizon length 150 were drawn from the 14-dimensional configuration space. Figure 5.17 shows the difference in predictions between two successive iterations, i.e mean squared error between V i+1 α and V i α . We see that the residual stabilizes by the 10 th iteration thus signifying that the algorithm has converged. We see the smoothness of the predicted value function, and its gradients, across the state space at convergence in Figure 5.18. The smoothness of the value function then allows the corresponding policy to behave smoothly, rather than develop jerky motions.

The primary feature of ∂PVP v is that as iterations increase, the approximated value function asymptotes to the global time-independent value function. So, when used as a proxy for terminal cost functional, ∂PVP v tends to drive the locally optimal solver toward the globally optimal solution. This immediately constrains the corresponding trajectories to satisfy the Hamilton-Jacobi-Bellman criteria of optimal sub-structures: sub-solutions of an indefinite horizon optimal control problem should also be optimal solutions to the corresponding definite horizon sub-problems. We can see this quite easily in Figure 5.16b for the EE trajectory computed by ∂PVP v (in orange) and the ground truth EE trajectory computed by DDP at horizon 1000 (shown in blue). The EE trajectories for the truncated horizon problem are co-incident with the infinite horizon trajectory.

The trajectories computed with ∂PVP v and DDP, for the truncated horizon, also maintain the recursive optimality and stability when used online in simulation. The ∂PVP v terminal cost can also serve as a highly stable anchor that allows for quick re-planning online under external disturbances. Figure 5.19 shows the evolution of mean squared errors between EE trajectories computed by ∂PVP v and DDP at infinite-horizon when external perturbations are injected in the system. We observe that ∂PVP v recovers quickly when perturbed at intervals2 . In Figure 5.16a we show the generalizability of our algorithm to compute optimal trajectories for different starting configurations. We approximate the terminal value function with the 10 th iteration of ∂PVP v .

We discussed the two sampling strategies -Adaptive and refined sub-sampling -in Chapter 3.3.2. We experimented extensively to define a general sampling strategy that can be used in any system. One of our primary focuses was to reduce the overall training time and for that reason, we experimented with sub-sampling for more states from the state trajectory computed by DDP and creating a weighted dataset for learning. In our experiments with refined sub-sampling, we often encountered the problem of overfitting [START_REF] Ying | An overview of overfitting and its solutions[END_REF]. However, this problem can be mitigated to some extent by utilizing the initial configurations generated in every iteration. In Figure 5.20, we see the trajectories computed as ∂PVP v iterates. In the initial iteration, the estimate provided by the neural network is far from V * and leads to divergence in the corresponding state trajectory. The trajectories for i < 6 seem to diverge at the terminal position effectively implying that the learning converges on the 6 th iteration.

The state trajectory computed by ∂PVP v at i = 6 is coincident with a locally long ground truth reference.

On the other hand, the data provided by adaptive sampling led to much better generalization, albeit at the expense of slightly higher computation costs incurred due to using Inverse Kinematics. The advantage provided by adaptive sampling is exactly the opposite of refined sub-sampling -refined sub-sampling concentrates the data around the target position as seen in Figure 3.4 whereas adaptive sampling, in Figure 3.2, provides a much more varied samples. For the results that we showed here, we used the more general Adaptive sampling approach, described in 3.3.2, to compute initial starting positions across the configuration space.

Discussion and Conclusion

In this Chapter, we showed key results regarding the foundational practical implementation of our algorithm. To summarize, the main features of ∂PVP on hyperparameters (e.g discount factor, learning rate). However, we also need derivatives and this prevents us yet from applying the algorithm to any problem.

Interestingly enough, numerous subtleties in the implementation of the algorithm such as the design of the value function approximator or use of 2 nd order derivatives and singularities make the implementation quite complex. Similarly, formulating a general-purpose sampling strategy that can be used with any system remains quite challenging. The need for a general-purpose sampling scheme can be seen as a strategy to optimally explore the environment. In our formulation, this exploration is done by the Trajectory Optimizer that not only gives us the next state as is usual in classical RL algorithms but also the states along a preview horizon. Usually, the first state in a state trajectory is by far more reliable than other states and we use this first state in training while discarding the rest. This is one the core reasons behind the need for a proper sampling strategy -to make the algorithm more data efficient than it currently is. In this Chapter, we show the results regarding the training of X β , U γ , and the subsequent effect DDP has when warmstarted.

Discussion and Conclusion

A few important points of interest in learning warmstarts are as follows :

1. X β , U γ are used to provide initial guesses to the trajectory optimizer. This immediately leads to a trade-off between the quality of predictions, training time, the predefined level of precision inside our choice of trajectory optimizer,

94

Contents and the number of iterations eventually required by the trajectory optimizer to converge to a solution.

2. Architectural design leads to numerous trade-offs between ease of training, accuracy, and learning time.

3. The DDP solver provides us with Riccati Gains which can be used for Sobolev Regression for U γ . However, this immediately leads to another trade-off between the dimensionality of U γ and precision -it may become computationally infeasible to include Riccati Gains in the training loop since it would then require differentiating U γ with respect to some state input x 0 .

These points allow us to define the experimental objective and setup for ∂PVP.

Experimental objectives and setup outline

Our primary goal was to minimize the training time such that ∂PVP achieves superlinear convergence in the number of iterations taken by DDP to solve any problem when warmstarted. In our experiments, we observed that the precision of trajectories predicted by X β , U γ increases only slightly as ∂PVP iterates. This allows us flexibility in defining the number of training epochs in every iteration, which we need if the dimensionality of the problem under consideration increases. Therefore, we choose to learn and improve state-control trajectories only in the initial and final iterations of ∂PVP: the total number of iterations is dependent on the user. We found this training strategy, where estimations of value functions are refined at every iteration, whereas estimation of state-control trajectories is refined only at the start and end to be good enough for our purposes.

