
HAL Id: tel-04164773
https://theses.hal.science/tel-04164773

Submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive computer vision through the Web
Matthieu Pizenberg

To cite this version:
Matthieu Pizenberg. Interactive computer vision through the Web. Networking and Internet Ar-
chitecture [cs.NI]. Institut National Polytechnique de Toulouse - INPT, 2020. English. �NNT :
2020INPT0023�. �tel-04164773�

https://theses.hal.science/tel-04164773
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Informatique et Télécommunication

Présentée et soutenue par :
M. MATTHIEU PIZENBERG
le vendredi 28 février 2020

Titre :
Interactive Computer Vision through the Web

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
Institut de Recherche en Informatique de Toulouse ( IRIT)

Directeur(s) de Thèse :
M. VINCENT CHARVILLAT

M. AXEL CARLIER

Rapporteurs :
M. MATHIAS LUX, ALPEN ADRIA UNIVERSITAT

Mme VERONIQUE EGLIN, INSA LYON

Membre(s) du jury :
Mme GÉRALDINE MORIN, TOULOUSE INP, Président

M. AXEL CARLIER, TOULOUSE INP, Membre
M. CHRISTOPHE DEHAIS, ENTREPRISE FITTINGBOX, Membre
M. OGE MARQUES, FLORIDA ATLANTIC UNIVERSITY, Membre

M. VINCENT CHARVILLAT, TOULOUSE INP, Membre



ii



Acknowledgments

First I’d like to thank my advisors Vincent and Axel without whom that PhD would not

have been possible. I would also like to thank Véronique and Mathias for reviewing this

manuscript, as well as the other members of the jury, Oge, Géraldine and Christophe for your

attention, remarks and interesting discussions during the defense. Again, a special thank

you Axel for all that you’ve done, throughout this long period and even before it started.

I haven’t been on the easiest path toward completion of this PhD but you’ve always been

there to help me continue being motivated and that’s what mattered most!

Wanting to begin a PhD certainly isn’t a one-time moment, but for me, the feeling

probably started during my M1 internship. I was working in the VORTEX research team

(now REVA) on a project with Yvain and Jean-Denis and it was great! Yet “I don’t think

so” was more or less what I kept answering to my teachers when they would ask if I wished

to start a PhD at that time. And it lasted until almost the end of my M2 internship in

Singapore, when working on a project to transfer research to a product. The internship and

my first experience in Singapore was great and I’d like to especially thank Axel, Vincent,

Thanh, Nizar and Igor for that. It was at that period I realized this is what I wanted!

As a consequence, a significant time of this PhD was spent in Singapore. It is at the

origin of all the visual odometry part of this thesis. I’d like to thank Mounir, Xiong Wei and

Janice in addition to my supervisors who made that possible. I also met amazing friends

there without whom this would have been a much different experience. Justin, Yolanda,

Thomas, Ariane, Flo, Bastien, Clovis, Martin, Ana and Joaquim thank you!

The major part of my PhD was spent in Toulouse, surrounded by wonderful colleagues

and friends. Some of them became futsal mates, running partners, Tarot and Belotte players,

oxidizers (increasing my amount of Rust), temporary flatmates, gaming friends, and night

watchers (on TV as well as in bars!). In the lab, it’s all the little things, from Super

AdMinistrative powers to team workshops or even Thursday burgers, that add up to form a

very welcoming and enjoying working environment. Outside the lab, I’ve been lucky to meet

all my friends in Toulouse and I hope that I’ll be able to keep in touch. Jean-Denis, Yvain,

Simone, Géraldine, Sylvie, Pierre, Charlie, Sam, Axel, Vincent C, Vincent A, Thibault,

Bastien, Chafik, Arthur, Julien, Paul, Thomas, Matthieu, Thierry, Damien, Sonia, Jean,

Richard, Simon, Patrick, Alison, Etienne, Antoine, Matthias, Nicolas, Korantin thank you

iii



all! A dedication also to the friends that helped me becoming who I am before joining the

pink city, Yanis, Alexandre, Alain, Baptiste, Bastien, Océane and Alice thank you!

Finally, I would like to thank my family for always encouraging me and giving me the

means to pursue that science quest of mine. En particulier, merci Papa, Maman.

iv



Abstract

Computer vision is the computational science aiming at reproducing and improving the ability of

human vision to understand its environment. In this thesis, we focus on two fields of computer

vision, namely image segmentation and visual odometry and we show the positive impact that

interactive Web applications provide on each.

The first part of this thesis focuses on image annotation and segmentation. We introduce

the image annotation problem and challenges it brings for large, crowdsourced datasets. Many

interactions have been explored in the literature to help segmentation algorithms. The most common

consist in designating contours, bounding boxes around objects, or interior and exterior scribbles.

When crowdsourcing, annotation tasks are delegated to a non-expert public, sometimes on cheaper

devices such as tablets. In this context, we conducted a user study showing the advantages of the

outlining interaction over scribbles and bounding boxes. Another challenge of crowdsourcing is

the distribution medium. While evaluating an interaction in a small user study does not require

complex setup, distributing an annotation campaign to thousands of potential users might differ.

Thus we describe how the Elm programming language helped us build a reliable image annotation

Web application. A highlights tour of its functionalities and architecture is provided, as well as

a guide on how to deploy it to crowdsourcing services such as Amazon Mechanical Turk. The

application is completely open-source and available online.

In the second part of this thesis we present our open-source direct visual odometry library. In

that endeavor, we provide an evaluation of other open-source RGB-D camera tracking algorithms

and show that our approach performs as well as the currently available alternatives. The visual

odometry problem relies on geometry tools and optimization techniques traditionally requiring much

processing power to perform at realtime framerates. Since we aspire to run those algorithms directly

in the browser, we review past and present technologies enabling high performance computations

on the Web. In particular, we detail how to target a new standard called WebAssembly from

the C++ and Rust programming languages. Our library has been started from scratch in the

Rust programming language, which then allowed us to easily port it to WebAssembly. Thanks

to this property, we are able to showcase a visual odometry Web application with multiple types

of interactions available. A timeline enables one-dimensional navigation along the video sequence.

Pairs of image points can be picked on two 2D thumbnails of the image sequence to realign cameras

and correct drifts. Colors are also used to identify parts of the 3D point cloud, selectable to

reinitialize camera positions. Combining those interactions enables improvements on the tracking

and 3D point reconstruction results.
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Introduction

Computer vision is the computational science aiming at reproducing and improving the

ability of human vision to understand its environment from light sensors. Throughout a

somewhat unconventional, multidisciplinary journey, this document aims at answering the

following question. How can we leverage user interactions and the Web platform to improve

fields of computer vision such as image segmentation and visual odometry.

On the one hand, image segmentation (cf Figure 1) is the task of identifying precise

regions in an image that are structurally or semantically different. For medical images, it

could be localizing cancer cells while for urban images, differenciating people, vehicles and

traffic signs. On the other hand, visual odometry consists in analyzing the video stream of

a sensor such as a camera to locate and track its trajectory with regard to its environment

(cf Figure 2).

Figure 1: Outlining interaction in red and resulting segmentation mask.

Thanks to improvements in imaging and algorithms, we are now able to automate tasks

that were considered science-fiction until recently. For instance, some companies [142] claim

to have reached level 3 of SAE classification [110], meaning that a self-driving vehicle pro-

vides autonomy at limited speed, conditionned by locality and weather among other re-

strictions. Nethertheless, we are still far from reaching level 5 of SAE classification which

requires full autonomy in any driving condition. One non-technical reason is that owners of

autonomous vehicles would be reluctant to accept liability for potential accidents like the

incident of March 18, 2018, that killed Elaine Herzberg [67]. I believe that such vehicles

1
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Figure 2: Camera trajectory (purple) and sparse 3D reconstruction generated by visual
odometry.

will only widespread when they are safe enough for manufacturers to bear responsability

of accidents. Those capabilities depend on many research fields including object detection

and segmentation of urban images, as well as visual odometry. The former is required to

detect the road, understand traffic signs, avoid people, while the latter is needed to precisely

record the vehicle trajectory, especially in situations where other sensors are not available

or sufficiently precise, such as GPS in covered areas.

There exist many approaches for object detection and image segmentation. Today, the

ones performing best rely on a field of research named machine learning. It consists in

building prediction models by aggregating knowledge from databases of pairs of inputs and

outputs called learning datasets. There are subtleties within the field and not all algo-

rithms perform equal but a general rule is that the bigger and most accurate the learning

dataset is, the best will be the detection and segmentation results. I will thus not focus

on machine learning algorithms but rather on the creation of those datasets. That process

is known as image annotation. Annotating an image may take different forms depending

on the task, whether it is classification, object detection or segmentation. In general, it

consists in people using image manipulation tools to draw rectangles, lines, polygons, and

other geometric shapes to identify regions of an image and assign it a label. The Microsoft

COCO dataset [136] for example contains 2.5 million labeled instances accross 328k images

annotated by humans, and required over 22 hours per thousand segmentations. For a French

worker, 35h a week, 228 day a year, this represents approximately 35 years, almost a full

career devoted to that single task. It is thus understandable that building such datasets

must be carefully thought of.

In the first part of this document I will focus on image annotation and segmentation.

2
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Chapter 1 introduces in more details the image annotation problem and challenges it brings

for large, crowdsourced datasets. In Chapter 2, we focus on the interactive segmentation

task. Many interactions have been explored in the literature to help segmentation algo-

rithms. The most common consist in designating contours [185], bounding boxes around

objects [183], or interior and exterior scribbles [143]. Crowdsourcing such tasks however

implies that non-expert users have to perform those interactions and the distinction be-

tween expert and non-expert users is rarely touched. Inspired by the work of Korinke et

al. [123, 124], we present a user study showing the advantages of the outlining interaction for

crowdsourcing annotations to a non-expert public. This work has been published at ACM

Multimedia 2017 [172]. Another challenge of crowdsourcing is the distribution medium.

While evaluating an interaction in a small user study does not require complex setup, dis-

tributing an annotation campaign to thousands of potential users might differ. The best way

to proceed is to build a Web application; and since online annotators are paid for the task,

we need the Web application to be as reliable as possible. Therefore, in Chapter 3 we review

evolutions of the Web since its creation in 1991, especially regarding the development of re-

liable frontend applications. In particular, we describe how the Elm programming language

can help us build a bug-free annotation Web application. Finally in Chapter 4, we present

the open-source Web application we built for the image annotation task. A highlights tour

of the functionalities and the application architecture is provided, as well as a guide on how

to deploy it to crowdsourcing services such as Amazon Mechanical Turk. The presentation

of this application was published in the open-source competition track of ACM Multimedia

2018 [173].

Being a computational science, progress in visual odometry tends to bring larger, more

complex and computationally intensive algorithms over time. Although beeing a poor unit

of measure, number of lines of code provide an approximation of the relative algorithmic

complexity of similar projects. Let’s examine SLAM, which is an extension to visual odom-

etry. Figure 3 illustrates the growth of open-source SLAM libraries. As visible in that

figure, projects code bases are growing to unreasonable sizes for research purposes. This

observation is even worse when considering complete structure from motion libraries such

as OpenMVG, reaching 461k lines of code.

Most of SLAM projects are developed using the C++ programming language for per-

formance reasons. I will argue however, that by continuing to do so, we are hindering mid

and long-term research in the field. C++ projects are difficult to build, mainly because of

assumptions on requirements, dependency conflicts and usage of Linux, Mac, Windows or

architecture specific libraries. To mitigate those issues, projects tend to include within the

source code all of their dependencies. From the 461k lines of code in OpenMVG, 390k are

coming from the src/nonFree/ and src/third_party/ directories. Although seemingly

matters of engineering, those characteristics actually influence research by putting a very

high barrier to entry for new approaches to be able to reproduce already available results and
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Figure 3: Growth of SLAM libraries over time.

compare with them. One should also note that frozing dependency versions brings security

concerns, since upstream security patches requires manual actions to be replicated. This is

especially true in the context of open-source, where we have less control over contributions.

Even careful companies like Microsoft suffer from C++ memory safety bugs for 70% of their

critical security issues [132]. Research code will eventually reach critical software, such as

autonomous vehicles. With great research comes great responsability!

In the second part of this document, we will focus on visual odometry. Chapter 5

introduces the visual odometry problem and the fundamental geometry tools required to

modelize it. Since we aspire to run those algorithms directly in the browser, Chapter 6

reviews past and present technologies enabling high performance computations on the Web.

In particular, we detail how to target a new standard called WebAssembly from C++ and

Rust. In Chapter 7 we present our open-source visual odometry library, which features a

new points selection algorithm for the camera tracking. We started it from scratch in the

Rust programming language, which allowed us to easily port it to WebAssembly. Finally,

we showcase an interactive visual odometry Web application, enabling improvements on

the tracking and 3D geometry results thanks to user interactions. A paper describing the

open-source library and the interactive application is intended to be published.
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CHAPTER 1. THE IMAGE ANNOTATION PROBLEM

In this chapter we will discuss the concept of image annotation, and review the body

of work that have been researched in this domain. But first, what is image annotation?

Fundamentally, it is the process of augmenting an image with information. This information

can be of various nature, typically provided by a human operator, also called annotator.

We could consider image captioning as the first historical example of image annotation,

simply consisting in adding a caption to an image. We could also consider photogrammetry

as a form of image annotation which, long before digital images even existed, is the process

of measuring distances and lengths of the real world from 2D images. It requires annotating

these distances and lengths in the image space, before inferring the values in the real world.

Early techniques in the old cinema also involved manually editing the filmstrip to create

special effects, which is a form of annotation.

Digital imaging has progressively brought new needs for image annotation. The first

digital image was scanned from a photograph in 1957 by Russell Kirsch, and the first digital

camera was built in 1975 by Kodak engineer Steve Sasson. Commercial models of digital

cameras became really available in the 1990s, and from then the volume of digital images

produced grew exponentially every year. Meanwhile the field of computer vision, aiming at

understanding those images, also developed its own research community. The highly influ-

encial journal IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

was for example created in 1979. Computer vision is also related to the field of machine

learning, which designates a class of algorithms in which a model learns from experience,

materialized by data samples. One sub-domain of machine learning, called supervised ma-

chine learning, requires in particular annotated samples, meaning that a label should be

assigned to each piece of data before an algorithm can be trained to predict these labels.

Supervised machine learning gained traction in the 1990s during which some applications

reached high enough maturity to be exploited commercially. A famous example of this is

the digit recognition algorithm from Lecun et al. [131] which was used by AT&T to auto-

matically process cheques in ATM (see Figure 1.1). A nowadays popular dataset, called

MNIST (Mixed National Institute of Standards and Technology) was created for this work;

this dataset associates labels (digits, from 0 to 9) to 28 × 28 pixel images of handwritten

figures.

This dataset illustrates how image annotation could be used to produce desirable ap-

plications, and is only a small example of what has now become a classic pipeline to solve

problems in the computer vision community. Since image annotation has become key in this

community, this chapter focuses on computer vision but the machine learning pipeline we

mention is also used in many other problems such as audio or natural language processing.

Theoretical results in machine learning postulate that problems of great complexity could

be adressed with this technique, provided that (i) there exists a model of sufficient capacity

to cope with the problem complexity, and (ii) a sufficiently large sample of annotated data

is available. Some thresholds have been established by the community to estimate what
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Figure 1.1: Illustration of the digit recognition algorithm from Lecun et al. [131]

“sufficiently large” means [177, 111], but computer vision problems typically requires millions

of annotated images to be solved with an acceptable performance. Models relying on deep

neural networks are nowadays the most popular techniques in machine learning, but other

models, such as deep random forests, used in the human body pose estimation embedded

in the Kinect [196], may still be considered depending on the application. Note that while

gathering more and more data is the current trend in computer vision, an important field

of research conversely focuses on learning on few samples; this field regroups the notions of

semi-supervised learning, weakly-supervised learning, one-shot and few-shots learning, etc.

In what follows, we will motivate the study of image annotation techniques by reviewing

the computer vision problems for which large datasets, often combined with (deep) machine

learning techniques, have recently significantly improved the state-of-the-art. We will then

discuss the process of gathering these annotations, focusing on some key aspects such as

expert vs. non-expert annotations, quality control, etc. Finally, we will end this chapter

with a focus on image segmentation, reviewing the possible interactions that can be used to

provide such type of annotation. This last part will naturally lead to the next chapter that

present our contribution on interactive segmentation.

1.1 Computer vision problems that require annotation

1.1.1 Image classification

Image understanding forms a category of hard problems, but among them, what could

be considered the simplest one is image classification. Classifying an image consists in

assigning it labels describing either the type of scene it depicts such as interior, exterior,

beach, mountain, forest, city, or the objects that are displayed, sorted by importance. This

task requires an advanced understanding of the images.

In fact, two of the most important challenges in computer vision have highlighted this

task as one of the main problem to be solved. The first one, Pattern Analysis, Statistical
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Modelling and Computational Learning Visual Objects Challenge, often called PASCAL

VOC [72], has run from 2005 to 2012 and figured at its peak 11,530 images depicting 20

classes. It is interesting to note that this challenge coincides in time with the rise of machine

learning popularity in the computer vision community. In a way, PASCAL VOC has been

both a marker and a catalyzer of the importance of machine learning in image processing

problems. PASCAL VOC stopped in 2012 sadly due to the passing of one of its most invested

organizers, Mark Everingham, as well as due to the growing importance of a much larger

challenge: the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

ILSVRC [184] started in 2010, motivated by the goal to solve larger scale problems.

ILSVRC relies on a gigantic dataset called ImageNet, that originally intended to match a

natural language dataset called WordNet [146]. WordNet is a database of english words,

grouped into sets of synonyms called synsets. The goal of ImageNet is to provide a set

of images to describe each of these synsets. As of December 4th 2019, ImageNet displays

14,197,122 images that depict 21,841 different synsets.

We should also mention a parallel effort funded by the Canadian Institute for Advanced

Research, which led to the creation of CIFAR-10 and CIFAR-100. Those datasets contain

images of size 32×32 collected over various Web images searching tools, and classified under

10 and 100 classes respectively. ImageNet and CIFAR-100 are often both used to assess the

performance of image classifiers.

While many subsequent work have further improved state-of-the-art classification results,

we could synthesize the progress in classification by citing two papers. The first one from

Krizhevsky et al. in 2012 [127], nicknamed AlexNet, was probably key in the rise of deep

learning that followed. AlexNet won the ILSVRC 2012 challenge by a large margin, starting

the trend of using deep neural networks to solve computer vision problems. The second paper

from He et al. in 2016 and often called ResNet [102], introduced residual blocks through skip

connections to ease the training of very deep neural networks, up to 1000 layers! The 152

layers version of ResNet won the ILSVRC 2015 challenge by reaching an error rate so low

that it could be considered below the average human performance. The general trend in

subsequent work has been to reach comparable or higher performance than ResNet while

reducing the number of parameters and operations to a minimum.

1.1.2 Image captioning

Another important topic, that extends in a sense the image classification problem, is the one

of image captioning. It consists in describing an image with a set of sentences. Image cap-

tioning is a much harder problem than classification, because captions require a higher level

of image understanding as well as natural language capabilities to generate valid sentences.

In terms of annotations, it is also much longer to caption an image than just assigning it

a class. Another difficulty for data gathering is the quality check of the annotations, since

two sentences from two different users may be completely different but still convey the same
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Table 1.1: Datasets for image classification and their characteristics.

Dataset Year # classes # images annotation process

PASCAL VOC [72] 2005 – 2012 20 11.5k In-house
ESP Game [212] unreported any 100k ESP Game players
CIFAR-10 [126] 2009 10 60k Recruited students
CIFAR-100 [126] 2009 100 60k Recruited students
SUN397 [227] 2010 397 130k
ImageNet [184] 2010 – now 21k 14M Mechanical Turk

Open Images [128, 125] 2016 – now 8.5k 9.2M
In-house and
Crowdsource app

Table 1.2: Datasets for image captioning and their characteristics.

Dataset Year # captions # images annotation process

Flickr30k [231] 2014 150k 30k Mechanical Turk
MS COCO [41] 2015 1M 164k Mechanical Turk
Conceptual Captions [194] 2018 3.3M 3.3M Web crawling
nocaps [3] 2019 166k 15k Mechanical Turk

semantic meaning.

The datasets introduced in Table 1.2 have brought large enough sets of examples to

efficiently train deep neural networks. Image captioning requires more advanced architec-

tures, as it involves performing two difficult tasks at the same time: (i) image understanding

(computer vision) and (ii) sentence generation (natural language processing). The first task

has become fairly standard, provided that large datasets are available, and relies on convo-

lutional neural networks. The latter is a well-known task as well, and can be solved using

recurrent neural networks, which are useful to handle sequential data as well as generating

sequences (such as sentences) of variable length. One of the first and most popular papers

to build a system that brought together these two components was published by Xu et

al. [228]. This work, named Show, Attend and Tell, uses an attention model to focus on

different regions of an image while guiding the sentence generation. Attention models have

been later extended to Transformers models [210], and this extension has been adapted to

image captioning by the authors of the Conceptual Captions dataset [194].

1.1.3 Object detection

On top of naming or precisely describing the objects in an image, many applications also

require to locate the objects. There are several levels of precision to which this problem can

be achieved. The coarser grain application is often coined object detection and consists in

drawing a bounding box around objects in an image. Object detection is a generalization

of the object localization problem, for which there can be at most a single instance of each

object in an image. Object detection is a much more difficult problem, since there could be
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Table 1.3: Datasets for object detection and their characteristics.

Dataset Year # classes # images # instances annotation process

PASCAL VOC [72] 2005 – 2012 20 11.5k 27.4k In-house
ImageNet [184] 2010 – now 200 450k 500k Mechanical Turk
MS COCO [136] 2015 – now 91 328k 2.5M Mechanical Turk
Open Images [128, 125] 2016 – now 600 1.9M 15.8M In-house

hundreds of instances of the same object in a scene (such as humans in a crowd picture, or

cars in a parking lot for example).

Object detection datasets mostly originate from the image classification datasets inro-

duced in Table 1.1, which they are often extending. Table 1.3 sums up the main charac-

teristics of four of the most prominent ones. The PASCAL Visual Objects Challenge [72]

for example, has included a detection challenge ever since it first ran in 2005 but on only

a few thousands image. The dataset increased in size over time and reached almost 30k

annotated bounding boxes in the end in 2012. The ImageNet challenge, which originally

started in 2010, later added a detection task (in 2013 and 2014) with a large dataset of

more than 500k annotated bounding boxes on 200 classes (which include for the most part

the 20 classes of PASCAL). Note that ImageNet also ran a localization challenge for which

more than 500k images of the 1000 classes that were used in the classification challenge

were annotated with one, and sometimes more, bounding boxes per image. The difference

between localization and detection is that there is only one instance of object in an image of

a localization dataset. In total, there are more than a million images including one or more

bounding box annotations in the ImageNet dataset. The third dataset, called Microsoft

Common Objects in Context (MS COCO) was released in 2014 [136]. It figures annotations

that are in fact object segmentations, but that are used to generate bounding boxes valid for

an object detection task. MS COCO was designed to provide a larger number of annotations

per class than ImageNet and PASCAL, but on a smaller number of 91 classes. Finally, the

most recent and large dataset is called Open Images [128, 125] and features a tremendous

amount of more than 15 million bounding boxes of 600 classes on almost 2 million images.

These datasets have largely contributed to the performance improvements observed in

the literature from 2014 to 2016. Such improvements are mainly due to two body of works

that have driven the research in object detection forward. The first line of work directly

derives from a trend that emerged at the end of the 2010s in computer vision. A category

of segmentation algorithms called superpixels became quite popular and many influential

papers [76, 1, 133] proposed solutions for computing oversegmentations that could be used as

a building block of more complex methods. In particular, some object detection algorithms

started using a set of object proposals [209], computed from a superpixel segmentation, that

would be later classified as objects or not. This approach constitutes the core idea of the

Mask-RCNN paper [87], the classification step being performed by a standard convolutional
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Table 1.4: Datasets for object segmentation and their characteristics.

Dataset Year # classes # images # instances annotation process

PASCAL VOC [72] 2005 – 2012 20 11k 7k In-house
SUN2012 [227] 2012 4479 131k 313k LabelMe [185, 19]
MS COCO [136] 2015 – now 91 328k 2.5M Mechanical Turk
Open Images [128, 125] 2016 – now 350 1M 2.8M In-house

neural network. This approach was later optimized by the same author [86] (Fast-RCNN),

until the whole process was merged into a single end-to-end neural network that jointly

performs object proposals and classification [181] (Faster-RCNN). A second line of work

adopts a different type of neural network architectures. It focuses on the task of predicting

bounding box coordinates for all object classes, splitting an image into a grid and being

able to predict a bounding box centered in each cell of the grid. This approach, called

YOLO (You Only Look Once) [178], was later optimized to be able to handle very large

scale problems [179], up to 9000 classes, and to improve performances [180].

1.1.4 Object segmentation

The finer grain at which localization can be achieved is at pixel level: this is called image

segmentation, or image parsing. This problem can also be stated as classifying each pixel in

an image. A variant of this problem is called object segmentation, or instance segmentation,

in which only some objects of an image are segmented. Annotations for the segmentation are

much more difficult to gather, due to the need for a pixel-wise precision and the potential

complexity of objects contours. The problem of automatic image segmentation is also a

very complicated one, and requires a large number of annotations to be efficiently solved.

The first dataset to offer an important number of annotations is once again PASCAL,

with roughly 7,000 annotated instances of the same 20 classes as the one used for the

classification and detection tasks. A parallel effort was developed in the framework of the

SUN database, thanks to a popular labelling tool called LabelMe [185], that produced more

than 300k labelled instances. LabelMe is a tool that allows drawing polygons around objects

of interests. The segmentations obtained with this method are often quite coarse, but the

authors of [136] nonetheless reported that it takes 22 hours of human annotations to segment

1000 object instances. In their dataset, which was described in an earlier paragraph, more

than 2 millions instances were annotated. The latest dataset is again Open Images, with a

million images depicting 350 classes and 2.8 million segmented instances.

The first paper to implement an end-to-end neural network for image segmentation was

published in 2015 [138]. J. Long et al. present a fully convolutional architecture which com-

bines predictions at different levels of resolution to produce a detailed segmentation map.

This architecture was improved by two papers, who systematize the combination of pre-

dictions by introducing an encoder-decoder architecture, with skip connections that allows
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retrieving fine-grained details. U-Net [182] is one of these two papers, and originated from

the medical imaging community. SegNet [11] on the other hand specifically targets urban

scenes segmentation, with autonomous driving as a direct application. These two papers

share the same neural network architecture, with slight specificities in the skip connection

implementation. Another very popular paper in the field of segmentation is DeepLab [40].

Previous architectures use an autoencoder structure, which allowed to derive a global un-

derstanding of the image in the bottleneck region of the network before retrieving a more

local clasification of the pixels. Instead, DeepLab uses a spatial pyramid of different filter

sizes to perform a multi-scale analysis of the image and make a local prediction that takes

into account a larger area.

1.2 Discussion on dataset gathering

Instead of specifically commenting on each dataset methodology for gathering annotations,

we will discuss in this section particular points that are of interest when one wants to create

its own dataset.

1.2.1 Explicit vs. implicit annotation process

As visible in the tables of Section 1.1 the annotation process was predominantly explicit to

the human annotators. By explicit, we mean that the humans involved in the task were fully

conscious of the tasks they were performing, and that their goal was to create an annotated

dataset. This is mostly due to the fact that image annotation takes time, and requires an

incentive, typically money on crowdsourcing platforms. There are however a few exceptions,

some of which have been mentioned before.

First, the Conceptual Captions dataset [194] has been obtained through a mostly auto-

mated process, looking for sentences on Web pages that accompany the images. One could

say the original authors of the sentences implicitly annotated the images for this dataset.

A more interesting example is the ESP Game dataset [212]. The ESP Game has been

created by Luis Von Ahn in 2005 and figures two humans playing collaboratively over the

same image, as depicted in Figure 1.2. They score points whenever they manage to write

matching words to describe the image. From an annotation point of view, whenever the

two players agree on a word one can safely assume this word describes an object present on

the image, or an action happening on the image. In order for the game to provide a good

annotation coverage, words can be ruled out of the game, called taboo, which means the

players can see these words and know they have to specify a different one. The ESP game

started a trend of Games With A Purpose (GWAP) [213] including some games designed to

perform image annotation such as PeekaBoom [214], KissKissBan [106] and Click’n’Cut [36],

but ESP remains the only game that gathered enough data to create a dataset.
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Figure 1.2: Screenshot of the ESP game, by Luis Von Ahn [212]

There exists another well-known mean to gather data in an implicit way: CAPTCHAs.

The term has been originally coined by Luis Von Ahn (again) et al. [211] and stands for Com-

pletely Automated Public Turing Test to Tell Computer and Humans Apart. CAPTCHAs

have been created to stop automated attacks on websites, to prevent automated creation of

millions of malicious email accounts. The idea is to create a Turing test [208], i.e. a test

that a human should be able to complete effortlessly while a machine would be unable to

perform it. Original versions of CAPTCHAs displayed distorted, geometrically transformed

words which would make it unrecognizable by standard optical character recognition (OCR)

softwares. The task remained fairly easy to humans, and required in average 13s [215]. At

the time, ambitious projects were ran in parallel to digitize tremendous collections of books,

like Google Books, which makes available searching through millions of books. This process

of digitizing books was automated using OCR softwares, but failed for 20% of the words

in older books due to faded ink for example. The reCAPTCHA system offers a clever way

to match the two very different problems of securing websites and digitizing old books by

proposing words from old books, that could not be recognized automatically, to humans who

wish to use an online service and are perfectly able to recognize them. The authors report

that in 2008, after one year of deployment, reCAPTCHA has helped decipher 440M words,

which amounts for more than 17,000 books.

