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Abstract

Recent advancement in deep learning techniques has eased the creation of artificial intel-
ligence (AI) solutions to aid in skin disorder diagnosis. Studies showed that incorporating
data from multiple modalities in the analysis process significantly improves the AI based
model’s performance compared to a single modality based analysis for many medical diag-
nosis tasks. Although deep learning based systems compete on par with expert dermatol-
ogists for diagnosing skin cancer, their application is limited in diseases like Lyme disease,
where it is difficult to collect training data.

In this thesis, we particularly focused on AI assisted Lyme disease analysis because it
requires both patient data and lesion images for a proper diagnosis, but there is no avail-
able dataset comprising both of these modalities. Self-supervised pre-training is effective
to address the data scarcity problem of lesion images when a large number of in-domain
images are available. But for some diseases, it’s difficult to collect a lot of in-domain im-
ages. To tackle this problem we proposed a customized transfer learning approach to
improve ImageNet pre-trained convolutional neural network’s performance by utilizing
additional pre-training with an out-of-domain dataset. To deal with the lack of training
data for patient data modality, we proposed an expert opinion elicitation approach to
create a model that calculates disease probability from patient data with intuitive model
validation based on decision tree and formal concept analysis. The proposed question-
naire based elicitation approach is less demanding for the experts. We also proposed an
approach for combining disease probability scores from multiple modalities by ensuring
veto power for a modality, based on expert choice.

As part of the thesis, we prepared a dataset of Lyme disease related skin lesion images
with labeling from expert dermatologists. We also created another skin lesion hair mask
annotation dataset for dealing with lesion hair artifacts in an efficient manner. The pro-
posed techniques in this thesis were applied to create a mobile application for assisting
with early Lyme disease diagnosis but they will be useful for other similar diseases where
there is a problem of data scarcity.

Keywords: Artificial intelligence; Data scarcity; Deep learning; Multimodality; Lyme
disease; Erythema migrans
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Résumé

Les récents progrès des techniques d’apprentissage profond ont permis la mise au point
de modèles d’intelligence artificielle (IA) pour aider au diagnostic des maladies de la peau.
Dans la littérature il est montré que l’intégration de données provenant de plusieurs
sources dans le processus d’analyse de données peut améliorer considérablement les per-
formances du modèle d’IA par rapport à une analyse basée sur une source unique, no-
tamment dans le cas du diagnostic médical. Bien que les systèmes basés sur l’apprentissage
profond rivalisent avec les experts dermatologues pour le diagnostic du cancer de la peau,
leur utilisation reste limitée au niveau de maladies telles que la maladie de Lyme, où les
données d’entraînement sont rares.

Dans cette thèse, nous nous sommes focalisés sur le développement d’un modèle d’IA
appliqué à la maladie de Lyme avec la particularité que cette maladie nécessite à la fois des
données contextuelles de patients et des images de lésions cutanées pour pouvoir établir
un diagnostic correct. En outre, il n’existe aucun jeu de données comprenant ces deux
modalités. Le pré-apprentissage auto-supervisé est efficace pour résoudre le problème de
la rareté des données lorsqu’un grand nombre de données du domaine sont disponibles
par ailleurs. Cependant, pour certaines maladies comme la maladie de Lyme, il est difficile
de collecter un grand nombre d’images du domaine. Pour faire face à ce problème, nous
avons proposé une approche personnalisée d’apprentissage par transfert afin d’améliorer
les performances du réseau de neurones convolutifs pré-entraîné ImageNet, en mettant
en place une phase de pré-entraînement supplémentaire avec un ensemble de données
hors-domaine. En outre, pour faire face au manque de données d’entraînement concer-
nant les données contextuelles des patients, nous avons proposé une approche d’élicita-
tion d’opinion d’experts (médecins) pour créer un modèle qui calcule la probabilité de la
maladie à partir des données relatives à un patient avec une validation intuitive du modèle
basée sur un arbre de décision et une analyse formelle des concepts. L’approche d’élicita-
tion proposée, basée sur un questionnaire, est moins exigeante pour les experts. Nous
avons également proposé une approche pour combiner les scores de probabilité de la ma-
ladie provenant de plusieurs modalités en assurant un droit de veto pour une modalité,
en fonction du choix d’un expert.

Dans le cadre de cette thèse, nous avons constitué un jeu de données d’images de lé-
sions cutanées, liées à la maladie de Lyme avec une classification réalisée par un panel de
dermatologues experts. Nous avons également créé un autre jeu de données d’annotation
de masque de poils de lésions cutanées permettant de traiter les artefacts liés aux poils sur
les lésions, de manière efficace. Les techniques proposées dans cette thèse ont été utilisées
pour créer une application mobile d’aide au diagnostic précoce de la maladie de Lyme,
mais elles pourraient être utiles à d’autres maladies similaires pour lesquelles il existe un
problème de pénurie de données.

Mots clés : Intelligence artificielle ; Rareté des données ; Apprentissage profond; Mul-
timodalité ; Maladie de Lyme; Erythème migrant
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1 Introduction
This chapter sets the thesis motivation, summarizes our research problem and
main contributions, and also contains the thesis organization.

Chapter Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context
Diagnosing skin disorders requires a careful inspection from dermatologists or infectiol-
ogists but their availability, especially in rural areas is scarce [39]. As a result, the diagnosis
is generally carried out by non-specialists, and their diagnostic accuracy is in the range of
twenty-four to seventy percent [143, 163]. The wrong diagnosis can result in improper or
delayed treatment which can be harmful to the patient. Recent advancements in Artifi-
cial intelligence (AI) especially deep learning techniques have found applications in many
medical domains including medical image analysis tasks [9, 30, 76, 91]. It has eased the cre-
ation of AI solutions to aid in skin disorder diagnosis. AI powered diagnostic tools can
help with the scarcity of expert dermatologists.

Many works have been done utilizing deep learning techniques specifically convolu-
tional neural networks (CNNs) for diagnosing cancerous and other common skin lesions
from dermoscopic images. Dermoscopic images have unique lighting and low level of
noise because they are captured using a dermatoscope device having a lighting system
and a high-quality magnifying lens [154]. Dermoscopic images require dermatoscopes
from dermatology clinics so other works focused on diagnosing skin diseases using deep
learning from clinical skin lesion images acquired mostly using mobile phones and digital
cameras [154].

Several studies have shown that deep learning-based systems’ disease diagnosis capabil-
ity from clinical and dermoscopic images is on par with experienced dermatologists [13,

1



1 Introduction

26, 34, 49, 101, 165]. Considering patient data with skin lesion images can boost the per-
formance of AI model for skin disease diagnosis and for some diseases like Lyme disease,
it is crucial to consider both modalities for a proper diagnosis. But the scarcity of training
data is a big challenge for creating robust AI models. In this thesis, we tried to tackle the
data scarcity issue of multimodal skin disorder diagnosis by addressing the issues of a lim-
ited number of clinical skin lesion images, unavailability of patient data, and hair artifacts
on dermoscopic lesion images.

1.2 Research Problems
For image classification problems with limited labeled data, pre-training the model with
a large number of unlabeled domain specific images can significantly improve the model
performance [6, 31, 52, 93, 148, 188]. Often practitioners work with clinical skin lesion
images and it is difficult to gather a large number of unlabeled images from the same do-
main for rare diseases. Many datasets of dermoscopic images are easily accessible however,
their image modality is significantly different from clinical skin lesion images. Our first
research concern is about the utilization of dermoscopic images for improving the per-
formance of Clinical image classification.

Without taking into account the additional context from patient data, a correct diag-
nosis solely on skin lesions is ineffective for some conditions, such as Lyme disease. How-
ever, it is time-consuming and costly to collect training data for patient data modality let
alone creating a dataset comprising multiple modalities. So, our second research concern
is how to utilize patient data to assist deep learning based skin lesion image classifier in
the absence of training data.

The effectiveness of computer-assisted lesion analysis algorithms is affected by the oc-
clusion of skin lesions in dermoscopic images caused by hair artifacts. Our third research
concern is about efficiently handling hair artifacts in dermoscopic images.

In this section, we have briefly stated our research concerns. These issues are described
in detail in Section 2.3 in context of related works.

1.3 Contributions
In this thesis, we have made the following contributions addressing the stated research
problems:

• A strategy to improve transfer learning based clinical skin lesion image classifier’s
performance with additional pre-training using dermoscopic images.

• A flexible questionnaire based expert opinion elicitation method to assist skin le-
sion image classifier with patient data in the absence of training data.

2



1.4 Thesis Organization

• An approach for combining independent disease probability scores from multiple
modalities by ensuring veto power for a modality based on expert choice.

• A dataset of Lyme disease related skin lesion images with labeling from expert der-
matologists.

• A fine-grained skin lesion hair mask annotation dataset for dealing with lesion hair
artifacts in an efficient manner.

1.4 Thesis Organization
The thesis is organized into six chapters:

• Chapter 1 (introduction) sets the thesis motivation, summarizes the research prob-
lems and our main contributions, and also contains the thesis organization.

• Chapter 2 provides the required theoretical background and literature review, and
states the research questions in context of related studies.

• Chapter 3 presents our pre-training strategy for improving clinical skin lesion im-
age classification performance of ImageNet pre-trained convolutional neural net-
works by utilizing additional pre-training with dermoscopic images.

• Chapter 4 presents the questionnaire based expert opinion elicitation method for
calculating disease probability from patient data and an approach for combining
independent probability estimates from multiple modalities.

• Chapter 5 presents our ongoing works on efficiently dealing with dermoscopic skin
lesion hair artifact, custom architecture for Lyme disease image classifier, and an
application utilizing our research findings.

• Chapter 6 (conclusions) presents a summary of the key findings of this thesis and
possible future research directions.

3





2 Background
This chapter provides the required theoretical background, and literature re-
view and states the research questions in context.

Chapter Contents
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . 5

2.1.1 Convolutional Neural Network . . . . . . . . . . . . . 6

2.1.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Formal Concept Analysis and Concept Lattice . . . . . . 9

2.1.4 Gaussian Mixture Model . . . . . . . . . . . . . . . . 12

2.1.5 Kernel Density Estimation . . . . . . . . . . . . . . . 14

2.1.6 Transfer Learning and Pre-training strategies . . . . . . . 14

2.1.7 Visual Explanation of CNN Model . . . . . . . . . . . 16

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 AI for Skin Disorder Diagnosis . . . . . . . . . . . . . 16

2.2.2 AI for Lyme Disease Diagnosis . . . . . . . . . . . . . 18

2.2.3 Related Works on Data Scarcity . . . . . . . . . . . . . 20

2.3 Research Questions and Challenges . . . . . . . . . . . . . 21
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Theoretical Background
The required theoretical concepts to understand the rest of the manuscript are briefly
described in the following subsections.
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2 Background

2.1.1 Convolutional Neural Network
Convolutional neural network (CNN) is a kind of neural network that simulates some
actions generated in the human visual cortex using convolution mathematical operation
to extract features from input and pass these features through successive layers to generate
more abstract features to yield a final output [83]. It processes data having grid patterns
(images for example) and learns spatial feature hierarchies adaptively and automatically,
from basic to complex patterns [178].

Feedforward neural networks, also called deep feedforward networks, or multilayer
perceptrons (MLPs), are classic examples of neural networks [43]. A mathematical repre-
sentation of a biological neuron is called a perceptron [104]. Figure 2.1 the representation
of a biological neuron. While the axons of other neurons provide electrical signals to
the dendrite in actual neurons, these electrical signals are represented as numerical val-
ues in perceptron. Electrical impulses are regulated in various amounts at the synapses
between the dendrite and axons. The perceptron models this by multiplying each input
value by a value referred to as the weight. Soma also called the cell body is responsible
for input processing and decision making in a biological neuron. Only when the sum of
the input signals is greater than a predetermined threshold does a real neuron really fire an
output signal. By computing the weighted sum of the inputs, which represents the entire
strength of the input signals, and applying an activation function to the sum to determine
the output, we may mimic this phenomenon in a perceptron. Nonlinear activation func-
tions can be used for performing nonlinear transformations with perceptrons. Appendix
Table A.1 lists some of the commonly used activation functions. Perceptron calculates the
dot product between a learnable weight vector and an input vector and passes it through
an activation function after adding a scalar bias term. Mathematically, the operation of
perceptron can be represented as Equation 2.1.

yout = fact(
n∑

i=1

wixi + b) (2.1)

where yout is the output of the perceptron, fact is the activation function. wi is the weight
corresponding to input xi, and b is the bias. Figure 2.2a shows the schematic representa-
tion of a perceptron. MLP consists of many layers of perceptrons where each perceptron
of a layer is fully connected to every other perceptron in the previous layer as shown in
Figure 2.2b. Neural networks are trained using optimization algorithms. An optimiza-
tion algorithm updates learnable parameters (weights, biases) of the network to minimize
a task-specific loss function. Gradient descent [133] and its extensions like RMSprop [161]
and Adam [80] are some of the popular choices for optimization. We have used Adam
optimizer in this study and Appendix Section A.2 contains a brief overview of Adam op-
timizer. Interested readers are suggested to consult the study by Ruder [134] for a detailed
overview of gradient descent based optimization algorithms. Traditional MLPs are not
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2.1 Theoretical Background

well suited for image processing as they require a large number of parameters and can not
take into consideration the spatial information in images. Although, modern MLPs like
ResMLP [162] have been customized for image classification tasks CNNs are preferred
over them.

Soma

Dendrite

Axon

Synapse

Figure 2.1: Illustration of a biological neuron. Image modified from [151].

The idea of convolution, a mathematical technique that entails swiping a tiny kernel
over an image and computing the dot product between the kernel and the corresponding
pixels in the image, serves as the foundation for CNNs. By spotting patterns in the data,
this procedure aids in the extraction of features from the image. A feature map, which
highlights particular aspects of the image such as edges, corners, and textures, is the result
of this operation. The convolution operation is shown in Equation 2.3 [43].

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n) (2.2)

where S is the output feature map, I is the input image, K is the kernel of size m × n,
∗ represents the convolution operation, i and j are the row and column indexes of an
element fromS. The convolution is commutative, so the equation can be also written as:

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m,n) (2.3)

Many deep learning libraries uses cross-correlation function in place of convolution as
shown in Equation 2.4.

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n) (2.4)

Cross-correlation is not commutative but has similar properties as convolution. A con-
volution operation on a two dimensional input image is illustrated in Figure 2.3a. Stride
and padding are frequently used with convolution operation. Stride specifies how many

7



2 Background

x1 w1

x2 w2 Σ fact

Activation
function

yout
Output

xn

...
...

wn

Weights

Bias
b

Inputs

(a) Perceptron.

...
...
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(b) Multilayer perceptron (MLP).

Figure 2.2: Schematic representation of perceptron and multilayer perceptron (MLP). Images
modified from [128, 152].

pixels the kernel moves after each convolution operation i.e. the sliding of the kernel be-
tween the production of each output element. Padding is the process of adding empty
pixels around the border of an input image. Padding is used to maintain image size and
also for finding patterns in borders with full convolution on edge pixels. To decrease
the dimensionality of the feature maps and boost computing efficiency, CNNs use pool-
ing layers in addition to convolutional layers. Downsampling is normally carried out by
pooling layers using the maximum or average value of a set of adjacent pixels in the fea-
ture map as illustrated in Figure 2.3b. Pooling also helps for making the model invariant
to subtle translational changes in input. Convolutional, pooling, and fully connected
layers are some of the layers of interconnected nodes that make up a CNN. The final
classification or regression operation is carried out by the fully connected layers. Figure
2.3c shows a schematic representation of a CNN which stacks convolutional layers with
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an activation function applied after the convolution operation, pooling layers, and fully
connected layers with activation functions. Although, vision transformers [55] are gain-
ing a lot of popularity for various vision related tasks including medical imaging, modern
CNN architectures like ConvNext [97] and EfficientNetV2 [160] compete on par with
them. Section 3.2.3 contains brief descriptions of the CNN architectures used in this
thesis.

2.1.2 Decision Tree
Decision tree is a supervised learning algorithm, which can be utilized for both regression
and classification tasks [12, 124]. In this thesis, we are focusing on the decision tree for
classification task. Decision tree represents a classifier as a recursive partition of instance
space using a set of splitting rules [12, 124]. These rules are easy to visualize and interpret
with tree diagrams. Decision tree is a directed tree with no incoming edges at the root
node and each of the other nodes has just one incoming edge. A decision or leaf or ter-
minal node is a node without outgoing edges. All other nodes are called test or internal
nodes. The instance space is divided into two or more sub-spaces by each test node based
on a discrete function of input attribute values. Each decision node is given a class that
corresponds to the best suitable target value. Instances are classified according to the test
results by navigating from the tree’s root to a leaf.

Figure 2.4a shows an example training dataset and Figure 2.4b shows the correspond-
ing decision tree for deciding about playing golf (Yes/No) based on predictors like Out-
look (Sunny/Overcast/Rainy), Temperature (Hot/Cool/Mild), Humidity (High/Nor-
mal), and Wind (Weak/Strong) [138]. The red, yellow, and green boxes represent root,
internal, and decision nodes respectively.

2.1.3 Formal Concept Analysis and Concept Lattice
Formal concept analysis (FCA) is a method of generating a formal concept hierarchy
from a set of objects and their properties [174]. FCA has found many applications in
machine learning and bioinformatics [107, 108, 109]. In FCA each concept represents ob-
jects that share a particular set of attributes. FCA computes concept lattice, a directed,
acyclic graph by hierarchically ordering all formal concepts derived from tabular input
data.

The notion of formal context is central to FCA. Formal context is a triple ⟨O, Y, I⟩
where O is a set of objects, Y is a set of attributes, and incidence I ⊆ O × Y is a binary
relation. A pair ⟨A,B⟩ is a formal concept of ⟨O, Y, I⟩ provided that A ⊆ O, B ⊆ Y ,
A↑ = B, and B↓ = A where,

A↑ = {y ∈ Y |for each o ∈ A : ⟨o, y⟩ ∈ I} (2.5)
B↓ = {o ∈ O|for each y ∈ B : ⟨o, y⟩ ∈ I} (2.6)
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(a) Illustration of a convolution operation [168].
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(b) Illustration of pooling operation.

(c) Schematic representation of a convolutional neural network. The yellow, and violet boxes with shaded
endings represent convolutional and fully connected layers respectively with activation function. The
red box represents pooling layer.

Figure 2.3: Schematic representation of convolution operation, pooling operation and convolu-
tional neural network.

A is called the extent and B is called the intent of a concept ⟨A,B⟩. Formal concepts are
ordered naturally by subconcept-superconcept relation defined as follows:

⟨A1, B1⟩ ≤ ⟨A2, B2⟩ ⇐⇒ A1 ⊆ A2(⇐⇒ B2 ⊆ B1) (2.7)
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Predictors Target

Outlook Temperature Humidity Wind Play Golf

Rainy Hot High Weak No
Rainy Hot High Strong No

Overcast Hot High Weak Yes
Sunny Mild High Weak Yes
Sunny Cool Normal Weak Yes
Sunny Cool Normal Strong No

Overcast Cool Normal Strong Yes
Rainy Mild High Weak No
Rainy Cool Normal Weak Yes
Sunny Mild Normal Weak Yes
Rainy Mild Normal Strong Yes

Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Sunny Mild High Strong No

(a) Training dataset.
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(b) Decision tree.

Figure 2.4: An example of a decision tree for deciding about playing golf (Yes/No) based on pre-
dictors like Outlook (Sunny/Overcast/Rainy), Temperature (Hot/Cool/Mild), Hu-
midity (High/Normal), and Wind (Weak/Strong) [138]. The red, yellow, and green
boxes represent root, internal, and decision nodes respectively.

For a formal context ⟨O, Y, I⟩ the setB(O, Y, I)of all formal concepts with the ordering
shown in Equation (2.7) is called the concept lattice.

Figure 2.5a shows a sample formal context in a tabular form called a cross-table. The
table rows represent objects and the columns represent attributes. An entry× in the table
represents that the corresponding object has the corresponding attribute. Figure 2.5b
shows the concept lattice built from the formal context. Each node represents a formal
concept by listing objects that share a set of attributes. The number within a circle beside
the node is added to identify a node and for explanation purposes only. Within each node,
the bottom box lists the objects i.e. the extent and the top box lists the attributes shared
by the objects i.e. the intent of the concept. For example, the intent and extent of node

2 are {c, d} and {2, 3, 4, 5} respectively. The lines in the lattice represent subconcept-
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superconcept relationship. For example, the formal concept represented by node 4 is
a subconcept of the formal concept represented by node 2 because the extent of node

4 is a subset of the extent of node 2 and the intent of node 4 is a superset of the
intent of node 2 .

Attributes
a b c d e

O
b
je
ct
s

1 × × ×
2 × × × ×
3 × × ×
4 × × ×
5 × × ×

(a) Formal context.

attributes

objects

c

1, 2, 3, 4, 5

c, d

2, 3, 4, 5

a, c

1, 2, 4

a, c, d

1, 2, 3, 4, 5

b, c, d

3, 5

a, c, e

1, 2

a, c, d, e

2

a, b, c, d, e

1

2 3

4 5 6

7

8

(b) Concept lattice.

Figure 2.5: Example of a formal context in tabular form and corresponding concept lattice. An
entry × in the context table represents that the corresponding object has the corre-
sponding attribute.

2.1.4 GaussianMixtureModel
A Gaussian mixture model (GMM) is a probability density function represented as the
weighted sum of component Gaussian densities [130]. The mixture represents a normally
distributed overall population whereas the components represent subpopulations within
the whole population. For one-dimensional data, a GMM with M components can be
defined as:

f̂GMM(x) =
M∑

m=1

∅mN (x|µm, σm) (2.8)

12



2.1 Theoretical Background

where, ∅m ≥ 0 is the mixture weight i.e. the probability of m-th component κm sat-
isfying

∑M
m=1 ∅m = 1 so that the total probability distribution normalizes to 1, and

N (x|µm, σm) is the distribution of a Gaussian component with mean µm and standard
deviation σm defined as:

N (x|µm, σm) =
1

σm

√
2π

e−
1
2(

x−µm
σm

)
2

(2.9)

Expectation-Maximization, an iterative unsupervised learning technique can be used
to determine the parameters of GMM [32]. Steps involved in Expectation-Maximization
for n data points X = {xt|t = 1, . . . , n} are:

• Guess initial values for GMM parameters denoted by µ̂m, σ̂m, and ∅̂m respec-
tively.

• Expectation step: calculate γ̂t,m , the probability of a point xt being generated by
κm

γ̂t,m =
∅̂mN (xt|µ̂m, σ̂m)∑M
r=1 ∅̂rN (xt|µ̂r, σ̂r)

(2.10)

• Maximization step: Update GMM parameters using the following equations:

µ̂m =

∑n
t=1 γ̂t,mxt∑n
t=1 γ̂t,m

(2.11)

σ̂m =

√∑n
t=1 γ̂t,m(xt − µ̂m)2∑n

t=1 γ̂t,m
(2.12)

∅̂m =
n∑

t=1

γ̂t,m
n

(2.13)

• Repeat Expectation and Maximization steps until the total likelihoodL converges,
where

L =
n∏

t=1

f̂GMM(xt) (2.14)

Information criterion tests like Akaike Information Criteria (AIC) [2] and Bayesian
Information Criteria (BIC) [140] can be used to select an appropriate GMM by penalizing
the number of free parameters to prevent overfitting. AIC and BIC can be defined as:

AIC = 2p+ 2 lnL (2.15)
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BIC = p lnL+ 2 lnL (2.16)

where p is the number of free parameters and ln is the natural logarithm. The preferred
GMM is the one with minimum AIC and BIC values.

2.1.5 Kernel Density Estimation
Kernel density estimation (KDE) is a non-parametric way of estimating the probability
density function of an independent and identically distributed random variable [119, 132].
For n data points X = {xt|t = 1, . . . , n}, KDE is calculated as:

f̂KDE(x) =
1

nh

n∑

t=1

K

(
x− xt

h

)
(2.17)

where h is the bandwidth and K is the kernel function. If a Gaussian kernel function is
used to estimate the density of univariate data then the bandwidth can be selected using
Silverman’s rule of thumb [146] as shown in the following equation:

h = 0.9min

(
σ̂,

IQR

1.34

)
n

−1
5 (2.18)

where IQR is the interquartile range and σ̂ is the standard deviation of the samples.