In our initial experiments, we chose to enforce connections between V α , X β , U γ .

Yet, the efficiency also strongly depends on practical implementation choices, in particular, the network architecture. Empirical evaluations led us to believe that the simplest approach can lead to better results. So we decided to learn representations of the value function, state, and control trajectories on 3 separate neural networks.

Problem statement and Experimental Setup

To enforce a shorter training time, we discarded the use of second-order derivatives of the value function in the previous chapter. Experiments with Riccati Gains yielded precisely the identical consideration. To keep training time to a minimum, we precluded the use of first-order but high-dimensional derivatives of the control trajectory. Therefore, X β , U γ were trained using classical 0 th order regression.

In the next section, we compare the state-control trajectories predicted by X β , U γ at the end of ∂PVP with the corresponding ones from DDP.

Results

Our initial experiments were conducted on the Unicycle problem to establish benchmarks because of the simplicity (we thought !) of the corresponding optimal control problem. In Figure 6.1, we see the control and state trajectories predicted by U γ , X β for 4 different starting configuration. We observe that even though the quality of warm-start provided by U γ , X β is good enough, there is hardly any appreciable decrease in the number of roll-outs/iterations required by DDP when warmstarted. In Figure 6.2a we warmstart ∂PVP for 500 different starting configurations to compare the number of roll-outs needed by cold-started DDP. We hardly see any appreciable difference between the roll-outs required by ∂PVP and DDP.

The resolution of this discrepancy seems to be in the predefined precision factor in our DDP solver. Crocoddyl, by default, operates at 1e -9 precision. If the precision factor is reset to 1e -6, then we see in Figure 6.2b the number of roll-outs required by ∂PVP to be significantly lower 1 . This was the only unexpected result since the precision factor should not play that much of a role.

That is what we observe in Figure 6. algorithm achieves super-linear convergence in the number of roll-outs required to solve an optimal control problem.

Discussion and Conclusion

This chapter marks the end of the experimental evaluations of learning warmstarts.

We showed the critical role of warmstarts in Trajectory Optimization and how it can lead to superlinear convergence in the number of attempts required by trajectory optimizer to converge to a solution. In particular, we studied 1. the role of learning state-control trajectories for warmstart in reducing the number of iterations required by DDP to converge.

2. the trade-offs between the accuracy of the learned representation of statecontrol trajectories and the effect it has in trajectory optimizer. -and extraction of useful information from hidden layers.

Discussion and Conclusion

Our original goal was to develop a new paradigm for RL algorithms that takes advantage of the rich data provided by simulation-based TO to prevent an exhaustive exploration of the state space. In the preceding Chapter, we first showed practical implementation and empirical evaluations of our proposed method to learn the global time-independent value function. We also showed that replacing terminal cost with the time-independent value function induces stability and tries to enforce optimality of the corresponding state-control trajectories computed by TO.

However, learning value function still does not lead to superlinear convergence -the trajectory optimizer still requires quite a few iterations to converge to a solution.

This is where the second part of our algorithm is important -providing a good guess to the TO improves its efficiency. Overall, the nature of ∂PVP allows it to improve, in each iteration, the estimate of the global value function. This, in turn, improves the trajectory computed by TO. Subsequently, the refined and improved trajectories improve the learning of state-control trajectories by X β , U γ , and consequently as the predictions of X β , U γ become more accurate, the greater their role becomes in reducing the number of rollouts required by TO. This is the central aspect that we were trying to achieve with our algorithm -an iterative loop between learning and TO such that in each iteration, the learning (of value function, state-control trajectories) improve along with the quality of computations of TO.

While theoretically, at the end of the iterative loop, TO coupled with learning should allow for optimality and superlinear convergence since the HJB conditions should, in principle, force the predictions to optimality criteria, in practice, however, the implementation of ∂PVP is not so straightforward. Numerous experiments were needed to establish the degrees of efficiency of sampling approaches, design of neural networks, early stopping criteria during the learning phase along with extensive tuning of the robotic systems itself. The practical implementation of ∂PVP also guides our choice of the architectural design of X β , U γ and the associated increase 102 Contents in training time precludes the use of Riccati Gains during training. Certain factors such as the stopping criteria in the DDP instance that we were using, also seemed to play a role, which we did not foresee in our initial experiments. This opens up a discussion on the accuracy required for real-world robotic systems, which we believe has to be established in an ad-hoc manner, depending on the system and the task in consideration -for instance, in grasping tasks far more accuracy is required than in reaching a target. On the whole, our contributions in the two preceding chapters provide a foundation for the further development of efficient RL-based approaches in robotics.

With the insights gained from our experiments, we can establish a road-map for the future of ∂PVP :

• Develop an efficient sampling approach for any n dimensional system.

• Incorporate the mathematical structure of TO in the design of the neural networks, for instance using time as an input state during learning.

• Explore the reliability of the data computed by TO for training in the initial iterations.

• Design a supervised training method that explicitly uses HJB equations and symmetries in loss functions.

• Engineer an automated identification protocol that can recognize singularities such that its impact during training is minimized.

• For faster deployment on a cluster and to remove the overhead, the C + + version of deep learning libraries should be directly used to close the gap between TO and learning.

We conclude in the following Chapter.

Discussion and Conclusion

"On e last time.

Relax, have a drink with me.

One last time.

