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Résumé : Les isolants topologiques (TI) sont ca-
ractérisés par la présence d’états conducteurs topo-
logiquement protégés sur leurs bords bien que leur
cœur soit isolant. Le caractère topologique offre
une robustesse unique, avec une conduction balis-
tique qui n’est pas affectée par un faible désordre
non-magnétique, dans la limite d’électrons n’in-
teragissant pas entre eux. Combiné à de la su-
praconductivité, un TI peut héberger des quasi-
particules exotiques appelées états liés de Majo-
rana, qui présentent un comportement anyonique
et constituent la base des architectures de calcul
quantique topologique. En 2017, des travaux théo-
riques ont conduit à la découverte d’une nouvelle
classe de TI : les isolants topologiques d’ordre su-
périeur (HOTI). Les isolants topologiques du se-
cond ordre (SOTI) sont des HOTI qui ont des états
de bord protégés une dimension inférieure à leurs
homologues standard du premier ordre, c’est-à-dire
des états de charnière unidimensionnels (1d) pour
un SOTI tridimensionnel (3d). En 2018, le bis-
muth monocristallin 3d pure fut le premier maté-
riau SOTI (et HOTI) découvert. Il a été démontré
théoriquement et expérimentalement qu’il possède
des états balistiques 1d sur certaines de ses char-
nières. La théorie prédit également que ces états
devraient être hélicoïdaux, avec des électrons de
spin opposé se propageant dans des directions op-
posées. Cependant, la physique des états électro-
niques du bismuth est complexe et produit de nom-
breux effets qui dépendent de la géométrie du sys-
tème, le principal problème étant que le cœur et les
surfaces du bismuth ne sont pas isolantes, ce qui
tend à masquer les effets dus au petit nombre des
états charnières. Ma thèse de doctorat vise à explo-
rer davantage la nature topologique des monocris-
taux de bismuth avec des expériences de transport
dans des nanostructures de bismuth à basse tem-
pérature, détectant les états charnières hélicoïdaux
topologiquement protégés prédis pour les SOTIs.
Dans une première série d’expériences, nous avons

mesuré le supercourant maximal que des segments
de nanofils de bismuth à contacts supraconduc-
teurs, formant des jonctions Josephson, peuvent
supporter avant de devenir résistifs. Ce courant
critique est affecté par des interférences à l’inté-
rieur du nanofil : une phase quantique est associée
à chaque état porteur de supercourant, qui change
dans un champ magnétique via les effets orbitaux
et Zeeman. Ce changement de phase génère des fi-
gures d’interférence du courant critique en fonction
du champ magnétique, qui peuvent être utilisées
pour déduire ce qu’il se passe dans le nanofil. Dans
une deuxième série d’expériences, nous avons me-
suré la statistique du courant critique d’un nano-
anneau de bismuth avec des contacts supracon-
ducteurs. Nous avons constaté qu’une telle jonc-
tion forme un dispositif d’interférence quantique
supraconducteur (SQUID) intrinsèque, montrant
un courant critique moyen périodique en champ
magnétique avec une forme en dents de scie, per-
sistant jusqu’à des valeurs de champ élevées. Ce
comportement a confirmé la présence d’états char-
nières balistiques 1d. De plus, la mesure de la
distribution complète du courant critique a ré-
vélé l’existence de régions de champ avec deux
ou même trois valeurs de courant critique diffé-
rentes. Nous associons ces supercourants à trois
états/configurations supraconducteurs différents,
correspondant à deux états charnières hélicoïdaux
soit dans leur premier état excité, soit dans leur
état fondamental, soit l’un dans son état excité
et l’autre dans son état fondamental. Grâce à ces
deux séries d’expériences, nous rapportons des si-
gnatures que le bismuth monocristallin 3d héberge
des états hélicoïdaux 1d, comme prédit pour les
SOTIs. Mon travail de thèse a aussi produit des
résultats préliminaires sur un sujet émergent, l’ani-
sotropie magnéto-chirale (MCA), qui est une autre
manifestation du couplage entre le spin et l’impul-
sion des états électroniques.
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Abstract : Topological Insulators (TI) are cha-
racterized by topologically-protected conducting
states on their boundaries even though their bulk
is insulating. The topological character provides a
unique robustness, with ballistic conduction unaf-
fected by weak non-magnetic disorder, in the li-
mit of non-interacting electrons. When combi-
ned with superconductivity, TI can host exotic
quasi-particles called Majorana bound states that
exhibit anyonic physics and constitute the basis
of topological quantum computation schemes. In
2017, theoretical works led to the discovery of a
new class of topological insulators : higher-order
topological insulators (HOTI). Second-order to-
pological insulators (SOTI) are HOTI that fea-
ture protected edge states one dimension lower
than their standard first-order counterparts, that
is one-dimensional (1d) hinge states for a three-
dimensional (3d) SOTI. In 2018, pristine 3d single-
crystal bismuth was the first SOTI (and HOTI)
material discovered. It was shown theoretically and
experimentally that it has 1d ballistic states on
some of its hinges. The theory also predicts that
these states should be helical, with opposite-spin
electrons propagating in opposite directions. Ho-
wever, the physics of the electronic states of bis-
muth is complex and produces many effects that
depend on the geometry of the system, the main
issue being that the bulk and surfaces of bis-
muth are not insulating, which tends to mask ef-
fects due to the small number of hinge states. My
PhD thesis aims at exploring further the topolo-
gical nature of bismuth single-crystals with low-
temperature transport experiments in bismuth na-
nostructures, detecting the topologically-protected
helical hinge states expected in SOTIs. In a first
series of experiments, we measured the maximum

supercurrent that segments of bismuth nanowires
with superconducting contacts, forming Josephson
junctions, can carry before switching to a resis-
tive state. This switching current is affected by in-
terference inside the nanowire : a quantum phase
is associated to each supercurrent carrying state,
which changes in a magnetic field via orbital and
Zeeman effects. This change in phase results in in-
terference patterns of the switching current versus
magnetic field, which can be used to infer what
is happening in the nanowire. In a second series
of experiments, we measured the statistics of the
switching current of a crystalline bismuth nano-
ring with superconducting contacts. We found that
such a junction forms an intrinsic Superconduc-
ting Quantum Interference Device (SQUID), de-
monstrating an average switching current periodic
in magnetic field with a sawtooth shape, persisting
up to high field values. This behavior confirmed the
presence of ballistic 1d hinge states. Moreover, the
measurement of the full switching current distri-
bution revealed the existence of field regions with
two or even three different switching current va-
lues. We associate these supercurrents to three dif-
ferent superconducting states/configurations, cor-
responding to two helical hinge state either both
in their first excited state, both in their ground
state, or one in its excited state and the other in
its ground state. Thanks to these two series of
experiments, we report signatures that 3d crystal-
line bismuth hosts helical 1d states, as predicted
for SOTI. My PhD work also produced preliminary
results on an emerging topic, Magneto-Chiral Ani-
sotropy (MCA), which is another manifestation of
the coupling between the electronic state’s spin
and momentum.
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Synthèse en français

Depuis leur découverte il y a une quinzaine d’années, les isolants topologiques (TI) ont suscité un grand
intérêt de la part de la communauté scientifique. Ces nouvelles " phases " de la matière se distinguent par
des propriétés quantifiées robustes, associées à la topologie de la phase quantique de leurs états quantiques
dans le coeur du matériau. Elles sont caractérisées par la présence d’états conducteurs topologiquement
protégés à leurs frontières, tandis que leur coeur est isolant. Les TI impliquent des notions de physique
générale comme la courbure de Berry, des phénomènes de physique quantique profonde tels que les fermions
de Majorana, la physique anyonique et l’anomalie de parité, ainsi que des applications très pratiques comme
des processus de transduction plus efficaces et une protection topologique contre les perturbations.

Très récemment, en 2017, de nouveaux travaux théoriques ont conduit à la découverte d’une nouvelle
classe d’isolants topologiques : les isolants topologiques d’ordre supérieur (HOTI). Les isolants topologiques
du second ordre (SOTI) présentent des états de bord protégés une dimension plus basse que leurs homologues
standard du premier ordre. En 2018, le bismuth monocristallin pure fut le premier matériau SOTI (et le
premier HOTI) découvert. Il a été démontré théoriquement et expérimentalement qu’il possède des états 1d
sur certaines de ses charnières. La théorie prédit également que ces états devraient être hélicoïdaux, et que
leur hélicité dépendrait de l’orientation des surfaces donnant lieu aux charnières. Cependant, la physique
des états électroniques du bismuth est très complexe et produit de nombreux effets qui dépendent de la
géométrie du système, le principal problème étant que le coeur et les surfaces du bismuth ne sont pas
isolants, ce qui tend à masquer les effets dus au petit nombre d’états charnières.

Ma thèse de doctorat est la troisième à traiter du bismuth. Les premiers échantillons et mesures de
transport avec des nanofils de bismuth connectés à des contacts supraconducteurs ont été réalisés au cours
de la première [1]. La seconde thèse a montré l’existence d’états balistiques 1d conducteurs aux charnières de
tels échantillons [2]. Le travail expérimental de ma thèse confirme les observations précédentes et approfondit
le caractère hélicoïdal et la protection topologique de ces états charnières.

Au cours de ma thèse, nous avons également exploré un nouveau sujet pour le groupe, à savoir l’ani-
sotropie magnéto-chirale (MCA). Pour les matériaux à fort couplage spin-orbite, présentant un verrouillage
spin-impulsion, le courant et le champ magnétique sont liés par le spin via le couplage Zeeman. Cela donne
lieu à des anisotropies des propriétés de transport, à la fois dans les états résistif et supraconducteur, en fonc-
tion de la géométrie de l’échantillon ainsi que de l’angle relatif entre le vecteur courant et le vecteur champ
magnétique. Il s’agit d’un sujet intéressant qui commence à être étudié par la communauté scientifique.

Je me suis concentré sur trois aspects de la réponse de transport des nanofils monocristallins de bismuth :
- la mesure et l’analyse des motifs résultant de l’interférence entre les différents états d’Andreev dans les
jonctions Josephson à base de nanofils de bismuth
- la mesure et l’analyse de la dynamique de bascule des états d’Andreev dans une jonction Josephson à base
de bismuth et de nanofils, hors de son état supraconducteur de proximité
- la recherche de l’anisotropie magnéto-chirale induite par le spin-orbite à travers des nanofils de bismuth
et des jonctions Josephson à base de bismuth et de nanofils, à la fois dans les états résistif et supraconducteur

Commençons par justifier brièvement nos choix d’échantillons de bismuth et de dispositifs de mesure.
En effectuant nos mesures à basse température, certains aspects des objets de taille microscopique peuvent
entrer dans un régime de cohérence quantique, où la phase quantique se manifeste à l’échelle microscopique,
ce qui est l’objectif de la physique mésoscopique. En fabriquant des nanofils de Bi d’une taille de ≃ 100nm

et d’une longueur de > 1, 4µm, nous réduisons le nombre d’états de coeur et de surface. En induisant de
la supraconductivité à l’intérieur de nos nanofils de Bi résistifs grâce à la proximité de contacts supracon-
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ducteurs, nous créons des jonctions Josephson à base de bismuth. Cela diminue encore les contributions
relatives des états diffusifs de coeur et de surface par rapport aux états balistiques de charnière topologi-
quement protégés, et nous permet également de faire interférer des supercourants. En mesurant la réponse
en transport en fonction de l’intensité et de l’orientation du champ magnétique, nous sommes en mesure
d’estimer l’effet du déphasage orbital, de la différence de phase supraconductrice et du couplage Zeeman,
bien qu’ils puissent être difficiles à démêler.

Dans le reste de cette introduction, je résume les principaux résultats sur les états charnières hélicoïdaux
1d topologiquement protégés obtenus au cours de ma thèse de doctorat.

Interférence d’états charnières balistiques 1d

L’interférence entre les supercourants portés par différents états charnières balistiques 1d dans les jonc-
tions Josephson à base de nanofils de bismuth a déjà été rapportée dans deux travaux de thèse antérieurs
dans le groupe [1, 2]. Elle consiste à mesurer le supercourant maximal qu’un segment de nanofil de bismuth
avec des contacts supraconducteurs peut transporter avant de devenir résistif. Ce courant de bascule est
affecté par l’interférence des supercourants à l’intérieur du nanofil. Une phase quantique est associée à
chaque état porteur de supercourant, et un champ magnétique peut les déphaser les uns par rapport aux
autres via des effets orbitaux et Zeeman. Ce déphasage donne lieu à des motifs d’interférence du courant
de bascule en fonction du champ magnétique, qui peuvent être utilisés pour déduire ce qui se passe dans le
nanofil.

Durant mon doctorat, nous avons mené une analyse minutieuse de plusieurs jonctions Josephson à base
de nanofils de bismuth. Nous avons confirmé l’existence de trois échelles de champ correspondant à un
déphasage orbital entre des états balistiques 1d séparés dans l’espace à des champs faibles, à un déphasage
orbital au sein d’états étroits individuels à des champs importants, et à un déphasage orbital et Zeeman à
des champs intermédiaires, voir Fig.1. Ce travail confirme la présence d’états balistiques 1d dans les nanofils
de bismuth, en accord avec la théorie des isolants topologiques d’ordre supérieur.

Allant au-delà des travaux de mes prédécesseurs, nous avons étendu notre analyse des figures d’inter-
férence pour inclure les inductances auto-induites et cinétiques ainsi que les effets Josephson anormaux.
Nous avons mesuré un effet de diode Josephson dans tous nos échantillons, avec des effets de déphasage
à champ magnétique nul dans la plupart d’entre eux, qui peut être expliqué par la présence d’inductances
cinétiques de ∼ 200pH. Alternativement, ce décalage pourrait être produit par un effet Josephson anormal
induit par le spin-orbite, où le supercourant induit un champ magnétique effectif de ∼ 100G.µA−1. De plus,
nous avons révélé que les variations des motifs de courant de bascule en fonction de l’orientation du champ
magnétique ne pouvaient pas être expliquées par un simple déphasage orbital entre des états situés dans un
seul plan. De plus, nous avons trouvé un profil transverse de densité de courant anisotrope pour les états
charnières 1d. L’analyse complète est faite dans le chapitre 3.
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(a) (b)

Figure 1 – Courant de bascule moyen de la jonction Josephson à base de nanofil de bismuth Biwire
12 en fonction du

champ magnétique vertical perpendiculaire au fil, pour une polarisation en courant positive (ligne continue orange)
et négative (ligne continue violette). (a) Entre−0.3T et 9T . (b) Zoom sur une gamme de 0.45T .

Dynamique de bascule d’états d’Andreev hélicoïdaux spatiallement séparés

La mesure du courant de bascule en fonction du champ magnétique hors-plan d’une jonction Josephson
constituée de deux branches d’un nano-anneau de bismuth, voir Fig.2a, formant un dispositif d’interférence
quantique supraconducteur (SQUID) DC intrinsèque, a révélé des comportements très intéressants. Tout
d’abord, l’observation d’un signal en dents de scie périodique en flux magnétique Φ = B.S = Φ0 = h/(2e)

dans la surface S du nano-anneau a montré que l’échantillon se comporte comme un SQUID DC asymétrique
intrinsèque donnant la relation courant-phase (CPR) de la branche la plus faible, voir Fig.2b. Cette CPR en
dents de scie dans une longue jonction, survivant jusqu’à 7T , confirme la présence d’états balistiques 1d,
comme rapporté précédemment dans des montages similaires dans [3, 2, 4].

Au

W

Bi

(a) (b)

(a)

(b)

(c)

Figure 2 – (a) Image au microscope électronique à balayage avec fausses couleurs de l’échantillon Biring . Il s’agit d’un
nano-anneau de Bi (marron) avec des contacts supraconducteurs composés de W (bleu) et des fils d’Au (jaune). (b)
Schéma simplifié du nano-anneau de bismuth connecté à deux contacts supraconducteurs (S), constituant un SQUID
DC asymétrique intrinsèque avec deux états charnières hélicoïdaux dans la branche faible. (c) Supercourant de la
branche faible en fonction de la configuration d’occupation de la ou des charnières.ET est l’énergie de Thouless. En
haut : une charnière dans son état fondamental (Ig) ou excité (Ie). En bas : deux charnières à l’état fondamental (g)
ou excité (e).
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En allant plus loin, au lieu de regarder uniquement le courant de bascule moyen sur des centaines
d’événements de bascule, nous avons mesuré sa distribution complète, voir Fig.3. Cela a révélé deux choses
importantes.

1) Premièrement, il existe deux valeurs distinctes de courant de bascule pour des valeurs de champ
magnétique correspondant à une différence de phase supraconductrice π à travers la jonction balistique
(branche faible). Nous l’interprétons comme une preuve supplémentaire d’un croisement parfait des états
liés d’Andreev, attendu pour les états topologiquement protégés. À proximité de π, la jonction peut être
dans deux états différents, transportant des supercourants opposés.

Figure 3 – Distributions de courant de bascule (histogrammes), en fonction du champ magnétique hors-plan, de
la jonction Josephson formée par un nano-anneau de bismuth, avec une rampe de polarisation en courant à un
fréquence de 17Hz. (a) Histogrammes de courant de bascule sur quatre périodes de flux autour de −170G. Le
nombre d’événements de bascule est codé en nuances de gris. La ligne de base du courant a été supprimé avec un
polynôme du premier degré. (b) Histogrammes aux champs magnétiques autour du saut à−170G où ϕ = π, voir
les lignes colorées correspondantes en (a). Les courbes sont décalées pour plus de clarté. (c) Histogrammes intégrés
près du saut à−170G. (d) Variation en champ de la probabilité d’occupation de trois états d’Andreev porteurs de
supercourants, correspondant respectivement aux deux charnières dans l’état fondamental (pgg , courbe bleue), aux
deux charnières dans l’état excité (pee, courbe rouge), et à une charnière dans l’état fondamental et l’autre dans l’état
excité (peg + pge, courbe verte).
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2) Deuxièmement, il existe une troisième valeur intermédiaire de courant de bascule visible sur une
région étendue autour de π, voir Fig.3. Nous l’expliquons par la présence de deux sous-jonctions longues
balistiques identiques en parallèle, correspondant à deux états charnières balistiques d’Andreev. Lorsque les
deux sous-jonctions sont dans leur état fondamental, le courant est juste doublé. Cependant, lorsque l’une
est excitée et l’autre non, la somme des deux est une dent de scie décalée, voir Fig.2c. Cette situation est
plus susceptible de se produire près de π, où les états excité et fondamental sont proches en énergie.

Pour un état-charnière supraconducteur topologique, l’état lié d’Andreev est hélical et non dégénéré en
spin, et il doit prendre ou céder une quasiparticule à son environnement pour effectuer la transition entre
son état fondamental et son état excité. Nous avons trouvé de longs temps de transition uni-état-charnière
de τqp ≃ 10ms, correspondant à l’empoisonnement d’une seule quasiparticule dans la spectroscopie micro-
onde des jonctions Josephson. Cette valeur est plutôt longue par rapport à la valeur moyenne trouvée dans
la littérature. En revanche, le temps de transition inter-état-charnières s’est révélé extrêmement long par
rapport à la littérature, avec τp ≃ 2ms ≫ 1µs. Ce processus correspond à une relaxation (ou excitation)
simultanée de deux état-charnières par échange de paires de quasiparticules avec l’environnement. Pour une
jonction conventionnelle, dans laquelle les deux hélicités ne sont pas séparées spatialement, ce processus
est très facile, car la jonction peut simplement échanger une paire de quasiparticules avec le condensat de
paires de Cooper, ce qui donne des temps de transition ∼ 1µs. Cependant, pour une paire d’état-charnière
d’Andreev hélicoïdaux, leur séparation spatiale, plus grande que la longueur de cohérence supraconductrice,
réduit considérablement cette possibilité. Nous l’interprétons comme une preuve solide que les état-charnières
ne sont pas seulement balistiques, mais aussi non dégénérés en spin (hélicoïdaux), comme prévu pour un
isolant topologique de second ordre.

Ce travail a été réalisé en collaboration avec les théoriciens Dr. Yang Peng, Prof. Yuval Oreg et Prof.
Felix von Oppen. Il a donné lieu à un article, qui vient d’être publié dans Nature Physics [5]. L’analyse
complète est disponible dans le chapitre 4.
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Organisation du manuscrit

Le manuscrit de ma thèse est organisé de la manière suivante :
- Le premier chapitre introduit toutes les idées théoriques utiles à la compréhension du travail de ma thèse.
Ce chapitre peut être sauté si on le souhaite, et les parties pertinentes peuvent être lu lorsqu’on y fait
référence dans un autre chapitre.
- Le deuxième chapitre décrit les procédés et techniques utilisés pour réaliser les échantillons et les expé-
riences.
- Le troisième chapitre présente la mesure et l’analyse des motifs résultant de l’interférence entre les diffé-
rents états d’Andreev dans les jonctions Josephson à base de nanofils de bismuth.
- Le quatrième chapitre présente la mesure et l’analyse de la dynamique du courant de bascule des états
d’Andreev dans une jonction Josephson formée par un nano-anneau de bismuth, hors de son état supracon-
ducteur induit par effet de proximité.
- Le cinquième chapitre conclut ce manuscrit et aborde les développements futurs.

Les résultats sur la MCA sont présentés séparément dans les annexes. Dans l’annexe 6.7, nous discutons
de la théorie de la MCA, impliquant les effets Edelstein. Dans l’annexe 6.2, nous étudions les différentes
sources d’asymétrie (telles que les inductances) et leur dépendance vis-à-vis de divers paramètres. Nous
montrons qu’il est difficile, mais pas impossible, de séparer la MCA des autres sources d’asymétrie. Dans
l’annexe 6.9.1, nous présentons nos mesures d’un champ magnétique effectif Beff = βNI dans de longs
nanofils de bismuth avec des contacts résistifs à ≃ 100mK, que nous associons à la MCA. Dans l’annexe
6.12, nous montrons nos mesures de Beff = βNI dans l’état résistif et de Beff = βSI dans l’état
supraconducteur d’une jonction Josephson à base de nanofils de bismuth en-dessous et au-dessus de sa
température critique. Toujours en annexe, nous fournissons plus de détails sur des points spécifiques de
fabrication, de mesure et de calcul.
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Summary in english

Since their discovery approximately fifteen years ago, Topological Insulators (TI) have attracted a lot of
interest from the scientific community. These new « phases » of matter distinguish themselves by robust
quantized properties, associated to the topology of the quantum phase of their quantum states in the bulk
of the material. They are characterized by the presence of topologically-protected conducting states on their
boundaries even though their bulk is insulating. TI feature general physics notions like the Berry curvature,
deep quantum physics phenomenon such as Majorana fermions, anyonic physics and parity anomaly, as well
as very practical applications like more efficient transduction processes and topological protection against
perturbations.

Very recently, in 2017, new theoretical works led to the discovery of a new class of topological in-
sulators : higher-order topological insulators (HOTI). Second-order topological insulators (SOTI) display
protected edge states one dimension lower than their standard first-order counterparts. In 2018, pristine
single-crystal bismuth was the first SOTI material (and first HOTI) discovered. It was shown theoretically
and experimentally that it has 1d states on some of its hinges. The theory also predicts that they should
be helical, and that their helicity would depend on the orientation of the surfaces giving rise to the hinges.
However, the physics of the electronic states of bismuth is very complex and produces many effects that
depends on the geometry of the system, the main issue being that the bulk and surfaces of bismuth are not
insulating, which tend to mask effects due to the small number of hinge states.

My PhD thesis is the third to deal with bismuth. The first samples and transport measurements with
bismuth nanowires connected to superconducting contacts were realized during the first one [1]. The second
PhD thesis showed the existence of ballistic 1d conducting states at hinges of such samples [2]. The experi-
mental work of my PhD confirms the previous observations and further probe the helical character and the
topological protection of these hinge states.

During my PhD, we also explored a new topic for the group, which is Magneto-Chiral Anisotropy (MCA).
For materials with high spin-orbit coupling, exhibiting spin-momentum locking, the current and the magnetic
field are related by the spin via Zeeman coupling. It yields anisotropies of transport properties, in both the
resistive and the superconducting states, depending on the geometry of the sample as well as the relative
angle between the current vector and the magnetic field vector. This is an interesting topic that begins to
be investigated by the scientific community.

I have focused on three aspects of the transport response of bismuth single-crystal nanowires :
- the measurement and analysis of patterns resulting from the interference between the various Andreev
states in bismuth-nanowire-based Josephson junctions
- the measurement and analysis of the switching dynamics of Andreev states in a bismuth-nanoring-based
Josephson junction, out of its proximity-induced superconducting state
- the search of spin-orbit-induced Magneto-Chiral Anisotropy through bismuth nanowires and bismuth-
nanowire-based Josephson junctions, both in the resistive and superconducting states

Let us first briefly justify our choices of bismuth sample and measurement setups. By performing our
measurements at low temperature, some aspects of microscopic-size objects can enter a quantum-coherent
regime, where the quantum phase manifests itself on the microscopic scale, which is the focus of mesoscopic
physics. By making Bi nanowires ≃ 100nm large and > 1.4µm long, we reduce the number of bulk and
surface states. By inducing superconductivity inside our resistive Bi nanowires thanks to the proximity of
superconducting contacts, we create bismuth-based Josephson junctions. This further decreases the rela-
tive contributions of the diffusive bulk and surface states compared to the ballistic topologically-protected
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hinge states, and we also allow for supercurrent interference. By measuring the transport response as a
function of magnetic field intensity and orientation, we are able to measure the effect of orbital dephasing,
superconducting phase difference, and Zeeman spin-field coupling, although they may be hard to disentangle.

In the remaining of this introduction, I summarize the main results on the topologically protected 1d
helical hinge states obtained during my PhD.

1d ballistic hinge states interference

The interference between supercurrents carried by different 1d ballistic hinge states in bismuth-nanowire-
based Josephson junctions was already reported in two previous PhD works in the group [1, 2]. It consist in
measuring the maximum supercurrent that a segment of bismuth nanowire with superconducting contacts
can carry before becoming resistive. This switching current is affected by the supercurrents interference
inside the nanowire. A quantum phase is associated to each supercurrent carrying state, and a magnetic
field can dephase them via orbital and Zeeman effects. This dephasing results in switching current versus
magnetic field interference patterns, which can be used to infer what is happening in the nanowire.

During my PhD, we led a careful analysis of multiple bismuth-nanowire-based Josephson junctions. We
confirmed three field scales corresponding to orbital dephasing between spatially separated 1d ballistic states
at small fields, to orbital dephasing within individual narrow states at large fields, and to both orbital and
Zeeman dephasing at intermediate fields, see Fig.4. This work confirms the presence of 1d ballistic states
in bismuth nanowires, consistent with the higher-order topology picture.

Going beyond the work of my predecessors, we extended our analysis of the interference patterns to
include self and kinetic inductances as well as anomalous Josephson effects. We measured a Josephson
diode effect in all our samples, with dephasing effects at zero magnetic field in most of them, that can be
explained by the presence of kinetic inductances of ∼ 200pH. Alternatively, this shift could be produced by
spin-orbit-induced anomalous Josephson effect, where the supercurrent induces an effective magnetic field
of ∼ 100G.µA−1. In addition, we revealed that the variations of the magnetic field patterns as a function of
magnetic field orientation could not be explained by simple orbital dephasing between states embedded in
a single plane. Moreover, we found an anisotropic transverse current density profile for the 1d hinge states.
The full analysis is done in chapter 3.

(a) (b)

Figure 4 – Average switching current of bismuth-nanowire-based Josephson junction Biwire
12 as a function of vertical

magnetic field perpendicular to the wire, for positive (orange solid line) and negative (purple solid line) current bias.
(a) Between−0.3T and 9T . (b) Zoom over a 0.45T range.
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Switching dynamics of spatially separated helical Andreev states

The measurement of the switching current versus out-of-plane magnetic field pattern of a Josephson
junction made of two branches of a bismuth nanoring, see Fig.5a, forming an intrinsic DC Superconducting
Quantum Interference Device (SQUID), revealed very interesting behaviors. First, the observation of a
sawtooth signal periodic in magnetic flux Φ = B.S = Φ0 = h/(2e) in the surface S of the nanoring showed
that the sample behaves as an intrinsic asymmetric DC SQUID yielding the Current-Phase Relation (CPR)
of the weakest branch, see Fig.5b. This sawtooth CPR in a long junction, surviving up to 7T , confirms the
presence of 1d ballistic states, as reported previously in similar setups in [3, 2, 4].

Au

W

Bi

(a) (b)

(a)

(b)

(c)

Figure 5 – (a) Scanning-electron-microscope image with false colors of the Biring sample. It is a Bi ring (brown) with
superconducting W compound contacts (blue) and Au leads (yellow). (b) Simplified sketch of the bismuth nanoring
connected to two superconducting contacts (S), constituting an intrinsic asymmetric DC SQUID with two helical hinge
states in the weak branch. (c) Supercurrent of the weak branch depending on the occupation configuration of the
hinge(s). ET is the Thouless energy. Top : one hinge in its ground (Ig) or excited (Ie) state. Bottom : two hinges in
ground (g) or excited (e) states.

Going further, instead of looking only at the average switching current over hundreds of switching events,
we measured its full distribution, see Fig.6. It revealed two major things.

1) First, there are two distinct switching current values for magnetic field values corresponding to a
superconducting phase difference π across the (weak branch) ballistic junction. We interpret it as further
proof of a perfect crossing of Andreev bound states, expected for topologically-protected states. Close to π,
the junction can be in two different states, carrying opposite supercurrents.
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Figure 6 – Switching current distributions (histograms) as a function of out-of-plane magnetic field of the bismuth-
nanoring based Josephson junction, with a 17Hz current bias ramp frequencies. (a) Switching current histograms
over four flux periods around−170G. The number of switching events is coded in shades of grey. The background
has been removedwith a first order polynomial. (b) Histograms atmagnetic fields around the jump at−170Gwhere
ϕ = π, see the corresponding colored lines in (a). Curves are shifted for clarity. (c) Integrated histograms close to
the jump at −170G. (d) Field-dependence of the occupation probability of three supercurrent-carrying Andreev
states, corresponding respectively to both hinges in the ground state (pgg , blue curve), both hinges in the excited
state (pee,red curve), and one hinge in the ground state and the other in the excited state (peg + pge, green curve).

2) Second, there is a third, intermediate switching current value visible on an extended region around π,
see Fig.6. We explain it by the presence of two identical long ballistic subjunctions in parallel, corresponding
to two ballistic Andreev hinge states. When both subjunctions are in their ground state, the current is just
doubled. When one is excited and the other is not however, the sum of the two is a shifted sawtooth, see
Fig.5c. This situation is more likely to happen near π, where excited and ground states are close in energy.

For a topological superconducting hinge states, the Andreev bound state is helical and non-spin-
degenerate, and it needs to absorb or release one quasiparticle with its environment to make the transition
between its ground and excited state. We found long single-hinge-transition times of τqp ≃ 10ms, corres-
ponding to single-quasiparticle poisoning in Josephson junction microwave spectroscopy. This value is rather
long compared to the average value found in the literature. In contrast, the inter-hinge-transition time was
found to be extremely long compared to the literature, with τp ≃ 2ms ≫ 1µs. This process corresponds
to simultaneous relaxation (or excitation) of the two hinges by exchange of pairs of quasiparticle with the
environment. For a conventional junction, in which both helicities are not spatially separated, this process
is very easy, as the junction can just exchange a pair of quasiparticles with the Cooper pair condensate,
yielding transition times ∼ 1µs. For a pair of helical Andreev hinge states however, their spatial separation,
larger the superconducting coherence length, greatly reduces this possibility. We interpret it as a strong
proof that the hinge states are not only ballistic, but also non-spin-degenerate (helical), as predicted for a
second-order topological insulator.

This work was realized in collaboration with the theoreticians Dr. Yang Peng, Prof. Yuval Oreg and
Prof. Felix von Oppen. It gave rise to an article, just published in Nature Physics [5]. The full analysis is
available in chapter 4.
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Outline

My thesis manuscript is organized as follows :
- The first chapter introduces all the theoretical ideas useful to the understanding of the work of my PhD.
This chapter can be skipped if desired, and the relevant parts can be red when referred to by another
chapter.
- The second chapter describes the processes and techniques used to realize the samples and the experi-
ments.
- The third chapter presents the measurement and analysis of patterns resulting from the interference bet-
ween the various Andreev states in bismuth-nanowire-based Josephson junctions.
- The fourth chapter presents the measurement and analysis of the switching current dynamics of Andreev
states in a bismuth-nanoring-based Josephson junction, out of its proximity-induced superconducting state.
- The fifth chapter concludes this manuscript and discuss future developments.

The results on MCA are presented separately in the appendix. In appendix 6.7, we discuss the theory of
MCA, involving the Edelstein effects. In appendix 6.2, we study the different sources of asymmetry (such as
inductances) and their dependence on various parameters. We show that it is hard, although not impossible,
to disentangle MCA from the other sources of asymmetry. In appendix 6.9.1, we present our measurements
of an effective magnetic field Beff = βNI in long bismuth nanowires with resistive contacts at ≃ 100mK,
that we associate to MCA. In appendix 6.12, we show our measurements of Beff = βNI in the resistive
state and Beff = βSI in the superconducting state of a bismuth-nanowire-based Josephson junction below
and above its critical temperature. Still in the appendix, we provide more details on specific fabrication,
measurement, and calculation points.
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1 - Useful theoretical ideas

This theoretical chapter contains general ideas useful to understand the experiments done during my
PhD. Some elements presented in this chapter result from considerable efforts and time investments during
the course of my PhD, in order to clarify concepts that are relevant for the experiments we did during my
PhD, but also other present and future experiments in the group.

First, we introduce spin-orbit coupling, fundamental element of time-reversal-symmetric topological
insulators, and source of Magneto-Chiral Anisotropy. Second, we review the known transport properties of
bismuth single-crystal in its bulk form as well as in finite-size nanostructures, and discuss its topological
properties. Third, we give the basic ideas to understand how a supercurrent flows in a non-superconducting
material by superconducting proximity effect, introducing the important Current-Phase Relations. We also
introduce the concept of parity-protection specific to topological helical junctions. After that, we present the
different types of experiments that can give (partial) access to the Current-Phase Relation(s) of the junction,
probing the type of transport in the junction. Then, we develop in four sections the expected behavior of a
junction with multiple conduction channels, exhibiting supercurrent interference with orbital and Zeeman-
induced dephasing processes. Lastly, we present the theoretical models used to analyze the dynamics of the
switching current in a conventional (spin-degenerate) Josephson junction, that we later adapt to model our
experiment on topological (helical) hinge states of our bismuth-based Josephson junction.

To complete the theoretical analysis, appendix 6.1 provides an introduction to topological insulators,
appendix 6.2 details the various sources of inductance and their respective behaviors, and appendix 6.7 pro-
perly introduce the spin-orbit-induced Mangeto-Chiral Anisotropy in both the resistive and superconducting
states, necessary to understand the experiments reported in appendix 6.9 and 6.12.

If the reader is familiar with the theoretical aspects just mentioned, he can skip this chapter, and come
back to the relevant parts when referred to in the experimental chapters 2, 3 and 4.

1.1 . Spin-orbit coupling

This section is dedicated to spin-orbit coupling (SOC). SOC couples the orbital degrees of freedom to
the spin degree of freedom. It has important consequences on the band structure, lifting the spin-degeneracy
when inversion symmetry is broken. Materials with SOC can exhibit non-trivial Fermi surface spin-textures,
yielding spin-momentum locking, which is a key ingredient to spin-orbit-induced Magneto-Chiral Anisotropy
arising from the Edelstein effect. The spin-momentum locking can be exploited for spintronics device.
Moreover, the SOC term partially breaks time-reversal symmetry, which is a crucial element for time-reversal
symmetric TI. This section introduces SOC and the spin-orbit-induced spin-texture. The Edelstein effects
and some of their consequences are discussed in appendix 6.7.

1.1.1 . General form
Spin-orbit coupling (SOC) can be understood as a relativistic effect : an electron moving at a speed vvv

in an electrostatic potential −∇∇∇V = −eEEE experiences an additionnal magnetic field BBB = − 1
c2
vvv ×EEE, and

its spin couples with this field with an interaction energy −µBBBB ·σσσ. This leads to an additonnal term in the
hamiltonian [6] (include the 1/2 factor from Thomas precession) :

HSO =
ℏ

4mc2
σσσ · (∇∇∇V × vvv) (1.1)

with σσσ = (σx, σy, σz) and σx,y,z are the 2x2 Pauli matrices.
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Figure 1.1 – Spin-orbit fieldΩΩΩ(kkk) and the related spin texture sss(kkk) for Rashba (RSOC, parameter α), Dresselhaus
(DSOC, parameter β), Weyl (WSOC, parameter γ) and persistent-spin-texture (PSOC, parameter λ). From [8].

The translation of this spin-orbit coupling in materials depends on their local crystallographic structure
and their symmetries. We cite Rashba in 2006 [7] :

In [8], considering only SOC up to the first order in k , they analyze the influence of Rashba, Dresselhaus,
Weyl and persistent-spin-texture SOC. They write :

Ĥ =
ℏ2kkk2

2m
+ΩΩΩ(kkk) · σσσ (1.2)

with kkk = (kx, ky) the wavevector in an orthonormal basis, ΩΩΩ = (Ωx,Ωy,Ωz) the spin-orbit field defined in
kkk-space as shown in Tab.1.1. This model does not include anisotropic bands (mx = my = m) or anisotropic
SOC parameters (αx = αy = α, etc.).

For every spin-orbit field ΩΩΩ(kkk), the SOC ΩΩΩ(kkk) ·σσσ breaks the spin degeneracy of the ℏ2kkk2
2m band, and split

it into two spin-polarized bands, such that the expectation value of the spin operator sss(kkk) = ℏ
2 ⟨σσσ⟩ is parallel

to ΩΩΩ(kkk) (see Tab.1.1). This gives rise to a non-trivial spin-texture associated to the electrons close to the
Fermi lines (2d equivalent of the Fermi surface of 3d materials).

It relates the electron wavevector kkk to its spin sss(kkk) and is the origin of various interesting phenomenons,
at the heart of the spintronics field, among others. We will exploit the Edelstein effect to measure the current-
induced spin polarization in the non-linear transport responses of our bismuth samples (see appendix 6.7.3).

Notice that the SOC termΩΩΩ(kkk)·σσσ is time-reversal-symmetric, asΩΩΩ(−kkk)·(−σσσ) = −ΩΩΩ(kkk)·(−σσσ) = ΩΩΩ(kkk)·σσσ.
However, at a given kkk, the SOC term breaks time-reversal-symmetry just like a Zeeman coupling term
−gµBBBBSO · σσσ would do, with BSO(kkk) = −ΩΩΩ(kkk)

gµB
the spin-orbit Zeeman field. At the opposite wavevector

kkk′ = −kkk, BSO(kkk
′) = −BSO(kkk). This allows for a very special type of solid-state materials : time-reversal-

invariant topological insulators (TI). This is discussed in appendix 6.1.

24



(a) (b)

Figure protected by copyright

See original publication
or ask for complete version

(c)

Figure protected by copyright

See original publication
or ask for complete version

(d)

Figure 1.2 – Splitting of energy bands due to spin-orbit coupling. (a) Energy spectrum of a 2DEGwith Rashba SOC (solid
lines) for one direction in kkk-space. Blue and red represent the+ and− branches from E±(kkk) = ℏ2kkk2

2m
± αk, res-

pectively. Emin = −α2m/(2ℏ2) and k0 = ±αm/ℏ2. For comparison, the free electron parabola without SOC is
shown (dashed line). The arrows indicate the spin expectation values with respect to a quantization axis perpendicu-
lar tokkk. (b) Fermi lines (EF > 0) with corresponding spin expectation values (arrows). From [10]. (c) and (d) : sketches
of the Fermi lines (solid lines) and associated spin expectation value sss(kkk) (arrows) at EF > 0 for Dresselhaus SOC
(c) and Weyl SOC (d). The red and blue lines correspond to the E+ and E− branches, respectivelly. From [8].

1.1.2 . Spin-textures
In this subsection, we will study the influence of the various types of SOC on the band structure and on

the Fermi lines. We will show that it gives rise to a spin-texture and spin-momentum locking. Let us first
consider the influence of Rashba SOC (β = γ = λ = 0) on a 2d free electron gas (2DEG). It corresponds
to an isotropic surface with a quadratic dispersion relation and where the inversion is broken locally in the
z direction (perpendicular to the surface) only and uniformly everywhere in the surface. This is the main
contribution to SOC in the surfaces of centrosymmetric non-magnetic materials. Following Edelstein [9] and
[10], the hamiltonian writes :

Ĥ =
ℏ2kkk2

2m
+ α(kxσy − kyσx) (1.3)

The eigenvalues are :

E±(kkk) =
ℏ2kkk2

2m
± αk

.
The Rashba SOC splits the energy parabola of free electrons into two parabolas shifted by Emin =

−α2m/(2ℏ2) and k0 = ±αm/ℏ2, as shown in Fig.1.2a. The spin expectation values sss(kkk) on the Fermi
lines are perpendicular to kkk. We distinguish two energy regions : region I for E < 0 and region II for E > 0.
The Fermi lines and their spin texture are different whether the Fermi energy EF lies in region I or II. In
region II, it forms concentric circle with the opposite spin textures but identical group velocities.In region I,
its the opposite, with identical spin textures but opposite group velocities. The Fermi lines and their spin
texture are shown in Fig.1.2b for EF > 0.

This analysis can be carried out for the different types of SOC [8], as shown in Figs.1.2c and 1.2d.
We define the angle ϕk such that kkk = (kx, ky) = (k cosϕk, k sinϕk) and the angle ϕs such that sss(kkk) =

(sx, sy) = (s cosϕs, s sinϕs). We see that the rotation of the spin expectation value differs for different
type of SOC. We can define a spin-momentum angle : ∆ϕ(kkk) = ϕs(kkk) − ϕk(kkk). For Rashba SOC, sss(kkk)
rotates with kkk following ϕs = ϕk ± π/2, where ± depends on the energy branch, and sss(kkk) ⊥ kkk on
the Fermi lines (∆ϕ(kkk) = ±π/2 constant), see Fig.1.2a. For Dresselhaus SOC, it rotates the opposite way
ϕs = −ϕk+π/2∓π/2, and ∆ϕ(kkk) = −2ϕk+π/2∓π/2 explores all possible values for Fermi lines enclosing
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Figure 1.3 – Band structure (a) and corresponding horizontal slice (b) corresponding to an hamiltonian with isotropic
Rashba SOC but anisotropic massesmx = 0.5my . (c) Fermi lines and spin-texture for a system withC3v symmetry
and an hexagonal warping term. From [10].

kkk = 000 (making two full rotations for ϕk : 0 −→ 2π), see Fig.1.2c. For Weyl SOC, ϕs = ϕk + π/2 ∓ π/2
and sss(kkk) ∥ kkk (∆ϕ(kkk) = π/2∓ π/2 constant), see Fig.1.2d.

The analysis we presented so far only accounts for isotropic band structures (mx = my = m in the kinetic
term without SOC) and isotropic SOC parameters (αx = αy = α, etc.), which only is an approximation for
certain real systems. In the case of bismuth crystal, there are strong anisotropies in the surface states, see
part 1.2.2. In [10], they study the modifications of the band structure in the cases of anisotropic bands or
SOC parameters for Rashba SOC. They write, for a system with a C2v symmetry like the (110) surface of
an fcc crystal :

Ĥ =
ℏ2k2x
2mx

+
ℏ2k2y
2my

+ αxkxσy − αykyσx (1.4)

Fig.1.3a and 1.3b shows the band structure and a slice in the case mx = 0.5my and αx = αy. We see that
the Fermi lines can change drastically depending on EF .

For a system with C3v symmetry, such as the (111) surface of fcc crystals and all the graphene-alike
material, they write :

Ĥ =
ℏ2k2

2m
+ α(kxσy − kyσx) + Λ(k3+ + k3−)σz (1.5)

with k± = kx ± iky, and where one miror plane was chosen to be along ŷ. The Λ ̸= 0 terms, referred as
hexagonal warping, appears when there is a structural in-plane asymmetry, like a buckled structure. The
spin texture is illustrated in Fig.1.3c. It ressemble the spin-texture of Bi(111) surface states, although with
notable differences, see part 1.2.2, and could impact some of its transport properties like the magneto-chiral
anisotropy.

1.1.3 . Bismuth inversion-symmetric unit cells
In the previous subsection, we introduced the lifting of the spin degeneracy and the generation of

spin-textures for inversion-breaking unit cells.
But in the case of bismuth crystal, its bulk unit cell is centro-symmetric, implying E−kkks = Ekkks for the

energy bands. Furthermore, it is time-reversal symmetric, implying E−kkks = Ekkks̄, where s̄ is the spin opposite
to s. Combining the two yields, for centro-symmetric bulk crystals :

Ekkks = Ekkks̄ (1.6)

and the bands are spin-degenerate.
In such a case, does SOC have any influence on centro-symmetric bulk crystals ? The answer is yes.

On the scales of the atoms, there still exists local potential gradients. It scales with the atomic number Z
as Z4. Because bismuth is the heaviest stable element with Z = 83, between lead (Z = 82) and polonium
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(Z = 84), SOC greatly influences its bulk and surfaces band structure. For this reason, bismuth is widely
used for 3d materials that benefit from high SOC, such as the 3d topological insulators Bi2Se3, Bi2Te3,
BaBiO3, Bi1−xSbx, BiTeI, (Bi1−xSbx)2Te3. Just above bismuth in the periodic table is antimony, with
Z = 51. The only thing that differs Sb from Bi crystals is the strength of the SOC [11]. The SOC in
Bi crystal is also responsible for its topological character, see part 1.2.4. One can dope it with Sb, making
Bi1−xSbx, to change its band structure enough to transform it into a strong topological insulator. Moreover,
the surfaces states of bismuth show large spin-plitting that influence its transport properties and can be
exploited for spintronics, see next subsection.

1.2 . The case of bismuth single-crystal

Elemental Bi is the heaviest stable element with Z = 83, between lead (Z = 82) and polonium
(Z = 84), which makes it ideal for synthesizing materials with strong spin-orbit coupling (scaling as Z4),
of great interest to build topological insulators or spintronic devices, see part 1.1 and appendix 6.1.

Bismuth single-crystal is one of the most studied material and is yet not fully understood. It was the
material where were first discovered diamagnetism, the Seebeck effect, the Nernst effect, Shunikov-de Haas
oscillations, and de Haas-van Alphen oscillations [12]. Very recently, it was proposed and demonstrated that
single-crystal Bi is the first 3d higher order topological insulator discovered [13].

This PhD work contributes to the scientific effort on this topic, by measuring proximity induced super-
conducting current through ≃ 100nm wide bismuth single-crystal nanowires. As we discuss in the following,
the nanowire geometry allows us to reduce the contribution of bulk and surface states to conduction, enhan-
cing the relative contribution of the topologically protected 1d helical hinge states. We present here several
characteristics of bismuth single-crystal structure, starting with bulk, following by surfaces, and finishing
with the topological nature of nanoscopic bismuth single-crystal structures (such as nanowires) and their
conducting modes.

1.2.1 . Bulk bismuth

Elemental bismuth belongs to the group V elements, just beneath Sb in the periodic table of elements,
with s2p3 outer shell electronic structure. At the pressures and temperatures used in our experiments
(P < 1.1bar, T < 320K), bismuth crystallizes in a rhombohedral structure with space group R3̄m and an
angle of 57.35◦. It is close to a fcc structure, with every other atom slightly shifted from its fcc position,
see Fig.1.4a. It results in two Bi atoms per unit cell, with a total of 10 orbitals (two of which being at much
lower energy and very far away from the Fermi energy), and a semi-metallic behavior [12]. The crystal has
three-fold rotational symmetry (C3) with respect to the trigonal axis, and inversion symmetry.

One-body clean bulk Bi calculations show no indirect gap at the Fermi energy, and a semi-metallic band
structure with three skewed-ellipsoidal electron pockets at L points and one ellipsoidal hole pocket at the
T point, strongly anisotropic, see Figs.1.4b and 1.4c. For numerical values of bulk band structure, we refer
to the article from Liu and Allen [14], where the authors use a sp3 tight-binding model to third nearest
neighbors designed to match the state-of-the-art experimental data of 1995. The direct band gap at the L
points (below EF ) is as small as ≃ 14meV , with EF ≃ 27meV above the bottom of the conduction band.
The dispersion relation is Dirac-like, and yields very high g-factor g ∼ 1000 [12]. The effective electron
mass is very small and anisotropic, with me < 0.26m0 along the bisectrix axis and me ≲ 0.0026 along the
trigonal axis. The direct band gap at the T point is about ≃ 370meV , with EF ≃ 11meV bellow the top of
the valence band. The effective hole mass is mh ≲ 0.068m0 along the bisectrix axis and mh = 0.6− 0.7m0

along the trigonal axis.
These pockets yield an average Fermi velocity of ⟨vF ⟩ ≃ 6×105m.s−1, low electrons and hole densities

27



n ≃ p ≃ 3 × 1017cm−3, as well as long Fermi wavelength of typical value λF ≃ 50nm. The long λF
is responsible for quantum size effects arising from quantum confinement, yielding semi-metal to semi-
conductor transitions in Bi thin film and nanowires of dimensions d ≃ 30nm ∼ λF [15, 16].

These small gaps at L-points require careful consideration on both the theoretical and experimental
sides, as they are responsible for important responses (with inter-band effects such as magnetization and
topological phases) of the system and can be affected by the lack of computational precision, or by additional
effects deviating from the idealized system (such as quantum size effects or strain). Such issues are discussed
in part 1.2.4, related to the topological nature of small bismuth structures.

In the next subsections, we extend our analysis to finite size bismuth single-crystal, showing metallic
spin-split surface states, as well as spin-split propagating 1d edge states. We discuss more in depth the works
done on Bi(111) bilayer(s) and surface defects, as it is a precursor of the discovery of higher order topology
in bismuth.
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Figure 1.4 – Bulk structure of Bi in real-space and in reciprocal space, and spectrum. (a) Left : rhombohedral unit cell
(dashed green lines) together with the hexagonal unit cell (dashed pink lines). Not all the atoms are shown. Blue and
red mark the two atoms in the rhombohedral unit cell. The solid green and pink lines are the vectors spanning the
rhombohedral and hexagonal lattice, respectively. The three cartesian axes are : bisectrix (C1,y), binary (C2,x) and
trigonal (C3, z). Right : illustration of the pseudocubic character of the structure together with the rhombohedral unit
cell. From [17]. (b) Bulk Brillouin zone of Bi and projection on the (111) surface. The Fermi surface is sketched (not to
scale) with electron pockets at L-points in blue and hole pockets at T-point in red. The Γ − T line corresponds to
the C3 axis and the [111] direction in real space. From [17]. (c) Band structure of bismuth with inversion eigenvalues
(green) andC3 eigenvalues on the Γ− T line (black).EF denotes the Fermi energy. Black arrows indicate the two
valence bands contributing to theC3-eigenvalue -graded band inversion. From [13].

1.2.2 . Surfaces of bismuth single-crystal
Regardless of its topological nature, all surfaces of thick bismuth single-crystals are metallic, with higher

density of states than the bulk (n ≃ 3×1013cm−2 at point Γ̄), and lower Fermi velocity (smaller by a factor
∼ 10 in Bi(111) surface states on the hole pockets) [17]. They host propagating spin-splitted surface states,
as demonstrated by Spin and Angle Resolved Photo-Emission Spectroscopy ((S)ARPES). Indeed, surfaces
break inversion symmetry, allowing for SOC splitting of the bands, resulting in spin-textured Fermi surfaces
(see part 1.1). What distinguish trivial from topological insulators is that, for first order 3d topological
insulators, these surface states are guaranteed to exist and cannot be gaped out by time-reversal symmetric
perturbations without closing a bulk gap.

28



The crystal surfaces are indexed by three numbers m, n, o, as (mno), which correspond to the surface
plane which is perpendicular to the reciprocal lattice vector with coefficients (m,n, o), using the rhombo-
hedral real-space lattice vectors depicted as green lines in Fig.1.4a (see [17] for more).

Each atom has three equidistant nearest neighbors (4.54Å), other three equidistant next-nearest neigh-
bors being slightly further away (4.72Å). This results in buckled bilayers of atoms with surfaces oriented
in the (111) direction, in which each atom is covalently bonded to its three nearest neighbors, forming a
buckled hexagonal structure, see Fig.1.4a right and Fig.1.5a. The next nearest neighbors are in the adjacent
bilayers and the bonding within each BL is much stronger than the van der Waals inter-bilayer bonding
[18, 17]. The distance between two bilayers is ≃ 0.39nm. With this type of bonding, we see that only
an infinite (111) surface would exhibit no dangling bonds. This bilayer structure plays a crucial role in the
discussion of 1d (edge) states, as a bismuth bilayer is a QSHI [19, 20].

In this subsection, we focus on surface states of thick bismuth single-crystal with three orientations :
Bi(111), Bi(110), and Bi(100), as reviewed in [17]. Their related real-space crystal structures, projection of
bulk states in reciprocal space, and experimental probes of their Fermi surfaces are shown in Figs.1.5, 1.6,
and 1.7. For Bi(111), the projection of bulk states on the 2d surface is illustrated in Fig.1.4b, and Fig.1.5c
shows additional spin information obtained by SARPES.

The spin textures of Bi(110) [21, 22] and Bi(111) [23, 24, 25, 26] has been studied by SARPES, and
shows large spin-splitting due to high SOC. In [27, 28], the spin-splitting of (111) surface states at Γ̄ is
found to have Rashba-like SOC with large parameter α ≃ 0.56eV.Å, wavevector offset k0 ≃ 0.05Å−1,
and energy offset Emin ≃ 14meV , see part 1.1.2 for the meaning of these values. In [25, 26] however, in
addition to the strongly anisotropic Fermi surface, the authors find large deviations from the Rashba SOC,
with spin-polarization alternating between in- and out-of-plane perpendicular to the wavevector.
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Figure 1.5 – Bi(111) surface. (a) Truncated-bulk structure of Bi(111). The dark solid lines indicate covalent bonds between
the atoms within the bilayers. Top : top view of the first three atomic layers. Each layer consists of a two-dimensional
trigonal lattice. The mirror planes of the structure are shown as dashed lines. Bottom : side view of the first four
layers along a mirror plane. From [17]. (b) Photoemission intensity at the Fermi level of the (111) surface of a thick
cleaved Bi single-crystal. kx and ky are the parallel components of the electron momentum along the Γ̄˘M̄ and
Γ̄˘K̄ direction, respectively. From [29]. (c) Spin-split band dispersion of the 7 BL Bi(111) films obtained from SARPES
overlapped on the dispersion obtained by non-spin-resolved ARPES. The spin-up (-down) components are shown by
the solid triangle pointing up (empty triangles facing down) and the magnitude of the spin polarization is shown by
the size of the markers. The non-polarized states are shown by open circles. The spin orientation is in-plane and
perpendicular to the wavevector. From [24].

According to [22], the surface states of Bi(111) and Bi(110) are well confined to the vicinity of the
surface, over ≲ 10 bilayers, whereas the Bi(100) surface state penetrates deeper in the bulk, over more
than 22 bilayers [30]. Many later works however, suggest a much larger penetration depth for (111) surface
states, leading to hybridization between top and bottom surface states for thin Bi(111) films. It is found to
be ∼ 80 bilayers for [31, 32] (experimental), ∼ 200 bilayers for [33] (theoretical), and up to ∼ 1000 bilayers
for [34] (theoretical). This penetration depth is important when discussing quantum size effects, particularly
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Figure 1.6 – Bi(110) surface. (a) Truncated-bulk structure of Bi(110). The dark solid lines indicate covalent bonds between
the atoms within the bilayers. Top : top view of the first two atomic layers. The single mirror plane of the structure
is shown as dashed line. Bottom left and right : side views of the first eight layers (four double layers) perpendicular
and parallel to the mirror plane, respectively. Dashed lines on the first layer atoms indicate dangling bonds. (b) Bulk
Brillouin zone of Bi and projection on the (110) surface. The elements of the bulk Fermi surface are indicated but not
to scale. (c) Photoemission intensity at the Fermi energy of the (110) surface of a thick mechanically polished Bi single-
crystal (cleaned by cycles of Ar and Ne sputtering and annealing). From [17].
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Figure 1.7 – Bi(100) surface. (a) Truncated-bulk structure of Bi(100). The dark solid lines indicate covalent bonds between
the atoms within the bilayers. Top : top view of the first four atomic layers. The single mirror plane of the structure is
shown as dashed line. Bottom : side view of the first four layers parallel to the mirror plane. Dashed lines on the first
layer atoms indicate dangling bonds. (b) Bulk Brillouin zone of Bi and projection onto the (100) surface. The elements
of the bulk Fermi surface are indicated, but not to scale. (c) Normalized photoemission intensity at the Fermi level
of the (100) surface of a thick mechanically polished Bi single-crystal (cleaned by cycles of Ar and Ne sputtering and
annealing). Black corresponds to high intensity. The solid line is the Brillouin zone boundary. From [17].

when trying to deduce the topology of bulk Bi from the surface states of thin Bi films.
The surfaces states dominate transport in nanostructures, as discussed in the next subsection. Their

spin-texture, exhibiting spin-momentum locking, may be the main cause of Magneto-Chiral Anisotropy in
both the resistive and superconducting states, see appendix 6.7 for more details.

1.2.3 . Bismuth nanowires

Single-crystal bismuth makes for very interesting nanowires, with its exceptional semi-metallic band
structure, exhibiting very small gaps and effective carrier masses. Its large λF is predicted to drive semi-metal
to semiconductor transitions in circular nanowires with diameters between 40nm and 55nm, for nanowire
axes oriented along the binary and trigonal axes, respectively [16]. Nanowires have been first studied for
their thermoelectricity, exploiting the Seebeck effect [35]. The large spin-splitting of surface states due to
SOC may also have applications in spintronics, exploiting the spin-Hall and Edelstein effects, see appendix
6.7.1.

The transition was found to happen for diameters ≲ 40nm [36, 37], where the transport via the surface
states completely dominates over the gaped bulk states. For diameters ≲ 150nm already, the confinement
of bulk states becomes important [38] and transport changes to surface conduction [2, 39]. Additionally,
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surface state also experience quantum size effect (λSF ∼ 4nm), and certain surface states may hybridize,
changing the surface carrier densities and velocities, as mentioned in the end of the previous subsection.

In addition to its exceptional spectral properties, bismuth single-crystal is a higher order topological
insulator, as discussed in the next subsection. There is an issue however, that is that it is not an insulator
to begin with, but a semi-metal. This issue is discussed in the next subsection, but we state here that it
leads to an experimental limitation for transport measurements : the topological hinge states signature of
its HOTI character represent only a small contribution to transport, in parallel with surface and bulk states
conduction.

During this PhD, we used bismuth nanowires of transverse dimensions between 100 and 300nm to en-
hance the relative contribution of topological hinge states to transport, see part 2 for the sample fabrication.
To further reduce the contribution from diffusive surface states, we induced superconducting correlations in
the nanowire by proximity effect with superconducting contacts, see part 1.3.5 for the theoretical aspect.
This method has proved successful in the past, see [40, 3, 2, 4].

1.2.4 . Higher-order Topology in bismuth
In this subsection, we review theoretical predictions and experimental measurements involving the to-

pological character of bismuth single-crystal. For an in depth discussion on Quantum Spin-Hall Insulators
(QSHI), 3d (first-order) Topological Insulators (TI), and Higher-Order Topological Insulators (HOTI), see
appendix 6.1.

On top of its exceptional spectrum properties, bismuth single-crystal has a rich Berry curvature pheno-
menology. The 2d bilayer of Bi was predicted to be a QSHI, hosting one helical pair of states on its edges
[19, 20] (see Fig.1.8a), with a QSHI phase surviving up to eight bilayers [41, 42] in parallel with surface
states [22] (see Figs.1.8b and 1.8c). On the other hand, 3d bulk was predicted to be a topologically trivial
semi-metal [43]. However, the topological nature of bulk bismuth depends critically on the states at the
L-points that show a small gap. If the gap at L-points is inverted, for example by alloying with the strong
topological insulator Sb with the same structure, bulk bismuth-antimony alloy becomes a strong topological
insulator with non-vanishing weak topological indices (1 ;111) [43].
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Figure 1.8 – Theoretical predictions of propagating hinge states in Bi(111). (a) Left and right : energy bands of a Bi(111)
zigzag- and armchair-edge bilayer ribbons, respectively, with a width of 20 unit cells, calculated from a refined tight-
binding model. Both types of ribbon show one Kramers pair of edge states connecting the bulk valence band to the
bulk conduction band, consistent with its QSHI character. From [20]. (b) and (c) : local density of states and spectrum,
respectively, of a Bi nanowire obtained by stacking 5 Bi(111) zigzag-edge bilayers ribbons that are 7 atoms wide, cal-
culated from the Liu-Allen tight-binding model [14]. κloc in (c) is a measure of the transverse spatial extension of the
state. The bright yellow points correspond to hinge states, see LDOS in (b). From [2, 3].

To deduce the topological nature of Bi single-crystal, one experimental solution is to look for topologically
protected boundary states, that is 1d helical edge states for small 2d bilayer stacks, or 2d helical surfaces
states for 3d bulk bismuth. However, due to the finite size effects discussed in the previous paragraph and at
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the end of part 1.2.2, the topological nature of bismuth single-crystal is still controversial, as shown in the
discussions surrounding Bi(111) films [18, 44]. One the one hand the calculated spectrums of Bi(111) films
depend on the model and computational technique that are used, and on the other hand the experiments
performed on films are hard to extrapolate to bismuth 2d bilayer stacks or 3d bulk. The spectrum of Bi(111)
films has been reported to depends on thickness [22, 41, 42, 33, 31, 32, 34], strain [45], terminations [46],
and top and bottom surfaces symmetry [44].

Several experiments on small bilayer structures on Bi(111) surfaces clearly shown the existence of pro-
pagating 1d edge states. It was first argued that a quantized 2e2/h conductance plateau found in STM
originates from edge conduction over a Bi bilayer stuck to the Bi(111) surface and to the STM tip [47].
Soon after, STM measurements on Bi(111) bilayer islands on top of (thick) Bi(111) surfaces (see Fig.1.9a
for illustration) revealed edge states with a inverse square-root dependence on energy on one type of zigzag
edges (parallel to a Γ̄ − K̄ direction) typical of 1d states [48]. This work also shows strongly suppres-
sed backscattering from the quasiparticle interference pattern of the LDOS. Moreover, the same 1d edge
states behavior was observed on a two-bilayers hexagonal dip, see Fig.1.9c. These observations were later
confirmed by STM measurement by [49] (underlying film thickness d ≃ 96 bilayers), [50] (d ≥ 15 bilayers)
and [51] (d ≤ 9 bilayers), and by SARPES measurements by [52]. In [52], the authors found on Bi(111)
surface (d ≃ 15 bilayers) with triangular bilayer islands (see Fig.1.9a) 1d dispersive states corresponding to
zigzag edge states along Γ̄− K̄ directions (independent of film thickness), with parameters k0 = 0.17Å−1,
Emin = 68meV , α = 0.80eV.Å, m∗ = 1.62m0 (see Fig.1.9b), and spin polarization perpendicular to the
edge with equal in-plane and out-of-plane components. In [53], the authors measured signatures of Majorana
zero-modes on a hinge of Bi proximitized by superconducting Nb and magnetic Fe, which constitute a first
necessary step toward topological quantum computation.
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Figure 1.9 – Experimental data showing propagating 1d states along zigzag-edges of few-bilayers structures on a Bi(111)
surface. (a) Atomic forcemicroscope image of a Bi(111) thin film (d = 15 bilayers) featuring bilayer islands with zigzag-
edges parallel to the Γ̄− K̄ direction. From [52]. (b) Second derivative of ARPES intensity nearEF along the Γ̄− K̄
direction, compared with a calculated band dispersion (pink solid lines) for the edge state of a bilayer island such as
shown in (a), with Rashba SOC parameters k0 = 0.17Å−1, Emin = 68meV , α = 0.80eV.Å,m∗ = 1.62m0.
From [52]. (c) Topography close to the hexagonal diatomic depression on a Bi(111) surface of a Bi single-crystal, false-
coloured with differential conductance at E = 183meV , obtained with a scanning tunneling microscope. High
conductance (red) is observed at every other edge of a hexagonal pit-like defect. From [48].

Our group took a different approach, making single-crystal bismuth nanowires of length > 1.5µm and
transverse sizes < 300nm, and measuring transport properties in its proximity-induced superconducting state
(see chapter 2 for the fabrication methods and results). The nanowires are deposited on substrates with a
thick amorphous layer of insulating oxide, such that it rules out all suspected effects involving interaction
with the underlying Bi substrate in the Bi(111) surface discussions. The study of their switching currents
as a function of magnetic field and superconducting phase difference revealed ballistic 1d conduction path
along their hinges [40, 3, 2] (see Fig.1.10), consistent with the observations of QSHI-like, edge-dependent
states reported earlier. Later ac susceptibility measurements showed absorption peaks at the Andreev level
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crossings, whose temperature and frequency dependencies point to protected topological crossings [4].

(a) (b)

Figure 1.10 – Experimental data showing propagating narrow ballistic states along sides of a single-crystal Bi nanowire
with (111) top surface, connected to superconducting contacts, forming a long Josephson junction. (a) Scanning elec-
tron microscope image with false colors of the Bi nanowire (brown), with superconducting disordered W compound
contacts (blue) and Au leads (yellow). The scale bar is 1µm long. The weak link (top) in parallel with the Bi nanowire
form an asymmetric DC SQUID whose switching current yields the current-phase relation of the Bi nanowire Joseph-
son junction, with the superconducting phase difference controled by themagnetic flux inside the SQUID surface (see
later discussions in part 1.5.3). (b) Switching current Ic of the asymmetric DC SQUID hosting a Bi nanowire junction as
a function of out-of-plane magnetic fieldBz . It shows two superimposed sawtooth with periods close to 9.5G but
differing by 10%, corresponding to long ballistic supercurrent-carrying states on the opposite sides of the nanowire.

Additionally, let us mention that other bismuth surfaces may exhibit non-trivial topological proper-
ties. According to [20] calculations, Bi(110) 2-monolayer is a trivial insulator, but is a QSHI with a huge
≃ 90 meV gap according to [54] calculations and STM measurements of [55]. Magnetoresistance mea-
surements of [110] nanoribbons (in hexagonal basis) of thickness 30 − 120nm show surface states with
Berry curvature consistent with topological surface states. SARPES on Bi(114) surface shows 1d spin-plit
propagating states along the Γ̄− X̄ direction [56], the (114) surface corresponding to alternating edges of
tilted (111) bilayers. Lastly, STM measurements performed on Bi(110) surface (d > 30 bilayers) step edges
also showed the presence of 1d states at particular edges [57].

In 2018, thanks to a newly developed topological classification (see appendix 6.1.5 for more details),
bulk bismuth single-crystal was classified as a second-order topological insulator [13], a sub-class of higher-
order topological insulator (HOTI). It features two band inversions, whose presence is not captured by the
first-order topological index, which is only sensitive to the parity of band inversions. Bismuth crystal has
inversion symmetry and C3 symmetry with respect to its trigonal [111] axis (rhombohedral notation). It has
eight time-reversal invariant momenta (TRIM(s)) noted Y ∈ Γ, T,Xi, Li, with i = 1, 2, 3, see Fig.1.4b.

The bulk states for each band i and at each TRIM Y can be labeled by their C3 and inversion operator
eigenvalues, indicated as ρi,Y = π or ±π

3 and ξi,Y = + or − in Fig.1.4c, respectively. The inversion operation
always relates states at TRIM to themselves, while C3 operation relates states at different TRIMs for L-
points and X-points. For inversion symmetric crystals, a topological index νY =

∏
i∈occ ξi,Y can be defined

[58], the so-called Fu-Kane index, where the product is over the occupied bands. In [13], the authors further
define C3 subspaces topological index ν(π)Y and ν(±π/3)Y , where the product is restricted to the states with
ρi,Y = π and ±π

3 eigenvalues, respectively. By C3 symmetry, a band inversion affects equally all topological
index of C3 related TRIMs, such that νX1 = νX2 = νX3 and νL1 = νL2 = νL3 , but also their C3 subspaces
topological index, such that a single band inversion translates into one band inversion in the π-subspace and
a double (which equals no) band inversion in the ±π

3 -subspace.
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The Fu-Kane first-order strong topological index is given by ν = νΓνT νL1νL2νL3νX1νX2νX3 = νΓνT νL1νX1 =

(+1)(−1)2(−1)2(−1)2 = +1 (see Fig.1.4c), indicating no guaranteed topologically-protected surface states.
Nonetheless, the topological index, counting the parity of the number of band inversions, can be evaluated
within each C3-subspace by :

ν(π) = ν
(π)
Γ ν

(π)
T νX1νL1 and ν(±π/3) = ν

(±π/3)
Γ ν

(±π/3)
T (1.7)

According to this analysis, we can distinguish three cases :
- for ν = ν(π)ν(±π/3) = −1, the material is a strong (Z2) topological insulator with an odd number of band
inversions
- for ν = ν(π)ν(±π/3) = +1 and ν(π) = ν(±π/3) = +1, the material is a trivial insulator with no odd number
of band inversions
- for ν = ν(π)ν(±π/3) = +1 and ν(π) = ν(±π/3) = −1, the material is a HOTI with odd numbers of band
inversions within each C3-subspaces

Looking at the C3 eigenvalues on the Γ− T line in Fig.1.4c together with the inversion eigenvalues, we
get :
- ν(±π/3) = ν

(±π/3)
Γ ν

(±π/3)
T = [(+1)(+1)][(−1)(+1)] = −1

- ν(π) = ν
(π)
Γ ν

(π)
T νX1νL1 = (+1)(−1)[(−1)2(+1)][(−1)2(+1)] = −1

We thus conclude that bulk bismuth single-crystal is a HOTI. This double band inversion, one in each
subspace, yields topologically protected propagating 1d helical states located at hinges preserving the C3

symmetry of the crystal, as illustrated in Fig.1.11, see appendix 6.1.5 for a more detailed discussion on HOTIs.
Moreover, the stability of the hinge states are not limited to symmetry-preserving surface perturbations (C3,
inversion, and time-reversal), but are also locally stable when the spatial symmetries are broken, as long as
time-reversal symmetry is preserved. Citing [13], "The only way to remove it is to annihilate it with another
Kramers pair coming from another hinge, which cannot be achieved with just a small perturbation. The
higher-order hinge modes of a three-dimensional HOTI are therefore just as stable as the edge modes of a
first-order TRS topological insulator in two dimensions.".

The second-order topological character of bulk bismuth successfully accounts for the previously men-
tioned reported experimental results, and clarify part of the controversy. For completeness, let us mention
here two caveats to this interpretation. First, bulk bismuth is not an insulator to begin with. This does not
hinder the definition of topological index, as it is always possible to continuously deform the band structure
of bismuth enough to make it an insulator, without closing (and inverting) any gap. Alternatively, one can
think of the last argument as a k-dependent EF , such that EF always lies in a band gap (that is why we
included the three lower energy band also at T and L-points in the topological index calculations). However,
the presence of trivial bulk and surface states in parallel with the topological hinge states may be detrimental
to its topological protection. [59] suggests that localized modes can exist in HOTIs even in the absence of a
bulk bandgap. Second, a recent STM work on a screw-dislocation defect on top of a thick Bi(111) surface
suggests that bulk bismuth is a strong topological insulator with non-vanishing weak topological index, just
like Sb [60]. Their analysis is based on a higher confidence in strain-induced transition calculations than in
strain-less bulk calculations.

The results presented in chapter 3 confirm the previous measurement of ballistic hinge states, while
the analysis in chapter 4 provides a new type of evidence for topologically protected hinge states, based on
parity-protection.
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Figure 1.11 – Theoretical predictions for a HOTI withC3, inversion, and time-reversal symmetries. (a) Schematic of the
hinge states of a hexagonally shaped HOTI oriented along the trigonal [111] axis, with C3 and inversion symmetry
(such as bismuth). Red lines represent a single one-dimensional Kramers pair of gapless protected (helical) modes.
In the Dirac picture of a HOTI surface, red and blue surfaces correspond to opposite signs of the unique TRS surface
mass term. From [13]. (b) Same as (a), with parallelogrammatic cross-section in relation to the bismuth nanowire with
top surface perpendicular to the trigonal [111] axis examined in [3], see Figs.1.10 and 1.8b. From [13]. (c) Tight-binding
simulation of a system with identical C3 and inversion symmetries, and identical topological indices, showing 1d
protected helical mode on its hinges.

1.3 . Superconducting proximity effect

In our work, we are interested in introducing superconducting correlations in our crystalline bismuth
samples. We contact our samples with a tungsten compound BCS superconductor, thread a current through
the superconductor-bismuth-superconductor structure thus formed, and measure the effects of a phase
difference between the two superconductors on one hand, and of a magnetic field on the other hand.
Such structures with a material sandwiched by two superconductors are called Josephson junctions. In the
following, we introduce the key ideas to understand the physics of Josephson junctions.

