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Professeur, Université de Bordeaux (IMB) Rapporteur

Bruno Galerne
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Résumé en français

La photographie est devenue un élément omniprésent dans nos vies. En outre, les
attentes en termes de qualité d’image des consommateurs augmentent alors que la taille
des appareils d’imagerie diminue. Dans ce contexte, l’amélioration des algorithmes de
traitement d’images est devenue un enjeu essentiel pour les constructeurs d’appareils
photographiques et téléphones portables.

Dans ce manuscrit, nous nous intéressons particulièrement aux tâches de restaura-
tion d’images. L’objectif est de produire une image propre à partir d’une ou plusieurs ob-
servations bruitées de la même scène. Les méthodes classiques de restauration d’images
sont le plus souvent basées sur une hypothèse ou a priori sur la distribution des images
naturelles. Ces hypothèses, souvent trop contraignantes, ne permettent pas de restau-
rer correctement des structures complexes dans les images. Récemment, les méthodes
d’apprentissage profond ont connu une croissance spectaculaire, surpassant l’état de
l’art pour la grande majorité des tests traditionnels. Il n’est plus ici question d’a priori,
ces méthodes essayant de minimiser directement une erreur de reconstruction sur des
bases de données volumineuses.

Bien que ces méthodes produisent des résultats impressionnants, elles présentent
un certain nombre d’inconvénients. Tout d’abord, elles sont di�ciles à interpréter en
raison de leur fonctionnement en "boîte noire". De plus, contrairement aux méthodes
classiques, elles se généralisent assez mal à des modalités d’acquisition ou de distorsion
absentes de la base de données d’entraînement. En�n, elles nécessitent de grandes bases
de données, qu’il est parfois di�cile d’acquérir, lorsque les problèmes traités sont très
spéci�ques.

Nous proposons d’attaquer ces di�érents problèmes en remplaçant l’acquisition
des données par un algorithme simple de génération d’images, basé sur le modèle
d’images feuilles mortes. Bien que ce modèle soit très simple, les images générées ont
des propriétés statistiques proches de celles des images naturelles (distribution du gra-
dient, forme du spectre en puissance, non gaussianité...) et de nombreuses propriétés
d’invariance (échelle, translation, rotation, contraste...). L’entraînement d’un réseau de
restauration avec ce type d’images nous permet d’identi�er les propriétés importantes
des images pour le succès des réseaux de restauration. Ainsi, cette approche fait le pont
entre les méthodes avec a priori et les méthodes par apprentissage, car on impose cer-
taines propriétés dans les images d’entraînement. De plus, cette méthode permet aussi
de s’a�ranchir de l’acquisition des données, qui peut être fastidieuse.

Après avoir présenté le modèle feuilles mortes en détail, nous montrons qu’il est
possible d’obtenir des performances de restauration très satisfaisantes en entraînant les
réseaux de restauration sur ce type d’images. Nous nous intéressons dans un premier
temps à des tâches relativement simples, comme le débruitage gaussien ou la super-
résolution. Cette étude nous permet aussi d’identi�er des propriétés importantes pour
le bon fonctionnement des réseaux de restauration comme l’importance des couleurs,
ou la distribution des formes dans les images. Après quelques adaptations du mod-
èle feuilles mortes, l’apprentissage synthétique permet également de s’attaquer à des
problèmes concrets di�ciles, tels que le débruitage d’images RAW. Ces adaptations
concernent principalement la formation d’images RAW synthétiques, et une modéli-
sation �ne du bruit RAW, bien plus complexe que son approximation gaussienne. Après
avoir présenté ces résultats, nous proposons une étude statistique de la distribution des
couleurs des images naturelles, permettant d’élaborer un modèle paramétrique réal-
iste d’échantillonnage des couleurs pour notre algorithme de génération. Cette étude
permet à notre algorithme de génération de ne pas dépendre de données existantes,



et se traduit en des performances de restauration d’images très satisfaisantes. En�n,
nous présentons une nouvelle fonction de perte perceptuelle basée sur les protocoles
d’évaluation des caméras pour la préservation des textures, faisant intervenir les im-
ages de feuilles mortes. L’entraînement réalisé avec cette fonction montre que l’on peut
optimiser conjointement l’évaluation des caméras, tout en gardant des performances
identiques sur les images naturelles.
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I Introduction

I.1 Context

More than ever, photography is omnipresent in our daily lives. With more than �fty-four
thousand four hundred pictures taken per second in the world with smartphones, the de-
mand for high-quality cameras is ruthless. However, this quest for the best image quality
faces many constraints. Among them, size is the most critical. Smartphones tend to be
small, and the size left for a digital sensor and a lens is tiny, drastically limiting photon
acquisition. Due to this size constraint, the rendered image quality is poor without smart
processing. Another challenge is producing high-quality images in harsh conditions. For
instance, smartphone users expect to have a perfectly sharp image with hand-held devices.
Without any stabilization, the resulting image should contain motion blur. In even more
extreme conditions, such as night-time photography, the users want to retrieve a sharp im-
age with a good dynamic range and correct illumination. Meeting all those expectations is
challenging and can not be solved by just improving the hardware properties. To restore the
distorted and low-quality output of the digital sensor, we must apply complex algorithms to
produce a satisfactory image.

For all these reasons, image restoration has been one of the most critical subjects in
the image processing �eld. The main objective is to recover an image as close as possible
to a perfect image, starting from a distorted observation of the scene. Formally, if x is the
ground truth image, and y is a distorted observation, many deterioration processes follow
the relation:

y = Ax+ n, (I.1)

where A is a linear operator, and n is noise. Most image restoration problems fall into this
set-up, whether it is deblurring, for which A is a blur operator, Gaussian denoising, where
n follows a normal distribution, or inpainting where A is a masking operator.

To tackle these problems, many methods have been developed over the years. A �rst class
of methods is based on prior knowledge or hypotheses on the distribution of natural images.
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These hypotheses usually model the regularity of the image content, and the algorithms
derived from them try to enforce this regularity in the restored image. Among these methods,
we can cite variational methods [167], which assume that images are locally smooth with
sharp edges, or non-local methods [25, 42], which assume that the content of the image is
redundant.

In the last decade, the image processing community focused on approaches based on deep
learning. These methods, �rst very successful in computer vision tasks such as classi�cation
[77] or segmentation [75], were then adapted to image restoration problems [200]. They
soon outperformed previously developed methods for most restoration tasks. Rather than
assuming some prior knowledge about the distribution of the data, these methods try to
extract complex features from the data itself in order to predict a restored image from a
distorted observation. For them to work e�ciently, these methods require large amounts of
images grouped in pairs of distorted and perfect observations of the same scene. This data
is then used in an optimization framework (the training) to �t the neural network weights
to the task at hand.

I.2 Goal

Even though neural methods considerably improved the performances in image restoration
tasks, this comes with its share of problems and limitations. First, neural networks gener-
alize poorly to modality changes. For instance, a denoising network trained for Gaussian
noise will not properly restore images distorted with Poisson noise. This makes them over-
specialized and not very scalable. Second, as mentioned above, neural networks need a large
amount of data to be e�ciently trained. While data may be easy to collect in some simple
situations, this can be very challenging for speci�c tasks. Moreover, it is nearly impossible to
acquire a ground-truth image that has not been distorted in most real-world cases. The most
simple example is denoising, for which acquiring a noiseless image is impossible because of
the stochastic behavior of photons. On the other hand, prior-based methods scale quite well
to new distortions, without needing to acquire data or to retrain a neural network, saving
both time and e�ort.

Rather than acquiring real data, we propose generating fully synthetic images with very
simple algorithms. By using our prior knowledge about the distribution of natural images,
we wish to enforce the desired properties in our generated images so that we can e�ciently
train neural networks for image restoration. Such properties could be, for example, the dis-
tribution of the gradient or the distribution of the spectrum. We believe this would allow
for much lighter training schemes, with the possibility to tune the generation algorithm to
the task at hand. In addition to reducing the human and computational cost of training a
network, this work also shed light on the inner workings of neural networks by explicitly
showing what properties are su�cient for them to work e�ciently. The present disserta-
tion somehow bridges the gap between prior-based methods and deep learning methods by
enforcing a prior on the training data used by the neural network.
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I.3 Challenges

To achieve this goal, the most obvious question is: what synthetic image models are we go-
ing to use and why? The chosen image model has to be simple, and most importantly, we
must be able to successfully train a neural network for image restoration with images gen-
erated from that model. Therefore, it has to account for both homogeneous areas, textures,
edges, and the colors we �nd in natural images. To answer that question, we tried a variety
of synthetic image models with di�erent properties. After training our networks on those
synthetic images, we empirically show which are the su�cient properties to train a neural
network for image restoration.

One of our objectives was to provide a model that can be easily tuned to real-world sit-
uations. However, an image generation algorithm will only produce perfect images without
distortions. As we mentioned before, both clean and distorted images are needed to train a
neural network for image restoration. With these observations comes our second question:
can we tune our generation algorithm to complex tasks, and can we model real-world deteri-
oration processes accurately? To that end, we propose a way to model real-world distortions
and estimate their parameters accurately. We then study how our synthetic image model
and our synthetic distortions interact in the context of training a neural network for image
restoration for real-world cases.

I.4 Outline

The present dissertation is organized in 6 chapters. In Chapter II, we begin by introduc-
ing helpful background for understanding the following chapters. We explain the image
acquisition process and the possible distortions an image undergoes. We also give a brief
introduction to classic image restoration methods, as well as deep learning and its appli-
cations. In Chapter III, we thoroughly review more modern related works, covering image
restoration with deep learning methods and synthetic training of neural networks.

In Chapter IV, we present a novel approach to training neural networks for image
restorations with synthetic images. We begin by presenting our image generation algorithm
based on the dead leaves model. We then experimentally show the role of every property of
our model to train a neural network for image restoration properly. We base our analysis on
two simple tasks: additive white Gaussian noise removal and singe-image super-resolution.

In Chapter V, we show that we can expand our synthetic training to more complex real-
world tasks, such as the denoising of smartphone RAW images, and low-light image enhance-
ment. As mentioned above, a synthetic generation model is insu�cient to train a restoration
method since we need distorted data. To that end, we provide an accurate distortion model
and a simple yet e�cient noise parameter estimation method for both tasks. We experimen-
tally show that our model trained on synthetic images and synthetic distortion processes
performs on par with models trained on real-world data.

One of the drawbacks of our generation algorithm is that it requires a real image to sam-
ple colors for each synthesized image. While the geometry is dictated by very few parame-
ters, the number of color parameters is much higher. In an attempt to reduce this number,
we study in Chapter VI the �rst-order statistics of the color distribution in natural images.
Based on a simple heuristic proposed by Omer et al. [146], we propose a coloring technique
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based on few parameters. This color model can be used to synthesize dead leaves images,
which can in turn be used as a training set for image restoration tasks. Our experiments
show that our coloring technique leads to excellent denoising performances.

All previous chapters show that the dead leaves image model can be used to train a neural
network for image restoration. Prior to these works, dead leaves images have also been used
for a di�erent application: image quality evaluation of cameras. Dead leaves images indeed
exhibit many invariance properties, which are a requirement to test cameras in di�erent
conditions. More importantly, they contain contrast at every amplitude and every scale.
Moreover, their statistical properties make them close to natural images. Inspired by the
works of Cao et al [33] and Artmann [14], we transform, in Chapter VII, the evaluation
metrics presented in these papers into a loss function to train neural networks. We then use
this loss as a perceptual metric to train a neural network for image restoration.

I.5 Contributions

The works presented in the following chapters present some novel contributions to the image
processing �eld, that we believe to be of signi�cant interest.

• To the best of our knowledge, the paper associated with Chapter IV was the �rst at-
tempt to train a neural network for image restoration tasks on synthetic images, and
more speci�cally on dead leaves images. Even though these images were known for
their statistical properties, they were never used in this framework. The �exibility
and ease of implementation of this model are a real bene�t. The restoration results on
these images show that such synthetic images are a viable alternative to heavy data
acquisition campaigns.

• Motivated by the reduction of the number of color parameters for the dead leaves
image generation, we studied the empirical distribution of colors in natural images.
Though the distribution of colors has been studied in the literature, our work presented
in Chapter VI is the �rst to propose a parametric model for the �rst-order statistics of
colors in natural images, and to show the practical interest of such a parametric model.

• Since dead leaves images were never used to train a neural network, neither was the
acutance loss which we de�ne in Chapter VII. This perceptual metric, which was �rst
used to evaluate the camera’s capacity to render textures, is based on the analysis of
the networks’ frequential response. Most importantly, this chapter shows that a simple
learned procedure can greatly improve some standard texture quality measure without
a�ecting more traditional measures.

• In addition to these novel ideas, we put an emphasis on making our ideas applicable
to real-world problems. That is why we dedicated much e�ort to synthesizing RAW
images, as well as estimating the noise parameters of di�erent cameras. Along with
this work presented in Chapter V, the idea presented in Chapter VII potentially has a
direct industrial application for camera manufacturers.

During this doctoral program, we published our �rst paper at the SSVM conference,
entitled Synthetic images as a regularity prior for image restoration neural networks[6]. A
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second journal paper has been accepted atComputer Vision and Image Understanding, entitled
Fully synthetic training for image restoration tasks[4] regarding Chapter V. A third paper
has been accepted at SSVM 2023, entitled Hybrid Training of Denoising Networks to Improve
the Texture Acutance of Digital Cameras[5], regarding the results in Chapter VII. One other
paper is under review for a conference for the results of Chapter VI. I would also like to
mention my collaboration with Guillermo Sapiro and Matias di Martino, which resulted in
a paper at the ICASSP conference, entitled Nested Learning for Multi-Level Classi�cation[3].
Though this work has little to do with the thesis subject, I had the pleasure of working on it
during my doctoral program. In a few words, this work aims at making classi�cation neural
networks produce hierarchically nested predictions, reducing overcon�dence and improving
robustness.
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II Background

II.1 Image acquisition

As we mentioned above, image restoration is critical to provide satisfactory images. An
image indeed undergoes many distortions during its acquisition and its processing, which
need to be corrected. Before describing these distortions, let us recall the di�erent steps of
image formation.

II.1.1 Image formation

Photons acquisition. A scene re�ects or emits light rays at di�erent wavelengths carried
as energy by photons. To photograph that scene, a camera tries to acquire these photons.
They �rst go through a sequence of lenses before hitting a sensor in the focal plane of these
lenses, which in all that follows, will be digital. Except for an ideal pin-hole camera, no
photographic lens can produce a perfectly sharp image in its focal plane because all lenses
violate the Gauss conditions [162]. This implies a scene-independent blur, which will occur
in every image taken with that device. This blur can be modeled by a kernel Bi. In addition,
extrinsic blur can happen during a shot because of motion or defocus, modeled by a kernel
Be. Letting x be a perfectly sharp representation of the scene as a function from R2 to R,
we observe y, which follows

y = B ˚ x,

where B = Be ˚Bi and ˚ is the convolution operator. Using a pin-hole camera is obviously
ine�cient since almost no photons go through, forcing the user to expand the exposure time,
making our image prone to motion blur and moving objects in the scene. That is why we
use lenses that allow us to capture more light at the cost of not being perfectly sharp.

After passing through the lens, the photons hit the sensor. It is a rectangular array
made of square photosites which accumulate photons with either a couple-charged device
(CCD [22]) or complementary metal–oxide–semiconductor (CMOS [58]) sensors during ex-
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posure. The photoelectric e�ect induces an electrical signal which can be converted into a
digital one, quantized over 10, 12, 14, or 16 bits, depending on the camera. Because of the
stochastic behavior of photons, the photon count in a photosite is a realization of a Pois-
son law P(λ), where λ is the average photon count. This implies a signal-dependent noise,
commonly called shot noise. In addition, the sensor’s electronic read-out also introduces a
signal-independent noise, called read noise, often modeled by a Gaussian noise of constant
and device-speci�c variance σ2. The resulting noisy image y can be determined by the fol-
lowing formula:

ynoisy = Q[B ˚ x+ nshot(B ˚ x) + nread],

where Q is the quantization operator, nshot is the shot noise, and nread is the read noise.
Formally,

B ˚ x+ nshot(B ˚ x) „ P(B ˚ x),
where P is a Poisson distribution of mean and variance equal to B ˚ x.

In order to retrieve color information, each photosite is covered by a color �lter, allowing
photons in the photosite only if their wavelengths belong to the desired range of wavelengths
accepted by the �lter. The color �ltering is organized as an array (CFA) with a regular pat-
tern, with red, green, and blue �lters. The most common CFA is the Bayer pattern [18] (see
Fig. II.1a), but other camera makers, such as Fuji�lm, adopted other patterns such as the X-
Trans array (see Fig. II.1b). Interestingly, there are twice as many green photosites as red or
blue photosites in the original Bayer CFA. This choice was motivated to mimic our visual
physiology, our cone cells being most sensitive to green wavelengths.

(a) Bayer Frame (b) X-Trans Frame

Figure II.1: Di�erent Color Filter Arrays(CFA).

Image development. In the quantized digital signal, which we call the RAW image of size
(H,W , 1), each pixel value corresponds to a red, green, or blue value depending on the CFA
and the position of that pixel in the frame. Formally, yraw = mdynoisy, wherem is a masking
operator accounting for the CFA. In order to get a viewable image on a digital screen, we need
to interpolate the missing values at every position to get an image of the same resolution
(H,W,3). This demosaicking task can be achieved by bilinear, or bicubic interpolation [117,
81], using �lter banks [130], or most recently with neural networks [64, 55].

To retrieve an image that visually corresponds to the scene, the output of the demosaick-
ing is not satisfactory. First, the colors must be corrected to �t our perception of the scene.
Because the illuminant varies, and because of the varying sensitivity functions of the color
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�lter arrays depending on the camera, a color space change is applied as well as a white-
balance operation [59]. The colors are �rst projected in the standard RGB (sRGB) space [11]
(usually with a simple matrix multiplication) for a uniform color representation across cam-
eras. Then, the white balance step consists in multiplying each color channel by a computed
gain Gc, which balances the colors in the image. These parameters are found to �t some
global assumptions such as the white-patch prior [105], or the grey-world prior [28].

The color-corrected image still needs to �t our perception of the scene. The luminance of
the image L depends linearly on the scene’s radiance. However, our visual system’s response
to radiance is far from linear. We are more sensitive to contrast in the darker tones than in
the brighter tones. To account for this discrepancy, a nonlinear transform in the shape of a
power function is applied to the image. This transform, called the gamma correction, can be
expressed as Γ(x) = x2.2,x P [0, 1](H,W ,3). In Fig. II.2, we observe the di�erence between a
non-corrected linear gradient and a gamma-corrected linear gradient.

-12

-14

-2 -1-3-4-6-7-8-9 -5

0EV-1-2-3-4 +1

Figure II.2: Linear gradient versus Gamma corrected gradient

The �nal image yRGB is determined by the following equation, which combines all the
operations in the treatment of a RAW image:

yRGB = Γ(Gwb((CsRGB(D(yraw))))),

where D is the demosaicking function,CsRGB the color space change operation, Gwb the
white balance gain operator. In Fig. II.3, we show the intermediate states at every step of the
pipeline, starting from a RAW image.

Demosaicking Color space change and 
white balance

Gamma correction

RAW file sRGB image

Figure II.3: The classic steps of the image signal processing (ISP) pipeline
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Other steps might be present in developing a RAW image, such as lens distortion correc-
tion. Some manufacturers also include additional proprietary steps to further improve the
quality of images, such as HDR algorithms, which increase the dynamic range of the image
[158].

II.1.2 Image distortion.

So far, we have seen that a digital image always su�ers from blur and noise up to a cer-
tain magnitude. However, other distortions may happen during or after the acquisition and
development of a digital image.

Compression. First, compression often induces some artifacts. In order to save storage
space, the digital signal is either compressed using a sparse representation, subsampled, or
both. The most common compression technique is the JPEG compression, based on �ltering
the Discrete Cosine Transform coe�cients of 8ˆ 8 patches [182]. This compression often
results in block-like artifacts, which we can observe in Fig. II.4a along with other compres-
sion examples. Based on wavelet coe�cient shrinkage, a less popular compression called
JPEG 2000 is more e�ective and produces fewer artifacts for high compression rates [173].
Resizing the image to a lower resolution is also possible by applying a low pass �lter and
a bicubic interpolation to respect antialiasing conditions. This distortion induces a loss of
high frequencies, making the image less sharp.

Noises. Second, noises can also distort the image. We have seen that an image is a�ected
by signal-dependent noise, which follows a Poisson distribution, and by signal-independent
noise, which we call read noise. Along with these noises, we present other possible noises
in the following list. We then give examples in Fig. II.4b.

• Gaussian noise: this model is a good approximation of the electronic noises during
the read-out phase of an image called read noise. It follows an iid Gaussian distribution
n „ N (0,σ2). It usually accounts for di�erent noise sources, such as thermal noise,
dark current noise, and source-follower noise. However, it is also the most commonly
found approximation for all digital noises. Since it is signal-independent, this model
is far from reality.

• Salt and pepper noise: also called impulse noise, it accounts for transmission errors
or dead photosites in the sensor. It either increases or decreases the value of randomly
sampled pixels to the minimal or maximal value, as we can see in Fig. II.4b. The salt
and pepper noise distribution are given by Poisson law:

P (k) =
e´λλk

k!
,

where P (k) denotes the probability of having k noisy pixels in a window of a speci�ed
size, with λ being both the average and variance of that law.
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• Speckle noise: It can be found in other imaging devices than DSLRs, mostly in
Synthetic Aperture Radar images (SAR). The particularity of that noise is that it is
multiplicative and not additive. The speckle noise is modeled by the following formula

y = sˆ x,

in which x is a noiseless image, y is the noisy observation, and s is a multiplicative
noise that follows a Gamma distribution.

An exhaustive list of digital image noises is given in [125].

Other distortions. Occlusions are also distortions that one may want to remove from a
photograph. These occlusions can be either macroscopic, i.e., a large object that hides the
photograph’s subject or dust on the sensor, or microscopic, i.e., �ne suspended particles
causing haze. In the case of macroscopic occlusion, a masking operator m is applied to the
image with mΩ de�ned as:

mΩ : [0, ...,H ]ˆ [0, ...,W ]Ñ t0, 1u (II.1)

(i, j) ÞÑ
#

1 if (u, v) P Ω
0 if (u, v) R Ω

, (II.2)

where Ω is the set of positions corresponding to the occluding object. This mask is then
point-wise multiplied by the original image x, ymasked = mΩ d x. Finally, old photographs
or digital images may be in black and white, therefore losing color observations. We give
examples of these distortions in Fig. II.4c.

Most of these distortions can be modeled employing a linear operator accounting for
deterministic distortions and an additive noise accounting for stochastic distortions, thus
�tting with Eq. (I.1). The goal of image restoration is to reverse this distortion process to
get an estimate x̃ from a distorted observation y as close as possible to the original image
x. A relevant criteria for measuring the reconstruction quality is the mean squared error :
MSE = ||x´ x̃||22. In the following section, we will introduce di�erent classes of algorithms
which aim at minimizing the latter error.

II.2 Image restoration

In this section, we will review a wide range of classical image restoration techniques. First,
we will introduce signal �ltering applied to image denoising. Then, we will highlight a
more recent class of techniques based on the self-similarity assumption in images: non-local
methods. To conclude this section, we will address variational methods applied to image
restoration.

II.2.1 Filtering for image denoising

For simplicity, we suppose that noise follows an additive white Gaussian model, i.e.,

y = x+ n, n „ N (0,σ2).
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Original Jpeg compression Subsampled x3 Subsampled x3  + Jpeg 
compression

(a) Di�erent types of compression
Original Gaussian Noise Salt and Pepper Noise Speckle Noise

(b) Di�erent types of noises
Ocluded scene Rain artifacts Haze Loss of colors

(c) Other distortions

Figure II.4: Various examples of image disortions.

Inspired by signal processing, the �rst methods developed to remove noise from images were
based on linear �ltering. Shift-invariant linear �lters are equivalent to convolving the image
with the �lter-associated kernel B. At a pixel i, j, the �ltering can be expressed by:

x̂i,j =
ÿ

k,lP[´r,r]2
yi´k,j´lBk,l,

where we suppose that B has a support of size (2r+ 1, 2r+ 1).

Linear �ltering. Based on the assumption that images are locally smooth, a simple idea
consists of locally averaging the pixels, with a simple averaging kernel or a Gaussian kernel.
In a global setting, the reconstruction error arising when applying a weighted average �lter
can be written as:

MSE = E||xi,j ´ x̂i,j ||22
= E||

ÿ

k,lP[´r,r]2
Bk,l(xi,j ´ xi´k,j´l)´

ÿ

k,lP[´r,r]2
Bk,l.ni´k,j´l||22

= ||
ÿ

k,lP[´r,r]2
Bk,l(xi,j ´ xi´k,j´l)||22 + σ2

ÿ

k,lP[´r,r]2
B2
k,l, (II.3)
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where we assume that the the image and the noise are independent, that all weights are posi-
tive and sum to 1. This decomposition shows that such �ltering reduces the noise’s variance.
For a simple averaging, the variance is divided by (2r + 1)2. However, the reconstruction
error is bad if the pixel intensities show fast variations in a small region. Though this ap-
proach works for homogeneous images, it necessarily blurs discontinuous signals, such as
edges in images, resulting in a large MSE.

Concerning linear �ltering in the frequency domain, we can also mention the Wiener
�lter [153]. It is the MSE-optimal stationary linear �lter for images degraded by additive
noise and blurring. To compute the coe�cient of this �lter, we need to suppose that the
noise is signal-independent and thatX andN are stationary signals of known power spectral
density (PSD). However, the knowledge of the PSD of the original signal is an assumption
that can not be met in real-world problems. One can either use an oracle from another
restoration technique or formulate a hypothesis on the distribution.

Edge-preserving �ltering. To address the edge-smoothing problem, the �rst option was to
use nonlinear �lters. Median �ltering, for instance, produces better results regarding edge-
preservation [140, 84]. Rather than assigning the mean of a patch to its central pixel, it
assigns its median. Though this method produces better results, the patch-wise pixel sorting
operation is expensive to compute and not well adapted to additive noise. A faster and more
e�cient nonlinear �ltering that preserves edges is the bilateral �lter [176]. For each pixel
in the output image, it computes a weighted average of the input image centered at the
same position. In this case, the weights depend on the spatial distance of the pixels and the
di�erences in intensity. More precisely, bilateral �ltering follows the following formula:

x̂i,j =
1
W

ÿ

k,lP[´r,r]2
Bk,l.fr(||yi,j ´ yi´k,j´l||22)yi´k,j´l,

whereB is a weighting kernel for spatial similarity and fr is a weighting kernel for intensity
similarity. The edge preservation is the consequence of weighting the average depending on
the di�erence in intensity.

Sparsity based restoration. Another practical idea in �ltering consists of decomposing
the image on a suitable basis and threshold the decomposition of the distorted image. The
underlying hypothesis is that natural signal decompositions are sparse, with only a few com-
ponents. Every coe�cient is a�ected when noise is added to the original signal, making the
signal decomposition dense. This is the idea behind wavelet coe�cient shrinkage techniques
[51, 50], or Discrete Cosine Transform (DCT) denoising [194]. Wiener �ltering has also been
applied to the coe�cient of the wavelet decomposition, achieving good results [151, 94]. In
the case of DCT denoising, every (16, 16) patch is decomposed on the DCT basis, and coe�-
cients below a certain threshold are put to zero. To remove the block-like aspect, this �ltering
is done on overlapping patches, and the results are aggregated with a weighted average. A
multi-scale version of this algorithm improves the performances in the low frequencies of
noise [148].
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II.2.2 Non local methods

Natural images are highly redundant. In a given image, structures are often repeated, for
example, edges, �at surfaces, or even textures. For a given patch in an image, one can usually
�nd similar patches in the whole image either in the neighboring patches or further away in
the image, as we can observe in Fig. II.5.

