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Useful physical constants

Constants in SI units 1 :

• vacuum magnetic permeability, µ0 = 4π × 10−7 H/m

• Planck constant, h = 6.63× 10−34 Js

• reduced Planck constant, ℏ = h/2π = 1.05× 10−34 Js

• Bohr magneton, µB = 9.274× 10−24 J/T, µB/h = 13.996 GHz/T

• nuclear magneton, µN = 5.051× 10−27 J/T, µN/h = 7.622 MHz/T

• Boltzmann constant, kB = 1.38× 10−23 J/K

1Values from NIST (https://physics.nist.gov/cuu/Constants/index.html)
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Chapter 1

Résumé détaillé

1.1 Contexte général de la résonance paramagnétique
électronique

La résonance paramagnétique électronique (RPE) est une technique qui permet d’étudier
la structure et le comportement des substances contenant des électrons non appariés.
Lorsqu’un champ magnétique statique est appliqué, la dégénérescence des niveaux de spin
des électrons non appariés est levée et le spin électronique va précesser autour du champ
magnétique à la fréquence de Larmor. Cette fréquence est déterminée par le facteur (ou le
tenseur dans les solides) gyromagnétique de l’électron qui relie son moment magnétique à
son moment angulaire. La prédiction du rapport gyromagnétique de l’électron libre par la
théorie quantique des champs est une des grandes réussites de la physique du XXème siècle.
L’accord entre la théorie et l’expérience atteint une précision de 12 chiffres significatifs.
Selon le "National Institute of Standards and Technology" (NIST), la valeur du facteur
gyromagnétique de l’électron libre est de 28,0249514242(85) GHz · T−1.

Par conséquent, en présence d’un champ magnétique statique, les électrons non appariés
réagissent de manière résonnante au rayonnement électromagnétique. Compte tenu de la
valeur du facteur gyromagnétique de l’électron libre, les fréquences de résonance se situent
généralement dans la gamme des micro-ondes pour des champs magnétiques modérés.
Lorsque l’échantillon est exposé à un champ électromagnétique de la bonne fréquence, les
électrons non appariés peuvent en absorber l’énergie, ce qui entraîne un phénomène de
résonance qui peut être sondé expérimentalement à l’aide de différentes techniques. Ce
processus d’absorption est à la base de la RPE, qui permet aux scientifiques d’obtenir
des informations précieuses sur les propriétés des impuretés paramagnétiques et de leur
environnement [SJ01b].

Il existe deux techniques principales de spectroscopie RPE : à ondes continues et à
ondes pulsées. Dans la spectroscopie RPE à onde continue, un signal micro-ondes continu
irradie l’échantillon et son coefficient de transmission/réflexion est analysé. Cette méthode
est polyvalente mais présente des limites en termes de résolution spectrale et temporelle.
La RPE pulsée, que nous utiliserons dans cette thèse, consiste à exciter l’ensemble des spins
par de courtes impulsions électromagnétiques résonnantes. L’information sur les spins est
contenue dans le signal qu’ils réémettent après avoir été excités [SJ01b]. De nombreuses
séquences d’impulsions ont été mises au point pour répondre à diverses questions.

Parmis elles, la détection inductive (ID-ESR) est la méthode la plus répandue pour
réaliser des spectroscopies RPE [Rab+38; Blo46; PTP46]. Dans cette approche, l’échantillon
contenant les spins est placé à l’intérieur d’un résonateur micro-ondes, accordé à une
fréquence spécifique ω0. Des impulsions résonnantes sont appliquées pour créer d’abord une
magnétisation transverse transitoire, puis pour induire la formation d’un signal micro-ondes
pulsé, notamment un écho de spin. Les propriétés caractéristiques de l’ensemble de spin
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Figure 1.1: Illustration du signal fourni par un ensemble d’impuretés paramagnétiques
contenues dans un cristal en fonction du champ magnétique statique B0. L’environnement
électromagnétique propre à chaque spin illustré en (b) provoque une dispersion inhomogène
des fréquences de résonance. Les mesures d’ensemble ne tiennent pas compte de ces
caractéristiques locales.

peuvent être extraites à partir de la phase et de l’amplitude de cet écho.
Cette technique permet aux chercheurs de déterminer les propriétés essentielles des

spins et de leur environnement, avec des applications dans divers domaines tels que la
biologie [Yos+96], la biochimie [Pol06] et les sciences des solides [Sli55].

En termes de sensibilité de détection, les spectromètres utilisant la ID-ESR sont
confrontés à des limitations strictes en raison du faible couplage entre les spins et le
champ magnétique micro-ondes appliqué. En une seconde de temps d’intégration, les
spectromètres actuels ne peuvent détecter que de grands ensembles de spins contenant
environ 109 spins [Abh+22], ce qui rend la caractérisation des propriétés locales très difficile.
A titre d’exemple, l’élargissement inhomogène de la fréquence est un problème courant en
spectroscopie RPE, où les facteurs gyromagnétiques des spins individuels varient en raison
de leurs différents environnements locaux (voir Figure 1.1). Il en résulte une distribution des
fréquences de résonance, ce qui fait qu’il est difficile pour les spectromètres commerciaux
de tenir compte de toutes les interactions locales. Au lieu de cela, ils ont tendance à donner
une moyenne de l’effet global de l’élargissement inhomogène, ce qui limite leur capacité à
fournir des informations détaillées sur les propriétés locales.

De nombreuses méthodes ont été mises au point pour améliorer la sensibilité de la
détection par RPE. L’une d’entre elles consiste à tirer parti de la charge de l’électron
pour se coupler au champ électrique, ce qui permet d’obtenir de forts couplages spin-
photon [Xia+04]. Ce concept a été mis en œuvre dans des matériaux semi-conducteurs en
utilisant des architectures de transistors. Cette spécificité limite son application. Une autre
technique consiste à exploiter les impuretés qui possèdent des transitions optiques, comme
les célèbres centres NV du diamant ou les ions erbium [Riz+22]. Cette détection optique
de la résonance de spin électronique a même permis aux physiciens d’atteindre la détection
d’un spin unique [Gru+97]. Bien que cette méthode soit limitée aux ions présentant des
transitions optiques appropriées, elle a donné lieu à un nombre important d’applications,
notamment pour la magnétométrie à haute résolution spatiale.

Le groupe Quantronics s’est inséré dans cet effort de recherche en proposant d’utiliser



l’électrodynamique quantique des circuits (cQED) [HR06; Bla+21] pour obtenir une RPE
de haute sensibilité. La cQED utilise des circuits électriques bidimensionnels refroidis à
une température de l’ordre du millikelvin. Dans ces conditions, il est possible de produire
des micro-résonateurs supraconducteurs à facteur de qualité élevé qui génèrent des champs
magnétiques localisés intenses. Un couplage spin-photon record de 3 kHz [Ran+20] a été
obtenu par ce bias, à comparer à la force de couplage inférieure au Hz dans les cavités
résonantes conventionnelles.

Un faible volume de mode améliore également le taux d’émission spontanée de photons
micro-ondes par les spins via l’effet Purcell [Bie+16]. Les temps d’acquisition son par
conséquent réduit ce qui améliore la sensibilité. Par ailleurs, le traitement du signal est
effectué à l’aide d’amplificateurs paramétriques Josephson (JPA), qui nous permettent
d’amplifier les signaux micro-ondes avec le bruit minimal imposé par la mécanique quantique.
En outre, le fonctionnement à des températures extrêmement basses (10-20 mK) permet
une grande polarisation du spin, ce qui augmente les signaux.

La combinaison de ces avantages a permis au groupe Quantronics d’atteindre une
sensibilité de détection de 12 spin/

√
Hz en 2020 pour la spectroscopie ID-ESR en utilisant

une plateforme d’ions bismuth intégrés dans un cristal de silicium [Ran+20]. Cependant,
malgré un progrès de cinq ordres de grandeur par rapport à l’état de l’art, le régime
de spin unique reste hors de portée. Les méthodes de détection inductive sont en effet
confrontées à un problème de bruit intrinsèque. L’information de l’ensemble de spin est
contenue dans les quadratures du champ électromagnétique de l’écho de spin. Comme
ces quadratures sont mesurées directement, le bruit minimal associé à leur détection
correspond aux fluctuations du vide dans la largeur de bande de détection. C’est propriété
fondamentale de la mécanique quantique. Même en supposant qu’aucun bruit n’est ajouté
par les amplificateurs, ce bruit du vide ne peut être réduit. Dans ce contexte, la détection
d’un spin unique par le photon micro-onde qu’il émet pendant sa relaxation correspond
à une petite augmentation transitoire du niveau de bruit (voir Figure 2.2a). Le rapport
signal/bruit de l’ID-ESR est donc fondamentalement limité, et la détection d’un spin
unique nécessite une nouvelle stratégie.

Afin de relever ce défi, notre groupe a proposé une nouvelle méthode de RPE basée sur
la détection de la fluorescence (FD-ESR), qui consiste à détecter directement le photon
micro-onde émis par un spin à l’aide d’un détecteur de photon micro-onde unique (SMPD).

Cette approche repose sur le concept de dualité onde-particule. Dans le cas de la
détection inductive, la lumière est traitée comme une onde avec les fluctuations associées,
même dans l’état du vide. Le fait de considérer la lumière comme un flux de particules nous
permet de ne plus être sensible à ces fluctuations (voir Figure 2.2). Pour un compteur de
photons, l’absence de photon incident se traduit par une absence de signal. Le bruit dépend
uniquement des imperfections du détecteur, telles que la présence de photons parasites, et
peut en principe être extrêmement faible. Le rapport signal/bruit n’est alors limité que
par notre capacité à concevoir et à fabriquer un détecteur de photons à micro-ondes ayant
une efficacité élevée ηd et un faible taux de faux positifs αd. Cette nouvelle méthode est
donc mieux adaptée à la détection d’un spin unique.

Une preuve de principe de la FD-ESR a été obtenue pour la première fois par Emanuele
Albertinale [Alb+21] en utilisant un SMPD développé par Emmanuel Flurin [Les+20].
L’expérience a ensuite été développé et amélioré par Eric Billaud [Bil+22], mais le régime
de sensibilité de 1 spin/

√
Hz n’a pas été atteint en raison de certaines imperfections

structurelles du détecteur.
Cette thèse s’appuie sur ces travaux antérieurs et présente la conception et la mise en

œuvre d’un SMPD amélioré doté d’une sensibilité de détection record de 10−22 W/
√

Hz, et
atteignant le régime de détection du spin unique. Ce nouveau détecteur a été utilisé pour
effectuer la spectroscopie d’ions erbium dans un cristal de scheelite. Ce système cristal-ion
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Figure 1.2: Différence entre la détection inductive et la détection par fluorescence
a) Séquence d’écho, typique de l’ID-ESR. Les spins sont placés sur l’équateur par une
impulsion de π/2. Ils évoluent ensuite selon leur fréquence de Larmor individuelle. Une
impulsion π les refocalise, ce qui provoque un écho (en rouge). b) Détection d’un spin par
son signal de fluorescence. La séquence consiste à exciter un spin avec une impulsion π
et à collecter le photon issu de sa désexcitation radiative avec un compteur de photons.
c) Détection du champs electromagnétique. L’information sur l’ensemble des spins est
contenue dans la phase et l’amplitude du signal, nous considérons ici la lumière comme
une onde. Cette méthode est intrinsèquement bruyante du fait des fluctuations du vide.
La détection d’un état de Fock |1⟩ correspondant simplement à une augmentation du bruit
moyen engendré. d) Détection de photons. La présence d’un photon se traduit par un clic
du détecteur. Cette méthode est fondamentalement non-bruitée, l’absence de photon se
traduisant par une absence de détection.

a été choisi en raison de ses longs temps de cohérence de spin, comme l’a démontré la
caractérisation initiale complète réalisée par Marianne Le Dantec et Milos Rancic à l’aide de
l’ID-ESR [Dan22; Le +21]. Une optimisation du couplage entre le résonateur micro-ondes
et les spins d’erbium a ensuite été réalisée par Zhiren Wang, permettant d’obtenir un
couplage spin-résonateur de g0 = 3 kHz.

Cette thèse démontre la détection d’un ion erbium unique dans un cristal
de scheelite par FD-ESR grâce à la mise en œuvre d’un SMPD suffisamment



sensible. Cette détection pousse la résonance paramagnétique électronique
à sa sensibilité ultime. En outre, elle montre que ce niveau de sensibilité
nous permet d’obtenir un aperçu de l’environnement local du spin, avec en
particulier la signature des spins nucléaires de 183W entourant l’ion d’erbium.

Ce manuscrit est divisé en deux parties. La première est consacrée au compteur
de photons micro-ondes. Le Chapter 3 fournit le contexte théorique nécessaire pour
comprendre les différents concepts des circuits cQED impliqués dans notre SMPD. Le
Chapter 4 traite spécifiquement de la théorie et du principe de fonctionnement du détecteur.
Le Chapter 5 et le Chapter 6 présentent la fabrication et les caractéristiques du compteur.

La deuxième partie est consacrée à la détection des ions erbium. Le Chapter 7
décrit théoriquement la plateforme expérimentale comprenant le système de cristal/ion
Er3+ : CaWO4 et le résonateur supraconducteur qui permet un fort couplage spin-photon.
Le Chapter 8 démontre que notre système de mesure peut détecter des spins individuels et
fournit une description complète de leurs caractéristiques (tenseur g, temps de cohérence,
etc.). Enfin, le Chapter 9 se concentre sur la sélection d’un spin électronique spécifique
et étudie son environnement immédiat. Nous mettons en évidence son couplage avec le
bain de spin nucléaire 183W et émettons plusieurs hypothèses concernant les positions des
atomes 183W qui contribuent à son environnement magnétique.

1.2 Résultats expérimentaux

1.2.1 Détecteur de photons micro-ondes uniques avec une sensibilité
record: S = 10−22 W/

√
Hz.

Dans le domaine optique, la conception d’un détecteur de photons est rendue possible par
l’existence de matériaux, tels que les semi-conducteurs ou les supraconducteurs, dont l’écart
énergétique est inférieur à l’énergie des photons à détecter. L’absorption des photons par
effet photoélectrique crée un grand nombre de quasiparticules (paires électron-trou dans
les semi-conducteurs et quasiparticules supraconductrices, associées à des paires de Cooper
brisées, dans les supraconducteurs) qui peuvent être facilement détectées. Dans le domaine
des micro-ondes, en revanche, ce concept n’est pas directement transposable. Les photons
micro-ondes ont en effet une énergie inférieure de 5 ordres de grandeur à celle des photons
optiques et ne pourront pas combler le gap énergétique des matériaux semi-conducteurs.
Une autre stratégie doit être envisagée.

Une autre approche consiste à considérer la détection des photons comme une tâche de
traitement de l’information quantique. Dans ce cas, la tâche consiste à faire correspondre
l’état d’un photon qui se propage avec l’état d’un bit quantique qui peut être manipulé et
mesuré selon les protocoles cQED. Afin d’imiter le caractère irréversible de l’absorption des
photons, cette correspondance doit être conçu de manière à être indépendant de la forme
d’onde et du temps d’arrivée du photon. Dans ce travail, nous utilisons une architecture de
circuit SMPD développée par Raphaël Lescanne et Emmanuel Flurin [Les+20] exploitée
plus tard dans la thèse de doctorat d’Emanuele Albertinale [Alb+21] pour la détection par
fluorescence micro-ondes d’un ensemble d’impuretés de bismuth dans le silicium.

Notre architecture de compteur exploite le développement rapide des circuits QED et
notamment des qubits "transmon". Ces systèmes à deux niveaux, dont la fréquence de
transition typique se situe entre 5 et 10 GHz, peuvent être utilisé pour la détection des
photons micro-ondes. Près de deux décennies de recherche en informatique quantique ont
permis de les manipuler en quelques nanosecondes et d’effectuer la lecture de leur état
quantique avec une grande fidélité à l’aide d’un amplificateur paramétrique Josephson
fonctionnant à la limite minimale du bruit quantique.



Figure 1.3: SMPD : Principe de fonctionnement et caractérisation a) Principe de
fonctionnement. La non linéarité fournie par un qubit supraconducteur (carré noir barré)
permet une conversion non linéaire transformant un photon incident à la fréquence ωb et
un photon de pompe à la fréquence ωp en une excitation du qubit à la fréquence ωq et
un photon dans le résonateur de sortie à la fréquence ωw. L’activation du processus n’est
possible que si les fréquence des ondes incidentes correspondent à celle des ondes sortante
tel que, ωb + ωp = ωq + ωw. b) Cycle du SMPD. Le cycle de détection (D) est défini par
l’application du ton de pompe (violet) sur le qubit. Le qubit est ensuite lu de manière
dispersive (M) et réinitialisé (R). c) Puce du SMPD. Les modes sont définis par des
résonateurs CPW. Le résonateur d’entré (orange) est un résonateur λ/2, rendu accordable
grace à un SQUID contrôlé par une ligne de courant continu (rouge). La fréquence au
sommet de l’arche est ωb/2π = 7.005 GHz. Un résonateur à large bande λ/2 (orange),
en résonance avec le résonateur d’entrée, est placé avant la ligne de sortie et se comporte
comme un filtre passe-bande. Le mode de sortie (vert) est un résonateur λ/4 de fréquence
ωw/2π = 7.704 GHz. Il est également équipé d’un filtre passe-bande (vert). Le qubit de
fréquence ωq/2π = 6.183 GHz est représenté en bleu. La ligne de pompe permettant la
conversion à 4 ondes est représentée en violet. d) Traces temporelles montrant la réponse
du SMPD lorsqu’un état cohérent est envoyé sur le résonateur d’entrée. Chaque ligne
verticale représente la détection d’un photon. Le nombre de photon envoyé augmente
progressivement de 0 photon·s−1 (trace rouge) à 12000 photon·s−1 (dernière trace bleue).
Cette puissance correspond à 55 zW. e) Relation entre le nombre de photons détectés et le
nombre de photons incidents permettant d’extraire l’efficacité η = 0.43 et αd = 84 s−1.



La mise en correspondance irréversible du photon entrant avec l’état du qubit est
assurée par un processus de mélange à 4 ondes. Nous introduisons à cette fin deux modes
intermédiaires appelés respectivement "buffer" et "waste". En pompant le qubit avec un
ton micro-ondes, la non-linéarité fournie par le transmon nous permet de mélanger ces
modes afin de convertir le photon entrant dans le buffer en une excitation du qubit et un
photon dans le waste (voir Figure 2.3a). Ce dernier est ensuite rapidement dissipé dans
les lignes, ce qui rend la conversion inverse impossible. En raison de l’alternance entre les
phases de pompage et de lecture du qubit, le détecteur fonctionne de manière cyclique
(voir Figure 2.3b).

Une grande partie de cette thèse est consacrée à l’amélioration de la sensibilité de
ce détecteur de photons. Nous avons profité des progrès récents dans la fabrication des
transmons ainsi que de l’amélioration de la compréhension des circuits cQED pour affiner
la conception du détecteur. En un mot, nous avons utilisé les mêmes éléments de base que
ceux utilisés dans la recherche de l’ordinateur quantique, mais cette fois pour concevoir
un meilleur détecteur. Par rapport à la version originale, nous avons gagné un ordre de
grandeur en sensibilité pour atteindre S = 10−22 W/

√
Hz. Cette amélioration est due à

une réduction drastique du taux de faux positifs (αd = 84 s−1 contre αd,old = 1500 s−1), et
à une augmentation de l’efficacité (ηd = 0.43 contre ηd,old = 0.2). La caractérisation de ces
paramètres cruciaux pour le SMPD est présentée dans Figure 2.3d,e.

Dans le Chapter 5, nous détaillons la conception et le processus de fabrication du
détecteur. La Figure 2.3c donne un aperçu de la puce SMPD. Les résonateurs orange (resp.
verts) correspondent aux modes buffer (resp. waste). Le qubit transmon est représenté en
bleu, avec sa ligne de pompe en violet. La caractérisation complète du SMPD est présentée
dans Chapter 6.

1.2.2 Détection d’un spin électronique unique Er3+ dans un cristal de
scheelite

Le nouveau SMPD décrit dans la première partie de la thèse est ensuite utilisé pour détecter
des spins uniques à partir du signal de fluorescence qu’ils émettent pendant leur relaxation.
Comme le bruit de fond des micro-ondes est fortement atténué à 10 mK, le comptage
de photons est la méthode appropriée pour détecter ce signal, qui consiste en un flux de
photons uniques.

Pour atteindre la sensibilité de détection d’un spin unique en 1 seconde de temps
d’intégration, la puissance émise par le spin doit être du même ordre de grandeur que la
puissance minimale détectable par le SMPD en 1 s : 10−22 W (voir la dernière section).
Un spin électronique dans l’espace libre à la fréquence typique ω/2π = 8 GHZ possède un
taux d’émission spontannée de 10−12 s−1, soit ≈ 30000 ans. Lorsqu’il est inséré dans un
cristal hôte, la relaxation par génération de phonons devient dominante, augmentant le
taux de relaxation spontanée à ≈ 1 s−1. Pour que le taux de relaxation radiative soit le
canal de perte dominant, il faut utiliser l’effet Purcell [Pur46] en couplant les spins à un
résonateur à fort facteur de qualité. Ce régime dit de Purcell a été atteint en 2016 dans
notre groupe [Bie+16] pour des impuretés de bismuth incorporées dans du silicium.

Notre système expérimental consiste en un cristal de scheelite pure CaWO4 contenant
des traces d’erbium (∼ 1 ppb). Les ions Er3+ qui remplacent les Ca2+ (voir Figure 2.4a),
forment un défaut paramagnétique avec un degré de liberté de spin. La structure électron-
ique d’un ion erbium est complexe. Les fonctions d’onde des onze électrons de sa bande
de valence s’hybrident fortement pour donner une première échelle d’énergie dégénérée
avec une transition optique fondamentale à une longueur d’onde de 1.5 µm. Le champ
cristallin à l’intérieur du CaWO4 perturbe faiblement cette structure énergétique et lève la
dégénérescence des niveaux de l’état fondamental en huit doublets de Kramers [Kra30].
La dégénérescence restante est assurée par le théorème de Kramers : les espèces ayant
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Figure 1.4: Plate-forme expérimentale a) Schéma de la maille élémentaire de CaWO4
centrée sur un ion Er3+ substituant un ion Ca2+. Les oxygènes sont supprimés pour plus de
clarté. Un degré de liberté de spin est représenté pour l’ion Er3+. La symétrie du cristal est
tétragonale autour de l’axe c, ce qui signifie que les axes a et b sont équivalents. b) Schéma
de l’expérience globale. Un résonateur micro-ondes (orange) composé d’un condensateur
interdigité court-circuité par un nanofil est modelé dans une couche de niobium (bleu) au
sommet du cristal (gris). Le résonateur est couplé ç la ligne micro-onde au taux κext. Le
nanofil permet de coupler le spin au résonateur avec la force g0. Les spins sont excités en
envoyant une impulsion micro-onde sur le résonateur. ils se relaxent ensuite radiativement
grâce à l’effet Purcell généré par le couplage. Enfin, les photons résultants sont acheminés
vers le SMPD à l’aide d’un circulateur. c) Simulation de la force de couplage g0 et du
taux de Purcell correspondant ΓP en fonction de la position du spin dans le plan (a, b). Le
rectangle vert représente la section transversale du nanofil..

un nombre impair d’électrons restent doublement dégénérées en raison de la symétrie de
renversement du temps. Chacun des doublets de Kramers se comporte donc comme un
spin-1/2 effectif dont la dégénérescence peut être levée par un champ magnétique qui brise
la symétrie de renversement du temps, c’est-à-dire par effet Zeeman. Le facteur de Landé
du système dépend fortement de la symétrie du cristal [Enr71; Ber+09] car le spin effectif
résulte d’une interaction entre l’ion et le champ cristallin. Le tenseur g est donc anisotrope
avec gc = 8.38 et ga,b = 1.25 (voir Figure 2.4a pour la définition des axes).

Le choix du cristal CaWO4 est intéressant en raison de sa faible teneur en impuretés
magnétiques, dominée par la fraction 0.143 des isotopes 183W qui ont un spin nucléaire. Les
propriétés de cette plate-forme expérimentale ont été étudiées en détail par Marianne Le
Dantec en utilisant des méthodes ID-ESR [Le +21] et ensuite par Eric Billaud en utilisant
FD-ESR [Bil+22; Bil23].

Le couplage spin-photon a lieu via un résonateur micro-onde supraconducteur 2D
de fréquence ω0/2π = 7.3 GHz fabriqué au sommet du cristal dans un film de niobium.
Comme le montre Figure 2.4b, il se compose d’un condensateur interdigité court-circuité
par un nanofil parallèle à l’axe c du cristal. Le champ magnétique statique B0 appliqué
parallèlement au fil permet aux spins d’entrer en résonance avec le résonateur. Le champ
magnétique généré par le nanofil permet le couplage avec les spins. Il est transverse au
nanofil et se situe donc dans le plan (a, b) où le facteur g est maximal. Le Figure 2.4c
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Figure 1.5: Détection de spin unique par FD-ESR a) Spectroscopie de spin à faible
puissance (∼ −107 dBm à l’entrée de l’échantillon), avec une fenêtre d’intégration de 2
ms. Le ⟨C⟩ représente le nombre moyen de clics pendant le temps d’intégration Tint, B0
est l’amplitude du champ magnétique statique appliqué. La courbe verte représente les
données mesurées, la courbe noire est un fit lorentzien. L’angle θ varie linéairement entre
−0.016◦ et 0.016◦ au cours du balayage. b) Taux de clic moyen ⟨Ċ⟩ en fonction du temps.
L’histogramme bleu représente le signal de fluorescence provenant du spin étiqueté s0
dans l’encadré de (a). L’histogramme orange représente le bruit de fond et correspond au
comptage sombre du SMPD. c) Expérience de découplage dynamique avec 3 impulsions π
de refocalisation. Le nombre moyen de clics corrigé de l’arrière-plan ⟨C̃⟩ est représenté en
fonction du temps 4τ entre les impulsions π/2. Une phase linéaire croissante ϕ(τ) = 2π∆τ
avec ∆ = 0, 001 MHz est appliquée à la dernière impulsion. Les points rouges sont les
données tandis que la courbe noire est un fit sinusoidale permettant d’extraire le temps de
cohérence. TDD

2 = 2.99± 0.03 ms. Données prises à B0 = 422.085 mT et θ = −0.003◦.

montre une simulation de la force de couplage g0/2π en fonction de la position du spin
dans le voisinage du nanofil. Avec nos paramètres expérimentaux, nous atteignons des
couplages de quelques kHz, ce qui donne un taux de Purcell ΓP ∼ 1000 s−1 pour les spins
les plus fortement couplés. La puissance instantanée correspondante P = 5 · 10−21W
nous place dans une situation favorable pour la détection d’un seul spin. La conception
et la fabrication du résonateur micro-ondes ont été réalisées par Zhiren Wang [Wan+23].
L’expérience complète, esquissée dans Figure 2.4b, consiste à exciter l’ensemble de spin avec
une impulsion micro-onde appliquée sur le résonateur et à collecter les photons micro-ondes
émis. L’échantillon de spin est simplement connecté au SMPD par un câble coaxial à faible
perte. Un simple circulateur guide les photons collectés vers le détecteur.

La Figure 2.5a représente une spectroscopie en champ magnétique réalisée avec cette



configuration expérimentale. Pour chaque valeur de l’amplitude du champ magnétique
B0, l’ensemble des spins est excité à faible puissance afin de sélectionner les spins les
plus fortement couplés. Les photons micro-onde émis sont ensuite collectés par le SMPD.
Nous définissons une fenêtre d’intégration d’une durée de Tint sur laquelle nous faisons
la moyenne du nombre d’événements de détection (ou clics) ⟨C⟩. Le spectre résultant
se présente comme une somme de pics étroits et inégalement répartis, centrés autour de
B0 = ω0/(gcµB). Nous montrons dans la thèse que chaque pic individuel correspond à un
spin unique en étudiant les statistiques d’émission de photons. Ce résultat est comparable
à la première détection d’une molécule unique à l’aide d’un détecteur de photons optiques
[OB90], mais pour un spin émettant dans le domaine des micro-ondes.

Le signal de fluorescence associé à un spin unique est représenté dans Figure 2.4b.
Le temps de relaxation radiative observé T1 ≈ 1.5 ms est en bon accord avec la valeur
attendue. Des mesures de cohérence sont effectuées sur différents spins uniques. La
Figure 2.4c montre par exemple les résultats d’une expérience de découplage dynamique
réalisée sur le spin étiqueté s0 dans Figure 2.4a. Un temps de cohérence de ∼ 3 ms est
atteint, ce qui correspond à la limite radiative 2T1.

1.2.3 Sonder les spins nucléaires 183W avec le spin électronique de
l’erbium

Le contrôle d’un spin électronique unique ouvre la voie à la mesure de son environnement
local. En particulier, le spin électronique peut être utilisé pour mesurer et contrôler le bain
de spin nucléaire environnant grâce au couplage hyperfin lié à l’interaction dipôle-dipôle
magnétique entre les spins nucléaires et électroniques.

Ce concept a été démontré pour la première fois en 2012 pour les centres NV du diamant
[Tam+12; Kol+12; Lon+13], mesurés individuellement à l’aide d’une transition optique.
Le principe de l’expérience est de détourner le concept de découplage dynamique introduit
en 1999 [VKL99] pour les systèmes quantiques ouverts. Au lieu d’utiliser la séquence de
découplage dynamique pour isoler le spin de l’électron de son environnement bruyant, on
l’utilise pour le mettre en résonance avec un spin nucléaire spécifique.

Dans le cas de notre expérience, le bain de spin nucléaire est constitué des noyaux de
l’isotopes de tungstène I = 1/2183W, dont l’abondance naturelle est de 0.145. Ils occupent
aléatoirement les sites de tungstène et interagissent avec le spin électronique Er3+ par
couplage dipolaire magnétique (voir Figure 2.6a,b). Comme le moment magnétique du
spin électronique est 4 à 5 ordres de grandeur plus grand que celui du spin nucléaire,
nous pouvons appliquer l’approximation séculaire. Le spin électronique entraîne les spins
nucléaires dont les axes de quantification dépendent de l’état de son état, comme le montre
Figure 2.6b. Cet effet est au cœur de l’expérience. Bien que le spin électronique ne puisse
pas être inversé par l’interaction hyperfine, il peut choisir une phase, ce qui permet de
connaître l’état quantique du spin nucléaire.

La séquence de découplage dynamique que nous avons utilisée consiste en une séquence
CPMG de 24 impulsions de refocalisation π (voir Figure 2.6c). Le spin de l’électron, placé
dans une superposition d’états par l’impulsion initiale π/2−, est ensuite basculé 24 fois
par la série d’impulsions π, puis reprojeté sur l’axe z de la sphère de Bloch par la dernière
impulsion π/2−. Nous mesurons ensuite son signal de fluorescence avec le SMPD.

Chaque fois qu’une impulsion π est appliquée au spin électronique, l’axe de quantification
du spin nucléaire change. Si la fréquence de modification de l’axe l’inclinaison de cet axe est
en phase avec la fréquence de Larmor ωL du spin nucléaire, ce dernier subira une rotation
progressive après chaque impulsion π. Cette condition de résonance peut être exprimée
en termes du temps 2τ entre les impulsions π, comme 2τk = (2k + 1)π/ωL pour k ∈ N.
Pour ces temps inter-impulsion spécifiques, la séquence CPMG intrique progressivement
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Figure 1.6: Détection de spin nucléaire 183W avec une séquence de découplage
dynamique. a) Spin électronique Er3+ possédant un spin nucléaire 183W 1/2 dans son
environnement immédiat. b) Interaction electro-nucléaire. L’état du spin de l’électron
influence l’axe de quantification du spin nucléaire en raison de son moment magnétique
plus important. Le tenseur g anisotrope provoque un désalignement entre la direction de
quantification du spin de l’électron et l’orientation du champ magnétique. c) Séquence
de découplage dynamique avec 24 impulsions de refocalisation π appliquées au spin de
l’électron. En raison de la dépendance de la quantification du spin nucléaire par rapport à
l’état du spin électronique, il existe une condition de résonance entre le délai d’interpulsion
2τ et la fréquence de Larmor du spin nucléaire ωL. d) Expérience de découplage dynamique
correspondante. La dernière impulsion projette l’état final alternativement sur l’état
excité ou l’état fondamental. Le nombre moyen de clics est noté ⟨C⟩|0⟩ et ⟨C⟩|1⟩. Le
contraste entre les projections est représenté en fonction du temps τ . Les creux espacés
de ∆τ = π/ωL = 1, 52 µs sont dus à l’interaction avec le bain de spin nucléaire 183W. Le
premier creux à τ4 = 6, 44 µs correspond à la résonance d’ordre 4. Les lignes rouges sont
les données, les lignes noires pleines représentent le fit gaussien de chaque creux.



les spins nucléaires et électroniques. Le niveau d’intrication est contrôlé par le nombre
d’impulsions π.

L’information d’intrication peut être récupérée grâce à l’état de l’électron. En effet, si
τ est hors résonance, les spins ne sont pas intriqués après les 24 impulsions et le spin de
l’électron reste dans l’état de superposition initial. La décohérence est le seul mécanisme
qui influence le résultat final. Au contraire, si τ = τk, une intrication se produit et l’état
final du système change. Du point de vue du spin de l’électron, cela peut être vu comme
une perte rapide de cohérence qui se produit pour chaque τk.

Il suffit donc de mesurer l’état final du spin de l’électron pour reconstruire la dynamique
de l’intrication. La mesure de la probabilité Px que le spin de l’électron reste dans sa
superposition initiale est illustrée dans Figure 2.6d en fonction du temps τ . Comme prévu,
nous observons un schéma régulier de creux, espacés de ∆τ = π/ωL = 1.52 confirmant
l’interaction entre le spin de l’électron et un bain de spin nucléaire 183W. Cette expérience
constitue la première détection des spins nucléaires 183W à l’aide d’un spin électronique
individuel.

Pour conclure cette introduction, il est intéressant de prendre du recul et d’examiner
la chaîne de concepts qui a conduit à ce résultat final. Nous utilisons un amplificateur
paramétrique Josephson pour lire en une seule fois l’état d’un qubit transmon. Cet atome
artificiel, inséré dans une architecture cQED, permet de signaler le passage d’un photon
micro-onde. En travaillant sur le couplage spin-photon, nous sommes capables d’utiliser
cette architecture de détection de photons pour détecter un spin électronique Er3+ unique
intégré dans un cristal CaWO4. Enfin, nous approfondissons la description de la matière en
utilisant le spin de l’électron lui-même comme indicateur pour détecter son environnement
local et en particulier les spins nucléaires 183W. Cette nouvelle chaîne, combinant circuits
supraconducteurs, comptage de photons et spectroscopie RPE, offre une sensibilité de
détection inégalée et ouvre la voie à de nombreuses applications dans le domaine de la
détection et de l’informatique quantiques.



Chapter 2

Introduction

2.1 The general context of high sensitivity Electron Spin
Resonance

Electron Spin Resonance (ESR) is an insightful technique that allows researchers to inves-
tigate the structure and behavior of substances containing unpaired electron paramagnetic
impurities. When a static magnetic field is applied, the degeneracy of the unpaired electron
spin levels is lifted, and the spin dynamics follows a precession around the applied magnetic
field at the Larmor frequency. This frequency is determined by the electron’s gyromagnetic
ratio, more precisely a gyromagnetic tensor in solids, that links the magnetic moment of
the electron to its angular momentum. Remarkably, the prediction of the free electron’s
gyromagnetic ratio by quantum field theory has been an extraordinary achievement, with
an experimental and theoretical agreement reaching a 12-digit precision. As documented by
the National Institute of Standards and Technology (NIST), the value of the free electron
gyromagnetic ratio is −28.0249514242(85) GHz · T−1.

As a consequence, in presence of a static magnetic field, unpaired electrons are resonantly
responsive to electromagnetic radiation. Given the intrinsic electron’s gyromagnetic factor
value, the resonance frequencies are typically in the microwave range for moderate magnetic
fields. When the sample is exposed to an electromagnetic field with the right frequency, the
unpaired electrons can absorb energy from it, leading to a resonance phenomenon that can
be probed experimentally with different techniques. This absorption process is the basis
of ESR, enabling scientists to gain valuable insights into the properties of paramagnetic
impurities and their surroundings [SJ01b].

There are two main ESR spectroscopy techniques : continuous wave (CW) and pulsed.
In CW-ESR, a continuous microwave signal irradiates the sample, and its transmis-
sion/reflection coefficient is analyzed. This method is versatile but faces limitations in
terms of spectral and temporal resolution. Pulsed ESR, on the other hand, involves exciting
the spin ensemble with short bursts of resonant electromagnetic fields. The information
about the spins is contained in the signal they re-emit after being excited by the pulses
[SJ01b]. Numerous pulse sequences have been developed for addressing various questions.

Inductive detection electron spin resonance (ID-ESR) is the most prevalent method
for performing ESR spectroscopy [Rab+38; Blo46; PTP46]. In this approach, the sample
containing the spins is placed inside a microwave resonator, tuned to a specific frequency ω0.
Resonant pulses are applied to first create a transient transverse magnetization, and later
induce the formation of a microwave pulsed signal, noticeably a spin echo. Characteristic
properties of the spin ensemble can be extracted from the phase and amplitude of this
echo.

ESR allows researchers to determine key properties of spins and their surroundings,
with applications in various fields such as biology [Yos+96], biochemistry [Pol06], and
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Figure 2.1: Electron spin resonance. a) Illustration of the signal provided by a set
of paramagnetic impurities contained in a crystal as the function of the static magnetic
field B0. The electromagnetic environment specific to each spin shown in (b) causes an
inhomogeneous dispersion of the resonance frequencies. The ensemble measurements do
not account for these local characteristics.

solid-state science [Sli55].
In terms of spin detection sensitivity, conventional ID-ESR spectrometers face stringent

limitations due to the weak coupling between the spins and the applied microwave magnetic
field. In a one second averaging time, current ESR spectrometers can only detect large
spin ensembles containing about 109 spins [Abh+22], which makes the characterization of
local properties very challenging.

Inhomogeneous frequency broadening is a common issue in ESR spectroscopy, where
the gyromagnetic factors of individual spins vary due to their different local environments.
This leads to a distribution of resonance frequencies, making it difficult for commercial
spectrometers to account for all the local interactions. Instead, they tend to average out
the overall effect of the inhomogeneous broadening, limiting their ability to provide detailed
insight into local properties.

Numerous methods have been developed in order to enhance the sensitivity of ESR
detection. One approach involves leveraging the electron’s charge to couple with the
electric field, which can yield couplings several orders of magnitude higher [Xia+04]. This
concept has been implemented in semiconductor materials using transistor architectures,
a specificity that limits its application. Another technique involves exploiting impurities
that possess optical transitions, such as the celebrated diamond’s NV centres or erbium
ions [Riz+22]. This optical detection of electron spin resonance has even enabled physicists
to reach single-spin detection [Gru+97]. Despite the fact that this method is limited to
ions with suitable optical transitions, it has yielded to a significant number of applications,
noticeably for high spatial resolution magnetometry.

The Quantronics group has been pursuing the use of circuit Quantum Electrodynamics
(cQED) [HR06; Bla+21] to achieve high sensitivity ESR. This approach employs two-
dimensional electrical circuits cooled to millikelvin temperature. In these conditions, high
quality factor superconducting micro-resonators that generate intense localized magnetic
fields can reach a record-breaking coupling strength of 3 kHz [Ran+20] between spins and
the resonator mode, to be compared to the sub-Hz coupling strength in conventional ESR



resonant cavities.
A low mode volume also enhances the spontaneous emission rate of microwave photons

by the spins via the Purcell effect [Bie+16], which reduces the acquisition time and
the sensitivity. Moreover, signal processing is performed using great cQED devices, the
Josephson Parametric Amplifiers (JPA), that allow us to mplify microwave signals with the
minimal noise imposed by quantum mechanics. Additionally, operation at extremely low
temperatures (10 -20 mK) provides a large spin polarization, which increases the signals.

These combined advantages allowed the Quantronics group to reach a detection sensi-
tivity of 12 spin/

√
Hz in 2020 for ID-ESR spectroscopy using a platform of bismuth ions

embedded in a silicon crystal [Ran+20]. However, despite a progress of five orders of
magnitude compared to the previous state of the art, the single spin regime was still out of
reach. Inductive detection methods indeed face an intrinsic noise challenge, as the spin
ensemble’s information is contained in the spin echo’s electromagnetic field quadratures.
Since these quadratures are measured directly, the minimal noise associated with their
detection corresponds to vacuum fluctuations within the detection bandwidth, a funda-
mental property of quantum mechanics. Even assuming that no noise is added by the
amplifiers, this vacuum noise level cannot be reduced. In this context, detecting a single
spin via the microwave photon it emits during its Purcell relaxation corresponds to a small
transient increase in noise level (see Figure 2.2a). The signal-to-noise ratio of ID-ESR is
thus fundamentally limited, and reaching the single-spin regime calls for a new strategy.

In order to address this challenge, our group has proposed a new ESR method based on
Fluorescence Detection (FD-ESR), which consists in the direct detection of the microwave
photon emitted by a spin using a Single Microwave Photon Detector (SMPD), rather than
measuring the photon field.

This approach relies on the wave-particle duality concept. In the case of inductive
detection, light is treated as a wave with associated fluctuations, even in the vacuum state.
In contrast, considering light as a stream of particles frees us from considering the vacuum
state fluctuations (see Figure 2.2). Indeed, for a photon counter, the absence of an incoming
photon results in the absence of a signal. Noise depends solely on detector imperfections,
such as the presence of spurious photons reaching the detector, and can be in principle, be
extremely low. The signal-to-noise ratio is then solely limited only by our ability to design
and make a microwave photon detector with high efficiency ηd and a low false positive rate
αd. This new detection paradigm is therefore better suited for single spin detection.

A proof of principle of FD-ESR was first obtained by Emanuele Albertinale [Alb+21]
using a SMPD developed by Emmanuel Flurin [Les+20]. The experiment was then devel-
oped and improved by Eric Billaud, but the sensitivity regime of 1 spin/mathrmsqrtHz
was not achieved due to certain structural imperfections in the detector.

This thesis builds on these previous works, presenting the design and implementation
of an improved SMPD that achieves a record detection sensitivity of 10−22 W/

√
Hz, and

reaches the single-spin detection regime. This new detector was employed to perform
spectroscopy of erbium ions in a scheelite crystal. This crystal-ion system was chosen due to
its long spin coherence times, as demonstrated in the initial comprehensive characterization
performed by Marianne Le Dantec and Milos Rancic using ID-ESR [Dan22; Le +21]. An
optimization of the coupling between the microwave resonator and erbium spins was then
carried out by Zhiren Wang, resulting in a large spin-resonator coupling g0 = 3 kHz.

This thesis demonstrates the detection of a single erbium ion in a scheelite
crystal by FD-ESR through the implementation of a sufficiently sensitive
SMPD. This detection pushes electron spin resonance to its ultimate sensitivity.
Additionally, it shows that this level of sensitivity allows us to obtain insight
into the local spin environment, particularly regarding the nuclear spins of
183W surrounding the erbium ion.
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Figure 2.2: Difference between inductive detection and fluorescence detection a)
Echo sequence, typical of the ID-ESR. The spins are placed on the equator by a π/2 pulse.
They then evolve according to their individual Larmor frequency. A π pulse refocuses them,
which causes an echo (in red). b) Detection of spin by its fluorescence signal. The sequence
consists of exciting a spin with a π pulse and collecting the photon from its radiative
de-excitation with a photon counter. c) Field detection. The information on the spin
ensemble is contained in the phase and amplitude of the signal, we consider here the light
as a wave. This method is intrinsically noisy due to vacuum fluctuations. the detection
of a Fock |1⟩ state simply corresponding to an increase in the average noise caused. d)
Photon detection. The presence of a photon translates in a detector click. This method is
basically noiseless, an absence of photon translating into an absence of detection.

This manuscript is divided into two parts. The first part is devoted to the microwave
photon counter. Chapter 3 provides the theoretical background necessary to understand the
various concepts of cQED circuits involved in our SMPD. Chapter 4 specifically discusses
the detector’s theory and operating principle. Chapter 5 and Chapter 6 present the
counter’s fabrication and characteristics.

The second part is dedicated to erbium spin detection. Chapter 7 theoretically describes
the experimental platform comprising the ion-crystal Er3+ : CaWO4 system and the super-
conducting resonator that enables a strong spin-photon coupling. Chapter 8 demonstrates
that our measurement system can detect individual spins and provides a thorough descrip-



tion of their characteristics (g-tensor, coherence time, etc.). Lastly, Chapter 9 focuses on
the selection of a specific electron spin and investigates its immediate environment. We
highlight its coupling with the 183W nuclear spin bath and put forth several hypotheses
regarding the positions of the 183W atoms that contribute to its magnetic environment.

2.2 Experimental results

2.2.1 Single microwave photon detector with a record sensibility:
S = 10−22 W/

√
Hz

In the optical domain, the design of a photon detector is made possible by the existence
of materials, such as semiconductors or superconductors, with an energy gap smaller
than the energy of the photons to be detected. The absorption of the photons through
the photoelectric effect creates a large number of quasiparticles (electron-hole pairs in
semiconductors and superconducting quasiparticles, associated to broken Cooper pairs,
in superconductors) that can easily be detected. In the microwave range, however, this
concept cannot be directly transposed. Microwave photons indeed have an energy 5
orders of magnitude lower than optical photons and won’t be able to bridge the gap of
semiconducting materials. Another approach has to be considered.

An alternative approach consists in considering the detection of photons as a quantum
information processing task. Here, the task consists of mapping the state of a propagating
photon onto the state of quantum bit that can be manipulated and readout following cQED
protocols. In order to mimic the irreversible character of photon absorption, this mapping
should be designed such that it is independent of the waveform and arrival time of the
photon. In this work, we use a SMPD circuit architecture developed by Raphaël Lescanne
and Emmanuel Flurin [Les+20] later exploited in Emanuele Albertinale’s PhD thesis
[Alb+21] for the microwave fluorescence detection of an ensemble of bismuth impurities in
silicon.

Our SMPD architecture exploits the rapid development of QED circuits and noticeably
the "transmon" qubits. These two-level systems with a typical transition frequency in the
5-10 GHz range can be placed in speaking terms with microwave photons. Almost two
decades of quantum computing research has enabled to manipulate this qubit in a few
nanoseconds and perform the single shot readout of its quantum state with a high fidelity
using a Josephson parametric amplifier operated at the minimal quantum noise limit.

The irreversible mapping of the incoming photon onto the qubit state is then ensured
by a 4 wave mixing process. We introduce for this purpose two intermediate modes called
respectively the "buffer" and the "waste". By pumping the qubit with a microwave drive,
the non linearity provided by the transmon allows us to mix these modes in order to convert
the incoming buffer photon into a qubit excitation and a waste photon (see Figure 2.3a).
The latter is then quickly dissipated in the lines, which making the reverse conversion
impossible. Due to the alternation between the pumping and readout phases of the qubit,
the detector operates cyclically (see Figure 2.3b).

A large part of this thesis is dedicated to improving the sensitivity of this single
microwave photon detector (SMPD) for allowing us to achieve single spin detection. We
took advantage of the recent progress in transmon qubit fabrication, and of the improved
understanding of cQED circuits to refine the design of the detector. In a nut, we used
the same basic building blocks as those used in the quest for the quantum computer, but
this time to design a better detector. Compared to the original version, we gained one
order of magnitude in sensitivity to reach S = 10−22 W/

√
Hz. This improvement is due to

a drastic reduction in the false positive rate (αd = 84 s−1 vs αd,old = 1500 s−1), and to



Figure 2.3: SMPD: Operating principle and characterization a) Operating principle.
The non linearity provided by a superconducting qubit (black crossed square) allows
frequency mixing of an incoming photon at frequency ωb and a pump tone at frequency ωp
promoting the excitation of the qubit at frequency ωq and the releasing of a photon in an
overdamped waste mode at frequency ωw.The activation of the process is submitted to the
frequency matching condition ωb +ωp = ωq +ωw. b) SMPD cycle. The detection cycle (D)
is define by the the application of the pump tone (purple). The qubit is then dispersively
readout (M) and reset (R). c) SMPD chip. The modes are defined by CPW-resonators.
The buffer (orange) is a λ/2 resonator, made tunable with a SQUID bias by a DC-current
line (red). The top arch frequency is ωb/2π = 7.005 GHz A broadband resonator λ/2
(orange), resonant with the buffer resonator is placed before the output line and behaves as
a band pass filter. The waste mode (green) is a λ/4 resonator of frequency ωw/2π = 7.704
GHz. It also comes with a bandpass filter (green). The qubit of frequency ωq/2π = 6.183
GHz is represented in blue. The pump line allowing the 4 wave mixing is represented in
purple. d) Time traces showing the response of the SMPD when a coherent tone is applied
to the buffer resonator. Each vertical line represent the detection of a photon. The power
of the tone is gradually increases starting from 0 photon·s−1 (red trace) to reach 12000
photon·s−1(last blue trace). This power corresponds to 55 zW. e) Relation between the
number of detected photon and the number of incident photon allowing to extract the
efficiency η = 0.43 and αd = 84 s−1.



an increase in efficiency (ηd = 0.43 vs ηd,old = 0.2). The characterization of these SMPD
crucial figures of merit is shown in Figure 2.3d,e.

In the Chapter 5, we detail the design and fabrication process of the detector. The
Figure 2.3c gives an overview of the SMPD chip. The orange (resp. green) resonators
correspond to the buffer (resp. waste) modes. The transmon qubit with its characteristic
large capacitor is represented in blue, with its dedicated pump line in purple. The full
characterisation of the SMPD is reported in Chapter 6.

2.2.2 Detecting a single Er3+ electron spin in a scheelite crystal

The new SMPD design described in the first part of the thesis is then used to detect single
spins from the fluorescence signal they emit during their relaxation. Since the microwave
background is strongly attenuated at 10 mK, photon counting is the appropriate method
to detect this signal, which consists of a stream of single photons.