After a brief tour of the main models used to describe the superconducting phase, we introduce the
theoretical concepts necessary to grasp how the Current-Phase Relation (CPR) emerges from Andreev
reflections.

We show that the supercurrent induced by the superconducting correlations exhibits a reduced contri-
bution of diffusive states compared to ballistic states, which is interesting in our context of metallic diffusive
surface states in parallel with the 1d helical hinge states in our bismuth nanowires. Moreover, we demons-
trate that the CPR is a very good tool to distinguish various modes of transport, in particular transport
through topological 1d helical edges (or hinges) showing a protected ballistic behavior. Lastly, we discuss
the effects of Zeeman interaction in Josephson junction with and without spin-orbit coupling.

1.3.1 . Intrinsic s-wave superconductivity

During my PhD, we used superconductors with low critical temperature which are well described by
the Bardeen-Cooper-Schriffer (BCS) model. In this model, for a temperature lower than the critical tem-
perature Tc (Tc ∼ 1K), the interaction between electrons of opposite momentum becomes attractive,
mediated by phonons, promoting pairing between electrons, refereed as Cooper pairs. The pairing is the
same, irrespective of the momentum direction, favoring s-wave Cooper pairs. Because electrons are fer-
mions, the amplitude of the state describing electrons must change sign under the exchange of two of
them. Thus, it is the spin part of the state that must change sign, which is only true for singlet spin state
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S = 0 : |ψspin⟩ = (|↑↓⟩ − |↓↑⟩)/
√
2. Forming pairs of electrons with opposite spin and momentum, the

pairs can condense into a single macroscopic quantum state of lower energy described by |ψ|eiθ. It has a
quantum phase θ that enforces coherence on macroscopic scales, allowing for quantum interference effects
on large scales. We introduce briefly here three useful models that treat superconductivity on different levels.

The London model

In a phase coherent homogeneous perfect conductor, the carrier’s quantum phase θ obey the relations
of the London model [61, 62] :

−ℏ∂θ
∂t

=
1

2n
ΛJ⃗S

2
+ qV + χ is the energy − phase relation (1.8)

qΛJ⃗S = ℏ∇⃗φ is the current− phase relation (1.9)

with ∇⃗φ =
(
∇⃗θ − q

ℏ
A⃗
)

the gauge invariant phase gradient (1.10)

with J⃗S the (super)current density, n ∝ |ψ|2 the carriers density, q the carriers charge, m∗ the carriers mass,
Λ = m∗/(nq2) the London parameter, and qV + χ the electrochemical potential. The London model can
be used to describe time-dependent situations in homogeneous superconductors under electric and magnetic
fields. However, it fails to describe inhomogeneous situations. In part 1.5, we will use this model to derive
the constraint on the superconducting phase in the presence of magnetic field in Superconducting Quantum
Interference Devices.

The Ginzburg-Landau model

In 1950, Ginzburg and Landau proposed a phenomenological theory of superconductivity, in terms of
modulus and gradient of the order parameter ψ = |ψ|eiθ [63]. Like the Landau theory of phase transitions, it
relies on an expansion of the free energy density in the order parameter ψ, close to the critical temperature
Tc. For a 3d electron gas, it takes the form :

FS = FN + α|ψ|2 + β|ψ|4 + 1

2m∗
|−iℏ∇∇∇ψ(rrr)− qAAA(rrr)ψ(rrr)|2 + (bbb(rrr)−BBBext)

2

2µ0
(1.11)

where bbb(rrr) is the local flux density and BBBext is the spatially homogeneous applied magnetic field. Upon
minimization, it yields the first and second Ginzburg-Landau equations :

1

2m∗
(−iℏ∇∇∇− qAAA(rrr))2 ψ(rrr) + αψ(rrr) +

1

2
β|ψ(rrr)|2ψ(rrr) = 0 (1.12)

JJJS = −i qℏ
2m∗

(ψ∗∇∇∇ψ − ψ∇∇∇ψ∗)− q2

m∗
|ψ(rrr)|2AAA(rrr) (1.13)

In 1959, it was shown that this model was consistent with the BCS microscopic theory for temperatures
close to Tc [64]. The current-phase relation Eq.(1.9) of the London model can be derived from Eq.(1.13) of
the Ginzburg-Landau model for |ψ(rrr)|2 = n constant. It is very useful to describe inhomogeneous situations,
to discuss the influence of the symmetries of a material on its superconductivity, and its phase diagram.
However, it fails to describe situations where the specific spectrum of the material matters (like in Josephson
junctions), as well as time-dependent situations.

The Bogoliubov-de Gennes model
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De Gennes proposed a model that extends the microscopic BCS model for the ground state to excited
states thanks to Bogoliubov-Valatin transformations [65]. It extends the Hilbert space by adding new degrees
of freedom for holes (Nambu space), allowing for electron-hole superpositions, needed to describe proximity
induced superconductivity in non-superconducting materials, where the superconducting order parameters
vanishes. From the Bogoliubov-de Gennes hamiltonian, one can express the problem in terms of propagators,
which is adapted to deal with disorder.

In this model, the hamiltonian writes :

H =

∫
drrrΨ†(rrr)HBdG(rrr)Ψ(rrr) with spinor Ψ(rrr) =

(
ψ↑(rrr)

ψ†↓(rrr)

)
(1.14)

where ψ↑(rrr) is the annihilation operator of an electron with spin ↑ at position rrr, and ψ†↓(rrr) is the creation
operator of an electron with spin ↓ at position rrr. With such hamiltonian, one can find eigenstates of the
Bogoliubov-de Gennes hamiltonian HBdG :

HBdG(rrr)

(
un(rrr)
vn(rrr)

)
= En

(
un(rrr)
vn(rrr)

)
(1.15)

with

HBdG =

(
(−iℏ∇∇∇rrr−qAAA(rrr))2

2m∗ + V (rrr)− µ ∆(rrr)

∆∗(rrr) −
[
(−iℏ∇∇∇rrr−qAAA(rrr))2

2m∗ + V (rrr)− µ
]) (1.16)

H can then be rewritten in terms of eigenstates of HBdG, with "Bogoliubon" operators γn(rrr) =

u∗n(rrr)ψ↑(rrr) + v∗n(rrr)ψ
†
↓(rrr). These operators describe excitations that are superpositions of an electron and

a hole. Applying such an operator on a state |ϕ⟩, adds a Bogoliubon to |ϕ⟩, changes its fermion parity
and requires the absorption or the release of an electron. Note that the vacuum of Bogoliubons is not the
vacuum of electrons and is far from being the ground state [66].

1.3.2 . Josephson tunnel junction and Josephson equations
To illustrate how Josephson junctions behave, we start by the simple case of an insulating barrier,

referred as an S/I/S-junction. The junction is sketched in Fig.1.12, with ψ1 =
√
n1e

iθ1 and ψ2 =
√
n2e

iθ2

describing the left and right superconductors, respectively.
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Figure 1.12 – Sketch of a superconductor-insulator-superconductor junction. The left (right) superconductor state is
described by ψ1 =

√
n1e

iθ1 (ψ2 =
√
n2e

iθ2 ). The dashed black lines represent |ψ1,2| across the junction. A
potential energy difference of qV is applied between the two superconductors.

If the insulating barrier is not too long or has a barrier potential not too high, there can be an appreciable
interpenetration of the superconducting states, that we note K. Following [67], we describe the evolution
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of the system as :

iℏ
∂ψ1

∂t
=
qV

2
ψ1 +Kψ2

iℏ
∂ψ2

∂t
= −qV

2
ψ2 +Kψ1

where we added a potential energy difference of qV between the two superconductors. Solving this set of
coupled equations for √n1,2 and θ1,2, and taking n1 = n2 = n, we get :

J = q
∂n1
∂t

= −q∂n2
∂t

=
2qK

ℏ
n sin(∆θ) (1.17)

∂∆θ

∂t
=
∂θ2
∂t
− ∂θ1

∂t
=
qV

ℏ
(1.18)

with ∆θ = θ2− θ1 the superconducting phase difference between the two superconductors. J is the current
flowing from superconductor 2 to 1. Eq.(1.17) and (1.18) are the first and second Josephson relations.
Similar to Eq.(1.9), J depends on the phase of the superconductors, but as sin(∆θ) instead of ∇⃗θ. A
finite dissipationless (super)current flows between the superconductors if ∆θ ̸= 0 mod π. Eq.(1.18) is the
energy-phase relation Eq.(1.8) with just the potential energy qV . For a constant qV , ∆θ oscillates with a
frequency f = qV

ℏ . This effect is used for metrologic voltage standard, relating time to voltage, see part
1.5.4. For a BCS superconductor, q = −2e.

1.3.3 . Andreev reflection and Andreev Bound States
In proximity to a normal conductor, the superconducting correlations can propagate in the normal

conductor via a process called Andreev reflection. Let us consider the 1d situation depicted in Fig.1.13, with
an interface normal conductor-superconductor (NS) with an incident electron with wavevector ke = kF + q

and spin ↑. Considering an electron of energy EF + ϵ < ∆, it can’t propagate alone in the superconductor
and must find a partner with (near) opposite wavevector kh = −kF + q and spin to form a Cooper pair with
momentum q. This is realized by taking another electron from the normal conductor Fermi sea at energy
−ϵ, effectively reflecting as a hole kh ↓. This phenomenon is called Andreev reflection. In the reflection
process, assuming ∆ ≪ EF , the reflected hole is dephased by θ2 − arccos(ϵ/∆). Considering the reversed
process on the normal conductor-superconductor interface at the other end of the normal conductor, bound
states can be formed, called Andreev Bound State (ABS). To form such an ABS, the accumulated phase
along the full cycle must be a multiple of 2π. For this 1d problem, it writes :

(ke − kh)L− 2 arccos(ϵn/∆) + θ1 − θ2 = 2πn⇐⇒ 2L

ℏvF
ϵn − 2 arccos(ϵn/∆) + θ1 − θ2 = 2πn (1.19)

with (ke−kh)L the phase caused by the propagation through the junction of length L, vF the Fermi velocity,
and ϵn the ABS energy corresponding to n. The different regimes are discussed in the next subsections.

The Andreev bound states come in pairs : for every ABS at energy ϵn, there exists a complementary
(particle-hole symmetric) ABS at −ϵn where the role of the electrons and holes are exchanged. From the
ABS, we can construct multiple many-particles states that can be represented with respect to the vacuum of
Bogoliubov quasiparticles (1-particle picture) or to the BCS ground state (excitation picture), as illustrated in
Fig.1.14. The resulting states feature different numbers of quasiparticles, spin properties, and carry different
supercurrents, depending on the occupation configuration. For example, one can induce photo-assisted
transitions between states of identical parity of the number of quasiparticles only (e.g. from even to even),
but this kind of experiment can be poisoned by the states of the other parity if one quasiparticle enters or
leaves the junction. This idea is discussed more in depth in part 1.10 where we examine the dynamics of a
Josephson junction, used in chapter 4 to analyze our experiment.
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Figure 1.13 – Sketch illustrating Andreev reflection and Andreev Bound State processes in a normal conductor of length
L sandwiched by two s-wave superconductors with phases θ1,2 and identical superconducting gap∆. The picture
is limited to a single transverse mode (channel) with quadratic dispersion relation. An electron ke = kF + q ↑ is
Andreev reflected into a hole kh = −kF + q ↓ with an extra phase θ2 − arccos(ϵ/∆), transferring a Cooper
pair with wavevector q into the right hand superconductor. The hole propagates through the normal conductor,
accumulating a phase−khL, and is reflected back into an electron by the inverse process. If the accumulated phase
through the full cycle is a multiple of 2π, it forms an Andreev Bound State. Adapted from [68].

1.3.4 . Short and long ballistic junctions

Looking at Eq.(1.19), one can identify two limits. For short junctions, we can neglect the dephasing term
2L
ℏvF ϵn due to the propagation of electrons and holes differing by an energy ϵn. It gives −2 arccos(ϵ0/∆) +

θ1 − θ2 = 0 and :
ϵ0 = ∆cos

(φ
2

)
(1.20)

with φ = θ2 − θ1 the superconducting phase difference between the two superconductors. The resulting
ABS spectrum is illustrated in Fig.1.15a. The particle-hole symmetric ABS has an energy −∆cos (φ/2),
and they exchange roles at φ = π. At φ = 0, there is a ∆ energy difference between the ground state and
the first excited state.

In the other limit of long junctions, the term 2L
ℏvF ϵn induces important phase shifts even for low ϵn,

yielding multiple solutions with different n ̸= 0. This results in many ABS, with ABS with energies close
to ϵn ≃ 0 almost linear in φ, whereas ϵn ≃ ∆ ABS show an important curvature, see Fig.1.15b. Two
neighboring ABS are separated by an energy ∼ hvF

2L . The ground state results from the occupation of all
the ABS with ϵn < 0. At φ = 0, the energy difference between the ground state and the first excited state
is hvF

4L .
The distinction between short and long junction limit can be expressed in terms of the Thouless energy

Eb
T = ℏvF

L for ballistic junctions, where Eb
T ≫ ∆ (Eb

T ≪ ∆) corresponds to the short (long) junction regime.
One can also express it in terms of a superconducting coherence length ξbS such that ∆ = Eb

T = ℏvF
ξbS

, yielding

ξbS = ℏvF
∆ , with vF is a characteristic of the normal conductor and ∆ a characteristic of the superconductor.

1.3.5 . Junctions with disorder

In the presence of impurities or imperfect interfaces, there is a finite probability for the electron and hole
states to scatter. Let us first consider a set of four modes, indexed by 1, 2, 3, 4. In a time-reversal symmetric
and spin-independent normal conductor, for every mode with wavevector k1 and spin s1, there exist three
other modes with −k2 = k3 = −k4 = k1 and −s2 = −s3 = s4 = s1, as illustrated in Fig.1.16a. A TRS
scatterer can’t change the spin of the scattered mode, and thus can only couple modes with non-orthogonal
spins (e.g. not ⟨↑ | ↓⟩ = 0). It can couple modes 1−4 and 2−3, as illustrated in Fig.1.16b. These couplings
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Figure 1.14 – Density of states with in-gap Andreev Bound States for a given superconducting phase differenceφ. For
spin-degenerate materials, the same spectrum exists for opposite spins. Top : 1-particle picture. Bottom : excitation
picture. Left : ground-state with all the negative energy 1-particle states occupied. It is spinless and is populated by an
even number of quasiparticles. Its energy varies with φ. Center left : first excited state. It requires the addition of an
extra quasiparticle. It has a positive spin and an odd number of quasiparticles. Its energy is independent ofφ. Center
right : other first excited state, with a negative spin. Right : second excited state. It is spinless and is populated by an
even number of quasiparticles. Its energy varies with φ. From [66].

induce avoided crossings at φ = 0, π mod 2π in the ABS spectrum, and change the properties of the
junction. Fig.1.17a shows the ABS spectrum of a short junction with an interface of imperfect transmission
τ < 1. Fig.1.17b shows the ABS spectrum of a long diffusive junction with a large number of channels and
a large on-site potential disorder, see [70].

In long junctions, there is a very interesting additional effect caused by the superconducting correlations.
The diffusive channels correspond to longer trajectories through the junction. This affects the geometric
phase accumulated by ABS (see Eq.(1.19)), and thus changes their Thouless energy and their supercurrent
compared to straight trajectories. For a junction of length L, ballistic channels propagate through the
junction in a time τb = L/vF , contrasting with τd = L2/D for diffusive channels, with D = vF le/m the
diffusion coefficient, m being the effective dimensionality of the diffusion process. For diffusive junctions,
the Thouless energy writes Ed

T = ℏD/L2. For long diffusive junctions, the energy (mini)gap between the
ground state and the first excited state is ≃ 3.1Ed

T , as can be seen in Fig.1.17b.

In the resistive state, the contribution of diffusive channels to conductance is reduced by a factor
∼ le/L by modes mixing from scattering [6]. In long Josephson junctions, the phase coherence between
electrons and holes introduced by the superconducting correlations further reduce their contribution by a
factor τb/τd ∼ le/L, written more explicitly in the next subsection. This is a one advantage of introducing
superconductivity by proximity effect in bismuth-based junctions, to reduce the contribution of surface
channels that aren’t topologically protected.

1.3.6 . Current-Phase Relations

From the ABS spectrum, one can compute the Current-Phase Relation (CPR) using the following formula
[69] :

I(φ) = −
∑
n

fFD(ϵn/(kBT ))
∂ϵn
∂Φ

= −2π

Φ0

∑
n

fFD(ϵn/(kBT ))
∂ϵn
∂φ

(1.21)
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Figure 1.15 – Positive energy Andreev bound state 1-particle spectrumsof a short ballistic junction (a) and a long ballistic
junction (b). The spectrums are spin degenerate in the absence of spin-dependent interactions. Adapted from [69].
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Figure 1.16 – In a time-reversal symmetric and spin-independent normal conductor, for everymode 1with wavevector
k1 and spin s1, there exist three other modes 2, 3, 4 with−k2 = k3 = −k4 = k1 and−s2 = −s3 = s4 = s1,
illustrated in (a). A TRS scatterer can only couple modes 1− 4 and 2− 3 with identical spins, as illustrated in (b).

with fFD(x) = 1/(1+ex) the Fermi-Dirac distribution, T the temperature, and kB the Boltzmann constant.
Φ0 = h/2e is the superconducting quantum of flux, corresponding to the flux Φ needed for a junction in
a superconducting ring (AC SQUID, see part 1.5.1) to increase the superconducting phase difference φ by
2π.

The ABS spectrum depends on the characteristics of the junction, as identified in the previous parts.
The corresponding CPR are plotted in Figs.1.18a and 1.18b for short and long junctions, respectively. We
see that scattering results in a smoothing of the current discontinuity at φ ≃ π mod 2π and a reduction
of the maximum supercurrent. The maximum supercurrent is referred as the critical current. When both
time-reversal symmetry and inversion symmetry are broken, the maximum supercurrent that can flow in one
direction (say, I+c = maxφ[I(φ)]) can be different from the maximum supercurrent that can flow in the
other direction (say, I−c = |minφ[I(φ)]|).

The expressions of the critical currents for various types of junctions are shown in Tab.1.1 [71]. The
total current is the sum over Meff effective channels in the resistive state, with Meff = M the number
of modes in the ballistic case, and Meff ∼ M le

L in the diffusive case. L is the junction length and le
the elastic mean free path. We also display the critical current per effective channel Meff in the resistive
state, that is the contribution of the superconducting correlations to the current. We confirm that in long
junctions, for a "pristine" number of mode M , the contribution of diffusive states compared to ballistic
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(a) (b)

Figure 1.17 – Andreev bound state 1-particle spectrums. (a) Short junction with an interface of imperfect transmission
τ < 1. From [66]. (b) Long diffusive junction with a high number of channels and a large on-site potential disorder.
From [70].

(a) (b)

Figure 1.18 – (a) CPR of short junctionswith various transmission coefficients τ . (b) CPR of long junctions in the diffusive
limit (gold line, normalized to evF/(2L)) and the ballistic limit (blue line).

states is Idc /I
b
c ∼

l2e
L2 , with a factor le/L coming from the superconducting correlations between electrons

and holes.
When the junction can’t be considered in the short junction limit, the states with energy |ϵ| ≳ ∆

contribute to the CPR and must be taken into account, as their energies vary with the superconducting
phase difference. In the presence of finite momentum pairing, the continuum yields an additional constant
supercurrent [72, 73], as discussed in part 1.4.3.

1.3.7 . Voltage jump eRNIc

Let us consider the measurement of the critical current Ic of a Josephson junction, where we ramp the
current I through the junction and we measure the voltage V across the junction. At I = Ic − ε, with
0 < ε << Ic, the junction is superconducting and V = 0. At I = Ic+ δ, the junction becomes resistive and
follows Ohm’s law with a voltage RN (Ic + ε) ≃ RNIc, yielding a voltage jump δV ≃ RNIc. But δV also
corresponds to the voltage needed to carry more current than what dissipationless transport through ABS
can offer, so we can guess that it relates to the gap in the spectrum, ∆ for short junctions and ET for long
junctions. And indeed, there exist such relations for the various junction types.

For a short junction, eRNIc = α∆ with α = π for a ballistic junction, α = π/2 for a tunnel junction
(τ ≪ 1), and α = 2.07 for a diffusive junction [71]. eRNIc = πEb

T for a long ballistic junction, and
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ballistic short ballistic long diffusive short diffusive long

Ic Meff
π∆
Φ0

=M e∆
ℏ Meff

πEb
T

Φ0
=M evF

L
Meff

2.07∆
Φ0

=M le
L

e4.14∆
h

Meff
10.8Ed

T

Φ0
=M le

L
e10.8vF le
πmL2

Ic/Meff
e∆
ℏ

evF
L

e4.14∆
h

e10.8vF le
πmL2

Table 1.1 – Critical current of a Josephson junction with various characteristics.Meff is the effective number of chan-
nels in the resistive state, withMeff = M the number of modes in the ballistic case, andMeff ∼ M le

L
in the

diffusive case.∆ is the superconducting gap,Φ0 = h/(2e) the superconducting quantum of flux,ET the Thouless
energy, vF the Fermi velocity,L the junction length, le the elastic mean free path, andm the effective dimensionality
of the modes that diffuse.

eRNIc ≃ 10.8Ed
T for a long diffusive junction. In theory, one can deduce the type of junction from the

measurement of RNIc.
In reality however, this analysis faces several obstacles. On the one hand, the RNIc analysis can suffer

from the existence of multiple types of conduction channels, especially in the presence of ballistic and
diffusive channels in long junctions, as the relative contribution of ballistic and diffusive channels are different
depending on whether the junction is in its resistive state or in its superconducting state. On the other hand,
one must note that the measured value of RN can be larger than the resistance of the proximitized conductor
part of the Josephson junction, if more elements become resistive when the Josephson junction switches to
its resistive state. This is expected for the W contacts that are in series with the Josephson junction and can
switch simultaneously because of the heat generated by the dissipation from the Josephson junction in its
resistive state, especially for high values of Ic. If only the Josephson junction switches, one expect another
jump in the resistance at higher current, when the superconducting contacts become resistive. But we have
not systematically exposed the samples to high current by fear of damaging them. This cascade effect can
be avoided by measuring the resistance dV/dI as a function of temperature with a small IAC and no IDC ,
rather than dV/dI as a function of IDC with constant temperature. This reduces the current going through
the junction, lowering the heating when the junctions is dissipative, thus reducing the cascade effect. Lastly,
the measured RNIc is also affected by the quality of the interfaces.

In our samples, considering the short junction limit, the short ballistic case is the most relevant because
the intrinsic superconducting (Cooper-pairs) coherence length ξWS of the W contacts is very short compared
to the length of the normal conductor L (L ≫ ξWS , no Cooper-pair tunneling), and because the elastic
mean free path length and the diffusive superconducting (Andreev-pairs) coherence length have similar
values (le ≃ ξdS ≃ 200 nm, leaving not much room for the short diffusive limit). So, considering a short
ballistic junction, eRNIc = π∆ ≃ 3.8 meV taking a Tc ≃ 6 K for the W contacts.

1.3.8 . Superconducting proximity effect with spin-orbit coupling

spin-orbit coupling introduces a coupling between the orbital and the spin degrees of freedom. It lifts
the spin degeneracy of the bands of the material and leads to Fermi surface spin-texture, see part 1.1. In
superconductors with SOC, because of this spin-texture, the superconducting correlations produce a pairing
with a finite triplet-state component. With a Zeeman energy, this can lead to finite momentum pairing and
anomalous Josephson effect, that can also affect the CPR of Josephson junctions with SOC even though
the superconductor has no SOC, yielding φ0-junctions [74, 73]. This effect is exploited in the experiment
presented in appendix 6.12, and discussed as a possible scenario to explain shifts in switching current patterns
in part 3.5. In long Josephson junctions with multiple modes, SOC induces a lift of the spin degeneracy of
the ABS, allowing for inter-manipulation of the orbital and spin degrees of freedom [75, 74, 76, 77, 68].

In topological insulators with 1d helical modes, superconducting correlations induce a special type of
protection that forbids coupling between the ground state and the first excited state of the topological junc-
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tion at φ = π mod 2π, called parity conservation. This protection leads to gapless states with specific noise
signatures [78, 4], to 4π-Josephson effect [79, 80], to ballistic transport with specific transport signatures
[40, 1, 3, 2].

In chapter 3, we demonstrate clear ballistic transport in all the sample we measured. In addition to
the effects described above, we demonstrate in chapter 4 that the relaxation dynamics is affected by the
spatial separation between Andreev modes of opposite helicities. This last result has motivated the writing
of an article in collaboration with theoreticians (Y. Peng, Y. Oreg, F. von Oppen), and was just published
in Nature Physics [5].

In the next subsection, we discuss the phase shifts that can be produced in the CPR in the presence of
a Zeeman energy, including the anomalous Josephson effect in junctions with SOC.

1.3.9 . Zeeman-induced effects : π and φ0-junctions
In this subsection, we discuss the effects of a Zeeman energy on Josephson junctions with and without

SOC, and relate it to the π-junction and φ0-junction behaviors, respectively. Both effects introduce phase
shifts in the ABS spectrum and the CPR that are relevant and has been observed in our experiments.

Let us first consider the effect of a Zeeman energy on a superconductor without SOC, that can be
implemented in S/F/S junctions or in S/N/S junctions with external magnetic field. Zeeman energy induces
shifts of the Fermi surface and can lead to various phases with finite momentum pairing. For materials without
SOC, it splits the spin degeneracy of the bands, shifting each band in energy, and shifting the Fermi surface
accordingly. The Cooper pair (and ABS, by Andreev reflection) is formed by electrons of opposite spins, but
Zeeman interaction splits the spins in momentum, resulting in a finite momentum pairing δk = 2kF (EZ)

for an (+kF ↑,−kF ↓) pair, where kF (EZ) denotes the relation between Fermi momentum and the Zeeman
energy EZ , as illustrated in Fig.1.19b. This effect is responsible for π-shifts in the CPR of S/F/S junctions
[81] or S/N/S junctions with external magnetic field [74, 73], that depend on the magnitude of the Zeeman
energy. The π-junction behavior is illustrated by the ABS spectrum in Fig.1.20a.

(a)

𝛿𝑘

𝐵𝑍𝑒𝑒𝑚𝑎𝑛

(b) (c)

𝐵𝑍𝑒𝑒𝑚𝑎𝑛

𝛿𝑘

(d)

Figure 1.19 – Fermi surfaces (or rather lines) of a material (here a 2d electron gas) with different parameters, illus-
trating Zeeman-induced finite-momentum pairing. The colors and arrows indicate the expectation value of the
spin along the in-plane "up" direction. The lines connecting two black dots represent the pairing induced by su-
perconducting correlations. (a) Without SOC, without Zeeman energy EZ . (b) Without SOC, with Zeeman energy
EZ = −geffµBBBBZeeman · sss. (c) With Rashba SOC, without Zeeman energy. (d) With Rashba SOC, with Zeeman
energyEZ = −geffµBBBBZeeman · sss corresponding to an in-plane magnetic fieldBBBZeeman.

Considering now the Fermi surface of a junction with SOC, we see that the bands are spin-splited even
without Zeeman energy, the spin-orbit field ΩΩΩ(kkk) acting as a kkk-dependent magnetic field, but still respecting
TRS with ΩΩΩ(−kkk) = −ΩΩΩ(kkk), see part 1.1. Focusing on 2d systems with Rashba SOC, the Fermi surface
is composed of two concentric circles with opposite spin-textures, see Fig.1.19c. Introducing a Zeeman
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interaction shifts the two circles in opposite directions, perpendicular to the in-plane magnetic field direction,
see Fig.1.19d. Like the case without SOC, Zeeman energy induces a finite-momentum pairing δk between
electrons of (near) opposite spins. However, we see that this finite momentum is less symmetric, breaking
the isotropy, and yields different compensation mechanisms. It yields δk ∼ 2EZα/v

2
F at low magnetic field,

and δk ∼ 2EZ/vF at high magnetic field [82].
This finite-momentum pairing induces anomalous Josephson effects, with a phase shift φ0 in the Jo-

sephson junction CPR, and in some cases an asymmetric critical current I+,−
c depending on the sign of the

bias current. Various analysis have been done in ballistic [83, 84, 73] and diffusive [85, 82] homogeneous
superconductor and weak links, as well as in ballistic [73, 86] and diffusive [87, 88] SNS junctions with SOC.
The φ0-junction behavior is illustrated by the ABS spectrum in Fig.1.20b. The anomalous Josephson effects
are discussed more in depth in appendix 6.7.5.

0 𝜋/2−𝜋/2 𝜑−𝜋
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Figure 1.20 – 1-particle ABS spectrum of a short junction with different parameters, illustrating π-junction and φ0-
junction behaviors. Up and down arrows indicate the spin polarization of the ABS. (a) Without SOC, with low Zeeman
energy EZ ≪ Eb

T . (b) Without SOC, with high Zeeman energy EZ ∼ Eb
T . There is a shift of π compared to the

case without Zeeman energy, inducing a π shift in the CPR. (c) With Rashba SOC with energyEso = αk0 such that
k0/kF = 0.15, with low Zeeman energyEZ ≪ Eb

T . (d) With Rashba SOC with k0/kF = 0.15, with high Zeeman
energy EZ ∼ Eb

T . There is a shift of π + φ0 compared to the Zeeman-free case, inducing a π + φ0 shift in the
CPR. For higher values of SOC α, the φ0 shift is noticeable even for low Zeeman field EZ ≪ Eb

T and shows a φ0

shift only. Adapted from [74].

1.4 . Superconducting proximity effect in topological materials

In the limit of extreme spin-momentum locking, we find materials with helical band structure, in which
there exists only one circle in the Fermi surface, and the direction of propagation is univoquelly tied to a
spin direction. This type of conduction is found at the boundaries of time-reversal-symmetric topological
materials, such as the helical edge states of 2DTI, the helical surface states of 3DTI (with a single massless
Dirac cone), and the helical hinge states of 3D SOTI.

In the following subsections, we discuss the effects of proximity-induced superconductivity in the boun-
dary states of TI.

1.4.1 . Helical states coupled to a superconductor
First, let us introduce unconventional superconductors, with an effective pairing potential deviating

from the conventional singlet-s-wave pairing. In this type of systems, theoretical works have predicted the
emergence of exotic excitations : Majorana Bound States (MBS) [89, 90, 91]. In this context, Majorana
fermions are equal superpositions of electrons and holes and are their own antiparticle. Because they exist
in delocalized pairs, they are protected against local perturbations, as long as pair members stay away from
their partners. Moreover, they are degenerate and pinned at zero energy. Their degeneracy and protection
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make them very interesting candidates for quantum computing. Indeed, they exhibit anyonic behavior and
can be "braided" to realize robust quantum computing operations. This is the foundation of a very rich
domain of condensed matter physics : topological quantum computing [92].

Further theoretical investigations found that unconventional superconductivity can be achieved by cou-
pling materials with helical states to conventional s-wave superconductors by proximity effect [93]. In 2008,
Fu and Kane proposed a model for proximitized surfaces of 3DTI realizing a 2d px + ipy superconductor
with Majorana Bound States (MBS) at vortices [94, 95]. In 2010, Oreg, Refael and von Oppen introduced a
recipe to make a 1d spinless px-wave superconductor, realizing a Kitaev chain model [90] with MBS at the
extremities, turning a quasi-1d nanowire with strong spin-orbit coupling (like InAs or InSb) to a 1d helical
conductor thanks to a Zeeman field parallel to the nanowire [96, 97, 98].

In our situations, we are particularly interested in the effect of conventional s-wave contacts inducing
superconducting correlations in a 1d helical state by proximity effect. Similar to [96], an s-wave superconduc-
tor covering the helical mode of a QSHI or a SOTI realizes an effective px-wave topological superconductor.
If one removes the superconductor from a small part of the helical mode, it realizes a Josephson junction
which is similar to coupled MBS at the ends of a Kitaev chain in its topological phase [78, 99], as discussed
in the next subsection.

1.4.2 . Parity protection and fermion parity anomaly

a) Majorana Bound States of a Kitaev chain

Let us now provide some physical insights by deriving the CPR of a short 1d helical junction from the
MBS of a topological Kitaev chain. Following Kitaev [90], considering a Kitaev chain without on-site energy
and with equal superconducting and hopping coupling magnitude w = ∆, the system has two degenerate
ground states featuring MBS, noted |ψ0⟩ and |ψ1⟩. The Majorana operators are expressed as :

c2j−1 = aj + a†j and c2j = −i(aj − a†j) (1.22)

with two Majorana operators (c2j−1+ic2j)/2 = aj on one site j forming a conventional fermion annihilation
operator aj . We have c†2j−1 = c2j−1 and c†2j = c2j .

The parity operator, counting the number of fermions involved in a given state, modulo 2, is written
P = −

∏
j ic2j−1c2j . The two degenerate ground states can be written as eigenstates of the operator

V = −ic1c2L as it only involves end Majorana operators that are decoupled from the bulk, yielding :

−ic1c2L |ψ0⟩ = |ψ0⟩ and − ic1c2L |ψ1⟩ = − |ψ1⟩ (1.23)

c1 and c2L are Majorana operators of the first site j = 1 and the last site j = L of the chain, respectively.
The parity operator, counting every site, can distinguish between the two states, with P |ψ0⟩ = |ψ0⟩ and

P |ψ1⟩ = − |ψ1⟩. In other words, the two ground states have different fermion parities. The adiabatic change
of the superconducting phase of the Kitaev chain by 2π is equivalent to applying the operator −ic1c2L (up
to a sign), which is equivalent to transfer one electron between the ends of the chain (−ic1c2L = −ic†1c2L).

b) Short 1d helical topological Josephson junction

What happenswhenwe introduce a coupling between theMBSof the two ends,with a superconducting phase
difference φ?

Such a coupling can be realized in an ring geometry, with a magnetic field inducing a flux Φ in the surface
of the ring and a dephasing φ = 2π 2e

h Φ, as illustrated in Fig.1.21a. The coupling term can be expressed as
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−iteiφ/2c1c2L + c.c. = −i2t cos(φ/2)c1c2L [90, 78, 100], with t ∈ R+,∗ the coupling strength. We notice
that it is just 2t cos(φ/2)V, implying that the previous degenerate ground states |ψ0,1⟩, eigenstates of V
with different parities, are now eigenstates of the coupled system with opposite energies.

𝜑𝐿 = 0

𝜑𝑅 = 𝜑

| ۧ𝜓0 , | ۧ𝜓1

−𝑖𝑡𝑒𝑖𝜑/2𝑐1𝑐2𝐿 + 𝑐. 𝑐.
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𝐸
Δ

−Δ
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| ۧ𝜓0

𝜑

(b)

Figure 1.21 – Josephson junction with a single helical pair of modes, based on one helical edge of a QSHI partially
covered with an s-wave superconductor. A magnetic fluxΦ induces a superconducting phase difference φ between
the two sides of the junction. The junction couples the zero-energy MBS with a term−i2t cos(φ/2)c1c2L, which
is the product of a parity-sensitive operator−ic1c2L and a phase-sensitive coupling 2t cos(φ/2), shifting the two
degenerate ground states of different parities |ψ0,1⟩ by opposite energies. (a) Sketch of the idealized experiment.
Adapted from [78]. (b) Corresponding spectrum as a function of φ = 2πΦ/(h/(2e)).

Thus, we write :

H |ψ0⟩ = 2t cos(φ/2) |ψ0⟩ and P |ψ0⟩ = +1 |ψ0⟩ (even) (1.24)

H |ψ1⟩ = −2t cos(φ/2) |ψ1⟩ and P |ψ1⟩ = −1 |ψ1⟩ (odd) (1.25)

The resulting spectrum is sketched in Fig.1.21b. Notice here that the spectrum is not a 1-particle spectrum
nor a excitation spectrum. To get the energy of a state, one can only "occupy" one of the two conjugate
states. For φ = 0, the ground state is |ψ1⟩ with an energy lowered by −2t and an odd parity. For φ = 2π, the
ground state is |ψ0⟩ with an energy lowered by −2t and an even parity. Contrasting with the non-topological
situation, the ground states at φ = 0 and φ = 2π differs by their parity, even though the spectrum looks
the same.

At φ = π, the two states are degenerate. Because they have different parities, no parity conserving
process can couple them and open a gap. Furthermore, to hybridize the two states, one needs a phase coherent
parity switching process. A short Josephson junction with the 1d helical edge state of a QSHI as a conductor
results in the same spectrum as a ballistic short junction, but with a crossing at E = 0 and φ = π that is
protected by parity-conservation.

Another consequence of this parity difference is that, after a cycle φ −→ φ+ 2π, the system needs to
acquire or eject an electron to return to its ground state. If the system is designed to avoid such a parity
"poisoning", e.g. if the measurement is done fast enough, one can measure a 4π-periodicity instead of
the conventional 2π-periodicity. This 4π-periodicity can be understood as the transfer of a single electron
between the two ends of the junction after a 2π cycle of φ, yielding Φ0 = h/e instead of h/(2e) [91, 101].

As illustrated in Fig.1.21a, discussed in [78], and tested in e.g. [53], the Kitaev chain do not only model
systems based on InAs or InSb nanowires with a Zeeman field parallel to the nanowire [96, 97, 98], but also
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the helical edge states of QSHI with proximity-induced s-wave superconducting pairing correlations. Thus,
the results we just discussed on a looped Kitaev chain can be applied to the short 1d helical topological
Josephson junction (and the hinge states of Bi).

c) Fermion parity anomaly

The breaking of the 2π-periodicity is referred as "fermion parity anomaly" [78]. Considering the Jo-
sephson junction made from a 1d helical state on one edge of a QSHI, like illustrated in Fig.1.21a,
and with a magnetic flux Φ controlling its φ, its local hamiltonian can be written Hloc(Φ). This ha-
miltonian is periodic in Φ0 = h

2e , Hloc(Φ) = Hloc(Φ + Φ0), but its eigenstates are not, differing by
their fermion parity, as discussed above ! This anomaly is a consequence of the topological nature of the
QSHI. The global hamiltonian of the system, including both edges, is not Φ0-periodic but 2Φ0-periodic :
Hglob(Φ) = Hglob(Φ + 2Φ0) = Hglob(Φ + h

e ). Indeed, when a flux Φ0 is inserted, the QSHI transfer one
fermion from one edge to the other through its bulk, which is a property of TI called spectral flow (see ap-
pendix 6.1 for details). The global system only comes back to its initial hamiltonian when a pair of fermions
has been transferred by this process, corresponding to a flux 2Φ0 =

h
e .

d) Conventional versus topological Josephson junctions

To understand better the difference between conventional and topological 2d Josephson junctions, we
first consider a junction with both edge states of a QSHI conducting the supercurrent, as illustrated in
Fig.1.22c. Such a system has two 1d helical junctions exhibiting the fermion-parity-protection introduced
above.

However, after an increase of 2π of the superconducting phase difference φ −→ φ + 2π, the ground
state of both 1d helical junctions changes parity, resulting in an overall unchanged parity of the system. If
the two helical junctions are closer than the coherence length of the superconductor, they can both change
their parity by breaking (or condensing into) a Cooper pair, impeding the parity-protection of their ABS
level crossing at φ = π. If the two helical junctions are closer than their Fermi wavelength, they also can
both change their parity by exchanging a fermion by tunneling.

In QSHI junctions, the two 1d helical junctions are spatially separated and can exhibit parity-protection.
In conventional junctions however, there is no such spatial separation between helical pairs of channels,
resulting in no parity-protection. This argumentation is illustrated in Fig.1.22.

In a helical junction, a bad interface reduces the supercurrent by reducing the coupling parameter t,
whereas it opens a gap at E = 0 in a conventional junction. For a potential barrier of transmission coefficient
T , the energy levels for the two types of junction writes [91] :

ε(φ) = ±∆
√
1− T sin2(ϕ/2) for a conventional junction (1.26)

ε(φ) = ±∆
√
T cos(ϕ/2) for a helical junction (1.27)

e) Long 1d helical topological Josephson junction

For long 1d topological junctions, additional ABS can form [78]. The parity of the ground and the first
excited states remains different, and exchange roles at φ = π mod 2π, similar to short topological junctions.
This situation has been examined by [78] and [102]. In Fig.1.23a, we illustrate the key idea developed in
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Figure 1.22 – Illustration of superconducting proximity effect in conventional conductorswithout SOC (a), in conductors
with SOC (b), and in QSHI (c). The superconducting contacts (S) are represented in light blue. The conductor (N or
QSHI) is represented in light yellow. Dashed blue and red lines represent trajectories of spin down and up electrons
(and holes) in the conductor, respectively. The dashed grey line together with the solid blue and red lines illustrate the
spectrum corresponding to the conducting states in the conductor, with blue (red) lines for spin down (up) electrons or
holes. The transmission of Cooper pairs through the conductor is realized via helical Andreev states. The black double-
arrow shows the coupling between the two helical Andreev states, that may be finite in the presence of scattering
on impurities or interfaces. (a) Conventional conductor without SOC. The Andreev states are spin-degenerate and
can couple, opening a gap, in case of scattering. (b) Conductor with SOC. The spin-degeneracy of the Andreev states
is lifted, but they still coexist locally with Andreev states of opposite spin. In case of scattering, Andreev states of
opposite spin can couple, opening a gap. (c) QSHI. The spin-degeneracy of the Andreev states is completely lifted,
yielding helical Andreev states. The helical Andreev state of positive (negative) helicity carry Cooper pairs on, say, the
top (bottom) edge of the conductor. Because there exists Andreev state(s) of only one helicity at a given edge, no
scattering is possible. More rigorously, conduction through helical Andreev edge states is protected by parity against
the opening of a gap.

[102], where the authors draw a parallel between the current circulating in a coherent ring of perimeter L
in the normal state and the supercurrent circulating in a 1d helical junction of length L/2. The many-body
spectrum corresponding to states with different parities is displayed in Fig.1.23b. From their work, we can
define parity as the parity of the number of fermions below the Fermi energy at φ = 0, see Fig.1.23 caption.

In Fig.1.24, we present ABS spectrum in the 1-particle picture (with a special rule for occupation
configurations), the many-body states energies, and the corresponding supercurrents of an intermediate-
length 1d helical junction as a function of superconducting phase difference ϕ. The many-body spectrum
exhibits level crossings at integer multiples of π. The crossings at odd multiples (full-line circles) are protected
by fermion parity conservation, while those at even multiples (dashed circles) require TRS.
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Figure 1.23 – Many-body states and energies of a 1d helical junction of length L/2, similar to a coherent ring of
perimeter L with a single pair of helical modes. (a) Three different many-body states changing withΦ. The periodic
boundary conditions, together with amagnetic fluxΦ in the surface of the ring, yield a quantization of the wavevector
k that is related toΦ. In a normal coherent conductor, every quantized states move to its neighbor whenΦ changes
by h/e adiabatically. In a 1d helical junction of length L/2, the same process is realized when Φ −→ Φ + h/2e
(green arrows). The central cone represents the ground state at Φ = 0, withN = 0 electron-hole excitation. The
left cone state, withN = −1 atΦ = 0, transforms into the ground state atΦ = h/2e. In the process, the number
of fermions under the Fermi energy changes by 1. One can distinguish the left cone state and the central state by
the parity of the number of fermions under the Fermi energy. At Φ = h/4e, the two states are degenerate and
can’t couple to each other because of their different parities. (b) Spectrum corresponding to many-body states with
different numbersN (of electron-hole excitations atΦ = 0), as a function of magnetic fluxΦ through the ring. The
parity-protected crossing are highlighted by the dashed green ellipsoids. Adapted from [102].

𝛿𝐸

𝜑

Figure 1.24 – ABS spectrum and supercurrent of an intermediate-length 1d helical junction as a function of supercon-
ducting phase difference ϕ. (a) Andreev spectrum of single-particle (Bogoliubov-de Gennes) excitations Es. In the
ground state, the two negative-energy states are occupied (blue circles). The lowest positive-energy state is occupied
in the first excited state (and thus the corresponding negative-energy state empty, see red circles). Higher-energy
excited states are indicated by green circles (but not included in our theoretical model). (b) Andreev spectrum of
corresponding many body states Em, including the ground state Eg(ϕ) (solid blue line) and the first excited state
Ee(ϕ) (dashed red line). The excitation energy δE(ϕ) = Ee(ϕ)− Eg(ϕ) is indicated by an arrow. (c) Correspon-
ding supercurrents Ig(ϕ) in the ground state (solid blue line) and Ie(ϕ) in the first excited state (dashed red line).
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1.4.3 . Zeeman-induced effects on a 1d helical Josephson junction
Depending on the orientation of the magnetic field, the Zeeman interaction have different effects on the

spectrum of a 1d helical Josephson junction. If the magnetic field is perpendicular to the spin quantization
axis of the helical modes, it opens gaps and can localize MBS at the limits of the superconducting region
[78]. However, the crossing at E = 0 and φ = π mod 2π remains protected by parity. If the magnetic
field is aligned with the spin quantization axis, the ABS of opposite spin polarizations are simply shifted by
opposite energies, and it exhibits anomalous Josephson effects [73].

In [73], the authors analyze the effect of such magnetic field aligned with the spin quantization axis of
a 1d helical Josephson junction. They calculated the CPR for short and long junctions. The Zeeman energy
h = geffµBB∥/2 enters the ABS phase condition following :

2L(ϵn + h)

ℏvF
− 2 arccos(

ϵn + h

∆
) = φ+ 2πn (1.28)

For a short junction :

I(φ) =
eh

π
− e∆0

2ℏ
sin

φ

2
.sgn

[
sin

(
φ− 2 arccos(h/∆0)

2

)]
(1.29)

The first term induces a current shift and is due to the impact of finite momentum pairing on the bulk,
as discussed in part 1.3.8. The second term is the usual CPR of a short junction, but with a phase shift
2 arccos(h/∆0) of the discontinuity due to the Zeeman energy shift. CPR with various h/∆0 are displayed
in Fig.1.25a. It can even induce a chiral spin-polarized 1d state for specific values of either only Zeeman
splitting or by Zeeman splitting combined with bias current [103].

For a long junction :

I(φ) =
evF
2πL

[
φ+ φh − 2πInt

(
φ+ φh

2π

)]
with φh =

2L

ℏvF
h+ 2arcsin(h/∆0) (1.30)

For long junctions, the CPR is simply shifted in phase by φh = 2L
ℏvF h + 2arcsin(h/∆0). The first term in

φh is the Zeeman-induced dephasing between up and down spin along the junction of length L. The second
term is the contribution from the bulk.

As discussed in part 1.3.8, the phase shifts and anomalous Josephson effects shown here are not specific
to 1d helical junctions, and similar effects (albeit different formulas) can arise in junctions with SOC. Thus,
this is not an unequivocal signature of conduction through TI.

For both short and long junctions, the current decreases for h/∆0 > 1 and the discontinuity disappear,
signaling the transition to a topologically trivial state. Lastly, they found that a Zeeman energy h⊥, with a
magnetic field perpendicular to the spin quantization axis, breaks the topological phase and opens a gap for
h⊥ >

√
∆2

prox + µ2.
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(a)

(b)

Figure 1.25 – (a) CPR of short topological junctions with various Zeeman energies. (b) CPR of long topological junctions
with various Zeeman energies.

1.5 . Supercurrent measurements

We saw in the previous sections that the supercurrents, and especially the Current-Phase Relations are
a good tool to probe the nature of the superconducting junction. In this section, we introduce the main
types of measurements used to probe transport in Josephson junctions.

1.5.1 . AC SQUID
To probe the CPR of a Josephson junction, a first way is to embed it into a superconducting loop

and rely on the quantization of flux of fully phase coherent quantum systems. When an external flux Φ is
threaded through such a system, it creates an Aharonov-Bohm phase along the loop, and the system adapts
its phase such that the total accumulated phase along the loop is a multiple of 2π, or equivalently that the
internal flux is a multiple of the quantum of flux Φ0 = h/(2e) (h/e if the charge carriers are individual
electrons or if the effective phase periodicity of the system is 4π).

This setup is sketched in Fig. 1.26a and is called an "AC SQUID" device (or rf-SQUID), SQUID standing
for Superconducting Quantum Interference Device. Following the method used in [62], let us consider the
gauge dependent phase along the closed path represented by the black solid line in Fig.1.26a. It can be
decomposed into two part : a path CS from point L to point R going deep inside the superconductor, and
a path CJ from point R to point L through the Josephson junction.
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Figure 1.26 – Sketches of Superconducting QUantum Interference Devices (SQUID). The superconductor leads are
represented in blue, and the non-superconducting junction(s) in orange. The screening surface supercurrent is sho-
wed as a dark blue region. Applying a magnetic fieldB out of the plane of the SQUID generate a fluxΦext = B.S
through the surface S inside the close pathCS +CJ (black solid line). The red solid lines with arrows show the net
supercurrent circulating through the device. (a) Sketch of a AC SQUID device. (b) Sketch of a DC SQUID device.

Let us recall that the supercurrent in any phase-coherent system can be written as (see part 1.3.1) :

qΛJ⃗S = ℏ∇⃗φ with ∇⃗φ =
(
∇⃗θ − q

ℏ
A⃗
)

the gauge invariant phase gradient (1.31)

with θ the gauge dependent phase, n ∝ |ψ|2 the carriers’ density, q the carriers’ charge, m∗ the carriers’
mass, Λ = m∗/(nq2) the London parameter. We then write the gauge dependent phase constraint for this
closed path : ∮

CJ+CS

∇⃗θ.d⃗l =
∫
CJ

∇⃗θ.d⃗l +
∫
CS

∇⃗θ.d⃗l = 0 (1.32)

For the path CS inside the superconductor,∫
CS
∇⃗θ.d⃗l = q

ℏ
∫
CS

ΛJ⃗S .d⃗l +
q
ℏ
∫
CS
A⃗.d⃗l = 2π

Φ0

∫
CS

ΛJ⃗S .d⃗l +
2π
Φ0

∫
CS
A⃗.d⃗l

For the path CJ inside the Josephson junction, written as a function of the gauge invariant phase and
not the supercurrent density,∫
CJ
∇⃗θ.d⃗l = φ(L)− φ(R) + 2π

Φ0

∫
CJ
A⃗.d⃗l

This relation does not involve the London model, and rely only on the U(1) gauge symmetry. As such, it is
expected to hold for any type of junction that preserves phase coherence.

Thus, we can write :

(1.32)⇐⇒ φ(R)− φ(L) = 2π

Φ0

∫
CS

ΛJ⃗S .d⃗l +
2π

Φ0

∫
CS

A⃗.d⃗l +
2π

Φ0

∫
CJ

A⃗.d⃗l =
2π

Φ0

∫
CS

ΛJ⃗S .d⃗l +
2πΦext

Φ0

To minimize its free energy, the superconductor cancels out the internal magnetic field by producing
screening currents. This gives rise to a "skin" effect with screening currents on a layer of typical size
λL ∼ 100nm at the surface of the superconductor, represented with a dark blue color in Fig.1.26a Deep
inside the superconductor, J⃗S = 0, so the remaining term

∫
CS

ΛJ⃗S .d⃗l is dominated by what happens at the
interface. If the device is symmetric, or using a junction geometry that move the screening current region
away from the junction interface, one can obtain

∫
CS

ΛJ⃗S .d⃗l ≃ 0. The red solid line with arrows merely
represents the net supercurrent in the loop for a positive magnetic field.
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We write :
φ(R)− φ(L) ≃ 2πΦext

Φ0
(1.33)

with Φ0 = h/q = h/(2e), q = 2e in superconductors.
We see that the relation (1.33) relate the gauge invariant phase difference across the junction to the

magnetic flux through the loop. Thus this AC SQUID device allow to control the phase difference with the magnetic field.
This device has a major flaw however, it needs a way to measure the supercurrent circulating through the

annulus. One way is to measure the magnetic field induced by the supercurrent flowing through the annulus,
that leaks outside the device and can be probed with devices that are very sensitive to the neighboring field,
such as a Hall bar [104] or detector based on giant magnetoresistance [105]. Another way is to couple it to a
resonator and track the change of resonance frequencies as well as resonances quality factors as a function
of the magnetic field [4, 76, 106].

1.5.2 . Switching current
The switching current measurement is the simplest of all to realize, but may be the hardest of all to

interpret. It consists in threading a current through the junction, and measure at what current value the
junction becomes resistive, developing a finite voltage. It yields the maximum supercurrent that can be
supported by the junction with its present constraints. For idealized junctions, the superconducting phase
difference φ across the junction adapts to the supercurrent according to the inverse CPR, and the switching
current is equal to the critical current. For real junctions, φ may deviate from the inverse CPR, and the
switching is stochastic, as discussed in part 1.10. As we introduced in parts 1.5.1, 1.3.8, 1.4.3 and further
develop in parts 1.6, 1.7, 1.8 1.9, the evolution of the switching current of a single junction with magnetic
field magnitude and orientation is affected by orbital dephasing and Zeeman coupling, giving insights on the
distribution and type of states carrying the supercurrent.

1.5.3 . Asymmetric DC SQUID
A second way to probe the CPR of a Josephson junction is to use a known junction, called the reference

junction (Iref (ϕ2)), that fixes the phase by fixing its current. Putting in parallel the unknown junction
(Iu(ϕ1)) that share the same superconducting leads, the two junctions have the same phase difference ϕ1 =
ϕ2. Threading a magnetic flux inside the surface defined by the two junctions dephases their superconducting
phase difference ϕ1,2, allowing to control the phase difference ϕ1 of the unknown junction. Let us discuss
this setup more rigorously.

We introduce the so-called "DC SQUID" device, sketch in Fig. 1.26b. Applying the same reasoning as
for the AC SQUID, we have :∮

C
∇⃗θ.d⃗l =

∫ 2

1
∇⃗θ.d⃗l +

∫ 3

2
∇⃗θ.d⃗l +

∫ 4

3
∇⃗θ.d⃗l

∫ 1

4
∇⃗θ.d⃗l = 0 (1.34)

with∫ 2
1 ∇⃗θ.d⃗l = ϕ2 +

2π
Φ0

∫ 2
1 A⃗.d⃗l∫ 4

3 ∇⃗θ.d⃗l = −ϕ1 +
2π
Φ0

∫ 4
3 A⃗.d⃗l∫ 3

2 ∇⃗θ.d⃗l =
2π
Φ0

∫ 3
2 ΛJ⃗S .d⃗l +

2π
Φ0

∫ 3
2 A⃗.d⃗l∫ 1

4 ∇⃗θ.d⃗l =
2π
Φ0

∫ 1
4 ΛJ⃗S .d⃗l +

2π
Φ0

∫ 1
4 A⃗.d⃗l

(1.34)⇐⇒ ϕ1 − ϕ2 =
2πΦext

Φ0
+

2π

Φ0

∫ 3

2
ΛJ⃗S .d⃗l +

2π

Φ0

∫ 1

4
ΛJ⃗S .d⃗l

Thus
(1.34)⇐⇒ ϕ1 − ϕ2 ≃

2πΦext

Φ0
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Writing i1(ϕ1) the CPR of the top junction, i2(ϕ2) the CPR of the bottom junction, the total super-
current I is :

I(ϕ1, ϕ2) = i1(ϕ1) + i2(ϕ2) = i1(ϕ2 +
2πΦext

Φ0
) + i2(ϕ2) = i1(ϕ2 +

2πB.S

Φ0
) + i2(ϕ2) = I(B,ϕ2) (1.35)

with S the surface inside the loop C.
Now taking i1 = Iu and i2 = Iref , with Ic,ref ≫ Ic,u, we get :

Ic(B) = maxϕ2I(B,ϕ2) = I(B,ϕmax
2 ) ≃ Iu(ϕmax

2 +
2πB.S

Φ0
) + Ic,ref (1.36)

with Ic,ref = maxϕ2 [Iref (ϕ2)] = Iref (ϕ
max
2 ) and ϕmax

2 known or not known, with a magnetic field depen-
dence only on Iu(ϕmax

2 + 2πB.S
Φ0

).
This asymmetric DC SQUID setup provides a way to probe the CPR of an unknown junction by measuring

the total critical current variations as a function of magnetic field Ic(B).
Here, we introduced the asymmetric DC SQUID as a way of measuring the CPR of an unknown junction,

but it can be used to get some informations on the CPR of the junctions even in a more symmetric situation.
This idea is developed in part. 1.6. Another benefit of the study of DC SQUID is that it is the building block
of the theory of extended multichannel junctions, where different supercurrent paths inside a single junction
can experience an orbital dephasing and give rise to interference patterns, just like the DC SQUID device.

1.5.4 . Dynamical Josephson effects
The second Josephson relation (Eqs.(1.18) or (1.8)) relates the evolution of the superconducting phase

φ to the electrostatic energy V :

ℏ
∂φ

∂t
= 2eV (1.37)

One can exploit this relation in two ways.
Let us consider a combination of DC and AC voltage V (t) = VAC cosωt + VDC , φ writes φ(t) =

φ0 +
2eVDC

ℏ t+ 2eVAC
ℏω sinωt. Decomposing the CPR in its harmonic content indexed by n and injecting the

expression of φ(t), we get :

I(t) =
∑
n

Ic,n sin

(
n

(
φ0 +

2eVDC

ℏ
t+

2eVAC

ℏω
sinωt

)
+ φn

)
=
∑
n

∑
m

(−1)mIc,nJm
(
n
2eVAC

ℏω

)
sin

(
nφ0 + φn +

(
n
2eVDC

ℏ
−mω

)
t

)
(1.38)

where is included the time independent φn to account for anomalous Josephson effect. Jm(x) is the m-th
Bessel function.

First, biasing the junction with a DC voltage VDC ̸= 0 and VAC = 0 produces an alternating supercurrent
which period depends on the periodicity (harmonic content) of the CPR. This process is called by the AC
Josephson effect. A conventional 2π-periodic CPR yields a current oscillating at fJ = 2eVDC

h =⇒ fJ/VDC ≃
484THz.V −1. For topologically-protected junctions, it features a doubling of the periodicity, the so-called
4π-Josephson effect, or equivalently a halving of the frequency fJ/2. One can detect these high-frequency
current with adapted instruments.

Second, using an AC voltage VAC ̸= 0, one can induce quantized VDC voltage plateaus with DC currents.
Looking at Eq.(1.38), we see that we can obtain a DC current for

(
n2eVDC

ℏ −mω
)
= 0⇐⇒ VDC = m

n
ℏω
2e ,

with m ∈ Z the index of the Bessel development and n the index of the harmonic of the CPR. For a
sinusoidal CPR with Ic,1 ̸= 0 and Ic,n̸=1 = 0, there is voltage plateaus every ℏω

2e : VDC = mℏω
2e . They are
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called Shapiro steps. CPR with higher harmonics n leads to intermediate steps. For a 4π-periodic junction,
there is an additional contribution to the CPR in sin(φ/2), yielding n = 1/2 =⇒ VDC = 2mℏω

2e , with
stronger even m plateaus. This doubling effect is discussed in more details in [101].

During my PhD, I was invited to a two weeks trip to Advanced Device Laboratory, RIKEN, Wako,
Japan to work with Russell S. Deacon in the team of Koji Ishibashi. I came with several bismuth-based
Josephson junctions adapted for high frequency measurements. We tried to measure the 4π-periodicity
both with missing odd Shapiro steps [79] and half-frequency Josephson emission [80], but the average
switching current ⟨Is⟩ of the junctions were too high for the measurement apparatus bandwidth fBW

(⟨Is⟩ ≳ 2µA =⇒ R ⟨Is⟩ > hfBW
4e ≃ 10µV ).

1.6 . Critical current of a two-channel junction

In the previous sections, we studied various CPR and experimental methods to probe them. These CPR
involve a single conducting channel, and possibly other degenerate channels that can couple together in the
presence of a scatterer. In real junctions, it is very rare to have such single conducting channel, and we need
to consider multi-channels junctions. In this subsection, we will first study the two channels case and the
effects of magnetic flux and Zeeman interaction. To compute the critical currents and extract the individual
phase differences of the superconducting channels, I created a simple python program that samples all phase
configurations and looks for the one that maximize the total supercurrent while satisfying the total phase
constrains.

1.6.1 . Two long ballistic channels
Let us start with a junction with two channels, labeled by 1 and 2. If the supercurrent through the

junction is carried by these two channels only, the total supercurrent is :

I = i1(ϕ1) + i2(ϕ2) (1.39)

with i1(ϕ1) the CPR for the path 1 with phase difference ϕ1, and i2(ϕ2) the CPR for the path 2 with phase
difference ϕ2.

Just like in our analysis of the DC SQUID, the two paths can be abstractly joined inside the supercon-
ductor to form a closed loop, and define a surface S and a magnetic flux Φ = B.S, that will give rise to a
phase difference 2πΦ/Φ0, such that :

I(B,ϕ2) = i1(ϕ2 +
2πB.S

Φ0
) + i2(ϕ2) (1.40)

and the critical current is Ic(B) = maxϕ2I(B,ϕ2).
This method can be generalized to more than two channels, and can take into account the specific

geometrical constraints by choosing the set of valid paths.
To illustrate the behavior of the two channels junctions with assumption that are relevant to the systems

we are studying, let us look at the case of two long ballistic channels. They display sawtooth CPR that are
linear i1,2(ϕ1,2) = ic1,c2Saw(ϕ1,2) = ic1,c2

(
ϕ1,2

π − Int(
ϕ1,2+π

2π )
)
, see Fig.1.18b. We can write :

I = ic1Saw(ϕ1) + ic2Saw(ϕ2), (1.41)

where ic1 and ic2 are the critical currents of the two branches, and the superconducting phase differences
at these two branches satisfy

ϕ1 − ϕ2 = Φ, (1.42)
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with Φ = 2πΦ/Φ0. The critical current is obtained by maximizing the total current in Eq. (6.15) given the
constraint specified by Eq. (6.16).

This problem can be solved analytically. Defining ∆ϕ+ = 2π ic1
ic1+ic2

and ∆ϕ− = 2π ic2
ic1+ic2

, we can write
the critical current as :

Ic(Φ) =

{
ic1 + ic2 − ic2 Φπ Φ ≥ 0

ic1 + ic2 + ic1
Φ
π Φ ≤ 0

(1.43)

The range of validity of this formula over a phase of 2π is given by :

−∆ϕ− ≤ Φ ≤ ∆ϕ+ (1.44)

If Φ is outside this interval, then the critical current can be obtained by applying periodic property Ic(Φ) =
Ic(Φ + 2π).

The modulation amplitude is :

∆Ic =
2ic1ic2
ic1 + ic2

(1.45)

In Fig.1.27, we show computation of the critical current as a function of magnetic field Ic(Φ = B.S)

for symmetric and asymmetric critical currents (Fig.1.27a), and extract the individual phase differences ϕ1,2
of the superconducting channels. We see various behaviors that we investigate in the following.

We notice in Fig.1.27a that in the case of symmetric channels with identical ic1 = ic2 (blue line), the
supercurrent never goes to zero, that is ∆Ic/I

max
c = 1/2. Looking at the phases variations in Fig. 1.27b,

we see a very peculiar behavior. Over one period, the phase ϕ1 of channel 1 increases linearly from ϕ1 = 0

to π when the "flux phase" Φ increases from Φ = −π to 0 (+2πn), and then stays constant at ϕ1 = π

for Φ = 0 to π (+2πn). Meanwhile, the phase ϕ2 of channel 2 has a complementary behavior, following
Eq. 6.16 phase constraint. It makes it clear that the junction changes its behavior at Φ = 0 + 2πn and
Φ = π + 2πn.

For asymmetric channels with different critical currents ic1 ̸= ic2, see Fig.1.27a orange line, we see that
the modulation is reduced, and an asymmetry Ic(Φ) ̸= Ic(−Φ) developed, yielding skewed triangular periodic
modulations. Looking at the individual phases of the two junctions in this configuration, Fig.1.27c, we identify
similarities and differences with the symmetric case Fig.1.27b. It also displays plateaus at ϕ1,2 = π, but
whose extension is different for ϕ1 and ϕ2. Moreover, the range of variation of the phases are different, with
ϕ1 exploring a much wider range a phase than ϕ2.

The critical current of this junction, behaving like a DC SQUID, can be understood by answering the
following three questions :
- What is the maximum critical current and the corresponding flux ?
- What is the behavior close to the maximum critical current ?
- At what flux the junction can find another configuration for the phases ϕ1,2 such that the total maximum
current is higher ?

In the situations studied here, the maximum of Ic(Φ) is at Φ = 0. Let us consider the addition of a
small positive flux for a junction at its maximum Ic : Φ = 0 + ε0 (0 < ε0 ≪ π). Because of the constraint
Eq.(6.16), such a flux imposes ϕ1 − ϕ2 = ε0. To accommodate to this flux, either ϕ1 must increase or ϕ2
must decrease.

But at Φ = 0, the channel 1 was already at its maximum current configuration i1(ϕ1 = π) = ic, and
increasing its phase would mean to go above ϕ1 = π and end up with a negative supercurrent i1(π+ ε0) =

i1(π + ε0 − 2π) = i1(−π + ε0) = i1(−(π − ε0)) = −i1(π − ε0), that would lower the total current by
∼ 2ic1.
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(a)

(b)

(c)

Figure 1.27 – (a) Critical current as a function of applied magnetic field for a junction featuring two long ballistic
subjunctions, forming a DC SQUID. (b),(c) Corresponding phase differences of both junctions when I = Ic in the
symmetric case and in the asymmetric case, respectively.

On the other hand, decreasing ϕ2 results in i2(ϕ2 = π − ε0) = ic2
π (π − ε0), with a loss of total current

δi2 = ic2 − i2(ϕ2 = π − ε0) = ic2
π ε0 ≪ 2ic1. We conclude that at Φ = 0+ ε, the phase of channel 2 varies

to absorb the change of phase produced by the magnetic flux, and the phase of channel 1 stays at ϕ1 = π,
just like what we see in the computed data. Applying the same reasoning for Φ = 0− ε, we conclude that
ϕ1 must decrease and ϕ2 = π.

However, with increasing Φ, there is a point where changing i1 by δi1 = ic1 − i1(ϕ1 = π + Φ) and
setting i2 to its maximum value ic2 results in a higher total current. This condition writes :

δi1 < δi2 ⇐⇒ ic1 − i1(ϕ1 = π +Φ) < ic2 − i2(ϕ2 = π − Φ) (1.46)

For the symmetric case, this condition is fulfilled when Φ/Φ0 > π. At this value of flux, ϕ1 − ϕ2 = π,
and one junction carries no current while the other carries its maximum current, yielding Ic = ic1(= ic2).
This contrast with the usual pattern of symmetric DC SQUID with tunnel junctions, as discussed after. For
the asymmetric case, Fig.1.28 shows the total current when either one phase vary or the other, and the
critical current is the maximum over the two situations. We see that with its lower critical current ic1 ≪ ic2,
varying the phase of junction 1 is the less "costly" in current for most of the flux values. Hence, except
for the small range of flux where i2 varies, the modulation of the critical current with flux reflects the CPR
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i1(ϕ1) of junction 1, where only the part of its CPR with the lowest current is missing. This explains the
behaviors observed in Fig.1.27. The total range of phase explored by ϕ1 is π

(
1 + ic2−ic1

ic1+ic2

)
, and by ϕ2 is

π
(
1− ic2−ic1

ic1+ic2

)
.

Figure 1.28 – Computation of the total supercurrent through an asymmetric DC SQUIDwith two long ballistic channels
(ic1 = 0.2 and ic2 = 1.8) in two different configurations. The blue dots is the total current if the phase ϕ1 across
the channel 1 varies and ϕ2 = ϕmax

2 of the channel 2 is constant. The orange dots is the total current if the phase
ϕ2 across the channel 2 varies and ϕ1 = ϕmax

1 of the channel 1 is constant. Depending on the value of the fluxΦ,
one configuration yields a higher total current than the other. The critical current as a function of Φ is given by the
maximum of these two curves.

1.6.2 . Other two channels junctions

After the analysis of the behavior of the DC SQUID with two channels with linear CPRs, which presents
both the advantage of having simple analytical solutions and being relevant for modeling long ballistic to-
pologically protected states, we now focus on more complex CPR that we may encounter in our experiments.

a) Short ballistic junctions

Fig. 1.29a shows Ic(Φ) computed patterns for DC SQUIDs with two short ballistic junctions with
symmetric (ic1 = ic1) and asymmetric (ic1 ̸= ic1) junctions, and the respective phases ϕ1,2 variations for
both channels (Figs. 1.29b, 1.29c). The CPR of a short ballistic junction is plotted in Fig.1.18a.

The blue solid curve in Fig. 1.29a corresponds to a symmetric DC SQUID. Compared to the long ballistic
case previously presented, the oscillations periodicity and amplitude are the same, with maximums at Φ = 0

and with minimums of Ic(0)/2 at Φ = π, but the shape is different. The pattern displays rounded peaks
and sharp dips.

To better understand this, let us look at the corresponding phases ϕ1,2 in Fig. 1.29b. For Φ : −π → 0,
we see that ϕ1 increases linearly from 0 to π and ϕ2 = π. For Φ : 0 → π, ϕ2 decreases linearly from π to
0 and ϕ1 = π. Thus, the phases’ behavior is exactly the same as in the symmetric DC SQUID with long
ballistic channels, and the difference in shape come from the differences between the linear long ballistic
channel CPR and the doubled-period sinusoidal short ballistic channel CPR. They both are odd in phase
and maximum at ϕ = π, explaining their similarities at Φ = 0 and Φ = π, but the latter is curved with a
negative second derivative in the [0, π] range and has a 0 first derivative at its maximum at π.

This yields a curved shape between Φ = −π and Φ = π, with a smooth transition with ∂Ic/∂Φ = 0

at Φ = 0 when the junction swap between Ic(Φ) = i1(ϕ1 = π + Φ) + i2(ϕ2 = π) and Ic(Φ) = i1(ϕ1 =

π) + i2(ϕ2 = π−Φ) (variations close to ϕ1,2 = π), and a sharp transition when the junction swap between
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Ic(Φ = π + ε) = i1(ϕ1 = ε) + i2(ϕ2 = π) and Ic(Φ) = i1(ϕ1 = π) + i2(ϕ2 = −ε) (variations close to
ϕ1,2 = 0).

The orange line in Fig. 1.29a results from a computation in the asymmetric junctions case, with ic1 = 0.2

and ic2 = 1.8. The corresponding phases ϕ1,2 variations are plotted in Fig.1.29c. One can understand this
behavior the same way as the case in the previous subsection, with long ballistic junctions.

(a)

(b)

(c)

Figure 1.29 – (a) Critical current as a function of applied magnetic field for a junction featuring two short ballistic
subjunctions, forming a DC SQUID. (b),(c) Corresponding phase differences of both junctions when I = Ic in the
symmetric case and in the asymmetric case, respectively.

b) Sinusoidal junctions

So far, we only considered ballistic channels with CPRs that present a discontinuity at ϕ = ±π. However,
this type of CPR is only expected for ballistic channels, meaning very clean or topologically protected, at
zero temperature. When taking into account scatterings or finite temperature, the discontinuity at ϕ = ±π
disappears and is replaced by a smooth transition between positive and negative current, the maximum
current is reduced, and the phase of the maximum current ϕmax < π, see Fig.1.18. In the limit of low
transmission (tunnel regime) or high temperature, the CPR is reduced to : i(ϕ) = ic sinϕ, which is smooth
everywhere, has a maximum at ϕ = π/2, a minimum at ϕ = −π/2, is antisymmetric with respect to
ϕ = 0,±π, and symmetric with respect to ϕ = ±π/2.
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In Fig. 1.30a, we show the computed critical current for a DC SQUID composed of two sinusoidal
junctions with symmetric (ic1 = ic1) and asymmetric (ic1 ̸= ic1) junctions, and the respective phases ϕ1,2
variations for both channels (Figs. 1.30b, 1.30c). In the symmetric situation, the critical current represented
by the blue solid line looks similar to the behavior of the DC SQUID with two short ballistic junctions in the
same conditions, but here the oscillations goes down to a minimum of Ic(Φ = π) = Imin

c = 0. However,
looking at the asymmetric critical currents case (orange solid curve), we see a striking difference : the critical
current oscillate with a sinusoidal pattern, displaying the CPR of the channel 1, and never following the
CPR of the channel 2.

To clarify the situation, let us compare the individual phase differences of both channels in the two
situations with the previously studied DC SQUID with short ballistic channels, see Figs. 1.30b, 1.30c. First,
the variations of the phases in the symmetric situation (Fig. 1.30b) is different : they both vary simultaneously
in opposite fashion. This is because there is no discontinuity in the CPRs close to their maximum current
anymore, such that there is no very costly phase variations in one way compared to the other. For two
channels with identical sinusoidal CPRs, the cost in current to increase the phase of channel 1 is equal to
the cost in current to decrease the phase of channel 2.