While there are no further publications on reCAPTCHA, one has been able to observe its

evolution through the years (see figure 1.3). Driven by the need to come up with problems

that still resist computers, it went from text to image recognition, from digit recognition

in pictures probably extracted from Google Street View to object detection in urban scenes

pictures, very likely to target autonomous vehicles applications.
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Figure 1.3: Screenshots illustrating the evolution of reCAPTCHA [215] tasks over the years.

1.2.2 Expert vs. non-expert annotators

Whether they are implicit or explicit, annotations need to be performed by human anno-

tators and there have been several trends throughout the years. In essence, we could split

annotators into two sets of users: experts, from whom we can expect high quality annota-

tions but are rare and expensive, and non-expert users who tend to make more mistakes but

provide much cheaper annotations.

Historically, the first datasets of reasonable scale which are PASCAL and CIFAR, did not

require too many annotators. In fact, the authors of PASCAL [72] reported that a “party”

of users annotated the images after an initial training. They were probably students, but

no details are provided as to how many of them. These users were also regularly observed

during annotations to ensure the quality of their work. Finally, one of the organizers of

the PASCAL challenge checked all the annotations. Similarly, the CIFAR dataset [126] was

labelled by a group of students paid for the task.

With time, there was a demand for larger datasets. They aimed at expanding the

number of classes, as well as the number of annotated images. With this new goal in mind,

the dataset authors started crowdsourcing the annotations. Crowdsourcing is a process in

which a task that should usually be performed by an expert is outsourced to a crowd of non-

expert users. The term was first coined by Jeff Howe in 2006 [107]. The creation of specific

online platforms such as Amazon Mechanical Turk or Crowdflower considerably eased the

process of crowdsourcing image annotation. ImageNet and MS COCO have both been

annotated by Turkers, i.e. humans recruited and paid through Amazon Mechanical Turk.

Since the difficulty to clearly instruct remote users is increased, the annotations interfaces

need to be carefully designed, and the annotation quality need to be properly ensured; this

will be described in Section 1.2.3.

While crowdsourcing is widely used, it may not be relevant to all setups. In cases when

images are sensitive for example, it is not possible to outsource the annotation process

outside of a company. In addition, the need for redundancy to ensure annotation quality

limits the positive impact on cost that crowdsourcing is supposed to provide. Although being
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one of the largest annotated dataset, Open Images has been for the most part annotated

by in-house employees at Google. To achieve this, interactions have been specially designed

to lead to good annotations in a faster way. For example, extreme clicking for bounding

box annotations [165] introduces a clever interaction that allows to draw bounding boxes

more quickly, avoiding the errors that usually force users to start over. Alternatively, the

authors of [21] propose an interactive segmentation algorithm in which user clicks guide a

deep neural network and refine the segmentation mask. The images can be annotated 3

times faster than when using a standard polygon drawing tool such as with LabelMe [185],

and the segmentation boundaries are much more precise. We present a similar contribution

in the next chapter.

1.2.3 Quality check of annotations

As stated in the previous section, crowdsourcing is currently one of the leading methods to

gather annotations for creating image datasets. However, and while the annotations come

at a relative cheap cost, the quality of the collected data is often questionable. Oleson et

al. [162] have classified three categories of errors that non-expert users are likely to commit

when performing Human Intelligence Tasks (HIT), the term coined in Amazon Mechanical

turk to designate the micro-jobs offered to the users. The first source of errors, called

unsufficient attention by Oleson, simply occurs when the humans enrolled to perfom HITs,

called workers, make occasional mistakes, due to the task complexity or a lack of attention

for example. Some other workers, called incompetent by Oleson, may not understand the

task and behave unpredictably. The data they provide is often unusable. Finally, a last

class of workers, called scammers, designates users who try to trick the system to collect the

reward. A good quality checking process should account for these three types of possible

errors. Oleson et al. point out the advantages of adding gold standard images i.e. images for

which a ground-truth annotation is known, among the data to be able to estimate workers

reliability. The authors of ImageNet [184] also reported using this technique. Using gold

standard is a good practice to detect scammers and incompetent workers.

Figure 1.4: Illustration of possible mistakes that happen during a crowdsourcing cam-
paign [38]: on the left, annotations from a user who misunderstood the task, to be compared
with the expected results on the right (red points on the background, green points on the
foreground). In the middle, annotation of a scammer.
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The most obvious way to detect workers mistakes is to introduce redundancy in the

annotations. Multiple workers are tasked to label the same image, and the annotations are

validated if they are similar enough. This straightforward strategy has been formalized by

Luis Von Ahn [213] under the term output agreement : multiple users agree on the same

output annotation for a given image. Authors of MS COCO [136] report asking up to 8

workers to perform the same task, for example to increase the recall in an instance spotting

task. Redundancy helps reducing the impact of unsufficient attention.

Another technique to prevent having too many incompetent workers is to go through

a tutorial before starting the task. Gottlieb et al. [92] have shown that the performance

of users who complete a tutorial beforehand is significantly higher than users who did not.

In [136], users are filtered based on their performance in an initial training task and are

periodically verified during the whole annotation process.

The error rate can also be limited by a clever labor division. A Human Intelligence Task

should always be an atomic operation, simple to explain and quick to perform. For example,

the authors of [204] introduce a Find-Fix-Verify pattern for object detection annotations.

Output agreement is difficult to implement for bounding boxes due to the the presence of

thresholds to measure similarity. Therefore, the authors introduce a series of micro-tasks

ensuring the quality of the final bounding boxes. A first group of workers is tasked to draw

bounding boxes (Find), and a second group of different workers is asked to validate each

of the bounding boxes (Fix ). Being a binary decision, it is easier to implement output

agreement on this second task. Finally a last group of users is in charge of checking whether

some objects have been omitted by the first pool of workers (Verify). Another example of

work division is described in [41] for instance segmentation. Four different tasks are defined

and sequentially operated by different workers: image labelling (Which objects appear in

the image? ), instance spotting (users should click on each instance of a particular object),

instance segmentation, and segmentation verification. Redundancy is introduced at every

step except for the third one, which is the more time-consuming and is especially verified

by the fourth task.

A final control of the annotations quality can be done at the end of the study. This is

an approach adopted in PASCAL [72] for example, but also in Open Images [128] in which

the expert annotators verify automatically derived labels, obtained through deep learning.

1.2.4 Annotation interaction usability

A common feature of all the points we have discussed in the three previous sections is that the

goal of the annotation process is to obtain the largest possible number of annotations, of the

highest possible quality, and at the lowest possible cost. Implicit annotation is cheaper but

often difficult to put into place in practice. Expert annotators provide reliable annotations

but are expensive, whereas a large number of less precise annotations can come at a cheaper

cost when using crowdsourcing. Quality check helps ensuring annotations reliability but
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introduce new expenses.

With that goal in mind, there also exists another variable which is rarely taken into

account: the usability of the annotation interaction. Usability is a computer-human inter-

action concept that has been defined by Nielsen [154]. In essence, it describes the extent

to which an interface can be mastered and used to efficiently perform the task it has been

designed for. Nielsen also introduces five criteria that help measuring an interface usabil-

ity: subjective satisfaction, easiness to learn and to remember, efficiency with respect to a

certain task, and error robustness. It is really interesting to note that all of these criteria

are relevant to image annotation; we want the users to be efficient, i.e. to provide good

annotations in the minimum amount of time. We want the users to make as few errors as

possible, and we also want them to easily learn and remember their task, once again, to be

cost-effective. While usability is a core concept of computer human interaction, very few of

the annotation tools that we described previously mention they want to optimize it.

Korinke et al. [123, 124] have studied how touch devices should be used to perform

image segmentation. They compare several types of interactions and conduct two user

studies to evaluate and compare these interactions. More recently, and while usability

is not explicity mentioned, the work of Papadopoulos et al. [165] on extreme clicking is

particularly interesting. The goal of the work is two-fold: reducing the annotator cognitive

load and improving the quality of the annotations. The authors propose replacing the

traditional bounding box drawing by clicking four extreme points (top, down, left and right)

of the object and deriving the bounding box from these points. This interaction offers an

interesting advantage: it reduces the time needed to appropriately draw a bounding box by

a factor of 5. Users otherwise tend to start over multiple times due to the non-convexity

of objects shape. It also provides richer annotations as four points lying on the object

boundary are provided; the authors take advantage of this property to generate reasonable

quality segmentations from this very weak information of only four points. Some subsequent

work of the same group adopt similar approaches for image segmentation, providing users

with the ability to correct segmentations by scribbling [4] or clicking [21].

1.3 Existing interactions for user-assisted segmentation

As image segmentation involves annotating images with a very rich amount of information,

many interactions have been explored in the literature to provide users a way to bring

semantic information to help existing segmentation algorithms. We review the interactions

in this section and present briefly the algorithms that are attached to them.

The most intuitive methods are the ones that require the user to manually designate the

contours of the object. The LabelMe tool [185] (Figure 1.5) is the most famous example

of such an interface. The Web-based interface developed by the authors allows users to

draw a polygon around an object. The segmentation obtained with this technique is not
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necessarily precise at the pixel level, but is sufficient in many cases and has the advantage

of being easily understood by users. In a variant of this technique called the Intelligent

Scissors [148], the users click points on the contour of the object and a dynamic programming

algorithm searches the optimal path that ties those points. There exists another variation

of contour drawing called Soft Scissors [218]. One has to follow the contour using a soft

constrained, size-adaptable thick contour brush, requiring less precision than exact polygon

contour drawing.

Figure 1.5: Visualization of an image annotated with the LabelMe tool [185].

A second possibility for interactive segmentation has been proposed by Rother et al. [183].

The user is only required to draw a bounding box around the object (Figure 1.6), which is

used to learn a background model. The foreground is then obtained using iterative graph-cut

and alpha matting. This method works very well for objects that distinctly emerge from a

repetitive background. However in the case of complex scenes, the authors allow users to

perform an additional refining step based on scribbles.

Scribbles form another category of interactions for segmentation, and are undoubtedly

the most widely used (Figure 1.6). Users can typically draw foreground and background

scribbles on the image, and receive a feedback on the current state of the resulting segmen-

tation mask. Boykov and Jolly [27] use this input to build a trimap, i.e. a partition of the
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Figure 1.6: Example bounding box and scribbles interactions. On the left image, a user
drew a bounding box around the gymnast. On the right image, a user drew green foreground
scribbles on the gymnast and red background scribbles outside.

image into hardly constrained foreground and background regions, and a softly constrained

in-between region. They run a graph-cut algorithm to find the optimal object boundary

on the softly constrained region. McGuinness and O’Connor [143] describe how to use

scribbles to segment an image using a Binary Partition Tree (BPT) [187]. The BPT is a

hierarchy of image segments that can be used to propagate the foreground and background

inputs between similar regions. Scribbles have also been used in the context of image co-

segmentation [20], to provide foreground and background information across a set of images

depicting the same object. As an alternative to scribbles, single foreground and background

points have been used as input to select the best masks among a set of object candidates [37],

or to guide the prediction of deep neural networks [21].

The mouse is used in most of these work as interaction device, which probably explains

why outlines are rarely studied in the literature. Outlines are indeed tedious to perform with

a mouse. However, most of the literature algorithms can take outlines as an input; in the

work we present in the next chapter, we choose to use GrabCut to obtain a segmentation

from the outlines.
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Interactive segmentation consists in building a pixel-wise partition of an image, into

foreground and background regions, with the help of user inputs. Most state-of-the-art

algorithms use scribble-based interactions to build foreground and background models, and

very few of these work focus on the usability of the scribbling interaction. In this chapter,

we study a very intuitive interaction to non-expert users on touch devices, named outlining.

We present an algorithm, built upon the existing GrabCut algorithm, which infers both

foreground and background models from a single outline. We conducted a user study on

20 participants to demonstrate the usability of this interaction, and its performance for the

task of interactive segmentation.

2.1 Introduction

The number of pictures that are captured, stored and shared online is growing everyday. In

march 2017, Facebook reported that 300 million pictures were uploaded each day on their

website. These pictures are increasingly used by companies and individual users, enabling

new applications trying to improve everyday life. Object segmentation serves as an impor-

tant step toward automatic image understanding which is key to those smart applications.

Object segmentation in an image remains a challenging task. This process of assigning a

label to each pixel is very sensitive to the classical difficulties encountered in computer vision

such as lighting conditions or occlusions. Recent advances in deep learning have enabled

researchers to obtain state-of-the-art results [138] by training on the PASCAL segmentation

dataset [73]. Some other techniques learn to infer a pixel-wise segmentation from weak

annotations, i.e. bounding boxes around objects [166]. These methods are very promising

but need huge amount of human labeled samples in order to train deep neural networks.

Recent approaches have tried to overcome this issue, introducing active learning to train deep

neural networks using a limited amount of selected samples [137] on the problem of image

classification, but none of these methods have yet been applied on semantic segmentation.

Since fully automatic segmentation is still in many cases out of algorithms’ reach, re-

searchers have introduced the concept of interactive segmentation. This problem has often

been approached with a task-driven point of view: what type of interaction may bring the

necessary information to significantly help an algorithm achieve an acceptable segmentation?

The users providing the interactions are often supposed to have a fair understanding of what

segmentation is. This assumption is problematic, especially when putting into perspective

the extraordinary amount of images to be annotated. That is why our target audience is

composed of non-expert users who are not knowledgeable about image processing and seg-

mentation. As a consequence, most of the existing work are not suitable to our problem.

They rely on foreground and background scribbles requiring high cognitive load from the

users.

Instead, we propose to use an intuitive interaction, outlining (Figure 2.1), that can be
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Figure 2.1: A user outlining an object on a touch device, and the resulting segmentation
mask obtained with our method.

performed quickly and lead to good segmentation results while keeping users from entering

a process of iterative segmentation refinement. This outlining interaction is particularly well

suited for touch devices, which is appropriate considering the growing usage of tablets and

smartphones compared to computers. All these properties make the outlining interaction

very interesting for crowdsourcing segmentation annotations on thousands of images, with

non-expert users.

We present two main contributions in this work: first, a modification of the GrabCut

algorithm that takes as input an outlining interaction, instead of a bounding box. We take

advantage of the free-form shape drawn by the users to extract information about foreground

(using the Blum Medial Axis computation) from a background annotation (the outline). The

second contribution of this work is the usability comparison of various interactions used in

interactive segmentation. We argue that the outline offers the advantage of being a quick,

easy-to-understand and usable interaction while providing a high amount of supervision to

obtain a good segmentation.

The rest of the chapter is organized as follows. Since we have already extensively de-

scribed the state-of-the-art in the previous chapter, we first introduce the outlining interac-

tion along with our method to compute segmentation masks in Section 2.2. We then present

in Section 2.3 our experiments and the results showing that our simple interaction leads to

segmentations of good quality.
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2.2 Outlining objects for interactive segmentation

In this section we detail why we use outlining interactions, and our method to compute

segmentation masks from those.

As stated in the previous section, most of prior crowdsourcing campaigns in image seg-

mentation have asked users to draw a polygon around the object of interest. This interaction

has some merit in terms of usability: it is straightforward to understand, and does not re-

quire iterative refinement from the user. In addition, the user does not have to evaluate the

quality of the produced segmentation mask to know when to stop interacting. When the

polygon is drawn, the segmentation is over.

However, we have two main concerns with this interaction. First, it is tedious and

time consuming. It requires users’ full attention, in order to precisely click on the object

boundary. It also requires users to implicitly determine the number of edges of the polygon

they should draw. A second limitation of this interaction is the pixel-wise quality of the

segmentation mask obtained. Shape details and curved boundaries can only be approximated

by a polygon, and their quality is correlated with the time the human annotator is willing

to spend annotating.

Outlining an object has the same merits than drawing a polygonal shape around the

object: the task is easily defined, and it is easy for a user to assess the quality of an outline.

It also adresses the first limitation of the polygons: since it requires less precision in following

the object boundaries, it is less tedious and time consuming. It has however an important

drawback: it does not provide an accurate segmentation.

In order to address this problem, we choose to rely on the popular GrabCut algo-

rithm [183]. The original GrabCut takes a bounding box as an input. It considers every

pixel outside of the bounding box as fixed background, and aims at separating foreground

from background inside the bounding box. To this end, a background model is estimated

from the fixed background, and a foreground model is estimated from the pixels inside the

bounding box. The likelihood of each pixel inside the bounding box to be foreground or

background is then estimated, and graph-cut is applied to obtain a temporary segmentation

mask. This mask is then used to update the foreground and background models, and the

process is iterated until convergence.

In our implementation, we slightly alter the GrabCut algorithm to take into account a

major difference between outlines and bounding boxes: we can make stronger assumptions

on the foreground positions from an outline than from a bounding box by looking at the

general shape of the outline. We restrict the initial foreground model computation to the

pixels that are most likely to be foreground, which decreases the number of iterations needed

for convergence and improves the segmentation quality.

In the rest of the section, we explain two different methods to infer foreground from

the ouline shape: the first method consists in eroding the outline, and the second is based

on the Blum medial axis computation. We then post-process the foreground pixels using
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superpixels.

(a) Erosion of outline (b) Skeleton of outline

(c) Erosion of outline extended with superpixels (d) Skeleton of outline extended with superpixels

Figure 2.2: Different foreground inferring methods from a user outline. The ground truth
mask is in dark blue. The user outline is in cyan. The inferred foreground is in yellow.

2.2.1 Outline erosion

The simplest method to obtain points that are likely to be foreground from an outline is to

apply morphological erosion of a mask representing the inside points of the outline. We use

a disk as a structuring element for the erosion, and the only parameter of this method is the

radius of the disk.

In our implementation, the disk radius is specific to each user and computed by studying
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the outline performed by the user on a reference image. We compute the mean md and

standard deviation sd of the distance d from each outline point to the ground truth mask.

Assuming the user consistently outlines all images, i.e. the mean distance of the user outline

to an object is more or less constant across all images, a disk radius equal to md + 2 · sd

should produce an eroded outline that is almost certainly completely foreground.

An example of this process can be visualized on Figure 2.2a. The eroded outline (yellow)

is almost entirely contained in the ground truth mask (dark blue).

2.2.2 Blum medial axis algorithm

In shape analysis and model animation, the Blum medial axis transform [25] is one of the

most popular tools. The Blum medial axis of a shape is composed of the centers of the

circles that are tangent to the shape in at least two points. It is especially appropriate to

compute skeletons, composed of the medial axis points inside the shape.

Figure 2.3: Skeleton (in green) computed using the Blum medial axis algorithm from an
outline (in red). Few example disks are shown in blue. In the image on the left, all disks
centers (green points) are kept, generating a very noisy skeleton. In the image on the right
the skeleton is pruned, by filtering out centers of small disks.

One of the problems of the medial axis algorithm is its stability when the shape frontier

is noisy. It tends to create a high number of branches (Figure 2.3), which deteriorates the

simplicity of the skeleton, and incidentally the comprehension of the shape. In our case,

this is rather an advantage. Indeed more ramifications lead to a higher number of points

inside the shape for our foreground scribbles. However, we need to filter the inside points,

since those close to the outline have a high probability of being outside of the object to

segment. Radius of the inside circles of medial axis points constitute a good filter option

because the medial axis points with the smaller radius are typically close to the outline. In

28



September 5, 2020 2.3. EXPERIMENTS

our implementation, we choose to keep only centers with a radius higher than half the larger

radius. Figure 2.2b depicts a ground truth mask in dark blue, a user outline in cyan and the

filtered medial axis points in yellow. Most of the yellow points fall inside the ground truth

mask, thus making it a good starting point to learn the foreground model.

2.2.3 Enhancing foreground with superpixels

These two methods, Blum medial axis and outline erosion, allow to select foreground points

that make a valuable input to the GrabCut algorithm. However, we add a post-processing

step to (i) extend this foreground information and (ii) filter as much false foreground points

as possible.

To do so, we compute a superpixels segmentation of the image, i.e. an oversegmentation

that groups neighbouring pixels with similar colorimetric properties. We (i) extend the

foreground labels from pixels to the superpixels they belong to. This considerably increases

the surface of the foreground region. In addition, we (ii) handle conflicting superpixels,

which contain both pixels denoted as foreground and a piece of the outline, by removing

them from the foreground mask. An example of the result can be seen on Figure 2.2c and

Figure 2.2d. Note that the errors arising from the first step (between the knees in Figure 2.2a

and Figure 2.2b) have successfully been removed in the post-processed inferred foreground

mask.

We choose to use the Mean-Shift superpixels [51] because no compacity constraint is

used in their computation. As a consequence, a superpixel can cover a large area (especially

in the case of similar background regions, such as an homogeneous sky) and will more likely

correct wrongly inferred foreground points.

2.3 Experiments

In this section we describe the setup of our experiments and analyze the outcome of the

study.

2.3.1 Experimental setup

Interactions Since the subject of the study is interactive segmentation on touch devices,

we choose to compare only three annotations: outlines, scribbles, and bounding boxes. We

do not include polygon drawing since it is clearly not adapted to a touch device. Indeed,

fingers are too big to precisely touch the boundary of an object, they would hide the area

where the user should try to place the vertex on.

The interfaces are kept as simple as possible. The user is shown an image and has to

provide a valid input to be allowed to move on to the next image.
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Figure 2.4: Several screenshots of the bounding box interface during training (left) and
study (right) phases. Some minimal input validation is performed, such as checking that the
surface of the annotation is above a minimal threshold. If not, a message with a red banner
is displayed at the bottom of the screen as in the second image above.

The bounding box interface allows the user to draw a rectangle over the image using

a touch and drag interaction (Figure 2.4). If the user is not satisfied with their previous

attempt, they can start over, which will replace the former rectangle with a new one. The

user can only move on to the next image when the current rectangle is of sufficient size (we

discard rectangles that are too small to avoid common mistouch issues).

The outlining interface is very similar to the bounding box interface. The user can draw

the outline using a touch and drag interaction; the system automatically draws the closing

segment between the ending and starting points when the user releases their finger. The

user can also start over if not satisfied with the current outline. The system allows the user

to move on to the next image if the outline is of sufficient area. In addition, for the training

image only, the system checks the absence of loops in the outline path (Figure 2.5), for they

may reveal incorrect usage. This loop detection feature is deactivated for the other images

to limit its impact on the interaction and user frustration.

The scribbling interface displays three buttons: one to select the foreground scribbles,

which are drawn in green, one to select the background scribbles, which are drawn in red,

and one to remove the last drawn scribble. Users are required to provide at least a minimum

scribble length to be allowed to move on to the next image.

Device and software We use a regular 8” android tablet, for which the buttons appear

large enough to be easily clickable. The user study is conducted on a Web application in

the Chrome browser for android. The code for this study (Web client and server), as well

as the results presented here are all available online (github.com/mpizenberg/otis).
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Figure 2.5: Several screenshots of the outlining interface during training (left), and study
(right) phases.

Images We select 36 images from the iCoseg dataset [20], which we divide into 3 groups

of 12 images. We want the segmentation results to be comparable between different inter-

actions, but since each user tests the three interfaces, we do not want the same images for

every phase of the study. This would risk biasing the results since users might get annoyed

of annotating three times the same images, affecting the quality of their annotations. The

iCoseg dataset provides multiple images depicting the same object in different situations so

we use similar images in the 3 groups. Examples of these images can be seen on Figure 2.7.

Methodology The protocol of the study is as follows.

The users are not explained the concept of segmentation, we tell them that we require

annotations on images, and that we wish to compare three interactions to provide those

annotations.

The study is composed of three steps, one step per interaction. For each step, the

evaluator first explains the user how the interaction works, and demonstrates it on a training

image. The evaluator demonstrates good and bad examples of interactions. Then the user

tests the interaction on the same training image. The evaluator can correct the user and

criticize or validate the users interactions. Once the user understands the tool, the eleven

other images are proposed for interaction, without any help or guidance from the evaluator.

Finally, at the end of each step, the user answers two questions about the interaction. In

order to limit bias, the order of the interactions is randomized, as well as the order of

appearance of each image during each step.

Among the eleven images annotated by the user, one is considered the reference. It is

introduced to (i) check whether the user is performing the task correctly (this is particularly

useful in a crowdsourcing context), and (ii) to learn the radius of the erosion disk for this
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Figure 2.6: Several screenshots of the scribbling interface during training (left), and study
(right) phases.

specific user (see Section 2.2.1).

The following two questions are asked at the end of each step of the study.

• Overall, I am satisfied with the ease of completing the tasks in this scenario.

• Overall, I am satisfied with the amount of time it took to complete the tasks in this

scenario.

Users can answer on a scale from 1 (strongly agree) to 7 (strongly disagree). We choose to

ask only these two questions since we are not trying to assess the usability of a whole system,

but only of an interaction. A standard usability questionnaire, such as SUS (used in [124]),

was not really adapted to our use case and instead we extracted these two questions from a

popular post-task questionnaire (ASQ, After Scenario Questionnaire).

Finally at the end of the study, we ask users to rank the three interactions in their order

of preference (see “Rank” in Table 2.1).

Participants Twenty users (10 Male, 10 Female) participated to this study, with ages

ranging from 25 to 55 years old. Most users have no experience in image segmentation, some

of them are familiar with the concept.

2.3.2 Usability metrics

Among the criteria stated by Nielsen [154] as defining the usability of a system, we evaluate

efficiency, errors, and user satisfaction. Efficiency designates the swiftness with which users

are able to complete the tasks once they learn how to interact with the system. We evaluate

this criterion both subjectively, by asking users about their perception of the time they spent

on the task (table 2.1), and objectively by measuring the time it takes to complete their
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Figure 2.7: Some images from the iCoseg dataset.

interactions on each image (Figure 2.8). User satisfaction is measured through our ques-

tionnaire, both by the question on the perceived task easiness and the interaction ranking.

Finally, errors are measured by counting the number of times users repeat interactions. We

record how many times bounding boxes and outlines are re-drawn, and the number of clicks

on the Undo last scribble button for the scribbling interaction (Figure 2.9).

Method Bounding box Outline Scribble

Ease 2.1 ± 0.62 2.65 ± 0.74 2.1 ± 0.61
Time 2.35 ± 0.69 2.5 ± 0.67 2.6 ± 0.70
Rank 1.95 ± 0.43 1.90 ± 0.32 2.15 ± 0.37

Table 2.1: Results of the questionnaire with a 95% confidence interval.

Figure 2.8: Duration of interactions on all images and all users. The dots are the median
durations, and the thick blue line delimits the first and third quartiles.

Overall, the questionnaire results can not allow us to conclude on the superiority of one

interaction method over the others. Although slightly in favor of the bounding box interac-

tion, the perceived ease and time are not statistically better for any of the three interactions.

However, the results are all between 2 and 3 (on a scale from 1 to 7), which means users were

mostly satisfied with all three interactions. We can note that the time perception results
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Figure 2.9: Number of errors per interaction and per user on all images. The dots are the
median number of errors, and the thick blue line delimits the first and third quartiles.

(table 2.1) are correlated with the objective duration of interaction (Figure 2.8), measured

during the experiments. The bounding box is the quickest interaction, while the scribbles

suffer from the time needed to switch between foreground and background scribbling.

Surprisingly, the outline ranks first in the users preference (although not significantly),

ahead of the bounding box interaction. The reason of this observation, as explained by many

of the participants during the experiment, is due to the frustration that can arise when trying

to draw a bounding box around a non-convex object. Users trying to draw the bounding

box close to the object boundary often need several attempts, because of the difficulty to

position the first bounding box corner. This issue is visible on Figure 2.9, which shows the

high number of errors for bounding boxes. Errors occurring with the outline interaction are

mostly due to high speed interactions, or due to masking the object with their hand during

the interaction for users less familiar with touch devices.

2.3.3 Interaction informativeness

We define the background area of user inputs as follows. For a bounding box (resp. outline),

the background area is composed of all pixels outside of the bounding box (resp. outline).

For scribbles, the background area is the union of the superpixels annotated as background

(containing part of a background scribble).

Figure 2.10: Precision of background user input.

Looking at the precision of background user inputs (Figure 2.10) we see that more than

75% of user annotations are perfect (a precision score of 1). This means that 75% of user

inputs do not intersect at all the object of interest. We can conclude that users understand

well the tasks they are given.
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Figure 2.11: Recall of background user input.

In order to estimate the informativeness of an interaction, we also measure the recall

index (Figure 2.11). It indicates the percentage area of all background that is annotated

by an interaction. With no surprise, outlining is the more informative since it is often very

close to the boundary of the object (Figure 2.16) and thus, the outside of the outline covers

most of the image background. Background (red) scribbles are the least informative here

since only superpixels that are scribbled over count as background information.

Except for the foreground (green) scribble interaction, we do not have raw foreground

annotations. We thus define the foreground input area as the inferred foreground (through

erosion or medial axis computation, extended by superpixels as explained previously).

Figure 2.12: Precision of foreground user input.

The precision of foreground area is given in Figure 2.12, relatively to the ground truth

masks. We can observe that more than 75% of foreground (green) scribble inputs are over

the 0.97 index. This means that the task of scribbling inside the objects is globally well

performed but still slightly harder than background (red) scribbles. It is explained by the

fact that objects can have thin shapes and thus not precisely locatable under the finger

during the touch interaction.

Using the superpixels extension of the scribbles, we observe that the smart background

correction mentioned in Section 2.2.3, enhances the 75% index to a precision of 0.99. With

the two foreground inference techniques (erosion and skeleton), the improvement provided

by the superpixels extension is obvious.
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Figure 2.13: Recall of foreground user input.

The recall of foreground area (Figure 2.13) provided by these interactions, extended

through superpixels is also coherent with what we observe in Figure 2.2. Skeleton and

scribbles recall values are almost 0 since they are of dimension 0/1 (points/lines) for a

measure of surfaces (dimension 2). Erosion provides the most foreground information, but

has the lower precision rate (Figure 2.13). We will show in the next section that this trade-off

is worth exploring.