To achieve single-spin detection sensitivity in 1 second, the corresponding power should
be of the same order of magnitude as the minimum power detectable by the SMPD in 1 s:
10−22 W (see last section). An electron spin in free space at the typical frequency ω/2π = 8
GHZ spontaneously emits a photon at a rate of 10−12 s−1, i.e a life-time of ≈ 30000 years.
When inserted into a host crystal, relaxation by phonon generation becomes dominant,
increasing the spontaneous relaxation rate to ≈ 1 s−1. To make the radiative relaxation
rate dominant, one has to use the Purcell effect [Pur46] by coupling the spins to a small
mode volume and low loss resonator. Reaching this so-called Purcell regime was achieved
in 2016 in our group [Bie+16] for bismuth impurities embedded in silicon.

Our experimental system consists of a pure Scheelite crystal CaWO4 containing traces
of erbium (∼ 1 ppb). The Er3+ ions that replace the Ca2+ (see Figure 2.4a), form a
paramagnetic defect with a spin degree of freedom. The electronic structure of an erbium
ion is complex. The wave functions of the eleven electrons in its valence band hybridise
strongly to give a first degenerated energy scale with a fundamental optical transition at a
of 1.5 µm wavelength. The crystal field within the CaWO4 weakly perturbs this energy
structure and lifts the degeneracy of the ground state levels into eight Kramers doublets
[Kra30]. The remaining degeneracy is ensured by the Kramers theorem: species with an
odd number of electrons remain doubly degenerate due to time-reversal symmetry. Each
of the Kramers doublets therefore behaves as effective spin-1/2 whose degeneracy can be
lifted by a magnetic field which breaks the time reversal symmetry, i.e. the Zeeman effect.
The Landé factor of the system depends strongly on the symmetry of the crystal [Enr71;
Ber+09] as the effective spin results from an interaction between the ion and the crystal
field. The g tensor is therefore anisotropic with gc = 8.38 and ga,b = 1.25 (see Figure 2.4a
for axis definition).

The choice of the CaWO4 crystal is interesting because of its low magnetic impurity
content, dominated by the 0.143 fraction of 183W isotopes that have a nuclear spin. The
properties of this experimental platform were investigated in great detail by Marianne Le
Dantec using ID-ESR methods [Le +21] and then by Eric Billaud using FD-ESR [Bil+22;
Bil23].

The spin-photon coupling takes place in a 2D superconducting microwave resonator
of frequency ω0/2π = 7.3 GHz patterned at the top of the crystal in a niobium film. As
shown in Figure 2.4b, it consists of a large interdigitated capacitor shunted by a nanowire
aligned along the crystal c-axis, that makes an inductor. The static magnetic field B0
applied parallel to the wire allows the spins to be brought into resonance with the resonator.
The nanowire magnetic field that makes the coupling to the spins, transverse to the
nanowire, thus lies in the (a, b) plane where the g factor is maximum. The Figure 2.4c
shows a simulation of the coupling strength g0/2π in function of the spin position in the
neighborhood of the nanowire. With our experimental parameters, we reach couplings of a
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Figure 2.4: Experimental platform a) Schematic of the CaWO4 lattice centered around
a Er3+ ion that have replaced a Ca2+. Oxygens are removed for clarity. A spin degree of
freedom is represented for the Er3+ ion. The crystal symmetry is tetragonal around the
axis c, which means axis a and b are equivalent. b) Schematic of the overall experiment.
A microwave resonator (orange) composed of an interdigitated capacitor shunted by a
nanowire is patterned in niobium layer (blue) at the top of the crystal (grey). The resonator
is couple the line with the strength κext. The nanowire allows the coupling of the spin to
the resonator with the strength g0. The spins are excited by populating the microwave
resonator with a microwave pulse. Then, they relaxes radiatively due to the Purcell effect
generated by the coupling. Finally, the resulting photons are routed to the SMPD with a
circulator. c) Simulation of the coupling strength g0 and the corresponding Purcell rate
ΓP as the function of the spin position in the (a, b) plane. The green rectangle represents
the nanowire cross section.

few kHz, which yields a Purcell rate ΓP ∼ 1000 s−1 for the most strongly coupled spins.
The corresponding instantaneous power P = 5 · 10−21W puts us in a favorable situation
for single spin detection. The design and the fabrication of the microwave resonator was
realized by Zhiren Wang [Wan+23]. The full experiment, sketched in Figure 2.4b, consists
in exciting the spin ensemble with a microwave pulse applied on the resonator and collecting
the emitted microwave photons. The spin sample is simply connected to the SMPD with
a low loss coaxial cable. A simple microwave circulator orients the collected fluorescence
photons to the detector.

The Figure 2.5a represents a spectroscopy in the magnetic field realized with this
experimental configuration. For each value of the magnetic field amplitude B0, the spin
ensemble is excited at low power in order to select the most strongly coupled spins. The
fluorescence photons are then collected by the SMPD. We define an integration window
with a duration of Tint over which we average the number of detection events (or clicks) ⟨C⟩.
The resulting spectrum appears as a sum of narrow, unevenly distributed peaks centered
around B0 = ω0/(gcµB). We show in the thesis that each individual peak corresponds to a
single spin by studying the photon emission statistics. This result is comparable to the
first detection of a single molecule using an optical photon detector [OB90], but for a spin
emitting in the microwave domain.

The fluorescence signal associated with a single spin is shown in Figure 2.4b. The
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Figure 2.5: Single spin detection with FD-ESR a) Spin spectroscopy at low power
(∼ −107 dBm at sample input), with an integration window of 2 ms. ⟨C⟩ represents the
average number of clicks during the integration time Tint, B0 is the amplitude of the static
magnetic field applied. Green line is measured data, black line is a Lorentzian fit. Note that
the angle θ varies linearly between −0.016◦ and 0.016◦ over the scan. b) Average click rate
⟨Ċ⟩ as the function of the time. Blue histogram represents the fluorescence signal coming
from the spin labeled s0 on the inset of (a). Orange histogram is the background and
correspond to the SMPD dark count. c) Dynamical decoupling experiment with 3 refocusing
π-pulses. The background corrected average number of clicks ⟨C̃⟩ is plotted as the function
of the time 4τ between the π/2 pulses. A linearly increasing phase ϕ(τ) = 2π∆τ with
∆ = 0.001 MHz is imparted on the last pulse. Corresponding fit and its envelope (solid
and dash lines) are shown, yielding the coherence time TDD

2 = 2.99± 0.03 ms. Data taken
at B0 = 422.085 mT and θ = −0.003◦.

observed radiative relaxation time T1 ≈ 1.5 ms is in good agreement with the expected
value. Coherence measurements are performed on various single spins. The Figure 2.4c
shows the results of a dynamical decoupling experiment carried out on the spin labeled s0
in Figure 2.4a. A coherence time of ∼ 3 ms is reached, thus reaching the radiative limit
2T1.

2.2.3 Probing the 183W nuclear spins with the electronic erbium spin

Controlling a single electronic spin opens the way to measuring its local environment. In
particular, the electron spin can be used to measure and control the surrounding bath
of nuclear spin thanks to the hyperfine coupling, the magnetic dipole-dipole interaction
between the nuclear and electronic spins.
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Figure 2.6: 183W nuclear spin detection with dynamical decoupling sequence.
a) Er3+ electron spin with a 183W nuclear spin 1/2 in its immediate environment. b)
electron-nuclear spin interaction. The electron spin state influences the quantization axis
of the nuclear spin due to its larger magnetic moment. The anisotropic g-tensor causes
a misalignment between the electron spin quantization direction and the magnetic field
orientation. c) Dynamical decoupling sequence with 24 refocusing π−pulses applied to the
electron spin. Due to the nuclear spin quantization dependence with the electron spin state,
a resonance condition exists between the interpulse delay 2τ and the nuclear spin Larmor
frequency ωL. d) Corresponding dynamical decoupling experiment. The last pulse projects
the final either on the ground of the excited state. The associated average number of clicks
is noted ⟨C⟩|0⟩ and ⟨C⟩|1⟩. The contrast between the projection is plotted as the function
of the time τ . the dips spaced by ∆τ = π/ωL = 1.52 µs are caused by interaction with the
183W nuclear spin bath. The first dip at τ4 = 6.44 µs is the fourth order resonance. Red
lines are data, solid black lines are Gaussian fit of each dips.



This concept was first demonstrated in 2012 for the NV centres of diamond [Tam+12;
Kol+12; Lon+13], individually readout using an optical transition. The principle of the
experiment is to divert the concept of dynamical decoupling introduced in 1999 [VKL99]
for open quantum system. Instead of using the dynamical decoupling sequence to isolate
the electron spin from its noisy environment, it is used to bring it into resonance with a
specific nuclear spin.

In the case of our experiment, the nuclear spin bath consists of the I = 1/2183W
isotope nuclei, with 0.145 natural abundance. They randomly occupy the tungsten sites
and interact with the Er3+ electron spin by magnetic dipolar coupling (see Figure 2.6a,b).
Since the magnetic moment of the electron spin is 4 to 5 orders of magnitude larger than
that of the nuclear spin, we can apply the secular approximation. The electron spin drives
the nuclear spins whose quantization axes depend on the electron spin state as shown in
Figure 2.6b. The effect is at the heart of the experiment. Although the electronic spin
cannot be flipped by the hyperfine interaction, it can pick a phase, which provides a hand
on the nuclear spin quantum state.

The dynamical decoupling sequence we have used consists in a CPMG sequence with
of 24 refocusing π−pulses (see Figure 2.6c). The electron spin, placed in a superposition of
states by the initial π/2−pulse, it is then tilted 24 times by the series of π-pulses, and then
reprojected on the z-axis of the Bloch sphere by the last π/2−pulse. We then measure its
fluorescence signal with the SMPD.

Each time a π−pulse is applied to the electron spin, the rotation axis of the nuclear
spin changes. If this axis tilt is in phase with the Larmor frequency ωL of the nuclear spin,
the latter will be gradually rotated after each π−pulse. This resonance condition can be
expressed in terms of 2τ , the inter-pulse time in the CPMG sequence, as 2τk = (2k+1)π/ωL
for k ∈ N. For these specific inter-pulse times, the CPMG sequence entangles progressively
the nuclear and the electron spins. The entanglement level being controlled by the the
number of π-pulses.

The entanglement information can be retrieved thanks to the electron state. Indeed, if
τ is out of resonance, the spins are not entangled after the 24 π pulses and the electron
spin remains in the initial superposition state. Decoherence is the only mechanism that
influences the final result. On the contrary, if τ = τk, an entanglement occurs and the final
state of the system change. From the point of view of the electron spin, this can be seen as
a rapid loss of coherence which appends for each τk.

It is therefore sufficient to measure the final state of the electron spin to reconstruct the
dynamics of the entanglement. The measurement of the probability Px that the electron
spin remains in its initial superposition is shown in Figure 2.6d. As expected, we observe a
regular pattern of dips, spaced by ∆τ = π/ωL = 1.52 confirming the interaction between
the electron spin and a 183W nuclear spin bath. This experiment is the first report on the
detection of 183W nuclear spins using an individual electron spin.

To conclude this introduction, it is interesting to step back and look at the chain of
concepts that lead to this end result. We use a state-of-the-art Josephson parametric
amplifier to single-shot readout the state of a high-coherence transmon qubit. This artificial
atom, inserted in a cQED architecture, allows to signal the passage of a microwave photon.
By working on the spin-photon coupling, we are able to use this photon detector architecture
to detect a single Er3+ electron spin embedded in a CaWO4 crystal. Finally, we dive
deeper into the description of matter by using the electron spin itself as a proxy to detect
its local environment and in particular the 183W nuclear spins. This new chain, combining
superconducting circuits, photon counting and ESR spectroscopy, provides unequaled
detection sensitivity and opens the way to numerous applications in quantum sensing and
quantum computing.
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Chapter 3

Circuit QED

The research work carried out in this thesis belongs to the field of circuit quantum electro-
dynamics (cQED) , i.e. the domain of quantum superconducting circuits in interaction
with quantized electromagnetic fields in the microwave frequency domain. Circuit QED
itself belongs to the domain of Quantum electrical circuits that was initiated in the early
1980s, for addressing the following question: Can electrical circuits that are unquestionably
macroscopic compared to atoms reach a quantum regime ? This issue was first addressed
following a clever suggestion of A.J. Leggett [Leg80]. Leggett made the point that a
Josephson junction, i.e. a tunnel junction between superconducting electrodes, is an
electrical component with a single degree of freedom, the superconducting phase difference
across it, and that the knowledge of the classical dynamics of this variable is sufficient
for predicting its properties in the quantum regime of the Josephson junction, if such
a quantum regime exists. Leggett noticeably considered the non classical phenomenon
of Macroscopic Quantum Tunnelling (MQT). MQT predicts that a Josephson junction
current biased below its critical current can escape out of the zero-voltage state by quantum
tunneling of the superconducting phase difference out of its potential well. Different exper-
iments indeed observed this phenomenon, but the most conclusive ones were carried out at
U.C. Berkeley in the group of John Clarke [Cla+88]. In the course of these experiments,
Devoret, Martinis and Clarke furthermore provided evidence for the quantum levels of
a current-biased Josephson junction. Research in this domain was further developed at
Saclay in Quantronics group ([Est+89]) by coupling a current-biased Josephson junction to
a tunable microwave resonator, i.e. already a circuit QED device, but quantum coherence
was not considered as good enough for quantum state manipulation.

The interest in quantum electrical circuits got suddenly boosted by the theoretical
developments of quantum information and of quantum computing, which triggered a very
active search of physical systems suitable for implementing the quantum bits requested for
making a quantum processor. In the late 1990s, Bouchiat et al. from Quantronics [Bou+98]
made a simple circuit consisting of a charge biased superconducting electrode in contact
with a superconducting reservoir via a Josephson junction. This circuit was nicknamed
the single Cooper pair box. They demonstrated that its ground state can be placed in
a coherent superposition of two charge states of the superconducting electrode differing
by a single Cooper pair passed through the junction. A quantum coherent superposition
of the ground state of this circuit and of its first excited state was demonstrated soon
after at NEC by Nakamura, Pashkin and Tsai [NPT99]. This was the first quantum bit
circuit. An improved version of the single Cooper pair box circuit fitted with single-shot
readout and partial protection against decoherence allowed Quantronics to reproduce all
the basic quantum manipulations made on atoms [Vio+02], with a coherence time in the
microsecond range.

Inspired by the cavity QED experiments carried out on atoms coupled to resonant
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cavities [HR06], [Kim98] noticeably at the LKB of the ENS Paris in the Haroche-Raimond
team, Wallraff et al. [Wal+04] first demonstrated at Yale in 2004 the strong coupling
regime between a Cooper pair box and a quantum microwave resonator. Addresing the
Cooper pair bow with microwave signals allowed them to manipulate the qubit, to perform
its readout, and to filter out the noise coupled to the qubit. In order to further reduce
decoherence due to the charge noise acting on the Cooper pair box, Koch et al. [Koc+07]
operated the Cooper pair box in the so-called phase regime, in which it behaves as an
anharmonic oscillator. This is the Transmon version of the Cooper pair box which is
presently the most widely used superconducting qubit for making quantum processors.
From then on, the performance of superconducting qubits increased year by year, and
individual Transmon qubits presently (early 2023) reach a coherence time in the millisecond
range [Wan+22], [Som+21], obtained thanks to the use of tantalum in the superconducting
circuit connected to the Josephson junction.

The single microwave photon detector (SMPD) at the heart of this thesis is part of this
research area. Here we take advantage of the progress achieved in circuit QED research
to build a detector with ultimate single spin sensitivity. The elements of circuit theory
needed to understand the SMPD design are introduced in this chapter.

3.1 Quantum oscillator and transmission line

3.1.1 Quantum LC oscillator

The harmonic LC resonator is a central building block in circuit QED. It is composed
of an inductor L and a capacitor C (see Figure 3.1). This system has a single degree of
freedom with two conjugated electrical variables, the flux in the inductor and the charge
on the capacitor. These variables are linked to the current and voltage by the Faraday law
and the current-charge relation:

Φ =
∫ t

−∞
v(t′)dt′ (3.1)

Q =
∫ t

−∞
i(t′)dt′

. (3.2)

The constitutive relations linking the voltage and current at the terminals of the coil
and capacitor set the relations between the flux and the charge:

Q = CΦ̇ Φ = −LQ̇ (3.3)

These equations can be used to write the Lagrangian of the system as the function of
the flux Φ:

L = CΦ̇2

2 − Φ2

2L (3.4)

We then write the momentum associated to Φ and Q as:

∂L
∂Q̇

= Φ ∂L
∂Φ̇

= Q (3.5)

These definitions lead to the Poisson bracket {Φ, Q} = 1, proving that these variables
are conjugate. Using the Dirac quantization method, also called canonical quantization, one
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Figure 3.1: LC resonator. (a) Electrical representation of a LC resonator with flux Φ
passing through the inductance L. The capacitor C has a charge Q distributed on its two
electrodes. (b) Energy of the LC oscillator as the function of Φ. The energy levels are
spaced by ℏω0.

can promote the flux Φ and its conjugate momentum Q into quantum operators obeying
the commutation relation:

[Φ̂, Q̂] = iℏ (3.6)

The Hamiltonian of the system obtained from the Legendre transformationHr = Φ̇Q−L
is :

Hr = Q̂2

2C + Φ̂2

2L. (3.7)

With the inductance L and the capacitance C, one can construct two different physical
parameters, the characteristic impedance of the circuit Zc =

√
L/C and the resonance

frequency of the oscillator ω0 = 1/
√
LC.

In the same way as done for a mechanical oscillator, one defines the ladder operators â
and â†:

â† = 1√
2ℏZc

(Φ̂− iZcQ̂) (3.8)

â = 1√
2ℏZc

(Φ̂ + iZcQ̂) (3.9)

(3.10)

These operators satisfy the usual relation [â, â†] = 1. Their eigenstates are the coherent
states |α⟩. The Hamiltonian can be rewritten as:

Hr = ℏω0

(
â†â+ 1

2

)
(3.11)

The eigenvalues of this Hamiltonian are En = ℏω0(n+ 1/2) and are associated with
the eigenstates |n⟩, called Fock states. The parameter n is the number of photons in the
cavity. We can also express the voltage and current operators in terms of ladder operators
using the relations: V̂ = Q̂/C and Î = Φ̂/L. This gives the expressions:



V̂ = iω0

√
ℏZc
2 (â† − â) = iδV (â† − â) (3.12)

Î = ω0

√
ℏ

2Zc
(â† + â) = δI(â† + â) (3.13)

where δV = ω0
√
ℏZ0/2 and δI = ω0

√
ℏ/(2Z0) are the root-mean-square (rms) fluc-

tuations of the voltage and current in the resonator ground state, i.e. the rms vacuum
fluctuations.

The electromagnetic field at position r near the LC resonator depends on the resonator
geometry and on the position, but always takes the following form:

Ê1(r) = iδE(r)(â† − â) (3.14)
B̂1(r) = δB(r)(â† + â) (3.15)

Here δE(r) and δB(r) are the root-mean-square (rms) vacuum fluctuations of the
electric and magnetic field. These fluctuations will play an important role in our experiments
because they directly give the coupling constant to a microscopic object placed in the
field of the resonator. It is important to note that these quantities directly involve the
characteristic impedance of the LC oscillator that can be controlled by design.

3.1.2 Lumped element and co-planar waveguide

As just mentioned above, the electromagnetic field generated by the oscillating current and
voltage in the resonator is determined by the resonator geometry. In this thesis, we use
two types of geometry depending on the function of the resonator.

The first type corresponds to "lumped-resonators". In this configuration, the capacitor
and inductance size is significantly smaller than the wavelength λ0 = 2πc/ω0 where c is
the speed of light in the medium.

CL

b)a)

Figure 3.2: Lumped-element. (a) Lumped-elements model of an LC resonator, the
current passing through the inductance L generates a spatially-dependent magnetic field
B̂(r). (b) Realistic illustration of an LC resonator design, here the role of the inductance
(red) is played by a wire shunting the two capacitor plates (green).

The figure Figure 3.2b shows an example of physical implementation: an interdigitated
capacitor (in green) patterned in a a thin metallic film, is connected to a nanowire which
plays the role of the inductance (in red). The electric field is concentrated between the
capacitor electrodes, whereas the magnetic field is localized in the vicinity of the nanowire.



Such a spatially well defined magnetic field is suitable for coupling the resonator to a small
ensemble of spins in the substrate of the resonator, and eventually to a single one.

The second type of resonator we use is based on coplanar waveguide (CPW) transmission
line sections with boundary conditions at the ends. A CPW transmission line consists
of a central conducting line separated from the ground plane by two insulating gaps
(Figure 3.3a).
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Figure 3.3: LC resonator. (a) Coplanar waveguide, the central conductor track is
separated from the ground plane by two gaps. (b) Electrical diagram of a section of coplanar
waveguide consisting of a LC oscillator with an inductance Ldx and a capacitance Cdx.
The quantity

√
L/C defined the line impedance. (c) Representation of a CPW resonator.

The conducting track is interrupted on both side by a gap. The edges correspond to current
node and voltage maximum. This open-open boundary conditions defined a λ/2 resonator.

This ensemble is patterned on the top of a dielectric substrate and can be modeled
by a chain of infinitesimal lumped LC elements. Each segment of length dx has a
series inductance Ldx and a parallel capacitance Cdx with L and C The inductance and
capacitance per unit of length (Figure 3.3b). The characteristic impedance of the line
is Zc =

√
L/C. The impedance mismatch at the two edges yields different boundary

conditions and determines the standing wave resonant modes of the structure, with a
fundamental mode ω0 and a series of harmonics.

In this thesis we use two kinds of boundary conditions. The first one will be a open-
open configuration in which the fundamental mode of a CPW section with length D
corresponds to the length D = λ/2. The frequencies of the modes are ωn/2π = nc/2D
with n = 1, 2... and c the speed of light in the transmission line. This configuration is
shown in (Figure 3.3c).

The second configuration is the open-short configuration, yielding to a D = λ/4 length
for the fundamental mode. In this case the mode frequencies are ωn/2π = (2n− 1)c/4D
with n = 1, 2.... This configuration in which ω2 = 3ω1 is interesting in order to avoid
cross-talk between different elements of a more complex circuit.

A great advantage of CPW resonators is the easy control of the frequency by adjusting
the length D. This geometry is thus well suited when this control is important, as is case
for the resonators in the SMPD device.



3.1.3 Propagating modes in lossless transmission lines

In our experiment, the different quantum devices including the resonators described in
Section 3.1.1 are interconnected with lossless CPW transmission lines modeled by a chain
of lumped-elements as sketched in Figure 3.3a. This section sums up the main results on
the modeling of lossless lines following the review [Cle+10].

3.1.3.1 Classical description

One readily obtains the telegrapher’s equations from the analysis of an elementary LC cell
with infinitesimal length as sketched in Figure 3.3b.

The well-known solutions to this equation are a superposition of waves propagating to
the right and left:

V (x, t) = V ⇁(x, t) + V ↼(x, t) (3.16)

I(x, t) = V ⇁(x, t)− V ↼(x, t)
Zc

(3.17)

V ⇋(x, t) = V ⇋
0 cos(ωt± xω/c+ ϕ⇋0 ) (3.18)

With the phase velocity c = 1/
√
LC and the initial phases ϕ⇋0 . The current flowing

in the infinitesimal inductance L dx is related to V ⇋ via the characteristic impedance
Zc =

√
L/C.

In the case of an infinite line, the left and right propagating waves are independent.
On the contrary, if the line is connected to a load impedance Zl (as for a CPW resonator),
the current and voltage respect Ohm’s law at the boundary (taken at x = 0 for simplicity),
which yields to:

Zl = V (0, t)
I(0, t) = V ⇁(t) + V ↼(t)

V ⇁(t)− V ↼(t)Zc (3.19)

The presence of an impedance mismatch between the line and the load generates a
reflected wave. From the equation Equation 3.19 , one obtains the reflection coefficient R :

V ↼(t)
V ⇁(t) = Zc − Zl

Zc + Zl
=: R (3.20)

R can be measured with a Virtual Analyzer Network (VNA). If the load is an LC
resonator, the R value taken for different frequencies ω/2π gives the resonance frequency
and the quality factor.

3.1.3.2 Quantum description

We now consider a quantum description of the line following refs. [Cle+10] and [Flu14].
For each direction of propagation along a transmission line (left and right), and for each
monochromatic mode of the electromagnetic field (identified by its frequency ω), one can
associate a pair of operators â⇋(ω) and â⇋†(ω) which respectively annihilate and create a
photon in that mode and propagation direction. These operators satisfy the commutation
relation [â⇋(ω), â⇋†(ω′)] = 2πδ(ω − ω′).

Typically, we are interested in a narrow-band frequency region centered around ω0. In
this case it is interesting to perform a Fourier-transform of â⇋(ω) in order to work in the
time domain. In addition, we move in the rotating frame at the considered frequency ω0/2π.
The new operators â⇋(t) satisfy the commutation relation [â⇋(t), â⇋†(t′)] = δ(t−t′). Under
these conditions, the propagating voltage can be expressed at x = 0 as:



V̂ ⇋(t) =
√

ℏω0Zc
2

(
â⇋(t) + â⇋†(t)

)
(3.21)

The propagating current is easily calculated using Equation 3.17.
The â⇋(t) are operators describing the field amplitude flux associated to a propagating

mode, thus the power carried by the quasi-monochromatic wave of frequency ω0 is described
by the quantum observable

P̂⇋(t) = ℏω0â
⇋†(t)â⇋(t). (3.22)

It is interesting to note that the basis chosen to write the operators â⇋(ω) and â⇋(t)
represent two extreme ways of dividing the frequency-time plan. It’s either an infinitesimal
time tiling or an infinitesimal frequency tiling. This representation is not realistic insofar
as our measuring equipment (typically a VNA) have a certain frequency and temporal
resolution. A more practical choice is to use a wavelet basis where each wavelet is defined
on a cell of area ∆ω∆t = 2π in order to preserve the time-energy Heisenberg uncertainty:
∆E∆t ≥ ℏ/2. Each cell can be labeled with two indices representing its position in time
and frequency. To form a correct basis for the frequency-time plane, the wavelet collection
uij(t) (i and j labeling the wavelet area in the frequency-time plan) must be orthogonal
which results in the orthogonality relations:

∫ +∞

−∞
un,k(t)u∗

p,l(t)dt = δn,pδk,l (3.23)∫ +∞

−∞
un,k(ω)u∗

p,l(ω)dω = δn,pδk,l. (3.24)

This basis can then be used to represent the operators â⇋(t):

â⇋i,j =
∫
â⇋(t)ui,j(t)dt. (3.25)

Where i labels the time position andj the frequency position. Each â⇋i,j , â⇋†
i,j describes a

pair of creation/annihilation operators which create/destroy photons of frequency centered
around ω0 at the time ti. These operators satisfy the commutation relation [âi, âi

†] = 1
which is similar to the one describe for the harmonic oscillator in Section 3.1.1. In the
following of this manuscript, we will consider the propagating operator at the entrance of
the circuit (chosen at x=0). We therefore rename the operators â↼(x = 0) (resp â⇀(x = 0))
as âin (resp âout).

3.1.4 LC resonator connected to a transmission line

3.1.4.1 Resonator coupling and losses

In our experiment, the transmission lines are both used to measure and inter-connect
the resonators. As shown in Figure 3.4a, the model consists in a parallel RLC resonator
connected to the transmission line of impedance Zc = 50Ω with the capacitance Cc.

The cavity has internal losses modeled by the resistor R. These losses result in a
decrease of the intra-cavity field at the rate κint. They are typically caused by dissipation
at the dielectric-metal or metal-air interfaces. From the cavity, the coupling to the line also
corresponds to losses, as it gives rise to a rate of energy leakage κext through the capacity
Cc.

The total impedance of this circuit is:



1
Zt

= 1
R

+ iCω + 1
iLω

+ 1
Zc + 1

iCω

(3.26)

= 1
R

+ ZcC
2
cω

2

1 + (ZcCcω)2 + i

[(
C + Cc

1 + (ZcCcω)2

)
ω − 1

Lω

]
(3.27)

In most of cases, the circuit is operated in the high quality factor limit ZcCcω ≪ 1, In
this limit and close to the resonance frequency of the uncoupled RLC resonator ω0 = 1/

√
LC,

one can define an equivalent R′L′C ′ circuit (see Figure 3.4b) with:

L′ = L (3.28)
C ′ ≈ C + Cc (3.29)
1
R′ = 1

R
+ 1
Rext

(3.30)

Rext ≈
1

Z ′
c(Ccω0)2 (3.31)

The resonance frequency is now ω′
0 = 1/

√
L(C + Cc). The line slightly re-normalizes

the frequency of the uncoupled resonator. The quality factor, limited by energy leakage in
the environment is Q = R′√C ′/L′ [Poz11]. The decomposition of Q−1 into coupling and
intrinsic losses gives the internal and external quality factors:

a) b)

c)

Figure 3.4: LC resonator. (a) RLC resonator connected to a transmission line of
impedance Zc through a capacitor. The field is dissipated inside the internal resistor R
(red) at the rate κint. The connection to the line creates an energy leak to the outside
at the rate κext. (b) Equivalent circuit in the high quality factor limit and near of the
frequency resonance. (c) Optics representation of the cavity with a semi-reflecting mirror.



Q−1
int = R−1

√
L

C ′ (3.32)

Q−1
ext = R−1

ext

√
L

C ′ (3.33)

The corresponding energy dissipation rates are κint = ω′
0/Qint and κext = ω′

0/Qext.
In the rest of this manuscript we will write the different resonator frequencies ω to refer

to the resonance frequency renormalized by the lines.

3.1.4.2 Input-output theory

In this section we derive the input-output equation which links the intra cavity field
â introduced in Section 3.1.1 to the propagating operators âin and âout introduced in
Section 3.1.3.2.

As shown in Section 3.1.4.1, in the high quality factor regime and close to the frequency
resonance, the RLC circuit coupled to the line is equivalent to a renormalized R’L’C’ circuit.
In this regime, the circuit shown in Figure 3.5a can be considered as the general case. For
simplicity, we will first consider the case without internal losses.

The Hamiltonian of the circuit obtained from a canonical quantization is:

Ĥc = Q̂2

2C + Φ̂2

2L − Φ̂Î(x = 0) (3.34)

where Î(x = 0) = V̂ (x=0)⇀−V̂ (x=0)↼

Zc
is the propagating current operator at the entrance

of the circuit. We first write the expression of Ĥint = −Φ̂Î as the function of the ladder
operators in the vicinity of the resonance frequency ω0:

Ĥint =
√

ℏZc
2 (â+ â†)

√
ℏω0

2Rext
(âin − âout + â†

in − â
†
out) (3.35)

A rotating wave approximation (RWA) then leads to:

Ĥint = −ℏ
2
√
κext(â†(âin − âout) + â(â†

in − â
†
out)) (3.36)

Here κext = Zcω0/Rext which is the same definition given in Section 3.1.4.1.
The boundary conditions imposes that the circuit voltage and the line voltage at the

input to the circuit are equal. Therefore, in terms of quantum operators:

Q̂

C
= V̂ ↼(t) + V̂ ⇀(t) (3.37)

Which can be decomposed in term of ladder operators:

−iC(â− â†) =
√

ℏω0Rext
2 (âin + âout + â†

in + â†
out) (3.38)

Separating the contribution of oscillating and counter-oscillating operators in the RWA,
we get:

√
κextâ = i(âout + âin) (3.39)
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Figure 3.5: input output illustration. (a) Lossless resonator coupled to a transmission
line. The operator âin and âout represent the propagating field. V represents the LC circuit
voltage. V (t, x = 0) and i(t, x = 0) are the oscillating current and voltage at the line
output. (b) modeling of the internal losses as an additional transmission line

We now describe the temporal evolution of the system. The dynamics is governed by
the Heisenberg equation:

−iℏ∂â
∂t

= [Ĥr, â] + [Ĥint, â] + [Ĥbath, â] (3.40)

where Ĥr is defined in Equation 3.11 and Hbath represents the continuum of modes in
the transmission line. This bath and the resonator are distinct modes, so [Ĥbath, â] = 0.
Calculating the commutator yields the following Heisenberg evolution equation:

∂â

∂t
= −iω0â+ i

√
κext
2 (âin − âout) (3.41)

Now, by injecting Equation 3.39, we obtain the well known form of the input-output
relation involving the cavity field â and the input field âin:

∂â

∂t
= −iω0â−

κext
2 â+√κextâin (3.42)

Note that in the last relation, we have changed the phase definition of âin such as:
âin ← e

iπ
2 âin. This transformation does not involve any loss of generality and allows us to

simplify the expression.
The last point of the derivation is to integrate the losses into the model. We take it

into account by coupling a fictitious transmission line with a coupling rate κint identical to
the internal energy leakage rate (see Figure 3.5). Hence, the final form of the input-output
equation of the system is:

∂â

∂t
= −iω0â−

κext + κint
2 â+√κextâin +√κintâin,int (3.43)

3.1.5 Cavity driven by a coherent state

Now that we have introduced the theoretical framework of a cavity coupled to a transmission
line, we show in this section the comportment of the cavity driven by a coherent state. In
this case, the mode at the input of the cavity is |αin⟩ , an eigenstate of âin. The power
carried by the mode is Pin = ℏω |αin|2. Under this drive, the cavity state is displaced from
the vacuum state |0⟩ to the coherent state |α⟩ (eigenstate of â). By taking the average of



Equation 3.43 with the ket |α, αin⟩, we obtain the evolution equation of the intra-cavity
field:

∂tα(t) = −iω0α(t)− 1
2(κext + κint)α(t) +√κextαin(t) (3.44)

where have taken into account that ⟨âin,int(t)⟩ = 0. By taking the Fourier transform of
this equation, we obtain the expression of the intra-cavity field as a function of the input
field:

α(ω) = 2√κext
κint + κext − 2i(ω − ω0)αin(ω) (3.45)

It is interesting to write the number of intra-cavity photons as the function of the input
power at resonance (ω = ω0). For a coherent state, the relation n̄ = |α|2 leads to:

n̄ = 4κextPin
ℏω0(κext + κint)2 (3.46)

In the next sections of the chapter we use this relation to quantify the input power of
the coherent drive.

3.1.6 Scattering matrix

In a more general multi-port system, one considers a more general framework based on a
scattering matrix S of size n · n, with n the number of ports. The elements of this matrix
are given by:

Ŝij = âout,i

âin,j
(3.47)

In this thesis we only use reflection measurements. In the case of a resonator coupled
to a transmission line, we can write:

S11(ω) =
√
κextα(ω)− αin

αin
= κext − κint + 2i(ω − ω0)
κext + κint − 2i(ω − ω0) . (3.48)

A VNA is commonly used for measuring S11 parameter. The relative values of κext and
κint define three different regimes (see Figure 3.6):

1. under-coupled regime where κint ≫ κext. The circuit impedance is much higher
than the line one. The signal is almost completely reflected. Only a small absorption
dip and phase shift are observed.

2. over-coupled regime where κint ≪ κext. The circuit impedance is much smaller
than the line one. A fraction of the signal is absorbed whereas the other part is
reflected with a 2π phase shift across the resonance.

3. critical coupling condition where κint = κext. Impedances are equal, The majority
of the signal impinging on the resonator is absorbed. The absorption dip is maximal
and the phase change is not well defined.
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Figure 3.6: Reflective mesurement (a) |S11| (b) phase of S11. red color corresponds to
κint = 0.1κc, blue to κint = κc and green to κint = 10κc.

3.2 The Josephson junction
The Josephson junction is a key element in circuit QED devices.it is composed by a tunnel
junction with a thin insulating barrier between two superconducting electrodes.

B. Josephson demonstrated theoretically in 1962 [Jos62] that, in opposition to the
common belief at that time, a super-current of Cooper pairs driven by the superconducting
phase difference φ = φb − φa (see Figure 3.7) and proportional to the normal state tunnel
conductance can flow through the junction, even when the tunnel barrier transmission of
single electrons in the normal state is very small . Josephson established the celebrated
Josephson relations that determine the electrical behavior of a junction:

I = Ic sinφ (3.49)
∂φ

∂t
= 2e

ℏ
V (3.50)

Where Ic is a parameter called the critical current and e the charge of the electron. In
the case of BCS superconductors, Josephson found that the critical current is Ic = π∆/2eRN
, where ∆ is the BCS gap energy and RN the normal state resistance of the junction.
The flux across the junction is still given by the Faraday law V = ∂tΦ. Using the
Equation 3.50, one obtains a relation between this flux and the superconducting phase
difference: Φ = (ℏ/2e)φ = Φ0φ/2π with Φ0 the flux quantum. We have shown in
Section 3.1.1 that Φ̂ was a good quantum operator, thus, one can define by extension the
phase operator: φ̂ = 2πΦ̂/Φ0.

By using Equation 3.49 and Equation 3.50 one can relate the derivative of the current
to the voltage:

∂I

∂t
= ∂I

∂φ

∂φ

∂t
= Ic cos(φ)2πV

Φ0
(3.51)

One deduces that the junction behaves as an inductor V = L∂tI, with an inductance that
depends on the phase and thus on the current:

L(φ) = Φ0
2πIc cos(φ) = Φ0

2πIc
√

1− I2

I2
c

(3.52)

In the weak current regime where I/Ic ≪ 1, a Taylor expansion of the inductance as
the function of the ratio I/Ic yields to:
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Figure 3.7: Josephson junction (a) Schematic of a realistic Josephson junction. The
grey layer represents the superconducting films with the phase φa and φb. The red layer
materializes the insulator. (b) Scanning electron microscope (SEM) picture of a Josephson
junction. The superconducting electrodes are made in aluminum while the insulating layer
is composed of alumina (Al2O3)

L(I) ∼ Φ0
2πIc

(1 + (I/Ic)2

2 +O((I/Ic)4)) (3.53)

which shows the non-linear character of the Josephson junction as the function of the
current. The junctions used in our experiments are operated in this weak current regime.

The energy stored in a linear inductor takes the form E =
∫
dtV (t)I(t) = Φ2/2L.

This energy term appears in the Hamiltonian in Section 3.1.1 of a resonator. A similar
calculation of the energy stored in a Josephson junction yields to :

E =
∫
∂Φ
∂t
Ic sin

(2πΦ
Φ0

)
= −Ej cos

(2πΦ
Φ0

)
(3.54)

where Ej = Φ0Ic/2π is the Josephson energy. In the case of BCS superconductors, the
Josephson energy is related to the critical current by the relation Ej = (2e/ℏ)Ic

3.2.1 The Superconducting Quantum Interference Device

The Superconducting Quantum interference device (SQUID) consists of 2 Josephson
junctions connected in parallel (see Figure 3.8). We only consider here SQUIDs with
negligible loop inductance i.e. with a sufficiently small loop, so that the voltages across the
two junctions are equal. In this condition, the SQUID can be considered as a Josephson
junction with adjustable inductance as detailed below.

The total current is the sum of the current flowing in the two branches. By defining φ1
and φ2 the phase difference differences across the 2 junctions (see Figure 3.8), the total
current reads:

I = I1 sin(φ1) + I2 sin(φ2) (3.55)

We consider here a symmetric SQUID with I1 = I2 = Ic. Therefore, the total current
is:

I = 2Ic cos
(
φ2 − φ1

2

)
sin
(
φ2 + φ1

2

)
(3.56)

Due to the flux quantization in the superconducting SQUID loop, the phase difference
φ1 and φ2 are link to the total flux threading across the loop:

φ2 − φ1 = 2πΦtot
Φ0

(3.57)



b)a)

0.2 0.1 0.0 0.1 0.2
tot

0

7.3

7.2

7.1

Fr
e
q
u
e
n
cy

 (
G

H
z)

Figure 3.8: Squid and tunable resonator. (a) Schematic of a SQUID circuit with the
electrical symbol of the Josephson junction. (b) Tunability curve of a resonator with an
integrated SQUID with participation ration p = 0.3 and ω(0) = 7.3GHz. The curve is
obtained from the Taylor development of the resonance frequency ω(Φtot).

Φtot represents the sum of a flux due to an external magnetic field and the flux generated
by the current flowing in the loop. By defining φ12 = (φ1 + φ2)/2 The final form for the
total current is:

I = 2Ic cos
(
π

Φtot
Φ0

)
sin(φ12) (3.58)

Therefore, the SQUID can be seen as a Josephson junction with a tunable superconduct-
ing current Ics = 2Ic cos

(
πΦtot

Φ0

)
. From Equation 3.53 we can directly define the tunable

inductance in the weak current limit:

Ls(Φtot) = Φ0
2πIcs(Φtot)

(3.59)

The control of an inductance with a magnetic flux threading a SQUID loop makes the
SQUID a useful tool for many applications. In circuit QED, it is noticeably used for tuning
the resonance frequency of superconducting microwave resonators.

3.2.2 Tunable resonator

For tuning a microwave resonator, one incorporates a flux-tunable SQUID inductor in the
resonator. For instance, when a SQUID with inductance Ls(Φtot) is inserted in the middle
of a λ/2 resonator, its resonance frequency becomes:

ω(Φtot) = 1/(
√

(L+ Ls(Φtot))C) (3.60)

Ls varying periodically between Φ0/4πIc = Lj and +∞, the resonator frequency shows
several arches when the flux is swept. The resonance frequency reaches minima when
Φtot = (2n + 1)Φ0/2 with n ∈ Z . Since in our experiment we stay in the regime where
Φtot ≪ Φ0, we can realise a Taylor expansion:

ω(Φtot)
ω(0) ∼ 1− p

4(1 + p)(Φtotπ

Φ0
)2 (3.61)



where p = Lj/L is the participation ratio of the SQUID to the total circuit inductance.
A typical tunability curve is given in Figure 3.8b.

Experimentally this tunability is obtained by placing a flux line nearby the SQUID
loop. The resonators used in the photon detector have a resonance frequency close to 7
GHz and can be tuned over a range a several hundred of MHz.

The main drawback of integrating a SQUID into a resonator is the additional noise due
to flux fluctuations in the SQUID loop. This flux noise can be caused by current instability
in the flux line or by vortices in the thin film. The consequence is an extra decrease of the
quality factor of the cavity.

3.3 Transmon qubit

3.3.1 System Hamiltonian

The operating principle of the photon counter is to record the arrival of a photon from
the passage of a qubit from its ground state to its excited state. Building upon the non
linearity provided by Josephson junctions, one can create a wide variety of circuit that
behave as artificial atoms and qubits. A fairly complete review of the state of the art can
be found in [Bla+21]. We summarize here the points necessary for this thesis.

The basic Cooper Pair Box circuit consists of a Josephson junction in parallel with a
capacitor (see Figure 3.9a).

b)a)

Q

Figure 3.9: Transmon qubit (a) Electrical representation of a transmon qubit. φ
represents the phase difference across the junction and Q the capacitor charge (b) Energy
levels of a transmon qubit. The cosine (red) represents the energy evolution as the function
of the phase φ. The anharmonicity α cause a non-constant spacing between the levels.

This circuit can be quantized in the same way as the LC circuit by defining the operators
Φ̂ (flux across the junction) and Q̂ (capacitor charge). The Hamiltonian is derived from a
canonical quantization (see Section 3.1.1) is:

Ĥ = Q̂2

2C − EJ cos
(
2πΦ̂/Φ0

)
(3.62)

with the usual relations of commutation: [Φ̂, Q̂] = iℏ. It is more natural to express this
Hamiltonian as the function of the phase operator φ̂ = 2πΦ̂/Φ0 and the number of extra
Cooper pairs on the capacitor N̂ = Q̂/2e. The Hamiltonian then reads:

Ĥ = 4ECN̂
2 − EJ cos φ̂ (3.63)

with EC = e2/2C the charging energy, Ej the Josephson energy, and [φ̂, N̂ ] = i. The
spectrum of this Hamiltonian is controlled by the ratio Ej/Ec. When Ej/Ec ≪ 1 the



eigenstates correspond roughly to number states. This regime was used in 1998 to prove the
quantum character of superconducting circuits [Bou+98]. Nevertheless, this regime exposes
the system to charge noise which causes the frequency to fluctuate, limiting qubit coherence.
The best strategy for overcoming this problem is to operate the Cooper pair box in the so
called transmon regime Ej/Ec ≫ 1 (typically Ej/Ec ≈ 50). A transmon is best described
as an anharmonic resonator almost completely insensitive to charge noise [Koc+07], a
major benefit obtained at the expense of a greatly reduced spectrum anharmonicity. The
state of the art of individual transmon coherence time is above 1 ms, i.e. about a progress
of six orders of magnitude compared to the superconducting qubit. All superconducting
quantum computing architectures presently developed are based on transmons and this
element is also at the core of our SMPD.

Taking into account that the ratio Ej/Ec is the quantity that characterizes the com-
portment of the Hamiltonian, and using the expression of N̂ and φ̂ in function of the ladder
operators q̂ and q̂†, the Hamiltonian can be written as:

Ĥ = −4ECN
2
ZPF(q̂ − q̂†)2 − EJ cos

(
φZPF(q̂ + q̂†)

)
(3.64)

Where NZPF = (EJ/32EC)1/4 and φZPF = (2EC/EJ)1/4 refer to quantum fluctuations
in the ground state. Knowing that we work in the transmon regime, we can now rightfully
perform a series expansion of the Hamiltonian :

Ĥ =
√
EJEC

2 (q̂ − q̂†)2 +
√
EJEC

2 (q̂ + q̂†)2

︸ ︷︷ ︸
harmonic oscillator

− EC
24 φ

4
ZPF(q̂ + q̂†)4︸ ︷︷ ︸

non-linearity

+O(EC

√
EC
EJ

) (3.65)

The transmon Hamiltonian can be seen as a quantum harmonic oscillator perturbed by
a weak non linearity. We can organize the terms so that the Josephson plasma frequency
ωp =

√
8EJEC/ℏ appears:

Ĥ =
√

8EJECq̂
†q̂ − EC

12 (q̂ + q̂†)4 (3.66)

The non-linear term can be developed y using the rotating wave approximation (RWA).
Keeping terms with the same number of creation and annihilation operators yields to:

Ĥ = (
√

8EJEC − EC)q̂†q̂ − EC
2 q̂†2q̂2 (3.67)

With this equation, we can define the transmon frequency ωq = ωp − Ec/ℏ defined
as the energy difference between the two first levels. The renormalization due to Ec/ℏ is
called the Lamb shift. To match with the literature, the eigenstates of the Hamiltonian
will be note: |g⟩ , |e⟩ , |f⟩ ....

The non-linear term induces a variation of the energy difference between subsequent
levels: The energy difference between the state |e⟩ and |f⟩ is ℏωef = (

√
8EJEC − 2EC)

that we can write ωef = ωq − α with α = Ec/ℏ the anharmonicity of the transmon. The
Figure 3.9b shows the evolution of the level energies with anharmonicity. Typically α/2π
is in the range of a few hundred MHz.

The key point of this spectrum is that it allows us to define an effective two level
system. Indeed, the non-constant energy difference between levels mitigates the risk to
excite higher transitions with a pulse tuned on the first one. Therefore a transmon can be
legitimately seen as a qubit.

It is therefore often convenient to use the Pauli matrix formalism to descripe operators
acting on the qubit. In the (|g⟩,|e⟩) basis, Pauli matrix are expressed as: σ̂z = |g⟩ ⟨g|−|e⟩ ⟨e|,



σ̂x = |g⟩ ⟨e|+ |e⟩ ⟨g| and σ̂y = i |e⟩ ⟨g| − i |g⟩ ⟨e|. The annihilation operator is σ̂ = |g⟩ ⟨e|.
In this framework the qubit Hamiltonian is simply:

Ĥq = ℏ
2ωqσ̂z. (3.68)

We will use it to describe the decoherence mechanism in the next section.

3.3.2 Decoherence mechanisms

In the last section, we have shown that the transmon states |g⟩ and |e⟩ can be seen as a
qubit. In this section, we describe the decoherence of the qubit induced by the interaction
with its environment.

Here we will consider two mechanisms, relaxation and dephasing. Relaxation is an
energy exchange between the qubit and the environment that occurs at a rate γ1. Dephasing
corresponds to the loss of information about the phase of the superposition of the qubit
basis states at a rate of γϕ. It is caused by fluctuations in the qubit frequency due to
fluctuations in the environment state.

Both effects can be described by a master equation which introduces decoherence terms,
namely Lindbladian operators, in the Schrödinger evolution equation of the density matrix:

∂ρ̂

∂t
= −i

ℏ
[Ĥ, ρ̂] +

∑
L̂

DL̂(ρ̂) (3.69)

with:

DL̂(ρ̂) = L̂ρ̂L̂† − 1
2 L̂

†L̂ρ̂− 1
2 ρ̂L̂

†L̂. (3.70)

The relaxation and dephasing operators (resp L̂r and L̂Φ) are:

L̂r = √γ1σ̂ (3.71)

L̂Φ =
√
γΦ
2 σ̂z (3.72)

From these Lindbladian operators and the Hamiltonian of the qubit Ĥq defined above,
one can solve the master equation. The final density matrix reads:

ρ =
(

A1e
γ1t A2e

−iωq− γ1
2 −γΦt

A3e
iωq− γ1

2 −γΦt A4e
−γ1t

)
(3.73)

From this result, one can define several characteristic times for the coherence properties
of the system. T1 = 1/γ1 is the relaxation time of the qubit. It will take a prominent role
in the SMPD operations (see Chapter 4). TΦ = 1/γΦ is the pure dephasing time. The total
dephasing time define as 1/T2 = 1/2T1 + 1/TΦ includes the pure dephasing time but also
an energy relaxation component which ultimately limits its value to 2T1.

3.4 Transmon dispersively coupled to a resonator

As it will be developed in Chapter 4, the SMPD architecture is based on the dispersive
coupling between a transmon qubit and two resonators. This section describes how this
interaction allows us to readout the state of the qubit.



3.4.1 Hamiltonian of the coupled system

The full treatment of the transmon-cavity Hamiltonian is well described in [Alb21]. Here
we will recall the main steps of the derivation based on a Bogoliubov transformation.

