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Summary

Hybrid systems are a wide category of systems consisting of multiple computers, linked together by
some means and interacting with physical devices. Usually cheap, adaptable and incredibly versatile,
these systems rapidly found their place in our everyday life, and can be found in basic devices like
smart light bulbs, or in more complex structures such as smart factories or autonomous vehicles. In
particular, due to their numerous advantages, they can nowadays be found in safety-critical domains,
including avionics, self-driving cars or energy distribution.

The complex and hybrid nature of hybrid systems make them quite hard to design in a safe
way: while formal methods are mostly able to deal with their discrete parts and control theory
with their continuous part, we lack some kind of formalism that would be able to deal with both of
these aspects and their integration with one another. The formal modelling of safety-critical hybrid
systems is thus a major challenge of the domain.

To overcome this challenge, we propose a generic formal framework, aimed at safely modelling hy-
brid systems in a correct-by-construction fashion, inherited from the Event-B method the framework
is based on.

This framework takes the form of an extensive set of theories that expands Event-B with
mathematical features necessary to model continuous behaviours (e.g. continuous functions and
differential equations), a generic model that encodes a generic hybrid system, complete with its
controller and continuous plant, and a series of patterns, based on refinement, that allow easing the
design process.

In particular, we defined three formal patterns, inspired by general practice in hybrid system
designs: approximation (substituting an equation system with an approximately equivalent one),
centralised control with multiple plants (splitting a plant into a set of plant with a centralised
controller) and distributed hybrid systems (system made of components that each consist of a
controller and a plant, enforcing a global invariant).

This framework is designed to be extensible: adding a new component is done by describing it
as a refinement of the generic model, and possibly to accompany it with relevant theories.

We used our framework on various problems taken from control theory, including computer-
assisted cars, water tanks, robots and inverted pendulums.
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Résumé

Les système hybrides représentent une large catégorie de systèmes, composés d’une multitude de
calculateurs qui communiquent entre eux tout en interagissant avec des systèmes physiques. En
général peu coûteux, adaptables et versatiles, ces systèmes ont rapidement su trouver leur place dans
notre vie de tous les jours. Il peut s’agir d’objets simples comme des ampoules connectées, mais
aussi de structures plus complexes, telles que des usines intelligentes ou des véhicules autonomes.
En particulier, et grâce à leur nombreux avantages, on les croise de plus en plus dans des domaines
critiques, par exemple dans l’avionique, les véhicules autonomes ou encore la distribution d’énergie.

La nature complexe et hybride de ces systèmes les rend assez difficile à concevoir de manière
sûre: les méthodes formelles se sont penchées sur la partie discrète de ces systèmes, tandis que leur
partie continue est étudiée par la théorie du contrôle; mais dans l’ensemble, une approche formelle
prenant en charge ces deux aspects simultanément, ainsi que leurs interactions réciproques nous fait
défaut. La modélisation formelle de systèmes hybrides critiques est, de ce fait, un défi important du
domaine des méthodes formelles.

Afin de répondre à ce défi, nous proposons un cadre générique et formel, avec pour but la
modélisation de certains types de systèmes hybrides. Ce cadre, hérité de la méthode Event-B, permet
la conception sûre et correcte par construction de ce type de systèmes. Il prend la forme d’un ensemble
de théories, qui étendent la méthode Event-B avec les éléments mathématiques indispensables à la
modélisation de comportements continus (par ex. : fonctions continues, équations différentielles),
un modèle générique qui encode et abstrait les systèmes hybrides, intégrant simultanément leurs
contrôleurs et leurs processus continus au même niveau, et une panoplie de patrons, construits sur
le raffinement, qui permettent de faciliter la conception de ces systèmes.

En particulier, nous définissons trois patrons formels, naturellement inspirés par les pratiques
communes du domaine de la conception de systèmes hybrides : l’approximation (remplacer un
système d’équations par un système approximativement équivalant), le contrôle centralisé de plusieurs
processus continus (décomposer un processus en plusieurs composantes avec un contrôle centralisé
de ces composantes), et la gestion distribuée de systèmes hybrides (un système composé de plusieurs
composants, qui sont chacun constitué d’un contrôleur et d’un processus continu, et qui ensemble
maintiennent un invariant global).

Ce cadre de conception a été conçu pour être extensible : pour ajouter un nouveau patron, il suffit
de le décrire sous la forme d’un raffinement du modèle générique, en l’accompagnant éventuellement
de diverses théories, si nécessaire.

Ce cadre formel a été utilisé sur divers exemples empruntés à la théorie du contrôle ou à l’industrie,
et notamment dans le domaine de la conduite assistée par ordinateur, des cuves hydrauliques, des
robots ou des pendules inversés.
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Introduction

The idea of delegating a manual task to a device that would be (fairly) automatic has probably
emerged at the same time mankind discovered the first complex tools. Traces of documented
automatic systems can be found in the work of Hero of Alexandria (c. 10 AD – c. 70 AD), and
already feature a complex arrangement of user commands and automatically controlled physical
phenomena.

The academic study of such controlled systems emerged in the 19th century with the advent of
the industrial revolution. The famous paper by James C. Maxwell, On Governors [Max68], is often
taken as the first academic resource on control theory. Since then, automatic control with physical
means – that is, controlling a physical phenomenon using another physical phenomenon, typically
mechanical or electrical – has greatly evolved, always pushing the capabilities of automatic machines
further.

Less than a century later, when computers emerged in the scientific landscape, replacing imprecise
and costly physical phenomena by digital controllers appeared to be a logical next step. In 1966, the
first version of the Apollo Guidance Computer was introduced, a 16-bit, 2048 words RAM digital
computer aimed at controlling the Apollo command module that would one day take mankind on
the moon.

Nowadays, more than 50 years later, computers have dramatically shrunk in size and cost, and
have greatly increased their computation power, allowing them to find a place everywhere, from
simple smart light-bulbs to complex avionic systems, from cars to smart factories, from cameras to
medical equipment.

Given the omnipresence of such systems and in particular their presence in critical setups (e.g.
avionics, autonomous vehicles), it appears absolutely essential to provide a way to reliably establish
properties on them, and typically correctness (i.e. is the system fulfilling its duty?), or more precisely
safety (is the system harmful to others?).

Hybrid System This term is used to denote systems that consist of a physical phenomenon
that is being controlled by a discrete system, in general a computer [Alu+95]. The term hybrid
here is of particular importance: such systems integrate, on the same level, features that belong to
fundamentally different worlds, with fundamentally different languages, techniques and issues.

On the one hand, controllers are discrete systems, machines that operate step-wise and in a finite
or countable setting. They are better described using state-based methods (automata, abstract state
machines) and algebra, and logic systems can be used to express and establish properties on them.

Meanwhile on the other hand, the physical phenomena under control are continuous objects:
dense, with an ever-evolving state and in an uncountable setting. They are better described using
continuous functions and differential equations, and properties may be established using topology
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and real/complex analysis.
As a result, dealing with these two worlds on the same level and in a rigorous way is a major

challenge on the path to certifying hybrid systems.

Scope of the Thesis In this thesis, we are interested in the integration of continuous features
in the Event-B formal method in order to be able to formally design hybrid systems with it. The
choice of Event-B is quite relevant: first, controllers are typically event-based/reactive systems, for
which this method is well-adapted; second, the low mathematical and semantic level of Event-B is
such that it can be easily extended, with new constructs and new concepts.

Contributions We propose a generic framework together with a methodology for designing hybrid
systems. The framework is based on Event-B. It consists of several tools used to model hybrid
systems, and it has been designed to be easily extended. Our main contributions are overviewed
below.

Event-B Extension Using Theories The concept of theories and the theory plug-in are used to
incorporate a number of important concepts related to real numbers, continuous functions and
differential equations. This allows the proper modelling of continuous behaviours within Event-B
models.

Generic Framework and Methodology An overall framework for designing hybrid systems is proposed,
based on an extensible set of components, using Event-B models. The framework is associated
with a general methodology, aimed at easing the formal design and verification of hybrid systems
[Dup+20a].

Generic Model The foundations of the framework are provided in the form of a generic hybrid
system model, to be refined. The various patterns proposed are derived from this generic model,
making the framework highly extensible. A number of proofs that would otherwise be recurrent are
carried out at this level, and thus do not have to be conducted again [Dup+18b; Dup+18a].

Architecture Patterns The framework provides the possibility to shape a given hybrid system using
multiple architectures, often set up in hybrid system design. These are: one controller with one
plant (single-to-single), one controller with multiple plants (single-to-many, centralised control) and
multiple controllers with multiple plants (many-to-many, distributed control) [Dup+19; Dup+20c].

Approximation Pattern The framework also provides a pattern that formalises approximation, as a
refinement step. It allows the support of common operations of control theory and hybrid systems
design, such as simplification and in particular linearisation [Dup+20b; Dup+20a].

Organisation of the Manuscript This thesis is organised as follows. Chapter 1 presents a
survey of the state of the art, exploring the different types of system modelling and the way they
can be verified, using model checking or proof-based methods.

Chapter 2 gives a number of core definitions used throughout the remainder of the thesis. In
particular, the method on which our work is based, Event-B is presented: its modelling language,
its proof system and its associated semantics. Its extension mechanism (Event-B theories) is also
presented in details. Finally, we discuss the advantages of the method as well as its limitations,
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and use this to identify the key elements enriching the method in order to address the challenge of
designing hybrid system with it.

Our contributions are presented in the next chapters. First of all, the proposed framework is laid
out in Chapter 3. The motivation for this framework is discussed, and the requirements that led
to its design are highlighted, in particular with regard to Event-B and its associated methodology.
The chapter also gives an overview of the patterns defined in this framework, and presented more
thoroughly in the remainder of the thesis.

Chapter 4, gives the details of the features required by the framework to model hybrid system,
and to define the various patterns of the framework. A number of continuous concepts are introduced,
which are used to handle continuous behaviours within Event-B, together with various properties to
handle these concepts in proofs. The formalisation of these features in Event-B is also discussed.

Then, Chapter 5 describes thoroughly the generic model as the foundation of the framework,
including the motivation and overall design ideas it relies on. Two well-known case studies are given
to illustrate its use, both on a methodological and technical point of view.

Chapter 6 presents a category of formal patterns for modelling different hybrid system architec-
tures, and in particular systems consisting of one controller and one plant (single-to-single), one
centralised controller with multiple plants (single-to-many) and multiple controllers with multiple
plants (many-to-many). A general case study is given as illustration for each of these architectures.

Next, Chapter 7 elaborates on the approximation pattern. Approximation is formalised as an
operation of the framework, using Event-B’s refinement. It allows substituting a system with another
which behaviours is approximately equal, while retaining its properties. This pattern is applied to
two case studies.

Finally, the conclusion of this manuscript gives a summary of our contributions, and discusses
possible outcomes and future work related to our work.

In the context of our work, and to illustrate our contributions, many models have been defined,
in Event-B, using Rodin and the theory plug-in. These models are presented throughout this
manuscript. Additionally, they are freely available, in their entirety, in Appendices A and B, as well
as at the address:
https://irit.fr/~Guillaume.Dupont/models.php

https://irit.fr/~Guillaume.Dupont/models.php
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Chapter 1

Designing Safe Hybrid Systems

Hybrid systems are a particular class of systems that incorporate complex, heterogeneous elements
related to each others. For this reason, the formal modelling, verification and overall design of
hybrid systems are an important challenge that has drawn the attention of many areas of formal
methods and computer science in general.

The issues raised by hybrid systems are split in three categories.
First, such systems require specific modelling features, and in particular the possibility to model

both discrete and continuous behaviours at the same level in the model.
Second, these particular continuous features need to be handled in the associated verification

system: it must thus be able to deal with continuous concepts (functions, differential equations,
linear constraints) as well as with discrete features, and must be able to exploit the integration of
both world to assert useful properties (reachability, safety, etc.).

Last, hybrid systems come with a number of specific techniques and methods (e.g. composition,
approximation, linearisation, discretisation) that need to be addressed as well, both at the model’s
level and at the proof’s level.

In this chapter, we present a survey of the literature addressing formal design and verification
of hybrid systems. Formal modelling of hybrid systems is presented in Section 1.1, while Section
1.2 gives an overview of verification techniques for such systems. Section 1.3 investigates various
development operations and general methodology for designing hybrid systems.

Last, in Section 1.4, we draw a general idea of what a formal method for designing hybrid system
should layout, by outlining a set of requirements, inspired by this survey.

1.1 Modelling Hybrid Systems
The first major challenge in dealing with hybrid systems is the capability to formally model such
systems. Indeed, proving or verifying the different properties of hybrid systems require means to
model them, including all of their specificity.

The problem is to be able to describe both the discrete and the continuous parts of such systems
at the same level, and in a way that allows extracting and verifying useful properties.

To this extent, a multitude of approaches exist. They often rely on a discrete framework capable
of supporting the description of continuous behaviours, using continuous functions or differential

23



24 CHAPTER 1. DESIGNING SAFE HYBRID SYSTEMS

equations, or a discretised version of these behaviours together with additional assumptions.

1.1.1 Hybrid Automata
Hybrid automata [Alu+95; Hen00] extends the notion of guarded automata with the possibility to
handle continuous behaviours. Concretely, a hybrid automaton is a guarded automaton associated
with real-valued variables. Every location of the automaton is given a set of activities that describe
how these real-valued variables evolve, and an invariant, that enforces additional properties on the
evolving variables (e.g. evolution domain).

The semantics associated with a hybrid automaton can be expressed as a transition system
consisting of discrete steps (mode changes) and time steps (continuous variables changes without
mode change).

1.1.1.1 Formal Definition

Formally, a hybrid automaton H is a 6-uplet H = 〈Loc,Var ,Lab,Edg,Act, Inv〉 where:
• Loc is a (finite) set of locations or modes.

• Var is a (finite) set of real-valued variables. A valuation ν : Var → R is a function that
associates a real value to a given variable. We denote V the set of valuations.
A state σ = (l, ν) ∈ Loc × V is a pair consisting of a location and a valuation. We note Σ the
set of states.

• Lab is a (finite) set of synchronisation labels, including the special stutter label, denoted τ . In
the following, we identify synchronisation labels using the colon symbol (e.g. :synchro).

• Edg is a (finite) set of transitions or edges. Each transition e = (l, a, µ, l′) consists of a source
location l ∈ Loc, a target location l′ ∈ Loc, a synchronisation label a ∈ Lab and a transition
relation µ ∈ V 2. This set always contains at least the stutter transition el,τ = (l, τ, Id, l),
where Id = {(ν, ν) | ν ∈ V }.
A transition e = (l, a, µ, l′) is enabled if and only if, for a given state (l, ν), there exists some
valuation ν′ such that (ν, ν′) ∈ µ. The state (l′, ν′) is then called a transition successor of
state (l, ν).
Note that, given this definition, for any state (l, ν), the stuttering transition el,τ is always
enabled, and its transition successor can only be (l, ν) (meaning the stuttering transition does
not modify the variables and does not change the current location).

• Act is a labelling function that associates, to each location l ∈ Loc a set of activities. An
activity is a function f ∈ R+ → V that takes the time as input and yields a valuation of the
real variables of the automaton. Activities are required to be time-independent: if f ∈ Act(l)
is an activity of location l, then (f + t) the function such that (f + t)(t′) = f(t+ t′) (i.e. the
function that outputs the same value as f but offsets its argument by t) is also an activity of
l, that is (f + t) ∈ Act(l).
For any location l ∈ Loc, any activity f ∈ Act(l) and any variable x ∈ Var , we note
fx ∈ R+ → R the function of time that yields the valuation of variable x at any given time;
that is, for any t ∈ R+, fx(t) = f(t)(x).

• Inv is a labelling function that assigns, to every location l ∈ Loc a predicate on the valuation
of the variables called invariant; that is, Inv(l) ⊆ V .
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Semantics At any given time, the state of a hybrid automaton is given by a location l and a
valuation of its variables ν. Two types of state transitions are defined:

• with a discrete step that changes both the current location and the valuation of the variables;
this step is instantaneous.

• with a continuous time delay that changes only the valuation of the variables, according to
the activities of the current location.

The system remains in the same location as long as this location’s invariant (Inv(l)) holds. In
other words, a discrete transition must be triggered before the invariant is falsified.

A run of the hybrid automaton H is defined as a sequence (finite or not)

ρ : σ0 7→t0
f0
σ1 7→t1

f1
σ2 7→t2

f2
. . .

of states σi = (li, νi) ∈ Σ, time steps ti ∈ R+, and activities fi ∈ Act(li), such that, for all i ≥ 0:

1. the current activity starts with the current valuation as initial condition: fi(0) = νi.

2. the location’s invariant remains true: ∀t, 0 ≤ t ≤ ti, fi(t) ∈ Inv(li).

3. the state σi+1 is a transition successor of σ′i = (li, fi(ti)).

The state σ′i is called a time successor of σi. The state σi+1 is a successor of σi. We write [H]
the set of runs for the hybrid automaton H.

Based on these previous remarks, for any given hybrid automaton H, a transition system is
defined TH = 〈T ,Σ ∪ R+,→〉 where the step relation → consists of the transition-step relations →a

(when the system changes location) and the time-step relations →t (when time progresses), with
t ≥ 0:

(l, a, µ, l′) ∈ Edg (ν, ν′) ∈ µ ν ∈ Inv(l) ν′ ∈ Inv(l′)
(l, ν)→a (l′, ν′)

f ∈ Act(l) f(0) = ν ∀t′, 0 ≤ t′ ≤ t, f(t′) ∈ Inv(l)
(l, ν)→t (l, f(t))

Note that the stuttering transition ensures TH is reflexive (σ → σ for any σ).
There is a natural correspondence between the runs of the hybrid automaton H and the paths

through the associated transition system TH : for any states σ, σ′ ∈ Σ with σ = (l, ν) and for any
t ∈ R+:

∃f ∈ Act(l), σ 7→t
f σ
′ ⇔ ∃σ′′ ∈ Σ, a ∈ Lab, σ →t σ′′ →a σ′

Time-Deterministic Hybrid Automata A hybrid automaton H is time-deterministic if, for
every location l ∈ Loc and every valuation ν ∈ V , there is at most one activity f ∈ Act(l) with
f(0) = ν. We then denote this activity ϕl[ν].

For time-deterministic hybrid automata, the time-step relation is simplified: time always pro-
gresses by a given amount t ∈ R+ from state (l, ν) as long as this is permitted by the location’s
invariant:

∀t′, 0 ≤ t′ ≤ t, ϕl[ν](t′) ∈ Inv(l)
(l, ν)→t (l, ϕl[ν](t))
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Linear Hybrid Automata A hybrid automaton H is linear if:
1. the predicates for its invariants and for its edge’s guard are convex linear, i.e. conjunctions of

inequations that only involve a linear combination of the system’s variable;

2. the activities of each place is defined only by referencing the derivative of the system’s variables;
As discussed later, linear hybrid automata play an important role in model-checking, as the

reachability problem for linear hybrid automata is decidable [Hen+98].

1.1.1.2 Example

As a way to illustrate the definitions given, we present here a simple example taken from [Alu+95].
The objective is to control the temperature of a given room. The room presents a thermometer,

able to access the room’s temperature, and is hooked up to a heater that can increase the room’s
temperature. It is assumed that, when the heater is off, the room’s temperature decreases naturally.

The goal of the controller is to keep the room’s temperature between two constants, denoted m
and M (m ≤M). We note θ ∈ R+ → R the room’s temperature. The room is characterised by a
thermal constant K that represents the speed at which it changes its temperature, and the heater is
associated with a heating power, denoted h.

The rules of thermodynamics provide two differential equations for describing the temperature’s
behaviour:

• when the heater is off, the room’s temperature decreases: θ̇ = −Kθ

• when the heater is on, the room heats up: θ̇ = K(h− θ)

We model this system (controller + continuous behaviour of the temperature) using a hybrid
automaton. This automaton consists of two locations for the two modes of the system (heater on
and heater off), and switching to one another depends on the value of the temperature compared to
the given bound m and M .

The resulting hybrid automaton is presented in Figure 1.1.

l0
θ̇ = −Kθ
θ ≥ m

start
l1

θ̇ = K(h− θ)
θ ≤M

θ = m

θ = M

Figure 1.1: Hybrid Automaton for the Thermostat Example

1.1.2 Hybrid Programs
Hybrid programs [Pla08] is a language that allows modelling simultaneously the discrete and
continuous features of a hybrid system in the form of a program, inspired by process algebra. A
hybrid program expresses discrete features such as choices and repetition, and models continuous
behaviours at the same level, using differential equations.

It is associated with a powerful logic system, differential dynamic logic to express relevant
properties on hybrid programs such as safety or reachability.
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1.1.2.1 Formal Definition

Hybrid programs are defined syntactically using a recursive grammar. A hybrid program can consist
of:

• a sequence α;β of two hybrid programs α and β;

• a repetition α∗ for an arbitrary number of time of the hybrid program α;

• a non-deterministic choice α ∪ β, where the hybrid program α or β is executed;

• a test ?χ, i.e. an instruction that fails if predicate χ is false;

• a discrete assignment x := θ where a given variable (x) is assigned to a real-arithmetic term
(θ); non-deterministic assignment of a value to a variable is done with the notation x := ∗;

• the continuous evolution x′1 = f1(x1, . . . , xn), x′2 = f2(x1, . . . , xn), . . . & H, which set the
continuous variables x1, . . . , xn to evolve following the ordinary differential equation system
(f1, . . . , fn) while these variables are forced to remain within evolution domain H, characterised
by a predicate;

Note that the predicates used in a hybrid program rely on basic predicate logic, extended with
real arithmetic (basic real operations plus equality and inequality).

A hybrid system consists of two parts: the controller and the plant. Thus, hybrid programs are
written following the pattern

(ctrl; plant)∗

In other words, the hybrid program enacts the controller and then the plant, and repeat this
cycle indefinitely (i.e. interleaves the controller and the plant).

Semantics Similar to hybrid automata, the semantics of a hybrid program can be described using
transition systems. For a given hybrid program, we denote V the set of its variables. A state of the
hybrid program is a map ν ∈ V → R that associates a value to each variable of the system. We
denote Σ the set of states.

Given a term θ (i.e. a real formula possibly involving variables), we denote JθKν the value of θ at
the given state ν.

Given a hybrid program α, the transition relation ρ(α) that specifies which state ω is reachable
from state ν through an execution of α is defined as follows:

• (ν, ω) ∈ ρ(x := θ) iff state ω is identical to state ν except that ω(x) = JθKν ;

• (ν, ω) ∈ ρ(α;β) iff there exists a state µ such that (ν, µ) ∈ ρ(α) and (µ, ω) ∈ ρ(β);

• (ν, ω) ∈ ρ(α∗) iff there exists a n ∈ N and a finite sequence (µ0, µ1, . . . , µn) such that µ0 = ν,
µn = ω, and for all i, 0 ≤ i < n, (µi, µi+1) ∈ ρ(α);

• ρ(α ∪ β) = ρ(α) ∪ ρ(β);

• (ν, ω) ∈ ρ(?χ) iff χ is true in state ν (i.e. ν |= χ), and if ω is identical to ν;

• (ν, ω) ∈ ρ(x′1 = θ1, x
′
2 = θ2, . . . , x

′
n = θn & H) iff for some r ≥ 0, there exist a function

ϕ ∈ [0, r]→ Σ such that:
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– ϕ(0) = ν and ϕ(r) = ω,
– at any given time τ ∈ [0, r] and for any i, 0 < i ≤ n:

dJxiKϕ(t)

dt (τ) = JθiKϕ(τ)

(i.e. the differential equation for xi holds),
– at any given time τ ∈ [0, t] and for any variable y /∈ {x1, . . . , xn}:

JyKϕ(τ) = JyKϕ(0)

(i.e. the other variables are left unchanged),
– at any time τ ∈ [0, r], ϕ(τ) |= H
(i.e. the invariant H remains true1 at any time)

A run of the hybrid program α is any sequence of states (νi)i∈N such that (νi, νi+1) ∈ ρ(α). Such
a sequence is also called a trace.

Although hybrid programs tend to be monolithic, the recent work of [LP16] introduces a notion
of refinement for hybrid programs. It allows factorising development and proofs. The work of
[Lun+19] also extends the language and the proving process, allowing the definition of modules and
their composition, bringing a high level of modularity to the method.

1.1.2.2 Example

We illustrate the use of hybrid programs with an example borrowed from [Que+16]. Note that the
following system is also used as a case study for our work, and addressed in Chapter 5.

The problem is the following: a car, characterised by its position p, its speed v and its acceleration
a, needs to stop before the given point SP . Our goal is to devise a controller that allows the car to
move freely until it brakes to stop.

sys ≡ (ctrl; plant)∗
safe ≡ x+ v2

2B < SP
ctrl ≡ (?safe; a := A)

∪ (?v = 0; a := 0)
∪ (a := −B)

plant ≡ (x′ = v, v′ = a

&v ≥ 0 ∧ x+ v2

2B ≤ SP )
∪ (x′ = v, v′ = a

&v ≥ 0 ∧ x+ v2

2B ≥ SP )

Figure 1.2: Hybrid Program for the Stopping-Point Problem

Figure 1.2 proposes a hybrid program to address the case study. The system is encompassed in
the sys expression. Note that it takes the form discussed in the previous section.

1Here |= represent the standard first-order logic interpretation, with the addition of real predicates (=, ≤, etc.)
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The controller is a non deterministic choice where two branches are guarded: if it is safe to do
so, the controller causes the car to accelerate (a is assigned to a positive value). Otherwise, if the
car’s speed is 0, then its acceleration is also 0; this is simply because the car cannot go backward
(negative speed) just by braking. Finally, if it is unsafe and the car’s speed is not 0, or if none of the
other branch has been taken, then the controller issues a braking command to the car (a is assigned
to a negative value).

The plant is modelled by the differential equation ṗ = v, v̇ = a that governs the car’s dynamics.
It is associated to an evolution domain that characterises the area before the car in which it is still
safe to brake (based on the braking distance v2

2B ).
To check the correctness of this system, it is required to check that the predicate p < SP always

holds, either using model-checking or differential dynamic logic, as discussed later.

1.1.3 Event-Based Modelling
Event-based modelling takes the concept of hybrid automata further. It models hybrid systems
with a general state, modified by a set of events. In this way of modelling, the state consists of
both discrete and continuous variables. The former are handled by the controller, while the latter
represents the continuous behaviour of the plant of the hybrid system.

This event-based form of modelling is quite interesting and relevant, as it approaches the way
controllers are often programmed. They also focus on hybrid systems from the point of view of the
controller, rather than the system as a whole.

1.1.3.1 Continuous Action Systems

A good representative of an event-based (discrete) modelling framework is Back’s Action Systems
[BK89]. As it is already suited for real-time systems, Back extended it to Continuous Action Systems
[BPP00].

This approach adds to Action Systems a (finite) set of time-dependent variables, associated
with a set of possible actions. These time-dependant variables are in essence functions, defined in a
piece-wise fashion (note that, for instance “discrete” variables are in fact piece-wise constant). The
semantics of Continuous Action Systems is defined in a similar way as “traditional” Action Systems,
so discrete and continuous variables are treated in an uniform way.

Mapping of continuous action systems to action systems is not trivial, and has been addressed in
[MH06] by assigning stream-based semantics to the models – contrasting with the usual trace-based
semantics – together with data refinement rules, making it more complete and general.

This approach has numerous interests theoretically; in particular, it raises interesting questions
on continuous functions and their assignment as well as on refinement of continuous system in
general.

1.1.3.2 Event-B

Another typical modelling framework for event-based modelling is Event-B. This method has been
used directly to model hybrid systems, by incorporating continuous behaviours straight into an
Event-B model.

In [SAZ14], the authors expand on the idea developed for Continuous Actions Systems and adapt
it to the Event-B method. Discrete events (i.e. the controller part) are modelled and then, in a
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refinement, continuous features are added, considering that a discrete system is an abstraction of a
continuous one. The model, in particular, uses a variable now to model time explicitly, and a click
event that makes time progress.

Note, however, that these continuous features are only described using real arithmetic, not with
differential equations. To work around this limitation though, [SA14] proposes to study the analytical
solutions of these differential equations, obtained by the complementary use of Matlab/Simulink,
and integrate these solutions into the model.

In [BAB16], the authors use the theory plug-in [BM13] to incorporate new concepts into Event-B,
namely reals, continuous and monotonic functions. In this approach, the continuous behaviour is
modelled first; modes and then control strategy are later added. Similar to [SAZ14], time is modelled
using a variable now and an event click, and all the difficulty is to ensure “nothing bad” happens
in between two executions of click, which is why monotonic continuous functions are used. The
approach has been used on the case of a set of wind turbines.

This approach lays down the first steps of actually modelling hybrid systems, and shows the
problems that occur in doing so. It is sound and usable, but is also very limited.

Typically, time is handled in a discrete manner, like the clock of a controller. While this is closer
to the way controllers work in practice, clocks are in fact a low-level concept that does not belong to
such a high level of abstraction; different clocks, control and scheduling strategies are to be decided
on later refinements, rather than embedded from the first model.

Another problem of this approach is that it requires analytical explicit functions; whereas, in
practice, continuous behaviours are defined using differential equations.

1.1.3.3 Hybrid Event-B

The latter approach deals with continuity in a discrete way (time advances step by step). This means
the approach is tied to a somewhat low level of abstraction, where the system has been studied and
is close to implementation already. This hinders the interest of Event-B, but is necessary given the
specificity of this method. To overcome this issue, another way to proceed is to modify slightly
Event-B, its language and its semantics, in order to incorporate any required features in the method.

This is the path taken by [Ban+15] with Hybrid Event-B: Event-B is extended by the possibility
of defining continuous variables and so-called pliant events, which are not instantaneous events, and
allows the description of continuous behaviours with continuous functions and differential equations
[Ban13].

Time In Hybrid Event-B, time is dense and represented as an interval T ⊆ R+, partitioned in
a sequence of left-closed right-open smaller intervals (T = [t0, t1[∪[t1, t2[∪ . . .) such that discrete
events always occur exactly at ti, i ∈ N.

Concretely, time is modelled by a unique read-only variable simply denoted t (defined in the
TIME clause). Hybrid Event-B also allows the definition of clocks (defined in the CLOCK clause),
which are pliant variables that follow time (i.e. with the same slope, or with a derivative equal to 1).
Unlike time, clocks can be discretely set to an arbitrary value (e.g. reset).

Variables Variables can be of two distinct natures: mode variables, which are essentially discrete
variables and are treated as regular Event-B variables (and so are defined in the standard VARIABLES
section of the machine); and pliant variables, which can evolve both continuously or with discrete
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MACHINE M1
TIME t
CLOCK clk
PLIANT x , y
VARIABLES u
INVARIANTS

inv1 : x ∈ R , y ∈ R
inv2 : u ∈ N

EVENTS
INITIALISATION STATUS ordinary
WHEN

grd1 : t = 0
THEN

act1 : clk := 1
act2 : x, y := x0, y0
act3 ; u := u0

END

ModeEvent STATUS ordinary
ANY p
WHERE

grd1 : G(u, x, y, p, t, clk)
THEN

act1 : x, y, u, clk:|
BAP(x, y, u, clk, p, x′, y′, u′, clk′)

END

PliantEvent STATUS pliant
INIT I(x, y, u, t, clk)
ANY p
WHERE

grd1 : G(u, p)
COMPLY P(x, y, u, p, t, clk)
SOLVE Dx = Φ(x, y, u, p, t, clk)

y := E(x, u, p, t, clk)
END

Listings 1.1: Hybrid Event-B Syntax Demonstration

steps. They are considered to be continuous from the right and admit a limit from the left at any
point.

Their evolution is given, on any time interval [ti, ti+1[, by a differential equation (SOLVE clause)
with initial condition (I in the INIT clause of the event):

Dx = Φ(x, t)

where x is a vector of pliant variables and D is the general time derivative operator.
This equation is well-defined if for any x, Φ(x, ·) is Lipshictz-continuous on [ti, ti+1[ and measur-

able in t, so that the equation admits a unique solution that is continuous on the interval.
A pliant variable may also be assigned directly (e.g. x := E), which allows handling any

discontinuity in the variables’ evolution, ensuring that they are piece-wise continuous on each
interval.

As in Event-B, it is possible to define invariants on the system’s variables (INVARIANTS section).

Transitions As there is a difference between mode variables and pliant variables, Hybrid Event-B
differentiates between mode transitions or events, and pliant transitions.

In a mode transition (represented by a set of mode events, i.e. with STATUS ordinary, convergent
or anticipated), a set of variables (mode or pliant) is discretely assigned using a before-after predicate,
like it would be in a “normal” Event-B event. Such transitions occur at every ti and are timeless, in
the sense that they do not make time progress.

In a pliant transition (represented by a set of pliant events, with STATUS pliant), pliant variables
are given a specific evolution using a differential equation (SOLVE clause) with initial conditions
(I in the INIT clause of the event). A variable can be given a direct definition, in which case we
must ensure the function is (absolutely) continuous, so that it does not interfere with the system’s
semantics. Unlike mode transitions, pliant transitions are set to occur on every time interval [ti, ti+1[.
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Note that the guard of pliant events cannot relate to pliant variables or time/clocks, as it could
create discontinuities.

Pliant transitions may define a complying predicate (P in the COMPLY clause) or “before-during-
after-predicate” that is expected to remain true during the whole transition’s duration.

Interleaving The partitioning of time ensures that mode and pliant transitions alternate. More
precisely, there is always a mode transition enabled, and this transition enables a pliant transition,
which ends up enabling a mode transition again at some point, and so on. Note that this also means
that there can never be more than one mode transition occurring “at the same time”.

When a pliant transition is running, it is expected to be interrupted by a mode transition (when
one becomes feasible) in which case the transition is preemptive; but it can also put the system in a
state that is incompatible with the current pliant transition (that violates the complying predicate)
without any mode transition being enabled, in which case the system terminates. Also, a pliant
transition may run indefinitely without any mode transition occurrence.

Semantics Similar to Event-B, Hybrid Event-B models are given a trace-based semantics. From a
machine, a collection of traces is derived, which are a sequence (finite or not) of time points (ti)i∈N
such that a mode transition happens at every ti, and such that a pliant event is running on every
time interval [ti, ti+1[.

The semantics associated with a machine is the set of traces for which invariants (and complying
predicates) remain true.

Zeno Property The interval [ti, ti+1[ on which pliant events occur may be arbitrarily small,
leading to so-called Zeno behaviours, where the system performs an infinite number of jumps in
a finite amount of time. To avoid this, there shall exist a constant, δZeno such that, for all i,
ti+1 − ti ≥ δZeno.

The approach has been successfully applied to model real-world systems such as pacemakers
[Ban+14] or fuel pumps [Ban16].

Note that a similar approach has been studied, by the same author, with abstract state machines
[Ban+11; Ban+12].

The major advantage of this method is its high level of expressiveness. Thanks to the way
the language is defined, it is possible to describe complex systems, and to prove them using the
associated proof system.

However, the approach is not currently tool-supported.

1.1.4 Hybrid CSP, Hybrid Hoare Logic
The work of [Jif94; CJR95] proposes an extension of the Calculus of Sequential Processes (CSP)
[Hoa85] to handle hybrid system modelling. It can be used to model real-time and continuous
behaviours with message-based communication, thanks to the support of continuous variables and
differential equations, times constructs and interruptions.

Moreover, the recent work of [Liu+10b] defines Hybrid Hoare logic (HHL), extending the notions
of Hoare logic [Hoa69] to be able to express pre-/post-conditions and duration calculus on continuous
behaviours. At this level, the notion of differential invariant, issued from differential dynamic logic
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[Pla15], is introduced to extend the proof system. This way Hybrid CSP is associated to a complete
proof system that allows the proving safety properties on models using this formalism.

This approach has had good results on real-world systems, and has been successfully used to
model the level 3 of the Chinese Train Control System (CTCS-3) [Liu+10a].

Hybrid CSP inherits all the interesting features of CSP, and in particular refinement. As it
involves message-passing, it is also well-suited for studying cyber-physical systems in general.

However, the formalism lies at a mathematically low level and at a high level of abstraction,
making it difficult to use and to prove.

1.1.5 Synchronous Languages
When it comes to reactive systems (i.e. systems that respond to their environment), synchronous
languages allow programming controllers with important timing constraints and bounded resources.

A good example of synchronous language is LUSTRE [Hal+91]: it allows the definition of reactive
systems using data-flows, i.e. discrete sequences of values that are calculated on a per-step basis.
LUSTRE is well-known in the domain of aeronautics and nuclear energy.

However, it is a fairly low-level language, and is used directly at the (discrete) controller level,
meaning it cannot be used to design a hybrid system at higher level.

To overcome this, [BP13] proposed to extend LUSTRE and base it on non-standard analysis. The
resulting tool, Zelus, is able to express hybrid system directly with their continuous dynamics. Like
LUSTRE, it is associated with strong checkers and a very rich typing system to perform verification
on it.

1.1.6 Controller Annotation
In the real world, a hybrid system is implemented using an embedded computer running a program,
usually written in a low-level language such as C or Ada. From this observation, it appears logical
that the way to deal with such a system is to look at the code of its controller and prove its properties,
just like any other program.

C programs are analysed and proved using tools such as Frama-C [Cuo+12] and ACSL. The
program is annotated with properties (preconditions, postconditions, invariants, etc.), and Frama-C
is used to extract these annotations and to project them in Why [FM07] or Jessie [Mar07] as to
create intermediate models, and ultimately to generate proof obligations.

In [Bol+14], this approach is extended to allow the annotation of C controller programs. The
plant part of such programs is annotated with continuous elements such as differential equations and
continuous constraints, while their discrete part is annotated using discrete features. The resulting
information is then extracted with Frama-C and used to generate specific proof obligations.

The work of [Her+12] takes a similar approach using ACSL (ANSI/C Specification Language)
annotations, that are extracted to generate proof obligations in the Prototype Verification System
(PVS) proof assistant [ORS92].

Although this approach gives promising results and is methodologically sound, it is in practice
quite hard to deploy. In particular, this method is used on the already-defined system, the last
step of the design process; and writing annotation on the actual controller, after discretisation and
optimisation, which can be cumbersome.

Moreover, the proofs are hard to carry out in general, partly due to the low level of abstraction
that this method places itself at.
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1.2 Verification of Hybrid Systems
As for any system, the verification of hybrid systems with regard to some requirements is carried
by several approaches. Verification is carried out either using model-checking techniques (when
possible), or by a set of proofs, both supported by formal verification frameworks.

Compared to other, purely discrete systems, hybrid systems have specific properties that are
relevant to study. In particular, reachability properties are an important part of hybrid system
behaviour: can the hybrid system reach a given state in a set amount of time?

Reachability is at the core of many other properties. For instance, ensuring a system cannot
step outside of a given area is in fact equivalent to checking this area is unreachable. Similarly,
establishing that the given system will eventually visit the given target is also a reachability problem.

1.2.1 Model Checking-Based Techniques
In state-based modelling techniques (such as hybrid automata), hybrid systems are associated with
sets of licit traces, where transitions model either discrete changes in the controller or passing of
time. Consequently, a way to verify hybrid systems is to explore the traces associated with it, using
model checking [CGP99].

Standard model checkers are unable to handle continuous features, making them unfit to check
hybrid systems properly. Specialised tools, called hybrid model checkers are used to perform this
task. In general, hybrid model checkers rely on hybrid automata as their basic models, just like
model-checkers for dynamic systems often rely on discrete automata or transition systems.

The capabilities of these hybrid model checkers vary widely depending on the type of hybrid
automaton to be handled, its dynamics and the properties of its guards and invariants. Their main
goal is to establish the reachability properties of the system (either to show its liveness or its safety
if the property is negated).

1.2.1.1 Linear Hybrid Automata

In the case of linear hybrid automata (see Section 1.1.1), establishing reachability is decidable.
Tools such as HyTech [AHH96; HHW97] exploit this particularity: it proposes to model hybrid

systems with a collection of hybrid automata and to perform symbolic model checking using a
specification written in temporal logic. It is able to generate a counter-example trajectory when
the specification is violated. This approach is useful to establish safety and reachability. This tool
has been successfully applied on systems such as thermostat control and railroad gate controllers in
[AHH96; HHW97].

It is possible to relax the linearity constraint a bit and handle affine hybrid automata, where the
system’s dynamics consist of linear formulas on the variables and their derivative. PHAVer [Fre08]
is a tool able to exploit this particularity: it allows performing reachability analysis on affine hybrid
automata with additional piece-wise constant bounds on the variables’ derivative.

1.2.1.2 Approximated Model Checking

The limit between decidable and undecidable is easily reached for hybrid automata [Hen+98]: as
soon as the hybrid automaton has non-convex linear constraints, or if its dynamics cannot be
bounded by piece-wise linear envelopes, the reachability decision procedure is undecidable. These
constraints are very limiting, as it excludes a wide variety of hybrid systems with richer dynamics.
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To overcome this limitation, it is possible to relax the type of dynamics used in the hybrid
automaton, and to use approximation in the decision procedure to maintain its convergence. Of
course, the downside of such a technique is that the result is approximated, meaning it comes with
a slight error. Fortunately, depending on the system’s dynamics and constraints, it is possible to
bound this error.

Linear Dynamics For systems that rely on linear ODEs and convex-linear constraints, there are
powerful flowpipe calculation algorithms that are both efficient and generates an error that can be
easily bounded. Tools such as d/dt [ADM02] and SpaceEx [Fre+11] exploit these kind of algorithms.

Bounded Horizon In order to accept even richer dynamics (i.e. non-linear ODEs), it is possible
to make additional assumptions on the system’s variables. In Flow* [CÁS13] for example, by giving
an explicit bound for the variables and a definite time horizon (i.e. a specific time interval on which
to perform the calculation), it is possible to use similar over-approximation techniques, and thus to
give out an approximated reachability analysis.

Satisfiability Checking Tools such as iSAT [Frä+07] and iSAT-ODE [Egg+11] take a different
approach, based on satisfiability checking and automatic theorem proving. These tools are able
to process a boolean combination of non-linear arithmetic constraints involving transcendental
functions.

1.2.2 Proof-Based Techniques
Hybrid model-checking suffers from the usual flaws of model-checking in general such as state
explosion. It is also limited in terms of the types of dynamics that can be used in the system,
and often requires a fair amount of work upstream, to determine the system’s constraint or even
transform it into a model that can be processed by the model checker.

For complex systems, it can yield valuable counter-examples with regard to reachability, but
hardly any definitive positive result, such as invariant non-violation.

For this reason, verifying hybrid system often ends up relying on formal proofs.

1.2.3 Hybrid Programs and Differential Dynamic Logic
The hybrid program formalism (see Section 1.1.2) is associated with a powerful logic system,
differential dynamic logic [Pla15] (abbreviated dL), to reason on hybrid programs and to establish
properties on these programs.

Syntactically, dLboils down to first-order logic with real arithmetic, extended by two modalities
([·] and 〈·〉) that represent a quantification on the states reachable by the hybrid program:

• [α]ϕ means: for every state reachable by α, ϕ holds

• 〈α〉ϕ means: there exists a state reachable by α such that ϕ holds

The first modality is useful to capture safety requirements, while the second allows encoding
reachability properties.
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For example, a safety property ϕ for a hybrid program α with initial conditions I can be
established by proving the following sequent:

` I ⇒ [α]ϕ

For example, if we take the case study of the stopping car as given in Section 1.1.2.2, we can
establish the safety property of the system (p < SP ) by proving the following sequent:

` p < SP ∧ v = 0⇒ [sys] (p < SP )

Note that the initial conditions here are no speed and a position located before SP .

In Platzer’s approach, such a sequent is input in the KeYmaera X theorem prover [Ful+15;
Que+16]. It is then possible to prove it in a natural deduction way, using standard logic rules in
addition with some extra rules relating to hybrid programs and to dL’s modalities.

In particular, dL is associated to a form of induction on continuous dynamics [PC09a] that allows
the inductive proof of so-called differential invariants. Formally, given a dL formula ψ → [D &H]ϕ
where ψ is a pre-condition, ϕ is a post-condition, D is a differential equation with associated evolution
domain H, predicate F is differential invariant if:

1. it holds for the pre-condition: ψ ∧H → F

2. if it holds, then it holds after any run of the differential equation: F → [D &H]F

Also, note that KeYmaera X is able to perform calls to external tools, and in particular to
Mathematica [Ful+15], to obtain explicit solutions of differential equations, when available.

The approach has been successfully applied to various examples [Aré+12; Que+16] including
autonomous vehicles, train systems [PQ09], flight collision avoidance systems [PC09b], as well as on
mobile and surgical robots [Kou+13].

1.2.4 Event-B and Hybrid Event-B
The effort for modelling hybrid systems in Event-B (see Section 1.1.3.2) allows the generation of a
number of interesting proof obligations, while benefiting from the inherent specificity of Event-B,
and namely induction.

In the case of [BAB16], the authors are able to use the theory plug-in in the proof process to
establish several important properties of the system, in the particular the absence of zero-crossing (i.e.
nothing bad happens between two time points). This relies on the assumptions that the functions
handled are continuous and monotonic between two time points.

For Hybrid Event-B [Ban13; Ban+15], a set of proof obligations pattern is given in [Ban+15] in
a way similar to classical Event-B that allows deriving a number of proof obligations from any given
Hybrid Event-B model; they then need to be discharged. However, there is no tool to generate these
POs, and it involves continuous aspects that the standard Event-B prover cannot handle.

1.2.5 Isabelle/HOL and HHL
The work of [Imm18; IT19] proposes the formal verification of ODE solvers using the Isabelle/HOL
[NWP02] theorem prover. The idea is to propose a complete formalisation of the mathematics
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needed to reason on ODE properties and their resolution, while remaining at the right abstract level.
This allows the formalisation and verification of Runge-Kutta-based ODE solvers applicable to a
wide variety of ODEs, but also the verification of flow derivative and Poincaré maps computation.

The resulting concepts, proofs and certified algorithmes are embedded in the HOL-ODE-Numerics
tool. It has been applied to different cases studies [Imm+18; Imm+19].

In addition, Isabelle/HOL has been used to design a proof system of Hybrid Hoare Logic [Zou+14;
WZZ15] as presented in Section 1.1.4, which allows the tool to be used to prove Hybrid CSP models
[Jif94; CJR95].

1.2.6 Coq, Coquelicot and Annotated Controllers
It is possible, thanks to the work of [Bol+14], to annotate C controller programs with continuous
features (see Section 1.1.6). The author goes further by proposing a set of techniques to exploit these
annotations. Once extracted and projected in Jessie [Mar07] or Why [FM07], proof obligations are
generated, and discharged using Coq [BC04] and/or Gappa [BFM09] to handle issues with floating
point arithmetic.

These techniques are supported by an extensive theory of reals, functions and topology, formalised
in Coq in a way similar to Isabelle (see Section 1.2.5). This led to the creation of the Coquelicot
library [BLM15].

1.2.7 Prototype Verification System (PVS) and Annotated Controllers
In the same vein as the Coq-based approach, the work of [Her+12] proposes the verification
of Lyapunov-based stability on C-code annotations expressed by Hoare triples using ANSI/C
Specification Language (ACSL) annotations. These annotations are mapped to linear algebra
concepts formalised in PVS [ORS92]. This translation relies on a linear algebra library, developed in
PVS, that allows discharging control-based properties in PVS as proof obligations derived from the
Hoare-triples-based annotations of the C code using the theory interpretation mechanism [OS01].

More recently, in the same area, the work of Slagel et al. [SWD21] extended PVS by formalising
multivariate polynomials, semi-algebraic sets and real analytic functions for checking real analytic
solutions of differential equations, in particular for defining environmental constraints and control
properties for developing hybrid systems.

Last, we mention that in the context of the formalisation of complex Unmanned Aircraft Systems
(UAS), PVS has been used to develop the DAIDALUS (Detect & Avoid Alerting Logic for Unmanned
Systems) [Muñ+15] analysis of UAS behaviours [Muñ+16]. The developed models make extensive
use of theories based on real algebra to formalise vectors, coordinate systems (geodesic), distances,
etc.

1.3 Development Methodology
In addition to system modelling and verification, one key point in the area of hybrid systems and
more generally of cyber-physical systems (CPS) is the possibility to compose and transform systems,
and thus being able to build a complex system from a simpler system or a set of simpler systems.
This is especially important in CPS, which tend to be systems made of heterogeneous technologies
communicating with each other [Lee08].
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Several development operations exist at the system level, with the aim of facillitating development
or carry out important steps (e.g. discretisation) in a formally verified manner.

1.3.1 Composition and Decomposition
One of the first important tasks of system design is the possibility of composing existing systems
into a more complex one.

Composition can be done in a number of ways: merging two systems (variables, states and so
on), creating a complex system with communicating subsystems, chaining components, etc. In any
case, care shall be taken to ensure each component’s behaviour is compatible with the other, and
that the specific behaviour of each subsystem allows establishing a global invariant on the whole
system.

Hybrid Programs To that extent, the work of [LBT17; Lun+19] extends the hybrid program
formalism with two composition operators, making it possible to build a new system from two
existing systems. The authors have also extended the proof system in order to be able to decompose
the proof of the global system to (simpler) proofs for each component, plus some properties that
ensures the operator is used in a correct manner.

Differential refinement logic [LP16] also enables dL to refine a system and decompose it, in order
to ease the proving process and improve the reusability of its components.

Hybrid Event-B In the context of Hybrid Event-B, [Ban+17] proposes the possibility of defining
a whole system based on a multitude of components, specified by interfaces and connected with one
another. It gives a number of assumptions and requirements to determine the correctness of the
system, which leads to proof obligations that ought to be discharged.

At the machine level, refinement can be used to decompose a system, which eases the proofs by
decomposing them.

1.3.2 Approximation
In practice, real-life physical phenomena are described with differential equations that are generally
extremely complicated, without analytical solutions, and on which it is very hard to establish
important properties, such as stability or boundedness.

For this reason, it is very often needed to perform an operation called approximation. The goal
is to find a differential equation that is simpler, but which solution is very close to the one of the
complex differential equation (up to a maximum error). Establishing properties on the approximated
system allows deducing properties on the original one.

This technique is fundamental in control theory, since a lot of systems actually involve equations
for which no control can be (easily) found. In the domain of hybrid systems and formal methods, it
has also been studied.

In Hybrid Model-Checking For instance, in the work of [GP07; GJP08], the authors use
the concept of approximated (bi-)simulation [FGP07] and propose a method to model-check non-
linear hybrid systems. The principle is to find a linear hybrid automaton that is in approximate
(bi-)simulation with the system under study and to model check the former, taking advantage of
the convenient properties of linear hybrid automata (i.e. decidability).
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Approximate (bi-)simulation is obtained by demonstrating a particular form of approximation
between the differential equations of both systems, and by “revising” the guards and invariants of
the approximating hybrid automaton to make them stricter. This way, the authors establish that
the reachability results obtained on the approximating automaton apply to the original system.

1.3.3 Simulation and Bi-simulation Relation
Section 1.1 outlined that many formalisms for hybrid systems have trace-based semantics. For this
reason, it appears natural to investigate the use of simulation and bi-simulation [Mil89] relations, as
they are essential in this context.

Informally, a system simulates another if we observe that it “can do the same thing”. This
operation allows putting in relation systems that are equivalent to observation or specification,
meaning they can be substituted while retaining the system’s properties.

Hybrid Automata A common operation on hybrid automata is to substitute a system with a
simpler one that behaves in the same way, and to perform model-checking on this system. Note
that this is similar to approximation, except that the variables of each systems are equal (and not
approximately equal).

Techniques have been proposed by [HHW97] to build linear hybrid automata from non-linear
ones (when it is possible). For instance, a differential equation with initial conditions of the form
ẋ = g(x), x(t0) = x0 where g is integrable, can be simplified by adding a clock (i.e. t such that
ṫ = 1). The value of x(t+ ∆ t) can then be calculated from x(t).

The advantage of these techniques is to provide hybrid automata for which model checking is
more efficient, or even decidable in the case of linear hybrid automata.

1.3.4 Refinement
In terms of design, refinement is a powerful operation that allows moving from an abstract system
(e.g. a specification) to a more concrete one, while retaining all of its properties. Verification is
performed at each step, making it possible to design a system in a correct-by-construction way. The
advantage of refinement is that proofs are divided and factorised among several models, which makes
them usually simpler.

In the context of hybrid systems, refinement allows extending the capabilities of the controller
while keeping the exact same controlled continuous phenomena and retaining the system’s property.
Additionally, when refinement is applied to continuous behaviours, it can be used to alter the
physical phenomenon under control: precise it, lift non-determinism, or even approximate it with
other behaviours.

Event-B Refinement is at the core of the Event-B method. It allows moving from an abstract
system to a more concrete one by adding events or constraining existing features. When using
Event-B to handle hybrid systems, continuous and discrete features are modelled at the same level,
and refinement affects both these features: it allows precising the behaviour of the discrete controller,
but can also constraint the evolution domain or invariant of a continuous variable.

Event-B allows the definition of generic parameters for a model that can be instanciated
(e.g. substituted) later during refinement. In this setting, refinement serves as the basis of other
development operations, and in particular instantiation.



40 CHAPTER 1. DESIGNING SAFE HYBRID SYSTEMS

Hybrid Event-B The work of [Ban+15] (relating to Hybrid Event-B) extends Event-B refinement
to allow the refinement of continuous behaviours (i.e. pliant events). The idea is that the definition
of new pliant and mode events partition only one time interval (i.e. only occur on any [ti, ti+1[).
This means, in particular, that mode events occurring at ti and ti+1 in the abstract machine also
occur at the same time points in the concrete machine.

Hybrid Programs In [LP16], the authors extend differential logic by adding a new operators:
a relation on programs that essentially symbolises refinement. More formally, given two hybrid
programs α and β, β is said to refine α from state ν, and we note ν ` β ≤ α if and only if, any state
reachable by a transition of β starting from ν can also be reached by some transition of α, starting
from ν.

This powerful new operator is accompanied by a number of proof rules for composing it with
elements of hybrid programs and differential dynamic logic. It allows the decomposition of the proof
for a hybrid program, in particular by isolating subsystems, or simplifying parts of the program.

Note that the refinement operator appears at the proof level. It can be seen as a general “proving
technique” for establishing properties on a given system, with the help of other systems, but it is
not really a structural operation applied on hybrid programs.

1.3.5 Numerical Methods, Simulation and Co-simulation
One of the core problems of hybrid systems is to deal with the continuous part, often modelled using
complex differential equations. When a high level of certification is not needed, hybrid systems are
simply simulated, taking advantage of efficient numerical methods for dealing with such differential
equations (e.g. Runge-Kutta), even though these methods may introduce a substantial error.

Nonetheless, the possibility to simulate hybrid systems, in addition to verify them, is crucial
as to evaluate their behaviour during a run (the same way a discrete system should be tested).
For cyber-physical systems made of a set of heterogeneous components, co-simulation is especially
relevant: each component is simulated at its level, and simulations are aggregated and treated
together to give a global result.

In addition, the use of numerical or analytical solvers can ease the proof process. [SA14] proposes
to integrate the result obtained through Matlab/Simulink in the Event-B model, and to make the
proof with these results rather than to handle complex mathematical objects.

Similarly, KeYmaera X proposes a special rule when proving differential logic sequent refers to
Mathematica [Ful+15] in order to produce an analytical solution (when possible), i.e. an explicit
function, which is then handled in the proof process.

1.3.6 Discretisation
Hybrid system models feature physical phenomena modelled as continuous behaviours that are
convenient and easier to handle (from a modelling point of view); but in practice, controllers are
computers, i.e. fundamentally discrete systems, that do not support continuous behaviours.

More specifically, when it is implemented, the continuous aspects of the controller are discretised,
that is, sampled over time and turned into a sequence of events that the controller will be able to
provide. This operation is referred to as discretisation, and it is a key part of the design process for
hybrid systems.
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Discretesation raises several problems. In a purely continuous setup, any event is handled “right
on time”; but once discretised, if the event occurs between two discrete time points, it can end up
being detected slightly to late. This situation is referred to as the zero-crossing problem: upon
discretisation, the designer shall ensure that the sensing happens at the right time (either slightly
earlier or slightly later depending on the situation) as to preserve the system’s properties.

This operation often consists in proposing a clock (a variable whose evolution follows that of
time, i.e. ṫ = 1), together with a step length ε. Once the clock reaches ε (t > ε), it resets (t← 0),
and this corresponds to one discrete step. The idea is then to demonstrate that “nothing bad”
happens on [0, ε].

In such a system, any event is actually bound to the clock; we say the system is time-triggered
(in contrast with their usual event-triggered nature).

This technique is used in hybrid automata, for example to linearise a non-linear hybrid automaton
[HHW97]. It is also used in hybrid programs to model discretised systems [Aré+12; Que+16].

In [BAB16] and [SAZ14], the Event-B models proposed by the authors are in fact time-triggered;
but no link is made with a possible event-triggered system that would have been developed earlier.

1.4 Discussion
Model checking and its hybrid extensions is a well-known category of formal modelling approaches
dealing with hybrid systems; it has the advantage of handling the “hard part” (i.e. the continuous
features) in an automated way. However, its main drawbacks are the impossibility to operate on
any kind of continuous behaviour, or to sacrifice termination and exhaustive search.

Linear differential equations can be checked in a decidable way, but represent only a mere
proportion of real-world systems. However, linearisation may be applied to the system, although
this process is far from trivial, and introduces a deviation in the system’s behaviour, meaning that
results on the linearised system may not be true for the original one.

Proof-based approaches give a higher level of confidence, but are also far more difficult to put
into practice, as they require actual proofs on the continuous aspects of the system, which is rarely
easy to carry out. They also deal with features that are not included in model-checking, for instance
how to model time and continuous behaviour in a usable way.

Overall, our study of the state of the art allowed us to express a number of requirements associated
with formal methods for designing hybrid system, for handling both modelling and proof parts.
These requirements are summarised in the following.

Discrete – Continuous Integration A hybrid system encompasses both discrete and continuous
behaviours at the same level. A method for designing such systems must be able to handle both at
the same level, and to address their integration, i.e. being able to express both behaviours in the
model, but also being able to manipulate these behaviours in the verification process.

Extensibility and Theory Import Continuous behaviours come with their theories, languages
and properties. They bear a large variety of differences, specific theorems depending on the type of
their behaviours, and so on. It is not realistic (or at least not relevant) to build a unique formal
theory that encompasses each possible type of continuous behaviours. In particular, this means
that 1) the theories behind a formal method for designing hybrid systems must be extensible, so
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that it can model other needed new types of behaviours, and 2) theories formalising continuous
behaviours rely on mathematically sound results, modelled in the formal method and accompanied
by well-definedness requirements.

Verification and Scalability Verifying continuous behaviours requires specific techniques that
shall be incorporated in the formal verification process. In particular, when the number of different
behaviours to handle in the model increases, the verification effort shall remain reasonable, either
through the use of specific simplification or trimming techniques (approximation, (bi-)simulation,
etc.) or by allowing the designer to decompose the hybrid system (incremental design, architectures,
etc.).

Composition and Modularity Hybrid systems and more generally cyber-physical systems are
often made of multiple components, interacting with each other with different types of communica-
tion/interaction means (e.g. networks, direct connection, etc.). This pushes the idea that a formal
method for handling hybrid systems should allow some level of modularity and/or composition.
Indeed, it is possible to design several separate systems, establish properties on them and then be
able to integrate them together, using their properties to deduce global invariants on the whole
system.

Reusability In the same vein as modularity, hybrid systems rely on common types of components
and development operations (e.g. approximation, specific architectures, etc.). A formal method
may take advantage of the availability of such concepts, and offer the possibility to model parts of
the system as reusable components, and propose generic patterns, available for instantiation, to
formalise development operations.

Domain specific knowledge is also usually common to entire categories of systems. A formal
method should be able to formalise this knowledge and share it as an entity that can be (re)used in
several independent models that require this knowledge.

Animation In parallel to modelling and verification, it is useful to propose animation capabilities
for hybrid system models. Animation consists of (co-)simulating the various parts of the system
together (generally in an interactive way) as to evaluate its behaviour. As consequence, the system
can be “tested”, to understand its bugs or to explore the limitations of its requirements for example.
This is particularly important for hybrid systems, for which only the controller is simulated, and not
the higher-level model with continuous features.

Methodology Hybrid systems are associated with specific high-level development operations
and overall techniques (approximation, discretisation, etc.) that together constitute a methodology.
Such a methodology shall be supported by a formal method for hybrid system design, in the form
of specific composable formal patterns that support high-level development operations on hybrid
systems.

In the context of our work, we aim to propose a formal, generic, reusable and extensible framework,
based on the Event-B formal method, for designing and verifying hybrid systems. The purpose of
this framework is to address these requirements in a satisfactory and usable way.



Chapter 2

The Event-B Method

Our work relies heavily on the Event-B method [Abr10], a state-based, correct-by-construction
formal method for the design of complex systems. This method originated as an evolution of the
B method [Abr96], the aim of which is to ensure correctness between the system and its formal
specifications.

Event-B is a method: it offers a modelling and mathematical language, as well as a number of
principles and rules that allow establishing the conditions under which a given model is coherent
and safe with regard to a given invariant (i.e. proof obligations), as well as a mean to prove them.

The method is supported by the Rodin tool1 [Abr+10], an integrated development environment
that enables users to define and handle Event-B models (or components), generate the associated
proof obligations and allow proving them using automatic and/or interactive provers.

In the context of our work, the choice of Event-B is motivated by the following points:

• it is adapted to the design of systems in general; this makes it a solid foundation for the design
of hybrid systems;

• it is state-based (relying on events) that are appropriate for modelling hybrid systems (hybrid
automata is another example of a similar modelling approach);

• it revolves around the idea of incremental design: a system is built by progressively adding
features and performing verification on each step rather than on the entire system, distributing
and factorising the proof effort;

• it is correct by construction: a system is proved a priori, at the same time as its design, rather
than once it has been fully implemented;

• it is mathematically low level, relying solely on first-order logic and set theory; this means, in
particular, that it can be used to express any concept needed for modelling hybrid systems
(e.g. continuous mathematics);

• it is extensible, offering the capability to define and refer to customised types, constructors,
operators and proof rules;

1http://www.event-b.org/install.html
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In this chapter, we present the Event-B method, as it is the basis of our work. First, Section 2.1
gives an overview of the core principles of the method, while Section 2.2 enumerates the various
components it handles. Then, Section 2.3 presents the proof system associated to Event-B and
how it is used to establish model correctness. Finally, Section 2.4 details some of the operators of
Event-B, used throughout this manuscript, and Section 2.5 presents Event-B’s extension mechanism,
the theories. Finally, Section 2.6 gives a conclusion to the chapter.

2.1 Principles of the Method
Event-B is a formal method that proposes a way to represent systems with specific models. It defines
what a model is made of, how it can be interpreted (semantics) and how to ensure a number of
properties on it (e.g. consistency, safety, etc.) using a specific proof system.

In this section, we give a general overview of Event-B as a method, the objects it can handle and
the way to handle them.

2.1.1 Modelling
Formally, an Event-B model consists of a state, described as a set of variables valued in some
arbitrary set. This state is modified by a set of events that models the transformations that can be
applied to it.

An event may be guarded by a predicate on the state. During an “execution” (or run) of the
model, an event is enabled if and only if its guards are true with regard to the current state. Enabled
events can be fired, in which case the transformation they model is performed on the state.

Events define the transformation applied to the state under the form of a predicate that links
the value of the state before the event is fired, and its value after it has been fired. For this reason,
it is called a before-after predicate (BAP).

If we denote v the current state, we usually use v′ to denote the state after the event was fired.
The transformation is then written:

BAP(v, v′)

This can be read as: the state v becomes such that predicate BAP is true.

An Event-B model always contains a special event, usually called skip, that has no guard (i.e. is
always enabled) and does nothing (i.e. its BAP is >). This event is important in term of semantics
as well as for the refinement operation presented later.

Additionally, every model (provided it has a non-empty state) must provide a special initialisation
event that informally corresponds to the “first” event ever to be fired. It serves to initialise each
variables, and is thus crucial for the global correctness of the method, as it represents the base case
in the induction principle behind Event-B’s proof system (see Section 2.1.4).

Note that the before-after predicate of an initialisation must change every variables, and cannot
reference the previous value of those variables. For this reason, the BAP of an initialisation event is
simply written:

BAP(v′)

A model may define an invariant, which is essentially a predicate on the state. Informally, the
invariant must hold for any model execution; that is, it must hold after the initialisation, and must
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still hold after the firing of any (enabled) event, and so on. The invariant must be proven (see
Section 2.1.4).

2.1.2 Semantics
As often for state-based methods, Event-B is given a trace-based semantics [STW14]. Formally, a
model is associated to a transition system, i.e. generates a set of traces (sequences of states) where
each state is linked to the next by the firing of an enabled event. The semantics of a model is then
defined as the set of traces it generates, where the model’s invariant is true at every step.

In this setup, events are considered to be atomic: when an event is fired, it is executed as a
whole, and it corresponds to exactly one transition. Additionally, there can never be more than
one event fired at the same time: when multiple events are enabled simultaneously, one is chosen
non-deterministically. This is known as interleaving.

Note that, in practice, traces associated with a model are infinite, and potentially contains an
arbitrary number of skip event firing, which are essentially τ -transitions.

2.1.3 Refinement
Refinement is at the core of the Event-B method. The idea of refinement is to provide a formal
operation that allows transforming a model into a more precise one by adding details or restraining
existing behaviours, while retaining the properties of the original model. It can be seen as a designing
step that allows extending an existing machine, either by adding new behaviours or restraining the
existing ones, while retaining a number of properties that are true for this machine.

Formally, refinement relies on a simulation relation between the transition systems of the two
models involved in the refinement relation: given two Event-B models A and B, we say that B
refines A if B can do everything A can do (modulo some additional observation mapping).

Adding and Replacing Variables Refinement supports the addition of new variables to a given
model, or the replacement of some or all of the existing variables by other variables. For example, it
makes it possible to replace the direct access to some measurement (e.g. volume) by a calculation
and the access to a derived value (e.g. height).

When replacing abstract variables with new variables, a special invariant, which binds these two
sets of variables, need to be given, the gluing invariant. This invariant is fundamental as 1) proving
its correctness ensures the variables are always correctly linked together and 2) it will appear as
hypothesis in refinement-related proof obligations that greatly need it.

Constraining Events An abstract event may be refined with a concrete event, as long as it is
stricter (with regard to the abstract variables). In particular:

• if evtA is refined by evtC , then evtC cannot be triggered at a moment evtA would not be
(or, in some way, it cannot be triggered “more often” that evtA); this corresponds to guard
strengthening;

• if evtA modifies variable v, then evtC has to modify it in a way that is allowed by evtA; this
corresponds to simulation;

• if evtA does not modify variable v, then evtC cannot modify it (this does not apply to variables
introduced by the refining machine); this correspond to equality;
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Those three properties entail the simulation relation at the core of refinement: establishing them
demonstrates simulation (with no further proof needed).

Adding Events As discussed in Section 2.1.1, any machine has an implicit skip event that does
nothing and is always enabled. It is always possible to refine this event while observing the constraints
given in the previous paragraph, and thus to write a new event, as long as it does not modify any
abstract variable (property of equality since skip does not modify any such variable).

2.1.4 Verification
For any model, the method allows calculating proof obligations (PO) using substitution calculus,
that are predicates that must be proven (or discharged). Once every PO is proven, the model is
proved to be consistent and safe (with regard to its invariants), by virtue of the Event-B method.

2.1.4.1 Proof System

Event-B is associated with a proof system based on natural deduction to reason on first-order logic
with set theory. It consists of several proof rules such as case disjunction, implication elimination
(modus ponens), cut rules, as well as several rules for quantifier eliminations and for rewriting
set-theoretic formulas.

This system allows proving generated proof obligations and thus the consistency of the model,
through the discharging of its associated proof obligations.

In addition, the method supports, at the model level, proofs by induction. Formally, given a
property P, the induction principle states that, if:

1. P holds at initialisation

2. if P holds for some given state, then P is true after triggering any event

then P holds for the entire model, i.e. all states.
Model-level induction makes it possible greatly decompose the verification process: instead of

having to be proved on the entire system, the property is decomposed, and a proof obligation is
generated for each event. Event-B’s proof system is used to discharge these proof obligations and,
by virtue of the induction principle, they entail that the property holds on the entire system.

Moreover, refinement allows building a concrete system by adding features one by one, starting
with an abstract system. This design operation also allows proof decomposition: once the abstract
system is proven, it is sufficient to prove that the added feature does not compromise its consistency.
In other word, proofs is done for new features only, and not for the entire system again.

2.1.4.2 Types of Properties

We give here an overview of the various types of POs and other properties handled by Event-B.
Section 2.3 gives a more thorough presentation of the proof obligation system (and in particular
how they are generated).
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Well-Definedness An Event-B model presents different mathematical expressions, written in
Event-B’s specific expression language. This language is based on the syntax of first-order logic
with set theory. Like for many languages, a valid expression does not always makes sense; for this
reason, Event-B makes sure any expression written, in addition to being syntactically correct, is
well defined. A typical example of well-definedness is the arithmetic division a/b: this formula is
syntactically correct, but is well defined if, and only if b 6= 0.

Consistency In order to be correct, a model must be proven to be consistent, i.e. it cannot
behave badly or in an unexpected way. In particular, a model must enforce its invariants (i.e. must
not violate them). Additionally, since every event is expressed using a before-after predicate, it is
important to establish that any enabled event as a feasible action or, in other words, that if an
event is enabled, there must exist a new state (v′) such that its associated before-after predicate
(BAP(v, v′)) is true.

Refinement Correctness As explained in Section 2.1.3, when refining an Event-B model, one
must ensure guard strengthening, simulation and equality. Note that, thanks to the induction
principle, these three properties must be established for each event rather than for the whole system,
and the fact that they are true for each event demonstrates the correctness of refinement.

Convergence It is possible to demonstrate that some events of the model are executed a finite
number of times, thanks to the use of a variant (similarly to how a while loop is handled in imperative
programming). A variant is a variable valued in a lower-bounded set (typically N or P(S) for any S)
that must decrease (strictly) in convergent events. Using a fix-point property, the variant allows
establishing that convergent events occur a finite number of times (until the variant is re-initialised).

Note here that induction is used to demonstrate that the variant is decreasing in every convergent
event, and thus that it is globally decreasing in the model.

Additional Properties Invariants can be used to encode additional properties on a machine. For
instance, we can explicitly write the disjunction of every guard to model the fact that the system is
always progressing (i.e. deadlock-free). One can also write the two-by-two not-and of each guard to
ensure the system is deterministic as per its events, i.e. at any given time, at most one event is
enabled.

2.2 Modelling

We presented, in Section 2.1, an overview of the Event-B method at a fairly abstract level. We saw
that Event-B allowed the definition and handling of models, that encode the behaviour of systems
with variables and events.

In this section, we elaborate on the way models are written, by giving details on Event-B’s
structural language.

In practice, an Event-B model consists in several components: contexts and machines, linked
together using various special relations.
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2.2.1 Contexts
Contexts (see Listing 2.1) are the first type of Event-B component that encompasses a number of
fixed definitions used throughout the models. They allow encapsulating the constant elements and
hypotheses (axioms) of the systems, and gathering them in one specific element. They are also used
as a form of model parameterisation.

CONTEXT Ctx
EXTENDS Ctx ’ , . . .
SETS S , . . .
CONSTANTS c , . . .
AXIOMS A , . . .
THEOREMS T , . . .
END

Listings 2.1: Event-B Context

Extension Relation A context may extends one or more other contexts. As the name suggests,
this basically means the content of the extended contexts are directly accessible from the given
context, exactly as if the definitions were simply copied.

This relation can be used to delay some definitions: a context C1 may define a constant a ∈ N,
and an extending context C2 may append an axiom like a = 2; this is where contexts are especially
powerful, effectively allowing model parameterisation.

Carrier Sets Contexts may define abstract sets, also called carrier sets. These are basically
arbitrary sets of unknown size or structure, that serves as types in Event-B formula. It is to be
noted that carrier sets are “top-level” sets or types: a carrier set cannot be a subset of another set.

Constants Constant is the second type of element that may be defined in a context. They are
essentially literals that can be used throughout the models. They are required to be given a type
(using an axiom).

Axioms A context may gather a number of axioms, that are essentially predicates considered to be
true. Axioms may represent mathematics truths, types, or more generally the models’ hypotheses.

Note that Event-B does not check the consistence of axioms, meaning it is possible to define an
incoherent context. Model-checking can be used however to try and find out if a context is coherent.

Theorems A theorem is essentially like an axiom, but is required to be proved within Event-B.
Ideally, a model should have a limited number of axioms together with any number of derived
theorems, in order to prevent inconsistency.

2.2.2 Machines
While contexts are the static parts of models, machines represent the actual dynamic part. A
machine is defined by a state that can be modified by events.
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A machine is divided into two major parts: the machine’s header (Listing 2.2), which defines its
state and properties, and the events (Listing 2.3) that define its behaviour.

2.2.2.1 Header

MACHINE Mach
REFINES Mach ’
SEES Ctx , . . .
VARIABLES v , . . .
INVARIANTS I(v)
THEOREMS Tmach , . . .
VARIANT V (v)
EVENTS . . .
END

Listings 2.2: Event-B Machine (Header)

Relation to Other Components A given machine can relate to other Event-B components.
First it can see one or more contexts in order to access the elements defined in them and be able to
use their axioms in proofs. Second, a machine may refine at most one other machine. Refinement is
explored more thoroughly in Section 2.1.3.

Variables As said before, a machine consists of a state that is modified by events. This state is
expressed as a set of variables. Similar to how constants are defined, variables must be given a type,
using an invariant. A variable defined in a machine can be read everywhere; it can be assigned in
actions (contrary to constants, by definition).

Invariants A machine can define multiple properties that constitute its invariant. An invariant is
a predicate, generally involving the state (hence the notation I(v)), that must remain true in every
situation. Basic invariants simply give a type to the given variables, but a machine can define much
more complex properties, such as a specific domain for a variable or a particular equation linking
some variables together.

When an invariant is written, it needs to be proven. This is explained in depth in Section 2.3.

Theorems Theorems are special invariant that derive their correctness from the one of other
invariants. In other word, theorems are properties deduced solely on other invariants (and axioms)
and do not need to be proven inductively like general invariants do.

Variant A variant is a special quantity that allows establishing the termination of a given system
with regard to some events. Concretely, a variant is a function of the state that must be strictly
decreasing (for a given (partial) order, typically ≤ or ⊆) and lower-bounded (e.g. by 0 or ∅).

Termination proofs are briefly covered in Section 2.3.
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2.2.2.2 Events

Events are at the core of Event-B machines. They model the actual behaviour of the system, under
the form of transformations (i.e. assignments).

INITIALISATION
REFINES INITIALISATION
WITH w : W (v, w) , . . .
THEN v :| BAP(v′)

Evt
REFINES Evt’
ANY p , . . .
WHERE G(v, p) , . . .
THEOREMS Tevt(v, p) , . . .
WITH w : W (v, w, p, q) , . . .
THEN v :| BAP(v, v′, p)

Listings 2.3: Event-B Machine Event and Initialisation

Event Parameters An event may propose one or several event parameters, introduced with the
ANY clause. Informally, they can be seen as local variables or parameters that are filled in, one way
or another. An event parameter has to be given a type (just like constants and variables) using a
guard; further constraints allow guaranteeing those parameters to have the correct properties when
they are used.

In general, an event parameter is an element that is implicitly defined, and is provided by some
external means, which allows the simulation of the behaviour of a parameter passed on to a function
call, or of a “return value” taken back from that function.

Formally, they represent an universal quantification on events: an event with the clause ANY p,
q, ... actually model a set of events, for all value of p and q.

Guards We saw in Section 2.1.1 that an Event-B model consisted of guarded events. Guards
are syntactically introduced using the WHERE clause, followed by a predicate on variables and event
parameters (G(v, p)).

Actions As discussed in Section 2.1.1, the transformation associated to an event (also called action
of the event) is given using a before-after predicate. Actions are introduced using the THEN clause.

An event may define multiple actions, but a same variable cannot be changed in multiple action
simultaneously.

Note that, as a matter of simplification, Event-B provides two additional assignment operators,
similar to declaration and assignment operators found in programming languages:

• Point-wise assignment: set the value of variable v to be equal to term a:
v := a ≡ v :| v′ = a

This is the standard assignment found in several programming languages (C, Ada, etc.).

• Non-deterministic set membership: set the value of variable v to be some value taken in set S:
v :∈ S ≡ v :| v′ ∈ S

This is especially useful when we do not know the exact way a value is assigned, but are sure
about its type or subtype (e.g. variable declaration without initialisation in languages such as
C).
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Theorems Similarly to contexts and machines, an event can also define theorems. A theorem is
simply a guard that can be deduced from other guards (like a machine theorem is an invariant that
can be deduced from other invariants).

Initialisation As discussed in Section 2.1.1, an Event-B machine must define a special event
called initialisation. This special event sets the variables of the machine in their initial state. It
gives the machine’s initial state, and serves as the foundation of the inductive reasoning associated
with Event-B (see Section 2.3).

Refinement An event may refine another event from a refined machine, tying the behaviour of
this event to that of the refined one. Refinement is covered more in depth in Section 2.1.3.

Witnesses Witnesses are predicate that make the link between the variables and parameters of
refined machines and the one of the concrete one. Formally, when a variable or a parameter disappears
(i.e. present in the abstract model but no longer present in the concrete model), a predicate may be
defined, to make explicit the relation between those disappearing variables/parameters and the one
available in the concrete machine. Note that this can be seen as a “local gluing invariant”.

Witnesses are especially useful when establishing simulation, as they allow linking the states of
the abstract and the concrete machines.

They can also be seen as a way to instantiate variables and parameters: an abstract parameter p
may be refined by a direct value (e.g. p = 2). From this point of view, witnesses allow instantiating
existential proof obligations.

2.2.3 Example
We illustrate the use of the various elements presented in this section using a practical example.

The goal is to design a controller for a logistic automaton, that is able to grab unsorted, labelled
boxes and route them to their target loading bay. The automaton has a dedicated input from which
it retrieves the boxes, and various outputs in which it puts them. The system must 1) process every
boxes eventually (convergence) and 2) not lose any box (correctness).

First, we will abstract away the outputs of the automaton and consider there is only one global
target. A refinement later introduces a more advanced routing system.

2.2.3.1 Context

CONTEXT Automaton_ctx_0
SETS BOXES
AXIOMS

axm1 : finite(BOXES)
END

CONTEXT Automaton_ctx_1
SEES Automaton_ctx_0
SETS

BAYS
END

Listings 2.4: Logistic Automaton Contexts

Listing 2.4 gives the contexts for this development. The system handles boxes; we model them
using an abstract carrier set named BOXES. Note that this set must be finite so that we can
establish convergence (axm1).
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Another set is defined, in an other context extending the first one, that represents docking bays
(denoted BAYS). This set is used in a later refinement.

2.2.3.2 Abstract Machine

MACHINE Automaton_0
SEES Automaton_ctx_0
VARIABLES Input , Output , Transit
INVARIANTS

inv1 : Input ⊆ BOXES
inv2 : Output ⊆ BOXES
inv3 : Transit ⊆ BOXES
inv4 : Input ∪ Transit ∪Output = BOXES
inv5 : Input ∩Output = ∅ ∧ Input ∩ Transit = ∅

∧Transit ∩Output = ∅
thm1 : Input = ∅ ∧ Transit = ∅

⇒ Output = BOXES
VARIANT 2× card(Input) + card(Transit)
END

INITIALISATION
THEN

act1 : Input := BOXES
act2 : Output,Transit := ∅, ∅

END

Take convergent
ANY b
WHERE

grd1 : b ∈ Input
THEN

act1 : Input := Input \ {b}
act2 : Transit := Transit ∪ {b}

END

Put convergent
ANY b
WHERE

grd1 : b ∈ Transit
THEN

act1 : Transit := Transit \ {b}
act2 : Output := Output ∪ {b}

END

Listings 2.5: Logistic Automaton Abstract Machine

In order to establish convergence and correctness on the system, we first model it in a fairly
abstract way. The automaton just has an input and an output; it can take a box in the input, and
put a box in the output, provided it has taken it. We model the input and the output using two
simple variables that are subsets of BOXES, and we add a third variable that models the “inside” of
the automaton. The capability of the machine to take and put boxes from the input and in the
output are modelled as events. Note that initially, and for convenience, we consider the input to be
filled with the whole set of boxes to be processed (meaning the automaton and the output do not
contain any box).

In addition to the variables’ “type”, we also write additional invariants in order to establish the
machine’s correctness. In the end, the machine must have processed every boxes, i.e. every elements
of BOXES. This means that, initially, Input will contain the entirety of BOXES and, in the end,
Output will contain it. In the meantime, boxes can be in the input, in the output, or in transit inside
the machine, but must follow the rules that 1) there cannot be a box that is at multiple places at
once, and 2) a box must be in one of the three locations at any time. These rules are expressed as
invariants in the machine (inv4 and inv5 respectively).

We add a convenient theorem here, saying that, if the input and the automaton are both empty,
then it must be that the output contains every boxes (thm1). In conjunction with the convergence
property of the machine, this entails that the system does eventually process every box.

Last, to establish convergence, we need to provide a variant for the machine. The variant must
decrease strictly for both events, so that we can prove those two events are triggered a finite amount
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of time (until the variant is reset, but this will not happen in this setting). Since BOXES is finite,
so are all the variables, so we can use their respective cardinality.

A fairly trivial variant for the system is: v = 2 × card(Input) + card(Transit), that indeed
decreases in both take and put, and is a natural number.

The complete machine is given in Listing 2.5; note that it is correct (and the proofs are fairly
trivial).

2.2.3.3 Refinement

MACHINE Automaton_1 REFINES
Automaton_0

SEES Automaton_ctx_1
VARIABLES Input , Bay , Transit
INVARIANTS

inv6 : Bay ∈ BOXES 7→ BAYS
inv7 : Output = dom(Bay)

END
INITIALISATION REFINES

INITIALISATION
THEN

act1 : Input := BOXES
act2 : Transit := ∅
act3 : Bay := ∅

END

Take convergent REFINES Take
ANY b
WHERE

grd1 : b ∈ Input
THEN

act1 : Input := Input \ {b}
act2 : Transit := Transit ∪ {b}

END

Put convergent REFINES Put
ANY b , o
WHERE

grd1 : b ∈ Transit
grd2 : o ∈ BAYS

THEN
act1 : Transit := Transit \ {b}
act2 : Bay := Bay ∪ {b 7→ o}

END

Listings 2.6: Logistic Automaton Abstract Machine

Now that we have a correct abstract machine modelling our system, we propose a refinement
aimed at introducing some kind of routing system for the boxes (Listing 2.6). The principle of this
invariant is to replace Output with a fairly more complicated structure, for example a set of bays. A
bay is a particular place that holds boxes. A box can only be in one bay at a time. At this level, we
are not interested in how the boxes are actually routed; it is sufficient to say that they are, one way
or the other (using event parameters).

In this setting, the Output variable disappears and is replaced by Bay, which is a function that
associate a bay to each box. The replacement is formalised using a gluing invariant (inv7); here,
the set of boxes in the output is equal to the set of boxes handled by the Bay function, or in other
words its domain.

Note that, since the abstract machine is correct, if we establish the correctness of refinement,
then we can deduce that the machine is correct as well, with no additional proof.