Let's take a break tonight.

And then we'll teach them how to say goodbye.

To say goodbye.

You and I.

-

G. Washington in Alexander Hamilton

The primary aim of this thesis was to devise an end-to-end learning framework for robotics. To that end, we reformulated reinforcement learning as a combination of the iterative supervised learning phase, with emphasis on value functions and warmstarts -∂PVP. This allowed for a reduction in trials needed to find an optimal solution. The iterative supervised learning phase enforced the stability of predictions through Sobolev regression while learning in the backdrop of recursive optimality further reduced the dependence on the hyperparameters.

Our goals have been to :

• Develop a learning approach such that a neural network V α represents V * .

• Learn representations of state-control trajectories through locally optimal runs of a Trajectory Optimizer.

We then used V α to provide the cost-to-go at the terminal position. This effectively allowed us to formulate an infinite-horizon problem that can remain solvable with finite resources. Using function approximation to learn state-control trajectories was much more straightforward. The iterative nature of our algorithm frequently led to trade-offs between precision and training time. For that reason, we discarded the use of derivatives of control and the second-order derivatives of the value function. For our experiments, we decided to learn the three different quantities -value function, state trajectory, and control trajectory -on three different feed-forward networks.

There are a few points that should establish some perspective going forward.

Singularities The presence of singularities can very quickly destabilize learning and can lead to either exploding gradients or vanishing gradients during training. This has been one of the major peeves we faced in our experiments. Although there are no good ways to ameliorate this issue, we decided to model singularities as outliers in our dataset, which immediately led to another problem. We had to extensively hand-tune the weights of state and torque regularization terms in each of the classic control systems and the 7 dof arm such that the value function computed by DDP for the majority of initial starting configurations remained less than 1. We were in effect normalizing the dataset. In this case, singularities in the state space of any robot would have a corresponding value function (far) greater than 1. The problem then becomes the extensive hand-tuning required for any system. This has been particularly impactful on toy problems, especially with the unicycle, and we also get an indication that with more complex systems such as the 7 dof arm, there may be many more hidden problems.

Chapter 7 Conclusion

Physics Informed Architectures of Neural networks The feasibility of deep learning algorithms is often the result of their generalization capabilities and sample efficiency.

In continuous high-dimensional domains such as robotics where the underlying processes are known, the problem of learning an accurate representation while maintaining sample efficiency can become quickly intractable. Therefore the use of Group Equivariant Neural Networks (GENNs) [START_REF] Gerken | Geometric deep learning and equivariant neural networks[END_REF]: a neural network is equivariant if the learned representation transforms under transformations of input in a linear predictable manner: should augment robot learning. The equivariance property itself is enforced by encoding symmetries and invariances in the architecture of the neural network and is useful for three reasons :

• Equivariance to a symmetry transformation leads to conservation laws which can be used to place additional constraints for accurate modeling, for instance, conservation of Hamiltonian in [START_REF] Greydanus | Hamiltonian neural networks[END_REF]. Another idea would be to incorporate Noether's theorem since it can alleviate the problem of sequence prediction over long time horizons.

• Induced parameter sharing due to symmetries decreases the number of trainable parameters.

• Incorporating physical priors and inductive biases in learning automatically reduces data dependence making GENNs sample efficient.

In robotics we know the physical laws that drive motion and computing large datasets for learning is infeasible, therefore encoding inductive biases in learning should lead to sample efficiency.

Learning with Differentiable Simulators and Contact Phases One of the last things that we tried to do (and probably still doing) was to run ∂PVP with contact phases. This would have shown the scalability of our algorithm. However, this implies using a physics differentiable simulator such as NimblePhysics [START_REF] Desmond Zhong | Differentiable Physics Simulations with Contacts: Do They Have Correct Gradients wrt Position, Velocity and Control?[END_REF] or DojoSim [START_REF] Taylor | Dojo: A Differentiable Simulator for Robotics[END_REF] inside the DDP instance we use. However, a recent comparison of the fidelity of gradients computed by these simulators [START_REF] Desmond Zhong | Differentiable Physics Simulations with Contacts: Do They Have Correct Gradients wrt Position, Velocity and Control?[END_REF] hamper the

Library

Locomotion in complex environment -Loco3D -is a suite of frameworks with the objective to plan, adapt and execute multi-contact sequence locomotion movements in an environment that allows for dynamic changes [START_REF] Carpentier | Multi-contact locomotion of legged robots in complex environments-the loco3d project[END_REF]. The Loco3D project follows a modular approach to the task of complex motion generation. A short summary of the modules, along with its associated publications, is presented below.

• Contact Sequence Planner in [START_REF] Tonneau | An efficient acyclic contact planner for multiped robots[END_REF][START_REF] Fernbach | A kinodynamic steering-method for legged multi-contact locomotion[END_REF].

• Centroidal Pattern generator introduced in [START_REF] Carpentier | A versatile and efficient pattern generator for generalized legged locomotion[END_REF].

• Whole Body Motion Generator described in [START_REF] Mastalli | Crocoddyl: An efficient and versatile framework for multi-contact optimal control[END_REF].

• Low-level Torque Control methods shown in [START_REF] Benallegue | Estimation and stabilization of humanoid flexibility deformation using only inertial measurement units and contact information[END_REF] 110 Chapter 8 Appendix Crocoddyl is an open-source optimal control library1 developed as part of the Loco3D project. The solvers are written in C++ with Python bindings [START_REF] Mastalli | Crocoddyl: An efficient and versatile framework for multi-contact optimal control[END_REF]. The solvers of Crocoddyl are based on a variant of the DDP algorithm proposed in [START_REF] Budhiraja | Differential dynamic programming for multi-phase rigid contact dynamics[END_REF].