To understand why the symmetric SQUID (blue curve in Fig. 1.30a) oscillations go to Ic(Φ = π) = 0,
let us have a closer look at Fig. 1.30b. At Φ = π, ϕ1 − ϕ2 = π, meaning that the channels 1 and 2 must
absorb together a phase π (absorb compared to Φ = 0). Between Φ = 0 and Φ = π, ϕ1 : π/2 → π

and ϕ2 : π/2 → 0, such that the two channels share this phase π evenly, leading to Ic(Φ = π) =

i1(π/2+π/2)+ i2(π/2−π/2) = i1(π)+ i2(0) = 0+0 = 0. It contrasts with the ballistic channels SQUID,
where the phase of only one channel varies to absorb ϕ1 − ϕ2 = π while the other remains at its maximum
current, leading to Ic(Φ = π) = i1(π) + i2(π − π) = i1(π) + i2(0) = ic1 + 0 = ic1.

In the asymmetric situations Fig. 1.30c, the difference between the costs in total current for a phase
variation of the two channels (∂i1,2∂Φ ) is big enough to limit the variation of the phases to one channel at any
value of the flux. This is not entirely true, as i2 still has some leeway around its maximum value because
∂i2
∂Φ = 0 for ϕ2 = π/2. More rigorously, one need to compare ∂i1

∂ϕ1
to ∂i2

∂ϕ2
at each ϕ1 − ϕ2 = Φ.
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(a)

(b)

(c)

Figure 1.30 – (a) Computed critical current as a function of applied magnetic field for a junction featuring two sub-
junctions with sinusoidal CPRs, forming a DC SQUID. (b),(c) Corresponding phase differences of both junctions when
I = Ic in the symmetric case and in the asymmetric case, respectively.

1.6.3 . Two 1d helical junctions with Zeeman energy

In this section, we now consider the effects on 1d helical channels of an energy term coming from a
Zeeman interaction. In [73], the authors introduce a Zeeman term ĤZ = −hσ̂z in the hamiltonian, where
σz is the diagonal Pauli matrix. This term modifies the CPR as presented in part 1.4.3, following Eq. (1.29)
for short topological junctions and Eq. (1.30) for long topological junctions.

The computed critical current of a DC SQUID with two short 1d helical channels is presented in Fig.1.31a
with various parameters EZ1/∆ and EZ2/∆, ∆ being the superconducting energy of the superconducting
leads, EZ1 the Zeeman energy for the channel 1, and EZ2 the Zeeman energy for the channel 2.

For the symmetric cases displayed as blue and orange solid lines, we see that they are both maximum
at 0 field, but have very different shapes, maxima and minima. The blue solid curve is explained by the
fact that both the maximum current of the CPR and the first order derivative of the current close to its
maximum increases with EZ/∆0 (see Fig.1.25a), leading to a behavior similar to the long ballistic junction.

On the other hand, the orange solid curve is explained by two factors. First, with decreasing EZ/∆0,
the maximum current of the CPR decreases, reducing the oscillations’ amplitude. Second, with decreasing
EZ/∆0, the discontinuity in the CPR moves higher in phase, and the CPR extends its sinusoidal shape
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higher in phase, see Fig.1.25a. This leads to a smooth sinusoidal behavior in the vicinity of the maximum
current of the CPR, explaining the similarity of the orange curve to the sinusoidal junction case.

The asymmetric situations lead to intermediate results, where a shift of the pattern can occur, and where
the shape in the vicinity of the maxima is dictated by the CPR of the channel with the lowest first order
derivative close to its maximum current phase. Fig.1.31b shows the same computations for long 1d helical
junctions. Because the Zeeman energy only shifts the CPR for long 1d helical junctions (see Fig.1.25b),
there is no effect of EZ when the two junctions have identical EZ1 = EZ2 (see blue and orange lines on
top of each other), and the pattern is shifted for EZ1 ̸= EZ2 (see green line).

(a) (b)

Figure 1.31 – Critical current of a DC SQUID featuring two 1d helical channels/junctions, as a function of magnetic flux
Φext applied through the SQUID surface via an external magnetic field. (a) Junctions 1 and 2 are short 1d helical
junctions with critical currents ic1 and ic2, and Zeeman energiesEZ1 andEZ2, respectively. Blue line : ic1 = ic2 =
e∆/2 and EZ1 = EZ2 = 0.4∆. Orange line : ic1 = ic2 = e∆/2 and EZ1 = EZ2 = −0.4∆. Green line :
ic1 = ic2 = e∆/2 and EZ1 = −EZ2 = 0.4∆, showing a phase shift due to anomalous Josephson effect. (b)
Junctions 1 and 2 are long 1d helical junctions with critical currents ic1 and ic2, and Zeeman energiesEZ1 andEZ2,
respectively. Blue line : ic1 = ic2 = evF/(2L) andEZ1 = EZ2 = 0.4∆. Orange line : ic1 = ic2 = evF/(2L)
andEZ1 = EZ2 = −0.4∆. Green line : ic1 = ic2 = evF/(2L) andEZ1 = −EZ2 = 0.4∆, showing a phase
shift due to anomalous Josephson effect.

1.7 . Symmetries and inductances in superconducting junctions and SQUIDs

In this section, we discuss several effects that can influence the symmetries of the response in current of
junctions in a superconducting circuit, as a function of magnetic field. The various sources of asymmetries
depend on the circuit considered (single-junction critical current, AC SQUID, DC SQUID) as well as on the
physical phenomenon considered (self-field effects, unknown junctions, asymmetric CPR content, anomalous
Josephson effect). The asymmetry of the critical current versus magnetic field pattern induces Josephson
Diode Effect (JDE), which is currently a trending topic in the community.

Among the possible origins of JDE, the Anomalous Josephson Effects (AJE) found in materials with
SOC are very interesting and are attracting a growing attention from the scientific community. AJE can
manifest as a form of Magneto-Chiral Anisotropy (MCA) yielding anisotropies of critical current depending
on the geometry of the sample as well as the relative angle between the current vector and the magnetic
field vector, see appendix 6.7.6. In part 1.6.3, we saw some effects of AJE in a DC SQUID, and in particular
phase shift of the critical current pattern (see green lines in Figs.1.31a and 1.31b.
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From a given asymmetric pattern, it may be hard to disentangle the contributions of the different
phenomenons, especially in our Bi samples with a lot of uncontrolled/unknown parameters (geometry-
dependent conduction modes). The various effects do not scale identically with the current, the magnetic
field magnitude, the temperature, and the magnetic field orientation, as discussed in appendix 6.2.

This study is useful to understand the intermediate field scale behaviors of the samples analyzed in
chapter 3. Moreover, we present in appendix 6.12 an analysis of the Ic(Φext) pattern of a DC SQUID made
out of two segments of the same bismuth nanowire. It shows an important asymmetry varying with magnetic
field orientation, that we quantify with a Beff = βI both in the superconducting state and the resistive
state. A more thorough analysis is needed, but it may show experimental evidence for a link between the
Edelstein effect in the resistive state and AJE in the superconducting state. Clever sample geometry and
combinations of measurements at different field orientation and different temperatures may allow to isolate
AJE.

First, we introduce the relations between time-reversal symmetry, inversion symmetry, and JDE. Then,
we study the effects of inductive elements, with a focus on DC SQUID, which is the most relevant model
for our experiments. Lastly, we discuss other sources of shifts in the critical current pattern.

1.7.1 . Time-reversal symmetry, inversion symmetry, and Josephson Diode Effect
We first consider a system that respects time-reversal symmetry (TRS) as a whole. Its response when

excited one way is the time-reversed response when excited the time-reversed way. For a Josephson junction
current response I, if there are no other TRS breaking elements than the phase difference φ between the
two superconducting leads (e.g. no magnetic field, no trapped current loops), we can write this relation as :

I(φ) = T [I(φ)] = −I(−φ) (1.47)

So if the junction has TRS, its CPR is odd, with maxima and minima of opposite current values and at
opposite phase values.

Defining the positive (I+c ) and negative (I−c ) critical current as the maximum current values for positive
and negative current biases, respectively, we have :

I+c = maxφ[I(φ)] (1.48)

I−c = |minφ[I(φ)]| (1.49)

So if the junction has TRS, we have I+c = I−c .
For the critical current measurement of a DC SQUID, with no other TRS breaking elements than the

applied bias current and the applied magnetic field B, we write :

I+c (BBB) = T [I+c (BBB)] = I−c (−BBB) (1.50)

This relation involves I+c and I−c , but does not guarantee the symmetry I±c (BBB) = I±c (−BBB) for a given
current bias sign ±. Actually, using Eq.(1.50), the symmetry in ±B for a given current bias sign ± can be
rewritten :

I±c (BBB) = I±c (−BBB)⇐⇒ I±c (BBB) = I∓c (BBB) (1.51)

where the two signs have been swapped. Hence, the +B ←→ −B symmetry of the critical current pattern
is related to the symmetry of I+c and I−c at a given field. Breaking the inversion symmetry of the junction,
one can obtain I+c (BBB) ̸= I−c (BBB), yielding the so-called Josephson Diode Effect or asymmetric Josephson
effect (mind that I use AJE for anomalous Josephson effect, which is not always the case in the literature).
Going back to Eq.(1.50), there is JDE whenever I±c (BBB) ̸= I±c (−BBB).
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However, still from Eq.(1.50) assuming only TRS, we get I+c (0) = I−c (0) for B = 0, even when the
inversion symmetry is broken. We conclude that in order to get JDE, one needs to break both TRS (|B| > 0)
and inversion symmetry (I+c (BBB) ̸= I−c (BBB)).

Inductive elements can break TRS even at zero applied magnetic field by introducing an effective
magnetic field or a superconducting phase difference induced by a current. But because the effective magnetic
field is reversed when the current is reversed, it does not yield I+c (0) ̸= I−c (0). In a similar fashion, the
(super)current in a material with SOC induces a polarization of the spins (Edelstein effect) that can play a
similar role as the magnetic field, via the AJE, see part 1.3.9. However, the AJE only occurs in the presence
of non-vanishing Zeeman energy, requiring a finite magnetic field, and do not yield I+c (0) ̸= I−c (0) too.

Even though I+c (0) ̸= I−c (0) can’t be achieved, we saw that JDE is still possible by breaking TRS and
inversion symmetry. Inductive elements and AJE can introduce effective magnetic fields that shift the critical
current versus magnetic field patterns in opposite ways for positive and negative current bias. There are
other mechanisms to introduce a shift in this pattern. The role of the different symmetries on the CPR and
JDE are discussed in [107], for a 2d material with SOC.

In the following, we focus on the role of inductances, with an emphasis on their influence in a DC
SQUID.

1.7.2 . Inductances
We refer to something as an inductance L if it generates an effective flux Φ that scales with I : Φ = LI.

This terminology is consistent with the classical electrodynamics geometric inductance. The inductance
itself can depend on I. In SQUID measurements, the current depends on the flux through the surface of
the SQUID. If inductive elements are present, the flux itself varies with the current. This kind of feedback
effect can deform the response of the SQUID, shift its critical current versus magnetic field pattern, and
even make some phase domain inaccessible or create hysteretic behavior in some cases. In appendix 6.2, we
give the physical origin, the approximate expression, and comment the three types of inductive elements.

We identify three types of inductive elements :
- geometric self-inductance LG of a current loop, with a typical value of LG ∼ 0.2pH in the geometry of
our experiments
- geometric self-inductance LA of an asymmetric current distribution, with a typical value of LA ∼ 4 ×
10−2pH in the geometry of our experiments
- kinetic inductance LK of unknown junctions in series with the known junctions, with LK,W ≃ 17pH per
µm for the W compound superconducting leads, and LK,u ∼ Φ0

Ic,u
for a general unknown junction.

1.7.3 . Effects of inductances on an AC SQUID
Let us examine the influence of the three types of inductance for a Josephson junction in an AC SQUID.

The working principle of the AC SQUID is presented in part 1.5.1. Fig.1.32a shows the sketch of the AC
SQUID including the inductances. A current i runs through the SQUID, and an external magnetic field Bext

induces a magnetic flux Φext = BBBext ·SSS in the surface S of the SQUID (of surface vector SSS). The junction
has a CPR i(ϕ), with ϕ the superconducting phase difference between its superconducting leads, and ic its
critical current.

Following the diamagnetic convention Eq.(6.12) for inductances and the AC SQUID phase-flux relation
ϕ = 2π

Φ0
Φ, the current i circulating in the AC SQUID reads :

i(ϕ) = i

(
2π

Φ0
Φint

)
= i

(
2π

Φ0
(Φext − L.i)

)
(1.52)

In this expression, both the self-field inductances, LG and LA, and the kinetic inductance(s) LK contribute
to ϕ, and we can simply add them up : L = LG+LA+LK . In Eq.(1.52), we see that L ̸= 0 =⇒ Φint ̸= Φext,
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Figure 1.32 – Sketches of superconducting circuits with Josephson junction(s) (cross symbol(s), superconducting phase
difference ϕ, critical current ic) and inductances (coil symbol(s), effective superconducting phase difference l.i =
2πL
Φ0
.i). (a) Sketch of an AC SQUID with one Josephson junction and inductances. (b) Sketch of a DC SQUID with two

Josephson junctions in parallel, each in series with inductances.

and the phase ϕ of i(ϕ) is itself a function of i. It yields a deformation of the AC SQUID response, hysteresis
and inaccessible ϕ = 2π

Φ0
Φint regions in some cases.

Writing

Φext = Φint + L.i

(
2π

Φ0
Φint

)
(1.53)

, one can deduce Φint from Φext. It is illustrated in Fig.1.33a for a junction with a sinusoidal i(ϕ), where
one can see the different consequences of L ̸= 0. Importantly, forbidden Φint (in red) appear near Φint

values for which the current changes sign, at odd multiples of ϕ = π here, which may be detrimental to the
experiment. For a junction with sinusoidal CPR, these forbidden values appear for βL = 2π

Φ0
Lic ≳ 1. Notice

that at Φext = 0, Φint = 0 too, even in the presence of inductances (if L is not too high such that Φext = 0

does not fall into an hysteretic region). This topic is further discussed in [108], including AJE.

(a)

Figure 1.33 – Illustration of the effects of an inductance in an AC SQUID. The internal fluxΦint differs from the bare

external flux Φext, related by Φext = Φint + L.i
(

2π
Φ0
Φint

)
. In this graph, the inductance is supposed constant,

the junction has a sinusoidal CPR, and βL = 1.65. When increasing the external flux, the internal flux follows up
to A, where it jumps to B. Decreasing the external flux, the internal flux only jumps back in C, creating an hysteresis
cycle. The red lines mark the internal flux range not accessible. From [109].
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1.7.4 . Effects of inductances on a DC SQUID

Let us examine the influence of inductive elements for two Josephson junctions in parallel, forming a
DC SQUID. The principle of the DC SQUID is presented in part 1.5.3. Fig.1.32b shows the sketch of the
DC SQUID including the inductances in series with each of the junctions, that is one global inductance L1

in the top branch, and L2 in the bottom branch. A total current I traverses the DC SQUID, with i1 (i2)
in the top (bottom) branch. An external magnetic field Bext applies a magnetic flux Φext = BBBext ·SSS in the
surface S of the SQUID (of surface vector SSS). The top and bottom junctions have CPR i1(ϕ1) and i2(ϕ2),
respectively, with ϕ1,2 the superconducting phase difference between their respective superconducting leads,
and ic1,c2 their critical currents.

Following the diamagnetic convention Eq.(6.12) for inductances and the DC SQUID phase-flux relation,
the current I flowing through the DC SQUID writes :

I(ϕ1, ϕ2) = i1(ϕ1) + i2(ϕ2) (1.54)

with
ϕ1 − ϕ2 =

2π

Φ0
Φint =

2π

Φ0
(Φext − L1i1 + L2i2) (1.55)

the constraint on the phases.
In contrast with the AC SQUID, in the DC SQUID the current I is imposed. Trying the same trick as

for the inductances in the AC SQUID, we can rewrite Eq.(1.55) :

ϕ1 +
2π

Φ0
(L1 + L2)i1(ϕ1) = ϕ2 +

2π

Φ0
(Φext + L2I) (1.56)

where we see that the knowledge of Φext and I is not enough to unequivocally determine the ϕ1, due to
the presence of ϕ2. However, this is only the constraint on the phases, and the SQUID must also respect
the constraint on the currents Eq.(1.54). The problem can be computed numerically.

In a DC SQUID, the quantity that is measured is the critical current of the full SQUID, expressed as
I+c = maxϕ1,ϕ2I(ϕ1, ϕ2) and I−c = |minϕ1,ϕ2I(ϕ1, ϕ2)| for positive and negative bias current, respectively. In
part 1.6, we saw that the critical current versus magnetic field pattern could be obtained by first considering
the configuration giving the maximum supercurrent, and then varying the current in the two branches in a
way that compensate the effect of the magnetic flux for a minimum loss of total supercurrent. Let us do
this again including inductances.

Focusing first on positive current bias, the maximum critical current is obtained for I+,max
c = i+c1+i

+
c2 =

i1(ϕ
+
1 )+i2(ϕ

+
2 ). This value is not affected by the inductances. However, I+,max

c is not at Φext = 0 anymore,
but at :

2π

Φ0
Φmax
ext = ϕ+1 − ϕ

+
2 +

2π

Φ0
(L1i

+
c1 − L2i

+
c2) (1.57)

For two junctions with identical CPR shape, the shift of the maximum of the I+c (Φext) pattern is ϕ+1 =

ϕ+2 =⇒ Φmax
ext = L1i

+
c1 − L2i

+
c2. The same reasoning can be applied for negative bias current.

Let us now try to understand better the influence of the inductances on the shape of the I+c (Φext)

pattern. To do so, we focus on one branch, say the top branch, and we fix the current i2. The current i2 in
the bottom branch produces a phase difference L2i2 across the inductance and ϕ2(i2) across the junction,
following its inverse CPR. Thus, the constraint between the phases impose that the total phase difference
across the top branch, that we call ϕt1, is ϕt1 = L2i2 +ϕ2 +

2πΦext
Φ0

. Without the inductance L1, we simply
have ϕ1 = ϕt1 and i1 = i1(ϕt1(Φext, i2)). Introducing L1 ̸= 0, the inductance will absorb part of ϕt1, such
that ϕ1 + L1i1 = ϕt1 ⇐⇒ ϕ1 = ϕt1 − L1i1.
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For L1 > 0, ϕ1 is reduced compared to the inductance-free situation. For a given variation of ϕt1, as
induced by a magnetic flux, the current in the top branch, given by the CPR i1(ϕ1) of the junction, varies
less as i1(ϕ1) = i1(ϕt1 − L1i1).

Hence, L1 > 0 screens the magnetic flux variations, and the I+c (Φext) shows the result of screened
CPRs. To understand it, one can apply the same reasoning as part 1.6 in the inductance-free case, but with
ϕ1,2 variations upon flux variation of flux Φext screened by the inductances :
- ∂ϕ1

∂Φext
= 1− l1 ∂i1

∂ϕ1

∂ϕ1

∂Φext
⇐⇒ ∂ϕ1

∂Φext
= 1

1+l1
∂i1
∂ϕ1

< 1

- ∂ϕ2

∂Φext
= −1− l2 ∂i2

∂ϕ2

∂ϕ2

∂Φext
⇐⇒ ∂ϕ2

∂Φext
= − 1

1+l2
∂i2
∂ϕ2

and | ∂ϕ2

∂Φext
| < 1

The total accumulated phase can be written as ∆ϕ1,2 =
∫ Φext

Φmax
ext

∂ϕ1,2

∂Φ′ dΦ′, yielding deformation compared

to the inductance-free case. For a long ballistic channel, ∂ϕ1,2

∂Φ =
ic1,c2
π =⇒ ∆ϕ1,2 =

1

1+
l1,2ic1,c2

π

Φext.

Notice that the variations of I+c close to I+,max
c reflect the CPR of the junctions close to their maximum

at i1,2(ϕ+1,2), whatever the value of the inductances. It is also true for negative current bias. This contrast
with the AC SQUID and its βL. In DC SQUID, the screening affects the lowest values of i1,2(ϕ1,2), with
low values of ϕ1,2 that may never be achieved.

Because inductances L1 and L2 change the "cost" in current i1 and i2 of varying the phase across top
and bottom branches, respectively, their presence also changes the positions of the minima of I+c (Φext).

The different effects of inductances discussed here are illustrated in Fig.1.34 for two long ballistic (or
helical) junctions. For comparison, the blue and orange lines correspond to situations without inductance,
as introduced in part 1.6.1. The red line corresponds to junctions with equal critical currents and different
inductances L1 = 1.78 Φ0 per unit of current and L2 = 0. We see that it reproduces the modulation and
the approximate skewness of the situation with asymmetric junctions without inductance, compare red line
to orange line. In addition, its maximum critical current is shifted to Φmax

ext ≃ −0.25Φ0.

Figure 1.34 – Critical current of a DC SQUID with two long ballistic (or helical) junctions as a function of magnetic
fluxΦext applied through the SQUID surface via an external magnetic field. The junctions are labelled 1 and 2, with
critical currents ic1 and ic2, and are in series with inductancesL1 andL2, respectively. ic1,c2 are expressed in units
of evF/(2L), andL1,2 are expressed inΦ0 per unit of current.

We conclude that inductances in a DC SQUID can be detrimental to our critical current pattern measure-
ments in two ways. First, inductances can screen the variations of the phases with magnetic field, deforming
the critical current pattern in a way that is indistinguishable from another critical current pattern. Second,
inductances can shift the maximum critical current in field, making it hard to distinguish with MCA induced
by AJE. However, close to the maximal critical current, the pattern always reflects the shape of the CPRs
close to their maximum supercurrent, allowing us to distinguish long ballistic (or 1d helical) channels with
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sawtooth CPR.

1.7.5 . Inductances in a DC SQUID with two long ballistic junctions
In this subsection, we give analytical formulas for I+c (Φext) of a DC SQUID featuring two long ballistic

Josephson junctions, including inductances in both branches. This system gives I+c (Φext) oscillating with
periods corresponding to ∆Φext = Φ0 in the surface of the SQUID, with a skewed triangular pattern. This
corresponds to most of the situations encountered in our experiments.

We take the same conventions as the previous subsection, see Fig.1.32b. The full derivation of the
formulas has been done by Dr. Yang Peng, and can be found in appendix 6.4, reproducing the supplementary
materials of [5]. Appendix 6.4 also provides additional discussions for various limits.

Defining l1,2 =
2πL1,2

Φ0
, ∆li = l1ic1 − l2ic2, ∆ϕ+ = 2π ic1(π+l2ic2)

ic1(π+l2ic2)+ic2(π+l1ic1)

and ∆ϕ− = 2π ic2(π+l1ic1)
ic1(π+l2ic2)+ic2(π+l1ic1)

, we can write the switching current as :

Ic(Φ) =

{
ic1 + ic2 + ic2

∆li−Φext

π+l2ic2
Φext ≥ ∆li

ic1 + ic2 + ic1
Φext−∆li
π+l1ic1

Φext ≤ ∆li

(1.58)

The range of validity of this formula over a phase of 2π is given by :

−∆ϕ− +∆li ≤ Φ ≤ ∆ϕ+ +∆li (1.59)

If Φext is outside this interval, then the critical current can be obtained by applying periodic property
Ic(Φext) = Ic(Φext + 2π).

The modulation amplitude is :

∆Ic = 2πic1ic2/[ic1(π + l2ic2) + ic2(π + l1ic1)] = 2πic1ic2/[π(ic1 + ic2) + (l1 + l2)ic1ic2] (1.60)

and one can define a skew coefficient as :

S = (∆ϕ− −∆ϕ+)/2π (1.61)

S = 1 (S = −1) when there is only a positive (negative) slope over the whole phase period. As defined, S
does not depend on the modulation amplitude.

For symmetric branches with ic2 = ic1 = ic and l1 = l2 = l, Equation (6.47) yields :

Ic = ic(2− Saw[
|Φext|

1 + lic/π
]). (1.62)

This corresponds to a triangular flux dependence, with a modulation amplitude smaller than without induc-
tances :

(Imax
c − Imin

c )/2ic = ∆Ic/I
max
c =

1/2

1 + 2Lic/Φ0
. (1.63)

1.7.6 . Other phase shifts contributing to SQUID measurements
Except inductances and AJE, other sources of phase shift can contribute to SQUID measurements.

First, we ignored so far the effect on the local field of the diamagnetic superconducting contacts. Indeed,
the superconductors have their own screening currents that induce flux focusing and add up to the magnetic
flux through the SQUID surface. It can be caused by the "skin" currents, and induce spurious asymmetric
responses as discussed in [110]. It can also be caused by the presence of Abrikosov vortices in the type-II
superconductors [111], associated to discontinuities in the Ic(Φext) pattern when a new vortex is close to
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the SQUID surface, as observe for example in the supplementary material of [112] or in Fig.6.24a in the
appendix.

Second, considering a DC SQUID, we saw that the maximum of the critical current is found when the
two junctions reach their critical current, that is i1(ϕ1 = ϕ+1 ) = i+c1 and i2(ϕ2 = ϕ+2 ) = i+c2 (considering
positive current bias). For this configuration, the constraint on the phases writes 2π

Φ0
Φmax
ext = ϕ+1 − ϕ+2

(Eq.(1.57)). Hence, for ϕ+1 ̸= ϕ+2 , the maximum critical current of the DC SQUID is shifted to :

Φmax
ext =

Φ0

2π
(ϕ+1 − ϕ

+
2 ) (1.64)

For further discussion on this effect, see [113]. For example, this asymmetry in phase of maximum current
can be realized by two junctions with different vF , implying different ET , and different ic and harmonic
content, see [114].Excluding AJE, this shift is independent of magnetic field. Moreover, it does not scale
with ic1,c2. It can be positive or negative, and it changes sign when the direction of the current is reversed.

Lastly, with or without SOC in the junctions, the magnetic field can induce π-junction transitions due
to Zeeman energy. Such transitions have been observed in our DC SQUID devices with bismuth-based
Josephson junctions. For an in-plane magnetic field, the regime of transition extends over ∼ 30G, and
∼ 500G separate successive transitions [3].

1.8 . Beating between two channels

1.8.1 . Beating between two channels due to orbital dephasing
Previously in this manuscript, we studied the supercurrent of three types of Josephson junctions as

a function of the phase difference between its superconducting leads. We have calculated the maximum
supercurrent that can flow through a junction composed of two Josephson junctions (referred to as channels)
separated in real space as a function of a magnetic field, that is the critical current Ic(Φ) of a DC SQUID
enclosing a magnetic flux Φ. In particular, we saw that we could use a DC SQUID with asymmetric critical
currents to probe the current-phase relation of the Josephson junction with the smallest critical current.

In this section, we will consider the total supercurrent of two channels with a dephasing that varies
slightly with magnetic field. We will consider that the junction composed of the two channels is embedded
in an annulus (like an AC SQUID or an asymmetric DC SQUID), such that the magnetic field also controls
the phase difference Φ between the superconducting leads via the flux through the annulus. In this way, the
applied magnetic field changes simultaneously the phase difference between the leads and the dephasing
between the channels. In the rest of the manuscript, I will refer to this type of setup as current-flux relation(s),
which is a current-phase plus dephasing relation.

The formula for such a system is :

I(Φ) = i1(Φ− rΦ/2) + i2(Φ + rΦ/2) (1.65)

with i1(ϕ) the CPR of channel 1, i2(ϕ) the CPR of channel 2, and r the ratio between the junction surface
and the annulus surface.

This study is relevant both theoretically and experimentally for "large" junctions, "large" meaning that
the magnetic flux through the junction of surface S has a sizable effect on the measurements performed up
to a field Bmax, that is BmaxS ≃ Φ0 for orbital dephasing effects.

On the theoretical side, the current-flux relation is easy and fast to compute and gives a very good insight
on the shape of the critical current as a function of magnetic field for large junctions. On the experimental
side, this case is relevant as soon as there is one high current channel (or junction) in parallel to two lower
current channels with a small dephasing that varies with the magnetic field. This situation can arise in a
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purposely asymmetric DC SQUID designed to measure the current-phase relation of a finite-size junction,
or in a single-junction critical current measurement when there is an uncontrolled part of the junction that
has a high current and forms an intrinsic asymmetric DC SQUID.

Fig. 1.35 shows the current-flux relations for three different types of junctions composed of two scattering-
free channels with identical CPRs separated in real space. The phase difference between the two supercon-
ducting leads is Φ, the phase difference across channel 1 is 0.95Φ, and the phase difference across channel
2 is 1.05Φ. Thus, the dephasing between the two channels is 0.1Φ (r = 0.1), corresponding to an area
between them of 1/10th of the area of the annulus.

For the junction with two sinusoidal CPR channels, see Fig. 1.35a, we find the usual beating pattern of
two sinusoidal signals of slightly different period, one with a period of ∆ϕ1 = 1/0.95 = 20/19 and the other
∆ϕ2 = 1/1.05 = 20/21. The main frequency of the signal is (1/0.95 + 1/1.05)/2 ≃ 1 and the envelope
frequency is (1/0.95 − 1/1.05)/2 ≃ 1/20. The amplitude varnishes at Φ = 5 × 2π (+10n × 2π). At this
value, the flux between the two channels is 0.1Φ = 0.1× 5× 2π = π.

Looking at the envelope, we notice that we recover the pattern of the critical current of the symmetric
DC SQUID with sinusoidal CPRs. This is not a surprise since the critical current of our two sinusoidal CPR
channels junction is just the current-flux relation where we keep the dephasing between the channels but
we release the constraint on the phase difference between the superconducting leads. The phases difference
between the superconducting leads is given by the annulus large surface thus the high frequency, and the
dephasing is due to the small junction surface thus the low frequency beating. By filtering out the high
frequency and keeping only the envelope with a positive sign, we recover the critical current of the junction.

We further notice that in this first situation with sinusoidal CPRs, the frequency of the sinusoid is
proportional to the surface of the annulus plus the surface between the considered channel and the channel
1. This additional surface is proportional to the transverse position of the considered channel, such that we
have a direct relation between the transverse position of the channel and the frequency of the sinusoid. This
can be generalized to any channels distribution and implies that the current-flux relation of a scattering-free
junction with sinusoidal CPRs is simply the Fourier transform of its (critical) current density in the transverse
direction. The Fourier transform relation can be used to determine the current density profile in junctions
with a low aspect ratio L/W ≲ 1 [115].

Fig. 1.35b displays the beating between two long ballistic channels. First, we recover the triangular
envelope that goes down to Imax

c /2 ̸= 0 when the dephasing between the two channels is 0.1Φ = π ⇐⇒
Φ = 5×2π. Second, we see that a second period with a current close to 0 emerges as the dephasing between
the two channels increases. This happens at flux values for which one channel has a positive current while
the other one has a negative current. This is always the case when the dephasing is π, and leads to a
doubling of the frequency of the current. We see a very similar behavior for two short ballistic junctions, see
Fig. 1.35c.

1.8.2 . Beating between two channels due to Zeeman dephasing

So far, we have studied the influence of an orbital dephasing between the two channels. But there exist
another source of dephasing that depends on the magnetic field : the Zeeman dephasing, as introduced in
part 1.4.3.

For a junction featuring two identical helical pairs of channels with opposite helicities, like a symmetric
QSHI with both edges or a trivial conductor with degenerate helicities, the contribution of both helical pairs
of channels compensate exactly, see part 1.4.3. If their characteristics are different however (e.g. different
vF , L, geff , or initial phase due to a flux inside the junction area), they do not compensate exactly and can
lead to various interference patterns.

More explicitly, for two long 1d helical junctions in parallel, Eq.(1.30) yields a Zeeman-induced phase
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difference :

φh1 − φh2 ≃
(

L1

ℏvF,1
geff,1 cos θ1 −

L2

ℏvF,2
geff,2 cos θ2

)
µBB (1.66)

with L1,2, vF,1,2, geff,1,2 the respective lengths, Fermi velocities and effective g-factors of individual junctions
1 and 2. θ1 and θ2 are the angles between the spin quantization axes of junctions 1 and 2 and the magnetic
field BBB, respectively. This Zeeman dephasing is important whenever the Zeeman energy is comparable to
the Thouless energy, that is geffµBBL/(ℏvF ) ∼ 1.

Fig.1.36 shows the total current of two identical 1d helical channels with Zeeman energies that varies
with the flux Φ through the annulus, and with different multiplication coefficients. In Figs.1.36a and 1.36b,
we show the effect of equal Zeeman energies EZ1/∆0 = EZ2/∆0 = 0.14Φ/(2π) on two short 1d helical
channels and two long 1d helical channels, respectively. We see that the Zeeman energy gradually change
the current profile, which is just the sum of two CPRs in phase. For long ballistic channels (Fig.1.36b), it is
a simple phase shift and it decreases the effective period.

On the other hand, in Figs.1.36c and 1.36d, we see the effect of opposite Zeeman energies EZ1/∆0 =

−EZ2/∆0 = 0.14Φ/(2π). It differs from the previous situation, as it introduces a Zeeman-induced depha-
sing. For long 1d helical channels (Fig.1.36d), the pattern is exactly the same as the one obtained with
an orbital dephasing (Fig.1.35b), further confirming that there is no difference between the two types of
dephasing for those channels, except for the magnetic field scale.

In Fig.1.36c, the short 1d helical channels display a behavior that has some similarities with the orbital
dephasing case (Fig. 1.35c), but with major qualitative differences. We see the same frequency-doubling
phenomena and similar envelope, but the envelope dips lower than Imax

c /2, and the emerging period close
to 0 current is now pinned at I = 0. To better understand it, let us focus on the region Φ ≃ 5× 2π, where
EZ1/∆0 = −EZ2/∆0 = 0.14Φ/(2π) ≃ 0.7. In this situation, this current-flux relation is the sum of two
CPRs that are very close to the sum of the CPRs represented by pink and yellow solid lines in Fig.1.25a,
displaying regions of flux where the two CPR are opposite and give a flat I = 0 value.

Combining both orbital and Zeeman-induced effects yields complex supercurrent vs magnetic field pat-
terns, studied in [116, 117].
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(a)

(b)

(c)

Figure 1.35 – Current-flux relations of junctions composed of two scattering-free channels with identical CPRs sepa-
rated in real space. Here, the phase is considered to be imposed by a magnetic flux through an annulus, such that
the magnetic field changes both the phaseΦ across the junction and the dephasing between the two channels by a
factor 0.1Φ. (a) Current-flux relation of a junction with two sinusoidal channels. (b) Current-flux relation of a junction
with two long topological channels. (c) Current-flux relation of a junction with two short topological channels.
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(a) (b)

(c) (d)

Figure 1.36 – Current-flux relations of junctions composed of two topological scattering-free channels with Zeeman
energies. Here, the phase is considered to be imposed by amagnetic flux through an annulus, such that themagnetic
field changes both the phase across the junction and the Zeeman energies. (a) Current-flux relation of a junction with
two short topological channels with the same Zeeman energies. (b) Current-flux relation of a junction with two long
topological channels with the same Zeeman energies. (c) Current-flux relation of a junction with two short topological
channels with opposite Zeeman energies. (d) Current-flux relation of a junction with two long topological channels
with opposite Zeeman energies.
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1.9 . Critical current and Current-Flux Relations of many-channels junctions

In this section, we extend the analysis of supercurrent interference to junctions with a high number of
channels, first in the ballistic case, and then in the diffusive case. We discuss the importance of the aspect
ratio L/W of the junction, with L and W the length and width of the junction, respectively. Lastly, we
present the critical current patterns generated by three specific transverse supercurrent density profiles.

1.9.1 . Wide and narrow ballistic junctions
In this subsection, we extend the analysis of current-flux relations to junctions with a large number of

channels in parallel. We consider scattering-free channels evenly distributed along the transverse direction of
the junction. Like in the previous section, the junction has a finite surface, and is embedded in an annulus
with a larger surface. The magnetic field changes both the flux Φ through the annulus (hence the phase
difference between the superconducting leads of the junction) and the flux rΦ through the junction, where r
is the ratio between the two surfaces. The relevance of such a model is the same as in the previous section.

The formula for such a system is :

I(Φ) =
N∑

n=0

in(Φ + nrΦ/N) with in(ϕ) = icn.CPRn(ϕ+ δϕn) (1.67)

with N the number of channels, in(ϕ) the CPR of channel n. This discrete sum of many channels allows
us to model junctions with various critical currents and initial phases distributions, thanks to the terms icn
and δϕn, respectively.

Fig.1.37 shows the current-flux relations obtained for 200 scattering-free channels with identical CPRs in
parallel, with homogeneous critical currents and initial phases distributions. In Fig.1.37a, we see the results
for sinusoidal CPRs. As explained in the previous section, it is the Fourier transform of a shifted gate, which
is the product of a sinus of frequency (1+r/2) = 1.05 (high frequency) and a sinus cardinal (low frequency).
The sinus cardinal forms the envelope, with I = 0 when rΦ = 0.1Φ = 0.1 × 10 × 2pπ = 2pπ, with p a
non-zero integer.

Let us now look at the situation with 200 scattering-free ballistic channels in parallel. We saw in the
previous section that the envelope never goes to I = 0 with two ballistic channels. Hence, one would
naively guess that this behavior remains the same with a higher number of channels. The computations, see
Fig.1.37b for long ballistic channels and Fig.1.37c for short ballistic ones, proves otherwise.

The envelopes display patterns very similar to the sinusoidal CPRs case, with I = 0 at rΦ = 2pπ, such
that the Fourier transform argument seems to partly hold for non-sinusoidal signals, but we notice that the
shape of the lobes are different, with a clear triangular shape of the central lobe in the long ballistic case
(Fig. 1.37b).

Moreover, a closer look at the high frequency part of the current-flux relations in Figs .1.37b and 1.37c,
shows a very peculiar and surprising effect : skew reversal ! From Φ ≃ 0 to Φ ≃ 10 × 2π, the skew goes
from positive to negative. And for every rΦ = 2pπ, the skew is reversed again, with a convex pattern for
positive fields and concave pattern for negative ones. The same is true for negative Φ, the current-flux
relation having the global time-reversal symmetry (B, I)←→ (−B,−I).

In this analysis, we only considered the effect of orbital dephasing on plane waves with a wavevector
along the longitudinal axis of the junction, and we completely ignored wavevectors with a component in
the transverse direction. Such skewed trajectories participate to the interference pattern and can lead to
"doubling" of the period of the Fraunhofer pattern for high L/W ratio, see [118]. Fig.1.38 shows their results
for a ballistic junction in the limits of L/W = 0 and L/W −→ ∞, taking absorbing lateral boundaries.
For specular lateral boundaries scattering, they find similar results. [119] further explore the interferences of
ballistic trajectories in the wide junction limit.
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For long ballistic junctions at low field, the authors of [118] find :

Ic(ν) =
W

λF

evF
L

(1− (ν/2)2)(ν/2)2

|ν/2|2
with ν = Φ/Φ0 (1.68)

(a)

(b)

(c)

Figure 1.37 – Current-flux relations of junctions of finite areas composed of 200 topological scattering-free channels
in parallel, with identical CPRs, and spread evenly across the junction transverse direction. Here the phase is consi-
dered to be imposed by a magnetic flux through an annulus, such that the magnetic field changes both the phase
Φ across the junction and the dephasings between the 200 channels by a factor 0.1/200Φ. (a) Current-flux relation
of a junction with 200 sinusoidal channels. (b) Current-flux relation of a junction with 200 long ballistic channels. (c)
Current-flux relation of a junction with 200 short ballistic channels.

76



Figure 1.38 – Critical current of a 2d ballistic junction withmany channels as a function ofmagnetic flux ν = Φext/Φ0

in the junction, in the limits ofL/W = 0 andL/W −→∞, taking absorbing lateral boundaries.L is the junction
length andW the junction width. The pattern is similar for specular lateral boundaries scattering. From [118].

1.9.2 . Wide and narrow diffusive junctions
Now that we have an understanding of the behavior of scattering-free junctions, let us move on to the

scattering-full case of diffusive junctions. In such systems, new parameters come into play.
In [120], the author treats the case of a long diffusive junction as a quasi-1d system, and solves a 1d

diffusion equation
[
∂
∂t −D

(
∂
∂x + i 2πΦ0

By
)]
P (x, x′, t) = δ(x − x′)δ(t) with P (x, x′, t) the probability of

diffusion between points x and x′ at time t, D the diffusion constant, and By can be thought as the
transverse component of the flux. Considering the magnetic field as a perturbation, it becomes :(

1

τB
+D

∂2

∂x2

)
P (x, x′) = δ(t) (1.69)

with τB =
3Φ2

0
π2Dw2B2 the characteristic time related to the magnetic field and w the total width of the

junction. Note that this time can also include a typical coherence time τϕ as 1/τ = 1/τB + 1/τϕ. The
resolution of this equation leads to Ic(B) = Ic(B = 0) L/L∗

sinhL/L∗ , with L∗ =
√
Dτ =

√
3Φ0

πBw . This result is
plotted as a black dashed line in the inset of Fig. 1.39d, with a shape very close to a gaussian curve.

In the diffusive limit of ξ =
√

ℏD
∆ ≫ le, a more precise approach consist of using retarded Green

functions, and solve Usadel equations. This has been done for example in [121] for 2d films with various
widths and lengths. They showed that there is a competition between interference effects and depairing
effects. To obtain large interference effects, the junction needs to be able to form "Josephson vortices". In
the limits of this article, the characteristic variation scale of the Green functions in the transverse direction
is ξB =

√
Φ0/B, with B the applied magnetic field.

If W < ξB ⇐⇒W/L <
√

Φ0/Φ, no Josephson vortex can form in the junction and the only effect left
is the depairing one, yielding the quasi-1d behavior studied in [120]. On the other hand if W ≫ ξB ⇐⇒
W/L ≫

√
Φ0/Φ, the full interference effect dominate the critical current vs flux, and we recover the

scattering-free limit. The results of the full computations are displayed in Fig. 1.39a, with various widths.
In Figs. 1.39c and 1.39d, we show experimental results of diffusive gold junctions with superconducting

tungsten leads in the wide junction limit and in the narrow junction limit, see top and bottom Fig. 1.39b for
respective sample images. These results come from [122]. For a more in-depth discussion, one can refer to
[109] and [123]. However, the diffusive limit is not fulfilled in our bismuth junctions, where we have ξ ∼ le.
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(a)

Figure protected by copyright
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(b)

Figure protected by copyright
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(c)

Figure protected by copyright

See original publication
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(d)

Figure 1.39 – Critical current vs magnetic flux for diffusive junctions of finite areas. (a) Computations for a Usadel 2d
model for various transverse lengthsW , produced in [121]. Critical current normalized by the zero-field value vs ma-
gnetic flux for a wire lengthL = 8ξd, with ξd =

√
ℏD/∆0, perfect transparent interfaces, kBT = 0.01∆0, and

different values ofW . The inset shows forW = 0.5ξd the comparison between the exact result and the approxi-
mation used for the narrow-junction limit.(b) Micrographs of a wide L/W = 0.7 (top) and a narrow L/W = 4.5
(bottom) W-Au-W junctions. See [122]. (c) Wide sample normalized critical current vs normalized flux at T = 60mK
(blue dots). Red line : numerical simulation of the 2d Usadel equation for a junction with aspect ratio L/W = 0.7
andWwires inductanceL = 11.5 pH . Inset : raw data for Ic(B), with Ic,max = 38.8µA. See [122]. (d) Main frame :
long sample normalized critical current vs normalized flux at T = 60mK . Light blue line : numerical simulation of
the 2D Usadel equations, where the flux has been rescaled by a factor of 2.5. Inset : theoretical predictions for the
aspect ratio of the junction and perfect interfaces : the analytical result of the Usadel equation in the 1D limitL≫ W
(red line), the numerical simulation of the 2D Usadel equation (blue line), the semiclassical model for a 1D diffusive
normal wire (dotted line), and a Gaussian curve (dashed line). See [122].
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1.9.3 . Transverse supercurrent density profiles of boundary state
In this subsection, we study the patterns of the critical current of a junction with three different super-

current density profiles as a function of magnetic field. We write ρ(y) the supercurrent density as a function
of transverse position y. The magnetic field B induces orbital dephasing exp−i2πBLy/Φ0 proportional to B
and L× y, with L the junction length. The relation between B and y is the same as the relation between
frequency f and time t in Fourier analysis.

Following the analysis [2], let us consider an asymmetric (y ≥ 0 only) decreasing exponential profile with
a density of states of the form ρ(y) ∝ e−2πy/λ, with λ the transverse characteristic length. The resulting
interference pattern reads :

Ic(B) =
I0√

1 + (BLλ/Φ0)2
=

I0√
1 + (B/B1)2

with B1 = Φ0/(λL) (1.70)

giving a Ic(B) ∝ |B|−1 at high fields. It decreases similarly to the height of the lobes of a Fraunhofer
pattern, but slower than a gaussian function.

Considering a symmetric decreasing exponential profile with a density of states of the form ρ(y) ∝
e−2π|y|/λ, the resulting interference pattern reads :

Ic(B) =
I0

1 + (BLλ/Φ0)2
=

I0
1 + (B/B1)2

with B1 = Φ0/(λL) (1.71)

giving a lorentzian function with Ic(B) ∝ |B|−2 at high fields. It decreases similarly to the theoretical
pattern generated by ballistic junctions with long aspect ratio L/W ≫ 1 at low field [118], but still slower
than a gaussian function.

Considering a gaussian profile with a density of states of the form ρ(y) ∝ e−π(y/λ)
2
, the resulting

interference pattern reads :

Ic(B) = I0e
−π(BLλ/Φ0)2 = I0e

−π(B/B1)2 with B1 = Φ0/λL (1.72)

giving a gaussian function that decreases faster than the two critical current patterns studied above.
All these patterns can be generated either by individual states with this type of supercurrent density

profile, or by a dense array of independent 1d ballistic states whose critical currents depend on their positions
according to the same profile. The latter is plausible in the case of interfaces whose quality depends on the
penetration depth. If the critical current associated to these patterns implies a high number of channels, it
suggests that they are separated in space, by a distance d ≳ λF . This spreading can occur over different
spatial dimension, affecting the interference pattern depending on the direction and the sources of the
dephasings. If the λ found is larger than the typical λF , one might as well consider the dense array of
independent 1d ballistic states’ hypothesis.

1.10 . Modelisation of the switching dynamics

In this section, we present basic notions to model the switching dynamics of a superconducting circuit.
First, we introduce the standard RCSJ model to understand the switching out of one superconducting state
with a current biased experiment. Then, we study the occupation dynamics at a fixed superconducting
phase difference when multiple superconducting states are involved, introducing the rate equations. Lastly,
based on the previous two subsections, we discuss the switching out of multiple states with a current biased
experiment. In relation with our experiment analyzed in chapter 4, we introduce a dynamical phase-biased
model based on a current biased asymmetric DC SQUID. Thanks to this last model, elaborated with the
theoretical physicists Yang Peng, Yuval Oreg and Felix von Oppen after several online meetings, we managed
to extract both pair relaxation times τp and quasi-particle poisoning times τ1,2 from the comparison between
the experimental and theoretical switching distributions as a function of magnetic field.
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1.10.1 . Switching from one state with a current bias : RCSJ model
To understand the switching from a (proximity induced) superconducting state to a resistive state in

a current biased experiment, let us introduce the standard Resistively and Capacitively Shunted Josephson
junction (RCSJ) model. In this model, the Josephson junction is in parallel with a resistor R and a capacitor
C, see inset of Fig.1.40. The total current reads :

Ib = IJ + IR + IC = Ic.CPR(φ) +
V

R
+ C

∂V

∂t
(1.73)

with Ib the current bias, V the voltage across the junction, φ the superconducting phase difference between
the two superconducting contacts of the junction, and Ic.CPR(φ) the current-phase relation of the junction.

Using the energy-phase relation V = h
2e

φ̇
2π , we have [109] :

Ib = Ic.CPR(φ) +
ℏ

2eR
φ̇+

ℏC
2e
φ̈⇐⇒ C

(
ℏ
2e

)2

φ̈+
1

R

(
ℏ
2e

)2

φ̇+
∂U

∂φ
= 0 (1.74)

with
U(φ) = −EJ( ˜CPR(φ) +

Ib
Ic
φ) EJ =

ℏ
2e
Ic ˜CPR(φ) =

∫ φ

0
CPR(φ′)dφ′ (1.75)

Eq.(1.74) has the form of a motion equation for a particle of position φ, with a mass ∝ C, a friction term
∝ 1/R, in a potential U(φ) with an average slope ∝ Ib. The mechanical analogy is illustrated in Fig.1.40,
with a sinusoidal CPR. Inductive elements, not included in this model, have been found to influence the
switching dynamics, filtering the supercurrent fluctuations [124]. Depending on C, R, U and how Ib varies
with time, the "position" φ varies with time. φ is related to the voltage by V = ℏ

2e φ̇, such that variations
of φ result in variations of V . With a finite Ib(t) pulse one can achieve phase slips, where φ escapes
from its local potential well and is retraped in another one, producing a finite

∫
V (t)dt. With a periodic

Ib(t) = Ib sin(ωt) of period T , one can move φ across multiple wells in one period, resulting in quantized
average voltage response 1

T

∫ t+T
t V (t′)dt′ = nℏω

2e (n ∈ Z), called Shapiro steps (see part 1.5.4).

𝜑

𝜑

Figure 1.40 – "Washboard" potential of the RCSJ model with a Josephson junction with sinusoidal CPR IJ(φ) =
Ic sinφ. The dynamics of the superconducting phase differenceφ follows Eq.(1.74), which is analogous to the equa-
tion of motion of a particle of position φ in a potential U(φ) = −EJ( ˜CPR(φ) + Ib

Ic
φ), with ˜CPR(φ) the

integrated CPR of the junction and Ib the current bias. Hence, the shape of the potential depends on the CPR of the
junction and on the current bias, while the phase inertia and friction depends on its environment. Inset : electrical
circuit corresponding to the RCSJ model. From [109].

For Ib ≫ Ic, there is no potential barrier and φ falls continuously producing an average voltage ⟨V ⟩ ≠ 0,

and the junction is resistive. For a small capacitance, Ib > Ic =⇒ ⟨V ⟩ = R
√
I2b − I2c . For Ib ≃ Ic, φ can
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overcome the potential barrier by three ways : by inertia, by thermal fluctuations (see Fig.1.42a), or by
macroscopic quantum tunneling (see Fig.1.42b). The thermal fluctuations can be included as a Langevin
force [125]. If φ manages to escape its local minimum, it results in a finite average voltage ⟨V ⟩ ≠ 0 and
the junction switches to a resistive state.

Hence, the bias current Ib at which the junction switches, that we name the switching current, depends
on the CPR of the junction (via U(φ)), on its environment (via R, C, and also L), and on the shape of
Ib(t) as seen in Eq.(1.74). A standard switching current measurement method relies on sending short current
impulses of a set amplitude I0 and recording if a voltage has developed, yielding a probability of switching
P (I0) [126, 127, 66]. In our experiments, we used a periodic current ramp such that Ib(t) = a.t , recording
at which Ib the junction becomes resistive, see part 2.8.2 for more details. For a sinusoidal CPR, it leads to
an asymmetric switching current distribution close to Ib = Ic [128].

1.10.2 . Switching from multiple states with a phase bias : rate equation
In the previous subsection, we used the RCSJ model to study the probability of switching out of one

(proximity induced) superconducting state, as a function of current bias Ib. In this subsection, we extend the
problematic to multiple possible superconducting states (or configurations). Let us consider a conventional
short Josephson junction with a fixed superconducting phase difference φ. The junction can be in four
different states (see part 1.3.3) : a low energy spinless state with an even number of fermions (noted |−⟩),
two degenerate zero energy states with opposite spins and odd numbers of fermions (noted |↑⟩ and |↓⟩),
and a high energy spinless state with an even number of fermions (noted |+⟩).

The junction can exchange energy and fermionic quasiparticles with its environment, yielding transitions
between its four accessible states. These transitions are modeled by rates Γin, Γout and Γ+−, as illustrated in
Fig.1.41 [126, 66, 129]. Γin and Γout involve the exchange of one quasiparticle with the environment (often
referred to as "poisoning"), while Γ+− involves only energy (allowing for microwave-induced transitions) or
pairs of quasiparticles.

Figure 1.41 – Model for the dynamics of the population of the Andreev configurations of a conventional Josephson
junction at fixed superconducting phase differenceφ, in the excitation representation (left), and in the configurations
space (right). Quasiparticles can jump in and out of the Andreev levels at rates Γin and Γout. If both levels of the
Andreev doublet are occupied, the system can decay directly to the ground state (rate Γ+−, much faster than all
other rates). From [66].

Typically, the junction contacts act as a reservoir of quasiparticles with a bath temperature Tb and a
characteristic time τqp which, combined with the Fermi golden rule, give rates [130] :

Γin,out ∝ fFD(±δE/(kBTb))/τqp (1.76)
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with fFD(x) = 1/(1 + ex) the Fermi-Dirac distribution and δE the difference in the junction energy before
and after the transition. Notice that Γin,out depends on φ through δE(φ) (at least). Depending on the
environment, the characteristic time τqp can range from tens of µs to hundreds of ms [126, 131, 129, 77]. On
the other hand, the characteristic time τp associated to Γ+− is always much smaller than τqp in conventional
junctions, of the order of ∼ 1µs, as the junction can easily relax to its ground state by releasing a pair
of quasiparticles to the Cooper pair condensate in the contacts (see works cited above and the associated
relaxation time T1 of the Andreev Qubit [132]).

Given the transitions between states i and j, with their respective rates Γi⇌j , the probability pi of the
junction to be in the state i follows the rate equation :

dpi
dt

=
∑
j ̸=i

Γi←jpj −
∑
j ̸=i

Γj←ipi (1.77)

For the transition illustrated in Fig.1.41, it yields the set of coupled equation :

dp↑
dt

=
dp↓
dt

= Γinp− + Γoutp+ − (Γin + Γout)p↑

dp+
dt

= Γinp↑ + Γinp↓ − (Γ+− + 2Γout)p+

dp−
dt

= Γoutp↑ + Γoutp↓ + Γ+−p+ − 2Γinp−

(1.78)

where we ignored the transition Γ−+ ≪ Γin,Γout,Γ+−.
Again, notice that this set of equations depends on φ via the δE(φ) in the rates Γ. At fixed φ, the

probabilities pi for a junction at equilibrium are found by solving all Eq.(1.77) with dpi/dt = 0. For a φ
varying with time, one needs to solve the equation by integration, including the dynamics of φ and the initial
values of pi. For the initial values pi(t = 0), one can take the equilibrium values at fixed initial φ(t = 0).

1.10.3 . Switching from multiple states with a current bias
In this subsection, we connect the theoretical model to our experimental problematic. We aim to un-

derstand the switching dynamics of our topological bismuth Josephson junctions, with a current biased
experiment. Such a junction is predicted to host several helical Andreev bound states protected by parity-
conservation, see part 1.4. In addition, the junction studied in chapter 4 is made from a bismuth nanoring,
forming two bismuth junctions in parallel, which realizes a (intrinsic) DC SQUID configuration. We combine
the ideas introduced in the two previous subsections to understand the switching to a resistive state of a
Josephson junction with multiple possible superconducting states, with a current biased experiment.

On the one hand, the switching dynamics of a DC SQUID with conventional junctions has been analyzed
in [124]. In this situation, the 1d motion equation Eq.(1.74) and its associated tilted washboard potential
become 2d, with phases ϕ1,2 for the two junctions. For an inductive DC SQUID with sinusoidal junctions,
depending on the parameters of the SQUID, it has been shown that there is a privileged escape direction
that rescales both the plasma frequency ωp and the barrier potential ∆U . In general, the dispersion of the
switching current depends on the flux inside the SQUID Φ/Φ0, affected by the inductance(s).

On the other hand, in [133], the authors used a RCSJ model (with C = 0) to predict the current-voltage
relation of a 1d helical junction in various limits (DC voltage response to a DC current bias). The junction
has two superconducting states of opposite energy and different parity, yielding different potential Ui(φ).
The junction can switch from one state to the other by exchanging one quasiparticle with its environment,
changing its parity. This process enables a new escape route and modifies the I-V curve. This process is
illustrated in Figs.1.42c and 1.42d for short and long topological junctions, respectively, with x = Ib/Ic. A
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new dimensionless parameter appears, γ = ΓqpτJ , with Γqp the quasiparticle exchange transition rate and
τJ = ℏ

2e
1

RIc
the characteristic time of the junction. τJ corresponds to the time it takes for φ to increase

by 2π when the junction is biased by a current Ib = Ic. γ = 1 corresponds to on average one quasiparticle
exchange every 2π when Ib ≃ Ic. This new escape route reduces the switching current in the limits of high
temperature kBTb ≫ ∆ or γ > 0. If one consider two 1d helical junctions in parallel, spatially separated, a
magnetic flux can dephase the two junctions and leads to a new field-dependent switching current [133, 130].

𝑈(𝜑, 𝑠)

𝜑0 𝜋 𝜑0 𝜋

(a) (b) (c) (d)

Figure 1.42 – Illustration of the different processes for the superconducting phase differenceφ of a Josephson junction
to escape its local potential wellU(φ, Ib/Ic), see Eq.(1.74). (a) and (b) : Escape by thermal andmacroscopic quantum
tunneling, respectively, for a conventional junctionwith a2π-periodic sinusoidal CPR. From [66]. (c) and (d) : Escape by
transition to another superconducting state, for a short and a long 1d topological junction, respectively. x = Ib/Ic.
γ = ΓqpτJ , with Γqp the quasiparticle exchange transition rate and τJ = ℏ

2e
1

RIc
the characteristic time of the

junction. The black vertical arrows symbolize a change of state. From [133].

In the next subsection, we discuss the case of an asymmetric DC SQUID with 1d topological junction(s).

1.10.4 . Switching from multiple states of an asymmetric DC SQUID
The junction studied in chapter 4 is made from a bismuth nanoring, forming two bismuth junctions

in parallel, which realizes a (intrinsic) DC SQUID configuration with a surface ≃ 1.2µm2 normal to the
vertical direction. We measure periodic ≃ 200nA variations of the switching current as a function of vertical
magnetic field, on top of a ≃ 2.5µA background. The small variations have a sharp sawtooth shape, a
period of 17G corresponding to Φ0 inside the nanoring area, and are still visible at fields as high as 7T .
This behavior is typical of an asymmetric DC SQUID with the weakest junction being long and ballistic,
with narrow supercurrent-carrying states, as expected for topologically protected helical hinge states (see
parts 1.4 and 1.6.1). Moreover, the analysis of the switching statistics revealed the presence of additional
superconducting states/configurations.

Hence, to model the experiment, we introduce a dynamical phase-biased model based on a current
biased asymmetric DC SQUID. Thanks to this last model, elaborated with the theoretical physicists Yang
Peng, Yuval Oreg and Felix von Oppen after several online meetings, we managed to extract both pair
relaxation times τp and quasi-particle poisoning times τ1,2 from the comparison between the experimental
and the theoretical switching distribution as a function of magnetic field.

In the following, the model used by the group of theoreticians in [125], to discuss the differences between
the switching statistics of a conventional (see also [127]) and a topological short Josephson junction as a
function of superconducting phase difference, is adapted for a current ramp biased asymmetric DC SQUID.

The situation is illustrated in Fig.1.43a. To leading order, the current ramp I(t) controls the phase
difference γ(t) across the strong junction branch. Thus, γ increases from zero to the phase γmax at which
the Josephson current is maximal as I increases from zero to values close to the critical current of the
strong junction. In principle, γmax is given by the current-phase relation of the strong junction but may have
an additional inductive contribution. Depending on the inductive contribution, γmax can take any value.
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Unless otherwise specified, we choose γmax = π/2 which fits the experimental data the best. However we
also give an example of the good agreement obtained with γmax = π in Fig. 4.11. Due to the flux threading
the SQUID Φ (measured in units of the ℏ/(2e)), the phase difference across the weak junction is given by

ϕ(t) = Φ + γ(t). (1.79)

The additional current flowing through the weak junction with current-phase relation in(ϕ) modulates the
critical current

Ic ≃ Ic,strong + in(Φ + γmax), (1.80)

at which the SQUID switches to a resistive state. Thus, measuring the switching current of the SQUID
provides a direct measurement of the current-phase relation of the weak junction, see part 1.5.3. Since the
results do not depend sensitively on the precise current-phase relation of the strong junction, we make the
simplifying assumption that γ(t) increases linearly in time, γ(t) = ωt, from zero to γmax as the current I(t)
ramps up from zero to the critical current.

(a)
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Figure 1.43 – (a) Asymmetric DC SQUID consisting of two arms. The right arm has a critical current I0 much larger
than the critical current in,c of the left arm. Together with the magnetic fluxΦext inside the SQUID surface, the right
arm junction imposes its superconducting phase difference γ to the left arm junction (with ϕ = 2π

Φ0
Φext + γ).

in(ϕ) depends on the state n of the junction. (b) Process of the asymmetric SQUID dynamics model. From left to
right : computation of states occupation probabilities by integration of rate equations between ϕ = Φ and ϕsw =
Φ + γmax, computed occupation probabilities has a function of ϕsw , resulting total switching probability of the
SQUID at a given ϕsw = ϕ∗sw. See text for more details.

We can therefore substitute d/dt by ωd/dϕ in the rate equations Eq.(1.77). The probabilities pn can
be obtained by numerically integrating from ϕ = Φ to ϕ = ϕsw = Φ + γmax, see Fig.1.43b left and center
for an illustration.

From the probabilities of occupying the different states, we compute the probability to switch to a resistive
state for those occupation probabilities, thereby generating the switching current statistical distribution.
To this end, we take into account that, for a given state, switching is a stochastic event characterized
by a current probability distribution for repeated current ramps. To simulate the corresponding switching
histograms, we introduce a state-dependent switching probability Pn

sw(I, ϕsw), which is the probability of
finding the SQUID in the resistive state at bias current I and switching superconducting phase difference
ϕsw, for a given occupied state n. We approximate Pn

sw(I, ϕsw) by a smoothed step function of width δI
centered around the SQUID’s critical current Inc (ϕsw) ≃ Ic,strong + in(ϕsw).
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Pn
sw(I, ϕsw) =

1

2

[
tanh

(
I − Inc
δI

)
+ 1

]
, (1.81)

where have neglected the well-known asymmetry of the switching current probability distribution [128].
The total switching probability is then expressed as :

P (I, ϕsw) =
∑
n

pn(ϕsw)P
n
sw(I, ϕsw) (1.82)

The whole process is illustrated in Fig.1.43b. The specific transitions and rate equations used to model the
dynamics of the bismuth nanoring junction are detailed in part 4.2.1, and the resulting computed probabilities
are detailed in parts 4.2.2 and 4.2.4.
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2 - Samples’ preparation and measurement methods

2.1 . Growth of the nanowires

There are many different methods to synthesize bismuth nanowires. They fall into two categories [134] :
- template-based growth (AAO templates, Taylor-Ulitovsky, quartz template, Bi(NO3)3·5H20 chemical syn-
thesis, etc.)
- template-free growth (PVD, OFF-ON)

To facilitate the measurement of the topological helical hinge states of single-crystal bismuth (see parts
1.2 and 1.3.6), the ideal characteristics that we are looking for are the following :
- single-crystal bismuth with low defects and impurities
- clean oxide layer-bismuth interface, the thinner the better
- diameter ≲ 50 nm to reduce bulk and surface conduction contributions
- length > 6 µm, the longer the better
- crystal axis and facets that lead to distinct hinge channels

The group first experimented with nanowires produced by the template-based growth using electro-
deposition from a Bi(NO3)3·5H20 solution through a polycarbonate template with pores of diameter ≲
100nm [40, 1, 2], based on the work [135]. This method produces thin nanowire (≲ 90nm diameter) of
controllable diameter, but the nanowires are hard to isolate properly, show surface irregularities, and are
often coated with polycarbonate residues.

The group then moved on to template-free methods with Physical Vapor Deposition (PVD). In PVD,
high-purity bismuth is deposited by sputtering at a small rate in a high vacuum chamber, at a temperature
lower than the melting temperature of bismuth (T < 271.3◦C). To control the characteristics of the grown
nanowires, an active buffer layer can be used. During my PhD, we used sample fabricated using PVD with
iron buffer layer [136] and with vanadium buffer layer [137]. The growth mechanism is still debated but is
suspected to be a tip growth for Fe buffer layer and a root growth for V buffer layer.

The PVD on Fe deposition is done in a plasma sputtering high vacuum chamber (P ≲ 10−6mbar).
A 30 nm of Fe is first deposited at 0.3nm.s−1 on a Si substrate. After that, 150 nm of high purity Bi
(99.9999% purity) are sputtered at 0.9 nm.s−1. The substrate is kept between 160 and 230◦C during the
whole process. This method produces nice single-crystal wires of width 100−400 nm and length 4−60 µm

of various crystalline orientation. Transmission electron microscopy revealed a low number of defects and
a small oxide layer of ≲ 3nm after long exposure to air, see Figs.2.1a and 2.1c. The density of nanowires
is in the good range to provide both large enough statistics and isolated nanowires when transferred on a
host substrate, with variations depending on the transfer method. However, the average nanowire diameter
is rather large compared to the desired ≲ 50nm.

The main results of my PhD, that are presented in the main text of this thesis, have used PVD on
vanadium rather than Fe used previously. The Fe layer is replaced by 30 nm of vanadium, and the substrate
is kept at T < 70◦C during the deposition. This method produces thinner wires, the smallest one we spotted
being 40 nm wide.

Both PVD on Fe and on V were done by A. Kasumov (also in our group), Yu.A. Kasumov, and V.T.
Volkov in the Institute of Microelectronics Technology and High Purity Materials RAS, Chernogolovka,
Russia.

Thanks to a recent purchase of a Korvus Technology sputtering machine specific for bismuth deposition,
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Figure 2.1 – (a) Transmission Electron Microscope image of the edge of a bismuth nanowire grown with PVD. We
distinguish well organized atomic layers with inter-layer distance of 0.33nm. A thin oxide layer of≲ 3nm covers
the surface. (b) Electron diffraction pattern of a 1µm long area of a bismuth nanowire grown with PVD. We see well
defined intense Bragg peaks, attesting the crystalline structure over a 1µm area. (c) Other TEM image of the edge of
a bismuth nanowire grown with PVD. For this nanowire, there is no oxide layer at all even though the nanowire has
been exposed to air. From [136].

we were able to produce similar nanowires in Laboratoire de Physique des Solides d’Orsay (LPS), Orsay,
France, and to test variations and other growth methods. For the nanowires grown in LPS, we used Bi
with a purity of 99.999% instead of the 99.9999% used in Chernogolovka. Purity is an important factor,
especially for conductors with low carrier densities like Bi, where impurities can change the carrier densities
a lot. Moreover, the distribution of impurities is not homogeneous and the concentration is much higher
around defects, including surfaces. However, the measurements we performed on nanowires grown in LPS
show signatures of 1d ballistic hinge transport in the superconducting state (see sample Bisquid1 in chapter 3)
and elastic mean free path le ∼ 100nm in the resistive state (see appendix 6.9.2), similar to the sample with
99.9999% purity grown in Chernogolovka. Thus, the loss of a factor 10 in purity does not seem detrimental
to our experiments.

Tested in LPS, On-Film-Formation Of Nanowires method (OFF-ON) [138, 139], relying on mechanical
stress-induced preferential diffusion process, produced thin (100− 300 nm) and very long nanowires (10−
100 µm) with a lower but reasonable density. With a thinner initial Bi layer and a shorter diffusion phase
time, ∼ 200nm wide and ≲ 40nm thick crystalline islands with [111] axis perpendicular to the substrate
were produced.

2.2 . Deposition of the nanowires

Once the nanowires are grown, we need to transfer them onto a clean insulating substrate. The host
insulating substrate has regularly spaced indexed prepatterned 9µm Au/Ti crosses to help for nanowire
localization. Since none of the previous experiments showed any gate effects, we use undoped SiO2 host
substrates. The transfers are done using three different techniques.

First, rubbing a piece of clean tissue onto the growth substrate then the host substrate proved efficient.
It leaves clusters of nanowires on the host substrate where the tissue has been rubbed. The density among
the clusters depends on how many consecutive times it is rubbed on the host substrate. The transferred
nanowires are shorter than one could expect looking at the growth substrate. For nanowires grown with the
PVD-Fe method, we find a maximum length of ≃ 10µm. For nanowires grown with the PVD-V method, it
fails to transfer nanowires with smaller diameter.

Another method consists in shooting 10 ns UV LASER pulses on the growth substrate. The pulses
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generate mechanical shockwaves that shake off the nanowires on the edge of the growth substrate (already
used in [140]). The host substrate is placed underneath the edge to collect the falling nanowires, see Fig.2.3a.
With this technique, the Chernogolovka team managed to transfer the thinner nanowires grown with PVD-V,
with diameters down to ≃ 40nm. In addition to the usual straight nanowires, it leaves some very curved
nanowires, still highly crystalline, some of them even forming closed loops. This curvature may be a sign of
stress release. The main results of my PhD, that are presented in the main text of this thesis, have used
this transfer technique.

(a)

LASER pulses

nanowires shaken off

host SiO2 substrate

growth substrate

host SiO2 substrate

growth substrate

broken nanowires

(tweezers to apply pressure)

(b)

Figure 2.2 – (a) Principle of the LASER pulses shockwave transfer method. (b) Principle of the surface contact transfer
method.

Lastly, I tested putting the growth substrate and the host substrate surfaces in contact, by resting one
on top of the other, sometime applying pressure on it, see Fig.2.3b. Doing this with a PVD-Fe growth
substrate, I managed to transfer nanowires with a reasonable density. This method, without pressure, seems
more appropriate to prevent long nanowires from breaking into small parts before arriving on the host
substrate, as I managed to transfer 60µm long and 110nm wide nanowires, which was not observed with
the tissu rubbing method. This method was used to transfer the nanowires analyzed in appendix 6.9. Applying
pressure yields a higher density but shorter nanowires, with dimensions ∼ 6× 0.1× 0.1µm3.

2.3 . Selection of the nanowires

To characterize and select interesting bismuth nanowires among all the nanowires transferred to the host
substrate, we used two complementary electron imaging techniques. After a preliminary characterization
with an optical microscope, we used the Zeiss Supra55VP Scanning Electron Microscope (SEM) of the
laboratory to spot isolated thin (diameter < 200nm) and long (L > 6µm) bismuth nanowires with no
surface irregularities, and ideally well defined visible facets, as displayed in Fig.2.3a. It also allows to spot
interesting structures such as the nanoring analyzed in chapters 3 and 4, close parallel nanowires that can
be used to form a DC SQUID such as sample Bisquid1 analyzed in chapter 3, or overlapping nanowires as
measured during my visit in Advanced Device Laboratory, RIKEN, Japan (not shown in this thesis).
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Figure 2.3 – (a) Scanning electron microscope image of a ≃ 100nm large bismuth nanowire at a ≃ 70◦ angle.
Inset : cell of the bismuth crystal reconstructed from the EBSD pattern (hexagonal representation). (b) Principle of the
EBSD technique. From [2]. (c) Typical diffraction pattern obtained from electron waves interference backscattered by
a bismuth nanowire single-crystal.

The other technique is Electron BackScatter Diffraction (EBSD). Similar to X-ray diffraction, it exploits
the wave nature of the electrons to reveal the crystalline structure of the bismuth nanowires. The electrons
backscattered by the bismuth crystal form (interference) diffraction patterns that can be analyzed to deduce
the orientation of the bismuth crystal unit cell. The principle is sketched in Fig.2.3b, together with a
typical diffraction pattern in Fig.2.3c. The orientation of the cell displayed corresponds to the [001] crystal
orientation in the hexagonal basis, or [111] in the rhombohedral basis. With the diffraction analysis, we
are able to confirm the single-crystalline nature of our bismuth nanowires, to determine the approximate
orientation of its facets, and to follow its structure along the nanowire length. The size of the electron-beam
spot is ≲ 100nm. The EBSD analysis were done with François Brisset in Institut de Chimie Moléculaire et
des Matériaux d’Orsay, Orsay, France.

2.4 . Superconducting contacts

During this PhD work, the bismuth nanowires were contacted by two different types of contacts. For the
main results of this thesis, we used superconducting contacts to induce superconducting correlations inside
our bismuth nanowires by proximity effect.

Motivated by its efficiency in previous works done in the group [141, 3, 2], the superconducting contacts
were realized by Ga+ Focused-Ion-Beam (FIB) assisted deposition of a tungsten compound. In this technique,
gallium is ionized at a narrow tip, accelerated to 30kV , and focused toward the deposition area using
magnetic lenses similar to those used in scanning electron microscopes, producing a current of 10pA. Close
to the deposition area, a heated nozzle releases a W(CO)6 gas that is decomposed by the incident Ga+

and a W-C-Ga compound is deposited on the surface of the sample, in the region scanned by the FIB, see
Fig.2.4a. The designed superconducting contacts have a width of 220nm and an approximate thickness of
200nm, see Fig.2.4b. Such contacts are made of approximately 40% of W and C and 20% of Ga, resulting in
a disordered tungsten compound that is a type II superconductor of exceptional robustness [142, 143, 141],
with a critical temperature Tc ≃ 5K, an upper critical field Bc2 > 10T , and a superconducting coherence
length ξ ≲ 5nm. The FIB deposition was done with Cédric Baumier and Frank Fortuna in Centre de Sciences
Nucléaires et de Sciences de la Matière, Orsay, France.
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Figure 2.4 – (a) Principle of the Ga+ FIB assisted deposition of the superconducting W compound contacts. Adapted
from [144]. (b) Scanning electron microscope image (with a≃ 70◦ tilt angle) of a bismuth nanowire with four super-
conducting W compound contacts deposited with the FIB technique.