2.3 Verification of Event-B Models
As indicated in Section 2.1.4, Event-B allows calculating proof obligations for any model, that
must be proven in order to establish that model’s consistency and correctness (with regard to a
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specification).
In this section, we present more thoroughly the proof obligation system: how they can be

calculated, what they represent, as well as how to model additional advanced properties.
In the following, we use the following notation (derived from the one used in Section 1.1):

• A denotes the conjunction of every axioms (and theorems) defined in the current context or
the contexts seen by the machine;

• I denotes the machine’s invariant (and theorems), or more generally the conjunction of all of
its invariants;

• v denotes the machine’s variables;

• p denotes the event’s parameters;

• G denotes the event’s guard(s);

• W denotes the event’s witness(es); in particular, for any x (variable or parameter), W (x) is
the witness restricted to x;

• BAP denotes the event’s before-after predicate;

• when applicable, we use the superscript A or C to denote a particular object from the abstract
(resp. concrete) machine; for instance: IC is the concrete machine’s invariant (note that we do
not use superscript for witnesses as they only appear in concrete machines);

2.3.1 General Proof Obligations
The first category of proof obligations presented relates to the general use of Event-B. In particular,
they are here to ensure that what is written is correct: well-formed expression and correct theorems.

2.3.1.1 Well-Definedness

One of the most recurrent POs to be found in models relates to well-definedness (or WD). Event-B
always makes sure the expressions and predicates written in the model makes sense, or, in other
words, are well-defined.

Basically, any place where a predicate can be written may issue a WD-type proof obligation.
Such POs are generally of the form:

Γ⇒ L(a)

Where Γ is a conjunction of hypothesis taken from the model (axioms, invariants, guards, and
so on) depending on where the expression is written, and L(a) is a predicate that models the
well-definedness of expression a.

2.3.1.2 Theorems

Another common type of PO arises from the use of theorems. Theorems can appear in four places
(namely theories, contexts, machine header and events), and they generate a proof obligation that
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consists basically in proving them. For instance, if we have a set of invariants I1, I2, etc. and a
theorem T , the associated theorem (or THM) PO will be of the form:

A ∧ I1 ∧ I2 ∧ . . .⇒ T

And similarly with axioms (A1 ∧A2 ∧ . . .) and guards (G1 ∧G2 ∧ . . .).
Note that theorem proofs are not done inductively, unlike most other proofs. A theorem is

deduced directly from other properties (invariants, guards, axioms, etc.).

2.3.2 Machine Consistency
When a machine is written, it is required to prove that it is consistent. A machine is consistent if 1)
the actions of the enabled events are feasible and 2) if the invariants are never violated by any run.

In other words, the transition system associated with the machine is consistent, and each state
reachable abides by the machine’s invariant.

2.3.2.1 Feasibility

As mentioned in Section 2.2.2.2, an event contains a set of actions, expressed under the form of a
before-after predicate. Since it is a predicate, however, it may not always be satisfiable; in the case
where it is unsatisfiable, and if the event is triggered anyway, it results in an unspecified behaviour,
and is not allowed in Event-B.

The property that a given before-after predicate is satisfiable, under the assumption that the
event to which it is associated is enabled, is called feasibility (FIS). It is of the general form:

A ∧ I ∧G ∧W ⇒ F(a)

Where F(a) denote, the feasibility of expression a.
In the general case of the before after predicate, feasibility F(a) consists in proving the existence

of a value that satisfies the predicate, in other words:

A ∧ I ∧G ∧W ⇒ ∃v′ · BAP(v, v′, p)

In the particular case where the before-after predicate is a point-wise assignment, the feasibility
is easily automatically proved. In the case where it is a non-deterministic set membership assignment
v :∈ S, it is sufficient to prove that S is not empty.

Feasibility also appears when writing witnesses: since a witness is a predicate that links abstract
and concrete variable/parameters, it is required that they are satisfiable; otherwise the concrete
event would be feasible while the abstract one is not. This is known as witness feasibility (WFIS),
and the general PO has the following form:

A ∧ I ∧G ∧ BAP(v, v′, p)⇒ ∃x ·W (x)

2.3.2.2 Invariants

Invariant proving is the core of establishing a machine’s consistency. Invariants are used in a model
to denote the system’s requirements, for instance safety, correctness and so on.
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An invariant proof is of the following form:

A ∧ I ∧G ∧W ∧ BAP(v, v′, p)⇒ I [v′/v]

In other words, we want to establish that I remains true once it has been substituted ([. . . /v])
with the new value of the variables (v′) obtained using the BAP. This basically represents the
inductive step of an inductive proof.

In the particular case of the initialisation, variables does not have a previous value, and the
invariant cannot be considered true already; this is called invariant establishment (or base case of
the inductive proof) and the PO is of the form:

A ∧W ∧ BAP(v′)⇒ I [v′/v]

Note that the BAP cannot reference the previous value of v, since it does not exist.

2.3.3 Refinement Correctness
Refinement is associated to correctness proof obligations, that need to be proven. These POs follow
the discussion of Section 2.1.3.

2.3.3.1 Guard Strengthening

An event evtC with guard GC refining an event evtA with guard GA must not be enabled when the
latter is not enabled. This means that an event that is being refined cannot occur “more often” in
the new machine (however it can happen less often).

In practice, this basically means that, if GC is true (i.e. evtC is enabled) then it must be the
case that GA is true as well (i.e. evtA is enabled). Formally, this yield POs of the form:

A ∧ IA ∧ IC ∧W ∧GC ⇒ GA

2.3.3.2 Action Simulation

If two events evtC and evtA with evtC refining evtA both modify the same variable v, then the
modification in evtC must be allowed by evtA, or in other word the transformation in evtC is not
outside of the range of behaviours described initially by evtA.

This is called action simulation (SIM), and we see how it is closely tied to the general concept of
simulation. Its general form is the following:

A ∧ IA ∧ IC ∧GC ∧W ∧ BAPC(v, v′, pC)⇒ BAPA(v, v′, pA)

We use v without superscript to represent the fact that these variables are common to both
abstract and concrete machines.

In the case where a new event is defined in the concrete machine, this event in fact refines skip
(see Section 2.1.1). This particular event has before-after predicate > (i.e. it does not affect the
machine’s variables).

When refining skip, the right-hand side of the implication in the SIM PO is equal to >, meaning
simulation is always true for new events.



2.3. VERIFICATION OF EVENT-B MODELS 57

2.3.3.3 Preserved Variables

In addition to action simulation, variables that are not modified by an abstract event must not
be modified by any refining (concrete) event. Concretely: if abstract event evtA does not modify
variable v, and if concrete event evtC refines evtA, then it must not modify variable v as well.

Note that, in most cases, v is a variable that disappears during refinement, or that is simply
not referenced in the event. However, this PO arises when an event is added that modifies abstract
variables; indeed, such an event would refine skip (see Section 2.1.1) which, by definition, does not
modify any variable.

Other than this specific case, the preserved variable proof obligation (EQL) is often proven
automatically. Its general form is the following:

A ∧ IA ∧ IC ∧W ∧ BAPC(v, v′, pC)⇒ v′ = v

2.3.4 Convergence and Variant
Event-B allows the formalisation of specific properties of machines at the execution level, such as
the fact that some events are executed a finite number of times. To this extent, it is possible to
define a variant in the Event-B model, which then allows establishing the convergence of certain
events. The principle is as follows: a variant is defined for the machine, which is an expression (in
general a natural number or a finite set) derived from the machine’s state. A set of events is denoted
as being convergent, which means that they cause the variant to decrease (strictly).

The variant is lower-bounded by construction (by 0 if it is a natural number, or by ∅ if it is a
set), and given it is strictly decreasing in some events, it follows that it will reach this bound at
some point (modulo interleaving with fairness hypothesis, irrelevant here).

The variant acts as for “counting” the number of times that convergent events are being executed;
once it reaches its fixed point, by definition, it no longer moves, meaning that no more triggers of
those events will happen (unless it is reinitialised by another, non-convergent event).

2.3.4.1 Variant Consistency

In the case where the variant is a set (with its associated partial order ⊆), we need to prove that it
is finite. If it is not, then it can be indefinitely decreasing, meeting its lower bound after an infinite
number of steps, which is incompatible with the idea of termination.

The proof obligation (denoted FIN) is the following (with V the considered variant):

A ∧ I ⇒ finite(V )

Note that finite is a special predicate on sets that is true if and only if its parameter is a finite
set.

In the particular case where the variant is a number, it has to be proven that it is a natural
number, i.e. an integer greater than or equal to 0. If it can be negative, we find ourselves in the
same situation as for set variants: we can decrease indefinitely (Z having no bound) and cannot use
the fixed point theorem.

This proof obligation (denoted NAT) has the form:

A ∧ I ⇒ V ∈ N
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It may also be the case we need to prove this PO for every convergent event, since they may use
arithmetic that could render the variant negative. Typically, we hence need to prove:

A ∧ I ∧G⇒ V ∈ N

This PO means that, if the event is enabled, then the variant cannot become negative.

2.3.4.2 Variant Decreasing Monotony

The other main particularity of a variant is that it is strictly decreasing in the particular event
(tagged as convergent). We have two cases here depending on the type of variant used. For sets, we
use the inclusion partial order (⊆); for natural numbers, we use the classical arithmetic order (≤).

The PO for a set variant is of the form:

A ∧ I ∧G ∧ BAP(v, v′, p)⇒ V [v′/v] ⊂ V

Informally, this can be understood as: the value of the variant when replacing variable v by its
new value is a strict subset of its former value.

Likewise, we can give the PO for a natural number variant:

A ∧ I ∧G ∧ BAP(v, v′, p)⇒ V [v′/v] < V

This means that the value of the variant when replacing variable v by its new value is strictly
lower than its former value.

2.4 Important Operators and Mathematical Concepts
Event-B features an expression language, used to build predicates and expressions used in the models.
This language is based on set theory and first order logic, and in particular, as for the set-theoretic
part, is built on 3 basic constructs: sets, power sets (P(. . .)) and Cartesian products (. . .× . . .).

From these three constructs, together with additional predicates, it is possible to build higher-
level structures needed in the models. To ease the use of such high-level concepts, Event-B proposes
a set of particular operators, allowing the handling of relations and functions.

In this section, we present some of these operators, extensively used throughout our work.

2.4.1 Relations
The basic structures we can build in set theory are relations. A relation is a subset of a Cartesian
product, interpreted as a mapping between some elements of two sets.

Definition 1 (Relation). Let E and F be two sets. A relation r between E and F is a subset of
E × F (r ⊆ E × F ). We note E ↔ F the set of every possible relations between E and F .

Additionally, we define elements of a relation as mappings; they are essentially pairs of the
underlying Cartesian product.

Definition 2 (Mapping). Let r ∈ E ↔ F be a relation. Given two elements x ∈ E and y ∈ F , we
say x and y are in relation by r or that x maps to y by/in r if and only if (x, y) ∈ r.
This can also be written x r y or x 7→ y ∈ r
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A relation can be seen as a list of mappings between elements of E and F , or in other words as
a list of pairs of the Cartesian product E × F . It is possible to retrieve the elements mapped by r
to the elements of a particular subset of E using the relational image operation.

Operator 1 (Relational Image). Let r ∈ E ↔ F be a relation. Let S ⊆ E. The relational image
of S by r is denoted r[S] and defined as so:

r[S] = {y ∈ F | ∃x, x ∈ S ∧ (x, y) ∈ r}

Operators are available to retrieve interesting information about relations, namely which elements
are mapped by it in general:

Operator 2 (Domain and Range). Let r ∈ E ↔ F be a relation. The domain of r, denoted
dom(r), is the set of elements of E that are mapped by relation r:

dom(r) = {x ∈ E | ∃y ∈ F, (x, y) ∈ r}

Likewise, the range or image of r, denoted ran(r), is the set of elements of F that are mapped by
relation r:

ran(r) = {y ∈ F | ∃x ∈ E, (x, y) ∈ r}

Relations can also be processed by operators to elaborate other relations.

Operator 3 (Inverse). Let r ∈ E ↔ F be a relation. The inverse of r, denoted r−1, is a relation
in F ↔ E such that:

r−1 = {(y, x) ∈ F × E | (x, y) ∈ r}

Equivalently, we have (y, x) ∈ r−1 if and only if (x, y) ∈ r.

Operator 4 (Backward Composition). Let r ∈ E ↔ F and s ∈ F ↔ G two relations. The
backward composition of r and s, denoted s ◦ r is a relation of E ↔ G such that:

s ◦ r = {(x, z) ∈ E ×G | ∃y ∈ F, (x, y) ∈ r ∧ (y, z) ∈ s}

Intuitively, backward composition consist in “applying” relation s to every values of relation r.

2.4.2 Functions
Functions are particular cases of relations, with the additional constraint that any value of the
domain of a function is mapped to one unique value of the co-domain.

Definition 3 (Partial Function). Let E and F two sets. f ⊆ E × F is a partial function over
E, valued in F , and we note f ∈ E 7→ F if and only if f is a relation and has the unique mapping
property:

∀x ∈ E,∀y1, y2 ∈ F, (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2

Functions defined that ways are said to be partial, because they are not required to provide a
mapping for every point of their domain (meaning there may exist values for which the function is
not defined). Following this remark, it is possible to define total functions.
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Definition 4 (Total Function). Let f ∈ E 7→ F a partial function and S ⊆ E some set. f is said
to be total on S, and we note f ∈ S → F , if it maps every element of S, i.e.:

∀x ∈ S, ∃y ∈ F, (x, y) ∈ f

Total functions are closer to the mathematical idea of a function (whereas partial functions are
in essence very fit to describe programming functions). This is a very strong and restrictive property
a function can have, that brings a lot of very useful side effects (but also a little bit of additional
proof effort). In our work, most continuous functions are total on a given interval, simply because
intervals are compacts, which gives useful properties to the function.

Definition 5 (Functional Image). Let f ∈ E 7→F a partial function and x ∈ dom(f). The functional
image of x by f , denoted f(x), is the unique value mapped to x by f (i.e. (x, f(x)) ∈ f).
This can also be seen as the only element of the set f [{x}].

In addition, functions may be composed using various useful operators. Since they are relations,
any operator that can be applied to a relation can be applied to a function; but some operators
actually do preserve its operands’ properties.

Operator 5 (Direct Product). Let r ∈ E ↔ F and s ∈ E ↔ G two relations. The direct product
of r and s, denoted r ⊗ s is a relation of E ↔ (F ×G) such that:

r ⊗ s = {(x, (y, z)) ∈ E × (F ×G) | (x, y) ∈ r ∧ (x, z) ∈ s}

The direct product is a way to “bind” two relations together and make one with it. When used
on functions, it has the property to yield a function itself, which domain is the intersection of the
two operands’ domains. In the context of our work, this operation is used to build a single function
from two separate functions, which allows using them in operators than accept only single functions
(this effectively gives the possibility to build function systems, or kinds of vectorial functions).

Operator 6 (Domain Restriction). Let r ∈ E ↔ F a relation and S ⊆ E some set. The domain
restriction of r on subset S, denoted S C r, is a relation of E ↔ F with the same mappings as r
but restricted to pairs which left element is in S. Formally:

S C r = {(x, y) ∈ E × F | x ∈ S ∧ (x, y) ∈ r}

The domain restriction operator is used to “focus” on a specific part of a relation (or a function).
This operation preserves the nature of the relation, meaning if r is a (total) function, then S C r
is a (total) function as well. This is fundamental in our work since it makes us able to effectively
splice functions: we can take parts of functions and build a coherent function with them.

2.5 Theories
The expressions found in Event-B models are based on set theory and first order logic. This low
mathematical level allows, in theory, building any required mathematical structure (provided it is
compatible with ZFC axioms); in practice however, complex structures are difficult to handle and
define, mostly because we can only handle sets, functions and relations, and that components offer
no form of genericity whatsoever.
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To overcome this limitation, an extension has been proposed to Event-B [Abr+09; BM13], under
the form of a new type of component called theories. This extension has been implemented in the
Rodin platform as a plug-in, usually called theory plug-in2.

Severall Event-B theories have already been defined and made available, including theories for
lists, sequences, binary trees, Peano arithmetic, reals, fix points, closures, and so on. They form the
so-called standard libraries of Event-B theories3.

2.5.1 Theory Description
Formally, a theory is a component that lets us define a set of types, operators and associated properties,
either directly or algebraically (using axioms). A theory may define genericity parameters, effectively
enabling its definition to be used on any Event-B type.

The global structure of a theory is given in Listing 2.7.

THEORY Th
IMPORT Th1 , . . .
TYPEPARAMETERS E , F , . . .
DATATYPES

Type1(E , . . . )
constructors
cstr1(p1 : T1 , . . . )
. . .

OPERATORS
Op1 <nature> (p1 : T1 , . . . )

well−definedness WD(p1, ...)
direct definition D1

Op2 <nature> (p′ : Type1(...) , . . . )
recursive definition

case p′

cstr1(...) => DC1
cstr2(...) => DC2
. . .

AXIOMATIC DEFINITIONS
TYPES A1 , . . .
OPERATORS
AOp2 <nature> (p1 : T1 , . . . ) : Tr

well−definedness WD(p1, ...)
AXIOMS A1 , . . .

THEOREMS T1 , . . .
PROOF RULES

Metavariables m1 : Tm1 , . . .
Rewrite Rules
R1 : LHS1(m1, . . .)
PC1 ⇒ RHS1(m1, . . .)
PC2 ⇒ RHS2(m1, . . .)

. . .
Inference Rules
I1 : H1(m1, . . .), . . . ` C1(m1, . . .)
. . .

END

Listings 2.7: Event-B Theory

Type Parameters A theory can define none, one or several type parameters, that are essentially
genericity parameters. When writing the theory, this allows the access to an abstract arbitrary type,
typically for writing operators and properties that are agnostic of the sets they handle.

Upon using the theory, these type parameters are to be substituted or instantiated with actual
Event-B types (that is, a carrier set, a type from a theory, a power set of a type or a Cartesian
product of two types).

Custom Types One of the core features of theories lies in the ability to define special types. The-
ories offer different ways of creating types, and notably parameterised types (using type parameters),

2http://wiki.event-b.org/index.php/Theory_Plug-in
3https://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library

http://wiki.event-b.org/index.php/Theory_Plug-in
https://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library
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that are then accompanied by a set of operators and axioms, and in some cases constructors and
destructors. Theory types behave like any other Event-B type; in particular, they are non-empty
and maximal, and can be composed (using Cartesian product and power set) to build complex
Event-B types used in expressions.

Explicit Data Types The first kind of types that can be defined in a theory are data types. Such
types are complex composite types (made of other types), defined in a way similar to algebraic data
structures (in functionnal programming for instance), allowing the definition and handling of sum
and product types. Data types may be polymorphic (as they can reference type parameters).

A data type must define one or several constructors, special operators that allow building an
inhabitant of said type. Those constructors may have parameters making reference to other types
(specific or parametric), and those parameters themselves define destructors, i.e. operators that can
retrieve information from a value of the type.

As in type theory, data types may be used in a number of ways: the multiple constructors
are used to define sum types (e.g. enumerations, options, inductive data-types) and the multiple
parameters/destructors for each constructor allows for product types (e.g. records). Note that
inductive data types must define a base case for well-foundation.

Abstract Types Additionnally, a theory allows defining abstract types, that are types without any
constructors. In essence, those types are similar to carrier sets in Event-B contexts, with the
advantage that they can be accompanied by axioms, operators and theorems in the theory.

Operators A theory may define operators in two ways: direct (in the first OPERATORS section of
theory) and algebraic (in the OPERATORS subsection of the AXIOMATIC DEFINITIONS section).

An operator is identified by a unique name, a nature and optional parameters. For algebraic
expression operators, a type is required since it cannot be inferred, unlike for direct definition where
an explicit expression is given.

Operators may define well-definedness conditions, predicates that are the preconditions under
which the operators can be used. This is used by Event-B when establishing well-definedness
requirements and proof obligations (see Section 2.3.1.1).

Directly defined operators are required to give a substitution to the operator (possibly depending
on different cases of constructors if some parameters are data types).

Operator Nature An operator have one of two natures: predicate or expression. A predicate operator,
when used, yields a predicate, that is an object that can be composed using boolean operators (∧,
∨, ¬, etc.) and used in axioms, invariants, guards, witnesses, etc. An expression operator, when
used, yields a typed object that can be used in formulas, to build more complex expressions such as
sets, functions and so on.

Axioms Theories can make available axioms, in exactly the same way as contexts. Those axioms
generally specify the properties of axiomatic operators, or model particular properties that are true
but are not to be proved. Those axioms can then be used in proofs. One of their major strength is
that, thanks to type parameters, these predicates are polymorphic, meaning they can be used with
any Event-B type upon deployment.

Note that the only thing that has to be proven on these axioms is their well-definedness; in
particular, consistency of axioms is not checked.
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Theorems Similarly to contexts, theories can define theorems (although they are in their own
separate sections). Theorems are predicates that can be used later in proofs. Unlike axioms, they
have to be proved in order for the theory to be considered “correct” (modulo consistency).

Proof Rules Finally, theories allows defining specific proof rules, or in other words to extend the
prover’s capabilities by adding new deduction or transformation rules to it. Proof rules come in two
fashions in the theory: rewrite rules allow substituting an expression with an equivalent one, and
inference rules allow deducing a fact based on special hypotheses.

Like for theorems, proof rules must be proved.

2.5.1.1 Example

We show how a theory is defined in practice using a small toy example, that expands on the logistical
automaton presented in Section 2.2.3. The goal is to formalise box labels, so that we can specify the
routing mechanism introduced in the refinement of the automaton machine. The theory is shown in
Listing 2.8.

THEORY BoxLabel
TYPEPARAMETERS T , S
DATATYPES

BoxLabel(T ,S )
constructors
invalid
label( labelId : N , target : T , hri : S )

OPERATORS
isValid predicate ( l : BoxLabel(T, S))

recursive definition
case l

invalid => ⊥
label(i, t, h) => >

SetHRI expression ( l : BoxLabel(T, S) , newHri : S )
well−definedness condition isValid(l)
direct definition label(labelId(l), target(l),newHri)

AXIOMATIC DEFINITIONS
TYPES BarCode
OPERATORS

encode expression ( l : BoxLabel(T, S)) : BarCode
well−definedness condition isValid(l)

decode expression (b : BarCode) : BoxLabel(T, S)
AXIOMS

axm1 : ∀i, t, h · i ∈ N ∧ t ∈ T ∧ h ∈ S ⇒ isValid(decode(encode(label(i, t, h))))
axm2 : ∀i, t, h · i ∈ N ∧ t ∈ T ∧ h ∈ S ⇒ labelId(decode(encode(label(i, t, h)))) = i
. . .

THEOREMS
thm1 : ∀i, t, h1, h2 · i ∈ N ∧ t ∈ T ∧ h1 ∈ S ∧ h2 ∈ S ⇒ labelId(SetHRI(label(i, t, h1), h2)) = i
. . .

Listings 2.8: Theory of Boxes Label
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The theory defines a data type for handling box labels. Those labels are either invalid (unreadable,
inexistant, etc.) or consist of an identifier that is a natural number, a target (address or bay) and
human-redable information (HRI). Note that we do not know what the theory’s user may use for
targets and HRI, so we abstract their respective types using type parameters.

We define a simple predicate on labels that determine if they are valid or not. This predicate is
then used throughout the theory as a well-definedness condition for other operators (e.g. for the
SetHRI mutator, that is well-defined only on valid labels).

We also define an abstract type to model bar codes. We are not interested in the precise form
of a bar code, simply that it can be obtained from a label (encoding) and yield a label when read
(decoding). We also write important axioms characterising invariant properties of the encode/decode
functions.

Note that we could also propose various proof rules, derived from the theorems, to ease the proof
process when using the theory.

2.5.2 Theories Interactions
Once defined, a theory interacts with other components in three major ways: first, models (contexts
and machines) may use the theories, that is, use the operators and types it defines. Second, a theory
may import other theories and use their content, like any other component, effectively creating a
kind of theory hierarchy. Finally, theories also appear during the proof process, adding new theorems
and proof rules.

2.5.2.1 Use in Models

Once made available to Event-B models, the content of a theory (operators and types) can be
used in the model, as though they have been “added” to Event-B’s expression language, among
the other predefined operators (such as finite, dom, partition and so on). If a construct from a
theory reference type parameters, type inference will allow determining how those parameters are
instantiated. Besides, if an operator has specific well-definedness conditions, the corresponding WD
proof obligation will be generated as for any other operator (see Section 2.3.1.1).

Example Once defined, the theory presented in Section 2.5.1.1 can be used in models. For
example, we could refine the machine obtained in Section 2.2.3 to provide a more precise model of
the routing mechanism.

In this refinement of Automaton_1, we implement the routing mechanism using labels and bar
codes, as defined in the theory. When it is taken from the input, each box is associated with a bar
code, that can be decoded into a label. The automaton associate a label with each box, that allows
it to route them appropriately.

As labels can either be valid or invalid, we introduce a new event that specialises Put into
PutInvalid for invalid labels (that puts the corresponding boxes on a special separate bay), and we
strengthen Put to only accept boxes with a valid label.

POs for this model are as expected (simulation, invariant, guard strengthening, etc.). Note that,
as we use the target operator on a label (l) in event Put, a well-definedness PO is generated, and we
need to ensure that we have valid(l). This is easily discharged since this property appears directly
in the event’s guard.
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CONTEXT Automaton_ctx_2
SEES Automaton_ctx_1
SETS

STR −− Represent s t r i n g s
CONSTANTS

Inval idBay −− For i n v a l i d boxes
AXIOMS

axm1 : InvalidBay ∈ BAYS
END

MACHINE Automaton_2 REFINES
Automaton_1

SEES Automaton_ctx_2
VARIABLES Input , Bay , Labels
INVARIANTS

inv8 :
Labels ∈ BOXES 7→BoxLabel(BAYS ,STR)

inv9 : Transit = dom(Labels)
END

INITIALISATION REFINES
INITIALISATION

THEN
act1 : Input := BOXES
act2 : Labels := ∅
act3 : Bay := ∅

END

Take convergent
REFINES Take
ANY b , c
WHERE grd1 : b ∈ Input

grd2 : c ∈ BarCode
THEN

act1 : Input := Input \ {b}
act2 : Labels := Labels ∪ {b 7→ decode(c)}

END

Put convergent
REFINES Put
ANY b , l
WHERE grd1 : b ∈ dom(Labels)

grd2 : l = Labels(b)
grd3 : valid(l)

WITH o : o = target(l)
THEN

act1 : Labels := Labels \ {b 7→ l}
act2 : Bay := Bay ∪ {b 7→ target(l)}

END

PutInvalid convergent
REFINES Put
ANY b
WHERE grd1 : b ∈ dom(Labels)

grd2 : ¬valid(Labels(b))
WITH o : o = InvalidBay
THEN

act1 : Labels := Labels \ {b 7→ l}
act2 : Bay := Bay ∪ {b 7→ InvalidBay}

END

Listings 2.9: Logistic Automaton Abstract Machine

2.5.2.2 Theory Hierarchy

Thanks to the IMPORT clause, theories may import other theories. The content of imported theories
is available inside the theory as it would be in any other components (see Section 2.5.2.1). In
particular, type inference is used to determine the types that instantiate the imported theories’ type
parameters; but in this particular context, those instantiating types may also be type parameters
(which allows genericity to be preserved overall).

The import mechanism makes it possible to greatly factorise definitions: for instance, since
pre-orders are very useful on a number of mathematical constructs, it is interesting to define a
generic theory of pre-orders, and then import this theory in any theory that defines a construct
with a pre-order structure. This is also very convenient for creating advanced theory hierarchies.
Typically, in our setting, a theory of orders would rely on the theory of pre-orders, and would thus
import it to expand on it.

Note that – as for the current state of the theory tool – theories may not define symbols with
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the same identifiers, even if they do not share the same signature.

2.5.2.3 Use in Proofs

Theories defined and referenced in Event-B models can be used during the proof process in several
particular ways.

Operator Substitution Any operator that has a direct definition can be substituted with that
definition during proof process. At this point, the operator’s theory’s type parameters are inferred
based on the arguments provided to that operator.

Proof Rules Proof rules are made available in the provers at the same level as Event-B’s proof
rules. For instance, rewrite rules are made available whenever an expression matches one of their
antecedent, and invoking them simply carries out the rewriting. Similarly for inference rules, it is
possible to select particular hypotheses, and if they match a inference rule antecedent, said rule will
be made available.

Like for operator substitution, type parameters are inferred, and arguments and meta-variables
are automatically instantiated.

Axiom and Theorem Instantiation Axioms and theorems defined in a theory can be added
as hypotheses of the current sequent using a mechanism called instantiation. During this process,
an axiom or theorem is chosen from a specific theory, and the possible type parameters of that
theory are provided explicitly. The instantiated predicate (with actual types) is then added to the
hypotheses, and can then be used in the proof process as usual.

2.5.3 Theory Verification

As for any Event-B component, a theory must be verified to ensure its correctness and consistency
(to some extent). The proof obligations generated for a theory are of two categories.

Well-Definedness Theories essentially contain Event-B formulas, that have to be well-defined.
Like for other components, the use of operators with well-definedness conditions (either from Event-B
or from theories) yields well-definedness proof obligations.

Theorem and Inference As mentioned in Section 2.5.1, theorems and proof rules of the theory
must be proven, using the axioms defined in the theory, other theorems (defined before) or concepts
defined in imported theories.

Axiom Compatibility It is to be noted that axiom compatibility is not checked: it is possible
to define contradicting axioms, resulting in an inconsistent theory. This is also the case for context,
although tools such as ProB allows model-checking those components’ consistency, unlike for theories.
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2.5.4 Overall Design Ideas
Event-B theories offer a very high level of expressiveness, due to the different types of objects to
be defined. The fact that they can be based on each other also allows a good level of progressive
construction, as well as a high level of reusability.

But this expressiveness is double-sided, because it also means that a theory can be written in
a number of different ways, seemingly and theoretically equivalent, but far from being equal with
regard to ergonomics, prover-frendliness and genericity.

2.5.4.1 Algebraic vs. Explicit Definitions

Because theories can simultaneously define axioms and constructs (i.e. objects that are built upon
other objects rather than algebraically), an important decision to make when writing a theory is to
establish what will be given as axioms and what will be built from pre-existing objects. Defining an
operator axiomatically is sometimes easier, but writing relevant constraints on it might be difficult;
operators built from other constructs benefit from the theorems and properties already written for
these constructs, but a direct definition for the concepts we want to express can be complex and
impractical to handle.

These conditions need to be considered when designing a theory. In our case, a good rule of
thumb was to express the core building blocks of each theory in an algebraic manner (i.e. using
axioms), and build as much operators as possible explicitly, using these core concepts.

Likewise, it is generally a good idea to have as few axioms as possible, and to try to prove
theorems from existing axioms, simply because the more axioms a theory defines, the higher the
probability is to have incoherent axioms. This is generally possible for simple theories; but when
theories get complicated and handle high-level concepts (possibly simplified/approximated), this
often becomes cumbersome.

Typically, theorems that involve complex mathematical constructs are better expressed as axioms.
The difficulty here is to transcribe a theorem in Event-B; but if this transcription is correct and if
the objects handled by the theorem are well-defined, then the theorem can be trusted. Note that
the theorem could be formally proven in another tool (such as Coq, Isabelle, Dedukti [Sai13], etc.);
only the result itself is relevant to our method.

2.5.4.2 Proof Activity and Prover Ergonomics

The early state of the theory plug-in – as of 2020 – makes it a bit cumbersome to use sometimes. A
variety of bugs exist; and although they do not compromise the correctness of what is being written,
they hinder its usability, especially in the prover.

The way Event-B and theories work makes it generate numerous of trivial subgoals for each
proof obligation, which should be automatically discharged by the prover, but in practice they are
not. The problem with this is that using a theorem or an axiom from a theory is cumbersome, and
requires to manually instantiate it and its generic types – that is, theorems and axioms are not
directly usable in the prover, like other hypothesis coming from the model.

A good way to work around this is to define proof rules. Indeed, the theory plug-in lets us define
inference and rewrite rules, that may be used to handle objects defined is those theories in the
prover.
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In the current state of the theory plug-in, these rules cannot be applied automatically by the
prover; but the mere fact that they can be applied manually without requiring explicit instantiation
of the theory makes the theories much more usable.

In general, it is a good idea to create a rewriting or inference rule for any “simple” theorem or
axiom defined in the theory (something with few variables and few antecedents). That being said,
this technique should not be abused as it could hinder the prover’s overall ergonomics.

In every case, it is generally a good idea to write a set of rules dedicated to type the custom
operators defined in a theory; indeed, whenever the operator is used, it is difficult for the prover to
determine the type of the parameters and the return value. Simply rules that clearly give the type
of an operator can thus greatly improve the usability of the theory, and help overcome a lot of small
subgoals, which are simple to discharge but hindering the workflow.

2.6 Conclusion
The Event-B method is a solid foundation for designing state-based systems. From a design point of
view, it is a powerful method, in particular thanks to refinement. On the formal side, it has the
advantages of using relatively low-level and abstract mathematics, and thus to be able to express
more advanced concepts. It also has simple yet rich and expressive semantics, extensible thanks
to the use of theories. Finally, it is tool-supported, allowing the method to be used on real-world
systems.

However, core Event-B does not support the modelling of hybrid systems in an efficient and
useful way. Indeed:

• it is essentially discrete: the systems handled by Event-B correspond to discrete traces, with
no notion of continuity between states;

• it does not support continuity: this concept is absent from "native" Event-B, although it can
be formalised using set theory and first-order logic; in particular, continuous behaviours cannot
be expressed in core Event-B;

• it barely supports reals: a theory of reals has been written to handle reals in Event-B models,
but it is somewhat summary, and does not go beyond basic operators (e.g. no intervals, no
continuous functions, etc.);

To summarise, although Event-B perfectly fits formalising discrete behaviours (such as the
discrete part of hybrid systems), it lacks a way to express continuous behaviours, together with their
interactions with the discrete behaviours.

The objective of this thesis is to bridge the gap between Event-B and modelling hybrid systems,
through the definition and use of new theories, as to create a generic formal framework for correct-
by-construction hybrid system design, that is sound and tool-supported.
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Chapter 3

Framework for Hybrid System
Design

The overall goal of the thesis is to provide a framework for designing safe hybrid systems. The
proposed framework is generic and extensible, and takes the form of a method and a set of tools
that engineers can apply and use when developing such systems. It relies on Event-B, extended to
address the requirements of a formal method for designing hybrid systems as proposed in Section
1.4.

In this chapter, Section 3.1 briefly presents the extensions to Event-B that we proposed in order
to lay the foundations of our framework. Section 3.2 presents the framework itself, and Section 3.3
describe its components, as well as the way to use it. Finally, Section 3.4 defines the methodology
associated with the framework and its use, and Section 3.5 concludes the chapter with a discussion
on the framework. Details of the methods and tools shown here are presented in the following
chapters.

3.1 Requirements for Modelling Hybrid Systems in Event-B
Event-B, in its core, lacks several important features to be able to model hybrid systems. We
propose to illustrate the lacking features in the form of a set of requirements that we address when
proposing our framework.

Dense Time Being mainly oriented towards discrete system design, Event-B does not embed the
concept of time, and instead deals with causality and precedence. To be able to formalise continuous
behaviours and constraints, it is required to add the possibility to express and handle explicit dense
time, on which physical systems are based.

Continuity Expanding on the idea of dense time, events in Event-B are instantaneous and timeless;
this cannot be the case of physical behaviours that occur on dense time interval, and present a form
of continuity. To model physical phenomena, it is required to incorporate continuous behaviours in
Event-B, both on the modelling side and on the semantics and proof side.
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Physical Phenomena The goal of hybrid systems is to control a particular physical phenomenon,
called plant. Such phenomena are subject to constraints that differs from the ones found in the
discrete world. In particular, plants are generally subject to physical environmental constraints
(wind, rain, temperature, etc.) that modify their behaviour; this kind of alteration must be taken
into account when designing the system, so that it may be able to correct it.

In other words, modelling hybrid systems requires to be able to express both the continuous
behaviours of the plant under control, and the effect of the environment on this plant. Note that it
is difficult to incorporate every possibility offered by the environment in the model and still be able
to prove its correctness and consistency (closed world modelling hypothesis).

Separation Discrete and continuous behaviours occur in separate parts of the system (the
controller and the plant respectively), and are thus modelled apart from each other. This separation
is convenient as 1) a plant may be controlled by different controllers (that could be switched, during
refinement for example) and 2) upon implementation, only the controller is considered (the plant is
not directly “implemented”).

Interaction and Interleaving Although separate, continuous and discrete behaviours are closely
interleaved: the controller’s behaviour depends on the plant’s behaviour (which it can access, e.g.
through sensors), and conversely the plant’s behaviour is affected by the controller (e.g. via the
use of actuators). In general, discrete behaviours are timeless and instantaneous; from an abstract
point of view, discrete events always happen “exactly at the right time”, meaning as soon as they
are enabled. Continuous behaviours occur in between those discrete events, and have a duration
(meaning they span on a whole time interval).

This discrete/continuous separation-interleaving is close to the way hybrid automata behave
(with continuous behaviour happening in the automaton’s places and discrete events being its
transitions).

3.1.1 Expanding Event-B
In the context of our thesis, we had to address these requirements, in order to provide the foundation
of our framework for formally designing hybrid systems. In the following, we present the choices we
made to handle these requirements.

A Theory of Reals We extended Event-B’s expression language with real numbers. The expres-
sion language as well as the possibility to define axioms in Event-B allows the formalisation of reals
in a semi-algebraic way, rather than using Dedekind cuts or Cauchy sequences (which are too low
level with regard to our purpose). This addition, formally implemented using Event-B’s theory
mechanism, allows defining real variables, and then handle them in expressions and predicates using
custom operators and relations.

This allows us to define a state variable for time, in the dense field of reals.

Theories for Continuity and Differential Equations Expanding on the theory of reals, we
have further extended Event-B’s expression language to be able to define, characterise and handle
continuous functions. These functions serve as the basis of continuous behaviours: a plant is modelled
by continuous state variables, which are essentially piece-wise continuous functions of time.
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Enriched Semantics To be able to properly characterise continuous behaviours at a method
level, we extend Event-B’s semantics and add a new category of events, continuous events. Unlike
discrete events which are timeless, continuous events are considered to have a duration, i.e. last
on a specific time interval. During such events, the plant’s behaviour is updated, typically using
differential equations, and time progresses densely along the time interval. A continuous event is
“interrupted” whenever a discrete event is enabled; in that case, the interrupting discrete events are
triggered, then execution follows with an other continuous event, until it is interrupted again, and
so on. Discrete events are said to be preemptive on continuous events.

With this semantics, a model may define discrete and continuous events in a separate way
(an event cannot be both), with a strong interleaving policy, ensuring the system can always be
well-controlled.

These features have been implemented in the proposed method, in particular using theories. We
give an in-depth description of them in Chapter 4.

3.2 Generic Approach

Set Theory
and FOL

Continuous Maths
Diff. Eq. Generic Model

Domain Theories
Instantiated

Hybrid System

extension

importation

extension refinement

importation

Generic

System-specific

Theories

Figure 3.1: Base Approach

The diagram of Figure 3.1 summarises the foundations of our framework. The first important
point on which it is based is a collection of theories that extends Event-B’s core mathematical theory
(i.e. set theory and first order logic) with fundamental concepts and constructs, such as continuity
and differential equations, essential for expressing continuous dynamics. These theories are more
thoroughly discussed in Chapter 4.

The second important point of the approach is the generic model. In essence, each hybrid
system developed using this approach is a refinement of this generic model. It is an abstraction of
controller-plant loop hybrid system, able to capture the behaviour of any hybrid system with this
structure. Refinement is then used to narrow down these behaviours and gradually build the desired
hybrid system(s). Note that, as expected, it relies on the theories of continuous mathematics and
differential equations. We discuss this model and its specificity more extensively in Chapter 5.

In order to model a hybrid system using this framework, two steps need to be taken:
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1. A theory needs to be defined to synthesise and gather the knowledge and concepts relative to
the specific system to be developed; this theory is said to be a domain theory because it is
specific to the domain (or "type") of the hybrid system being modelled. Theories on specific
machinery (valves, cars, etc.) or type of motion (pendulum, etc.) are defined/used at this step.

2. The generic model needs to be refined in the desired hybrid system, possibly via multiple
refinements, and also possibly using some of the components proposed in this framework. Of
course, models derived this way generally reference the domain theories defined in the previous
point.

3.3 A Framework for Supporting Hybrid System Design
In addition to providing theories and a generic model for safely designing hybrid systems, the
other part of the framework makes available multiple formalised patterns, aimed at carrying out
development operations or design choices useful for hybrid systems formal modelling.
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Diff. Equations

Approximation

Generic Model

Approximated Single-to-Single Single-to-Many Many-to-Many

Domain Theories

Generic Instance Instance Instance

uses uses uses
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Generic
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Figure 3.2: Framework Components

The diagram of Figure 3.2 summarises the formal models and patterns we have developed for
this framework as well as an example of how to use them. All of these patterns take the form
of refinement patterns and methods, accompanied by additional theories. Because these patterns
are based on refinement, they may be combined in a number of different ways. Moreover, the
framework may be enriched with other patterns and components, while retaining its high degree of
composability.

The patterns presented in this thesis can be categorised into two families: structural and
behavioural.

Structural patterns allow the projection of a hybrid system or hybrid functionalities onto a
particular type of architecture. Hybrid systems typically consists of controllers and plants. Most
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hybrid system actually consists of one controller and one plant (something we call single-controller-
to-single-plant, or single-to-single for short); but hybrid systems can feature multiple controllers and
multiple plants, tied together in complex ways. Cyber-physical systems [LS14] are an example of
this type of architecture: they often consist of multiple autonomous controllers linked together in
some way (e.g. by some kind of network) and controlling multiple plants.

In this case, the system is expressed using a particular architecture pattern, which represents its
overall structure. We identified 3 main architecture patterns:

• one controller with one plant (single-to-single), which is the “default” pattern modelled in the
core generic model [Dup+18b; Dup+18a];

• one controller with many plants (single-to-many) [Dup+19];

• many controllers with many plants (many-to-many), which allows modelling autonomous and
cyber-physical systems [Dup+20c];

Behavioural patterns are used to formalise an operation carried out on the system’s behaviour
(in contrast with its structure/architecture). The representative pattern studied in this thesis is
approximation: we take a simple hybrid system on which we can prove invariants, then approximate
its continuous behaviour and thus obtain a system closer to reality, while preserving the proofs
made before [Dup+20b; Dup+20a]. Other examples include: use of a PID (Proportional Integration
Derivative) controller to control a plant, discretising continuous behaviours, etc.

3.4 Methodology
The framework we propose serves as support for the design of hybrid systems. It is associated with
a general methodology that aims at guiding hybrid systems developments, inspired from the Event-B
method for designing systems. This methodology intertwines hybrid systems design with the use of
our framework in a systematic way, easing the development and verification process.

In this section, we discuss the methodology associated with this framework. Note that this
methodology is used throughout this thesis when addressing the various case studies that illustrate
our other contributions.

Step 1: Preliminary Study

The goal of this framework is to model controller-plant loop hybrid systems. This structural
constraint guides the study of systems to be designed: such systems feature a separate controller
and plant, each of which has its own specificity. In practice when writing the actual model, these
two parts are associated with their own variables, parameters, guards and invariants.

Plant Description. Hybrid systems revolve around the control of a plant; a logical first step is
to study how this plant behaves, including what commands can be issued to it. This part of the
study yields the continuous states as well as the various descriptions for its associated continuous
behaviours (usually under the form of differential equations).

This also highlights the physical/environment-related properties of the plant, as well as the
invariants it should observe.
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Controller Description. Hybrid system controllers handle a mode, with an associated particular
actuation (i.e. a particular behaviour for the plant). Studying these modes and how the system
switches from one another lays out the system’s events with their associated guards:

• internal calculation, user commands, timers, or other computations that do not relate directly
to the plant forms the transitions of the system;

• any access to the plant’s state is supported by sensing, where the actual “reading” of said
state is generally expressed by a guard;

• every mode corresponds to one actuation, with associated continuous behaviours;

Requirements. The system’s properties, both given and expected, are summarised as a list of
requirements. In our studies, three types of requirements are identified:

FUN Functional requirements, what the system shall do, its overall goals;
ENV Environmental properties, how the system is constrained by physical means;
SAF Safety properties, what the system must guarantee;
It is worth noticing that ENV-type properties are of special interest for hybrid systems that

evolve in a constraining environment. Such requirements may refer to gravity, inertia, heat, etc.
In the context of our work, we make the assumption that the model encompasses any expected

behaviour (good or bad). In particular, parts of the environment are explicitly modelled, and serve
to demonstrate how the system is able to maintain its control despite perturbations.

This is known as close loop modelling: a finite set of assumptions is made on the system and its
environment that represent a model of the environment. As for any model, it may be incomplete or
imprecise, and the system may be in a situation where these assumptions are not met; in this case,
its model cannot be used to predict its behaviour, and ensure its safety.

Step 2: Domain Theories and Additional Components

In practice, hybrid systems are based on specific physical phenomena, with their own general
constraints and features. These properties are not directly part of the model, but are used by it in
order to establish its behaviour. They model domain specific knowledge that are exploited when
writing the model and when verifying it. Note that they are generally shared between hybrid systems
with similar types of plant: cars, tanks, robots, etc.

Domain specific knowledge is gathered and formalised in special components called domain
specific theories, referenced in models and proofs.

Step 3: Generic Model Instantiation

The entry point for developing a specific hybrid system is the generic model. This model abstracts
controller-plant loop hybrid systems and separates the controller from the plant.

Using the preliminary study, the generic features of this model (variables and parameters) are
provided. The system’s behaviour, categorised as transition, sensing, actuation and environment
are introduced by refining the generic model’s corresponding events. On the technical level, gluing
invariants and witnesses are used to instantiate these features.

At this level, additional invariants are formulated that model the requirements established earlier.
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Step 4: Use of Framework Components

The patterns provided in the framework are formalised as refinements: their entry point is a
parameterised Event-B model, and its application is a refinement of this model, where parameters
are provided using witnesses (instantiation). The main difficulty is to identify which part of the
model is to be handled by the component.

Selecting the right component to use and in which order is specific to every system development.
It is defined by a refinement strategy. General guidelines can be issued:

• architectural patterns are to be applied first, on a system that already has a constrained
behaviour, i.e. a global invariant;

• behavioural pattern are to be applied on specific sub-components;

• to avoid interference and proof complexity, patterns shall be applied one at a time;

A development for a specific hybrid system is a chain of refinement, corresponding to pattern
instantiations. Patterns may be applied to any component of the system, and at any point in the
refinement chain.

Extending The Framework

The framework is based on a generic model and a set of patterns, together with general theories for
incorporating missing features in Event-B.

This core is stable in the sense that its components do not change, and are proved once and for
all; but it is possible to extend the framework, by enriching its core with new components.

For instance, it is possible to define other generic models for modelling different structures of
hybrid systems. It is also possible to define new patterns, as a generic refinement of a generic model,
possibly supported by new theories.

3.5 Discussion
The goal of this thesis is to provide a framework for designing hybrid systems, based on Event-B. In
particular, this framework has the following import characteristics.

Generic and Reusable The proposed framework is generic thanks to the use of abstract Event-B
models, parameterised using abstract variables and event parameters. Event-B refinement serves
as a base for instantiating models and patterns, making it reusable, since the framework’s core
(upper part of Figure 3.2) is stable, and does not have to be developed again for every hybrid system
development.

Extensible The framework’s core consists of a set of components that can be extended with the
addition of new models, theories and patterns, expressed as refinements of the generic model.

In the remainder of this manuscript, we explore the framework, its features and components,
and use it to address multiple case studies.

Chapter 5 presents in detail the generic model, the idea behind its design. It is used to address
two cases studies: a car with automatic braking and signalised left-turn assist systems.
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Chapter 6 details the architecture patterns hinted in this chapter. We demonstrate the use of
these patterns by addressing the case study of the control of the volume of liquid in a tank.

Finally, the approximation pattern is studied in depth in Chapter 7, where it is used to develop
two hybrid systems, a robot that visits a given set of targets and an inverted pendulum.



Chapter 4

Fundamental Required Features

Chapter 3 outlined that the modelling of hybrid systems required several important and specific
features, revolving around the general concept of continuity: real numbers, continuous functions, etc.

Event-B was developped with the idea of verifying computer systems, and is thus well adapted
for handling discrete objects, such as integers and other countable sets. Although this is enough for
dealing with programs, it is not sufficient for handling continuous features that are part of hybrid
systems models, such as continuous functions and differential equations.

Fortunately, since Event-B is based on set theory and first-order logic, it is possible to express
these continuous features within its language, using Event-B’s extension mechanism (theories) to
formalise and provide them in the form of reusable datatypes, operators and properties (Section
2.5).

In this chapter, we give an overview of the features needed to model hybrid systems. In particular,
the concept of continuous variables and the operators for handling them are described in Section
4.1. Section 4.2 presents a formal theory of approximation, used in particular when defining the
approximation pattern (Chapter 7). Implementations of these features using Event-B theories is
discussed in Section 4.3.

Finally, Section 4.4 concludes the chapter with a discussion on the presented theoretical features
and associated Event-B theories.

4.1 Basic Hybrid Modelling Features
Hybrid systems deal with notions such as time and continuity, which are absent from the discrete
world of Event-B. For this reason, in order to model them, it is necessary to provide a way of
handling these notions in the target modelling language. In this section, we present the formal
modelling framework that we have devised to be able to handle the required hybrid features in
Event-B, without introducing any change in its core modelling language.

4.1.1 Modelling of Time
Unlike purely discrete systems that obey their own “step-wise” causality induced by a scheduler
of some kind, continuous phenomena follows physical time, which is usually considered as dense,
meaning that it flows continuously, without any “jump” and without stopping.
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Continuous phenomena then occur on time intervals, and we consider that any discrete event
happens at the junction between these intervals. However, such discrete events do not interrupt the
flow of time, as they have no duration.

For this reason, we represent time as a positive real number (t ∈ R+), and its evolution is given
“interval-wise”: continuous behaviours make the time progress on a specific interval, rather than
discretely increasing. Note that, since we can build intervals that are arbitrarily small, it is always
possible to make time progress exactly until the next discrete event.

4.1.2 Continuous State Variables
Although the discrete part of hybrid systems can be modelled with standard point-wise state
variables, it is not the case for the continuous part. Indeed, in between two time points, a physical
phenomenon evolves continuously, while a discrete variable remains essentially unchanged. As a way
to capture this specificity, we model the plant’s state variables using functions of time.

These functions are generally valued in complete metric spaces (which allows the definition of
derivatives for them among other things), and in particular in sets of the form S = Rn, n ∈ N∗,
which are real vector spaces.

4.1.2.1 Continuous Before-After Predicate

Since plants are modelled using continuous functions, changing their behaviours (to model an
actuation, typically) in fact requires to modify the functions modelling this behaviour. One simple
intuition that arises from this remark is to say that, whenever a change occurs in the evolution of
the plant, the function modelling that evolution is updated as a whole, but this solution is actually
quite flawed.

Indeed, when handling continuous behaviours, there are multiple aspects that need to be
considered. If t denotes the current time at which the change occurs, we need to take into account

1. what happened before t, or in other words the past of the system: this cannot change when
the behaviour of the system is modified, as it would mean that the model can revoke its own
past, which is impossible.

2. what will happen after t, or in other words the future of the system: the system evolves from
time t to time t′ > t, and its behaviour on the interval [t, t′] is changed. Also, on this interval,
it is expected that nothing else happen, and in particular that the controller will not trigger
any actuation. Taking this problem in reverse, and exploiting the particularity of dense time
discussed in Section 4.1.1, we always need to make sure t′ is such that nothing happen on
[t, t′].

3. what happens at t, or in other words the present of the system: physical phenomena are bound
to be fairly regular, although they can present (a countable number of) jumps; they are thus
usually modelled using piece-wise continuous functions, which always have a right-hand limit,
and are always left-hand defined (i.e. functions defined on intervals of the form [t, t′[).

Taking this into consideration, it appears that the assignment of continuous state variables is
of a very different nature compared to discrete state variables. Just like discrete assignment can
be expressed using the before-after predicate :| (see Section 2.2.2.2), we introduce the continuous
before-after predicate (CBAP), which goal is to embed the properties discussed above.
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Operator 7 (Continuous Before-After Predicate). Let t, t′ ∈ R+ two time points with t′ > t. Let
xp ∈ R+ → S a continuous state variable. Finally, let P ⊆ (R+ 7→ S)× (R+ 7→ S) a predicate on
the before and after values of the state variable and H ⊆ S an evolution domain constraining the
evolution of xp. The continuous before-after predicate modelling the change of xp on time interval
[t, t′] following predicate P and constrained by evolution domain H, denoted xp :|t→t′ P & H, is
defined as so:

xp :|t→t′ P(xp, x′p) &H ≡ [0, t[Cx′p = [0, t[Cxp (PP)
∧ P([0, t]C xp, [t, t′]C x′p) (PR)
∧ ∀t∗ ∈ [t, t′], xp(t∗) ∈ H (LI )

Using the domain restriction operator C (Operator 6), the continuous before-after predicate
operator ensures that the past of the continuous variable remains unchanged (past preservation, PP)
while its future is modified to correspond to the given predicate P (predicate, PR). This assignment
also ensures time is progressing along with the physical plant, going from time t to t′ > t, and that
on the resulting interval [t, t′] nothing else happens with regard to given invariant H (local invariant,
LI ).
Note: it is sometimes convenient to express this operator under a prefix form (instead of its infix
form). We take, as a convention, the following equivalence:

xp :|t→t′ P(xp, x′p) &H ≡ CBAP(t, t′, xp, x′p,P, H)

Well-Definedness Correct use of this operator is conditioned by well-definedness requirements:
for any given t, t′, P and H, the assignment xp :|t→t′ P(xp, x′p) &H is well-defined if and only if:

t < t′ (TP)
∀u, v · P(u, v)⇒ u ∈ R+ 7→ S ∧ v ∈ R+ 7→ S ∧ [0, t[⊆ dom(u) ∧ [t, t′] ⊆ dom(v) (TD)

This well-definedness condition ensures that, when the operator is used, time keeps moving
forward (time progression property, TP), and that predicate P maintains the coherence of the
variable’s type and domain (type and domain coherence property, TD).

Feasibility In addition to the concept of well-definedness, we also need to observe the property
of feasibility: indeed, a well-defined continuous before-after predicate is not always feasible. Given
t, t′, P, H and xp, and provided the assignment is well-defined, feasibility of the :|t→t′ consists in
establishing that there exists a function (x0

p) at least defined on [t, t′] that validates predicate P and
does not violate evolution domain H. Formally, feasibility of the CBAP operator can be expressed
as so:

∃x0
p ∈ R+ 7→ S ∧ [t, t′] ⊆ dom(x0

p) ∧ P([0, t]C xp, x0
p)

∧ ∀t∗ ∈ [t, t′], x0
p(t∗) ∈ H

(CBAPFIS)

There is no universal answer to this general proof obligation: it has to be carried out manually
and is highly dependent on the predicate’s and evolution domain’s properties.

In the more precise context of differential equations, we can at least start the proof by observing
that, if a differential equation is solvable on [t, t′], then (by definition) it admits a solution at least
defined on [t, t′], which takes care of the first part of the predicate.



82 CHAPTER 4. FUNDAMENTAL REQUIRED FEATURES

The non-violation of the evolution domain (x0
p(t∗) ∈ H) must still be carried out using special

properties of the set or of the differential equations used in the model. On the generic level however,
we encompass this feasibility condition in a special predicate, denoted Feasible.

Induction Principle on CBAP The CBAP operator generally appears in the actions of a model.
As such, they appear in the hypotheses of invariant proof obligations (INV). Proving such a PO
directly is possibly cumbersome, but the particular form of the CBAP operator can be exploited
to simplify and greatly factorise the proof. We give the following theorem that allows easing the
proving of the induction step, in machines where CBAP local invariants are stricter than global
invariants.
Theorem 1 (CBAP Induction). Given time points t and t′ in R+ with t′ > t, before and after
continuous states xp and x′p in R 7→ S with [0, t] ⊆ dom(xp) and [0, t′] ⊆ dom(x′p), a predicate
P ⊆ (R 7→ S)× (R 7→ S), a local invariant H ⊆ S and a global invariant I ⊆ S, such that:

1. ∀t∗ ∈ [0, t[, xp(t∗) ∈ I

2. CBAP(t, t′, xp, x′p,P, H ∩ I)
Then ∀t∗ ∈ [0, t′], x′p(t∗) ∈ I.

The proof of this theorem mainly relies on operator unfolding and basic set theory.

Proof. Let t, t′, xp, x′p, P, I and H as in the hypotheses of the theorem.
We recall hypothesis (2) of the theorem: CBAP(t, t′, xp, x′p,P, H ∩ I). By unfolding CBAP and
extract (LI) we obtain: ∀t∗ ∈ [t, t′], xp(t∗) ∈ H ∩ I.
Note that H ∩ I ⊆ I; hence: ∀t∗ ∈ [t, t′], xp(t∗) ∈ I.
In addition, hypothesis (1) of the theorem gives ∀t∗ ∈ [0, t[, xp(t∗) ∈ I. We note that [0, t[∪[t, t′] =
[0, t′], and it follows that: ∀t∗ ∈ [0, t′], xp(t∗) ∈ I.

This theorem states that, if continuous state xp does not violate global invariant I on [0, t[ (1),
and if x′p does not violate this invariant on [t, t′] (2), then x′p does not violate the invariant on [0, t′].

Note that, in practice H and I are convex hulls, meaning H ∩ I is also a convex hull.

4.1.2.2 Derived Operators

Just like in Event-B with := and :∈, we define convenient derived operators, namely:
Operator 8 (Continuous Assignment). Let t, t′ ∈ R+ two time points, with t′ > t. Let a continuous
state variable xp ∈ R+ → S, a function f ∈ R+ → S and an evolution domain H. The continuous
assignment of f to xp with evolution domain H, denoted xp :=t→t′ f &H, is defined as so:

xp :=t→t′ f &H ≡ xp :|t→t′ x′p = f &H (4.1)

It “appends” a piece of an (explicit) function to the continuous state variable.
Operator 9 (Continuous Evolution). Let t, t′ ∈ R+ two time points, with t′ > t. Let a continuous
state variable xp ∈ R+ → S, a differential equation E and an evolution domain H. The continuous
evolution of xp along differential equation E with evolution domain H, denoted xp :∼t→t′ E &H, is
defined as so:

xp :∼t→t′ E &H ≡ xp :=t→t′ η &H (4.2)
where η is any solution of E on [t, t′] that does not violate evolution domain H.
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4.2 Theory of Approximation
Approximation is a major operation carried out on hybrid systems, and is one of the tool provided
by our framework. For this reason, we have formalised a theory of approximation that defines the
various concepts and operators needed to perform this operation. Such a theory is based on strong
mathematical foundations that allows it to have multiple good properties, which are crucial when it
comes to designing approximated models and, in particular, to prove them.

This section gives the mathematical grounds used to define approximation, and how it can be
formalised in Event-B within our formal framework.

In the following, we consider a metric space (E, d) where d is a distance. Note that, in practice,
since the continuous state variables handled by hybrid systems are valued in S = Rn which are
normed vector spaces, these spaces are also complete metric spaces.

4.2.1 Approximation Operator
The approximation operator is the basic building block of the whole approximation theory. The
idea behind this operator is to qualify two points that are “close enough”, according to the given
distance and an arbitrary bound operator, denoted δ.

Operator 10 (Approximation). Let δ ∈ R+ (i.e. δ ∈ R and δ ≥ 0) and x, y ∈ E. x is approxi-
mately equal to y by δ (or x is a δ-approximation of y), denoted x≈δ y if:

x
δ
≈ y ≡ d(x, y) ≤ δ

Note that this operator is not an equivalence operator: it is reflexive and symmetric, but not
transitive.

Proof of the properties of the approximation operator. The properties of ≈δ mostly comes from the
properties of the distance operator, and in particular identity of the indiscernibles and symmetry.
Reflexivity: let δ ∈ R+ and x ∈ E. By the identity of the indiscernibles, d(x, x) = 0. Since we
have 0 ≤ δ by hypothesis, we therefore have d(x, x) ≤ δ and thus x≈δ x by definition ≈δ.
Symmetry: let δ ∈ R+ and x, y ∈ E, with x≈δ y. By symmetry of d, we have d(x, y) = d(y, x),
and since d(x, y) ≤ δ (by definition of ≈δ), it follows naturally that d(y, x) ≤ δ, and thus that
y≈δ x.
Non-transitivity: let δ ∈ R+ and δ > 0. We take x, y, z ∈ E aligned: d(x, y) = δ, d(y, z) = δ and
d(x, z) = 2δ; this is possible by the triangle inequality of d (d(x, z) ≤ d(x, y) + d(y, z)). We see here,
by applying the definition of ≈δ, that we have x≈δ y and y≈δ z, but, since 2δ > δ (because δ > 0),
we do not have x≈δ z, proving that the operator is not transitive.

Note that despite not having transitivity, the operator features an interesting “pseudo-transitive”
property.

Property 1 (Pseudo-Transitivity of the Approximation). Let δ1, δ2 ∈ R+ and x, y, z ∈ E, with
x≈δ1 y and y≈δ2 z. We have:

x
δ1+δ2≈ z
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Proof. By unfolding the definition, we can write: d(x, y) ≤ δ1 and d(y, z) ≤ δ2. Using the triangle
inequation of d, we can establish that d(x, z) ≤ d(x, y) + d(y, z), and thus that d(x, z) ≤ δ1 + δ2.
It follows, again by definition of ≈δ, that x≈δ1+δ2 z.

Also, note that this operator has an interesting and useful property of relaxation.

Property 2 (Relaxation of Approximation). Let δ1 ∈ R+ and x, y ∈ E with x≈δ1 y. If we have
δ2 ∈ R+ with δ2 ≥ δ1, then we can write x≈δ2 y.

Proof. This is trivially proven by unfolding the definition of the operator.

This operator can be extended (or “lifted”) to be used on functions (on an interval), which is
convenient when working with continuous states in a model:

Operator 11 (Function Approximation). Let δ ∈ R+. Let D be a set and X ⊆ D. Let f, g ∈ D 7→E
with X ⊆ dom(f) and X ⊆ dom(g). f is a δ-approximation of g if:

f
δ
≈
X
g ≡ ∀x ∈ X, f(x) δ

≈ g(x)

Naturally, this operator preserve the properties of ≈δ.

Important note: ≈δ can be seen as a relaxed version of the equality operator. In particular, we
have the following interesting property:

Property 3 (0-Approximation). Let x, y ∈ E:

x
0
≈ y ⇔ x = y

Proof. This is proved using the identity of the indiscernibles of d: x≈0 y is equivalent to d(x, y) ≤ 0
by definition, and since d is a positive function (d(x, y) ≥ 0 for any x, y) it follows than d(x, y) = 0,
which entails that x = y.

4.2.2 Expansion and Shrinking
Based on the approximation operator, two important operators on sets are defined that are used to
relax set membership and inclusion, and serve as a base for defining approximation in general at the
model level. Additional properties are introduced; they are crucial to establish the properties of this
approximation and in helping to prove the related proof obligations that arise from its use.

Definitions The first operator is called expansion (Eδ(S)); the basic idea behind this operator is
to define some kind of hull around a given set, so that the border of this hull is “far enough” (by δ)
from the border of the set.

The second operator is called shrinking (Sδ(S)); it is basically the dual operation of the expansion,
and allow the definition of a subset of a given set which border is “far enough” from the border of
the set, but inside. It can also be seen as a way to define a subset that is always far enough from
the complement of the given set.
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Operator 12 (δ-Expansion). Let δ ∈ R+ and S ⊆ E. The δ-expansion of S is denoted Eδ(S) and
is defined as so:

Eδ(S) = {y ∈ E | ∃x ∈ S, x δ
≈ y} = {y ∈ E | ∃x ∈ S, d(x, y) ≤ δ}

Operator 13 (δ-Shrinking). Let δ ∈ R+ and S ⊆ E. The δ-shrinking of S is denoted Sδ(S) and is
defined as so:

Sδ(S) = {x ∈ S | inf
y∈E\S

d(x, y) > δ} = {x ∈ S | ∀y ∈ E \ S, d(x, y) > δ}

These two operators allow handling “approximations of sets”, and thus to deal with objects in a
way that is less strict (with more “headroom”). Figure 4.1 presents a graphical representation of
these operator, synthesising the intuition behind their definitions.

S

Eδ(S)

δ
S

Sδ(S)δ

Figure 4.1: Graphical Representation of the Expansion and Shrinking Operators

Expansion and shrinking have multiple important properties that entail the correctness of
approximation.

0-Approximation When δ = 0, we show that approximation is, in fact, equality.

Property 4 (0-Expansion/Shrinking). Let S ⊆ E. The 0-expansion and 0-shrinking of S is equal
to S:

E0(S) = S0(S) = S

Alternatively, E0 and S0 are both the identity function on P(S).

Proof. These two properties are based on Property 3 and on the property of indiscernible of distance.
0-Expansion: by definition, E0(S) = {y ∈ E | ∃x ∈ S, x≈0 y}, and so, by Property 3, E0(S) =
{y ∈ E | ∃x ∈ S, x = y}, which is trivially equal to S (i.e. the set of elements of E that are equal to
an element of S is S).
0-Shrinking: let us study E \ S0(S), complement of S0(S) in E. For that, we can negate the
predicate in the set comprehension, which yields:

E \ S0(S) = {x ∈ E | x /∈ S ∧ ∃y ∈ E \ S, d(x, y) = 0}

By the property of indiscernible of distance, d(x, y) = 0 entails x = y, and we see that E \ S0(S) is
in fact exactly E \ S (the set of elements that have an equal in E \ S).
By the properties of complement, this entails naturally that S0(S) = S.
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δ-Shrinking Property We give an important theorem on Sδ that is useful when discussing the
proofs generated by approximation.

Let us first recall the definition of a closed ball of radius δ.

Definition 6 (Closed Ball). Let δ ∈ R+ and x ∈ E. The closed ball of centre x and radius δ is
denoted B(x, δ) and is the set:

B(x, δ) = {y ∈ E | d(x, y) ≤ δ}

Intuitively, it is the set of points that are not farther than δ from x.

We introduce an intermediate lemma, useful to demonstrate the theorem.

Lemma 1 (Closed Ball and Complement). Let δ ∈ R+ and S ⊆ E. For any x ∈ Sδ(S), we have

B(x, δ) ∩ (E \X) = ∅

Proof. Let y ∈ B(x, δ) ∩ (E \ S). We have y ∈ E \ S and d(x, y) ≤ δ by definition of the closed ball.
Because y ∈ E \ S, we know by definition of Sδ and of the infimum that: ∀z ∈ Sδ(S), d(z, y) >
infy∈E\S d(x, y) > δ. We hence have both d(x, y) ≤ δ and d(x, y) > δ, which is impossible.

From this lemma, the important theorem follows naturally.

Theorem 2 (δ-Shrinking and Closed Ball Inclusion). Let δ ∈ R+, S ⊆ E. For any x ∈ Sδ(S),

B(x, δ) ⊆ S

Proof. This is trivially proven using Lemma 1: if y ∈ B(x, δ) then y /∈ (E\S), hence y ∈ (E\(E\S)),
i.e. y ∈ S.

Intuitively, this theorem states that, if we consider a point x in S that is in Sδ(S), then any
point that is no further than δ from x, is still in S.

4.2.3 Approximated Predicates
The definition of the approximation operator (≈δ, Operator 10) and of δ-expansion (Eδ, Operator
12) allows us to introduce an approximated version of the set-membership operator, ∈.

The new operator is further extended in order to be able to use it on functions and sets (which
is generally more useful when handling continuous states).

Operator 14 (δ-Membership). Let δ ∈ R+, x ∈ E and S ⊆ E. x is a δ-member of S, denoted
x∈δ S, if:

x
δ
∈S ≡ x ∈ Eδ(S) ≡ ∃y ∈ S, d(x, y) ≤ δ

Intuitively, x is a δ-member of S if it is in S or its neighbourhood, up to δ away from S.
This operator can be extended in a number of convenient way, thus allowing the relaxation of a

number of classical operators used in set theory.

Operator 15 (δ-Subset). Let δ ∈ R+ and T, S ⊆ E. T is a δ-subset of S, denoted T ⊆δ S, if:

∀x ∈ T, x
δ
∈S
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Operator 16 (Functions Extension). Let δ ∈ R+ and S ⊆ E. Let f ∈ D 7→ E and X ⊆ D with
X ⊆ dom(f). f is a δ-member of S on X, denoted f ∈δX S, if

f
δ
∈
X
S ≡ ∀x ∈ X, f(x)

δ
∈S

Operator 17 (Multi-Valued Functions Extension). Let δ ∈ R+. Let f ∈ D 7→E and Σ ∈ D 7→P(E),
and let X ⊆ D with X ⊆ dom(f) and X ⊆ dom(Σ). We define:

f
δ
∈
X

Σ ≡ ∀x ∈ X, f(x)
δ
∈Σ(x)

The extension of approximate membership to multi-valued function is useful to express, in a
formal way, approximate gluing invariants (see Section 7.1.1).

Note that, as expected, with δ = 0, δ-membership actually corresponds to the classical set-
membership operator. The same reasoning applies to the derived operators.

4.3 Implementation with Theories
As suggested in this chapter’s introduction, modelling hybrid systems require to incorporate, in
Event-B, typically continuous mathematics as defined in Sections 4.1 and 4.2. As they rely on
set theory and first-order logic, the defined concepts can be expressed using Event-B’s expression
language, in contexts typically. However, contexts are poorly generic, which would hinder the
reusability of the framework. For this reason, we gather those required concepts in theories (see
Section 2.5).

It is to be noted that a theory for reals has already been defined in the so-called standard library
of Event-B theories1, as well as an extension of this theory to incorporate continuous functions
[BAB16]. However, those theories are insufficient for our needs, and do not fit in our theory collection
in a coherent way. This justifies that we propose our own theory of reals, extended and slightly
different from a design point of view.

In this section, we present the theories defined in the context of our work. Extracts of these
theories are given to support our argumentation; their complete code is available in Appendix A.

4.3.1 Design Choices
As explained in Section 2.5.4, designing theories require a number of choices and trade-offs between
usability, expressiveness and exhaustivity. In particular, theories allow providing objects and
properties both constructively (with direct definitions) and axiomatically, the former being more
sound but possibly more cumbersome, and the latter being more convenient but possibly a source of
inconsistency.

The advantage of axioms, particularly in the context of our work, is that they allow the definition
of advanced mathematical constructs (e.g. continuity) without having to formalise the entirety of
the framework on which they rely (e.g. topology, limits, filters, etc.), and that is less relevant to our
use. Once axioms have been defined, they form a basic level of abstraction for the theory, and other

1https://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library

https://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library
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operators and properties can be built upon them (in order to keep the number of axioms provided
by the theories as low as possible).

Because theories do not include the complete mathematical framework of the operators they
define, properties that are typically expressed as theorems are provided as axioms as well. As
discussed in Section 2.5.4, these properties may be proven elsewhere (typically, using other proof
assistants), and we assume that the transcription of the proven properties in Event-B expression
language is correct.

4.3.2 An Overview of the Defined Theories
In the context of this thesis, a significant number of theories have been developed, which make up
a major technical part of our work, and form the foundation of the framework presented in this
manuscript. Defined theories are grouped and organised according to the pattern shown in Figure
4.2.

Each group of theory is built, by extension, upon the previous one, starting with the general
algebra group, which only rely on bare set theory.

General Algebra

Reals

Functions

Differential
Equations

Approximation

Domain Theories

extends

extends

extends

extends

extends

Figure 4.2: Theories Over-
all Architecture

Theories are categorised as follow:

• General Algebra: a set of theories that define the basic structures
of general algebra: monoids, groups, rings, etc. (Section 4.3.2.1);

• Reals: two theories that define the real number set with its
associated operators and properties, as well as intervals (Section
4.3.2.2);

• Functions: theories that bring additional structure and proper-
ties to function, and in particular continuity and derivatbility,
as well as the overall concept of piecewise functions (Section
4.3.2.3);

• Differential Equations: a theory that defines the concept of
differential equations as well as various useful satellite objects
and properties to handle them (Section 4.3.2.4);

• Approximation: a pair of theories that define the fundamental
concepts needed to handle approximations (Section 4.3.2.5);

• Domain Theories: various theories for handling specific types of
systems: cars, water tanks, robots, etc. (Section 4.3.2.6);

In the following sections, we will discuss each theory category in detail.

4.3.2.1 Theories of General Algebra

At the root of the theory architecture are 5 theories that define the basic concepts and structures of
general algebra. These theories exist mainly as a matter of segmenting the definition of reals, and
also for factorising some properties of algebraic structures. Of course, they can nonetheless be used
standalone.

These theories all rely on genericity and predicates: the generic type parameter is the underlying
set of the structure, and the predicates qualify properties of operators and elements. For instance,
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the Monoid theory defines:

neutral(? : M ×M →M, e : M) ≡ ∀x · x ∈M ⇒ e ? x = x ? e = x

This can be interpreted as: if we have any set M , neutral(?, e) is true if and only if e is a neutral
element of M for operator ?.

The theories defined start with the simple concept of monoid, then build the notion of group
and Abelian/commutative group, and then the structure of ring, and finally of field.

At every step, various theorems and additional predicates are defined (e.g. uniqueness of neutral
element, absorbing property of 0 in a ring, etc.) that are aimed at making proofs and later definitions
easier.

Last in this category, a theory of order is defined. Note that this theory does not directly follow
the hierarchy of algebraic structures of this category, but is relevant at this level. This theory defines
the properties of ordering operators (transitivity, reflexivity, etc.) as well as fundamental additional
properties such as well-foundation, and also compatibility properties with algebraic structures.

THEORY Monoid
TYPE PARAMETERS M
OPERATORS

associative pred i ca t e (op : M ×M →M )
direct def init ion
∀x, y, z · x ∈M ∧ y ∈M ∧ z ∈M ⇒
op(x 7→ op(y 7→ z)) = op(op(x 7→ y) 7→ z)

neutral pred i ca t e (op : M ×M →M , e : M )
direct def init ion
∀x · x ∈M ⇒ op(x 7→ e) = x ∧ op(e 7→ x) = x

Monoid pred i ca t e (op : M ×M →M , e : M )
direct def init ion

associative(op) ∧ neutral(op, e)
THEOREMS

neutra lUnique :
∀o, e · o ∈M ×M →M ∧ e ∈M ∧Monoid(o, e)⇒
∀x · x ∈M ∧ neutral(o, x) => x = e

END

THEORY Group
IMPORT THEORY Monoid
TYPE PARAMETERS G
OPERATORS

invertible pred i ca t e (op : M ×M →M , e : M )
direct def init ion ∀x · x ∈ G⇒
∃y · y ∈ G ∧ op(x 7→ y) = e ∧ op(y 7→) = e

Group pred i ca t e (op : M ×M →M , e : M )
direct def init ion

Monoid(op, e) ∧ invertible(op, e)
. . .

THEOREMS
l e f t C a n c e l :
∀o, e · o ∈ G×G→ G ∧ e ∈ G ∧Group(o, e)⇒
∀a, b, c · a ∈ G ∧ b ∈ G ∧ c ∈ G⇒
o(a 7→ b) = o(a 7→ c)⇔ b = c

. . .
END

Listings 4.1: General Algebra Theory Examples

4.3.2.2 Theories of Real Numbers and Intervals

The second group in the theory hierarchy globally defines the set of real numbers, together with
various operators and properties, as well as real intervals. An excerpt of it is given in Listing 4.2.

Real numbers in standard mathematics can be defined in multiple ways, and in particular using
Dedekind cuts and Cauchy sequences, which require a complete formalisation of topology, rational
numbers, sequences, etc. However, using real numbers constructed that way is quite cumbersome in
models and proofs, while often only high-level properties are needed (operations, orders, etc.). The
fact is, we know real numbers exist and have specific properties (theorems, in essence), and this is
sufficient in the context of our work.

For this reason, we decided to define the theory of real in a pure axiomatic way, taking the
(otherwise proven) properties of the real number set and taking them as axioms.

The Reals theory is based on the Ring and Relations theories. It defines an axiomatic type
(RReal) on which a set of axioms is defined, to encode the essential properties of the real number set:
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• R is a (commutative) field with two laws: + (plus) and × (times), with two special elements,
0, neutral for + and 1, neutral for ×;

• R is totally ordered by an order relation denoted ≤ (leq) which is compatible with its field
structure;

• R has the least upper bound property;

Based on this, we also define the unary and binary minus operators (uminus, minus), division
(divides), strict order (lt for <) and converse order operators (geq for ≥ and gt for >), as well as a
few other convenient operators (such as square root, absolute value, etc.).

A few theorems have been defined to ease the handling of reals throughout models, as well as an
extensive number of proof rules, as to make available standard simple transformations immediately
in the prover.

THEORY Reals
IMPORTTHEORY Relat ions , Ring
AXIOMATIC DEFINITIONS

TYPE RReal
OPERATORS

Rzero expression ( ) : RReal
Rone expression ( ) : RReal
plus expression ( ) : P(RReal × RReal × RReal)
times expression ( ) : P(RReal × RReal × RReal)
leq expression ( ) : P(RReal × RReal)

AXIOMS
oneIsNotZero : Rzero 6= Rone
plus_def : plus ∈ RReal × RReal → RReal
t imes_def : times ∈ RReal × RReal → RReal
l eq_def : order(leq) ∧ total(leq)
r e a l F i e l d : Field(plus, times,Rzero,Rone) ∧ integral(times,Rzero)
. . .

Listings 4.2: Real Theory Extract

The real number theory is accompanied by an extensive theory of real intervals, called Intervals,
an extract of which is given in Listing 4.3. This theory defines every possible variety of intervals
(i.e. open, closed, half-open, unbounded) as well as a number of theorems and proofs that allow
performing standard operations on them in the prover – typically, union, intersection and degenerated
intervals.

Note: in the following, we use the standard mathematical notation for the set of reals (R) as a
shorthand for the RReal type, as well as standard symbols for Rzero (0) and Rone (1), plus (+) and
so on.

4.3.2.3 Theories of Functions and Piecewise Functions

Functions in Event-B are essentially defined as univalent or right-unique relations (otherwise known
as “functional relations”). The language allows the characterisation of total, injective, surjective
and bijective functions, but in general they are seen as low-level, set-theoretic objects.



4.3. IMPLEMENTATION WITH THEORIES 91

THEORY I n t e r v a l s
IMPORTTHEORY Reals
OPERATORS

Closed2Closed expression (a : RReal , b : RReal )
direct definition {t | a 7→ t ∈ leq ∧ t 7→ b ∈ leq}

Closed2Infinity expression (a : RReal )
direct definition {t | a 7→ t ∈ leq}

. . .
THEOREMS

c2c_ex i s tence : ∀a, b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ leq ⇒
∃x · x ∈ Closed2Closed(a, b)

boundaryInC2C : ∀a, b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ leq ⇒
a ∈ Closed2Closed(a, b) ∧ b ∈ Closed2Closed(a, b)

. . .

Listings 4.3: Interval Theory Extract

In particular, in order to be able to model hybrid systems, notions of topology, and in particular
continuity and differentiability, are lacking. For this reason, we have defined an extensive theory to
add to enrich Event-B’s modelling language with a number of relevant characteristics and constructs
on functions.

The Functions theory is based on the Intervals theory. An extract of it is given in Listing 4.4.
Typically, it defines:

• Predicates on functions: increasing, decreasing, bounded, positive, etc. as well as a num-
ber of theorems to establish these predicates or use these predicates to deduce particular
characteristics;

• Constructors: refined composition and decomposition operators, higher-order real operation
(e.g. Rfplus for computing the h = f + g where f and g are functions) as well as an extensive
number of proof rules for typing the results of these operators, and to (partially) evaluate
these operators within the prover;

• Continuity and differentiability: set of continuous/differentiable functions, derivative operator
as well as a number of properties of functions and operators;

• Lipschitz continuity, required in particular in the Cauchy-Lipschitz theorem (used for estab-
lishing differential equations solution existence), and properties of functions and operators
with regard to this type of continuity;

• Basic topology: openness of a set and properties of opens with regard to continuous functions;

• Trigonometric functions: π constant, sin and cos functions;

The Functions theory is the base of the Piecewise theory, which transposes some of the properties
and characteristics of functions into piece-wise defined functions. In particular, the theory defines
piece-wise continuous/differentiable functions and adapts standard theorems to this situation. This is
especially interesting since, in practice, the functions describing differential equations are piece-wise
defined.
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THEORY Functions
IMPORTTHEORY I n t e r v a l s
TYPEPARAMETERS E , F , G
OPERATORS

bind expression (f : E 7→ F , g : E 7→G)
direct definition (λx · x ∈ dom(f) ∩ dom(g) | f(x) 7→ g(x))

fproj1 expression (f : E 7→ F ×G)
direct definition (λx 7→ y · x ∈ F ∧ y ∈ G | x) ◦ f)

. . .
AXIOMATIC DEFINITIONS

OPERATORS
C0 expression (A : P(E) , B : P(F )) : P(P(E × F ))
D1 expression (A : P(R) , B : P(F )) : P(P(R× F ))
Der expression (A : P(R) , B : P(F ) , f : R 7→ F ) : P(R× F )

well−definedness condition f ∈ D1(A,B) ∧A ⊆ dom(f)
lipschitzContinuous predicate (A : P(E) , B : P(F ) , f : E 7→ F )

well−definedness condition A ⊆ dom(f)
. . .

AXIOMS
derType : ∀A,B, f ·A ⊆ R ∧B ⊆ F ∧ f ∈ E 7→ F ∧ f ∈ D1(A,B) ∧A ⊆ dom(f)⇒

Der(A,B, f) ∈ A→ F
l i p s c h i t z I s C u e : ∀A,B, f ·A ⊆ E ∧B ⊆ F ∧ f ∈ E 7→ F ∧A ⊆ dom(f)⇒

lipschitzContinuous(A,B, f)⇒ f ∈ C0(A,B)
. . .

Listings 4.4: Theory of Functions Extract

Domain Restriction of Predicates An important design choice in these two theories is to make
explicit the domain on which a predicate is considered. In other words, instead of having predicates
defined on the whole domain of functions and restricting this domain upon instantiation using
restriction operations (C in particular), predicates explicitly require a domain of application.

Typically, for any property P on a function f : E 7→ F , an associated operator opP in the
theory would be defined as shown on the example of Listing 4.5.

OPERATORS
. . .
opP predicate (D : P(E) , f : E 7→ F )

well−definedness D ⊆ dom(f)
direct definition P(D C f)

. . .

Listings 4.5: Piece-wise Predicates Definition

Such a definition embeds the restriction of the predicate to a given domain. Note the use of the
well-definedness clause provided by theories in order to enforce the correct use of the operator,
and only use it on functions that defined (at least) on the provided domain D.

A typical example is given in Listing 4.6 for the increasing predicate.
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THEORY Functions
IMPORTTHEORY I n t e r v a l s
. . .
OPERATORS

. . .
increasing predicate (D : P(R) , f : R 7→ R)

well−definedness D ⊆ dom(f)
direct definition ∀x, y · x ∈ D ∧ y ∈ D ⇒

(x 7→ y ∈ leq)⇔ (f(x) 7→ f(y) ∈ leq)
. . .

Listings 4.6: Definition of the increasing predicate

Direct Product, Vectors The theory defines a bind operator that takes two functions f and g
and builds a new function that outputs pairs of values of f and g:

∀x ∈ dom(f) ∩ dom(g),bind(f, g)(x) = (f(x), g(x))

This function allows building complete continuous states from a number of separated state
variables. Typically, a system that handles position p and speed v, that are both continuous
variables, has a complete state expressed as bind(v, p). If acceleration must be considered as well, it
is possible to nest the bind operator: bind(bind(a, v), p).

In practice, continuous states are expressed using vector functions R+ → Rn (n ∈ N∗). This
allows defining as many variables as needed without any modelling overhead (e.g. nested operators)
and allows expressing some categories of differential equations using matrices and matrix-vector
products.

Ideally, we would need to define a vector and matrix theory in order to be able to handle such
a useful mathematical tool; no such theory is available as for now, although we have studied the
possibility of formalising it.