For a deeper dive into Crocoddyl, the reader should consult [START_REF] Budhiraja | Multi-body Locomotion : Problem Structure and Efficient Resolution[END_REF].

Features of Crocoddyl

The primary features of Crocoddyl are as follows:

• Efficient Rigid Body Algorithms: The central dynamics engine of Crocoddyl is Pinocchio [START_REF] Carpentier | The Pinocchio C++ library: A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives[END_REF]. The choice of using Pinocchio is due to its fast and efficient implementations of Rigid Body Algorithms on Lie Algebra [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF]. In turn, this allows Crocoddyl to reduce its own computation time.

• Analytical Derivatives: Crocoddyl implements analytic derivatives as opposed to numerical finite differences methods to compute dynamical derivatives based on [START_REF] Carpentier | Analytical derivatives of rigid body dynamics algorithms[END_REF].

• Transcription vs Resolution: Crocoddyl handles problem resolution separately from problem transcription to allow for flexibility in the choice of solvers.

• Multi Threading: The computation time of Crocoddyl is further decreased by using multi-threading for computing derivatives.

• Feasibility Prone DDP: An important feature of Crocoddyl is its ability to handle infeasible guesses that can occur whenever there are gaps between nodes in the trajectory. The FDDP solver that we use for our own experiments can expand and improve upon its own search as opposed to the classic DDP solver. The full list of solvers available in Crocoddyl is shown in Table 8. 8.2.1 can be used to find the solution. Therefore, the optimal control task in Crocoddyl is written as :

1. 3 . 1 6 Chapter 1 France

 3161 Associated Publications Parts of the thesis especially Chapters 4-7 feature in the following publications. • Amit Parag, Nicolas Mansard. A Supervised Formulation of Reinforcement Learning: with super linear convergence properties. 2022 -Under Review at IROS 2023. 〈hal-03674092v2〉 • Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse. Value learning from trajectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear convergence properties. International Conference on Robotics and Automation (ICRA 2022), May 2022, Philadelphia, United States.〈hal-03356261v2〉 • Rohan Budhiraja, Amit Parag, Ewen Dantec, Justin Carpentier, Carlos Mastalli, et al.. Crocoddyl: Fast computation, Efficient solvers,Receding horizon and It starts with ... Learning. Journées Nationales de la Robotique Humanoïde, May 2020, Paris, "C ome on now, I hear you're feeling down Well I can ease your pain Get you on your feet again Relax I'll need some information first Just the basic facts Can you show me where it hurts? . 2.2 Generalized Optimal Control -Problem Formulation 2.2.1 Solutions . 2.3 Dynamic Programming and Markov Decision Process 2.3.1 An overview of Reinforcement Learning in robotics 2.4 Direct Methods -Transcription and Resolution 19 2.4.1 Transcription . 19 2.4.2 Trajectory Optimization -A literature review 22 2.4.3 Model Predictive Control . 23 2.5 Hybrid Methods . 25 2.6 Discussion . 27

While 2 . 4

 24 MPC enables recovery to strong disturbances, TO is commonly used to plan complex open-loop trajectories[START_REF] Mingo Hoffman | Editorial: Advancements in trajectory optimization and model predictive control for legged systems[END_REF] since the problem can be too complex to be solved by MPC in real-time. The effectiveness of model-based techniques can be seen in their successful application over a variety of complex tasks, including locomotion and manipulation[Di +18;[START_REF] Kuindersma | Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[END_REF][START_REF] Koenemann | Whole-body modelpredictive control applied to the HRP-2 humanoid[END_REF][START_REF] Belli | Optimization-Based Quadrupedal Hybrid Wheeled-Legged Locomotion[END_REF][START_REF] Neunert | Whole-body nonlinear model predictive control through contacts for quadrupeds[END_REF].The level of autonomy provided by these methods offers a viable solution that can solve large-scale optimal control problems over a receding finite-horizon while dealing efficiently with constraints, non-linearity, uncertainties, and unforeseen perturbations[START_REF] Huba | Selected topics on constrained and nonlinear control[END_REF]. For instance, in [WFK22; Sma+22], we see the successful deployment of a fast MPC based on Quadratic Programming (QP) formulation for the task of locomotion in simulated bipedal systems. Similarly, TO is used to Direct Methods -Transcription and Resolution compute trajectories for dexterous manipulation and whole body locomotion of the REEM-C robots in [LRM22; AHM22] respectively. To account for uncertainties under contact, the authors of[START_REF] Drnach | Mediating between contact feasibility and robustness of trajectory optimization through chance complementarity constraints[END_REF] propose chance complementarity constraints that changes stochastic constraints into deterministic constraints while in[START_REF] Jee-Eun Lee | Adaptive robot climbing with magnetic feet in unknown slippery structure[END_REF], the authors show a robust framework that can tackle the issue of slippage in unknown environments.