Figure II.5: Examples of patches found in an image that are similar to a reference patch (R).
Diagram from the BM3D paper [42]

To exploit this property called self-similarity, a simple idea in image denoising consists
of �nding pixels with a similar neighborhood and averaging them based on a similarity mea-
sure. This idea is similar to the one used in bilateral �ltering, which in contrast, limits itself
to spatially close pixels. Non-Local Means, �rst presented by Buades et al. in [26], was the
�rst method to leverage the self-similarity property fully. Previous to this work, Yaroslavky
introduced neighborhood �lters [193], which compute a weighted average of the noisy im-
age pixels based on their di�erence in intensity. Unlike bilateral �ltering, these �lters discard
spatial distance and use pixels in the whole image. However, because the noise a�ects the
weights in the average, the independence conditions for Eq. (II.3) are not met, and we have
no guarantees that the resulting image will be denoised.

Rather than computing the �lter weights based on a pixel intensity similarity function,
we can compute them by comparing the similarity of patches centered on these pixels. As
explained in the experimental paper [143], given y a noisy black and white image and x the
original image, the non-local means �ltering at a pixel k writes as follows:

x̃(k) =
1

C(k)

ÿ

lPB(k,r)
y(l)w(k, l), C(k) =

ÿ

lPB(k,r)
w(k, l),

where B(k, r) de�nes a large search window, centered in k of size (2r + 1, 2r + 1). For a
pixel y(l), the weight depends on the similarity between a square patch of height 2h+ 1
centered in k and a square patch of the same size centered in l. Letting Ph(u) be the square
patch of height 2h+ 1 centered in u, the weights are de�ned as follows:

w(k, l) = exp
(
´||Ph(k)´ Ph(l)||

2
2

2σ2

)
,
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II.2. Image restoration

where σ is the noise standard deviation. Therefore, the lower the patch distance, the higher
the weight in the sum, and conversely.

By doing so, we are more con�dent that pixels close to each other with this metric will
likely have the same noiseless intensity. This algorithm can also be extended to color images
or even SAR images [48].

Following the same intuition, Dabov et al. proposed the BM3D algorithm [42]. The graph
drawn in Fig. II.6 gives an overview of the di�erent steps of the algorithm. Rather than com-
puting a weighted average of the pixels with similar neighborhoods, they aggregate patches
similar to a reference patch in a 3D tensor before collaboratively �ltering them. This col-
laborative �ltering is done by applying a 3D linear transform to the tensor, followed by a
coe�cient shrinkage on an orthogonal basis, and �nally, applying the inverse 3D transform.
Filtered patches are then replaced at their positions. Because patches overlap, the authors
compute a weighted average of all the denoised values of a single pixel obtained on overlap-
ping patches, with weights depending on the patch’s spatial distance. This �rst step gives
an oracle of the noiseless image, which will be used as input in a similar second step for two
main reasons. First, this helps to better assess which patches are similar to the reference
patch, since noise a�ects this estimation. Second, having an oracle allows for an accurate
Wiener �ltering of the coe�cients, which is better than hard thresholding. This two-step
procedure was also used in a Bayesian extension of the Non-Local Means algorithm called
Non-Local Bayes [109]. Before the advent of deep learning techniques for image restoration,
BM3D has long been the state-of-the-art denoising technique and generalizes better to dif-
ferent types of noises. In Fig. II.7 we compare the results of these non-local methods applied
to the same image.

II.2.3 Variational methods

Variational methods impose a regularity prior to the restored image. This is usually done by
minimizing an energy based on two terms: a data �delity term D, and a regularity term R.
Letting u0 be the distorted observation and u be the candidate image, the problem can be
written as:

infu
ż

Ω
d(A.u,u0)dx+ λ

ż

Ω
R(u)dx,

where Ω is the image domain, A is the linear operator of the inverse problem, and λ is a
scalar. The data �delity function is usually the Euclidean distance. The di�culty here is to

Figure II.6: Scheme of the BM3D algorithm from [108]
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(a) original image (b) noisy image

(c) NL Means (d) NL Bayes (e) BM3D

Figure II.7: Comparison of the results of various non local image denoising methods. We
observe that BM3D clearly outperforms the two other methods.

design a good smoothing term. An early idea was to penalize the L2 norm of the gradient.
However, such a method tends to over smooth edges which have a high gradient. The explicit
solution implies a Laplacian operator, which is isotropic and therefore blurs edges. A widely
used improvement is to consider the total variation regularizer, which corresponds to the L1

norm of the gradient. In a more global setting, we can consider the following problem:

infu||A.u´ u0||22 +
ż

Ω
φ(∇(u))dx,

where φ is a strictly convex non-negative coercive function, growing at most linearly. In the
simplest setting, relaxing the strict convexity requirement, φ(x) = |x|.

Numerically, this minimization problem can be solved using iterative algorithms. In the
seminal Rudin-Osher-Fatemi paper [167], the authors propose to solve this minimization by
means of a gradient descent, each step of which consisting of solving the discrete version of a
partial di�erential equation. Many other algorithms were developed to minimize this energy,
such as duality-based methods [34, 211], Newton-based methods [141], and operator split-
ting methods [120, 70, 63]. The reader can �nd a detailed presentation of the mathematical
foundations and implementation details of variational methods in [15].

Even though these methods are versatile and can be adapted to all kinds of noise and
linear perturbation, they tend to produce close to piece-wise constant images with sharp
edges and over smooth textures. Moreover, tuning the penalty term λ may be tedious, and a
slight variation of this parameter signi�cantly impacts the reconstruction of the images, as
we can see in Fig. II.8.

All the presented image reconstruction techniques are based on a regularity prior on
the distribution of undistorted natural images. Conversely, learning-based approaches try
extracting relevant features by optimizing their response to a large set of pairs of clean and

16



II.3. Deep learning

(a) Original (b) Noisy (c) TV denoised λ = 0.5

(d) TV denoised λ = 0.15 (e) TV denoised λ = 0.05 (f) TV denoised λ = 0.015

Figure II.8: In�uence of the penalty term in TV-denoising with the Chambolle algorithm

distorted images. In particular, deep neural networks are trained to minimize a loss, usually
the MSE between the restored image and the original image, with many examples. Before
turning to deep learning for image restoration in Section III.1, we will �rst introduce the
basic notions on neural networks and deep learning in the following section.

II.3 Deep learning

Deep learning is a popular �eld of machine learning based on the use of large neural net-
works. The scope of machine learning is to devise accurate autonomous decision-making
algorithms. For them to work e�ciently, these algorithms have access to large amounts of
data to which they optimize their response. They can solve complex tasks such as classify-
ing data, detecting objects of interest, etc. In this section, we will �rst introduce the basics
of neural networks before exploring convolutional neural networks and showcasing some
applications.

Figure II.9: Scheme of a simple 2 layer perceptron

17
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II.3.1 Neural networks: the multi-layered perceptron

Neural networks were �rst introduced in 1958 by Rosenblatt [166], to mimic the behavior
of the brain’s neurons. In a very simple approximation, the neuron is thought of as a node
that receives electrical signals from other neurons and outputs a new signal depending on
the signals received. Formally if x P Rd is the input signal of the neuron, the output can be
written as:

fθ,b(x) = σ(θTx+ b),

where σ is a non linear function called the activation function. (θ, b) P Rd, R are the pa-
rameters of that neuron respectively called weight and bias. Commonly used activation
functions are the Recti�ed Linear Unit (ReLU) σ(x) = max(0,x), the hyperbolic tangent
σ(x) = 2

1+exp(´2x) ´ 1 or the sigmoid function σ(x) = 1
1+exp(x) .

In a supervised learning setting for classi�cation, that is, having access to an annotated
training dataset D =

 
(xi, yi)|xi P Rd, yi P t´1, 1u(

iP[0,N ]
, one may optimize the weight

and bias of this neuron to �t to the training data. To measure if the weights are suitable
for this task, we can evaluate a loss function over the training set, which quanti�es the error
made by the neuron. This function, which has to be di�erentiable, is often the mean-squared
error or a cross-entropy function. However, in the case of a single neuron or perceptron,
the data has to be linearly separable for the classi�cation to succeed. For most real-world
tasks, this is not the case. In order to classify data with a more complex distribution, we
can compose multiple perceptrons, thus bene�tting from the nonlinear transforms of the
data by the activation functions. The obtained function is a basic neural network called the
multi-layered perceptron or MLP. The network function becomes:

f(θi,bi)iP[0,L]
(x) = σL

(
θTLσL´1(....σ(θT0 x+ b0)...) + bL

)
.

In this equation L is the number of layers of the network, which can be arbitrarily large. In
Fig. II.9, we give an example of a simple 2-layer MLP.

Optimization. Having such a function, we want to solve the optimization problem:

argminθPΘEX,Y [L(fθ(X),Y )],

where L is an arbitrary di�erentiable loss function, (X,Y ) are random variables follow-
ing the data distribution, and Θ, the parameters vector space. To simplify notations, we
write: (θi, bi)iP[0,L] = θ. In practice, we can only minimize the empirical error E =
1
N

řN
i=1 L(fθ(xi), yi), where (xi, yi)iP[1,..N ] is the training dataset. A simple yet e�ective

way to do so is to implement the Stochastic Gradient Descent (SGD) [163, 96]. Fortunately,
the neural network’s gradient is easy to compute since it is a composition of linear and non-
linear functions [71].

Starting from randomly initialized parameters, the SGD iteratively updates the weights
by performing a descent step in the direction of an estimate of the gradient. This estimate
is obtained by averaging the current gradient function evaluated on a subset of the dataset
named amini-batch and constructed by random sampling. For simplicity, the mini-batches dk
may be supposed to be disjoint subsets of the dataset of the same size such that D =

Ť
k dk.
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At each gradient step t, a new mini-batch is sampled without replacement. The update rule
of the SGD is:

θt = θt´1 ´ η

#dk
∇θ

ÿ

(xi,yi)Pdk
L(fθt´1(xi), yi),

where η is the descent step named learning rate in the deep learning community.
Evaluating the gradient over the whole dataset would be more accurate, but this is com-

putationally costly. Moreover, since the loss landscape is highly non-convex, the optimiza-
tion can get stuck at a local minimum. The SGD algorithm is computationally lighter and
introduces noise in the gradient estimation, which prevents getting stuck in a local min-
imum. Many variants of this algorithm have been developed to reach faster convergence
rates by introducing momentum or learning rate decay, such as the well-known ADAM op-
timizer[99]. The initialization of the weights has also been an important research topic, with
various techniques such as the Gaussian initialization, the Xavier initialization[68] or the
Kaiming initialization [78].

II.3.2 Convolutional neural networks

MLP are less suited to large input data like images, having a large memory footprint and
being overparametrized. The weights vector θ are indeed necessarilly larger than the signal
dimension, making MLP heavy in this context. Moreover, the structure of the MLP limits its
use to data of a single size, which is problematic when dealing with size varying signals such
as images.

Figure II.10: Convolutional layer diagram

To better �t the image domain, neural networks based on convolutional kernels (CNN)
were �rst introduced in [111]. A small �lter slides over the whole image domain to create
new feature maps, as shown in Fig. II.10. Formally, if X P RHˆWˆC is a 3D input feature
tensor (typically an image), g P RkˆkˆC is a squared convolutional kernel and b P R is a
bias term, a single-channel output of a convolutional layer Y can be written as follows:

Ym,n = σ



i=tk/2uÿ

i=´tk/2u

j=tk/2uÿ

j=´tk/2u

Cÿ

c=0
Xm´i,n´j,c.gi,j,c + b


.

Being translation invariant, the convolution allows for detecting patterns at di�erent lo-
cations in the input. Convolutional kernels are therefore well suited to images, which we
recall are highly redundant signals. Moreover, in comparison with MLPs, they also drasti-
cally reduce the number of parameters between intermediate features. They are therefore
more e�cient computationally than MLPs because of their lighter memory footprint and
faster convergence. The optimization framework also applies to CNNs, since convolution is
a di�erentiable operation.
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Other complementary operations are often required for a CNN to succeed. In what fol-
lows, we provide a succint list of these layers and operations:

• Padding: as we can see in Fig. II.10, the size of an image necessarily shrinks when
convolved with a �lter, because of side e�ects. To remediate this problem, a simple
operation is to pad the image or tensor with new pixels before the convolution. The
usual padding technique adds zero-valued pixels. Other padding techniques are pos-
sible such as repeating the boundary pixels or mirroring the pixel values.

• Pooling layers: in order to compress the dimensionality of intermediate represen-
tations to output a single value in the case of binary classi�cation tasks, pooling lay-
ers are frequently used. The max-pooling layer computes the maximal value in every
(2, 2,C) tensor, outputting a (1, 1,C) tensor. Most successful classi�cation CNNs
such as ResNet [77] or VGG [172] use this technique. An alternative is to implement
an average pooling layer, which outputs the average of every two by two windows. It
was later shown that these layers are responsible for the loss of the shift-invariance
property, which was the initial bene�t of CNNs [204]. A solution to this problem is
to implement a pooling operation that respects Nyquist Shannon subsampling condi-
tions, by applying a low pass �lter before pooling.

• Batch Normalization: To speed up the convergence of the optimization step, the
hidden representations of a batch can be normalized. This technique introduced in
[86] was �rst based on the idea of reduction of the internal covariate shift, which
designates the changes in the distribution of the input of each layer between di�er-
ent mini-batches caused by the di�erent sources of randomness during training. This
typically slows down training. Batch normalization layers counter this by trying to
impose a normal distribution N (µi,σ2

i ) to the output of every convolutional layer for
every single mini-batch, where (µi,σ2

i ) are learnable parameters at the i-th layer. This
drastically increases convergence speed.
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Figure II.11: Architecture of the VGG 16 network [172]

To give an example of a CNN architecture for a classi�cation task, let us describe a simple
architecture of a standard neural network, the VGG 16 network, represented in Fig. II.11. An
image of size (224, 224, 3) is �rst processed with two convolutional kernels of depth 64
with ReLU activations. The depth of a convolutional layer commonly de�nes the number

20



II.3. Deep learning

of feature maps created by the layer. To create 64 features starting from a tensor with C
channels, a total of 64ˆC convolutional �lters are required. The spatial dimension is the
same because the feature maps were padded with zero-padding. The output of these layers is
downsized with a max-pooling operation. Convolutional layers then process it with a twice
as large depth. This sequence of operations is repeated four times until having a (4, 4, 512)
tensor. Finally, this tensor is �attened to a 4096 array. From this array, we apply a fully
connected layer, another denomination for a perceptron, to reach a �nal vector of size 1000.
It is indeed the number of classes in the classic Imagenet challenge [49]. By sequentially
compressing the information, the network extracts semantical information about the original
image to classify its content. In the following paragraph, we showcase some applications of
CNNs.

II.3.3 Applications

Figure II.12: Examples of computer vision tasks [147]

Computer vision applications CNNs are primarily used for image understanding and
computer vision tasks. The simplest is image classi�cation, where the goal is to map an
image to a category based on its content. We already presented the VGG method, but other
more recent and advanced techniques have been developed since then, with residual layers,
[77], dense layers [83], attention mechanisms [180, 183], transformer networks [52], etc.

A more complex task consists of detecting objects in an image by �nding and labeling a
bounding box that delimits the region of interest. These methods were �rst based on a re-
gion proposal method combined with a classi�cation method to re�ne the object detections.
The region proposal step was �rst done with simple heuristics, but the latter were replaced
afterwards by learning-based approaches. Among these methods, we can cite R-CNN [67],
and its improvements Fast R-CNN [66], Faster R-CNN [159], or Mask R-CNN [75], which
also does semantic segmentation.

Segmentation is an even more complex task: rather than �nding bounding boxes, we
now want to determine a precise boundary of the objects in the scene. The most commonly
used network for image segmentation, the Unet [164], was �rst developed for brain tumor
segmentation. Its architecture was then used in several other applications, particularly for
image restoration. A short description of this architecture is relevant to the present disserta-
tion. The input image is passed through an encoder which compresses the spatial dimension
of the representation of the images, as we can see in the diagram in Fig. II.13. Then, this
hidden representation is passed through a decoder which progressively expands the spatial
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Figure II.13: Architecture of the Unet segmentation network [164]

dimensions to reach the original dimension of the input image �nally. The particularity of
this network is the so-called skip-connections, which allow for representations of the en-
coder to be concatenated to the representation of the same dimension in the decoder. This
was added to fasten the convergence and recover information that the compression of the
decoder could have lost. In the case of image segmentation, this network produces a mask
of 0 and 1, where 1 denotes the presence of an object. Each image from the training set
is annotated with a segmentation mask, either drawn by hand or computed from complex
methods. Going a step further, we can segment di�erent objects in a single scene, which is
called semantic segmentation.

Figure II.14: Advances in facial image generation through time presented in
[face_generation]

Image generation. Rather than using the expressive power of CNNs to extract high-level
semantic information about the images, we can exploit it to generate new realistic or artistic
images. The �eld of neural image generation has been very proli�c since the introduction of
Generative adversarial Networks (GANs) in 2014 [72]. The idea is to jointly learn a generator
that produces a new image and a discriminator which assesses if the image is truthful or not.
From the viewpoint of game theory, the problem can be seen as a non-cooperative game
with two players (the generator and discriminator), and the solution should �nd a Nash

22



II.3. Deep learning

equilibrium. The latter reference has been the basis for further improvements leading to
impressive results for high-resolution image generation techniques [156, 210]. Variational
Auto Encoders [100] is another technique that allows for better control of the properties of
the generated images. More recently, other techniques such as Normalizing Flows [160, 101]
and Di�usion Models [82, 174] based on the use of neural networks produce state-of-the-art
generation results.

These recent image generation techniques are capable of generating high-resolution re-
alistic images, with astonishing precision. These methods can also be used to generate un-
realistic artistic images with a wide variety of styles. Artistic image generation is indeed
another application of deep neural networks. The seminal works for these methods were
presented by Gatys et al. [62, 61]. The authors of these papers propose to extract the artistic
style of a painting in order to apply it to a real photograph. We will describe these works
more precisely in the following chapter. In few words, the proposed idea is to match the hid-
den representation of the style image (the painting) and the target image (the photograph) in
an already trained classi�cation network, such as VGG16. We give in Fig. II.15 some results
of this style transfer methods presented by Gatys et al.

Figure II.15: Example of style transfer presented in [61].

Among other applications of deep learning, a major one is image restoration. Since CNNs
are particularly well suited to analyze the content of images, it is reasonable to assume that
they will be able to �lter them properly, depending on the distortion model. In the following
chapter, I will cover in detail the recent works in image restoration techniques based on
neural networks.
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III Related works

III.1 Deep learning image restoration methods

As mentioned above, deep learning techniques have recently surpassed classical prior-based
methods for most tasks. We give in this section a thorough presentation of these methods.
We will �rst start by introducing the more standard deep learning approaches before showing
some examples of alternative methods. Then, we will pursue our presentation by showing
how architectural advances in deep learning resulted in improvements in image restoration.
Additionally, we will see that the loss function has a signi�cant role in the perceptual quality
of the restored images. Finally, we will present how these methods behave in real-world
scenarios and how they can be adapted to perform better in these conditions.

III.1.1 Standard CNNs for image restoration

DnCNN. The �rst paper tackling image denoising with a convolutional network was pub-
lished in 2009 by Jain and Seung [89]. This �rst method did not perform very well, unlike
the MLP method proposed later by Burger et al. [29], which performed on par with BM3D.
A notable improvement was achieved in 2016 with the DnCNN paper by Zhang et al. [200].
The proposed architecture (see Fig. III.1) is, contrary to [89], very deep. The image is passed
through a �rst convolutional layer of depth 64 with (3, 3) �lters and a ReLU activation. The
output tensor is then passed through 17 blocks of a convolutional layer of depth 64, batch
normalization, and ReLU. A �nal convolutional layer predicts the noise added to the input
image. The predicted noise is then subtracted from the noisy image to predict a denoised im-
age. This method, the �rst to use such a deep network for image restoration, was motivated
by the success of deeper networks for computer vision tasks. Indeed, deeper networks have
a larger receptive �eld, i.e., the number of pixels in the input image which contributes to the
estimation of one pixel in the result image. It also adopts residual learning, that is predicting
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Figure III.1: Architecture of the denoising network DnCNN [200]

the noise instead of the output image. The optimization aims at minimizing the following:

L =
Nÿ

i=1
||xi ´ yi ´ fθ(yi)||22,

where (xi, yi)iP[1,..,N ] is the dataset of clean and noisy images. It was later argued in [16]
that residual learning allows for a simpli�cation of the solution’s manifold, which is easier
to learn. This technique was also used in super-resolution CNNs [98]. In the case of single-
image super-resolution (SISR), the low-resolution input is often interpolated to the desired
output size, and the network’s goal is to retrieve the missing high frequencies. Zhang et al.
have also performed extensive experimental validation on color image denoising, jpeg quan-
tization artifact removal, and SISR [200]. The network DnCNN can also do blind denoising,
i.e. denoising without knowing the noise standard deviation. This network is however still
unable to deal with real-world noise since it was trained with additive white Gaussian noise.

FFDNet.Going a step further, Zhang et al. also proposed the FFDNet network for image de-
noising [202]. Built on the DnCNN backbone, the authors propose two major modi�cations.
First, a greyscale image is rearranged into four sub-images with an invertible transform to
further increase the receptive �eld. Other techniques to increase the receptive �eld are pos-
sible such as dilated convolutions, which ignore some pixels. Second, in order to tackle
spatially varying noise, a noise map is concatenated to the previously mentioned four sub-
images. This map contains the noise standard deviation at every pixel. The resulting tensor
is passed through a CNN backbone identical to DnCNN’s, which outputs four denoised sub-
images. Interestingly, the authors have not performed residual learning, but it was shown
in [175] that the network performs better with residual learning. The network is trained to
tackle various noise levels ranging in [5, 75] for an image coded in 8 bits. Experiments show
that this network generalizes better to Poisson noise. This property is promising for real-
world image denoising. However, this method is non-blind, meaning it requires knowing
the spatial distribution of the noise level prior to denoise. The idea of the distortion map was
used in other denoising networks [198], and adapted for super-resolution to encode di�erent
blur kernels [203].

Other architectures. The previous networks have a large number of parameters. Moreover,
because the size of the intermediate representations is never shrunk, these networks have an
extensive memory footprint, making them less �t to restore large images. In that perspective,
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Figure III.2: Architecture of the denoising network FFDNet [202]

the U-Net architecture was �rst adapted for image restoration in the paper of Mao et al. [131]
and adapted for Magnetic Resonance Imaging (MRI) image restoration in [80]. This network
can be trained for multiple restoration tasks (denoising, SISR). The noise map idea of Zhang
et al. was also used within this U-Net architecture in [198], achieving better results than
FFDNet.

III.1.2 Alternative deep restoration methods

Self-supervised Learning. The methods described above are all learned in a supervised
setting. However, ground truth data might not be available in real-world scenarii. In order
to still leverage the capacity of neural networks to restore images, various semi-supervised
or self-supervised methods have been developed. The most popular of these methods, Noise-
2-Noise, was introduced in 2018 by Lehtigen et al. [116]. In a supervised setting, we want to
�nd the optimal parameters:

θs̊upervised = argminθPΘEX(EY |X(||fθ(y)´ x||22)),

where x „ X the distribution of clean images and y „ Y is its corresponding noisy ob-
servation. Rather than using pairs of distorted and clean images (x, y) during training to
minimize the Euclidean distance (also called L2 loss), the authors use pairs of di�erent noisy
observations (y1, y2) which are drawn independently from the same random variable Y .
The authors justify this choice by arguing that it is easier to obtain noisy observations of
the same image instead of acquiring noiseless images. The optimization process now aims
at �nding:

θs̊elf-supervised = argminθPΘEX(EY |X(||fθ(y1)´ y2||22)),
Supposing that the noise process is centered, we have thanks to the independence of y1 and
y2 that:

EY |X(||fθ(y1)´ y2||22 = EY |X(||fθ(y1)||22) + EY |X(||y2)||22)
´ 2EY |X(y2)

TEY |X(fθ(y1)) (III.1)
= EY |X(||fθ(y1)||22) + ||x||22 ´ 2xTEY |X(fθ(y1))

= EY |X(||fθ(y)´ x||22) (III.2)

From this equation, we understand that the minimization of the L2 loss should lead to
the same solutions. The authors indeed show that supervised training and self-supervised
training lead to identical performances for many noise models. Other losses might be more
suitable for other noise models. For salt-and-pepper noise, for instance, the L1 loss is better
since it preserves the median value of the original image.
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Going a step further, self-supervised methods inspired by Noise-2-Noise propose to learn
a denoiser without pairs of noisy images but with a dataset of single noisy observations. Krull
et al. �rst proposed a simple self-supervised method called Noise-2-Void [103]. In order to
use a single image as both a noisy observation and a reference image, the authors propose
a modi�cation of the training process so that the �nal prediction of a pixel depends on the
neighboring values Ωy but not the central pixel y. This pixel is used as a noisy reference
value, just like in Noise-2-Noise. Exactly removing the pixel from the receptive �eld is cum-
bersome since it requires fully processing a patch and canceling all the gradient terms de-
pending on that value. A simple approximation consists of replacing the central pixel value
with a randomly picked pixel in its neighborhood. At test time, the denoising network does
not use the central pixel value, resulting in a loss of information and poorer performances.
Laine et al. propose a two-fold improvement of the Noise-2-void technique in [104]. First,
the architecture of the network is modi�ed so that it exactly excludes the central pixel of the
receptive �eld. To do so, �lters expand only in a single half-plane; for instance, if the �lter
size is h, the top t(h/2)u can be �xed to zero. For simplicity, the image is concatenated with
its 90˝ rotations so that �lters are only masked in a single direction. Each feature map is then
shifted downwards by one pixel in order to exclude the central pixel of the receptive �eld. In
Fig. III.3, we show a diagram of the so-called blind spot architecture. Second, the method also
leverages the information of the central pixel in a Bayesian denoising setting. Other blind
spot architectures were also developed, such as Noise2Kernel [113], which propose another
modi�cation of �lters that alleviates the need to rotate the image.

Figure III.3: Blind spot network architecture [104]

Plug-and-Play Methods. The methods presented above allow for computationally e�ec-
tive training without the need to acquire ground truth data, but with pairs or even single
noisy images. In order to also reduce the computational cost while bene�tting from the ex-
pressive power of neural networks, a class of hybrid methods called plug-and-play (PnP) use
already trained denoising neural networks as a regularizer in a variational method set up
(see Section II.2.3), for very di�erent image restoration tasks.