From the Section 3.1.1 and Section 3.3, we can write the Hamiltonian of the system in
terms of ladder operators:

Ĥ = ℏω0â
†â︸ ︷︷ ︸

oscillator

+ ℏ(ωq + α)q̂†q̂ − α

12(q̂ + q̂†)4︸ ︷︷ ︸
transmon

+ ℏg(â†q̂ + âq̂†)︸ ︷︷ ︸
capacitive coupling

(3.74)

Where ω0 is the resonator frequency and g is the coupling strength driving the hy-
bridization between the modes â and q̂. This parameter can be exactly obtained from the
electrical parameters of the circuit [Alb21]. The dispersive coupling regime takes place
when the coupling strength g is much smaller than the frequency difference between the
qubit and the cavity mode, ie: g ≪ ∆, where ∆ = ωq − ω0.

The first step of the derivation consists in finding a dressed state basis in which the
"linear" Hamiltonian with the quartic term removed :

Ĥlin = ℏω0â
†â+ ℏ(ωq + α)q̂†q̂ + ℏg(â†q̂ + âq̂†) (3.75)

consists of uncoupled modes, i.e. a basis where the term ℏg(â†q̂ + âq̂†) is canceled.
This is done thanks to a Bogoliubov transformation with the unitary operator : Û =
exp

[
θ(â†q̂ − âq̂†)

]
. Under this transformation, the ladder operators transform as : Û †âÛ =

cos θâ+ sin θq̂ and Û †q̂Û = cos θq̂ − sin θâ. The transformed Hamiltonian is:

Û †ĤlinÛ = ℏω̃0â
†â+ ℏ(ω̃q + α)q̂†q̂ + ℏ(g cos 2θ − ∆

2 sin θ)(â†q̂ + âq̂†) (3.76)

To cancel the coupling term, one has to choose θ = 1
2 arctan 2g/∆. In the dispersive

regime, ∆≫ g, one gets θ ≈ g/∆ and the dressed modes and frequencies:

â ← â+ g

∆ q̂ (3.77)

q̂ ← q̂ − g

∆ â (3.78)

ωq ← ωq − g2

2∆ (3.79)
ω0 ← ω0 + g2

2∆ (3.80)

The second step of the derivation consists in applying the unitary Û to the full
Hamiltonian Ĥ. Given that Û is unitary, the quartic term is readily transformed since
Û †(q̂† + q̂)4Û = (Û †[q̂† + q̂]Û)4 . The full transformed Hamiltonian reads:

Ĥ/ℏ = ω0â
†â+ (ωq + α)q̂†q̂ − α

12

(
q̂ + q̂† + g

∆(â+ â†)
)4

(3.81)

The important point to note is that the non linearity provided by the Josephson junction
mixes the dressed states in a non trivial way. We can expand the non linear term and
perform a RWA approximation in order to only keep the terms which conserve the energy
of the qubit and the resonator mode in the Hamiltonian:

Ĥ/ℏ = ω0â
†â+ ωqq̂

†q̂ − α

2 q̂
†2q̂2 − K

2 â
†2â2 − χâ†âq̂†q̂ (3.82)



with

K = α
g4

∆4 (3.83)

χ = 2α g
2

∆2 (3.84)

K and χ are referred to as the self-Kerr of the resonator and cross-Kerr between
the transmon and the resonator. For typical parameters such as α = 2π × 200 MHz,
g = 2π× 100 MHz and ∆ = 2π× 1 GHz, The self-Kerr is of the order of K ∼ 2π× 10 kHz,
whereas the resonator linewidth is typically κ = 2π × 1 MHz. The self-Kerr can thus be
usually neglected in the circuit dynamics.

The cross-Kerr term can be seen as a dispersive frequency shift of the qubit or resonator
mode caused by the state of the other one. This so-called dispersive shift that has a typical
value of the order of χ ∼ 2π × 1 MHz, plays a crucial role in the oscillator-qubit dynamics.
Indeed, it allows to readout non-destructively the state of the qubit by measuring the
resonator frequency. Another important use of the dispersive shift is the determination of
the average photon number in the cavity from qubit decoherence. We will return to these
two points in the following sections.

3.4.2 Qubit Quantum non demolition readout

We can recast the Equation 3.82 by neglecting the self-Kerr term as:

Ĥ/ℏ = â†â(ω0 − χq̂†q̂) + ωqq̂
†q̂ − α

2 q̂
†2q̂2 (3.85)

This expression shows that the cavity frequency depends on the qubit state. It takes
the value ωg

b = ωb , ωe
b = ωb − χ for the qubit in the ground |g⟩ , excited |e⟩ state.

A reflective measurement of the cavity thus yields a measurement of the qubit state. To
do so, a coherent tone is sent on the cavity through the line, which creates an intra-cavity
coherent state as seen in Section 3.1.5. These coherent states are conditioned by the state
of the qubit, and one obtains their expression using Equation 3.40 by replacing Ĥr by the
Hamiltonian given by Equation 3.85:

αg = ϵ

κ/2 + i(δ + χ/2) (3.86)

αe = ϵ

κ/2 + i(δ − χ/2) (3.87)

With κ the oscillator linewitdh, δ = ω − ω0 + χ/2 (chosen to symetrize the cavity
field) and ϵ = √κextαin the tone amplitude seen by the cavity. In order to obtain a
graphical representation of these states in the phase plane, we evaluate the intra cavity
field quadratures, ⟨X̂⟩e/g = (αe/g + α∗

e/g)/2 and ⟨Ŷe/g⟩ = (αe/g − α∗
e/g)/2i:

⟨X̂⟩e/g = ϵκ/2
(κ/2)2 + (δ ∓ χ/2)2 (3.88)

⟨Ŷ ⟩e/g = ϵ(δ ∓ χ/2)
(κ/2)2 + (δ ∓ χ/2)2 (3.89)

Interestingly, the information on qubit state is exclusively on the ⟨Ŷ ⟩ quadrature as
shown on Figure 3.10a. The corresponding phase of the intra-cavity field is:
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Figure 3.10: Dispersive readout (a)Phase plan representation with the two qubit-
conditioned coherent states of the cavity create by the input coherent tone. This phase
plan can be rebuild from a heterodyne measurement of the cavity. (b) Amplitude and
phase of the intra-cavity state as the function of the frequency of the input signal. The
coupling with the qubit imposes a cavity frequency shift of χ conditioned by the qubit
state (|e⟩ or |g⟩). The signal is mostly absorbed at frequency ω0 (resp ω0 − χ) when the
qubit is in the ground (resp excited) state. figure adapted from [Bla+07].

θe/g = arctan
(
⟨Ŷ ⟩e/g

⟨X̂⟩e/g

)
= arctan

(
δ ∓ χ/2
κ/2

)
(3.90)

This expression yields the phase shift in the phase plan. The variations with the
frequency tone of the amplitude and phase of the intra-cavity coherent state are displayed
in Figure 3.10b .

The intra-cavity state described on this plot is linked to the output signal âout by the
input-output equation Equation 3.43. A measurement of the reflected signal thus gives
access to the phase space representation in Figure 3.10a and to qubit state. Here, we use
an heterodyne measurement technique described more detail in the experimental part.

In the measurement regime considered here, this measurement is projective and leaves
the qubit in a state corresponding to the measured value. Ideally, it is a quantum non-
demolition measurement : a subsequent measurement of the qubit should ideally give the
same answer.

3.4.3 Transmon measurement induces dephasing

In the previous section we took advantage of the fact that the qubit imposes a frequency
shift on the resonator to make a non-destructive measurement. In this section we will use
the symetric effect in order to calibrate the intra-cavity number of photons for a given
drive. This measurement will give us an precise calibration of the input power.

The effect of the cavity photon number on the qubit is best seen by rewriting Equa-
tion 3.82 in the form:

Ĥ/ℏ = ω0â
†â+ (ωq − χâ†â)q̂†q̂ − α

2 q̂
†2q̂2 (3.91)

When the resonator is driven by a coherent tone, the photons present in the cavity
shift the qubit frequency by n̄χ, with n̄ the average number of photons in the cavity. This
effect is called a Stark shift in analogy with the Stark shift in atomic levels.



In addition, the fluctuations in photon population yields qubit dephasing, and thus
decoherence. The added decoherence rate is of the order of κn̄ with κ the cavity linewidth.
A derivation of the expressions of the dephasing rate γ2 and of the frequency shift ∆s can
be found in [Gam+06]. These quantities are related to the coherent field state in the cavity
defined in Equation 3.87 by :

∆s + iγ2 = −χαgᾱe = −4χ|ϵ|2
(κb + 2iδ)2 + χ2 (3.92)

The value of the left side term ∆s and γ2 can be obtained from a Ramsey fringe
experiment starting from a superposition of states |+⟩ = (|g⟩ + |e⟩)/

√
2, in presence of

photons in the cavity. The fringe oscillation frequency yields ∆s, and their decay with time
γ2.

The knowledge of ∆s and γ2 when the microwave drive is at resonance with the cavity
(ω = ω0) gives us access to the average number of intra-cavity photons. Then, using
Equation 3.46 , one obtains a calibration of the incoming power:

Pin = ℏω0n̄
κ2

4κext
(3.93)

This absolute calibration of the power impinging on the cavity will be exploited for the
determination of the SMPD efficiency.

3.5 Purcell effect

3.5.1 General case

We have seen how the cavity can induce qubit dephasing, and is thus a source of decoherence
with a rate γ2 for the qubit. This is however not the only way the cavity induce qubit
decoherence. Indeed, Edwin Purcell [Pur46] had shown that, in the strong coupling regime
of a quantum system to a cavity, the effective density of modes for relaxation between its
levels by emission of a photon in the cavity is so enhanced that this relaxation channel can
become the dominant one with a rate γ1 . A step by step derivation of Purcell relaxation
based on the master equation is given in [Alb21]. We only recall here the assumptions
made and the main steps.

For the sake of simplicity, we reduce the transmon to a two-level system and use the
Pauli operator formalism. The Hamiltonian of the coupled system in the rotating frame of
the qubit is given by:

Ĥ = ℏ∆â†â+ ℏg(â†σ̂ + âσ̂†) (3.94)

where g represents the qubit/resonator coupling and ∆ = ω0−ωq. The master equation
leading the evolution of the system reads:

∂ρ̂

∂t
= −i

ℏ
[Ĥ, ρ̂] +DL̂Φ

(ρ̂) +DL̂r
(ρ̂) +DL̂κ

(ρ̂) (3.95)

where: L̂r = √γ1σ̂, L̂Φ =
√

γΦ
2 σ̂z (already introduced in Section 3.1.4.2) and Lκ̂ =

√
κâ

with κ the cavity linewidth.
The derivation of this master equation is based on the adiabatic elimination of the

cavity. The cavity degree of freedom will be removed by taking the trace of the cavity
operator. Such an approximation is correct when the number of photons in the cavity
remains small, so that κ≫ γ1,Φ, g. By injecting a solution of the form:



ρ̂ =ρ̂00 ⊗ |0⟩ ⟨0|+ λ (ρ̂10 ⊗ |1⟩ ⟨0|+ ρ̂01 ⊗ |0⟩ ⟨1|) +

+ λ2 (ρ̂11 ⊗ |1⟩ ⟨1|+ ρ̂02 ⊗ |0⟩ ⟨2|+ ρ̂20 ⊗ |2⟩ ⟨0|) +O(λ3). (3.96)

in the master equation, we can solve the different component ρmn. Then we take the
trace ρs = ρ00 + λ2ρ11 and we write the reduced master equation for the qubit degree of
freedom:

∂ρ̂s
∂t

= −i
ℏ

[Ĥs, ρ̂s] +DL̂Φ
(ρ̂s) +DL̂r

(ρ̂s) +DL̂κ
(ρ̂s) +DL̂P

(ρ̂s) (3.97)

Where, Ĥs is the Hamiltonian reduced to the cavity ground state ⟨0| Ĥ |0⟩ ≈ Ĥs. The
new Lindbladian term L̂P =

√
Γpσ represents the enhanced relaxation rate of the qubit

due to photon emission, the so-called Purcell effect. Its rate is given by the expression:

Γp = g2κ
κ2

4 + ∆2
. (3.98)

This effect can be used to increase the radiative relaxation rate of a system where
photon emission is not the main de-excitation channel. Two different regimes can be
identified:

• strong coupling regime: for g ≫ κ, an excitation can be coherently exchanged
back and forth between the spin and the resonator before its energy gets transmitted
in the line or dissipated by resonator losses.

• weak coupling regime: if g ≪ κ, an excitation gets damped quickly in the resonator.
If κext ≫ κint, the photon emitted by the spin is completely transmitted in the line.

This use will be important in the detection of spin coupled to superconducting microwave
resonators in Chapter 8.

The Purcell effect can also be used to protect a qubit from the external environment by
using it as a filter. In this case the Purcell effect decreases the radiative emission rate and
thus increases the coherence time of the qubit. The following section details more precisely
this configuration

3.5.2 Purcell filters

While the Purcell effect is interesting for increasing the photon emission rate in the case of
spin detection, it can become the limiting factor for the coherence of a superconducting
qubit coupled to a readout resonator. One can try to reduce this effect by decreasing
the qubit-resonator coupling, by increasing the frequency detuning or by reducing the
bandwidth of the resonator. However, all these methods imply a slower reading of the
qubit. A compromise must be found between qubit relaxation and measurement time.

A method to avoid this trade-off is to add an additional resonator between the readout
resonator and the line [Jef+14]. This additional element, called a Purcell filter, is frequency
tuned to the readout resonator and has a low quality factor.

The theory of the full system is done in [SMK15]. The interest of this architecture
is the decoupling between the energy decay rate of the qubit towards the line and the
effective bandwidth of the readout resonator.

More precesely, The effective decay rate of the readout resonator to the transmission
line through the filter is given by Equation 3.98:



κr = 4G2

κPr

1
1 + (2[ωr − ωPr]/κPr)2 ≈

4G2

κPr
. (3.99)

with ωPr (resp. ωr) and κPr (resp. κr) the Purcell filter (resp. readout resonator)
frequency and linewidth. Here, G is the coupling between the readout resonator and its
Purcell filter.

On the other hand, due to the filter, the cavity rate involved in the qubit Purcell rate
equation Equation 3.98 is not given by Equation 3.99 but rather by the expression:

κq
r = 4G2

κPr

1
1 + (2[ωq − ωPr]/κPr)2 ≈

G2κPr
∆2

r
. (3.100)

with ∆r = ωq − ωPr. By inserting this expression in the Purcell rate, we obtain the
residual decay of the qubit through the waste channel:

Γq
P = G2g2

rκPr
∆4

r
. (3.101)

Therefore, the effect of the frequency detuning between the qubit and the resonators
separating it from the transmission line is reinforced. The qubit relaxation time T1 is
preserved whereas the readout resonator can be strongly coupled to the line.

These Purcell filters will play a key role in the SMPD architecture as we will need a
long-T1 transmon qubit as well as strongly damped coupled resonators.





Chapter 4

Single microwave photon detector
theoretical concepts

A photon counter is a device that reveals the presence of photons by triggering a phenomenon
that can be registered at the macroscopic scale. In optics, photon counters are based on an
avalanche photodiode. This device is a reverse-biased PN junction in which a photoelectron,
produced by an impinging photon, triggers an electron avalanche that reaches a large
current during a short ns duration. This "click" is easily registered with a current amplifier.
Single photon avalanche detectors (SPADs) with a very low dark count rate are now
commonly used to detect single atoms or molecules using their fluorescence, with important
applications in microscopy [Bru+19] and more broadly in quantum technologies [KDM77;
WEH18].

The detection of an optical photon in a SAPD is possible because photon energy can
exceed the gap of a semiconductor. This method thus cannot work for photons in the
microwave domain with an energy about 5 orders of magnitude smaller in energy than
the optical domain. Nevertheless, the rapid development of circuit-QED introduced in
Chapter 3 has unlocked the research on the subject, and several devices have been proposed
and sometimes successfully implemented ([Gri+20; Kos+15; Roy+18]). Among them,
the proof of concept of a Single Microwave Photon Detector (SMPD) demonstrated by
Lescannes et al [Les+20] has been implemented in Quantronics during the PhD research
of Emanuele Albertinale [Alb21] for detecting the fluorescence of electronic spins. The
operating principle of this circuit is to register the arrival of a microwave photon by
triggering an irreversible transition of a transmon qubit from its ground state to its excited
state. The transmon of course needs to have a long enough relaxation time so that it
can be later measured before returning to its ground state. A high fidelity readout is
also requested. This technology has been shown to be sensitive enough to perform ESR
experiments on a small one-thousand electronic spin ensemble [Alb+21], establishing this
way the state of the art of ESR.

In this thesis work, we use the same circuit architecture and further improve it enough
in order to gain at least one order of magnitude in sensitivity. The achieved progress has
allowed us to perform measurements on a single electron spin as described in Chapter 8.
This chapter presents the operating principle of our SMPD and its architecture.

4.1 SMPD based on a four-wave mixing process

4.1.1 SMPD working principle

The photon detection strategy presented here exploits a transmon qubit as a marker of the
passage of a photon. From the point of view of quantum information processing it can be
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seen as the reliable transfer of the quantum information carried by an incoming photon
wave-packet onto the qubit state.

The architecture described in this chapter is based on the irreversible evolution between
a superconducting resonator and the qubit. Indeed, these two quantum systems should
not interact in a coherent way as this would lead to a reversible evolution. Instead, they
share a common dissipative mechanism to a cold bath: the qubit irreversibly switches to its
excited state if and only if a photon enters the resonator, and the reverse process cannot
occur. We use this highly correlated dissipation mechanism to detect itinerant photons
impinging on the resonator.

Dissipation engineering is a new paradigm for the manipulation of individual quantum
systems. Counter-intuitively, the loss of information or energy to the external environment
opens up new possibilities for quantum circuits. In contrast to Hamiltonian-driven coherent
evolution, the irreversible leakage of information to an external bath is modeled by the
jump operators (also called dissipators) L̂ already described in Section 3.3.2. Similarly
to the Hamiltonian, they describe transition between quantum states but like in general
L̂ ̸= L̂† the dynamic is irreversible.

Our SMPD is composed of an input superconducting resonator called "buffer" coupled
to a transmon qubit. The cavity is described by the bosonic operators b̂ and b̂†, and the
qubit by its raising and lowering operators σ̂ and σ̂†. In the Jaynes-Cumming framework,
the intertaction Hamiltonian that couples the qubit to the cavity is Ĥint = g(âσ̂† + â†σ̂),
which yields on resonance a coherent and continuous oscillation between the qubit and the
cavity, thus making impossible photon detection. A solution for escaping this limitation is
to replace the interaction Ĥint by an irreversible dissipation operator L̂nl = √κnlb̂σ̂

†. This
non trivial dissipator describes an irreversible quantum jump, in which the annihilation of
a photon gets associated to the excitation of the qubit, without a reverse term enabling the
decay of the qubit associated with the creation of a photon. In contrast to the dissipators
discussed in Section Section 3.3.2, the operator L̂nl has the unique property of being both
non-local, as it affects modes in different spatial locations, and non-linear, as it involves
the product of operators.

The general procedure to create such a dissipator is to engineer a coherent interaction
Ĥaux between the system of interest (here the couple buffer/qubit) and an auxiliary
resonator, strongly damped into the environment. The additional resonator is called the
"waste" and is described by the ladder operators ŵ and ŵ†. The procedure, based on the
adiabatic elimination of the waste degree of freedom can be summarized as:{

Ĥaux = L̂nlŵ
† + L̂†

nlŵ

L̂aux = √κwŵ
→ L̂nl. (4.1)

Similar ideas have been recently used for the stabilization of quantum states [Mur+12;
Sha+13] or manifolds [Leg+15], and for the fabrication of non-reciprocal components
[MC15; Sli+15].

Practically, the non-linearity of the transmon junction allows for the creation of non-
linear combinations of modes σ̂, b̂, and ŵ, including a four-wave mixing process that can be
activated by applying a pump tone with an appropriate frequency ωp to the qubit. These
processes associated to the terms b̂σ̂†ŵ† and b̂†σ̂ŵ describe the energy transfer between
the buffer and the couple qubit/waste caused by the pump. The waste resonator being
always closed to its ground state, the conversion involving an energy transfer from the
waste/qubit pair to the buffer is inhibited. This adiabatic elimination of the waste implies
that κnl ≪ κw. Under these conditions, the buffer photon is transferred irreversibly into
the qubit excitation and the dissipator L̂nl becomes effective.

In the following sections, we will detail the expression of the SMPD Hamiltonian and
highlight the four-wave mixing term that is at the heart of the detector concept. We then
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Figure 4.1: SMDP working principle (a) A transmon qubit at frequency ωq is coupled
to two cavities, namely the buffer at frequency ωb and the waste at frequency ωw. The
waste resonator is strongly coupled to its output line. In addition, a pump tone at frequency
ωp is continuously shined on the qubit during the detection phase. (b) The incoming
photon enters the buffer resonator whose frequency is adjusted to match the frequency
of the photon. (c) The four-waves mixing occurs due to the pump tone tuned to match
the frequency condition : ωb + ωp = ωw + ωq. A buffer photon plus a pump photon are
converted in a qubit excitation and a waste photon. The waste photon is quickly dissipated
into the environment due to the strong coupling. (d) Photon counter state after the passage
of a photon. The absence of waste photon inhibits the reverse parametric process that
would have converted the qubit excitation in a buffer photon.

solve the master equation in the framework of adiabatic elimination to obtain an explicit
expression of L̂nl. Finally, we will develop an analogy between the 4-wave mixing process
and a 2 coupled-cavity model to obtain the bandwidth of the detector.



4.1.2 SMPD Hamiltonian

The derivation of the SMPD Hamiltonian is similar to the one of the transmon-resonator
system developed in Section 3.4 and is also based on the Bogoliubov approach.

The full SMPD Hamiltonian reads:

Ĥ/ℏ =
∑

m=w,b

ωmm̂
†m̂+ gm(m̂†q̂ + q̂†m̂) + (ωq + α)q̂†q̂

− α

12(q̂† + q̂)4 + ϵp(q̂†e−iωpt + q̂eiωpt) + ϵd(b̂eiωdt + b̂†e−iωdt) (4.2)

The transmon qubit is capacitively coupled to two distinct harmonic modes: the buffer
mode b̂ at a frequency ωb with a coupling constant gb and the waste mode ŵ at a frequency
ωw with a coupling constant gw. The pump term with amplitude ϵp and frequency ωp
represents the microwave tone that triggers the four-wave mixing. An incoming photon
impinging the detector at a frequency ωd is modeled by a buffer drive with amplitude
amplitude ϵd.

In the dispersive regime, and with the appropriate Bogoliubov transformation, the
transmon qubit is displaced by the pump tone and hybridizes with the buffer and the waste
leading to a dressed qubit mode:

q̂ ← q̂ + gb
∆b

b̂+ gw
∆w

ŵ + ϵpe
−iωpt

∆p
(4.3)

where, ∆m = ωm − ωq with m = (b, w, p). Considering that ϵd ≪ 1, the Hamiltonian
written in the dressed basis is:

Ĥ/ℏ = ωbb̂
†b̂+ ωwŵ

†ŵ + (ωq + α)q̂†q̂ + ϵd(b̂eiωdt + b̂†e−iωdt)

− α

12

[
q̂ + q̂† + gb

∆b
(b̂+ b̂†) + gw

∆w
(ŵ + ŵ†) + ϵp

∆p
(eiωpt + e−iωpt)

]4
(4.4)

where the ωi/2π are the measured frequencies shifted by the mode hybridization.
The expansion of the nonlinear term gives rise to hundreds of terms among which only

a few of them conserve the energy. These a the terms composed of the Ô†Ô monomials.
We can classify them in two different Hamiltonians according to the physical effect they
describe: ĤStarck for the frequency shifts due to the pump and ĤKerr for all the Kerr effects
between the circuit elements.

The other monomials of the expansion describe energy non-conserving terms. They
include the four-wave mixing terms of interest to us for the SMPD, but also more exotic
terms. We will classify them in the non conservative Hamiltonian Ĥnc. Finally, with the
drive term Ĥdrive introduced, the full Hamiltonian is:

Ĥ = ĤStarck + ĤKerr + Ĥnc + Ĥdrive (4.5)
where:

Ĥdrive = ϵd(b̂eiωdt + b̂†e−iωdt) (4.6)

ĤStark/ℏ =
∑

m=b,w

(
ωm − χqm |ξp|2

)
m̂†m̂+

(
ωq − 2χqq |ξp|2

)
q̂†q̂, (4.7)

ĤKerrℏ =
∑

m=b,w,q
−χmm

2 m̂†2m̂2 − χqbb̂
†b̂q̂†q̂ − χqwŵ

†ŵq̂†q̂ − χbwŵ
†ŵb̂†b̂, (4.8)

Ĥnc/ℏ = g3b̂ŵ
†q̂†e−iωpt + g3b̂

†ŵq̂eiωpt︸ ︷︷ ︸
SMPD 4-waves mixing terms

+ · · ·+ g3b̂
†ŵ†q̂†eiωpt︸ ︷︷ ︸

other 4wm terms

+ · · · −2α gb
∆b

gw
∆w

q̂†q̂b̂ŵ†︸ ︷︷ ︸
other terms

(4.9)



with:

χqq = α

2 χww = α

2
g4

w
∆4

w
χbb = α

2
g4

b
∆4

b
(4.10)

χqm = 2α g2
m

∆m2
χbw = 2α g

2
b

∆2
b

g2
w

∆2
w

g3 = −ξp
√
χqbχqw (4.11)

ξp = ϵp
∆p

(4.12)

We have neglected the terms m̂†m̂ arising from the normal ordering of the fourth-order
term since their effect is just to shift the bare frequencies ωm by a constant amount. In the
following, we will disregard the terms χbw, χbb, χww as well as the frequency shift of the
resonator, χqm|ξp|2, caused by the pump, as they are much smaller than the other terms
in the equation.

We then move to a rotating frame defined by the following the unitary transformation:

Û † = eiωdb̂†b̂ei(ωw−δw)ŵ†ŵei(ωq−2χqq|ξp|2)q̂†q̂ (4.13)

The purpose of this transformation is to make the driving term Ĥdrive (ωd term)
independent of time, to introduce the parameter δw that marks the relation between the
output photon frequency and the pump and drive frequencies, and finally to move in the
qubit rotating frame, considering that its bandwidth is infinitely narrow.

In this new frame, the rotating-wave approximation (RWA) allows us to remove the
fast-rotating terms, whereas one keeps the four-wave mixing terms that are essential for
SMPD operation (see Equation 4.9) when they are quasi-static in the rotating frame. These
terms transform as:

Û †(g3b̂ŵ
†q̂†e−iωpt + hc)Û = e−i(ωp+ωd−ωw+δw−ωq+2|ξp|2)tg3b̂ŵ

†q̂† + hc (4.14)

The condition on the pump frequency to stop the rotation is thus:

ωp = ωq + ωw − ωb − δw + δb − 2 |ξp|2 χqq. (4.15)

where we have taken into account that ωd = ωb − δb. We define δp = δb − δw as the
frequency detuning of the pump. The parameter δw introduced earlier is now well defined
as the function of the experiment parameters: δw = δb − δp. The frequency of the waste
photon produced by the four-wave mixing is dependent on the frequency of the input
photon but also on the pump frequency.

By replacing the bosonic operator q̂ by the two level-level lowering operator σ̂, the final
Hamiltonian reads:

Ĥ/ℏ = δbb̂
†b̂+ (δb − δp)ŵ†ŵ + g3b̂ŵ

†σ̂† + g3b̂
†ŵσ̂︸ ︷︷ ︸

four-wave mixing terms

−χqbb̂
†b̂σ̂†σ̂ − χqwŵ

†ŵσ̂†σ̂ + ξp(b̂+ b̂†)

(4.16)

4.2 Adiabatic elimination of the output resonator

4.2.1 Dynamic of the reduced system

The Hamiltonian described in the last section provides a four-wave mixing process when the
frequency matching condition Equation 4.15 is satisfied. When the pump tone is applied,
a buffer photon is then converted in a qubit excitation and a waste photon. As introduced
in Section 4.1.1, this conversion has to be irreversible in order to avoid the reverse process.
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Figure 4.2: SMPD electrical representation The buffer resonator (orange), capacitively
coupled to the transmon qubit (coupling strength gb) incorporates a SQUID to adapt
its frequency to that of the photon. The buffer Purcell resonator (same color) is used to
protect the qubit from the line environment and increase the T1. The waste resonator
(green) also capacitively coupled to the qubit (coupling strength gw) interacts more strongly
with the line so that its state remains close to the ground state |0⟩. The Purcell waste
allows this strong coupling in addition to its role in protecting the qubit. An other benefit
of the Purcell filter is to reduce the readout time of the qubit. The transmon qubit (blue)
allows the mixing between the circuit elements thanks to the non linearity provided by the
Josephson junction. The 4-waves mixing process is triggered by the pump tone (purple)
when the frequency condition: ωb + ωp = ωq + ωw is realized.

This irreversibility can be simply obtained by making a waste resonator with an energy
decay rate κw much larger than the coupling strength g3 between the buffer and the waste
through the qubit. In a semi-classical picture, one could say that the photon created in
the waste mode disappears so quickly that the reverse process can never occur. In these
conditions, the number of photons in the waste resonator photons always remains close to
zero, i.e. the waste resonator stays close to its ground state, and the adiabatic elimination
of the waste mode is possible. This approximation simply consists in tracing out the state
of the system on the waste degree of freedom. The evolution of the remaining system will
give us the dynamics of the four-waves mixing process.

We approach the problem using the Lindblad formalism by inserting a dissipation
channel to the waste resonator. The full Lindblad equation then writes:

˙̂ρ = 1
iℏ

[Ĥ, ρ̂] + κwDŵ(ρ̂) + κbDb̂(ρ̂) (4.17)

In the adiabatic elimination framework, we search for a solution of Equation 4.17 in
the form:



ρ̂ =ρ̂00 ⊗ |0⟩ ⟨0|+ λ (ρ̂10 ⊗ |1⟩ ⟨0|+ ρ̂01 ⊗ |0⟩ ⟨1|) +

+ λ2 (ρ̂11 ⊗ |1⟩ ⟨1|+ ρ̂02 ⊗ |0⟩ ⟨2|+ ρ̂20 ⊗ |2⟩ ⟨0|) +O(λ3). (4.18)

The operators |m⟩ ⟨n| act on the waste Hilbert space. The reduced density matrix ρ̂mn
describes the system evolution in which the degrees of freedom of the waste have been
projected. The λ parameter accounts for the fact that the waste is close to its vacuum
state, thus λ ≪ 1. The derivation consists in extracting the dynamics of the reduced
density matrix ρ̂qb = Trw(ρ) = ρ00 + λ2ρ11.

As we can only calculate the impact of ŵ and ŵ† on the |n⟩ ⟨m|, it is useful to rewrite
the Hamiltonian in the following form:

Ĥ = ℏg3b̂σ̂
†ŵ† + ℏg∗

3 b̂
†σ̂ŵ +

(
δb − δp − ℏχqwσ̂

†σ̂
)
ŵ†ŵ + Ĥqb (4.19)

with:

Ĥqb = −ℏχqbb̂
†b̂σ̂†σ̂ + ℏδbb̂

†b̂+ ϵd(b̂+ b̂†). (4.20)

By injecting Equation 4.18 in Equation 4.17 and projecting on ⟨0| · |0⟩, ⟨0| · |1⟩ and
⟨1| · |0⟩ respectively, we get the following system of equations:

˙̂ρ00
κw

= λ2
(
iρ01Â− iÂ†ρ10 + ρ11

)
+ 1
iℏ

[Ĥqb, ρ̂] +O(λ3) (4.21)

˙̂ρ01
κw

= iρ00Â
† − ρ01

(1
2 − i∆̂

)
+O(λ) (4.22)

˙̂ρ11
κw

= iρ10Â
† − iÂρ01 − i[∆̂, ρ11]− ρ11 +O(λ) (4.23)

where

Â = g3
κwδ

b̂σ̂† (4.24)

∆̂ = δb − δp − χqwσ̂
†σ̂

κw
(4.25)

The key point is to invoke the adiabatic approximation for assuming that ρ11 and ρ01
are continuously in the steady state. One can then solve the above system and obtain an
evolution equation for the reduced density matrix ρ̂qb ∼ ρ̂00:

d

dt
ρ̂qb = −i∆nl[b̂†b̂σ̂σ†, ρ̂qb] + κnlDb̂σ̂†(ρ̂qb) + κbDb̂(ρ̂qb) + [Ĥqb, ρ̂qb] +O(δ3) . (4.26)

with:

κnl = 4|g3|2/κw

1 + 4| δb−δp−χqw
κw

|2
, (4.27)

∆nl = 4|g3|2/κw

1 + 4| δp−δb−χqw
κw

|2
χqw − (δp − δb)

κw
, (4.28)

(4.29)



The dissipating term κnl is the core of the SMPD. It allows for the irreversible trans-
formation of a buffer photon in a qubit excitation. This dissipation is maximum for
δp − δb = χqw. As a consequence the frequency condition for best inducing the four-wave
mixing process becomes:

ωp = ωq + ωw − ωb − χqw − |ξp|2 2χqq (4.30)

With this condition, we define the SMPD dissipation rate as:

ΓSMPD = κnl|δp+δb=χqw = 4|ξp|2
χqbχqw
κw

(4.31)

This quantity will be used in the next section for defining an important physical concept,
the cooperativity.

4.2.2 Efficiency and cooperativity

In this section we derive the efficiency of conversion η4wm between the state |1⟩ of the
buffer and the qubit state |e⟩.

In our experiments, the quantum state of the light impinging the buffer will be either a
simple Fock state |1⟩ in the case of the single spin detection or a coherent state |α⟩ with
a very low number of photons for the detector characterization. To derive the value of
η4wm we place ourselves in the case where a weak coherent tone of amplitude bin is sent
on the buffer. The number of photons arriving on the cavity per unit of time is defining
as |bin|2. Assuming that the drive illuminates the buffer for a time t, the resonator will
be in a coherent state α where |α|2 = |bin|2t is the number of photon in the incoming
wave-packet. Like |α| ≪ 1, one can developed the state as |α⟩ ≈ (1− |α|2/2)(|0⟩+ α |1⟩).
Then we can write the statistical mixture: ρ̂ ≈ (1− |α|2) |0⟩ ⟨0|+ |α2| |1⟩ ⟨1|. Considering
this input state, the 4-wave mixing will promote the qubit in its excited state with the
probability pe = η4wm|α|2.

The idea of the derivation is to solve Equation 4.26 and write the evolution of the qubit
excited state pe as a function of the number of photons in the incoming field . The drive
amplitude will be defined such as ϵd = √κbbin.

We rewrite the Equation 4.26 for ∆nl = 0, δb = 0 and in the limit where χqb, χbb ≪
κnl, κb:

d

dt
ρ̂qb = κnlDb̂σ̂†(ρ̂qb) + κbDb̂(ρ̂qb) + ϵd[b̂+ b̂†, ρ̂qb] (4.32)

We search for a solution of this equation in the form:

ρ̂qb = ρ̂gg |g⟩ ⟨g|+ ρ̂eg |e⟩ ⟨g|+ ρ̂ge |g⟩ ⟨e|+ ρ̂ee |e⟩ ⟨e| . (4.33)

The reduced density matrix ρkl represents the buffer state for a qubit state |k⟩ ⟨l|. The
goal is to find the expression of the qubit excited state pe = Tr(ρee) by tracing on the
degree of freedom of the buffer resonator.

By injecting the Equation 4.33 in Equation 4.32 and projecting on ⟨e| · |e⟩ and ⟨g| · |g⟩,
we obtain the equation leading the dynamic of ρgg and ρee:

ρ̇gg(t) = −κnl
2 (b̂†b̂ρ̂gg + ρ̂ggb̂

†b̂) + κbDb̂(ρ̂gg) + ϵd[b̂+ b̂†, ρ̂gg] (4.34)

ρ̇ee(t) = −κnl
2 b̂ρ̂ggb̂

† + κbDb̂(ρ̂ee) + ϵd[b̂+ b̂†, ρ̂ee]. (4.35)



From Equation 4.35 and with the trace properties, we can write the equation leading
the dynamic of pe:

ṗe = −κnl
2 Tr

(
b̂ρ̂ggb̂

†
)

(4.36)

To finish the derivation, one needs an explicit solution for ρgg . The Equation 4.34 can
be solved by assuming a solution of the form: ρgg(t) = A(t) |β⟩ ⟨β|, where |β⟩ is a coherent
state to determined and A(t) a real function. One indeed finds a solution provided that:

β = −2ϵd
κb + κnl

(4.37)

A(t) = exp
(
κnl

−4ϵ2d
(κb + κnl)2 t

)
. (4.38)

This result allows us to rewrite Equation 4.36 in the form ṗe = |β|2A(t). Considering
that the qubit is in its ground state at t = 0, one obtains the following result for its excited
population:

pe(t) = 1− exp
(
−η4wm|bin|2t

)
≈ η4wmnin (4.39)

Where we take nin = |bin|2t as the mean number of photon contained in a pulse of
length t at short times. This estimate gives the efficiency η4wm for the 4-wave mixing
process:

η4wm = 4 κbκnl
(κb + κnl)2 (4.40)

We can define a last figure to fully characterize the conversion process. To convert
efficiently a photon sent to the buffer resonator into a qubit excitation, the filling rate of
the buffer resonator (equal to the coupling rate κb) has to be equal to the conversion rate.
This criterion is contained in the cooperativity defined as follows:

C = ΓSMPD
κb

= 4|ξp|2
χqbχqw
κwκb

(4.41)

The efficiency of the 4-wave mixing process can then be expressed as:

η4wm = 4C
(1 + C)2 (4.42)

The process efficiency η4wm is thus maximal for unit cooperativity. We can reach this
regime by adjusting the pump strength so that |ξp|2 = κwκb/(4χqbχqw).

However, ξp cannot take arbitrary values, in fact, since the pump contributes to the
phase across the junction, its maximum value must be much smaller than π. The circuit
parameters must therefore satisfy the inequality:

κbκw
χbχw

≪ 4π2 ≈ 40. (4.43)

In addition, we have also to avoid the triggering of spurious and uncontrollable para-
metric processes, involving more than two photons. These processes that need a high pump
energy can be mitigated by keeping the energy required to trigger the four-wave mixing as
low as possible. A low pump energy also avoids to excite the phonon bath which could
transfer its energy to the qubit and consequently create false positives.

It is therefore always better to have the lowest possible pump strength. As a consequence,
the SMPD presented in the following will be designed such that χbχw ≫ κbκw.



4.3 Two coupled cavities model

4.3.1 Input-output equations

The adiabatic elimination performed in the last section captures the system dynamics and
extracts the efficiency of the four-wave mixing process, but it works only under restrictive
assumptions. The waste dissipation rate κw has to be much larger than the rate ΓSMPD of
the SMPD dynamics. In addition, this derivation does not give us access to the detector
bandwidth.

To simplify the model, we can use the input-output theory as outlined in Section 3.1.4.2.
We write the input-output equations for the buffer operator b̂ and the hybrid operator σ̂b̂,
which captures the dynamics of both the qubit and the waste. We will use the Hamiltonian
given by Equation 4.19 without the source term and by excluding the cross-Kerr terms χmn
as they have a small effect compared to g3 and are not important for the system dynamics.

With this assumption, the evolution of the operators reads:

˙̂
b = −iδbb̂− ig3ŵσ̂ −

κb
2 b̂+√κbextb̂in (4.44)

˙σ̂ŵ= −i(δb − δp)σ̂ŵ − ig3b̂(σ̂σ̂† − ŵ†ŵσ̂z)−
κw
2 σ̂ŵ +√κwextσ̂ŵin (4.45)

In all generality, these equations have to be solved in the Hilbert space: HSMPD =
Hb ⊗ Hw ⊗ Hσ which have an infinite dimension. However, the 4-wave mixing process
at the heart of the SMPD implies one-to-one photon conversion. We can therefore safely
restrict ourselves to the subspace representing the 4-wave mixing generated by the states:
|0, g, 0⟩ , |1, g, 0⟩ , |0, e, 1⟩ and |0, e, 0⟩. More precisely, |0, g, 0⟩ describe the system ready to
detect a photon, |1, g, 0⟩ represents the photon impinging the buffer, then the four-wave
mixing occurs with |0, e, 1⟩ and finally the waste photon is dissipated into the environment
with |0, e, 0⟩.

The projection operator in the desired space is:

Π̂ = |0, g, 0⟩ ⟨0, g, 0|+ |1, g, 0⟩ ⟨1, g, 0|+ |0, e, 1⟩ ⟨0, e, 1|+ |0, e, 0⟩ ⟨0, e, 0| (4.46)

where |i, j, k⟩ denotes the states containing i (resp j,k) photons in the buffer (resp
qubit,waste). By using the redefinition Ô ← Π̂ÔΠ̂, Equation 4.44 and Equation 4.45
become:

˙̂
b = −iδbb̂− ig3ŵσ̂ −

κb
2 b̂+√κbextb̂in (4.47)

˙σ̂ŵ= −i(δb − δp)σ̂ŵ − ig3b̂−
κw
2 σ̂ŵ +√κwextσ̂ŵin (4.48)

because, in the restricted subspace we cannot simultaneously have one photon in the
buffer and in the waste, so Π̂b̂ŵ†ŵΠ̂ = 0 and one can verify that Π̂b̂σ̂σ̂†Π̂ = Π̂b̂Π̂. This
system is similar to the one describing the coupling between two cavities, with a coupling
strength given by g3 = ξp

√
χqbχqw.

To extract the interesting parameters, we take the average values of the field: ⟨b̂⟩ = β,
⟨b̂in⟩ = βin and ⟨σ̂ŵ⟩ = v. As no photons impact the output resonator, we will take
⟨σ̂ŵin⟩ = 0. In addition, we define vout = ⟨σ̂ŵout⟩ = √κw⟨σ̂ŵ⟩ = √κwv. With these
averaged values the system becomes:

β̇ = −iδbβ − ig3v −
κb
2 β +√κbextβin (4.49)

v̇ = −i(δb − δp)v − ig3β −
κw
2 v. (4.50)



We then Fourier transform these equations and redefine β and v as the Fourier compo-
nents, yielding to the simple system:

−iδβ = −iδbβ − ig3v −
κb
2 β +√κbextβin (4.51)

−iδv = −i(δb − δp)v − ig3β −
κw
2 v (4.52)

where δ represents the frequency detuning of the incoming photon compared to the
frequency of the rotating frame.

4.3.2 Transmission coefficient and bandwidth

From the above input output equation, we can extract the frequency-dependent transmission
coefficient |S21( δ)|2 = |υout/βin|2 which represents the transmission efficiency from a buffer
photon to a waste photon as a function of the frequency. The full calculation well developed
in [Alb21] gives:

|S21( δ)|2 = 4C∣∣∣1 + C − 4 δ(δ+δp)
κbκw

+ 2i δ
κb

+ 2i (δ+δp)
κw

∣∣∣2 . (4.53)

where C = 4|ξ0|2 χbχw
κbκw

is the cooperativity, δ is the detuning of the incoming photon
with the b̂ mode and δp the frequency detuning of the pump compared to its optimal
frequency. The Figure 4.3a,b illustrate the evolution of this transmission coefficient as the
function of the pump and photon frequency detuning. Two configurations of buffer and
waste bandwidth are shown, corresponding to the situations encountered in the rest of this
manuscript.

When the pump is optimally tuned and the incoming photon in resonance with the
buffer, the transmission coefficient becomes simply:

|S21( δ)|2 = 4C
(1 + C)2 (4.54)

equal to the result given by Equation 4.42.
An important advantage of this two coupled cavity model is to provide an analytical

expression for the SMPD bandwidth. By taking a unit cooperativity and considering that
the pump is optimally tuned, the full-width-half-maximum of |S21( δ)|2 is:

κd =
√

2

√√√√√
κ2

bκ
2
w +

(
κb − κw

2

)4
−
(
κb − κw

2

)2
. (4.55)

Let us to consider now a few particular cases. For κb ≈ κw, one gets κd ≈
√

2κbκw.
This regime is shown on Figure 4.3b. For κb ≪ κw, κd ≈ 2κb (Figure 4.3a) and reciprocally
for κb ≫ κw, κd ≈ 2κw.

4.3.3 Cooperativity-dependent bandwidth

For the experiments that will be presented in the next chapters, it is also interesting to
estimate the transmission coefficient when the incident photons are not frequency tuned
with the detector, i.e when δ ̸= 0. we rewrite Equation 4.53 in these conditions keeping a
well tuned pump frequency (δp = 0):

|S21( δ)|2 = Cκ2
wκ

2
b/4

|δ2 − i(κb+κw
2 )δ − κbκw

4 (1 + C)|2
(4.56)
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Figure 4.3: SMPD |S21|2 in various configurations versus δ, δp and the coopera-
tivity C. (a), (b) Transmission parameter |S21|2 represented versus the photon and pump
frequency detuning (δ and δp) for two different configurations of waste and buffer linewidth.
We set a unit cooperativity in both cases. (c), (d) |S21|2 as the function of the photon
detuning plotted for various cooperativity C and for δp = 0. The detector bandwidth
extracted from the transmission parameter is plotted in inset.



In order to factorize this expression, we determine the two roots of the denominator, ie
the poles of |S21( δ)|2:

δ± = i
κb + κw

4 ± 1
2

√
κbκw(1 + C)− (κb + κw)2

4 (4.57)

The photon counter studied in this part operate in a regime where κb ≪ κw. In
addition, we work in a regime where C ∼ 1 so we have the condition 4κbC/κw ≪ 1. With
these assumptions, we can perform a first order development of the poles yielding to:

δ− ≈ i
κb
2 (1 + C) (4.58)

δ+ ≈ i
κw
2 − i

κbC
2 . (4.59)

The transmission coefficient can be rewritten using these expressions:

|S21( δ)|2 ≈ Cκ2
wκ

2
b/4(

δ2 + (κw−κbC)2

4

)2
(
δ2 + κ2

b(1+C)2

4

)2 (4.60)

Then, considering only small detunings so that δ ≪ κw, one obtains a simpler result:

|S21( δ)|2 ≈ 4C
(1 + C)2

1
1 + ( 2δ

κb(1+C))2 (4.61)

As expected, taking the value δ = 0, we recover the result given by Equation 4.54. Fur-
thermore, with the assumptions detailed above, the reflection coefficient takes a Lorentzian
form with bandwidth κd ≈ κb(1+C). For unit cooperativity, we find the condition κd ≈ 2κb
already expressed above.

The evolution of the bandwidth in the regime where κb ≪ κw is shown on Figure 4.3c.
The shape of the transmission coefficient versus the photon detuning is almost Lorentzian
even at high cooperativity.

Figure 4.3d shows the evolution of the bandwidth in a regime slightly different with
κb = κw/2 = 0.5 MHz. We encounters this regime in the second part of this manuscript
for the spin detection. Here on the contrary, the shape of |S21|2 is rapidly moving away
from a Lorentzian with the cooperativity. The resulting bandwidth is wider.

4.4 SMPD operation

4.4.1 SMPD cyclic operation

The SMPD operates in a cyclic manner decomposed in three parts (see Figure 4.4):

Detection (D): After initializing the qubit, the SMPD can be prepared for photon
detection by applying a microwave tone at frequency ωp to the pump line. The frequency is
chosen in order to match the energy condition of the 4-wave mixing. During this detection
window, if no photon enters the buffer, the qubit relaxes from its reset population preset
to its equilibrium population peq with the characteristic time T1 (see Figure 4.5a). If a
detection event occurs, the qubit get excited and starts to relax from the excited state to
the equilibrium (see Figure 4.5b). In both cases, the duration of the detection window
Td has to be shorter than the qubit relaxation time T1 as will be described in the next section.
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Figure 4.4: SMPD cyclic operation The SMPD cycle is composed of three windows,
respectively the detection (D), the measurement (M) and the reset (R) window. During
the detection a continuous tone at frequency ωp is sent on the qubit trough the pump line
(purple line). Once a photon impinges the buffer resonator (orange line) the four-wave
mixing occurs. The qubit gets excited (blue line) while a photon is created in the waste
resonator (green line). Due to the strong coupling to the environment, the waste photon
is rapidly dissipated. After the initial excitation, the probability to find the qubit in the
excited state |e⟩ decreases with the characteristic time T1 until the measurement window.
The qubit state is dispersively readout thanks to the waste resonator. Finally, in the reset
window, the qubit is put back in its ground state with a conditional sequence: while the
qubit is in |e⟩ a resonant pulse at frequency ωq is applied trough the pump line and a
measurement is performed to check the state. The duration of each window is denoted Td
(resp Tm,Tr) for the detection window (resp measurement and reset)

Measurement (M): The qubit is then dispersively readout using to the waste resonator.
A detector "click" corresponds to the measurement of the excited state. The measurement
duration Tm is chosen so that the separation between the states in the quadrature phase
plane is well sufficient to resolve the reset population of the qubit. The measurement has
to be non-destructive as described in Section 3.4.2.

Reset (R): In this part of the cycle, we prepare the qubit in a state where the probabil-
ity to measure an excited state preset is less than the equilibrium population peq. In other
words, The qubit is almost certainly initialized in its ground state. For this purpose, we
apply a conditional sequence. We use the pump line to send resonant pulse at frequency
ωq on the qubit which triggers a Rabi oscillation. The duration of the pulse is chosen so
that it inverts the qubit population (π-pulse). The conditional reset begins with a qubit
measurement, if the result is |e⟩, a while loop starts, else, the qubit is already is in ground
state. The while loop consists in a π-pulse followed by a measurement. The exit condition
is to measure the qubit in the ground state. The duration Tr of this window is thus not
constant since the number of iterations of the while loop varies between cycles.



4.4.2 SMPD efficiency

In this section we explicit the total detector efficiency ηd defined as the click probability
when a photon impinges the detector. This overall efficiency can be broken down into
several contributions.

Duty cycle ηD: The duty cycle ηD is the ratio of the detection time to the total
cycle time. It accounts for the fact that incident photons arriving during the qubit read-
out and reset are not detected. It is written as : ηD = Td/Tcycle where Tcycle = Td +Tm +Tr.