4.3.2.4 Theory of Differential Equations

The continuous part of hybrid systems are usually characterised using differential equations (i.e.
equations which solutions are functions). The topic of differential equations is extremely vast,
ranging from simple equations with trivial properties to intricate partial differential equations with
complex properties and theorems; in the proposed theory, we have essentially made accessible the
part of it we needed to model hybrid systems’ plants behaviours. However we kept the theory both
generic and extensible, so that other properties and overall categories of equation can be added later
on, if and when required.

Differential Equation Datatype The differential equations theory (DiffEq) revolves around
a custom datatype, DE(F ), with F an Event-B type (that is, a carrier set, an other datatype, a
powerset or a Cartesian product) that essentially represents the set of differential equations which
solutions are valued in F . This type is accompanied by particular constructors to create actual
differential equation “objects”. We defined two constructors for this type:

• ode(Φ, η0, t0), used to define ordinary differential equations (ODE) η̇(t) = Φ(t, η(t)), charac-
terised by function Φ : R× F → F with initial condition η(t0) = η0;
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• aode(Φ, η0, t0), used to defined autonomous ODEs η̇(t) = Φ(η(t)), characterised by function
Φ : F → F (that does not rely directly on time) with initial condition η(t0) = η0;

The theory also provides a custom datatype for controlled differential equations, CDE(F,UF),
with F and UF Event-B types that represent the set of controlled differential equations which
solutions are valued in F and which control functions are valued in UF . Similarly to non-controlled
differential equations, we defined two constructors for this type:

• code(Φ, η0, t0), used to defined controlled ODEs η̇(t) = Φ(t, η(t), u(t)), for any given control
function u : R→ UF , characterised by Φ : R× F ×UF → F with initial condition η(t0) = η0;

• caode(Φ, η0, t0), used to defined controlled autonomous ODEs η̇(t) = Φ(η(t), u(t)), charac-
terised by Φ : F ×UF → F with initial condition η(t0) = η0;

The header of the theory with the defined types is presented in Listing 4.7.

THEORY DiffEq
IMPORTTHEORY Piecewi se
TYPEPARAMETERS E , F , UF , F1 , F2
DATATYPES

DE(F )
constructors

ode(fun : P(R× F × F ), initial : F, initialArg : R)
aode(afun : P(F × F ), ainitial : F, ainitialArg : R)

CDE(F,UF)
constructors

code(cfun : P(R× F ×UF × F ), cinitial : F, cinitialArg : R)
caode(cafun : P(F ×UF × F ), cainitial : F, cainitialArg : R)

. . .

Listings 4.7: DiffEq Theory Header – Custom Datatypes

The majority of the operators and properties given in this theory refer to these types; the “lower
level” operators refer directly to these constructors directly (like the cases of a pattern matching
construct), but most of the operators have been thought in a generic way, i.e. agnostic of the content
of the element.

Providing such a concept that way has numerous advantages. The fact that differential equations
are a proper type forces the designer to treat them as a special kind of objects. This allows them to
integrate smoothly within models while preventing misuse of these objects. Moreover, since each
form of differential equation is essentially represented by a constructor, adding new forms is simply
a matter of creating new constructors, and adding such new cases in these “lower level” operators.

Predicates on Differential Equations A large part of the theory relates to basic properties
of differential equations, and in particular solvability and controllability. Examples of how these
operators are implemented in the theory are given in Listing 4.8.

One of the most important operator is the predicate solutionOf(D, η, E) that models the fact
that η : R 7→ F , with D ⊆ dom(η) is a solution of equation E : DE(F ). This operator is at the
core of continuous before-after predicates in particular, since in an implicit context it can mean
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let η be a funciton such that it is a solution of equation E . It is accompanied by the operator
SolutionsOf(D, E), the set of functions defined on D (at least) that are solutions of equation E .

Symmetrically, for well-definedness purposes, we define the Solvable(D, E) predicate that
represents the fact equation E admits solutions on domain D. This predicate is used as a well-
definedness condition in many other operators, since we can manipulate solutions of equations if
and only if said solutions exist.

As for controlled differential equations, we provide the withControl(D, E , û) operator that take
a controlled differential equation E ∈ CDE(F,UF) and a control function û : D → UF and builds the
(non-controlled) differential equation η̇(t) = Φ(t, η(t), û(t)). We also define the Controllable(D, E)
predicate that models the fact that there exist a control function u : D → UF such that controlled
differential equation E is solvable on D when controlled using u. A predicate SolvableWith(D, E , û)
represents the fact controlled equation E is solvable on D when given control function û.

Note that the proposed predicates all follow the remark of Section 4.3.2.3 by explicitly requiring
a domain parameter on which they are to be considered. This is especially relevant here, since in
practice we always handle differential equations on a very specific interval, and never on R as a
whole.

OPERATORS
solutionOf predicate (D : P(R) , η : R 7→ F , E : DE(F ))

well−definedness condition D ⊆ dom(η)
case E

ode(Φ, η0, t0) =>
η0 ∈ F ∧ t0 ∈ D ∧ η ∈ D1(D,F ) ∧ η(t0) = η0
∧Der(D,F, η) = (λt̂ · t̂ ∈ D | Φ(t̂, η(t̂)))

aode(Φ, η0, t0) => . . .
SolutionsOf expression (D : P(R) , E : DE(F ))

direct definition {η̂ | η̂ ∈ R 7→ F ∧D ⊆ dom(η̂) ∧ solutionOf(D, η̂, E)}
Solvable predicate (D : P(R) , η : DE(F ))

direct definition ∃η̂ · η̂ ∈ R 7→ F ∧D ⊆ dom(η̂) ∧ solutionOf(D, η̂, E)
withControl expression (D : P(R) , E : CDE(F,UF) , û : R 7→UF )

well−definedness condition D ⊆ dom(û)
case E

code(Φ, η0, t0) =>
ode((λt̂ 7→ η̂ · t̂ ∈ D ∧ (t̂ 7→ η̂ 7→ û(t̂)) ∈ dom(Φ) | Φ(t̂ 7→ η̂(t̂) 7→ û(t̂))), η0, t0)

caode(Φ, η0, t0) => . . .
. . .

Listings 4.8: DiffEq Theory – Predicates

Hybrid Assignment Operators The other important part of the theory is to define the hybrid
assignment operators as presented and discussed in Section 4.1.2, allowing actually handling
differential equations and continuous system state in models.

The most basic of these operators is CBAP(t, tp, η, ηp,P, I), which essentially allows encoding
the continuous before-after predicate (CBAP, :|t→t′) defined in Section 4.1.2.1. It is defined, in the
DiffEq theory, as shown in Listing 4.9.

As :|t→t′ is accompanied by convenient “shortcut” operators (see Section 4.1.2.2), the theory
likewise defines other convenient continuous before-after predicate extensions. For instance, the predi-
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CBAP predicate (t : R+ , tp : R+ , η : R 7→ F , ηp : R 7→ F ,
P : P((R 7→ F )× (R 7→ F )) , H : P(F ))

well−definedness condition
[0, t] ⊆ dom(η) ∧ [0, tp] ⊆ dom(ηp)

direct definition
t 7→ tp ∈ lt ∧ [0, t[Cη = [0, t[Cηp∧
([0, t]C η) 7→ ([t, tp]C ηp) ∈ P∧
∀t̂ · t̂ ∈ [t, tp]⇒ ηp(t̂) ∈ H

Listings 4.9: DiffEq Theory – CBAP

cate CBAPsolutionOf(t, tp, η, ηp, E , H), represents :∼t→t′ , where E ∈ DE(F ). An implementation
of such operator is given in Listing 4.10.

CBAPsolutionOf predicate (t : R+ , tp : R+ , η : R 7→ F ,
ηp : R 7→ F , E : DE(F ) , H : P(F ))

well−definedness condition
[0, t] ⊆ dom(eta) ∧ [0, tp] ⊆ dom(ηp) ∧ Solvable([t, tp], E)

direct definition
CBAP(t, tp, η, ηp, (R 7→ F )× SolutionsOf([t, tp], E), H)

Listings 4.10: DiffEq Theory – CBAPsolutionOf

Other convenient predicates have also been defined, aimed at easing the writing of guards and
witnesses and general. For example, CBAPFIS(t, tp, η,P, H) synthesises the feasibility of the
corresponding CBAP use: it states that there exists ηp such that CBAP(t, tp, η, ηp,P, H) is true.
This is typically used in a guard as hypothesis for the event’s feasibility and as goal of the guard
strengthening proof obligation when refining.

Likewise, the CBAPsolutionOfFIS(t, tp, η, E , H) operator is defined, to encompass the feasi-
bility of the CBAPsolutionOf(t, tp, η, ηp, E , H) operator, i.e. that there exists a solution of E on
domain [t, tp] that remains in H on that same domain.

In models, the CBAP predicate is used to encode the actual CBAP operator (Operator 7) using
Event-B’s before-after predicate. Typically, the CBAP assignment xp :|t→tp P &H can be written
in Event-B as shown on Listing 4.11. Note that, to enforce its well-definedness, CBAPFIS is used
in the guards (grd2).

Event
ANY tp
WHERE

grd1 : t 7→ tp ∈ lt
grd2 : CBAPFIS(t, tp, xp,P, H)

THEN
act1 : t, xp :| t′ = tp ∧ xp ∈ R+ 7→ S ∧ [0, tp] ⊆ dom(xp)∧

CBAP(t, t′, xp, x′p,P, H)
END

Listings 4.11: CBAP Encoding in Models
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Properties and Theorems Similarly to other theories, the differential equations theory defines
numerous theorems and axioms in order to use the defined operators efficiently in proofs. Most
theorems defined allow deducing essential properties that often appear as proof obligations, in
particular feasibility and invariant preservation.

Solvability Multiple theorems are defined to handle solvability and in particular to be able to
deduce it. For example, we know that, if E is solvable on D, then it is solvable on any D′ ⊆ D; this
allows working with restrictions, and henceforth with broader solvable properties (e.g.: y′ = y is
solvable on R, therefore it is solvable on [t, t′]).

Establishing the solvability of an equation is usually a per-case problem, and depends on the
equation’s form. Fortunately, for ODEs (which is the most common form of equation), the Cauchy-
Lipschitz theorem may be used. This theorem is encoded in the theory, and it is used in proofs
whenever an ODE is used.

First of all, let us define the concept of Lipschitz continuity.

Definition 7 (Lipschitz Continuity). Let (E, dE) and (F, dF ) be two metric spaces (with dE and
dF ) their respective distances. Let D ⊆ E and f ∈ E → F .

f is Lipschitz-continuous on D if there exists K ∈ R+ such that:

∀x1, x2 ∈ D, dF (f(x1), f(x2)) ≤ K · dE(x1, x2)

This definition is used in the Cauchy-Lipschitz theorem.

Theorem 3 (Cauchy-Lipschitz Theorem). Let F be a Banach space (complete metric space).
Given two domains D ⊆ R and DF ⊆ F , a function Φ ∈ R × F → F and initial conditions
(t0, η0) ∈ D ×DF such that:

1. Φ is continuous on D ×DF

2. for any t0, Φ(t0, ·) is Lipschitz-continuous2 on DF

then the ODE entailed by Φ admits solutions on D×DF with η(t0) = η0, and in particular a unique
maximal solution.

Note that, in practice, hybrid systems are described using continuous state space of the form Rn,
n ∈ N∗, which are Banach spaces.

The hypotheses of the Cauchy-Lipschitz theorem have been encompassed in one operator called
CauchyLipschitzCondition. This condition is usually given as an axiom in contexts or (domain)
theories that define differential equation.

Listing 4.12 gives an implementation of the Cauchy-Lipschitz theorem together with the definition
of the CauchyLipschitzCondition operator.

Continuous Assignment The theory provides a number of useful theorems that help in establishing
machine consistency when using continuous assignment oeprators. For example, we demonstrate
that CBAPFIS entails feasibility of actions based on CBAP, to help discharging FIS POs arising
from the use of our custom operators. This theorem is declined for CBAPsolutionOf .

The theory also encodes Theorem 1 as to help discharging invariant proof obligations (INV).
We give an implementation of these properties in the theories in Listing 4.13.

2It is sufficient that Φ(t0, ·) is only locally Lipschitz-continuous on D (i.e. Lipschitz-continuous on any neihborhood
of x ∈ D); this version of the theorem is stronger but easier to handle in proofs.
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OPERATORS
. . .
CauchyLipschitzCondition predicate (D : P(R) , DF : P(F ) , E : DE(F ))

case E
ode(Φ, η0, t0) => D ×DF ⊆ dom(Φ) ∧ t0 ∈ D ∧ η0 ∈ DF ∧ Φ ∈ C0(D ×DF , F )∧

∀t̂ · t̂ ∈ D ⇒ lipschitzContinuous(DF , F, (λx · x ∈ DF | Φ(t̂, x)))
aode(Φ, η0, t0) => . . .

. . .
AXIOMATIC DEFINITIONS

AXIOMS
CauchyLipschitz :
∀E , D,DF · E ∈ DE(F ) ∧D ⊆ R ∧DF ⊆ F ∧CauchyLipschitzCondition(D,DF , E)
⇒ Solvable(D, E)

Listings 4.12: DiffEq Theory – Cauchy-Lipschitz Theorem and Operator

THEOREMS
. . .
CBAPFIS_act_FIS :
∀t, tp, η,P, H · t ∈ R+ ∧ tp ∈ R+ ∧ t 7→ tp ∈ lt ∧ η ∈ R 7→ F ∧ [0, t] ⊆ dom(η)∧
P ∈ P((R 7→ F )× (R 7→ F )) ∧H ∈ P(F ) ∧CBAPFIS(t, tp, η,P, H)
⇒ ∃ηp · ηp ∈ R 7→ F ∧ [0, tp] ⊆ dom(ηp) ∧CBAP(t, tp, η, ηp,P, H)

CBAP_INF:
∀t, tp, η, ηp,P, H, I · t ∈ R+ ∧ tp ∈ R+ ∧ t 7→ tp ∈ lt ∧H ∈ P(F ) ∧ I ∈ P(F )∧
η ∈ R 7→ F ∧ [0, t] ⊆ dom(η) ∧ ηp ∈ R 7→ F ∧ [0, tp] ⊆ dom(ηp)∧
P ∈ P((R 7→ F )× (R 7→ F )) ∧CBAPFIS(t, tp, η,P, H ∩ I)∧
∀t̂ · t̂ ∈ [0, t]⇒ η(t̂) ∈ I
⇒ ∀t̂ · t̂ ∈ [0, tp]⇒ η(t̂) ∈ I

. . .

Listings 4.13: DiffEq Theory – Continuous Assignment Properties

4.3.2.5 Theories of Approximation

Differential
Equation

Approximation
Base

Approximation

extends

extends

Figure 4.16: Theories of Approx-
imation – Architecture

The last two theories we have defined relate to the handling
of approximation, as discussed in Section 7. The first theory
(ApproximationBase) defines the foundations of approximation
(axiomatically) and the second (Approximation) elaborates on
these definitions and makes accessible the various useful operators
and theorems that ought to be used in models and proofs. The
architecture of theories for approximation is detailed in Figure
4.16.

The core of the approximation theories is the operator
DeltaNeighborhood(δ, x, y), which represents the fact that two
points x and y are no farther than δ (δ positive real number) from
each other. Note that no assumption is made on the set of x and

y, and thus no assumption is made on the distance used by the operator, making this predicate
generic. This is relevant as one may use particular metrics in developments (e.g. different types of
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norms and distances).
This operator (otherwise denoted≈δ and more thoroughly studied in Section 4.2.1) is accompanied

by multiple properties, including commutativity and reflexivity, as well as a particular form of
transitivity. It may also be “widened” (meaning if a≈δ b then a≈δ′ b if δ′ ≥ δ).

An extract of this theory is given in Listing 4.14.

THEORY ApproximationBase
IMPORTTHEORY DiffEq
TYPEPARAMETERS E , F
AXIOMATIC DEFINITIONS

OPERATORS
DeltaNeighborhood predicate (δ : R+ , a : F , b : F )

AXIOMS
deltaN_commutative : ∀δ, a, b · δ ∈ R+ ∧ a ∈ F ∧ b ∈ F ⇒

DeltaNeighborhood(δ, a, b)⇔ DeltaNeighborhood(δ, b, a)
de l taN_re f l : ∀δ, a · δ ∈ R+ ∧ a ∈ F ⇒ DeltaNeighborhood(δ, a, a)
deltaN_widen : ∀δ1, a, b · δ1 ∈ R+ ∧ a ∈ F ∧ b ∈ F ∧DeltaNeighborhood(δ1, a, b)⇒
∀δ2 · δ2 ∈ R+ ∧ δ1 7→ δ2 ∈ leq ⇒ DeltaNeighborhood(δ2, a, b)

. . .

Listings 4.14: ApproximationBase Theory Excerpt

From this operator, the Approximation theory elaborates several useful operators, which are
“lifted” versions of DeltaNeighborhood: comparison between a point and a function, between two
functions, between a function and the solutions of a differential equation, between two differential
equations. An extract of this theory is given in Listing 4.15.

Note that the comparison between two functions (DeltaApproximation operator) is the actual
approximation relation that serves as the base for the approximate refinement studied in Chapter 7.

The theory also defines the DeltaShrink(δ, S) operator, corresponding to the Sδ operator
(Operator 13 of Section 4.2.2).

THEORY Approximation
IMPORTTHEORY ApproximationBase
TYPEPARAMETERS E , F , F1 , F2 , UF1 , UF2
OPERATORS

DeltaApproximation predicate (D : P(E) , δ : R+ , f1 : E 7→ F , f2 : E 7→ F )
well−definedness condition D ⊆ dom(f1) ∧D ⊆ dom(f2)
direct definition ∀x · x ∈ D ⇒ DeltaNeighborhood(δ, f1(x), f2(x))

DeltaShrink expression (δ : R+ , S : P(F ))
direct definition {y | y ∈ F ∧ ∃x · x ∈ S ∧DeltaNeighborhood(δ, x, y)}

. . .

Listings 4.15: Approximation Theory Excerpt

Last, this theory of approximation gives a few axiomatic definition aimed at establishing
approximation in particular cases, for instance using simulation functions (as used by Girard and
Pappas [GP07; GJP08]).
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The principle behind simulation functions is to find a function V that links two controlled
autonomous ODEs (on a certain domain) and that is Lyapunov-stable. This function is called a
simulation function, and allows deducing that said ODEs are δ-approximated from each other, i.e.
their solutions are δ-approximated (with additional observation functions).

To model this, the SimulationFunctions(DF1 , DF2 , DUF1 , DUF2 , f1, f2, g1, g2) operator is ax-
iomatically defined, to represent the set of simulation functions between two autonomous controlled
ODE characterised by f1 : F1 ×UF1 7→ F1 and f2 : F2 ×UF2 7→ F2, with domain DF1 ⊆ F1 (resp.
DF2 ⊆ F2) and control domain DUF1 ⊆ UF1 (resp. DUF2 ⊆ UF2) and with appropriate observation
functions g1 : F1 → F (resp. g2 : F2 → F ).

4.3.2.6 Domain Theories

Hybrid system models integrate continuous concepts that model physical phenomena. These
physical phenomena, in addition to being constrained by continuous mathematics, are also usually
constrained by physics itself (bounds, constants, etc.). Additionally, these phenomena are described
using differential equations, and functionally close systems may define similar differential equations
(e.g.: kinematics for moving objects, fluid mechanics for tanks and pipes, electricity theory for
electronic circuits, ...).

Knowledge related to the particular systems to be modelled impact and enrich hybrid system
models with constraints and specific reasonings. This knowledge is gathered in so-called domain
theories. These theories extend the theory of differential equations (or approximation). They
usually define special constants, generic shape of differential equations and control functions, as
well as various axioms and theorems that can be used in conjunction with other theories, allowing
establishing solvability, controllability, feasibility, and so on see Sections 4.3.2.4 and 4.3.2.5).

In the context of our work, we have proposed several domain theories to support our developments.
They are described more thoroughly in the cases studies developed in this manuscript.

4.4 Discussion
Mathematical Background. The mathematical features defined in Sections 4.1 and 4.2 consti-
tute the foundation of our framework. They are algebraically defined in theories, and allow the
integration of continuous concepts to model continuous behaviours in an Event-B model, and handle
them in the proofs.

Event-B is based on sound mathematics, and exploits the properties of these mathematics to
define a correct-by-construction design method. Similarly, the formal definitions given in this chapter
constitute the foundation of our framework. The properties of the defined operators allow building
complex systems while mitigating the extra proof effort arising from the handling of advanced
mathematical features, by providing generic proof patterns.

Theories. The theories presented in this chapter represent a substantial part of the technical work
realised in this thesis, at least as important as the design of models (proof put apart).

Theorems are imported in the theories interactively, under the form of axioms. We assume
that this operation is safe. Methods and tools have been proposed to check the correctness of this
importation (e.g. Dedukti [Sai13]).



Chapter 5

A Generic Model for Hybrid
Systems

In Chapter 3, we presented an overview of the formal framework for designing controller-plant loop
hybrid system. The core of this framework is a generic model, an abstraction of controller-plant loop
hybrid systems that encapsulates generic hybrid system features, such as time, discrete behaviours
and continuous behaviours.

Concretely, this generic model takes the form of an Event-B machine that sets out the general
structure and behaviour of controller-plant loop hybrid systems. It is based on continuous features,
formalised in Chapter 4, and incorporated in Event-B using theories. These features are mainly
used to handle continuous behaviours (time, continuous state variables, differential equations, etc.).

The model is expressed in a generic way using event parameters and abstract variables. The
use of this model requires to instantiate it, that is, to refine it and to provide explicit substitutions
(or additional constraints) to its parameters and variables, using witnesses and gluing invariants.
Event-B then generates specific proof obligations associated with refinement, which ensure the
consistency of the instantiation.

The generic model serves as an entry point for the use of the framework. It constraints hybrid
system developments to enforce important properties, as well as to allow the use of the other formal
tools. A number of proofs are realised, once and for all, at this generic level, and are not to be done
again during development; this helps in segmenting and easing proofs in general.

In this chapter, we give a detailed presentation of the formalised generic model. We review the
architecture of hybrid systems represented by this model in Section 5.1, while Section 5.2 develops its
formulation in the form of an Event-B machine. Section 5.3 gives an overview the proofs associated
with the developped Event-B model and how they are handled. Finally, Section 5.4 illustrates the
use of the generic model to address two case studies taken from literature, and Section 5.5 concludes
the chapter with a general discussion of the contribution.

5.1 Controller-Plant Loop Architectures
Hybrid systems may be structured in a number of different ways. One of the most common
architecture is commonly described using the pattern shown in Figure 5.1. In this pattern, a
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Ctrl Plant

sense

actuate

environmentcommand

Figure 5.1: Hybrid System Global Architecture

(discrete) controller is linked to a (continuous) plant or, in other words, the physical phenomenon
that the system shall control. The controller retrieves data from the plant via sensors, and is able
to influence its behaviour via actuators. The controller may also change its state based on some
internal calculus or user commands, and similarly the plant may change its behaviour because of its
environment (wind, temperature, etc.).

We use this structure as a basis, together with the notion of hybrid automata [Alu+95] in order
to devise a generic abstract model of hybrid systems, i.e. a generic model that represents any hybrid
system conforming to this architecture. It is then possible to derive a specific hybrid system from
this generic model through refinement.

This generic model revolves around four major concepts:

• An explicit modelling of time, as a positive real variable;

• Discrete variables to represent the state of the controller. These variables are used to model
the general state of the controller, and in particular its mode automaton (the places of an
hybrid automaton);

• Continuous variables to represent the state of the plant. These variables are defined as
functions of time that follow differential equations (the behaviour is given in the places of the
hybrid automaton);

• Events that model changes in both controllers and plants. Such events correspond to the
arrows in Figure 5.1. They are classified as follows:

– Transition events, for modelling changes to the internal controller and user commands
(the user is considered as being part of the controller);

– Sensing events for modelling sensor acquisitions and their effects on the controller’s state;

– Behave events to model the impacts of the environment on the plant;

– Actuate events to model the changes in the plant induced by the controller (via actuators);

Note that, in the case of hybrid automata, transitions and sensing events correspond to the
automaton’s edges, with transition events close to synchronisation labels and sensing events close to
guarded arrows. Behave and actuate events correspond to the content of the automaton’s places
(enactment of the continuous behaviour).
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5.2 Generic Event-B Model
We base ourselves on the elements presented in Section 5.1, and on the mathematical features added
to Event-B’s expression language and presented in Chapter 4 and now detail the generic model we
have designed for modelling controller-plant loop hybrid systems in Event-B. As stated before, this
model consists of an Event-B machine, featuring a variable for time (denoted t), a discrete variable
(denoted xs) and a continuous variable (denoted xp), as well as the four types of events discussed in
Section 5.1.

5.2.1 Design Idea
The idea behind this model is to provide a generic structure that can be used as an entry point
for designing any hybrid system. For this reason, the model features one event for every type of
behaviour identified in Section 5.1 that essentially represents an abstract version of that type. These
events are highly generic thanks to the use of event parameters, which can be instantiated in further
refinements, using witnesses. These parameters are constrained by guards and, at instantiation, the
property of guard strengthening will make sure that the concrete objects provided for the parameters
are correct.

Similarly, the system revolves around abstract variables that ought to be substituted by the
proper system variables using gluing invariants and witnesses.

By steering the design of hybrid systems with this generic model, we 1) force a formal structure
for hybrid system, which makes it possible to prove its behaviour and 2) factorise a number of proofs
that occur at the abstract level and would otherwise appear for any hybrid system.

5.2.2 Model

MACHINE Generic
VARIABLES t , xs , xp
INVARIANTS

inv1 : t ∈ R+

inv2 : xs ∈ STATES
inv3 : xp ∈ R+ 7→ S
inv4 : [0, t] ⊆ dom(xp)

EVENTS
INITIALISATION
THEN

act1 : t := 0
act2 : xs :∈ STATES
act3 : xp :∈ {0} → S

END

Listings 5.1: Generic Machine Header and Initialisation

Machine Header and Initialisation The machine header is given in Listing 5.1. It defines the
three variables required to model hybrid systems, as well as the invariants constraining them. Time
t is a variable valued in R+ (inv1). It is initially set to 0 (act1) arbitrarily: being homogeneous,
taking t = 0 as its origin is convenient and does not introduce any restriction. The discrete variable



104 CHAPTER 5. A GENERIC MODEL FOR HYBRID SYSTEMS

xs evolves in a point-wise manner in set STATES (inv2), which corresponds to a generic encoding of
a mode automaton; it is given an arbitrary value at initialisation (act2) using the non-deterministic
set membership assignment operator (:∈).

Following the remarks of Section 5.1, the continuous state variable xp is a function of time (inv3).
To simplify later proofs, this function is partial on R, and at least defined on [0, t], i.e. from the
origin of time to the present moment (inv4). At initialisation, it is given an arbitrary value, with
the constraint that it shall be defined on [0, 0] = {0} (act3).

Transition
ANY s
WHERE

grd1 : s ∈ P1(STATES)
THEN

act1 : xs :∈ s
END

Listings 5.2: Generic Transition Event

Transition Events Listing 5.2 gives the definition of transition events, the first variant of discrete
events. They basically represent internal controller changes that are not caused directly by the plant:
internal calculation, running timer, controller decision. They are also used to model a command
issued by the user.

As a discrete event, Transition only modifies the current discrete state (act1). Because it does
not relate to the plant’s continuous state, the event is only guarded by a type predicate on its event
parameter, and not by any reading of value.

Sense
ANY s , p
WHERE

grd1 : s ∈ P1(STATES)
grd2 : p ∈ P(STATES× R× S)
grd3 : (xs 7→ t 7→ xp(t)) ∈ p

THEN
act1 : xs :∈ s

END

Listings 5.3: Generic Sense Event

Sensing Events Sensing events, as shown in Listing 5.3, are the second kind of discrete events,
and can be seen as refined transitions. They model any controller change that is induced by a
change in the plant, detected through sensors. At this abstract level, sensing is considered to occur
in an instantaneous way (when reaching continuous state C, the controller instantaneously changes
its discrete state), but in later refinements, imprecision and delays may be introduced.

As a discrete event and just like Transition, Sense only modifies the discrete state of the
controller (act1); but unlike for its counterpart, it observes both the current discrete state of the
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system and the continuous state of the plant. Thus, it is parameterised by a condition on these two
kinds of variables, plus time (grd2 and grd3).

Behave
ANY P , t′

WHERE
grd0 : t′ > t
grd1 : P ∈ (R+ 7→ S)× (R+ 7→ S)
grd2 : Feasible([t, t′], xp,P,>)

THEN
act1 : xp :|t→t′ P(xp, x′p) &>

END

Listings 5.4: Generic Behave Event

Environment Events Environment events, given in Listing 5.4, are the first sort of continuous
events. They represent changes in the plant that are not induced by the controller, but rather by
the environment of the continuous phenomenon under control: gravity, wind, rain, etc.

As a continuous event, Behave modifies the continuous state of the system (i.e. the model’s
continuous variables). It does so using the continuous before-after predicate as described in Section
4.1.2 (act1). The well-definedness and feasibility of this action is enforced thanks to the Feasible
predicate; when refining, guard strengthening will force the designer to establish this feasibility,
effectively delegating the proof.

As being considered outside of (normal) control, the event is not initially impacted by the
controller’s discrete state; for this reason, its guards do not relate to the controller’s state, and the
local invariant given when using the :|t→t′ operator is > (meaning anything may happen).

Note that this event models situations where the controller may fall in a situation where it can
no longer control the plant and is designed to model how the system responds to failure (closed-loop
modelling). For systems where this issue is not to be addressed, it is always possible to disable this
event during instantiation by setting its guard to ⊥.

Actuate
ANY P , s , H , t′

WHERE
grd0 : t′ > t
grd1 : P ∈ (R+ 7→ S)× (R+ 7→ S)
grd2 : Feasible([t, t′], xp,P, H)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : H ⊆ S
grd6 : xp(t) ∈ H

THEN
act1 : xp :|t→t′ P(xp, x′p) &H

END

Listings 5.5: Generic Actuate Event
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Actuation Events Listing 5.5 gives the definition of actuation events, the second kind of contin-
uous events. They model the changes induced on the plant by the controller, through actuators.

As for Behave, Actuate is a continuous event, and thus modifies the continuous state (xp) of the
system, using the continuous before-after predicate, as usual (act1). Note that, just like Behave, its
unguarded counterpart, well-definedness and feasibility of the event are enforced by guard grd2.

The actuation being performed is directly impacted by the controller’s discrete state; this fact is
captured by the event’s guards (grd3 and grd4).

In general, such actuations are given using differential equations. In that case, this event is
refined by replacing the :|t→t′ operator (and associated predicate P) with the :∼t→t′ operator (and
a differential equation eq ∈ DE(S)).

Unlike Behave, Actuate handles a special predicate/set, H, that prescribed the evolution domain
or local invariant for a continuous before-after predicate (located right after the & symbol). H is
given a type in grd5, while grd6 asserts that, at time t (i.e. at the start of a continuous event), the
continuous state already belongs to this domain.

5.2.3 Hybrid Events Semantics
Similarly to [Ban+15] with Hybrid Event-B and [Pla08] with hybrid programs, the semantics
associated to hybrid models clearly distinguish between discrete and continuous events. Indeed,
discrete events are timeless: they occur at a specific point in time and are instantaneous (i.e. do not
have duration); this means, in particular, that a countable arbitrary number of such events may
be triggered on any time interval. Conversely, continuous events – that use continuous before-after
predicates – have a (strictly positive) duration.

After the initialisation, a continuous event runs until a discrete event is enabled. Such discrete
events are preemptive and occur instantaneously, so that, as soon as they occur, a continuous event
starts running. This protocol asserts that the controller is always able to trigger control actions in
time to modify the plant’s behaviour if needed, and that sensing never misses a change in the plant’s
state. Note that time is always progressing, meaning that there is always at least one continuous
event enabled.

At some point, an environment event (Behave) may occur. This allows the designer to account for
potential drifts, failures or even extreme conditions in which the system can find itself in (closed-loop
modelling). They also allow addressing the requirement that a continuous event is always enabled:
if no actuation is enabled, it generally means that the system cannot be controlled, and is thus
described using this type of event.

Note that the duration of continuous events may be arbitrarily small, and even infinitely small, so
that two discrete events are infinitely close. This may lead to a situation known as a Zeno paradox,
where an infinite number of discrete event is triggered in a finite amount of time.

To avoid this situation, we constraints the semantics associated with our formalism to exclude
traces containing infinite sequences of consecutive discrete events.

Note that these (implicit) assumptions shall be made explicit when discretising the system.

5.2.4 Using the Generic Model
The generic model serves as an entry point for a refinement chain. Any controller-plant loop hybrid
system can be derived from it by refining it and by supplying it with is specific features in its generic
parts (otherwise known as “instantiation”). In this section, we provide an overview of how to use
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the generic model to obtain a particular hybrid system model, and show how this model is at the
core of the generic method and framework that we have devised for designing such systems.

To be able to model a hybrid system using this framework, it is first required to identify the
important features of the system:

• Continuous state: the continuous variables characterising the system’s plant (speed, position,
temperature, etc.);

• Discrete state: the discrete variables used by the controller, and in general the controller’s
mode automaton;

• System behaviour: what the system does, in the form of guarded events and categorised
according to the generic model, plus the system’s initialisation;

Once this analysis is done, the generic model is used by providing concrete features for its
variables and event parameters, using well-defined witnesses.

5.2.4.1 Continuous state

The main objective of hybrid systems is to control a physical, continuous phenomenon, generally
requiring to keep track of its evolution and influencing it using actuators. This plant’s physical
quantities are typically what constitutes the system’s continuous state.

The exact content of the continuous state depends on the hybrid system and in particular
on how it is controlled and what is sensed from it, but on an abstract level we assume an exact
and immediate reading (sensing) of the continuous phenomenon is possible, and thus that all the
variables we need are accessible. Later refinements may introduce imprecision, latency and so on
when approaching a more concrete implementation of the system.

The continuous variable’s behaviour is usually described using a differential equation, which
involves (some or all of) these variables, plus their derivatives. This means that, when modelling a
hybrid system, we need to identify both its continuous variables and the laws that describe their
respective behaviours, usually expressed in the form of differential equations.

The continuous state of the system is expressed as a set of functions of time,

{xp,1 : R+ → S1, xp,2 : R+ → S2, . . . , xp,k : R+ → Sk}

where, for all i, Si is the state space of function xp,i (the set containing the possible values of this
function). In general, this state space is a real vector space, typically Si = Rmi , with mi ∈ N∗.

On this basis, it is possible to express a generic relation between the abstract continuous variable
xp and its state space S, and the concrete continuous states and state spaces, and thus giving a
general gluing invariant for the instantiation:

S = S1 × S2 × . . .× Sk =
∏
i

Si

xp = xp,1 ⊗ xp,2 ⊗ . . .⊗ xp,k =
⊗
i

xp,i
(5.1)

These equations state that 1) the system’s overall state space is defined as the Cartesian product
of all concrete state spaces (as denoted by the generalised Cartesian product

∏
), and 2) the overall
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continuous state of the system is the direct product ⊗ (Operator 5) of each concrete continuous
variable.

Note that, in order to be valid with regard to the generic machine’s invariant, the following
additional properties must be maintained:

∀i, fi ∈ R+ 7→ Si ∧ [0, t] ⊆ dom(fi)

5.2.4.2 Discrete state

The controller part of a hybrid system is, in essence, a discrete program; for this reason, it may handle
variables, which are grouped under the denomination of discrete state of the system. Moreover,
it is quite common to design hybrid system following the hybrid automata [Alu+95] formalism:
the controller follows a set of states (the places of the automaton), each of which is associated to
a continuous behaviour. During a run, this automaton may have its current state depending on
sensing or other discrete transitions (the edges of the automaton).

The places of the hybrid automaton, together with its edges (without its hybrid parts) is a
“standard” (discrete) automaton that essentially depicts the states of the controller and what may
make it change. This automaton is called mode automaton, and is encoded in extenso in the discrete
state of the model. In fact, every “type” of behaviour the system is capable of is called the mode of
this system, and modes correspond to the places of the mode automaton.

When using the generic model, only the controller’s mode is used. Any variable can be included
in the generic discrete state, but since Event-B handles discrete variables “natively”, this is not
mandatory. Thus, linking the concrete hybrid model to the generic one only requires to populate
the STATES set containing the set of modes, and to keep the discrete variable xs in the concrete
machine.

Due to its nature, it is possible to use Event-B’s partition operator to specify the content of the
STATES set.

5.2.4.3 Continuous Behaviour

The continuous behaviour of hybrid systems is described through the actuate and behave events. To
model any such behaviour, it is thus required to refine one of these two events.

Behave events represent the environment, they should be used whenever modelling something
that is out of the normal control of the system (e.g. possible failure/recovery mechanisms). As
stated in Section 5.2.2, it is possible to disable this event by setting its guard to ⊥. This makes it
always disabled; it is a valid refinement since it abides by guard strengthening (` ⊥ ⇒ A for any A)
and ⊥ will be found as hypothesis of any related proof obligation (and ⊥ ` A for any A following ex
falso quodlibet or the explosion principle).

Actuation events implement the normal behaviour of a hybrid system. When refining this event,
it is expected to instantiate the parameters of the event using witnesses.

Associated Mode For each actuation event, the event parameter s shall be replaced by the set
of discrete states (or modes) in which this actuation can occur. If the system is deterministic, every
actuation has a disjoint set of associated modes, but this is not mandatory.
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Behavioural Equation The event parameter P shall be replaced by the actual predicate or
specific differential equation associated with the actuation. Due to the way the abstract event
has been written, providing a witness here will generate a WFIS (witness well-definedness) proof
obligation: there must exist a combination of parameters (and in particular a t′) such that P is
feasible on [t, t′].

Local Invariant The event parameter H shall be replaced by a local invariant describing the
limits of the current continuous section of the system. This set is typically filled-in with the negation
of the potentially reachable sensing event’s guards in order to enforce the fact that sensing events
happen at the right time.

Gluing Invariant Preservation As the abstract continuous variable (xp) handled by actua-
tion and behave events disappears in the concrete model and is replaced by the set of functions
{xp,1, xp,2, . . . , xp,k}, Event-B suggests that a witness for the new value of xp (x′p) is provided, in
order to prove the preservation of the gluing invariant.

This witness generally follows the form of the gluing invariant; typically, if the invariant is of
the form xp ∼ F (xp,1, xp,2, . . . , xp,k) (with F sa function and ∼ a relation such that refinement is
correct, typically equality =), the witness for x′p if of the form x′p ∼ F (x′p1, x

′
p2, . . . , x

′
pk).

5.2.5 Formalisation
Although the model presented in this section is mathematically accurate, it is presented in a readable
way, using formal abbreviations for abstracting Event-B notations.

For instance, R is modelled using the RReal abstract type defined in the RReal theory (see
Section 4.3.2.2), and intervals such as [0, t[ are actually written using the interval operators of the
Interval theory. For instance, Closed2Open(Rzero, t) encodes interval [0, t[ (closed on the left to
open on the right, with Rzero representing 0).

Continuous Assignment One of the most important differences however between the model
shown above and the actual model written within Rodin lie in continuous assignments. We use
the convenient shortcut :|t→t′ , but we do not have the possibility to actually customise “language”
operators such as assignment. That being said, thanks to the before-after predicate, it is enough to
write a predicate in a :| setting to actually encode this operator. Care has to be taken for the types
of the different parameters though, to ensure well-definedness of the operators can be established.

Formally, an assignment of the form: xp :|t→t′ P(xp, x′p) &H is encoded, in Event-B, as shown in
Listing 5.6 (with Pred being P, tp being t′ in the parameters).

1 act1 : t, x_p :|
2 t = tp∧
3 x_p′ ∈ RReal 7→ S∧
4 Closed2Closed(Rzero, t′) ⊆ dom(x_p′)∧
5 CBAP(t, tp, x_p, x_p′,Pred, H)

Listings 5.6: Continuous BAP Encoding

In Listing 5.6, lines 3 and 4 are present for well-definedness purposes (without these statements,
we would not be able to prove the PO associated with the use of CBAP). The “actual” encoding
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of :|t→t′ is indeed performed in line 2 (in order to actually set the time) and 5 for the core of the
operator.

Feasibility The model uses a special predicate denoted Feasible to ensure that the :|t→t′ is
feasible. In practice, this predicate is implemented using one of the CBAP ∗ FIS-type operators
defined in Section 4.3.2.4.

The models presented throughout this thesis use these convenient mathematical notations, as
to remain readable. Note that every model shown in Chapters 4 through 7 have been developed
in classical Event-B, withing Rodin. They are given in Appendix B and can be accessed at the
following link:
https://irit.fr/~Guillaume.Dupont/models.php.

5.3 Proofs
The generic model produced a total number of 25 proof obligations, which fall into three categories:
well-definedness, invariant, and feasibility.

The main advantage of having a unique top-level model is that these proofs are made once and
for all. In essence, they are the basis of correct hybrid systems, and the proofs that would typically
be carried out every time otherwise.

5.3.1 Feasibility
Feasibility arises in actions that use Event-B’s before-after predicate, to ensure that the described
behaviour actually holds. At this level, feasibility is trivially established, as most of the invariants
and guards exist for this sole purpose (e.g. Feasible in the actuation event).

Upon refining the generic model, the designer has to prove guard strengthening and witness
well-definedness/feasibility (most of the time simpler than action feasibility POs). These properties,
by virtue of the refinement and of the proofs done at the generic level, automatically entails the
feasibility of the actions.

Establishing feasibility of a particular predicate in a refinement is completely tied to the nature
of the predicate. When using differential equations, solvability needs to be asserted, using specific
theorems such as the Cauchy-Lipschitz theorem, or any other property associated to the considered
differential equation.

5.3.2 Invariants
The POs ensure the invariants are maintained by each event. They encompass the fundamental
principle of induction: if given property holds at initialisation, and if, provided it holds at some
point, it still hold no matter which event is being executed, then it holds on the whole model.

5.3.2.1 Proof in the Generic Model

The proofs at this level are classical. The hardest part is to establish inv1, inv3 and inv4 on
continuous events, as they record the evolution of time t and update the continuous state xp). The

https://irit.fr/~Guillaume.Dupont/models.php
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invariant PO for continuous event can be summarised as:

` t′ ∈ R+ (TIME)
∧ x′p ∈ R+ 7→ S (FUN )
∧ [0, t′] ⊆ dom(x′p) (DOM )

Three parts have been identified in this PO, corresponding to each invariants.

Time Typing (TIME) This part, corresponding to inv1 of Listing 5.1, is immediate: we have
t ∈ R+, and so, by definition of R+: t ∈ R and t ≥ 0. Additionally, we have t′ > t (given by TP,
coming from the well-definedness of the :|t→t′ operator), and since ≥ is transitive, it follows that
t′ ≥ 0. t′ ∈ R is implied by the use of the operators, and it naturally follows that t′ ∈ R+.

Functional Coherence (FUN) It corresponds to inv3 of Listing 5.1 and represents the fact that xp
remains a function after the event, or in other words, that each value is mapped to a unique image:

∀t̂ ∈ R+, x1, x2 ∈ S, t̂ 7→ x1 ∈ xp ∧ t̂ 7→ x2 ∈ xp ⇒ x1 = x2

This proof goal is trivially discharged by definition of the continuous before-after predicate
(Operator 7): we build xp incrementally and in a piece-wise manner, by appending functions defined
on disjoint intervals ([0, t[ and [t, t′]).

Domain Preservation (DOM) It corresponds to inv4 of Listing 5.1 and is also immediate, as it
follows the definition of the continuous before-after predicate operator (Operator 7): x′p is defined
on both domains [0, t[ and [t, t′], and we have [0, t[∪[t, t′] = [0, t′]; it follows that [0, t′] ⊆ dom(x′p).

5.3.2.2 Induction on Continuous Events

The invariant proof obligation for continuous events highlights a schema that follows the structural
induction principle, adapted to continuous behaviours and the way they are handled by the model.
Let I(xp) be an invariant on the continuous state xp; the resulting invariant proof obligation on a
continuous event with CBAP xp :|t→t′ P(xp, x′p) &H is:

Γ, I([0, t]C xp),CBAP(t, t′, xp, x′p,P, H)
` I([0, t′]C x′p)

Here Γ encompasses hypotheses originating from axioms and properties of the model, irrelevant
to the formula.

By unfolding the CBAP operator and exposing its well-definedness properties, the following
intermediate property arises:

Γ, I([0, t]C xp), [0, t[Cxp = [0, t[Cx′p,P([0, t]C xp, [t, t′]C x′p),∀t∗ ∈ [t, t′], x′p(t∗) ∈ H,
I([t, t′]C x′p) ` I([0, t′]C x′p)

(5.2)

The appended progression of the continuous state (I([t, t′] C x′p) corresponds to a restricted
invariant preservation that only focuses on time interval [t, t′]. Note that, additionally, the continuous
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state is not affected outside of this specific interval. It follows that the invariant proof obligation
admits the following reformulation, more adapted to continuous events:

Γ, I([0, t]C xp),P([0, t]C xp, [t, t′]C x′p),∀t∗ ∈ [t, t′], x′p(t∗) ∈ H
` I([t, t′]C x′p)

(CINV )

By establishing Property CINV , then using Property 5.2, invariant preservation is proved.
The continuous invariant proof obligation CINV is another form of the invariant preservation one

that takes advantage of the constraints of the model (i.e. using the CBAP operator in continuous
events) to remove unnecessary proof steps that are true by construction and, in particular, the fact
that the invariant holds on [0, t[ (the continuous state’s “past”).

This updated proof obligation is an induction step: if the invariant holds for xp on [0, t], then,
knowing that x′p is derived from xp using P and that it remains in evolution domain H, then prove
that the invariant still holds for x′p on [t, t′]. Doing so, it follows that the invariant holds for x′p on
the entirety of [0, t′].

On a side note, we can see that one way of establishing CINV is to demonstrate that H is
stronger than I. Note, however, that this is not always possible since I is a predicate on functions,
and H a predicate on points.

5.3.3 Event Feasibility
Ideally, in a safe hybrid system, the actuation corresponding to the current discrete state/mode is
always feasible; otherwise, the system is not controllable. This requirement is explicitly handled.

The main difficulty for this PO is to prove that guard grd2 of actuation events is feasible; this is
written:

Γ ` ∃t′ · t′ ∈ R+ ∧ t′ > t ∧ Feasible([t, t′], xp,P, H)
By unfolding Feasible, we obtain:

Γ ` ∃t′ · t′ ∈ R+ ∧ t′ > t∧
(∃x′p · x′p ∈ R 7→ S ∧ [t, t′] ⊆ dom(x′p)∧
P([0, t]C xp, [t, t′]C x′p)∧
x′p ∈

[t,t′]
H

)

This PO has to be proven on a case-by-case basis; it requires in-depth study of the involved
predicate (or equation). However, when S is a topological space (which is entailed if S = Rn) and
when H has some specific properties, it can be simplified as follows.

Theorem 4 (Simplified Feasibility). Let S be a topological space and t ∈ R+. Let xp ∈ R 7→ S a
continuous function with [0, t] ⊆ dom(xp). Let P ∈ (R 7→ S)× (R 7→ S) and H ⊆ S, with xp(t) ∈ H.
If there exists t̂ ∈ R+ with t̂ > t such that:

∃x̂p · x̂p ∈ R 7→ S ∧ [t, t̂] ⊆ dom(xp) ∧ P([0, t]C xp, [t, t̂]C x̂p)

with x̂p continuous on [t, t̂], and if H is open, then there exists t′ ∈ R+, t < t′ < t̂, such that
Feasible([t, t′], xp,P, H) is true.
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Proof. Preliminary notions: the proof relies on the property that H is open. For the record, a
set is open if and only if it is a neighbourhood of each of its point:

∀x ∈ H,H ∈ N (x)

where N (x) is the set of neighbourhoods of point x.
We also recall that a function f is continuous at point t if, for any neighbourhood W of f(t), f−1[W ]
is a neighbourhood of t (where f−1 is the inverse of function f , see Operator 3).

Suppose that there exist t̂ and x̂p as in the hypotheses of the theorem. We have x̂p(t) ∈ H by
hypothesis, so we have H ∈ N (η(t)). Because x̂p is continuous in t, we obtain x̂−1

p [H] ∈ N (t). Since
t is real, ∃µ > 0 such that [t, t+ µ[⊆ x̂−1

p [H].
We take t′ ∈ R such that t < t′, t′ < t + µ and t′ < t̂. We observe that [t, t′] ⊆ [t, t + µ[, and
thus that [t, t′] ⊆ x̂−1

p [H]. By unfolding the definition of the inverse (Operator 3), we deduce that:
∀t∗ ∈ [t, t′], x̂p(t∗) ∈ H.

Additionally, we have [t, t̂] ⊆ dom(xp) and P([0, t] C xp, [t, t̂] C x̂p) by hypothesis. By restriction,
since [t, t′] ⊆ [t, t̂], we deduce that [t, t′] ⊆ dom(xp) and thus that P([0, t]C xp, [t, t′]C x̂p).

The intuition behind this theorem is that, if P is feasible and H is open, it is always possible to
find t′ > t (possibly very close to t) such that the action is feasible. In practice, this means that,
as long as H is open, we only need to prove the feasibility of P and the continuity of any function
obtained with it.

When using differential equations, function continuity is obtained for free (by definition of
differential equations); what remains to do is to establish the solvability of the equation.

5.4 Case Study

In this section, we illustrate the use of the generic model by using it to design two models of hybrid
systems, borrowed from literature.

The first one, taken from [Que+16], address the problem of car that must brake automatically
in order to stop before a given point. The second one, taken from [Aré+12], proposes to model a
controller to assist a car attempting to perform a signalised left-turn.

Note that to demonstrate our approach, we chose two case studies that were both developed using
dynamic logic/hybrid programs and the KeYmaera X environment. We believe that KeYmaera is a
widely used proof-based modelling technique, and it is especially relevant to compare that approach
to ours.

5.4.1 First System: Automatic Brake
This case study is borrowed from [Que+16], where it was modelled as a hybrid program. Multiple
properties have been expressed using differential dynamic logic, and proved using KeYmaera.

Figure 5.8 depicts a scenario for this system: a car shall stop before a given point (the stopping
point, denoted SP). To achieve this goal, it is required to design a correct controller, able to influence
the car’s acceleration.
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Figure 5.8: Automatic Brake Typical Scenario

5.4.1.1 Preliminary Study

Plant Description. The controlled plant is the car, modelled by its position, velocity (speed) and
acceleration (p, v and a respectively). The car’s speed is physically bounded between 0 and Vmax.
Acceleration is controlled directly. As a matter of simplification, it evolves discretely between the
values 0, −b and A, where b > 0 is car’s braking power and A > 0 is the car’s (forward) acceleration.
We denote by SP the position of the stopping sign (see Figure 5.8).

The laws of physics provide a differential equation of the form:

∀t ∈ R+, v̇(t) = a, ṗ(t) = v(t) (5.3)

or, in ODE form: Φ(t, [ v p ]>) = [ a v ]>.
The goal of the system is to stop the car before reaching position SP. Physics gives the expression

of the distance needed by the car to reach v = 0 from its current velocity v(t) at time t using a
braking force b:

∀t ∈ R+, d(t) = v(t)2

2b (5.4)

As the car is required to stop before the stopping point (i.e. reach v = 0 with p < SP), we can
hence determine when the car is required to start braking, or rather when it is safe for the car not
to brake. This safety property is formalised as so:

∀t ∈ R+, safe ⇔ p(t) + d(t) < SP (5.5)

If ever safe evaluates to false, the car is required to brake.

Controller Description. The car’s controller behaves in five modes, as shown in Figure 5.9, in
the form of a hybrid automaton (see Section 1.1.1). These modes are in two categories.

1. Free behaviour: whenever safe is true, the car chooses freely one of the three following modes.

• Stabilising: a = 0, the car’s speed does not change.
• Accelerating: a = A, the car’s speed increases while remaining below Vmax.
• Braking: a = −b, the car’s speed decreases while remaining above 0.

2. Restricted behaviour: whenever safe is false, the car obeys the following rules.
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Figure 5.9: Hybrid Automaton for the System

• Near stop: the car is braking (a = −b); the car falls into this mode as soon as it
approaches the stopping point.

• Stopped: the car stopped (a = 0, v = 0) while in near stop mode, presumably right
before SP.

The controller may choose to change its mode among stabilizing, braking and accelerating via
transition events as long as it is safe to do so. The system moves from free behaviour to restricted
behaviour (hence entering near stop mode) via a sense event that detects if SP is too close, i.e.
when the remaining distance between the car and SP is shorter than the distance it needs to brake.

Similarly, it moves from near stop mode to stopped mode via another sense event when it
detects that the car has stopped. The system’s behaviour is summed up in the hybrid automaton of
Figure 5.9.

Requirements. The system’s requirement can be summarised as follows:
FUN1 The car moves forward, and the controller controls its acceleration a;
ENV1 Speed always stays between 0 and Vmax ;
SAF1 Whenever the car is stopped (xs = stopped), its position is before the stopping point (i.e.
p(t) < SP);

5.4.1.2 Event-B Development

Based on our preliminary study, we give an Event-B development fulfilling the requirements of the
system. This development is based on the generic model presented in this chapter, and we use
Event-B’s refinement to instantiate it.

Constants and Axioms. The system requires the definition of multiple constants and properties
that are contained in an Event-B context (later referred to as Car_C1). In particular, this context
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defines the acceleration A, braking power b, maximum speed Vmax and initial speed of the car v0. A
set of discrete states STATES is introduced according to the mode automaton given in Figure 5.9.
Moreover, this context also contains the definition of the ordinary differential equations corresponding
to each possible continuous behaviour (as the functions characterising them):

• fstable when a = 0 (in stabilising or stopped mode)

• facceleration when a = A (in accelerating mode)

• fdeceleration when a = −b (in decelerating or near stop mode)

These ODE functions are also accompanied with various properties regarding their regularity,
required to prove they admit solutions later on.

MACHINE Car_M1 REFINES Generic SEES
Car_C1

VARIABLES t , xs , v , p
INVARIANTS

inv1−2 : v ∈ R+ 7→ R, p ∈ R+ 7→ R
inv3−4 : [0, t] ⊆ dom(v), [0, t] ⊆ dom(p)
inv5 : xp = [ v p ]>
inv6 : ∀t̂ · t̂ ∈ R+ ∧ xs = stopped ⇒ p(t̂) ≤ SP

INITIALISATION
WITH x′p : x′p = [ v′ p′ ]>
THEN

act1 : t := 0
act2 : xs := stabilizing
act3 : v, p := {0 7→ v0}, {0 7→ 0}

END

Listings 5.7: Machine Header and Initialisation

Machine Header. Listing 5.7 excerpts the header of the machine and its initialisation. As
expected the machine refines the generic one. The state space S = R2 is given as the machine
deals with two continuous variables (speed v and position p). The abstract continuous state xp is
refined by the two-dimensional vector [ v p ]> given in the gluing invariant inv5. inv6 describes the
system’s safety invariant, encoding the property SAF1.

Initialisation is straightforward: the car starts at position 0 with an initial speed set to v0, and
the controller is initially in stabilizing mode.

ctrl_transition_accelerate
REFINES Transition

WHERE
grd1 : p(t) + v(t)2

2b < SP
WITH

s : s = {accelerating}
THEN

act1 : xs := accelerating
END

ctrl_sense_near_stop REFINES Sense
WHERE

grd1 : p(t) + v(t)2

2b ≥ SP
grd2 : v(t) > 0

WITH
s : s = {nearing_stop}
p : p = STATES × R× {v̂, p̂ | p̂+ v̂2

2b ≥ SP ∧ v̂ > 0}
THEN

act1 : xs := nearing_stop
END

Listings 5.8: Machine Transition and Sensing Events
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Transition and Sensing Events. Listing 5.8 shows a transition and sensing events taken from
the system. The transition corresponds to the decision (most likely made by the user) to accelerate.
It is guarded by the safety invariant to ensure that the system does not involve an unsafe behaviour.
A witness for s (set of possible destination states) is provided.

The ctrl_sense_near_stop sensing event detects when the car is approaching the stopping sign
and needs to brake. This instantaneous event is guarded by ¬safe so as to be triggered when the
controller detects that the car is entering an unsafe area. The actions of this sensing event enables
an actuate event by setting the controller in nearing stop mode. Again, a witness is provided for s,
as well as for p; the latter reflects the associated guard on the continuous state.

Behave REFINES Behave
ANY eq
WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq)

WITH
x′p : x′p = [ v′ p′ ]>

THEN
act1 : v, p, t :∼t→t′ eq &>

END

ctrl_actuate_brake REFINES Actuate
ANY t′

WHERE
grd0 : t′ > t
grd1 : xs ∈ {braking, nearingstop}

WITH
eq : eq = ode(fdeceleration, [ v(t) p(t) ]> , t)
s : s = {braking,nearing_stop}
x′p : x′p = [ v′ p′ ]>
H : H = {v∗, p∗ | v∗ > 0}

THEN
act1 : v, p :∼t→t′ ode(fdeceleration, [ v(t) p(t) ]> , t)

&{v̂, p̂ | v̂ > 0}
END

Listings 5.9: Machine Behave and Actuation

Behave and Actuation Events. Listing 5.9 shows the machine’s behave event as well as an
actuation event. The former is a direct refinement of the abstract behave event, replacing the
abstract continuous state xp with the concrete one [ v p ]>. The witness provided for x′p follows the
gluing invariant.

The presented actuation is tied to the braking and nearing stop mode, and causes changes in the
car behaviour, so that it starts braking. In this refined event, the usual witnesses are provided for
x′p and s (i.e.: the concrete continuous state and the discrete state triggering the actuation). The
relevant continuous behaviour for the system is given using an ordinary differential equation and the
ode operator. We also give a value to the evolution domain (H) that ensures that speed remains
positive.

5.4.1.3 Proofs

This system has yielded a number of 118 proof obligations. Around 27% of them result from
well-definedness (in particular from operators defined in theories, used in the model). 26% are
generated from invariants, most of which are actually fairly easy to prove (typically proving
invariants). Refinement-related proofs make for 38% of the POs, and include both simulation and
guard strengthening (i.e. making sure the provided witnesses are compatible with the system).

The most difficult proof to carry out is to establish the solvability of the provided ODEs (required
by guard strengthening). In this case, we use the Cauchy-Lipschitz theorem (Theorem 3) to exploit
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the form of these ODEs and to establish the property.

5.4.2 Second System: Signalised Left-Turn Assist
This second case study is borrowed from [Aré+12], where it is again addressed using hybrid programs,
and by proving properties expressed using differential dynamic logic using KeYmaera.

The problem is summed up in Figure 5.13: a car is trying to perform a left-turn without being
protected by traffic lights (so-called signalised left-turn). To do so, it must cross the lane of opposite
direction; if a car was to move on the said lane, this could lead to a collision. The goal is to design
the correct controller to help the car to perform the left-turn safely.

Figure 5.13: Automatic Brake Typical Scenario

5.4.2.1 Preliminary Study

Plant Description. The controlled plant is the car performing a turn and called subject vehicle (or
SV ), modelled by its curvilinear abscissa1, speed and acceleration (pSV , vSV and aSV , respectively).
The car’s speed is physically bounded between 0 and Vmax and its acceleration is also bounded
between −b and Amax , where b > 0 is the maximum braking power. Changes in the acceleration are
discrete and are controlled by the system. We note k the width of the intersection and q the length
of the turn. Note that the axes of the frame are aligned in a standard way (upward and rightward)
and the origin is positioned at the beginning of the turn.

As the model needs to determine whether or not there is a collision, we also model the first
car on the lane in the opposite direction (i.e. the one that may hit the SV) called primary object
vehicle (or POV ). This car is merely “simulated”, and we are only interested in its position and
speed (pPOV and vPOV , respectively). The speed of the POV is also physically bounded between 0
and Vmax and evolves discretely and randomly in the model.

Physics yields the following equations for the SV’s dynamics:

∀t ∈ R+,

{
v̇SV (t) = aSV
ṗSV (t) = vSV (t) (5.6)

and for the POV’s dynamics:
∀t ∈ R+, ṗPOV (t) = vPOV (t) (5.7)

These equations are put together to form the overall system’s dynamics. This can be expressed
in the form of an ODE:

Φ(t, [ vSV pSV pPOV ]>) = [ aSV vSV vPOV ]>

1That is, we do not model x and y coordinates but rather the position of the object on its supposed trajectory
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Note that a negative acceleration simply means the car is braking (not moving in backward
direction). Hence, when vSV reaches 0 while braking, it does not go below. It is also important to
note that the POV is moving from right to left (backward in relation to the x axis), meaning that
its speed is negative.

The point of the system is to evaluate whether the SV has the time to attempt a turn. We
want to establish safety in the worst case scenario; that is: the SV turns with minimal acceleration
Amin and the POV drives at maximum speed Vmax . Physics allows us to calculate the time needed
for the SV to complete its left turn starting from time t, given its position pSV (t), speed vSV (t),
acceleration aSV and the length of the turn q as:

∀t ∈ R+, TSV (t) = −vSV +
√
v2

SV + 2aSV (q − pSV )
aSV

(5.8)

Similarly, we can calculate the time for the POV to reach the intersection given its position
pSV (t) and k at the end of the intersection (or at the beginning as for the POV’s point of view),
assuming it is driving at maximum speed Vmax:

∀t ∈ R+, TPOV (t) = pPOV − k
Vmax

(5.9)

Hence, a sound condition for determining whether the SV has enough time to complete its turn
before being hit by the POV is defined by the following property:

safe ⇔ TPOV (t) > TSV (t) (5.10)

Controller Description. The car’s controller acts on the SV only. It operates in three modes:

• Waiting: aSV = 0, the car is waiting for turning.

• Turning: aSV ∈ [Amin, Amax ], the car is completing its turn.

• Passed: aSV ∈ [−b, Amax ], the car has completed its turn and is free to move.

Note that passing from waiting to turning is not mandatory: the controller does so via a transition
event involving a choice (generally a choice from the user). Conversely, the controller moves from
turning mode to passed mode “automatically”, simply by reading its position and comparing it to
the end of the turn. The system’s behaviour is summed up in the hybrid automaton of Figure 5.14.

waiting{
v̇SV = 0
ṗSV = vSV
>

start

turning{
v̇SV = aSV
ṗSV = vSV
pSV < q

passed{
v̇SV = aSV
ṗSV = vSV
>

:turn
/ TPOV >TSV / pSV ≥ q

Figure 5.14: Hybrid Automaton for the System
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Requirements. The system’s requirements are summarised as:
FUN1 The car waits on its lane;
FUN2 At some point, the car starts and completes a left-turn;
ENV1 Another vehicle (POV) travels the lane of opposite direction with a random, bounded
speed;
SAF1 If the POV reaches the intersection (pPOV < k), the SV has either completed its turn
(pSV > q) or has not moved (pSV ≤ 0);

5.4.2.2 Event-B Development

Based on this study, we give here a possible Event-B development addressing this case study, and
refining the generic model.

Constants and Axioms. In the same way as for our previous case study, we need to define a
set of constants and axioms in an Event-B Context (named LeftTurnAssistCtx), used throughout
the model. In particular, this context defines initial SV acceleration a0

SV , POV speed v0
POV , POV

position p0
POV , maximum braking power b, maximum acceleration Amax and minimal acceleration

Amin for attempting the left turn. A set of discrete states STATES is defined similar to the mode
automaton given in Figure 5.14. Moreover, the defined context also contains the ordinary differential
equations for each continuous behaviour of the system as follows:

• fstable when aSV = 0 (in waiting mode).

• facceleration when aSV > 0 the new acceleration of the SV (in turning mode).

• fdeceleration with aSV < 0 the new (braking) acceleration of the SV (possibly in passed mode
when the car is not constrained anymore).

Various properties are defined for these ODE functions. They are used to prove solutions
existence.

MACHINE LeftTurnAss i s t REFINES Generic
SEES LeftTurnAss istCtx
VARIABLES t , xs , pPOV , pSV , vSV , vPOV , aSV
INVARIANTS

inv1−3 : pPOV ∈ R+ 7→ R,
pSV ∈ R+ 7→ R, vSV ∈ R+ 7→ R

inv4−7 : [0, t] ⊆ dom(pPOV ),
[0, t] ⊆ dom(pSV ), [0, t] ⊆ dom(vSV )

inv7 : vPOV ∈ [−Vmax , 0]
inv8 : aSV ∈ [−b, Amax ]
inv9 : xp = [ vSV pSV pPOV ]>
inv10 : ∀t̂ · t̂ ∈ R+ ∧ pPOV (t̂) < k

⇒ (pSV (t̂) ≤ 0 ∨ pSV (t̂) ≥ q)

INITIALISATION
WITH

x′p : x′p = [ v′SV p′SV p′POV ]>
THEN

act1 : t := 0
act2 : vSV , pSV , pPOV :=
{0 7→ 0}, {0 7→ 0}, {0 7→ p0

POV}
act3 : xs := waiting
act4 : aSV , vPOV := 0, v0

POV
END

Listings 5.10: Machine Header and Initialisation

Machine Header. Listing 5.10 gives the machine’s header and initialisation event. Here, the state
space is S = R3 as the controller deals with three continuous variables: SV speed vSV and position
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pSV , and POV position pPOV . We also need to define the SV acceleration aSV (i.e. actuated by the
controller) and the POV speed vPOV , which is used in the POV differential equation.

The abstract continuous state xp is refined by the 3-dimensional vector [ vSV pSV pPOV ]> as
given in the gluing invariant inv9. Finally, the fundamental system’s safety invariant ensuring a safe
left turn is given in inv10. It is a direct translation of the safety property given in the requirements.

Initialisation sets the controller in waiting mode according to the hybrid system’s automaton. It
also sets the other state variables of the system to their respective initial values. In particular, it
sets the initial value of the continuous state variables as being the solutions of the ODE defined
by fstable. A witness is thus provided through derivation of the gluing invariant for the variable x′p
(new abstract continuous state).

ctrl_transition_attempt_turn
REFINES Transition

WHERE
grd1 : xs = waiting
grd2 : TSV (t) < TPOV (t)

WITH
s : s = {turning}

THEN
act1 : xs := turning

END

ctrl_sense_turn_end REFINES Sense
WHERE

grd1 : pSV (t) ≥ q
WITH

s : s = {passed}
p : p =

STATES × R× {v̂SV , p̂SV , p̂POV | p̂SV ≥ q}
THEN

act1 : xs := passed
END

Listings 5.11: Machine Transition and Sensing Events

Transition and Sensing Events. Listing 5.11 gives a transition and a sensing event of the
machine. The transition corresponds to the waiting–turning arrow of the mode automaton, or in
other words to the decision of attempting a left-turn. It occurs only if the system estimates it is safe
to turn (enforced by guard grd2). A witness is provided for s, following the mode automaton.

The sensing event detects when the car has finished its turn (and goes in passed mode). Note
how this event is guarded by a predicate on the continuous state (grd1) to represent the actual
sensing. Witnesses are provided for s and p, the latter reflecting the event guards.

Behave and Actuation Events. Figure 5.12 depicts the system’s behave event, as well as one
of its actuation events. As usual, behave models environmental changes; this includes ENV1 in the
requirements, i.e. the changes of speed of the POV (act2).

The actuation follows classical actuation events; here, it represents the behaviour of the car
when turning. The continuous state evolves according to the given differential equation (under the
form of an ODE), constrained by an evolution domain. A value for aSV is given: it represents the
command issued by the controller. Witnesses are provided for x′p following the gluing invariant, as
well as for H and eq, where they represent the actual parameters of the model.

5.4.2.3 Proofs

This model yielded a number of 88 proof obligations. Well-definedness put aside, the majority of
these POs relate to refinement and invariant preservation (32% each). The latter consists of a lot of



122 CHAPTER 5. A GENERIC MODEL FOR HYBRID SYSTEMS

Behave REFINES Behave
ANY eq , v , t′

WHERE
grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq)
grd3 : v ∈ [0, Vmax ]

WITH
x′p : x′p = [ v′SV p′SV p′POV ]>

THEN
act1 : vSV , pSV , pPOV :∼t→t′ eq &>
act2 : vPOV := −v

END

ctrl_actuate_turning REFINES Actuate
ANY a , t′

WHERE
grd1 : xs = turning
grd2 : a ∈ [Amin , Amax ]

WITH
eq : eq =

ode(facceleration , [ vSV (t) pSV (t) pPOV (t) ]> , t)
s : s = {turning}
x′p : x′p = [ v′SV p′SV p′POV ]>
H = {v∗SV , p

∗
SV , p

∗
POV | p∗SV < q}

THEN
act1 : vSV , pSV , pPOV :∼t→t′

ode(facceleration , [ vSV (t) pSV (t) pPOV (t) ]> , t)
&{v̂SV , p̂SV , p̂POV | p̂SV < q}

act2 : aSV := a
END

Listings 5.12: Machine Behave and Actuation Events

typing invariant establishment, trivial to discharge. The hardest invariant proofs relate to invariant
inv10 (system’s safety), particularly in the specific part where the car is turning.

Refinement-related proofs mainly consist in ensuring the witnesses provided for the generic
model’s parameters are coherent (e.g. solvable differential equations).

5.5 Discussion
The generic model is the entry point of the framework: controller-plant loop hybrid systems are built
first by refining it. This generic model has been designed to be both restrictive and flexible; guards
and witnesses enforce, in a way, a “correct” use of the model with proper separation of discrete
and continuous behaviours on the one hand, and on the other hand, the highly generic level of the
model’s features (variables and parameters) allows a designer to refine the model in many different
ways, corresponding to a large set of controller-plant hybrid systems.

Major proofs are realised, once and for all, at the generic model level, and the only remaining
proofs relate to the instantiation of the model: simulation, guard strengthening, feasibility and witness
proofs. This way, when the generic model is instantiated for a particular hybrid system, the resulting
refinement must preserve the properties of the generic model (feasibility of actions/solvability of
equations); this ensures the system fulfils the core requirements of a hybrid system.

The generic model is used for all of our work. It was first published in [Dup+18b], where it was
successfully applied to the stopping car case under study, presented in Section 5.4.1. It was also used
to address the signalised left-turn assist case study [Dup+18a], described in Section 5.4.1. Finally,
[Sta+19] shows how this applies to formalising parts of the European Train Control System (ETCS).

Models for both cases studies as well as the generic model are given in their entirety in Appendix
B. The generic model is given in Section B.1. The models for the automatic brake case study are
given in Section B.2, and for the SLTA in Section B.3.



Chapter 6

Architecture Patterns

In the context of this thesis, we are interested in controller-plant loop hybrid systems. This
specific type of systems consists of two components: a controller and a physical plant under control,
communicating with each other via sensors and actuators. This layout can be extended, allowing for
more complex hybrid systems, with more components.

Typically, a single controller may be able to handle multiple plants simultaneously, and pushing
this further several controllers may each communicate with multiple plants and also communicate
with one another, essentially forming a network of hybrid system. Note that the latter comes close
to the broader concept of cyber-physical system [LS14].

To sum up, hybrid systems may consist in more than one component of each type, and these
components may be organised in multiple ways, thus defining different hybrid system architectures.
This is an essential part of hybrid system design that needs to be tackled in a formal way.

In order to model different hybrid system architectures, we propose an extension of our framework
that allows the formal modelling of a hybrid system into various architectural structures, using
different building blocks. The patterns are presented under the form of a refinement, which rules
may be applied to existing hybrid systems (using instantiation).

In this chapter, we propose a set of architecture styles of hybrid systems based on how one or
many plants are controlled. We formalise architecture patterns as basic models for different hybrid
system components. Section 6.1 gives a general intuition behind the proposed architecture patterns,
and in particular their common points and their place in the framework. Section 6.2 defines the
single-to-single architecture pattern as a direct use of the generic model. Section 6.3 describes
the single-to-many architecture pattern, where one controller controls multiple pants; Section 6.4
extends on this concept and proposes the many-to-many architecture pattern, where many plants
are controlled by many controllers. Both architecture patterns are put to use to address two cases
studies in Section 6.5. Finally, Section 6.6 concludes the chapter with a short discussion on the
contribution.

6.1 General Idea
The hybrid system architecture patterns presented in this chapter are formalised as a refinement of
the generic model. The generic model formalises a single controller, single plant hybrid system; it is

123
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Figure 6.1: Framework Tools – Architecture Patterns

considered as an abstract model where both controller and plant can be refined, in order to model
systems with many controllers and/or plants.

In general, refining a single-to-single type of model into any pattern poses two important issues:

1. how is the state of the concrete machine related to the one of the abstract machine?

2. how is the behaviour of the concrete machine allowed by the abstract one?

The first point is handled using a gluing invariant: the continuous state of the abstract system
(xAp ) is usually replaced by a set of concrete continuous states ({xCp,1, xCp,2, . . .}), and the two are
linked by a particular function (e.g. linear/polynomial combination, etc.). This together with
additional constraints on the evolution domain of each continuous state variable, define the gluing
invariant:

xAp = f(xCp,1, xCp,2, . . .) ∧ P (xCp,1, xCp,2, . . .)

This equality allows the substitution of xAp by f(xCp,1, . . .) in the refinement. Additionally, the
form of f determines different mathematical reasoning that may be exploited during the proof
process (e.g. linear combination, function composition, etc.).

The second point is taken care of of by the refinement rules, and in particular guard strengthening
and action simulation:

• For the former, the core idea is that abstract guards, upon substituting the abstract variables
(using the gluing invariant), must remain true;

• For the latter, the goal is to ensure that the behaviour of each of the concrete variables, once
“processed” through the gluing invariant, is compatible with the behaviour of the abstract
variables. This has to be realised while retaining some liberty, as over-constraining the
continuous variables will hinder the expressiveness of refinement;
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For the former, the core idea here is that abstract guards, upon substituting the abstract variable
(using the gluing invariant) must remain true.

For action simulation, the goal is to ensure that the behaviour of each of the concrete variables,
once “processed” through the gluing invariant, is compatible with the behaviour of the abstract
variables. This must be done while maintaining a certain level of liberty, as over-constraining the
continuous variables hinders the expressiveness of the refinement.

6.2 Single-to-Single Architecture Pattern

Controller Plant
actuate

sense

Figure 6.2: Single-to-single Pattern Typical Scenario

The single-to-single (S2S for short) architecture pattern is depicted in Figure 6.2. It is the
general structure of hybrid systems handled by the generic model, and consists of a single controller,
controlling a single plant.

This pattern corresponds to refining the generic model and instantiate it for a given hybrid
system. It is presented in full details in Chapter 5. Note that it is used as the first step in the case
studies proposed in this chapter (in Section 6.5.3).

6.3 Single-to-Many Architecture Pattern

Controller

Plant 1

Plant 2

Plant 3

actuate

sense

actuate

sense

actuate

sense

Figure 6.3: Single-to-many Pattern Typical Scenario

The single-to-many (S2M for short) pattern appears in scenarios such as the one depicted on
Figure 6.3. They typically represent centralised control systems: a single controller is controlling
multiple plants. It is able to access each plant’s state, and influence each plant using separate
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actuators. In this setup, the difficulty is to enforce a global property on the system, while having
separate plants, each with their own properties.

As a simple example of this kind of situation, one can imagine a set of tanks which valves are
being controlled by one single system. The goal is to maintain a certain volume of liquid overall (i.e.
globally on every tanks) by opening output and input valves as needed. The difficulty of this system
comes from the ability to change the volume of multiple tanks while enforcing this invariant (for
example, we could have several completely empty tanks while still retaining the property).

6.3.1 Model
We present this pattern as a refinement, showing an abstract generic model (denoted by a superscript
A) and a refinement (denoted by a superscript C) side by side.

As a matter of simplification, we make the assumption that the concrete machine handles 2
continuous state variables (i.e. two plants), but it can easily be extended to use as many continuous
state variables as needed. We also consider that the discrete state does not change from one machine
to the other.

6.3.1.1 Machine Headers

MACHINE MA

VARIABLES t , xs , xAp
INVARIANTS

inv1 : t ∈ R+

inv2 : xs ∈ STATES
inv3 : xAp ∈ R 7→ SA

inv4 : [0, t] ⊆ dom(xAp )

MACHINE MC REFINES MA

VARIABLES t , xs , xCp,1 , xCp,2
INVARIANTS

inv31 : xCp,1 ∈ R 7→ SC1
inv32 : xCp,2 ∈ R 7→ SC2
inv41 : [0, t] ⊆ dom(xCp,1)
inv42 : [0, t] ⊆ dom(xCp,2)
inv5 : xAp = f(xCp,1, xCp,2)

Listings 6.1: S2M Pattern – Machine Header

Listing 6.1 gives the header of the two machines. Following the generic model presented in
Chapter 5, the machines first define a variable for time (t) and a variable for the discrete state (xs)
with associated invariants. Machine MA defines a continuous state xAp valued in SA and machine
MC defines two continuous states xCp,1 and xCp,2 valued in SC1 and SC2 respectively.

The key point here is inv5 of MC , which is the gluing invariant of the refinement. It states that,
on interval [0, t], xAp , xCp,1 and xp,2 are linked by function f ∈ (SC1 × SC2 )→ SA.

The initialisation event of both machines is given in Listing 6.2. The main difficulty here is
that xAp “disappears” by refinement, and is replaced by the new continuous state xCp,1, xCp,2. It is
subsequently substituted in the actions by these new variables, and a witness is provided for xA′p
that is based on the gluing invariant (and allows establishing it).

6.3.1.2 Discrete Events

It is assumed the system’s discrete behaviour does not change from the abstract machine to the
concrete one (i.e. the controller remains single). This entails that transition events are left unchanged.
Sensing events, on the other hand, need to be addressed since they access the continuous state.
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INITIALISATIONA

THEN
act1 : t := 0
act2 : xs :∈ STATES
act3 : xAp :∈ {0} → SA

END

INITIALISATIONC REFINES
INITIALISATIONA

WITH xA′p : xA′p = f(xC′p,1, xC′p,2)
THEN

act1 : t := 0
act2 : xs :∈ STATES
act31 : xCp,1 :∈ {0} → SC1
act32 : xCp,2 :∈ {0} → SC2

END

Listings 6.2: S2M Pattern – Initialisation

SenseA
ANY s , pA

WHERE
grd1 : s ∈ P1(STATES)
grd2 : pA ∈ P(STATES× R× SA)
grd3 : (xs 7→ t 7→ xAp (t)) ∈ pA

THEN
act1 : xs :∈ s

END

SenseC REFINES SenseA
ANY s , pA

WHERE
grd1 : s ∈ P1(STATES)
grd2 : pA ∈ P(STATES× R× SA)
grd3 : (xs 7→ t 7→ f(xCp,1(t), xCp,2(t))) ∈ pA

THEN
act1 : xs :∈ s

END

Listings 6.3: S2M Pattern – Sensing Event

Listing 6.3 presents the sensing events for the S2M pattern. The key point here is that the event
is unchanged, except for the abstract state xAp that is substituted with the concrete state (xCp,1, xCp,2)
by exploiting the particular shape of the gluing invariant.

This replacement is sound (see Section 6.3.2.1) and the resulting guard is equivalent to the guard
of the abstract sensing event. Note that, as for any refinement, it is possible to propose a stronger
guard.

6.3.1.3 Continuous Events

Since the refinement for the S2M pattern affects the system’s continuous state, continuous event
present numerous changes. In this section, we address the case of the actuation event only, since
behave can be seen as a simpler (i.e. less constrained) version of the actuation event.

Listing 6.4 shows the Actuate event for the pattern. Notice the use of the direct product ⊗
(Operator 5) to bind together two functions, in order to be able to use the theorie’s operators on
them.

The only parameter to change is PA, replaced by PC . In theory, we would need to provide
a witness, but since this is a pattern, it is expected that, at this point, these predicates actually
contain definite values, and a witness would heavily depend on these values.

Local invariant HA is unchanged; instead, guards grd2 and grd6 are updated to use the concrete
continuous state (xCp,1, xCp,2) instead of the abstract one, again exploiting the gluing invariant. The
evolution domain of the CBAP operator (right-hand side of the &) is modified in a similar way. It
is used for establishing simulation (see Section 6.3.2.2). Note that, equivalently, predicate of the
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ActuateA
ANY PA , s , HA , t′

WHERE
grd0 : t′ > t
grd1 : PA ∈ (R+ 7→ SA)× (R+ 7→ SA)
grd2 : Feasible(xAp , [t, t′],PA, HA)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : HA ⊆ SA
grd6 : xAp (t) ∈ HA

THEN
act1 : xAp :|t→t′ PA(xAp , xA′p ) &HA

END

ActuateC REFINES ActuateA
ANY PC , s , HA , t′

WHERE
grd0 : t′ > t
grd1 : PC ∈ (R+ 7→ (SC1 × SC2 ))× (R+ 7→ (SC1 × SC2 ))
grd2 : Feasible(xCp,1 ⊗ xCp,2, [t, t′],PC , f−1[HA])
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : HA ⊆ SA
grd6 : f(xCp,1(t), xCp,2(t)) ∈ HA

WITH
xA′p : xA′p = f(xC′p,1, xC′p,2)

THEN
act1 : xCp,1, x

C
p,2 :|t→t′ PC(xCp,1 ⊗ xCp,2, xC′p,1 ⊗ xC′p,2) & f(xCp,1, xCp,2) ∈ HA

END

Listings 6.4: S2M Pattern – Actuation Event

form f(xCp,1, xCp,2) ∈ HA may be replaced by:

(xCp,1, xCp,2) ∈ f−1[HA]

Finally, a witness is provided for xA′p , recalling the gluing invariant.

6.3.2 Proofs

The single-to-many architecture pattern yields multiples proof obligations that ought to be proved.
Since it is a pattern, these proof obligations are general, and discharging them often requires to rely
on the particular shape and properties of the model’s parameters (predicates, variables, and so on).

In this section, we study the shape of the POs associated with the pattern, and give general
techniques to discharge them.
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6.3.2.1 Guard Strengthening

Guard strengthening (see Section 2.3.3.1) is a proof obligation that is directly related to refinement,
and thus is generated when instantiating the pattern. In our case, we address guard strengthening
for guards that involve the continuous state, that is, the guards of sensing events and the evolution
domain consistency of actuation events.

For instance, guard strengthening for sensing events yields the following PO:

A ∧ I ∧W∧ xAp =
[0,t]

f(xCp,1, xCp,2) ∧ (xs 7→ t 7→ f(xCp,1(t), xCp,2(t))) ∈ pA

⇒ (xs 7→ t 7→ xAp (t)) ∈ pA

Discharging this PO is straightforward, using the gluing invariant to substitute xAp with
f(xCp,1, xCp,2) on the right-hand side of the implication (by noticing that t ∈ [0, t]).

Similarly, we consider the PO associated to evolution domain consistency (grd6 of actuation
events):

A ∧ I ∧W∧ xAp =
[0,t]

f(xCp,1, xCp,2) ∧ f(xCp,1(t), xCp,2(t)) ∈ HA

⇒ xAp (t) ∈ HA

Using the same technique as for guard strengthening POs in sensing events (i.e. substitution
using the gluing invariant) allows discharging the PO.

Note that the concrete and abstract guards are equivalent. It is always possible to propose a
stronger guard in the refinement, provided it implies the abstract one (e.g. f(xCp,1(t), xCp,2(t)) ∈ H ⊆
HA).

6.3.2.2 Simulation

Simulation (see Section 2.3.3.2) is a crucial proof obligation associated with refinement. It ensures
that the behaviour of a concrete event simulates the one of the abstract event.

