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Abstract 
Structural biology aims at determining and analyzing the three-dimensional (3D) architecture of 
macromolecular assemblies to elucidate and study their working mechanisms. Throughout the past 
decades, nuclear magnetic resonance (NMR) and X-ray crystallography have been standard 
approaches in structural biology for macromolecular structure determination. More recently, electron 
microscopy of cryogenically-cooled purified samples, each sample containing multiple copies of the 
molecular complex under study (referred to as particles), emerged as the mainstream technique for 
the 3D structure determination, and it is more commonly known as single-particle cryo electron 
microscopy (cryo-EM). Single-particle cryo-EM allows solving the 3D structure of macromolecular 
complexes in their native states from noisy two-dimensional parallel-beam projections of the particles 
imaged at cryogenic temperatures in unknown random orientations and positions in a thin layer of 
vitreous ice. Ideally, all the complexes in the sample have the same structure, which leads to a single 
high-resolution 3D reconstruction from the images. However, macromolecular complexes have 
flexible structures, and the motion of the complexes (conformational changes) are directly linked to 
their biological functions (they need to change the conformation to accomplish various biological 
functions). 
In the past decade, the study of conformational variability of biomolecular complexes has gained 
attention, and researchers used several approaches to address this challenge, which can generally be 
classified into two groups, namely discrete and continuous conformational heterogeneity methods. 
Before the start of this thesis, the majority of methods were better suitable for analyzing discrete 
conformational heterogeneity (a few distinct conformations) than continuous conformational 
heterogeneity (gradual conformational changes with multiple intermediate conformational states). 
With the emergence and advances in artificial intelligence, the development of methods for 
conformational variability analysis has shifted towards data-driven deep learning approaches, which 
can be better suited for analyzing continuous conformational heterogeneity than the classical cryo-
EM approaches. 
During my thesis work, I have developed three methods based on deep learning (two supervised and 
one unsupervised method) to address continuous conformational variability from single-particle cryo-
EM images. The following three methods are described in this thesis manuscript, together with their 
results on test data: DeepHEMNMA25,26 (supervised), supervised Cryo-VIT, and unsupervised Cryo-
VIT. DeepHEMNMA is a fast conformational-space determination method that uses a convolutional 
neural network to speed up a previously developed method for continuous conformational analysis, 
HEMNMA22,27, which combines a simulation of motion computed by Normal Mode Analysis (NMA) 
with an image processing approach. The convolutional neural network of DeepHEMNMA uses the 
rigid-body and elastic parameters obtained by HEMNMA (three Euler angles, two shifts, and a small 
number of normal-mode amplitudes) and learns in a supervised fashion how to map the images to 
these parameters. In contrast to DeepHEMNMA, the supervised and unsupervised Cryo-ViT 
approaches learn how to map each single particle image to a large number of atomic coordinates using 
a variational autoencoder.  
Using synthetic and experimental datasets, I demonstrate the effectiveness of DeepHEMNMA in 
analyzing a strong continuous conformational heterogeneity. Also, I show the encouraging results 
obtained with both supervised and unsupervised cryo-ViT approaches. Based on these experiments, 
DeepHEMNMA is expected to be useful for conformational studies of various biomolecular 
complexes, whereas cryo-ViT approaches need more in-depth tests and, potentially, improvements. 
The software of DeepHEMNMA is publicly available as part of the cryo-EM data processing pipeline 
of the open-source software package ContinuousFlex, which is also available as a plugin of Scipion 
software, extensively used in the cryo-EM field, and uses Scipion's backend software Xmipp. The 
software of cryo-ViT methods will be available via ContinuousFlex upon the validation with more 
data.  
Keywords: Cryo-EM, Continuous Conformational Variability Analysis, Deep learning, HEMNMA, 
DeepHEMNMA, Cryo-ViT, ContinuousFlex, Scipion and Xmipp. 
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Preface 

The core focus of this thesis is developing deep learning approaches for continuous 

conformational variability analysis from single particle cryo-electron microscopy (cryo-EM). The 

seeds of this thesis were first planted when I was introduced through a seminar to electron microscopy 

technology and the challenges of its data in developing different analysis approaches. After two 

master's programs in image processing and machine learning, it was about time to enter an 

interdisciplinary field, particularly computational biology, where deep learning could play a massive 

role in pushing the growth of cryo-EM, which led me to express my interest in Dr. Jonic Ph.D. 

proposal. 

My thesis began in December 2019 with the overall goal to develop supervised and 

unsupervised deep learning approaches to investigate continuous conformational variability of a 

variety of biomolecular. During the first part of my thesis, my main work was to accelerate a method 

developed in Dr. Jonic's group called HEMNMA using a supervised deep neural network. During the 

second part, the focus shifted to developing an unsupervised, fully neural network-based approach 

for the same purpose, in which minimum human interference is required. 

This thesis provides an introduction to cryo-EM technology, a detailed state of the art of 

conformational variability analysis approaches, and a full description of the methods for the 

conformational variability analysis developed during this thesis as well as their performance analysis 

with synthetic and experimental data. 
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Introduction 

The study of macromolecular assemblies' biological functions, such as DNA replication and 

protein synthesis, is key to novel drug discovery.  Structural biology aims to determine and analyze the 

three-dimensional architecture of macromolecular assemblies to elucidate and study their working 

mechanism. Throughout the past decades, nuclear magnetic resonance (NMR) and X-ray 

crystallography have been the two reigning approaches for macromolecular structure determination. 

Recently, electron microscopy of vitrified cryogenic samples of biomolecular complexes, known as 

single-particle cryo-electron microscopy, emerged as a major 3D structure determination technique. 

During my thesis, I worked on developing machine-learning approaches for analyzing the continuous 

conformational variability of macromolecular complexes using single-particle cryo-EM. 

Single particle cryo-EM allows imaging of biomolecular complexes using an electron 

microscope. During imaging using an electron microscope, the electrons are directed into a biological 

sample containing copies of the same biomolecule encapsulated in a thin layer of vitreous ice, which 

helps to maintain the sample in its native state. When the electrons interact with the specimen, they 

are scattered and then captured with a detector to create an image of the biological sample. The 

collected images, also called micrographs, are then processed through a set of sophisticated 

computational techniques, commonly known as Single Particle Analysis (SPA), to provide insight 

into the structure of protein complexes. 

However, when a biomolecular complex undergoes continuous conformational flexibility 

(gradual changes of the conformation with many intermediate conformational states), the classical 

SPA workflow will likely not capture this variability, especially in the case of large amplitudes of the 

conformational change, and the 3D reconstructed structure will be less resolved in the parts where 

the amplitude of the conformational change is the largest. The conformational heterogeneity problem 

is currently widely recognized as the main computational challenge in cryo-EM, and sophisticated 

computational and statistical approaches are needed to disentangle the mixed population of images 

into a set of reconstructions representing individual unique conformations. 

Throughout the last decade, deep learning pushed state-of-the-art research in different 

interdisciplinary fields and was extensively used in automating different steps in the SPA workflow, 



9 
 

such as automatic particle picking, 2D classification, and image denoising. However, deep learning 

for conformational variability analysis was proposed only recently, in 201928. 

In this thesis, three cryo-EM data processing methods have been developed to tackle 

continuous conformational variability challenge, two supervised methods, DeepHEMNMA and 

supervised cryo-ViT (supervised), and one unsupervised method, unsupervised cryo-ViT. 

DeepHEMNMA is a hybrid method that combines a convolutional neural network with HEMNMA 
22,27 . HEMNMA uses Normal Mode Analysis (NMA) and an image registration method to extract the 

hidden motion from single-particle images. DeepHEMNMA is a supervised deep learning method 

that uses the output of HEMNMA to learn how to simultaneously map an image to three Euler angles, 

two shifts, and M normal mode amplitudes, where M is the number of normal modes used by 

HEMNMA. DeepHEMNMA depends on the output of HEMNMA, which, in turn, depends on the 

simulated motion by NMA. Supervised cryo-ViT is an autoencoder neural network that learns the 

relationship between single particle images and their corresponding atomic coordinates provided by 

a newly developed method called MDSPACE29. 

The unsupervised cryoViT is a variational autoencoder that estimates the corresponding 

displaced 3D atomic coordinates for every single-particle image in an unsupervised fashion. In this 

approach, the conformational variability analysis is data-driven but requires an initial atomic 3D 

model (the atomic displacements with respect to this initial model are estimated for each single 

particle image). Unsupervised cryo-ViT refines the given rigid-body parameters while learning how 

to map the images to the corresponding 3D atomic coordinates 

DeepHEMNMA was validated on simulated data and furtherly tested on a publicly available 

experimental dataset of the yeast ribosome 80S. Supervised cryo-ViT showed encouraging results on 

a synthetic dataset, and more extensive experiments are needed to demonstrate its effectiveness. 

Unsupervised cryo-ViT was validated on synthetic and experimental datasets of the yeast ribosome 

80S and a publicly available dataset of transmembrane protein TMEM16F, and it is currently 

undergoing in-depth tests to endorse its effectiveness on more diverse datasets.  DeepHEMNMA 

software is publicly available as part of the cryo-EM data processing pipeline of the open-source 

software package ContinuousFlex, which is also available as a plugin of Scipion software, and its 

backend is based on Xmipp software. 
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This thesis manuscript is organized as follows:  

Chapter 1 reviews cryo electron microscopy principles and data collection challenges. Also, 

it presents the principles of the SPA workflow and its steps for biomolecular structure determination. 

Chapter 2 offers a detailed review of the literature on biomolecular conformational variability 

analysis methods in single particle cryo-EM other than those developed in this thesis.  

Chapter 3 describes the building bricks of the proposed DeepHEMNMA and supervised and 

unsupervised cryo-ViT methods, namely, NMA, convolutional neural networks, variational 

autoencoders, vision transformers, and quaternion representation.  

Chapter 4 describes in detail the proposed supervised DeepHEMNMA approach and its results 

obtained with synthetic and experimental datasets. This chapter ends with a description of supervised 

cryo-ViT and presents preliminary results on synthetic dataset. 

Chapter 5 presents the methodologies of the unsupervised neural network, unsupervised cryo-

ViT, and its results obtained with synthetic and experimental datasets. 

Chapter 6 highlights the software contributions made during this thesis. 

This thesis concludes with discussions of the work done and possible future works drawn in 

Chapter 7. 
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Chapter 1: Principles of cryogenic electron microscope 

At an early stage of biological sciences, the morphology of animals, plants, and tissues has 

been studied using minimal visual faculties, e.g., the naked eye. With the development of light 

microscopes, dating back to the seventeenth century 30, researchers could examine considerably 

smaller objects or microorganisms, such as cells and bacteria.  

In a light microscope, shown in Figure 1 (left), a beam of photons is passed through a sample, 

which will be absorbed and remitted by the sample. Some of these remitted photons are then captured 

by the microscope's objective lens and brought to a focus at a particular distance, known as the focal 

length, to create a magnified image. However, the light microscope is limited by the wavelength of 

light of 400-700 nanometers, limiting the resolution to about 200 nanometers, which restrains to the 

observation of smaller structures within cells and tissues. 