2.1.6 Transfer Learning and Pre-training strategies
Transfer learning is a collection of techniques to enhance the performance of a model
on a target task using the information that a model acquires during training on a source
task, even if the two tasks are dissimilar [117]. Transfer learning focuses on knowledge
adaptation and it is defined using two concepts: domains and tasks. A domain D =
{X , P (X)} has two components: A feature space X and a marginal probability distri-
bution P (X) where X = {x1, · · · , xn} ∈ X . For a domainD a task T = {Y , f(x)}
has two parts: A label spaceY and a predictive function f : X → Y , that can be learned
from training data of pairs {xi, yi} where xi ∈ X, yi ∈ Y . Pan and Yang [117] defined
transfer learning as:

Definition 1 (Transfer Learning). “Given a source domain DS and learning task TS , a
target domainDT and learning task TT , transfer learning aims to help improve the learn-
ing of the target predictive function fT (·) inDT using the knowledge inDS and TS , where
DS ̸= DT , or TS ̸= TT ” [117].

Plested and Gedeon [122] defined deep transfer learning in the context of image classifi-
cation as:
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Definition 2 (Deep Transfer Learning). “Given a source domainDS and learning task
TS , a target domainDT and learning task TT , transfer learning aims to help improve the
performance of the target model M on the target task TT by initializing it with weights W
that are trained on source task TS using source dataset DS (pretraining), whereDS ̸= DT ,
or TS ̸= TT ” [122].

Transfer learning can be broadly categorized into three settings based on TS , TT and
provided labels as shown in Figure 2.6 [100, 134]. If TS = TT with only source domain
labels provided, it is called transductive transfer learning. When TS ̸= TT with labels
available for the target domain, it is called inductive transfer learning. If no labels are
provided then it is called unsupervised transfer learning. Inductive transfer learning can
be subdivided into multi-task and sequential transfer learning. TS and TT are simulta-
neously learned in multi-task learning whereas, in sequential transfer learning TS is first
learned (pre-training stage), and then TT is learned (fine-tuning stage). In this thesis, we
are focusing on sequential transfer learning.

Transfer learning

Unsupervised
No provided labels in

source and target domains

Inductive
TS ̸= TT

labels provided in target domain
Sequential transfer learning
Tasks learned one after another

Multi-task learning
Tasks learned at the same time

Transductive
TS = TT

labels provided in source domain

Figure 2.6: Transfer learning scenarios [100, 134]. TS and TT represent source and target tasks
respectively.

Pre-training in the context of transfer learning can be supervised or self-supervised (de-
scribed in next para) [100]. Supervised transfer learning uses a pre-trained model that was
trained on a sizable dataset for a particular task as a starting point for a new task. A smaller
dataset is used to fine-tune the pre-trained model on the new task in order to adapt it to
the new task. For instance, a model that has already been trained on a huge image classi-
fication dataset like ImageNet [135] can be fine-tuned for a particular image classification
job, like detecting cats vs dogs, on a smaller dataset. This strategy can save resources and
shorten the training period and also increase the new model’s accuracy.

Self-supervised pre-training uses a model that has already been trained on a related task
that does not require labeled data as a starting point for a new task. In self-supervised pre-
training for image classification, the model is first taught to extract important features
from images using unsupervised techniques like pretext tasks, generative modeling, or
contrastive learning [94]. A pretext task can be predicting a specific feature of the data, like
predicting an image’s rotation or hue. Generative modeling involves training the model to
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create realistic synthetic data. Contrastive learning involves training the model to differ-
entiate between negative and positive image pairs. Using this unsupervised pre-training
technique the model learns a useful representation of the data which can be refined for a
new downstream task on a labeled dataset. When labeled data is hard to come by or ex-
pensive, this strategy can be especially helpful. We can use a source task with a lot of unla-
beled examples and transfer the learned knowledge to an interesting target task thanks to
the complementing research fields of self-supervised learning and transfer learning [100].

2.1.7 Visual Explanation of CNNModel
Explainability is important for AI tools especially in the case of medical applications [169]
to understand how a model is taking its decision. Explainability techniques can be model-
based (the model itself is explainable i.e. easy to be understood) vs post hoc (explains a
trained model), model-specific (limited to particular types of models) vs model-agnostic
(independent of the type of the model), and global (provides general relationships learned
by the model in a dataset level) vs local (provides explanations for individual input) [167].
Visual explanation that shows regions of the input image that are significant for predic-
tions from the model is common used for medical image analysis [167]. Grad-CAM [141]
is a post hoc, model-specific technique for local visual explanation of CNNs. Grad-CAM
uses gradient flowing into the ultimate convolution layer for producing heatmaps, and it
is a kind of post-hoc attention that can be applied on an already trained model. Grad-
CAM provides similar result to occlusion sensitivity map [185] that works by masking
patches of the input image, but Grad-CAM is much faster to calculate compared to image
occlusion [141]. Grad-CAM has been used for visual explanation in numerous medical
image analysis tasks including brain [79], breast [36], cardiovascular [19], chest [14], den-
tal [170], eye [103], female reproductive system [47], gastrointestinal [73], lymph nodes
[75], musculosketal [139], thyroid [84], and skin [192] images. We utilized Grad-CAM
technique for visualizing the regions of the input image that are significant for skin lesion
class prediction from the CNN models (as shown in Figure 2.7) used in our study.

2.2 Literature Review
The following subsections review the related works on AI for skin lesion diagnosis, a brief
overview of Lyme disease with the use of AI for Lyme disease diagnosis, and also the works
on the data scarcity problem.

2.2.1 AI for Skin Disorder Diagnosis
Many works have been done utilizing deep learning techniques specifically convolutional
neural networks (CNNs) for diagnosing cancerous and other common skin lesions from
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(a) Input image. (b) Gard-CAM visualization.

Figure 2.7: Gard-CAM visualization example.

dermoscopic images. Haenssle et al. [48] used transfer learning from ImageNet [135] pre-
trained InceptionV4 CNN architecture for detecting melanoma skin cancer using images
from International Skin Imaging Collaboration (ISIC) [26] dermoscopic image archive
and compared the model’s performance against 58 dermatologists. CNN outperformed
most of the expert dermatologists. Brinker et al. [13] also used ImageNet transfer learn-
ing with ResNet50 CNN architecture on a dataset of 12,378 dermoscopic images from
ISIC archive for the melanoma classification task and compared the CNN’s performance
against dermatologists. Again deep learning outperformed 136 out of 157 dermatologists.
Maron et al. [101]] also used ResNet50 architecture with ImageNet transfer learning and
performed a multiclass cancer classification using 11,444 dermoscopic images from ISIC
archive where most of the images were taken from HAM10000 dataset [165]. This study
also showed the superiority of deep learning models compared to 112 dermatologists.

Liu et al. [95] trained an InceptionV4 based deep learning system using clinical skin
lesion images and patient data from 16,114 verified cases for the differential diagnosis of
26 common skin conditions. Esteva et al. [34] trained an InceptionV3 CNN architec-
ture on a dataset of 126,076 clinical skin lesion images and 3,374 dermoscopic images
using ImageNet transfer learning for skin cancer classification. The deep learning model
performed on par compared with 21 board-certified expert dermatologists. Han et al.
[49] trained an ensemble model of ResNet152 and VGG19 CNN architectures using a
dataset of 49,567 clinical skin lesion images of onychomycosis that outperformed most
of the expert dermatologists.

Results from aforementioned studies confirmed that deep learning-based systems
compete on par with expert dermatologists for diagnosing diseases from dermoscopic and
clinical skin lesion images. Recent studies showed that incorporating data from multiple
modalities in the analysis process significantly improves the artificial intelligence based
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models’ performance compared to a single modality based analysis for many medical di-
agnosis tasks [22, 86, 116, 142]. Pacheco et al. [116] proposed an attention based deep
learning approach for combining images and patient data for skin cancer classification
that resulted in better performance compared to a single modality based analysis. Chen
et al. [22] showed a 9 percent improvement in model accuracy with a multimodal fusion
of skin image and clinical data compared to image only skin cancer classification.

2.2.2 AI for Lyme Disease Diagnosis
Lyme disease is an infectious disease transmitted by ticks and caused by pathogenic bacte-
ria of the Borrelia burgdorferi sensu lato group [144]. It is estimated that around 476,000
people in the United States and more than 200,000 people in western Europe are affected
by Lyme disease each year [102]. Most of the time an expanding round or oval red skin
lesion known as erythema migrans (EM) becomes visible in the victim’s body which is the
most common early symptom of Lyme disease [15, 144]. EM usually appears at the site
of a tick bite after one to two weeks (range, 3 to 30 days) as a small redness and expands
almost a centimeter per day, creating the characteristic bull’s-eye pattern as shown in Fig-
ure 2.8a [10, 15, 144, 150]. EM generally vanishes within a few weeks or months but the
Lyme disease infection advances to affect the nervous system, skin, joints, eyes, and heart
[144, 150]. Antibiotics can be used as a medium of effective treatment in the early stage
of Lyme disease. So, early recognition of EM is extremely important to avoid long-term
complications of Lyme disease.

Most European and North American guidelines recommend a two-tier serology test
to detect antibodies against Borrelia burgdorferi sensu lato for diagnosing Lyme disease
[37, 164]. However, a serology test is only recommended in the absence of EM because
early serology has low sensitivity (40% to 60%) and may result in false negatives [37]. Al-
ternatively, direct detection of Borrelia burgdorferi sensu lato can be done using culture,
microscopy, or PCR [164]. The gold standard of microbiological diagnosis - the culture
of bacteria requires laboratory expertise and special media for Borrelia burgdorferi sensu
lato [37]. Light microscopy-based detection is not feasible in clinical practice [164]. PCR
based diagnosis is also very difficult and shows highly variable sensitivity [164]. Direct
detection methods are not always feasible for clinicians because of extended processing
time and required expertise [16]. The diagnosis of EM is a challenging task because EM
can create different patterns instead of the trademark bull’s-eye pattern as shown in Figure
2.8b.

Despite the vast application of AI in the field of skin lesion diagnosis, there are only a
few works related to Lyme disease detection from EM skin lesion images. The unavail-
ability of reliable public EM datasets as a result of privacy concerns of medical data may be
the reason for the lack of extensive studies in this field. The only publicly available dataset
of EM is a small collection of web-scraped unverified images hosted in a kaggle reposi-
tory [187]. Čuk et al. [29] proposed a visual system for EM recognition on a private EM
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dataset using classical machine learning techniques including naïve Bayes, SVM, boost-
ing, and neural nets (not deep learning). They considered ellipse, the common shape of
EM, and used eccentricity, small and large axis ratio, ellipse angular, and ellipse focus at-
tributes for classification. Deep learning techniques learn image features from training
images via an optimization process and recent studies show that image features extracted
by deep learning techniques outperform human-engineered image features for medical
image classification tasks [16]. Burlina et al. [15] created a dataset of EM by collecting im-
ages from the internet and trained a CNN architecture ResNet50 as a binary classifier to
distinguish between EM and other skin conditions. Although their dataset is not public,
the trained model is publicly available. Burlina et al. [16] further enriched the dataset
with more images from the East Coast and Upper Midwest of the United States and
trained six CNNs namely ResNet50, InceptionV3, MobileNetV2, DenseNet121, Incep-
tionResNetV2, and ResNet152 for EM classification. They did not make the dataset or
the trained models public for the extended study. Burlina et al. [15] and Burlina et al. [16]
used transfer learning from ImageNet pre-trained models and studied the CNNs in terms
of predictive performance. Koduru et al. [81] deployed a trained ResNet50 CNN model
utilizing a private dataset for a prototype application to identify EM. Jacob et al. [74] used
the kaggle Lyme dataset [187] to test state-of-the-art self-supervised learning techniques
against supervised transfer learning for different CNN architectures and comparatively
self-supervised learning underperformed. Oholtsov et al. [115] suggested using both clean
and dirty images for training EM classifier based on experimentation using an unverified
dataset of only 106 EM images.

(a) Bull’s-eye pattern. (b) Atypical pattern.

Figure 2.8: Patterns of erythema migrans (EM) [38].
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2.2.3 RelatedWorks onData Scarcity
Transfer learning and expanding data by transforming images with augmentation tech-
niques are frequently used by researchers to improve deep learning model’s performance
on limited image datasets. Perez et al [120] showed that using data augmentation signifi-
cantly improves model’s performance using InceptionV4, ResNet, and DenseNet archi-
tectures for melanoma classification with dermoscopic images from ISIC archive. Pérez
et al. [121] showed that combining transfer learning and data augmentation significantly
improves model’s performance for melanoma diagnosis from images using an extensive
experimental study on 11 datasets and 12 CNN architectures.

Transfer learning with supervised ImageNet[135] pre-training is frequently used in
medical image analysis tasks [44, 53, 95, 105, 106, 176]. Transfer learning from natural im-
ages of ImageNet provides performance improvement according to multiple empirical
studies [4, 44, 53]. Even if this strategy does not guarantee an improvement in perfor-
mance Raghu et al. [125] showed using a detailed study that it speeds up convergence and
is especially helpful for training with limited data. Gu et al. [45] showed that progressive
transfer learning starting from an ImageNet pre-trained model end-to-end fine-tuned on
a dataset of similar skin lesions with a slight domain shift increases the classification per-
formance of skin cancer classification task for a smaller dataset. Recently, self-supervised
pre-training using unlabeled domain-specific data is gaining popularity in medical image
analysis [6, 31, 52, 93, 148, 188]. Azizi et al. [6] showed that training a model on ImageNet
in self-supervised fashion followed by self-supervised learning on unlabeled in-domain
medical images, and fine-tuning end-to-end for downstream supervised tasks significantly
improves model accuracy. They used ResNet architectures on X-ray and dermatology
classification tasks for experimentation. Dadsetan et al. [31] also showed that combining
ImageNet and domain-specific self-supervised pre-training gives better performance for
Alzheimer’s disease propagation from brain magnetic resonance imaging.

For multimodal training i.e. training utilizing all the available modalities (for example,
image modality and patient data modality), the general assumption is that both the train-
ing and test data will have full and paired modalities [113, 184]. However, missing data
is common for real-world clinical scenarios [69]. Existing works in the literature gener-
ally drop the incomplete samples or impute missing values [98, 186]. Some studies report
improvements by dropping incomplete samples [114, 171]. Generative models are used in
many studies for imputing missing modalities [18, 87, 118]. Ma et al. [98] approximated
missing modality using modality priors learned from dataset. Chen et al. [21] fused mul-
timodal incomplete data using a heterogeneous graph structure. Zhang et al. [186] con-
sidered auxiliary data from similar neighbors of a patient to deal with missing modalities.
If paired data is missing for the modalities but training data for individual modalities are
available then individual classifiers can be trained for each modality and the results can be
fused using a weighing scheme [126].
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2.3 ResearchQuestions and Challenges
Pre-training with in-domain images is effective for increasing the performance of deep
CNN based image classifiers however it is difficult to collect a large number of in-domain
images for many skin conditions like EM. The dataset created as part of our study for EM
analysis consists of clinical skin lesion images. First, we thought of pre-training a CNN for
EM classification using clinical skin lesion images of other skin lesions as we could not col-
lect a large number of in-domain unlabeled samples related to EM. Most of the accessible
datasets are concerned with skin cancers. Wen et al. [173] systematically reviewed the avail-
able datasets for skin cancers. Out of the open access clinical skin lesion image datasets,
SD-198 [154] containing 6,584 clinical skin lesion images and its extended version SD-260
[180] containing 20,600 clinical skin lesion images of skin cancer images seemed promis-
ing but these datasets are not easily accessible 1. On the contrary, dermoscopic image
datasets like HAM10000 dataset [165] are easily accessible. The image modality of clinical
EM dataset is quite different from dermoscopic images of HAM10000 dataset as shown
in Figure 2.9a and 2.9b. Our first research question is:

Research Question 1. Can we improve the performance of ImageNet pretrained clinical
skin lesion image classifier’s performance with additional pre-training using dermoscopic
images?

(a) Clinical image. (b) Dermoscopic image. (c) Skin lesion hair mask.

Figure 2.9: Clinical image of erythema migrans [38] vs demoscopic image of skin cancer [165] and
a sample of skin lesion hair mask.

Incorporating data from multiple modalities in the analysis process significantly im-
proves the models’ performance for skin lesion analysis tasks. For some diseases like Lyme
disease, a proper diagnosis based on skin lesions is not effective without considering addi-
tional context from patient data. Existing works on early Lyme disease prediction using

1The download link mentioned in the paper did not work and we did not get any response from the
authors after asking for access.
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artificial intelligence techniques only utilize images of EM skin lesions whereas doctors
believe corresponding patient data should also be considered to strengthen the predictive
performance [16, 61]. Training a multimodal deep learning model utilizing both images
and patient data requires a dataset of lesion images with associated patient data. Even
though EM image datasets are available, creating a dataset with patient data linked with
each lesion image would take much time. Moreover, patient data-only datasets that can
be used for creating individual classifiers for Lyme disease are not readily available. So,
our second research question is:

Research Question 2. How to assist deep learning based skin lesion image classifier with
patient data in the absence of training data?

Occlusion of skin lesions in dermoscopic images due to hair artifacts (as shown in Fig-
ure 2.9b) affects the performance of computer-assisted lesion analysis algorithms. To
tackle this issue, researchers are working on digital hair segmentation, removal, and aug-
mentation techniques [5, 88]. Standard image processing based hair removal is not benefi-
cial for real-time application and removing hair does not give new features to the network.
Augmenting images with skin hair can be of interest. Skin hair augmentation techniques
require a hair mask to generate hair in given locations as shown in Figure 2.9c [5]. These
masks are created either manually, with random curves or lines and segmentation [5].
Generative models can be utilized to automate the creation of hair masks. So, our third
research question is:

Research Question 3. How to efficiently deal with skin lesion hair artifacts for AI-assisted
analysis of dermoscopic skin lesion images?

2.4 Conclusion
In this chapter, we have provided all the theoretical backgrounds needed to understand
the rest of the thesis. In addition, we presented a detailed review of existing works in the
literature and framed our research questions in the context of existing works. The follow-
ing chapters describe our contributions by addressing the research questions presented in
this chapter.
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2.4 Conclusion

Key Points (Chapter 2)

In this thesis, we are addressing three research questions:

• Can we improve the performance of ImageNet pretrained clinical skin le-
sion image classifier’s performance with additional pre-training using der-
moscopic images?

• How to assist deep learning based skin lesion image classifier with patient
data in the absence of training data?

• How to efficiently deal with skin lesion hair artifacts for AI-assisted analysis
of dermoscopic skin lesion images?
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3 Pre-training Strategy for
Improving Clinical Skin
Lesion Image Classifier’s
Performance Using
Dermoscopic Images

This chapter addresses research question 1, presents our pre-training strategy
for improving clinical skin lesion image classification performance of Ima-
geNet pre-trained convolutional neural networks by utilizing additional pre-
training with dermoscopic images. It also contains benchmarking of state-of-
the-art convolutional architectures for Lyme disease image classification. Con-
tents from this chapter have been used in the following article:

• S. I. Hossain, J. de Goër de Herve, M. S. Hassan, D. Martineau,
E. Petrosyan, V. Corbin, J. Beytout, I. Lebert, J. Durand, I. Car-
ravieri, A. Brun-Jacob, P. Frey-Klett, E. Baux, C. Cazorla, C. Eldin,
Y. Hansmann, S. Patrat-Delon, T. Prazuck, A. Raffetin, P. Tattevin,
G. Vourc’h, O. Lesens, and E. Mephu Nguifo. “Exploring convolu-
tional neural networks with transfer learning for diagnosing Lyme dis-
ease from skin lesion images”. Computer Methods and Programs in
Biomedicine 215, 2022, p. 106624. issn: 01692607. doi: 10.1016/
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3.1 Introduction
Our pre-training strategy involves fine-tuning some layers from the end of an Ima-
geNet pre-trained convolutional neural network (CNN) architecture using a dermo-
scopic dataset before training the model on a clinical skin lesion dataset. Our intuition
behind the approach is the fact that even though the image modality of dermoscopic
and clinical skin lesion images are different, pre-training some layers from the end of the
model with dermoscopic images should provide a good feature representation for starting
training with clinical skin lesion images. As the layers at the end of a CNN architecture
respond to task-specific complex patterns, there should be a similarity between the skin
lesion patterns of clinical and dermoscopic skin lesion images. We tested our strategy us-
ing dermoscopic images of skin cancer from HAM10000 dataset [165] and clinical skin
lesion images related to erythema migrans (EM).

As there is no expert-verified publicly available Lyme dataset of EM images, first, we
created a dataset consisting of 866 images of confirmed EM lesions. Images collected from
the internet and Clermont-Ferrand University Hospital Center (CF-CHU) of France
were carefully labeled into two classes: EM and Confuser, by expert dermatologists and
infectiologists from CF-CHU. CF-CHU collected the images from several hospitals in
France.

Lightweight CNN-based mobile applications can help people with an initial self-
assessment of EM and refer them to expert dermatologist for further diagnosis. Also,
resource-intensive CNN-based computer applications can assist non-expert practition-
ers in identifying EM. In this chapter, besides testing our pre-training strategy, we also
studied the performance of state-of-the-art CNNs for diagnosing Lyme disease from EM
images and to find out the best architecture based on different criteria. We benchmarked
twenty-five well-known CNNs on the prepared dataset in terms of several predictive per-
formance metrics, computational complexity metrics, and statistical significance tests.
Alongside our proposed pre-training strategy other best practices for training CNNs on
limited data were used. For visualizing the regions of the input image that are significant
for predictions from the CNN models we used gradient-weighted class activation map-
ping (Grad-CAM) [141]. We provided guidelines for model selection based on predictive
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3.2 Materials and Methods

performance and computational complexity. Moreover, we made all the trained models
publicly available which can be used for transfer learning and building pre-scanners for
Lyme disease. Figure 3.1 presents the graphical overview of the study performed in this
chapter.

The rest of the chapter is structured as follows: Section 3.2 contains the proposed pre-
training strategy, dataset description, a brief overview of CNN architectures, and per-
formance measures; Section 3.3 presents experimental studies, results, discussion, and
recommendations for model selections; finally, Section 3.4 presents concluding remarks.
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Figure 3.1: Graphical overview of the study on the effectiveness of CNNs utilizing custom pre-
training strategy for the diagnosis of Lyme disease from images.

3.2 Materials andMethods
The following subsections describe the pre-training strategy used in this study, the data
organization, a short overview of the considered CNN architectures, performance mea-
sures, and heatmap visualization method.
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3 Pre-training Strategy

3.2.1 Pre-training Strategy

Algorithm 1: Dermoscopic pre-training for clinical lesion image classification
Data :

ImageNet pre-trained CNN model without classfication head: MI

Total layers in MI : NL

Dermoscopic image classification task: TS
Dermoscopic image dataset: DS

Clinical skin lesion image classification task: TT
Clinical skin lesion image dataset: DT

Output:
CNN model optimized for TT : MT

begin
MI ← freeze all the layers of MI // make layers non-trainable

UL ← findLayersToUnfreeze(MI , NL, TT , DT )
MS ← add classifier head to MI for TS
/* models are trained and validated using training and validation subsets of

the respective dataset */

MS ← train MS and fine-tune after unfreezing layers NL − UL + 1 to NL on DS

MS ← freeze all the layers of MS

MT ← from MS remove classifier head for TS and add classifier head for TT
MT ← train MT and fine-tune after unfreezing layers NL − UL + 1 to NL on DT

return MT

Function findLayersToUnfreeze (M , N , T , D)
MT ← add classifier head to M for T
M̃T ← train MT using training data from D
U ← 0 // number of layers to unfreeze

max← 0 // tracks best model accuracy on validation data

for i← 1 toN do
MT ← unfreeze layers N − i+ 1 to N of MT // make layers trainable

MT ← fine-tune MT using training data from D
temp←measure accuracy of MT on validation data from D
if temp > max then

max← temp
U ← i

MT ← M̃T

return U

Algorithm 1 shows the steps of our pre-training strategy. We start with an ImageNet
pre-trained CNN modelMI without the original ImageNet classification head. The total
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3.2 Materials and Methods

layers in MI is NL. The source dermoscopic image classification task and dataset are TS ,
and DS , respectively. The target clinical skin lesion image classification task and dataset
are TT , and DT , respectively. Initially, all the layers of MI are frozen to make sure the
parameters are not updated during training. Then, we find out the best number of layers
UL of MI to unfreeze and fine-tune for TT using the function findLayersToUnfreeze.
The function first adds a classification head to MI for TT and trains the model using
DT . Then, the function trains the model by making different frozen layers trainable and
the number of unfrozen layers giving the best validation accuracy is returned. MI is again
pre-trained and fine-tuned usingDS based onUL. For that purpose, we add classification
head to MI for TS resulting in a model called MS . MS is trained and fine-tuned after
unfreezing layers NL − UL + 1 to NL using DS . Then all the layers of MS are made
non-trainable again. After pre-training and fine-tuning the unfrozen part of the model
for TS , the learned feature representation is reused for TT . We remove the classifier head
forTS fromMS and add the classifier head forTT resulting in a model calledMT . Finally,
MT is trained and fine-tuned after unfreezing layers NL − UL + 1 to NL using DS . We
tested the proposed pre-training strategy on EM classification task as shown in Figure
3.2. The source dermoscopic image classification task TS and dataset DS are skin cancer
classification and HAM10000 dataset respectively. The target clinical skin lesion image
classification task TT and dataset DT are EM classification and Lyme dataset respectively.
Our EM classification head consists of global average pooling (GAP) layer [90], dropout
layer [149], and a fully connected layer with sigmoid activation for binary classification.
Each channel in the feature map is averaged over the whole spatial extent by GAP, and the
end result is a single value for each channel that summarizes the spatial information of the
feature map. Dropout is a deep learning regularization method used to avoid overfitting.
During each training iteration, a portion of the units or neurons in a layer are randomly
dropped out (i.e., set to zero) by the dropout layer. As it can no longer rely on any one
neuron, this forces the network to learn more reliable and generalizable features.