2.3.4 Segmentation quality

We compute the resulting segmentation of images using five different methods. As a reference

method, the mean Jaccard index obtained with foreground and background scribbles is 0.79

(Table 2.2). When using bounding boxes, that provide a more complete background model

input for the GrabCut algorithm, the mean Jaccard index increases to 0.82. As expected,

it increases even more when using outlining interaction inputs, providing richer inferred

initial foreground models to the GrabCut algorithm. The higher scores (0.88 and 0.89) are

respectively obtained when using the erosion and skeleton processing of the outline. The

best performance is achieved using the skeleton processing, which tends to show that for the

results presented in the previous section, the precision of the foreground user input is more

relevant than its recall.

Method Scrib. B. Box Outl. Outl. + er. Outl. + BMA

Mean Jaccard 0.79 0.82 0.86 0.88 0.89

Table 2.2: Mean Jaccard index obtained on all images for all users for each interaction.

Perhaps more importantly, the outlining interaction enables reaching consistently higher

Jaccard index than the other techniques. In Figure 2.14, we observe that the first quartile

is always higher than 0.8 with variants of the outlining interaction. Some final segmentation

results are visible in Figure 2.15 and show the clear improvement brought by an outline over
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Figure 2.14: Jaccard index obtained on all images for all users for each interaction type.

Figure 2.15: Segmentation results for bounding box and outlining interactions from a user.

a bounding box.

2.3.5 Discussion

All the results we obtained confirm the good properties of the outlining interaction in the

perspective of being used in a segmentation crowdsourcing campaign.

First, it is a very straightforward interaction. One of the users explained it in these terms:

outlining is easier since you do not need to think, just trace the object. Bounding boxes are

tougher, particularly in determining a correct size, and scribbles is too much thinking and a

bit more time consuming. Another user said: It’s actually more fun to draw around object

and would seem to me less tiring than the other methods. The usability criterion points out

that outlining might be slightly less usable than drawing a bounding box or scribbling, but

remains a very usable interaction.

Another interesting property of the outlining interaction is the speed at which it can

be performed. Figure 2.8 shows that most of the outlines were produced in less than 10

seconds, which is very reasonable considering some of the images we chose have complex

shapes (Figure 2.16).

The quantity of information brought by outlines is also very good, as discussed in the
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Figure 2.16: Outlines drawn by the third user on three images with complex shapes.

previous section, especially when balanced with the interaction usability. This information

is of course less complete than a polygon drawn on the boundary of the object (such as

in LabelMe), but can be augmented using computer vision techniques (Blum medial axis,

superpixels, GrabCut, etc.) and lead to very good segmentation masks. The average Jaccard

index of 0.89 obtained with the outlines is particularly impressive considering there was no

interactive refinement step, and it was performed in less than 10 seconds in average (see for

example the comparison with Jaccard index vs. time curves described in [37]).

2.4 Conclusion

In this chapter, we evaluated the outlining interaction on touch devices for interactive seg-

mentation. We found that outlining is a simple and natural interaction, allowing to quickly

obtain accurate information on the location of an object. This information can be aug-

mented with foreground inference, and then used to compute a segmentation mask. The

segmentation masks obtained with this method reach an average Jaccard index of 0.89,

which is a very good result considering the interaction does not require any knowledge on

image processing or computer vision from the user.

Thanks to all these good properties (simplicity, swiftness, accuracy), outlining appears to

be an interesting avenue to explore for the gathering of large datasets of image segmentation

masks. Those datasets are crucial to bring automatic image segmentation algorithms, today

mostly based on deep learning techniques, to a new level of effectiveness. It is our intention

to pursue this goal so we will next introduce an annotation Web application built to easily

start a crowdsourcing campaign on Amazon Mechanical Turk.
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The best way to crowdsource an annotation campaign is to provide a Web application.

Since online annotators are paid for the task, we need the Web application to be as reliable

as possible. Therefore, in this chapter we review evolutions of the Web since its creation in

1991, especially regarding the development of reliable frontend applications. In particular,

we describe how the Elm programming language can help us build a bug-free annotation

Web application.

3.1 What is the Web?

The Internet and the Web are ubiquitous technologies of our everyday lives, that flourished

around the 80’s. Inter-connected networked appeared as early as in the 60’s. ARPANET,

founded by the Advanced Research Projects Agency (ARPA) in 1969, standardized the com-

munication protocols named TCP/IP in 1982 for its network. These are the protocols still in

use on the Internet today. In August 1991, Tim Berners-Lee who had been working at CERN

for the previous seven years, shared a summary of his World Wide Web project, including

the HyperText Transfer Protocol (HTTP), the HyperText Markup Language (HTML), and

the first Web browser. Social media, communication, search, news, entertainment, mapping,

shopping, learning, virtually any activity is now digital and online. Simply put, the Web,

also called World Wide Web (WWW), consists of the sum of all resources, available through

unique identifiers (URI), that we share on the Internet, the global network carrying them.

In this chapter, we will recap the Web main evolutions, from static content to dynamic

applications, and explain the choices we made to build reliable annotation Web applications.

3.1.1 What is a Web application?

An application, in the context of programming (/computers), is a piece of software presenting

information to a user, usually in an actionable manner. This includes programs like email

clients, image editors, video games, word processors, automatic translators, and virtually

any functionality available on a regular computing device.

Web resources are commonly accessible through a Web browser. Thus, we can define

a Web application as a user-facing software, accessed through a Web browser. As of May

2019 according to statcounter [28], the most used Web browsers are Google Chrome (62.7%

of global market share), Apple Safari (15.9%) and Mozilla Firefox (5.1%).

The three pillars of Web applications are HTML, CSS and JavaScript. HTML, for

“HyperText Markup Language” is a description language organizing a page information as

a hierarchy of tagged content. In Listing 3.1, a body tag contains four other tags, a title h1

(h for header), a paragraph p, an image img and a button not yet linked to any action. This

hierarchical organization of an HTML page is call the DOM, for “Document Object Model”.

CSS, for “Cascading Style Sheet”, complements HTML by styling the content of associated

HTML documents. Listing 3.2 shows how one would add a left margin of 20 pixels on all
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the document body, and make the h1 title red and bold. Finally, JavaScript is a scripting

language, not affiliated in any form to the Java programming language. It is run inside the

browser to add dynamic behavior to a Web page. In Listing 3.3 we show how one could

count and display the number of times a user clicked on the button in the page.

1 <body>

2 <h1>Example Title</h1>

3 <p>Followed by a paragraph of text and an image.</p>

4 <img src="/image/file.jpg" alt="Image description"/>

5 <button id="the -button" type="button">Click me!</button >

6 </body>

Listing 3.1: Example HTML code.

1 body {

2 margin -left: 20px;

3 }

4 h1 {

5 color: red;

6 font -weight: bold;

7 }

Listing 3.2: Example CSS code.

1 // Function creating a paragraph element containing

2 // only the number given in parameter.

3 function makeParagraph(n) {

4 let node = document.createElement("p");

5 let text = document.createTextNode(n.toString ());

6 node.appendChild(text);

7 return node;

8 }

9

10 // Create a reference to the button in the HTML document.

11 let theButton = document.getElementById("the -button");

12

13 // Global counter to keep track of the clicks.

14 let count = 0;

15

16 // Attach an event triggering on clicks on the button.

17 // When clicking we add a paragraph containing

18 // the number of times we clicked on the button.

19 theButton.addEventListener("click", function () {

20 count = count + 1;

21 let newParagraph = makeParagraph(count);

22 document.body.appendChild(newParagraph);

23 });

Listing 3.3: Example JavaScript code.
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3.1.2 Rich Web Application

Traditionally, websites used to present their resources in the form of a collection of static

documents, known as Web pages, linked together with hyperlinks. The nature of Web

pages would mostly be informative, visual or textual, with very few other interactions than

navigation through the site by clicking on the links.

Today, thanks to evolutions of Web technologies that we will detail later, Web appli-

cations have become full-fledged applications with almost the same capabilities as desktop

ones. They feature functionalities like 3D graphics, audio processing or interactive elements,

and are sometimes called rich Web applications. Associated concepts such as “single page

applications” (SPA) are also explained in the following sections. In the next section, we will

dive into the cornerstone of Web pages dynamism, JavaScript.

3.2 JavaScript, formally known as ECMAScript

3.2.1 Genesis of JavaScript

In 1995, the dominating Web browser was the Netscape Navigator. Realizing that pages

dynamism was key in the competition against Microsoft’s own Web technologies, Netscape

Communications recruited Brendan Eich, with the aim of integrating a scripting language

into their browser. A first prototype was thus developed in 10 days (May 1995). Assum-

ably for marketing reasons, it was officially named JavaScript when released in Netscape

Navigator 2.0 beta 3.

Two years later, in June 1997, the European Computer Manufacturers Association

(ECMA) standardized the first version of “ECMAScript” as ECMA-262, JavaScript being its

most well-known implementation. The ECMAScript (ES) standard has been evolving ever

since. Today, all browsers fully implement ES5, released in 2009, and partially implement

the most recent versions, ES2015, ES2016, ES2017 and ES2018.

3.2.2 Browser performance

In this section, we are particularly interested in the wide performance improvements of

the JavaScript engines, starting around 2008 when Google released its Chrome browser.

On September 2, 2008, Google announced a new Web browser called Chrome [91]. Its

main selling feature was a new JavaScript engine called V8, greatly improving the browser

performances on Web applications making heavy use of JavaScript like their email client

Gmail. Note that performance in a browser depends on many factors such that network

latency, DOM computation, page rendering or JavaScript processing. In this section, we

will specifically focus on JavaScript execution performances.
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Dynamic interpretation

JavaScript was originally an interpreted language. For each line of code, the engine would

translate it into machine code, and immediately execute it. This means that for a loop, the

same transformation from JavaScript to machine code is repeated over and over again. In

addition, JavaScript is a dynamic language, which is both one of its strongest points and a

huge drag on execution. Let’s take the function adding two numbers depicted in Listing 3.4

as an example.

1 function add(x, y) {

2 return x + y;

3 }

Listing 3.4: Adding two values.

The following text until “NOTE 2” is a quote from the ECMAScript specification [65]

detailing the complicated process evaluating an addition.

the addition operator either performs string concatenation or numeric addition.

The production “AdditiveExpression : AdditiveExpression + MultiplicativeEx-

pression” is evaluated as follows:

1. Let lref be the result of evaluating AdditiveExpression.

2. Let lval be GetValue(lref).

3. Let rref be the result of evaluating MultiplicativeExpression.

4. Let rval be GetValue(rref).

5. Let lprim be ToPrimitive(lval).

6. Let rprim be ToPrimitive(rval).

7. If Type(lprim) is String or Type(rprim) is String, then

(a) Return the String that is the result of concatenating ToString(lprim)

followed by ToString(rprim)

8. Return the result of applying the addition operation to ToNumber(lprim)

and ToNumber(rprim). See the Note below 11.6.3.

NOTE 1. No hint is provided in the calls to ToPrimitive in steps 5 and 6. All

native ECMAScript objects except Date objects handle the absence of a hint as

if the hint Number were given; Date objects handle the absence of a hint as if

the hint String were given. Host objects may handle the absence of a hint in

some other manner.

NOTE 2. Step 7 differs from step 3 of the comparison algorithm for the rela-

tional operators (11.8.5), by using the logical-or operation instead of the logical-

and operation.
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In theory, if we know that we will only use this function to sum two numbers, it should

compile to a single instruction. However, due to the dynamic nature of JavaScript, as speci-

fied in the standard, the code has to check if the arguments are strings, objects, and proceed

first with conversions before eventually reaching the instruction that actually computes the

addition. This process results in one or two orders of magnitude slower code, compared to

statically typed languages like C or Java.

Just-in-time (JIT) compilation

Statically typed languages usually compile code ahead-of-time (AOT), while dynamically

typed languages interpret code at runtime. Starting with Chrome in 2008, all browser

vendors began implementing just-in-time (JIT) compilers.

The key ingredient is a “monitor” sometimes called “profiler”. The monitor watches the

code while it is run by the interpreter, and keeps track of how often a piece of code is

executed. Once a path of code is found to be repeatedly executed, it becomes “hot”, which

triggers an optimizing compiler. According to the types previously used in the hot path,

the optimizing compiler will make assumptions enabling extremely efficient machine code.

If the same code is used once with different types however, it gets de-optimized back to

the baseline compiler. Multiple optimization and de-optimization round trips hinders the

performances, and consequently will permanently mark the section as not to be optimized

anymore. For more information on JIT compilation, Lin Clark [44] wrote an enlightning

introductory blog post.

3.2.3 Explosion of JavaScript

Node.js

Not long after the release of the V8 engine from Google, Ryan Dahl announced at the

European JSConf of 2009 a new project named Node.js [158]. As he explains in his talk [57],

Node is a cross-platform JavaScript runtime environment based on V8. It features an event-

driven architecture, with non-blocking input/output (I/O) APIs. The project matured from

the observation that blocking I/O is extremely non-efficient, since it requires many threads

and a large memory to scale with connections. Being event-driven by nature in the browser,

JavaScript was a perfect fit for the Node project.

In order to provide non-blocking asynchronous I/O, Node is composed of an event loop

managing callbacks in queued fashion, and of a thread pool, executing all blocking I/O calls

like file reading. Both are abstracted away by the system, and so a user simply has to

provide callbacks that will automatically be run upon completion of I/O tasks. An example

of reading a file is presented in Listing 3.5.

1 let fs = require('fs');

2 fs.readFile('file.txt', 'utf8', function(err , contents) {
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3 console.log(contents);

4 });

Listing 3.5: Read a file with Node.js. Notice the event-driven architecture with an

anonymous callback function passed as argument.

Node package manager (npm)

“To increase speed, you can either push harder or reduce friction.” — Isaac Z.

Schlueter, node.conf, Portland, OR, May 5th, 2011

With the rise of Node for server-side JavaScript, another highly influencial project was

born late 2009, the Node package manager (npm). Isaac Z. Schlueter, while working at

Yahoo, wanted to increase usage of JavaScript for full stack Web development. According

to him, many people were already pushing hard on Node.js, so he attempted at lowering

friction by creating the Node package manager (npm). The core design decisions of npm are

rooted in the principle of reducing most sources of friction, including the following:

• Conflicting dependencies. When transitive dependencies require different versions

of the same package. As a consequence, npm retrieves every version needed by depen-

dencies.

• Inconsistent package installation. Typically, one would need to clone, make, copy,

rename files, etc. With npm install, dependencies are all installed locally, under the

node_modules/ directory and usable by invoking require(’the-module’).

• Publishing difficulties. Usually, package registries require a lot of metadata. Npm

only requires two fields, name and version.

As a result, npm grew exponentially, to become the world’s largest package registry ever,

by a large amount, with over a million packages since June 2019. At NodeConf 2011 [189],

when Isaac Schlueter announced npm 1.0, the registry contained 1900 packages and almost

800 active package authors. This roughly corresponds to doubling the registry size every

year!

Unfortunately, reduced friction and a policy favoring package creators over users brought

a few security issues. The most notable one is probably the event-stream incident late

2018 [159] where a new maintainer of the event-stream package added a dependency to a

malicious package, harvesting bitcoin from visitors of a targeted application.

3.2.4 JavaScript issues

Organic growth and backward compatibility

Most programming languages tend to grow in complexity with time. New features are

regularly added, and backward compatibility requires that outdated practices are kept in
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the language. JavaScript is a good illustration of this kind of organic growth. As an example,

the language specification of JavaScript is 805 pages [66]. This is roughly the same size as the

Java specification with 772 pages [113] or the C specification with 571 pages [32] To compare,

the specification for the Go progamming language by Google [89], contains approximately

100 pages.

The most salient evolutions occurred with ES2015 (previously known as ES6). The

addition of the const and let keywords for example are confusing for beginners. They

introduce two new ways of declaring variables, bringing it to a total of four, along with the

var keyword and no keyword. Differences between those are presented in Listing 3.6.

1 // x and y are global variables

2 x = 42;

3 y = 14;

4

5 // Let's open an inner block scope

6 {

7 // The "var" keyword has a function scope

8 // so it will erase the global value 42.

9 var x = 14;

10

11 // The "let" keyword has a block scope

12 // so it will not replace the global y.

13 let y = 0;

14

15 // The "const" keyword has a block scope.

16 // It prevents reassignment of the variable.

17 const z = 3;

18 // z = 4; TypeError: Assignment to a constant variable

19 }

20

21 // x: 14

22 console.log("x: " + x.toString ());

23

24 // y: 14

25 console.log("y: " + y.toString ());

Listing 3.6: Variable scope in JavaScript.

Callback hell

As mentioned when introducing Node.js, JavaScript event-driven APIs rely on callback func-

tions. Let’s consider a simple case where we want to retrieve information from a database.

Listing 3.7 outlines how a blocking synchronous API would look like. The control flow of the

program is easy to follow, but blocking at getDatabase and db.get calls means the server

(or the graphical interface) is not responding during this time.

1 // With theoretical blocking and synchronous APIs.
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2 function getDataSync(url , id) {

3 db = getDatabase(url);

4 return db.get(id);

5 }

6

7 // How calling the function would look like.

8 try {

9 data = getDataSync("some_url", 42);

10 doSomethingWith(data);

11 } catch (error) {

12 console.log(error);

13 }

Listing 3.7: Hypothetical blocking and synchronous API.

In contrast, the asynchronous callback version in Listing 3.8, is efficiently giving back

control while waiting for the database to connect and respond. The main drawback resides

in the complexity of the control flow, and the verbosity of the code. By a convention

that emerged with time, callback functions are supposed to handle a potential error as first

argument, and successful result as second argument. This model tends to produce extremely

nested code because of function callbacks and if statements for error handling, and thus has

been coined in the community the “callback hell” [161].

1 // With callback asynchronous APIs.

2 function getDataAsync(url , id, callback) {

3 getDatabase(url , function(error , db) {

4 if (error) {

5 callback(error , null);

6 } else {

7 db.get(id, function(error , data) {

8 if (error) {

9 callback(error , null);

10 } else {

11 callback(null , data);

12 }

13 });

14 }

15 });

16 }

17

18 // How calling the function would look like.

19 getDataAsync("some_url", 42, function(error , data) {

20 if (error) {

21 console.log(error);

22 } else {

23 doSomethingWith(data);

24 }

25 });
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Listing 3.8: Typical asynchronous API based on callbacks.

We should mention that recent JavaScript standards provide new syntax making use of

async and await keywords to simplify the control flow, while preserving the performances

of the callback model. Listing 3.9 shows how the same code can take advantage of the

new syntax. Unfortunately, this is to the detriment of language simplicity, as explained

previously.

1 // With new async/await keywords and APIs.

2 async function getDataSync(url , id) {

3 db = await getDatabase(url);

4 data = await db.get(id);

5 return data;

6 }

7

8 // How calling the async function looks like.

9 try {

10 data = await getDataSync("some_url", 42);

11 doSomethingWith(data);

12 } catch (error) {

13 console.log(error);

14 }

Listing 3.9: Asynchronous version with the new async/await syntax.

Context of this

In other object-oriented languages, this (or self) usually refers to the currently used in-

stance of a class. According to the specification, The this keyword evaluates to the value of

the ThisBinding of the current execution context which is a little cryptic, so we will explain

with a concrete example how this behaves. JavaScript not being a typical object oriented

language, this can take many shapes, depending on the current execution context. The

execution contexts are in a stack in which new contexts are created and pushed whenever

code not associated with the current context starts running, which typically happens for

function calls. Let’s take Listing 3.10 as an example to exhibit some oddities of the this

value. In that example, we first define different contexts for a log function whose purpose is

to display the content of this.x. Then, starting at line 17, we actually call those different

functions to show how complex it is to predict what this is going to refer to.

1 function log() {

2 console.log(this.x);

3 }

4 function Who(x) {

5 this.x = x;

6 }
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7 Who.prototype.log = log;

8 Who.prototype.logF = function (){console.log(this.x);};

9 Who.prototype.logF2 = function (){log();};

10 Who.prototype.logCall = function(who){log.call(who);};

11 x = 1;

12 me = new Who(2);

13 logMe = me.log;

14 you = new Who(3);

15

16 // Try guessing what will be printed

17 console.log(this.x); // 1

18 log(); // 1

19 logMe (); // 1

20 me.log(); // 2

21 me.logF(); // 2

22 me.logF2(); // 1

23 me.logCall(you); // 3

Listing 3.10: Value of this in JavaScript.

By default, if this is undefined, as in lines 17 and 18, it is binded to the global object.

At line 11, we define x = 1 with no keyword, so x is a global variable. As a result, line 17

and 18 print 1. The definitions of the log and logF methods on the Who class lines 7 and 8

are equivalent. The behavior of this in that context, is what we expect to see for methods

call on objects and thus, lines 20 and 21 both print 2. The call JavaScript function (and

some others), used for the definition of the logCall method, enables binding of the this

value to a specific object given as first argument. That is why line 23 prints 3.

Now the most surprising results are lines 19 and 22, both printing 1 instead of 2. At

line 13, logMe is defined as the same function than me.log which actually is the original

log function. As a consequence, line 19 is strictly equivalent to line 18, and they both

print 1. Finally, the logF2 method also prints 1 because it’s definition isn’t the log function

(as defined for the log method) but rather calls the log function which generates another

context in which this is not defined anymore. The behavior is thus the same than for lines

17 and 18, which binds this to the global object, and prints the global variable x = 1.

Dynamic typing and implicit conversions

JavaScript is a dynamically typed language. This means that types of values are only

known at runtime, and that they can change during the execution of the program as shown

in Listing 3.11.

1 // Define x as an empty object.

2 x = {};

3

4 // Type of x dynamically changed

5 // to an object with a 'hello ' field.
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6 x.hello = "world";

Listing 3.11: Dynamic typing in JavaScript.

In addition, JavaScript performs implicit conversions between type, depending on the

operators and functions being used. In Listing 3.12, the number 42 gets converted into the

string “42” before concatenation, and the string “6” is converted to the number 6 before

multiplication with the number 7.

1 "hello " + 42; // -> "hello 42"

2 "6" * 7; // -> 42

3 "6" + 7; // -> "67"

Listing 3.12: Weak typing in JavaScript (implicit conversion).

By combining dynamic types, and implicit conversions, JavaScript often generates ex-

tremely surprising situations, resulting in unexpected behaviors. It can also lead to very

original use cases. In 2010, an informal code obfuscation competition resulted in the creation

of a subset of JavaScript containing only six characters [116], [, ], (, ), ! and +, able to

represent any valid JavaScript code. The value false would be obtained with ![], since

negation of an empty array returns false according to JavaScript specification. Numbers,

characters, and other language constructs are obtained through similar implicit conversion

tricks.

Undefined is not a function

For JavaScript developers previous to 2015, the error “undefined is not a function” had

become a meme in the online community. This error would very often rise from a typo

somewhere in the code, generating an undefined value instead of a function. Due to the

dynamic nature of JavaScript, the error can be reported late in the call stack. Indeed, even

if an error in the code might create an undefined value, it is only later when called as a

function that an uncaught error would trigger. As shown in Figure 3.1, browsers are more

helpful now, at the cost of loosing an iconic error for all JavaScript developers. Yet, not

having a compile step prevents advanced static analysis of the code, and at the same time

lengthen the feedback loop to fix errors.

3.2.5 JavaScript as a compilation target

As we now know, JavaScript exists since 1995, and from 1997 onward, has mostly been

the only way to run code dynamically in the browser. For this reason, many alternative

languages started treating JavaScript as a compilation target to run code in a browser.
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Figure 3.1: Tweet by Addy Osmani (21-Feb-2015) announcing error report improvements in
Chrome.

Multi-tier programming

Haxe was probably the first production ready language to target JavaScript, in 2006. At

this time, there was no JIT, and JavaScript performances were fairly limited. Some people

were nonetheless trying to make the Web a video and gaming platform. Flash, a multimedia

platform running the ActionScript language was the most popular solution at the time.

In 2005, YouTube was for example relying on a Flash player to distribute videos. Haxe

was created by Nicolas Cannasse [34] with the clear purpose of removing the overhead

of composing heterogeneous components like a Flash client, a Web server, and additional

JavaScript for Web games design.

Many other languages later followed that path of using the same language for server and

client code, sometimes called “isomorphic” frameworks, or multi-tier programming environ-

ments. Google announced their Google Web Toolkit (GWT) in May 2006 [96], enabling

Java developers to build client applications. The Ocsigen framework by V. Balat et al. [17]

in 2006 allowed building Web applications in the OCaml programming language. The Opal

compiler [163] translates Ruby code into JavaScript, enabling full stack Ruby Web appli-

cations. Today, most programming languages can target JavaScript, including Python, C,
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Erlang, Haskell, etc.

Around the same period, academic research has also been trying to solve multi-tier Web

programming with unique new languages like Links by E. Cooper et al. [52], or Hop by

Serrano et al. [193] in 2006. Those efforts are continuing with for example A. Chlipala et

al. [42] who created the Ur/Web variant of the Ur modeling language, or Sinha et al. [197]

with the WebNat programming language in 2015. According to Sinha et al. [197] however,

experienced Web developers require fine grained control of the generate code, debugging

tools, deployment and configurations features for designing complex real-world Web appli-

cations. Unfortunately, those research attempts at novel ways of programming the Web are

not mature enough yet to be adopted by developers.

JavaScript as the main target

Instead of trying to tackle both server and client-side programming, a new category of

languages later emerged, focusing on the client side, and with JavaScript being the only or

main compilation target. The most notable ones are CoffeeScript [8] released in 2009 by

Jeremy Ashkenas, Dart [13] designed by Lars Bak (creator of the V8 engine) and Kasper

Lund for Google in 2010, Elm [56] the product of Evan Czaplicki senior thesis on functional

reactive programming in 2012, and Reason [217] (also known as ReasonML) in 2016 by

Jordan Walke (who is also the original designer of the React framework we will discuss

later).

All this excitement around new languages targetting the Web by considering JavaScript

as a compilation target confirms that people are actively trying to solve JavaScript short-

comings with completely different designs. One can also notice that appart from Dart,

which is heavily object-oriented, those new languages follow the functional paradigm. It

may be related to guaranties brought by functional programming that we will develop when

exploring the Elm programming language.

Gradually typed JavaScript

Coding with a completely different language is a rather extreme approach which can be

disturbing for developers. From this observation, both Microsoft and Facebook decided

to bring new contributions to the JavaScript ecosystem under the form of gradual typing.

Gradual typing is a type system where values are partially typed. Some may be typed, and

consequently static typing rules are verified, and some may be untyped, left for runtime

verifications.

In October 2012, Microsoft released TypeScript [24], a superset of JavaScript, introduc-

ing optional type annotations. As a consequence, any valid JavaScript program is also a valid

TypeScript program. This property was most certainly the major success factor of Type-

Script. Programs can be ported progressively to benefit from static analysis. Listing 3.13

exhibits the core type annotation feature of TypeScript.
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1 // JavaScript version

2 function add(x, y) {

3 return x + y;

4 }

5

6 // TypeScript version

7 function add(x: number , y: number): number {

8 return x + y;

9 }

Listing 3.13: JavaScript and TypeScript version of an add function.

Another benefit of static typing that JavaScript developers are discovering when switch-

ing to TypeScript is the improved IDE support, which includes for example better autocom-

pletion tools, jumping to definitions, etc.

In 2014, another tool named Flow and led by Facebook [39] enabled gradual typing of

JavaScript. Ultimately, TypeScript seems to be the most popular one, but choosing between

the two will most likely depend on how well they integrate with the JavaScript framework

and tools used in the corresponding application.

JavaScript transpilation

Despite increasing language complexity as explained in Section 3.2.4, ES2015 and later spec-

ifications brought very appreciated new features, often influenced by other languages like

CoffeeScript. The async / await pair of keywords is such example of syntax reducing

complexity of the code control flow. New specifications, however, are not always immedi-

ately available in all browsers, especially mobile versions. But there exists one version of

JavaScript fully supported on all browsers, ES5. Inspired by the Traceur compiler created

by Google engineers [98], Sebastian McKenzie started writing 6to5 [10] on September 2014,

at the age of 17. His 6to5 project, now renamed Babel, is known as a JavaScript “tran-

spiler”, i.e. a program converting recent JavaScript source code into another (older) version

of JavaScript source code. Today, Babel has become one of the most popular tools with 7

million weekly downloads on npm.

3.3 Frontend Web programming

3.3.1 Single Page Application (SPA)

In a desire to improve user experience in Web applications, code location has progressively

been shifting from server to client. Since 2009, a Web framework named AngularJS [104]

strongly pushed the Web actors toward writing “Single Page Applications” (SPA). A Single

Page Application gets its name from the fact that only one HTML page is sent to the client
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browser. This page however, contains JavaScript code taking control of the application and

rendering it for the rest of the user navigation. When new data is required, the application

can send requests with the XMLHttpRequest (XHR) object, or a WebSocket provided by

the browser, then process the answer and re-render the HTML page accordingly. Since

February 2005, this technique was popularized under the name Ajax [82] by Jesse James

Garret and is represented in Figure 3.2. Ajax stands for asynchronous JavaScript and XML,

though today data is mostly exchanged in the JSON format (JavaScript Object Notation)

instead of XML, and occasionally just raw bytes depending on use cases and protocols.

Next
page

2

Current
page

Server

Page

XHR object

Traditional
Web application

Single Page Application
(SPA)

Data
Pages

1 2

1

Client DataHTML

Figure 3.2: Difference between traditional Web applications and Single Page Application
(SPA). A traditional application will ask the server to generate a new HTML page to access
the required content. A SPA will just ask for the required data and render it in the client
directly.