2. 5

 5 Hybrid Methods function, V * when used as a proxy for terminal cost can turn short horizon problem into infinite-horizon optimal control problem [CA98; HL02; ETT11] with theoretical guarantees of optimal behavior as long as the estimated value function accurately reflects global value function. Similarly, in [VMR22; DKT19], the authors learn the value function for one step model predictive controller. Learning a library of trajectories to provide initial guesses to warmstart predictive controllers has been extensively explored in works such as [Man+18; Lem+20; MT14; Lid+22a]. The critical importance of warmstarts is easy to see -in general, predictive control is dependent on the resolution of a large nonlinear optimization problem at each control cycle, therefore the absence of a good initial guess can slow down convergence or fail to avoid poor local optima. However, providing a good warmstart implies learning in continuous domains which is usually challenging -the RL training time may be excessively long and its convergence is strongly dependent on the exploration strategy.Leverage TO to speed up the training of RL. To speed up training time, the authors of[START_REF] Zhang | Asynchronous episodic deep deterministic policy gradient: Toward continuous control in computationally complex environments[END_REF] developed an exploration strategy that made the RL agent effectively recognize "good" trajectories by asynchronous episodic control. Similarly[START_REF] Levine | Guided policy search[END_REF] and its successor[START_REF] Levine | Learning complex neural network policies with trajectory optimization[END_REF] proposed to bias the exploration strategy in RL toward low-cost regions by using DDP to guide policy search (GPS) to avoid the problem of falling in poor local optima during the search for complex policies with hundreds of parameters.While GPS has spawned numerous variants such as [Bue+18; ML16; Yah+17; Men+19; Tag+22; Lev+16] to name a few, guiding policy search was recast as a teacher-student problem where the OCP solver acts as a teacher [CFH20; Kah+17].

-

 A backward pass to backpropagate the value derivatives and a forward pass to rollout the dynamics • As iterative linear quadratic regulator -iLQR -Dynamic Programming applied in the tangent (differential space). Classic DDP requires second-order derivatives of the dynamics, which are usually the most expensive part of the computation. If only the first-order terms are kept, one obtains a Gauss-Newton approximation known as iterative Linear-Quadratic Regulator -iLQR [Cho+75].

 3.1.1 Quadratic ApproximationDDP searches locally for the optimal state and control sequences for the OCP in (3.10) through a forward pass or rollout phase and a backward pass to compute a local solution to (3.10) using a quadratic Taylor expansion. To obtain a quadratic approximation of the value function, we need to first define a Q function that can measure perturbations of (3.10).

38 Contents---

 38 We build upon this idea to estimate the global value function and use it inside DDP to formulate an infinite-horizon problem by replacing the terminal cost, ℓ T , with the global value function, V * , that remains solvable with finite resources. Furthermore, we also learn estimates of state and control trajectories which we then use to provide a good initialization to DDP. This brings us to the three main contributions of this thesis -• DVP Estimating value function at ∞ horizon. Supervised classical regression • ∆DVP Estimating value function at ∞ horizon. -Supervised Sobolev descent: using gradients in training • ∂PVP -Estimating value function at ∞ horizon.

 approximation theoretically guarantees that neural networks can learn arbitrarily well, the accuracy and generalization capabilities yet depend on the quality (exactness and density) of the training dataset. This is where Sobolev learning differs from classical regression. It closely follows the work in[START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF] that examined the approximation capabilities of multi-layered feed-forward networks and proved the universal approximation theorems for neural networks in Sobolev spaces -a Sobolev space is a metric space that measures the closeness or the distances between functions in terms of their differences in values and differences in the values of their derivatives.

3. 3

 3 Fig. 3.1.: Illustration of Sobolev training of order 2. Diamond nodes m and f indicate parameterized functions where m is trained to approximate f . Green nodes receive supervision and the losses l 2 , l 1 , l are backpropagated to train m.

46 Contents

 46 15a) is identical to the traditional loss used in classical regression that penalizes the difference between the output of the target function f (x i) and the output of the neural network m(x i |θ) with some norm λ. The second loss function, l d in (3.15b), is the Sobolev loss that measures the errors of the j-th order derivatives and constraints m to encode information about the derivatives of the target function in its own derivatives. Figure 3.1 shows compute graph for back-propagation during Sobolev training of order 2. This led to our second attempt where we modified our initial algorithm to include Sobolev training, since we already have access to the derivatives of the value function -both 1 st and 2 nd . Our new modified algorithm can then be written as Algorithm 2: ∆DVP Algorithm parameters: horizon length T , iterations i, sample size s; Initialize V α ; Initialize DDP ; foreach i do Sample s trajectories from DDP ; Train V α through (3.15b) ; Update DDP terminal cost ℓ T ← V α end foreach Notice that the training part now includes derivatives through 3.15b. In theory, we can include the 2 nd order derivatives too in training, however, this largely depends on the time-computation-accuracy requirement trade-off. In practice, we do not use the Hessian in training.

3. 3

 3 Fig. 3.2.: Adaptive sampling for the Manipulator Arm for the pose reaching task.

Fig. 3 . 3 . 3 Fig. 3 . 4 .:

 33334 Fig. 3.3.: Nodes computed along a trajectory by DDP. The curve is the state-trajectory computed by DDP from a starting position to a goal. Each node on the curve is a state.

Design 1

 1 Implement V α , X β , U γ as the outcome of a three-headed feed-forward network with common hidden layers. This was specifically done to test the trade-off between the training time of a multi-headed network and the theoretical advantages of enabling the multiple heads to benefit from the rich information encoded in 54 Contents the common hidden layers. However, this resulted in a bloated computation time of parameter updates during the training phase. The practical benefits of shorter training time far outweighed the theoretical advantages of common hidden layers.

4 "

 4 better organization we show the empirical evaluations of ∂PVP in two parts -∂PVP v for results regarding value function and ∂PVP x,u for results regarding learning warmstarts. In Chapter 5 we show ∂PVP v and in Chapter 6 results of ∂PVP x,u are presented. B illions of bilious blue blistering barnacles in a thundering typhoon!. -Captain Haddock Tintin Contents 4.1 Unicycle . 4.2 Cart-Pole . 4.3 Inverted Pendulum . 4.4 7 dof Manipulator Arm . 4.5 Discussion .