This idea is based on variable splitting algorithms such as the Alternating Direction
Method of Multipliers (ADMM) [21], which allows decoupling of the data term and the prior
i.e. regularization term during the minimization. In [181, 79], it was shown that the prior
term minimization corresponds to a denoising subproblem. Formally, the goal is to minimize
an energy x̂ = argminx||Ax´ y||22 + βR(x), where R is the regularisation term and A the
linear operator in the inverse problem formulation y = Ax+ n. We can reformulate the
minimization by arti�cially splitting the x variable into two variables x and v such that now
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the problem becomes:

x̂, v̂ = argminx,v||Ax´ y||22 + βR(v)

subject to x = v. (III.3)

We can solve this minimization by forming the augmented Lagrangian and using the
techniques derived in the ADMM paper. The Lagrangian writes as:

Lλ(x, v,u) = ||Ax´ y||22 + βR(v) +
λ

2 ||x´ v+ u||22 ´
λ

2 ||u||
2
2. (III.4)

The ADMM algorithm aims at iteratively re�ning each variable by minimizing the La-
grangian with respect to a single variable at each step for x and v and performing a gradient
ascent for u. More precisely, we perform the following steps until convergence:

x̂Ð argminxLλ(x, v̂,u)
v̂ Ð argminvLλ(x̂, v,u)
uÐ u+ (x̂´ v̂). (III.5)

If we de�ne x̃ = v̂´ u and ṽ = x̂+ u, the former minimization can be rewritten as:

x̂Ð argminx||Ax´ y||22 +
λ

2 ||x´ x̃||
2
2

v̂ Ð argminv
1
2 ||ṽ´ v||

2
2 +

β

λ
R(v)

uÐ u+ (x̂´ v̂). (III.6)

The �rst step returns a Maximum A Posteriori (MAP) estimate of x given y with a sim-
ple quadratic regularisation. In turn, the MAP estimate in the second step corresponds to
denoising the variable ṽ, as it tries to minimize a function obtained by summing the squared
euclidian distance between v and ṽ to a term that penalizes the singularities of v. PnP meth-
ods divised from the ADMM algorithm replace this step by applying a denoising method of
their choice. Before the advent of deep learning techniques for image restoration, PnP meth-
ods were based on human-designed denoising methods such as BM3D [46]. Because they
allow to tackle all linear inverse problems, BM3D was used as a prior for super-resolution
tasks [35]. Other variational restoration algorithms have been modi�ed by incorporating de-
noisers, such as half-quadratic splitting [79, 198], or stochastic gradient descent [107]. These
classical methods were then modi�ed by incorporating denoising CNNs which achieved bet-
ter results in terms of pure image denoising. This allowed for better restoration in PnP
methods, which were applied to all kinds of restoration tasks, for example, inpainting [118],
super-resolution [201], or global video restoration [136].

III.1.3 Non-local and attention based architecture for image restoration

For most computer vision tasks, the performances su�er from the local nature of convolu-
tions. While information at distant positions in the image might be relevant for prediction,
it is often left unused because the receptive �eld is limited. Many works propose to increase
the receptive �eld with strided convolutions, dilated convolutions etc. This may increase the
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receptive �eld, but the relative importance of a pixel j for the computation of a pixel i still
decreases signi�cantly as j gets far from i. This is one of the major �aws of classical CNNs
in computer vision applications and especially for image restoration. Inspired by Wang et al.
[183], which propose non-local neural networks, many subsequent works propose to modify
the architecture of CNNs to exploit the self-similarity in images, following the intuition of
non-local methods for image restoration discussed in Section II.2.2. These non-local neu-
ral methods were also adapted to image restoration with di�erent levels of complexity. The
simplest hybrid methods decouple non-local �ltering and neural network �ltering. Then,
non-local inference CNNs which unroll classical non-local denoising algorithms into a CNN
with block-matching methods. Going a step further, CNN architectures include deeper non-
local layers or architecture adapted from text or graph processing. In the present section, we
will successively present each of these techniques.

Decoupled hybrid restoration methods. Decoupled non-local neural methods are de-
noising algorithms that separate non-local �ltering and neural �ltering. Therefore, we can
use any existing CNN architecture in these approaches. The major bene�ts of these methods
are versatility and ease of implementation.

Ahn et al. �rst presented a Block Matching CNN for image denoising [9]. Inspired by
BM3D [42], the method can be split into a block-matching algorithm and a denoising algo-
rithm. For each pixel, the block-matching algorithm selects the k Nearest-Neighbors (kNN)
patches in a de�ned search window, using the euclidean distance as a similarity metric. How-
ever, the similarity is not evaluated on the noisy image but on a pilot image, obtained thanks
to an already existing denoising method: BM3D or DnCNN in the paper. Computing the
block-matching on the noisy image indeed leads to poor results. As explained in [9], the
variance of the distance between two patches grows inO(σ4), where σ is the noise standard
deviation. Therefore, two similar clean patches may be very di�erent when distorted with
noise. Once the kNN are found, the authors concatenate both the noisy and the pilot patches
in a 3D tensor of size (2k,Npatch,Npatch), that is further passed through a regular and train-
able CNN similar to DnCNN, which outputs a single patch. Experimentally, the paper shows
that this method outperforms DnCNN by 0.1 or 0.2 dB on the Set12 database, with notable
improvements in images with strong self-similarity. However, the computation time is much
longer because of the nearest neighbor search.

Similarly, Davy et al. [47] present a non-local decoupled method for video denoising. The
method can also be divided into pixel matching and CNN �ltering. The di�erence is that the
search window is now three-dimensional, including the temporal dimensionality. Instead of
stacking patches together, they stack the noisy frame t with its N nearest neighbors feature
maps. Therefore the N most similar pixels to pixel (i, t) are stacked along the z-axis at
the same position i. Those N+1 feature maps are then passed through a CNN inspired by
DnCNN.

Whereas the previous methods were two-staged, Cruz et al. [41] introduced an iterative
non-local decoupled algorithm. The algorithm alternates CNN and non-local �ltering on a
convex combination of the noisy image and the denoising result obtained at the previous
iteration. The underlying idea is to gradually mitigate the artifacts created by the CNN in
order not to over smooth the resulting image.
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This algorithm, inspired by the BM3D algorithm, allows for signi�cant improvements
when tested on three already-existing denoising CNNs: DnCNN[200], FFDNET [202], and
WDnCNN(Wavelet DnCNN) [16]. This method is similar to Plug-and-Play methods since it
is agnostic of the chosen denoiser. Its scope is, however, limited to image denoising.

Deep unrolling of non-local algorithms. The papers presented next are CNN adaptations
of existing non-local denoising methods. These adaptations can either unroll a few iterations
of an optimization process or sparse dictionary-learning methods. The �rst paper [154] is a
non-local adaptation of the trainable nonlinear reaction-di�usion (TNRD) [40]. The TNRD
is a trainable variational method. Its goal is to minimize and energy functional E(u|f) with
Field of Experts (FoE) regularizers, where f is the noisy image and u is the output image.
The energy is described by the following formula:

E(u|f) = λ

2 ||u´ f ||
2
2 +

Nkÿ

i=1
ρi(ki ˚ u),

where the regularizers are de�ned by convolutional �lters ki, and non-linear penalty func-
tions ρi. Minimizing this energy by steepest gradient descent leads to a denoised image. The
update rule is given by:

ut = ut´1 ´ δt ˆ λt(ut´1 ´ f) +
Nkÿ

i=1
k̄ti ˚ φti(kti ˚ ut´1),

where φti = ρti’. If we truncate the descent of the TNRD algorithm after T iterations, it is
equivalent to a multi-layer neural-network-like method that can be formulated as

#
u0 = f ,
ut = ut´1 ´ (λt(ut´1 ´ f) +řNk

i=1 k̄
t
i ˚ φti(kti ˚ ut´1)).

The nonlinear functions were chosen to be parametrized radial basis functions, mak-
ing the obtained network fully di�erentiable with respect to all of its parameters tΘt :
[λt, kti ,φti], t P (1..T )u. Therefore, having a database of clean and noisy images, one can
optimize this network with a classical back-propagation. The only di�erence between this
method and its non-local adaptation is that the authors add a non-local operator which
groups the k-NN of each pixel before applying the convolutional �lters kti . In order to in-
clude the non-local operator easily in this framework, the authors express it as a sparse
lookup matrix. Experimentally, the non-locality improves the initial TNRD both visually
and numerically. However, it cannot compete with fully learnable CNNs. Even if this frame-
work helps to better understand the network’s behavior, the class of functions that can be
coded by this network is over-constrained.

We can also mention the works of Lefkimmiatis [114],[115], which introduce another
non-local denoising inference CNN. Similar to [154], Lefkimmiatis proposes a non-local
block-matching operation. Following this, a trainable neural network applies a sequence
of convolutional blocks that mimic a proximal gradient descent. This method performs
on par with DnCNN and performs even better when an oracle is used for block-matching.
Other papers also unroll already existing non-local methods into CNNs, such as BM3D-Net
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[192], which unrolls BM3D, or [110], where a di�erentiable relaxation of LSSC [129] is imple-
mented. The latter is on par with other fully-learned CNNs in terms of PSNR, with a much
lower number of parameters.

Deep non local mechanisms. Unlike previously presented methods, the most common
approach when developing new CNN architectures is to sequentially combine classical con-
volutional layers with other recently proposed layers to successively re�ne feature represen-
tations. These black box methods are trained in an end-to-end manner, making them hard
to interpret. In order to impose a non-local behavior on neural networks, a reasonable idea
is to create trainable non-local layers and alternate them with classical convolutional layers
in an end-to-end manner. Unlike decoupled methods, non-local �ltering is performed for
deeper features.

The article Neural Nearest Neighbor Networks [150] introduces a new type of non-local
layer. Inspired by [69], they �rst introduce a stochastic and continuous relaxation of the
K-NN search. However, the latter is a non-di�erentiable operation and is consequently non-
trainable. Therefore, it cannot be included in a standard neural network, justifying the need
for its relaxation. This relaxed kNN is then implemented as a di�erentiable layer, which can
be interleaved in a classical CNN. The authors show very promising denoising results with a
non-local adaptation of DnCNN’s architecture. In a few words, the network alternates con-
volutional blocks with a relaxed kNN. The kNN allows us to stack similar values together so
that the following convolutional block can �lter them collaboratively. This method outper-
forms FFDNET and DnCNN in terms of PSNR on all noise levels on the following datasets:
Set12, CBSD68, and Urban100.

Unlike the previous method, Liu et al. [122] introduce a non-local layer similar to the
one implemented in [183] and embed it in a recurrent neural network. The non-local layer
applies a soft block-matching over a de�ned neighborhood, i.e., they compute a weighted
aggregation of all the pixels in the neighborhood, of which the weights depend on a similarity
measure between the pixels. This method is similar to Non-Local Means, except that the
aggregation is done on transformed features with trainable parameters. The authors tried
di�erent similarity measures. They found that the best one is the embedded Gaussian metric
D, which can be formulated as D(Xi,Xj) = exp(XiWθW

T
ψX

T
j ), where (Wθ,Wψ) are

trainable parameters and (Xi,Xj) are the compared patches. The output Z of the block-
matching becomes:

Zi =
1

δ(Xi)

ÿ

jPNi
exp(XiWθW

T
ψX

T
j )XjWg,

where Wg is a learnable embedding matrix, and δ(Xi) is a normalizing factor.
This module is summed up in Fig. III.4a. It is then used in the recurrent network block

presented in Fig. III.4b. As we can see, the non-local module produces non-local features,
which are passed through two convolutional layers before being added to the initial input of
the recurrent network. This skipped connection eases the back-propagation of the gradient.
The recurrent network loops T times over itself, and its output is then passed through a
convolutional layer that produces the residual image, i.e., the estimated noise map.
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(a) Non local module.
(b) Sketch of the recurrent network’s
architecture.

Figure III.4: Architecture and non local module of NLRN [122].

One can also conceive images as a graph where nodes are the pixels linked to their neigh-
boring pixels by edges. This is the underlying idea exploited in the recent work of Valsesia
et al. [178]. This paper is an improvement of [179] since it provides a better architecture and
a more thorough analysis of the network’s behavior. Valsesia et al. consider the image (or
the deeper features) as a graph where the nodes are the pixels, and the edges are weighted
by a similarity function between the two pixels. To �t this paradigm, the authors de�ne a
convolution operation called Edge-Conditioned Convolution (ECC) that allows the network
to have a larger and more useful receptive �eld, thanks to the non-locality property of the
ECC. The architecture of the network is a two-staged network, which predicts the residual
noise. The �rst stage of the network consists of extracting local features at di�erent scales
with three parallel branches of convolutional layers. At the end of each branch, non-local
features are extracted thanks to the non-local ECC layer. After concatenation, these features
undergo a sequence of local and non-local operations.

Experimentally, the proposed method performs slightly better than NLRN. Both methods
indeed outperform DnCNN by 0.3 dB on Set12, 0.2 dB on BSD68, and 1.2 dB on Urban 100.
Interestingly, the authors provide a visualization (see Fig. III.5) of the non-local receptive
�eld of the network for a chosen pixel, and how it expands through the network.

Figure III.5: Receptive �eld of an edge pixel at di�erent depth of the network DGCN [178].

Self Attention mechanisms for image restoration Transformers. Inspired by Trans-
former networks which were �rst developed for natural language processing [180], Dosovit-
skiy et al. �rst presented Visual Transformer [52], implementing the Transformer architec-
ture for images. Originally, Transformer networks aimed at leveraging long-term dependen-
cies in sentences, where words spatially distant in the sentence are semantically linked. This
is performed by the Multi-Head attention Layer. Each word in a given sequence is mapped to
a Euclidian space through a learned embedding which encodes similar words closely, form-
ing a matrix Z P Rn,d, where n is the length of the sequence and d the dimension of the
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embedding space. This matrix is passed through a positional encoder which adds the word’s
position information to the embedding vector. The resulting matrix is multiplied by three
learnable matricesWQ,WK ,WV to form a query matrixQ P Rn,dk , a key matrixK P Rn,dk ,
and a value matrix V P Rn,dv . These matrices are abstract structures that are going to be
combined to form a new representation of the sequence, which contains information from
all the words in the sequence:

Attention(Q,K,V ) = softmax
(
QKT

?
dk

)
V .

The matrix softmax
(
QKT?
dk

)
P Rn,n can be interpreted as an attention map giving more

weight to words which are highly dependent from each other. This weight matrix helps to
combine the values corresponding to each word V . In order to even better exploit these
long-term dependencies, the (Q,K,V ) triplets undergo di�erent learned linear projections.
The attention mechanism is deployed for each projection, and the results are combined with
a learned weighted average.

This attention mechanism is the same Dosovitskiy et al. used for Visual transformers
[52]. The authors of this paper consider that the patches that compose the images can be
seen as words interacting together as in a sentence. The attention block is inserted in a
classi�cation network that outperforms ResNet on all tasks.

Building on this idea, Visual Transformers were �rst adapted to image restoration tasks
in [37], which �rst encodes the image with a convolutional network, then uses a Visual
Transformer block as presented above (based on the idea of patches being similar to words),
and �nally uses another convolutional block to go back to the �nal image. This method was
developed for multiple tasks, denoising, super-resolution, deraining, etc. The improvements
are signi�cant for self-similar images, which are very present in urban scenes, a behavior
already observed with non-local networks. However, the idea of only using patches over
a prede�ned grid as words is limiting. Similar patterns can indeed expand across di�erent
patches. However, classical Virtual Transformers cannot fully leverage this similarity. In
an attempt to both use the local behavior of convolutions and the non-local behavior of
Transformers, the SWIN transformer [124] was used for image restoration problems [119,
185]. The SWIN transformer allows to perform self-attention at di�erent scales iteratively,
by dividing the image into patches of several di�erent sizes. It also restricts the span of the
attention layer to a �xed-sized window. This window shifts at every attention layer, allowing
connections that were impossible before. For both super-resolution and image denoising, the
SWINIR transformer [119] achieves state-of-the-art results on standard datasets.

III.1.4 The perceptual impact of loss functions

Deep learning methods rely on three pillars: data, the network architecture, and the loss
function. We have seen in the previous sections how the network architecture can in�uence
the results of image restoration results. In this section, we will present the recent advances
in the design of loss functions that correlate with human perception.
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Classical perceptual metrics. Although the standard choice for training an image restora-
tion network is the L2 distance, it was shown that this loss does not correlate well with the
human perception of distortions [65, 186]. When it comes to image restoration, minimizing
the MSE tends toward the average of all possible solutions. If this is a desired property for
the restoration of smooth images, it is not the case for high frequency content such as edges
or micro-textures. Since the distribution of micro-textures is often close to a random noise,
averaging all possible solutions will necessarilly result in a blurred output.

To better �t human perception, many metrics were developed. In order to compute a
perceptual distance, an initial idea was to project both the reference and distorted image in
a perceptual space, where the Euclidean distance can be employed [188, 43]. These mod-
els derive from the analysis of the physiological response of the human visual system to
di�erent visual stimuli. These models often include a multi-scale decomposition of the im-
age. Even though the rationale for these methods is convincing, they often require complex
parametrization, which is hard to �t to new data.

Unlike the previous methods, the widely used Structural Similarity Metric (SSIM) does
not map the image to a perceptual space. Its computation includes the use of local statistics
such as the mean µ and standard deviation σ:

SSIM(x, y) = (2µxµy + c1)(2σxσy + c2)(Covxy + c3)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c1)(σxσy + c3)
,

where (c1, c2, c3) are small stabilizing parameters which are useful when the denominator is
small. This metric was designed to be invariant with respect to distortions such as contrast
change or illuminance change, which do not a�ect our perception but degrade the L2 metric.
Its multi-scale variant, MS-SSIM, is most commonly used since it allows to handle features
of varying sizes. Even if this metric allows us to better assess the structural distortions of an
image, its formula does not correspond to any physiological prior about the visual system.
It was indeed shown by Nilsson et al. [142] that the SSIM does not at all �t the human
perception.

Laparra et al. introduced a Normalized Laplacian Distance �tted to human perception
[106]. The metric uses a laplacian pyramid decomposition of the image, which decomposes
the image at di�erent levels of detail. In order to better �t human perception, each stage of
the pyramid undergoes a contrast normalization with learned weights. The weights were op-
timized over a large dataset of undistorted images. The authors give experimental validation
for this metric, showing that the metric linearly increases as the distortion level increases
for a wide variety of distortions (blur, jpeg artifacts, etc.). Although this method righteously
assesses the perceptual distance, no image restoration networks have ever used it. The MS-
SSIM remains a commonly used loss for image restoration or image generation.

Deep CNN features as a perceptual space. Instead of mapping images to a human-
designed perceptual space, some recent perceptual metrics propose to use a learned per-
ceptual space. These methods all proceed from the seminal work of Gatys et al., which used
features of a classi�cation network for texture generation, and style transfer [62, 61]. Even
if the VGG19 network (introduced in Section II.3) is not speci�cally designed to �t human
perception, its architecture extracts information at di�erent scales, similar to the Laplacian
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Pyramid. To generate new texture images, the method aims at minimizing the distance be-
tween the Gram matrices of VGG19 features at di�erent scales of the original image and the
generated image, by a simple gradient descent. The Gram matrix transform was introduced
to remove the spatial information of this representation in order to have stationary textures.
The Gram matrix of a family of vector u(1), ...,u(m) is a squared matrix of size (m,m) of
which every coe�cient in (i, j) is equal toă u(i),u(j) ąwhereă ., . ą is a scalar product.

Having (Fi)iPt1,5u 5 intermediate feature extracting functions of the VGG19 each at dif-
ferent scales, the texture distance can be written as:

Ltexture(x, y) =
5ÿ

i=1
λi||G(Fi(x))´G(Fi(y))||2,

where λi are weighting coe�cients, and G corresponds to the Gram matrix transform func-
tion. To add back spatial information, this transform can be removed:

Lfeature(x, y) =
5ÿ

i=1
λi||Fi(x)´ Fi(y)||2.

For instance, this was done for style transfer which requires conserving structural informa-
tion. This loss proved to be very e�cient for both tasks, con�rming the intuition that the
VGG network mimics visual perception.

It was �rst used to train a neural network for fast style transfer, and SISR by Johnson
et al. [92]. By combining it with other data �delity losses, promising results were obtained.
The SISR network indeed produced sharper images than other methods but included heavy
checkerboard artifacts. The Enhancenet paper proposed to re�ne the perceptual loss for
image super-resolution applications [168]. It indeed added the texture loss Ltexture computed
per patch, and a new adversarial term, leveraging the power of GANs for realistic image
generation. This network produced signi�cantly more realistic super-resolution results than
the previous. To better exploit the fact that the di�erent stages of the VGG network extract
di�erent structural information, Rad et al. proposed to decouple the VGG loss according to
the content by segmenting the image in object, background, and borders [155]. For each
region, the perceptual loss was computed from di�erent layers of the VGG network, thus
utilizing the semantic information to better restore the image.

The previous methods allowed networks to improve their performances. However, they
do not take advantage of any information about the human visual system. Next, we present
perceptual metrics optimized on annotated databases which exploit both the features of
CNNs and the response of the human system to di�erent distortions.

Learned Perceptual Metrics. In 2018, Zhang et al. presented a Learned Perceptual Image
Patch Similarity (LPIPS) [205]. The paper �rst presents a large dataset of annotated data
comprising multiple distortions at di�erent intensity levels. The annotators chose between a
pair of distorted images (y1, y2) the one closest to a reference image x that they see, resulting
in an average vote h. From the set (x, y1, y2,h), a �rst network such as VGG is used to
compute a distance d1 between x and y1 and a distance d2 between x and y2, similar to
the Lfeat presented previously. A second short network then predicts from (d1, d2) which
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image is the closest to the reference by computing the cross entropy loss with respect to the
annotation h. The authors show that the pre-trained VGG network achieves the best results
in terms of perceptual evaluation. Since it is a standard neural network, it can be used as a
metric for training. It was indeed used to train super-resolution neural networks [91].

Concurrently, Prashnani et al. presented a similar metric called PieAPP [152]. The data
annotation method is identical, and so is the strategy. The only di�erence lies in the archi-
tecture speci�cally created for this task. The network has a large memory footprint making
the metric un�t for the training of an image restoration network. We will use this metric in
some of the experiments of the following chapters.

Advances in the design of the architecture and the loss functions greatly improved the
perceptual results of image restoration neural networks. However, even such advanced
methods fail to generalize to real-world conditions when trained on unrealistic data. Next,
we will understand how real data, or carefully modelled synthetic data allows to properly
restore images in real world conditions.

III.1.5 Real-world image restoration

One of the main drawbacks of neural networks is their incapacity to generalize to unseen
con�gurations. In classical deep-learning tasks, this phenomenon is known as over�tting. It
is possible to counter this with various methods, such as network regularisation or domain
adaptation. The latter usually expects to have access to data from the new domain or modal-
ity. These drawbacks are inevitably present in deep learning applied to image restoration. As
shown by Plötz et al. [149], a denoising model trained with an additive white Gaussian noise
prior on the noise distribution fails to properly restore real noise-corrupted images, when a
classical blind denoiser such as BM3D reaches even better performances. We describe here
the state-of-the-art works that aim at countering this phenomenon. The �rst solution is to
acquire real data and to train a neural network with it. If this technique allows retrieving
real distortions, it is cumbersome. An alternative is to simulate distortions with a physically
based model. More recent papers propose to learn from real data how to generate noise and
other possible distortions.

Training with real data. In order to restore images corrupted with real-world distortions,
the �rst idea that comes to mind is to acquire such data. In order to �t the classical supervised
setting, data must come in pairs of distorted observations and ground truth noiseless images.
However, noise is inherent to photon acquisition, and motion either of the camera or in the
scene is di�cult to control. For these reasons, acquiring such a dataset is a very tedious
task. Plötz et al. �rst proposed a dataset of pairs of RAW images [149] called DND. In this
paper, the approach consists of pairing higher ISOs images yn and lower ISOs images yr as
noisy and reference images respectively. Noise intensity increases as the sensitivity (ISO)
increases. The ISO can indeed be seen as a digital gain KISO, which increases linearly. For
instance, we have the relationship K200 = 2K100. In order to have image with the same
pixel intensity, the reference image is shot with an exposure time multiplied by the ratio of
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the sensitivities. To avoid motion, the camera is mounted on a sturdy tripod with weights to
further stabilize the setup. Even with such precautions, the images are not perfectly aligned
and many postprocessing operations are applied for the ground truth to �t to the noisy
observation content. In addition to alignment, the authors also correct illuminance changes
which are frequent when taking outdoor images.

(a) Low-ISO image (b) High-ISO image

(c) Zoom-in of the low-ISO image (left) and the high-ISO image (right)

Figure III.6: Examples of the two denoising datasets DND [149] (left) and SIDD [2] (right).
Images are displayed in RGB for visualisation purposes.

Similarly, Abdelhamed et al. present a large dataset of RAW smartphone images from �ve
di�erent smartphone cameras called SIDD [2], as an improvement of the previous dataset.
Rather than lowering the ISOs to have a seemingly noiseless image, the authors decide to
robustly combine a stack of 150 shots of the same scene, thus dividing the noise standard
deviation by 150. To form this ground truth image, the images undergo many processing
steps in order to remove dead pixels, to align the intensity, and align the images spatially.
The image acquisition is even more controlled since the image are shot in a studio. To account
for real-world situations, the dataset covers a much wider range of ISOs for every camera and
a wide range of illuminant intensity and temperature. Both these datasets were widely used
to train real RAW image restoration denoising networks [123, 197, 13, 195, 185]. It is indeed
much simpler to tackle denoising on a RAW image, given that noise is spatially uncorrelated
in the RAW domain, unlike in developed RGB images.

Nonetheless, a new trendy inverse problem in the image processing community is to fully
replace the classical Image Signal Processing (ISP) pipeline with CNNs. The ISP presented
in Section II.1.1 allows processing a RAW image into a viewable RGB image. It was indeed
shown that individual tasks within the ISP can be e�ciently replaced by CNNs such as auto-
matic white-balancing [7], or demosaicking [64]. The goal is to now jointly learn the whole
processing pipeline. To do so, one also needs a large dataset of pairs of (RAW - developed
RGB) images. This type of dataset can be easily obtained since most cameras can save both
the RAW and the RGB output of the ISP. A more advanced goal is to propose a cross-camera
ISP model, meaning architecture that could properly develop RAW images from di�erent
cameras. Di�erent camera sensors indeed have di�erent color �lters and di�erent develop-
ment algorithms, making the RAW domain camera-speci�c. This problem was addressed by
Ignatov et al. [85], which presents a dataset of RAW-RGB pairs for a high-end DSLR camera
and a smartphone camera. The presented method allows to produce DSLR looking images
starting from smartphone-shot RAW images (see examples in Fig. III.7). The same approach
is followed for super-resolution problems in [191]. Similarly, Zhang et al. perform RAW
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super-resolution, with pairs of images taken with di�erent focal lengths in [206], allowing
for realistic modeling of a zooming operation.

Another more advanced problem is to propose an ISP that is able to jointly denoise,
correct the exposure, and properly develop a low-light short-exposure image. This problem
was �rst addressed in the paper Learning to see in the Dark [36]. In this paper, the authors
also propose a dataset of real distorted images, where reference images are shot with long
exposure (10s or 30s) and noisy observations with a short exposure (1/10s, 1/25s, 1/30s) with
the same ISO. The long-exposure image is supposed to be noiseless, but it is very prone
to motion. Even if the dataset was acquired in highly controlled conditions, the reference
images are sometimes blurry for outdoor photographs. Despite these limitations in the image
dataset, the learned network (an Unet-like architecture) produces surprisingly good-looking
images. Similarly, the DeepISP paper [170] also supplies both a dataset and a network to
jointly restore and develop low-light smartphone images.

(a) Example of the Results of PyNET [85]
JPEG Output of the camera  RAW image  developed  Restored with LSID

(b) Example of the Results of Learning to See in the Dark [38]

Figure III.7: Examples of ISP replacement by neural networks

Even if acquiring real data allows us to learn the true restoration for a distortion model,
it is really cumbersome. Moreover, the learned model does not necessarily generalize to new
acquisition systems that were not present in the training dataset. In order to circumvent
the burden of data acquisition, we present next methods that aim at realistically mimicking
real-world distortions.