To overcome the resolution limit, highlighted in Figure 2, the development of the electron 

microscope, shown in Figure 1 (right), was a significant advancement in the field of microscopy 31. 

Figure 1 Schematic comparison of imaging instruments of light microscope(left) 
and electron microscope (right). Adapted from https://www.jeol.com. 
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Instead of photons, the electron microscope uses a beam of accelerated electrons as a source of 

illumination to create an image of a sample, in which the wavelength of the electron beam is 10−5 

shorter than the wavelength of the photons beam which allows to see structures at the atomic level32.  

In 1925, Louis de Broglie first proposed that electrons had wave-like properties with a 

wavelength much smaller than visible light. This theory was confirmed in 1927 by two independent 

experiments by Davisson and Germer and Thomson and Reid teams that showed the wave nature of 

electrons3. Soon after, Max Knoll and Ernst Ruska at the Berlin Technische Hochschule introduced 

the electron microscope in 193231, overcoming the limitations of visible light for higher resolution. 

The ultimate goal was to see atoms, which was accomplished gradually over time. The first electron 

microscopes only showed that electron beams could produce visible images of matter, and by the late 

1930s, 10 nm resolution was achieved. This was further reduced to 2 nm by 1944, compared to the 

200 nm resolution of optical light microscopes.  

One of the main challenges in early electron microscopy was to increase the contrast of the 

imaged samples, and one idea was to stain and stabilizes the biological sample with heavy metals 

since they strongly scatter electrons and produce high amplitude contrast. However, sample staining 

involves the dehydration of biological specimens, which fundamentally removes them from their 

native state. In 1981, Dubochet and colleagues introduced cryogenic preservation33 of the sample to 

capture its inner structure without damaging the biological sample's structural information, leading 

to cryo electron microscopy.  

Cryo electron microscopy34 is an electron microscope technique used to study biological 

samples at very low temperatures, typically around -190°C, where a biological sample is rapidly 

frozen in a thin layer of vitreous ice to preserve it in a near-native state to analyse the molecular 

structure and conformational changes without the need for staining or dehydration that can alter the 

sample's structure, preventing interpretation of the results of 3D reconstruction from the collected 

images  with new instrumental and sample preparation advances. Nowadays, cryo-EM is a powerful 

technique for studying the structure and function of proteins and other biomolecular assemblies and 

has contributed significantly to our understanding of cellular processes. 
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Cryo electron microscope is composed of the following components: 

• Electron gun: High-energy source of electrons emits electrons that travel down through the 

vacuum toward the sample and generates contrasts in the plane image. 

• Electron lenses: A set of lenses are used to focus and shape the beam of electrons as it travels 

through the microscope. The first lens, the condenser lens, is located between the electron gun 

and the objective lens and is responsible for focusing the beam of electrons onto the sample. 

The second lens is the objective lens which is the closest lens to the specimen; it is used to 

focus the beam and produce a highly magnified and detailed image of the sample. Another 

essential lens is the projector lens which is the lens located furthest from the sample and is 

responsible for projecting an image of the sample onto the detector 

• Specimen holder: It holds the sample in place during imaging. 

• Detector: It captures the image of the sample, and its recent improvement 35 is considered the 

largest contributing factor of resolution. 

1. Image formation and contrast enhancement 
In cryo-EM, image formation involves the interaction of a beam of electrons with a sample, 

typically frozen in a thin layer of vitreous ice. The sample is placed in the path of the electron beam, 

Figure 2 Resolution spectrum demonstrating imaging techniques which can be used at 
different scales, including light and electron microscopies. Adapted from 10. 
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which is focused and aligned using a set of lenses. When the electrons interact with the sample, they 

are transmitted through the sample, scattered (elastically or inelastically), or absorbed by the sample 
3. The transmitted and scattered electrons, as shown in Figure 3, are then detected by a detector, such 

as a charge-coupled device camera (CCD) where electrons are first converted into photons before 

detection 36, or a Direct electron detector (DDD) 37, and the resulting image is recorded. The contrast 

of the image pixels are related to the thickness of the ice and composition of the sample. Thick films 

or opaque materials generally have higher contrast in cryo-EM images compared to thin films or 

transparent materials, as well as the biomolecular samples that are mainly composed of light atoms. 

 

In TEM, two different contrast types arise, amplitude contrast and phase contrast 34,38. One 

can think of the electrons as either a single particle with a condensed charge (inducing amplitude 

contrast) or a plane wave (inducing phase contrast). The amplitude contrast is related to the loss of 

electrons as they pass through the sample and the lenses. During the interaction of electrons with the 

matter, the low-angle scattered electrons are focused with the objective lens to produce a contrast. 

However, the high-angle scattered electrons are blocked by the objective lens aperture, leading to low 

contrast due to the small amount of electrons arriving at the image plane. Therefore, small aperture 

leads to a lower the Signal to Noise Ratio (SNR) in the final image. In the microscope, the electron 

dose is kept to a minimum (usually, 10 electrons per Ǻ2 for single particle analysis data collection) in 

order to avoid the radiation damage of the sample.  

The phase contrast comes from a phase shift between different parts of the beam, producing 

the interference between different waves. The phase shift of the electrons is a function of the electron's 

Figure 3 Schematic representation of electrons scattering 
phenomenon during interaction with the sample. Adapted from 3 
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wavelength and the electron density of the specimen. When the electrons pass through regions of the 

specimen with different electron densities, they will experience different phase shifts, which can be 

used to generate contrast in the image. There are several ways to implement phase contrast in cryo-

EM. One common method is using a phase plate, a thin film placed in the electron beam that 

introduces a controlled phase shift to the electrons. Another method is to use the microscope's contrast 

transfer function (CTF), which describes the phase shift of the electrons as a function of their 

frequency. It is worth mentioning that the CTF model takes into account the amplitude contrast; 

however, its contribution to the CTF model depends on the imaging conditions 39. 

The image formation in an electron microscope can be described using the model40 shown in 

Eq. (1), which relates the image pixel intensity to the properties of the sample and the imaging system. 

Mathematically, the image formation process in the microscope can be represented by a point spread 

function (PSF) ℎ (real-space version of the CTF) that convolves the ideal projection 𝜑𝜑 of the electron 

density potential function of an object, yielding the experimental TEM image i: 

 𝑖𝑖(𝐫𝐫) = ℎ(𝒓𝒓) ∗ �φ(𝒓𝒓) + 𝑛𝑛𝑏𝑏(𝒓𝒓)� + 𝑛𝑛𝑎𝑎(𝒓𝒓) (1) 

where 𝒓𝒓 is a vector in ℝ2 representing a real space point, 𝑛𝑛𝑏𝑏 denotes the noise present in the 

projection image affected by the point spread function, and 𝑛𝑛𝑎𝑎 denotes the noise added by the imaging 

system. 

2.  Contrast transfer function (CTF) 
A visual representation of the CTF is shown in (Figure 4), where the pattern in the frequency 

domain composed of bright and dark circles, also called Thon rings or diffraction rings, are produced 

by the interference of electron waves passing through different parts of the specimen. The CTF 

describes how the amplitude of the electron density at different spatial frequencies is affected by the 

microscope's properties, such as defocus and astigmatism 41. 

To determine the CTF (H), the power spectrum density (PSD) of the image is first calculated 
42 and then fitted using the following theoretical PSD model (assuming the image formation in Eq.( 

1)): 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑹𝑹) = 𝐾𝐾2|𝐻𝐻(𝑹𝑹)|2 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑎𝑎(𝑹𝑹) (2) 



16 
 

Where 𝑹𝑹 ∈ ℝ𝟐𝟐 is a given spatial frequency, 𝐻𝐻 is the CTF (i.e., Fourier transform of the PSF), 

and 𝐾𝐾2 is the PSD of the noise before the CTF. In Eq.(2), it is assumed that the noise before the CTF 

is white and that the PSD of the ideal projection is negligible (the noise power is much more important 

than the signal power in a typical electron micrograph) 40. 

The values of the CTF parameters can be estimated by fitting the PSD model in Eq.(2), and 

they are then used to perform the CTF correction. The following model of the CTF is often used:  

 𝐻𝐻(𝑹𝑹) = 𝑠𝑠𝑖𝑖𝑛𝑛 �𝜋𝜋|Δ𝑓𝑓(𝑹𝑹)|𝜆𝜆|𝑹𝑹|2 −
𝜋𝜋
2
𝐶𝐶𝑠𝑠𝜆𝜆3|𝑹𝑹|4� − cos �𝜋𝜋|Δ𝑓𝑓(𝑹𝑹)|𝜆𝜆|𝑹𝑹|2 −

𝜋𝜋
2
𝐶𝐶𝑠𝑠𝜆𝜆3|𝑹𝑹|4� (3) 

where Δ𝑓𝑓(𝑹𝑹) is defocus vector, 𝜆𝜆 is the electron wavelength, 𝐶𝐶𝑠𝑠 is spherical aberration. It is 

worth mentioning that the second term is multiplied by a constant 𝑄𝑄0, which represents the fraction 

of scattered electrons at each frequency. 

Once the CTF is estimated, several ways are available to correct for it. One method for CTF 

correction is called phase flipping43, which consists of multiplying the phases of the Fourier 

coefficients by -1 at the spatial frequencies where the CTF is negative. This technique effectively 

reverses the phase of the image at those frequencies, resulting in an increase in contrast. Another 

method for CTF correction is called Wiener filtering 44,45. It involves summing the multiplication of 

each image Fourier transform by its own CTF, and then dividing by the sum of all CTF's multiplied 

by the Wiener filter that is designed to minimize the noise in the image while preserving the high-

frequency content 46. The CTF-corrected image is given by: 

 
𝐴𝐴Ω(𝒓𝒓) =

∑ 𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖(𝒓𝒓)𝐼𝐼𝑖𝑖(𝒓𝒓)𝑀𝑀
𝑖𝑖=1
∑ 𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖2(𝒓𝒓)𝑀𝑀
𝑖𝑖=1

Ω(𝒓𝒓) 
(4) 
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Where Ω(𝒓𝒓) is the Wiener filter, 𝐼𝐼𝑖𝑖 the 𝑖𝑖𝑡𝑡ℎ image, and 𝑀𝑀 is the number of images in the dataset. 

The Wiener filter Ω(𝒓𝒓) is defined as follows: 

 Ω(𝒓𝒓) =
1

1 + 1
𝑃𝑃𝑆𝑆𝑅𝑅𝐹𝐹(𝒓𝒓)∑ 𝐶𝐶𝐶𝐶𝐹𝐹𝑖𝑖2(𝒓𝒓)𝑀𝑀

𝑖𝑖=1

 
(5) 

Where 𝑃𝑃𝑆𝑆𝑅𝑅𝐹𝐹(𝒓𝒓) is the ratio of particle signal power and the average noise power and is given by: 

SNRF(𝐫𝐫)  =  
M|φ(𝐫𝐫)|2

∑ |na(𝐫𝐫)|𝟐𝟐M
i=1

 
(6) 
 

It is worth mentioning that the 𝑃𝑃𝑆𝑆𝑅𝑅𝐹𝐹(𝒓𝒓) was approximated by a constant in early works, and more 

advanced statistical approaches determine it as a function of the data47. 