Because the contacts can’t be realized in-situ, an important fabrication step is the removal of the few
nanometers thick oxide layer at the surface of the Bi nanowires. With the FIB, the few second delay between
the beginning of the exposure to ions and the increase in W(CO)6 pressure is enough to etch the nanowires
before the deposition, ensuring good contact.

During the FIB deposition process, the decomposed gas can diffuse out of the designed FIB writing
region. Citing [2] : "This can lead to a layer of aggregated materials such as W, C, Ga, O, which is termed
contamination. If this contamination is conducting, there is a chance that it can become superconducting
at low temperatures either intrinsically or by proximity effect. A previous characterization study done by Alik
Kasumov shows that this can be the case if the distance between the FIB deposited W contacts is smaller
than 200 nm. Away from this distance the contamination contains mainly C, and is of similar nature than
the contamination that can be induced by the electron beam of a SEM. It is therefore highly resistive and
does not short the connected device [...]."

To complete this contamination study, we performed a careful analysis of several samples using a combi-
nation of Energy Dispersive Spectroscopy and etching. We can assert that tungsten contamination extends
less than 300nm around the deposition regions, see appendix 6.3. This analysis was done with the expertise
of Frank Fortuna, now in Institut des Sciences Moléculaires d’Orsay, Orsay, France.

2.5 . Metallic contacts

After deposition of the superconducting disordered W contacts with FIB Ga+, one needs a way to
connect them to the macroscopic measurement system. To do so, we realize on-chip metallic contacts with
low resistance that connects to the superconducting contacts with a precision of ≃ 100nm on one end, and
conduce the current to a large ≃ 200×200µm2 area. The large area is then connected to the sample holder
pins using ultrasound precision bonding machine with AlSi wires.

To realize the metallic contacts, we use standard electron-beam lithography and vacuum evaporation,
realized in three steps :
- (lithography) a mask is designed and produced using a Scanning Electron Microscope-Focused Electron
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Gun (SEMFEG)
- (deposition) layers of metallic materials are deposited on the entire surface of the chip
- (lift-off) the mask is removed
The various steps are illustrated in Fig.2.5.

Ar+
Au

SiO2

MAA-MMA

PMMA

Au
Ar+

e-

resist spin-coating e-beam patterning development

(Ion Beam Etching) deposition by evaporation lift-off

(a) (b) (c)

(d) (e) (f)

Figure 2.5 – Principle of the metallic contacts deposition process.

The mask itself is realized in three steps. First, the chip hosting the sample is spin-coated with an
electron-sensitive co-polymer resist of methacrylic acid-methyl methacrylate (MAA-MMA EL10) spun at
2000rpm during 1min, covering the whole chip. After a baking phase of 3min at 180◦C, a second layer of
poly(meth)acrylates (PMMA A3) resist is spun at 4000rpm during 1min, with a second baking phase of
5min at 180◦C. This bilayer resist helps to avoid side-walls accumulation effect and eases the lift-off process.
This recipe was working fine for our contacts design, but is not ideal to realize homogeneous and sharply
defined structures like superconducting planar resonators. Second, the resist is exposed to a 320µC.cm−2

dose of electrons on regions defined by the experimentator and drawn by a SEMFEG Zeiss Supra55VP
located in the laboratory. The resist damaged by the electron beam is then removed by a "development"
phase, where the chip is submerged in a methyl isobutyl ketone (MIBK) solution at room temperature during
40s (and quickly dried afterward).

Once the resist has been selectively removed, layers of pure metals are deposited over the whole chip.
The deposition process is done under high vacuum (P ≲ 2 × 10−7mbar) in an electron-beam evaporator
with multiple targets allowing evaporation of different high purity materials. It was realized in the laboratory.
A first layer of 5nm of titanium is deposited at a rate of 0.2nm.s−1 for adhesion. Then, a thick layer of
150nm of gold is deposited at 0.4nm.s−1 in 3 step with 15 minutes breaks to avoid overheating the chip.
Lastly, the chip is submerged in an acetone solution at 50◦C during several tens of minutes, dissolving the
resist mask, until all the metallic layers over undesired regions are lifted off the chip, leaving metal on desired
regions only.

To realize metallic (non-superconducting) contact directly on bismuth nanowires, in order to remove the
thin oxide layer on their surface, we performed an additional Ion Beam Etching step of 30s with an argon
plasma accelerated to 195V , etching ≃ 60nm of the bismuth. This etching step was realized right before the
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deposition step, in a vacuum chamber connected to the deposition chamber, such that the bismuth nanowire
was not re-exposed to air. It yielded good contacts with ≃ 25Ω resistance, see the measurements performed
in the normal state in appendix 6.9. However, we know that bismuth can become a superconductor when
alloying with metals, as reported in [2] for Pd. The measurements in the normal state show no resistance
drop at low temperature. In a series of tests, we managed to contact ≃ 200nm island with the same method
(albeit a shorter etching time) and measured no resistance drop at low temperature either, confirming the
metallic character of the Bi-Ti/Au contact.

2.6 . A word on superconducting bismuth

Under certain conditions, bismuth materials can be superconducting at temperatures relevant to our
experiments. This possibility has been discussed by my predecessor in [2]. First, bismuth can become a su-
perconductor when forming a non-magnetic metallic alloy with other materials. Second, amorphous bismuth
is superconducting for T ≲ 6K and crystalline bismuth is predicted to be superconducting at Tc ≃ 1.3mK.
The size of the bismuth sample also plays a role. For decreasing size, it first shows an enhancement of
superconductivity due to increasing electron-phonon coupling, then shows a decrease of superconductivity
as quantum size effects arise. In particular, amorphous Bi films of thickness ≲ 0.5nm aren’t superconducting
[145].

In our experiments, bismuth isn’t an intrinsic superconductor. On the fabrication side, the samples are
single-crystals (with large crystalline patchs), and the surface irregularities are limited to a few atomic layers
at the interface with the thin oxide layer. On the measurement side, at T ≃ 70mK, we see no evidence of
weak residual intrinsic superconductivity that would be killed by a magnetic field of a few Gauss. Moreover,
we measured several bismuth samples that were not superconducting at T ≃ 70mK, see the bismuth
nanoring with W compound contacts during a second cooldown (see appendix 6.10), the long nanowires
with metallic contacts (see appendix 6.9), and the bismuth ≃ 200nm island with metallic contacts (not
shown here).

2.7 . Dilution refrigerators

To reach the superconducting state of the tungsten compound contacts, and the proximity induced
regime of the bismuth Josephson junctions, as well as to reduce thermal noise in general, our measurements
are performed at temperatures below 1K. This is achieved thanks to a liquid helium cryostat (to get to
Teb(He) ≃ 4.2 K) in which a He3/He4 dilution refrigeration is inserted. The external part of the dilution
system as well as the top of the cryostat are visible in Fig.2.6a. The sample is thermally connected to the
mixing chamber of the dilution system. This way, the samples can be cooled down to ≃ 70 mK.
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Figure 2.6 – (a) Picture of the top of the refrigeration system. The He3/He4 dilution system on the top, with coaxial
connectors and pipes for helium mixture re-injection, is plunged into the liquid helium cryostat. (b) Principle of the
He3/He4 dilution. The heat is absorbed in the mixing chamber region, to which the sample is thermally connected.
From [146, 147]. (c) Picture of the actual dilution system. The transparent shell is to temporarily protect it, and is
replaced by a proper airtight shell robust to low temperature before insertion into the cryostat. (d) Picture of the
insert of the cryostat, showing the vertical and horizontal coils used to produce the magnetic field.

The cooling power of the He3/He4 dilution system comes from the peculiar negative enthalpy of mixing
of the two isotopes under the right conditions, where mixing them absorbs heat [146, 147]. The concentration
imbalance is maintained by pumping He3 on one side and re-injecting it on the other side, away from the
sample. The sketch of the dilution principle is shown in Fig.2.6b, and a picture of the real apparatus is shown
in Fig.2.6c. The dilution system hosts conducting lines connecting electrically the low-temperature sample
holder at the bottom to the room temperature connectors at the top. The lines are thermalized along the
way and feature Π-filters at room temperature.

During my PhD, we used two different liquid helium cryostats. In the first one, a superconducting coil
oriented along the vertical axis, submerged into liquid helium, allows us to apply a homogeneous (over the
≃ 1cm2 chip) external vertical magnetic field up to 12T . In the second cryostat, together with a 8T vertical
coil, a second coil oriented along a fixed horizontal direction allows us to apply a 0.7T horizontal magnetic
field. A picture of the interior of this second cryostat is shown in Fig.2.6d. By rotating the whole dilution
system, we can change the relative angle between the horizontal magnetic field and the sample. However,
this system is not ideal as it can’t be automated and only allows for certain angles, as several elements on
the top of the cryostat block certain orientations. Moreover, the horizontal coil exhibit a ≃ 100G hysteresis
that needs to be taken into account. By combining vertical and horizontal fields, one can achieve oblique
magnetic fields.

In addition, thanks to a new Bluefors dry refrigerator with vectorial 911 magnetic field, we were able to
perform a more precise and extensive analysis of the response of sample Bisquid1 as a function of magnetic
field orientation, see chapter 3.

94



2.8 . Measurement setups

In this section, we present the different experimental setups used to measure our samples. For our
analyses, we used lock-in techniques to measure differential resistances and second harmonic responses with
either current bias or voltage bias. For switching current measurements, we coupled it to a current ramp
waveform generator synchronized with a counter.

2.8.1 . Differential resistances
The voltage response of the sample to a current bias excitation I = IDC + δI can be written as :

V (I) ≃ V (IDC) +
∂V

∂I
δI +

1

2

∂2V

∂I2
δI2 + ... (2.1)

with ∂V
∂I = R the (differential) resistance.

Using standard Stanford Research Systems SR830 lock-in instruments, we can measure individually ∂V
∂I

and ∂2V
∂I2

. It is done by introducing a small varying bias current δI = IAC sinωt, multiplying the measured
voltage by the n-th harmonic sin(nωt) (and cos(nωt)), and integrating the resulting signal over a time
τi ≫ 2π/(nω). To first approximation, this process yields R = ∂V

∂I for the first harmonic n = 1, and 1
2
∂2V
∂I2

for the second harmonic n = 2, and filters out the signal outside a 1/τi frequency window around nω/(2π).
The working principle is the same for conductance with a voltage bias. We used typical lock-in frequencies
between 60Hz and a few kHz, avoiding noisy frequencies, and τi ∼ 300ms. Before multiplication by
the lock-in, the voltage response of the sample is amplified by a low-noise (2nV/

√
Hz) amplifier at room

temperature.
To current bias our sample, we use a voltage source and place a high value resistor Rbias ≫ Rsamp in

series with our sample, such that I = V/(Rbias + Rsamp) ≃ V/Rbias. Typically, we have Rsamp < 10kΩ

and Rbias > 1MΩ. Using this method, we can add up a DC current IDC/Rbias,DC from a DC voltage
source and the AC current IAC/Rbias,AC from the lock-in. The full circuit is sketched in Fig.2.7a.

To measure the long nanowires with high resistance studied in appendix 6.9, we used a voltage bias
with a voltage divider and adder circuit, sketched in Fig.2.7b. Following the notations of Fig.2.7b, if r ≪
RA, RB, Rsamp, we have :

V =
1

1 + r/RA + r/RB + r/Rsamp

(
r

RA
UA +

r

RB
UB

)
≃ r

RA
UA +

r

RB
UB (2.2)

Typically, we used r = 25Ω, RA = 25kΩ and RB = 250kΩ.

2.8.2 . Switching current
To measure a switching current, that is the maximum supercurrent that can be carried by the Josephson

junction before becoming dissipative, we use the setup sketched in Fig.2.8a. A waveform generator produces
a skewed triangular voltage bias with a given amplitude and frequency f . The skewness of the triangular
signal is quantified by the asymmetry coefficient Aasym, where Aasym = 0.5 is a symmetric triangular
signal and Aasym = 1 is a sawtooth signal with value increasing linearly with time. It is converted into a
current bias thanks to a high (1MΩ) resistance in series with the sample, and yields a peak bias current
of Imax. When the current reaches the sample’s switching current, close to the critical current, the sample
becomes dissipative, which causes a jump in resistance and a voltage drop. A counter is synchronized with
the waveform generator with a TTL signal. Triggering on the TTL signal and a fixed jump in the voltage
drop at the sample, the counter records the delays between the start of the current ramp tA (zero current)
and the instant at which the voltage drop exceeds the preset value tB. The current ramp is repeated at
frequency f , yielding a distribution of switching current values. This switching delay is then converted into

95



Troom

4 K

0.1 K

1 MΩ

𝐵

lock-in

source

signal in
signal(s) out

to computer

1 MΩ

DC voltage source

low-noise 
amplifier

sample

current bias
circuit

𝑛 = 1, 2

refrigerator

(a)

voltage bias circuit

𝑟

𝑅𝐵

𝑅𝐴

𝑈𝐴

𝑈𝐵
𝑉

to sample

(b)

Figure 2.7 – (a) Sketch of the lock-in based measurement setup of the voltage response of the sample to a current
bias. Measuring the first harmonic response n = 1 yields the (differential) resistance. (b) Replacing the current bias
circuit by this circuit yields a voltage bias V ≃ r

RA
UA + r

RB
UB .

a switching current using the formula Isw = Imaxf(tB− tA)/Aasym, see the sketch of Fig.2.8b. The typical
values we used are Imax ∼ 5µA (Imax must be greater than the Isw of the sample), f ∼ 17Hz, and
Aasym = 0.8.

For the measurements reported in chapter 3, the event tB was triggered by a voltage drop in the
differential resistance measured by a lock-in. The use of a lock-in together with the current ramp generator
requires a tuning of the frequencies and the integration time τi, and optionally an additional filter. The
resulting voltage signal can deform slightly the switching current distribution at a given magnetic field. To
avoid any deformation of the full switching distribution measurements presented in chapter 4, we changed
the circuit to trigger directly on the V-I curve, without the lock-in.

At a fixed magnetic field, we record N switching events (typically N = 200). The process is then
repeated over different fixed magnetic field values. Notice that for every period of the waveform generator,
the junction is guaranteed to switch to its dissipative state, thus resetting its initial (proximity induced)
superconducting state, although the W compound contacts remain superconducting. This process helps to
prevent memory effects that could affect the dynamics of the junction, removing the necessity of a pre-pulse
step [66]. The current ramp changes the switching probability distribution, as discussed in section 1.10.
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Figure 2.8 – (a) Sketch of the experimental setup (see text). (b) Sketch of the link between time and current. For the
asymmetric DC SQUIDmodel used in chapter 4, also shows the link with the phase sweep betweenΦ andΦ+γmax

(see text).
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3 - Magnetic field-induced supercurrent interferences as
evidence of helical hinge channels in Bi nanowires Jo-
sephson junctions

During this PhD work, we performed measurements of switching supercurrent on 20 segments of varying
characteristics from 11 different Bi wires fabricated by three different methods. The goal of this section is to
present the main common features we identified in eight of them by varying the magnetic field magnitude
and orientation.

Based on theoretical and experimental works (see part 1.2), we expect the presence of bulk (3d) and
surface (2d) diffusive modes and, the focus of our investigation, ballistic 1d helical modes on specific
hinges of the nanowires. The former comes from the semi-metallic behavior of bismuth (bulk) single-crystal,
and the latter from its second-order topological nature. Their differences in effective dimensionality, size
and location in the nanowires (that depends on wire geometry and crystalline orientation) translate into
distinctive supercurrent versus magnetic field patterns. To limit the contribution of bulk and surface modes,
we chose to work with nanometric-size wires, with transverse dimensions close to their Fermi wavelengths
(λsurfaceF ≃ 5 nm, λbulkF ≃ 50 nm), thus lowering the number of modes.

The magnetic field dependence of the supercurrent in SNS junctions is determined by two different
physical effects : an orbital effect due to the geometry-dependent (orbital) dephasing of Cooper pairs by the
vector potential (see part 1.6), and a Zeeman effect due to the interaction of the magnetic field with the
electron spin (see parts 1.3.8, 1.3.9, 1.4.3). The Zeeman effect is also geometry dependent in crystalline
systems with strong spin-orbit interactions. It is not easy to disentangle the two effects since both lead to
field-dependent interference patterns of the critical current in spatially extended Josephson junctions.

If the various modes carrying the supercurrent, of various nature, do not interfere or interact, one
expect a simple sum of the specific interference sub-patterns. Varying the magnetic field direction would
rescale differently the sub-patterns if the modes they originate from are not embedded in the same surface.
However, as we will see on some measurements we performed, this is only an approximation. Given that
superconductivity of the contacts provides macroscopic phase coherence, we can expect that channels of
different nature indeed interfere and lead to more complex interference (sub-)patterns if the channels’
geographic distribution is not simple. One way to circumvent this complexity is to invoke a large inductance
somewhere in the orbital loops, most probably in the contact region, that decouple the phases of the
channels. Another way is to focus on a smaller field ranges, if parasitic interferences or interactions have
very different magnetic field scales.

In our analysis, we used this independent magnetic field sub-patterns analysis over different magnetic
scales to decompose, identify and locate the supercurrent carrying channels, sometimes invoking inductances
when appropriate.

That is why the magnetic field dependence of the critical current in Bi nanowires based Josephson
junctions varies from sample to sample and presents a complex behavior, characterized by several salient
features :
- Variations of critical current with different field scales.
- Variations of critical current which depend on the orientation of the magnetic field.
- Asymmetric field dependence. The maximum critical current can be reached at non-zero magnetic field,
sometimes as high as a few thousands Gauss, and the measured pattern can be asymmetric with respect to
its "central" value.
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We understand this complex behavior as related to several factors :
1 - Geometry of the wires, number and orientation of the facets.
2 - Supercurrent carried by both hinge and surface states.
3 - Strong spin orbit interactions giving rise to spin momentum locking both on surface states and hinge
states.
4 - Existence of several Josephson junctions in the contact regions, giving rise to an inductance in series
with the wire.
5 - Decreasing of the superconducting gap of tungsten at very high magnetic field.

1 and 2 - Orbital effect and geometry of supercurrent-carrying paths
The geometry of the sections carrying the supercurrent can be determined via the field scale with which
the critical current decays, as a function of field direction, see parts 1.9.1, 1.9.2 and 1.9.3. Thus, in some
samples we find a supercurrent that persists to fields of up to a several thousand Gauss in all field directions,
which indicates that the supercurrent is carried by a small number of strongly confined channels (within one
nanometer). In other samples, a faster decay of the critical current in one direction indicates that the current
is carried by a more extended region (a few tens of nanometers). In contrast with the rather smooth decay,
sharp sawtooth oscillations with a fixed period are indicative of an isolated (hinge) state which interferes
with either other hinge states or a more delocalized surface states.

3 - Zeeman effect
In addition to these orbital effects, the magnetic field couples to the spin of the Cooper pairs and contributes
to the interference pattern by introducing a phase shift, especially in materials with SOC, see part 1.8.2.

4 - Inductances in series
As shown in appendix 6.2, inductances in series give rise to a phase shift through the Josephson junction
which is also proportional to the current. It is in general difficult to discriminate this effect from the one
generated by spin-orbit interactions, except in very specific geometries.

5 - Tungsten contacts
The decrease of the superconducting gap of tungsten with magnetic field can explain in some samples the
rather smooth decay of the Josephson current at very large magnetic field (the low temperature critical field
of the W wires exceeds 10 T ).

In this subsection, we focus on the average bias current at which the bismuth part of the Josephson
junction switches to a resistive state, hence the name of "average switching current". This measurement is
performed at low temperature (in the 10 − 1000 mK range) using the method shown in parts 2.7, 2.8.1
and 2.8.2. Unless specified otherwise, the measurement temperature is in approximately T ≃ 100mK. The
analysis led to the identification of three magnetic field scales. We split our analysis into four subsections.
First, we present five of the samples we analyzed, leaving the remaining three samples to simply figure in
summarizing tables or to analysis in a later chapter. Second, we analyze the large field scale decrease due
to orbital dephasing of narrow (1d ballistic) channels. Then, we discuss the short field scale oscillations
due to orbital periodic dephasing between long ballistic channels with sawtooth CPR. Lastly, we present
intermediate field scale variations and propose several hypotheses based on Zeeman or orbital dephasing,
together with Josephson diode effects found in the five samples. All these observations are consistent with
the hinge modes expected in Higher-Order Topological Insulators.

3.1 . The samples and their zero-field characteristics

In this subsection, we present the used fabrication, the geometry, and the zero-field superconducting be-
havior of the different samples. From comparison between the expected theoretical values (see part 1.3.7) and
the measured values of the product RNIc, we obtain information on the nature of the Josephson junctions.
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The results of this analysis are summarized in Tab.3.1. To support the analysis, we included Bi nanowire
junction Biwire

3 fabricated by the Advanced Device Laboratory, RIKEN, Wako, Japan. It is a single-crystal
with a [111] axis perpendicular to the nanowire axis and with a lot of strips on the surface, looking like a
bundle of wires. We also included the asymmetric DC SQUID Bisquid2 made of two segments of the same Bi
nanowire, that we analyze further in appendix 6.12. Its resistance at low temperature is overestimated, pro-
bably because of a weak part of the superconducting contacts which is resistive at T ≃ 100mK and current
bias ≃ 8µA. From their zero-field superconducting behavior, we conclude that all junctions exhibit a ballistic
long regime behavior, except for sample Biwire

11 that may be closer to a ballistic regime of intermediate length.

Figure 3.1 – General characteristics of a selection of samples that have beenmeasured. Because every sample haveW
compound contacts that have been deposited the sameway, they all share the same theoretical values for the ballistic
short junctions regime, with eRNIc = π∆ ≃ 3.8meV , superconducting coherence length ξbS = ℏvF/∆ ≃
329 nm, and single channel critical current is,bc = π∆/Φ0 ≃ 294 nA. πEb

T = πℏvF/L is the theoretical
value of eRNIc for a long ballistic junction, with vF the Fermi velocity andL the length of the junction. 10.8Ed

T =
10.8ℏvF le/(mL2) is the theoretical value of eRNIc for a long diffusive junction, with le the elastic mean free
path and m the number of dimensions for the diffusive states. ibc = πEb

T/Φ0 and idc = 10.8Ed
T/Φ0 are the

critical currents of a single ballistic and diffusive channel, respectively. Based on previous works [2], we took vF =
6× 105m.s−1, le equals to the width of the junction, andm = 2 for diffusive surface transport.

a) Nanowire segment Biwire
11

The Biwire
11 sample is a 1.4 µm long segment of a 100 nm wide bismuth nanowire grown by PVD

on vanadium, deposited with LASER pulses, and contacted with W compound superconducting contacts,
see part ?? for more details. Fig.3.2a shows an optical image of the sample, where Biwire

11 corresponds to
the segment between contacts labeled F and E. Its [111] crystalline orientation was measured by EBSD
and found to form a ∼ 30◦ angle with the wire axis, see Fig. 3.2a inset. Its surfaces clearly present facets,
and the wire is probably cleaved along its axis, leaving only half a section of the naturally grown wire, see
Fig. 3.2c. This segment changed after a power outage while another segment of the same wire was being
measured, changing its critical current from Ic > 3.4 µA to Ic ≃ 0.4 µA. Here, we show the results after

101



the power outage. We did not measure the new V-I (or dV/dI-I curve), but measurements at 4 K suggest
RN ≃ 3000 Ω, giving a eRNIc ≃ 1.2 meV . The comparison between the theoretical and experimental
values of eRNIc points toward a ballistic junction of intermediate length. Analysis of the switching current
as a function of magnetic field shows intermediate behavior.

(a) (b) (c)

Figure 3.2 – (a) Optical image of the bismuth-nanowire-based Josephson junction, with segments Biwire
11 (FE) and

Biwire
12 (EH). It is a bismuth single-crystal nanowire proximitized by Ga+ FIB-deposited W compound and connected

to the measurement circuit by Au/Ti leads. Inset : EBSD determination of the unit cell of the bismuth crystal. The Bi
nanowire originates from a longer wire, see the green rectangle in (b). (b) SEM image of the original long nanowire
used for the Biwire

11 and Biwire
12 junctions. The sample was tilted by a 60◦ angle around the left↔right axis for this

image. The lower part of the wire was lost during a brief exposure to the FIB. The green rectangle corresponds to the
part contacted for the measurements. The red rectangle corresponds to the part shown in the zoomed SEM image
(c). (c) SEM image of the lower part of the original nanowire.

b) Nanowire segment Biwire
12

Sample Biwire
12 is right next to the sample Biwire

11 , from the same nanowire and with the same geometry
w = 100 nm wide and L = 1.4 µm, see contacts E and H in Fig.3.2a and see Fig.3.2c. Its superconducting
behavior is quite different however, as shown in the differential resistance versus DC current bias Fig. 3.3a
and in the average switching current versus out-of-plane magnetic field analyzed after. From Fig. 3.3a, we
have eRNIc ≃ 3000× 6× 10−6 ≃ 18 meV which is superior to its maximum theoretical value in the short
junction limit 3.8 meV . This can happen if part of the W wires in series with the junction also switches at
6 µA, resulting in an overestimation of RN ≃ 3000Ω.

To circumvent this issue, we can look at the differential resistance versus temperature of Biwire
12 as it

cooled down, as shown in Fig. 3.3b. We find the ∼ 3000Ω jump at T ≃ 5K, corresponding to the critical
temperature of the disordered W compound, and another ∼ 100Ω jump at T ≃ 3.5K that most likely corres-
pond to the Bi part of the Biwire

12 junction, dissipating less heat this time thanks to a lower current excitation
(no DC current bias), see part 1.3.7 for more details. Taking RN = 100Ω, we get eRNIc ≃ 0.6 meV . We
find that the measured eRNIc is close to the long ballistic theoretical one, as confirmed in the switching
current versus magnetic field data.
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(a) (b)

Figure 3.3 – (a) Differential resistance of junction Biwire
12 as a function of current bias. (b) Differential resistance of

Biwire
12 as a function of temperature as the sample was cooled down, with a low AC current excitation and no DC

current bias.

c) Nanoring Biring

Let us now consider the sample Biring. It was part of the same batch of samples as Biwire
11 and Biwire

12 ,
with the same fabrication method. A false color scanning electron microscope image is visible in Fig. 3.4a.
The particularity of this sample is its ring shape. It is a curved nanowire of width w ≃ 300 nm, with no clear
facets on its surface. An EBSD analysis at multiple points along the nanowire showed a clear crystalline
structure and a [111] crystal axis forming a 60 − 90◦ angle with the nanowire axis, pointing almost in the
radial direction at any point of the ring. We deposited two superconducting disordered W contacts with the
same FIB technique, closing the loop, with two branches of lengths L1 ≃ 1.6 µm and L2 ≃ 2.5 µm.

The V-I characteristic of Biring sample yields eRNIc ≃ 70× 2× 10−6 ≃ 0.14 meV , see Fig.3.4b. The
value of Ic changed to Ic = 2.8 µA after a power outage, but the overall Ic(B) behavior of the junction
remained the same in spite of the higher switching current. The two branches of different length have dif-
ferent theoretical eRNIc values. From the eRNIc alone, we can’t conclude if the junction is long ballistic
or long diffusive, but later analysis as a function of magnetic field proves that it is in the long ballistic regime.
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Figure 3.4 – (a) SEM image with false colors of the Biring sample. It is a Bi ring (brown) with superconducting W
compound contacts (blue) and Au leads (yellow). The crystalline [111] axis, represented as blue arrows, was determined
by EBSD at several points, and found to rotate along with the wire, maintaining its radial orientation. Inset : EBSD
determination of the unit cell of the bismuth crystal at the red cross location. The blue arrows indicate the direction
of the [111] crystal axis. (b) Differential resistance of Biring as a function of DC current bias, before power outage.

d) Nanowire segment Biwire
21

Sample Biwire
21 is a pure Bi nanowire grown with PVD on Fe, deposited with the rubbing technique, see

part 2. A scanning electron microscope image is displayed in Fig. 3.5a. Sample Biwire
21 corresponds to the

segment between contacts labeled X and M. It shows clear facets as well as a series of strips on one of its
side surfaces. Its width is w ≃ 0.46 µm and its length is L ≃ 1.80 µm. The inset shows a crystalline axis
forming a ∼ 30◦ angle with the wire axis, measured by EBSD.

(a) (b)

Figure 3.5 – (a) Scanning electron microscope image of the bismuth-nanowire-based Josephson junction, with seg-
ments Biwire

21 (XM) and Biwire
22 (aM). It is a bismuth single-crystal nanowire proximitized by Ga+ FIB deposited W com-

pound and connected to the measurement circuit by Au/Ti leads. Inset : EBSD determined orientation of the crystal
unit cell. (b) Differential resistance of Biwire

21 atT ≃ 60mK , with increasing and decreasing bias currentmagnitude,
and for the first and the second experiment.

The differential resistance as a function of the bias current can be seen in Fig. 3.5b. The blue and red
curves are the results of the first experiment done with this sample, whereas the light blue and the gold
curves have been recorded after a second cooldown months later. We see that the sample evolved between
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the two experiments, with a nearly unchanged resistance (first plateau) but a reduction of the switching
current for the second cooldown. Because we have much more data from the first experiment, we will focus
on it.

As often, there are multiple jumps in the differential resistance curve, indicating successive switches of
some parts of the junction, the weakest part switching at the lowest current bias. The first jump occurs
at Ibias = Ic = 14.6 µA and the following plateau show a differential resistance RN = 130 Ω, giving
eRNIc = 1.90 meV .

Approximate theoretical characteristic values of the junctions in the different regimes are displayed in
Tab.3.1. We recall that for a short ballistic junction, we expect eRNIc = π∆ ≃ 3.8 meV , which is twice the
measured value. Because L is not so large compared to ξbS and ξdS , the junction may be in an intermediate
regime which would have higher single channel critical current ic. The magnetic field response shows a long
ballistic junction behavior.

e) Asymmetric DC SQUID Bisquid1

Sample Bisquid1 is an asymmetric SQUID based on two parallel bismuth nanowires of width w ≃ 200 nm

and lengths ∼ 1.9 µm and 2.6 µm, displayed in Fig. 3.6a. The Bi wires were grown at the LPS with PVD
on Fe, and transferred on the host substrate with the surface contact technique, see part 2.

This sample was designed to reproduce and collect more data on the switching statistics measured on
ring sample Biring. Unfortunately, we did not manage to reproduce it, but it provided more insights on
the variations with magnetic field orientation. The two wires differential resistance measurement between
the "T9" and "T7" contacts showed multiple jumps. The following measurements of switching current
as a function of magnetic field magnitude and orientation were done on the lowest current resistance
jump at a temperature of ∼ 10 mK. This jump of ∼ 32 Ω occurred at a current ∼ 6.8 µA, giving a
eRNIc ≃ 0.22 meV , see Fig. 3.6b. From the eRNIc analysis alone, we can’t conclude on the junction
regime, but later measurements as a function of magnetic field prove it is a long ballistic junction (see
Fig.3.17).

To get rid of the leads’ resistance in series with the sample, we changed the wiring to a four wires
measurement : the supercurrent was sent from the "T9" contact to the "T7" contact, and the voltage jump
measured between the "19" and "T8" contacts. With this four wires measurements, we managed to get rid
of the series resistances, see Fig. 3.6c.
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Figure 3.6 – (a) Top : optical image of the Bisquid1 sample. Bottom : SEM image of the Bisquid1 sample before the
Au/Ti leads deposition. It is composed of two Bi segments in parallel, closed and proximitized with Ga+ FIB assisted
deposed W compound, and connected to the measurement apparatus with Au/Ti leads. (b) Two wires differential
resistance of Bisquid1 as a function of DC bias current. (c) Four wires differential resistance of Bisquid1 as a function of
DC bias current.

3.2 . High magnetic field behavior : narrow channels

In this subsection, we show that all samples feature a switching current decreasing unusually slowly
with increasing vertical field magnitude, on a scale of a few Tesla. It corresponds to a large portion of the
supercurrent being carried by narrow channels of transverse size ∼ 1nm, consistent with ballistic transport in
our ∼ 100nm nanowires. For the nanowire segments, we find that it decreases as B−1 or B−2 along certain
field directions, but with additional complexity for other directions of field. Such experiments involving
ballistic junctions with high aspect ratio L/W > 10 have been little explored by the community, especially
for high number of channels. Apart from nanotubes, one can cite the work of our own group on Bi [40, 3, 2],
[148] for a graphene-based junction with L/W ≃ 1 and [149] for InSb nanowires with L/W ≃ 6, both
exhibiting an anomalous Fraunhofer pattern.

We first present the similar large field scale behavior of the two nanowire segments Biwire
11 and Biwire

12 .
Then we study the more intricate response of segments of another nanowire with various field directions :
Biwire

21 and Biwire
22 . Next, we briefly present the field orientation dependence of the Bi DC SQUID Bisquid1 .

Lastly, we show the large field scale response of the nanoring Biring as a function of out-of-plane field. The
characteristic field scales we found are summarized in Tab.3.21.

a) Nanowire segments Biwire
11 and Biwire

12

Figs. 3.7a shows the average switching current of the junction Biwire
11 as a function of vertical magnetic

field, perpendicular to the wire and the substrate. The curves plotted on the positive and negative magnetic
field side have been both obtained with a positive and increasing magnetic field, but one with a positive
bias current and the other with a negative bias current, where we used time-reversal symmetry of the whole
system. It displays both regular small scale modulations as well as higher scale dampings.

Fig. 3.7b shows the average switching current of sample Biwire
12 as a function of vertical magnetic field.

On the ∼ 4 T scale, there is a ∼ 6 µA background supercurrent slowly decreasing to ∼ 2 µA at 8 T .
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Figure 3.7 – (a) Green curve : average switching current of the junction Biwire
11 as a function of vertical magnetic field

perpendicular to thewire. Black curve : fit with an asymmetric exponential current density profilemodel function y =
409/

√
1 + (x/0.62)2 (nA). Red curve : fit with a symmetric exponential current density profile model function

y = 375/(1 + (x/1.1)2) + 34 (nA). (b) Green curve : average switching current of junction Biwire
12 as a function

of vertical magnetic field perpendicular to the wire axis. Black curve : fit with y = 6.02/
√
1 + (x/2.63)2 (µA).

Red curve : fit with y = 5.18/(1 + (x/3.9)2) + 0.93 (µA).
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Following the analysis in part 1.9.3, we consider a ballistic mode with an exponential current density
profile in the transverse direction, with a characteristic length-scale λ. This type of profile yields different
switching current patterns : one decreasing as |B|−1 at large fields for an asymmetric profile, the other as
|B|−2 (lorentzian function) for a symmetric profile.

The black and red solid lines displayed in Fig.3.7a result from a fit with either models with λ = 3.4 nm

and λ = 2.0 nm, respectively, where we took an effective junction length of L = 1.0 µm. Apart from their
difference in λ, both fits match well the data. However, the fit with the asymmetric exponential model yields
a zero field switching current of I0 = 409nA without current offset, while it yields I0 = 375nA and a 34nA

current offset for the other model. Matching the low field behavior with the second model without current
offset yields the blue solid line in Fig.3.7a, which deviates from the data at large fields. Lastly, fitting the
data with a gaussian function with or without current offset yields large deviations from the data and is not
satisfying.

Following the results on Biwire
11 , Fig. 3.7b displays two different numerical fits. The black curve fit is for

the asymmetric exponential model with I0 = 6.02 (±0.01) µA and B1 = 2.63 (±0.01) T ⇐⇒ λ = 0.56 nm,
taking L = 1.4 µm (see Eq. 1.70), and without current offset. This fit is quite convincing, much more than a
fit with a gaussian function. Alternatively, the red solid line results from a fit with the symmetric exponential
model with B1 = 3.9 T ⇐⇒ λ = 0.38 nm and a 0.93µA current offset.

Consistent with the analysis of previous works [2], these two segments from the same Bi nanowire show
a large field scale switching current pattern consistent with narrow ballistic channels with an asymmetric
(transverse) current density profile, carrying most of the supercurrent in the junction. This behavior is ex-
pected for transport dominated by 1d helical channels, as can be found in HOTI.

b) Nanowire segments Biwire
21 and Biwire

22

Fig. 3.8a shows the average switching current of sample Biwire
21 over 100 switching events for a vertical

magnetic field varying from −4 T to 4 T . The green curve was obtained during the first experiment, and
the gold curve during a second cooldown months later (with a 1.4 rescaling on the y axis). Proceeding
to the same analysis as the previous subsection, we compare the data with the patterns resulting from an
asymmetric (black solid line) and a symmetric (red dashed line) exponential current density profile. For this
junction and for this magnetic field orientation, these models deviate significantly from the data. The pink
solid curve is the result of a fit with a gaussian function with a characteristic field B1 = 4.4T .

This gaussian decrease can have multiple explanations. First, it can result from narrow channels with
a gaussian transverse current density profile of characteristic length λ = 0.26nm, as introduced in part
1.9.3. Second, the gaussian function is characteristic of sums of random processes with identical random
variable distributions. Hence, for these channels and this field orientation, there might be phase fluctuation
processes that dominate over orbital dephasing according to ⟨eiϕ⟩ = ⟨e−ϕ2/2⟩ (where the average is over
the trajectories) with characteristic field B1 = 4.4T . Lastly, this specific sample have been measured in
different experimental circumstances, and we cannot exclude that it comes from a failure of the trigger of
the switching current measurement setup. At low switching current (≲ 6µA here, for |B| ≳ 2.5T ), the
instrument may not trigger on the voltage jump from the switching anymore, but on the dissipative part of
the dV/dI − IDC curve. However, usually the transition from a valid trigger to a wrong one is much more
visible in the data.

For sample Biwire
21 , the measurement apparatus allowed us to probe the response of the average switching

current as a function of the magnetic field direction, see Fig.3.8b. The magnetic field is described with three
parameters in spherical coordinates : a magnitude Bρ, a polar angle φ corresponding to an angle in the
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horizontal plane between the horizontal coil axis and a reference line on the dilution head (with anti-
trigonometric convention looking from the top-side of the chip), and an azimuthal angle θ corresponding to
an angle away from the vertical axis. This is sketched in Fig.3.9.

First, let us focus on the θ = 90◦, φ = 315◦ down curve in red in Fig. 3.8b. This will be our reference
throughout the whole large scale pattern variations analysis, and correspond to a field orientation in the plane
of the chip and nearly perpendicular to the wire. The width of the pattern is one order of magnitude smaller
than the vertical field case (see the rescaled green curve) and is clearly different from a gaussian shape (see
pink dashed line). The black dashed curve is the result of a fit with a single exponentially localized channel
model function y = 12.84/

√
1 + ((x+ 517)/556)2 (µA, fields in G) with an additional constant current of

3.65 µA. The fit is very convincing and corresponds to a ballistic channel of dimensions L = 1.8 µm and
λ ≃ 21 nm. Alternatively, we can fit this curve with a lorentzian function y = 11.1/(1+ ((x+521)/973)2)

with a current offset of 4.7µA.
This characteristic length λ ≃ 21 nm measured in horizontal field is much larger than λ ≃ 1 nm mea-

sured in vertical field. This surprising result points toward anisotropic confinement for the ballistic channels
carrying the supercurrent. This may result from an exceptional penetration of topological hinge modes in
the bulk for specific crystalline orientations, as discussed in part 1.2.2 for the Bi(111) surface states. We also
suspect that the geometry of the nanowire may play a role, with side surfaces showing clear strips that could
host several ballistic hinge channels. Moreover, notice that the pattern is shifted by a field of ∼ −517 G
which can’t be explained by the small hysteretic behavior of the horizontal coil. We will come back to this
last point later on. We further notice that these variations as a function of horizontal field direction involve
a supercurrent of 12.8 µA, while a 3.65 µA remains unaffected by the magnetic field on a scale of ∼ 7000 G.

Let us now analyze the variations of the large scale pattern as a function of in-plane magnetic field angle.
The light blue curve in Fig. 3.8b has been obtained at an angle φ = 45◦, away from the plane perpendicular
to the wire axis. Its magnetic field magnitude can be rescaled by a factor of −1/7 such that it matches
perfectly with the φ = 315◦ up curve.

In appendix 6.6.1, we analyze the large magnetic field scale switching current decrease as a function of
polar and azimuthal angles. We find that for θ = 90◦ (horizontal field), the rescaling of the field with φ is
consistent with orbital dephasing of channels embedded in a vertical surface on the side of the nanowire, with
a nanowire oriented along φ = 36◦ and a surface vector oriented along φS = 306◦. For a field perpendicular
to the nanowire with φ ≃ 306◦ and θ = 45◦, we find that a simple orbital dephasing by a flux within a
single surface is inconsistent with the measurement with a field along the vertical direction.

These results show that, in the horizontal plane, the large scale pattern is very well modelized by an
asymmetric exponential current density profile on a surface of the wire. There is a qualitative difference
between the ballistic interference pattern for a horizontal magnetic field and the gaussian pattern for a
vertical magnetic field. This may be caused by an anisotropy in the transverse confinement profile of the
modes, or by a transition between a random-dephasing-dominated (vertical field) and an orbital depha-
sing dominated (horizontal field) interference pattern. From the switching current as a function of magnetic
field at large field scale, we found that the characteristic size of the ballistic channels is h×w ≃ 21×0.3nm2.

During this first cooldown of the sample, the contact "a" was not properly connected. For the se-
cond cooldown, we were able to measure both the segments XM (Biwire

21 ) and aM (Biwire
22 ), see Fig.3.5a.

Unfortunately, the switching current of Biwire
21 was changed during this cycle, and we can’t exclude that

Biwire
22 changed too. This weakens the comparison between the Biwire

21 data shown here and the Biwire
22 data

available. Nevertheless, let us quickly discuss what we found for Biwire
22 .

The main characteristics of Biwire
22 for the second cooldown are noted in table 3.1. The average switching
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current of segment Biwire
22 as a function of vertical magnetic field shows a ∼ 1.6 µA maximum close to

B = 0, see red line in Fig.3.10 (rescaled). It decreases with a B−1 or B−2 law just like the others segments
of nanowires, with a characteristic field scale ∼ 1.25T , see the fit with the asymmetric exponential current
density profile in Fig.3.10 (black line). It is consistent with a collection of ballistic channels embedded in a
single surface of effective dimensions 2.2µm × 0.8nm, 2.2µm being the segment length. In addition, one
can see some ∼ 100 nA variations, but with no clear periodicity.

Now considering the average switching current of segment Biwire
22 as a function of horizontal magnetic

field perpendicular to the nanowire (θ = 90◦, φ ≃ 315◦), the background is rescaled by a field factor ∼ 5.6,
decreasing on a scale ∼ 2250 G, corresponding to an effective surface of 2.2µm×4.2nm for the collection of
ballistic channels. On top of that, there is now a clear oscillation pattern of amplitude ∼ 200 nA and a quite
regular period of ∼ 270 G, corresponding to orbital dephasing through an effective surface 2.2µm× 35nm.
The shape of the oscillations is triangular, characteristic of interference between long ballistic channels.

We conclude that both segments Biwire
21 and Biwire

22 show a behavior consistent with supercurrent carried
by a ballistic channels of transverse characteristic size h×w ≃ 10×1nm2. The Biwire

21 segment also show an
average switching current pattern that does not rescale like a simple B⃗.S⃗ as a function of magnetic direction.
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Figure 3.8 – Average switching current of Biwire
21 as a function of magnetic field magnitude in various direction. θ is

the azimuthal angle, with θ = 0◦ the vertical direction. φ is the polar angle between the horizontal coil axis and
a reference line on the dilution head, with φ = 36◦ the nanowire direction. (a) Dependence on vertical magnetic
field up to 4T , for the first and the second experiment. Black solid line : qualitative comparison at low field with
an asymmetric exponential profile model function y = 15.5/

√
1 + (x/1.4)2 (µA). Red dashed line : fit with a

symmetric exponential profile model function y = 16.5/(1 + (x/1.8)2) (µA). Pink solid line : fit with a gaussian
function y = 15.5 exp(−π(x/4.4)2) (µA). (b) Dependence on horizontal magnetic field up to 7000G. For the
two measurements at angles θ = 90◦, φ = 315◦ (red curve) and θ = 90◦, φ = 45◦ (blue curve), there was a
constant vertical fieldBz = 2088G. Black dashed line : fit with y = 12.84/

√
1 + ((x+ 517)/556)2 + 3.65

(µA, fields inG). Brown dashed line : fit with y = 11.1/(1 + ((x + 521)/973)2) + 4.7 (µA, fields inG). Pink
dashed line : fit at low field with a gaussian function y = 16.21 exp(−π((x+ 523)/2e+ 3)2) (µA, fields inG).

111



(a) (b) (c)

Figure 3.9 – Sketch to illustrate the decomposition of a vector in the cartesian, cylindrical, and spherical basis. The
red arrow is the vector to decompose. The orange arrows are the projection of the vector on the vertical axis and the
horizontal plane. The small green arrows are unit vectors of the three basis. The dark gray curved arrow represents
the polar angle−φ between the reference0◦ axis and the projection of the vector on the horizontal plane. The yellow
curved arrow represents the azimuthal angle θ between the vertical axis and the vector. (a) 3d view. (b) Top view of
the x-y plane. (c) Side view of the plane parallel to the vertical axis and to the vector.

Figure 3.10 – Average switching current of the bismuth-nanowire-based Josephson junction Biwire
22 as a func-

tion of vertical (red line) and horizontal (blue line) magnetic field perpendicular to the nanowire. Black line :
fit of the blue line data with an asymmetric exponential current density profile model function y =
1.58/

√
1 + ((x− 381)/0.225)2 (µA) corresponding to λ ≃ 4.2nm.
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c) Asymmetric DC SQUID Bisquid1

We analyzed the average switching current of a proximitized bismuth nanowire Biwire
21 as a function of

magnetic field magnitude and direction, and we found surprising results. We ran a similar series of experiment
on the following DC SQUID sample Bisquid1 , with a new dilution cryostat allowing us to control the magnetic
field in 3d up to 1 T with good precision. The following set of measurements provides more data and
confirmed the presence of a dephasing mechanism more complex than orbital dephasing.

The average switching current as a function of magnetic field magnitude and orientation in the horizontal
plane is plotted in Fig. 3.11a. The conventions for azimuthal angle θ′ and polar angle φ′ are the same as θ
and φ sketched in Fig.3.9, respectively. Each curve magnetic field magnitude has been rescaled such that
they all fall to a unique curve. The rescaling factors are plotted in Fig. 6.23a in the appendix, and clearly
follow a cosine rule as expected for a standard orbital flux scalar product B⃗.S⃗ for a S⃗ at a polar angle
φ′ = 148◦ (perpendicular to the wire axis). The rescaling factor is 0.311 kG−1 for at φ′ = 148◦. The
characteristic field scale of the φ′ ≃ 148◦ curve is ∼ 4000 G, corresponding to a 2.6µm × 2nm effective
surface.

(a) (b)

Figure 3.11 – Average switching current of Bisquid1 as a function of magnetic field magnitude for various horizontal
polar angles φ′ and azimuthal angles θ′. Each curve magnetic field magnitude has been rescaled to fall to a unique
curve. (a) Horizontal field with variable φ′ and fixed θ′ = 90◦. (b) Perpendicular field with variable θ′ and fixed
φ′ = 153◦. The field rescaling factors in (a) and (b) match with B⃗.S⃗ with S⃗ perpendicular toφ′ = 148◦, θ′ = 68◦,
but it fails to account for the amplitude differences in (b).

Fig. 3.11b shows the average switching current as a function of rescaled magnetic field magnitude for
various field azimuthal angle θ′ and fixed polar angle φ′ = 153◦, close to perpendicular to the nanowire
axis. In Fig. 3.11b, we notice that in contrast with the polar angle variations, the switching current pattern
does no fall into a single curve. For example, there is a net difference in switching current for features at
X ≃ −2, −1, or 2.

The height of the X = −1 peak and the field rescaling factors r are plotted as a function of azimuthal
angle θ′ on Fig. 6.23b in the appendix. The field rescaling factors fit with a cosine function which maximum
is at θ′ = 68◦, matching with a surface vector S⃗ oriented along φ′ = 148◦ and θ′ = 68◦. We see a sharp
contrast between the field rescaling factors that match very well with the orbital dephasing by a flux through
a surface oriented along φ′ = 148◦, θ′ = 68◦, and the variations of the current values of some features
(like the peaks at X = −1) that indicate an additional mechanism, with potentially Zeeman-induced effects.
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d) Nanoring Biring

Looking at the high field scale average switching current versus vertical magnetic field curves of
Biring displayed in Fig. 3.12, we see regular ∼ 0.5 µA dips at the ∼ 1 T scale (discussed in the next
subsection 3.4), and a background current slowly decreasing from ∼ 2.8 µA at B = 0T to ∼ 0.5 µA at
B ∼ 4T . To provide a rough estimate, the red solid line in Fig. 3.12 shows a fit with a lorentzian function
with λ ≃ 0.44nm for the branch L = 1.6µm or λ ≃ 0.28nm for the branch L = 2.5µm, and no current
offset. Additionally, the decrease at low field (first lobe in Fig. 3.12) may have a contribution from more
spatially extended. The characteristic field scale is ∼ 0.2T corresponding to a surface ∼ 2µm× 5nm.

Figure 3.12 – Large scale average switching current of the nanoring Biring as a function of vertical magnetic field
perpendicular to the ring plane (green line), and fit with a lorentzian function corresponding toλ ≃ 0.44nm for the
branchL = 1.6µm or λ ≃ 0.28nm for the branchL = 2.5µm.

In this subsection, the variations of the switching currents on large magnetic field scale and
for various field orientation showed that all samples exhibit supercurrents surviving up to very
high fields, of the order of B ∼ 1T . This indicates that there is always a large part of the
supercurrent that is carried by modes with a narrow transverse extension, of the order of λ ∼
1nm, consistent with 1d ballistic hinge mode transport expected in HOTI. We found that the
vertical field dependence of nanowire segments Biwire

11 and Biwire
12 , as well as the horizontal field

dependence of nanowire Biwire
21 , are well modelized by a exponential (transverse) current density

profile producing either a |B|−1 or a |B|−2 behavior at high fields. In nanowire Biwire
21 and Bi

DC SQUID Bisquid1 , the study of the variations of the switching current pattern as a function of
magnetic field direction revealed a standard orbital flux scalar product relation for horizontal fields
but a more complex behavior as a function of azimuthal angle. Segments Biwire

21 and Biwire
22 of a

nanowire showed a large anisotropy between vertical and horizontal fields, with a confinement of
λ ≃ 0.3nm and ≃ 21nm, respectively.

In this subsection, we focused on the field scale of the decrease of the switching current, and did
not discuss its amplitude. We can estimate the critical current of a single long ballistic channel to ibc =

πEb
T /Φ0 = evF /L ≃ 50nA (see Tab.3.1), giving an estimate of ∼ 100 channels carrying a typical maximum

supercurrent of ∼ 5µA. To fit these ∼ 100 channels in the bismuth junction, they must be separated by
a distance corresponding to their transverse confinement of ∼ 1nm. But such a spacing could produce a
visible interference pattern due to significant orbital dephasing, see part 1.9.1. This leads us to believe that
the λh ≃ 21nm and ≃ 4.2nm found in horizontal field dependence in Biwire

21 and Biwire
22 might be caused
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by tens of channels interfering, consistent with the strips visible on the sides of the nanowire (see Fig.3.5a).
Moreover, we note that the orbital dephasing can be blurred out if the distributions of critical currents and
initial phases of the individual channels have a random components (e.g. with random lengths or interface
quality).

3.3 . Low magnetic field behavior : CPR of long ballistic junctions

In this subsection, we study the variations of the switching currents on small magnetic field scale of
our five samples. In the nanowire segments Biwire

12 and Biwire
21 , and to a lesser extent in Biwire

11 , we found
skewed triangular oscillations with a period corresponding approximately to Φ0 through the surface of the
junction. In the bismuth-based DC SQUID Bisquid1 and Biring, we also found skewed triangular oscillations,
but with a period corresponding to Φ0 through the surface defined by the two branches of the SQUID.
These oscillation patterns are specific to interference between long ballistic channels with sawtooth CPR,
confirming the presence of 1d protected channels that are found in HOTI. The oscillations are robust up to
magnetic fields |B| > 1T , as expected for interference between narrow channels.

We first analyze the oscillations of nanowire segments Biwire
11 and Biwire

12 as a function of vertical ma-
gnetic field. Then, we study the variations of the oscillations pattern of nanowire Biwire

21 with magnetic
field direction and temperature. Lastly, we analyze the oscillations of Bi DC SQUID Bisquid1 and Biring with
vertical magnetic field.

a) Nanowire segment Biwire
11

Fig. 3.13b displays the oscillations of the average switching current of the nanowire segment Biwire
11 as

a function of vertical magnetic field, with smooth background removed. We see regular modulations of
amplitude ∼ 150 nA and period ∼ 710 G that look like a symmetric SQUID pattern (| cos(φ)|) with both
junctions in the rather short-junction limit, see part 1.6.2. We also notice a damped sinusoid of amplitude
∼ 100 nA and period ∼ 3300 G, dying off at |B| ≃ 1.1 T , that will be discussed in the next subsection 3.4.
On this plot, we clearly see that the short-period oscillations amplitude never vanishes and monotonously
decreases as |B| increases. Given the length of the junction Biwire

11 , a long-junction behavior is expected.
We recall that a power outage occurred and obviously changed the characteristics of the junction, probably
changing its NS interfaces, thereby changing the relative contributions of the various transport channels and
their effective lengths.

The ∼ 710G oscillation period corresponds to a superconducting quantum of flux Φ0 ≃ 2.068 ×
10−15 Wb in an area of ∼ 2.95 × 10−2 µm2. Considering a rectangular surface of length of 1µm (a little
bit shorter that the 1.4 µm of the junction) perpendicular to the magnetic field direction, it corresponds to
a (minimum) surface width of ∼ 30 nm. These modulations become less symmetric for |B| ≳ 0.2 T and
are drastically reduced at |B| > 1.1 T .

The fact that all the modulations vanish quickly at |B| ≃ 1.1 T , on the same field scale as the back-
ground current, suggests that the extinction of one channel at |B| ≃ 1.1 T ends the interferences. Fig. 3.13c
shows the results of a numerical computation for two ballistic channels in parallel in the short junction limit
and no inductance, with critical currents ic1 = 0.1 and ic2 = 0.3 and damping field scales B1 = 0.4 T and
B2 = 0.618 T , such that ic1,c2(B) = 1/

√
1 + (B/B1,2)2. Comparing with Fig.3.13a, this model reproduces

qualitatively the oscillations and their decreasing amplitude, correlated with the decrease of the background
amplitude. However, it ignores the ∼ 3300G variations and the transition at |B| ≃ 1.1 T seems too smooth
compared to the data, such that there might be an additional phenomenon involved at the 1T field scale.
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We can compare these critical current values to the ones expected in various limits : is,bc = π∆/Φ0 ≃
294 nA in the short ballistic case, ibc = πEb

T /Φ0 = evF /L ≃ 68.7 nA in the long ballistic case, and
idc = 10.8Ed

T /Φ0 ≃ 8.4 nA in the long diffusive case. We see that the 0.1 − 0.3 µA critical currents we
estimate match with the ballistic regimes.
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Figure 3.13 – (a) Average switching current of sample Biwire
11 as a function of vertical magnetic field perpendicular to

the wire, on a 2T range. The∼ 710G period corresponds to ballistic channels separated by∼ 30 nm. (b) Same
as (a) with smooth background current subtracted. (c) Results of a numerical computation for two ballistic channels
in parallel in the short junction limit and no inductance, with critical currents ic1 = 0.1 and ic2 = 0.3 and damping
field scalesB1 = 0.4 T andB2 = 0.618 T (ic1,c2(B) = 1/

√
1 + (B/B1,2)2). This simple model reproduces

the oscillation period and amplitude variations, but ignores the ∼ 3300G sinusoidal contribution that requires a
third channel in series with an inductance.
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b) Nanowire segment Biwire
12

Figs. 3.14a and 3.14b show the average switching current of the nanowire segment Biwire
12 on the small

field scale, with background current removed by subtraction of a 300 points smoothed version of the data.
There is a ∼ 416 G periodic variation of amplitude ∼ 300 nA, with a symmetric triangular pattern (see
Fig. 3.14b for a zoom with background removed). The amplitude of this short-scale oscillations survives up
to ∼ 6 T but vanishes over a few periods every ∼ 1 T , correlated with the ∼ 1 T scale ∼ 1 µA variations of
the background supercurrent, as discussed in the next subsection 3.4. We further notice that the oscillations
envelope does not decrease a lot between consecutive bumps. Looking closer at the ∼ −4.3 T region, we
see an interesting change : the oscillations seem to split and rearrange to give three different periods, see
appendix 6.6.5 for more details. Consistent with the analysis at large field scale, the resilience of the oscilla-
tions up to high field is associated to very narrow states. Consistent with the eRNIc analysis, the observed
symmetric triangular oscillations are expected in the case of two similar long ballistic supercurrent-carrying
channels, with sawtooth current-phase relations. The ∼ 416 G period corresponds to one superconducting
flux quantum in a 4.97 × 10−2 µm2 area, and a minimum distance of 36 nm between the two interfering
supercurrents for L = 1.4 µm.
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Figure 3.14 – (a) Average switching current oscillations of sample Biwire
12 as a function of verticalmagnetic field, where a

300 points smoothed version of the data has been subtracted. The oscillation amplitude vanishes regularly on∼ 1T
and is correlated to the background current amplitude. (b) Zoom on the curve displayed in (a). The∼ 416G period
corresponds to long ballistic channels separated by∼ 36 nm.
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c) Nanowire segment Biwire
21

Figs. 3.15a and 3.15b show the average switching current of the nanowire segment Biwire
21 as a function

of vertical magnetic field on small scales, with smooth background current removed. We see ∼ 400 nA

regular triangular oscillations with a short-period of ∼ 25 G (see Fig. 3.15). The oscillations survive up to
∼ 1 T , on the same field scale as the background variations, consistent with interfering narrow channels.
Again, this type of oscillation pattern corresponds to the case of two symmetric narrow ballistic long channels
enclosing a surface of dimensions 1.8×0.46 µm2. This is consistent with topological hinge channels running
along the junction on opposite sides, as the width of the surface 0.46 µm is basically the width of the
nanowire seen from the vertical direction.

(a)

(b)

Figure 3.15 – Oscillations of the average switching current of sample Biwire
21 as a function of vertical magnetic field.

The large-scale background current variations have been subtracted out. (a) Oscillations over a 2 T field range. (b)
Oscillations over a 500 G field range. The ∼ 25G period corresponds to long ballistic channels separated by ∼
460 nm.

The measurement of the oscillation period as a function of magnetic field orientation is discussed in the
appendix 6.6.1. For an orientation φ = 320◦ ( 14◦ off the plane perpendicular to the wire direction) and
θ = 45◦ the oscillations have a period of 22 G and an amplitude ∼ 400 nA. Together with the oscillation
along the vertical axis, it suggests that the two interfering channels define a surface oriented along θS = 31.2◦

and φS = 320◦. However, once again the analysis of the period over other orientations deviate from this
hypothesis. The most realistic hypothesis to explain this discrepancy is that the supercurrent responsible for
the oscillations involves more than the orbital dephasing between two structures embedded in a single plane.

Fig. 3.16a shows the evolution of the oscillation pattern for temperature between 0.28 K and 0.93 K,
and for a vertical magnetic field varying from −720 G to −695 G. We notice a clear change of the skewness
of the triangular pattern, with a positive skewness for T > 0.69 K and a negative skewness for T < 0.51 K.
This demonstrates a change of the channels carrying the supercurrent on an energy scale of kBT ≃ 50 µeV .
Fig. 3.16b shows the amplitudes of the oscillations and the background supercurrent as a function of T from
two other measurements. Between 65 mK and 1.0 K, the oscillations’ amplitude is reduced by a factor
∼ 0.54, whereas the background supercurrent is reduced by a factor ∼ 0.9. Such a decrease corresponds to
a eRNIc(T = 0) ≃ 0.28 meV for the channels conducting the supercurrent responsible for the oscillations,
and eRNIc(T = 0) ≃ 0.59 meV for the channels carrying the background current.
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(a) (b)

Figure 3.16 – Variation with temperature of Biwire
21 average switching current oscillations amplitude and background

value. The magnetic field is oriented along the vertical axis. (a) Continuous recording over two periods while cooling
down from 0.93K to 0.38K over 90 minutes. It demonstrates a change of the channels carrying the supercurrent
on an energy scale of kBT ≃ 50 µeV . (b) Oscillation amplitude (dots, left axis) and background value (lines, right
axis) as a function of temperature for twomeasurements set, one for one period close to−1700G and the other one
for one period close to−2700G. It yields eRNIc(T = 0) ≃ 0.28meV for the oscillations, and eRNIc(T =
0) ≃ 0.59meV for the background current.

For this, we used the formula eRNIc(T ) = x(1− 1.3 exp−x/(3.2kBT )) with x = eRNIc(T = 0), see part
3.3.1 of [71]. It translates into :
eRNIc(T = 0) = 3.2kBT ln(1.3/(1− Ic(T )/Ic(T = 0))).

Compared with the previous eRNIc(T = 0) ≃ 1.9 meV estimated by differential resistance measure-
ments, the new values are more consistent with a long junction regime. However, the new values are close
to the geometric estimation for ballistic channels for the background current and for diffusive channels for
the oscillations current, which is the opposite of what we expect. However, eRNIc(T = 0) ≃ 0.28 meV

yields a Thouless energy ET ≃ eRNIc/π ≃ 89µeV and a Fermi velocity vF = ETL/ℏ ≃ 2.4× 105m.s−1,
which corresponds to a typical value for vF . This short analysis does not include the effects of imperfect
interfaces.

d) Asymmetric DC SQUID Bisquid1

Figs. 3.17a and 3.17b show the low field behavior of the Bi DC SQUID Bisquid1 for various magnetic
field direction θ′ and φ′. The ∼ 60 nA oscillations of shorter ∼ 7 G period (black solid lines) for verti-
cal field correspond to interference between supercurrent going through separate branches of the SQUID.
The oscillations form an asymmetric triangular pattern, consistent with long ballistic channels, and survives
up to Bz > 3000 G. In addition, we see ∼ 200nA ∼ 70G sinusoidal oscillations that develop close to
Bz ≃ −200 G (the hysteresis of the vertical magnetic coil is ∼ 20 G). The later correspond to orbital
dephasing with a flux in an effective surface of 2.6µm×114nm, that is supercurrent interference in a single
nanowire. Moreover, we notice on the φ′ = 148◦ θ′ = −45◦ an unusual switching current plateau behavior,
that extends over a field range that vary with θ′. The asymmetry between positive and negative magnetic
fields is discussed in the next subsection.
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(a) (b)

Figure 3.17 – (a) Low field average switching current of sample Bisquid1 as a function of magnetic field magnitude for
various orientationsφ′ θ′. (b) Zoom at lower fields. The∼ 7G period corresponds to long ballistic channels located
in different branches of the DC SQUID. The∼ 70G period corresponds to long ballistic channels in the same branch,
separated by∼ 114 nm.

e) Nanoring Biring

Looking at the average switching current versus vertical magnetic field curves of the nanoring Biring dis-
played in Figs.3.18a, 3.18b, and 3.18c, we distinguish patterns with two field scales again. We see ∼ 0.3 µA

variations on the ∼ 700 G scale, and 100−300 nA oscillations with a constant ∼ 17 G period. Fig.6.24a in
the appendix displays both the data taken with the field swept up and down, where the down curve is shown
in Fig.3.18a. Even though they show the same kind of features, the two curves differ at high fields, but
they are reproducible (except for some glitches due to flux trapping in the contacts). Focusing on a smaller
range, Fig.3.18c show the switching current for both bias current directions. After reversing the sign of the
magnetic field, the two curves coincide, confirming that the system does not break time-reversal symmetry
on this scale.

Focusing on the smaller field scale close to 0 field (Fig. 3.18c), we see a very regular ∼ 17 G periodic
pattern. The ∼ 17 G period corresponds to a superconducting flux quantum through an area of ∼ 1.2 µm2,
which is consistent with the area of the ring. We notice three distinct behaviors : a sawtooth shape in the
negative field region, a symmetrical rounded shape around 0 field, and a reversed sawtooth shape with higher
amplitude in the positive field region. This behavior corresponds to an asymmetric DC SQUID with at least
two long ballistic channels, where the role of the strong and weak junctions switches from one channel to
the other at 0 field, and the oscillations of the critical current versus flux curve can be interpreted as the
CPR of the weaker channel, see part 1.6.1. Scenarios for the variations of the role of the two channels are
discussed in the next subsection 3.4.
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Figure 3.18 – (a) Small scale average switching current of the Biring sample as a function of vertical magnetic field
perpendicular to the ring plane. (b) Average switching current oscillations as a function of vertical magnetic field,
where a 100 points smoothed version of the data has been subtracted. (c) Low-field average switching current, with
positive bias current I+s (Bvert) (blue line), with negative bias current I−s (Bvert) (red line), and with reversed field
negative bias current I−s (−Bvert) (green line). The∼ 17G period corresponds to long ballistic channels located in
different branches of the nanoring.
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In this subsection, the variations of the switching currents over small vertical magnetic fields
revealed regular oscillations typical of interference between long ballistic channels with sawtooth
CPR in four of the presented samples (Biwire

12 , Biwire
21 , Biring, Bisquid1 ), and interference between

narrow channels of intermediate length in nanowire segment Biwire
11 . The oscillations amplitude

survives up to fields of ∼ 1T , just like the background supercurrent, indicating that both the
interfering channels are narrow. This behavior is one of the signatures of transport through
1d topological helical hinges expected in HOTI. Zooming on a smaller field scale revealed the
existence of an intermediate field scale, with intricate switching current patterns. The intermediate
field scale behaviors are discussed in the next subsection.

3.4 . Intermediate magnetic field scale behavior : other phase shifts

In this subsection, we present the response of the different samples for intermediate field scales, between
the decrease of switching current on a ∼ 1T scale and the regular triangular oscillations on the ∼ 10−100G

scale. On this scale, the Is(Bz) pattern is less regular and can be attributed to :
- interference between channels separated by a small distance d ∼ 10nm, such that orbital dephasing scale
is B = Φ0/(dL) ∼ 0.1T , taking L = 2µm (see part 1.6 for the theory)
- Zeeman-induced dephasing between spin-polarized channels with different Zeeman energies (different spin
components or different geff ), such that ∆geffµBB/2 ∼ Eb

T ⇐⇒ B ∼ 1T , with Eb
T ∼ 0.2meV and

geff ∼ 7 (see part 1.8.2 for the theory)
- sample asymmetries in the channels’ critical currents or in the CPR (see part 1.6 for the theory)

This is also the field scale that display the most important Josephson diode effect, with asymmetry
Is(B) ̸= Is(−B). Moreover, all samples show a maximum of Is(B) shifted away from B = 0, except
sample Biring. We give an estimate of the inductance L′ or the effective magnetic field Beff = βSI needed
to obtain such a shift.

We first discuss the cases of the ∼ 1T variations of sample Biring and the ∼ 3300G oscillations of sample
Biwire

11 , before proposing several hypotheses for more complex common features for the periodic amplitude
modulation of the oscillations of samples Biring and Biwire

12 . We discuss the Josephson diode effect found in
every sample in the next subsection 3.5.

a) ∼ 1T variations of sample Biring

For the nanoring Biring, Fig. 3.12 shows regular ∼ 0.5 µA dips at the ∼ 1 T scale. The ∼ 1 T dips are
most likely due to a Zeeman-induced dephasing, as reported in earlier work in Bi [40] and in WTe2 [150].

1 T corresponds to a Zeeman-induced dephasing between spin-polarized channels with a difference of
Zeeman energy corresponding to geff ≃ 7, which is very reasonable for a Bi crystal. Alternatively, a 1T

oscillation period corresponds to orbital dephasing between two channels separated by d ≃ 1nm.

b) ∼ 3300G oscillations of sample Biwire
11

In Fig. 3.13b, the small period oscillations of sample Biwire
11 are plotted, where the smooth background

has been removed. We notice that it looks like a sum of a SQUID pattern (| cos(φ)|) of period ∆B1 ∼ 710 G

and a damped sinusoid of period ∆B2 ∼ 3300 G.
It is not clear what causes the ∼ 3300 G periodic sub-pattern. Its clear periodicity tends to favor

an interpretation in terms of orbital dephasing, and would involve a third channel carrying a maximum
supercurrent of ∼ 100 nA. But its amplitude is close to the one of the SQUID pattern and its phase
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dependence would change the observed SQUID pattern on the ∼ 710 G scale, forming a triple branch DC
SQUID. We see no influence of the modulations on the ∆B2 scale on the modulations on the ∆B1, and
conversely.

The only way to obtain this pattern with orbital dephasing is to consider an inductance L3 that "screens"
most of the phase variations. Such an inductance in series with the branch responsible for the background
current should verify L3ic3 ≫ Φ0 ⇐⇒ L3 ≫ 21nH, with ic3 ≃ 100nA corresponding to the background
current (total current minus currents responsible for the ∼ 710 G SQUID pattern). Such L3 ≫ 21nH is
high and would require additional junctions of critical currents ∼ 100nA in the contact regions. But such
a high L3 is incompatible with this third junction with ic3 ≃ 100nA that would modulate by ∼ 50% on
a ∼ 3300 G period, as it should reduce drastically the modulation amplitude. Thus, the orbital dephasing
scenario is unrealistic.

A ∼ 3300 G period corresponds to a minimum loop surface of ∼ 6.27 × 10−3 µm2, i.e. a surface
width of ∼ 6 nm for an effective surface length L = 1 µm. More realistically, this could correspond to a
Zeeman-induced dephasing with geff ≃ 30, which is in the range expected in Bi.

c) Periodic amplitude modulation of the oscillations of samples Biring and Biwire
12

The nanoring Biring and the nanowire segment Biwire
12 show very similar intermediate field behavior, on

a scale of ∼ 700G for Biring (see Figs.3.18a and 3.18b) and ∼ 1T for Biwire
12 (see Fig.3.14a). They exhibit

variations of the amplitude of the short-scale oscillations, where the amplitude vanishes regularly over a few
periods. Moreover, the period of this amplitude modulation is correlated with the background current, with
a low amplitude associated to the peaks and dips of the background current. Additionally, the skewness
of the short-scale oscillation pattern of Biring changes between two amplitude extinctions. To this day, we
don’t have a fully satisfying explanation for this behavior. In the following, we present two candidates that
could partly explain it.

The first hypothesis relies on a dense array of individual 1d ballistic channels, as discussed in part 1.9.1.
For "clean" arrays with similar ballistic channels, it generates a Fraunhofer-like beating pattern on a scale
B.S = Φ0 in the surface of the array. In some situations, it also exhibits skewness reversal.

For nanowire Biwire
12 , the ∼ 1 T scales corresponds to a surface width d ≃ Φ0/∆BL ≃ 1.5 nm. Together

with its oscillation period, it corresponds to two main supercurrent-carrying structures, a clean array of 1d
ballistic channels of width ∼ 1.5 nm and another channel or similar structure 36− 100 nm away. For nano-
ring Biring, the ∼ 700 G modulation period corresponds to a surface width d ≃ 18 nm for the 1.6 µm long
branch, and d ≃ 12 nm for the 2.5 µm long branch. It means that the array is in one of the two branches
and another channel or similar structure in the other branch. We recall that only the dependence on vertical
magnetic field was explored for these two samples, implying that the true surfaces may be greater than the
estimated ones. Moreover, the estimated width is only an approximation (corresponding to a symmetric DC
SQUID) and can differ by a factor ∼ 5 compared to the realistic models fitting the experiments. This hypo-
thesis introduces other problems, and does not explain the correlation with the background current variations.

The other hypothesis relies on Zeeman-induced dephasing. For nanowire Biwire
12 , this would correspond

to Zeeman dephasing between two channels with geff ≃ 10, which is reasonable for bismuth crystals. But
as seen in parts 1.8.1 and 1.8.2, the envelope of a beating between two similar sawtooth CPR doesn’t
modulate by 100%, whereas it is the case in the experiment. Similar to the response of a dense array of
ballistic channels with orbital dephasing, 100% modulation with Zeeman-induced dephasing would involve
many channels.
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The Zeeman dephasing hypothesis brings more concurring behavior for nanoring Biring. As shown in
Fig. 1.25a, a Zeeman interaction changes the shape of the CPR of a short ballistic junction. This depends
on the Zeeman energy term h in the CPR formula (1.29). Fig. 3.19 displays the results of a calculation
of the critical current of a DC SQUID model with two ballistic short channels of constant ic1 = 0.1 µA

and ic2 = 2.5 µA, but varying Zeeman energy terms h1/∆0 = −39.2B and h2/∆0 = +7B (B in T ).
Taking ∆0 = 1meV , we can write h1 = −geffµB × 1/2 × B, giving an effective gyromagnetic factor of
geff = 1625 which is one order of magnitude larger than the maximum geff we expect for a bismuth crystal.
On this field range, this hypothesis explains both the background variations and the change of skewness of
the oscillation pattern in Biring.