The intuition behind our approach is the fact that CNN mimics the ventral visual
stream process of the human brain [189]. Figure 3.3 shows the outline of the ventral vi-
sual stream. The first visual area V1 receives optical input from the retina through the
optic nerve and the lateral geniculate nucleus. V1 responds to very simple patterns (edges,
lines). As the input traverses through the stream V2 and V4 respond to simple and com-
plex shapes respectively. Further down the path inferotemporal areas respond to complex
patterns of semantic entities for object understanding [123]. CNNs replicate the behavior
of the ventral visual stream. The initial layers of CNN learn/respond to simple patterns
and the later layers respond to complex and semantic patterns. The unfrozen layers at
the end of ImageNet pre-trained model giving good performance when fine-tuned on
clinical skin lesion image dataset learn task-specific patterns that relate to clinical skin le-
sions and there should be a similarity between the skin lesion patterns of clinical and der-
moscopic skin lesion images. So, fine-tuning the unfrozen part first with a dermoscopic
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Figure 3.2: Pre-training strategy applied to erythema migrans (EM) classification. GAP and FC
stand for global average pooling and fully connected layer respectively. NL is the num-
ber of ImageNet pre-trained layers and UL represents the number of layers used for
fine-tuning.

image dataset should provide a good feature representation and weight initialization of
layers for starting training with a clinical skin lesion image dataset.

3.2.2 Dataset Preparation
As a labeled public dataset is not available for Lyme disease prediction from EM images,
we created a dataset by collecting clinical skin lesion images from the internet and CF-
CHU. CF-CHU collected EM images from several hospitals located in France. The use
of images from the internet was inspired by related skin lesion analysis studies [15, 16, 34].
Duplicate images were removed using an image hashing-based duplicate image detector
followed by the removal of inappropriate images through human inspection. After the
initial curation steps, we got a total of 1672 images. Expert dermatologists and infectiolo-
gists from CF-CHU classified the curated images into two categories: EM and Confuser,
making it a two-class classification problem. Out of 1672 images, 866 images were as-
signed to EM class and 806 images were assigned to Confuser class. The images collected
from the hospitals are not shareable because of the confidentiality agreement signed with
the patients. We can share images collected from the internet and the corresponding la-
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Figure 3.3: Outline of ventral visual stream. Image modified from [28].

bels assigned by the doctors subject to an agreement that the images will not be made
public because we do not have permission from the owners of the images 1.

We further subdivided the dataset into five folds using stratified five-fold cross-
validation to make sure each of the folds maintains the original class ratio. One of the
folds was used as a test set and the remaining four were used as the training set with a
rotation of the folds for five runs. Each time, 10% of the training data was assigned to the
validation set as shown in Figure 3.4.

Deep CNNs require a considerable amount of data for training and data augmenta-
tion can help with expanding the dataset. We applied data augmentation techniques only
to the training images. We used flip (vertical or horizontal), rotation, brightness, contrast,
and saturation augmentation by considering the best performing augmentations for skin
lesions [120]. Besides, we also used perspective skew transformation to cover the case of
looking at a picture from different angles. Augmentor [11] an image augmentation library
specially built for biomedical image augmentation was used for applying the augmenta-
tions. We used 0.5 as the probability of applying each of the augmentation operations.

1Interested researchers can send a request to dappem-project@inrae.fr for the data.
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TRAIN TRAIN TRAIN TRAIN TEST
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VALIDATION

Stratified split of 866 erythema migrans (EM) and 806 Confuser images

Figure 3.4: Five-fold cross-validation setup.

Rotation operation was performed with a maximum rotation angle of 5 degrees. We also
used random rotation by either 90, 180, or 270 degrees. Brightness, contrast, and sat-
uration augmentations were performed with a minimum adjustment factor of 0.7 and
a maximum adjustment factor of 1.3. For all the other parameters we used default val-
ues provided by Augmentor library. The parameters were adjusted based on the visual
inspection of augmented images. Figure 3.5 shows some example images resulting from
augmentations applied on a sample image.

Figure 3.5: Data augmentation examples.
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3.2.3 Brief Overview of the CNNArchitectures
Considered in the Study

Starting with LeNet [83] in 1988 the popularity of CNNs increased with AlexNet [82]
winning the ImageNet large scale visual recognition challenge (ILSVRC) [135] of 2012.
As a result of the effectiveness of CNNs in solving complex problems, several CNN archi-
tectures have been introduced over the past few years. The following subsections provide
a brief overview of the CNN architectures used in this study.

3.2.3.1 VGGArchitecture

VGG architecture [147] is based on the idea of deeper networks with smaller filters
(3× 3). There are thirteen convolutional layers and three fully connected layers in
VGG16 architecture as shown in Figure 3.6. Another variation of VGG architecture
called VGG19 has sixteen convolutional layers and three fully connected layers. VGG
architecture showed better effectiveness of deeper architectures in terms of predictive per-
formance but requires training a huge number of parameters.

𝑐𝑜𝑛𝑣3 × 3(× 2) → 𝑝𝑜𝑜𝑙2 × 2

𝑐𝑜𝑛𝑣3 × 3(× 2) → 𝑝𝑜𝑜𝑙2 × 2

𝑐𝑜𝑛𝑣3 × 3(× 3) → 𝑝𝑜𝑜𝑙2 × 2

𝑐𝑜𝑛𝑣3 × 3(× 3) → 𝑝𝑜𝑜𝑙2 × 2

𝑐𝑜𝑛𝑣3 × 3(× 3) → 𝑝𝑜𝑜𝑙2 × 2

𝐹𝐶 𝐹𝐶

𝐹𝐶 + 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

Figure 3.6: VGG16 architecture. Input image is of shape 224 × 224 × 3. FC stands for fully
connected layer.

3.2.3.2 Inception Architecture

Inception architecture [156] uses inception module as shown in Figure 3.7, which is a
combination of several convolution layers with small filters (1× 1, 3× 3, 5× 5) ap-
plied simultaneously on the same input to facilitate the extraction of more information.
The output filter banks from the convolution layers of inception module are concate-
nated into a single vector, which is served as the input for next stage. To reduce learnable
parameters and computational complexity inception module uses 1 × 1 convolution at
the beginning of convolution layers. InceptionV1 architecture is the winner of ILSVRC
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2014 competition, and it’s also known as GoogleNet. Further improvement resulted in
the creation of several versions of inception architectures named InceptionV2, Incep-
tionV3, and InceptionV4 [155, 157]. InceptionV2 and InceptionV3 improved the archi-
tecture with smart factorized convolution, batch normalized auxiliary classifier, and la-
bel smoothing whereas, InceptionV4 focused on the uniformity of the architecture with
more inception modules than InceptionV3.

𝑐𝑜𝑛𝑐𝑎𝑡

𝑐𝑜𝑛𝑣 5 × 5 𝑐𝑜𝑛𝑣 3 × 3 𝑐𝑜𝑛𝑣 1 × 1

𝑐𝑜𝑛𝑣 1 × 1 𝑐𝑜𝑛𝑣 1 × 1 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 3 × 3 𝑐𝑜𝑛𝑣 1 × 1

Figure 3.7: Inception module of Inception architecture. “concat” represents the concatenation
of feature maps.

3.2.3.3 ResNet Architecture

ResNet architecture [50] tried to solve the vanishing gradient and accuracy degradation
problems of deep models by introducing residual block with identity shortcut connec-
tion that directly connects the input to the output of the block allowing the gradient
to flow through the shortcut path as shown in Figure 3.8. It’s the winner of ILSVRC
2015 competition. Depending on the number of weight layers there are many variants of
ResNet architecture such as ResNet18, ResNet34, ResNet50, ResNet101, ResNet152,
ResNet164, ResNet1202, etc., where the number represents the count of weight layers.
Deeper ResNet architectures use bottleneck blocks where 3x3 convolution is sandwiched
between 1×1 convolutions, responsible for transitory reduction and expansion of chan-
nels. Thewide→ narrow → wide architecture of bottlenecks reduces multiplications
and the number of parameters and helps the network grow deeper with fewer parameters.
He et al. [51] proposed ResNetV2 with pre-activation of the weight layers as opposed to
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the post-activation of original ResNet architecture. InceptionResNet is a hybrid of In-
ception and ResNet architecture having two variations named InceptionResNetV1 and
InceptionResNetV2, which differ mainly in terms of the number of used filters [155].
Liu et al. [96] modernized ResNet architecture to match the performance of vision trans-
formers resulting in a new family of architectures called ConvNeXt. ConvNeXt utilizes
inverted bottleneck ( narrow → wide → narrow), large kernel, depthwise convolu-
tion (shown in Figure 3.10), layer normalization [7] instead of batch normalization [72],
and GELU activation ReLU as compared to base ResNet models.

identity connection

Figure 3.8: Residual block of ResNet architecture.

3.2.3.4 DenseNet Architecture

Dense Convolutional Network (DenseNet) [68] extended ResNet by introducing dense
blocks where each layer within a dense block receives inputs from all the previous lay-
ers as shown in Figure 3.9 DenseNet concatenates the incoming feature maps of a layer
with output feature maps instead of summing them up as done in ResNet. Dense
blocks within DenseNet are connected with transition layers consisting of convolu-
tion and pooling to perform the required downsampling operation. Depending on
the number of weight layers there are several versions of DenseNet like DenseNet121,
DenseNet169, DenseNet201, DenseNet264, etc. Besides solving the vanishing gradient
problem DenseNet also eases feature propagation and reuse, and a reduction in the num-
ber of learnable parameters compared to ResNet.

Figure 3.9: Building block of DenseNet architecture.
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3.2.3.5 MobileNet Architecture

MobileNetV1 [65] used depthwise separable convolution extensively to reduce the com-
putational cost. Standard convolution performs spatial and channel-wise computations
in one step but depthwise separable convolution first applies separate convolutional filter
for each input channel and then uses pointwise convolution on concatenated channels
to produce required number of output channels as shown in Figure 3.10. MobileNetV1
was designed to run very efficiently on mobile and embedded devices. MobileNetV2
[137] improved upon the concepts of MobileNetV1 by incorporating thin linear bottle-
necks with shortcut connections between the bottlenecks as shown in Figure 3.11. This is
called inverted residual block as it uses narrow → wide → narrow as opposed to the
wide→ narrow → wide architecture of traditional residual block. MobileNetV3 [64]
incorporated squeeze-and-excitation layers [67] in the building block of MobileNetV2
which provides channel-wise attention and used MnasNet [158] to search for a coarse
architecture that was further optimized with NetAdapt [181] algorithm.
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Figure 3.10: Depthwise separable convolution.
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3.2.3.6 Xception Architecture

Extreme version of Inception the Xception architecture [24] replaced the Inception mod-
ule with a modified version of depthwise separable convolution where the order of depth-
wise convolution and pointwise convolutions are reversed as shown in Figure 3.12. Xcep-
tion also uses shortcut connections like ResNet architecture. On ImageNet dataset Xcep-
tion performs slightly better than the InceptionV3 architecture.
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Figure 3.12: Building block of Xception architecture.

3.2.3.7 NASNet Architecture

Neural Architecture Search Netowork [190] from Google Brain utilizes reinforcement
learning with a Recurrent Neural Network based controller to search for efficient build-
ing blocks for a smaller dataset which is then transferred to a larger dataset by stacking
multiple copies of the found building block. NASNet blocks are comprised of normal
and reduction cells as shown in Figure 3.13. Normal cells produce feature maps of the
same size as input whereas reduction cells reduce the size by a factor of two. NASNet
optimized for mobile applications is called NASNetMobile whereas the larger version is
called NASNetLarge.

3.2.3.8 EfficientNet Architecture

EfficientNet [159] which is among the most efficient models proposed a scaling method to
uniformly scale all dimensions of a network using a compound coefficient. The baseline
network of EfficientNet was built with NAS incorporating squeeze-and-excitation in the
building block of MobileNetV2. EffcientNet’s building block also called MBConv is
shown in Figure 3.14a. The scaling method is defined as:
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Figure 3.14: EfficientNet building blocks.
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where, the coefficient Θ controls available resources and ζ1, ζ2, and ζ3 are constants ob-
tained by grid search. EfficientNetB0-B7 are a family of architectures scaled up from the
baseline network that reflects a good balance of accuracy and efficiency. EfficientV2 was
designed to optimize parameter efficiency and training speed. It used an additional Fused-
MBConv block. Fused-MBConv uses 3× 3 convolution instead of the 3× 3 depthwise
and 1×1 convolutions of MBConv as shown in Figure 3.14b. Although Fused-MBConv
adds a small overhead it improves training speed compared to MBConv. EfficientV2
used training-aware NAS to find the best combination of MBConv and Fused-MBConv
blocks.

3.2.4 Predictive PerformanceMeasures
To compare the predictive performance of the trained CNN models we used accuracy, re-
call/sensitivity/hit rate/true positive rate (TPR), specificity/selectivity/true negative rate
(TNR), precision/ positive predictive value (PPV), negative predictive value (NPV), Co-
hen’s kappa coefficient (κ), Matthews correlation coefficient (MCC), positive likelihood
ratio (LR+), negative likelihood ratio (LR−), F1-score, confusion matrix and area under
the receiver operating characteristic (ROC) curve (AUC) metrics. Confusion matrix is
a way of presenting the count of true negatives (TN), false positives (FP), false negatives
(FN), and true positives (TP) in a matrix format where the y-axis presents true labels and
x-axis presents predicted labels. Accuracy measures the proportion of correctly classified
predictions among all the predictions, and it is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Recall/sensitivity/hit rate/TPR measures the proportion of actual positives correctly
identified, and it is expressed as:

Recall, Sensitivity, hitrate, TPR =
TP

TP + FN
(3.2)

Specificity/selectivity/ TNR measures the proportion of actual negatives correctly iden-
tified, and it is expressed as:

Specificity, Selectivity, TNR =
TN

TN + FP
(3.3)

Precision/ PPV measures the proportion of correct positive predictions, and it is calcu-
lated as:

Precision, PPV =
TP

TP + FP
(3.4)
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NPV measures the proportion of negative predictions that are correct, and it is calculated
as:

NPV =
TN

TN + FN
(3.5)

MCC provides a summary of the confusion matrix, and it is calculated as:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.6)

MCC value is in the range [−1,+1], where 0 is like random prediction, +1 means a
perfect prediction, and−1 represents inverse prediction. Cohen’s kappa coefficient (κ)
metric is used to assess inter-rater agreement which tells us how the model is performing
compared to a random classifier, and it is calculated with the formula:

κ =
po − pe
1− pe

(3.7)

where po is the relative observed agreement among the raters and pe is the hypothetical
probability of expected agreement which is defined for c categories as:

pe =
1

N2

∑

c

nc1nc2 (3.8)

where, N is the total number of observations, and ncr is the number of predictions of
category c by rater r. The value of κ is in the range [−1,+1], where a value of 1 indicates
perfect agreement, 0 means agreement only by chance, and a negative value indicates the
agreement is worse than the agreement by chance. Likelihood ratio (LR) is used for as-
sessing the potential utility of performing a diagnostic test and it is calculated for both
positive test and negative test results called LR+ and LR−, respectively. LR+ is the ratio
of the probability of a person having a disease testing positive to the probability of a per-
son without the disease testing positive. LR− is the ratio of the probability of a person
having the disease testing negative to the probability of without the disease testing neg-
ative. LR+ and LR− are calculated based on sensitivity and specificity values using the
following formulas:

LR+ =
sensitivity

1− specificity
(3.9)

LR− =
1− sensitivity

specificity
(3.10)
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A value of LR greater than 1 shows increased evidence. F1-Score combines precision and
recall, and it is defined as the harmonic mean of precision and recall as follows:

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(3.11)

ROC curve is a plot of TPR against false positive rate (FPR) at various threshold settings
where FPR is defined as:

FPR =
FP

FP + TN
(3.12)

Area under the ROC curve (AUC) is the measure of the classifier’s ability to separate be-
tween classes and the higher the AUC, the better the ability of the classifier for separating
the positive class from the negative class. As our dataset is balanced so, accuracy can be
considered a good measure of predictive performance [23] and we did most of the analysis
in terms of accuracy but also kept the other metrics to provide insights for experts from
different domains as done in relevant studies [15, 16].

We have used critical difference (CD) diagram [33] to rank the CNN models in terms
of accuracy and to show the statistically significant difference in predictive performance.
A thick horizontal line connects a group of models in the CD diagram that are not signif-
icantly different in terms of predictive performance. We used non-parametric Friedman
test [41] to reject the null hypothesis of statistical similarity among all the models followed
by Nemenyi post-hoc all-pair comparison test [111] for showing the difference among the
models at a significance level, α = 0.1. Although deep CNN architectures often do not
show any statistically significant differences when tested on large and small image datasets
[16, 78, 191], CD diagram is a good way to visualize the multi-fold rank comparisons of the
models.

3.2.5 Model ComplexityMeasures
To compare the trained CNNs in terms of complexity we used the total number of model
parameters, the total number of floating-point operations (FLOPs), average training time
per epoch, GPU memory usage, and average inference time per image. FLOPs reveal
how computationally costly a model is and we counted FLOPs for each of the models
using TensorFlow profiler [47] considering a batch size of one. For reporting the average
training time per epoch, we calculated the average of the training time of three epochs
during transfer learning fine-tuning. We calculated the GPU memory usage of a CNN
model by inspecting the memory allocated in the GPU after loading a trained instance
of the model. To measure the average inference time per image of a model we took the
average of three hundred inferences on the same input image.
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3.3 Experimental Studies
The following subsections describe experimental settings including model selection and
parameter settings, software and hardware used for the study, the experimental results,
and recommendations for model selection.

3.3.1 Experimental Settings
We did an extensive analysis using the ResNet50 architecture to see the effectiveness of
our proposed pre-training strategy (described in Section 3.2.1) on the novel Lyme disease
dataset. For this purpose, we tested different configurations:

i. Training ResNet50 model on our Lyme dataset from scratch without using transfer
learning (called ResNet50-NTL, where, NTL stands for no transfer learning).

ii. Pre-training ResNet50 model with only HAM10000 data followed by fine-tuning all
the layers with our Lyme dataset (called ResNet50-HAM-FFT, where HAM means
HAM10000 and FFT stands for full fine-tuning).

iii. Training only the EM classifier head of an ImageNet pre-trained ResNet50 model
with our Lyme dataset (called ResNet50-IMG-WFT, where IMG means ImageNet
and WFT stands for without fine-tuning).

iv. Fine-tuning all the layers of ImageNet pre-trained ResNet50 model with our Lyme
dataset (called ResNet50-IMG-FFT).

v. Fine-tuning UL number of layers of an ImageNet pre-trained ResNet50 model with
our Lyme dataset (called ResNet50-IMG-FTUL, where FTUL means fine-tuningUL

number of layers).

vi. Pre-training the whole ImgaeNet pre-trained ResNet50 model by HAM10000
data before fine-tuning UL layers with our Lyme dataset (called ResNet50-IMG-
HAMFP-FTUL, where, HAMFP means full pre-training with HAM10000 dataset).

vii. Pre-training only the unfrozenUL layers of a ImgaeNet pre-trained ResNet50 model
with HAM10000 data before fine-tuning UL layers with our Lyme dataset (called
ResNet50-IMG-HAMPP-FTUL, where, HAMPP means partial pre-training with
HAM10000 dataset). This setting corresponds to our proposed pre-training
strategy (described in Section 3.2.1).

viii. To see the effect of data augmentation, we trained a ResNet50 model without data
augmentation and transfer learning (called ResNet50-NoAug, where NoAug means
no data augmentation). All the other configurations were trained with data augmen-
tation as described in Section 3.2.2.
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According to the experimental results (discussed in Section 5.3), our proposed pre-
training configuration ResNet50-IMG-HAMPP-FTUL performed best, and we
used this configuration for training twenty-five well-known CNNs to find out the
effective architecture for diagnosing Lyme disease from EM images. For this bench-
marking we trained VGG162, VGG192, ResNet502, ResNet1012, ResNet50V22,
ResNet101V22, InceptionV32, InceptionV42, InceptionResNetV22, Xception2,
DenseNet1212, DenseNet1692, DenseNet2012, MobileNetV22, MobileNetV3Large2,
MobileNetV3Small2, NASNetMobile2, EfficientNetB02, EfficientNetB12, Efficient-
NetB22, EfficientNetB32, EfficientNetB42, EfficientNetB52, EfficientNetV2S2 and
ConvNextTiny2 architectures. These models were selected to explore a diverse set of
CNN models covering various prospects, like different architectures, depths, and com-
plexities. For simplicity, the best performing trained models of each of the architectures
are presented in ModelName-UUL format, whereUL represents the number of unfrozen
layers. For example, EfficientNetB0-187 means EfficientNetB0-IMG-HAMPP-FT187
and ResNet50-141 means ResNet50-IMG-HAMPP-FT141. To the best of our knowl-
edge, ResNet50 is the only publicly available trained CNN that was used for Lyme
disease identification by Burlina et al. [15]. We are calling this model ResNet50-Burlina
which is a collection of five models (trained on five-fold cross-validation data)3.

For training all the models, we used a dropout rate of 0.2 for the dropout layer in
EM classifier head section. Adam optimizer (described in Appendix Section A.2) with
author-recommended default values for parameters was used with a learning rate of
0.0001 for training the classifier head and 0.00001 for fine-tuning. We also used early
stopping to terminate the training if there was no improvement in validation accuracy
for ten epochs. A batch size of 32 was used. For reporting the number of layers to un-
freeze during transfer learning, we stated the total number of layers to unfreeze including
layers containing both trainable and non-trainable parameters.

We used NVIDIA QUADRO RTX 8000 GPU and a Desktop Computer with Intel
Xeon W-2175 processor, 64 GB DDR4 RAM, and Ubuntu 18.04 operating system to
perform all the experiments. Python v3.6.9, and TensorFlow v2.4.1 platform [1] were
used for all the implementations and experiments of this study.