Other approaches like iterative data refinement 48 and maximum entropy 49 can also be used to correct 

for the CTF. 

3. Radiation damage and electron dose 

Figure 4 Effect of different defocus values on the resulting micrographs during data collection step 
in cryo-EM. Adapted from https://cryoem101.org/ 
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The radiation damage phenomenon refers to the damage caused to the specimen by the beam 

of high-energy electrons emitted50, as shown in Figure 5. When the beam of electrons hits the sample, 

it can either break the chemical bonds in the sample or knock out electrons from the atoms in the 

sample. The first phenomenon is radiolysis, which refers to the breakage of chemical bonds in a 

sample due to exposure to ionizing radiation. This damage can result in the loss of functional groups, 

changes in the conformation of proteins, and the formation of free radicals, all of which can negatively 

impact the quality of the final cryo-EM image. The knock-out damage is caused by the electrons 

interacting with the sample atoms, knocking out some of them, which can damage the sample's 

structural integrity, including the displacement of atoms from their native positions, which can 

negatively impact the quality of the final cryo-EM image. 

The extent of the radiation damage caused by the beam of electrons depends on the electron 

dose, simply the total number of electrons, used to produce the micrographs. The electron dose is 

expressed in electrons per square angstrom (e/Å2)1, and the optimal electron dose for a particular 

sample will depend on several untracked experimental parameters, including the size of the sample, 

the ice thickness, and the resolution at which the image is being taken. Generally, thicker ice will 

require higher electron doses to produce good-quality images. However, increasing the electron dose 

can also increase the amount of radiation damage to the sample, so it is essential to find a balance 

between the electron dose and the amount of radiation damage. 

Figure 5 Radiation damage effect. The electron dose accumulation effect on the sample. Adapted 
from 1. 
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Many techniques can be used to minimize radiation damage in cryo-EM, including using lower 

electron doses and using samples that are more resistant to radiation damage (such as samples that 

have been chemically fixed or treated with radiation-resistant agents). Limiting electron exposure and 

using appropriate cryoprotection can effectively reduce radiation damage. However, low exposures 

result in under-sampled, noisy images and complicate obtaining 3D models of biological specimens 

from cryo-EM images. 

4. Single particle cryo-EM for structure determination 
SPA has emerged over the last decades as the mainstream processing technique that provides 

insight into the structure of protein complexes. In particular, the recent advances in sample 

preparation51,52, computation37,53-55, and instrumentation for SPA allowed for solving near-atomic-

resolution structures of macromolecular complexes that resist crystallization. The principle of SPA is 

computational averaging of thousands of identical particles. Therefore, the collected single-particle 

dataset should be as homogenous as possible to obtain a near-atomic-resolution structure. The main 

steps of the SPA workflow are shown in Figure 6 and will be detailed in the coming sections. 

Specimen manipulation 
For SPA data collection and analysis, the given specimen is purified to remove contaminants 

and impurities that can negatively affect the imaging of the specimen. In particular, the goal of the 

sample purification is to obtain a highly homogeneous and monodisperse sample51. Once the 

specimen is purified, it is applied to an EM grid to be imaged.  

Figure 6 Main steps of the SPA workflow for structure determination. Adapted from 
https://shuimubio.com/services/cryo-em-spa 

https://shuimubio.com/services/cryo-em-spa
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The grid with the sample on it is plunged into liquid ethane cooled by liquid nitrogen52, a 

process called plunge-freezing, to cool the sample and vitrify it rapidly. The rapid cooling preserves 

the native structure of the sample without allowing ice crystals to form, which can damage the sample. 

Indeed, the sample needs to be fixed in a native state before imaging because the microscope is 

maintained in a high vacuum environment, which can cause hydrated biological specimens to 

dehydrate rapidly. The preservation in a vitrified state allows for good sample preservation. The high-

resolution images obtained from the vitrified samples are then used to perform the rest of the 

computational SPA steps to produce the 3D structure of the biomolecules in question. 

 
5. Single particle analysis for high-resolution structure determination  

The data acquisition step in SPA has several shortcomings that make data processing 

challenging. The micrographs have low contrast and SNR due to the low electron dose used for data 

collection. Another challenge is that the individual particles in the collected micrographs are often 

heterogeneous, meaning they are in different orientations, locations, and conformations, which 

restrains to obtain high-resolution structural information, as the data from the different particles may 

not be directly comparable. To address this challenge, researchers typically use computational 

techniques to align and average the data from multiple particles, ignoring slight conformational 

Figure 7 Schematic diagrams of copies of the same biomolecular complexes trapped in vitreous 
ice. Blue stripes represents the ice and the dark areas represents the carbon film Adapted from  21 

Figure 8 Overview of Single Particle Analysis (SPA) computational steps for structure 
determination. Adapted from 4 
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heterogeneity to obtain a 3D representation of the overall structure of the molecule. SPA is a 

computationally intensive process and requires specialized expertise; however, it has become 

increasingly feasible with the development of more advanced computational approaches and 

computing technologies. In a typical SPA workflow, several steps are needed to obtain the final high-

resolution structure as illustrated in Figure 8. 

Motion correction 
The first step of a typical SPA workflow is to perform motion correction on the acquired 

micrographs. This step consists of correcting for the movement of the sample induced either by stage 

drift, where the specimen sample as a whole may move, or anisotropic deformation, where the sample 

may shift due to the electron beam intensity 56. Motion correction 57-61 involves using computational 

algorithms to align the images of the sample in order to correct for any global, full frame motion 

correction, or local, per particle motion correction, movements that may have occurred during the 

data collection step. This can help improve the resolution and signal of the sample's structural 

information, which improves all the latter steps of SPA. 

CTF estimation and correction 
The next step of the SPA workflow is the CTF estimation. Accurate estimation of the CTF is 

critical for a near-atomic resolution cryo-EM reconstruction.  The CTF affects the visibility and 

Figure 9 Motion correction and recovery of high-resolution information. Average of frames of 
rotavirus particles before (A) and after (B) motion correction. Features are blurred before the 
motion correction. Adapted from23 
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resolution of small details in the sample and should be corrected. The CTF estimation and correction 

methods were discussed in the beginning of this chapter.  

Particle picking 
In order to determine the 3D structure at high resolution, many projection images are needed. 

Furthermore, particles must be extracted from the collected micrographs into individual images for 

further processing 56. In the beginning of single particle cryo-EM, extracting the particles was done 

manually, by an expert exploration of hundreds of thousands of micrographs one by one, and particle 

windowing (extracting image patches) from the micrograph regions that contain the particle as 

opposed to the regions that contain noise or contaminants. Throughout the last two decades, different 

techniques have been proposed to automate this time-consuming step.  

There are several approaches to particle picking, including template-based matching 62, 

feature-based matching 63, and machine learning-based matching 13,64-68. Template-based matching 

Figure 10 An example of an automatic particle picker (APPLE), Top row contains a β-
Galactosidase micrograph. Bottom row contains a KLH micrograph. The left column contains plain 
micrographs without any selected region. The middle column contains the micrographs with the 
output of the object detection. The right column contains the micrographs with the picked particles. 
Adapter from13 
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involves using a template (model of the particle) to identify similar particles in the images based on 

a metric score, usually the cross-correlation between the template and the micrograph. Feature-based 

matching involves extracting specific features, such as pixel intensity, edge detection, or texture 

features, from the images and using them to identify the particles. Deep learning-based methods 

involve training a neural network on a set of images to recognize the particles of interest.  

2D classification 
2D classification is often used in the later stages of single particle analysis, specifically in the 

alignment and averaging steps and in the model building and refinement steps. In 2D classification, 

the images of individual particles are divided into classes based on similarity, and a separate average 

image is generated for each class 69. This can help improve the structural model's resolution and 

accuracy by separating out variations in the structure that may be present within the sample 70. 

Specifically, it is often the step where orientation bias and structural heterogeneity are first identified, 

and if only a limited number of distinct 2D classes are present, it may indicate that the dataset lacks 

a wide variety of unique views. The clustering of similar particle images was first introduced by van 

Heel and Frank71, when the correspondent analysis was used to classify images. Another famous 

approach is the maximum-likelihood 2D classification implemented in RELION 72.  These 2D class 

averages can then be used to generate an initial structural (ab-initio) model of the protein or 

biomolecule. The initial structural model is refined using additional images and information in the 

Figure 11 An example of 2D classification step. The output of 2D classification with a mixture of 
junk and well-resolved classes (left). The best classes extracted from the output of the 2D 
classification, keeping only well-resolved classes and discarding junk classes (right). Adapted from 
https://cryoem101.org/  
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model building and refinement step. 2D classification can be used to identify and correct any errors 

or inconsistencies in the model by comparing the model to the class averages and adjusting the model 

as needed.  

In addition to evaluating the quality of the particle images, 2D classification also curates the 

stack of extracted particles. Well-resolved classes are separated, and a refined stack is created, while 

poorly resolved or "junk" classes are discarded. It is common at this stage to discard a significant 

number of particles, depending on the accuracy of the particle picking process. Multiple rounds of 

2D classification can be performed to refine the class averages further and increase confidence in the 

downstream steps. The refined stack is then used as input for 3D classification and reconstruction. 

 3D classification 
As with 2D classification, particles can also be classified in 3D to sort them among different 

structural states. This 3D classification is beneficial for distinguishing particles that exhibit 

compositional and conformational heterogeneity. A popular method for 3D classification is based on 

the maximum likelihood70, where each particle image is assigned a probability to yield a particular 

3D model. After multiple iterations of refinement, the assignment of each particle image to a 

particular 3D model is usually unambiguous, and separate reconstructions can be made from the 

separately assigned particle stacks. 3D classification can be useful for in-silico purification of the 

particles (removing the particles that are not the object of the study). However, it is not always 

accurate and often requires multiple classification rounds. 

 

Once all steps of the SPA workflow are done, one or several final average 3D density maps 

are obtained. However, when a biomolecular complex is underlying some conformational flexibility, 

the classical SPA workflow will not capture this variability, and the final structure will be less resolved 

in the parts where the changes happen most. Chapter 2 reviews the conformational heterogeneity 

problem in-depth and provides a detailed state of the art of the existing techniques. 
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Chapter 2: State of the art 

Studying biological functions of macromolecular complexes, such as DNA replication, 

transducing chemical and electrical signals, and protein synthesis, via structural studies of the 

complexes, is the key to novel drug discovery. The structure of the complexes is directly linked to 

their biological functions. Therefore, the determination of the structure and its flexibility allows the 

elucidation of the working mechanisms of the complexes. Indeed, biomolecular complexes are 

dynamic entities, and their conformational changes are linked to the multiple functions that they 

perform in cells. The conformational variability of the complexes generally results from continuous 

conformational changes, where the complex gradually transitions from one state to another while 

passing through many intermediate conformational states.  Another form of conformational changes 

arises from the binding or unbinding of substrates and is usually referred to as discrete conformational 

changes, where the complex can take a finite set of conformational states. Continuous and discrete 

Substrate binding or unbinding 
(GroEL–GroES vs.  