This PO is written as:

A ∧ I ∧G∧xA′p =
[0,t′]

f(xC′p,1, xC′p,2) ∧ CBAP(t, t′, xCp,1 ⊗ xCp,2, xC′p,1 ⊗ xC′p,2,PC , f−1[HA])

⇒ CBAP(t, t′, xAp , xA′p ,PA, HA)

We can unfold the definition of CBAP (as given in Section 4.1.2.1) on each side of the implication:

A ∧ I∧G ∧ xA′p =
[0,t′]

f(xC′p,1, xC′p,2)

∧ [0, t[C(xC′p,1 ⊗ xC′p,2) = [0, t[C(xCp,1 ⊗ xCp,2) ⇒ [0, t[CxA′p = [0, t[CxAp (PP)
∧ PC([0, t]C (xCp,1 ⊗ xCp,2), [t, t′]C (xC′p,1 ⊗ xC′p,2)) ∧ PA([0, t]C xAp , [t, t′]C xA′p ) (PR)
∧ (xC′p,1 ⊗ xC′p,2) ∈

[t,t′]
f−1[HA] ∧ xA′p ∈

[t,t′]
HA (LI )

Using the gluing invariant and the witness (xA′p =[0,t′] f(xC′p,1, xC′p,2)) to substitute xAp and xA′p in
the formula, and by exploiting the the properties of the domain restriction operator (C, Operator
6), the proof for PP and LI are completed.
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At this step, the continuous predicate simulation (CPSIM) part of the proof is left to prove:

A ∧ I ∧G∧ xA′p =
[0,t′]

f(xC′p,1, xC′p,2) ∧ CBAP(t, t′, xCp,1 ⊗ xCp,2, xC′p,1 ⊗ xC′p,2,PC , f−1[HA])

⇒ PA([0, t]C xAp , [t, t′]C xA′p )
(CPSIM )

Such proof is to be conducted on a case-by-case basis, as it highly depends on the form of the
predicates PA and PC . Evolution domain f−1[HA] can be strengthened in order to give additional
properties, used as hypotheses for this proof.

In the case where the event uses the :∼t→t′ operator, the proof consists in establishing that the
solutions of the concrete equations, once processed through the gluing relation f , yields a function
that is a potential solution of the abstract differential equation.

6.4 Many-to-Many Architecture Pattern
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Figure 6.8: Many-to-many Pattern Typical Scenario

The many-to-many (M2M for short) architecture pattern corresponds to scenarios such as the
one presented in Figure 6.8. These kind of systems consist of several communicating controllers
that are linked together via a network (internet, radio or other wireless means, etc.), each of which
controls a plant.

Compared to single-to-many systems where one controller is constantly aware of the state of every
plant, in a many-to-many architecture, controllers only have direct access to their associated plant.
Information on the other plants state is supplied by other controllers, through the communication
network. Such exchange may generate imprecision (e.g. because of communication delay).

This imprecision must be taken into account when designing the system: controllers may have
to take decisions depending on a global state, but this imprecision makes it difficult to establish
such a global state accurately. This means that controllers must consider and anticipate potential
incorrectness in the calculated state, and further constraint their behaviour.

6.4.1 Model
Like for the single-to-many pattern, we give the M2M pattern as a refinement. Similarly, we assume
that the concrete machine only handles two continuous variables. Note that it can be easily be
extended to handle larger systems.
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6.4.1.1 Machine States and Working Hypotheses

Let MA be a machine with discrete state xAs ∈ STATESA and continuous state xAp ∈ R 7→ SA. Let
MC be a refinement of MA consisting of two sub-components, i.e. two controllers, each being linked
to one plant. The sub-components are modeled using two discrete states xCs,1 ∈ STATESC1 and
xCs,2 ∈ STATESC2 and two continuous states xCp,1 ∈ R 7→ SC1 and xCp,2 ∈ R 7→ SC2 .

Gluing Invariant Similarly to the S2M pattern, the gluing invariant between xAp and (xCp,1, xCp,2)
is of the form:

xAp = f(xCp,1, xCp,2)

with f ∈ SC1 × SC2 → SA.

Global Continuous State Estimation In single-to-single systems, the controller has a direct
access to the plant’s state (sensing is instantaneous). In the case of many-to-many systems, each
controller is directly linked to one plant, but cannot sense the other plant’s state directly and
instantaneously. Instead, each controller sends its associated plant’s state to the other controllers
through a network, and retrieves through this network the state of the other parts of the system.

This exchange unavoidably introduces imprecision, due to communication delay, rounding errors
and so on. Consequently, controllers cannot access an exact state of the global system. Therefore,
in order to maintain a global invariant on the system, each controller has to record a safe estimation
of the state of the other components.

In practice, this is modelled using specific variables, xsim
p,i , representing the estimation of the

state of the remainder of the system.
This state is assumed to be 1) regularly updated, such that the delay between its current value

and the actual value of this state is bounded (i.e. bounded delay in the communication) 2) the
controller is able to emulate the behaviour of this variable between two updates, meaning it is able
to estimate the behaviour of the remainder of the system, using physics simulation, for example.

Concretely, Controller 1 is keeping track of variable xsim
p,2 ∈ R 7→ SC2 that simulates Plant 2, and

Controller 2 is keeping track of variable xsim
p,1 ∈ R 7→ SC1 that emulates Plant 1.

Since communication delay is bounded, we assume that the difference between the estimation of
the remainder of the state xsim

p,i and its actual value xCp,i is bounded. We note ∆sim
i this bound, and

we have:
∀i ∈ {1, 2},∀t∗ ∈ [0, t], ‖xCp,i(t∗)− xsim

p,i (t∗)‖ ≤ ∆sim
i

where ‖ · ‖ denote a norm on the state space SCi .
This bound depends on the specific properties of the network and of the physical phenomena

models of the plants. It is usually provided in a specific theory of domains, formalising the
application’s domain knowledge.

Discrete State Each controller of the concrete model has its own discrete state: it decides how
its associated plant is controlled. However, the abstract model only handles one single state, the
global state of the system. For the refinement to be consistent, it is required to provide a gluing
invariant, linking the abstract discrete global state to the concrete “local” discrete states of each
controller.
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The relationship linking the local discrete states of each controller and the global discrete state
of the abstract controller is specific to each particular system; it defines how the local controllers
behave, depending on the state of each other local controller.

In the following, this link is called a policy. It is modelled using a particular set predicate of
possible relations between abstract and concrete discrete states. It is available in a given context or
in a domain theory. The policy predicate of the form

(xAs , xCs,1, xCs,2) ∈ Policy

establishes this relation.
It is worth noticing that the concept of policy arises with the distributed, multi-controller nature

of the system, encoded by the two distinct concrete discrete variables xCs,1 and xCs,2. It is a way
for the controllers to “agree” on a set of valid behaviours they shall follow. The definition of this
predicate does not prevent from the checking of the refinement consistency as shown in Section 6.4.2.

Note that policy is not explicitly defined in the single-to-many architecture pattern, as it involves
a single controller (equivalently, the policy predicate for a centralised controller is the identity:
xAs = xCs = xs).

6.4.1.2 Machine Header

MACHINE MA

VARIABLES t , xAs , xAp
INVARIANTS

inv1 : t ∈ R+

inv2 : xAs ∈ STATESA
inv3 : xAp ∈ R 7→ SA

inv4 : [0, t] ⊆ dom(xAp )

MACHINE MC REFINES MA

VARIABLES t , xCs,1 , xCs,2 , xCp,1 , xCp,2 , xsim
p,1 , xsim

p,2
INVARIANTS

inv21 : xCs,1 ∈ STATESC
inv22 : xCs,2 ∈ STATESC
inv31 : xCp,1 ∈ R 7→ SC1
inv32 : xCp,2 ∈ R 7→ SC2
inv41 : [0, t] ⊆ dom(xCp,1)
inv42 : [0, t] ⊆ dom(xCp,2)
inv51 : xsim

p,1 ∈ R 7→ SC1
inv52 : xsim

p,2 ∈ R 7→ SC2
inv61 : [0, t] ⊆ dom(xsim

p,1 )
inv62 : [0, t] ⊆ dom(xsim

p,2 )
inv7 : ∀t∗ · t∗ ∈ [0, t]⇒ ‖xCp,1(t∗)− xsim

p,1 (t∗)‖ ≤ ∆sim
1

∧‖xCp,2(t∗)− xsim
p,2 (t∗)‖ ≤ ∆sim

2
inv8 : (xAs , xCs,1, xCs,2) ∈ Policy
inv9 : xAp = f(xCp,1, xCp,2)

Listings 6.5: M2M Pattern – Machine Header

Listing 6.5 gives the header of both abstract and refined machines. The main point here is the
correct definition of every variable used by the models, namely discrete (xA/Cs ) and continuous
(xA/Cp ) states, as well as the variables used for emulating the global state (xsim

p ).
Following the discussion of Section 6.4.1.1, the behaviour of the variables is constrained using

invariants. inv7 ensures the emulated states do not drift too far from the actual states, and inv8
links the abstract and the concrete discrete states. Finally, inv9 is the gluing invariant linking the
abstract and concrete continuous states.
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INITIALISATIONA

THEN
act1 : t := 0
act2 : xAs :∈ STATESA
act3 : xAp :∈ {0} → SA

END

INITIALISATIONC REFINES INITIALISATIONA

WITH
xA′s : xA′s , x

C′
p,1, x

C′
p,2 ∈ Policy

xA′p : xA′p = f(xC′p,1, xC′p,2)
THEN

act1 : t := 0
act2 : xCs,1, x

C
s,2 :∈ STATESC

act31 : xCp,1, x
sim
p,1 :| xCp,1{0} → SC1 ∧ xsim

p,1 = xC′p,1
act32 : xCp,2, x

sim
p,2 :| xCp,2{0} → SC2 ∧ xsim

p,2 = xC′p,2
END

Listings 6.6: M2M Pattern – Initialisation

Initialisation for the machines is given in Listing 6.6. Variables are initialised as usual; note that
we have chosen the simulating variables (xsim

p,i ) be equal to the exact ones.
Because xAp and xAs disappear at refinement, witnesses have to be provided. They are based on

the refinement’s gluing invariants (inv9 and inv8, respectively).

6.4.1.3 Discrete Events

SenseA
ANY sA , pA

WHERE
grd1 : sA ∈ P1(STATESA)
grd2 : pA ∈ P(STATESA × R× SA)
grd3 : (xAs 7→ t 7→ xAp (t)) ∈ pA

THEN
act1 : xAs :∈ sA

END

SenseC1 REFINES SenseA
ANY sC1 , pC1
WITH

sA ,xA′s : xA′s ∈ sA ∧ xA′s , xC′s,1, xCs,2 ∈ Policy
WHERE

grd1 : sC1 ∈ P1(STATESC)
grd2 : pC1 ∈ P(STATESC × R× (SC1 × SC2 ))
grd3 :

(xCs,1 7→ t 7→ (xCp,1(t) 7→ xsim
p,2 (t))) ∈ pC1

THEN
act1 : xCs,1 :∈ sC1

END

SenseC2 REFINES SenseA
ANY sC2 , pC2
WITH

sA ,xA′s : xA′s ∈ sA ∧ xA′s , xCs,1, xC′s,2 ∈ Policy
WHERE

grd1 : sC2 ∈ P1(STATESC)
grd2 : pC2 ∈ P(STATESC × R× (SC1 × SC2 ))
grd3 :

(xCs,2 7→ t 7→ (xsim
p,1 (t) 7→ xCp,2(t))) ∈ pC2

THEN
act1 : xCs,2 :∈ sC2

END

Listings 6.7: M2M Pattern – Sensing Events

Listing 6.7 shows the sensing event for the abstract and concrete machines. The key point is that
the abstract sensing event is “split” in two events, one for each controller (SenseC1 and SenseC2).
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The main difficulty is to establish a correct relation between abstract and concrete discrete states.
This is done using an adequate policy predicate that is used to express the witness for xA′s and sA.

Correct values must be provded for pC1/2 to substitute pA. In particular, these concrete events
are required to strengthen grd3.

Note that the transition event follows the same pattern, without the sensing predicate p.

6.4.1.4 Continuous Events

Listing 6.8 shows the actuation event for both systems. This actuation updates both the
continuous state (xCp,1 and xCp,2) and the emulated state variable of each controller (xsim

p,1 and xsim
p,2 ).

Continuous state is updated with two predicates, PC1 and PC2 , each of which relates to a continuous
variable and the simulated continuous variable of the other (i.e. (xCp,1, xsim

p,2 ) and (xsim
p,1 , x

C
p,2)), thus

effectively representing two separate and independent actuations, although they are executed
simultaneously.

On the other hand, the functions associated to the simulated continuous variables are updated
directly with functions (xsim∗

p,1 and xsim∗
p,2 ), which models the simulations managed and calculated by

the controllers themselves.
The predicate employed in the CBAP operator as well as in the Feasible predicate is the

Cartesian product PC1 × PC2 , intersected with an additional predicate enforcing the assignments of
xsim
p,1 and xsim

p,2 .
Similarly, HA is substituted with HC , with the additional constraints that each continuous state

variable simulation must remain close by ∆sim
i from the associated state variable’s actual behaviour

(i.e. ‖xCp,i − xsim
p,i ‖ ≤ ∆sim

i ). This additional constraints ensures the provided simulation functions
are sufficient for the controller to behave correctly.

Witnesses are provided for sA and xA′p , following the machine’s gluing invariants. Note that we
do not give witnesses for HA and PA; this fact is discussed further in Section 6.4.2.

6.4.2 Proofs
The single-to-many architecture pattern yields multiple POs, mostly related to refinement. It is to
be noted, again, that since it is a pattern, there is no general method for discharging all of these
POs, since they rely on the specific features of the system.

In this section, we focus on guard strengthening and simulation POs, and we study how they are
handled.

6.4.2.1 Guard Strengthening

Guard strengthening appears in particular in sensing events. It ensures the concrete sensing can
only occur when there is an abstract sensing is.

In concrete sensing event 1 for instance, the guard strengthening PO has the form:

A ∧ I∧xAs , xCs,1, xCs,2 ∈ Policy ∧ xAp = f(xCp,1, xCp,2) ∧ ‖xCp,2 − xsim
p,2 ‖ ≤ ∆sim

2

∧ (xCs,1, t, (xCp,1(t), xsim
p,2 (t))) ∈ pC1 ⇒ (xAs , t, xAp (t)) ∈ pA

The difficulty is to devise an updated guard (i.e. a value for pC1 ) that allows establishing guard
strengthening. In the particular case where the guard is of the form xAp ∈ p̂A (and (xCp,1, xsim

p,2 ) ∈ p̂C1 ),
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ActuateA
ANY PA , s , HA , t′

WHERE
grd0 : t′ > t
grd1 : PA ∈ (R+ 7→ SA)× (R+ 7→ SA)
grd2 : Feasible(xAp , [t, t′],PA, HA)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : HA ⊆ SA
grd6 : xAp (t) ∈ HA

THEN
act1 : xAp :|t→t′ PA(xAp , xA′p ) &HA

END

ActuateC REFINES ActuateA
ANY PC1 , PC2 , sC1 , sC2 , xsim∗

p,1 , xsim∗
p,2 , HC , t′

WHERE
grd0 : t′ > t
grd1 : PC1 ∈ (R+ 7→ (SC1 × SC2 ))× (R+ 7→ (SC1 × SC2 ))∧

PC2 ∈ (R+ 7→ (SC1 × SC2 ))× (R+ 7→ (SC1 × SC2 ))
grd2 : Feasible(xCp,1 ⊗ xsim∗

p,2 ⊗ xsim∗
p,1 ⊗ xCp,2, [t, t′],

PC1 × PC2 ∩ {x̂p,1, x̂sim
p,2 , x̂

sim
p,1 , x̂p,2 | xsim

p,1 =[t,t′] x
sim∗
p,1 , xsim

p,2 =[t,t′] x
sim∗
p,2 },

HC ∩ {x̂p,1, x̂sim
p,2 , x̂

sim
p,1 , x̂p,2 | ‖x̂p,1 − x̂sim

p,1 ‖ ≤ ∆sim
1 ∧ ‖x̂p,2 − x̂sim

p,2 ‖ ≤ ∆sim
2 })

grd3 : sC1 ⊆ STATESC ∧ sC2 ⊆ STATESC
grd4 : xCs,1 ∈ sC1 ∧ xCs,2 ∈ sC2
grd5 : xsim∗

1 ∈ R 7→ SC1 ∧ [t, t′] ⊆ dom(xsim∗
1 )

grd6 : xsim∗
2 ∈ R 7→ SC2 ∧ [t, t′] ⊆ dom(xsim∗

2 )
grd7 : HC ⊆ SC1 × SC2 × SC1 × SC2
grd8 : xCp,1(t), xsim∗

p,2 (t), xsim∗
p,1 (t), xCp,2(t) ∈ HC

WITH
xA′p : xA′p = f(xC′p,1, xC′p,2)
sA : xAs , x

C
s,1, x

C
s,2 ∈ Policy ∧ xAs ∈ sA

THEN
act1 : xCp,1, x

sim
p,1 , x

C
p,2, x

sim
p,1 :|t→t′

PC1 (xCp,1 ⊗ xsim
p,2 , x

C′
p,1 ⊗ xsim′

p,2 ) ∧ PC2 (xsim
p,1 ⊗ xCp,2, xsim′

p,1 ⊗ xC′p,2)
∧xsim

p,1 =[t,t′] x
sim∗
p,1 ∧ xsim

p,2 =[t,t′] x
sim∗
p,2

&{x̂Cp,1, x̂sim
p,2 , x̂

sim
p,1 , x̂

sim∗
p,2 |

x̂Cp,1, x̂
sim
p,2 , x̂

sim
p,1 , x̂

C
p,2 ∈ HC

∧‖x̂Cp,1 − x̂sim
p,1 ‖ ≤ ∆sim

1 ∧ ‖x̂Cp,2 − x̂sim
p,2 ‖ ≤ ∆sim

2 }
END

Listings 6.8: M2M Pattern – Actuation Event

we exploit the shape of the gluing invariant and the properties of xsim
p,2 . We then have to find p̂C1

such that:

(xCp,1, xsim
p,2 ) ∈ p̂C1 ⇒ ∀x∗p,2 · x∗p,2 ∈ S2

C ∧ ‖x∗p,2 − xsim
p,2 ‖ ≤ ∆sim

2

⇒ f(xCp,1, x∗p,2) ∈ p̂A
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Indeed, if we have this property, x∗p,2 is substituted with xCp,2, and the gluing invariant is exploited
to substitute f(xCp,1, xCp,2) with xAp . This means that, to avoid missing the sensing of an event, the
guard needs to take into account the simulation error bound ∆sim

2 .
Note that the constraints induced by the communication network and the continuous behaviours

of the plants may entail a value of ∆sim
i for which the only correct value for p̂C is ∅, i.e. the only

correct guard for the concrete event with regard to guard strengthening is ⊥. In this case, the
system loses features (some concrete events are disabled).

For instance, if ∆sim
i is to big, it may be impossible to find a predicate p̂C strong enough to

imply p̂A.

6.4.2.2 Simulation

As for the single-to-many pattern, this pattern generates simulation POs, in particular associated
with continuous events. A simulation proof obligation for the system’s actuation (with unfolded
CBAP) is written as:

A ∧ I ∧G ∧ xA′p =
[0,t′]

f(xC′p,1, xC′p,2) ∧ PC1 (xCp,1 ⊗ xsim
p,2 ,x

C′
p,1 ⊗ xsim′

p,2 ) ∧ PC2 (xsim
p,1 ⊗ xCp,2, xsim′

p,1 ⊗ xC′p,2)∧

∀t∗ · t∗ ∈ [0, t′]⇒ ‖xC′p,1(t∗)− xsim′
p,1 (t∗)‖ ≤ ∆sim

1 ∧ ‖xC′p,2(t∗)− xsim′
p,2 (t∗)‖ ≤ ∆sim

2

∧xC′p,1(t∗), xsim′
p,2 (t∗), xsim′

p,1 (t∗), xC′p,2(t∗) ∈ HC

⇒ PA(xAp , xA′p ) ∧ ∀t∗ · t∗ ∈ [t, t′]⇒xA′p (t∗) ∈ HA

This PO drives the design of PCi and HC , in a way similar to the single-to-many pattern, with
the additional inclusion of the simulation error bound. Just like for guard strengthening, the idea
is that these predicates shall be strict enough that, even considering the possible gap between
simulated and direct variables, simulation still holds.

Note that, for HC , the same technique as for guard strengthening is used.

6.5 Application to Cases Studies
To demonstrate the use of these two patterns, we propose a general case study, classically exemplified
in control theory literature. The objective is to handle one or more water tanks, using various forms
of control, and ensuring a global invariant (e.g. that the total volume is comprised between two set
bounds).

This case study is versatile, and it can be adapted to illustrate the architecture patterns presented
in this chapter.

6.5.1 Description
Figure 6.13 depicts an abstract representation of the problem. The system consists of some tank or
tanks containing a volume of liquid, of arbitrary shape and architecture. This (these) tanks is (are)
linked to a generic controller that is able to actuate pumps (an input and an output pump) to fill or
empty the tank(s). This controller can also sense the volume in the tank(s).

The goal of the system is to maintain the volume of liquid inside the tank(s) between too given
constants (SAF1), and also to ensure that the flow in the tank is never too strong, in order to avoid
turmoil (SAF2).
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Figure 6.13: Abstract Tank Model

Last, we suppose that activating the input pump will fill up the tank(s), and activating the
output pump will empty it. Also, when no pump is active, the volume in the tank does not vary.
Apart from that, no additional hypothesis is done on the system at this level.

In the following sections, we will study this system under different hypotheses, and most
importantly using different architectures.

6.5.2 A Theory of Tanks
Water tanks are associated with a number of specific phenomena and properties: pumps physical
modelling, specific differential equations, etc. These features have been formalised in regrouped in a
domain specific theory of water tanks.

The theory is split in two parts: a theory for valves (Listing 6.9) and a theory for flows (Listing
6.10). It defines a number of operators used in the model when instantiating the patterns, as well as
several theorems and axioms, used during the proving process.

Valves. The theory first defines the Status datatype as an enumeration for identifying whenever
a valve is open (ValveOpen) or closed (ValveClosed). Secondly, the theory defines the InOutValve
product type that encompass the status of two valves (an input and an output). This type is
associated with a single constructor, InOut that allows setting both statuses.

These types are associated with convenient operators for opening and closing the valves (closeIn,
openOut, etc.). The theory also provides a way to associate a real number to a valve status,
ValveClosed being associated with 0 and ValveOpen with 1. Finally, the theory defines a set of
possible valve combinations, InOutPossible.

Flow. This second theory is based on the previous one and on the differential equation theory. It
defines several operators to characterise the various features of any tank. In particular, it proposes
an enumeration datatype for the possible tank states TankState (see Section 6.5.3.1). It also makes
accessible various operators to handle the generic concept of flow.

The predicate isFlow is defined, that is true for a domain D ⊆ R, a state s ∈ TankState, a
function Φ ∈ R 7→ R with D ⊆ dom(Φ) and two bounds Qmin and Qmax (in R) if and only if Φ
behaves according to s on D, and is bounded by Qmin and Qmax .
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THEORY Valves IMPORT RReal
DATATYPES

Status =̂ ValveOpen | ValveClosed
InOutValve =̂ InOut(in_status : Status, out_status : Status)

OPERATORS
closeIn expression ( iov : InOutValve)

recursive definition
cases iov

− InOut(i, o)⇒ InOut(ValveOpen, o)
. . .
in_rstatus expression ( iov : InOutValve)

recursive definition
cases iov

− InOut(ValveOpen, o)⇒ 1.0
− InOut(ValveClosed, o)⇒ 0.0

InOutPossible expression ( )
direct definition {InOut(ValveOpen,ValveOpen), . . .}

. . .

Listings 6.9: Valves Theory

THEORY Flow IMPORT Valves , Dif fEq
DATATYPES

TankState =̂ Stable | Emptying | Filling | Normal
OPERATORS

isFlow <predicate> (s : TankState , D : P(R) , Φ : R 7→ R , Qmin : R ,
Qmax : R)

well−definedness D ⊆ dom(Φ)
recursive definition

cases s
− Stable ⇒ constant(D,Φ)
− Emptying ⇒ decreasing(D,Φ) ∧Qmin ≤ Φ ≤ Qmax

. . .
isFlowEq <predicate> (s : TankState , D : P(R) , e : DE(S) , Qmin : R

, Qmax : R)
well−definedness Solvable(D, e)
direct definition ∀η · η ∈ R 7→ R ∧D ⊆ dom(η) ∧ solutionOf(D, η, e)

⇒ isFlow(s,D, η,Qmin , Qmax)
. . .
FlowODE <expression> (Qmin : R , Qmax : R , δin : R , δout : R , io :

InOutValve)
well−definedness 0 < Qmin , 0 < Qmax , δin > 0 , δout > 0
d i r e c t − d e f i n i t i o n . . .

Listings 6.10: Flow Theory

In this context, behaving according to s typically means that Φ is decreasing on D if state s is
Emptying, constant if state is Stable and so on.

This predicate is adapted to be used on differential equations (isFlowEq), to check that the
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solutions of given equation are adequate with regard to the given state. This operator is further
specialised to ODE, since the ODE’s function’s sign gives the monotony of the solution. Additionally,
the theory gives a simple ODE for modelling the flow of a tank (FlowODE , corresponding to the one
presented in Section 6.5.4). It also proposes an ODE for a tank with no flow, used for initialisation.

Finally, we define various theorems aimed at handling the defined operators, especially the ODEs
and their solvability.

6.5.3 Generic Model Instantiation – One Controller And One Tank
The first step for addressing this case study is to model the abstraction of the system depicted on
Figure 6.13. This initial model indeed serves as a base for the application of the single-to-many and
many-to-many patterns.

Formally, the abstract tank model is a refinement of the generic model. It consists of one
controller linked to one plant, in a single-to-single architecture. Note that no hypothesis is done on
the tank; this allows the refinement of this tank using multiple tank (and thus to implement the
different studied architectures).

6.5.3.1 Preliminary Study

Plant Description. The controlled plant is an abstract tank containing a volume V (t) ≥ 0 of
liquid. This tank is finite and can contain a maximum volume of Vmax > 0. The plant is tied to two
pumps, one input pumps able to fill-up the tank (i.e. increase V (t)) and another to empty it (i.e.
decrease V (t)). Note that the behaviour of V (t) is unspecified when both pumps are open at the
same time.

At this point, no hypothesis is made on the shape of the tank, and no hypothesis is made on the
exact behaviour of the pumps, apart that 1) when the input pump is open the volume increases,
2) when the output pump is open the volume decreases, and finally 3) when no pump is open the
volume does not change.

Consequently, for this model, the differential equation describing the volume’s behaviour is
unknown, although it is constrained by the hypotheses on the pumps’ behaviour.

Note that, for convenience, it is assumed that tank initially contains some arbitrary initial volume
V0, such that Vlow ≤ V0 ≤ Vhigh.

Controller Description. The controller’s task is to actuate the input and output pumps, in
order to fill or empty the tank. Concretely, it operates in 4 modes, and switches from one to another
when needed, to preserve safety. These modes are:

• stable, the volume does not change (i.e. V is a constant function). Provided V remains within
the bounds, the controller can always switch to this mode;

• emptying, the volume is decreasing. The controller may switch to this mode if V > Vlow, and
it switches automatically to it when V = Vhigh;

• filling, the volume is increasing. The controller may switch to this mode if V < Vhigh, and it
switches automatically to it when V = Vlow;

• normal, the volume varies arbitrarily. The controller may switch to this mode if V is within
the bounds. It is a default mode, where the liquid is flooding freely;
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These modes induce 4 transition events, allowing each state to be visited, and 2 sensing events
that detect when the volume reaches a bound and puts the system in the corresponding correcting
mode. Note that, when actuating the pump, the controller must make sure that the global variation
of volume in the tank (V̇ ) remains below ∆Vmax .

Requirements. To summarise, the system’s requirement are described as:
FUN1 the volume varies in the tank, it is decreasing in emptying mode, increasing in filling
mode, constant in stable mode, and safely varying in normal mode;
ENV1 the volume is physically bounded by 0 and some constant Vmax :

∀t ∈ R, 0 ≤ V (t) ∧ V (t) ≤ Vmax

SAF1 the volume must always remain within the set bounds, Vlow and Vhigh:

∀t ∈ R, Vlow ≤ V (t) ∧ V (t) ≤ Vhigh

SAF2 the variation of the volume (V̇ (t)) is always below the maximum allowed variation ∆Vmax :

∀t ∈ R, |V̇ (t)| ≤ ∆Vmax

6.5.3.2 Event-B Development

The preliminary study for this systems leads to the definition of an Event-B model. This first model
(the abstract tank) is, as expected, based on the generic model presented in Chapter 5.

CONTEXT AbstractTankCtx EXTENDS GenericCtx
CONSTANTS Vmax , Vlow , Vhigh , ∆Vmax , V0
AXIOMS

axm1 : S = R
axm2 : partition(STATES , {Stable}, {Emptying},

{Filling}, {Normal})
axm3−6 : Vmax , Vlow, Vhigh ,∆Vmax ∈ R
axm7 : 0 ≤ Vlow ≤ Vhigh ≤ Vmax
axm8 : ∆Vmax > 0
axm9−11 : V0 ∈ R ∧ Vlow ≤ V0 ∧ V0 ≤ Vhigh

END

Listings 6.11: Abstract Tank – Context

Constants and Axioms. The system requires a number of properties to be written (in addition
to the theories of valves and flows presented in Section 6.5.2) that are found in an Event-B context,
given in Listing 6.11. This context defines the needed constants with associated properties (axm3-11).
We also give the system’s state-space (R in axm1) as well as the controller’s mode (axm2), based on
those defined in the tank theories (flow and valves).
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MACHINE AbstractTank REFINES Generic
SEES AbstractTankCtx
VARIABLES t , xs , V
INVARIANTS

inv1 : V ∈ R 7→ S
inv2 : [0, t] ⊆ dom(V )
inv3 : V = xp
inv4 : ∀t∗ · t∗ ∈ [0, t]⇒ 0 ≤ V (t) ∧ V (t) ≤ Vmax
inv5 : ∀t∗ · t∗ ∈ [0, t]⇒ Vlow ≤ V (t∗) ∧ V (t∗) ≤ Vhigh
inv6 : ∀t∗ · t∗ ∈ [0, t]⇒ |V̇ (t∗)| ≤ ∆Vmax

INITIALISATION
WITH

x′p : V ′ = x′p
THEN

act1 : t := 0
act2 : xs := Stable
act3 : V := {0 7→ V0}

END

Listings 6.12: Abstract Tank – Machine Header

Machine Header. Listing 6.12 presents the machine’s header and initialisation event. The header
defines the variables of the system (mainly the continuous state V ) with associated properties
(inv1-2). inv3 is the gluing invariant of the system (a substitution) while inv4 encodes the
environment property ENV1 of the requirements section. Finally, inv5 and inv6 model the safety
requirement SAF1 and SAF2 respecitvely.

The system’s initialisation is straightforward. The controller starts in stable mode, and the
volume is set to the constant V0, initial volume contained in the tank.

ctrl_transition_normal REFINES
Transition

WHERE
grd1 : V (t) < Vhigh
grd2 : Vlow < V (t)

WITH
s : s = {Normal}

THEN
act1 : xs := Normal

END

ctrl_sense_too_high REFINES Sense
WHERE

grd1 : Vhigh ≤ V (t)
WITH

s : s = {Emptying}
p : p = STATES × R× {V ∗ | Vhigh ≤ V ∗}

THEN
act1 : xs := Emptying

END

Listings 6.13: Abstract Tank – Transition and Sensing

Discrete Events. Listing 6.13 gives a transition and sensing events from the system. The
transition ctrl_transition_normal allows the controller to move to normal mode. It is guarded
by a condition to preserve safety in this mode.

The sensing event ctrl_sensing_too_high detects when the volume reaches Vhigh (through
guard grd1), and causes the controller to move to emptying mode.

For both events, witnesses are provided for s and p, reflecting their guards and target state.

Continuous Event. Listing 6.14 presents the actuation of the system. It refines the abstract
Actuate event and constrain it in order to ensure the system’s invariant holds.

xp substituted with V using the gluing invariant, and a concrete evolution domain H is given
that forces volume V to remain in the given bounds Vlow and Vhigh. At this level, the differential
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EVENT ctrl_actuate_pumps REFINES Actuate
ANY eq , s , t′

WHERE
grd0 : t′ ∈ R ∧ t < t′

grd1 : eq ∈ DE(S)
grd2 : Solvable([t, t′], eq, {V ∗ | Vlow ≤ V ∗ ∧ V ∗ ≤ Vhigh}
grd3 : isFlowEq(s, [t, t′], eq, 0, Vmax)
grd4 : s ∈ STATES
grd5 : xs = s
grd6 : Vlow ≤ V (t) ∧ V (t) ≤ Vhigh

WITH
x′p : x′p = V ′

H : H = {V ∗ | Vlow ≤ V ∗ ∧ V ∗ ≤ Vhigh}
THEN

act1 : V :∼t→t′ eq & {V ∗ | Vlow ≤ V ∗ ∧ V ∗ ≤ Vhigh}
END

Listings 6.14: Abstract Tank – Actuation Event

equation is still unknown, but it is constrained by the required behaviour of the pumps. These
constraints are encapsulated in the isFlowEq predicate (see Section 6.5.2).

6.5.3.3 Proofs

At this point, proofs are straightforward. The model generated 124 proof obligations, most of them
(around 34%) coming from well-definedness. Simulation and guard strengthening POs (37%) are
discharged by exploiting the fact that the events are built by substituting variables/parameters.

Last, invariant proofs (29%), putting apart trivial type-related invariants, rely on the specific
constraints given to the model (values for H and use of the isFlowEq predicate), together with the
properties these constraints entail and that are given in the tank theories.

6.5.4 One Controller with Two Tanks

Figure 6.20: One Controllers Two Tanks Configuration
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We propose a refinement of the abstract tank model developed in 6.5.3 into a system that
consists of one controller controlling two separate tanks of definite shape (see Figure 6.20), using
the single-to-many architecture pattern presented in Section 6.3. The goal of the system remains
the same, but the abstract tank is replaced by two cylindrical tanks of known bases and heights.
The sensing is also updated to better reflect “real world” situations: only the height is accessible
(e.g. thanks to a float), and the controller needs to derive the actual volume based on this height
and the parameters of the tank.

Last, the pumps’ behaviour is fixed, they are either fully open or fully closed, and deliver a fixed
flow.

6.5.4.1 Preliminary Study

Plants Description. The two plants (T1 and T2) are controlled simultaneously. Each plant
consists of a cylinder tank with associated pumps. The volume of each tank cannot be accessed
directly; instead the controller senses the height of liquid inside, denoted h1/2(t).

T1 has a base of B1 and a maximum height of H1,max > 0. It is hooked up to an input pump
of flow δin

1 > 0 and an output pump of flow δout
1 > 0. Initially, it contains a height h0

1 of liquid.
Likewise, tank 2 operates in a similar fashion, replacing the index 1 by 2 in the given parameters.

Note that the volume Vi(t) of tank i is given by the formula Vi(t) = Bi × hi(t). The global
volume of the system V (t) is then equal to:

V (t) = B1 × h1(t) +B2 × h2(t) (6.1)

This expression serves as gluing invariant for the system. Note that it is of the form xAp =
f(xCp,1, xCp,2), with xAp = V , xCp,i = hi and f(h1, h2) = B1 × h1 +B2 × h2, following the notations of
Section 6.3.

The defined pump behaviour is modelled by a differential equation for the hi, based on their
status. Let Ini and Outi the status of the input and of the output pump respectively (with Ini = 1
if the pump is open and 0 otherwise); the variation of liquid height in the tank is expressed as:

∆i = Ini × δin
i −Outi × δout

i (6.2)

Concretely, the variation of the liquid height is equal to liquid input minus liquid output from
the tank. Using this expression, we derive the tanks’ ODE:

Φi(t, h) = ∆i = Ini × δin
i −Outi × δout

i

Note that, in term of pattern application, we have SA = SC1 = SC2 = R.

Controller Description. Apart from the fact that volume is not directly accessible, the controller
for this system remains the same as for the abstract one. It operates in the same modes, which are
triggered in the same way, replacing V by B1h1 +B2h2, following the system’s gluing invariant.

Additionally, as the behaviour of the pumps is known, we define a set of rules that associate the
modes of the controller to the state of the pumps:

• emptying mode: input pumps closed (Ini = 0), output pumps open (Outi = 1);

• filling mode: input pumps open (Ini = 1), output pumps closed (Outi = 0);
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• stable mode: every pump closed (Ini = Outi = 0);

• normal mode: pumps are closed or open;

This behaviour is summed up as the TankModeChange predicate, defined in the Valve theory:

TankModeChange(xs, (In1,Out1), (In2,Out2))⇔
(xs = emptying ⇒ In1 = 0 ∧Out1 = 1 ∧ In2 = 0 ∧Out2 = 1)
∧ (xs = filling ⇒ In1 = 1 ∧Out1 = 0 ∧ In2 = 1 ∧Out2 = 0)
∧ . . .

(6.3)

This particular predicate, together with the concrete ODE for the tank allows enforcing re-
quirement FUN1 of the abstract tank, encoded in grd3 off event ctrl_actuate_pumps of the
AbstractTank model (Listing 6.14). Concretely, in emptying mode, the differential equation yields
decreasing solutions, in filling mode, the differential equation yields increasing solutions, etc.

Note that it is perfectly possible to define other, richer behaviours; the difficulty is then to
enforce requirement FUN1, or in other words to establish guard strengthening of guard grd3 of the
abstract event ctrl_actuate_pumps.

Requirements. The requirements of the abstract tank are refined and constrained. In particular,
the following items are added:

FUN2 The plant consists of 2 tanks with independent pumps that operate with a constant flow;
FUN3 The controller can only sense the height of liquid in each tank; it computes the volume
using the sensed height and the parameters of the tanks;
ENV2 Both tanks have a given base B1 and B2, and a given maximum height H1,max and
H2,max ; the maximal global volume is then V̂max = B1H1,max +B2H2,max ;

Refinement Feasibility. The added requirement ENV2 implies that the concrete tanks may
not have the same total maximum volume as the abstract tank. This means in particular that there
exist some combination of tanks that violate requirements SAF1 of the abstract tank.

To avoid this situation and enforce a correct refinement, it is required that the total maximum
volume of the tanks V̂max is greater than the higher bound for the volume Vhigh:

V̂max ≥ Vhigh

Without this constraint, the concrete system may be too constrained, and reject states of V (t)
that are correct in the abstract model. In particular, if Vmax < Vlow, the resulting concrete system
is unable to enforce invariant SAF1 at all.

Similarly, the gluing invariant allows deducing V̇ (t) = B1ḣ1(t) +B2ḣ2(t), and the ODE for the
tanks gives the following expression for V̇ :

V̇ (t) = B1∆1 +B2∆2

By rewriting this expression, we observe that:

|V̇ (t)| ≤ B1 ·max(δin
1 , δ

out
1 ) +B2 ·max(δin

2 , δ
out
2 )

It follows that SAF2 is equivalent to the following condition, where every symbol is constant:

B1 ·max(δin
1 , δ

out
1 ) +B2 ·max(δin

2 , δ
out
2 ) ≤ ∆Vmax
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6.5.4.2 Event-B Development

CONTEXT 1Ctrl_2Tanks_Ctx EXTENDS AbstractTankCtx
CONSTANTS B1 , B2 , H1,max , H2,max , h0

1 , h0
2 ,

δin
1 , δout

1 , δin
2 , δout

2
AXIOMS

axm1−4 : B1, B2 ∈ R , 0 < B1 , 0 < B2
axm5−8 : H1,max , H2,max , h

0
1, h

0
2 ∈ R

axm9−10 : 0 < H1,max , 0 < H2,max
axm11−12 : 0 < h0

1 < H1,max , 0 < h0
2 < H2,max

axm13 : Vhigh ≤ B1H1,max +B2H2,max
axm14 : V0 = B1h

0
1 +B2h

0
2

axm15−18 : δin
1 , δ

out
1 , δin

2 , δ
out
2 ∈ R

axm19−22 : δin
1 > 0 , δout

1 > 0 , δin
2 > 0 , δout

2 > 0
axm23 : B1 max(δin

1 , δ
out
1 ) +B2 max(δin

2 , δ
out
2 ) ≤ ∆Vmax

END

Listings 6.15: 1 Controller 2 Tanks – Context

Context and Axioms. Listing 6.15 gives the context for the designed system. It encompasses
the various constants presented during the preliminary study and their associated properties. In
particular, axm13 and axm23 encode the properties discussed in the requirement section of the
preliminary study, regarding the feasibility of this refinement.

Moreover, axm14 links the initial value for V (V0) to the initial values of h1 and h2. This is so
that we can establish simulation for the initialisation in the machine.

Note that additional useful parameters are found in the tank theories (see Section 6.5.2).

MACHINE 1Ctrl_2Tanks REFINES
AbstractTank

SEES 1Ctrl_2Tanks_Ctx
VARIABLES t , xs , h1 , h2
INVARIANTS

inv1 : h1 ∈ R 7→ R
inv2 : [0, t] ⊆ dom(h1)
inv3 : h2 ∈ R 7→ R
inv4 : [0, t] ⊆ dom(h2)
inv5 : V = B1h1 +B2h2

INITIALISATION
WITH

V ′ : V ′ = B1h
′
1 +B2h

′
2

THEN
act1 : t := 0
act2 : xs := Stable
act3 : h1 := {0 7→ h0

1}
act4 : h2 := {0 7→ h0

2}
END

Listings 6.16: 1 Controller 2 Tanks – Machine Header

Machine Header. The machine’s header and initialisation are shown on Listing 6.16. The
machine is, as expected, a refinement of the abstract tank model. Variable V is substituted with
variables h1 and h2, and the three are linked via the gluing invariant inv5, directly taken from
Equation 6.1.

Initialisation is built in the same way as for the abstract system, replacing V by the two states
h1 and h2.
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ctrl_transition_normal REFINES
ctrl_transition_normal

WHERE
grd1 : B1h1(t) +B2h2(t) < Vhigh
grd2 : Vlow < B1h1(t) +B2h2(t)

THEN
act1 : xs := Normal

END

ctrl_sense_too_high REFINES
ctrl_sense_too_high

WHERE
grd1 : Vhigh ≤ B1h1(t) +B2h2(t)

THEN
act1 : xs := Emptying

END

Listings 6.17: Abstract Tank – Transition and Sensing

Discrete Events. Listing 6.17 shows the transition and sensing refined events of the abstract
tank model. This refinemen follows the principle given in Section 6.3. It relies on substituting V
with B1h1 +B2h2 using the gluing invariant.

EVENT ctrl_actuate_pumps REFINES ctrl_actuate_pumps
ANY s , t′ , io1 , io2
WHERE

grd0 : t′ ∈ R ∧ t < t′

grd1 : Feasible([t, t′], h1 ⊗ h2,

{ĥ1 ⊗ ĥ2, ĥ
′
1 ⊗ ĥ′2 | solutionOf([t, t′], ĥ′1,ode(FlowODE(0, H1,max, δ

in
1 , δ

out
1 , io1), h1(t), t))

∧solutionOf([t, t′], ĥ′2,ode(FlowODE(0, H2,max, δ
in
2 , δ

out
2 , io2), h2(t), t))},

{h∗1, h∗2 | Vlow < B1h1 +B2h2 ∧B1h1 +B2h2 < Vhigh})
grd2 : TankModeChange(s, io1, io2)
grd4 : s ∈ STATES
grd5 : xs = s
grd6 : Vlow ≤ B1h1(t) +B2h2(t) ∧B1h1(t) +B2h2(t) ≤ Vhigh

WITH
V ′ : V ′ = B1h

′
1 +B2h

′
2

eq : Solvable([t, t′], eq, {V ∗ | Vlow < V ∗ ∧ V ∗ < Vhigh}) ∧ isFlowEq(s, [t, t′], eq, 0, Vmax)
∧solutionOf([t, t′], B1h

′
1 +B2h

′
2, eq)

THEN
act1 : h1, h2:|t→t′

solutionOf([t, t′], h′1,ode(FlowODE(0, H1,max, δ
in
1 , δ

out
1 , io1), h1(t), t))∧

solutionOf([t, t′], h′2,ode(FlowODE(0, H2,max, δ
in
2 , δ

out
2 , io2), h2(t), t))

&{h∗1, h∗2 | Vlow < B1h1 +B2h2 ∧B1h1 +B2h2 < Vhigh}
END

Listings 6.18: 1 Controller 2 Tanks – Actuation Event

Continuous Events. Listing 6.18 shows the system’s actuation. It is built following the method
given in Section 6.3: abstract plant state V is replaced using the gluing invariant, and continuous
predicates are updated in order to handle h1 and h2 (using too separate ODE) while retaining the
exact same evolution domain.

A witness is provided for eq to establish simulation. Note also that the state of the valves
are determined using the TankModeChange operator as defined in the preliminary study for this
development (Section 6.5.4.1).
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6.5.4.3 Proofs

This model is associated with 73 proof obligations. They are mostly related to well-definedness
(37%), because of the extensive use of theories in the model (both for continuous features and for the
domain-specific tank features). POs relating to invariant (21%) are proven using the various results
defined in the tank domain theories, and the remaining POs mainly comes from refinement (36%).

Guard strengthening is immediate, following the remarks of Section 6.3.2.1: it consists in
substituting the abstract and the concrete continuous states using the gluing invariants. For other
guards that do not use continuous state, the concrete model defines guards that are stricter than the
guards of the abstract model. Guard strengthening proofs is then proven by substituting parameters
and variables using the provided witnesses and gluing invariants, and by using the theorems defined
in the theory of tanks.

Following the remarks of Section 6.3.2.2, we notice that the simulation proof obligations (associ-
ated with the actuation event) boil down to establishing continuous predicate simulation (CPSIM ).
Unfolding the associated equation and filling its parameters, we obtain the following equation:

A ∧ I ∧G∧V ′ =
[0,t′]

B1h
′
1 +B2h

′
2 ∧ solutionOf([t, t′], h′1,ode(Φ1))∧

solutionOf([t, t′], h′2,ode(Φ2)) ∧ solutionOf([t, t′], B1h
′
1 +B2h

′
2, eq)

⇒ solutionOf([t, t′], V ′, eq)

(6.4)

The witness provided for eq (solutionOf([t, t′], B1h
′
1 + B2h

′
2, eq)) constraints the equations

of the concrete tanks to be “compatible” with the equations of the abstract tank. This allows
discharging the PO by substituting V ′ with B1h

′
1 +B2h

′
2 (using the witness for V ′).

The expression of this witness is associated to a feasibility proof obligation: we are required to
prove that there exists eq such that 6.4 holds.

6.5.5 Two Controllers with Two Tanks

Figure 6.25: 2 Controllers 2 Tanks Configuration

In this section, we propose another refinement of the abstract tank, corresponding to the many-
to-many architecture pattern presented in Section 6.4. It models a system consisting of two tanks
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of definite shape, each of which is controlled by an independent controller. Figure 6.25 gives the
typical configuration of the system to be designed.

The core of the system is close to the S2M (1 controller 2 tanks) system designed in Section
6.5.4. It consists of two cylinder tanks with known bases and maximum heights, and the controller
accesses the height of liquid in the tank rather than the direct volume (which is calculated). The
behaviour of the pumps is identical to the S2M case study.

Contrary to the S2M case study where one controller controls several plants (centralised control
with the capability to build a global state of the controlled plants), the goal of this refinement is to
model a situation where each tank is equiped with a controller, and both controllers communicate
with each other through a communication network with a bounded delay time.

The difficulty of this development is to the computation of a global state (ideal case) or of a safe
estimation of a global state, despite the latency of the network and the error that it generates; this
is the main use of the many-to-many architecture pattern with distributed control.

6.5.5.1 Preliminary Study

Plant Description. The plant is exactly the same as for the single-to-many case study (see
Section 6.5.4.1: two cylinder tanks of bases B1 and B2 and maximum heights H1,max and H2,max ,
containing a height of liquid h1(t) and h2(t) and hooked up to pumps of fixed flow (δin/out

1/2 ).
Consequently, the gluing invariant and the equations used in the model are identical to the S2M

case.
Note that in term of pattern application, we again have SA = SC1 = SC2 = R.

Controllers Description. The controllers for this system are more complex than for the S2M
case study. The system consists of two controllers, each of which is able to control the pumps and
sense the height of liquid in one tank.

The controllers communicate with each other and exchange their current (discrete and continuous)
states. The communication is delayed by an arbitrary time that is assumed to be bounded.

In addition to the pumps they control, and in order to maintain a global safety invariant, each
controller sees a global state, or a safe approximation of it. For that, it estimates the continuous
state of the other controller, basically by emulating it using knowledge of its behaviour and the
information it gets from the network. Thus, controller 1 keeps track of the emulated height of tank
2 (hsim

2 ) and similarly controller 2 keeps track of the emulated height of tank 1 (hsim
1 ).

We assume that, at any given point, the difference between the real height and the simulated
height is bounded by a constant that basically encompasses the simulation errors and the network’s
delay:

|h1 − hsim
1 | ≤ ∆sim

1 ∧ |h2 − hsim
2 | ≤ ∆sim

2

Note that no assumption is made on how the controller calculates hsim
i .

Finally, each subsystem has its own discrete state, taken in theTankState type (i.e. STATESC1 =
STATESC2 = STATESA = TankState). These states together with the discrete state of the abstract
machine are linked via the Policy predicate, left abstract in this development.

Requirements. The goal of the system is, as for the abstract one, to keep the global volume
(B1h1 +B2h2) within the bounds Vlow, Vhigh . The requirements are enriched to reflect the particular
architecture of the system:
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ENV3 each tank is controlled independently by communicating controllers; communication
introduces bounded delays and errors, encapsulated in a constant, ∆sim

i , for each controller i;

6.5.5.2 Event-B Development

CONTEXT 2Ctrl_2Tanks_Ctx EXTENDS AbstractTankCtx
CONSTANTS B1 , B2 , H1,max , H2,max , h0

1 , h0
2 ,

δin
1 , δout

1 , δin
2 , δout

2 ,
∆sim

1 , ∆sim
2 ,

Policy
AXIOMS

axm1−4 : B1, B2 ∈ R , 0 < B1 , 0 < B2
axm5−8 : H1,max , H2,max , h

0
1, h

0
2 ∈ R

axm9−10 : 0 < H1,max , 0 < H2,max
axm11−12 : 0 < h0

1 < H1,max , 0 < h0
2 < H2,max

axm13 : Vlow ≤ B1H1,max +B2H2,max ≤ Vmax
axm14 : V0 = B1h

0
1 +B2h

0
2

axm15−18 : δin
1 , δ

out
1 , δin

2 , δ
out
2 ∈ R

axm19−22 : δin
1 > 0 , δout

1 > 0 , δin
2 > 0 , δout

2 > 0
axm23 : B1 max(δin

1 , δ
out
1 ) +B2 max(δin

2 , δ
out
2 ) ≤ ∆Vmax

axm24−25 : ∆sim
1 ∈ R , ∆sim

2 ∈ R
axm26−27 : ∆sim

1 > 0 , ∆sim
2 > 0

axm28 : Policy ⊆ STATES× STATES× STATES
END

Listings 6.19: 2 Controllers 2 Tanks – Context

Constants and Axioms. The context for this machine is given in Listing 6.19. It is very much
based on the context of the single-to-many case study (Listing 6.15) with the added constants ∆sim

i

and Policy required by the pattern.
We recall that other operators are found in the tank theories (see Section 6.5.2).

Machine Header. Listing 6.20 shows the machine’s header and initialisation. Note that, as a
matter of readability, we often give the invariants of one of the controllers; the others are abbreviated
with dots and can be obtained by switching the indexes.

The machine first defines variables for each system, and invariants inv1-8 and inv13-14 define
their associated types and basic properties. inv9-10 encode the properties of the simulated variables
(hsim
i ) that must not drift away too far from their real counterpart.

inv11-12 gives an additional interesting properties, built on the principle explained in Section
6.4.2.1. The idea is that, if the estimated volume, despite the potential error ∆sim

i is in the bounds,
then the actual volume is as well.

Finally, inv15 and inv16 encode the gluing invariant of this refinement, for the continuous and
discrete states, respectively.

In addition to this header, the initialisation is straightforward: both sub-components are in
stable mode with a given initial amount of liquid inside. The emulated variables are given the same
initial value as the starting point (but could also get another value if the invariants are not violated).
A witness is provided for the substituted variables, following the gluing invariant.
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MACHINE 2Ctrl_2Tanks REFINES
AbstractTank

SEES 2Ctrl_2Tanks_Ctx
VARIABLES t , xCs,1 , xCs,2 , h1 , h2 , hsim

1 , hsim
2

INVARIANTS
inv1−4 : h1, h2, h

sim
1 , hsim

2 ∈ R 7→ R
inv5−8 : [0, t] ⊆ dom(h1) , . . .
inv9−10 : ∀t∗ · t∗ ∈ [0, t]
⇒ |h1(t∗)− hsim

1 (t∗)| ≤ ∆sim
1 , . . .

inv11−12 : ∀t∗ · t∗ ∈ [0, t]
⇒ B1h1(t∗) +B2h

sim
2 (t∗) ≥ Vlow +B2∆sim

2
∧B1h1(t∗) +B2h

sim
2 (t∗) ≤ Vhigh −B2∆sim

2 , . . .
inv13−14 : xs,1 ∈ STATES , xs,2 ∈ STATES
inv15 : V =[0,t] B1h1 +B2h2
inv16 : xs, xs,1, xs,2 ∈ Policy

INITIALISATION
WITH

V ′ : V ′=[0,t′] B1h1 +B2h2
x′s : x′s, x

′
s,1, x

′
s,2 ∈ Policy

THEN
act1 : t := 0
act2 : xs,1, xs,2 := Stable,Stable
act3 : h1, h2 := 0 7→ h0

1, 0 7→ h0
2

act4 : hsim
1 , hsim

2 := 0 7→ h0
1, 0 7→ h0

2
END

Listings 6.20: 2 Controllers 2 Tanks – Machine Header

ctrl_transition_normal_1 REFINES
ctrl_transition_normal

WHERE
grd1 :

B1h1(t) +B2h
sim
2 (t) < Vhigh −B2∆sim

2
grd2 :

Vlow +B2∆sim
2 < B1h1(t) +B2h

sim
2 (t)

THEN
act1 : x1

s := Normal
END

ctrl_transition_normal_2 REFINES
ctrl_transition_normal

WHERE
grd1 :

B1h
sim
1 (t) +B2h2(t) < Vhigh −B1∆sim

1
grd2 :

Vlow +B1∆sim
1 < B1h

sim
1 (t) +B2h2(t)

THEN
act1 : x2

s := Normal
END

Listings 6.21: 2 Controllers 2 Tanks – Transition Events

Discrete Events. Listing 6.21 presents two transitions events of the machine. Following the
pattern, these events are duplicates of the abstract ctrl_transition_normal transition event, and
each event references only the variables of one controller at a time.

Following the remarks on guard strengthening, we need to ensure that, even if the emulated
variables are the furthest allowed from their real counterpart, the guard is still at least as strong as
the abstract one. Note that:

B1h1(t) +B2h
sim
2 (t) ≤ Vhigh −B2∆sim

2

⇒ B1h1(t) +B2(hsim
2 (t) + ∆sim

2 ) ≤ Vhigh

With |h2(t)− hsim
2 (t)| ≤ ∆sim

2 , we have hsim
2 (t) + ∆sim

2 ≥ h2(t) and deduce:

B1h1(t) +B2h2(t) ≤ B1h1(t) +B2(hsim
2 (t) + ∆sim

2 ) ≤ Vhigh

We proceed symmetrically for controller 2 and for the other predicate (with Vlow).
For the record, we give the sensing events of the machine (Listing 6.22). They are constructed

in the same way as the transition events, and following the methodology of the many-to-many
architecture pattern given in Section 6.4.
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ctrl_sense_too_high_1 REFINES
ctrl_sense_too_high

WHERE
grd1 :

Vhigh −B2∆sim
2 ≤ B1h1(t) +B2h

sim
2 (t)

THEN
act1 : x1

s := Emptying
END

ctrl_sense_too_high_2 REFINES
ctrl_sense_too_high

WHERE
grd1 :

Vhigh −B1∆sim
1 ≤ B1h

sim
1 (t) +B2h2(t)

THEN
act1 : x2

s := Emptying
END

Listings 6.22: 2 Controllers 2 Tanks – Sensing Events

EVENT ctrl_actuate_pumps REFINES ctrl_actuate_pumps
ANY s1 , s2 , t′ , io1 , io2 , hsim∗

1 , hsim∗
2

WHERE
grd0 : t′ ∈ R ∧ t < t′

grd1 : Feasible([t, t′], h1 ⊗ hsim
2 ,

{ĥ1, ĥ
sim
2 , ĥ′1, ĥ

sim′
2 |

solutionOf(ĥ′1,ode(FlowODE(0, H1,max, δ
in
1 , δ

out
1 , io1), h1(t), t))

∧ĥsim′
2 =[t,t′] = hsim∗

2 },
{ĥ1, ĥ

sim
2 | Vlow +B2∆sim

2 ≤ B1ĥ1 +B2ĥ
sim
2 ∧ Vhigh −B2∆sim

2 ≥ B1ĥ1 +B2ĥ
sim
2 })

grd2 : . . . −− s im i l a r to grd1
grd3 : s1, s2 ∈ STATES
grd4 : x1

s = s1 ∧ x2
s = s2

grd5 : s1, io1, io2 ∈ Policy
grd6 : Vlow +B2∆sim

2 ≤ B1h1(t) +B2h
sim
2 (t) ∧ Vhigh −B1∆sim

1 ≥ B1h1(t) +B2h
sim
2 (t)

grd7 : Vlow +B1∆sim
1 ≤ B1h

sim
1 (t) +B2h2(t) ∧ Vhigh −B2∆sim

2 ≥ B1h
sim
1 (t) +B2h2(t)

WITH
V ′ : V ′=[0,t′] B1h

′
1 +B2h

′
2

s : s, s1, s2 ∈ Policy
eq : Solvable([t, t′], eq, {V ∗ | Vlow < V ∗ ∧ V ∗ < Vhigh}) ∧ isFlowEq(s, [t, t′], eq, 0, Vmax)

∧solutionOf([t, t′], B1h
′
1 +B2h

′
2, eq)

THEN
act1 : h1, h2, h

sim
1 , hsim

2 :|t→t′
solutionOf([t, t′], h′1,ode(FlowODE(0, H1,max, δ

in
1 , δ

out
1 , io1), h1(t), t))∧

solutionOf([t, t′], h′2,ode(FlowODE(0, H2,max, δ
in
2 , δ

out
2 , io2), h2(t), t))∧

hsim′
1 = hsim∗

1 ∧ hsim′
2 = hsim∗

2
&{ĥ1, ĥ

sim
2 , ĥsim

1 , ĥ2 |
Vlow +B2∆sim

2 ≤ B1ĥ1 +B2ĥ
sim
2 ∧ Vhigh −B2∆sim

2 ≥ B1ĥ1 +B2ĥ
sim
2 ∧

Vlow +B1∆sim
1 ≤ B1ĥ

sim
1 +B2ĥ2 ∧ Vhigh −B1∆sim

1 ≥ B1ĥ
sim
1 +B2ĥ2

}
END

Listings 6.23: 2 Controllers 2 Tanks – Actuation Event

Continuous Events. Listing 6.23 shows the system’s actuation, built from the concepts presented
in the single-to-many pattern case study, but following the many-to-many architecture pattern. The
goal of this actuation is to update the behaviour of the two continuous states and two emulated
continuous state, according to the current discrete state of each controller.
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The evolution domain ensures that the estimated global volume remains in the bound, including
the allowed bounded imprecision.

A witness is given for eq, the same as for the single-to-many case study, so that we can establish
simulation.

Note that the functions associated with the emulated variables are not given explicitly; the
way they are calculated could be specified in a later refinement (linear/polynomial approximation,
stochastic models, etc.).

6.5.5.3 Proofs

This model is associated with 152 POs in total, most of which are related to well-definedness (31%)
of the use of the operators defined in the theories and to invariants (43%), and in particular typing
invariants. The other POs relate to refinement mainly (21%), and to feasibility of actions and
witnesses (5%).

Guard strengthening is addressed when presenting the discrete events: by narrowing the bounds,
we ensure that, despite the imprecision caused by the estimation of the global state, the tanks are
safely controlled.

Simulation of the Event-B machines is ensured by the particular shape of the witnesses; this
witness is associated with a witness feasibility proof obligation.

6.6 Discussion

Architecture, in the sense of how the components of a hybrid system interact, is an essential part of
hybrid system design. The work presented in this chapter formalises this concept of architecture in
the form of a refinement pattern, allowing the introduction of various structures as a development
step. These patterns are presented in the form of a refinement, to be used for any existing system,
either as a whole or for one of its sub-component. This makes these patterns adaptable and useful,
as they may be used at any point during the refinement chain, and can be composed in every ways
to produce rich and complex architectures.

In particular, the many-to-many pattern can be seen as a model of a class of cyber-physical or
autonomous systems, or in other words sets of hybrid systems that communicate with each other
with decentralised control.

This work has been published in [Dup+19; Dup+20c]. The single-to-many pattern has been
successfully applied to the case study of controlling the filling and emptying of two water tanks
connected to a centralised controller. The many-to-many pattern has been applied to a similar
case study, with two water tanks independently controlled by two controllers, communicating with
bounded delay. The complete Event-B models for both cases studies are available in the appendix,
Section B.4.

In this chapter, the case studies also demonstrate the use of domain theories to encapsulate
domain-specific knowledge, and in particular hypotheses issued from physics, and constraints specific
to the system being developed (e.g. communication delay).

Note that the presented patterns only allow the refinement of one abstract component with
two concrete components. Achieving decomposition in more than two components is realised by
successive applications of the patterns.



6.6. DISCUSSION 153

Instantiating the pattern directly for an arbitrary number of components (greater than two) can
be achieved using additional theories, in particular a theory of vectors.
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Chapter 7

Approximation

The design of hybrid systems revolves around the definition and handling of differential equations,
complex mathematical objects that often have subtle properties, difficult to establish and exploit. In
particular, many “real-world” hybrid systems involve complex differential equations, with properties
that are difficult to handle for safety. Moreover, these differential equations often do not even have
an analytical (i.e. explicit) solution.

Such equations are common in control theory, since the real physical world is difficult to model.
Controller designers addressed this problem using various techniques, and in particular the safe
reduction of the original problem to another problem, with better properties or even for which an
analytical solution exists. One of these reduction techniques is approximation.

Instinctively, approximation is an operation or category of operations that safely substitutes a
differential equation with another one, generally simpler or easier to handle, such that both equations
model behaviours that are close enough from each other, while retaining properties (e.g. safety).

Approximation has numerous applications: it can be used to simplify a system in order to find
an adequate control, to simulate it or to model-check it, or even to find (approximated) analytical
solutions. It is widely used in control theory, and any framework that proposes to design hybrid
systems shall make it available.

Approximation revolves around mathematical theories. In this chapter, we present a formalised
approximation operation, relying on an extension of the classical Event-B refinement operation. The
general idea is to relax traditional refinement in order to allow the systems to drift from each other,
in a safe and controlled way, while retaining their properties, and in particular safety.

The idea of relaxing the relation between two systems has been explored by [GP07; GJP08].
In this work, the authors propose the concept of approximate (bi-)simulation relation, to simplify
(abstract) a system by another (approximated) system while retaining some properties. This
technique is set up in order to use hybrid model-checkers to verify properties on the system, which
is otherwise unfruitful due to its nature (non-linear differential equations).

In [GP07; GJP08], the authors only establish the approximate (bi-)simulation and a form of
guard strengthening (in fact, local invariants) to ensure the approximated system does not violate
local properties the original system abides by. However, bi-simulation relation between a system
and its approximated version is not formalised in a specific proof assistant or any other formal
framework. Only mathematical justifications is provided.

We extend this approach: the approximate (bi-)simulation principle is taken one step further to

155
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define approximate refinement, and the overall framework for approximation is designed to carry
out proofs, and in particular global invariants. In addition, our approach is completely formalised in
Event-B, and supported by its associated IDE, Rodin.

Set Theory
and FOL

Continuous Maths
Diff. Equations

Approximation

Generic Model

Approximated

Domain Theories

Generic Instance

uses

extension

extension

extension

importation

importation

importation

based on

Generic

System-specific

Theories

Figure 7.1: Framework – Approximation Pattern

This chapter investigates the formalisation and use of approximation in the context of our frame-
work. Figure 7.1 gives a summary of the place of approximation with regard to the other components
of the framework. Note that approximation is both a formal mathematical theory (Approximation
theory) a development pattern for hybrid systems (Approximated pattern/refinement).

Section 7.1 presents a relaxed version of refinement that allows approximation as a refinement
operation. Section 7.3 discusses the proofs associated with this refinement operation, and Section
7.4 shows how it is formalised in classical Event-B. Finally, Section 7.5 illustrates the use of
approximation on two cases studies borrowed from litterature, and Section 7.6 concludes the chapter
with a discussion on the contribution.

7.1 Handling Approximation as a Refinement Operation
Approximation is an operation that is carried out as a design step: the designer creates a model, and
approximates it with another one. Approximation shall be established by proofs, and in particular
the approximated model shall preserve properties of the original one, in particular safety.

We claim that refinement, as offered by refinement-based techniques such as Event-B, is capable
of handling approximation of a system by another, explicitly, while providing proof obligations
ensuring its correctness, and the preservation of the original model’s properties.

The actual concept subject to approximation being functions, the idea is to glue continuous states
using an approximate operator, instead of gluing them using (exact) equality or set-membership.

In addition, care should be taken whenever this continuous state appears in the model; in
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continuous events, of course, which require specific witnesses to achieve simulation (and gluing
invariant preservation), but also when continuous state is sensed.

7.1.1 Continuous Gluing Invariant
The gluing invariant links the state of an abstract machine to the state of a (refining) concrete
machine. In the context of hybrid systems, the gluing invariant is naturally split in two parts: one
part related to the discrete state, and the other one related to the continuous state.

Discrete state gluing invariant is not different from the usual gluing invariant of discrete systems;
it is expressed as a predicate linking abstract and discrete state variables.

The continuous state gluing invariant has a more restricted structure. It involves (piece-wise)
continuous (plant) state variables that are continuous functions, and it must be maintained by
continuous events.

Overall, a continuous gluing invariant can be expressed as follows:

Definition 8 (Continuous Gluing Invariant). Let SA (resp. SC) be the state-space and xAp ∈
R+ 7→ SA (resp. xCp ∈ R+ 7→ SC) the continuous state of the abstract (resp. concrete) machine.
Let O ∈ SC ↔ SA be a relation linking both abstract and concrete state spaces, generally called
observation mapping between the two systems. Finally, let t ∈ R+ be the machines’ time variable.
A continuous gluing invariant between the abstract and the concrete model is of the form:

xAp ∈
[0,t]
O ◦ xCp

In practice, such invariants have a simpler, functional form, e.g.:

xAp =
[0,t]

o ◦ xCp

where o ∈ SC → SA is a function instead of a relation.
By substituting the operators used in the gluing invariant predicate (∈ or =) with their ap-

proximate version (∈δ or ≈δ) defined in Section 4.2.1, an approximate version of the invariant is
obtained:

Definition 9 (Approximate Continuous Gluing Invariant). With the same parameters as in Defi-
nition 8, and with δ ∈ R+, an approximate continuous gluing invariant between the abstract
and the concrete model is of the form:

xAp
δ
∈

[0,t]
O ◦ xCp

Again, this invariant may have a simpler form using a function o in place of the relation O, i.e.:

xAp
δ
≈

[0,t]
o ◦ xCp

The approximate refinement operation is a refinement where the continuous gluing invariant is
approximated.

In essence, approximate refinement relates to continuous states only (i.e. continuous variables of
the system). It does not add events or actions. Consequently, it is encoded using standard data
refinement, and is thus written in standard Event-B (plus the relevant theories).
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7.2 Approximation Pattern
The approximation pattern carries out an approximation operation on a given system. It is presented
as a refinement (on the generic model) and relies on the use of the approximate gluing invariant
discussed in Section 7.1.1, Definition 9.

Since approximation only relates to the continuous state, only the events that access continuous
variables, namely Actuate/Behave and Sense are impacted by this type of refinement.

In the following, objects relating to the abstract model are denoted with a superscript A, and
objects relating to the concrete model by a superscript C.

7.2.1 Variables, Invariants and Initialisation

Two machines are defined: MA, the abstract one is the generic model (Chapter 5), and MC , the
concrete one, refines MA.

MACHINE MA

VARIABLES t , xs , xAp
INVARIANTS

inv1 : t ∈ R+

inv2 : xs ∈ STATES
inv3 : xAp ∈ R 7→ SA

inv4 : [0, t] ⊆ dom(xA)

MACHINE MC REFINES MA

VARIABLES t , xs , xCp
INVARIANTS

inv3 : xCp ∈ R 7→ SC

inv4 : [0, t] ⊆ dom(xCp )
inv5 : xAp ∈δ[0,t] O ◦ xCp

Listings 7.1: Machines’ Header

Listing 7.1 gives the header of each machine. The machines’ variables are the one of the generic
model: time t, discrete state xs and continuous state xA/Cp . Note that this refinement only affects the
system’s continuous state. In practice the discrete state may also be handled during the refinement
process, but this is out of approximate refinement.

Invariants inv1-4 are also taken straight from the generic model. They provide a type to each
variable and guarantees that the continuous state variable is defined at least on [0, t].

The central part of this refinement is invariant inv5 ofMC : it defines the approximate continuous
gluing invariant as discussed in Section 7.1.1.

INITIALISATIONA

THEN
act1 : t := 0
act2 : xs :∈ STATES
act3 : xAp :∈ {0} → SA

END

INITIALISATIONC REFINES
INITIALISATIONA

WITH
xA′p : xA′p (0)∈δ O[{xC′p (0)}]

THEN
act1 : t := 0
act2 : xs :∈ STATES
act3 : xCp :∈ {0} → SC

END

Listings 7.2: Initialisation

Listing 7.2 presents the initialisation of the machines. It follows the generic model.
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A witness is provided for xA′p since xAp is subtituted with xCp in the refinement. This witness
follows the (approximate) gluing invariant. Note that it is unfolded for better readability.

7.2.2 Continuous Events
Continuous events represent the core part of the model impacted by approximate refinement. In
this section, we only focus on the Actuate event, since Behave is similar.

ActuateA
ANY PA , s , HA , t′

WHERE
grd0 : t′ > t
grd1 : PA ∈ (R+ 7→ SA)× (R+ 7→ SA)
grd2 : Feasible(xAp , [t, t′],PA, HA)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : HA ⊆ SA
grd6 : xAp (t) ∈ HA

THEN
act1 : xAp :|t→t′ PA(xAp , xA′p ) &HA

END

ActuateC REFINES ActuateA
ANY PC , s , HC , t′

WHERE
grd0 : t′ > t
grd1 : PC ∈ (R+ 7→ SC)× (R+ 7→ SC)
grd2 : Feasible(xCp , [t, t′],PC , HC)
grd3 : s ⊆ STATES
grd4 : xs ∈ s
grd5 : HC ⊆ SC
grd6 : xCp (t) ∈ HC

WITH
xA′p : xA′p ∈δ[0,t′]O ◦ xC′p

THEN
act1 : xCp :|t→t′ PC(xCp , xC′p ) &HC

END

Listings 7.3: Actuate Event

The system’s actuation is shown in Listing 7.3. The witness for xA′p is needed to prove continuous
gluing invariant preservation, as well as the simulation proof obligation arising from this event.
When instantiating the pattern, a proof obligation of witness feasibility is generated, requiring the
existence of xA′p and xC′p such that predicate xA′p ∈δ[0,t′]O ◦ xC′p holds.

Witnesses for HA and PA are not given here as, in practice, such witnesses depend on the actual
system being designed. The refinement of these parameters is discussed in Section 7.3 nonetheless,
when studying approximate refinement correctness.

7.2.3 Sensing
Sensing events handle the system’s continuous state, and are thus impacted by approximate
refinement.

Listing 7.4 presents the system’s sensing event. In contrast with the presentation of the sensing
event in Chapter 5, the guard on the continuous state is given under the form of a set, GA/C . This
is useful when dealing with the guard strengthening proofs (Section 7.3.2).

Note that it is always possible to express a guard given as a predicate as a set using the axiom
of comprehension.

Approximate refinement of the sensing event is performed by substituting the abstract continuous
state variable with the concrete one, and updating the guard adequately. The design of GC relative
to GA is the central part of this refinement, as care should be taken that guard strengthening holds
for this event, that is:

xCp (t) ∈ GC ⇒ xAp (t) ∈ GA
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EVENT SenseA
ANY s , GA
WHEN

grd1 : s ∈ P1(STATES)
grd2 : xAp (t) ∈ GA

THEN
act1 : xs :∈ s

END

EVENT SenseC REFINES
SenseA

ANY s , GC
WHEN

grd1 : s ∈ P1(STATES)
grd2 : xCp (t) ∈ GC

THEN
act1 : xs :∈ s

END

Listings 7.4: Sensing Event

This proof depends on the form of the variables, there evolution and the form of the guards.
However, a sufficient condition to guard strengthening is discussed in Section 7.3.2, that helps to
design GC so that refinement is correct.

7.3 Proofs

The approximation pattern is described under the form of a refinement, but its essential features are
found in the proof obligations associated with it. The idea is that, when the pattern is applied, the
generated proof obligations follow a set schema. In this section, we study and discuss this schema,
and use it to give a general method to handle these POs.

In general, it is impossible to give a holistic solution to such POs. However, thanks to the
properties of the operators used in the model, it is possible to simplify these POs, and establish,
“for free”, some parts of the proofs. In other words, POs associated to refinement can be refactored,
specialised for approximate refinement.

7.3.1 Simulation

Simulation (see Section 2.3.3.2 is a proof obligation associated with refinement. It ensures the
behaviour of the refining machine is allowed by the specification of the abstract machine.

We reacll the general form of the simulation proof obligation:

A ∧ IA ∧ IC ∧GC ∧W ∧ BAPC ⇒ BAPA

In the particular case of continuous events, restricted in their writing, before-after predicates
BAPA/C are substituted in the PO:

A ∧ IA ∧ IC ∧GC ∧ xAp
δ
∈

[0,t]
O ◦ xCp ∧ xA′p

δ
∈

[0,t′]
O ◦ xC′p ∧ CBAP(t, t′, xCp , xC′p ,PC , HC)

⇒ CBAP(t, t′, xAp , xA′p ,PA, HA)
(7.1)

The CBAP operator on the right-hand side of the implication is unfoled using the definition
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given in Operator 7:

. . .⇒ [0, t]C xA′p = [0, t]C xAp (PP)
PA([0, t]C xAp , [t, t′]C xA′p ) (PR)
∧ ∀t∗ ∈ [t, t′], xA′p (t∗) ∈ HA (LI )

In this context, the past preservation property of the operator (PP) is true by the way the
operator is constructed and intended. In practice however, this part of the proof is ensured by the
provided witness (see Section 7.4).

It remains to establish that 1) the predicate in the abstract CBAP is approximately simulated
by the predicate in the concrete one and (approximate continuous predicate simulation, ACPSIM )
and 2) the local invariant (evolution domain) of the abstract machine is implied by the one of
the concrete event, modulo approximations (approximate local invariant strengthening, ALIS). To
summarise, we write:

A ∧ IA ∧ IC ∧GC ∧ xAp
δ
∈

[0,t]
O ◦ xCp ∧ xA′p

δ
∈

[0,t′]
O ◦ xC′p ∧ CBAP(t, t′, xCp , xC′p ,PC , HC)

⇒ PA([0, t]C xAp , [t, t′]C xA′p ) (ACPSIM )
∧ ∀t∗ ∈ [t, t′], xA′p (t∗) ∈ HA (ALIS)

Approximate local invariant strengthening (ACPSIM ) is discussed more thoroughly in Section
7.3.2. Approximate continuous predicate simulation (ACPSIM ) depends on the form of the predicates
used in the operators.

In practice, models use differential equations and the :∼t→t′ operator both in the abstract and
continuous actuation event. In this case, the PO effectively consists in ensuring that the solutions of
these differential equations remain close from each other with regard to the approximation.

7.3.2 Guard and Invariant Strengthening
A number of proof obligations associated with refinement revolve around the general concept of
predicate strengthening. Formally, such proof obligations are of the form:

. . . ∧ PA ⇒ PC

This type of predicate appears, in particular, in guard strengthening proof obligations. It also
appears in approximate local invariant strengthening, and may appear in invariant prservation POs
of the concrete machine.

Note that, in our particular case, such POs and therefore such strengthening predicates relate to
continuous states, and are expressed under the form

In our particular case, those predicates relate to continuous states, and can generally be expressed
under the form xp ∈ H, where H ⊆ S. Thus, strengthening proof obligations is of the form:

Γ ∧ xAp
δ
∈

[0,t]
O ◦ xCp ∧ xCp ∈ HC ⇒ xAp ∈ HA (7.2)

An useful theorem is then proposed and proved that is used to handle this particular PO schema
and simplify it.
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Theorem 5 (Sufficient Condition for Predicate Strengthening). Let δ ∈ R+. Let HA ⊆ SA and
HC ⊆ SC . Given xC ∈ HC and xA ∈δ O[{xC}]. Then, a sufficient condition for xA ∈ HA is to
have:

O[HC ] ⊆ Sδ(HA)

Proof. xC ∈ HC , i.e. {xC} ⊆ HC , so it follows that O[{xC}] ∈ O[HC ]. By inclusion following the
left-hand side of the implication, we have O[{xC}] ⊆ Sδ(HA).
Besides, we have xA ∈δ O[{xC}] so, by definition, ∃y ∈ O[{xC}], d(xA, y) ≤ δ.
As y ∈ O[{xC}] and using Theorem 2 of Section 4.2.2, we obtain B(y, δ) ⊆ HA. Additionally,
d(xA, y) ≤ δ is equivalent to xA ∈ B(y, δ) (by definition of the closed ball).
It follows that xA ∈ HA.

The idea of this theorem is to guide the design of HC so that the resulting predicate xC ∈ HC
is stronger than xA ∈ HA, taking into account the approximate gluing invariant xA ∈δ O[{xC}].
Concretely, it formalises the idea that, if the abstract system shall not cross a given border, then
the concrete system, modulo observation, shall not cross this border plus or minus δ.

Note that this theorem is generalised to functions using universal quantification over t and
substituting xA (resp. xC) with xAp (t) (resp. xCp (t)).

7.3.3 Approximation Well-Definedness
The general problem of predicate strengthening raises an interesting remark. First of all, let us
define some complementary notions related to metric spaces.

Definition 10 (Diameter of a Set). Given (E, d) a metric space and S ⊆ E a subset of E, the
diameter of S, denoted diam(S), is the greatest distance between any two points of S. Formally:

diam(S) = sup
x,y∈S

d(x, y)

We note two particular properties of diameter, one associated with subsets and the other one
with closed balls.

Property 5 (Diameter of a Subset). Let S ⊆ E and T ⊆ S two sets. Then diam(T ) ≤ diam(S).

Property 6 (Diameter of a Closed Ball). The diameter of the closed ball B(x, δ) of centre x ∈ E
and radius δ ∈ R+ is equal to 2× δ.

These two properties are used to establish the following theorem:

Theorem 6 (Emptiness of δ-Shrinking). Let δ ∈ R+ and S ⊆ E such that diam(S) < 2× δ. Then
Sδ(S) is empty.

Proof. We suppose S ⊆ E with diam(S) < 2 × δ. Let x ∈ Sδ(S); then by Theorem 2, we have
B(x, δ) ⊆ S.
By using Property 5, we deduce that diam(B(x, δ)) ≤ diam(S). Using Property 6, we can replace
the value of diam(B(x, δ)) with 2× δ, and we write: 2× δ ≤ diam(S), which is incompatible with
the hypothesis that diam(S) < 2× δ.
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The consequence of this theorem is to highligh a particular case of approximate refinement.
Let δ ∈ R+ be a given approximation error. Let MA be an abstract machine with a continuous
state variable xAp ∈ R 7→ SA that features an event with a guard of the form xAp (t) ∈ GA, with
diam(GA) < 2×δ. LetMC be a concrete machine that approximately refinesMA, with a continuous
state variable xCp ∈ R 7→ SC , such that xAp ∈δ[0,t]O ◦ xCp .

The event with guard GA has to be refined with a stronger guard GC , with O[GC ] ⊆ Sδ(GA).
However, by Theorem 6, we know that Sδ(GA) is empty. Thus, we can only have O[GC ] = ∅.

Concretely, this means that the only correct approximate refinement of the given event is never
triggered. Equivalently, given this broad margin of error δ, there is no guarantee that the event is
triggered at a safe moment (i.e. at a moment the abstract event would trigger).

More generally speaking, this raises an interesting point: if δ is not suitable (here, small enough)
with regard to guards and local invariants, then there does not exist a correct approximate refinement
of the abstract machine that retains its features (events).

This is an example of a problem of approximation well-definedness: for any given machine, there
exists values of δ for which a correct approximate refinement removes features from the system.

In practice, approximation is established for specific systems using domain-specific knowledge
(i.e. ad hoc theorems). This knowledge gives properties of or conditions on δ that allow establishing
that the proposed strengthened predicates are not empty.

7.4 Formalisation
Similar to other patterns, the actual use of approximation requires some Event-B formalisation
effort. The operators and properties proposed in Section 4.2 have been encoded in Event-B theories
(see Section 4.3.2.5). They are used throughout the models.

Limitation of Witnesses Using the approximation pattern, situations where multiple substituted
variables are independent on each others may appear. Typically, if (xA1 , xA2 ) is being glued to xC
with xA1 and xA2 linked by a particular relation, then in an event that refines an event where both
(xA1 , xA2 ) and xC are modified, a witness is required for both xA′1 and xA′2 . Unfortunately, Event-B
does not allow witnesses to be defined “together” (something like xA′1 , xA′2 : . . .), which means that
we cannot express the particular relation links these variables in one single witness predicate. This
may lead to invariant violation or prevent guard strengthening.

Note that this is a purely modelling limitation (and not a formal one). A common workaround
for this Event-B limitation is to keep the variables and parameters of the abstract machine in the
concrete one (sometimes referred to as extension).

This does not impact the proving process. For modelling, events become extensions of the
abstract events. In this case, witnesses are not needed anymore, or are directly expressed in guards,
invariants, or in the predicate of the event’s action.

Witness Design Designing correct witnesses is required for being able to prove refinement cor-
rectness. When presenting the pattern, the witnesses that are given encompass implicit information.
In particular when replacing continuous variables, in order to prove the simulation proof obligation,
it is required to add the actual behaviour of the continuous variable (i.e. using a CBAP∗ operator)
to the witness, as well as typing information for well-definedness.

Therefore, the actuation given in Listing 7.3 is formalised as shown on Listing 7.5.
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EVENT ActuateC REFINES ActuateA

ANY PC ,s ,HC , tp
WHERE . . .
WITH

xA′p :
xA′p ∈ R 7→ SA ∧ [0, t′] ⊆ dom(xA′p )∧
CBAP(t, t′, xAp , xA′p ,PA, HA)

. . .

Listings 7.5: Encoding of the Approximated Actuation

7.5 Application to Case Studies
To illustrate the use of the approximation pattern, we propose the developments of two case studies.
The first, detailed in Section 7.5.1, is borrowed from the work of [FGP07; GJP08]. It relate to the
control of a robot that must visit multiple targets while remaining in a set area. The second case
study, presented in Section 7.5.2, addresses the problem of the inverted pendulum.

7.5.1 Planar Robot Case Study

Figure 7.7: Planar Robot Typical Scenario

A robot evolves on a plane and must visit various targets, while remaining in a definite area.
The robot’s actual dynamics are rich and complex (e.g. taking into accounts friction, inertia, etc.),
and require adequate control. However, these same dynamics are hard to handle during the proving
process. The case study is summarised on Figure 7.7.

