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Title : Language representations in deep learning algorithms and the brain
Keywords : Natural Language Processing, Neuroscience, Deep Learning, fMRI

Abstract : Recent advances in artificial intelli-
gence have led to the emergence of deep lan-
guage models – like GPT-3 and ChatGPT – able
to produce text that closely resembles that of hu-
mans. Such similarity raises questions about how
the brain and deep models process language, the
mechanisms they use, and the internal representa-
tions they construct. In this thesis, I compare the
internal representations of the brain and deep lan-
guage models, with the goal of identifying their
similarities and differences.

To this aim, I analyze functional resonance
imaging (fMRI) and magnetoencephalography
(MEG) recordings of participants listening to and
reading sentences, and compare them to the acti-
vations of thousands of language algorithms cor-
responding to these same sentences.

Our results first highlight high-level similari-
ties between the internal representations of the
brain and deep language models. We find that deep
nets’ activations significantly predict brain activity
across subjects for different cohorts (>500 parti-
cipants), recording modalities (MEG and fMRI),
stimulus types (isolated words, sentences, and na-
tural stories), stimulus modalities (auditory and vi-
sual presentation), languages (Dutch, English and
French), and deep language models. This align-
ment is maximal in brain regions repeatedly asso-

ciated with language, for the best-performing al-
gorithms and for participants who best understand
the stories. Critically, we evidence a similar proces-
sing hierarchy between the two systems. The first
layers of the algorithms align with low-level pro-
cessing regions in the brain, such as auditory areas
and the temporal lobe, while the deep layers align
with regions associated with higher-level proces-
sing, such fronto-parietal areas.

We then show how such similarities can be le-
veraged to build better predictive models of brain
activity and better decompose several linguistic
processes in the brain, such as syntax and seman-
tics.

Finally, we explore the differences between
deep language models and the brain’s activations.
We find that the brain predicts distant and hie-
rarchical representations, unlike current language
models that are mostly trained to make short-term
and word-level predictions.

Overall, modern algorithms are still far from
processing language in the same way that humans
do. However, the linear correspondence between
their inner workings and that of the brain pro-
vide an promising platform for better understan-
ding both systems, and pave the way for building
better algorithms inspired by the human brain.

ccaucheteux



Titre : Représentations de langage dans les algorithmes d’apprentissage profonds et le cerveau
Mots clés : Traitement Automatique du Langage Naturel, Neurosciences, Apprentissage Profond, IRMf

Résumé : Algorithmes et cerveau, bien que de
nature extrêmement différentes, sont deux sys-
tèmes capables d’effectuer des tâches de lan-
gage complexes. En particulier, de récentes avan-
cées en intelligence artificielle ont permis l’émer-
gence d’algorithmes produisant des textes de qua-
lité remarquablement similaire à ceux des hu-
mains (ChatGPT, GPT-3). De telles similarités
interrogent sur la façon dont le cerveau et ces
algorithmes traitent le langage, les mécanismes

qu’ils utilisent et les représentations internes qu’ils
construisent. Ma thèse consiste à comparer les
représentations internes de ces deux systèmes,
d’identifier leurs similitudes et leurs différences.

Pour ce faire, nous analysons les enregis-
trements par imagerie fonctionnelle (fMRI) et
magnéto-encéphalographie (MEG) de participants
écoutant et lisant des histoires, et les comparons
aux activations de milliers d’algorithmes de lan-
gage correspondant à ces mêmes histoires.

Nos résultats mettent d’abord en évidence des
similarités de haut niveau entre les représentations
internes du cerveau et des modèles de langage.
Dans une première partie, nous montrons que les
activations des réseaux profonds prédisent linéaire-
ment l’activité cérébrale de sujets chez différents
groupes ( > 500 participants), pour différentes mo-
dalités d’enregistrement (MEG et fMRI), modali-
tés de stimulus (présentation auditive et visuelle),
types de stimulus (mots isolés, phrases et histoires
naturelles), langues (néerlandais et anglais) et mo-
dèles de langage. Cette correspondance est maxi-
male dans les régions cérébrales souvent associées

au langage, pour les algorithmes les plus perfor-
mants et pour les participants qui comprennent le
mieux les histoires. De plus, nous mettons en évi-
dence une hiérarchie de traitement similaire entre
les deux systèmes. Les premières couches des al-
gorithmes sont alignées sur les régions de traite-
ment de bas niveau dans le cerveau, telles que les
zones auditives et le lobe temporal, tandis que les
couches profondes sont alignées sur des régions as-
sociées à un traitement de plus haut niveau, no-
tamment les zones fronto-pariétales.

Nous montrons ensuite, dans une seconde par-
tie, comment de telles similarités peuvent aider à
construire de meilleurs modèles prédictifs de l’ac-
tivité cérébrale, et à décomposer plus finement
dans le cerveau différents processus linguistiques
tels que la syntaxe et la sémantique.

Enfin, dans une troisième partie, nous explo-
rons les différences entre cerveau et algorithmes.
Nous montrons que le cerveau prédit des représen-
tations distantes et hiérarchiques, contrairement
aux modèles de langage actuels qui sont princi-
palement entraînés à faire des prédictions à court
terme et au niveau du mot.

Dans l’ensemble, les algorithmes modernes
sont encore loin de traiter le langage de la même
manière que les humains le font. Cependant, les
liens directs entre leur fonctionnement interne et
celui du cerveau fournissent une plateforme pro-
metteuse pour mieux comprendre les deux sys-
tèmes, et ouvre la voie à la construction de
meilleurs algorithmes inspirés du cerveau.
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précieusement ces enseignements dans la suite de mon parcours, et aurai, je l’espère, l’occasion
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Chapter 1

Introduction

1.1 What this thesis tries to address

“Language in algorithms,
A code of ones and zeros,
A digital tongue,
A way to communicate with the pros.

Language in the brain,
A network of neurons and synapses,
A biological tongue,
A way to communicate with the senses.

Two different worlds,
But both with the power to convey,
Thoughts, feelings, and ideas,
In their own unique way.”

– by ChatGPT

ChatGPT, an algorithm created by OpenAI in November 2022, has the ability to write
coherent, well-constructed and evocative text. It demonstrates compositional skill and uses
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figures of style that are often associated with a certain level of abstraction. For example, it the
poem above, ChatGPT makes an analogy between the “digital tongue” of the computer and the
“biological tongue” of the brain. In general, the algorithm is able to translate, synthesize text,
and write code in a way that is strikingly similar to that of a human.

Language in algorithms: a conceptual paradox

Algorithms have generated novel images and faces for several years, but witnessing language
abilities in algorithms is particularly striking given the special nature of language. Language is
a powerful communication tool that influences our thoughts, actions, that structures our cultures
and societies. It is also a hard scientific problem: there is close to infinite ways of combining words
into sentences, and meaning varies across cultures and contexts, presenting short-term and
long-term dependencies (Chomsky, 1957; Bengio et al., 2001). Critically, while machines follow
instructions, language has long been associated with intelligence and thought (Mahowald et al.,
2023). Already in the 17th century, René Descartes linked language with human thought. In a
famous letter addressed to the Marquess of Newcastle1, he argued that animals, because they
lack the symbolic system of human language, cannot possibly think. Reciprocally, he argued
that non-thinking machines won’t be able to demonstrate language abilities, and thus proposed
language as a test to distinguish machines from humans.

“If there was a machine shaped like our bodies which imitated our actions as much as is
morally possible, we would always have two very certain ways of recognizing that they were
not, for all their resemblance, true human beings. The first is that they could never use
words or other signs, composing them as we do in order to declare our thoughts to
others.

For one can readily conceive that a machine might be made in such a way that it pro-
duces words, and even that it produces some words relevant to the corporeal actions that
effect some change in its organs, e.g., that if one touches it in a certain place, it will ask what
one wishes to say to it; and that if one touches it in another place, it will exclaim that one
is hurting it, and the like. But one cannot conceive that the machine could arrange
words so diversely as to respond to the meaning of all that might be said in its
presence, as even the most stupid human beings can do. ”

1Letter to the Marquis de Newcastle, on November 23, 1646
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– Discourse on Method, Part V. AT VI, 56
René Descartes
Gerald J. Massey’s translation

More recently, and in line with René Descartes, Alan Turing proposed dialogue as a test of
intelligence. He introduced the Turing test in 1950, in which evaluators engage in conversation
with a machine, attempting to distinguish the machines’ responses from that of a human. If the
evaluators are unable to do so, the machine is said to have passed the test, and evidence a form
of intelligence and reasoning (Turing, 1950). While controversial, the Turing test has shaped the
way society conceive intelligence (Mahowald et al., 2023).

On the need to probe intermediate representations

Today, humans are no longer the only systems capable of arranging words into meaning
(A. Wang et al., 2018, 2020). Algorithms are improving at the Turing test and challenge René
Descartes’ predictions. These advancements raise questions about the inner workings of the
two systems; the mechanisms they use and the intermediate steps they follow. Some argue that
algorithms lack understanding and simply rely on low-level statistical patterns (Marcus, 2020b).
On the opposite spectrum, others have raised questions about the possibility of higher-level
human computational processes such as consciousness existing in machines (Cerullo, 2022;
Chalmers, 2023). Less radically, and without delving into the question of thoughts, one may
wonder whether humans and algorithms share similar underlying mechanisms to process
language.

To clarify the dissociation between the models’ performance and its inner workings, we
break down language processing systems into three levels of analysis2 (Figure 1.1):

• the systems’ behaviour: the sequences the system generates and its performance at lan-
guage tasks (e.g. the accuracy at predicting a word from its context)

• the systems’ intermediate representations: the intermediate steps to achieve such behaviour
(e.g. building the syntactic tree of the sentence)

2We do not use Maar’s taxonomy here (Marr & Poggio, 1976) because we investigate the properties underlying
similar observable behaviours, representations and structures.
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• the systems’ implementation: their architectural and physical properties (e.g. the number
of synapses, digital vs. biological units).

Figure 1.1: Problem statement. Artificial neural networks and the brain are two language processing
systems able to generate, synthesize, translate text. While very different in their implementations, do
they use similar intermediate representations to process language?

Multiple implementations can lead to the same behaviour. For instance, while artificial and
biological neural networks are increasingly similar at the behavioural level, the are extremely
different in their implementation. On the one hand, the brain is made of biological neurons,
trained with a local learning rule, exposed to a variety of natural stimuli from senses that can
be influenced through interaction with the world. On the other hand, the best performing
language models are made of digital units trained with back-propagation, exposed to curated
and textual inputs.

Similarly, multiple intermediate representations can lead to the same behaviour. Let’s take
the example of next-word prediction. Next-word prediction consists in predicting the next
word, e.g. “time” given its previous context, e.g. “Once upon a [?]”. Multiple systems can
have the same behaviour and predict the word “time” while using different mechanisms. For
instance, system A could search a database to look for the closest sentence in Wikipedia; system
B could be hard-coded such that it always generates the word ”time” after the word ”upon
a”, system C could rely on shallow 4-grams statistics, while system D could build complex
intermediate representations (e.g. constructing the syntactic structure of the sentence and the
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expected semantic category). These four strategies can lead to the same answer “time”, and
hence different intermediate representations are built.

Question

Here, we do not focus on the systems’ behaviour –the words they generate– nor on the systems’
implementation –their architectural and physical properties– but on the intermediate representations
they build to process language. Precisely, we address the following question:

Do artificial neural networks and the human brain build similar intermediate representa-
tions to process language?

Studying intermediate representations is challenging because both the human brain and
deep algorithms are black boxes (Abnar et al., 2019). Artificial Neural Networks (ANNs) are
made of billions of parameters, so it is difficult to interpret their explicit representations, and
disentangle the properties they encode. On the other hand, computations in the brain can
only be estimated through measurements and observations, and such high-dimensional and
noisy measurements are hard to study. Despite these difficulties, decades of research have
investigated language representations in algorithms and the brain independently, showing
that deep neural networks build relevant semantic and syntactic spaces (Jawahar et al., 2019;
Manning et al., 2020; Mahowald et al., 2023), and identifying in the brain the spatial and
temporal dynamics underlying language processes (Hickok & Poeppel, 2007; Friederici, 2011;
Pallier et al., 2011; Fedorenko et al., 2016). Here, we do not study language representations in
artificial networks on the one side, and in the brain on the other side, but directly quantify the
similarity between the two.

In the following sections, we give a non exhaustive overview of research that have investi-
gated language representations in deep neural networks and the human brain independently,
as well as recent approaches that directly quantifies the similarity bewteen deep networks’ and
brains’ inner representations. Finally, we expose our approach and the contributions of the
thesis.
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1.2 Language representations in artificial neural networks

1.2.1 Language Modeling

Language can be formalized as a sequence of discrete random variables taking a finite set
of values called a vocabulary. Modeling language is then learning the joint distribution of
this sequence of random variables. A statistical model of language can be represented by the
conditional probability of a word given its context (Bengio et al., 2001):

P(wT
1 ) =

T

’
t=1

P(wt|wt�1
1 ) ,

where wt is word t in the sequence, and wj
i is the sequence of words (wi, . . . wj) (Bengio et al.,

2001). One can simplify the problem by leveraging the fact that temporally closer words in the
word sequence are statistically more dependent, and reduce the context size to k > 0 words:

P(wT
1 ) ⇡

T

’
t=1

P(wt|wt�1
t�k) .

Learning P is then learning the distribution probability of the next word given its context. In
practice, such probability is learnt using the cross-entropy loss, by maximizing the likelihood of
the true word given its previous context:

q̂ = argminq2Q �
T

Â
t=1

log
�

Pq(wt|wt�1
t�k)

�

This is a hard optimization problem if we consider discrete random variables because of the
curse of dimensionality. For example, if we use a vocabulary of V = 10, 000 words for a
sequence of N = 10 consecutive words, we get 1040 possible combinations. A solution to
modeling this phenomenon is to project words into a continuous space and then learn the joint
distribution in this new space. Two questions arise:

• Which continuous space should we choose? We will refer to vectors in this space as lexical
representations, or word embeddings.

• How can we model the joint distribution in this new space? We will refer to vectors
encoding interactions between multiple words as contextual representations.
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In the followings, we precise different ways of computing lexical and contextual representations.
Note that these two problems can be addressed simultaneously. For example, Bengio et al.
(2001) proposed learning both the word embedding and the continuous probability distribution.
This is also the case for most deep language models introduced subsequently (Devlin et al.,
2019; Brown et al., 2020).

1.2.2 Lexical Representations
Architectures and training task

To build relevant lexical representations, Mikolov, Sutskever, et al. (2013) proposed the Word2Vec
model. Each word is an index in a vocabulary. Each index corresponds to a vector representation
which values are learned. The vector representation can be learnt in two ways (Figure 1.2):

• predicting a word from its context (continuous bag of words, or CBOW),

• predicting an adjacent word (skip-gram).

These tasks are classification tasks, with the number of classes being the number of words in
the vocabulary. The model learns to represent each word as a unique vector, independently of
its context.

Emergence of lexical semantics

Remarkably, this method allows for the emergence of a semantic representation space, meaning
that two words close in the Word2Vec representation space are also semantically close (Fig-
ure 1.2B). This allows the model to capture relationships between words and to perform tasks
such as analogy completion. Analogy is a way to evaluate “human-like” semantics in word
embeddings. For instance, one commonly used benchmark is the Google Analogy Test Set,
which consists of a list of analogy questions of the form ”A is to B as C is to...” (Mikolov, Chen,
et al., 2013). Here are a few examples of analogies that a Word2Vec model learns (Figure 1.2):

• ”king” is to ”queen” as ”man” is to ”woman” (queen = king - queen + woman)

• ”Spain” is to ”Madrid” as ”France” is to ”Paris” (madrid = paris - france + spain)

• ”small” is to ”little” as ”big” is to ”large” (little = large - big + small)

• ”run” is to ”jog” as ”swim” is to ”dive” (jog = swim - dive + run)
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Figure 1.2: Learning lexical representations with Word2Vec. A) Architectures. In Continuous Bag Of
Words (CBOW), the model predicts the current word based on context. In Skip-Gram, the model predicts
the surrounding word given the current word. Extracted from (Mikolov, Chen, et al., 2013). B) PCA of
the 1000-dimensional Skip-gram vectors of countries and their capital cities. Extracted from (Mikolov,
Sutskever, et al., 2013).

Such findings are significant in two ways. First, despite their limitations, word embeddings
provide a quantitative and objective characterization of lexical semantics: words that are close
in the Word2Vec space are semantically similar. Second, they challenge traditional definitions
of semantics, summarizing semantics to the co-occurrences of words in similar contexts.

Note on words versus other levels of vocabulary

Here, we use the term vocabulary to refer to a set of words. Other types of elementary units,
such as characters, byte-pair encoding (BPE), and word-pieces, have been proposed as well. For
example, BPE operates by iteratively replacing the most frequent byte (or character) pair in text
with a single unused byte. This process is repeated until the desired vocabulary size is reached
or the frequency of remaining byte pairs is below a certain threshold. In the following, we will
use the term “word” to refer to elements in the vocabulary. Yet, most models are trained to
process more granular units (Radford et al., 2019; Devlin et al., 2019; Brown et al., 2020).

1.2.3 Contextual Representations

The second issue is the integration of context. At each time step t, a contextual representation
ht is constructed, which includes information not only on the lexical representation of the word
wt, but also the representations of previous words (wt�1, . . . wt�k), with k being the context
window defined beforehand. Long-Short-Term Memory (LSTMs) (Hochreiter & Schmidhuber,
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1997), and Transformers (Vaswani et al., 2017) are two architectures addressing this problem
and calculating the contextual representation ht in different ways (Figure 1.3). In practice, the
contextual representations ht are learnt using different objective functions, such as next-word
prediction and masked language modelling.

Architectures

Recurrent Neural Networks (RNNs) are recurrent architectures: they compute the contextual
representations, or “hidden states” ht based on the previous hidden state, ht�1, and the current
input, xt.

ht = gq(ht�1, xt)

where gq is a non-linear function. Long Short-Term Memory (LSTM) networks are a particular
case of RNNs that are designed to capture long-term dependencies in sequential data. LSTMs
compute the current hidden state, ht, based on the previous hidden state, ht�1, the current
input, xt, and an additional “memory” cell, ct, which is updated at each time step.

ht = ot ⇥ tanh(ct)

ct = ft ⇥ ct�1 + it ⇥ c̃t

with ft, ot, and it the forget, output, and input gates, c̃t the cell input activation vectors, each
updated as follows:

ft = s(w f [ht�1; xt] + b f )

it = s(wi[ht�1; xt] + bi)

ot = s(wo[ht�1; xt] + bo)

c̃t = tanh(wc[ht�1; xt] + bc)

where ⇥ is the element-wise product, s is the sigmoid function, b and w represent the learned
bias and weight of the corresponding gates. In theory, the contextual information can be carried
forward throughout the sequence in the memory cell ct. However, in practice, the gradient is
said to “vanish” and the memory cell lack clear and retrievable information at the end of a long
sentence. In addition, the model is recurrent and thus cannot leverage parallel computation.
Transformer partly address these two issues.
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Figure 1.3: Learning contextual representations with LSTMs and Transformers. Simplified computa-
tional graphs for lexical Word Embeddings (Mikolov, Sutskever, et al., 2013), causal LSTMs (Hochreiter
& Schmidhuber, 1997) and causal Transformers (Vaswani et al., 2017). LSTMs combine contextual infor-
mation using recurrent memory cells. Transformers combine contextual information using an attention
mechanism that access all previous words in parallel. Only causal models are displayed here (i.e. models
processing information from the left to the right).

Instead of computing the hidden state based on the previous hidden state, as in RNNs,
Transformers compute contextual representations by directly accessing all inputs in a sequence
of fixed length (Vaswani et al., 2017). They consist of a specific a contextual block called “self-
attention” and a non-contextual feed-forward block (Figure 1.4). The self-attention block builds
contextual representations following the equation:

Attention(Q, K, V) = softmax
�QKT
p

d

�
V

where Q represents the queries, K represents the keys, and V represents the values. d is
the dimension of the key. Q, K and V are three linear transformations of the input vectors
x = (xt1 , . . . , xtn), with n the context length.

Q = Wq · x

K = Wk · x

V = Wv · x
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with W the weights corresponding to the keys, queries and values. The self-attention module
can be interpreted as a weighted sum of input values V each weight being given by the similarity
matrix softmax(QKT/

p
d). The feed-forward block is applied position-wise, independently of

the time step, and consists of two linear layers with a non-linearity between those.
Both LSTMs and Transformer networks generally consist of multiple contextual layers

stacked onto a word embedding. The input x of layer l + 1 is the output of layer l.

Figure 1.4: One Transformer layer. A Transformer “block”, or “layer” consists of a self-attention module
(orange), two fully connected layers (blue), skip connections and normalizations (yellow). We here
call “hidden state” h the output of such transformer block. One Transformer model generally consists
in multiple Transformer layers stacked onto a word embedding. Here, we only use encoder models,
without cross-attention. Adapted from (Vaswani et al., 2017).

Since 2017, the best-performing language algorithms are based on the Transformer archi-
tecture. Some architectural improvements have been added such as the addition of a relative
positional embedding (Transformer-XL, Dai et al. (2019)) or external memory that allows for the
inclusion of longer contexts (Transformer-XL Dai et al. (2019), Compressive Transformer (Rae et
al., 2019), Expirespan (Raikote, 2021)). However, most recent improvements in standard natural
language processing benchmarks are driven by introducing new training tasks, increasing the
size of the networks and training on more and higher quality data (A. Wang et al., 2018, 2020;
Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020; Raffel et al., 2020).

Training tasks and datasets

Several training tasks have been proposed for learning general contextual language represen-
tations. Language modeling is the most straightforward task compared to our objective. It
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consists of training the algorithm to predict the next word given its previous context. The
famous models GPT-2 and GPT-3 developed by OpenAI are trained with language modeling
objectives. Masked language modeling consists of predicting a masked word given its sur-
rounding context. BERT and models derived from BERT (DistilBERT, RoBERTa (Liu et al., 2019))
are trained with masked language modeling. Other tasks include permutation language model-
ing in XLNet (Yang et al., 2020), span prediction in BART (Lewis et al., 2019), a combination of
supervised and unsupervised objectives in T5 (Raffel et al., 2020), or adversarial approaches
where a student discriminates between words generated by a teacher BERT model and real
words (Clark et al., 2020).

The quantity, quality of training data, as well as the model size are key factors to learn
relevant language representations. For example, the main differences between GPT-2 and GPT-3
lie in the models’ sizes and the training data, yet GPT-3 systematically outperforms GPT-2 at
various language tasks (Radford et al., 2021; Brown et al., 2020).

Figure 1.5: Deep networks’ ability to generalize to multiple language tasks. Performance of eleven
deep neural nets at GLUE, a natural language processing benchmark consisting of 9 tasks, including
classifying a sentence as grammatically correct or incorrect (CoLA), as positive or negative (SST-2),
classifying two sentences as semantically similar or not (STS-B, SST-Q) and identifying whether one
sentence entails the other (MNLI, WNLI, RTE) (A. Wang et al., 2018). Performance is re-scaled to set
human performance to 1. Extracted from (A. Wang et al., 2020).

Learning general representations of language

By utilizing specific architectures such as transformers and carefully curated training data,
models can learn representations that are applicable to a wide range of language tasks. One way
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to evaluate the generality of these representations is through fine-tuning, where a portion or all
of the model’s weights are further trained on a small set of annotated data for a different task.
The performance of the fine-tuned model on the downstream task serves as an indicator of its
ability to learn representations specific to that task. For example, models trained with masked
language modeling and fine-tuned on downstream tasks have shown to excel at tasks such as
sentiment analysis, part-of-speech tagging, named entity recognition, sentence classification,
and summarization (A. Wang et al., 2018; Radford et al., 2019; A. Wang et al., 2020; Devlin et al.,
2019; Brown et al., 2020; Lewis et al., 2019) (Figure 1.5).

Learning semantic and syntactic representations

Another way of assessing the generality of representations in language models is by directly
analyzing the model’s activations. In practice, a linear classifier can be trained to decode specific
information from the activations, and the performance at this linear decoding task serves as
an indicator of the type of representations encoded in the activations. For example, Jawahar
et al. (2019) have shown that BERT contextual representations, specifically in middle layers,
encode information such as tense, word-verb agreement, and syntactic complexity of sentences.
In a different work, Manning et al. (2020) demonstrated that BERT activations contain sufficient
information to reconstruct the syntactic dependency tree of sentences. Specifically, they utilize
a linear projection that maps pairwise distances in the BERT activations to pairwise distances
in the syntactic tree (Figure 1.6). This ”structural probe” enables the authors to reconstruct a
syntactic tree from BERT activations with a high degree of accuracy, achieving a correlation of
0.89 between the true and reconstructed depths and a correlation of 0.87 between the true and
reconstructed pairwise distances.

1.2.4 Limitations of language models

Despite their performances, even the most recent large language models (LLMs) suffer from
limitations.

Behavioural limitations.

• Lack of Consistency: LLMs have been trained on vast amounts of text data, but they still
struggle with maintaining consistent behavior in generating text. LLMs are still sensitive
to the way the prompt is provided. For instance, the query “Homeland premiered on
[Y]” should yield the same answer as “Homeland originally aired on [Y]”, whereas it is
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Figure 1.6: Learning syntactic representations. The structural probe method introduced in (Manning et
al., 2020). The authors partly recover the syntactic dependency tree of the sentences from the sixteenth
layer of a BERT model. A. Each of the words of the sentence “The chef who ran to the store was out of food”
is internally represented in context as a vector. B. A structural probe finds a linear transform of that
space under which squared L, distance between vectors best reconstructs tree path distance between
words. C. Once in this latent space, the structure of the tree is globally represented by the geometry of
the vector space, meaning words that are close in the space are close in the tree. D. In fact, the tree can
be approximately recovered by taking a minimum spanning tree in the latent syntax space. Figure and
caption are extracted from (Manning et al., 2020).

not systematically the case (Elazar et al., 2021). Similarly, a BERT-large model provides
different answers to “Albania shares borders with [Y]” and “[Y] borders with Albania”
(Figure 1.7).

• Limited Memory: LLMs are designed to process large amounts of text data and generate
responses, but they have limited memory capacity. While several methods have been
proposed to enhance LLMs with large attention spans and external memory (Raikote,
2021; Rae et al., 2019; Izacard et al., 2022), these may not be currently leveraged in the best
generative models like ChatGPT, which is said to only access the 4,000 previous tokens3.

• Poor performance at Logic and Maths: LLMs have been trained on text data and have not
been specifically designed to perform well at logical and mathematical reasoning tasks.
While they have shown some ability to perform simple arithmetic, they struggle with
more complex logical and mathematical problems (Brown et al., 2020; Chowdhery et al.,
2022; Jiang et al., 2022). Note that ChatGPT still shows proficiency in basic logical tasks
like placing a green triangle to the left of a blue circle, outperforming other multi-modal
models like DALLE (Ramesh et al., 2022) and StableDiffusion (Rombach et al., 2022)
(Figure 1.8).

3https://help.openai.com/en/articles/6787051-does-chatgpt-remember-what-happened-earlier-in
-the-conversation

15

https://help.openai.com/en/articles/6787051-does-chatgpt-remember-what-happened-earlier-in-the-conversation
https://help.openai.com/en/articles/6787051-does-chatgpt-remember-what-happened-earlier-in-the-conversation


• Poor performance at commonsense reasoning: The model lack some knowledge about real-
world situations. For instance, when presented with a sentence like “The lawyer asked
the witness a question, but he was reluctant to repeat it.”, most humans would agree that
”he” refers to “lawyer” and not “witness”, but the model may not (Mahowald et al., 2023;
Elazar et al., 2021), (Figure 1.9).

Figure 1.7: Example of consistency errors from a BERT-large-cased model. Extracted from (Elazar et
al., 2021). Pred #i correspond to Pattern #i. The answer depends on the phrasing of the pattern. If the
model’s prediction is accurate, it is colored blue. If the prediction is incorrect, it is colored red.

Algorithmic limitations. Second, there is evidence that the way LLMs process text is still
different from the brain (Mahowald et al., 2023).

• Unrealistic amounts of training data: LLMs that achieve near-human performance are
trained on much more data than a child is exposed to. For example, GPT-3 sees 1000x
more language data than a 10-year-old human (Warstadt & Bowman, 2022).

• Sensitivity to data curation. While humans are continuously exposed with noisy and
heterogeneous inputs, LLMs are highly sensitive to the quality of the data they are trained
on: a few curated data to fine-tune the model on may yield better results that large
amounts of non-currated data (Solaiman & Dennison, 2021).

Implementation limitations.

• Power efficiency: The brain surpasses large language models in power efficiency, even
though it has a greater number of synaptic weights to update. To put it into perspective,
training a model with 175 billion parameters such as GPT-3 would demand 1000 megawatt-
hour of energy, whereas the brain with around 100 trillion synapses would only require
20 watt-hours, as reported by Zador et al. (2022).

16



Figure 1.8: Drawing a green triangle to the left of a blue circle. The images were generated by DALLE
(Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), and ChatGPT when asked to generate a
green triangle to the left of a blue circle. A. Example extracted from T. Desbordes PhD. presentation. B.
Images generated on dreamstudio API.C. Images generated on ChatGPT API. ChatGPT’s output was
HTML code, we here display the corresponding HTML image.

Overall, despite their limitations, there is converging evidence that artificial neural networks
build general representations of language, encoding both syntactic and semantic properties,
and useful for the models to perform complex tasks such as text memorization and question
answering.
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Figure 1.9: Example of non-intuitive generations from ChatGPT. Prompts from Levesque et al. (2012).
Most humans would answer “lawyer” and “concert”, but ChatGPT answers “witness” and “rain”.
Tested on ChatGPT website (06/02/2023).

1.3 Language representations in the brain

Unlike deep learning algorithms, mental representations in the brain are implicit and hardly
accessible. They can only be estimated through physical observations or indirect and often
noisy measurements. As a result, methodological advances in acquiring and analyzing brain
signals have been crucial in the study of language processing in the brain.

1.3.1 Lesion studies

One of the oldest approaches to analyzing the neural basis of language is to compare the
behaviors of patients whose brains have been damaged. The most famous examples of this
approach are the studies of P. Broca and K. Wernicke, which gave rise to the Geschwind-
Lichteim-Wernicke model (Lichteim, 1885; Geschwind, 1965; R. E. Graves, 1997). This model
suggested that Broca’s area, located in the frontal lobe, is responsible for language production,
and damage to this area leads to difficulty in producing speech (expressive aphasia). Similarly,
Wernicke’s area, located in the temporal lobe, was proposed to be responsible for language
comprehension, and damage to this area leads to difficulty in understanding speech (receptive
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Figure 1.10: Wernicke and Geshwind models. Extracted from (Tremblay & Dick, 2016). On the left, the
original Wernicke model represented in the right hemisphere. On the right, the Geschwind’s updated
classic model. As specified by the authors, the superior temporal gyrus is mislabeled as the angular
gyrus, based on most anatomical definitions.

aphasia). This model dominated for much of the 20th century and was recently challenged by
the advances of new techniques to record brain activity (Tremblay & Dick, 2016).

1.3.2 Controlled stimuli and contrast-based methods

In the early 1980s, the advent of new technologies such as intra-cortical electrophysiology,
and non-invasive techniques such as functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), electroencephalography (EEG) and magnetoencephalography
(MEG) allowed the recording of brain signals in real time. A common approach became
to compare the brain responses of participants to different controlled stimuli. For example,
Kutas & Federmeier (2011) showed that EEG responses to a semantic violation (e.g. ”I like
my coffee with cream and socks”) have a larger negativity at t=400ms compared to brain
responses to a control stimulus (e.g. ”I like my coffee with cream and sugar”). The authors
therefore concluded that the N400 (increased negativity at 400ms) was associated with this
type of semantic violation. Similar approaches have been used in fMRI, analyzing brain
responses to word lists vs. sentences, meaningful vs. meaningless sentences (Mazoyer et
al., 1993; Humphries et al., 2006, 2007; Obleser et al., 2007; Friederici, 2011) and sentences of
different syntactic properties (Fiebach et al., 2005; Makuuchi et al., 2009; Newman et al., 2010;
Santi & Grodzinsky, 2010). For example, Pallier et al. (2011) recorded the fMRI responses to
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sequences of varying syntactic complexity (constituent size) and semantic content (either words
or pseudo-words). This allowed the authors to identify the brain regions involved in syntax,
regardless of the semantic content of the phrase (Infero Frontal Gyrus and Superior Temporal
Sulcus), and the regions responding to syntax only when presented to meaningful sentences
(Temporo-Parietal Junction) (Figure 1.11).

Controlled studies offer a clear relationship between the hypothesis and experimental
results, but suffer from several drawbacks (Jain et al., 2023), including:

• The effectiveness of controlled studies depends on the quality of the hypothesis being
tested. Brain responses to controlled stimuli may not be representative of humans’ natural
language, and narrowing the focus to a single stimulus property can result in inaccurate
conclusions that ignore interactions with other properties.

• They require the recordings of brain responses to each condition from each participants,
which is costly.

• They lack flexibility. The need to design specific controls and measure results for each
language property results in limited reuse of experimental data.

• Combining data from different controlled experiments can be challenging due to differ-
ences in methods, stimulus sets, and subjects (e.g. from different laboratories), and thus
slows down the scientific process.

To address these limitations, there is a gradual shift of paradigm: from controlled stimuli and
contrast-based methods toward natural stimuli and encoding models (Hamilton & Huth, 2018;
Jain et al., 2023).

1.3.3 Toward natural stimuli and encoding methods

Semi-controlled stimuli. Instead of comparing brain responses to fixed-size, out-of-context
phrases, studies analyze brain responses to phrases in context. For example, Lerner et al. (2011)
analyze the fMRI recordings of participants in response to natural stories, and compare them
to the brain responses of the same subjects when the words, phrases, and paragraphs were
scrambled (Figure 1.12). This approach allows the authors to identify the brain regions involved
in the processing of short, medium and long-term dependencies. Another example is that of
Fedorenko et al. (2016). The authors compare intracranial responses to meaningful sentences,
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Figure 1.11: Using controlled stimuli and factorial designs to disentangle syntax and semantics.
Extracted from (Pallier et al., 2011). The authors study the fMRI signals of 40 subjects reading sentences
with varying syntactic and semantic properties. On the top, the 12 x 2 types of stimuli used (12 possible
component sizes, either words or pseudo-words (jabberwocky, in italics). On the bottom, the regions
with significant increase with constituent size with normal words (A) and in both the normal and
pseudo-words (B, blue areas). In (C), the fMRI amplitude response varying with the constituent size, for
normal words (red) or pseudo-words (blue), for different regions in the brain.

word lists, jabberwocky and non-word lists. The results show that the increase in activity is
specific to sentence comprehension, and is not fully explained by responses to syntax or word
meaning alone, evidencing compositional processes of sentence.
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Figure 1.12: Using semi-controlled stimuli to analyse language processing in natural settings. Ex-
tracted from (Lerner et al., 2011). The authors study the fMRI activity of 15 participants in response to a
7 min natural story, the same story scrambled at the paragraph, sentence and word level, as well as the
story played in reverse. Blue voxels are significant only in the paragraph scram condition, green voxels
are significant in the sentence scram and paragraph conditions, yellow voxels are significant in the word,
sentence and paragraph conditions and red voxels are significant in all conditions.

Natural stimuli and encoding models. While semi-controlled stimuli allow the analysis
of sentences in context, they still require the recordings of subjects in multiple non-natural
conditions (e.g. scrambling test and jabberwocky). Instead of using contrast-based methods to
compare the brain responses to semi-controlled stimuli, studies have recently used predictive
models of brain responses to natural stimuli alone. The idea is the following: participants attend
to natural stimuli, one builds predictive models of their brain responses with constrained
information as inputs. Finally, the model is validated on its ability to predict held out brain
responses. For example, if an model based on a word’s part-of-speech linearly predicts a
particular voxel, it will be inferred that this voxel is involved in processing the word’s part-of-
speech. These models are called “encoding models”. The approach is no longer to compare
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brain responses to multiple conditions, but the ability multiple models to accurately predict brain
responses to natural stimuli (Naselaris et al., 2011; Hamilton & Huth, 2018; King et al., 2018).

1.3.4 Deep encoding models of the sensory cortex

Deep learning algorithms as good encoding models? One challenge of encoding methods
combined with natural stimuli is to find good candidate models. The question of what consti-
tutes a good candidate model is not specific to the field of language, but has been investigated
in vision research. In 2016, D. L. Yamins & DiCarlo (2016) proposed three minimal criteria for a
good encoding model. Following their wordings, the three minimal criteria are:

• Stimulus-computability: The model should accept arbitrary stimuli within the general
stimulus domain of interest;

• Mappability: The components of the model should correspond to experimentally defin-
able components of the neural system;

• Predictivity: The units of the model should provide detailed predictions of stimulus-by-
stimulus responses, for arbitrarily chosen neurons in each mapped area.

Deep learning models meet these criteria. They can process a wide range of stimuli within their
training domain (stimulus-computability), they have a hierarchical processing architecture, so
each layer is mappable to different brain regions (mappability); and finally, it is possible to
evaluate the predictivity of each brain sensor (D. L. K. Yamins & DiCarlo, 2016). Thus, artificial
neural networks have early been used to encode brain responses, particularly in vision research.

Visual cortex. Several works have early used distributed encoding features and Convolutional
Neural Networks (CNNs) to predict brain responses to images (Kay et al., 2008; Naselaris et al.,
2009; Nishimoto et al., 2011; Huth et al., 2012; Cadieu et al., 2014; D. L. K. Yamins et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014; Sermanet et al., 2014; Güçlü & Gerven, 2015; Eickenberg
et al., 2017). For instance, in 2014, Yamins et al. examined CNNs trained on image classification
tasks by comparing them to the neural responses of the Inferior Temporal (IT) visual cortex
in two macaques (D. L. K. Yamins et al., 2014). They analyzed the brain activity and CNN
activations in response to the same images and used a neural predictivity metric to measure the
alignment between the two. Specifically, they calculated the r-squared value between predicted
and actual brain responses after a linear projection was learned using separate data. The study
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found that CNNs accurately predict IT responses to images and that different regions of the
macaques’ visual cortex are better explained by different layers of the network (Figure 1.13b-c).
Importantly, they also demonstrated that architectures that perform well on high-level object
recognition tasks also better predict IT responses (D. L. K. Yamins et al., 2014) (Figure 1.13a).
Subsequent research extended these findings to human subjects using functional magnetic
resonance imaging (fMRI). For example, Khaligh-Razavi & Kriegeskorte (2014) found that the
human V1-V3 regions were best explained by the second layer of a CNN optimized for object
recognition, while the IT region was best explained by the top layer (Figure 1.13e).

Auditory cortex. Similar approaches have also been applied in speech recognition, where
A. J. E. Kell et al. (2018) found that CNNs accurately predict the human auditory cortex
recorded using fMRI, with different layers of the network explaining different parts of the
cortical hierarchy.

Benchmarks. These encoding approaches have the advantage of being more easily shared
among research labs, in contrast to factorial designs. In an effort to promote replication and
collaboration in the field, Schrimpf et al. (2018) introduced the “Brain Score” benchmark, which
quantitatively compares the ability of deep learning algorithms to decode brain responses to
images.

1.3.5 Deep encoding models of neural responses to language

Lexical responses. Distributed word representations were early used to encode brain activity.
Mitchell et al. (2008) used co-occurences properties to build semantic embeddings of words, and
used a linear encoding model to predict fMRI given the embeddings. This approach allowed
the authors to predict fMRI responses to 60 words, including words absent from the training set.
Using similar techniques, Huth, de Heer, et al. (2016) used lexical word embeddings to predict
fMRI responses to natural stories, and found that word embeddings accurately predicted brain
responses to speech (Figure 1.14). Critically, the authors derive a “semantic atlas” and identify
the regions coding for specific semantic dimensions in the brain.

Contextual responses. Wehbe et al. (2014) went beyond lexical representations and used
recurrent neural networks to build predictive models of MEG responses to visual sentences.
They showed that MEG responses were partly accounted for by the contextual representations
of RNNs, both before and during the word presentations. Jain & Huth (2018) later leveraged the
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Figure 1.13: Convolutional neural nets encode the visual cortex. Extracted from (D. L. K. Yamins &
DiCarlo, 2016). a) Performance of deep convolutional networks (CNNs) at image classification (x-axis)
versus their neural predictivity, i.e. their ability to linearly encode the Inferior Temporal neuronal
responses (IT) of monkeys, or (y-axis). b) Example of true monkey neural response (black) vs. the
response predicted by the last layer of a deep CNN (red). c) Comparison of IT and V4 single-site neural
predictivity. d) Representational dissimilarity matrices for human fMRI and deep CNN model (from low
similarity in blue to high in yellow). e) Correlation between brain and deep net similarity matrices. d
and e are adapted from (Khaligh-Razavi & Kriegeskorte, 2014).

advantages of LSTMs to investigate the effect of context on the predictability of fMRI responses.
Precisely, they used a three-layer-LSTM and computed the brain score of its activations when
fed with increasingly more context. They found that brain scores are sensitive to the context
length up to around 15 sentences, and that the middle layer best encoded fMRI responses as
opposed to word embeddings and the output layer (Figure 1.15).
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Figure 1.14: Lexical word embeddings encode brain responses to speech. Extracted from (Huth, de
Heer, et al., 2016). Ability of a 985-dimensional word embedding to predict the fMRI responses to 2
hours of natural stories from seven subjects.

An active field of inquiry. My thesis was made possible by the rapid growth of works at
the interface between AI and neuroscience, which expanded in tandem with my studies. This
expansion has been supported by a growing open-source community, making deep language
models and neuro-imaging datasets publicly available (Wolf et al., 2020; Nastase et al., 2020).
Thus, during my PhD, and together with our works, several teams explored contextual language
representations in deep learning algorithms and the brain. Multiple studies have shown a linear
correlation between brain responses and deep language models’ activations (Jat et al., 2019;
Hollenstein et al., 2019; Schrimpf et al., 2021; Toneva, Stretcu, et al., 2020; Toneva, Mitchell, &
Wehbe, 2020a,b; Toneva & Wehbe, 2019; Reddy & Wehbe, 2020; Sun et al., 2021; Anderson et
al., 2021; S. Wang, Zhang, Wang, et al., 2020; Vaidya et al., 2022; Jain et al., 2023), with some
investigating the factors that modulate this mapping (Caucheteux & King, 2022; Schrimpf et
al., 2021; Antonello & Huth, 2022; Pasquiou et al., 2022; Goldstein et al., 2022). Some studies
have reinforced the importance of next-word prediction in the mapping (Schrimpf et al., 2021;
Goldstein et al., 2022), while others have challenged this notion (Pasquiou et al., 2022). Other
studies have explored the effects of context (Jain & Huth, 2018), layer (Toneva & Wehbe, 2019;
Jain & Huth, 2018; Vaidya et al., 2022), syntax, and semantics on brain mapping (Reddy &
Wehbe, 2020; S. Wang, Zhang, Lin, & Zong, 2020; Pasquiou et al., 2023). Further details on these
studies will be discussed later in the manuscript.

26



Figure 1.15: Contextual LSTMs encode brain responses to speech. Adapted from (Jain & Huth, 2018).
The authors study the ability of an LSTM to predict fMRI responses to language, when the model is
input with a varying amount of context. a) Ability of the model to predict brain responses (y-axis) as a
function of the number of sentences in the context (x-axis), for each layer of the LSTM. b-c) Layer (b) and
context length (c) maximizing the prediction performance.

1.3.6 Summary

Overall, at the beginning of my thesis, a large body of works had separately explored language
representation in algorithms and the brain, demonstrating that deep neural networks create
meaningful semantic and syntactic spaces (Jawahar et al., 2019; Manning et al., 2020; Mahowald
et al., 2023), and clarifying the spatial and temporal dynamics behind language processes in
the brain (Hickok & Poeppel, 2007; Kutas & Federmeier, 2011; Lerner et al., 2011; Fedorenko
et al., 2016). A smaller body of works used linear encoding models based on artificial neural
networks to predict brain responses to natural language. These works highlight similarities
between word embeddings, the contextual layers of recurrent neural networks and brain acti-
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vations (Wehbe et al., 2014; Huth, Lee, et al., 2016; Jain & Huth, 2018). The present manuscript
extends this line of research, focusing on Transformer models, investigating multiple recording
modalities (MEG and fMRI), large cohorts of English, French and Dutch participants (above
500 participants in total), as well as a large number of deep language models (> 1000 language
models). Furthermore, the present thesis investigates the nature of the shared representations
(e.g. syntactic vs. semantic representations), and the factors modulating the similarity with
the brain (e.g. language modeling performance and participants’ level of comprehension), by
re-training deep models from scratch to enable controlled comparisons. Critically, while most
works focused on the similarities between the two systems, we investigate one major differ-
ence: the ability to predict long-range and hierarchical representations of the future, aligning
with recent perspectives in artificial intelligence that emphasize the importance of hierarchical
planning (LeCun, 2022).

In the following sections, we precise our general approach and the thesis contributions.

1.4 Approach

To study the similarity between brain and deep nets’ representations of language, we build on
previous research and directly quantify the similarity between brain and deep nets’ activations
in response to the same word sequences (Huth, de Heer, et al., 2016; Schrimpf et al., 2018; Jain
& Huth, 2018). For example, in Figure 1.16, we input the algorithm with the sequence “not very
happy”, we extract the activations of each of its layers, and we compare these activations to
the brain recordings of subjects who read or listen to the sequence “not very happy”. Once
we have extracted the two activation spaces in response to the same stimuli, we quantify
their similarity using a relatively standard metric, which we will call here the “Brain Score”,
following D. L. K. Yamins et al. (2014); Schrimpf et al. (2018). Below, we precise the notions of
representation, the brain score computation, and the methodological scope of our study.

1.4.1 Deep networks’ activations

On the artificial networks side, we restrict our analysis to:

• i) text, to focus on language itself and not speech, i.e. sensory processing (except in
Section 3.3);
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Figure 1.16: Approach. Participants either read or listen to sentences while their brain activity is
recorded using functional MRI or MEG. We extract the corresponding activations from artificial neural
network, from each layer. To quantify the similarity between the network activations X and the brain
activations, approximated by the neuro-imaging recordings Y, we quantify the linear mapping between
the two. Precisely, we fit a `2-penalized linear regression that predicts Y given X, and assess the Pearson’s
correlation between predicted and actual brain responses on held-out data. Such correlation score is
hereafter called “Brain Score”, following (Schrimpf et al., 2018). On the right, an example of the true vs.
predicted fMRI response of one voxel.

• ii) transformer-based models, because they are the best-performing and most widely
used architectures (Vaswani et al., 2017);

• iii) models trained with causal language modeling, i.e. predicting a word from its previous
context, and masked language modeling, i.e. predicting a word given its surrounding
context (both left and right).

In practice, we use the Huggingface (Wolf et al., 2020) or XLM implementation (Lample &
Conneau, 2019) of GPT-2 (Radford et al., 2021) and BERT (Devlin et al., 2019). These models
consist of twelve transformer blocks, called “layers”, stacked onto a word embedding, i.e. a
look-up table that assigns one vector for each vocabulary word, independently of its context.