Qubit efficiency ηqubit: As shown of the Figure 4.5a, due to the relaxation time T1
of the qubit, information is lost between the arrival of the photon and the qubit readout.
Considering that a photon arrives on the resonator at time t and excites the qubit with an
unit probability, the loss of information is simply given by: ηqubit(t) = e−(Td−t)/T1 . Here we
assume that the equilibrium population peq ≪ 1, so we do not include it in the calculation.
By averaging this quantity over the detection window:

ηqubit = 1
Td

∫ Td

0
e−(Td−t)/T1dt (4.62)

we can extract the value of ηqubit:

ηqubit = T1
Td

(1− e−Td/T1) (4.63)
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Figure 4.5: SMPD cyclic operation (a) Evolution of the qubit excitation probability
P (e) as the function of the time when a photon impinges the SMPD at time t. The qubit
relaxes exponentially with the characteristic time T1 from its excited state until the end of
the detection window (yellow zone). (b) Evolution of the qubit when no photons enter the
buffer resonator. The qubit population increases from the reset population preset with the
same characteristic time T1. The dashed blue line represents the linear approximation of
the population evolution.

This expression suggests that one can make ηqubit arbitrarily close to one by reducing
the duration of the detection window to reduce the ratio Td/T1. However, such a reduction



of Td would also imply a large decrease of the duty cycle ηD. One has thus to find a
trade-off between these two quantities for maximizing the product:

ηDηqubit = T1
Tm + Tr + Td

(1− e−Td/T1). (4.64)

The variations of of ηDηqubit with the duration of the detection window Td is shown in
Figure 4.6a.

In the limit where Tm + Tr ≪ Td ≪ T1 , the product ηDηqubit takes the simple form:

ηDηqubit ≈
(

1− Tm
Td

)(
1− Td

2T1

)
. (4.65)

The optimal detection window is then equal to :

Td ≈
√

2TmT1 (4.66)
4-wave mixing efficiency η4wm: The four-wave mixing efficiency η4wm is equal to

the transmission coefficient |S21|2 for δ = 0 and δp = 0 (see Section 4.3). Here, we take
into account the internal losses of the buffer resonator κbint, yielding to:

η4wm = 4C
( κbint

κbext
+ 1 + C)2 . (4.67)
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Figure 4.6: ηDηqubit and η4wm (a) efficiency product ηDηqubit as the function of the
detection window time Td for T1 = 30 µs and Tr + Tm = 2 µs. The dashed line showed the
optimal detection window. (b) η4wm as the function of the cooperativity C for κint/κext = 0.1.
The optimal cooperativity is shown in dashed line.

This expression implies that the optimal efficiency is not anymore given for a unit
cooperativity. Indeed, by maximizing Equation 4.67 as the function of C, the new optimal
cooperativity is given by C = 1 + κbint/κbext. A graphical representation of η4wm is
shown in Figure 4.6b as the function of the cooperativity. Injecting this cooperativity in
Equation 4.67 we find that the optimal 4-wave mixing efficiency in presence of internal
losses is now given by:

η4wm ≤
1

1 + κbint/κbext
. (4.68)



Measurement efficiency ηm: The measurement efficiency ηm is the excited state
fidelity P (e|e). This parameter depends on distance between the coherent states associated
to the qubit state in the phase plan (see Figure 3.10) and on the threshold chosen to
separate the states. The use of a quantum amplifier (TWPA, JPA) is mandatory in order
to achieve single shot readout. In addition, the distance between states can be optimized
by adjusting the number of photons sent into the cavity and the readout time.

Eventually, the total SMPD efficiency is the product of all these contributions: ηd =
η4wmηqubitηDηm

4.4.3 SMPD Darkcount

Another imperfection of a photon detector is its dark count rate αd defined as the false
positive rate in click · s−1. As for the efficiency, the dark count rate reduces the detector
sensitivity. Once again, it can be broken down into several contributions.

Measurement dark count rate αm: This contribution, due to a measurement error
when the qubit is its ground state, is defined as the conditional probability P (e|g). It
depends on the distance between the coherent states in Figure 3.10 obtained during the
measurement, on the threshold selected, and on the readout noise.

Qubit dark count rate αqubit: This contribution is due to the non-zero qubit
population at the end of the detection window despite the fact that no photon has arrived
in the buffer resonator. This spurious excitation probability, shown on Figure 4.5b, takes the
value P (e) = (preset−peq)e−Td/T1 +peq at the end of the detection window. In the operative
case where T1 ≫ Td one can make the approximation P (e) ≈ (peq − preset)Td/T1 + preset.
This probability represents the average number of extra clicks per cycle, which can be
translated into a dark count rate:

αqubit ≈
(peq − preset)ηD

T1
+ preset
Tcycle

(4.69)

Pump dark count rate αpump: This contribution depends on the spurious heating
of the qubit by the pump tone due to higher non-linear terms and the heating of the
microwave environment.

Thermal dark count rate αth: This dark count contribution is due to the presence
of residual thermal photons n̄b in the buffer transmission lines. These photons are due
to the non-zero temperature of these lines, and to insufficient attenuation in their low
temperature sections of thermal radiation coming from higher temperature sections.

This thermal photon source can be described by a Johnson-Nyquist noise source [Joh28],
[Nyq28]. In the classical framework, the noise power is expressed as a function of the
detector bandwidth ∆f and the temperature of the experiment as: Pth = kbT∆f . In
the quantum regime relevant for our experiment performed at low temperature 10 mK
(kbT ≪ ℏωb), the average energy provided by the modes is given by Bose-Einsten statistics
such as: kbT → ℏωn̄b with n̄b = 1/(eℏω/kbT − 1) the number of photons per mode. The
expression describing the flux of thermal photons per second is then:

Pth
ℏωb

= n̄b∆f (4.70)

Given the small frequency interval relevant for qubit excitation, the frequency depen-
dence of the mode occupation n̄b can be neglected.



To extract the extra number of clicks αth induced by this photon flux, we must take
into account its conversion efficiency, which depends on the total detector frequency ηd,
but also on its frequency detuning with the buffer resonator. In the limit where κb ≪ κw,
from Section 4.3.3, we can consider that the conversion efficiency |S21|2(f) is given by a
Lorentzian function centered around fb = ωb/2π with a FWHM κd/2π . This assumption
yields the total number of extra clicks during a detection window:

αth =
∫ +∞

−∞

n̄bηd

1 + ( f−fb
κd/(4π))2

df (4.71)

αth = n̄bηdκd
4 (4.72)

It is interesting to relate this contribution to the dark count to the cooperativity C and
the buffer resonator bandwidth κb by writing explicitly the expression of η4wm (taken with
κbint = 0) and κd (for κb ≪ κw):

αth ≈
n̄bCκb
(1 + C)ηqubitηmηD (4.73)

From this expression, one sees that when C ≪ 1, αth increases linearly with C, due
to the increase of the bandwidth with the cooperativity. This spurious buffer heating
mechanism is important insofar it dominates the total dark count rate in our experiment.

The final dark count rate is the sum of all these contributions: αd = αth + αqubit +
αpump + αm, dominated by αth

4.5 Noise equivalent power (NEP)

4.5.1 General case

In this section, we describe the performances of the detector in terms of a quantity known
as the noise equivalent power (NEP). The NEP is defined as the minimum detectable power
with an signal-to-noise ratio (SNR) of 1 for a certain integration time t. This quantity
provides a good representation of the absolute sensitivity of the SMDP. It is expressed in
W/
√

Hz.
We will first write the signal-to-noise ratio considering that the detected signal is

provided by a continuous tone of power P , at resonance with the buffer resonator and with
a Poissonian noise.

When the microwave tone is turning ON, the number of photon impinges the detector
for a time t is Pt/ℏωb. Due to the dark count rate, the number of clicks given by the
detector is SON = ηdPt/ℏωb + αdt. On the contrary, when the microwave tone is OFF,
the signal integrated by the detector for a time t is SOFF = αdt.

The signal of interest is Sint = SON − SOFF = ηdPt/ℏωb. As all the distributions are
Poissonian, the associated noise is Nint =

√
SON + SOFF. Assuming that the dark count is

perfectly known we can reduce the expression of the noise to Nint =
√
SON

We can then express the SNR of the detection:

SNR = ηdPt/ℏωb√
Pt/ℏωb + αdt

(4.74)

The power P corresponding to SNR = 1 gives the NEP :

NEP = ℏωb(1 +
√

1 + 4tαd)
2tηd

. (4.75)
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Figure 4.7: SMPD Noise equivalent power. NEP (blue) as the function of the
integration time t for the parameters: αd = 100s−1 , ηd = 0, 4, ωb/2π = 7.3 GHz. The two
scaling laws in 1/t and 1/

√
t are shown in dashed black lines.

Here, two different regimes depending on the integration time t of the dark count rate
αd (see Figure 4.7) can be distinguished. For

√
αdt≪ 1, we obtain NEP = ℏωb/ηdt, the

sensitivity is limited by the shot noise of the source itself, which means that the detector
is not used at its maximum capability. The minimal power detectable scales as like 1/t,
and does not depend on the dark count rate αd. On the contrary, when the integration is
correctly extended so that

√
αdt≫ 1 we obtain :

NEP = ℏωb

√
αd

ηd
√
t
. (4.76)

The dark count rate is the main limitation for the NEP which scales as 1/
√
t. The

detector is used at its full potential and this regime is the relevant for our experiments.
From Equation 4.76, we can define the absolute sensitivity of the SMPD for and

integration time of 1 s:

S = ℏωb

√
αd
ηd

(4.77)

which will give us a point of comparison between the signal we wish to detect and the
performance of the counter for a reasonable integration time.

4.5.2 NEP for αd = αth

As stated in the previous section, the total dark count rate in our experiments is dominated
by the spurious thermal noise. In this case, we can replace αd by the expression of the
thermal noise αth = n̄bCκb

(1+C) ηqubitηmηD. In this case, the noise equivalent power expression
becomes:

NEPth = ℏωb
4

√
n̄bκb(1 + C)3

ACt
(4.78)

with A = ηqubitηmηD. The dependence of the NEPth with the integration time t and
the cooperativity C is shown in Figure 4.8 .
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Figure 4.8: SMPD Noise equivalent power when αd = αth. (a) Colormap of NEPth
as the function of the integration time t and the cooperativity C for κb/2π = 0.5 MHz,
n̄b = 10−3 and A = ηqubitηm = 0.5. (b) Cross section taken for t = 1 s corresponding to
the white dashed line in (a). The black dashed line shows the minimum NEP reachable in
this configuration corresponding to C = 1/2.

The search of an optimal sensitivity as a function of cooperativity yields C = 1/2 ,
which is smaller than the optimal cooperativity (C = 1) in the generic case where the dark
count is not dominated by spurious thermal photons. Indeed, as the detector bandwidth
increases with cooperativity, the thermal dark count rate increases, which reduces the
sensitivity. The value of C = 1/2 results from a compromise between the detector efficiency,
which grown linearly with the cooperativity, and the thermal dark count rate.



Chapter 5

Device and experimental setup

The core task during this thesis was to improve the SMPD developed in Quantronics in
order to reach single spin sensitivity, i.e. to detect a single microwave photon emitted by a
single spin in a microwave resonator. The state of the art of SMPDs at the beginning of
my research work was the device made by Emanuele Albertinale [Alb21] during his PhD
research. This SMPD allowed to perform paramagnetic resonance experiments on small
spin ensembles containing about 103 spins. Given the present PhD objective was to reach
single spin sensitivity, improvements were clearly needed.

In this chapter we first briefly present the state of the art SMPDs prior to this thesis and
the guidelines of the improvements needed to address the single spin detection challenge. I
detail afterwards the design and fabrication process modifications that I made, and the
new setup that I built.

5.0.1 State of the art of SMPDs prior to this thesis work

The succesful operation of a SMPD based on the irreversible excitation of a qubit by an
itinerant microwave photon was first demonstrated by Raphaël Lescanne in 2020 [Les+20].
This result triggered in Quantronics the project to use such a SMPD for detecting the
photons emitted by electronic spins strongly coupled to a small microwave resonator.

The first SMPD developed by Emanuele Albertinale defined the new state of the
art in term of robustness against the dark count and sensitivity. Indeed, the most
advanced alternative SMPD architectures, based on a lambda system [Ino+16] or Ramsey
interferometry [Bes+18], had an order of magnitude higher dark rate. It was also the only
one to be continuously operated and frequency tunable.

These two reasons have enabled the detection of photons emitted by a small set of 103

spins constituted by bismuth donors in silicon [Alb+21]. This measurement was the first
proof of principle of the value of a SMPD for quantum detection. Moreover, as discussed
in Section 4.5, the absolute sensitivity of a SMPD can be defined as S = ℏωb

√
αd/ηd, the

NEP for and integrating time t = 1 s. This quantity is not theoretically limited and can
be null for a zero dark count rate. As the consequence the prospect of performing ESR
spectroscopy of a single spin has become credible.

However, the SMPD used in this first work was not sensitive enough to envision such
a detection. With an efficiency ηd,old = 0.23, and dark count rate αd,old = 1500 s−1, the
SMPD had a sensitivity Sold ≈ 10−21 W/

√
Hz. This quantity has to be compared to

the typical radiative power of a single bismuth donor. In the experimental condition of
[Alb+21], the radiative relaxation rate of donors is found to be Γ−1

P ∼ 300 ms. At the
typical detection frequency of the detector ωd/2π = 7 GHz, this gives a radiative power
P = 1.5 · 10−23 W two orders of magnitude below the SMPD sensitivity making impossible
the single spin detection due to the incompatibility between the experiment stability and
the long integration time.
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The main objective of my thesis was to improve the SMPD by modifying its design and
fabrication process in order to reach the required sensitivity specification for single spin
detection. In the next section I will details the different guidelines for the improvements.

5.0.2 Analysis of SMPD sensitivity

As discussed above, the quantity to optimize to improve the SMPD is the absolute sensitivity
given by S = ℏωb

√
α/ηd.

To reach the single-spin sensitivity, it is needed to work on the chip design and
fabrication, but we also know that the setup is important since it determines the effective
noise temperature of all the transmission lines connected to the SMPD

On the chip side, we aimed at improving the qubit relaxation time T1 since it affects
both the dark count rate and the detection efficiency. Because developing better transmons
is a major goal in superconducting qubit research, we have benefited from the progress
recently achieved in 2021 by [Pla+21], with the use of a thin layer of tantalum for the
ground plane, deposited on a sapphire substrate. The improvement on qubit coherence
time is link to the reduced interface losses in the tantalum layer [Cro+23], [McL+23] as
well as the very low bulk loss tangent of the sapphire [Rea+22].

We have thus decided to follow this new fabrication process for our new SMPD
generation which has represented many design and fabrication modifications compared to
the previous version of the SMPD.

For improving the microwave setup, we first aimed at reducing the false positive rate
αth due the spurious excitation of the qubit by the electromagnetic bath by increasing the
attenuation and the filtering of the lines. For the same goal, we improved the shielding of
the chip in order to avoid spurious qubit excitation induced by high energy photons.

In the following, we firstly present the new design and the different upgrades compare
to [Alb+21], then we describe the fabrication process and finally the measurement setup.

5.1 Design and simulation

5.1.1 SMPD design

In this section, the choices made for the design of the different elements of the circuit will
be detailed step by step. The circuit is fabricated on a 0.33 mm thick sapphire substrate,
polished on both sides and oriented along the C-axis. This substrate is first coated with a
60 nm tantalum superconductor film. The CPW resonators made on the chip share the
same gap (20 µm) and the same track width (33.6 µm), as shown on Figure 5.1a). These
parameters are chosen in order to reach a resonator impedance close to 50 Ω.

Purcell filters: Compared to the last SMPD generation, Purcell filters are designed
both on the waste and buffer side and not only on the waste side. They consist of λ/2
CPW resonators, which reduce the spontaneous emission of the qubit due to the reduced
density of states at the qubit frequency (see Section 3.5.1). Their frequency, controlled by
their line length as explained in Section 3.1.3.1, matches that of their respective resonator
(buffer or waste). The inductive coupling to the line is obtained through a stub. The
coupling quality factors are determined by the asymmetry between the two arms, the
target bandwidth being κPb/2π = 290 MHz for the Purcell filter on the buffer side, and
κPw/2π = 230 MHz on the waste side.

Buffer resonator: the buffer is a λ/2 CPW resonator (orange in Figure 5.1) with a
symmetric SQUID in its center where the current is maximum. The targeted resonance
frequency for Φtot = 0 is 7.3 GHz with a participation ratio of the junction (see Section 3.2.2)



of p ∼ 0.15. In theory, we could tune the frequency of the resonator from its maximal value
corresponding to Φtot = 0 to almost zero for Φtot = π/2. However, the tunability is limited
by the Purcell filter bandwidth (∼ 290 MHz). In addition, limiting the tunability range
in a few hundred MHz mitigates the effect of the flux noise due to current instabilities.
The current line generating the magnetic flux in the SQUID loop is depicted in red in
Figure 5.1(b). It is symmetrical in order to distribute the current in the two ground half
planes on either side of the flux line. This avoids potentially creating a voltage difference
between the half ground planes. The targeted area for the SQUID junctions is 0.5 · 2µm2.

The coupling to the Purcell filter is both inductive and capacitive, with the strength of
the coupling determined by the distance between the lines (see Figure 5.1a). We target a
bandwidth κb/2π = 1.5 MHz when the buffer is perfectly aligned with its Purcell filter. As
shown in Section 4.3 in the regime κb ≪ κw, the SMPD bandwith is then κd ≈ 2κb = 3
MHz. By changing the frequency of the buffer, we detune it from its Purcell filter, which
further reduces its bandwidth. For a 150 MHz detuning, the bandwidth given by the Purcell
formula Equation 7.28 is κb/2π = 0.72 MHz. The coupling to the qubit is capacitive, made
by a facing electrode.

Waste resonator: Unlike other chip resonators, the waste resonator is a λ/4 CPW
resonator (green in Figure 5.1), with a second mode frequency three times higher, which
avoids coupling to the qubit. The coupling to the Purcell is realized in a similar to that of
the buffer but with a larger coupling strength in order to reach a bandwidth κw/2π = 3
MHz. The interest of this large bandwidth is double. Firstly, it allows to quickly release
photons into the environment in order to create the dissipator Equation 4.1. Secondly, as
this resonator will be used to readout the state of the qubit, a high bandwidth will speed
up the readout, increasing the overall efficiency of the detector.

The coupling to the qubit is done with an electrode at the end of the resonator. We
target a resonance frequency ωw//2π = 8 GHz.

Transmon qubit: It is interesting to design the qubit frequency ωq/2π so that it is far
detuned from the buffer and waste resonator frequency in order to reduce its relaxation by
spontaneous emission in these resonators. In addition, the pump frequency determined by
the resonance condition ωb +ωp = ωw +ωq should not be close to a characteristic frequency
of the circuit elements. With these considerations in mind, we set ωq/2π = 5.7 GHz,
which yields ωp/2π = 6.5 GHz. The coupling to the waste and the buffer resonators, given
by their terminal electrode, determines the cross-Kerr rates χqb and χqw. The coupling
strength depends both on the electrode geometry and on the distance to the transmon
capacitor (blue in Figure 5.1). As demonstrated in Section 4.2.2, the efficiency of the
four-wave mixing can be adjusted by the pump amplitude. However, in order to reduce the
heating due to a too large pump power, it is interesting to ensure that χqbχqw ≫ κbκw.
The coupling strength is thus set to have χqw = 11 MHz and χqb = 2.5 MHz. These large
cross Kerr couplings are not detrimental for our experiment with only one photon at a
time.

From the work done by E. Albertinale in the old SMPD design, we know that we can
reproducibly make a Josephson junction with typically Lj ≈ 10 nH. We set the charge
energy Ec by adjusting the size of the capacitor pad (see Figure 5.1) in order to reach the
transmon regime with EJ/Ec = 70. The resulting anharmonicity is α = Ec/ℏ ≈ 240 MHz

The mask of the Josephson junction shown in Figure 5.1 has a bottle opener shape in
order to increase fabrication reproducibility and decrease mask failure. The targeted area
for the junction is 150 · 160 nm2.

Pump line: The pump line (purple in Figure 5.1) is capacitively coupled to the qubit.
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Figure 5.1: SMPD design (a) Schematic of the mask used to fabricate the SMPD. The
two Purcell filters in orange (resp. green) for the buffer (resp. waste) are CPW λ/2
resonators. They are coupled to the measurement line to a stub. The buffer resonator (also
a CPW λ/2 resonator) incorporates the SQUID controlled with the flux line (red). The
waste resonator (green) is a λ/4 CPW resonator. (b) Zoom in on the SQUID embedded
at the current anti-node of the buffer resonator. (c) Mask of the SQUID for the 2 angles
evaporation. (d) Zoom of the transmon qubit at the chip center. (e) Mask of the transmon
for the 2-angle evaporation

Compared to the previous design in [Alb+21], the coupling has been reduced in order to
decrease this qubit loss channel.

5.1.2 Electromagnetic simulation

We set the values of the physical parameters of the chip design shown in Figure 5.1 by
using electromagnetic simulation. We use the Electromagnetic Simulation Software ANSYS
HFSS to simulate the linear resonators and extract their frequency and damping rate.
Additionally, parameters related to the non-linearity of the Josephson junction, known
as the dispersive couplings, are obtained through the Energy Participation Ratio (EPR)
method [Min+21].

5.1.2.1 Linear simulation

The simulation of the chip begins by identifying the frequency and damping rates of the
modes with the lowest frequency, utilizing the HFSS frequency eigenmode solver. We
replace the non-linear elements (SQUID and transmon junctions) by the linear part of



eigenmodes Frequency (GHz)

Qubit (e) 5.8057 0.00096

Purcell buffer (a) 7.3099 292.4

Buffer (b) 7.3102 1.2

Waste (d) 8.0611 3.0

Purcell waste (c) 8.0762 230.7

(MHz)

a) b)

c) d)

e) f)

Figure 5.2: SMPD electromagnetic simulations Finite element electromagnetic sim-
ulation using ANSYS HFFS. The electric field amplitude, obtained by setting 1J in the
resonant mode, is plotted in log-scale for the different five different modes, respectively
(a) Purcell buffer mode, (b) buffer mode, (c) Purcell waste mode, (d) waste mode and (e)
transmon mode. The frequencies and energy decay rates for the first five eigen-modes of
the circuit are reported in table (f).

their Josephson inductance. The table presented in Figure 5.2f summarizes the simulation
results.

The buffer resonator frequency is aligned with its Purcell filter frequency for zero flux in
the SQUID loop, corresponding to its maximum frequency. Its bandwidth, set at 1.2 MHz
under these conditions, will evolve as a function of its detuning from the filter according to
the Purcell formula Equation 3.98. The choice of the bandwidth of the Purcell filter is a
trade-off between minimizing the spontaneous emission of the qubit and preserving the
frequency control range of the detector. We have therefore chosen to set it at κPb/2π = 290
MHz, which offers a sufficient range to adapt to the frequency of an incident photon. The
qubit frequency being simulated at ωq/2π = 5.8 GHz, the frequency difference with the
Purcell frequency is ∼ 5κPb/2π, which ensures a small enough qubit relaxation rate due
to this channel. All decoherence sources combined, the predicted qubit energy decay rate
is κq/2π ≈ 1 kHz, which would correspond to a qubit relaxation time T1 = κ−1

q = 160µs.
These values of course only correspond to the maximum T1 achievable for our design.
Compared to [Alb21], the addition of the buffer-side filter and the decoupling of the pump
line increase this limit by a factor of 6. This improvement was necessary to benefit from
the progress made possible by the new fabrication process developed in [Pla+21], with
relaxation times T1 longer than a hundred microseconds.



5.1.2.2 Non-linear simulation with the EPR method

The dispersive couplings are simulated using the Energy Participation Ratio method
[Min+21] briefly described here. This method applies when several microwave modes
are non-resonantly coupled to a Josephson junction, as is the case in our design. The
energy participation ratio pi of mode i into the junction is defined as the ratio between
the electromagnetic energy stored into the junction when mode i is excited and the total
energy stored in the mode. This quantity is interesting because it is directly accessible
from the linear simulations performed in HFSS, and because it then allows us to calculate
non-linear effects induced by the junction, namely the non-linear dispersive couplings.

The EPR method can be conveniently implemented by using the Python library pyEPR
provided and maintained by Z. Minev, Z. Leghtas and P.Reinhold.

The simulated parameters are summarized in Table 5.1 for both the linear and the
dispersive coupling terms. The term χqq is the anharmonicity of the qubit. Its value of
240 MHz is typical for a transmon qubit. The values of the cross-Kerr term χqb and χqw
respect well the condition χqbχqw ≪ κbκw.

Qubit
ωq/2π 5.81 GHz
χqq/2π 240 MHz
χqb/2π 3 MHz
χqw/2π 11 MHz
T1 160 µs

Buffer mode and filter
ωb/2π 7.31 GHz
κb/2π 1.2 MHz
ωPb/2π 7.31 GHz
κPb/2π 290 MHz

Waste mode and filter
ωw/2π 8.06 GHz
κw/2π 3 MHz
ωPw/2π 8.08 GHz
κPw/2π 230 MHz

Table 5.1: Table of the simulated parameters.

5.2 Fabrication process

In this section, we describe the SMPD fabrication process, with the guiding principle of
obtaining the longest possible relaxation time T1 for the transmon.

In the previous section, electromagnetic simulations showed us that the T1 value is
limited by design to 160us. However, till recently, it was impossible to obtain such a long
lifetime for 2D transmons. Indeed, T1 times did not improve much between 2012 when T1’s
around 100us were first reported [DS13], and 2020 when the best known T1 was 114us
[Ner+19].



A major fabrication innovation that occured in 2021 [Pla+21] allowed these authors
and their followers to obtain 2D transmons with a lifetime longer than 300 µs. These
results were obtained by using tantalum, grown in the α-phase, to form the ground plane
in which the resonators and capacitance of the transmon are made.

The authors of [Pla+21] state that this improvement results from the reduction of the
losses that take place at the metal-air interface of tantalum compared to those for other
traditionally used metals (aluminium and niobium). It seems indeed plausible that there
are fewer defects in the tantalum oxide, compared to other metal oxides, that could couple
with the qubit and induce decoherence. This explanation is in agreement with the work of
[Wan+22] that compares the T1 of transmons made on tantalum, aluminium and niobium.
Without surface treatment for removing the native oxide on the metal layers, tantalum
devices are consistently better. The value of 500 us obtained for T1 furthermore shows that
the limit of the material had not been reached in [Pla+21]. More recent works [Cro+23],
[McL+23] have carefully analyzed the loss channels and shown that although tantalum’s
performance is better, losses are still dominated by two-level-systems at interfaces.

Given these significant improvements, we decided to switch from an aluminum-on-
silicon fabrication process to a tantalum-on-sapphire one. This new fabrication process is
broken down into four steps: preparing the substrate, patterning the circuit, depositing
the junction, and reconnecting the aluminum junctions and the tantalum circuit using
bandage techniques [Dun+17].

As discuss above, the losses that limits transmon T1 are mainly due to the interfaces.
Therefore we pay particular attention to the cleanliness of surfaces by using aggressive
cleaning methods before each deposition step.

Substrate preparation and tantalum deposition: We start from a 2inch sapphire
wafer. Before metal deposition, the sapphire substrate is cleaned by dipping it in a 2:1
mixture of H2S04 and H2O2 during 20 min. The substrate is then loaded in a sputtering
machine. The tantalum is deposed on the sapphire at 600◦C in order to favor growth in
the α-phase. The thickness of the final tantalum layer is 60 nm. The wafer is then cut into
rectangular chips of 10 · 11mm2.

Circuit fabrication: Patterning of the circuit, shown in Figure 5.1, is achieved by
etching tantalum using a commercial tantalum etchant (Transene 111) through an optically
patterned AZ1518 resist mask. Given the etchant used is a mixture of of HF (33%) HNO3
(33%) and H2O (33%) is particularly aggressive for the mask [Pla+21], the choice of the
resist is critical. The chip is then cleaned by immersing it in successive baths: IPA, acetone
and 2:1 mixture of H2S04 and H2O2.

Junction deposition: The junctions are made of aluminum using the Dolan bridge
technique described in Figure 5.3. The mask is patterned using electron beam lithography
(at 30 kV) of a double layer PMMA (110 nm) - MAA (1100 nm) resist. The sapphire being
an insulator, using electron beam lithography requires the deposition of a conductive layer
(7 nm of aluminum here) at the top of the mask for evacuating charges.

After the exposure, this layer is first removed by immersing the chip in a KOH solution
(10g · L−1). The resist is then developed in a standard 1:3 MIBK/IPA mixture.

The MAA resist being more electron-sensitive than PMMA, the large undercuts needed
for suspending the Dolan bridge are obtained, as shown in (Figure 5.3a).

The chip is then loaded in an electron beam evaporator. The Dolan technique consists
of two depositions at opposite incidence angles (28◦ and −28◦). The two layers created
overlap over a well-defined area, controlled by the mask geometry. The overlap point
between the two layers defines the junction (final result shown in Figure 5.5d). The first
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Figure 5.3: Junction deposition with Dolan bridges (a) Top view of the junction mask
patterned in a double MAA/PMMA layer by using electron beam lithography. (b) Cross
section of a) according the dashed red line. The MMA being more sensitive, undercuts
appear below the PMMA layer. (c) First deposition of aluminum with an angle (28◦). (d)
Oxydation of the aluminum layer (yellow layer). (e) second evaporation with the reverse
angle (−28◦). (f) Lift-of the resist and oxydation caused by caused by the venting of the
sample.

aluminum layer is 35 nm thick and the second 65 nm thick (to step on the first layer).
Between the two deposition steps, the aluminum is oxidized during 5 min by injecting an
argon-oxygen gas mixture into the deposition chamber at a pressure of 10 mbar. Finally,
the resist mask is lifted-off by immersing the chip in an acetone bath.

a) b) c)

d) e) f)

Figure 5.4: Recontacting the junctions. (a) The junctions (blue) are separated of the
capacitor by a tantalum oxyde layer (yellow). (b) cross section of a), The green layer
represents photo-resist. (c) opening of windows in the resist overlapping the junction and
the capacitor. (d) Etching of the oxide with Ar+ flux. (e) evaporation of aluminum patches
(red) to connected the junction and the capacitor. (f) Lift-off of the resist.

Reconnecting the aluminum junctions: As depicted in Figure 5.4a, the junctions
deposited in the previous step are separated from the rest of the circuit by tantalum oxide
(TaO5). We now recontact the two layers with aluminum patches. This technique reduces
the capacitive losses induced by the insulating oxide layer [Dun+17] without damaging the



substrate in the junction vicinity. After coating the chip with an optical resist (Microposit
S1805), windows overlapping the junctions and the ground plane areas to be recontacted are
opened using optical lithography. The chip is then loaded in an electron-beam evaporator.
Tantalum oxide (covering the circuit) and aluminium oxide (covering the junctions) are
first etched by a an argon ion beam accelerated by a 500V voltage difference (ion milling
technique). A 100 nm aluminium layer is then deposited on the chip, without venting the
sample, covering the areas etched by the ion milling step (see Figure 5.4).

An example of device obtained following our process is shown in Figure 5.5. The
chip is then glued to a Printed-Circuit-Boarded (PCB), and all lines are connected using
aluminum wire bonding. This PCB is then placed in a sample holder designed by Marius
Villiers (collaboration between ENS Paris, ENS Lyon and CEA Saclay, see Figure 5.13).
During the course of this thesis, two SMPDs were produced. The first one, called SMPD1,
was used for the first demonstrations of sensitivity enhancement as well as for an ESR
experiment on a small spin ensemble[Bil+22]. It will be the subject of the next chapter.
The second,called SMPD2, was used for the detection of single spins [Wan+23].

a) b)

d) e)

c)

Figure 5.5: SMPD chip and junctions (a) Optical microscope image of the SMPD chip.
(b) Optical microscope image of the aluminium transmon qubit (bright structure) with
bandage patches on top of the tantalum capacitor (dark pink). (c) Optical microscope
image of the SQUID. (d) SEM image of the Josephson junction of the transmon qubit. (e)
SEM image of the SQUID Josephson junction.



5.3 Fabrication issues encountered

The development of the fabrication recipe presented in the previous section has been a long
process that requested the first two years of my thesis research. Developing a cleanroom
process is an extremely demanding task that requires a lot of work done with rigor and a
good dose of resilience.

These two years taught me a lot about the different nanofabrication techniques (lithog-
raphy, thin film deposition, etching, etc.) as well as how to identify a problem in the
process and how to solve it. I would not have succeeded without the support of Pief Orfila
and Sébastien Delprat, our cleanroom engineers, who trained me in the use of all the
machines and gave me a lot of advice on technical choices. I also want to thank Denis
Vion who got me out of more than one complicated situation thanks to his methodical and
rational approach of fabrication problems.

The first part of my thesis was a continuation of the work done by Emanuele Albertinale
on the Al/Si platform. I developed this fabrication over a period of 6 months, starting with
the implementation of the design modifications discussed in the section on Section 5.1.1.
However, after the publication of [Pla+21], we branched out to a Ta/Sapphire platform,
which implied a complete revision of the fabrication process.

In this section, I outline some of the difficulties I encountered in implementing this new
process and the solutions I found.

5.3.1 Circuit

The first part of the work consisted in redefining a functional recipe to design the SMPD
circuit in the new platform.

Circuit wet etching

The first difficulty was to find a resist that was sufficiently resistant to the Transene
111 used for the wet etching of tantalum.

At first I designed my masks in Microposit S1805 resist, (a common resist that forms
a 500 nm thick layer) by optical lithography. Despite the very short immersion time in
Transene 111 (20 s), the mask was often damaged, thus making the fabrication process
too unreliable. Some of these problems are shown in Figure 5.6. Recurrently, pieces of the
central track of the CPW lines were torn off. These tracks are the most fragile elements of
the mask because of their narrow width. The Transene made them fragile enough to break
from time to time (see Figure 5.6a,b).

a) b) c)

Figure 5.6: Wet etching issue (a) and (b), Removal of a track part of the line (red circle)
due to the destruction of the S1805 protective resist layer during the wet etching with
transene 111. Black part represents sapphire (c) Damaged tantalum layer (light pink) due
to the degradation of the resist.



The ground plane of the circuit was also sometimes damaged as shown in Figure 5.6c.

To solve these issues, we change the resist to the one used in [Pla+21], the Merck
AZ1518 resist. This resist is thicker than S1805 resist (1.8 µm vs 0.5 µm), which will better
protect the ground plane from possible transene infiltration. In addition, its adhesion is
better, which limits the risk of detachment.

The implementation of this new resist required a recalibration of the doses used to
pattern the mask. The energy sent by the optical lithography machine was increased from
40 mJ · cm−2 to 145 mJ · cm−2. These new masks proved to be much more robust, and
the problems experienced on the Figure 5.6 were no longer observed.

Inhomogeneity of the resist layer

Another issue encountered during this phase of circuit fabrication was the non homo-
geneity of the resist layer. The resist layer being spin coated on a rather small chip, the
edges of the sample have a much greater resist thickness than the center. Because of the
fluid back-flow imposed by the edge conditions of the chip, the edges thickness can be 2 or
3 times larger than to the nominal one. An overview of this inhomogeneity can be seen in
Figure 5.7b. In this optical picture of a resist-coated connecting line, the fringes visible at
the edges are due to a sharp increase in resist thickness.

This inhomogeneity is an important issue for the lithography process. Indeed, using
a similar dose on the whole chip would make patterns at the edge of the chip largely
under-exposed. This problem would affect the 4 lines used to connect the chip to the PCB.
The consequence of this under-exposure is shown on Figure 5.7. After development, a block
of resist that can remain on the chip protects the tantalum layer during the wet etching
step. The protected tantalum is not be etched and is present on the final circuit.

To overcome this limitation, we make a second optical exposure of the edges after
circuit exposure. An extra dose of 1000 mJ · cm−2 is applied on the connectors. This
additional step does suppress the poor etching of the connectors encountered before, which
made our fabrication significantly more reproducible.

a) b)

Figure 5.7: Poor etching of connectors. (a) Connector with un-etched area (red circle)
due to ineffective optical lithography. Black parts are sapphire, bright parts tantalum (b)
Connector with un-etched area under resist layer. The fringes near the edges show that
the resist is much thicker in this area, which explains the lithography problems.



5.3.2 Junctions

The second part of the development of the SMPD fabrication recipe was to develop a
reliable Josephson junction fabrication process on Sapphire.

The junctions are patterned by electron lithography in a PMMA/MAA double layer. As
the sapphire is an insulator, it is necessary, as already mentioned, to deposit a conductive
layer on top of the resist to evacuate the charges (in our case 7 nm of aluminum), which
makes the procedure slightly more complex but does not create any particular difficulty.
The real problem with the insulating nature of sapphire is that it is difficult to take
Scanning Electron Microscope micrographs of structures made on a sapphire chip. Indeed,
the charges accumulate during the observation and end up deflecting the beam, which
blurs the picture. To overcome this problem, a thin conductive coating (gold, aluminum,
etc.) could be deposited on top of the chip, as in electron lithography. However, this
technique has the double disadvantage of rendering the chip unusable for further testing
(for example, electrical testing of the junctions) and artificially increasing the size of the
observed structures.

This is why we first chose to refine our fabrication procedure on a SiO2 substrate with
properties rather similar to those of sapphire, but which allow us to make images and
lithography with an electron microscope without adding a discharge layer.

Optimization on SiO2

a) c)

b) d)

Figure 5.8: Optimization on SiO2 substrate. (a) Initial design of the transmon junction
and doses for the electron lithography. Blue rectangles represent the low exposure areas
(50µC · cm2) needed to increase the undercut. Red rectangles show the high exposed zone
(400µC · cm2) (b) SEM image of the result obtain after development and evaporation under
angles (±29.6◦). the black haze is caused by the evaporation of the aluminium on the
resin walls. The undercut is not sufficient. (c) corrections to the design. The undercut
is increased near the junction,the drawing is rotated 180 degrees and the length of the
junction arm is reduced. (d) SEM image of the result obtains after evaporation.

Optimization on SiO2 substrate



The qubit junction which is the smallest element of the device presented the most
difficulties in fabrication. We use it here to illustrate the problems encountered and the
solutions found. These solutions are directly applicable to the SQUID junction.

The design (as well as the recipe) of the transmon junction presented in Figure 5.8a is
inherited from the work carried out by Emanuele Albertinale. The red parts of the scheme
correspond to the highly exposed areas used to cut the PMMA chains. The blue parts
correspond to less exposed areas that that increase the undercut region defined in the
MAA under the PMMA (see Figure 5.3). The bottle opener shape and the T-shape have
been chosen during Emanuele Albertinale thesis work in order to improve the fabrication
reliability.

The first junction made on Si02 is shown in figure Figure 5.8b, and two problems
already appear. First, the undercut under the PMMA is insufficient, and the aluminium
depositied at an angle touches systematically the resist and causes the black veil visible on
the SEM micrograph. Another difficulty shown on the photo is the short-circuiting of the
junction by the thin aluminium wire starting from the top of the T. This defect appears
more randomly.

distachement lift-off issue

a)

b) c) d)

e)

Figure 5.9: Optimization of the junctions design (a) Design after undercut optimi-
saition. colors correspond to the same dose as Figure 5.8. (b) optical image of the resist
mask. The red circle shows the resist rectangle forming the bottle opener torn from the
structure. (c) result after the evaporation whith the damaged mask b). (d) lift-off issue
for non-damaged mask. (e) Improvement made on the design. The bottle-opener shaped
structure is open to make it more resistant and easier to lift-off.

To solve the undercut problem, we increased the voltage of the electron gun from 25kV



to 30kV for enlarging the undercut, and we reduced slightly the deposition angle from 29.6◦

to 28◦. In addition, we added more undercut areas (in blue on the figure Figure 5.8c).

We also made some changes on the design in order to make the fabrication process
more reliable. The arm carrying the T has been shortened and thickened to reduce the
risk of line interruption. The side arms of the bottle opener have also been thickened for
the same reason. Finally, the size of the T-bar was reduced, which reduced the probability
of short-circuiting.

The final result after these optimizations is shown on Figure 5.8d.

Another recurring problem was the fragility of the resist mask. As shown on Figure 5.9a
the rectangle of resist making up the center of the bottle-opener may pull away, which
then results in an unusable junction (Figure 5.9b). After our actions to increase the size of
the undercut, this part of the resist mask became too weakly attached to the substrate.
In addition, even in the case when this rectangle sticked to the chip, the lift-off step after
evaporation under angle was problematic as shown on Figure 5.9c.

The solution was to open the bottle-opener as shown on Figure 5.9d. This new design
makes the structure more robust by connecting it to a large resist plane. In addition, the
lift-off is also simplified since the structure is no longer independent and lifts off with the
rest of the mask.

Junction fabrication on Sapphire

The design from the previous paragraph was then transferred to sapphire. The exposure
doses had however to be increased compared to those on SiO2 (Figure 5.10, red: 400µC · cm2

→ orange: 570µC · cm2).

The major difficulty encountered was the systematic occurrence of short circuits caused
by aluminum wire connecting the two sides of the junctions (see Figure 5.10h).

In order to understand what the problem was, we made SEM micrographs of the
MAA/PMMA mask by depositing a thin gold layer on the resist (Figure 5.10e). it appeared
that the mask was torn. The shape of the tear suggested that the mask had been stretched
on both sides of the junction until it broke.

We first tried to strengthen the bridge by stopping to expose the gap between the T
and the bottle opener (removing of the blue box dosed at 50µC · cm2). This forced us to
reduce the gap from 500 nm to 350 nm in order to still have a suspended bridge without
additionnal exposure. This made the fabrication a little more reliable, but short circuits
still occurred randomly.

The decisive change was to relax the stresses on the junction mask by piercing the resist
on both sides. This is the purpose of the the bars added to the design on Figure 5.10b. As
shown on Figure 5.10f, this modification solved the problem of the mask cracking in the
vicinity of the junction but added another fragility between the bar and the structure (red
circle). This additional issue was resolved by removing the useless low exposure zone (blue
box) between the bar and the structure.

The junctions of the SQUID have benefited from all these innovations. A schematic of
the SQUID design with the undercut boxes is shown in Figure 5.11a. SEM micrographs of
the resist mask are shown on Figure 5.11b,c. This optimization process carried out initially
on SiO2 and then on sapphire lasted 6 months but resulted in a stable process.
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Figure 5.10: Transmon junctions shorted on sapphire, identification and improve-
ment. (a),(b) and (c), successive improvement of the design. Orange rectangle correspond
to a dose of (570µC · cm2). (d), (e) and (f), SEM image of the corresponding resist mask.
Red circles show the tearing of the mask. (h) SEM image after evaporation under angles
±28◦. (i) SEM image after evaporation under angles ±28◦

a) b) c)

Figure 5.11: SQUID junctions optimisation. (a) Design of the SQUID and doses for
the electron lithography. Dark orange rectangle correspond to 390µC · cm2, blue rectangle
correspond to 50µC · cm2. (b) and (c), SEM micrographs of the mask resist, without visible
cracks.



5.4 Setup

In this section we will describe the setup used for characterizing SMDPs. The measurements
are performed by placing the sample in a dilution cryostat manufactured by the Finnish
company Bluefors. The refrigerator consists of several stages at different temperatures and
protected from radiation by a screen. The detector will be placed in the lowest stage at 10
mK. The microwave pulses are generated by commercial instruments at room temperature.

5.4.1 Microwave shield and Infra-red filters

The SMPD chip is glued and wire-bonded on a PCB integrated in a copper sample holder.
This sample holder, called JAW and shown on Figure 5.13, has been designed by Marius
Villiers. Once closed, the box modes of the formed cavity are well above 10 GHz, which
avoids spurious couplings with the detector modes. The sample holder is then placed in a
box consisting of a succession of three screens (copper, µ-metal, aluminum see Figure 5.12).
The copper screen, in contact with the other screens, allows the aluminum to be uniformly
thermalized and to form a low temperature superconducting Faraday cage. The µ-metal
prevents vortex formation during the transition from the normal to the superconducting
state of the aluminum screen. The sample holder is screwed onto a copper frame inside
the box to ensure its thermalization. The red cylinders on Figure 5.13 are infra-red filters
directly embedded in the box. Their role is to minimize the generation of out-of-equilibrium
quasi-particles that contribute to the dark count rate.

The connection to the outside is ensured by SMA connectors. Four lines are used for
the buffer, its SQUID, the waste and the qubit.

This device was designed entirely in our laboratory by Emmanuel Flurin, Miloc Rancic
and Pascal for the new JAWS sample holders.

Figure 5.12: Microwave shield Explode view of the microwave shield used in the
experiment. The sample holder is screwed on the copper chip-holder (copper frame)



Figure 5.13: Microwave packaging The SMPD chip is glued and wire-bonded in the
sample holder (called JAWS). The JAWS is screwed on a copper frame and put in a
3-screen shield (cooper, µ-metal, aluminium).

5.4.2 Microwave setup

The SMPD has four inputs (buffer, waste, SQUID, qubit), each one connected to a
microwave line composed of a room temperature part and a low temperature part. The signal
generation and acquisition is performed at room temperature, and filtering, attenuation or
amplification is performed at low termperature. A complete description of the microwave
setup is shown in Figure 5.14.

The electronic devices used to define the shape of our pulses (square envelope, Gaussian
...) convert analog signals into digital signals and vice versa. Given these devices rarely
have a bandwidth higher than 200 MHz, we thus resort to heterodyning methods for
reaching the operating frequency range. We modulate/demodulate signals from microwave
local oscillators using IQ mixers, with I and Q the name of the two signals that will be
mixed to the high frequency tone defined as ωLO. We operate in an heterodyne mode, i.e.
the modulation signals I and Q themselves oscillate with an intermediate frequency ωIF.
This gives rise to two side-bands at frequency ωLO − ωIF and ωLO + ωIF surrounding the
initial local oscillator frequency ωLO.

The modulation signals are deliverd by a Quantum Orchestration Platform (QOP
see Figure 5.14) designed and manufactured by Quantum Machine which acts as a pulse
generator of analog and digital signals. The signal acquisition is realized by the same
device. The QOP is based on a Fast Programmable Gate Array (FPGA), fast enough for
implementing short feedback time protocols.

5.4.2.1 Buffer line, SMPD input

Line 2 on the Figure 5.14 corresponds to the input of the detector. It is used both to
characterize the parameters of the buffer resonator (ωb, κb) and to calibrate the detector
efficiency by sending a well controlled number of photons.

The input signal is generated by IQ mixing of a Vaunix Labbrick source. The interme-
diate frequency chosen is ωIF/2π = 100 MHz, which is sufficiently large compared to the
bandwidth of the detector (∼ κb/2π ) to avoid the triggering of the dark count by photons
at the frequency of the unwanted sidebands.

The signal is then routed into the fridge. The line is heavily attenuated at 10 mK (-60
dBm) in order to reduce as much as possible the number of thermal photons per mode as
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discussed in Section 4.4.3. The remaining signal is routed to the SMPD with a circulator
and will trigger a click if we operate the detector.

On the contrary, if we want to perform a reflective measurement of the buffer resonator,
the reflected signal is routed to the line 1 through the circulator and amplified with a
High Electron Mobility transistor (HEMT) thermally anchored at 4K. In this case, a VNA
connected to the lines 1 and 2 measures the S11 parameter.

Under normal SMPD operating conditions, line 1 is closed with a 50Ω load and the
HEMT is disconnected. The two doubles circulators and the KNL band-pass filter ensure
that hypothetical thermal photons from the upper stages of the fridge are dissipated before
causing a dark count.

5.4.2.2 Waste line, dispersive qubit readout

The waste resonator is used to dispersively readout the qubit state. The microwave tone
coming from an Anritsu source is split to generate the readout pulses via IQ mixing, and
to demodulate the signal reflected by the cavity.

The readout pulse is routed through the line 4 to the waste resonator via a double
circulator. The reflected signal collected is first amplified with a Traveling Wave Parametric
Amplifier (TWPA) provided by Will Oliver from MIT-Lincoln Labs. This kind of amplifier
is intensively used in circuit QED experiments for their high gain and quantum-limited noise.
The line 5 is used to send the microwave pump tone needed to trigger the amplification. An
additional cryogenic amplification is realized with a commercial HEMT. Then the signal is
routed through the line 6 to the demodulating mixer.

The I and Q quadrature are acquired by the QOP after a final amplification. I and Q
are related to the field quadratures of the coherent pulse sent on the resonator, ⟨X̂⟩ and
⟨Ŷ ⟩ (defined in Section 3.4.2) through the relation: I + iQ =

√
G(⟨X̂⟩+ i⟨Ŷ ⟩)eiϕ G being

the amplification factor of the full chain.

5.4.2.3 Qubit line, pump and qubit control

Line 7 has two functions. One is to transmit the pump tone at frequency ωp to trigger the
four-wave mixing, and the other is to send resonance pulses to the qubit at frequency ωq
(e.g. to reset the qubit). Therefore, two mixers with two different microwave sources are
used, with the two lines recombining just before the fridge input.

The pump signal is generated by IQ mixing on a Rohde&Schwarz source. A 20 dB
amplifier is placed just after the mixer, because, since the pumping is non-resonant, the
power level needed to trigger the four-wave mixing is high. The role of the 70MHz band-pass
filter after the amplifier is crucial for preventing spurious side band resonances to generate
unwanted mixing at other frequencies. The intermediate frequency is set at 200 MHz in
order to push these side-band to 3 times the filter bandwidth for a decent attenuation.

The qubit control pulses (frequency ωq) are generated by a single side-band mixer and
routed to the fridge via a band pass filter.

In order to minimize heating of the low-temperature stage by the strong pump signal,
the attenuation of the line needed at 10 mK is performed with a 30 dB directional coupler
that routes most of the pump power towards the 100 mK stage where it gets easily
dissipated.

5.4.2.4 SQUID line, adjustment of the buffer frequency

Line 3 is a dc flux bias line for tuning the SQUID inductance that controls the frequency
ωb of the buffer resonator. The current is delivered by a voltage source in series with a 1.5
kΩ resistor. A 230 µF capacitor in parallel filters the spurious high frequency parasitic



signals. The different low temperature filters play the same role. The line is connected to
the on-chip flux line providing the magnetic flux in the SQUID loop.



Chapter 6

SMPDs full characterisation

In this section, we characterize in detail the performances of the SMPD1 which was the
first functional detector. We also briefly give the characteristics of the SMPD2.

The characterisation of the detector implies an accurate measurement of its components.
The first part of this chapter aims at determining the different parameters of the resonators
(resonance frequency, losses) and of the qubit (frequency, coherence time, etc.).