3.3.2 Reactive programming

In 2007, Sean Parent gave a talk at Google [167, 168] on declarative user interface logic

and building the “Property Model Library” at Adobe [112]. An analysis of Adobe’s desktop

applications code highlighted that a third of it is devoted to event handling logic, and that

half of the bugs exist in this portion of the code.

Reactive programming is a paradigm focusing on manipulation of time-varying values. It

is especially suited for event-driven applications such as graphical user interfaces (GUI), and

tries to solve many of the issues brought by asynchronous callbacks. Spreadsheet softwares
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for example, are usually implemented as reactive systems in which modification of a cell will

propagate to all computed cells depending on it. In a survey on reactive programming [12],

E. Bainomugisha et al. classify approaches along six axes: representation of time-varying

values, evaluation model, lifting operations, multidirectionality, glitch avoidance, and sup-

port for distribution.

Representation of time-varying values and lifting operations mostly depend on the under-

lying programming language. Statically typed languages, will require a differentiation in the

type between a normal value and a time-varying one, thus also needing “lifting” operations

i.e. ways of transforming functions working on regular values (like sum of two numbers)

into functions that operate on their time-varying version. Dynamically type languages may

figure this out at runtime, and consequently avoid usage of lifting operators.

The evaluation model can be of two kinds, push-based, pull-based, and sometimes a

mix of the two. The most common evaluation mechanism is push-based, meaning once

a time-varying value changes, it pushes the change to other values depending on it. A

pull mechanism however usually relies of lazy evaluation languages such as Haskell. The

major issue of pulling is that the system may suddenly require many depending past values

and that will often result high memory consumption and program pauses due to burst of

computations. Push-based evaluation has the advantage of lower memory usage and quicker

response, but may introduce temporary inconsistent states called glitches if propagation of

changes are pushed in a wrong order.

Most research on the topic have occurred in the context of functional reactive program-

ming (FRP), following Fran [68] in 1997. Almost none of those research projects however

are being picked up for use in production. Even Elm [56] that got some traction in the

Web industry, decided to move away from FRP [55] with its 0.17 release in 2016. The

reason for the move in Elm and low adoption of reactive programming in general is proba-

bly due to the big learning curve for the concepts. A recent JavaScript “compiler” project

named Svelte [100] is trying to reintroduce reactive foundations with minimal alterations to

the JavaScript language. It is too soon to predict if this approach will be successful, even

though it is getting traction.

One important aspect of reactive programming that has been picked up however, is the

declarative nature of binding graphical user interfaces to the underlying data such that when

the data changes, the interface is automatically updated. This is often called one-way or

two-way data binding depending on if modifications of the user interface also immediately

pushes changes to the associated data.

3.3.3 Virtual DOM

The document object model (DOM) is the hierarchical structure of elements composing an

HTML page. In order to understand what a virtual DOM is, and why it is useful, we first

need to understand how the browser renders the DOM.
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Figure 3.3: Rendering process of a Web page.

The rendering process is depicted in Figure 3.3. First, the browser needs to build the

DOM and the CSSOM trees. The CSSOM is the equivalent of the DOM but for the hierarchy

of CSS (styling) properties. When combining the DOM and the CSSOM, the browser

generates a render tree, which contains all the visible nodes with their computed styles.

From the render tree, the browser can compute the layout of the page, i.e. the exact position

and sizes of all visible elements in the Web page. Finally, the browser can “paint” the actual

pixels on screen. This used to be done in two phases, first paint different virtual layers

of related elements, then compose and render those different layers on screen. Recently,

new rendering engines tend to combine those steps into a process similar to those of game

engines. For more information on browsers rendering engine, Lin Clark [45, 46] also wrote

two enlightning blog posts on that subject.

In theory, everytime JavaScript code modifies the DOM or CSS properties, the whole

process should be called to rerender the page. In practice, the browser framerate approxi-

mates the screen’s one. Therefore, the “paint” step only occurs roughly 60 times per second.

The layout however, may need to be recomputed at a higher framerate. For example, read-

ing the offsetX and offsetY properties of a mouse event to get the current coordinates of

the mouse while annotating images, will require a reflow (recomputation of layout) if the

DOM or CSSOM has changed. Unfortunately that is exactly what we do when annotating

images. We retrieve mouse coordinates in the image, and then draw the associated annota-

tion on top. This alternation of modifying the DOM and reading properties needing reflow

is the worst source of performance drops when happening at high frequencies. Listing 3.14 is

an example of code showcasing this issue. Computing this loop with nbiter = 1000 takes

200ms on Chrome while splitting the loop in two loops takes 3ms. This pattern is known

under the name “layout thrashing”.

1 for (let i=0; i < nbiter; i++) {

2 document.body.offsetHeight;

3 document.body.style.height = i + "px";

4 }

Listing 3.14: Example code forcing layout recomputation by intertwining layout read and

CSSOM write.
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A virtual DOM is the combination of a data structure and an update mechanism circum-

venting this kind of issues by batching all DOM modifications once per frame. Instead of

directly modifying the DOM, one should modify the virtual DOM data structure. Usually,

the library providing the virtual DOM implementation will update the DOM at each frame

thanks to a diffing algorithm between the versions of the virtual DOM data structure at last

frame and at the new frame. Representing the DOM as an intermediate data structure also

have many benefits regarding testing and enable writing pure visualization functions (not

performing any side effect).

3.3.4 How to choose?

Angular

AngularJS [104] dates back to 2009, when Miško Hevery and Adam Abrons were trying to

sell online storage services through software at getangular.com. The project wasn’t success-

ful enough, and so they made <angular/> open-source. Miško Hevery was later recruited

at Google to work on a new project. The story, as told by Miško Hevery and Brad Green

at Google I/O 2013 [105], says that it took Miško three weeks (though he had bet two) to

rewrite a six-month work with 17000 lines of code into 1500 lines of code with <angular/>.

Impressed, Brad decided to embrace the <angular/> project under Google’s wing and it

got rebranded AngularJS with a new logo. In 2016, Google released its successor, renamed

Angular (without the JS part). An important difference is that Angular is using Type-

Script instead of JavaScript. The key feature of Angular/AngularJS is declarative two-way

data binding between the application state and the view, showcased in Listing 3.15 with

the myCtrl Angular controller. Another important design decision is that Angular is try-

ing to provide a framework handling the totallity of frontend developer needs, while other

frameworks target specific, restricted subjects.

1 <div ng-app="myApp" ng-controller="myCtrl">

2 Firstname: <input ng -model="firstname" />

3 Lastname: <input ng -model="lastname" />

4 <h1>{{ firstname }} {{ lastname }}</h1>

5 </div>

6

7 <script >

8 var app = angular.module("myApp", []);

9 app.controller("myCtrl", function($scope) {

10 $scope.firstname = "John";

11 $scope.lastname = "Doe";

12 });

13 </script >

Listing 3.15: Two-way data binding in AngularJS.
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React

Contrary to Angular, React is designed to solve a very specific use case, which is how to

build user interfaces. As such it doesn’t care about how you store data, or manage routing

of the SPA with the url. The core feature of React is its virtual DOM. It avoids layout

thrashing and provides one-way data binding between the state of a React component and

its rendering in the DOM. The syntax used for the binding is showcased in Listing 3.16.

1 // Leaving out details in ...

2 class Timer extends React.Component {

3 constructor () {

4 this.state = { seconds: 0 }

5 }

6 ...

7 render () {

8 return (<div >Seconds: {this.state.seconds}</div >);

9 }

10 ...

11 }

Listing 3.16: React example showing the state and render function of a component.

Vue

Vue describes itself as a progressive framework, meaning it provides core features target-

ting a small scope, and other opt-in layers bringing more functionalities. In a sense, it

shares advantages and inconvenients of both React and Angular, with a different balance

point. It provides inbuilt conveniences to simulate two-way data binding through automat-

ically attaching event listeners when using the v-model property. An example is given in

Listing 3.17.

1 <div id="myApp">

2 Firstname: <input v-model="firstname" />

3 Lastname: <input v-model="lastname" />

4 <h1>{{ firstname }} {{ lastname }}</h1>

5 </div>

6

7 <script >

8 new Vue({

9 el: "#myApp",

10 data: {

11 firstname: "John",

12 lastname: "Doe"

13 }

14 });

15 </script >

Listing 3.17: Simulated two-way data binding in Vue using the v-model property.
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Summary

All three frameworks provide data binding between the state of the application and its ren-

dering, making the user interface declarative and reactive. Angular and React are the more

mature projects with the biggest community. Angular provides a solution covering most as-

pects needed for a SPA, while React is focused on the user interface and will often be paired

with libraries to manage state efficiently like Redux. Thanks to its opt-in layered architec-

ture, Vue like React has a lower barrier to entry if we only use its core components. But if

needed, it also offers a coherent set of functionalities making it an all-in-one solution similar

to Angular. In order to produce small application code compatible with most browsers, one

also should add transpilation, minification, and other preprocessing tasks readying the code

and assets for serving them on the Web. We effectively end up making Web development

similar to static and compiled development environments. Knowing all this, I will argue that

we should instead use Elm, a functional programming language compiling to JavaScript. In

the next section I will detail how it can bring all the advantages of other Web frameworks,

but with an improved developer experience, and a more reliable application at the end.

3.4 Elm

“Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter,

mais quand il n’y a plus rien à retrancher” — Antoine de Saint-Exupéry, Terre

des Hommes, chapitre III, L’avion, 1939.

Elm is a statically typed functional programming language for building Web applications.

Its syntax comes from the Meta Language (ML) family of languages, similar to Haskell and

OCaml. It strives for simplicity by removing non essential features like custom operators

in version 0.19, and by avoiding functional programming jargon such as monads, functors,

etc. The home page of the language claims that Elm generates JavaScript with great perfor-

mances and no runtime exceptions. In the following sections, we will see how its properties

enable such a claim.

3.4.1 Pure functions

All functions in Elm, except for debugging, are “pure”, meaning they produce no side effect.

A side effect is a behavior with implications outside of the scope of a function, such as

modifying a global variable or an input parameter, generating random values or interacting

with the outside world. Side effects are important to handle to build applications that are

not predetermined at startup, but we will explain later how they are managed withing The

Elm Architecture (TEA).

Listing 3.18 gives examples of functions that cannot be directly translated from JavaScript

to Elm due to side effects. Pure functions are also sometimes called “referentially transpar-
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ent” though the meaning of this terminology is unclear depending on sources. The important

property is that calling a pure function with the same arguments will always return the same

result. As a consequence many optimizations can be performed such as memoization, or pre-

computation of functions with no arguments (which actually are constant expressions). The

Elm compiler doesn’t precompute constant expressions yet, but memoization in the form of

lazy functions can be used for computation of view functions, reducing the amount of work

for the diffing algorithm of the virtual DOM.

1 function timeNow () {

2 return new Date().getTime ();

3 }

4

5 function randomNumber () {

6 return Math.random ();

7 }

8

9 // Global variable.

10 lastname = "Doe";

11

12 function getFullName(firstname) {

13 lastname = " " + lastname;

14 return firstname + lastname;

15 }

16

17 console.log(getFullName("John")); // "John Doe"

18 console.log(getFullName("John")); // "John Doe"

19 console.log(getFullName("John")); // "John Doe"

Listing 3.18: Side effects in JavaScript.

3.4.2 Algebraic Data Types (ADT)

Algebraic data types (ADT) initially appeared in 1980 with the Hope programming lan-

guage, developed by Rod Burstall, Dave MacQueen and Don Sannella [31]. Since then, they

have been popularized by functional programming languages such as Haskell or OCaml.

Usually, algebraic data types include product types and sum types. Product types are types

regrouping multiple data together under the same structure. Tuples like (Int, Float),

and records (or objects) are the most common product types. Their names come from the

properties on cardinality if we consider types as sets. Indeed, a tuple of three booleans have

a cardinality of 8 if you consider all possible combinations, which is the product 2× 2× 2.

Sum types are referred to as “custom types” in Elm terminology. They are defined with

the type keyword. Few examples of custom types definitions are provided in Listing 3.19,

including the OneOfThreeBools sum type, which may contain 6 distinct elements (2+2+2).

1 -- Definition of type Bool as a custom type with two variants
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2 type Bool

3 = False

4 | True

5

6 -- Custom type with one variant

7 type Unit

8 = Unit

9

10 -- Custom type with three variants holding other types

11 type OneOfThreeBools

12 = First Bool

13 | Second Bool

14 | Third Bool

15

16 -- Custom type holding data of a generic type (lower case)

17 type Container a

18 = Container a

19

20 -- Definition of a generic linked list with a custom recursive type

21 type List a

22 = EmptyList

23 | AtLeastOne a (List a)

Listing 3.19: Custom types definitions in Elm.

The most important property of custom types in Elm is that they enable modelization

of a problem with exactly the correct cardinality for the types, preventing impossible states

by design. Concretely, consider that we are modeling accessibility of a site depending on the

logged status of users. Typically, in a language without sum types, like JavaScript, the user

will be modeled with two fields as in Listing 3.20. Initially the loggedIn field will be false

and the user name empty. As soon as the user is logged in, the corresponding field will have

the value true, and the name will be filled with the user name. But what happens when the

loggedIn field is false and the name is filled with something like “John Doe”. In theory

this state should never be reached if we are careful in our implementation, but in practice,

bugs tend to fill every possible crack, requiring more tests to verify that this state is never

reached. With custom types in Elm, the user type will be defined as in Listing 3.21. In this

definition, a user can either be anonymous or logged in with a name, but never anonymous

and with a name. By design, custom types prevents an entire family of bugs.

1 user = {

2 loggedIn: false ,

3 name: ""

4 };

Listing 3.20: User modeled with a product type in JavaScript.

1 type User
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2 = Anonymous

3 | LoggedInWithName String

Listing 3.21: User modeled with a custom (sum) type in Elm.

3.4.3 Total functions

Functions are qualified as “total” when they are guarantied to return a result for every

possible valid input. The Elm language has two properties resulting in functions being

total,

• exhaustive pattern matching on custom types,

• and no statement, only expressions.

No statement, only expressions

In most programming languages like JavaScript, programs are composed of successions of

statements and expressions. The former do not return values while the latter do. Appart

from imports, Elm code contains only top level definitions and expressions. Listing 3.22

provides example of Elm expressions for conditions or loops. All branches of conditions (if

expressions) must have a value of the same type. Without an else branch, the code will not

compile. Not having for loops statements is among the toughest functional concepts to learn

for beginners. In a language with only expressions, loops need to be expressed either with

recursive functions, or with higher order functions, like List.foldl in the length example.

1 localLetDefinitions : Int

2 localLetDefinitions =

3 let

4 x = 14

5 y = 42

6 -- local definitions with the "let" keyword

7 -- are used to resolve the expression

8 -- appearing after the mandatory "in" keyword

9 in

10 x + y

11

12

13 boolToInt : Bool -> Int

14 boolToInt bool =

15 if bool then

16 1

17 -- if expressions must have an "else" branch.

18 -- Both branches must return a value of the same type.

19 else

20 0

21
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22 length : List a -> Int

23 length list =

24 -- loops are replaced by higher order functions

25 -- transforming an intermediate result step by step.

26 List.foldl (\x subtotal -> subtotal + 1) 0 list

Listing 3.22: Branching control and loops are expressions in Elm.

Pattern matching

Pattern matching is a branching mechanism based on the structure of a type. Any custom

type can be matched to one of its different variants with the case ... of syntax as shown

in Listing 3.23. Any lowercase variable in the pattern will be bound to the corresponding

data, like the name variable here.

1 username : User -> Maybe String

2 username user =

3 case user of

4 LoggedInWithName name ->

5 Just name

6

7 Anonymous ->

8 Nothing

Listing 3.23: Pattern matching in Elm

In javascript, one can fairly easily forget to handle a case, or willingly only process

the “happy path” for prototyping speed. In Elm, if I remove the Anonymous branch, the

compiler will refuse to compile the code with the message showed in Listing 3.24. This

is the main reason why the Nothing value in Elm, approximately equivalent to the null

value in JavaScript will never trigger a runtime exception. Everywhere it may appear, i.e.

everywhere the Maybe type is used, Elm will guaranty at compile time that this case is

handled.

1 missing patterns

2 Line 20, Column 5

3 This `case ` does not have branches for all possibilities:

4

5 20|> case user of

6 21|> LoggedinWithName name ->

7 22|> Just name

8

9 Missing possibilities include:

10

11 Anonymous

12

13 I would have to crash if I saw one of those. Add branches for them!

14
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15 Hint: If you want to write the code for each branch later , use `Debug.todo ` as

a

16 placeholder. Read <https ://elm -lang.org /0.19.0/ missing -patterns > for more

17 guidance on this workflow.

Listing 3.24: Missing pattern compiler error in Elm

As suggested in the hint given in the compiler error, we could also use Debug.todo "message"

in the Anonymous branch, which is very useful for the rapid prototyping phase. Remark that

the Debug.todo function will make the program crash if reached at runtime. For this reason,

all functions from the Debug module are forbidden in code compiled in release mode.

No runtime exception

Thanks to expressions and exhaustive pattern matching, Refactoring an Elm code base

can be done with confidence. Any place where types do not match with functions will be

signalled by the compiler, which becomes a true coding assistant. Noredink, a company

based in San Francisco reported in 2018 that after two years of using Elm in production,

they got their first runtime exception, compared to 60000 for the JavaScript code [75].

3.4.4 The Elm Architecture (TEA)

Msg Model View

Cmd Sub

Elm Runtime

*with attached 
event listeners

Elm Virtual DOM"Single source of truth"App-defined messages

update view

DOMNetworkRest of 
the World

subscriptions

Figure 3.4: The Elm Architecture (TEA).

The Elm Architecture (TEA) enforces a unidirectional data transformation flow, visu-

alized in Figure 3.4. The central entity is the Model. It contains all and every information
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about our application state. The visual aspect of our application is called the View (basically

an HTML rendered document) which is generated by the view function, from the Model.

Finally, all events generate messages, of type Msg. The update function, updates the model

by reacting to those messages, closing the loop.

All functions are pure, meaning there is no side effect, outputs of functions are entirely

defined by inputs. There cannot be global variables mutations, real world events, network

interaction etc. Basically such a program would be running in a predestined way from its

start to its end, preventing us from loading images and interacting with them. This is why

the application is attached to the Elm runtime, provided by the language, transforming all

real world events (“side effects”) into our defined set of messages, of type Msg.

The main challenge with pure functions is to describe side effects without performing

them. Those are described in three locations:

1. View attributes as DOM event listeners for pointer events.

2. Commands (Cmd) generated by the update function, like loading of images.

3. Subscriptions (Sub) to outside world events like the window resizing.

The Elm runtime takes those side effect descriptions, perform them, and, whenever there

is a result / an answer, transforms it into one of our defined messages (Msg) and routes it to

our update function. After updating the model, the runtime automatically calls the view

function. This way, the user interface reacts to model modifications similarly than with

other one-way data bindings we have previously introduced.

3.4.5 Elm-UI, an alternative layout strategy

Figure 3.5: User interface specified by Listing 3.25.

We have seen that the Elm architecture enables building Web applications with HTML

views. It treats the user interface as data, using a virtual DOM under the hood and man-

aging the DOM side effects with a runtime system. Overall, with Elm guaranties, one is
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fairly confident that when the program compiles, it is functionally correct. Layout however,

traditionally relies both on HTML and CSS rules, intrinsically hard to debug due to their

cascading nature since a CSS rule may apply to all children of a DOM element. In [197],

Sinha et al. identified user interface design as the main difficulty in Web development.

At Elm Europe 2017, Matthew Griffith made a presentation entitled “Understanding

style” [94]. In this work, he identifies the most problematic aspect of layout being that there

is no clear way to identify when it is incorrect. There is not even an unhelpful “undefined

is not a function” error in CSS resolution. Basically an error in layout and style is just

the unexpected. With this in mind he created a library, now named elm-ui [93], aiming at

providing the guaranty that if your code compiles, the layout if fully specified. The key

property of the library is that its base building block, the el element, only has one child,

instead of a list like in the case of a div HTML element. Also, building blocks with multiple

children must have explicit layout. Listing 3.25 showcases how functional composition of

UI elements and an attention on naming enable building of clear and robust user interfaces.

The corresponding user interface is provided in Figure 3.5.

1 module Main exposing (..)

2

3 import Element as El exposing (Color , Element)

4 import Element.Background as Background

5

6 main = El.layout [] content

7

8 content : Element msg

9 content =

10 El.column [ El.height El.fill , El.width El.fill ]

11 [ header

12 , centeredText

13 ]

14

15 header : Element msg

16 header =

17 El.row [ El.width El.fill ]

18 [ El.el [ El.alignLeft ] (rectangle (El.rgb 1 0.5 0.5) "red")

19 , El.el [ El.alignLeft ] (rectangle (El.rgb 0.5 1 0.5) "green")

20 , El.el [ El.alignRight ] (rectangle (El.rgb 0.5 0.5 1) "blue")

21 ]

22

23 rectangle : Color -> String -> Element msg

24 rectangle color text =

25 El.el

26 [ Background.color color

27 , El.height (El.px 50)

28 , El.width (El.px 100)

29 ]

30 (El.text text)

31

32 centeredText : Element msg

33 centeredText =

34 El.el [ El.centerY , El.centerX ]

35 (El.text "This text is vertically and horizontally centered!")
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Listing 3.25: Fully specified layout with elm-ui.

3.4.6 Reliable packages

Elm packages are versioned using the semantic versioning specification [175], with the MA-

JOR.MINOR.PATCH schema. The major number is incremented when changes breaking

the API are introduced, such as removing a function or modifying its type signature. The

minor number is incremented when new values or functions are introduced. Finally the

patch number is incremented when nothing else than internal non-exposed implementation

are modified. Since Elm uses total functions, it is able to programmatically compute version

number increments with the elm bump command. As a consequence, upgrading your depen-

dencies is guarantied by the compiler to not break one code as long as they don’t increase

the major number.

Another advantage of having pure, total functions is that type signatures are not lying,

implying that one can immediately identify functions capable of triggering side effects. At

the current state of the Elm language, the only places where side effects can happen are ports

to JavaScript (forbidden in packages), commands and HTML. Therefore, a dependency that

doesn’t expose functions with commands or HTML in their type signatures will not be able

to steal bitcoins or launch nuclear warheads.

Conclusion

In this chapter, we provided a guided tour of the Web evolutions since its beginnings in

1991. We identified the tendency to build interfaces in a declarative way to reduce the

complexity of user interfaces. And in order to introduce our technology of choice, the

Elm programming language, we discussed on the limitations of JavaScript when we value

the reliability of our applications. The following chapter combines the knowledge of Web

technologies presented here, and the annotation needs required for segmentation datasets. It

presents an open-source image annotation Web application, developed with easy deployment

to crowdsourcing platforms in mind.
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4.1 Introduction

Figure 4.1: Screenshot of the interface of our image annotation Web application.

Image annotations are required in a wide range of applications including image classifica-

tion (which requires textual labels), object detection (bounding boxes), or image segmenta-

tion (pixel-wise classification). The rise and successes of deep learning lead to an increasing

need for annotations, as training sets should be of a large size for these algorithms to be

efficient. Yet, researchers still spend time and resources to create ad hoc tools to prepare

those datasets. The application we present in this chapter aims at providing a customizable

tool to fulfill most image annotation needs.

Application Year Tools

LabelMe 2008 bbox, polygon, iterative semi-automatic segmentation
VIA 2016 bbox, polygon, point, circle, ellipse
Labelbox 2018 bbox, polygon, point, line
Dataturks 2018 bbox, polygon
Ours 2018 bbox, polygon, point, stroke, outline

Table 4.1: Most relevant image annotation Web applications (tools).

Application
Configurable
interface

Tasks
management

Type License

LabelMe no Mturk integration server OSS
VIA no no client OSS
Labelbox yes yes server private
Dataturks no yes server private
Ours yes Mturk integration client OSS

Table 4.2: Most relevant image annotation Web applications (application type).

Many image annotation applications already exist (Table 4.1). LabelMe [185], one of

the most popular, provides an interface for drawing bounding boxes and polygons around

objects in an image. It has been used extensively to create datasets for image segmentation.

Some more recent softwares share the same goals, with their own specificities. For example,

Labelbox [129] and Dataturks [58] provide annotation tasks management, particularly useful

when crowdsourcing the annotations; these softwares are proprietary. The VGG Image
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Annotator (VIA [64]) is an open-source client application like ours, with the specificity of

providing annotation attributes, editable in a spreadsheet format.

We release an open-source application [5], entirely client side, meaning that no data is

uploaded to any server. Images are loaded from files and annotated locally, in the browser.

The simplest tool, from a user perspective, should be immediately available i.e. should not

require any additional installation to be fully functional. Our image annotation software is

thus a Web-based application, easily configurable to fit users needs, as well as embeddable

in the Mechanical Turk platform to design crowdsourcing campaigns.

We first present the features of our application, then describe its architecture. Finally,

we explain how it can be used to start crowdsourcing experiments.

4.2 Presentation of the application

A screenshot of the application can be seen in Figure 4.1. The image to be annotated occupies

the central part of the screen; a toolbar is located on top, object classes are available on the

left and images to be annotated on the right.

Images. Multiple images can be loaded at the same time using the image icon on the

top-right corner of the application. These images are not uploaded on the server, and can

either be loaded locally from the client’s machine, or from a distant server.

Tools. Our application includes several tools to annotate images. Icons for these tools

are depicted in Figure 4.2. From left to right, the first available annotation is the point,

that can be useful to designate objects in the image. It can also be used as a seed in region-

growing image segmentation methods. The second annotation we included is the bounding

box, which provides the localization of objects in the image, and is used in object detection

problems. The information we acquire are the left, right, top and bottom coordinates of

the bounding box. The third annotation we chose to implement is the stroke, or scribble,

which is a popular interaction in image segmentation. It consists in a sequence of points,

interpreted as a continuous line. The outline, fourth type of annotation, is a closed shape,

typically drawn around objects. It is comparable to a bounding box in essence, but provides

a more precise location of objects. Finally, polygons can also be drawn (as in LabelMe, for

instance), by successively clicking new points as vertices.

All these tools are available both with a mouse or a touch interaction. As a matter

of fact, some tools are better suited to touch devices (for example, outlines) than others

(polygons).

Object classes. For most annotation tasks, we also need to differentiate objects in the

images. Typically each annotated area is attributed a class, or label. The PASCAL VOC

dataset [73], for example, is composed of 20 classes, grouped by categories:

• Person: person
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Figure 4.2: Annotation tools icons

1 { "classes":

2 [ { "category": "Person"

3 , "classes": [ "person" ]

4 }

5 , { "category": "Animal"

6 , "classes": [ "bird", "cat", "cow", "dog", "horse", "sheep" ]

7 }

8 , { "category": "Vehicle"

9 , "classes": [ "aeroplane", "bicycle", "boat", "bus", "car", "motorbike",

"train" ]

10 }

11 , { "category": "Indoor"

12 , "classes": [ "bottle", "chair", "dining table", "potted plant", "sofa",

"tv/monitor" ]

13 }

14 ]

15 , "annotations": [ "point", "bbox", "stroke", "outline", "polygon" ]

16 }

Listing 4.1: A configuration file to annotate the PASCAL dataset.

• Animal : bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor : bottle, chair, dining table, potted plant, sofa, tv/monitor

In our application, classes are specified in a JSON configuration file. A strict correspond-

ing config for PASCAL VOC classes is presented in Listing 4.1.

To attribute a class to an annotation, a user should first select the class in the left sidebar,

then use a tool to create an annotation. Selecting a class in the left sidebar also highlights

the annotations corresponding to this class.

Configuration file. The five annotation tools are optionally made available by the

configuration file. In Listing 4.1, the last line of the depicted configuration file contains an

annotations field, listing the tools that should be available. In this case, they all are.

In addition to the five fundamental annotation types, each type can be derived in virtually

any number of variations. For example, interactive segmentation algorithms often require

foreground and background scribbles. In our application, this would mean the user would

need to draw two types of strokes. This can be achieved using the configuration file, as in

Listing 4.2. Such configuration would result in two stroke icons in the toolbar, of different

colors, just as in Figure 4.1.
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1 { "classes": []

2 , "annotations":

3 [ "bbox"

4 , { "type": "stroke", "variations": [ "fg", "bg" ] }

5 ]

6 }

Listing 4.2: A configuration file to include two types of strokes.

1 type State

2 = NothingProvided

3 | ConfigProvided Config Classes (Zipper Tool)

4 | ImagesProvided (Zipper RawImage)

5 | AllProvided Config Classes (Zipper Tool) (Zipper AnnotatedImage)

Listing 4.3: State type definition.

4.3 Technical choices

The application code is organized in two parts:

• A minimalist Node.js server, located in the server/ directory. It is statically serving

the content of server/dist/ with compression.

• A complete Elm client application, located in the client/ directory. It follows the

Elm architecture presented in the previous chapter. We present the model, messages,

and specific views of this application in this section. The compiled application weighs

150 kB gzipped, which is great for low bandwidth connections.

4.3.1 The model states

The state is the main component of the Model. It contains the images and configuration

loaded as well as the annotations performed. Its type is defined as in Listing 4.3 and can be

modeled as a finite state machine, visualized in Figure 4.3.

The application available online starts in state 0 (NothingProvided) and enables you to

reach state 2 (AllProvided) with buttons to load images and configuration. Two messages

called LoadImages and ConfigLoaded produce transitions in the state machine.

4.3.2 The messages

All modifications of the model are understood by looking at the Msg type definition (List-

ing 4.4). The update function then performs the modifications described by those messages.

• The WindowResizes message is triggered when the application is resized. In the update

function, it takes the new size and recomputes some view parameters.
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NothingProvided

ImagesProvided

AllProvided

Zipper RawImage

Zipper AnnotatedImage
Config

Classes
Zipper Tool

ConfigProvided
Config

Classes
Zipper Tool

LoadImages

ConfigLoaded

ConfigLoaded

LoadImages

1a

2

1b

0

Figure 4.3: The application states.