Physically based distortion models. As explained in Section II.1.1, an image undergoes
many distortions during the acquisition and its processing. Simple distortion models such as
Gaussian noise and Gaussian blur do not �t real-world conditions, and CNNs trained based
on this assumption fail to restore real data. That is why carefully modeling the distortion
process is required. When it comes to noise, a standard approximation of the shot noise and
the read noise in the RAW domain is a heteroscedastic Poisson-Gaussian model [57]. From
the law of large numbers, a Poisson law can indeed be approximated with a Gaussian law. In
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theory, a noisy image y follows: y „ N (x,λ.x+ σ2) where λ,σ both depend on the ISO of
the sensor. These noise parameters are sometimes given by the camera manufacturer or can
be estimated with quite simple procedures. This approximation is widely employed to model
raw noise and has led to quite good models for image denoising, see for instance [74, 24, 196,
150, 54], and many more references. Another interesting strategy is to apply a variance
stabilizing transformation to the image, such as the Anscombe transform [12], which makes
the noise quasi-signal-independent. In this set-up, it is possible to train a denoising network
with additive white Gaussian noise in order to properly denoise real noisy images, see for
example [184, 209]. The results are still not as good as with properly modeled noise.

Having such a noise model alleviates the need to acquire noisy-clean pairs of RAW im-
ages. The general practice is to add a synthetic noise to RAW images and train a network
to minimize the L1 distance between the RAW image and the network’s output. For RAW
images, the 0-1 clipping implies an o�set in the small values, making the noise non-centered.
This operation does not a�ect the median value, which is why it is chosen as the objective
statistics. Many datasets of single RAW images are available such as the Adobe 5K dataset
[31], the RAISE dataset [45], and all the previously mentioned paired datasets.

Some papers show that RAW images are not necessary to train good RAW image denois-
ers. Speci�cally, Brooks et al. [24] train a RAW image denoiser with a dataset of RGB images.
They propose an approximate unprocessing algorithm, which inverts every standard step of
a camera ISP to an arti�cial RAW domain. Noise is then added following the Poisson Gaus-
sian approximation. In order to account for di�erent cameras and imaging conditions, the
authors generate noise with randomly sampled parameters, following an estimated distri-
bution of noise parameters on the DND dataset. This random parameters sampling strategy
is also applied for inverting white balance and other steps of the ISP. With synthetic RAW
and noisy synthetic images, the authors could train a RAW-to-RAW denoising network with
performances competing with state-of-the-art methods. Similarly, CycleISP[196] proposes
to learn an RGB-2-RAW mapping instead of explicitly inverting the ISP step by step.

The noise model presented above is still an approximation of the real noise. When dealing
with more di�cult tasks such as low-light image enhancement, the slightest error in the
distortion model has dramatic e�ects. This is why Wei et al. [190] proposed a more advanced
RAW noise model. The goal is to solve the Learning to see in the dark[36] problem without
pairs of real images. Having a long exposure clean imageX , the short exposure noisy image
Y is modeled with the following formula:

Y =
X

γ
+Nshot

(
X

γ

)
+Nread +Nband +Nquant,

γ being the time exposure ratio. The shot noise Nshot is modeled by means of an exact
Poisson distribution since the law of large numbers does not apply when dealing with ex-
tremely low-light images. The read noise Nread is modeled by means of an uncentered
Tukey-Lambda distribution (a more heavy-tailed distribution than the Gaussian). The au-
thors also include a banding pattern noise Nband, which appears in low light, adding a ran-
dom Gaussian o�set to each sensor line. All of these noises are parametrized depending
on the ISO. The paper also presents an interesting noise parameters estimation procedure,
supposing to have access to the camera. However, the authors do not provide the estimated
parameters, which prevents one from reproducing their results. This paper shows impres-
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sive results, and the authors claim to outperform the network trained with real noisy/clean
image pairs.

A key takeaway of the literature is that the more realistic distortions a network are
trained for, the better it generalizes to unseen distortions [199, 203, 202]. Next, we will
see that it is possible to learn realistic distortion without a physical prior.

Learning the distortion process. Rather than explicitly modeling the distortion with phys-
ical priors, some authors propose to learn the model. Chen et al. were the �rst to do so [38],
using a GAN as a realistic RGB noise generator. This paper proposes to learn a noise gen-
erator based on a dataset of noise patches extracted from a dataset of real noisy images.
The network takes as input a Gaussian noise patch and outputs a supposed realistic noise
patch. This noise patch is then added to an image to form noisy/clean pairs to train a de-
noising network similar to DnCNN. Even though the results are good, this method is highly
questionable: �rst, the noise extraction method used only extracts noise patches from ho-
mogeneous images; second, the authors suppose that noise is signal-independent, which is
clearly not the case. As an improvement to this technique, Kim et al. [97] righteously propose
to condition the noise generator with the clean patch and other metadata such as the ISO,
the shutter speed, etc. This makes the noise generator signal dependent. In contrast with
the previously mentioned reference [38], this method requires to have access to a dataset of
real noisy/clean pairs. Jang et al. propose a very similar approach but train the GAN with a
Wasserstein Loss, which allows the noise distributions to be more accurately modeled [90].
Instead of using GANs as a noise generator, Abdelhamed et al. propose to use Conditional
Normalizing Flows in the NoiseFlow paper [1]. This model is conditioned upon even more
metadata, such as the camera constructor and the digital gain. It is also quite compact, having
less than 2500 parameters, but still produces very realistic noise. The authors indeed show
that the Kullback-Leibler divergence between generated noise and real noise is reduced by
modeling noise with NoiseFlow instead of using a Poisson Gaussian approximation with
estimated parameters. The trained denoising network even outperforms the model trained
with real data, probably because the NoiseFlow model allows the generation of an arbitrary
quantity of realistic samples. This approach was recently extended to modeling noise in the
SRGB domain [102]. The sRGB noise is locally correlated and has a much more complex
distribution than in the RAW domain. The trained model also achieves quite good results in
sRGB image denoising.

III.2 Synthetic training in deep learning

In the previous section, we showed that training real-world image restoration with a syn-
thetic distortion model is possible. Nevertheless, all these methods use natural images as a
starting point to form their dataset. In the present dissertation, one of the goals is to circum-
vent the need for such datasets by training networks with arti�cially generated data that
would generalize well to unseen natural images. To the best of our knowledge, the works
published during this doctoral program were the �rst to address image restoration problems
with such methods. However, synthetic image models have already been used as training
sets for other computer vision tasks. We can divide them into three categories: 3D-rendered
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images requiring human design, images generated with neural networks, which initially re-
quired a large set of natural images to be trained, and random image processes which require
no human supervision.

Training with 3D rendered images. 3D-rendered scenes are frequently used to either pre-
train or fully train computer vision models for tasks where 3D information is crucial. That
is why they are mostly used in optical �ow or depth estimation methods. For these tasks,
the displacement map or the depth map can be directly obtained from the rendering model,
making the computation of ground truth data rather easy. These maps are hard to obtain in
real-world conditions because they require expensive hardware or heavy processing.

Along a CNN optical �ow estimator, Dosovitskiy et al. �rst presented a synthetic 3D
dataset called Flying Chairs, which, as expected, contains images of chairs �ying all over the
scenes [53]. More realistic 3D rendered datasets were proposed, such as Sintel, a realistic
opensource animated movie, where depth maps and displacement maps are available for ev-
ery frame [30]. Mayer et al. proposed an even larger set composed of scenes of �ying objects,
an unrealistic Blender-generated animated movie, and a realistic set of Blender-generated
scenes of driving cars [134]. Though realism is intuitively a desired property for generaliza-
tion purposes, it seems that it is not the most important feature. According to the study of
Mayer et al. [133], diversity in shapes and types of motions is the most important ingredient
for good performances in optical �ow estimation.

3D-rendered scenes can be useful for higher-level tasks such as semantic segmentation.
With the emergence of autonomous driving, there has been a great interest in using deep
learning architectures to segment the car’s surroundings automatically. Annotated data is
hard to obtain, thus explaining the interest in synthesizing diverse and realistic data. To that
end, a dataset of annotated videos from the Gran Theft Auto game was acquired, where a
player can drive a car in a realistic urban environment with interactions with other cars,
pedestrians, and road signs [161]. Similarly, the Synthia dataset proposes its own virtual
world simulator, from which the authors of [165] also acquire a large dataset for semantic
segmentation. The previously mentioned datasets have been extensively used to either pre-
train a network or as a data augmentation tool for real-world semantic segmentation for
self-driving cars, greatly improving the results when real data is scarce. Example of these
datasets are presented in Fig. III.8.

Though the �rst unrealistic synthetic sets were useful for low-level vision tasks such
as optical �ow estimation, higher-level vision tasks such as semantic segmentation require
much more realism. This is achieved by a careful and time-consuming modeling of the
scenes, with advanced rendering techniques and extensive human supervision by artists.
We will see next that realism can be achieved by leveraging the learned representation of
natural data.

Trainingwith data generated by neural networksConsidering the recent improvements
in realistic image generations with GANs [72], normalizing �ows [101], or di�usion mod-
els [82], it seems very appealing to use such models for data augmentation or pre-training.
Since it is also di�cult to quantitatively evaluate the quality of generated images, a recent
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(a) Flying chairs dataset [53] (b) Moonka dataset [134] (c) Syntel dataset [30]

(d) SYNTHIA dataset [165] (e) GTA dataset [161]

Figure III.8: Di�erent examples of human designed 3D rendered scenes for synthetic training

idea was to evaluate the capacity of generative methods by training an image classi�er on the
generated data and report the classi�cation score as the evaluation metric [171, 157]. These
papers showed that although the images generated by BIgGAN (a large-scaled image gener-
ative network presented in[23]) are realistic, they are not diverse enough to e�ciently train
a classi�cation network, echoing the remarks made for optical �ow estimation. Nonetheless,
Besnier et al. showed that continuously resampling data during training instead of gener-
ating a �xed set greatly improves the results [19], reducing the gap with classically trained
methods.

While the results are still not as good in a supervised training setup, GAN-trained net-
works are very competitive in an unsupervised or semi-supervised set up. For unsupervised
semantic segmentations, it was shown that annotations could be extracted from the latent
space of GANs. This property eased the training of segmentation networks, reaching state-
of-the-art performances in unsupervised learning [135, 208].

Since generative models seem useful for performing data augmentation, they were nat-
urally used for contrastive learning. The �eld of contrastive learning aims at pre-training
a network from unannotated data by applying diverse data augmentation techniques to a
single image. By bringing closer the embedding of di�erent views of a single image obtained
with di�erent distortions by optimizing a contrastive loss, the learned neural network can
learn useful discriminative features. The last layer of the pre-trained network can then be
speci�cally trained on a small set of real data [39]. This �netuning leads to very good per-
formances, which would have been unreachable with a small quantity of annotated data.
However, most augmentations are very basic and unrealistic transforms. Jahanian et al. pro-
pose to create a realistic multi-view of a single scene with the help of GANs [88]. This is
done by sampling in the latent space close to the representation of a single object in order
to get much more realistic views.

Generative networks have been used as a data augmentation tool for many other tasks
beyond computer vision, in chemistry material simulation [44], or medical data generation
[144]. However, It was recently shown that even though GANs produce realistic images, they
experience di�culties reproducing multi-modal distributions [169], partially explaining the
lack of diversity in the generated images. To the best of our knowledge, di�usion models,
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which better handle multi-modal distribution, have not yet been used as a data generation
tool for training neural networks.

Even if pre-training with generated data leads to good performances, training a GAN
requires very large amounts of natural data. In the following paragraph, we will address
methods completely agnostic of natural data or human design.

Training with arti�cial random processes. When it comes to training a neural network
without realistic data either obtained with generative models or human-designed realistic
scenes, the literature is quite scarce. Kataoka et al. proposed to use formula-based fractals
to pre-train neural networks [93]. The underlying justi�cation for this choice is that fractals
mimic the properties of natural objects. The authors derive fractals of di�erent categories by
slightly varying the parameters of a formula-based fractal material. Having multiple samples
of varying aspects for a single arti�cial class, Kataoka et al. were able to learn a classi�cation
network. The trained network then serves as the initialization for �netuning on real data.
Even though the results are not as good as pre-training with natural images for some tasks, it
is still often much better than training a network from scratch with limited amounts of data.
Nakashima et al. further extended this work to pre-training visual transformers, improving
their models by adding color [139].

(a) Diverse synthetic images for contrastive
learning [17]

(b) Multiple examples of a single fractal cat-
egory [93]

Figure III.9: Examples of synthetic image processes used for training

Recently Baradad et al. investigated which random image processes produced better
results in a contrastive learning framework [17]. The processes included a variety of dead
leaves models, statistical texture models, and hidden representations of an untrained neural
network. They report that even though naturalism is crucial to pre-train natural-image-
based tasks, it is not as important for specialized tasks (such as medical image analysis) or
structure tasks that require an understanding of geometry and shapes.

Inspired by our work [6], Madhusudana et al. used 3D Dead Leaves images generated
with Blender to train an optical �ow and disparity estimator [128]. Madhusudana et al.
extended the use of dead leaves images to train an image quality assessment metric in a
contrastive setting [127].
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To the best of our knowledge, the works presented in this dissertation are the �rst to
propose training image restoration networks on synthetically generated data.
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IV Dead leaves images: a
synthetic image prior for
simple image restoration
tasks

IV.1 Introduction

Before the advent of deep neural methods for image restoration tasks, most approaches relied
on relatively lightweight and explicit image priors. As presented in Section II.2, the use of
total variation [167] as a regularization term is a consequence of a Laplacian prior on image
gradients. Methods involving wavelet shrinkage [51] assume a regularity prior on wavelet
coe�cients related to Besov spaces. Non-local methods [26] rely on an auto-similarity hy-
pothesis.

More recently, deep neural networks have achieved impressive results in all �elds of
image restoration: denoising, single image super-resolution, deconvolution, etc. In order
to achieve such results, networks need to be trained on voluminous image databases. The
resulting trained networks can be interpreted as image priors, even though it has been shown
that the mere structure of networks can already be considered a prior [177]. In any case,
such priors are non-explicit and involve a huge number of parameters. They also need to be
retrained for each new acquisition conditions or speci�c imaging device [36].

In this chapter, we show that trainings on large image databases can be e�ciently re-
placed by trainings on synthetic images. To achieve this, we rely on a mathematical model
that is physically grounded and depends only on a few parameters, the scaling dead leaves
model [10, 112, 73], which combines an occlusion-based dead leaves model with a scaling
size distribution for objects. This model o�ers a good balance between simplicity and accu-
racy in accounting for natural images statistics. Moreover, we show that this model can be
e�ciently combined with natural image databases to enhance the capacity of deep neural
networks to preserve details, without impairing their classical performance evaluation.

We believe that such a study both sheds light on the way convolutional neural networks
can address restoration problems and opens interesting perspectives. First, this result shows
that the mere structure of such networks is adapted to image restoration tasks and that
despite their huge number of parameters they can be made near-optimal from just a few
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principles and hyper-parameters. This result, and the fact that simpler, less structured mod-
els cannot achieve satisfying restoration performance, also highlights the type of geometric
structures a neural network needs to see to be e�ciently trained. Second, the proposed learn-
ing database has the potential to be modi�ed according to speci�c acquisition devices and in
particular to their point spread function, dynamic range, noise modality, etc. This opens the
way to �exible, generic and relatively light learning schemes.

This chapter is organized as follows. We �rst de�ne the dead leaves model and explain
how it is used to generate synthetic databases in the following section. We then present
the results of our synthetic training of an image restoration network in Section IV.3. In this
experimental section, we justify the choice of each component of our generation’s algorithm
by performing an ablation study. We then show how the same network can be trained with
both natural images and synthetic images without impairing its performances on natural
images. We then show our model’s versatility on one other restoration task: single-image
super-resolution.

IV.2 Dead leaves images

The dead leaves model was originally introduced by the mathematical morphology school,
with the aim of modeling porous media [132]. Despite being a particularly simple model, it
was later shown to account for many statistics of natural images [10, 112]. Its structure is
inherited from the sequential superimposition of random shapes, thereby mimicking a sim-
pli�ed image formation process, in which closer objects hide further ones. In this section, we
�rst recall the mathematical de�nition of the model [20, 73], before detailing the algorithm
and parameters that we will use to generate a synthetic image training dataset.

IV.2.1 The continuous dead leaves model

The dead leaves model is de�ned from a set of random positions, times and shapes
t(xi, ti,Xi)iPN, with P =

ř
δxi,ti a stationary Poisson process on R2 ˆ (´8, 0] and the

Xi are random sets of R2 that are independent of P . The sets xi +Xi are called leaves and
for each i, the visible part of the leaf is de�ned as

Vi = (xi +Xi)z
ď

tjP(ti,0)
(xj +Xj),

where by de�nition AzB = A X Bc, with Bc the complementary set of B. That is, the
visible part of leaf (xi, ti,Xi) is obtained by removing from this leaf all leaves xj +Xj that
are indexed by a time tj greater than ti (that falls after it). The dead leaves model is then a
tessellation of the plane, de�ned as the collection of all visible parts. A random image can
be obtained from this tessellation by assigning a random color to each visible part. In the
following of this paper, the term dead leaves model will refer to this random image. Examples
of dead leaves models can be seen in �gure IV.2. The example in Figure IV.2a is a simple
example where the leaves are disks with constant radius. Such a model (only depending
on one parameter, the disk size) already mimics two important property of natural images,
namely the presence of edges and homogeneous area. Nevertheless, it lacks details.
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In order to get more faithful synthetic images, it has been shown that one could use power
functions for the distribution of objects sizes [10, 112]. This way, the resulting images inherits
scaling property and have been shown to reproduce many statistical properties of natural
images. Such models are obtained by considering random leaves R.X , where X is a given
shape and R is a real random variable with density f(r) = C.r´α, with C a normalizing
constant. The case α = 3 corresponds to a scale invariant model [112]. In order for such
models to be well de�ned, values of R have to be restricted to values in (rmin, rmax) [73],
resulting in a model with 3 parameters: rmin, rmax and α.

This model is especially appealing for natural images, because it incorporates two of
their most fundamental property, non Gaussianity (as a result of edges) and scaling prop-
erties [138], in a very simple setting. Because this model contains details and edges at all
scales, potentially of arbitrary contrast, it has been proposed as a tool for the evaluation
of the ability of imaging devices to respect textures [32, 33] and was recently retained as a
standard for quality evaluation [87].

IV.2.2 The generation algorithm

Algorithm 1: Dead leaves image generation algorithm
Parameters: (rmin, rmax,α,w), color_image
Output : X
mask = ones(w,w);
X = zeros(w,w, 3);
while ||mask || ą 0 do

tmp = r1´α
max + (r1´α

min ´ r1´α
max)ˆrandom();

r = tmp´
1

α´1 ;
x,y = randint(0,w), randint(0,w);
color = color_image(randint(0,w), randint(0,w));
new_disk = disk(r, color);
X = update_image(X, x, y, new_disk);
mask = update_mask(mask, r, x, y);

end
X = downscale(X,5).

We now detail how to generate digital samples of the dead leaves model, following the
procedure summarized in Algorithm 1. At each step, a random discrete disk of radius r and
center (x, y) is generated as the set of discrete positions satisfying the corresponding disk
equation. Centers are uniformly distributed in the image domain and radiuses are distributed
according to a power law density with exponent α, as discussed in the previous paragraph.
Radiuses are limited between rmin and rmax. To generate the image, we rely on a perfect
simulation technique [95] and sequentially put the disks below the previously drawn disks,
until the image domain has been fully covered. That is, at each step, pixels which have not
been colored yet are given the color of the disk added at this step. The choice of the disk color
will be shortly discussed. The used de�nition of discrete disk is crude and in particular does
not include any anti-aliasing scheme. Therefore we �rst generate a large image that is then
downsampled by a factor 5 after convolution with a Gaussian �lter with σ = 5/3 (roughly
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ensuring Shannon conditions). This step is a critical component of our algorithm. It allows
for sub-pixel sized objects and for more natural boundaries. In Fig. IV.1a, we display a full
size (2000,2000) dead leaves image before downsampling. A (20,20) crop on that same image
(see Fig. IV.1b) exhibit very sharp boundaries and piecewise constant zones. A (20,20) crop
on the downsampled image has a more realistic aspect (see Fig.IV.1b). The whole procedure
can be seen as a very simple simulation of the camera acquisition of a dead leaves model
with tiny objects.

(a) (2000,2000) image (b) (20,20) crop (c) (20,20) crop after down
sampling

Figure IV.1: Illustration of the down sampling step

Color sampling. Our aim is to produce synthetic image databases accounting for the statis-
tics of natural images. In particular, the marginal of color distribution should be as faithful
as possible. In order to do so, we sample the colors of disks from natural image databases. As
we shall see, this yields better restoration performance than sampling colors uniformly in
the RGB cube. We can see in Fig. IV.2 that Fig. IV.2c,Fig. IV.2d have more realistic colors than
Fig. IV.2b (uniform distribution prior on colors). In fact, for each generated dead leave image,
we sample the colors from a single natural image. This yields more coherence in the color of
the generated images and also improves performance. This last fact is indeed an interesting
observation, since it suggests that neural networks bene�t from color combinations that are
likely to be encountered in natural images. We will study this coloring procedure in detail
in Chapter VI, in which we propose a data-agnostic alternative.
Size parameters. Since the shape of the leaves is �xed in our model (these are disks) the
geometry of the generated images is solely controlled by the parameters of the size distri-
bution, rmin, rmax,α. Images generated with di�erent parameters can be seen in Fig. IV.2.
As we can see, at �xed α = 3 and rmax = 2000, the visual appearance strongly depends
on the value of rmin. A large value of rmin yields structured images, with visible edges
and homogeneous zones, whereas smaller rmin yields texture-like, cluttered images (see
Fig. IV.2e,Fig. IV.2f). Similar observations can be made when varying the scale parameter
α (see Fig. IV.2g,Fig. IV.2h). In our experiment, we chose the value α = 3, which corre-
sponds to scale-invariance. We also chose to �x rmax and to vary only rmin, which enables
to set the structure/texture balance of the image.
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(a) r = 100 (b) random colors (c) natural colors

(d) natural colors (e) rmin = 20 (f) rmin = 1

(g) α = 2.0 (h) α = 3.0

Figure IV.2: Dead leaves images generated with di�erent parameters.

IV.3 Experimental results

In this experimental section, we �rst introduce the synthetic image dataset we consider. We
then analyze and compare, numerically and qualitatively, the performance obtained when
using only synthetic images, only natural images or a mix of both. To assess the relevance
of some important features of our generation algorithm, we perform an ablation study in
which we train FFDNet on a dataset of dead leaves images generated without particular
components of the synthesis method described in Section IV.2. Finally, we illustrate the
versatility of the proposed dataset by training the super-resolution network RDN [207].

Dead leaves dataset. In order to account for both homogenous areas and micro-textures,
we build a dataset made of images generated with either rmin = 1 or rmin = 16, in both
cases combined with parameters α = 3.0 and rmax = 2000. Micro-textures being harder to

51



IV.3. Experimental results

restore than homogeneous areas, we chose to have a 2 to 1 ratio between the two possible
rmin values. The color distribution of the disks is given by the histograms of the natural
images from the Waterloo database [126]. As shown previously, this leads to a more coherent
color distribution than randomly sampling the RGB cube. Finally, we decided to apply a
Gaussian blur to a 10th of the dataset, with a standard deviation uniformly sampled between
1 and 3. Indeed, most natural images tend to contain blurry zones due to the depth-of-�eld
of cameras. By adding a very simple blur model to some of the images of the dataset, we
expect blurry areas in natural images to be better restored.

IV.3.1 Denoising results

In order to assess the capacity of the proposed synthetic dataset to succesfully train a de-
noising network, we consider the network FFDNet. It is a state-of-the-art image denoising
CNN, which was introduced by Zhang et al. [202] and thoroughly examined in [175]. Its
main speci�city relies in the �rst layer of the network: to increase the receptive �eld and to
handle a wide range of noise levels, the image is divided in four sub-images which are con-
catenated to a noise map indicating the local noise standard deviation. This tensor is then
passed through a more classic network of batch normalized convolutional layers, with an
architecture similar to that of DNCNN’s [200]. It then outputs the four denoised sub-images,
which are reassembled to create the �nal denoised image.

(a) Fixed radius DL (b) Multi-scale DL (c) Gaussian random �elds

(d) White Noise (e) Natural dataset (f) Mixed dataset

Figure IV.3: Example of images of the di�erent training datasets.

FFDNet results. To compare di�erent trainings fairly, we use the same optimization
algorithm for all trainings. It consists of 80 epochs with the Adam optimizer and the L2
loss, starting with a 10´3 learning rate lr . There is a decay of factor 10 at epoch 50 (lr =

10´4), and another decay of factor 100 at epoch 60 (lr = 10´6). For each training, we
used 350k (50, 50, 3) patches, extracted from either the dead leaves dataset, or the natural
image dataset, or a mix of both. The mixed dataset contains 1

3 dead leaves images, and 2
3

natural images. To show that scaling properties are needed to model natural images, we
also trained FFDNet on dead leaves images generated from disks with a �xed radius of 100.
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In addition, we also consider two alternative training schemes from datasets of synthetic
images: white noise images and Gaussian random �elds [60]. We give examples of di�erent
training sets we used in Fig. IV.3. Numerical evaluation is performed on 2 test sets of natural
images (CBSD68, Kodak24) and one set of 24 dead leaves images, generated from the colors
of Kodak24. For each test, we compute the average PSNR, SSIM [187] and PieAPP metric
[152], a recent perceptual metric based on human annotation, which tends to �t very well
with human perception.

Table IV.1: Numerical comparisons of the di�erent trainings of FFDNet. We evaluated the
results on two benchmark datasets for image denoising (CBSD68 and Kodak24), and our dead
leaves testset, at two noise levels. Each cell contains the triplet PSNR/SSIM/PieAPP. The best
results are in blue, the second in red.

σ Dataset CBSD68 Kodak24 Dead leaves testset

σ = 25

White Noise 19.52/0.416/2.386 19.68/0.365/2.502 20.36/0.607/2.043
Gaussian �eld 29.63/0.845/1.402 30.24/0.835/1.471 26.23/0.826/1.254
DL r = 100 29.56/0.820/1.218 30.49/0.819/1.024 26.13/0.799/1.263
Dead leaves 30.58/0.867/0.711 31.27/0.859/0.739 27.46/0.865/0.573

Mix 31.07/0.881/0.639 31.98/0.876/0.603 27.33/0.860/0.567
Natural Images 31.09/0.882/0.629 32.00/0.878/0.599 27.05/0.851/0.576

σ = 50

White Noise 15.58/0.247/4.682 15.71/0.209/4.785 16.24/0.387/2.932
Gaussian �eld 26.68/0.738/2.203 27.41/0.737/2.353 23.31/0.694/2.158
DL r = 100 26.85/0.720/1.563 27.91/0.739/1.314 23.24/0.654/2.005
Dead leaves 27.40/0.762/1.088 28.21/0.765/1.154 24.21/0.737/1.020

Mix 27.86/0.782/0.997 28.86/0.789/0.985 24.12/0.732/1.015
Natural Images 27.87/0.786/0.991 28.89/0.792/0.978 23.90/0.722/1.053

On both natural image testsets and on the dead leaves testset, we observe that the model
trained on dead leaves outperforms by a large margin all other models trained on alternative
synthetic image datasets (0.9db for the Gaussian model and, without surprise, 11 dB for
the white noise model), see Table IV.1. Visually, the Gaussian �eld model leads to denoised
images still containing noise and grid-like artifacts, which severely impact the PieAPP metric.
Observe that for both image models of white noise and Gaussian noise, the optimal solution
is known and given by the Wiener �lter (multiplication by a constant in the �rst case and
linear �ltering in the second). It is interesting to note that the network did not learn to apply
this theoretical optimal solution to natural images in either cases. Con�rming our intuition
that an image model with scaling properties is needed, the dead leaves model with a �xed
radius tends to strongly over-smooth the image, thus losing all texture information. This
amounts to a loss of 0.65 dB on natural image testsets, and 1.2 dB on dead leaves images.