The idea is to model a version of the system with simpler dynamics that allows establishing
the required properties of the system (i.e. safety). Approximate refinement is then used to safely
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concretise the system with the actual dynamics that approximate the simpler ones. The concrete
model is closer to implementation, and retain the abstract system’s properties.

This case study is borrowed from the work of [FGP07], and has been studied in [GJP08] where
it has been addressed using approximate simulation and model-checking. In this work, we propose a
proof-based approach, based on the results of Girard and Pappas, to propose a correct-by-construction
version of the model.

7.5.1.1 Robot Theory

THEORY RobotTheory IMPORT Approximation
OPERATORS

. . .
FO2DSystem expression (t0 : R , y0 : R× R)

direct definition caode(..., y0, t0)
SO2DSystem expression (K : R , t0 : R , x0 : (R× R)× (R× R))

direct definition caode(..., x0, t0)
. . .
PointwiseControl expression (D : P(R) , u : R× R , t0 : R)

well−definedness condition t0 ∈ D
direct definition (λt · t ∈ D ∧ t > t0 | u)

SlopedControl expression (D : P(R) , v : R× R , t0 : R)
well−definedness condition t0 ∈ D
direct definition (λt · t ∈ D ∧ t > t0 | (u, (t− t0) · v)

. . .
AXIOMATIC DEFINITIONS

OPERATORS
planar_distance expression (x : R× R , y : R× R) : R

AXIOMS
. . .

END

Listings 7.6: Robot Theory

Before modelling the robots, we first define a theory to handle their specific properties. An
extract of this theory is given in Listing 7.6. This theory mainly defines the controlled differential
equations corresponding to the two models: FO2DSystem for the f irst-order robot system, and
SO2DSystem for the second-order system. It also provides an adequate control, point-wise for the
first order and “sloped” for the second order.

We also define an algebraic distance on R× R, used throughout the model (typically to detect
the distance between the robot and a target or the end of the area). The operator, planar_distance,
is expressed axiomatically to avoid any assumption on the distance. It is associated with all the
usual properties of distances (symmetry, separation, etc.). In the following, we will simply denote it
d, for readability.

Finally, the theory provides an extensive number of axioms to qualify the defined controlled
system and associated control: controllability, solvability with given control. It also gives the
conditions under which the two differential equations are approximated, as well as the associated
approximation bound, based on Girard and Pappas’ work.
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7.5.1.2 Abstract Robot

In this first model, we design a robot that is able to move on a 2D plane and visits targets, while
staying in a designated area. The robot is modelled with simple dynamics that allows establishing
required properties of the system, and in particular that the robot remains in the same areas (safety)
and effectively visits the given targets (correction).

Note that this model is obtained by refining the generic model, presented in Chapter 5.

Preliminary Study

Plant Description. The controlled plant is the robot, modelled by its position pA ∈ R+ → R× R
(pA(t) = (pAx (t), pAy (t))). It evolves in a given area, a closed ball centered on 0 = (0, 0) and of fixed
radius A ∈ R, A > 0; formally:

∀t, pA(t) ∈ B(0, A) ≡ d(pA(t),0) ≤ A

The goal of the robot is to visit targets that are modelled as points of the plane Ti ∈ R × R
(i ∈ I, where I is an arbitrary countable set). A target is considered to be “visited” when the robot
is close enough to it by a fixed threshold τ > 0:

Ti visited⇔ d(pA, Ti) < τ

Once a target is visited, a new target is given to the robot, and so on and so forth. There is no
assumption on how and when those targets are given as this is out of scope of this case study. Note
however that, to to ensure that the robot is always able to visit every target, we require that:

∀i ∈ I, d(0, Ti) < T − τ

In other words, targets are always “far enough” from the allowed area’s border so that, if the
robot is close by τ from the target, it necessarily remains in this area.

To control the robot, the controller can issue a command uA ∈ R→ R×R that orients the robot
and gives it a speed. The robot is thus modelled using the following controlled ODE:

ṗA = uA (7.3)

This is equivalently written using a (controlled) ODE function: fA(t, pA, uA) = uA. Speed of
the robot, ‖uA‖ = d(0, uA), is bounded by a constant, denoted µ > 0.

Controller Description. The role of the controller is to acknowledge the targets given to the robot
and to issue commands to the robot in order to reach the target. At this point, targets and directions
are given directly. Note that a later refinement may introduce the way by which the robot obtains
each target and computes its direction, but this is not required for this particular part of the case
study.

The controller stores two discrete states: the current target Ti ∈ R2 and the current general
direction Dir ∈ R2. It senses when a target is visited (d(pA(t), Ti) ≤ τ), and retrieves the next
target to visit, Tj . Once the new target is known, the controller computes a new direction, used to
control the robot.

The controller may also spuriously change its target and direction.
Note that the control for the plant (uA) is “derived” from the direction (Dir ∈ R2) as so:

∀t, uA(t) = Dir
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Requirements. The system’s requirement can be summed up as so:
FUN1 The robot moves on a plane; it follows a direction Dir and its speed is bounded;
SAF1 The robot remains within the designated area;
FUN2 The robot visits a set of given targets, located in this area;

Event-B Development

CONTEXT Robot_0_Ctx
CONSTANTS µ , τ , p0 , A
AXIOMS

axm1 : µ ∈ R ∧ µ > 0
axm2 : p0 ∈ R× R
axm3 : d(p0,0) ≤ A
axm4 : τ ∈ R+

axm5 : A ∈ R+

axm6 : τ < A
END

Listings 7.7: Abstract Robot – Context

Constants and Axioms. In addition to the robot theory defined in Section 7.5.1.1, a context is
defined. An extract of this context is given in Listing 7.7. It contains all the necessary constants
for the model: A, τ , µ, as well as an initial position p0. Axioms are added to ensure the correct
properties of these constants (e.g. d(p0,0) ≤ A).

MACHINE Robot_0 REFINES Generic
SEES Robot_0_Ctx
VARIABLES t , pA , T , Dir
INVARIANTS

inv1 : pA ∈ R 7→ R× R
inv2 : [0, t] ⊆ dom(pA)
inv3 : T ∈ R× R ∧ d(T,0) < A− τ
inv4 : Dir ∈ R× R ∧ ‖Dir‖ ≤ µ
inv5 : xp = pA

inv6 : xs = T 7→ Dir
inv7 : ∀t∗ · t∗ ∈ [0, t]⇒ d(pA(t∗),0) ≤ A

INITIALISATION
WITH

x′p : x′p = pA′

x′s : x′s = T ′ 7→ DirA′
THEN

act1 : t := 0
act2 : T :| T ′ ∈ R× R ∧ d(T,0) ≤ A− τ
act3 : Dir = 0
act4 : pA := {0 7→ p0}

END

Listings 7.8: Abstract Robot – Machine’s Header and Initialisation

Machine Header. Listing 7.8 presents the machine’s header and initialisation. The variables of the
system are defined, and are associated to essential properties in the preliminary study. In particular,
inv5 and inv6 glue the abstract (generic) and concrete state, and inv7 formalises the system’s
safety invariant SAF1: the robot remains in the designated area.

Initialisation is straightforward: the robot starts with null speed and direction, at initial
coordinates p0 and with an arbitrary (valid) target.
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EVENT sense_close_enough REFINES
Sense

ANY Tnext , Dirnext
WHERE

grd1 : d(T, pA(t)) ≤ τ
grd2 : Tnext ∈ R× R ∧ d(0, Tnext) ≤ A− τ
grd3 : Dirnext ∈ R× R ∧ ‖Dirnext‖ ≤ µ

WITH
s : s = {Tnext 7→ Dirnext}
p : p = {T 7→ Dir} × R× {p̂ | d(p̂, T ) ≤ τ}
x′s : x′s = Tnext 7→ Dirnext

THEN
act1 : T := Tnext
act2 : Dir := Dirnext

END

EVENT transition_change_direction
REFINES Transition

ANY Dirnew
WHERE

grd1 : Dirnew ∈ R× R ∧ ‖Dirnew‖ ≤ µ
WITH

s : s = {T 7→ Dirnew}
x′s : x′s = T 7→ Dirnew

THEN
act1 : Dir := Dirnew

END

Listings 7.9: Abstract Robot – Machine’s Discrete Events

Discrete Events. Listing 7.9 presents two discrete events of the machine. The sense_close_enough
event senses when the robot is close enough from the target (thus considering the target as being
visited). It assigns the state of the system a new target and a new direction. Guard grd1 models
the sensing, while the remaining guards ensure invariants are preserved. Note that there is no
assumption on how the new target and direction are obtained.

The transition event transition_change_direction allows the controller to change its direction
(with a new valid one). Note that there exists a transition_change_target event to change the
current target, not given here as it is basically identical.

Witnesses are given in both events, following their guards.

EVENT actuate_movement REFINES Actuate
ANY t′

WHERE
grd0 : t′ > t
grd1 : Solvable([t, t′], pA,withControl([t, t′],

FO2DSystem(pA(t), t),PointwiseControl([t, t′],Dir , t)),
{p̂ | d(p̂, T ) > τ ∧ d(p̂,0) ≤ A})

grd2 : d(pA(t), T ) > τ
WITH

eq : eq = withControl([t, t′],FO2DSystem(pA(t), t),PointwiseControl([t, t′],Dir , t))
H : H = {p̂ | d(p̂, T ) > τ ∧ d(p̂,0) ≤ A}
s : s = (T,Dir)

THEN
act1 : pA :∼t→t′ withControl([t, t′],FO2DSystem(pA(t), t),PointwiseControl([t, t′],Dir , t))

&{p̂ | d(p̂, T ) > τ ∧ d(p̂,0) ≤ A}
END

Listings 7.10: Abstract Robot – Machine’s Actuation
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Continuous Event. The system’s actuation is presented in Listing 7.10. It mainly consists in
instantiating the parameters of the generic model. The system is described using a controlled ODE
defined in the theory, and we use the withControl operator to transform this controlled equation
into a standard ODE with a fixed control command function, orienting the robot in the given
direction Dir (function that also comes from the theory).

The evolution domain simply ensures the robot is not visiting a target (in which case it would
need to change target and direction) and remains in the designated area.

Witnesses are provided, mirroring the guards, invariants and operated substitutions.

Proofs At this level, the model generates 110 POs. Excluding well-definedness (24%), most of
those POs (50%) relate to refinement, and ensures the model is compatible with the generic model.
These POs are discharge using the witnesses and the properties of the system.

The safety invariant is proven thanks to the evolution domain given for the continuous assignment.
Note that witness feasibility (i.e. establish that there exist values for the witnesses) must be proven.
The ODE is a simple one, making it straightforward establish witness feasibility.

7.5.1.3 Concrete Robot

The model developed in Section 7.5.1.2 allowed us to establish a number of fundamental properties
in a fairly easy way, but it is quite far from the actual robot’s implementation. For this reason, we
propose a refinement of this model, closer to its real-world characteristics.

This refinement involves a more complex differential equation, and cannot be related in a
direct, exact way to the abstract robot’s differential equation. Therefore, our design relies on the
approximation pattern, with approximate refinement to safely approximate the system’s differential
equation while retaining all of the properties we managed to establish at the abstract level.

Preliminary Study

Plant Description. The plant under control is the robot, characterised by its position pC ∈ R× R
and its speed vC ∈ R× R. Exactly like the abstract robot, it evolves in the area that is the closed
ball of center 0 and radius A > 0, and must visit targets Ti,i∈I .

To control the robot, the controller issues a command uC ∈ R+ → R× R to give it a direction
and a speed. Based on how the robot is built, the system follows the given controlled ODE: v̇C = 1

2u
C −K(pC − wC)− vC

ṗC = vC

ẇC = uC
(7.4)

Where wC is the derivative of the command and K is some correction coefficient. We note that
the command uC is bounded in norm by ν > 0: ‖uC‖ = d(0, uC) ≤ ν.

This system is equivalently written as a (controlled) ODE function:

fC
(
t,

[
vC

pC

]
, uC

)
=
( 1

2u
C −K(pC −

∫ t
t0
uC)− vC

vC

)

In [GJP08], the authors demonstrated that the system described by Equation 7.4 and the one
described by Equation 7.3 are δ-bisimilar provided that:
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1. the abstract command is bounded by µ: ‖uA‖ ≤ µ

2. the concrete command is bounded by ν: ‖uC‖ ≤ ν

3. the following relation holds:
ν

2

(
1 + 4K + 2

√
1 + 4K

)
≤ µ

In that case, δ = 2ν, and we have:
pA

δ
≈ pC

Controller Description. The controller does not change from the one of the abstract robot, with
the exception that conditions require to be strengthened, following the approximation pattern (see
Section 7.3.2). In the abstract system, a target is considered to be visited when d(pA(t), Ti) ≤ τ ;
following the strengthening principle, the sensing becomes:

d(pC(t), Ti) ≤ τ − δ

Similarly, the area in which the robot evolves is strengthened as well:

∀t, d(0, pC(t)) ≤ A− δ

Finally, the direction and speed stored by the controller are used to derive (uC , wC) (on a given
interval [t, t′]):

∀t ∈ [t0, t1],
{
uC(t) = Dir
wC(t) =

∫ t
t0
uc(τ)dτ = Dir(t− t0)

This operation is performed by the operator SlopedControl defined in the robot theory (Section
7.5.1.1).

Requirements. The requirements of the concrete robot are the same as the abstract robot.

Event-B Development

CONTEXT Robot_1_Ctx EXTENDS Robot_0_Ctx
CONSTANTS δ , ν , K
AXIOMS

axm1 : δ ∈ R+

axm2 : ν ∈ R+

axm3 : K ∈ R+

. . .
END

Listings 7.11: Abstract Robot – Context

Constants and Axioms. Listing 7.11 gives an extract of the defined context. This context extends
the abstract one, and adds all the required constants (δ, ν, etc.). We recall at this point that a theory
of robots is defined (Section 7.5.1.1), providing useful operators, and in particular a formalisation
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of the controlled ODE defined in Equation 7.4 (SO2DSystem) as well as an associated adequate
control (SlopedControl).

Note that, to be able to prove certain properties later, we require that ν ≤ µ (which is not
incompatible with the conditions of well-definedness of the approximation).

MACHINE Robot_1 REFINES Robot_0
SEES Robot_1_Ctx
VARIABLES t , pC , vC , T , Dir
INVARIANTS

inv1−2 : pC ∈ R 7→ R× R ,
vC ∈ R 7→ R× R

inv3−4 : [0, t] ⊆ dom(pC) ,
[0, t] ⊆ dom(vC)

inv5 : ‖Dir‖ ≤ ν
inv6 : pA≈δ[0,t] pC
inv7 :

∀t∗ · t∗ ∈ [0, t]⇒ d(pC(t∗),0) ≤ A− δ

INITIALISATION
WITH

pA′ : pA′ = pC′

THEN
act1 : t := 0
act2 : T :| T ′ ∈ R× R ∧ d(T,0) ≤ A− τ
act3 : Dir = 0
act4 : pC := {0 7→ p0}
act5 : vC := {0 7→ 0}

END

Listings 7.12: Concrete Robot – Machine’s Header and Initialisation

Machine Header. Listing 7.12 present the machine’s header and initialisation. The refinement
replaces the abstract state variable pA with the new continuous state variable, (pC , vC), defined and
constrained in inv1-4. The other variables remain unchanged.

inv5 constrains further variable Dir such that the resulting control is bounded in norm by ν
(ensuring the required pre-condition for the approximation). inv7 is a strengthened version of the
safety invariant of the abstract machine (inv7 in Listing 7.8), obtained by applying the δ-shrinking
operator on the predicate.

inv6 gives the approximate gluing invariant for the refinement. Compared to the approximation
pattern, we note that O = prj1 (where prj1 is the first canonical projector, i.e. the function that,
given a pair, gives the first element of the pair). Note that, since prj1 is a function, O ◦ (pC , vC) =
prj1 ◦ (pC , vC) is a function as well, and we can use ≈δ instead of ∈δ.

The initialisation is straightforward: variables are initialised in a similar way as for the abstract
robot. The initial position is the same (p0) and the initial speed of the robot is 0 = (0, 0), as to
match Dir = 0.

Discrete Events. The refined events sense_close_enough and transition_change_direction
are presented in Listing 7.13. Their refinements ensure that:

• invariant inv5 is enforced (grd3 in the sensing event and grd1 in the transition); this is
compatible with guard strengthening since ν ≤ µ;

• guards are strengthened in accordance with the approximation pattern, using the shrinking
operator:

Sδ({p | d(T, p) ≤ τ}) = {p | d(T, p) ≤ τ − δ}

hence the expression of grd1;
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EVENT sense_close_enough REFINES
sense_close_enough

ANY Tnext , Dirnext
WHERE

grd1 : d(T, pC(t)) ≤ τ − δ
grd2 : Tnext ∈ R× R ∧ d(0, Tnext) ≤ A− τ
grd3 : Dirnext ∈ R× R ∧ ‖Dirnext‖ ≤ ν

THEN
act1 : T := Tnext
act2 : Dir := Dirnext

END

EVENT transition_change_direction
REFINES
transition_change_direction

ANY Dirnew
WHERE

grd1 : Dirnew ∈ R× R ∧ ‖Dirnew‖ ≤ ν
THEN

act1 : Dir := Dirnew
END

Listings 7.13: Concrete Robot – Machine’s Discrete Events

EVENT actuate_movement REFINES actuate_movement
ANY t′

WHERE
grd0 : t′ > t
grd1 : Solvable([t, t′], pC ⊗ vC ,withControl([t, t′],

SO2DSystem((pC(t), vC(t)), t),SlopedControl([t, t′],Dir , t)),
{p̂, v̂ | d(p̂, T ) > τ − δ ∧ d(p̂,0) ≤ A− δ})

grd2 : d(pC(t), T ) > τ − δ
WITH

pA′ : pA′≈δ[0,t′] pC′
THEN

act1 : pC , vC :∼t→t′ withControl([t, t′],SO2DSystem((pC(t), vC(t)), t),SlopedControl([t, t′],Dir , t))
&{p̂, v̂ | d(p̂, T ) > τ − δ ∧ d(p̂,0) ≤ A− δ}

END

Listings 7.14: Concrete Robot – Machine’s Actuation

Continuous Events. Listing 7.14 gives the actuation for the concrete robot. The overall principle
here is to substitute the abstract parameters (pA, FO2DSystem, PointwiseControl) with the concrete
ones ((pC , vC), SO2DSystem, SlopedControl). The substitution is possible thanks to the properties
given in the robot theory. In particular, it allows enforcing correct approximation.

We note that the guards and the evolution domain are strengthened using predicate strengthening
as proposed in Section 7.3.2. Last, a witness is provided for pA′ that recalls the approximate gluing
invariant.

Proofs The resulting model generated 91 proof obligations, about 19% of which relate to well-
definedness and 40% to invariants. About 33% of the POs relate to refinement (guard strengthening,
simulation, witness feasibility).

Invariant preservation proofs are straightforward since the invariants are simple. Invariant inv7
is a bit more technical to maintain; it is proven using the various theorems and axioms available in
the robot theory. The most difficult invariant preservation to prove from a purely technical point of
view is the approximate continuous gluing invariant (inv6): it requires to enforce the approximation
is well-defined, to instantiate theorems that establish the approximation of the two equation systems,
and then to derive the approximation of their solution and hence of pA and pC using rewriting and
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substitution.
Guard strengthening and simulation are proven thanks to the work done in Section 7.3: it is a

matter of establishing that the concrete predicates are included in the δ-shrinking of the abstract
predicates and use related theorems to sort out simulation.

7.5.2 Inverted Pendulum Case Study

Figure 7.15: Inverted Pendulum Typical Scenario

A rod of length l is hooked to a step motor at point O and to a mass M at his other end. The
motor is capable of delivering a torque of u. θ denotes the angle between the vertical axis and the
rod.

The goal of the case study is to design a controller that issues commands to the motor (i.e.
modifies u) in order to stabilise the rod around its centre position (θ = 0).

The main problem of this case study is that realistic differential equations for θ are non-linear.
However, for implementation purposes, and under certain conditions on θ, these differential equations
may be linearised. A linear differential equation is obtained that approximates the non-linear one.

In the following, we formalise this linearisation step using approximate refinement.

7.5.2.1 Inverted Pendulum Theory

Inverted pendulums are associated with several physical and mathematical properties that are
synthesised in a dedicated domain-specific theories of pendulum. An extract of said theory is given
in Listing 7.15.

The inverted pendulum theory mainly defines controlled differential equations for the non-linear
and linearised (PendulumNonLin and PendulumLin resp.) pendulum plants, as well as possible
control command functions for controlling these pendulums (PendulumControlNonLin/Lin). It also
formalises the linearisation step as an axiomatic well-definedness predicate (PendulumApproxWD)
together with an axiom (pend_approx) that allows establishing an approximation relationship
between the two controlled differential equations PendulumNonLin and PendulumLin.

The idea is to gather and abstract the mathematical background needed to handle approximation
of inverted pendulum systems in an abstract operator that characterises the “good properties”
of inverted pendulums, required for establishing approximation. The associated axiom allows
establishing this approximation formally, using the well-definedness operator as hypothesis.
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THEORY InvertedPendulum IMPORT Approximation
OPERATORS

PendulumFunNonLin expression (ω0 : R)
direct definition

(λt 7→ (x1 7→ x2) 7→ u · t ∈ R+ ∧ (x1 7→ x2) ∈ R2 ∧ u ∈ R| x2 7→ (u cos(x1) + ω2
0 sin(x1)) )

PendulumNonLin expression (ω0 : R , x0 : R2 , t0 : R)
direct definition code(PendulumFunNonLin(ω0), x0, t0)

PendulumFunLin expression (ω0 : R)
direct definition

(λt 7→ (x1 7→ x2) 7→ u · t ∈ R+ ∧ (x1 7→ x2) ∈ R2 ∧ u ∈ R| x2 7→ (u+ ω2
0x1) )

PendulumLin expression (ω0 : R , x0 : R2 , t0 : R)
direct definition code(PendulumFunLin(ω0), x0, t0)

AXIOMATIC DEFINITIONS
OPERATORS

theta_max expression (ω0 : R) : R
PendulumControlNonLin expression (ω0 : R , (θ0, θ̇0) : R2 , t0 : R+ ) : R 7→ R
PendulumControlLin expression (ω0 : R , (θ0, θ̇0) : R2 , t0 : R+ ) : R 7→ R
. . .
PendulumApproxWD predicate (δ, ω0, θbound ,MNonLin ,MLin , δC : R+∗ , t0, t1 : R+ )

well−definedness condition t0 < t1
AXIOMS

pend_approx : ∀t0, t1, δ, ω0, . . . · t0 ∈ R+ ∧ t1 ∈ R+δ ∈ R+ ∧ ω0 ∈ R ∧ . . .∧
PendulumApproxWD(δ, ω0, θbound ,MNonLin ,MLin , δC , t0, t1)
⇒ withControl([t0, t1],PendulumLin(ω0, θ

0
Lin , t0), uLin)

≈δ[t0,t1] withControl([t0, t1],PendulumNonLin(ω0, θ
0
NonLin , t0), uNonLin)

Listings 7.15: Inverted Pendulum Theory

7.5.2.2 Non-Linear Inverted Pendulum

We first model the inverted pendulum accurately using physics and mathematics. The differential
equation modelling the pendulum’s behaviour is non-linear. This first model is used to establish
safety properties (such as the fact the pendulum does not fall).

Note that this model is a refinement of the generic model (as presented in Chapter 5).

Preliminary Study

Plant Description. The controlled plant is the inverted pendulum, modelled by the angle between
the rod and the vertical axis, denoted θ. This angle may be adjusted with the help of a step motor
that serves as actuator for the system. This actuator is able to issue a control command function,
denoted u, bounded in absolute value by the constant MNonLin. Physics and trigonometry allows
establishing the following differential equation for θ:

θ̈ − g

l
sin(θ) = u cos(θ)

This differential equation may equivalently be expressed under the form of an ODE:[
θ̇

θ̈

]
= fNonLin

([
θ

θ̇

]
, u

)
, with fNonLin

([
x1
x2

]
, u

)
=
[

x2
u cos(x1) + g

l x1

]
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The factor g
l is constant and usually denoted ω2

0 . It is the angular frequency or pulsatance of the
system, and it is linked to the period of the pendulum’s oscillations.

This ODE is non-linear because of the terms sin(θ) and cos(θ). In particular, it does not admit
an analytical (explicit) solution, and reachability is undecidable.

The pendulum is controllable (i.e. can be balanced around θ = 0) provided θ remains bounded
by a constant, denoted θmax , that depends on ω0 and MNonLin.

Controller Description. The role of the controller is to compute an adequate control command
function to issue to the actuator. This is done in two steps:

1. The controller senses the value of θ and θ̇ and stores it in variables θsense and θ̇sense with the
associated time point of the sensing, tsense (sense_angle);

2. The controller uses the sensed values (θsense and θ̇sense) and time (tsense) to compute u
(calculate_control);

This behaviour is summarised in Figure 7.17 as an automaton. Note that the controller has only
one mode, named control.

controlstart

:sense_angle

:calculate_control

Figure 7.17: System Mode Automaton

Requirements. The system’s requirements can be summarised as so:
FUN1 The controller senses the angle (θ) of the pendulum (:sense_angle)
FUN2 If the value of the sensed angle is not 0, the controller sends a command to stabilise the
pendulum at θ = 0 (:calculate_control)
SAF1 For |θ| < θmax , the system is always controllable
ENV1 The system is subject to perturbations that may cause its angle to vary

Event-B Development

Constants and Axioms. We first define a context for the model that defines any needed constants
and parameters. This context is given in Listing 7.16. It defines ω0 and θmax , as well as the system’s
initial conditions, θ0. It also specifies the set of modes for the system (STATES), consisting of one
element (control).

Machine Header. Listing 7.17 presents the machine’s header and initialisation. The machine refines
the generic model, substituting the abstract continuous state xp with [θ θ̇]> using gluing invariant
inv5 and the abstract discrete state xs with the unique mode of the controller (control) using gluing
invariant inv7. In addition to these variables, the machine defines tsense, θsense and θ̇sense to store
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CONTEXT PendulumCtx
CONSTANTS ω0 , θmax , θ0 , c o n t r o l
AXIOMS

axm1 : ω0 ∈ R
axm2 : θmax = . . .
axm3 : θ0 ∈ R
axm4 : |θ0| < θmax
axm5 : partition(STATES, {control})

END

Listings 7.16: (Non-Linear) Pendulum Context

MACHINE Pendulum REFINES Generic
SEES PendulumCtx
VARIABLES

t , θ , θ̇ , tsense , θsense , θ̇sense , control_fun
INVARIANTS

inv1−4 : θ ∈ R 7→ R , θ̇ ∈ R 7→ R , [0, t] ⊆ dom(θ)
, [0, t] ⊆ dom(θ̇)

inv5 : xp = [θ θ̇]>
inv6 : ∀t∗ · t∗ ∈ [0, t]⇒ |θ(t∗)| < θmax
inv7 : xs = control
inv8−10 : tsense ∈ R+ ,θsense ∈ R , θ̇sense ∈ R
inv11−12 : u ∈ R 7→ R , [tsense,+∞[⊆ dom(u)
inv13 : |θsense| ≤ θmax

INITIALISATION
WITH

x′p : x′p = {0 7→ (θ0 7→ 0)}
x′s : x′s = control

THEN
act1 : t := 0
act2 : θ := {0 7→ θ0}
act3 : θ̇ := {0 7→ 0}
act4 : tsense := 0
act5 : θsense, θ̇sense := θ0, 0
act6 : u :=
PendulumControlNonLin(ω0, (θ0 7→ 0), 0)

END

Listings 7.17: Machine Header and Initialisation

the values sensed by the controller, as well as u, the control command function computed by the
controller and used during actuation.

Invariants inv1-4 and inv8-10 precise the basic type and properties of each variables. Finally,
invariants inv6 and inv13 model the system’s safety, i.e. the condition under which the system is
controllable.

Initialisation is written following the generic model. Each variables of the model is given an
initial value; in particular θ(0) = θ0 and θ̇(0) = 0. Witnesses are given for the substituted variables
(xs and xp) in order to enforce the correctness of the refinement.

Discrete Events. Listing 7.18 shows the sensing and transition events of the system, following the
system’s mode automaton (Figure 7.17). When θ(t) does not equal to 0, sense_angle is triggered.
It senses the value of θ(t) and θ̇(t), and stores these two values, in addition to the current time t, in
dedicated variables (θsense, θ̇sense and tsense resp.).

Event transition_calculate_control uses the sensed values to compute an adequate control
command function (u) to be issued to the pendulum’s motor during actuation. The function’s
computation is done using pendulum’s theory operators (see Section 7.5.2.1).

Continuous Event. The system’s actuation is given in Listing 7.19. It revolves around the use
of the :∼t→t′ operator to update the behaviour of the continuous state variables (θ, θ̇) using the
controlled ordinary differential equation PendulumNonLin (defined in the inverted pendulum theory,
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sense_angle REFINES Sense
WHERE

grd1 : |θ(t)| > 0
WITH

x′s : x′s = control
s : s = {control}
p : p = {control} × R×
{θ∗, θ̇∗ | |θ∗| ≥ θmax}

THEN
act1 : tsense, θsense, θ̇sense := t, θ(t), θ̇(t)

END

transition_calculate_control
REFINES Transition

WITH
x′s : x′s = control
s : s = {control}

THEN
act1 : u :=

PendulumControlNonLin(ω0, θ
sense, θ̇sense, tsense)

END

Listings 7.18: Sensing and Transition Events

actuate_balance REFINES Actuate
ANY t′

WHERE
grd1 : t′ ∈ R+ ∧ t < t′

grd2 : SolvableWith([t, t′],PendulumNonLin(ω0, (θ(t) 7→ θ̇(t)), t), u)
grd3 : θ(t) < θmax

WITH
e : e = withControl([t, t′],PendulumNonLin(ω0, (θ(t) 7→ θ̇(t)), t), u)
H : H = {θ∗, θ̇∗ | |θ∗| < θmax |}
x′p : x′p =

[
θ′ θ̇′

]>
s : s = {control}

THEN
act1 : t, θ, θ̇:∼t→t′

withControl([t, t′],PendulumNonLin(ω0, (θ(t) 7→ θ̇(t)), t), u)
&{θ∗, θ̇∗ | |θ∗| < θmax}

END

Listings 7.19: System Actuation

see Section 7.5.2.1) and the computed control command function, u.
Witnesses are provided for the generic model’s parameters to reflect the model’s constraints.

Proofs A number of 100 proof obligations is generated for this first refinement. 34% of these POs
relate to refinement, that is to say to the instantiation of the generic model. Well-definedness makes
for 29% of these POs, and is mostly due to the use of complex operators, defined in theories. Finally,
the other POs (37%) are for invariant preservation. These are mostly related to typing and basic
properties of the variables, and also include the proof of the system’s safety properties, carried out
using properties written in the pendulum theory.

7.5.2.3 Linearised Inverted Pendulum

The non-linear version of the inverted pendulum is derived directly from physics, but cannot be
implemented in its current form due to its non-linear differential equation. We propose a linearised
version of the inverted pendulum, expressed as an approximate refinement of the non-linear one.
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The correctness of the approximation is abstracted in the inverted pendulum domain theory (see
Section 7.5.2.1).

Preliminary Study

Plant Description. The controlled plant is the same as for the non-linear inverted pendulum. We
use θLin to denote the continuous state of the linearised inverted pendulum.

The idea is that, when θ is small enough, sin(θ) may be approximated with θLin , and cos(θ) with
1. The control command function used to control the system is modified, and denoted uLin. It is
bounded by the constant MLin . The system is associated with the following differential equation for
θLin:

θ̈Lin − ω2
0θLin = uLin

This differential equation may equivalently be expressed under the form of an ODE:[
θ̇Lin
θ̈Lin

]
= fLin

([
θLin
θ̇Lin

]
, u

)
, with fLin

([
x1
x2

]
, u

)
=
[

x2
uLin + ω2

0x1

]
Note that this differential equation is linear.

This new differential equation approximated the non-linear one, provided controls are approx-
imated (u≈δC uLin, δC constant) and θ is bounded (|θ| ≤ θbound, with θbound constant). This
bound depends on the required approximation bound of the system δ, the control functions bounds
(MNonLin and MLin) and approximation bound (δC).

Controller Description. The controller remains unchanged compared to the non-linear inverted
pendulum. The only difference is that guards and local invariants shall be strengthened in order to
establish refinement correctness.

Requirements. The requirements are the same as for the non-linear inverted pendulum, substituting
θ by θLin. To ensure approximation is possible, the system is required to observe an additional
property:

FUN3 The value of θ must remain bounded by θbound ;
It is to be noted that this requirement relate to the non-linear version of θ. Using predicate

strengthening, it can be transformed into an equivalent requirement on θLin:
FUN3’ The value of θLin must remain bounded by θbound − δ;

Event-B Development

Constants and Axioms. A context is defined for this development, given in Listing 7.20. This
context defines the approximation bounds δ and δC , as well as θbound .

Machine Header. Listing 7.21 shows the machine’s header and initialisation. The abstract continuous
state variables (θ and θ̇) are substituted with θLin and θ̇Lin using the approximate continuous gluing
invariant inv5. Similarly, sensed variables θsense and θ̇sense are substituted with θsense

Lin and θsense
Lin

respectively, using the approximate equality operator (≈).
Invariants inv6, inv8 and inv11 give additional constraints on the system’s variables in order

to enforce approximation well-definedness (in particular, it ensures δC -approximation of the control
command function u and uLin).
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CONTEXT PendulumLinCtx EXTENDS PendulumCtx
CONSTANTS δ , δC , θbound
AXIOMS

axm1 : δ ∈ R
axm2 : δ > 0
axm3 : δC ∈ R
. . .

END

Listings 7.20: (Non-Linear) Pendulum Context

MACHINE PendulumLin REFINES Pendulum
SEES PendulumLinCtx
VARIABLES t , tsense , uLin ,

θLin , θ̇Lin , θsense
Lin , θ̇sense

Lin
INVARIANTS

inv1−4 : θLin ∈ R 7→ R , θ̇Lin ∈ R 7→ R ,
[0, t] ⊆ dom(θLin) , [0, t] ⊆ dom(θ̇Lin)

inv5 : [θLin θ̇Lin ]>≈δ[0,t][θ θ̇]>
inv6 : ∀t∗ · t∗ ∈ [0, t]⇒
|θ(t∗)| < θbound ∧ |θLin(t∗)| < θbound − δ

inv7 : uLin ∈ R 7→ R
inv8 : uLin ≈δctrl

[tsense,+∞[ control_fun
inv9−10 : θsense

Lin ∈ R , θ̇sense
Lin ∈ R

inv11 : |θsense
Lin | ≤ θbound − δ

inv12 : [θsense θ̇sense]>≈δ[θsense
Lin θ̇sense

Lin ]>

INITIALISATION
WITH

θ′ ; θ′ = θ0 , θ̇′ : θ̇′ = 0
θsense′ : θsense′ = θ0 , θ̇sense′ : θ̇sense′ = 0
control_fun′ : control_fun′ =

PendulumControlNonLin(ω0, (θ0 7→ 0), 0)
THEN

act1 : t := 0
act2 : tsense := 0
act3 : θLin := {0 7→ θ0}
act4 : θ̇Lin := {0 7→ 0}
act5 : uLin :=

PendulumControlLin(ω0, (θ0 7→ 0), 0)
act6 : θsense

Lin , θ̇sense
Lin := θ0, 0

END

Listings 7.21: Machine Header and Initialisation

Finally, invariants inv1-4, inv7 and inv9-10 give the basic properties of the machine’s variables.

The machine’s initialisation is derived from the abstract machine’s initialisation by substituting
the abstract variables with the concrete ones using their respective gluing invariants. The concrete
system is assumed to start from the exact same position as the abstract one (i.e. θLin(0) = θ(0) = θ0

and θ̇Lin(0) = θ̇(0) = 0).

sense_angle REFINES sense_angle
WHERE

grd1 : |θLin(t)| > 0
WITH

θsense′ , θ̇sense′ :
[θsense′ θ̇sense′]>≈δ[θsense′

Lin θ̇sense′
Lin ]>

THEN
act1 : tsense, θsense

Lin , θ̇sense
Lin :=

t, θLin(t), θ̇Lin(t)
END

transition_calculate_control REFINES
transition_calculate_control

WITH
u′ : u′≈δ[tsense,+∞[ u

′
Lin

THEN
act1 : uLin :=
PendulumControlLin(ω0, θ

sense
Lin , θ̇sense

Lin , tsense)
END

Listings 7.22: Sensing and Transition Events



180 CHAPTER 7. APPROXIMATION

Discrete Events. Listing 7.22 presents the refining sensing and transition events for the system.
They follow the abstract machine’s sensing and transition events, substituting the abstract variables
with the concrete ones using the gluing invariants as witnesses. The control command function for
the system is provided by the inverted pendulum theory (PendulumControlLin). This function is
expected to be a δC -approximation of PendulumControlNonLin , used in the abstract model, in order
for the approximation to be correct.

actuate_balance REFINES actuate_balance
ANY t′

WHERE
grd1 : t′ ∈ R+ ∧ t < t′

grd2 : SolvableWith([t, t′],PendulumLin(ω0, (θLin(t) 7→ θ̇Lin(t)), t), uLin)
grd3 : |θLin(t)| < θbound − δ
grd4 : |θLin(t)| < θmax − δ

WITH
θ, θ̇ : [θ′ θ̇′]≈δ[0,t′][θ′Lin θ̇

′
Lin ]

THEN
act1 : t, θLin , θ̇Lin :∼t→t′

withControl([t, t′],PendulumLin(ω0, (θLin(t) 7→ θ̇Lin(t)), t), uLin)
&{θ∗, θ̇∗ | |theta∗| < θmax ∧ |θ∗| < θbound − δ}

END

Listings 7.23: System Actuation

Continuous Event. The system’s actuation is given in Listing 7.19. It is built from the abstract
system’s actuation by substituting the abstract continuous variables, θ and θ̇, with the concrete
ones, θLin and θ̇Lin, using the approximate gluing invariant as a witness.

Proofs The model generated 63 proof obligations. Well-definedness makes for 37% of them, and
again is due to our extensive use of operators defined in the inverted pendulum and approximation
theories. Refinement-related POs (19%) consist of simulation and guard strengthening. The model
is designed following the principle of predicate strengthening as presented in Section 7.3.2, which
helps in carrying out the proof of such POs. The properties associated to both systems, defined in
the inverted pendulum domain theory, are also fundamental for discharging the POs.

The other POs relate to invariant preservation (44%). Most invariants serve to type and constraint
variables. The proof of the safety invariant also benefits from the use of predicate strengthening.

Finally, preservation of the approximate gluing invariant is the least trivial PO to discharge.
It heavily relies on the particular properties of the system, synthesised in the inverted pendulum
theory.

7.6 Discussion
Approximation is a fundamental technique used by controller designers. It takes many forms
(e.g. linearisation, numeric integration, etc.). We formalised this operation in the context of our
framework, as a generic refinement that can be instantiated for any hybrid system. The general
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schema of hybrid systems in our framework and of approximate refinement itself allows its use for
two purposes:

• start with an approximated abstraction of the system for which proofs are eased, and refine it
to an exact, more complex concrete system that preserves the property of the abstract system;

• start with a complex system, closer to the actual physical phenomena involved in the system,
and refine it to an approximated, simpler system that can be implemented;

The work presented in this chapter has been published in [Dup+20b; Dup+20a]. where approxi-
mation has been successfully used to address the two case studies presented in this chapter. Note
that the first use case for approximation corresponds to the planar robot case study (Section 7.5.1),
while the second use case corresponds to the inverted pendulum case study (Section 7.5.2).

The control of a planar robot [Dup+20b], borrowed from the work of Fainekos [FGP07] and
studied by Girard and Pappas [GJP08], has been addressed in the context of our framework and
using approximate refinement. The idea is to first model a simpler system, on which proving
properties is eased, and then to safely approximately refine it with a more complex system, closer
to reality and to the controller’s implementation. The correctness of the simplified system and of
the approximate refinement operation entail the correctness of the complex system, without further
proofs.

Approximate refinement is also used in [Dup+20a] in order to tackle the inverted pendulum case
study. The inverted pendulum is associated with a non-linear differential equation that is linearised
so it can be implemented. The equation’s linearisation is formalised as an approximate refinement
step to ensure the resulting model retains its properties (and especially safety).

The complete models for both cases studies are available in Appendix B. The robot case study is
given in Section B.5, and the inverted pendulum case study is given in Section B.6.

Following our general approach, approximation is made generic. It may be used on any system
that is based on the generic model, but also with any particular kind of approximation technique
(i.e. linearisation, polynomial approximation, etc.) without having to alter it.

Approximation correctness highly depends on the system’s dynamics, and is generally hard to
establish. The use of domain theories to gather domain-specific knowledge is particularly relevant in
this context. In practice, specific results on approximation well-definedness is established outside
Event-B, and is used directly during development.
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Conclusion

Hybrid systems gained an important place in our surrounding, including in safety-critical applications,
from autonomous vehicles to computer-assisted tools. Addressing the formal design and verification
of such systems is a crucial issue, with numerous challenges.

Due to their hybrid nature, standard “discrete” formal methods techniques do not to handle
hybrid systems properly. Conversely, control theory alone cannot be used to formalise and study
them. The major challenge in this context is to offer the capability to model and prove properties
of such systems as a whole. In particular, handling, at the same level, both their discrete and
continuous behaviours.

To address this challenge, several formal methods have been proposed. We can split these
approaches in two categories:

• ad hoc formal methods that propose completely new languages, semantics and verification
systems, specialised for hybrid systems

• extension of existing formal methods with new features, exploiting their underlying verification
system (and tooling support)

Our work follows this latter category. Our contribution extends the Event-B formal method with
specific features for handling hybrid systems, both in modelling phases and during the proof process.
We exploit Event-B’s semantics and proof system to address correctness of the developed hybrid
systems. Refinement is used as the basis of generic development operations.

The use of Event-B also makes our work tool-supported: the various patterns presented throughout
this manuscript have been encoded in Rodin, using the theory plug-in.

Contributions. We provide a generic, reusable and extensible framework, based on a well-tried
method that supports the design of controller-plant loop hybrid systems, in both a formal and
incremental way. This formal framework, relying on a generic hybrid system model and on the
refinement operation, proposes several important formally verified patterns, inspired by common
design techniques, handling the comprehensive design of hybrid systems. It is the support of a
general methodology for hybrid system design.

Event-B Extension We extended Event-B using theories to incorporate continuous features in
models, to model the continuous behaviours of hybrid systems at the same level as the discrete
behaviours, and to handle them during the verification process.

The general theories defined in the context of this work are available in Appendix A.

183



184 CONCLUSION

Generic Model The foundation of the framework is a generic model that abstracts controller-plant
loop hybrid systems. It relies on generic variables and parameters that are instantiated by providing
witnesses to derive any specific hybrid system, making it reusable.

This model is the entry point of specific hybrid system developments. It is proven once and for
all and, when instanciating it, instanciation proofs are carried out.

Generic Patterns The framework provides several generic patterns, formalised as refinements of
the generic model. These patterns ease the development and verification process of hybrid systems.
They can be applied on any model refining the generic model. The patterns defined in this work
consists of:

• architectural patterns, for decomposing a hybrid system into multiple components:

– one controller with one plant (single-to-single)
– one controller with several plants (single-to-many)
– several controllers with several plants (many-to-many)

• behavioural patterns, for handling the hybrid system’s behaviour at a high level:

– approximation, for substituting a continuous behaviour with another one close enough
but not exactly the same, while retaining its properties (safety)

Having the generic model as a basis for these patterns makes the framework extensible: adding a
new pattern to the framework consists of defining a refinement of the generic model, possibly with
the addition of new general theories used by the pattern.

Refinement and Instantiation Patterns are applied using the instantiation operation: the model is
refined following the pattern, and the generic features (variables and parameters) of the pattern are
provided using well-defined witnesses. Pattern application may be performed at any point during
development and in any order, making these patterns composable.

Methodology The framework is the support of a general methodology for hybrid system design. It
is built around:

• Domain Theories: a specific hybrid system is accompanied by domain specific knowledge,
gathered and formalised in a domain theory.

• Refinement Strategy: the development process is designed as a sequence of pattern applications,
with the generic model as entry point.

– Architecture patterns are applied first to decompose the system in simpler components
while preserving high-level properties;

– Behavioural patterns are used to handle each component’s behaviour;

The theories and patterns defined in the framework as well as its associated methodology are
summarised in Figure 7.25.
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Figure 7.25: Framework Components

Case Studies The use of the framework is illustrated with the development of multiple case studies:

• control of a car for automatic braking and signalised left-turn

• control of a volume of liquid in one or several tank(s) with multiple different tanks configuration

• control of a robot evolving in a designated area and visiting a set of given targets

• control of an inverted pendulum, i.e. balancing a mass on a rod

Several domain theories have been designed to support these case studies development with
domain specific knowledge: a theory for liquid tanks, a theory for planar robots and a theory for
inverted pendulum.

These cases studies have been developed in Event-B using Rodin. Complete models for them
can be found in Appendix B.

Perspectives and Future Work. The proposed framework is the entry point for designing
hybrid systems, but it can be extended and improved furthermore in a number of directions.

Extension of the Framework Additional patterns may be defined in the framework, to handle other
development operations, common in the design of hybrid systems. In particular, discretisation
operations would allow formally transforming a continuous model of a hybrid system into a discrete
one, closer to implementation, while ensuring the preservation of its properties. This operation
could be further extended to handle floating-point numbers, as an approximated implementation of
real numbers on real-world machines.

Finally, other types of approximations may be handled, for instance proportional-integration-
derivation (PID) that addresses specific types of hybrid systems and are widely used in controller
design.
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Additional Theories To be able to handle a larger panel of hybrid systems, other theories should be
defined. For instance, in our work, we only handle ordinary differential equations (ODEs), which
is the most common type of continuous behaviour models in hybrid systems; but other types of
differential equations, together with their relevant properties, may be formalised in theories (e.g.
partial differential equations).

Moreover, general domain theories for physics may be defined, e.g. for kinematics, thermody-
namics, fluid mechanics, etc. Then, these theories may be used to design more specific domain
theories; for instance, theories for self-driving cars, trains, planes, and so on may be proposed to
address several case studies in these respective domains.

Proving Process Due to the limitations of Rodin and the theory plug-in and its poor integration
with Event-B’s provers, proof is often cumbersome. Its ergonomics needs to be improved. Note that
this is slightly mitigated by the possibility to define proving rules in theories, although these rules
are not applied automatically.

The handling of continuous behaviours in proofs can be improved by the use of external dedicated
tools such as analytical and numerical differential equation solvers (Mathematica, MatLab, etc.)
and specialised SMT for ODEs (e.g. iSAT-ODE [Egg+11]) to establish useful properties on the
handled behaviours, in particular for reachability properties (i.e. properties of the form x(t) ∈ H).
Specialised SMT solvers for real numbers such as dReal [GKC13] may also be used to deal with real
arithmetic, common in hybrid system models (particularly in axioms, guards and invariants).

Model-Checking and Animation Classical Event-B models are model-checked and animated using
the ProB tool [LB03] that supports symbolic execution, invariant checking and temporal logic
properties checking. ProB could be extended to handle hybrid features such as continuous dynamics,
and used to model-check/animate hybrid systems, although that would considerably impact its core
functions.

Hybrid model checkers may also be used, but they require to transform hybrid system Event-B
models into hybrid automata.

Another lead on this topic is to interface ProB with dedicated tools for numerical differential
equation integration (e.g. Simulink): ProB would handle the discrete controller part of hybrid
systems and would interact with numerical solvers that handle continuous plant behaviours. This
co-simulation technique may be used for animation and reachability analysis.

Theories Consistency The Event-B theories written in the context of this work heavily rely on
numerous axioms that are formalisation of mathematical properties. Although these properties are
perfectly sound, the transcription process may be flawed, resulting in imprecise or even inconsistent
axioms.

Event-B theories do not provide a way to check consistency of the theories. Ideally, the theory
may be improved by reducing the number of axioms they rely on, and prove everything else. However,
finding the minimal set of axioms at the foundation of a theory is a difficult problem. This type of
problem has already been studied in other contexts (e.g. with Dedukti [Sai13]).

Autonomous Systems A broader perspective for this framework is to address the problem of fully
autonomous composite systems (e.g. a drone fleet or a car platoon), which are advanced cases of
distributed system with no global state, but a set of properties, local to a restrained number of
components. Establishing global invariants on such system is particularly challenging; it usually
requires advanced models of the environment and communicating network.
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Appendix A

Theories

This first appendix shows the complete Event-B model of the general theories presented in this
manuscript (Chapter 4).

Note that domain-specific theories are presented in the sections of their associated cases studies,
in Appendix B.

A.1 Theories of General Algebra
This section details the theories for general algebra (monoids, groups, etc.). These theories have
been formally presented in Section 4.3.2.1.

Theory of Monoids

Listings A.1: Monoid theory
THEORY

TYPEPARAMETERS M
OPERATORS

associative predicate ( op : (M × M) → M)
direct definition
∀ x , y , z · x ∈ M ∧ y ∈ M ∧ z ∈ M ⇒ op ( x 7→ op ( y 7→ z ) ) = op ( op ( x 7→

y ) 7→ z )
neutral predicate ( op : (M × M) → M, e : M)

well−definedness M 6= ∅
direct definition
∀ x · x ∈ M ⇒ ( op ( x 7→ e ) = x ∧ op ( e 7→ x ) = x )

Monoid predicate ( op : (M × M) → M, e : M)
well−definedness M 6= ∅
direct definition

a s s o c i a t i v e ( op ) ∧ neut ra l ( op , e )
THEOREMS

neutralUnicity :
∀ op , e · op ∈ ( (M × M) → M) ∧ e ∈ M ∧ Monoid ( op , e ) ⇒ (
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∀ x · x ∈ M ∧ neut ra l ( op , x ) ⇒ x = e
)

END

Theory of Groups

Listings A.2: Group theory
THEORY

IMPORTTHEORY Monoid
TYPEPARAMETERS G
OPERATORS

invertible predicate ( op : (G × G) → G, e : G)
well−definedness G 6= ∅
direct definition
∀ x · x ∈ G ⇒ (∃ y · y ∈ G ∧ op ( x 7→ y ) = e ∧ op ( y 7→ x ) = e )

commutative predicate ( op : (G × G) → G)
well−definedness G 6= ∅
direct definition
∀ x , y · x ∈ G ∧ y ∈ G ⇒ op ( x 7→ y ) = op ( y 7→ x )

Group predicate ( op : (G × G) → G, e : G)
well−definedness G 6= ∅
direct definition

Monoid ( op , e ) ∧ i n v e r t i b l e ( op , e )
AbelianGroup predicate ( op : (G × G) → G, e : G)

well−definedness G 6= ∅
direct definition

Group ( op , e ) ∧ commutative ( op )
inverses predicate ( op : (G × G) → G, e : G, x : G, y : G)

well−definedness G 6= ∅
direct definition

i n v e r t i b l e ( op , e ) ⇒ ( op ( x 7→ y ) = e ∧ op ( y 7→ x ) = e )
THEOREMS

inversesCommutative :
∀ op , e , x , y · op ∈ ( (G × G) → G) ∧ e ∈ G ∧ x ∈ G ∧ y ∈ G
∧ Group ( op , e ) ⇒ ( i n v e r s e s ( op , e , x , y ) ⇔ i n v e r s e s ( op , e , y , x ) )

latinSquare :
∀ op , e , x , y · op ∈ ( (G × G) → G) ∧ e ∈ G ∧ x ∈ G ∧ y ∈ G
∧ Group ( op , e ) ⇒ (∃ g · g ∈ G ∧ ( op ( x 7→ g ) = y
∧ (∀ g2 · g2 ∈ G ∧ op ( x 7→ g2 ) = y ⇒ g = g2 ) )

)
leftCancellation :
∀ op , e· op ∈ ( (G × G) → G) ∧ e ∈ G ∧ Group ( op , e ) ⇒ (
∀ a , b , c · a ∈ G ∧ b ∈ G ∧ c ∈ G ⇒

( ( op ( a 7→ b) = op ( a 7→ c ) ) ⇔ (b = c ) )
)

rightCancellation :
∀ op , e· op ∈ ( (G × G) → G) ∧ e ∈ G ∧ Group ( op , e ) ⇒ (
∀ a , b , c · a ∈ G ∧ b ∈ G ∧ c ∈ G ⇒

( ( op (b 7→ a ) = op ( c 7→ a ) ) ⇔ (b = c ) )
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)
inverseEqn :
∀ op , e· op ∈ ( (G × G) → G) ∧ e ∈ G ∧ Group ( op , e ) ⇒ (
∀ x , y · x ∈ G ∧ y ∈ G ⇒ (

op ( x 7→ y ) = e ⇔ i n v e r s e s ( op , e , x , y )
)

)
zeroInverse :
∀ op , e · op ∈ ( (G × G) → G) ∧ e ∈ G ∧ i n v e r t i b l e ( op , e )
∧ neut ra l ( op , e ) ⇒ i n v e r s e s ( op , e , e , e )

END

Theory of Rings

Listings A.3: Ring theory
THEORY

IMPORTTHEORY Group
TYPEPARAMETERS A
OPERATORS

distributive predicate ( op lus : (A × A) → A, ot imes : (A × A) → A)
well−definedness A 6= ∅
direct definition
∀ x , y , z · x ∈ A ∧ y ∈ A ∧ z ∈ A ⇒ (

ot imes ( x 7→ oplus ( y 7→ z ) ) = oplus ( ot imes ( x 7→ y ) 7→ otimes ( x 7→ z ) )
∧

otimes ( op lus ( y 7→ z ) 7→ x ) = oplus ( ot imes ( y 7→ x ) 7→ otimes ( z 7→ x ) )
)

integral predicate ( ot imes : (A × A) → A, azero : A)
well−definedness A 6= ∅ ∧ A 6= { azero }
direct definition
∀ x , y · x ∈ A ∧ y ∈ A ⇒

( ot imes ( x 7→ y ) = azero ⇒ ( x = azero ∨ y = azero ) )
Ring predicate ( op lus : (A × A) → A, ot imes : (A × A) → A,

azero : A, auni t : A)
well−definedness A 6= ∅
direct definition

AbelianGroup ( oplus , azero ) ∧ Monoid ( otimes , auni t )
∧ d i s t r i b u t i v e ( oplus , ot imes )

CommutativeRing predicate ( op lus : (A × A) → A, otimes : (A × A) → A,
azero : A, auni t : A)

well−definedness A 6= ∅
direct definition

Ring ( oplus , otimes , azero , aun i t ) ∧ commutative ( ot imes )
nonZeroInvertible predicate ( op : (A × A) → A,

azero : A, auni t : A)
well−definedness A 6= ∅ ∧ ( azero 6= auni t )
direct definition
∀ x · x ∈ A ∧ x 6= azero
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⇒ (∃ y · y ∈ A ∧ y 6= azero ⇒ ( op ( x 7→ y ) = auni t ∧ op ( y 7→ x ) =
auni t ) )

nonZeroInverses predicate ( op : (A × A) → A, azero : A, auni t : A, x : A, y : A)
well−definedness A 6= ∅ ∧ ( azero 6= auni t )
direct definition

nonZero Inve r t ib l e ( op , azero , aun i t ) ∧ x 6= azero
⇒ ( ( op ( x 7→ y ) = auni t ) ∧ ( op ( y 7→ x ) = auni t ) )

DivisionRing predicate ( op lus : (A × A) → A, ot imes : (A × A) → A,
azero : A, auni t : A)

well−definedness A 6= ∅
direct definition

( azero 6= auni t ) ∧ Ring ( oplus , otimes , azero , aun i t )
∧ nonZero Inve r t ib l e ( otimes , azero , auni t )

Field predicate ( op lus : (A × A) → A, ot imes : (A × A) → A,
azero : A, auni t : A)

well−definedness A 6= ∅
direct definition

( azero 6= auni t ) ∧
Ring ( oplus , otimes , azero , aun i t ) ∧
nonZero Inve r t ib l e ( otimes , azero , auni t ) ∧
i n t e g r a l ( otimes , azero ) ∧
commutative ( ot imes )

absorbing predicate ( op : (A × A) → A, azero : A)
direct definition
∀ x · x ∈ A ⇒ ( op ( x 7→ azero ) = azero ∧ op ( azero 7→ x ) = azero )

THEOREMS
zeroAbsorbing :
∀ oplus , otimes , azero , aun i t · oplus ∈ ( (A × A) → A) ∧

otimes ∈ ( (A × A) → A) ∧ azero ∈ A ∧ auni t ∈ A ∧
Ring ( oplus , otimes , azero , aun i t ) ⇒ absorb ing ( otimes , azero )

plusInverseLeftDistribution :
∀ oplus , otimes , azero , aun i t · oplus ∈ ( (A × A) → A) ∧

otimes ∈ ( (A × A) → A) ∧ azero ∈ A ∧ auni t ∈ A ∧ Ring ( oplus , otimes ,
azero , aun i t )

⇒ (∀ a , b , a1 · a ∈ A ∧ b ∈ A ∧ a1 ∈ A ∧ i n v e r s e s ( oplus , azero , a , a1
)

⇒ i n v e r s e s ( oplus , azero , ot imes ( a 7→ b) , ot imes ( a1 7→ b) )
)

plusInverseRightDistribution :
∀ oplus , otimes , azero , aun i t · oplus ∈ ( (A × A) → A) ∧

otimes ∈ ( (A × A) → A) ∧ azero ∈ A ∧ auni t ∈ A ∧
Ring ( oplus , otimes , azero , aun i t ) ⇒ (
∀ a , b , b1 · a ∈ A ∧ b ∈ A ∧ b1 ∈ A ∧ i n v e r s e s ( oplus , azero , b , b1 ) ⇒

(
i n v e r s e s ( oplus , azero , ot imes ( a 7→ b) , ot imes ( a 7→ b1 ) ) )

)
ringLeftCancellation :
∀ oplus , otimes , azero , aun i t · oplus ∈ ( (A × A) → A) ∧ otimes ∈ ( (A × A)

→ A) ∧ azero ∈ A ∧ auni t ∈ A ∧ azero 6= auni t ∧ Ring ( oplus , otimes ,
azero , aun i t ) ∧ i n t e g r a l ( otimes , azero ) ⇒ (
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∀ a , b , c · a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ a 6= azero ⇒
( ( ot imes ( a 7→ b) = otimes ( a 7→ c ) ) ⇔ (b = c ) )

)
ringRightCancellation :
∀ oplus , otimes , azero , aun i t · oplus ∈ ( (A × A) → A) ∧

otimes ∈ ( (A × A) → A) ∧ azero ∈ A ∧ auni t ∈ A ∧ azero 6= auni t ∧
Ring ( oplus , otimes , azero , aun i t ) ∧ i n t e g r a l ( otimes , azero ) ⇒ (
∀ a , b , c · a ∈ A ∧ b ∈ A ∧ c ∈ A ∧ a 6= azero ⇒

( ( ot imes (b 7→ a ) = otimes ( c 7→ a ) ) ⇔ (b = c ) )
)

nonZeroInverseNotZero :
∀ oplus , otimes , azero , aunit , x , y · oplus ∈ ( (A × A) → A) ∧

otimes ∈ ( (A × A) → A) ∧ azero ∈ A ∧ auni t ∈ A ∧
Ring ( oplus , otimes , azero , aun i t ) ∧
nonZero Inve r t ib l e ( otimes , azero , auni t ) ∧
x ∈ A ∧ y ∈ A ∧ x 6= azero ∧ nonZeroInverses ( otimes , azero , aunit , x , y )
⇒ y 6= azero

END

Theory of Relations

Listings A.4: Relation theory
THEORY

IMPORTTHEORY Ring
TYPEPARAMETERS S
OPERATORS

reflexive predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
∀ x · x ∈ S ⇒ ( ( x 7→ x ) ∈ r e l )

antireflexive predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
∀ x · x ∈ S ⇒ ( x 7→ x /∈ r e l )

symetrical predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
∀ x , y · x ∈ S ∧ y ∈ S ⇒ (

( x 7→ y ∈ r e l ) ⇒ ( y 7→ x ∈ r e l )
)

asymetrical predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
∀ x , y · x ∈ S ∧ y ∈ S ⇒ (

( x 7→ y ∈ r e l ) ⇒ ( y 7→ x /∈ r e l )
)

antisymetrical predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
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∀ x , y · x ∈ S ∧ y ∈ S ⇒ (
( x 7→ y ∈ r e l ) ∧ ( y 7→ x ∈ r e l ) ⇒ x = y

)
transitive predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition
∀ x , y , z · x ∈ S ∧ y ∈ S ∧ z ∈ S ⇒ (

( x 7→ y ∈ r e l ) ∧ ( y 7→ z ∈ r e l ) ⇒ ( x 7→ z ∈ r e l )
)

total predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition
∀ x , y · x ∈ S ∧ y ∈ S ⇒ ( ( x 7→ y ∈ r e l ) ∨ ( y 7→ x ∈ r e l ) )

equivalence predicate ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition

r e f l e x i v e ( r e l ) ∧ s y m e t r i c a l ( r e l ) ∧ t r a n s i t i v e ( r e l )
order predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

r e f l e x i v e ( r e l ) ∧ t r a n s i t i v e ( r e l ) ∧ a n t i s y m e t r i c a l ( r e l )
strict expression ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

{ x 7→ y | x 7→ y ∈ r e l ∧ x 6= y }
wellFounded predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition
∀ X · X ⊆ S ∧ X 6= ∅ ⇒ (
∃ m · m ∈ X ∧ (∀ x · x ∈ X ⇒ ( x 7→ m /∈ r e l ) )

)
wellPartialOrder predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

order ( r e l ) ∧ wellFounded ( s t r i c t ( r e l ) )
wellOrder predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

order ( r e l ) ∧ t o t a l ( r e l ) ∧ wellFounded ( s t r i c t ( r e l ) )
covers predicate ( r e l : S ↔ S , a : S , b : S )

well−definedness S 6= ∅ ∧ order ( r e l )
direct definition

( a 7→ b ∈ r e l ) ∧ a 6= b ∧ (∀ c · c ∈ S ∧ ( a 7→ c ∈ r e l ) ∧
( c 7→ b ∈ r e l ) ⇒ ( ( c = a ) ∨ (b = a ) ) )

compose expression ( r e l 1 : S ↔ S , r e l 2 : S ↔ S)
well−definedness S 6= ∅
direct definition

{ x , z · x ∈ S ∧ z ∈ S ∧ (∃ y · y ∈ S ⇒
( ( x 7→ y ∈ r e l 1 ) ∧ ( y 7→ z ∈ r e l 2 ) ) )

| x 7→ z }
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converse expression ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition

{ x , y · x ∈ S ∧ y ∈ S ∧ y 7→ x ∈ r e l
| x 7→ y }

complement expression ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition

{ x , y · x ∈ S ∧ y ∈ S ∧ x 7→ y /∈ r e l
| x 7→ y }

equality expression ( )
well−definedness S 6= ∅
direct definition

{ x 7→ y | x ∈ S ∧ y ∈ S ∧ x = y }
preorder predicate ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

r e f l e x i v e ( r e l ) ∧ t r a n s i t i v e ( r e l )
equivalenceClass expression ( r e l : S ↔ S , x : S)

well−definedness S 6= ∅ ∧ equ iva l ence ( r e l )
direct definition

{ y · y ∈ S ∧ ( x 7→ y ) ∈ r e l | y }
leftGeneralized expression ( r e l : S ↔ S)

well−definedness S 6= ∅
direct definition

{ x ,P · x ∈ S ∧ P ∈ P(S) ∧ P 6= ∅ ∧ (∀ y · y ∈ P ⇒ ( x 7→ y ∈ r e l ) ) | x
7→ P }

rightGeneralized expression ( r e l : S ↔ S)
well−definedness S 6= ∅
direct definition

{ P, x · P ∈ P(S) ∧ P 6= ∅ ∧ x ∈ S ∧ (∀ y · y ∈ P ⇒ ( y 7→ x ∈ r e l ) ) | P
7→ x }

upperBound predicate ( ord : S ↔ S ,T: P(S) ,B: S)
direct definition
∀ t · t ∈ T ⇒ t 7→ B ∈ ord

lowerBound predicate ( ord : S ↔ S ,T: P(S) ,B: S)
direct definition
∀ t · t ∈ T ⇒ B 7→ t ∈ ord

bounds predicate ( ord : S ↔ S ,T: P(S) ,m: S ,M: S)
direct definition

lowerBound ( ord ,T,m) ∧ upperBound ( ord ,T,M)
upperBounded predicate ( ord : S ↔ S ,T: P(S) )

direct definition
∃ M · M ∈ S ∧ upperBound ( ord ,T,M)

lowerBounded predicate ( ord : S ↔ S ,T: P(S) )
direct definition
∃ m · m ∈ S ∧ lowerBound ( ord ,T,m)

bounded predicate ( ord : S ↔ S ,T: P(S) )
direct definition
∃ m, M · m ∈ S ∧ M ∈ S ∧ bounds ( ord ,T,m,M)
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supremum predicate ( ord : S ↔ S ,T: P(S) ,M: S)
direct definition

upperBound ( ord ,T,M) ∧
(∀ m · m ∈ S ∧ upperBound ( ord ,T,m) ⇒ M 7→ m ∈ ord )

infimum predicate ( ord : S ↔ S ,T: P(S) ,m: S)
direct definition

lowerBound ( ord ,T,m) ∧
(∀ M · M ∈ S ∧ lowerBound ( ord ,T,M) ⇒ M 7→ m ∈ ord )

maximal predicate ( ord : S ↔ S ,T: P(S) ,M: T)
direct definition
∀ x · x ∈ T ∧ M 7→ x ∈ ord ⇒ x = M

minimal predicate ( ord : S ↔ S ,T: P(S) ,M: T)
direct definition
∀ x · x ∈ T ∧ x 7→ M ∈ ord ⇒ x = M

maximum predicate ( ord : S ↔ S ,T: P(S) ,M: S)
direct definition

(M ∈ T) ∧ (∀ x · x ∈ T ⇒ x 7→ M ∈ ord )
minimum predicate ( ord : S ↔ S ,T: P(S) ,M: S)

direct definition
(M ∈ T) ∧ (∀ x · x ∈ T ⇒ M 7→ x ∈ ord )

hasMaximum predicate ( ord : S ↔ S ,T: P(S) )
direct definition
∃ M · M ∈ T ∧ maximum( ord ,T,M)

hasMinimum predicate ( ord : S ↔ S ,T: P(S) )
direct definition
∃ m · m ∈ T ∧ minimum( ord ,T,m)

monoidCompatible predicate ( op : (S × S) → S , e : S , r e l : S ↔ S)
well−definedness S 6= ∅ ∧ Monoid ( op , e ) ∧ order ( r e l )
direct definition
∀ x , y , z · x ∈ S ∧ y ∈ S ∧ z ∈ S ∧ ( x 7→ y ∈ r e l ) ⇒ (

( ( op ( x 7→ z ) 7→ op ( y 7→ z ) ) ∈ r e l ) ∧
( ( op ( z 7→ x ) 7→ op ( z 7→ y ) ) ∈ r e l )

)
ringCompatible predicate ( op lus : (S × S) → S , ot imes : (S × S) → S ,

azero : S , un i t : S , r e l : S ↔ S)
well−definedness S 6= ∅ ∧ Ring ( oplus , otimes , azero , un i t ) ∧ order ( r e l )
direct definition

monoidCompatible ( oplus , azero , r e l ) ∧ (
∀ x , y · x ∈ S ∧ y ∈ S ∧ ( azero 7→ x ∈ r e l ) ∧ ( azero 7→ y ∈ r e l ) ⇒

( ( azero 7→ otimes ( x 7→ y ) ∈ r e l ) ∧ ( azero 7→ otimes ( y 7→ x ) ∈ r e l ) )
)

AXIOMATIC DEFINITIONS ope ra t i on s :
OPERATORS

Gmax expression ( ord : S ↔ S ,T: P(S) ) : S
Gmin expression ( ord : S ↔ S ,T: P(S) ) : S
Gsup expression ( ord : S ↔ S ,T: P(S) ) : S
Ginf expression ( ord : S ↔ S ,T: P(S) ) : S

AXIOMS
GmaxDef :
∀ ord ,T · ord ∈ S ↔ S ∧ T ⊆ S ∧ hasMaximum( ord ,T)
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⇒ (maximum( ord ,T,Gmax( ord ,T) ) )
GminDef :
∀ ord ,T · ord ∈ S ↔ S ∧ T ⊆ S ∧ hasMinimum( ord ,T)
⇒ (minimum( ord ,T, Gmin( ord ,T) ) )

GsupDef :
∀ ord ,T · ord ∈ S ↔ S ∧ T ⊆ S ∧ upperBounded ( ord ,T)
⇒ ( supremum( ord ,T, Gsup( ord ,T) ) )

GinfDef :
∀ ord ,T · ord ∈ S ↔ S ∧ T ⊆ S ∧ lowerBounded ( ord ,T)
⇒ ( infimum ( ord ,T, Ginf ( ord ,T) ) )

THEOREMS
converseDomain :
∀ r e l · r e l ∈ (S ↔ S) ⇒ (dom( converse ( r e l ) ) = ran ( r e l ) )

converseRange :
∀ r e l · r e l ∈ (S ↔ S) ⇒ ( ran ( converse ( r e l ) ) = dom( r e l ) )

converseInvolutive :
∀ r e l · r e l ∈ (S ↔ S) ⇒ ( converse ( converse ( r e l ) ) = r e l )

converseSymetry :
∀ r e l · r e l ∈ (S ↔ S) ∧ s y m e t r i c a l ( r e l ) ⇒ s y m e t r i c a l ( converse ( r e l ) )

converseReflexivity :
∀ r e l · r e l ∈ (S ↔ S) ∧ r e f l e x i v e ( r e l ) ⇒ r e f l e x i v e ( converse ( r e l ) )

converseAntireflexivity :
∀ r e l · r e l ∈ (S ↔ S) ∧ a n t i r e f l e x i v e ( r e l ) ⇒ a n t i r e f l e x i v e ( converse (

r e l ) )
complementInvolutive :
∀ r e l · r e l ∈ (S ↔ S) ⇒ ( complement ( complement ( r e l ) ) = r e l )

complementConverse :
∀ r e l · r e l ∈ (S ↔ S) ⇒ ( complement ( converse ( r e l ) ) = converse (

complement ( r e l ) ) )
complementSymetry :
∀ r e l · r e l ∈ (S ↔ S) ∧ s y m e t r i c a l ( r e l ) ⇒ s y m e t r i c a l ( complement ( r e l ) )

complementReflexivity :
∀ r e l · r e l ∈ (S ↔ S) ∧ r e f l e x i v e ( r e l ) ⇒ a n t i r e f l e x i v e ( complement ( r e l )

)
complementAntireflexivity :
∀ r e l · r e l ∈ (S ↔ S) ∧ a n t i r e f l e x i v e ( r e l ) ⇒ r e f l e x i v e ( complement ( r e l )

)
totalRelationsReflexivity :
∀ r e l · r e l ∈ (S ↔ S) ∧ t o t a l ( r e l ) ⇒ r e f l e x i v e ( r e l )

equivalenceClassEquity :
∀ r e l , x , y · r e l ∈ (S ↔ S) ∧ equ iva l ence ( r e l ) ∧ x ∈ S ∧ y ∈ S ⇒ (

( ( x 7→ y ) ∈ r e l ) ⇔ ( equ iva l enceC la s s ( r e l , x ) = equ iva l enceC la s s ( r e l ,
y ) )

)
equivalenceClassNotEmpty :
∀ r e l , x · r e l ∈ (S ↔ S) ∧ equ iva l ence ( r e l ) ∧ x ∈ S ⇒

( equ iva l enceC la s s ( r e l , x ) 6= ∅)
equivalenceClassCover :
∀ r e l · r e l ∈ (S ↔ S) ∧ equ iva l ence ( r e l ) ⇒ (

(
⋃

equ iva l enceC la s s ( r e l , x ) | x ∈ S) = S
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)
equivalenceClassDisjoint :
∀ r e l , x , y · r e l ∈ (S ↔ S) ∧ equ iva l ence ( r e l ) ∧ x ∈ S ∧ y ∈ S ∧ ( x 7→

y /∈ r e l ) ⇒ (
( equ iva l enceC la s s ( r e l , x ) ∩ equ iva l enceC la s s ( r e l , y ) ) = ∅

)
supremumMaximal :
∀ ord , T, M · ord ∈ (S ↔ S) ∧ order ( ord ) ∧ T ⊆ S ∧ M ∈ S ⇒

( supremum( ord ,T,M) ∧ M ∈ T ⇒ maximal ( ord ,T,M) )
infimumMinimal :
∀ ord , T, M · ord ∈ (S ↔ S) ∧ order ( ord ) ∧ T ⊆ S ∧ M ∈ S ⇒

( infimum ( ord ,T,M) ∧ M ∈ T ⇒ minimal ( ord ,T,M) )
END

A.2 Theories of Real Numbers and Invervals
This section gives the theories of real numbers and intervals, as presented in Section 4.3.2.2. These
theories define the important RReal type, that represent real numbers, with its associated operators
(addition, subtraction, etc.) and relations (lower than, greater than, etc.). A number of properties
are encoded as axioms and theorems.

The theory for intervals allow to define closed/open/unbounded intervals and handle them in
models.