As internal representations, we choose to study the activations of each layer i.e. the output
of the activation function, after the multi-layer-perceptron, skip-connection and transformer
layer (Figure 1.4). These are the contextual representations ht introduced in section 1.2.3.

We thus restrict ourselves to the following methodological scope:
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Language representations in transformer-based models are the activations of each
layer, in response to text.

1.4.2 Brain activations

Language stimuli. We focus on perceived language: participants read or listen to either
isolated words, isolated sentences or narratives.

Brain recordings. We define neural representations as information that is linearly readable
from brain activations (Kriegeskorte et al., 2008; DiCarlo & Cox, 2007). To approximate brain
activations, we use Magneto-Encephalographie (MEG) recordings, or the BOLD response
measured with functional Magnetic Resonance Imaging (fMRI) (Figure 1.17).

• Magnetoencephalography measures the magnetic field induced by neurons’ electrical
currents. It has high temporal resolution (⇡1 ms) but low spatial resolution (⇡2 cm)
(Baillet, 2017).

• BOLD-contrast fMRI measures the local fluctuations in blood oxygen induced by in-
creased neuronal activity. Firing neurons require oxygen, which triggers local changes
of deoxyhemoglobin and oxyhemoglobin. Such molecules have different magnetic prop-
erties and their relative volume can be estimated with fMRI. Yet, the blood oxygen flow
is delayed compared to the neuronal activity, the measurements are thus a convolution
of multiple sources (Figure 1.17b). fMRI has high spatial resolution (⇡2 mm), but low
temporal resolution (⇡2 s) (Poldrack et al., 2011).

Datasets. Along this manuscript, we focus on two datasets. The Narratives dataset (Nastase
et al., 2020), which contains the fMRI recordings of 345 native English speakers learning to
short stories, from 7 min to 56 min, for a total of 4,6 hours of unique stimuli. The Mother Of
Unification Studies (MOUS) dataset (Schoffelen et al., 2019), which contains both the fMRI and
MEG recordings of 204 native Dutch speakers reading isolated words or sentences.

We thus restrict ourselves to the following methodological scope:

Language representations in the brain are information that is linearly readable from
neuro-imaging recordings, in response to perceived words, sentences or narratives.
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Figure 1.17: Neuro-imaging techniques used in this manuscript.

1.4.3 Quantifying similarity with the Brain Score

To assess the similarity between deep networks’ and brain activations, we quantify the linear
mapping between the two spaces, in response to the same language stimulus. Such an approach
is motivated by previous works (Huth, Lee, et al., 2016; Schrimpf et al., 2018) and by the
assumption that brain representations are linearly readable information from brain activity
(DiCarlo & Cox, 2007; Kriegeskorte et al., 2008).

Precisely, we evaluate, for each subject s and sensor v (either channel for MEG or voxel for
fMRI), the mapping between 1) the brain recordings Y(s,v) in response to the sentences and 2)
the activations X of the deep network input with the textual transcripts of the same sentences.
To this end, we fit a linear ridge regression W on a train set to predict the brain recordings
given the network’s activations. Finally, we evaluate this mapping by computing the Pearson
correlation between predicted and actual brain recordings on a held out set:

R(s,v) : X 7! Corr
�
W · X, Y(s,v)� , (1.1)

with W the fitted linear projection, Corr Pearson’s correlation, X the activations of one artificial
neural network and Y(s,v) the brain recordings of one subject s at one sensor v, both elicited by
the same held out stories.
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Temporal alignment for fMRI. Following (Huth, de Heer, et al., 2016), we model the slow
bold response thanks to a finite impulse response (FIR) model with five to six delays (e.g. from
0 to 9 seconds in the Narratives dataset where TR=1.5 seconds). Still following Huth, de Heer,
et al. (2016), we sum the model activations of the words presented within the same TR, in order
to match the sampling frequency of the fMRI and the language models. In the notations above,
X consists in the deep networks activations after applying FIR.

Temporal alignment for MEG. In the case of MEG recordings (Section 2.1), there is more
recordings than words. Thus, we epoch the recordings on the word onsets, fit and evaluate a
ridge regression for each time step starting at the word onset.

1.5 Overview of the thesis

Do artificial neural networks and the human brain build similar intermediate representations to
process language? We approach the question using transformer-based artificial neural networks,
linear encoding models, and the neuro-imaging recordings of large cohorts of participants.

Chapter 2: High-level similarity in language representations

MEG and fMRI responses consistently correlate with deep networks’ activations. In two
first papers (Caucheteux & King, 2022; Caucheteux et al., 2022), we provide evidence of high-
level similarities between brain and artificial networks’ activations in response to language. We
show that deep nets’ activations significantly predict brain activity across subjects for different
cohorts (> 500 participants in total), different recording modalities (MEG and fMRI), stimulus
types (isolated words, sentences and natural stories), stimulus modalities (auditory and visual
presentation), languages (Dutch and English) and deep language models (models varying in
training tasks, architectures and performances). This alignment is maximal in brain regions
repeatedly associated with language, in the intermediate layers of algorithms, and for the best
performing algorithms (i.e., those that best predict a word from its context) (Caucheteux &
King, 2022; Caucheteux et al., 2022).

Next-word prediction primarily impacts the brain score. We then ask why artificial neural
networks’ activations correlate with brain responses (Kanwisher et al., 2023). To this aim, we
study > 1, 000 transformer models varying in training task, architectural parameters and
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performance, and compute the brain score of each layer of each network. We find that the depth
of the representation as well as the model’s language modeling perplexity are the primary
factors driving the brain score, above other architectural parameters (e.g. number of layers and
dimensionality). Interestingly, we find a non-monotonic relationship between the brain score
and the performance of the network: the best-performing neural networks slightly diverge
from brain-like representations of language, whereas the networks are still improving on their
training task (Caucheteux & King, 2022).

Participant’s comprehension affects the brain score. Finally, we investigate whether the
participant’s level of comprehension affects the similarity. We study the fMRI responses of 100
participants to natural stories and show that subjects who understand stories the best (their
comprehension level is assessed using a 30-question questionnaire at the end of each story) are
those whose brain activations are the most similar to those of deep networks. Such an effect
is stronger for the contextual representations of transformers, is sensitive to very long-term
dependencies (above 700 words) and peaks in areas previously associated with high-level
semantics (Angular, Supramarginal gyri and the Precuneus) (Caucheteux et al., 2022).

Chapter 3: Leveraging the similarity to decompose the content, temporal and
spatial organization of language representations in the brain

In this chapter, we illustrate how encoding models combined with artificial networks can be
used to decompose natural language processes in the brain.

Syntax and Semantics. In a first paper, we introduce a simple method to decompose the
activations of language models into their syntactic and semantic components. We apply
such methods to the activations of GPT-2 and identify the regions involved in lexical and
compositional syntax and semantics in the fMRI recordings of 345 participants. (Caucheteux et
al., 2021a).

Temporal hierarchy. In a second paper, we compare the findings of Lerner et al. (2011)
obtained with factorial designs to our results obtained using linear encoding methods combined
with deep language models. We show that encoding methods applied to natural stimuli are able
recover the results of Lerner et al., and extend those to precise the processing of short-to-long
range dependencies in the brain of 345 participants (Caucheteux et al., 2021b).
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Spatial hierarchy. Finally, in a third paper, we compute the brain scores of each layer of
Wav2Vec2, a model based on speech and find that the layer hierarchy of Wav2Vec2 maps onto
the cortical hierarchy: the first layers of the model are aligned with lower-level processing
regions in the brain, and deep layers with regions associated with higher-level processing.
Furthermore, training the exact same model on different languages (English, French, Mandarin)
and comparing its activations to the fMRI responses of native English, French and Mandarin
participants provide some preliminary evidence of acoustic, speech and language specifity in
the brain. (Millet et al., 2022).

Chapter 4: Improving the similarity through hierarchical predictions

The similarity between deep networks and the brain remains partial: the “Brain Score” is
low, and dialogue, question-answering, and text-generation algorithms are still imperfect.
How to build algorithms more similar to brain activity? We explore this question in a last
paper (Caucheteux et al., 2023), and show that algorithms predict short-term and word-level
representations, unlike the brain, which predicts long-term and contextual representations of
the future. Furthermore, we show that fine-tuning GPT-2 to predict longer-term and more
contextual representations increase its similarity with the brain, specially in Supramarginal and
Angular gyri (Caucheteux et al., 2023).

1.6 Publications included in the thesis

Chapter 2

• Caucheteux, C., & King, J.-R. 2022. Brains and algorithms partially converge in natural
language processing. Nature Communications Biology

• Caucheteux, C., Gramfort, A., & King, J.-R. 2022. Deep language algorithms predict
semantic comprehension from brain activity. Nature Scientific Reports.

Chapter 3

• Caucheteux, C., Gramfort, A., & King, J.-R. 2021. Disentangling syntax and semantics in
the brain with deep networks. In Proceedings of the 38th International Conference on Machine
Learning (ICML 2021).
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• Caucheteux, C., Gramfort, A., & King, J.-R. 2021. Model-based analysis of brain activity
reveals the hierarchy of language in 305 subjects. In Conference on Empirical Methods in
Natural Language Processing (Findings of EMNLP 2021).

• Millet?, J., Caucheteux?, C., Orhan, P., Boubenec, Y., Gramfort, A., Dunbar, E., King, J.-R.
2022. Toward a realistic model of speech processing in the brain with self-supervised
learning. In Advances in Neural Information Processing Systems (NeurIPS 2022).

Chapter 4

• Caucheteux, C., Gramfort, A., & King, J.-R. 2023. Evidence of a predictive coding hierar-
chy in the human brain listening to speech. Nature Human Behaviour.

1.7 Publication not included in the thesis

• Defossez, A., Caucheteux, C., Rapin, J., Kabeli, O., King, J.-R. 2023. Decoding speech from
non-invasive brain recordings. Under Review.
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Chapter 2

High-level similarity in language
representations

2.1 Brains and algorithms partially converge in Natural Lan-
guage Processing

2.1.1 Abstract

Deep learning algorithms trained to predict masked words from large amount of text have
recently been shown to generate activations similar to those of the human brain. However, what
drives this similarity remains currently unknown. Here, we systematically compare a variety
of deep language models to identify the computational principles that lead them to generate
brain-like representations of sentences. Specifically, we analyze the brain responses to 400
isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional
magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then test where
and when each of these algorithms maps onto the brain responses. Finally, we estimate how
the architecture, training, and performance of these models independently account for the
generation of brain-like representations. Our analyses reveal two main findings. First, the
similarity between the algorithms and the brain primarily depends on their ability to predict
words from context. Second, this similarity reveals the rise and maintenance of perceptual,
lexical, and compositional representations within each cortical region. Overall, this study shows
that modern language algorithms partially converge towards brain-like solutions, and thus
delineates a promising path to unravel the foundations of natural language processing.
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2.1.2 Introduction

Deep learning algorithms have recently made considerable progress in developing abilities
generally considered unique to the human species (Turing, 2009; Chomsky, 2006; Dehaene et
al., 2018). Language transformers, in particular, can complete, translate, and summarize texts
with an unprecedented accuracy (Vaswani et al., 2017; Devlin et al., 2019; Lample & Conneau,
2019; Brown et al., 2020). These advances raise a major question: do these algorithms process
words and sentences like the human brain?

Recent neuroimaging studies suggest that they might – at least partially (Lakretz et al., 2019;
B. Lake & Baroni, 2018; Hale et al., 2021; B. M. Lake & Murphy, 2021; Marcus, 2018). First, word
embeddings – high dimensional dense vectors trained to predict lexical neighborhood (Bengio et
al., 2001; Mikolov, Chen, et al., 2013; Pennington et al., 2014; Bojanowski et al., 2017) – have been
shown to linearly map onto the brain responses elicited by words presented either in isolation
(Mitchell et al., 2008; Anderson et al., 2019; Sassenhagen & Fiebach, 2019) or within narratives
(Caucheteux et al., 2022; Oota et al., 2018; Abnar et al., 2019; Ruan et al., 2016; Brodbeck et al.,
2018; Gauthier & Ivanova, 2018; Wehbe et al., 2014; Schrimpf et al., 2021; Caucheteux et al.,
2021a,b; Goldstein et al., 2022). Second, the contextualized activations of language transformers
improve the precision of this mapping, especially in the prefrontal, temporal and parietal
cortices (Jain & Huth, 2018; Athanasiou et al., 2018; Toneva & Wehbe, 2019). Third, specific
computations of deep language models, such as the estimations of word surprisal (i.e. the
probability of a word given its context) and the parsing of syntactic constituents have been
shown to correlate with evoked related potentials (Heilbron & Chait, 2018; J. R. Brennan &
Pylkkänen, 2017; Hale et al., 2018; Goldstein et al., 2022) and functional Magnetic Resonance
Imaging (fMRI) (Caucheteux et al., 2021a; Hale et al., 2018). However, the above studies remain
fragmentary: first, most only analyze a small number of subjects (although see (Caucheteux et
al., 2022, 2021b,a)). Second, most studies only explore the spatial but not the temporal properties
of the brain responses to language (although (Toneva & Wehbe, 2019; Goldstein et al., 2022)).

More critically, the principles that lead a deep language models to generate brain-like
representations remain largely unknown. Indeed, past studies only investigated a small set
of pretrained language models that typically vary in dimensionality, architecture, training
objective, and training corpus. The inherent correlations between these multiple factors thus
prevent identifying those that lead algorithms to generate brain-like representations.

To address this issue, we systematically compare a wide variety of deep language models
in light of human brain responses to sentences (Figure 2.1). Specifically, we analyze the brain
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activity of 102 healthy adults, recorded with both functional magnetic resonance imaging (fMRI)
and source-localized magneto-encephalography (MEG). During these two 1 h-long sessions the
subjects read isolated Dutch sentences composed of 9 to 15 words (Schoffelen et al., 2019). After
quantifying the signal-to-noise ratio of the brain responses (Figure 2.2), we train a variety of
deep learning algorithms, extract their responses to the very same sentences and compare their
ability to linearly map onto the fMRI and MEG brain recordings. Finally, we assess how the
training, the architecture, and the word-prediction performance independently explains the
brain-similarity of these algorithms and localize this convergence in both space and time.

We find that (1) a variety of deep learning algorithms linearly map onto the brain areas
associated with reading (Figure 2.3), (2) the best brain-mapping are obtained from the middle
layers of deep language models and, critically, we show that (3) whether an algorithm maps
onto the brain primarily depends on its ability to predict words context (Figure 2.4).

2.1.3 Results
Shared brain responses to words and sentences across subjects.

Before comparing deep language models to brain activity, we first aim to identify the brain
regions recruited during the reading of sentences. To this end, we (i) analyze the average fMRI
and MEG responses to sentences across subjects and (ii) quantify the signal-to-noise ratio of
these responses, at the single-trial single-voxel/sensor level.

As expected (Fedorenko et al., 2020; Dehaene & Cohen, 2011; Hagoort & Indefrey, 2014;
Hickok & Poeppel, 2007), the average fMRI and MEG responses to words reveals a hierarchy
of neural responses originating in V1 around 100 ms and continuing within the left posterior
fusiform gyrus around 200 ms, the superior and middle temporal gyri, as well as the pre-motor
and infero-frontal cortices between 150 and 500 ms after word onset ( Supplementary Note
6.1.1, Figure 2.2a).

To quantify the proportion of these brain responses that depend on the specific content
of sentences, we fit, for each subject separately, a shared response model across subjects (or
noise-ceiling, see Methods, Supplementary Note 6.1.2, Supplementary Table S1, Figure 2.2b-d).
We then assess the accuracy of this model with a Pearson R correlation (hereafter referred to
as ‘brain score’ following (D. L. K. Yamins et al., 2014)) between the true and the predicted
brain responses to held-out sentences, using a five-fold cross-validation. Finally, we assess
the statistical significance of these brain scores with a two-sided Wilcoxon test across subjects,
after testing for multiple comparison using False Discovery Rate (FDR) across voxels (see
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Figure 2.1: Approach. a. Subjects read isolated sentences while their brain activity was recorded with
fMRI and MEG (Schoffelen et al., 2019). b. To compute the similarity between a deep language model
and the brain, we (1) fit a linear regression W from the model’s activations X to predict brain responses
Y and (2) evaluate this mapping with a correlation between the predicted and true brain responses
to held-out sentences Ytest. c. We consider different types of embedding depending on whether they
vary with neighboring words during training and/or during inference. Visual embeddings refer, here,
to the activations of a deep convolutional neural network trained on character recognition. Lexical
embeddings refer, here, to the non-contextualized activations associated with a word independently of its
context. Here, we use the word-embedding layer of language transformers (bottom green), as opposed to
algorithms like Word2Vec (Mikolov, Sutskever, et al., 2013) (middle, green). Compositional embeddings
refer, here, to the context-dependent activations of a deep language model (see Supplementary Note 6.1.4
for a discussion of our terminology). d. The three panels represent three hypotheses on the link between
deep language models and the brain. Each dot represents one embedding. Algorithm are said to converge
to brain-like computations if their performance (x-axis: i.e. accuracy at predicting a word from its
previous context) indexes their ability to map onto brain responses to the same stimuli (i.e. y-axis: brain
score). High-dimensional neural networks can, in principle, capture relevant information (Bingham &
Mannila, 2001; Frankle & Carbin, 2019) and thus lead to a fortunate similarity with brain responses, and
event a systematic divergence.

Methods). Our shared response model confirms that the brain network classically associated
with language processing elicits representations specific to words and sentences (Mitchell et al.,
2008; Fedorenko et al., 2016; Huth, de Heer, et al., 2016).

Deep language models reveal the hierarchical generation of language representations in the
brain.

Where and when are the language representations of the brain similar to those of deep language
models? To address this issue, we extract the activations (X) of a visual, a word and a com-

39



Average response

Noise ceiling

a

b

c

d

Figure 2.2: Average and shared response modeling (or noise ceiling). a. Grand average MEG source
estimates to word onset (t=0 ms) for 7 regions typically associated with reading (V1: purple, M1: green,
fusiform gyrus: dark blue, supramarginal gyrus: light blue, superior temporal gyrus: orange, infero-
frontal gyrus: yellow and fronto-polar gyrus: red), normalized to their peak response. Vertical bars
indicate the peak time of each region. b. MEG shared response model (or noise ceilings), approximated
by predicting brain responses of a given subject from those of all other subjects. Colored lines depict the
mean noise ceiling in each region of interest. The grey line depicts the best noise ceiling across sources. c.
Same as (d) in sensor space. d. Share response model of fMRI recordings.

positional embedding (Figure 2.1d) and evaluate the extent to which each of them maps onto
the brain responses (Y) to the same stimuli. To this end, we fit, for each subject independently,
an `2-penalized regression (W) to predict single-sample fMRI and MEG responses for each
voxel/sensor independently. We then assess the accuracy of this mapping with a brain-score
similar to the one used to evaluate the shared response model.

Overall, the brain scores of these trained models are largely above chance (all p < 10�9,
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Figure 2.3: Brain-score comparison across embeddings. Lexical and compositional representations
(see (Supplementary Note 6.1.4 for the definition of compositionality) can be isolated from (i) the
word embedding layer (green) and (ii) one middle layer (red) of a typical language transformer (here,
the ninth layer of a 12-layer causal transformer), respectively. We also report the brain scores of a
convolutional neural network trained on visual character recognition (blue) to account for low-level
visual representations. a. Mean (across subjects) fMRI scores obtained with the visual, word , and
compositional embeddings. All colored regions display significant fMRI scores across subjects (n=100)
after FDR correction. b. Mean MEG scores averaged across all time samples and subjects (n=95 subjects).
c. Left: mean MEG scores averaged across all sensors. Right: mean MEG gains averaged across all
sensors: i.e. the gain in MEG score of one level relative to the level below (blue: R[visual]; green: R[word]
- R[visual]; red: R[compositional] - R[word]). d. Mean MEG gains in four regions of interest. For the raw
scores (without subtraction), see Supplementary Figure S6. For the distribution of scores across channels
and voxels, see Supplementary Figure S4.

Figure 2.4a and e). The modest correlation values are consistent with the high level of noise in
single-sample single-voxel/channel neuroimaging data (Figure 2.2b-d). For example, fMRI and
MEG scores reach R=.048 and R=.041, respectively, for the compositional embedding, which is
close to and even exceeds our shared response model (fMRI: R=.060, MEG: R=.020, Figure 2.2).

In fMRI, the brain scores of the visual embedding peak in the early visual cortex (V1)
(mean brain scores across voxels: R =.022±.003, p < 10�11). By contrast, the brain scores
of lexical embedding peak in the left superior temporal gyrus (R =.052±.004, p < 10�13) as
well as in the inferior temporal cortex and middle frontal gyrus (R =.053±.003, p < 10�15)
and are significant across the entire language and reading network (Figure 2.3b). Finally, the
brain scores of the compositional embedding are significantly higher than those of lexical of
embeddings in the superior temporal gyrus (DR =.012±.001, p < 10�16), the angular gyrus

41



MEG

Dogs

chase

cats

fMRI

Dogs

chase

cats

Pe
rm

ut
at

io
n 

im
p
or

ta
nc

e
(�

R)

a b c d

e f g h

Pe
rm

ut
at

io
n 

im
p
or

ta
nc

e
(�

R)

Figure 2.4: Language transformers tend to converge towards brain-like representations. a. Bar plots
display the average MEG score (across time and channels) of six representative transformers varying in
tasks (causal vs masked language modeling) and depth (4-12 layers). The green and red bars correspond
to the word-embedding and middle layers, respectively. The star indicates the layer with the highest
MEG score. b. Average MEG scores (across subjects, time, and channels) of each of the embeddings (dots)
extracted from 18 causal architectures, separately for the input layer (word embedding, green) and the
middle layers (red). c. Zoom of (b), focusing on the best neural networks (i.e. word-prediction accuracy
¿35 %). The results reveal a plateau and/or a divergence of the middle and input layers. d. Permutation
importance quantifies the extent to which each property of the language transformers specifically
contribute to making its embeddings more-or-less similar to brain activity (DR). All properties (training
task. dimensionality etc.) significantly contribute to the brain scores (DR > 0, all p < 0.0001 across
subjects). Ordered pairwise comparisons of the permutation scores are marked with a star (‘*’: p < .05,
‘**’: p < .01, ‘***’: p < .001). e-h. Same as a-d, but evaluated on fMRI recordings. All error bars are the
95% confidence intervals across subjects (n=95 for MEG, n=100 for fMRI).

(DR =.010±.001, p < 10�16), the infero-frontal cortex (DR =.016±.001, p < 10�16) and the
dorsolateral prefrontal cortex (DR =.012±.001, p < 10�13). While these effects are lateralized
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(left hemisphere versus right hemisphere: DR = .010 ± .001, p < 10�14), they are significant
across a remarkably large number of bilateral areas (Figure 2.3b). Lexical and compositional
embeddings accurately predict brain responses in the early visual cortex. This result is not
necessarily surprising: language embeddings encode features (e.g. position of words in the
sentence, beginning/end of the sentence) that correlate with visual information (words are
flashed at a screen, and the sentences are separated by pauses). Critically, the gain (DR) of these
embeddings remain very small, suggesting that this effect is mainly driven by the covariance
between low- and high-level representations of words.

Tracking the sequential generation of language representations over time and space.

To characterize the dynamics of these brain representations, we perform the same analysis using
source-localized MEG recordings. The resulting brain scores are consistent with – although
less spatially precise than – the above fMRI results (Figure 2.3c, average brain score between 0
and 2 s). For clarity, Figure 2.3d plot the gain in MEG scores: i.e. the difference of prediction
performance between i) word and visual embeddings (green) and ii) the difference between
compositional and word embedding (red). The brain scores of the visual embedding peak
around 100 ms in V1 (R =.008 ±.002, p < 10�3), and rapidly propagate to higher-level areas
(Figure 2.3D). The gain achieved by the word embedding can be observed in the left posterior
fusiform gyrus around 200 ms and peaks around 400 ms and in the left temporal and frontal
cortices. Finally, the gain achieved by the compositional embedding is observed in a large
number of bilateral brain regions, and peaks around one second after word onset (Figure 2.3c
and d).

After that period, brain areas outside the language network, such as area V1, appear to be
better predicted by word and compositional embeddings than by visual ones (e.g between
visual and word in V1: DR =.016± .002, p < 10�10). These effects could thus reflect feedback
activity (Seydell-Greenwald et al., 2020) and explain why the corresponding fMRI responses
are better accounted for by word and compositional embeddings than by visual ones.

Together with Supplementary Figure S1, these results show with unprecedented spatio-
temporal precision, that the brain-mapping of our three representative embeddings automati-
cally recovers the hierarchy of visual, lexical, and compositional representations of language in
each cortical region.
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Compositional embeddings best predict brain responses.

What computational principle leads these deep language models to generate brain-like activa-
tions? To address this issue, we generalize the above analyses and evaluate the brain scores
of 36 transformer architectures (varying from 4 to 12 layers, each ranging from 128 to 512
dimensions, and each benefiting from 4 to 8 attention heads), trained on the same Wikipedia
dataset either with a causal language modeling (CLM) or a masked language modeling task
(MLM). While causal language models are trained to predict a word from its previous context,
masked language models are trained to predict a randomly masked word from its both left and
right context.

Overall, we observe that the corresponding brain scores largely vary as a function of the
relative depth of the embedding within the language transformer. Specifically, both MEG and
fMRI scores follow an inverted U-shaped pattern across layers for all architectures (Figure
2.4a and e): the middle layers systematically outperform the output (fMRI: DR =.011 ± .001,
p < 10�18, MEG: DR=.003±.0005, p < 10�13) and the input layers (fMRI: DR=.031±.001,
p < 10�18, MEG: DR=.009±.001, p < 10�17). For simplicity, we refer to ‘middle layers’ as the
layers l 2 [nlayers/2, 3nlayers/4] in Figure 2.4a and e. This result confirms that the intermediary
representations of deep language transformers are more brain-like than those of the input and
output layers (Toneva & Wehbe, 2019).

The emergence of brain-like representations predominantly depends on the algorithm’s
ability to predict missing words.

The above findings result from trained neural networks. However, recent studies suggest that
random (i.e. untrained) networks can significantly map onto brain responses (A. J. E. Kell et al.,
2018; Schrimpf et al., 2021; Millet & King, 2021). To test whether brain mapping specifically and
systematically depends on the language proficiency of the model, we assess the brain scores of
each of the 32 architectures trained with 100 distinct amounts of data. For each of these training
steps, we compute the top-1 accuracy of the model at predicting masked or incoming words
from their contexts. This analysis results in 32,400 embeddings, whose brain scores can be
evaluated as a function of language performance, i.e. the ability to predict words from context
(Figure 2.4 b and f).

We observe three main findings. First, random embeddings systematically lead to signif-
icant brain scores across subjects and architectures. The mean fMRI score across voxels is
R =.019±.001, p < 10�16. The mean MEG score across channels and time sample is R=.018
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±.0008, p < 10�16. This result suggests that language transformers partially map onto brain
responses independently of their language abilities.

Second, brain scores strongly correlate with language accuracy in both MEG (R =.77
Pearson’s correlation on average ±.01 across subjects) and fMRI (R =.57 ±.02, Figure 2.4b and
c). The correlation is highest for middle (fMRI: R =.81±.02; MEG: R=.86±.01) than input (fMRI:
R=.39±.03; MEG: R=.73±.02) and output layers (fMRI: R =.63±.03; MEG:R=.78±.02). Beta
coefficients for each particular layer and architecture are displayed in Supplementary Figure
S1a and b. Furthermore, single-voxel analyses show that this correlation between brain score
and language performance is driven mainly by the superior temporal sulcus and gyrus for
the embedding layer (mean R=.52±.06) and is widespread for the middle layers, exceeding a
correlation of R=.85 in the superior temporal sulcus, infero-frontal, fusiform and angular gyri
(Supplementary Figure S1c). Overall, this result suggests that the better language models are at
predicting words from context, the more their activations linearly map onto those of the brain.

Third, the highest brain scores are not achieved by the very best language transformers
(Figure 2.4c and g). For instance, CLM transformers best map onto MEG (R=.039) and fMRI
(R=.056) when they reach a language performance of 43% and 32%, respectively. By contrast,
the very best transformers reach a language accuracy of 46%, but have significantly smaller
brain scores (Figure 2.4c and g).

Architectural and training factors impact brain scores too.

Language performance co-varies with the amount of training as well as with several architec-
tural variables. To disentangle the contribution of each of these variables to the brain scores,
we perform a permutation feature importance analysis. Specifically, we train a Random Forest
estimator (Breiman, 2001) to predict the average brain scores (across voxels or MEG sensors) of
each subject independently, given the layer of the representation, the architectural properties
(number of layers, dimensionality, attention head), task (CLM, MLM), amount of training
(number of steps) and language performance (top-1 accuracy) of the transformer. Permutation
feature importance then estimates the unique contribution of each feature in explaining the
variability of brain scores across models (Pedregosa et al., 2011; Breiman, 2001). The results
confirm that language performance is the most important factor that drives brain scores (Figure
2.4d-h). This factor supersedes other covarying factors such as the amount of training, and the
relative position of the embedding with regard to the architecture (’layer position’): DR=.56±.01
for fMRI, DR=.51±.02 for MEG. Nevertheless, these other factors contribute significantly to the
prediction of brain scores (p < 10�16 across subjects for all variables).
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Overall, these results show that the ability of deep language models to map onto the brain
primarily depends on their ability to predict words from the context, and is best supported by
the representations of their middle layers.

2.1.4 Discussion

Do deep language models and the human brain process sentences in the same way? Follow-
ing a recent methodology (D. L. K. Yamins et al., 2014; Tang et al., 2018; Khaligh-Razavi &
Kriegeskorte, 2014; Kriegeskorte et al., 2008; Güçlü & Gerven, 2015; Eickenberg et al., 2017;
D. L. K. Yamins & DiCarlo, 2016; Saxe et al., 2021; A. J. E. Kell et al., 2018; Huth, de Heer, et
al., 2016; Wehbe et al., 2014), we address this issue by evaluating whether the activations of a
large variety of deep language models linearly map onto those of 102 human brains. Our study
provides two main contributions.

First, our work complements previous studies (Jain & Huth, 2018; Athanasiou et al., 2018;
Toneva & Wehbe, 2019; Wehbe et al., 2014; Heilbron et al., 2022; Goldstein et al., 2022; Schrimpf
et al., 2021) and confirms that the activations of deep language models significantly map onto
the brain responses to written sentences (Figure 2.3). This mapping peaks in a distributed
and bilateral brain network (Figure 2.3a and b) and is best estimated by the middle layers
of language transformers (Figure 2.4a and e). The notion of representation underlying this
mapping is formally defined as linearly-readable information. This operational definition
helps identify brain responses that any neuron can differentiate – as opposed to entangled
information which would necessitate several layers before being usable (Minsky & Papert, 1969;
Cadieu et al., 2014; Kriegeskorte et al., 2008; King & Dehaene, 2014; U. Cohen et al., 2020).

Furthermore, the comparison between visual, lexical, and compositional embeddings precise
the nature and dynamics of these cortical representations. In particular, our results shows
with unprecedented spatio-temporal precision that early visual responses (¡150 ms) are quasi-
entirely accounted for by visual embeddings, and then transmitted to the posterior fusiform
gyrus, which switches from visual to lexical representations around 200 ms (Movie 2). This
finding strengthens the claim that this area is responsible for orthographic and morphemic
computations (Dehaene & Cohen, 2011; Hermes et al., 2017; Woolnough et al., 2020). Then,
around 400 ms, word embeddings predict a large fronto-temporo-parietal network which peaks
in the left temporal gyrus; these word representations are then maintained for several seconds
(Mitchell et al., 2008; Jain & Huth, 2018; Toneva & Wehbe, 2019; Sassenhagen & Fiebach, 2019).
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This result not only confirms the wide spread distribution of meaning in the brain (Huth, de
Heer, et al., 2016; Price, 2010), but also reveals its remarkably long-lasting nature.

Finally, compositional embeddings peak in the brain regions associated with high-level
language processing such as the infero-frontal and the anterior temporal cortices as well as
the superior temporal cortex and the temporal-parietal junction (Pallier et al., 2011; Hickok
& Poeppel, 2007; J. R. Brennan & Pylkkänen, 2017). We confirm that these left-lateralized
representations are significant in both hemispheres (Fedorenko et al., 2010; Cogan et al., 2014).
Critically, MEG suggests that these compositional effects become dominant and clearly bilateral
long after word onset (>800 ms). We speculate that this surprisingly late responses may be
due to the complexity of the sentences used in the present study, which may slow down
compositional computations.

At this stage, however, these three levels representations remain coarsely defined. Fur-
ther inspection of artificial (Manning et al., 2020; Lakretz et al., 2019) and biological networks
(Caucheteux et al., 2021a; Reddy & Wehbe, 2020; Hale et al., 2021) remains necessary to fur-
ther decompose them into interpretable features. In particular, it will be important to test
whether the converging representations presently identified solely correspond to well-known
linguistics phenomena as our supplementary analyses suggest (Supplementary Figure S2 and
Supplementary Note 6.1.3), or, on the contrary, whether they correspond to unknown language
structures.

Second, our study shows that the similarity between deep language models and the brain
primarily depends on their ability to predict words from their context. Specifically, we show
that language performance is the most contributing factor explaining the variability of brain
scores across embeddings (Figure 2.4d and h). Analogous results have been reported in both
vision and audition research, where best deep learning models tend to best map onto brain
responses (D. L. K. Yamins et al., 2014; D. L. K. Yamins & DiCarlo, 2016; Schrimpf et al., 2018;
A. J. E. Kell et al., 2018; Schrimpf et al., 2021). In addition, our results are consistent with the
findings of Schrimpf et al. (Schrimpf et al., 2021) reported simultaneously to ours. Together,
these results suggest that deep learning algorithms converge – at least partially – to brain-like
representations during their training. This result is not trivial: the representations that are
optimal to predict masked or future words from large amounts of text could have been very
distinct from those the brain learns to generate.
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The mapping between deep language models and brain recordings reaches very low cor-
relation values. This phenomenon is expected: i) neuroimaging is notoriously noisy and ii)
we analyze and model here single-sample responses of single-voxel/sensor. However, the
resulting brain scores are i) highly significant (all p < 10�9 on average across both all fMRI
voxels and MEG sensors), including when compared to a permutation baseline (Supplementary
Figure S3), and ii) in the same order of magnitude than a baseline shared-response model (or
noise ceiling, Figure 2.2) as well as previous reports (e.g. (Huth, de Heer, et al., 2016), before
correcting for the noise ceiling). Besides, we generally report brain scores averaged across all
voxels or MEG channels, even though many brain areas do not strongly respond to language
(Figure 2.2). Critically, the link between brain scores and language performance is strong: the
correlation between the language performance and brain scores is above R= .90 for MEG and
R= .80 for fMRI (Supplementary Figure S1). Nevertheless, it is clear that improving the the
signal-to-noise ratio, for instance by using increasingly large datasets (Caucheteux et al., 2021b;
Millet & King, 2021; Nastase et al., 2020; Caucheteux et al., 2022) will be critical to precisely
characterize the nature of brain representations.

Permutation feature importance shows that several factors such as the amount of training
and the architecture significantly impact brain scores. This finding contributes to a growing list
of variables that lead deep language models to behave more-or-less similarly to the brain. For
example, Hale et al. (Hale et al., 2018) showed that the amount and the type of corpus impact
the ability of deep language parsers to linearly correlate with EEG responses. The present work
complements this finding by evaluating the full set of activations of deep language models. It
further demonstrates that the key ingredient to make a model more brain-like is, for now, to
improve its language performance.

The conclusion that deep networks converge towards brain-like representations should be
qualified: we show that the brain scores of the very best models tend to ultimately decrease with
language performance, especially in fMRI (Figure 2.4g). We speculate that this phenomenon
(also observed in vision (Schrimpf et al., 2018)) may rise because transformers overfit an
inappropriate objective. Specifically, while there is growing evidence that the human brain
does predict words from context (Keller & Mrsic-Flogel, 2018; Heilbron et al., 2022; Goldstein
et al., 2022), this learning rule may not fully account for the complex (and potentially various)
tasks performed by the brain (e.g. long-range (L. Wang, 2021; Lee et al., 2021) and hierarchical
predictions (K. J. Friston & Stephan, 2007)).
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This discrepancy adds to the long-list of differences between deep language models and
the brain: whereas the brain is trained (i) with a recurrent architecture and (ii) on a relatively
small amount of grounded sentences, transformers are trained (i) with a massively feedforward
architecture and (ii) on huge text databases (Brown et al., 2020) (note that, given large-enough
spaces, feedforward transformers may actually implement computations similar to recurrent
networks (Ramsauer et al., 2021)). Consequently, while the similarity between deep networks
and the brain provide a stepping stone to unravel the foundation of natural language processing,
identifying the remaining differences between these two systems remains, by far, the major
challenge to build algorithms that learn and think like humans (Brown et al., 2020; Baroni, 2020;
B. M. Lake et al., 2016; Zellers et al., 2019).

2.1.5 Methods
Deep language transformers

To model word and sentence representations, we trained a variety of transformers (Vaswani et
al., 2017), and input them with the same sentences that the subject read. Transformers consist of
multiple contextual transformer layers stacked onto one non-contextualized word embedding
layer (a look-up table). Following the standard implementation (Vaswani et al., 2017; Devlin et
al., 2019; Radford et al., 2019), the word embedding layer is trained simultaneously with the
contextual layers: the weights of the word embedding vary with the training, and so do their
activations in response to fixed inputs. Thus, one representation can be extracted from each
(contextual or non-contextual) layer. We always extract activation in a causal way: for example,
given the sentence ‘THE CAT IS ON THE MAT’, the brain response to ‘ON’ would be solely
compared to the activations of the transformer input with ‘THE CAT IS ON’, and extracted from
the ‘ON’ contextualized embeddings. Word embeddings and contextualized embeddings were
generated for every word, by generating word sequences from the three previous sentences.
We did not observe qualitatively different results when using shorter or longer contexts. It is to
be noted that the sentences were isolated, and were not part of a narrative.

In total, we investigated 32 distinct architectures varying in their dimensionality (2 [128, 256, 512]),
number of layers (2 [4, 8, 12]), attention heads (2 [4, 8]), and training task (causal language
modeling and masked language modeling). While causal language transformers are trained
to predict a word from its previous context, masked language transformers predict randomly
masked words from a surrounding context. We froze the networks at ⇡ 100 training stages
(log distributed between 0 and 4,5M gradient updates, which corresponds to ⇡ 35 passes over
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the full corpus), resulting in 3,600 networks in total, and 32,400 word representations (one per
layer). The training was early-stopped when the networks’ performance did not improve after
5 epochs on a validation set. Therefore, the number of frozen steps varied between 96 and 103
depending on the training length.

The algorithms were trained using XLM implementation (Lample & Conneau, 2019). No
hyper-parameter tuning was performed. Following (Lample & Conneau, 2019), each algorithm
was trained each on 8 GPUs using early stopping with training perplexity criteria, 16 streams per
batch, 128 words per stream, epoch size of 200 000 streams, 0.1 dropout, 0.1 attention dropout,
gelu activation, inverse (sqrt) adam optimizer with learning rate 0.0001, 0.01 weight decay,
on the same Wikipedia corpus of 278,386,651 words (in Dutch) extracted using WikiExtractor
(Attardi, 2015) and pre-processed using Moses tokenizer (Koehn et al., 2007), with punctuation.
We restricted the vocabulary to the 50,000 most frequent words, concatenated with all words
used in the study (50,341 vocabulary words in total). These design choices enforce that the
difference in brain scores observed across models cannot be explained by differences in corpora
and text preprocessing.

To evaluate the language processing performance of the networks, we computed their
performance (top-1 accuracy on word prediction given the context) using a test dataset of
180,883 words from Dutch Wikipedia. The list of architectures and their final performance at
next-word prerdiction is provided in Supplementary Table S2.

For clarity, we dissociate:

• The architectures (e.g one transformer with 12 layers): there are 36 transformer architec-
tures here (18 CLM and 18 MLM).

• The models: one architecture, frozen at one particular learning step. Since we use 100
learning steps, there are 36 x 100 = 3,600 networks here.

• The embeddings: one word representation extracted from a network, at one particular
layer. Since the number of layers varies with the architecture (twelve networks with 5,
twelve networks with 9 and twelve networks with 13 twelve layers, including the non
contextualized word embedding), there are 12 x (5 + 9 + 13) = 324 representations per
step, so 324 x 100 = 3,400 word embeddings in total.
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Visual convolutional neural network

To model visual representations, every word presented to the subjects was rendered on a
gray 100 x 32 pixel background with a centered black Arial font, and input to a VGG network
pretrained to recognize words from images (Baek et al., 2019), resulting in an 888-dimensional
embedding. Specifically, this model was trained on real pictures of single words taken in
naturalistic settings (e.g. ad, banner).

This embedding was used to replicate and extend previous work on the similarity between
visual neural network activations and brain responses to the same images (e.g. (D. L. K. Yamins
et al., 2014; Kriegeskorte et al., 2008; Güçlü & Gerven, 2015)).

Neuroimaging protocol

For all the analyses, we used the open-source dataset released by Schoffelen and colleagues
(Schoffelen et al., 2019), gathering the functional magnetic resonance imaging (fMRI) and
magneto-encephalography (MEG) recordings of 204 native Dutch speakers (100 males), aged
from 18 to 33 years. Here, we focused on the 102 right-handed speakers who performed
a reading task while being recorded by a CTF magneto-encephalography (MEG) and, in a
separate session, with a SIEMENS Trio 3T Magnetic Resonance scanner (Schoffelen et al., 2019).

Words (in Dutch) were flashed one at a time with a mean duration of 351 ms (ranging from
300 to 1400 ms), separated with a 300 ms blank screen, and grouped into sequences of 9 - 15
words, for a total of approximately 2,700 words per subject. Sequences were separated by a
5 s-long blank screen. We restricted our study to meaningful sentences (400 distinct sentences
in total, 120 per subject). The exact syntactic structures of sentences varied across all sentences.
Roughly, sentences were either composed of a main clause and a simple subordinate clause, or
contained a relative clause. Twenty percent of the sentences were followed by a yes/no question
(e.g. ”Did grandma give a cookie to the girl?”) to ensure that subjects were paying attention.
Questions were not included in the dataset, and thus excluded from our analyses. Sentences
were grouped into blocks of five sequences. This grouping was used for cross-validation to
avoid information leakage between the train and test sets.

Magnetic Resonance Imaging (MRI)

Structural images were acquired with a T1-weighted magnetization-prepared rapid gradient-
echo (MP-RAGE) pulse sequence. The full acquisition details, available in (Schoffelen et
al., 2019), are summarized here simplicity: TR=2,300 ms, TE=3.03 ms, 8 degree flip-angle, 1
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slab, slice-matrix size=256×256, slice thickness=1 mm, field of view=256 mm, isotropic voxel-
size=1.0×1.0×1.0 mm. Structural images were defaced by Schoffelen and colleagues. Preprocess-
ing of the structural MRI was performed with Freesurfer (Fischl, 2012), using the recon-all

pipeline and a manual inspection of the cortical segmentations, realigned to ’fsaverage’. Region-
of-interest analyses were selected from the PALS Brodmann’s Area atlas (Van Essen, 2005) and
the Destrieux atlas (Destrieux et al., 2010).

Functional images were acquired with a T2⇤-weighted functional echo-planar blood oxy-
genation level-dependent (EPI-BOLD) sequence. The full acquisition details, available in
(Schoffelen et al., 2019), are summarized here for simplicity: TR=2.0 seconds, TE=35ms, flip
angle=90 degrees, anisotropic voxel size=3.5×3.5×3.0 mm extracted from 29 oblique slices. fMRI
was preprocessed with fMRIPrep with default parameters (Esteban et al., 2019). The resulting
BOLD times series were detrended and de-confounded from 18 variables (the 6 estimated
head-motion parameters (transx,y,z, rotx,y,z) and the first 6 noise components calculated us-
ing anatomical CompCorr (Behzadi et al., 2007) and 6 DCT-basis regressors using nilearn’s
clean img pipeline and otherwise default parameters (Abraham et al., 2014). The resulting
volumetric data lying along a 3mm line orthogonal to the mid-thickness surface were linearly
projected to the corresponding vertices. The resulting surface projections were spatially dec-
imated by 10, and are hereafter referred to as voxels, for simplicity. Finally, each group of 5
sentences was separately and linearly detrended. It is noteworthy that our cross-validation
never splits such groups of five consecutive sentences between the train and test sets. Two sub-
jects were excluded from the fMRI analyses because of difficulties in processing the metadata,
resulting in 100 fMRI subjects.

Magneto-encephalography (MEG)

The MEG time series were preprocessed using MNE-Python and its default parameters except
when specified (Gramfort et al., 2013). Signals were band-passed filtered between 0.1 and 40
Hz filtered, spatially corrected with a Maxwell Filter, clipped between the 0.01st and 99.99th per-
centiles, segmented between -500 ms to +2,000 ms relative to word onset and baseline-corrected
before t=0. Reference channels and non-MEG channels were excluded from subsequent analyses,
leading to 273 MEG channels per subject. We manually co-referenced (i) the skull segmentation
of subjects’ anatomical MRI with (ii) the head markers digitized before MEG acquisition. A
single-layer forward model was generated with the Freesurfer-wrapper implemented in MNE-
Python (Gramfort et al., 2013). Due to the lack of empty-room recordings, the noise covariance
matrix used for the inverse operator was estimated from the zero-centered 200 ms of baseline
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MEG activity preceding word onset. Subjects’ source space inverse operators were computed
using a dSPRM. The average brain responses displayed in Figure 2.1d were computed as the
square of the average evoked related field across all words for each subject separately, aver-
aged across subjects, and finally divided by their respective maxima, to highlight temporal
differences. Seven subjects were excluded from the MEG analyses because of difficulties in
processing the metadata, resulting in 92 usable MEG recordings.

Shared response model: Brain ! Brain mapping

To estimate the amount of explainable signal in each MEG and fMRI recording, we trained and
evaluated, through cross-validation, a linear mapping model W to predict the brain responses
of a given subject to each sentence Y from the aggregated brain responses of all other subjects
who read the same sentence X. Specifically, five cross-validation splits were implemented
across 5-sentence blocks with scikit-learn GroupKFold (Pedregosa et al., 2011). For each word
of each sentence i, all but one subject who read the corresponding sentence were averaged with
one another to form a template brain response: xi 2 Rn with n the number of MEG channels
or fMRI voxels, as well as a target brain response yi 2 Rn corresponding to the remaining
subject. X and Y were normalized (mean=0, std=1) across sentences for each spatio-temporal
dimension, using a robust scaler clipping below and above the 0.01st and 99.99th percentiles,
respectively. A linear mapping W 2 Rn⇥n was then fit with a ridge regression to best predict Y
from X on the train set:

W = (XT
trainXtrain + lI)�1XT

trainYtrain (2.1)

with l the l2 regularization parameter, chosen amongst 20 values log-spaced between
10�3 and 108 with nested leave-one-out cross-validation for each dimension separately (as
implemented in (Pedregosa et al., 2011)). Brain predictions Ŷ = WX were evaluated with a
Pearson correlation on the test set:

R = Corr(Ytest, Ŷtest) (2.2)

For the MEG source noise estimate, the correlation was also performed after source projec-
tion:

R = Corr(KYtest, KŶtest) (2.3)

with K 2 Rn⇥m the inverse operator projecting the n MEG sensors onto m sources. Correla-
tion scores were finally averaged across cross-validation splits for each subject, resulting in one
correlation score (’brain score’) per voxel (or per MEG sensor/time sample) per subject.
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Brain score and similarity: Network ! Brain mapping

To estimate the functional similarity between each artificial neural network and each brain, we
followed the same analytical pipeline used for noise ceiling, but replaced X with the activations
of the deep learning models. Specifically, using the same cross-validation, and for each subject
separately, we trained a linear mapping W 2 Ro,n with o the number of activations, to predict
brain responses Y from the network activations X. X was normalized across words (mean=0,
std=1).