We then describe the four-wave mixing process obtained by applying a non-resonant
pump tone to the qubit at frequency ωp/2π. The cooperativity C is adjusted with the pump
amplitude. The bandwidth of the detector is measured and compared to the two-coupled
cavity model given by Equation 4.53.

We then introduce the cyclic operation of the detector. The precise characterization of
the incoming flux of photons with Equation 3.92 allows us to extract the overall efficiency.
The dark count study completes the analysis and gives access to the noise equivalent power
of the detector.

Finally, we analyse the dark count more in detail by isolating the contribution αth
due to the finite temperature of the line. For this pirpose, we measure the dark count
rate, the qubit T1 and the equilibrium excited state population peq in function of the
temperature. We show that the thermal dark count rate follows the Johnson–Nyquist
relation αth = n̄bηdκd

4 as detailed in Section 4.4.3.

6.1 Characterization of chip elements

6.1.1 Resonators SMPD1

In this section the waste resonator, the buffer resonators and their Purcell filters are
characterised by reflectometry with a Virtual-Network-Analyser (VNA).

6.1.1.1 Waste resonator

The reflection coefficient S11(ω) of the waste resonator is measured by connecting the VNA
to inputs 4 and 6 of Figure 5.14.

The results of the measurement are shown on Figure 6.1. The S11(ω) argument
measured over a large frequency range (Figure 6.1a) shows a 2π-shift corresponding to the
Purcell filter, and a narrower one narrower phase-shift around 7.7 GHz due to the waste
resonator itself. A fit (orange line) of the data using the formula of the reflection coefficient
Equation 3.48 allows us to extract the width κPw ∼ 180 MHz and the resonance frequency
ωPw/2π = 7.62 GHz. Note that the filter frequency is shifted from its simulated value by
∼ 380 MHz. We attribute this shift to a slight difference between the estimated tantalum
layer thickness and the actually deposited one, leading to a wrong estimation of the kinetic
inductance. This issue has been corrected for the SMPD2.

91
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Figure 6.1: Waste resonator characterization. (a) Phase of the S11(ω) reflection
coefficient. The Purcell filter appear as the large 2π shift. The waste resonator appears
as a much narrower resonance aligned with the filter. Phase (b) and amplitude (c) of the
S11(ω) reflection coefficient centered around the waste resonator.

The Figure 6.1b and Figure 6.1c show the amplitude and the argument of the reflection
coefficient zoomed around the waste resonance frequency. A fit (orange line) allows
to extract the resonance frequency ωw = 7.704 GHz, shifted by 300 MHz compared
to the simulation. The coupling losses κwext/2π = 1.72 MHz and the internal losses
κwint/2π = 0.11 MHz are also obtained. The resonator is over-coupled, as required for the
operation of the SMPD.

6.1.1.2 Buffer resonator

The reflection coefficient S11(ω) of the buffer resonator is measured using the lines 1 and 2
shown on Figure 5.14.

As for the waste side, we first characterize the Purcell filter by measuring S11(ω) over
a large frequency range. The figure Figure 6.2a and Figure 6.2b show the phase of the
reflection coefficient for two different fluxes applied in the SQUID loop, namely Φ = 0
and Φ = 0.25 · Φ0. A fit allows to extract the value of the bandwidth κPb/2π ∼ 84 MHz
and the resonance frequency ωPb/2π = 6.824 GHz of the filter. Note that the resonance
frequency is again shifted compared to the simulation, here by ∼ 500 MHz . The Purcell
filter coupling to the line is 3 times weaker than expected leading to a thinner bandwidth.
This may be due to an impedance mismatch that could be due to a bad bonding wire
between the chip and the PCB.

The two configurations of the buffer resonator corresponding to the reflection mea-
surements shown in Figure 6.2a,b respectively correspond to ωb(0)/2π = 6.979 GHz (no
flux applied in the SQUID), and to the buffer resonator tuned with its Purcell filter,
ωb(0.25Φ0) = 6.824 GHz. The red and black stars depict these two configurations across
the figure.

The Figure 6.2c,d show zooms around the two buffer resonator positions. The frequency
range is fixed at 3 MHz in both cases, and a sizeable effect of the detuning with the Purcell
filter is clearly visible. The parameters (frequency and bandwith) are extracted using the
usual fitting procedure, yielding to the orange line best fits.

The Figure 6.2e shows the evolution of the buffer frequency as a function of the magnetic
flux applied to the SQUID Φ, shifted by the initial flux present in the loop Φvortex = −0.11Φ0.
The data are fitted with Equation 3.60 in order to extract the participation ratio p = 0.13
and the maximum frequency ωb(−Φvortex)/2π = 7.005 GHz.

The Figure 6.2 represents the coupling and the internal losses of the buffer resonator



0.1 0.2 0.3
( vortex)/ 0

1

2

3

4

b
(M

H
z)

bext

bint

6.6 6.8 7.0
frequency (GHz)

2

0

2

a
rg

(S
1
1
) 

(r
a
d
)

6.6 6.8 7.0
frequency (GHz)

2

0

2

a
rg

(S
1
1
) 

(r
a
d
)

6.9769 6.9790 6.9811
frequency (GHz)

2

0

2

a
rg

(S
1
1
) 

(r
a
d
)

6.9769 6.9790 6.9811
frequency (GHz)

69

71

73

75

|S
1
1
| 
(d

B
m

)

6.8249 6.8270 6.8291
frequency (GHz)

2

0

2

a
rg

(S
1
1
) 

(r
a
d
)

6.8249 6.8270 6.8291
frequency (GHz)

69

71

73

75

|S
1
1
| 
(d

B
m

)

Figure 6.2: Buffer resonator characterization. (a) and (b) Phase of the S11 reflection
coefficient. The Purcell filter appear as the large 2π shift. The buffer resonator appear
at two different frequency ωb(Φ) (red and black stars) according to the chosen value of
the flux Φ. Red star represents the buffer aligned with its Purcell. Black star corresponds
to the operating point chosen for the SMPD characterisation. (c) and (d), phase and
amplitude of S11 according to the buffer position. The graphs are centred around the
resonance frequencies. The frequency range is the same in both cases. (e) Resonance
frequency of the buffer corresponding to the magnetic flux inside the loop shifted by the
initial flux caused by the vortex trapped (Φvortex = −0.11Φ0). The red and black stars
show the position of the resonance frequencies studied above. (f) Coupling and internal
losses of the buffer resonator as the function of the magnetic flux. Outliers are due to fit
errors. Solid line is a fit with Equation 7.28.



as the function of the shifted magnetic flux Φshift = (Φ− Φvortex)/Φ0. The coupling losses
κbext(Φshift)/2π reach a maximum (∼ 3 MHz) when the frequency of the resonator is tuned
with the Purcell filter. A fit realized with the Purcell formula Equation 7.28 allows us to
confirm the bandwidth value extracted from the reflection coefficient and to estimate the
coupling strength between the resonators at g ≈ 75 MHz.

We can note from these data that the maximum value of κb/2π is ∼ 3 MHz which is
larger than the simulated value. This is due to the finer width of the Purcell filter (84
MHz measured vs. 300 MHz simulated), which yields to a greater coupling between the
line and the buffer resonator.

An important feature to bear in mind for what follows is that the bandwidth of the
buffer resonator depends on its frequency. It will therefore be also the case for the SMPD
bandwidth. All the resonator parameters are summarized in Table 6.1.

6.1.2 Qubit SMPD1

In this section we describe the different experiments allowing to extract the transmon
qubit parameters (frequency, coherence time). Most of these experiments use the dispersive
readout of the qubit described in Section 3.4.2. Contrary to previous work realised by
Emanuele Albertinale [Alb+21], we use the waste resonator for this task. This is a logical
choice as the strong coupling of the waste to the transmission line allows for short readout
times. Furthermore, unlike the buffer resonator, the frequency and bandwidth of the waste
resonator are fixed, which simplifies the readout characterization. Finally, using the buffer
resonator could heat up the microwave line attenuator, which would generate unwanted
spurious counts.

6.1.2.1 Two-tone spectroscopy

The first step in characterizing the transmon qubit is to measure its spectrum. The
experiment realized, named "two-tone spectroscopy", is described in Figure 6.3a,b. The
principle is to probe the resonator coupled to the qubit with a resonant fixed frequency
tone. The reflection coefficient is continuously monitored.

A second tone at frequency ω/2π is sent to the qubit through the pump line, its
frequency is swept around the qubit frequency. When the frequencies match (ωq = ω), the
qubit gets excited, and the resulting shift of the resonator frequency affects the reflection
coefficient.

The result of a readout experiment performed on the waste side is shown on Figure 6.3c.
The phase of S11(ωw), is plotted as the function of the frequency of the tone applied on
qubit. The main dip at ω/2π = 6.184 GHz corresponds to the qubit frequency when no
photons are present in the resonator. The secondary dip corresponds to the qubit frequency
when 1 photon is presents on the resonator.

The frequency difference between the two peaks corresponds to the dispersive shift
χqw/2π = 18.8 MHz.

This experiment realized on the buffer side (Figure 6.3d) yields, as expected, a smaller
dispersive shift χqb/2π = 5.2 MHz. On these data, the qubit frequency with two photons
in the resonator is also visible.

The measured qubit frequency is about 500 MHz higher than predicted in the simulation.
This deviation is due to a poor determination of the junction area and of the critical current
density, to be corrected for the SMPD2.

The frequency difference with the resonators is therefore smaller than expected, which
increases the value of the dispersive coupling compared to the simulation. However, this is
not detrimental to the performance of the detector since a stronger coupling between the
resonators and the qubit allows us to reduce the pump signal needed for the four-wave



Figure 6.3: Qubit two-tone spectroscopy. (a) and (b), principle of a two-tone spec-
troscopy. A tone is shined on the qubit through the pump line, while the S11(ωr) of the
coupled resonator is acquired continously. When the frequency of the qubit drive matches
the qubit frequency, the frequency of the resonator is shifted which leads to a modification
to S11(ωr). (c) Two-tone spectroscopy realized with the waste resonator. The frequency of
the microwave tone sent to the qubit is plotted as the function of the phase of the reflection
coefficient. The first peak corresponds to the qubit frequency with 0 photon in the waste
resonator. The cross-Kerr χqw/2π is the difference between the qubit frequency at 0 and 1
photon. (d) Two tone spectroscopy with the buffer resonator. χqb/2π is measured in a
similar way.

mixing. Moreover, the qubit frequency remains sufficiently distant from that of the buffer
and the waste to consider that the dispersive regime approximation holds.

6.1.2.2 Qubit readout

In this section, we characterize the single-shot readout of the qubit performed with the
waste resonator. As described in Section 3.4.2, a single-shot readout sequence detects the
resonator frequency change controlled by the qubit state. A weak 500 ns long microwave
pulse is sent to the waste resonator at the frequency (ωw − χqw)/2π. When the qubit is in
its ground state |g⟩, the pulse is reflected without phase shift. When the qubit is in its
excited state, the pulse is resonant, and is therefore reflected with a π phase shift.

The microwave readout signal is generated via IQ mixing. After the reflection by the
cavity, it is demodulated and represented in the IQ plan. The position of the signal in the
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Figure 6.4: Qubit readout. (a) 2D Histogram showing the position on 105 qubit
measurements in the I,Q plane. No pulses is applied to the qubit before the measurement.
The dashed white line represents the threshold chosen to assign the result of the measure
(ground or excited state). (b) same measurement with a pi-pulse applied on the qubit
before the readout. (c) and (d) normalized histogram showing the projection of the above
graphs on the I axis.

IQ plane gives the phase of the reflected signal difference, which allows us to identify the
qubit state. A high fidelity single-shot readout is made possible by the use of a Traveling
Parametric Wave Amplifier (TWPA) which amplifies the signal with a minimum of noise
added.

Figure 6.4 shows the histograms of 105 measurements in the IQ plane when no control
pulses are applied on the qubit (Figure 6.4a) and when a π-pulse is applied just before
readout (Figure 6.4b). The distributions are centered around 2 values corresponding to the
qubit states |g⟩ and |e⟩. The Figure 6.4c,d represents the projection of the 2D histograms on
the I axis. One notices that, for the qubit at equilibrium without preparation pulse applied,
a small fraction of the readout outcomes indicate the qubit in its excited state. This
fraction is the equilibrium population of the qubit peq. On the contrary, when a π-pulse is



applied the qubit is predominantly found in its excited state, but can also be found in its
ground state due to pulse imperfections or qubit relaxation. These imperfections limit the
efficiency ηm associated to the qubit measurement .

In order to assign a state to a measurement, one defines a threshold separating
measurements corresponding to the two states (white dashed line on the figure). The
choice of this threshold depends on the specific use of the qubit. In our case, the objective
is to maximize the sensitivity of the detector proportional to

√
α/η. In terms of readout,

this means that the threshold should maximize the ratio √peq/ηm. This optimization
yields the threshold shown on Figure 6.4 and corresponding to I = 4 · 10−3 mV. With this
setting, we obtain: ηm = 0.77 and peq = 2 · 10−4. This record equilibrium population is 2
orders of magnitude lower than the one of [Alb21]. We attribute this improvement to the
new microwave shielding installed and to a more careful filtering of the lines, including
the infrared filters. A lower peq yields a lower darkcount rate αqubit, and thus a better
sensitivity.

6.1.2.3 Qubit time domain characterization

In this section, we describe the various time-domain experiments needed to fully characterize
the qubit coherence times.

The first experiment shown on Figure 6.5a is a measurement of Rabi oscillations. A
microwave pulse of frequency ωq/2π is sent to the qubit via the pump line. The pulse
duration is fixed at Trabi = 500 ns, and the pulse amplitude is swept. A dispersive readout
of the qubit is then performed immediately after the Rabi pulse. The repetition of the
experiment allows to extract the excited population pe for each pulse amplitude.

Figure 6.5: Qubit characterization. (a) Rabi oscillation. The pulse duration Trabi = 500
ns is fixed while the pulse amplitude is swept, resulting in an increase in the Rabi frequency.
This sequence is used to calibrate the π-pulse. Blue dots are data, orange line corresponds
to the fit used to extract the Rabi frequency (b) Relaxation time T1 = 37µs of the qubit.
A π-pulse is applied and the time before the readout is swept. (c) Ramsey experiment.
Two π/2-pulses are applied with different time between them. The decay of the Ramsey
fringes gives the qubit decoherence time T ∗

2 = 56µs



The data are then fitted with a cosine function in order to extract the value of the
amplitude corresponding to a π-pulse.

Once the π-pulse is well calibrated, we measure the qubit relaxation time T1. The
corresponding sequence is shown on Figure 6.5. A π-pulse is applied on the qubit followed
by a readout separated from the pulse with a variable time T . The excited population pe
decreases exponentially from its maximal value to its equilibrium peq. The characteristic
time T1 = 37µs is extracted from an exponential fit (orange line).

Another important figure of merit of a qubit is its coherence time T ∗
2 . Although

the coherence time is important for qubit performance, it only weakly affects SMPD
performances. It is measured thanks to a Ramsey sequence as shown in Figure 6.5c. A
two π/2-pulse sequence with a slight detuning (200 kHz) and with a variable time delay
T is applied to the qubit. A qubit readout is performed immediately after the second
pulse. Between the two pulses, the qubit evolves freely on the Bloch sphere equator, and is
subject to decoherence.

As shown on Figure 6.5, the excited state population pe oscillates with T at the detuning
frequency, and the envelope of the oscillations decays. An exponential fit of this decay
yields the coherence time gives T ∗

2 = 56µs. Moreover, the measurement of the Ramsey
detuning provides an accurate determination of the qubit frequency.

Qubit
ωq/2π 6.184 GHz
α/2π ∼ 240 MHz
χqb/2π 5.2 MHz
χqw/2π 18.8 MHz
T1 ∼ 37µs
T2 ∼ 56µs
peq ∼ 2 · 10−4

Buffer mode top of arch unbiased at resonance
ωb/2π 7.005 GHz 6.979 GHz 6.824 GHz
κbext/2π 0.152 MHz 0.172 MHz 2.95 MHz
κbint/2π 0.100 MHz 0.028 MHz nc

Waste mode
ωw/2π 7.704 GHz
κwext/2π 1.72 MHz
κwint/2π 0.11 MHz

Purcell modes
ωPb/2π 6.824 GHz
κPb/2π 84.2 MHz
ωPw/2π 7.620 GHz
κPw/2π 180 MHz

Table 6.1: Table of the experimental parameters SMPD1.



6.1.2.4 Qubit reset

As described in the Section 4.4.1, a key step of the SMPD cycle is the ability to quickly
reset the qubit in its ground state. This allows the detector to be reset after the detection
of a photon without waiting for the natural relaxation of the qubit, i.e. a few T1. The
qubit reset also plays a role in reducing the dark count rate by placing the excited state
population below its equilibrium value.

Our reset protocol is described in Figure 6.6a. A qubit readout starts the sequence. If
the qubit is in its excited state, a while loop starts, composed by a π-pulse (to put it back
in its ground state) followed by a readout measurement. The exit condition of the loop is
to measure the qubit in its ground state.

The experience presented in Figure 6.6a,c is a "reset and wait" measurement. The
reset protocol is followed by a qubit readout after a variable time T . The results shown in
Figure 6.6c confirm that the reset is functional. The qubit is placed out-of-equilibrium with
an excited population preset = 8 · 10−5. Then, it relaxes through its equilibrium population
with the characteristic time T1.
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Figure 6.6: Qubit reset (a) Schematic of the reset and wait sequence. A qubit readout
starts the sequence, if the qubit is in the excited state, π-pulses are applied until the qubit
is measured in its ground state. A final readout of the qubit is realized after a time T .
(c) Result of the reset and wait sequence. The qubit relaxes from its reset population
preset to its equilibrium population peq with the characteristic time T1. (b) Readout
histogram measurement sequences with and without reset. (d) Histogram representing the
qubit measurement in its natural qubit state (no pulses applied) and after a reset. The
measurements give peq = 2 · 10−4 and preset = 1 · 10−5.



Another way to judge the quality of our reset is to directly compare the preset with peq.
We first perform a succession of qubit measurements spaced by 300 µs (enough time for the
qubit to be at equilibrium). In a second step, we perform the same experiment but with a
reset just before the readout. The normalized histograms of these two measurements are
presented in Figure 6.6d.

These data yield preset = 1 · 10−5. Again, this value is lower than the previous SMPD
version where preset,old = 1 · 10−3.

6.2 Four-wave mixing

In this section, we describe the experiments required to set up the 4-wave mixing process.
First, we adjust the cooperativity by varying the pump amplitude. Then we fine-tune
the pump frequency to precisely meet the 4-wave mixing condition Equation 4.30. The
bandwidth of the detector is then estimated using the two coupled cavity model.

6.2.1 Pump tuning

The first experiment consists in finding the conditions for triggering the 4-wave mixing.
The sequence used is described in Figure 6.7a. A coherent tone at frequency ωb/2π
illuminates the buffer resonator while a non-resonant pump tone is applied to the qubit.
The microwaves are activated for 10 µs, then the qubit is measured. the blocks are separated
by 500 µs. The incident photon flux on the buffer Pin = 0.075 photon·µs−1 is calibrated
using the method described in Section 3.4.3. The details of this calibration are given in
Section 6.3.1.

The frequency and the amplitude of the pump are swept in order to find the relevant
parameters. The results of the experiment are shown in Figure 6.7b. The qubit excited
population pe is represented with a color map as the function of the pump amplitude and
frequency. The bright zone, corresponding to a high pe, indicates that a transfer occurred
between a buffer photon and qubit excitation.

The four-wave mixing zone is not only depending on the pump frequency. Indeed, The
higher the pump amplitude and the lower the frequency triggering the mixing. This is
caused by the qubit Stark shift due to the pump. Quantitatively, this effect is represented
by the term 2|ξp|2χqq in the four-wave mixing condition (see Equation 4.30).

A cross section of the color map along the dashed white line is shown in Figure 6.7c.
This provides a representation of the conversion efficiency η4wm as a function of the pump
amplitude. The maximum of this curve corresponds to the optimal cooperativity. The
black vertical line represents our choice for the rest of the experiment. We deliberately
place ourselves slightly below the maximum in order to reduce the power sent to the chip,
which mitigates the spurious false positive readouts due to chip heating or uncontrolled
parametric conversion.

The fit represented by the orange line uses the expression of η4wm in presence of
losses given in Equation 4.67. Taking into account the values κbext/2π = 0.172 MHz and
κbint/2π = 0.028 MHz (see Table 6.1), the cooperativity which maximizes the efficiency
is C = 1.16. The fit gives C = 0.9 for the chosen pump amplitude (vertical black line).
However, as can be seen on Figure 6.7d, our model does not adequately capture the
behavior of the 4-wave mixing process at larger cooperativities, which suggests that our
model is imperfect.

Several factors may contribute to this inadequacy. For instance, the qubit population
can be excited by processes other than 4-wave mixing at large pump amplitude. In addition,
our model for the efficiency is valid insofar as the pump frequency is perfectly tuned. In
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Figure 6.7: Four-wave mixing (a) Schematic of the four-wave mixing experiment. A
pump tone is shined on the qubit while a weak coherent tone is applied on the buffer
resonator. The frequency and the amplitude of the pump are swept. (b) Color plot of the
qubit excitation probability pe as the function of the pump frequency and amplitude. A
high probability indicates that a buffer photon has been converted into an excited state of
the qubit. (c) Cross section along the dashed white line (ωp/2π = 6.8855 GHz). Blue dots
are the data, the orange line represents the fit using Equation 4.67. Solid black line is the
chosen pump amplitude.

order to more precisely determine the cooperativity corresponding to the chosen pump
amplitude, we use a model of two coupled cavities in the next section.

6.2.2 Detector bandwith

In this section, we use a coupled two-cavity model to extract the key parameters of
the four-wave mixing (optimal pump frequency, cooperativity) as well as the detector
bandwidth.

The experiment is schematically described in Figure 6.8a. The amplitude of the pump
tone is now fixed (as set by the previous experiment), whereas the pump frequency ωp/2π
and the coherent tone frequency ωb/2π are respectively swept around ωb/2π = 6.982 GHz
and ωp/2π = 6.885. The incident flux of photons is similar to the one of Section 6.2.1. A
qubit readout follows the four-wave mixing.

The variation of the qubit excited population pe with the pump and photon frequency
detuning is shown in Figure 6.8b using a color map. The brightest part, corresponding to
the highest value of pe, shows the frequency conditions for optimal conversion.
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Figure 6.8: Bandwidth and operating point from the coupled cavity model. (a)
Schematic of the experiment. For a given pump amplitude, the pump and the coherent tone
frequencies are scanned. (b) Color plot of qubit excitation probability pe as the function
of the pump and coherent tone frequency. High probability indicates photon conversion.
(c) Fit of the color plot with Equation 4.53. The extracted parameters are: the detector
bandwidth κd/2π = 0.59 MHz and the operational cooperativity C = 1.12.

A fit to these data using Equation 4.53 is plotted in Figure 6.8c. This fit allows us
to precisely extract the different parameters. The best frequency shifts for tuning the
conversion are δp = 0.140 MHz and δb = 0.078 MHz. The cooperativity found using the
model is C = 1.12, quite different from the value C = 0.9 extracted in Section 6.2.1, but still
less than the theoretical optimum cooperativity C = 1.16. The corresponding four-wave
mixing efficiency is η4wm = 0.86.

In the limit where κb ≪ κw, the theoretical detector bandwidth is given by κd ≈
2κb(1+κb/κw) = 0.43 MHz, to be compared to the bandwidth given by the fit κd/2π = 0.59
MHz. We attribute this discrepancy to the spectral broadening caused by the finite duration
of the excitation pulses. It is also important to keep in mind that the bandwidth of the
buffer resonator (and therefore of the detector) varies with frequency because on its Purcell
filter. Note that this calibration must be performed again for detecting photons at a
different frequency.

In the following section we use the different parameters set in the two last sections for
operating the detector in cyclic mode.



6.3 SMPD cyclic operation
As explained in Section 4.4.1, the SMPD operates in a cyclic way. We first motivate
the choice of cycle parameters and then measure the different figures of merit needed to
determine the sensitivity of the detector.

6.3.1 Cycle parameters

The cycle consists of three different phases with durations to be set. The choice of the
readout pulse duration Tm = 500 ns (made in Section 6.1.2.2) sets the length of the readout
window.

The duration of the reset sequence depends on the qubit state. However, when the
microwave photon source to be detected emits a small number of photons per second
compared to the cycle repetition rate, we can consider that in most cases the reset is not
activated. We therefore do not consider this window in the following optimization.

Furthermore, between the reset and the new detection window, we place a waiting
time of 1 µs in order to let the waste resonator return to its ground state. The total cycle
duration is thus Tcycle = 1.5µs + Td.

To determine the optimal duration of the detection window Td, we maximize the product
of the duty cycle and the qubit relaxation efficiency ηdηqubit = T1/Tcycle(1− e−Td/T1). The
resulting duration is Td = 10 µs.

The real average cycle time measured in the following experiment is Tcycle = 11.9 µs.
The duty cycle is thus ηD = 0.83 , almost the double of the value ηD,old = 0.43 for the
previous SMPD generation [Alb21].

6.3.2 Efficiency

Once the cycle parameters are fixed, the first figure of merit to characterize is the detector
overall efficiency. The experiment consists in illuminating the buffer resonator with a
well-calibrated photon flux, and to compare the number of clicks obtained with the number
of incident photons.

6.3.2.1 Calibration of the photon number

In this section we calibrate the number of incoming photons per second thanks to the qubit
coherence properties described in Section 3.4.3. We exploit the effect of photons in the
buffer on the qubit frequency and coherence time T2 to accurately measure the incident
photon flux.

A schematic description of the pulse experiment performed is shown in Figure 6.9a. It
consists in applying a Ramsey pulse sequence similar to the one described in Section 6.1.2.3,
superimposed with a coherent tone sent to the buffer resonator (to calibrate). The frequency
of the tone is swept, and, for each frequency point, a full Ramsey experiment is performed
in order to extract the coherence time and the qubit frequency. When the microwave tone
is resonant with the buffer, the latter is populated and the qubit coherence time is reduced.

Ramsey oscillations measured at photon frequency ωb/2π − δ for two values of the
frequency detuning δ are shown in Figure 6.9b. For δ = 0 (red curve), the tone is resonant
with the buffer cavity and the qubit coherence time is significantly reduced. One also
notes,as expected, a slight change in the oscillation frequency indicating a qubit frequency
shift. The fits that allow us to extract the two figures searched for in this experiment are
represented by solid lines.

The variations of the decoherence rate γ2 = 1/T ∗
2 with the frequency detuning δ are

shown in Figure 6.9c. As expected, the decoherence rate dramatically increases at δ = 0
because of the shot noise induced by the photons in the cavity. Another peak appears for



Figure 6.9: Photon number calibration (a) Pulse sequence applied on the system. A
Ramsey sequence is sent on the qubit while a weak coherent tone is shined on the buffer
resonator. (b) Ramsey oscillation for two different frequencies of the coherent tone sent on
the buffer. When the buffer is populated (red curve), T2 decrease and the qubit frequency
is shifted. (c,d) γ2 = 1/T ∗

2 and Qubit frequency detuning as the function of the tone
frequency. Blue dots are the data, the solid orange curve a fit based on Equation 3.92
allowing to extract the average number of photon populating the buffer resonator.

δ = 5.2 MHz. It corresponds to the second cavity mode frequency (ωb − χqb)/2π due to
its coupling with the qubit. This experiment provides an accurate determination of the
dispersive shift χqb = 5.2 MHz, in perfect agreement with the previously estimated one.

The variations of the qubit detuning ∆s with the detuning frequency detuning δ are
shown in Figure 6.9d. The value of ∆s is maximal for δ = 0 and δ = χqb/2π, i.e. at
resonance with the buffer.

The fits (orange line) in Figure 6.9c,d are based on Equation 3.92. They allow us
to extract the average photon number n̄ in the resonator for the steady state when the
microwave tone is resonant with the cavity. From this average population we can calculate
the incident power impinging the resonator using Equation 3.93. The obtained photon flux
is Pin = 7.5 · 104 photon·s−1. This figure allows us to determine the overall efficiency.

6.3.2.2 Operational efficiency

Once the incoming flux of photon is calibrated for a given amplitude, it is easy to choose
the photon flux that we want to send to the cavity given that Pin ∝ A2 where A is the
microwave tone amplitude.

The response of the detector over 1 second (∼ 80000 cycles) for five different values of



Figure 6.10: SMPD1 operational efficiency Right panel, time traces representing one
second of detection (∼ 80000 cycles) for different powers applied to the buffer. Each blue
line represents a click. Left panel, number of clicks per second as the function of the
number of incoming photons. The fit (orange line) allows to extract the overall efficiency
ηd = 0.43.

the photon flux (0, 750, 300, 6750 and 12000 photon-s−1) is shown in Figure 6.10a. Each
blue bar represents a detection event. As expected, the number of detections increases
with the intensity of the photon flux.

The variations of the detector click rate with the input power are shown in Figure 6.10b.
The input power is given in photons ·s−1 and in zW (10−21 W, top scale). A simple linear
fit allows us to extract the overall efficiency ηd = 0.43.

The SMPD is a fast saturating detector: once the qubit is excited during one cycle,
the detector is blind until it is reset. Typically for a 12 µs cycle, assuming uniform
photon arrival, the maximum detectable power is thus Pin ∼ 8 · 104 photon·s−1. In real
measurements, the photons are not evenly distributed, and saturation gradually occurs
as the incident power is increased. This saturation is visible for the two last points in
Figure 6.10b.

The measured efficiency ηd = 0.43 compares rather well with the theoretically estimated
one ηd = ηDηqubitη4wmηm = 0.83 · 0.88 · 0.85 · 0.77 = 0.48.

6.3.3 Dark count

The second experimental characteristic important for the sensitivity of the detector is the
overall dark count rate αd.

Its characterization consists in repeating the cycle a large number of times without
sending photons to the detector. The cycles are collected in groups of 106 sequences (12 s
of measurement) from which an average dark count rate is extracted.

The results of such dark count measurements performed during 10 hours are shown on
Figure 6.11. At the beginning the dark count rate increases from 60s−1 to about 85s−1.
This transient regime is attributed to the heating of the cold stage of the refrigerator due
to the continuous power delivered by the qubit pump. A steady state is reached after
about 1 hour with an average dark count rate αd = 84 s−1.

This experimental evidence for a small dark count rate is the main progress achieved
by our new version of the SMPD. This present value αd = 84 s−1 is indeed more than one
order of magnitude smaller than achieved by the previous version where αd,old = 1500 s−1
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Figure 6.11: Dark count measurement Acquisition of the dark count rate αd as the
function of the time. Each point correspond to the average false positive rate over ∼ 12s
(106 cycles). αd increases due to the heating induced by the repetition of the detection
cycle and saturates around 84 click·s−1.

[Alb21]. I attribute this sizeable improvement mainly to the lower excited qubit population
at equilibrium, and to the longer qubit relaxation time T1.

6.3.4 Noise equivalent power

In the last two sections we measured the efficiency of the detector ηd as well as its false
positive rate αd. Here we combine these two values to estimate the absolute sensitivity of
the detector based on the NEP.

Based on Section 4.5, we define the sensitivity S of the detector as the minimum
detectable power for a 1 second integration time. Since we are in the regime where√
αd ≫ 1, we can express this sensitivity as S = ℏωb

√
αd/ηd. Given αd = 84 s−1, ηd = 0.43

and ωb/2π = 6.982 GHz, one obtains the NEP S = 10−22 W/
√

Hz.
This sensitivity is almost one order of magnitude better than the one of the previous

SMPD Sold = 8 · 10−22 W/
√

Hz. In practical terms, this means that the integration
time required to detect a microwave photon source (typically a spin) with a sufficient
signal-to-noise ratio a is divided by ∼64. In terms of detection, this is a real breakthrough
because it allows the detection of a single spin, as we show in Chapter 8 and in [Wan+23].

6.4 Temperature measurements
In this section, we demonstrate that the thermal contribution to dark counts αth follows
the Johnson-Nyquist law introduced in Section 4.4.3. For this purpose, we measure the
variations of the dark count rate with the temperature. We also record the different SMPD
parameters in order to ascertain the origin of false positives.

These measurements, called run 2, were made 6 months after the measurements
presented in the previous sections, called run 1. For some unknown reason, after several
cool-down cycles, the qubit frequency increased from 6.184 GHz to 6.3 GHz . Its relaxation
time T1 was also greatly reduced from 37 µs to 20 µs and its equilibrium population
increases from 10−4 to 2 · 10−3 these parameters are summurazid in Table 6.2. Both of



Qubit run 1 run 2
ωq/2π 6.184 GHz 6.3 GHz
T1 ∼ 37µs ∼ 23µs
peq ∼ 2 · 10−4 ∼ 2 · 10−3

Buffer mode run 1 run 2
ωb/2π 6.979 GHz 7.011 GHz
κbext/2π 0.172 MHz 2.95 MHz
κbint/2π 0.028 MHz nc

Table 6.2: Parameters modifications between the run 1 and run 2.

these changes could have been caused by the frequency change of the qubit which would
have coupled it resonantly with a two-level system (TLS). In any case, these modifications
are highly detrimental to the performance of the SMPD and required adjustments of the
detection parameters.

6.4.1 Operating point

In this section we describe the adjustments made to the SMPD parameters to account
for the new qubit constants. We also detail the impacts of these modifications on the
performance of the detector.

Detection window

The first adjustment concerns the detection window. With T1 of ≈ 23 µs (see Fig-
ure 6.12a), the optimisation procedure presented in Section 6.3.1 gives a new detection
window with length Td = 8 µs. . The new duty cycle is ηD = 0.8.

Buffer resonator

The increase of the qubit frequency is more problematic for the operation of the detector.
Indeed, the 4-wave mixing condition Equation 4.30 implies that a rise of the qubit frequency
requests a rise of the the pump frequency. With a qubit at 6.3 GHz, the pump frequency
then starts to be close enough to the buffer frequency for populating it it with photons, as
can be seen in Figure 6.12c. On this plot that represents the qubit excited population as
the function of the frequency and amplitude of the pump, the saturated color on the top
right corner, denoting a large qubit population, is due to the pump. In order to avoid this
collision, we decided to operate the circuit at the largest possible buffer frequency (and no
longer at zero flux applied in the SQUID) ωb/2π = 7.0114 GHz. One furthermore notes
that this frequency has also slightly increased compared to the measurements presented
in Table 6.1. Since the resonator is further away from its Purcell filter, its bandwidth is
narrower κb/2π = 0.152 MHz.

This adjustment allowed us to place the pump at 32 MHZ of the cavity, which proved
to be sufficient to perform the experiments.

Dark counts



The larger qubit population peq shown in Figure 6.12b leads to an increase in the dark
count rate (200 s−1 vs 84 s−1).

Efficiency and SMPD bandwith

The efficiency and bandwidth of the SMPD were here determined in the same experiment.
We applied the same protocol as described in Figure 6.10 to extract the efficiency, but
applied it to several frequencies of the coherent tone sent to the buffer resonator. The
results are shown in Figure 6.12d. The efficiency at resonance is found to be ηd = 0.29 ,
and the detector bandwidth is κd/2π = 0.278 MHz.
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Figure 6.12: Operating point for temperature measurements. (a) Measurement of
qubit relaxation time T1. (b) Qubit readout, the equilibrium population is peq = 2.27 · 10−3

while the measurement efficiency is ηm = 0.88. (c) Four wave mixing experiment. Color
map represents the qubit excited population pe as the function of the pump amplitude and
the pump frequency. (d) Overall efficiency and bandwidth measurement. Each efficiency
point is acquired in the same way as Figure 6.10 but for a different photon frequency.

It is interesting to note that with this measurement, The measured SMPD bandwidth



is in better agreement with the theoretical one κd = 2 · κb. This is due to the fact that,
unlike in the experiment measuring the bandwidth in Figure 6.8, the coherent tone sent to
the buffer is one second long, and therefore much better defined spectrally.

Furthermore, since the efficiency depends on the frequency of the incident photon flux,
this measurement is more reliable than the one presented in Figure 6.10 performed at a
fixed frequency.

6.4.2 SMPD and refrigerator temperature

The experiments performed in this section consist in tracking αd, T1 and peq as the function
of the fridge cold stage temperature. A resistor thermally anchored to the stage enables us
to heat it up to typically 1 K by passing a small dc current.

The dark count rate is acquired by group of 105 cycles (one point per second). The
qubit T1 and peq are recorded every 60 αd points (∼ 1 minute).

The evolution of these quantities are shown in Figure 6.13. Eleven temperature values
were investigated from 10 mK to 100 mK. We have limited ourselves the temperature to
100 mK in order to avoid saturating too much the detector.

Figure 6.13: Temperature measurements raw data (a) Dark count rate αd (blue dots)
and fridge temperature (dashed grey line) as the function of the time. Each dark count
points correspond to a the average rate over 105 cycles (∼ 1 s) (b) qubit T1 (red dots)
acquired every minutes and fridge temperature. (c) Qubit equilibrium population (dark
orange dots) acquired every minutes and fridge temperature.

One first notices that αd and peq strongly increase with the temperature. This is
expected since these two quantities follow the Bose-Einstein statistics: the higher the



temperature, the higher the occupation number n̄. Monitoring the thermal population of
the qubit allows us to remove its contribution to the total dark count in order to extract
αth.

Similarly, the relaxation rate increases with temperature, and thus T1 decreases with
temperature. This behaviour, also expected from previous work [Pal+09], is detrimental
to detector efficiency and must be taken into account.

6.4.3 Johnson Nyquist law

In this section, we show how to dissociate the false positives linked to the qubit from
those linked to thermal photons. We will also take into account the efficiency decrease by
applying a corrective factor to the dark count as a function of temperature. Finally, we
demonstrate that the thermal noise obtained follows the Johnson Nyquist law.

Efficiency evolution

The estimated evolution of the efficiency is plotted in Figure 6.14a. Each T1 point
allows us to estimate the efficiency ηqubit related to the qubit. Furthermore, for each group
of 105 cycles, we estimate the duty cycle ηd by calculating the average cycle time. From
these two values, we derive a correction factor Ccor to be applied to the nominal efficiency
ηd = 0.29. Ccor is calculated for each group of 60 αd points.

False positives due to the qubit

The evolution of αqubit is shown in Figure 6.14a. This parameter is simply extracted
from the T1 and peq measurements with the formula given in Section 4.4.3 (considering
preset = 0): αqubit = ηDpeq/T1.

Calculation of αth

The dark count rate due to the thermal photons is represented in Figure 6.14c. The
contribution of the qubit to the total dark count is removed, and the correction factor Ccor
is applied to the result to account for the decrease in efficiency. We have thus the relation,
αth = (αd − αqubit) · Ccor. The values αqubit and Ccor are updated every 60 points (every
minute).

The blue and green areas on Figure 6.14 correspond to the points selected to extract
the average value of αth for each temperature. These areas are selected away from transient
temperature changes.

Dark count and Johnson Nyquist law

The 11 average values of αth extracted from Figure 6.14c are shown in Figure 6.14d.
The inset shows an example of the αth distribution for the green area. The purple points are
the distribution average values, and the error bars correspond to a standard 2σ deviation.

These values are plotted as the function of the average number of photon n̄ (see
Figure 6.14e) calculated from the Bose Einstein formula for the different experimental
temperatures. The solid black line in Figure 6.14e corresponds to the Johnson Nyquist
relation αth = ηdκdn̄/4 where ηd = 0.29 is the nominal efficiency.

The data and the theoretical predictions are found in good agreement. We attribute
the deviation observed for the for the three highest temperature points to the saturation
of the SMPD.



Figure 6.14: Johnson Nyquist law (a) SMPD efficiency ηd (red dots) calculated from
Equation 4.63, taking into account the effect of the temperature on the qubit T1 and on the
duty cycle. The 10 mK efficiency is ηd = 0.29. (b) Dark count rate due to the qubit αqubit
as the function of the time calculated with Equation 4.69. (c) Thermal dark count rate αth
calculated by removing the contribution of the qubit to the overall dark count rate and
re-scaling the result to account for the efficiency drop. The blue and green areas represent
the data selected to extract an average thermal dark count rate at given temperature. (d)
Average of each αth distribution contained in the blue and green area versus temperature.
An example of distribution is given in inset for the green area. (e) Average thermal dark
count αth as the function of the number of photon per modes n̄ (Bose-Einstein formula
evaluated for the buffer frequency and the fridge temperature). Purple dots are data, solid
black line correspond to the theoretical Johnson Nyquist noise.



Conclusion

We have shown in this section that a dark count rate given by the SMPD can be
directly converted to temperature via the Johnson Nyquist relation. Several interesting
consequences follow from this.

First, we can accurately estimate the effective electromagnetic temperature of our lines
by expressing the average occupation number as a function of the dark count. For example,
for the first temperature point (refrigerator at 10 mK), we measured αth = 133s−1 which
corresponds to n̄ = 2.5 · 10−4 and T = 40.6 mK.

Second, if we consider the first operating point with better SMPD characteristics, the
overall dark count is dominated by the thermal dark count. Indeed, for T1 = 37 µs and
peq = 2 · 10−4, we obtain αqubit = 4.5 s−1 much smaller than the overall dark count rate
αd = 84 s−1. This means that when our system is operated under the right conditions, its
false positive rate and therefore its sensitivity is not limited by internal defects but by our
inability to properly attenuate the background microwave field reaching the experiment.

The electromagnetic temperature corresponding to the small thermal false positive rate
αth = 80 s−1 associated with this operating point is T = 35.0 mK and corresponds to an
average photon number n̄ = 6.9 · 10−5.

6.5 SMPD2

6.5.1 Characterisation SMPD2

During my thesis I built a second photon detector called SMPD2. Given the characterization
presented in the previous sections, adjustments were necessary in the simulations and
fabrication. The kinetic inductance of the tantalum was adjusted in the simulations so that
the simulated frequencies matched the measured frequencies. The size of the resonators
was then reduced to increase their frequency.

Furthermore, since we had established that the main source of noise is due to thermal
photons, we decided to reduce the detector bandwidth. We therefore reduced the coupling
between the buffer resonator and its Purcell filter. The simulated coupling loss rate
decreased from 1.2 MHz to 0.5 MHz.

The qubit frequency of the SMPD1 was too high. Therefore, we modified the the
junction design for reducing the junction area and increase the inductance.

The results of the SMPD2 characterisation are shown in Table 6.3. The resonator
frequencies have been readjusted, but for some unknown reason the qubit frequency is
similar to that of SMPD1. This shows that the junction fabrication is not fully under
control. Furthermore, the relaxation time T1 of the qubit is now shorter than that of the
SMPD1 (15 µs vs 37 µs), which limits the detector efficiency. However, the equilibrium
population of the qubit is still extremely low (comparable to that of the SMPD1), which
makes this detector fully functional and with similar performances to the SMPD1 in terms
of sensitivity.



Qubit
ωq/2π 6.193 GHz
α/2π ∼ 240 MHz
χqb/2π 3.3 MHz
χqw/2π 15.0 MHz
T1 ∼ 15µs
T ∗

2 ∼ 28µs
peq ∼ 2 · 10−4

Buffer mode unbiased operational
ωb/2π 7.459 GHz 7.347 GHz
κbext/2π 0.09 MHz 0.41 MHz
κbint/2π 0.13 MHz 0.18 MHz

Waste mode
ωw/2π 8.004 GHz
κwext/2π 1.002 MHz
κwint/2π 0.146 MHz

Purcell modes
ωPb/2π 7.303 GHz
κPb/2π 100 MHz
ωPw/2π 7.857 GHz
κPw/2π 212 MHz

Dark count and efficiency
αd 130 s−1

αqubit 10 s−1

ηd 0.32

Table 6.3: Table of the experimental parameters SMPD2.
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Chapter 7

Overview and theoretical
background

Electron spin resonance (ESR) spectroscopy is a magnetic resonance method in which
transitions between Zeeman levels of an unpaired electron in a material placed in a magnetic
field are detected electromagnetically [SJ01a; Abo+22]. The most common ESR technique
is the inductive detection of the signal emitted by electronic spins magnetically coupled to
a resonator, often a microwave cavity. The resonance frequency is set by the g factor or
tensor of the electron(s), and the resonance line provides information on the local electric
field felt by the electron and on its contact or dipolar interactions with nuclear spins in the
neighborhood. ESR is a powerful investigation method of transition metal ions in solids,
and of free radicals in organic chemistry. The introduction of spin labelling in biological
materials has also made ESR a powerful investigative technique in biology. A typical ESR
spectrometer in the X band (10 GHz) has a cm-size cavity containing a large number of
spins. The inductive detection of ESR is thus not a very sensitive detection method, and
gives access to ensemble averaged quantities. Higher detection sensitivities, in the S = 10
spins/

√
Hz range, have recently been achieved [Ran+20] using superconducting microwave

nanoresonators, in which electronic spins more strongly coupled to the cavity are measured
using microwave amplifiers with the minimal noise imposed by quantum mechanics.

Reaching single-spin sensitivity was then a very clear goal in ESR. Achieving this
goal by further improving the inductive detection technique developed in our team is
certainly possible, but we had also realized that the spin fluorescence detection method we
demonstrated in [Alb+21] could offer a better solution, with an equally broad scope of
applications on numerous spins. Indeed, although our first spin-fluorescence experiment
had only achieved a sensitivity in the S = 103 spins/

√
Hz range, we thought that its

progress margin both on the SMPD side and on the coupling of the spins to a microwave
resonator was large enough to justify following this new route.

In this research, my task has been to make a higher sensitivity SMPD, as described in
the first part of this thesis. Increasing the radiative emission rate of spins in a resonator
beyond the value achieved in our first work [Alb+21], namely ∼ 3.3 s−1, has been the
research work of Zhiren Wang during his PhD research. The demonstration of magnetic
resonance on a single electronic spin using a method with a broad application range, as is
spin fluorescence, is the object of the second part of this thesis. For our proof of concept
experiment on single spin ESR, we have chose a particular spin platform, erbium spins in
calcium tungstate (CaWO4), described below.

Let us nevertheless mention here that magnetic resonance on a single electronic spin has
already been performed using specific methods. The Optically detected Magnetic Resonance
(ODMR) technique has achieved major successes on numerous spins, NV centres being
the most famous ones [Wra+93; Gru+97; Rah+20]. In this method, optical transitions
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are used to perform optical pumping and to determine the spin state of a paramagnetic
impurity. Transport measurements [Elz+04; Vin+12; Pla+12; Thi+14] and scanning-probe
techniques have also reached single-spin sensitivity. It is nevertheless fair to state that
these methods are system specific and do not apply to a broad range of electronic spins.
Optical transitions are in particular requested for ODMR. On the contrary, our method has
the potential to apply to arbitrary paramagnetic species with long enough non-radiative
relaxation time. In addition, the volume of detection given the resonator magnetic mode
volume can be several orders of magnitude larger than other specific single-spin detection
techniques.

7.1 An appealing spin platform: erbium ions in Scheelite

The choice of erbium spins in Scheelite is based on several criteria. The first is related to
the high g-factor that can be achieved for erbium ions in this matrix, which increases the
radiative emission rate in a superconducting resonator coupled to the spins. Furthermore,
the CaWO4 matrix has a low level of internal magnetic noise. The main source of fluctuation
comes from the tungsten atoms with the isotope 183W (0.145 natural abundance) which
has a nuclear spin 1/2. Due to this low abundance combined with a relatively small
gyromagnetic ratio γW/2π = 1.78 kHz/mT, CaWO4 is one of the most magnetically-silent
materials that can be found and is therefore well-suited to host long-coherence times
electron spins [Kan+22]. This platform was indeed recently considered as well suited for
applications in quantum information [Sag+15] .

Erbium, a lanthadide atom, forms a spins tripositive ion when incorporated in a solid
such as scheelite. Its electronic structure: 1s22s22p63s23p64s23d104p65s24d105p64fNe where
Ne ∈ [0, 14] is the number of electron in the 4f electronic layer (Ne = 11 for the erbium).
The radial probability distribution of the Er3+ shells from the 1s to the 6s is shown in
Figure 7.1, where the colored curves correspond to populated orbitals. The 4f orbital
being spatially closer to the nucleus than the 5s and 5p orbitals, the electrons in this layer
are shielded and do not participate in the chemistry. They are thus not very sensitive to
electromagnetic disturbances due to sources out of the atom, noticeably the crystal field.

For this reason, the electronic level structure of the erbium ion can be first approximated
by the free-ion energy levels. The interactions in the scheelite crystal will be then treated
as a perturbation.

7.1.1 Free erbium ion energy level

To describe the free erbium ion Hamiltonian, we use the central field approximation [Wei83].
In this framework, the Hamiltonian can be decomposed into 3 terms:

HFI = H0 +HNC +HSO, (7.1)

which we will detail:

H0 = −
11∑

i=1

[
ℏ2

2m∇
2
i + U(ri)

]
(7.2)

is the sum of the kinetic energy of the electrons with a potential energy function U(ri).
This function approximates the potential energy of the electron i in the field generated by
the nucleus and the 10 other electrons such that:

11∑
i=1

U(ri) = −
N∑

i=1

Ze2

ri
+ ⟨

N∑
i<j

e2

rij
⟩, (7.3)



Figure 7.1: Electronic shell distribution for Er3+. Electron probability of presence as
the function of the radial distance r to the nucleus.

where the right term represents the spherical averaged coulomb term and includes most
of the inter electron repulsion.

Therefore, the term H0 describes the independent motion of the 11 electrons. The
Schrödinger equation can be solved independently for each of them. Furthermore, as
U(ri) has spherical symmetry, each electron can be described in the same way as the
hydrogen atom, the electron state being described by the usual 4 quantum numbers. The
principal quantum number n which represents the electron shell, the angular momentum
l (0 ≤ l < n − 1), the magnetic quantum number ml (−l ≤ ml ≤ l) and finally the spin
quantum number ms±1/2. In the following, we will focus on the n = 4, l = 3 configuration
which corresponds to the 4f layer.

The second term of the free ion Hamiltonian:

HNC =
11∑

i<j

e2

rij
− ⟨

11∑
i<j

e2

rij
⟩ (7.4)

is the remaining part of the Coulomb potential and represents the electron-electron
interaction not taken into account in U(ri).