GroEL–GroES–rhodanese) 
Elad et al. 18 

DNA replication 
(DNA Pol A - B complex) 

Virus maturation 
(Tomato Bushy Stunt Virus) 

Protein synthesis  
(70S ribosome) 

Continuous 

80S ribosome elongation cycle 
Behrmann et al.17 

Combined discrete and continuous  Discrete   

Figure 12 Types of conformational heterogeneity, Continuous conformational heterogeneity (top), 
Discrete conformational variability (bottom left), Combined discrete and continuous conformational 
heterogeneity (bottom right). 

Jin et al. 20149  
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conformational variabilities may manifest simultaneously, where the main complex gradually 

changes its shape while a substrate is binding or unbinding. 

In this chapter, we review the methods specialized in conformational heterogeneity analysis, 

which were available before the start of this thesis work (in 2019), and the more recently proposed 

methods. In the last decade, much progress has been made in addressing conformational variability 

and some of the most commonly used approaches for this are multivariate and subspace analysis, 

maximum likelihood classification, multi-reference classification, and deep learning approaches. 

 

Multivariate analysis approaches use statistical techniques, such as principal component 

analysis (PCA) 73 and correspondent analysis, to identify patterns in the data and assign the particles 

to distinct classes accordingly. Maximum likelihood classification approaches align the particles, 

compare their structures to identify similarities and differences and assign the particles to distinct 

classes based on the likelihood that they belong to a particular class. Multi-reference classification 

approaches align the particles to a set of reference structures and assign the particles to distinct classes 

based on the similarity of their structures to the references. 

Deep learning-based approaches use deep learning neural networks solely or in combination 

with other approaches for continuous conformational heterogeneity analysis. 

Conformational heterogeneity analysis methods can be categorized in several manners, such 

as based on the type of heterogeneity for which the methods are better suited (continuous or discrete 

heterogeneity) or based on the dimension of the space used for the conformational variability analysis 

Figure 13 Approaches for conformational heterogeneity analysis available in the literature. 



27 
 

(2D or 3D variability analysis). As the focus of this thesis was the development of deep learning 

approaches for continuous conformational heterogeneity analysis, we below review the 

conformational heterogeneity analysis methods categorized according to the most suitable type of 

heterogeneity (discrete or continuous), and detail some of the most famous approaches in the 

literature.  

1.  Discrete heterogeneity analysis methods 
Discrete heterogeneity methods are a straightforward solution to the conformational 

heterogeneity problem. They group images into discrete clusters and minimize the intraclass variance 

within the groups, where each group contains images sharing structural similarities 74. Discrete 

heterogeneity methods provide readily interpretable results, where each particle is assigned to a small 

number (𝐾𝐾) of 3D models reflecting 𝐾𝐾 states of the molecular complex. In the cases where the free-

energy landscape has distinct local minima, discrete heterogeneity methods are suitable. However, 

the free-energy landscape is not known in advance, and the fundamental assumption when using 

discrete heterogeneity methods is that the selected number 𝐾𝐾 is representative of the number of local 

energy minima on the free-energy landscape. In practice, 𝐾𝐾 has an arbitrary value that is decided by 

the user based on some prior information about the complex and its potential conformational 

variability75. Often, such methods are run several times, using the same data with different values of 

𝐾𝐾, and the results of the runs are compared. 

Multi-Reference classification 
 

In multi-reference classification, a set of reference structures is used to classify particles into 

different classes based on their similarity to the reference structures. Once a set of reference structures 

is defined, the similarity between each particle and the reference structures is usually quantified using 

a metric such as cross-correlation76. More precisely, the image of each particle is compared to the 

image of the reference structures projected in a predetermined projection direction. The reference 

structure with the highest cross-correlation value determines the class of the particle77. 

Multireference classification can be supervised76,78, where the process is guided by a set of 

predefined references provided before the heterogeneity analysis. Here, the references structures are 

first projected along predefined projection directions estimated for each single particle image and 
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compared to all single particle to obtain the cross-correlation. Once the images are assigned to the 

reference structures, 3D reconstructions are produced for each class. 

Similarly, unsupervised multireference classification79-81 uses a first set of reference structures 

and iteratively assigns single particles to one of the cryo-EM maps; then, new references are 

generated. This process is repeated to improve the classes and the final cryo-EM maps. 

Maximum likelihood approaches 
Alternatively, the particles can be assigned to the different classes based on their similarity to 

the reference structures using Maximum likelihood (ML) methods. Maximum likelihood estimation 

(MLE) is a powerful statistical approach used to estimate a set of parameters of a probability 

distribution, e.g., mean and standard deviation values of a Gaussian distribution, that best describes 

a given observed dataset. In the context of conformational heterogeneity analysis in cryo-EM, MLE 

is a widely used approach to estimate the probability distribution of conformations in a population of 

molecules82. 

The idea behind MLE is to find a set of parameters that maximizes the likelihood of the data, 

given the model. In the case of conformational heterogeneity analysis, the data is the set of 2D noisy 

single-particle images, and the model is a probability distribution that describes the conformations of 

the molecules. The goal is to find the set of parameters that best describes the conformations of the 

molecules in the population, as determined by images 82,83. 

MLE is implemented using the Expectation-Maximization (EM) 84 algorithm. EM is an 

iterative algorithm that estimates the model's parameters starting with an initial guess for them; it 

alternates between two steps: the expectation step (E-step) and the maximization step (M-step) until 

convergence. The modeling of the 3D structure of the biomolecular complex typically involves 

defining a probability density function (PDF) that describes the 3D structure of the particle, such as 

a Gaussian function or a more complex function like a Gaussian mixture model (GMM) or a hidden 

Markov model (HMM).  

In cryo-EM, ML approaches were first introduced by Sigworth 85 for aligning a set of noisy 

simulated homogeneous single-particle images. Several contributions followed this work to analyze 

conformational variability. Pascual-Montano et. al 86 proposed an ML variant of the conventional K-

means classifier. In this work, a kernel density self-organizing map was applied to a set of prealigned 
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single-particle images, and each image was assigned to a predefined multireference 𝐾𝐾 2D class. This 

approach was used to study large T-antigen and hexameric helicase G40P. To overcome the bias of 

aligning the 2D single-particle images prior to the conformational variability analysis, Scheres et al. 
87 proposed a multireference 2D ML variant called ML2D. The approach models both the in-plane 

rigid-body displacements and the class assignments as hidden variables. The effectiveness of this 

approach was demonstrated on simulated datasets and led to the discovery of an overhanging dsDNA 

in the large T-antigen complex. With the limitations of addressing conformational heterogeneity at 

the 2D level, Scheres et al. 82 proposed an extension of ML2D to perform the analysis at the 3D level 

called ML3D. A 3D multireference refinement scheme was proposed as an EM-ML approach for 

single-particle analysis. This method simultaneously refines 𝐾𝐾 3D reference maps against a 

structurally diverse set of images. The parameters of this problem include class assignments and 3D 

orientations, as well as in-plane translations, for each image. Optimizing the log-likelihood function 

in this 3D refinement is more complex than in 2D88. The ML3D classification protocol separates 

images based on the projections of different 3D structures by starting from random variations of a 

single, low-pass filtered initial model, making it unsupervised and robust to noise. This method was 

successfully applied to two challenging cryo-EM data sets, separating projections of Escherichia coli 

ribosomes in different conformations and of large-T antigen in various states of bending. Other 

variants of ML, involving replacing EM step with stochastic gradient descent (SGD) or branch-and-

bound were introduced 53,75 to speed up the processing. 

ML methods have certain limitations that can impact their effectiveness in certain scenarios. 

One limitation is that the number of classes, 𝐾𝐾, needs to be provided beforehand. When this number 

is underestimated, some classes with merged features are formed, while when it is overestimated, 

unnecessary small classes are split off at significant computational expense. Additionally, as an 

iterative method without guaranteed convergence, it depends on the quality of the initial references. 

This can be challenging in specific applications and may require multiple rounds of processing in a 

stepwise, hierarchical scheme83. Assuming that the heterogeneity is discrete is a serious limitation of 

ML approaches as they do not address changes in structures that are by their nature continuous. 

Attempts to capture fine subdivisions in a continuum of states by specifying a large number of classes 

to account for the continuous changes, sampling a continuum with a finite number of classes will 
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produce arbitrary boundaries of meaningless classes, leading to a significant increase in 

computational expense, which becomes prohibitive when the number of classes exceeds 10-15.  

2. Continuous conformational heterogeneity methods 
The limitations encountered in discrete based approaches pushed towards more convenient 

approaches that consider the gradual changes that a biomolecular complex may underly during its 

work. Therefore, several approaches were proposed to address continuous conformational variability, 

and they are presented in the coming sections. 

Manifold Learning 
Manifold learning is a technique used to organize observations, in this case, particle images, 

based on a norm of the difference between the observations. The idea is to embed high-dimensional 

data into a lower-dimensional space while preserving specific properties of the data, such as the 

similarity between observations. This idea was first proposed to characterize continuous 

heterogeneity, as the space of particle images forms a manifold of images. However, this process 

presents several challenges, including the introduction of additional dimensions to the problem due 

to the variables such as viewing direction, in-plane rotations, and in-plane translations, as well as CTF 

and the noise in each image. The straightforward idea was to reduce the complexity of the problem 

by assuming the images are prealigned to address these challenges. Dashti et al. 89 demonstrate such 

an approach's effectiveness on the yeast ribosome. Several works have recently explored manifold 

embedding (ManifoldEM) 19,90-93. Here, the conformational heterogeneity is analyzed by finding the 

conformational manifold along a projection direction.  The resultant manifold is mapped to another 

coordinate system to construct the free energy landscape sampled by the system. At this level, the 

trajectories can be built to explore 2D movies. Then, the process is repeated along orthogonal 

projection directions to obtain the intrinsic dimensions that best depict the conformational manifold. 

Additionally, the manifolds are aligned and sidestepped to study the 3D conformational heterogeneity 

by allowing 3D reconstructions from different projection directions. One can use either a nonlinear 
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Laplacian spectral analysis or embedded subspace partitioning and eigenfunction realignment 

(ESPER). 

Zernike polynomials have been exploited to produce a deformation field 94,95 that describes 

the conformational variability analysis. A given reference cryo-EM density map is formally deformed 

using a deformation field approximated by Zernike polynomials to obtain a confirmation. Then, this 

process is repeated, and the Zernike polynomials are computed for all possible pair combinations in 

a set of 𝑆𝑆 cryo-EM density maps to form a distance matrix in this case, the cross-correlation. Then 

the cross-correlation matrix is embedded in a low-dimension space using multidimensional scaling 

(MDS)96 to visualize the conformational space and produce 3D heterogeneous reconstructions and 

animation trajectories. 

Figure 14 a 3D reconstructions representing the conformational variability of the 
ribosome 80S obtained using ManifoldEM. b The 2D Conformational variability and 
energy landscape of the ribosome 80S obtained. Adapted from 19 
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A fundamental limitation of ManifoldEM-based approaches is the prerequisite of known and 

accurate viewing directions for each single-particle image. For instance, significant conformational 

changes may result in imprecise rigid-body alignment parameters estimation, which will affect the 

variability analysis results. 