To account for the hemodynamic delay between word onset and the BOLD response
recorded in fMRI, we used a finite impulse response (FIR) model with five delays (from 2
to 10 seconds) to build X⇤ from X. W was found using the same ridge regression described
above, and evaluated with the same correlation scoring procedure. The resulting brain correla-
tion scores measure the linear relationship between the brain signals of one subject (measured
either by MEG or fMRI) and the activations of one artificial neural network (e.g a word em-
bedding). For MEG, we simply fit and evaluated the model activations X at each time sample
independently.

In principle, one may orthogonalize low-level representations (e.g. visual features) from
high-level network models (e.g. language model), to separate the specific contribution of each
type of model. This is because middle layers have access to the word-embedding layer, and
can, in principle, simply copy some of its activations. Similarly, word embedding can implicitly
contain visual information: e.g. frequent words tend to be visually smaller than rare ones. In
our case, however, the middle layers of transformers were much better than word embeddings,
which were much better than visual embeddings. To quantify the gain DR achieved by a
higher-level model M1 (e.g. the middle layers of a transformer) and a lower level model M2

(e.g. a word embedding) we thus simply compared the difference of their encoding scores:

DRM1 = RM1 � RM2 (2.4)

Results are consistent when using different orthogonalization methods (Supplementary Figure
S5).

Convergence analysis

All neural networks but the visual CNN were trained from scratch on the same corpus (as
detailed in the first Methods section). We systematically computed the brain scores of their
activations on each subject, sensor (and time sample in the case of MEG) independently. For
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computational reasons, we restricted model comparison on MEG encoding scores to ten time
samples regularly distributed between [0, 2]s. Brain scores were then averaged across spatial
dimensions (i.e. MEG channels or fMRI surface voxels), time samples, and subjects to obtain
the results in Figure 2.4. To evaluate the convergence of a model, we computed, for each
subject separately, the correlation between (1) the average brain score of each network and (2)
its performance or its training step (Figure 2.4 and Supplementary Figure S1). Positive and
negative correlations indicate convergence and divergence, respectively. Brain scores above 0
before training indicate a fortuitous relationship between the activations of the brain and those
of the networks.

Permutation feature importance

To systematically quantify how the architecture, language accuracy, and training of the language
transformers impacted their ability to linearly map onto brain activity, we fitted, for each subject
separately, a Random Forest across the models’ properties to predict their brain scores, using
scikit-learn’s RandomForest (Breiman, 2001; Pedregosa et al., 2011). Specifically, we input the
following features to the random forest: the training task (causal language modeling ”CLM” vs.
masked language modeling ”MLM”), the number of attention heads 2 [4, 8], the total number
of layers 2 [4, 8, 12], dimensionality 2 [128, 256, 512], training step (number of gradient updates,
2 [0, 4.5M]), language modeling accuracy (top-1 accuracy at predicting a masked word) and the
relative position of the representation (a.k.a ’layer position’, between 0 for the word-embedding
layer, and 1 for the last layer). The performance of the Random Forest was evaluated for each
subject separately with a Pearson correlation R using five-split cross-validation across models.

”Permutation feature importance” summarizes how each of the covarying properties of
the models (their task, architecture, etc.) specifically impacts the brain scores (Breiman, 2001).
Permutation feature importance was implemented with scikit-learn (Pedregosa et al., 2011) and
is summarized with DR: the decrease in R when shuffling one feature (using 50 repetitions).
For each subject, we reported the average decrease across the cross-validation splits (Figure 2.4).
The resulting scores (DR) are expected to be centered around 0 if the corresponding feature
does not impact the brain scores , and positive otherwise.

Statistics and Reproducibility

To estimate the robustness of our results, we systematically performed second-level analyses
across subjects. Specifically, we applied Wilcoxon signed-rank tests across subjects’ estimates to
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evaluate whether the effect under consideration was systematically different from the chance
level. The p-values of individual voxel/source/time samples were corrected for multiple
comparisons, using a False Discovery Rate (Benjamini/Hochberg) as implemented in MNE-
Python (Gramfort et al., 2013) (we use the default parameters). Error bars and ± refer to the
standard error of the mean (SEM) interval across subjects.

Brain parcellation

In Figure 2.3, we focus on particular regions of interest using the Brodmann’s areas from the
PALS parcellation of freesurfer (Fischl, 2012). The superior temporal gyrus (BA22) is split into
its anterior, middle and posterior parts to increase granularity. For clarity, we rename certain
areas as specified in Table 2.1.

Label Corresponding Brodmann’s areas

V1 BA17
Fusiform BA37
Angular BA39
aSTG BA22-anterior
mSTG BA22-middle
pSTG BA22-posterior
Supramarginal BA40
Infero-frontal BA44 / BA45 / BA47
Fronto-polar BA10
Temporo-polar BA38

Table 2.1: Brain parcellation. Taxonomy used to label the regions of interest in the brain following the
PALS Brodmann’s Area atlas (Van Essen, 2005)

Ethics

These data were provided (in part) by the Donders Institute for Brain, Cognition, and Behaviour
after having been approved by the local ethics committee (CMO – the local ”Committee on
Research Involving Human Subjects” in the Arnhem-Nijmegen region). As stated in the
original paper (Schoffelen et al., 2019), “In the informed consent procedure, [the subjects]
explicitly consented for the anonymized collected data to be used for research purposes by
other researchers. [..] The study was approved by the local ethics committee (CMO – the local
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“Committee on Research Involving Human Subjects” in the Arnhem-Nijmegen region) and
followed guidelines of the Helsinki declaration.”
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2.2 Deep language algorithms predict semantic comprehension
from brain activity

2.2.1 Abstract

Deep language algorithms, like GPT-2, have demonstrated remarkable abilities to process
text, and now constitute the backbone of automatic translation, summarization and dialogue.
However, whether these models encode information that relates to human comprehension
still remains controversial. Here, we show that the representations of GPT-2 not only map
onto the brain responses to spoken stories, but they also predict the extent to which subjects
understand the corresponding narratives. To this end, we analyze 101 subjects recorded with
functional Magnetic Resonance Imaging while listening to 70 min of short stories. We then fit
a linear mapping model to predict brain activity from GPT-2’s activations. Finally, we show
that this mapping reliably correlates (R = 0.50, p < 10�15) with subjects’ comprehension
scores as assessed for each story. This effect peaks in the angular, medial temporal and supra-
marginal gyri, and is best accounted for by the long-distance dependencies generated in the
deep layers of GPT-2. Overall, this study shows how deep language models help clarify the
brain computations underlying language comprehension.

2.2.2 Introduction

In less than two years, language transformers like GPT-2 have revolutionized the field of
natural language processing (NLP). These deep learning architectures are typically trained on
very large corpora to complete partially-masked texts, and provide a one-fit-all solution to
translation, summarization, and question-answering tasks (Radford et al., 2019; Devlin et al.,
2019; Yang et al., 2020). These advances raise a major question: do these algorithms process
language like the human brain? Recent studies suggest that they partially do: the hidden
representations of various deep neural networks have shown to linearly predict single-sample
fMRI (Caucheteux et al., 2021b; Toneva & Wehbe, 2019; Schrimpf et al., 2021; Caucheteux &
King, 2022; Caucheteux et al., 2021a; Hale et al., 2021; Anderson et al., 2021; Sun et al., 2021),
MEG (Toneva & Wehbe, 2019; Caucheteux & King, 2022), and intracranial responses to spoken
and written texts (Goldstein et al., 2022; Schrimpf et al., 2021).

However, whether these models encode, retrieve and pay attention to information that
specifically relates to behavior in general, and to comprehension in particular remains con-
troversial (Nie et al., 2020; Lakretz et al., 2021; Hupkes et al., 2020; B. M. Lake & Murphy,
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2021; Linzen & Baroni, 2021; McClelland et al., 2020; Marcus, 2020a). This issue is all-the-more
relevant that the behavior of deep language models remains challenged by complex questions,
including subject-verb agreement (Lakretz et al., 2021; Linzen & Baroni, 2021; Hupkes et al.,
2020), causal reasoning (Marcus, 2020a; B. M. Lake & Murphy, 2021), story generation, text
summarization as well as dialogue and question answering (Holtzman et al., 2020; Wiseman et
al., 2017; Thakur et al., 2021; Raffel et al., 2020; Krishna et al., 2021).

To explore the relationship between comprehension and the representations of GPT-2, we
compare GPT-2’s activations to the functional Magnetic Resonance Imaging of 101 subjects
listening to 70min of seven short stories. We first quantify this similarity with a ”brain score”
(M) (D. L. K. Yamins et al., 2014; Huth, de Heer, et al., 2016). We then evaluate how brain
scores systematically vary with –– and thus predict –– semantic comprehension, as individually
assessed by a questionnaire at the end of each story. Finally, by decomposing and manipulating
GPT-2’s processes, we identify (1) the brain regions, (2) the levels of representations (phono-
logical, lexical, compositional), and (3) the attentional gating that specifically relates to this
prediction.

The alignment identified between behavior, brain activations and the representations of
GPT-2 suggest that comprehension relies on a specific computational hierarchy, whereby the
auditory cortices integrate information over short time windows, and the fronto-parietal areas
combine supra-lexical information over long time windows.

2.2.3 Results

GPT-2’s activations linearly map onto fMRI responses to spoken narratives. To assess
whether GPT-2 generates similar representations to those of the brain, we analyze the Narratives
dataset: 101 subjects listening to seven short stories while their brain activity is recorded with
fMRI. Note that subjects do not necessarily listen to the same stories (Figure 2). First, we
evaluate, for each voxel, subject and narrative independently, whether the fMRI responses can
be predicted from a linear combination of GPT-2’s activations (Figure 2.5A). We summarize
the precision of this mapping with a brain score M: i.e. the correlation between the true
fMRI responses and the fMRI responses linearly predicted, with cross-validation, from GPT-2’s
responses to the same narratives (cf. Methods).

To mitigate the spatial resolution of fMRI and the necessity to correct voxel analyses for
multiple comparisons, we here report either 1) the average brain scores across voxels or 2) the
average score within each region of interest (n = 314, following an automatic subdivision of the
Destrieux atlas (Destrieux et al., 2010), cf. Supplementary Note 6.2.1), and correct statistical tests
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for multiple comparisons across the brain regions. Consistent with previous findings (Toneva &
Wehbe, 2019; Jain & Huth, 2018; Caucheteux & King, 2022; Schrimpf et al., 2018), these brain
scores are significant over a distributed and bilateral cortical network, and peak in middle- and
superior-temporal gyri and sulci, as well as in the supra-marginal and the infero-frontal cortex
(Toneva & Wehbe, 2019; Jain & Huth, 2018; Caucheteux & King, 2022) (Figure 2.5B).

By separately analyzing the activations of each layer of GPT-2, we confirm that middle
layers best map onto the brain (Figure 2.5C), as previously reported (Jain & Huth, 2018; Toneva
& Wehbe, 2019; Caucheteux & King, 2022). For clarity, the following analyses focus on the
activations extracted from the eighth layer, i.e. the layer with the highest brain score on average
across voxels (Figure 2.5C). However, the results generalize to other contextual layers of GPT-2
(Supplementary Note 6.2.5, Supplementary Figure S10).

The brain predictions of GPT-2 correlate with semantic comprehension. Does the linear
mapping between GPT-2 and the brain reflect a fortunate correspondence (Caucheteux &
King, 2022)? Or, on the contrary, does it reflect similar representations of high-level semantics
(Caucheteux et al., 2021a)? To address this issue, we correlate these brain scores to the level
of comprehension of the subjects, assessed for each subject-story pair. On average across
all voxels, this correlation reaches R = 0.50 (p < 10�15, Figure 2.5D, as assessed across
subject-story pairs with the Pearson’s test provided by SciPy (Virtanen et al., 2020)). This
correlation is significant across a wide variety of the bilateral temporal, parietal and prefrontal
cortices typically linked to language processing (Figure 2.5E). Together, these results suggest
that the shared representations between GPT-2 and the brain reliably vary with semantic
comprehension.

Low-level processing only partially accounts for the correlation between comprehension
and GPT-2’s mapping Low-level speech representations typically vary with attention (Mes-
garani & Chang, 2012; L. Cohen et al., 2021), and could thus, in turn, influence down-stream
comprehension processes. Consequently, one can legitimately wonder whether the correlation
between comprehension and GPT-2’s brain mapping is simply driven by variations in low-
level auditory processing. To address this issue, we evaluate the predictability of fMRI given
low-level phonological features: the word rate, phoneme rate, phonemes, stress and tone of the
narrative (cf. Methods). The corresponding brain scores correlate with the subjects’ understand-
ing (R = 0.17, p < 10�2) but considerably less than the brain scores of GPT-2 (DR = 0.32).
These low-level correlations with comprehension peak in the left superior temporal cortex
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(Figure 2.5F). Overall, this result suggests that the link between comprehension and GPT-2’s
brain mapping may be partially explained by – but not reduced to – the variations of low-level
auditory processing.

The reliability of high-level representations best predict comprehension Is the correlation
between comprehension and GPT-2’s mapping driven by a lexical process and/or by an ability
to meaningfully combine words? To tackle this issue, we compare the correlations obtained
from GPT-2’s word embedding (i.e. layer 0) to those obtained from GPT-2’s eighth layer, i.e.
a contextual embedding. On average across voxels, the correlation with comprehension is
0.12 lower with GPT-2’s word embedding than with its contextual embedding. An analogous
analysis, comparing word embedding to phonological features is displayed in Figure 2.5F.
Strictly lexical effects (word-embedding versus phonological) peak in the superior-temporal
lobe and in pars triangularis. By contrast, higher-level effects (GPT-2 eighth layer versus word-
embedding) peak in the superior-frontal, posterior superior-temporal gyrus, in the precuneus
and in both the triangular and opercular parts of the inferior frontal gyrus – a network typically
associated with high-level language comprehension (Lerner et al., 2011; Pallier et al., 2011;
Fedorenko et al., 2016; Friederici, 2011; Hickok & Poeppel, 2007; Caucheteux & King, 2022).
Together, these model comparisons suggest that GPT-2 best predicts how brain responses to
speech vary with comprehension.

Comprehension effects are mainly driven by individuals’ variability The variability in
comprehension scores could result from exogeneous factors (e.g. some stories may be harder to
comprehend than others for GPT-2) and/or from endogeneous factors (e.g. some subjects may
better understand specific texts because of prior knowledge). To address this issue, we fit a
linear mixed model to predict comprehension scores given brain scores, specifying the narrative
as a random effect (cf. Supplementary Note 6.2.2). The fixed effect of brain score (shared
across narratives) is highly significant: b = 0.04, p < 10�29, cf. Supplementary Note 6.2.2).
However, the random effect (slope specific to each single narrative) is not (b < 10�2, p > 0.11).
We also replicate the main analysis (Figure 2.5D) within each single narrative: the correlation
with comprehension reaches 0.76 for the ‘Sherlock’ story and is above 0.40 for every story
(cf. Supplementary Note 6.2.3). Overall, these analyses confirm that the link between GPT-2
and semantic comprehension is best accounted for by an endogeneous factor: i.e. individual
differences in comprehension scores.
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Decomposing the brain regions, levels of representation and attention distances underlying
comprehension Can GPT-2 be further decomposed to identify the mechanisms responsible
for generating representations that both (i) map with the human brain and (ii) predict subjects’
comprehension? To address this issue, we investigate the links between (1) short- and long-
range attentional gating, (2) the depth of the representation and (3) brain and comprehension
scores. Specifically, we compute both of these scores for different layer k when restricting their
attention span to different distances d (i.e. layers k0  k only access the d previous words). By
systematically and independently varying k and d, we can compute bdistance and blayer: the two
coefficients that indicate how brain scores and comprehension scores vary across layers and
attentional spans, respectively. Precisely, a positive bdistance indicates that scores are sensitive to
long-range dependencies. On the contrary, a null bdistance indicates that scores are not sensitive
to long-range-dependencies. Similarly, a positive blayer indicates that deep layers have better
scores than shallow layers, while a negative blayer indicates that shallow layers have better
scores than deep layers.

Our results are three-fold. First, both the brain score (M) and the comprehension scores
(R) increase with the attention span (bdistance > 0, pM < 10�14 for brain scores, pR = .01 for
comprehension scores) as well as with the depth of the representation (blayer > 0, pM < 10�4,
pR = .001). The gain in scores obtained with attention to distant context is observed even up
to the most distant items (e.g. between distance ⇡ 1, 000 and 300 words: DR > 0, pM < 10�4,
pR = .02, Figure 2.6A).

Second, the attention span primarily impacts the brain scores and the comprehension scores
of the middle layers (difference between layer 8 and layer 12: Dbdistance = .001, pM < 10�8 for
brain scores, Dbdistance = .03, pR = .005 for comprehension scores, Figure 2.6AD). Interestingly,
and to our surprise, restricting the attention span of the first layers improved their ability to
predict comprehension (e.g. for the first layer, difference between scores with an attention of
10 words and full attention DR = .06, p = .004, Figure 2.6D). This unexpected result suggests
that language transformers could be made more similar to the brain by increasing the attention
span as a function of depth.

Finally, brain regions commonly associated with high-level comprehension are better pre-
dicted by the deep representations of past words, and their corresponding brain scores and
comprehension scores are relatively strongly modulated by long-distance attention (e.g. in
angular gyrus: blayer = .14 > 0, p = .002, bdistance = .03 > 0, p = .016 for comprehension
scores). On the contrary, low-level acoustic regions are best predicted by the shallow layers of
the network, and are, in comparison, little altered by long-distance dependencies (e.g. for the
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comprehension scores in Heschl gyrus, blayer = �.076 < 0, p = .004, bdistance = �.014 < 0,
p = .012).

Overall, our analysis suggests that comprehension depends on a hierarchy of neural repre-
sentations, whereby the first areas of the language network deploys shallow and short-span
attention processes, while the fronto–parietal network relies on compositional and long-span
attention processes. Interestingly, our analysis also highlights that shortening the attention
span of lower-layers makes them more brain-like, and could perhaps thus provide a useful
inductive bias to these algorithms.

2.2.4 Discussion

Our analyses reveal a reliable correlation between story comprehension and the degree to
which language transformers like GPT-2 maps onto brain responses to the corresponding story.
Furthermore, the systematic comparison, decomposition and manipulation of such language
models allow us to decompose (1) the brain regions (2) the level of representation (sub-lexical,
lexical, supra-lexical) and (3) the attentional gating (i.e. the short- or long-range retrieval of past
stimuli) that relate to the comprehension of complex narratives.

These findings complement prior work on the brain bases of comprehension in three major
ways. First, a number of qualitative theories describe how words may be combined into
meaningful representations (Hagoort et al., 2009; Hagoort, 2013; Hagoort & Indefrey, 2014;
Bornkessel-Schlesewsky & Schlesewsky, 2006, 2013; Hickok & Poeppel, 2007; Ullman, 2001;
Friederici, 2011). For example, the Memory, Unification and Control model (MUC) distinguishes
three types of computations and links them to the temporal lobe, Broca area and the rest of the
prefrontal lobe, respectively. Similarly, the extended Argument Dependency Model (eADM)
proposes that the ventral and the dorsal streams of the auditory pathway compute time-
independent and time-dependent unifications, respectively. Our results support an analogous
division of acoustics, lexical and compositional representations in the language areas. However,
we reveal a slightly different functional anatomy: the early areas of the language network,
located around the auditory cortices, deploy sub-lexical and shallow representations thanks
to short attention spans. By contrast, the fronto–parietal network tracks and unifies very
distant contexts to current words (Figure 2.5F). How these cortical areas communicate with the
hippocampus and retrieve words from long-term memory remains an exciting direction for
future studies (Lu et al., 2022).
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Second, several quantitative approaches have been proposed to investigate comprehension,
either with “model-free” methods based on inter-subject correlation (e.g. (Lerner et al., 2011;
Fedorenko et al., 2016; Dehghani et al., 2017)) or “model-based” methods based on word vectors
(Broderick et al., 2020). For example, Lerner et al. analyzed the fMRI activity of subjects listening
to either normal texts or texts scrambled at the word, sentence or paragraph level (Lerner et al.,
2011). While brain activity correlated across subjects in the primary and secondary auditory
areas even when the input was heavily scrambled (and thus poorly comprehensible), the bilat-
eral infero-frontal and temporo-parietal cortex only correlated across subjects when sentences
and/or paragraphs were not scrambled (and thus comprehensible). Broderick et al. used a
similar design to investigate electro-encephalography (EEG) responses to variably scrambled
versions of the same story (Broderick et al., 2020), as well as the EEG responses to speech played
in reverse and in noise (Broderick et al., 2018). Consistently with our results, they showed that
the mapping between word embeddings’ and the EEG activity varies with comprehension
as manipulated by these various protocols. Our results thus complement these findings by
showing (1) the brain regions where GPT-2’s predictions vary with subject’s comprehension,
and (2) what type of representations these features relate to: comprehension appears here
to depend on a hierarchy of neural representations, whereby the first areas of the language
network deploys shallow and short-span-attention processes, while the fronto–parietal network
relies on compositional and long-span-attention processes.

Finally, previous analyses have investigated the role of attention in the brain (Sabri et al.,
2008; Kok et al., 2012; Toneva & Wehbe, 2019). We complement these studies by (1) showing
that very-long term attention affects brain scores (even above 1,000 words), (2) identifying
the brain regions that are sensitive to long vs. short attention spans, and(3) investigating the
interactions between attention span, the ability to generate brain-like representations, and one
behavioral metric: comprehension.

Interestingly, some regions, like the angular and supramarginal gyri, present a modest
brain score and nevertheless strongly predict comprehension. How can one interpret such
dissociation? We propose that deep neural networks encode a variety of features, ranging
from low- to high-level representations. While some of these features may relate to general
language processing (e.g. short-range information about words), others may specifically relate
and thus predict comprehension (e.g. long-range dependencies). In this view, the regions
that are best predicted by GPT-2’s representations (e.g. Heschel’s gyrus) need not be identical
to those that best predict comprehension (e.g. Angular gyrus). Our ablation studies fit this
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hypothesis: the auditory cortices are marked by high brain scores but low comprehension
scores (Figure 2.5G) and indeed appear to encode short-range and shallow representations – i.e.
features that presumably only indirectly relate to the comprehension of a narrative (Figure 2.6).
By contrast the angular gyrus demonstrates a high comprehension score (Figure 2.5G) and
indeed appears to encode long-range dependencies and deep representations – i.e. features
that presumably relate to the latent structures of narratives, and from which comprehension
should depend (Figure 2.6).

Overall, the present study suggests that GPT-2 retrieves information that relates to human
comprehension, thus strengthening previous works that study the similarities between deep
language models and the brain (Caucheteux et al., 2021b; Toneva & Wehbe, 2019; Schrimpf et
al., 2021; Caucheteux & King, 2022; Caucheteux et al., 2021a; Hale et al., 2021; Anderson et al.,
2021; Sun et al., 2021; Goldstein et al., 2022). For instance, several studies showed that deep
nets’ encoding accuracy correlated with the level of semantic and syntactic information of their
activations (Sun et al., 2021), as well as their ability to predict a word from context (Schrimpf et
al., 2021; Caucheteux & King, 2022). We complement these results and show that the encoding
accuracy of GPT-2 correlates with the level of understanding of the subjects, as assessed with
comprehension questionnaires. Interestingly, our analysis also highlights that shortening the
attention span of lower-layers would make them more brain-like. Thus, these results contribute
to revealing remaining functional differences between brains and language models, and could
thus help guide the development of modern algorithms (Toneva & Wehbe, 2019; Caucheteux et
al., 2023).

The relationship between GPT-2’s representations and human comprehension remains to
be qualified, however. First, we restrict the challenging and composite notion of semantic
comprehension to an empirical definition: i.e. the extent to which subjects understand a
narrative, as assessed by a questionnaire presented at the end of each story. We acknowledge
that comprehension spans a very diverse set of conditions, ranging from scientific writing to
newspapers, which are not presently tested.

Second, our results remain solely based on correlations. Supplementary analyses suggest
that GPT-2’s brain scores may be partially explained by – but not reduced to – attentional
processes (Supplementary Note 6.2.8). Yet, the factors that causally influence comprehension,
such as attention, prior knowledge, working memory capacity, and language complexity are
not controlled here and should thus be explicitly examined and manipulated in future work. In
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particular, it would be interesting to evaluate how working memory capacity, cognitive control,
vocabulary, as well as an continuous-monitoring of subjects’ attention separately contribute
to the fluctuation of comprehension and specifically account for the link between GPT-2 and
the brain. Similarly, the study of inter-individual differences could further help modeling
specific cognitive deficits associated with comprehension such as dyspraxia, dyslexia or autistic
syndrome. However, such investigation would likely require large amounts of data, and thus a
dedicated effort (Marek et al., 2022).

Third, we find that the long-distance representations of GPT-2 middle layers specifically
account for comprehension in associative cortices, while the short-distance information encoded
in the shallow layers account for comprehension in lower-level brain regions. However, what
these features actually represent remains largely unknown. Previous studies have shown that
language transformers explicitly represent syntactic (Manning et al., 2020; Lakretz et al., 2021)
and semantic features (Lakretz et al., 2021). Similarly, Manning et al. showed that syntactic trees
appear to be encoded by the distances between contextualized word embedding (Manning et
al., 2020). Clarifying the nature of word embeddings remains an important direction to explore
(e.g. syntactic vs. semantic (Gauthier & Levy, 2019; Reddy & Wehbe, 2020; Sun et al., 2021;
Caucheteux et al., 2021a).

Finally, although highly significant, and significantly better than alternative models (Sup-
plementary Figure S9), the brain-scores of GPT-2 are relatively low (Huth, de Heer, et al., 2016;
Fedorenko et al., 2016; Toneva & Wehbe, 2019). This phenomenon is largely expected: we fit
and evaluate the brain mapping at the single-TR single-voxel level and across all brain voxels
to avoid selection biases. Nonetheless, these brain scores reach up to 32% of the noise ceiling
(Supplementary Note 6.2.4, Supplementary Figure S8). This indicates that while GPT-2 may
be our best model of language representations in the brain, it remains far from fully capturing
those of complex narratives.

The comparison between brains, behavior and deep nets was originally introduced in vision
research (D. L. K. Yamins & DiCarlo, 2016). The present study strengthens this approach and
clarifies the links between GPT-2 and the brain. Specifically, we show that GPT-2’s mapping
correlates with comprehension up to R = 0.50. This result is both promising and limited: on
the one hand, we reveal that the similarity between deep nets and the brain non-trivially relates
to a high-level cognitive process. On the other hand, half of the comprehension variability
remains unexplained by this algorithm.
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This limit is expected: several studies demonstrate that current deep language models fail
to capture several aspects critical to comprehension (Marcus, 2020a; B. M. Lake & Murphy,
2021): they (i) often fail to generalize beyond the training distribution (Baroni, 2020), (ii) do
not perfectly capture deep syntactic structures (Manning et al., 2020; Lakretz et al., 2021) and
(iii) remain relatively poor at summarizing texts, generating stories and answering questions
(Holtzman et al., 2020; Wiseman et al., 2017; Thakur et al., 2021). Furthermore, GPT-2 is only
trained with textual data and does not situate objects in a grounded environment that would
capture their real-world interactions (Bisk et al., 2020; McClelland et al., 2020). These limits
may be temporary, however: the latest models appear to be more robust to out-of-distribution
sampling (Brown et al., 2020) and trained on multimodal data (Radford et al., 2021; Ramesh et
al., 2021).

Together, these elements thus suggest that modern language algorithms like GPT-2 offer
a promising basis to unravel the brain and computational signatures of comprehension. Vice
versa, by highlighting the similarities and remaining differences between deep language models
and the brain, our study reinforces the mutual relevance of neuroscience and AI.

2.2.5 Methods

Our analyses rely on the ”Narratives” dataset (Nastase et al., 2020), composed of the brain
signals, recorded using fMRI, of 345 subjects listening to 27 narratives. The dataset is pub-
licly available and the methods were performed in accordance with relevant guidelines and
regulations.

Narratives and comprehension score Among the 27 stories of the dataset, we selected the
seven stories for which subjects were asked to answer a comprehension questionnaire at the
end, and for which the answers varied across subjects (more than ten different comprehension
scores across subjects), resulting in 70 min of audio stimuli in total, from four to 19 minutes
per story (Figure 2.7). Questionnaires were either multiple-choice, fill-in-the blank, or open
questions (answered with free text) rated by humans (Nastase et al., 2020). Here, we used
the comprehension score computed in the original dataset which was either a proportion of
correct answers or the sum of the human ratings, scaled between 0 and 1 (Nastase et al., 2020).
It summarizes the comprehension of one subject for one narrative (specific to each (narrative,
subject) pair).
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Brain activations The brain activations of the 101 subject who listened to the seven selected
narratives were recorded using fMRI. As suggested in the original paper (Nastase et al., 2020),
pairs of (subject, narrative) were excluded because of noisy recordings, resulting in 237 pairs in
total.

All seven studies used a repetition time (TR) of 1.5 seconds. As stated in the orginal paper
(Nastase et al., 2020), the “Merlin”, “Sherlock”, “Slumlord” and “Reach for the Stars” datasets
were collected on a 3T Siemens Magnetom Skyra (Erlangen, Germany) with a 20-channel
phased-array head coil using the following acquisition parameters. “Functional BOLD images
were acquired in an interleaved fashion using gradient-echo echo-planar imaging (EPI) with an
in-plane acceleration factor of 2 using GRAPPA. The full acquisition details are summarized
here for simplicity: TR/TE = 1500/28 ms, flip angle = 64 degrees, bandwidth = 1445 Hz/Px,
in-plane resolution = 3x3mm, slice thickness = 4 mm, matrix size = 64x64, FoV = 192x192 mm,
27 axial slices with roughly full brain coverage and no gap, anterior–posterior phase encoding,
prescan normalization, fat suppression. At the beginning of each run, three dummy scans were
acquired and discarded by the scanner to allow for signal stabilization.

The “Pie Man (PNI)” (pieman-pni) “Running from the Bronx”(bronx), “I Knew You Were
Black” (black) and “The Man Who Forgot Ray Bradbury”(forgot) datasets were collected on
the same 3T Siemens Magnetom Prisma with a 64-channel head coil using different acquisition
parameters. Functional images were acquired in an interleaved fashion using gradient-echo
EPI with a multiband acceleration factor of 3 using blipped CAIPIRINHA and no in-plane
acceleration: TR/TE 1500/31 ms, flip angle = 67degrees, bandwidth = 2480 Hz/Px, in-plane
resolution = 2.5x2.5mm, slice thickness 2.5 mm, matrix size = 96x96, FoV = 240x 240 mm, 48
axial slices with full brain coverage and no gap, anterior–posterior phase encoding, prescan
normalization, fat suppression, three dummy scans.”

GPT-2 activations GPT-2 (Radford et al., 2019) is a high-performing neural language model
trained to predict a word given its previous context (it does not have access to succeeding
words), given millions of examples (e.g Wikipedia texts). It consists of multiple Transformer
modules (twelve, each of them called ”layer”) stacked on a non-contextual word embedding (a
look-up table that outputs a single vector per vocabulary word) (Radford et al., 2019). Each layer
l can be seen as a nonlinear system that takes a sequence of w words as input, and outputs a
contextual vector of dimension (w, d), called the “activations” of layer l (d = 768). Intermediate
layers were shown to better encode syntactic and semantic information than input and output
layers (Jawahar et al., 2019), and to better map onto brain activity (Toneva & Wehbe, 2019;
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Caucheteux & King, 2022). Here, we show that the eighth layer of GPT-2 best predicts brain
activity 2.5C. We thus select the eighth layer of GPT-2 for our analyses. Our conclusions remain
unchanged with other intermediate-to-deep layers of GPT-2 (from 6th to 12th layers).

In practice, the narratives’ transcripts were formatted (replacing special punctuation marks
such as ”–” and duplicated marks ”?.” by dots), tokenized using GPT-2 tokenizer and input to
the GPT-2 pretrained model provided by Huggingface (Wolf et al., 2020). The representation
of each token is computed separately using a sliding context window of 1024 tokens. For
instance, to compute the representation of the third token of the story, we input GPT-2 with
the third, second and first token, and then extract the activations corresponding to the third
token. Similarly, to compute the activations of the 1500th token, we input the model with the
word 1500 and the 1023 words before. Overall, the activations of every word wk are computed
by inputting the model with the word wk and the 1023 previous tokens (at most), and then
extracting the activations corresponding to wk. The procedure results in a vector of activations
of size (w, d) with w the number of tokens in the story and d the dimensionality of the model.
There are fewer fMRI scans than words. Thus, the activation vectors between successive fMRI
measurements are summed to obtain one vector of size d per measurement. To match the fMRI
measurements and the GPT-2 vectors over time, we used the speech-to-text correspondences
provided in the fMRI dataset (Nastase et al., 2020).

Linear mapping between GPT-2 and the brain For each (subject, narrative) pair, we measure
the mapping between i) the fMRI activations elicited by the narrative and ii) the activations of
GPT-2 (layer eight) elicited by the same narrative. To this end, a linear spatiotemporal model
is fitted on a train set to predict the fMRI scans given the GPT-2 activations as input. Then,
the mapping is evaluated by computing the Pearson correlation between predicted and actual
fMRI scans on a held out set I:

M(s,w) : I 7! L
✓

f � g(X(w))i2I , (Y
(s,w)
i )i2I

◆
(2.5)

With f � g the fitted estimator (g: temporal and f: spatial mappings), L Pearson’s correlation,
X(w) the activations of GPT-2 and Y(s,w) the fMRI scans of subjects s, both elicited by the
narrative w.

In practice, f is a `2-penalized linear regression, following scikit-learn implementation
(Pedregosa et al., 2011). The regularization parameter is chosen for each voxel separately
using nested cross validation on the train set. Specifically, we use scikit-learn’s RidgeCV
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estimator with built-in leave-one-sample-out cross-validation, with ten possible regularization
parameters log-spaced between 10�1 and 108, one hyper-parameter being selected for each
voxel independently. g is a finite impulse response (FIR) model with 5 delays, where each
delay sums the activations of GPT-2 input with the words presented between two TRs. For
each (subject, narrative) pair, we split the corresponding fMRI time series into five contiguous
chunks using scikit-learn cross-validation. The procedure is repeated across the five train (80%
of the fMRI scans) and disjoint test folds (20% of the fMRI scans). Pearson correlations are
averaged across folds to obtain a single score per (subject, narrative) pair. This score, denoted
M(X) in Figure 2.5A, measures the mapping between the activations space X and the brain of
one subject, elicited by one narrative.

Phonological features To account for low-level speech processing, we computed the align-
ment (Equation (2.5)) between the fMRI brain recordings Y and phonological features X: the
word rate (of dimension d = 1, the number of words per fMRI scan), the phoneme rate (d = 1,
the number of phonemes per fMRI scan) and the concatenation of phonemes, stresses and tones
of the words in the stimuli (categorical feature, d = 117). The latter phonological features are
provided in the original dataset, and computed using Gentle 1. The 117 dimensions are the
combination of phonetic categories, stresses and tones. We use 40 English phonemes in the
corpus, and 4 possible tones, which results in 40 x 4 = 160 possible categories. Some categories
are never pronounced here. If we ignore these categories, this results in 117 categories, and
thus 117 dimensions after one-hot encoding.

Voxel-level and ROI-level analyses All of the first-level analyses are performed at the voxel
level (computation of the mapping scores M of equation (2.5), in blue in Figure 2.5). We then
average these effects either (1) within each brain region (Figure 2.5B, E, F and G) or (2) across
the whole brain (Figure 2.5C and D). From these average values, we compute the correlation
with comprehension (in red in Figure 2.5). This approach mitigates the localization of the effect
and the statistical correction for multiple comparisons.

Significance Significance was either assessed by using either (i) a second-level Wilcoxon
test (two-sided) across subject-narrative pairs, testing whether the mapping (one value per
pair) was significantly different from zero (Figure 2.5B), or (ii) by using the first-level Pearson

1https://github.com/lowerquality/gentle
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p-value provided by SciPy (Virtanen et al., 2020) (Figure 2.5D-G). In Figure 2.5B, E, F, p-
values were corrected for multiple comparison (2 ⇥ 142 ROIs) using False Discovery Rate
(Benjamin/Hochberg) (Gramfort et al., 2013).

Data availability The Narratives dataset (Nastase et al., 2020) is publicly available on the
OpenNeuro (https://openneuro.org/datasets/ds002345/versions/1.1.4) and Datalad plat-
forms (http://datasets.datalad.org/?dir=/labs/hasson/narratives).

71

https://openneuro.org/datasets/ds002345/versions/1.1.4
http://datasets.datalad.org/?dir=/labs/hasson/narratives


Figure 2.5: Methods and Results. A. 101 subjects listen to narratives (70 min of unique audio stimulus in total)
while their brain signal is recorded using functional MRI. At the end of each story, a questionnaire is submitted to
each subject to assess their understanding, and the answers are summarized into a comprehension score specific to
each (narrative, subject) pair (grey box). In parallel (blue box on the left), we measure the mapping between the
subject’s brain activations and the activations of GPT-2, a deep network trained to predict a word given its past
context, both elicited by the same narrative. To this end, a linear spatio-temporal model ( f � g) is fitted to predict
the brain activity of one voxel Y, given GPT-2 activations X as input. The degree of mapping, called ”brain score”
is defined for each voxel as the Pearson correlation between predicted and actual brain activity on held-out data
(blue equation, cf. Methods). Finally, we test the correlation between the comprehension scores of the subjects and
their corresponding brain scores using Pearson’s correlation (red equation). A positive correlation means that the
representations shared across the brain and GPT-2 are key for the subjects to understand a narrative. B. Brain
scores (fMRI predictability) of the activations of the eighth layer of GPT-2. Scores are averaged across subjects,
narratives, and voxels within brain regions (142 regions in each hemisphere, following a subdivision of Destrieux
Atlas (Destrieux et al., 2010), cf. Supplementary Note 6.2.1). Only significant regions are displayed, as assessed
with a two-sided Wilcoxon test across (subject, narrative) pairs, testing whether the brain score is significantly
different from zero (threshold: .05). C. Brain scores, averaged across fMRI voxels, for different activation spaces:
phonological features (word rate, phoneme rate, phonemes, tone and stress, in green), the non-contextualized
word embedding of GPT-2 (”Word”, light blue) and the activations of the contextualized layers of GPT-2 (from
layer one to layer twelve, in blue). The error bars refer to the standard error of the mean across (subject, narrative)
pairs (n=237). D. Comprehension and GPT-2 brain scores, averaged across voxels, for each (subject, narrative)
pair. In red, Pearson’s correlation between the two (denoted R), the corresponding regression line and the 95%
confidence interval of the regression coefficient. E. Correlations (R) between comprehension and brain scores
over regions of interest. Brain scores are first averaged across voxels within brain regions (similar to B.), then
correlated to the subjects’ comprehension scores. Only significant correlations are displayed (threshold: .05).
F. Correlation scores (R) between comprehension and the subjects’ brain mapping with phonological features
(M(Phonemic)) (i), the share of the word-embedding mapping that is not accounted by phonological features
M(Word)�M(Phonemic) (ii) and the share of the GPT-2 eighth layer’s mapping not accounted by the word-
embedding M(GPT2)�M(Word) (iii). G. Relationship between the average GPT-2-to-brain mapping (eighth
layer) per region of interest (similar to B.), and the corresponding correlation with comprehension (R, similar to
D.). Only regions of the left hemisphere, significant in both B. and E. are displayed. In black, the top ten regions in
terms of brain and correlation scores (cf. Supplementary Note 6.2.1 for the acronyms). Significance in D, E and F is
assessed with Pearson’s p-value provided by SciPy (Virtanen et al., 2020). In B, E and F, p-values are corrected for
multiple comparison using a False Discovery Rate (Benjamin/Hochberg) over the 2 ⇥ 142 regions of interest.
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Figure 2.6: Effect of GPT-2’s attention span on brain scores and comprehension scores. A. The heatmap
displays the average (across subjects, stories and voxels) brain scores as a function of attention span
(”distance”) and layers. The top line displays the layer coefficients for each attention span (averaged
across subjects, stories and voxels). The right line displays the distance coefficient for each layer
(averaged across subjects, stories and voxels). The error bars correspond to the Standard Errors of
the Mean (SEM) across subject-story pairs. B. Distance coefficients for each brain region (averaged
across subjects and stories). Statistical significance is assessed with a Wilcoxon test across subject-story
pairs. C. Layer coefficients for each brain region (averaged across subjects and stories). D-F. Similar
as A-C, but the layer (and distance, respectively) coefficients now assess the relationship between
layer (or distance, respectively) and comprehension scores. Statistical significance is assessed using a
bootstrapping procedure with 1,000 subsamples of subject-story pairs. Error bars are standard deviation
across subsamples. For all brain plots, only significant values are displayed (p < 0.05 after FDR
correction across brain regions.)
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Figure 2.7: Distribution of comprehension scores. For each of the seven narratives: number of subjects
(n), distribution of comprehension scores across subjects and length of the narrative.
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Chapter 3

Leveraging the similarity to decompose the
content, temporal and spatial organization
of language representations in the brain

3.1 Disentangling syntax and semantics in the brain with deep
networks

3.1.1 Abstract

The activations of language transformers like GPT-2 have been shown to linearly map onto brain
activity during speech comprehension. However, the nature of these activations remains largely
unknown and presumably conflate distinct linguistic classes. Here, we propose a taxonomy to
factorize the high-dimensional activations of language models into four combinatorial classes:
lexical, compositional, syntactic, and semantic representations. We then introduce a statistical
method to decompose, through the lens of GPT-2’s activations, the brain activity of 345 subjects
recorded with functional magnetic resonance imaging (fMRI) during the listening of �4.6 hours
of narrated text. The results highlight two findings. First, compositional representations recruit
a more widespread cortical network than lexical ones, and encompass the bilateral temporal,
parietal and prefrontal cortices. Second, contrary to previous claims, syntax and semantics are
not associated with separated modules, but, instead, appear to share a common and distributed
neural substrate. Overall, this study introduces a versatile framework to isolate, in the brain
activity, the distributed representations of linguistic constructs.
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3.1.2 Introduction

Within less than three years, transformers have enabled remarkable progress in natural language
processing (Devlin et al., 2019; Radford et al., 2019). Pretraining these architectures on millions
of texts to predict words from their context greatly facilitates translation, text synthesis and the
retrieval of world-knowledge (Lample & Conneau, 2019; Brown et al., 2020).

Interestingly, the activations of language transformers tend to linearly map onto those of the
human brain, when presented with the same sentences (Jain & Huth, 2018; Toneva & Wehbe,
2019; Abnar et al., 2019; Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022).
This linear mapping suggests that, in spite of their vast learning1 and architectural differences2,
the brain and language transformers converge to similar linguistic representations (Caucheteux
& King, 2022; Caucheteux et al., 2022).

However, the nature of these shared representations remains largely unknown. Three
factors explain this gap-of-knowledge. First, linguistic theories are generally described and
interpreted in terms of combinatorial symbols (discrete words, syntactic trees, etc). In contrast,
brain and language transformers generate high-dimensional vectors (a.k.a “distributed” rep-
resentations). While these formats are formally equivalent (Smolensky, 1990), interpreting
vectorial representations in language models and in the brain is particularly challenging.

Second, the representations of deep learning models have been interpreted independently
of brain imaging. For example, deep neural networks have been shown to encode lexical
analogies in their word embeddings (Mikolov, Sutskever, et al., 2013), as well as singular/plural
relationships (Lakretz et al., 2019), long-distance dependency information (Jawahar et al., 2019),
and syntactic trees (Manning et al., 2020). Similarly, the brain responses to language have
been decomposed into a cascade of representations, which maps speech and reading input
into phonetic (or orthographic), morphemic, lexical, and syntactic representations (Hickok &
Poeppel, 2007; Dehaene & Cohen, 2011; Pallier et al., 2011; Friederici, 2011; Mesgarani et al.,
2014; Huth, de Heer, et al., 2016; Nelson et al., 2017; J. R. Brennan & Hale, 2019; Gwilliams et al.,
2020). However, we do not know whether all or any of these representations effectively drive
the linear mapping between language models and the brain.

Third, the mapping between language transformers and the brain has been mainly investi-
gated with speech and/or narratives (Schrimpf et al., 2021; Toneva & Wehbe, 2019; Abnar et al.,

1The brain learns continuously from a small set of situated sentences, whereas transformers learn from large
sets of pure texts.

2The brain is a single-stream recurrent architecture, whereas the transformer is a multi-stream feedforward
architecture.
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2019; Reddy & Wehbe, 2020) (although see (Caucheteux & King, 2022)). The resulting sentences
are thus poorly controlled and potentially confound various features such as phonological
variations, sentiment contours, semantic contents, and syntactic properties (e.g. stressful texts
may tend to be read more quickly, and make use of smaller constituency trees). In sum, the
linear correspondence observed between language models and the brain may be driven by a
wide variety of factors.

Here, we aim to decompose the similarity between the brain and high-performance language
transformers like GPT-2 (Radford et al., 2019), in light of four distinct linguistic classes, namely
lexical, compositional, syntactic and semantic representations. To that end, we formalize a
taxonomy that factorizes them into four distinct vector bases. We then describe a statistical
procedure to extract syntactic representations from neural networks, decompose their lexical
and compositional components, and separate them from semantic representations. Finally, we
assess the linear mapping between i) the factorized activations of GPT-2 and ii) the brain signals
of 345 subjects listening to the same narratives (4.6 hours of audio stimulus in total) as recorded
with functional magnetic resonance imaging (fMRI) (Nastase et al., 2020).
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Figure 3.1: Taxonomy A. To understand the meaning of a phrase, one must combine the meaning of each
word using the rules of syntax. For example, the meaning of the phrase NOT VERY HAPPY is (roughly)
SAD, and can be found by recursively combining the two adverbs and the adjective. B. Here, we aim to
decompose lexical features (what relates to the word level) from the compositional features (what relates
to a combination of words) both for syntactic representations (e.g. part-of-speech versus syntactic tree)
and for semantic representations (e.g. the set of word meaning versus the meaning of their combination).

3.1.3 Operational Taxonomy

The notions of lexicon, composition, syntax and semantics are notoriously debated in linguistics.
Without pretending to resolve these debates, we propose five definitions that unambiguously
decompose the distributed representations of artificial and biological neural networks.
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First, we use the standard definition of a representation as the information that can be linearly
extracted from a vector of activations, with the rationale that a single artificial or biological
neuron can read-out this information (Kriegeskorte et al., 2008; King et al., 2018). In this view,
a system Y1 is said to share the representation of a system Y2 if there exists a linear mapping
from X to Y, where X = Y1(w) and Y = Y2(w) are the activations elicited by the words w in
each system.