• A PointerMsg message is triggered by pointer events (mouse, touch, etc.). In the

update function, this is the message activating all the annotations logic code of our

application.

• The messages SelectImage, SelectTool and SelectClass are generated when click-

ing on images, tools and classes.

• Files are handled by five messages:

– When loading images from the file explorer, a LoadImages message is generated

with a list of the images files and their names as identifiers. For each image

correctly loaded an ImageLoaded message is generated, providing a local url,

corresponding to the image in memory.

– The messages LoadConfig and ConfigLoaded behave similarly.

– The Export message causes the application to serialize into JSON all the anno-
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1 type Msg

2 = WindowResizes Device.Size

3 -- pointer events

4 | PointerMsg Pointer.Msg

5 -- select things

6 | SelectImage Int

7 | SelectTool Int

8 | SelectClass Int

9 -- files

10 | LoadImages (List { name : String , file : Value })

11 | ImageLoaded { id : Int , url : String , width : Int , height : Int }

12 | LoadConfig Value

13 | ConfigLoaded String

14 | Export

15 -- other actions

16 | ZoomMsg ZoomMsg

17 | RemoveLatestAnnotation

Listing 4.4: Msg type definition.

tations, and asks the user to save the generated file. It is triggered by clicking on

the export button of the top action bar.

• Whenever an event should change the zooming level of the drawing area, a ZoomMsg

message is generated.

• Finally, the RemoveLatestAnnotation message is also explicit.

4.3.3 The view

The view of this application is based on four components, each implemented in its own

module, with potentially different versions depending on the current state of the application.

• The top action bar (src/View/ActionBar.elm).

• The center annotations viewer area

(src/View/AnnotationsArea.elm).

• The right images sidebar

(src/View/DatasetSideBar.elm).

• The left classes sidebar

(src/View/ClassesSideBar.elm).

4.3.4 Library and application duality

In order to offer a turnkey solution to image annotations, we created a configurable ap-

plication solving most needs. But we also thought of cases where advanced modifications

are required. Consequently, the foundation of this application has been extracted in the
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independent package elm-image-annotation [7]. It is designed as an API to create, modify

and visualize geometric shapes, useful in the context of image annotation.

Modules for manipulation and serialization (in JSON) of annotations are under the

Annotation.Geometry namespace. It already contains one module for each tool presented

earlier. If you want to introduce a new tool, this is where you can create a new module.

This package also contains the following important modules, under the Annotation

namespace:

• Annotation.Style: defines types describing appearance of points, lines and fillings of

annotations.

• Annotation.Svg: exposes functions rendering SVG elements for each annotation kind.

• Annotation.Viewer: manages the central visualization area, supporting zooming and

translations, relative to an image frame.

If you are interested in creating another rendering target than SVG, like canvas or WebGL,

it would require alternative modules to Annotation.Svg and Annotation.Viewer. The rest

of the code can stay unchanged.

4.4 Crowdsourcing annotations

Image annotation interfaces are often used in the context of large datasets of images to

annotate. As such, tasks management for crowdsourcing campaigns is an important feature.

Labelbox and Dataturks are all-in-one services providing tasks management directly in their

applications. Just like LabelMe, we choose instead to provide a configuration, ready to use

with Amazon Mechanical Turk (Mturk).

Mturk comes in two sides. A “requester” is defining a set of tasks while a “worker” is

performing them. Workers are payed by requesters through the Mturk service. The concept

of a “HIT” (Human Intelligence Task) characterizes the task unit. In our case, one HIT

means one image to be annotated. We describe in details how to setup a campaign with our

template in the application documentation.
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4.6 Conclusion

In this chapter we have introduced our Web-based image annotation application. More

information is available in the online documentation [6]. Evolutions of this application are

still developed in alternative branches to keep the master branch in a stable state. We

welcome all forms of feedback and contribution.
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5.1 Modeling Image Capture in a Camera

5.1.1 Historic Remarks

The study of the image formation process has a long history. Traces of geometric formula-

tions of image formation are present in Euclid work (4th century B.C.). These skills also

re-emerged in Renaissance art with artists such as Brunelleschi, Donatello and Alberti. A

treatise on the projection process, “Della Pittura”, was published by Leon Battista Alberti

in 1435 and influenced many Renaissance artists such as Leonardo da Vinci and Raphael.

In Figure 5.1a the perspective emerges from the vanishing point, an imaginary point at the

center of the image, at which all parallel lines in the represented scene cross. Dürer devised

a machine to get a perspectively correct image, represented in Figure 5.1b. It is a manual

reproduction of what a camera does today.

(a) Raphael, The School of Athens (1509) (b) Dürer’s perspective machine (1525)

Figure 5.1: Usage of perspective projection in Renaissance art.

Many artists also played with those perspective rules to create images that seem locally

correct but have inconsitent global depth or gravity such as Hogarth (Figure 5.2a) and

Escher (Figure 5.2b).

5.1.2 Projective Geometry

In order to formally write transformations by linear operations, we make extensive use of

homogeneous coordinates to represent a 3D point (X,Y, Z) as a 4D-vector (X,Y, Z, 1) with

the last coordinate fixed to 1. However, this normalization is not always necessary as one

can represent 3D points by a general 4D vector

X = (XW,YW,ZW,W ) ∈ R
4.

In general, an n-dimensional projective space P
n is the set of all one-dimensional subspaces

(i.e. lines through the origin) of the vector space R
n+1. A point p ∈ P

n can then be assigned
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(a) Hogarth, Satire (1753) (b) Escher, Belvedere (1958)

Figure 5.2: Conscious circumvention of perspective projection in art.

homogeneous coordinates X = (x1, . . . , xn+1)
⊤, among which at least one x is nonzero. For

any nonzero λ ∈ R, the coordinates Y = (λx1, . . . , λxn+1)
⊤ represent the same point p.

5.1.3 Pinhole Camera Model

Perspective projection emerges from a simplified model of a real camera called the pinhole

camera, represented in Figure 5.3. The main issue of such a camera, is that the hole has

to be very small to get a sharp image, therefore limiting the amount of light entering the

capture device. In order to augment that amount of light, it is possible to use lenses, but

just as with a pinhole camera, the image is upside down in the image plan. In order to avoid

dealing with minus signs in the equations, we pretend that the image plan is virtually on

the same side than the object. The perspective transformation π modeling this projection

is given by

π : R3 → R
2; X 7→ x = π(X) =

(
f X

Z

f Y
Z

)

where f is the focal length, X,Y, Z are the object coordinates in the 3D world, the z axis

being the camera axis. The one challenge we have to overcome, is that this transformation

is non linear. In order to do so, we use homogeneous coordinates, which is basically similar
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2D

image
Pinhole

Focal length

Image plan

3D objects in 3D world

Reversed image

Figure 5.3: Pinhole camera model.

to multiplying everything by Z,

Zx = Z



x

y

1


 =



f 0 0 0

0 f 0 0

0 0 1 0







X

Y

Z

1




= KfΠ0X

where we have introduced the two matrices

Kf =



f 0 0

0 f 0

0 0 1


 and Π0 =



1 0 0 0

0 1 0 0

0 0 1 0


 .

The matrix Π0 is referred to as the standard projection matrix. We often note the distance

to the camera along its axis with λ > 0 so

λx = KfΠ0X.

5.1.4 Intrinsic Parameters

If the camera is not centered at the optical center, we have an additional translation ox, oy.

The point where the optical axis intersects the image plan is called the principal point. If

pixels do not have unit scale, we need to introduce additional scaling factors sx and sy.

And if pixels are not rectangular, we also have a skew factor sθ. The transformation from

coordinates in the frame of the camera to final pixel coordinates has thus the following steps:

Camera (3D,X)
KfΠ0

−→ Image (2D,x)
Ks−→ Pixel (2D,x′)
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where the pixel coordinates x′ = (x′, y′, 1) are given by λ x′ = Ks Kf Π0 X with

Ks =



sx sθ ox

0 sy oy

0 0 1


 and Kf =



f 0 0

0 f 0

0 0 1


 .

We call K = Ks Kf the intrinsic matrix since it holds parameters intrinsic to the camera

system, independent from the outside 3D world.

5.1.5 Radial Distortion

The intrinsic parameters in the matrix K model linear distortions in the transformation to

pixel coordinates. In practice however, one can also encounter significant distortions along

the radial axis. This is particularly visible in a wide field of view or if one uses cheaper

cameras such as webcams. A simple effective model for such distortions is to use

x = xd(1 + a1r
2 + a2r

4), y = yd(1 + a1r
2 + a2r

4)

where x = (xd, yd) is the distorted point, and r2 = ‖x‖2 is its squared distance to the

principal point. Usually, a1 and a2 are estimated through a calibration step computed from

distortions of straight lines as in Figure 5.4 or simultaneously with a 3D reconstruction [200,

78]. Other more sophisticated models exist [61] but we will not enter in details here since

we will consider that images are rectified as if fitting the pinhole model.

Figure 5.4: Grid projection with radial distortion.
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5.2 Modeling Camera Movements

5.2.1 Origins of Visual Odometry

Aiming to reconstruct a three-dimensional structure of the world from a set of two-dimensional

views has a long history in computer vision. It is generally considered an ill-posed problem

since reconstructions consistent with a given set of observations/images are typically not

unique. Therefore, one need to impose additional assumptions. The study of geometric re-

lations between a 3D scene and observed 2D projections is based on two types of mathematic

transformations, namely

• Perspective projection, and projective geometry to account for the image formation

process we presented in the previous section.

• Euclidean motion or “rigid body motion” representing the motion of the camera from

one frame to the next.

The first known work on the problem of multiple view geometry was that of Erwin

Kruppa (1913) who showed that two views of five points are sufficient to determine both the

relative tansformation (“motion”) between the two views and the 3D location (“structure”)

of the points up to a finite number of solutions. A linear algorithm to recover structure and

motion from two views based on the epipolar constraint was proposed by Longuet-Higgins in

1981 [139]. Several summarizing text books and papers were also written on the subject [74,

226]. Extensions to three views [199, 195] and factorization techniques for multiple views and

orthogonal projection were also developed [207]. Depending on communities and context, the

joint estimation of camera motion and surrounding 3D environment is called structure and

motion (also known as structure from motion) or visual SLAM (simultaneous location and

mapping). Visual SLAM techniques slightly differ from structure and motion in the sense

that they are specialized for timely coherent sequences of images such as videos. Visual

odometry, that we will detail later, is the core step of Visual SLAM, consisting of evaluating

the camera motion of the next frame in the sequence. Structure and motion however usually

refers to situations where no such assumption is done regarding the set of images.

5.2.2 3D Space & Rigid Body Motion

Cross Product & Skew-symmetric Matrices

The cross product of two vectors u and v in R
3 is a vector orthogonal to both.

× : R3 × R
3 → R

3, u× v =



u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


 ∈ R

3.
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Since u× v = −v×u, the cross product also introduces an orientation. Fixing u induces a

linear mapping v 7→ u× v wich can be represented by the skew-symmetric matrix

û = u× =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ∈ R

3×3

such that u×v = û v. In turn, every skew symmetric matrix M ∈ R
3×3 verifying M = −M⊤

can be identified by a vector u ∈ R
3. The operator ∧ (“hat”) defines an isomorphism between

R
3 and the space so(3) of the 3×3 skew-symmetric matrices. Since a similar property is true

for twists that we introduce later, we will use the notation u× instead of û, which is a visual

reminder that it acts like a cross product. Its inverse is denoted by (“vee”) ∨ : so(3)→ R
3.

Rigid-Body Motion

A rigid-body motion (or rigid-body transformation) is a family of maps preserving the norm

and cross product of any two vectors.

g : R3 → R
3, u 7→ g(u),

∀u ∈ R
3, ‖g(u)‖ = ‖u‖,

∀ u,v ∈ R
3, g(u)× g(v) = g(u× v)

Since norm and scalar product are related by the polarization identity one can also state

that a rigid-body motion is a map which preserves inner product and cross product. As a

consequence, rigid-body motions also preserve the triple product, and therefore volumes.

∀ u,v,w ∈ R
3, 〈g(u), g(v)× g(w)〉 = 〈u,v ×w〉.

Let e1, e2, e3 ∈ R
3 be the orthonormal oriented vectors of our initial frame. We note

the transformed vectors ri = g(ei) and R the matrix R = (r1, r2, r3) The first constraint

(preservation of scalar product) implies that R is an orthogonal matrix R⊤R = RR⊤ = I.

The second property (preservation of cross product) implies that det(R) = +1. In other

words, R is an element of the group SO(3) =
{
R ∈ R

3×3
∣∣R⊤R = I, det(R) = +1

}
. The

motion of the origin can be represented by a translation t ∈ R3. Thus the rigid-body motion

g can be written as

g(x) = Rx+ t, R ∈ SO(3), t ∈ R
3.

Image Formation with Camera Movement

Let’s consider X0 a point in the World reference frame. Its coordinates in the camera frame

are determined by a rigid body motion X = g(X0) = RX0 + t. In homogeneous coordi-
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nates, we can write X = gX0 = (R t
0 1 )X0. In 5.1.4, we identified that pixels coordinates

are linked to point coordinates in the camera frame by λ x′ = Ks Kf Π0 X. In total,

the transformation from World coordinates to pixels coordinates is given in homogeneous

coordinates by

λ x′ = K Π0 g X0

where λ is the depth of the point in the camera frame, K is the intrinsics matrix, Π0 the

standard projection matrix and g the rigid body motion characterizing the camera, also

sometimes called extrinsics matrix.

5.2.3 The Lie Group SO(3) and Lie Algebra so(3)

Sophus Lie (1841–1899)

Portrait of Marius Sophus Lie

Marius Sophus Lie was a Norwegian-born mathematician. He created the theory of

continuous symmetry, and applied it to the study of geometry and differential equations. He

discovered that continuous transformation groups are better understood in their linearized

versions (Theory of transformation groups, 1893). These infinitesimal generators form a

structure which is today known as a Lie algebra.

The reference C++ implementation to manipulate elements of Lie algebras useful to the

computer vision community is a library called Sophus [202] in tribute to Sophus Lie. In our

work, we also provide a Rust implementation of these Lie algebras.

Lie Algebra so(3)

One can show that the effect of any infinitesimal rotation R ∈ SO(3) can be approximated

by an element from the space of skew-symmetric matrices so(3) =
{
w×

∣∣w ∈ R
3
}
. The

rotation group SO(3) is called a Lie group. The space so(3) is called its Lie algebra.
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The Exponential Map

Given the infinitesimal formulation of a rotation, obtained from a continuous set of rotations

R(t) and by deriving the equation R(t)R(t)⊤ = I, one can show that ṘR⊤ is a skew-

symmetric matrix and that we have the differential equation system

{
Ṙ(t) = w×(t)R(t),

R(0) = I.

If we assume that w×(t) is constant in time (= w×), this known equation has the solution

R(t) = ew×t =

∞∑

n=0

(w×t)
n

n!
= I + w×t+

(w×t)
2

2!
+ . . .

which is a rotation around the axis w ∈ R
3 by an angle of t (if ‖w‖ = 1). One can

also absorb the scalar t ∈ R into the skew-symmetric matrix w×. This matrix exponential

therefore defines a map from the Lie algebra to the Lie group

exp : so(3)→ SO(3), w× 7→ ew× .

In analogy to the well-known Euler equation eiθ = cos(θ) + i sin(θ), there is an expression

called Rodrigues’ formula for the exponential of skew symmetric matrices,

ew× = I +
w×

‖w‖
sin(‖w‖) +

w2
×

‖w‖2
(1− cos(‖w‖)).

The Logarithm of SO(3)

There is conversely a mapping from the Lie group SO(3) to the Lie algebra so(3). For any

rotation matrix R ∈ SO(3), there exists a vector w ∈ R
3 such that R = exp(w×). Such an

element is denoted by w× = log(R). If R 6= I, we note rij its coefficients and w is given by





‖w‖ = cos−1

(
trace(R)− 1

2

)
,

w

‖w‖
=

1

2 sin(‖w‖)



r32 − r23

r13 − r31

r21 − r12


 .

The above solution is not unique since for example, increasing the angle by multiples of 2π

will give the same rotation.

89



CHAPTER 5. INTRODUCTION TO THE RGB-D VISUAL ODOMETRY PROBLEM

5.2.4 The Lie Group SE(3) and Lie Algebra se(3)

The Lie Algebra of Twists se(3)

Just as with SO(3) one can show that SE(3) has a tangent space, of which the elements are

called twists. This tangent space is called the Lie algebra of twists, noted se(3).

se(3) =

{
ξ̂ =

(
w× v

0 0

)
∈ R

4×4

∣∣∣∣∣w× ∈ so(3), v ∈ R
3

}

As with skew-symmetric matrices, we can define operators “hat” ∧ and “vee” ∨ to convert

between a twist ξ̂ ∈ se(3) and its coordinates ξ ∈ R
6. The twist coordinates ξ = ( v

w ) are

formed by stacking the “linear velocity” v ∈ R
3 (related to translation) and the “angular

velocity” w ∈ R
3 (related to rotation).

Logarithm and Exponential Coordinates for SE(3)

Twist coordinates are also sometimes called “exponential coordinates”. This is due to the

fact that, similarly than with SO(3), we can define an exponential map between se(3) and

SE(3). For a twist ξ̂ = (w× v
0 0 ) ∈ se(3) its associated rigid body motion is

eξ̂ =

(
ew×

(I−ew× )w×v+ww⊤v

‖w‖2

0 1

)
.

Conversely, for every g ∈ SE(3) there exists twist coordinates ξ ∈ R
6 such that g = exp( ξ̂ ).

Given g = (R, t), we can compute w thanks to the association R = ew× as explained

previously for SO(3). For the linear velocity vector v ∈ R
3, we merely need to solve the

equation
(I − ew×)w×v +ww⊤v

‖w‖2
= t.

Beware that, just as in SO(3), this representation is not unique. In general, there exists

many twists representing the same rigid-body motion.

5.3 Visual Odometry Approaches

Projects with precise localization needs may be of very different nature, such as Mars rover

exploration [140], underwater navigation [63], autonomous vehicles [22], or augmented real-

ity [190] to cite only few. Depending on the context and project needs, the capturing device

and the localization and mapping requirements vary. In this section, we will briefly review

the different visual inputs that a localization and mapping algorithm may have to process,

and the tradeoffs between local and global coherence, leading to visual odometry or visual

SLAM.
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5.3.1 Capturing Device

Most of the earliest visual odometry systems were based on stereo capture such as the

binocular setup by Matthies and Shafer [141], or the slider camera presented in Moravec’s

thesis [147] and used on board of Mars rovers. Those are systems providing or simulating

the simultaneous capture of the environment by two or more cameras, and thus mimicking

human stereo vision. In a calibrated stereo setup, one can easily triangulate 3D coordinates

of points for stereo pairs, i.e. matching points in two or more images. Such triangulation can

be obtained by searching a point from the left image onto the right image along its associated

epipolar line, which is the right image of the line passing through the optical center of the

left camera and the point in the left image. This method is often called disparity search. Due

to the geometric constraint visualized in Figure 5.5, all epipolar lines cross at the epipole,

which is the image of the optical center of one camera into the other. This constraint is

called the epipolar constraint. Points with depth information are then tracked in successive

frames, and motion can be estimated based on those 3D point clouds.

Cl
Cr

el
er

X

pl
pr

Figure 5.5: Epipolar constraint between two cameras. The center of the left and right
cameras are Cl and Cr, X is the observed 3D point, projected onto pl and pr respectively
in the left and right image. The left and right epipoles are noted el and er.

Alternatively to the stereo scheme, one can also use a single camera. It is called monocu-

lar visual odometry. In that case, the 3D structure is unknown. The relative motion between

frames must then be retrieved from the 2D information only. That vector passing through

the camera center and a given pixel of the image is usually called a bearing vector. In the

monocular case, the motion and 3D structure computed by visual odometry can only be

recovered up to an unknown scale when using the pinhole camera model. This is due to the

fact that the projection modelization cannot differentiate big distances far away from small

distances close to the camera. The first influencial work exploiting monocular camera in a
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realtime algorithm is the one of Nister et. al. [157], also coining the term “visual odometry”.

It provides two important improvements over previous work. First is the use of reprojection

error, which is the distance between the detected point in an image and its reprojection from

the 3D point with a given camera transformation, while previous work tend to compute mo-

tion by aligning 3D point clouds. The second is the use of a five-point minimal solver [156]

in a RANSAC scheme for robust motion estimation.

Recently, depth-sensing cameras such as the Microsoft Kinect [233] have appeared in the

consumer market under the name RGB-D cameras (“D” stands for depth). Those cameras

use an active system based on structured infrared light to compute a depth image. Due

to limitations in outside environments, the usage of these cameras is restricted to indoor

navigation. One should also avoid very reflective surfaces such as glass and mirrors. In

favorable cases, RGB-D cameras offer the advantage of providing realtime depth information

without the need of triangulation like in the stereo case.

One should note that in some situations, the camera can be paired with other sensing

devices. Inertial measurement units (IMU) are present in smartphone and LIDAR are often

provided in autonomous vehicles for example. Any additional information or constraint

provided by a particular setup can be exploited to improve performances of the visual

odometry system. There are therefore many papers exploring these areas but they are

out of the scope of our study.

5.3.2 Relation to Visual SLAM

Visual simultaneous localization and mapping is the name given to the technique consisting

in recovering the 3D structure of the environment (the map) and the trajectory of the

camera relative to this environment. While visual odometry is only concerned with the local

consistency of the map and trajectory, visual SLAM tries to obtain a globally consistent

map. This difference is of the utmost importance for autonomous systems navigating for a

long period, but less so for short augmented reality experiences for example.

There exists three dominant strategies in visual SLAM. One is based on filtering methods

such as in MonoSLAM by Davison et. al. [59]. Those approaches use methods similar to the

extended Kalman filter (EKF) to jointly estimate the camera trajectory and the 3D location

of a small number of landmarks in a probabilistic scheme. The second strategy consists

in keeping a small subset of the frames called keyframes and apply global optimization

algorithms such as bundle adjustment on those. One such example is the algorithm of

Klein and Murray called parallel tracking and mapping (PTAM) [120]. Finally there are

bio-inspired strategies such as RatSLAM by Milfort et. al. [145].

Today, the majority of commonly used visual SLAM methods are keyframe-based. The

two most comprehensive solutions are ORB-SLAM [151] and OpenVSLAM [205]. Keyframe-

based visual SLAM is usually composed of a visual odometry core, extended with three

components providing global consistency. A pose graph is built with the selected keyframes.

92



September 5, 2020 5.3. VISUAL ODOMETRY APPROACHES

Camera locations are the nodes of the graph and transformations between keyframes are

stored in the edges. A loop closure mechanism is added to detect when the camera returns

to previously visited locations. When a loop is detected, an edge is added to the pose graph.

Finally, a global optimization such as bundle adjustment is used to refine both keyframes

camera locations and estimated 3D points. The choice between visual odometry and visual

SLAM is thus mainly a tradeoff between realtime performances and accuracy and consistency

over a long period of time. In our work presented later in this document, we focus on visual

odometry since visual SLAM could be tackled later as an extension.

5.3.3 Reducing Drift

In the context of visual odometry, the trajectory is tracked incrementally. Small errors

therefore accumulate and quickly deteriorate long term accuracy. Approaches reducing the

errors and the drift are thus important.

Outlier Removal with RANSAC

Random sample consensus (RANSAC) is a method to estimate a model from a set of noisy

data [77]. It consists in sampling a random subset of the data, estimate a model from it, and

classify the rest of the data as fitting (inliers) or not (outliers) that model. If we note s the

number of data points in the samples, ǫ the percentage of outliers in all the data, and p the

target probability of successfully find the correct model, the number N of samples required

is

N =
log(1− p)

log(1− (1− ǫ)s)
.

In a situation where 50% of the data is outliers, and with a target probability of success

of 99%, it requires 16 iterations for a sampling size of 2 data points and 145 iterations for

a sampling size of 5, growing at an exponential rate. This is one reason why exploiting

every available constraint of the system to reduce the degrees of freedom is important. As

a consequence, a number of minimal model parameterizations have been studied such as

a three-point solver proposed by Fraundorfer et. al. when two of the camera angles are

known [81]. Using a robust estimation scheme like the one provided by RANSAC can

considerably reduce the drifts accumulated along the sequence.

Windowed Bundle Adjustment

Another method, complementary to outliers removal, is to use windowed bundle adjustment

i.e. a local joint optimization of camera poses and point coordinates, over a small number

of recent camera poses. It was demonstrated to considerably reduce tracking errors in [122].

The main issue of bundle adjustment, used in structure and motion algorithms as well as in

global optimization for visual SLAM, is the computational complexity, growing in cube of
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the number of points and camera poses. Therefore, limiting bundle adjustment to a small

“window” of frames offers an efficient way of optimizing camera localization and 3D structure

with a controlled complexity.

5.4 Motion Estimation

We have explained in Section 5.2.2 that the camera motion between two frames can be

represented by a transformation with 6 degrees of freedom (DoF) called rigid body motion

g(x) = Rx+ t, R ∈ SO(3), t ∈ R
3.

In homogeneous coordinates, we can write g = (R t
0 1 ). The core challenge of visual odometry

is to accurately estimate this transformation g from the observations provided by the camera

images. The two main approaches for this estimation are feature-based or appearance-based.

Feature-based motion estimation is also sometimes called indirect, while appearance-based is

called direct visual odometry. The distinction is due to the fact that feature-based methods

first step is to find and match features in the images. A feature is a local image pattern

differentiable from its surrounding and thus recognizable in multiple images. Once features

are paired, only the geometric information (location) of correspondences is kept to estimate

the camera motion. In contrast, direct (appearance-based) methods formulate the camera

motion estimation as a problem directly depending on the image intensity observations.

5.4.1 Feature-Based Motion Estimation

There are three main feature-based approaches, depending on the formulation of the feature

correspondences. A detailed presentation of each scheme is provided in the first part of the

visual odometry tutorial by Scaramuzza and Fraundorfer [188].

3D to 3D

When features in previous and current frames have a depth information, one can compare

the 3D points coordinates. There are two main strategies to estimate the motion from those

point clouds. The first is to consider point clouds globally and try to align them as a whole.

Variants of the ICP “iterative closest point” algorithm [23], which is a method for registration

of 3D shapes, are well suited for this task. This strategy is often used in the case of RGB-D

cameras since it avoids the step of matching features in both images.

When features are matched, another strategy consists in formulating the problem as a

minimization problem

argmin
gk

∑

i

‖Xi
k − gk(X

i
k−1)‖
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where gk is the rigid body motion between frames k − 1 and k, Xi
k and Xi

k−1 are the 3D

coordinates of point Xi in the camera frames k and k−1. This formulation is quite sensible

to outliers and requires a robust approach.

2D to 2D

When no depth information is provided by the sensors, it may be preferable to avoid the

estimation of 3D coordinates alltogether. In presence of a calibrated camera, its motion can

be recovered thanks to the essential matrix

E = t×R

where t is the translation up to an unknown scale factor, and R is the rotation of the

transformation. The essential matrix itself is computed thanks to the epipolar constraint,

stating that for every matching pair of normalized image coordinates p and p′,

p′⊤Ep = 0.

The essential matrix can be recovered with factorization techniques [139]. When robustness

to outliers is desired, the most common solution is to use a RANSAC-like scheme, with a

five-point algorithm such as the one presented by Nister [156].

3D to 2D

Instead of comparing 3D coordinates of triangulated points, it is also possible to compare

the reprojection of a 3D point Xi
k−1 into the image Ik, that we will note gk(X

i
k−1), with its

actual position in the image, noted pik. This error is usually called a reprojection error. As we

will explain soon, we can compute another kind of reprojection error, based on appearance,

so we will call this a geometric reprojection error in this document. Recovering the camera

motion thus consists in minimizing the geometric reprojection error

argmin
gk

∑

i

‖pik − gk(X
i
k−1)‖

2.

This problem is called “perspective from n points” (PnP). The minimal case requires at

least three points and is called “perspective from three points” (P3P). A P3P solver may

return up to four potential solutions that can be disambiguated with other points. In our

interactive visual odometry Web application, presented in Chapter 7, we provide a fast P3P

implementation based on Persson and Nordberg’s solver [169].
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5.4.2 Appearance-Based Motion Estimation

Most appearance-based motion estimation methods are also direct, with some exceptions

like the algorithm by Goecke et al. [90] which computes the Fourier-Mellin transform of the

image. Our implementation, presented in Chapter 7, belongs to the direct image alignment

category so we will detail how this works.

Direct Image Alignment

In general, the direct approach formulates the problem as an image registration (alignment)

task. Under the photoconsistency assumption, i.e. the appearance of a point does not

change between images, aligning them consists in finding the transformation W minimizing

the photometric reprojection error

argmin
W

∑

x

‖I(W (x))− I∗(x)‖2

where I∗, I are the reference and new images, and x is the position of a pixel in the reference

image. The transformation W is called the warp function and can take many forms. Most

of the time it is parametric, such as a 2D affine transformation, visualized in Figure 5.6

and modelled by the matrix
( 1+p1 p3 p5

p2 1+p4 p6

)
where p1 to p6 are the six parameters of the

transformation. The non parametric case is well known under the name optical flow which

consists in recovering the vector field describing the movement of all pixels. To model

the warp function by a rigid body motion of the camera capturing the image, one could

represent the camera motion by a matrix of the form (R t ) with R ∈ SO(3) and t ∈ R
3.

The main inconvenience of this parameterization is that R is a constrained 3x3 matrix, so

using 9 free parameters to optimize is clearly suboptimal. Recent direct visual odometry

algorithms are all using the Lie algebra se(3) for the parameterization of the rigid body

motion [153, 9, 119, 121, 80, 69].