Hybrid methods combining simulation and image processing 
In this class of methods, NMA or molecular dynamics simulations are used to model the 

conformations through iterative fitting of models with the images 22,27,29.  The fitted conformational 

models (each corresponding to a single particle image) are then projected onto a low-dimensional 

space, which determines the conformational space. NMA is one of the first methods 97 that treated 

continuous conformational heterogeneity in cryo-EM. It is based on a linearized model for small 

changes around the equilibrium position of atoms in a reference structure and the principle that a 

macromolecule can be displaced from one conformation to another by applying a linear combination 

of normal modes vectors representing the motion directions. The mathematical principles of NMA 

will be detailed in Chapter 3. HEMNMA 22,27 uses a reference structure, either an atomic structure or 

an EM density map, as input and employs NMA to simulate the motion directions. 

HEMNMA aims to determine a set of normal mode amplitudes producing the conformation 

that fits the given particle image. The method uses an iterative process independent for each particle 

image, which deforms the input structure using normal modes and a set of test normal-mode 

Figure 15 Overview of the pipeline of HEMNMA for continuous conformational analysis. A Steps of 
HEMNMA, including NMA and 3D-to-2D iterative alignment. B Steps of the numerical optimizer 
used for 3D-to-2D iterative alignment. Adapted from 22. 
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amplitudes, converts the deformed structure into a density map, and compares 2D projections of that 

map with the given image, until the best matching conformation (normal-mode amplitudes) and the 

best matching 2D projection orientation and shift are found for this image.  

After the conformational parameters are found for the image ensemble, they are fed to a 

dimensionality reduction method, such as PCA, to map images onto a low-dimensional space. This 

helps identify the most densely populated regions in the low-dimensional space, which correspond to 

the trajectories of conformational changes. By exploring these regions, it becomes possible to 

visualize the changes in 3D by displacing the reference structure along the trajectories. Additionally, 

density maps can be reconstructed along the trajectories from images with similar identified 

conformations. 

Recently, the exploitation of the free energy paths to study conformational variability has 

gained attention. These computational methods provide a detailed quantitative description of the 

different energy minima a biomolecular complex can adopt, in which each minimum is considered a 

unique conformation, as well as the barriers that must be overcome for the molecule to transition 

between these conformations. By building a free energy landscape from the cryo-EM data, 

researchers can identify the different conformations that the particles adopt and quantify the relative 

population of each conformation. Giraldo-Barreto et al.98 proposed a Bayesian approach for 

continuous conformational variability called Cryo-BIFE. This approach extracts the free energy 

profiles and their uncertainties from single-particle images and assign each particle to a single minima 

along the free energy path. Cryo-BIFE consists of three mains steps (1) a set of conformations is 

selected before the analysis; (2) a likelihood of the image given the conformations is calculated for 

each particle; (3) an energy profile is constructued by sampling from the likelihood computed in te 

previous step usin Markov chain Monte Carlo.  A limitation of this technique is its dependency on the 

main conformations provided before the analysis and the accuracy of precomputed orientations and 

shifts. 

Multivariate statistical analysis approaches 
Multivariate statistical analysis approaches99, also known as Subspace analysis approaches, 

exploit the idea of analyzing the data in a lower dimensional subspace to simplify the analysis while 

still preserving the information of the data. There are several different subspace analysis techniques, 

such as PCA, Correspondent analysis (CA) 100, and Non-negative Matrix Factorization (NMF)101. 

https://www.nature.com/articles/s41598-021-92621-1#auth-Julian-Giraldo_Barreto
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They are considered the first class of methods used for conformational heterogeneity, and they allow 

researchers to extract information about the different conformations a biomolecule can adopt and the 

transitions between them. 

First approaches date back to the 1980s71,102,103, where a set of single-particle images is 

compressed to a reduced size matrix using correspondent analysis100; this helps to accelerate the 

analysis procedure. Then, a distance matrix is used, such as 𝜒𝜒2 distance, to compute the distances 

between two rows of a symmetric matrix where the eigenvalues and eigenvectors are determined to 

investigate the variation in the data. Typically, the eigenvalues and eigenvectors reflect variations in 

the distribution between the different projections, and the analysis of eigenvectors patterns is used to 

cluster images into groups with characteristic features. MSA was used to study different biomolecular 

complexes' experimental datasets. Van heel et al. 104,105  analyzed the conformational heterogeneity 

of the 30S ribosomal subunits of Bacillus stearothermophilus. MSA approaches can be combined 

with clustering algorithms such as K-means 106 to facilitate the exploration of the low dimensional 

representation of the data. 

Liu et al. 107 introduce 3D variance analysis, in which the studied volumes are obtained 

through homogeneous reconstruction using subsets of the particle images108. Covariance matrix 

estimation 109-111 have demonstrated that it is possible to estimate the 3D covariance matrix and 

principal volumes directly from 2D particle images. Probabilistic PCA approaches 112,113 has 

followed-up and improved covariance matrix estimation approaches for estimating the principal 

volumes, where the principal volumes are estimated directly from the data without computing the 

covariance matrix first, which allows for reconstruction of volumes at higher resolution. 

This category of methods does not require any prior knowledge of conformational variability; 

it relies on the compressed eigenvectors-eigenvalues representation of the data to extract it. Although 

they can be used solely for conformational heterogeneity analysis, combining them with unsupervised 

clustering techniques may help explore the compressed representation more adequately to produce 

more stable conformations. However, they suffer from the aspect of known viewing directions for 

each single-particle image before conformational heterogeneity analysis. 
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Generative deep learning approaches 
Throughout the last decade, deep learning pushed state-of-the-art research in different 

interdisciplinary fields and was extensively used in automating different steps in SPA workflow, as 

shown in Chapter 2, such as automatic particle picking, 2D classification, and image denoising 4,54. 

However, conformational heterogeneity analysis waited until 2019 28 for the first fully deep learning-

based approach that addresses conformational variability, where an encoder-decoder neural network 

was used, leading to CryoDRGN 8. CryoDRGN is an end-to-end unsupervised variational 

autoencoder (VAE) that consists of (1) an encoder that maps the input single particle images to a 

latent space representation by approximating the true posterior distribution given the input single 

particle images; and (2) a decoder that takes the representation and maps it back to a single particle 

image. VAEs will be explained in Chapter 3. 

Figure 16 Pipeline of CryoDRNG neural network for conformational variability analysis. a 
CryoDRGN architecture. b Results interpretation and heterogeneity analysis. Adapted from 8 
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To extract conformational heterogeneity, CryoDRGN treats the problem as an inverse problem of the 

image formation model where each image corresponds to an oriented central slice of the 3D volume 

in the Fourier domain. The encoder learns a pose-invariant representation of the protein's structural 

heterogeneity for a given image and encodes it in a latent representation. Then, given a sample from 

the encoder distribution and the positional encoder of the 3D coordinates, the decoder reconstructs 

the image pixel-by-pixel. Finally, uniform manifold approximation and projection (UMAP) 114 is 

applied to the learned latent representation to visualize the conformational variability and perform 

3D heterogeneous reconstructions. CryoDRGN uses an estimation of alignments parameters for 

training and refining them using a branch-and-bound (BNB) searching algorithm, and an acceleration 

of the BNB alignment was implemented using a feedforward neural network 115. 

In recent work, amortized inference was used to improve variational autoencoder latent 

representation. CryoFIRE 116 follows the same approach as CryoDRGN and simultaneously uses the 

encoder to learn the orientations and conformational variability from scratch; however, Instead of re-

estimating the parameters of the approximate posterior, the amortized inference reuses the parameters 

of the distribution, in this case, Gaussian distribution, for multiple points which improves its 

efficiency and expressiveness of more complex distributions. 

Furthermore, Generative adversarial network (GAN) approaches were used for the 

heterogeneity analysis. Multi-CryoGAN 117 is an unsupervised approach based on CryoGAN, which 

was initially developed to solve homogenous 3D volumetric structures from single-particle images. 

CryoGAN replaces the generative network with a physics simulator. Under CryoGAN, the physics 

simulator projects an input EM map using a set of pre-estimated imaging parameters (Euler angles, 

shifts, CTF parameters). The simulator must then add realistic noise to the clean projections. The 

physics simulator is paired with a convolutional discriminator whose role is to distinguish between 

the synthetic samples generated by the physics simulator and real experimental single-particle images. 

Like CryoGAN, MultiCryo-GAN uses the same approach with a twist for conformational variability 

analysis, combining CryoGAN with a CNN. The CNN is first fed a decided a priori latent 

representation of the conformational variability to generate an EM map (conformation). This output 

conformation is then passed to CryoGAN, as explained earlier, and the whole approach is trained 

simultaneously to minimize an optimal transport objective function, the Wasserstein distance. 
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With the success of CryoDRGN in extracting the protein's structural heterogeneity, VAEs were 

extensively used, and a second work followed CryoDRGN, namely E2GMM118 was implemented. 

First, the decoder is trained with a 0-valued latent variable to obtain a Gaussian model of 5N 

parameters by minimizing the Fourier Ring Correlation (FRC) between the 2D projection of the 

predicted Gaussian model and the 2D projection of the initial model. Then, the encoder is trained to 

learn an invariant low-dimensional representation of the conformational heterogeneity from each 

input single particle image. This latent representation is then used to continue the training of the 

decoder. During training, the predicted 3D Gaussian model is projected to a 2D image, and the FRC 

is minimized between the 2D projection of the 3D Gaussian model and the input single-particle. Then 

PCA is applied to the latent space to extract and visualize the conformational space and perform 

heterogenous 3D reconstruction. E2GMM also uses pre-estimated alignment parameters, and a 

separate network can be trained to refine them. 

Instead of an encoder-decoder approach, CryoSPARC proposed a variational auto-decoder 

neural network for 3D flexible refinement (3DFlex) 6. Under this model, a single particle image is 

associated with a low-dimensional latent coordinate z that encodes the conformational heterogeneity 

information. Formally, each 𝑧𝑧𝑖𝑖 can be seen as a point estimate that maximizes the posterior 

distribution over conformational states. Then a neural flow generator network converts the latent 

representation into a flow field, and a convection operator then deforms a high-resolution canonical 

density using a weighted pre-segmented 3D mesh to generate a convected map. This map is projected 

along a predetermined pose direction, CTF-corrupted, and compared against the input experimental 

image. The latent representation is zero-initialized and optimized during the neural flow generator 

training. 
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3. Summary of conformational heterogeneity analysis approaches 
Discrete variability analysis approaches are considered a good representation of continuous 

heterogeneity because continuous functions can be approximated by a large number of discrete 

samples. However, continuous conformational analysis approaches have several advantages over 

discrete models. First, they do not require the user to specify the number of classes, unlike discrete 

models, where the choice of the number of classes can be challenging, as shown in ML approaches. 

Second, continuous models use all available data to produce high-resolution volumes, while discrete 

models only use a subset of the data. Third, continuous models have an advantage in analyzing rare 

conformations due to the continuity between conformations. Finally, it is worth mentioning that while 

traditional 3D classification and multi-body analysis are well-established, the use of continuous 

heterogeneity models is still a challenge for practitioners, as they face the dilemma of choosing the 

right software, model assumptions, and parameters, as summarized in Table 1. 