Finally, the last term is the spin-orbit interaction:



HSO =
11∑

i=1
ξ(ri)li.si (7.5)

In the case of the erbium ion, the two Hamiltonian HNC and HSO are typically of same
magnitude. They can be treated together as a perturbation of H0 using the so-called
intermediate coupling scheme [JL05]. This model introduces the operator J = L + S
with L = ∑11

i li and S = ∑11
i si. It defines another good quantum number J such that

ℏJ(J + 1) is an eigenvalue of J2. The energy levels end up being (2J + 1) degenerate
multiplets. The ground state of the free erbium ion corresponds to J = 15/2 with L = 6
and S = 3/2 yielding to a 16 times degenerate level. The fist excited state is defined by
J = 13/2 and L = 5, the transition between the two states is an optical transition at
1.5 µm. As the sample is placed in a dilution fridge at 10 mK, the ground state is fully
polarized.

7.1.2 Crystal field and effective spin 1/2

When the ion is embedded in the crystal, it is subjected to an electric field produced by its
surroundings which breaks the spherical symmetry of the electronic structure described
in the previous section. However, as the electrons of the 4f layer interact little with the
environment, the crystal-field can be considered as a perturbation which lifts the (2J + 1)
degeneracy of the multiplets.

The Kramers theorem [Kra30] based on the time reversal symmetry states that the
degeneracy is fully or partially lifted in function of the number of electrons considered. In
the case on an odd number, the multiplet splits into the so-called "Kramers doublet" twice
degenerated. For the erbium ground state, the level splits into 8 doublets (labeled Z1...Z8).
The energy scale between Z1 and Z2 is 0.57 THz for erbium in CaWO4 crystal [Enr71].
The ground state Z1 is thus fully polarized at 10 mK.

The last degeneracy can be lifted by applying a magnetic field B0 to the system. The
doublet is then split by the Zeeman Hamiltonian:

HZ = µBB0 · (L + gsS) = gJµBB0 · J , (7.6)

where µB is the Bohr magneton, gs = 2, and gJ is the Landé g-factor. For the erbium
ion ground state doublet, the Landé g-factor is gJ = 6/5.

This Zeeman interaction can be interpreted as the interaction between a magnetic field
B0 and a spin 1/2 with an anisotropic g-factor. This approximation remains valid in the
limit when the Zeeman splitting is small compared to the gap between Kramers levels. In
this case the Zeeman interaction can be expressed as:

ĤZ = µBB0 · g · Ŝ = µB

(
Bx By Bz

)gxx gxy gxz

gyx gyy gyz

gzx gzy gzz


Ŝx

Ŝy

Ŝz

 (7.7)

where Ŝi = 1/2σ̂i are the effective spin operators defined from the Pauli matrix (see
Section 3.3).

The sequence of the different mechanisms that lift level degeneracy is shown in Figure 7.2.
In this thesis we will only consider erbium isotopes that do not possess a nuclear spin

(164Er,166Er,168Er,170Er). They represent 77% of the natural erbium. We will therefore
remain at this level of description for the interaction Hamiltonian between the magnetic
field and the ion. The reader can find a more precise account of the general properties of
erbium in [Dan22].



Figure 7.2: Energy levels of Er3+ embedded in CaWO4 crystal. The 11 electrons
of the 4f orbital form 2J + 1 degenerate multiplets in the intermediate coupling scheme
(purple levels). The crystal field lifts the degeneracy of the ground state multiplet into
8 doubly degenerate Kramers levels (green levels). These levels behave as effective spin
1/2 whose degeneracy can be lifted by a magnetic field (red levels). The energy difference
µbgB0 depend on the magnetic field orientation.

7.1.3 Effective Hamiltonian of Er3+(I = 0) in CaWO4

In this section we focus on the CaWO4 properties and the description of the effective spin
Hamiltonian.

7.1.3.1 CaWO4 crystal properties

The calcium tungstate crystal, represented in Figure 7.3, has a tetragonal structure with
lattice parameters a = b = 0.524 nm and c = 1.138 nm. In this crystalline structure,
impurity erbium ions Er3+ substitute to calcium ions Ca2+. This substitution implies
a modification of the charge from a 2+ to a 3+. A charge compensation therefore
inevitably takes place during the growth of the crystal, for example by the appearance
of calcium vacancies [MG67]. This rebalancing phenomenon is random and can occur at
any point in the crystal, which generates a random inhomogeneous electric field. The
local electromagnetic environment of each ion is therefore slightly different, which has
consequences on its properties (frequency, coherence...).

If we consider a calcium site in the lattice as shown in Figure 7.3, we can observe
that the composition of a 90◦ rotation along the c-axis and a reflection in the (a,b) plane
leaves the site unchanged. This symmetry, called S4, will shape the crystal-field. As a
consequence, the g-tensor of the erbium ion involved in Equation 7.7 also respects this
symmetry. It is diagonal in the (a, b, c) basis, with identical components is the (a, b) plane
(ga = gb = g⊥ = 8.38), and a different value along the c-axis (gc = g∥ = 1.247) [WB64].
The g-tensor takes remarkably large values in the (a, b) plane, 4 times larger than the
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Figure 7.3: CaWO4 crystal structure. Schematic of the CaWO4 lattice showing a
tetragonal structure, with a rotational symmetry around the c-axis

g-factor of the free electron ge = 2.

7.1.3.2 Er3+ spin Hamiltonian

Following the previous discussion, the g-tensor of erbium in calcium tungstate is diagonal
in the (a, b, c) base. Its expression is given by:

g =

g⊥ 0 0
0 g⊥ 0
0 0 g∥


(a,b,c)

=

8.38 0 0
0 8.38 0
0 0 1.247


(a,b,c)

. (7.8)

The Hamiltonian Equation 7.7 can be write with this g-tensor for a given magnetic
field B0 expressed in spherical coordinates. The expansion of the scalar product gives:

Ĥs = µBB0(g⊥ sin θ cosφŜx + g⊥ sin θ sinφŜy + g∥ cos θŜz), (7.9)

where θ and φ characterize the magnetic field orientation. Because of the axial symmetry
around the c-axis, we can take φ = 0 without loss of generality. By rearranging the terms,
the spin Hamiltonian reads:

Ĥs = geffµBB0Ŝ
′
z (7.10)

with:

geff =
√

(g⊥ sin θ)2 + (g∥ cos θ)2

Ŝ′
z = Ŝz cos θ′ + Ŝx sin θ′

sin θ′ = sin θ × g⊥/geff

cos θ′ = cos θ × g∥/geff

(7.11)



The eigenstates of the spin Hamiltonian are the eigenstates of the operator Ŝ′
z with

quantization axis along θ′. Note that contrarily to the case with an isotropic g-factor, the
quantification axis is not along the direction of B0. Nevertheless, except for this subtlety,
we can consider that an ion Er3+ in CaWO4 simply behaves as a spin 1/2 .

7.1.4 Magnetic dipole-dipole interaction with 183W
As already stated earlier, the nuclear spin bath in the CaWO4 is dominated by the
contribution of the nuclear spins I = 1/2 of the 183W nuclei. These weak magnetic dipoles
create a fluctuating magnetic field that induces dephasing of the electronic spins. On the
other hand, this coupling could allow us to control the quantum state of nuclear spins, as
demonstrated for NV centers in diamond [Tam+12].

Let us detail the magnetic dipole-dipole interaction between the electronic spin of a
Er3+ ion and the 183W nuclear spins in its neighborhood.

The coupling Hamiltonian is given by [AB12]:

Ĥdd = µ0
4πr

−3[µ̂S · µ̂I − 3r−2(µ̂S · r)(µ̂I · r)] (7.12)

where µ̂S = µBg · Ŝ is the magnetic moment operator of the electronic spin and
µ̂I = µNgWÎ that of the nuclear spin. µN is the nuclear magneton and gW the g-tensor
of the tungsten. Note that unlike erbium, this tungsten g-tensor is isotropic. Finally,
r = (rx, ry, rz) is the distance vector between the spins.

In all generality, this expression is complicated, however, like the magnetic moment of
the nuclear spin is ∼ 4− 5 orders of magnitude (depending on the field orientation) lower
than that of the electronic spin, it changes little the quantization axis of the latter. We
can thus perform the so-called secular approximation and consider that only Ŝ′

z has to be
considered in the coupling Hamiltonian. The expression of Ĥdd reduces to:

Ĥdd = AŜ′
z Î

′′
z +BŜ′

z Î
′′
x + CŜ′

z Î
′′
y (7.13)

where A, B and C are constant depending of the g-tensor and the distance r between
the spins. The signs ′ and ′′ stress the fact that for an arbitrary orientation of the magnetic
field, the spins do not share the same quantization axis.

In the following, we assume for simplicity that the magnetic field and therefore the
electron spin are aligned along the c-axis corresponding to the z-axis of the frame. In this
case, Equation 7.13 becomes:

Ĥdd = µ0µBµN
4πr3 Ŝzg∥gW

(
3 rz
r2 [Îxrx + Îyry] + Îz[3

r2
z
r2 − 1]

)
(7.14)

that we can write:

Ĥdd = ŜzAhyp · Î (7.15)

with:

h = 1
r
√

3r2
z + r2 (3rxrz, 3ryrz, 3r2

z − r2) (7.16)

Ahyp =
µ0µBµNg∥gW

4πr3 · 1
r

√
r2

z − r2 · h (7.17)

In order to get a clearer idea of the behaviour of Equation 7.15, we can perform a
change of reference frame. We keep the same z-axis which is the direction of the magnetic



Figure 7.4: Magnetic dipole-dipole interaction between an Er3+ spin and a 183W
nuclear spin. The magnetic field B0 is directed along the z-axis corresponding to the
crystallographic axis c. The magnetic moment Er3+ is thus also along z. The 183W
nuclear spin is perturbed by the field generated by the electronic spin (dotted lines). Its
magnetic moment is no longer oriented along the z-axis, but is deflected by the dipole-dipole
interaction represented by Ahyp. The frame is defined such that Ahyp is in the (z, x′)
plane.

field. We then define y′-axis perpendicular to Ahyp and we complete the orthonormal
frame with the x′-axis (see Figure 7.4).

In this new frame Ahyp only has two components : Ahyp = (ℏA⊥, 0, ℏA∥). The
expressions of A⊥ and A∥ can be easily calculated from Equation 7.17. The secular part of
the dipolar Hamiltonian takes the simple form:

Ĥdd/ℏ = Ŝz(A⊥Îx +A∥Îz). (7.18)

In the case where the magnetic field is not aligned with the c-axis, the form of the
dipolar Hamiltonian expressed in Equation 7.18 remains valid. We can always define a
reference frame from the hyperfine vector Ahyp and the magnetic field so that Ahyp is in
the (z,x) plane and can be expressed as Ahyp = (ℏA⊥, 0, ℏA∥).

7.1.5 Resonance linewidth

Each spin in the crystal has its own environment, notably due to charge compensation.
This leads to both an inhomogeneous broadening of the ESR line due to the distributed
static part of the crystal field, and to an homogeneous broadening due to the dynamical part.

homogenous broadening

The dynamics of the nuclear spin bath also produces a fluctuating field that contributes
to homogeneous broadening of the ESR line, i.e. to dephasing of the erbium spins at a
rate Γh given by the spectral density of the fluctuating field at low frequency.

inhomogenous broadening



In a crystal, the inhomogeneous broadening Γinh of the spin line is generally much
larger than the homogeneous one given by Γh.

The local perturbation of the spin environment can be related to the dipole interaction
with nuclear spins or paramagnetic impurities. These magnetic dipoles disturb the B0
field felt by the electron spin and thus shift its frequency. However, as we consider a very
dilute crystal, the density of impurities is low, and it can be shown that the broadening
due to dipole coupling is of the order of 100 kHz.

The other broadening mechanism is due to the electric field inhomogeneity caused
by the charge compensation. In principle, due to the time reversal symetry of Kramers
doublet, electric field do not induce Stark shift. However, when a magnetic field is applied,
this symmetry is broken and the electric field can modify the g-tensor [Kie66] causing
a static frequency shift. This effect was measured by Mims and Gillen [Mim65] and is
the dominant source of inhomogeneous broadening. Indeed, the measured inhomogenous
bandwith is Γinh ≈ 8 MHz which is much larger than the contribution due to the magnetic
dipole interaction.

7.2 Single Er3+ coupled to a cavity

In this section we describe the coupling between a lumped element resonator (see Sec-
tion 3.1.2) called the "spin resonator" and a single spin.

We first describe theoretically the spin-resonator system in all generality. Then we
discuss the characteristics of the crystal used in the experiment and the resonator geometry.
This geometry determines the magnetic field B1(r) produced by the current flowing in
the resonator wire-inductor, and thus the spin-resonator coupling. Finally we describe the
interaction between the environment and the system.

7.2.1 System Hamiltonian

The Hamiltonian of system is:

Ĥ = Ĥr + Ĥs + Ĥint = ℏω0(â†â+ 1
2)− µBg · Ŝ ·B0 + Ĥint (7.19)

with ω0 the spin resonator frequency. The spin Hamiltonian Ĥs = −µBg · Ŝ ·B0 can
be expressed as the function of the energy difference between the two spin level such as
Ĥs = ℏωs/2σ̂z with ωs/2π the spin frequency and z the direction of quantization (not
necessary aligned with B0).

The interaction Hamiltonian Ĥint involves the magnetic field B̂1(r) generated by the
resonator. As described in Section 3.1.1, one can express B1(r) in function of the magnetic
field vacuum fluctuations such as B̂1(r) = δB(r)(â† + â). With this expression, Ĥint reads:

Ĥint = µBB̂1 · g · Ŝ = µBδB · g · Ŝ(â+ â†) (7.20)

where we have omitted the spatial dependent for readability. This expression can be
developed in the |g⟩ , |e⟩ basis as:

Ĥint = ℏ(â+ â†)[αe |e⟩ ⟨e|+ αg |g⟩ ⟨g|+ g0σ̂
† + g∗

0σ̂] (7.21)

where
αe = µB

ℏ
δB · g · ⟨e| Ŝ |e⟩ , αg = µB

ℏ
δB · g · ⟨g| Ŝ |g⟩

g0 = µB

ℏ
δB · g · ⟨e| Ŝ |g⟩ , g∗

0 = µB

ℏ
δB · g · ⟨g| Ŝ |e⟩

(7.22)



By writing Equation 7.21 in the interaction picture with respect to Ĥ0 = Ĥs + Ĥr, we
can apply the rotating wave approximation which only preserves the term of the form
âσ̂† and â†σ̂. By assuming for simplicity that g0 = g∗

0, the expression of the interaction
Hamiltonian is:

Ĥint = g0(âσ̂† + â†σ̂) (7.23)

This term describe the exchange between a resonator photon and a spin excitation
controlled by coupling strength:

g0 = µB

ℏ
δB · g · ⟨e| Ŝ |g⟩ (7.24)

7.2.2 Spin-resonator sample

7.2.2.1 Host crystal

The CaWO4 crystal used in experiment originates from a boule grown by the Czochralski
method from CaCO3 (99.95% purity) and WO3 (99.9 % purity). The sample we use was
cut from the boule into parallelepipedic pieces (7 mm × 4 mm × 0.5 mm). The surface
(4 mm× 0.5 mm) of the parallelepiped is approximately in the (ac) crystallographic plane,
and the c-axis is parallel to its great length Figure 7.5a.

This sample has already been characterized by ESR during the PhD research of
Marianne Le Dantec [Dan22]. Its erbium ion concentration is 3.1 ± 0.2 ppb. Given the
lattice parameters, this yields an average distance of ∼ 300 nm between neighboring erbium
ions.

7.2.2.2 Superconducting resonator

The resonator described here is patterned in a niobium layer deposited at the surface of
the CaWO4 crystal piece. It was made by Zhiren Wang, and more information about its
fabrication procedure can be found in his PhD thesis.

The resonator is designed for strongly coupling hundreds of spins to it. As discussed
in Section 7.2.1, the spin-resonator coupling g0 scales as the magnetic fluctuations δB
generated by the current fluctuation in the resonator δI = ω0

√
ℏ/(2Zc) with Zc =

√
L/C

the characteristic impedance of the circuit. A low impedance resonator is needed for
maximizing the zero point fluctuations δB and the spin resonator coupling.

This is achieved by placing an interdigitated capacitor C, as sketched in Figure 7.5b,
in parallel with an inductive nanowire, as sketched in Figure 7.5c. This nanowire, placed
at the center of the resonator, is 600 nm-wide and 94µm-long and parallel to the c-axis of
the crystal. Figure 7.6 shows optical and SEM micrographs of the resonator used in our
experiments.

7.2.2.3 Coupling strength estimation

In this section we give some orders of magnitude for the value g0. To simplify the discussion,
we consider the nanowire as a cylinder of radius a = 300 nm and length L = 94 µm (see
Figure 7.7a). Since the nanowire is approximately aligned along the crystal c-axis (see
Figure 7.5), its current generates a magnetic field in the (ab) plane. The Biot-Savard gives
B⊥ = µ0

I
2πr < µ0

I
2πa assuming a homogeneous current in the wire.

The magnetic fluctuation can then be write as the function of the resonator parameters
for r > a:



Figure 7.5: Spin resonator design. (a) CaWO4 parallepided (grey) with the supercon-
ducting resonator patterned in a niobium layer on top. The c-axis is approximately along
the z-direction (parallel to the wire) while the (ab) crystallographic plane corresponds to the
(x, y) plane. (b) Resonator design, the wire is surrounding by two symmetric interdigitated
capacitors on the left and right. The top and bottom capacitor pads are antennas used
to maximize the coupling with the output line. (c) Schematic of the nanowire (red). The
zone delimited by the dashed yellow line correspond to the addressable spins.

|δB(r)| = µ0
δI

2πr = µ0
ω0
2πr

√
ℏ

2Z0
. (7.25)

which yields to the following expression of the spin-resonator coupling :

g0(r) = g⊥µB

ℏ
δB1(r) ⟨e| Ŝ |g⟩ = g⊥µB

ℏ
µ0

ω0
2πr

√
ℏ

2Z0
0.5. (7.26)

We then fill this expression with the parameters of our experience. The resonator
frequency is ω0/2π ≈ 7GHz, its impedance Z0 ≈ 17.5 Ω and the perpendicular Landé factor
is g⊥ ≈ 8.

In the case of a spin located just next to the wire ie with r = 300 nm we obtain
g0,max/2π = 2.8 kHz. This value has to be compared with the typical damping rate of our
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Figure 7.6: Fabrication images of the spin-resonator. (a) and (b) optical images of
the resonator. The nanowire is visible on (b). (c) Picture of the nanowire taken with a
SEM.

microwave resonator: κt/2π ∼ 500 kHz. As g0,max ≪ κt we will work in the weak coupling
regime (see Section 3.5.1).

7.2.2.4 Distribution of spin as a function of coupling

In this section, we estimate the distribution of spins as a function of their coupling.
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Figure 7.7: Detectable spins and coupling strengt simulation.(a) Simplified wire
model for estimating the number of addressable spins contained in the half-shell bounded
by a and 2a. (b) Density of spin Nspin as the function of the coupling constant g0. Vertical
black line represents g0,max = 2.8 kHz

The number of spins whose coupling is within the range: g0,max > g > g0 can be written
as:



Nspin(g0,max > g > g0) = ρLπ

2
(
r(g = g0)2 − a2

)
(7.27)

with ρ = 1 · 1019 m−3 the concentration of erbium ion in the crystal. Here we only
consider the spins in the half-shell below the (zy) plan (see: Figure 7.7a).

The density of spin Nspin(g0) is obtained by deriving Equation 7.27 as the function
of g0. As shown on Figure 7.7b, Nspin(g0) ∝ 1/g3

0. This scaling involves that the number
of spin well coupled is negligible compare to the total number of spin. Typically, we can
estimate that the number of spins with a coupling greater than g0,max/2 is ≈ 400. These
spins are located in the half-shell bounded by a and 2a, which corresponds to a detection
volume V = 40 µm3.

The main advantage of this configuration is that, in principle, the signal of the strongly
coupled spins will not be polluted by the electron spin bath.

7.2.3 Spin-resonator system coupled to a microwave line

The coupled spin-resonator system is connected to the environment via the transmission
line. This allows us to both control the spin by sending microwave pulses and to collect
the emitted photons due to its relaxation.

7.2.3.1 Purcell effect

The weak coupling regime involves that the radiative relaxation rate of the spin is enhanced
by the resonator. The situation is comparable to the four-wave irreversible mixing process
described in Chapter 4. When a photon emitted by the spin enters the resonator, it is
immediately dissipated into the environment.

A direct calculation, or an adiabatic elimination of the degree of freedom of the resonator
according to the procedure described in Section 3.5, yield the well known expression of the
Purcell relaxation rate :

Γp(∆, g0) = g2
0κt

κ2
t

4 + ∆2
(7.28)

where ∆ = ω0 − ωs is the frequency difference between the spin and the resonator, κt
the total resonator linewidth, and g0 the spin-resonator coupling.
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Figure 7.8: Purcell effect Illustration of the Purcell effect from [Bie+16]. a) Radiative
relaxation time T1 of spins ensemble provided by bismuth donor in silicon as the function
of the frequency detuning ∆ between the spins and the resonator. b) Simulation of the
spin-resonator coupling constant g0 and the associated Purcell effect in the case of the
superconducting resonator described in Section 7.2.2.



The measurement by Audrey Bienfait from Quantronics of the relaxation time of
bismuth spins in silicon[Bie+16], see Figure 7.8a, provided a first illustration of the Purcell
effect for a spin ensemble coupled to a microwave resonator.

In the case of our resonator coupled to the Er3+ electron spins, a simulation taking into
account the real geometry of the wire and a more realistic distribution of current is done
in [Bil23] to calculate the coupling distribution. The Purcell rate is then deducted from
Equation 7.28 where we fix the resonator frequency at ω0/2π = 7 GHz. An illustration of
this simulation is shown in Figure 7.8b.

7.2.3.2 Bloch equations

Another consequence of the weak coupling regime is that the spin and resonator modes do
not hybridize. Therefore, the spin dynamics can be computed using only the mean field
value α of the cavity ladder operator â. In our experiment, α is created by a coherent tone
sent to the resonator for driving the spin (see Figure 7.9).

The Hamiltonian of the coupled spin-resonator system Equation 7.19 written in the
rotation frame of the resonator takes the form:

Ĥ/ℏ = −∆
2 σ̂z + g0(σ̂†α+ σ̂α∗). (7.29)

The spin dynamics is then computed using the master equation introduced in Equa-
tion 3.69:

∂ρ̂s
∂t

= −i
ℏ

[Ĥ, ρ̂s] +
∑
L̂

DL̂(ρ̂s) (7.30)

where the different Linblad operators L̂, quite similar to the one described in Sec-
tion 3.3.2, can be decomposed in the following list:

• Radiative relaxation: the radiative relaxation rate, dominated by the Purcell rate
with Lp =

√
Γpσ̂.

• Non radiative relaxation: the spins can also loose energy in a non-radiative way,
for instance in the lattice phonon bath, at a rate ΓNR with LNR =

√
ΓNRσ̂.

• Pure dephasing: Fluctuation of the spin frequency, due for instance to the magnetic
environment, dephase the spin at a rate ΓΦ with LΦ =

√
ΓΦ/2σ̂z.

In the experiment presented in the following, we are in a regime where the relaxation
rate is dominated by the radiative process: Γp ≫ ΓNR. Therefore from now we neglect the
non radiative contribution to relaxation.

The spin density matrix, expressed using the Pauli matrices and the Identity, takes the
form:

ρ̂s = 1
2(1 + Ŝ.σ̂). (7.31)

where Ŝ is the average of the spin operator:

Si = Tr[ρ̂sŜi] = ⟨Ŝi⟩. (7.32)

We can now inject this expression into the master equation in order to obtain equations
for the mean value of the spin vector :
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Figure 7.9: schematic of the spin resonator system coupled to an external line.
Figure inspired from [Bil23]. A resonator of frequency ω0/2π and impedance Z0 is coupled
to a spin with the coupling strength g0. It is coupled to the lines at the rate κext and has
internal losses κint. The travelling microwave modes âin and âout enter or exit the system

Ṡ =


⟨ ˙̂
SX⟩
⟨ ˙̂
SY ⟩
⟨ ˙̂
SZ⟩

 =

 0 ∆ −2g0 Im[α]
−∆ 0 −2g0 Re[α]

2g0 Im[α] 2g0 Re[α] 0

S −

Γ2
Γ2
Γp

S (7.33)

where Γp = 1/T1 is the spin longitudinal relaxation rate and Γ2 = 1/T2 = Γϕ + Γ1/2 is
the spin transversal relaxation rate.

Assuming for simplicity that α = α∗, the first term of the equation describe a rotation
around the axis n = −2g0αex + ∆ez at the Rabi frequency:

ΩR =
√

∆2 + (2g0α)2. (7.34)

These Rabi oscillations are caused by the coherent tone that we have sent to the cavity.
From there, we can control the spin by defining control pulses (π-pulse ...).

7.2.4 Fluorescence signal and photon detection

In this section, we establish the link between the field âout coming out of the resonator,
and the photons emitted by the spin.

We write the input-output equation (Section 3.1.4.2) for both â and â† using the
Hamiltonian Equation 7.19 and considering that we do not inject power on the resonator,
i.e. ⟨âin⟩ = 0. The combination of the two equations allows us to write the evolution of
the intra-cavity photon number operator:

d

dt
⟨â†â⟩ = ig0⟨âσ̂+ − â†σ̂−⟩ − κt⟨â†â⟩. (7.35)

On the other hand, the Heisenberg evolution equation of the spin operator is then:

d

dt
⟨σ̂z⟩ = −2ig0⟨âσ̂+ − â†σ̂−⟩. (7.36)

By injecting Equation 7.36 in Equation 7.35, we find the relation linking the average
intra-cavity photon number and the spin operator:

d

dt
⟨â†â⟩ = − d

dt
⟨ σ̂z

2 ⟩ − κt⟨â†â⟩. (7.37)

In the weak coupling regime and for ∆ = 0, one has κt ≫ Γp = 4g2
0/κt. We can

thus consider that the resonator always is in its steady state with a small number of



intra-cavity photons. The link between the outgoing field operator and the intra-cavity
field: âout = √κextâ then gives the signal detected by the SMPD between two times t0 and
t1 :

∫ t1

t0
⟨â†

outâout⟩dt = κext
κt

⟨σ̂z⟩(t0)− ⟨σ̂z⟩(t1)
2 . (7.38)

Eventually, the signal detectable by the SMPD coming from the resonator is directly
proportional to the variation of ⟨σ̂z⟩ through the ratio κext/κt.

7.3 Single Er3+ spin fluorescense detection

The full understanding of spin fluorescence detection requests to link the photon emission
by spins in the transmission line and the photon detection by the SMPD.

In this section we first describe the full detection sequence and the spin-to-click efficiency.
We then move to the calculation of the signal-to-noise ratio of the experiment.
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Figure 7.10: Principle of spin detection with the SMPD. (a) A single spin sketched
with a Bloch sphere initialy in the ground state is excited with a π-pulse. It then emits
randomly a photon with the probability ηint depending on the integration time Tint chosen.
The photon is collected with and efficiency ηc and sent to the SMPD. (b) Following the
π-pulse applied on the spin, the SMPD cycle is repeated n time during a repetition time
Trep. The signal is integrated over Tint adjusted as the function of the relaxation time Γ−1

p .
The experiment is repeated N times in order to average the signal. The total experimenet
duration is Texp.



7.3.1 Signal collected from the spin relaxation

7.3.1.1 Signal acquisition

As indicated in Figure 7.10a, the detection experiment consists of exciting a single spin
initially in its ground state with a π pulse. It then relaxes by emitting a photon in the
transmission line as described in Section 7.2.4. The emission probability depends on the
radiative relaxation rate Γp. The signal is acquired by repeating the SMPD cycle n times
defining the repetition time Trep = nTcycle (see Figure 7.10b). Usually Trep ∼ 5T1 in order
to let the spin return completely in its ground state. The signal obtained is integrated
during a time Tint chosen to maximize the signal to noise ratio.

As the spin can only emit a single photon, the experiment must be repeated several
times to extract the emission rate Γp. We define the total experiment time Texp = NTrep
where N is the number of experiment repetition.

7.3.1.2 Total detection efficiency

In this section we define the overall spin-to-click efficiency. In addition to the detector
efficiency measured in Section 6.3.2.2, two other loss channels play a role in spin detection.

The first is due to the relaxation dynamics itself. After the integration time Tint, the
spin may still be in its excited state, resulting in detection inefficiency. We define the
integration efficiency as ηint = 1−e−ΓpTint . The second source of loss is due to the routing of
the photon from the resonator to the SMPD, yielding to an additional collection efficiency
ηc.

In the following we will defined the spin-to-click efficiency as:

ηtot = ηdηcηint. (7.39)

7.3.2 Signal-to-Noise ration of the detection

7.3.2.1 SMPD signal

The overall signal given by the SMPD during the experiement is SON = αdTintN + ηtotN .
In a similar way to the discussion in the Section 4.5, we define the background signal as
SOFF = αdTintN as the signal when no pulse is applied on the system.

The signal of interest is thus Sint = SON − SOFF.

7.3.2.2 Noise of the detection

We can then describe the noise associated to the detection which has two contributions:

Dark count rate: The dark count rate depicted in Section 4.4.3 creates false positive
detections, which degrades the signal to noise ratio of the measurement. The appearance
of these false clicks is a memoryless process whose fluctuations can be described by a
Poissonian law δ2

DC = αdTintN.

Partition noise: The presence of a photon-to-click efficiency lower than one involves
that the detection process is subject to a binomial distribution with parameter ηtot. The
fluctuation introduced in the signal is δ2

η = ηtot(1− ηtot)N .
The sources of noise being independent the total fluctuation is simply the sum of the

two contributions:

δ2
tot = δ2

η + δ2
DC = αdTintN + (1− ηtot)ηtotN (7.40)



7.3.2.3 Signal-to-noise ratio and discussion

From the two last sections, we can write the signal to noise ratio of the detection:

SNR = Sint√
δ2

tot

= ηtot
√
N√

αdTint + (1− ηtot)ηtot
= SNRSS√N (7.41)

Where SNRSS is the single shot signal-to noise ratio corresponding to one repetition.
Its evolution as the function of the integration time Tint is shown on Figure 7.11a and
exhibits a maximum for Tint = 1.62 · T1. For the typical parameters of our experiment
(αd = 100 s−1, ηc = 0.5, ηd = 0.4), the maximum single shot SNR is SNRSS = 0.237.

The figure Figure 7.11b is a theoretic simulation of SOFF and SON from a Poissonian
law. We set the experiment times to Texp = 100 · Trep = 1 s. The spin considered as a
relaxation time T1 = 2 ms and we fix Tint at its optimum value. These parameters yield to
a total SNR = SNRSS√100 = 0.237 · 10 = 2.37.

This signal-to-noise ratio involves that with the SMPD describe in the last chapter
and a spin with a relaxation time less than or equal to 2 ms, the single spin detection
is perfectly feasible as long as our setup remains stable on time scales of the order of a
second.
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Figure 7.11: Principle of spin detection with the SMPD.(a) Single shot signal-to-noise
ratio SNRSS as the function of the normalised integration time Tint/T1. We set αd = 100
s−1, ηc = 0.5 and ηd = 0.4. The maximal SNRSS = 0.237 is reached for Tint = 1.62 · T1.
(b) Histogram of SON and SOFF generated from a Poissonian law for Texp = 1 s, Trep = 10
ms, T1 = 2 ms and Tint = 1.62 · T1. The final SNR is found to be 2.3.



Chapter 8

Detection and characterization of
single Er3+ electronic spins

In this chapter, we combine the Single Microwave Photon Detector SMPD2 (properties
given in Table 6.3), and the spin sample described in Section 7.2.2 to perform the detection
of individual Er3+ electron spins embedded in a CaWO4 crystal. The spins are controlled
by pulses applied via the resonator fabricated on the crystal surface, and the photons
emitted by their Purcell relaxation are detected by the SMPD. We first describe the
experimental setup and the various adjustments needed for achieving an efficient detection.

We then perform the ESR spectroscopy of the sample by varying the magnetic field
B0. We show that the erbium ESR main line is composed of several individual narrow
lines, visible at low microwave drive amplitude. By measuring the photon statistics of
the fluorescence signal of individual lines, we prove that each individual spectroscopic line
can be attributed to a single Er3+ electronic spin. Interestingly, each identified spin has
its own g-tensor which varies slightly from the average tensor introduced in the previous
chapter. This deviation is the mark of the uniqueness of the spin environment making this
experiment the first measurement of the spin local environment by ESR techniques.

In a third part, we choose a particular spin to probe our ability to control it through
the microwave resonator. The spin is treated there as a two level system for which the
framework developed in the previous chapters for analyzing the transmon qubit can be
applied. We determine its different coherence times with the usual control sequences
(2Pulse Ramsey, Hanh echo, ...). Here again the dispersion of the measured values is the
mark of a different electromagnetic environment for each spin.

This experiment constitutes the first manipulation of an individual spin by electron
paramagnetic resonance techniques.

8.1 Experimental setup and adjustment of the experiment

In this section we describe the experimental setup and the different adjustments needed
for its operation. Three different resonance frequencies are involved in the detection chain,
that of the spins, the spin resonator and SMPD detection. These three frequencies must be
precisely tuned. The spin frequency is controlled by the Zeeman effect via a static magnetic
field B0, whereas the SMPD buffer frequency can be adjusted using a tuning SQUID.

8.1.1 Microwave setup and 3-axis magnet

For this experiment, we apply a magnetic field on the spin sample. For this purpose, we
install the setup in a fridge different from the one used in Chapter 6, and which is fitted
with a 3-axis magnet.
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Microwave setup: The full microwave setup of the experiment is shown in Figure 8.1.
It is similar to the one of SMPD1 shown in Figure 5.14. At low temperature, the
main concern is always to reduce thermal population of the lines by installing adequate
attenuation and filtering. The room temperature electronics used to control the SMPD2 is
similar to the one used for operating the SMPD1. The Quantum Machines OPX allows us
to implement sequences involving dc pulses, microwave pulses, demodulation pulses, ADC
fast measurements, and intermediate calculations.

The spin sample is connected to the buffer resonator of the SMPD via a circulator.
The incoming signal from the line 2 on Figure 8.1 is first routed to the spin sample, then
reflected and guided to the SMPD. The connections between the different elements are
made by SMA cables.

Spin sample packaging: The spin sample described in Section 7.2.2 is glued into
a copper cavity into which we insert a pin. This pin is simply the end of the central
conductor of a SMA cable connected to the rest of the circuit. The electric field generated
by this antenna in the copper cavity provides the coupling between the resonator and the
line. The top and bottom pad present on Figure 7.5b contribute to increase the coupling.

Once the sample is installed, the copper cavity is mounted at the center of the 3-axis
magnet at the bottom of the fridge.

3-axis magnet: The 3-axis vector magnet consists of three superconducting coils
capable of delivering up to 1T along the X, Y, and Z axes. We thus have a fully adjustable
magnetic field B0 = (Bx, By, Bz).

Each coil is fed by a commercial current source (Four-Quadrant Power Supply Model
4Q06125PS from AMI) and is fitted with a parallel shunt that can be switched between a
superconducting state and a normal state. These shunts allow us to operate each coil in
two different modes:

• Current supply mode: The shunt is in the normal state, and the current source
feeds the coil. This mode is suitable for spectroscopy experiments requiring to vary
the magnetic field in amplitude or orientation. Its drawback is the the presence of
magnetic field fluctuations due to the current noise of the current source.

• Persistent mode: Once the coil is loaded with an initial current, one can cool down
the shunt for placing it in the superconducting state. One can then reduce the source
current down to zero while maintaining the current in the coil. This is the so-called
persistent mode. The current in the coil is then constant. The field stability time in
this mode is longer than the duration of an experiment. Rare thermally assisted flux
creep events induce a very slow decay of the magnetic field. This mode that ensures
a stable spin frequency is well suited for quantum coherence measurements.

8.1.2 Spin resonator characterization by reflectometry

The spin resonator is characterized at zero magnetic field by reflectometry using the line 1
and 2 shown in Figure 8.1. The resonance frequency ω0/2π = 7.3487 GHz matches well
the operating range of the SMPD2 with maximum detectable frequency ωb(0)/2π = 7.459
GHz.

At zero field, the coupling and internal loss rates are respectively: κext/2π = 200 kHz
and κint/2π = 121 kHz.
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Figure 8.2: Spin resonator characterization for B0 = 0. Phase (a) and amplitude
(b) of the reflection coefficient S11(ω). The solid orange lines represent the best fit with
parameters κext/2π = 200 kHz, κint/2π = 121 khZ.

8.1.3 Field alignment

The sample is mounted in the refrigerator so that the cristallographic (ac)-plane (sample
plane in Figure 7.5a) is approximately in the YZ-plan of the 3-axis magnet, the c-axis
being parallel to the Z-axis. This adjustment of the orientation by eye is not very accurate
and the sample is always slightly misaligned at the beginning of the experiment.

As we work with superconducting thin films, placing the field in the sample plane is
essential for avoiding the formation of vortices. Therefore, an alignment field procedure is
needed at the beginning of an experiment.

This alignment procedure takes advantage of the weakening of the superconductivity
in the thin film caused by the perpendicular field component. The consequence is the
reduction of the superconducting gap, which yields a small decrease of the spin resonator
frequency.

The full alignment procedure is depicted in Figure 8.3:

• We first applied 50 mT on the Y-axis with the Y coils, B0 = (0, 50, 0) mT.

• We rotate the magnetic field around the Z-axis by increasing the Bx component,
|B0| = |(Bx, By, 0)| = 50 mT. For each value of φ = arctan(BY/BY) (see ??a)
we measure the resonator frequency and find the angle φ0 that maximises it. As
the sample is mounted in the YZ-plan, this angle is small, within a range of ±1◦.
Figure 8.3d shows an example of this optimization. The field is reduced down to 0
mT, and the new frame is now (X′

,Y′′
,Z).

• We applied 50 mT on the Z-axis with the Z coils, B0 = (0, 0, 50) mT.

• Similarly, we rotate the field in the (X′Z)-plane. For each value of ψ = arctan(BZ/BX)
(see Figure 8.3b), we measure the resonance frequency in order to find ψ0 which
maximizes it. The field is reduced down to 0 mT. The new frame (X′′

,Y′′
,Z′′) is now

such as the (Y′′
,Z′′)-plane corresponds to the sample plane.
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resonator frequency as the function of the angle φ and ψ
.

Now with the known correction angles φ0 and ψ0, an arbitrary field B0 in the Y′′-Z′′

resonator plane, with an angle θ with respect to Z′′ (see Figure 8.3c) is obtained by setting
the (X,Y,Z) magnets as:

B0 =

BX

BY

BZ

 = B0

sin θ sinφ0 − cos θ sinψ0 sinφ0
sin θ cosφ0 + sin θ sinψ0 cosφ0

cos θ cosψ0

 . (8.1)

From now on, the B0 fields we express will be considered as being in the plane of the
sample. However, the frequency of the resonator is still slightly dependent on the magnetic
field amplitude as shown on Figure 8.4a. This is due to a small residual perpendicular field
component.

In addition, the evolution of the internal and coupling losses are shown in Figure 8.4b. In
the following, we will take data around 420 mT, with κint/2π = 200 kHz and κext/2π = 270
kHz. These parameters determine the contribution of the resonator to the detection
efficiency: κext/(κext + κint) = 0.57 (see Equation 7.38). Combined with the SMPD2
efficiency 0.32 , one obtains a maximum overall detection efficiency ηtot ≤ 0.57 · 0.32 = 0.18.
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Figure 8.4: Spin resonator characterization as the function of B0 (a) Resonator
frequency ω0/2π and resonator losses (b) as the function of the magnetic field amplitude
B0.

8.1.4 Tuning the SMPD for spin detection

In this section, we briefly recap the SMPD2 operational parameters and we show how to
align the detection frequency of the SMPD with that of the spin cavity.

As shown in Table 6.3 the overall dark count rate of the SMPD2 is αd = 130 s−1. The
qubit equilibrium population pe = 2 · 10−4 is comparable to the one of SMPD1. The dark
count rate contribution due to this intrinsic circuit imperfection is αqubit = 10 s−1 , still
negligible compared to the excess thermal dark count rate of the SMPD.

The overall efficiency of the detector is 0.32, slightly smaller than that of SMPD1
because of a shorter qubit relaxation time T1 ≈ 15 µs.

We chose the detection window time Td = 10 µs by performing the optimization
depicted in Section 6.3.1. The cycle time is Tcycle ≈ 12 µs.

We now discuss the measurement of the detector bandwidth. A flux of 50 photons·ms−1

is sent to the detector through the line 2. When the photon frequency is away from the
spin resonator frequency, they are fully reflected and impinge the SMPD. The variations of
the detector response with the frequency of the incoming photons is shown in Figure 8.5a
for a 10 MHz detuning of the buffer resonator from the spin resonator.

Since the SMPD2 is in the regime where κb ≪ κw and κd = 2κb, we can fit the detector
response with a Lorentzian function. The corresponding bandwidth is κd/2π = 870 kHz.

We now perform the same experiment but with the buffer frequency tuned with the
spin cavity frequency. The detector response in this situation is shown in Figure 8.5b. The
cavity resonance makes a sharp dip in the Lorentzian response of the detector because, at
the spin resonator frequency, a large part of the incoming photon flux is absorbed in this
resonator instead of being reflected towards the SMPD.

This procedure will be repeated regularly during our experiments to compensate for
frequency drifts, due for example to the effect of the magnetic field on the spin resonator.
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Figure 8.5: SMPD2 bandwidth measurement and setting with the spin resonator.
(a) Number of detection per millisecond ⟨Ċ⟩ in function of the frequency of the incoming
photons. The flux of incoming photons is set to be 50 ms−1 and is sent through the line
2 of the setup (see Figure 8.1). Here the buffer resonator is de-tuned by 10 Mhz from
the spin resonator, which yields a full reflection of the photons by the spin cavity. Solid
orange line represents a Lorentzian fit form which we we find κd/2π = 870 kHz. (b) Same
experiment with the buffer resonator tuned with the spin resonator. In contrast to (a), the
incident photon flux is absorbed by the spin cavity before reaching the SMPD. The result
is the appearance of a dip in ⟨Ċ⟩ with the shape of an inverted Lorentzian.

8.2 Spin fluorescence detection by photon counting
The raw data of one complete experiment consist in a (N,n)-matrix where each component
is a Boolean variable ci(tj), representing the SMPD output for the ith repetition and the
jth cycle (corresponding to the time tj). The i and j index vary according to: 0 ≤ i ≤ N
and 1 ≤ j ≤ n.

N is the total number of the repetition while n is the total number of SMPD cycle in
one repetition. As defined in Figure 7.10b, the duration of a repetition is: Trep = nTcycle
and the total experiment time is Texp = NTrep.

From the raw data we can define several quantities:

• The total and average number of count

⟨C⟩ = 1
N

N∑
j=1

Trep∑
t=0

cj(t) (8.2)

An illustration of this quantity is given in Figure 8.6b for N = 4000.

• The background-corrected average number of counts

⟨C̃⟩ = 1
N

N∑
j=1

Tint∑
t=0

cj(t)−
Trep∑

t=Tbg

cj(t)

 , (8.3)

Tint is the integration time (see Figure 8.6) while Tbg is the time from which the
signal is considered to be solely due to the dark-count and not anymore to the spin
relaxation.



Figure 8.6: Raw data and count rate. (a) Time traces of the N repetition of a real
single spin detection experiment. A π-pulse is applied to the spin before each measurement
repetition. Here Trep = 10 ms which correspond to ∼800 SMPD cycle for Tcycle = 12.5 µs.
The signal is coarse-grained in 25 bins represented on the first time trace by dashed lines.
The n(1)

j correspond to the number of clicks in the jth bin for the first experiment repetition.
(b) representation of the total number of count C for N = 4000 by concatenating the
different traces of a). The beginning of the trace has a denser concentration of count due
to spin relaxation. (c) Representation of the average count rate ⟨Ċ⟩ calculated from the
bins according to the detection time. The blue (resp. orange) histogram corresponds to
a situation where a π-pulse (resp. no pulse) is applied to the spin. The integration time
Tint defines the limits of the signal that will be taken into account (orange area). Tbg
corresponds to the background signal. (d) Representation of the background-corrected
average count rate ⟨ ˙̃C⟩ calculated by removing the orange area of c) to the blue one.

• The average count rate

⟨Ċ(τj)⟩ = 1
N

N∑
i=1

ṅ
(i)
j (8.4)

with

ṅ
(i)
j = 1

Tb

τj+Tb/2∑
t=τj−Tb/2

ci(t) (8.5)



the bin rate at time τj of the repetition i, obtained by coarse-graining the counts
into bins of duration Tb with Tb/Tcycle SMPD cycle (see Figure 8.6a).

• The background-corrected average count rate

⟨ ˙̃C(td)⟩ = ⟨Ċ(td)⟩ − 1
Nbg

Trep∑
τj=Tbg

⟨Ċ(τj)⟩, (8.6)

where Nbg = (Trep − Tbg)/Tb is the number of bins chosen to define the background
to remove (see Figure 8.6d).

8.3 Spin spectroscopy measurements
In the section Section 7.2.3.2 we have shown how the spins can be manipulated and excited
through the spin resonator. In this section we combine spin excitation and photon detection
to perform the spectroscopy of the sample with respect to the magnetic field B0.

8.3.1 Experiment principle

8.3.1.1 Driving spins with Rabi oscillations

The number of spins contributing to the fluorescence signal depends on their Rabi frequency
and the rotation axis n on the Bloch sphere. These two parameters are controlled by the
product of the pulse amplitude with the spin-resonator coupling g0α, and by the frequency
detuning ∆ between the spin and the resonator (see Equation 7.34).

In practice, if the frequency of the spins is too different from that of the resonator, the
rotation axis is the Z-axis, and the spins are not excited. At zero detuning ∆ = 0, the
spins are driven by the microwave field and their final state is determined by the pulse
characteristic (length and amplitude) as well as the spin-resonator coupling. At a given
pulse length, the pulse amplitude allows to select the number of spins that participate to
the fluorescence signal. The greater the amplitude, the greater this number of spins.

8.3.1.2 Spectroscopy in magnetic field B0

The spectroscopy experiment consists in scanning the magnetic field and, for each field
value, to apply microwave pulses on the resonator and collect the fluorescence signal emitted
by the spins.

The narrow band spin resonator can be seen as a fixed window behind which the entire
ESR spectrum scrolls. To get an idea of the width of this window for an electron spin
polarized along the c-axis, one can convert the resonator bandwidth into magnetic field.
κt = κext + κint = 2π × 470 kHz, which corresponds to δBt = κt/(µBg∥) ≈ 28 µT. Rather
than a window, it is a thin slit through which we can scroll the whole spectrum.

This allows us to recover the different spectroscopic lines of the paramagnetic species
present in the sample and in particular those of erbium. With the magnetic field almost
aligned along the c-axis and with the resonator frequency ω0/2π = 7.349 GHz, we expect
to find the erbium line at a magnetic field around B0 = (ω0ℏ)/(µBg∥) = 421 mT.

8.3.2 High power spectroscopy

8.3.2.1 Scan along the Z-axis

In order to obtain the best field stability possible, we put the X and Y coils in persistent
mode and we scan the magnetic field with the Z coil. Note that in this case, the angle θ is



Figure 8.7: High power spectroscopy of the Er3+ line. (a) Microwave fluorescence
spectroscopy at high power (∼ −97 dBm). The average count rate ⟨C⟩ is represented for
an integrating time of 200 ms as the function of the magnetic field amplitude B0. Solid
line represents a Lorentzian fit from which we can extract the FWHM = 0.45 mT. Note
that the θ angle varies linearly between −0.06◦ and 0.06◦ during the scan. (b) Average
count rate ⟨Ċ⟩ as the function of the time showing the typical fluorescence signal over an
integration window. The blue (orange) histogram corresponds to point represented by the
blue (orange) star in a).

not constant during the spectroscopy but varies between −0.06◦ and 0.06◦ for a B0 scan
between 417 and 422 mT.

We first record the spectrum of the Er3+ resonance with a high input power (∼ −97
dBm) in order to excite many weakly coupled spins, away from the wire, with a small ΓP.
For each field amplitude B0, we integrate the fluorescence signal over a window of 200
ms from which we extract an average number of photons ⟨C⟩. The average count ⟨C⟩ is
plotted in Figure 8.7a as in function of the of the magnetic field amplitude. A smooth,
approximately Lorentzian curve is obtained whose maximum is observed at B0 = 419.5 mT
close to the expected field value B0 = (ω0ℏ)/(µBg∥) for the Er3+ spin resonance. The slight
difference can be attributed to the misalignment of the c-axis with the sample. Indeed,
the sample comes from a boule that was cut along a c-plane. The cutting method being
imperfect, the presence of a residual angle β is expected.

A typical fluorescence signal is shown in Figure 8.7b. At the maximum of the Erbium
line (B0 = 419.5 mT) (blue histogram), the average count rate ⟨Ċ⟩ shows an excess
compared to the dark count level and decays non-exponentially over a time scale of ∼ 100
ms. This signal comes from the contribution of large ensemble of spins that have a large
coupling inhomogeneity ΓP as explained in Chapter 7.

One may notice that far from the erbium line, the count ⟨Ċ⟩ ∼ 180 s−1 is still above
the dark count rate of the SMPD (∼ 130 s−1). This is attributed to the high amplitude
microwave pulses which heat up the lines significantly. A complete investigation of this
background increase due to the microwave pulses is carried out in [Wan+23].

8.3.2.2 Rotation pattern

As the CaWO4 presents an asymmetric g-tensor, it is interesting to perform the measure-
ment of the previous section for various θ angles in order to visualize the g-tensor.