Figure 3.19 – Critical current as a function of magnetic field, for two ballistic short channels of constant ic1 = 0.1µA
and ic2 = 2.5 µA, but varying Zeeman energy terms h1/∆0 = −39.2B and h2/∆0 = +7B (B in T ). It
reproduces the oscillation period and change of skewness as well as the variations of the background current, but
fails in other aspects.

In addition to the very high geff , this later hypothesis also comes with its own problems. Two of which
are the absence of visible curvature in the experimental CPR away from B = 0 and the inconsistency with the
junction length to conclude to a short junction behavior rather than a long junction one. Another problem
is the limit range of field for the formula (1.29) to be valid. Indeed, it is only valid for |h1/∆0| < 1, but the
data would fit very well the Zeeman hypothesis if the junction behaved periodically in h1/∆0 instead. Other
hypotheses involving channel’s critical currents or inductances varying with magnetic field are discussed in
appendix 6.4.

3.5 . Josephson diode effect due to inductance ? Magneto-Chiral Anisotropy ?

The switching current as a function of magnetic field Is(B) of all samples studied in this chapter are
asymmetric with respect to a change of the sign of B, keeping the same current bias direction +I, that
is : I+s (B) ̸= I+s (−B). By time-reversal symmetry, it means that they also exhibit Josephson Diode Effect
(JDE), that is an asymmetry with respect to a change of the sign of I, keeping the same B : I+s (B) ̸= I−s (B).

All samples show JDE and all samples, except Biring, show a shift of their maximum switching current
away from B = 0. JDE zero-field shifts can be related to the interesting spin-orbit-induced Magneto-Chiral
Anisotropy (MCA) predicted in material with SOC. However, MCA is not the only phenomenon that can
cause JDE, as discussed in part 1.7.

In this part, we evaluate various scenario for each sample. We associate the shift of the maximum swit-
ching current to three different scenarios :
- Scenario 1 (inductance) : the supercurrent I through a channel in series with an inductance L′ causes an
effective flux ΦL = L′.I that dephases its interference with other channels by δϕ = 2πΦL/Φ0, just like a
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magnetic field BL = ΦL/S would. S is the surface defined by the interfering channels.
- Scenario 2 (MCA) : the current and the magnetic field are related by the spins via spin-orbit and Zeeman
interactions. A supercurrent I through the junction has the same effect as a magnetic field Beff = βSI,
with βS that depends on the systems, e.g. its spin-orbit energy and its geff .
- Scenario 3 (asymmetric CPR) : like Scenario 1, but with a dephasing due to CPR that are maximum
at different phases, for example a channel with sinusoidal CPR interfering with a channel with sawtooth
CPR, producing a shift of π/2 at zero field. This mechanism can produce a shift between 0 and π/2, and
is independent of the value of the supercurrent.

a) Sample Biwire
11

The critical current of sample Biwire
11 at zero magnetic field is not the highest one over all the magnetic

field range, see Fig.3.13a. Over the lowest magnetic field period, the maximum is Is(B = 23G) ≃ 410 nA.
The global maximum is Is(B+) = 532 nA at B+ = 1471 G, with a maximum Is(B

−) = 473 nA at
B− = −2207 G in the negative field region, thereby exhibiting JDE.

To understand this shift, let us evaluate the scenario 1 with inductance. The shift of B+ = 1471 G

corresponds to a flux ΦL ≃ 1471
3300Φ0 ≃ 0.45Φ0 in the surface defined by the interfering channels, as discussed

in the previous subsection 3.4. It gives a L′ = ΦL/I
max
s ≃ 1.7nH. This inductance is high compared to the

typical values of self-field inductances (< 1pH) and kinetic inductance of the W contacts (∼ 17pH.µm−1),
see appendix 6.2. It would require a weak junction in the loop, with a critical current ∼ 1µA.

Considering scenario 2 with MCA, the switching current at B = 0 corresponds approximately to the
switching current Is(B+) = 532 nA with an extra effective magnetic field Beff = −B+. Assuming this Beff

is proportional to the current, we write Beff = βSI with βS = B+

Is(0)
≃ 3.6×103G.µA−1 = 3.6×105T.A−1.

This value of βS is higher by a factor ∼ 36 compared to the typical value of βS we found during my PhD,
see next samples and appendix 6.9 (in the resistive state) and 6.12 (in both resistive and superconducting
states).

Alternatively in scenario 3, the ∼ 3300G modulation is due to a sinusoidal junction, with a maximum
shifted by π due to a junction in parallel with a CPR not maximum at a phase π/2. This explanation is
not very satisfying either, as we argued that the maximum possible phase-shift with asymmetric CPR is π/2.

b) Sample Biwire
12

Fig.3.20 displays the average switching current versus magnetic field pattern of sample Biwire
12 , where

the negative field response is reversed in field (I+s (−Bz)), such that it corresponds to switching current
with opposite current bias direction (I−s (Bz)). It shows a clear asymmetry between positive and negative
current bias. Focusing on the low field region, we see again that the overall maximum switching current
is not at 0 G. On the contrary, we see a clear dip "centered" around 0 G, with Is(0) = 5.44 µA, and
a higher switching current reached at higher field for both positive and negative current bias. The global
maximum is Is(B+) = 6.68 µA at B+ = 0.64 T in the positive field region (or positive bias current), and
Is(B

−) = 5.95 µA at B− = −1.7 T is the maximum in the negative field region (or B− = 1.7 T for
negative bias current).

To understand this shift, let us evaluate the various scenario. Scenario 1 involves an inductance L′ such
that ΦL ≃ L′.Imax

s ≃ 0.64
1 Φ0, yielding L′ ≃ 0.2nH. This value of inductance can be caused by a weaker

junction of critical current ∼ 10µA in the contact region. Scenario 2 involves an effective current-induced
magnetic field of Beff

I = 0.64
5.44×10−6 = 1.2× 105T.A−1 = 1.2× 103G.µA−1, which is higher by a factor 12

compared to the typical value found in other nanowires. Scenario 3 involves a shift by π, which can’t be
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Figure 3.20 – Average switching current of nanowire Biwire
12 as a function of vertical magnetic field perpendicular to

the wire, for positive (orange solid line) and negative (purple solid line) current bias. It shows clear Josephson diode
effect, persisting to high fields.

achieved. Together with the analysis of sample Biwire
11 , segment of the same nanowire, we conclude that the

shift of the maximum switching current is caused by kinetic inductance from (very) weak junctions in the
contact region or by high spin-orbit induced MCA.

c) Sample Biwire
21

For nanowire Biwire
21 (see Fig.3.8b), the shift of the whole pattern (see for example the maximum peak)

in magnetic field depends on the field orientation, and scales exactly the same way has the effective flux B⃗.S⃗
for magnetic fields in the horizontal plane. The effective flux is maximum for B⃗ ∥ S⃗, when B⃗ is oriented in
the horizontal plane, perpendicular to the nanowire axis (θ ≃ 90◦, φ ≃ 315◦). For this field orientation, the
pattern is shifted by a field of ∼ −517 G which can be only partially explained by the ∼ 200 G hysteretic
behavior of the horizontal coil, see Fig.6.22 in the appendix for up and down curves.

This shift can be explained by the presence of an inductance L′, generating a constant screening flux
ΦL = L′.Imax

s that is more or less difficult to compensate depending on the magnetic field orientation.
ΦL is also equivalent to the magnetic flux of a field of ∼ −517 G in the surface S = 1.8µm × 20.7nm

defined by the interfering channels (see discussion of the response of Biwire
21 at high field, part 3.2). Thus,

L′ = Φ/Imax
s = 517× 10−4× 1.8× 10−6× 20.7× 10−9/(12.84× 10−6) = 150 pH = 7.24× 10−2 Φ0/µA.

Once again, this value of inductance can be caused by a weaker junction of critical current ∼ 10µA in the
contact region. For a field of −517G in this direction perpendicular to the surface, I+s (B) = 16.8µA and
I−s (B) = I+s (−B) = 9.78µA, giving a very large JDE of 2∆Is/(I+s + I−s ) = 53%.

Moreover, the switching current variations as a function of vertical field shows a dip close to Bz ≃ 0, see
Fig.3.8a. The switching current increases with |Bz|, with asymmetric values between positive and negative
fields, similar to the nanowire Biwire

12 . As a function of vertical magnetic field, the global maximum value is
Imax,z
s = Is(B

+
z ) = 15.7µA for B+

z = 0.18T .
To evaluate an inductance L′′ that could cause such a shift of the maximum, one needs to define a surface

S′, such that ΦL = L′′.Is(B
+
z ) = B+

z .S
′. Looking at modulations of Is(Bz), one can guess a ∼ 0.6T period,

that could correspond to orbital dephasing by the magnetic field in a surface S′ = Φ0/0.6 = 3.45×10−3µm2.
This gives L′′ = ΦL

Imax,z
s

= 0.18S′

15.7×10−6 = 40pH, which is lower than the inductance found by looking at
horizontal magnetic field response, that could be caused by similar elements.

Alternatively, scenario 2 for the shift of the Is(Bz) pattern involve a Beff = βSI with βS ≃ B+
z

Is(Bz=0) ≃
0.18

14.8×10−6 ≃ 1.2×104T.A−1 ≃ 1.2×102G.µA−1. This value is the typical value found in the other samples
(except for Biwire

11 and Biwire
12 , segments of the same nanowire). Again, scenario 3 seems unrealistic as it
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would require a shift ≃ π which can’t be achieved with asymmetric CPR.

d) Sample Bisquid1

The Bi DC SQUID Bisquid1 shows switching current asymmetries between positive and negative magnetic
field, both on high and low field scales, as clearly visible in Figs.3.11b and 3.17, respectively. At low fields,
we see that the global maximum switching current is close to B−z = −208G ̸= 0 (much larger than the
hysteresis intrinsic to the magnetic coil) and reaches Is(B−z ) = 7.55µA.

Again, let us evaluate the scenario 1 with inductance. The shift of B−z = −208G corresponds to three
periods of the ∼ 70G oscillations, that is a flux ΦL ≃ 3Φ0 in the surface defined by the interfering channels,
as discussed in the previous subsection 3.3. It gives a L′ = ΦL/I

max
s ≃ 0.3nH. Again, it would require a

weak junction in the loop, with a critical current ∼ 10µA.
Alternatively, scenario 2 for the shift of the Is(Bz) pattern involve a Beff = βSI with βS ≃ B−

z
Is(Bz=0) ≃

0.02
7.3×10−6 ≃ 2.8×103T.A−1 ≃ 28G.µA−1. This value is the typical value found in the other samples (except
for Biwire

11 and Biwire
12 , segments of the same nanowire).

Because the junction explicitly breaks inversion symmetry, scenario 3 with asymmetric CPR seems more
reasonable. However, if we interpret the dephasing in terms of interfering channels enclosing a surface
S = Φ0

70×10−4 = 0.295µm2 like above, it would require a dephasing of 6π, which again can’t be achieved
with asymmetric CPR. We note that the values of shift we considered here would have been different if we
had chosen another oscillation period, e.g. one on a larger scale.

e) Sample Biring

In contrast with the other samples, Biring switching current at zero magnetic field is the overall maximum
switching current, see Fig.3.18a. But it is still asymmetric with respect to a change of sign of the magnetic
field, and all the bumps at the ∼ 700 G scale are skewed in the same direction. Focusing on the zero field
lobe, we can symmetrize it by considering a supercurrent-induced screening field of α = 150 G.µA−1, that
is an inductance of L = 430 pH = 0.21 Φ0/µA. However, such an inductance should shift the field value
of the maximum switching current by ≃ 150× 2.8 = 420G. That is not the case here, suggesting that this
asymmetry is due to asymmetric current amplitudes.
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3.6 . Conclusion

Figure 3.21 – Geometry and characteristic magnetic field scales variations of the average switching current of a se-
lection of samples that have been measured. We generally find three typical field scales, noted as∆Bz,1,∆Bz,2,
∆Bz,3, with associated switching current variations notedAz,1,Az,2,Az,3.∆Bz,1 corresponds to small field scale,
with regular triangular oscillations of the switching current indicating interference between long ballistic channels.
∆Bz,3 corresponds to large field scale, with a monotonous decrease of the background current associated to super-
current carriedmainly by narrow (1d ballistic) channels.∆Bz,2 corresponds to intermediate field scale, where orbital
dephasing between nearby channels and Zeeman-induced dephasing induce more complex patterns.

The analysis of the average switching current of eight Josephson junction samples based on bismuth
nanowires as a function of magnetic field magnitude and direction revealed interesting common behaviors
on three field scales. The field scales and the interpretation of the supercurrent transport specific to each
sample is summarized in Tab3.21. On the Biwire

12 -Biring-Biwire
21 -Biwire

22 -Bisquid1 samples, we measured skewed
triangular oscillations that correspond to interferences between long ballistic channels dephased by an orbital
flux in the nanowire or in the DC SQUID, as expected for topologically protected hinge channels. On the
Biwire

11 -Biwire
12 -Biwire

21 -Biwire
22 -Biring samples, we measured a |B|−1 (or |B|−2) decrease at high fields consistent

with the presence of narrow (1d ballistic) channels with an exponential transverse current density profile. On
the Biwire

11 -Biwire
12 -Biwire

21 -Bisquid1 , we found clear evidence of dephasing mechanisms at zero magnetic field,
that may be caused by inductive elements or induced by SOC. On the Biwire

12 and Biring samples, we found
a correlation between the short-scale oscillation pattern and the larger-scale background current variations.
Finally, on the Biwire

21 and Bisquid1 sample, we found that the average switching current pattern does not
scale like a simple scalar product B⃗.S⃗ as a function of field direction. This could be a sign of the influence
of the SOC on the supercurrent carried by the surface and hinge channels.
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4 - Andreev bound states occupation dynamics as evidence
of helical hinge channels in a Bi nanoring Josephson
junction

Soon after the discovery of one-dimensional (1D) helical states in two-dimensional TIs (2DTI) [151, 152]
or three-dimensional Second Order TIs (SOTI) [153, 154, 155], it was realized that Josephson junctions
containing helical modes as their weak link should display remarkable features. Indeed, the spin-momentum
locking which characterizes the helical states translates into a fixed helicity for the Andreev states shuttling
the supercurrent along each edge, in contrast to the spin degeneracy of conventional Josephson junctions.
Among the predicted consequences are 4π [91, 78] and 8π [156, 157] periodicities of the supercurrent-
versus-phase relation (CPR) of a Josephson junction formed with a single helical edge state. Originating
from fermion-parity protected crossings of Andreev levels at phase difference π, these periodicities are contin-
gent on the absence of fermion-parity-breaking processes. The necessity to beat such relaxation processes
motivated the initial search for topological signatures at finite frequencies.

Past measurements have relied on the ac Josephson effect, via Shapiro steps [79] and Josephson emission
of voltage-biased junctions [80], or, as suggested in [78], on the high-frequency response of a phase-biased to-
pological junction [4]. Recent theoretical predictions suggest that signatures of topological superconductivity
can also be found in switching current experiments conducted at frequencies comparable to the relaxation
rate [130, 125, 133, 102]. The idea is that the current at which the junction switches to its resistive state
depends on the number and occupation of the current-carrying Andreev states. This implies that detailed
information about the Andreev states and relaxation processes can be extracted from phase-dependent sta-
tistical distributions of switching currents [126, 125]. The particular sawtooth-like shape of the CPR makes
long Josephson junctions with multiple subgap Andreev levels especially well suited for such investigations
[99, 133].

In this chapter, we report measurements of the switching current distribution of a micrometer-size,
ring-shaped bismuth single-crystal with superconducting contacts, whose general characteristics have been
described in chapter 3 already (see Figs.3.4, 3.12 and 3.18). We find that in our device, the Bi ring acts as an
intrinsically asymmetric DC SQUID whose average switching current yields the characteristic sawtooth CPR
of a long ballistic junction. Using a phenomenological model of two helical Andreev hinge modes, we find that
pairs relax at a rate comparable to individual quasiparticles, in striking contrast with non-topological systems.
This constitutes a unique telltale sign of the spatial separation of topological helical hinges, corroborating
the existence of helical hinge modes in Bi. Our analysis leads to the identification of single-particle and
two-particle relaxation times, both of the order of milliseconds, consistent with well-separated topological
hinge modes.

The analysis presented in this chapter is the fruit of a collaboration between members of our mesoscopic
physics group at Laboratoire de Physique des Solides and theoreticians Dr. Yang Peng, Prof. Yuval Oreg
and Prof. Felix von Oppen, authors of the article [125] that we used as a reference to build our model of
two helical Andreev hinge modes. Yang Peng calculated the analytical formulas with inputs from Yuval Oreg
and Felix von Oppen, and made the MATLAB program that computes the occupation probabilities and
the resulting switching current distributions. Together with Yang Peng, we ran the program to analyze the
influence of each parameter on the occupation probabilities, and to find the set of parameters that fits best
our data. The final model is the result of many inputs and improvements done over our numerous meetings.
This work motivated the writing of an article, just published in Nature Physics [5].

In this chapter, I reorganize and develop the work presented in this article [5]. First, we present the
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experimental data and their peculiar features. Second, we introduce the theoretical model of the asymmetric
DC SQUID used to understand the results of our experiments, together with computations showing the
influence of the various parameters of the model. This model is a special case of the one presented in part
1.10.4. Then, we describe how to make the connection between the experimental data and the theoretical
computations. Lastly, we confront the data to the model, and use it to extract the characteristic transition
times.

4.1 . Measurement : full switching current distribution varying with magnetic field
and current ramping rate

The average switching current at low fields, shown in Fig.3.18c, displays periodic oscillations superim-
posed on a slowly varying baseline. The 17G period, corresponding to one superconducting flux quantum
Φ0 = h/2e through an area of 1.2 µm2, is consistent with the ring area. The oscillations have a (somewhat
rounded) sawtooth shape, reminiscent of switching experiments on asymmetric DC SQUIDs designed to
measure the CPR of small Bi nanowire junctions [3]. In [3], the sawtooth modulation corresponded to the
CPR of a long ballistic Josephson junction, and thus demonstrated the higher order topological nature of the
Bi nanowire [69, 99, 3, 13]. In the present experiment, the sawtooth modulation suggests that the bismuth
ring, with its two superconducting contacts, acts intrinsically as an asymmetric DC SQUID, yielding a ballistic
CPR for the "weak" branch of the ring with the smaller critical current.

Fig. 4.1 presents the average switching current and the standard deviation, up to 4500G. Oscillations
with the 17G period corresponding to one flux quantum through the bismuth ring diameter are visible
over the entire range. The period also appears in the standard deviation, with a higher value when the
superconducting phase difference φ across the weak branch is φ ≃ π. These variations of the standard
deviation are still present at 7 T (not shown). In addition to the small 17G period, oscillations of the
average current (and of the standard deviation magnitude) with a 600 to 1000G scale are also clearly
visible. We attribute those oscillations to interference effects caused by the magnetic field, see part 3.4.

Rather than the average switching current, this chapter focuses on the switching current distribution,
arguably a much more powerful (and underexploited) tool. We show that the distribution reveals the phase-
dependence of the ground and excited states of the Andreev spectrum, their occupation probability and
spatial separation, and hence their topological character. Two such distributions, recorded in two magnetic
field regions, are displayed in Fig.4.3a and 4.3c, with distributions on the full −500G to 500G scale on
Fig.4.2.

In contrast to the average (red solid lines), the switching current distributions are not rounded as a
function of field. In the first magnetic field region, around B = 450 G, a notable feature of the sawtooth
jump region are the two well separated peaks in the histogram, see the red circle in Fig.4.3a at B = 433 G,
and the green curves in Figs.4.3a and 4.3b. This indicates that the weak junction can be in two different
states on the timescale of the current ramp.

In a second field region, see green circle in Fig.4.3c near B = −187 G and green curves in Figs.4.3c
and 4.3d, an additional intermediate, fainter branch develops around the sawtooth jump, so that there are
three well separated peaks in the switching histograms.

Figs 4.2 and 4.4 display the switching current distribution at two different current ramp frequencies,
17 and 187Hz. The main sawtooth-shaped branches are visible over most of the field sweep, with smaller
field regions (e.g. around 0 field) where the switching current shape is symmetric. Fainter branches that
are shifted with respect to the main branches also are visible in some magnetic field regions (most clearly
between -100 and -400 G).

In Fig.4.5, we put side-to-side the switching current distributions obtained close to B = −170G both at
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Figure 4.1 – Upper panel : Switching current averaged over 200 switching events as a function of out-of-planemagnetic
field, with bias ramp at 17 Hz. Lower panel : corresponding standard deviation of 200 switching events distribution, as
a function of out-of-planemagnetic field. The counter can provide the full histogram, or the average and the standard
deviation. Both the average and the standard deviation display the 17G period.

Figure 4.2 – Switching current events as a function of out-of-plane magnetic field, with 200 switching events per
histogram and a current ramp of 17 Hz. The number of switching events is coded in shades of grey. The flat horizontal
signal, when the switching current is lower than∼ 2.3 µA, is due to an experimental limitation.

17Hz and 187Hz. It clearly shows that the visibility of the intermediate current branch varies significantly
on a time scale of ∼ 10ms, which is long for the dynamics of a Josephson junction. At higher frequency,
the intermediate branch extends over a larger range of field.

To properly model the system, one needs to be able to reproduce the various effects identified. Namely,
the model needs to account for the presence of an intermediate switching current value close to φ ≃ π,
linear in field, in the middle of the two main switching values close to φ ≃ π. It forms an intermediate
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(a) (b)

(c) (d)

Figure 4.3 – Switching current distributions (histograms) as a function of out-of-plane magnetic field of the bismuth-
nanoring based Josephson junction, in theB ≃ 450G (a) andB ≃ −170G (c) regions. The slowly varying current
background has been removed by a first order polynomial. The current bias is ramped at a frequency of 17Hz. The
number of events is color-coded in shades of grey. The red solid line is the switching current averaged over the whole
distribution at each field. (b) and (d) are histograms at specific values of fields in (a) and (c), respectively, see colors.
Curves are shifted for clarity.

branch that extends asymmetrically in field (see Fig.4.5c), and whose visibility depends on the magnetic
field (see Figs.4.3a and 4.3c), and increases with increasing current bias ramp frequency (see Figs.4.5a
and 4.5c). Moreover, notice that there exist no field value for which the intermediate branch is the only
switching current value. It is always accompanied by another switching current value. The combination of
these behaviors rules out a lot of potential models.

In the following we argue that each peak in the histogram corresponds to a different occupation of the
Andreev spectrum of a Josephson junction made of two helical hinges. Our analysis then yields the relative
relaxation rates of the Andreev states, providing information about the topological character of these hinges.
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Figure 4.4 – Switching current events as a function of out-of-plane magnetic field, with 200 switching events per
magnetic field value and a current ramp at 187 Hz. The number of switching events is coded in shades of grey. The
flat horizontal signal, when the switching current is lower than∼ 2.3 µA, is due to an experimental limitation.

17Hz ( Τ𝑑𝜑 𝑑𝑡 ≃ 6.4 𝑠−1) 187Hz ( Τ𝑑𝜑 𝑑𝑡 ≃ 70 𝑠−1)

(c) (d)(a) (b)

Figure 4.5 – Switching current distributions (histograms) as a function of out-of-plane magnetic field of the bismuth-
nanoring based Josephson junction, with 17Hz (a) and 187Hz (c) current bias ramp frequencies. The slowly varying
current background has been removed by a first order polynomial. The number of events is color-coded in shades
of grey. (b) and (d) are histograms at specific values of fields in (a) and (c), respectively, see colors. Curves are shifted
for clarity.

4.2 . Model : two 1d helical Andreev states embedded in an asymmetric DC SQUID

4.2.1 . Introduction of the model

The analysis is based on a model of the Bi ring connected to two superconducting contacts, as a SOTI-
based asymmetric SQUID. In the model, the weak Josephson junction consists of two helical supercurrent-
carrying hinges located in one branch of the ring, and the strong junction, with higher critical current, is
formed by the other branch (see Fig.4.6). To leading order, the current bias ramp I(t) controls the phase
difference γ(t) across the strong junction : as I increases from zero to values close to the strong junction’s
critical current Ic,strong, γ increases from zero to γmax. Due to the flux threading the SQUID Φ (in units of
ℏ/(2e)), the phase difference across the weak junction is ϕ(t) = Φ + γ(t). The additional current through
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the weak junction with CPR i(ϕ) modulates the critical current at which the SQUID switches to a resistive
state : Ic ≃ Ic,strong + i(Φ + γmax). The SQUID’s switching current thus provides a direct measurement of
the current-phase relation (CPR) of the weak junction [126, 125, 158].

Φ

B

S

Istrong

i

S
[111] axis

(a) (b)

Figure 4.6 – (a) Sketch of an idealized segment of the ring with a radial [111] axis (light blue arrow) and two helical
hinge channels of opposite helicities (red and blue lines). (b) Simplified sketch of the bismuth nanoring connected to
two superconducting contacts (S), constituting an intrinsic Superconducting Quantum Interference Device (SQUID).
In the model (see text), the total supercurrent is carried by two helical channels (solid blue and dashed red), with a
supercurrent i, in parallel with a large junction of supercurrent Istrong. The out-of-plane magnetic fieldB induces a
fluxΦ through the ring loop.

The CPR i(ϕ) reflects the Andreev spectrum and, importantly, its occupations as a function of the phase
difference ϕ [99], see part 1.10.4 for more details on the model. The case of a junction made of a single
hinge has been discussed in part 1.4.2. The transitions between its ground (Ig(ϕ)) and excited (Ie(ϕ)) state
requires the exchange of a quasiparticle with its environment. Its CPR for ground and excited states are
displayed in Fig.4.7a. Both are piecewise linear and 2π-periodic functions [99, 159, 102].

(a)

(b)

Figure 4.7 – (a) Corresponding Josephson currents ig(ϕ) in the ground state (solid blue line) and ie(ϕ) in the first
excited state (dashed red line), obtained by taking a derivative of the many-body energies with respect to ϕ. ig is
linear between−π and π, with downward jumps by evF/L ≡ e

ℏET , withET = ℏvF/L the Thouless energy, at
ϕ = π+2πn (n ∈ Z), with vF the velocity of the hingemode andL the distance between the two superconducting
leads. For the excited state, ie is also linear, with downward jumps by 2evF/L at ϕ = 2πn and upward jumps by
evF/L at ϕ = π + 2πn. (b) Josephson currents of a junction with two (identical) hinge modes. The current equals
igg(ϕ) = 2ig(ϕ)when both hinges are in their ground states, ieg(ϕ) = ige(ϕ) = ig(ϕ)+ ie(ϕ)when one hinge
is in the excited state, and iee(ϕ) = 2ie(ϕ) when both are excited.

We now consider the case of two hinges. Given that each hinge can be either in the ground (g) or excited
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(e) state, there are four possible Andreev states, gg,ee and eg/ge, whose CPR is ill′ = il(ϕ) + il′(ϕ), with
l, l′ (g) or (e). In the case of two hinge channels in the long junction regime, with same critical currents,
igg = 2ig, iee = 2ie, and ige(ϕ) = ieg(ϕ) = ig(ϕ) + ie(ϕ) = igg(ϕ + π), which is the sawtooth-shaped
CPR of the ground state shifted by π. The three different CPRs are sketched in Fig.4.7b. The one-hinge
spectrum is recalled in Fig.4.8b, where one can obtain the two-hinge energy by summing the energy over
two identical one-hinge spectrums.

Following part 1.10.4, the next step is to compute the probability of occupying each of the four states,
by solving the rate equations for the occupation probabilities. The equations read :

dpgg
dt

= −2Γeg←ggpgg + 2Γgg←egpeg − Γee←ggpgg + Γgg←eepee

dpeg
dt

= −Γgg←egpeg + Γeg←ggpgg − Γee←egpeg + Γeg←eepee, (4.1)

with pee = 1− 2peg − pgg. They include two types of relaxation processes, sketched in Figs.4.8a and 4.8c :
- (1) the intra-hinge, or poisoning processes, cause one hinge to be excited or relax with a rate Γee⇄ge,
involving a relaxation time τ2, or Γeg⇄gg, involving a relaxation time τ1
- (2) the inter-hinge or pair processes with rates Γgg⇄ee, in which two quasiparticles from different hinges
condense into one Cooper pair (or a Cooper pair splits to populate the two hinges), involving a pair relaxation
time τp. We note that such inter-hinge, or pair relaxation processes do not require external particles from
the fermionic bath, but only energy. These processes are suppressed for hinge modes that are far apart in
real space on the scale of the superconducting coherence length.

Following [130], we assume that the intra-hinge transition rates involve a fermionic bath at a temperature
Tqp :

Γee←eg(ϕ) = f(δE(ϕ)/kBTqp)/τ2

Γeg←ee(ϕ) = f(−δE(ϕ)/kBTqp)/τ2, (4.2)

where τ2 denotes a relaxation time, f is the Fermi distribution function, and δE(ϕ) = Ee(ϕ)−Eg(ϕ) is the
gap between the ground and excited states. Similarly,

Γeg←gg(ϕ) = f(δE(ϕ)/kBTqp)/τ1

Γgg←eg(ϕ) = f(−δE(ϕ)/kBTqp)/τ1, (4.3)

The interhinge or pair rates also involve a fermionic bath, at a temperature Tb (that can be different
from Tqp), but contain the Bose-Einstein function and twice the excitation energy δE(ϕ) :

Γee←gg =
1

ET τp

∫
dEf

(
E

kBTb

)[
1− f

(
E + 2δE(ϕ)

kBTb

)]
=

2δE(ϕ)

ET τp
nB

(
2δE(ϕ)

kBTb

)
, (4.4)

where ET = ℏvF /L is the Thouless energy, τp is the relaxation time for this process, and nB(x) = (ex − 1)−1

is the Bose function. Similarly,

Γgg←ee =
2δE(ϕ)

ET τp

[
1 + nB

(
2δE(ϕ)

kBTb

)]
. (4.5)
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Figure 4.8 – (a) Quasiparticle and pair excitation processes. The dashed horizontal lines at zero energy represent
the superconducting ground state, that acts as a Cooper pair reservoir. The blue region above energy∆ represent
the quasiparticle continuum. The dark blue and red horizontal lines represent in-gap non-spin-degenerate helical
Andreev bound states energy levels at a fixed ϕ and energy δE(ϕ), each associated to a single helical (hinge) mode,
see (b). Arrows represent processes that transfer one-particle occupation between two states. The intra-hinge or
poisoning process (1) involves only one hinge and the quasiparticle bath, and the exchange of a quasiparticle that
changes the parity of the hinge [131, 129, 126]. The inter-hinge or pair process (2) involves two hinges, an energy 2δE
from the bath, and a Cooper pair from the superconducting condensate. It does not change the global parity of the
two-hinge system. (b) Spectrum of one helical hinge, including the ground stateEg(ϕ) (solid blue line) and the first
excited state Ee(ϕ) (dashed red line). The excitation energy δE(ϕ) = Ee(ϕ) − Eg(ϕ) is indicated by an arrow.
Level crossings at odd multiples of π (full-line circles) are protected by fermion parity, while level crossings at even
multiples of π (dashed circles) are protected by time reversal symmetry (strictly speaking broken by the magnetic
field in the experiment). (c) ABS energy levels of the two-hinge junction and corresponding transition rates.

Notice that the energy difference between the "ee" and "gg" states appearing in the Fermi function is 2δE(ϕ).

Still following part 1.10.4, we substitute d/dt by ωd/dϕ in the rate equations. The probabilities are
obtained from numerically integrating Eq.(4.1) from ϕ = Φ to ϕsw = Φ + γmax. For the curves presented
in the main text, we have chosen γmax = π/2 which best fits the experimental data. But in Fig. 4.11 we
present similar curves computed with γmax = π. The initial conditions of the rate equation (4.1) at ϕ = Φ

are computed from the stationary conditions dpi/dt = 0.

4.2.2 . Cases with visible poisoning
Some examples of probabilities pgg, peg and pee obtained by solving these equations are plotted in Fig.

4.9, 4.10 and 4.11. Here we have taken τ1 = τ2 = τqp.
Figure 4.9 considers two extreme cases for the interhinge pair relaxation time τp. When ωτp ≫ 1 (Fig. 4.9

left), no co-relaxation or co-excitation occur : the two channels are independent, and pee ∝ peg for all Φ,
such that pee and peg are always peaked at the same flux. In the other limit of extremely correlated channels
ωτp ≪ 1 (Fig. 4.9 right), pee is always peaked at ϕsw = Φ + γmax = π and the pee peak always touches
the pgg dip, that is pee = pgg and pee = (1− peg)/2 at that point.

Figure 4.10 illustrates the precision with which the parameters can be determined. To this end, we
present results of the two hinge model computed with sets of parameters close to the ones that reproduce
best the experimental data presented in later Figs.4.17 and 4.18 for the −170 G region. As shown in Fig.
4.10(a) and Fig. 4.10(c), in which the different curves correspond to computations with the same ωτqp but
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different ωτp, the variation of ωτp is almost invisible on the peg + pge peak, and is best seen on the height
of the pee peak of 4.10(c). On the other hand, the curves shown on Fig. 4.10(b) and Fig. 4.10(d) are the
results of computations at fixed ωτp and different ωτqp. The variation with ωτqp is weak on the pee peak,
and is best seen on the peg +pge peak(s) both in Fig. 4.10(b) and 4.10(d). Thus, Fig. 4.10(c) suggests that
for a given ωτqp, ωτp can be estimated within a factor ∼ 5 by looking at the pee peak, which is not very
sensitive to the chosen ωτqp. The parameter ωτqp can be estimated within a factor ∼ 2 on the peg + pge
peak on Fig. 4.10(b) and Fig. 4.10(d). This leads to an overall error of a factor ∼ 7 on the ratio τqp/τp.

Figure 4.9 – Computed probabilities of the junction to be in its doubly-excited state (pee, solid lines), singly-excited
state (peg + pge, dashed lines), or ground state (pgg , dashed-dotted lines), as a function of ϕsw = Φ + γmax,
with γmax = π/2, for various dynamics parameters ωτqp (first number in the legends) and ωτp (second number
in the legends). ω is the phase ramping frequency, τqp is the intra-hinge relaxation time, τp is the pair or inter-hinge
co-relaxation time, T = Tb = Tqp is the bath temperatures, and ET denotes the Thouless energy of the hinge
junction.
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Figure 4.10 – Computed probabilities of the junction to be in its doubly-excited state (pee, solid lines), singly-excited
state (peg + pge, dashed lines), or ground state (pgg , dashed-dotted lines), as a function of ϕsw = Φ+ γmax, with
γmax = π/2, for two different bath temperatures Tb(= Tqp) and varying parameters ωτqp (first number in the
legends) andωτp (second number in the legends).ω is the phase ramping frequency, τqp is the intra-hinge relaxation
time, τp is the pair or inter-hinge co-relaxation time, andET denotes the Thouless energy of the hinge junction.

4.2.3 . γmax = π instead of π/2
Figure 4.11 displays computed probabilities that reproduce the qualitative features of the experimental

occupation probabilities measured around -170 G, using a phase range γmax = π instead of γmax = π/2

(used in the rest of the analysis). Compare later Fig.4.17d with Fig. 4.11a for the 17Hz current ramp
frequency, and Fig.4.18d with Fig. 4.11b for the 187Hz current ramp frequency.
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Figure 4.11 – Computed probabilities of the junction to be in the doubly-excited state (pee, red line), singly-excited
state (peg + pge, green line), or ground state (pgg , blue line), as a function of ϕsw = Φ + γmax. For the results
presented here, the range of the phase over one current ramp period is γmax = π rather than π/2 used in the
rest of the analysis. ω is the phase ramp frequency, τqp the single-hinge relaxation time, τp the pair or inter-hinge
relaxation time, Tb = Tqp is the bath temperatures, andET denotes the Thouless energy of the junction.

4.2.4 . Cases with very little visible poisoning
Interestingly, the fact that there are two hinge channels is not easily seen in the switching current

distribution around 420G : the intermediate branch is almost invisible, see Figs.4.2, 4.4, 4.3a and b. However,
a non-zero probability of the intermediate state (with one hinge in the excited state and the other in the
ground state, noted ’eg’) is seen, even though it can be quite small, less than five percent, in the reconstructed
occupation probability (and is displayed in later Fig.4.15).

We have therefore extended our model in order to reproduce the type of occupation probability measured
in that field region, which is characterized by a much greater probability to be in the doubly excited state
than to be in eg state. To this end, we have found that we need to include a small gap in the Andreev
spectrum, and we need to consider that the quasiparticles leading to the poisoning are very few (which
we translate as a very small quasiparticle temperature). In addition, parity switching transitions require two
different rates Γee⇄eg and Γeg⇄gg, depending on whether they involve the doubly excited state or the ground
state, respectively. Of course, this larger number of parameters precludes claiming a quantitative fit to the
experiment in that region.

Figs.4.12 and 4.13 illustrate the key ingredients to observing very little poisoning in the system. Fig.
4.12 focuses on the relaxation times, and clearly displays how a small and shifted poisoning probability peg
(as seen in the experiment) requires a much faster relaxation from the poisoned state to the ground state
than the relaxation from excited to poisoned (compare (a), (b) and (c)). A high maximum of the excited
probability pee also requires a fast pair relaxation time (compare (a) and (d)). Fig. 4.13 focuses on the
quasiparticle and pair temperatures, and shows that a small poisoning requires a very small quasiparticle
temperature compared to the gap in the spectrum.
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Figure 4.12 – Role of the relative relaxation times in the poisoning probability. Probability of the two-hinge junction
to be in the excited excited, ground ground or poisoned Andreev state respectively (pee, continuous lines, pgg , da-
shed dotted lines, and peg , dashed lines), for several values of the gap (0 to 10 kBTqp), and changing the respective
quasiparticle relaxation times τ1 and τ2 in (a), (b) and (c). It is seen that a poisoning probability peg smaller than the
excited probability pee, and shifted with respect to the extrema of pee and pgg is obtained only with τp ≪ τ1 ≪ τ2.
Panel (d) displays the effect of a longer pair relaxation time.

Figure 4.13 – Role of the relative quasiparticle and pair temperature on the poisoning probability. Only a quasiparticle
temperature Tqp smaller than the gap, combined with a pair bath temperature Tb larger than the gap (situation of
panel (a) produces the small poisoning probabilities peg relative to the pee, as seen in the experiment near 450G).

4.3 . Relations between the experiment and the model

4.3.1 . From switching current histograms to probabilities

The occupation probabilities are extracted from the integrated switching current distributions (see e.g.
later Fig.4.17c) by noting that each step in the integrated distribution corresponds to a transition out of a
specific supercurrent-carrying state. The height of the step from one plateau to the next therefore counts
the number of switching events from that state, and is normalized to yield the occupation probability of that
state just before the switching event. The integrated switching current distribution corresponds to the total
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switching probability of the junction, as defined in Eq.(1.82) in part 1.10.4. The probabilities are associated
to the steps by comparison between the experimental distributions (e.g. Figs.4.3 and 4.5) and the CPR of
the two-helical-hinges model Fig.4.7b, assuming that the most visible branch in the data corresponds to
the (most probable) ground-ground state. By construction, pee can’t exceed pgg, as we attributed the state
with the lowest probability between the two to the doubly-excited state. From the theoretical analysis, we
associate pge+peg to the "poisoned state" eg, pee to the "doubly-excited state" ee, and pgg to the "ground
state" gg. In the following figures showing the experimental probabilities, mind that the data for 17Hz and
187Hz current bias ramp frequencies have been taken during two series of measurements, and a shift in
magnetic field may have happened between the two.

Fig.4.14 displays the occupation probabilities deduced from the experiment over four periods of modu-
lation around −170 G, at both 17 Hz and 187 Hz current bias ramp frequencies. At 17Hz, peaks and dips
in the probabilities of states ee and gg have close values pee ≲ pgg ≃ 0.35, and the probability of poisoned
state eg is higher, with a maximum slightly shifted toward positive field. Their eights vary a bit over the
four periods, but their widths seem constant. At 187Hz, the gap between pee and pgg grows, pgg is globally
lower compared to its 17Hz value, and pge + peg is globally higher compared to its 17Hz value. The width
of the pge + peg peak (and conjointly of the pgg dip) increased. Lastly, the pge + peg shift toward positive
field increased. In this region of field, there is an extra state (ps, grey lines) that is not accounted for in our
model, corresponding to one hinge in its ground state and the other hinge in its second excited state.

Figure 4.14 – Occupation probabilities extracted from the integrated experimental switching current distributions at
bias ramp frequency of 17 Hz (solid lines) and 187 Hz (dashed lines). In addition to the ground (pgg , blue lines) and
doubly-excited (pee, red lines) state probabilities of the two-hinge model, the peg + pge probability of the poisoned
state (green lines) is large, and shifted with respect to the pee peak. In this region of field, there is an extra state (ps,
grey lines) that is not accounted for in our model, corresponding to one hinge in its ground state and the other hinge
in its second excited state.

Fig.4.15 displays the occupation probabilities deduced from the experiment over six periods of modulation
around 420 G, at both 17 Hz and 187 Hz current bias ramp frequencies. We see that the widths of the
peaks (dips) of the occupation probability of the doubly-excited (ground) state do not vary substantially
over this range, but their heights do. Close to 400G and 420G, they barely touch each other, but otherwise
the values at their dip/peak is pgg ≃ 0.6 > pee ≃ 0.4. We also see how the small shoulder of the poisoned
state probability (green lines) is larger at 187 Hz than at 17 Hz. It is striking that in the case of very little
poisoning, the higher energy ee level has a higher probability than the lower energy eg level.
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Figure 4.15 – Occupation probabilities extracted from the integrated experimental switching current distributions at
bias ramp frequency of 17 Hz (solid lines) and 187 Hz (dashed lines). In addition to the ground (pgg , blue lines) and
excited (pee, red lines) state probabilities of the two-hinge model, the peg + pge probability of the poisoned state
(green lines) is extremely small, and shifted with respect to the pee peak.

4.3.2 . From current ramp signal to relaxation times

We choose a bias current ramp that is an asymmetric triangular periodic signal from 0 to 3 µA with a
0.8/f rise time, where f is the sweep frequency refereed as the current bias ramp frequency. In our analysis,
we suppose that the current sweep from 0 to the switching current corresponds to a linear evolution with
time of the weak junction’s superconducting phase difference, from Φ to Φ + γmax = Φ + ω.tωsw, with
γmax = π/2. Here ω is the phase sweep pulsation and tωsw is the time it takes to switch. To relate ω to
the current sweep frequency f we use the fact that the switching current for the low magnetic field values
studied here is Isw ∼ 2.5 µA, and the current is swept up to Imax ≃ 3 µA. Therefore tωsw = 2.5/3 ∗ 0.8/f .
It is illustrated in Fig.4.16.
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Figure 4.16 – Sketch of the link between time t, current I and superconducting phase difference across the weak two-
helical-hinges junction of our asymmetric DC SQUID model. V is the voltage across the sample,Φ is the flux through
the DC SQUID, and γmax is the phase at which the current in the strong junction of the asymmetric DC SQUID is
maximum.

Since ωtωsw = γmax we find ω17 ≃ 40 rad.s−1 for f = 17Hz and ω187 ≃ 441 rad.s−1 for f = 187Hz.
The theoretical model which reproduce best the experimental data provides the parameters ωτ1, ωτ2, and
ωτqp. We then use ω17 and ω187 to calculate τ1, τ2, and τqp.
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4.4 . Comparison : exceptionally long-lived ABS

To compare experiment and theory, we extract from the experimental switching current distributions
the field-dependent histograms and integrated histograms, from which we derive the state-dependent ex-
perimental occupation probabilities. The theoretical occupation probabilities are then computed using the
parameters ωτ1, ωτ2, ωτp, Tb and Tqp which best reproduce the experimental occupation probabilities.
P l
sw(I, ϕsw), dP (I, ϕsw)/dI and the full switching distribution as a function of flux are subsequently gene-

rated with those parameters.
Figs.4.17 and 4.18 display how well the experimental switching current distribution around -170 G

are reproduced by theory. Two current ramp frequencies, 17 and 187 Hz, were investigated. The model
reproduces the extent over which the fainter intermediate (poisoning) branch extends, and how it extends
further in the case of the higher current ramp frequency. The model also reproduces remarkably well the
shape, height, and relative positions of the three probability distributions pgg, peg + pge and pee extracted
from the integrated experimental histogram (compare Fig.4.17d with 4.17h and Fig.4.18d with 4.18h). In
the regions with three possible switching currents, there are three non-negligible occupation probabilities
of the states gg, ee and eg. For the slowest ramp, pgg and pee are extremal at π, whereas peg + pge is
maximal slightly above π (Fig.4.17d). The corresponding plot at a ramp frequency eleven times greater,
Fig.4.18d, displays a much greater shift of the maximum of peg + pge. This shift is the signature of the
inter-hinge pair relaxation processes of typical time τp. The parameters used to match the experimental data
are τqp = τ1 = τ2 = 10.5 ms and τp = 1.82 ms for both the slow and fast ramp. Only Tb = Tqp was allowed
to change, yielding kBTb/ET ≃ 0.4 for 17 Hz and kBTb/ET ≃ 0.7 for 187 Hz, reflecting the smaller time
available for quasiparticle thermalization in the reservoirs.

The asymmetry of the switching current distribution, reflecting the finite relaxation times, is visible in
Figs.4.17a and 4.18a thanks to the intermediate distribution. Correspondingly, the asymmetric shapes of
the occupation probability peaks (or dips) are clearly visible both in experiment (Figs.4.17d and 4.18d) and
theory (Figs.4.17h and 4.18h). The model fails, however, to capture some of the experimental features at
187 Hz : in experiment Fig.4.18a, the main branch is asymmetric towards positive current, whereas the
intermediate, fainter branch is asymmetric towards negative current. The switching statistics generated in
the theory, by contrast Fig.4.18e, displays a main branch that extends further, for both positive and negative
current, than the intermediate branch. This discrepancy may be attributed to the fact that the model is
restricted to only the first excited state, see Fig.1.24 in part 1.4.2.

We now turn to modeling the experimental switching current distribution around 450 G, see Figs.4.19
and 4.20. Interestingly, in this field region hardly any intermediate switching branch is visible (Figs.4.19a and
4.20a). This means that the ee and gg states are much more populated than the eg state, as clearly seen
in the extracted occupation probabilities, Figs.4.19d and 4.20d : the poisoned state probability peg is less
than 5%, with a maximum shifted with respect to the pee and pgg extrema. This situation, with very little
poisoning, is unexpected since it corresponds to a higher probability of the more energetic ee state than the
eg state. It can be reproduced using a slow pair relaxation time and a relaxation time τ2 out of the ee state
and into the eg state that is ten time longer than the relaxation time τ1 out of eg and into gg (see 2(g)). In
addition, a much smaller quasiparticle temperature is required compared to the pair bath temperature, along
with a small gap in the Andreev spectrum (too small to be detected in the experiment). The parameters
are the same τp = 1.82 ms pair relaxation time as previously, but τ1 = 25 ms and τ2 = 250 ms. Given the
larger number of parameters involved, we consider the description of this low poisoning regime qualitative
rather than quantitative.
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(h)𝜔𝜏1 = 𝜔𝜏2 = 0.42
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Figure 4.17 – Measured switching current distributions and extracted probabilities of Andreev hinge states occupa-
tions in a field region where an additional switching branch develops, for a current ramp frequency of 17 Hz. Com-
parison to theory with two current-carrying hinge modes. (a) Switching current histograms over four flux periods
around -170 G. The number of switching events is coded in shades of grey. The background has been removed with
a first order polynomial. (b) Histograms at magnetic fields around the jump at B = -170 G where ϕ = π, see the
corresponding colored lines in (a). (c) Integrated histograms close to the jump at B = -170 G. (d) Field-dependence of
the occupation probability of three supercurrent-carrying Andreev states, corresponding respectively to both hinges
in the ground state (pgg , blue curve), both hinges in the excited state (pee,red curve), or one hinge in the ground
state and the other in the excited state (peg + pge, green curve). The corresponding theoretical curves (e),(f),(g),(h)
are computed using the parameters kBTb/ET = kBTqp/ET = 0.4, ωτqp = 0.42, ωτp = 0.073, yielding
τqp = 10.5ms and τp = 1.82ms. ϕsw = Φ + γmax with γmax = π/2. The theoretical curves (e) resolve the
fainter intermediate distribution seen in the experiment (a). This leads to a range of flux where three values of swit-
ching current are possible. This corresponds to regions with three peaks in the histogram (see, e.g., the green curve
at -170.1 G in the experimental panel (b)), which are qualitatively reproduced in (f), albeit with a less equally distributed
peak height. The integrated histograms with two intermediate plateaus ((c)) are also qualitatively reproduced in the
theory ((g)). Finally, the theory ((h)) with these parameters, captures the shape, height, and relative positions of the
three probability distributions pgg, peg + pge and pee shown (d).

144



(a) (b) (c) (d)

ex
p
er

im
en

t
th

eo
ry

(e) (f) (g)

𝑝𝑒𝑔 + 𝑝𝑔𝑒

𝑝𝑔𝑔

𝑝𝑒𝑒

(h)𝜔𝜏1 = 𝜔𝜏2 = 4.6
𝜔𝜏𝑝 = 0.8

𝑘𝐵𝑇𝑞𝑝/𝐸𝑇 = 𝑘𝐵𝑇𝑏/𝐸𝑇 = 0.7

Figure 4.18 – Measured switching current distribution and extracted probability of Andreev hinge state occupation
in the same field region as Fig. 4.17, for a faster current ramp frequency of 187 Hz. Comparison to theory with two
current-carrying hinge states. (a) Switching current histograms over four flux periods around -170 G. The number
of switching events is coded in shades of grey. The background has been removed with a first order polynomial. (b)
Histogram curves at magnetic fields around the jump at B = -170 G whereϕ = π, see the corresponding colored lines
in (a). (c) Integrated histograms close to the jump at B = -170 G. (d) Field-dependence of the occupation probability of
three supercurrent-carrying Andreev states, corresponding respectively to both hinges in the ground state (pgg , blue
curve), both hinges in the excited state (pee, red curve), or one hinge in the ground state and the other in the excited
state (peg+pge, green curve). The corresponding theoretical curves (e),(f),(g),(h) are computed using the parameters
kBTb/ET = kBTqp/ET = 0.7, ωτqp = 4.6, ωτp = 0.8, yielding τqp = 10.5ms and τp = 1.82ms.
ϕsw = Φ + γmax with γmax = π/2. The theory reproduces the main features of the experiment : number of
histogram peaks ((b) and (f)), number of intermediate plateaus ((c) and (g)), broadened occupation probabilities, and
increased shift in peg + pge ((d) and (h)).
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Figure 4.19 – Measured switching current distribution and extracted probability of Andreev hinge state occupation in
the case with very little visible poisoning (faint intermediate branch, very small peg probability) (a) Switching current
histograms over four flux periods around 450G, with a 17Hz current ramp. The number of switching events is coded in
shades of grey. (b) Histogram curves at magnetic fields around the discontinuity in the sawtooth at B = 450 G where
ϕ = π, see the corresponding colored lines in (a). (c) Integrated histograms over the same field range. (d) Field-
dependence of the occupation probability (pgg blue curve), excited (pee, red curve) and poisoned (peg , green curve)
states. The corresponding theoretical curves (e),(f),(g),(h) are computed using the parameters kBTb/ET = 0.4,
kBTqp/ET = 0.01, ωτp = 0.073, ωτ1 = 1 and ωτ2 = 10, yielding the relaxation times τp = 1.82 ms,
τ1 = 25ms and τ2 = 250ms. The gap in the spectrum is 3kBTqp. ϕsw = Φ+ γmax with γmax = π/2.
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Our analysis has led to the identification of three times, describing respectively the intra-hinge relaxation
from the excited to the ground state within a single hinge (single-quasiparticle or poisoning process, with
times τ1 and τ2), and the inter-hinge or pair relaxation involving a two-particle process in which two hinges
simultaneously acquire or release a quasiparticle over a time τp. This process is impeded if the hinges are
far apart, and correspondingly the time τp should increase with the separation between hinges.

Let us compare the values of τp and τqp we have found (albeit overestimated because of possible
inductance effects, see appendix 6.2), in the ∼ 10− 100 ms range, to the values obtained in nontopological
junctions in similar environments. The poisoning relaxation times we find are similar to the ones measured
in Josephson junctions based on atomic contacts [126, 129] and semiconducting nanowires [131, 77], which
vary between a few hundred µs and ms. In striking contrast, the pair relaxation times τp estimated in
those works, and associated to the T1 relaxation time of the Andreev qubit [132] are two to three orders of
magnitude shorter, in the µs range, than what we find in the bismuth nanowire.

We interpret this as demonstrating the strong decoupling between hinges, confirming the topological
character of bismuth. Indeed, while in a nontopological Josephson junction, every helical channel locally
coexists with its opposite helicity counterpart, in a topological system, the two helical channels are spatially
separated, typically by one hundred nanometers or more. This separation is roughly one hundred times
greater than the transverse extension of the helical Andreev states at the Bi nanowire hinges (which is in
the nanometer range, as shown by the extraordinary field range over which the supercurrent persists, see
Figs.4.1 and 3.12 as well as [3, 40]), and ten times greater than the superconducting coherence length of
the disordered W contacts (typically a few nanometers).

A remaining puzzle is why the degree of poisoning depends on magnetic field, so that poisoning is
clear in one field range and practically undetectable in another. One possibility is that the Zeeman field,
by tilting the spins, can remove the orthogonality between states of a given hinge, thereby allowing spin-
conserving, backscattering relaxation/poisoning transitions within one hinge. Whereas when the states are
orthogonal, backscattering relaxation must occur through a change of hinge, which is very slow if the hinges
are separated. A second possibility, mentioned in [130], explains the change in effective temperature of the
poisoning quasiparticles Tqp by a change in the nature and number of quasiparticles that can couple to
Andreev bound states. Depending on magnetic field, the Andreev bound states, whose energy shifts with
Zeeman field, could be alternately coupled to the quasiparticle continuum above the superconducting gap
(yielding a rather large temperature), or coupled only to rarer localized states (corresponding to a very small
temperature). We believe that both the number of available quasiparticles and the selection rules given by
the helical nature of the hinges could explain the two very different regimes we see.
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Figure 4.20 – Measured switching current distribution and extracted probability of Andreev hinge state occupation in
the case with very little visible poisoning (faint intermediate branch, very small peg probability) (a) Switching current
histograms over four flux periods around 450 G, with a 187 Hz current ramp. The number of switching events is
coded in shades of grey. (b) Histogram curves at magnetic fields around the discontinuity in the sawtooth at B = 450
G where ϕ = π, see the corresponding colored lines in (a). (c) Integrated histograms over the same field range. (d)
Field-dependence of the occupation probability (pgg blue curve), excited (pee, red curve) and poisoned (peg , green
curve) states. The corresponding theoretical curves (e),(f),(g),(h) are computed using the parameters kBTb/ET = 1,
kBTqp/ET = 0.01, ωτp = 0.8, ωτ1 = 11 and ωτ2 = 110, yielding the relaxation times τp = 1.82 ms,
τ1 = 25ms and τ2 = 250ms. The gap in the spectrum is 3kBTqp. ϕsw = Φ+ γmax with γmax = π/2.
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4.5 . Conclusion

In conclusion, our investigation of the full switching current statistics of a bismuth nanoring Josephson
junction provides an unprecedented look into Second Order Topological Insulators and the helical Andreev
Bound States that are predicted to carry the supercurrent along spatially separated 1D hinges. Our detection
around phase π, of switching events originating from both excited and ground states, on millisecond times-
cales, is a demonstration of slow relaxation of quasiparticles and, more spectacularly, of pairs. These features
are an unambiguous signature of the topological protection provided by parity conservation in Quantum Spin
Hall state-based Josephson junctions. In addition, the SOTI hypothesis of transport occurring through two
Andreev hinge states of opposite helicities situated at two separate hinges is confirmed by the unusually
long pair relaxation time as compared to the ones found in non-topological materials. We believe the full
statistical measurement of the switching current is a simple yet powerful technique that will prove useful to
investigate topology and correlations between current-carrying paths in a vast range of Josephson junctions,
in particular based on 2DTI and other SOTI materials, such as WTe2 [150] and Cd3As2 [160].
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5 - General conclusion

My PhD work confirms and strengthens the claim of the existence of topologically protected 1d helical
states in bismuth nanostructures, as predicted for a higher-order topological insulator. It gives new insights
into the boundary states of Josephson junctions based on 2d TIs and 3d SOTIs, in particular on the role of
helicity in the variations of the supercurrent with magnetic field as well as in the occupation dynamics of
the junction.

With supercurrent interferometry, we confirmed the presence of three field scales corresponding to
orbital dephasing between 1d ballistic states at small fields, to orbital dephasing within individual narrow
states at large fields, and to both orbital and Zeeman dephasing at intermediate fields. Further analysis
led to the identification of several mechanisms to explain the observed Josephson diode effects, including
spin-orbit-coupling-induced anomalous Josephson effects.

With the analysis of the statistical distribution of the switching current, using a model of the occupation
dynamics of a system with two helical hinge states developed in collaboration with theorists, we revealed
a pair relaxation time τp ≃ 2ms, two to three orders of magnitude larger than conventional Josephson
junctions. We interpret this result as a proof of spatial separation between the two non-spin-degenerate
helical Andreev state partners.

Lastly, with second harmonic transport response and switching current variations with magnetic field, we
estimated a spin-orbit-coupling-induced magneto-chiral anisotropy both in the resistive and superconducting
states of several samples, that we quantify with a (super)current-induced effective magnetic field Beff/I =

β ∼ 10− 100G.µA−1.
The measurement and analysis methods developed during my PhD opened new experimental possibilities.

These methods are currently used in the group for transport measurement of other predicted second-order
TIs, such as WTe2 and Bi4Br4, and start to bear their fruits. In addition to the experimental techniques
developed in my PhD, other methods using contact-free detection schemes can be used. These contact-free
measurements can be achieved by forming AC SQUIDs coupled to a microwave resonator [109, 70, 4, 106]
or by detection of the small magnetization of the sample (embedded or not in an AC SQUID) in response
to a magnetic field, using giant magnetoresistance sensors [105]. The insights from my PhD work are also
useful for these different experiments.
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6 - Appendix

6.1 . Topological insulators

In the Landau theory of phase transitions, the phases of matter are identified by an order parameter
that can vary continuously. The topological phases are different, they are characterized by topological
invariants, calculated from the structure of the ground state of the system, that can only take discrete values.
This discrete character of topological invariants is an essential element of topological phases. Indeed, the
physical properties in relation with a topological invariant are robust against perturbations that can’t change
its discrete value. Topological phases of matter feature general physics notions like the Berry curvature,
deep quantum physics phenomenon like Majorana fermions and parity anomaly, as well as very practical
applications like more efficient transduction processes and topological protection against perturbations.

For example, the integer quantum Hall effect arises when a 2d electron gas is put in a high magnetic
field. It manifests by an insulating 2d bulk and an integer number of chiral states at the boundaries of the
2d system, propagating in one direction. These edge states conduct perfectly the current, resulting in a
quantized conductance G = n e2

h , n ∈ Z. This conductance is topologically protected against perturbations
like scattering on an impurity, and can’t be changed without closing an energy gap in the bulk of the
material. These properties justify its denomination as a topological insulator. This topological protection is
used in metrology, as the quantized conductance relates the voltage to the current by fundamental physical
constants.

In this section, I present key ideas to understand the topological nature of bismuth crystals and its
implications on electronic transport. First, I introduce the most fundamental element of practical interest
for transport : chiral edge modes. It will be done using the Dirac lattice picture. Second, I make the link
between band inversion(s), topology and chiral edge modes by presenting the standard TKNN-Chern bulk-
boundary correspondence. This part justifies the denomination of Topological Insulators (TI). Third, I extend
this analysis to symmetry protected topological modes, among which are the time-reversal symmetric TI
and the Topological Crystalline Insulators (TCI). Finally, I further extend it to Higher-Order Topological
Insulators (HOTI), which include pure bismuth crystal, featuring topologically protected 1d helical states
propagating on certain of its hinges.

6.1.1 . Lattice Dirac model and band inversion
Let us consider the simplest tight binding system that can exhibit Dirac equations and band inversion,

that is the 1d Dirac chain with a unit cell featuring two states (referred to as atoms, orbitals, or bands
depending on the context). For any two states model, the Bloch hamiltonian can be written as :

ĥ(k) = ϵ0(k)1̂ + d(k).τ̂ττ (6.1)

with τ̂ττ = (τx, τx, τz) and τx,y,z the Pauli matrices acting on the orbitals degree of freedom, and d(k) the
Bloch vector.

For now, let us focus on the boundary between two regions with 1d Dirac cones gaped by a "mass"
parameter m that changes sign. We consider a set of parallel 1d Dirac chains with linear dispersion along
the x direction and varying parameter m(y) along the y direction. We impose that m(y) goes continuously
and monotonously from a constant negative value at large negative y to a constant positive value at large
positive y, as sketched in Fig.6.1a. The Bloch hamiltonian is :

ĥ(kx, y) = νkxτy − iℏητx∂y +m(y)τz (6.2)

153



𝑦
𝑦

𝑦

chiral mode

(a)

𝐸

𝑘𝑥

(b)

𝐸

𝑘𝑥

(c)

Figure 6.1 – Illustration of chiral edge states governed by a Dirac equation arising from time-reversal symmetry brea-
king in the bulk. (a) Sketch of a chiral edge state profile living at the boundary between two topologically unequivalent
phases with band inversion. (b), (c) Sketches illustrating the emergence of chiral edge states from a lattice Dirac mo-
del with (c) and without (b) bulk chiral coupling terms between infinite 1d Dirac chains. The grey circles represent the
atoms and the lines between them represent the hopping terms, in the tight binding approach. The arrows represent
the propagation of an electron, as allowed by the hoppings between neighbors. The local and global spectrums are
sketched in the right hand side, with gapless states with linear dispersion represented in blue (right movers) and red
(left movers), and gaped bulk states represented in grey. Adapted from [161].

154



Considering first kx = 0, this equation admits a solution at zero energy that writes :

|ψ(y)⟩ = exp

[
± 1

ℏη

∫ y

0
m(y′)dy′

](
1
±i

)
(6.3)

where the ± sign relate to the sign of the m(y) transition (+ from negative to positive with increasing y,
and − in the opposite situation). Introducing back νkxτy as a perturbation, the first order correction to the
energy of these solutions yields E = ±νkx.

It is a chiral mode localized at the boundary between m(y) > 0 and m(y) < 0, vanishing exponentially
for large |y|, and whose propagation direction is determined by the sign of the m(y) transition (from
negative to positive in the present case). It has a linear dispersion relation and its energy can take any value,
contrasting with the gaped spectrum of the chains with finite values of m(y) at larger |y|. This chiral edge
mode is protected against impurity scattering (disorder), as there exist no other mode to scatter with at the
same energy, neither in the gaped bulk nor in the edge which propagates in one direction only. This chiral
edge mode is the most fundamental element of practical interest for transport and is at the basis of every
topologically protected boundary modes that propagates in TI.

This hamiltonian has the same form as a set of 1d Kitaev chains close to kx = ky = 0, with a chiral
inter-chain coupling η

2 |ny⟩ ⟨ny + 1| (τz+iτx), where only chiral modes of opposite propagation direction are
coupled [161]. Such a coupling breaks time-reversal symmetry and can be achieved by external or internal
magnetic fields.

Fig.6.1b illustrates the situation of a set of parallel 1d Dirac chains without any inter-chain coupling
(η = 0) and m = 0. In this case the spectrum is a massless (gapless) Dirac cone with a degeneracy
corresponding to the number of chiral modes propagating in one or the other direction. It corresponds to
m(y) = 0 everywhere in the material and the propagation isn’t protected against backscattering at an
impurity.

On the other hand, Fig.6.1c illustrates the same Dirac lattice but with chiral inter-chain coupling. It
gaps out the bulk of the material (massive Dirac cones) but leaves one gapless chiral mode on each of
the two edges, with opposite propagation directions. We recover the case of isolated chiral modes on the
edge discussed before, and its protection against scattering. This type of behavior is very peculiar, with
an insulating bulk and perfect conduction on the edges. We will see in the following that it is a common
feature of topological insulator. This corresponds to m(y) < 0 everywhere in the bulk and m(y) > 0 outside
the material. Because the mass term m characterizes the bulk gap and has a reversed sign compared to
the exterior of the material, it is often thought of as a "band inversion". To complete the picture, a term
m(y) > 0 in the bulk would yield a gaped bulk and gaped edge modes, referred as "trivial" insulator.

In this subsection, we found a tight binding model that exhibits very peculiar behavior, with an insulating
bulk and chiral edge modes protected against disorder. This model requires the opening of a gap in a
Dirac hamiltonian by a mass term that breaks time-reversal symmetry and introduces chirality. We found
a connection between the sign of this mass term and the presence of the chiral edge modes. In the next
subsection, we will clarify this connection and relate it to the topological Chern number.

6.1.2 . Bulk-boundary correspondence
We saw in the previous subsection how a Dirac mass term, a property of the bulk hamiltonian of a

system, can dictate if the boundaries of a finite version of the system host a chiral state. In this part,
we give the basic ideas to generalize this bulk-boundary correspondence. To do so, we restrict ourselves
to system breaking time-reversal symmetry and insulating in the bulk, like the one discuss in the previous
subsection or like in the Integer Quantum Hall Effect (IQHE).

There are two parts to establish bulk-boundary correspondence :
- spectral flow : relating a number computed from the knowledge of the bulk only to the edge states pro-
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Figure 6.2 – (a) Illustration of the concept of spectral flow. Spectrum of an infinite ribbon in the x-direction with a
topological TKNN-Chern invariant C = 1 (background red lines). It features 2n = 2 states crossing the bulk gap,
corresponding to two counter-propagating topologically protected chiral states,n = C = 1 on each edge.Wrapping
the ribbon on itself along x yields quantized wavevectors (circles). Inserting a quantum of magnetic flux ϕ0 = h/e
move each state to its neighbor, effectively pumping n electrons (blue circles) from one edge to the other. (b) For a
2-band 2d system, illustration of the relation between the wavevector kkk living on the 2d surface of a torus (Brillouin
zone) (left), and the 3d unit Bloch vector s(k) = d(k)

||d(k)|| living on the 2d surface of a sphere (right). The TKNN-Chern
topological invariantC counts the number of wrapping of the sphere whenkkk explores the whole torus. Adapted from
[164].

tected against perturbations that do not close the gap
- Chern number : relating a number computed from the knowledge of the bulk only to a topological quantity
(invariant under weak perturbation by disorder)

a) Spectral flow : Laughlin argument

First, the relation between the boundary states and a quantity computed from the bulk can be understood
with the Laughlin argument [162], which is a special case of Thouless pump [163]. It goes as follows. We
want to know, from a quantity calculated in the bulk, if a given 2d insulating material has topologically
protected chiral states propagating on its edges. Take the 2d material you want to study, and wrap it on
itself in one direction, say x, while living it with open boundaries in the other direction, say y. This forms
a finite cylinder along y with two independent edges. Along x, the periodic boundary conditions result in a
quantization of kx.

By adding adiabatically exactly one quantum of magnetic flux Φ0 = h/e inside the cylinder, all the
occupied states at various kx are moved to their neighbor at kx + 2π/Lx, where Lx is the perimeter of
the cylinder. The hamiltonian of the system Ĥ(ϕ = 0) = Ĥ(ϕ = Φ0) is unchanged, but charges have
been pumped between the states. If the system has n topologically protected chiral states propagating on
its edges, there necessarily will be n states going up (one edge) in energy and n states going down (other
edge). This is illustrated in Fig.6.2a with n = 1. So one edge gained n electrons while the other lost n
electrons, which amounts to a transfer of n electrons between the two edges, through the insulating bulk.
This is an illustration of the concept of spectral flow.

Now, can we relate this integer n to a property of the bulk ? The answer is yes. The n charges transferred
between the two edges can be expressed as a current Iy along y generated by the electric field response
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Ex along x to the insertion of the flux Φ. We can write Ex = 1
Lx

dΦ
dt and the current density jy = Iy/Lx,

yielding jy/Ex = σxy = Iy/Φ̇, with σxy the Hall conductivity. In one cycle ∆Φ = Φ0 realized in a time
∆T , n charges have been transferred, thus ne = Iy∆T = σxyΦ̇∆T = σxyΦ0. Finally, we get :

σxy = n
e2

h
(6.4)

which relates a property of the bulk σxy to the number of topologically protected chiral states propagating
on its edges. But how does it relate to a topological invariant ?

b) TKNN-Chern topological invariant

Now we want to calculate σxy in the bulk of our 2d material, which will give us the number of topologically
protected chiral states propagating on its edges. Studying an infinite translation-invariant material, the
eigenstates can be expressed as eigenstates of the Bloch hamiltonian labeled by a band index m and a wave
vector kkk = (kx, ky) : |u(m)

k ⟩
In Heisenberg representation, it is possible to show that the equation of evolution of the position of

|u(m)
k ⟩ in the presence of an electric force F = qE writes, at first order in F [164] :

ℏ
dr
dt

= ℏv(k) = ∇kE
(m)
k +Ωm(k)× F (6.5)

where Ωm(k) = ∇k × Am is the Berry curvature of band m, equivalent of a magnetic field in kkk-space.
Am(k) = i ⟨u(m)

k |∇k|u
(m)
k ⟩ is the Berry connection associated to the evolution of |u(m)

k ⟩ with kkk in the band
m. ∇kE

(m)
k is the standard group velocity.

For a fully occupied band m with F = qExx̂xx, the current jjj is oriented along y, and we have :

jy
Ex

= σyx =
e2

h
C with C = 1

2π

∫∫
BZ

Ωm(k)dkxdky (6.6)

where C is the TKNN-Chern number, introduced in [165]. The integral is over the full 2d Brillouin zone.
Thus C = n by identification with Eq.(6.4).

The Brillouin zone is a torus, which is a closed surface. If |u(m)
k ⟩ can be defined using a single smooth

gauge, then Green-Ostrogradski integral formula applies and ∇k · (∇k × Am) = 0 =⇒ C = 0 and n =

0, meaning that there is no topologically protected chiral states propagating on its edges. C ≠ 0 is an
obstruction to finding continuous gauge throughout the surface of a 2d torus.

For a 2-band system, there is a nice visualization of the problem [166]. Eq.(6.1) implies that for each
2d wavevector kkk of the Brillouin zone (torus), there is an associated 3d Bloch vector s(k) = d(k)

||d(k)|| of unit

length (Bloch sphere) and an eigenstate |u(m)
k ⟩ (SU(2)). It is illustrated in Fig.6.2b. If s(k) covers the whole

sphere at least once when kkk explores the whole Brillouin zone, then the "hairy ball" theorem implies that
there is at least one point in kkk (and on the sphere) where |u(m)

k ⟩ is ill-defined. In such a case, the integral
operation requires the use of multiple gauges patched together, yielding C ̸= 0.

Actually, for a 2-band system, C has an alternative formula, well known by the mathematician as the
number of wrapping of the Bloch sphere when kkk explores the whole Brillouin zone :

C = 1

4π

∫∫
BZ

s.[(∂kxs)× (∂kys)]dkxdky (6.7)

This wrapping number is an integer number defining a topological invariant, making clear the connection
between the number of topologically protected chiral states propagating on the edges n, the bulk Hall
conductivity n = σxy

h
e2

, and the topological TKNN-Chern invariant n = C.
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Figure 6.3 – Illustration of the process used to build a time-reversal symmetric topological insulator from two time-
reversed conjugate copies of a Chern insulator with IQHE. Being spin-1

2
particle states and time-reversed version of

each other, the two counter-propagating edge states can’t couple to each other as long as TRS is preserved, thanks
to Kramers’ theorem. They form a helical pair of time-reversed states, called Kramers’ pair. From [2].

6.1.3 . Z2 time-reversal invariant topological insulators

In the previous subsection, we introduced key ideas to relate the topology of the occupied states of the
bulk, characterized by a topological invariant, to the number of chiral modes living on the boundary between
two materials with different topological invariants. But because the topological invariant is proportional to
the integral of the Berry curvature of the Brillouin zone, and the latter vanishes for time-reversal symmetric
systems, it was long believed that such topological phases were limited to systems that break TRS.

However, in 2005, Kane and Mele [151] proposed the following idea : what if we build a system from
two copies of spinfull TRS breaking TI which are the time-reversal conjugate of each others ? In that case,
we have a TRS system with helical edge modes protected by TRS and Kramer’s theorem. The situation is
sketched in Fig.6.3, with a spin up chiral mode propagating in one direction and a spin down chiral mode
propagating in the opposite direction.