Approach Nature of 

heterogeneity 

Space Deep 

Learning-

based 

Hidden varia-

bles 

Known var-

iables 

Reference 

volume 

CryoDRGN8 Continuous Fourier Yes Conformational 

representation z 

Rotation 

CTF Free 

Figure 17 Pipeline of 3DFlex network for conformational variability analysis. Adapted from 6 
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Translation 

Multi-Cryo-

GAN117 

Continuous Real Yes Conformational 

representation z 

CTF 

Rotation 

Translation 

Yes 

3DFlex 6 Continuous Real Yes Conformational 

representation z 

CTF 

Rotation 

Translation 

Yes 

E2GMM118 Continuous Real Yes Conformational 

representation z 

CTF 

Rotation 

Translation 

Free 

CryoFIRE 
116 

Continuous Fourier Yes Conformational 

representation z 

Rotation 

Translation 

- Free 

3DVA113 Continuous Real NO - CTF 

Rotation 

Translation 

Free 

ManifoldEM 
19 

Continuous Real No - CTF 

Rotation 

Translation 

Free 

HEMNMA 
22 

Continuous Real 

and 

Fourier 

No Rotation 

Translation 

Normal-mode 

amplitudes 

(conformational 

parameters)  

- Yes 

Maximum 

Likelihood 

Discrete Real No Rotation 

Translation 

CTF 

K classes of 

conformation 

 

Yes 

Cryo-BIFE98 Continuous Real No - Rotation 

Translation 

Yes 

MDSPACE29 Continuous Real No - Rotation 

Translation 

Yes 

Table 1 . Classification of conformational heterogeneity analysis method based on several factors, 
the processing is done in real or Fourier space, the known and hidden parameters, the nature of 
conformational heterogeneity analysis. Table is adapted from 119 and further extended.  
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 Biomolecular complex Data type 

CryoDRGN8 Ribosome 80S, Spliceosome on pre-

cursor mRNA (pre-mRNA) 

Synthetic and Experimental 

Multi-Cryo-

GAN117 

Sars-Cov2 Synthetic 

3DFlex 6 Ribosome 80 S, Tri-snRNP spliceo-

some 

Synthetic and Experimental 

E2GMM118 Ribosome 50S, spliceosome on pre-

cursor mRNA (pre-mRNA) 

Synthetic and Experimental 

CryoFIRE 116 Ribosome 80S, spliceosome on pre-

cursor mRNA (pre-mRNA) 

Synthetic and Experimental 

3DVA113 Ribosome 80 S, Tri-snRNP spliceo-

some 

Synthetic and Experimental 

ManifoldEM 
19 

Ribosome 80S Synthetic and Experimental 

HEMNMA 22 E. coli 70S ribosome (70S 

DNA polymerase Pol α and B subu-
nit complex 

Tomato bushy stunt virus (TBSV) 

Synthetic and Experimental 

MDSPACE 29 Ribosome 80S, Tmr ABC exporter Synthetic and Experimental 

Maximum 

Likelihood 

Multitude of complexes Synthetic and Experimental 

Table 2 Summary of synthetic and experimental cryo-EM datasets on which the conformational 
heterogeneity analysis methods have been tested.  
 

4. Conclusions and remarks 
 

This chapter provided a review and critical comparison of conventional approaches and deep 

generative neural networks, focusing on explaining their advantages and drawbacks. This review 

highlights the differences between the approaches by categorizing them according to the nature of the 

heterogeneity for which each approach is the best suited.  It also highlights the new wave of methods, 

based on deep generative learning. While the use of maximum likelihood approaches may result in 

consistent results, its dependence on the estimation of the number 𝐾𝐾 of the classes before the analysis 

affects the convergence, besides the assumption that the heterogeneity of the studied biomolecular 

complex is discrete. With the introduction of approaches such as manifold embedding and subspace 
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analysis, the assumption of the nature of conformational heterogeneity vanished. However, the 

separation of alignment parameters estimation from the heterogeneity analysis is a crucial limitation 

of these approaches. The larger the conformational changes, the less accurate the alignment 

parameters estimation, which leads to an iterative process to determine and refine conformation and 

rigid-body parameters, implemented in hybrid methods, combining simulation (NMA or MD) and 

image processing based on a reference model. One can notice that these methods may suffer from 

simulated conformations that might not exist in the real data, potentially leading to misinterpretation 

of the image analysis results. A new wave of approaches based on variational deep learning could 

overcome several problems of the previous approaches.  However, choosing a set of hyperparameters 

is subjective and may affect the results. Table 1. summarizes the most used methods in the literature 

and provides a comparative analysis of known parameters and hidden parameters needed before the 

heterogeneity analysis for each method. From Table 2, one can notice the absence of universal 

benchmarks, which interferes with comparative studies of the old and newly developed methods and 

prevents users from selecting methods adequate for their use case.  
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Chapter 3: Background 

During this thesis, three approaches were developed to address the continuous conformational 

variability of biomolecular complexes, mainly Deep-HMEMNA, supervised cryo-ViT, and 

unsupervised cryo-ViT.  

Deep-HEMNMA is a deep neural network that accelerates HEMNMA using Normal mode 

analysis (NMA), image registration, and Convolutional Neural Network (CNN). 

Supervised cryo-ViT and Unsupervised cryo-ViT are deep learning approaches based on a 

variational autoencoder (VAE) that uses a vision transformer (ViT) to study conformational 

variability from single-particle images. 

This chapter highlights the core approaches, NMA, CNN, VAE, and ViT, used to develop the 

methods presented in this thesis. 

1. Molecular motion analysis 
Biomolecular complexes motion analysis is a vital process that helps to elucidate their 

biological functions, and their interactions with the environment can be challenging. Moreover, 

molecular motion was studied at the atomic level, where a biomolecular complex is represented as a 

collection of atoms. Each atom is represented by a point in space in the Cartesian coordinate system, 

where atoms are connected with chemical bonds. When a biomolecular complex changes its shape, 

the analysis of how the atoms may potentially move was studied mainly using two techniques, NMA, 

and Molecular dynamics (MD) simulation. 

Molecular dynamics simulation 
Molecular dynamics dates back to the 1950s and is the reigning method for molecular motion 

analysis. It involves simulating the motion of atoms over time using classical mechanics. In an MD 

simulation, the motion of each atom is calculated using Newton's laws of motion, and the interactions 

between atoms are described using interatomic potentials (force fields) 120. MD simulations can be 

used to study the behavior of a molecule under different conditions, such as different temperatures 

and pressures, and they can provide detailed information about the dynamics of the molecule. 

Although MD is a powerful tool for biomolecular motion analysis, it is computationally expensive. 
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It can be limited by time and length scales, where it is not well-suited for studying processes that 

occur over highly long periods or at microscopic lengths scales. 

Normal mode analysis 
Normal mode analysis (NMA) is a fast-molecular computational method used to study the 

large-scale conformational changes that can occur in proteins. It uses a mathematical model to 

identify the most likely ways a protein can move and change shape based on its atomic-level structure. 

This information can help understand the function of a protein, as well as for predicting how it might 

Figure 18 An example of elastic network model (ENM) modeling of the lysine-arginine-
ornithine (LAO) binding protein. The open state of the LAO protein (top), the open state of the 
LAO protein modeled with an ENM (middle), the closed state of the LAO protein modeled with 
an ENM. Adapted from 12 
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behave in different environments. This section explains in depth the idea of NMA and presents its 

mathematics. 121 

When a biomolecular complex changes its shape, the movement of atoms is generally more 

complex and requires sophisticated mathematical approaches to study it. NMA is based on the Elastic 

Network Model (ENM)122, which assumes that a biomolecular complex can be represented as a 

network of interconnected atoms, where atoms closer than a given cutoff distance are coupled by a 

harmonic spring, and the force exerted by a harmonic spring is given by Hooke's Law, which states 

that the force is proportional to the displacement of the atoms from their equilibrium (minimum 

energy) position123. Consider a biomolecular complex consisting of  𝑆𝑆 atoms, each of position 𝑞𝑞𝑖𝑖 =

(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3) and the equilibrium position is 𝑞𝑞𝑖𝑖
(0), and each atom can vibrate about its equilibrium 

position. The displacement from the equilibrium position following the Hookean single potential 

energy is given by: 

 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖
(0) (7) 

Where 𝛼𝛼 = 1, 2, 𝑜𝑜𝑜𝑜 3 represent the position of the atom in the Cartesian coordinates. 

In Tirion's122 ENM that follows the Anisotropic Network Model (ANM) 123, the Hookean 

pairwise potential energy of a harmonic spring between two atoms is simplified as follows: 

 𝐸𝐸�𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗� =
𝛾𝛾𝑖𝑖𝑗𝑗
2
��𝑞𝑞𝑖𝑖𝑗𝑗� − �𝑞𝑞𝑖𝑖j0��

2
 (8) 

Where |𝑞𝑞𝑖𝑖,𝑗𝑗| is the distance of the vector connecting atom 𝑖𝑖 and atom 𝑗𝑗, and similarly  𝑞𝑞𝑖𝑖,𝑗𝑗0  is 

the distance of the correspondent atoms a and b in the initial conformation. This energy function links 

all atoms with a spring of elastic constant 𝜸𝜸𝒊𝒊𝒊𝒊 =  𝐶𝐶 122. Therefore, the potential energy within a 

molecule can be expressed: 

 𝐸𝐸(𝑞𝑞) = � 𝐸𝐸�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗�
𝑞𝑞𝑖𝑖,𝑗𝑗
0 <𝑅𝑅
𝑖𝑖≠𝑗𝑗

 (9) 

Here 𝑅𝑅 is the radius of interaction between the atoms. 