More surprisingly, the model trained exclusively on dead leaves images performs only
0.6dB lower than the model classically trained on natural images. Visually, the results are
still almost as good, despite some limitations. In particular, the synthetically trained model
has some di�culties with thin and low contrast lines, and occasionally creates dot artifacts.
In other situations, the synthetic training improves the results, as can be seen in Fig. IV.4,
where the texture of the rusty artwork is quite well restored, with a better preservation of
�ne details than with the model trained on natural images. Another very interesting result
is the fact that training on a mix of dead leaves images and natural images does not a�ect
the result of the denoising model on testsets of natural images, the di�erence in PSNR being
less than 0.02dB. Visually, the results are almost identical, with a slight advantage for the
mixed trained model on texture areas. On the dead leaves test set, the mixed trained model
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Figure IV.4: Denoising comparison with di�erent FFDNet trainings. Top row from left to
right: clean image, noisy image with σ = 25, model trained on white noise, model trained
on Gaussian �elds. Bottom row from left to right: model trained on dead leaves images with
�xed radius r = 100, model trained on the dead leaves dataset, model trained on the mixed
dataset, model trained on natural images.

clearly outperforms the natural image trained model by 0.25dB. This result suggests that
jointly optimizing the response to this kind of mixed datasets has the ability to increase
some aspects on which imaging devices are evaluated. Indeed the scaling dead leaves model
is classically used to evaluate the ability of imaging devices to preserve texture areas [32,
33] and the corresponding scale-invariant test chart has recently become an ISO standard
(ISO/TS 19567-2:2019).

Ablation study. To con�rm the choices made to build the synthetic dataset, we compare
di�erent trainings performed with di�erent parameters or design choices, both visually and
numerically.

We �rst illustrate the impact of rmin on the denoising results. As shown in Fig. IV.5,
the smaller the rmin, the better micro-textures are restored. Conversely, they are smoothed
when rmin gets larger. On the other hand, homogeneous zones contain artifacts when rmin
is too small, and are well restored when rmin is larger. This behaviour is expected since a
large rmin leads to dead leaves images with homogeneous zones, and a small rmin to more
micro-textures zones. Referring to Table IV.2, the optimal rmin seems to be between 4 and
8. However, by mixing images generated with rmin = 1 and rmin = 16, we get a noticeable
improvement in PSNR (0.17dB) and in image quality, as can be seen in Fig. IV.5.

Other important features of our algorithm are: the color distribution, the downscaling
step, and the blur. As we can see in Fig. IV.5, when we sample the disks colors uniformally
in the RGB cube, the denoised images show many color artifacts. The additive Gaussian
noise creates unnatural colors that the network doesn’t identify as such, since it has not
been trained on images with natural colors. This leads to a performance gap of more than
1 dB in PSNR. The downscaling step is also critical, as it allows sub-pixel sized objects and
more natural boundaries. In Fig. IV.5, we can see that the network trained on the dead leaves

54



IV.3. Experimental results

Table IV.2: Impact of the parameters and ablation study. For each cell, we report the PSNR of
the model tested on the Kodak24 dataset. In the �rst 5 columns(DL1 to DL16), we �xed the
parameters to rmax = 2000, α = 3.0, with natural colors and the downscaling step. From
column 6 to 8, we keep the same parameters as in the �nal dataset, but we remove some
important features of the generation. The last column corresponds to the �nal result.

σ DL-1 DL-2 DL-4 DL-8 DL-16 Rand. col No sub No blur Final
25 31.03 31.03 31.09 31.07 30.98 29.99 30.79 31.25 31.27
50 27.98 27.96 28.04 28.06 28.05 27.16 27.74 28.20 28.21

dataset without subsampling tends to over-smooth texture areas, and to produce stair-casing
artifacts. We can also identify some disk-like objects with hard boundaries in the images,
creating an unnatural aspect. In terms of PSNR, this amounts to a loss of 0.5 dB compared to
the training on our �nal dead leaves dataset. For the �nal synthetic dataset, we decided to
blur 10 % of images. As we can see in Table IV.2, removing this step has almost no impact on
the PSNR. Nonetheless, we observe in Fig. IV.5 that removing this step makes blurry zones
look sharper than they really are. Overall, the �nal dead leaves dataset yields better results,
numerically and visually, than the ablated datasets.

IV.3.2 Single-image super-resolution

Network and Training. Next, we turn to the task of super resolution. We chose to retrain
the Residual Dense Network (RDN)[207], a classical super-resolution network. Its architec-
ture is based on residual dense blocks, a combination of dense blocks introduced in [83] and
residual connections. The model trained on dead leaves (DL-RDN) is trained with the same
dataset used for AWGN removal. The model trained on natural images (called Nat-RDN) is
trained on a portion of the DIV2K dataset. The training is performed for 800 epochs with a
batch-size of 16. We optimize the L1 distance between the predicted image and the high res-
olution ground truth with the ADAM optimizer. We based our experiments on an un-o�cial
yet exact github implementation.1

The numerical evaluation shows a similar behaviour to the one observed for AWGN
removal presented in Section IV.3.1. The loss in performance when using the dead leaves
model is of 1.2dB and 0.6dB for a super-resolution of scale 2 and 3 respectively. The results
on the Set5 and Set14 datasets, which are common benchmarks for super-resolution, are
given in Table IV.3.

Table IV.3: Numerical evaluation of the super-resolution results. We report the PSNR of RDN
trained either on the dead leaves dataset or on the DIV2K dataset [8].

Dataset Set 5 Set 14
scale ˆ2 ˆ3 ˆ2 ˆ3

Dead leaves 36.76 33.82 32.93 30.42
Natural Images 38.18 34.71 33.88 30.73

Visually, the super-resolution results are similar between the two trainings as we can see
in Fig. IV.6. Looking closer to the details of the restored images, we see that the output of
DL-RDN tends to reproduce better the white dots in the butter�y wing and the texture of

1https://github.com/yjn870/RDN-pytorch
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Figure IV.5: Visual illustration of the ablation study. From left to right: top line: clean image,
noisy image, rmin = 1, , /center line: rmin = 4, rmin = 16, no subsampling / bottom line:
uniform color distribution, no blur, �nal result.

the bird’s beak. Conversely, the thin lines in the yellow regions of the butter�y wing have
a "dotted" aspect in the DL-RDN image, whereas they are properly restored in the Nat-RDN
image. Indeed, the dead leaves model does not contain any straight and thin lines, making
it harder for this model to retrieve them. Enriching the dead leaves model with elongated
shapes or adding di�erent local structures in the training are perspectives to solve this issue.

IV.4 Conclusion and Perspectives

To the best of our knowledge, this work is the �rst e�ort to train an image restoration net-
work on synthetic images. After introducing the dead leaves model and its digital imple-
mentation, we carefully studied the role of each component of the image generation method,
and their impact on the restoration performances. Both for denoising and super-resolution,
models trained on our dead leaves dataset are surprisingly close to those trained on natural
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Figure IV.6: Visual comparison between the two di�erently trained RDN approaches, to-
gether with a simple super resolution baseline, for a zoom factor of 3. From left to right:
High resolution image, Bicubic interpolation, RDN trained on dead leaves images, and RDN
trained on natural images.

images. When mixing natural and synthetic images in the training, the results reach per-
formances on par with the model trained on natural images only. Both results indicate that
the dead leaves model with scaling properties is a good candidate to replace natural images
for training, with only a few parameters. Indeed, the geometry of the model only depends
on three parameters: α, rmin, rmax. Even though the color parameters are still relatively
numerous, we investigated, in chapter VI, simpler color sampling procedures based on a sta-
tistical study of the colors in natural images. Another perspective would be to complement
our dataset with sinusoidal patches to better restore oscillating patches and straight lines.
Eventually we believe, as already explained, that a synthetic dataset can be a simple way to
avoid retraining new imaging devices with relatively heavy acquisition campaigns [36] and
we plan to investigate this ability further.
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V Fully synthetic training for
real world image denoising

V.1 Introduction

In the previous chapter, we experimentally showed that training an image restoration neural
network on synthetic dead leaves images leads to performances nearly as good as if training
on natural images. These results con�rmed that a straightforward synthetic model could en-
capsulate the key ingredients for successfully training an image restoration neural network.
However, the experiences were limited to simpli�ed tasks such as additive white Gaussian
noise removal and single image super-resolution. Such distortion models over-simplify real
distortions. Moreover, as explained in Section III.1.5, neural networks trained with these
distortion models fail to generalize to real-world conditions.

On the other hand, deep learning models for real-world conditions commonly require
real data. Forming a dataset of pairs of clean/distorted images is cumbersome, and com-
puting a ground truth image requires heavy processing [2, 149]. In order to circumvent the
burden of the acquisition process, recent works propose to either accurately model the dis-
tortion process with physically based models [190] or trained neural distortion generators
[1], allowing the generation of an arbitrary amount of distorted data. Going further, Brooks
et al. [24] propose synthesizing RAW data from existing sRGB databases and synthesizing
distortions in an arti�cial RAW domain. Yet, all the denoising models trained with these
distortion models use existing datasets of clean natural images, which need to be acquired.

In order to ease data generation, we address in this chapter the problem of real-world
image restoration by training a CNN with a fully synthetic model. This model is two-fold:
�rst, we generate a large quantity of ground-truth RAW images with a new version of our
dead leaves model, adaptable to di�erent imaging devices. Second, we propose a synthetic
yet accurate distortion model for two restoration tasks in order to generate our distorted data.
These tasks are Smartphone RAW image denoising [2] and low-light image enhancement,
inspired by the paper Learning to See in the Dark [36].
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Our experiments show that a fully synthetic training of image restoration neural net-
works achieve performances on par with the models trained with real data. In some cases,
the visual quality of the obtained results is even better since our ground truth data is truly
undistorted, unlike the ones of real datasets, which are only approximately noiseless. We be-
lieve this work opens the way for lighter training schemes since it completely circumvents
the need for real data acquisition.

This chapter is organized as follows. In Section V.2, we �rst present an adaptation of
the dead leaves model for RAW images, which are much more complex than sRGB images.
Second, we explain in Section V.3 the distortion models for each task and how we estimated
the corresponding noise parameters. We then present the results of our synthetic training
in comparison with real training in Section V.4 before drawing some conclusions.

V.2 Synthetic RAW dead leaves images

In the present section, we present how to generate ground truth synthetic RAW images for
both restoration tasks. The algorithm to generate synthetic Dead Leaves RAW images builds
on Algorithm 1. We propose some modi�cations concerning the color sampling procedure,
as well as an additional mosaicking step.

Coloring procedure. In order to color the leaves of one synthetic image, we sample them
in the colors of a randomly picked RAW image in the original database. We remind the
reader that sampling colors uniformly at random in the RGB cube leads to unnatural colors,
resulting in poor image restoration performances for the trained network.

In an sRGB image, each pixel contains an RGB triplet. This is not the case for RAW
images, for which each pixel either corresponds to a red, a green, or a blue value. A common
transform of a RAW image allows for a representation in a four-channeled image with two
green components, one red, and one blue. The obtained representation allows us to sample
a color quadruplet to color the leaves of our dead leaves images. This representation is
computed thanks to an operation that we call packing. Its procedure is described in Fig. V.1a

(a) Bayer to Tensor operation (b) Tensor to bayer �ltering

Figure V.1: Bayer frame manipulations

Following this color sampling procedure, we synthesize a dead leaves image of size
(4H, 4W , 4) with the same algorithm as for RGB images. It is worth mentioning that the
green components of a single color should be equal. Otherwise, there would be checkerboard
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artifacts on the �nal developed sRGB image. In order to eliminate this behavior, we simply
replace both green components with their average.

Mosaicking step. As for sRGB dead leaves images, we apply blur and downscaling on
the generated image. These operations are included to remove arti�cially sharp boundaries
and to include sub-pixel-sized objects, which we often encounter in natural images. We
also apply blur for antialiasing reasons. The resulting dead leaves tensor has the following
dimension (H,W , 4). In order to go back to the RAW domain, which has only one channel,
we �lter the created tensor following the color �lter array (CFA) of the camera of the source
image, as shown in Fig. V.1b. That is, at each position (x, y) in the array, we only keep
the value of the color at the same position in the Bayer frame. The size of the �nal RAW
dead leaves image is now (H,W , 1), where each pixel value corresponds to a single color
information, as in the Bayer Frame.

Tasks speci�cs. For RAW smartphone images, the resulting dead leaves image is the �nal
ground truth image. In order to learn a RAW denoising network, we will add synthetic
RAW noise to that image to form noisy/clean image pairs. However, for low-light image
enhancement, the goal is to retrieve a properly developed sRGB image. Therefore, we still
need to develop our generated RAW image in an sRGB image. To do so, we encapsulated
our simulated RAW image into a valid RAW �le and precessed it with the DCRAW program.
To generate distorted images, we will use the proposed distortion process to the synthesized
RAW images used to generate the ground truth sRGB image. Fig. V.2 shows an example of
such images.

Dead leaves image generation parameters. To account for textures, homogeneous zones,
and blurry areas, we generated half the images with rmin = 4, and the other half with
rmin = 100. rmax is always set to 2000 and α = 3 to have a scale-invariant dead leaves
model. The reader may notice that these values are higher than for sRGB images. We are
indeed dealing with higher-resolution images than sRGB images, which contain less �ne-
grained details than smaller-resolution images. Because of the Bayer frame structure, it is
indeed a common practice for camera manufacturers to include a low pass �lter before the
sampling stage, to prevent aliasing.

This is why we chose to increase the rmin parameter. We applied a Gaussian blur to one
third of the images with a kernel standard deviation uniformly sampled in [1, 3], to better
restore blurred images. The reader might notice that this blur model is an oversimpli�cation
of camera blur. We believe it is still better than not including any blur, and we hope this
could be improved in future works.
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(a) RAW ground truth dead leaves image (b) sRGB image developed with DCRAW

(c) source image developed in an sRGB image

Figure V.2: Examples of a dead leaves images and its source color image for the synthetic set
for low light image enhancement

V.3 Distortion Modeling

V.3.1 RAW smartphone images noise model

V.3.1.1 Noise formula

As we mentioned in Section III.1.5, image-denoising CNNs trained with AWGN fail to de-
noise real noisy images. In the RGB domain, noise is indeed signal-dependent and spatially
correlated. When considering RAW images, the noise is (mostly) i.i.d. but signal-dependent,
making the AWGN model of limited use. For such images, the noise can be modeled with
a signal-dependent component (the shot noise), which accounts for the quantum behavior
of photons, and a signal-invariant component (the read noise), which accounts for all the
electronic noises that mostly occur when measuring the electrons produced by the sensor.
Having a theoretically clean RAW image X , a real observation Y can be written as:

Y = X +Ns(X) +Nr,
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where Ns stands for the shot noise, and Nr for the read noise. A common practice to model
the shot noise is to use a Poisson law. While most papers use the Gaussian-Poisson approx-
imation, [189] showed that it does not stand in low-light conditions.

At the sensor level, let us denote by It the matrix (image) of the expected number of
photons. Due to the Poisson behavior of photons, the number of photons actually measured
is I „ P(It). Note that, contrary to It, I is an integer, which is crucial in the case of
very low-light conditions. 1 In order to retrieve a RAW image from the photon count, I
is multiplied by a digital gain K that depends on the ISO at shooting time. The RAW noisy
image is therefore Y = KI +Nr . Following these equations, we can generate a noisy image
Y from a noiseless imageX by retrieving the initial photon count I = X/K . We can obtain
the noisy simulation of the shot noise with the following equation:

X +Ns(X) „ K ˆP(X/K),

where K depends on the ISO.
The read noise Nr accounts for all electronic noise sources. To generate it, we chose the

Gaussian approximation, the most common and reliable model:

Nr „ N (0,σ2),

where the standard deviation σ also depends on the ISO.
In order to generate our synthetic image dataset, the last step is to estimate the noise

model parameters, which are device-dependent. In the experimental section, we will con-
sider the problem of denoising images from the SIDD dataset [2]. This database comprises
RAW images from 5 phones at di�erent ISOs, in controlled lighting conditions. In order to
estimate the parameters for each device, we use the ground truth images from this database.
These images are obtained by carefully averaging 400 shots of the same scene in identical
conditions. The authors provide noise parameters along each picture but for a Gaussian-
Poisson approximation of the digital noise. Unfortunately, the parameters provided were
also incorrect: for example, the read noise was supposed to be null for some cameras.

V.3.1.2 SIDD dataset noise parameters estimation

The SIDD dataset comprises RAW images taken with �ve phones (iPhone 7, Samsung S6,
Google Pixel 3, LG 4, Nexus 6) at di�erent ISOs in di�erent lighting conditions. Each image
comes with a set of noise parameters, but as previously mentioned, these parameters are
inaccurate. Therefore, we estimate the noise parameters for each existing (phone, ISO) pair
in the original dataset.

For each (phone, ISO) pair (P , I), we collect all the corresponding images in the dataset
in a subset DP ,I . For each image in DP ,I we estimate two noise parameters (K,σ) per
channel. Our estimation method is based on simple properties of the Poisson law. Let us
consider X a clean reference and Y its noisy counterpart. Following our noise modeling,
Y „ K ˆ P(X/K) + N (0,σ2). Therefore E[Y ] = X and Var(Y ) = KX + σ2, so
that there is an a�ne relationship between the variance and the expectation of the noisy

1Actually, one has no access to the measure I but to the proportional measure, which is the number of
electrons produced for each digital value.
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observation. A regression model is then used to estimate those parameters. Now, given a
clean and homogeneous patch X of grey level u, we can compute the empirical variance v of
the corresponding noisy patch Y. The pair (u, v) should follow the a�ne relationship. This
reasoning motivates our estimation procedure, which we describe in the following pseudo-
code.

Algorithm 2: Noise parameter estimation for a (P,I) pair
Input :DP ,I
Output: K̂, σ̂2

K,σ2 = list(),list()
for (X,Y ) P DP ,I do

p_clean,p_noisy = EXTRACT_PATCHES(X,Y , 11)
m_clean,v_clean = STATS(p_clean)
m_noisy,v_noisy = STATS(p_noisy)
ind = argsort(v_clean)[0 : N5]
U ,V = m_clean(ind),v_noisy(ind)
model = Theil_Sen_Regressor.fit(U ,V )
if model.score() ą 0.7 then

K.append(model.slope)
σ2.append(model.intercept)

end
end
K̂ = median(K)
σ̂2 = median(σ2)

First, we extract all the patches of size (11, 11) of a clean image X and a noisy image Y.
For each patch, we compute its mean and variance. We select the 5% of the clean patches
with the lowest variance in order to select the ones which are the most homogeneous. We
form a �rst vector U containing the mean of those patches in the clean image. Then, we
form a second vector V containing the variance of the same patches in the noisy image.
Thanks to the pair (U ,V ), we can �t a Theil–Sen regressor to �nd the slope K and the
intercept σ2 of the a�ne line. We chose this regression method because it is more robust
to outliers than the linear regressor. We discard this parameter estimation if the regression
fails to reach a satisfactory score of 0.7. In Fig. V.3, we show an example of the graph (U ,V )

and its regression for an image at ISO 3200 for the Samsung S6.
This method is applied for each image of the DP ,I , yielding many estimates for K and

σ2. To give a unique estimate of these parameters, we select the median of all the estimates
for each parameter. In Fig. V.4, we plot the estimated parameters in a logarithmic scale.
Interestingly, the parameters seem to follow an a�ne rule, as was noted in [24].

To generate a noisy image from a clean RAW image, a small but important detail needs
to be clari�ed. All images in the SIDD dataset are normalized between 0 and 1. However,
Poisson noise is de�ned for integer values. The clean images indeed have an arti�cial �oat
precision since they are obtained by averaging 400 noisy pictures. We �rst quantize the clean
RAW image on N bits to generate Poisson noise, where N depends on the camera. We then
add Poisson noise before normalizing and adding the read noise. The simulated noise is very
close to the real one, as we can see in Fig. V.5.
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0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.00005

0.00010

0.00015

0.00020

0.00025

Figure V.3: In blue, a scattering plot of the local variance against the local mean. In red, the
Theil-Sen regression of these points.
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Figure V.4: Noise parameters of the SIDD dataset. We plot the read noise parameter σ2

against the shot noise parameter K for each phone at di�erent ISOs. The di�erent colors
represent di�erent phones.
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Figure V.5: Histograms per channel of a comparison of the di�erence between a clean and a
noisy image, whether it is a simulation or a real noisy image. The example image was shot
at ISO 3200 with the Samsung S6.
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V.3.2 Low-light image enhancement

V.3.2.1 Distortion Model

In extreme low-light conditions, the noise model becomes more complex. In [189], the au-
thors provide an extensive study of noise in such conditions for the Sonyα7s2 camera, which
was used to collect the See-in-the-Dark dataset [36]. According to them, the shot noise can
still be modeled by a Poisson noise, but the read noise can not be modeled as a zero-mean
Gaussian noise. They model the read noise as a Tukey-Lambda distribution, and estimate its
parameters in a complex protocol. A key ingredient of their success was to add an estimated
o�set µ to their previous zero-mean noise. Since the authors do not provide these parame-
ters, we chose, for simplicity, an uncentered Gaussian approximation of the read noise:

Nr „ N (µ,σ2),

where µ and σ both depend on the ISO. These parameters were estimated with a simple
protocol that we describe next. In low-light conditions, random banding patterns are visible
due to a readout electronic noise. It is modeled by a random o�set added to each row of the
clean RAW image. This banding noiseNb follows a centered Gaussian distribution N (0,σ2

r ),
where σr also depends on the ISO. Finally, the image is quantized, inducing quantization
noise Nq „ U([´1/2, 1/2]). Having X a ground-truth long exposure noiseless image, our
short exposure noisy RAW observation Y follows the following formula:

Y =
X

γ
+Ns

(
X

γ

)
+Nr +Nb +Nq,

where γ corresponds to the ratio of exposure times. In the SID dataset, this ratio is either
100, 250, or 300, depending on the scene. The same factor γ multiplies the short exposure
image at the entrance of the network so that the ground truth image and the input image
have a similar dynamic. That is why the slightest error in the noise model is very costly and
why we need to carefully �t the noise parameters, as we shall see next.

V.3.2.2 See-in-the-Dark noise parameters

To estimate the noise parameters for this task, we adapted the algorithm presented for Smart-
phone RAW noise parameters estimation. In order to validate our estimation, we could also
compare our estimations for some parameters to the one made on the "Photons to Photo"
website 2 [photons2photo]. It provided an estimate for the read noise variance σ2 at dif-
ferent ISOs and the for the shot noise parameter K only for ISO 100. Assuming a linear
relationship between the parameter K and the ISO, this value can be extrapolated to other
ISOs. In the following, we explain how to estimate all parameters. These parameters are
then compared to those available on the "Photons to Photo" when available and to the linear
extrapolation for K .

The estimation algorithm of the shot noise parameters is very similar to the one we used
for the SIDD images. However, the speci�c format of the See-in-the-Dark images and their
dynamic range’s particularity should be considered. These RAW images are indeed coded in

2https://www.photonstophotos.net/
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(d) Read noise parameter estimations at di�erent ISOS.

Figure V.6: Estimation of our shot noise and read noise parameters at di�erent ISO. Compar-
ison of our estimates against Photons to Photo’s

14 bits integers for the Sony α7s2 camera where the black level is set to 512 and the highest
value to 16384. We �rst subtract the black level from the reference and the noisy image.
Then, we divide the reference image by the exposure time ratio to bring it to the dynamic of
the short exposure image. We then run our estimation algorithm for both the digital gain K
and the read noise variance σ2, as presented in the previous section.

We report in Fig. V.6a and Fig. V.6b the estimates of the shot noise gain K and the
read noise variance σ2. As far as the read noise parameter σ2 is concerned, we see
that our estimates are very close to the one provided by the "photons to photo" website
[photons2photo], with a small discrepancy at lower ISOs. For the shot noise parameter,K ,
our estimates di�er a little from the extrapolated values of the website.

In Fig. V.6c, we report our estimates of the read noise mean. For each pair of noisy and
clean images at a �xed ISO, we compute the di�erence between the noisy and the rescaled
clean images. We then compute the mean of this error which gives an estimate of the read
noise mean at each ISO.

To estimate the banding noise parameter for each ISO, we perform similarly as for the
read and shot noise parameter estimation. We select (50,50) patches of low variance in the
clean and noisy images with the lowest possible intensity. Then we compute the mean for
each row. This value corresponds to the mean value of the signal plus the o�set added by
the banding noise. Therefore, we compute the mean’s estimations variance in order to give
an estimate of the banding noise variance. We report our estimates of these parameters at
di�erent ISOs in Fig. V.6d.
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V.4 Experiments

V.4.1 Noise removal on Smartphone RAW images

Network and Training. We consider here the problem of denoising smartphone RAW im-
ages from the SIDD dataset [2]. To denoise RAW images, we adapted the U-Net architecture
to our problem. First, we modi�ed the input layer to transform a Bayer frame into an RGGB
tensor, as shown in Fig. V.1a. This tensor is passed to the convolutional network. Rather
than using transposed convolutions in the decoder part, we preferred a bilinear upsampling
followed by a convolutional layer. This is done to avoid checkerboard artifacts which were
thoroughly investigated in [145]. We also chose a residual approach, meaning that the net-
work outputs a prediction of the noise rather than the clean image. This technique helps to
improve the convergence speed and was also used for FFDNet.

To train our network, we generated a dataset of 16000 RAW dead leaves patches of size
(256,256). We also trained this network with the same number of patches taken from natural
images of an 80% portion of the SIDD-Small dataset to compare natural and synthetic data.
The other 20 % were used for our test set. To assess the truthfulness of our noise model,
presented in Section V.3.1, we compare two trainings of the model on natural images: one
using synthetic noise and the other with real noisy data. We optimize the L1 loss during
1000 epochs with the Adam optimizer. The learning rate is 10´4 for the �rst 500 epochs,
10´5 for the following 300 epochs, and 10´6 for the last 200.
Results. To evaluate our models, we tested them on the remaining 20% of the SIDD small
dataset. Since the network produces a RAW output, we process it with a simple pipeline
proposed by the authors of the SIDD dataset. The proposed pipeline is made of a sequence
of operations: white balance using metadata of the sensor, edge-aware demosaicing, a color
space transform from RAW colors to sRGB, a gamma correction, and a simple tone-mapping
function. Given this pipeline, we can measure PSNR in both the RAW and RGB domains.

The numerical results presented in Table V.1 show that training with dead leaves images
and a synthetic noise model (DL-Unet) is as good as training with natural images and a
synthetic noise model (RS-Unet). This further validates the hypothesis that synthetic data
can be used to successfully train a complex image restoration network. More precisely: when
testing on RAW images, the loss implied by using dead leaves instead of real images is only
0.25 dB. When evaluating the result on the developed RGB images, the dead leaves training
outperforms the training on natural images, all other things being equal.

Further, we compare the performance of DL-Unet, the network trained on fully synthetic
data, to the performance of the network trained with real noisy images (RR-Unet). The
performance loss, in this case, is 0.8 dB in the RAW domain and 0.27 dB in the RGB domain.
This shows that the full synthetic training is successful even though slightly less e�cient
than when using the ground truth. This loss in performance is of the same order as the loss
when comparing RR-Unet and RS-Unet, showing that the loss is primarily due to the noise
model and not the image model.

Now, we argue further that the synthetic training can, in fact, outperform the natural
training. First, this behavior is observed in the RGB results just presented. Moreover, if we
look at Fig. V.7, we notice that noise is still present in the "ground truth" image for high ISOs.
In both examples, the details show that averaging 400 images is not su�cient to suppress
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Table V.1: Numerical evaluation of the denoising of smartphone RAW images. We report the PSNR of our
adapted Unet trained either on the dead leaves dataset or on the SIDD-small dataset with real or synthetic noise.