To do so, they introduced in graphene a term λIκτzσz (κ = ±1 for K or K ′ valleys, τz acting on orbital
space, sz acting on electron spin space) which respects all symmetries but breaks TRS for individual spin
species. It yields two Chern numbers, one for spin up states C↑ and one for spin down states C↓, related
by TRS such that C↑ = −C↓. What makes it very interesting is that adding TRS terms that mix spin up
and spin down components do not remove the helical edge mode (if the bulk gap did not close). This is
a consequence of anti-unitary operators, and more specifically Kramer’s theorem for spin-12 particles under
time-reversal conjugation.

For a spin-12 particle, taking the time-reversal conjugation of its state can be written as the operator :
T |ψ⟩ = −iσyK |ψ⟩, with K the complex conjugation operation. Doing the operation twice yields T 2 = −1.
It is the key to Kramer’s theorem, and we will present its meaning and consequences in two steps.

1 - If the system has TRS, it implies that if a state |ψ⟩ is an eigenstate of the hamiltonian H |ψ⟩ = E |ψ⟩,
then T |ψ⟩ is also an eigenstate H(T |ψ⟩) = E(T |ψ⟩). For the Bloch hamiltonian h(kkk), it translates into
T h(kkk)T −1 = h(−kkk), so for an eigenstate h(kkk) |ψ(kkk)⟩ = E(kkk) |ψ(kkk)⟩ we also have h(−kkk)(T |ψ(kkk)⟩) =

E(kkk)(T |ψ(kkk)⟩), that is T |ψ(kkk)⟩ is also an eigenstate of h(−kkk) with the same energy E(kkk). For most of
the spectrum, this implies a 2-fold degeneracy, where |ψ(kkk)⟩ and T |ψ(kkk)⟩ are two different states.
But is it still true for time-reversal invariant momenta (TRIM), mapping a momentum to its itself by
time-reversal operation kkk −→ −kkk ? There are four TRIM in a 2d square lattice Brillouin zone.

2 - Kramer’s theorem states that : for a TRS system with spin-12 particles, all states are at least 2-fold
degenerate. It implies that as long as TRS is respected, no perturbation can lift the 2-fold degeneracy, even
at TRIM.

Going back to the uncoupled spins picture illustrated in Fig.6.3, we see that Kramers theorem ensures that
backscattering can’t occur in the helical edge as long as TRS is preserved, because the two chiral modes
composing the helical edge mode are TRS conjugate of each others (called Kramers partners, together
forming a Kramers pair). We recover the topological protection of the chiral edge modes, but requiring the
preservation of TRS.

As discussed by the authors [151], electron-electron interaction could break the protection against backs-
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Figure 6.4 – Band structure of a bulk TRS system with a boundary parallel to kkk with edge states, between two TRIM
points Γa and Γb. In (a) the number of edge states crossing the Fermi energyEF is even, whereas in (b) it is odd. An
odd number of crossings leads to a topologically protected Kramers pair of boundary states. From [168].

cattering in principle, but for weak interaction it is irrelevant under the renormalization group. Thus it does
not lead to an energy gap or localization, in contrast with ordinary 1d wires. Nonetheless, electron-electron
interaction allows inelastic scattering, yielding a reduced conductance G < e2/h for each edge. A more in
depth discussion can be found in [167], together with a review on the advances on this type of topological
insulators.

There are only two ways of connecting Kramers pairs from one TRIM to another TRIM, as illustrated
in Fig.6.4 [168]. In Fig.6.4 left, they connect pairwise, crossing the Fermi energy an even number of times.
These crossings aren’t protected and can be removed by a change of parameters that do not close the bulk
gap. In contrast in Fig.6.4 right, they cross the Fermi energy an odd number of times, in a way that cannot
be eliminated. Coming back to the simple model of Kane and Mele with uncoupled spin up and down, the
number of crossing is the difference between the number of states going up and down in energy, divided by
2 because we only consider one of the two Kramers partners :

ν =
C↑ − C↓

2
mod 2 (6.8)

The mod 2 in the above equation appears as a result of the Kramers theorem ultimately only protecting
one Kramers pair. It defines a Z2 topological invariant. Even if a TRS term that couples up and down spins
is added, it doesn’t change the value of the topological invariant, unless a gap is closed in the process. For
the specific situation of helical edge modes with spins quantized along a single direction, the introduction
of a magnetic field parallel to this spin quantization axis does not break the topological protection as long
as no bulk gap closes [169].

For TRS systems that can’t be splitted into two time-reversed copies like this one, one has to find a way
of counting the number of band inversion over the different TRIM. The general formula involves products of
Pfaffian over all the TRIM, but Fu and Kane [58] proposed a simpler one for inversion symmetric systems :

(−1)ν =
∏

kkk∈TRIM

∏
n∈occ.

ξkkk,n (6.9)

where ν is the topological invariant, and ξkkk,n is the parity operator eigenvalue of the occupied band n at
the TRIM kkk. ν = 1 mod 2 corresponds to a topological insulator while ν = 0 mod 2 to a trivial insulator.

It is found that the topological Z2 classification of 2d TRS systems can be extended to 3d TRS systems,
featuring 2d surface states with single (helical) Dirac cones protected by TRS. One way to do so is to
deform the system into a set of Su-Schrieffer-Heeger chains, see [170] for more details. For an inversion-
symmetric system, the Fu-Kane index Eq.(6.9) can be extended to 3d systems, where the product includes
the additional TRIMs in the third dimension. One band inversion yields one Dirac cone at the surfaces,
protected by TRS, while two band inversions yields two Dirac cones that can hybridize and gap out, thus
not protected even with TRS.
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In this subsection, we briefly showed how topological insulators with an integer number of chiral edge
modes, characterized by a Z topological invariants, could be extended to time-reversal symmetric systems.
This forms a new class of topological insulators, characterized by a Z2 invariant. For 2d systems, it is called
Quantum Spin Hall Insulators (QSHI), with one helical pair of edge mode protected by TRS. For 3d systems,
it is simply referred to as strong 3d Topological Insulators (3DTI), with 2d surface states with single (helical)
Dirac cones protected by TRS. In the next subsection, we discuss the extension of these symmetry arguments
to other symmetry protected topological insulators.

6.1.4 . Extension to other symmetry protected topological insulators

We saw in the previous subsection an example of a symmetry that plays a crucial role in the topologi-
cal classification of materials. The symmetries of a crystalline system can be divided into two categories :
exceptional symmetries and spatial symmetries [170, 171].

a) Exceptional symmetries : the 10-fold way

There are three exceptional symmetries, restricting the system, in particular the form of the Bloch ha-
miltonian h(kkk) :
- time-reversal symmetry (operator T ) : imposing T h(kkk)T −1 = h(−kkk), relating states of identical energy
and opposite momenta, it is an anti-unitary operator with T 2 = −1
- particle-hole symmetry (operator C) : imposing Ch(kkk)C−1 = −h(−kkk), relating states of opposite energies
and opposite momenta, it is an anti-unitary operator with C2 = −1
- chiral symmetry (operator S) : product C.T , relating states of opposite energies and identical momentum,
it is unitary with S2 = +1

The three exceptional symmetries lead to the "10-fold way" classification of topological matter, that we do
not develop further, as we focus in details on specific cases.

b) Spatial symmetries : Topological Crystalline Insulators

The spatial symmetries, among which mirror, n-fold rotational (Cn), and inversion symmetries, involve
space groups. The spatial symmetries yield additional complexity, with specific protected boundary modes.
Citing [172] : "[...] since a crystalline symmetry acts non-locally in space, it also maps different parts of
the Brillouin zone onto each other. However, when there are submanifolds of the Brillouin zone which are
left invariant by the action of the symmetry considered, we may evaluate a non-crystalline invariant on
them, suited for the dimension and symmetry class of the corresponding submanifold, as long as we restrict
ourselves to one of the symmetry’s eigenspaces." This point deserves some attention as it is a key element
to the understanding of Higher Order Topological Insulators.

In Topological Crystalline Insulators (TCI), the crystalline symmetry of a surface is needed to get massless
Dirac cones, and is identical to the crystalline symmetry of the bulk crystal. Let us consider for example
a lattice that is mirror symmetric along the y-direction, illustrated in Fig.6.5a. Its Brillouin zone has two
(kx, kz) planes that are their own mirror symmetric image, at ky = 0, π, see Fig.6.5b. In each of these planes,
the eigenstates of the Bloch hamiltonian are also eigenstates of the mirror operator (with eigenvalues ±i),
defining two "mirror subspaces" of mirror-symmetric and mirror-antisymmetric eigenstates. At each of these
special ky slices, playing the same game as Kane and Mele for QSHI, we can define Chern numbers C± for
the two mirror subspaces ±i, with C± ̸= 0 even though the total Chern number C = 0 by TRS. A 2d system
with this 2d bulk characteristic, parametrized by ky, exhibits a nM (ky) =

C+(ky)−C−(ky)
2 ("mirror Chern

number") pairs of chiral states at its 1d boundaries, which is exactly the same formula as the Kane-Mele
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Figure 6.5 – Illustration of a TCI with mirror-symmetry-protection along y. (a)-(c) Adapted from [174]. (a) Simple cubic
latticewith amirror plane highlighted in turquoise. (b) Corresponding bulk Brillouin zonewith the twomirror-invariant
planes highlighted in blue. The (001) surface Brillouin zone is shown on top including the projections of the mirror-
invariant planes. The spectrum close to ky = 0 shows two Dirac cones if nM(ky = 0) = 2, see text. (c) Sketch of
a nontrivial surface band structure along the projection of the ky = 0mirror-invariant plane, corresponding to a 2d
system with the Bloch hamiltonian hbulk(kx, ky = 0, kz), nM(ky = 0) = 2, and a boundary perpendicular to z,
see text. (d) Stacking of finite 2d systems with the Bloch hamiltonianhbulk(kx, ky = 0, kz)withnM(ky = 0) = 2.
The so-built system has mirror symmetric surfaces along y and is translation-invariant in the same direction.

index (see Eq.(6.8)), but with mirror symmetry protection instead of time-reversal symmetry [173, 174, 172].
The spectrum of such a 2d system is sketched in Fig.6.5c for ky = 0 and nM (ky = 0) = 2.

If you now consider a stack of such 2d systems along the y-direction, as illustrated in Fig.6.5d, the so-
built system has mirror symmetric surfaces along y and is translation-invariant in the same direction. Thus,
both the bulk and the surfaces acquire a quantum number ky, allowing to make the connection with the 3d
Brillouin zone discussion. At ky = 0, the system is described as independent 2d slices with nM (ky = 0) = 2

chiral pairs circulating on the surface. Away from ky = 0 however, the states do not map onto themselves
in momentum-space anymore, and the symmetry protection is not guaranteed, analogous to the absence of
protection by TRS away from the TRIMs in QSHI. Thus, the crossings at the Dirac points along x (see
red and green lines in Fig.6.5c) are most likely lifted when ky ̸= 0, yielding nM (ky = 0) ∈ Z surface Dirac
cones of states related by mirror-symmetry along y (analogous to the helicity in strong 3DTI), as illustrated
in Fig.6.5b for the (001) surface Brillouin zone.

For the TCI with mirror symmetry described above (see Fig.6.5), it follows a Z classification, with
(at least) nM (ky = 0) Dirac cones on mirror-symmetric surfaces. For body-centered systems and face-
centered systems, ky = 0 is the only mirror symmetric plane, and there is only one mirror Chern number
nM = nM (ky = 0) [175]. Considering now instead a surface (0, α, 1), the bulk maintains its mirror symmetric
planes illustrated in Fig.6.5b, but their projections on the 2d surface Brillouin zone does not map on the 1d
mirror-symmetric lines of the latter, resulting in no mirror-symmetry protection for the surface states, and
possible hybridization. Thus, the topological protection is limited to mirror-symmetric surfaces.

6.1.5 . Higher-order topological insulators
Higher-Order Topological Insulators (HOTI(s)) are a new class of topological materials, that emerged

between 2017 and 2018 [155, 176, 153, 177]. In fact, HOTIs are a special type of TCI with lower symmetry
requirement for the surfaces [178], making them potentially more common than TCI with gapless surface
states [179]. First-order topological insulators are n-dimensional systems with topologically protected n−1-
dimensional boundary states in the bulk energy gap. HOTIs go beyond this picture, with boundary states of
lower dimensionality. For a second-order TI (SOTI) of dimension n, it hosts topologically protected boundary
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Figure 6.6 – (a) First-order strong 3d TI with insulating 3d bulk, and 2d surface states with one (helical) gapless Dirac
cone. (b) Second-order TI with insulating 3d bulk, insulating 2d surfaces, and 1d hinge states with one helical pair of
gapless states. (c) Third-order TI insulating everywhere, and 0d corner states in the gap. From Alan Stonebraker (APS).

(0,−𝛼, 1) (0, 𝛼, 1)

(001)

(a) (b)

Figure 6.7 – Illustrations of the surfaces of a 3d HOTI. (a) Roof picture of a (001) surface with two Dirac cones protected
by a spatial symmetry from hybridization (left), and resulting states when this symmetry is broken except at one hinge
(right). It can represent either the surface of a TCI protected bymirror symmetry alongy, or the surface of TRS 3dHOTI
with double band inversion. The hinge hostsnM ∈ Z pairs of counter-propagating states in the former, and 1 ∈ Z2

helical pair of states in the latter. Adapted from [172]. (b) Schematic of the hinge states of a hexagonally shaped HOTI
oriented along the trigonal [111] axis, withC3 and inversion symmetry (such as bismuth). Red lines represent a single
one-dimensional Kramers pair of gapless protected (helical) modes. In the Dirac picture of a HOTI surface, red and
blue surfaces correspond to opposite signs of the unique TRS surface mass termm. From [13].

states of dimension n − 2, that is corner states for a 2d SOTI and 1d propagating hinge states for a 3d
SOTI, see Fig.6.6.

To understand HOTIs, let us consider again the TCI with mirror symmetry along y discussed in the
previous subsection, illustrated in Fig.6.5. We saw that the mirror Chern number nM = C+−C−

2 = 2

ensures the presence of two Dirac cones on the (001) surface, illustrated in Fig.6.5b top and Fig.6.7a left.
If we consider a tilted surface (0α1), it breaks mirror symmetry on the surface and the Dirac cones are
not protected anymore. But if we introduce a kink that locally preserves the mirror symmetry along y,
as illustrated in Fig.6.7a right, nM 1d Dirac cones survive on the hinge thus formed. To understand its
protection(s) and its topological invariant, one can examine the effects of a minimal perturbation respecting
the proper symmetries by stacking specific systems on top of each surface, as in [153]. This example shows
how symmetry-protected boundary states two dimensions lower than the bulk can emerge.
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This approach can be generalized to other symmetries. For inversion-symmetric systems (with TRS),
the Z2 Fu-Kane index ν for strong first-order TIs (Eq.(6.9)) can be promoted to a Z4 topological index κ
[175, 172] :

κ =
1

2

∑
kkk∈TRIM

(n
(+)
kkk − n(−)kkk ) mod 4 (6.10)

where n(±)kkk are the numbers of occupied bands with even (+) and odd (−) parity at each TRIM kkk, counting
only one of the two spin-degenerate bands. We have κ mod 2 = ν. κ has four possible values :
- κ = 0 =⇒ ν = 0 corresponds to a topologically trivial insulator
- κ = 1, 3 =⇒ ν = 1 corresponds to a strong TI
- κ = 2 =⇒ ν = 0 corresponds to a HOTI

To understand the case of a HOTI with κ = 2, let us consider an inversion and time-reversal symmetric
3d system with a double band inversion. This double band inversion is not captured by ν but results in
κ = 2. Let us take a strong TI with ν = 1 and one band inversion, and a copy of it. If the two TIs are not
coupled, the whole system exhibit two Dirac cones on its 2d boundaries, for example on its (001) surface.
These two Dirac cones are not protected against hybridization, reflecting the Z2 character of ν. If we now
couple the two TIs, introducing a "mass" term m in the Dirac equation (there is actually only one way
to do it given the Dirac hamiltonian and TRS [175], the surface states can be gaped out. Between two
surfaces with masses of opposite sign however, there will be propagating 1d helical boundary modes at the
hinge, just like the edge modes of a QSHI. For illustration, one can look at Fig.6.7a again, although the
nature of the hinge states is different. The sign of the mass term of the surfaces depends on the system
(as the bulk) and its symmetries. For bismuth with C3, inversion, and time-reversal symmetries, the sign of
the mass term is represented by the alternating colors of the crystal surfaces in Fig.6.7b. If two surfaces are
related by inversion symmetry, inversion symmetry of the bulk imposes m(−rrr) = −m(rrr), guarantying the
presence of at least one hinge mode somewhere, separating the two surfaces.

Bismuth single-crystal is the first 3d higher order topological insulator discovered [13], but is not the best
as it is a semi-metal rather than an insulator and because its small gap at L-points can be easily inverted, as
we will see in depth in the next section dedicated to it. We discuss in part 1.2.4 how its topological nature
is still debated, making the work of this PhD relevant.

Shortly after bismuth, γ-WTe2 was also investigated for its HOTI character, with questions similar to
bismuth, with a QSHI phase in its monolayer form and a semi-metallic plus HOTI phase in its bulk form
[180, 181, 150]. There are other material candidates for being 3d HOTIs with helical hinge states, but stable
ones with a full bulk gap are scarce. Among them, α-Bi4Br4 is promising, featuring Van der Waals-coupled
1d chains [182, 183, 184]. Our team is currently experimenting with both WTe2 and Bi4Br4 in addition to
Bi.

HOTIs may be particularly well suited for topological quantum computation designs [185, 92], and some
first steps have been realized in this direction on a hinge state of Bi proximitized by superconducting Nb
and magnetic Fe [53].

6.2 . Inductances

We refer to something as an inductance L if it generates an effective flux Φ that scales with I : Φ = LI.
This terminology is consistent with the classical electrodynamics geometric inductance, as we will see. The
inductance itself can depend on I. In SQUID measurements, the current depends on the flux through the
surface of the SQUID. If inductive elements are present, the flux itself varies with the current. This kind
of feedback effect can deform the response of the SQUID, shift its critical current versus magnetic field
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pattern, and even make some phase domain inaccessible or create hysteretic behavior in some cases. We
give the physical origin, the approximate expression, and comment three types of inductive elements. The
two mechanisms yielding inductive behavior are illustrated in Fig.6.8.
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Figure 6.8 – (a) Sketch of the magnetic field lines (blue lines) generated by a current circulating in a wire in a loop
geometry (brown ring). The flux generated by the current add to the magnetic flux generated by an applied magnetic
field through the surface of the ring. Illustrates self-field effect at the origin of geometric inductances. (b) CPR of a
Josephson junction with the various conventions used to discuss phases shifts and critical current. The symmetry
I(ϕ) = −I(−ϕ) is broken when there is a magnetic field and AJE. Green solid line : derivative dI/dϕ⌋ϕ∗ of
the CPR at the green point (I∗, ϕ∗). For a bias current I∗, the junction can be treated as a (kinetic) inductance
LK(I

∗) = Φ0

2π
1

dI/dϕ⌋ϕ∗
.

a) Geometric self-inductance LG of a current loop

Threading a current I through a wire generate of magnetic field B at point rrr via Ampere’s law of
magnetostatic :

∮
rrr∈∂SBBB(rrr) · drrr = µ0I, where the integral is over a closed loop ∂S encircling the wire

section, and µ0 = 4π × 10−7 is the vacuum permeability. This effect is used to generate magnetic fields
with coils. It is illustrated in Fig.6.8a. In the loop geometry, the magnetic field Bind created is associated
to a flux through the surface S of the loop : ΦL = Bind.S. We can rewrite the flux in terms of the current
through the wire :

ΦL = LGI (6.11)

with LG called the geometric inductance. The flux generated by the current add with the flux generated by
an external magnetic field Φext = BBBext ·SSS. This self-field effect do not need phase coherence and exists at
the macroscopic scale. For loop geometries without contacts to impose a current, the response of the loop
to a magnetic field is always diamagnetic and partially screens the magnetic field, such that we define the
total flux :

Φtot = Φext − LI (6.12)

with L the total inductance, L = LG here.
Hence, LG is always positive. Moreover, LG only depends on the geometry of the system, and does not

depend directly on current or magnetic field (there might be some situations where the geometry of the
currents vary significatively with the current or the magnetic field). For a single cylindrical wire of radius rw
forming a ring of radius rr, LG ∼ µ0rr

(
ln 8rr

rw
− 0.5

)
[186]. This give a typical value of LG ∼ 0.2pH for
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rr = 1µm (giving orbital dephasing oscillation period ∆B = Φ0/S ∼ 7G) and rw = 0.1µm.

b) Geometric self-inductance LA of an asymmetric current distribution

We saw in part 1.6 that introducing asymmetries in critical currents between two subjunctions with
identical CPR can cause an asymmetric critical current versus magnetic field pattern of the full junction
(DC SQUID). This type of asymmetry still leads to a maximum critical current at B = 0. But it does not
include self-field effect. In [187], the authors calculate the self-field effect of a thin junction of thickness d
and transverse dimension L and W under parallel magnetic field By with asymmetric local critical current
profile J (x) (integrated along y) going from J (x) = 0 to I, as shown in Fig.6.9.

(a) (b)

Figure 6.9 – Sketch of the junction geometry (a) used to estimate self-field effects under parallel magnetic field By

with asymmetric critical current density profileJ (x) (integrated along y) going fromJ (x) = 0 to I (b). From [187].

They find a current-induced magnetic flux corresponding to an inductance LA ∼ −2πLd
cW . For a na-

nowire with L = W , LA
d ∼ −

2π
c ∼ −2.1 × 10−8H.m−1. For a nanowire of length d = 2µm, we have

LA ∼ −4 × 10−2pH. It results in an asymmetric critical current pattern, showing JDE, with a maximum
shifted away from B = 0 by B = −2πI0

cW , with I0 the maximum critical current of the junction. Mind
the various assumptions in [187]. Like the self-inductance LG of a loop, LA only depends on the geo-
metry of the critical current through the junction. However, reversing the profile of J (x) also reverses the
current-induced magnetic flux, yielding an LA of opposite sign, explaining the negative inductance we found.

c) Kinetic inductance LK

In classical electrodynamics, the inductance is defined as L = V
dI
dt

. Combining it with the second Joseph-

son equation (Eq.(1.18)), we write : L =
Φ0
2π

dϕ
dt

dI
dt

, where ϕ is the superconducting phase difference. Finally,

for a superconducting element with superconducting phase difference ϕ, we express it as :

LK(I) =
Φ0

2π

1
dI
dϕ

=
Φ0

2π

d

dI
ϕ(I) (6.13)

where ϕ(I) is the inverse function of the CPR I(ϕ). We see that LK scales as the inverse of the derivative
of the CPR. Its sign follows 1

dI
dϕ

close to ϕ(I) (≃ 0 for low bias I compared to the maximum of the CPR),

see Fig.6.8b. Considering the CPR of a Josephson junction, LK(I) is positive at zero magnetic field, but
negative when it becomes a π-junction at higher field.

We identify the inductance effect related to the CPR of a junction as the "kinetic inductance". In
a superconducting circuit, there are known junctions with known CPR, but there may also be unknown
junctions with their own CPR playing a non-negligible role in the behavior of the circuit. The easiest way of
including these unknown junctions in the analysis is to treat them as kinetic inductances. They introduce
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phase drops 2π
Φ0
LK(I)I in the circuit that can forbid some phase difference across the junctions of interest,

as is discussed in parts 1.7.3 and 1.7.4. Notice that such kinetic inductances require phase coherence,
which is greatly enhanced in superconducting materials. Contrasting with LG and LA, LK depends on the
shape of the CPR of the unknown junction, that may depend on both current, magnetic field magnitude,
and magnetic field orientation. For example, the CPR of a tunnel junction is not linear, and is used as a
non-linear inductance for QED and transmon Qbits.

The CPR of a superconductor is linear, giving a constant L, and a phase drop can occur if there is
a supercurrent in the superconductor that we can’t remove by a clever choice of loop (see Eq.(1.31) and
part 1.5.1), like a constriction for example. More explicitly, the supercurrent density in a superconducting
nanowire at zero temperature and zero field is jjjS = σ π∆

e ∇∇∇ϕ. Writing ||∇∇∇ϕ|| ≃ ϕ/l for a 1d wire, we get
IS ≃ π∆

eRN
ϕ. Using Eq.(6.13), we get [188, 189, 124] :

LK,S ≃
ℏRN

2π∆
(6.14)

For our W compound superconducting contacts, the typical resistance above Tc is r ≃ 200Ω.µm−1, and
∆ ≃ 1.2meV , yielding LK,W ≃ 17pH per µm.

On the other hand, a Josephson junction with critical current Ic corresponds to a kinetic inductance
LK,J ∼ Φ0

Ic
= 207pH for Ic = 10µA. Lastly, many Josephson junctions in series can achieve very high

inductance, as they can distribute the phase drop among all the junctions without changing much their
current (phases add up while current is almost unchanged, just limited by the weakest junction), yielding a
very low dI/dϕ, that is a very high LK(I) ∝ 1

dI/dϕ .
Inductive elements change the response of a Josephson junction to a magnetic field, with self-field and

superconducting phase drop effects. In the next subsections, we see how they influence differently AC and
DC SQUID responses.

6.3 . Analysis of the W contamination range

In all the bismuth-based Josephson junctions studied during my PhD, the superconducting contacts are
realized by Ga+ Focused-Ions-Beam-assisted deposition (FIB) of a disordered tungsten compound, see part
2.4. During the FIB deposition process, the decomposed gas can diffuse out of the designed FIB writing
region. Citing [2] : "This can lead to a layer of aggregated materials such as W, C, Ga, O, which is termed
contamination. If this contamination is conducting, there is a chance that it can become superconducting
at low temperatures either intrinsically or by proximity effect. A previous characterization study done by Alik
Kasumov shows that this can be the case if the distance between the FIB deposited W contacts is smaller
than 200 nm. Away from this distance the contamination contains mainly C, and is of similar nature than
the contamination that can be induced by the electron beam of a SEM. It is therefore highly resistive and
does not short the connected device [...]."

To complete this contamination study, we performed a careful analysis of several samples using a com-
bination of Energy Dispersive Spectroscopy (EDS) and etching, both in Laboratoire de Physique des Solides
d’Orsay (LPS) and with the expertise of Frank Fortuna in Institut des Sciences Moléculaires d’Orsay (ISMO).

EDS is an instrument that uses the scanning electron microscope to send high energy electrons (that
is ∼ 10keV for low energy physics) with a few nm precision on a sample, and then collects secondary
electrons. The difference in energy between the incident electron and the secondary electron corresponds
to an energy absorbed by the sample. While energy absorption of the order of the eV can originate from
various low-energy excitation processes near the Fermi energy (bands physics involving outer-electronic
shells), energy absorption of the order of 1keV corresponds to transfer of energy with inner-electronic shells

166



of the elements composing the sample. The energies of these inner-electronic shells are independent of the
chemical bounding between the elements specific to each material, and are a signature of the different pure
elements. Hence, EDS allows to estimate the chemical composition of a sample by looking at specific energy
absorption peaks. However, the EDS data must be interpreted with caution, as our contamination range
analysis shows.

At LPS, on the same chip as the nanoring :
1) With a spot on Bi with Ga+ FIB deposited W contacts, we found traces of W as far as ≃ 1µm away
from the W contact.
2) Comparing at equidistance of the same W nanowire, we found traces of W on Bi but not on substrate
at ≃ 300nm, and traces of W on Bi and on substrate at ≃ 110nm.
Tests 1 and 2 suggest that there may be preferential deposition or diffusion of W contamination on Bi.

At LPS, on a different chip :
3) With a spot on Bi with He+ FIB deposited W contacts, we found traces of W ≃ 500nm away from the
W contact.
The He+ FIB, using helium ions instead of gallium ions, was designed to be much more precise than the
Ga+ FIB, with a contamination range much smaller. The fact that we still detect W on Bi ≃ 500nm away
from the W contact suggests that it is not due to contamination.

At LPS, on the same chip as the nanoring :
4) With a spot on Bi with evaporated Au contacts, we found traces of Au ≃ 600nm away from the Au
contact.
Au contacts were deposited with the lithography technique described in part 2.5 and can’t contaminate Bi
on a distance of ≃ 600nm, also suggesting another explanation.

Thanks to these first test, and after discussions with specialists Franck Fortuna and Shamashis Sengupta,
we concluded that it may be a manifestation of the diffusion of the electrons away from the illumination
spot. Indeed, when measuring a spectrum from the illumination of a spot of bismuth, it excites and probes
the chemical composition of the material much further away from the spot. The diffusion area depends on
the atomic number of the elements of the sample and on the energy of the incident electrons. For heavy
elements or low-energy incident electrons, the diffusion is shallower and broader compared to lighter elements
or higher energy incident electrons. We tested this hypothesis as follows.

At LPS, on a chip from the same batch as the nanoring chip :
5) With a spot on substrate at ≃ 300nm of a W wire, the W count was more important at incident electron
energy of 13keV than 20keV (relative to a reference on W at both energies).
This test is consistent with the diffusion hypothesis, but does not exclude contamination at ≃ 300nm.

At ISMO, on the same chip as the nanoring, on a sample that melted :
6) At energy 13keV , we measured W traces ≃ 300nm away from a W nanowire contact at three spots,
on Bi (close to point Pa R2 in Fig.6.10b), away from Bi on one side of the W nanowire (point Pa 1 in
Fig.6.10b), and away from Bi on the opposite side of the W nanowire (mirror symmetric of point Pa 1 in
Fig.6.10b with respect to the W nanowire axis). The traces of W on each side of the W nanowire, away
from Bi, were identical. The traces of W at the Bi spot were higher.

After this reference step, we etched for a few seconds with the FIB on one side of the W nanowire,
removing the surface layer on the Bi spot close to Pa R2 and on the spot Pa 1, but not on the mirror-
symmetric spot of Pa 1, as visible in Fig.6.10a.

7) At energy 13keV again, we measured the same W traces ≃ 300nm away from the W nanowire
compared to test 6), at the same three spots.
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If the W signal came from contamination of the surface ≃ 300nm away from the W nanowire, the
etching step would have removed this contamination and the W signals of test 6) and test 7) would have
been different, as well as the W signals between spots on either sides of the W nanowire.

We conclude that the trace of W on the substrate ≃ 300nm away from W and on Bi up to ≃ 1µm away
from the W contact are an artifact caused by diffusion of the electrons away from the spot. Moreover, we
found that the contamination ≃ 300nm away from W is negligible (i.e. undetectable with EDS) for the Ga+
FIB deposition conditions used for the chip with the nanoring. As we used the same Ga+ FIB deposition
conditions for all our samples, we assume a W contamination range < 300nm for all of them.

(a) (b)

Figure 6.10 – SEM image of a bismuth nanowire contacted with Ga+-FIB-deposited superconductingW compound and
lithographed Au leads. The Bi nanowire melted during an experiment. It is on the same chip as the nanoring sample
Biring , and the W deposition was realized during the same session.

6.4 . Inductive DC SQUID calculations

The following sections present the complete analytical derivation of the interference pattern of two
junctions with arbitrary values of critical current and inductances, as well as simple limits.

The analysis of the oscillation pattern is applied to the small field scale oscillations found in the bismuth-
nanoring-based Josephson junction Biring, which is introduced in chapter 3 and is the subject of an in-depth
analysis in chapter 4. The goal is to find a set of parameters, possibly varying with the magnetic field, that
reproduce the sawtooth modulations, their change of skewness, as well as the reduced amplitude around
zero field.

The full derivation of the formulas has been done by Dr. Yang Peng, and reproduce the supplementary
materials of our article [5], just published in Nature Physics.

6.4.1 . Analytical solution for two inductive branches

In this appendix, we provide the analytical solution of the critical current for the setup consisting of two
branches, each containing a Josephson junction and an inductance (see Fig. 6.11(a)). Later on, we discuss
the possibility of a highly inductive third branch in parallel, represented in Fig. 6.11(b).
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Figure 6.11 – (a) Sketch of the 2-branchs inductive SQUID model. (b) Sketch of the 3-branchs inductive SQUID model.

We write the total supercurrent as

I = ic1Saw(ϕ1) + ic2Saw(ϕ2), (6.15)

where ic1 and ic2 are the critical currents of the two branches, and the superconducting phase differences
at these two branches satisfy

ϕ1 − ϕ2 = Φ+ l2ic2Saw(ϕ2)− l1ic1Saw(ϕ1), (6.16)

with Φ = 2πΦext/Φ0, l1,2 = 2πL1,2/Φ0. Here, Φext, Φ0 and L1,2 are the external magnetic flux threaded
between the two branches, the flux quantum h/2e, and the inductances in the two branches, respectively.
The critical current is obtained by maximizing the total current in Eq. (6.15) given the constraint specified
by Eq. (6.16). Note that the total current I is invariant if we simultaneously shift the two phases ϕ1,2 →
ϕ1,2 + 2π. Thus, without loss of generality, one can fix one of the phases, say ϕ1 in the interval between
−π and π.

Using Eq. 6.16, one obtains the solution to ϕ2 in terms of ϕ1. However, such solutions are not unique,
and can be expressed using an integer n, as

ϕ2 ≡ ϕ(n)2 =
ϕ1 + l1ic1Saw(ϕ1)− Φ− 2πn

1 + l2ic2/π
+ 2nπ

= ϕ1
π + l1ic1
π + l2ic2

− Φ+ 2nπ

1 + l2ic2/π
+ 2nπ, (6.17)

where in the second line we have used the condition that ϕ1 is between −π and π. The integer n in the
above equation must satisfy

−π < π + l1ic1
π + l2ic2

ϕ1 −
Φ+ 2nπ

1 + l2ic2/π
≤ π. (6.18)

Instead of writing the total current I in Eq. (6.15) as a function of ϕ1 and ϕ2, one can write it as a
function of ϕ1 and an integer n, with the latter constrained by the above inequality. Hence, to obtain the
critical current, one can maximize

I(ϕ1, n) = ic1Saw(ϕ1) + ic2Saw(
π + l1ic1
π + l2ic2

ϕ1 −
Φ+ 2nπ

1 + l2ic2/π
)

= (ic1 + ic2
π + l1ic1
π + l2ic2

)ϕ1/π − ic2
Φ+ 2nπ

π + l2ic2
. (6.19)

with respect to ϕ1 and n.
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To maximize the above equation at a given Φ, we can perform a two-step maximization. We first fix
ϕ1, and find the integer n that maximizes I. We repeat this procedure at every ϕ1 between −π and π, and
then find the ϕ1 which leads to the largest I.

Maximization with respect to n at a given ϕ1

We first perform maximization with respect to n at a given ϕ1. The integer n that maximizes I at a
given ϕ1 is given by the smallest integer nmin satisfying the inequality (6.18). We find that

π + l1ic1
π + l2ic2

ϕ1/π −
2πnmin +Φ

π + l2ic2
=

Saw((1 + l1ic1/π)ϕ1 − l2ic2 − Φ) + l2ic2/π

1 + l2ic2/π
, (6.20)

which gives

I = ic1ϕ1/π + ic2
Saw((1 + l1ic1/π)ϕ1 − l2ic2 − Φ) + l2ic2/π

1 + l2ic2/π
(6.21)

Note that here nmin is actually ϕ1 dependent.

Maximization with respect to ϕ1

We now perform the second step, by finding the ϕ1 between −π and π that leads to the maximal total
current I in Eq. (6.21). We realize that the argument in the sawtooth function satisfies

−π + l1ic1 − l2ic2 − Φ < (1 + l1ic1/π)ϕ1 − l2ic2 − Φ ≤ π + l1ic1 − l2ic2 − Φ, (6.22)

and thus we will consider the following different scenarios separately.
1. When the external flux satisfies 2π > Φ + l2ic2 − l1ic1 > 0. Let us divide ϕ1 ∈ (−π, π] into two

regions. In the first region,

π ≥ ϕ1 >
l2ic2 +Φ− π
1 + l1ic1/π

, (6.23)

we have
(1 + l1ic1/π)ϕ1 − l2ic2 − Φ > −π. (6.24)

Thus, the current in Eq. (6.21) becomes

I = ic1ϕ1/π + ic2
(1 + l1ic1/π)ϕ1/π − Φ/π

1 + l2ic2/π
, (6.25)

which is maximized at ϕ1 = π. We denote this maximized current as

I(1) = ic1 + ic2
1 + l1ic1/π

1 + l2ic2/π
− ic2

Φ/π

1 + l2ic2/π
(6.26)

= ic1 + ic2 + ic2
l1ic1 − l2ic2 − Φ

π + l2ic2
(6.27)

In the second region,

−π < ϕ1 ≤
l2ic2 +Φ− π
1 + l1ic1/π

, (6.28)

we have
−3π < −π + l1ic1 − l2ic2 − Φ < (1 + l1ic1/π)ϕ1 − l2ic2 − Φ ≤ −π, (6.29)
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and thus the current in Eq. (6.21) becomes

I = ic1ϕ1/π + ic2
(1 + l1ic1/π)ϕ1/π − Φ/π + 2

1 + l2ic2/π
, (6.30)

which is maximized at
ϕ1 =

l2ic2 +Φ− π
1 + l1ic1/π

. (6.31)

In this case, the maximized current is

I(2) = ic1
l2ic2 +Φ− π
π + l1ic1

+ ic2
(l2ic2 +Φ− π)/π − Φ/π + 2

1 + l2ic2/π

= ic2 + ic1 + ic1
i2ic2 − l1ic1 +Φ− 2π

π + l1ic1
. (6.32)

Thus, the condition for I(1) ≥ I(2) is

ic2
l1ic1 − l2ic2 − Φ

π + l2ic2
≥ ic1

l2ic2 − l1ic1 +Φ− 2π

π + l1ic1
(6.33)

which is
Φ+ l2ic2 − l1ic1 ≤

2πic1(π + l2ic2)

[ic2(π + l1ic1) + ic1(π + l2ic2)]
. (6.34)

2. When −2π < Φ+ l2ic2 − l1ic1 < 0, and if ϕ1 ∈ (−π, π], we can again divide ϕ1 into two regions. In
the first region,

−π < ϕ1 ≤
π + l2ic2 +Φ

1 + l1ic1/π
≤ π, (6.35)

we have
(1 + l1ic1/π)ϕ1 − l2ic2 − Φ ≤ π. (6.36)

In this case, we have

I = ic1ϕ1/π + ic2
(1 + l1ic1/π)ϕ1/π − Φ/π

1 + l2ic2/π
, (6.37)

which is maximized at
ϕ1 =

π + l2ic2 +Φ

1 + l1ic1/π
. (6.38)

This leads to the maximal current

I(3) = ic1
π + i2ic2 +Φ

π + l1ic1
+ ic2

(π + l2ic2 +Φ)− Φ

π + l2ic2
(6.39)

= ic1 + ic2 + ic1
Φ+ l2ic2 − l1ic1

π + l1ic1
(6.40)

In the other region, if

π ≥ ϕ1 ≥
π + l2ic2 +Φ

1 + l1ic1/π
, (6.41)

we have
3π > (1 + l1ic1/π)ϕ1 − l2ic2 − Φ > π. (6.42)

Hence, we have the total current

I = ic1ϕ1/π + ic2
(1 + l1ic1/π)ϕ1/π − Φ/π − 2

1 + l2ic2/π
, (6.43)
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which is maximized at ϕ1 = π, giving rise to

I(4) = ic1 + ic2 + ic2
l1ic1 − Φ− l2ic2 − 2π

π + l2ic2
.

Thus, I(3) ≥ I(4) if

Φ+ l2ic2 − l1ic1 ≥
−2πic2(π + l1ic1)

[ic1(π + l2ic2) + ic2(π + l1ic1)]
. (6.44)

3. Without a surprise, we have

I(4)(Φ) = I(1)(Φ− 2π) (6.45)

I(3)(Φ) = I(2)(Φ + 2π), (6.46)

since the critical current should be 2π-periodic in Φ.
4. Defining ∆li = l1ic1− l2ic2, ∆ϕ+ = 2π ic1(π+l2ic2)

ic1(π+l2ic2)+ic2(π+l1ic1)
and ∆ϕ− = 2π ic2(π+l1ic1)

ic1(π+l2ic2)+ic2(π+l1ic1)
,

we can write the switching current as :

Ic(Φ) =

{
ic1 + ic2 + ic2

∆li−Φ
π+l2ic2

Φ ≥ ∆li

ic1 + ic2 + ic1
Φ−∆li
π+l1ic1

Φ ≤ ∆li

(6.47)

The range of validity of this formula over a phase of 2π is given by :

−∆ϕ− +∆li ≤ Φ ≤ ∆ϕ+ +∆li (6.48)

If Φ is outside this interval, then the critical current can be obtained by applying periodic property
Ic(Φ) = Ic(Φ + 2π).

For Φ = ∆li

We simply get Ic(Φ) = ic1 + ic2 which is the maximum value of Ic over the 2π period. Without induc-
tances, that is l1 = l2 = 0, the maximum of Ic is at Φ = 0. ∆li quantify the flux shift due to the screening
in this inductive loop.

For Φ = ∆li +∆ϕ+ = ∆li −∆ϕ− + 2π

Ic(∆li +∆ϕ+) = ic1 + ic2− ic2∆ϕ+/(π+ l2ic2) = ic1 + ic2− 2πic1ic2/[ic1(π+ l2ic2) + ic2(π+ l1ic1)]

which is the minimum value of Ic over the 2π period. Thus, the modulation amplitude is :

∆I = 2πic1ic2/[ic1(π + l2ic2) + ic2(π + l1ic1)] (6.49)

For ∆li ≤ Φ ≤ ∆ϕ+ +∆li

Ic(Φ) = ic1 + ic2 + ic2
∆li−Φ
π+l2ic2

which decreases with increasing Φ with a negative slope −α2 =

−ic2/(π + l2ic2). This behavior occurs on a range of phase ∆ϕ+.

For −∆ϕ− +∆li ≤ Φ ≤ ∆li

Ic(Φ) = ic1+ic2+ic1
Φ−∆li
π+l1ic1

which increases with increasing Φ with a positive slope α1 = ic1/(π+l1ic1).
This behavior occurs on a range of phase ∆ϕ−.
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Using these observations, one can define a skewness coefficient as

S = (∆ϕ− −∆ϕ+)/2π (6.50)

S = 1 (S = −1) when there is only a positive (negative) slope over the whole phase period. As defined, S
does not depend on the modulation amplitude.

𝑖𝑐1 = 0.5, 𝑖𝑐2 = 0.5, 𝐿1 = 0, 𝐿2 = 0

𝑖𝑐1 = 0.5, 𝑖𝑐2 = 0.5, 𝐿1 = 2.5, 𝐿2 = 2.5

𝑖𝑐1 = 0.05, 𝑖𝑐2 = 0.95, 𝐿1 = 0, 𝐿2 = 0 𝑖𝑐1 = 0.05, 𝑖𝑐2 = 0.95, 𝐿1 = 0, 𝐿2 = 3.4

𝑖𝑐1 = 0.05, 𝑖𝑐2 = 0.95, 𝐿1 = 3.4, 𝐿2 = 0𝑖𝑐1 = 0.5, 𝑖𝑐2 = 0.5, 𝐿1 = 8.5, 𝐿2 = 0

(a) (c)

(d)

(e)

(b) (f)

Φ/π Φ/π Φ/π

Φ/π Φ/π Φ/π

Figure 6.12 – Modulation of the switching current in several scenarios. Self-inductances are expressed in units of
Φ0 over one unit of current. (a) Symmetric case with no self-inductance. (b) Symmetric case with self-inductances.
(c) Asymmetric case with ic1 << ic2, no self-inductance. (d) Equal switching currents but self-inductance in one
branch. (e) Asymmetric case with ic1 << ic2, with self-inductance L2 in the strongest branch. (f) Asymmetric case
with ic1 << ic2, with self-inductanceL1 in the weakest branch.

6.4.2 . Analytical solution for two inductive branches with equal critical current and equal
inductance

When the critical currents of both branches are similar, ic2 ≃ ic1 ≃ ic, and the inductances are equal,
l1 ≃ l2 ≃ l, Equation (6.47) yields

Ic = ic(2− Saw[
|Φ|

1 + lic/π
]). (6.51)

This corresponds to a triangular flux dependence, with a modulation amplitude smaller than without induc-
tances :

(Imax
c − Imax

c )/2ic =
1/2

1 + 2Lic/Φ0
. (6.52)

This is illustrated in Fig. 6.12(a) and Fig. 6.12(b), without and with self-inductances, respectively.
The experimental variations plotted in Fig. 4.2 yield a critical current ic given by Icmax = 2ic = 2.8 µA.

The symmetric modulation around zero field has an amplitude of 100 nA, yielding a ratio Lic/Φ0 ≃ 6.5, and
an inductance of 10 nH. Such a high inductance cannot be attributed to a mere geometrical inductance,
but is probably caused by the high kinetic inductance of the W compound used as the superconducting
contacts to the bismuth ring.
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6.4.3 . Analytical solution in the limit of different critical currents, no inductances
In the asymmetric case of two very different critical currents in the two branches, to first approximation,

Ic = ic2 + ic1Saw[Φ + γmax,2], ic2 ≫ ic1 (6.53)

and
Ic = ic1 + ic2Saw[−Φ− γmax,1], ic1 ≫ ic2. (6.54)

Thus, the critical current of the ring in this case is the CPR of the branch with the smallest critical
current, shifted by a phase factor, added to a constant current given by the critical current of the branch
with the highest critical current. This is illustrated if Fig. 6.12(c) in the case ic2 ≫ ic1. With sawtooth
CPRs and no self-inductances, the skewness is S = (ic2− ic1)/(ic1+ ic2). Two sawtooth curves of opposite
skewness are found for ic2 ≫ ic1 and ic1 ≫ ic2 respectively, since the two solutions correspond to indices 1
and 2 interchanged, and the opposite sign of the external flux.

Experimentally, we find in the positive skewness region Imax
c = ic1 + ic1 ≃ 2.8 µA and ∆I ≃ 0.18 µA.

Eq. (6.49) with l1 = l2 = 0 leads to 2i2c1 − 2Imax
c ic1 + Imax

c ∆I = 0, where the solution with positive
skewness is ic1 ≃ 0.093 µA and ic2 ≃ 2.707 µA.

6.4.4 . Analytical solution in the limit of equal critical currents and different inductances
Inductance affects both the amplitude of the modulation and its skew. Let us consider the positive

skewness condition : S ≫ 0. Following Eq. (6.50), this means ∆ϕ− ≫ ∆ϕ+, or ic2(π + l1ic1) ≫ ic1(π +

l2ic2). We can rewrite it π(ic2 − ic1)/ic1ic2 ≫ l2 − l1. In the case of ic1 = ic2 = ic, then S ≫ 0 when
l1 ≫ l2, and ∆I = ic

1+(l1+l2)ic/2π
. In Fig. 6.12(d), we illustrate a situation with asymmetric inductances

that reproduce the skewness and the modulation amplitude of the asymmetric critical currents case shown
in 6.12(c).

Experimentally, we find in the positive skewness region Imax
c = ic1 + ic1 ≃ 2.8 µA and ∆I ≃ 0.18 µA.

The equation of ∆I with ic1 = ic2 = ic ≃ 1.4 µA leads to l1 + l2 = 2π(ic − ∆I)/ic∆I ≃ 30.42, that
translate into L ≃ 4.84 Φ0/µA.

6.4.5 . Effects of the inductance in the limit of strongly asymmetric critical currents
Taking again the positive skewness condition S ≫ 0, we have l1 + π(1− ic1/ic2)/ic1 ≫ l2. In the limit

ic2 ≫ ic1, it can be approximated to l1ic1+π ≫ l2ic1. Notice here that this inequality does not involve l2ic2
but l2ic1. Thus, in the present limit ic2 ≫ ic1, an inductance l2 in the strong branch tends to symmetrize
the modulations but its effect is weighted by ic1. On the other hand, an inductance l1 in the weak branch
tends to increase the asymmetry of the modulations and its effect is also weighted by ic1.

For the modulation amplitude, the role of the inductance is the same whether it is in the strong (l2) or
the weak (l1) branch. Indeed, one can write : ∆I = 2πic1ic2/[π(ic1 + ic2) + (l1 + l2)ic1ic2].

Finally, inductance also induces a phase shift ∆li = l1ic1 − l2ic2. In the limit ic2 ≫ ic1, the influence of
l2 is more striking compared to l1.

These effects are illustrated in Fig. 6.12(e) and 6.12(f).

6.4.6 . Inclusion of variations with magnetic field of the critical currents or the inductances
To reproduce the experimental variations of the switching current, we need to include variations of

the critical currents of both branches with magnetic field. This variation could stem from two interfering
hinge states in each branch rather than a single one, for instance because they are laterally separated, and
therefore the superconducting phase differs at the interface with the superconducting contact (see Fig.6.13
for an illustration of simple varying critical currents). The justification of such a field variation of the critical
current is discussed in the sections 6.6.4 and 6.6.4. To obtain a smaller modulation amplitude around zero
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(a)

(b)

(c) (d)

Φ/2π

Φ

Φ

Φ/2π

Φ/2πΦ/2π

Figure 6.13 – Calculation that reproduce the observed short-range modulations, with ic1 and ic2 varying in field as
displayed in (a), and constantL1 = L2 = 0.192Φ0/µA. ic1(0) = ic2(0) = 0.104 µA (b) Critical current of the
2-branches model with these parameters. (c) Zoom in the negative field region. (d) Zoom in the 0-field region.
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(a)

(b)

Φ/2π

Φ/2π

Figure 6.14 – (a) Sub-junctions inductances L1 and L2 (in units of Φ0/µA) as a function of magnetic flux. (b) Junc-
tion total critical current as a function of magnetic flux, with magnetic field dependent sub-junctions inductances as
displayed in (a). Ic1 = Ic2 = 1.4µA.

field, one need to include a decrease of total critical current or an increase of inductance in this region of
field.

The variations seen in the experiment could also be reproduced qualitatively if one supposes that the
inductances, rather than the critical currents, vary in each branch with magnetic field. The result with this
hypothesis is displayed in Fig. 6.14.

6.4.7 . Conclusion for the small field scale oscillations of the switching current of Biring

In conclusion, the experiment can be interpreted by assuming that the ring’s critical current is due to
interference between the supercurrent in the two branches of the ring, given the three following conditions :
i) The hinge states in each branch have a sawtooth supercurrent-versus-phase relation, as expected for
topologically protected hinge states. ii) The critical current in each branch varies with magnetic field on a
field scale much greater than one flux quantum through the ring area. iii) At least one of the branch of
the ring contain a high inductance L. Inductive sections in the ring are required to explain the partial (5
to 30 percent, depending on magnetic field) rather than full modulation of the ring’s critical current. We
suggest that the contact region may be responsible for the inductive sections. Indeed, it is known that a
granular, discontinuous W deposit extends roughly 100 nm on either side of the W wire. This contact region
can be modeled by a one-dimensional array of Josephson junctions in series, each junction having a size
of order ξW , the superconducting coherence length of W. This array of Josephson junctions contributes a
kinetic inductance LK in series with the Bi ring, of the order of LK = 2πNΦ0/ic where N is the number of
Josephson junctions in the array and ic the typical critical current of a W grain. A typical ic, as estimated
by resistance jumps observed in several junctions well above the critical current of bismuth nanowires, but
below the critical current of the W wires themselves (which is in the hundred µA range), is of the order of
ic= 10 µA. Taking N=30 could explain an inductance L of the order of 10 nH in each branch of the ring,
which is what is needed to explain our findings. In addition, the strong spin-orbit interaction in bismuth
could also play a role, but further theoretical investigations are needed to ascertain this point.
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6.5 . Calculations in 3d with different coordinate systems

Depending on what is the most suitable to analyze the experiment, we will use three different coordinate
systems (see Fig.6.15 for illustration and conventions) :
- the cartesian system, with the orthonormal basis (e⃗x,e⃗y,e⃗z) (e⃗x is the unit vector parallel to the horizontal
plane, parallel to the 0◦ axis. e⃗y is the unit vector parallel to the horizontal plane, perpendicular to e⃗x. e⃗z
is the unit vector parallel to the vertical axis, perpendicular to both e⃗x and e⃗y.)
- the cylindrical system, with the orthonormal basis (e⃗r,e⃗φ,e⃗z) (e⃗r is the unit vector parallel to the projection
of the vector in the horizontal plane. e⃗φ is the unit vector parallel to the horizontal plane, perpendicular to
e⃗r. e⃗z is the unit vector parallel to the vertical axis, perpendicular to both e⃗r and e⃗φ.)
- the spherical system, with the orthonormal basis (e⃗ρ,e⃗θ,e⃗φ) (e⃗ρ is the unit vector parallel to the vector. e⃗φ
is the unit vector parallel to the horizontal plane, perpendicular to e⃗r. e⃗θ is the unit vector perpendicular to
both e⃗r and e⃗φ.)

(a) (b) (c)

Figure 6.15 – Sketch to illustrate the decomposition of a vector in the cartesian, cylindrical, and spherical basis. The
red arrow is the vector to decompose. The orange arrows are the projection of the vector on the vertical axis and the
horizontal plane. The small green arrows are unit vectors of the three basis. The dark grey curved arrow represents
the polar angle−φ between the reference0◦ axis and the projection of the vector on the horizontal plane. The yellow
curved arrow represents the azimuthal angle θ between the vertical axis and the vector. (a) 3d view. (b) Top view of
the x-y plane. (c) Side view of the plane parallel to the vertical axis and to the vector.

A given vector V⃗{ρ,θ,φ} expressed in spherical coordinates can be written in cartesian coordinates using
the matrix RC←S(θ, φ), such that :

V⃗{x,y,z} = RC←S(θ, φ).V⃗{ρ,θ,φ} =

e⃗ρ.e⃗x e⃗θ.e⃗x e⃗φ.e⃗x
e⃗ρ.e⃗y e⃗θ.e⃗y e⃗φ.e⃗y
e⃗ρ.e⃗z e⃗θ.e⃗z e⃗φ.e⃗z

 .V⃗{ρ,θ,φ}
V⃗{x,y,z} =

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 .V⃗{ρ,θ,φ}
Similarly, a given vector V⃗{r,φ,z} expressed in cylindrical coordinates can be written in cartesian coordi-

nates using the matrix RC←P (φ), such that :

V⃗{x,y,z} = RC←P (φ).V⃗{r,φ,z} =

e⃗r.e⃗x e⃗φ.e⃗x e⃗z.e⃗x
e⃗r.e⃗y e⃗φ.e⃗y e⃗z.e⃗y
e⃗r.e⃗z e⃗φ.e⃗z e⃗z.e⃗z

 .V⃗{r,φ,z} =
cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 .V⃗{r,φ,z}
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The magnetic field is described with three parameters in spherical coordinates : a magnitude Bρ, a polar
angle φ corresponding to an angle in the horizontal plane between the horizontal coil axis and a reference
line on the dilution head (with anti-trigonometric convention looking from the top-side of the chip), and
an azimuthal angle θ corresponding to an angle away from the vertical axis (e⃗z). Varying the proportion
between vertical and horizontal field changes the azimuthal angle θ of the magnetic field vector B⃗, and
rotating the sample by rotating the dilution changes its polar angle φ.

The magnetic field vector B⃗ is first expressed with spherical coordinates B⃗{ρ,θ,φ} = Bρe⃗ρ+0e⃗θ+0e⃗φ =[
Bρ 0 0

]
and then decomposed in the cartesian basis B⃗x,y,z = RC←S(θ, φ).B⃗{ρ,θ,φ} = Bρ sin θ cosφe⃗x+

Bρ sin θ sinφe⃗y +Bρ cos θe⃗z.
Doing the same for the surface vector S⃗, the scalar product can be written :

B⃗.S⃗ = BρSρ [sin θ cosφ sin θS cosφS + sin θ sinφ sin θS sinφS + cos θ cos θS ] (6.55)

Writing φ = φS + φ′, we get :

B⃗.S⃗ = BρSρ sin θ sin θS cosφ′ +BρSρ cos θ cos θS (6.56)

where φ′ is the angle between the projections of B⃗ and S⃗ in the horizontal plane.
With B⃗ in cylindrical coordinates, it is : B⃗.S⃗ = BrSρ sin θS cosφ′ +BzSρ cos θS .

6.6 . Supplementary sample information

6.6.1 . Switching current of nanowire Biwire
21 as a function of field direction

In this appendix, we give more details on the switching current of the bismuth-nanowire-based Josephson
junction Biwire

21 as a function of field direction.
The fixed Bz = 2270 G measurements shown in Fig. 6.16a provides additional data for the rescaling

behavior. Indeed, orbital dephasing involves the effective flux B⃗.S⃗ which can be written as :
B⃗.S⃗ = BrSρ sin θS cosφ′ +BzSρ cos θS , with φ′ = φ− φS . See appendix 6.5 for conventions.

In this set of measurements, we vary only Br and φ′. BzSρ cos θS acts as a constant shift in the
switching current vs magnetic field patterns, that is the same for every horizontal angle φ′. On the other
hand, Sρ sin θS cosφ′ acts as a rescaling factor and makes for a simple way to determine if there is indeed
an orbital dephasing effect and to know what is the orientation of the interfering surface vector φS .

The rescaled curves are plotted in Fig. 6.16b, and the raw ones in Fig. 6.16a. The rescaling factors are
plotted in Fig. 6.16c as a function of the (horizontal) polar angle φ. The few angles available match very
well the cos function displayed as a black curve, with a shift of −54◦, yielding φS = 306◦ and a φ = 36◦

angle for vanishing flux. Therefore, φ = 36◦ correspond to the wire axis, consistent with its approximate
orientation on the sample holder.

Now that we know the angle φS of the surface vector S⃗ in the horizontal plane, we can repeat the
process by fixing the polar angle φ ≃ φS = 306◦ and vary the azimuthal angle θ. The formula for the
effective flux becomes :
B⃗.S⃗ = BρSρ(sin θ sin θS + cos θ cos θS) = BρSρ cos(θ − θS),
with Bρ the magnetic field magnitude, and Sρ cosα the new total rescaling factor with α = θ − θS the
angle between S⃗ and B⃗ in the plane perpendicular to the wire axis.

We already have the θ = 0◦ curve shown in green in Fig. 3.8a that we can rescale such that the slopes
close to |B| ≃ 1000 G are similar, but we already know that its low field behavior and its gaussian large
field decrease deviate from the wide ballistic model described above. Another measurement at θ = 45◦,
φ = 320◦ is shown as a grey curve Fig. 6.17. It displays clear ∼ 22 G oscillations (see Fig. 6.19) and a
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(a) (b) (c)

Figure 6.16 – (a) Average switching current of Biwire
21 as a function of magnetic field magnitude up to 7000 G for

various horizontal field directions, and a constant vertical field Bz = 2270 G. (b) Curves with rescaled field. The
rescaling factor has been chosen such that the rescaled curve matches the θ = 90◦, φ = 315◦ reference black
curve. (c) Rescaling coefficients as a function of polar angle φ, together with a cos(x+ 54◦) function.

Figure 6.17 – Average switching current of Biwire
21 as a function of oblique magnetic field. Grey line : θ = 45◦,

φ = 320◦ (close to the perpendicular to the wire axis). Pink line : θ = 45◦, φ = 37◦ (horizontal component along
the wire axis). Red line : θ = 90◦, φ = 315◦ with a constantBz = 2088G, for comparison.

large scale pattern that matches the θ = 90◦, φ = 315◦ with a magnetic field rescaling factor of 1.2. This
observation alone would suggest that the S⃗ is closer to θ = 45◦ than θ = 90◦, but we saw that the large
field scale of Ic(Bz) contradicts it. These observations are gathered in Fig. 6.18, and are difficult to fit with
a 2π-periodic function cos function (red curve), indicating that the supercurrent carrying states responsible
for the oscillations involve more than orbital dephasing in a single plane.

Let us now look for oscillations of the switching current with other magnetic field orientations. On the
θ = 90◦, φ = 45◦ response (blue curves in Fig. 3.8b, close to wire axis), one can guess a ∼ 100 − 200 G

periodic pattern of amplitude ∼ 200 nA, but only on a few periods and not very regular. The same kind of
unclear pattern is found on the θ = 90◦, φ = 315◦ (red curves in Fig. 3.8b, close to perpendicular to the
wire in the horizontal plane), with a ∼ 70 G period and a ∼ 200 nA amplitude.

On the other hand, measurements done at θ = 45◦ show clear symmetric triangular oscillations. For a
horizontal angle φ = 37◦, along the wire direction, the oscillations have a period of 26 G and an amplitude
∼ 200 nA, see Fig. 6.19c. In contrast with the other measurements, this one has been done at T ≃ 1 K,
explaining why the amplitude is < 400 nA.

For an angle φ = 320◦, 14◦ off the perpendicular to the wire direction, the oscillations have a period of
22 G and an amplitude ∼ 400 nA, see Figs. 6.19a and 6.19b for the short-scale oscillating part, and Fig ??
for its Discrete Fourier Transform. Fig. 6.17 show the same measurements on the 7000 G scale.

The 22 G period for φ = 320◦ corresponds to Φ0 in a surface 1.8× 0.523 µm2. Compared to the 25 G
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Figure 6.18 – Field rescaling coefficients as a function of azimuthal angle θ. The coefficients are chosen such that the
rescaled curves visually match the large-scale variations of the θ = 90◦, φ = 315◦ curve used as a reference (see
light red curve in Fig. 3.8b). The red curve is an attempt to match the data points with a simple single-plane orbital
dephasing cos function, but seems significantly off.

(a)

(b)

(c)

Figure 6.19 – Oscillations of the average switching current of Biwire
21 as a function of oblique magnetic field. (a),(b)

θ = 45◦,φ = 320◦ (close to the perpendicular to the wire axis). The large-scale background current variations have
been subtracted out. T = 60mK .(c) θ = 45◦, φ = 37◦ (horizontal component along the wire axis). T ≃ 1K .
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𝜃 = 45°, 𝜑 = 306°
≈ 22 𝐺 osc, 1/𝐵 BG decrease

𝜃 = 0°
≈ 25 𝐺 osc, Gaussian BG decrease

𝜃 = 90°, 𝜑 = 306°
no clear osc, 1/𝐵 BG decrease

𝜃 = 90°, 𝜑 = 36°
no osc, flat BG

𝜃 = 45°, 𝜑 = 36°
≈ 26 𝐺 osc, linear BG variations

Figure 6.20 – Summary of the main information on the nanowire sample Biwire
21 . The dark blue arrows show specific

magnetic field orientations θ andφ, with the information on the associated switching current oscillations periods and
background (BG) behaviors. The bismuth nanowire is also sketched in this figure as a brown block, with two colored
zones on its surface to illustrate a 1d ballistic hinge channel (light blue zone) and a set of 1d ballistic channels on the
opposite surface (pink zone).

period measured at θ = 0◦ and its 1.8×0.46 µm2 surface, from simple geometric arguments, it suggests that
the surface responsible for the oscillations is tilted by an angle α = arccos(0.46/w∗) = 31.2◦ with respect
to the vertical axis, in the direction of φ = 320◦, with w∗ = 0.538 such that 45◦ = arccos(0.46/w∗) +

arccos(0.523/w∗).
Let us now find out what are the oscillation periods expected with such a surface vector S⃗osc (enclosed

by the states responsible for the oscillations) oriented along θS = 31.2◦ and φS = 320◦. We have :
B⃗.S⃗osc = BρSosc,ρ sin θ sin θS cosφ′′ +BρSosc,ρ cos θ cos θS , with φ′′ = φ− φS .
For θ = 0◦, φ = 315◦ : B⃗.S⃗osc = BρSosc,ρ cos θS = 0.855BρSosc,ρ, producing a period of ∼ 25 G.
For θ = 45◦, φ = 320◦ : B⃗.S⃗osc = BρSosc,ρ1/

√
2(sin θS + cos θS) = 0.971BρSρ, producing a period of

∼ 22 G.
For θ = 45◦, φ = 37◦ : B⃗.S⃗osc ≃ BρSosc,ρ cos θ cos θS ≃ 0.605BρSosc,ρ, producing a period of ∼ 35 G.
For θ = 90◦, φ = 315◦ : B⃗.S⃗osc ≃ BρSosc,ρ sin θS ≃ 0.518BρSosc,ρ, producing a period of ∼ 41 G.

With this two-channels model defining a surface vector S⃗osc oriented along θS = 31.2◦ and φS = 320◦,
we find an expected oscillations period of ∼ 35 G for B⃗ at θ = 45◦, φ = 37◦. This is in sharp contrast with
the measured ∼ 26 G. The most realistic hypothesis to explain this discrepancy is that the supercurrent
responsible for the oscillations involves more than the orbital dephasing between two channels embedded in
a single plane.

Fig.6.20 summarized our findings on sample Biwire
21 .
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Figure 6.21 – Average switching current of Biwire
21 as a function of horizontal magnetic field magnitude up to 7000G,

perpendicular to thewire axis :θ = 90◦,φ = 315◦. The gold curve has been obtained during the second experiment
for a field direction close to the one used for the red curve, and shows good correspondence upon rescaling the
current value by a factor 1.4.

Figure 6.22 – Average switching current of Biwire
21 as a function of magnetic field magnitude up to 7000G for two

horizontal field directions, and a constant vertical fieldB⊥ = 2088G, for an increasing and decreasing magnetic
field magnitude. The horizontal coil shows a hysteresis of∼ 250− 300G.

6.6.2 . Supplementary information on nanowire Biwire
21

6.6.3 . Switching current of asymmetric DC SQUID Bisquid1 as a function of field direction

The average switching current of the bismuth-nanowire-based DC SQUID Bisquid1 as a function of
magnetic field magnitude and orientation in the horizontal plane is plotted in Fig. 3.11a in the main text.
The conventions for azimuthal angle θ′ and polar angle φ′ are the same as θ and φ sketched in Fig.6.15,
respectively. Each curve magnetic field magnitude has been rescaled such that they all fall to a unique curve.
The rescaling factors are plotted in Fig. 6.23a, and clearly follow a cosine rule as expected for a standard
orbital flux scalar product B⃗.S⃗ for a S⃗ at a polar angle φ′ = 148◦ (perpendicular to the wire axis). The
rescaling factor is 0.311 kG−1 for at φ′ = 148◦. The characteristic field scale of the φ′ ≃ 148◦ curve is
∼ 4000 G, corresponding to a 2.6µm× 2nm effective surface.

Fig. 3.11b shows the average switching current as a function of rescaled magnetic field magnitude for
various field azimuthal angle θ′ and fixed polar angle φ′ = 153◦, close to perpendicular to the nanowire
axis. The height of the X = −1 peak and the field rescaling factors r are plotted as a function of azimuthal
angle θ′ on Fig. 6.23b. The field rescaling factors fit with a cosine function which maximum is at θ′ = 68◦,
matching with a surface vector S⃗ oriented along φ′ = 148◦ and θ′ = 68◦.
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(a) (b)

Figure 6.23 – (a) Red crosses : rescaling factors of Bisquid1 as a function of magnetic field polar angle φ′ (fixed
θ′ = 90◦). The values have been chosen such that all the average switching current of Bisquid1 versus magnetic
field magnitude curves fall into a unique curve. They follow a cosine law, as shown by the cosine fit black line. (b) Cha-
racteristic features of the average switching current of Bisquid1 versus magnetic field magnitude curves for various
azimuthal angle θ′ (fixed φ′ = 153◦). Red crosses : heights of theX = −1 peak. Blue crosses : current rescaling
factors s. Green crosses : field rescaling factors r. Black line : cosine fit of the field rescaling factors r.

6.6.4 . Intermediate field scale variations of the switching current of the nanoring sample
Biring

In this appendix, we show additional data on the bismuth-nanoring-based Josephson junction Biring.
We also provide an alternate scenario for the small amplitude of the small field scale oscillations and for the
background current variations.

a) Background current : intermediate field scale variations

See Fig.6.24.

b) Background current : three channels scenario

In the following we discuss an alternate scenario, in which the ring is modeled by three parallel junctions
of critical currents ic1, ic2, ic3. Junction 1 is in the upper branch whereas 2 and 3 are in the lower branch
of the ring. We assume that ic3 ≫ ic1, ic2. We also assume a high inductance L3 in series with junction 3
such that l3ic3, l3ic1 and l3ic2 are all much greater than 2π (here li = 2πLi/Φ0). In the following, we show
that the variations of the critical currents with flux Φ is determined by junctions 1 and 2, while junction 3
gives a constant (i.e. flux-independent) contribution ic3 to the total critical current.

Given ϕ1,2,3 the respective phases across junctions 1,2 and 3 (see Fig. 6.11), and assuming that l2i2 ≪ 1

and l1i1 ≪ 1, one has

ϕ2 ≡ ϕ1 − Φ ≡ ϕ3 + l3i3 mod 2π. (6.57)

The critical current is obtained as the maximum of :

F (ϕ1) = |ic1Saw(ϕ1) + ic2Saw(ϕ1 +Φ) + ic3Saw(π(1− ϵ(ϕ1,Φ)))|, (6.58)

where we have written ϕ3 ≡ π(1− ϵ(Φ, ϕ1)) mod 2π. Eq. (6.57) yields ϵ(ϕ1,Φ) = 2π((Φ− ϕ1 − α − π)
mod 2π)/l3ic3, where α ≡ l3ic3 mod 2π. ϵ is thus very small for a highly inductive third branch. In the
limit where both l3ic1 and l3ic2 ≫ 2π, the maximization of F (ϕ1) can therefore be performed assuming that
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Figure 6.24 – (a) Intermediate field scale average switching current of the Biring sample as a function of vertical
magnetic field perpendicular to the ring plane. The red and blue lines correspond to data obtained with an increasing
and a decreasing field, respectively. For |B| ≲ 400G, the data is simply shifted by the hysteresis of the horizontal
coil. For |B| ≳ 400G, there are important difference between the up and down curves, with some sharp jumps
that correspond to the apparition/disappearance of a vortex in the superconducting contacts. (b) Low-field zoom on
the curve displayed in (a).

ϵ(ϕ1,Φ) is equal to zero within 1/l3, which is very small compared to the flux variation of Ic determined by
the minimum value of ic1 and ic2. We therefore find that junction 3 does not lead to any flux-dependent
interference pattern : the interference is solely determined by junctions 1 and 2. We can then easily reproduce
the experimentally observed interference, including skewness reversals, taking as above that ic1 and ic2 vary
with field on large field scales due to the Zeeman effect or flux oscillations through the Bi wires. We could
generalize this result to the case where the supercurrent in each branch 1 and 2 is carried by several 1D
channels labeled by indexes j1 and j2. These channels being characterized by their critical currents ic,j1,
ic,j2 and inductances Lj1, Lj2. The highly inductive channels give rise to a contribution to the supercurrent
which is nearly independent of the flux through the ring, whereas the observed flux oscillations result from
the interference between the channels whose inductance is negligible.

c) Background current : slow modulation by orbital dephasing

We demonstrate that a slow (i.e. on a scale much greater than one flux quantum through the ring
area) variation with field of the critical current in one branch of the ring can be explained by interference
between two supercurrent-carrying edge states in one branch. This interference depends on the magnetic
flux between the two edges, giving a typical period in the range of a thousand Gauss if the edges are spaced
a few tens of nanometers apart.

The interplay between the flux through the ring and the smaller flux through the interfering channels

184



within each branch appears when considering the critical current of each branch, in a model, sketched in
Fig. 6.25 in which each branch is placed between superconducting contacts with phases ±δ/2.

FrS,-d/2 S,d/2

i1

i2

F12

i1+i2 (B)Ic
up (B),

B

S

i1
i2

Ic
up (B)

Fr
Fr

(a) (b)
B

Figure 6.25 – Illustration of how the interference between the supercurrent carried by two hinge states (i1 and i2)
in a given branch of the ring can cause a field-dependent critical current Iupc (B) of that branch. We have plotted
equation (2) and (3) with ic2 = 0.357ic1 andΦ12 = BS12 = 0.0257BSr = 0.0257Φr , with Sr the area of the
ring andS12 the lateral area between hinges 1 and 2. (a), Field-dependence of the critical current of a wire containing
two hinges, connected to two superconductors with a phase difference δ. (b), interpretation of this critical current
as due to interference between the supercurrent through the two hinges carrying the supercurrent in an ac SQUID
configuration with a fluxΦr through the ring, expressed in units of ℏ/2e, ϕr = 2πΦr/Φ0.

The current through each branch is then the sum of the current carried by the two hinge channels.
The phase difference for each hinge channel depends, in addition to the phase difference δ between the
superconducting contacts, on the vector potential along the hinge . (It can also depend on the field, via an
additional field-dependent Zeeman phase geffµBBL/(hvF ), where geff ≫ 1).