Second, we define lexical representations as the representations that are context-invariant.
This definition follows the standard notion of (non-contextualized) word-embeddings, which
associate a unique vector to each word of a dictionary.

By contrast, we define compositional representations as the “contextualized” representations
generated by a system combining multiples words: Y(w1 . . . wM). For clarity, we restrict the
term “compositional” to its strict sense: i.e. to the set of representations that cannot be accounted
for by lexical representations, and thus by a linear combination of word-embeddings.

Fourth, we define syntactic representations as the set of representations associated with
the structure of sentences independently of their meaning. Linguistic theories have proposed
symbolic representations of such structures (e.g part-of-speech, dependency and constituency
trees, see Figure 3.1). Furthermore, deep language models have been shown to linearly encode
some of these features (Jawahar et al., 2019; Manning et al., 2020; Lakretz et al., 2019, 2020;
Linzen & Baroni, 2021). Here, we introduce a versatile method to extract the distributed
representations of syntax in a deep language model. Specifically, we extract these syntactic
representations from the average activations elicited by a set of synthetic sentences that share
the same syntactic properties (Section 3.1.4).

Finally, even though a variety of meaningful features are captured by both word embeddings
(Mikolov, Sutskever, et al., 2013) and contexualized embeddings (Radford et al., 2019), meaning
and semantics are notoriously difficult to define formally (Jackendoff, 2002). To decompose
syntax and semantics in distributed representations, we thus propose to define semantic rep-
resentations as the lexical or supra-lexical representations of a language system that are not
syntactic.

According to these five definitions, lexical and compositional classes fully decompose both
syntax and semantics (and vice versa). For example, lexico-syntactic representations refer to
the functional categories of words (part-of-speech i.e. verb, noun, adjective, etc.). By contrast,
compositional syntax refers to the representations that link words with one another, typically
referred to as dependency (or constituency) trees. For example, in the phrase NOT VERY HAPPY

(Figure 3.1), the set of lexical meaning can be distinguished from their compositional meaning.
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The representation of this composition need not contain syntactic information, because its
outcome (⇡SAD) can be similar across phrases following distinct syntactic structures (e.g. NOT

VERY HAPPY = DOWN IN THE DUMPS = SOMEWHAT SAD, etc.). Note that, under this definition,
the distributed representations of syntax need not have a symbolic counterpart in theoretical
linguistics – e.g. temporary structures that allow building the syntactic tree of a sentence,
represent multiple alternative and their respective probabilities etc.

(1)
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activations

not,    very,    happy }
(3)


Average 
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dimly, so, true

wildly, right, good

so, so, alarmed

then, just, red

just, very, upset
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Figure 3.2: Method to isolate syntactic representations in GPT-2’s word and compositional embed-
dings. To isolate the syntactic representations of a sequence of words e.g. w = NOT VERY HAPPY, we (1)
synthesize sentences with the same syntactic structure as w (e.g DIMLY SO TRUE, etc.), then (2) extract the
corresponding GPT-2 activations (from layer 9), and finally (3) average these activation vectors across
the synthesized sentences. The resulting vector X is an approximation of the syntactic representations of
X in GPT-2.

3.1.4 Methods
Isolating Syntactic Representations

We introduce below a method to isolate distributed representations of syntax in neural networks.
We assume that a system Y (Y : VM ! Rd⇥M, V a vocabulary of words), takes sequences of
M words as inputs and generates activations that encode syntactic properties (among other
properties).

Let w be a sentence of M words (w 2 VM, e.g THE CAT IS ON THE MAT), and Ww be the set
of sentences that have the same syntax as w (e.g. A BOY GOES TO A POOL, THIS BOAT FLOATS

NEAR THE SHORE, etc.). The syntactic representation of w is, by construction, also the syntactic
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Figure 3.3: Semantic and syntactic information encoded in X. To check that the syntactic embeddings
X only contain syntactic information, we train a `2-regularized linear model to predict three semantic
features (frequency, word embeddings and semantic category of content words Binder et al. (2016)) and
two syntactic features (part-of-speech and depth of syntactic tree), given the syntactic embedding X
(red), or the full GPT-2 activations X (grey) (Appendix 6.3.3). On the y-axis, the decoding performance
of the model on left-out data (adjusted accuracy for the categorical features marked with a star, R2 for
the other continuous features). The chance level is zero. Semantic features (left) can be decoded from X
(grey), but not from X (red), while syntactic features (right) can be decoded from both.

representations of all sentences w0 2 Ww. If this common syntactic representation is denoted
y 2 Rd , we have:

8w0 2 Ww, Y(w0) = y + zw0

with zw0 a random perturbation of distribution Pw, that corresponds to the non-syntactic part
of the randomized activations Y(w0). If the density of Pw is well-defined and centered around
0, then:

E
⇥
Y(w0)

⇤
= y ,

where w0 is sampled uniformly in Ww. Thus, y (the syntactic representation of w) can be
approximated through:

Yk =
1
k

k

Â
i=1

�
y + zwi

� l.l.n���!
k!•

y

with (zw1 , . . . , zwk) i.i.d samples from Pw.
Overall, the syntactic component of the activations is the average of activations induced by

random sentences of the same syntax (Figure 3.2).
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Figure 3.4: Method to decompose the language representations shared between brains and deep
language models A. The human brain and modern language models like GPT-2 both generate distributed
representations, which are thus difficult to link with the symbolic properties of linguistic theories. We
introduce a method to decompose the representations of GPT-2, and the corresponding activations X
onto the brain activations Y, elicited by the same sequence of words (e.g. NOT VERY HAPPY) with a
spatio-temporal estimator f � g. This mapping is evaluated through cross-validation, with a Pearson
correlation between the predicted and the actual brain signals R(X). B. Comparison used to decompose
the brain score R(X) into the four linguistic components. X(l) refers to the the lth layer’s activations of
GPT-2 input with the sentences heard by the subjects; X(l) refers to the average lth layer’s activations
of GPT-2 input with the synthetic sentences with a similar syntax (cf. Figure 3.2); � indicates a feature
concatenation, and ’�’ indicates a subtraction between scores.

Mapping Representations onto FMRI Signals

In the present section, we aim to map the activations of two systems Y1, a neural network, and
Y2, the brain, input with the same sequence words w = (w1, . . . , wM). Let X = Y1(w) 2 RM⇥d

be a vector of Y1 activations elicited by w (M vectors of dimension d, one per input word), and
Y = Y2(w) 2 RN the observable brain response at each of the N fMRI recorded time sample
(a.k.a TR). For simplicity, we consider the analysis for one particular fMRI voxel, the same
analysis can be repeated to map X with every voxel in the brain.

To assess the mapping between X and Y, we use the standard model-based encoding
analysis of fMRI signals (Huth, de Heer, et al., 2016; D. L. K. Yamins & DiCarlo, 2016; Naselaris
et al., 2011), and evaluate a linear spatio- ( f ) temporal (g) encoding model trained to predict the
ith fMRI volume given the network’s activations X, on a given interval I ⇢ [1 . . . N]:

R(X) : f 7! L
✓

f � g(X)i2I , (Yi)i2I

◆
(3.1)

Specifically, given a story w of M words (w = (w1, . . . , wM) = (THE, CAT, IS, ON, THE, MAT, . . . END),
we first extract the corresponding brain measurements Y of length N time samples. To max-
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imize signal-to-noise ratio, we average the responses across the subjects that listened to that
story, and apply the analysis to the average signal Y.

The sampling frequency of fMRI is typically lower than word rate. Furthermore, fMRI
signals are associated with delayed time responses that can span several seconds. Following
others (Huth, de Heer, et al., 2016; Deniz et al., 2019; Shain et al., 2020), we align the word-times
features X, of length M, to the dynamics of the fMRI signals applying a finite impulse response
(FIR) model g (cf. Appendix 6.3.4).

Finally we learn a “spatial” mapping f 2 Rd from the zero-mean unit-variance of X to the
zero-mean unit-variance fMRI recordings Y with a `2-regularized “ridge” regression:

argmin
f

Â
i2Itrain

⇣
Yi � f Tg(X)i

⌘2
+ l|| f ||2

with l the regularization parameter. We summarize the mapping with a Pearson correlation
score evaluated on left out data:

R = corr
⇣

f � g(X), Y
⌘

. (3.2)

This correlation score measures the linear mapping between the brain and the activation space
X. Following others (D. L. K. Yamins & DiCarlo, 2016), we will refer to this score as the brain
score of the embedding X.

Decomposing Shared Activations between Brains and Neural Language Models

Here, we use the definitions and methods introduced in Section 3.1.3, 3.1.4 and 3.1.4 to decom-
pose the shared representations of two systems: a deep neural network that encode linguistic
properties, and the average brain of 345 subjects listening to narratives.

To that end, we (i) compute the activations of the neural language model elicited by the same
narratives as the subjects (ii) factorize its activations into linguistic components, (iii) map with
supervised learning the factorized components onto brain activity, and finally (iv) decompose
the brain activations by evaluating this mapping.

Language transformers are composed of multiple layers (l 2 [1 . . . L]), stacked over a (non
contextualized) word embedding layer (l = 0). Each layer can be written as a non-linear
system Y(l) that transforms a sequence of words w (e.g. NOT, VERY, HAPPY) into a vectorial
representation of the same length,

Y(l) : VM ! RM⇥d

w 7! Y(l)(w) = [Y(l)(w)1, . . . , Y(l)(w)M]
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with V the set of vocabulary words, M the length of the sequence, and d the dimensionality
of the output representation taken at each word.

We denote X(l) the activations of Y(l)elicited by w, and X(l) the syntactic representations
extracted from X(l) using the method introduced in Section 3.1.4. Following the definitions of
Section 3.1.3, we can decompose the activations X of Y into their:

• lexical representations: X(0), the word embedding of the network.

• compositional representations: X(l), l > 0.

• syntactic representations: X(l), that can be extracted for any layer l 2 [0 . . . L]. The lexical
syntactic representations X(0) isroughly equivalent to the part-of-speech of the word.
Compositional syntactic representations can be extracted from any layer l > 0 that encode
syntactic information.

• semantic representations: X(l) � X(l), as the residuals of syntactic representations. They
can be defined at both the lexical X(0) � X(0) and compositional levels (l > 0).

In practice, to verify that our syntactic embedding (X) only contains syntax, we evaluate its
ability to predict three semantic and two syntactic features (Figure 3.3, Appendix 6.3.3). The
results confirm that semantic features can be decoded from X but not from X, whereas syntactic
features can be decoded from both.

Finally, following Section 3.1.4, we can compute the brain scores of the network’s represen-
tations to decompose brain activity into:

• lexical representations: R(X(0))

• compositional representations: R(X(l)), l > 0. Strictly compositional representations are
defined as the compositional representations that cannot be explained by lexical features:
R(X(l))�R(X(0)), with l > 0. For clarity, and except if stated otherwise, we will refer to
strictly compositional representations as “compositional” representations.

• syntactic representations: R(X(l)), l 2 [0 . . . L]

• semantic representations: R(X(l))�R(X(l)), i.e. the residual brain scores of syntactic
representations, for any layer l 2 [0 . . . L]
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3.1.5 Experiments

Here, we apply the general method described in Section 3.1.4, 3.1.4 and 3.1.4 to decompose the
activations of two nonlinear systems, GPT-2 (Y1) and the brain activity of 345 subjects listening
to narratives (Y2).

Functional MRI dataset. We analyze the “Narratives” public dataset (Nastase et al., 2020),
which contains the fMRI measurements of 345 unique subjects listening to narratives. The
narratives consist of 27 English spoken stories, ranging from ⇡ 3 minutes to ⇡ 56 minutes, for
a total of ⇡ 4.6 hours of unique stimuli. The original paper included two fMRI preprocessing
pipelines, one with spatial smoothing and the other without. All our analyses are tested on the
unsmoothed fMRI. As suggested in the original paper, we exclude (story, subject) pairs because
of noisy fMRI recordings or missing transcripts, resulting in 617 unique (story, subject) pairs in
total and ⇡ 4 hours of unique audio stimuli.

Phonological features. To focus on lexical and supra-lexical language processing – as opposed
to low-level speech processing, we extract three potential sets of confounds: the phone rate
(the number of phones between two fMRI measurements, of dimension 1), the word rate (the
number of words between two fMRI measurements) and the concatenation of the phoneme,
stress and tone of the words in the stimulus. For each story, a phoneme-level transcript was
provided in the Narratives database thanks to Gentle3, a forced-alignment algorithm. Gentle
annotations led to 117 unique categories (with unique phone, stress and tone), resulting in a
one-hot encoded feature of the same dimension.

Language model features. GPT-2 is a high-performing causal (i.e. left to right) language
model trained to predict a word given its previous context (Radford et al., 2019), and known to
generate brain-like representations (Goldstein et al., 2022; Caucheteux & King, 2022; Affolter
et al., 2020; Schrimpf et al., 2021; Caucheteux et al., 2022). It is comprised of 12 Transformer
(contextual) layers (l 2 [1 . . . 12]) stacked over a (non-contextual) embedding layer (l = 0), each
of dimensionality 768, with 1.5 billion parameters in total. We used the pretrained version of
GPT-2 from Huggingface (Wolf et al., 2020), trained on a dataset of 8 million web pages. In
practice, the 27 stories are pre-processed, tokenized and input to the model (Appendix 6.3.1).
The activations of each GPT-2 layer are extracted, resulting in 12 vectors of 768 activations for

3https://github.com/lowerquality/gentle
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each token of each story transcript. For comparison, we also study five other transformers:
BERT (Devlin et al., 2019), XLnet (Yang et al., 2020), Roberta (Liu et al., 2019), AlBert (Lan et
al., 2020) and DistilGPT-2 (a smaller version of GPT-2) and recover similar – although lower –
brain scores (Appendix 6.3.1).

Extracting syntactic representations from GPT-2 . To isolate the syntactic representations
of GPT-2 , we synthesize, for each sentence of each story, k = 10 sentences with the same
syntactic structures (Figure 3.2). We ensure in supplementary analyses that (i) the k synthetic
sentences do not include the target sentence and (ii) these syntactic embeddings (Yk) lead to
stable representations of syntax (Appendix 6.3.2). To this end, we proceed as follows:

• The transcript is formatted, split into sentences and tokenized using the large English
tokenizer provided by spaCy (Honnibal et al., 2020) (cf. Appendix 6.3.1).

• Then, we use Supar, a state-of-the art dependency parser (Y. Zhang et al., 2020) to extract
the dependency structure of each sentence and the part-of-speech.

• For each target word of each sentence of the Narratives dataset, we sample, from a ⇡
58,000 word corpus, consisting of Wikipedia combined with Narratives’ transcripts, up
to to k0 = 1, 000 words that have the same part-of-speech and dependency tags (e.g.
CAT: NOUN, SINGULAR, SUBJECT OF). At this stage, k0 versions of the target Narratives
transcripts are synthesized.

• The synthesized sentences are not always grammatically correct. Thus, we automatically
correct the sentences with Gector (Omelianchuk et al., 2020), and filter out the sentences
that do not have the same length or part-of speech as the target sentence in the Narratives
corpus.

• Some of the generated sentences may end up with a distinct syntactic tree than the original
sentence, because semantics can disambiguate syntax (e.g. I SHOT AN ELEPHANT IN MY

PYJAMAS). To assess the syntactic similarity between the original and the generated
sentences, we compute, from their respective syntactic trees, the Pearson correlation
between the words’ pairwise distances, following (Manning et al., 2020)’s method. Then,
we select the sentences whose syntactic trees are the most similar. 95% of the generated
sentences have a syntactic tree that correlates with the tree of the target sentence above
R=90%.
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Mapping embeddings onto onto the fMRI signals. As described in equation (3.1), we eval-
uate the mapping between a set of modeling features X and the fMRI signals Y 2 RN⇥dy by
fitting a linear spatio- ( f ) temporal (g) encoding model. f � g was fitted on Itrain = 99% of
the dataset, and evaluated on Itest = 1% of the left out-data (2.5 min of audio). We evaluate
the quality of this mapping with a Pearson R correlation between predicted and actual brain
signals on Itest. Specifically, we use the linear ridge regression from scikit-learn (Pedregosa
et al., 2011), with penalization parameters chosen among 10 values log-spaced between 10�1

and 108 and g was a finite impulse response (FIR) model with 5 delays, following (Huth, de
Heer, et al., 2016). X and Y are normalized (mean=0, std=1) across scans for each story, using a
robust scaler clipping below and above the 0.01st and 99.99th percentiles, respectively. We repeat
the procedure 100 times with a 100-fold cross-validation, using scikit-learn ‘KFold’ without
shuffling (Pedregosa et al., 2011).

Statistical significance. We assess the significance of our results across test folds (k = 100). To
this end, we first average the brain scores within each brain region, as defined by the Destrieux
Atlas parcellation (Destrieux et al., 2010). Then, we apply a Wilcoxon two-sided signed-rank
test across folds to evaluate whether this average brain score is significantly different from
zero. The p-values of the 75 brain regions were corrected for multiple comparison using a False
Discovery Rate, (Benjamini/Hochberg) as implemented in MNE-Python (Gramfort et al., 2013).
Non-significant p-values (p � .05) are masked in Figure 3.5.

3.1.6 Results

Phonological features. To isolate the sublexical speech representations, we compute the
brain scores using a concatenation of three sets of features, i.e., word rate, phone rate, and
phone categories. These sublexical features lead to significant brain scores across the expected
language networks and mainly peak within the bilateral superior temporal lobe, the temporo-
parietal junction, the lateral intra-parietal sulcus, the infero-frontal cortex (IFG) as well as in the
right motor cortex (Figure 3.5A and 3.6).

To isolate lexical and compositional representations, we focus the next analyses on the gain
in brain scores obtained over those of sublexical features (i.e. to the increase of brain scores
obtained with each feature set, as compared to the scores obtained with phonological features).
For simplicity, the R scores reported in Figure 3.5, 3.6 and in the text below refer to this gain.

The brain scores corresponding to the lexical (R(X(0))), compositional (R(X(9))), syntactic
(R(X(9)) and semantic representations (R(X(9))�R(X(9))) of the ninth layer of GPT-2 are

86



Acoustic features

GPT2 activations

A.

�(X(9))

Lexical

Sy
nt

ac
tic

Compositional

Se
m

an
tic

 

�(X (0)) � �(X (0)) �(X (9)) � �(X (9) � X (0))

�(X (0)) �(X (9)) � �(X (0))

�(X (0)) �(X (9))�(X (9)) � �(X (0))

Sy
nt

ac
tic

 
+ 

Se
m

an
tic

 

Lexical + compositional

�(X (9))

�(X (9)) � �(X (9))

B.

0.1

-0.1

R

E.

C. D.

F. G.

H. I. J.

0.25
0

-0.25
R

Figure 3.5: Results Decomposition of the brain scores of 345 subjects listening to narratives into their
phonological (A) syntactic (B-D), semantic (E-G), lexical (B-H), compositional (C-I) components and their
combinations (ten combinations in total). A Comparison between the brain scores of three phonological
features (word rate, phone rate, and phone categories, on the top) and the brain scores of the activations
extracted from the 9th layer of GPT-2, when input with the same narratives (on the bottom). B-J. Brain
scores decomposed into different sub-processes. To focus on language – and not low-level speech –
processing, we display the gain in brain scores compared to the phonological features. For simplicity,
the R values reported refers to this gain. Brain scores are computed for each fMRI voxel (averaged
across subjects), on 100 splits of ⇡ 2.5 min of audio stimulus. Non-significant brain regions are not
displayed (.05 threshold), as assessed with a two-sided Wilcoxon test across splits, corrected for multiple
comparison across the 75 regions of interest (cf. Section 6.3.5).

displayed in figures 3.5 and 3.6 (non-significant scores after correction for multiple comparisons
across regions are masked).

Lexical features. The lexical representations of the brain have been repeatedly investigated
through the lens of a word-embedding (Mitchell et al., 2008; Huth, de Heer, et al., 2016; Toneva
& Wehbe, 2019; Schrimpf et al., 2021; Caucheteux & King, 2022). Here, we replicate these
analyses: GPT-2’s word embedding X(0) leads to lexical brain scores significantly higher than
sublexical features’ in most of the language network, i.e. in the bilateral superior temporal lobe
and the infero-frontal cortex (Figure 3.5H).

Lexical syntax. Do these brain scores result from semantic and/or syntactic representations?
To tackle this issue, we compute brain scores from the word embeddings (X(0)) input with
synthesized and syntactically-matched sentences: i.e. word sequences sharing the same syntax
as the target sentence in the original Narratives corpus (Figure 3.5B). The results reveal sig-
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Figure 3.6: Brain scores for ten regions of interest. Same as Figure 3.5.BCEF, with voxel-averaged
brain scores (after subtraction of phonological brain scores), for the top ten regions of interest of the
left hemisphere (Appendix 6.3.5). Error bars are the standard-errors of the mean across the 100 cross-
validation folds. Significance (‘*’) is assessed with a Wilcoxon test across folds, with p < .05 as a
threshold.

nificant brain scores (i.e. higher than sublexical ones) in a distributed network including the
infero-frontal cortex, the angular gyrus and the posterior superior temporal gyrus (Figure 3.6).

Lexical semantics. To identify the representations of lexical semantics, we compare the brain
score obtained with the word embedding to those obtained with the embedding of lexical
syntax (R(X(0))�R(X(0)) in Figure 3.5E). The resulting brain scores are significant mainly in
the left hemisphere, and peak in the superior temporal gyrus, the infero-frontal cortex as well
as in the precuneus and the tranverse temporal gyrus. These results are more modest than we
anticipated given past work (Huth, de Heer, et al., 2016).

Compositional representations. Recent studies have shown that the contextual (i.e. deep)
layers of language models better predict brain activity than word embedding (Jain & Huth,
2018; Jat et al., 2019; Toneva & Wehbe, 2019; Caucheteux & King, 2022). We replicate this result
with a representative contextual layer of GPT-2 (layer 9 out of 12, Figure 3.5J): R(X(9)) almost
doubles the brain scores obtained with the word embedding R(X(0)) in the bilateral temporal,
infero-frontal and infero-parietal cortices.
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Compositional syntax. Do these gains in brain score reflect compositional semantics and/or
compositional syntax? To tackle this issue, we compare the brain scores obtained with the ninth
layer of GPT-2 input with the syntax-matched synthesized sentences R(X(9)), to the the brain
scores obtained with the first layer of GPT-2, input with those same synthesized sentences
R(X(0). The results show that the representations of compositional syntax are distributed
over the bilateral temporal and infero-frontal cortices, and actually extend to a relatively large
set of brain areas (Figure 3.5C-D). Overall, these results, although correlational, thus favor
a distributed (Fedorenko et al., 2012) rather than a modular (Pallier et al., 2011; Friederici et
al., 2000) view of syntax: both lexical and compositional syntactic effects do not appear to be
confined within a single brain area.

Compositional semantics. Finally, we estimate the brain representations of compositional
semantics by comparing the brain scores obtained with the syntactic representations R(X(9) to
those obtained with the “normal” activations R(X(9), i.e. GPT-2’s activations obtained with
the same sentences as subjects heard. Again, the resulting effects proved to be remarkably dis-
tributed, and peaked in the cingulate, supramarginal, and middle-frontal cortex (Figure 3.5G).
These brain scores appear to result from strictly compositional semantics: these effects remain
significant even when we subtract away the contribution of lexical semantics (Figure 3.5E and
3.6).

Control 1: low-level linguistic properties. Do the syntactic representations evidenced above
simply capture the length of sentences? To address this issue, we input the above analyses with
i) random words sequences (i.e. non grammatical) and ii) random but well-formed sentences
that have the same length as those of the Narratives corpus. The results show that neither
of these two embeddings match the brain scores obtained with syntactic and/or semantic
representations (Figure 3.7). Similarly, using the GPT-2 activations elicited by the sentences of
the Narratives after a random word permutation leads to lower brain scores than our original
analyses. Together, these results confirm that our decomposition of syntactic and semantic
representations in the brain cannot be reduced to simplistic representations like bags of words
and/or sentence length.

Control 2: generalisation to other layers and architectures. The above results are obtained
using the ninth layer of GPT-2. We chose to study this model and this layer, because a) GPT-2,
like the brain, processes words in a causal way, b) it is known to best predict brain responses

89



Figure 3.7: Generalisation to other layers and architectures In red, the brain scores of the syntactic
embeddings (R(X̄)) built out of GPT-2 layers (from the word embedding to layer 12), and the middle
layer of five transformer architectures (top, cf. Appendix 6.3.1, l = 2/3 ⇥ nlayers). In blue, the residuals
of syntax (R(X)�R(X̄)) in the brain. Bottom, the brain scores of i) acoustic features (the concatenation
of word rate, phoneme rate, phoneme stress and tone), GPT-2 activations induced ii) by random words
sampled in the stimulus, iii) by sentences randomly sampled from Wikipedia, matching in length with
the sentences of the stimulus, iv) by the actual sentences of stimulus, but with random word order in
each sentence (Appendix 6.3.6.)

(Schrimpf et al., 2021; Caucheteux et al., 2022), c) its middle layers best encode complex semantic
and syntactic properties (Jawahar et al., 2019; Manning et al., 2020). To test the generality of our
study, we apply the same analyses to five other language transformers as well as to all of the
layers of GPT-2 (Figure 3.7). The results generalize to each layer of GPT-2, and peak around
layer 9. The five other transformers (for their middle layer l = 2/3 ⇥ nlayers) result in similar,
although significantly lower brain scores (Appendix 6.3.1).
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3.1.7 Discussion

In the present study, we introduce a simple taxonomy and its associated method to decompose
the distributed representations of language in brains and deep language models.

Our taxonomy capitalizes on classic linguistic proposals (Lycan, 2018; Givón, 2001; Chomsky,
2014) to offer precise definitions of lexicality, compositionality, syntax and semantics, which
operate on distributed representations. Our results show that these four sets of linguistic features,
typically theorized in terms of discrete symbols, can be, as long predicted (Smolensky, 1990),
investigated in artificial and biological neural networks.

The present definitions remain imperfect. First, compositionality is often associated with
specific properties that are not presently considered (e.g. systematicity and generalisation
(Szabó, 2004; Hupkes et al., 2020; Baroni, 2020)). Furthermore, we here define semantics as
the residual representations of any text embedding once syntactic representations have been
removed. This proposal is very coarse: semantics is generally defined as the study of meaning
(which is itself not easy to define). Yet, some language features like emotional value and textual
style may arguably not “mean” anything, in that they do not necessarily refer to a state of
the world and yet would be categorized as semantics according to our proposed taxonomy.
In spite of these limits, the advantage of our framework is that it makes simple, precise and
quantifiable predictions to investigate distributed linguistic representations in the human
brain. Furthermore, the present framework is particularly versatile in that i) it can, in principle
accommodate any natural sentences and ii) its conclusions can be refined with the development
of better and/or more biologically-plausible models of language.

The present study follows suit with past research on naturalistic and thus poorly-controlled
linguistic stimuli (Mesgarani et al., 2014; Huth, de Heer, et al., 2016; J. Brennan, 2016; J. R. Bren-
nan & Hale, 2019; Stehwien et al., 2020; Gwilliams et al., 2020). While we replicate previous
neuroscientific findings regarding lexical semantics (Figure 3.5E) (Huth, de Heer, et al., 2016)
and lexical vs compositional processing in the brain (Figure 3.5.H,J) (Toneva & Wehbe, 2019;
Schrimpf et al., 2021; Goldstein et al., 2022), our systematic decomposition of language repre-
sentations brings new light on the brain bases of syntax (Figure 3.5.BCDFG). In addition, our
approach diverges with and complements previous practices, consisting of carefully designed
stimuli, typically matched for word length, word frequency (Kutas & Hillyard, 1980) and/or
constituent size (Pallier et al., 2011; Ding et al., 2016), which becomes exponentially difficult
when the number of variables to control increases (Hamilton & Huth, 2018). This change of
paradigm has been empowered by the rise of high-performing language models: previous
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research lacked a method to make single trial/single sentence predictions and could thus only
compare the average activations across blocks of similarly constructed sentences. By contrast,
modern language models offer the possibility to predict the representations of individual words
and sentences (Hale et al., 2018; Toneva & Wehbe, 2019; Caucheteux & King, 2022; Schrimpf et
al., 2021; Heilbron et al., 2022). Consequently, carefully-controlled experimental designs can
now be relaxed to naturalistic settings, and allow one to refine her tests and hypotheses without
having to conduct new (and arguably artificial) experiments.

The main drawback of such an uncontrolled setting is undoubtedly signal-to-noise ratio:
like any bias/variance trade-off, relaxing the set of hypotheses that one can test in a given
dataset reduces the probability of a successful finding. To accommodate this issue, we here
opted to analyze the average brain signal across subjects. Even then, brain scores remain far
from 100%. Given that the brain bases of languageare notoriously variable across individuals
(Fedorenko et al., 2010) future works remain necessary to better account for the functional and
anatomical variability across subjects.

Thanks to machine learning, our method sheds new light on the neural bases of language
in general, and of syntactic processes in particular. First, it supplements previous work on
the neural basis of lexical (Friederici et al., 2000; Mitchell et al., 2008) and compositional
representations of language (Pallier et al., 2011; Nelson et al., 2017; Fedorenko et al., 2012;
J. R. Brennan & Pylkkänen, 2017): syntactic processes, in particular, appear to be linked to a
remarkably wide-spread distribution of activation in the language networks. This result favours
a distributed (Fedorenko et al., 2012) as opposed to a modular (Pallier et al., 2011; Friederici
et al., 2000) view of syntactic processes. Second, our study highlights the remarkably-large
recruitment of compositional semantics – an observation that strengthens and extends what had
already been reported at the lexical level (Huth, de Heer, et al., 2016). Overall, these results thus
reinforce the idea that speech comprehension results from the coordination of a huge cortical
network. While its functional principles remain largely unexplored, the similarity between the
human brain and deep language models offers a new and powerful mean to understand the
laws of language.
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3.2 Model-based analysis of brain activity reveals the hierarchy
of language in 305 subjects

3.2.1 Abstract

A popular approach to decompose the neural bases of language consists in correlating, across
individuals, the brain responses to different stimuli (e.g. regular speech versus scrambled
words, sentences, or paragraphs). Although successful, this ‘model-free’ approach necessitates
the acquisition of a large and costly set of neuroimaging data. Here, we show that a model-based
approach can reach equivalent results within subjects exposed to natural stimuli. We capitalize
on the recently-discovered similarities between deep language models and the human brain to
compute the mapping between i) the brain responses to regular speech and ii) the activations
of deep language models elicited by modified stimuli (e.g. scrambled words, sentences, or
paragraphs). Our model-based approach successfully replicates the seminal study of (Lerner et
al., 2011), which revealed the hierarchy of language areas by comparing the functional-magnetic
resonance imaging (fMRI) of seven subjects listening to 7 min of both regular and scrambled
narratives. We further extend and precise these results to the brain signals of 305 individuals
listening to 4.1 hours of narrated stories. Overall, this study paves the way for efficient and
flexible analyses of the brain bases of language.

3.2.2 Introduction

One of the most successful paradigms to decompose the brain bases of language consists in
correlating the brain responses of multiple subjects listening to the same carefully controlled
stimuli (J. Brennan et al., 2012; Fedorenko et al., 2016; Blank et al., 2016; Mollica et al., 2019). In
particular, (Lerner et al., 2011) recorded subjects with functional magnetic resonance imaging
(fMRI) while they listened to a story whose (1) sounds (2) words, (3) sentences or (4) paragraphs
were scrambled, as well as (5) to the regular version of the story (Figure 3.8A). The authors then
estimated the Inter Subject Correlation (ISC), i.e. the correlation between i) the brain activity of
a voxel in response to one scrambling condition and ii) the brain activity of a voxel averaged
across all other subjects, in response to the same scrambled stimulus (Figure 3.8B). While
successful, this ‘model-free’ approach is costly: it requires nsubjects ⇥ nconditions acquisitions of
brain activity in response to the same variably scrambled stimuli.

Here, we investigate whether and how a model-based approach can replicate Lerner et al.’s
findings, even if we only have access to the recordings elicited by the regular story in a single
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subject. We further apply the method to extend Lerner et al’s results to a large dataset of 305
individuals.
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Figure 3.8: Objective and methods A. In Lerner et al.’s seminal study, each subject is presented
successively with i) a 7 min long story (black), ii) the same story after its paragraphs (blue) iii) sentences
iv) words (orange) or iv) acoustics (red) has been scrambled. B. For each condition, subject and voxel,
the authors compute the inter-subject correlation (ISC), i.e the correlation r between i) the brain of
the current subject y and ii) the average brain signals of the other subjects ȳ. This method allows to
decompose the hierarchy of language processing in the brain, from the acoustic to the paragraph level.
C. We aim to replicate the results of Lerner et al. using only the recordings induced by the regular story
(black). To this aim, we scramble, not the stimulus of the subject, but the inputs of a deep language model
(GPT-2). For each condition (word, sentence or paragraph), we extract the corresponding activations x⇤
averaged over K random scrambles. We then compare the brain signals of the current subject y with
the activations x⇤ elicited by the scrambled texts, after a linear transformation fq that maps x⇤ onto a
brain-like space. Because GPT-2 is not trained to process waveform, we use the phonemes, stresses and
tones of the stimulus instead of x⇤ for the acoustic condition.

3.2.3 Methods

First, we formalize the ‘model-free’ and ‘model-based’ approaches in the context of narrative
listening, and explicit the link between the two.

Definitions Let’s define

• w = (‘Once’, ‘upon’, ... , ‘The’, ‘end.’) the regular story. W the story’s vocabulary.

• w|sound, w|word, w|sent, w|parag the story scrambled at the acoustic, word, sentence and
paragraph level, respectively, following the setting of Lerner et al. (cf. Appendix 6.4.2 for
the scrambling paradigm).
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B. Model-based replication 
 (7min story)
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 (15 stories, ~4 hours)
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Figure 3.9: Results. Following Lerner et al’s, a brain region is considered to process ‘acoustic’ level
information if its acoustic score (either brains-to-brain or model-to-brain correlation) is significant (red).
It is considered to process ‘word’-level (yellow) if its word score is significant but not its acoustic one –
and similarly for ‘sentence’ (green) and ‘paragraph’ (blue). A. Adapted from (Lerner et al., 2011). Labels
are based on the brains-to-brain correlation scores (Figure 3.8B) averaged over seven subjects listening to
a 7 min story. B. Labels are based on the model-to-brain scores (Figure 3.8C), averaged over 75 subjects
listening to the same 7 min story. Significance is inferred using a Wilcoxon test across subjects, corrected
with False Discovery Rate (FDR) across the 465 brain regions in each hemisphere (cf. Appendix 6.4.4),
with a significance threshold of p < 10�3 (cf. Appendix 6.4.5). C. Same as B., but on the brain of 305
subjects listening to 4 hours of 15 audio stories (including the 7 min one). Because of the large number of
subjects, the significance threshold is set to p < 10�25.

• B : WM ! RT: the function returning the brain recordings of length T time samples
(i.e., the number of fMRI pulses) induced by a sequence of M words.

• A : WM ! RM⇥D the function returning the activations of a deep language model
induced by a sequence of M words.

• y 2 RT the brain recordings of one subject elicited by w, recorded at one voxel. Here,
B(w) = y.

• y|sound, y|word, y|sent, y|parag the recordings elicited by the scrambled versions of w.

• r : RT ⇥ RT ! R, Pearson’s correlation

For clarity, we describe below the model-free and model-based approaches for the sentence
condition. The same methods can be used for the sound, word and paragraph conditions.

Model-free analysis Lerner et al. do not have a model of how the brain should react to sen-
tences. Instead, they assume that the neural signature of sentence-level processing corresponds
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to the brain response shared across all subjects listening to scrambled sentences w|sent. They
thus compute the ‘ISC score’ for each subject, i.e., the correlation between i) the brain response
to the scrambled story w|sent of a given subject (y|sent) and ii) the brain response to the same
stimulus averaged across all other subjects

R = r
�
y|sent, y|sent

�
. (3.3)

This approach boils down to a leave-one-subject-out cross-validation, using Pearson correlation
as evaluation metric and the average population response as estimator.

Model-based analysis Here, we propose a model-based analysis to circumvent the need for .
To eliminate the need for , we capitalize on the recent findings that deep language models

tend to linearly predict brain responses to language (Jain & Huth, 2018; Gauthier & Levy, 2019;
Toneva & Wehbe, 2019; Schrimpf et al., 2021; Caucheteux & King, 2022). We can thus assume
that the average brain response (B) can be well approximated by fq , a linear function that maps
the deep language model to the brain response. i.e.,

i) B ⇡ fq �A .

In practice, the coefficients q of fq are estimated using ridge regression. Finite Impulse
Response functions are employed to allow the activations of the deep language model of length
M (number of words) to map onto the slow and delayed brain recordings of length T (number
of pulses) (cf. Appendix 6.4.3).

First, we separate the representation of the sentence from that of its context. To this end,
for each sentence s of w, we note Ws the set of sequences ending with s, and whose preceding
context is random. The representation of s without context, is, by construction, also the sentence
representations of all sequences w0 2 Ws. Thus, if we denote this common representation, the
brain response of one subject to a sequence w0 can be modeled as

8w0 2 Ws, B(w0) = y⇤s + #w0 , (3.4)

with #w0 the context-dependent contribution to B(w0). Assuming it is a zero-mean random
perturbation we have:

Ew0
⇥
B(w0)] = y⇤s , (3.5)

96



with w0 sampled uniformly in Ws. Importantly, we do not assume that words are independent
of their context but that the shufflings defined for each sentence are independent of one another.
This statement is true by construction: shuffled contexts are realizations of a uniform sampling
of permuted texts. Furthermore, the assumption that activations of shuffled versions of the
same context have a zero-mean is not critical: assuming a constant mean would not alter
the methods and results, because the final metrics (Pearson correlation) is invariant to such
constant.

Similarly, we can retrieve x⇤s , the context-independent representation of a particular sequence
s in a deep language model

Ew0
⇥
A(w0)] = x⇤s . (3.6)

In practice, it is approximated with an average over K i.i.d. samples:

x⇤s ⇡ 1
K

K

Â
k=1

A(wk) , (3.7)

where w1, . . . , wK are sentences uniformly sampled in Ws.

3.2.4 Experiment

To test our model-based approach, we first apply it to the fMRI responses of 75 subjects listening
to the same 7 min story analysed in Lerner et al (Nastase et al., 2020)4. Thus, for each condition
(word, sentence and paragraph), subject and voxel, we compute the model-to-brain correlation
R = r

�
y, fq(x⇤)

�
.

The extraction of the fMRI signals y, and the estimation of the mapping function fq are
standard and thus detailed in Appendices 6.4.1 and 6.4.3. To estimate context-free represen-
tations, we i) scramble the stimulus at the word, sentence or paragraph level, ii) extract the
corresponding activations x from a deep language model, and iii) compute x⇤, as detailed
below.

Scrambling the stimulus at the word, sentence and paragraph level Words and sentences of
the stimulus are delimited using Spacy tokenizer (Honnibal et al., 2020). Note that punctuation
marks are not considered as words (e.g., ‘time.’ forms one token, not two). We define paragraphs
as contiguous chunks of eight sentences. To ‘scramble’ a sequence at the word (resp. sentence,
paragraph) level, we uniformly shuffle the indices of its words (resp. sentences, paragraphs)
and form the new sequence accordingly.

4http://datasets.datalad.org/?dir=/labs/hasson/narratives

97

http://datasets.datalad.org/?dir=/labs/hasson/narratives


Extracting deep models’ activations For each version of the scrambled stimulus, we extract
the activations from GPT-2 (A), a deep neural language model trained to predict a word given
its past context. GPT-2 consists of 12 transformer layers of dimensionality 768, 8 heads, and has
1.5 billion parameters in total. We use the model provided by Huggingface (Wolf et al., 2020),
trained on a dataset of 8 million web pages.

To extract the activations elicited by a sequence w of M words from layer l, we proceed as
follows: we tokenize the sequence into sub-words called “Byte Pair Encoding” (BPE) (Sennrich
et al., 2016) using the GPT-2 tokenizer provided by Huggingface. Then, we feed the network
with the M0 BPE tokens (M0 � M, up to 256 tokens in memory) and extract the corresponding
activations from layer l, of shape (M0 ⇥ D) with D = 758. Then, we sum the activations over
the BPEs of each word to obtain a vector of size (M ⇥ D).

All our analyses are based on the eighth layer of GPT-2. We choose GPT-2 because it has
been shown to best encode the brain activity elicited by language stimuli (Caucheteux et al.,
2021a; Schrimpf et al., 2021). We choose its eighth layer because the intermediate layers of
transformers have shown to encode relevant linguistic features (Jawahar et al., 2019; Manning et
al., 2020) and to better encode brain activity than input and output layers (Caucheteux & King,
2022; Toneva & Wehbe, 2019). Our results successfully generalize to two other architectures as
well as to the other intermediate layers of GPT-2 (Appendix 6.4.6).

Computing x⇤ for the word, sentence and paragraph conditions For each of the word,
sentence and paragraph conditions, we compute x⇤: a context-free representation of x. In short,
x⇤ are the activations of GPT-2, averaged over several scrambled contexts. For clarity, we focus
on the sentence level to detail the approach.

To build the sentence-level representation x⇤ of the stimulus, we use the approximation
introduced in equation (3.7). For each sentence s of one story w, we i) generate K=10 sequences
ending with s, but with scrambled previous context. The scrambled context is uniformly
sampled from the other sentences in the same story w. Then, ii) we extract the K corresponding
activations from GPT-2 (as described in the previous section) and iii) average the activations
across the K samples. GPT-2 activations are extracted for each word. Thus, for each of the Ms

words of sentence s, we obtain a vector x⇤s of shape Ms ⇥ D. We concatenate these vectors to
obtain x⇤, a sentence-level representation of the whole story w, of shape M ⇥ D. This method
is adapted from (Caucheteux et al., 2021a), in which we computed the average over GPT-2’s
activations to extract syntactic representations from the input sequence.
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Acoustic features GPT-2 takes words as input and not sounds. To build x⇤ at the acoustic
level, we simply use non-contextual acoustic features: the word rate (D = 1), phoneme rate
(D = 1) phonemes, stress, and tone (categorical, D = 117). For the latter, we use the annotations
provided the original Narratives dataset (Nastase et al., 2020).

3.2.5 Results

The results are displayed in Figure 3.9B. The hierarchy of temporal receptive fields (TRFs)
typically associated with acoustic, word, sentence and paragraph processing along the temporo-
parietal axis is remarkably well replicated in both hemispheres (Figure 3.9B). Notably, both the
model-free and model-based methods evidence that the precuneus, the superior frontal gyrus
and sulcus are characterized by sentence- and paragraph-level TRFs (Figure 3.9A and B).

Our results differ from Lerner et al.’s in several ways. First, the acoustic TRFs are slightly
more inferior with the model-based method. Second, frontal regions are detected to be asso-
ciated not only with sentences and paragraphs, but also with words (consistent with (Huth,
de Heer, et al., 2016; Caucheteux et al., 2021a; Goldstein et al., 2022)). Given that Lerner et al’s
dataset is not public, it is difficult to quantify these differences and determine whether they
reflect an improved sensitivity, or, more simply, inter-individual differences.

Our model-based method can, in principle, be applied to any natural stories. To test this
prediction, we extend our analyses to 305 subjects listening to 4.1 hours of fifteen narratives
(Figure 3.9C). Our model-based approach recovers the hierarchy of TRFs, and further reveals
additional word- and sentence-level representations in the precuneus and prefrontal regions.

3.2.6 Discussion

Here, we leverage the modeling power of deep language models to show that the seminal
results of Lerner et al. can be retrieved without having subjects listening to multiple scrambled
stimuli. Critically, we formalize the assumptions under which ‘model-based’ and ‘model-free’
approaches can be linked (Lerner et al., 2011).

Our model-based method recovers the hierarchy of TRFs evidenced by Lerner et al., in the
brain of an unusually large cohort of 305 subjects. Thus, our study complements the recent
work of (Jain & Huth, 2018; Toneva & Wehbe, 2019; Toneva, Mitchell, & Wehbe, 2020a) who
predict brain responses to speech from language models input with variably-long contexts.
Specifically, we show that previous model-based results unravel the same mechanisms that was
previously identified with model-free approaches.
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The replication is not perfect: the acoustic and word TRFs slightly differ between the two
methods. This may be explained by individual subject’s variability, which is only captured
by the model-based approach. Further research, using the non-public data from Lerner et al.
should investigate these remaining differences.

In line with previous work (J. Brennan, 2016; J. R. Brennan & Hale, 2019; Gauthier & Levy,
2019; Schrimpf et al., 2021), our study demonstrates that deep neural networks build constructs
that predict brain activity, accurately enough to recover the hierarchy of language processing in
the brain. The success of replication thus reinforces the idea that naturalistic stimuli and deep
neural networks form a powerful couple to study the neural bases of language (Hamilton &
Huth, 2018).
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3.3 Toward a realistic model of speech processing in the brain
with self-supervised learning

3.3.1 Abstract

Several deep neural networks have recently been shown to generate activations similar to
those of the brain in response to the same input. These algorithms, however, remain largely
implausible: they require (1) extraordinarily large amounts of data, (2) unobtainable supervised
labels, (3) textual rather than raw sensory input, and / or (4) implausibly large memory (e.g.
thousands of contextual words). These elements highlight the need to identify algorithms
that, under these limitations, would suffice to account for both behavioral and brain responses.
Focusing on speech processing, we here hypothesize that self-supervised algorithms trained
on the raw waveform constitute a promising candidate. Specifically, we compare a recent
self-supervised model, wav2vec 2.0, to the brain activity of 412 English, French, and Mandarin
individuals recorded with functional Magnetic Resonance Imaging (fMRI), while they listened
to approximately one hour of audio books. First, we show that this algorithm learns brain-like
representations with as little as 600 hours of unlabelled speech – a quantity comparable to
what infants can be exposed to during language acquisition. Second, its functional hierarchy
aligns with the cortical hierarchy of speech processing. Third, different training regimes reveal
a functional specialization akin to the cortex: wav2vec 2.0 learns sound-generic, speech-specific
and language-specific representations similar to those of the prefrontal and temporal cortices.
Fourth, we confirm the similarity of this specialization with the behavior of 386 additional
participants. These elements, resulting from the largest neuroimaging benchmark to date, show
how self-supervised learning can account for a rich organization of speech processing in the
brain, and thus delineate a path to identify the laws of language acquisition which shape the
human brain.

3.3.2 Introduction

The performance of deep neural networks has taken off over the past decade. Algorithms
trained on object classification, text translation, and speech recognition are starting to reach
human-level performance (Xu et al., 2020). Furthermore, the representations generated by these
algorithms have repeatedly been shown to correlate with those of the brain (Kriegeskorte, 2015;
D. L. K. Yamins & DiCarlo, 2016; Kietzmann et al., 2018; A. J. Kell & McDermott, 2019; Cichy &
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Kaiser, 2019; Toneva & Wehbe, 2019; Millet & King, 2021; Caucheteux & King, 2022), suggesting
that these algorithms converge to brain-like computations.