Fig. 4 .

 4 Fig. 4.1.: The Unicycle problem is formulated in 2D.

Fig. 4 . 2 .

 42 Fig. 4.2.: Cart-Pole -apply control forces such that the pole reaches the vertical position.

4. 2

 2 Cart-PoleA Cart-Pole 1 is a classical dynamical system where an underactuated pole is attached on top of a 1D actuated cart. The task is to balance the pole around its unstable equilibrium (upper position) by controlling the horizontal forces acting on the cart[START_REF] Razvan | Correct equations for the dynamics of the cart-pole system[END_REF] as shown in Fig 4.2.

Fig. 4 . 3 .

 43 Fig. 4.3.: Pendulum. The optimal control task is to reach an unstable equilibrium position.The inverted pendulum is fixed at one joint.

Fig 4 . 3

 43 consists in bringing the pendulum from a random position to its upper equilibrium and maintaining it upright. The cost function we use is similar to the Cart-Pole cost function, with u representing the torque applied about the pendulum's rotation axis and w 1 , w 2 the weights :

Fig. 4 .

 4 Fig. 4.4.: The 7 dof manipulator arm. The goal is to reach the red target.

Contents

 ∂PVP v -Estimating global value function "T o see a World in a Grain of Sand And a Heaven in a Wild Flower Hold Infinity in the palm of your hand And Eternity in an hour -William Blake Auguries of Innocence Contents 5.1 Problem Statement and Experimental Setup 5.2 Estimates of Value Function -Classic Control 5.2.1 Overall Convergence . 5.2.2 Influence of horizon length 5.2.3 Robust Convergence . 5.2.4 Convergence Issues: Singularities 5.2.5 Importance of Sobolev Loss 5.2.6 Conclusion . 5.3 Comparison with PPO . 5.4 Application to the 7 dof Manipulator Arm 5.4.1 Results . 5.5 Discussion and Conclusion .

Figure 5 .

 5 Figure 5.1 and Figure 5.10 respectively illustrate the value function learned by our algorithm and the corresponding mean squared error with respect to the ground truth value function established by V * . Convergence to 10 -5 is obtained for Pendulum and Cart-Pole systems, and convergence to 10 -3 is obtained for the Unicycle (which would eventually reach the same accuracy with more iterations).

. 2 Fig. 5 .ContentsFig. 5 .Fig. 5 . 3 . 5 . 2

 2555352 Fig. 5.1.:Value Functions learned by V α after 1, 5 and 10 iterations. V * is the validation dataset computed by sampling for locally long trajectories. The x, y axis represents q 1 , q 2 of the state space of the robot. The dot in the center is the goal position.

Fig. 5 .Fig. 5 . 5 .: 5 . 2

 55552 Fig. 5.4.: Impact of different initial preview horizons T on ∂PVP v for Unicycle. Evolution of MSE between V i α and V * under different runs of T .

Fig. 5 .

 5 Fig. 5.6.: Impact of different initial preview horizons T on ∂PVP v for Pendulum. Evolution of MSE between V i α and V * under different runs of T.

Figure 5 .8a, Figure 5 .

 55 8b and Figure5.8c illustrates the convergence of ∂PVP v under various levels of initialization noise. Robustness against noise also augments the generalization capabilities of ∂PVP v . This is what we observe in Figure5.9 -multiple trajectories computed by ∂PVP v with V 10 α serving as terminal cost.

(a)ContentsFig. 5 .

 a5 Fig. 5.8.: Illustration of the evolution of mean squared error between V α for Unicycle, Cart-Pole, Pendulum under different noise initialization. The colors indicate the noise added to the initial dataset.

Fig. 5 . 5 . 2

 552 Fig. 5.10.: Illustration of evolution of mean squared error between V α after 1, 5 and 10 iterations and V * for Unicycle, Cart-Pole, Pendulum

Fig. 5 .Fig. 5 .Fig. 5 .

 555 Fig. 5.11.: Sobolev Loss Curves

∂PVP v and dependsFig. 5 . 5 . 3

 553 Fig. 5.14.: Comparison of value functions between the solver, ∂PVP and PPO, shown here for Unicyce, Pendulum, Cart-Pole

Fig. 5 .

 5 Fig. 5.15.: Comparison of state trajectories computed by PPO and ∂PVP v . x0, x1, x2 denote the 3 dimensions of the unicycle system.

5 . 5

 55 v are : • converges stably and quickly • adjusts to noise during training • uses gradients for better generalization • faster and more data efficient than standard RL algorithms • scales to difficult problems such as torque controlled 7 dof end-effector pose reaching task Discussion and Conclusion (a) Trajectories computed by ∂PVPv, shown here for the End-Effector. (b) End-Effector trajectories computed by ∂PVPv (orange) after 10 iterations and a locally long DDP (blue) trajectory.

Fig. 5 .ContentsFig. 5 .

 55 Fig. 5.16.: Ilustration of End-Effector trajectories computed by ∂PVP v and DDP.

(a)

 a Value functions predicted by V i=9 α . (left) Predicted value functions for random starting configurations in 14-dimensional state space, shown for q1, q1 . (right) Slice of value function with only q1, q1 randomly sampled from the configuration space (b) Slice of V ′ 9 θ at q1 (left) and q1 (right). q1, q1 were randomly sampled for the configuration space.

Fig. 5 .Fig. 5 . 5 . 5

 5555 Fig. 5.18.: Illustration of predictions, value, and gradients of value, for the manipulator arm.

Fig. 5 .