Figure 5.6: Direct image alignment. The 2D affine transformation between the first and
second image is represented with the red rectangle.
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Minimization of the Photometric Reprojection Error

The minimization of the photometric reprojection error is a non-linear, non-convex problem

due to the form of the warping function. It is common to solve it with a non-linear iterative

algorithm such as Gauss-Newton. If we add the parameterization to the notation, W (x) =

W (x, ξ), and consider that ξ is to be found iteratively, we can rewrite the expression to

minimize as ∑

x

‖I(W (x, ξ + δξ))− I∗(x)‖2.

In a Gauss-Newton scheme, the minimum is found by performing a first order Taylor expan-

sion of I(W (x, ξ+ δξ)). Using the chain rule, the gradient of this expression can be written

J = ∇I∇ξW where ∇I is the image gradient and ∇ξW is the Jacobian of the warping

function. Let H be the Gauss-Newton approximation of the Hessian, H =
∑

x J⊤J , then

the step of the parameters δξ is given by

δξ = H−1
∑

x

J⊤(I∗(x)− I(W (x, ξ)))

and the new set of parameters is updated as ξ ← ξ + δξ.

In [16] Baker and Matthews provide a detailed review of the direct alignment problem

in a unifying framework showcasing the different possible formulations of the expression to

minimize. Those formulations are referred to as forward additive, forward compositional,

inverse additive and inverse compositional. The inverse additive approach is subtly different

but the other three are easily summarized by Table 5.1. The compositional approaches model

the increment as a composition so it is required that the set of warps forms a group. The

inverse compositional approach exchanges the roles of the reference image with the new image

to align. Image gradients are thus precomputed once on the reference image I∗ instead of

at each iteration, which provides a computational and accuracy advantage. For this reason,

the majority of direct visual odometry algorithms, including our own implementation use

that inverse compositional scheme.

Formulation Expression of residual Warp update

Forward additive I(W (x, ξ + δξ))− I∗(x) W (x, ξ)←W (x, ξ + δξ)
Forward compositional I(W (W (x, δξ), ξ))− I∗(x) W (x, ξ)←W (x, ξ) ◦W (x, δξ)
Inverse compositional I∗(W (x, δξ))− I(W (x, ξ)) W (x, ξ)←W (x, ξ) ◦W (x, δξ)−1

Table 5.1: Formulation of the expression to minimize and the warp update step depending
on the optimization scheme, as detailed in [16].
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About the Depth Requirement

In the previous formulation, we eluded writing the actual expression of the warp function

but it can be decomposed as

Pixel 1 (2D,x1) −→ Camera 1 (3D,X1) −→ Camera 2 (3D,X2) −→ Pixel 2 (2D,x2).

The first step of this transformation is to retrieve the coordinates of the 3D point X1 in

the frame of the first camera from its pixel coordinates in the first image. However, this

is only possible if the depth of the point is known and the camera is calibrated. We make

the assumption that the camera is or can be calibrated. There are thus two approaches for

direct visual odometry. Either use a sensor configuration easing the process of getting depth

information such as RGB-D [119] and stereo cameras, or alternatively estimate camera mo-

tion and point depths [69]. This second scheme needs special attention for the initialization.

The work we present in Chapter 7 uses RGB-D cameras and is thus in the first category.

We can add that though end-to-end deep learning approaches are just beginning [219],

some authors use deep neural networks to estimate depth information in a monocular camera

setup [229], thus providing a similar framework than in the RGB-D camera case.

Extensions and Richer Modelizations

The previous developments are based on few assumptions, including photoconsistency. How-

ever in reality, those assumptions are incorrect. The appearance of a point in an image for

example depends on the surface materials and orientation, and on the lighting conditions.

An entirely different field of computer vision called photometric stereo aims at retrieving 3D

geometry with advanced modelization of the observed 3D surface and lighting conditions.

In our work led by Y. Quéau [176], we show how a dermatoscope can be repurposed to

compute precise surface reconstruction of the skin. In visual odometry, some adjustments

are possible to better take into account changes in lighting conditions. Global illumination

changes, resulting from camera automatic exposure, can be modelled by an affine change of

the pixel intensities in the image [69]. Intensity variations due to reflective bright surfaces,

occlusions or objects motion can be ruled out or neglected by robust weights [121].

Another incorrect assumption is that an image has been taken at a fixed camera position.

In practice, most camera sensors are based on a rolling shutter, i.e. the pixels of the sensor

are discharged row after row. The time period of the accumulated light, and thus camera

location is different for every row of the image. One can take advantage of rolling shutter for

artistic effects such as in Figure 5.7. When tracking high speed camera motions however the

bending of straight vertical lines visible in Figure 5.8 will result in errors in the photometric

reprojection. Some papers thus model the camera movement as a continuous-time location

problem [118] or with piecewise linear velocity [191]. Such extensions are out of scope for

our work.
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Figure 5.7: Effect of an iPhone rolling shutter when taking a picture of a propeller. Image
provided by Soren Ragsdale under creative commons.

Figure 5.8: Effect of rolling shutter bending fences due to the high speed motion of the
camera. Image provided by BrayLockBoy under creative commons.
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CHAPTER 6. PERFORMANT WEB APPLICATIONS

In the previous chapter we layed the foundation necessary to modelize the visual odome-

try problem. Similarly than in the first part of this thesis, we want to explore an interactive

scenario through the Web. Visual odometry however, is slightly different from annotation

in terms of computational needs. Before reviewing our library and interactive application,

we thus make a small detour toward an analysis of performance capabilities in client Web

applications. Our tour starts with a brief history of “native” code in browsers, followed by

a detailed presentation of WebAssembly, a recent technology about to change how we share

and distribute high performance code. Finally we provide an explanation for the choice of

the Rust programming language for the development of our visual odometry library.

6.1 A Brief History of Native Code in the Client

Being able to run high performance code in the browser is useful in many use cases, including

for example scientific computing. Yet, it remains a challenging task. Resources often refer

to this as “native” code but the terminology is rather vague. Depending on the context,

“native” may have one of the following meanings,

1. code statically compiled directly to the target architecture and running from the

browser,

2. code compiled from a typical “native” language such as C or C++,

3. or anything that is not generating JavaScript.

The distinction between those and how they relate to “native” code will be made clearer

after the following brief history of high performance code in browsers.

6.1.1 Java Applets

In 1995, just four years after the birth of the Web, the Java programming language was

created. It appeared along with a companion technology called Java Applet, designed to

run Java applications in the browser. The Java Virtual Machine (JVM) was hosted by

browsers, enabling much better performances than JavaScript at that time. As an example,

Brendon C. Glazer worked on interactive ray tracing of VRML scenes with Java applets in

1999 [88]. Figure 6.1 depicts how the applet would appear in a Web page at that time. Since

1998 Java applets have also had access to 3D hardware acceleration [144] whereas JavaScript

waited until 2011 for WebGL in HTML5 canvas.

On the down side, Java applets would break accessibility of the Web. Screen readers

would not be able to parse the content of the dedicated applet area in the page. The security

model of Java applets also had some weaknesses. Applets would have to get approved by a

browser user and then gain rights equivalent to a native desktop application. Unfortunately,

just like terms of service, most people click “agree” and move on [160]. In addition, the

Java Runtime Environment (JRE) has had hundreds of security vulnerabilities [115] in its
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Figure 6.1: Interactive ray tracing applet from Brendon C. Glazer master thesis (1999).

lifetime. This represents a serious security threat for browser vendors. Java applets were

eventually entirely removed from Java SE 11, in 2018.

103



CHAPTER 6. PERFORMANT WEB APPLICATIONS

6.1.2 Flash

In his “History of Flash” [83], Jonathan Gay retraces the early days of Flash. In 1993, he,

Charlie Jackson and Michelle Welsh founded FutureWave Software but their initial vector

drawing application did not draw much attention (pun intended). After discussions at Sig-

graph 1995, the company decided to focus on a web animation product named “FutureSplash

Animator”. It gained reputation with Microsoft and Disney using it and as a consequence,

was acquired by Macromedia and rebranded “Flash” in 1996.

Contrary to Java applets, Flash use cases started very narrow. It provided a simple

and efficient solution to build and share animations on the web, offering a visual advantage

over pure HTML documents. In year 2000, Flash 5 was released, with the ActionScript

programming language, bringing even more potential to Flash-based websites. Two years

later, in 2002, Flash 6 brought support for real-time messaging protocols, enabling video

and audio streaming capabilities. This represents roughly 8 years until 2010 when such

capabilities are also supported through HTML5 in most browsers. In the meantime, highly

influencial projects shaped the Web thanks to Flash. For example, Chad Hurley, Steve Chen

and Jawed Karim launched YouTube in 2005, based on Flash.

In spite of the many advantages of Flash and ActionScript over classic Web pages, it also

had similar flaws than Java applets. In October 2000, usability consultant Jakob Nielsen

published a short article entitled “Flash: 99% Bad” [155] stating that “Flash technology tends

to discourage usability for three reasons: it makes bad design more likely, it breaks with the

Web’s fundamental interaction style, and it consumes resources that would be better spent

enhancing a site’s core value.” Apple also played a huge role in Flash decline. In 2007 the

iPhone launched without Flash support, leading to Steve Jobs, then Apple CEO, writing in

2010 an oppen letter called “Thoughts on Flash” [114] in which he explains why Flash was

doomed to disappear. Among those reasons, Flash is proprietary, going against open Web

standards and it has numerous security flaws [79].

Consequently, with the advent of HTML5 surrounding technologies regarding multimedia

capabilities, and the improved performances of JavaScript, Flash became obsolete. So in

July 2017, Adobe announced end support of Flash in 2020.

6.1.3 Google Native Client (NaCl)

Java applets and Flash were never trully considered “native” since they involved third party

virtual machines. One would not compile code directly to machine instructions but to

an intermediate bytecode representation for Java applets, or just using a JIT compiler for

ActionScript (Flash) code. They provided however great performances improvements when

compared to JavaScript before 2008 and the arrival of JavaScript JIT compilers with the

V8 engine. But around 2009 and 2010, two new projects named Native Client (NaCl) and

Emscripten respectively emerged from research at Google and Mozilla. We will hold on
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Emscripten for now and explain first what NaCl was about.

At this period of time, native code was already running in browsers, usually via an

old plugin interface called the “Netscape Plugin API” (NPAPI). This is how the JVM, the

Flash player or PDF readers for example would be integrated in browsers. So from the

observation that the Web had trully become a rich multimedia platform, and that native

code was already running in browsers via plugins, a team of Google engineers explored a way

to generalize and improve security of any native C or C++ code execution in browsers [230].

This would in theory unlock high performances for any Web application. But it would need

a sandboxed and secure new set of APIs to make sure that those applications would not

execute any malicious code via the browser. That is how the Native Client (NaCl) project,

and its associated API called Pepper Plugin API (PPAPI) started in 2009.

The two main downsides of this approach are the security and portability concerns. Even

though NaCl code would run into a sandboxed environment, enforcing both security and

accessibility to classical desktop resources requires a continuous effort from browser vendors,

now needing to secure two different sandboxed environment, NaCl and JavaScript, instead

of one. Portability was also a concern since any NaCl code would need to be compiled to all

target architectures where the browser need to run. In practice, only x86 Intel architectures

were fully supported, going against the nature of the Web, supposed to run on all platforms.

This limitation was the reason for the birth of the Portable Native Client project.

Portable Native Client (PNaCl, pronounced like the word “pinnacle”), was a work by A.

Donovan et al. [62] aiming at distributing NaCl programs in an intermediate pre-compiled

neutral instruction-set format, preventing the need to compile directly to all target architec-

tures. Concretely, the format chosen was the Low-Level Virtual Machine (LLVM) bitcode.

Unfortunately, this intermediate representation bitcode is a fast moving target, and retro-

compatibility is not a main objective of the LLVM project. It means that PNaCl code could

become obsolete at a fast pace, also a deal breaker for Web standards. With the reluctance

of other vendors to adopt a non-specified Google initiative, and the appeal of another rising

approach coming from Emscripten, PNaCl was finally deprecated in 2017.

6.1.4 Emscripten and asm.js

Out of curiosity, Mozilla engineer Alon Zakai started to work around 2010 on a project

to explore the limitations of compiling C++ code to JavaScript. It was the start of the

Emscripten project [232]. Emscripten base idea consists in converting LLVM bitcode to

JavaScript. LLVM originated from the work of Chris Lattner and Vikram Adve [130] on a

compiler framework and an intermediate code representation, optimized for compiler trans-

formations. It reduces the language-architecture complexity from O(mn) to O(m+n) since

languages do not need to compile to every target like x86 or Arm, and instead can just

target LLVM which in turn knows how to compile to each instruction set architecture (ISA)

as depicted in Figure 6.2.
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Figure 6.2: LLVM Compiler Infrastructure

After few iterations with the help of Luke Wagner, working on JavaScript compilation

at Mozilla, Emscripten was able to output JavaScript code running roughly two to three

times slower than the equivalent C code. This specific subset of JavaScript was formalized

under the name asm.js in 2013 [103]. The asm.js code for a sum function is presented in

Listing 6.1. As you can see, it makes use of JavaScript operations doing nothing, like the

bitwise-or with 0, except cohercing values to certain types. You would not want to write

asm.js code by hand, but for a compiler, it enables certain kinds of optimizations not possible

with traditional hand-written JavaScript code. Yet it is a strict subset of JavaScript and

can still run in any browser, whether or not they have a specialized handling of asm.js.

1 function add(x, y) {

2 var x = x | 0; // x is a 32-bit value

3 var y = y | 0; // so is y

4 return (x+y) | 0; // 32-bit addition , no type or overflow checks

5 }

Listing 6.1: Sum of two 32-bit integers in asm.js.

The performances without the need of any plugin convinced companies with huge code

bases to join the effort. The Unreal game engine was ported [71], Autodesk AutoCAD [101],

Adobe Lightroom [134], OpenCV [206] and many others. With the success of Emscripten

and asm.js as a proof of concept, all major browser vendors came together to formalize a

new specification known today as WebAssembly. Figure 6.3 summarizes main events leading

to the creation of WebAssembly.

6.2 WebAssembly

WebAssembly, abreviated Wasm, is an instruction set with a binary format, and a stack-

based virtual machine able to execute those programs [97].
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NaCl support in Chrome desktop

Deprecate NPAPI, PNaCl in Chrome, asm.js standardized

WebAssembly announced

Deprecate PNaCl, WebAssembly MVP in all browsers

Java applets removed from Java SE 11

Expected end support for Flash

Figure 6.3: Events releated to the birth of WebAssembly.

6.2.1 Relation to Previous Technologies

Just like Flash and Java applets, WebAssembly code is executed by a virtual machine. Sim-

ilarly to NaCl, the Wasm runtime is sandboxed, preventing it from accessing data outside of

its context and compromising the security of the underlying machine. And as asm.js, Wasm

does not require any plugin. It has been developed as a Web standard and implemented by

all major Web browsers, desktop and mobile, since 2017. Unlike asm.js however, Wasm is

distributed in a binary format, meaning it is more efficient to send over the network and

to parse, drastically reducing the loading time of Web pages. WebAssembly has been built

drawing lessons from the past and is likely to endure for the following reasons.

• It is a Web standard and a collective effort from all browser vendors.

• It is the low level missing piece of the Web, complementing JavaScript where more

control over performances is needed.

• It offers strong security guaranties, and a sound type system [224].
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• It theoretically enables any programming language to run on the Web.

6.2.2 Compilation to WebAssembly

Currently WebAssembly does not provide a garbage collector. Therefore, there are two

main approaches to compile to WebAssembly. If a programming language enables memory

management at compile time, such as C, C++ or Rust, the simplest way is to target LLVM

intermediate representation. Emscripten enables compilation to WebAssembly from C and

C++. Rust can either use Emscripten as a backend or directly the wasm32 target of LLVM.

Otherwise, when a programming language requires a runtime for features such as garbage

collection, the entire runtime needs to be ported to WebAssembly in addition to the actual

program. This is for example the case of Blazor, a .NET (Microsoft) library enabling the

creation of Single Page Applications written in C#.

6.2.3 WebAssembly Minimum Viable Product (MVP)

The first version of WebAssembly, initially released on March 2017, is called a minimum

viable product (MVP). This consensus aimed at producing a simple yet functional specifica-

tion and implementation for all major browser vendors. Concretely, the Wasm MVP offers

roughly the same capabilities than asm.js. It has only four types, integers and floating point

numbers in 32 and 64 bits, and manages memory as a unique contiguous block of bytes.

New features such as threads, SIMD, exception handling, reference types, garbage collection

or tail call optimization, are currently being worked on and delayed to the after-MVP phase.

6.2.4 WebAssembly Bright Future

A common pun in WebAssembly communities is to describe it as “neither Web, nor assem-

bly” [170]. Although slightly caricatural, the WebAssembly specification does not require

any Web component. As a matter of fact, just like JavaScript broke out of the browser

with Node, many non-browser WebAssembly runtimes have already been created, such as

Wasmer [221] and Wasmtime [223].

Since Wasm is basically a performant sandboxed calculator, interoperability capabilities

with files or the network must be provided in the form of imports and exports of a Wasm

module. In the browser, those are passed to the module at the initialization call from

JavaScript. But outside of the browser, as in Wasmer for example, imports and exports have

to be provided by the runtime environment. If we want to be able to use the same Wasm

module in those two different contexts, we need to have a common interface specification,

which can have different implementations in each runtime environment.

In order to adress those points, the WebAssembly working group is standardizing a

system interface under the name WebAssembly System Interface (WASI [47]) and a types

interface known as WebAssembly Interface Types [48]. As shown in the demonstration video
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available on YouTube [49], it is now possible to create a Wasm library in Rust for example,

and then call it from the Web, Node, Rust, but even Python or any language capable of

embedding a WebAssembly runtime.

6.2.5 Why this Matters for Research

A growing number of actors are worrying about research reproducibility [43, 29] in com-

putational sciences. Nick Barnes published an article on Nature News [18] encouraging

researchers to publish even bad code instead of none.

IPOL Journal [135], Image Processing On Line, is an initiative supported by the French

space agency CNES and the European Research Council. Its goal is to publish both precise

algorithm descriptions and certified implementations, and making them available on an

online platform. Due to performance constraints, they rejected most garbage collected

languages interpreted or based on virtual machines such as Python and Java, and only

accept Fortran, C and C++ implementations with strict portability requirements. In order

to mitigate security risks, authors are uniquely identified. Exposure to malicious data, such

as images uploaded by online users, is reduced by system restrictions and careful examination

of the source code during review. WebAssembly would have been a perfect fit for this project

if it had existed in 2010 since it provides a solution for secure, performant and portable code.

The Association for Computing Machinery (ACM) recently revised its artifact review

and badging policies [2], based on the International Vocabulary for Metrology. A work is

considered repeatable if the results are obtainable on multiple trials, within the same team

and experimental setup. It is considered replicable if another team is capable of getting the

same results while reusing the provided artifact and same experimental setup. Finally it is

considered reproducible if the results can be reproduced with different teams and experi-

mental setup, without using the provided artifacts. In accordance to these guidelines, ACM

Multimedia, the ACM conference targetting multimedia research, has setup a reproducibil-

ity review process, based on companion papers [150]. Companion papers are distinct from

the main paper. They must be provided with associated artifacts and describe precisely how

to replicate the findings of the associated original paper contribution.

Containarization of the development environment with tools such as Docker is a new

practice reducing dependency conflicts. It has been picked up by the machine learning

community, especially when needing to use different versions of languages and tools for

deep learning tasks in separate projects. Carl Boettiger even wrote a paper entitled “An

introduction to Docker for reproducible research” [26] describing the different aspects of

computer environments preventing work reproducibility. Yet, Solomon Hykes, the original

author of Docker shared on twitter that if WebAssembly and its system interface existed in

2008, he wouldn’t have needed to create Docker [109]. “That’s how important it is” as he

said.
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6.3 C++ Portability Pitfalls

Not every C or C++ project can be ported to WebAssembly. There are three main factors

of non portability: Web limitations, no low-level architecture specific code and no system

dynamic linking.

6.3.1 Web Limitations

High performance code may rely on parallelization to speed up processing. Due to security

concerns, parallelization methods such as multithreading or SIMD are currently a work in

progress but not usable by default in browsers.

6.3.2 Low Level Native or Architecture Specific Code

Other high performance code may rely on architecture specific constraints. For example, x86

assembly is not portable to other platforms. Code requiring a big-endian physical ordering

of memory, i.e. starting multi-bytes data types with the most significant byte, will not work

since WebAssembly makes the assumption of a little-endian machine, such as in the case of

x86, ARM or RISC-V.

6.3.3 No Dynamic Linking to OS Libraries

Emscripten is at its core an LLVM backend (cf Figure 6.2) targetting the WebAssembly

instruction set. A WebAssembly module must run in isolation inside the browser and thus

needs access to every dependency inside the WebAssembly virtual machine. Therefore,

Emscripten requires the LLVM bitcode of every dependency used. In traditional C and C++

environments however, it is common practice to depend on precompiled shared dynamic

libraries (.so and .dll files) provided by the OS packages. In contrast, Emscripten needs the

source code of every direct and transitive dependency to produce the LLVM bitcode and

then the Wasm code. To ease the process, Emscripten already includes most of the C and

C++ standard libraries, in addition to few common libraries for graphical applications such

as Simple DirectMedia Layer (SDL), a cross-platform multimedia library.

DVO [201] for example relies on OpenCV, Eigen, Boost and Sophus. Unfortunately,

OpenCV has only been partially ported to WebAssembly [206]. The porting team assumed

that, in the context of the Web, media would be generated from Web APIs. Reading an

image for example, is performed through the creation of an HTML canvas, loading and

decoding the image data, which is then transferred to an OpenCV matrix. Native OpenCV

however would use the imdecode function, itself depending on a dozen of other libraries

such as libjpg, libtiff and libpng, not all of which have been ported to WebAssembly. When

trying to add the imdecode function to the set of ported OpenCV code, one currently hits

“missing symbol” errors due to similar dependency and linking issues. In the case of DVO
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and other RGB-D visual odometry algorithms, there is a need to decode 16 bit PNGs for the

depth images. Until they are supported in Web APIs it will not be possible with OpenCV.

This limitation does not mean that DVO can never be ported to WebAssembly, but that

it would require a significant amount of work to either complete the OpenCV port, or find

another image decoding library already ported to WebAssembly and adapt DVO code to

accomodate it. The same could happen for parts of Eigen, Boost and Sophus used in DVO.

6.4 Rust and WebAssembly

WebAssembly and the Rust programming language are both technologies that emerged from

research projects at Mozilla. Though independent, their core communities are thus sharing

similar values and working in synergy within the Rust and WebAssembly Working Group.

6.4.1 The Rust Programming Language

Rust is a programming language focused on safety, speed and concurrency, that begun in

2006 as a side project by Mozilla employee Graydon Hoare. It has been evolving drastically

until 2015, when version 1.0 was announced with stability goals in mind. There are many

reasons why Rust is among the best contestants for writing efficient and correct computer

vision algorithms. We will focus on those related to our task, interactive computer vision

on the web.

First, Rust uses an LLVM backend so it is capable of targetting WebAssembly by default.

In addition, Rust has an automatic memory management system called ownership. It enables

memory safety guarantees at compile time without the need of a garbage collector or manual

memory management. This is important in the context of WebAssembly since it means

that Rust code can be compiled to Wasm without embedding a big runtime for memory

management. Ownership in Rust is based on the concept of linear types, highly influenced

by the work of Girard [85], Wadler [216], Baker [14], and Clark et al. [50] among others. The

main idea behind Rust ownership is that every value has a unique variable called its owner.

When this variable goes out of scope, the associated value is released from memory. Other

variables can access this value during its lifetime through a borrowing mechanism, similar

to references. At any time, there must be at most one mutable borrow, and there cannot be

mutable and immutable borrows at the same time. Those constraints are very similar to the

read and write constraints usually enforced on shared values in concurrent programming.

Finally Rust is not affected by the dynamic linking issues we mentioned earlier when

targetting WebAssembly in C++. Rust 1.0 shipped with a project manager called “cargo”

and an online package registry “crates.io”. Cargo manages compilation, modules and external

dependencies with the use of a very simple project description file named Cargo.toml placed

at the root of a Rust project. As a consequence, compiling a pure Rust project will almost
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always work with a single command cargo build. It downloads dependencies, locally build

and statically link them.

In contrast to the Elm package registry we discussed in Section 3.4.6, Rust packages follow

but do not enforce semantic versioning. Similarly to Elm, Rust also provides algebraic data

types with pattern matching, and immutability by default, thus giving much more confidence

than C++ that when a program compiles it is correct.

6.4.2 WebAssembly in Rust

The WebAssembly tooling ecosystem in Rust is composed of four main projects.

• wasm-bindgen [220] facilitates interoperability between Rust and JavaScript with the

help of simple code annotations.

• wasm-pack [222] complements wasm-bindgen by generating all the JavaScript glue

code currently necessary to load and call a WebAssembly module from JavaScript

as if it was an ES6 module. wasm-pack build basically serves as a replacement to

cargo build when compiling to WebAssembly.

• js-sys [117] provides raw bindings to JavaScript global APIs for projects using wasm-

bindgen.

• web-sys [225] provides raw bindings to Web APIs for projects using wasm-bindgen.

Out of those four projects, wasm-pack is considered a tool, installed alongside the rest

of Rust tooling. The three others simply are libraries, added to a project dependencies with

one line each in the description file Cargo.toml.

6.5 Conclusion

The Web is in constant evolution. It is also the most ubiquitous platform, accessible from

multitude of devices such as laptops, tablets, phones and embedded devices. Being able

to run performant code in Web browsers has thus being a competitive advantage, and

many technologies have tried to corner that market. As we explained however, all those

past technologies such as Java applets, Flash or Google NaCl have had huge drawbacks,

preventing them from standard adoption. Recently with the arrival of WebAssembly, we

finally arrived at a point where high performance code can run in Web browsers with very few

inconvenients. For this reason, the four major browser vendors, Google, Mozilla, Microsoft

and Apple all rallied together to define this new standard and implement a minimum viable

product in few months. We also explained why the current best two languages to target

WebAssembly are C++ and Rust. While C++ has the original WebAssembly code generator

available, called Emscripten, the language struggles with building dependencies and legacy
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non portable code. Combined with the intrinsic difficulties of that language to safely build on

other contributions, we decided to avoid C++ and start fresh with the Rust programming

language. We can also note that in 2019, for the fourth year in a row, Rust has been

elected the most loved programming language by respondents of the Stack Overflow’s annual

developer survey [186]. So we hope that this choice will also bring more joy to potential

future contributors. In the next chapter, we will thus introduce our visual odometry library

in Rust and present its port to an interactive Web application.
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7.1 Visual Odometry in Rust (VORS)

7.1.1 Overview of VORS

VORS is a sparse, keyframe-based, RGB-D, direct visual odometry algorithm. As presented

in Section 5.4.2, VORS belongs to the family of direct visual odometry, based on the image

alignment optimization problem. Contrary to monocular visual odometry, which requires

an estimation of points depth, we focus on the RGB-D case, where the necessary depth

information for reprojection is provided by a sensor. In order to reduce drift when the

camera moves slowly, image alignment is performed from a fixed keyframe instead of the

previous frame. Decision to change the keyframe is done heuristically. Finally, our algorithm

uses a sparse subset of points in the image, which has been shown [69] to be sufficient to track

the camera motion. Disregarding sparsity and robustness, discussed later, our algorithm is

very similar to DVO [119], and its predecessor [201]. An overview of the full pipeline of

VORS is presented in Figure 7.1.

7.1.2 Intuition on Direct Image Alignment

As presented in Section 5.4.2, under the photoconsistency assumption, direct image align-

ment consists in finding the warp function W minimizing

∑

x

‖I(W (x))− I∗(x)‖2

where I∗, I are the reference and new images, and x is the position of a pixel in the reference

image. As explained in Baker and Matthews [16], this can be minimized with an iterative op-

timization. If we note ξ the parameters of the warp function, and δξ the iterative increment,

the expression of the residual in an inverse compositional formulation is

I∗(W (x, δξ))− I(W (x, ξ)).

In a Gauss-Newton scheme, the iterative increment δξ is computed as

δξ = H−1
∑

x

J⊤(I∗(x)− I(W (x, ξ)))

where J = ∇I∗ · JξW , ∇I∗ is the reference image gradient and JξW is the Jacobian of the

warp function. The Hessian is computed as the Gauss-Newton approximation H =
∑

x J⊤J .

For readability of the expression inside the sum on all pixels x, we did not indicate in the

notation that J , composed of∇I∗ and JξW , is computed at pixel x. The image gradient∇I∗

at x is a 1x2 vector, while the Jacobian of the warp JξW at x is a 2x6 vector (2 coordinates, 6

parameters). We leave aside the expression of the warp Jacobian, detailed in Appendix A.1.

Two important components of δξ are the reference image gradient ∇I∗ and the residual
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Figure 7.1: Overview of VORS pipeline.

image δI = I∗(x)− I(W (x, ξ)) which is the difference between the reference image and the

reprojected pixels on the second image. We represented both in Figure 7.2 for a couple of

images in the ICL-NUIM sequence. As we can see there, not all pixels are participating

equally in the expression. The most informative pixels are all near high gradient locations

which actually makes sense. Indeed if we, as humans, compare two homogeneous areas, it

will be impossible to tell how the camera moved. If instead we are presented heterogeneous

regions of the image with textures it is possible to visualize the movement. The same occurs

for the expression of the warp increment δξ. Since pixels with high gradient magnitudes

contain the most information, it should be possible to sample only those for direct image

alignment, which leads us to the presentation of sparse points selection mechanisms.
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Figure 7.2: Gradient norm of the reference image (left), and absolute residual image (right).