Such convergence, however, should not obscure the major differences that remain between
these deep learning models and the brain. In particular, the above comparisons derive from
models trained with (1) extraordinarily large amounts of data (40GB for GPT-2 (Radford et al.,
2019), the equivalent of multiple lifetimes of reading), (2) supervised labels, which is rarely
the case for humans (e.g. (D. L. K. Yamins & DiCarlo, 2016)), (3) data in a textual rather than a
raw sensory format, and/or (4) considerable memory (e.g., language models typically have
parallel access to thousands of context words to process text). These differences highlight the
pressing necessity to identify architectures and learning objectives which, subject to these four
constraints, would be sufficient to account for both behavior and brain responses.

Here, we hypothesize that the latest self-supervised architectures trained on raw sensory
data constitute promising candidates (Borgholt et al., 2022; Bardes et al., 2022; Baevski et al.,
2020). We focus on wav2vec 2.0 (Baevski et al., 2020), an architecture that stacks convolutional
and transformer layers to predict a quantization of the latent representations of speech wave-
forms. We train wav2vec 2.0 on 600 h of effective speech – a quantity roughly comparable to
what infants are exposed to during early language acquisition (speech only makes up a small
fraction of infants’ daily experience) (Dupoux, 2018; Hart & Risley, 1992; Gilkerson et al., 2017).

We use standard encoding analyses (Naselaris et al., 2011; Huth, de Heer, et al., 2016;
D. L. K. Yamins & DiCarlo, 2016; A. J. E. Kell et al., 2018) (Figure 3.10) to compare this model to
the brains of 412 healthy volunteers (351 English speakers, 28 French speakers, and 33 Mandarin
speakers) recorded with functional magnetic resonance imaging (fMRI) while they passively
listened to approximately one hour of audio books in their native language (Nastase et al., 2020;
Li et al., 2021) (8.5 hours of distinct audio materials in total).

To better understand the similarities between wav2vec 2.0 and the brain, we compare
brain activity to each layer of this model, as well as to several variants, namely (1) a random
(untrained) wav2vec 2.0 model, (2) a model trained on 600 h of non-speech sounds, (3) a model
trained on 600 h of non-native speech (for example, a model trained on English speech and
mapped onto the brain responses to French-speaking participants), (4) a model trained on 600 h
of native speech (for example, a model trained on English speech and mapped onto the brain
responses to English participants), and (5) a model trained directly on speech-to-text (i.e., a
supervised learning scheme) on the native language of the participants.

Our results provide four main contributions. First, self-supervised learning leads wav2vec
2.0 to learn latent representations of the speech waveform similar to those of the human brain.
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Second, the functional hierarchy of its transformer layers aligns with the cortical hierarchy of
speech in the brain, and reveals the whole-brain organisation of speech processing with an
unprecedented clarity. Third, the auditory-, speech-, and language-specific representations
learned by the model converge to those of the human brain. Fourth, behavioral comparisons
to 386 supplementary participants’ results on a speech sound discrimination task confirm this
common language specialization.

Figure 3.10: Comparing speech representations in brains and deep neural networks. A. We analyze
the brain activity of 412 participants recorded with functional Magnetic Resonance Imaging (fMRI) while
they passively listened to audio books in their native language (French, English or Mandarin). B. After
training wav2vec 2.0 (Baevski et al., 2020) with self-supervised learning (L) over 600 h of unlabelled,
effective speech, we extract its activations in response to the audio books that were presented to the
participants. We assess the similarity between the activations of the model X and brain activity Y with a
standard encoding model W (Nastase et al., 2020) evaluated with a cross-validated Pearson correlation R.
C. Examples of the true BOLD response (black) and the predicted BOLD response (red) estimated from a
linear projection of the model’s activations in three voxels randomly selected from the 10th percentile of
best voxels identified by the noise ceiling analysis for the first 200 s of a representative story in the test
set.
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Figure 3.11: Self-supervised learning suffices for wav2vec 2.0 to generate brain-like representations
of speech. A. Brain score (R) assessed for each subject and voxel independently, and here averaged
across subjects for clarity. Only scores significantly above chance level, as assessed using a two-sided
Wilcoxon test across subjects after correction for multiple comparison are color-coded (p < 10�10). B. R
scores for the same wav2vec2 model, averaged across subjects and voxels in four brain areas typically
involved during speech processing (the primary and secondary auditory cortices, the superior temporal
gyrus, the superior temporal sulcus, and the infero-frontal gyrus). In grey, the brain score obtained with
a randomly initialized wav2vec 2.0 architecture. Error bars are the standard errors of the mean (SEM)
across subjects. The stars indicate a significant difference between the random and trained model (all
p < 10�4). C. R scores of wav2vec 2.0 without training (top), trained with a supervised (middle) and
self-supervised learning rule (bottom), on the same 600 hours of effective speech. Scores are averaged
across subjects and voxels and error bars are SEM across subjects.

3.3.3 Methods
Models

We train several variants of wav2vec 2.0 (Baevski et al., 2020) from scratch on different speech
datasets using two different learning objectives (a self-supervised and a supervised objective).

Architecture

Wav2vec 2.0 consists of three main modules. First, a feature encoder composed of seven blocks
of temporal convolutions (output dimension 512) transforms the speech input S (raw mono
waveform at 16 kHz) into a latent representation z (output dimension of 512, frequency 49 Hz,
stride of 20 ms between each frame, receptive field of 25 ms). Second, a quantization module
discretizes z into q, a dictionary of discrete and latent representations of sounds. Third, z is
input to a “context network” consisting of 12 transformer blocks (model dimension 768, inner
dimension 3072, and 8 attention heads), which together yield a contextualized embedding c, of
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Figure 3.12: The functional hierarchy of wav2vec 2.0 maps onto the speech hierarchy in the brain. A.
We compute the R score for each layer of wav2vec 2.0 separately and estimate, for each voxel, the layer
with highest brain score on average across subjects. Only the voxels with significant brain scores are
displayed (p < 10�18). While the first transformer layers (blue) map onto the low-level auditory cortices
(A1 and A2), the deeper layers (orange and red) map onto brain regions associated with higher-level
processes (e.g. STS and IFG). B. Layer-wise R scores averaged across all voxels. Error bars are SEM
across subjects. C. Proportion of voxels with most predictive layer (x-axis) in four regions typically
involved in speech processing. While most voxels in the primary cortex are best predicted by the first
layers of the transformer, higher-level brain areas are best predicted by deeper layers.

the same dimensionality of q.

Learning objective

Self-supervised learning. In this training paradigm, the model optimizes two losses. The
first loss is contrastive and requires the model to predict the quantized representation q of some
masked input using c, from a finite set of quantized representations drawn from the input
sample. The second loss ensures that the quantized representations are diverse. See Section
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Figure 3.13: The specialization of wav2vec 2.0’s representations follows and clarifies the acoustic,
speech, and language regions in the brain. A. We first evaluate humans’ language specificity by
quantifying their ability to perceive phonemes of their native or non-native languages (Section 3.3.3)
in a ABX matching-to-sample task (Schatz, 2016) (higher is better). As expected, humans are better at
matching phonemes of their native language. B. Then, we train four wav2vec 2.0 models with self-
supervised learning on four datasets – non-speech acoustic scenes, English, and French, and compute
their ABX accuracy on the same speech datasets as humans. The ‘random’ model is wav2vec 2.0 without
any training. C. Brain score (R) of each model (with an added model trained on Mandarin), averaged
across voxels, in four regions of the brain (Section 3.3.3). D. Acoustic, speech and language specificity
for each voxel. For instance, one voxel is considered specific to the ‘native’ model if its native R score is
higher than its ‘non-native’ R score (p < .05). Only the voxels with significant R scores for the untrained
model are displayed (p < 10�18). Error bars are the SEM across phone pairs in A and B, and across
subjects in C. The stars indicates a significant difference between two conditions (Section 3.3.3).

Appendix 6.5.2 and (Baevski et al., 2020) for details.

Supervised learning. In this training paradigm, the quantization module is discarded and a
linear layer mapping c to phonemes is added at the end of the pipeline. The model is randomly
initialized and all layers (including the feature encoder) are trained using a Connectionist
Temporal Classification (CTC) (A. Graves, 2012) loss to perform phone recognition. For both
training paradigms, we extract the activations of each layer from both the feature encoder
(outputting z) and the context network (outputting c). We extract the representations of the
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convolutional and transformer blocks using an input window of 10 s of raw waveform (stride =
5 s).

Training

Datasets. We successively train different wav2vec 2.0 models using each of four datasets: (i)
the French and (ii) English CommonVoice corpora (Ardila et al., 2020), (iii) the MAGICDATA
Mandarin Chinese Read Speech Corpus (Co., 2019), and (iv) a non-speech subset of the Audioset
dataset (Gemmeke et al., 2017), which contains recordings of various acoustic scenes.

Preprocessing. All the audio datasets were randomly subsampled to have an approximate
size of 600 hours, downsampled to 16 kHz and converted to mono with the Sox software5. We
randomly split the datasets into a training (80%), a validation (10%) and a test set (10%). The
audio recordings we use from the Audioset dataset are filtered so that they do not contain
speech or any sounds produced by humans, such as laughter or singing. For the speech datasets,
we also use their corresponding annotations (in the supervised settings). We phonemize these
annotations using eSpeakNG6. The number of different phoneme symbols in these annotations
is similar for French (32), English (39), and Mandarin Chinese (33).

Implementation. We train all of our models using the fairseq implementation of wav2vec 2.07

using default hyperparameters. We also analyze a model whose parameters were randomly
initialised (“untrained” model).

We use self-supervised learning to train four models: three on the speech datasets (French,
English, and Mandarin) and one on the acoustic scenes dataset. In each case, the training was
performed using the same configuration file (namely, the base configuration provided in the
fairseq repository for pretraining wav2vec 2.0 on LibriSpeech (Panayotov et al., 2015)). We train
the models for 400k updates and select the ones with the best validation loss.

We also use the supervised training paradigm to train three models, on the French, English,
and Mandarin datasets, respectively. Each training was performed using the same configuration
file, which was identical to the configuration provided in the fairseq repository for fine-tuning
wav2vec 2.0 on the 960 hour Voxpopuli corpus (C. Wang et al., 2021), except that parameters
were not frozen (freeze finetune updates= 0) and learning was performed on all parameters

5http://sox.sourceforge.net/
6https://github.com/espeak-ng/espeak-ng
7https://github.com/pytorch/fairseq/tree/main/examples/wav2vec
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of the models using the CTC loss (feature grad mult= 0.1). We train the models for 400k
updates and we use the ones with the best word error rate (WER) on the validation set. The
French model obtains 13.9 WER, the English model 28.6 WER, and the Mandarin model 4.6
WER, on their respective test sets.

Functional MRI

We analyse a composite set of fMRI recordings aggregated from the Little Prince (Li et al., 2021)
and the Narratives public datasets (Nastase et al., 2020).

Narratives. This dataset8 contains the fMRI recordings of 345 native English-speaking par-
ticipants listening to English narratives (4.6 hours of unique audio in total). The participants
listened to different stories varying from 7 to 98 min (mean = 26 min). Following (Nastase et al.,
2020), we (1) focus on fifteen representative stories and ignore the narratives that have been
modified by scrambling and (2) exclude eight participants because of noisy recordings. Overall,
this selection results in a curated dataset of 303 participants listening to fifteen stories ranging
from 3 min to 56 min, for a total of 4 hours of unique audio (36,018 words from a vocabulary of
4,004 unique words).

The Little Prince. This dataset9 contains fMRI recordings of 48 English native speakers, 33
Mandarin native speakers, and 28 French native speakers listening to The Little Prince in their
respective native language. The experiment itself was divided into nine runs of approximately
10 min of passive listening. For each language condition, the story was read by a single native
speaker. The English, Mandarin, and French audiobooks last 94, 90 and 97 minutes respectively.

Preprocessing. For Narratives, we did not perform additional preprocessing: we use the
public preprocessing of the dataset already projected on the surface space (“fsaverage6”)
without spatial smoothing (labelled “afni-nosmooth” in the data repository). In contrast, the
Little Prince dataset is only provided in a volumetric space. Consequently, for each language
condition separately, we subselected the cortical voxels by computing a brain mask using the
average of all participants’ fMRI data realigned onto a common template brain via Freesurfer
(Fischl, 2012). These voxels are then projected onto a brain surface using nilearn’s vol to surf

function with defaults parameters (Abraham et al., 2014) and a ‘fsaverage6‘ template surface

8https://openneuro.org/datasets/ds002345
9https://openneuro.org/datasets/ds003643/versions/1.0.4
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(Fischl, 2012). For both Narratives and The Little Prince, fMRI signals are normalized across the
time dimension to have a mean of 0 and a variance of 1, for each participant, surface voxel and
session independently.

Brain parcellation. For the purposes of certain analyses, we group the fMRI voxels into
regions of interest using the Destrieux Atlas (Destrieux et al., 2010). This parcellation results in
75 brain regions in each hemisphere. For simplicity, we label the regions as follows: A1 and
A2 represents Heschl gyrus, which is the anatomical location of the primary and secondary
auditory cortices, STG and STS are the superior temporal gyrus and sulcus, and IFG is the
inferior frontal gyrus.

Brain score (R)

To quantify the similarity between the network’s activations X and the brain recordings Y, we
use a standard linear encoding model (Huth, de Heer, et al., 2016; D. L. K. Yamins & DiCarlo,
2016). For each subject, we split the data into train and test sets using a five-fold cross-validation
setting. For each train split, a linear mapping W is fitted to predict the brain response Ytrain

given Xtrain. W combines a temporal alignment function with fixed weight, and a trained
penalized linear regression.

Temporal alignment. The sampling frequency of the model’s activations (between 49 and
200 Hz) differs from the sampling frequency of fMRI BOLD signals (0.5 Hz). Furthermore,
the BOLD signals have delayed responses spanning over several seconds. Thus, we first
convolve the model activations with a standard hemodynamic response function (HRF) using
nistats (Abraham et al., 2014) compute regressor function with the ‘glover’ model and default
parameters. This results in the convolved activations X0

train with the same sampling frequency
as the fMRI Ytrain (see Appendix 6.5.3).

Penalised linear regression. Once temporally aligned, we fit an `2-penalised linear regression
that predicts the brain signals Ytrain given the activations Xtrain. We use the RidgeCV function
from scikit-learn (Pedregosa et al., 2011), with the penalization hyperparameter l varying
between 10 and 108 (20 values scaled logarithmically) chosen independently for each dimension
with a nested cross-validation over the training set (see Appendix 6.5.4).
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Evaluation. We evaluate the linear mapping W on the held out sets by measuring Pearson’s
correlation between predicted and actual brain responses: R = corr

�
Ytest, W · Xtest

�
. Finally, we

average the correlation scores across test splits to obtain the final “brain score”. To report the
average layer k⇤ with the highest brain score for each voxel (Figure 3.12), while being robust
to regression-to-the-mean biases, we first find the best layer ks for each participant s and each
voxel independently and then compute a circular mean across the N = 412 participants and
the K = 19 layers: k⇤ = angle

⇣
1
N ÂN

s=1 exp
⇣

2ipks
K+1

⌘⌘

Statistics. We assess the reliability of brain scores with second-level analyses across partici-
pants thanks to a Wilcoxon signed-rank test across participants. Thus, the resulting p-values
are not affected by fMRI auto-correlation within participants. We perform statistical correction
for multiple comparisons with Benjamini–Hochberg False Discovery Rate (FDR) across voxels
(Benjamini, 2010).

Behavioral experiment

To compare the phonetic representations of our models to those of humans, we compare the
forced-choice discrimination judgements of online participants10 to an analogous method
applied to wav2vec 2.0 (Schatz, 2016). Specifically, for each triplet of sound “ABX”, participants
judged whether the stimulus X was more similar to A or B. Analogously, we computed the
Euclidean distance in the most discriminative layer of wav2vec 2.0 (here transformer layer 5)
to determine whether X was closer to A or B. Additional data, analyses and model-human
comparison can be found in (Millet & Dunbar, 2022). We focus on the French and English
stimuli, which represent ⇡6,000 ABX triplets (testing 508 English and 524 French phone pairs),
with 386 participants in total (193 from each language group).

In Figure 3.13-A, we report the ABX accuracy of English- and French-speaking participants
in both their native and non-native language (either English or French). We first average results
per phone pair, and then average over phone pairs to obtain the ABX discrimination accuracy.
Similarly, in Figure 3.13-B, we compute the ABX accuracy of our wav2vec 2.0 models on the
same evaluation sets as the participants, using the parameters described in (Millet & Dunbar,
2022). English and French models are evaluated on the same (‘native’) or different (‘non-native’)
language stimuli as their training. The random and non-speech models are evaluated on both
French and English speech stimuli.

10https://docs.cognitive-ml.fr/perceptimatic/
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3.3.4 Results

Wav2vec 2.0 maps onto brain responses to speech. We estimate whether the activations of
wav2vec 2.0 models linearly map onto the human brain activity of 412 individuals listening
to audio books in the fMRI scanner. For this, we first independently train three models with
600 h of French, English, or Mandarin, respectively, and compute the brain scores (R) with the
corresponding participants. Specifically, we (1) convolve the activations (X) of the model with a
hemodynamic response function (HRF), (2) train a `2-penalized linear regression on a training
split to map them to brain activity Y, and (3) compute the Pearson correlation coefficient
between (i) the true fMRI activity and (ii) the predicted activations on a test split. The models’
activations significantly predict brain activity in nearly all cortical areas, reaching the highest
R scores in the primary and secondary auditory cortices (Figure 3.11-A B). These scores are
significantly higher than those obtained with a randomly initialised model (p < 10�50 on
average across voxels), and this comparison is robust across language groups (all p < 10�5).

Comparison of self-supervised to supervised models. Does self-supervision reach repre-
sentations that are as brain-like as those obtained with supervised learning? To address this
issue, we trained wav2vec 2.0 with an alternative, supervised objective, namely, predicting
phonetic annotations from the same 600 hours of effective speech sounds. We then implemented
the R score analyses described above. The results show that self-supervised learning in fact
leads to modestly but significantly better R scores than supervised learning (Figure 3.11-C):
DR = 0.002, p < 106.

The hierarchy of wav2vec 2.0 maps onto the hierarchy of the cortex. To compare the speech
hierarchy in the brain with the functional hierarchy learned by wav2vec 2.0, we evaluate the
R score of each layer of the model (Figure 3.12). First, we observe that convolutional layers
are less predictive than transformer layers. Second, within the transformers, the hierarchy of
representations aligns with the expected cortical hierarchy (Hickok & Poeppel, 2007): while low-
level areas (A1, A2) are best predicted by the first transformer layers, higher level areas (IFG,
STS) are best predicted by deeper layers. Remarkably, this hierarchy extends to supplementary
motor and motor areas in both hemispheres (Figure 3.12-A).

Language specificity in phone discrimination tasks. The acoustic features underlying speech
(fricatives, vowels, and so on) may also characterize non-speech sounds (the sound of tree leaves
in the wind, of a stone falling, and so on). Does the model show commonalities merely with
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general auditory processing in the brain, or does it capture speech-specific processing? If so,
does it show commonalities with brain representations that are specific to the native language
of the participants, or merely to general speech processing? We first evaluate the specialization
of humans’ perception to their native language using an ABX behavioral task (Section 3.3.3).
Specifically, we compare 386 French and English participants on their ability to distinguish
native and non-native phones. As expected (Bohn, 2017; Kuhl et al., 2005), participants were
better at discriminating native sounds than non-native ones (across phone pairs: p < 10�18,
Figure 3.13-A). Second, applying the same test to our self-supervised French and English
models shows that, like humans, models best discriminate sounds from their ‘native’ language
(i.e., the French model better distinguishes French stimuli than English ones, across phone
pairs, and vice versa: p < 0.05). Interestingly, the ABX accuracy of the model is significantly
higher than participants’. This quantitative difference may be partially explained by the fact
that participants – and online participants in particular – undergo fluctuating attention, and
adopt strategies which can negatively impact performance (Humphreys, 1939). Finally, as
expected, the random and acoustic models obtain the worst ABX accuracy. Overall, These
results confirm that 600 h of self-supervised learning on effective speech suffices for wav2vec
2.0 to learn language-specific representations (Figure 3.13-B).

Wav2vec 2.0 and the brain learn language specific representations. Next, we compare the
brain scores of random, non-speech, non-native and native models (Figure 3.13-C D). First,
our results show that the non-speech model attains higher R scores than the random model
(on average across voxels, DR = 0.006, p = 10�31) confirming the importance of learning to
generate brain-like representations. Second, non-native models attain higher R scores than the
non-speech model (DR = 0.002, p = 10�9), confirming that wav2vec 2.0 learns speech-specific
representations of sounds when trained on speech. Finally, the native model attains higher R
scores than non-native models (DR = 0.002, p = 10�15).

3.3.5 Discussion

Human infants acquire language with little to no supervision: A few hundred hours of speech
suffices for their young brain to learn to discretize phonemes, segment morphemes, and
assemble words in the language(s) of their social group (Dupoux, 2018; Gilkerson et al., 2017).
However, the learning principle that allows this unique feat remains, to date, unknown.

Here, we test whether self-supervised learning applied to a limited amount of speech effec-
tively accounts for the organization of speech processing in the human brain as measured with
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fMRI. For this, we train several variants of wav2vec 2.0 (Baevski et al., 2020) with three curated
datasets of French, English, and Mandarin, and compare their activations to those of a large
group of French, English, and Mandarin speakers recorded with fMRI while passively listening
to audio stories. Our results show that this self-supervised model learns (i) representations
that linearly map onto a remarkably distributed set of cortical regions (Figure 3.11), (ii) a
computational hierarchy that aligns with the cortical hierarchy (Figure 3.12), and (iii) features
specific to the language of the participants (Figure 3.13).

Towards a biologically-plausible learning principle. These results extend recent findings
on the similarities between the brain and a variety of deep learning models trained with
biologically-implausible objectives and data. First, fMRI (A. J. E. Kell et al., 2018; Millet &
King, 2021; Thompson et al., 2021), electroencephalography (Huang et al., 2018), and multi- or
single-unit responses to sounds (Koumura et al., 2019; Begus et al., 2022) have been shown to
be linearly predicted by the activations of deep convolutional networks trained on supervised
auditory tasks. For example, (Millet & King, 2021) showed that a supervised speech-to-text
model better accounted for brain responses to speech in 102 individuals when it was trained on
speech recognition rather than auditory scene classification. Similarly, (A. J. E. Kell et al., 2018)
showed that eight participants listening to brief speech and non-speech sounds demonstrated
fMRI responses in the temporal lobe that aligned with those of a deep convolutional neural
network trained on a binary auditory classification task. Our results, based on up to 50 times
more fMRI recordings of the entire cortex show that such representational similarities hold
with a self-supervised objective (Lerner et al., 2011; Berezutskaya et al., 2017; Caucheteux
et al., 2021b, 2023). Second, a growing series of MEG (Toneva & Wehbe, 2019; Caucheteux
& King, 2022), fMRI (Mitchell et al., 2008; Qian et al., 2016; Pereira et al., 2018; Schwartz et
al., 2019; Antonello et al., 2021; Jain & Huth, 2018) and electro-physiology studies (Schrimpf
et al., 2021; Goldstein et al., 2022) showed that text-based language models trained on very
large corpora generate brain-like representations too. While these results suggest elements of
convergence between language models and the brain (Caucheteux & King, 2022), they also
remain biologically implausible: not only are these algorithms pre-equipped with abstract
linguistic units such as characters and words, but they are trained on corpora that no one would
ever be able to read in their lifetime. In contrast, wav2vec 2.0 is here trained with a reasonable
amount of raw speech waveforms (Hart & Risley, 1992; Gilkerson et al., 2017; Dupoux, 2018).
The functional similarity between wav2vec 2.0 and the brain thus opens the way to clarify how
humans learn to process speech.
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The emergence of a brain-like hierarchy of speech processing. The present study reveals
the hierarchical organization of speech processing with remarkable clarity. First, the functional
hierarchy learnt by wav2vec 2.0 is aligned with the anatomy: e.g. the superior temporal sulcus
and the temporal pole are known to project to the ventral and dorsal part of the inferofrontal
gyrus, respectively (Petkov et al., 2015). Second, the identification of functional gradients within
the prefrontal cortex, and down to the motor areas typically associated with larynx and mouth
control (Dichter et al., 2018) reinforces the relevance of motor processes to speech perception
(Kellis et al., 2010; Mugler et al., 2014; Shamma et al., 2021). Finally, the existence of multiple
levels of representations around the inferofrontal cortex is consistent with the idea that Broca’s
area may be responsible for merging linguistic units (Chomsky, 2000; Friederici, 1999; Hagoort,
2005; Poeppel et al., 2012). It should be noted, however, that our results aggregate a large cohort
of individuals which could mask a more modular organization at the individual level.

Interpreting the neural representations of speech. Interpreting neural representations is a
notoriously difficult challenge to both AI and neuroscience. Here, we first investigate language
specificity and show that the neural representations specific to the native models are primarily
represented in the superior temporal sulcus and middle temporal gyrus (Figure 3.13D): areas
known to represent phonetic features (Mesgarani et al., 2014). However, these effect are
relatively modest (Figure 3.13): the random model and the non-speech model reach, in STS and
STG, 67% and 87% of the brain scores obtained by the “native” model, respectively. While this
high baseline initially surprised us, this phenomenon could be explained by the fact that the
auditory cortex is continuously bombarded by – and should thus be tuned to – non-speech input.
Second, our probing analyses show that the models trained with self-supervised learning

learn relevant acoustic and linguistic representations (Supplementary Figure S17). This result,
consistent with Vaidya et al. (2022) and Stephenson et al. (2019), suggests that the difference of
brain scores observed between the random, non-native and native models (Figure 3.13) may
be partly driven by the corresponding spectro-temporal, phonetic, word and sentence-level
representations, respectively. These elements of interpretation remain, however, scarce, and
a systematic interpretation of the representations shared between wav2vec 2.0 and the brain
remains necessary.

Scope of the study. It is important to stress that the scope of the present study could be
broadened in several ways. First, our study focuses on adult speakers, whose cultural and
educational background is not representative of the population (Henrich et al., 2010). Second,
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we focus on the passive listening of three languages. Third, we focus on one self-supervised
learning architecture (Baevski et al., 2020), and its functional alignment with fMRI, whose tem-
poral resolution is notoriously limited. Generalizing the present approach to more languages
(Malik-Moraleda et al., 2022), a larger spectrum of children and adult participants recorded with
a variety of electrophysiological and neuroimaging devices will thus be essential to confirm,
precise, and/or mitigate the present findings.

The remaining gap between brain and speech models. Several major gaps can be evidenced
between wav2vec 2.0 and the brain. First, the transformer layers are not temporally constrained:
each layer can access all elements within the contextual window. This differs from the neces-
sarily recurrent nature of processing in the brain. Second, wav2vec 2.0 behaves differently to
humans in specific tasks. In particular, it is overly-sensitive to band-pass filtering, non-robustly
exploit fine temporal structures (Weerts et al., 2021) and fails to display the expected categorical
responses (Millet et al., 2021). Third, recent studies show that wav2vec 2.0 encodes significantly
less semantic information than text-based models (Pasad et al., 2021; Vaidya et al., 2022). While
our analyses suggest that learning allows wav2vec 2.0 to capture some lexical features in its
deep layers (Supplementary Figure S17, Supplementary Table S6), it remains unclear whether
these layers also capture complex syntactic structures, such as recursive syntactic trees (Lakretz
et al., 2021; Caucheteux et al., 2021a). We speculate that these limitations may be due to the
time scales of wav2vec 2.0 which, unlike humans, learns very short-term representations of
speech. In any case, these differences likely explain why the brain scores of wav2vec 2.0 remain
substantially lower than our noise-ceiling (19% on average, and up to 74% in Heschl’s gyrus
and sulcus, Supplementary Table S3, Supplementary Figure S18).

Overall, the complexity of the human brain is often thought to be incompatible with a simple
theory: “Even if there were enough data available about the contents of each brain area, there
probably would not be a ready set of equations to describe them, their relationships, and the
ways they change over time” (Gallant, 2013). By showing how the equations of self-supervised
learning give rise to brain-like processes, this work contributes to challenge this view.
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Chapter 4

Improving the similarity through
hierarchical predictions

4.1 Evidence of a predictive coding hierarchy in the human
brain listening to speech

4.1.1 Abstract

Considerable progress has recently been made in natural language processing: modern deep
learning algorithms are increasingly able to generate, summarize, translate and classify texts.
Yet, these language models still fail to match humans’ language abilities. Predictive coding
theory offers a tentative explanation to this discrepancy: While language models are optimized
to predict nearby words, the human brain would continuously predict a hierarchy of repre-
sentations that spans multiple time scales. To test this hypothesis, we analyze the fMRI brain
signals of 304 participants listening to short stories. First, we confirm that the activations of
modern language models linearly map onto the brain responses to speech. Second, we show
that enhancing these algorithms with predictions that span multiple time scales improves this
brain-mapping. Finally, we show that these predictions are organized hierarchically: Fronto-
parietal cortices predict higher-level, longer-range and more contextual representations than
temporal cortices. Overall, these results strengthen the role of hierarchical predictive coding in
language processing, and illustrate how the synergy between neuroscience and A.I. can unravel
the computational bases of human cognition.
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Figure 4.1: Approach. a. Deep language algorithms are typically trained to predict words from their
close contexts. Unlike these algorithms, the brain makes, according to predictive coding theory, (i)
long-range and (ii) hierarchical predictions. b. To test this hypothesis, we first extract the fMRI signals of
304 subjects each listening to ⇡26 min of short stories (Y) as well as the activations of a deep language
algorithm (X) input with the same stories. We then quantify the similarity between X and Y with a
“brain score”: a Pearson correlation R after an optimal linear projection W (Methods 4.1.5). c. To test
whether adding representations of future (or predicted, see Supplementary Figure S24) words improves
this correlation, we concatenate (�) the network’s activations (X, depicted here as a black rectangle)
to the activations of a “forecast window” (X̃, depicted here as a colored rectangle). We use principal
component analysis to reduce the dimensionality of the forecast window down to the dimensionality of
X. Finally, F quantifies the gain of brain score obtained by enhancing the activations of the language
algorithm to this forecast window. We repeat this analysis with variably distant windows (d, Methods
4.1.5). d. A flat forecast score across distances would indicate that forecast representations do not make
the algorithm more similar to the brain (top). By contrast, a forecast score peaking at d > 1 (bottom)
would indicate that the model lacks brain-like forecast. The peak of F d indicates how far off in the future
the algorithm would need to forecast representations to be most similar to the brain.

4.1.2 Introduction

In less than three years, deep learning has made considerable progress in text generation,
translation and completion (Vaswani et al., 2017; Radford et al., 2019; Brown et al., 2020; Fan
et al., 2018) thanks to algorithms trained with a simple objective: predicting words from their
nearby context. Remarkably, the activations of these models have been shown to linearly map
onto human brain responses to speech and text (Jain & Huth, 2018; Toneva & Wehbe, 2019;
Caucheteux & King, 2022; Schrimpf et al., 2021; Toneva, Mitchell, & Wehbe, 2020a; Reddy
& Wehbe, 2020; Goldstein et al., 2022; Millet et al., 2022). Besides, this mapping appears to
primarily depend on the algorithms’ ability to predict future words (Caucheteux & King, 2022;
Schrimpf et al., 2021), hence suggesting that this objective suffices to make them converge to
brain-like computations.

Yet, a gap persists between humans and these algorithms: in spite of considerable training
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Figure 4.2: Isolating language predictions and their temporal scope in the human brain. a. The
“brain score” (R, Figure 4.1b, Methods 4.1.5), obtained with GPT-2, for each subject and each voxel, and
here averaged across subjects (n=304). Only the voxels with significant brain scores are color-coded.
b. Average (across voxels) brain scores obtained with GPT-2 with (grey) or without (blue) forecast
representations. The average brain score peaks at d⇤ = 8 (grey star). c. For each voxel, the average
(across subjects) “forecast score” F d, i.e. the gain in brain score when concatenating the activations of
GPT-2 with a forecast window X̃(8). Only the voxels with significant forecast scores are color-coded.
d. Average (across voxels) forecast scores for different distance d. e. Distance that maximizes F d,
computed for each subject and each voxel, and denoted d⇤. This “forecast distance” reveals the regions
associated with short- and long-range forecasts. Regions in red and blue are associated with long-range
and short-range forecasts, respectively. We only display the voxels with a significant average peak
(F d⇤ �F 0, d⇤ = 8, cf. Methods 4.1.5). f. Forecast score within two regions of interest. For each region,
we report the average forecast scores of subjects with a representative peak (subjects whose peak belongs
to the [45, 55] percentiles of all peaks, n=30 subjects). g. Forecast distance of seven regions of interest, as
computed for each voxel of each subject and then averaged within the selected brain regions. For all
panels, we report the average effect across subjects, and the error bars are SEM across subjects (n=304).
All brain maps are thresholded at p < .01, as assessed with a FDR-corrected two-sided Wilcoxon test
across subjects (n=304).

data, current language models remain challenged by long story generation, summarization as
well as coherent dialogue and information retrieval (Holtzman et al., 2020; Wiseman et al., 2017;
Thakur et al., 2021; Raffel et al., 2020; Krishna et al., 2021); they fail to capture several syntactic
constructs and semantics properties (Lakretz et al., 2019; Arehalli & Linzen, 2020; Lakretz et al.,
2021; Baroni, 2020; B. M. Lake & Murphy, 2021), and their linguistic understanding appears
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Figure 4.3: Organization of hierarchical predictions in the brain. a. Depth of the representation that
maximizes the forecast score in the brain, denoted k⇤. Forecast scores are computed for each depth,
subject and voxel, at a fix distance d⇤ = 8 and averaged across subjects. We compute the optimal depth
for each subject and voxel and plot the average forecast depth across subjects. Dark regions are best
accounted for by deep forecasts, while light regions are best accounted for by shallow forecasts. Only
significant voxels are color-coded, following Figure 4.2c). b. Same as a., with k⇤ averaged across the
voxels of nine regions of interest, in the left (circle) and right (triangle) hemispheres. Scores are averaged
across subjects and error bars are SEM across subjects (n=304). Pairwise significance between regions is
assessed using a two-sided Wilcoxon test on the left hemisphere’s scores (stars indicate that p < .05).

to be superficial (Marcus, 2020a; B. M. Lake & Murphy, 2021; Baroni, 2020; Arehalli & Linzen,
2020; Warstadt & Bowman, 2022). For instance, they tend to incorrectly assign the verb to the
subject in nested phrases like ‘The keys that the man holds ARE here’ (Lakretz et al., 2021).
Similarly, when text generation is optimized on next-word prediction only, deep language
models generate bland, incoherent sequences or get stuck in repetitive loops (Holtzman et al.,
2020).

Predictive coding theory (Rumelhart & McClelland, 1982; Rao & Ballard, 1999; K. Friston &
Kiebel, 2009) offers a potential explanation to these shortcomings: while deep language models
are mostly tuned to predict the very next word, this framework suggests that the human brain
makes predictions over multiple time scales and levels of representations across the cortical
hierarchy (Wacongne et al., 2011; Garrido et al., 2009) (Figure 4.1a).

Previous work has already evidenced speech predictions in the brain, by correlating word
or phonetic surprisal – the extent to which a word or phone is expected – with functional
Magnetic Resonance Imaging (fMRI) (Willems et al., 2016; Lopopolo et al., 2017; Okada et al.,
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Figure 4.4: Factorizing syntactic and semantic predictions in the brain. a. Method to extract syntactic
and semantic forecast representations, adapted from Caucheteux et al. (2021a). For each word and its
context (e.g. ‘Great, your paper ... ’, we generate ten possible futures with the same syntax as the original
sentence (part-of-speech and dependency tree) but randomly sampled semantics (e.g. ‘... remains so
true’, ‘... appears so small’). Then, we extract the corresponding GPT-2 activations (layer eight). Finally,
we average the activations across the ten futures. This method allows to extract the syntactic component
common to the ten futures, denoted Xsyn. The semantic component is defined as the residuals of syntax
in the full activations; Xsem = X � Xsyn. We build the syntactic and semantic forecast windows by
concatenating the syntactic and semantic components of seven consecutive future words, respectively
(Methods 4.1.5). b. Syntactic (blue) and semantic (red) forecast scores, on average across all voxels,
following Figure 4.1c. Scores are averaged across subjects and error bars are SEM across subjects (n=304).
The average peaks across subjects is indicated with a star. c. Semantic forecast scores for each voxel,
averaged across subjects and at d⇤ = 8, the distance that maximizes the semantic forecast scores in B.
Only significant voxels are displayed similarly to Figure 4.2c. d. Same as c. for syntactic forecast scores
and d⇤ = 5.

2018; Shain et al., 2020), electroencephalography (Heilbron et al., 2022; Donhauser & Baillet,
2020), magnetoencephalography (Mousavi et al., 2020) and electrocorticography (Forseth et al.,
2020; Goldstein et al., 2022). However, such surprisal estimates derive from models trained to
predict the very next word or phoneme, and reduce down their output to a single number: the
probability of the next token. Consequently, the nature of the predicted representations as well
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Figure 4.5: Gain in brain score when fine-tuning GPT-2 with a mixture of Language Modeling (LM)
and High-Level prediction (HL). A) Gain in brain scores between GPT-2 fine-tuned with LM+HL
and LM alone (for aHL = 0.5). Only the voxels with a significant gain are displayed (p < 0.05 with
a two-sided Wilcoxon test after FDR correction for multiple comparison). B) Brain scores gain as a
function of the HL weight a in the loss ((4.8)), from full LM (left, a = 0) to full HL (right, a = 1). Gains
are averaged across voxels within six regions of interests (cf. Methods 4.1.5 for the parcellation and
Supplementary Figure S27 for the other regions in the brain). Scores are averaged across subjects and
error bars are SEM across subjects (n=304).

as their temporal scope remain largely unknown.
Here, we address these issues by analyzing the brain signals of 304 subjects listening to

short stories while their brain activity is recorded with fMRI (Nastase et al., 2020). After
confirming that deep language algorithms linearly map onto brain activity (Schrimpf et al.,
2021; Caucheteux et al., 2021a; Toneva & Wehbe, 2019), we show that enhancing these models
with long-range and multi-level predictions improves such brain mapping. Critically, and in
line with predictive coding theory, our results reveal a hierarchical organization of language
predictions in the cortex, in which the highest areas predict the most distant and the highest-
level representations.

4.1.3 Results

Deep language models map onto brain activity. First, we quantify the similarity between
deep language models and the brain, when these two systems are input with the same stories.
For this, we use the Narratives dataset (Nastase et al., 2020), and analyze the fMRI of 304
subjects listening to short stories (27 stories ranging from 7 min to 56 min; 4.6 h of unique
stimulus in total, 26 min on average per participant, from 7 min to 99 min). We then fit, for each
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voxel and each subject independently, a linear ridge regression to predict the fMRI signals from
the activations of a variety of deep language models. Finally, we compute the corresponding
“brain scores” using held-out data, i.e. the voxel-wise correlation between the fMRI signals and
the predictions of the ridge regression input with the activations of a given language model
(Figure 4.1b, Methods 4.1.5). For clarity, we first focus on the activations of eighth layer of
GPT-2, a twelve-layer causal deep neural network, provided by HuggingFace (Radford et al.,
2019), as it has been shown to best predict brain activity (Schrimpf et al., 2021; Caucheteux &
King, 2022).

In line with previous studies (Caucheteux & King, 2022; Caucheteux et al., 2021a; Wehbe et
al., 2014; Jain & Huth, 2018), the activations of GPT-2 accurately map onto a distributed and
bilateral set of brain areas. Brain scores peak in the auditory cortex, as well as in the anterior
temporal and superior temporal areas (Figure 4.2a, Supplementary Note 6.6.1, Supplementary
Figure S21, Supplementary Tables S7, S8, S9). The effect sizes of these brain scores are in line
with previous work (Huth, de Heer, et al., 2016; Caucheteux & King, 2022; Toneva, Mitchell, &
Wehbe, 2020b): for instance, the highest brain scores (R = 0.23, in the superior temporal sulcus
(Figure 4.2a) represent 60 % of the maximum explainable signal, as assessed with a noise ceiling
analysis (Methods 4.1.5). Supplementary Figure S22 show that, on average, similar brain scores
are achieved with other state-of-the-art language models and Supplementary Figure S23 shows
that auditory regions can be further improved with lower-level speech representations. As
expected, the brain score of word rate (Supplementary Note 6.6.3), noise ceiling (Methods 4.1.5)
and GPT-2 (Figure 4.2a) all peak in the language network (Fedorenko et al., 2016). Overall,
these results confirm that deep language models linearly map onto brain responses to spoken
stories.

Isolating long-range predictions in the brain. Next, we test whether enhancing the activa-
tions of language models with long-range predictions leads to higher brain scores (Figure 4.1d).
Specifically, for each word, we concatenate (i) the model activations of the present word (de-
noted X) and (ii) a “forecast window” (denoted X̃(d)), consisting of the embeddings of future
words and parameterized by a temporal distance d and width of w = 7 words (see Supple-
mentary Note 6.6.4 and Supplementary Figure S24 for the growing window analysis). While
the width is the number of concatenated words, d corresponds to the distance between the
current word and the last word of the window. For instance, X̃(10) is the concatenation of
words at distance 4, 5, up to 10 from the current word, and X̃(8) is the concatenation of words
at distance 2, 3, up to 8 from the current word. For each distance d, we compute the “forecast
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score” (denoted F d) by comparing the brain scores obtained with and without the forecast
representations (Figure 4.2b).

Our results show that F is maximal for a distance of d = 8 words, and peaks in the areas
typically associated with language processing (Figure 4.2b-d). For comparison, there are 2.54
words per second on average in the stimuli. Thus, 8 words corresponds to 3.15 seconds of
audio (the time of two successive fMRI scans). These forecast scores are bilaterally distributed
in the brain, at the exception of the infero-frontal and supramarginal gyri (p < 0.001 in Pars
Opercularis and supramarginal, using a two-sided pairwise Wilcoxon test between the left and
right hemispheres, after correcting for multiple comparisons, see Methods 4.1.5).

Supplementary analyses confirm that (i) each future word from word zero to ten significantly
contributes to the forecast effect, (ii) forecast representations are best captured with a window
size of 8 words, (iii) random forecast representations do not improve the brain scores, and (iv)
using the words generated by GPT-2 instead of the true future words achieve lower but similar
results (Supplementary Note 6.6.4, Supplementary Figure S24, Supplementary Note 6.6.5 and
Supplementary Figure S25 and Supplementary Note S26).

Together, these results reveal long-range forecast representations in the brain, which repre-
sents a 23% (± 9% across subjects) improvement in brain scores (Figure 4.2a,b).

Predictions’ time range varies along the brain hierarchy. Both anatomical and functional
studies have shown that the cortex is organized as a hierarchy (Felleman & Van Essen, 1991;
Wacongne et al., 2011): for example, low-level acoustics, phonemes, and semantics are known
to be primarily encoded in Heschl’ gryus, superior temporal gyrus and the associative cortices
of the frontal, temporal and parietal lobes, respectively (Lerner et al., 2011; A. J. E. Kell et al.,
2018; Mesgarani et al., 2014; Huth, de Heer, et al., 2016; Hickok & Poeppel, 2007).

Do the different levels of this cortical hierarchy predict the same time window? To address
this issue, we estimate the peak of the forecast score of each voxel and denote d⇤ the corre-
sponding distance. The results show that the prefontal areas forecast, on average, further off
in the future than temporal areas (Figure 4.2e). For instance, d⇤ in the inferior temporal gyrus
(IFG) is higher than in the anterior superior temporal sulcus (aSTS) (Dd⇤ = 0.9 ± 0.2, p < 0.001,
Figure 4.2f and g).

The variation of optimal forecast distance along the temporo-parieto-frontal axis is largely
symmetric across the two hemispheres (Supplementary Figure S21).
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Predictions are increasingly contextual along the hierarchy. What is the nature of these
predictive representations? To address this issue, we assess whether the forecast score relates to
(i) low or high as well as (ii) syntactic or semantic representations. To this aim, we compute
the forecast scores similarly as in Figure 4.1c, but now vary the layer used from GPT-2. Then,
we identify k⇤ for each voxel i.e. the depth that maximizes the forecast scores (Methods 4.1.5).
Here, we consider that the deep layers of language algorithms encode higher-level and more
contextualized representations than their first layers (Jawahar et al., 2019; Manning et al., 2020).

Our results show that the optimal forecast depth varies along the expected cortical hierarchy
(Figure 4.3a). Specifically, associative cortices are best modeled with deeper forecasts (k⇤ > 6)
than low-level language areas (e.g. k⇤ < 6 in Heschl’s gyri/sulci, anterior STS, Figure 4.3a-b).
The difference between regions, while small on average, is highly significant across subjects
(e.g. between the angular and Heschl’s giri: Dk⇤ = 2.5 ± 0.3, p < 0.001) , and observed in both
the left and right hemispheres (Figure 4.3b).

Together, these results suggest that the long-range predictions of fronto-parietal cortices
are more contextualized and higher-level than the short-term predictions of low-level brain
regions.

Syntactic and semantic predictions show different time ranges. To factorize forecast rep-
resentations into syntactic and semantic components, we apply a method introduced in
(Caucheteux et al., 2021a) and proceed as follows: for each word and its preceding context, we
generate ten possible futures which matches the syntax of the true future words. We choose
k = 10 possible futures following (Caucheteux et al., 2021a). For each of these possible futures,
we extract the corresponding GPT-2 activations, and average them across the ten possible
futures (Figure 4.4a, Methods 4.1.5). This method allows us to decompose the activations
of a given language model X into syntactic (the average vector, denoted Xsyn) and semantic
components (the residuals, Xsem = X � Xsyn) (Methods 4.1.5). Once the syntactic and semantic
forecast windows are built, we compute the corresponding forecast scores (Methods 4.1.5).

The results show that semantic forecasts are long-range (d⇤ = 8) and involve a distributed
network peaking in the frontal and parietal lobes. By contrast, syntactic forecasts (Figure 4.4b)
are relatively short-range (d⇤ = 5) and localized in the superior temporal and left frontal areas
(Figure 4.4c and d). Note that the syntactic model without a forecast window (which has a
lower dimensionality) performs better than the syntactic model with a distant forecast window.
Such diminished scores can occur when there is no added information in the extra dimension of
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the regression, because of the infamous curse-of-dimensionality (Bellman, 1966). This suggests
that long-range syntactic forecast is not detectable in the present dataset.

Overall, these results reveal multiple levels of predictions in the brain in which the superior
temporal cortex predominantly predicts short-term, shallow and syntactic representations
whereas the infero-frontal and parietal areas predominantly predicts long-term, contextual,
high-level and semantic representations.