3.3.2 Results andDiscussion
Table 3.1 presents the predictive performance measures of our eight different configu-
rations (explained in Section 3.3.1). ResNet50-NoAug model resulting from training a
ResNet50 architecture from scratch without using data augmentation and transfer learn-
ing gave an accuracy of 61.42%. ResNet50-NTL model obtained by training ResNet50
architecture with data augmentation and without transfer learning improved the accu-

2ImageNet pre-trained model taken from https://www.tensorflow.org/api_docs/python/tf/keras/

applications (visited on 02/20/2023).
3https://github.com/neil454/lyme-1600-model (visited on 02/20/2023).
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racy to 76.35%. So, data augmentation provided large gain in predictive performance
(ResNet50-NTL compared to ResNet50-NoAug). ResNet50-HAM-FFT model result-
ing from pretraining ResNet50 architecture with only HAM10000 data followed by fine-
tuning of all the layers with our Lyme dataset showed a degraded accuracy of 72.27%.
ResNet50-IMG-WFT, generated by training only the EM classifier head of an ImageNet
pre-trained ResNet50 architecture improved the accuracy to 78.94%. ResNet50-IMG-
FFT, resulting from fine-tuning all the layers of ImageNet pre-trained ResNet50 architec-
ture, further improved the classification accuracy to 82.22%. Whereas ResNet50-IMG-
FT141, model resulting from fine-tuning 141 layers of pre-trained ResNet50 architec-
ture gave an accuracy of 83.24% which is better compared to unfreezing the full archi-
tecture. ResNet50-IMG-HAMFP-FT141, model resulting from pretraining the whole
ImgaeNet pre-trained ResNet50 model by HAM10000 data before fine-tuning 141 lay-
ers with our Lyme dataset reduced the accuracy to 82.35%. Our proposed pre-training
strategy(described in Section 3.2.1) i.e. pre-training only the unfrozen 141 layers with
HAM10000 data gave us the model ResNet50-IMG-HAMPP-FT141 with the best ac-
curacy of 84.42%. Figure 3.15 shows the CD diagram in terms of accuracy for these
ResNet50 based models. The Friedman test null hypothesis was rejected with a p value
of 0.00003. From the CD diagram, we can see that ResNet50-IMG-HAMPP-FT141
achieved the best average ranking among the compared models. Although there is no
statistically significant difference among ResNet50-IMG-FFT, ResNet50-IMG-FT141,
ResNet50-IMG-HAMFP-FT141, and ResNet50-IMG-HAMPP-FT141 in terms of ac-
curacy the ResNet50-IMG-HAMPP-FT141 model performed better in terms of most
of the metrics (7 out of 11) as highlighted in Table 3.1. To summarize, our proposed
strategy of pre-training only the unfrozen part of an ImageNet pre-trained CNN with
HAM10000 data provided the best accuracy according to our experiments. So, for
benchmarking all the other CNN architectures, we only reported the performance re-
sulting from this configuration.

1 2 3 4 5 6 7 8

1.4000ResNet50-IMG-HAMPP-FT141
2.3000ResNet50-IMG-FT141
3.1000ResNet50-IMG-HAMFP-FT141
3.2000ResNet50-IMG-FFT 5.2000 ResNet50-IMG-WFT

5.8000 ResNet50-NTL
7.0000 ResNet50-HAM-FFT
8.0000 ResNet50-NoAug

CD=4.3066

Figure 3.15: Accuracy critical difference diagram for ResNet50 based configurations. The models
are ordered by best to worst average ranking from left to right. The number beside a
model’s name represents the average rank of the model. CD is the critical difference
for Nemenyi post-hoc test. Thick horizontal line connects the models that are not
statistically significantly different.

In the literature on recognizing EM from images, Čuk et al. [29] reported accuracies in
the range of 69.23% to 80.42% using classical machine learning methods, and Burlina et
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Table 3.1: Five-fold cross-validation performance metrics of ResNet50 based configurations.
Within each cell, the value after± symbol represents the standard deviation across five
folds. Bold indicates the best result for each of the metrics.

Metric

Model Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

ResNet50-
NoAug

61.42
±1.29

71.73
±8.65

50.37
±8.79

61.0
±1.5

63.03
±3.17

0.2302
±0.0234

0.2224
±0.0256

1.4592
±0.0863

0.5497
±0.0764

0.656
±0.0325

0.6505
±0.0216

ResNet50-NTL 76.35
±2.43

78.49
±8.47

74.04
±4.6

76.64
±1.64

76.92
±5.22

0.5305
±0.0431

0.5261
±0.0464

3.0735
±0.2867

0.2853
±0.0906

0.7723
±0.0398

0.8471
±0.0185

ResNet50-HAM-
FFT

72.27
±1.69

75.85
±1.27

68.42
±4.05

72.18
±2.55

72.48
±1.08

0.4447
±0.0341

0.4435
±0.0347

2.4434
±0.3248

0.3536
±0.0193

0.7393
±0.0116

0.7979
±0.0251

ResNet50-IMG-
WFT

78.94
±1.48

82.55
±2.77

75.06
±5.11

78.27
±3.2

80.11
±1.77

0.5799
±0.03

0.5772
±0.0305

3.4636
±0.7671

0.2316
±0.0255

0.8025
±0.0101

0.8666
±0.0163

ResNet50-IMG-
FFT

82.22
±1.36

85.27
±2.67

78.93
±5.26

81.55
±3.42

83.42
±1.63

0.6458
±0.0262

0.6431
±0.028

4.3127
±1.0994

0.1854
±0.0226

0.8326
±0.0083

0.909
±0.0092

ResNet50-IMG-
FT141

83.24
±1.04

85.29
±2.27

81.04
±2.28

82.91
±1.49

83.74
±1.96

0.6649
±0.0212

0.6641
±0.021

4.5575
±0.493

0.1812
±0.0255

0.8405
±0.0104

0.9134
±0.0091

ResNet50-IMG-
HAMFP-FT141

82.35
±1.62

89.28
±2.42

74.91
±5.11

79.45
±3.05

86.81
±2.03

0.6521
±0.0295

0.6448
±0.0333

3.7072
±0.7368

0.1421
±0.0251

0.84
±0.0111

0.9113
±0.0091

ResNet50-IMG-
HAMPP-FT141

84.42
± 1.36

87.93
± 1.47

80.65
± 3.59

83.1
± 2.49

86.19
± 1.27

0.6893
± 0.0263

0.6874
± 0.0277

4.703
± 0.8624

0.1493
± 0.0155

0.8541
± 0.0106

0.9189
± 0.0115

al. [16] reported the best accuracy of 81.51% using ResNet50 architecture for the case of
EM vs all classification problems. There was a common subset of images collected from
the internet in both the dataset of Burlina et al. [15] and our Lyme dataset. ResNet50-
Burlina model gave an accuracy of 76.05% when tested on our full dataset as shown in
Table 3.2. Performance metrics for the best performing configuration of all the CNN

Table 3.2: Performance metrics of ResNet50-Burlina model trained by Burlina et al. [15] tested on
the whole dataset of this study. Within each cell, the value after ± symbol represents
the standard deviation across five folds. Bold indicates the best result for each of the
metrics.

Metric

Model Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

ResNet50-
Burlina

76.05
±0.74

70.05
±3.6

82.51
±3.31

81.29
±2.1

72.04
±1.71

0.5294
±0.0132

0.5229
±0.0145

4.1017
±0.5172

0.362
±0.0309

0.7515
±0.0137

0.481
±0.0509

architectures used in this study are shown in Table 3.4. ResNet50-141 achieved the best
accuracy of 84.42%. Most of the models except MobileNetV2-62, MobileNetV3Small-
182, and NASNetMobile-617 showed good AUC values of above 90% and good sen-
sitivity suggesting that these CNNs can be a good choice for building pre-scanners for
Lyme disease. Figure 3.16 shows the CD diagram in terms of accuracy for these models.
The Friedman test null hypothesis was rejected with a p value of 0.09564. From the CD
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5.6000ResNet50-141
6.5000VGG19-13
8.0000DenseNet121-379
8.0000ConvNeXtTiny-120
9.8000DenseNet169-395

10.1000EfficientNetB5-444
10.3000EfficientNetB3-194
11.6000EfficientNetV2S-413
12.0000DenseNet201-561
12.0000EfficientNetB0-187
12.4000ResNet101-150
13.0000ResNet101V2-233
13.0000EfficientNetB4-384

13.3000 MobileNetV3Large-193
14.0000 InceptionV3-274
14.0000 InceptionV4-327
14.0000 EfficientNetB2-316
14.2000 Xception-118
14.6000 InceptionResNetV2-500
16.5000 ResNet50V2-105
16.5000 EfficientNetB1-308
17.2000 MobileNetV2-62
17.9000 VGG16-8
18.9000 MobileNetV3Small-182
21.6000 NASNetMobile-617

CD=16.006

Figure 3.16: Accuracy critical difference diagram for the best performing configurations of the
trained CNN models. The models are ordered by best to worst average ranking from
left to right. The number beside a model’s name represents the average rank of the
model. CD is the critical difference for Nemenyi post-hoc test. Thick horizontal line
connects the models that are not statistically significantly different.

diagram, we can see that ResNet50- 141 achieved the best average ranking followed by
VGG19-13 and DenseNet121-379 respectively. Xception and Inception-based architec-
tures had a similar ranking. NasNetMobile-617 ranked worst among all the models. The
accuracy of the models varied from 81.3% to 84.42% and there is no statistically signifi-
cant difference in terms of accuracy metric among most of the trained models. Overall,
ResNet50-141 performed better in terms of various metrics (5 out of 11) as highlighted
in Table 3.4. We kept the confusion matrix, ROC curve, and cross-validation fold-wise
details of all the trained models in Appendix Section B.2 to make the chapter concise and
readable.

Table 3.3 summarizes the complexities of the CNN models used in this study. The
most lightweight model with the lowest number of parameters, FLOPs, and mem-
ory usage was MobileNetV3Small-182. InceptionResNetV2-500 has the highest num-
ber of parameters and memory usage and slowest inference time. Xception-118 was
the fastest in terms of inference time. VGG19-13 required the highest number of
FLOPs. ResNet50V2-105 required the least amount of time to train on average whereas,
EfficientNetB5-444 was the slowest to train.

Table 3.5 shows the Grad-CAM visualizations of the models trained on the same train-
ing fold for two test images. From the table, it can be seen that different versions of Ef-
ficientNet focused more on the lesion part of the image compared to other models. The
squeeze-and-excitation [67] channel attention used in EfficientNet can be the reason be-
hind this behavior.

The experimental results showed that our proposed pre-training strategy utilizing
dermoscopic dataset HAM10000 improved the performance of ImageNet pre-trained
CNNs for recognizing clinical EM images. The results make it evident that CNNs have
great potential to be used for Lyme disease pre-scanner application. Figure 3.17 shows a
bubble chart reporting model accuracy vs FLOPs. The size of each bubble represents the
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number of parameters of the model. This figure serves as a guideline for selecting models
based on complexity and accuracy. It can be seen from the figure that EfficientNetB0-
187 is a good choice with reasonable accuracy for resource-constrained mobile platforms.
EfficientNetB0-187 also showed good results in Grad-CAM visualization. If resource
constraint is not a problem, then RestNet50-141 can be used for the best accuracy.

VGG16-8, 30.7, 82.17, 14.72

VGG19-13, 39, 84.14, 20.02

ResNet50-141, 7.75, 84.42, 23.59

ResNet101-150, 15.2, 82.64, 42.66

ResNet50V2-105, 6.99, 82.37, 23.57

ResNet101V2-233, 14.4, 82.58, 42.63

InceptionV3-274, 11.5, 82.73, 21.8

InceptionV4-327, 24.6, 82.76, 41.18

InceptionResNetV2-500, 26.4, 82.67, 54.34

Xception-118, 16.8, 82.48, 20.86

DenseNet121-379, 5.7, 83.88, 7.04

DenseNet169-395, 6.76, 83.66, 12.64

DenseNet201-561, 8.63, 83.12, 18.32

MobileNetV2-62, 0.613, 81.68, 2.26

MobileNetV3Small-182, 0.174, 81.53, 1.53

MobileNetV3Large-193, 0.564, 82.74, 4.23
NASNetMobile-617, 1.15, 81.3, 4.27

EfficientNetB0-187, 0.794, 83.13, 4.05

EfficientNetB1-308, 1.41, 82.42, 6.58

EfficientNetB2-316, 2.04, 82.75, 7.77

EfficientNetB3-194, 3.74, 83.46, 10.79

EfficientNetB4-384, 8.97, 82.98, 17.68

EfficientNetB5-444, 20.9, 83.7, 28.52

ConvNeXtTiny-120, 8.76, 84.21, 27.82

EfficientNetV2S-413, 5.75, 83.37, 20.33
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Figure 3.17: Bubble chart reporting model accuracy vs floating-point operations (FLOPs). The
size of each bubble represents the number of model parameters measured in millions
unit. Beside each model name the three values represent FLOPs, accuracy, and model
parameters, respectively.

Even the lightweight EfficientNetB0-187 model showed good performance, and it can
be directly deployed in mobile devices without requiring an internet connection for pro-
cessing the lesion image in a remote server. It can help people living in remote areas with-
out good internet facilities with an initial assessment of the probability of Lyme disease.

For this study, we utilized images from the internet alongside images collected from
several hospitals in France. This approach was inspired by related studies on skin lesion
analysis.

Although a portion of images in our dataset was collected from the internet the an-
notation of the dataset is reliable because we ignored the online labels, and all the images
were reannotated by expert dermatologists and infectiologists.
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We made all the trained models publicly available, which can be utilized by others for
transfer learning and building pre-scanners for Lyme disease. The trained CNN models
are available at the link stated in Appendix Section B.1.

3.4 Conclusion
In this chapter, a pre-training strategy for improving clinical skin lesion image classifica-
tion performance of ImageNet pre-trained convolutional neural networks by utilizing ad-
ditional pre-training with dermoscopic images was proposed. We applied the strategy to
benchmark twenty-five well-known CNNs based on predictive performance, complexity,
significance tests, and heatmap visualization using a novel Lyme disease dataset to find out
the effectiveness of CNNs for Lyme disease diagnosis from EM images. We also provided
guidelines for model selection. We found that even the lightweight models like Effiicent-
NetB0 performed well suggesting the application of CNNs for Lyme disease pre-scanner
mobile applications which can help people with an initial assessment of the probability of
Lyme disease and referring them to expert dermatologist for further diagnosis. Resource
intensive models like ResNet50 can be effective for building computer applications to
assist non-expert practitioners with identifying EM.

Key Points (Chapter 3)

• We proposed a pre-training strategy of fine-tuning some layers from the end
of an ImageNet pre-trained CNN architecture using a dermoscopic dataset
before training the model on a clinical skin lesion dataset.

• The proposed pre-training strategy seemed effective for increasing model
performance based on experimentation using a novel Lyme disease dataset.

• We benchmarked several state-of-the-art CNN architectures on the novel
Lyme dataset utilizing our pre-training strategy.

• Experimental results suggest that even lightweight CNNs can be effective
for Lyme disease pre-scanner mobile applications.
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3.4 Conclusion

Table 3.3: Complexity metrics of trained CNN models. Bold indicates the best result for each of
the metrics.

Model Parameters FLOPs Average training time GPU usage Average inference time
(million) (giga) (sec per epoch) (megabyte) (sec per image)

VGG16-8 14.72 30.7 111 565 0.0426
VGG19-13 20.02 39 164 565 0.0431
ResNet50-141 23.59 7.75 113 821 0.0484
ResNet101-150 42.66 15.2 123.33 821 0.0539
ResNet50V2-105 23.57 6.99 76 821 0.0464
ResNet101V2-233 42.63 14.4 152 821 0.0599
InceptionV3-274 21.8 11.5 133 821 0.054
InceptionV4-327 41.18 24.6 223.33 1333 0.0735
InceptionResNetV2-500 54.34 26.4 281.33 1333 0.0958
Xception-118 20.86 16.8 243.33 821 0.0392
DenseNet121-379 7.04 5.7 140.67 437 0.0673
DenseNet169-395 12.64 6.76 130 565 0.0686
DenseNet201-561 18.32 8.63 182.67 565 0.084
MobileNetV2-62 2.26 0.613 78 341 0.0429
MobileNetV3Small-182 1.53 0.174 81 341 0.0444
MobileNetV3Large-193 4.23 0.564 86.33 373 0.0444
NASNetMobile -617 4.27 1.15 152 373 0.0741
EfficientNetB0-187 4.05 0.794 87 373 0.0523
EfficientNetB1-308 6.58 1.41 158.33 437 0.0546
EfficientNetB2-316 7.77 2.04 210 437 0.0565
EfficientNetB3-194 10.79 3.74 143 565 0.0648
EfficientNetB4-384 17.68 8.97 431 565 0.0614
EfficientNetB5-444 28.52 20.9 771 821 0.0659
EfficientNetV2S-413 20.33 5.75 50 591 0.934
ConvNeXtTiny-120 27.82 8.76 95 847 0.0664
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3 Pre-training Strategy

Table 3.4: Five-fold cross-validation performance metrics for the best performing configurations
of the trained CNN models. Within each cell, the value after (±) symbol represents
the standard deviation across five folds. Bold indicates the best result for each of the
metrics.

Metric

Model Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

VGG16-8 82.17
± 1.23

85.77
± 3.58

78.31
± 4.36

81.12
± 2.62

83.88
± 3.02

0.6453
± 0.0253

0.6422
± 0.0249

4.0983
± 0.7329

0.1802
± 0.0388

0.8328
± 0.0116

0.9011
± 0.0079

VGG19-13 84.14
± 1.62

85.29
± 1.69

82.9
± 2.63

84.32
± 1.97

84.0
± 1.67

0.6826
± 0.0323

0.6823
± 0.0326

5.0924
± 0.6884

0.1777
± 0.0214

0.8479
± 0.0146

0.913
± 0.0074

ResNet50-141 84.42
± 1.36

87.93
± 1.47

80.65
± 3.59

83.1
± 2.49

86.19
± 1.27

0.6893
± 0.0263

0.6874
± 0.0277

4.703
± 0.8624

0.1493
± 0.0155

0.8541
± 0.0106

0.9189
± 0.0115

ResNet50V2-
105

82.37
± 2.15

85.53
± 3.35

78.96
± 6.13

81.66
± 3.83

83.72
± 2.63

0.6493
± 0.0411

0.6461
± 0.0439

4.3618
± 1.0495

0.1819
± 0.0349

0.8343
± 0.017

0.9013
± 0.0133

ResNet101V2-
233

82.58
± 2.21

81.9
± 4.78

83.32
± 3.71

84.17
± 2.55

81.31
± 3.7

0.6535
± 0.0429

0.6515
± 0.0439

5.104
± 0.9811

0.2163
± 0.0541

0.8292
± 0.0254

0.9118
± 0.0149

InceptionV3-
274

82.73
± 2.08

86.57
± 2.42

78.6
± 2.8

81.33
± 2.12

84.52
± 2.52

0.6551
± 0.0419

0.6533
± 0.0419

4.1259
± 0.639

0.1714
± 0.0328

0.8385
± 0.0195

0.9052
± 0.0185

InceptionV4-
327

82.76
± 1.78

85.7
± 3.96

79.58
± 2.87

81.92
± 1.8

84.02
± 3.41

0.6561
± 0.0358

0.6541
± 0.0353

4.2716
± 0.5734

0.179
± 0.0465

0.837
± 0.0197

0.9092
± 0.019

Inception
ResNetV2-500

82.67
±2.06

83.54
±3.88

81.74
±3.16

83.17
±2.16

82.37
±3.32

0.6541
±0.0406

0.653
±0.041

4.6886
±0.7264

0.2009
±0.0456

0.8329
±0.0218

0.9011
±0.0133

Xception-118 82.48
±2.45

83.16
±5.1

81.75
±2.76

83.08
±1.94

82.16
±4.4

0.6507
±0.0487

0.6492
±0.0484

4.6434
±0.6571

0.2054
±0.0609

0.8304
±0.0276

0.9081
±0.0148

DenseNet121-
379

83.88
±0.92

85.85
±1.76

81.75
±0.95

83.49
±0.69

84.35
±1.57

0.6773
±0.0186

0.6768
±0.0184

4.7169
±0.254

0.173
±0.0211

0.8465
±0.01

0.9158
±0.0097

DenseNet169-
395

83.66
±1.25

88.6
±3.59

78.35
±2.75

81.54
±1.53

86.68
±3.33

0.6758
±0.0265

0.6717
±0.0249

4.1454
±0.4187

0.1446
±0.0414

0.8486
±0.0138

0.9123
±0.0129

DenseNet201-
561

83.12
±1.11

85.61
±1.81

80.45
±3.92

82.61
±2.7

83.93
±1.13

0.663
±0.0221

0.6615
±0.0228

4.5729
±0.9885

0.1783
±0.0153

0.8403
±0.0073

0.9125
±0.0083

MobileNetV2-
62

81.68
±1.99

81.94
±3.49

81.39
±1.26

82.55
±1.21

80.85
±3.09

0.6337
±0.0394

0.6332
±0.0395

4.4256
±0.3596

0.222
±0.0441

0.8222
±0.0218

0.8933
±0.0135

MobileNetV3
Small-182

81.53
±1.98

84.93
±3.29

77.87
±3.89

80.6
±2.55

82.91
±2.85

0.6315
±0.0398

0.6294
±0.04

3.9496
±0.6356

0.1933
±0.0386

0.8265
±0.0186

0.896
±0.013

MobileNetV3
Large-193

82.74
±2.17

83.69
±0.43

81.71
±4.6

83.26
±3.39

82.3
±0.89

0.6548
±0.0437

0.6542
±0.0442

4.8573
±1.1585

0.2002
±0.0117

0.8344
±0.017

0.9034
±0.0094

NASNet
Mobile-617

81.3
±1.45

83.2
±1.66

79.25
±3.98

81.29
±2.65

81.48
±1.07

0.6261
±0.0287

0.6251
±0.0297

4.1452
±0.7283

0.2117
±0.0156

0.8219
±0.0108

0.8897
±0.0152

EfficientNet
B0-187

83.13
±1.2

85.21
±3.91

80.89
±2.95

82.83
±1.75

83.79
±3.19

0.6636
±0.0244

0.6618
±0.0237

4.5522
±0.6116

0.1817
±0.0427

0.8392
±0.0147

0.9094
±0.0129

EfficientNet
B1-308

82.42
±1.04

85.85
±2.14

78.71
±3.75

81.37
±2.34

83.9
±1.59

0.6492
±0.0202

0.647
±0.0214

4.1494
±0.6707

0.179
±0.0209

0.835
±0.0074

0.9088
±0.0134

EfficientNet
B2-316

82.75
±1.4

84.95
±3.41

80.39
±3.02

82.39
±1.91

83.4
±2.69

0.6556
±0.0276

0.6542
±0.0279

4.4211
±0.6202

0.1865
±0.0379

0.8359
±0.0158

0.9075
±0.0082

EfficientNet
B3-194

83.46
±0.87

85.15
±4.28

81.64
±2.9

83.4
±1.6

83.9
±3.14

0.6704
±0.0157

0.6685
±0.0167

4.7361
±0.6283

0.1803
±0.0443

0.8416
±0.0144

0.9163
±0.0074

EfficientNet
B4-384

82.98
±1.31

87.55
±2.2

78.06
±3.76

81.2
±2.33

85.46
±1.76

0.6613
±0.0249

0.6581
±0.0268

4.0946
±0.6159

0.1589
±0.0233

0.842
±0.0107

0.9138
±0.0074

EfficientNet
B5-444

83.7
±1.21

86.85
±2.89

80.32
±3.73

82.71
±2.39

85.17
±2.38

0.6752
±0.024

0.6729
±0.0245

4.5562
±0.7645

0.1629
±0.0303

0.8466
±0.0108

0.9138
±0.0161

EfficientNet
V2S-413

83.37
±2.26

84.53
±3.11

82.13
±4.05

83.68
±3.02

83.26
±2.76

0.6679
±0.0451

0.6669
±0.0453

4.9859
±1.1671

0.1884
±0.0365

0.8404
±0.0212

0.9144
±0.0145

ConvNeXt
Tiny-120

84.21
±2.07

86.72
±3.5

81.51
±2.0

83.45
±1.6

85.23
±3.31

0.6845
±0.0418

0.6834
±0.0412

4.7452
±0.5401

0.1631
±0.0436

0.8502
±0.0215

0.9183
±0.015
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3.4 Conclusion
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4 Expert Opinion Elicitation
for Assisting Lesion Image
ClassifierWith Patient Data

This chapter addresses research question 2, presents our questionnaire based
expert opinion elicitation method for calculating disease probability from pa-
tient data and an approach for combining independent probability estimates
from multiple modalities. Contents from this chapter have been used in the
following article:

• S. I. Hossain, J. de Goër de Herve, D. Abrial, R. Emilion, I. Lebertb,
Y. Frendo, D. Martineau, O. Lesens, and E. Mephu Nguifo. “Expert
Opinion Elicitation for Assisting Deep Learning based Lyme Disease
Classifier with Patient Data”, 2022. arXiv: 2208.14384

Chapter Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Elicitation Method . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Expert Selection . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Questionnaire and Experts’ Evaluation . . . . . . . . . 55

4.2.3 Opinion Elicitation . . . . . . . . . . . . . . . . . . 56

4.3 Combining Probabilities from Image and Patient Data . . . 63
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Introduction
When the dermatologists rechecked the annotations of the Lyme image dataset misclassi-
fied by most of the convolutional neural networks (CNNs) (discussed in Chapter 3) they
found mistakes in some of the initial annotations. This suggests that some images are too
confusing to classify even for the experts without additional context from patient data.
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4 Expert Opinion Elicitation

Expert opinion elicitation can be effective when high quality data is difficult to col-
lect [175]. Point estimates (such as medians or means), intervals of uncertainty (such as
confidence intervals or quartiles), or probability distributions can all be included in the
measurements elicited [17]. Expert opinion elicitation and aggregation processes can be
classified into two categories: behavioral and mathematical approaches [17, 25]. The be-
havioral approach tries to produce group consensus among experts whereas, the math-
ematical approach combines subjective probabilities from experts using mathematical
methods (some form of averaging) [17].