 5 Fig. 5.20.: Multiple trajectories computed by ∂PVP v with the refine sub-sample approach.

 Fig. 6.1.: Warmstarts provided by U γ , X β for the goal-reaching task from different starting configurations in the Unicycle problem.

(a)

 a ∂PVP vs DDP at precision of 1e -9. The average number of rollouts across 500 tasks required by ∂PVP is 15.3 while DDP requires 19.812 rollouts to solve one task. (b) ∂PVP vs DDP at 1e -6. The average number of rollouts required across 500 tasks are 4.03 and 9.706 by ∂PVP and DDP respectively.

Fig. 6 . 2 .:Fig. 6 . 3 . 6 . 3

 626363 Fig. 6.2.: Illustration of roll-outs required for the unicycle task from 500 different starting configurations at precision factors of 1e -9 and 1e -6

Fig. 6 . 4 .

 64 Fig. 6.4.: Pendulum : warm-start and roll-out -∂PVP and DDP.

Fig. 6 . 5 . 6 . 3

 6563 Fig. 6.5.: 7 dof Manipulator pose reaching task : warm-start and roll-out -∂PVP and DDP. 200 were drawn from the 14 dimensional configuration space in each of the 20 iterations. This resulted in our TO computing 10347 rollouts overall. The training phase lasted 61 minutes.

 V α , X β , U γ were initially implemented as the outcome of a three-headed feed-forward network with common hidden layers. This was specifically done to test the trade-off between the training time of a multi-headed network and the theoretical advantages of enabling the multiple heads to benefit from the rich information encoded in the common hidden layers. However, this resulted in a bloated computation time for parameter updates during the training phase. The practical benefits of shorter training time far outweighed the theoretical advantages of common hidden layers.

Fig. 8 .

 8 Fig. 8.1.: Whole Body contact sequence computed by Crocoddyl

Fig. 8 .

 8 Fig. 8.2.: Assembling ActionModels with corresponding ActionDatas to form the global optimal control problem.

 KKT based control-limited resolution of the full horizon Crocoddyl decomposes the global problem through a series of Action Models with their corresponding problem-specific datas called Action Datas. A basic layout is shown in Figure 8.2. An Action Model contains an invariant description of the problem such as dynamics or costs or constraints. The Data classes store the problem-dependent quantities such as values and derivatives information. Therefore, a stack of Action Models together describes the global problem. The global problem is then written as a Shooting Problem. Once a problem is defined inside the Shooting Problem class, different solvers in Table

 Sobolev Regression . 3.3.2 Sampling the State Space . 3.3.3 Conclusion . 3.4 Differential Policy Value Programming -∂PVP 53 3.4.1 Design of V α , X β , U γ . 54 3.4.2 Discussion . 56 3.5 Conclusion . 58

	Differential Policy Value
	Programming -∂PVP
	3.1 Differential Dynamic Programming Differential Dynamic Programming refers to a general class of dynamic programming "I am so clever that sometimes I don't understand a single word of what I am saying.. algorithms that iteratively solve finite-horizon discrete-time optimal control problems
	described in (3.1) by using locally quadratic models of cost and dynamics [May73;
	Theory

-Oscar Wilde

The Happy Prince and Other Tales Contents

3.1 Differential Dynamic Programming 3.1.1 Quadratic Approximation . 3.1.2 Line Search . 3.1.3 Complexity and Regularization 3.1.4 Discussion . 3.2 Differential Value Programming -DVP 3.2.1 Algorithmic Principles . 3.2.2 Algorithm . 3.2.3 Architecture of V α . 3.3 DVP with Sobolev Descent -∆DVP 3.3.1 LS92] and show quadratic convergence. Current research has shown that DDP can effectively compute solutions in high dimensional state spaces by successfully producing trajectories for UAM vehicles [TMT14].

 DVPwould lead to the approximation of the cost-to-go for an horizon of (i + 1) × T which would tend toward the global V * as i increases. The algorithm is summarized in

	Algorithm 1.	
	Algorithm 1: DVP	
	Algorithm parameters: horizon length T , iterations i, sample size s;
	Initialize V α ;	
	Initialize DDP ;	
	foreach i do	
	Sample s trajectories from DDP ;	
	Train V α through (3.15a) ;	
	Update DDP terminal cost ℓ T ← V α	
	end foreach	
	i-1 α	is the value function approximated in the
	previous iteration. Should each iteration result in a perfect training, the i th iteration

3.2 Differential Value Programming -

Algorithm 3 :

 3 ∂PVPAlgorithm parameters: horizon length T , iterations i, sample size s; Initialize V α , X β , U γ ;

	Initialize DDP ;
	foreach i do
	Sample s trajectories from DDP ;
	Train V α through (3.15b) ;
	Train X β through (3.15a) ;
	Train U γ through (3.15a) ;
	Update DDP terminal cost ℓ T ← V α ;
	Warmstart DDP through X β , U γ
	end foreach

 In the previous Chapter, we used a value function approximator V α to learn the time-dependent value function. We kept replacing the terminal cost with V α and iterating with Sobolev regression to force the value function estimates toward infinite horizon.In this chapter, we use two additional function approximators X β , U γ to learn the corresponding state-control trajectories, which we then use to warm-start DDP in subsequent iterations. We also learn the value function, but the results regarding the properties of V α are identical to those shown in the previous Chapter.