7.1.3 Sparse Points Selection

Engel et al. demonstrated in DSO [69] that using a sparse subset of points for the direct

image alignment problem still results in precise camera locations at the condition that points

satisfy two properties,

• they should be well distributed in the image,

• and they should be located at positions with higher gradient magnitudes.

In DSO, selected points are called candidate points. Though presented quickly in the paper,

their selection mechanism is much complex, based on at least ten parameters. The core

idea is to regularly divide an image in tiles. One subdivision produces big tiles, called

regions, and another generates small tiles, called blocks. One pixel is selected per block if

its gradient is higher than a local threshold depending on the region containing the pixel. In

practice, blocks are actually multi-scale, with three default levels. If none of the four “level

n” blocks composing a “level (n + 1)” block elected a candidate point, the “level (n + 1)”

block checks whether a pixel satisfies a lower threshold. The factor between block thresholds

at different levels is one of the parameters. Another mechanism aims at obtaining a target

amount of candidate points. That amount can be approximated from blocks base size but it

might differ. Depending on the difference with the target count, the algorithm will choose

between the three following options, (1) keep candidates, (2) randomly select a sample of

the candidates, or (3) change the block base size and restart from scratch.

Since we care about the complexity of VORS, we tried a different approach, much simpler,

yet resulting in a distribution satisfying the two expected properties. Our sparse selection

mechanism is based on a multi-resolution pyramid of images. We embraced the idea that

each level of the image pyramid should exhibit that property of well distributed points
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with higher density near higher gradients. We thus propose a simple coarse-to-fine selection

mechanism, depicted in Figure 7.3. At the lowest resolution, all points are candidates.

For each candidate pixel at one pyramid level, we elect one or two candidates in the four

subpixels of the next level. A threshold based on gradients is used to determine which

pixels should be selected. This sparse selection scheme ensures that there is at least one

candidate per region corresponding to one pixel at the lowest resolution. It also increases the

density of candidates in higher gradients areas. The number of levels of the image pyramid

is a common parameter for candidates selection and for the multi-resolution direct image

alignment presented next. As a result, we obtain a sparse selection of points with only one

parameter, the gradient threshold to pick one or two subpixels as candidates.

Figure 7.3: Coarse-to-fine candidate selection of VORS. Candidates are represented in red.
All points are kept at the lowest resolution. Each higher resolution elects one or two candi-
dates per parent candidate.

Figure 7.4 depicts a zoomed-in view of the same image region for both DSO and VORS

candidates selection mechanisms. As visible on the left image, DSO candidate points are

regularly spaced, except in homogeneous areas. VORS candidate points however tend to

form contiguous lines, which probably generates redundant information. Limiting the max-

imum number of subpixel candidates to one at some levels (in the higher resolutions), could

both help control the maximum amount of candidates and limit the information redundancy

generated by neighbour candidates.

7.1.4 Multi-Resolution Direct Image Alignment

Convergence of the Optimization Problem

In theory, the iterative algorithm computing motion increments is only correct under the

assumption that the initialization is already near the solution. Convergence to the correct

minimum is thus a hard problem and under some circumstances, the optimization may drift

to another local minimum. One way to help convergence is to use the Levenberg-Marquardt

approximation of the Hessian. It consists in multiplying the diagonal elements of the Gauss-

Newton approximation of the Hessian by (1 + λlm). The Levenberg-Marquardt coefficient

λlm is dynamically updated toward 0 when converging or toward +∞ when diverging.

Another method to improve convergence consists in solving the optimization with a

coarse-to-fine multi-resolution approach. Indeed, the image gradient used for the Jacobian
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Figure 7.4: DSO (left) and VORS (right) candidate points (in red).

contains information of larger areas of the original image when computed at lower resolutions.

As a consequence, the vicinity of the global optimum is artificially increased. For the direct

image alignment, we thus use a pyramid of images, where each level has half the resolution

of the previous one. As explained previously the number of levels also impacts candidate

points selection. Indeed, at the lowest resolution, all pixels serve as candidates for the

optimization. The number of levels is thus chosen as a compromise between the minimum

amount of candidate points and the desired convergence rate. Starting from 640x480 images

in the ICL-NUIM and TUM RGB-D datasets, we found that 6 levels is a good compromise.

The lowest resolution has 20x15 images, which implies a minimum of 300 candidate points.

Multi-Resolution Intrinsics

Since we use a coarse-to-fine optimization, we must be able to initialize one level from

the result of the previous one. In Section 5.1.4, we presented the image formation as the

succession of two transformations, first the projection from the camera frame to the image

frame, and then the projection onto the pixels frame. When halving the image resolution,

the second transformation Ks changes.

Ks =



sx sθ ox

0 sy oy

0 0 1


 .

We note K ′
s the new pixels projection with a resolution multiplied by α. In our case α is of

the form 2−n. On the one hand, scaling parameters are all multiplied by α i.e. s′x = αsx,

s′y = αsy and s′θ = αsθ. The principal point parameters on the other hand depend on
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Figure 7.5: Effect of a centered coordinate system on the coordinates of the principal point
at multiple resolutions.

the origin of the coordinate system. In most modelizations, the value of pixel (x, y) is

interpreted as the integration of the light hitting the sensor on the surface located between

(x − 0.5, y − 0.5) and (x + 0.5, y + 0.5). The coordinates of the top left corner of the

image is thus (−0.5,−0.5) instead of (0, 0). Figure 7.5 illustrates how the principal point

is transformed in such coordinate system. As a result, the location of the principal point

is updated as o′x = α(ox + 0.5) − 0.5 and o′y = α(oy + 0.5) − 0.5. In the end, the updated

intrinsic pixel transformation is

K ′
s = KαKs with Kα =



α 0 0.5(α− 1)

0 α 0.5(α− 1)

0 0 1


 .

The presented approach is the one used by the TUM RGB-D coordinate system for

the principal point given in the intrinsics matrix. It is thus also the one we use when

initializing the multi-resolution intrinsic parameters in step 2 of Figure 7.1. The camera

motion estimated at one resolution can thus be reused as-is for the initialization of the next

resolution. It is the projection that changes, due to a different intrinsic matrix.

Keyframe Update

We mentioned in VORS overview that the decision to change the keyframe is done heuristi-

cally. Similarly to ORB-SLAM [151] and DSO [69], we use the optical flow of tracked points,
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which is the distance in pixels between their locations in the reference and in the tracked

images, to make that decision. For convergence reasons, we established that the reference

and the tracked frames should not be too different from each other. We therefore use a mean

threshold distance of one pixel at the lowest image resolution.

7.1.5 Limits of the Implementation

To our knowledge, VORS is the first Rust-only complete direct visual odometry stack. We

thus value simplicity for this important milestone. Incidentally, our algorithm lacks a few

significant features, left as later improvements.

One notable missing component is robustness to outliers. It is common that the pho-

toconsistency assumption does not hold with real-world images. Among the many possible

reasons, two of them are the presence of dynamic moving objects, and the appearance of

bright spots due to light reflections. One possible solution is to use a robust M-estimator

instead of a least square estimation. The energy to minimize then takes the form

∑

x

ρ(I(W (x))− I∗(x))

where ρ has a few interesting properties. In part 2 of their series on direct image align-

ment [15], Baker et al. explain in details how a robust M-estimator can be used within

an inverse compositional iteratively reweighted least squares (IRLS) algorithm. Possible

estimators include Huber, Geman-McClure, Tukey or even t-distribution estimators. Klose

et al. [121] use Huber and Tukey M-estimators, while for example, Kerl et al [119] and

Gutierrez et al. [95] prefer the t-distribution.

Another commonly appearing problem with cameras is automatic exposure variations.

With changes in lighting conditions, exposure parameters of cameras are often automatically

adjusted, resulting in global photoconsistency errors. Different affine exposure parameter-

izations have successfully been integrated in the expression to minimize, such as in [121]

and [69]. We did not add such additional parameters in our modelization and thus expect

VORS to have difficulties tracking the camera motion in scenes with brightness changes.

7.2 RGB-D Visual Odometry Evaluation

As previously explained, our implementation belongs to the family of direct visual odometry

from RGB-D images. In this section, we will detail how it has been evaluated against com-

parable algorithms by introducing the available datasets, presenting the different evaluation

metrics, and finally lay out the testing setup we provide with the evaluation results.
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7.2.1 Dataset Creation / Acquisition

Comparing different algorithms is a complex task for many reasons, one of them being

the ability to run those algorithms on the same set of data. The existence of well built

reference datasets is thus a crucial point, and understanding their characteristics is valuable

to correctly compare and interpret evaluation results.

Overview of Available Datasets

We saw in Chapter 1 that the principal difficulty for building annotation datasets is the

required human annotation time. For visual odometry, algorithms are strongly related to

capture devices, be it stereo, mono, RGB-D cameras, or cameras paired with other sensors

such as inertial measurement units (IMU), GPS or lidar. As a consequence, different datasets

focus on different acquisition systems. For every evaluated acquisition system, there must

exist another measurement system, more precise and reliable than the one being evaluated.

The main difference is thus that the challenge is technological for visual odometry, while it

is mostly time consumption for image annotation.

The availability of datasets for visual odometry first came from the mobile robotics

community, mostly interested in SLAM from laser sensors (lidar). The data is thus collected

from sensors attached to a mobile robot or a car. In the New College [198] and NCLT [35]

datasets, the robotic platform is based on a Segway, the KITTI dataset [84] recorded data

from a sensors equipped car, while the EuRoC MAV [30] dataset is based on a micro aerial

vehicle (MAV). These platforms are depicted in Figure 7.6. The ground truth was recorded

with three different approaches for these datasets. Visual odometry ground truth was an

after thought for the New College dataset, only available a year later on their website and not

discussed in the paper. It appears to have been obtained from dead-reckoning, i.e. from wheel

and IMU odometry, provided by the Segway platform, and is thus not very reliable. In the

NCLT dataset, the mobile robot trajectory ground truth is computed from a high precision

realtime kinematic GPS (RTK GPS) and a graph SLAM based on lidar measurements. The

accuracy of the trajectory ranges from a centimeter to a decimeter approximately for a total

travelled distance of roughly 147 km. The ground truth trajectory of the KITTI dataset

was also obtained from high precision GPS/IMU sensors and is thus also accurate at the

decimeter scale. The setup for the EuRoC MAV dataset is a bit different since the mobile

vehicle is flying in indoor environment and its trajectory is obtained from motion capture

devices. The total travelled distance is thus way shorter, less than a kilometer, but the

trajectories are accurate at approximately a millimeter.

A second wave of datasets, represented in bold in Table 7.1, has especially been targetting

RGB-D cameras, becoming popular after the launch of the Microsoft Kinect. While the TUM

RGB-D [203] and Bonn RGB-D [164] datasets are recorded with real RGB-D sensors, the

ICL-NUIM [99] dataset was generated (ray-traced rendered) from synthetic 3D models of

indoor scenes. We are going to explain in more details the specificities of the TUM RGB-D
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Figure 7.6: Mobile robots used for SLAM datasets. From left to right, the Segway platform
used in the New College dataset [198], the Segway platform used in the NCLT dataset [35],
the MAV used in the EuRoC MAV dataset [30].

and ICL-NUIM datasets since these are the two we used to evaluate our direct RGB-D visual

odometry algorithm.

Finally, with the popularity of inertial sensors coupled with cameras in modern smart-

phones enabling new augmented reality functionalities, a regain in interest has been visible

for 6 degrees of freedom visual inertial odometry (VIO). While the EuRoC MAV [30] and

TUM VI [192] datasets are using high quality sensors, the ADVIO dataset [53] is actually

using regular smartphones sensors, showing the importance of datasets with less precise data

to improve algorithms robustness. We provide a brief summary of these datasets properties

in Table 7.1. Note that this is not an exhaustive list of available datasets but an overview

of the main ones for visual odometry.

Dataset Year Available data Ground truth

New College [198] 2009
GPS, IMU, wheel odometry,
lidar, omnidirectional, stereo

Dead-reckoned

TUM RGB-D [203] 2012 IMU, RGB-D Motion capture
KITTI [84] 2013 GPS, IMU, lidar, stereo High precision GPS/IMU
ICL-NUIM [99] 2014 RGB-D, 3D surface Synthetic

NCLT [35] 2016
GPS, IMU, wheel odometry,
lidar, omnidirectional

RTK GPS and lidar SLAM

EuRoC MAV [30] 2016 Stereo camera Motion capture
TUM Mono [70] 2016 Mono camera Closed loop
TUM VI [192] 2018 IMU, Mono camera Motion capture and closed loop
ADVIO [53] 2018 Smartphone IMU and video IMU with position fixes
Bonn RGB-D [164] 2019 IMU, RGB-D, lidar Motion capture

Table 7.1: Visual odometry datasets

Motion Capture for RGB-D Visual Odometry

The TUM RGB-D dataset [203] was the first complete and rigorously detailed dataset for

RGB-D visual odometry. It is composed of 80 sequences, 47 for training with ground truth,
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and 33 for validation only evaluated online, without ground truth. The training sequences

are arranged in six groups,

• testing and debugging (4 sequences), simple translation or rotation movements,

• handheld movements (11 sequences),

• robot movements (4 sequences),

• structure and texture (8 sequences), with difficult structure or texture patterns,

• dynamic objects (9 sequences),

• and object reconstruction (11 sequences).

As we can see, the dataset provides both easy sequences and sequences with more difficult

situations such as dynamic movements or poor textures in the field of view of the camera. It

is thus a good benchmark of the robustness of visual odometry algorithms. These sequences

have been acquired by three different Kinect devices, named fr1 (for “Freiburg 1”), fr2 and

fr3. All their intrinsic parameters are available in the dataset. The required robustness of

the tested algorithms is also increased by the fact that the color camera of the Kinect sensor

has a rolling shutter. We do not expect our algorithm to perform very well under those

circumstances.

The ground truth camera poses are obtained thanks to an external motion capture

system based on MotionAnalysis [149] hardware and software. This setup is composed of

eight 300 Hz Raptor-E high definition cameras, equipped with infrared lights to illuminate

passive markers attached to the Kinect. After a detailed intrinsic and extrinsic parameters

calibration of the system, the authors estimate the relative position errors to be lower than

1 mm and 0.5 degrees.

Synthetic Dataset Creation

Most of the available visual odometry datasets lack a dense 3D surface ground truth to

be able to evaluate both the camera trajectory and the structure reconstruction. To this

end, Handa et al. created the ICL-NUIM dataset [99]. Contrary to most other datasets, the

video sequences provided here are completely generated by computer graphics, using the

open-source ray tracing algorithm POV-Ray [174]. The dataset is split into two rooms, a

living room and an office, and two scenarios, one noiseless and one with simulated noise.

The full pipeline is also provided as open source, if one wishes to customize parts of it. The

geometry and some renders of the living room are displayed in Figure 7.7.

In order to test some visual odometry algorithms, we are only going to use the eight

noise-free sequences since realistic noisy sequences are already evaluated with the TUM

RGB-D dataset. The trajectory ground truth generated by this ICL-NUIM dataset is thus

error-free. The color and depth images are also perfectly aligned, timely synchronized and

have no light exposure variations. They still contain reflective surfaces and few other ligthing

effects not taken into account in our direct visual odometry modelization, but the overall

circumstances should be very favorable for our simple implementation.
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Figure 7.7: Geometry (left) and few rendered images (right) of the living room used for the
ICL-NUIM dataset [99].

7.2.2 Evaluation Metrics

There are basically two types of evaluation metrics, those based on a ground truth, and

those that are not.

Metrics with Ground Truth, ATE and RPE

The most straightforward method to evaluate a visual odometry trajectory is to compare

it with a reference trajectory, called ground truth. This reference trajectory needs to be

acquired with more precision than the one being evaluated for the measure to make sense.

In our case, the TUM RGB-D dataset uses a motion capture system with sub-millimeter

accuracy, and the ICL-NUIM provides exact trajectories since it is a synthetic dataset.

The first evaluation metric commonly used is the absolute trajectory error (ATE). We

can consider the trajectory as a discrete set of camera poses

GΩ = { gτ | τ ∈ Ω, gτ ∈ SE(3) }

where Ω is the set of discrete time events when camera poses are available. In theory, the

ATE can be computed as

ATE =
∑

Ω

d(gτ , ĝτ )

where d(gτ , ĝτ ) can be thought of as a distance between the estimated transformation gτ

and the ground truth transformation ĝτ . Usually, we can consider two types of errors, the

translation error

‖trans(ĝ−1
τ · gτ )‖

and the rotation error

∡ (ĝ−1
τ · gτ )

where ∡ is the amplitude (≥ 0) of the rotation angle. Since the rotation errors will also im-
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pact translation errors later, it is common to only use the translation error when computing

the ATE. The two most widely used ATE metrics are the RMSE and the median scores

ATErmse =
(
‖trans(ĝ−1

τ · gτ )‖2
)1/2

and ATEmedian = median
(
‖trans(ĝ−1

τ · gτ )‖
)
.

The median is a better indicator of the algorithm precision, while the RMSE better reflects

the presence (or absence) of outliers, i.e. the global robustness of the algorithm.

In practice, we should note that the ground truth and estimated trajectory are not

expressed in the same reference frame. It is thus necessary to first align the two trajectories.

This is usually done with a principal component analysis (PCA) of the trajectories. It is

also important to note that the ground truth and estimated trajectories are not sampled at

the same timings and frequency. Therefore, it is also necessary to correctly associate poses

of each trajectory, which is reasonably easy when timestamps have been synchronized in

the dataset. One of the main issues of the ATE is that drifts have higher impact at the

beginning of the sequence than at the end. To better evaluate long sequences we thus use

another metric, the relative pose error (RPE).

Contrary to the ATE, which evaluates absolute errors on associated pairs of poses, the

RPE compares the relative motion in a sliding window along the sequence. The size of the

window is usually a fixed travelled distance or time interval. We will detail for example the

computation of the RPE at 1 second. For each associated pair of estimated and ground

truth poses (gτ , ĝτ ), we consider another pair (gτ ′ , ĝτ ′) delayed by 1 second (τ ′ ≈ τ + 1s).

The camera motion between τ and τ ′ in the estimated trajectory is ∆ττ ′g = g−1
τ · gτ ′ and

the camera motion in the ground truth trajectory is ∆ττ ′ ĝ = ĝ−1
τ · ĝτ ′ . The relative pose

error is thus computed as

RPE =
∑

Ω′

d(∆ττ ′g,∆ττ ′ ĝ)

where d(·, ·) is similar than for the ATE, and Ω′ is the set of regularly spaced pairs, whether

it is a duration, like 1 second, or a distance like 1 meter.

Metrics without Ground Truth

In some conditions, such as long handheld outdoor trajectories, retrieving a ground truth

might be problematic. Yet it is still possible to partially evaluate the precision of an algo-

rithm, or rather its robustness to drifts and losses. Indeed, in absence of a full sequence

ground truth, it is still possible to evaluate the tracking of loops. It is important to note

that global loop closure detections must be deactivated in the algorithms for these measures

to make sense.

One method consists in computing loop closure and pose graph optimization and then

compare the trajectory before and after. If the drifts of the tracking are not too extreme and

do not prevent the pose graph optimization, this error can be representative of the visual
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odometry performance.

Another approach consists in specifically designing the dataset sequences to start and

end at the same location, such that both ends of the trajectory can be precisely aligned. This

is the approach taken in [70]. The error computed is then the accumulated drift between

the sequence when aligned to the start and when aligned to the end of the partial ground

truth trajectory.

7.2.3 Setup and Algorithms Evaluation

In this section, we describe how we evaluated our VORS implementation and compared it to

other open source C++ algorithms. We focused on RGB-D visual odometry, and therefore

used both the TUM RGB-D [203] and ICL-NUIM [99] datasets.

The TUM RGB-D Dataset Format

The TUM RGB-D dataset is well specified and as a result, others including ICL-NUIM

follow the same format. We therefore also base our evaluation setup on the TUM RGB-D

format. The general structure of such dataset is as follows.

1 dataset/

2 rgb.txt # List of rgb images with their timestamps

3 depth.txt # List of depth images with their timestamps

4 groundtruth.txt # List of ground truth camera poses

5 associations.txt # List of associated rgb and depth images with timestamps

6 accelerometer.txt # List of accelerometer measurements with timestamps

7 rgb/ # Directory containing all color images

8 timestamp_rgb_0.png

9 timestamp_rgb_1.png

10 ...

11 depth/ # Directory containing all depth images

12 timestamp_depth_0.png

13 timestamp_depth_1.png

14 ...

Listing 7.1: General structure of the TUM RGB-D dataset format.

The files rgb.txt and depth.txt list all images with their associated timestamps. The

RGB-D visual odometry algorithms also need the correspondences between color and depth

images, so if not present, the first step is usually to run a provided associate.py script

to generate an associations.txt file from the rgb.txt and depth.txt files. Each line of

that file contains a pair of RGB and depth images with their respective timestamps. Color

images are stored as 640x480 8-bit RGB images in the PNG format. Depth images are stored

as 640x480 16-bit monochrome images in the PNG format. Depth images are scaled by a

factor of 5000, i.e. a pixel value of 5000 corresponds to a distance of 1 meter. Theoretically
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depth images thus have a precision of 0.2 mm for a range of 0 to roughly 13 meters. The

ground truth trajectory is provided in the groundtruth.txt file as follows.

1 # timestamp tx ty tz qx qy qz qw

2 1305031449.7996 1.2334 -0.0113 1.6941 0.7907 0.4393 -0.1770 -0.3879

3 1305031449.8096 1.2334 -0.0111 1.6939 0.7911 0.4393 -0.1768 -0.3872

4 ...

Listing 7.2: Ground truth trajectory format.

The timestamp is the POSIX time of the given pose, i.e. the number of seconds elapsed since

1970, January 1st. The coefficients tx, ty, tz, are the coordinates of the optical center of

the color camera with respect to a given world frame. The coefficients qx, qy, qz, qw are

the parameters of the quaternion describing the orientation of the color camera. The last

coefficient qw is the real part of the quaternion.

Open Source Algorithms and Provided Setup

In addition to VORS, we evaluated five other open source algorithms for RGB-D visual

odometry, namely DVO [119], Fovis [108], and three variants of the OpenCV RGB-D odom-

etry module based on [152, 201]. For each one of those six algorithms, we implemented a

small program performing the following operations (pseudo code).

1 # Usage: track camera_id path/to/associations.txt

2 # where camera_id is one of [icl|fr1|fr2|fr3]

3

4 intrinsic_matrix = create_camera(camera_id)

5 tracker = initialize_tracker(intrinsic_matrix)

6 for (rgb_image , depth_image) in extract_images(association_file):

7 tracker.track(rgb_image , depth_image)

8 print(tracker.camera_pose)

Listing 7.3: Outline of the common RGB-D odometry program implemented for every tested

algorithm.

All those algorithms except VORS are C++ programs with different complexity of build,

due to dependency issues. DVO for example would not compile anymore with recent ver-

sions of the Sophus [202] library for Lie algebra due to missing re-orthogonalization of

the rotation matrix after optimization increments. Therefore, we are providing clear in-

stallation instructions as well as a Docker container ready for compilation of all 6 pro-

grams. This setup is open sourced under GPL license at https://github.com/mpizenberg/

rgbd-tracking-evaluation.

Evaluation Results

We evaluated all algorithms both on the ICL-NUIM dataset and on the TUM RGB-D

dataset, constituting a total of 55 sequences. As visible in Figure 7.8, our implementation
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(VORS) performs similarly than DVO, Fovis and OCV-RGBD. It is coherent since these

four algorithms use both the visual information of the color image and the depth map to

estimate the camera motion. OCV-ICP however, which only uses the depth map, is unable

to track the camera movements in the majority of sequences. The OCV-RGBD-ICP variant,

which is a mixed approach minimizing both energies of OCV-RGBD and OCV-ICP, inherits

from the same tracking difficulties as OCV-ICP.

0 0.1 0.2 0.3 0.4 0.5

vors

fovis

dvo

ocv-rgbd

ocv-rgbd-icp

ocv-icp

Figure 7.8: Distribution of the median relative pose error (RPE) at 1 second on all 55
sequences, composed of 47 TUM sequences and 8 ICL-NUIM sequences.

Out of 55 sequences taken into account in the Figure 7.8, the wide majority (47) comes

from the TUM RGB-D dataset. VORS, which does not implement robust approaches,

should perform better for the synthetic sequences of the ICL-NUIM dataset than for the

real sequences of the TUM dataset. Figure 7.9 thus presents the same plot than Figure 7.8

but restricted to the 8 ICL-NUIM sequences. As we can see, VORS is performing remarkably

in these conditions. Other noteworthy details are exacerbated by this plot. Both geometric

odometries (OCV-ICP and OCV-RGBD-ICP) perform extremely well thanks to the high

precision dense depth maps provided by the dataset. One should note that this precision

comes at the price of time. The first ICL sequence for example takes three times longer with

OCV-ICP than with Fovis, VORS and DVO, all comparable in speed. It is also notable

that Fovis is having more issues tracking those sequences. It can be explained by the nature

of this algorithm, which is indirect, based on FAST features, contrary to VORS, DVO and

OCV-RGBD which are direct visual odometry algorithms. The synthetic nature of the

images, and lack of unique textures compared to real images is degrading the detection rate

of Fovis FAST descriptors.

Instead of using the median RPE, which pictures the overall precision of the algorithms,

Figure 7.10 represents the RMSE RPE, which better reflects the robustness to outliers. As

visible in that figure, VORS has a long tail of highly erroneous motion tracking. High RMSE
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Figure 7.9: Distribution of the median relative pose error (RPE) at 1 second on the 8
ICL-NUIM sequences.

errors are better understood when looking at the detailed RPE of one sequence. Figure 7.11

contains plots of the RPE along the third sequence of the ICL-NUIM dataset. As visible

there, VORS exhibits lower errors in general, but the absence of drift detection or robustness

may generate much bigger drifts such as those around frame 600 of the sequence. In the

end, even though our visual odometry implementation in Rust (VORS) has robustness issues

due to previously discussed challenges, we provide a precise, state of the art RGB-D visual

odometry, easy to compile, to use and as we will develop next, easy to port to WebAssembly.

VORS thus enables the exploration of efficient interactive visual odometry on the Web, which

we finally present next.

0 5 · 10−2 0.1 0.15

vors

dvo
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ocv-rgbd-icp

ocv-icp

Figure 7.10: Distribution of the RMSE relative pose error (RPE) at 1 second on the 8
ICL-NUIM sequences.
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Figure 7.11: Relative pose error (RPE) at 1 second for the third living room sequence of the
ICL-NUIM dataset.
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7.3 Interactive VORS on the Web

We previously quantitatively validated VORS viability for the visual odometry task. In this

final section we detail how it can be made usable directly on the Web. We also attempt

at showcasing the potential of such exposure with an example use case of manual human

intervention to detect and rectify drifts.

7.3.1 Port of VORS to WebAssembly

VORS in WebAssembly

Globally, the port of VORS to WebAssembly was straightforward, as expected for a Rust-

only project. VORS code base is organized as a library providing a rich API, accompanied

by a small binary program performing the actual visual odometry on a dataset provided

as a command line argument. Porting VORS is thus a matter of two tasks, (1) being able

to compile the library to the WebAssembly target, (2) rewrite a small WebAssembly pro-

gram replacing the command line program in the context of a Web browser. The first task is

immediately validated by running cargo build --target wasm32-unknown-unknown, con-

firming the ability to compile VORS to WebAssembly. The second task requires more work,

due to the different natures of native command line applications and Web browsers.

Loading Data as a Tar Archive

Native programs have the ability to interact with the underlying operating system. Web ap-

plications however are sandboxed, for security reasons reminded in Chapter 6 on performant

Web applications. The seemingly simple task of loading images for the dataset directory

thus becomes impossible. The simplest alternative, which is the one we chose, consists in

loading a tar archive of the entire dataset through the file upload mechanism, making the

archive content available in the browser memory. This has two constraints, one on memory

and the other on the application program.

Current Web APIs prevent us from loading the archive directly on the WebAssembly

memory. As a consequence, the archive is loaded inside the application JavaScript memory,

and we then duplicate it in the WebAssembly module memory. For an unknown period of

time, until the browser decides to release the JavaScript buffer, the application will consume

a memory of double the archive size. The full first sequence of the ICL-NUIM dataset for

example weighs 800 MB, resulting in 1.6 GB of allocated memory by the application in the

browser.

The other change has to occur in the program code, now reading files from an archive

instead of from the file system. For this task, we used the tar-rs library [54], which brought

the first hurdle by not compiling to WebAssembly due to the presence of OS-specific code

for file time management. Fortunately, simply adding compiler guards in that library to
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deactivate the incriminating functions from the public API when compiling to WebAssembly

was sufficient.

PNG Image Reading

The next technical challenge was a performance one. We managed to get VORS compiling

and running as a WebAssembly module, but the performances dropped drastically, from

40 frames per second (fps) in the native case to less than 10 fps in WebAssembly. After

some performance analysis, we identified the culprit as the PNG image decoding of frames.

Figure 7.12 spotlights that the majority of the time is spent decoding both images instead

of running the visual odometry algorithm.

Figure 7.12: Flame graph of VORS WebAssembly performances with the PNG Rust crate.
The majority of the time is spent decoding RGB-D images.

Even though it may appear anecdotal, the usability of realtime interactive applications

is hindered by low refresh rates so it felt important to improve on the default PNG decoder

available in Rust. Since OpenCV decodes images much faster, and Rust should have similar

performances than C++, we decided to implement a new Rust PNG decoder. Our imple-

mentation keeps in mind that it should be “Wasm-friendly”, meaning we limit the amount

of memory allocations, which are more costly in WebAssembly.