Iup(B) = ic1Saw[δ +
2e

ℏ

∫
1
Adl] + ic2Saw[δ +

2e

ℏ

∫
2
Adl], andIupc (B) = max

δ
[Iup(B)] (6.59)

in the upper branch.
Since the flux encircled by the two edges is, in units of ℏ/2e, ϕ12 = 2πΦ12/Φ0 = 2π/Φ0(

∫
1Adl−

∫
2Adl),

the critical current of the top branch is given by

Iupc (B) = max
δ

[ic1Saw[δ + ϕ12/2] + ic2Saw[δ − ϕ12/2]] , (6.60)

with Φ12 = S12B and Φ0 = h/2e, S12 is the surface between paths 1 and 2, and B is the magnetic field.
As seen in Fig. 6.25, this critical current of one branch has a period Sring/S12 = 25 times larger than

the period corresponding to one flux quantum through the ring area. This critical current can also be viewed
as the envelope (or amplitude modulation) of the beating pattern between two hinges of a wire that would
be embedded in an ac SQUID configuration, as sketched in Fig. 6.25b. The total current in such a ring
would read

i1+i2 = ic1Saw[ϕr+ϕ12/2]+ic2Saw[ϕr−ϕ12/2] = ic1Saw[
2π

Φ0
(Sr+S12/2)B]+ic2Saw[

2π

Φ0
(Sr−S12/2)B]

(6.61)
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with ϕr = 2πΦr/Φ0, and is displayed in Fig. 6.25b.
These considerations therefore justify our assumption that each branch of the ring can be described as

having a sawtooth-shaped CPR with a critical current whose amplitude has a slow and asymmetric variation
with magnetic field. In addition, considering two branches (top and bottom) with such field dependent
critical current also explains how, depending on the magnetic field, one or the other branch of the ring can
carry the largest critical current. This alternation in branch carrying the greatest critical current cause the
alternation in sign of the skewness observed. This interference also explains that if the hinges have different
transmissions, lengths or even different effective g factors, the field-modulation may be asymmetrical with
respect to zero field. What is important here is the absence of spatial inversion symmetry in each branch.

6.6.5 . Change of periodicity of the switching current oscillations of nanowire Biwire
12

Fig.6.26 shows the change of periodicity of the average switching current of the bismuth-nanowire-based
Josephson junction Biwire

12 as a function of vertical magnetic field around 4.3T . Close to −3.9 T the period
is ∼ 426 G, close to −4.8 T it is doubled ∼ 852 G, and in the middle a pattern with three peaks repeating
with a period ∼ 896 G ≃ 852 G. The black lines are ∼ 426 G apart and and the grey lines are shifted by
half a period.
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Figure 6.26 – Change of periodicity of the average switching current of the bismuth-nanowire-based Josephson junc-
tion Biwire

12 as a function of vertical magnetic field around 4.3T . The slowly varying background has been subtracted.

6.6.6 . More information on resistive state measurements
Figs.6.27 and 6.28 provide additional information on the magnetoresistance of the long bismuth nanowire

samples Bilong21 , Bilong22 and Bilong4 .
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(a)

(b)

Figure 6.27 – Resistance of the long nanowire sample Bilong21 as a function of vertical (a) and horizontal (b) magnetic
fields. In (a), the orange and blue curves have been obtained with T ≃ 0.1K . In (b),∆φ is the angle between the
horizontal magnetic field and the approximate axis of the nanowire.
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(a)

(b)

Figure 6.28 – Resistance of the long nanowire samples Bilong22 (a) and Bilong4 (b) as a function of vertical magnetic field,
for different excitation amplitudes and different temperatures.
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6.7 . Magneto-Chiral Anisotropy

In this appendix, we discuss spin-orbit-induced Magneto-Chiral Anisotropy (MCA) in both the resistive
and the superconducting states of samples with SOC. In particular, we argue that the Edelstein effect causes
a current-induced effective magnetic field Beff ≃ βI in both states, with a current-to-field coefficient β.
β can be measured via the second harmonic voltage (or current) response of the samples to a current
(or voltage) excitation in the resistive state, and via a deformation and a shift of the critical current versus
Zeeman field pattern of the samples in the superconducting states. The phenomenological models introduced
in this appendix are used in the analysis of MCA in the experiments reported in appendix 6.9 and 6.12.

6.7.1 . Edelstein effects
We consider a 2DEG in its resistive state with Rashba SOC. Its spin-texture is derived in part 1.1. Using

the semiclassical Boltzmann transport theory, applying an electric field EEE = Exx̂xx parallel to the x̂xx direction
can be interpreted as a shift of the Fermi lines in kkk-space by [10] :

δkkk = −|e|τe
ℏ
EEE (6.62)

where e is the elementary charge and τe is the elastic scattering time. The situation is illustrated in Fig.6.29.
Moreover, Ohm’s law writes jjj = σDEEE = ne2τeEEE/m

∗ for the current density jjj, with σD the Drude
conductivity, m∗ the effective mass, and n the 2d density of states. Together, it gives :

δkkk = − kF
n|e|vF

EEE (6.63)

with kF the Fermi wavevector and vF the Fermi velocity.
Now we consider the effect of this electric field on the polarization of the spins. The expectation value

of the spin at a given kkk is sss(kkk), as introduced in part 1.1. For Rashba SOC, sss(kkk) ⊥ kkk. Let us focus on
the expectation value of the total spin ⟨σσσ⟩, calculated by summation of sss(kkk) over all occupied states. At
equilibrium, there is a perfect compensation of sss(kkk) at opposite kkk, that is sss(kkk) + sss(−kkk) = 0, yielding
⟨σσσ⟩ = 0. Introducing the shift δkkk ∝ EEE breaks it.

For Rashba SOC, there still exists a partial compensation due to the other band with opposite chirality,
but they don’t cancel exactly anymore. Due to the larger radius of the outer circle, a non-vanishing in-plane
spin density remains, perpendicular to the applied electric field EEE, proportional to α and E, and independent

(a) (b)

Figure 6.29 – Fermi lines with corresponding spin expectation values (arrows) of a 2DEG with Rashba SOC with (b) and
without (a) external in-plane electric field. From [10].
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of EF . This effect is referred to as the Edelstein effect from [9] or as Current-Induced Spin Polarization (CISP)
and is a magnetoelectric effect. It is the generation of an out-of-equilibrium spin polarization from an applied
constant electric field (or DC current).

For Rashba SOC, in the diffusive limit, the total spin density writes [9, 10] :

⟨σσσ⟩
A

=
αm∗ℏ

|e|(α2m∗ + ℏ2EF )
(ẑzz × jjj) (6.64)

with A the area of the whole system, jjj = ne2τeEEE/m
∗ the current density provided by Ohm’s law. For

jjj = jxx̂xx, the only non-zero component of ⟨σσσ⟩ is along ŷyy. One can look at [8] for the other types of SOC,
and [190] for TMD.

For a single Fermi circle with Rashba SOC and linear dispersion relation, like the surface states of 3d
topological insulators (see part 1.1), we have [10] :

⟨σσσ⟩
A

=
−|e|τekF

4πℏ
(ẑzz ×EEE) (6.65)

which is larger than the Rashba SOC expression by a factor ℏvF /α (typically a ∼ 10). Adding disorder,
[191] found ⟨σσσ⟩ ∝ ℏ/(evF )(ẑzz × jjj) with a prefactor that only depends on vF but not on disorder.

There exists an Onsager reciprocal effect called inverse Edelstein effect or spin-galvanic effect. Because
the Edelstein effect is an out-of-equilibrium effect, a static Zeeman field can’t produce the inverse effect, as
it generates an equilibrium spin polarization. To get the inverse Edelstein effect, one need to inject spins in
out-of-equilibrium [192].

As we will see in part 6.7.3, the Edelstein effect is a source of electrical Magneto-Chiral Anisotropy, a
behavior that is promoted by SOC and induce non-linear non-reciprocal dissipative transport. We measured
such an effect in long bismuth nanowires, see part 6.9.4. The Edelstein effect has a counterpart in the
superconducting state, where this time the induced spin polarization is at equilibrium. In addition, in the
superconducting state there is a deep connection between the inverse Edelstein effect and the anomalous
Josephson effect [85]. A finite magnetization can induce a supercurrent even if the superconducting phase
difference is null. We use the analysis of the later effect in part 6.7.6 to interpret our results on a DC SQUID
composed of two bismuth-based Josephson junction in part 6.12.4.

6.7.2 . Resistive state non-reciprocal charge transport and Magneto-Chiral Anisotropy in
the literature

In this part of the appendix, we introduce non-reciprocal charge transport and Magneto-Chiral Anisotropy
(MCA) in the resistive state. We also discuss non-linear resistance and the various sources of non-linearity.
This part is a lightened version of the discussion found in [193].

Based on Onsager’s reciprocity relation for the symmetry properties of diffusive transport, any two-
contacts electrical transport property can only have an even magnetic field dependence, that is for a gene-
ralized transport coefficient σij between contacts i and j that only depends on magnetic field BBB :

σij(BBB) = [σji(BBB)]† = σji(−BBB) =⇒ σxx(BBB) = σxx(−BBB) (6.66)

where † denotes time reversal operation. However, this relation implies transport properties even in field
only in the linear response.

In fact, any transport term that is TRS does not violate Onsager’s reciprocity relation. As such, any term
∝ j2p+1B2q+1 featuring a product of current j and magnetic field B is allowed by the Onsager reciprocity
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relation, where p and q are integers. For such a term, Onsager’s reciprocity relation reads :

σij(jjj,BBB) = σij(jjj
2p+1 ·BBB2q+1) =

[
σji(jjj

2p+1 ·BBB2q+1)
]†

⇐⇒ σij(jjj
2p+1 ·BBB2q+1) = σji((−jjj)2p+1 · (−BBB)2q+1) = σji((−1)2(p+q)jjj2p+1 ·BBB2q+1) = σji(jjj

2p+1 ·BBB2q+1)

=⇒ σxx(jjj
2p+1 ·BBB2q+1) = σxx(jjj

2p+1 ·BBB2q+1)

meaning that this relation imposes no further constrains on the symmetries of σxx, contrasting with
Eq.(6.66). We see that, by introducing a product between two quantities that change sign under time
reversal, σxx can now be odd in magnetic field.

Such a term ∝ j2p+1B2q+1 only appears in non-linear transport. For example, if σxx is the resistance,
such a term involves a resistance that depends on the current j, which corresponds to non-linear voltage
response to a current excitation. Notice that because jjj is odd under inversion operation while BBB isn’t, this
type of term breaks inversion symmetry and thus only exists in systems with broken inversion symmetry.

In [194], inspired by the developing field of spin-orbit materials and by recent discoveries at that time,
G.L.J.A.Rikken and P.Wyder introduced in 2005 a minimal model that allowed for an anisotropy in the
two-contacts resistance in the direction perpendicular to the crossed electric and magnetic fields, and the
magnitude of which depends linearly on the electric and the magnetic field :

σij(jjj ·EEE ×BBB) = [σji(jjj ·EEE ×BBB)]† = σji((−jjj) ·EEE × (−BBB)) =⇒ σxx(jjj ·EEE ×BBB) = σxx(jjj ·EEE ×BBB) (6.67)

where once again this relation imposes no further constrains on the symmetries of σxx. The term jjj ·EEE ×BBB
is even under parity (inversion), charge conjugation, and time-reversal, and can exist in any system with
non-zero crossed electric and magnetic fields. Again, if σxx is a resistance, it is linear in j, and therefor
contributes to the second-order voltage response to a current excitation.

The electric and magnetic fields can be applied externally or be caused by internal polarizations of the
system. An interesting feature is that the sheer presence of an electrical polarization on moving particles
creates such a term, where special relativity generate, in the reference frame of the particle, a magnetic
field perpendicular to both the particle velocity and the electric field. Owing to the same special relativity
argument, spin-orbit coupling can also be the origin of a non-linear resistance term with the same symmetries,
without any externally applied electric field. In this case, the non-zero electric field is caused by local inversion
symmetry breaking in the crystalline structure of the material, in its bulk or at its boundaries, see part 1.1.

In general, this crossed term applies to all diffusive transport phenomena and is referred to as Magneto-
Electric Anisotropy (MEA) and is a form of Magneto-Chiral Anisotropy (MCA).

The precise mechanisms that link the spin-orbit coupling to the non-linear resistance depends on the
system. A general semiclassical derivation on non-linear charge transport can be found in [195], and a focus
on non-linear Hall effect in [196]. [197] provides a review of various effects that can cause non-reciprocal
response from non-centrosymmetric materials. The main contribution to the (non-linear) magneto-chiral
anisotropy (MCA) depends on the system, and its name can change accordingly. To name a few :
- MCA in 3d TI Bi2Se3 films [198] is explained by the combined effect, considering a topological surface
state with hexagonal warping, of second order pure spin current and spin imbalance caused by an applied
BBBext [199], and is called Bilinear Magneto-Electric Resistance (BMER).
- MCA in WTe2 films [200] is explained by computing the second-order current response of the system to an
electric and a magnetic field with a Wannier tight-binding Hamiltonian model that reproduces the complex
Fermi surface topology, spin-texture and convexity, and is called Non-Linear Magnetoresistance (NLMR)
- MCA in materials with isotropic spin-momentum locked Fermi surface can arise from the interplay of
current-induced spin-polarization (BBB = BBBext + ajjj) (Edelstein effect) and scattering processes due to in-
homogeneities of spin-momentum locking [201], potentially much stronger that the effect discussed in
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[198, 199], and called Bilinear Magnetoresistance (BMR).
- giant MCA in (Bi1−xSbx)2Te3 nanoribbons under gate voltage [202] is explained by the tailoring of the
band structure, splitting and Zeeman shifting them by the applied gate voltage and magnetic field.
All these manifestations of MCA require inversion symmetry breaking by external or internal electric field
(e.g. SOC) and finite magnetic field.

Interestingly, MCA was also found in various non-centrosymmetric superconducting systems, see [203]
in MoS2 monolayer, [204] in WS2 nanotube, [205] in Bi2Te3/FeTe TI/SC heterostructure, etc.

Other effects can contribute to the non-linear transport response of the system. Asymmetries of the
contacts, the conductor, or the diffusion centers inside the conductor can contribute to the non-linear
response. From [206], one can derive variations of the conductance G with voltage V via the chemical
potential µ : ∂G

∂µ δµ ≃
∂G
∂µ (1 − 2a)eδV (a = 1/2 for symmetric contacts). This term relies on variations

of the density of states as a function of voltage. These variations are even in field [207], and the resulting
non-linear response is even in field too.

However, combining voltage-induced LDOS asymmetries and electron-electron interactions can produce
a non-linear response odd in field. As an illustration, [193] considered the asymmetric electric potential
energy created around an impurity in the presence of both a non-equilibrium current and electron-electron
interactions. These so-called Landauer dipoles change the potential landscape and contribute to the quan-
tum interference conductance fluctuations, responsible for non-linear response even in field. But in contrast
with the situation without electron-electron interactions, the potential landscape is not necessarily even in
field, and can contribute to a non-linear response odd in field.

Considering other sources of non-linear response, we note that heating is only in non-linear conductance
corresponding to odd powers of V [189], and does not contribute to second order response. Considering the
classical Hall effect, the Hall electrical field in finite conductors can’t lead to measurable MEA as it changes
sign with the magnetic field or the current.

6.7.3 . Phenomenological model of MCA in the resistive state

Rather than using detailed and complex models that can be found in the literature, we chose to follow
the spirit of [208] and to use a very simple model to analyze MCA in this first round of measurements in
this type of system. This phenomenological model is probably over-simplistic but it will allow us to gain
some insight on the physics of our bismuth samples. The analysis of the data will show some successes and
limits of this model.

Inversion-breaking SOC in a 2d surface creates a spin texture in the Fermi lines. With a voltage bias
or a current bias, the electrons close to the Fermi lines will acquire an extra momentum δkkk ∝ jjj and the
Fermi lines will shift accordingly. Because of the spin-texture, this shift can induce a net non-equilibrium
spin polarization. This effect is called current-induced spin polarization (CISP) or Edelstein effect, see part
6.7.1. The approximation we make is the following : this δkkk has the same effect on spins as an effective
magnetic field Bext = βI in the spin polarization direction for this specific direction (I is the total current
between the two contacts and β is a "current-to-field" factor). Including this extra effective magnetic field
in the part of the magnetoresistance that is quadratic in the spin polarization, we add a new term in the
magnetoresistance :

δR ≃ AZ .B
2
Z,eff ≃ AZ .(Bext + βI)2 ≃ AZB

2
ext + 2AZβIBext +AZβ

2I2 (6.68)

where AZ is the coefficient associated to this quadratic term, that depends on the system, and Bext is the
magnitude of the externally applied magnetic field. With this mechanism, we introduced an electrical MCA
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in the resistance that is linear (thus odd) in both the current bias I and the external magnetic field Bext.
This term gives rise to a voltage response that is quadratic in I, and a contribution of the second harmonic
response that is linear in Bext.

This approach was successfully used in [208] to interpret the resistance MCA (that they call Unidirectional
Magneto-Resistance) in Ge(111) films with a Rashba SOC hamiltonian HR = α(kkk×σσσ) · ẑzz, ẑzz being the unit
vector perpendicular to the surface.

Applying a current jjj in a material with such a spin-orbit coupling induces an effective magnetic field
BBBeff = αλ/(geffµB)ẑzz × jjj, such that the SOC energy term derived from HR can be written as :

α((kkk + δkkk)× σσσ) · ẑzz = α(kkk × σσσ) · ẑzz + αλ(ẑzz × jjj) · σσσ = α(kkk × σσσ) · ẑzz + geffµBBBBeff · σσσ (6.69)

with δkkk = λjjj, geff the effective g-factor, and µB = eℏ/(2me) the Bohr magneton, see part 6.7.1 for a
more precise discussion.

This BBBeff adds to the externally applied magnetic field and affect the standard magnetoresistance
R(BBB) = R(BBBext + BBBeff ) = R(BBBext, jjj), causing Unidirectional Magnetoresistance (UMR) or Bilinear
Magneto-Electric Resistance (BMER) depending on its origin, as in Eq.(6.68).

We see that with such a current-to-field conversion mechanism present in material with spin-momentum
locking, by introducing a current along a particular crystallographic direction and measuring the UMR as
a function of magnetic field direction, we can probe the orientation of the spins of the Fermi surface in
this crystallographic direction. This technique allows for a mapping of the spin texture of the Fermi surface,
albeit partial for complex Fermi surfaces.

6.7.4 . From current-induced effective magnetic field Beff to second harmonic responses
Our simple model consist in introducing a "current-to-field" factor β, such that the effective Zeeman

field BZ,eff will be modulated by the current I through the bismuth sample, following BZ,eff = Bext+βI.
This will modulate the part of the magneto-resistance that depends on the Zeeman field and introduce a
term βBZI linear in BZ = geffµBBext and I, among other terms, see Eq.(6.68).

Let us now write the resistance and its variations as a function of relevant experimental parameters. The
variations of the resistance R have various contributions, as discussed in part 6.7.2. For now, let us focus on
two major contributors, which are the magneto-resistances due to orbital effects induced by a magnetic field
Borb, and due to Zeeman effects induced by a magnetic field BZ,eff . In this phenomenological model, we
explicitly split the orbital and spin contributions of the magneto-resistance. What we do here is to reduce the
spin-orbit induced coupling between the orbital and the Zeeman part precisely into this "current-to-field"
conversion factor β. We write :

R(Borb, BZ,eff , I, µ) + δR = R(Borb, BZ,eff , I, µ) +
∂R

∂Borb

∣∣∣
Borb,BZ,eff ,I,µ

δBorb

+
∂R

∂BZ,eff

∣∣∣
Borb,BZ,eff ,I,µ

δBZ,eff

≃ R(Borb, BZ,eff , I, µ) +
∂R

∂Borb
δBext +

∂R

∂BZ,eff
(δBext + βδI) (6.70)

In appendix 6.11, to interpret some features in the data, we discuss another possible variation of resistance
with current bias via the chemical potential µ, that is an additional term ∂R

∂µ

∣∣∣
Borb,BZ,eff ,I,µ

δµ ≃ ∂R
∂µ cµ,IδI.

We further write :

R ≃ Aorb.B
2
orb +AZ .B

2
Z,eff +AZ .B

2
0 ≃ A′orb.B2

ext +AZ .(Bext + βI)2 +AZB
2
0

≃ A′orb.B2
ext +AZB

2
ext + 2AZβIBext +AZβ

2I2 +AZB
2
0 (6.71)
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where we introduced a quadratic term Aorb.B
2
orb that describes the orbital part of the magneto-resistance,

and a zero-field resistance written as AZ .B
2
0 for convenience. Notice that written this way, geff in is included

in the coefficient AZ .
Notice that to extract β, we need to estimate AZ . The simplest way is to measure the magneto-resistance

with a magnetic field parallel to the nanowire axis, such that the orbital contribution Aorb.B
2
orb is reduced.

Of course, both AZ and β most likely depends on the magnetic field orientation. In the analysis we present
in the following, we extract AZ at T = 3.7 K (where mesoscopic effects are reduced) along the nanowire
axis, and extract β from second harmonic response measurement as a function of vertical (perpendicular)
magnetic field.

In many works in the literature, MCA is quantified by a coefficient γN such that R = R1(1+γNBextI).
From Eq.(6.71), ignoring the orbital part, we get γN = 2AZβ

AZB2
ext+AZB2

0
. As we will see later on, AZ is of the

order ∼ 100Ω.T−2 whereas R0 = AZB
2
0 ∼ 10 kΩ, yielding B0 ∼ 10 T . We performed the analysis of β

at |B̃ext| < 0.2 T ≪ B0, such that we can consider B2
ext + B2

0 ≃ B2
0 , yielding γN = 2AZβ

R0
. We see that

the relation between γN and β involves AZ and R0, which depend on the particular magnetoresistance and
geometry of the sample. We believe that β is a better hallmark of the spin-orbit-induced MCA.

We measure the magneto-resistance via Ohm’s relation V = R.I between the voltage V across the
sample and the current I traversing it. But now with terms in the resistance that depends on I, there will
be terms of higher order in I in the voltage response, leading to higher order harmonic responses to an AC
current excitation.

More explicitly, let us write for a current biased measurement : V = R(Bext, I).I with I = IDC +

IAC sin(ωt)

Ignoring the purely orbital part, we can write the following voltage response :

V/AZ = (B2
ext +B2

0)IDC + 2βBextI
2
DC + β2I3DC (6.72)

+ (B2
ext +B2

0 + 4βBextIDC + 3β2I2DC)IAC sin(ωt) (6.73)

+ (2βBext + 3β2IDC)I
2
AC sin2(ωt) (6.74)

+ β2I3AC sin3(ωt) (6.75)

Writing sin2(ωt) = 1
2 −

1
2 cos(2ωt) and sin3(ωt) = 1

4 sin(ωt)−
1
4 sin(3ωt), we can rewrite it :

V/AZ = (B2
ext +B2

0)IDC + βBext(2I
2
DC + I2AC) + β2I3DC +

3

2
β2IDCI

2
AC (6.76)

+ ((B2
ext +B2

0)IAC + 4βBextIDCIAC + 3β2I2DCIAC +
3

4
β2I3AC) sin(ωt) (6.77)

+ (−βBextI
2
AC −

3

2
β2IDCI

2
AC) cos(2ωt) (6.78)

− 1

4
β2I3AC sin(3ωt) (6.79)

Because of experimental limitations of our setup involving high capacitances and our highly resistive
long nanowires of R ∼ 10 kΩ, current-biasing the samples at ∼ 100 Hz was not possible. We had to rely
on voltage bias for all our AC measurements, see part 2.8.1 for the electrical sketch.

For a voltage biased system, still considering a current-induced effective magnetic field, we need to
solve :

β2I3 + 2βBI2 + (B2 +B2
0)I −

V

AZ
= 0 (6.80)

This leads to very cumbersome expressions and conditions for the harmonics of I(Bext, VDC , VAC , t).
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To avoid this, we consider approximate solutions. In the appendix 6.8, we present two approaches that
lead to the same types of terms that depend on powers of VDC, VAC, Bext, as well as AZ and G. However,
the two approximations lead to different prefactors.

In the following, let us consider the Taylor expansion of the inverse of the current bias response. The
expansion is done up to the second order in excitation amplitude δV = VAC sin(ωt), and is valid for small
high order variations of the conductance G(BZ,eff ) with variations of the effective Zeeman field δBZ,eff ,
and small high order variations of the resulting current response I(V,Bext) with variations of voltage bias
V and applied external magnetic field Bext.

With a voltage excitation VDC+VAC sin(ωt), where we consider Ṽ = VDC and δV = VAC sin(ωt), and
BZ,eff = B̃ + δBZ,eff = B̃ + βδI ≃ B̃ + βG(B̃ext, Ṽ )δV + βI(2)δV 2, we have :

I = G(B̃ + δBZ,eff )× (VDC + VAC sin(ωt))

= G(B̃)VDC

+
(
−2AZG

3(B̃)βB̃VDC +G(B̃)
)
VAC sin(ωt)

+
(
−2AZG

2(B̃)βB̃I(2)VDC − 2AZG
4(B̃)

(
1− 4AZG(B̃)B̃2

)
β2VDC − 2AZG

3(B̃)βB̃
)
V 2
AC sin2(ωt)

+ (...)V 3
AC sin3(ωt)

With sin2(ωt) = 1
2 −

1
2 cos(2ωt), and ignoring terms in V 3

AC ,we write :

I = G(B̃)VDC −
(
AZG3(B̃)βB̃ +AZG4(B̃)β2VDC − 6A2

ZG5(B̃)β2B̃2VDC + 12A3
ZG7(B̃)β3B̃3V 2

DC − 2A2
ZG6(B̃)β3B̃V 2

DC

)
V 2
AC

(6.81)

+
(
G(B̃)− 2AZG3(B̃)βB̃VDC

)
VAC sin(ωt) (6.82)

+
(
AZG3(B̃)βB̃ − 6A2

ZG5(B̃)β2B̃2VDC +AZG4(B̃)β2VDC

)
V 2
AC cos(2ωt) (6.83)

(6.84)

In theory, this formula is only valid for the response of I to a small excitation δV up to the second order
in δV , close to G(B̃) = G(Bext = B̃ext, V = VDC). For each couple of value (Bext = B̃ext, V = VDC)

that we apply to our system, we should measure the corresponding G(B̃ext, VDC). In practice, we choose
VDC = 0 and approximate G(B̃ext, VDC = 0) to :

G(B̃ext, VDC = 0) ≃ 1

AZ(B̃2
ext +B2

0)
≃ 1

R(BZ,eff = 0)
(6.85)

We recall that AZB
2
0 = R(BZ,eff = 0) the resistance of the nanowire at zero magnetic field and infinitesimal

excitation, and AZB
2
0 ≫ AZ(B̃

2
ext in our experimental range.

Let us now look at the relative contribution of the various terms. For the big picture, notice that the
original terms in In induce a response at the n-th harmonic which is proportional to the n-th power of the
excitation amplitude. But high powers of I also "trickle down" to lower harmonics, see for example the
terms proportional to the second power of the excitation amplitude in the zero-th harmonic response.

What makes the high harmonics measurement interesting can be stated as follows :
for sufficiently low excitation amplitude, the main contribution to the n-th harmonic comes from the response
of the term in the n-th power of the excitation. If we write V = Σn∈NcnI

n and V = Σn∈NV
(nω)einωt, then

one can make the approximation that V (nω) ∝ cn.
To illustrate this, we focus on the first harmonic response in Eq. (6.79) for a current biased experiment.

In addition to the usual differential resistance term AZ(B
2
ext + B2

0)IAC, there are three other ones. First,
there is 4AZβBextIDCIAC that features β and is quadratic in I. The other terms are cubic in I and thus
smaller.
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Why not use the first harmonic response to extract β then?
Because, as we will see in the following measurements’ analysis, we have 4AZβBextIDCIAC ∼ 4×10−8 V

whereas AZ(B
2
ext+B

2
0)IAC ∼ 10−2 V , yielding 4AZβBextIDCIAC

AZ(B2
ext+B2

0)IAC
∼ 4×10−6 ≪ 1. Furthermore, we recall that

for out-of-plane magnetic field measurements we need to take into consideration AorbB
2
extIAC ∼ 10−5 V .

In [208], they measured a ∼ 5 × 10−3 modulation of the first order resistance (with R ∼ 3 × 104Ω)
caused by UMR by applying IDC = 10−5 A and Bext = 1 T on a micrometers-size sample. Reproducing it
on our samples would lead to a ∼ 10−3 modulation of our first order resistance, that is if the current density
does not burn them.

On the other hand, we see that the main contribution of the second harmonic response is −AZβBextI
2
AC,

linear (thus odd) in applied magnetic field Bext and quadratic in excitation amplitude I2AC. The following
measurements show that AZβBextI

2
AC ∼ 10−8 V , which is still a small ∼ 10 nV signal, but it is not

polluted by bigger contributions to the signal, or by an uncontrolled IDC contribution.

Let us now come back to the current response to a voltage biased sample (Eq. (6.84)). Focusing on the
second harmonic response, there are two terms, both proportional to V 2

AC and featuring powers of β. The
first term, AZG

3(B̃)βB̃V 2
AC , is linear in Bext. The second term, −6A2

ZG
5(B̃)β2B̃2VDCV

2
AC , is quadratic

in Bext and linear in VDC, and hence vanishes for VDC = 0.
As stated before, this toy model doesn’t account for a lot of effects that could show in the second har-

monic response, but if such a "current-to-field" conversion factor β exists, we expect to see it in the linear
dependence of the second harmonic to the magnetic field. To see it clearly, we split the second harmonic
response into two parts :
- a part that is odd in applied magnetic field : fo(Bext) = 0.5(f(Bext)− f(−Bext))

- a part that is even in applied magnetic field : fe(Bext) = 0.5(f(Bext) + f(−Bext))

As such, the presence of β should show as a linear dependence in the odd part of the second harmonic
response at low field fo(Bext).

As shown in appendix 6.9.4, we find that the odd part have a linear dependence in Bext up to |Bext| ∼
0.2 − 2 T , depending on the sample. Moreover, we find that the general shape of the odd part does not
vary much with VAC in the ∼ 1 − 100 mV range, and scales with V 2

AC. At higher magnetic field, we also
find on some samples Shubnikov-de Haas-like variations that we discuss in appendix 6.11.

Considering the even part, it should scale as B2
extVDCV

2
AC and vanish for VDC = 0. This is generally not

what we see. At VDC = 0, we measure an even part of amplitude similar to the odd part, and not quadratic
neither in Bext or V 2

AC. Finally, the shape of the even part can change substantially with VAC.

6.7.5 . Qualitative picture of the Anomalous Josephson Effects

In part 1.3.9, we presented the φ0-junction effect that manifest in Josephson junctions with SOC and
Zeeman energy. We saw that the Zeeman energy introduces a shift in the Fermi surface, inducing finite
momentum pairing and a phase shift φ0 at zero current. So far, we only examined the case of a 1d helical
junction in part 1.4.3. In this appendix, we discuss the interplay of current, magnetic field, and phase shifts
in a larger scope.

Let us start by a trivial observation : the supercurrent is affected by the magnetic field. Indeed, the
magnetic field shifts the CPR by φ0, and at a given phase difference φ the supercurrent I(φ) has been
changed. Embedding the junction in an AC SQUID would yield an anomalous supercurrent I0 = I(0) at
zero flux, see the blue dot in Fig.6.30a, that depends on the Zeeman energy of the junction. This is the
traditional formulation of the anomalous Josephson effect.

Conversely, applying a DC current bias I∗ to the junction would yield a superconducting phase difference
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Figure 6.30 – (a) CPR of a Josephson junction with the various conventions used to discuss phases shifts and critical
current. The symmetry I(ϕ) = −I(−ϕ) is broken when there is a magnetic field and AJE. Gold dot : anomalous
phase shift φ0, for which I(φ0) = 0. Blue dot : anomalous supercurrent I0 = I(ϕ = 0) ̸= 0. Green solid
line : derivative dI/dϕ⌋ϕ∗ of the CPR at the green point (I∗, ϕ∗). For a bias current I∗, the junction can be treated
as a (kinetic) inductance LK(I

∗) = Φ0

2π
1

dI/dϕ⌋ϕ∗
. (b) Critical current of a DC SQUID featuring two short 1d helical

channels/junctions, as a function of magnetic fluxΦext applied through the SQUID surface via an external magnetic
field. Junctions 1 and 2 have critical currents ic1 = ic2, and Zeeman energies EZ1 and EZ2. Blue line : EZ1 =
EZ2 = 0.4∆. Orange line :EZ1 = EZ2 = −0.4∆. Because of TRS and±Φext symmetry, the blue and orange
curves also correspond to identical EZ1 and identical EZ2 but opposite current bias I±c . In this situation, the AJE-
induced phase shifts compensate while the AJE-induced current shifts add up, showing high JDE but no shift in flux.
Green line : EZ1 = −EZ2 = 0.4∆. In this situation, the AJE-induced phase shifts add up while the AJE-induced
current shifts compensate, showing low JDE but a shift in flux.

φ∗ such that I∗ = I(φ∗). This φ∗ is shifted by the field-induced φ0, and there exists an I0 such that
I0 = I(0) ̸= 0, see the blue dot in Fig.6.30a. For this current bias I0, the superconducting leads have the
same phases, recovering the symmetry they had at zero current bias and without magnetic field. In other
words, the current bias I0 compensate exactly the finite momentum pairing induced by the magnetic field.

Indeed, carrying a supercurrent in a superconductor requires Cooper pairs with non-zero momentum,
such that current bias creates finite momentum pairing. Just like the Zeeman-induced finite momentum
pairing at zero current, the current bias induced one depends on the Fermi surface and its spin-texture.
It is reminiscent of the Edelstein effect in the resistive state, where a DC current bias induces an out-of-
equilibrium spin polarization, see part 6.7.1. In fact, the supercurrent I0 at zero phase difference induces
the same spin polarization as in the resistive state, except that it is now an equilibrium quantity [209].

So in a sense, one can say that it corresponds to the current-induced spin polarization necessary to
produce the opposite of the applied magnetic field, such that the two effects cancel out. In this sense,
applying a current bias is equivalent to applying a magnetic field. The rigorous connection, however, is
between the inverse Edelstein effect and φ0 [85]. In a superconductor with SOC, there is a relation between
the phase gradient and spin polarization, such that φ ̸= 0 induces a spin polarization, translating into a
supercurrent via the inverse Edelstein effect. Conversely, a given Zeeman energy produces a spin polarization
and a related φ. At φ = φ0, the spin-induced supercurrent compensates exactly the supercurrent generated
by the phase difference, such that Itot = IIEE + Ip(φ = φ0) = 0, where Ip(φ) is the CPR of the junction
without the inverse Edelstein effect.

The supercurrent-momentum relation is affected by the Fermi surface and its spin-texture, that is modi-
fied by the Zeeman energy, just like the Zeeman energy-momentum relation is affected by the supercurrent.
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So there is a deep connection between the supercurrent through the junction and the Zeeman energy, pro-
vided by the momentum of the Cooper pairs. For the simple case of 1d helical channels, the CPR can be
calculated analytically within the Bogoliubov-de Gennes formalism [72, 73], as done in part 1.4.3. For more
complex Fermi surfaces like 2d junctions with Rashba SOC, the most successful approach so far was to use
the Ginzburg-Landau formalism, see [83] for general formulas and symmetries analysis and [84] for a focus
on Rashba 2DEG.

Let us now discuss the implications of AJE for the I+c (Φext) patterns and for the JDE. For junctions
with sinusoidal CPR, AJE only shifts the CPR in phase by φ0. If the CPR has higher harmonics however,
AJE can also induce an asymmetry between positive and negative currents, and in particular a difference in
critical currents I±c [72, 210, 211, 74, 86]. Indeed, the higher harmonics present in a CPR may not share
the same phase shift φ0 and can be shifted in an asynchronous way, such that the CPR is deformed by the
magnetic field, as seen in part 1.4.3 for short ballistic helical junctions in a magnetic field.

Even if AJE only shifts a sinusoidal CPR by a phase φ0, this effect can be detected in an AC SQUID
geometry, as discussed in [108], or in a DC SQUID, as demonstrated in [112] in a geometry similar to the
experiment showing MCA presented in appendix 6.12.

To illustrate the effects of both AJE-induced φ0 phase-shifts and AJE-induced current-shifts (as op-
posed to pure φ0 phase-shifts), let us look again at Fig.6.30b, reproduced from part 1.6.3. It shows the
calculated critical current of a DC SQUID featuring two short 1d helical channels/junctions, as a function
of magnetic flux Φext applied through the SQUID surface via an external magnetic field. Junctions 1 and
2 have identical critical currents ic1 = ic2, and Zeeman energies EZ1 and EZ2. The particularity of a DC
SQUID geometry is that the supercurrents from the two junctions add up to give the total supercurrent
while their superconducting phase differences subtract in the total phase constrain, see part 1.5.3. Hence,
if we approximate the effects of AJE as a combination of a pure phase-shift and a pure current-shift of the
CPR, the DC SQUID geometry allows splitting both contributions of the AJE.

First, we recall that by TRS, for a critical current I+c (EZ ,Φext) with positive current bias, we have :

I+c (EZ ,Φext) = I−c (−EZ ,−Φext) (6.86)

where the Zeeman energy EZ corresponds to the Zeeman influence of the magnetic field, while Φext

corresponds to its orbital influence. This equation means that reversing the current bias is equivalent to
reversing the magnetic field (both the Zeeman and the orbital contributions of the magnetic field), see part
1.7 for more details. Conversely, reversing both the current bias and EZ is equivalent to reversing Φext, and
reversing both the current bias and Φext is equivalent to reversing EZ .

But now that multiple contributions of the magnetic field can be reversed, there are multiple defi-
nitions of JDE. Extrapolating from the discussion in part 1.7 with a single field contribution, one can
be tempted to define JDE as I+c (EZ ,Φext) ̸= I+c (EZ ,−Φext). However, this inequality does not yield
I+c (EZ ,Φext) ̸= I−c (EZ ,Φext) but I+c (EZ ,Φext) ̸= I−c (−EZ ,Φext), which does not correspond to sim-
ply reversing the current bias, contrasting with the single field contribution situation. For the double field
contribution situation, JDE writes I+c (EZ ,Φext) ̸= I−c (EZ ,Φext)⇐⇒ I+c (EZ ,Φext) ̸= I+c (−EZ ,−Φext).

The green solid line in Fig.6.30b illustrate the case EZ1 = −EZ2 = 0.4∆, where ∆ is the super-
conducting energy, see parts 1.4.3 and 1.6.3 for more details. In this situation, the main effect of AJE is
to shift the SQUID interference pattern by ≃ 2φ0, while the AJE-induced current-shifts do not contri-
bute. Indeed, the subtraction of opposite phase shifts add up while the addition of opposite current shifts
compensate each other. This situation corresponds to two junctions with opposite chiralities, either with
identical current biases and magnetic fields but opposite helicities, or with identical magnetic field and
helicities but opposite current biases (like samples studied in [112] and in appendix 6.12). Because of the
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orbital dephasing introduced by Φext, reversing the current bias is equivalent to reversing not only both
EZ1 and EZ2, but also Φext. As a result, because we have I+c (EZ1, EZ2,Φext) ≃ I+c (−EZ1,−EZ2,−Φext)

(AJE essentially shift the pattern in the opposite direction when reversing both EZ1 and EZ2), we have
I+c (EZ1, EZ2,Φext) ≃ I−c (EZ1, EZ2,Φext) and JDE is negligible.

In contrast, the blue and orange solid lines in Fig.6.30b illustrate large JDE but no flux shift of the
SQUID pattern. Indeed, these curves correspond to EZ1 = EZ2 = 0.4∆ and EZ1 = EZ2 = −0.4∆,
respectively. Because both curves are symmetric in ±Φext, we can write :

I+c (EZ1, EZ2,Φext) = I+c (EZ1, EZ2,−Φext)⇐⇒ I+c (EZ1, EZ2,Φext) = I−c (−EZ1,−EZ2,Φext) (6.87)

meaning that the two curves actually also correspond to identical EZ1 and identical EZ2 but opposite
current bias. At any given set of field contributions (EZ1, EZ2,Φext), the blue and orange curves exhibit
large Ic difference, yielding high JDE I+c (EZ1, EZ2,Φext) ̸= I−c (EZ1, EZ2,Φext), even at Φext = 0. Here,
the maximum is still at Φext = 0 and the patterns are symmetric in ±Φext because the φ0-shifts compensate,
and the only remaining effect is the AJE-induced current-shifts which add up.

6.7.6 . Phenomenological models of MCA in the superconducting state
As discussed in previous appendix 6.7.5), the spin-orbit-induced Anomalous Josephson Effects (AJE)

can induce Josephson Diode Effect (JDE), where the maximum supercurrent depends on the orientation and
magnitude of the magnetic field. This constitutes a form of Magneto-Chiral Anisotropy (MCA) in the super-
conducting state. In superconductors and Josephson junctions with SOC, MCA in the superconducting state
is understood thanks to the finite Cooper pair momentum theory introduced in part 1.3.9. MCA can also
be probed in the superconducting fluctuation regime, and is understood via the theory of paraconductivity
[203]. While MCA is more easily probed in the superconducting fluctuation regime, it is harder to analyze
as it is at the limit between the superconducting and the resistive states. In this appendix, we discuss the
phenomenological models found in the recent literature, and we introduce our own very simple model that
allows us to analyze and compare MCA of a bismuth-nanowire-based Josephson junction in both its resistive
and superconducting states (see 6.12).

a) MCA in Josephson junctions

In [86], the authors use a simple two harmonics model to reproduce their experimental data. They write
the CPR of their junction as :

I(ϕ) =
4e

ℏ
(
∆2|γ1| sinϕ+∆4|γ2| sin(2ϕ+ δ)

)
(6.88)

with ∆ the superconducting energy. |γ1| and |γ2| are magnitudes of first- and second-order Cooper pair
tunneling processes, respectively. δ is at the origin of the AJE-induced current-shift. δ = arg(γ2)−2arg(γ1)

is the phase shift associated with the interference between the first-order and second-order Cooper pair
tunneling processes. In a superconductor with finite momentum qx along x, induced by a magnetic field By

along y (for Rashba SOC, see Fig.1.19d), the phase shift accumulated during the Cooper pair propagation
across the junction is δ ≃ 2qxd, with d the length of the junction. At small values of field, qx is linear in By

and one can write :
δ ≃ 2qxd ≃ π

By

Bd
(6.89)

where Bd is a characteristic of the junction.
Writing

I±c ≃
∣∣∣I(±π

2
)
∣∣∣ = 4e

ℏ
(
∆2|γ1| ∓∆4|γ2| sin δ

)
the JDE is ∆Ic = −

8e

ℏ
∆4|γ2| sin δ (6.90)
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with ∆ that varies with temperature and magnetic field magnitude. This formula shows a form of MCA,
with ∆Ic depending on BBB via δ ≃ π

By

Bd
. For high field values, depairing reduces the value of ∆, following

∆(|BBB|) ∝

√(
1−

(
|BBB|
Bc

)2)
, with Bc a critical field characteristic of the superconductor.

In [210, 211], they treat the AJE-induced current-shift by considering an entire array of planar junc-
tions (perpendicular to ẑzz) with Rashba SOC as an inductance with MCA, L = L0(1 + γLẑzz · BBB × III),
but it is an approximation only valid for low supercurrent and that ignores the φ0-shift. For DC SQUID
experiments, describing the junction with AJE-induced current-shift doesn’t seem appropriate. The au-
thors demonstrate both MCA of inductance L, JDE at Bz = 0 with By = 750G, and magnetoresis-
tance MCA R = R0(1 + γF ẑ ·BBB × III) in the regime of thermal phase fluctuation at T ≲ Tc. They find
γL ≃ 0.77× 106T−1.A−1 and γF ≃ 4.1× 106T−1.A−1, with identical angular dependence for both MCA.

b) MCA in a non-centrosymmetric bulk superconductor

In [84], the authors found a kkk-dependent ∆(kkk) for a 2d electron gas with Rashba SOC and bulk super-
conductivity (|∆| homogeneous over the whole system), using BdG model. Moreover, they used Ginzburg-
Landau theory to find the expression of the frontier between the superconducting and the resistive phases,
valid when T ≲ Tc or B ≲ Bc, expressed as a function of applied current JJJ and magnetic field BBB as :(

|BBB|
Bc

)2

+

∣∣∣∣∣ JJJJc − νBBB × ẑzzBc

(
1− |B

BB|2

B2
c

)2
∣∣∣∣∣
2/3

= 1 (6.91)

with Jc the critical current at BBB = 000, ẑzz the unit vector perpendicular to the surface. ν = ν(T ) =
αR
vF

Bc
BP

√
1− T

Tc
, with BP = 1.25Tc the Pauli limit. For crystalline systems with reduced spatial symme-

tries, we expect this relation to also depend on the crystal orientation. The resulting asymmetry in |BBB| is
illustrated in Fig.6.31a, for BBB ⊥ JJJ ⊥ ẑzz, with J±c critical currents at fixed |BBB| and B±c the critical fields at
fixed |JJJ |. They find :

∆Bc = B+
c −B−c =

2

3
νBc

J

Jc
and ∆Jc = J+

c − J−c = 2νJc
B

Bc
(6.92)

They argue that, near Tc, ∆Jc ∝ (Tc − T )2 and ∆Bc is independent of T , as Jc ∝ (Tc − T )3/2, Bc ∝
(Tc−T )1/2 and ν ∝ (Tc−T ). Thus, in addition to the dependence on magnetic field orientation, temperature
might be useful to distinguish AJE from inductances, as its effects scale both with Jc and Bc, in contrast
with inductive effects scaling only with Jc.

For a practical estimate, we can look at [212]. They express ∆Ic = 4eqxvF
ℏ . For a spin-orbit energy

much larger than the Zeeman energy EZ , we have qxvF = EZ . For small magnetic field By, it yields
∆Ic ≃ geff1.8× 10−8A.T−1 = geff1.8× 10−6µA.G−1.

c) Beff extended to MCA in Josephson junctions

As seen in parts 6.7.3 and 6.7.6, Edelstein effects are sources of MCA both in the resistive and the
superconducting states. In part 6.7.3, we introduced a phenomenological model of MCA in the resistive
state which is based on a current-induced effective magnetic field proportional to the current Beff = βI.
In the same spirit, in part 6.7.6, we argue that one way to think about AJE is to consider a current-induced
Beff that adds to the Zeeman field. This approach is not rigorous but is fine for our analysis and to compare
our results in both the resistive and superconducting states.
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(a) (b)

Figure 6.31 – (a) Critical current of a junction made of a 2d electron gas with Rashba SOI and bulk superconductivity,
as a function of in-plane magnetic field, perpendicular to the current. J+

c and J−c correspond to critical current
for positive and negative current bias, respectively. No asymmetry in the junction. From [84]. (b) Critical current of a
Josephson junction as a function of Zeeman fieldB, assuming a spin-orbit-induced current-induced effective Zeeman
fieldBZ,eff = B+βI . The blue solid line corresponds to a gaussian decay with characteristic Zeeman fieldBc and
β = 0. The green and red solid lines correspond to the same gaussian decay as the blue line, but withβ = TODO
and β = 0.15 Bc

Ic(0)
, respectively.

In the case of Rashba SOI, a supercurrent-induced in-plane magnetization perpendicular to the current
is predicted [209], which is identical to its value in the normal state in the long junction limit :

Sy = enτeαJ/σD (6.93)

in Bohr magneton units, with n the density of states , τe the elastic scattering time, σD the conductivity,
and J = I/W is the 2D current density assumed along the x axis.

Which can also be written as :
Sy =

α

ℏvF
(I/I0) (6.94)

where I0 = evF /L is the critical current for a ballistic 1D channel in the long junction limit and I the
current through the SNS junction

The maximum spin polarization is obtained when I is equal to the critical current Ic and reaches :

Smax
y ∼ (α/ℏvF )Mle/L (6.95)

where M =W/λF is the number of transverse channels of the junction. When the spin-orbit energy is of the
order of the Fermi energy, this spin polarization corresponds to 1 Bohr magneton per effective conducting
channels, which is the case for Bi based materials. It is much smaller for semiconductors where the spin
orbit energy does not exceed few meV.

It is interesting to compare these relations with the case of a single helical ballistic edge state in the
long junction limit whose spin polarization is expected to vary like : Sy = I/I0 which corresponds to a unit
spin polarization at the critical current.

In terms of energy, this spin polarization translates into an excess Zeeman magnetic energy ET I/I0 =

Φ0I leading to the effective Zeeman field geffµBBeff (I) = Φ0I to be compared with Eq.(6.69) for Rashba
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SOC. If one considers instead a Josephson junction with a large number Nh of helical states with a random
distribution of helicities, these quantities are expected to scale as N1/2

h

This effective Zeeman field Beff , approximately proportional to I as Beff ≃ βI, is expected to enter
the Zeeman field dependence of the critical current varying as Ic = Imax

c (B/Bc), where the magnetic field
B = BZ + Beff (Ic) gives rise to a field asymmetry of the critical current between positive and negative
values of magnetic field, which depends on the sign of the current though the junction.

Depending on the ratio of Beff/Bc different behaviors are expected. In particular, when Beff >> Bc

the critical current is not maximum in zero field and first increase with magnetic field presenting a maximum
at finite field.

This behavior was observed in a bismuth-nanowire-based Josephson junction with different field orien-
tations, as shown in appendix 6.12. Fig.6.31b illustrates the effect of different coefficients β, assuming a
gaussian decrease of the critical current with respect to the Zeeman field.

6.8 . Non-linear current response to a voltage bias

In this appendix, we detail two different calculation methods used to approximate the non-linear current
response to a voltage bias, when including a current-induced effective magnetic field Beff = βI.

For a voltage biased system, still considering a current-induced effective magnetic field, we need to
solve :

β2I3 + 2βBI2 + (B2 +B2
0)I −

V

AZ
= 0 (6.96)

The solution is :

6I = −4Bext

β
+ 2AZ(B

2
ext − 3B2

0)

(
2

Ṽ (Bext, V )

)1/3

+
1

AZβ2

(
4Ṽ (Bext, V )

)1/3
(6.97)

with Ṽ (Bext, V ) = A2
Zβ3

(
2AZB3

ext + 18AZBextB2
0 + 27βV +

√
−4A2

Z(B2
ext − 3B2

0)
3 + (2AZ(B3

ext + 9BextB2
0) + 27βV )2

)
.

Considering V (t) = VDC + VAC sin(ωt), it becomes :

Ṽ (Bext, V (t))

A2
Zβ3

= 2AZB3
ext + 18AZBextB

2
0 + 27βVDC + 27βVAC sin(ωt)

+
√

K + 54β(2AZ(B3
ext + 9BextB2

0) + 27βVDC)VAC sin(ωt) + 729β2V 2
AC sin2(ωt)

with K = −4A2
Z(B

2
ext − 3B2

0)
3 +

(
2AZ(B

3
ext + 9BextB

2
0) + 27βVDC

)2.
This leads to very cumbersome expressions and conditions for the harmonics of I(Bext, VDC , VAC , t).
To avoid this, let us find approximate solutions by two different methods.

6.8.1 . Taylor expansion in β of the solution of an approximate quadratic equation

Let us consider the following conditions : β ≪ 1 and βI ≪ Bext. The equation for I thus becomes :

β2I3 + 2βBI2 + (B2 +B2
0)I −

VDC + VAC sin(ωt)

AZ
= 0 (6.98)

and the solutions are : I±(t) = −
B2+B2

0±
√

(B2+B2
0)

2+8Bβ(VDC+VAC sin(ωt))/AZ

4Bβ

where the condition (B2+B2
0)

2+8Bβ(VDC +VAC sin(ωt))/AZ > 0 is always true for the small V applied.
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The Taylor expansion of order two in β of the harmonic decomposition of I±(t) is :

I± = ∓
4β2B2

ext

(
3V 2

ACVDC + 2V 3
DC

)
A3
(
B2

ext +B2
0

)5 ±
βBext

(
V 2
AC + 2V 2

DC

)
A2
(
B2

ext +B2
0

)3 ∓ VDC

A
(
B2

ext +B2
0

) − B2
ext +B2

0

2βBext
(6.99)

+

(
∓
6β2B2

extVAC

(
V 2
AC + 4V 2

DC

)
A3
(
B2

ext +B2
0

)5 ± 4βBextVACVDC

A2
(
B2

ext +B2
0

)3 ∓ VAC

A
(
B2

ext +B2
0

)) sin(ωt) (6.100)

+

(
∓ βBext

A2
(
B2

ext +B2
0

)3V 2
AC ±

12β2B2
extVDC

A3
(
B2

ext +B2
0

)5V 2
AC

)
cos(2ωt) (6.101)

± 2β2B2
ext

A3
(
B2

ext +B2
0

)5V 3
AC sin(3ωt) (6.102)

6.8.2 . Taylor expansion of the inverse of the current bias response

Let us relate the second order response of the current to a voltage bias ( δ2I
δV 2 ) thanks to the previously

calculated resistance. First, notice that in our toy model the resistance only depends on the current via the
effective Zeeman field. Still leaving aside the orbital part, we have :

R(BZ,eff ) = R(Bext + βI) = R(Bext, I) (6.103)

Conversely, we can write :

G(BZ,eff ) =
1

R(BZ,eff )
= G(Bext, V ) (6.104)

For small high order variations of G with δBZ,eff ( ∂nG
∂Bn

Z,eff

∣∣∣
BZ,eff=B̃

δBn
Z,eff ), we can perform a first

order Taylor expansion of G close to BZ,eff = B̃ :

G(B̃ + δBZ,eff ) ≃ G(B̃) +
∂G

∂BZ,eff

∣∣∣
BZ,eff=B̃

δBZ,eff +
1

2

∂2G

∂B2
Z,eff

∣∣∣
BZ,eff=B̃

δB2
Z,eff (6.105)

G(B̃+δBZ,eff ) ≃ G(B̃)−G2(B̃)
∂R

∂BZ,eff

∣∣∣
B̃
δBZ,eff−G2(B̃)

[
∂2R

∂B2
Z,eff

∣∣∣
B̃
− 2G(B̃)

(
∂R

∂BZ,eff

∣∣∣
B̃

)2
]
δB2

Z,eff

(6.106)

From Eq. (6.71), we have ∂R
∂BZ,eff

∣∣∣
B̃
= 2AZB̃ and ∂2R

∂B2
Z,eff

∣∣∣
B̃
= 2AZ . We write :

G(B̃ + δBZ,eff ) ≃ G(B̃)− 2AZG
2(B̃)B̃(δBext + βδI)− 2AZG

2(B̃)
(
1− 4AZG(B̃)B̃2

)
(δBext + βδI)2

(6.107)
So far, we have G(B̃ + δBZ,eff ) = G(Bext = B̃ext + δBext, I = Ĩ + δI). Now, we want to express

G(Bext, I) in terms of variables Bext and V . To do so, we need to relate δI to δV . Performing another
Taylor expansion close to Bext = B̃ext and V = Ṽ , we have :

δI =
∂I

∂V

∣∣∣
B̃ext,Ṽ

δV +
∂I

∂Bext

∣∣∣
B̃ext,Ṽ

δBext +
1

2

∂2I

∂V 2

∣∣∣
B̃ext,Ṽ

δV 2 +
1

2

∂2I

∂B2
ext

∣∣∣
B̃ext,Ṽ

δB2
ext + ... (6.108)

Thus, for ∂3I
∂V 3

∣∣∣
B̃ext,Ṽ

δV ≪ ∂2I
∂V 2

∣∣∣
B̃ext,Ṽ

(and higher order terms), we can write δI ≃ G(B̃ext, Ṽ )δV +

I(2)δV 2, with I(2) = 1
2
∂2I
∂V 2

∣∣∣
B̃ext,Ṽ

.
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Finally, for small enough non-linear dependence of the current response δI on the effective Zeeman field
BZ,eff and on the voltage bias V , and for δBext = 0, we can write :

G(B̃ + δBZ,eff ) ≃ G(B̃)− 2AZG
3(B̃)βB̃δV

− 2AZG
2(B̃)βB̃I(2)δV 2 − 2AZG

4(B̃)
(
1− 4AZG(B̃)B̃2

)
β2δV 2

With a voltage excitation VDC + VAC sin(ωt), where we consider Ṽ = VDC and δV = VAC sin(ωt), we
have :

I = G(B̃ + δBZ,eff )× (VDC + VAC sin(ωt))

= G(B̃)VDC

+
(
−2AZG

3(B̃)βB̃VDC +G(B̃)
)
VAC sin(ωt)

+
(
−2AZG

2(B̃)βB̃I(2)VDC − 2AZG
4(B̃)

(
1− 4AZG(B̃)B̃2

)
β2VDC − 2AZG

3(B̃)βB̃
)
V 2
AC sin2(ωt)

+ (...)V 3
AC sin3(ωt)

With sin2(ωt) = 1
2 −

1
2 cos(2ωt), and ignoring terms in V 3

AC, we write :

I = G(B̃)VDC − [AZG
3(B̃)βB̃ +AZG

4(B̃)β2VDC − 6A2
ZG

5(B̃)β2B̃2VDC

+ 12A3
ZG

7(B̃)β3B̃3V 2
DC − 2A2

ZG
6(B̃)β3B̃V 2

DC]V
2
AC

+
(
G(B̃)− 2AZG

3(B̃)βB̃VDC

)
VAC sin(ωt)

+
(
AZG

3(B̃)βB̃ − 6A2
ZG

5(B̃)β2B̃2VDC +AZG
4(B̃)β2VDC

)
V 2
AC cos(2ωt)

To obtain this expression, we solved I(2) self-consistently, as :
I(2) = 1

2
∂2I
∂V 2

∣∣∣
B̃ext,Ṽ

≃ −2AZG
2(B̃)βB̃I(2)VDC−2AZG

4(B̃)
(
1− 4AZG(B̃)B̃2

)
β2VDC−2AZG

3(B̃)βB̃.

6.9 . Resistive state behavior of long Bi nanowires

This appendix presents our results on long single-crystal bismuth nanowires with normal resistive contacts.
We first present the samples and their geometry in part 6.9.1. In part 6.9.2, from their resistivities as a
function of length and temperature, we determine the nature of transport. In part 6.9.3, we analyze the
mesoscopic interference effects on their conductances, namely Weak Anti-localization (WAL), to determine
their phase coherence length Lϕ. In the last part 6.9.4, we analyze the magnetic field dependence of the
second harmonic measurements, exhibiting Magneto-Chiral Anisotropy (MCA), using the current-induced
effective field Beff = βI model introduced in appendix 6.7.3.

6.9.1 . The samples and their caracteristics

We present results on four long nanowires divided in seven different segments. The samples were grown
by the Fe active buffer layer method with 99.999% pure bismuth, see part 2.1. The produced nanowires
were then transferred from the growth substrate to the host substrate by surface contact between the two
substrates. With this method, we managed to transfer very long nanowires, and in a selective way, as we
found fewer short nanowires than with other techniques. Large contacts were then patterned using standard
electron lithography techniques. After an IBE step of 30 seconds to remove the potential oxide layer on the
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Figure 6.32 – Optical image (left) and scanning electronmicrograph (right) of the four nanowires.We precise the name
of each segment and its position on the optical image : (a) Segments Bilong12 (top) and Bilong11 (bottom). (b) Segments
Bilong22 (top) and Bilong21 (bottom). (c) Segment Bilong4 (bottom). (d) Segments Bilong32 (left) and Bilong31 (right).

surface, 150 nm thick Au contacts were deposited by low pressure evaporation in 3 × 50 nm steps, after
deposition of a 5 nm layer of Ti.

In Fig.6.32, we display both optical images and scanning electron micrograph of the four nanowires and
their metallic contacts.

The main characteristics of the nanowires are summarized in Fig. 6.1, where the separation between
different nanowires is represented by vertical lines. The methods leading to these results and their analysis are
discussed in the following relevant subsections. Assuming similar leads and contacts resistances, combination
of 300 K measurements on segments of same nanowires gives a contact resistance Rc ≲ 25 Ω.
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segment Bilong11 Bilong12 Bilong21 Bilong22 Bilong4 Bilong31 Bilong32

length (µm) 44.3 20.6 23.4 58.7 16.0 14.2 31.6
width (nm) 135 137 110 110

R at T ≃ 300K (kΩ) 7.2 3.2 8.8 19.2 13.3 6.1 13.5
R at T = 4.2K (kΩ) 14.9 5.9 20.1 41.1 59.4 16.7 38.4

R× w/L at T = 4.2K (Ω) 45.4 38.7 118 95.9 408 129 134
R× w2/L at T = 4.2K (Ω.µm) 6.13 5.22 16.1 13.1 44.9 14.2 14.7
R× w2/L at T ≃ 300K (Ω.µm) 2.96 2.83 7.06 6.14 10.06 5.20 5.17

φbot
s/h (

◦) 120 162 ∼ 304 ∼ 263 ∼ 100 157 157

curved no? no? yes yes yes no no
theo.LT (µm) at T = 0.2K 3.60 3.63 3.25 3.25
Lϕ (µm) at T ≃ 0.2K 0.59 0.88 0.4 0.30 0.15 ≳ 0.81 0.71

Aorb+Z at T = 3.7K (Ω.T−2) 1055 593 286 786 797 96.6 500
AZ (Ω.T−2) 207 ? 207 ? ? ? 292 292 ?
β (G.µA−1) +166 ? −7.66 > +321 > +106 > 22.6 20.4 102 ?

Table 6.1 – Table summarizing geometric and transport characteristics of our four long nanowires divided in seven
segments, with normal metal contacts. See the corresponding sections for the definitions and the analysis of the
various quantities.

6.9.2 . Determination of the nature of transport
In this chapter, we will compare our resistance measurements to those found in the literature, and esti-

mate what kind of conduction modes dominate our transport measurements. We recall here that crystalline
bismuth is highly anisotropic with both bulk, surfaces and hinges transport, that the nanowires are subject
to (potentially anisotropic) quantum confinement effects, and that the type of surface plays an important
role when surface transport becomes dominant, see part 1.2. Hence, the transport properties depend on the
crystalline orientation and the size and geometry of the section of the nanowire.

In our work, we find for all nanowires a monotonic increase of resistance with decreasing temperature,
compare the T = 300 K and the T = 4.2 K values displayed in Tab. 6.1. In Fig. 6.33, the temperature
dependence of the resistance of three segments, belonging to three different nanowires, are displayed. We
see that the three segments have very similar behavior, with nearly a doubling of the resistance between
300 K and 1 K, a large variation between 200 and 50 K, and a saturation plateau at low temperatures.

Fig. 6.33c shows the logarithm of the resistances of samples Bilong31 and Bilong11 on the left scale and
the logarithm of the resistance of sample Bilong22 on the right scale as a function of temperature. For
semiconductors, the resistivity can be approximated by ρ(T ) = ρ0e

−αT , decreasing with temperature, and
should appear as a linear dependence on this semi-log graph as ln ρ(T ) = ln ρ0 − αT .

For comparison, Fig. 6.33d shows the resistances of samples Bilong31 , Bilong11 and Bilong22 as a function
of temperature on a log-log scale. For metals, the resistivity varies as T 5 for phonon-phonon mediated
scattering, as T 3 for s-d electron mediated scattering, and as T 2 for electron-electron mediated scatte-
ring. This should show in this log-log graph as linear dependence with coefficients between 2 and 5. We
see here that it clearly doesn’t match our data, as the resistivity of a metal should increase with temperature.
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(a) (b)

(c) (d)

Figure 6.33 – (a) Differential resistance of segment Bilong11 as a function of temperature. (b) Differential resistance of
segment Bilong31 as a function of temperature. (c) Log of differential resistance as a function of temperature for three
segments of different nanowires. Notice the left and right axis. (d) Differential resistance as a function of temperature
on a double log scale, for three segments of different nanowires.
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To understand the terms used in the literature, let us recall that in the "large samples" community, the
conductivity is expressed as :

σ = e(nsµn,s + nbµn,b − pbµp,b) =
1

ρ
(6.109)

where we considered a three carriers model with e the electron charge, ns, nb, pb, the carrier densities of
surface electron states, of bulk electron states, and of bulk hole states, respectively. µn,s, µn,b and µp,b are
the carriers mobilities for the respective states. ρ is the resistivity.

The carriers mobilities can be further expressed as : µ = eτe/m
∗

where τe is the elastic scattering time and m∗ is the effective mass of the considered carrier.
In [213], the authors showed that, for diameters close to ≃ 1 µm, the effective mean free path le is

reduced by the scattering with the nanowire surface. This also reduces the carriers mobility and increases the
resistivity of the electrons and holes from the bulk pockets. They modelized that, for diameters < 500 nm,
the resistivity increase monotonously with decreasing temperature, taking into account the change in bulk
carriers mobilities only. However, this analysis does not include other quantum size effects appearing for
diameters ≲ 300 nm.

For nanowires of smaller diameters, [39] ran an extensive study of longitudinal and transverse magne-
toresistance of 7 − 200nm arrays of Bi nanowires with mainly [0, 0.949, 0.315] crystalline orientation (in
the binary, bisectrix, trigonal basis). They find a complex non-monotonic behavior as a function of NW
width, even though it is averaged over the whole arrays. They found a similar doubling of the resistance
between 300K and 1K for nanowires of diameter 30 < w < 70 nm. In [38], the authors measured individual
nanowires of 50 and 75 nm with similar temperature dependence. They explain the T > 100 K data with
a semi-metallic model with reduced negative gap ∆ ≃ 10 meV compared to infinite bulk ∆ ≃ 38 meV .
With the same interpretation, we would find an intermediate ∆ ≃ 20 meV .

Focusing on more recent results on similar individual nanowires of diameters from 21 to 178 nm, in [36],
the authors identified three different transport regimes depending on nanowire diameter. For nanowires of
diameter ≳ 110 nm, they find a semi-metallic bulk-like behavior where the main effect of the finite diameter
is to reduce the effective mean free path. For a diameter 40 < w < 110nm, the increase of resistivity
at low temperature is attributed to quantum size effects changing the band structure of the nanowire in
a significant way, decreasing the bulk carriers densities, as well as an increase in carriers effective masses
(decrease of mobilities) due to a strong coupling between electrons and holes. As the diameter is further
reduced, the surface to volume ratio increases and for w ≲ 40 nm, the bulk becomes insulating [16] and
the transport is dominated by the metallic surfaces, see also [37].

However, in order to explain the increase of resistance with decreasing temperature of intermediate
diameter nanowires, all these interpretations rely on a similar contribution of bulk states and surface states
on the resistance at high temperature. In light of the analysis of the contribution of both states at low
temperature, done in [2] and in the following, it seems a bit unrealistic.

To better understand our transport, let us now look at the resistance of the samples as a function
of sample lengths L. On Fig. 6.34, we plot with different colors the resistances of segments belonging to
different nanowires as a function of segments lengths, both measured at T = 300 K (square marks) and
T = 4.2 K (triangle marks). We see that both at T = 300 K and T = 4.2 K, the resistances are consistent
with a linear dependence on length, showing that we are in the diffusive regime where L > le.
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Figure 6.34 – Resistances of all the segments plotted as a function of segment length. Colors distinguish the nano-
wires. Triangular markers for data at T = 4.2K , square markers for data at T ≃ 300K . Solid lines for linear fits
of T = 4.2K data, dashed lines for linear fits of T ≃ 300K data. See legend to know which nanowire and what
value is given by the linear fits.

Bismuth nanowires are expected to support three types of conducting states : topological (ballistic)
helical hinge states, (metallic) surfaces states with high spin-orbit coupling, and (semi-metallic) bulk states.
Each topological helical hinge states should be ballistic and contribute to total conductance as half a
quantum of conductance 1

2GQ = e2/h, limited by its phase coherence length Lϕ, and independent of the
elastic mean free path le due to scattering. The number of topological hinge states depends on the geometry
of the surface, and could range from 2 to ∼ 100.

For non-protected surface states, conductance should roughly scale with the sample total surface width,
i.e. the perimeter of the section, and with the inverse of the sample length, meaning that the resistance
should scale as R ∝ L.w−1. For non-protected bulk states, conductance should scale with the sample section
surface and with the inverse of the sample length, that is R ∝ L.w−2. In Tab. 6.1, we display R× w/L at
T = 4.2 K for every nanowire segments, as well as R× w2/L at T = 4.2 K and T ≃ 300 K.

Let us now estimate our number of channels of Bilong12 , the segment for which we have the most data.
From [6], depending on the effective dimensionality of the diffusion from between the contacts, the

conductance G can be written as :

quasi− 1d 2d 3d

G = 2e2

h
4
3M

le
L G = 2e2

h
1
2kFW

le
L G = 2e2

h
1
3πk

2
FS

le
L

(6.110)

where L is the sample length (in the direction of the current), W is the sample width (length of the long
dimension transverse to the current for 2d), and S is the sample section (surface transverse to the current
for 3d).

Given its measured Fermi wavelength (see appendix 6.11) λF,b ≃ 51 nm, the section of the nanowires
can host Mb = πS/λF,b ≃ π(135/51)2 ≃ 22 bulk channels. From the quasi-1d formula for conductance,
we get Mtot =

RQ

R
3L
4le
≃ 169 ≫ Mb, taking le ≃ 200 nm, R = 5.9 kΩ, and L = 20.6 µm. A possible

explanation for this discrepancy is the presence of a large number of surface channels, not taken into account
in Mb but included in Mtot via R, as found in [2].

More generally, the conductance for quasi-1d diffusion can be expressed as :

G =
2e2

h

4

3L
(Mble,b +Msle,s) =

2e2

h

4

3L
(
πS

λ2F,b
le,b +

2W

λF,s
le,s) (6.111)
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where we consider different number of channels for the bulk (Mb =
πS
λ2
F,b

) and for the surfaces (Ms =
2W
λF,s

),

as well as different mean free paths le. λF,b and λF,s are the Fermi wavelengths of the bulk and surface states,
respectively. This is analogous to Eq.(6.109) in the small length scales and low temperature situations.

We find Mb ≃ 22 and Ms ≃ 2×4w
(4×10−9)

≃ 270, and indeed Ms ≫ Mb. With these values, considering
le,b = le,s, we find at low temperature that le ≃ 116 nm ≃ w, consistent with [213, 2].

Let us now compare the values at low temperature to the one at T ≃ 300 K. The conductance gains
a factor ∼ 2 between low temperature and room temperature. This cannot be attributed to the surfaces,
that are thought to be metallic (see part 1.2) and contribute to the conductance in the opposite way.

Looking again at Eq.(6.111) (approximation at low T ), taking Ms independent of T , it suggests that
the increase of conductance at high temperature is due to either an increase of the number of bulk states or
an increase of le,b

le,s
. However at first sight, a doubling of the conductance with a combination of both effects

seems hard to achieve with reasonable numbers, which may indicate that couplings between the surface and
bulk states are involved, as often discussed in ARPES experiments.

We also draw the reader attention to the fact that the quasi-1d surface (and bulk) channels should
localize for a sample length ξ such that ξ > Mle ≃ 34 µm, taking M ≃ 292 and le = le,b = le,s ≃ 116 nm

previously found. This would filter out surface channels in long nanowires and leave out only the ballistic
topological helical states. Unfortunately, as the next section will show, we can’t observe it because the
surface channels lose their phase coherence before localizing, that is Lϕ ≪ ξ.

We conclude that, at low T , the transport is dominated by surface states with le ≃ w ≃ 120 nm,
consistent with previous analysis [2]. Between low and high T , the decrease of resistance is mainly
due to an increasing contribution of bulk states, as reported in [39, 38, 36]. However, this type
of behavior has been mainly reported for smaller nanowires of diameter d ≲ 70 nm of various
crystallographic orientations, and the change of resistance is hard to explain without invoking
couplings between surface and bulk states.

The next section will be dedicated to the analysis of quantum interference effects in the resistance of
the nanowires, and will provide an estimation of the phase coherence length Lϕ for diffusive transport as
well as a way to estimate le.

6.9.3 . Coherence length deduced from weak anti-localization peak
We now focus on the low temperature dependence of the resistance of our nanowires as a function of

magnetic field magnitude and direction. In the following subsections, we analyze measurements done on
two of the four nanowires, which have both two straight segments. Figs. 6.35a, 6.36a, 6.37a, 6.38 show
the resistances of segments Bilong11 , Bilong12 , Bilong31 and Bilong32 as a function of transverse (vertical) magnetic
field, at different temperatures. The higher temperature curves have been shifted in Y for clarity. The same
graphs for the three remaining segments can be found in the appendix.
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(a)

(b)

Figure 6.35 – Magnetoresistance of segment Bilong11 . (a) Transverse (vertical) magnetic field, various temperatures.
Higher temperature curves have been shifted in Y for clarity. (b) In-plane magnetic field with different angles ∆φ,
where∆φ = 180◦ for a field parallel to the wire and in the direction of the current.

All segments show two clear corrections related to quantum coherence effects that decrease with increa-
sing temperature : weak antilocalization (WAL) dips at low field, and universal conductance fluctuations
(UCF) at higher field. The WAL dips at low magnetic fields come from destructive interference of counter-
propagating closed trajectories in materials with spin-orbit coupling. These interferences are destroyed by a
magnetic field, on a scale that depends on the phase coherence length Lϕ. The UCF are due to the various
diffusion trajectories from one end of the sample to the other, on a distance ∼ Lϕ, and do not vanish at
high magnetic field.