Dataset SIDD-test RAW SIDD-test RGB
DL images + synthetic noise (DL-Unet) 49.60 dB 38.05 dB
Nat. images + synthetic noise (RS-Unet) 49.85 dB 37.95 dB

Nat. images + real noise (RR-Unet) 50.40 dB 38.32 dB

Figure V.7: Real denoising results.

noise entirely. The images denoised with DL-Unet appear cleaner in �at areas than the other
denoised images, which still contain some noise. Indeed, the simulated dead leaves contain
noiseless �at areas. Moreover, the highlighted detail of the �rst image also shows some
structures that appear sharper in the images denoised with DL-Unet. Even if the quality
of these images seems superior, this is not fully re�ected by the quantitative comparison,
mostly because our synthetic noise model is not perfect and also possibly because of the
limitations of the PSNR to quantify image quality.

V.4.2 Low-light image enhancement

Network and Training. Eventually, we consider the task of denoising images taken in ex-
treme low light. We considered the See-in-the-Dark dataset and chose to train an adapted
version of a U-Net, similar to the one we used for the smartphone database. The RAW input
is packed in an R-G1-G2-B tensor, and passed through the UNet, which uses bilinear up-
sampling and convolutions rather than transposed convolutions in the decoder part of the
network. To train our network DL-UNet, we generated 10000 RAW clean dead leaves im-
ages of size (256,256) and the corresponding noisy images using the synthetic noise model
presented in Section V.3.2. The training algorithm is the exact same that was used for smart-
phone image denoising. To sample the noise parameters, we use the frequency of each ISO
in the Sony database, given that each set of parameters corresponds to a unique ISO. We
expect that by sampling the noise parameters this way, the network will be able to restore
images properly at varying ISOs and to generalize well to the test set. For simplicity, the
exposure time ratios are uniformly sampled between (100, 250, 300). To assess the valid-
ity of our noise model, we train the network also on clean natural images to which we add
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our synthetic noise model(RS-UNet). We then compared these models to the original model
trained on real noisy and clean image pairs (RR-UNet).
Results. We tested our trained models on the See-in-the-Dark test set, made of 94 RAW
images at di�erent ISOs and di�erent time exposure ratios, with indoor and outdoor scenes.
We report in Table V.2 the quantitative results of our tests.

Table V.2: Numerical evaluation of our low-light enhancement networks. We report the PSNR of our three
di�erent models at di�erent time exposure ratios. In last three lines, we also report a corrected PSNR where we
prescribe the real average of each channel to the output image.

ratio 100 250 300 Global
DL-UNet 28.90 26.86 26.62 27.41
RS-UNet 29.74 27.28 26.80 27.87
RR-Unet 29.81 28.55 28.21 28.83

DL-UNet (corrected mean)* 30.08* 28.28* 27.15* 28.42*

RS-UNet (corrected mean)* 30.18* 27.97* 27.32* 28.42*

RR-Unet (corrected mean)* 29.81* 28.55* 28.21* 28.83*

Regarding PSNR, we notice that the DL-UNet has a 1.4 dB di�erence from the RR-UNet,
which is a signi�cant margin. However, we notice that even RS-UNet has almost a 1dB gap
with RR-UNet. This shows that our main limitation resides not in the image generation
algorithm but in the distortion model. The noise model is very complex and di�cult to
model for high ISOs and extremely low-light indoor photographs. We also observed that
the models trained with a synthetic degradation model sometimes fail to produce a properly
white-balanced image, resulting in low PSNR scores. That is why we also report a corrected
PSNR, where we prescribe the mean of each color channel of the output image to the mean
of its clean long exposure counterpart. After applying this post-processing, we see that
DL-UNet performs on par with RS-UNet and only 0.4 dB behind RR-UNet, which is a small
margin. We believe this metric allows for a better assessment of the denoising quality of our
model.

Visually the results of the DL-UNet are close and sometimes better than RS-UNet’s and
RR-UNet’s. Looking at Fig. V.8a, we see that the details of the bike’s basket are sharper in the
DL-UNet image than in the other restorations. In Fig. V.8b, we see that DL-UNet removes
banding noise more e�ectively than RS-UNet in homogeneous areas while preserving sharp
details in the vegetation area. In more extreme low-light conditions (see Fig. V.8c), we see
that even if the result is close to the one of RR-UNet, DL-UNet tends to produce more color
artifacts and does not preserve straight lines as RR-UNet or RS-UNet do. Our degradation
model fails to mimic the sensor’s behavior in such conditions. Indeed, we notice in some
images that the lens produces ring-like artifacts and that the bottom of the sensor is biased.
Since we do not model these phenomena, our model fails to properly restore the image while
creating artifacts.

V.5 Conclusion and Perspectives

In this chapter, we extended the use of dead leaves images to real-world image restoration
for two applications: Smartphone RAW image denoising and low-light RAW image enhance-
ment. To do so, we �rst adapted the dead leaves image generation algorithm to RAW images
to generate ground truth synthetic images. We then proposed a carefully designed distortion
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(a) Comparison of our models on an outdoor image at ISO 250 and exposure ratio 100

(b) Comparison of our models on an outdoor image at ISO 250 and exposure ratio 300

(c) Comparison of our models on an indoor image at ISO 12800 and exposure ratio 300

Figure V.8: See-in-the-Dark test examples

model equipped with a robust noise parameter estimation procedure. Given this synthetic
image model and this synthetic distortion model, we could form an arbitrary amount of
clean/distorted image pairs. With this dataset, we successfully trained an image restoration
neural network for both tasks. For smartphone images, we perform on par with training with
real data, con�rming the validity of the distortion and image models. For low-light image
enhancement, we saw that our model was su�cient for outdoor photography but limited for
indoor extreme low-light photography. In that case, the number of photons is very limited,
and the accuracy of the distortion model is crucial. We believe that our distortion model is
not precise enough for these extreme conditions. This opens the door to improvements, even
if the problem seems very hard.

To the best of our knowledge, this work is the �rst to propose a fully synthetic training
for complex RAW image restoration tasks. The good performances we obtain mitigate the
common idea that one needs a large dataset of paired data to train a RAW denoiser or an ISP
CNN. In that sense, we believe that we can avoid heavy data acquisition campaigns saving
time and e�ort. Moreover, synthetic data has the advantage of being truly noiseless, unlike
processed ground truth images.

We can, however, mitigate our claim since we still use natural images to color the disks.
According to the experiments of the previous chapter in Section IV.3, the color space is a
crucial ingredient of the success of this model. Indeed, sampling the colors uniformly at
random in the RGB cube leads to poor performances and color artifacts. In the following
chapter, we address this problem by investigating how to summarize the distribution of color
in natural images with a parametrized probabilistic model.
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VI A study on the color
distribution in natural
images and an application to
synthetic training of
networks

VI.1 Introduction

Since the early studies of the human perception of colors led by the CIE in 1931, color has
been at the center of attention in imaging sciences. With the popularisation of digital im-
ages, the focus has been even stronger. Digital sensors need to acquire color information
and transform it into colors perceptually close to the scene photographed. This is done with
complex operations described in Section II.1.1, including color �ltering, color space trans-
forms, and white balancing. All these operations were carefully �tted to human perception.
The resulting colors are represented as a triplet of coordinates in what we will call the sRGB
cube.

Interestingly, the colors of an image tend to be distributed along structured clusters
which sparsely �ll the sRGB cube. As a �rst attempt to study these structures, Omer and
Werman �rst presented the Color Lines model [146]. This model assumes that monochro-
matic objects emit light following a curved line in the sRGB cube. With this model, the
authors can accurately cluster the sRGB cube in pixels belonging to the same object, achiev-
ing much better results than clustering in other color spaces. The numerous applications
include color compression, clustering, recolorization, etc. Building on this work, Lisani et al.
argued that colors from a single object are distributed not on a line but rather on a 2D curved
manifold [121, 27]. Even though both papers give us a sound model for the distribution of
colors in a single image, they do not provide any statistical information about it.

We believe that a study of the �rst-order statistics of colors in natural images could
complement our understanding of the distribution of colors made possible by the aforemen-
tioned body of literature. That is why we propose, in the present chapter to summarize the
distribution of colors in natural images with a simple probabilistic model. In addition to
providing insights about this distribution, this model allows us to e�ciently sample natu-
ral colors without accessing natural images. As pointed out in the previous chapters, color
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sampling is critical when training CNNs on arti�cial data. Therefore, we propose to gen-
erate dead leaves images based on this statistical model to train a RAW Smartphone Image
denoiser. Since each camera sensor de�nes a unique RAW color-space, we propose a map-
ping operation to a quasi-universal RGB color space. This camera-speci�c operation allows
to estimate the distribution on a database acquired with di�erent cameras, and to generate
dead leaves RAW images for cameras absent from the database. The denoising results show
that the model trained with this simple color model performs almost on par with the model
trained from real colors.

The present chapter is organized as follows: we �rst give a brief overview of the literature
covering color spaces and the distribution of colors. In Section VI.3, we thoroughly explain
our color distribution models, the estimation of their parameters, and the proposed sampling
techniques. We then present in Section VI.4 the results of our main application: training an
image restoration network from synthetic dead leaves images colored with our sampling
procedure.

VI.2 Background

VI.2.1 Some color spaces

The perception of color by the human visual system is one of the most crucial aspects of
digital imaging. The acquisition and the display of colors are indeed tuned to �t the human
perception of a scene. We will �rst describe some color spaces that will be used hereafter,
and how we can approach most visible colors with a simple screen. Then we will see how a
camera acquires color information, and how it is transformed in a viewable color that looks
natural.

According to Grassmann laws, every pure color of the visible spectrum, i.e. with a single
wavelength, can be obtained by a linear combination of three pure and independent light
sources, called primaries. In practice, the primaries are chosen to be red (700nm), green
(546nm) and blue (435nm). Based on this tristimulus color theory, the CIE (commission in-
ternationale de l’éclairage) attempted to understand which combination of primaries were
needed to approximate the whole visible spectrum. To do so, Wright and Guild led tests on
a total of 17 standard observers. For each pure color, each observer had to match the linear
combination of primaries with the pure color, by adjusting the intensity of the primaries.
The found coe�cients were averaged to create the color matching functions (CMF) we can
observe in Fig. VI.1a. For some wavelengths, no linear combination matched the perceived
color. In these cases, one of the primaries was added to the tested color, which resulted in
some negative values. Based on this data, the CIE proposed in 1931 a canonical representa-
tion of colors, called the CIE-XYZ color space. In particular, the desired properties were:

• the white point should be represented by the point (1/3,1/3,1/3),

• the Y value should represent the luminosity,

• all coordinates should be positive.
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To respect these properties, the CIE proposed a linear transform of the CIE-RGB done by
a 3 by 3 matrix multiplication. The transformed color matching functions are reported in
Fig. VI.1b.
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(b) CIE-XYZ color matching function

Figure VI.1: Color matching functions from the CIE experiments of 1931.

We can now represent each visible color in a 3D space, delimited by the envelope of
pure colors. It is represented in Fig. VI.2a. Since this shape is not very informative on the
perceivable colors, a 2D visualization is preferred. To do so, each point of the XYZ color
space is �rst mapped on the plane x+ y + z = 1, by dividing each point by the sum of its
coordinate. Then we discard the z component, to obtain the CIE-xyY chromaticity diagram
presented in Fig. VI.2b. This diagram describes the whole range of perceivable color for
the human eye. The CIE XYZ color space is therefore a universal color space, and does not
depend on a particular imaging or emitting device.
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Figure VI.2: Chromaticity diagram from the CIE-XYZ color space

Based on this color space and on the tristimulus color theory, the standard RGB (sRGB)
space was developed by the CIE as a standard format to store and display colors. In the
sRGB color space, each color is a linear combination of 3 primary colors in the chromaticity

75



VI.2. Background

diagram: a red (612nm), a green (547nm) and a blue (464nm). Therefore, the sRGB color
space can only partially represent all perceivable colors. The visible colors with the sRGB
color space is represented as a triangle in the chromaticity diagram. The triangle covers
roughly 40 % of the diagram, discarding many perceivable colors. However, the sRGB space
was designed so that the discarded colors are colors for which the human eye is not very
sensitive to di�erences. It also focuses on colors for which the human eye is very sensitive
to di�erences. Finally, a Gamma transform is applied to colors so that the colors �t the human
perception of contrast.

When it comes to acquiring color information, camera color sensors mimic the behav-
ior of the human cone cells of the retina. Most sensors are made with a Bayer color �lter
array, which we showed in Chapter II. Each photo-site of the sensor is covered with a color
�lter, only allowing a speci�c range of visible wavelength. The sensitivity functions of these
color �lters are camera-dependent, even if they are all quite close to the sensitivity of the
cone cells. Therefore, each camera sensor de�nes a unique RAW-RGB color space. In order
to visualize these colors, they undergo many transforms so that they become close to the
perceived scene’s colors. The �rst transform is a white balance operation. This operation
estimates the temperature of the illuminant, based on a prior such as the white-patch or the
grey-world. Based on this estimation, each channel is multiplied by a computed factor. Then
the colors are mapped to the CIE-XYZ color space. This is done by a (3, 3) matrix multipli-
cation of all colors. This matrix depends on the sensor and the estimated illuminant. The
camera manufacturer computes this matrix for a warm and a cold illuminant in a controlled
setting. Based on the estimated illuminant, the color transform matrix is an interpolation be-
tween these two pre-computed matrices. Therefore, the RAW-RGB to CIE-XYZ conversion
depends both on the camera, and on the illuminant value found during the white balance.
Once the colors are mapped to the CIE-XYZ color space, they can be visualized on a screen
with a XYZ-to-sRGB transform. This transform amounts to a (3, 3) matrix multiplication
and a gamma correction.

VI.2.2 Modeling the distribution of colors in natural images

As mentioned previously, relatively few works have investigated the distribution of col-
ors of natural images. Early works [ohta1980color] have shown that a principal com-
ponent analysis on natural images yields opponent-like color spaces, a hypothesis that
was later theoretically investigated in [buchsbaum1983trichromacy]. Still dealing with
�rst order statistics, empirical histograms of relatively large databases have been collected
in [mazin2014methodes]. Spatial dependency between colors have been investigated
by [ruderman1998statistics] and the corresponding oscillatory patterns of opponent col-
ors have been theoretically justi�ed in [provenzi2016second]. Several color statistics have
been investigated in [golz2002in�uence] in view of a better understanding of the color
constancy ability of the human visual system. In 2004, [146] introduced the color line prior,
an attempt to model the distribution of colors from a single monochromatic object. The
authors explain that the colors of a single Lambertian object (i.e. an object which surface
di�uses light rays uniformly in all directions), are distributed along a straight line in a RAW-
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RGB cube1 starting at (0, 0, 0). The sensor of a camera has indeed a linear response to the
number of photons. While RAW data is more suitable to analyze the physical world, it is
not always accessible and it also does not correlate with the human perception. For these
reasons, colors are usually represented and analyzed in the sRGB cube. The RAW-to-sRGB
transform is nonlinear, modifying straight lines into curved ones. Other operations in the
processing pipeline of a RAW image are non linear, such as tone mapping for instance. More-
over, the physical properties of the object also distort its color representation. First, objects
can be specular. Because of this, the sensor’s response to these object is saturated and there-
fore nonlinear. This implies a T-shaped color cluster. Second, rough objects are far from
Lambertian as they emit light in a non uniform manner. This results in spread color clusters,
which is a more similar to a surface than a line. The resulting color lines in the sRGB cube
are therefore curved (see Fig. VI.3).

Figure VI.3: Images and their corresponding color point cloud in the sRGB cube

Based on the hypothesis that single objects follow curved lines in the sRGB cube, the
authors derive a clustering algorithm for the pixels of an image. In short, they compute
spherical slices of the sRGB cube. By detecting the local maxima of the histogram in these
slices, they can extract points of di�erent color lines. The same procedure is repeated for
successive slices, and points are then connected from one slice to the next, forming color
lines. The colors of the images are then appointed to the cluster they are the closest to.
The authors show that this clustering is more e�cient than clustering in any other color
space, whether it is CIE LAB or HSV. This color representation opens the door for better
compression of color images, easy color editing of objects, and new clustering algorithms.

The Color Line method was further used for dehazing [56], outperforming the at-the-
time state-of-the-art Dark Channel Prior method by He et al. [76], based on Physical mod-
eling of haze and guided �ltering. The authors observe that color lines on hazy images are
always shifted from the origin and propose an algorithm to correct the angle of the found
color line.

Later, Buades et al. argued that the colors from a single object were distributed not along
a 1D curved line but on a 2D structure [27]. The argument is motivated by an analysis of
cases for which the 1D approximation is insu�cient. For Lambertian objects, the hypothesis
still holds. However, most objects are specular to some extent. Moreover, a single object with
multiple orientations re�ects light with a di�erent intensity for each facet. If a single object

1The RAW-RGB cube can be de�ned as the cube where each point coordinates corresponds to the associated
RGB values in the RAW image.
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has two facets with di�erent orientations, it will have two line clusters in the sRGB cube,
assuming each facet is Lambertian. When the orientation changes are smooth, the color
cluster corresponding to this object will be distributed along a surface. The same reason
explains why the more a material is rough, the more its color distribution will be spread
as a 2D surface in the sRGB cube. Roughness can indeed be thought of as the amount of
change in the orientation of micro-facets at the surface of an object. Following this idea,
the authors developed a dimensionality reduction algorithm for the representation of an
image in the sRGB cube, for both 1D and 2D structures. The experiments show that the 2D
version of their algorithm leads to a much better reconstruction of the color clusters and a
better preservation of the original colors. Lisani et al. then proposed an improvement of this
method, allowing for better visualization of the surfaces in the color cube [121].

Even though the 2D surface assumption is more precise for the approximation of the
color distribution of natural images, it is much more di�cult to extract �rst order statistics
corresponding to this model. Conversely, the Color Line model is much simpler, and the
directions of the clusters are easy to retrieve. One of the color sampling algorithm proposed
in the forecoming sections will be built on this prior.

VI.3 A density estimation of the natural image color
distribution

Following the observations in [146], we chose to estimate the distribution of colors on RAW
images. The nonlinearities introduced in the development of sRGB images make the distri-
bution of colors in the sRGB cube more complex. These operations are also camera-speci�c,
and estimating the distribution on sRGB images would necessarily introduce a bias for each
camera. Therefore, we chose to use the RAISE dataset [45] for our estimation, which is a
large set of RAW images from di�erent cameras, containing both indoor and outdoor pho-
tographs, as we can see in Fig. VI.4.

Figure VI.4: Examples of photographs from the RAISE dataset

Even though the developing operations are camera speci�c, so are the sensitivity func-
tions of the color �lters for each camera sensor. Without modi�cation, each camera would
have its own identi�able modes in the empirical distribution. To counter this, we propose to
map the colors to a quasi universal color-space. To do so, we �rst extract each camera’s day-
light white balance multipliers. Then, we multiply the color channels of each image by the
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multipliers corresponding to the camera used for this image. These multipliers are indeed
all estimated by camera manufacturers to �t a scene with the standard D65 illuminant.

More precisely, we have access to a dataset of RAW imagesXi,c fromC di�erent cameras
D =

Ť
cP[0,C]Dc where Dc = tXi, cuiP[0,Nc]. Each image is �rst packed in an RGGB tensor

Ti,c , as explained in Fig. V.1a in the previous chapter. Since there are two channels for
the green component, they are simply averaged. The resulting tensor T̃i,c is multiplied by
the daylight camera multipliers dc, thus obtaining a quasi universal representation Ti̊,c =

dTc .T̃i,c. We will present next two di�erent models for the distribution of colors of natural
images, estimated thanks to the normalized data:

D˚ =
ď

cP[0,C]

tTi̊ , cuiP[0,Nc].

VI.3.1 A 3D Gaussian mixture model

The pixel’s colors in the set of images D˚ all live in a universal space which we will call the
universal-RGB cube. To better understand the color distribution, we can �t a 3D Gaussian
mixture model on the point cloud of colors in D˚. Gaussian Mixture Models (GMM) can
indeed approximate very complex distributions as long as they comprise su�cient Gaussian
components. For each point x P R3, the density function of this model is expressed as the
following sum:

f(x) =
Kÿ

k=1

αk
(2π)3/2det(Σk)1/2 exp

[
´1

2 (x´ µk)
T .Σ´1

k .(x´ µk)
]
,

where K is the number of Gaussian components. Each of them is de�ned with a weighting
parameter αk and a mean and covariance of the Gaussian (µk, Σk). All these parameters
are �tted to the distribution thanks to the Expectation Maximisation algorithm (EM). This
algorithm aims at �nding the parameters that maximize the likelihood of the model. The
algorithm stops when it has converged, i.e., the likelihood of the model does not increase
anymore.
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Figure VI.5: Graph of the likelihood of the 3D GMM against the number of components

Theoretically, the more components there are, the better the model will �t the data.
However, the relative improvements brought by adding more components can be marginal.
We indeed notice, in Fig. VI.5, that the likelihood of the model reaches a plateau at K = 40.
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VI.3. A density estimation of the natural image color distribution

Our 3D GMM model will therefore have 40 components, being a good trade-o� between
the simplicity and correctness of the model. Each Gaussian component of the GMM has
ten parameters, bringing the total number of parameters to 400 for the whole color model.
Visually, the 3D point cloud obtained by sampling this model is indistinguishable from the
actual distribution of the colors in the universal-RGB cube( see Fig. VI.6).

Figure VI.6: Di�erent views of the point cloud of natural colors in the universal-RGB cube.
The top row is the real distribution, the bottom row is the GMM approximated distribution

In order to color a dead leaves image from this model, we will simply sample the op-
timized 3D-GMM. The color obtained will necessarily be natural colors, which will lead to
much better results than sampling the universal-RGB cube uniformly at random, based on the
experiments shown in Section IV.3.1. However, this model only accounts for the distribution
of the colors in the whole image dataset. Now, recall that the synthetic dead leaves images
used to trained CNNs in the previous sections are colored using colors sampled from a single
natural image, di�erent for each synthesized image. This results in synthetic images having
much more coherent colors and contrast that when sampling from the complete database.
Next, we present a color model which allows us to sample the colors more appropriately by
trying to mimic the single-image-based sampling.

VI.3.2 A decoupled color/luminance model

VI.3.2.1 2D color distribution

Recall that in the Color Line paper [146], the authors argue that the emitted surface color of a
Lambertian object is a multiplication of the surface albedo with the illumination. Given this
assumption, the ratio between color components should be constant. Therefore, the pixels
representing a single Lambertian object in a RAW image all live on a single line starting from
(0, 0, 0) in the universal-RGB cube. The direction of this line contains the color information
of that object.

Using this property, we can study the distribution of all possible directions in the dataset
of RAW images. For each color triplet (r, g, b) P D˚ we apply the simple transform r̃, g̃, b̃ =
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(a) Triangle of the possible di-
rections

(b) Log-histogram of P in the
2D plan

(c) Log-density of the GMM
�tted on P

Figure VI.7: Distribution of natural colors in the 2D representation

1
r+g+b (r, g, b). The transformed values all live in the intersection of the universal-RGB cube
and the plan x+ y + z = 1. This 2D surface is a triangle whose vertices are the pure color
components. This triangle de�nes a range of colors shown in Fig. VI.7a).

Since this is a 2D surface, it is reasonable to de�ne the plan’s orthonormal basis to
work with 2D values. We chose the following orthonormal vectors, e1 = 1?

2 (´1, 0, 1)
and e2 = 1?

6 (´1, 2,´1) to create this basis. Then, we project every normalized triplet on
the orthonormal space de�ned by this basis. We are left with the dataset of 2D points:

P =

"
(xi, yi)|xi = eT1 z̃i, yi = eT2 z̃i, zi P D˚

*
.

We report in Fig. VI.7b, the 2D log-histogram of P . The distribution indeed peaks on
its central mode, corresponding to grey colors. To better visualize the weakest values of
the distribution, we display the logarithm of the histogram. The histogram is an accurate
statistic to approximate the distribution, but it is still over-parametrized, having more than
a million bins. To reduce this number, we use a 2D GMM, similar to what was done for the
3D distribution estimation.

Similar to the previous experiments, we show that the GMM’s likelihood reaches a
plateau as we add more and more components. This behavior is shown in Fig. VI.8. We
found that K = 40 is the optimal number of components. For each of them, there are six
parameters, resulting in a color model with only 240 parameters. In Fig. VI.7c, we report the
log density of the �tted GMM. It is visually very close to the actual histogram of the data P ,
con�rming that the GMM can be used to summarize this distribution.

Given this model of the color distribution, our goal is to create a color sampling algorithm
based on the properties presented in the Color Line paper. Unlike the previous 3D model, the
luminance information is lost in the 2D model. We assume the luminance depends on the
object’s chromaticity, which, in our framework, is given by the 2D coordinates. Therefore,
in the following section, we study the luminance distribution conditioned to the object’s
chromaticity.

VI.3.2.2 A color sampling algorithm

Data Analysis. In order to understand the luminance distribution conditioned on chro-
maticity, we analyzed the RAW images of the RAISE dataset. Our strategy is to analyze the
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Figure VI.8: Graph of the likelihood of the 2D GMM against the number of component

distribution of the grey levels in patches of the dataset whose chromaticity is homogeneous.
The underlying assumption is that patches with a homogeneous chromaticity belong to a
single object. Therefore, we �rst start by extracting all the disjoint (50,50) patches of the set
D˚. For each patch, we computed its average grey level z̄, its average chromaticity (x̄, ȳ),
and the chromaticity’s covariance Σx,y . In order to only analyze the distribution of grey lev-
els for almost monochromatic objects, we �lter out the patches with an excessive covariance
Σx,y , by simply thresholding the determinant. Then, we binned the grey level mean values z̄
by similar (x̄, ȳ) value. After visualizing the histogram of the grey level mean in each bin, we
noticed it had a heavy-tailed distribution, which we could model with a Gamma distribution.
We report in Fig. VI.9, some examples of the distribution of the grey level mean depending
on the (x̄, ȳ) position.

Figure VI.9: Distribution of the average grey level knowing the position (x, y) in the 2D
color representation.

In the given examples, we see that the parameters of the Gamma distribution depend on
(x̄, ȳ). We notice that the closer we are to a grey color, the more the distribution is spread. In
fact, the further the chromaticity (x, y) is from the central "grey" direction, the smaller the
maximal grey level value is. As a simple approximation, we consider that the distribution of
the average grey level can be expressed as:

z|(x, y) „ λ(x, y)Γ(θgrey),
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VI.3. A density estimation of the natural image color distribution

where θgrey are the Gamma distribution’s parameters found for the central bin of the triangle,
which corresponds to grey colors. λ(x, y) corresponds to the maximal grey level attainable
for the chromaticity (x, y). Given (x, y), we can easily retrieve a color triplet (r, g, b)x,y in
the plane de�ned by u+ v + w = 1. λ(x, y) is then empirically de�ned by the following
formula:

λ(x, y) = 1
3max((r, g, b)x,y)

.

Color Sampling algorithm. We can now easily derive a point cloud generation algorithm
for a single object, thanks to our models of p(x, y) and p(z̄|x, y). The complete procedure
is given in Algorithm 3. Following the Color Line prior, the colors of a single object are dis-
tributed along a line in the universal-RGB cube, de�ned by a single chromaticity value (x, y).
Therefore, we can sample an average chromaticity µ = (x̄, ȳ) using our 2D GMM for a sin-
gle point cloud. However, having only a single chromaticity would be unrealistic. An object
is indeed not precisely monochromatic. That is why we sample each point’s chromaticity
following a 2D-Gaussian distribution centered on the previously sampled µ. This sampling
results in the set C =

 
(xi, yi) „ N (µ,σ2.I)

(
iP[1,...,N ]

, where N is the desired number of
points. The standard deviation σ follows a uniform distribution σ „ U([5.e´5, 5.e´4]), to
increase diversity.