The ESR spectra for 7 different angles θ is shown in Figure 8.8a. The magnetic field
Bpeak

0 corresponding to the top of the erbium line in function of the angle θ is shown in



Figure 8.8b. The line center is maximum in magnetic field (and minimum in effective
gyromagnetic ratio) at an angle defined as θ = 0◦ when B0 is aligned with the projection
of the crystallographic c-axis onto the crystal plane

This magnetic field can be expressed as a function of the θ and β angles: Bpeak
0 =

(ℏω0)/(µBgeff(θ)) , with geff =
√

(g⊥ sin θ sin(β))2 + (g∥ cos θ cos(β))2 (Equation 7.11).
The fit with this formula allows us to extract the angle β = 0.5◦.
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Figure 8.8: Rotation pattern. (a) Spectroscopy of the Er3+ line realize for different
θ angle. The fluorescence signal is integrated over 200 ms. (b) Magnetic field Bpeak

0
corresponding to the maximum average count as the function of θ. The solid blue line is
a fit according to the formula Bpeak

0 = (ℏω0)/(µBgeff(θ, β)) which yields to β = 0.5 and a
maximum field for θ = 0

8.3.3 Low power spectroscopy

We now discuss the low power spectroscopy in order to probe a different spin population.
The experiments of the previous section are repeated by attenuating the pulse power by 20
dB and reducing the integration time to 2 ms. We now detect the most strongly coupled
and fastest relaxing spins.

8.3.3.1 Scan along the Z-axis

Figure 8.9a shows the variations of the integrated count ⟨C⟩ with the magnetic field
amplitude B0. The spectrum appears as a sum of narrow, unevenly distributed peaks, with
typical amplitude ∼ 0.1 excess count over the noise floor.

The Figure 8.9b is a zoomed part of the spectrum showing 7 different peaks (s0 ... s6).
These narrow lines are stable and perfectly reproducible over days or weeks.

A typical fluorescence curve of one of these peaks, that of s0, is shown in (Figure 8.9c).
One always observes a continuous decay with a characteristic time in the ms range. These
features raise a question: does each peak correspond to the microwave fluorescence signal
originating from a single Er3+ ion spin, similarly to the optical fluorescence spectrum of
a collection of individual solid-state emitters ? [OB90; Kin+20; Dib+18] . Note that
while we observe a large fluorescence signal at the centre of the inhomogeneous absorption
line, some individual peaks are still found far from the centre; a common observation in
low-density spectra of optical emitters, and a natural consequence of the random nature of
inhomogeneous broadening. This is also possibly supplemented in our particular device



Figure 8.9: Low power spectroscopy. (a) Spin spectroscopy at low power (∼ −107 dBm
at sample input), with an integration window of 2 ms. Green line is measured data, black
line is a Lorentzian fit. Note that the angle θ varies linearly between −0.016◦ and 0.016◦

over the scan. (b) Zoom between 420.86 mT and 422.1 mT exhibiting 7 peaks (labelled s0
to s6). (c) Fluorescence histograms of spin s0 (blue) and background (orange) averaged
over the range of B0 shown in the zoom fig b). The light orange window is the integration
window for the data in a) and b).

by the strain imparted by thermal contractions of the metallic wire on the substrate just
below [Pla+18; Ran+21].

Note that now the dark count rate retrieve its nominal value (orange histogram in
Figure 8.9c). The microwave pulse thus no longer increases the temperature of the
microwave bath.

8.3.3.2 2D spectroscopy

For probing the stability and reproducibility of the peaks, we perform a two-dimensional
magnetic field scan by recording the background-corrected average number of counts ⟨C̃⟩



as a function of B0 and θ (see Figure 8.10). Since the seven different spin peaks we have
chosen are well resolved, their spectrum is readily followed as a function of θ.
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Figure 8.10: 2D low power spectroscopy. Background-corrected average number of
count ⟨C̃⟩ as the function of the magnetic field angle with the Z-axis θ and the magnetic
field amplitude B0. Each line in dark blue correspond to an individual peak observed in
Figure 8.9.

The first observation is that each line has its own gyromagnetic tensor γ = µBg, close to
the average one γ0 but with different values along the principal axes, and with a symmetry
axis that can slightly deviate from the c-axis. The lines are so narrow that each ion
gyromagnetic tensor could, in principle, be determined to better than 10−6 accuracy (using
a suitably calibrated magnetic field). Because the deviation δγ of the gyromagnetic tensor
from the ensemble-averaged γ0 is due to the local electrostatic and strain environment, its
accurate measurement can also be turned into a sensitive way to probe this environment
(as done with NV centres in diamond [Bro+19]). Note that our measurements also call for
a better modeling of the response of rare-earth ion spins to applied electric or strain fields.

8.4 Single-spin time-domain measurements

In this section we further investigate the single spin nature of the different lines observed
in the previous section. We show single spin control experiments on line s0, and we probe
quantum coherence on the s6 line.

8.4.1 Characterization of the s0 line

8.4.1.1 Rabi oscillation

On this section, we focus on the s0 peak visible both on the low power spectroscopy curves
Figure 8.9b and Figure 8.10. We first measure the average-background corrected number of



clicks ⟨C̃⟩ as the function of the pulse duration for a fixed pulse amplitude. This experiment
is the symmetric of the one shown in Section 6.1.2.3.

The signal is integrated over the first 2 ms as in the same way as done for the data in
Figure 8.9c. We vary the pulse duration from 0 to 10 µs. As expected for a single emitter,
we observe a sinusoidal oscillation corresponding to Rabi oscillations (see Figure 8.11).
A gradual small increase in counts is observed, which we interpret as the progressive
excitation of the spin background bath and the heating of the lines.

We then perform the same experiment but by also varying the amplitude of the
microwave pulse. ⟨C̃⟩ is plotted in Figure 8.11a as the function of the pulse duration and
amplitude. From this 2D plot we can observe that the Rabi frequency increase with the
pulse amplitude. This effect clearly materializes in Figure 8.11b where the frequency is
plotted as the function of the amplitude and increases linearly as expected from the Rabi
frequency formula Equation 7.34.
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Figure 8.11: Rabi oscillation,peak s0. (a) Background-corrected average number of
count ⟨c̃⟩ with the respect to the microwave pulse duration (see inset). red dots are data,
solid blue line is a sinusoidal fit with a linearly increasing offset. (b) ⟨C̃⟩ with the respect
to the pulse duration T and amplitude A. (c) Frequency of the oscillation as the function
of the pulse amplitude A. Pink circles represent data while solid blue line is a linear fit.

This experiment gives us access to the (A,T) torque needed to achieve a controlled spin



rotation on the Bloch sphere. This will be useful to define the implement pulse sequences
with angle (π/n-pulse).

8.4.1.2 Intensity-intensity correlation function

As demonstrated for single emitters in optics, the best way to probe the single emit-
ter nature of a source is to measure its intensity-intensity correlation function g(2)(τ).
For a single emitter, the probability of emitting a photon in the same wavepacket la-
beled n is zero i.e ⟨I(n)(t)I(n)(t + τ)⟩ = 0. However, the probability of emitting photon
in separated wavepackets corresponding to distinct repetition is independent, therefore,
⟨I(n)(t)I(m ̸=n)(t + τ)⟩ = ⟨I(n)(t)⟩⟨I(m̸=n)(t + τ)⟩. Moreover, the time resolution and the
dead-time of the detector (∼ 10 µs) are much smaller than the typical wavepacket duration
(∼ 1 ms). As the consequence, the intensity-intensity correlation function can be measured
with a single detector only [Dib+18]. However, due to the dark-count, g(2)(τ) is blurred.
A simple correction can be performed assuming a Poissonian state for the dark-count.

g(2) dataset and definition:

Our protocol consists in acquiring a dataset corresponding to two interleaved series of
4363635 repetitions labelled from i=0 to i=4363634 repeated every Trep = 10.6 ms, where
one series includes a π pulse at time t = 0 and the other has no excitation pulse. Time
t = 0 is followed by 825 SMPD cycles.

The count data of the repetition are grouped in 350µs-long timebins indexed by j
(with j running from 0 to 20), and centered at time τj = 100 + (2j + 1)× 350/2 µs. The
corresponding number of counts in the bin j of repetition i is n(i)

j . The first bin is separated
from the microwave pulse by 100 µs in order to avoid spurious heating effect.

We define the intensity-intensity correlation function in the same way as in [Dib+18]
by comparing the number of counts in the two first bins of two repetitions. This yields to
the definition of the inter-pulse g(2):

g(2)(k) = ⟨n
(i)
0 n

(i+k)
1 + n

(i)
1 n

(i+k)
0 ⟩i/2

⟨n(i)
0 ⟩i⟨n

(i+k)
1 ⟩i

, (8.7)

where we keep only the first and second bins of the two repetitions, symmetrize the
function about k=0, and average over all pairs of repetitions with same separation k ∈ Z.
For N emitters, g(2)(0) should be equal to (N −1)/N ; in particular, g(2)(0) should be equal
to 0 for a single-emitter since it can emit only one photon per repetition.

Uncorrected g(2):

The g(2)(k) correlation function calculated from the dataset described above is shown in
Figure 8.12a. For k ̸= 0, g(2)(k ̸= 0) = 1±0.006 which is expected as there is no correlation
between to different repetitions. On the contrary, the value of g(2)(0) = 0.906± 0.007 is
slightly less than 1. This reduction is small, but this is not surprising given that dark
counts sizeably contribute to false positives
.

Background-corrected g(2):

We now take into consideration the fact that the clicks from the detector have two
independent origins: emission sj from the spins, and Poissonian background noise dj

due to independent dark count events, such that nj = sj + dj , ⟨nj⟩ = ⟨sj⟩ + ⟨dj⟩, and
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Figure 8.12: Auto-correlation function, peak s0. Raw data (a) and background-
corrected (b) auto-correlation function g(2) (blue columns) and corresponding ±1-standard
deviation error bars (red) measured as a function of the offset k between excitation pulses.
Note that the function is exactly symmetric around 0 by definition.

⟨sjdj⟩ = ⟨sj⟩⟨dj⟩. In addition, we assume that the instruments during the measurement
time are stable enough so that the dark count rate is time-invariant: ⟨dj⟩ = ⟨d⟩.

We thus define the background-corrected autocorrelation function:

g(2)
corr(k) = ⟨s

(i)
0 s

(i+k)
1 + s

(i)
1 s

(i+k)
0 ⟩i/2

⟨s(i)
0 ⟩i⟨s

(i+k)
1 ⟩i

(8.8)

and express it explicitly as a function of the uncorrected g(2)(k) of Eq. 8.7 and of the
measurement outcomes Aj ≡ (⟨n(i)

j ⟩i − ⟨d⟩)/⟨d⟩:

g(2)
corr(k) = (1 +A0)(1 +A1)g(2)(k)−A0 −A1 − 1

A0A1
. (8.9)

The variations of the background corrected correlation function g
(2)
corr with the offset

between the repetitions are shown in Figure 8.12b. We find g
(2)
corr(0) = 0.23 ± 0.06 and

g
(2)
corr(k ̸= 0) = 1± 0.04. There is thus a very significant anti-bunching in each repetition,

whereas the emission from different repetitions remains uncorrelated. The non-zero value



of g(2)
corr(0) may be due to heating by the excitation pulse. In any case, the fact that its

value is well below 0.5 further strongly suggests that the spectral peak under investigation
corresponds to a single microwave photon emitter, namely an individual Er3+ electron-spin.

8.4.1.3 Signal-to-noise ratio

Due to the presence of dark-count and inefficiency, we have to repeat the experiment a
large number of time before being able to resolve the presence of a single spin. This can be
quantified as the SNR of the spin detection.
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Figure 8.13: Signal-to-noise ratio. (a) Measured probability distribution p(C) of the
total count C integrated over the first 2 ms of 7.5 ms-long repetitions, either with no
excitation pulse applied (grey) or with a π excitation pulse (red). Repetitions are repeated
and counts are summed during an experiement time Texp = 1 s. Solid lines are Poissonian
fits, yielding the spin signal Cspin = 12.4 (difference between the mean values of the two
distributions) and the standard deviations δC0 = 5.5 and δCπ = 6.5. This results in a
single-spin SNR Cspin/δCπ = 1.91. (b) Measured signal-to noise ratio Cspin/δCπ (magenta
dots) as a function of the measurement time Texp, and fit with the function A

√
Texp (solid

line). Data taken at B0 = 421.042 mT and θ = −0.024◦.

From the same dataset as used for the intensity-intensity correlation function, we
compute the sum C of the counts integrated over the first 2 ms following the excitation
pulse, over repetitions played during Texp.

The count probability histogram p(C) for Texp = 1 s, with and without π pulses applied,
is shown in Figure 8.13a. These date yield a single-spin detection SNR of 1.91.

A comparison with the expected SNR given in Equation 7.41 requires the knowledge of
the overall efficiency ηtot, which we find to be equal to η = 0.12± 0.01 by integrating the
fluorescence signal after the π pulse with subtracted background. We then estimate an
optimal theoretical SNR of ∼ 2.5, quite close to the measured value. We also verify that
the SNR scales as the square root of the measurement time Texp up to at least 1 minute
(see Figure 8.13b), which is indicative of good measurement stability.

Finally, in this experiment we achieve a sensitivity of 0.5 spin/
√

Hz, which is an
improvement by a factor of ∼ 20 compared to the previous state of the art [Ran+20;
Alb+21].



8.4.2 Spin time domain measurements s6

The single-spin nature of the individual lines identified by spectroscopy (Figure 8.9) having
been established, the next step is to manipulate the spin in the same way as done for the
SMPD superconducting qubit Section 6.1.2.3. Our aim is to characterize the spin dynamics,
and to determine its different quantum coherence times. In this section, we focus on the
spin s6.
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Figure 8.14: Relaxation time and Purcell effect, spin s6. (a)Energy relaxation:
measured average count rate ⟨Ċ⟩ (blue dots) as a function of delay td after a resonant
π excitation pulse. Exponential fit (solid orange line) yields the energy relaxation time
T1(δ = 0) = 1.42± 0.07 ms. (b) Purcell effect: measured T1 as a function of spin-resonator
frequency detuning δ (orange dots). A fit to Γ−1

P (δ) (solid black line) yields the spin-
resonator coupling constant g0/2π = 3.59 ± 0.15 kHz. (c) Measured excess counts ⟨C̃⟩
versus delay time τ between two resonant π/2 pulses with relative phase φ(τ) = 2π∆τ
and ∆ = 0.025 MHz (dots). The corresponding fit (solid line) by a sine function with a
Gaussian-decaying envelope (dash lines) yields a coherence time T ∗

2 = 0.17± 0.03 ms.

8.4.2.1 Purcell effect an free-induction-decay time

Energy relaxation time T1

We first measure the energy relaxation time T1 of the spin s6 which is readily obtained
from the fluorescence curve decay, as shown Figure 8.14a) . We find a relaxation time



which is minimum at zero frequency detuning δ between the spin and the resonator, as
expected for Purcell dominated relaxation, T1(δ = 0) = 1.42± 0.07 ms.

Free-induction-decay (FID) time T ∗
2

We then measure the free-induction-decay (FID) time using a Ramsey sequence
π/2X − τ −π/2φ, with the relative inter-pulse phase φ = 2π∆τ , where ∆ = 0.025 MHz. As
shown in Figure 8.14c, the excess count ⟨C̃⟩ shows oscillations at frequency ∆ + δ, damped
with an approximately Gaussian shape with a characteristic decay time T ∗

2 = 170± 33µs,
which corresponds to a ∼ 2 kHz single-spin linewidth or ≈ 0.1 µT.

Spin-resonator detuning δ and Purcell rate Γp

The Ramsey sequence can be turned into a accurate way to measure the spin detuning
δ with the respect to the pulse frequency centered on the resonator frequency. This allows
us to probe quantitatively the dependence of the spin relaxation time T1 on the detuning
δ shown in Figure 8.14b, and to obtain an accurate determination of the spin-resonator
coupling.

The spin detuning δ is controlled by changing the spin frequency using the magnetic field
B0. We maintain the X and Z coils in in persistent mode, and use the Y coil (stabililized
with homemade feedback loop) to fine-tune δ.

The relaxation time T1 increases quadratically with δ , in agreement with the predicted
dependence for Γ−1

P given by Equation 7.28. We retrieve the results obtained by A.Bienfait
[Bie+16], illustrated in Figure 7.8, but at the single spin level.

8.4.2.2 Hahn echo and dynamical decoupling

The spin Ramsey time T ∗
2 is limited by slow fluctuation of the environment such as the

nuclear spins or static magnetic field fluctuation. In this section, we move on to a Hahn
echo and then a dynamical decoupling experiment, which allow these slow fluctuations to
be cancelled out by refocusing pulses.

The sequence applied is π/2X − τ − πX − τ − π/2φ [Bil+22],with the relative inter-
pulse phase φ = 2π∆τ , where and ∆ = 1 kHz. In contrast to the Ramsey sequence, the
central refocusing π-pulse removes the slow frequency shift that occurs during acquisition.
Therefore, the echo coherence time is longer, T2 > T2.

The results of a hahn echo sequence are shown in Figure 8.15a). The average count
rate ⟨C̃⟩ shows an oscillatory pattern at frequency ∆ , with an exponential decay with
characteristic time T2 = 2.47 ± 0.31 ms. This value is close to the radiative decay limit
2T1, which allows us to determine a pure dephasing time is ∼ 16 ± 5 ms, in line with
measurements on ensembles of Er3+ : CaWO4 electron spins [Dan22]. This dephasing can
be suppressed further by a 3-π-pulse Dynamical Decoupling sequence, yielding a transverse
relaxation time TDD

2 = 2.99± 0.33 ms (see Figure 8.15b), which is equal to 2T1 up to the
accuracy of the measurements.

8.4.2.3 Coherence properties of different spins

These coherence times were also measured on a set of five Er3+ electron spins, and the
results are listed in Table 8.1. One notices that T ∗

2 varies strongly among these spins
(between 5µs and 300µs), whereas T2 and TDD

2 are consistently close to 2T1. The variation
of coherence time among different spins can be explained by the varying nuclear spin or
paramagnetic environment of each ion, and also possibly their degree of exposure to surface
magnetic noise given their approximate depth of ∼ 100− 150 nm according to Figure 7.8b



Figure 8.15: Coherence time . (a) Hahn-echo sequence (see inset): average background-
corrected ⟨C̃⟩ versus delay τ between subsequent pulses with a linearly increasing phase
φ(τ) = 2π∆τ with ∆ = 0.001 MHz on the last pulse (red dots). The corresponding fit and
its envelope (solid and dash lines) yield a coherence time T2 = 2.47±0.31 ms. (b) Dynamical
Decoupling sequence (see inset): average background-corrected ⟨C̃⟩ versus inter-pulse delay
time τ (red dots). A linearly increasing phase φ(τ) = 2π∆τ with ∆ = 0.001 MHz is
imparted on the last pulse. Corresponding fit and its envelope (solid and dash lines) are
shown, yielding the coherence time TDD

2 = 2.99 ± 0.03 ms. Data taken at B0 = 422.085
mT and θ = −0.003◦.

and [Mye+14; Ran+21]. It is also noteworthy that the coherence times measured here are
on par with the longest reported for individual electron spins in solid-state [Muh+14], in
a platform which gives access to several tens of these spin qubits by simply tuning the
magnetic field.

Spin T1(ms) T∗
2(µs) Techo

2 (ms)
s0 1.26 79 1.38
s6 1.42 170 2.47
s7 2.21 7.5 2.1
s8 1.36 315 1.53

Table 8.1: Table of the various spins coherence time



8.4.3 Conclusion

In this section we have demonstrated the first measurement and control of a single electron
spin by FD-ESR. The shift from ensemble measurement to single spin is an important
paradigm modification for the field of magnetic resonance. It opens the way to many
applications that were previously unattainable in quantum sensing and quantum computing.

For example, the record coherence times of erbium electron spins could be used to
design hybrid spin-superconducting circuit quantum processors. As these coherence times
are radiatively limited, they could also be increased by several orders of magnitude (up to
one second) by reducing dynamically the Purcell effect until the relaxation limit imposed
by phonons is reached.

In terms of quantum sensing, one can imagine creating a gradient with the static
magnetic field B0 to resolve the position of the spins at the nanometre scale and to obtain
precise 3D maps of the crystal. On a more local level, a single electron spin can be used as
a probe of its environment, such as in recent studies carried out in NV center in diamond
[Abo+19].

In the next chapter, we explore partially one of these possibilities by probing the 183W
nuclear spin bath surrounding an Er3+ ion.





Chapter 9

Probing the W183 nuclear spin
bath with the electron spin

In the previous chapter, we succeeded in detecting and controlling individual electron spins
from erbium ions in a CaWO4 crystal. We have shown that their coherence times (FID
time, echo ...) and their physical characteristics (Landé factor) are not identical. Their
distribution arises from the different configurations of the electromagnetic environment
surrounding each spin. Charge defects may indeed be present in the crystal and at different
distances from a spin, as well as surface or interface defects. Tungsten being a constituent
of CaWO4, the sites populated by the 183W isotope (natural abundance 0.145) with a
nuclear spin (I=½) furthermore yield a randomly distributed dipolar magnetic interaction
that depends o the local environment of each erbium spin.

The coupling between a quantum system under control and the uncontrolled degrees
of freedom of its environment is often mostly considered for the decoherence it induces.
This is a particularly important issue in our era of the quantum computer race, and great
efforts are thus made to isolate qubits.

However, one can also see this coupling not as a limitation but as a way to probe
and control the environment of the quantum system, in our case the electron spins. This
strategy has already been exploited for the NV centers in diamond [Tam+12; Kol+12;
Lon+13] where the electron spin of the NV center is used to probe the 13C nuclear spin bath.
Individual detection and control of nuclear spin has even been demonstrated. This provides
some appealing opportunities, such as the development of reliable quantum memories
[Bra+19], or the development of NMR imaging with ultimate sensitivity [Abo+19].

The quantum control sequences that made possible to carry out these first experiments
were derived from the dynamic decoupling concept developed for open quantum circuits.
This concept, borrowed from nuclear magnetic resonance, was introduced in 1999 [VKL99].
It aims to free a quantum system from its interactions with the environment by introducing
a suitable perturbation. The perturbation induces fast changes in the quantum system
designed such that the effect of the coupling with the environment averages to zero in the
evolution operator. In this chapter we transpose in our system some of the nuclear spin
detection experiments carried out with NV centres.

We first briefly describe the hyperfine interaction between the Er3+ ion and the 183W
located on neighboring site in the crystal.

We then describe a pulsed dynamic decoupling experiment using a Carr-Purcell-
Meiboom-Gill (CPMG) sequence on a particular Er3+ electron spin, following ref. [Tam+12;
Kol+12]. We demonstrate the presence of a signal due to the surrounding 183W nuclear spin
bath. This work is the first local measurement of tungsten nuclear spins using magnetic
resonance techniques.

We also perform a continuous dynamic decoupling experiment using a spin locking
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sequence [Lon+13]. These measurements allow us to make more accurate assumptions
about the configuration of the surrounding nuclear spins. However, as the data is less clear
than in the case of pulsed dynamic decoupling, these results are presented in the appendix.

9.1 Manipulating nuclear spins through electron spin

As shown in Chapter 7, the coupling between the nuclear spins of 183W and the erbium
electron spin is described by a magnetic dipole-dipole interaction (see Equation 7.12), it
constitutes the hyperfine coupling.

The magnetic moment of the electron spin being 4-5 orders of magnitude larger than
that of the nuclear spin, it strongly affects the dynamics of the nuclear spins, and this
influence can be used as a means to manipulate nuclear spins coupled to it.

A crucial point for achieving this manipulation is to have a strong enough hyperfine
coupling between the electron and the nuclear spin. This coupling depends linearly on the
g-factor of the electron spin (see Equation 7.12). The anisotropy of the CaWO4 crystal
allows to tune this parameter by adjusting the θ angle between the crystal c-axis and the
applied magnetic field B0 (see geff expression in Equation 7.11). We now evaluate how
the hyperfine coupling evolves with the angle θ and explain the experimental situation
configuration realized in our experiment.

9.1.1 Electron spin dependent quantization axis

c

a

Figure 9.1: Nuclear spin quantization axis evolution. Evolution of the quantization
axis m↑↓ of the 183W nuclear spin with the respect to the state of Er3+ electron spin. The
axis depends on the hyperfine parameters, bare Larmor frequency ωL and the electron
spin state dependent Larmor frequencies ω↑↓. The magnetic field being out of the c-axis
the electron spin quantization axis is not aligned in the B0 direction. The (x, z) frame is
defined such as B0 = B0uz and Ahyp ∈ (x, z). The (x′

, z
′) frame is defined such as the

quantization axis of the electron spin is along z′ . The crystallographic frame is noted (a, c).

In Section 7.1.4 we developed the expression of the dipolar Hamiltonian in the secular
approximation framework when the magnetic field is aligned along the c-axis: Ĥdd/ℏ =
Ŝz(A⊥Îx + A∥Îz). When the magnetic field is at an angle θ, we redefine a basis of the
Hilbert space such that the interaction keeps the same form: Hdd/ℏ = Ŝz′ (A⊥Îx +A∥Îz),



with the frame (x, z) and (x′
, z

′) defined in Figure 9.1. In the following we will remove the
prime (’) index on the quantization axes for the sake of readability. It is implicit that the
bases of electron spin and nuclear spin are different.

The Hamiltonian of the electron-nuclear spin system can be expressed in the rotating
frame of the electron spin as:

Ĥ/ℏ = ωLÎz + Ĥdd/ℏ (9.1)

Ĥ/ℏ = |↑⟩ ⟨↑| ⊗
(
[ωL +A∥]Îz +A⊥Îx

)
+ |↓⟩ ⟨↓| ⊗

(
([ωL −A∥]Îz −A⊥Îx

)
(9.2)

where the kets |↑⟩ and |↓⟩ represent the electron spin state. The final form of this
Hamiltonian is:

Ĥ/ℏ = |↑⟩ ⟨↑| ⊗ ω↑Î ·m↑ + |↓⟩ ⟨↓| ⊗ ω↓Î ·m↓ (9.3)

with:

m↑↓ =
(ωL ±A∥/2)

ω↑↓
ez ±

A⊥/2
ω↑↓

ex (9.4)

ω↑↓ =
√

(ωL ±A∥/2)2 + (A⊥/2)2. (9.5)

From Equation 9.2, it is clear that both the Larmor frequency and the direction of the
quantization axis of the nuclear spin depend on the electron spin state as illustrated in
Figure 9.1. This dependence can be used to control the nuclear spin as done in [Tam+12;
Kol+12; Lon+13] provided that the component A⊥ is non zero. Indeed, in this case, the
ŜzÎx term of the dipolar Hamiltonian is zero and the nuclear spin cannot be flipped.

As shown in Figure 9.1, the direction of the hyperfine interaction Ahyp and thus
the distribution between A⊥ and A∥ depends only on the direction of the magnetic field
generated by the electron spin at the nuclear spin position. The strength of the interaction
|Ahyp| depends on the g-factor of the electron spin (Equation 7.17). A simple way to
increase the hyperfine coupling is to shift the magnetic field B0 away from the c-axis of
the crystal by increasing the angle θ.

We now discuss the variations of the hyperfine coupling parameters with θ angle and
the position of the tungsten site.

9.1.2 Increasing the electron-spin hyperfine interaction

9.1.2.1 Simulation of the hyperfine parameters

Since it involves the erbium anisotropic g-tensor, the dependence of the hyperfine parameters
on θ is non-trivial and cumbersome to solve analytically. We rather perform a numerical
calculation directly from the general form of the dipolar Hamiltonian in Equation 7.12.
This calculation comports four steps:

• Creation of the dipolar tensor ¯̄Ahyp: We create the (3 · 3) ¯̄Ahyp matrix from
Equation 7.12. This tensor varies for each tungsten site as it is strongly depend on the
relative position of the spins. The dipolar Hamiltonian reads now: Ĥdd = Ŝ ¯̄AhypÎ.

• Application of B0: A magnetic field B0 is applied to the system creating the
Zeeman Hamiltonian ĤZ = µBB0 · g · Ŝ ⊗ µNgNB0 · Î. We numerically find a basis
in which ĤZ is diagonal, ie a basis defined by the quantization axis of the two spins.
The (4 · 4) change-of-basis matrix is noted M̂rot.
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Figure 9.2: Simulation of the hyperfine parameters with θ. a) 3D scheme of a Er3+

ion surrounded by surrounded by its 4 closest tungsten neighbors. The crystalline axes
are shown in blue (c-axis) red (a-axis) and green (b-axis). The magnetic field is sketched
by the grey arrow for different configurations of θ, the angle between the c-axis and the
a-axis. b) Simulation of the hyperfine parameters A⊥ and A∥ as the function of θ four
the 4 closest neighbor. c) histogram of A∥ the 800 closest W site for θ = 18◦. d) Same
histogram for A⊥, 7 ions are distinguished by a coupling > 170 kHz.

• Basis change for Ĥdd: We transform the dipolar Hamiltonian in Ĥrot
dd = M̂ †

rotĤddM̂rot

• Application of the secular approximation: We apply the secular approximation,
ie we only consider the terms ŜzÎz and ŜzÎx. The dipolar matrix element corresponding
are A∥ = Ĥrot

dd,zz/ℏ and A⊥ = Ĥrot
dd,zx/ℏ. The effective dipolar Hamiltonian then reads

Ĥdd = ŜzAhyp · Î where Ahyp is the hyperfine vector described in Equation 7.15.

the result of this calculation is shown in Figure 9.2b for the 4 closest 183W neighbors
when angle θ varies from 0◦ to 180◦.

The θ dependence of A⊥ and A∥ is mainly due to the evolution of the effective erbium
g-factor, but it is also strongly dependent on the position of the 183W with respect to the
Er3+ ion. For example, the system composed of an erbium ion with four nearest 183W



neighbors in the same (ab) plane, as shown in Figure 9.2a, yields the hyperfine parameters
shown in Figure 9.2b. When the B0 field is parallel to the c-axis, the field generated by
the electron spin is parallel to the c-axis at the plane level. The perpendicular component
A⊥ vanishes, and the nuclear spins cannot be rotated by the electronic spin.

9.1.2.2 Experiment realized with θ = 18◦

We have chosen θ ≈ 18◦ for the experiment in the next section. The effective g-factor
corresponding to an angle θ = 18◦ is geff = 2.84 ∼ 2.5 · g∥. This choice is a trade-off
between the maximization of the A⊥ of the four nearest neighbors and the conservation of a
large coupling g0 between the electron spin and the resonator. Indeed, given the resonator
nanowire which allows to couple the electron spin to the cavity is aligned along the c-axis
(see Figure 7.5), the choice of a non-zero θ makes the spin quantization direction no longer
perpendicular to the field generated by the wire, which yields a decrease of the coupling
constant g0 (see Equation 7.24). The reader can find more detail on this effect in [Dan22].
In the situation considered, the coupling is reduced by cos θ ≈ 0.95.

Figure 9.2c,d shows the distribution of the hyperfine parameters (calculated for θ = 18◦)
of 800 nuclear spins contained in a sphere of radius 2.5 nm centered on the Erbium ion. As
shown on Figure 9.2d 7 ions are distinguished by their very strong coupling A⊥/2π > 170
kHz.

9.1.3 Spectroscopy for θ = 18◦ and ion selection

In this section, we realize the high power spectroscopy of the erbium line around θ = 18◦.
The protocol is similar to the one described in the previous chapter (see Section 8.3.2).
We use the same experimental conditions with the Y and X coil in persistent mode. The
scan will be realized with the Z coil.

As the effective g-factor geff = 2.84, we expect to find the erbium line around B0 ≈ 185
mT, which corresponds to BY ≈ 56 mT and BZ ≈ 176 mT.

The result of a "high" power spectroscopy is shown in Figure 9.3a. We represent the click
rate ⟨Ċ⟩ as the function of the time after the pulse and the magnetic field B0 =

√
B2

Z +B2
Y.

As expected, the erbium line is found around B0 = 184.1 mT. The observed relaxation
time is long and of the order of a few hundred ms, which is expected since we are probing
the spin ensemble at high power and are therefore exciting weakly coupled spins with a
long relaxation time [Bil23]. The integrated signal over 200 ms is shown in Figure 9.3c ,
with a Lorentzian fit with FWHM = 0.92 mT. This value is larger than the one found in
the previous chapter. A full investigation of the dependence of the FWMH of the erbium
inhomogeneous line with the θ angle can be found in [Dan22].

We then switch to a low power spectroscopic measurement at the edge of the line to
find strongly coupled single spins. As shown on Figure 9.3b, the measurement time has
been strongly reduced in order to select only spins with short T1. The Figure 9.3d shows
the integrated signal over 2.5 ms. Several lines appear, as in Section 8.3.3, corresponding
to single spins. We select the spin indicated by the red star on the graph (B0 = 185.996
mT) for the following experiment.

9.1.4 Quantum coherence of the selected spin

We then move on to time domain characterization of the selected spin. The nuclear spin
detection techniques we will use in the following sections are intrinsically limited in their
sensitivity by the coherence time of the electron spin. It is therefore necessary to know its
exact value. Furthermore, the weakness of the couplings between the nuclear and electron
spins requires a long integration time for reaching an acceptable signal-to-noise ratio. The
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Figure 9.3: High and Low power spectroscopy for θ = 18◦. a) High power spectroscopy.
The color map represents the SMPD click rate ⟨Ċ⟩ as the function of the magnetic field B0
and the time. Note that the θ angle evolves from 17.93◦ to 17.46◦ during the spectroscopy
b) Low power spectroscopy, same experiment realized at low power, θ evolves from 17.55◦

to 17.44◦. c) Total number of count ⟨C⟩ integrated over 200 ms from (a) as the function
of B0. A Gaussian fit allows to extract the FWHM = 0.92 mT and the center of the
erbium line: Bcenter

0 = 184.2 mT. d) Total number of count integrated over 2.5 ms from
(b). The peaks represent single ion. The red star shows the spin located at B0 = 185.996
mT, selected for the following experiment.

electronic spin should therefore have as short a radiative lifetime as possible to reduce the
acquisition time. The choice of spin was based on these two criteria.

9.1.4.1 Rabi oscillations

We first realize the calibration of the Rabi oscillations as in Section 8.4.1.1. The experiment
consists in recording the average background corrected number of clicks ⟨C̃⟩ as the function
pulse duration for different drive amplitudes. varying the drive amplitude and The
integration time is fixed to Tint = 1.9 ms.

The results of the calibration are presented in Figure 9.4. We apply 5 different
amplitudes expressed in arbitrary units (left panel). For each of them, we extract the
frequency which increases linearly with the amplitude, as shown in the right panel. This
linear relation allows us to calibrate precisely the amplitude-frequency transformation.

An interesting feature appears on Figure 9.4. The contrast of the Rabi oscillations
associated with the third amplitude considered (amp=0.39) is greatly reduced, causing the
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Figure 9.4: Rabi oscillation for different drive amplitude. Rabi experiment for
different drive amplitude. Left panel, average background corrected number of clicks ⟨C̃⟩
as the function pulse duration for 5 amplitudes ranging from 0.29 a.u to 0.51 a.u. Blue
lines are data, solid orange lines correspond to sinusoidal fit from which we extract the
oscillation frequency. The contrast on the 0.39 amplitude is greatly reduced due to the
interaction with the 183W nuclear spins. Right panel, Rabi frequency as the function to
the drive amplitude allowing to calibrate the amplitude-frequency relation. the outlier
corresponding to the 0.39 amplitude is not taken into account.

fit to fail. According to the linear fit realized on the 4 valid point, this particular amplitude
corresponds to a Rabi frequency Ω/2π = 336 kHz which is very close to the nuclear spin
Larmor frequency ωL/2π = 332 kHz expected for B0 = 185.996 mT.

This phenomena can be interpreted as the manifestation of the Hartman-Hahn double
resonance which occurs between two spins with distinct energy separation when one spin
is driven with a Rabi frequency equal to the energy scale of the other spin [HH62]. In
our case, for the specific amplitude of 0.39 a.u, the Rabi frequency of the electron spin
corresponds to the Larmor frequency of one or more 183W nuclear spin of its immediate
surroundings. Energy can therefore be exchanged during the sequence, which yields a
collapse of the contrast of Rabi oscillations.

This is the first indication of the ability of our experiment to detect the 183W nuclear
spins surrounding a particular Er3+ ion.

9.1.4.2 Radiative relaxation and free induction decay time

The experiments realized to measure the different coherence times are similar to the one
describe in Chapter 8.

From the last section, we define the π-pulse by using an amplitude of 1 a.u. In this
condition, we avoid the double resonance effect thanks to a Rabi frequency Ω/2π = 890
kHz.

Then we measure the radiative relaxation time of the spin T1 = 1.57 ms (see Figure 9.5b.
This value is comparable to the one found when B0 is aligned along the c-axis. We
prospected several spins before finding this one with an acceptable T1.
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Figure 9.5: T1 and T ∗
2 . a) Ramsey experiment. Background subtracted number of count

⟨C̃⟩ as the function of time τ (see inset). The exponentially damped sinusoidal fit allows
to extract the free induction decay time T ∗

2 = 6.57 µs. b) Energy relaxation: measured
average count rate ⟨Ċ⟩ as a function of delay after a resonant π−pulse yielding to T1 = 1.57
ms.

We then measure the free induction decay (FID) time thanks to a Ramsey sequence.
Figure 9.5a shows the result of the experiment yielding to T ∗

2 = 6.6 µs. This FID decay
time is significantly lower than that observed in Chapter 8. This could be due to several
causes such as the stronger coupling to the nuclear spin bath or the effect of a close interface.
We discuss this point in the next sections.

9.1.4.3 Hahn echo and dynamical decoupling experiment

We now move to dynamical decoupling experiments in order to decouple the spin from
its environment. We study the evolution of the coherence time as the function of the
number Nπ of refocusing pulses applied in a Carr-Purcell-Meiboom-Gill (CPMG) sequence
described in Figure 9.6a.

When Nπ = 1, we retrieve the Hahn-Echo sequence. Contrary to the Chapter 8 we
alternate the phase of the last π/2-pulses in order to project the final state either on the
ground or on the excited state. This phase-cycling technique makes the experiment less
sensitive to the background noise fluctuations. A typical signal is sketched in Figure 9.6b for
an echo sequence. The projection on the ground (resp. excited) state will be noted ⟨C⟩|0⟩
(resp. ⟨C⟩|1⟩). The contrast ⟨C⟩|1⟩−⟨C⟩|0⟩ drops to zero when coherence is completely lost,
as the state phase becomes less well defined with time.

Figure 9.6c shows the contrast as the function of the time for different number Nπ of
refocusing pulses. A Gaussian function multiplied by an exponential decay of the parameter
2T1 is used to extract the coherence time. As expected, the coherence time increases as a
function of the number of pulses. For Nπ = 16, the coherence time reaches 1.5 ms, which
is well below the intrinsic limit fixed by 2T1 = 3.14 ms. However, we can show that the
coherence time follows a scaling law in N1/2

π (see Figure 9.6d) which allows us to estimate
that the limit T2 ≈ 3 ms could be reached around Nπ = 70.

This scaling law carries information about the source of the noise. It has been shown that
if the noise power spectrum S(ω) scales as 1/ωα (generic model to describe the magnetic
noise causes by surface spin), the coherence time should scale as Nγ

π with γ = α/(1 + α)
[YSH11; ÁS11; Med+12].

Our measurement thus points to a 1/f noise spectrum. Such a spectrum has already
been observed for NV centers close to the diamond surface (therefore, probing surface
magnetic noise) [Mye+14] as well as in semiconducting quantum dots subjected to charge
noise originating from the silicon/silicon oxide interface [Yon+18].
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Figure 9.6: Spin coherence with Dynamical Decoupling (DD) sequence. a)
Dynamical decoupling sequence for Nπ = 1 (corresponding to an echo sequence) and
Nπ = 2n+ 2 with phase cycling. b) Raw data of an echo sequence applied on the selected
spin. The two average number of counts coming from the phase cycle, ⟨C⟩|1⟩ (blue) and
⟨C⟩|0⟩ (orange) are shown as a function of the time 2τ . The coherence is lost when the two
curves meet c) Contrast ⟨C⟩|1⟩−⟨C⟩|0⟩ as the function of the time 2Nπτ for different number
Nπ of refocusing pulses. We fit the data with the function exp(−t/T1) exp

(
[−t/T2]2

)
. d) T2

as the function of Nπ. The evolution of the coherence time follows a square root dynamic
(orange line) of the pulse number.

This tends to indicate that the selected spin is close to the surface and that its free
induction decay (FID) time could be intrinsically limited by fluctuators (electrical or
magnetic) present at an interface (crystal/metal or crystal/air), which would explain its
rather small value (T ∗

2 = 6.6 µs see Section 9.1.4.2). However, another parameter limiting
the FID time could also be the stronger coupling to the nuclear spin bath. It has indeed
also been shown for NV centers that the nuclear spin bath can limit the FID time [Lon+13].

We will provide more details on the interaction between the electron spin and its nuclear
183W spin environment in the next section as well as in Appendix A.



9.2 Nuclear spin detection with dynamical decoupling
sequence

As stated in the introduction to this chapter, the 183W nuclear spin detection experiments
we will carry out are motivated by what has already been done on the diamond NV
centers to detect the 13C nuclear spins. In this section, we perform experiments based on a
dynamical decoupling sequence conducted in 2012 by 3 different groups [Tam+12; Kol+12;
Zha+12].

Initially we used a so-called XY-4 sequence as done in the references cited above (see
Appendix B). However we realized [Lor+15] that this particular sequence could cause the
appearance of an artifact. We therefore prefered to use a CPMG sequence without pulse
phase change, the comparison between the sequences will be made in the last section.

9.2.1 Principle of the CPMG experiment and simulation

9.2.1.1 Unitary evolution of the system system during a CPMG sequence

The application of a dynamical sequence (see Figure 9.7a) such as the CPMG to the
electron spin affects the state of the coupled nuclear spins by changing their quantization
axes. Each time a refocusing pi pulse (assumed to be infinitely short in this section) is
applied, the electron spin state changes and the nuclear spin quantization axis moves from
m↑↓ to m↓↑ (see Figure 9.1 and Figure 9.7b). When its quantization axis is changed, the
nuclear spin will suddenly starts rotating around the new axis, as shown in Figure 9.7b.
The successive rotation sequences on the Bloch sphere around both axes is approximatively
equivalent to a rotation around the median axis of m↓ and m↑.

To represent the nuclear spin evolution we rewrite the Hamiltonian of the system given
in Equation 9.3 as:

Ĥ = |↑⟩ ⟨↑| ⊗ Ĥ↑ + |↓⟩ ⟨↓| ⊗ Ĥ↓ (9.6)

with Ĥ↑ = ℏω↑m↑ · Î and Ĥ↓ = ℏω↓m↓ · Î, the Hamiltonian driving the evolution of
the nuclear spin as a function of the electron spin state.

From this expression we can write the unitary evolution of the nuclear spin during the
CPMG sequence, which is composed of Nπ/2 basic decoupling unit τ − πy − 2τ − πy − τ .

The evolution during the CPMG sequence considering instantaneous pulses consists
in free evolution of the nuclear spin with alternating electron spin state. Therefore the
nuclear spin evolution depending on the initial state of the electron spin |↑⟩ or |↓⟩ is given
by

Û↑ =
[
exp

(
−iĤ↑τ

ℏ

)
exp

(
−iĤ↓2τ

ℏ

)
exp

(
−iĤ↑τ

ℏ

)]Nπ/2

(9.7)

Û↓ =
[
exp

(
−iĤ↓τ

ℏ

)
exp

(
−iĤ↑2τ

ℏ

)
exp

(
−iĤ↓τ

ℏ

)]Nπ/2

. (9.8)

We can then write the evolution of the full electron-nuclear spin system during the
CPMG sequence:

ÛCPMG = |↑⟩ ⟨↑| ⊗ Û↑ + |↓⟩ ⟨↓| ⊗ Û↓ (9.9)

Those nuclear spin evolution operators correspond to the composition of 3 elementary
rotations on the nuclear spin Bloch sphere repeated Nπ/2 times (see Figure 9.7b for an



illustration). Since any composition of multiple rotations can be reduced to a single
equivalent rotation, we can write Û↑ and Û↓ as:

Û↑ =
[
exp

(
−iϕ(Î · n↑)

)]Nπ/2
(9.10)

Û↓ =
[
exp

(
−iϕ(Î · n↓)

)]Nπ/2
. (9.11)

where n↓ and n↑ are the equivalent axis of rotation depending on the electron spin
state and ϕ is the angle of rotation during a basic decoupling unit (see Figure 9.7c). The
expression of n↓, n↑ and ϕ can be calculated by composing the 3 elementary rotations.
The reader can find the full derivation in the supplemental material of [Kol+12]. The
resulting expression are:

n↑ =−m↑ sin(ω↑τ) cos(ω↓τ)−m↓ sin(ω↓τ) cos(ω↑τ)
+ 2m↑ × (m↑ × m↓) sin2(ω↑τ/2) sin(ω↓τ)

(9.12)

n↓ =−m↑ sin(ω↑τ) cos(ω↓τ)−m↓ sin(ω↓τ) cos(ω↑τ)
+ 2m↓ × (m↓ × m↑) sin2(ω↓τ/2) sin(ω↑τ)

(9.13)

cosϕ = cos(ω↑τ) cos(ω↓τ)−m↓ ·m↑ sin(ω↑τ) sin(ω↓τ) (9.14)

as expected, the angle ϕ is equivalent for both conditional operators due to the trace
properties: TrÛ↑ = TrÛ↓ = cosNπϕ/2. The conditional nuclear Larmor frequencies ω↓ and
ω↑ and the conditional quantization axis are given in Equation 9.5.

The interesting thing about these expressions is the dependence of τ on both the angle
of rotation ϕ and the axis of rotation. We can modulate the impact of the CPMG sequence
on the nuclear spins by changing the inter-pulse delay. From their point of view, the CPMG
sequence consists of a rotation of the angle Nπϕ/2 around an axis (n↑ or n↓) that depends
on the initial electron spin state. The Equation 9.9 can be rewritten as:

ÛCPMG = |↑⟩ ⟨↑| ⊗ exp
(
−iNπ

2 ϕ(Î · n↑)
)

+ |↓⟩ ⟨↓| ⊗ exp
(
−iNπ

2 ϕ(Î · n↓)
)

(9.15)

In the next section, we show how to retrieve information about the nuclear spin evolution
from the electron spin state.

9.2.1.2 Nuclear-electron spin entanglement

In the previous section, we showed that the application of a DD sequence on the electron
spin allows us to drive the nuclear spin, and to apply rotations. However since the two spins
are coupled, the electron spin is also impacted. This can be used to extract information
about the nuclear spin state.

Concretely, in the absence of nuclear spin and assuming that there is no relaxation
process, the electron spin will be in the state |x⟩ = 1/

√
2(|↑⟩+ |↓⟩) at the end of the DD

sequence. On the contrary, if energy is exchanged during the sequence between the Er3+

ion and the 183W nuclear spin bath the final state will be modified. This idea can be
expressed mathematically by calculating the probability to find the electron spin in the |x⟩
state at the end of the sequence.

The initial state of the electron-nuclear spin system is: ρ̂initial = |x⟩ ⟨x| ⊗ ρ̂N, where
ρ̂N = 1/2 · 1 represents our lack of knowledge of the initial state of the nuclear spin. We
are in a situation where the nuclear bath is unmonitored. The application of the evolution
operator ÛCPMG to this state yields to:
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Figure 9.7: Principle of a Dynamical Decoupling experiment. a) Dynamical
decoupling sequence applied on the electron spin. b) evolution of the nuclear spin during
the dynamical decoupling sequence. The initial |x⟩ state of the electron spin creates two
different paths of for the evolution of the nuclear spin represented by the Bloch sphere.
The successive π-pulse change the nuclear spin quantization axis (m⃗↑ or m⃗↓) which causes
it to deviate from its course, this deviation depends on the time τ between the π−pulses.
The information on the final state of the nuclear spin is recovered by the probability Px
of finding the electron in its initial state |x⟩. c) For an optimal τ = τk, the effect of the
pulses on the nuclear spin is optimal. The sequence corresponds to an unitary rotation
of angle ϕ on the nuclear spin Bloch sphere with opposite rotation axis depending on the
electron spin state



ρ̂final = ÛCPMG (|x⟩ ⟨x| ⊗ ρ̂N) Û †
CPMG (9.16)

ρ̂final = 1
4(1⊗ 1 + |↑⟩ ⟨↓| ⊗ Û↑Û

†
↓ + |↓⟩ ⟨↑| ⊗ Û↓Û

†
↑). (9.17)

The probability to find the electron spin in the |x⟩ state is calculated by tracing on the
nuclear spin degree of freedom:

Px = ⟨x|TrN(ρfinal) |x⟩ . (9.18)

As the partial trace deals only with the nuclear degree of freedom, one can commute
the operation ⟨x| · |x⟩ and TrN. We obtain the following expression of Px :

Px = 1
2 + 1

4Tr
(
Re[Û↑Û↓]

)
. (9.19)

From the expressions of Û↑ and Û↓, one can calculate the expression of Re[Û↑Û↓], which
yields to:

Px = 1− 1− n↑ · n↓
2 sin Nπϕ

2 . (9.20)

To get an idea of the behavior of this quantity, it is interesting to consider the simple
case where the hyperfine interactions are very small compared to the Larmor frequency
i.e. ωL ≫ A⊥, A∥. In this high field approximation, the quantization axis simplify as
m↑↓ ≈ ±A⊥ωLex + ez while the conditional Larmor frequencies simply reduce to the bare
Larmor frequency: ω↑↓ ≈ ωL. With these values we can simplify the expression of the
effective rotation axis n↑ and n↓ given in Equation 9.13 as:

n↑ = −2 sin(ωLτ) cos(ωLτ)ez + 4A⊥
ωL

sin2(ωLτ/2) sin(ωLτ)ex (9.21)

n↓ = −2 sin(ωLτ) cos(ωLτ)ez − 4A⊥
ωL

sin2(ωLτ/2) sin(ωLτ)ex (9.22)

With these new expressions, it straightforward to see that for most τ values, n↑ and
n↓ are parallel, since A⊥/ωL ≪ 1. In this case, n↑ · n↓ ≈ 1 and therefore, Px ≈ 1. There
is no modification of the probability to find the spin elsewhere than in its original position,
the electron-nuclear spins interaction causes by the sequence is negligible.