For the WAL correction, its amplitude depends on the effective dimensionality of the problem [6]. WAL
is based on diffusion that produces closed trajectories. If the diffusion process is limited by Lϕ only, the
diffusion can be considered as 3d. If the diffusion process is limited by the sample edges in one direction,
e.g. in a film of height h < Lϕ, the diffusion can be considered as 2d. If the diffusion process is limited by
the sample edges in two direction, e.g. in a nanowire of width w < Lϕ, the diffusion can be considered as
quasi-1d.

From [6], depending on the effective dimensionality of the diffusion between the contacts, the weak
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(a)

(b)

Figure 6.36 – Magnetoresistance of segment Bilong12 . (a) Transverse (vertical) magnetic field, various temperatures.
Higher temperature curves have been shifted in Y for clarity. (b) In-plane magnetic field with different angles ∆φ,
where∆φ = 180◦ for a field parallel to the wire and in the direction of the current.

localization correction to the conductance ∆G can be written as :

quasi− 1d 2d 3d

∆G = −2e2

h
Lϕ

L ∆G = −2e2

h
1
π
W
L ln(

Lϕ

le
) ∆G = −2e2

h
1
2π

S
leL

(6.112)

The above formulas are valid for weak localization, that is the modification of the conductance by
time reversed closed trajectories with no dephasing between them. The weak localization correction to
conductance is affected by decoherence processes (irreversible) on one side, such as scattering with a
magnetic impurity, and by SOC-induced dephasing (reversible) on the other side. We note the characteristic
times τm and τSO for magnetic-scattering-induced decoherence and SOC-induced dephasing, respectively.
These processes modify the average result of dephasing between time reversed trajectories by a factor [6]

⟨QSO+m(t)⟩ = 1

2
(3e−4t/3τSO−2t/3τm − e−2t/τm) (6.113)

where t is the travel time around the loop, with necessarily t > τe the elastic scattering time.
In the case of transport via bismuth surface, we consider a spin-orbit time τSO = h

ESO
≃ 4 fs, taking

212



(a)

(b)

Figure 6.37 – Magnetoresistance of segment Bilong31 . (a) Transverse (vertical) magnetic field, various temperatures.
Higher temperature curves have been shifted in Y for clarity. (b) In-plane magnetic field with different angles ∆φ,
where∆φ = 180◦ for a field parallel to the wire and in the direction of the current.

ESO ≃ 0.1 eV (see [24] for example) much shorter than the elastic scattering time and thus τSO ≪ t. We
also consider that there is no magnetic impurity (τm ≫ t).

In this limit, we obtain : ⟨QSO+m(t)⟩ = −1
2 instead of ⟨Q(t)⟩ = 1 of "bare" weak localization, becoming

weak anti-localization with destructive interference.

Magnetic field can induce orbital dephasing. Again, the effect of the magnetic field depends on the
effective dimensionality of the problem and the relative contributions of the dephasing processes. Assuming
a phase coherence length Lϕ > 137 nm, the maximum width of our nanowires, and dephasing processes of
timescales very different compared to τϕ and τe, we used the following simple formula for a quasi-1d system
[6, 214] :

Lϕ(B) =
Lϕ(0)√

1 +
(

2π√
3Φ0

Lϕ(0)WeffB
)2 (6.114)

where Φ0 = h/e is the quantum of flux, Lϕ(0) the phase coherence length at zero magnetic field, and Weff
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Figure 6.38 – Transverse (vertical) magnetoresistance of segment Bilong32 .

the effective width of the nanowire.
The effective width of the nanowire Weff is equal to the real nanowire width Weff = w if w ≫ le.

Previous analysis (see part 6.9.2 and [2]) led to the conclusion that le is close to the width of the na-
nowire, thus w ≃ le. In this situation, reflections on the boundaries play a major role and lead to flux
cancellation effects, that can be translated to Weff < w [215]. [215] calculated that Weff = w

√
3w
9.5le

for specular boundary reflection, and Weff = w
√

3w
4πle

for diffusive boundary reflection. Notice that they
calculated it analytically with a semiclassical treatment assuming λF ≪ le and λF ≪ w, fulfilled for sur-
face modes, but also in the limit le ≫ w, hardly fulfilled here. Hence, Weff is an interesting quantity to
measure to test their formula in our w ≃ le regime. If the formula holds, the rugosity of the boundaries
of our samples being in the 1 nm scale, we expect an intermediate Weff for surface transport (λF ∼ 4 nm).

Putting everything together, we obtain the following weak antilocalization correction to the conductance
for quasi-1d system with Lϕ > w and τSO ≪ τe < τϕ ≪ τm :

∆g =
∆G

e2/h
=
Lϕ(B)

L
=

Lϕ/L√
1 +

(
2π√
3Φ0

LϕWeffB
)2 =

A1/L√
1 +

(
2π√
3Φ0

A2B
)2 (6.115)

Fitting the conductance with the formula (6.115) with a parameter A1 for the amplitude and a parameter
A2 for the width of the conductance peak, we extracted the phase coherence length of the various segments,
see Tab. 6.1 for the measured values at T ≃ 0.2K and Fig. 6.39 for the fits and the temperature dependence
on segments Bilong31 and Bilong12 . Lϕ is expected to vary as T−1/3, T−1/2, and T−3/4 for 1d, 2d, and 3d systems,
respectively [37].

To be more specific, I first fitted the cleanest available data, that is the sample Bilong12 data between
0.24 and 0.48 K (Fig.6.39a), and took Lϕ = A1 and Weff = A2/A1. The three fits gave the same
Weff = A2/A1 ≃ 70 nm and Lϕ ≃ 0.8 µm, both of which that made sense.

Interestingly, the obtained Weff has an intermediate value between specular and diffusive boundary

reflections, i.e. w
√

3w
4πle

< Weff < w
√

3w
9.5le
⇐⇒ 66 < 70 < 76 nm, taking le = w = 135 nm. This value

of le is consistent with the 106 nm found with the conductance in part 6.9.2.
Fitting other data with the same interpretation led to suspicious values for Weff , e.g. varying a lot

with temperature or being close or larger than the nanowire width. Indeed, taking Lϕ = A1 can be af-
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(a)

(b)

(c)

Figure 6.39 – (a) Solid lines : conductance of segment Bilong12 as a function of transverse (vertical) magnetic field, for
various temperature. Dashed lines : fits of the conductance WAL peak with the formula Eq.(6.115). (b) Solid lines :
conductance of segment Bilong31 as a function of transverse (vertical) magnetic field, for various temperature. Dashed
lines : fits of the conductance WAL peak with the formula Eq.(6.115). (c) Phase coherence length Lϕ in segments
Bilong12 and Bilong31 as a function of temperature. The low number of data points as well as the errors on it makes for
very approximate linear curve fits.
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fected by an erroneous estimation of the baseline conductance of a few %. Thus, I decided to trust the
Weff = A2/A1 ≃ 70 nm of sample Bilong12 , and used it to estimate the W calc

eff of the other sample as

follows : W calc
eff =

W
Bilong

12
eff

(wBilong
12 )3/2

w3/2. I then used only A2, more robust than A1, to get Lϕ = A2/W
calc
eff .

We find phase coherence lengths Lϕ ranging from 0.15 to 0.88 µm at T ≃ 0.2 K, consistent with
what can be found in the litterature [216, 217, 37]. These values are surprisingly short compared to the
behavior measured on bismuth wires proximitized by superconducting contacts. Indeed, carrying a super-
current through a non-superconducting piece of material by superconducting proximity effect requires full
phase coherence to establish Andreev bound states (ABS).

The supercurrent carried by ABS should scale as e−2L/Lϕ , and would lead to a minimum ∼ 10−2

reduction factor in the best case scenario. This could lead to a selection of the trajectories that have
the shortest length, i.e. ballistic trajectories, but it would only increase the effective coherence length to
Lbal
ϕ = vF (L

dif
ϕ )2/

√
vF le ≃ 1.8 µm at T ≃ 0.2 K in the best case scenario for the best nanowire segment,

leading to a minimum reduction factor of < 0.2. On top of that, the amplitude of the n-th harmonic of the
CPR should be reduced by a factor e−2nL/Lϕ . This is inconsistent with the sawtooth or triangular patterns
we observed in the vast majority of the samples we studied, see part 3.3. Moreover, the reduction of Lϕ with
increasing temperature, by a minimum factor of 0.5 between T ≃ 0.2 K and T ≃ 1.0 K (see Fig. 6.39c),
would have a very visible effect on the dependence of the supercurrent and the CPRs on temperature. This
is not what we observe.

We also notice that the smallest Lϕ correspond to curved nanowires, reduced by a factor ≲ 0.5 compared

to straight ones. This would be caused by an overestimation of Weff = w
√

3w
Cble

by a factor 2, which is
hard to believe. Thus, we conclude that the curvature of nanowires seems to reduce Lϕ.

For completeness, we include in Tab.6.1 the thermal length for quasi-1d system LT =
√

hvF le
kBTd at

T = 0.2 K, with kB the Boltzmann constant, d = 1 the effective dimensionality, vF = 4×105, and le = w.
We see that it is always larger than Lϕ by a factor ∼ 4, thus not influencing our measurement of Lϕ.

We conclude that the phase coherence length Lϕ ≃ 0.8 µm measured at T ≃ 0.2 K in the re-
sistive state is much smaller than the phase coherence length necessary to explain our results on
proximitized bismuth nanowires. We make the hypothesis that this discrepancy can be attributed
to a separate, stronger phase coherence for the ballistic channels we measure in the superconduc-
ting state, that do not participate to the WAL. The nuclear spins of Bi atoms have been found
to affect WAL [218], and may also play a role in topological phase stabilization.

6.9.4 . Second harmonics analysis of the MCA induced by Beff = βI

Following the analysis introduced in appendix 6.7.4, and in the same spirit of the analysis of the Bi-based
Josephson junction in its resistive state in appendix 6.12 and the Bi nanoring in appendix 6.10, we write the
conductance G as :

G ≃ G(BZ,eff ) ≃ G(Bext + βI) ≃ G(Bext, V ) (6.116)

where we left aside the orbital contribution of the magnetic field. BZ,eff is the effective magnetic field
contributing to Zeeman effects. It is modeled by the addition of the external magnetic field Bext and a
current-induced effective Zeeman field βI, which originates from SOC and causes MCA of the resistance.

As G depends on the voltage variations δV via βδI ≃ βG0δV + βI(2)δV 2, β is detectable in the
non-linear components of G. For a small voltage excitation δV = VAC sin(ωt) plus a DC voltage bias VDC,
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in second order of VAC, the first harmonic current response reads (see Eq.(6.84)) :

I(1ω) ≃
(
G0 − 2AZG

3
0βBextVDC

)
VAC (6.117)

Within the same conditions, the second harmonic voltage response reads :

I(2ω) ≡ C2ωV 2
AC ≃

(
AZG

3
0βBext − 6A2

ZG
5
0β

2B2
extVDC +AZG

4
0β

2VDC

)
V 2
AC (6.118)

Hence, β can be extracted from the linear dependence of I(2ω) on Bext. To estimate β, the knowledge
of AZ and G0 are required, which can be both extracted by a quadratic fit of the resistance as a function
of Bext, see 6.7.4.

We extracted β from the second harmonic current response of the nanowire segments to an AC voltage
of amplitude < 60

√
2 mV with standard lock-in instruments at frequencies between 70 and 200 Hz. The

measurements were done in the two-wires configuration. See part 2.8.1 for a sketch of the electronic setup.
Looking at Eq. (6.84), we expect to measure the main responses in the in-phase component of the first

harmonic and in the in-quadrature component of the second harmonic. This is indeed the result we got.

a) First harmonic current response as a function of DC voltage VDC

Fig.6.40 displays the first harmonic response I(1ω)/VAC (conductance) as a function of DC voltage bias
VDC for four segment belonging to two different nanowires, at fixed VAC = 10µV . The variations are smal-
ler than the noise level, that is less than 0.3%, and hence there is no big non-linearity induced by a finite VDC.

(a) (b) (c) (d)

Figure 6.40 – Conductance dI/dV (first harmonic response I(1ω)/VAC) as a function of DC voltage bias VDC, at
fixed VAC = 10µV , no magnetic field, T ≃ 100mK . (a) Sample Bilong11 . (b) Sample Bilong12 . (c) Sample Bilong21 . (d)
Sample Bilong22 .

b) Second harmonics current response as a function of excitation voltage VAC

In Fig. 6.41, we show the second harmonic response of samples Bilong31 , Bilong11 , and Bilong12 as a function of
excitation amplitude VAC and V 2

AC, for various magnetic fields. For all three of them, we notice two things :
- there are two visible low excitation regimes, with a peak and a crossover at ∼ 10 mV , that depends on
the sample
- the second harmonic response variations with magnetic field are bigger in the higher excitation regime
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(a) (b) (c) (d)

(e) (f)

Figure 6.41 – Second harmonic current response as a function of voltage excitation amplitude VAC and V 2
AC, with no

DC voltage bias. (a),(b) Sample Bilong31 . (c),(d) Sample Bilong11 . (e),(f) Sample Bilong12

The crossover between the two excitation regimes correspond to ∼ 0.5 µA for the three segments, that
is close to VAC ∼ 5mV on the graphs. For segments Bilong31 and Bilong11 , we see that the second harmonic
response scales quite well with V 2

AC as expected, but it is less clear for segment Bilong12 . The following full
measurement as a function of magnetic field will help us clarify this dependence.

c) Second harmonics current response as a function of magnetic field

In Figs. 6.42, 6.43, 6.44, we show the measured second harmonic current response as a function of
vertical (perpendicular) magnetic field in the nanowire segments Bilong12 , Bilong11 , Bilong31 , and Bilong32 . All second
harmonic responses have been rescaled by V 2

AC.
As explained in the previous part, we split the second harmonic signal into two parts, one even and the

other one odd in magnetic field, and the presence of β should manifest itself as a linear dependence on the
magnetic field in the odd part.

Sample Bilong12

In Fig. 6.42a, the raw second harmonic response of segment Bilong12 is represented with a solid black line,
whereas the even and odd parts are represented in red and blue, respectively. We see that for |Bext| ≳ 1 T

the second harmonic is dominated by its odd contribution, whereas for |Bext| ≲ 1 T it is a mix of both even
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and odd.

(a)

(b)

(c)

Figure 6.42 – Second harmonic current response of Bilong12 as a function of vertical (perpendicular, out-of-plane) ma-
gnetic field. (a) The raw signal (black line) is decomposed into a part even in field (red line) and odd in field (blue line).
(b) Odd part for different temperatures and excitation amplitudes VAC. The turquoise dashed line is the result of a
linear fit at low field of the data shown as the turquoise solid line. The slope gives |β| ≃ 7.66G.µA−1. (c) Even part
for different temperatures and excitation amplitudes VAC. The gold curve has been rescaled for easier visualization.

Fig. 6.42b focuses on the odd contribution to the second harmonic, with two different excitation am-
plitudes and two temperatures. We see that the two responses with the same VAC = 20 mV but different
T ≃ 0.1 K and T ≃ 3.7 K are very close, with large and smooth variations for |Bext| ≳ 1 T and smaller
features at low fields. The large scale variations are further analyzed in part 6.11.
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The response of Bilong12 to a lower excitation VAC = 3 mV , at the limit between the two excitation
regimes identified in Fig. 6.41e, is shown as a light blue solid line in Fig. 6.42b. It is noisier and shows
sharper peaks than the VAC = 20 mV response, but keep the same global shape, albeit a change of sign.

In [200], their change of sign of the second harmonic response is caused by a change of shape of the
Fermi surface with the chemical potential. In our measurement however, we change the excitation VAC of
a voltage biased two-terminal setup. In [202], they also find changes of sign with the gate voltage, that
coincide with first harmonic (resistance) variations. They interpret it as related to sub-band crossings.

Furthermore, the low field response features at |Bext| ≲ 0.5 T disappear for VAC = 3 mV . Except for
this low field features, the linear dependence on Bext is the same for VAC = 3 mV and VAC = 20 mV . We
conclude that the mechanism responsible for the change of sign doesn’t affect the odd contribution to the
second harmonic for |Bext| ≳ 0.5 T .

A linear fit on the VAC = 3 mV T ∼ 0.1 K odd part at low field is displayed as a dashed blue line in
Fig. 6.42b, and gives y = a.x with a = 7.4 × 10−11A.V −2.G−1. Looking at Eq. (6.84), we identify this
coefficient as AZG(B̃)3βB̃ ≃ AZG

3
0βBext. To estimate the coefficient of the quadratic dependence of the

resistance of Bilong12 on the Zeeman field AZ , we do a low field quadratic fit on the resistance of Bilong12 as
a function of magnetic field oriented along the nanowire axis, see the solid and dashed light green lines in
Fig. 6.36b. Both the estimation of AZ and the measurement of G0 are done at T ≃ 3.7 K to reduce the
contribution of the WAL on the magnetoresistance.

With AZ = 2.07 × 10−6 Ω.G−2 = 207 Ω.T−2, G0 = 1/5985 = 1.67 × 10−4 Ω−1 and a linear fit
coefficient a = 7.4×10−11 A.V −2.G−1, we obtain |β| ≃ 7.66×106 G.A−1 = 766 T.A−1 = 7.66 G.µA−1.
The sign and magnitude of β is analyzed at the end of this subsection.

With the measurements done on the nanowires with superconducting proximity effect (see part 3.4), this
effective magnetic field (or flux) could be explained by geometric or kinetic inductances. With the present
measurements that involve no superconductivity, it is clear that there are no such inductances.

Fig. 6.42c focuses on the even contribution to the second harmonic, with two different excitation
amplitudes and two temperatures. First of all, the even contribution is not zero, even though VDC = 20 mV .
On the VAC = 20 mV curves, we see that they have smaller variations and on smaller field-scale than their
odd counterpart.

Moreover, the T ≃ 0.1 K curve features slightly larger variations and additional small-scale patterns
compared to the T ≃ 3.7 K curve. The field-scale of these variations is compatible with UCF, but notice
on Fig. 6.36a that the UCF measured on the magnetoresistance of Bilong12 are drastically reduced for VAC =

20 mV and T ≃ 3.7 K (solid brown curve), unlike the variations measured on the even part of the second
harmonic response.

To conclude with the even part of the second harmonic response, we find that the VAC = 3 mV and
T ≃ 0.1 K response (solid gold curve) does not scale with V 2

AC. To display it on the same scale as the two
other curves, it has be been rescaled by a factor 0.2.

Sample Bilong11

In Figs. 6.43a and 6.43b are plotted the odd and even contributions to the second harmonic response of
segment Bilong11 as a function of magnetic field, for various excitation amplitudes VAC. This segment is next
to segment Bilong12 , part of the same nanowire.

Compared to Fig. 6.42b, the odd part in Fig. 6.43a present the same linear dependence for fields
|Bext| ≲ 0.3 T and a sign reversal in the low excitation regime VAC = 5mV (solid light blue line). We
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(a)

(b)

Figure 6.43 – Second harmonic current response of Bilong11 as a function of magnetic field in different orientations
and for different excitation amplitudes VAC. The raw signal is decomposed into a part even in field (b) and odd in
field (a). θ = 0◦ corresponds to a field parallel to the vertical axis. ∆φ = 173◦ and ∆φ = 83◦ correspond to
horizontal fields almost antiparallel and perpendicular to the nanowire axis, respectively. The green and pink curves
have been rescaled to match the slope of the violet curve. The gold curve has been rescaled for easier visualization.
The violet dashed line is the result of a linear fit at low field of the data shown as the violet solid line. The slope gives
|β| ≃ 166G.µA−1.

notice that the VAC = 20mV response (solid purple line) presents thinner structures compared to the
VAC = 60mV response (solid dark blue line).

Following the same procedure as Bilong12 , we extract a low field linear fit coefficient y = a.x = −9.85×
10−11x (dashed purple line). Assuming the same AZ = 2.07 × 10−6 Ω.G−2 as segment Bilong12 (same
nanowire) and withG0 = 1/15180 = 6.59×10−5 Ω−1, we get |β| ≃ 1.66×108 G.A−1 = 1.66×104 T.A−1 =
166 G.µA−1. Despite being two segments of the same nanowire, segment Bilong11 has an β ≃ 22 times larger
than segment Bilong12 . This large discrepancy is commented at the end of this subsection.

For the nanowire segment Bilong11 , we performed second harmonic response measurements as a function
of in-plane (horizontal) magnetic field for two angles ∆φ. ∆φ is the in-plane angle between the direction
of the voltage gradient and the direction of the magnetic field. The solid pink and green lines shows the
response to a magnetic field almost antiparallel (∆φ = 173◦) and perpendicular (∆φ = 83◦) to the nanowire
axis, respectively.

The ∆φ = 173◦ response has been rescaled by a factor 2 and the ∆φ = 83◦ response by a factor 0.6.
This indicates that the product AZβ in our toy model indeed depends on the magnetic field direction. In the
present case, AZβ is the highest for a horizontal magnetic field perpendicular to the voltage gradient (or
current propagation direction), and is the lowest for a magnetic field parallel to the voltage gradient. This
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type of behavior is expected for β for Rashba-type spin-orbit coupling, that is for spin locked perpendicular
to the momentum. This type of spin-orbit is dominant on the surfaces of bismuth crystals.

Back to the even contribution to the second harmonic response of segment Bilong11 (Fig. 6.43b), most of
the general features discussed for the even part of Bilong12 also apply for Bilong11 . We notice that in contrast
to Bilong12 , the even part of Bilong11 does not vanish at high magnetic field.

Samples Bilong31 and Bilong32

In Figs. 6.44a and 6.44b are plotted the second harmonic responses of segments Bilong31 and Bilong32 as a
function of vertical magnetic field, together with their contribution that are odd and even in magnetic field.
The two segments are next to each other and are parts of the same nanowire.

(a)

(b)

Figure 6.44 – Second harmonic current response as a function of vertical (perpendicular, out-of-plane) magnetic field,
for different temperatures. The raw signal is decomposed into a part even in field and part odd in field. (a) Response
of sample Bilong31 . The light blue dashed line is the result of a linear fit at low field of the data shown as the light blue
solid line. The slope gives |β| ≃ 20.4G.µA−1. (b) Response of sample Bilong32 . The blue dashed line is the result of
a linear fit at low field of the data shown as the blue solid line. The slope gives |β| ≃ −102G.µA−1.

In addition to the common behavior between all the second harmonic response measurements introduced
above, we notice a clear change of regime for Bilong31 (Fig. 6.44a) happening close to |Bext| ≃ 1 T , and a linear
dependence of the odd part of the response of Bilong32 (Fig. 6.44a) up to a field as high as |Bext| ≃ 2.3 T .
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For segment Bilong31 , we estimate a = 1.2×10−11 A.V −2.G−1, AZ = 2.92×10−6 Ω.G−2 (see Fig. 6.37b),
and G0 = 1/17056 = 5.86×10−5 Ω−1, giving |β| ≃ 2.04×107 G.A−1 = 2.04×103 T.A−1 = 20.4 G.µA−1.

For segment Bilong32 , we estimate a = −5.14 × 10−12 A.V −2.G−1, AZ = 2.92 × 10−6 Ω.G−2 iden-
tical to the one measured in segment Bilong31 , and G0 = 1/38759 = 2.58 × 10−5 Ω−1, giving |β| ≃
−1.02 × 108 G.A−1 = −1.02 × 104 T.A−1 = −102 G.µA−1. Again, we see that even if they both are
segments of a same nanowire, segments Bilong31 and Bilong32 have current-to-field conversion coefficients β
differing by a factor 5.

d) Summary of the second harmonic response

To summarize the analysis of our measurements, we found that the second harmonic responses :
- features both contributions that are odd in magnetic field and contributions that are even in magnetic field
- features two excitation regimes with a crossover at ∼ 0.5µA

- features a change of behavior on both the even and odd contributions when crossing a typical magnetic
field of magnitude |Bext| ≃ 1 T

- have odd contributions that scale with V 2
AC

- have odd contributions that can reverse their sign depending on the excitation regime, but conserving their
global shape
- have odd contributions that are linear up to magnetic fields |Bext| ≃ 0.2 T to |Bext| ≃ 2.3 T

- have odd contributions that are not monotonous at high magnetic fields, and that can even oscillate with
a 1/|Bext| period between positive and negative values in some cases
- have odd contributions that can vary both in magnitude and shape with the magnetic field direction
- have even contributions that do not scale with V 2

AC, whose shapes change depending on VAC, and that
exist even for VDC = 0

- have even contributions that feature variations on a smaller magnetic field scale than their odd counterparts,
compatible with UCF yet much more resilient
When not explicit stated, the magnetic field in the above summary is vertical (out-of-plane).

From our toy model developed in the previous subpart, we related the low field linear dependence on
Bext of the odd contribution to β, i.e. a.Bext ≃ AZG

3
0βBext. From linear fits on the odd contributions

to the second harmonic responses, we extracted the coefficients a. The coefficients AZ of the quadratic
dependence of the magnetoresistance on the Zeeman field have been extracted by low field fits of the
magnetoresistance at T ≃ 3.7K as a function of magnetic field parallel to the nanowire. The values of G0

correspond to the inverse of the zero-field resistance at T = 4.2K.
In Fig.6.45, we plot the odd (in field) contribution of the second harmonic response of main long Bi

nanowires as a function of vertical magnetic field. The curves obtained from the different samples have been
rescaled by their respective values of AZV

2
AC/R

3
0, such that their slope is directly β.

All the values of AZ , A{orb+Z} (for the vertical field quadratic magnetoresistance coefficient) and β

measured in the seven segments are displayed in Tab. 6.1.
The AZ boxes completed with a value followed by a ? correspond to AZ values estimated by a measure

on their neighboring segment within the same nanowire. The β boxes featuring a ? follow from these
questionable AZ values. The β boxes completed by a value preceded by a > or < symbol indicate that β
has been estimated taking a vertical field estimation of AZ , that is A{orb+Z}, by lack of available data.
It is very clear that A{orb+Z} > AZ , such that the corresponding values of |β| are underestimated. In the
boxes containing estimations of β, we kept track of the sign taking into account the direction of the voltage
gradient (or current propagation direction). When there is no + or − symbol, it means that there was no
available data in the low excitation regime.
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Figure 6.45 – Odd (in field) contribution of the second harmonic response of main long Bi nanowires as a function of
vertical magnetic field. The curves obtained from the different samples have been rescaled by their respective values
ofAZV

2
AC/R

3
0, such that their slope is directly β.

We see that for the only straight nanowire with available data on the sign of β, the sign is opposite
for segments Bilong12 and Bilong11 . One possible, yet not very satisfying, explanation of this change of sign and
magnitude is that the two segments have slightly different Fermi surface, but different enough to change β
by a factor −22. This would explain why they have such different second harmonic shapes as a function of
vertical magnetic field.

Depending on the segment, we find values of |β| ranging from 8G.µA−1 to 321G.µA−1, with most
trusted values in the ∼ 10G.µA−1 scale. In part 3.4, we found shifts in magnetic field of the critical current
pattern of several proximity-induced superconducting bismuth nanowires, that would correspond to β ranging
from 28 to 3600 G.µA−1.

Compared to [208], translating our β into an asymmetry in the magnetoresistance (first harmonic res-
ponse) leads to an MCA∼ 10 times weaker than what is found in Ge(111) films (∆VUMR

V (1ω) ≃ 2AZG0βBextIDC,
yielding a 0.05 % and a 0.07 % modulation for segments Bilong12 and Bilong31 assuming the same IDC = 10µA

and Bext = 1T ).
In the supplementary materials of [202], they present a table with the MCA coefficient γ of many

materials. γ is defined such that the correction to the resistance is R = R0(1 + γBI), corresponding
to γ ≃ 2AZG0β (see Eq. (6.71)) in our experiments, yielding γ ≃ 53 A−1.T−1 for segment Bilong12 and
γ ≃ 70 A−1.T−1 for segment Bilong31 . According to [202], this place our samples in the rather high end of
the MCA magnitude spectrum (although we notice that the Ge(111) sample of [208] is listed as γ = 0.7

whereas we estimate it to γ ≃ 500).

6.9.5 . Conclusion
Measurements of resistivity at low temperature are consistent with previous analysis, confirming that the

transport is dominated by surface states with an elastic mean free path limited by the nanowires dimensions.
The decrease of resistance at higher temperatures is attributed to a higher contribution of bulk states, but
the variation of resistance is surprisingly large.

When varying magnetic field magnitude and orientation, we found a positive magnetoresistance that
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depends on relative orientation of field with respect to the wire axis. At low field, we measured a resis-
tance dip, consistent with the expected weak anti-localization of 2d conducting surfaces with high spin-orbit
coupling. At higher field, we saw universal conductance fluctuations. The amplitude of both quantum meso-
scopic phenomenon decrease with increasing temperature. From the weak anti-localization (WAL) effect, we
extracted a phase coherence length Lϕ ≃ 0.8 µm at T ≃ 0.2 K, which is low compared to the lower limit
given by the experiments on nanowires proximitized by superconducting contacts. This might be a sign of
an Lϕ reduction or enhancement mechanism between the resistive and proximity-induced superconducting
states, that may be related to the spins of the Bi atoms.

In addition to the standard differential resistance analysis, we performed measurements of second har-
monic response as a function of magnetic field. With a very simple model, we argued that we can estimate
the strength of the spin-momentum locking of conducting states by extracting the part of the second harmo-
nic signal that is odd in magnetic field. With our simplistic assumptions, we estimated this current-to-spin
conversion, also referred to as Magneto-Chiral Anisotropy (MCA), to be β ∼ 10 G.µA−1. This is consistent
with the β values found in the experiments on the nanowire proximitized by superconducting contacts ana-
lyzed in appendix 6.12. According to the table found in the supplementary materials of [202], this place our
samples in the rather high end of the MCA magnitude spectrum, with a γ ∼ 60 A−1.T−1.

6.10 . Second harmonic response of the ring sample Biring

In chapters 3 and 4, we studied the low temperature transport characteristics of a bismuth nanoring. Its
contacts were made of superconducting disordered tungsten of critical temperature T ≃ 5 K. We measured
a supercurrent < 2.8 µA with asymmetric triangular regular oscillations of period ≃ 17 G, sign of proximity
induced superconductivity in both branches of the ring and a Superconducting QUantum Interference Device
(SQUID) behavior.

During a second cooldown one month later, we measured the low temperature transport characteristics
of this bismuth nanoring as a function of in-plane magnetic field up to 7 T , in a two-terminals setup. In
Fig. 6.46, we display the voltage response of the sample to an AC current excitation.

At T ≃ 0.47 K, despite the contacts still being superconducting, there was no sign of supercurrent
anymore and the total two-terminals resistance was Rtot,0.47 ≃ 300 Ω. This yields Rring,0.47 ≃ 250 Ω

without the dilution refrigerator lines, which is larger than the resistance RCD1 ≃ 160 Ω of the same ring
for T ≃ 0.1 K during the first cooldown.

During the first and second cooldowns, we measured the resistance of a segment of the tungsten deposit
contacting one side of the nanoring. It showed a resistance ≃ 120 Ω at T ≃ 5.5 K for both cooldowns,
with dilution lines resistances of ≃ 60 Ω.

Consequently, we can assume that the ring itself did not change a lot between the two cooldowns
neither did the tungsten contacts, but their interfaces have changed in such a way that it suppressed the
superconducting proximity effect.

In the following, we use the second harmonic response to estimate an effective current-to-field factor β
induced by SOC, as introduced in appendix 6.7.4 and used in appendix 6.9.4 and 6.12.

Fig. 6.46a show the first harmonic response at T ≃ 7.1 K and for IDC = 0 and IAC = 1 µA, that is
the differential resistance of the nanoring in series with the tungsten contacts in their resistive state, with
the interfacial contacts resistances, and with the dilution refrigerator lines.
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(a)

(b)

Figure 6.46 – (a) First harmonic voltage response (resistance) of the nanoring sample Biring as a function of in-plane
magnetic field, at T ≃ 7.1K and for IDC = 0 and IAC = 1 µA. (b) Second harmonic voltage response of the
nanoring at T ≃ 6.4K and IDC = 0 as a function of in-plane magnetic field, where we splitted the contributions
that are even inmagnetic field from the ones that are odd inmagnetic field. The slope of the odd part at IAC = 4µA
(red line) gives us β ≃ 2.77G.µA−1.
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A low field quadratic fit gives ÃZ = 12.4 Ω.T−2 = 1.24× 10−7 Ω.G−2, weaker than the measurements
on voltage biased long nanowires by a factor ∼ 10. Remember here that we measure the magnetoresistance
of two curved segments in parallel of a nanowire, with approximate lengths of 1.6 and 2.5 µm, as a function
of in-plane magnetic field, hence the ÃZ notation instead of AZ .

In this setup, the sample itself is rotated. The in-plane field is applied by a large vertical coil which has a
lower hysteretic behavior (≲ 40 G) than the horizontal coil used in appendix 6.9 and 6.12. This could allow
us to detect and quantify β in the first harmonic response. To this end, we also extract a linear coefficient
a(1) = 0.126 Ω.T−1 = 1.26 × 10−5 Ω.G−1 from the fit. But notice that the term linear in Bext in the
first harmonic response in Eq. (6.79) is also linear in IDC, and we did the measurement with an AC current
bias of 1 µA and no DC current. So, just like the even contribution to the second harmonic response,
our phenomenological model fails to describe this behavior. To get an idea of the scales, we consider an
IDC = 1 µA and our a(1) and ÃZ , giving us an β ≃ 2540 T.A−1 = 25, 4 G.µA−1, which is on the same
typical scale as what we measured in the long nanowires.

The tungsten contacts at T ≃ 7K showed a magnetoresistance much lower than the bismuth nanoring
one.

In addition to its low field quadratic behavior, we managed to extract Shubnikov-de Haas oscillations
from small high field variations of the magnetoresistance. To do so, we tried various numerical treatments
and keep the most robust ones. We discuss and show the results in part 6.11.

Let us now consider the second harmonic voltage response of the nanoring sample in its normal state
to a small current excitation.

In Fig. 6.47, we plot the second harmonic response as a function of AC (Figs. 6.47a,6.47b) and DC
(Fig. 6.47c) excitation amplitude, at T ≃ 6.3 K and for various magnetic field values. Again, we find two
excitation regimes delimited by a peak close to IAC ≃ 0.5 µA in the second harmonic response, and a
quadratic dependence on IAC in the higher excitation regime.

In Fig. 6.47c, ignoring the Y offset caused by IAC = 3 µA, we find that the second harmonic response
is mainly odd in IDC, with an approximate linear dependence at low field, that varies with the magnetic field.
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(a)

(b) (c)

Figure 6.47 – Second harmonic voltage response of the nanoring sample Biring as a function of AC and DC current
excitations.
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In Fig. 6.46b, we plot the second harmonic response of the nanoring at T ≃ 6.4 K and IDC = 0 as a
function of in-plane magnetic field, where we splitted the contributions that are even in magnetic field from
the ones that are odd in magnetic field.

The solid blue and red lines represent the even and odd contributions for an excitation amplitude of
IAC = 4 µA, respectively, in the higher excitation regime. The even contribution show two distinct behaviors.
For |Bext| ≲ 1 T , we see small regular oscillations of period ∼ 2300 G on top of a quadratic background
and a constant offset ∼ −10 kV.A−2. This would correspond to interference by orbital dephasing through
a minimum surface S = Φ0/∆B ≃ 9× 10−3 µm2, e.g. a circle of diameter ∼ 107 nm. This could be the
surface of a section of the nanoring, although it is small considering the width of ∼ 300 nm of the branches
revealed by scanning electron microscope out-of-plane imaging. More realistically, it could be due to a ∼ 1%

misalignment of the magnetic field in the plane of the nanoring, leading to orbital dephasing through the
all surface of the nanoring.

For |Bext| ≳ 1 T , on top of the ∼ −10 kV.A−2 offset, we see large variations with a period that
increases with |Bext|. In appendix 6.11, we analyze it and find a 1/|Bext| periodicity corresponding to the
same Shubnikov-de Haas oscillations as the ones found on the first harmonic response.

The solid light blue line represents the even contribution to an excitation IAC = 0.2 µA in the lower
excitation regime, smoothed with a moving average over 1000 points to reduce the noise. We see that
all the oscillations at low and high magnetic field disappeared and the signal is increasing smoothly with
|Bext|. For comparison, it has been rescaled and shifted according to the formula y′ = y/20 − 57309

and plotted alongside the first harmonic response (dashed purple line), rescaled and shifted according to
y′ = 13.2y − 9.025. With those manipulations, we notice that the two curves fall on top of each others,
that is C2ω = 264C1ω−1.146×106. Like the measurements on individual nanowires, the even contribution
does not scale as I2AC.

The solid red line shows the odd contribution to an excitation IAC = 4 µA. For |Bext| ≲ 1 T , it is fully
linear in Bext and a linear fit in this field range (dashed red line) gives a coefficient a = −3431 V.A−2.T−1.
With ÃZ = 12.4 Ω.T−2 and using the expression in Eq. (6.79), we estimate β ≃ 277 T.A−1 = 2.77G.µA−1.
This value is lower than the β found in individual nanowires, but remember here that a and ÃZ have been
estimated with an in-plane field on a sample with two curved branches, and we know that both a and ÃZ

vary with magnetic field direction. So this low value could be explained by an β of the same order as previous
experiments, but with an averaged value over a wide range of direction and with partial compensation over
the two branches. For |Bext| ≳ 1 T , the odd contribution is still fairly linear up to 4 T but shows bigger
variations.

In the low excitation regime, the odd contribution scales with I2AC and its global dependence on magnetic
field is the same as in the higher excitation regime, see the solid orange line. In contrast with previously
analyzed measurements on individual nanowires, we find Shubnikov-de Haas oscillations in the even contri-
bution and not in the odd one.

In this appendix, we analyzed the second harmonic response of the nanoring in its resistive state to a
small current excitation, as a function of in-plane magnetic field. We found many similarities, with an odd
contribution giving β ≃ 2.77 G.µA−1 smaller but still consistent with the individual long nanowires measu-
rements. The scalings of the even and odd contributions behave similarly. However, the even contribution
show bigger and more regular variations than the UCF previously found. In particular, we found that the
even contribution displays large Shubnikov-de Haas oscillations at high field, whereas we found Shubnikov-de
Haas-like oscillations in the odd part of the second harmonic response of the long nanowire Bilong12 .
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6.11 . Discussion on the Shubnikov-de Haas-like variations at high field

In this appendix, we show large field scale variations of the second harmonic response of the long bis-
muth nanowire Bilong12 and the nanoring Biring, that have an approximate 1/Bext periodicity. We discuss two
physical processes that could induce such Shubnikov-de Haas (SdH)-like oscillations in the second harmonic
response of our samples.

a) Mechanisms inducing SdH oscillations in the second harmonic response

Let us introduce here an attempt to explain these SdH-like variations. Let us first acknowledge that the
SdH variations are usually best seen in the δG/δB curve, filtering out the part of G(B) that varies with B
on larger scales. In our phenomenological model, we couple the effective Zeeman magnetic field BZ,eff to
the current I through our sample with β. As the conductance only depends on the effective Zeeman field,
we write :

δG =
∂G

∂BZ,eff
δBZ,eff =

∂G

∂BZ,eff
(δBext + βδI) (6.119)

=⇒ δG

δV
=

∂G

∂BZ,eff

δBext

δV
+ β

∂G

∂BZ,eff

δI

δV
= βG

∂G

∂BZ,eff
(6.120)

⇐⇒ ∂G

∂BZ,eff
=

1

βG

δG

δV
(6.121)

Writing I = Σn∈NknV
n, to the leading order for small V , we have : ∂G

∂BZ,eff
∝ k2/k1. Rephrasing it, the

variation of the conductance with the effective Zeeman magnetic field, very sensitive to SdH variations, is
proportional to the ratio between the coefficient of the quadratic part of the current-voltage relation k2V 2

and the coefficient of the linear part k1V .
In terms of harmonic responses, this corresponds to the following approximation :

∂G

∂BZ,eff
∝ k2
k1
≃ C2ω

C1ω
(6.122)

where C2ω is the coefficient of second harmonic response of I to an AC V excitation, and C1ω is the
coefficient of first harmonic response of I to an AC V excitation.

Notice here that we consider variation of the conductance caused by the effective Zeeman field only.
This is much lower than the variation caused by the usual orbital contribution. We understand it like the
orbital effects give rise to the Landau levels but we probe the SdH variations thanks to the small effective
Zeeman field sensitive to variations of V .

Because G(BZ,eff ) is even, ∂G
∂BZ,eff

is odd. C1ω is also mainly even in field, yielding SdH oscillations in

C2ω ∝ ∂G
∂BZ,eff

C1ω odd in field, that are visible in second harmonic response thanks to the existence of β,
see Eq.(6.121).

For SdH oscillation, the periodicity corresponds to ∆SdH

(
1
B

)
= eℏ

ϵFm∗ , with m∗ the effective mass of the
charge carriers [219]. Equivalently, one can write 1/B Shubnikov-de Haas periodicity as : ∆SdH

(
1
B

)
= 2e

ℏk2F
.

There exists another process yielding SdH in the second harmonic response. In appendix 6.7.2, we men-
tioned that an asymmetry in the contacts, the conductor, or the diffusion centers inside the conductor can
contribute to the non-linear response. From [206], one can derive variations of the conductance G with
voltage V via the chemical potential µ : ∂G

∂µ δµ ≃
∂G
∂µ (1− 2a)eδV (a = 1/2 for symmetric contacts). This

term relies on variations of the density of states as a function of voltage. These variations of ∂G
∂µ due to

Landau levels, at the origin of SdH oscillations, are even in field. Thus, contrasting with the mechanism in
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(a) (b)

Figure 6.48 – Shubnikov-de Haas oscillations on the second harmonic current response of long nanowire sample
Bilong12 , yielding λF ≃ 51 nm.

Eq.(6.121) exploiting β, the resulting SdH non-linear response is even in field.

b) Long nanowire Bilong12

In Fig. 6.48a, we plot the odd part of the second harmonic current response of segment Bilong12 to an
AC voltage excitation, as a function of inverse out-of-plane magnetic field, int the positive B range. In
Fig. 6.48b, we plot the indices of the oscillation peaks and dips as a function of their respective 1/B values.
The first dip is indexed as 1 arbitrarily, as we have no theory and no other measurement to discriminate
the peaks from the dips. The indices of the peaks are shifted by 0.5 and also plotted to provide more data.
Looking closer at the curve, one can see other small structures that seem periodic in 1/B. We don’t analyze
it further here, but other works have shown that smaller SdH oscillations can be attributed to holes pocket,
see [37].

In Fig. 6.48b, we show a line fit of the first three points, corresponding to peaks and dips at higher
magnetic fields, that are more reliable for an effect best shown at high field. From this, we extract a
periodicity of ∆

(
1
B

)
= 1/(4.92× 104) ≃ 0.20× 10−4 G−1 ≃ 0.20 T−1, similar to [220].

Interpreting it as standard SdH periodicity, it yields λF ≃ 51 nm, which is the typical expected Fermi
wavelength for bulk modes.

c) Nanoring Biring

We repeat the same procedure for the even part of the second harmonic voltage response of the nanoring
sample to an AC current excitation, as a function of in-plane magnetic field. In Fig. 6.49a, we plot if as a
function of inverse magnetic field (solid red line) together with the small variations of the first harmonic
response extracted with various methods. Indeed, we measured its first harmonic response up to high
magnetic fields for this sample.

The red dots show the derivative of the first harmonic response where the slowly varying background
has been subtracted thanks to a 4th order polynomial fit (which visually best fits the background). The
peaks’ positions matches with those of the second harmonic response, while the dips are quite off.
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(a)

(b)

Figure 6.49 – Shubnikov-de Haas oscillations on the second harmonic voltage response of nanoring sample
Biring(black line) compared to various treatments on the first harmonic response, yielding λF ≃ 52 nm.

The solid green line and the light blue dots show variations of the first harmonic response (no differential)
where the slowly varying background has been subtracted thanks to a 4th order polynomial fit (shape robust
up to a 6th order polynomial fit) and thanks to a smoothed version of the data (variations robust for
different smoothing ranges), respectively. Their signs have been reversed for easier comparison with the
other methods. We see that the peaks and dips of those two last methods are close, but they differ by
≃ 20% from the second harmonic and the derivative method.

These observations are visible in Fig. 6.49b, with the colors of the dots corresponding to the colors seen
in Fig. 6.49a. We see that the periodicities that we can extract from all these methods are within ≲ 20%

of the periodicity of the second harmonic response, and that the second harmonic response gives the most
regular periodicity.

Thus, we can say that within a 20% error, the second harmonic response of the nanoring has the
same periodicity as its first harmonic response variations. This confirms that it is most likely standard SdH
oscillations.

In Fig. 6.49b, we show the result of a line fit on the second harmonic data, see the solid black line. From
it, we get ∆

(
1
B

)
= 1/4.7 ≃ 0.21 T−1, and λF ≃ 52 nm, as expected for bismuth bulk modes.
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d) Conclusion

We found SdH oscillations in the second harmonic response of the long nanowire Bilong12 and the nanoring
Biring, corresponding to λF ≃ 51 nm and 52 nm consistent with the bulk λF reported in the literature.
These oscillations are odd in field for sample Bilong12 but even in field for sample Biring. For sample Bilong12 ,
we attribute it to a consequence of the existence of β, yielding a contribution ∝ ∂G

∂BZ,eff
to the second

harmonic response. However, it is surprising that the large oscillations in the second harmonic have a
periodicity corresponding to bulk states, whereas we expect it to be dominated by surface states of much
shorter wavelength. For sample Biring, we attribute it to a consequence of important asymmetries in the
sample, yielding a contribution ∝ ∂G

∂µ to the second harmonic response.
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6.12 . Magneto-Chiral Anisotropy of a Bi-nanowire-based sample with superconduc-
ting contacts

While Magneto-Chiral Anisotropy (MCA) in the proximity-induced superconducting state may not be
caused by spin-orbit coupling but rather by inductive elements, this possibility is evicted in the resistive state.
In this appendix, we report MCA of a bismuth-nanowire-based Josephson junction in both the resistive state
and the superconducting state, showing common features, and ruling out the inductive scenario. For this,
we introduce a current-to-field factor β in both states, see appendix 6.7 for more details.

The experiment presented in this appendix has been realized during the internship of the student Mat-
thieu Bard, who actively participated in the measurements and who realized the numerical analysis of the
data as well as the figures shown in this appendix. The data presented here are currently being further
analyzed in preparation of an article (work in progress).

6.12.1 . Bi-nanowire-based DC SQUID

Fig.6.50 show a scanning electron micrograph of the studied sample. It is formed by a bismuth nanowire
contacted by three superconducting disordered tungsten nanowires : a central contact (noted "A"), and
two side contacts. The two side contacts are connected by a third tungsten nanowire, merging in a single
contact (noted "B"). Contacts A and B are extended to the millimeter scale by resistive metallic gold leads,
two on each contact.

Au

Bi
W

A
B

Figure 6.50 – Scanning electron micrograph of the DC SQUID sample, formed by two segments of the same bismuth
nanowire with superconducting W compound contacts.

The nanowire has been grown by slow sputtering on a SiO2 substrate with a thin active buffer layer
of vanadium, as described in part 2.1. It comes from the same growth substrate as the nanoring studied
in chapter 3 and 4. Its width is w = 193 nm and the lengths of the two segments are ≃ 1.4 µm and
≃ 2.2 µm. The EBSD analysis revealed a crystalline structure with a trigonal axis forming a ≃ 30◦ angle
with the nanowire axis, see green arrow in Fig.6.50. The SEM analysis did not show reveal any clear facets,
but a rather smooth surface. The superconducting disordered tungsten contact have been deposited with a
FIB technique, see part 2. The larger contacts have been realized with standard electronic lithography and
low pressure evaporation of 150 nm of gold (in three steps of 50 nm) on top of 5 nm of titanium. Each
side of the SQUIDs is connected to two gold electrodes, linked to our BNC connections on the exterior of
the cryostat, allowing us to measure them in both two and four wires configurations. This sample is referred
as Bisquid2 in chapter 3.

With this configuration, the sample has two bismuth based Josephson junctions in parallel, forming a
DC SQUID. The length of the two bismuth segments being different, the SQUID should be asymmetric.
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Originally, this sample was designed to reproduce the measurements presented in chapter 4. Unfortunately,
the conditions were not met to reproduce it, but we redirected its use for MCA analysis.

We measure the sample at low temperature thanks to a He3/He4 dilution system, in the second liquid
helium cryostat described in part 2.7. The sketches of the configurations used to measure the resistance and
the switching current of the sample can be found in parts 2.8.1 and 2.8.2.

6.12.2 . Zero-field characteristics in the proximity-induced superconducting state

Fig.6.51a shows the (differential) resistance dV
dI of the SQUID sample at low temperature (100 mK).

We see that at this temperature, the tungsten contacts are in a superconducting state and induce supercon-
ducting correlations in the bismuth nanowire segments by proximity effect. Thus, both the tungsten contacts
and the bismuth segments are superconducting, giving a zero resistance at low current. At IDC ≃ 8 µA

a transition occurs, which is due to the Bismuth samples switching to a resistive state, see green line in
Fig.6.51a. We note this switching current Ic. As we can see on fig 6.51a in order to keep a clear transition
noticeable and measurable, everything regarding Ic will be done with a four-wire configuration. Fig.6.51b
shows the variation of the resistance as a function of vertical magnetic field, in a four-wire configuration
and for increasing DC bias current.

(a)

(b)

Figure 6.51 – (a) Resistance dV
dI

of the SQUID sample at low temperature (100mK ) as a function of DC current bias,
in two and four wires configurations, up and down referring to the direction of variation of the DC bias current. (b)
Variation of the resistance as a function of vertical magnetic field, in a four-wire configuration and for increasing DC
bias current.

6.12.3 . Small field scale : periodic oscillations of the switching current induced by orbital
dephasing

With the horizontal and vertical coils in our cryostat, we can measure the variations of the switching
current Ic as a function of vertical magnetic field as well as magnetic field in the horizontal plane.

As in chapter 3, we can identify three field scales corresponding to different physical processes. In
this appendix, we focus our analysis on the small and large field scales. The characteristics of Ic(B) are
sketched in Fig.6.52a. Ic(B) shows small field scale periodic oscillations of amplitude δIc ≃ 100nA and
period δB ≃ 3G, that are visible up to at least 0.5T , with a characteristics triangular shape. This pattern
corresponds to orbital dephasing between long 1d ballistic channels with sawtooth CPR in the two branches
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of the SQUID, caused by the magnetic flux through the surface of the SQUID S ≃ 11µm2. This behavior
is consistent with the HOTI nature of Bi, as shown in chapter 3.

(a)
(b)

Figure 6.52 – (a) Sketch of the characteristics of the switching current versus magnetic field curves Ic(B). (b) Visuali-
zation of the spatial tilt of the sample.

Fig.6.53a displays the average (blue line) and standard deviation (red line) of the distributions of swit-
ching current as a function of vertical magnetic field (mind the two current scales). The standard deviation
is also periodic in field, with the same period, and shifted by ∼ 1/4th of a period. Looking at the full
switching distributions plotted in Fig.6.53b, we see that the distribution for an upward slope is narrower
than the distribution for a downward slope. In a DC SQUID with ballistic junctions, the two different slopes
correspond to variations with field of the current in the two different branches, see part 1.6.1. The statistics
of the switching current depends on the environment of the junction, see part 1.10, and further analysis
may provide more information on the junctions.

(a)
(b)

Figure 6.53 – (a) Average (blue line) and standard deviation (red line) of the distributions of switching current as
a function of vertical magnetic field (mind the two current scales). (b) Full switching distributions as a function of
vertical magnetic field, for low field values. The number of events in each histogram bins are coded in shades of grey.

Such asymmetry is observed up to ∼ 1000 G, beyond which the oscillations are mostly symmetrical
(see Fig.6.54a at ∼ 2000 G), until their disappearance at ∼ 5000 G − 6000 G (see Fig.6.54b) when the
distribution width is larger than the oscillation amplitude.
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(a) (b)

Figure 6.54 – Full switching distributions as a function of vertical magnetic field, close to 2000G (a) and 6000G (b).
The number of events in each histogram bins are coded in shades of grey. In (b), the distribution deviation is of the
same magnitude as the amplitude of the oscillations.

Let us now look at the small scale variations of Ic as a function of horizontal magnetic field. Fig.6.55b
displays Ic as a function of horizontal magnetic field, parallel to the nanowire axis. The triangular oscillations
are still present, with the same amplitude but a much larger period.

(a)

(b)

Figure 6.55 – (a) Blue crosses : experimental values of δBz/δBr obtained by measuring the oscillation per-
iods at horizontal fields with various angles φ. Red line : fit of the data with a cosine function corresponding to
tan(2.3◦) cos(φ − (−30◦)). (b) Histogram obtained with a horizontal field at φ = 0◦, parallel to the nanowire
axis.

The presence of these oscillations even in horizontal field is explained by a residual flux in the surface
of the SQUID, as the surface vector S⃗ of the SQUID is not perfectly perpendicular to the horizontal field
B⃗h. To evaluate how much the surface of the SQUID is tilted and in which direction, we write :
- B⃗ = Bre⃗r +Bz e⃗z = B⃗h +Bz e⃗z in cylindrical coordinates
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- S⃗ = Sρe⃗ρ in spherical coordinates
See appendix 6.5 for more details on this calculation. Expressing both in cartesian coordinates, the flux in
the surface of the SQUID is expressed as a scalar product :

Φ = B⃗.S⃗ = BrSρ sin γ cos(φ− α) +BzSρ cos γ (6.123)

with φ the angle between B⃗h and the nanowire axis (more precisely its projection on the horizontal plane),
α the angle between the projection of S⃗ on the horizontal plane and the nanowire axis, and γ the angle
between S⃗ and the vertical axis. γ is the tilt of the SQUID surface S⃗ in the direction of α.

One oscillation period for a vertical magnetic field corresponds to δBzSρ cos γ = Φ0 (Br = 0), with
δBz ≃ 3G the period in vertical field. One oscillation period for a horizontal magnetic field corresponds to
δBrSρ sin γ cos(φ−α) = Φ0 (Bz = 0), with δBr the period in horizontal field at an angle φ. Equating the
two, we have :

δBz/δBr = tan γ cos(φ− α) (6.124)

Fig.6.55a shows the experimental values of δBz/δBr (blue crosses) obtained by measuring the oscillation
periods at horizontal fields with various angles φ. The periods for field φ > 60◦ are considered negative,
and the period at φ ≃ 60◦ is a rough estimate as the oscillations are barely visible. The red line is a fit
of the data with a function tan(2.3◦) cos(φ − (−30◦)), giving a tilt γ ≃ 2.3◦ in the direction α ≃ −30◦,
illustrated in Fig.6.52b.

The DC SQUID can be modeled by two branches 1 and 2, both with a long ballistic junction with
sawtooth CPR of critical current ic1,c2 in series with an inductance L1,2, see part 1.7.5 for the model. The
junctions in each branches are most likely multiple 1d ballistic channels in parallel with individual critical
currents ∼ 100nA, adding up to ≃ 4µA. The modulation of ∼ 100nA of the period is much lower than the
≃ 4µA expected for an inductance-less SQUID, suggesting high L1,2.

Assuming ic1 ≃ ic2 ≃ ic and L1 ≃ L2, Eq.(1.63) gives a modulation amplitude :

∆Ic/I
max
c =

1/2

1 + 2Lic/Φ0
. (6.125)

yielding L1 ≃ L2 ≃ 6.2nH, taking ic1 ≃ ic2 ≃ 4µA and ∆Ic ≃ 160nA.
We estimated that the kinetic inductance LK,W ≃ 17pH per µm of the W compound nanowires is the

main source of inductance in the system. Given their length, it yields L1 ≃ 1 nH for the short path and
L2 ≃ 2 nH for the long path. If the model with almost symmetric branches is correct, the inductance of the
W nanowires is not enough to explain the amplitude of modulation. Note that if this missing inductance was
related to MCA and the anomalous Josephson effects (AJE), we may expect a dependence of the modulation
amplitude as a function of magnetic field orientation like in [210], which we don’t see in first approximation.
However the AJE does not change the modulation of a DC SQUID with long ballistic junctions (see part
1.6.3), and the DC SQUID configuration with I = Ic is different from the AC SQUID with 0 ≲ I < Ic of
[210] (see appendix 6.7.6). Therefor, even if the modulation doesn’t vary with magnetic field orientation, it
doesn’t exclude an AJE origin.

6.12.4 . Large field scale : MCA of the switching current induced by Beff = βSI

a) General shape at large scale

On the larger magnetic field scale, we can approximate the decrease of Ic(B) by a "tilted" gaussian curve,
which width ∆B, asymmetry, and maximum critical current field value Bmax (such that Imax

c = Ic(Bmax))
depend on magnetic field orientation. The width ∆B is arbitrarily chosen at the point where the critical

238



current is at 8 µA. These points are noted B+ and B−, where B+ always has the same sign as Bmax.
These characteristics are sketched in Fig.6.52a.

The switching currents Ic(B) of the sample as a function of magnetic field magnitude for various field
orientations are plotted in Fig.6.56, for both positive bias current +I and negative bias current −I. There
is a clear "tilt" of the curve that depends on the magnetic field direction. In particular, we notice that :
- for φ < −20◦ : −I ⇒ Bmax > 0 and +I ⇒ Bmax < 0

- for φ > −20◦ : −I ⇒ Bmax < 0 and +I ⇒ Bmax > 0

- for φ ≃ −20◦ : +I and −I give similar curves, quite flat at 8.8 µA and symmetric on a wide range of
field, ∆B is maximum, and Bmax is nearly 0 G.

Figure 6.56 – Switching currents Ic(B) of the sample as a function of magnetic field magnitude for various field
orientations, for both positive and negative current bias±I . There is a clear "tilt" of the curve that depends on the
magnetic field direction.

We notice that the maximum value of Ic varies with current bias direction, that may be due to a contact
flaw heating the system under a certain value of magnetic field by superconducting transition.

To analyze the large field scale variations of Ic, we fit Ic(B) with a gaussian function :

Ic(B) = I0 exp

(
−(B −Bmax)

2

∆B2
fit

)
(6.126)
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This fit is used to quantify the shift Bmax and the width ∆Bfit, but do not capture the asymmetry of the
tilted curve with respect to its maximum Ic. This fit is used for this quick first analysis, and can be easily
improved in the future using the phenomenological model discussed below.

b) Shift in field of the maximum critical current

We can extract from these fits a couple of important variables. Following the analysis introduced in
appendix 6.7.6, and in the same spirit of the analysis of the resistive long Bi nanowires in appendix 6.9.4
and the Bi nanoring in its resistive state in appendix 6.10, we write :

BZ,eff ≃ Bext + βSI (6.127)

where the total magnetic field BZ,eff is the sum of the external field Bext and a current-induced effective
magnetic field Beff = βSI originating from SOC in the Bi nanowire. In this expression, BZ,eff is the total
Zeeman field, contributing to Zeeman-induced effects.

Assuming that the decrease of the experimental Ic(B) is mainly of Zeeman origin, we write :

Ic(B) ≃ Ic(BZ,eff ) ≃ Ic(Bext + βSIc(BZ,eff )) (6.128)

The presence of βSIc deforms the Zeeman-induced large field scale decrease, shifting its Bmax away
from Bext = 0 and introducing an asymmetry with respect to the maximum of Ic. βS can be approximated
by

βS ≃
Bmax

Imax
c

(6.129)

Fig.6.57b displays the βS obtained from the shift Bmax of the switching current patterns as a function of
various horizontal field angles φ, taking Imax

c = 9µA.

(a) (b)

Figure 6.57 – (a) Switching current as a function of horizontal magnetic field at anglesφ ≃ 0◦ (blue line),φ ≃ −20◦
(orange line) and φ ≃ −30◦ (green line), all obtained with negative current bias (−I ). (b) βS for all the measured
orientation in the horizontal plane.

As we can see βS shows some interesting variation, particularly around −20◦ where it gets close to 0 and
changes its sign beyond this value. Fig.6.57a shows the three curves corresponding to a horizontal field at
angles φ ≃ 0◦ (blue line), φ ≃ −20◦ (orange line) and φ ≃ −30◦ (green line), all obtained with current bias
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−I. On the [50; 100]◦ interval, βS is relatively constant. This orientation of −20◦ is interesting since it does
not seem to coincide with the orientation of the wire (hence the current). This specific orientation comes
back in other characteristic values both in the proximity-induced superconducting state and the resistive
state, as shown in the following of this appendix.

c) Width and asymmetry of the large scale decrease

From the fits, we can also extract Seff = Φ0/∆Bfit, varying between ∼ 0.1×104 and ∼ 1.2×104nm2,
giving a better estimate of the width of the curve than the arbitrarily defined ∆B, see Fig.6.58a. If the
large field scale decrease of the switching current was of orbital dephasing origin, Seff would correspond to
the effective surface of diffusive states carrying the supercurrent in the nanowire. While not being as well
defined as the βS estimated from the shift of Bmax, we also find a change of behavior close to −20◦.

The estimated width of the curve is greatly impacted by the choice of our fitting function. A better
analysis would require to use the experimental Ic(Bext) for which we estimate βS ≃ 0 (most likely the data
for φ = −20◦ in the present case), noted IβS≃0

c (Bext), and find for each field orientation for which value
of βS IβS≃0

c (Bext + βSIc) fits the Ic(Bext) data the best. This improved fitting method would allow to
quantify the contributions of both the Zeeman-related βS and the orbital-related decrease.

Even if the present fitting method is over-simplistic, we note that the effective surface Seff doesn’t scale
as the inverse of βS , that is ∆Bfit ̸∝ Bmax. It contrasts with sample Biwire

21 exhibiting a field-orientation-
dependent shift of its maximum, see part 3.2b) and Fig.3.8b. In the latter, we explained this shift by the
presence of an inductance of 150pH. In the sample studied in this appendix, ∆Bfit ̸∝ Bmax rules out this
scenario.

With the present fitting method, we can also give a qualitative estimate of the asymmetry of the Ic(B)

curves relative to their maximum, thanks to the previously defined B+ and B−. We define the dimensionless
parameter A :

A± =
|Bmax −B±|

∆B
(6.130)

Fig.6.58b shows A± obtained for different horizontal magnetic field orientations and for the two current bias
directions ±I. Once again −20◦ seems to be a key orientation.

Fig.6.59 shows the large scale variations of the switching current as a function of vertical magnetic field,
for positive (blue line) and negative (orange line) current biases. For comparison, the green line corresponds
to Ic as a function of horizontal field, oriented parallel to the nanowire axis (φ = 0◦). Ic as a function of
vertical field exhibits a clear shift and asymmetry with respect to its maximum value, as well as intermediate
scale variations on a scale ∼ 1000 G, reminiscent of what we found in part 3.4. At fields |B| ≳ 1T , the
system is in another regime where we observe multiple switching current values at fixed field, giving for
example the smooth Ic(B) between −2 and −1T seen on the orange line.

These intermediate field scale variations make the gaussian fit more difficult, but we can still extract a
Bmax and thus a βS , yielding a βS ≃ −3.6× 104T.A−1 three times higher than the maximum modulus of
βS with a horizontal field, as shown in Fig.6.67b.
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(a)

(b)

Figure 6.58 – (a) Effective surface Seff = Φ0/∆Bfit as a function of horizontal magnetic field orientation, with
∆Bfit the characteristic width of the Ic(B) curves determined by a fit with a shifted gaussian. (b) Dimensionless
parameterA± as a function of horizontal magnetic field orientation, used to describe qualitatively the asymmetry of
the Ic(B) curves with respect to their maximum values.

Figure 6.59 – Comparison of Ic as a function of vertical field with positive (blue line) and negative (orange line) current
biases to result obtained with a horizontal field along φ = 0◦ (green line).
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6.12.5 . Evolution of the switching current with temperature
Lastly, for the superconducting state, we examine how Ic evolves with temperature. All of the previous

measurements were done between 100mK and 200mK. But thanks to the multiple thermometer resistances
on the dilution, we can warm up the sample to relatively precise temperature on the 100 mK − 4 K range.

Globally, temperature will decrease Ic as can be seen on Fig.6.60a, but it does not seem to affect the
overall magnetic field behavior of Ic. As can be seen in Fig.6.60b, both the large scale shape and the
oscillations seems relatively unchanged by a variation of temperature and are only reduced by a few µA

up until 1.5 K. However, we can see at the boundaries of the curves that multi-switching (which are seen
by a change of regime, beyond −2000 G for 1 K and −500 G for 1.5 K) becomes much more accessible
as temperature is increased. Fig.6.61 shows additional data for temperatures varying continuously between
≃ 1.2 and ≃ 1.6K.

Comparing the three curves in Fig.6.60b, we see that the shift Bmax of the maximum Ic isn’t directly
proportional to the value of Imax

c . According to our model, this corresponds to a βS ≃ Bmax/I
max
c that

depends on the temperature, which is surprising in first approximation. This point needs further investiga-
tions.

(a) (b)

Figure 6.60 – (a) Resistance as a function of (increasing) DC current bias, at fixedmagnetic field, for two temperatures.
(b) Switching current as a function of horizontal magnetic field at 45◦ for three different temperatures.
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(a)

(b)

Figure 6.61 – (a) Switching current as a function of temperature, at fixed horizontal magnetic field of 500G at 45◦. (b)
Switching current as a function of horizontal magnetic field at 45◦, with a varying temperature (see color scale).

6.12.6 . Resistive state : MCA of the resistance induced by Beff = βNI

In the following, we present magnetoresistance data of the same sample in the resistive state. For this
purpose, the sample have been heated up to 5.2K, which is well above the critical temperature of the
proximitized Bi nanowire segments (Tc ∼ 1.5K), see Fig.6.61. Moreover, this temperature is above the
critical temperature of the W contacts, which also exhibit no field dependent contribution to the second
harmonic voltage response to a current excitation, see Fig.6.62. This ensures that the variations of the
second harmonic voltage response with magnetic field corresponds to a physical phenomenon in the Bi
nanowire.

Figure 6.62 – Second harmonic voltage response of a segment of W nanowire, as a function of horizontal magnetic
field, for different orientations and temperature.

Following the analysis introduced in appendix 6.7.4, and in the same spirit of the analysis of the resistive
long Bi nanowires in appendix 6.9.4 and the Bi nanoring in appendix 6.10, we write the resistance R as :

R ≃ R(BZ,eff ) ≃ R(Bext + βNI) ≃ R(Bext, I) (6.131)

where we left aside the orbital contribution of the magnetic field. BZ,eff is the effective magnetic field

244



contributing to Zeeman effects. It is modeled by the addition of the external magnetic field Bext and a
current-induced effective Zeeman field βNI, which originates from SOC and causes MCA of the resistance.

As R depends on the current I via βNI, β is detectable in the non-linear components of R. For a small
current excitation I = IAC sin(ωt), in second order of IAC, the first harmonic voltage response reads (see
Eq.(6.79)) :

V (1ω) ≃ (AZB
2
ext +R0)IAC (6.132)

Within the same conditions, the second harmonic voltage response reads :

V (2ω) ≃ −AZβNBextI
2
AC (6.133)

Hence, βN can be extracted from the linear dependence of V (2ω) on Bext. To estimate βN , the knowledge
of AZ is required, which can be extracted by a quadratic fit of V (1ω) as a function of Bext. The quadratic
fit of V (1ω) also provides a measure of R0.

Let us now proceed to the analysis of our sample under a magnetic field. The second and first harmonics
voltage response of the sample as a function of vertical magnetic field are displayed in Figs.6.63a and 6.63b,
respectively. As verified previously, we are in the normal state around 5.2 K. However, a strong enough
magnetic field can cause other changes, as we can see on Fig.6.63. A change of regime seems to occur
around 1 − 2 T , meaning that to stay consistent, our measurements will stay in the [−1; 1] T range, our
horizontal coil being limited to ∼ 0.7 T anyway.

(a)
(b)

Figure 6.63 – Second (a) and first (b) harmonic voltage response as a function of vertical magnetic field. The second
harmonic response in (a) (green line) is splitted into a component even in field (blue line) and odd in field (red line).
The red line in (b) is a second-order polynomial fit of the low field magnetoresistance.

To analyze our data more easily, the second harmonic response in Fig.6.63a (green line) is splitted into a
component even in field (blue line) and odd in field (red line), where βN involves the odd component. However
this splitting can’t be done for horizontal field measurements, as there is an uncontrolled hysteresis of the
horizontal coil. In Fig.6.63b, the red line is a second-order polynomial fit of the low field magnetoresistance.

In Fig.6.64a, we show the first harmonic as a function of horizontal magnetic field, oriented parallel to
the wire (0◦), which minimizes the orbital contribution of the magnetic field. For the first harmonic, most of
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the curves obtained for different field orientations are approximately quadratic in field, although with much
noise. We also get a linear term in the fit (in the range of 10−6 V/T ), which we decided to leave aside in
our analysis.

Unfortunately the second harmonics aren’t as clear, see Fig.6.64b. The signal over noise ratio is weak
(given that our Bi segments are a bit short for this kind of experiment), but we will consider them as linear
on the [−0.6; 0.6] T interval.

(a) (b)

Figure 6.64 – First (a) and second (b) harmonic voltage response as a function of horizontal magnetic field. In (a) the
field is at angle 0◦.

Fig.6.65a shows the zero-field resistance R0 as a function of field orientation. As can be seen from its
definition, R0 should be constant as it does not depend on the field. However in our case we can see slight
variations of a few tens of Ω. They can be explained by a slight variation of temperature, e.g. influenced by
the helium level in the cryostat, which is different in every measurement.

In Fig.6.65b, we plot AZ/R0 as a function of magnetic field orientation. We note that the value obtained
by application of a vertical field is particularly high compared to the others orientations.

(a)

Τ
𝐴
𝑍
𝑅
0

(b)

Figure 6.65 –R0 (a) andAZ/R0 (b) for various magnetic field orientations.
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Fig.6.66a displays the current-to-field factor βN of the sample in its resistive state, extracted from the
linear part at low field of the data shown in Fig.6.64b and from the coefficients AZ shown in Fig.6.65b.

(a) (b)

Figure 6.66 – β in the resisitve state (a) (βN ) and in the superconducting state (b) (βS ) as a function of horizontal
magnetic field orientation.

Here we have a direct equivalent in the proximity-induced superconducting state, being the previously
calculated βS , plotted in Fig.6.66b. Comparing the two states side to side indicates a correlation : both are
rather constant above 0◦, while changing their sign around −20◦. This correlation might suggest a similar
spin behavior between the two states.

The change of behavior at −20◦ in both states differs from the highly symmetric axis of the system,
that is the axis parallel to the nanowire 0◦ and perpendicular to the nanowire 90◦. Later EBSD analysis
(see part 2.3 for the principle) revealed that the trigonal axis of the Bi crystal formed an approximate angle
|θ| ≃ 30◦ with the nanowire axis, which is a hint that the crystallographic orientation may have a big impact
on the spin-orbit-induced βS,N in both the resistive and the superconducting states. However, we recall that
φ ≃ −30◦ also corresponds to the angle with a maximum residual flux in the surface of the SQUID, with
an estimated tilt of γ ≃ 2◦. This flux may cause a residual orbital effect. More in-depth analysis is required
to clarify the orbital and crystalline orientation contributions.

Furthermore, the values of βN and βS only differ by a factor ∼ 2, which is surprisingly low as the
transport properties in the resistive and the superconducting states are very different. Both states are
subject to the Edelstein effects of identical magnitude and symmetries, but the pairing correlations induced
by the superconductor are not trivial. This similarity in βN and βS is an interesting topic to explore, and
may be different in intrinsic superconductors compared to SNS Josephson junctions.

Among the effects of the superconducting pairing correlations, the transverse current distribution is
expected to be different in the two states, owing to the reduced relative contribution to transport of the
diffusive surface states in the proximity-induced superconducting state, as discussed in parts 1.3.5 and 1.3.6.
In the resistive state we expect a more uniform current distribution along the surface of the nanowire, whereas
we expect the distribution to be more confined along particular hinges in the superconducting state.

Fig.6.67 shows the same plots but includes the β found for a vertical field. In the superconducting state,
the data obtained with a vertical field is different from the ones obtained with a horizontal field, with a
higher βS . In contrast, βN has a lower value, which is in the range of values obtained with a parallel field.
However as we can see Fig.6.65b, the vertical value of AZ/R0 is abnormally high, which explains the low
value of βN .
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(a)
(b)

Figure 6.67 – Comparison between the vertical field value of β and the values of β obtained with a horizontal field,
in the resistive state (a) and in the superconducting state (b).

6.12.7 . Conclusion
In conclusion, we managed to show a similarity in behavior between the proximity-induced superconduc-

ting and normal state of our bismuth-nanowire-based sample. With this first analysis, we showed that the
MCA modeled by the finite momentum pairing theory in the superconducting state and the MCA modeled
by the Unidirectional (or Bilinear) Magnetoresistance theory in the resistive state are captured by an effective
(super)current-induced Zeeman field Beff = βI of the same order of magnitude in both states. However
many points remains to be elucidated, especially in the superconducting state, among which the role of
temperature and the contribution of orbital effects not captured by βSI.
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