One may study the change in energy with respect to one reference conformation, 𝑞𝑞0 and since 

the displacements are small, the potential energy can be expanded in a Taylor series as follows: 
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𝐸𝐸 = 𝐸𝐸(𝑞𝑞0) + ��

𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑖𝑖

� (q𝑖𝑖 − 𝑞𝑞𝑖𝑖0)
𝑖𝑖

+
1
2
�

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑞𝑞𝑖𝑖𝜕𝜕𝑞𝑞𝑗𝑗

(𝑞𝑞𝑖𝑖 − 𝑞𝑞0)�𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗0�
𝑖𝑖,𝑗𝑗

 +  … 
(10) 

The first term 𝐸𝐸(𝑞𝑞0), is the potential energy when the atoms are in their equilibrium 

configuration and can be neglected and 𝐸𝐸(𝑞𝑞0) is assumed to be zero (near the global minimum of the 

energy surface), and since 𝐸𝐸(𝑞𝑞0) is zeroed, the first derivative vanishes because it is evaluated at the 

equilibrium conformation where there is no force on any atom. Since the displacements of interest 

are small 124, the Taylor series is truncated and approximated by the quadratic terms; thus, Eq. (9) can 

be rewritten as: 

 
𝐸𝐸 =

1
2
�(𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖0)

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑞𝑞𝑖𝑖𝜕𝜕𝑞𝑞𝑗𝑗

�𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗0�  
𝑖𝑖,𝑗𝑗

 

   =
1
2
�(𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖0) 𝐻𝐻𝑖𝑖,𝑗𝑗  �𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑗𝑗0�
𝑖𝑖,𝑗𝑗

 

   =
1
2

 Δ𝑞𝑞𝑇𝑇𝐻𝐻 Δ𝑞𝑞 

(11) 

 

Where H is the Hessian matrix obtained from the second derivatives of the potential energy with 

respect to the components of 𝑜𝑜. The matrix H is an N x N block matrix of 3 x 3 matrices: 

 

𝐻𝐻 =  �

𝐻𝐻12 𝐻𝐻12 . . . 𝐻𝐻1𝑁𝑁
𝐻𝐻21 𝐻𝐻22 . . . 𝐻𝐻2𝑁𝑁
. . . . . . . . . . . .
𝐻𝐻𝑁𝑁1 𝐻𝐻𝑁𝑁2 . . . 𝐻𝐻𝑁𝑁𝑁𝑁

� 

(12) 

where each 𝐻𝐻𝑖𝑖𝑗𝑗 is given by:  

 

𝐻𝐻𝑖𝑖𝑗𝑗 =
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑜𝑜𝑖𝑖𝜕𝜕𝑜𝑜𝑗𝑗

 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝜕

2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧𝑖𝑖𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(13) 

Using the ANM described in Eq.(8) it is possible to readily write a closed form of the Hessian matrix 

𝐻𝐻 using Eq.(8)124 in Eq.(11), and in this case the second derivatives of the potential are given by: 
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 𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦𝑗𝑗

 =  −
𝐶𝐶�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖��𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖�

𝑞𝑞𝑖𝑖𝑗𝑗2
 

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗

 =  −
𝐶𝐶�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�

𝑞𝑞𝑖𝑖𝑗𝑗2
           

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑧𝑧𝑗𝑗

 =  −
𝐶𝐶�𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�

𝑞𝑞𝑖𝑖𝑗𝑗2
 

(14) 

Following the notation 𝑥𝑥𝑖𝑖𝑗𝑗0 = �𝑥𝑥𝑗𝑗0 − 𝑥𝑥𝑖𝑖0�, 𝑦𝑦𝑖𝑖𝑗𝑗0 = �𝑦𝑦𝑗𝑗0 − 𝑦𝑦𝑖𝑖0�, and 𝑧𝑧𝑖𝑖𝑗𝑗0 = �𝑧𝑧𝑗𝑗0 − 𝑧𝑧𝑖𝑖0� we can rewrite Eq.( 

13) as follows: 

 

𝐻𝐻𝑖𝑖𝑗𝑗 = −
𝛾𝛾
𝑞𝑞𝑖𝑖𝑗𝑗2

⎣
⎢
⎢
⎢
⎡�𝑥𝑥𝑖𝑖𝑗𝑗

0 �
2

𝑥𝑥𝑖𝑖𝑗𝑗0 𝑦𝑦𝑖𝑖𝑗𝑗0 𝑥𝑥𝑖𝑖𝑗𝑗0 𝑧𝑧𝑖𝑖𝑗𝑗0

𝑥𝑥𝑖𝑖𝑗𝑗0 𝑦𝑦𝑖𝑖𝑗𝑗0 �𝑦𝑦𝑖𝑖𝑗𝑗0 �
2

𝑦𝑦𝑖𝑖𝑗𝑗0 𝑧𝑧𝑖𝑖𝑗𝑗0

𝑥𝑥𝑖𝑖𝑗𝑗0 𝑧𝑧𝑖𝑖𝑗𝑗0 𝑦𝑦𝑖𝑖𝑗𝑗0 𝑧𝑧𝑖𝑖𝑗𝑗0 �𝑧𝑧𝑖𝑖𝑗𝑗0 �
2
⎦
⎥
⎥
⎥
⎤
 

(15) 

In the context of conformational changes, it is necessary to account for kinetic energy as well as 

potential energy, and this gives us the following equation: 

 𝐻𝐻𝑢𝑢𝑘𝑘 = 𝜔𝜔𝑘𝑘
2𝑀𝑀𝑢𝑢𝑘𝑘  (16) 

Where 𝑀𝑀 is the matrix of mass of the atoms, and 𝑢𝑢𝑘𝑘 and 𝜔𝜔𝑘𝑘
2 are the eigenvectors are the eigenvalues 

of the Hessian matrix and represent the normal mode vectors and the squared normal mode 

frequencies, respectively. However, for simplicity, Tirion's ENM assumes that each atom is assigned 

a mass of 1125. Therefore, Eq.(16) can be rewritten as: 

 𝐻𝐻𝑢𝑢𝑘𝑘 = 𝜔𝜔𝑘𝑘
2𝑢𝑢𝑘𝑘  (17) 

Since H is real and symmetrical, Eq 3.11 can be solved using diagonalization to obtain the eigenvalues 

and eigenvectors. This leads to the following: 

 H = UAUT (18) 

The matrix 𝑈𝑈 is a unitary matrix whose columns are the eigenvectors of the matrix 𝐻𝐻, and 𝐴𝐴 

is a diagonal matrix with the corresponding eigenvalues. The eigenvalues, 𝜔𝜔𝑘𝑘 (where 𝑘𝑘 ranges from 

1 to 3𝑆𝑆), are related to the frequency of the movement and the corresponding eigenvector, 𝑢𝑢𝑘𝑘, is 

referred to as the 𝑘𝑘𝑡𝑡ℎ normal mode. The normal modes with the smallest eigenvalues represent more 

collective movements, while those with larger eigenvalues represent localized movements. The first 

six normal modes correspond to a combination of the six rigid body degrees of freedom (three global 

rotations and three global translations), which do not change the potential energy of the conformation. 
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Standard diagonalization methods are time consuming; thus, Tama et al. 97 proposed a method 

called Rotation translation block (RTB), which speeds up the Hessian matrix diagonalization by 

reducing the size of the Hessian matrix. The RTB method involves dividing the system into smaller 

blocks, or subunits, each of which is treated as a rigid-body and can adopt only rotations and 

translations. 

Chapter 4 presents the exploitation of NMA in continuous conformational variability analysis 

from single-particle cryo-EM. 

 

2. Flexible fitting 
Flexible fitting126 allows determining the most likely 3D structure that would produce the 

observed density map, given some assumptions about the possible flexibility and conformational 

changes for the biomolecule. Therefore, it aims to obtain a new conformation of an already-known 

structure that fits a given electron density map. Given an atomic model obtained using X-ray 

crystallography, the process is to adjust a set of parameters that control the flexibility of the atomic 

model within an electron density map to obtain the best fit. 

In flexible fitting, the fitness of the electron density map and the atomic model is defined by 

the cross-correlation between the electron density map and the simulated electron density map 

generated from the atomic model. Flexible fitting is subject to various constraints, such as ensuring 

that the atomic model remains physically reasonable, and NMA105 and MD simulations127,128 are the 

two reigning methods, in which the normal mode amplitudes in NMA or the potential energy in MD 

simulations are adjusted iteratively to drive the fitting process 129. 

 Flexible fitting can be performed in 3D 127,130,131, and the process consists of adjusting the 

position and orientation of the atomic model to fit into (1) a set of low-resolution cryo-EM density 

maps126 produced by a discrete classification approach, or (2) a set of subtomogram averages130,131 to 

study the conformational variability.  This process is done iteratively through a series of steps to 

optimize an objective function, where the optimization algorithm seeks to minimize the cross-

correlation between the electron density map and a model synthesized from the atomic model. The 
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optimization process is repeated until the fit reaches convergence, meaning that the adjustments in 

the orientations and positions of the atomic model are no longer improving the fit.  

 

On the other hand, flexible fitting can be performed in 2D9,29. For SPA, it has been an essential 

tool for elucidating dynamical aspects of biomolecular complexes and it consists of adjusting the 

flexibility parameters and the orientations of the atomic model in a single plane to study 

conformational variability from single particles. Here, the atomic model is projected onto a single 

plane and optimized in that plane, in which the optimization algorithm is similar to that used in 3D 

flexible fitting and seeks to minimize the cross-correlation between the 2D projection of the atomic 

model and a single-particle image, this projection eliminates the need to perform computationally 

intensive calculations in three dimensions. 

3. Convolutional neural network 
Convolutional neural networks (CNNs) are a type of artificial neural network (ANN) that are 

particularly well-suited to processing grid-like data, such as images, video frames, etc... CNNs are 

composed of multiple layers of artificial neurons, simply neurons 132. The neurons in a CNN are 

connected to a small region of the input data (a small patch of the image), called a receptive field, and 

are trained to recognize patterns within this region. The building block of CNNs is the convolutional 

Figure 19 An example of flexible fitting of two different complexes. A the initial and 
final Acethyl-CoA synthase/carbon monoxide dehydrogenase atomic structures fitted 
into an electron density map. B the initial and final 16S rRNA atomic structures fitted 
into an electron density. Adapted from20 
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layers, which are responsible for learning features in the data. Convolutional layers consist of a set of 

filters learned during training, which are applied to the input data to produce a stack of feature maps. 

Each filter is a small matrix of weights that is trained to recognize a specific pattern in the input data. 

As the filter is moved across the input data, it produces a feature map by taking the dot product 

between the filter weights and the input data at each position. The convolution operation can be 

written as: 

 
(𝑓𝑓 ∗ 𝑔𝑔)(𝑥𝑥,𝑦𝑦) = � � 𝑓𝑓(𝑚𝑚, 𝑛𝑛)𝑔𝑔(𝑥𝑥 − 𝑚𝑚,𝑦𝑦 − 𝑛𝑛)

∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

 
(19) 

Here, 𝑓𝑓 and 𝑔𝑔 are the image and the filter, and ∗ denotes the convolution operation. A visual 

representation of the convolution operation is illustrated in Figure 20. 

Figure 21 Schematic representation of a comparison between 34-layer residual network 
architecture (top), 34-layer plain neural networks (middle) and 19-layer VGG architecture (bottom) 
5. Adapted from 24 

Figure 20 Schematic representation of the convolution operation. Adapted from11 
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The output of the convolutional layers is fed into one or more fully-connected layers, which 

are responsible for combining the features learned by the convolutional layers and making a 

prediction based on these features. The fully-connected layers can also include nonlinear activation 

functions, which allow the network to learn more complex relationships in the data. 

CNNs were first introduced in the 1980s by Kunihiko Fukushima 133, but they did not become 

widely used until the 2010s when advances in computing power and the availability of large amounts 

of labeled training data made it possible to train deep CNNs effectively. The first successful 

application of CNNs was in digit recognition, where Lecun and colleaues implemetend  a CNN called 

LeNet 134. LeNet achieved impressive results on the MNIST dataset, a collection of handwritten digits 

that is widely used as a benchmark for machine learning algorithms. Since the development of LeNet. 

In 2012, a team led by Alex Krizhevsky135 used a deep CNN called AlexNet to win the ImageNet 

Challenge136. Simonyan and Zisserman 20145 introduced VGG (Visual Geometry Group)Net. In this 

work, they presented a deep convolutional neural network architecture that achieved state-of-the-art 

results on the ImageNet dataset. CNNs have been successful in a wide range of tasks in computer 

vision, such as image classification, object detection, and image segmentation 

The VGGNet architecture consists of multiple convolutional layers, and it was designed to be 

very deep (16 or 19 layers). This architecture has been influential in the development of deep learning 

for image classification. It has been widely used as a feature extractor in some use cases, such as 

object detection and classification pipelines, and as a benchmark for evaluating new architectures and 

techniques in the field, Despite VGG effectiveness, it suffered from the vanishing gradient problem, 

which limited the number of the layers one can use. 