Theory of Reals

Listings A.5: Reals theory
THEORY

IMPORTTHEORY Relat ion
AXIOMATIC DEFINITIONS
Rdef :
TYPES RReal
OPERATORS

Rzero expression ( ) : RReal
Rone expression ( ) : RReal
Rtwo expression ( ) : RReal

AXIOMS
oneIsNotZero :

Rone 6= Rzero
twoIsNotOne :

Rtwo 6= Rone
twoIsNotZero :

Rtwo 6= Rzero
Rorder :
OPERATORS

leq expression ( ) : RReal ↔ RReal
lt expression ( ) : RReal ↔ RReal
geq expression ( ) : RReal ↔ RReal
gt expression ( ) : RReal ↔ RReal
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Rmax expression (A: P( RReal ) ) : RReal
Rmin expression (A: P( RReal ) ) : RReal
Rsup expression (A: P( RReal ) ) : RReal
Rinf expression (A: P( RReal ) ) : RReal

AXIOMS
leqDef :

o rder ( l e q )
leqTotal :

t o t a l ( l e q )
ltDef :

l t = s t r i c t ( l e q )
geqDef :

geq = converse ( l e q )
gtDef :

gt = s t r i c t ( geq )
supremumProperty :
∀ P · P ∈ P( RReal ) ∧ P 6= ∅ ⇒ (

(∃ m · m ∈ RReal ∧ upperBound ( leq ,P,m) ) ⇒
(∃ B · B ∈ RReal ∧ supremum( leq ,P,B) )

)
zeroLtOne :

( Rzero 7→ Rone ) ∈ l t
oneLtTwo :

( Rone 7→ Rtwo) ∈ l t
RmaxDef :
∀ S · S ⊆ RReal ∧ hasMaximum( leq , S) ⇒ (Rmax(S) = Gmax( leq , S) )

RminDef :
∀ S · S ⊆ RReal ∧ hasMinimum( leq , S ) ⇒ (Rmin(S) = Gmin( leq , S) )

RsupDef :
∀ S · S ⊆ RReal ∧ upperBounded ( leq , S) ⇒ ( Rsup (S) = Gsup( leq , S) )

RinfDef :
∀ S · S ⊆ RReal ∧ lowerBounded ( leq , S) ⇒ ( Rinf (S) = Ginf ( leq , S) )

Rparts :
OPERATORS

RRealStar expression ( ) : P( RReal )
RRealPlus expression ( ) : P( RReal )
RRealMinus expression ( ) : P( RReal )
RRealPlusStar expression ( ) : P( RReal )
RRealMinusStar expression ( ) : P( RReal )

AXIOMS
realStarDef :

RRealStar = { x | x ∈ RReal ∧ x 6= Rzero }
realPlusDef :

RRealPlus = { x | Rzero 7→ x ∈ l e q }
realMinusDef :

RRealMinus = { x | x 7→ Rzero ∈ l e q }
realPlusStarDef :

RRealPlusStar = { x | Rzero 7→ x ∈ l t }
realMinusStarDef :

RRealMinusStar = { x | x 7→ Rzero ∈ l t }
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Roperators :
OPERATORS

plus expression ( ) : P( RReal×RReal×RReal )
times expression ( ) : P( RReal×RReal×RReal )
uminus expression ( ) : P( RReal×RReal )
inverse expression ( ) : P( RReal×RReal )
minus expression ( ) : P( RReal×RReal×RReal )
divide expression ( ) : P( RReal×RReal×RReal )
abs expression ( ) : P( RReal×RReal )
sqrt expression ( ) : P( RReal×RReal )

AXIOMS
plusType :

p lus ∈ ( ( RReal×RReal ) → RReal )
timesType :

t imes ∈ ( ( RReal×RReal ) → RReal )
uminusType :

uminus ∈ ( RReal �� RReal )
inverseType :

i n v e r s e ∈ ( RRealStar �� RRealStar )
minusType :

minus ∈ ( ( RReal×RReal ) → RReal )
divideType :

d i v i d e ∈ ( ( RReal×RRealStar ) → RReal )
uminusDef :
∀ x · x ∈ RReal ⇒ ( i n v e r s e s ( plus , Rzero , x , uminus ( x ) ) )

minusDef :
∀ x , y · x ∈ RReal ∧ y ∈ RReal ⇒ (

minus ( x 7→ y ) = plus ( x 7→ uminus ( y ) )
)

inverseDef :
∀ x · x ∈ RReal ∧ x 6= Rzero ⇒ (

t imes ( x 7→ i n v e r s e ( x ) ) = Rone
)

divideDef :
∀ x , y · x ∈ RReal ∧ y ∈ RReal ∧ y 6= Rzero ⇒ (

d i v i d e ( x 7→ y ) = t imes ( x 7→ i n v e r s e ( y ) )
)

absType :
abs ∈ ( RReal → RRealPlus )

absPos :
∀ x · x ∈ RReal ⇒ ( Rzero 7→ abs ( x ) ∈ l e q )

absZero :
∀ x · x ∈ RReal ⇒ ( ( x = Rzero ) ⇔ ( abs ( x ) = Rzero ) )

absDef :
∀ x · x ∈ RReal ⇒ (

( ( x 7→ Rzero ∈ l t ) ⇒ ( abs ( x ) = uminus ( x ) ) ) ∧
( ( Rzero 7→ x ∈ l t ) ⇒ ( abs ( x ) = x ) )

)
absTriangular :
∀ x , y · x ∈ RReal ∧ y ∈ RReal ⇒ (
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( abs ( p lus ( x 7→ y ) ) 7→ plus ( abs ( x ) 7→ abs ( y ) ) ∈ l e q )
)

absMinus :
∀ x · x ∈ RReal ⇒ ( abs ( uminus ( x ) ) = abs ( x ) )

absMult :
∀ x , y · x ∈ RReal ∧ y ∈ RReal ⇒ (

abs ( t imes ( x 7→ y ) ) = t imes ( abs ( x ) 7→ abs ( y ) )
)

sqrtType :
s q r t ∈ ( RRealPlus �� RRealPlus )

sqrtDef :
∀ x · x ∈ RRealPlus ⇒ ( t imes ( s q r t ( x ) 7→ s q r t ( x ) ) = x )

twoDef :
Rtwo = plus ( Rone 7→ Rone )

Rstructure :
AXIOMS

realField :
F i e ld ( plus , times , Rzero , Rone )

realIntegrity :
i n t e g r a l ( times , Rzero )

ringCompatibility :
r ingCompatible ( plus , times , Rzero , Rone , l e q )

THEOREMS
RzeroLtRtwo :

Rzero 7→ Rtwo ∈ l t
uminusOrderInversion :
∀ x · x ∈ RReal ∧ ( Rzero 7→ x ∈ l e q ) ⇒ ( uminus ( x ) 7→ Rzero ∈ l e q )

uminusInvolutive :
∀ x · x ∈ RReal ⇒ ( uminus ( uminus ( x ) ) = x )

uminusNeutrality :
uminus ( Rzero )=Rzero

inverseInvolutive :
∀ x · x ∈ RReal ∧ x 6= Rzero ⇒ ( i n v e r s e ( i n v e r s e ( x ) ) = x )

sqrtTimesDistrib :
∀ x , y · x ∈ RRealPlus ∧ y ∈ RRealPlus ⇒ (

s q r t ( t imes ( x 7→ y ) ) = t imes ( s q r t ( x ) 7→ s q r t ( y ) )
)

sqrtOne :
s q r t ( Rone ) = Rone

sqrtZero :
s q r t ( Rzero ) = Rzero

realNotUpperBounded :
∀ x · x ∈ RReal ⇒ (∃ x2 · x2 ∈ RReal ∧ x 7→ x2 ∈ l t )

realNotLowerBounded :
∀ x · x ∈ RReal ⇒ (∃ x2 · x2 ∈ RReal ∧ x2 7→ x ∈ l t )

realPlusNotBounded :
∀ x · x ∈ RRealPlus ⇒ (∃ x2 · x2 ∈ RRealPlus ∧ x 7→ x2 ∈ l t )

realMinusNotBounded :
∀ x · x ∈ RRealMinus ⇒ (∃ x2 · x2 ∈ RRealMinus ∧ x2 7→ x ∈ l t )

realPlusOrder :
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∀ a , b · a ∈ RRealPlus ∧ b ∈ RReal ∧ ( a 7→ b ∈ l e q ) ⇒ b ∈ RRealPlus
realMinusOrder :
∀ a , b · a ∈ RRealMinus ∧ b ∈ RReal ∧ (b 7→ a ∈ l e q ) ⇒ b ∈ RRealMinus

plusCompatibility :
∀ a , b , c · a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧ ( a 7→ b ∈ l e q ) ∧ ( a 7→

c ∈ l e q ) ⇒
( a 7→ plus (b 7→ c ) ∈ l e q )

plusCompatibility2 :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
plus ( a 7→ b) 7→ c ∈ l e q ∧ Rzero 7→ b ∈ l e q ⇒

a 7→ c ∈ l e q
extendedTransitivity :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

a 7→ c ∈ l t
extendedTransitivity2 :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

a 7→ c ∈ l t
extendedTransitivity3 :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

a 7→ c ∈ l t
timesCompatibiliyy :
>

PROOF RULES
plusAbelianGroup :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
plus_commutativity : p lus ( a 7→ b)

rhs1 : > ⇒ plus (b 7→ a )
plus_neutralityL : p lus ( a 7→ Rzero )

rhs1 : > ⇒ a
plus_neutralityR : p lus ( Rzero 7→ a )

rhs1 : > ⇒ a
plus_associativityL : p lus ( a 7→ plus (b 7→ c ) )

rhs1 : > ⇒ plus ( p lus ( a 7→ b) 7→ c )
plus_associativityR : p lus ( p lus ( a 7→ b) 7→ c )

rhs1 : > ⇒ plus ( a 7→ plus (b 7→ c ) )
minus_rewrite : minus ( a 7→ b)

rhs1 : > ⇒ plus ( a 7→ uminus (b) )
minus_uminus : uminus ( minus ( a 7→ b) )

rhs1 : > ⇒ minus (b 7→ a )
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minus_uminus_reverse : minus ( a 7→ b)
rhs1 : > ⇒ uminus ( minus (b 7→ a ) )

uminus_involutive : uminus ( uminus ( a ) )
rhs1 : > ⇒ a

uminus_reductionL : p lus ( a 7→ uminus ( a ) )
rhs1 : > ⇒ Rzero

uminus_reductionR : p lus ( uminus ( a ) 7→ a )
rhs1 : > ⇒ Rzero

minus_reduction : minus ( a 7→ a )
rhs1 : > ⇒ Rzero

zero_minus_left : minus ( Rzero 7→ a )
rhs1 : > ⇒ uminus ( a )

zero_minus_right : minus ( a 7→ Rzero )
rhs1 : > ⇒ a

uminus_neutral : uminus ( Rzero )
rhs1 : > ⇒ Rzero

timesCommutativeMonoid :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
times_commutativity : t imes ( a 7→ b)

rhs1 : > ⇒ t imes (b 7→ a )
times_neutralityL : t imes ( a 7→ Rone )

rhs1 : > ⇒ a
times_neutralityR : t imes ( Rone 7→ a )

rhs1 : > ⇒ a
times_associativityL : t imes ( a 7→ t imes (b 7→ c ) )

rhs1 : > ⇒ t imes ( t imes ( a 7→ b) 7→ c )
times_associativityR : t imes ( t imes ( a 7→ b) 7→ c )

rhs1 : > ⇒ t imes ( a 7→ t imes (b 7→ c ) )
times_absorbingL : t imes ( a 7→ Rzero )

rhs1 : > ⇒ Rzero
times_absorbingR : t imes ( Rzero 7→ a )

rhs1 : > ⇒ Rzero
division_rewrite : d i v i d e ( a 7→ b)

rhs1 : > ⇒ t imes ( a 7→ i n v e r s e (b) )
divide_inverse : i n v e r s e ( d i v i d e ( a 7→ b) )

rhs1 : a 6= Rzero ⇒ d i v i d e (b 7→ a )
divide_inverse_reverse : d i v i d e ( a 7→ b)

rhs1 : a 6= Rzero ⇒ i n v e r s e ( d i v i d e (b 7→ a ) )
inverse_involutive : i n v e r s e ( i n v e r s e ( a ) )

rhs1 : > ⇒ a
inverse_reductionL : t imes ( a 7→ i n v e r s e ( a ) )

rhs1 : > ⇒ Rone
inverse_reductionR : t imes ( i n v e r s e ( a ) 7→ a )

rhs1 : > ⇒ Rone
divide_reduction : d i v i d e ( a 7→ a )

rhs1 : > ⇒ Rone
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one_divide_left : d i v i d e ( Rone 7→ a )
rhs1 : > ⇒ i n v e r s e ( a )

one_divide_right : d i v i d e ( a 7→ Rone )
rhs1 : > ⇒ a

inverse_neutral : i n v e r s e ( Rone )
rhs1 : > ⇒ Rone

p lu sT imesDi s t r ibut ive :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
left_distribute : t imes ( a 7→ plus (b 7→ c ) )

rhs1 : > ⇒ plus ( t imes ( a 7→ b) 7→ t imes ( a 7→ c ) )
right_distribute : t imes ( p lus (b 7→ c ) 7→ a )

rhs1 : > ⇒ plus ( t imes (b 7→ a ) 7→ t imes ( c 7→ a ) )
left_factorize : p lus ( t imes ( a 7→ b) 7→ t imes ( a 7→ c ) )

rhs1 : > ⇒ t imes ( a 7→ plus (b 7→ c ) )
right_factorize : p lus ( t imes (b 7→ a ) 7→ t imes ( c 7→ a ) )

rhs1 : > ⇒ t imes ( p lus (b 7→ c ) 7→ a )
left_minus_distribute : t imes ( a 7→ minus (b 7→ c ) )

rhs1 : > ⇒ minus ( t imes ( a 7→ b) 7→ t imes ( a 7→ c ) )
right_minus_distribute : t imes ( minus (b 7→ c ) 7→ a )

rhs1 : > ⇒ minus ( t imes (b 7→ a ) 7→ t imes ( c 7→ a ) )
left_minus_factorize : minus ( t imes ( a 7→ b) 7→ t imes ( a 7→ c ) )

rhs1 : > ⇒ t imes ( a 7→ minus (b 7→ c ) )
right_minus_factorize : minus ( t imes (b 7→ a ) 7→ t imes ( c 7→ a ) )

rhs1 : > ⇒ t imes ( minus (b 7→ c ) 7→ a )
minus_distribute : uminus ( p lus ( a 7→ b) )

rhs1 : > ⇒ plus ( uminus ( a ) 7→ uminus (b) )
minus_factorize : p lus ( uminus ( a ) 7→ uminus (b) )

rhs1 : > ⇒ uminus ( p lus ( a 7→ b) )
divide_distribute : d i v i d e ( p lus (b 7→ c ) 7→ a )

rhs1 : > ⇒ plus ( d i v i d e (b 7→ a ) 7→ d i v i d e ( c 7→ a ) )
divide_factorize : p lus ( d i v i d e (b 7→ a ) 7→ d i v i d e ( c 7→ a ) )

rhs1 : > ⇒ d i v i d e ( p lus (b 7→ c ) 7→ a )
inverse_uminus : i n v e r s e ( uminus ( a ) )

rhs1 : a 6= Rzero ⇒ uminus ( i n v e r s e ( a ) )
uminus_inverse : uminus ( i n v e r s e ( a ) )

rhs1 : a 6= Rzero ⇒ i n v e r s e ( uminus ( a ) )
divide_left_absorbing : d i v i d e ( Rzero 7→ a )

rhs1 : > ⇒ Rzero
equat ions :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
plus_left_simplify : p lus ( a 7→ b) = plus ( a 7→ c )

rhs1 : > ⇒ b = c
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plus_right_simplify : p lus (b 7→ a ) = plus ( c 7→ a )
rhs1 : > ⇒ b = c

times_left_simplify : t imes ( a 7→ b) = t imes ( a 7→ c )
rhs1 : a 6= Rzero ⇒ b = c

times_right_simplify : t imes (b 7→ a ) = t imes ( c 7→ a )
rhs1 : a 6= Rzero ⇒ b = c

minus_left_simplify : minus ( a 7→ b) = minus ( a 7→ c )
rhs1 : > ⇒ b = c

minus_right_simplify : minus (b 7→ a ) = minus ( c 7→ a )
rhs1 : > ⇒ b = c

divide_left_simplify : d i v i d e ( a 7→ b) = d i v i d e ( a 7→ c )
rhs1 : a 6= Rzero ⇒ b = c

divide_right_simplify : d i v i d e (b 7→ a ) = d i v i d e ( c 7→ a )
rhs1 : > ⇒ b = c

uminus_simplify : uminus ( a ) = uminus (b)
rhs1 : > ⇒ a = b

inverse_simplify : i n v e r s e ( a ) = i n v e r s e (b)
rhs1 : > ⇒ a = b

uminus_unsimplify : a = b
rhs1 : > ⇒ uminus ( a ) = uminus (b)

inverse_unsimplify : a = b
rhs1 : a 6= Rzero ∧ b 6= Rzero ⇒ i n v e r s e ( a ) = i n v e r s e (b)

equal_to_minus : a = b
rhs1 : > ⇒ minus ( a 7→ b) = Rzero

equal_to_divide : a = b
rhs1 : b 6= Rzero ⇒ d i v i d e ( a 7→ b) = Rone

plus_eq_zero : p lus ( a 7→ b) = Rzero
rhs1 : > ⇒ a = uminus (b)

minus_eq_zero : minus ( a 7→ b) = Rzero
rhs1 : > ⇒ a = b

times_eq_one : t imes ( a 7→ b) = Rone
rhs1 : b 6= Rzero ⇒ a = i n v e r s e (b)

divide_eq_one : d i v i d e ( a 7→ b) = Rone
rhs1 : > ⇒ a = b

times_integral : t imes ( a 7→ b) = Rzero
rhs1 : a 6= Rzero ⇒ b = Rzero
rhs2 : b 6= Rzero ⇒ a = Rzero
rhs3 : > ⇒ a = Rzero ∨ b = Rzero

divide_integral : d i v i d e ( a 7→ b) = Rzero
rhs1 : > ⇒ a = Rzero

uminus_eq_rewrite : uminus ( a ) = b
rhs1 : > ⇒ a = uminus (b)

inverse_eq_rewrite : i n v e r s e ( a ) = b
rhs1 : b 6= Rzero ⇒ a = i n v e r s e (b)

inequat ionsGenera l :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
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leq_inversion : a 7→ b ∈ l e q
rhs1 : > ⇒ b 7→ a ∈ geq

geq_inversion : a 7→ b ∈ geq
rhs1 : > ⇒ b 7→ a ∈ l e q

lt_inversion : a 7→ b ∈ l t
rhs1 : > ⇒ b 7→ a ∈ gt

gt_inversion : a 7→ b ∈ gt
rhs1 : > ⇒ b 7→ a ∈ l t

leq_total : ¬( a 7→ b ∈ l e q )
rhs1 : > ⇒ a 7→ b ∈ gt

geq_total : ¬( a 7→ b ∈ geq )
rhs1 : > ⇒ a 7→ b ∈ l t

geq_total_reverse : ¬( a 7→ b ∈ l t )
rhs1 : > ⇒ a 7→ b ∈ geq

leq_total_reverse : ¬( a 7→ b ∈ gt )
rhs1 : > ⇒ a 7→ b ∈ l e q

eq_to_leq_weakening : a = b
rhs1 : > ⇒ a 7→ b ∈ l e q

eq_to_geq_weakening : a = b
rhs1 : > ⇒ a 7→ b ∈ geq

noteq_rewrite : a 6= b
rhs1 : > ⇒ ( a 7→ b ∈ l t ) ∨ (b 7→ a ∈ l t )

lt_to_leq_weakening : a 7→ b ∈ l t
rhs1 : > ⇒ ( a 7→ b ∈ l e q ) ∧ a 6= b

gt_to_geq_weakening : a 7→ b ∈ gt
rhs1 : > ⇒ ( a 7→ b ∈ geq ) ∧ a 6= b

leq_reflexive : a 7→ a ∈ l e q
rhs1 : > ⇒ >

geq_reflexive : a 7→ a ∈ geq
rhs1 : > ⇒ >

Inference Rules
leq_transitivity : a 7→ b ∈ l eq , b 7→ c ∈ l e q ` a 7→ c ∈ l e q
lt_transitivity : a 7→ b ∈ l t , b 7→ c ∈ l t ` a 7→ c ∈ l t
geq_transitivity : a 7→ b ∈ geq , b 7→ c ∈ geq ` a 7→ c ∈ geq
gt_transitivity : a 7→ b ∈ gt , b 7→ c ∈ gt ` a 7→ c ∈ gt
leq_antismetry : a 7→ b ∈ l eq , b 7→ a ∈ l e q ` a = b
geq_antisymetry : a 7→ b ∈ geq , b 7→ a ∈ geq ` a = b
leq_lt_weakening : a 7→ b ∈ l eq , a 6= b ` a 7→ b ∈ l t
geq_gt_weakening : a 7→ b ∈ geq , a 6= b ` a 7→ b ∈ gt
lt_leq_reduction : ( a 7→ b ∈ l t ) ∨ a = b ` a 7→ b ∈ l e q
gt_geq_reduction : ( a 7→ b ∈ gt ) ∨ a = b ` a 7→ b ∈ geq

inequat i on sCompat ib i l i t y :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
leq_plus_compatibility : p lus ( a 7→ b) 7→ plus ( a 7→ c ) ∈ l e q

rhs1 : > ⇒ b 7→ c ∈ l e q
lt_plus_compatibility : p lus ( a 7→ b) 7→ plus ( a 7→ c ) ∈ l t
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rhs1 : > ⇒ b 7→ c ∈ l t
uminus_leq_ineq : a 7→ b ∈ l e q

rhs1 : > ⇒ uminus (b) 7→ uminus ( a ) ∈ l e q
uminus_lt_ineq : a 7→ b ∈ l t

rhs1 : > ⇒ uminus (b) 7→ uminus ( a ) ∈ l t
leq_times_compatibility : t imes ( a 7→ b) 7→ t imes ( a 7→ c ) ∈ l e q

rhs1 : Rzero 7→ a ∈ l t ⇒ b 7→ c ∈ l e q
rhs2 : a 7→ Rzero ∈ l t ⇒ c 7→ b ∈ l e q

lt_times_compatibility : t imes ( a 7→ b) 7→ t imes ( a 7→ c ) ∈ l t
rhs1 : Rzero 7→ a ∈ l t ⇒ b 7→ c ∈ l t
rhs2 : a 7→ Rzero ∈ l t ⇒ c 7→ b ∈ l t

inverse_leq_ineq : a 7→ b ∈ l e q
rhs1 : a 6= Rzero ∧ b 6= Rzero ⇒ i n v e r s e (b) 7→ i n v e r s e ( a ) ∈ l e q

inverse_lt_ineq : a 7→ b ∈ l t
rhs1 : a 6= Rzero ∧ b 6= Rzero ⇒ i n v e r s e (b) 7→ i n v e r s e ( a ) ∈ l t

leq_balance_left : a 7→ b ∈ l e q
rhs1 : > ⇒ minus ( a 7→ b) 7→ Rzero ∈ l e q

leq_balance_right : a 7→ b ∈ l e q
rhs1 : > ⇒ Rzero 7→ minus (b 7→ a ) ∈ l e q

lt_balance_left : a 7→ b ∈ l t
rhs1 : > ⇒ minus ( a 7→ b) 7→ Rzero ∈ l t

lt_balance_right : a 7→ b ∈ l t
rhs1 : > ⇒ Rzero 7→ minus (b 7→ a ) ∈ l t

leq_div_balance_left : a 7→ b ∈ l e q
rhs1 : b 6= Rzero ⇒ d i v i d e ( a 7→ b) 7→ Rone ∈ l e q

leq_div_balance_right : a 7→ b ∈ l e q
rhs1 : a 6= Rzero ⇒ Rone 7→ d i v i d e (b 7→ a ) ∈ l e q

lt_div_balance_left : a 7→ b ∈ l t
rhs1 : b 6= Rzero ⇒ d i v i d e ( a 7→ b) 7→ Rone ∈ l t

lt_div_balance_right : a 7→ b ∈ l t
rhs1 : a 6= Rzero ⇒ Rone 7→ d i v i d e (b 7→ a ) ∈ l t

leq_plus_balance_left : a 7→ plus (b 7→ c ) ∈ l e q
rhs1 : > ⇒ minus ( a 7→ c ) 7→ b ∈ l e q

leq_plus_balance_right : p lus ( a 7→ b) 7→ c ∈ l e q
rhs1 : > ⇒ a 7→ minus ( c 7→ b) ∈ l e q

leq_times_balance_left : a 7→ t imes (b 7→ c ) ∈ l e q
rhs1 : Rzero 7→ c ∈ l t ⇒ d i v i d e ( a 7→ c ) 7→ b ∈ l e q
rhs2 : c 7→ Rzero ∈ l t ⇒ b 7→ d i v i d e ( a 7→ c ) ∈ l e q

leq_times_balance_right : t imes ( a 7→ b) 7→ c ∈ l e q
rhs1 : Rzero 7→ b ∈ l t ⇒ a 7→ d i v i d e ( c 7→ b) ∈ l e q
rhs2 : b 7→ Rzero ∈ l t ⇒ d i v i d e ( c 7→ b) 7→ a ∈ l e q

lt_plus_balance_left : a 7→ plus (b 7→ c ) ∈ l t
rhs1 : > ⇒ minus ( a 7→ c ) 7→ b ∈ l t

lt_plus_balance_right : p lus ( a 7→ b) 7→ c ∈ l t
rhs1 : > ⇒ a 7→ minus (b 7→ c ) ∈ l t

lt_times_balance_left : a 7→ t imes (b 7→ c ) ∈ l t
rhs1 : Rzero 7→ c ∈ l t ⇒ d i v i d e ( a 7→ c ) 7→ b ∈ l t
rhs2 : c 7→ Rzero ∈ l t ⇒ b 7→ d i v i d e ( a 7→ c ) ∈ l t

lt_times_balance_right : t imes ( a 7→ b) 7→ c ∈ l t
rhs1 : Rzero 7→ b ∈ l t ⇒ a 7→ d i v i d e ( c 7→ b) ∈ l t
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rhs2 : b 7→ Rzero ∈ l t ⇒ d i v i d e ( c 7→ b) 7→ a ∈ l t
inverse_positive_leq : Rzero 7→ a ∈ l e q

rhs1 : a 6= Rzero ⇒ Rzero 7→ i n v e r s e ( a ) ∈ l t
inverse_negative_leq : a 7→ Rzero ∈ l e q

rhs1 : a 6= Rzero ⇒ i n v e r s e ( a ) 7→ Rzero ∈ l t
inverse_positive_lt : Rzero 7→ a ∈ l t

rhs1 : > ⇒ Rzero 7→ i n v e r s e ( a ) ∈ l t
inverse_negative_lt : a 7→ Rzero ∈ l t

rhs1 : > ⇒ i n v e r s e ( a ) 7→ Rzero ∈ l t
times_compatibility_leq : Rzero 7→ t imes ( a 7→ b) ∈ l e q

rhs5 : Rzero 7→ a ∈ l e q ⇒ Rzero 7→ b ∈ l e q
rhs6 : Rzero 7→ b ∈ l e q ⇒ Rzero 7→ a ∈ l e q
rhs7 : a 7→ Rzero ∈ l e q ⇒ b 7→ Rzero ∈ l e q
rhs8 : b 7→ Rzero ∈ l e q ⇒ a 7→ Rzero ∈ l e q

times_compatibility_geq : Rzero 7→ t imes ( a 7→ b) ∈ geq
rhs5 : > ⇒ ( a 7→ Rzero ∈ l e q ∧ Rzero 7→ b ∈ l e q ) ∨ ( Rzero 7→ a ∈ l e q

∧ b 7→ Rzero ∈ l e q )
absPred i ca t e s :
Metavariables

x : RReal
y : RReal

Rewrite Rules
abs_eqn : abs ( x ) = y

rhs1 : > ⇒ x = y ∨ uminus ( x ) = y
abs_contradict : abs ( x ) = y

rhs1 : y 7→ Rzero ∈ l t ⇒ ⊥
abs_zero : abs ( x ) = Rzero

rhs1 : > ⇒ x = Rzero
r e a l S u b S e t s U t i l i t y :
Metavariables

a : RReal
Rewrite Rules

realPlus_to_leq : a ∈ RRealPlus
rhs1 : > ⇒ Rzero 7→ a ∈ l e q

realMinus_to_leq : a ∈ RRealMinus
rhs1 : > ⇒ a 7→ Rzero ∈ l e q

realStar_to_neq : a ∈ RRealStar
rhs1 : > ⇒ a 6= Rzero

realPlusStar_to_leq : a ∈ RRealPlusStar
rhs1 : > ⇒ Rzero 7→ a ∈ l t

realMinusStar_to_leq : a ∈ RRealMinusStar
rhs1 : > ⇒ a 7→ Rzero ∈ l t

zero_in_RRealPlus : Rzero ∈ RRealPlus
rhs1 : > ⇒ >

typing :
Metavariables

a : RReal
b : RReal

Rewrite Rules
plusTypeRew : a 7→ b ∈ dom( p lus )
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rhs1 : > ⇒ a ∈ RReal ∧ b ∈ RReal
minusTypeRew : a 7→ b ∈ dom( minus )

rhs1 : > ⇒ a ∈ RReal ∧ b ∈ RReal
timesTypeRew : a 7→ b ∈ dom( times )

rhs1 : > ⇒ a ∈ RReal ∧ b ∈ RReal
divideTypeRew : a 7→ b ∈ dom( d i v i d e )

rhs1 : > ⇒ a ∈ RReal ∧ b ∈ RRealStar
uminusTypeRew : a ∈ dom( uminus )

rhs1 : > ⇒ a ∈ RReal
inverseTypeRew : a ∈ dom( i n v e r s e )

rhs1 : > ⇒ a ∈ RRealStar
absTypeRew : a ∈ dom( abs )

rhs1 : > ⇒ a ∈ RReal
sqrtTypeRew : a ∈ dom( s q r t )

rhs1 : > ⇒ a ∈ RRealPlus
plusBasicTypeRew : p lus ∈ RReal×RReal 7→ RReal

rhs1 : > ⇒ >
minusBasicTypeRew : minus ∈ RReal×RReal 7→ RReal

rhs1 : > ⇒ >
timesBasicTypeRew : t imes ∈ RReal×RReal 7→ RReal

rhs1 : > ⇒ >
divideBasicTypeRew : d i v i d e ∈ RReal×RReal 7→ RReal

rhs1 : > ⇒ >
uminusBasicTypeRew : uminus ∈ RReal 7→ RReal

rhs1 : > ⇒ >
inverseBasicTypeRew : i n v e r s e ∈ RReal 7→ RReal

rhs1 : > ⇒ >
absBasicTypeRew : abs ∈ RReal 7→ RReal

rhs1 : > ⇒ >
sqrtBasicTypeRew : s q r t ∈ RReal 7→ RReal

rhs1 : > ⇒ >
Inference Rules

plusType : a ∈ RReal , b ∈ RReal ` plus ( a 7→ b) ∈ RReal
minusType : a ∈ RReal , b ∈ RReal ` minus ( a 7→ b) ∈ RReal
timesType : a ∈ RReal , b ∈ RReal ` t imes ( a 7→ b) ∈ RReal
divideType : a ∈ RReal , b ∈ RReal , b 6= Rzero ` d i v i d e ( a 7→ b) ∈ RRealStar
uminusType : a ∈ RReal ` uminus ( a ) ∈ RReal
inverseType : a ∈ RRealStar ` i n v e r s e ( a ) ∈ RRealStar
sqrtType : a ∈ RRealPlus ` s q r t ( a ) ∈ RRealPlus
absType : a ∈ RReal ` abs ( a ) ∈ RRealPlus
plusTypeArg : a ∈ RReal , b ∈ RReal ` a 7→ b ∈ dom( p lus )
minusTypeArg : a ∈ RReal , b ∈ RReal ` a 7→ b ∈ dom( minus )
timesTypeArg : a ∈ RReal , b ∈ RReal ` a 7→ b ∈ dom( times )
divideTypeArg : a ∈ RReal , b ∈ RReal , b 6= Rzero ` a 7→ b ∈ dom( d i v i d e )
uminusTypeArg : a ∈ RReal ` a ∈ dom( uminus )
inverseTypeArg : a ∈ RRealStar ` a ∈ dom( i n v e r s e )
sqrtTypeArg : a ∈ RRealPlus ` a ∈ dom( s q r t )
absTypeArg : a ∈ RReal ` a ∈ dom( abs )

END
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Theory of Intervals

Listings A.6: Intervals theory
THEORY

IMPORTTHEORY Reals
OPERATORS

Infinity2Open expression (b : RReal )
direct definition

{ t | t 7→ b ∈ l t }
Infinity2Closed expression (b : RReal )

direct definition
{ t | t 7→ b ∈ l e q }

Open2Infinity expression ( a : RReal )
direct definition

{ t | a 7→ t ∈ l t }
Closed2Infinity expression ( a : RReal )

direct definition
{ t | a 7→ t ∈ l e q }

Open2Open expression ( a : RReal , b : RReal )
direct definition

{ t | a 7→ t ∈ l t ∧ t 7→ b ∈ l t }
Open2Closed expression ( a : RReal , b : RReal )

direct definition
{ t | a 7→ t ∈ l t ∧ t 7→ b ∈ l e q }

Closed2Open expression ( a : RReal , b : RReal )
direct definition

{ t | a 7→ t ∈ l e q ∧ t 7→ b ∈ l t }
Closed2Closed expression ( a : RReal , b : RReal )

direct definition
{ t | a 7→ t ∈ l e q ∧ t 7→ b ∈ l e q }

THEOREMS
realPlusIsZero2Infinity :

RRealPlus = C l o s e d 2 I n f i n i t y ( Rzero )
realMinusIsInfinity2Zero :

RRealMinus = I n f i n i t y 2 C l o s e d ( Rzero )
c2c_existence :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒ (∃ x · x ∈ Closed2Closed

( a , b ) )
c2o_existence :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒ (∃ x · x ∈ Closed2Open ( a ,

b) )
o2c_existence :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒ (∃ x · x ∈ Open2Closed ( a ,

b) )
o2o_existence :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒ (∃ x · x ∈ Open2Open( a , b)

)
boundaryInClosed2Closed :
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∀ a , b · a ∈ RReal ∧ b ∈ RReal ⇒ ( a ∈ Closed2Closed ( a , b) ∧ b ∈
Closed2Closed ( a , b) )

boundaryInClosed2Open :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ⇒ ( a ∈ Closed2Open ( a , b) )

boundaryInOpen2Closed :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ⇒ (b ∈ Open2Closed ( a , b) )

boundaryInInfinity2Closed :
∀ b · b ∈ RReal ⇒ (b ∈ I n f i n i t y 2 C l o s e d (b) )

boundaryInClosed2Infinity :
∀ a · a ∈ RReal ⇒ ( a ∈ C l o s e d 2 I n f i n i t y ( a ) )

closed2ClosedLowerBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

lowerBound ( leq , Closed2Closed ( a , b) , a )
closed2OpenLowerBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

lowerBound ( leq , Closed2Open ( a , b) , a )
open2ClosedLowerBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

lowerBound ( leq , Open2Closed ( a , b) , a )
open2OpenLowerBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

lowerBound ( leq , Open2Open( a , b) , a )
closed2InfinityLowerBound :
∀ a · a ∈ RReal ⇒

lowerBound ( leq , C l o s e d 2 I n f i n i t y ( a ) , a )
open2InfinityLowerBound :
∀ a · a ∈ RReal ⇒

lowerBound ( leq , Open2In f in i ty ( a ) , a )
infinity2ClosedLowerBound :
∀ b · b ∈ RReal ⇒
¬ lowerBounded ( leq , I n f i n i t y 2 C l o s e d (b) )

infinity2OpenLowerBound :
∀ b · b ∈ RReal ⇒
¬ lowerBounded ( leq , In f in i ty2Open (b) )

closed2ClosedInfimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

infimum ( leq , Closed2Closed ( a , b ) , a )
closed2OpenInfimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

infimum ( leq , Closed2Open ( a , b) , a )
open2ClosedInfimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

infimum ( leq , Open2Closed ( a , b) , a )
open2OpenInfimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

infimum ( leq , Open2Open( a , b) , a )
closed2InfinityInfimum :
∀ a · a ∈ RReal ⇒

infimum ( leq , C l o s e d 2 I n f i n i t y ( a ) , a )
open2InfinityInfimum :
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∀ a · a ∈ RReal ⇒
infimum ( leq , Open2In f in i ty ( a ) , a )

closed2ClosedMinimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

minimum( leq , Closed2Closed ( a , b) , a )
closed2OpenMinimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

minimum( leq , Closed2Open ( a , b) , a )
open2ClosedMinimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒
¬ hasMinimum( leq , Open2Closed ( a , b ) )

open2OpenMinimum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒
¬ hasMinimum( leq , Open2Open( a , b) )

closed2InfinityMinimum :
∀ a · a ∈ RReal ⇒

minimum( leq , C l o s e d 2 I n f i n i t y ( a ) , a )
open2InfinityMinimum :
∀ a · a ∈ RReal ⇒
¬ hasMinimum( leq , Open2In f in i ty ( a ) )

infinity2ClosedMinimum :
∀ b · b ∈ RReal ⇒
¬ hasMinimum( leq , I n f i n i t y 2 C l o s e d (b) )

infinity2OpenMinimum :
∀ b · b ∈ RReal ⇒
¬ hasMinimum( leq , In f in i ty2Open (b) )

closed2ClosedUpperBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

upperBound ( leq , Closed2Closed ( a , b) , b )
closed2OpenUpperBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

upperBound ( leq , Closed2Open ( a , b) , b )
open2ClosedUpperBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

upperBound ( leq , Open2Closed ( a , b ) , b )
open2OpenUpperBound :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

upperBound ( leq , Open2Open( a , b) , b )
closed2InfinityUpperBound :
∀ a · a ∈ RReal ⇒
¬ upperBounded ( leq , C l o s e d 2 I n f i n i t y ( a ) )

open2InfinityUpperBound :
∀ a · a ∈ RReal ⇒
¬ upperBounded ( leq , Open2In f in i ty ( a ) )

infinity2ClosedUpperBound :
∀ b · b ∈ RReal ⇒

upperBound ( leq , I n f i n i t y 2 C l o s e d (b) , b )
infinity2OpenUpperBound :
∀ b · b ∈ RReal ⇒

upperBound ( leq , In f in i ty2Open (b) , b )
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closed2ClosedSupremum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

supremum( leq , Closed2Closed ( a , b ) , b )
closed2OpenSupremum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

supremum( leq , Closed2Open ( a , b) , b )
open2ClosedSupremum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

supremum( leq , Open2Closed ( a , b) , b )
open2OpenSupremum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

supremum( leq , Open2Open( a , b) , b )
infinity2ClosedSupremum :
∀ b · b ∈ RReal ⇒

supremum( leq , I n f i n i t y 2 C l o s e d (b) , b )
infinity2OpenSupremum :
∀ b · b ∈ RReal ⇒

supremum( leq , Open2In f in i ty (b) , b )
closed2ClosedMaximum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l e q ⇒

maximum( leq , Closed2Closed ( a , b) , b )
closed2OpenMaximum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒
¬ hasMaximum( leq , Closed2Open ( a , b) )

open2ClosedMaximum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒

maximum( leq , Open2Closed ( a , b ) , b )
open2OpenMaximum :
∀ a , b · a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ⇒
¬ hasMaximum( leq , Open2Open( a , b) )

closed2InfinityMaximum :
∀ a · a ∈ RReal ⇒
¬ hasMaximum( leq , C l o s e d 2 I n f i n i t y ( a ) )

open2InfinityMaximum :
∀ a · a ∈ RReal ⇒
¬ hasMaximum( leq , Open2In f in i ty ( a ) )

infinity2ClosedMaximum :
∀ b · b ∈ RReal ⇒

maximum( leq , I n f i n i t y 2 C l o s e d (b) , b )
infinity2OpenMaximum :
∀ b · b ∈ RReal ⇒
¬ hasMaximum( leq , In f in i ty2Open (b) )

c2cUc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l e q ⇒

Closed2Closed ( a , b) ∪ Closed2Closed (b , c ) = Closed2Closed ( a , c )
c2cUc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
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a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒
Closed2Closed ( a , b) ∪ Closed2Open (b , c ) = Closed2Open ( a , c )

o2cUc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Open2Closed ( a , b) ∪ Closed2Closed (b , c ) = Open2Closed ( a , c )
o2cUc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Closed ( a , b) ∪ Closed2Open (b , c ) = Open2Open( a , c )
inf2cUc2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l e q ⇒

I n f i n i t y 2 C l o s e d (b) ∪ Closed2Closed (b , c ) = I n f i n i t y 2 C l o s e d ( c )
inf2cUc2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∪ Closed2Open (b , c ) = In f in i ty2Open ( c )
c2cUc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l e q ⇒

Closed2Closed ( a , b) ∪ C l o s e d 2 I n f i n i t y (b) = C l o s e d 2 I n f i n i t y ( a )
o2cUc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Closed ( a , b) ∪ C l o s e d 2 I n f i n i t y (b) = Open2In f in i ty ( a )
inf2cUc2inf :
∀ a ·

a ∈ RReal ⇒
I n f i n i t y 2 C l o s e d ( a ) ∪ C l o s e d 2 I n f i n i t y ( a ) = RReal

c2cUo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

Closed2Closed ( a , b) ∪ Open2Closed (b , c ) = Closed2Closed ( a , c )
c2cUo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

Closed2Closed ( a , b) ∪ Open2Open(b , c ) = Closed2Open ( a , c )
o2cUo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒
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Open2Closed ( a , b) ∪ Open2Closed (b , c ) = Open2Closed ( a , c )
o2cUo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Closed ( a , b) ∪ Open2Open(b , c ) = Open2Open( a , c )
inf2cUo2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∪ Open2Closed (b , c ) = I n f i n i t y 2 C l o s e d ( c )
inf2cUo2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∪ Open2Open(b , c ) = In f in i ty2Open ( c )
c2cUo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l e q ⇒

Closed2Closed ( a , b) ∪ Open2In f in i ty (b) = C l o s e d 2 I n f i n i t y ( a )
o2cUo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Closed ( a , b) ∪ Open2In f in i ty (b) = Open2In f in i ty ( a )
inf2cUo2inf :
∀ a ·

a ∈ RReal ⇒
I n f i n i t y 2 C l o s e d ( a ) ∪ Open2In f in i ty ( a ) = RReal

c2oUc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Closed2Open ( a , b) ∪ Closed2Closed (b , c ) = Closed2Closed ( a , c )
c2oUc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Closed2Open ( a , b) ∪ Closed2Open (b , c ) = Closed2Open ( a , c )
o2oUc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Open2Open( a , b) ∪ Closed2Closed (b , c ) = Open2Closed ( a , c )
o2oUc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Open( a , b) ∪ Closed2Open (b , c ) = Open2Open( a , c )
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inf2oUc2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l e q ⇒

In f in i ty2Open (b) ∪ Closed2Closed (b , c ) = I n f i n i t y 2 C l o s e d ( c )
inf2oUc2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

In f in i ty2Open (b) ∪ Closed2Open (b , c ) = In f in i ty2Open ( c )
c2oUc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Closed2Open ( a , b) ∪ C l o s e d 2 I n f i n i t y (b) = C l o s e d 2 I n f i n i t y ( a )
o2oUc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Open( a , b) ∪ C l o s e d 2 I n f i n i t y (b) = Open2In f in i ty ( a )
inf2oUc2inf :
∀ a ·

a ∈ RReal ⇒
In f in i ty2Open ( a ) ∪ C l o s e d 2 I n f i n i t y ( a ) = RReal

c2cCc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l e q ⇒

Closed2Closed ( a , b) ∩ Closed2Closed (b , c ) = {b}
o2cCc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Open2Closed ( a , b) ∩ Closed2Closed (b , c ) = {b}
c2cCc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

Closed2Closed ( a , b) ∩ Closed2Open (b , c ) = {b}
o2cCc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Closed ( a , b) ∩ Closed2Open (b , c ) = {b}
inf2cCc2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l e q ⇒

I n f i n i t y 2 C l o s e d (b) ∩ Closed2Closed (b , c ) = {b}
inf2cCc2o :



A.2. THEORIES OF REAL NUMBERS AND INVERVALS 225

∀ b , c ·
b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∩ Closed2Open (b , c ) = {b}
c2cCc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l e q ⇒

Closed2Closed ( a , b) ∩ C l o s e d 2 I n f i n i t y (b) = {b}
o2cCc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Closed ( a , b) ∩ C l o s e d 2 I n f i n i t y (b) = {b}
inf2cCc2inf :
∀ a ·

a ∈ RReal ⇒
I n f i n i t y 2 C l o s e d ( a ) ∩ C l o s e d 2 I n f i n i t y ( a ) = {a}

c2oCc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Closed2Open ( a , b) ∩ Closed2Closed (b , c ) = ∅
o2oCc2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l e q ⇒

Open2Open( a , b) ∩ Closed2Closed (b , c ) = ∅
c2oCc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Closed2Open ( a , b) ∩ Closed2Open (b , c ) = ∅
o2oCc2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Open( a , b) ∩ Closed2Open (b , c ) = ∅
inf2oCc2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l e q ⇒

In f in i ty2Open (b) ∩ Closed2Closed (b , c ) = ∅
inf2oCc2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

In f in i ty2Open (b) ∩ Closed2Open (b , c ) = ∅
c2oCc2inf :
∀ a , b ·
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a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Closed2Open ( a , b) ∩ C l o s e d 2 I n f i n i t y (b) = ∅
o2oCc2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Open( a , b) ∩ C l o s e d 2 I n f i n i t y (b) = ∅
inf2oCc2inf :
∀ a ·

a ∈ RReal ⇒
I n f i n i t y 2 C l o s e d ( a ) ∩ C l o s e d 2 I n f i n i t y ( a ) = ∅

c2cCo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

Closed2Closed ( a , b) ∩ Open2Closed (b , c ) = ∅
o2cCo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Closed ( a , b) ∩ Open2Closed (b , c ) = ∅
c2cCo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l e q ∧ b 7→ c ∈ l t ⇒

Closed2Closed ( a , b) ∩ Open2Open(b , c ) = ∅
o2cCo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Closed ( a , b) ∩ Open2Open(b , c ) = ∅
inf2cCo2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∩ Open2Closed (b , c ) = ∅
inf2cCo2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

I n f i n i t y 2 C l o s e d (b) ∩ Open2Open(b , c ) = ∅
c2cCo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l e q ⇒

Closed2Closed ( a , b) ∩ Open2In f in i ty (b) = ∅
o2cCo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
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a 7→ b ∈ l t ⇒
Open2Closed ( a , b) ∩ Open2In f in i ty (b) = ∅

inf2cCo2inf :
∀ a ·

a ∈ RReal ⇒
I n f i n i t y 2 C l o s e d ( a ) ∩ Open2In f in i ty ( a ) = ∅

c2oCo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Closed2Open ( a , b) ∩ Open2Closed (b , c ) = ∅
o2oCo2c :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Open( a , b) ∩ Open2Closed (b , c ) = ∅
c2oCo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Closed2Open ( a , b) ∩ Open2Open(b , c ) = ∅
o2oCo2o :
∀ a , b , c ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧
a 7→ b ∈ l t ∧ b 7→ c ∈ l t ⇒

Open2Open( a , b) ∩ Open2Open(b , c ) = ∅
inf2oCo2c :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

In f in i ty2Open (b) ∩ Open2Closed (b , c ) = ∅
inf2oCo2o :
∀ b , c ·

b ∈ RReal ∧ c ∈ RReal ∧
b 7→ c ∈ l t ⇒

In f in i ty2Open (b) ∩ Open2Open(b , c ) = ∅
c2oCo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Closed2Open ( a , b) ∩ Open2In f in i ty (b) = ∅
o2oCo2inf :
∀ a , b ·

a ∈ RReal ∧ b ∈ RReal ∧
a 7→ b ∈ l t ⇒

Open2Open( a , b) ∩ Open2In f in i ty (b) = ∅
inf2oCo2inf :
∀ a ·

a ∈ RReal ⇒
In f in i ty2Open ( a ) ∩ Open2In f in i ty ( a ) = ∅
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PROOF RULES
minimumRew :
Metavariables

a : RReal
b : RReal

Rewrite Rules
minClosed2Closed : Rmin( Closed2Closed ( a , b ) )

rhs1 : a 7→ b ∈ l e q ⇒ a
minClosed2Open : Rmin( Closed2Open ( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ a
minClosed2Infinity : Rmin( C l o s e d 2 I n f i n i t y ( a ) )

rhs1 : > ⇒ a
maximumRew :
Metavariables

a : RReal
b : RReal

Rewrite Rules
maxClosed2Closed : Rmax( Closed2Closed ( a , b) )

rhs1 : a 7→ b ∈ l e q ⇒ b
maxOpen2Closed : Rmax( Open2Closed ( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ b
maxInfinity2Closed : Rmax( I n f i n i t y 2 C l o s e d (b) )

rhs1 : > ⇒ b
infimumRew :
Metavariables

a : RReal
b : RReal

Rewrite Rules
infClosed2Closed : Rinf ( Closed2Closed ( a , b) )

rhs1 : a 7→ b ∈ l e q ⇒ a
infClosed2Open : Rinf ( Closed2Open ( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ a
infOpen2Closed : Rinf ( Open2Closed ( a , b ) )

rhs1 : a 7→ b ∈ l t ⇒ a
infOpen2Open : Rinf (Open2Open( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ a
infClosed2Infinity : Rinf ( C l o s e d 2 I n f i n i t y ( a ) )

rhs1 : > ⇒ a
infOpen2Infinity : Rinf ( Open2In f in i ty ( a ) )

rhs1 : > ⇒ a
supremumRew :
Metavariables

a : RReal
b : RReal

Rewrite Rules
supClosed2Closed : Rsup ( Closed2Closed ( a , b) )

rhs1 : a 7→ b ∈ l e q ⇒ b
supClosed2Open : Rsup ( Closed2Open ( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ b
supOpen2Closed : Rsup ( Open2Closed ( a , b ) )
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rhs1 : a 7→ b ∈ l t ⇒ b
supOpen2Open : Rsup (Open2Open( a , b) )

rhs1 : a 7→ b ∈ l t ⇒ b
supInfinity2Closed : Rsup ( I n f i n i t y 2 C l o s e d (b) )

rhs1 : > ⇒ b
supInfinity2Open : Rsup ( In f in i ty2Open (b) )

rhs1 : > ⇒ b
intervalURew :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
c2cUc2c_rew : Closed2Closed ( a , b) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ Closed2Closed ( a , c )
o2cUc2c_rew : Open2Closed ( a , b ) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ Open2Closed ( a , c )
c2cUc2o_rew : Closed2Closed ( a , b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ Closed2Open ( a , c )
o2cUc2o_rew : Open2Closed ( a , b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ Open2Open( a , c )
inf2cUc2c_rew : I n f i n i t y 2 C l o s e d (b) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ I n f i n i t y 2 C l o s e d ( c )
inf2cUc2o_rew : I n f i n i t y 2 C l o s e d (b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ In f in i ty2Open ( c )
c2cUc2inf_rew : Closed2Closed ( a , b) ∪ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ C l o s e d 2 I n f i n i t y ( a )
o2cUc2inf_rew : Open2Closed ( a , b ) ∪ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ Open2In f in i ty ( a )
c2oUc2c_rew : Closed2Open ( a , b) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ Closed2Closed ( a , c )
o2oUc2c_rew : Open2Open( a , b) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ Open2Closed ( a , c )
c2oUc2o_rew : Closed2Open ( a , b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ Closed2Open ( a , c )
o2oUc2o_rew : Open2Open( a , b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ Open2Open( a , c )
inf2oUc2c_rew : In f in i ty2Open (b) ∪ Closed2Closed (b , c )

rhs1 : > ⇒ I n f i n i t y 2 C l o s e d ( c )
inf2oUc2o_rew : In f in i ty2Open (b) ∪ Closed2Open (b , c )

rhs1 : > ⇒ In f in i ty2Open ( c )
c2oUc2inf_rew : Closed2Open ( a , b) ∪ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ C l o s e d 2 I n f i n i t y ( a )
o2oUc2inf_rew : Open2Open( a , b) ∪ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ Open2In f in i ty ( a )
c2cUo2c_rew : Closed2Closed ( a , b) ∪ Open2Closed (b , c )

rhs1 : > ⇒ Closed2Closed ( a , c )
o2cUo2c_rew : Open2Closed ( a , b) ∪ Open2Closed (b , c )

rhs1 : > ⇒ Open2Closed ( a , c )
c2cUo2o_rew : Closed2Closed ( a , b) ∪ Open2Open(b , c )
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rhs1 : > ⇒ Closed2Open ( a , c )
o2cUo2o_rew : Open2Closed ( a , b) ∪ Open2Open(b , c )

rhs1 : > ⇒ Open2Open( a , c )
inf2cUo2c_rew : I n f i n i t y 2 C l o s e d (b) ∪ Open2Closed (b , c )

rhs1 : > ⇒ I n f i n i t y 2 C l o s e d ( c )
inf2cUo2o_rew : I n f i n i t y 2 C l o s e d (b) ∪ Open2Open(b , c )

rhs1 : > ⇒ In f in i ty2Open ( c )
c2cUo2inf_rew : Closed2Closed ( a , b) ∪ Open2In f in i ty (b)

rhs1 : > ⇒ C l o s e d 2 I n f i n i t y ( a )
o2cUo2inf_rew : Open2Closed ( a , b ) ∪ Open2In f in i ty (b)

rhs1 : > ⇒ Open2In f in i ty ( a )
intervalCRew :
Metavariables

a : RReal
b : RReal
c : RReal

Rewrite Rules
c2cCc2c_rew : Closed2Closed ( a , b) ∩ Closed2Closed (b , c )

rhs1 : > ⇒ {b}
o2cCc2c_rew : Open2Closed ( a , b ) ∩ Closed2Closed (b , c )

rhs1 : > ⇒ {b}
c2cCc2o_rew : Closed2Closed ( a , b) ∩ Closed2Open (b , c )

rhs1 : > ⇒ {b}
o2cCc2o_rew : Open2Closed ( a , b ) ∩ Closed2Open (b , c )

rhs1 : > ⇒ {b}
inf2cCc2c_rew : I n f i n i t y 2 C l o s e d (b) ∩ Closed2Closed (b , c )

rhs1 : > ⇒ {b}
inf2cCc2o_rew : I n f i n i t y 2 C l o s e d (b) ∩ Closed2Open (b , c )

rhs1 : > ⇒ {b}
c2cCc2inf_rew : Closed2Closed ( a , b) ∩ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ {b}
o2cCc2inf_rew : Open2Closed ( a , b ) ∩ C l o s e d 2 I n f i n i t y (b)

rhs1 : > ⇒ {b}
i n t e r v a l R e a l P a r t s :
Rewrite Rules

RPlus2Int : RRealPlus
rhs1 : > ⇒ C l o s e d 2 I n f i n i t y ( Rzero )

Int2RPlus : C l o s e d 2 I n f i n i t y ( Rzero )
rhs1 : > ⇒ RRealPlus

RMinus2Int : RRealMinus
rhs1 : > ⇒ I n f i n i t y 2 C l o s e d ( Rzero )

Int2RMinus : I n f i n i t y 2 C l o s e d ( Rzero )
rhs1 : > ⇒ RRealMinus

RPlusStar2Int : RRealPlusStar
rhs1 : > ⇒ Open2In f in i ty ( Rzero )

Int2RPlusStar : Open2In f in i ty ( Rzero )
rhs1 : > ⇒ RRealPlusStar

RMinusStar2Int : RRealMinusStar
rhs1 : > ⇒ In f in i ty2Open ( Rzero )

Int2RMinusStar : In f in i ty2Open ( Rzero )
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rhs1 : > ⇒ RRealMinusStar
i n t e r v a l I n c l u s i o n :
Metavariables

a1 : RReal
b1 : RReal
a2 : RReal
b2 : RReal

Rewrite Rules
c2InfIncc2Inf : C l o s e d 2 I n f i n i t y ( a1 ) ⊆ C l o s e d 2 I n f i n i t y ( a2 )

rhs1 : > ⇒ a2 7→ a1 ∈ l e q
o2InfIncc2Inf : Open2In f in i ty ( a1 ) ⊆ C l o s e d 2 I n f i n i t y ( a2 )

rhs1 : > ⇒ a2 7→ a1 ∈ l e q
c2InfInco2Inf : C l o s e d 2 I n f i n i t y ( a1 ) ⊆ Open2In f in i ty ( a2 )

rhs1 : > ⇒ a2 7→ a1 ∈ l t
o2InfInco2Inf : Open2In f in i ty ( a1 ) ⊆ Open2In f in i ty ( a2 )

rhs1 : > ⇒ a2 7→ a1 ∈ l e q
inf2cIncinf2c : I n f i n i t y 2 C l o s e d ( b1 ) ⊆ I n f i n i t y 2 C l o s e d ( b2 )

rhs1 : > ⇒ b1 7→ b2 ∈ l e q
inf2oIncinf2c : In f in i ty2Open ( b1 ) ⊆ I n f i n i t y 2 C l o s e d ( b2 )

rhs1 : > ⇒ b1 7→ b2 ∈ l e q
inf2cIncinf2o : I n f i n i t y 2 C l o s e d ( b1 ) ⊆ In f in i ty2Open ( b2 )

rhs1 : > ⇒ b1 7→ b2 ∈ l t
inf2oIncinf2o : In f in i ty2Open ( b1 ) ⊆ In f in i ty2Open ( b2 )

rhs1 : > ⇒ b1 7→ b2 ∈ l e q
o2oIno2o : Open2Open( a1 , b1 ) ⊆ Open2Open( a2 , b2 )

rhs1 : > ⇒ a1 7→ a2 ∈ l t ∧ b1 7→ b2 ∈ gt
c2oInc2c : Closed2Open ( a1 , b1 ) ⊆ Closed2Closed ( a2 , b2 )

rhs1 : > ⇒ a1 7→ a2 ∈ l e q ∧ b1 7→ b2 ∈ geq
i n t e r v a l I n c l u s i o n 2 :
Metavariables

a : RReal
b : RReal

Rewrite Rules
s_o2oIno2Inf : Open2Open( a , b) ⊆ Open2In f in i ty ( a )

rhs1 : > ⇒ >
s_o2cIno2Inf : Open2Closed ( a , b ) ⊆ Open2In f in i ty ( a )

rhs1 : > ⇒ >
s_o2oInc2Inf : Open2Open( a , b) ⊆ C l o s e d 2 I n f i n i t y ( a )

rhs1 : > ⇒ >
s_o2cInc2Inf : Open2Closed ( a , b) ⊆ C l o s e d 2 I n f i n i t y ( a )

rhs1 : > ⇒ >
s_c2oInc2Inf : Closed2Open ( a , b) ⊆ C l o s e d 2 I n f i n i t y ( a )

rhs1 : > ⇒ >
s_c2cInc2Inf : Closed2Closed ( a , b) ⊆ C l o s e d 2 I n f i n i t y ( a )

rhs1 : > ⇒ >
s_o2oIno2c : Open2Open( a , b) ⊆ Open2Closed ( a , b)

rhs1 : > ⇒ >
s_o2oInc2o : Open2Open( a , b) ⊆ Closed2Open ( a , b)

rhs1 : > ⇒ >
s_o2oInc2c : Open2Open( a , b) ⊆ Closed2Closed ( a , b)
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rhs1 : > ⇒ >
s_c2oInc2c : Closed2Open ( a , b) ⊆ Closed2Closed ( a , b)

rhs1 : > ⇒ >
s_o2cInc2c : Open2Closed ( a , b ) ⊆ Closed2Closed ( a , b)

rhs1 : > ⇒ >
degenera ted_inte rva l s :
Metavariables

a : RReal
Rewrite Rules

c2c_single : Closed2Closed ( a , a )
rhs1 : > ⇒ {a}

o2c_empty : Open2Closed ( a , a )
rhs1 : > ⇒ ∅ : P( RReal )

c2o_empty : Closed2Open ( a , a )
rhs1 : > ⇒ ∅ : P( RReal )

o2o_empty : Open2Open( a , a )
rhs1 : > ⇒ ∅ : P( RReal )

in t e rva lE l ement s :
Metavariables

a : RReal
b : RReal

Rewrite Rules
a_in_c2c : a ∈ Closed2Closed ( a , b)

rhs1 : > ⇒ a 7→ b ∈ l e q
a_in_c2o : a ∈ Closed2Open ( a , b)

rhs1 : > ⇒ a 7→ b ∈ l t
b_in_c2c : b ∈ Closed2Closed ( a , b)

rhs1 : > ⇒ a 7→ b ∈ l e q
b_in_o2c : b ∈ Open2Closed ( a , b)

rhs1 : > ⇒ a 7→ b ∈ l t
a_in_c2inf : a ∈ C l o s e d 2 I n f i n i t y ( a )

rhs1 : > ⇒ >
b_in_inf2c : b ∈ I n f i n i t y 2 C l o s e d (b)

rhs1 : > ⇒ >
END

A.3 Theories of Functions and Piecewise Functions
This section show the theories of functions and piecewise functions presented in Section 4.3.2.3.
The theory of functions, in particular, defines the general principles of continuity, differentiability,
Lipschitz-continuity, etc. The theory of piecewise functions extends these principles to piecewise-
defined functions.

Theory of Functions

Listings A.7: Functions theory
THEORY

IMPORTTHEORY I n t e r v a l s
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TYPEPARAMETERS E, F,G,H, I
OPERATORS

bind expression ( fab : E 7→ F, gac : E 7→ G)
direct definition

(λ x · x ∈ dom( fab ) ∩ dom( gac ) | ( fab ( x ) 7→ gac ( x ) ) )
fproj1 expression ( fa_bc : E 7→ F×G)

direct definition
(λ x 7→y · x ∈ F ∧ y ∈ G | x ) ◦ fa_bc

fproj2 expression ( fa_bc : E 7→ F×G)
direct definition

(λ x 7→y · x ∈ F ∧ y ∈ G | y ) ◦ fa_bc
Rfplus expression ( )

direct definition
(λ r f 7→ rg · r f ∈ ( RReal → RReal ) ∧ rg ∈ ( RReal → RReal ) |

(λ x · x ∈ RReal | plus ( r f ( x ) 7→ rg ( x ) ) )
)

Rftimes expression ( )
direct definition

(λ r f 7→ rg · r f ∈ ( RReal → RReal ) ∧ rg ∈ ( RReal → RReal ) |
(λ x · x ∈ RReal | t imes ( r f ( x ) 7→ rg ( x ) ) )

)
Rfscal expression ( )

direct definition
(λ l 7→ r f · l ∈ RReal ∧ r f ∈ ( RReal → RReal ) |

(λ x · x ∈ RReal | t imes ( l 7→ r f ( x ) ) )
)

Rfcste expression ( l : RReal )
direct definition

(λ x · x ∈ RReal | l )
partial1 expression ( fab_c : E×F 7→G, y : F)

direct definition
(λ x · ( x 7→ y ) ∈ dom( fab_c ) | fab_c ( x 7→y ) )

partial2 expression ( fab_c : E×F 7→G, x : E)
direct definition

(λ y · ( x 7→ y ) ∈ dom( fab_c ) | fab_c ( x 7→y ) )
partialComp expression ( fabb : E×F 7→G, gab : E 7→F)

direct definition
(λ t · t ∈ dom( gab ) ∧ ( t 7→ gab ( t ) ) ∈ dom( fabb ) | fabb ( t 7→ gab ( t ) ) )

unpartialize1 expression (A: P(E) , fbc : F 7→G)
direct definition

(λ x 7→y · x ∈ A ∧ y ∈ dom( fbc ) | fbc ( y ) )
unpartialize2 expression (B: P(F) , f a c : E 7→ G)

direct definition
(λ x 7→y · x ∈ dom( f a c ) ∧ y ∈ B | f a c ( x ) )

increasing predicate (AR: P( RReal ) , f : RReal 7→ RReal )
well−definedness AR ⊆ dom( f )
direct definition
∀ x , y · x ∈ AR ∧ y ∈ AR ⇒ (

( x 7→ y ∈ l e q ) ⇔ ( f ( x ) 7→ f ( y ) ∈ l e q )
)
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strictlyIncreasing predicate (AR: P( RReal ) , f : RReal 7→ RReal )
well−definedness AR ⊆ dom( f )
direct definition
∀ x , y · x ∈ AR ∧ y ∈ AR ⇒ (

( x 7→ y ∈ l t ) ⇔ ( f ( x ) 7→ f ( y ) ∈ l t )
)

decreasing predicate (AR: P( RReal ) , f : AR 7→ RReal )
well−definedness AR ⊆ dom( f )
direct definition
∀ x , y · x ∈ AR ∧ y ∈ AR ⇒ (

( x 7→ y ∈ l e q ) ⇔ ( f ( x ) 7→ f ( y ) ∈ geq )
)

strictlyDecreasing predicate (AR: P( RReal ) , f : AR 7→ RReal )
well−definedness AR ⊆ dom( f )
direct definition
∀ x , y · x ∈ AR ∧ y ∈ AR ⇒ (

( x 7→ y ∈ l t ) ⇔ ( f ( x ) 7→ f ( y ) ∈ gt )
)

constant predicate (A: P(E) , f a : E 7→ F)
well−definedness A ⊆ dom( fa )
direct definition
∀ x · x ∈ A ⇒ (∀ y · y ∈ A ⇒ f a ( x ) = f a ( y ) )

positive predicate (A: P(E) , f a r : E 7→ RReal )
well−definedness A ⊆ dom( f a r )
direct definition
∀ x · x ∈ A ⇒ Rzero 7→ f a r ( x ) ∈ l e q

strictlyPositive predicate (A: P(E) , f a r : E 7→ RReal )
well−definedness A ⊆ dom( f a r )
direct definition
∀ x · x ∈ A ⇒ Rzero 7→ f a r ( x ) ∈ l t

negative predicate (A: P(E) , f a r : E 7→ RReal )
well−definedness A ⊆ dom( f a r )
direct definition
∀ x · x ∈ A ⇒ Rzero 7→ f a r ( x ) ∈ geq

strictlyNegative predicate (A: P(E) , f a r : E 7→ RReal )
well−definedness A ⊆ dom( f a r )
direct definition
∀ x · x ∈ A ⇒ Rzero 7→ f a r ( x ) ∈ gt

application expression ( )
direct definition

(λ f_ 7→ e_ · f_ ∈ E 7→ F ∧ e_ ∈ dom( f_ ) | f_ (e_) )
until expression ( s t a r t : RReal , f r e : RReal 7→ E, t0 : RReal , gre : RReal 7→ E)

well−definedness s t a r t 7→ t0 ∈ l eq , Closed2Open ( s ta r t , t0 ) ⊆ dom( f r e ) ,
C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( gre )

direct definition
( Closed2Open ( s ta r t , t0 ) C f r e ) ∪ ( C l o s e d 2 I n f i n i t y ( t0 ) C gre )

untilF expression ( s t a r t : RReal , f r e f : RReal×E 7→ F, t0 : RReal , g r e f : RReal×E
7→ F)

well−definedness s t a r t 7→ t0 ∈ l eq , Closed2Open ( s ta r t , t0 )×∅ ⊆ dom( f r e f ) ,
C l o s e d 2 I n f i n i t y ( t0 )×∅ ⊆ dom( g r e f )
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direct definition
( ( Closed2Open ( s ta r t , t0 )×E) C f r e f ) ∪ ( ( C l o s e d 2 I n f i n i t y ( t0 )×E) C g r e f

)
fcste expression (A: P(E) , v : F)

direct definition
(λ x · x∈ A | v )

boundedBy predicate (A: P(E) , f a r : E 7→ RReal , fmin : RReal , fmax : RReal )
well−definedness A ⊆ dom( f a r )
direct definition
∀ x_ · x_ ∈ A ⇒ fmin 7→ f a r (x_) ∈ l e q ∧ f a r (x_) 7→ fmax ∈ l e q

AXIOMATIC DEFINITIONS
c o n t i n u i t y :
OPERATORS

C0 expression (A: P(E) ,B: P(F) ) : P(P(E×F) )
well−definedness A 6= ∅ ,B 6= ∅

D1 expression (A2 : P( RReal ) ,B: P(F) ) : P(P( RReal×F) )
Cn expression (n : N ,A: P(E) ,B: P(F) ) : P(P(E×F) )
Dn expression (n : N ,A2 : P( RReal ) ,B: P(F) ) : P(P( RReal×F) )

well−definedness n > 0
AXIOMS

cid :
∀ A,B · A ⊆ E ∧ B ⊆ F
⇒ (C0(A,B) = Cn(0 ,A,B) )

did :
∀ A,B · A ⊆ RReal ∧ B ⊆ F
⇒ (D1(A,B) = Dn(1 ,A,B) )

c_in_c :
∀ A,B, k · A ⊆ E ∧ B ⊆ F ∧ k ∈ N
⇒ (Cn( k+1 ,A,B) ⊂ Cn(k ,A,B) )

d_in_d :
∀ A,B, k · A ⊆ RReal ∧ B ⊆ F ∧ k ∈ N ∧ k > 0
⇒ (Dn( k+1 ,A,B) ⊂ Dn(k ,A,B) )

c_in_d :
∀ A,B, k · A ⊆ RReal ∧ B ⊆ F ∧ k ∈ N ∧ k > 0
⇒ (Cn(k ,A,B) ⊂ Dn(k ,A,B) )

d_in_c :
∀ A,B, k · A ⊆ RReal ∧ B ⊆ F ∧ k ∈ N ∧ k > 0
⇒ (Dn(k ,A,B) ⊂ Cn( k−1 ,A,B) )

c_inclusion_stable :
∀ A,C,B, k ·

A ⊆ E ∧ C ⊆ A ∧ B ⊆ F ∧ k ∈ N
⇒

(Cn(k ,A,B) ⊆ Cn(k ,C,B) )
d_inclusion_stable :
∀ A,C,B, k ·

A ⊆ RReal ∧ C ⊆ A ∧ B ⊆ F ∧ k ∈ N ∧ k > 0
⇒

(Dn(k ,A,B) ⊆ Dn(k ,C,B) )
d_restriction :
∀ A,C,B, k , f ·
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A ⊆ RReal ∧ C ⊆ A ∧ B ⊆ F ∧ k ∈ N ∧ k > 0 ∧
f ∈ RReal 7→ B ∧ A ⊆ dom( f ) ∧ f ∈ Dn(k ,A,B) ⇒

(C C f ) ∈ Dn(k ,C,B) d e r i v a t i v e :
OPERATORS

Der expression (A2 : P( RReal ) ,B: P(F) , fa2b : RReal 7→ B) : P( RReal×F)
well−definedness fa2b ∈ D1(A2 ,B) ,A2 ⊆ dom( fa2b )

Dern expression (n : N ,A2 : P( RReal ) ,B: P(F) , fa2b : RReal 7→ B) : P( RReal×
F)

well−definedness n > 0 ,A2 ⊆ dom( fa2b )
AXIOMS

derType :
∀ A,B, f · A ⊆ RReal ∧ B ⊆ F ∧ f ∈ ( RReal 7→ B) ∧ A ⊆ dom( f ) ∧

f ∈ D1(A,B) ⇒ Der (A,B, f ) ∈ (A → F)
derDef_1 :
∀ A,B, f · A ⊆ RReal ∧ B ⊆ F ∧ f ∈ ( RReal 7→ B) ∧ A ⊆ dom( f ) ∧

f ∈ Dn(1 ,A,B) ⇒ Dern (1 ,A,B, f ) = Der (A,B, f )
dernDef_n :
∀ A,B, f , k · A ⊆ RReal ∧ B ⊆ F ∧ f ∈ ( RReal 7→ B) ∧ A ⊆ dom( f ) ∧ k ∈

N ∧ k > 1 ∧
f ∈ Dn(k ,A,B) ⇒ Dern (k ,A,B, f ) = Der (A,B, Dern ( k−1 ,A,B, f ) )

c_def :
∀ A,B, k , f · A ⊆ RReal ∧ B ⊆ F ∧ k ∈ N ∧ k > 1 ∧ f ∈ ( RReal 7→ B) ∧

dom( f ) ⊆ A ⇒ (
( f ∈ Cn(k ,A,B) ⇔ ( f ∈ Dn(k ,A,B) ∧ Dern (k ,A,B, f ) ∈ C0(A,B) ) )

)
c a r t e s i a n :
AXIOMS

cartesian_continuity :
∀ A,B,C, f , g , k ·

A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ (A → B) ∧ g ∈ (A → C) ∧ k ∈ N ⇒
( f ∈ Cn(k ,A,B) ∧ g ∈ Cn(k ,A,C) ⇔ ( bind ( f , g ) ∈ Cn(k ,A,B×C) ) )

cartesian_derivability :
∀ A,B,C, f , g , k ·

A ⊆ RReal ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ (A → B) ∧ g ∈ (A → C) ∧ k ∈ N ∧
k > 0 ⇒

( f ∈ Dn(k ,A,B) ∧ g ∈ Dn(k ,A,C) ⇔ ( bind ( f , g ) ∈ Dn(k ,A,B×C) ) )
cartesian_der :
∀ A,B,C, f , g ·

A ⊆ RReal ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ (A → B) ∧ g ∈ (A → C) ∧
f ∈ D1(A,B) ∧ g ∈ D1(A,C) ⇒

( Der (A,B×C, bind ( f , g ) ) = bind ( Der (A,B, f ) , Der (A,C, g ) ) )
cartesian_dern :
∀ A,B,C, f , g , k ·

A ⊆ RReal ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ (A → B) ∧ g ∈ (A → C) ∧ k ∈ N ∧
k > 0 ∧

f ∈ Dn(k ,A,B) ∧ g ∈ Dn(k ,A,C) ⇒
( Dern (k ,A,B×C, bind ( f , g ) ) = bind ( Dern (k ,A,B, f ) , Dern (k ,A,C, g ) ) )

p a r t i a l s :
AXIOMS

partial_cue :
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∀ A,B,C, f , k ·
A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ (A×B→C) ∧ k ∈ N ⇒ (

f ∈ Cn(k ,A×B,C) ⇔ ( (∀ y0 · y0 ∈ B ⇒ p a r t i a l 1 ( f , y0 ) ∈ Cn(k ,A,C) )
∧ (∀ x0 · x0 ∈ A ⇒ p a r t i a l 2 ( f , x0 ) ∈ Cn(k ,B,C) ) )

)
r e a l _ f u n c t i o n s :
AXIOMS

cste_cue :
∀ l · l ∈ RReal ⇒ (∀ k · k ∈ N ⇒ ( Rfc s te ( l ) ∈ Cn(k , RReal , RReal ) ) )

cste_der :
∀ l · l ∈ RReal ⇒ (∀ k · k ∈ N ∧ k > 0 ⇒ ( Rfc s te ( l ) ∈ Dn(k , RReal ,

RReal ) ) )
cste_der_def :
∀ l · l ∈ RReal ⇒ ( Der ( RReal , RReal , R fc s te ( l ) ) = Rfcs te ( Rzero ) )

plus_cue :
∀ A, f , g , k ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
k ∈ N ∧
f ∈ Cn(k ,A, RReal ) ∧ g ∈ Cn(k ,A, RReal ) ⇒

( Rfplus ( f 7→ g ) ∈ Cn(k ,A, RReal ) )
plus_der :
∀ A, f , g , k ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A, RReal ) ∧ g ∈ Dn(k ,A, RReal ) ⇒

( Rfplus ( f 7→ g ) ∈ Dn(k ,A, RReal ) )
plus_der_def :
∀ A, f , g , k ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A, RReal ) ∧ g ∈ Dn(k ,A, RReal ) ⇒

( Dern (k ,A, RReal , Rfplus ( f 7→ g ) ) = Rfplus ( Dern (k ,A, RReal , f ) 7→
Dern (k ,A, RReal , g ) ) )

times_cue :
∀ A, f , g , k ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
k ∈ N ∧
f ∈ Cn(k ,A, RReal ) ∧ g ∈ Cn(k ,A, RReal ) ⇒

( Rftimes ( f 7→ g ) ∈ Cn(k ,A, RReal ) )
times_der :
∀ A, f , g , k ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A, RReal ) ∧ g ∈ Dn(k ,A, RReal ) ⇒

( Rftimes ( f 7→ g ) ∈ Dn(k ,A, RReal ) )
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times_der_def :
∀ A, f , g ·

A ⊆ RReal ∧
f ∈ (A → RReal ) ∧ g ∈ (A → RReal ) ∧
f ∈ D1(A, RReal ) ∧ g ∈ D1(A, RReal ) ⇒

( Der (A, RReal , Rftimes ( f 7→ g ) ) = Rfplus ( Rftimes ( Der (A, RReal , f ) 7→
g ) 7→ Rftimes ( f 7→ Der (A, RReal , g ) ) ) )

scal_cue :
∀ A, l , f , k ·

A ⊆ RReal ∧
l ∈ RReal ∧ f ∈ (A → RReal ) ∧
k ∈ N ∧
f ∈ Cn(k ,A, RReal ) ⇒

( R f s ca l ( l 7→ f ) ∈ Cn(k ,A, RReal ) )
scal_der :
∀ A, l , f , k ·

A ⊆ RReal ∧
l ∈ RReal ∧ f ∈ (A → RReal ) ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A, RReal ) ⇒

( R f s ca l ( l 7→ f ) ∈ Dn(k ,A, RReal ) )
scal_der_def :
∀ A, l , f , k ·

A ⊆ RReal ∧
l ∈ RReal ∧ f ∈ (A → RReal ) ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A, RReal ) ⇒

( Dern (k ,A, RReal , R f s ca l ( l 7→ f ) ) = Rfsca l ( l 7→ Dern (k ,A, RReal , f ) ) )
comp_cue :
∀ A,B, f , g , k ·

A ⊆ RReal ∧ B ⊆ RReal ∧
f ∈ A → B ∧ g ∈ B → RReal ∧
k ∈ N ∧
f ∈ Cn(k ,A,B) ∧ g ∈ Cn(k ,B, RReal ) ⇒

( g ◦ f ∈ Cn(k ,A, RReal ) )
comp_der :
∀ A,B, f , g , k ·

A ⊆ RReal ∧ B ⊆ RReal ∧
f ∈ A → B ∧ g ∈ B → RReal ∧
k ∈ N ∧ k > 0 ∧
f ∈ Dn(k ,A,B) ∧ g ∈ Dn(k ,B, RReal ) ⇒

( g ◦ f ∈ Dn(k ,A, RReal ) )
comp_der_def :
∀ A,B, f , g ·

A ⊆ RReal ∧ B ⊆ RReal ∧
f ∈ A → B ∧ g ∈ B → RReal ∧
f ∈ D1(A,B) ∧ g ∈ D1(B, RReal ) ⇒

( Der (A, RReal , g ◦ f ) = Rftimes ( ( Der (B, RReal , g ) ◦ f ) 7→ Der (A,B, f ) )
)

l i p s c h i t z :
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OPERATORS
lipschitzContinuous predicate (A: P(E) ,B: P(F) , fab : E 7→ F) :

well−definedness A ⊆ dom( fab )
kLipschitzContinuous predicate (A: P(E) ,B: P(F) , fab : E 7→ F, r : RReal ) :

well−definedness A ⊆ dom( fab ) , Rzero 7→ r ∈ l e q
AXIOMS

klip_lip :
∀ A,B, f · A ⊆ E ∧ B ⊆ F ∧ f ∈ E 7→ F ∧ A ⊆ dom( f ) ⇒ (

l i p s c h i t z C o n t i n u o u s (A,B, f ) ⇔ (∃ k · k ∈ RReal ∧ Rzero 7→k ∈ l e q ⇒
kLipsch i tzCont inuous (A,B, f , k ) )

)
lip_cue :
∀ A,B, f · A ⊆ E ∧ B ⊆ F ∧ f ∈ E 7→ F ∧ A ⊆ dom( f ) ⇒ (

l i p s c h i t z C o n t i n u o u s (A,B, f ) ⇒ ( f ∈ C0(A,B) )
)

lip_inclusion_stable :
∀ A,B,C, f ·

A ⊆ E ∧ B ⊆ F ∧ C ⊆ A ∧ A ⊆ dom( f ) ∧ f ∈ E 7→ F ⇒ (
l i p s c h i t z C o n t i n u o u s (A,B, f ) ⇒ l i p s c h i t z C o n t i n u o u s (C,B, f )

)
klip_inclusion_stable :
∀ A,B,C, f , k ·

A ⊆ E ∧ B ⊆ F ∧ C ⊆ A ∧ f ∈ E 7→ F ∧ A ⊆ dom( f ) ∧ k ∈ RReal ∧
Rzero 7→ k ∈ l e q ⇒ (

kLipsch i tzCont inuous (A,B, f , k ) ⇒ kLipsch i tzCont inuous (C,B, f , k )
)

t r i g o :
OPERATORS

pi expression ( ) : RReal
sin expression ( ) : P( RReal×RReal )
cos expression ( ) : P( RReal×RReal )

AXIOMS
pi_pos :

Rzero 7→ pi ∈ l t
sin_dom :

s i n ∈ RReal → RReal
cos_dom :

cos ∈ RReal → RReal
sin_bounded :

boundedBy ( RReal , s in , uminus ( Rone ) , Rone )
sin_ran :

ran ( s i n ) = Closed2Closed ( uminus ( Rone ) , Rone )
cos_bounded :

boundedBy ( RReal , cos , uminus ( Rone ) , Rone )
cos_ran :

ran ( cos ) = Closed2Closed ( uminus ( Rone ) , Rone )
cos_cinf :
∀ n · n ∈ N ⇒ cos ∈ Cn(n , RReal , RReal )

sin_cinf :
∀ n · n ∈ N ⇒ s i n ∈ Cn(n , RReal , RReal )
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cos0 :
cos ( Rzero ) = Rone

cospi :
cos ( p i ) = uminus ( Rone )

cospi2 :
cos ( d i v i d e ( p i 7→Rtwo) ) = Rzero

cosmpi2 :
cos ( uminus ( d i v i d e ( p i 7→Rtwo) ) ) = Rzero

sin0 :
cos ( Rzero ) = Rzero

sinpi :
cos ( p i ) = uminus ( Rzero )

sinpi2 :
cos ( d i v i d e ( p i 7→Rtwo) ) = Rone

sinmpi2 :
cos ( uminus ( d i v i d e ( p i 7→Rtwo) ) ) = uminus ( Rone )

sin_odd :
∀ x · x ∈ RReal ⇒ s i n ( uminus ( x ) ) = uminus ( s i n ( x ) )

cos_even :
∀ x · x ∈ RReal ⇒ cos ( uminus ( x ) ) = cos ( x )

sin_refl_pi4 :
∀ x · x ∈ RReal ⇒ s i n ( minus ( d i v i d e ( p i 7→Rtwo) 7→ x ) ) = cos ( x )

cos_refl_pi4 :
∀ x · x ∈ RReal ⇒ cos ( minus ( d i v i d e ( p i 7→Rtwo) 7→ x ) ) = s i n ( x )

sin_refl_pi2 :
∀ x · x ∈ RReal ⇒ s i n ( minus ( p i 7→ x ) ) = s i n ( x )

cos_refl_pi2 :
∀ x · x ∈ RReal ⇒ cos ( minus ( p i 7→ x ) ) = uminus ( cos ( x ) )

sin_2pi :
∀ x · x ∈ RReal ⇒ s i n ( p lus ( x 7→ t imes (Rtwo 7→ pi ) ) ) = s i n ( x )

cos_2pi :
∀ x · x ∈ RReal ⇒ cos ( p lus ( x 7→ t imes (Rtwo 7→ pi ) ) ) = cos ( x )

bas ic_topology :
OPERATORS

IsOpen predicate (A: P(E) ) :
AXIOMS

open_continuity :
∀ x , f ,A,B ·

x ∈ A ∧ A ⊆ E ∧ B ⊆ F ∧
f ∈ E 7→ F ∧ A ⊆ dom( f ) ∧ f ∈ C0(A,F) ∧
IsOpen (B) ∧ f ( x ) ∈ B ⇒

(∃ y · y ∈ A ∧ f ( y ) ∈ B)
open_continuity_R :
∀ x , f ,A,B ·

A ⊆ RReal ∧ B ⊆ F ∧
x ∈ RReal ∧
f ∈ RReal 7→ F ∧ f ∈ C0(A,F) ∧
IsOpen (B) ∧ f ( x ) ∈ B ⇒

(∃ y · y ∈ A ∧ x 7→ y ∈ l t ∧ f ( y ) ∈ B)
THEOREMS
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functionEquality :
∀ f , g · f ∈ E 7→ F ∧ g ∈ E 7→ F ⇒ (

( f = g ) ⇔ (dom( f ) = dom( g ) ∧ (∀ x · x ∈ dom( f ) ⇒ ( f ( x ) = g ( x ) ) ) )
)

bind_type :
∀ A,B,C, f , g · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B ∧ g ∈ A → C ⇒

bind ( f , g ) ∈ A → B×C
proj1_type :
∀ A,B,C, f · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B×C ⇒ (

f p r o j 1 ( f ) ∈ A → B
)

proj2_type :
∀ A,B,C, f · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B×C ⇒ (

f p r o j 2 ( f ) ∈ A → C
)

partial1_type :
∀ A,B,C, f , y · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A×B → C ∧ y ∈ B ⇒ (

p a r t i a l 1 ( f , y ) ∈ A → C
)

partial2_type :
∀ A,B,C, f , x · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A×B → C ∧ x ∈ A ⇒ (

p a r t i a l 2 ( f , x ) ∈ B → C
)

partialComp_type :
∀ A,B, B2 , f , g ·

A ⊆ E ∧ B ⊆ F ∧ B2 ⊆ G ∧
f ∈ A×B → B2 ∧ g ∈ A → B ⇒

partialComp ( f , g ) ∈ A → B2
proj1_bind :
∀ A,B,C, f , g · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B ∧ g ∈ A → C ⇒ (

f p r o j 1 ( bind ( f , g ) ) = f
)

proj2_bind :
∀ A,B,C, f , g · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B ∧ g ∈ A → C ⇒ (

f p r o j 2 ( bind ( f , g ) ) = g
)

bind_proj :
∀ A,B,C, f · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B×C ⇒ (

bind ( f p r o j 1 ( f ) , f p r o j 2 ( f ) ) = f
)

proj_cue :
∀ A,B,C, f , k · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → B×C ∧ k ∈ N ⇒ (

f ∈ Cn(k ,A,B×C) ⇔ ( f p r o j 1 ( f ) ∈ Cn(k ,A,B) ∧ f p r o j 2 ( f ) ∈ Cn(k ,A,C) )
)

unpartialized1_cue :
∀ A,B,C, f , k · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ B → C ∧ k ∈ N ∧ f ∈ Cn(k ,B,

C) ⇒
( u n p a r t i a l i z e 1 (A, f ) ∈ Cn(k ,A×B,C) )

unpartialized2_cue :
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∀ A,B,C, f , k · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → C ∧ k ∈ N ∧ f ∈ Cn(k ,A,
C) ⇒

( u n p a r t i a l i z e 2 (B, f ) ∈ Cn(k ,A×B,C) )
unpartialize2_partial1 :
∀ A,B,C, f · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ A → C
⇒

(∀ y · y ∈ B ⇒ p a r t i a l 1 ( u n p a r t i a l i z e 2 (B, f ) , y ) = f )
unpartialize1_partial2 :
∀ A,B,C, f · A ⊆ E ∧ B ⊆ F ∧ C ⊆ G ∧ f ∈ B → C
⇒

(∀ x · x ∈ A ⇒ p a r t i a l 2 ( u n p a r t i a l i z e 1 (A, f ) , x ) = f )
MeanValue :
∀ a , b , f ,M ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
M ∈ RReal ∧ (∀ x · x ∈ Closed2Closed ( a , b) ⇒ ( abs ( Der ( Closed2Closed ( a ,

b) , RReal , f ) ( x ) ) 7→ M ∈ l e q ) ) ⇒
( abs ( d i v i d e ( minus ( f (b) 7→ f ( a ) ) 7→ minus (b 7→ a ) ) ) 7→ M ∈ l e q )

functionConcat :
∀ A, B, f , g ·

A ⊆ E ∧ B ⊆ E ∧ f ∈ A → F ∧ g ∈ B → F ∧
(∀ x · x ∈ (A ∩ B) ⇒ f ( x ) = g ( x ) ) ⇒

( f ∪ g ) ∈ (A ∪ B) → F
functionConcatTyping :
∀ f , g ·

f ∈ E 7→ F ∧ g ∈ E 7→ F ∧
(∀ x · x ∈ (dom( f ) ∩ dom( g ) ) ⇒ f ( x ) = g ( x ) ) ⇒

( f ∪ g ) ∈ (dom( f ) ∪ dom( g ) ) → F
restrictionTyping :
∀ A,B, f · A ⊆ E ∧ B ⊆ A ∧ f ∈ A → F ⇒ ( (B C f ) ∈ B → F)

restrictionDomain :
∀ f ,A · f ∈ E 7→ F ∧ A ⊆ E ⇒ dom(A C f ) = A

partialFunction :
∀ A,B, f1 , f 2 ·

A ⊆ E ∧ B ⊆ E ∧ A ∩ B = ∅ ∧
f 1 ∈ A → F ∧ f 2 ∈ B → F ⇒ (

(A C ( f 1 ∪ f 2 ) ) = f 1 ∧
(B C ( f 1 ∪ f 2 ) ) = f 2

)
strictlyPositiveWeakening :
∀ A, f ·

A ⊆ RReal ∧ f ∈ RReal 7→ RReal ∧ A ⊆ dom( f ) ∧
s t r i c t l y P o s i t i v e (A, f ) ⇒

p o s i t i v e (A, f )
strictlyNegativeWeakening :
∀ A, f ·

A ⊆ RReal ∧ f ∈ RReal 7→ RReal ∧ A ⊆ dom( f ) ∧
s t r i c t l y N e g a t i v e (A, f ) ⇒

negat ive (A, f )
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positiveDer2Increasing :
∀ A, f ·

A ⊆ RReal ∧
f ∈ A → RReal ∧ f ∈ D1(A, RReal ) ⇒ (

p o s i t i v e (A, Der (A, RReal , f ) )
⇔

i n c r e a s i n g (A, f )
)

strictlyPositiveDer2StrictlyIncreasing :
∀ A, f ·

A ⊆ RReal ∧
f ∈ RReal 7→ RReal ∧ A ⊆ dom( f ) ∧ f ∈ D1(A, RReal ) ⇒ (

s t r i c t l y P o s i t i v e (A, Der (A, RReal , f ) )
⇔

s t r i c t l y I n c r e a s i n g (A, f )
)

negativeDer2Decreasing :
∀ A, f ·

A ⊆ RReal ∧
f ∈ A → RReal ∧ f ∈ D1(A, RReal ) ⇒ (

negat ive (A, Der (A, RReal , f ) )
⇔

dec r ea s ing (A, f )
)

strictlyNegativeDer2StrictlyDecreasing :
∀ A, f ·

A ⊆ RReal ∧
f ∈ RReal 7→ RReal ∧ A ⊆ dom( f ) ∧ f ∈ D1(A, RReal ) ⇒ (

s t r i c t l y N e g a t i v e (A, Der (A, RReal , f ) )
⇔

s t r i c t l y D e c r e a s i n g (A, f )
)

zeroDer2Constant :
∀ A, f ·

A ⊆ RReal ∧
f ∈ RReal 7→ RReal ∧ A ⊆ dom( f ) ∧ f ∈ D1(A, RReal ) ⇒ (

(∀ x · x ∈ A ⇒ Der (A, RReal , f ) ( x ) = Rzero )
⇔

constant (A, f )
)

meanValue_geq :
∀ a , b ,m, f ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧ m ∈ RReal ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ m ∈ geq ∧ p o s i t i v e ( Closed2Closed ( a , b) , Der ( Closed2Closed ( a , b ) ,

RReal , f ) ) ⇒
(∀ t · t ∈ Closed2Closed ( a , b) ⇒ f ( t ) 7→ m ∈ geq )

meanValue_geq_strict :
∀ a , b ,m, f ·



244 APPENDIX A. THEORIES

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧ m ∈ RReal ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ m ∈ geq ∧ s t r i c t l y P o s i t i v e ( Closed2Closed ( a , b) , Der (

Closed2Closed ( a , b) , RReal , f ) ) ⇒
(∀ t · t ∈ Open2Closed ( a , b) ⇒ f ( t ) 7→ m ∈ gt )

meanValue_leq :
∀ a , b ,m, f ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧ m ∈ RReal ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ m ∈ l e q ∧ negat ive ( Closed2Closed ( a , b) , Der ( Closed2Closed ( a , b ) ,

RReal , f ) ) ⇒
(∀ t · t ∈ Closed2Closed ( a , b) ⇒ f ( t ) 7→ m ∈ l e q )

meanValue_leq_strict :
∀ a , b ,m, f ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧ m ∈ RReal ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ m ∈ l e q ∧ s t r i c t l y N e g a t i v e ( Closed2Closed ( a , b ) , Der (

Closed2Closed ( a , b) , RReal , f ) ) ⇒
(∀ t · t ∈ Open2Closed ( a , b) ⇒ f ( t ) 7→ m ∈ l t )

meanValue_positivity :
∀ a , b , f ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ Rzero ∈ geq ∧ p o s i t i v e ( Closed2Closed ( a , b) , Der ( Closed2Closed ( a

, b ) , RReal , f ) ) ⇒
p o s i t i v e ( Closed2Closed ( a , b) , f )

meanValue_negativity :
∀ a , b , f ·

a ∈ RReal ∧ b ∈ RReal ∧ a 7→ b ∈ l t ∧
f ∈ RReal 7→ RReal ∧ Closed2Closed ( a , b) ⊆ dom( f ) ∧ f ∈ D1(

Closed2Closed ( a , b) , RReal ) ∧
f ( a ) 7→ Rzero ∈ l e q ∧ negat ive ( Closed2Closed ( a , b) , Der ( Closed2Closed ( a