Adapting GPT-2 into a predictive coding architecture. The above results show that concate-
nating present and future word representations of GPT-2 leads to a better modeling of brain
activity, especially in fronto-parietal areas (Figure 4.2). Does fine-tuning GPT-2 to predict longer-
range, more contextual and higher-level representations improve the brain-mapping in such
regions? To answer this question, we fine-tune GPT-2 on Wikipedia, not only using Language
Modelling (LM, i.e. predicting the next word), but also a High-level and Long-range objective
(HL, i.e. predicting high-level representations of far-off words). Specifically, the HL objective is
to predict the layer 8 of the pre-trained GPT-2 model, of word t+8 (Methods 4.1.5). The results
show that GPT-2 fine-tuned with High-level and Long-range modeling best accounts for fronto-
parietal responses (Figure 4.5, above 2% gain in IFG and the Angular/Supramarginal gyri, all
p < 0.001) . On the contrary, auditory areas and lower-level brain regions do not significantly
benefit from such a high-level objective (Figure 4.5 and Supplementary Figure S27). These
results further strengthen the role of fronto-parietal areas in predicting long-range, contextual
and high-level representations of language.

4.1.4 Discussion

In the present study, we put specific hypotheses of predictive coding theory to the test (Rumel-
hart & McClelland, 1982; Rao & Ballard, 1999; K. Friston & Kiebel, 2009): while deep language
algorithms are typically trained to make nearby and word-level predictions (Vaswani et al.,
2017; Radford et al., 2019; Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020; Clark et al.,
2020), we assess whether the cortical hierarchy predicts multiple levels of representations,
spanning multiple time scales. To this aim, we compare the activations of the brain to those of
state-of-the-art deep language models (Huth, de Heer, et al., 2016; Jain & Huth, 2018; Toneva &
Wehbe, 2019; Caucheteux & King, 2022; Caucheteux et al., 2022). We successfully validate our
hypothesis on a cohort of 304 participants listening to spoken narratives (Nastase et al., 2020).
Brain activity is best explained by the activations of deep language algorithms enhanced with
long-range and high-level predictions. Our study provides three additional contributions.
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First, the lateral, dorso-lateral and infero-frontal cortices as well as the supra-marginal
gyrus here exhibit the longest forecast distances. Interestingly, these cortical regions were
repeatedly linked to high-level semantics, long-term planning, attentional control, abstract
thinking and other high-level executive functions (Gilbert & Burgess, 2008; Shallice & Burgess,
1991). This result echoes with previous studies showing that the integration constant of the
fronto-parietal cortices is larger than those of sensory and temporal areas (L. Wang, 2021; Lee
et al., 2021; Lerner et al., 2011; Caucheteux et al., 2021b). Specifically, our findings suggest
that these regions, located at the top of the language hierarchy, are not limited to passively
integrating past stimuli, but actively anticipate future language representations.

Second, we show that the depth of predictive representations varies along a similar anatom-
ical organization: low-level predictions best model the superior temporal sulcus and gyrus,
high-level predictions best model the middle temporal, parietal and frontal areas. This finding
extends previous studies investigating the multiplicity of predictions underlying complex
sound or speech processing (Wacongne et al., 2011; Vidal et al., 2019; Heilbron et al., 2022;
Donhauser & Baillet, 2020). While previous studies focused on correlating brain activity with a
subset of hand-crafted and unidimensional prediction errors (e.g. word or phoneme surprisal),
the present analyses explore and decompose high-dimensional predictions. More generally,
our results support the idea that, unlike current language algorithms, the brain is not limited to
predict word-level representations, but rather predicts multiple levels of representations.

Finally, we decompose these neural activations into syntactic and semantic representations
and show that semantic features – as opposed to syntactic ones – drive long-range forecasts. This
finding strengthens the idea that while syntax may be explicitly represented in neural activity
(Nelson et al., 2017; Ding et al., 2016; Caucheteux et al., 2021a), predicting high-level semantics
may be at the core of long-form language processing (Jackendoff, 2002; Shain et al., 2021).

Together, these results support predictive coding theories, whereby the brain continually
predicts sensory inputs, compares these predictions to the truth, and updates its internal model
accordingly (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982; Rao & Ballard,
1999). Our study further clarifies this general framework. Not only does the brain predict
sensory inputs, but each region of the cortical hierarchy appears to be organized to predict
different temporal scopes and different levels of representations (Figure 4.1a). However, the
link between the hierarchical constructs in syntax and the functional hierarchy in the cortex
and in the model remains a major question to explore (Hale et al., 2021; Manning et al., 2020;
Caucheteux et al., 2021a).
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This computational organization is at odds with current language algorithms which are
mostly trained to make adjacent and word-level predictions (Figure 4.1a). Some works have
investigated alternative learning rules (Jernite et al., 2017; Fan et al., 2018; Devlin et al., 2019;
Lewis et al., 2019; Yang et al., 2020; Joshi et al., 2020; Clark et al., 2020), but they do not combine
both long-range and high-level predictions. We speculate that the brain architecture evidenced
in this study presents at least one major benefit over its current deep learning counter-parts.
While future observations rapidly become indeterminate in their original format, their latent
representations may remain predictable over long time periods. This issue is already pervasive
in speech- and image-based algorithms and has been partially bypassed with losses based on
pretrained embedding (Szegedy et al., 2015), contrastive learning and, more generally, joint
embedding architectures (T. Chen et al., 2020; He et al., 2020; El-Nouby et al., 2021; Bardes et
al., 2022). Here, we highlight that this issue also prevails in language models, where word
sequences – but arguably not their meaning – rapidly become unpredictable. Our results
suggests that predicting multiple levels of representations over multiple temporal scopes may
be critical to address the indeterminate nature of such distant observations, and adjust their
relative confidence accordingly (Kepecs et al., 2008).

Three main elements mitigate the above conclusions. First, unlike temporally-resolved
techniques (Donhauser & Baillet, 2020; Caucheteux & King, 2022; Goldstein et al., 2022), the
temporal resolution of fMRI is around 1.5 s and can thus hardly be used to investigate sublexical
predictions. Second, the precise representations and predictions computed in each region
of the cortical hierarchy remain to be characterized. This will likely require new probing
techniques, as the interpretation of neural representations remains a major challenge to both
AI and neuroscience. Finally, the predictive coding architecture presently tested remains
rudimentary. A systematic generalization, scaling and evaluation of this approach on natural
language processing benchmarks remains necessary to demonstrate the effective utility of
making models more similar to the brain.

Beyond clarifying the brain and computational bases of language, our study thus calls for
systematically training algorithms to predict multiple times scales and levels of representations.

4.1.5 Methods
Notations

We denote:

• w a sequence of M words (here, several short stories).
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• X the activations of a deep language model input with w, of size M ⇥ U, with U the
dimensionality of the embeddings (for a layer of GPT-2, U = 768). Except if stated
otherwise, we use the activations extracted from the eighth layer of a 12-layer GPT-2
model (Methods 4.1.5). We will explicitly denote Xk the activations extracted from layer k
when using another layer.

• Y the fMRI recordings elicited by w, of size T ⇥ V, with T the number of fMRI time
samples, and V the number of voxels (Methods 4.1.5).

• R(X) the brain score of X (Methods 4.1.5).

• eX(d) the forecast window containing information up to d words in the future. In short,
the forecast window is the concatenation of the deep net activations of seven successive
words, the last word being at a distance d from the current word (Methods 4.1.5).

• F (d)(X), the forecast score at distance d, i.e. the gain in brain score when concatenating
the forecast window X̃(d) to the network’s activations; F (d)(X) = R(X � X̃(d))�R(X)

(Methods 4.1.5).

• d⇤, the distance maximizing the forecast score; d⇤ = argmaxd2[�10,...,30] F (d)(X) (Methods
4.1.5).

• k⇤, the network’s depth maximizing the forecast score at a fixed distance d = 8; k⇤ =

argmaxk2[0,...,12] F (8)(Xk), with Xk the activations extracted from the kth layer of GPT-2.
We use d = 8 because it is the distance with the best forecast score on average across
subjects and voxels (Methods 4.1.5).

fMRI dataset

We use the brain recordings (denoted Y) of the “Narratives” dataset (Nastase et al., 2020),
a publicly available dataset containing the fMRI recordings of 345 subjects listening to 27
spoken stories in English, from 7 min to 56 min (4.6 h of unique stimulus in total). We use the
pre-processed fMRI signals from the original dataset, without spatial smoothing (referred to
as “afni-nosmooth” in the repository) and sampled with TR=1.5 s: the preprocessing steps
were performed using fMRIPrep (Esteban et al., 2019), no temporal filtering was applied. The
resulting preprocessing leads to the analysis of cortical voxels projected onto the surface and
morphed onto a ”fsaverage” template brain, and hereafter referred to as voxels for simplicity.
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As suggested in the original paper, some subject-story pairs were excluded because of noise,
resulting in 622 subject-story pairs and 4 h of unique audio material in total.

Deep language models’ activations

We compare the fMRI recordings with the activations of a variety of pretrained deep language
models input with the same sentences presented to the subjects. For clarity, we primarily
focus on GPT-2, a high-performing causal language model trained to predict words given
their previous context. GPT-2 consists of twelve Transformer modules (Vaswani et al., 2017;
Radford et al., 2019), each of them referred to as “layer”, stacked onto one non-contextual word
embedding layer. Here, we use the pre-trained models from Huggingface (Wolf et al., 2020) (1.5
billion parameters, trained on 8 million web pages) (c.f. Supplementary Note 6.6.4 for the other
deep language models).

In practice, to extract the activations X elicited by a sequence of M words w, from the kth

layer of the network, we 1) format the textual transcript of the sequence w (replacing special
punctuation marks such as ”–” and duplicated marks ”?.” by dots) 2) tokenize the text using
Huggingface tokenizer, 3) input the network with the tokens and 4) extract the corresponding
activations from layer k. This results in a vector of size M ⇥ U, with M the number of words
and U the number of units per layer (here U = 768). Given the constrained context size of the
network, each word is successively input to the network with at most 1024 previous tokens. For
instance, while the third word’s vector is computed by inputting the network with (w1, w2, w3),
the last word’s vectors wM is computed by inputting the network with (wM�1024, . . . , wM). The
alignment between the stories’ audio recordings and their textual transcripts was provided in
the original Narratives database (Nastase et al., 2020).

Brain scores

Following previous works (Huth, de Heer, et al., 2016; Caucheteux & King, 2022; Caucheteux
et al., 2022), we evaluate, for each subject s and voxel v, the mapping between 1) the fMRI
activations Y(s,v) in response to the audio-stories and 2) the activations X of the deep network
input with the textual transcripts of the same stories. To this end, we fit a linear ridge regression
W on a train set to predict the fMRI scans given the network’s activations. Then, we evaluate
this mapping by computing the Pearson correlation between predicted and actual fMRI scans
on a held out set:

R(s,v) : X 7! Corr
�
W · X, Y(s,v)� , (4.1)
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with W the fitted linear projection, Corr Pearson’s correlation, X the activations of GPT-2 and
Y(s,v) the fMRI scans of one subject s at one voxel v, both elicited by the same held out stories.

In practice and following (Huth, de Heer, et al., 2016), we model the slow bold response
thanks to a finite impulse response (FIR) model with 6 delays (from 0 to 9 seconds, TR=1.5
seconds). Still following (Huth, de Heer, et al., 2016), we sum the model activations of the words
presented within the same TR, in order to match the sampling frequency of the fMRI and the
language models (see Supplementary Figure S28 and S29). Then, we estimate the linear map-
ping W with a `2-penalized linear regression after standardizing the data, and reducing their
dimensionality (computational reasons). We follow scikit-learn implementation (Pedregosa et
al., 2011) and use a pipeline with the following steps: standardization of the features (set to 0
mean with a standard deviation of 1 using a ‘StandardScaler’), principal component analysis
(PCA) with twenty components and `2-penalized linear regression (‘RidgeCV’ in scikit-learn).
In Figure S23c, we replicate the main analyses without PCA (the brain scores and forecast effect
are slightly underestimated with PCA). The regularization hyperparameter of the ‘RidgeCV’ is
selected with a nested leave-one-out cross-validation among ten possible values log-spaced
between 10�1 and 108 for each voxel and each training fold.

The outer cross-validation scheme allowing for an independent performance evaluation,
uses five folds obtained by splitting the fMRI time series into five contiguous chunks. The
Pearson correlations averaged across the five test folds is called “brain score”, denoted R(s,v)(X).
It measures the mapping between the activation space X and the brain of one subject s at one
voxel v, in response to the same language stimulus.

In Figure 4.2a and B, brain scores are computed for each (subject, voxel) pair. We then
average the brain scores across subjects (Figure 4.2a) and/or voxels (Figure 4.2b) depending on
the analysis. For simplicity, we denote R(X) the brain scores averaged across subjects and/or
voxels.

Forecast windows

We test whether adding forecast representations improves our ability to predict brain activity.
To this aim, we do not modify the deep network itself, but add forecast representations to the
encoding model’s input: the forecast window. The forecast window at distance d, denoted eX(d),
is the concatenation of the network’s activations of seven successive words, the last one being
at a distance d from the current word. Precisely, the forecast window of a word wn, at a distance
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d is the concatenation of the network’s activations elicited by words wn+d�6, . . . , wn+d. Thus,

eX(d) = (Xwn+d�7 � · · ·� Xwn+d)n2[1,...,M] , (4.2)

with � the concatenation operator, and M the number of words in the transcript w (Figure S29).
Note that d can be negative: in that case, the forecast window only contains past information.
Except if stated otherwise, the forecast window is built out of the activations X extracted from
the eighth layer of GPT-2. In Figure 4.3, the forecast window is built out of the activations Xk

extracted from different layers k of GPT-2. We denote eX(d)
k the corresponding forecast windows.

In Figure 4.4, the forecast windows are built out of the syntactic (Xsyn) and semantic (Xsem)
activations of GPT-2 (cf. Methods 4.1.5 and 4.1.5).

Forecast scores

For each distance d, subject s and voxel v, we compute the “forecast score” F (d,s,v), which is the
gain in brain score when concatenating the forecast windows to the present GPT-2 activations.
Thus,

F (d,s,v) : X 7! R(s,v)(X � eX(d))�R(X) , (4.3)

To match the dimensionality of X and X̃, the principal component analysis used to compute
the mapping (Methods 4.1.5) was trained on X and X̃ separately, before concatenating the two
features: i.e. F (X) = R(pca(X) + pca(X̃))�R(pca(X)).

Forecast distance

To test whether the forecast scope varies along the cortical hierarchy, we estimate the distance
that maximizes the forecast score. Precisely, the optimal “forecast distance” d⇤ for each subject s
and voxel v is defined as:

d⇤(s,v) = argmaxd2[�10,...,30] F
(d,s,v)(X) , (4.4)

with X the activations of the language model, F (d,s,v) the forecast score at distance d for subject
s and voxel v (Equ. (4.3)). The forecast distances d⇤ are then averaged across subjects and/or
voxels depending on the analyses.

The present analysis is only relevant for the brain regions for which forecast scores are
not flat. Indeed, computing the distance maximizing a flat curve would be misleading. Thus,
in Figure 4.2e, we compute the difference F 8 � F 0 for each subject and voxel, assess the
significance with Wilcoxon test across subjects, and ignore the voxels with a non-significant
difference (p > .01).
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Forecast’s depth

To test whether the forecast depth varies along the cortical hierarchy, we compute the forecast
score for different depth of representation. Precisely, we proceed similarly as in 4.1.5, but
replacing X by the activations Xk extracted from layer k of GPT-2 (k 2 [0, . . . , 12]) in (4.3) and
(4.2). Then, we compute the depth maximizing the forecast score, called “forecast depth”, and
given by:

k⇤(d,s,v) = argmaxk2[0,...,12]F
(d,s,v)(Xk) , (4.5)

with F (d,s,v)(Xk) = R(s,v)(Xk � fXk
(d)

)�R(Xk) ((4.3)). For simplicity, we focus on the fixed
distance d = 8 (Figure 4.3c and D), which maximizes the forecast score in Figure 4.2.

Decomposing model activationsinto syntactic and semantic components

To extract the syntactic and semantic components of X, a vector of activations in response
to a story w, we apply a method introduced in (Caucheteux et al., 2021a) (Figure 4.4a). For
each word, 1) we generate k = 10 futures of the same syntax as the true future (i.e. same
part-of-speech and dependency tags as the true future), but randomly sampled semantics, 2) we
compute the activations for each of the ten possible futures,and 3) we average the activations
across the ten futures. We use the same hyper-parameter k = 10 as in the original paper. The
method actually converges from K 7 (Figure S8 in the paper). This method allows to extract
the average vector Xsyn, that contains syntactic information but is deprived from semantic
information. The semantic activations Xsem = X � Xsyn are the residuals of syntax in the full
activations X. In the original paper (Figure 3), the authors checked with probing analyses that
the syntactic embeddings encoded relevant syntactic information (part-of-speech and depth
of the syntactic tree), and no longer encoded semantic information (word frequency, word
embedding, semantic category).

Syntactic and semantic forecast windows

To investigate syntactic and semantic forecasts in the brain, we build forecast windows out
of the syntactic and semantic activations of GPT-2, respectively. To this aim, we first build
the forecast windows out of GPT-2 activations eX(d), similarly as 4.1.5. Then, we extract the
syntactic eX(d)

syn and semantic eX(d)
sem components of the concatenated activations, as introduced

in (Caucheteux et al., 2021a) and described in 4.1.5. Finally, the syntactic forecast score is the
increase in brain score when concatenating the syntactic window:
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F (d)
syn = R(X � eX(d)

syn)�R(X) (4.6)

Similarly, the semantic forecast score is given by:

F (d)
sem = R(X � eX(d)

sem)�R(X) (4.7)

Brain parcellation

We systematically implement whole brain analyses and compute scores for each voxel in the
brain. Yet, for simplicity, we report the scores averaged across selected regions of interest in
Figure 4.2f,g and 4.3c. To this aim, we use a subdivision of the Destrieux Atlas (Destrieux et
al., 2010). Regions with more than 500 vertices are split into smaller parts. This results in 142
regions per hemisphere, each containing less than 500 vertices. In Figure 4.2g and 4.3c, we use
the following acronyms:

Acronym Definition

STG / STS Superior temporal gyrus / sulcus
aSTS Anterior STS
mSTS Mid STS
pSTS Posterior STS
Angular / Supramar Angular / Supramarginal inferior parietal gyrus
IFG / IFS Inferior frontal gyrus / sulcus
Tri / Op Pars triangularis / opercularis (IFG)
Heschl G / Heschl S Heschl gyrus / sulcus

Statistical significance

We systematically implement single-subject and whole brain analyses: all metrics (brain score,
forecast score, forecast distance and depth) are computed for each subject, voxel pair. We report
the metrics averaged across subjects and/or voxels depending on the analysis. Statistics are
computed across subjects, using the two-sided Wilcoxon test from Scipy (Virtanen et al., 2020)
assessing whether the metric (or the difference between two metrics) is significantly different
from zero, and then corrected for multiple comparisons using False Discovery Rate. We report
an effect as significant if its p-value is lower than 0.01. Error bars systematically refer to the
Standard Errors of the Means (SEM) across subjects, following Scipy implementation.
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Noise ceiling

FMRI recordings are inherently noisy. To assess the amount of explainable signal, we use a
“noise ceiling” analysis, i.e. we predict the brain responses Y(s) of each subject s given the other
subjects’ responses to the same story Y. We proceed similarly as the brain score computation
and apply the same setting (4.1), but use the average brain signals of other subjects’ brain
Y(s)

= 1
|S| Âs0 6=s Y(s0) (of size T ⇥ V) instead of the network’s activations X. Precisely:

• For the brain score computation, Y(s) is the fMRI recordings of subject s, corresponding
to all the stories subject s listened to while being scanned. X consists of the contextual
embeddings of the corresponding words, summed within each TRs and transformed with
FIR. Thus,

Rbrainscore(s) = Corr[W(s) · X, Y(s), ]

with X the GPT-2 embeddings, temporally aligned with Y using FIR.

• For the noise ceiling computation, Y(s) is the same as for the brain score computation. X
consists of the average fMRI recordings of the other subjects that listened to the same
stories as subject s. X and Y have the same dimensionality here, and the bold delay is
assumed to be comparable across subjects, so we do not apply a FIR to X. Thus,

Rnoiseceil(s) = Corr[W(s) · Y(s), Y(s)],

with Y(s) the average fMRI of the other subjects having listened to the same story as
subject s.

For both the brain score and noise ceiling computation, we fit a ridge regression W(s) for
each subject s, predicting Y(s) given X, using the same five-folds cross-validation setting. We
evaluate the prediction successively on the 5 test folds using Pearson correlation and average
the correlation scores across folds. This results in one brain score and one noise ceiling estimate
per subject (and voxel). Results averaged across subjects are displayed in Supplementary
Figure S30. This score is one possible upper bound for the best brain score that can be obtained
given the level of noise in the dataset.

Fine-tuning GPT-2 with a Long-Range and High-level objective

Does fine-tuning GPT-2 to predict long-term, high-level and more contextualized representa-
tions increase its similarity with the brain?
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To test this question, we fine-tune GPT-2 using a mixture of language modeling loss (LM)
and a high-level and long-term loss (HL). We then evaluate brain scores and test whether the
HL objective leads to significantly higher brain scores than the LM objective.

Architecture and Losses We fine-tune the pre-trained GPT-2 model provided by Huggingface
with a mixture of Language Modeling (LM) and High-level forecast (HL). The mixture loss is
parametrized by a hyper-parameter a 2 [0, 1]. The total loss minimized is given by:

L = a0LHL + (1 � a0)LLM . (4.8)

with the constraint that a0LHL = a(1 � a0)LLM. Doing so, setting a to 0.5 means that each term
of the loss contributes to 50% of the total loss. The LM objective is to predict the next word and
it is given by:

LLM = CE
⇥
hLM � f (xt), xt+1

⇤
,

with:

• CE the cross entropy loss.

• f is the learned fine-tuned model. f is initialized with the weights of pretrained GPT-2.
Thus, f is a twelve-layers transformer network stacked onto a word-embedding, each
layer having a dimensionality of 768.

• hLM is the language modeling linear head on top of the last layer of f , from 768 to nvocab,
that predicts the next word.

• xt the input tokens.

• xt+1 the input tokens shifted from one time step (the succeeding words).

The HL objective is to predict layer k of word at distance d from the current word and it is given
by:

Lk,d
HL = CPC[hHL � f (xt), Nk(xt+d)] ,

where:

• Nk is a separate and fixed network, here the pretrained version of GPT-2 provided by
Huggingface, taken at layer k. Its weights do not vary with training.
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• hHL is a linear head on top of the last layer of f , from 768 to 768, that predicts the
activations of the kth layer of the fixed network Nk, corresponding to the word at distance
d from the current word.

• x the inputs, xt marks the current words, xt+d marks the words at distance d from the
current word.

• CPC is the contrastive predicting coding loss (Hénaff et al., 2019).

CPC = �Log
Exp


S
�
ypred, ytrue,pos

�
/t

�

Âneg Exp


S
�
ypred, ytrue,neg

�
/t

� ,

with S a similarity metric, ytrue,neg a set of negative samples, and ytrue,pos a set of positive
samples.

In practice, we choose to predict the hidden states at layer k = 8, of the future word at
distance d = 8. We choose layer k = 8 and d = 8 because it leads to the best results (Figure 4.2d).
To compute the CPC loss, we take t = 0.1 and use the cosine similarity as similarity metric S.
We use 2,000 negatives randomly sampled from a negative queue (of size 2,500). The negative
queue is updated at each batch by adding the hidden states to the non-target words from the
current batch. Such hidden states are extracted from the pretrained network at layer k (Nk).
In order for the HL and LM losses to have a fixed contribution a and 1 � a over training, we
update the parameter a0 in (4.8) every 100 gradient steps.

Dataset and training We fine tune GPT-2 on the already pre-processed English Wikipedia
dataset (https://huggingface.co/datasets/wikipedia) comprised of 6M documents (30 GB),
for three days on 2 GPUs. We use the ‘Trainer’ implementation from Huggingface with the
default training arguments (Adam optimizer, learning rate = 0.00005, see https://huggingface
.co/docs/transformers/main classes/trainer for the other default parameters). Because of
memory constraints, we restrict the context size of GPT-2 to 256 tokens, and use a batch size of
4 per device (thus, 2 ⇥ 4 ⇥ 256 = 1024 tokens per batch and gradient updates). For stability, we
fine-tune the top-tier layers of the network (from layer 8 to layer 12), while the bottom layers
are kept frozen. Fine-tuning the whole network with language modelling led to a significant
drop in brain scores (with fixed training parameters). Losses were monitored on a separate
evaluation set of 1,000 Wikipedia documents.
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Evaluation We fine-tune seven GPT-2 models with different HL weight a, from a loss being
full LM (a = 0), half LM and HL (a = 0.5) to full HL (a = 1). During the training, we save
⇡ 15 model checkpoints (regularly log-spaced between 0 and 106 gradient updates). For each
model and step, we compute the brain scores of its concatenated layers [0,4,8,12] on the same
Narratives dataset (Nastase et al., 2020), as explained in Methods, Section 4.1.5. We here choose
to span all layers from 0 to 12 because representations could ”move” across layers during the
fine-tuning which could bias the results. We then average the brain scores across steps and
assess the gain of one network over another. In Figure 4.5, we report the gain averaged across
subjects when adding increasingly more HL in the loss.
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Chapter 5

Discussion

5.1 Main findings

Do artificial neural networks and the human brain build similar intermediate representa-
tions to process language?

In this thesis, we employ a correlational metric, the ”brain score”, to identify high-level
similarities and remaining differences between the language representations of the brain and
those of artificial neural networks.

In Chapter 2, we demonstrated that (i) deep networks’ activations significantly predict brain
activity in response to isolated words, sentences, and narratives, recorded with MEG/fMRI,
across large cohorts of more than 500 participants, (iii) in language-related brain areas, (iv) for
the most accurate algorithms, i.e., those that best predict a word based on its context, and (v) for
participants with higher story comprehension levels (measured by a post-story questionnaire).

In Chapter 3, we decomposed the activations of deep neural networks to better interpret
the nature of the shared representations and neural responses to natural language stimuli. By
combining encoding models with artificial neural networks, we demonstrated a finer-grained
decomposition of the spatial and temporal hierarchy of natural language, language specificity,
as well as syntactic and semantic processes in the brain.

In Chapter 4, we investigated how to build algorithms more similar to the brain. We showed
that artificial neural networks predict short-term, word-level representations, while the brain
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predicts long-term, hierarchical representations. We found that enhancing the Generative
Pre-trained Transformer 2 (GPT-2) with the ability to predict longer-term and more abstract
representations increased its similarity with the brain.

Overall, our findings highlight the potential of artificial neural networks to elucidate the
human brain’s language processing mechanisms, while also emphasizing the need for further
improvements to bridge the gap between the two.

5.2 A thriving field of study

During my three years of doctoral studies, several other teams conducted similar research
comparing deep language models and brain recordings. Overall, these complementary results
converge toward similar conclusions to the one outline above. Below, we will briefly review the
major similarities and differences of these parallel works.

Linear mapping between transformers and the brain. Multiple studies have demonstrated a
linear mapping between brain responses and artificial neural network activations, as seen in
significant predictions in fMRI, MEG, and EEG scans (Jat et al., 2019; Hollenstein et al., 2019;
Schrimpf et al., 2021; Toneva, Stretcu, et al., 2020; Toneva, Mitchell, & Wehbe, 2020a,b; Toneva
& Wehbe, 2019; Reddy & Wehbe, 2020; Caucheteux & King, 2022; Sun et al., 2021; Anderson
et al., 2021; S. Wang, Zhang, Wang, et al., 2020; Vaidya et al., 2022; Jain et al., 2023). Multiple
transformer models have been tested, mostly derived from causal, masked, and permutation
language modeling (Devlin et al., 2019; Radford et al., 2019; Yang et al., 2020), or a combination
of language modeling and classification tasks (Raffel et al., 2020), with causal language models
exhibiting the best brain scores (Schrimpf et al., 2021). Consistently with our results, most
studies found that deep neural networks correlate with a distributed and bilateral network in
the brain, peaking in regions historically associated with language (Hickok & Poeppel, 2007;
Fedorenko et al., 2016), and in the middle layers of deep neural networks (Jain & Huth, 2018;
Toneva, Mitchell, & Wehbe, 2020a; Manning et al., 2020). Interestingly, multiple studies reported
that randomly initialized models modestly yet significantly predicted brain responses, and
showed an increase in brain score with training (Schrimpf et al., 2021; Caucheteux & King, 2022;
Pasquiou et al., 2022).
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Factors modulating the brain score. Together with our work (Caucheteux & King, 2022), a
few studies have investigated the factors that modulate this linear mapping, particularly the
network’s training task. This approach may be important for gaining insights into why the brain
work the way it does (Kanwisher et al., 2023). In line with our results, Schrimpf et al. (2021)
showed that the ability to predict the next word based on past context is a stronger predictor of
brain mapping than other standard natural language processing tasks (GLUE tasks). Compared
to (Caucheteux & King, 2022), the authors studied multiple architectures (both LSTMs and
Transformers), tasks (including multi-lingual modeling (Lample & Conneau, 2019) and T-5
(Raffel et al., 2020)) yet studied only pre-trained or randomly initialized models. They tested
deep nets’ ability to predict both fMRI and ECoG recordings (as opposed to fMRI and MEG in
(Caucheteux & King, 2022)). They studied a smaller number of participants yet also analysed
the participants’ reading time. Overall, both the brain and behavioural score strongly correlate
with the models’ ability to predict the next word (0.44 and 0.67 on average), which strengthens
the role of next-word prediction in the brain. Goldstein et al. (2022) reinforced the importance
of the next-word prediction task by using artificial neural networks to directly track next-word
representations in ECoG recordings. On the other hand, Pasquiou et al. (2022) challenged these
conclusions and argued that perplexity is not a reliable predictor of the brain score. Addressing
a slightly different question, Gauthier & Levy (2019) explored transfer learning tasks and found
that fine-tuning networks on semantic tasks such as natural language inference (MNLI in GLUE)
and sentiment analysis (SST-2 in GLUE) increased fMRI predictability. Michelmann et al. (2023)
recently showed that training models on complex narrative understanding also improves the
brain score, suggesting that the brain may perform higher-level objectives. Antonello & Huth
(2022) reached mixed conclusions, by showing that brain scores do correlate with next-word
prediction, but also with other transfer learning tasks and translation abilities. Precising our
results (Caucheteux & King, 2022), Antonello & Huth (2022) also found that the best performing
networks in terms of next-word prediction are not necessarily the most brain-like: by the end
of training, the brain score decreases while perplexity continues to improve.

Overall, our results, along with the aforementioned studies, reinforce the importance of
next-word prediction in the emergence of similarities between deep language models and the
brain. However, they also suggest that the brain may be guided by a higher-level objective, as
proposed in Section 4.1.

Decomposing the shared representations. Recent studies have decomposed language rep-
resentations in artificial neural networks to study the content of language representations in
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the brain, disentangling the effects of context (Jain & Huth, 2018; Jain et al., 2023), layer depth
(Toneva & Wehbe, 2019; Jain & Huth, 2018; Vaidya et al., 2022), syntax and semantics (Reddy &
Wehbe, 2020; S. Wang, Zhang, Lin, & Zong, 2020). Consistently with our results (Caucheteux et
al., 2021a,b; Millet et al., 2022), they demonstrate a parallel organization of language representa-
tions in both the cortex and the model, where the layer and contextual hierarchy of the model
correspond with the anatomical structure (Jain & Huth, 2018; Vaidya et al., 2022), as well as a
distributed network of both syntactic and semantic processes in the brain (Reddy & Wehbe,
2020; S. Wang, Zhang, Lin, & Zong, 2020; Pasquiou et al., 2023). The authors employed varying
approaches to decomposing syntactic and semantic representations. For instance, Pasquiou et
al. (2023) trained a neural network on corpora that were deprived of either syntactic or semantic
information, and then measured the mapping between these information-restricted algorithms
and brain activity. Consistent with our own findings, Pasquiou et al. (2023) observed that
most brain regions were sensitive to both syntactic and semantic processes, but with differing
magnitudes of responses. Specifically, frontal, parietal and medial regions exhibited a greater
sensitivity to semantics, as opposed to temporal regions. However, contrary to (Caucheteux et
al., 2021a), they also found that gains in brain score for compositional semantic representations
were relatively modest compared to lexical semantic representations, and mostly localized in
medial regions.

Overall, the simultaneity of these works is not a coincidence, but results from collective
efforts, including the development of open-source deep learning models (Wolf et al., 2020) and
the creation of publicly available brain recording datasets like Nastase et al. (2020); Schoffelen
et al. (2019); Allen et al. (2022). Our study builds on this foundation by conducting a large-scale
investigation into the similarities and differences between AI systems and the human brain.
By retraining deep learning models from scratch, focusing on the differences between the two
systems, and studying multiple datasets of large cohorts of participants, mostly in fMRI, the
present manuscript complements the aforementioned studies, and contributes to a rapidly
growing field at interface between AI and neuroscience.

5.3 Limitations and future work

5.3.1 Building more accurate encoding models

Despite advances in encoding models based on deep networks, the accuracy of predicting brain
activity remains imperfect, with brain scores falling short of 1. Although this can be partly
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attributed to the inherent noise in fMRI and MEG data, as well as the analysis of single-trial
responses from single sensors, a significant portion of the variability in brain activity remains
unexplained. In this section, we present various approaches to address this gap in brain
predictability.

Learning better encoding representations. One possible explanation for this gap is the use of
suboptimal encoding representations.

• Leveraging pre-trained models from the NLP community
One approach is to leverage pre-trained models from the natural language processing
community. Several research teams have investigated the brain score of recent artificial
models (Toneva & Wehbe, 2019; Schrimpf et al., 2021; Michelmann et al., 2023), and
launched a dedicated benchmark to quantify language models’ brain similarity1. Going
forward, it will be exciting to explore the brain similarity of less standard models trained
to incorporate long-term dependencies (Beltagy et al., 2020; Raikote, 2021), multi-step
planning (Hu et al., 2022), information retrieval (Borgeaud et al., 2022; Izacard et al., 2022),
models trained on code (Nijkamp et al., 2022), mathematics (Jiang et al., 2022), other
languages (Lample & Conneau, 2019), and music (Dhariwal et al., 2020; Agostinelli et al.,
2023), in order to elucidate the specific brain representations underlying such higher-level
cognitive processes.

• Learning better encoding representations through neuro-scientific intuitions
By building models that incorporate principles of neural processing, researchers may be
able to develop more brain-like models. In Chapter 4, we leverage insights from predictive
coding theory to enhance deep language models with long-range and hierarchical learning
rules, leading to improved brain predictability. While difficult, this approach may provide
a more direct way of addressing questions in neuroscience, rather than simply testing the
latest NLP models. An exciting direction for future work would be to draw inspiration
from cognitive processes widely studied in neuroscience but currently lacking from
the best algorithms, like episodic and semantic memory, continual learning, one shot
generalisation, inductive reasoning, imagination and multi-step planning (Hassabis et al.,
2017; Mahowald et al., 2023; Bang et al., 2023).

1https://github.com/brain-score/language
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• Learning better encoding representations through deep encoding models
Another approach is to train or fine-tune deep models directly to predict brain responses.
This approach has already been explored in vision research, which has led to the devel-
opment of specific benchmarks to compare deep encoding models of brain responses to
natural scenes images (Gifford et al., 2023). Such an approach could be an exciting avenue
for future work to enable better encoding models of brain responses to language.

Leveraging data from multiple subjects and larger datasets. In the present manuscript, we
build separate encoding models for each subject, which limits the amount of data available
for training. This approach can be improved by leveraging data from other participants
and multiple datasets, but combining heterogeneous recordings is challenging. Previous
studies have addressed this challenge by using non-linear methods in fMRI, MEG and EEG
(Mohsenvand et al., 2020; Chehab et al., 2022; Thomas et al., 2022; Défossez et al., 2022).
Inspired by these approaches, future work may explore linear encoding models that incorporate
participant-specific parameters to leverage data from more participants and multiple datasets.

Inter-subject variability. In our analyses, we typically report average scores and statistical
significance across individuals, after projecting brain responses onto a common surface map
(fsaverage). However, this approach only partially takes into account the inter-subject vari-
ability in functional responses. This limitation is particularly problematic in high-level brain
regions where responses are known to vary significantly across individuals (Mahowald & Fe-
dorenko, 2016). To address this issue, future studies should explore more powerful anatomical
and functional alignment techniques that can better capture individuals’ specificity and may
improve predictive accuracy (P.-H. C. Chen et al., 2015; Richard et al., 2019; Haxby et al., 2020;
Bazeille et al., 2021; Thual et al., 2022).

Improving the estimation of noise levels in neuro-imaging recordings. Some of the unex-
plained variability in neuro-imaging recordings may be attributed to inherent noise rather than
limited encoding models. Defining noise and signal depends on the scientific question at hand.
Here, our aim is to comprehend brain responses to language, independent of participants’ move-
ment, recording conditions, and stimulus modality. In this study, we utilized a shared-response
model as an upper bound for the best possible achievable scores. Precisely, it assumes that
the signal is brain activity shared across all participants in response to the same stimuli. As
language representations vary across individuals, the shared response model is an imperfect
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solution (Mahowald & Fedorenko, 2016; Seghier & Price, 2018). Exploring novel methods to
quantify the signal in single-trial settings while accounting for inter-individual variability will
be crucial to quantify the remaining gap between deep net algorithms and the human brain.

A debate on non-linearity. In our study, we choose to use linear encoding models to focus on
neural representations, which refer to linearly readable information from brain activity (DiCarlo &
Cox, 2007; Kriegeskorte et al., 2008). The use of linear models allows us to capture the intended
focus of our investigation, without capturing additional information beyond our intended
scope. To illustrate the importance of linearity, consider the classic example of information read
from the retina. When a participant views an image of a dog, the pixel-level information of
the image is represented in the retina. A non-linear model could reconstruct the concept of
”dog” from the pixel-level representations of the retina, while the retina itself does not represent
the concept of ”dog”. Thus, while non-linear encoding models may offer increased predictive
power, they may also capture information beyond our intended focus.

5.3.2 Improving encoding models’ evaluation

Generalizing to out-of-distribution conditions and super stimuli. In this study, we validated
our encoding models on 20% of the stimuli presented to each subject. While this provides a
strong initial assessment of the models’ performance, further evaluation on new recording
conditions (e.g. across different laboratories) and novel stimuli (e.g. across novel stories) is
necessary to fully test their robustness. Furthermore, it would be worthwhile to investigate the
models’ ability to perform in out-of-distribution scenarios, including the presence of adversarial
examples and “super stimuli” - stimuli that go beyond the normal distribution of natural stimuli,
such as caricatures in visual processing (Leopold et al., 2006). In the field of vision research,
for instance, Bashivan et al. (2018) used artificial neural networks to generate images that
maximally activate selected single neurons in monkeys’ visual cortex. Such a methodology
could be applied in the language domain by generating sentences that maximize activation in
specific brain regions and validating predictions with new acquisitions.

Using sensor-wise similarity metrics. The brain score is a valuable metric predicting each
sensor independently, but it has limitations. Specifically, while it provides information about
individual sensors and can be used with continuous stimuli, it does not explicitly learn a
brain representation space that can be interpreted geometrically. Thus, it limits our ability to
analyze and visualize how words and sentences are represented in terms of distances. Other
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methods, such as representational similarity (Kriegeskorte et al., 2008), have been proposed
to characterize the pairwise stimulus correlation matrix of two representations (model and
real neurons) for a given set of stimuli. This approach provides a population-level metric
while capturing the similarity of the representations of the two populations. However, it does
not provide information about individual sensors, and it is highly dependant on averaging
brain responses across trials to subtract the effect of uninformative features. Thus, it is not
compatible with single-trial studies, where the distances in the raw BOLD/MEG space are
dominated by non-linguistic features such as motion, recording conditions, and stimulus
modality. Future works could explore alternative linear methods compatible with population-
level representations and single trial studies using continuous stimuli (Wegelin et al., 2006)2.
These approaches may help to preserve a population-level representation space and potentially
offer a geometric interpretation of how words and sentences are combined in the brain.

5.3.3 Building more interpretable encoding models

The interpretability of encoding models applied to naturalistic stimuli, compared to factorial
designs, remains a major challenge. While encoding models offer high predictive power,
reusability and can be used to analyse natural stimuli, they lack interpretability.

Clarifying the notion of interpretability. Interpreting language representations assumes that
representations are generated from several underlying factors that account for specific linguistic
features, such as tense, pronouns, and syntactic tree structure. A space will be considered as
interpretable when it is disentangled into subcomponents, each subcomponent being generated
from independent factors. Thus, in a disentangled space, each subcomponent is sensitive to
modifications in specific factors (e.g. tense of the verb) and invariant to changes in others (e.g.
plural/singular) (Bengio et al., 2014; Higgins et al., 2017). Brain representations exhibited by
factorial designs are interpretable by construction, as the experimenter selects pre-existing
generative factors (e.g. the constituent size and sentence length), generates corresponding
stimuli, and splits the brain response into subcomponents varying with one selected factor but
not the others. In contrast, the distributed representations of language models are not directly
interpretable: their individual units are correlated with each other and related to multiple
entangled linguistic features (Jawahar et al., 2019). Consequently, the encoding models based
on deep language models that we utilize in our analyses pose challenges for interpretability.

2https://scikit-learn.org/stable/modules/cross decomposition.html
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Using disentangled encoding features. One promising approach to gaining interpretability
in encoding models is to disentangle deep networks’ activations into independent factors
that are each sensitive to specific linguistic features. In Chapter 3, we demonstrated how
this approach can be applied to lexical and compositional syntax and semantics, language
specificity and the processing of multiple timescales. Specifically, we disentangled syntax
and semantics by averaging the activations of language models over syntactically equivalent
sentences, and we separated short-term and long-term dependencies by feeding language
models with increasingly more context (Caucheteux et al., 2021a). While these methods do
not require extra training and can be applied at inference time, their applicability is limited
to a relatively small number of factors. More computationally expensive methods can be
used, such as training the network on different datasets, each generated by a specific factor
(Pasquiou et al., 2023; Millet et al., 2022), or using specific models designed to learn disentangled
representations (S. Wang, Zhang, Lin, & Zong, 2020). For example, in Chapter 3, we separate
acoustic, speech-specific, and language-specific representations by training the network on
acoustic, non-native speech, and native speech datasets, respectively. In the field of computer
vision, specific architectures have been developed that directly learn to disentangle the factors
of variation in a training set (Higgins et al., 2017; Rolfe, 2017; Oord et al., 2018; Xiao et al.,
2018). In natural language processing, a few models have been proposed to build disentangled
representations, including via style transfer (Shen et al., 2017), controllable generation (Hu et al.,
2018) (controlling for sentiment and tense), conditional generation based on prompts (Ouyang
et al., 2022). Exploring the brain predictivity of the disentangled components is an exciting
direction to better interpret brain responses to language.

Using deep language models as ”in silico” models of the brain. The previous approach
depends on our ability to disentangle representations in deep networks, which is not an easy
task. Antonello & Huth (2022) proposed a slightly different approach to gain interpretability. In
our work, we first disentangled deep networks activations and then predicted brain activity. In
contrast, Antonello & Huth (2022) first train the encoding model and then use the encoding
model as a simulator to investigate the synthetic brain responses elicited by new controlled
stimuli, leveraging factorial designs without new acquisitions (see also (Eickenberg et al., 2017)
for a similar approach in vision). While such “in silico” experimentation would not replace
in vivo experiments, it can reduce the cost of hypothesis testing and generalizability, while
leveraging the interpretability of factorial designs.
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5.3.4 Generalizing hierarchical predictions to multiple layers and distances

In Chapter 4, we demonstrated that improving GPT-2’s objective to predict a distant latent
space increased its similarity with the brain. Our approach had limitations. First, we fine-tuned
GPT-2 to predict fixed distant and latent representations. By using fixed targets, we avoided the
problem of the model collapsing all inputs to the same point in the feature space. However, it is
not compatible with training the model from scratch. Adapting this approach to be compatible
with predicting variable and learnable targets will require methods to prevent model collapse,
such as those proposed in (Baevski et al., 2020; T. Chen et al., 2020; He et al., 2020; Grill et al.,
2020; El-Nouby et al., 2021; Bardes et al., 2022). Second, our approach was non-systematic (the
model predicted layer 8, distance 5 from the current word), and we believe that algorithms
should be enhanced with multiple levels of forecast. To achieve this, future work could draw
inspiration from XLNet (Yang et al., 2020) and Data2Vec (Baevski et al., 2022). XLNet predicts
randomly picked words in a sentence given its distant context while Data2Vec is trained to
predict latent representations. By leveraging the permutation modeling approach of XLNet
and the abstract objective of Data2Vec, we could build flexible models capable of predicting
multiple time steps and levels of abstraction.

5.3.5 Improving NLP benchmarks

Although enhancing GPT-2 with high-level objectives did not result in improved performance
on standard NLP tasks such as GLUE (A. Wang et al., 2018, 2020), this outcome may be partially
attributable to the limitations of existing NLP benchmarks. Specifically, we contend that
assessing hierarchical learning rules on downstream tasks that demand multi-step planning
and long-term dependencies may yield more promising results. Downstream tasks in NLP such
as summarization (Narayan et al., 2018; Hermann et al., 2015), question answering (Rajpurkar
et al., 2016; Fan et al., 2019; Sinha et al., 2019), dialogue (Dinan et al., 2019), and multi-hop
reasoning (Yang et al., 2018) may involve the need to predict abstract and distant representations
of the future. Nonetheless, they are limited in two ways. First, while word-level metrics such
as BLEU and ROUGE are commonly used to evaluate model performance on generation tasks,
they only partially capture the semantic and syntactic aspects of the generated text and have
limited correlation with human judgment (Papineni et al., 2002; Lin, 2004; T. Zhang et al., 2020).
Second, these tasks often rely on a mixture of skills, such as fluent generation, commonsense,
and knowledge, more than planning itself. Instead, more direct tests of planning abilities exist
in the reinforcement learning community, such as navigation and continuous control tasks that
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require the agent to plan a sequence of actions to control a robot in a simulated environment
(Tassa et al., 2018; Savva et al., 2019). Adapting these tasks to target the planning abilities of
NLP systems is an exciting direction for future work.

Overall, developing high-level tasks and evaluation metrics that more accurately reflect
human judgments is a crucial challenge in NLP. I believe that such efforts will strengthen the
relevance of hierarchical learning rules, and brain-inspired approaches in general.

5.4 Bridging neuro-linguistics and AI: advancements and chal-
lenges

One of the central challenges of my PhD research has been to compare two black boxes: the
human brain and deep neural networks (Abnar et al., 2019). While some may question the
value of such a comparison in advancing our understanding of neuro-linguistics and AI, I
believe that our comparative analysis has the potential to offer valuable insights in both fields.
In the following sections, I will discuss the objectives of neuro-linguistics and AI, and describe
how our work has sought to contribute towards these goals.

5.4.1 Advancing neuro-linguistics with artificial neural networks

Goal of neuro-linguistics. Neuro-linguistics aims to understand and explain how the brain
processes language. In their work, Jain et al. (2023) characterize this goal as identifying a
scientific model that can effectively account for brain responses to language stimuli (R = fq(S),
where R represents brain activity, fq the scientific model, and S represents the stimulus). The
aim is then to find a model that exhibits high predictive accuracy, scope, and explainability.