Expert elicitation proved effective for medical diagnosis and decision making. For
example, Van Der Gaag et al. [166] created a probabilistic network to describe the oe-
sophageal cancer presentation characteristics and the pathophysiological mechanisms of
invasion and metastasis by eliciting opinions from two experts. Saegerman et al. [136]
elicited opinions from eleven European experts to rank the drivers of the emergence
of bovine besnoitiosis a chronic disease in cattle. Wilson et al. [175] elicited opinions
from sixteen experts on the disease progression probability in patients with untreated
melanoma. The article by Cadham et al. [17] contains a detailed review of the application
of expert elicitation in health research computational modeling studies.

In our study, for the first time, we elicited opinions from fifteen expert dermatologists
to create a model for calculating erythema migrans (EM) probability from patient data as
an early symptom of Lyme disease. First, with the help of the experts, a questionnaire was
prepared based on questions that the doctors ask during EM diagnosis. The traditional
expert elicitation process of collecting probability estimates for cases based on the ques-
tionnaire is time consuming and it is difficult for doctors to provide probability estimates
for cases or distribution parameters. Therefore, we opted for a more relaxed approach of
relative weight assignment to different answers to the questions and converted the doc-
tor’s evaluations to EM probabilities utilizing Gaussian mixture model (GMM) based
density estimation (described in Section 2.1.4). To validate the elicited probability model
and explain its behavior to the experts we utilized formal concept analysis (described in
Section 2.1.3) and decision tree (described in Section 2.1.2). The elicited patient data
based EM probability model will be useful for assisting image-based EM classifiers with
additional context from patient data. We also proposed an algorithm for combining the
EM probability score from a deep learning image classifier with the elicited probability
score from patient data. The proposed algorithm ensures veto power for the patient data.
The elicited probability score and the proposed algorithm can be utilized to make image
based deep learning Lyme disease pre-scanners robust and the techniques will be useful
for questionnaire based opinion elicitation of other diseases.

The rest of the chapter is structured as follows: Section 4.2 describes the expert elicita-
tion process and elicitation result; Section 4.3 contains the strategy for combining prob-
abilities; finally, Section 4.4 provides concluding remarks.
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4.2 Elicitation Method

4.2 ElicitationMethod
The details of our expert elicitation process like expert recruitment, questionnaire prepa-
ration, experts’ opinion collection, elicitation methods, result, and analysis are presented
in the following subsections.

4.2.1 Expert Selection
The recruited experts are hospital practitioners who are infectious disease specialists or
dermatologists working in reference centers for tick-borne diseases of France - Centres de
Référence des Maladies Vectorielles liées aux Tiques (CRMVT) [27]. At a CRMVT steer-
ing committee meeting held in June 2021 with participants from all the reference centers,
Professor Olivier Lesens (Infectious and Tropical Diseases Department, CRIOA, CHU
Clermont-Ferrand, France) explained the importance of expert elicitation for calculating
EM probability based on patient data and requested the interested experts to participate
in the elicitation process. Fifteen experts agreed to participate1. Table 4.1 lists the ref-
erence centers and the corresponding number of experts participating in the elicitation
process.

4.2.2 Questionnaire and Experts’ Evaluation
For the EM probability elicitation, a questionnaire was prepared based on questions
about the context of onset and progression of the skin lesion that a physician usually
asks when diagnosing EM. The questionnaire is based on a previous study concerning
the collection of EM related data from rural areas of France [85]. The questionnaire was
finalized through several meetings held in April 2020 among the doctors of CRMVT
in Clermont-Ferrand and experts in tick ecology from the French national research in-
stitute for agriculture, food and the environment - Institut national de recherche pour
l’agriculture, l’alimentation et l’environnement (INRAE) [71]. Experts who volunteered
to participate in the elicitation process at the meeting in June 2021 agreed that there were
many possible cases from the combination of the questions and answers, and it was time
consuming and difficult for them to provide probability estimates for all those different
cases. Therefore, experts agreed to independently assign relative weights to different pos-
sible answers associated with each question. The assigned weight values are in the range
−1 to+3 (a higher value represents a higher contribution of the answer towards the pos-
sibility of the EM). The experts were contacted via email with detailed instructions to
provide their weight attributions independently. Table 4.2 lists the questions, answers,
and weight attribution from the doctors. After receiving the weight attributions from all
the experts, they participated in a meeting in November 2021 and agreed that fever, fa-
tigue, faintness, and headache should contribute equally if one or more of these answers

1The experts did not receive any monetary benefits for participating in the elicitation process.
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4 Expert Opinion Elicitation

Table 4.1: Experts recruited for erythema migrans probability elicitation.
Center Number of Participating Experts

CRMVT du Grand Ouest
Hôpital Pontchaillou
Centre Urgences-Réanimations
2 rue Henri Le Guilloux
35033 Rennes Cedex 09

2

CRMVT Ile-de-France et Hauts-de-France
Hôpital de Villeneuve-Saint-Georges
Secrétariat du centre Lyme
40 allée de la Source
94195 Villeneuve-Saint-Georges Cedex

2

CRMVT de Strasbourg
Nouvel Hôpital Civil - Hôpitaux Universitaires de Strasbourg (HUS)
1 place de l’Hôpital BP461
67091 STRASBOURG Cedex

1

CRMVT de Nancy
Centre Hospitalier Régional et Universitaire
(CHRU) de Nancy
Rue du Morvan
54500 Vandœuvre-lès-Nancy

1

CRMVT de Clermont-Ferrand
Service des Maladies Infectieuses et Tropicales
CHU Gabriel Montpied
58, Rue Montalembert
63003 Clermont-Ferrand Cedex 1

8

CRMVT de Saint-Etienne
Service des Maladies Infectieuses et Tropicales Hôpital Nord
Avenue Albert Raimond
42270 Saint-Priest-en-Jarez

1

were present and the contribution should be the average of these four answers. There-
fore, the four answers were replaced with one, and the possible cases reduced to 1,536
from 12,288 cases. This modification is shown in Table 4.3.

4.2.3 Opinion Elicitation
Following are some notations used in the rest of the manuscript:

• Set of doctors, D = {de|e = 1, . . . , ne}.

• Set of questions, Q = {qi|i = 1, . . . , ni}.

• Set of possible cases, C = {cl|l = 1, . . . , nl}.
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4.2 Elicitation Method

Table 4.2: Questionnaire and doctors’ weight attribution for erythema migrans. The assigned
weight values are in the range−1 to+3 (a higher value represents a higher contribution
of the answer towards the possibility of the erythema migrans). d1 tod15 represents the
doctors.

Question Answer
Weight Assigned by Doctors

(Doctor’s Evaluation)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 Average

Other symptoms observed
alongside the skin lesion

No 0 0 3 0 0 1 2 1 2 1 2 1 1 2 3 1.27

Fever -1 0 -1 1 1 1 1 1 1 1 1 1 1 1 0 0.6

Fatigue 0 1 1 2 0 0 1 1 1 1 1 0 1 0 0 0.67

Faintness 0 0 1 0 0 0 0 0 1 0 1 -1 1 0 0 0.2

Joint pain 0 0 -1 0 2 0 1 1 0 2 1 1 1 0 0 0.53

Headache 1 1 -1 2 2 1 1 1 1 1 1 1 1 0 0 0.87

Itching -1 -1 -1 -1 1 -1 0 0 0 1 -0.5 -1 -1 1 0 -0.3

What was the maximum
size of the red rash

< 1 cm -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 1 -1 -0.67

1 to 5 cm 1 1 1 0 1 0 1 1 2 1 1 1 1 2 1 1

> 5 cm 3 2 2 2 3 2 3 2 1 3 2 2 3 3 3 2.4

I do not know 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0

Is the size of the red rash
increasing or has it
gradually increased

Yes 3 1 3 3 3 3 3 3 2 3 3 3 3 3 3 2.8

No 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 1 -1 -0.67

I do not know 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.07

Have you seen a tick bite
on this red rash

in the past 30 days

Yes 3 2 3 2 3 1 3 3 2 3 2 3 1 3 3 2.47

No 0 0 0 0 0 1 0 1 0 0 -0.5 -1 0 1 0 0.1

Frequency of tick bites
in the last 30 days

before the appearance
of the red rash

Never -1 -1 0 0 -1 0 0 0 0 0 -1 -1 0 -1 0 -0.4

1 time 0 0 2 1 1 1 1 1 2 1 1 1 1 2 1 1.07

2 to 5 times 1 1 3 1 1 1 1 2 2 1 2 1 1 3 1 1.47

> 5 times 2 2 1 2 2 1 1 2 2 2 3 1 1 3 2 1.8

Outdoor activities in the
last 30 days before the
onset of the red rash

Yes 1 1 2 2 1 1 2 2 2 2 2 2 1 3 2 1.73

No -1 -1 -1 -1 -1 0 -1 1 -1 -1 -1 -1 0 -1 0 -0.67

• Total number of answers corresponding to qi question = nqi .
For example, nq2 = 4 because question q2 has four possible answers (refer to Table
4.3).

• jth answer corresponding to qi question,

aj,qi =

{
1, if the answer is true
0, otherwise

,where j = 1, . . . , nqi
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4 Expert Opinion Elicitation

Table 4.3: Weight modified questionnaire and doctors’ weight attribution for erythema migrans.
The assigned weight values are in the range−1 to+3 (a higher value represents a higher
contribution of the answer towards the possibility of the erythema migrans). d1 to d15
represents the doctors.

Question Answer
Weight Assigned by Doctors

(Doctor’s Evaluation)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 Average

Other symptoms observed
alongside the skin lesion (q1)

No (a1,q1) 0 0 3 0 0 1 2 1 2 1 2 1 1 2 3 1.27

Fever/
Fatigue/
Faintness/
Headache (a2,q1)

-0
.2

5

0.
25 0 0.
75

0.
75

0.
25

0.
75

0.
75

0.
75 1 1

0.
25 1

0.
25 0 0.
5

Joint pain (a3,q1) 1 1 -1 2 2 1 1 1 1 1 1 1 1 0 0 0.87

Itching (a4,q1) -1 -1 -1 -1 1 -1 0 0 0 1 -0.5 -1 -1 1 0 -0.3

What was the maximum
size of the red rash (q2)

< 1 cm (a1,q2) -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 1 -1 -0.67

1 to 5 cm (a2,q2) 1 1 1 0 1 0 1 1 2 1 1 1 1 2 1 1

> 5 cm (a3,q2) 3 2 2 2 3 2 3 2 1 3 2 2 3 3 3 2.4

I do not know (a4,q2) 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0

Is the size of the red rash
increasing or has it

gradually increased (q3)

Yes (a1,q3) 3 1 3 3 3 3 3 3 2 3 3 3 3 3 3 2.8

No (a2,q3) 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 1 -1 -0.67

I do not know (a3,q3) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.07

Have you seen a tick bite
on this red rash

in the past 30 days (q4)

Yes (a1,q4) 3 2 3 2 3 1 3 3 2 3 2 3 1 3 3 2.47

No (a2,q4) 0 0 0 0 0 1 0 1 0 0 -0.5 -1 0 1 0 0.1

Frequency of tick bites
in the last 30 days

before the appearance
of the red rash (q5)

Never (a1,q5) -1 -1 0 0 -1 0 0 0 0 0 -1 -1 0 -1 0 -0.4

1 time (a2,q5) 0 0 2 1 1 1 1 1 2 1 1 1 1 2 1 1.07

2 to 5 times (a3,q5) 1 1 3 1 1 1 1 2 2 1 2 1 1 3 1 1.47

> 5 times (a4,q5) 2 2 1 2 2 1 1 2 2 2 3 1 1 3 2 1.8

Outdoor activities in the
last 30 days before the

onset of the red rash (q6)

Yes (a1,q6) 1 1 2 2 1 1 2 2 2 2 2 2 1 3 2 1.73

No (a2,q6) -1 -1 -1 -1 -1 0 -1 1 -1 -1 -1 -1 0 -1 0 -0.67

• Weight assigned by doctor de to aj,qi answer = wde,aj,qi
.

For example, wd1,a3,q2
= 3 because the third answer to second question has a

weight of 3 assigned by the first doctor (refer to Table 4.3).

Our opinion elicitation task for Lyme disease involved fifteen experts, the prepared
questionnaire contains six questions and the possible cases from the combination of ques-
tions and answers is 1,536. So, for the Lyme disease task ne = 15, ni = 6, andnl =
1536. First, we summarized each of the nl possible cases as a weight sum scl as shown in
Equation (4.1).

scl =

|Q|∑

i=1

nqi∑

j=1

aj,qi ×


 1

|D|

|D|∑

d=1

wde,aj,qi


 (4.1)
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4.2 Elicitation Method

The set of case weight sum is defined as S = {scl |l = 1, . . . , nl}. Then, we normalized
each case weight sum with min-max normalization as shown in Equation (4.2).

s̃cl =
scl −min(S)

max(S)−min(S)
(4.2)

The set of min-max normalized case weight sum is defined as S̃ = {s̃cl |l = 1, . . . , nl}.
We proposed three approaches to the experts to convert the normalized case weight sum
to a probability score for EM. The following subsections explain the three approaches.

4.2.3.1 Cumulative Probability fromDensity Estimate Based on GMM

We modeled our normalized weight sum data density using a GMM with two compo-
nents. The number of components was selected based on the intuition that there are two
sub populations within the data: one is the ill sub population and the other one is not ill
sub population. The number of components was also supported by AIC and BIC values.
Table 4.4 lists the selected parameters for the GMM. The blue curve in Figure 4.1 shows

Table 4.4: Parameters of Gaussian mixture model used to model the density of min-max normal-
ized weight sum of erythema migrans cases. ∅ , µ ,and σ represent mixture weight,
mean and standard deviation respectively.

Parameter Name Value

Components 2
∅1 0.364801
∅2 0.635199
µ1 0.359548
µ2 0.572878
σ1 0.128782
σ2 0.156241

the estimated density function using GMM. We defined the cumulative probability [20]
of a normalized case weight sum from the GMM density estimate as the probability of
EM as shown in Equation (4.3).

F̂GMM(x) =

∫ x

−∞

(
2∑

m=1

∅mN (x|µm, σm)

)
dx (4.3)
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4 Expert Opinion Elicitation

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Min-Max Normalized Case Weight Sum

0

0.5

1

1.5

2

2.5

D
en

si
ty

Histogram
KDE
GMM
Component 1
Component 2

Figure 4.1: Proposed approaches for expert opinion elicitation. GMM and KDE stand for Gaus-
sian mixture model and kernel density estimation respectively.

4.2.3.2 Posterior Probability of a Case Belonging to the Ill
Subpopulation of GMM

The first and second components of our GMM are shown in Figure 4.1 with green and
orange dotted lines respectively. If we assume that the second component represents the
ill subpopulation then the posterior probability of a normalized case weight sum belong-
ing to the second component [130] can be defined as the EM probability as shown in
Equation (4.4).

p(κ2|x) =
∅2N (x|µ2, σ2)∑2

m=1∅mN (x|µm, σm)
(4.4)
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4.2 Elicitation Method

4.2.3.3 Cumulative Probability fromDensity Estimate Based on Kernel
Density Estimation

We used a Gaussian kernel with bandwidth,h = 0.03676on ournl = 1, 536data points
for the probability density estimation of the normalized weight sum variable as shown in
Equation (4.5).

f̂KDE(x) =
1

nl × h

nl∑

l=1

1

2π
e
−0.5

(
x−s̃cl

h

)2

(4.5)

The red curve in Figure 4.1 shows the estimated density function. We defined the cu-
mulative probability of a normalized case weight sum as the probability of having EM as
shown in Equation (4.6).

F̂KDE(x) =

∫ x

−∞
f̂KDE(x)dx (4.6)

4.2.3.4 Elicitation Result and Analysis

We calculated EM probability score for all possible cases using the three approaches de-
scribed in Section 4.2.3.1, 4.2.3.2, and 4.2.3.3 and presented the results with explana-
tions to the experts in a meeting held in May 2022. Figure 4.2 shows the EM proba-
bility plot for all the cases using the three approaches. In the figure blue and red lines
represent the probability scores based on density estimates from the Gaussian mixture
model (approach 1) and kernel density estimate (approach 2) respectively. The orange
line represents probability scores based on the posterior probability of a case belonging
to the second component i.e. the ill subpopulation of the Gaussian mixture model (ap-
proach 3). Results obtained from approach 1 and approach 2 are close because both of
them are based on density estimates whereas, probability scores obtained from approach
3 are always higher than the other two approaches. Based on the results and explanations
the experts came to a consensus on the use of approach 1 (described in Section 4.2.3.1)
mainly because the density estimate in approach 1 is smoother compared to approach 2
(described in Section 4.2.3.3).

To validate elicited model and explain its behavior to the experts first we used decision
trees. For building the decision tree, we divided calculated EM probability scores into
three categories: LOW (scores in the range [0, 0.33)), MEDIUM (scores in the range
[0.33, 0.68)), and HIGH (scores in the range [0.68, 1]) Figure 4.3 shows a pruned version
of the decision tree for approach 1. In the figure, each node shows the majority category
along with the percentage and number of cases belonging to each category. From the
tree, we can see that the model assigns HIGH EM probability to cases whenever the first
answer, “yes” to the third question “Is the size of the spot increasing or has it gradually
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Figure 4.2: Elicited erythema migrans probability plot. Blue and red lines represent the probabil-
ity scores based on density estimates from Gaussian mixture model and kernel density
estimate respectively. Orange line represents probability scores based on the posterior
probability of a case belonging to the second component i.e. the ill subpopulation of
the Gaussian mixture model.

increased”, a1,q3 is true. This behavior supports the doctors’ opinion because the first
answer to the third question has the highest weight given by most of the doctors.

To further explain the behavior of the model we utilized formal concept analysis (FCA)
to find out questions and answers important for different probability groups. Figure 4.4
shows a simplified FCA lattice view for the 162 cases belonging to the lowest probability
score group in the range [0, 0.1) obtained from approach 1. In the figure, the top box of a
node represents an attribute (answer) or a number of attributes, which are connected by
lines, and the bottom box represents how many objects (cases) contain the corresponding
attribute shown in the top box. In Figure 4.4, we start with 162 cases in the root node. At
the first level, the number inside the bottom box of a node represents how many cases out
of 162 cases contain the corresponding answer shown in the top box. For example, the
“no” answer to the question “Outdoor activities in the last 30 days before the onset of the red
spot”, a2,q6 is present in 145 cases. At the second level, each node represents how many
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4.3 Combining Probabilities from Image and Patient Data

MEDIUM
Category % cases

LOW 33.1 508

MEDIUM 33.6 516

HIGH 33.3 512

Total 100.0 1,536

𝒂𝟏,𝒒𝟑=𝐹𝐴𝐿𝑆𝐸

LOW
Category % cases

LOW 46.1 472

MEDIUM 36.4 373

HIGH 17.5 179

Total 66.7 1,024

MEDIUM
Category % cases

LOW 24.6 126

MEDIUM 44.9 230

HIGH 30.5 156

Total 33.3 512

LOW
Category % cases

LOW 67.6 346

MEDIUM 27.9 143

HIGH 4.5 23

Total 33.3 512

HIGH
Category % cases

LOW 7.0 36

MEDIUM 27.9 143

HIGH 65.0 333

Total 33.3 512

HIGH
Category % cases

LOW 0.4 1

MEDIUM 14.1 36

HIGH 85.5 219

Total 16.7 256

HIGH
Category % cases

LOW 13.7 35

MEDIUM 41.8 107

HIGH 44.5 114

Total 16.7 256

𝒂𝟐,𝒒𝟔=𝐹𝐴𝐿𝑆𝐸

𝒂𝟏,𝒒𝟑=𝑇𝑅𝑈𝐸

𝒂𝟐,𝒒𝟔=𝐹𝐴𝐿𝑆𝐸 𝒂𝟐,𝒒𝟔=𝑇𝑅𝑈𝐸𝒂𝟐,𝒒𝟔=𝑇𝑅𝑈𝐸

Figure 4.3: Pruned decision tree explaining elicited erythema migrans probability model behavior.
Each node shows the majority category along with percentage and number of cases
belonging to each category. Refer to Table 4.3 for details about the questions and
answers. The full tree is available at the link stated in Appendix Section C.1.

cases contain two answers connected by a line. For example, a2,q4 and a2,q6 are jointly
true in 128 cases. The rest of the FCA lattice is organized similarly. We can see from the
figure that the answers common to most of these cases are the ones having lowest assigned
weights or the opposites of the answers having highest assigned weights by most of the
doctors.

The elicited EM probability scores for all possible cases, detailed decision tree, and
FCA context files for different probability score groups are available at the link stated
in Appendix Section C.1.

4.3 Combining Probabilities from Image and
Patient Data

Our experiments showed that some images are too confusing to classify even for experts.
Based on this evidence, experts suggest that EM probability obtained from the image data
should not be prioritized and probability from patient data should have veto power over
image data. If the EM probability obtained from image data and patient data are pimage

and pdata respectively then the combined probability, pcombined using the geometric mean
as
√
pimage × pdata ensures veto power both for image and patient data as shown in Fig-

ure 4.5a. But according to the experts’ suggestion, we want to keep the veto power only
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4 Expert Opinion Elicitation

Figure 4.4: Concept lattice view for 162 very low probability score cases in the range [0, 0.1). The
top box of a node represents an attribute (answer) or a number of attributes, which are
connected by lines, and the bottom box represents how many objects (cases) contain
the corresponding attribute shown in the top box. Refer to Table 4.3 for details about
the questions and answers.

for the patient data. To achieve this, we made pimage less extreme in the lower half prob-
ability range using the transformation shown in Equation 4.7. This transformation is
popular in the literature of forecast probability aggregation for making the forecasts less
or more extreme [8, 77, 145].

p̃image =
pimage

ϑimage

pimage
ϑimage + (1− pimage)

ϑimage
(4.7)

The adjustment factor ϑimage was set to 0.2 so that a very low value of pimage does not
pull down pcombined too much. This value was selected based on expert’s suggestion to
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(a) Geometric mean.
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(b) Probability adjusted geometric mean.
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(c) Transformed image probability. ϑimage is the transformation factor.

Figure 4.5: Combining erythema migrans probabilities from image and patient data. pimage and
pdata represent probabilities from image and patient data.

ensure that pcombined will be at least 50% if pdata ≥ 90%. The adjustment of pimage is
shown in Figure 4.5c. The plot of pcombined after the adjustment of pimage is shown in
Figure 4.5b. From the figure, we can see that the veto power was retained for pdata while
effectively revoking it from pimage. As geometric mean uses multiplication we replaced a
zero value of pimage or pdata with a small value of 0.1 to avoid a zero value of pcombined.

The generalized steps involved in our strategy for combining probabilities from image
and patient data are shown in Algorithm 2. The notations, inputs, and outputs are listed
at the beginning of the algorithm. First, a zero value of probability from image pimage

or patient data pdata is replaced by a small value ϵ to make sure the combined probability
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4 Expert Opinion Elicitation

pcombined does not become zero because of the geometric mean. Then, pimage and pdata
are transformed using the transform function. The transform function uses Equation 4.7
to make the input probability less or more extreme based on the transforming factor if the
input probability falls within the user-defined range. Finally, the combined probability
pcombined is calculated using the geometric mean of transformed probabilities from image
p̃image and patient data p̃data. Geometric mean ensures veto power for the modalities
which can be adjusted using the transformation with suggestions from domain experts.