, b ) , RReal , f ) ) ⇒
negat ive ( Closed2Closed ( a , b) , f )

bind_bind_partialComp :
∀ f1 , f2 , x1 , x2 , Af , Bf , Cf , Ax , Bx , Cx ·

Af ⊆ E ∧ Bf ⊆ F ∧ Cf ⊆ G ∧
Ax ⊆ Af ∧ Bx ⊆ Bf ∧ Cx ⊆ Cf ∧
f 1 ∈ Af×( Bf×Cf ) → Bf ∧ f 2 ∈ Af×( Bf×Cf ) → Cf ∧
x1 ∈ Ax → Bx ∧ x2 ∈ Ax → Cx ⇒

partialComp (
bind ( f1 , f 2 ) ,
bind ( x1 , x2 )

) = bind (
partialComp ( f1 , bind ( x1 , x2 ) ) ,
partialComp ( f2 , bind ( x1 , x2 ) )
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)
until_type :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal 7→ E ∧ g ∈ RReal 7→ E ∧
Closed2Open ( s , t0 ) ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( g ) ⇒

u n t i l ( s , f , t0 , g ) ∈ C l o s e d 2 I n f i n i t y ( s ) → E
until_restrict1 :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal 7→ E ∧ g ∈ RReal 7→ E ∧
Closed2Open ( s , t0 ) ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( g ) ⇒

( Closed2Open ( s , t0 ) C u n t i l ( s , f , t0 , g ) ) = f
until_restrict2 :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal 7→ E ∧ g ∈ RReal 7→ E ∧
Closed2Open ( s , t0 ) ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( g ) ⇒

( C l o s e d 2 I n f i n i t y ( t0 ) C u n t i l ( s , f , t0 , g ) ) = g
until_bind1 :
∀ s , t0 , f1 , f2 , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f 1 ∈ RReal 7→ E ∧ f 2 ∈ RReal 7→ E ∧ g ∈ RReal 7→ F ∧
Closed2Open ( s , t0 ) ⊆ dom( f1 ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( f2 ) ⇒ (

bind ( u n t i l ( s , f1 , t0 , f 2 ) , g ) = u n t i l ( s , bind ( f1 , g ) , t0 , bind ( f2 , g ) )
)

until_bind2 :
∀ s , t0 , f , g1 , g2 ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal 7→ E ∧ g1 ∈ RReal 7→ F ∧ g2 ∈ RReal 7→ F ∧
Closed2Open ( s , t0 ) ⊆ dom( g1 ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( g2 ) ⇒ (

bind ( f , u n t i l ( s , g1 , t0 , g2 ) ) = u n t i l ( s , bind ( f , g1 ) , t0 , bind ( f , g2 ) )
)

untilF_type :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal×E 7→ F ∧ g ∈ RReal×E 7→ F ∧
Closed2Open ( s , t0 )×∅ ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 )×∅ ⊆ dom( g ) ⇒

unt i lF ( s , f , t0 , g ) ∈ RReal×E 7→ F
untilF_type_strong :
∀ s , t0 , f , g ,A ·

A ⊆ E ∧
s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal×A → F ∧ g ∈ RReal×A → F ⇒

unt i lF ( s , f , t0 , g ) ∈ C l o s e d 2 I n f i n i t y ( s )×A → F
untilF_bind1 :
∀ s , t0 , f1 , f2 , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f 1 ∈ RReal×E 7→ F ∧ f 2 ∈ RReal×E 7→ F ∧ g ∈ RReal×E 7→ G ∧
Closed2Open ( s , t0 )×∅ ⊆ dom( f1 ) ∧ C l o s e d 2 I n f i n i t y ( t0 )×∅ ⊆ dom( f2 ) ⇒ (
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bind ( unt i lF ( s , f1 , t0 , f 2 ) , g ) = unt i lF ( s , bind ( f1 , g ) , t0 , bind ( f2 , g ) )
)

untilF_bind2 :
∀ s , t0 , f , g1 , g2 ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal×E 7→ F ∧ g1 ∈ RReal×E 7→ G ∧ g2 ∈ RReal×E 7→ G ∧
Closed2Open ( s , t0 )×∅ ⊆ dom( g1 ) ∧ C l o s e d 2 I n f i n i t y ( t0 )×∅ ⊆ dom( g2 ) ⇒ (

bind ( f , unt i lF ( s , g1 , t0 , g2 ) ) = unt i lF ( s , bind ( f , g1 ) , t0 , bind ( f , g2 ) )
)

fcste_cue :
∀ A, l · A ⊆ E ∧ l ∈ F ⇒ ( f c s t e (A, l ) ∈ C0(A,F) )

fcste_type :
∀ A, l · A ⊆ E ∧ l ∈ F ⇒ f c s t e (A, l ) ∈ A → F

PROOF RULES
typing :
Metavariables

A: P(E)
B: P(F)
C: P(G)
fab : P(E×F)
gac : P(E×G)
fa_bc : P(E×(F×G) )
fab_c : P(E×F×G)
x : E
y : F
A2 : P(E)

Rewrite Rules
domainRestrictionInvolutive : A C (A C fab )

rhs1 : > ⇒ A C fab
domainRestrictionComplete : A C fab

rhs1 : dom( fab ) = A ⇒ fab
basicDomainRestrictionTyping : (A C fab ) ∈ E 7→ F

rhs1 : > ⇒ fab ∈ E 7→ F
basicBindTyping : bind ( fab , gac ) ∈ E 7→ F×G

rhs1 : > ⇒ fab ∈ E 7→ F ∧ gac ∈ E 7→ G
bindDomain : dom( bind ( fab , gac ) )

rhs1 : > ⇒ dom( fab ) ∩ dom( gac )
fcsteTyping : f c s t e (A, y ) ∈ A → F

rhs1 : > ⇒ >
bindDomSubset : A ⊆ dom( bind ( fab , gac ) )

rhs1 : > ⇒ A ⊆ dom( fab ) ∧ A ⊆ dom( gac )
fproj1Typing : f p r o j 1 ( fa_bc ) ∈ E 7→ F

rhs1 : > ⇒ fa_bc ∈ E 7→ F×G
fproj2Typing : f p r o j 2 ( fa_bc ) ∈ E 7→ G

rhs1 : > ⇒ fa_bc ∈ E 7→ F×G
fproj1Domain : dom( f p r o j 1 ( fa_bc ) )

rhs1 : > ⇒ dom( fa_bc )
fproj2Domain : dom( f p r o j 2 ( fa_bc ) )

rhs1 : > ⇒ dom( fa_bc )
Inference Rules



A.3. THEORIES OF FUNCTIONS AND PIECEWISE FUNCTIONS 247

bindType : fab ∈ A → B, gac ∈ A → C ` bind ( fab , gac ) ∈ A→B×C
proj1Type : fa_bc ∈ A → B×C ` f p r o j 1 ( fa_bc ) ∈ A → B
proj2Type : fa_bc ∈ A → B×C ` f p r o j 2 ( fa_bc ) ∈ A → C
partial1Type : fab_c ∈ A×B → C, y ∈ B ` p a r t i a l 1 ( fab_c , y ) ∈ A → C
partial2Type : fab_c ∈ A×B → C, x ∈ A ` p a r t i a l 2 ( fab_c , x ) ∈ B → C
domainRestrictionType : A2 ⊆ A, fab ∈ A → B ` (A2 C fab ) ∈ A2 → B

binding :
Metavariables

A: P(E)
B: P(F)
C: P(G)
AR: P( RReal )
fab : P(E×F)
gac : P(E×G)
fab2 : P(E×F)
gac2 : P(E×G)
fa_bc : P(E×(F×G) )
fa rb : P( RReal×F)
garc : P( RReal×G)
far_bc : P( RReal×(F×G) )
n : Z
x : E

Rewrite Rules
bindProjRew : bind ( f p r o j 1 ( fa_bc ) , f p r o j 2 ( fa_bc ) )

rhs1 : > ⇒ fa_bc
bindDerRew : Der (AR,B×C, bind ( farb , garc ) )

rhs1 : > ⇒ bind ( Der (AR,B, fa rb ) , Der (AR,C, garc ) )
bindEquality : bind ( fab , gac )=bind ( fab2 , gac2 )

rhs1 : > ⇒ fab = fab2 ∧ gac = gac2
bindC0Rew : bind ( fab , gac ) ∈ C0(A,B×C)

rhs1 : > ⇒ fab ∈ C0(A,B) ∧ gac ∈ C0(A,C)
bindD1Rew : bind ( farb , garc ) ∈ D1(AR,B×C)

rhs1 : > ⇒ f a rb ∈ D1(AR,B) ∧ garc ∈ D1(AR,C)
bindCnRew : bind ( farb , garc ) ∈ Cn(n ,AR,B×C)

rhs1 : n ≥ 0 ⇒ f a rb ∈ Cn(n ,AR,B) ∧ garc ∈ Cn(n ,AR,C)
bindDnRew : bind ( farb , garc ) ∈ Dn(n ,AR,B×C)

rhs1 : n > 0 ⇒ f a rb ∈ Dn(n ,AR,B) ∧ garc ∈ Dn(n ,AR,C)
bindRestrict : A C bind ( fab , gac )

rhs1 : > ⇒ bind (A C fab , A C gac )
bindEvaulate : bind ( fab , gac ) ( x )

rhs1 : > ⇒ fab ( x ) 7→gac ( x )
c o n t i n u i t y :
Metavariables

A: P(E)
B: P(F)
AR: P( RReal )
n : Z

Rewrite Rules
C0_to_Cn0 : C0(A,B)

rhs1 : > ⇒ Cn(0 ,A,B)
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D1_toDn1 : D1(AR,B)
rhs1 : > ⇒ Dn(1 ,AR,B)

Cn0_to_C0 : Cn(0 ,A,B)
rhs1 : > ⇒ C0(A,B)

Dn1_to_D1 : Dn(1 ,AR,B)
rhs1 : > ⇒ D1(AR,B)

misc :
Metavariables

f : P(E×F)
g : P(E×F)

Rewrite Rules
fun_equality : f = g

rhs1 : > ⇒ dom( f ) = dom( g ) ∧ (∀x · x ∈ dom( f ) ⇒ f ( x ) = g ( x ) )
d i rect_product :
Metavariables

fab : P(E×F)
gac : P(E×G)

Rewrite Rules
dirprodType : fab ⊗ gac ∈ E 7→ F×G

rhs1 : > ⇒ fab ∈ E 7→ F ∧ gac ∈ E 7→ G
dirprodDomain : dom( fab ⊗ gac )

rhs1 : > ⇒ dom( fab ) ∩ dom( gac )
END

Theory of Piecewise Functions

Listings A.8: Piecewise theory
THEORY

IMPORTTHEORY Functions
TYPEPARAMETERS E, F,G
OPERATORS

partitionS predicate (X: P(E) ,Xs : P(P(E) ) )
direct definition

(∀ X1 , X2 · X1 ∈ Xs ∧ X2 ∈ Xs ∧ X1 6= X2 ⇒ X1 ∩ X2 = ∅) ∧
union (Xs) = X

piecewiseContinuous predicate ( Ix : P(P(E) ) ,B: P(F) , f : union ( Ix ) → B)
well−definedness Ix 6= ∅ ,∀ I1 , I2 · I1 ∈ Ix ∧ I2 ∈ Ix ∧ I1 6= I2 ⇒ I1 ∩

I2 = ∅
direct definition
∀ I0 · I0 ∈ Ix ⇒ ( I0 C f ) ∈ C0( I0 ,B)

partialPiecewiseContinuous predicate ( Ix : P(P(E) ) ,B: P(F) ,C: P(G) , g : union (
Ix )×B → C)

well−definedness Ix 6= ∅ ,∀ I1 , I2 · I1 ∈ Ix ∧ I2 ∈ Ix ∧ I1 6= I2 ⇒ I1 ∩
I2 = ∅

direct definition
∀ I0 · I0 ∈ Ix ⇒ ( ( I0×B) C g ) ∈ C0( I0×B,C)

piecewiseLipschitzContinuous predicate ( Ix : P(P(E) ) ,B: P(F) , f : union ( Ix ) → B
)
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well−definedness Ix 6= ∅ ,∀ I1 , I2 · I1 ∈ Ix ∧ I2 ∈ Ix ∧ I1 6= I2 ⇒ I1 ∩
I2 = ∅

direct definition
∀ I0 · I0 ∈ Ix ⇒ l i p s c h i t z C o n t i n u o u s ( I0 ,B, I0 C f )

THEOREMS
untilPiecewise :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal 7→ E ∧ g ∈ RReal 7→ E ∧
Closed2Open ( s , t0 ) ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( g ) ∧
f ∈ C0( Closed2Open ( s , t0 ) ,E) ∧ g ∈ C0( C l o s e d 2 I n f i n i t y ( t0 ) ,E) ⇒

piecewiseCont inuous ({ Closed2Open ( s , t0 ) , C l o s e d 2 I n f i n i t y ( t0 ) } ,E, u n t i l
( s , f , t0 , g ) )

untilFPartialPiecewise :
∀ s , t0 , f , g ·

s ∈ RReal ∧ t0 ∈ RReal ∧ s 7→ t0 ∈ l e q ∧
f ∈ RReal×E 7→ F ∧ g ∈ RReal×E 7→ F ∧
Closed2Open ( s , t0 )×∅ ⊆ dom( f ) ∧ C l o s e d 2 I n f i n i t y ( t0 )×∅ ⊆ dom( g ) ∧
f ∈ C0( Closed2Open ( s , t0 )×E,F) ∧ g ∈ C0( C l o s e d 2 I n f i n i t y ( t0 )×E,F) ⇒

par t i a lP i e cew i s eCont inuous ({ Closed2Open ( s , t0 ) , C l o s e d 2 I n f i n i t y ( t0 ) } ,
E, F , unt i lF ( s , f , t0 , g ) )

END

A.4 Theory of Differential Equations

This section presents the theory of differential equations detailed in Section 4.3.2.4. This funda-
mental theory defines differential equations as a particular type, with associated constructors, as
well as multiple operators to characterise their properties and solutions. It also defines several
theorems/axioms for establishing various properties of differential equations (e.g. solvability).

Listings A.9: Differential Equations theory
THEORY

IMPORTTHEORY Piecewi se
TYPEPARAMETERS E, F,UF,STATES, F1 , F2
DATA TYPES

DE(F)
CONSTRUCTORS

ode ( fun :P( RReal×F×F) , i n i t i a l : F , i n i t i a l A r g : RReal )
aode ( afun :P(F×F) , a i n i t i a l : F , a i n i t i a l A r g : RReal )

CDE(F,UF)
CONSTRUCTORS

code ( cfun :P ( ( RReal×F×UF)×F) , c i n i t : F , c i n i tArg : RReal )
caode ( cafun :P ( (F×UF)×F) , c a i n i t : F , ca in i tArg : RReal )

OPERATORS
autonomousToODE expression ( e : DE(F) )

well−definedness ∃ f , i , i a · f ∈ F 7→ F ∧ i ∈ F ∧ i a ∈ RReal ∧ e = aode (
f , i , i a )

direct definition
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ode ( (λ t_ 7→eta_ · t_ ∈ RReal ∧ eta_ ∈ F ∧ eta_ ∈ dom( afun ( e ) ) | afun ( e
) ( eta_ ) ) , i n i t i a l ( e ) , i n i t i a l A r g ( e ) )

solutionOf predicate (DR: P( RReal ) , eta : RReal 7→ F, eq : DE(F) )
well−definedness DR ⊆ dom( eta )

SolutionsOf expression (DR: P( RReal ) , eq : DE(F) )
direct definition

{ eta_ | eta_ ∈ RReal 7→ F ∧ DR ⊆ dom( eta_ ) ∧ so lu t i onOf (DR, eta_ , eq )
}

CauchyLipschitzCondition predicate (DR: P( RReal ) ,DF: P(F) , eq : DE(F) )
PiecewiseCauchyLipschitzCondition predicate (DRs : P(P( RReal ) ) ,DF: P(F) , eq :

DE(F) )
well−definedness DRs 6= ∅ ,∀ DR1,DR2 · DR1 ∈ DRs ∧ DR2 ∈ DRs ∧ DR1 6= DR2

⇒ DR1 ∩ DR2 = ∅
Solvable predicate (DR: P( RReal ) , eq : DE(F) )

direct definition
∃ x · x ∈ RReal 7→ F ∧ DR ⊆ dom( x ) ∧ so lu t i onOf (DR, x , eq )

AppendSolutionBAP predicate ( eq : DE(F) ,DR: P( RReal ) ,A: P(DR) ,B: P(DR) ,
eta : RReal 7→ F, etap : RReal 7→ F)

well−definedness A ∩ B = ∅ , So lvab l e (B, eq ) ,DR ⊆ dom( eta )
direct definition

DR ⊆ dom( etap ) ∧
(A C etap = A C eta ) ∧
so lu t i onOf (B,B C etap , eq )

CBAP predicate ( t : RRealPlus , tp : RRealPlus , eta : RReal 7→ F, etap : RReal
7→ F, Pred : P ( ( RReal 7→F)×( RReal 7→F) ) , Inv : P(F) )

well−definedness Closed2Closed ( Rzero , t ) ⊆ dom( eta ) , Closed2Closed ( Rzero ,
tp ) ⊆ dom( etap )

direct definition
t 7→ tp ∈ l t ∧
Closed2Open ( Rzero , t ) C eta = Closed2Open ( Rzero , t ) C etap ∧
( ( Closed2Closed ( t , tp ) C eta ) 7→ ( Closed2Closed ( t , tp ) C etap ) ) ∈ Pred

∧
(∀ t_ · t_ ∈ Closed2Closed ( t , tp ) ⇒ etap ( t_) ∈ Inv )

CBAPsolutionOf predicate ( t : RRealPlus , tp : RRealPlus , eta : RReal 7→ F, etap
: RReal 7→ F, eq : DE(F) , Inv : P(F) )

well−definedness Closed2Closed ( Rzero , t ) ⊆ dom( eta ) , Closed2Closed ( Rzero ,
tp ) ⊆ dom( etap ) , So lvab l e ( Closed2Closed ( t , tp ) , eq ) , t 7→ tp ∈ l t

direct definition
CBAP( t , tp , eta , etap , ( RReal 7→F)×So lut ionsOf ( Closed2Closed ( t , tp ) , eq ) , Inv

)
CBAPParallelEq predicate ( t : RRealPlus , tp : RRealPlus , eta1 : RReal 7→ F1 ,

eta1p : RReal 7→ F1 , eq1 : DE(F1) , eta2 : RReal 7→ F2 , eta2p : RReal 7→ F2 ,
eq2 : DE(F2) , Inv12 : P(F1×F2) )

well−definedness Closed2Closed ( Rzero , t ) ⊆ dom( eta1 ) , Closed2Closed ( Rzero
, tp ) ⊆ dom( eta1p ) , Closed2Closed ( Rzero , t ) ⊆ dom( eta2 ) , Closed2Closed (
Rzero , tp ) ⊆ dom( eta2p ) , t 7→ tp ∈ l t

direct definition
t 7→ tp ∈ l t ∧
Closed2Open ( Rzero , t ) C eta1 = Closed2Open ( Rzero , t ) C eta1p ∧
so lu t i onOf ( Closed2Closed ( t , tp ) , Closed2Closed ( t , tp ) C eta1p , eq1 ) ∧
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eta1 ( t ) = eta1p ( t ) ∧
Closed2Open ( Rzero , t ) C eta2 = Closed2Open ( Rzero , t ) C eta2p ∧
so lu t i onOf ( Closed2Closed ( t , tp ) , Closed2Closed ( t , tp ) C eta2p , eq2 ) ∧
eta2 ( t ) = eta2p ( t ) ∧
(∀ t_ · t_ ∈ Closed2Closed ( t , tp ) ⇒ eta1p (t_) 7→eta2p ( t_) ∈ Inv12 )

VerifiesOn predicate (DR: P( RReal ) , eta : RReal 7→ F, Inv : P(F) )
well−definedness DR ⊆ dom( eta )
direct definition
∀ t_ · t_ ∈ DR ⇒ eta ( t_) ∈ Inv

withControl expression (DR: P( RReal ) , ce : CDE(F,UF) ,u : RReal 7→ UF)
well−definedness DR ⊆ dom(u)

Controllable predicate (DR: P( RReal ) , ce : CDE(F,UF) )
direct definition
∃ u · u ∈ RReal 7→ UF ∧ DR ⊆ dom(u) ∧ So lvab l e (DR, withControl (DR, ce , u

) )
ControllableOn predicate (DR: P( RReal ) ,DU: P(UF) , ce : CDE(F,UF) )

direct definition
∃ u · u ∈ RReal 7→ UF ∧ DR ⊆ dom(u) ∧ So lvab l e (DR, withControl (DR, ce , u

) ) ∧ (∀ t_ · t_ ∈ DR ⇒ u(t_) ∈ DU)
SolvableWith predicate (DR: P( RReal ) , ce : CDE(F,UF) ,u : RReal 7→ UF)

well−definedness DR ⊆ dom(u)
direct definition

So lvab l e (DR, withControl (DR, ce , u ) )
CBAPFIS predicate ( t : RRealPlus , tp : RRealPlus , eta : RReal 7→ F, Pred : P ( (

RReal 7→ F)×( RReal 7→ F) ) , Inv : P(F) )
well−definedness Closed2Closed ( Rzero , t ) ⊆ dom( eta ) , t 7→ tp ∈ l t
direct definition
∃ etap ·

etap ∈ RReal 7→ F ∧ Closed2Closed ( t , tp ) ⊆ dom( etap ) ∧
( ( Closed2Closed ( t , tp ) C eta ) 7→ ( Closed2Closed ( t , tp ) C etap ) ) ∈

Pred ∧
(∀ t_ · t_ ∈ Closed2Closed ( t , tp ) ⇒ etap ( t_) ∈ Inv )

CBAPsolutionOfFIS predicate ( t : RRealPlus , tp : RRealPlus , eta : RReal 7→ F,
eq : DE(F) , Inv : P(F) )

well−definedness Closed2Closed ( Rzero , t ) ⊆ dom( eta ) , t 7→ tp ∈ l t ,
So lvab l e ( Closed2Closed ( t , tp ) , eq )

direct definition
∃ etap ·

etap ∈ RReal 7→ F ∧ Closed2Closed ( t , tp ) ⊆ dom( etap ) ∧
so lu t i onOf ( Closed2Closed ( t , tp ) , etap , eq ) ∧
eta ( t ) = etap ( t ) ∧
(∀ t_ · t_ ∈ Closed2Closed ( t , tp ) ⇒ etap ( t_) ∈ Inv )

CBAPParallelEqFIS predicate ( t : RRealPlus , tp : RRealPlus , eta1 : RReal 7→ F1
, eq1 : DE(F1) , eta2 : RReal 7→ F2 , eq2 : DE(F2) , Inv12 : P(F1×F2) )

well−definedness t 7→ tp ∈ l t , Closed2Closed ( Rzero , t ) ⊆ dom( eta1 ) ,
Closed2Closed ( Rzero , t ) ⊆ dom( eta2 ) , So lvab l e ( Closed2Closed ( t , tp ) , eq1
) , So lvab l e ( Closed2Closed ( t , tp ) , eq2 )

direct definition
∃ eta1p , eta2p ·

eta1p ∈ RReal 7→ F1 ∧ Closed2Closed ( t , tp ) ⊆ dom( eta1p ) ∧
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eta2p ∈ RReal 7→ F2 ∧ Closed2Closed ( t , tp ) ⊆ dom( eta2p ) ∧
so lu t i onOf ( Closed2Closed ( t , tp ) , eta1p , eq1 ) ∧
so lu t i onOf ( Closed2Closed ( t , tp ) , eta2p , eq2 ) ∧
eta1 ( t ) = eta1p ( t ) ∧ eta2 ( t ) = eta2p ( t ) ∧
(∀ t_ · t_ ∈ Closed2Closed ( t , tp ) ⇒ ( eta1p (t_) 7→eta2p (t_) ) ∈ Inv12 )

THEOREMS
solutionDer :
∀ fu ,DR,DF, i n i t , in i tArg , eta , k ·

DR ⊆ RReal ∧ DF ⊆ F ∧
fu ∈ (DR×DF→F) ∧ k ∈ N ∧ k > 0 ∧ (∀ x0 · x0 ∈ DF ⇒ p a r t i a l 1 ( fu , x0 )

∈ Dn(k ,DR,F) ) ∧
i n i t ∈ DF ∧ i n i tArg ∈ DR ∧
eta ∈ RReal 7→ F ∧ DR ⊆ dom( eta ) ∧
so lu t i onOf (DR, eta , ode ( fu , i n i t , i n i tArg ) ) ⇒

eta ∈ Dn( k+1 ,DR,F)
SolutionsOf_solutionOf :
∀ DR, eq , eta ·

DR ⊆ RReal ∧ eq ∈ DE(F) ∧ eta ∈ RReal 7→ F ∧ DR ⊆ dom( eta ) ⇒
( eta ∈ So lut ionsOf (DR, eq ) ⇔ so lu t i onOf (DR, eta , eq ) )

CauchyLipschitz :
∀ eq ,DR,DF ·

DR ⊆ RReal ∧ DF ⊆ F ∧ eq ∈ DE(F) ∧
CauchyLipschitzCondit ion (DR,DF, eq )
⇒

So lvab l e (DR, eq )
concatSolutions :
∀ DR1,DR2, eta1 , eta2 , eq ·

DR1 ⊆ RReal ∧ DR2 ⊆ RReal ∧ DR1 ∩ DR2 = ∅ ∧
eta1 ∈ RReal 7→ F ∧ DR1 ⊆ dom( eta1 ) ∧
eta2 ∈ RReal 7→ F ∧ DR2 ⊆ dom( eta2 ) ∧
eq ∈ DE(F) ∧
so lu t i onOf (DR1, eta1 , eq ) ∧ so lu t i onOf (DR2, eta2 , eq ) ⇒

so lu t i onOf (DR1 ∪ DR2, eta1 ∪ eta2 , eq )
appendSolutionExistence :
∀ DR, A, B, eq , eta ·

DR ⊆ RReal ∧
A ⊆ DR ∧ B ⊆ DR ∧ A ∩ B = ∅ ∧ A ∪ B = DR ∧
eq ∈ DE(F) ∧ So lvab l e (B, eq ) ∧
eta ∈ RReal 7→ F ∧ DR ⊆ dom( eta ) ⇒

(∃ etap · etap ∈ DR → F ∧ AppendSolutionBAP ( eq ,DR,A,B, eta , etap ) )
concatSolvable :
∀ DR1,DR2, eq ·

DR1 ⊆ RReal ∧ DR2 ⊆ RReal ∧ DR1 ∩ DR2 = ∅ ∧
eq ∈ DE(F) ∧ So lvab l e (DR1, eq ) ∧ So lvab l e (DR2, eq ) ⇒

So lvab l e (DR1 ∪ DR2, eq )
PiecewiseCauchyLipschitz :
∀ eq , DRs ,DF ·

DRs ⊆ P( RReal ) ∧ DRs 6= ∅ ∧ (∀ DR1,DR2 · DR1 ∈ DRs ∧ DR2 ∈ DRs ∧ DR1
6= DR2 ⇒ DR1 ∩ DR2 = ∅) ∧

DF ⊆ F ∧ eq ∈ DE(F) ∧
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PiecewiseCauchyLipsch i tzCondit ion (DRs ,DF, eq ) ⇒
So lvab l e ( union (DRs) , eq )

solution_restriction :
∀ DR1,DR2, eq , eta ·

DR1 ⊆ RReal ∧ DR2 ⊆ DR1 ∧ eq ∈ DE(F) ∧
eta ∈ RReal 7→ F ∧ so lu t i onOf (DR1, eta , eq )
⇒

so lu t i onOf (DR2, eta , eq )
solvable_restriction :
∀ DR1,DR2, eq ·

DR1 ⊆ RReal ∧ DR2 ⊆ DR1 ∧ eq ∈ DE(F) ∧
So lvab l e (DR1, eq )
⇒

So lvab l e (DR2, eq )
CBAPsolutionOf_FIS :
∀ t , eta , eq , Inv ·

t ∈ RRealPlus ∧
eta ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧
eq ∈ DE(F) ∧
Inv ∈ P(F) ∧ IsOpen ( Inv ) ∧ eta ( t ) ∈ Inv ∧
So lvab l e ( C l o s e d 2 I n f i n i t y ( t ) , eq )
⇒ (
∃ tp , etap ·

tp ∈ RRealPlus ∧ t 7→ tp ∈ l t ∧
etap ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , tp ) ⊆ dom( etap ) ∧
So lvab l e ( Closed2Closed ( t , tp ) , eq ) ∧
CBAPsolutionOf ( t , tp , eta , etap , eq , Inv )

)
CBAPsolutionOf_INV :
∀ t , tp , eta , etap , eq , LocalInv , GlobalInv ·

t ∈ RRealPlus ∧ tp ∈ RRealPlus ∧ t 7→ tp ∈ l t ∧
eta ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧
etap ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , tp ) ⊆ dom( etap ) ∧
eq ∈ DE(F) ∧ So lvab l e ( Closed2Closed ( t , tp ) , eq ) ∧
LocalInv ⊆ F ∧ eta ( t ) ∈ LocalInv ∧
GlobalInv ⊆ F ∧ (∀ t_ · t_ ∈ Closed2Closed ( Rzero , t ) ⇒ eta ( t_) ∈

GlobalInv ) ∧
CBAPsolutionOf ( t , tp , eta , etap , eq , Local Inv ∩ GlobalInv )
⇒

(∀ t_ · t_ ∈ Closed2Closed ( Rzero , tp ) ⇒ etap ( t_) ∈ GlobalInv )
CBAPFIS_act_FIS :
∀ t , tp , eta , Pred , Inv ·

t ∈ RRealPlus ∧ tp ∈ RRealPlus ∧ eta ∈ RReal 7→ F ∧
Pred ∈ P ( ( RReal 7→ F)×( RReal 7→ F) ) ∧ Inv ∈ P(F) ∧
Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧ t 7→ tp ∈ l t ∧
CBAPFIS( t , tp , eta , Pred , Inv )
⇒ (
∃ etap · etap ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , tp ) ⊆ dom( etap )

∧
CBAP( t , tp , eta , etap , Pred , Inv )
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)
CBAPsolutionOfFIS_act_FIS :
∀ t , tp , eta , eq , Inv ·

t ∈ RRealPlus ∧ tp ∈ RRealPlus ∧ eta ∈ RReal 7→ F ∧
eq ∈ DE(F) ∧ Inv ∈ P(F) ∧
Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧ t 7→ tp ∈ l t ∧
CBAPsolutionOfFIS ( t , tp , eta , eq , Inv )
⇒ (
∃ etap · etap ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , tp ) ⊆ dom( etap )

∧
CBAPsolutionOf ( t , tp , eta , etap , eq , Inv )

)
CBAPFIS_restriction :
∀ t , tp , eta , Pred , Inv ·

t ∈ RRealPlus ∧ tp ∈ RRealPlus ∧ eta ∈ RReal 7→ F ∧
Pred ∈ P ( ( RReal 7→ F)×( RReal 7→ F) ) ∧ Inv ∈ P(F) ∧
Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧ t 7→ tp ∈ l t ∧
CBAPFIS( t , tp , eta , Pred , Inv ) ⇒ (
∀ tc · tc ∈ RRealPlus ∧ t 7→ tc ∈ l t ∧ tc 7→ tp ∈ l e q ⇒

CBAPFIS( t , tc , eta , Pred , Inv )
)

CBAPsolutionOfFIS_implies_CBAPFIS :
∀ t , tp , eta , eq , Inv ·

t ∈ RRealPlus ∧ tp ∈ RRealPlus ∧ t 7→ tp ∈ l t ∧
eta ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , t ) ⊆ dom( eta ) ∧
eq ∈ DE(F) ∧ So lvab l e ( Closed2Closed ( t , tp ) , eq ) ∧
Inv ∈ P(F) ⇒ (

CBAPsolutionOfFIS ( t , tp , eta , eq , Inv )
⇔

CBAPFIS( t , tp , eta , ( RReal 7→F)×So lut ionsOf ( Closed2Closed ( t , tp ) , eq ) ,
Inv )

)
PROOF RULES

s o f :
Metavariables

DR: P( RReal )
eq : DE(F)
eta : P( RReal×F)

Rewrite Rules
Solutions_to_solution : e ta ∈ So lut ionsOf (DR, eq )

rhs1 : > ⇒ so lu t i onOf (DR, eta , eq )
solution_to_Solutions : s o lu t i onOf (DR, eta , eq )

rhs1 : > ⇒ eta ∈ So lut ionsOf (DR, eq )
eq_typing :
Metavariables

DR: P( RReal )
ceq : CDE(F,UF)
u : P( RReal×UF)

Rewrite Rules
type_withControl : withControl (DR, ceq , u) ∈ DE(F)
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rhs1 : > ⇒ >
END

A.5 Theories of Approximation
This section gives the theories of approximation presented in Section 4.3.2.5. These two theories
define the basic mathematical foundations for formalising approximation in Event-B, and in particular
the general concept of approximation, together with various axioms to help handling it in models
and proofs.

Note that the general theory of approximation is split into two components: ApproximationBase
defines approximation as axiomatic operators, while Approximation expands on these operators
to build more complex structure (explicitly). This separation is due to a limitation of the theory
plug-in, that prevents axiomatic operators to be referenced by directly defined operators in the same
theory component.

Theory for Approximation – Base

Listings A.10: Approximation (Base) theory
THEORY

IMPORTTHEORY DiffEq
TYPEPARAMETERS E, F1 , F2 , F3 ,F
OPERATORS

absdiff commutative expression ( a : RReal , b : RReal )
direct definition

abs ( minus ( a 7→ b) )
AXIOMATIC DEFINITIONS
approx_rel :
OPERATORS

DeltaNeighborhood predicate ( d e l t a : RRealPlus , a : F , b : F) :
AXIOMS

deltaN_commutative :
∀ de l ta , a , b · d e l t a ∈ RRealPlus ∧ a ∈ F ∧ b ∈ F ⇒

( DeltaNeighborhood ( de l ta , a , b ) ⇔ DeltaNeighborhood ( de l ta , b , a ) )
deltaN_refl :
∀ de l ta , a · d e l t a ∈ RRealPlus ∧ a ∈ F ⇒ DeltaNeighborhood ( de l ta , a , a )

deltaN_widen :
∀ a , b , de l t a1 · de l ta1 ∈ RRealPlus ∧ a ∈ F ∧ b ∈ F ∧ DeltaNeighborhood

( de l ta1 , a , b ) ⇒
(∀ de l ta2 · de l ta2 ∈ RRealPlus ∧ de l ta1 7→ de l ta2 ∈ l e q ⇒

DeltaNeighborhood ( de l ta2 , a , b ) )
deltaN_pseudo_trans :
∀ a , b , c , de l ta1 , de l t a2 ·

de l ta1 ∈ RRealPlus ∧ de l ta2 ∈ RRealPlus ∧
a ∈ F ∧ b ∈ F ∧ c ∈ F ∧
DeltaNeighborhood ( de l ta1 , a , b ) ∧ DeltaNeighborhood ( de l ta2 , b , c ) ⇒

DeltaNeighborhood ( p lus ( de l t a1 7→de l ta2 ) , a , c )
deltaN_R :
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∀ a , b , d e l t a · a ∈ RReal ∧ b ∈ RReal ∧ d e l t a ∈ RRealPlus ⇒
( DeltaNeighborhood ( de l ta , a , b ) ⇔ ( a b s d i f f ( a , b ) 7→ d e l t a ∈ l e q ) )

deltaN_R_add :
∀ a , b , k , d e l t a · a ∈ RReal ∧ b ∈ RReal ∧ k ∈ RReal ∧ d e l t a ∈ RRealPlus

⇒
( DeltaNeighborhood ( de l ta , a , b ) ⇔ DeltaNeighborhood ( de l ta , p lus ( a 7→k ) ,

p lus (b 7→k ) ) )
deltaN_R_add2 :
∀ a , b , c , d , de l ta1 , de l t a2 ·

a ∈ RReal ∧ b ∈ RReal ∧ c ∈ RReal ∧ d ∈ RReal ∧
de l ta1 ∈ RRealPlus ∧ de l ta2 ∈ RRealPlus ∧
DeltaNeighborhood ( de l ta1 , a , b ) ∧ DeltaNeighborhood ( de l ta2 , c , d ) ⇒

DeltaNeighborhood ( p lus ( de l t a1 7→de l ta2 ) , p lus ( a 7→c ) , p lus (b 7→d) )
END

Theory of Approximation

Listings A.11: Approximation theory
THEORY

IMPORTTHEORY ApproximationBase
TYPEPARAMETERS E, F1 , F2 , F3 , UF1, UF2,F
OPERATORS

FDeltaNeighborhood predicate (PE: P(E) , d e l t a : RRealPlus , a : F , f 2 : E 7→ F)
well−definedness PE ⊆ dom( f2 )
direct definition
∀ x · x ∈ PE ⇒ DeltaNeighborhood ( de l ta , a , f 2 ( x ) )

DeltaApproximation predicate (PE: P(E) , d e l t a : RRealPlus , f 1 : E 7→ F, f2 : E
7→ F)

well−definedness PE ⊆ dom( f1 ) ,PE ⊆ dom( f2 )
direct definition
∀ x · x ∈ PE ⇒ DeltaNeighborhood ( de l ta , f 1 ( x ) , f 2 ( x ) )

DeltaApproximationEq predicate (DR: P( RReal ) , d e l t a : RRealPlus , e1 : DE(F) ,
e2 : DE(F) )

well−definedness So lvab l e (DR, e1 ) , So lvab l e (DR, e2 )
direct definition
∀ eta1 , eta2 ·

eta1 ∈ RReal 7→ F ∧ eta2 ∈ RReal 7→ F ∧
DR ⊆ dom( eta1 ) ∧ DR ⊆ dom( eta2 ) ∧
so lu t i onOf (DR, eta1 , e1 ) ∧ so lu t i onOf (DR, eta2 , e2 )
⇒ DeltaApproximation (DR, de l ta , eta1 , eta2 )

DeltaApproximationEqObs predicate (DR: P( RReal ) , d e l t a : RRealPlus , ee1 : DE(
F1) , g1 : F1 → F, ee2 : DE(F2) , g2 : F2 → F)

well−definedness So lvab l e (DR, ee1 ) , So lvab l e (DR, ee2 )
direct definition
∀ eta1 , eta2 ·

eta1 ∈ RReal 7→ F1 ∧ eta2 ∈ RReal 7→ F2 ∧
DR ⊆ dom( eta1 ) ∧ DR ⊆ dom( eta2 ) ∧
so lu t i onOf (DR, eta1 , ee1 ) ∧ so lu t i onOf (DR, eta2 , ee2 )
⇒ DeltaApproximation (DR, de l ta , g1 ◦ eta1 , g2 ◦ eta2 )
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DeltaApproximationEqF predicate (DR: P( RReal ) , d e l t a : RRealPlus , e : DE(F) , g
: RReal 7→ F)

well−definedness So lvab l e (DR, e ) ,DR ⊆ dom( g )
direct definition
∀ eta ·

eta ∈ RReal 7→ F ∧ DR ⊆ dom( eta ) ∧ so lu t i onOf (DR, eta , e )
⇒ DeltaApproximation (DR, de l ta , eta , g )

DeltaShrink expression ( d e l t a : RRealPlus , SF : P(F) )
direct definition

{ f2 | f 2 ∈ F ∧ (∃ f 1 · f 1 ∈ SF ∧ DeltaNeighborhood ( de l ta , f1 , f 2 ) ) }
DeltaNeighborhoodSet expression ( d e l t a : RRealPlus , x : E)

direct definition
{ y | y ∈ E ∧ DeltaNeighborhood ( de l ta , x , y ) }

AXIOMATIC DEFINITIONS
s imu la t i on_funct i ons :
OPERATORS

SimulationFunctions expression (DF1 : P(F1) ,DF2 : P(F2) ,DUF1: P(UF1) ,DUF2:
P(UF2) , f 1 : F1×UF1 7→ F1 , f 2 : F2×UF2 7→ F2 , g1 : F1 → F, g2 : F2 → F) :
P(P ( ( F1×F2)×RReal ) )

well−definedness DF1×DUF1 ⊆ dom( f1 ) ,DF2×DUF2 ⊆ dom( f2 )
AXIOMS

SimulationFunctions_char :
∀ DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 ,V ·

DF1 ⊆ F1 ∧ DF2 ⊆ F2 ∧ DUF1 ⊆ UF1 ∧ DUF2 ⊆ UF2 ∧
f 1 ∈ F1×UF1 7→ F1 ∧ f 2 ∈ F2×UF2 7→ F2 ∧
g1 ∈ F1 → F ∧ g2 ∈ F2 → F ∧
DF1×DUF1 ⊆ dom( f1 ) ∧ DF2×DUF2 ⊆ dom( f2 ) ∧
V ∈ Simulat ionFunct ions (DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 ) ∧
V ∈ F1×F2 7→ RReal
⇒ (

DF1×DF2 ⊆ dom(V)
∧ (∀ x1 , x2 · x1 ∈ DF1 ∧ x2 ∈ DF2 ⇒ V( x1 7→x2 ) ∈ RRealPlus )

)
SimulationFunction_control_ODE :
∀ DR, eta01 , eta02 , t0 , DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 , u1 , u2 ,V ·

DR ⊆ RReal ∧ t0 ∈ DR ∧ eta01 ∈ F1 ∧ eta02 ∈ F2 ∧
DF1 ⊆ F1 ∧ DF2 ⊆ F2 ∧ DUF1 ⊆ UF1 ∧ DUF2 ⊆ UF2 ∧
f 1 ∈ F1×UF1 7→ F1 ∧ DF1×DUF1 ⊆ dom( f1 ) ∧
f 2 ∈ F2×UF2 7→ F2 ∧ DF2×DUF2 ⊆ dom( f2 ) ∧
g1 ∈ F1 → F ∧ g2 ∈ F2 → F ∧
u1 ∈ RReal 7→ UF1 ∧ DR ⊆ dom( u1 ) ∧ ran ( u1 ) ⊆ DUF1 ∧
u2 ∈ RReal 7→ UF2 ∧ DR ⊆ dom( u2 ) ∧ ran ( u2 ) ⊆ DUF2 ∧
V ∈ Simulat ionFunct ions (DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 ) ∧
SolvableWith (DR, caode ( f1 , eta01 , t0 ) , u1 ) ∧ SolvableWith (DR, caode ( f2 ,

eta02 , t0 ) , u2 ) ⇒
(∃ d e l t a ·

d e l t a ∈ RRealPlus ∧
DeltaApproximationEqObs (DR, de l ta ,

withControl (DR, caode ( f1 , eta01 , t0 ) , u1 ) , g1 ,
withControl (DR, caode ( f2 , eta02 , t0 ) , u2 ) , g2
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)
)

SimulationFunction_control_ODE_delta :
∀ DR, eta01 , eta02 , t0 , DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 , u1 , u2 ,V, d e l t a ·

DR ⊆ RReal ∧ t0 ∈ DR ∧ eta01 ∈ F1 ∧ eta02 ∈ F2 ∧
DF1 ⊆ F1 ∧ DF2 ⊆ F2 ∧ DUF1 ⊆ UF1 ∧ DUF2 ⊆ UF2 ∧
f 1 ∈ F1×UF1 7→ F1 ∧ DF1×DUF1 ⊆ dom( f1 ) ∧
f 2 ∈ F2×UF2 7→ F2 ∧ DF2×DUF2 ⊆ dom( f2 ) ∧
g1 ∈ F1 → F ∧ g2 ∈ F2 → F ∧
u1 ∈ RReal 7→ UF1 ∧ DR ⊆ dom( u1 ) ∧ ran ( u1 ) ⊆ UF1 ∧
u2 ∈ RReal 7→ UF2 ∧ DR ⊆ dom( u2 ) ∧ ran ( u2 ) ⊆ UF2 ∧
V ∈ Simulat ionFunct ions (DF1, DF2,DUF1,DUF2, f1 , f2 , g1 , g2 ) ∧
d e l t a ∈ RReal ∧ Rzero 7→ d e l t a ∈ l t ∧ boundedBy (DF1×DF2,V, Rzero ,

d e l t a ) ∧
SolvableWith (DR, caode ( f1 , eta01 , t0 ) , u1 ) ∧ SolvableWith (DR, caode ( f2 ,

eta02 , t0 ) , u2 ) ⇒
DeltaApproximationEqObs (DR, de l ta ,

withControl (DR, caode ( f1 , eta01 , t0 ) , u1 ) , g1 ,
withControl (DR, caode ( f2 , eta02 , t0 ) , u2 ) , g2

)
neighborhoods :
AXIOMS

deltaNSet_open :
∀ de l ta , x · d e l t a ∈ RRealPlus ∧ Rzero 7→ d e l t a ∈ l t ∧ x ∈ E ⇒

IsOpen ( DeltaNeighborhoodSet ( de l ta , x ) )
THEOREMS

deltaA_restriction :
∀ PE, PE2 , de l ta , f1 , f 2 ·

PE ⊆ E ∧ PE2 ⊆ PE ∧ d e l t a ∈ RRealPlus ∧
f 1 ∈ E 7→ F ∧ f 2 ∈ E 7→ F ∧
PE ⊆ dom( f1 ) ∧ PE ⊆ dom( f2 ) ∧
DeltaApproximation (PE, de l ta , f1 , f 2 )
⇒

DeltaApproximation (PE2 , de l ta , f1 , f 2 )
deltaAeq_restriction :
∀ DR,DR2, de l ta , e1 , e2 ·

DR ⊆ RReal ∧ DR2 ⊆ DR ∧ d e l t a ∈ RRealPlus ∧
e1 ∈ DE(F) ∧ e2 ∈ DE(F) ∧
So lvab l e (DR, e1 ) ∧ So lvab l e (DR2, e2 ) ∧
DeltaApproximationEq (DR, de l ta , e1 , e2 )
⇒

DeltaApproximationEq (DR2, de l ta , e1 , e2 )
deltaAeqobs_restriction :
∀ DR,DR2, de l ta , e1 , e2 , g1 , g2 ·

DR ⊆ RReal ∧ DR2 ⊆ DR ∧ d e l t a ∈ RRealPlus ∧
e1 ∈ DE(F1) ∧ e2 ∈ DE(F2) ∧
g1 ∈ F1 → F ∧ g2 ∈ F2 → F ∧
So lvab l e (DR, e1 ) ∧ So lvab l e (DR2, e2 ) ∧
DeltaApproximationEqObs (DR, de l ta , e1 , g1 , e2 , g2 )
⇒



A.5. THEORIES OF APPROXIMATION 259

DeltaApproximationEqObs (DR2, de l ta , e1 , g1 , e2 , g2 )
deltaA_comp :
∀ DF1,PE, f , g , h , d e l t a ·

DF1 ⊆ F1 ∧ PE ⊆ E ∧
g ∈ F1 7→ E ∧ f ∈ E 7→ F ∧ h ∈ E 7→ F ∧
DF1 ⊆ dom( g ) ∧ PE ⊆ dom( f ) ∧ PE ⊆ dom(h) ∧
DeltaApproximation (PE, de l ta , f , h ) ∧
(∀ x · x ∈ DF1 ⇒ g ( x ) ∈ PE) ⇒

DeltaApproximation (DF1, de l ta , f ◦ g , h ◦ g )
deltaA_commutative :
∀ PE, de l ta , f1 , f 2 ·

PE ⊆ E ∧ d e l t a ∈ RRealPlus ∧ f 1 ∈ E 7→ F ∧ f 2 ∈ E 7→ F ∧
PE ⊆ dom( f1 ) ∧ PE ⊆ dom( f2 ) ⇒

( DeltaApproximation (PE, de l ta , f1 , f 2 ) ⇔ DeltaApproximation (PE, de l ta , f2
, f 1 ) )

deltaAeq_commutative :
∀ DR, de l ta , e1 , e2 ·

DR ⊆ RReal ∧ d e l t a ∈ RRealPlus ∧ e1 ∈ DE(F) ∧ e2 ∈ DE(F) ∧ So lvab l e (
DR, e1 ) ∧ So lvab l e (DR, e2 ) ⇒

( DeltaApproximationEq (DR, de l ta , e1 , e2 ) ⇔ DeltaApproximationEq (DR,
de l ta , e2 , e1 ) )

deltaAeqobs_commutative :
∀ DR, de l ta , e1 , e2 , g1 , g2 ·

DR ⊆ RReal ∧ d e l t a ∈ RRealPlus ∧
e1 ∈ DE(F1) ∧ e2 ∈ DE(F2) ∧
So lvab l e (DR, e1 ) ∧ So lvab l e (DR, e2 ) ∧
g1 ∈ F1 → F ∧ g2 ∈ F2 → F
⇒

( DeltaApproximationEqObs (DR, de l ta , e1 , g1 , e2 , g2 )
⇔

DeltaApproximationEqObs (DR, de l ta , e2 , g2 , e1 , g1 ) )
deltaApp_induction :
∀ de l ta , eqA , eqC , etaA , etaC , etaAp , etaCp , t , tp , InvA , InvC ·

d e l t a ∈ RRealPlus ∧
t ∈ RRealPlus ∧
eqA ∈ DE(F) ∧ eqC ∈ DE(F) ∧
etaA ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , t ) ⊆ dom( etaA ) ∧
etaC ∈ RReal 7→ F ∧ Closed2Closed ( Rzero , t ) ⊆ dom( etaC ) ∧
DeltaApproximationEq ( Closed2Closed ( t , tp ) , de l ta , eqA , eqC) ∧
DeltaApproximation ( Closed2Closed ( Rzero , t ) , de l ta , etaA , etaC ) ∧
CBAPsolutionOf ( t , tp , etaA , etaAp , eqA , InvA ) ∧ CBAPsolutionOf ( t , tp , etaC ,

etaCp , eqC , InvC )
⇒ DeltaApproximation ( Closed2Closed ( Rzero , tp ) , de l ta , etaAp , etaCp )

deltaApp_obs_induction :
∀ de l ta , eqA , eqC , gA , gC , etaA , etaC , etaAp , etaCp , t , tp , InvA , InvC ·

d e l t a ∈ RRealPlus ∧
t ∈ RRealPlus ∧
eqA ∈ DE(F1) ∧ eqC ∈ DE(F2) ∧ gA ∈ F1 → F ∧ gC ∈ F2 → F ∧
etaA ∈ RReal 7→ F1 ∧ Closed2Closed ( Rzero , t ) ⊆ dom( etaA ) ∧
etaC ∈ RReal 7→ F2 ∧ Closed2Closed ( Rzero , t ) ⊆ dom( etaC ) ∧
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DeltaApproximationEqObs ( Closed2Closed ( t , tp ) , de l ta , eqA , gA , eqC , gC) ∧
DeltaApproximation ( Closed2Closed ( Rzero , t ) , de l ta , gA ◦ etaA , gC ◦ etaC )

∧
CBAPsolutionOf ( t , tp , etaA , etaAp , eqA , InvA ) ∧ CBAPsolutionOf ( t , tp , etaC ,

etaCp , eqC , InvC )
⇒ DeltaApproximation ( Closed2Closed ( Rzero , tp ) , de l ta , gA ◦ etaAp , gC ◦

etaCp )
DeltaShrink_INV :
∀ de l ta , xA, xC , IA , IC ·

d e l t a ∈ RRealPlus ∧
IA ⊆ F ∧ xA ∈ F ∧
IC ⊆ F ∧ xC ∈ F ∧ xC ∈ IC ∧
DeltaShr ink ( de l ta , IC ) ⊆ IA ⇒

xA ∈ IA
END



Appendix B

Models

This appendix gives the complete and “raw” Event-B models of the case studies presented in this
manuscript, including their associated domain theories. Note that the notations used is taken
straight from the model (no notation shortcut is used).

We first give the complete generic model (Section B.1), as it is the base of every other model
presented afterwards.

The models are presented in order of appearance in the manuscript: automatic brake (Section
B.2), signalised left-turn assist (Section B.3), water tanks (Section B.4), robot control (Section B.5)
and inverted pendulum (Section B.6).

B.1 Generic Model
This section presents the generic model as discussed in Chapter 5. The model consists of a machine
that abstract controller-plant loop hybrid system, accompanied by a basic context that defines the
discrete and continuous state-space of the hybrid system being developed.

Context

Listings B.1: Generic model context
CONTEXT

GenericCtx
SETS

STATES
CONSTANTS

S
AXIOMS

axm1 : S = ...
END

Machine

261
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Listings B.2: Generic model
MACHINE

Generic
SEES

GenericCtx
VARIABLES t , x_p , x_s
INVARIANTS

inv1 : t ∈ RRealPlus
inv2 : x_p ∈ RRealPlus 7→ S
inv3 : x_s ∈ STATES
inv4 : Closed2Closed(Rzero, t) ⊆ dom(x_p)

EVENTS
INITIALISATION
THEN

act1 : t := Rzero
act2 : x_p :∈ {Rzero} → S
act3 : x_s :∈ STATES

END

Behave
ANY e , Inv , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Infinity(t), e)
grd3 : Inv ∈ P(S)
grd4 : x_p(t) ∈ Inv
grd5 : tp ∈ RRealPlus
grd6 : t 7→ tp ∈ lt ∧ CBAPsolutionOfFIS(t, tp, x_p, e, Inv)

THEN
act1 :
t, x_p :|

t′ = tp∧
x_p′ ∈ RReal 7→ S∧
Closed2Closed(Rzero, t′) ⊆ dom(x_p′)∧
CBAPsolutionOf (t, t′, x_p, x_p′, e, Inv)

END

Actuate
ANY e , s , Inv , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Infinity(t), e)
grd3 : s ⊆ STATES
grd4 : x_s ∈ s
grd5 : Inv ∈ P(S)
grd6 : x_p(t) ∈ Inv
grd7 : tp ∈ RRealPlus
grd8 : t 7→ tp ∈ lt ∧ CBAPsolutionOfFIS(t, tp, x_p, e, Inv)

THEN
act1 :
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t, x_p :|
t′ = tp∧
x_p′ ∈ RReal 7→ S∧
Closed2Closed(Rzero, t′) ⊆ dom(x_p′)∧
CBAPsolutionOf (t, t′, x_p, x_p′, e, Inv)

END

Transition
ANY s
WHERE

grd1 : s ∈ P1(STATES)
THEN

act1 : x_s :∈ s
END

Sense
ANY s , p
WHERE

grd1 : s ∈ P1(STATES)
grd2 : p ∈ P(STATES × RReal × S)
grd3 : (x_s 7→ t 7→ x_p(t)) ∈ p

THEN
act1 : x_s :∈ s

END

END

B.2 Automatic Brake Case Study
This section gives the model for the automatic brake case study developed in Section 5.4.1.

Context

Listings B.3: Automatic brake context
CONTEXT

AutobrakeCtx
EXTENDS

GenericCtx
CONSTANTS

s t a b i l i z i n g
a c c e l e r a t i n g
braking
nearing_stop
stopped
A
b
v0
SP
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f2_speed
f 1 _ d e c e l e r a t i o n
f1_stab l e
f 1 _ a c c e l e r a t i o n
f _ d e c e l e r a t i o n
f_s tab l e
f _ a c c e l e r a t i o n
eod
Vmax
x0

AXIOMS
axm1 : partition(STATES , {stabilizing}, {accelerating}, {braking}, {nearing_stop}, {stopped})
axm2 : A ∈ RReal
axm3 : Rzero 7→ A ∈ lt
axm4 : b ∈ RReal
axm5 : Rzero 7→ b ∈ lt
axm51 : b 6= Rzero
axm6 : v0 ∈ RReal
axm7 : Rzero 7→ v0 ∈ lt
axm62 : x0 ∈ RReal
axm72 : Rzero 7→ x0 ∈ lt
axm8 : SP ∈ RReal
axm9 : Rzero 7→ SP ∈ lt
axm010 : Vmax ∈ RReal
axm011 : Rzero 7→ Vmax ∈ lt
axm154 : f2_speed ∈ (RRealPlus × S)→ RReal
axm155 : f2_speed = (λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S | v_)
axm156 : f1_deceleration ∈ ((RRealPlus × RRealPlus)→ (RRealPlus × S → RReal))
axm11 :
∀t_init, v_init · t_init ∈ RRealPlus ∧ v_init ∈ RRealPlus ⇒ (

f1_deceleration(t_init 7→ v_init) =
(λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S∧

(t_ 7→ plus(divide(v_init 7→ b) 7→ t_init) ∈ lt) | uminus(b))∪
(λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S∧

(t_ 7→ plus(divide(v_init 7→ b) 7→ t_init) ∈ geq) | Rzero)
)

axm10 : f _deceleration ∈ ((RRealPlus × RRealPlus)→ (RRealPlus × S → S))
axm102 : ∀t_init, v_init · t_init ∈ RRealPlus ∧ v_init ∈ RRealPlus
⇒ (f1_deceleration(t_init 7→ v_init) ∈ RRealPlus × S → RReal)

axm101 :
∀t_init, v_init · t_init ∈ RRealPlus ∧ v_init ∈ RRealPlus ⇒

f _deceleration(t_init 7→ v_init) = bind(f1_deceleration(t_init 7→ v_init), f2_speed)
axm12 : f1 _stable ∈ (RRealPlus × S → RReal)
axm13 : f1 _stable = (λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S | Rzero)
axm130 : f _stable ∈ (RRealPlus × S → S)
axm131 : f _stable = bind(f1_stable, f2_speed)
axm132 : f _stable ∈ C0 (RRealPlus × S, S)
axm14 : f1 _acceleration ∈ (RRealPlus × S → RReal)
axm15 : f1 _acceleration = (λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S | A)
axm150 : f _acceleration ∈ (RRealPlus × S → S)
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axm151 : f _acceleration = bind(f1_acceleration, f2_speed)
axm152 : f _acceleration ∈ C0 (RRealPlus × S, S)
axm16 : ∀t0 · t0 ∈ RRealPlus ⇒ lipschitzContinuous(S, S, partial2 (f _stable, t0 ))
axm17 : ∀t0 · t0 ∈ RRealPlus ⇒ lipschitzContinuous(S, S, partial2 (f _acceleration, t0 ))
axm22 : eod ∈ (RRealPlus × RRealPlus → RRealPlus)
axm21 : eod = (λti 7→ vi · ti ∈ RRealPlus ∧ vi ∈ RRealPlus | plus(divide(vi 7→ b) 7→ ti))
axm20 :
∀eta1 , eta2 , t_init, v_init, x_init·

t_init ∈ RRealPlus ∧ v_init ∈ RRealPlus ∧ x_init ∈ RReal∧
eta1 ∈ Closed2Closed(t_init, eod(t_init 7→ v_init))→ S∧
solutionOf (

Closed2Closed(t_init, eod(t_init 7→ v_init)), eta1 ,
ode(

(λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S ∧ (t_ 7→ eod(t_init 7→ v_init) ∈ lt)
| (uminus(b) 7→ v_)),

(v_init 7→ x_init),
t_init

)
)∧
eta2 ∈ Closed2Infinity(eod(t_init 7→ v_init))→ S∧
solutionOf (

Closed2Infinity(eod(t_init 7→ v_init)), eta2 ,
ode(

(λt_ 7→ (v_ 7→ x_) · t_ ∈ RRealPlus ∧ (v_ 7→ x_) ∈ S ∧ (t_ 7→ eod(t_init 7→ v_init) ∈ geq)
| (Rzero 7→ v_)),

eta1 (eod(t_init 7→ v_init)),
eod(t_init 7→ v_init)

)
)⇒

solutionOf (
Closed2Infinity(t_init), eta1 ∪ eta2 ,

ode(
f _deceleration(t_init 7→ v_init),
(v_init 7→ x_init),
t_init

)
)

axm153 :
∀t_init, v_init, x_init·

t_init ∈ RRealPlus ∧ v_init ∈ RRealPlus ∧ x_init ∈ RReal ⇒
Solvable(

Closed2Infinity(t_init),
ode(

f _deceleration(t_init 7→ v_init),
(v_init 7→ x_init),
t_init

)
)

END
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Machine

Listings B.4: Automatic brake machine
MACHINE

Autobrake
REFINES

Generic
SEES

AutobrakeCtx
VARIABLES t , x_s , v , x
INVARIANTS

inv1 : v ∈ RReal 7→ RReal
inv2 : Closed2Closed(Rzero, t) ⊆ dom(v)
inv3 : x ∈ RReal 7→ RReal
inv4 : Closed2Closed(Rzero, t) ⊆ dom(x)
inv5 : x_p = bind(v, x)
inv6 : boundedBy(Closed2Closed(Rzero, t), v,Rzero,Vmax)
inv7 : ∀t_ · t_ ∈ Closed2Closed(Rzero, t) ∧ x(t_) 7→ SP ∈ geq ⇒ x_s = stopped

EVENTS
INITIALISATION
WITH

x_p′ : x_p′ = bind(v′, x ′)
THEN

act1 : t := Rzero
act2 : v, x :| v′ = {Rzero 7→ v0} ∧ x ′ = {Rzero 7→ x0}
act4 : x_s := stabilizing

END

Behave
REFINES Behave
ANY tp , e
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)

WITH
x_p′ : x_p′ = bind(v′, x ′)
Inv : Inv = S

THEN
act1 :
t, x, v :|

t′ = tp∧
x ′ ∈ RRealPlus → RReal ∧ v′ ∈ RRealPlus → RReal∧
CBAPsolutionOf (t, t′, bind(v, x), bind(v′, x ′), e, S)

END

ctrl_transition_accelerate
REFINES Transition
WHERE
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grd1 : plus(x(t) 7→ divide(times(v(t) 7→ v(t)) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt
WITH

s : s = {accelerating}
THEN

act1 : x_s := accelerating
END

ctrl_transition_stabilize
REFINES Transition
WHERE

grd1 : plus(x(t) 7→ divide(times(v(t) 7→ v(t)) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt
WITH

s : s = {stabilizing}
THEN

act1 : x_s := stabilizing
END

ctrl_transition_brake
REFINES Transition
WHERE

grd1 : plus(x(t) 7→ divide(times(v(t) 7→ v(t)) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt
WITH

s : s = {braking}
THEN

act1 : x_s := braking
END

ctrl_sense_near_stop
REFINES Sense
WHERE

grd1 : plus(x(t) 7→ divide(times(v(t) 7→ v(t)) 7→ times(Rtwo 7→ b))) 7→ SP ∈ geq
grd2 : v(t) 7→ Rzero ∈ gt

WITH
s : s = {nearing_stop}
p : p = STATES × RReal × {v_ 7→ x_ |

plus(x_ 7→ divide(times(v_ 7→ v_) 7→ times(Rtwo 7→ b))) 7→ SP ∈ geq ∧ v_ 7→ Rzero ∈ gt}
THEN

act1 : x_s := nearing_stop
END

ctrl_sense_stopping
REFINES Sense
WHERE

grd1 : v(t) = Rzero
WITH

s : s = {stabilizing, stopped}
p : p = STATES × RReal × {v_ 7→ x_ | v_ = Rzero ∧ x_ ∈ RReal}

THEN
act1 :

x_s :|
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(x_s = nearing_stop ⇒ x_s′ = stopped)∧
(x_s 6= nearing_stop ⇒ x_s′ = stabilizing)

END

ctrl_actuate_brake
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s ∈ {braking,nearing_stop}

WITH
e : e = ode(f _deceleration(t 7→ v(t)), v(t) 7→ x(t), t)
s : s = {braking,nearing_stop}
x_p′ : x_p′ = bind(v′, x ′)
Inv : Inv = {(v_ 7→ x_) | x_ ∈ RReal ∧ Rzero 7→ v_ ∈ leq}

THEN
act1 :
t, v, x :|

t′ = tp∧
v′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(v′)∧
x ′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(x ′)∧
CBAPsolutionOf (
t, t′, bind(v, x), bind(v′, x ′),
ode(f _deceleration(t 7→ v(t)), v(t) 7→ x(t), t),
{(v_ 7→ x_) | x_ ∈ RReal ∧ Rzero 7→ v_ ∈ leq}

)
END

ctrl_actuate_stabilize
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s ∈ {stabilizing, stopped}

WITH
e : e = ode(f _stable, v(t) 7→ x(t), t)
s : s = {stabilizing, stopped}
x_p′ : x_p′ = bind(v′, x ′)
Inv :

Inv = {(v_ 7→ x_) | v_ ∈ RReal ∧ x_ ∈ RReal∧
plus(x_ 7→ divide(times(v_ 7→ v_) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt}

THEN
act1 :
t, v, x :|

t′ = tp∧
v′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(v′)∧
x ′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(x ′)∧
CBAPsolutionOf (
t, t′, bind(v, x), bind(v′, x ′),
ode(f _stable, v(t) 7→ x(t), t),
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{(v_ 7→ x_) | v_ ∈ RReal ∧ x_ ∈ RReal∧
plus(x_ 7→ divide(times(v_ 7→ v_) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt}

)
END

ctrl_actuate_accelerate
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = accelerating

WITH
e : e = ode(f _acceleration, v(t) 7→ x(t), t)
s : s = {accelerating}
x_p′ : x_p′ = bind(v′, x ′)
Inv :

Inv = {(v_ 7→ x_) | v_ ∈ RReal ∧ x_ ∈ RReal∧
plus(x_ 7→ divide(times(v_ 7→ v_) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt∧
v_ 7→ Vmax ∈ leq}

THEN
act1 :
t, v, x :|

t′ = tp∧
v′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(v′)∧
x ′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(x ′)∧
CBAPsolutionOf (
t, t′, bind(v, x), bind(v′, x ′),
ode(f _acceleration, v(t) 7→ x(t), t),
{(v_ 7→ x_) | v_ ∈ RReal ∧ x_ ∈ RReal∧

plus(x_ 7→ divide(times(v_ 7→ v_) 7→ times(Rtwo 7→ b))) 7→ SP ∈ lt∧
v_ 7→ Vmax ∈ leq}

)
END

END

B.3 Signalised Left-Turn Assist
This section presents the model for the signalised left-turn assist case study, developed in Section
5.4.2.

Context

Listings B.5: SLTA context
CONTEXT

LeftTurnAss istCtx
EXTENDS

GenericCtx
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CONSTANTS
wait ing
turn ing
passed
Amax
Amin
B
k
q
Vmax
Tsv
Tpov
Tto0
Ttovmax
f s v1 _de ce l e r a t e
f s v 1 _ a c c e l e r a t e
fsv1_acce lerate_min
f sv1_stab l e
fsv2_speed
fpov_speed
f _ d e c e l e r a t e
f _ a c c e l e r a t e
f_accelerate_min
f_stab l e
ppov_init
vpov_init

AXIOMS
axm1 : partition(STATES , {waiting}, {turning}, {passed})
axm2 : Amax ∈ RRealPlusStar
axm3 : Amin ∈ RRealPlusStar
axm32 : Amin 7→ Amax ∈ lt
axm4 : B ∈ RRealPlusStar
axm5 : k ∈ RRealPlusStar
axm6 : q ∈ RRealPlusStar
axm7 : Vmax ∈ RRealPlusStar
axm8 : Tsv = (λasv 7→ vsv 7→ psv·

asv ∈ RReal ∧ Rzero 7→ asv ∈ lt ∧ vsv ∈ RRealPlus ∧ psv ∈ RRealPlus ∧ psv 7→ q ∈ leq |
divide(plus(uminus(vsv) 7→ sqrt(plus(times(vsv 7→ vsv) 7→ times(times(Rtwo 7→ asv) 7→

minus(q 7→ psv)))))
7→ asv)

)
axm9 : Tsv ∈ (RReal × RReal × RReal) 7→ RReal
axm10 : Tpov = (λppov · ppov ∈ RReal | divide(minus(ppov 7→ k) 7→ Vmax))
axm11 : Tpov ∈ RReal → RReal
axm12 : Tto0 = (λa_ 7→ v0_ · a_ ∈ RReal ∧ a_ 7→ Rzero ∈ lt ∧ v0_ ∈ RRealPlus |

uminus(divide(v0_ 7→ a_)))
axm13 : Ttovmax = (λa_ 7→ v0_·

a_ ∈ RReal ∧ a_ 7→ Rzero ∈ gt ∧ v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq
| divide(minus(Vmax 7→ v0_) 7→ a_))

axm14 : fsv1 _decelerate = (λa_ 7→ v0_·
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a_ ∈ RReal ∧ a_ 7→ Rzero ∈ lt ∧ uminus(B) 7→ a_ ∈ leq ∧ v0_ ∈ RRealPlus |
untilF(Rzero, fcste(RReal × S, a_),Tto0 (a_ 7→ v0_), fcste(RReal × S,Rzero))

)
axm15 : fsv1_accelerate = (λa_ 7→ v0_·

a_ ∈ RReal ∧ a_ 7→ Rzero ∈ gt ∧ v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq |
untilF(Rzero, fcste(RReal × S, a_),Ttovmax(a_ 7→ v0_), fcste(RReal × S,Rzero))

)
axm16 : fsv1_accelerate_min = (λa_ 7→ v0_·

a_ ∈ RReal ∧ a_ 7→ Amin ∈ gt ∧ v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq |
untilF(Rzero, fcste(RReal × S, a_),Ttovmax(a_ 7→ v0_), fcste(RReal × S,Rzero))

)
axm17 : fsv1_stable = (λt_ 7→ eta_·

t_ ∈ RRealPlus ∧ eta_ ∈ S | Rzero)
axm18 : fsv2_speed = (λt_ 7→ (vsv_ 7→ psv_ 7→ ppov_)·

t_ ∈ RRealPlus ∧ (vsv_ 7→ psv_ 7→ ppov_) ∈ S | vsv_)
axm22 : fpov_speed = (λv_·

v_ ∈ RReal ∧ v_ ∈ Closed2Closed(uminus(Vmax),Rzero) |
fcste(RReal × S, v_)

)
axm23 : f _decelerate = (λvpov_ 7→ a_ 7→ v0_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Closed2Open(uminus(B),Rzero)∧
v0_ ∈ RRealPlus |

bind(bind(fsv1_decelerate(a_ 7→ v0_), fsv2_speed), fpov_speed(vpov_))
)

axm24 : f _accelerate = (λvpov_ 7→ a_ 7→ v0_·
vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Open2Closed(Rzero,Amax)∧

v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq |
bind(bind(fsv1_accelerate(a_ 7→ v0_), fsv2_speed), fpov_speed(vpov_))

)
axm25 : f _accelerate_min = (λvpov_ 7→ a_ 7→ v0_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Open2Closed(Amin,Amax)∧
v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq |

bind(bind(fsv1_accelerate_min(a_ 7→ v0_), fsv2_speed), fpov_speed(vpov_))
)

axm26 : f _stable = (λvpov_·
vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) |

bind(bind(fsv1_stable, fsv2_speed), fpov_speed(vpov_))
)

axm33 :
∀vpov_, a_, v0_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Closed2Open(uminus(B),Rzero)∧
v0_ ∈ RRealPlus ⇒

partialPiecewiseContinuous(
{Closed2Open(Rzero,Tto0 (a_ 7→ v0_)),Closed2Infinity(Tto0 (a_ 7→ v0_))},
S, S,
f _decelerate(vpov_ 7→ a_ 7→ v0_)

)
axm34 :
∀vpov_, a_, v0_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Open2Closed(Rzero,Amax)∧
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v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq ⇒
partialPiecewiseContinuous(
{Closed2Open(Rzero,Ttovmax(a_ 7→ v0_)),Closed2Infinity(Ttovmax(a_ 7→ v0_))},
S, S,
f _accelerate(vpov_ 7→ a_ 7→ v0_)

)
axm35 :
∀vpov_, a_, v0_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero) ∧ a_ ∈ Closed2Closed(Amin,Amax)∧
v0_ ∈ RRealPlus ∧ v0_ 7→ Vmax ∈ leq ⇒

partialPiecewiseContinuous(
{Closed2Open(Rzero,Ttovmax(a_ 7→ v0_)),Closed2Infinity(Ttovmax(a_ 7→ v0_))},
S, S,
f _accelerate_min(vpov_ 7→ a_ 7→ v0_)

)
axm36 :
∀vpov_·

vpov_ ∈ Closed2Closed(uminus(Vmax),Rzero)⇒
f _stable(vpov_) ∈ C0 (RRealPlus × S, S)

axm37 : ppov_init ∈ RReal
axm38 : ppov_init 7→ k ∈ gt
axm39 : vpov_init ∈ Closed2Closed(uminus(Vmax),Rzero)

END

Machine

Listings B.6: SLTA machine
MACHINE

LeftTurnAss i s t
REFINES

Generic
SEES

LeftTurnAss istCtx
VARIABLES t , x_s , ppov , psv , vsv , vpov , asv
INVARIANTS

inv1 : ppov ∈ RReal 7→ RReal
inv2 : Closed2Closed(Rzero, t) ⊆ dom(ppov)
inv5 : vsv ∈ RReal 7→ RReal
inv3 : psv ∈ RReal 7→ RReal
inv4 : Closed2Closed(Rzero, t) ⊆ dom(psv)
inv6 : Closed2Closed(Rzero, t) ⊆ dom(vsv)
inv7 : vpov ∈ Closed2Closed(uminus(Vmax),Rzero)
inv8 : asv ∈ Closed2Closed(uminus(B),Amax)
inv9 : x_p = bind(bind(vsv, psv), ppov)
inv10 : ∀t_ · t_ ∈ Closed2Closed(Rzero, t) ∧ ppov(t_) 7→ k ∈ lt ⇒

(psv(t_) 7→ Rzero ∈ leq ∨ psv(t_) 7→ q ∈ geq)
EVENTS

INITIALISATION
WITH
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x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
THEN

act1 : t := Rzero
act2 : vsv, psv, ppov := {Rzero 7→ Rzero}, {Rzero 7→ Rzero}, {Rzero 7→ ppov_init}
act3 : x_s := waiting
act4 : vpov := vpov_init
act5 : asv := Rzero

END

Behave
REFINES Behave
ANY e , tp , v
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)
grd3 : v ∈ Closed2Closed(Rzero,Vmax)

WITH
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = S

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′), e, S)

act2 : vpov := uminus(v)
END

ctrl_transition_attempt_turn
REFINES Transition
WHERE

grd1 : x_s = waiting
grd2 : Tsv(Amin 7→ vsv(t) 7→ psv(t)) 7→ Tpov(ppov(t)) ∈ lt

WITH
s : s = {turning}

THEN
act1 : x_s := turning

END

ctrl_sense_turn_end
REFINES Sense
WHERE

grd1 : psv(t) 7→ q ∈ geq
WITH

s : s = {passed}
p : p = STATES × RReal × {vsv_ 7→ psv_ 7→ ppov_ |

vsv_ ∈ RReal ∧ psv_ 7→ q ∈ geq ∧ ppov_ ∈ RReal}
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THEN
act1 : x_s := passed

END

ctrl_actuate_waiting
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = waiting

WITH
e : e = ode(f _stable(vpov), (vsv(t) 7→ psv(t) 7→ ppov(t)), t)
s : s = {waiting}
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = S

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′),

ode(f _stable(vpov), (vsv(t) 7→ psv(t) 7→ ppov(t)), t),
S)

END

ctrl_actuate_turning
REFINES Actuate
ANY tp , a
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = turning
grd2 : a ∈ Closed2Closed(Amin,Amax)

WITH
e : e = ode(f _accelerate_min(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t)
s : s = {turning}
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = {vsv_ 7→ psv_ 7→ ppov_ | vsv_ ∈ RReal ∧ psv_ 7→ q ∈ leq ∧ ppov_ ∈ RReal}

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′),

ode(f _accelerate_min(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t),
{vsv_ 7→ psv_ 7→ ppov_ | vsv_ ∈ RReal ∧ psv_ 7→ q ∈ leq ∧ ppov_ ∈ RReal}

)



B.3. SIGNALISED LEFT-TURN ASSIST 275

act2 : asv := a
END

ctrl_actuate_passed_stable
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = turning

WITH
e : e = ode(f _stable(vpov), (vsv(t) 7→ psv(t) 7→ ppov(t)), t)
s : s = {passed}
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = S

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′),

ode(f _stable(vpov), (vsv(t) 7→ psv(t) 7→ ppov(t)), t),
S)

END

ctrl_actuate_passed_accelerate
REFINES Actuate
ANY tp , a
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = turning
grd2 : a ∈ Open2Closed(Rzero,Amax)

WITH
e : e = ode(f _accelerate(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t)
s : s = {passed}
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = S

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′),

ode(f _accelerate(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t),
S)

END
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ctrl_actuate_passed_decelerate
REFINES Actuate
ANY tp , a
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd1 : x_s = turning
grd2 : a ∈ Closed2Open(uminus(B),Rzero)

WITH
e : e = ode(f _decelerate(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t)
s : s = {passed}
x_p′ : x_p′ = bind(bind(vsv′, psv′), ppov′)
Inv : Inv = S

THEN
act1 :
t, vsv, psv, ppov :|

t′ = tp∧
vsv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(vsv′)∧
psv′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(psv′)∧
ppov′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(ppov′)∧
CBAPsolutionOf (t, t′, bind(bind(vsv, psv), ppov), bind(bind(vsv′, psv′), ppov′),

ode(f _decelerate(a 7→ vpov 7→ vsv(t)), (vsv(t) 7→ psv(t) 7→ ppov(t)), t),
S)

END

END

B.4 Tank Case Studies
This section presents the models for the liquid tank case studies developed in Section 6.5, including
domain theories of flow and valves.

The models are given following the case study: abstract tank model (WaterTank_base) is
presented first, as it serves as a base for every other model. The single-to-many case study (one
controller and two tanks) is given next, followed by the many-to-many case study (2 components,
each consisting of one controller and one plant).

B.4.1 Tank Theories
The theories relating to water tanks are presented here. The Valves theory models status and
behaviour of the pumps, and the Flow theory contains differential equations for the tanks.