• Predictive accuracy refers to the ability of the model fq to accurately predict brain activity
R based on the experimental conditions and stimuli. The model should provide accurate
and reliable predictions that are consistent with the observed data.

• Scope refers to the range of brain responses and stimuli that the model fq can account
for. A good model should be able to explain a wide range of brain responses recorded
with different modalities, in response to a variety of stimuli (e.g. audio or visual words,
sentences and narratives).
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• Explainability refers to the ability of the model fq to be decomposed into subcomponents
that are useful for the experimenter. The subcomponents of interest depend on the scien-
tific question and research goals. In the field of neuro-linguistics, a common approach
to modeling brain responses involves describing them in terms of interpretable features
that underlie specific processes, such as syntax and semantics. Complementary to this
approach is another possibly inspired by artificial intelligence research, which favors
describing the system in terms of simple principles, such as its architecture, objective
function, and learning rule (Richards et al., 2019). These two approaches are not mu-
tually exclusive; advancements in finding relevant features may lead to insights in the
computational principles underlying language.

In the pursuit of developing accurate, explainable, and large-scoped models, neuroscience has
explored various approaches. In the following, we review two commonly used strategies and
demonstrate how the present study fits within this context.

Strengths and weaknesses of combining natural stimuli with deep encoding models. Two
common methods to understand brain responses are contrast-based methods and encoding
models (Jain et al., 2023). Contrast-based methods are usually combined with factorial designs
and involve comparing brain responses to different controlled stimuli, while encoding models
assume that fq belongs to a certain set of functions and estimate the learnable parameters
using true brain responses to either controlled or natural stimuli. In our research, we use
linear encoding models based on artificial neural network features to explain brain responses
to natural language ( fq = Wq · XS, with XS the deep nets activations in response to the natural
story S heard by the participants). This combines advantages of using natural stimuli, encoding
models and the rich distributed features of artificial neural networks.

• Natural stimuli
In contrast to factorial designs, which often employ carefully selected stimuli that are
matched for various linguistic features like word length, word frequency (Kutas & Feder-
meier, 2011), and/or constituent size (Pallier et al., 2011; Ding et al., 2016), natural stimuli
possess ecological generalizability (Hamilton & Huth, 2018). This characteristic allows
experimental setups to more closely resemble real-world settings, potentially increasing
the generalizability of findings to out-of-lab conditions. Furthermore, the use of natural
stimuli allows for the inclusion of larger cohorts of participants and facilitates the re-use
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of experiments to study a wide range of linguistic phenomena, thereby increasing the sta-
tistical power of analysis and promoting collaboration and replication across laboratories
(Jain et al., 2023).

• Encoding models
Second, linear encoding models offer several advantages over contrast-based methods
like scale and re-usability (Jain et al., 2023). Contrast-based methods compare brain
activity of participants in response to different conditions, and are partially compatible
with natural stimuli. For instance, Lerner et al. (2011) compared brain responses to natural
stories and stories with shuffled words, sentences, and paragraphs to study the timescale
of brain representations. However, this approach requires a large number of recordings
(one per participant per condition) and still relies on unnatural stimuli. In contrast, linear
encoding models assume that fq is a linear transform of a feature space XS describing the
stimulus: fq = Wq · XS (Jain et al., 2023). Wq is estimated using brain response to the same
natural stimulus, and a wide range of phenomena can be studied by varying the feature
space XS, without new acquisition.

• Implicit encoding features
The feature space XS can be simple linguistic features like an indicator of the part-of-
speech of a word, or more complex features. Explicit linguistic features allow greater
interpretability but only account for specific phenomena identified a priori by the ex-
perimenter. In contrast, we here use the implicit features of artificial nets; they are rich
semantic features but are distributed, correlated, and thus hard to interpret.

Overall, while factorial designs combined with controlled stimuli have great interpretability,
they suffer from reduced predictivity and scope. On the contrary, encoding models based on
deep language algorithms have high predictive power and a wide scope, but low interpretability.
Below, we show how this manuscript highlights the strengths of such method and attempts to
overcome its limitations.

Improved brain predictivity and scope. In Chapter 2, we demonstrate that linear encoding
methods combined with deep language models allows to significantly predict brain activity
in wide range of experimental settings, namely in response to isolated words, sentences, and
narratives, recorded with MEG/fMRI, across large cohorts of more than 500 participants,
for more than thirty artificial neural networks architectures. The robustness of the effect is
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reinforced by an increasing number of studies evidencing a significant prediction for various
stimuli and brain recordings modalities (Jat et al., 2019; Hollenstein et al., 2019; Schrimpf et
al., 2021; Toneva, Stretcu, et al., 2020; Toneva, Mitchell, & Wehbe, 2020a,b; Toneva & Wehbe,
2019; Reddy & Wehbe, 2020; Sun et al., 2021; Anderson et al., 2021; S. Wang, Zhang, Wang, et al.,
2020; Vaidya et al., 2022; Jain et al., 2023), and showing that artificial nets better predicts brain
activity than discrete linguistic features such as node count, part-of-speech and dependency
tags (Reddy & Wehbe, 2020).

Decomposing syntax, semantics, lexical, contextual representations. The representations
of deep networks are difficult to interpret due to their distributed nature (Abnar et al., 2019).
In Chapter 3, we attempt to address this issue by decomposing the activations of deep neural
networks into subcomponents and quantifying the brain predictivity of each disentangled
subcomponent. Our approach reveals a finer-grained decomposition of the spatial and tem-
poral hierarchy of natural language, language specificity, as well as syntactic and semantic
processes in the brain. In particular, we find a distributed (Fedorenko et al., 2020), rather than
modular (Friederici et al., 2000; Friederici, 2011), view of syntactic processes, highlighting a
large recruitment of compositional semantics, as well as a hierarchical organization of speech
processing along the temporo-parietal axis with high granularity (Lerner et al., 2011).

Computational principle underlying language. In Chapter 2, we investigate the properties
that contribute to the brain predictivity of deep neural networks, focusing on architecture and
objective function. To this end, we compared thousands of models trained on the same dataset,
but varying in performance, architecture, and training duration, and examined their brain score.
Our findings revealed that the models’ ability to predict the next word primarily affect the
brain score, with architectural parameters having a lesser impact. Notably, we observed a
non-monotonic relationship between next-word prediction performance and the brain score,
wherein the very best models slightly deviate from the brain while still improving in their
next-word prediction task. These findings suggest that although next-word prediction enables
the emergence of brain-like representations, it may also be too specific compared to the brain.
In line with this concept, our Chapter 4 research showcases that fine-tuning GPT-2 with a
long-range and hierarchical objective enhances its resemblance with the brain. This notion
stems from predictive coding theories, where the brain continually forecasts sensory inputs,
matches them against actual inputs, and updates its internal model (Rumelhart & McClelland,
1982; Rao & Ballard, 1999; K. Friston & Kiebel, 2009). Our study in Chapter 4 further refines
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this hypothesis by revealing that individual regions of the cortical hierarchy specialize in
predicting various temporal scopes and levels of representations. Thus, our findings reinforce
the significance of next-word prediction in the brain (Heilbron et al., 2022; Schrimpf et al., 2021;
Goldstein et al., 2022) while also proposing that the brain predicts more distant and abstract
representations.

Overall, our works highlight the strong predictive power and wide scope of encoding
models based on artificial neural networks, while acknowledging their limited yet improvable
interpretability. We believe that manipulating the activations of language models can enhance
our understanding of the features encoded in brain responses, and carefully comparing different
neural networks may help clarify the computational principle that govern language processing in
the brain.

5.4.2 Advancing AI through brain-inspired models

Goal of artificial intelligence in the context of language. The ultimate objective of Artificial
Intelligence (AI) remains a widely debated topic. There are various proposed concepts such as
Artificial General Intelligence, Human-Level Intelligence, Strong AI, and Universal AI, among
others (Legg & Hutter, 2007; McCarthy, 2007; Searle, 2009; Goertzel, 2014). These concepts
differ in their end-goals, ranging from thinking like humans to simply perform well at pre-
defined tasks. Nonetheless, they share the common objective of developing intelligent systems
capable of performing diverse tasks in various environments. In the context of natural language
processing, this goal translates into building systems that achieve human-level performance in
all language tasks humans could possibly do, such as dialogue, machine translation, question
answering, story generation and text synthesis.

Language models still fall short of human-level performances. Recent large language models
have made significant progress in NLP, approaching the goal of human-level performance.
However, they still struggle with certain aspects of language understanding that come naturally
to humans. In a recent study, Mahowald et al. (2023) demonstrated that even the most advanced
language models, such as ChatGPT, still struggle in understanding and using language in a
real-world context. As detailed in the Introduction, large language models fail at some tasks
such as handling long-span memory, retrieving information, multi-step planning, inductive
and commonsense reasoning (Mahowald et al., 2023; Bang et al., 2023). Additionally, these
models lack consistency in their responses and are highly sensitive to the quality and quantity
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of data used for training (Elazar et al., 2021; Brown et al., 2020; Mahowald et al., 2023). Thus,
while the progress made in NLP is undoubtedly impressive, there is still work to be done to
bridge the gap between artificial and human language processing.

Neuroscience as a source of inspiration and validation for human-level intelligence. The
question of whether neuroscience can help close the gap between humans and artificial neural
networks is a long-standing debate, extending beyond the domain of language. It has fueled a
history of advances in AI inspired by or developed in conjunction with cognitive neuroscience,
including early artificial neural networks, back-propagation, convolution, and, more generally,
deep learning frameworks (McCulloch & Pitts, 1943; Hebb, 1949; Turing, 1950; Hubel & Wiesel,
1959; Rumelhart et al., 1986; LeCun et al., 1989, 2015; Schmidhuber, 2015). Given the vast
space of possible solutions to human-level AI, investigating how the brain works may guide
the search. As highlighted by Hassabis et al. (2017), there may be two primary benefits of
developing AI based on our understanding of how the brain works:

“First, neuroscience provides a rich source of inspiration for new types of algorithms and
architectures, independent of and complementary to the mathematical and logic-based
methods and ideas that have largely dominated traditional approaches to AI. [...] Second,
neuroscience can provide validation of AI techniques that already exist. If a known algorithm
is subsequently found to be implemented in the brain, then that is strong support for its
plausibility as an integral component of an overall general intelligence system.”
(Hassabis et al., 2017).

Recent papers, including the work by Zador et al. (2022), also advocate for a more neuroscience-
driven approach to AI. However, some critics have questioned the ambiguous link between
neuroscience and advances in deep learning. For instance, Sam Gershman argued that

“new engineering ideas come from thinking about the structure of problems, not reading the
tea leaves of biology”3.

To clarify the ongoing debate, it may be worthwhile to consider the appropriate level of
analysis for drawing inspiration from neuroscience. Should we do so at the computational
level (i.e., the goal the two systems optimize), the algorithmic level (i.e., the computations
underlying such a goal), or the implementation level (i.e., the physical substrates of the systems)
(Marr & Poggio, 1976)? For instance, when the objective is to design flying machines, such

3https://twitter.com/gershbrain/status/1583785657767366656?s=20
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as planes, building a biological system with feathers may not be necessary. Nevertheless,
comprehending the algorithmic properties that enable the balance of lift, weight, and thrust
and the capacity to make minor adjustments to the direction and speed of flight can prove
beneficial.

In the following paragraphs, we show how the present thesis attempts to leverage brain
activity to probe the generality of current AI systems, as well as propose brain-inspired objective
functions.

The brain score as a generalization test. Evaluating the ability of machines to generalize
across all human language tasks is challenging. While behavioral benchmarks have been utilized
to assess machine performance across multiple tasks, this approach faces significant limitations
(A. Wang et al., 2018, 2020; Srivastava et al., 2022). Formalizing and testing all human tasks is
impossible, and designing tasks to target specific high-level properties is often difficult, leading
to biases in the evaluation process (Bowman & Dahl, 2021). As an alternative, evaluating
algorithms based on their internal representations may offer a promising approach. If two systems
build the same underlying constructs, they may respond similarly to new stimuli. Building on
this idea, we assess the similarity between human and machine internal representations, and
use such metric as a complementary way to evaluate the generality of deep neural networks’
internal constructs. By evidencing high-level similarities with brain activity, the present study
strengthens the generality of the representations learnt by recent language models.

Drawing inspiration from hierarchical objective functions. Next-word prediction has en-
abled significant advancements in natural language processing (Radford et al., 2019; Brown et
al., 2020). However, our research suggests that such task may be limited. Specifically, Chapter
2 of our manuscript shows that the best-performing models slightly diverge from brain-like
representations at the end of training, while improving on their next-word prediction task. In
Chapter 4, we elaborate on this idea and provide evidence that augmenting GPT-2 with the
ability to predict long-range and hierarchical representations improves its similarity to the
brain. Our proposal roots in predictive coding theories (Rumelhart & McClelland, 1982; Rao &
Ballard, 1999; K. Friston & Kiebel, 2009), and aligns with recent research in vision and speech
domains that have explored high-level training tasks (Baevski et al., 2020; T. Chen et al., 2020;
He et al., 2020; Grill et al., 2020; El-Nouby et al., 2021; Bardes et al., 2022; LeCun, 2022). These
studies share a common objective of predicting latent representations while addressing the
issue of model collapse in various ways. For instance, SimCLR and MoCo leverage contrastive
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learning along with either a large batch size or a queue to store a large number of negative
examples (H.-H. Chen & Cherkassky, 2020; He et al., 2020). VicReg introduces regularization
terms to control for sufficient variance in activations while favoring uncorrelated representa-
tions (Bardes et al., 2022; LeCun, 2022). BYOL predicts representations of a separate encoder
model consisting of an exponential moving average of the model weights (Grill et al., 2020).
Alternatively, Baevski et al. (2020) propose predicting latent and quantized representations of
masked frames using a contrastive loss combined with a diversity loss. In the field of natural
language processing, several studies have investigated alternative learning rules to causal and
masked language modelling (Jernite et al., 2017; Fan et al., 2018; Devlin et al., 2019; Lewis et
al., 2019; Yang et al., 2020; Joshi et al., 2020; Clark et al., 2020; Baevski et al., 2022). However,
none of these methods have combined both long-range and high-level predictions. The present
research is a first step towards filling this gap and contributes to the growing body of research
exploring high-level training tasks.

Overall, we argue that drawing inspiration and validation from neuroscience can provide
a significant advantage in the development of human-level AI, even if the optimal level of
analysis to achieve this remains uncertain.

5.4.3 Closing the gap: what’s missing to current AI systems?

Large language models have made significant strides in natural language processing, but
they still fall short in several key areas when compared to the human brain. First, they still
underperform humans in language tasks involving long-term memory, planning, inductive
and commonsense reasoning, logic and math, meta-learning, as well as handling continual
learning, uncertainty and data heterogeneity (Elazar et al., 2021; Bang et al., 2023; Mahowald
et al., 2023). Second, the brain score remains low, and the representations of deep language
models are only partially aligned with the brain. Third, they are trained on unrealistic amounts
of data, much more than what a child is exposed to (Warstadt & Bowman, 2022), and are highly
sensitive to the quality of the training datasets. Fourth, the brain remains a much more efficient
system than artificial neural networks. The question of how to close these gaps is a topic of
ongoing research, and I believe that seeking inspiration from the brain may provide viable
solutions. This may entail exploring alternative computational principles, such as objective
functions, learning rules, and network architectures that more closely mirror the organization
and function of the human brain. However, some researchers may disagree with this view,
particularly in light of the impressive performance of large language models trained on larger
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and higher-quality datasets (Kaplan et al., 2020). In the following paragraphs, I will discuss
some of the proposed solutions for addressing these gaps.

Training on larger and higher quality dataset is inefficient and biologically implausible.
Recent works have achieved remarkable performance by training models on larger amount
of higher quality datasets (Hoffmann et al., 2022; Brown et al., 2020; Touvron et al., 2023).
However, this approach has limitations. First, the amount of available data is finite, and the
data curation process is expensive and time-consuming. Second, it is biologically implausible.
Current models are heavily reliant on the curation process, and a few carefully curated datasets
for fine-tuning may yield better results than large amounts of non-curated data (Solaiman &
Dennison, 2021). In contrast, the brain is adept at handling heterogeneous datasets in a variable
and unpredictable environment, and children learn language from less and noisier data than
current models (Warstadt & Bowman, 2022). Therefore, I speculate that the performance gains
brought by training on larger and higher quality datasets will eventually plateau, and it will
not be sufficient to achieve human-level AI.

Directly optimizing for human behavior won’t be enough. Optimizing deep networks to
match human behavior has gained popularity with the recent success of ChatGPT (Ouyang et
al., 2022). ChatGPT relies on pre-training and a second step that includes both a fine-tuning
task on instructional data and reinforcement learning from human feedback. The second
step is critical for ChatGPT’s dialogue performance and requires the annotation of thousands
of texts. While ChatGPT yields impressive results, increasing the quality and quantity of
annotated data is limited by its cost and is fundamentally different from how humans learn
language. Therefore, in my view, relying more on human feedback suffers from both practical
and theoretical limitations and is unlikely to be sufficient to achieve human-level AI.

Directly optimizing for brain-like representations is limited by the amount and quality of
brain recordings. While it may seem more direct to optimize deep models to match brain
recordings in order to achieve brain-like representations and gains in NLP performances, this
approach is currently limited by the scarcity and noise of brain recordings. A study by Schwartz
et al. (2019) explored this path by fine-tuning a BERT model to predict MEG and fMRI data,
which improved the brain score but did not yield significant improvements in NLP tasks. One
potential alternative would be to use a mixed loss that combines a brain-oriented objective with
a language modelling objective. However, such a method still requires a sufficient amount of
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high-quality brain recordings, which are currently limited. Therefore, it may be more beneficial
to draw inspiration from the brain to identify relevant computational principles such as the
architecture and objective function, and then optimize the model weights on textual data.

The role of multi-modality and grounding. The need for multimodality has gained popularity
in recent months, with significant advancements in multi-modal generative models (Ramesh
et al., 2022; Rombach et al., 2022), and the recent release of GPT-44. This approach recognizes
the importance of integrating rich multimodal inputs to achieve a deeper understanding of
situations, rather than treating language as a standalone entity (Hasson et al., 2018; McClelland
et al., 2020; Bisk et al., 2020). Human cognition involves constructing situation representations,
and relating information to familiar contexts enhances our understanding and memory recall
(McClelland et al., 2020; Bransford & Johnson, 1972). However, whether these elements are
essential for achieving human-level intelligence remains unclear. For example, blindness
does not appear to impair language or reasoning abilities (Knauff & May, 2006), and it is
uncertain whether multimodal models are better suited for highly unpredictable and variable
environments. While I recognize the practical benefits of integrating multiple modalities,
additional factors may be necessary for achieving human-level intelligence.

The ambivalent role of the model size. The exact role of the model size remains ambiguous.
On the one hand, training larger models has resulted in improved performance in NLP (Brown
et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022; Touvron et al., 2023), and even the
largest models of today contain significantly fewer weights than the brain has synapses5, which
suggests a path for improvement. On the other hand, scaling the model size has limitations
imposed by hardware constraints (Chowdhery et al., 2022; Hoffmann et al., 2022). Drawing
inspiration from the brain may provide a path towards computational efficiency. For instance,
training GPT-3 would require 1000 megawatt-hour, a consumption rate that vastly exceeds that
of the human brain at 20 watt-hour (Patterson et al., 2007; Zador et al., 2022). Some differences
may be noted, as analysed in (Zador et al., 2022). For instance, the energy cost of transmitting
information depends on the amplitude of activation in the brain, while it is the same for a ”0”
or a ”1” in digital signal processing. Similarly, the energy cost of transmitting information from
one part of the brain to the other is different from transmitting information locally, which is not

4https://openai.com/product/gpt-4
5We consider that each of the 90 billion neurons have around 10,000 synapses, and take a 90 billion parameter

model as reference. For comparison, GPT-2, Chinchilla, GPT-3 have 1.5, 70 and 175 billion parameters, respectively.
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the case in a single layer of Transformer. These insights suggest that new approaches to model
design, that take inspiration from biological processes, may provide a way to achieve better
efficiency. In summary, I acknowledge the potential power of high-dimensionality models, yet
we also recognize the limitations imposed by hardware constraints. As such, simply increasing
the size of models is currently not a feasible solution for achieving human-level AI.

Brain-inspired objective functions and architectures. We provided several elements that
show how studying the computational principles underlying natural language processing in
the brain will likely benefit AI. Firstly, our work calls for higher-level objective functions based
on evidence of hierarchical predictions in the brain, human planning over multiple timescales,
and the limitations of next-word prediction in handling uncertainty (LeCun, 2022; Caucheteux
et al., 2023). Predicting low-level representations of stimuli can be a noisy objective, as words
become highly indeterminate over a lifetime. Secondly, although architectural modifications
have fallen out of popularity, the current architecture of Transformers is limited by a fixed
context window, hindering its ability to retain –and forget– information on the scale of a lifetime.
Thus, there may still be room for architectural innovations, particularly in flexible memory
management (Beltagy et al., 2020; Raikote, 2021). More generally, I believe that drawing
inspiration from cognitive processes widely studied in neuroscience but currently lacking
from the best algorithms, such as episodic and semantic memory, continual learning, one-shot
generalization, inductive reasoning, imagination, and multi-step planning, is an exciting path
to identify the computational principles underlying intelligence and build better algorithms
(Hassabis et al., 2017; Mahowald et al., 2023; Bang et al., 2023).

Overall, achieving human-level AI may require multiple avenues of investigation. In my
opinion, simply training models on larger, multi-modal, and higher-quality datasets will not
suffice. Rather, I believe that drawing inspiration from the computational principles of the brain
– including its architecture and objective functions – may offer valuable insights for advancing
AI towards its goal.

5.5 Conclusion

To conclude, the present manuscript evidences similarities and differences between language
representations in brains and algorithms. The internal representations of the two systems are
partially aligned and share corresponding hierarchies. By leveraging such similarities, we show
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how language algorithms may help build more accurate encoding models of brain activity and
provide a finer grained decomposition of several linguistic processes in the brain. By identifying
their differences, namely the ability to make hierarchical predictions, our approach paves the
way for building more brain-like language algorithms. The questions of whether AI will drive
progress in neuroscience, and whether neuroscience will contribute to the success of AI models
in the future, remain open. However, by developing approaches to gain interpretability in AI
systems and refine our understanding of brains’ adequate levels of analysis, we believe that a
fruitful collaborations between AI and neuroscience will pave the way for significant progress
in both fields.
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Chapter 6

Appendix

6.1 Brains and algorithms partially converge in natural lan-
guage processing

6.1.1 Average brain responses to reading

When and where do textual sentences elicit brain activity? As expected (Fedorenko et al., 2020;
Dehaene & Cohen, 2011; Hagoort & Indefrey, 2014; Hickok & Poeppel, 2007), average fMRI
and MEG responses to written words peak in a distributed and bilateral cortical network,
including the primary visual cortex, the left fusiform gyrus, the supra-marginal, and the
superior temporal cortices, as well as the motor, premotor and infero-frontal areas (Figure 2.2a).
MEG source reconstruction, based on structural MRI and minimum norm estimates, further
clarifies the dynamics of this cortical network: on average, word onset elicits a series of brain
responses originating in V1 around ⇡100 ms and continuing within the left posterior fusiform
gyrus around 200 ms, the superior and middle temporal gyri, as well as the pre-motor and
infero-frontal cortices between 150 and 500 ms after word onset (Figure 2.2a).

6.1.2 Shared-response model (or noise ceilings)

Shared-response model (SRM) comparison (often referred to as “noise ceiling”), allows us
to evaluate the extent to which individual subjects’ brain responses can be explained with a
model-free approach (Caucheteux et al., 2021b) and can serve as a proxy for a signal-to-noise
ratio analysis. For this, we fit, for each subject separately, an SRM model (or noise-ceiling):
for each recording of each subject and each sentence Ytrain, we fit a linear model W from the
recordings of all other subjects who read the same sentence Xtrain to predict each voxel and
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each MEG sensor at each time sample, separately. Using a cross-validation scheme across
sentences, we then evaluate the Pearson correlation R between (1) the true brain responses of
subject Ytest and (2) the predicted brain responses Ŷtest = W · Xtest for each voxel and each MEG
sensor separately. This procedure can be thought of as approximating an optimal black box: i.e.
evaluating a one-hot encoder of brain responses is trained and evaluated on each element of a
unique sentence. Noise ceiling peaks within the expected language network (Fedorenko et al.,
2016) (Figure 2.1f-h). These estimates are relatively low: for example, fMRI noise ceilings reach,
on average, R = 0.129 (±0.004 SEM across subjects) in the superior temporal gyrus, whereas
MEG noise ceilings peak at R = 0.069 ± 0.001 (Supplementary Table 1).

6.1.3 Probe analysis of the language transformer

Middle layers better map onto brain responses than input and output layers. Why is there such
a difference between layers? To tackle the question, we measure the level to which the 32,400
transformer embeddings linearly predict two types of linguistic features: part-of-speech (i.e a
lexical feature), and the number of open and pending nodes (i.e compositional syntactic features
(Nelson et al., 2017)). More precisely, we fit and evaluate an `2-penalized linear model to predict
each of these features given the transformer’s embedding and plot this decoding performance
as a function of the language performance of the model (Figure S2). While the word embedding
and middle layers similarly predict word-level features (word length and part-of-speech of the
word), the two high-level syntactic features (number of open and pending nodes) are better
predicted by the middle layers of transformers. Finally, the decoding performance of the two
syntactic features varies with the layer and the performance, in a manner strikingly similar to
the brain score. These analyses suggest that middle layers are more brain-like than extremity
layers because they learn to encode abstract linguistic properties like syntax.

6.1.4 Definition of compositionality

Following a recently proposed taxonomy (Caucheteux et al., 2021a), we formally define “com-
positional” as the language representations that cannot be explained by the linear combination
of lexical representations.

This definition may not be fully aligned with the many definitions of compositionality
proposed over the years (Szabó, 2004). Specifically, some linguists restrict compositionality to
the limited, generally invertible, combinations of words that follow the laws of syntax, and
would consequently thus prefer the term “contextual”. We believe, however, that the latter
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term does not clearly point to the representations that are more than the sum of their parts
(Pelletier, 1994) which is critical to the present analyses (Figure 2.3).
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Figure S1: Correlation between the network’s performance and brain score. a-b. Standardized beta
coefficients between the language modeling performance of the network and its MEG (a) or fMRI (b)
scores. For each subject, the brain scores are first scaled (0-mean, 1-std). Then, a linear regression is fit to
predict the brain score (averaged across channels and time for MEG, across voxels for fMRI) of each layer
of 100 networks (all 512-dimensional, with 12 layers and 8 heads) given their language performance
(top-1 accuracy). The beta coefficients of the language performance are reported (y-axis). Results are
consistent across 4-, 8-, and 12-layer transformers, trained on a causal (top) or masked (bottom) language
modeling task. Error bars are the standard error of the mean beta coefficients across subjects. c. Pearson
correlation between the performance of the 100 transformers (all 512-dimensional, with 12 layers and
8 heads) and the brain score of their word embedding (top) and ninth layer (bottom), for each voxel.
Correlation scores are computed for each (subject, voxel) pair, then averaged across subjects. Only
significant voxels are displayed, as assessed with a two-sided Wilcoxon test across subjects and corrected
for multiple comparison using false discovery rate across voxels (threshold: .001).

Fronto-polar cortex: 0.054 ± 0.003 p < 10�8

Fusiform: 0.120 ± 0.004 p < 10�8

Infero-frontal: 0.139 ± 0.005 p < 10�8

M1: 0.042 ± 0.003 p < 10�8

STG: 0.129 ± 0.004 p < 10�8

Supramarginal: 0.078 ± 0.003 p < 10�8

V1: 0.150 ± 0.006 p < 10�8

Table S1: Average noise ceiling within each region-of-interest. Mean, standard error of the mean and
p-values across subjects.
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Figure S2: What linguistic information drives the brain score? a. From the stimulus, we compute three
linguistic features: the part-of-speech of the words (i) (as given by Spacy), and two higher-level syntactic
features: the number of pending nodes (ii) and open nodes (iii). These two syntactic features are derived
from the constituency trees of the sentences, following (Nelson et al., 2017). b-d. A `2-penalized linear
regression is fit to predict the three linguistic features from the word embeddings (green), and middle
layers (red) of the causal models studied in Figure 2.4b. The decoding performance is reported on the
y-axis (accuracy at predicting the part-of-speech for b, r-squared for c, d and e). e. MEG scores (averaged
across sensors and time) of the embeddings given their language modeling performance (top-1 accuracy
at predicting the next word, Figure 2.4b). f. MEG scores of the embeddings given their ability to predict
the number of open nodes.
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Figure S3: Permutation distribution. As a baseline, we compare the normal R scores (dark colors)
to those of a permutation distribution (light colors) for each of the visual, lexical and compositional
embeddings introduced in Figure 2.3. For each (subject, voxel) pair, we compute the mapping between
the embeddings X and the fMRI of the subject, either (i) shuffled across time samples or (ii) without
shuffling. Above, we report scores averaged across subjects and voxels. Error bars are standard-error of
the mean across subjects (n=100).

Figure S4: Distribution of R scores across fMRI voxels (left) and MEG sources (right). We compute
the brain scores for the visual (blue), lexical (green) and compositional (red) embeddings introduced in
Figure 3. We average scores across voxels (resp. sources) and subjects, to obtain one single score per
voxel (resp. source). Above, the corresponding distribution of the R scores across voxels and sources.
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Figure S5: Comparison between two orthogonalization methods. In Figure 3, we report the raw brain
scores (without subtraction) for the visual (blue, XV), lexical (green, XW) and compositional (red, XC)
embeddings (“base method” on the left). On the right, for each level, we subtract the scores of the level
below (e.g. red scores RC = R(XC)�R(XW)). In the middle, we orthogonalize the predictors before
computing the brain scores, by“regressing ou” the effect of the lower level onto the current level. For the
compositional score RC, we fit a ridge regression model f (we use the RidgeCV implementation from
scikit-learn, with 10 possible penalization values log spaced between 10�3 and 108) to predict XC given
the concatenation of the visual and word embeddings XV � XW . Then, we compute the brain scores of
the residuals X̃C = XC � f̂ (XV � XW). We proceed similarly for the lexical residuals X̃W = XW XV . As
we see, the subtraction method (right) is more conservative than the method with regress out (middle).
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Figure S6: Brain scores over time. a) Same as Figure 2.3c, but without subtracting the scores of the level
below. b) Same as Figure 2.3c without subtracting the scores.
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Task Dim Layers Heads Best perplexity Best accuracy

mlm 512 12 8 4.70 67.51
mlm 512 12 4 4.70 67.36
mlm 512 8 4 4.90 66.72
mlm 512 8 8 4.99 66.33
mlm 512 4 8 5.55 64.40
mlm 512 4 4 5.90 63.61
mlm 256 12 8 6.08 63.48
mlm 256 12 4 6.12 63.36
mlm 256 8 8 6.62 62.12
mlm 256 8 4 6.69 61.71
mlm 256 4 8 7.75 59.73
mlm 256 4 4 7.97 59.15
mlm 128 12 8 8.99 57.65
mlm 128 12 4 9.26 57.46
mlm 128 8 8 10.01 56.35
mlm 128 8 4 10.11 56.16
mlm 128 4 8 12.06 53.70
mlm 128 4 4 12.60 53.08
clm 512 12 8 15.00 46.47
clm 512 12 4 15.06 46.38
clm 512 8 4 15.49 46.01
clm 512 8 8 15.49 45.97
clm 512 4 8 16.75 44.93
clm 512 4 4 16.90 44.82
clm 256 12 4 17.85 44.28
clm 256 12 8 17.80 44.26
clm 256 8 8 18.69 43.68
clm 256 8 4 18.83 43.59
clm 256 4 4 20.67 42.53
clm 256 4 8 20.64 42.49
clm 128 12 4 23.26 41.47
clm 128 12 8 23.31 41.38
clm 128 8 4 24.45 40.83
clm 128 8 8 24.36 40.80
clm 128 4 4 27.11 39.61
clm 128 4 8 27.06 39.57

Table S2: Performance of the 36 transformer architectures. Best perplexity (the lower the better) and
top-1 accuracy (the higher the better) of 36 transformer architectures, evaluated on a test test of ⇡180K
words from Wikipedia. Transformers are trained with a masked (‘mlm’) or causal (‘clm’) language
modeling objective. They vary in their dimensionality (‘Dim’), number of layers (‘Layers’) and number
of attention heads (‘Heads’). The models are trained on a set of ⇡280K words from Wikipedia (in Dutch).
The training is stopped when the perplexity on a validation set does not decrease for 5 epochs.
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6.2 Deep language algorithms predict semantic comprehension
from brain activity

6.2.1 Brain parcellation

In Figure 2.5B, E, and F, we used a subdivision of the parcellation from Destrieux Atlas (De-
strieux et al., 2010). Regions with more than 400 vertices were split into smaller regions (so that
each regions contains less than 400 vertices). The original parcellation consists of 75 regions per
hemisphere. Our custom parcellation consists in 142 regions per hemisphere. In Figure 2.5G,
we use the original parcellation for simplicity, and the following acronyms:

Acronym Definition

STG / STS Superior temporal gyrus / sulcus
aSTS Anterior STS
maSTS Mid-anterior STS
mpSTS Mid-posterior STS
pSTS Posterior STS
Angular / Supramar Angular / Supramarginal inferior parietal gyrus
MTG / MTS Medial temporal gyrus / sulcus
SFG / SFS Superior frontal gyrus / sulcus
IFG / IFS Inferior frontal gyrus / sulcus
Tri / Op Pars triangularis / opercularis (IFG)
TTransverse Temporal transverse sulcus
PCG Posterior cingulate gyrus
STO Temporo-occipital lateral sulcus

6.2.2 Mixed-effect model

Not all subjects listened to the same stories. To check that the R scores (correlation between
comprehension and brain mapping) were not driven by the narratives and questionnaires’
variability, a linear mixed-effect model was fit to predict the comprehension of a subject given
its brain mapping scores, specifying the narrative as a random effect. More precisely, if Mwi 2 R

corresponds to the mapping scores of the ith subject that listened to the story w, and Cwi 2 R

refers to the comprehension scores, we estimate the fixed effect parameters eb 2 R and eh 2 R

(shared across narratives), and the random effect parameter bw 2 R and hw 2 R (specific to the
narrative w) such that:

Cwi = (eb + bw)⇥Mwi + (eh + hw) + ewi
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with ewi a vector of i.i.d normal errors with mean 0 and variance s2. In practice, we use
the statsmodels (Seabold & Perktold, 2010) implementation of linear mixed-effect models.
Significance of the coefficients were assessed with a t-test, as implemented in statsmodels.

6.2.3 Replication across single narratives

To further support that the R were not driven by the narratives’ variability, we replicate the
analysis of Figure 2.5D within single narratives. In Figure S7, we show that correlation scores
between brain scores and comprehension scores are positive for each of the seven narratives.

6.2.4 Noise Ceiling Estimates

fMRI recordings are inherently noisy. Thus, we estimate an upper bound of the best brain score
that can be obtained given the level of noise in the Narrative dataset. To this end, for each
(subject, narrative) pair, we linearly map the fMRI recordings, not with the GPT-2 activations,
but with the average fMRI recordings of the other subjects who listened to that narrative. More
precisely, we use the exact same setting as in (1.1), but we predict Y(s), not from g(X) (GPT-2’s
features after temporal alignment, of size ntimes ⇥ ndim), but from the mean of the other subject’s
brains Y = 1

|S| Âs0 6=s Y(s0) (of size ntimes ⇥ nvoxels). This score is called the noise ceiling for the
(subject, narrative) pair. The noise ceilings for each brain region are displayed in Figure S8, and
correspond to upper bounds of the brain scores displayed in Figure 2.5B.

6.2.5 Replication across the contextual layers of GPT-2

Previous analyses mostly focus on the eight layer of GPT-2. In Figure S10, we compute the brain
scores of each layer of GPT-2, and report their correlation with the subject’s comprehension
scores. While the correlation with comprehension is the highest in layers 6-to-12 (and thus best
explain comprehension’s variability), our results do generalize to other contextual layers of
GPT-2.

6.2.6 Distribution of regularization parameters

To quantify the mapping between the brain signals and GPT-2 activations, we use a `2-penalized
linear regression (cf. Methods). To further investigate how penalization affected the brain score,
we compute the optimal regularization parameter alpha for each (subject, narrative, voxel, fold),
we average the alphas across (subject, narrative, fold) triplets, and report the corresponding
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Figure S7: Replication within single narratives. Same as Figure 2.5D for each single narrative.

alphas across voxels (left) as well as the relationship between alphas and brain scores (on the
right). As shown in Figure S11, regularization parameters are lower in regions commonly
associated with language (auditory cortex, supramarginal, inferior-frontal areas) while higher
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Figure S8: Noise ceiling estimates. Noise ceilings averaged across subjects, narratives and voxels within
each region of interest. They are upper bounds of the brain scores in Figure 2.5B.

Figure S9: Replication to two other causal transformer architectures from Huggingface (XLNet base and
Distilgpt2). The vertical axis shows the average correlation between (i) comprehension scores and (ii)
brain scores. The top text displays the p-values of the corresponding correlation. The mapping scores
were averaged across all voxels and the correlation with comprehension was computed, similarly to
Figure 2.5D.

alphas (yellow) are associated with noisier regions.

6.2.7 Replication using partial correlation analyses

In Figure 2.5F, we compute the specific contribution of phonological, lexical and compositional
features, respectively. To do so, we favor the simplest and most conservative method by
using hierarchical modeling, which consists of computing the brain score of the two sets of
features (e.g. Word Embedding vs. Layer 8) and then subtracting the scores. This approach is
particularly conservative: the explainable variance shared by two sets of features is by definition
fully attributed to the lower-level feature set (i.e. Word Embedding). Thus, our method tends
to underestimate the variance specific to deeper layers. The fact that these effects remain
largely above chance is thus good evidence that this layer captures representations specifically
predictive of comprehension.
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Figure S10: Correlation between comprehension scores and brain scores, for each layer of GPT-2 as well
as phonetic features. Error bars are the standard errors of the means across subjects.

Optimal alpha
A. B.

Figure S11: A) Optimal regularization parameters alpha (log-scaled) across voxels. A penalized re-
gression is fitted for each (subject, narrative, voxel, fold) and the corresponding optimal regularization
parameters alphas are extracted. Alphas are averaged across (subject, narrative, fold) to obtain one
score per voxel. B) the same alphas on the y-axis. On the x-axis, the corresponding brain scores for each
(subject, narrative, voxel, fold) averaged across (subject, narrative, fold).

In Figure S12, we replicate our results with a partial correlation method, i.e. a method that
separates two sets of features (Word Embedding and GPT-2) during the fitting of the linear
model. Specifically, we fit both Word and GPT-2 models simultaneously with a banded ridge
regression (Nunez-Elizalde et al., 2019), and then evaluate the unique variance accounted for
by each sub-model. For simplicity, we follow the setup of the original paper (Nunez-Elizalde
et al., 2019) and replicate our results for one pair of features (here, Word Embedding and
GPT-2). We use the same modeling and cross-validation setting as in Figure 2.5F. Figure S12
shows the specific brains scores attributed to Word and GPT-2 embeddings, and their specific
correlation with comprehension. We obtain similar results as in Figure 2.5F, but the correlation
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with comprehension specific to GPT-2 (R[M00(GPT2)] = 0.52) is slightly higher than the one in
the paper (R[M0(GPT2)� M(Word)] = 0.31).

Figure S12: Same as Figure 2.5D but using partial correlation analysis: a model is fitted using both Word
vectors and GPT-2 as input, we then evaluate the brain score accounted for by each submodel specifically.
A) Brain scores of the Word vectors specifically, averaged across voxels. B) Brain scores of the eight layer
of GPT-2 specifically, averaged across voxels. In red, the correlation between comprehension scores
(x-axis) and brain scores (y-axis).

6.2.8 Effect of attention processes in the brain

Is the correlation between comprehension and GPT-2’s representations solely due to attentional
fluctuation? Indeed, attention can modulate both (i) comprehension and (ii) the average
BOLD activity (Sabri et al., 2008; Kok et al., 2012) and thus lead to an indirect correlation
between these last two variables. To address this issue, we first qualitatively compare our
results to those of a meta-analysis covering 6,201 subjects recorded with fMRI during a study
related to speech-based or auditory-based attention (Figure S13). The results suggest that
these attentional mechanisms are associated with a restricted set of temporal and sensory-
motor areas. Furthermore, our analysis of the average BOLD response and its correlation
with comprehension highlight a similar cortical network (Figure S14). In both cases, however,
these neural bases of attention appear much less distributed than those obtained with GPT-2.
In particular, the activations in the prefrontal and parietal cortices as well as in the inferior
temporal gyri seem to be specifically accounted for by GPT-2’s representations. Overall, while
these results call for more direct manipulations of subjects’ attention, they suggest that the link
between GPT-2 and the brain bases of comprehension is not trivially reducible to attention.
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Figure S13: Meta-analyses from NeuroQuery. Brain networks associated with the concepts of“attention”
combined with “auditory” or “speech”.

Figure S14: Correlation between comprehension scores and (a) brain scores of GPT-2 for each (subject,
story) pair, (b) the BOLD magnitude, averaged across scans for each subject and story separately.

6.2.9 fMRI preprocessing

Our analyses rely on the already pre-processed data from Nastase et al. 2020 (Nastase et al.,
2020), unsmoothed version. Below, the pre-processing pipeline, as stated in the original paper.

“The functional MRI data were preprocessed in the following way. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. A deformation field
to correct for susceptibility distortions was estimated using fMRIPrep’s fieldmap-less approach. The
deformation field results from co-registering the BOLD reference to the same-subject T1w-reference with
its intensity inverted (Huntenburg, 2014; Wang et al., 2017). Registration was performed with antsRegis-
tration (ANTs 2.2.0), and the process was regularized by constraining deformation to be nonzero only
along the phase-encoding direction, and modulated with an average fieldmap template (Treiber et al.,
2016). Based on the estimated susceptibility distortion, a corrected EPI reference was calculated for more
accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the
T1w reference using bbregister (FreeSurfer 6.0.1), which implements boundary-based registration (Greve
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and Fischl, 2009). Co-registration was configured with six degrees of freedom. Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six corresponding rotation and transla-
tion parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson
et al., 2002, 2012; Smith et al., 2004). BOLD runs were slice-time corrected using 3dTshift from AFNI
(20160207; Cox and Hyde, 1997). The BOLD time-series were resampled onto the following surfaces: fsav-
erage , fsaverage6 , fsaverage5 . The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying a single, composite transform to correct
for head-motion and susceptibility distortions. These resampled BOLD time-series are referred to as
preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled
into two volumetric standard spaces, correspondingly generating the following spatially-normalized,
preprocessed BOLD runs: MNI152NLin2009cAsym , MNI152NLin6Asym . A reference volume and its
skull-stripped version were first generated using a custom methodology of fMRIPrep. All resamplings
were performed with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms
(ANTs 2.2.0), configured with Lanczos interpolation to minimize the smoothing effects of other kernels
(Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri vol2surf (FreeSurfer
6.0.1).

Several confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS, and three region-wise global signals. FD and DVARS are calculated for
each functional run, both using their implementations in Nipype (following the definitions by Power
et al., 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain
masks. Additionally, a set of physiological regressors were extracted to allow for component-based
noise correction (CompCor; Behzadi et al., 2007). Principal components are estimated after high-pass
filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). The tCompCor components are
then calculated from the top 5% variable voxels within a mask covering the subcortical regions. This
subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not include cortical
GM regions. For aCompCor, components are calculated within the intersection of the aforementioned
mask and the union of CSF and WM masks calculated in T1w space, after their projection to the
native space of each functional run (using the inverse BOLD-to-T1w transformation). Components
are also calculated separately within the WM and CSF masks. For each CompCor decomposition, the
k components with the largest singular values are retained, such that the retained components’ time
series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined,
or temporal). The remaining components are dropped from consideration. The head-motion estimates
calculated in the correction step were also placed within the corresponding confounds file. The confound
time series derived from head motion estimates and global signals were expanded with the inclusion
of temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded
a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. All of these
confound variables are provided with the dataset for researchers to use as they see fit. HTML files with
quality control visualizations output by fMRIPrep are available via DataLad.

We next temporally filtered the functional data to mitigate the effects of confounding variables.
Unlike traditional task fMRI experiments with a well-defined event structure, the goal of regression
was not to estimate regression coefficients for any given experimental conditions; rather, similar to
resting-state functional connectivity analysis, the goal of regression was to model nuisance variables,
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resulting in a “clean” residual time series. However, unlike conventional resting-state paradigms,
naturalistic stimuli enable intersubject analyses, which are less sensitive to idiosyncratic noises than
within-subject functional connectivity analysis typically used with resting-state data (Simony et al., 2016;
Simony and Chang, 2019). With this in mind, we used a modest confound regression model informed
by the rich literature on confound regression for resting-state functional connectivity (e.g. Ciric et al.,
2017; Parkes et al., 2018). AFNI’s 3dTproject was used to regress out the following nuisance variables:
six head motion parameters (three translation, three rotation), the first five principal component time
series from an eroded CSF and a white matter mask (Behzadi et al., 2007; Muschelli et al., 2014), cosine
bases for high-pass filtering (using a discrete cosine filter with cutoff: 128 s, or .0078 Hz), and first- and
second-order detrending polynomials. These variables were included in a single regression model to
avoid reintroducing artifacts by sequential filtering (Lindquist et al., 2019). The scripts used to perform
this regression and the residual time series are provided with this data release. This processing workflow
ultimately yields smoothed and non-smoothed versions of the “clean” functional time series data in
several volumetric and surface-based standard spaces.”

6.3 Disentangling syntax and semantics in the brain with deep
networks

6.3.1 Deep Neural Networks’ Activations
Pre-trained tansformers In Section 3.1.5, we extract the activations of GPT-2 (Radford et al., 2019)
and five transformer architectures: BERT (Devlin et al., 2019), XLnet (Yang et al., 2020), Roberta (Liu et
al., 2019), AlBert (Lan et al., 2020) and DistilGPT-2. We use the pre-trained models from Huggingface
(Wolf et al., 2020): ‘bert-base-cased’, ‘xlnet-base-cased’, ‘roberta-base’, ‘albert-base-v1’, and ‘distilGPT-2’
respectively. In Figure 3.7, we focus on one middle layer of these transformers (l = nlayers ⇥ 2/3), because
it has shown to best encode brain activity (Caucheteux & King, 2022) and to encode relevant linguistic
properties (Manning et al., 2020; Jawahar et al., 2019).

Text formatting and tokenization To extract the activations elicited by one story, we proceed as
follows: we first format and lower case the text (replacing special punctuation marks such as “–” and
duplicated marks “?.” by dots), then apply the tokenizer provided by Huggingface (Wolf et al., 2020) to
convert the transcript into either word-level or sub-word-level tokens called “Byte Pair Encoding” (BPE)
(Sennrich et al., 2016). Here, more than 99.5% of BPE-level tokens were complete words. The tokens are
then split into sections of 256 tokens (this length is constrained by GPT-2’s architecture) and input to the
deep network one story at a time. The activations of each layer are finally extracted, resulting in nlayers
vectors of 768 activations for each token of each story transcript. In the 0.5% case where BPE are not
complete words, BPE-features are summed between successive words, to obtain nlayers vectors per word
per story.