We can now sample the luminance average z̄ conditioned on µ, with the Gamma law
de�ned above. Many parametric grey-level distribution models are possible given z̄. For
simplicity, we propose to simply model it by a Gaussian distribution N (z̄,β2), where β „
U([0.05, 0.3]).

Algorithm 3: Sampling colors for a single object.
Input : N
Output: (ri, gi, bi)iP[1,..,N ]
x̄, ȳ „ GMM
z̄ „ λ(x̂, ŷ)Γ(θgrey)
β „ U([0.05, 0.3]),σ „ U([5.e´5, 5.e´4])
for i P [1, ...,N ] do

xi, yi „ N (µ,σ2.I)
zi „ N (z̄,β2)
ri, gi, bi = 2D_TO_RGB(xi, yi)
ri, gi, bi =

zi
ri+gi+bi

(ri, gi, bi)

end

The described algorithm allows us to sample colors for a single monochromatic object by
following the Color Line Prior, de�ned by Omer et al. [146]. As we saw in the experimental
section of Chapter IV, it was critical to sample colors in a single natural image for each im-
age synthesis. The dead leaves model equipped with this coloring algorithm allowed for the
apparition of transitions between objects of di�erent chromaticity as well as monochromatic
and poly-chromatic textures. These properties were the key ingredient for the good restora-
tion of colors. We wish to approximate them with our sampling algorithm. First, in order to
simply mimic transitions between objects of di�erent chromaticity, we decided to color each
dead leaves image from two di�erent color clusters. By generating a large amount of images,
we hope that the dataset shows enough variety in the color transitions and poly-chromatic
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textures. In Fig. VI.10, we give examples of the obtained point clouds. Second, in order to
mimic monochromatic textures, we chose to synthesize another set of dead leaves images
with only one color cluster. We believe this simple color sampling method is su�cient to
model the interactions between objects and monochromatic textures.

Figure VI.10: 3 di�erent color points cloud for dead leaves image generation

VI.4 Training a denoising network for smartphone RAW
images

Given the previously described color models, we now use them to synthetize dead leaves
images in order to train a RAW image denoiser. More precisely, here are the di�erent color
sampling strategies (for each single image generation):

1. sampling colors from one single real image,

2. sampling colors from the 3D histogram approximated by a Gaussian mixture model,

3. sampling colors from a single color line to model monochromatic texture images,

4. sampling colors from two di�erent color lines in order to model interactions between
objects of di�erent chromaticity.

We will focus on Smartphone RAW image Denoising on the SIDD benchmark dataset [2],
comprising noisy images from 5 di�erent smartphones. A few adaptations are nevertheless
needed to generate RAW images from the given model, which we describe next. We then
report the obtained denoising results after training.

VI.4.1 Dead leaves image generation speci�cs

Dead Leaves datasets. In order to have as much diversity as possible in the color pro�les
of the generated images, we generate much more images than in the previous chapter, for
which we had 16000 (512,512) dead leaves RAW images. Instead we chose to generate 60000
(256,256) dead leaves RAW images. With the same memory footprint we can have much
more diversity in the colors generated.

To compare the di�erent color models, we generate four datasets with the same geometry
hyper-parameters:
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• 3DM-DL: this dataset is generated with colors coming from our 3D GMM model (strat-
egy 2), �tted on the colors of the RAISE set (see Fig. VI.11a),

• 2DM-DL: for this set, the color model is the decoupled grey-scale/color model follow-
ing the color line prior(see Fig. VI.11b). In this case, both strategies 3 and 4 are used
(evenly split).

• Nat-DL: here, the colors are sampled in the colors of the SIDD dataset(see Fig. VI.11c),
following the �rst sampling strategy.

• RAISE-DL: here, the colors are sampled in the universal-RGB colors of the RAISE
dataset (see Fig. VI.11c), following the �rst sampling strategy. We included this dataset
to assess if the limitation came from our approximation of color lines, or from the
discrepancy between the two di�erent datasets.

The other hyper-parameters are the same as in the previous chapter, that is α = 3, rmax =

2000, rmin = 4 for half the images and rmin = 100 for the other half. We apply Gaussian
blur to 1/3 of the images with a standard deviation sampled in [1, 3].

(a) Dead Leaves images from 3DM-DL

(b) Dead Leaves images from 2DM-DL

(c) Dead Leaves images from Nat-DL

Figure VI.11: RGB visualization of generated RAW Dead Leaves patches with di�erent color
models.
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Universal RGB to RAW color inversion. Whether it is for images generated with colors
from the 3D GMM or the decoupled model, the generated colors live in a universal color
representation space, agnostic of the camera, where red green and blue values are more or
less balanced. These colors are not at all representative of the RAW colors for speci�c smart-
phone cameras. In order to transform the generated colors to the space of RAW colors of a
given camera, we need to invert the daylight white balance multiplication with the camera-
speci�c parameters. Since these parameters were not available in the SIDD database for each
camera, we decided to approximate them with random values sampled around realistic av-
erage estimates, based on the white balance parameters available in the dataset. Speci�cally,
we chose to model the red and blue gain with uniform distributions, gr „ U([1.9, 2.4]) and
gb „ U([1.5, 1.9]).

Given these parameters, we can simply divide the red channel by the sampled gain gr
and the blue channel by gb. With this technique, all the obtained images would necessarily
miss values over 1/gr or 1/gb in the red and blue channels, which would be unrealistic. To
preserve some of these higher values, we perform the color gain inversion technique pre-
sented by Brooks et al. [24] used to unprocess RGB images in RAW images. This transform
is linear for x ă t where t = 0.9 and cubic for x P [t, 1], therefore preserving some higher
values. More precisely,

α(x) =

(
max(x´ t, 0)

1´ t
)2

(VI.1)

f(x, g) = max
(
x

g
, (1´ α(x))x

g
+ α(x)x

)
(VI.2)

We give in Fig. VI.12 some examples of these gain inversion functions for di�erent gain
values.
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Figure VI.12: Color gain inversion functions for di�erent gain values

VI.4.2 Denoising result.

As in Section V.4.1, we train for each dataset a modi�ed version of the U-net for RAW image
restoration with residual learning and bilinear upsampling. The training procedure is a bit
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modi�ed, since the datasets have much more images. We train the network for 500 epochs,
with an initial learning rate of 10´4 for the �rst 250 epochs, a 10´5 for the 150 following
epochs, and a 10´6 learning rate for the �nal 100 epochs. We use the ADAM optimizer with
a batch size of 64. The testing procedure, on the other hand, remains unchanged. Looking at
the numerical results reported in Table VI.1, we observe that for all scores, 2DM-DL outper-
forms 3DM-DL. This result con�rms that our color sampling algorithm based on the Color
Line prior is more realistic than sampling from a GMM �tted on the distribution of colors in
the RGB cube of the whole dataset.

Table VI.1: Numerical evaluation of the denoising of smartphone RAW images. We report the PSNR and SSIM
the denoising models trained on dead leaves images obtained with di�erent coloring strategies.

Dataset SIDD-test RAW SIDD-test RGB
Nat-DL images 49.94dB / 0.9854 37.85dB / 0.9283

2DM-DL images 49.62dB / 0.9836 37.36 dB/ 0.9234
3DM-DL images 49.30dB / 0.9827 37.24 dB/ 0.9228
RAISE-DL images 49.68dB / 0.9841 37.56dB / 0.9312

Looking closer at visual results, we can see in Fig. VI.13, that the 2DM-DL model achieves
much better results in low-light conditions than the 3DM-DL model. For the �rst image,
the texture is completely blurred out by the 3DM-DL model, whereas the 2DM-DL model
restores it as precisely as the Nat-DL model. We can explain this result by the fact that
images generated with the 3D-GMM colors always have the same contrast properties. Each
image indeed has roughly the same color distribution, with the same amount of high-lights
and low-lights. Conversely, the images obtained with our decoupled sampling technique are
much more diverse. Some of these images have indeed a very low contrast, being made of
only one line cluster. When dealing with well-lit images, the performances, are similar with
a slight advantage to 2DM-DL for low contrast textures.

Figure VI.13: Comparison of the di�erent denoising models. From left to right: ground truth
image, noisy image, 3DM-DL denoising,2DM-DL denoising,Nat-DL denoising.

Sampling colors in natural images still produces better numerical results. This can be
explained by multiple reasons. First, the color distribution is estimated on a dataset with
very di�erent color content to the test set. The RAISE dataset indeed contains a majority of
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outdoors color images, with unsaturated colors and similar illuminants. On the other hand,
the SIDD dataset is a set of indoor images with a lot of unusual color palettes and a wide
variety of illumination conditions. We can see in Fig. VI.11c that the generated images look
like they have a single illuminant with the same temperature and intensity.

Moreover, the dataset is obtained from a camera that is di�erent from the test cameras.
We addressed this problem by mapping the colors of the RAISE dataset in an approximated
universal color space, by simply multiplying the colors by the daylight multipliers, before
estimating the distribution. We supposed that this distribution was roughly the same for
every camera. The color �lter response functions di�er from one sensor to another, and
approximating the relationship between these functions by a linear transform may be too
much of an approximation. In addition to this, we did not have access to the daylight white
balance parameters for the testing cameras, so we had to model them by sampling around
plausible values.

In order to assess the loss in performances caused by these discrepancy between the
RAISE and the SIDD datasets, we trained the denoising network on the RAISE-DL dataset
presented above. We report, in Table VI.1, a loss of 0.26 dB in the RAW domain and 0.29 dB
in the RGB domain for the PSNR on the test set. The RAISE-DL results constitute an upper-
bound for the results of the approximated sampling algorithms, since the colors of the leaves
are sampled with real point-clouds.

Surprisingly, the gap in performances between the RAISE-DL method and the 2DM-DL
method is relatively small, with less than 0.1 dB in the RAW domain and 0.2 dB in the RGB
domain. We remind the reader that the network was not trained in the RGB domain. This
results con�rms that our 2DM color sampling technique is valid, and that the performance
gaps are mainly due to the di�erences of the dataset’s distribution.

Despite these limitations, the gap between Nat-DL and 2DM-DL is not large: 0.3 dB in
the RAW domain and 0.5 dB in the RGB domain (which the network was not trained for).
Visually, the results are very close, as we can see in Fig. VI.13. We considerably reduced
the amount of color parameters of our model while preserving satisfactory denoising per-
formances.

VI.5 Conclusion

In the present chapter, we �rst conducted a study of the �rst-order statistics of the colors
in natural images. We observed that the natural colors only sparsely occupy the universal-
RGB cube, which we de�ned in Section VI.2.2. This distribution can indeed be approximated
accurately with a 3D Gaussian mixture model. Our initial goal was to provide a color model
for synthetic images. Based on the experiments of Chapter IV, we know that a realistic
color pro�le is a crucial ingredient for the success of deep image restoration methods. Since
we couldn’t generate point clouds similar to those of a single image with the 3D model,
we decided to study a decoupled version of the color distribution with a chromaticity and
a luminance component. Based this decoupled color model and the color line prior [146],
we created a color sampling algorithm which generates realistic color point clouds in the
universal-RGB cube. Given these new color sampling strategies, we were able to generate
di�erent datasets and train a denoising network on them. The results obtained con�rm the
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validity of our color sampling algorithm based on the color line prior. In terms of PSNR,
our model is only 0.3 dB behind the previous data-dependant version, in the RAW domain.
This performance gap is mainly due to the discrepancy between the dataset on which we
estimated the distribution and the test-dataset.

In order to reduce this gap, an interesting strategy could be to re�ne the transform op-
eration from universal colors to camera-speci�c RAW colors. As a �rst approximation, we
multiplied each color by a diagonal matrix, which coe�cient were sampled in a plausible in-
terval. A potentially better way to do this would be to estimate a full color correspondence
matrix between two cameras.

Overall, the present chapter shows that we can e�ciently train an image restoration
neural network without using any information about a dataset of real images. Moreover, we
drastically reduced the number of parameters for the color sampling technique to around
200 parameters, making our synthetic image model simpler, and universal. In the next chap-
ter, we will present a new way to better exploit dead leaves images, by enforcing a good
frequential response during training. This should, hopefully, improve the perceptual quality
of restored images.
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VII A perceptual loss to improve
texture preservation

VII.1 Introduction

Image quality is one of the most important criteria for camera manufacturers and consumers.
In order to quantify image quality fairly, independent evaluation agencies perform a wide
range of standard tests. Thanks to these tests, one can rank cameras regarding a speci�c
criteria. Among them, some evaluate the noise reduction capacity, the demosaicking quality,
the amount of chromatic aberration, etc. These tests are quite informative, for the consumer
and the manufacturer. First, the consumer can decide which camera to buy, having a precise
idea of the actual image quality reachable with each device. Second, the manufacturer has a
clear insight of what camera features need to be improved in order to have a better ranking.

Several test procedures are indeed available in the form of an ISO norm. Among them, the
ISO/TS 19567-2:2019 norm presents a test procedure that evaluates the capacity of a camera
to properly restore micro-textures in all conditions, thanks to a dead leaves image target.
Dead leaves images indeed exhibit statistical properties close to those of natural images, as
explained in Section IV.2. The test consists of photographying a dead leaves image target
as the one in Fig. VII.1, under controlled conditions. Then, one can compute a restoration
score by comparing the power spectrum of the obtained image and a computed ground truth
spectrum. This metric, called acutance, was �rst presented by Cao et al. [33] in 2010.

In previous chapters, we observed that training image-denoising networks on dead leaves
images led to very good restoration performances, on synthetic and natural images,

Moreover, we showed in Section IV.3 that training an image denoiser on a mix of natural
images and dead leaves images led to:

• denoising performances on par with training on natural images,

• much better denoising performances on a test set of synthetic images.

Inspired by these results, we show, in the present chapter, that it is possible to optimize the
acutance of an image-denoising network without degrading the performances on natural
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Figure VII.1: Uno�cial dead leaves image target used for camera evaluation

images. To do so, we train a denoising CNN on a mixed database of synthetic and natural
images to minimize a new loss function. In short, this loss combines a data �delity loss (in
our case the L2 distance) with a frequential loss, adapted from the acutance metric.

This chapter is organized as follows. In Section VII.2, we �rst introduce the acutance
metric following the papers of Cao et al. [32, 33] and the paper of Artmann [14]. Then, we
present how we adapted it to form a loss function, which can be used to train an image de-
noising network. In the present chapter, we will only focus on AWGN removal, by training
the FFDNet network presented by Zhang et al [202]. In Section VII.3, we report our exper-
iments. We �rst investigate the role of the penalization term as well as the impact of the
acutance loss on the restored spectrum. Additionally, we show that our method performs
on par with a natural-image trained FFDNet for natural image denoising, while improving
both the acutance and the PSNR for dead leaves image denoising. We also show in visual
examples that the network trained with synthetic images reduces the network hallucina-
tion phenomenon ,(i.e., the arti�cial creation of details by classical image-to-image neural
networks).

This chapter not only shows that one can increase its performances on a standard test
by training an imaging pipeline to improve its response to speci�c images. We believe this
work is an additional argument to support the replacement of some steps of the camera ISP
by learnable neural networks, which was already suggested in the following references [85,
36, 64].

VII.2 A frequential loss for dead leaves images

VII.2.1 Background

Dead leaves images were �rst used for camera evaluation in 2009 by Cao et al [32]. The
paper aims at creating a standard test for cameras to measure texture sharpness. The idea is
to measure the response of a camera to a speci�c image target. This target should have the
following properties:
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• Rotation and shift invariance: Texture can indeed appear in all directions, and
over the whole image �eld.

• Scale invariance: the test must be led regardless of the de�nition of the sensor.
Therefore the distance between the camera and the target should not a�ect the test.

• Contrast invariance: Texture images can indeed have many di�erent contrast pro-
�les. The target image should contain all possible contrasts

• Natural properties: The target image should look like a texture or at least exhibit
some properties of natural images, such as occlusions, edges, similar statistical prop-
erties etc.

Since the dead leaves image model perfectly �ts these criteria, it was chosen by the au-
thor for the target generation. In particular, the scale invariance property is only achievable
when the disks radii follows a power law with α = 3. The dead leaves target is therefore
generated with this parameter. Note that to ensure the convergence of the algorithm, bound-
ing parameters rmin, rmax are required, preventing full scale invariance. In the paper, the
authors evaluate the response of a camera to the dead leaves target by computing the ratio
of the power spectra, resulting in a Modulation Transfer Function (MTF). At each position
(m,n) for an (N ,N) image:

MTF2D(m,n) = |Ŷ (m,n)|
|X̂(m,n)| ,

where Ŷ is the spectrum of the obtained image, X̂ is the ground truth spectrum. In all that
follows, we compute the image spectra on a greyscale version of the color image, obtained
by the standard linear combinationGrey = 0.2126R+ 0.7152G+ 0.0722B. Let us explain
why this function is relevant to assess the spatial frequency response of a camera. Supposing
that the obtained image corresponds to the convolution of a blur kernel B with the true
signal, this translates in the Fourier domain as Ŷ = B̂.X̂ . Therefore the ratio of the power
spectra corresponds to the Fourier coe�cient of the blur kernel induced by the camera. Of
course, this explanation excludes non linear transforms which are frequent in the acquisition
of an image. It is nonetheless a good indicator of the cameras spatial frequency response.
This quantity was already evaluated in another ISO norm (ISO 12233:2017), which measured
the exact same ratio but for a di�erent target image with slanted edges and oscillating details.

Since the dead leaves target is rotationally invariant, so is its spectrum. Therefore we can
express the MTF as a 1D function. We can indeed obtain a 1D signal by averaging MTF2D
on concentric rings of width 1. The MTF becomes:

MTF1D(k) =
1Ck
#Ck

dMTF2D,

where Ck =
 
(i, j) P [´N/2,N/2]2|(k ´ 1)2 ď |i2 + j2| ă k2( corresponds to a ring

of radius k. In a follow-up paper [33], Cao et al. propose to compute the ground truth
spectrum based on an explicit formula, rather than computing it from the original digital �le.
The spectrum of a dead leaves image indeed follows a power law distribution (empirically).
Though this is true for most frequencies, the approximation fails for very low and very high

93



VII.2. A frequential loss for dead leaves images

frequencies as we can see in Fig. VII.2. In practice, the authors claim that this does not
matter, since very high spatial frequencies are almost imperceptible by a camera. With this
approximation, the slope of the 1D power spectrum η corresponds to the exponent of the
power law, and was estimated at η = 1.93 by Cao et al. They propose the following formula:

|X̂(m,n)| = c(N)

(m2 + n2)η/2 ,

where c(N) is a constant which depends on the size of the dead leaves target.
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Figure VII.2: Grey level dead leaves image and its associated digital spectrum in logarthmic
scales. The theoretical value is a straight line.

Though the full MTF1D is a good indicator of the camera’s capacity to render textures, it
is more helpful to compute a single score. To that end, Cao et al. de�ne the texture acutance
as a weighted sum of the MTF1D , with weights de�ned by a contrast sensitivity function
(CSF), inspired by the slanted edge SFR. Our visual system is indeed more sensitive to some
frequencies than others. In that regard, the CSF models the sensitivity of the visual system
to spatial frequencies expressed in cycle/degree. Based on the physiological analysis of the
contrast sensitivity of infants and monkeys led by Movshon and Kiorpes [137], Cao et al.
used the following formula to model the CSF:

CSF(ν) = a.νc.e´bν ,

where ν is a spatial frequency expressed in cylces/degree, the parameters b = 0.2, c = 0.8,
and a is a normalizing parameter so that

şNyquist
0 CSF(ν)dν = 1. We show in Fig. VII.3, the

pro�le of the CSF.
Given this formula, the texture acutance score can be written as:

A =

ż Nyquist

0
CSF(ν).MTF1D(ν)dν.

The perfect MTF corresponds to a constant function equal to 1, meaning that the frequen-
tial content has been perfectly restored by the camera for every frequency. This leads to an
acutance A = 1. An acutance greater than 1 indicates that frequential content was added to
the image probably because of noise or sharpening. An acutance lower than 1 indicates that
some frequencies have been lost.
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Figure VII.3: Pro�le of the CSF of the human visual system for spatial frequencies expressed
in cycles/degree.

Unfortunately, an acutance equal to 1 does not necessarilly mean that the frequencies
are perfectly restored. Because of the acutance formula, an imaging device that adds high
frequencies and removes low frequencies could also have an acutance equal to 1 without
properly restoring the whole spectrum of the target. Moreover, the spectrum of the obtained
image can be heavily degraded by noise, leading to an incorrect estimation of the MTF. In
2015, Artmann proposed to better assess the MTF by subtracting the spectrum of the noise
[14]. He proposes to estimate the spectrum of the noise by taking a photograph of a uniform
grey surface and computing its power spectrum |N̂ |. The MTF becomes

MTFdirect(m,n) =

d
|Ŷ (m,n)|2 ´ |N̂(m,n)|2

|X̂(m,n)|2 .

Even though this methods allows to mitigate the e�ect of noise on the MTF estimation, it
assumes an additive and signal independent noise model, which is far from reality. Moreover,
according to Artmann, there are many non linear functions to reduce noise and process the
image, which also alter the MTF estimation. In the same paper [14], Artmann proposes a
new computation trying to correct these issues. Here, we consider the complex spectrum of
a reference digital dead leaves target X̂ , rather than the estimate of the power spectrum |X̂|
in the spatial domain. In the previous version, the phase information was lost. Only having
access to the amplitude of the spectrum meant that we could not di�erenciate frequencies
which were already in the target and information that was added by the imaging device.
Therefore noise and non linear functions had an impact in previous computations.

The proposed method, which we call MTFcross uses the cross power density between the
target and the obtained image φXY (m,n), and the auto power density φXX(m,n). More
precisely,

φXY (m,n) = Ŷ (m,n)X̂˚(m,n) and φXX(m,n) = X̂(m,n)X̂˚(m,n).

The di�culty here resides in making a digital reference targetX that can be easily match-
able with the photograph Y . Artmann proposes a precise protocol to match markers and to
counter lense distortions, which we will not detail here. The photograph is also linearized,
by inverting the camera tone mapping operations, which are assumed to be known for every
camera. The ground truth image is linear by construction. Having perfectly matched linear
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images, the MTF becomes:

MTFcross(m,n) =
ˇ̌
ˇ̌φXY (m,n)
φXX(m,n)

ˇ̌
ˇ̌ .

We can replace the initial MTF2D with MTFcross which is a more accurate estimate of the
SFR, and compute a more reliable acutance score. The procedure proposed by Artmann has
also been used in the standard ISO/TS 19567-2:2019 norm for texture sharpness estimation.
We describe in the following section how we derived a texture loss function based on the
presented acutance score.

VII.2.2 Acutance loss for image restoration CNNs

Previous experiments (see Section IV.3) showed that models trained on mixed databases per-
form on par with models trained on natural images only, while improving results on dead
leaves image targets. We believe we can further improve the frequential response of models
trained on mixed sets, by adapting the acutance score in a loss function.

In the context of AWGN removal for color RGB images, the noisy image corresponds to
Y = X + n where X is a ground truth dead leaves image of size (N ,N , 3). The denoising
network fθ produces an estimate of the clean imageZ = fθ(Y ). For our restoration problem,
we can consider that the denoising network is analogous to the camera which aquires the
dead leaves target. We can compute the MTFcross of the denoising network with the same
formula MTFcross(m,n) =

ˇ̌
ˇ φXZ (m,n)
φXX (m,n)

ˇ̌
ˇ , based on the computation of the digital spectrum

of both X and Z . Before, computing the spectra, we �rst convert each color image in a grey
level image and linearize it by applying an inverse gamma transform Γ´1(x) = x2.2 to be
as close as possible with the camera evaluation protocol.

Figure VII.4: Diagram explaining the computation of the acutance metric

The obtained MTFcross is turned into a 1D signal as described above. For faster com-
putation, concentric ring masks are stored in GPU so that the MTF1D can be accelerated
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with parallel computing. The acutance score can then be derived with the exact same for-
mula A(Z,X) =

şNyquist
0 CSF(ν).MTF1D(ν)dν. Since the best acutance is 1, we de�ne our

acutance loss function as:

Lacutance(Y ,X) = |1´A(fθ(Y ),X)|,
which penalizes both adding or removing frequential information.

Training an image denoising network only with this loss is impossible since it loses
spatial information. We therefore keep our initial data �delity term, which is the L2 loss.
When training on dead leaves images our loss is a weighted combination of both losses
L = L2 + λ.Lacutance.

Since we train the image denoiser on both natural images and dead leaves images, we
compute the acutance loss only on the dead leaves images in a minibatchD of sizeK and the
L2 for all images. The formation of minibatches during training indeed randomly samples
images from the mixed set. Thus, the loss in a batch becomes:

Lbatch =
1
K

Kÿ

i=0
||xi ´ fθ(xi + ni)||22 +

λ

mT1

Kÿ

i=0
mi.Lacutance(fθ(xi + ni),xi),

where m is a masking vector of size K such that mi = 1 if xi is a dead leaves image, or
mi = 0 otherwise. In order to count the number of dead leaves images we sum this masking
vector which is given by mT1.

VII.3 Image denoising results with FFDNet

We chose to train the FFDNet network to illustrate the impact of the perceptual loss we
presented in the previous section1. However, we adapted the training scheme of the network
to the present problem. First, we increased the size of the training patches from (50, 50, 3)
to (100, 100, 3). The reason for this is that the estimation of the 1D-MTF on a small patch is
not su�ciently accurate. Keeping the same rings’ width would result in fewer estimates for
the 1D-MTF. On the other hand, decreasing the rings’ width would lead to noisier estimates.
Therefore, we decided to train with larger patches. Second, we had to reduce the batch size
from 64 to 32 during training. Since training patches are wider, the memory footprint is
also larger, which forces us to create smaller mini-batches. For similar reasons, we reduced
the number of training samples from 300000 to 150000, with 100000 natural image patches
and 50000 synthesized dead leaves patches. The other training hyper-parameters remain
unchanged, such as the number of epochs or the learning rate decaying schedule.

In this experimental section, we will �rst study the impact of the weighting parameter
λ on the numerical results. We will then show how the acutance metric optimization a�ects
the restored image spectrum. Finally, we will compare the visual results obtained with and
without this loss.

VII.3.1 Finding the optimal perceptual loss parameter

Jointly training on natural images and synthetic images leads to performances on par with
training with natural images. But is it still the case when we add the acutance loss? We can

1We remind the reader that this network was presented in Section III.1.1.
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also ask ourselves if increasing the weighting parameter λ increases the acutance evaluation
without impairing performances on natural images.

To answer these questions, we trained the same FFDNet network with the acutance loss
with di�erent values of λ, following a logarthmic grid. More precisely we trained FFDNet
with λ P [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000].
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Figure VII.5: Graph of the PSNR and the inverse of the acutance loss depending on the pe-
nalizing parameter λ for di�erent noise standard deviation σ (for both, the higher the curve
the better).

We then tested our models numerically on two datasets. First, we evaluated the data
�delity by computing the PSNR on the Kodak24 dataset, a benchmark test set of 24 natural
images. Second, we evaluated the acutance metric on a test set of synthesized dead leaves
images which we already used in Chapter IV. We report, in Fig. VII.5, the graphs of the PSNR
and the inverse of the acutance loss depending on the weighting parameter λ for di�erent
noise level values. In both cases, the higher a point is, the better the evaluation.

The pro�le of the graphs is the same for σ = 25 or σ = 50. We observe that the data
�delity is almost constant up to λ = 50, and rapidly decreases for higher values. The acu-
tance loss behavior is almost the opposite: it increases rapidly up to λ = 100 and reaches
a plateau afterward. This observation indicates that a good parameter for data �delity and
acutance lies between 50 and 100. These graphs also provide an answer to our initial ques-
tion. They indeed show that we can optimize the acutance loss without impairing classic
denoising evaluation, which is an interesting result for camera manufacturers.