However, for a set of τ values such as:

2τk = (2k + 1)π
ωL

(9.23)

where k = 0, 1, 2... is the order of the resonance, the ez component of n↑ and n↓
cancel. In this case, the rotation axes are anti-parallel (see Figure 9.7c.), n↑ · n↓ = −1
and Px = 1 − sin(Nπϕ/2). This means that each π−pulse optimally changes the final
state of the electron spin, and causes the nuclear spin to undergo the greatest possible
rotation allowed by the perpendicular hyperfine parameter A⊥. This phenomenon can be
seen as an energy transfer, which causes an entanglement between the spins of which Px is
the witness. This entanglement varies as the function of the number Nπ of refocusing pulses.

Intermediate conclusion:



To summarize these introductory sections, this experiment has two interesting features:
it allows both the detection of nuclear spins through the τk resonance condition and their
manipulation by varying the number of π-pulses Nπ.

In a real crystal the electron spin is surrounding by a multitude of nuclear spins, their
overlapping signal tends to yield Px = 0.5 for resonant τ . In the experiment carried out with
the NV centers in diamond, it was possible to separate individual nuclear spins from this
bath. Indeed, the NV center magnetic quantum number ms ∈ [0, 1] breaks the symmetry
of spin operators, which results in a dependence of τk on the hyperfine interaction.

On the contrary, the Er3+ ion has a spin 1/2, and τk is independent on the coupling
(see Equation 9.23). Therefore, we do not expect to be able to dissociate individual spins
from the bath.

9.2.1.3 Simulation of Px
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Figure 9.8: Dynamical decoupling simulation. a) Simulation of the probability Px to
find the electron spin in the |x⟩ state after a Dynamical decoupling sequence when one
W site is occupied by a 183W atom. Only the 3 strongest perpendicular coupling A⊥ are
represented. b) Same simulation representing the 300 next stronger A⊥.



From the calculation realized on the two previous sections, we can perform simulations
of the probability to retrieve the electron spin in the |x⟩ state at the end of the sequence.

We simply consider the interaction with a nuclear spin, which we place on the different
possible W sites. In the real crystal, each W site has a probability of 0.145 (the natural
abundance) to be occupied by a nuclear spin. The hyperfine coupling parameters associated
with these sites have been simulated in Section 9.1.2.1.

As shown on Section 9.1.2.1d, 7 of the 8 closest sites will produce strongly coupled
nuclear spin (A⊥/2π > 170 kHz) if they are populated. On the other hand, from the
spectroscopies realized in Section 9.1.3, we know that the magnetic working field at θ = 18◦

is B0 = 185 mT which corresponds to ωL/2π = 332 kHz. This involves that in particular
for this 7 sites the resonant time is not well defined because the high field assumption is
not satisfied. The simulation indeed confirms this result as shown on Figure 9.8a where we
simulate the DD signal produced for Nπ = 16 by the spins with the 3 highest A⊥.

On the contrary, the high field regime applies to all the other sites where the coupling
does not exceed A⊥/2π = 70 kHz. The Figure 9.8b represents the simulated signal produced
by the 300 next nuclear spins. The dips are located precisely at τk following Equation 9.23.

The consequence of this simulation is that it should be possible to detect immediately
whether one of the 7 sites producing highly coupled nuclear spins is occupied or not by a
nuclear spin. The behavior of the nuclear spin population will be well separated into two
categories.

On the other hand, as expected, we do not see any individual nuclear spin dissociation
from the bath due to the Er3+ spin one half. All the nuclear spins share the same resonance
condition Equation 9.23

9.2.2 First detection of 183W nuclear spin

In this section, we detail the dynamic decoupling (DD) measurement performed with the
Er3+ ion characterized in the last section. A clear signal from the nuclear spin 183W is
observed. We then carry out a study of the variation of Px as a function of the number of
π−pulses at resonance.

9.2.2.1 Non adiabatic transformation of the quantization axis

A necessary condition for successfully changing the nuclear spin state by alternating its
quantization axis between two situations is that the rate of evolution of the axis is large
compared to its Larmor frequency ωL/2π = µNgWB0 = 332 kHz for B0 = 185.996 mT
[RHM65]. Otherwise, the evolution is adiabatic and the nuclear spin simply follows the
tilt of the axis as it moves, remaining in its ground state. To change the state we need a
non-adiabatic modification. the duration of the π-pulse applied on the electron spin must
noticeably be shorter than a Larmor period TL = 2π/ωL = 3 µs.

Alternatively, we can consider this problem from a frequency point of view base on the
energy diagram presented in Figure 9.9a,b. To induce a flip-flop between the spins, the
frequency broadening of the π-pulse must be sufficient to reach the forbidden transition
(in red in Figure 9.9b). In the high field limits ωL ≫ A⊥, A∥, these transitions are shifted
by ωL from the electron spin frequency. The π-pulse has therefore to be broader than the
Larmor frequency ωL.

From this point of view it is interesting to use a non zero θ angle. Indeed, by increasing
the effective Landé factor geff , the magnetic field required to bring the electron spin into
resonance with the superconducting cavity is reduced. The Larmor frequency of the nuclear
spin follows linearly with this reduction, relaxing the experimental constraints.
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Figure 9.9: Energy diagram. a) Energy diagram of the electron spin and the nuclear
spin. b) Energy transition between the hybridized states. ω↓↑ are the nuclear frequency re
normalized by the electron state. Green transition and blue transition represent individual
spin flip. Red transitions represent a collective transition of the spins allowed by the
transverse hyperfine coupling term A⊥. c) Illustration of the filtering issue. The S21
parameter amplitude of a 7 GHz resonator of width 400 kHZ is represented as the function
of the frequency. The spin transition |↑⇑⟩ ↔ |↓⇑⟩ is put at resonance with the cavity.
Green and red vertical transitions represent the transitions for 4 183W located on 4 different
sites.

Experimentally, we set the π-pulse duration to 700 ns which constitute a trade-off
between a fast enough pulse and an acceptable rate of spurious thermal photon generated
by the high energy microwaves sent to the fridge.

9.2.2.2 Pulse filtering caused by the superconducting resonator and finite
length

An additional experimental consideration comes from the the superconducting resonator
that allows to couple the electron spin to the microwave line. At 186 mT, its total linewitdh
is κt/2π = 401 kHz (see Figure 8.4).

This provokes a filtering of the control-pulses which that could compromise our ability
to control nuclear spin. Indeed, the nuclear spin Larmor frequency being ωL = 332 kHz,
the flip-flop transition are located on the edges of resonance. More problematically, for
the nuclear spins closest to the electronic spin, we have seen in Section 9.1.2.1 that the
coupling is of the order of more than a hundred kHz. This reinforces the shift between
the centre frequency and the forbidden frequencies as illustrated on Figure 9.9c. These
strongly coupled nuclear spins could therefore be impossible to address.

In addition, compare to the experiment performed via optically transition, the duration
of our π−pulse (700 ns) is not small compare to the precession time 2π/ωL = 3 µs. This
could cause a non-canonical behaviour of the dynamical decoupling experiment.

These two potential issues are not addressed in this thesis and will be the subject of



future work in the group. As the reader is aware of the limitations of the experiment, the
result of the nuclear spin detection is presented in the next section.

9.2.2.3 CPMG sequence

5 10 15 20 25 30
( s)

0.65

0.70

0.75

C
(c

o
u
n
t)

a)

C |0

C |1

5 10 15 20 25 30
( s)

0.02

0.00

0.02

0.04

0.06

C
|1

C
|0

(c
o
u
n
t)

k = 4

b)

0 2 4
frequency (MHz)

0.0

0.5

1.0

FF
T

c)

5 10 15 20
peak number k

0.00

0.05

0.10

0.15

(u
s)

d)

Figure 9.10: Dynamical decoupling experiment Nπ = 24. a) Dynamical decoupling
experiment based on a 24-pulses CPMG sequence (see inset). The average count plotted as
the function of the time τ shows the projection of electron spin on final state on the ground
⟨C⟩|0⟩ and on the excited state ⟨C⟩|1⟩ (phase cycling). The curves are from 3 different
data sets which explains the 3 different offsets. b) Contrast between the two projections
representing the probability Px to retrieve the electron state in its initial state, the dips
spaced by ∆τ = π/ωL = 1.52 µs are caused by interaction with the 183W nuclear spin bath.
The first dip at τ4 = 6.44 µs is the fourth order resonance. Red lines are data, solid black
lines are Gaussian fit of each dips c) Fourier transform of the contrast. The harmonics
are spaced by ∆f = 1/∆τ = ωL/π = 664 kHz. d) Evolution of dips witdh extracted from
Gaussian fit as the function of the order of resonance k.

In this section we perform a dynamical decoupling experiment with a CPMG sequence
(corresponding to Figure 9.7a). Nπ = 24 π-pulses are applied on the electron spin described



in the previous section.
As for the the measurement of the coherence time depicted in Section 9.1.4.3 we use a

phase cycling to project the final electron spin state on |0⟩ or |1⟩. The results presented in
Figure 9.10 are from 3 different data sets, which explains the different count offset coming
from a variation of the SMPD dark count between the experiment.

Figure 9.10a are the raw data showing the two projections of the phase cycling ⟨C⟩|1⟩ and
⟨C⟩|0⟩. On Figure 9.10b we plot the contrast ⟨C⟩|1⟩ − ⟨C⟩|0⟩. This contrast is proportional
to Px the probability to find the electron in the |x⟩ state at the end of the sequence (see
Section 9.2.1.2). Several regularly spaced dips appear, the measurement starting from
τ = 6 µs, the first dip corresponds to k = 4. The contrast baseline decreases to zero during
the experiment due to the loss of coherence (see Section 9.1.4.3).

The separation ∆τ = τk+1 − τk = 1.52 µs between the dips can be expressed by using
the Equation 9.23 as ∆τ = π/ωL. The corresponding frequency ω/2π = 1/(2∆τ) = 332
kHz matches perfectly the expected 183W Larmor frequency which is also visible on the
FFT signal (see Figure 9.10c).

The pattern of dips being regular, we know from the simulations realized in Sec-
tion 9.2.1.3 that the closest site of W are not populated by 183W. Moreover, as expected,
we do not see individual peaks separating from the bath.

Finally, we fit each dips with a Gaussian function to estimate their width σ that we plot
as the function of k in Figure 9.10d. Counter-intuitively, the width of the dips decreases
when one would expect them to widen [Tam+12; Kol+12]. We do not yet understand this
phenomenon, and we lack the data to try to explain it.

9.2.2.4 Variation of the pulse number at fixed τ

In this section, we select the dip k = 6 and we vary the number of π-pulses applied on the
electron spin. If coherent interactions take place between the electron spin and a nuclear
spin, we should obtain a population inversion i.e. Px should reach 0 for a certain Nπ.
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Figure 9.11: Variation of Nπ for k = 6. a) Magnification of the signal presented in
Figure 9.10b, The dip located at τ6 = 9.5 µs is selected to measure the effect of the variation
of Nπ. b) Contrast as the function of the number of refocusing pulses Nπ for 3 different τ
centered on the sixth dips. The contrast saturates around 0 for the 3 τ corresponding to
Px = 0.5.



In term of contrast, this means that ⟨C⟩|1⟩ - ⟨C⟩|0⟩ would become negative. Figure 9.11
shows the result of the experiment, we follow 3 points located near to the lowest level of
the dip. As shown on the right panel, no population inversion takes place, on the contrary,
the contrast saturates at 0, which corresponds to Px = 0.5. This typically corresponds to
the signal produced by the spin bath where a multitude of individual signals overlap and
cause Px to tend towards ≈ 0.5.

This definitely confirms that we cannot access coherent control of an individual nuclear
spin with this experience.

9.3 Conclusion
In this chapter, we show that the ability to measure a single Er3+ electron spin allows access
to its local magnetic environment. In particular, we detect the bath of 183W nuclear spin
using a pulsed dynamical decoupling method. The detection is based on the measurement
of the electron spin coherence, which collapses when the pulse sequence puts the electron
spin-flip in resonance with the nuclear spins. Here we push magnetic resonance detection
to its ultimate limits of sensitivity. The oscillating field that will set the nuclear spin in
motion is directly produced by the electron spin. Similar experiments have already been
performed, but only for impurities with an optical transition [Tam+12; Riz+22]. Our
method, on the other hand, is more general and applies to any type of impurity with a
spin degree of freedom.

9.3.1 Experimental limitations

Contrary to a similar experiment realized with NV of diamond [Tam+12], here we do
not access the individual nuclear spin control. This is due to the effective spin number
ms = 1/2 of the Er3+ electron spin, which imposes the same resonance condition on all
nuclear spins regardless of their hyperfine coupling to the electron spin. We therefore just
have access to the signal due to the coupling between the electron spin and the overall
nuclear spin bath.

In this experiment, we explore the potential of our detection method for the first time.
The setup was not initially designed for this purpose, and we are operating at the limits of
its detection sensitivity. In fact, we need two days of averaging to acquire the complete
CPMG sequence shown in Figure 9.10b. The electron spin relaxation dynamics driven
by the Purcell rate Γp ≈ 0.63 ms−1 is too slow for faster acquisition, while the SMPD
sensitivity S = 10−22 W/

√
Hz is not sufficient to decrease the amount of averaging required.

Moreover, we do not account for the non-ideality of the π-pulses due to the filtering
imposed by the spin resonator. This could impact the detection of the most strongly
coupled nuclear spins. To better understand these effects, numerical simulations are needed
and will be conducted in another thesis project within our group.

In addition to the measures carried out in this chapter, we realized Hartman-Hahn
double resonance experiment with the same electron spin (see Appendix A). Combined
with the CMPG measurement, we can make some assumptions about the nuclear spin
distributions on the surrounding tungsten sites (see Section A.6.1), notably that the 7 most
coupled sites are not occupied. However, these hypotheses must be qualified in view of the
experimental limitations mentioned above.

9.3.2 Perspectives

The potential for improvements in this experiment is vast.
Regarding acquisition time, both the SMPD performance and the Purcell rate can be

enhanced. For the latter, several strategies can be employed, such as reducing the width



of the nanowire to concentrate the magnetic field more intensely. Another option is to
change the host crystal to increase the g-factor. For example, Er3+ in a TiO2 crystal has a
g-tensor component almost twice as large as the g⊥ of erbium in CaWO4.

For individual nuclear spin manipulation, the spin resonator can be modified by adding
Bragg mirrors to implement a radio-frequency drive. By applying a variant of the dynamical
decoupling sequence using both microwave and radio frequency pulses, it becomes possible
to address nuclear spins individually [Bra+19]. This experiment could lay the groundwork
for a hybrid quantum computer that uses nuclear spins as memory and superconducting
qubits as processors.

The prospects for quantum sensing are also quite promising. Individual control of
nuclear spins could enable atomic-resolution imaging of a sample [Abo+19]. Given the
generality of our detection method, it is conceivable to achieve atomic-resolution images of
individual molecules, as long as they possess a spin degree of freedom.



Chapter 10

Conclusion

10.1 Detection of a single electron spin and its local
environment by photon counting

This thesis describes the detection of single erbium ions embedded in a scheelite crystal
by electron spin resonance techniques using a single microwave photon detector. The
experiment, performed at 10 mK, is based on an interweaving of concepts, each experimental
block gives access to the next concept, which in turn reveals another part of the experiment.

The first link in the chain is the use of a Travelling Parametric Wave Amplifier, to
amplify the output signal by adding the minimum of noise allowed by quantum mechanics.
Based on a chain of Josephson junction, it allows the single shot readout of superconducting
qubit. This device has benefited greatly from the rapid development of the cQED field. In
a few years it has grown from a research project to a common device used in numerous
cQED experiments.

The second link is the single microwave photon detector. Based on a superconducting
transmon qubit and a 4-wave mixing [Les+20], the concept of SMPD that we use in this
thesis has already been proven to work in previous work of the group [Alb+21; Bil23].
However, the sensitivity of this initial design was not sufficient for single spin detection, and
half the time of this PhD was spent improving the detector’s performance by modifying its
fabrication and architecture. At the end of the development, the new version of the SMPD
had a sensitivity S = 10−22 W/

√
Hz an order of magnitude better than the state of the

art.
The third link is the superconducting resonator placed at the top of the scheelite crystal.

Composed by a large interdigitated capacitor and a nanowire, it allows to force the radiative
relaxation of the coupled spins by Purcell effect [Bie+16]. The new generation of resonators,
developed in parallel of this thesis, imposed a relaxation rate of ℏωΓP = 3 · 10−21 W. This
emission power, combined with the new sensitivity of the photon counter, has made it
possible to detect individual electron spins [Wan+23]. We showed that the SNR of the
single spin detection reaches 1.9 for an integrating time of 1 s. Compared to other single
spin detection methods, this method is applicable to all types of paramagnetic impurities
and has a large detection volume (≈ 10 µm3). Furthermore, as it is based on the detection
of the incoherent photon emitted by spontaneous emission, it does not require a long
coherence time.

The fourth link is the electron spin itself. Once the single detection is achieved, it
becomes a probe of its local magnetic environment mostly composed of 183W nuclear spin
1/2 in CaWO4 crystal. In this thesis, we demonstrated the feasibility to detect the bath of
183W nuclear spin using dynamical decoupling technique.
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10.2 Possible improvement of the experiment and prospects
This experiment represents the first demonstration of ESR spectroscopy for a single
paramagnetic impurity. While the setup presented in this thesis is adequate for this
purpose, it is not sufficient for single nuclear spin detection, which necessitates a higher
overall sensitivity. As a pioneering effort, there is significant room for improvement.

10.2.1 SMPD improvements

Significant enhancements in sensitivity, S = ℏω√αd/ηd, are being achieved by the newest
generation of devices under development in the laboratory.

A higher efficiency, ηd, can be reached by enhancing the T1 of the transmon qubit. The
rapid advancements in cQED are continuously pushing the boundaries of our understanding
of transmon radiative losses. Presently, T1 values of several hundred microseconds are
routinely accomplished [Wan+22].

As for the dark count rate, αd, it was demonstrated in the thesis that most false
positives originated from thermal photons in equilibrium. The corresponding dark count
formula is: αth = n̄bηdκd/4. To reduce this contribution, we could consider increasing
the frequency of the resonators to decrease n̄. Additionally, we could tune the detector
bandwidth, κd, to adjust it to the source to be detected. This can be done by incorporating
a SQUID into the buffer resonator Purcell filter. This adjustment to the filter frequency
provides a natural degree of freedom for the resonator linewidth since the Purcell effect
that connects the two components depends on their frequency detuning.

10.2.2 Spin-resonator coupling improvements and new features

The spin-resonator coupling g0 ∝ gδB is crucial in determining the experiment’s sensitivity,
as it gauges our capacity to swiftly extract information from the spin system. Increasing the
confinement of the magnetic field δB can enhance the coupling, for example, by narrowing
the nanowire’s width, altering its shape, or more radically, considering a dual geometry
where two current sheets create a magnetic field in a thin trench. A complementary
approach involves increasing the resonator capacitance to produce a stronger current in the
wire, which can be achieved by using a dielectric material with higher permittivity, such as
TiO2, or by modifying the capacitor geometry to parallel plate capacitor for instance.

The coupling also depends on the Landé factor g, so the choice of the host crystal is
essential. For example, if an Er3+ ion is embedded in a TiO2 crystal, one component of
the g-tensor will be gzz = 15.1 [Err63], twice as large as g⊥ = 8 in CaWO4. This would
quadruple the Purcell rate and significantly reduce the acquisition time.

Modifications can also be made to the superconducting resonator atop the host crystal
to introduce new features for nuclear spin detection. By incorporating a Bragg mirror with
the spin resonator, it becomes possible to apply a radio frequency drive to the spin sample.
In this case, individual nuclear spins can be addressed, as demonstrated in the NV center
of diamond [Bra+19].

10.2.3 Let’s dream a bit...

The ability to manipulate individual nuclear spins presents numerous potential applications
in the medium term.

First, in terms of quantum sensing, the individual control of nuclear spins could enable
3D imaging of the local environment surrounding the impurity. This could be utilized to
create atomically resolved 3D images of molecules by using either a native unpaired electron
spin (e.g., metallic ions in metalloenzymes or radicals in molecules) or by deliberately
implanting a paramagnetic impurity (see Figure 10.1b).



a) b)

Figure 10.1: Potential applications of single spin detection by ESR.a) Hybrid
quantum calculation. Based on the SMPD presented in this thesis, and hybrid quantum
architecture using the nuclear spin as long-term memory can be considered. b) The electron
spin is a powerful probe of its environment and can be used to create atomically resolved
images of molecules.

Another intriguing possibility is to use the capability of addressing nuclear spins to
create dense multi-qubit registers with potentially hour-long storage times, as already
demonstrated with NV centers in diamond [Tam+14] and, more recently, with ytterbium
ions in yttrium orthovanadate [Rus+21]. This could lead to the development of a hybrid
architecture, where information is processed by superconducting qubits acting as processors,
while the spins store quantum states (see Figure 10.1a).

The Quantronics Group plans to explore these various opportunities in the coming
years.





Appendix A

Hartman Hahn double resonance
(HHDR)

In this section, we perform another nuclear spin detection experiment based on a phe-
nomenon known in nuclear magnetic resonance as the Hartmann-Hahn double resonance
(HHDR) [HH62]. This effect allows two spins of different frequency to exchange energy
coherently when driven at the same Rabi frequency via cross relaxation. Similarly this
effect can occur when the Rabi frequency of one spin matches the Larmor frequency of the
other.

In the experiment realized here, we drive the Er3+ electron spin with a Rabi frequency
that matches the Larmor frequency of the surrounding 183W nuclear spins. As for the
experiment presented in Chapter 9, this experiment has already been carried out in NV
diamond centres [Lon+13]. It is the continuous version of the pulsed dynamical decoupling
experiment based on CPMG sequence.

In this appendix, we demonstrate the ability to cool the nuclear spin bath using the
HHDR. We also make some assumptions about the tungsten sites occupied by 183W. As
the data from this measurement campaign is less clear, we have decided to include it in
the appendix.

A.1 Principle of the experiment

The experiment is based on the spin-locking sequence (see Figure A.1a). The electron spin
is placed in the |x⟩ = (|↑⟩+ |↓⟩)/

√
2 state with a πx/2-pulse, then a microwave drive along

the y−axis is applied to lock its position.
The locked spin can be considered as a new two-level system whose energy difference

corresponds to the Rabi frequency. From this point of view one can defined the energy
relaxation time of this effective spin T ρ

1 , corresponding to the life time of the locked |x⟩
state.

The system can also exchange energy with the environment. By calibrating the Rabi
frequency such as it matches the Larmor frequency ωL/2π = 332 kHz of the surrounding
183W nuclear spins, one can create a resonant coupling and therefore polarization exchange.

In the next section we describe this interaction quantitatively.

A.2 Hamiltonian and coherent evolution

One can describe the Hamiltonian of the experiment by introducing a drive term acting
on the electron spin space in Equation 9.2. In the expression below, we place ourselves
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directly in the frame rotating at the drive speed:

Ĥ/ℏ = ΩŜx + δŜz + ωLÎz + Ŝz(A⊥Îx +A∥Îz) (A.1)

with δ = ωs − ωd the frequency detuning between the drive frequency ωd and the
electron spin frequency ωs and Ω the Rabi frequency depending on the drive amplitude.

The locked spin can be considered as a effective spin with a quantization axis along y
(see Figure A.1b). To materialize this effect, we change the basis of the electron spin from
(|↑⟩ , |↓⟩) to (|x⟩ , |y⟩) with |x⟩ = (|↑⟩+ |↓⟩)/

√
2, |y⟩ = (|↑⟩ − |↓⟩)/

√
2.

The spin operators associated with this basis read:

Ŝ(x,y)
z = 1

2(|x⟩ ⟨x| − |y⟩ ⟨y|) (A.2)

Ŝ(x,y)
x = 1

2(|x⟩ ⟨y|+ |x⟩ ⟨y|). (A.3)

(A.4)

Since, Ŝ(x,y)
z = Ŝx and Ŝ

(x,y)
x = Ŝz, one can write Equation A.1 as:

Ĥ(x,y)/ℏ = ΩŜ(x,y)
z + δŜ(x,y)

x + ωLÎz + Ŝ(x,y)
x (A⊥Îx +A∥Îz). (A.5)

From now on, we will no longer write the indices (x,y) to make the expressions more
readable. Moreover, we will consider that the microwave drive is at resonance with the
electron spin ie δ = 0.

We write Equation A.5 by introducing the ladder operators: Ŝ± = Ŝx ± Ŝy:

Ĥ = ΩŜz + ωLÎz + A⊥
4 (Ŝ+Î+ + Ŝ−Î− + Ŝ−Î+ + Ŝ+Î−) +

A∥
2 (Ŝ+Îz + Ŝ−Îz). (A.6)

We then change the reference frame both for the electron and the nuclear spin by
applying the unitary operator Û † = exp

(
iΩŜzt

)
⊗ exp

(
iΩÎzt

)
. We then only keep the

non-rotating terms (RWA approximation) yielding to:

Ĥ/ℏ = ∆Îz + A⊥
4 (Ŝ+Î− + Ŝ−Î+) (A.7)

with ∆ = ωL − Ω the difference between the nuclear spin Larmor frequency and the
Rabi frequency of the electron spin. The flip-flop terms Ŝ±Î∓ represent the polarization
exchange between the nuclear spin and the electronic spin.

With this Hamiltonian we calculate the coherent evolution of a state initially in the
|↓⇑⟩ state (electron spin excited, nuclear spin in ground state) and then the probability
P|↑⇓⟩ that an exchange occurs:

P|↑⇓⟩(t) = g2√
g2 + ∆2 sin2( t2

√
∆2 + g2) (A.8)

with g = A⊥/2. The transition probability shows temporal oscillation behavior control
by the detuning ∆ and the hyperfine parameter A⊥. This is a manifestation of the coherent
nature of the interaction. Spins become entangled and disentangled as they evolve. For
∆ = 0 ie for the Rabi frequency perfectly tuned with the nuclear Larmor frequency, the
frequency of the oscillation is simply A⊥/4π.

This experience is in some way two-dimensional both the optimal Rabi frequency
leading to ∆ = 0 and the oscillation rate at resonance contain information on the nuclear
spin.



The probability P|↑⇓⟩(t) can be directly follow by measuring the electron spin state.
As in the dynamic decoupling experiment, the electron spin serves as both a drive and a
probe.

A.3 Experiment calibration

A.3.1 Rabi frequency calibration

The first step is to correctly calibrate the Rabi frequency as a function of the drive amplitude
sent to the electron spin. As we consider the same spin as in Chapter 9, the calibration is
the same (see Figure 9.4).

A.3.2 Longitudinal relaxation time T ρ
1

The second step of calibration is to verify if the longitudinal relaxation time T ρ
1 i.e. the life

time of the locked state is sufficiently long to resolve the oscillation at frequency A⊥/4π
causes by the double resonance.

To measure T ρ
1 we perform a spin locking experiment depicted in Figure A.1a. The

spin of the electron is sent to the equator, then the microwave drive locks its position
on the y-axis. We use a Rabi frequency of 230 kHz, detuned from the nuclear spins
Larmor frequency. The last π/2 pulse projects the final state either to the ground or to
the excited state. In this sequence, the phase of the last π/2-pulse is modified with the
function ϕ(τ) = 2π∆τ + ϕ0 with ∆ = 1 kHz and ϕ0 alternating between 0 and π/2 . This
complicated phase modification is an adaptation from the Ramsey sequence that we used to
calibrate the electron spin frequency. It could have been replaced by a simple phase cycling.
The evolution of the electron spin during this locking sequence is showed in Figure A.1b.

The average total number of count ⟨C⟩ as the function of the locking time for the two
different projections (ϕ0 = 0 or π/2) is presented in Figure A.1c. The projections oscillate
with a frequency of approximately 1 kHz as set by ϕ(t). The linear increase of ⟨C⟩ is due
to the fridge heating causes by the microwave drive.

To extract the longitudinal relaxation time , we take the difference between the two
projections as for the phase cycling (see Figure A.1d). An exponentially damped sinusoidal
fit allows to extract T ρ

1 = 2.85 ms which corresponds roughly to 2T1 with T1 = 1.57 ms the
energy relaxation time measured in Section 9.1.4.2.

This coherence time is superior to the one found in Section 9.1.4.3 for a dynamical
decoupling sequence of 16 refocusing pulses. Indeed, the spin locking sequence can be seen
as a continuous version of the dynamical decoupling sequence containing an infinity of
refocusing pulses which naturally push the coherence time to its maximum.

This T ρ
1 = 2.85 ms will allow to resolve oscillation of typically 1/T ρ

1 ≈ 0.4 kHz which
corresponds to an hyperfine parameter A⊥/2π = 0.8 kHz. From Section 9.1.2.1, we know
that the maximum value of A⊥/2π is 400 kHz for the most coupled spins (the 4 nearest
neighbors). We can therefore detect all the 183W nuclear spin with A⊥/2π comprises
between 0.8 and 400 kHz which corresponds to ∼ 750 sites.

A.4 Spin locking and HHDR

A.4.1 Adapted spin locking sequence

Once the experiment is properly calibrated, we move to the nuclear spin detection by
setting the Rabi frequency of the electron spin close to the nuclear spin Larmor frequency.
The experiment is performed with the spin locking sequence described in the last section.
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Figure A.1: Measurement of the longitude relaxation time T ρ
1 . a) Spin locking

sequence. The electron spin is initialize in the |x⟩ state by a π/2x-pulse and locked in this
position with a drive applied along the y-axis. The phase of the last π/2-pulse evolves as
ϕ(τ) = 2π∆τ+ϕ0 with ∆ = 1 kHz and ϕ0 alternating between 0 and π/2 b) Representation
of the sequence in the electron spin Bloch sphere. c) Total average count ⟨C⟩ as the function
of the drive duration. The red (resp. black) curve corresponds to ϕ0 = 0 (resp. ϕ0 = π/2).
the increase of ⟨C⟩ with the drive duration is due to the fridge heating. d) Difference
between the ϕ0 = 0 and ϕ0 = π/2 curves. Solid orange line is an exponentially damped
sinusoidal fit allowing to extract T ρ

1 = 2855 µs

The energy transmitted from the electron spin to the nuclear spins during the double
resonance tends to polarise the nuclear spin bath. Indeed, while the electron spin state
is reset at the beginning of each sequence, the nuclear spins accumulate polarization
throughout the experiment.

This effect can be used to actively cool the spin bath [Lon+13] as we will show in the
next section but it also causes the reduction of polarisation exchanges. Indeed, if all the
nuclear spins are already in the excited state, the probability P|↑⇓⟩ (see Equation A.8) to
exchange energy from the electron spin to the nuclear spin is null.

To overcome this difficulty, we alternate the phase of the locking drive from y to −y
(see Figure A.2a). The initial state of the electron spin will therefore alternate between
|↑⟩(x,y) and |↓⟩(x,y) in the (|x⟩ , |y⟩) basis avoiding the nuclear spin polarization.

To finish the sequence, we project the electron state either on the ground or on the
excited state (phase cycling). The contrast will be positive (resp. negative) if the electron
spin was in |↑⟩(x,y) (resp. |↓⟩(x,y)) at the end of the locking sequence. The oscillation
between |↑⟩(x,y) and |↓⟩(x,y) will allow us to reconstruct the exchange probability P|↑⇓⟩ (see
Equation A.8)
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Figure A.2: Hartmann-Hahn double resonance.a) Spin locking sequence for the HHDR
experiment. The drive is alternatively applied in the y and −y direction in order to avoid
the nuclear spins polarization. The sequences are called SL±y. Phase cycling is added in the
last π/2−pulse. b) Contrast as the function of the locking duration and the Rabi frequency
of the electron spin. An oscillation is visible around 340 kHz proving the existence of a
double resonance phenomena. c) Spectroscopy in Rabi frequency realized with a locking
duration fixed at 120 µs. The HHDR is now clearly visible at 340 kHz. The contrast
sign inversion at 340 kHz indicates that the final state of the electron spin is on average
more often |−x⟩ than |x⟩. d) Spin locking experiment realized with the Rabi frequency
corresponding to the resonant condition. The contrast is plotted as the function on the
locking duration and shows a clear oscillation whose frequency fosc = 36 kHz is extracted
with a sinusoidal fit (solid orange line).

A.4.2 HHDR

To capture the two pieces of information accessible via the double resonance, i.e. the
Larmor frequency and the hyperfine parameters of the nuclear spins, we vary both the
amplitude and the duration of the drive. Figure A.2b presents the result of the experiment.
The contrast coming from phase cycling (see Figure A.2a) is plotted as the function of the
locking duration and the electron spin Rabi frequency (calculated from the drive amplitude).
An oscillation appears in the contrast around 330 kHz that would correspond to a HHDR
signal , however, as the data from this first experiment was quite noisy,we decided to refine
our measurement. We first take a simple spectroscopy by varying the Rabi frequency for a



locking time of 120 µs in order to precise the resonant condition. Figure A.2c corresponds
to this experiment and exhibit a clear peaks centered around Ω = 340 kHz which confirms
that the double resonance occurs.

We then fix the Rabi frequency on the resonant condition and we vary the locking
duration. The result are presented in Figure A.2d where the contrast is plotted as the
function of the locking duration. A clear oscillation appears, we extract the oscillation
frequency fosc = 36 kHz with a sinusoidal fit. From Equation A.8 and assuming that the
Rabi frequency is perfectly tuned, we can infer that this oscillation is caused by the coherent
energy exchange between the electron spin and an 183W nuclear spin with A⊥ = 72 kHz.

A.4.3 Search for matching W sites

To verify the relevance of this hypothesis, it is necessary to check with the simulations
conducted in Section 9.1.2.1 whether tungsten sites can host 183W with such a hyperfine
parameter. On the histogram presenting the distribution of the A⊥ (see Figure 9.2) we
can observe that 4 sites are eligible for candidate status. Their positions with the respect
to the erbium ion (see Figure 9.2a for the axis definition) and their hyperfine parameters
are presented in the table Table A.1. These 4 sites are equivalent 2 to 2 and have a very
similar A⊥ ≈ 68.5 kHz. These parameters could correspond to the observed oscillation
fosc = A⊥/2 = 36 kHz insofar as the Rabi frequency is slightly detuned from the Larmor
frequency, which has the consequence of accelerating the oscillation.

site x (Å) y (Å) z (Å) A∥ (kHz) A⊥ (kHz)
1 0 0 -5.67 12.38 68.52
2 0 0 -5.67 12.38 68.52
3 -5.24 -2.62 2.84 34.90 68.48
4 -5.24 -2.62 2.84 34.90 68.48

Table A.1: Tungsten site compatible with the HHDR signal

Finally one can say from this analysis that the observed signal is caused by 183W atoms
occupying one or several sites depicted in Table A.1. As the A⊥ of the 4 sites is very
similar it is complicated to establish the number of populated sites by observing a beating
in the oscillations.

A.4.4 Conclusion and comparison with the Dynamical decoupling
experiment

To summarize this section, one observed a clear Hartmann-Hahn double resonance between
an electron spin ER3+ and 183W nuclear spins. A fit of the observed oscillation in
Figure A.2d and a research among the simulated hyperfine parameters allows us to
establish that the HHDR signal is certainly caused by 183W populating one to four sites
depicted in Table A.1.

the Dynamical decoupling and the HHDR experiments are consistent in that they both
confirm the absence of 183W at the sites with the highest hyperfine parameters. indeed,
there is no trace of higher frequency oscillation in the HHDR signal Figure A.2d and the
DD signal Figure 9.10b are incompatible with the presence of strongly coupled nuclear
spin. To go further in the analysis, and try to locate other populated sites, we could have
increased the spin locking time and conducted a frequency analysis of the signal obtained.
These more in-depth analyses will be the subject of future thesis projects.



A.5 Polarization of the nuclear spin bath

A.5.1 Principle and interest of the experiment

As mentioned in Section A.4, an other interesting feature of the HHDR experiment is
the possibility to actively cool the nuclear spin bath. This can be done by keeping the
drive axis in the same direction during several spin locking sequences. If the locking time
is calibrated such as the energy exchange is maximum at the end of the interaction i.e.
P|↑⇓⟩ = 1 (see Equation A.8), the nuclear spin bath will be progressively polarized. As
the 183W nuclear spins interact little with their magnetic environment due to their low
gyromagnetic ration γW = µNgW = 1.78 kHz/mT, their energy relaxation time is very
large, probably ≫ 1 hour. Therefore the polarization should remain effective over long
time scale.

Polarizing the nuclear spin bath can increase the FID time of the electron spin if the
magnetic fluctuations it causes are the main source of decoherence. In the case of diamond
NV centres, this experiment has allowed to freeze the 13C nuclear spin bath and to increase
the free induction decay time by an order of magnitude [Lon+13].
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Figure A.3: Nuclear spin bath polarization. a) Polarization sequence. The spin locking
sequences SL± corresponding to a drive in the ± y direction are applied alternatively Npol
times. b) Background corrected average count for the two drive directions and the two
phase cycling projections as the function of Npol. As expected the signal given by the SL±
sequences is similar. A population inversion occurs progressively between Npol = 1 and
Npol = 20 due to gradual nuclear spin bath polarization. c) Contrast between the phase
cycling projections obtained by averaging on the two drive directions. The population
inversion is complete, the contrast ranging from 0.04 to -0.04 count.



A.5.2 Effective polarization of the 183W nuclear spin bath

The polarization sequence is depicted in Figure A.3a. Contrarily to the HHDR experiment
the polarization experiment is composed of blocks of Npol spin locking sequence (referred
to as SL±y from Figure A.2a) with the same drive direction (see Figure A.3a). The locking
time is fixed to 15 µs which corresponds to a half period of the coherent HHDR oscillation
presented in Figure A.2d. This locking duration maximizes the energy transfer between
the electron spins and the identified nuclear spins.

As for the last section, the signal come from the measurement of the electron spin state
after the polarization sequence. The raw data are thus composed of 4 series depending
on the phase cycling and on the drive direction, a plot as the function of the number of
sequence polarization is shown in Figure A.3b. A population inversion is clearly visible
between Npol = 1 and Npol = 20, moreover, the signal coming from the SL+y and the
SL−y is identical as expected.

In Figure A.3c we sum the two contribution coming from the ±y drive and we plot the
contrast between the two phase cycling projections. The evolution of the contrast value
from 0.04 to −0.04 count shows clearly that the final electron state is reversed.

The building-up of this inversion is simply linked to the progressive polarization of the
nuclear spin bath which increasingly prevents the electron spin from exchanging its energy.
In an extreme way, when Npol = 1, the electron exchanges its polarization with the nuclear
spin bath with a unit probability, whereas for Npol = 20, it does not exchange it at all and
remains in its initial state.

this experiment clearly shows that, like what has already been done in the NV centres,
we are able to polazise the 183W nuclear spin bath around the Er3+ ion.

In the next section we move to the impact of this polarization on the electron spin free
induction decays time.

A.5.3 Polarization impact on the free induction decay time

To study the impact of polarization on FID time, we use the sequence described in
Figure A.4a. we first polarize the nuclear spin bath by applying Npol = 10 spin-locking
sequences with the same locking drive direction. A series of Ramsey sequences is then
played with different delays τ . At the beginning of each Ramsey sequence, we apply a spin
locking sequence to secure the polarisation during the acquisition of the Ramsey curve.

The average count rate as the function of the Ramsey waiting time τ is shown in
Figure A.4b. The oscillation is imposed by the linearly increasing phase ϕ(τ) = 2π∆τ
of the last π/2− pulse with ∆ = 100 kHz. We extract the FID time T ∗

2 = 4.68 µs with
an exponentially damped sinusoidal fit. Figure A.4c shows the phase cycling signals of
the electron spin at the beginning of the additional spin locking sequence. The contrast
remains constant indicating a good polarisation maintenance throughout the acquisition of
the FID curve.

The FID time found, T ∗
2 = 4.68 µs is equivalent to the one found in Section 9.1.4.2.

This proves that the FID time of this particular Er3+ electron spin is not limited by the
magnetic noise caused by the 183W nuclear spin bath.

A.6 About the environment of the electron spin

Finally, after the measurements carried out in this chapter, we have acquired a certain
amount of information about the electron spin environment.
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Figure A.4: Free induction decay time after nuclear spin polarization. a) Sequence
measuring the FID time after a nuclear spin bath polarization. The bath is polarize
with Npol = 10 spin locking sequences SL±. A Ramsey sequence is then applied and
repeated with 19 τ value ranging from 1 µs to 20 µs. The phase ϕ(τ) = 2π∆τ of the last
π/2-pulse is linearly increase with ∆ = 100 kHz. The polarization stability is checked
before each Ramsey sequence by a SL± sequence. b) Background corrected average number
of count ⟨C̃⟩ as the function of the waiting time τ . The FID time T ∗

2 is extracted with
an exponentially damped sinusoidal fit (solid orange line). c) ⟨C̃⟩ measure after the spin
locking sequence of checking. The stability of the phase cycle projection proves the stability
of the nuclear spin polarization.

A.6.1 Position of the 183W atoms

From the dynamical decoupling measurement and the Hartmann-Hahn double resonance,
we can assume that the 4 closest tungsten sites are not populated by 183W. The two
measurement are coherent on this point. However, this assumption must be balanced
by the fact that we do not detect the effect of pulse filtering by the cavity discussed in
Section 9.2.2.1. This could lead to an intrinsic inability to address the more strongly
coupled spins.

The HHDR experiment includes additional information on hyperfine coupling and
allows to establish that at least one site among the site depicted in Table A.1 is populated.
These sites are located respectively at 5.7 Å and 6.5 Å to the electron spins an correspond
to the 3rd and 4th closest neighbor.



A.6.2 Electron spin FID time and information about the
electromagnetic environment

We have also studied the free induction decay time of the electron spin in different
experimental configurations (see Table A.2). The basic configuration consists of placing
the X and Y coils in persistent mode and controlling the stability of Z via a feed-back loop.
In this case we obtain T ∗

2 = 6.57 µs. To eliminate the assumption that this coherence time
is limited by the stability of Z coil, we remeasured the coherence time by placing the z-axis
in persistent mode (measurement not shown in the thesis). In this case T ∗

2 = 4.62 proving
that the field stability is not the limiting factor of the electron spin coherence.

Another source of magnetic noise that could limit coherence is the 183W nuclear spin
bath. The HHDR experiment offers us the possibility to efficiently polarize this bath,
suppressing its fluctuations. The experiment is realized in Section A.5.3 and yields to
T ∗

2 = 4.68. This value, close to the previous one, proves that the coherence time is not
limited by the nuclear spin bath either.

Finally, we can return to the coherence measure realized with the CPMG sequences
in the section Section 9.1.4.3. As shown on Figure 9.6d the coherence time increases as a
function of the square root of the number of refocusing pulses. This dynamic indicates that
the spin undergoes a 1/f noise spectral density [YSH11; ÁS11; Med+12],characteristic of
fluctuation caused by interface defects [Mye+14; Yon+18]. The most likely conclusion is
that this particular electron spin is very close to the resonator nanowire (which is also
supported by the short value of Tmathrm1) and that its coherence is intrinsically limited
by surface defects causing magnetic or electrical fluctuations..

Experimental conditions T ∗
2 (µs)

X, Y coils in presistent mode 6.57
X, Y, Z coils in presistent mode 4.62
After nuclear spin polarization 4.68

Table A.2: Free induction decay time in different experimental configurations



Appendix B

CPMG versus XY sequence

Before turning to the CPMG sequence, we used the XY-4 sequence to perform our first
dynamical decoupling measurement. As shown on Figure B.1b, the XY-4 sequence is a
CPMG sequence with a πx-pulse replacing a πy-pulse. This modification involves that we
need 2 basic τ − πx − 2τ − πy − τ units of π-pulse to retrieve the original |x⟩ state.

The comparison between the DD signal from XY-4 and CPMG are depicted in Fig-
ure B.1c for Nπ = 24. The XY-4 signal presents a lot of spurious dips around the expected
resonant position. This results in the appearance of high frequency harmonics in the
Fourier transform of the signal. In contrast, these harmonics are rapidly attenuated in the
case of the CPMG.

We later understood that this perturbed signal was specifically due to the XY-4 sequence
as shown in this article [Lor+15]. We then decided to move to the CPMG sequence which
produced a much clearer signal.
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Figure B.1: Comparison between CPMG and XY-4 sequence. CPMG sequence (a)
compare to the XY-4 sequence (b). c) Contrast coming from the CPMG sequence (red)
and the XY-4 (black). Spurious dips appears in the XY-4 case causing high frequency
harmonics in the Fourrier transform signal (d)
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Titre : Résonance magnétique d’un spin électronique unique et de son environnement magné-tique par comptage de photonsMots clés : résonance magnétique, résonance de spin électronique, circuits supraconducteurs,fluorescence, compteur de photon micro-onde
Résumé :La résonance magnétique est unebranche de la science qui vise à détecter lesspins via leur absorption et émission de rayon-nement électromagnétique. On distingue deuxsous-branches : la Résonance Magnétique Nu-cléaire (RMN) qui s’applique aux spins ato-miques et la Résonance Paramagnétique Elec-tronique (RPE) qui s’applique aux spins élec-troniques non appariés. Dans les deux cas, lesappareils commerciaux sont limités à la me-sure de vastes ensembles de spins et ne four-nissent que des moyennes de leur réponse col-lective. Dans cette thèse, nous réalisons la RPEd’ion Erbium individuels insérés dans un cristalde scheelite en utilisant une nouvelle méthodede détection basée sur la fluorescence micro-onde émise par les spins pendant leur relaxa-tion. Pour favoriser l’émission de photon, lesspins sont couplés à un résonateur supracon-ducteur ayant un petit volume de mode et defaibles pertes, générant un effet Purcell. La sor-tie du résonateur est connectée à un compteur

de photonmicro-onde basé sur un qubit supra-conducteur et unmélange à 4 ondes. La grandesensibilité de ce détecteur S = 10−22 W/
√
Hzest une des clés de la réussite de cette expé-rience. Notre méthode s’applique à tous typesd’impuretés paramagnétiques sans nécessiterune transition optique ni un grand temps decohérence. Nousmesurons les caractéristiquesde plusieurs spins individuels, les résultats va-rient fortement d’un spin à l’autre, mettanten avant l’inhomogénéité de leurs environne-ments électromagnétiques. Les temps de co-hérence atteignent plusieurs millisecondes etsont limités radiativement. Finalement, nousréalisons une expérience visant à sonder l’en-vironnement magnétique d’une impureté par-ticulière grâce à une séquence de découplagedynamique. Le signal à résonance nous per-met de mettre en évidence la présence de spinnucléaire de 183W. Nous émettons finalementquelques hypothèses préliminaires sur leur dis-position autour de l’ion erbium étudié.



Title : Magnetic resonance of a single electron spin and its magnetic environment by photoncountingKeywords :magnetic resonance, electron spin resonance, superconducting circuits, fluorescence,single microwave photon detector
Abstract : Magnetic resonance is a branchof science that aims to detect spins via theirabsorption and emission of electromagneticradiation. There are two sub-branches : Nu-clear Magnetic Resonance (NMR), which ap-plies to atomic spins, and Electronic Parama-gnetic Resonance (EPR), which applies to un-paired electron spins. In both cases, commer-cial instruments are limited to measuring largeensembles of spins and only provide averagesof their collective response. In this thesis, weperform EPR of individual Erbium ions inser-ted in a scheelite crystal using a new detec-tion method based on the microwave fluores-cence emitted by the spins during their relaxa-tion. To promote photon emission, the spinsare coupled to a superconducting resonatorwith a small mode volume and low losses, ge-nerating a Purcell effect. The output of the reso-nator is connected to a microwave photon de-

tector based on a superconducting qubit and a4-wave micing. The high sensitivity of this de-tector S = 10−22 W/
√
Hz is one of the keysto the success of this experiment. Our methodis applicable to all types of paramagnetic impu-rities without requiring an optical transition ora large coherence time. We measure the cha-racteristics of several individual spins, the re-sults vary strongly from one spin to another,highlighting the inhomogeneity of their electro-magnetic environments. The coherence timesreach several milliseconds and are radiativelylimited. Finally, we perform an experiment toprobe themagnetic environment of a particularimpurity using a dynamic decoupling sequence.The resonance signal allows us to demonstratethe presence of 183W nuclear spin. We finallymake some preliminary hypotheses on their ar-rangement around the erbium ion studied.

3


	Résumé détaillé
	Contexte général de la résonance paramagnétique électronique
	Résultats expérimentaux

	Introduction
	The general context of high sensitivity Electron Spin Resonance
	Experimental results

	Single microwave photon detector with an absolute power sensitivity of 10-22 W/Hz
	Circuit QED
	Quantum oscillator and transmission line
	The Josephson junction
	Transmon qubit
	Transmon dispersively coupled to a resonator
	Purcell effect

	Single microwave photon detector theoretical concepts
	SMPD based on a four-wave mixing process
	Adiabatic elimination of the output resonator
	Two coupled cavities model
	SMPD operation
	Noise equivalent power (NEP)

	Device and experimental setup
	Design and simulation
	Fabrication process
	Fabrication issues encountered 
	Setup

	SMPDs full characterisation
	Characterization of chip elements
	Four-wave mixing
	SMPD cyclic operation
	Temperature measurements
	SMPD2


	Detection of a single electronic spin of Er3+ in CaWO4 crystal and interaction with the nuclear spin bath
	Overview and theoretical background
	An appealing spin platform: erbium ions in Scheelite
	Single Er3+ coupled to a cavity
	Single Er3+ spin fluorescense detection

	Detection and characterization of single Er3+ electronic spins
	Experimental setup and adjustment of the experiment
	Spin fluorescence detection by photon counting
	Spin spectroscopy measurements
	Single-spin time-domain measurements

	Probing the W183 nuclear spin bath with the electron spin 
	Manipulating nuclear spins through electron spin
	Nuclear spin detection with dynamical decoupling sequence
	Conclusion

	Conclusion
	Detection of a single electron spin and its local environment by photon counting
	Possible improvement of the experiment and prospects

	Hartman Hahn double resonance (HHDR)
	Principle of the experiment
	Hamiltonian and coherent evolution
	Experiment calibration
	Spin locking and HHDR
	Polarization of the nuclear spin bath
	About the environment of the electron spin

	CPMG versus XY sequence
	Bibliography