6.3.2 Convergence of the Method to Build X
In Section 3.1.4 and 3.1.4, we compute the syntactic component X of GPT-2 activations X elicited by a
sentence w. X is approximated by Xk, the average activations across k sentences with the same syntax as
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w. Here, we sample k = 10 sentences. We check in Figure S15 that the method has converged before
k = 10. We compute the cosine similarity between Xk and Xk�1 for k between 1 and 15. The syntactic
embeddings stabilize with at least eight sampled sentences.

Figure S15: Convergence of the method to build syntactic embeddings. Cosine similarity SC between
the syntactic component X of GPT-2 activations induced by a sequence w, when computed with K and
K � 1 syntactically equivalent sequences. The syntactic embeddings XK and XK�1 are computed for 100
Wikipedia sentences (⇡ 2, 800 words), and the similarity scores are averaged across embeddings. In
shaded, the 95% confidence interval across embeddings.

6.3.3 Evaluating the Level of Semantic and Syntactic Information in X
In Section 3.1.4 and Figure 3.3, we check that the syntactic embedding X extracted from GPT-2 only
contains syntax. To this aim, we evaluate the ability of a linear decoder to predict two syntactic features
and three semantic features from X.

Semantic and syntactic features The two syntactic features derived from the stimulus are:

• The part-of-speech of the words (categorical feature), as defined by Spacy tags (Honnibal et al.,
2020).

• The depth of the syntactic tree (continuous feature). The syntactic tree is extracted with the
state-of-the-art Supar dependency parser (Y. Zhang et al., 2020).

The three semantic features are only computed for verbs, nouns and adjectives (as defined by Spacy
part-of-speech tags) and are the followings:

• Word frequency (labeled as ‘Word freq’ in Figure 3.3, continuous feature). We use the ‘zipf frequency’
from the wordfreq1 python library.

1https://pypi.org/project/wordfreq/

177



• Word embedding (continuous feature), computed using the pre-trained model from Spacy (Honni-
bal et al., 2020) (‘en core web lg’, 300 dimensions).

• Semantic category (categorical feature). We used the 47 semantic categories2. Categories are
not available for all the 2,800 Wikipedia words studied here. Thus, we first train a linear model
(scikit-learn ‘RidgeCVClassifier’) to predict the semantic category of the 535 labeled words used in
(Binder et al., 2016), given their Spacy word embedding (300 dimensions). We then label the 2,800
Wikipedia words using the semantic category predicted by the classifier.

Linear decoder To evaluate the ability of a linear decoder to predict the five linguistic features from
X, we:

• Build syntactic embeddings X for 100 Wikipedia sentences (⇡ 2, 800 words), following Section
3.1.4, using the ninth layer of GPT-2.

• Build the three semantic and two syntactic features described above from the 2,800 Wikipedia
words Wikipedia words.

• Fit a `2�regularized linear model to predict the five features given the syntactic embeddings. We
use the ‘RidgeCV’ regressor (resp. ‘RidgeClassifierCV’ classifier) from scikit-learn (Pedregosa
et al., 2011) to predict the continuous (resp. categorical) features, with ten possible penalization
values log-spaced between 10�3 and 106.

• Evaluate the linear model on held out data, using a 10 cross-validation setting (‘KFold’ cross-
validation from scikit-learn). Performance is assessed using adjusted accuracy (‘balanced accuracy score’
from scikit-learn) for the categorical features, and R2 for the continuous features. Thus, the chance
level is zero for both types of features, and the best score is one.

• Report the average decoding performance in Figure 3.3 (red bars), and the standard-error of the
means across the ten test folds.

For comparison, we repeat the exact same procedure with the full GPT-2 activations X (instead of their
syntactic component X), and report the results in Figure 3.3 (grey bars).

6.3.4 Temporal Alignment g between X and Y
In Section 3.1.4, we map the network’s activations X (of length M, the number of words) and the brain
response Y (of length N, the number of fMRI measurements) induced by the same story w (of M words).
M is usually greater than N. To align the two spaces, we first sum the features between successive fMRI
measurements, and then apply a finite impulse response (FIR) model. We denote g this transformation.

2Categories are: abstract, action, animal, auditory, body, building, cognitive, construct, creative, device, distant,
document, electronic, emotion, emotional, entity, event, food, furniture, general, geological, group, human,
instrument, locative, mental, miscellaneous, multimodal, object, part, perceptual, period, physical, place, plant,
property, social, somatosensory, sound, spatial, state, temporal, time, tool, vehicle, visual, weather
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Specifically, for each fMRI time sample i 2 [1 . . . N], gi combines word features within each acquisition
interval as follows:

gi : RM⇥d ! R5d

u 7!
⇥
eui, gui�1, . . . , gui�4

⇤

eui = Â
m2[1...M]
T (m)=i

um

with

T : [1 . . . M] ! [1 . . . N]

m 7! i / |tyi � txj | = min
k2[1...N]

|tyk � txm |

with ũ the summed activations of words between successive fMRI time samples, u the five lags of
FIR features, (tx1 , . . . , txM) the timings of the M words onsets, and (ty1 , . . . , tyN ) the timings of the N
fMRI measurements.

6.3.5 Brain Parcellation
In Figure 3.6, brain scores are averaged across voxels within regions of interest using the Brodmann’s
areas from the PALS parcellation of freesurfer3. To gain in precision, we split the superior temporal
gyrus (BA22) into its anterior, middle and posterior parts. In Figure 3.6, we report the top ten areas of
the left hemisphere in term of average brain score. Certain areas are renamed for clarity, as specified in
the table below:

Label Corresponding Brodmann’s areas

A1 BA41 / BA42
Fusiform BA37
Angular BA39
aSTG BA22-anterior
mSTG BA22-middle
pSTG BA22-posterior
M1 BA4
Supramarginal BA40
IFG (Op) BA44
IFG (Tri) BA45
IFG (Orb) BA47
Middle-frontal BA46
V1 BA17
Fronto-polar BA10
Temporo-polar BA38
Precuneus BA7
Cingulate BA23 / BA26 / BA29 / BA30 / BA31

3https://surfer.nmr.mgh.harvard.edu/fswiki/PALS B12
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6.3.6 Control for Low-level Linguistic Features
In Section 3.1.6 and Figure 3.7, we check that the brain scores are not driven by low-level linguistic
features. Thus, we compute the R scores of GPT-2 activations (ninth layer) induced by modified versions
of the stimulus:

• Random words sampled from the same story. Words are uniformly sampled from the words of the
story, tokenized using Spacy (Honnibal et al., 2020). Punctuation marks are considered as words.
Upper-cases are kept.

• Random sentences from Wikipedia, of the same length as the sentences of the stimulus. We first
build a dictionary of (length, list of match-length sentences) pairs out of 10K sentences from
Wikipedia (⇡ 577K words). Then, for each sentence of the stimulus, a sentence is uniformly
sampled from the set of Wikipedia match-length sentences.

• The sentences of the stimulus, but with random word order. Words are shuffled within each
sentence.

Then, we extract the corresponding GPT-2 activations and compute the R scores following Section 3.1.5.
R scores are evaluated for each subject and reported in Figure 3.7.

6.4 Model-based analysis of brain activity reveals the hierarchy
of language in 305 subjects

To replicate Lerner et al.’s findings, we compute the model-to-brain correlation (cf. Section 3.2.3):

R = r
�
y, fq(x⇤)) ,

for the acoustic, word, sentence and paragraph level respectively. Here, we provide additional details
on how to extract the brain signals y and estimate the mapping function fq in order to reproduce the
experimental setting used in Section 3.2.4.

6.4.1 Brain signals
Functional MRI dataset We use the fMRI recordings of the Narratives dataset (Nastase et al., 2020)4,
a publicly available dataset gathering the brain recordings of 305 subjects listening to narratives. We
use the unsmoothed version of the fMRI recordings, already preprocessed in the original dataset. As
suggested in the original paper, we reject subject / narrative pairs because of noisy recordings, resulting
in 617 unique (story, subject) pairs and 4.1 hours of audio stimulus in total. To replicate the results of
Lerner et al. (2011), we restrict the analyses to the 75 subjects listening to the ‘Pieman’ story (7 min long),
including the seven subjects analysed in the original paper (only the data for non-scrambled stimuli
are publicly available). Then, we extend the analyses to the brain recordings of 305 subjects listening to

4http://datasets.datalad.org/?dir=/labs/hasson/narratives
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Figure S16: Replication to two other architectures. Same as Figure 3.9.C but using the intermediate
layers of XLNet and Distilgpt2 causal architectures (l = 4 for Distilgpt2, out of 6 layers in total and l = 8
for XLNet, out of 12 layers in total). As in Figure 3.9.C, the significance threshold is set to p < 10�25.

fifteen narratives (from 3 min to 57 min), from the same dataset (Nastase et al., 2020). For both analyses,
we only have access and thus use the brain recordings elicited by regular –i.e non scrambled– version of
the stimuli.

6.4.2 Encoding features
Deep language models’ activations In Section 3.2.4, we extract the activations of GPT-2 (A), a deep
neural language model trained to predict a word given its past context. It consists of 12 transformer
layers of dimensionality 768, 8 heads, and has 1.5 billion parameters in total. We use the model provided
by Huggingface (Wolf et al., 2020), trained on a dataset of 8 million web pages.

To extract the activations elicited by a sequence w of M words from a layer l, we proceed as follows:
we tokenize the sequence into sub-words called “Byte Pair Encoding” (BPE) (Sennrich et al., 2016) using
the GPT-2 tokenizer provided by Huggingface. Then, we feed the network with the M0 BPE tokens
(M0 � M, up to 256 tokens in memory) and extract the corresponding activations from layer l, of shape
(M0 ⇥ D) with D = 758. Then, we sum the activations over the BPEs of each word to obtain a vector of
size (M ⇥ D).

All our analyses are based on the eighth layer of GPT-2. We choose GPT-2 because it has been shown
to best encode the brain activity elicited by language stimuli (Schrimpf et al., 2021). We choose its eighth
layer because the intermediate layers of transformers have shown to encode relevant linguistic features
(Jawahar et al., 2019; Manning et al., 2020) and to better encode brain activity than input and output
layers (Caucheteux & King, 2022; Toneva & Wehbe, 2019).

Scrambling the stimulus at the word, sentence and paragraph level Words and sentences of
the stimulus are delimited using Spacy tokenizer (Honnibal et al., 2020). Note that punctuation marks
are not considered as words (e.g., ‘time.’ forms one token, not two). We define paragraphs as contiguous
chunks of eight sentences. To ‘scramble’ a sequence at the word (resp. sentence, paragraph) level, we
uniformly shuffle the indices of its words (resp. sentences, paragraphs) and form the new sequence
accordingly.
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Computation of x⇤ for the word, sentence and paragraph conditions In Section 3.2.3, we
compute a context-free representation x⇤ for the word, sentence and paragraph condition. In short, x⇤
are the activations of GPT-2, averaged over several scrambled contexts. For clarity, we focus on the
sentence level to detail the approach. To build the sentence-level representation x⇤ of the stimulus,
we use the approximation introduced in equation (3.7). For each sentence s of one story w, we i)
generate K=10 sequences ending with s, but with scrambled previous context. The scrambled context is
uniformly sampled from the other sentences in the same story w. Then, ii) we extract the K corresponding
activations from GPT-2 (as described in the previous section) and iii) average the activations across
the K samples. GPT-2 activations are extracted for each word. Thus, for each of the Ms words of
sentence s, we obtain a vector x⇤s of shape Ms ⇥ D. We concatenate these vectors to obtain x⇤, a sentence-
level representation of the whole story w, of shape M ⇥ D. This method is adapted from (Caucheteux
et al., 2021a), in which the authors compute the average over GPT-2 activations to extract syntactic
representations from the input sequence.

Acoustic features GPT-2 takes words as input and not sounds. To build x⇤ at the acoustic level, we
simply use non-contextual acoustic features: the word rate (D = 1), phoneme rate (D = 1) phonemes,
stress, and tone (categorical, D = 117). For the latter, we use the annotations provided the original
Narratives dataset (Nastase et al., 2020).

6.4.3 Mapping x⇤ onto the brain
The linear function fq maps x⇤ onto y, the fMRI recordings of one subject at one voxel. Vector y is
of length T, the number of fMRI time samples, whereas x⇤ is of length M, the number of words (or
phonemes for acoustic features) in the story. To align the two time domains, we apply the function
g : RM⇥D 7! RT⇥5D that i) sums the features x⇤ between the successive fMRI time samples, and ii) uses
a Finite-Impulse Response model (FIR) with five delays. Thus, fq = f 0q � g, with fq a linear function
whose parameters q are learned, and g a temporal alignment function.

To estimate q, we fit an `2-penalized linear regression to predict y given g(x⇤) on a training set of
time samples. q thus minimizes

argmin
q02Q

kytrain � fq0 � g(x⇤train)k2 + lkq0k2 ,

with l the regularization parameter. We assess the mapping with a Pearson correlation score evaluated
on the left out times samples:

R = r
⇣

ytest, fq � g(x⇤test)
⌘

.

In practice, x⇤ and g(x⇤) are standardized (0-mean, 1-std) and brain signals y are scaled based on
quantiles using scikit-learn RobustScaler (Pedregosa et al., 2011) with quantile range (.01, .99). We use
the RidgeCV implementation of scikit-learn with a pool of twenty possible penalization parameters
between 10�3 and 106. We learn fq on 90% of the T time samples, and compute the correlation scores
R on the 10% left out data. We repeat the procedure on 10 test folds using a cross-validation setting,
following the KFold implementation of scikit-learn without shuffling. Finally, we average the R over the
10 folds to obtain one model-to-brain correlation score per subject, voxel and feature space x⇤.
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6.4.4 Brain parcellation
In Figure 3.9, we use a subdivision of Destrieux’ atlas (Destrieux et al., 2010). Regions of more than 200
vertices are split into smaller regions, so that each region contains at most 200 vertices. Thus, from the
75 regions of Destrieux’ atlas (in each hemisphere), we obtain a parcellation of 465 brain regions per
hemisphere.

6.4.5 Significance
In Figure 3.9, we test whether the model-to-brain correlations (R) are significantly different from zero.
To this aim, we use a two-sided Wilcoxon test across subjects (N = 75 in Figure 3.9B, N = 305 in
Figure 3.9A), corrected using False Discovery Rate (FDR) across the 465 region of interests in each
hemisphere.

6.4.6 Generalization to other transformer architectures
In Figure S16 (B and C), we replicate our results (Figure 3.9.C) on the activations of two other causal trans-
former architectures: XLNet (Yang et al., 2020) and Distilgpt2 (Figure S16.C), using the implementation
from Huggingface5.

5https://huggingface.co/
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6.5 Toward a realistic model of speech processing in the brain
with self-supervised learning

6.5.1 Self-supervised loss formula
Wav2vec 2.0, when trained in a self-supervised way, uses a loss (L) which is the weighted combination
of two losses: one diversity loss (Ld), which pushes the quantization module to contain representations
that are as diverse as possible, and one Contrastive Predictive Coding loss (Lm), which pushes the model
to choose, from the context network output c, the right quantized representation (q) of some masked
input, among other possible representations. Lm has the following formula, for some masked time step t:

Lm = � log
exp (sim (ct, qt) /k)

Âq̃⇠Qt exp (sim (ct, q̃) /k)
(6.1)

with sim(a, b) = aTb/kakkbk, k the temperature, which is constant during training, Qt the set of K + 1
quantized candidate the model has to choose from, including the right one, i.e. qt.

Ld is included to encourage the equal use of the V possible entries of each of the G codebooks of the
quantization module. The goal is to maximize the entropy of the averaged softmax distribution over the
codebook entries for each codebook p̄g, across a set of utterances:

Ld =
1

GV

G

Â
g=1

�H
�

p̄g
�
=

1
GV

G

Â
g=1

V

Â
v=1

p̄g,v log p̄g,v (6.2)

6.5.2 Supervised loss formula
When trained in a supervised way, wav2vec 2.0 is trained to optimise a Connectionist Temporal Classifi-
cation loss parameterized over q:

argminq � log Â
a2aU,V

dt

’
t=1

pCTC (at | mq(U)) , (6.3)

where mq(U) 2 Rdt⇥dv are the probabilistic predictions of the model at each t time sample given the
input raw waveform U 2 Rdt⇥du , V 2 Rdt⇥dv are the true transcriptions of U, and aU,V is the set of all
possible alignments between U and V.

6.5.3 Preprocessing of the model’s activations
The activations of the network X 2 Rdt̂⇥dx are first normalized to be between [0, 1] for each listening
session. Then, we use nistats (Abraham et al., 2014) compute regressor function with the ‘glover’ model
to temporally convolve (h 2 Rdt̂ ) and temporally down-sample (using g : Rdt̂ ! Rdt ) each artificial
neuron j:

x̂(j) = g
⇣

x(j) ⇤ h
⌘

. (6.4)
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6.5.4 Penalized linear model - Ridge regression
For each split s, we fit an `2-penalized linear model V 2 Rdx⇥dz trained to predict the transformed
BOLD time series from the model activations for each dimension independently. The formula of the
optimization is the following:

argminV Â
i2trains

(V>X̂i � yi)
2 + lkVk2 . (6.5)

6.5.5 Probing the linguistic features encoded in wav2vec2 activations
Interpreting the representations of deep learning models is notoriously difficult. To address this issue,
(Pasad et al., 2021) explored the encoding of local acoustic features, phone identity, word identity
and word meaning across layers. Similarly, (Millet et al., 2021) compared representations to human
behavioural data to assess whether they better captured listeners’ perception of higher-level phonemic
properties or of lower-level subphonemic properties of speech stimuli. Finally, (Vaidya et al., 2022) recent
study explores filter banks, spectrograms, phonemes and words across layers. Here, we complement
these analyses by showing that self-supervised learning allows wav2vec 2.0 to learn represents, along
its hierarchy the representations of MEL spectrograms, phonetic categories and word embeddings
(Figure S17).

For this, we perform a ridge regression on the Timit dataset6 to predict five auditory and linguistic
features from the activation functions of each layer and model of the present paper. We study the
following features:

• the MEL spectrogram of the audio, computed using librosa (d=128)

• the phonemes (categorical features). We use the transcripts and alignments provided in Timit.

• the word embedding and part-of-speech of the words. The time alignments for words are provided
by Timit. We use spaCy to compute the word embedding (medium model, d=300), and their
part-of-speech (categorical feature, d=19).

• the sentence embedding of each sample, provided by Laser.

We use a subset of 1,680 samples from Timit, each sample being an audio recording of a short sentence
(¡10 seconds) from 24 speakers. The model’s activations were mean-pooled to the sampling rate of each
feature.

The results show that the layers of wav2vec 2.0 partially follow the hierarchy predicted from neuro-
linguistics (Hickok & Poeppel, 2007) (Table S6): the first layers of the transformer best account for
the spectro-temporal information, whereas deeper layers best account for the phonetic, word-level
and sentence level information. While all of these features emerge with training (Figure S17), only
the highest-level features (phone, word and sentence-level) appear to be specific to speech and to the
language with which wav2vec 2.0 was trained (Figure S17).

Interestingly, the word and sentence-level features are encoded deeper in the supervised network
(best layer=18 in Table S6) compared to the unsupervised network (best layer=14), which suggests that
self-supervised learning generates a reservoir representations in its middle layers, reservoir which may

6https://catalog.ldc.upenn.edu/LDC93S1
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partly overlap with the labels used in supervised learning. Together with our ABX tests, and layer-wise
tuning of each voxel (Figure 3.12), these elements suggest that the representations of speech shaped by
our experience are learnt and instantiated in the superior temporal gyrus and sulcus. These elements,
consistent with previous electrophysiological studies (Mesgarani et al., 2014), thus provide a coherent
spectrum of evidence for the location of acquired speech representations in the brain.

Figure S17: Linguistic features encoded in each layer of the networks. For each layer of each network,
we train a l2-penalized linear model from scikit-learn (Pedregosa et al., 2011) to predict several linguistic
categories given the embedding. The tested categories are the following: MEL (the MEL spectrogram
of the audio, d=128), phone (the phoneme, categorical, d=39), the word embedding of the word (com-
puted with spaCy (https://spacy.io) English model, d=300), the Part-Of-Speech (POS) of the word
provided by spaCy (categorical feature, n=19), and the embedding of the sentence, computed using
Laser (https://github.com/facebookresearch/LASER) (d=1,024). We train and test the linear probe on
a subset of Timit data (https://catalog.ldc.upenn.edu/LDC93s1), using a 10-folds cross-validation
scheme, and report the probing accuracy (either R for continuous variables or balanced accuracy for cat-
egorical variables) for each possible target feature. We average the corresponding probing performances
across the 10 folds. Error bars are standard errors of the mean across folds.

6.5.6 Noise ceiling analysis
The noise in fMRI recordings is inevitable. To estimate the maximum explainable signal given this
level of noise, we follow previous studies and employ a shared-response model, or ”noise ceiling”
(Huth, de Heer, et al., 2016; Caucheteux & King, 2022; Caucheteux et al., 2022). Precisely, we predict
the brain signals of one subject given the brain activity of the other subjects, in response to the same
audio recording. In practice, we apply the same evaluation as Equation (3.3.3), for one subject s and one
voxel v, but we use the average brain signals of other subjects’ brains Y(s)

= 1
|S| Âs0 6=s Y(s0) instead of the
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activations X. As a result, the ”noise ceiling” of one subject (s) and one voxel (v) is computed as follows:

Rnoiseceil = Corr(W · Y(s), Y(s,v)) , (6.6)

where W is an `2-penalized linear regression fitted on separate train data, using a cross validation setting
with five test folds.

We compute such noise ceiling on 290 subjects of the Narrative dataset listening to the same stories
(Figure S18). We report the noise ceiling across voxels in Figure S18, and, in Table S3, the brain scores of
the networks studied in the main paper normalised by the noise ceiling. Precisely, for each voxel, we
divide the average brain scores by the noise ceiling for this particular voxel. While low on average, the
unsupervised wav2vec2 model reaches 74% of the noise ceiling in Heschel, and more than 20% in STS,
STS and IFG.

Average Top10 Heschl STG STS IFG Motor

Random wav2vec2 13.9% 29.0% 66.9% 32.0% 21.8% 15.9% 11.9%
Non-Speech 16.4% 33.9% 71.0% 36.8% 26.9% 19.0% 11.7%
Non-Native 17.6% 35.9% 73.0% 39.0% 29.1% 21.0% 12.9%
Native, Supervised 18.3% 36.7% 74.2% 39.6% 29.8% 21.2% 13.6%
Native, Unsupervised 18.8% 37.9% 74.4% 40.3% 31.3% 22.8% 13.8%
Noise ceiling 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table S3: Brain scores with noise ceiling normalisation. Brain scores divided by the noise ceiling, for
the Narrative dataset, on average across all voxels (‘Average’), for the 10% best voxels of the noise ceiling
(‘Top10’, Figure 6.5.6) and the voxels of five regions of interests.

Average Top10 Heschl STG STS IFG Motor

Random wav2vec2 0.019 0.069 0.192 0.071 0.044 0.024 0.011
Non-Speech 0.022 0.080 0.205 0.081 0.055 0.028 0.011
Non-Native 0.024 0.085 0.211 0.086 0.059 0.031 0.012
Native, Supervised 0.025 0.086 0.213 0.087 0.060 0.032 0.013
Native, Unsupervised 0.025 0.089 0.214 0.089 0.063 0.034 0.013
Noise ceiling 0.117 0.219 0.287 0.181 0.196 0.149 0.094

Table S4: Brain scores without noise ceiling normalisation Same as Table S3, but without dividing by
the noise ceiling estimates.

Below, we report the brain scores of our models, normalised by such noise ceiling. Precisely, we
compute the brain scores for each subject and voxels
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Avg Top10NoiseCeil Heschl STG STS IFG Motor

Unsupervised 0.03 +/- 0.001 0.09 +/- 0.002 0.21 +/- 0.007 0.09 +/- 0.003 0.06 +/- 0.002 0.03 +/- 0.001 0.01 +/- 0.001
Supervised 0.02 +/- 0.001 0.09 +/- 0.002 0.21 +/- 0.007 0.09 +/- 0.003 0.06 +/- 0.002 0.03 +/- 0.001 0.01 +/- 0.001
Noise ceiling 0.12 +/- 0.006 0.22 +/- 0.006 0.29 +/- 0.008 0.18 +/- 0.006 0.20 +/- 0.006 0.15 +/- 0.006 0.09 +/- 0.006
Ratio 0.19 +/- 0.006 0.38 +/- 0.010 0.74 +/- 0.025 0.40 +/- 0.013 0.31 +/- 0.011 0.23 +/- 0.010 0.14 +/- 0.014

Table S5: Brain scores and noise ceiling estimates. Ratio indicate the unsupervised model divided by the
noise ceiling. Scores are averaged across subjects and either all the voxels (‘Avg’) or the voxels of the
selected regions of interests.

Figure S18: Noise ceiling. A. Noise ceiling estimates computed on 290 subjects of the Narratives dataset,
averaged across subject. We only display the significant voxels across subjects (p < 10�18). B. Same as A,
but we only display the 10% voxels with the best noise ceiling estimates on average across subjects.

MEL Phone Wordemb POS Sentemb Average

Random wav2vec2 2.0 8.7 8.0 8.9 8.1 7.1
Acoustic wav2vec2 12.5 15.7 14.0 14.4 14.2 14.2
Mandarin wav2vec2 9.1 11.9 12.2 11.9 13.0 11.6
French wav2vec2 8.0 11.0 12.7 11.8 13.0 11.3
Dutch wav2vec2 18.9 11.4 12.0 12.4 13.0 13.5
English wav2vec2 8.0 15.2 14.0 14.4 14.0 13.1
English wav2vec2 (supervised) 8.0 16.9 18.0 18.0 18.0 15.8
Avg 9.5 13.0 13.0 13.1 13.3 12.4

Table S6: For each model (row) and target (column), the layer that maximizes probing performance,
averaged across the 10 cross-validation folds.
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Figure S19: Brain scores of self-supervised pre-trained models. Brain scores, averaged across all
voxels and subjects, for the MEL spectrogram, a wav2vec2 (base) architecture with random weights,
wav2vec 2.0 (base) pre-trained with self supervised learning on 100K hours from Voxpopuli (Wang,
2021) (‘wav2vec2-base-100k-voxpopuli’ from huggingface), on 10K hours from Voxpopuli (‘wav2vec2-
base-10k-voxpopuli’), on 53K hours of english (‘wav2vec2-base‘), two models pre-trained on the same
multilingual corpus of 436K hours, with 300M (‘wav2vec2-xls-r-300m‘) and 1B parameters (‘wav2vec2-
xls-r-1b‘), respectively, and our model trained on 600 hours of english speech (in blue). +/- refers to
standard errors of the mean across subjects.

Figure S20: Brain scores for each layer of wav2vec 2.0 Same as figure 3B, but for different regions of the
brain. Brain scores are averaged across all voxels in each regions.
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6.6 Evidence of a predictive coding hierarchy in the human
brain listening to speech

6.6.1 Scores per region of interest
For clarity, we report in Supplementary Figure S21 the average brain scores, forecast scores and forecast
distances for each region of interest in both the left and right hemispheres. We also report scores
in the less noisy voxels, for the subjects with the highest brainscore (Supplementary Table S7), their
corresponding p-values computed across subjects (Supplementary Table S9) and the scores normalized
by the noise ceiling (Supplementary Table S8).

Figure S21: Scores per region of interest. a-c. Brain scores (Figure 4.2a, Methods 4.1.5), forecast scores
(Figure 4.2c, Methods 4.1.5) and forecast distance (Figure 4.2e Methods 4.1.5) for nine regions of interests
in both the left (circle) and right (triangle) hemispheres. Scores are averaged across voxels within each
region of interest and across subjects. Error bars are the standard errors of the mean across subjects.
Regions are ordered with respect to their average score in the left hemisphere.

Table S7: Brain and forecast scores in language areas. Scores averaged across all voxels in the brain
(Avg), across the ten percent less noisy voxels (w.r.t the noise ceiling, Top10Vox), for the ten percent
subjects with the highest brainscore (Top10sub), and averaged across voxels in representative language
areas (Heschl, STG, STS and IFG). The last row is the relative improvement of R(X + eX) over R(X).

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score, R(X) 0.023 0.084 0.049 0.145 0.072 0.072 0.037
Forecast score, F(8)(X) 0.005 0.010 0.006 0.008 0.008 0.010 0.008
Relative improvement, F(8)(X)

R(X) 23% 13% 39% 5% 21% 13% 18%
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Table S8: Brain and forecast scores in language areas, with noise ceiling normalization. Same as Table
S7, but, for each voxel, scores are divided by the average noise ceiling.

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score R(X) 17% 37% 37% 50% 32% 36% 24%
Forecast score F(8)(X) 4% 5% 5% 3% 4% 5% 5%

Table S9: Brain and forecast scores’ significance. Same as Table S7, but we indicate the p-values
computed across subjects, testing whether the scores (either R(X), R(X + eX) or F(X)) are different from
zero. We use a two-sided Wilcoxon test provided by Scipy. The p-values for the Top10Sub columns are
higher because we restrict ourselves to the 10 percent less noisy subjects.

Avg Top10Vox Top10Sub Heschl STG STS IFG

Brain score R(X) 10�50 10�51 10�6 10�51 10�51 10�50 10�45

Forecast score F(8)(X) 10�35 10�37 10�4 10�32 10�37 10�32 10�29

6.6.2 Generalisation to other architectures
The analyses in the main manuscript focus on one representative deep neural network: GPT-2 (Radford
et al., 2019). Here, we replicate our results with the activations extracted from seven other transformer
architectures. We only analyse causal models, trained to predict a word from their previous context.
Note that XLNet is trained to predict both left and right context (Yang et al., 2020), but, here, we only
input the model with left context when extracting the activations. Similarly as with GPT-2, we use the
pretrained models from Huggingface (labeled ‘distilgpt2’, ‘gpt2’, ‘gpt2-medium’, ‘gpt2-large’, ‘gpt2-
large’, ‘gpt2-xl’, ‘transfo-xl-wt103’, ‘xlnet-base-cased’, ‘xlnet-large-cased’), based on GPT-2 (Radford et
al., 2019), XLNet (Yang et al., 2020) and Transformer-XL (Dai et al., 2019) architectures, and focus on
one intermediate-to-deep layer of the model (l = 2

3 ⇥ nlayers). For each architecture, we 1) extract the
activations corresponding to the subjects’ stories (Methods 4.1.5) 2) compute the corresponding brain
scores (Methods 4.1.5) and forecast scores (Methods 4.1.5) for each voxel, subject, and forecast distance.
As displayed in Supplementary Figure S22, the seven architectures accurately map onto brain activity
(Supplementary Figure S22a), and the mapping is improved when adding information about around
eight words in the future (Supplementary Figure S22b).

6.6.3 Robustness of the forecast effect
Below, we show that the forecast effect holds without PCA, with different window sizes, when using
banded ridge regression (Nunez-Elizalde et al., 2019; Tour et al., 2022) instead of ridge regression, when
averaging instead of summing vectors within each TR, when matching the TR with the word onset
instead of word offset, when accounting for low-level speech features and when testing for significance
across windows at the single-subject level.
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Figure S22: Generalisation to other architectures. a. Brain scores (cf. Figure 4.1b, Methods 4.1.5) of
eight transformer models, based on XLNet (Yang et al., 2020), TransformerXL (Dai et al., 2019) and
GPT-2 (Radford et al., 2019) architectures. We use the pre-trained models from Huggingface and proceed
similarly as with GPT-2 (Methods 4.1.5). Brain scores are averaged across voxels and subjects, error
bars are the standard errors of the mean across subjects (n=304). b. Same as Figure 4.2d for the eight
transformer architectures.

Replication with banded ridge regression In the main manuscript, we use `2-regularized ridge
regression (as in e.g. (Huth, de Heer, et al., 2016)) followed by a hierarchical comparison of the brain
scores: i.e. computing the brain score of the two sets of features (here, X vs. X � eX) and then subtracting
the scores (R[X � eX]� R[X]). To our knowledge, this approach is most conservative when it comes to
assess the explained variance of the highest level: the explainable variance shared by two sets of features
is by definition fully attributed to the lower-level feature set (i.e. X). Thus, in the worst case scenario,
our method underestimates the variance specific to eX. This is what happens when the sliding window
contains far off future words that are no longer relevant for prediction, and R[X � eX] becomes smaller
than R[X].
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We replicate our results with banded ridge regression (Nunez-Elizalde et al., 2019; Tour et al., 2022)
using the Himalaya (https://github.com/gallantlab/himalaya) package (Tour et al., 2022). Both X
and eX models are fitted simultaneously with a specific penalization term learnt for each submodel. We
then evaluate the unique variance accounted for by each submodel by zeroing-out either X or eX at test
time, predicting Y, and computing Pearson’s correlation between predicted and actual Y after zeroing
out the specific features. We use the same cross-validation setting as in the paper.

Supplementary Figure S23a below displays the brain scores obtained with banded ridge when adding
the window for each future word, and Supplementary Figure S23b shows the brains scores specifically
attributed to the contextual words in eX after zero-ing out X. We obtain similar results as in the original
paper, but the forecast effect specific to eX is higher than the one in the paper (R00[ eX] peaks at 0.027, while
(R[X � eX]� R[X] peaks at 0.004).

Replication without PCA In the manuscript, we apply PCA to the GPT-2 features before applying
the FIR and regression (Supplementary Figure S28 and S29). We show in Supplementary Figure S23c
that the forecast effect holds without applying PCA.

Replication without silent periods and with confounding variables In the main manuscript,
we cut the TRs that do not contain words at the beginning of the stories, and do not add to the GPT-2
features confounding variables such as the phoneme rate and word rate. In Supplementary Figure S23h,
we show that the results hold when the brain and forecast score are computed:

• When removing the empty TRs both at the beginning and end of the recordings (we thus cut the
recordings between the first and last word of the story before fitting the ridge regression)

• When including the Word and Phoneme rates as confound variables. These are one-dimensional
variables indicating the presence or absence of a word/phoneme.

Replication with different word aggregation in FIR In Supplementary Figure S23d, we show
that results hold when averaging instead of summing vectors within each TR and when matching the
TR with the word onset instead of word offset.

Testing for significance at the single-subject level In the main manuscript, we compare R(X +
X(i)) to R(X) within each subject and then test the significance across subjects (H0 : R(X + X(d)) < R(X)).
We show the results hold when testing for significance with a bootstrap test across windows, at the
single-subject level (H0 : R(X + X(d)) < R(X + X(i)), i 6= d). Precisely, for each subject and each
distance d, we compute R(X + X(i)), i 6= d, with X(i) a sliding window randomly sampled from the
stories. We repeat the procedure 1000 times and then estimate the probability of sampling X(i), such
that R(X + X(d)) < R(X + X(i)). This results in a p-value for each subject and distance d, assessing the
significance of R(X + X(d)) being greater than R(X + X(i)), i 6= d.

In Supplementary Figure S23f-g, we show that testing for significance at the single-subject level
yields to similar conclusions as across subjects.

Effect of window size In the main manuscript, we use a fixed window size of seven words because
it led to the best brain score when varying the length of the window (Supplementary Note 6.6.4). To
further assess the impact of the window length on the forecast effect, we compute the forecast scores
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for different window sizes (from a size of 5 to 27 words). In Supplementary Figure S23e, we find that
window length slightly but significantly affects the results. The distances maximizing the forecast scores
are on average concentrated between 6 and 12 words, and brain scores are highest for a window of 7-9-11
words. The peak varies with the window length. This phenomenon is partly expected: words that are
close to the current word likely carry relevant information (e.g. word n+1). Thus, for short window sizes,
not including the closest words is expected to decrease the brain score. This confirms that the forecast
result can be found regardless of the window size, and further suggests that forecasts are likely to be
slightly longer-term than 8 words.

6.6.4 Controls with a growing window analysis
Testing different window sizes In the previous paragraphs, we use a sliding forecast window
with a fixed number of words in order to compare the brain scores of representations with the same
dimensionality. Here, we test different window sizes by a growing window analysis. Precisely, we
build the forecast window X̃(d) by concatenating the d words succeeding the current word. The size
of the window thus varies and d corresponds to both the number of words in the window, and the
distance between the last word and the current word. We proceed similarly as in the main manuscript,
build forecast window for different distances d and the corresponding forecast scores. As displayed in
Supplementary Figure S24, the forecast score is maximal for a window of 8 future words (d⇤ = 7.9 ± 0.5
on average across subjects), which is consistent with the previous results (Figure 4.2c, where d⇤ = 8).

Using random forecast representations We use the same growing window framework and check
that adding a forecast window composed of random words does not improve the brain score (Sup-
plementary Figure S24). Precisely, we randomly pick words out of all stories, concatenate the GPT-2
activations of random words to build the forecast windows X̃(d), and compute the corresponding forecast
scores for different distances d. Supplementary Figure S24 shows that random forecast windows do not
improve our ability to predict brain activity.

Using GPT-2 generations as forecast representations To what extent are the improvements in
brain score due to (1) additional information about future words and/or (2) a different way to represent
past words? To address this question, we repeat the same analysis with a forecast window input, not
of the true future words, but with the words generated by GPT-2. Specifically, for each word wk, we 1)
GPT-2 with its past context w0, . . . wk, 2) generate future words w0

k+1, . . . w0
k+n using different decoding

methods (greedy and sampling schemes), 3) extract the corresponding activations X0
k+1, . . . X0

k+n, 4)
build the growing windows from these activations and 5) compute their forecast scores. Thus, the brain
signals, the current activations Xk and the activations of generated words X0

k+n . . . X0
k+n are all distinct

transformations of the same past words w0, . . . wk. Note that for step 2), we use Huggingface’s sampling
scheme with topk=50 and topp=0.95, do sample=True, max length=100. For the greedy scheme, we
simply set do sample to False, topp and topk to 1. (Holtzman et al., 2020)). The results show that a
window made of generated words improves the brain score, although less than a window made of the
true words of the stories (Supplementary Figure S24), confirming that GPT-2 is an imperfect forecaster.

6.6.5 Contribution of each future word in the forecast effect
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In Figure 4.2b, we show that adding a sliding window containing future words improves our ability to
predict brain activity. To interpret the impact of each word in this improvement, we launch a zero-out
analysis. Precisely, we proceed as follows:

• At train time, we proceed similarly as in the main analysis (Figure 4.2b) and fit the regression
using the current word embedding, concatenated to the sliding window.

• At test time, we zero out the features corresponding to all words after word k (i.e. we replace their
embeddings by zeros).

• Finally, we report the Pearson correlation between predicted and actual brain data, when zeroing
out words after word k.

This evaluates the importance of the words after word k in the prediction. We repeat the procedure for
k = 1 to k = 17. Note that if the words-to-TR transform had been linear, this analysis would have been
identical to an analysis of the coefficients.

We find that zeroing out future words triggers a clear drop in performance (Supplementary Fig-
ure S25). This demonstrates that each future word significantly contributes to the prediction in the ridge
regression.

To further address this issue, we compute the brain scores when concatenating different continuations
to the current word embedding. Specifically, we run the exact same analysis as Figure 4.2b, but replacing
future words by either zeros or random continuations. These continuations are sensible phrases, of the
same length as the true continuations, but randomly sampled from all stories. Supplementary Figure S26
below confirms that adding random continuations does not improve the brain scores.

Overall, Supplementary Figure S25 and S26 show that each future word up to ⇡ 10 plays a significant
role in the ridge regression.
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Figure S23: Robustness of the forecast effect. a. Replication with banded regression. Brain scores computed
with ridge regression (left, same as 4.2 and banded ridge regression (right) (Nunez-Elizalde et al., 2019; Tour et
al., 2022). b. Forecast scores computed with ridge regression followed by subtraction (left, same as Figure 4.2d)
and banded ridge regression followed by zero-out (right) (Nunez-Elizalde et al., 2019; Tour et al., 2022). In a
banded ridge regression, a model is fitted using both X and eX as input with regularization parameters specific to
X and eX. We then evaluate the brain score accounted for by the context window eX specifically by zero-ing out X
at test time (and the present word in the window). c. Forecast scores without PCA. Brain scores when adding
the sliding forecast window (Same as Figure 4.2b), but without applying PCA before fitting the ridge regression.
c. Impact of pre-processing parameters. Brain scores when adding the sliding window for different distances d
(same as Figure 4.2) (black), but averaging words within TR instead of summing them (blue) and matching the
word offset with the TR boundary instead of the word onset (orange). d. Effect of window size. Brain scores
when adding the forecast window (same as Figure 4.2b) computed with a sliding window of size 5 to 27 words.
Average peaks across subjects are indicated with a dot. f-g. Significance of the forecast effect. In f., the percentage
of subjects with a significant bootstrap test for each distance d (p < 0.05). For each subject and each distance d,
we compute R(X + X(i)), i 6= d, with X(i) a sliding window randomly sampled from the stories. We repeat the
procedure 1000 times and then estimate the probability of sampling X(i) such that R(X + X(d)) < R(X + X(i)), for
each subject and distance d. In g., the p-value computed with a one-sided Wilcoxon test across subjects, testing
whether the sliding window improves the brain score (R(X + X(d)) > R(X)). The red bar indicates the significance
threshold (p = 0.05). h. Forecast scores with confounds and without silent periods. Forecast scores averaged
across subjects and voxels (same as 4.2b) when (1) including two confounding variables (the word and phone
rates) and (2) removing periods without words at the beginning and end of the recordings. The word and phone
rates are one-dimensional variables indicating the absence/presence of a word and phoneme. i. Word rate gain.
Gain in brain score when adding the word rate to the features of GPT-2, averaged across subjects (R[GPT2 �
WordRate] - R[GPT2]). The WordRate is a one dimensional variable equal to one when there is a word, zero
elsewhere. Only significant voxels are displayed (p¡0.01 with a two-sided Wilcoxon test after FDR correction for
multiple comparison). No PCA was performed.

196



Figure S24: Controls with a growing window analysis. Forecast scores for different types of forecast
representations eX. Here, we use a growing window analysis: eX(d) is the concatenation of the activations
of |d| future (d > 0) or past (d < 0) words; the size of the window thus varies with the distance. The
forecast score is the gain in brain score when concatenating the forecast window (cf. (4.3)). In blue,
eX is built out of the true words of the story. In red, eX is built out of randomly picked words from all
stories. In green and orange, eX is built out of words generated by GPT-2. Precisely, GPT-2 is input with
the current word and its previous context, and we use greedy (green) and sampling (orange) decoding
schemes to generate a sequence of expected words. For simplicity, when d < 0, eX is the concatenation of
d the true past words. When d > 0, eX is the concatenation of d future words (either true, generated or
random words).
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Figure S25: Contribution of future words in the ridge regression. We proceed similarly as in Figure 4.2b
and fit a ridge regression to predict the fMRI given X and the sliding window eX(d). Yet, at test time, we
set to zero (or “zero-out”) the dimensions corresponding to all words after word k. We then evaluate
the prediction given the zeroed-out input (Pearson’s correlation between predicted and true fMRI). On
the x-axis, the last word that is not zeroed-out (k, i.e. all words ¿ k are zeroed-out). On the y-axis, the
corresponding Pearson correlation.

Figure S26: Brain scores when adding different continuations. Same as Figure 4.2b, but true contin-
uations (black) are replaced by zeros embeddings (blue) and random continuations sampled from all
stories (orange). Random continuations are sensible phrases.
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Figure S27: Gain in brain scores when fine-tuning GPT-2 with a mixture of Language Modeling (LM)
and High-Level prediction (HL). Gain in brain scores when adding the HL loss, compared to LM only
as a function of the weight aHL (Eq. (4.8)). Regions are grouped with respect to their gain, from negative
or null improvement (a.) to high improvement (c). In black, the corresponding regions in the brain.
Error bars are SEM across subjects. Brain scores were computed at the voxel-level and then averaged
across voxels within 75 regions of interest using Destrieux’s parcellation (Destrieux et al., 2010). We only
display the 60 regions with highly significant brain scores (p < 10�15 using a two-sided Wilcoxon test
after FDR correction for multiple comparison across regions).
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Figure S28: Data pipeline without sliding window. Processing steps applied to the raw data of each
subject before fitting the ridge regression. The ridge regression is then trained to predict the fMRI
target (on the right) given the features (on the left) using a 5-folds cross-validation setting. D is the
dimensionality of the language model, here D = 768. Words refers to the number of words in the audio
recordings the subject listened to while being scanned. If the subject listened to more than one story, the
audio recordings are concatenated and Words is the sum of the words of each story. TR is the number
of the corresponding fMRI scans. D0 is the dimensionality after PCA reduction, here D0=20. 6 is the
number of delays used in the FIR.

Figure S29: Data pipeline with sliding window. Same as Supplementary Figure 8, but we concatenate
the sliding window to the current word (in orange and light grey). The sliding window contains the
GPT-2 embeddings of past and/or future words. K is the number of words in the sliding window, here
K = 7.
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Figure S30: Noise ceiling. Noise ceiling estimates averaged across subjects, for each voxels of the left
hemisphere (Methods 4.1.5).
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Défossez, A., Caucheteux, C., Rapin, J., Kabeli, O., & King, J.-R. (2022, August). Decoding speech
from non-invasive brain recordings. arXiv. (arXiv:2208.12266 [cs, eess, q-bio])

Eickenberg, M., Gramfort, A., Varoquaux, G., & Thirion, B. (2017, May). Seeing it all: Con-
volutional network layers map the function of the human visual system. NeuroImage, 152,
184–194.

Elazar, Y., Kassner, N., Ravfogel, S., Ravichander, A., Hovy, E., Schütze, H.,
& Goldberg, Y. (2021, December). Measuring and Improving Consistency

208

https://www.sciencedirect.com/science/article/pii/S1364661307001593
https://www.sciencedirect.com/science/article/pii/S1364661307001593


in Pretrained Language Models. Transactions of the Association for Computa-
tional Linguistics, 9, 1012–1031. ( eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl a 00410/1975957/tacl a 00410.pdf)

El-Nouby, A., Touvron, H., Caron, M., Bojanowski, P., Douze, M., Joulin, A., . . . Jegou, H. (2021,
June). XCiT: Cross-Covariance Image Transformers. arXiv:2106.09681 [cs]. (arXiv: 2106.09681
version: 2)

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., . . .
Gorgolewski, K. J. (2019, January). fMRIPrep: a robust preprocessing pipeline for functional
MRI. Nature Methods, 16(1), 111–116.

Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J., & Auli, M. (2019, July). ELI5: Long Form
Question Answering. arXiv. (arXiv:1907.09190 [cs])

Fan, A., Lewis, M., & Dauphin, Y. (2018, May). Hierarchical Neural Story Generation.
arXiv:1805.04833 [cs]. (arXiv: 1805.04833)

Fedorenko, E., Blank, I., Siegelman, M., & Mineroff, Z. (2020, February). Lack of selectivity
for syntax relative to word meanings throughout the language network. bioRxiv, 477851.
(Publisher: Cold Spring Harbor Laboratory Section: New Results)
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