	6.1 Problem statement and Experimental Setup
	6.1.1 Introduction
	Initialize DDP ;
	foreach i do
	Sample s trajectories from DDP ;
	Train V α through (3.15b) ;
	Train X β through (3.15a) ;
	Train U γ through (3.15a) ;
	Update DDP terminal cost ℓ T ← V α ;
	Warmstart DDP through X β , U γ
	end foreach

Recall that the complete algorithm that we use is :

Algorithm 5: ∂PVP Algorithm parameters: horizon length T , iterations i, sample size s; Initialize V α , X β , U γ ;

2.2 Generalized Optimal Control -Problem Formulation

The problem of local minima is closely related to information bottleneck in DNNs studied in[START_REF] Tishby | The Information Bottleneck Method[END_REF]. The theory of information bottleneck suggests that the hidden layers in DNNs trade-off between keeping enough information about the input variables for the prediction of the learned function and a concise representation of the learned function itself [ST17; TZ15]. This is where using higher order derivatives of the target function in the learning process can be quite useful.

Contents

3.4 Differential Policy Value Programming -∂PVP

We use the Open Ai gym implementation of the dynamical model.4.2 Cart-Pole

The work presented here was done in collaboration with Sebastien Kleff 5.4 Application to the 7 dof Manipulator Arm

The corresponding video is available at https://peertube.laas.fr/w/16ocWJHhVwxNr4qYkjGNEX? start=3m39s

(a) Trajectories predicted by Uγ, X β vs those of DDP (b) Histogram of roll-outs required by ∂PVP and DDP across 500 tasks

https://github.com/loco-3d/crocoddyl 8.2 The Loco3D project : Crocoddyl -Contact Robot Control by Differential Dynamic Programming Library

Bibliography

Acknowledgement

Hogwarts, Hogwarts

however differentiating them (output of those architectures with respect to input) always led to nonsensical gradients.

We obtained the best results by learning the three different quantities -value function, state trajectory, and control trajectory -on three different feed-forward networks V α , X β , U γ trained individually. X β and U γ are implemented with simple deep feed-forward networks with 6 hidden layers with ReLU, ELU, Tanh alternately applied while V α was implemented with a residual network with 3 outputs and Tanh activation as described in Section 3.2.3.

Note that DDP also provides us with derivatives of the control trajectory that can be used for Sobolev regression during training of U γ . However, this places a huge computational burden on the automatic differentiation engine as we now have to calculate the Jacobian of the output of U γ with respect to the input. We were unable to find an efficient way to differentiate U γ dues to curse of dimensionality. To avoid an increase in training time, we choose classical regression in (3.15a) for the training of X β and U γ .

Discussion

The formulation of ∂PVP was devised to combine the benefits of function approximation and trajectory optimization. This is a major research avenue and is being actively pursued culminating in works such as [START_REF] Zhong | Value function approximation and model predictive control[END_REF][START_REF] Le Lidec | Enforcing the consensus between Trajectory Optimization and Policy Learning for precise robot control[END_REF][START_REF] Toussaint | Robot trajectory optimization using approximate inference[END_REF][START_REF] Duburcq | Online trajectory planning through combined trajectory optimization and function approximation: Application to the exoskeleton Atalante[END_REF].

In [START_REF] Mansard | Using a memory of motion to efficiently warm-start a nonlinear predictive controller[END_REF], the authors combine a local trajectory optimization with a samplingbased motion planner to learn better control policy. Their cyclic approach is quite similar to our proposed algorithm in that the learned control policy is used to warmstart the MPC to generate better sample trajectories. Similarly, in [START_REF] Mordatch | Combining the benefits of function approximation and trajectory optimization[END_REF] the authors leverage the high-fidelity solutions obtained by trajectory optimization to speed up the training of neural network controllers.

The two learning problems are coupled using the Alternating Direction Method of Multipliers (ADMM). This coupling enables the trajectory optimizer to act as a

Convergence Issues: Singularities

The considered control systems show evident symmetries not expected by the algorithm and these symmetries come with singular points -i.e initial states from which multiple (typically symmetric) optimal trajectories exist. As we can see in Figures 5.10a and 5.10b, the algorithm quickly learns the overall topology of the value function across state space. As the number of iterations increases, the algorithm seems to refine the inherent symmetry in the topology. We observe that the iterative aspect of ∂PVP v allows it to learn value function over long horizons quite well despite initialization in the short horizons. However, there seem to be regions in the configuration space difficult to handle. We suspect that the nonholonomic constraints in the Unicycle environment lead to singularities which in turn destabilizes learning. With more learning, the algorithm overcomes the presence of singularities. By the 10 th iteration, the algorithm had narrowed the location of singularities to be symmetrically distributed around the goal position.

In our initial experiments, we understood singularities as special points in the state space from which, as noted above, multiple optimal trajectories are possible. This, In this Chapter, we show the results of learning warmstarts. In Section 6.1 we summarize the problem statement and establish the experimental setup. In Sections 6.2 we show our results of learning state-control trajectories for the 3 classic control systems and the 7 dof Manipulator arm. We discuss the key role played by warmstarts before concluding in Section 6.3.

deployment of our algorithm for more complicated scenarios. On the other hand, in [START_REF] Le Lidec | Augmenting differentiable physics with randomized smoothing[END_REF], the authors proposed leveraging randomized smoothing to augment differentiable physics which can then be used to efficiently compute gradients in some neighbourhood. This is an avenue to be explored in the future. In discounted infinite horizon problems, for any policy π, the state-control value

∀t ≥ 1. Under application of policy π, the corresponding optimal Q function is :

V function and Q function are related in the following way.

The list of Action Models inside the ShootingProblem class is collectively known as the Running_Models over a preview horizon while the Terminal_Model is also an Action Model but at the end of the preview horizon.