Algorithm 2: Combining probabilities from image and patient data
Input :

Probability estimate from lesion image: pimage ∈ [0, 1]
Probability estimate from patient data: pdata ∈ [0, 1]
Factor for transforming pimage: ϑimage

Factor for transforming pdata: ϑdata

Value used to avoid zero probability: ϵ ∈ (0, 1]
Range beginning for transforming pimage: bimage ∈ [0, 1]
Range end for transforming pimage: eimage ∈ [0, 1]
Range beginning for transforming pdata: bdata ∈ [0, 1]
Range end for transforming pdata: edata ∈ [0, 1]

Output:
Combined probability: pcombined ∈ [0, 1]

begin
if pimage = 0 then

pimage ← ϵ // avoiding zero probability from image modality

if pdata = 0 then
pdata ← ϵ // avoiding zero probability from patient data modality

p̃image ← transform (pimage, ϑimage, bimage, eimage) // transform pimage

p̃data ← transform (pdata, ϑdata, bdata, edata) // transform pdata
pcombined ←

√
p̃image × p̃data // geometric mean

return pcombined

Function transform (p, ϑ, b, e)
if p ≥= b and p ≤= e then

p← pϑ

pϑ+(1−p)ϑ
// transformation in specified range

return p

4.4 Conclusion
In this chapter, we successfully elicited opinions from fifteen expert doctors to create a
model for obtaining EM probability score from patient data. The elicited probability
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4.4 Conclusion

model will help address the data scarcity problem towards building an effective Lyme dis-
ease pre-scanner system. We also proposed a strategy to jointly utilize EM probabilities
from both image and patient data. Image-only EM analysis is not robust enough and dark
skin is underrepresented in existing EM image datasets. Therefore, image-only analysis
is not appropriate for a proper diagnosis of EM. We believe that combining the elicited
probability score from patient data with image-based analysis can partially address these
issues. The proposed techniques of questionnaire based opinion elicitation and combin-
ing probabilities from image and patient data will be useful for other diseases with similar
requirements.

Key Points (Chapter 4)

• We proposed a questionnaire based expert opinion elicitation approach that
utilizes Gaussian mixture model based density estimation.

• We opted for relative weight assignment to different answers to the ques-
tions which is easier for the experts compared to traditional approach of
collecting probability estimates.

• We exploited decision tree and formal concept analysis for intuitive valida-
tion of the elicited model.

• We proposed an approach for combining the probability score from a deep
learning image classifier with the elicited probability score from patient
data. The proposed algorithm ensures veto power for the chosen modal-
ity based on expert’s decision.

• For the first time, we elicited opinions from fifteen expert dermatologists to
create a model for calculating erythema migrans probability from patient
data as an early symptom of Lyme disease.
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5 Miscellaneous
This chapter addresses research question 3, presents our ongoing works on
efficiently dealing with dermoscopic skin lesion hair artifact, custom architec-
ture for Lyme disease image classifier, and an application utilizing our research
findings. Contents from this chapter have been used in the following publica-
tions:

• S. I. Hossain, S. S. Roy, J. de Goër de Herve, R. E. Mercer, and E. Me-
phu Nguifo. “A skin lesion hair mask dataset with fine-grained anno-
tations”. 1, 2023. doi: 10.17632/J5YWPD2P27.1 (accepted, Data in
Brief journal)

• S. I. Hossain, J. de Goër de Herve, Y. Frendo, D. Martineau, I. Lebert,
O. Lesens, and E. Mephu Nguifo. “EMScan : une application mo-
bile pour l’assistance au diagnostic des formes précoces de la maladie
de Lyme”. Revue des Nouvelles Technologies de l’Information Extrac-
tion et Gestion des Connaissances, RNTI-E-39, 2023, pp. 613–620.
url: https://editions-rnti.fr/?inprocid=1002869

• Y. Frendo, J. de Goër de Herve, S. I. Hossain, D. Martineau, I. Lebert,
O. Lesens, and E. Mephu Nguifo. “EMScan: A Mobile Application
for Early Lyme Disease Diagnosis”. In: European Conference on Com-
puter Vision ECCV. 2022. Project Demo. url: https://eccv2022.

ecva.net/program/demo-list/
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5.1 Introduction
Artificial intelligence-assisted skin lesion analysis is becoming popular nowadays thanks
to the advancement in deep learning techniques. However, their performances may be
affected by skin hair artifacts. Lesion analysis can benefit from digital hair removal or re-
alistic hair simulation techniques as discussed in Section 2.3. An accurate hair mask seg-
mentation dataset is needed to properly benchmark the segmentation algorithms. More-
over, existing researches on skin hair augmentation require a hair mask to generate hair
in specified locations. These masks are created using pre-segmented hair masks or ran-
dom lines or curves [5]. A well-annotated hair mask dataset will be effective for training
generative models to automate the mask generation process.

We have created the largest publicly available skin lesion hair segmentation mask
dataset by carefully annotating 500 dermoscopic images. Compared to the existing
datasets, our dataset is free of non-hair artifacts like ruler markers, bubbles, and ink marks.
The dataset is also less prone to over and under segmentations because of fine-grained
annotations and quality checks from multiple independent annotators. To create the
dataset, first, we collected five hundred copyright-free CC0 licensed dermoscopic images
covering different hair patterns. Second, we trained a deep learning hair segmentation
model on a publicly available weakly annotated dataset. Third, we extracted hair masks
for the selected five hundred images using the segmentation model. Finally, we manually
corrected all the segmentation errors and verified the annotations by superimposing the
annotated masks on top of the dermoscopic images. Multiple annotators were involved in
the annotation and verification process to make the annotations as error-free as possible.

The prepared dataset will be useful for benchmarking and training hair segmentation
algorithms as well as creating realistic hair augmentation systems. Our first plan is to
train an accurate hair segmentation model utilizing the prepared dataset to extract lots
of hair masks from dermoscopic datasets. Then, these masks can be utilized to train a
generative model which can automate the process of realistic hair mask generation for
the hair augmentation process. Finally, we want to test if hair augmentation can be an
effective replacement for hair removal or not.

We are working on a custom convolutional neural network (CNN) architecture target-
ing the task of classifying erythema migrans (EM) from images. The architecture utilizes
findings from our analysis of existing architectures as described in Chapter 3. The ini-
tial results look promising and we are planning to further improve the architecture with
neural architecture search (NAS) and our proposed pre-training strategy.
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5.2 Efficiently Dealing With Dermoscopic Skin Lesion Hair Artifact

The techniques proposed in this thesis have been utilized in a prototype mobile appli-
cation for assisting with the early diagnosis of Lyme disease. Initial trials with the appli-
cation are getting positive feedback from the community.

The rest of the chapter is structured as follows: Section 5.2 describes our ongoing work
on efficiently dealing with skin lesion hair artifact; Section 5.3 presents the custom archi-
tecture for EM image classifier, and the work plan to further improve it; Section 5.4 briefly
describes the application utilizing findings from the thesis; finally, Section 5.5 presents
concluding remarks.

5.2 Efficiently DealingWithDermoscopic Skin
LesionHair Artifact

The following subsections describe our prepared dermoscopic skin lesion hair mask
dataset and work plan to effectively handle the hair artifact.

5.2.1 A Skin LesionHairMask DatasetWith Fine-grained
Annotations

The following subsections present our motivation behind creating the dataset, value of
the data, data description, and methods of dataset preparation.

5.2.1.1 Motivation

According to our study, the largest publicly available skin lesion hair mask dataset [89]
contains annotations for 306 images but with 18 duplicates and suffers from under-
segmentation, and non-hair artifacts. Gallucci [42] created a dataset of 75 images only,
which lacks complex patterns and is not a well-representative of the broader skin hair dis-
tribution. Akyel et al. [3] prepared a non-public dataset of 2500 images. However, it
contains rulers, ink spots, and other noises alongside skin hair. Our motivation for creat-
ing the dataset was to resolve the issues in available datasets.

5.2.1.2 Value of the Data

• This is the largest publicly available fine-grained skin lesion hair segmentation mask
dataset. High-quality hand-annotated segmentation masks are costly and time-
consuming to produce.

• This is the only dataset free of non-hair artifacts.

• This dataset will be useful for proper benchmarking of hair segmentation algo-
rithms, as it is free of non-hair artifacts and segmentation errors.
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• Our dataset can be used to train a generative model for automating the task of
realistic skin hair mask generation.

• The dataset will contribute to skin lesion research by allowing researchers to train
robust skin lesion hair segmentation algorithms.

5.2.1.3 Data Description

Our dataset is publicly available in an online repository1 [63]. It contains skin hair
annotation masks for 500 dermoscopic images collected from ISIC 2018 dataset [26].
The dataset is organized into three folders namely dermoscopic_image, hair_mask, and
overlay. Table 5.1 shows some example images from each of the folders. The dermo-
scopic_image folder contains 500 dermoscopic images handpicked from the primary im-
age source covering different hair patterns. We retained the original names of the image
files from the primary image source. The hair_mask folder contains a binary segmenta-
tion mask for each of the images of the dermoscopic_image folder. In a segmentation
mask image, white pixels represent skin hair and black pixels represent background. The
overlay folder contains hair mask images superimposed on the original dermoscopic im-
ages. We provided the superimposed images for easy public verification so that, other
people can report any annotation mistakes and contribute to improving the dataset. Im-
ages in the hair_mask and overlay folders share the same names as the primary images in
the dermoscopic_image folder.

5.2.1.4 Dataset Design, Materials andMethods

Annotating skin lesion hair from scratch is a tedious task. To ease the process, we trained
a U-Net [131] deep segmentation model using a weakly annotated dataset provided by
Li et al. [89]. U-Net is a popular CNN architecture for image segmentation tasks. It is
made up of a contracting path that captures the image’s context and an expansive path
that creates the segmented output. In order to maintain spatial information, the net-
work uses skip connections, which enables accurate segmentation even when the target
objects are small. The U-Net architecture is illustrated in Figure 5.1 The codes used for
the process are publicly available in the unet folder in a github repository2. Inside the
unet folder the U-Net model is defined in model.py file, unet training is performed using
the unet_training.ipynb python notebook file and the task of predicting initial masks for
the dermoscopic images are done using the predict_mask.ipynb file.

Using the trained U-Net we extracted the initial hair mask for 500 handpicked
copyright-free dermoscopic skin lesion images from ISIC 2018 dataset [26] to cover dif-
ferent hair patterns. The resulting masks suffer from various segmentation errors like

1https://data.mendeley.com/datasets/j5ywpd2p27 (visited on 02/20/2023).
2https://github.com/imranrana/Skin-Lesion-Hair-Mask-Dataset (visited on 02/20/2023).
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5.2 Efficiently Dealing With Dermoscopic Skin Lesion Hair Artifact

Table 5.1: Samples from the prepared skin lesion hair mask dataset.
Folder

File dermoscopic_image hair_mask overlay

IS
IC

_0
00

01
15

.p
ng

IS
IC

_0
00

02
00

.p
ng

IS
IC

_0
00

99
92

.p
ng

Total: 1500 images (500 images per folder)

under-segmentation, over-segmentation, and non-hair artifacts. We involved three inde-
pendent annotators for the correction of the segmentation errors.

The first annotator manually corrected all the found segmentation errors with Adobe
Photoshop software [70]. A video demonstration of the segmentation mask editing pro-
cess using Adobe Photoshop software is available in the mask_editing_process.mp4 file
of our GitHub repository. The steps involved are as follows:

• Open the dermoscopic image in photoshop.
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Figure 5.1: U-Net architecture. The final output layer uses sigmoid activation.

• Open the initial segmentation mask image in photoshop and copy it on top of the
dermoscopic image.

• Change the blending mode of the mask image to “screen”.

• Select the brush type as hard brush (hardness of the brush set to 100 percent).

• Remove unwanted segmentation marks from the mask image by painting with a
black brush.

• Adjust the brush size according to the width of the skin hair and add missing seg-
mentation marks to the mask image by painting with a white brush.

• Change back the blending mode of the mask image to “normal” mode.

• Make additional adjustments to the segmentation mask if required.

• Save the finalized segmentation mask image in the desired format.

To verify the quality of the annotation first we binarized each corrected masks to make
sure every pixel is either black or white. Then, we made the black pixels of the mask im-
age fully transparent and superimposed it on the original dermoscopic image. Finally,
we created a collage of three types of images: dermoscopic image, corrected mask, and
the superimposed image for easy verification. Each collage looks like a row from Table
5.1. The code used for these operations is available in the check_annotation.ipynb file in
the github repository2. Using the image collage a second annotator marked errors missed
by the first annotator. A third annotator corrected the mistakes identified by the second
annotator, which was finally reverified by the first annotator. We tried to make the anno-
tations as error-free as possible. The overall dataset creation workflow is shown in Figure
5.2.
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Figure 5.2: Skin hair mask dataset creation workflow.

5.2.2 Work Plan
To address the research question 3 we want to investigate how augmenting training data
with skin hair impacts model performance compared to hair removal. First, we will try to
train a generative model to automate the skin hair mask generation process for the aug-
mentation algorithms. If we do not get satisfactory results from the generative model with
our created 500 images then, we will train another segmentation model with our dataset
and use that model to extract more samples of hair masks from dermoscopic datasets.
These images will be useful for the training of the generative model.

The skin hair augmentation pipeline will work as follows:

i. Remove skin hair from input lesion image with a hair removal algorithm [89].

ii. Generate a hair mask with the trained generative model.

iii. Augment hair on the dermoscopic image using the generated mask and a realistic
hair simulator [5].

We will train a model for dermoscopic image classification using the augmentation
pipeline and compare the performance with a model that does not use hair augmenta-
tion but uses a hair removal pre-processing step. This study will help to decide if training
time hair augmentation can effectively replace test time hair removal pre-processing or
not.
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5.3 Custom Architecture for Lyme Disease Image
Classifier

From the experimental results discussed in Section , we saw that ResNet50-141 model
performed the best in terms of accuracy for the Lyme disease image classification task
and also EfficientNet variations showed good results in heatmap visualization. Taking
these factors into consideration we tested a custom architecture as shown in Figure 5.3.
We opted for a residual block incorporating efficient channel attention [172] and swish
activation as shown in Figure 5.3a. The architecture design is like a ResNet18 model
as shown in Figure 5.3b. The source code for the custom architecture is available in a
github repository3. We tested the architecture on the second version of the dataset that
includes some label corrections and additional images. The architecture was trained from
scratch without any pre-training. The result looks promising compared to the best per-
forming ResNet50-141 model as shown in Table 5.2. The confusion matrix, ROC curve,
and cross-validation fold-wise details are available in Appendix Section D.2. The cus-
tom architecture has 11.19 million parameters compared to 23.59 million of ResNet50-
141. Depthwise separable convolution can be effective in further reducing the parame-
ters but it decreases accuracy. In dilated convolution [183], a larger effective kernel size is
achieved by introducing gaps, or dilations, between the kernel values as shown in Figure
5.4a. Without increasing the number of parameters or the computational cost, it enables
the network to have a bigger receptive field. Combining dilated and depthwise convo-
lutions [153] in a residual block (as shown in Figure 5.4b) and optimally placing them
with the block of Figure 5.3a utilizing NAS [129] can produce an effective architecture.
Particularly, we plan to use NAS utilizing my previously proposed particle swarm opti-
mization with selective search4 for finding the optimized arrangement of these building
blocks. Particle swarm optimization with selective search retains the intermediate best
result during the particle update process and performs better than vanilla particle swarm
optimization. Also, using our proposed pre-training strategy with the architecture may
further increase performance.

5.4 Application From the Thesis
The techniques proposed in this thesis have been utilized in a mobile application called
EMScan. The application was developed as part of the DAPPEM (Développement d’une
APPlication d’identification des Erythèmes Migrants à partir de photographies) project
funded by European Regional Development Fund. The EMScan mobile application was

3https://github.com/imranrana/Lyme-Disease (visited on 03/15/2023).
4S. I. Hossain, M. A. Akhand, M. I. Shuvo, N. Siddique, and H. Adeli. “Optimization of University

Course Scheduling Problem using Particle Swarm Optimization with Selective Search”. Expert Systems
with Applications 127, 2019, pp. 9–24. issn: 09574174. doi: 10.1016/j.eswa.2019.02.026.
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Figure 5.3: Custom architecture design for Lyme image classifier.

Table 5.2: Experimental results with custom architecture. Within each cell, the value after (±)
symbol represents the standard deviation across five folds. Second version of the pre-
pared Lyme dataset was used for the experiments.

Metric

Model Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

ResNet50-141 84.85
±1.23

87.49
±1.83

81.93
±1.42

84.29
±1.09

85.57
±1.89

0.6963
±0.0249

0.6956
±0.0246

4.8707
±0.3856

0.1528
±0.0227

0.8585
±0.0118

0.9231
±0.0069

Custom 84.68
±2.62

87.05
±3.4

82.05
±4.0

84.38
±3.03

85.24
±3.44

0.6936
±0.0526

0.6922
±0.0525

5.1201
±1.2442

0.1582
±0.0434

0.8565
±0.0248

0.9151
±0.0214

created with the goal of assisting doctors and general people with early diagnosis and sug-
gestion, and also to advance artificial intelligence assisted Lyme disease diagnosis research.
The goals of the application are shown in Figure 5.5. Initial trials with the prototype
showed promising results for real-life applications. A video demonstration of the appli-
cation is available on DAPPEM project website5. The overall workflow of the EMScan
mobile application is described in Appendix Section D.1.

5https://dappem.limos.fr (visited on 02/20/2023).
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(a) Illustration of dilated convolution [35].
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(b) Custom building block.

Figure 5.4: Custom building block utilizing dilated and depthwise separable convolutions.

5.5 Conclusion
In this chapter, we have discussed our ongoing research works. We have created the largest
publicly available dermoscopic skin lesion hair mask annotation dataset which can be
utilized for training accurate segmentation algorithms and also to enhance the hair aug-
mentation process. Further study is required to see if training time hair augmentation
can be an effective replacement for test time hair removal or not. We are also working
on a custom architecture for Lyme image classifier. NAS and our proposed pre-training
strategy can be utilized to enhance the architecture and its performance. Our proposed
techniques were utilized in a mobile application that looks promising for assisting with
early Lyme disease diagnosis.
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Figure 5.5: EMScan application goals.

Key Points (Chapter 5)

• We have created the largest publicly available dermoscopic skin lesion hair
mask annotation dataset by carefully annotating 500 images.

• The prepared dataset will be useful for benchmarking and training hair seg-
mentation algorithms as well as creating realistic hair augmentation systems.

• A hand-designed CNN architecture showed promising results for EM clas-
sification from images. The architecture can be further optimized with
NAS.

• The techniques proposed in this thesis were used in a prototype mobile ap-
plication for assisting with early Lyme disease diagnosis. Initial trials seem
effective for real-life applications.
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6 Conclusions
This chapter presents a short summary of the key findings of this thesis, pos-
sible future research directions, and publications resulting from the thesis.

Chapter Contents
6.1 General Conclusion and Research Findings . . . . . . . . . 81
6.2 Limitations and Future Research Directions . . . . . . . . . 82
6.3 Data Statement . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Research Publications . . . . . . . . . . . . . . . . . . . . 83

6.1 General Conclusion and Research Findings
In this thesis, we tried to tackle the data scarcity problem of artificial intelligence based
multimodal skin lesion analysis. We addressed the challenges of a small clinical skin lesion
image dataset and also the lack of training data for patient modality.

First, to deal with image data scarcity of clinical skin lesion images we proposed a pre-
training strategy that involves fine-tuning some layers from the end of an ImageNet pre-
trained convolutional neural network (CNN) architecture using a dermoscopic dataset
before training the model on a clinical skin lesion dataset. Experimental results using
a novel Lyme disease dataset built as part of the thesis showed the effectiveness of the
proposed approach for improving CNN performance. In order to evaluate the efficacy
of CNNs for Lyme disease diagnosis using erythema migrans (EM) pictures, we used
the proposed strategy to compare well-known CNNs and the results suggest that even
lightweight models, such as EffiicentNetB0, performed admirably, pointing to the poten-
tial use of CNNs in Lyme disease pre-scanner mobile applications that can assist people
with a preliminary assessment.

Second, to address the scarcity problem of patient data we have proposed a
questionnaire-oriented expert opinion elicitation approach that can provide disease
probability in the absence of training data. As it is difficult and time consuming for doc-
tors to provide probability estimates for all possible cases or distribution parameters we
collected relative weight assignments to different answers to the questions and converted
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the doctor’s evaluations to probabilities utilizing Gaussian mixture model based density
estimation. We also proposed the use of formal concept analysis and decision trees for
easy model validation. The proposed approach is easy for doctors to follow. We also pro-
posed an approach for combining the probability estimates from CNN image classifier
and opinion elicited disease probability by considering the expert’s choice. The proposed
techniques proved effective when applied to a Lyme disease diagnosis scenario.

Third, to address the problem of skin hair artifact on dermoscopic images we have
created the largest publicly available skin lesion hair mask annotation dataset by carefully
annotating five hundred dermoscopic images. The dataset can be utilized for training
accurate segmentation algorithms and also to enhance the hair augmentation process.
Currently, we are working on hair augmentation utilizing the prepared dataset and also
on a lightweight architecture for EM image classification.

The techniques proposed in this thesis were applied to a mobile application for as-
sisting with the early diagnosis of Lyme disease. Initial trials with the prototype showed
promising results for real-life application and we believe that these techniques will be use-
ful for addressing data scarcity issues in similar diseases.

6.2 Limitations and Future ResearchDirections
We have used supervised learning for our proposed pre-training strategy. Using self-
supervised learning for the pre-training can be an interesting study. The search for the
number of layers to unfreeze from the pre-trained model takes time as it requires training
different versions of the model on the target dataset. Although, it takes does not take very
long as most of the layers are frozen the search time can be improved by utilizing tech-
niques used to reduce candidate architecture evaluation time from neural architecture
search (NAS) literature[177]. Also, the pre-training approach can be tested with clinical
skin lesion image pre-training in place of dermoscopic images.

Our work on combining probability estimates from CNN and the elicited model
needs to be validated using real case scenarios. We plan to collect real scenarios of Lyme
disease cases by deploying the mobile application. After collecting sufficient data the per-
formance of the elicited model and approach of combining probabilities can be compared
with a multimodal model jointly trained using multimodal training data. It would be
interesting to see if calibrating CNN [46] to make its predicted confidence score more
accurate representative of the true probability estimate provides better performance or
not.

Our prepared skin lesion hair mask dataset can be utilized for training generative mod-
els to automate the task of hair mask generation process of realistic hair augmentation
techniques. Another interesting study would be to see if training time hair augmenta-
tion can be an effective replacement for test time hair removal or not.
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The custom architecture for EM image classification can be optimized using NAS with
the building blocks described in Section 5.3. My previously proposed particle swarm
optimization with selective search technique1 that retains the intermediate best solution
during the search process can be an interesting choice for performing the NAS. Also,
utilizing our proposed pre-training strategy may improve the model’s performance. The
optimized model can be a good option for deploying in a mobile application.

In this study, we have considered the case of differential diagnosis for Lyme disease i.e.
differentiating between EM and similar skin lesions. As the used CNN architectures are
not distance aware by default they classify out-of-distribution data with high confidence.
For real-life applications, there will be trust issues among users if the model classifies un-
related images as EM. So, out-of-distribution image detection [66, 92, 179] needs to be
studied and utilized for improving the application.

6.3 Data Statement
All the research data associated with this thesis are available on the DAPPEM website2.

6.4 Research Publications
The following publications resulted from the findings of the thesis:

Research Article
• S. I. Hossain, J. de Goër de Herve, M. S. Hassan, D. Martineau, E. Petrosyan, V. Corbin,

J. Beytout, I. Lebert, J. Durand, I. Carravieri, A. Brun-Jacob, P. Frey-Klett, E. Baux, C.
Cazorla, C. Eldin, Y. Hansmann, S. Patrat-Delon, T. Prazuck, A. Raffetin, P. Tattevin,
G. Vourc’h, O. Lesens, and E. Mephu Nguifo. “Exploring convolutional neural networks
with transfer learning for diagnosing Lyme disease from skin lesion images”. Computer
Methods and Programs in Biomedicine 215, 2022, p. 106624. issn: 01692607. doi: 10.
1016/j.cmpb.2022.106624

• S. I. Hossain, J. de Goër de Herve, D. Abrial, R. Emilion, I. Lebertb, Y. Frendo, D. Mar-
tineau, O. Lesens, and E. Mephu Nguifo. “Expert Opinion Elicitation for Assisting Deep
Learning based Lyme Disease Classifier with Patient Data”, 2022. arXiv: 2208.14384 (sub-
mitted)

1S. I. Hossain, M. A. Akhand, M. I. Shuvo, N. Siddique, and H. Adeli. “Optimization of University
Course Scheduling Problem using Particle Swarm Optimization with Selective Search”. Expert Systems
with Applications 127, 2019, pp. 9–24. issn: 09574174. doi: 10.1016/j.eswa.2019.02.026.