Theory of Valves

Listings B.7: Valves theory
THEORY

IMPORTTHEORY LinComb
DATA TYPES

Status
CONSTRUCTORS
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ValveOpen ( )
ValveClosed ( )

InOutValve
CONSTRUCTORS

InOut ( in_status : Status , out_status : Status )
OPERATORS

openIn expression ( iov : InOutValve )
closeIn expression ( iov : InOutValve )
openOut expression ( iov : InOutValve )
closeOut expression ( iov : InOutValve )
rstatus expression ( s t : Status )
in_rstatus expression ( iov : InOutValve )
out_rstatus expression ( iov : InOutValve )
InOutPossible expression ( )

direct definition
{ InOut ( ValveOpen , ValveOpen ) ,

InOut ( ValveOpen , ValveClosed ) ,
InOut ( ValveClosed , ValveOpen ) ,
InOut ( ValveClosed , ValveClosed ) }

END

Theory of Flow

Listings B.8: Flow theory
THEORY

IMPORTTHEORY Valves
DATA TYPES

TankState
CONSTRUCTORS

Normal ( )
Emptying ( )
F i l l i n g ( )
Stab le ( )

OPERATORS
isFlow predicate ( s t a t e : TankState ,DR: P( RReal ) , Phi : RRealPlus 7→ RReal ,

Qmin : RReal ,Qmax: RReal )
well−definedness DR ⊆ dom( Phi )

isFlowODE predicate ( s t a t e : TankState ,DR: P( RReal ) , Phip : RRealPlus×RReal
7→ RReal , Qmin : RReal ,Qmax: RReal )

well−definedness DR×Closed2Closed (Qmin ,Qmax) ⊆ dom( Phip )
isFlowEq predicate ( s t a t e : TankState ,DR: P( RReal ) , eq : DE( RReal ) ,Qmin :

RReal ,Qmax: RReal )
well−definedness So lvab l e (DR, eq )
direct definition
∀ Q · Q ∈ RRealPlus 7→ RReal ∧ DR ⊆ dom(Q) ∧ so lu t i onOf (DR,Q, eq ) ⇒

i sFlow ( s tate ,DR,Q, Qmin ,Qmax)
Delta expression ( de l ta_in : RReal , delta_out : RReal )

well−definedness Rzero 7→ de l ta_in ∈ l t , Rzero 7→ delta_out ∈ l t
direct definition
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(λ io_ · io_ ∈ InOutValve | minus ( t imes ( de l ta_in 7→ i n_rs ta tus ( io_ ) ) 7→
t imes ( delta_out 7→ out_rstatus ( io_ ) ) ) )

flowIO expression (Qmin : RReal ,Qmax: RReal , de l ta_in : RReal , delta_out :
RReal )

well−definedness Rzero 7→ Qmin ∈ l eq , Rzero 7→ Qmax ∈ l t , Qmin 7→ Qmax ∈
l eq , Rzero 7→ de l ta_in ∈ l t , Rzero 7→ delta_out ∈ l t

direct definition
(λ io_ · io_ ∈ InOutValve |

(λ t0_ 7→ q0_ · t0_ ∈ RRealPlus ∧ q0_ ∈ RReal |
(λ t_ 7→ q_ ·

t_ ∈ RRealPlus ∧ q_ ∈ RReal ∧
plus ( t imes ( Delta ( delta_in , delta_out ) ( io_ ) 7→ minus ( t_ 7→ t0_ ) )

7→ q0_) ∈ Closed2Closed (Qmin ,Qmax) |
Delta ( delta_in , delta_out ) ( io_ )

) ∪
(λ t_ 7→ q_ ·

t_ ∈ RRealPlus ∧ q_ ∈ RReal ∧
plus ( t imes ( Delta ( delta_in , delta_out ) ( io_ ) 7→ minus ( t_ 7→ t0_ ) )

7→ q0_) /∈ Closed2Closed (Qmin ,Qmax) |
Rzero

)
)

)
flowIOParts expression (Qmin : RReal ,Qmax: RReal , de l ta_in : RReal , delta_out :

RReal , i ov : InOutValve , t0 : RRealPlus , q0 : RReal )
well−definedness Rzero 7→ Qmin ∈ l t , Rzero 7→ Qmax ∈ l t , Rzero 7→ de l ta_in

∈ l t , Rzero 7→ delta_out ∈ l t , Rzero 7→ q0 ∈ l eq , q0 7→ Qmax ∈ l e q
direct definition

{
{ t_ | t_ ∈ RRealPlus ∧ plus ( t imes ( Delta ( delta_in , delta_out ) ( iov ) 7→

minus ( t_ 7→ t0 ) ) 7→ q0 ) ∈ Closed2Closed (Qmin ,Qmax) } ,
{ t_ | t_ ∈ RRealPlus ∧ plus ( t imes ( Delta ( delta_in , delta_out ) ( iov ) 7→

minus ( t_ 7→ t0 ) ) 7→ q0 ) 7→ Qmin ∈ l t } ,
{ t_ | t_ ∈ RRealPlus ∧ Qmax 7→ plus ( t imes ( Delta ( delta_in , delta_out )

( iov ) 7→ minus ( t_ 7→ t0 ) ) 7→ q0 ) ∈ l t }
}

FlowIOODE expression (Qmin : RReal ,Qmax: RReal , de l ta_in : RReal , delta_out :
RReal )

well−definedness Rzero 7→ Qmin ∈ l eq , Rzero 7→ Qmax ∈ l t , Qmin 7→ Qmax ∈
l eq , Rzero 7→ de l ta_in ∈ l t , Rzero 7→ delta_out ∈ l t

direct definition
(λ io_ · io_ ∈ InOutValve |

(λ t0_ 7→ q0_ · t0_ ∈ RRealPlus ∧ q0_ ∈ RReal |
ode ( flowIO (Qmin ,Qmax, delta_in , delta_out ) ( io_ ) ( t0_ 7→q0_) ,q0_ , t0_ )

)
)

TankModeChange expression (mode : TankState )
NoFlow expression ( )

direct definition
(λ t_ 7→Q_ · t_ ∈ RRealPlus ∧ Q_ ∈ RReal | Rzero )
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THEOREMS
flowode_yields_flow :
∀ DR, Qmin ,Qmax, Phip , st , t0 , q0 ·

DR ⊆ RRealPlus ∧
Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
s t ∈ TankState ∧
t0 ∈ DR ∧ q0 ∈ RReal ∧
Phip ∈ RRealPlus×RReal 7→ RReal ∧
DR×Closed2Closed (Qmin ,Qmax) ⊆ dom( Phip ) ∧
isFlowODE ( st ,DR, Phip , Qmin ,Qmax) ∧
So lvab l e (DR, ode ( Phip , q0 , t0 ) )
⇒ (
∀ Phi · Phi ∈ RRealPlus 7→ RReal ∧ DR ⊆ dom( Phi ) ∧ so lu t i onOf (DR,

Phi , ode ( Phip , q0 , t0 ) ) ⇒
i sFlow ( st ,DR, Phi , Qmin ,Qmax)

)
flow_type :
∀ Qmin ,Qmax, delta_in , delta_out , iov , t0 , q0 ·

Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
de l ta_in ∈ RReal ∧ Rzero 7→ de l ta_in ∈ l t ∧
delta_out ∈ RReal ∧ Rzero 7→ delta_out ∈ l t ∧
i ov ∈ InOutValve ∧
t0 ∈ RRealPlus ∧
q0 ∈ RReal ⇒ (

flowIO (Qmin ,Qmax, delta_in , delta_out ) ( iov ) ( t0 7→q0 ) ∈ RRealPlus×RReal
→ RReal

)
flow_lipschitz :
∀ Qmin ,Qmax, delta_in , delta_out , iov , t0 , q0 ·

Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
de l ta_in ∈ RReal ∧ Rzero 7→ de l ta_in ∈ l t ∧
delta_out ∈ RReal ∧ Rzero 7→ delta_out ∈ l t ∧
i ov ∈ InOutValve ∧
t0 ∈ RRealPlus ∧
q0 ∈ RReal ∧ Rzero 7→ q0 ∈ l e q ∧ q0 7→ Qmax ∈ l e q ⇒ (
∀ t_ · t_ ∈ RRealPlus ⇒

l i p s c h i t z C o n t i n u o u s ( RReal , RReal , p a r t i a l 2 ( flowIO (Qmin ,Qmax,
delta_in , delta_out ) ( iov ) ( t0 7→q0 ) , t_) )

)
flow_piecewise_continuous :
∀ Qmin ,Qmax, delta_in , delta_out , iov , t0 , q0 ·

Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧



280 APPENDIX B. MODELS

de l ta_in ∈ RReal ∧ Rzero 7→ de l ta_in ∈ l t ∧
delta_out ∈ RReal ∧ Rzero 7→ delta_out ∈ l t ∧
i ov ∈ InOutValve ∧
t0 ∈ RRealPlus ∧
q0 ∈ RReal ∧ Rzero 7→ q0 ∈ l e q ∧ q0 7→ Qmax ∈ l e q ⇒ (

pa r t i a lP i e c ew i s eCont inuous (
f lowIOParts (Qmax, Qmin , delta_in , delta_out , iov , t0 , q0 ) ,
RReal , RReal ,
f lowIO (Qmin ,Qmax, delta_in , delta_out ) ( iov ) ( t0 7→q0 )

)
)

flow_pw_CL_cond :
∀ Qmin ,Qmax, delta_in , delta_out , iov , t0 , q0 ·

Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
de l ta_in ∈ RReal ∧ Rzero 7→ de l ta_in ∈ l t ∧
delta_out ∈ RReal ∧ Rzero 7→ delta_out ∈ l t ∧
i ov ∈ InOutValve ∧
t0 ∈ RRealPlus ∧
q0 ∈ RReal ∧ Rzero 7→ q0 ∈ l e q ∧ q0 7→ Qmax ∈ l e q ⇒ (

PiecewiseCauchyLipsch i tzCondit ion (
f lowIOParts (Qmin ,Qmax, delta_in , delta_out , iov , t0 , q0 ) ,
RReal ,
FlowIOODE(Qmin ,Qmax, delta_in , delta_out ) ( iov ) ( t0 7→q0 )

)
)

flowio_is_flowode_single_tank_policy :
∀ DR, Qmin ,Qmax, delta_in , delta_out , s t a t e ·

DR ⊆ RRealPlus ∧
Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
de l ta_in ∈ RReal ∧ Rzero 7→ de l ta_in ∈ l t ∧
delta_out ∈ RReal ∧ Rzero 7→ delta_out ∈ l t ∧
s t a t e ∈ TankState
⇒ (
∀ iov , t0 , q0 ·

i ov ∈ TankModeChange ( s t a t e ) ∧
t0 ∈ DR ∧ q0 ∈ RReal ∧
Qmin 7→ q0 ∈ l e q ∧ q0 7→ Qmax ∈ l e q
⇒

isFlowODE ( state ,DR, flowIO (Qmin ,Qmax, delta_in , delta_out ) ( iov ) ( t0
7→q0 ) ,Qmin ,Qmax)

)
flow_LC :
∀ DR,

Phi1 , l , Q1min , Q1max,
Phi2 , m, Q2min , Q2max ·
DR ⊆ RReal ∧
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l ∈ RReal ∧ Rzero 7→ l ∈ l t ∧
Q1min ∈ RReal ∧ Q1max ∈ RReal ∧ Q1min 7→ Q1max ∈ l e q ∧
Rzero 7→ Q1min ∈ l e q ∧ Rzero 7→ Q1max ∈ l t ∧
Phi1 ∈ RRealPlus 7→ RReal ∧ DR ⊆ dom( Phi1 ) ∧
m ∈ RReal ∧ Rzero 7→ m ∈ l t ∧
Q2min ∈ RReal ∧ Q2max ∈ RReal ∧ Q2min 7→ Q2max ∈ l e q ∧
Rzero 7→ Q2min ∈ l e q ∧ Rzero 7→ Q2max ∈ l t ∧
Phi2 ∈ RRealPlus 7→ RReal ∧ DR ⊆ dom( Phi2 ) ⇒ (

(∀ s t · s t ∈ TankState ⇒ i sFlow ( st ,DR, Phi1 , Q1min , Q1max) ∧ i sFlow ( st
,DR, Phi2 , Q2min , Q2max) )

⇔
(∀ s t · s t ∈ TankState ⇒ i sFlow (

st ,
DR,
LinComb2( l , Phi1 ,m, Phi2 ) ,
sLinComb2 ( l , Q1min ,m, Q2min) ,
sLinComb2 ( l , Q1max,m, Q2max)
)

)
)

flowODE_LC :
∀ DR,

Phip1 , l , Q1min , Q1max,
Phip2 , m, Q2min , Q2max ·
DR ⊆ RReal ∧
Q1min ∈ RReal ∧ Q1max ∈ RReal ∧ Q1min 7→ Q1max ∈ l e q ∧
Rzero 7→ Q1min ∈ l e q ∧ Rzero 7→ Q1max ∈ l t ∧
Phip1 ∈ RRealPlus×RReal 7→ RReal ∧ DR×Closed2Closed (Q1min , Q1max) ⊆

dom( Phip1 ) ∧
m ∈ RReal ∧ Rzero 7→ m ∈ l t ∧
Q2min ∈ RReal ∧ Q2max ∈ RReal ∧ Q2min 7→ Q2max ∈ l e q ∧
Rzero 7→ Q2min ∈ l e q ∧ Rzero 7→ Q2max ∈ l t ∧
Phip2 ∈ RRealPlus×RReal 7→ RReal ∧ DR×Closed2Closed (Q2min , Q2max) ⊆

dom( Phip2 ) ⇒ (
(∀ s t · s t ∈ TankState ⇒ isFlowODE ( st ,DR, Phip1 , Q1min , Q1max) ∧

isFlowODE ( st ,DR, Phip2 , Q2min , Q2max) )
⇔

(∀ s t · s t ∈ TankState ⇒ isFlowODE (
st ,
DR,
LinComb2( l , Phip1 ,m, Phip2 ) ,
sLinComb2 ( l , Q1min ,m, Q2min) ,
sLinComb2 ( l , Q1max,m, Q2max)
)

)
)

flowode_is_floweq :
∀ DR, Qmin ,Qmax, Phip , st , t0 , q0 ·

DR ⊆ RRealPlus ∧
Qmin ∈ RReal ∧ Rzero 7→ Qmin ∈ l e q ∧
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Qmax ∈ RReal ∧ Rzero 7→ Qmax ∈ l t ∧
Qmin 7→ Qmax ∈ l e q ∧
s t ∈ TankState ∧
t0 ∈ DR ∧ q0 ∈ RReal ∧
Phip ∈ RRealPlus×RReal 7→ RReal ∧ DR×Closed2Closed (Qmin ,Qmax) ⊆ dom(

Phip ) ∧
isFlowODE ( st ,DR, Phip , Qmin ,Qmax) ∧
So lvab l e (DR, ode ( Phip , q0 , t0 ) )
⇒

isFlowEq ( st ,DR, ode ( Phip , q0 , t0 ) ,Qmin ,Qmax)
thm1 :
>

END

B.4.2 Abstract Tank Model
This section presents the model of the abstract tank, that serves as a base for other models.

Context

Listings B.9: Abstract tank context
CONTEXT

WaterTank_base_Ctx
EXTENDS

GenericCtx
CONSTANTS

Vmax
V0
delta_in
delta_out
Vlow
Vhigh
dv_min
dv_max

AXIOMS
axm10 : Vmax ∈ RReal
axm11 : Rzero 7→ Vmax ∈ lt
axm20 : V0 ∈ RReal
axm21 : Rzero 7→ V0 ∈ lt
axm12 : V0 7→ Vmax ∈ lt
axm30 : delta_in ∈ RReal
axm31 : Rzero 7→ delta_in ∈ lt
axm32 : delta_out ∈ RReal
axm33 : Rzero 7→ delta_out ∈ lt
axm34 : delta_out 7→ delta_in ∈ lt
axm40 : Vlow ∈ RReal
axm41 : Rzero 7→ Vlow ∈ lt
axm42 : Vlow 7→ Vmax ∈ lt
axm43 : Vhigh ∈ RReal
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axm44 : Rzero 7→ Vhigh ∈ lt
axm45 : Vhigh 7→ Vmax ∈ lt
axm46 : Vlow 7→ Vhigh ∈ lt
axm47 : Vlow 7→ V0 ∈ leq
axm48 : V0 7→ Vhigh ∈ leq
axm50 : dv_min ∈ RReal
axm51 : dv_min 7→ Rzero ∈ lt
axm52 : dv_max ∈ RReal
axm53 : Rzero 7→ dv_max ∈ lt
axm54 : dv_min 7→ dv_max ∈ lt

END

Machine

Listings B.10: Abstract tank machine
MACHINE

WaterTank_base
REFINES

Generic
SEES

WaterTank_base_Ctx
VARIABLES t , V , x_s
INVARIANTS

inv1 : V ∈ RRealPlus 7→ S
inv2 : Closed2Closed(Rzero, t) ⊆ dom(V )
inv3 : V = x_p
inv4 : V ∈ D1 (Closed2Infinity(t),RReal)∧
boundedBy(Closed2Infinity(t),Der(Closed2Infinity(t),RReal, V ), dv_min, dv_max)
inv5 : boundedBy(RRealPlus, V,Vlow,Vhigh)

EVENTS
INITIALISATION
WITH

x_p′ : x_p′ = V ′
THEN

act1 : t := Rzero
act2 : V := {Rzero 7→ V0}
act3 : x_s := Stable

END

Behave
REFINES Behave
ANY e , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Infinity(t), e)
grd3 : Vlow 7→ V (t) ∈ lt
grd4 : Vhigh 7→ V (t) ∈ gt
grd5 : tp ∈ RRealPlus
grd6 : t 7→ tp ∈ lt∧
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CBAPsolutionOfFIS(t, tp, V, e, {V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt})
WITH

x_p′ : x_p′ = V ′
Inv : Inv = {V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

THEN
act1 :
t, V :|

t′ = tp∧
V ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V ′)∧
CBAPsolutionOf (
t, t′,
V,V ′,
e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
END

ctrl_sense_too_high
REFINES Sense
WHERE

grd1 : Vhigh 7→ V (t) ∈ leq
WITH

s : s = {Emptying}
p : p = STATES × RRealPlus × {V _ | Vhigh 7→ V _ ∈ leq}

THEN
act1 : x_s := Emptying

END

ctrl_sense_too_low
REFINES Sense
WHERE

grd1 : V (t) 7→ Vlow ∈ leq
WITH

s : s = {Filling}
p : p = STATES × RRealPlus × {V _ | V _ 7→ Vlow ∈ leq}

THEN
act1 : x_s := Filling

END

ctrl_transition_emptying
REFINES Transition
WHERE

grd1 : Vlow 7→ V (t) ∈ lt
WITH

s : s = {Emptying}
THEN

act1 : x_s := Emptying
END

ctrl_transition_filling
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REFINES Transition
WHERE

grd1 : V (t) 7→ Vhigh ∈ lt
WITH

s : s = {Filling}
THEN

act1 : x_s := Filling
END

ctrl_transition_normal
REFINES Transition
WHERE

grd1 : Vlow 7→ V (t) ∈ lt
grd2 : V (t) 7→ Vhigh ∈ lt

WITH
s : s = {Normal}

THEN
act1 : x_s := Normal

END

ctrl_transition_stable
REFINES Transition
WHERE

grd1 : Vlow 7→ V (t) ∈ lt
grd2 : V (t) 7→ Vhigh ∈ lt

WITH
s : s = {Stable}

THEN
act1 : x_s := Stable

END

ctrl_actuate_pumps
REFINES Actuate
ANY e , ss , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Infinity(t), e)
grd3 : isFlowEq(ss,Closed2Infinity(t), e,Rzero,Vmax)
grd4 : ss ∈ STATES
grd5 : x_s = ss
grd6 : Vlow 7→ V (t) ∈ lt
grd7 : Vhigh 7→ V (t) ∈ gt
grd8 : tp ∈ RRealPlus
grd9 : t 7→ tp ∈ lt∧

CBAPsolutionOfFIS(t, tp, V, e, {V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt})
WITH

x_p′ : x_p′ = V ′
s : s = {ss}
Inv : Inv = {V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

THEN
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act1 :
t, V :|

t′ ∈ RRealPlus ∧ t 7→ t′ ∈ lt∧
V ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V ′)∧
CBAPsolutionOf (
t, t′,
V,V ′,
e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
END

END

B.4.3 Centralised Control/S2M Tank Model
This section presents the model for the single-to-many situation (one controller with two tanks),
corresponding to Section 6.5.4.

Context

Listings B.11: S2M tank context
CONTEXT

WaterTank_2Tanks_Cylinder_Ctx
EXTENDS

WaterTank_base_Ctx
CONSTANTS

B1
B2
H1max
H2max
H10
H20
delta_in_h1
delta_out_h1
delta_in_h2
delta_out_h2

AXIOMS
axm1 : B1 ∈ RReal
axm2 : Rzero 7→ B1 ∈ lt
axm3 : B2 ∈ RReal
axm4 : Rzero 7→ B2 ∈ lt
axm5 : H1max ∈ RReal
axm6 : Rzero 7→ H1max ∈ lt
axm7 : H2max ∈ RReal
axm8 : Rzero 7→ H2max ∈ lt
axm9 : H10 ∈ RReal
axm10 : Rzero 7→ H10 ∈ leq
axm11 : H10 7→ H1max ∈ leq
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axm12 : H20 ∈ RReal
axm13 : Rzero 7→ H20 ∈ leq
axm14 : H20 7→ H2max ∈ leq
axm15 : Vmax = sLinComb2 (B1 ,H1max,B2 ,H2max)
axm16 : V0 = sLinComb2 (B1 ,H10 ,B2 ,H20 )
axm17 : delta_in_h1 ∈ RReal
axm18 : Rzero 7→ delta_in_h1 ∈ lt
axm19 : delta_out_h1 ∈ RReal
axm20 : Rzero 7→ delta_out_h1 ∈ lt
axm21 : delta_in_h2 ∈ RReal
axm22 : Rzero 7→ delta_in_h2 ∈ lt
axm23 : delta_out_h2 ∈ RReal
axm24 : Rzero 7→ delta_out_h2 ∈ lt

END

Machine

Listings B.12: S2M tank machine
MACHINE

WaterTank_1Ctrl_2Tanks_Cylinder
REFINES

WaterTank_base
SEES

WaterTank_2Tanks_Cylinder_Ctx
VARIABLES t , x_s , h1 , h2
INVARIANTS

inv1 : h1 ∈ RRealPlus 7→ RReal
inv2 : Closed2Closed(Rzero, t) ⊆ dom(h1 )
inv3 : h2 ∈ RRealPlus 7→ RReal
inv4 : Closed2Closed(Rzero, t) ⊆ dom(h2 )
inv5 : V = LinComb2 (B1 , h1 ,B2 , h2 )

EVENTS
INITIALISATION
THEN

act1 : t := Rzero
act2 : h1 , h2 := {Rzero 7→ H10}, {Rzero 7→ H20}
act3 : x_s := Stable

END

Behave
REFINES Behave
ANY e , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Infinity(t), e)
grd3 : Vlow 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ lt
grd4 : Vhigh 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ gt
grd5 : tp ∈ RRealPlus
grd6 :
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t 7→ tp ∈ lt ∧ CBAPsolutionOfFIS(t, tp,
LinComb2 (B1 , h1 ,B2 , h2 ),
e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
WITH

V ′ : V ′ = LinComb2 (B1 , h1 ′,B2 , h2 ′)
THEN

act1 :
t, h1 , h2 :|

t′ = tp∧
h1 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(h1 ′)∧
h2 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(h2 ′)∧
CBAPsolutionOf (
t, t′,
LinComb2 (B1 , h1 ,B2 , h2 ),LinComb2 (B1 , h1 ′,B2 , h2 ′),
e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
END

ctrl_sense_too_high
REFINES ctrl_sense_too_high
WHERE

grd1 : Vhigh 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ leq
THEN

act1 : x_s := Emptying
END

ctrl_sense_too_low
REFINES ctrl_sense_too_low
WHERE

grd1 : LinComb2 (B1 , h1 ,B2 , h2 )(t) 7→ Vlow ∈ leq
THEN

act1 : x_s := Filling
END

ctrl_transition_emptying
REFINES ctrl_transition_emptying
WHERE

grd1 : Vlow 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ lt
THEN

act1 : x_s := Emptying
END

ctrl_transition_filling
REFINES ctrl_transition_filling
WHERE

grd1 : LinComb2 (B1 , h1 ,B2 , h2 )(t) 7→ Vhigh ∈ lt
THEN
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act1 : x_s := Filling
END

ctrl_transition_normal
REFINES ctrl_transition_normal
WHERE

grd1 : Vlow 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ lt
grd2 : LinComb2 (B1 , h1 ,B2 , h2 )(t) 7→ Vhigh ∈ lt

THEN
act1 : x_s := Normal

END

ctrl_transition_stable
REFINES ctrl_transition_stable
WHERE

grd1 : Vlow 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ lt
grd2 : LinComb2 (B1 , h1 ,B2 , h2 )(t) 7→ Vhigh ∈ lt

THEN
act1 : x_s := Stable

END

ctrl_actuate_pumps
REFINES ctrl_actuate_pumps
ANY io , ss , tp
WHERE

grd4 : ss ∈ STATES
grd5 : x_s = ss
grd6 : io ∈ TankModeChange(x_s)
grd7 : Vlow 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ lt
grd8 : Vhigh 7→ LinComb2 (B1 , h1 ,B2 , h2 )(t) ∈ gt
grd9 : tp ∈ RRealPlus
grd10 :
t 7→ tp ∈ lt ∧ CBAPParallelEqFIS(t, tp,

h1 ,FlowIOODE(Rzero,H1max, delta_in_h1 , delta_out_h1 )(io)(t 7→ h1 (t)),
h2 ,FlowIOODE(Rzero,H2max, delta_in_h2 , delta_out_h2 )(io)(t 7→ h2 (t)),
{h1 _ 7→ h2_ | h1_ ∈ RReal ∧ h2_ ∈ RReal∧

Vlow 7→ plus(times(B1 7→ h1_) 7→ times(B2 7→ h2_)) ∈ lt∧
Vhigh 7→ plus(times(B1 7→ h1_) 7→ times(B2 7→ h2_)) ∈ gt

})
WITH

V ′ : V ′ = LinComb2 (B1 , h1 ′,B2 , h2 ′)
e :
e ∈ DE(S)∧
isFlowEq(ss,Closed2Closed(t, tp), e,Rzero,Vmax)∧
Solvable(Closed2Closed(t, tp), e)∧
solutionOf (Closed2Closed(t, tp),LinComb2 (B1 , h1 ′,B2 , h2 ′), e)

THEN
act1 :
t, h1 , h2 :|

t′ = tp∧
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h1 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(h1 ′)∧
h2 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(h2 ′)∧
CBAPParallelEq(
t, t′,
h1 , h1 ′,FlowIOODE(Rzero,H1max, delta_in_h1 , delta_out_h1 )(io)(t 7→ h1 (t)),
h2 , h2 ′,FlowIOODE(Rzero,H2max, delta_in_h2 , delta_out_h2 )(io)(t 7→ h2 (t)),
{h1 _ 7→ h2_ | h1 _ ∈ RReal ∧ h2_ ∈ RReal∧

Vlow 7→ plus(times(B1 7→ h1_) 7→ times(B2 7→ h2_)) ∈ lt∧
Vhigh 7→ plus(times(B1 7→ h1_) 7→ times(B2 7→ h2_)) ∈ gt

}
)

END

END

B.4.4 Distributed Control/M2M Tank Model
This section presents the model for the many-to-many situation (two controllers, each controlling
one tank), corresponding to Section 6.5.5.

Context

Listings B.13: M2M tank context
CONTEXT

WaterTank_2Ctrl_2Tanks_Ctx
EXTENDS

WaterTank_base_Ctx
CONSTANTS

V1max
V2max
V10
V20
Po l i cy

AXIOMS
axm1 : V1max ∈ RReal
axm2 : Rzero 7→ V1max ∈ lt
axm3 : V2max ∈ RReal
axm4 : Rzero 7→ V2max ∈ lt
axm5 : V10 ∈ RReal
axm6 : Rzero 7→ V10 ∈ leq
axm7 : V10 7→ V1max ∈ leq
axm8 : V20 ∈ RReal
axm9 : Rzero 7→ V20 ∈ leq
axm10 : V20 7→ V2max ∈ leq
axm11 : Policy ∈ STATES × STATES × STATES
axm12 :

Policy = {
(Emptying 7→ Emptying) 7→ Emptying,
(Emptying 7→ Stable) 7→ Emptying,
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(Stable 7→ Emptying) 7→ Emptying,
(Filling 7→ Filling) 7→ Filling,
(Filling 7→ Stable) 7→ Filling,
(Stable 7→ Filling) 7→ Filling,
(Stable 7→ Stable) 7→ Stable,
(Emptying 7→ Filling) 7→ Normal,
(Filling 7→ Emptying) 7→ Normal

} ∪ {(x_ 7→ y_) 7→ z_ | z_ = Normal ∧ (x_ = Normal ∨ y_ = Normal)}
END

Machine

Listings B.14: M2M tank machine
MACHINE

WaterTank_2Ctrl_2Tanks
REFINES

WaterTank_base
SEES

WaterTank_2Ctrl_2Tanks_Ctx
VARIABLES t , V1 , V2 , V1_sim , V2_sim , x_s1 , x_s2 , Delta_sim_1 , Delta_sim_2
INVARIANTS

inv1 : V1 ∈ RRealPlus 7→ S
inv21 : Closed2Closed(Rzero, t) ⊆ dom(V1 )
inv2 : V2 ∈ RRealPlus 7→ S
inv22 : Closed2Closed(Rzero, t) ⊆ dom(V2 )
inv3 : V1_sim ∈ RRealPlus 7→ S
inv23 : Closed2Closed(Rzero, t) ⊆ dom(V1_sim)
inv4 : V2_sim ∈ RRealPlus 7→ S
inv24 : Closed2Closed(Rzero, t) ⊆ dom(V2_sim)
inv5 : x_s1 ∈ STATES
inv6 : x_s2 ∈ STATES
inv7 : V = fadd(V1 ,V2 )
inv8 : boundedBy(RRealPlus, fadd(V1 ,V2_sim),Vlow,Vhigh)
inv9 : boundedBy(RRealPlus, fadd(V1_sim,V2 ),Vlow,Vhigh)
inv10 : Delta_sim_1 ∈ RRealPlus
inv11 : Delta_sim_2 ∈ RRealPlus
inv12 : ∀t_ · t_ ∈ RRealPlus ⇒ abs(minus(V2 (t_) 7→ V2_sim(t_))) 7→ Delta_sim_2 ∈ leq
inv13 : ∀t_ · t_ ∈ RRealPlus ⇒ abs(minus(V1 (t_) 7→ V1_sim(t_))) 7→ Delta_sim_1 ∈ leq
inv14 : x_s 7→ x_s1 7→ x_s2 ∈ Policy

EVENTS
INITIALISATION
THEN

act1 : t := Rzero
act2 : V1 ,V1_sim,V2 ,V2_sim :=
{Rzero 7→ V10}, {Rzero 7→ V10}, {Rzero 7→ V20}, {Rzero 7→ V20}

act3 : x_s1 , x_s2 := Stable,Stable
act4 : Delta_sim_1 :∈ RRealPlus
act5 : Delta_sim_2 :∈ RRealPlus

END
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Behave
REFINES Behave
ANY e , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)
grd3 : Vlow 7→ plus(V1 (t) 7→ V2 (t)) ∈ lt
grd4 : Vhigh 7→ plus(V1 (t) 7→ V2 (t)) ∈ gt
grd5 : tp ∈ RRealPlus
grd6 : t 7→ tp ∈ lt∧

CBAPsolutionOfFIS(t, tp, fadd(V1 ,V2 ), e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
WITH

V ′ : V ′ = fadd(V1 ′,V2 ′)
THEN

act1 :
t,V1 ,V2 :|

t′ = tp∧
V1 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1 ′)∧
V2 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2 ′)∧
CBAPsolutionOf (
t, t′,
fadd(V1 ,V2 ), fadd(V1 ′,V2 ′),
e,
{V _ | V _ ∈ RReal ∧Vlow 7→ V _ ∈ lt ∧Vhigh 7→ V _ ∈ gt}

)
END

ctrl_sense_too_high_1
REFINES ctrl_sense_too_high
WHERE

grd1 : plus(Vhigh 7→ Delta_sim_2 ) 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ leq
THEN

act1 : x_s1 := Emptying
END

ctrl_sense_too_high_2
REFINES ctrl_sense_too_high
WHERE

grd1 : plus(Vhigh 7→ Delta_sim_1 ) 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ leq
THEN

act1 : x_s2 := Emptying
END

ctrl_sense_too_low_1
REFINES ctrl_sense_too_low
WHERE

grd1 : plus(V1 (t) 7→ V2_sim(t)) 7→ minus(Vlow 7→ Delta_sim_2 ) ∈ leq
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THEN
act1 : x_s1 := Filling

END

ctrl_sense_too_low_2
REFINES ctrl_sense_too_low
WHERE

grd1 : plus(V1_sim(t) 7→ V2 (t)) 7→ minus(Vlow 7→ Delta_sim_1 ) ∈ leq
THEN

act1 : x_s2 := Filling
END

ctrl_transition_emptying_1
REFINES ctrl_transition_emptying
WHERE

grd1 : plus(Vlow 7→ Delta_sim_2 ) 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ lt
THEN

act1 : x_s1 := Emptying
END

ctrl_transition_emptying_2
REFINES ctrl_transition_emptying
WHERE

grd1 : plus(Vlow 7→ Delta_sim_1 ) 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ lt
THEN

act1 : x_s2 := Emptying
END

ctrl_transition_filling_1
REFINES ctrl_transition_filling
WHERE

grd1 : plus(V1 (t) 7→ V2_sim(t)) 7→ minus(Vhigh 7→ Delta_sim_2 ) ∈ lt
THEN

act1 : x_s1 := Filling
END

ctrl_transition_filling_2
REFINES ctrl_transition_filling
WHERE

grd1 : plus(V1_sim(t) 7→ V2 (t)) 7→ minus(Vhigh 7→ Delta_sim_1 ) ∈ lt
THEN

act1 : x_s2 := Filling
END

ctrl_transition_normal_1
REFINES ctrl_transition_normal
WHERE

grd1 : plus(Vlow 7→ Delta_sim_2 ) 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ lt
grd2 : plus(V1 (t) 7→ V2_sim(t)) 7→ minus(Vhigh 7→ Delta_sim_2 ) ∈ lt

THEN
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act1 : x_s1 := Normal
END

ctrl_transition_normal_2
REFINES ctrl_transition_normal
WHERE

grd1 : plus(Vlow 7→ Delta_sim_1 ) 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ lt
grd2 : plus(V1_sim(t) 7→ V2 (t)) 7→ minus(Vhigh 7→ Delta_sim_1 ) ∈ lt

THEN
act1 : x_s2 := Normal

END

ctrl_transition_stable_1
REFINES ctrl_transition_stable
WHERE

grd1 : plus(Vlow 7→ Delta_sim_2 ) 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ lt
grd2 : plus(V1 (t) 7→ V2_sim(t)) 7→ minus(Vhigh 7→ Delta_sim_2 ) ∈ lt

THEN
act1 : x_s1 := Stable

END

ctrl_transition_stable_2
REFINES ctrl_transition_stable
WHERE

grd1 : plus(Vlow 7→ Delta_sim_1 ) 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ lt
grd2 : plus(V1_sim(t) 7→ V2 (t)) 7→ minus(Vhigh 7→ Delta_sim_1 ) ∈ lt

THEN
act1 : x_s2 := Stable

END

ctrl_actuate_pumps
REFINES ctrl_actuate_pumps
ANY ss , e1 , e2 , ss1 , ss2 , fV1_sim , fV2_sim , tp
WHERE

grd01 : ss ∈ STATES
grd02 : ss 7→ ss1 7→ ss2 ∈ Policy
grd11 : e1 ∈ DE(S)
grd12 : Solvable(Closed2Closed(t, tp), e1 )
grd13 : isFlowEq(ss1 ,Closed2Closed(t, tp), e1 ,Rzero,V1max)
grd14 : ss1 ∈ STATES
grd15 : x_s1 = ss1
grd16 : fV1_sim ∈ RRealPlus 7→ S
grd17 : Closed2Closed(t, tp) ⊆ dom(fV1_sim)
grd18 : ∀V1_ ·V1_ ∈ RRealPlus 7→ S ∧ Closed2Closed(t, tp) ⊆ dom(V1_)∧

solutionOf (Closed2Closed(t, tp),V1_, e1 )⇒
(∀t_ · t_ ∈ Closed2Closed(t, tp)⇒ abs(minus(V1_(t) 7→ fV1_sim(t))) 7→ Delta_sim_1 ∈ leq)

grd21 : e2 ∈ DE(S)
grd22 : Solvable(Closed2Infinity(t), e2 )
grd23 : isFlowEq(ss2 ,Closed2Infinity(t), e2 ,Rzero,V2max)
grd24 : ss2 ∈ STATES
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grd25 : x_s2 = ss2
grd26 : fV2_sim ∈ Closed2Infinity(t)→ S
grd27 : ∀V2_ ·V2_ ∈ Closed2Infinity(t)→ S ∧ solutionOf (Closed2Infinity(t),V2_, e2 )⇒

(∀t_ · t_ ∈ Closed2Infinity(t)⇒ abs(minus(V2_(t) 7→ fV2_sim(t))) 7→ Delta_sim_2 ∈ leq)
grd30 : Vlow 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ lt
grd31 : Vhigh 7→ plus(V1 (t) 7→ V2_sim(t)) ∈ gt
grd32 : Vlow 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ lt
grd33 : Vhigh 7→ plus(V1_sim(t) 7→ V2 (t)) ∈ gt
grd000 : tp ∈ RRealPlus
grd001 :
t 7→ tp ∈ lt ∧ CBAPFIS(t, tp, bind(bind(V1 ,V2 ), bind(V1_sim,V2_sim)),
{V1_,V2_,V1s_,V2s_,V1_p,V2_p,V1s_p,V2s_p·

V1_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V1_)∧
V2_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V2_)∧
V1s_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V1s_)∧
V2s_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V2s_)∧
V1_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V1_p)∧
V2_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V2_p)∧
V1s_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V1s_p)∧
V2s_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, tp) ⊆ dom(V2s_p)∧
solutionOf (Closed2Closed(t, tp),V1_p, e1 )∧
solutionOf (Closed2Closed(t, tp),V2_p, e2 )∧
V1s_p = V1s_∧
V2s_p = V2s_

| bind(bind(V1_,V2_), bind(V1s_,V2s_)) 7→ bind(bind(V1_p,V2_p), bind(V1s_p,V2s_p))
},
{(V1_ 7→ V2_) 7→ (V1s_ 7→ V2s_) |

Vlow 7→ plus(V1_ 7→ V2s_) ∈ lt∧
Vhigh 7→ plus(V1_ 7→ V2s_) ∈ gt∧
Vlow 7→ plus(V1s_ 7→ V2_) ∈ lt∧
Vhigh 7→ plus(V1s_ 7→ V2_) ∈ gt

}
)

WITH
V ′ : V ′ = fadd(V1 ′,V2 ′)
e : e ∈ DE(S) ∧ Solvable(Closed2Infinity(t), e) ∧ ∀ss · ss 7→ s1 7→ s2 ∈ Policy∧

isFlowEq(ss,Closed2Infinity(t), e,Rzero,Vmax)∧
(∀V1_,V2_·

V1_ ∈ Closed2Infinity(t)→ S ∧V2_ ∈ Closed2Infinity(t)→ S∧
solutionOf (Closed2Infinity(t),V1_, e1 )∧
solutionOf (Closed2Infinity(t),V2_, e2 )
⇒ solutionOf (Closed2Infinity(t), fadd(V1_,V2_), e)

)
THEN

act1 :
t,V1 ,V2 ,V1_sim,V2_sim :|

t′ = tp∧
V1 ′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1 ′)∧
V2 ′ ∈ RRealPlus → S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2 ′)∧
V1_sim′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1_sim′)∧
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V2_sim′ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2_sim′)∧
CBAP(
t, t′,
bind(bind(V1 ,V2 ), bind(V1_sim,V2_sim)),
bind(bind(V1 ′,V2 ′), bind(V1_sim′,V2_sim′)),
{V1_,V2_,V1s_,V2s_,V1_p,V2_p,V1s_p,V2s_p·

V1_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1_)∧
V2_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2_)∧
V1s_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1s_)∧
V2s_ ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2s_)∧
V1_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1_p)∧
V2_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2_p)∧
V1s_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V1s_p)∧
V2s_p ∈ RRealPlus 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(V2s_p)∧
solutionOf (Closed2Closed(t, t′),V1_p, e1 )∧
solutionOf (Closed2Closed(t, t′),V2_p, e2 )∧
V1s_p = V1s_∧
V2s_p = V2s_

| bind(bind(V1_,V2_), bind(V1s_,V2s_)) 7→ bind(bind(V1_p,V2_p), bind(V1s_p,V2s_p))
},
{(V1_ 7→ V2_) 7→ (V1s_ 7→ V2s_) |

Vlow 7→ plus(V1_ 7→ V2s_) ∈ lt∧
Vhigh 7→ plus(V1_ 7→ V2s_) ∈ gt∧
Vlow 7→ plus(V1s_ 7→ V2_) ∈ lt∧
Vhigh 7→ plus(V1s_ 7→ V2_) ∈ gt

}
)

END

END

B.5 Planar Robot Control
This section details the models for the planar robot case study, developped in Section 7.5.1. The
domain-specific theory for robots is first given. The abstract robot (with simpler dynamics) model
is presented, followed by the concrete robot (with more accurate dynamics) model.

B.5.1 Planar Robot Theory

Listings B.15: Robot theory
THEORY

IMPORTTHEORY Approximation
OPERATORS

SecondOrder2DimensionSystemFunction expression ( c o r r e c t i o n _ c o e f f : RReal ,
contro lArea4 : P ( ( RReal×RReal )×( RReal×RReal ) ) )

direct definition
(λ ( ( x1 7→x2 ) 7→( x3 7→x4 ) ) 7→ ( ( vx 7→vy ) 7→(wx7→wy) ) ·
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( ( x1 7→x2 ) 7→( x3 7→x4 ) ) ∈ ( RReal×RReal )×( RReal×RReal ) ∧ ( ( vx 7→vy ) 7→(wx
7→wy) ) ∈ ( RReal×RReal )×( RReal×RReal ) ∧ ( ( vx 7→vy ) 7→(wx7→wy) ) ∈
contro lArea4

| ( minus ( d i v i d e ( vx 7→Rtwo) 7→minus ( t imes ( c o r r e c t i o n _ c o e f f 7→minus ( x3 7→wx)
) 7→x1 ) )

7→ minus ( d i v i d e ( vy 7→Rtwo) 7→minus ( t imes ( c o r r e c t i o n _ c o e f f 7→minus ( x4 7→wy
) ) 7→x2 ) ) )

7→( x1
7→ x2 )

)
FirstOrder2DimensionSystemFunction expression ( contro lArea2 : P( RReal×RReal

) )
direct definition

(λ ( x1 7→x2 ) 7→( vx 7→vy ) ·
( x1 7→x2 ) ∈ RReal×RReal ∧ ( vx 7→vy ) ∈ RReal×RReal ∧ ( vx 7→vy ) ∈

contro lArea2
| ( vx
7→ vy
)

)
SecondOrder2DimensionSystem expression ( c o r r e c t i o n _ c o e f f : RReal ,

contro lArea4 : P ( ( RReal×RReal )×( RReal×RReal ) ) , t0 : RRealPlus , x0 : (
RReal×RReal )×( RReal×RReal ) )

direct definition
caode (

SecondOrder2DimensionSystemFunction ( c o r r e c t i o n _ c o e f f , contro lArea4 ) ,
x0 ,
t0

)
FirstOrder2DimensionSystem expression ( contro lArea2 : P( RReal×RReal ) , t0 :

RRealPlus , y0 : RReal×RReal )
direct definition

caode (
FirstOrder2DimensionSystemFunction ( contro lArea2 ) ,
y0 ,
t0

)
PointwiseSlopedControl expression (DR: P( RReal ) , vx : RReal , vy : RReal , t0 :

RReal )
well−definedness t0 ∈ DR
direct definition

(λ t · t ∈ DR ∧ t0 7→ t ∈ l e q |
( vx 7→ vy )
7→
( t imes ( vx 7→ minus ( t 7→ t0 ) ) 7→ t imes ( vy 7→ minus ( t 7→ t0 ) ) )

)
PointwiseControl expression (DR: P( RReal ) , vx : RReal , vy : RReal , t0 : RReal )

well−definedness t0 ∈ DR
direct definition

(λ t · t ∈ DR ∧ t0 7→ t ∈ l e q | ( vx 7→ vy ) )
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FirstOrderSystemObserver expression ( )
direct definition

(λ x · x ∈ RReal×RReal | x )
SecondOrderSystemObserver expression ( )

direct definition
(λ ( x1 7→x2 ) 7→( x3 7→x4 ) · ( x1 7→x2 7→x3 7→x4 ) ∈ RReal×RReal×RReal×RReal | x3

7→x4 )
AXIOMATIC DEFINITIONS
pc_control :
AXIOMS

second_order_control :
∀ DR,UF, vx , vy , cc , t0 , x0 ·

cc ∈ RReal ∧
DR ⊆ RReal ∧ UF ⊆ RReal×RReal ∧
( vx 7→vy ) ∈ UF ∧
t0 ∈ RReal ∧ t0 ∈ DR ∧
x0 ∈ ( RReal×RReal )×( RReal×RReal ) ⇒

SolvableWith (
DR,
SecondOrder2DimensionSystem ( cc ,UF×( RReal×RReal ) , t0 , x0 ) ,
Po intwiseS lopedContro l (DR, vx , vy , t0 )

)
first_order_control :
∀ DR,UF, vx , vy , t0 , x0 ·

DR ⊆ RReal ∧ UF ⊆ RReal×RReal ∧
( vx 7→vy ) ∈ UF ∧
t0 ∈ RReal ∧ t0 ∈ DR ∧
x0 ∈ RReal×RReal ⇒

SolvableWith (
DR,
FirstOrder2DimensionSystem (UF, t0 , x0 ) ,
Po intwiseContro l (DR, vx , vy , t0 )

)
pc_sim :
OPERATORS

NeighborhoodSimulationCondition predicate (mu: RRealPlus , nu : RRealPlus , cc
: RReal ) :

well−definedness Rzero 7→ cc ∈ l t
AXIOMS

nsc_def :
∀ mu, nu , cc · mu ∈ RRealPlus ∧ nu ∈ RRealPlus ∧ cc ∈ RReal ∧ Rzero 7→

cc ∈ l t ⇒ (
NeighborhoodSimulat ionCondit ion (mu, nu , cc ) ⇔
( t imes (nu 7→ plus ( d i v i d e ( Rone 7→ Rtwo) 7→ plus ( t imes (Rtwo 7→ cc ) 7→

s q r t ( p lus ( Rone 7→ t imes ( p lus (Rtwo 7→ Rtwo) 7→ cc ) ) ) ) ) ) 7→ mu ∈
l e q )

)
first_second_order_simulation_function :
∀ UF1, UF2, cc ,mu, nu ·

cc ∈ RReal ∧
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UF1 ⊆ RReal×RReal ∧ UF2 ⊆ RReal×RReal ∧
mu ∈ RRealPlus ∧ nu ∈ RRealPlus ∧
UF1 ⊆ DeltaNeighborhoodSet (mu, Rzero 7→Rzero ) ∧ UF2 ⊆

DeltaNeighborhoodSet (nu , Rzero 7→Rzero ) ∧
NeighborhoodSimulat ionCondit ion (mu, nu , cc )
⇒ (
∃ V · V ∈ Simulat ionFunct ions (

( RReal×RReal )×( RReal×RReal ) , RReal×RReal ,
UF1×( RReal×RReal ) , UF2,
SecondOrder2DimensionSystemFunction ( cc ,UF1×( RReal×RReal ) ) ,

SecondOrderSystemObserver ,
FirstOrder2DimensionSystemFunction (UF2) ,

FirstOrderSystemObserver
)

)
first_second_order_simulation_delta :
∀ UF1, UF2, cc ,mu, nu ,V ·

cc ∈ RReal ∧
UF1 ⊆ RReal×RReal ∧ UF2 ⊆ RReal×RReal ∧
mu ∈ RRealPlus ∧ nu ∈ RRealPlus ∧
NeighborhoodSimulat ionCondit ion (mu, nu , cc ) ∧
V ∈ Simulat ionFunct ions (

( RReal×RReal )×( RReal×RReal ) , RReal×RReal ,
UF1×( RReal×RReal ) , UF2,
SecondOrder2DimensionSystemFunction ( cc ,UF1×( RReal×RReal ) ) ,

SecondOrderSystemObserver ,
FirstOrder2DimensionSystemFunction (UF2) ,

FirstOrderSystemObserver
) ⇒

boundedBy ( ( ( RReal×RReal )×( RReal×RReal ) )×( RReal×RReal ) ,V, Rzero ,
t imes (Rtwo 7→nu) )

d i s t a n c e :
OPERATORS

plannar_distance expression ( r1 : RReal×RReal , r2 : RReal×RReal ) : RReal
AXIOMS

dist_sym :
∀ x , y · x ∈ RReal×RReal ∧ y ∈ RReal×RReal ⇒

plannar_distance (x , y ) = plannar_distance (y , x )
dist_sep :
∀ x , y · x ∈ RReal×RReal ∧ y ∈ RReal×RReal ⇒

( p lannar_distance (x , y ) = Rzero ⇔ x = y )
dist_tri :
∀ x , y , z · x ∈ RReal×RReal ∧ y ∈ RReal×RReal ∧ z ∈ RReal×RReal ⇒

plannar_distance (x , z ) 7→ plus ( p lannar_distance (x , y ) 7→
plannar_distance (y , z ) ) ∈ l e q

open_ball_is_open :
∀ x , d e l t a · x ∈ RReal×RReal ∧ d e l t a ∈ RRealPlus ∧ Rzero 7→ d e l t a ∈ l t

⇒
IsOpen ({ y | plannar_distance (x , y ) 7→ d e l t a ∈ gt })

dist_choice :
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∀ P, d · P ∈ RReal×RReal ∧ d ∈ RReal ∧ Rzero 7→ d ∈ l t ⇒ (
∃ Q · Q ∈ RReal×RReal ∧ d 7→ plannar_distance (P,Q) ∈ l t

)
neighborhood_plannar_distance :
∀ a , b , d e l t a ·

a ∈ RReal×RReal ∧ b ∈ RReal×RReal ∧ d e l t a ∈ RRealPlus ∧ Rzero 7→
d e l t a ∈ l t ∧

DeltaNeighborhood ( de l ta , a , b )
⇒ plannar_distance ( a , b) 7→ d e l t a ∈ l t

THEOREMS
first_order_system_solvable :
∀ DR,UF, t0 , y0 , vx , vy ·

DR ⊆ RReal ∧
UF ⊆ RReal×RReal ∧
t0 ∈ DR ∧ y0 ∈ RReal×RReal ∧
vx 7→vy ∈ UF ⇒

SolvableWith (DR, FirstOrder2DimensionSystem (UF, t0 , y0 ) ,
Po intwiseContro l (DR, vx , vy , t0 ) )

second_order_system_solvable :
∀ DR,UF, t0 , x0 , vx , vy , cc ·

DR ⊆ RReal ∧
UF ⊆ RReal×RReal ∧
t0 ∈ DR ∧ x0 ∈ ( RReal×RReal )×( RReal×RReal ) ∧
vx 7→vy ∈ UF ∧
cc ∈ RReal ⇒

SolvableWith (DR, SecondOrder2DimensionSystem ( cc ,UF×( RReal×RReal ) , t0
, x0 ) , Po intwiseS lopedContro l (DR, vx , vy , t0 ) )

END

B.5.2 Abstract Robot

Context

Listings B.16: Abstract robot context
CONTEXT

Robot_0_Ctx
EXTENDS

GenericCtx
CONSTANTS

SpeedLimit
CloseEnough
px0
py0
C r i t i c a l D i s t a n c e

AXIOMS
axm1 : SpeedLimit ∈ RReal
axm2 : Rzero 7→ SpeedLimit ∈ lt
axm3 : px0 ∈ RReal
axm4 : py0 ∈ RReal
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axm5 : CloseEnough ∈ RReal
axm6 : Rzero 7→ CloseEnough ∈ lt
axm7 : CriticalDistance ∈ RReal
axm8 : Rzero 7→ CriticalDistance ∈ lt
axm9 : CloseEnough 7→ CriticalDistance ∈ lt
axm10 : plannar_distance(px0 7→ py0 ,Rzero 7→ Rzero) 7→ CriticalDistance ∈ lt

END

Machine

Listings B.17: Abstract robot machine
MACHINE

Robot_0
REFINES

Generic
SEES

Robot_0_Ctx
VARIABLES t , pA , Target , Direction
INVARIANTS

inv1 : pA ∈ RReal 7→ S
inv3 : Closed2Closed(Rzero, t) ⊆ dom(pA)
inv5 : x_p = pA
inv6 : Target ∈ RReal × RReal
inv7 : Direction ∈ RReal × RReal
inv8 : DeltaNeighborhood(SpeedLimit,Rzero 7→ Rzero,Direction)
inv9 : x_s = (Target 7→ Direction)
inv10 : plannar_distance(Target,Rzero 7→ Rzero) 7→ minus(CriticalDistance 7→ CloseEnough) ∈ lt
inv11 : ∀t_ · t_ ∈ Closed2Closed(Rzero, t)⇒

plannar_distance(pA(t_),Rzero 7→ Rzero) 7→ CriticalDistance ∈ lt
EVENTS

INITIALISATION
WITH

x_s′ : x_s′ = Target′ 7→ Direction′
x_p′ : x_p′ = pA′

THEN
act1 : t := Rzero
act2 : pA := {Rzero 7→ (px0 7→ py0 )}
act3 : Target :| Target′ ∈ RReal × RReal∧

plannar_distance(Target′,Rzero 7→ Rzero) 7→ minus(CriticalDistance 7→ CloseEnough) ∈ lt
act4 : Direction := Rzero 7→ Rzero

END

Behave
REFINES Behave
ANY e , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)
grd3 : plannar_distance(Target, pA(t)) 7→ CloseEnough ∈ gt



302 APPENDIX B. MODELS

grd4 : tp ∈ RRealPlus
grd5 : t 7→ tp ∈ lt
grd6 :

CBAPsolutionOfFIS(t, tp, pA, e,
{px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt
∧plannar_distance(Rzero 7→ Rzero, px_ 7→ py_) 7→ CriticalDistance ∈ lt})

WITH
x_p′ : x_p′ = pA′
Inv : Inv = {px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt}

THEN
act1 :
t, pA :|

pA′ ∈ RReal 7→ S ∧ t′ = tp∧
Closed2Closed(Rzero, t′) ⊆ dom(pA′)∧
CBAPsolutionOf (t, t′, pA, pA′, e,
{px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt
∧plannar_distance(Rzero 7→ Rzero, px_ 7→ py_) 7→ CriticalDistance ∈ lt})

END

sense_close_enough
REFINES Sense
ANY next_direction , next_target
WHERE

grd1 : next_direction ∈ RReal × RReal
grd2 : next_target ∈ RReal × RReal
grd3 : plannar_distance(Target, pA(t)) 7→ CloseEnough ∈ leq
grd4 : DeltaNeighborhood(SpeedLimit,Rzero 7→ Rzero,next_direction)
grd5 : plannar_distance(next_target,Rzero 7→ Rzero) 7→

minus(CriticalDistance 7→ CloseEnough) ∈ lt
WITH

s : s = {next_target 7→ next_direction}
p : p = {Target 7→ Direction} × {t} × {px_ 7→ py_ |

plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ leq}
x_s′ : x_s′ = next_target 7→ next_direction

THEN
act1 : Direction := next_direction
act2 : Target := next_target

END

transition_change_direction
REFINES Transition
ANY new_direction
WHERE

grd1 : new_direction ∈ RReal × RReal
grd2 : DeltaNeighborhood(SpeedLimit,Rzero 7→ Rzero,new_direction)

WITH
s : s = {Target} × {new_direction}
x_s′ : x_s′ = Target 7→ new_direction

THEN
act1 : Direction := new_direction
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END

transition_change_target
REFINES Transition
ANY next_target
WHERE

grd1 : next_target ∈ RReal × RReal
grd2 : plannar_distance(next_target,Rzero 7→ Rzero) 7→

minus(CriticalDistance 7→ CloseEnough) ∈ lt
WITH

s : s = {next_target} × {Direction}
x_s′ : x_s′ = next_target 7→ Direction

THEN
act1 : Target := next_target

END

actuate_movement
REFINES Actuate
ANY tp
WHERE

grd3 : plannar_distance(Target, pA(t)) 7→ CloseEnough ∈ gt
grd7 : tp ∈ RRealPlus
grd8 : t 7→ tp ∈ lt
grd9 :

CBAPsolutionOfFIS(t, tp, pA,
withControl(

Closed2Closed(t, tp),
FirstOrder2DimensionSystem(DeltaNeighborhoodSet(SpeedLimit,Rzero 7→ Rzero), t, pA(t)),
PointwiseControl(Closed2Closed(t, tp), prj1 (Direction), prj2 (Direction), t)

)
, {px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt

∧plannar_distance(Rzero 7→ Rzero, px_ 7→ py_) 7→ CriticalDistance ∈ lt})
WITH

x_p′ : x_p′ = pA′
Inv : Inv = {px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt}
s : s = {Target} × {Direction}
e :
e = withControl(

Closed2Closed(t, tp),
FirstOrder2DimensionSystem(DeltaNeighborhoodSet(SpeedLimit,Rzero 7→ Rzero), t, pA(t)),
PointwiseControl(Closed2Closed(t, tp), prj1 (Direction), prj2 (Direction), t)

)
THEN

act1 :
t, pA :|

pA′ ∈ RReal 7→ S ∧ t′ = tp∧
Closed2Closed(Rzero, t′) ⊆ dom(pA′)∧
CBAPsolutionOf (
t, t′,
pA, pA′,
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withControl(
Closed2Closed(t, t′),
FirstOrder2DimensionSystem(DeltaNeighborhoodSet(SpeedLimit,Rzero 7→ Rzero), t, pA(t)),
PointwiseControl(Closed2Closed(t, t′), prj1 (Direction), prj2 (Direction), t)

),
{px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt

∧plannar_distance(Rzero 7→ Rzero, px_ 7→ py_) 7→ CriticalDistance ∈ lt}
)

END

END

B.5.3 Concrete Approximated Robot

Context

Listings B.18: Concrete robot context
CONTEXT

Robot_1_Ctx
EXTENDS

Robot_0_Ctx
CONSTANTS

Contro l l e rSpeedLimit
C o n t r o l C o e f f i c i e n t
S2
AppDelta

AXIOMS
axm1 : ControllerSpeedLimit ∈ RReal
axm2 : Rzero 7→ ControllerSpeedLimit ∈ lt
axm3 : ControlCoefficient ∈ RRealPlus
axm4 : NeighborhoodSimulationCondition(ControlCoefficient,SpeedLimit,ControllerSpeedLimit)
axm5 : S2 = (RReal × RReal)× (RReal × RReal)
axm6 : ControllerSpeedLimit 7→ SpeedLimit ∈ leq
axm7 : AppDelta = times(Rtwo 7→ ControllerSpeedLimit)
axm8 : Rzero 7→ AppDelta ∈ lt

END

Machine

Listings B.19: Concrete robot machine
MACHINE

Robot_1
REFINES

Robot_0
SEES

Robot_1_Ctx
VARIABLES t , Target , DirectionControl , vC , pC
INVARIANTS
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inv1 : DirectionControl ∈ RReal × RReal
inv2 : DeltaNeighborhood(ControllerSpeedLimit,DirectionControl,Rzero 7→ Rzero)
inv3 : pC ∈ RReal 7→ S
inv6 : Closed2Closed(Rzero, t) ⊆ dom(pC )
inv7 : vC ∈ RReal 7→ S
inv8 : Closed2Closed(Rzero, t) ⊆ dom(vC )
inv11 : Direction = DirectionControl
inv12 : DeltaApproximation(Closed2Closed(Rzero, t),AppDelta, pA, pC )
inv13 : ∀t_ · t_ ∈ Closed2Closed(Rzero, t)⇒

plannar_distance(pC (t_),Rzero 7→ Rzero) 7→ minus(CriticalDistance 7→ AppDelta) ∈ lt
EVENTS

INITIALISATION
THEN

act1 : t := Rzero
act3 : pC := {Rzero 7→ (px0 7→ py0 )}
act4 : vC := {Rzero 7→ (Rzero 7→ Rzero)}
act5 : Target :| Target′ ∈ RReal × RReal∧

plannar_distance(Target′,Rzero 7→ Rzero) 7→ minus(CriticalDistance 7→ CloseEnough) ∈ lt
act6 : DirectionControl := Rzero 7→ Rzero

END

Behave
REFINES Behave
ANY e2 , tp
WHERE

grd1 : e2 ∈ DE(S2 )
grd2 : Solvable(Closed2Closed(t, tp), e2 )
grd3 : plannar_distance(Target, pC (t)) 7→ plus(CloseEnough 7→ AppDelta) ∈ gt
grd4 : tp ∈ RRealPlus
grd5 : t 7→ tp ∈ lt
grd6 : CBAPsolutionOfFIS(t, tp, bind(vC , pC ), e2 ,
{(vx_ 7→ vy_) 7→ (px_ 7→ py_) | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt})

WITH
e :
e ∈ DE(S)∧
Solvable(Closed2Closed(t, t′), e) ∧ (
∀etaA, etaC ·

etaA ∈ RRealPlus 7→ S ∧ etaC ∈ RRealPlus 7→ S2∧
Closed2Closed(Rzero, t′) ⊆ dom(etaA)∧
Closed2Closed(Rzero, t′) ⊆ dom(etaC )∧
solutionOf (Closed2Closed(t, t′), etaA, e)∧
solutionOf (Closed2Closed(t, t′), etaC , e2 )⇒

DeltaApproximation(Closed2Closed(t, t′),AppDelta, etaA, fproj2 (etaC ))
)

pA′ :
pA′ ∈ RReal 7→ S ∧ Closed2Closed(Rzero, t′) ⊆ dom(pA′)∧
DeltaApproximation(Closed2Closed(Rzero, t′),AppDelta, pA′, pC ′)

THEN
act1 :
t, pC , vC :|
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pC ′ ∈ RReal 7→ S∧
vC ′ ∈ RReal 7→ S∧
t′ = tp∧
Closed2Closed(Rzero, t′) ⊆ dom(pC ′)∧
Closed2Closed(Rzero, t′) ⊆ dom(vC ′)∧
CBAPsolutionOf (t, t′, bind(vC , pC ), bind(vC ′, pC ′), e2 , {(vx_ 7→ vy_) 7→ (px_ 7→ py_) |

plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt})
END

sense_close_enough
REFINES sense_close_enough
ANY next_direction_ctrl , next_target
WHERE

grd1 : next_direction_ctrl ∈ RReal × RReal
grd2 : next_target ∈ RReal × RReal
grd3 : plannar_distance(Target, pC (t)) 7→ minus(CloseEnough 7→ AppDelta) ∈ leq
grd4 : DeltaNeighborhood(ControllerSpeedLimit,Rzero 7→ Rzero,next_direction_ctrl)
grd5 : plannar_distance(next_target,Rzero 7→ Rzero) 7→

minus(CriticalDistance 7→ CloseEnough) ∈ lt
WITH

next_direction : next_direction = next_direction_ctrl
THEN

act1 : DirectionControl := next_direction_ctrl
act2 : Target := next_target

END

transition_change_direction
REFINES transition_change_direction
ANY new_direction_ctrl
WHERE

grd1 : new_direction_ctrl ∈ RReal × RReal
grd2 : DeltaNeighborhood(ControllerSpeedLimit,Rzero 7→ Rzero,new_direction_ctrl)

WITH
new_direction : new_direction = new_direction_ctrl

THEN
act1 : DirectionControl := new_direction_ctrl

END

transition_change_target
REFINES transition_change_target
END

actuate_movement
REFINES actuate_movement
ANY tp
WHERE

grd1 : plannar_distance(Target, pC (t)) 7→ plus(CloseEnough 7→ AppDelta) ∈ gt
grd7 : tp ∈ RRealPlus
grd8 : t 7→ tp ∈ lt
grd9 :
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CBAPsolutionOfFIS(t, tp, bind(vC , pC ),
withControl(

Closed2Closed(t, tp),
SecondOrder2DimensionSystem(

ControlCoefficient,
DeltaNeighborhoodSet(ControllerSpeedLimit,Rzero 7→ Rzero)× (RReal × RReal),
t,
vC (t) 7→ pC (t)

),
PointwiseSlopedControl(

Closed2Closed(t, tp),
prj1 (DirectionControl), prj2 (DirectionControl),
t

)
)

, {(vC_ 7→ pC_) | plannar_distance(Target, pC_) 7→ plus(CloseEnough 7→ AppDelta) ∈ gt})
WITH

pA′ :
pA′ ∈ RReal 7→ S∧
Closed2Closed(Rzero, t′) ⊆ dom(pA′)∧
CBAPsolutionOf (
t, t′,
pA, pA′,
withControl(

Closed2Closed(t, t′),
FirstOrder2DimensionSystem(DeltaNeighborhoodSet(SpeedLimit,Rzero 7→ Rzero), t, pA(t)),
PointwiseControl(Closed2Closed(t, t′), prj1 (Direction), prj2 (Direction), t)

),
{px_ 7→ py_ | plannar_distance(Target, px_ 7→ py_) 7→ CloseEnough ∈ gt}

)∧
DeltaApproximation(Closed2Closed(Rzero, t′),AppDelta, pA′, pC ′)

THEN
act1 :
t, pC , vC :|

pC ′ ∈ RReal 7→ S∧
vC ′ ∈ RReal 7→ S∧
t′ = tp∧
Closed2Closed(Rzero, t′) ⊆ dom(pC ′)∧
Closed2Closed(Rzero, t′) ⊆ dom(vC ′)∧
CBAPsolutionOf (
t, t′,
bind(vC , pC ),
bind(vC ′, pC ′),
withControl(

Closed2Closed(t, t′),
SecondOrder2DimensionSystem(

ControlCoefficient,
DeltaNeighborhoodSet(ControllerSpeedLimit,Rzero 7→ Rzero)× (RReal × RReal),
t,
vC (t) 7→ pC (t)
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),
PointwiseSlopedControl(

Closed2Closed(t, t′),
prj1 (DirectionControl), prj2 (DirectionControl),
t

)
),
{(vC_ 7→ pC_) | plannar_distance(Target, pC_) 7→ plus(CloseEnough 7→ AppDelta) ∈ gt}

)
END

END

B.6 Inverted Pendulum
This section presents the models for the inverted pendulum case study, detailed in Section 7.5.2.
The domain theory of inverted pendulums is first given. The non-linear version of the pendulum is
then defined, followed by the linearised version.

B.6.1 Inverted Pendulum Theory

Listings B.20: Inverted pendulum theory
THEORY

IMPORTTHEORY Approximation
OPERATORS

PendulumRawFun expression ( omega0 : RReal )
direct definition

(λ t_ 7→(x1_ 7→x2_) 7→u_ ·
t_ ∈ RRealPlus ∧ x1_ ∈ RReal ∧ x2_ ∈ RReal ∧ u_ ∈ RReal
| x2_ 7→ ( p lus ( t imes (u_ 7→ cos (x1_) ) 7→ t imes ( t imes ( omega0 7→omega0 ) 7→

s i n (x1_) ) ) )
)

PendulumRaw expression ( omega0 : RReal , x0 : RReal×RReal , t0 : RRealPlus )
direct definition

code (PendulumRawFun( omega0 ) , x0 , t0 )
PendulumLinFun expression ( omega0 : RReal )

direct definition
(λ t_ 7→(x1_ 7→x2_) 7→u_ ·

t_ ∈ RRealPlus ∧ x1_ ∈ RReal ∧ x2_ ∈ RReal ∧ u_ ∈ RReal
| x2_ 7→ ( p lus (u_ 7→ t imes ( t imes ( omega0 7→omega0 ) 7→x1_) ) )

)
PendulumLin expression ( omega0 : RReal , x0 : RReal×RReal , t0 : RRealPlus )

direct definition
code ( PendulumLinFun ( omega0 ) , x0 , t0 )

AXIOMATIC DEFINITIONS
pendulum_solvabi l i ty :
OPERATORS

theta_max expression ( omega0 : RReal ) : RReal
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AXIOMS
theta_max_bounds :
∀ omega0 · omega0 ∈ RReal ⇒ Rzero 7→ theta_max ( omega0 ) ∈ l e q ∧

theta_max ( omega0 ) 7→ d i v i d e ( p i 7→Rtwo) ∈ l e q
pendulum_raw_controllability :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (

∃ t1 · t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧
C o n t r o l l a b l e ( Closed2Closed ( t0 , t1 ) ,PendulumRaw( omega0 , ( theta0 7→

thetap0 ) , t0 ) )
)

pendulum_lin_controllability :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (

∃ t1 · t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧
C o n t r o l l a b l e ( Closed2Closed ( t0 , t1 ) , PendulumLin ( omega0 , ( theta0 7→

thetap0 ) , t0 ) )
)

pendulum_approx :
OPERATORS

PendulumApproxWD predicate ( d e l t a : RReal , omega0 : RReal , theta_bound :
RReal , ctrl_bound : RReal , ctr l_bound_lin : RReal , c t r l _ d e l t a : RReal , t0 :

RRealPlus , t1 : RRealPlus ) :
well−definedness Rzero 7→d e l t a ∈ l t , Rzero 7→theta_bound ∈ l t ,

theta_bound 7→ theta_max ( omega0 ) ∈ l t , Rzero 7→ctrl_bound ∈ l t , Rzero
7→ctr l_bound_lin ∈ l t , Rzero 7→ c t r l _ d e l t a ∈ l t , t0 7→ t1 ∈ l t

AXIOMS
PAWD_Approximation :
∀ de l ta , omega0 , theta_bound , ctrl_bound , ctrl_bound_lin , c t r l_de l ta , t0 , t1

, x0_raw , x0_lin , u_raw , u_lin ·
d e l t a ∈ RReal ∧ Rzero 7→ d e l t a ∈ l t ∧
omega0 ∈ RReal ∧
theta_bound ∈ RReal ∧ Rzero 7→ theta_bound ∈ l t ∧ theta_bound 7→

theta_max ( omega0 ) ∈ l t ∧
ctrl_bound ∈ RReal ∧ Rzero 7→ ctrl_bound ∈ l t ∧
ctr l_bound_lin ∈ RReal ∧ Rzero 7→ ctr l_bound_lin ∈ l t ∧
c t r l _ d e l t a ∈ RReal ∧ Rzero 7→ c t r l _ d e l t a ∈ l t ∧
t0 ∈ RRealPlus ∧ t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧
PendulumApproxWD( de l ta , omega0 , theta_bound , ctrl_bound , ctrl_bound_lin

, c t r l_de l ta , t0 , t1 ) ∧
u_raw ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom(u_raw) ∧ (∀ t_

· t_ ∈ Closed2Closed ( t0 , t1 ) ⇒ abs (u_raw(t_) ) 7→ ctrl_bound ∈ l t
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) ∧
u_lin ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom( u_lin ) ∧ (∀ t_

· t_ ∈ Closed2Closed ( t0 , t1 ) ⇒ abs ( u_lin ( t_) ) 7→ ctr l_bound_lin
∈ l t ) ∧

DeltaApproximation ( Closed2Closed ( t0 , t1 ) , c t r l_de l ta , u_raw , u_lin ) ∧
x0_raw ∈ RReal×RReal ∧ x0_lin ∈ RReal×RReal ∧ DeltaNeighborhood (

de l ta , x0_raw , x0_lin )
⇒

DeltaApproximationEq ( Closed2Closed ( t0 , t1 ) , de l ta ,
withControl ( Closed2Closed ( t0 , t1 ) ,PendulumRaw( omega0 , x0_raw , t0

) ,u_raw) ,
withControl ( Closed2Closed ( t0 , t1 ) , PendulumLin ( omega0 , x0_lin , t0

) , u_lin )
)

pendulum_control :
OPERATORS

PendulumRawControl expression ( omega0 : RReal , theta0 : RReal , thetap0 :
RReal , t0 : RRealPlus ) : P( RReal×RReal )

well−definedness abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t
PendulumLinControl expression ( omega0 : RReal , theta0 : RReal , thetap0 :

RReal , t0 : RRealPlus ) : P( RReal×RReal )
well−definedness abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t

PC_raw_bound expression ( ) : RReal
PC_lin_bound expression ( ) : RReal
PendulumControlDelta expression ( omega0 : RReal , d e l t a : RReal ) : RReal

well−definedness Rzero 7→ d e l t a ∈ l t
AXIOMS

pendulum_raw_control_type :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (

PendulumRawControl ( omega0 , theta0 , thetap0 , t0 ) ∈ RReal 7→ RReal ∧
C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( PendulumRawControl ( omega0 , theta0 ,

thetap0 , t0 ) )
)

pendulum_lin_control_type :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (

PendulumLinControl ( omega0 , theta0 , thetap0 , t0 ) ∈ RReal 7→ RReal ∧
C l o s e d 2 I n f i n i t y ( t0 ) ⊆ dom( PendulumLinControl ( omega0 , theta0 ,

thetap0 , t0 ) )
)

pendulum_raw_control_bound_def :
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Rzero 7→ PC_raw_bound ∈ l t
pendulum_raw_control_bound :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (
∀ t_ · t_ ∈ RRealPlus ∧ t0 7→ t_ ∈ l e q ⇒

abs ( PendulumRawControl ( omega0 , theta0 , thetap0 , t0 ) ( t_) ) 7→
PC_raw_bound ∈ l t

)
pendulum_raw_control_acceptable :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (
∃ t1 · t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧

SolvableWith (
Closed2Closed ( t0 , t1 ) ,
PendulumRaw( omega0 , ( theta0 7→thetap0 ) , t0 ) ,
PendulumRawControl ( omega0 , theta0 , thetap0 , t0 )

)
)

pendulum_raw_control_solution_bounded :
∀ omega0 , theta0 , thetap0 , t0 , t1 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus ∧ t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧
SolvableWith ( Closed2Closed ( t0 , t1 ) ,PendulumRaw( omega0 , ( theta0 7→

thetap0 ) , t0 ) , PendulumRawControl ( omega0 , theta0 , thetap0 , t0 ) )
⇒ (
∀ theta_ , thetap_ ·

theta_ ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom( theta_ ) ∧
thetap_ ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom( thetap_ )

∧
so lu t i onOf (

Closed2Closed ( t0 , t1 ) ,
bind ( theta_ , thetap_ ) ,
withControl (

Closed2Closed ( t0 , t1 ) ,
PendulumRaw( omega0 , ( theta0 7→thetap0 ) , t0 ) ,
PendulumRawControl ( omega0 , theta0 , thetap0 , t0 )

)
)
⇒ (
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∀ t_ · t_ ∈ Closed2Closed ( t0 , t1 ) ⇒ abs ( theta_ (t_) ) 7→ theta0
∈ l t

)
)

pendulum_lin_control_bound_def :
Rzero 7→ PC_lin_bound ∈ l t

pendulum_lin_control_bound :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (
∀ t_ · t_ ∈ RRealPlus ∧ t0 7→ t_ ∈ l e q ⇒

abs ( PendulumLinControl ( omega0 , theta0 , thetap0 , t0 ) ( t_) ) 7→
PC_lin_bound ∈ l t

)
pendulum_lin_control_acceptable :
∀ omega0 , theta0 , thetap0 , t0 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus
⇒ (
∃ t1 · t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧

SolvableWith (
Closed2Closed ( t0 , t1 ) ,
PendulumLin ( omega0 , ( theta0 7→thetap0 ) , t0 ) ,
PendulumLinControl ( omega0 , theta0 , thetap0 , t0 )

)
)

pendulum_lin_control_solution_bounded :
∀ omega0 , theta0 , thetap0 , t0 , t1 ·

omega0 ∈ RReal ∧
theta0 ∈ RReal ∧ abs ( theta0 ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0 ∈ RReal ∧
t0 ∈ RRealPlus ∧ t1 ∈ RRealPlus ∧ t0 7→ t1 ∈ l t ∧
SolvableWith ( Closed2Closed ( t0 , t1 ) , PendulumLin ( omega0 , ( theta0 7→

thetap0 ) , t0 ) , PendulumLinControl ( omega0 , theta0 , thetap0 , t0 ) )
⇒ (
∀ theta_ , thetap_ ·

theta_ ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom( theta_ ) ∧
thetap_ ∈ RReal 7→ RReal ∧ Closed2Closed ( t0 , t1 ) ⊆ dom( thetap_ )

∧
so lu t i onOf (

Closed2Closed ( t0 , t1 ) ,
bind ( theta_ , thetap_ ) ,
withControl (

Closed2Closed ( t0 , t1 ) ,
PendulumLin ( omega0 , ( theta0 7→thetap0 ) , t0 ) ,
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PendulumLinControl ( omega0 , theta0 , thetap0 , t0 )
)

)
⇒ (
∀ t_ · t_ ∈ Closed2Closed ( t0 , t1 ) ⇒ abs ( theta_ (t_) ) 7→ theta0

∈ l t
)

)
pendulum_control_delta_def :
∀ omega0 , d e l t a ·

omega0 ∈ RReal ∧
d e l t a ∈ RReal ∧ Rzero 7→ d e l t a ∈ l t
⇒

Rzero 7→ PendulumControlDelta ( omega0 , d e l t a ) ∈ l t
pendulum_control_approx :
∀ de l ta , omega0 , theta0_raw , thetap0_raw , theta0_l in , thetap0_lin , t0 ·

d e l t a ∈ RReal ∧ Rzero 7→ d e l t a ∈ l t ∧
omega0 ∈ RReal ∧
theta0_raw ∈ RReal ∧ abs ( theta0_raw ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0_raw ∈ RReal ∧
theta0_l in ∈ RReal ∧ abs ( theta0_l in ) 7→ theta_max ( omega0 ) ∈ l t ∧
thetap0_l in ∈ RReal ∧
t0 ∈ RRealPlus ∧
DeltaNeighborhood ( de l ta , ( theta0_raw 7→thetap0_raw ) , ( theta0_l in 7→

thetap0_l in ) )
⇒

DeltaApproximation (
C l o s e d 2 I n f i n i t y ( t0 ) ,
PendulumControlDelta ( omega0 , d e l t a ) ,
PendulumRawControl ( omega0 , theta0_raw , thetap0_raw , t0 ) ,
PendulumLinControl ( omega0 , theta0_l in , thetap0_lin , t0 )

)
END

B.6.2 Non-Linear Inverted Pendulum

Context

Listings B.21: Non-linear pendulum context
CONTEXT

PendulumCtx
EXTENDS

GenericCtx
CONSTANTS

omega0
thetamax
theta0
c o n t r o l

AXIOMS
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axm1 : omega0 ∈ RReal
axm2 : omega0 6= Rzero
axm3 : thetamax = theta_max(omega0 )
axm4 : theta0 ∈ RReal
axm5 : abs(theta0 ) 7→ thetamax ∈ lt
axm6 : partition(STATES , {control})

END

Machine

Listings B.22: Non-linear pendulum machine
MACHINE

Pendulum
REFINES

Generic
SEES

PendulumCtx
VARIABLES t , theta , thetap , t_sense , theta_sense , thetap_sense , control_fun
INVARIANTS

inv1 : theta ∈ RReal 7→ RReal
inv2 : thetap ∈ RReal 7→ RReal
inv3 : Closed2Closed(Rzero, t) ⊆ dom(theta)
inv4 : Closed2Closed(Rzero, t) ⊆ dom(thetap)
inv5 : x_p = bind(theta, thetap)
inv6 : ∀t_ · t_ ∈ Closed2Closed(Rzero, t)⇒ abs(theta(t_)) 7→ thetamax ∈ lt
inv7 : x_s = control
inv8 : t_sense ∈ RRealPlus
inv9 : theta_sense ∈ RReal
inv10 : thetap_sense ∈ RReal
inv11 : control_fun ∈ RReal 7→ RReal
inv12 : Closed2Infinity(t_sense) ⊆ dom(control_fun)
inv13 : abs(theta_sense) 7→ thetamax ∈ leq

EVENTS
INITIALISATION
WITH

x_p′ : x_p′ = {Rzero 7→ (theta0 7→ Rzero)}
x_s′ : x_s′ = control

THEN
act1 : t := Rzero
act2 : theta := {Rzero 7→ theta0}
act3 : thetap := {Rzero 7→ Rzero}
act4 : t_sense := Rzero
act5 : theta_sense, thetap_sense := theta0 ,Rzero
act6 : control_fun := PendulumRawControl(omega0 , theta0 ,Rzero,Rzero)

END

Behave
REFINES Behave
ANY e , tp
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WHERE
grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)
grd4 : theta(t) 7→ thetamax ∈ lt
grd5 : tp ∈ RRealPlus
grd6 : t 7→ tp ∈ lt
grd7 :

CBAPsolutionOfFIS(t, tp, bind(theta, thetap), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

theta_ 7→ thetamax ∈ lt
| theta_ 7→ thetap_})

WITH
Inv :

Inv = {theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧
theta_ 7→ thetamax ∈ lt

| theta_ 7→ thetap_}
x_p′ : x_p′ = bind(theta′, thetap′)

THEN
act1 :
t, theta, thetap :|

t′ = tp∧
theta′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta′)∧
thetap′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap′)∧
CBAPsolutionOf (t, t′, bind(theta, thetap), bind(theta′, thetap′), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

theta_ 7→ thetamax ∈ lt
| theta_ 7→ thetap_})

END

sense_angle
REFINES Sense
WHERE

grd1 : Rzero 7→ abs(theta(t)) ∈ lt
WITH

x_s′ : x_s′ = control
s : s = {control}
p :
p = {control} × RReal × {theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetamax ∈ geq
| theta_ 7→ thetap_}

THEN
act1 : t_sense, theta_sense, thetap_sense := t, theta(t), thetap(t)

END

transition_calculate_control
REFINES Transition
WITH

x_s′ : x_s′ = control
s : s = {control}

THEN
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act1 : control_fun := PendulumRawControl(omega0 , theta_sense, thetap_sense, t_sense)
END

actuate_balance
REFINES Actuate
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd2 :

SolvableWith(
Closed2Closed(t, tp),
PendulumRaw(omega0 , (theta(t) 7→ thetap(t)), t),

control_fun
)

grd4 : theta(t) 7→ thetamax ∈ lt
WITH

e :
e = withControl(

Closed2Closed(t, t′),
PendulumRaw(omega0 , (theta(t) 7→ thetap(t)), t),
control_fun

)
Inv :

Inv = {theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧
abs(theta_) 7→ thetamax ∈ lt

| theta_ 7→ thetap_}
x_p′ : x_p′ = bind(theta′, thetap′)
s : s = {control}

THEN
act1 :
t, theta, thetap :|

t′ = tp∧
theta′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta′)∧
thetap′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap′)∧
CBAPsolutionOf (
t, t′,
bind(theta, thetap),
bind(theta′, thetap′),
withControl(

Closed2Closed(t, t′),
PendulumRaw(omega0 , (theta(t) 7→ thetap(t)), t),
control_fun

),
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetamax ∈ lt
| theta_ 7→ thetap_}

)
END

END
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B.6.3 Linearised Inverted Pendulum
Context

Listings B.23: Linear pendulum context
CONTEXT

PendulumLinCtx
EXTENDS

PendulumCtx
CONSTANTS

d e l t a
cont ro l_de l ta
thetabound

AXIOMS
axm1 : delta ∈ RReal
axm2 : Rzero 7→ delta ∈ lt
axm3 : control_delta = PendulumControlDelta(omega0 , delta)
axm4 : thetabound ∈ RReal
axm5 : Rzero 7→ thetabound ∈ lt
axm6 : thetabound 7→ thetamax ∈ lt
axm7 : delta 7→ thetabound ∈ lt

END

Machine

Listings B.24: Linear pendulum machine
MACHINE

PendulumLin
REFINES

Pendulum
SEES

PendulumLinCtx
VARIABLES t , theta , thetap , t_sense , control_fun , theta_sense , thetap_sense ,

control_fun_lin , theta_lin , thetap_lin , theta_lin_sense , thetap_lin_sense
INVARIANTS

inv1 : theta_lin ∈ RReal 7→ RReal
inv2 : thetap_lin ∈ RReal 7→ RReal
inv3 : Closed2Closed(Rzero, t) ⊆ dom(theta_lin)
inv4 : Closed2Closed(Rzero, t) ⊆ dom(thetap_lin)
inv5 : DeltaApproximation(Closed2Closed(Rzero, t),

delta, bind(theta, thetap), bind(theta_lin, thetap_lin))
inv6 :
∀t_ · t_ ∈ Closed2Closed(Rzero, t)⇒

abs(theta(t_)) 7→ thetabound ∈ lt∧
abs(theta_lin(t_)) 7→ minus(thetabound 7→ delta) ∈ lt

inv7 : control_fun_lin ∈ RReal 7→ RReal
inv8 : DeltaApproximation(Closed2Infinity(t), control_delta, control_fun, control_fun_lin)
inv9 : theta_lin_sense ∈ RReal
inv10 : thetap_lin_sense ∈ RReal
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inv11 : abs(theta_lin_sense) 7→ minus(thetabound 7→ delta) ∈ leq
inv12 : DeltaNeighborhood(delta, theta_sense 7→ thetap_sense, theta_lin_sense 7→ thetap_lin_sense)

EVENTS
INITIALISATION
THEN

act1 : t := Rzero
act2 : theta := {Rzero 7→ theta0}
act3 : thetap := {Rzero 7→ Rzero}
act4 : t_sense := Rzero
act5 : theta_sense, thetap_sense := theta0 ,Rzero
act6 : control_fun := PendulumRawControl(omega0 , theta0 ,Rzero,Rzero)
act7 : control_fun_lin := PendulumLinControl(omega0 , theta0 ,Rzero,Rzero)
act8 : theta_lin := {Rzero 7→ theta0}
act9 : thetap_lin := {Rzero 7→ Rzero}
act10 : theta_lin_sense, thetap_lin_sense := theta0 ,Rzero

END

Behave
REFINES Behave
ANY e , tp
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable(Closed2Closed(t, tp), e)
grd4 : theta(t) 7→ thetabound ∈ lt
grd5 : tp ∈ RRealPlus
grd6 : t 7→ tp ∈ lt
grd7 :

CBAPsolutionOfFIS(t, tp, bind(theta, thetap), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetabound ∈ lt
| theta_ 7→ thetap_})

grd8 :
CBAPsolutionOfFIS(t, tp, bind(theta_lin, thetap_lin), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetabound ∈ lt
| theta_ 7→ thetap_})

THEN
act1 :
t, theta, thetap, theta_lin, thetap_lin :|

t′ = tp∧
theta′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta′)∧
thetap′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap′)∧
CBAPsolutionOf (t, t′, bind(theta, thetap), bind(theta′, thetap′), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetabound ∈ lt
| theta_ 7→ thetap_})∧

theta_lin′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta_lin′)∧
thetap_lin′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap_lin′)∧
CBAPsolutionOf (t, t′, bind(theta_lin, thetap_lin), bind(theta_lin′, thetap_lin′), e,
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧
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abs(theta_) 7→ thetabound ∈ lt
| theta_ 7→ thetap_})

END

sense_angle
REFINES sense_angle
WHERE

grd1 : Rzero 7→ abs(theta_lin(t)) ∈ lt
THEN

act1 : t_sense, theta_sense, thetap_sense := t, theta(t), thetap(t)
act2 : theta_lin_sense, thetap_lin_sense := theta_lin(t), thetap_lin(t)

END

transition_calculate_control
REFINES transition_calculate_control
THEN

act1 : control_fun := PendulumRawControl(omega0 , theta_sense, thetap_sense, t_sense)
act2 : control_fun_lin :=

PendulumLinControl(omega0 , theta_lin_sense, thetap_lin_sense, t_sense)
END

actuate_balance
REFINES actuate_balance
ANY tp
WHERE

grd0 : tp ∈ RRealPlus ∧ t 7→ tp ∈ lt
grd2 :

SolvableWith(
Closed2Closed(t, tp),
PendulumRaw(omega0 , (theta(t) 7→ thetap(t)), t),

control_fun
)

grd3 :
SolvableWith(

Closed2Closed(t, tp),
PendulumLin(omega0 , (theta_lin(t) 7→ thetap_lin(t)), t),
control_fun_lin

)
grd4 : abs(theta(t)) 7→ thetabound ∈ lt
grd5 : abs(theta_lin(t)) 7→ minus(thetabound 7→ delta) ∈ lt

THEN
act1 :
t, theta, thetap, theta_lin, thetap_lin :|

t′ = tp∧
theta′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta′)∧
thetap′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap′)∧
CBAPsolutionOf (
t, t′,
bind(theta, thetap),
bind(theta′, thetap′),
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withControl(
Closed2Closed(t, t′),
PendulumRaw(omega0 , (theta(t) 7→ thetap(t)), t),
control_fun

),
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ thetabound ∈ lt
| theta_ 7→ thetap_}

)∧
theta_lin′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(theta_lin′)∧
thetap_lin′ ∈ RReal 7→ RReal ∧ Closed2Closed(Rzero, t′) ⊆ dom(thetap_lin′)∧
CBAPsolutionOf (
t, t′,
bind(theta_lin, thetap_lin),
bind(theta_lin′, thetap_lin′),
withControl(

Closed2Closed(t, t′),
PendulumLin(omega0 , (theta_lin(t) 7→ thetap_lin(t)), t),
control_fun_lin

),
{theta_, thetap_ · theta_ ∈ RReal ∧ thetap_ ∈ RReal∧

abs(theta_) 7→ minus(thetabound 7→ delta) ∈ lt
| theta_ 7→ thetap_}

)
END

END
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