VII.3.2 Spectral preservation

For mixed trainings of FFDNet, the acutance loss is greatly improved by adding the acutance
loss. However, the acutance loss does not give us any idea of the MTF of the trained network.
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VII.3. Image denoising results with FFDNet

In order to understand the impact of the acutance loss on the spectral preservation of the
network, we compute its MTF as described next.

We compute the 1D-MTF from the denoised image and the original image for each dead
leaves image of the synthetic test set. Since the 1D-MTF depends on the image’s content,
which di�ers from image to image, we average the obtained MTF over the whole dataset.
This results in a more accurate estimate of the MTF In Fig. VII.6, we report the MTF of
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Figure VII.6: Comparison of the MTF evaluated with FFDNet trained on a mixed database
with or without the acutance loss, on the whole dead leaves image test set.

FFDNet trained with and without the acutance loss (with λ = 50) for a noise level σ = 25.
We can make the following observations:

• low frequencies: the MTF of the model trained with acutance loss is close to or above
1. Recall that a perfect MTF is equal to one for all frequencies. For these frequencies,
this means that the network adds frequential information. This is one of the disadvan-
tages of the acutance metric, for which the optimal value is one. However, a system
can achieve an acutance of 1 by adding and removing frequencies.

• low to medium frequencies: in this segment, the gap between the two MTF is sig-
ni�cant, con�rming that the acutance loss allows having a better frequential response.

• higher frequencies: for these frequencies, the MTF for the model trained with the
acutance is still above the other one, but the gap is smaller. Note that the CSF is very
small for these frequencies, which can explain this behavior.

In general, the gap between the obtained MTF follows the pro�le of the CSF. It is large when
the CSF is large and small when the CSF is small. Overall, the obtained MTF behaves as
expected. However, the arti�cial addition of low frequencies is problematic. We believe that
some alternatives to the acutance loss could be created to penalize the addition of frequencial
content more.

VII.3.3 Visual analysis

In Chapter IV, we saw that FFDNet trained on a mixed database could reach performances
on par with FFDNet trained on natural images only. Numerically, the results were very sim-
ilar. We also did not notice strong visual di�erences in the denoised images. However, we
can note some subtle visual improvements when using the acutance loss during training.
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Figure VII.7: Comparison of FFDNet results on two natural images and on a dead leaves
image. From left to right: original image, noisy image, image denoised with standard FFDNet,
image denoised with FFDNet trained on a mixed database without the acutance loss, and
�nally with the acutance loss.

First, we note that the denoised images remove some artifacts created by the denoising net-
work. As we can see in the �rst row of Fig. VII.7, there are some oscillation-like artifacts in
the background of the image, which is homogeneous in the original image (please consult
the electronic version of the document). The same artifact appears for the model trained
on a mixed database. However, this artifact is almost gone for the model trained with the
acutance loss. Since it is a frequencial artifact, we can assume that having a frequencial
constraint tends to reduce it. We can do a similar observation for a light ringing artifact at
the border of the red area, which is corrected with the model trained with the acutance loss.
Observing the results of the second row, we clearly see that the classic FFDNet network adds
frequencial information which was not there before. Even though we do not observe this in
the global MTF, oscillations are created, which did not exist in the original image. If we com-
pare the results of the models trained on a mixed set, we see that the results are very similar.
However, we notice that the model trained with the acutance loss better retrieves tiny disks.
When it comes to texture images, the performances are almost equivalent for all models, as
we can see in the third row. Since texture images usually contain a lot of high frequencies,
we can question the validity of the acutance weighting function for texture preservation.
The CSF indeed puts much more weight on lower frequencies than on higher frequencies,
as we can see in Fig. VII.3. Other weighting functions could possibly increase the preserva-
tion of textures by adding more weight on higher frequencies. Such a re-weighting can be
incorporated easily to our framework.
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VII.4 Conclusion

Texture preservation is a crucial image quality criterion for cameras. To evaluate it, Cao et
al.[33] �rst proposed a test procedure based on the frequential response of an imaging device
to a dead leaves image target. In the present chapter, we adapted the acutance metric pre-
sented by Artmann [14] in a perceptual loss function for a denoising problem. Following the
results of Chapter IV, which showed that training on a mixed set of synthetic and natural
images did not impair performances on classic benchmarks, we decided to train the same
denoiser with the acutance loss. The results showed that we could increase the acutance
loss without degrading data �delity metrics like the PSNR. Moreover, we observed that the
acutance metric substantially impacted the preservation of the spectrum of the restored im-
ages. Finally, we observed that in various cases, the acutance loss allowed to remove some
artifacts and to improve the preservation of small details.

Despite these promising results, the use of the acutance metric could bene�t from im-
provements. First, the acutance loss optimization does not prevent the addition of frequen-
cial content. We indeed observed that the global MTF exceeded one for some frequencies.
Another loss than the acutance might be more relevant to prevent this behavior. Second,
we noticed that the acutance loss did not improve the performances in texture areas. This
is probably due to the CSF weighting, which is centered on lower frequencies. For all these
reasons, we believe there is still room for improvement in this metric and that dead leaves
images can greatly help in this respect.
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VIII.1 Conclusions

In order to train a neural network for image restoration, the standard practice is to collect
large datasets of pairs of distorted and clean images of the same scene. While this may be easy
for simple or arti�cial restoration tasks, it is much more complicated for real-world problems.
In these cases, acquiring paired images is a cumbersome and time-consuming e�ort, which
can also require complex post-processing operations to create ground-truth data. This is a
severe limitation of deep learning-based image restoration methods since trained networks
often fail to generalize to new modalities of acquisition and distortion. Our main goal was
to address this problem by synthesizing images with the necessary properties to replace
real images in a training set. We hoped that an easy generation algorithm could replace the
tedious image acquisition procedure, thus saving time and e�ort while maintaining excellent
restoration performances.

Our �rst challenge was to create an image-generation algorithm to achieve this goal.
The algorithm had to be simple enough to be easily tuned to various restoration tasks and
agnostic of the test-data distribution. However, it also had to model some properties of
natural images with enough accuracy to ensure good restoration performances. A crucial
question arose: which are these desired properties?

In chapter IV, we showed that training an image restoration neural network on images
generated with an adapted version of the dead leaves model led to surprisingly good restora-
tion performances. Dead leaves images, �rst presented by Matheron [132], indeed exhibit
statistical properties close to those of natural images (e.g. similar distributions of the gradient
and spectrum), as well as clear edges and occlusions, which are frequent in natural images.
Moreover, it is easily tunable to di�erent modalities: the geometry of a dead leaves image is
indeed dictated by only three parameters (rmin, rmax,α). Therefore the dead leaves image
model was a natural candidate for image generation.
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In Section IV.3, we also analyzed the importance of di�erent image properties. To do so,
we generated di�erent dead leaves image datasets by changing generation parameters and
removing some steps of the algorithm. We also compared our model with other synthetic
image models, such as Gaussian random �elds. The most important properties were:

• Natural colors: sampling colors in natural images greatly improved performances,
in comparison with training with dead leaves images whose colors were sampled uni-
formly at random.

• Variety of content: A model trained with �ne-grained textures and homogeneous
areas was the better tradeo�.

• Modeling the acquisition: we modeled camera acquisition by adding blur and sub-
sampling to our generated images. Without these steps, the trained model performed
poorly.

• Non-Gaussianity: the model trained on Gaussian random �elds performed poorly
on images with clear edges, unlike the model trained on dead leaves images, which
are non-Gaussian.

In addition to this study, we showed that a model trained on synthetic and natural images
performed on par with a model trained on natural images only. Therefore, training with
additional synthetic data did not impair performances, con�rming that the dead leaves model
was a good model for natural images.

Among the previously listed properties, the most important was the color sampling
choice. For this particular task, our initial algorithm sampled the colors of a randomly picked
natural image for each synthetic image generation. This technique ensures that the colors
in a dead leaves image are coherent and natural. However, it also requires having access to a
dataset of natural images, making the whole algorithm data-dependent. This dependency is
one of this algorithm’s major drawbacks since our goal was to rely on a data-agnostic model.
In order to bypass this dependency, an alternative consists of sampling colors with a simu-
lated color distribution that is similar to a natural image’s color distribution. This brings a
new challenge: how can we generate such plausible color point clouds?

In chapter VI, we proposed a data-agnostic and universal color sampling technique based
on the color line prior introduced by Omer et al. [146]. This work shows that, in many cases,
the colors of a single natural image are distributed along elongated line clusters in the sRGB
cube, each line corresponding to a single object. Our �rst contribution in this chapter was
a statistical study of the �rst-order statistics of the colors in a large dataset of RAW images
from di�erent cameras. We showed that we could approximate the whole distribution of col-
ors in a universal-RGB cube with a simple 3D Gaussian mixture model. However, our goal
was to simulate color point clouds similar to those of natural images. The 3D model only
allows to sample colors from the distribution estimated on the whole dataset. Therefore,
the obtained color pro�les of the synthesized images would be almost identical from one
generation to the other. We then showed that we could split the color distribution model
into a decoupled one with a chromaticity and a luminance component. The chromaticity
was approximated with a 2D Gaussian mixture model, while the conditional luminance was
approximated with a Gamma distribution. The decoupled model was indeed more adequate
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for simulating color line clusters. With the sampling procedure described in Section VI.3,
we were able to generate dead leaves images with realistic color pro�les, and train an image
restoration neural network with them. Its performances were close to those obtained by
training on our previously generated dead leaves images. This result con�rmed the validity
of our coloring procedure. Moreover, it also made our image generation algorithm com-
pletely data-agnostic while preserving excellent restoration performances. With this result,
we achieved the �rst objective of this PhD work, which was to implement a data-agnostic
image generation method for deep learning-based image restoration methods and to study
the necessary properties of synthetic models to reach good performances.

Our second objective was to make the proposed method tunable for real-world restora-
tion problems. To achieve this objective, our �rst challenge was to synthesize real data. Since
we focused on two restoration tasks that used RAW images, we had to simulate RAW-like
images. Therefore, in chapter V, we proposed an adaptation of the dead leaves image algo-
rithm, which produced arti�cial RAW images. The main modi�cation concerned the color
sampling algorithm and the post-processing of the dead leaves image. We could generate a
large dataset of undistorted RAW images with this algorithm. However, training an image
restoration neural network supposes to have access to distorted and undistorted image pairs.
In order to create such a dataset, we had to simulate the distortion process. This was very
challenging since we had to model the distortion process and estimate the model’s parame-
ters on real RAW data without having access to the corresponding cameras. We proposed a
sound noise model for the two tasks we studied, i.e., Smartphone RAW image denoising and
low-light RAW image enhancement. The model depended on a set of parameters that varied
with the sensitivity (ISO) during the shot. Based on these distortion models, we proposed a
simple method to estimate the corresponding noise parameters on the datasets we had access
to. Other estimation methods existed, but they required having access to the corresponding
camera. Nonetheless, we could accurately model these distortions with good estimates of the
noise parameters. Having pairs of clean and distorted RAW dead leaves images, we were able
to train a neural network for the two image restoration tasks at hand. The trained network
produced competitive results with the network trained on real RAW images. For Smartphone
RAW image denoising, our model performed on par with its classic alternative, producing
even sharper images in some cases. For low-light image enhancement, the results were also
very good when the images were not too dark. However, our model could not properly re-
store the images in extreme cases, such as very high ISO and indoor night photography. In
these conditions, complex electronic processing are involved, making the distortion model
even more complex. Therefore, modeling such extreme low-light distortions is an arduous
and time-consuming task.

Overall, we successfully extended the use of dead leaves images for real-world applica-
tions. We were able to adapt the generation algorithm and model complex noise processes,
leading to competitive restoration performances.

The present dissertation focused on exploiting the potential of dead leaves images as a
simple image generation tool in the context of image restoration. Before our work, dead
leaves images were already used for a practical application: camera evaluation. In order to
assess the capacity of cameras to render textures properly, one can analyze the frequential
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response of a camera. To do so, a standard test consists of taking a picture of a dead leaves
image target and comparing the photograph’s spectrum with a ground truth one. The dead
leaves model was chosen for its multiple invariance properties and its similarity with natural
images [32, 33, 14].

Inspired by this body of literature and by our results in chapter IV, we decided to trans-
form the acutance metric used for camera evaluation into a perceptual loss. We observed
that we could indeed have excellent image restoration results on natural images while im-
proving the results on synthetic images by simply adding dead leaves images to the natural
training set. Following this result, we showed, in chapter VII, that we could improve the
acutance metric of a denoising network without impairing the data �delity evaluation on
natural images. Adding the acutance loss improved the frequency preservation of the dead
leaves images. It also reduced the appearance of hallucination artifacts, which were frequent
for the model trained on natural images only. The work presented in chapter VII better ex-
ploits the full potential of dead leaves images, bridging the gap between image restoration
and camera evaluation. It is also an additional argument to support the idea that learned
methods could e�ciently replace some steps of the Image Signal Processing pipeline.

Overall, the experiments presented in this manuscript contradict the common assump-
tion that large databases of real paired images are required to train an image restoration
neural network for good performance. We circumvent the burden of data acquisition by
synthesizing images, opening the way for lighter training schemes, and saving time and
e�ort.

Even though we obtained good restoration performances, our model trained on dead
leaves images struggled to restore some structures. In the following section, we will present
the prospects of improvement for our methods and other perspectives opened by our works.

VIII.2 Perspectives

VIII.2.1 Improving the realism of the synthetic dataset

One of the key ingredients of the success of the proposed method was to match, as much
as possible, the properties of the synthetic model with those of natural images. That is the
underlying reason for most of our implementational choices:

• the geometry hyperparameters were chosen to create either homogeneous areas and
micro-textures, which are frequent in natural images,

• the colors were sampled in a point cloud as similar as possible to the one of a real
image,

• the post-processing operation was a simple approximation of a photograph acquisi-
tion, with blur and downsampling.
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Even though we achieve good restoration performances with this simple model, improving
the realism of the synthetic dataset could lead to performance improvements.

Geometricalmodi�cations. We noticed that some structures were di�cult to retrieve with
our approach: straight borders, �ne lines, and oscillating patches, for instance. The initial
idea is to add more variety in the shape of the structuring element of the dead leaves image
model. Disks only present curved edges, which might be the cause of the defects we ob-
served. We tried adding rectangular shapes with random orientations to the original dead
leaves model. However, this did not lead to any improvements in the restoration of straight
borders. We could explain this result by arguing that the receptive �eld of our restoration
network is quite small compared to the maximal radius size. This means that some disk bor-
ders are almost straight lines in the receptive �eld of the network. In that regard, another idea
we believe is interesting is adding oscillating patches to the dataset. Simple cosine functions
with di�erent amplitude, period, and average color could generate these patches. Going fur-
ther, large disks in the dead leaves images could present this kind of frequential content. The
idea of attributing texture to the disks of the dead leaves images was already introduced in
[127], inspired by our paper [6]. In their work, Madhusadana et al. sample the texture of each
disk in a dataset of real photographic textures. While this allows having statistical proper-
ties closer to those of natural images, this also implies a data dependency which we wanted
to avoid. Conversely, we propose to add oscillating functions as simple as a cosine, which
does not depend on any real dataset. Another idea would be to add a Gaussian random �eld
texture to large disks, making their aspect closer to the one of natural objects. Hopefully,
these geometrical modi�cations of the dead leaves image model can improve the restoration
performances, especially for the structures our model failed to restore. One of our priorities
is to �nd the right balance between the model’s simplicity and expressiveness. Therefore,
new modi�cations should not include too many parameters or complex operations.

Realistic acquisition model. In Section V.2, we presented a simple algorithm to create ar-
ti�cial RAW data. The method was based on a Bayerisation of a simulated dead leaves image.
However, we pointed out that both the blur kernel applied to the image and the downsam-
pling step oversimpli�ed the acquisition process. Photographic lenses all induce blur to a
certain extent, but the blur kernel is much more complex than a Gaussian one. Recent works
in image deblurring rely on carefully modeled blur kernels, which depend on the physical
properties of the lens used. We believe that our method could bene�t from these models.
Moreover, the downsampling step was initially introduced to simulate the acquisition of a
distant and printed dead leaves target, thus preventing aliasing and arti�cially sharp edges.
However, this approximation assumes that every object in the dead leaves image is on the
same plane. In real-world conditions, this absence of depth only corresponds to very speci�c
acquisition conditions (for instance, having long focal length lenses, a small aperture, and
distant objects), which are not frequent. It would be really interesting to include and exploit
depth information. The �rst possibility would be to store each disk’s arrival time. Having
this information, we could try to simulate the depth of �eld by applying di�erent blur levels
depending on the arrival time. An even more direct and potentially more realistic approach
would be to simulate a 3D dead leaves image made of spheres of random radiuses and color in
a 3D rendering software such as Blender. This approach was already used by Madhusadana
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et al. [128], but for a completely di�erent objective than realism. They propose estimating
disparity maps for stereo images by training a neural network on a 3D dead leaves image
set. Given the exact depth information, generating two di�erent views of a single scene and
computing the disparity map between them is easy. An interesting perspective would be to
create a 3D dead leaves image scene and to use a realistic simulation of a camera in this soft-
ware to generate images with limited depth of �eld and realistic camera blur. An accurate
model of the camera may improve the realism of the scenes and subsequently improve image
restoration performances.

Figure VIII.1: Di�erent views of a single blue sphere under various acquisition conditions
generated with Blender.

Using realistic 3D rendering could potentially lead to other improvements. As pointed
out in chapter VI, the perceived color of a Lambertian object is the product of the object’s
albedo with the illuminant. However, in most cases, objects are far from being Lambertian.
The perceived color is a complex combination of the object’s surface roughness, albedo, met-
alicity, illuminant, etc. While these properties are hard to control on a 2D RGB image, it is
much easier to control them in a 3D rendering program. For instance, we could generate
leaves as spheres with varying roughness. Moreover, we could also render our image with
various illuminants. We could change the temperature of the illuminant, its orientation, and
its directionality. We show in Fig. VIII.1 di�erent views of a single sphere under di�erent
conditions. We can obtain a variety of appearances by changing a few parameters. By bet-
ter modeling the physics of the scene, and the interaction between objects and light, we
could have a more realistic color distribution in the simulated image, which plays a major
role in the success of our method. All these modi�cations could improve our simulated im-
ages’ realism and, hopefully, translate into better restoration performances. Nevertheless,
this approach would potentially make our data generation much more complex. Again, the
algorithm should be balanced between complexity and realism to make it as adaptable as
possible.

VIII.2.2 Extending the statistical analysis of the color distribution

The statistical study of the color distribution presented in chapter VI, as well as the color
line sampling, led to good restoration performances for restoration neural networks. We
could model color point clouds of di�erent objects to model the interaction between objects
of di�erent chromaticity. Nevertheless, there is still room for improvement.

Joint chromaticity distribution. In our experiments, we independently sampled the chro-
maticity of two objects. However, this independence is indeed an approximation. Therefore,
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studying the joint distribution of pairs of chromaticities of di�erent objects would be interest-
ing. With this model, we could sample the chromaticity of an object given the chromaticity
of another one. It is unclear if this would improve our results, nor that independence is not
a valid property. Nonetheless, this study would bring new insights about the distributions
of colors in images, which is still an interesting contribution.

Extend the colormodel to surfaces. As explained by Lisani et al. [121], the color line prior
is often not relevant to summarize the distribution of colors in the sRGB cube. A 2D surface
model is often more accurate to model the color clusters from single objects. This is caused
by two major components in the image: blur and textures. One could argue that blur can
be obtained as post-processing and that we can create textures on large disks, in which case
the color line model could be su�cient to indicate the chromaticity and luminance of disks.
However, these steps also make our generation algorithm more complex. Therefore, having a
color model that could generate realistic surface-like point clouds could lead to more realistic
color pro�les in the generated images without increasing the complexity. One of the main
challenges is understanding the statistical properties of the color surface in an RGB cube. An
initial step would consist in using the algorithm proposed by Lisani et al. to �rst summarize
the color point cloud of a single image in di�erent surface clusters. Then, we could estimate
the properties of the found color clusters: width, length, curvature, average chromaticity,
etc. By doing so over a large set of images, we could �t a reasonable probabilistic model on
those properties to sample surfaces rather than lines.

Better model the mapping of RAW-RGB spaces from camera to camera. The perfor-
mance loss in chapter VI was mainly due to the discrepancies between the dataset on which
we estimated the color distribution (RAISE) and the dataset of test images (SIDD). The RAISE
dataset was indeed acquired with cameras that did not exist in the SIDD dataset. Since the
sensor’s color �lter array di�ers from one camera to the other, the color distributions also
di�er. Therefore, each camera de�nes its own RAW-RGB color space. In order to counter
that, we mapped the colors of the RAISE dataset in an approximated universal RAW-RGB
color space by multiplying each color by a diagonal matrix. Its diagonal coe�cients were
the daylight white-balance parameters, which correspond to �xed parameters estimated by
the manufacturer for the D65 illuminant. To map the color back to camera-speci�c RAW-
RGB spaces, we inverted this transform by multiplying the colors with the inverse diagonal
matrix, containing the daylight white-balance gains for a speci�c camera. Since we did not
have access to the cameras or these parameters, we approximated them by considering ran-
dom values around plausible ones. A �rst improvement would be to obtain these parameters
and only apply those rather than sampling random values. Going further, we could �nd a
linear mapping from one color camera to the other in the form of a full (3, 3) matrix. This
technique was already studied by Nguyen et al. [nguyen2014raw]. This paper proposes
to estimate the parameters of a mapping between two cameras, having access to identical
photographs of a color chart for both cameras. The author found that the best mapping was
an a�ne transform �tted on these images. The main di�erence with our set-up is that we
consider that we do not have access to the cameras but unmatched images from di�erent
cameras. Therefore, this problem is much more challenging.
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VIII.2.3 Investigating alternatives for the acutance loss

The acutance loss presented in chapter VII computes a weighted sum of an imaging de-
vice’s modularity transfer function (MTF). The weights account for the contrast sensitivity
of the human visual system and sum to one. Since the perfect MTF is one for each fre-
quency, the corresponding acutance value is also one. However, the same acutance score
could be reached with an in�nite number of MTF pro�les. For instance, an MTF where the
response for high frequencies is much smaller than one and the response for low frequen-
cies is much higher than one can also lead to an acutance of one. We indeed observe that
training a denoising network with our acutance loss tends to add frequential information in
lower frequencies, which is unwanted behavior. In order to prevent this phenomenon, the
�rst possibility consists of adding a constraint to the restored spectrum. We could penalize
the addition of frequential information with an additional loss term. Hopefully, this minor
modi�cation could e�ciently remove these frequential artifacts.

While the acutance metric was initially developed to assess the cameras’ capacity to ren-
der textures correctly, we noticed in our experiments that the addition of the acutance loss
brought little to no improvements in texture preservation. The main cause is the pro�le
of the contrast sensitivity function (CSF). This weighting function gives much more impor-
tance to low and intermediate frequencies than high ones. This is counter-intuitive since
microtextures are mostly made of high-frequency content. The �rst possible explanation is
that our transform from spatial frequency to digital frequency was inaccurate. We indeed
assumed that the size of a pixel on a screen was P = 0.2mm and that the viewing distance
wasD = 1m. While the pixel size is always the same, the viewing distance might be smaller
and closer to D = 0.5m. In this case, the spatial to digital frequency transform is di�erent,
and the CSF gives more weight to high frequencies than before. Another possibility is to
change the CSF with a constant function so that each frequency will have the same impact
on the acutance score. The MTF is indeed always poor for high frequencies and good for
low frequencies. It is understandable since higher frequencies are more challenging to re-
trieve from a noisy image than lower frequencies, which correspond to almost homogeneous
areas.
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Titre : Apprentissage synthétique pour les méthodes neuronales de restauration d’images

Mots clés : restoration d’images, modélisation statistique, apprentissage profond

Résumé : La photographie est devenue un élément
important de notre vie. De plus, les attentes en termes
de qualité d’image augmentent alors que la taille des
appareils diminue. De ce fait, l’amélioration des algo-
rithmes de traitement d’images est essentielle.
Dans ce manuscrit, nous nous intéressons aux tâches
de restauration d’images. L’objectif est de produire
une image propre à partir d’une ou plusieurs observa-
tions bruitées de la même scène. Pour ces problèmes,
les méthodes d’apprentissage profond ont connu une
forte croissance dans la dernière décennie, surpas-
sant l’état de l’art pour la plupart des tests tradition-
nels.
Bien que ces méthodes aient des résultats impres-
sionnants, elles présentent un certain nombre de
défauts. Tout d’abord, elles sont difficiles à interpréter
en raison de leur fonctionnement en ”boı̂te noire”. De
plus, elles généralisent assez mal à des modalités ab-
sentes de la base de données d’entraı̂nement. Enfin,
elles nécessitent de grandes bases de données, qu’il
est parfois difficile d’acquérir.
On se propose d’attaquer ces différents problèmes
en remplaçant l’acquisition des données par un al-
gorithme simple de génération d’images, basé sur le

modèle feuilles mortes. Bien que ce modèle soit très
simple, les images générées ont des propriétés statis-
tiques proches de celles des images naturelles et de
nombreuses propriétés d’invariance. L’entraı̂nement
d’un réseau de restauration avec ce type d’images
nous permet d’identifier les propriétés importantes
des images pour le succès des réseaux de restau-
ration. De plus, cette méthode permet de s’affranchir
de l’acquisition des données.
Après avoir présenté ce modèle, nous montrons que
la méthode proposée permet d’obtenir des perfor-
mances de restauration très proches des méthodes
traditionnelles pour des tâches relativement simples.
Après quelques adaptations du modèle, l’apprentis-
sage synthétique permet également de s’attaquer
à des problèmes concrets difficiles, tels que le
débruitage d’images RAW. On propose ensuite une
étude statistique de la distribution des couleurs des
images naturelles, permettant d’élaborer un modèle
paramétrique réaliste d’échantillonnage des couleurs.
Enfin, nous présentons une nouvelle fonction de perte
perceptuelle basée sur les protocoles d’évaluation
des caméras, en utilisant les images de feuilles
mortes.

Title : Synthetic learning for neural image restoration methods

Keywords : Image restoration, statistical modeling, deep learning

Abstract : Photography has become an important
part of our lives. In addition, expectations in terms of
image quality are increasing while the size of imaging
devices is decreasing. In this context, the improve-
ment of image processing algorithms is essential.
In this manuscript, we are particularly interested in
image restoration tasks. The goal is to produce a
clean image from one or more noisy observations of
the same scene. For these problems, deep learning
methods have grown dramatically in the last decade,
outperforming the state of the art for the vast majority
of traditional tests.
While these methods produce impressive results, they
have a number of drawbacks. First of all, they are diffi-
cult to interpret because of their ”black box” operation.
Second, they generalize poorly to modalities absent
from the training database. Finally, they require large
databases, which are sometimes difficult to acquire.
We propose to attack these different problems by re-
placing the data acquisition by a simple image ge-
neration algorithm, based on the dead leaves mo-
del. Although this model is very simple, the generated

images have statistical properties close to those of na-
tural images and many invariance properties. Training
a restoration network with this kind of image allows
us to identify the important properties of the images
for the success of the restoration networks. Moreover,
this method allows us to get rid of the data acquisition,
which can be tedious.
After presenting this model, we show that the propo-
sed method allows to obtain restoration performances
very close to traditional methods for simple tasks. Af-
ter some adaptations of the model, synthetic lear-
ning also allows us to tackle difficult concrete pro-
blems, such as RAW image denoising. We then pro-
pose a statistical study of the color distribution of natu-
ral images, allowing to elaborate a realistic parametric
model of color sampling for our generation algorithm.
Finally, we present a new perceptual loss function ba-
sed on camera evaluation protocols, using the dead
leaf images. The training performed with this function
shows that we can jointly optimize the evaluation of
the cameras, while keeping identical performances on
natural images.
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