2https://dappem.limos.fr (visited on 02/20/2023).
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• S. I. Hossain, S. S. Roy, J. de Goër de Herve, R. E. Mercer, and E. Mephu Nguifo. “A
skin lesion hair mask dataset with fine-grained annotations”. 1, 2023. doi: 10.17632/

J5YWPD2P27.1 (accepted, Data in Brief journal)

ResearchDemonstration
• S. I. Hossain, J. de Goër de Herve, Y. Frendo, D. Martineau, I. Lebert, O. Lesens, and

E. Mephu Nguifo. “EMScan : une application mobile pour l’assistance au diagnostic des
formes précoces de la maladie de Lyme”. Revue des Nouvelles Technologies de l’Information
Extraction et Gestion des Connaissances, RNTI-E-39, 2023, pp. 613–620. url: https:
//editions-rnti.fr/?inprocid=1002869

• Y. Frendo, J. de Goër de Herve, S. I. Hossain, D. Martineau, I. Lebert, O. Lesens, and E.
Mephu Nguifo. “EMScan: A Mobile Application for Early Lyme Disease Diagnosis”. In:
European Conference on Computer Vision ECCV. 2022. Project Demo. url: https:

//eccv2022.ecva.net/program/demo-list/

Doctoral Consortium
• S. I. Hossain. “Early Diagnosis of Lyme Disease by Recognizing Erythema Migrans Skin

Lesion from Images Utilizing Deep Learning Techniques”. In: IJCAI International Joint
Conference on Artificial Intelligence. International Joint Conferences on Artificial Intel-
ligence Organization, Vienna, 2022, pp. 5855–5856. isbn: 9781956792003. doi: 10.

24963/ijcai.2022/830.

Research Talk
• S. I. Hossain, J. de Goër de Herve, D. Abrial, R. Emilion, I. Lebertb, Y. Frendo, D. Mar-

tineau, O. Lesens, and E. Mephu Nguifo. “Assisting Deep Learning based Lyme Dis-
ease Classifier with Patient Data”. In: Apprentissage automatique multimodal et fusion
d’informations (3ième édition). 2022. url: https://www.gdr-isis.fr/index.php/

reunion/485/

• S. I. Hossain, E. Mephu Nguifo, and J. de Goër de Herve. “Early Diagnosis of Lyme Dis-
ease by Recognizing Erythema Migrans Skin Lesion from Images Utilizing Deep Learning
Techniques”. In: Deep learning with weak or few labels in medical image analysis. 2022.
url: https://www.gdr-isis.fr/index.php/reunion/468/
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A Appendices for Chapter 2

A.1 Activation Functions
Table A.1 lists some of the most commonly used activation functions in deep learning.

Table A.1: Activation functions.
Activation function Equation

Identity f(x) = x

Sigmoid [110] f(x) = 1
1+e−x

Swish [127] f(x) = x
1+e−x

Hyperbolic tangent
(tanh) [99] f(x) = ex−e−x

ex+e−x

Rectified Linear Unit
(ReLU) [99] f(x) = max(0, x)

Gaussian Error Linear Unit
(GELU) [54]

f(x) = xΦ(x)
where Φ(x) is the Gaussian cumulative distribution function.

Softmax [43]
Normalizes an input vector z of n real numbers into a probability distribution
f(z)i =

ezi∑n
j=1 e

zj for i = 1, . . . , n and z = (z1, . . . , zn) ∈ Rn

A.2 Gradient Descent and AdamOptimizer
Gradient descent also known as batch gradient descent is an optimization algorithm for
locating a differentiable objective function’s local minimum. It iteratively reduces the
value of the objective function by adapting model parameters. The iterative parameter
update equation of gradient descent is shown in Equation A.1.

θ = θ − η · ∇θL(θ) (A.1)

where θ represents model parameters, L(θ) is the objective function, η is the learning
rate, and∇θL(θ) is the gradient of the objective function w.r.t the parameters.
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Adaptive moment estimation (Adam) optimizer [80] calculates adaptive learning rate
for each individual parameter and uses exponentially decaying average of past gradients
(mt) and squared gradients(vt) as shown in the following equation:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(A.2)

where gt = ∇θLt(θt−1) is the gradient of the objective function at timestep t, and
β1, β2 ∈ [0, 1) are hyper-parameters to control the exponential decay rates of moving
averages. mt and vt are bias corrected as follows:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(A.3)

The parameter update rule of Adam optimizer is shown in Equation A.4.

θt+1 = θt −
η√

v̂t + ϵ
m̂t (A.4)

where ϵ is a small number for preventing division by zero. The author proposed default
values for β1, β2, and ϵ are 0.9, 0.999 and 10−8 respectively.
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B Appendices for Chapter 3

B.1 Online Resources
Trained convolutional neural network models can be downloaded from becnhmarking
page of DAPPEM website1 by clicking on “Downloads” link.

1https://dappem.limos.fr/benchmarking.html (visited on 02/20/2023)
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B.2 Supplementary Data for Trained CNN
Models

This section provides detailed five-fold cross validation results of all the trained models.

B.2.1 VGG16-8

Table B.1: Five-fold cross-validation performance metrics of VGG16-8 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.18 84.32 77.78 80.41 82.1 0.6231 0.6223 3.7946 0.2015 0.8232 0.8891
fold2 82.09 81.5 82.72 83.43 80.72 0.6419 0.6417 4.7155 0.2236 0.8246 0.9052
fold3 80.54 87.28 73.29 77.84 84.29 0.6134 0.6085 3.268 0.1735 0.8229 0.8943
fold4 83.23 91.91 73.91 79.1 89.47 0.6719 0.6622 3.5231 0.1095 0.8503 0.9087
fold5 83.83 83.82 83.85 84.8 82.82 0.6764 0.6764 5.1901 0.193 0.843 0.9081

average 82.17 85.77 78.31 81.12 83.88 0.6453 0.6422 4.0983 0.1802 0.8328 0.9011
std. deviation 1.23 3.58 4.36 2.62 3.02 0.0253 0.0249 0.7329 0.0388 0.0116 0.0079

(a) ROC curve. (b) Confusion matrix.

Figure B.1: Five-fold cross-validation ROC curve and confusion matrix of VGG16-8 model.
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B.2.2 VGG19-13

Table B.2: Five-fold cross-validation performance metrics of VGG19-13 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.74 85.41 77.78 80.61 83.12 0.6346 0.6334 3.8432 0.1876 0.8294 0.907
fold2 84.18 84.97 83.33 84.48 83.85 0.6832 0.6832 5.0983 0.1803 0.8473 0.9079
fold3 83.83 83.82 83.85 84.8 82.82 0.6764 0.6764 5.1901 0.193 0.843 0.9069
fold4 84.13 83.82 84.47 85.29 82.93 0.6825 0.6824 5.3977 0.1916 0.8455 0.9176
fold5 86.83 88.44 85.09 86.44 87.26 0.7362 0.736 5.9328 0.1359 0.8743 0.9254

average 84.14 85.29 82.9 84.32 84 0.6826 0.6823 5.0924 0.1777 0.8479 0.913
std. deviation 1.62 1.69 2.63 1.97 1.67 0.0323 0.0326 0.6884 0.0214 0.0146 0.0074

(a) ROC curve. (b) Confusion matrix.

Figure B.2: Five-fold cross-validation ROC curve and confusion matrix of VGG19-13 model.
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B.2.3 ResNet50-Burlina

Table B.3: Performance metrics of ResNet50-Burlina models2 trained by Burlina et al. [15] tested
on the whole dataset of this study.

Metric

Model Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 75.12 65.7 85.24 82.7 69.82 0.5172 0.5055 4.4502 0.4024 0.7323 0.4646
fold2 75.6 74.48 76.8 77.52 73.69 0.5125 0.512 3.2102 0.3323 0.7597 0.5589
fold3 75.72 66.4 85.73 83.33 70.37 0.5291 0.5174 4.6536 0.392 0.7391 0.4143
fold4 76.67 69.98 83.87 82.34 72.22 0.542 0.5355 4.3386 0.358 0.7566 0.4509
fold5 77.15 73.67 80.89 80.56 74.09 0.5461 0.5439 3.8558 0.3255 0.7696 0.5162

average 76.05 70.05 82.51 81.29 72.04 0.5294 0.5229 4.1017 0.362 0.7515 0.481
std. deviation 0.74 3.6 3.31 2.1 1.71 0.0132 0.0145 0.5172 0.0309 0.0137 0.0509

(a) ROC curve. (b) Confusion matrix.

Figure B.3: ROC curve and confusion matrix of ResNet50-Burlina models trained by Burlina et
al. [15] tested on the whole dataset of this study.

2https://github.com/neil454/lyme-1600-model (visited on 02/20/2023).
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B.2 Supplementary Data for Trained CNN Models

B.2.4 ResNet50-NoAug

Table B.4: Five-fold cross-validation performance metrics of ResNet50-NoAug model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 59.7 56.9 62.73 62.26 57.39 0.1964 0.1956 1.5267 0.6871 0.5946 0.6429
fold2 62.09 71.1 52.47 61.5 62.96 0.2401 0.2369 1.4958 0.5508 0.6595 0.6491
fold3 61.98 71.1 52.17 61.5 62.69 0.2372 0.2341 1.4866 0.5539 0.6595 0.6405
fold4 63.17 76.3 49.07 61.68 65.83 0.2642 0.2559 1.4981 0.483 0.6822 0.6915
fold5 60.18 83.24 35.4 58.06 66.28 0.213 0.1895 1.2886 0.4735 0.6841 0.6285

average 61.42 71.73 50.37 61 63.03 0.2302 0.2224 1.4592 0.5497 0.656 0.6505
std. deviation 1.29 8.65 8.79 1.5 3.17 0.0234 0.0256 0.0863 0.0764 0.0325 0.0216

(a) ROC curve. (b) Confusion matrix.

Figure B.4: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-NoAug
model.
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B.2.5 ResNet50-NTL

Table B.5: Five-fold cross-validation performance metrics of ResNet50-NTL model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 78.09 83.78 71.93 76.35 80.39 0.5623 0.5594 2.9848 0.2254 0.799 0.8565
fold2 77.01 79.77 74.07 76.67 77.42 0.5396 0.5392 3.0768 0.2731 0.7819 0.8342
fold3 76.05 82.66 68.94 74.09 78.72 0.5221 0.5183 2.6616 0.2515 0.7814 0.8423
fold4 71.86 61.85 82.61 79.26 66.83 0.4527 0.441 3.5564 0.4618 0.6948 0.8248
fold5 78.74 84.39 72.67 76.84 81.25 0.5758 0.5727 3.088 0.2148 0.8044 0.8776

average 76.35 78.49 74.04 76.64 76.92 0.5305 0.5261 3.0735 0.2853 0.7723 0.8471
std. deviation 2.43 8.47 4.6 1.64 5.22 0.0431 0.0464 0.2867 0.0906 0.0398 0.0185

(a) ROC curve. (b) Confusion matrix.

Figure B.5: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-NTL
model.
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B.2.6 ResNet50-HAM-FFT

Table B.6: Five-fold cross-validation performance metrics of ResNet50-HAM-FFT model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 74.72 74.05 75.44 76.54 72.88 0.4946 0.4943 3.0151 0.3439 0.7527 0.8255
fold2 71.94 76.88 66.67 71.12 72.97 0.4382 0.4367 2.3064 0.3468 0.7389 0.7927
fold3 70.66 76.88 63.98 69.63 72.03 0.4126 0.4101 2.134 0.3614 0.7308 0.7596
fold4 70.36 74.57 65.84 70.11 70.67 0.4059 0.405 2.1828 0.3863 0.7227 0.7861
fold5 73.65 76.88 70.19 73.48 73.86 0.472 0.4715 2.5786 0.3294 0.7514 0.8254

average 72.27 75.85 68.42 72.18 72.48 0.4447 0.4435 2.4434 0.3536 0.7393 0.7979
std. deviation 1.69 1.27 4.05 2.55 1.08 0.0341 0.0347 0.3248 0.0193 0.0116 0.0251

(a) ROC curve. (b) Confusion matrix.

Figure B.6: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-HAM-FFT
model.
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B.2.7 ResNet50-IMG-WFT

Table B.7: Five-fold cross-validation performance metrics of ResNet50-IMG-WFT model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 76.97 83.24 70.18 75.12 79.47 0.54 0.5366 2.7911 0.2388 0.7897 0.8379
fold2 78.81 79.77 77.78 79.31 78.26 0.5756 0.5756 3.5896 0.2601 0.7954 0.8663
fold3 79.34 86.71 71.43 76.53 83.33 0.5899 0.5842 3.0347 0.1861 0.813 0.8667
fold4 78.14 83.82 72.05 76.32 80.56 0.5637 0.5607 2.9987 0.2246 0.7989 0.8744
fold5 81.44 79.19 83.85 84.05 78.95 0.6302 0.6291 4.9037 0.2482 0.8155 0.8875

average 78.94 82.55 75.06 78.27 80.11 0.5799 0.5772 3.4636 0.2316 0.8025 0.8666
std. deviation 1.48 2.77 5.11 3.2 1.77 0.03 0.0305 0.7671 0.0255 0.0101 0.0163

(a) ROC curve. (b) Confusion matrix.

Figure B.7: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-IMG-WFT
model.
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B.2.8 ResNet50-IMG-FFT

Table B.8: Five-fold cross-validation performance metrics of ResNet50-IMG-FFT model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.58 87.03 77.78 80.9 84.71 0.6521 0.6501 3.9162 0.1668 0.8385 0.895
fold2 82.09 82.08 82.1 83.04 81.1 0.6416 0.6415 4.5852 0.2183 0.8256 0.9051
fold3 80.24 88.44 71.43 76.88 85.19 0.6096 0.6021 3.0954 0.1618 0.8226 0.9114
fold4 84.43 82.08 86.96 87.12 81.87 0.6901 0.6889 6.2929 0.2061 0.8452 0.9234
fold5 81.74 86.71 76.4 79.79 84.25 0.6357 0.6331 3.6736 0.174 0.831 0.9101

average 82.22 85.27 78.93 81.55 83.42 0.6458 0.6431 4.3127 0.1854 0.8326 0.909
std. deviation 1.36 2.67 5.26 3.42 1.63 0.0262 0.028 1.0994 0.0226 0.0083 0.0092

(a) ROC curve. (b) Confusion matrix.

Figure B.8: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-IMG-FFT
model.
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B.2.9 ResNet50-IMG-FT141

Table B.9: Five-fold cross-validation performance metrics of ResNet50-IMG-FT141 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.74 85.41 77.78 80.61 83.12 0.6346 0.6334 3.8432 0.1876 0.8294 0.9003
fold2 84.18 86.13 82.1 83.71 84.71 0.6832 0.6829 4.8112 0.169 0.849 0.9102
fold3 82.34 83.24 81.37 82.76 81.88 0.6462 0.6462 4.4671 0.206 0.83 0.9091
fold4 84.43 89.02 79.5 82.35 87.07 0.6897 0.6873 4.343 0.1381 0.8556 0.9246
fold5 83.53 82.66 84.47 85.12 81.93 0.6709 0.6706 5.3232 0.2053 0.8387 0.9228

average 83.24 85.29 81.04 82.91 83.74 0.6649 0.6641 4.5575 0.1812 0.8405 0.9134
std. deviation 1.04 2.27 2.28 1.49 1.96 0.0212 0.021 0.493 0.0255 0.0104 0.0091

(a) ROC curve. (b) Confusion matrix.

Figure B.9: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-IMG-
FT141 model.
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B.2.10 ResNet50-IMG-HAMFP-FT141

Table B.10: Five-fold cross-validation performance metrics of ResNet50-IMG-HAMFP-FT141
model.

Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.18 89.73 71.93 77.57 86.62 0.6291 0.6206 3.1966 0.1428 0.8321 0.9061
fold2 83.58 85.55 81.48 83.15 84.08 0.6713 0.671 4.6197 0.1774 0.8433 0.9189
fold3 80.24 89.6 70.19 76.35 86.26 0.6118 0.6017 3.0052 0.1482 0.8245 0.8982
fold4 82.04 93.06 70.19 77.03 90.4 0.6531 0.6374 3.1215 0.0988 0.8429 0.9096
fold5 84.73 88.44 80.75 83.15 86.67 0.695 0.6935 4.5931 0.1432 0.8571 0.9236

average 82.35 89.28 74.91 79.45 86.81 0.6521 0.6448 3.7072 0.1421 0.84 0.9113
std. deviation 1.62 2.42 5.11 3.05 2.03 0.0295 0.0333 0.7368 0.0251 0.0111 0.0091

(a) ROC curve. (b) Confusion matrix.

Figure B.10: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-IMG-
HAMFP-FT141 model.

97



B Appendices for Chapter 3

B.2.11 ResNet50-IMG-HAMPP-FT141/ ResNet50-141

Table B.11: Five-fold cross-validation performance metrics of ResNet50-IMG-HAMPP-FT141/
ResNet50-141 model.

Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 83.15 86.49 79.53 82.05 84.47 0.6627 0.6617 4.2255 0.1699 0.8421 0.9072
fold2 83.28 87.86 78.4 81.28 85.81 0.6667 0.6644 4.0667 0.1548 0.8444 0.9109
fold3 83.53 90.75 75.78 80.1 88.41 0.6751 0.6686 3.7464 0.1221 0.8509 0.9107
fold4 85.93 87.28 84.47 85.8 86.08 0.7181 0.718 5.621 0.1505 0.8653 0.9323
fold5 86.23 87.28 85.09 86.29 86.16 0.7241 0.7241 5.8553 0.1494 0.8678 0.9335

average 84.42 87.93 80.65 83.1 86.19 0.6893 0.6874 4.703 0.1493 0.8541 0.9189
std. deviation 1.36 1.47 3.59 2.49 1.27 0.0263 0.0277 0.8624 0.0155 0.0106 0.0115

(a) ROC curve. (b) Confusion matrix.

Figure B.11: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-IMG-
HAMPP-FT141/ ResNet50-141 model.
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B.2.12 ResNet101-150

Table B.12: Five-fold cross-validation performance metrics of ResNet101-150 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.3 84.86 79.53 81.77 82.93 0.6455 0.645 4.1463 0.1903 0.8329 0.9076
fold2 82.69 80.92 84.57 84.85 80.59 0.6546 0.6539 5.2439 0.2256 0.8284 0.8982
fold3 82.34 85.55 78.88 81.32 83.55 0.6465 0.6456 4.051 0.1832 0.8338 0.8958
fold4 86.23 88.44 83.85 85.47 87.1 0.7243 0.7238 5.4764 0.1379 0.8693 0.9214
fold5 79.64 78.61 80.75 81.44 77.84 0.5932 0.5928 4.0828 0.2649 0.8 0.8992

average 82.64 83.68 81.52 82.97 82.4 0.6528 0.6522 4.6001 0.2004 0.8329 0.9044
std. deviation 2.1 3.49 2.29 1.8 3.09 0.0419 0.0418 0.6257 0.0427 0.022 0.0094

(a) ROC curve. (b) Confusion matrix.

Figure B.12: Five-fold cross-validation ROC curve and confusion matrix of ResNet101-150
model.
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B.2.13 ResNet50V2-105

Table B.13: Five-fold cross-validation performance metrics of ResNet50V2-105 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 80.06 84.86 74.85 78.5 82.05 0.6013 0.5992 3.3749 0.2022 0.8156 0.8761
fold2 85.07 84.97 85.19 85.96 84.15 0.7013 0.7013 5.7355 0.1764 0.8547 0.9103
fold3 80.24 90.75 68.94 75.85 87.4 0.6145 0.6014 2.9222 0.1341 0.8263 0.8999
fold4 81.74 80.35 83.23 83.73 79.76 0.6354 0.6348 4.7911 0.2361 0.8201 0.9128
fold5 84.73 86.71 82.61 84.27 85.26 0.6942 0.6939 4.9855 0.1609 0.8547 0.9076

average 82.37 85.53 78.96 81.66 83.72 0.6493 0.6461 4.3618 0.1819 0.8343 0.9013
std. deviation 2.15 3.35 6.13 3.83 2.63 0.0411 0.0439 1.0495 0.0349 0.017 0.0133

(a) ROC curve. (b) Confusion matrix.

Figure B.13: Five-fold cross-validation ROC curve and confusion matrix of ResNet50V2-105
model.

100



B.2 Supplementary Data for Trained CNN Models

B.2.14 ResNet101V2-233

Table B.14: Five-fold cross-validation performance metrics of ResNet101V2-233 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.3 80 84.8 85.06 79.67 0.6476 0.6464 5.2615 0.2359 0.8245 0.9067
fold2 78.81 73.99 83.95 83.12 75.14 0.581 0.5772 4.61 0.3098 0.7829 0.8927
fold3 82.63 88.44 76.4 80.1 86.01 0.6547 0.6509 3.747 0.1513 0.8407 0.9032
fold4 83.53 83.24 83.85 84.71 82.32 0.6706 0.6704 5.1543 0.1999 0.8397 0.9212
fold5 85.63 83.82 87.58 87.88 83.43 0.7135 0.7127 6.7471 0.1848 0.858 0.9354

average 82.58 81.9 83.32 84.17 81.31 0.6535 0.6515 5.104 0.2163 0.8292 0.9118
std. deviation 2.21 4.78 3.71 2.55 3.7 0.0429 0.0439 0.9811 0.0541 0.0254 0.0149

(a) ROC curve. (b) Confusion matrix.

Figure B.14: Five-fold cross-validation ROC curve and confusion matrix of ResNet101V2-233
model.
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B.2.15 InceptionV3-274

Table B.15: Five-fold cross-validation performance metrics of InceptionV3-274 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 80.06 84.86 74.85 78.5 82.05 0.6013 0.5992 3.3749 0.2022 0.8156 0.875
fold2 81.49 83.24 79.63 81.36 81.65 0.6293 0.6292 4.0862 0.2105 0.8229 0.8963
fold3 82.34 86.13 78.26 80.98 84 0.6468 0.6454 3.9618 0.1773 0.8347 0.907
fold4 83.53 89.6 77.02 80.73 87.32 0.6733 0.6689 3.8986 0.1351 0.8493 0.921
fold5 86.23 89.02 83.23 85.08 87.58 0.7246 0.7237 5.3081 0.132 0.8701 0.9268

average 82.73 86.57 78.6 81.33 84.52 0.6551 0.6533 4.1259 0.1714 0.8385 0.9052
std. deviation 2.08 2.42 2.8 2.12 2.52 0.0419 0.0419 0.639 0.0328 0.0195 0.0185

(a) ROC curve. (b) Confusion matrix.

Figure B.15: Five-fold cross-validation ROC curve and confusion matrix of InceptionV3-102
model.
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B.2.16 InceptionV4-327

Table B.16: Five-fold cross-validation performance metrics of InceptionV4-327 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.58 89.19 75.44 79.71 86.58 0.6545 0.6494 3.6313 0.1433 0.8418 0.9074
fold2 80.3 79.19 81.48 82.04 78.57 0.6064 0.606 4.2763 0.2554 0.8059 0.8907
fold3 81.44 83.82 78.88 81.01 81.94 0.6282 0.6278 3.9689 0.2052 0.8239 0.8884
fold4 85.03 86.13 83.85 85.14 84.91 0.7001 0.7001 5.3333 0.1654 0.8563 0.9393
fold5 84.43 90.17 78.26 81.68 88.11 0.6911 0.687 4.148 0.1256 0.8571 0.9202

average 82.76 85.7 79.58 81.92 84.02 0.6561 0.6541 4.2716 0.179 0.837 0.9092
std. deviation 1.78 3.96 2.87 1.8 3.41 0.0358 0.0353 0.5734 0.0465 0.0197 0.019

(a) ROC curve. (b) Confusion matrix.