The PNG specification is available online. Under the hood, the data is compressed

with the deflate algorithm, whose specification is also available online. PNG is a simple

structured format. A file contains successive data blocks called chunks of different types.
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The most interesting types are IHDR (header), IDAT (data) and IEND (end of file). The

body of the image is composed by successive IDAT blocks containing transformed lines of

the image (called “filtered”) to reduce entropy, then compressed with the deflate algorithm.

We have implemented the parsing with a fast parser combinator library, and the unfiltering

is rather simple. We did not reimplement the inflate algorithm since there are already

high performance Rust-only libraries for this task. After a few round of optimizations, we

managed to get very good decoding performances, especially in WebAssembly compared to

the library we used initially. Table 7.2 summarizes performances on few images we used

locally and clearly shows the improvement from the default Rust PNG library. OpenCV

performances are included for comparison. As a result, we managed to get VORS compiling

and running at similar speed in the browser. After this first milestone, the next step is

handling visualization of visual odometry data such as trajectories and 3D point clouds. All

this must be tightly integrated in a standard Web application.

Image us (native) default (native) OpenCV us (wasm) default (wasm)

depth.png 4.0 ms 9.1 ms 4.0 ms 5.5 ms 30.7 ms
rgb.png 6.6 ms 16.0 ms 6.5 ms 13.7 ms 52.1 ms

Table 7.2: Decoding performances of our PNG decoder.

7.3.2 Interactive VORS Web Interface

Overview of the Interface

Interactive VORS Web interface is visible in Figure 7.13 and is composed of three parts,

• the control bar at the bottom, with a timeline and some buttons,

• the point cloud 3D visualization in the center,

• and the image thumbnail of the current keyframe on the left.

Contrary to structure from motion where images are not guaranted to be in any specific

order, visual odometry has the advantage of dealing with video data. The timeline thus

enables movement along the temporal axis. It is a one-dimensional control that is well

known thanks to its pervasive usage for videos. The frames accessible from the timeline are

restricted to the keyframes of the visual odometry. As explained in Section 7.1.4, they are

the frames used as reference for the direct image alignment. A thumbnail of the current

keyframe is located at the top left corner of the Web interface. For each keyframe, we use

the depth information of the sparse candidate points to retrieve their 3D coordinates. The

number of candidate points is variable but in the order of a thousand to ten thousands

of points per keyframe. Those 3D points are stored in an array buffer, then used for a

point cloud visualization, located at the center of the interface. The sparse candidate points

corresponding to the current keyframe are visualized in red, to ease the mental association
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between the keyframe thumbnail and the corresponding location in the complete point cloud.

The reader may notice in Figure 7.13 that the point cloud and the keyframe thumbnail are

mirrored. This is due to the ray tracer employed in the ICL-NUIM dataset, which uses

a left-handed coordinate system. Finally, the camera trajectory is visible in purple in the

point cloud visualization.

Figure 7.13: Interactive VORS Web Interface.

Visualization Challenges

Is Rust mature enough to write the visualization code in Rust native, and compile it to

WebAssembly? Even though the field is exciting and buzzing, the short answer is no. The

Rust ecosystem is still lacking in the domain of graphical user interfaces (GUI). As of 2019,

only a handful of libraries enable 3D graphics, often as bindings to other C++ libraries.

Currently, the four main APIs for graphics are OpenGL, Vulkan, DirectX and Metal.

OpenGL is an open standard developed by the Khronos group since 1992. It is easy and

high level, but becoming obsolete when efficient use of current graphics card hardware is

needed. DirectX is Microsoft alternative to OpenGL. Up until DirectX 11, it was also a

high level API, but starting from DirectX 12, became lower level and more efficient. Vulkan

and Metal are also part of this renewal of graphics APIs targetting more efficient usage of

the hardware architecture. Vulkan is open and developed by Khronos while Metal is Apple

property.

Just as WebGL was introduced as a Web version of OpenGL, a new standard is rising

from the Vulkan API, called WebGPU. Unfortunately, as of August 2019, WebGPU is only
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supported on Chrome canary for OSX. The only viable option for our visualization is thus the

OpenGL/WebGL duo. After trying few Rust libraries, the conclusion is that currently, the

only way of reaching decent performances with WebGL for large point clouds is to directly

use a WebGL framework and not an automatic conversion from a Rust native OpenGL code.

As a consequence, our point cloud visualization is based on ThreeJS [33], a JavaScript 3D

library. The points buffers used for the visualizations are efficiently referenced directly from

the WebAssembly memory. This mutable memory manipulation has been challenging and

error-prone but we eventually managed to get the visualizations working correctly.

7.3.3 Human in the Loop Closure

As discussed in Section 7.2.3, VORS is a precise visual odometry algorithm, prone to punc-

tual large drifts. The resulting point cloud visualizations contain parts that seem to be

duplicated, as in Figure 7.14. This kind of observations is common in the presence of loops

in the sequence. In a SLAM context, presented in Section 5.3.2, this type of drifts may

be corrected by loop closure detection and pose graph optimization. In this section how-

ever, we define an interactive correction procedure that puts humans in the loop, instead of

automatic loop closure.

Figure 7.14: Duplication of the point cloud due to drifts.

Automatic Registration

In traditional indirect SLAM algorithms, points of interests are retrieved for all keyframes

and their descriptors are classified with techniques such as “bag of words”. Typical indexing
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and search algorithms are then applied to identify similar keyframes. In our case, the

identification is performed by a human interaction, clicking on the buttons in the toolbar for

the reference keyframe and the one that needs re-ajusting. Once two keyframes are selected,

the next step consists in computing the camera motion between those.

Usually, one would match all keypoints in the pair of images and use a robust version of

the 8-point algorithm if there is no depth information, or a robust PnP algorithm if depth

information is known. We thus tried to perform keypoints detection and matching for the

pair of keyframes. There exists many keypoint descriptors for this task. Some well known

are ORB, SIFT, FAST and A-KAZE, with a Rust implementation of A-KAZE features

already available. Unfortunately, due to the low textured images of the synthetic dataset,

the number of matches for selected pairs of keyframes are in the order of 20, with multiple

wrong matches, leading to unreliable camera motion. It is the same issue that the one

degrading Fovis performances in the ICL-NUIM dataset.

The second approach consists in computing direct image alignment from the reference

frame. Unfortunately, the keyframes matched by the user are not always similar enough

for the direct image alignment to converge to the correct motion. This leads us to another

manual human intervention.

Manual P3P Intervention

As presented in Section 5.4.1 on feature-based motion estimation, P3P is a minimal PnP

(“perspective-n-points”) solver. It enables motion estimation from a set of three points with

depth information in the reference frame and three associated points in the other frame.

We therefore use the keyframe thumbnails for an annotator to click on three corresponding

points, as visualized in Figure 7.15.

Figure 7.15: Clicking interaction on keyframes thumbnails to perform P3P.

The P3P algorithm may return 0 to 4 potential solutions. Usually, those are disam-

biguated by looking at additional associated points. In our case, we decided to let the
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Figure 7.16: Visualization of potential poses for the second keyframe. The misaligned
attempt at direct image alignment is presented in red. Two potential P3P poses are colored
in yellow and green. An estimation of the probability of each pose to be correct is provided
in the lower right corner of the visualization canvas.

human user pick the correct option. Each potential solution is displayed with a different

color. The photometric reprojection error of the lowest image resolutions of the pyramid is

computed to estimate the probability of each camera position, displayed in the lower right

corner of the interface. The user has to click on the correct option to validate it. Figure 7.16

depicts an example situation where two potential P3P poses are proposed in addition to

a misaligned initial proposition in red. Once a new camera pose is chosen for the second

keyframe, the visual odometry may be restarted for all subsequent frames. Figures 7.17

and 7.18, and Table 7.3 provide qualitative and quantitative results showing the improve-

ments provided by the manual human intervention. Our Rust implementation of P3P is

based on Persson and Nordberg’s solver [169] and published as an open source library under

the Rust Computer Vision (rust-cv) Github organization [171].

measure before manual intervention after manual intervention

ATE rmse 0.125126 m 0.100411 m (-20%)
ATE mean 0.113021 m 0.086285 m (-24%)
ATE median 0.102886 m 0.076897 m (-25%)
ATE std 0.053692 m 0.051354 m (-4%)
ATE min 0.049635 m 0.019642 m (-60%)
ATE max 0.267245 m 0.195351 m (-27%)

Table 7.3: ATE before and after manual intervention on the first ICL-NUIM sequence.
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Figure 7.17: Point cloud before (left) and after (right) manual intervention.

Figure 7.18: Absolute trajectory error (ATE) before (left) and after (right) manual inter-
vention.

7.4 Conclusion

In this chapter, we presented VORS, the first complete direct visual odometry algorithm in

Rust. We have paid particular attention to simplicity, and reduction of parameters in all the

steps of the algorithm, such as for the sparse candidate points selection. Then, by comparing

its precision to other available algorithms, we demonstrated that VORS achieves state of

the art odometry precision on RGB-D datasets, especially for synthetic data, presenting

less outliers to our modelization. Finally, we presented “Interactive VORS”, our interactive

Web application, based on the compilation of VORS to WebAssembly. It provides easy

access to visual odometry, directly in a browser, with interaction in multiple modalities. A

one-dimensional navigation along the temporal axis is provided by a timeline while three-

dimensional space navigation is possible with the point cloud visualization. We implemented

correction of drifts in conditions where loops are present in the sequence. In general, our

goal was to showcase the potential of interactive Web applications to better understand the

huge amount of data generated by visual odometry, and eventually offer methods to correct

automatic results with guided human intervention.
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Conclusion

At the beginning of this journey, we asked ourselves how user interactions and the Web can

improve computer vision research. Throughout this work, we showcased different approaches

to combine those capabilities within interactive computer vision Web applications.

In the case of image annotation, we provided an adaptation of the GrabCut algorithm

combined with medial axis transforms to retrieve precise segmentations from outlining. This

interaction has been integrated into a reliable Web application to crowdsource segmentation

annotations of the PASCAL-VOC dataset. The clear benefit illustrated here is the scaling

and the reach that the Web offers for the creation of learning datasets.

Visual odometry is a computationally intensive task. Due to previous limitations of

the Web platform, running those applications directly in a browser was not sufficiently

efficient to be seriously considered. The advent of new technologies such as WebAssembly, or

WebGL changed this vision completely. Therefore, we started a new visual odometry library

in a recent programming language named Rust with excellent support of WebAssembly.

We showed how this library can be integrated in a Web application, and profit from its

interactive nature to improve the tracking results. This example paves the way for easy

access to computer vision algorithms, both for research reproducibility and availability to a

non technical public such as creators.

We described how image segmentation and visual odometry can take advantage of user

interactions when made accessible through the Web. To this end, we provided concrete

explanations on how to build reliable Web applications, and how to port computationally

intensive tasks to run the browser. Generally, this approach has the potential to improve

machine learning and other computer vision fields thanks to exposure to a wider, more

varied set of data. Yet I don’t see this practice being picked up immediately. In fact,

mainstream solutions for computer vision have a strong inertia due to the massive amount

of already available libraries in C++ and Python. It will thus take time before performant

languages better suited for the Web like Rust obtain fair usage share and push more research

to public exposure through the Web. Our specific contribution in image segmentation also

have limitations. The segmentations obtained with single outlines for example do not always

provide perfect masks. One could then reasonably question the viability of that interaction

to create learning datasets.
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Future work could address that point about the loss of precision when using outlines

or other imperfect interactive segmentation methods. The aim would be to find a balance

point between annotation speed and prediction quality. In particular, we would like to study

how loss in precision for the training data translates into loss of quality for machine learning

algorithms, and how regularization techniques can minimize the effect of noisy training data.

Regarding the visual odometry library, there are many improvements that we could work

on, both on the research and the platform sides. One future goal is to be able to run reliably

and smoothly on mobile devices. Smartphones typically run on ARM processors, a target

supported natively by the Rust toolchain, and also through WebAssembly runtimes so there

should not be huge platform hurdles. They are often equipped with more sensors that ded-

icated cameras such as inertial measurement units (IMU). Integrated smartphones cameras

however, usually feature rolling shutter sensors, which change the image formation mod-

elization. Among the many possible research extensions, the priorities are the adaptation

to the RGB case (no depth), photometric variation modelization to account for automatic

exposure, modelization of rolling shutter and fusion with IMU data. Another very exciting

avenue to explore could be collaborative SLAM through the Web. Since smartphones are

now connected to high speed 4G and 5G networks, we could imagine situations where groups

of individuals all take part in one global map optimization process.

These are exciting times to be alive! Admittedly, we will not radically change every

aspect of our lives with better segmentation maps or increased visual odometry precision.

But as we mentioned in the introduction, those are key aspects of technological evolutions

that could impact our society such as autonomous vehicles. From 1830 to 1890 the distance

of railroad in operation in the United States grew from 23 to 166706 miles [60]. With that

growth, the number of brakemen deaths (cf Figure 7.19) also radically increased until the

introduction of air brakes which replaced their jobs by safer systems. It is a matter of time,

continued research and social acquaintance, but autonomous vehicles will eventually provide

a similar transformation from manual to automatic systems; and I hope this work will be a

positive contribution to a better future.
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Figure 7.19: Representation of brakemen, who used to work in all weather conditions. “A
Picnic”, engraving by Peckwell, published on the cover of The Railroad Conductor, vol. 7,
no. 15 (Aug. 1, 1890). Image in public domain.
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Appendix A

Gradients of Reprojection

Function

A.1 Notation

Let’s define a few variables and notations for the rest of the computations. We note

K =



fu s cu

0 fv cv

0 0 1




the matrix of camera intrinsic parameters. Extrinsic camera parameters are expressed as

twist coordinates ξ ∈ R
6, formed by stacking the linear velocity ν ∈ R

3 (related to transla-

tion), and the angular velocity ω ∈ R
3 (related to rotation). Let θ be the norm of ω. We

note

ξ =

(
ν

ω

)
, ν =



ν1

ν2

ν3


 , ω =



ω1

ω2

ω3


 and θ = ||ω||.

We will note ∧ the “hat” operator converting from the twist coordinates ξ ∈ R
6 to the twist

ξ̂ ∈ se(3) in the Lie algebra associated with rigid body motions SE(3). Let ω× ∈ so(3) be

the element of the Lie algebra associated with the rotation group SO(3). We then have

ξ̂ =

(
ω× ν

0 0

)
and ω× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .
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The exponential map from the Lie algebra of twists se(3) to the Lie group of rigid body

motions SE(3) is of the form

exp(ξ̂) =

(
exp(ω×) V ν

0 1

)
=

(
R T

0 1

)
.

According to Rodrigues’ formula we can detail the expressions of exp(ω×) and V as in

equation A.1 and equation A.2.

exp(ω×) = I +
sin θ

θ
ω× +

1− cos θ

θ2
ω2
× (A.1)

V = I +
1− cos θ

θ2
ω× +

θ − sin θ

θ3
ω2
× (A.2)

A.2 Reprojection Using Twist Coordinates

The transformation flow of the reprojection of a pixel consists of the following steps: Pixel

1 (2D, ( u1

v1
)) 7→ Camera 1 (3D, X1) 7→ Camera 2 (3D, X2) 7→ Pixel 2 (2D, ( u2

v2
)). Let g be

the rigid body motion from camera 1 to camera 2, defined by

g : R3 → R
3, X 7→ RX + t.

If we note λ the depth associated with the reprojected pixel point and x2 its homogeneous

coordinates, then all the following expressions are equivalent.

x2 = λ



u2

v2

1


 , (A.3a)

x2 = KX2, (A.3b)

x2 = K(RX1 + t), (A.3c)

x2 = K(exp(ω×)X1 + V ν). (A.3d)

A.3 Jacobian Expression

We note Jξ(x2) the Jacobian of x2 relative to the twist coordinates ξ. Since x2 ∈ R
2 (R3 in

homogeneous coordinates) and ξ ∈ R
6, this Jacobian is a 2x6 matrix (3x6 in homogeneous

coordinates). We note ∇ξ(x2) the 3x6 homogeneous version. From (A.3d) we can write

∇ξ(x2) = K(∇ξ(exp(ω×)X1) +∇ξ(V ν)). (A.4)
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Let’s split Jξ(x2) into its components relative to ν and ω, respectively Jν(x2) and Jω(x2),

which are both 2x3 Jacobian matrices (3x3 in homogeneous coordinates). We note ∇ν(x2)

and ∇ω(x2) their respective homogeneous versions. Since exp(ω×) and V only depends on

ω, equation A.4 leads to

∇ν(x2) = KV. (A.5)

For ∇ω(x2), we will have to develop its expression so for now we will settle for

∇ω(x2) = K(∇ω(exp(ω×)X1) +∇ω(V ν)). (A.6)

A.4 Partial Derivatives Relative to Linear Velocity Terms

Let α, β and λ be the three components of x2. From (A.3a) we have u2 = α/λ and v2 = β/λ.

Thus the partial derivatives relative to linear velocity terms are

∂u2

∂ν
=

1

λ2

(
∂α

∂ν
λ− α

∂λ

∂ν

)
(A.7)

and
∂v2
∂ν

=
1

λ2

(
∂β

∂ν
λ− β

∂λ

∂ν

)
. (A.8)

Since we use an inverse compositional approach for the alignment problem, we are only

interested in the gradient at ξ = 0, i.e. ν = 0 and ω = 0. Consequently all terms of V are

null in (A.2) except the identity, and equation A.5 leads to

∇ν(x2)(0) = K. (A.9)

As a consequence of equation A.9, we have

∂α

∂ν
(0) =

(
fu s cu

)
,

∂β

∂ν
(0) =

(
0 fv cv

)
, and

∂λ

∂ν
(0) =

(
0 0 1

)
. (A.10)

We can also note that at ξ = 0, the point x1 is projected onto itself. Let λ1 be the depth of

the original point ( u1

v1
). Then we have x2(0) = x1 = λ1 ( u1 v1 1 )

⊤
. Therefore, we can write

α(0) = λ1u1, β(0) = λ1v1, and λ(0) = λ1. (A.11)

From equations A.7, A.10, and A.11, it follows that

∂u2

∂ν
(0) =

1

λ2
1

(
λ1

(
fu s cu

)
− λ1u1

(
0 0 1

))
, (A.12a)

∂u2

∂ν
(0) =

1

λ1

(
fu s cu − u1

)
(A.12b)
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and

∂v2
∂ν

(0) =
1

λ2
1

(
λ1

(
0 fv cv

)
− λ1v1

(
0 0 1

))
, (A.13a)

∂v2
∂ν

(0) =
1

λ1

(
0 fv cv − v1

)
. (A.13b)

Therefore, the 2x3 Jacobian relative to linear velocity terms is

Jν(x2)(0) =
1

λ1

(
fu s cu − u1

0 fv cv − v1

)
(A.14)

A.5 Partial Derivatives Relative to Angular Velocity Terms

The purpose here is to obtain a computable expressions of ∇ω(x2). We will develop both

terms appearing in equation A.6, i.e. ∇ω(exp(ω×)X1) and ∇ω(V ν). Since ν does not

depend on ω,

∇ω(V ν) =
∑

i

νi∇ωVi, (A.15)

where Vi is the column i of V . We remind that we are interested in the gradient at ξ = 0.

A first order Taylor expansion of V at 0 shows that all terms are polynomial in ωi so since

ν is also null, this all gradient is null.

∇ω(V ν)(0) = 0. (A.16)

We are thus left with the first part ∇ω(x2)(0) = K∇ω(exp(ω×)X1)(0). If we develop

exp(ω×) as in equation A.1, we have

∇ω(exp(ω×)X1) = 0 +∇ω

(
sin θ

θ
ω×X1

)
+∇ω

(
1− cos θ

θ2
ω2
×X1

)

Let’s analyze the last term of this expression. We can remark that (1 − cos θ)/θ2 tends to

1/2 when θ tends to 0. Additionally, all terms of ω2
× are polynomials of degree 2 with no

term of degree 1. So all partial derivatives will be polynomials of degree 1, with no degree

0. As a result, the evaluation at ω = 0 will lead to

∇ω

(
1− cos θ

θ2
ω2
×X1

)
(0) = 0. (A.17)

So we are left with

∇ω(exp(ω×)X1)(0) = ∇ω

(
sin θ

θ
ω×X1

)
(0). (A.18)
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We can show that the derivative of the “hat” function has the following interesting form

∀ω,y ∈ R
3, ∇ω(ω×y) = −y×. (A.19)

We can derive from equations A.18 and A.19 that

∇ω(exp(ω×)X1)(0) = −X1×. (A.20)

From equations A.6 and A.20, and knowing that X1 = K−1x1 the gradient expression

relative to ω at 0 is

∇ω(x2)(0) = −K(K−1x1)×. (A.21)

The 2x3 Jacobian can be obtained by computing derivatives of a quotient as we did in

equations A.7 and A.8 for ν. Using symbolic computations, we obtain

∂u2

∂ω
(0) =

(
−ab
fv
− s ac

fufv
+ fu

−f2

ub+sc
fufv

)
, (A.22)

∂v2
∂ω

(0) =
(

−b2

fv
− fv

bc
fufv

c
fu

)
, (A.23)

where

a = u1 − cu, b = v1 − cv and c = afv − sb.

The 2x3 Jacobian relative to angular velocity terms is

Jω(x2)(0) =

(
−ab
fv
− s ac

fufv
+ fu

−f2

ub+sc
fufv

−b2

fv
− fv

bc
fufv

c
fu

)
(A.24)

with

a = u1 − cu, b = v1 − cv and c = afv − sb.

A.6 Partial Derivatives with Normalized Coordinates

We can hint from the expression of ∇ν(x2) in equation A.9 and the expression of ∇ω(x2)

in equation A.21 that computing the Jacobian in the frame of the normalized coordinates

λ(ũ ṽ 1)⊤ = λK−1(u v 1)⊤ will result in a simpler expression since we avoid the multiplica-

tions by K and K−1. Let’s thus make the change of variables

(
u2

v2

)
= K ′

(
ũ2

ṽ2

)
+

(
cu

cv

)
with K ′ =

(
fu s

0 fv

)
.
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The chain rule means that Jξ(x2) = K ′ · Jξ(x̃2) and we will show that Jξ(x̃2) has a way

simpler expression. The same reasoning leading to equation A.9, now leads to

∇ν(x̃2)(0) = I3 (A.25)

and the one leading to equation A.21 now leads to

∇ω(x̃2)(0) = −x̃1×. (A.26)

Writing the derivatives of the quotient as in equations A.7 and A.8 we thus obtain

Jν(x̃2)(0) =
1

λ1

(
1 0 −ũ1

0 1 −ũ1

)
(A.27)

and

Jω(x̃2)(0) =

(
−ũ1ṽ1 1 + ũ1

2 −ṽ1

−1− ṽ1
2 ũ1ṽ1 ũ1

)
(A.28)

Since the final objective is to compute the Jacobian of the photometric reprojection error,

which is

J = ∇I · Jξ(x2) = ∇I ·K
′ · Jξ(x̃2),

note that the matrix K ′ is often directly multiplied with the image gradient ∇I and thus

does not appear in the function computing the Jacobian of the warping function, actually

computing Jξ(x̃2).
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Popularized Abstract

Computer vision is the science of understanding the environment from images, which is

very useful in domains such as augmented reality or autonomous vehicles. In this thesis,

we explore how specific Web applications can help improving some 2D and 3D subfields of

computer vision.

In the first part, we focus on the problem of annotation for image segmentation. This

task consists in identifying the pixels corresponding to an object of interest in an image to

help a computer to be able to do it automatically later. We present our method to efficiently

annotate datasets of images through an online crowdsourcing service.

In the second part of this thesis, we focus on the problem of visual odometry. It consists

in tracking the trajectory of a camera and reconstructing a virtual 3D map of its environment

just from the images provided by the camera itself. We present our open-source library, and

a Web application able to improve the algorithm results thanks to user input.

Résumé vulgarisé

La vision par ordinateur est la science de la compréhension de l’environnement à partir

d’images, très utile dans des domaines tels que la réalité augmentée ou les véhicules au-

tonomes.

Dans un premier temps, nous traitons le problème de l’annotation pour la segmentation

d’image. Cette tâche consiste à identifier les pixels correspondants à un objet d’intérêt

dans une image pour entraîner un ordinateur à le faire automatiquement plus tard. Nous

présentons notre approche pour annoter efficacement des grands ensembles d’images par le

biais d’un service de crowdsourcing en ligne.

Dans un second temps, nous étudions le problème d’odométrie visuelle, qui consiste à

retracer la trajectoire d’une caméra et à reconstruire une carte virtuelle en 3D de son envi-

ronnement à partir des images capturées par la caméra. Nous présentons notre bibliothèque

logicielle libre, ainsi qu’une application Web capable d’améliorer les résultats de l’algorithme

grâce à des interactions utilisateur.



Abstract

Computer vision is the computational science aiming at reproducing and improving the

ability of human vision to understand its environment. In this thesis, we focus on two

fields of computer vision, namely image segmentation and visual odometry and we show the

positive impact that interactive Web applications provide on each.

The first part of this thesis focuses on image annotation and segmentation. We introduce

the image annotation problem and challenges it brings for large, crowdsourced datasets.

Many interactions have been explored in the literature to help segmentation algorithms. The

most common consist in designating contours, bounding boxes around objects, or interior

and exterior scribbles. When crowdsourcing, annotation tasks are delegated to a non-expert

public, sometimes on cheaper devices such as tablets. In this context, we conducted a

user study showing the advantages of the outlining interaction over scribbles and bounding

boxes. Another challenge of crowdsourcing is the distribution medium. While evaluating an

interaction in a small user study does not require complex setup, distributing an annotation

campaign to thousands of potential users might differ. Thus we describe how the Elm

programming language helped us build a reliable image annotation Web application. A

highlights tour of its functionalities and architecture is provided, as well as a guide on how

to deploy it to crowdsourcing services such as Amazon Mechanical Turk. The application is

completely open-source and available online.

In the second part of this thesis we present our open-source direct visual odometry li-

brary. In that endeavor, we provide an evaluation of other open-source RGB-D camera

tracking algorithms and show that our approach performs as well as the currently avail-

able alternatives. The visual odometry problem relies on geometry tools and optimization

techniques traditionally requiring much processing power to perform at realtime framerates.

Since we aspire to run those algorithms directly in the browser, we review past and present

technologies enabling high performance computations on the Web. In particular, we detail

how to target a new standard called WebAssembly from the C++ and Rust programming

languages. Our library has been started from scratch in the Rust programming language,

which then allowed us to easily port it to WebAssembly. Thanks to this property, we are

able to showcase a visual odometry Web application with multiple types of interactions

available. A timeline enables one-dimensional navigation along the video sequence. Pairs of

image points can be picked on two 2D thumbnails of the image sequence to realign cameras

and correct drifts. Colors are also used to identify parts of the 3D point cloud, selectable

to reinitialize camera positions. Combining those interactions enables improvements on the

tracking and 3D point reconstruction results.



Résumé

La vision par ordinateur est un domaine de l’informatique visant à reproduire et à améliorer

la capacité de la vision humaine à comprendre son environnement. Dans cette thèse, nous

nous concentrons sur deux domaines de la vision par ordinateur, à savoir la segmenta-

tion d’image et l’odométrie visuelle. Nous montrons l’impact positif qu’apporte l’usage

d’applications Web interactives pour chacun d’eux.

La première partie de cette thèse porte sur l’annotation et la segmentation d’images.

Nous définissons dans un premier temps le problème de l’annotation d’images et les défis

que cela représente pour des grands ensembles de données. De nombreuses interactions

ont été utilisées dans la littérature pour aider les algorithmes de segmentation. Les plus

courantes consistent à désigner explicitement des contours, dessiner des boîtes englobantes,

ou marquer des traits à l’intérieur et à l’extérieur des objets d’intérêt. Dans un contexte de

crowdsourcing, les tâches d’annotation sont déléguées à un public non-expert. Pour cette rai-

son, nous avons mené une étude utilisateur montrant les avantages d’une interaction que nous

appelons entourage par rapport aux autres types d’interactions. Nous décrivons comment le

langage de programmation Elm nous a aidé à construire une application Web d’annotation

d’images qui soit fiable. Un tour d’horizon des fonctionnalités et de son architecture est

proposé, ainsi qu’un guide pour le déploiement dans des services de microtâches comme

Amazon Mechanical Turk. Cette application est entièrement libre et mise à disposition en

ligne.

Dans la seconde partie de cette thèse, nous présentons notre bibliothèque libre d’odométrie

visuelle directe. Nous fournissons une évaluation comparative montrant que notre approche

est aussi performante que les alternatives actuellement disponibles. La formulation du prob-

lème d’odométrie visuelle repose sur des outils géométriques et des techniques d’optimisation

nécessitant une grosse puissance de calcul pour fonctionner à 25 images par seconde. Puisque

nous aspirons à exécuter ces algorithmes sur le Web, nous passons en revue les technologies

passées et courantes fournissant des bonnes performances directement au sein du naviga-

teur Web. En particulier, nous détaillons comment cibler une nouvelle plateforme appelée

WebAssembly à partir des langages de programmation C++ et Rust. Notre bibliothèque

a été implémentée entièrement dans le langage de programmation Rust, ce qui en a facilité

le portage vers WebAssembly. Cette propriété nous a permis de mettre en place une ap-

plication Web d’odométrie visuelle proposant différents types d’interactions. Une barre de

temps permet une navigation unidimensionnelle le long de la séquence vidéo. Des paires de

points peuvent être sélectionnées sur deux images de la séquence pour réaligner les caméras

et corriger l’éventuelle dérive. Des couleurs sont également utilisées pour identifier des par-

ties sélectionnables du nuage de points 3D pour réinitialiser les positions de la caméra. La

combinaison de ces interactions permet d’apporter des améliorations sur les résultats du

suivi et de la reconstruction du nuage de points 3D.
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