Figure B.16: Five-fold cross-validation ROC curve and confusion matrix of InceptionV4-327
model.
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B.2.17 InceptionResNetV2-500

Table B.17: Five-fold cross-validation performance metrics of InceptionResNetV2-500 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 79.78 77.84 81.87 82.29 77.35 0.5967 0.5958 4.2936 0.2707 0.8 0.8868
fold2 82.39 81.5 83.33 83.93 80.84 0.648 0.6477 4.8902 0.222 0.827 0.9022
fold3 82.34 88.44 75.78 79.69 85.92 0.6491 0.6448 3.651 0.1526 0.8384 0.889
fold4 82.63 82.66 82.61 83.63 81.6 0.6524 0.6524 4.7529 0.2099 0.8314 0.9036
fold5 86.23 87.28 85.09 86.29 86.16 0.7241 0.7241 5.8553 0.1494 0.8678 0.9241

average 82.67 83.54 81.74 83.17 82.37 0.6541 0.653 4.6886 0.2009 0.8329 0.9011
std. deviation 2.06 3.88 3.16 2.16 3.32 0.0406 0.041 0.7264 0.0456 0.0218 0.0133

(a) ROC curve. (b) Confusion matrix.

Figure B.17: Five-fold cross-validation ROC curve and confusion matrix of InceptionResNetV2-
500 model.
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B.2.18 Xception-118

Table B.18: Five-fold cross-validation performance metrics of Xception-118 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 80.9 80.54 81.29 82.32 79.43 0.6179 0.6177 4.3039 0.2394 0.8142 0.9061
fold2 78.81 76.3 81.48 81.48 76.3 0.5778 0.5766 4.1202 0.2909 0.7881 0.8861
fold3 83.83 90.17 77.02 80.83 87.94 0.6798 0.6748 3.9238 0.1276 0.8525 0.9029
fold4 85.93 87.86 83.85 85.39 86.54 0.7182 0.7179 5.4406 0.1448 0.8661 0.9314
fold5 82.93 80.92 85.09 85.37 80.59 0.6599 0.6589 5.4287 0.2242 0.8309 0.9139

average 82.48 83.16 81.75 83.08 82.16 0.6507 0.6492 4.6434 0.2054 0.8304 0.9081
std. deviation 2.45 5.1 2.76 1.94 4.4 0.0487 0.0484 0.6571 0.0609 0.0276 0.0148

(a) ROC curve. (b) Confusion matrix.

Figure B.18: Five-fold cross-validation ROC curve and confusion matrix of Xception-118 model.
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B.2.19 DenseNet121-379

Table B.19: Five-fold cross-validation performance metrics of DenseNet121-379 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 83.71 86.49 80.7 82.9 84.66 0.6738 0.6731 4.4816 0.1675 0.8466 0.9035
fold2 82.69 83.24 82.1 83.24 82.1 0.6534 0.6534 4.6498 0.2042 0.8324 0.9159
fold3 84.43 87.86 80.75 83.06 86.09 0.6888 0.6875 4.5631 0.1503 0.8539 0.9094
fold4 83.23 84.39 81.99 83.43 83.02 0.6641 0.6641 4.6853 0.1904 0.8391 0.9178
fold5 85.33 87.28 83.23 84.83 85.9 0.7062 0.7059 5.2047 0.1528 0.8604 0.9325

average 83.88 85.85 81.75 83.49 84.35 0.6773 0.6768 4.7169 0.173 0.8465 0.9158
std. deviation 0.92 1.76 0.95 0.69 1.57 0.0186 0.0184 0.254 0.0211 0.01 0.0097

(a) ROC curve. (b) Confusion matrix.

Figure B.19: Five-fold cross-validation ROC curve and confusion matrix of DenseNet121-379
model.
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B.2 Supplementary Data for Trained CNN Models

B.2.20 DenseNet169-395

Table B.20: Five-fold cross-validation performance metrics of DenseNet169-395 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.02 88.65 74.85 79.23 85.91 0.6431 0.6381 3.5253 0.1516 0.8367 0.8996
fold2 84.78 93.06 75.93 80.5 91.11 0.7029 0.6936 3.8657 0.0914 0.8633 0.9124
fold3 83.53 87.28 79.5 82.07 85.33 0.6709 0.6694 4.2584 0.16 0.8459 0.8964
fold4 85.33 91.33 78.88 82.29 89.44 0.7097 0.705 4.3247 0.1099 0.8658 0.9269
fold5 82.63 82.66 82.61 83.63 81.6 0.6524 0.6524 4.7529 0.2099 0.8314 0.9264

average 83.66 88.6 78.35 81.54 86.68 0.6758 0.6717 4.1454 0.1446 0.8486 0.9123
std. deviation 1.25 3.59 2.75 1.53 3.33 0.0265 0.0249 0.4187 0.0414 0.0138 0.0129

(a) ROC curve. (b) Confusion matrix.

Figure B.20: Five-fold cross-validation ROC curve and confusion matrix of DenseNet169-395
model.
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B.2.21 DenseNet201-561

Table B.21: Five-fold cross-validation performance metrics of DenseNet201-561 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.02 87.57 76.02 79.8 84.97 0.6418 0.6385 3.6522 0.1635 0.8351 0.9073
fold2 82.09 84.97 79.01 81.22 83.12 0.6416 0.6408 4.0486 0.1902 0.8305 0.9016
fold3 82.93 87.86 77.64 80.85 85.62 0.6598 0.6571 3.9294 0.1563 0.8421 0.9093
fold4 83.53 84.39 82.61 83.91 83.12 0.6702 0.6702 4.8526 0.1889 0.8415 0.9223
fold5 85.03 83.24 86.96 87.27 82.84 0.7015 0.7007 6.3815 0.1928 0.8521 0.922

average 83.12 85.61 80.45 82.61 83.93 0.663 0.6615 4.5729 0.1783 0.8403 0.9125
std. deviation 1.11 1.81 3.92 2.7 1.13 0.0221 0.0228 0.9885 0.0153 0.0073 0.0083

(a) ROC curve. (b) Confusion matrix.

Figure B.21: Five-fold cross-validation ROC curve and confusion matrix of DenseNet201-561
model.
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B.2 Supplementary Data for Trained CNN Models

B.2.22 MobileNetV2-62

Table B.22: Five-fold cross-validation performance metrics of MobileNetV2-62 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 78.09 76.76 79.53 80.23 75.98 0.5625 0.5619 3.7501 0.2922 0.7845 0.8705
fold2 81.79 80.35 83.33 83.73 79.88 0.6365 0.6359 4.8208 0.2358 0.8201 0.9074
fold3 83.53 86.13 80.75 82.78 84.42 0.6703 0.6697 4.4731 0.1718 0.8442 0.9025
fold4 83.53 85.55 81.37 83.15 83.97 0.6702 0.6699 4.5911 0.1776 0.8433 0.9006
fold5 81.44 80.92 81.99 82.84 80 0.6288 0.6286 4.4927 0.2327 0.8187 0.8856

average 81.68 81.94 81.39 82.55 80.85 0.6337 0.6332 4.4256 0.222 0.8222 0.8933
std. deviation 1.99 3.49 1.26 1.21 3.09 0.0394 0.0395 0.3596 0.0441 0.0218 0.0135

(a) ROC curve. (b) Confusion matrix.

Figure B.22: Five-fold cross-validation ROC curve and confusion matrix of MobileNetV2-62
model.
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B.2.23 MobileNetV3Small-182

Table B.23: Five-fold cross-validation performance metrics of MobileNetV3Small-182 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 79.78 86.49 72.51 77.29 83.22 0.5975 0.5929 3.1466 0.1864 0.8163 0.8898
fold2 81.49 79.77 83.33 83.64 79.41 0.6308 0.63 4.7861 0.2428 0.8166 0.8887
fold3 79.04 83.24 74.53 77.84 80.54 0.5807 0.5792 3.2686 0.2249 0.8045 0.8805
fold4 84.43 89.6 78.88 82.01 87.59 0.6903 0.6871 4.2426 0.1319 0.8564 0.917
fold5 82.93 85.55 80.12 82.22 83.77 0.6583 0.6577 4.3042 0.1804 0.8385 0.9041

average 81.53 84.93 77.87 80.6 82.91 0.6315 0.6294 3.9496 0.1933 0.8265 0.896
std. deviation 1.98 3.29 3.89 2.55 2.85 0.0398 0.04 0.6356 0.0386 0.0186 0.013

(a) ROC curve. (b) Confusion matrix.

Figure B.23: Five-fold cross-validation ROC curve and confusion matrix of MobileNetV3Small-
182 model.
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B.2 Supplementary Data for Trained CNN Models

B.2.24 MobileNetV3Large-193

Table B.24: Five-fold cross-validation performance metrics of MobileNetV3Large-193 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 78.93 83.78 73.68 77.5 80.77 0.5787 0.5766 3.1838 0.2201 0.8052 0.8884
fold2 83.58 83.24 83.95 84.71 82.42 0.6716 0.6715 5.1863 0.1997 0.8397 0.9092
fold3 82.93 83.24 82.61 83.72 82.1 0.6583 0.6583 4.7861 0.2029 0.8348 0.8973
fold4 82.63 84.39 80.75 82.49 82.8 0.6521 0.6519 4.383 0.1933 0.8343 0.9073
fold5 85.63 83.82 87.58 87.88 83.43 0.7135 0.7127 6.7471 0.1848 0.858 0.915
average 82.74 83.69 81.71 83.26 82.3 0.6548 0.6542 4.8573 0.2002 0.8344 0.9034
std. deviation 2.17 0.43 4.6 3.39 0.89 0.0437 0.0442 1.1585 0.0117 0.017 0.0094

(a) ROC curve. (b) Confusion matrix.

Figure B.24: Five-fold cross-validation ROC curve and confusion matrix of MobileNetV3Large-
193 model.
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B.2.25 NASNetMobile-617

Table B.25: Five-fold cross-validation performance metrics of NASNetMobile-617 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 79.49 85.95 72.51 77.18 82.67 0.5915 0.5873 3.127 0.1938 0.8133 0.8665
fold2 80.3 82.66 77.78 79.89 80.77 0.6055 0.6051 3.7197 0.223 0.8125 0.8855
fold3 80.84 80.92 80.75 81.87 79.75 0.6165 0.6164 4.2029 0.2362 0.814 0.8836
fold4 82.34 83.82 80.75 82.39 82.28 0.6461 0.646 4.353 0.2004 0.8309 0.9055
fold5 83.53 82.66 84.47 85.12 81.93 0.6709 0.6706 5.3232 0.2053 0.8387 0.9072

average 81.3 83.2 79.25 81.29 81.48 0.6261 0.6251 4.1452 0.2117 0.8219 0.8897
std. deviation 1.45 1.66 3.98 2.65 1.07 0.0287 0.0297 0.7283 0.0156 0.0108 0.0152

(a) ROC curve. (b) Confusion matrix.

Figure B.25: Five-fold cross-validation ROC curve and confusion matrix of NASNetMobile-617
model.
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B.2 Supplementary Data for Trained CNN Models

B.2.26 EfficientNetB0-187

Table B.26: Five-fold cross-validation performance metrics of EfficientNetB0-187 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.18 82.7 79.53 81.38 80.95 0.6229 0.6228 4.0406 0.2175 0.8204 0.8927
fold2 82.39 79.19 85.8 85.62 79.43 0.6502 0.6483 5.5778 0.2425 0.8228 0.8984
fold3 83.53 89.02 77.64 81.05 86.81 0.6725 0.669 3.9811 0.1415 0.8485 0.9075
fold4 84.13 85.55 82.61 84.09 84.18 0.6821 0.682 4.9191 0.1749 0.8481 0.9239
fold5 84.43 89.6 78.88 82.01 87.59 0.6903 0.6871 4.2426 0.1319 0.8564 0.9243

average 83.13 85.21 80.89 82.83 83.79 0.6636 0.6618 4.5522 0.1817 0.8392 0.9094
std. deviation 1.2 3.91 2.95 1.75 3.19 0.0244 0.0237 0.6116 0.0427 0.0147 0.0129

(a) ROC curve. (b) Confusion matrix.

Figure B.26: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetB0-187
model.
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B.2.27 EfficientNetB1-308

Table B.27: Five-fold cross-validation performance metrics of EfficientNetB1-308 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.18 86.49 75.44 79.21 83.77 0.6245 0.6216 3.5212 0.1791 0.8269 0.8899
fold2 82.99 83.24 82.72 83.72 82.21 0.6594 0.6594 4.8159 0.2027 0.8348 0.9193
fold3 82.04 89.6 73.91 78.68 86.86 0.6452 0.6384 3.4345 0.1408 0.8378 0.9006
fold4 81.74 84.97 78.26 80.77 82.89 0.6345 0.6335 3.9087 0.192 0.8282 0.9063
fold5 84.13 84.97 83.23 84.48 83.75 0.6822 0.6822 5.0668 0.1806 0.8473 0.9278

average 82.42 85.85 78.71 81.37 83.9 0.6492 0.647 4.1494 0.179 0.835 0.9088
std. deviation 1.04 2.14 3.75 2.34 1.59 0.0202 0.0214 0.6707 0.0209 0.0074 0.0134

(a) ROC curve. (b) Confusion matrix.

Figure B.27: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetB1-308
model.
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B.2.28 EfficientNetB2-316

Table B.28: Five-fold cross-validation performance metrics of EfficientNetB2-316 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 82.87 84.86 80.7 82.63 83.13 0.6567 0.6564 4.3975 0.1875 0.8373 0.9059
fold2 80.6 78.61 82.72 82.93 78.36 0.6131 0.6122 4.5483 0.2586 0.8071 0.906
fold3 82.63 87.28 77.64 80.75 85.03 0.6535 0.6512 3.9035 0.1638 0.8389 0.897
fold4 82.63 88.44 76.4 80.1 86.01 0.6547 0.6509 3.747 0.1513 0.8407 0.9062
fold5 85.03 85.55 84.47 85.55 84.47 0.7002 0.7002 5.5094 0.1711 0.8555 0.9224

average 82.75 84.95 80.39 82.39 83.4 0.6556 0.6542 4.4211 0.1865 0.8359 0.9075
std. deviation 1.4 3.41 3.02 1.91 2.69 0.0276 0.0279 0.6202 0.0379 0.0158 0.0082

(a) ROC curve. (b) Confusion matrix.

Figure B.28: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetB2-316
model.
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B.2.29 EfficientNetB3-194

Table B.29: Five-fold cross-validation performance metrics of EfficientNetB3-194 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 83.43 87.03 79.53 82.14 85 0.6685 0.6672 4.2519 0.1631 0.8451 0.9149
fold2 81.79 76.88 87.04 86.36 77.9 0.6409 0.6368 5.9306 0.2656 0.8135 0.9059
fold3 84.13 87.28 80.75 82.97 85.53 0.6826 0.6816 4.5331 0.1575 0.8507 0.9113
fold4 84.13 89.02 78.88 81.91 86.99 0.684 0.6812 4.2152 0.1392 0.8532 0.9253
fold5 83.83 85.55 81.99 83.62 84.08 0.6761 0.6759 4.7495 0.1763 0.8457 0.9239

average 83.46 85.15 81.64 83.4 83.9 0.6704 0.6685 4.7361 0.1803 0.8416 0.9163
std. deviation 0.87 4.28 2.9 1.6 3.14 0.0157 0.0167 0.6283 0.0443 0.0144 0.0074

(a) ROC curve. (b) Confusion matrix.

Figure B.29: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetB3-194
model.
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B.2.30 EfficientNetB5-444

Table B.30: Five-fold cross-validation performance metrics of EfficientNetB5-444 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 83.43 89.73 76.61 80.58 87.33 0.6712 0.6665 3.8359 0.1341 0.8491 0.9119
fold2 85.37 90.17 80.25 82.98 88.44 0.7092 0.7063 4.565 0.1225 0.8643 0.9261
fold3 81.74 87.28 75.78 79.47 84.72 0.6363 0.6329 3.6032 0.1678 0.832 0.8833
fold4 83.53 83.24 83.85 84.71 82.32 0.6706 0.6704 5.1543 0.1999 0.8397 0.9236
fold5 84.43 83.82 85.09 85.8 83.03 0.6887 0.6885 5.6226 0.1902 0.848 0.9242

average 83.7 86.85 80.32 82.71 85.17 0.6752 0.6729 4.5562 0.1629 0.8466 0.9138
std. deviation 1.21 2.89 3.73 2.39 2.38 0.024 0.0245 0.7645 0.0303 0.0108 0.0161

(a) ROC curve. (b) Confusion matrix.

Figure B.30: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetB5-444
model.
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B.2.31 EfficientNetV2S-413

Table B.31: Five-fold cross-validation performance metrics of EfficientNetV2S-413 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 81.79 81.61 81.99 83.04 80.49 0.6356 0.6355 4.5307 0.2243 0.8232 0.9097
fold2 83.58 80.92 86.42 86.42 80.92 0.6734 0.672 5.959 0.2207 0.8358 0.9106
fold3 80.84 83.82 77.64 80.11 81.7 0.6163 0.6156 3.7484 0.2085 0.8192 0.8917
fold4 83.23 88.44 77.64 80.95 86.21 0.6662 0.6631 3.9552 0.1489 0.8453 0.927
fold5 87.43 87.86 86.96 87.86 86.96 0.7482 0.7482 6.736 0.1396 0.8786 0.9328

average 83.37 84.53 82.13 83.68 83.26 0.6679 0.6669 4.9859 0.1884 0.8404 0.9144
std. deviation 2.26 3.11 4.05 3.02 2.76 0.0451 0.0453 1.1671 0.0365 0.0212 0.0145

(a) ROC curve. (b) Confusion matrix.

Figure B.31: Five-fold cross-validation ROC curve and confusion matrix of EfficientNetV2S-413
model.
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B.2.32 ConvNeXtTiny-120

Table B.32: Five-fold cross-validation performance metrics of ConvNeXtTiny-120 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 84.78 90.23 78.88 82.2 88.19 0.6975 0.6939 4.2727 0.1239 0.8603 0.9227
fold2 83.88 83.82 83.95 84.8 82.93 0.6774 0.6774 5.2223 0.1928 0.843 0.9188
fold3 80.54 81.5 79.5 81.03 80 0.6102 0.6102 3.9764 0.2327 0.8127 0.8897
fold4 86.83 90.17 83.23 85.25 88.74 0.7369 0.7356 5.377 0.1181 0.8764 0.9319
fold5 85.03 87.86 81.99 83.98 86.27 0.7005 0.6997 4.8778 0.1481 0.8588 0.9283

average 84.21 86.72 81.51 83.45 85.23 0.6845 0.6834 4.7452 0.1631 0.8502 0.9183
std. deviation 2.07 3.5 2 1.6 3.31 0.0418 0.0412 0.5401 0.0436 0.0215 0.015

(a) ROC curve. (b) Confusion matrix.

Figure B.32: Five-fold cross-validation ROC curve and confusion matrix of ConvNeXtTiny-120
model.
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C Appendices for Chapter 4

C.1 Online Resources
The data that support the findings of this study are openly available at the elicitation
page of DAPPEM website1. The data can be accessed by clicking on “Download Research
Data” link. Available files are listed below:

• Elicited Probability.xlxs : contains the 1536 possible cases and the corresponding
elicited EM probability estimates.

• EM Decision Tree.png : detailed version of the pruned decision tree described in
Section 4.2.3.4.

• FCA Context Files: this directory contains FCA lattice context files for different
probability groups of EM cases. The context files can be explored using FCA soft-
ware like The Concept Explorer [182] or Formal Concept Analysis Research Tool-
box (FCART)[112]. Following is the list of files inside this directory:

– Group (1).cxt : cases with probability [0, 0.1).
– Group (2).cxt : cases with probability [0.1, 0.2).
– Group (4).cxt : cases with probability [0.3, 0.4).
– Group (5).cxt : cases with probability [0.4, 0.5).
– Group (6).cxt : cases with probability [0.5, 0.6).
– Group (7).cxt : cases with probability [0.6, 0.7).
– Group (8).cxt : cases with probability [0.7, 0.8).
– Group (9).cxt : cases with probability [0.8, 0.9).
– Group (10).cxt : cases with probability [0.9, 1].

1https://dappem.limos.fr/elicitation.html (visited on 02/20/2023)
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D Appendices for Chapter 5

D.1 EMScan: AMobile Application for Assisting
With Early Lyme Disease Diagnosis

Figure D.1 shows the overall workflow of the EMScan mobile application. First, the user
takes a photo of the skin lesion using the mobile camera. Second, the application auto-
matically detects and crops the skin lesion which can be also manually adjusted by the
user. Third, patient data related to the skin lesion is acquired through a series of ques-
tions and answers. Fourth, the lesion image is analyzed by a CNN image classifier, and
the patient data is analyzed by the elicited statistical model to obtain two probabilities.
Finally, a disease prediction with suggestion is provided to the user based on the analysis
of skin lesion image and patient data. The application also provides the user with neces-
sary details about Lyme disease and collects data with the patient’s consent for research
purposes.

Figure D.1: EMScan application workflow.
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D Appendices for Chapter 5

D.2 Supplementary Data for Custom
Architecture

This section provides detailed five-fold cross validation results of the custom architecture
and the ResNet50-141 model for the updated Lyme dataset.

D.2.1 Custom Architecture

Table D.1: Five-fold cross-validation performance metrics of custom model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 80.57 82.07 78.92 81.18 79.88 0.6102 0.6102 3.8922 0.2273 0.8162 0.8783
fold2 88.29 89.67 86.75 88.24 88.34 0.765 0.7649 6.7663 0.119 0.8895 0.9447
fold3 86.29 85.87 86.75 87.78 84.71 0.7255 0.7253 6.4792 0.1629 0.8681 0.9221
fold4 84.86 91.85 77.11 81.64 89.51 0.7005 0.6943 4.0123 0.1057 0.8645 0.9151
fold5 83.38 85.79 80.72 83.07 83.75 0.6667 0.6663 4.4505 0.176 0.8441 0.9152

average 84.68 87.05 82.05 84.38 85.24 0.6936 0.6922 5.1201 0.1582 0.8565 0.9151
std. deviation 2.62 3.4 4 3.03 3.44 0.0526 0.0525 1.2442 0.0434 0.0248 0.0214

(a) ROC curve. (b) Confusion matrix.

Figure D.2: Five-fold cross-validation ROC curve and confusion matrix of custom model.
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D.2.2 ResNet50-141

Table D.2: Five-fold cross-validation performance metrics of VGG19-13 model.
Metric

Fold Accu
rac

y

Sensiti
vity

Speci
ficit

y

Prec
isio

n

NPV
MCC

Kappa
LR+ LR− F1-S

core

AUC

fold1 84.57 85.33 83.73 85.33 83.73 0.6906 0.6906 5.246 0.1752 0.8533 0.9203
fold2 85.43 88.04 82.53 84.82 86.16 0.7078 0.7072 5.0397 0.1449 0.864 0.9259
fold3 83.14 86.41 79.52 82.38 84.08 0.6619 0.6611 4.219 0.1709 0.8435 0.9148
fold4 84.29 86.96 81.33 83.77 84.91 0.6848 0.6842 4.6564 0.1604 0.8533 0.9194
fold5 86.82 90.71 82.53 85.13 88.96 0.7366 0.7349 5.1924 0.1126 0.8783 0.935

average 84.85 87.49 81.93 84.29 85.57 0.6963 0.6956 4.8707 0.1528 0.8585 0.9231
std. deviation 1.23 1.83 1.42 1.09 1.89 0.0249 0.0246 0.3856 0.0227 0.0118 0.0069

(a) ROC curve. (b) Confusion matrix.

Figure D.3: Five-fold cross-validation ROC curve and confusion matrix of ResNet50-141 model.
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Acronyms

AI Artificial Intelligence
AUC Area Under the Receiver Operating Characteristic (ROC)

Curve
CD Critical Difference
CF-CHU Clermont-Ferrand University Hospital Center
CNN Convolutional Neural Network
CRMVT Centres de Référence des Maladies Vectorielles liées aux Tiques
DAPPEM Développement d’une APPlication d’identification des Ery-

thèmes Migrants à partir de photographies
EM Erythema Migrans
FCA Formal Concept Analysis
FN False Negative
FP False Positive
FPR False Positive Rate
GAP Global Average Pooling
GELU Gaussian Error Linear Unit
Grad-CAM Gradient-weighted Class Activation Mapping
ILSVRC ImageNet Large Scale Visual Recognition Challenge
INRAE Institut national de recherche pour l’agriculture, l’alimentation

et l’environnement
ISIC International Skin Imaging Collaboration
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