In recent years, the main focus in the field has been improving the efficiency and performance 

of CNNs, including developing new architectures such as ResNets (Residual network)137. A 

comparative schematic representation between a plain deep neural network, VGG architecture, and 

residual neural network is shown in Figure 20.The critical innovation of ResNet is the use of residual 

connections, which allow the network to learn much deeper architectures (i.e., with more layers) than 

was previously possible without suffering from the vanishing gradient problem, in which the gradient 

values in the first layers are minimal for updating the filters weights during backpropagation. The 

introduction of residual layers allows for training more accurate models for image classification and 

other tasks. The impact of ResNet on CNNs has been significant, as it has led to a renewed interest 
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in profound neural networks and has been the foundation for many state-of-the-art models in 

computer vision and other fields. 

4. Vision-transformer 
A new wave of deep learning approaches has surged based on the Transformer architecture138 

that was initially developed for natural language processing tasks, called Vision Transformer (ViT)16. 

ViT, shown in (Figure 23), is another type of neural network architecture designed specifically for 

image processing tasks. 

The idea behind the Transformer architecture is to use self-attention mechanisms 139 to process 

input sequences, a sequence of words in the case of NLP tasks, in a parallel and efficient manner. In 

the case of ViT 16, the image is split to a fixed-size non-overlapping patches, which helps the network 

to see the whole image at once140. First, each patch is flattened, and a position embedding is computed 

for each. The position embedding incorporates the spatial relationships between patches and preserves 

the position of the patches in the image. The computed position embedding is added to the flattened 

patch and passed to a set (𝐿𝐿) of Transformer encoders. The transformer encoder consists of a series 

of layers that include (1) self-attention mechanisms, which weigh the importance of different parts of 

an input image, allowing each to focus on different aspects of the input; typically, multiple attention 

mechanisms are used (multi-head attention); (2) feedforward neural networks (MLP head), which is 

a set of fully connected layers to compute the desired output.  

Figure 22 Overview of the pipeline of the original implementation of ViT, all the component of 
the vision transformer (left), the transformer encoder used in ViT that consists of a Norm Layer, 
a multihead attention mechanism and an MLP(right). This Adapted from 16. 
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Layer normalization5 is used in ViT, referred to as Norm in Figure 23, and it stabilizes the training 

process and ensures that the inputs to each layer have a similar distribution by reducing the internal 

covariate shift, which occurs when the distribution of the inputs to a layer changes during training.  

In the original implementation of ViT, the output of the final layer is used to predict the class 

of an input image. However, the pipeline can be tweaked for any specific output depending on the 

study case (e.g., regression, classification, object detection). 

Self-attention mechanism 
The key component in Transformer-based models is the Self-attention mechanism 139, 

commonly known as the "attention mechanism". It was first used in NLP tasks as a way to model the 

dependencies between words in a sentence. The self-attention mechanism was first introduced in15, 

enabling the model to attend to different parts of the input as it processes it rather than processing the 

input in a fixed order; this allows the model to capture long-range dependencies and complex 

relationships between input elements which reduce inductive bias. The self-attention mechanism has 

been widely used in various fields, including machine translation (BeRT), computer vision (ViT 

EffiecentNet).  

Instead of a sequence of words, in ViT the self-attention mechanism operates on a sequence 

of flattened image patches and computes a weighted sum of the patches based on their relative 

importance which allows the network to see the global features of th input image.  

Mathematically, the attention mechanism can be expressed as follows: 

 
Attention(Q, K, V) = softmax�

QKT

�dk
�V 

(20) 

Here, Q, K, and V are matrices representing the "query", "key", and "value" tokens, 

respectively. They are typically derived from a learned linear transformation of the input sequence. 

The query serves as a question that the model asks about the input sequence when computing attention 

scores. The key represents spatial information (position) in the input sequence that is used to compare 

with the query to determine which parts of the input sequence are relevant to the task at hand. It acts 

as an index or reference for each position in the input data. The value indicates how much each 

position in the value sequence should contribute to the final representation of the sequence. The 

attention mechanism computes the dot product of the query and key values, and scales it by the inverse 
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square root of the key dimensionality (dk), and applies a softmax function to produce a positive 

weight for each patch and multiply it by the value tokens. The intuition here is to keep only relevant 

features with high scores (the softmax score) and discard the irrelevant features with low scores 141.  
The attention mechanism is used multiple times in parallel in the ViT architectures to form the 

multihead attention module, shown in Figure 24. Multihead attention runs through an attention 

mechanism several times in parallel and allows the network to build up a hierarchical representation 

of the input image, with each layer focusing on different levels of abstraction. The independent 

attention outputs are then concatenated and linearly transformed into the expected dimension to be 

used in the following layers. 

5. Variational autoencoder 
Variational autoencoder (VAE)142 is an unsupervised deep learning approach that learns the 

dataset’s probability distribution and generates new samples of the input dataset. It provides a 

probabilistic description of the input data in a latent representation using autoencoders and variational 

inference. A graphical representation of VAE architecture is shown in Figure 25. VAEs are a type of 

Figure 23 Schematic representation of the multihead attention module used in the 
transofrmer architecutre. Q,K,V represent the query, key value connected to a scale dot 
product node. h represnts the number of attention mechanisms concatenated and attached 
to a linear layer. Adapted from 15 
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autoencoder, which consists of an encoder, 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥), a neural network that outputs the parameters to 

𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥), which maps the input data to a probability distribution parameters, the Gaussian distribution 

is commonly used and in this case the encoder predict the mean and standard, then the latent variable 

is sampled using the predicted parameters of the distribution using a technique called 

reparameterization trick, and a decoder, 𝑝𝑝𝜙𝜙(𝑥𝑥|𝑧𝑧) a neural network that reconstructs back the input 

images given the latent variable143. The encoder and decoder architecture can be an MLP, a CNN, or 

any other neural network architecture. 

The objective of VAE is to learn the parameters 𝜃𝜃, 𝜙𝜙 of the encoder and decoder networks that 

maximize the likelihood of the input data 𝑥𝑥. However, directly maximizing the likelihood is 

challenging; therefore, VAE uses the concept of variational inference and maximizes a lower bound 

on the likelihood. The lower bound is referred to as the evidence lower bound (ELBO) and is given 

by: 

Figure 24 Overview of the architecture of the original variational autoencoder. 
Adapted from 2 
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 𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸(𝜃𝜃,𝜙𝜙)  =  𝐸𝐸𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥)[𝑙𝑙𝑜𝑜𝑔𝑔 𝑝𝑝𝜙𝜙(𝑥𝑥|𝑧𝑧)]  −  𝐾𝐾𝐿𝐿[𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥) || 𝑝𝑝(𝑧𝑧)] 21 
 

where 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥) is the approximate posterior over the latent representation z given the input 

data 𝑥𝑥, and 𝑝𝑝(𝑧𝑧) is the prior distribution over the latent representation. The first term in the ELBO is 

the expected reconstruction error, which is usually calculated as the mean squared error in computer 

vision tasks, and the second term is the 𝐾𝐾𝐿𝐿 divergence between the approximate posterior and the 

prior, which acts as a regularization term that encourages the approximate posterior to be close to the 

prior. The parameters of the encoder and decoder networks are optimized by minimizing the negative 

ELBO with respect to 𝜃𝜃 and 𝜙𝜙. 

Reparameterization trick 
During training, VAE estimates the parameters of a specific probability distribution, and the 

marginal likelihood is computed to evaluate the distribution’s parameters. However, the marginal 

likelihood can sometimes be intractable, meaning it is difficult or impossible to calculate analytically. 

This happens when the integral of the likelihood function over the prior distribution cannot be 

computed in closed form or when the integral is too difficult to evaluate using numerical methods. 

The reparameterization trick 142,144 is a technique used in VAE to make the marginal likelihood 

computationally tractable and perform efficient gradient-based optimization of the parameters. In 

VAE, the encoding is modeled as a random variable with a learned distribution (e.g., a Gaussian 

distribution); however, to compute gradients during training, the encoding must be a differentiable 

function of the input and the model parameters. The reparameterization trick achieves this by 

reparametrizing the random variable as a deterministic function of the input, the parameters of the 

distribution, and a sample noise 𝜀𝜀 from a fixed standard distribution (e.g., a standard Gaussian 

distribution). Introducing a non-deterministic noise is crucial in the reparameterization trick as it 

allows overcoming the challenge of optimizing a sampling process involving a non-differentiable 

cumulative distribution function (CDF). The gradient with respect to the parameters can then be 

computed using the chain rule, enabling efficient training of the VAE using gradient-based 

optimization methods7. The left panel of Figure 26 demonstrates the original form of the sampling 

process of 𝑧𝑧 using the given input data 𝑥𝑥 and the variational parameters 𝜙𝜙, in the context of VAE, 𝑥𝑥 

is typically an embedded vector produced by the encoder. Right panel of Figure 26 demonstrates the 
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sampling process using the given input 𝑥𝑥 and the variational parameters 𝜙𝜙 and the noise variable 𝜀𝜀 

(randomness) to allow the gradient flow and solve the marginal likelihood intractability problem. 

 

 

 

6. Unit Quaternion 
Quaternions are based on complex numbers, and many fundamental geometric and algebraic 

properties of quaternions originated from complex numbers. In this section, we will define the 

quaternion and discuss some properties that were used during our experiments.145 

A quaternion q is a vector in 4-dimensions that is defined as a hypercomplex number 

composed of a real part and three imaginary parts 𝐪𝐪 =  𝑞𝑞0  +  𝑞𝑞1𝐢𝐢 + 𝑞𝑞3 𝐣𝐣 + 𝑞𝑞4𝐤𝐤 (w, x, y, z in some 

works), where the standard orthonormal basis for 𝑅𝑅3 is given by three-unit vectors i = (1, 0, 0), j = 

(0, 1, 0), k = (0, 0, 1). 

Figure 25 Schematic representation of the reparameterization trick. The original sampling process 
where the variational parameters 𝜙𝜙 affect the objective 𝑓𝑓 through the random variable z (left). The 
reparameterization trick process to allow the backpropagates and differentiation by externalizing 
the randomness variable 𝜀𝜀. Adapted from 7 
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Euler angles to unit quaternion conversion 
Converting from Euler angles to quaternions is important because quaternions have a number 

of mathematical properties that make them useful for certain types of computations, such as 

interpolation and integration. Quaternions also do not suffer from the gimbal lock problem, which 

can occur with Euler angles when an object's rotation is such that two of the Euler angles become 

equal145. 

Euler angles can be converted to unit quaternion for, and the common rotations convention 

used in the Cryo-EM community is the ZYZ convention, meaning that our rotation by Euler angles is 

a combination of rotating the biomolecules about the z-axis (𝜙𝜙), then by rotating about the y-axis (𝜃𝜃), 

and finally rotating about the z-axis (𝜓𝜓), and with this convention, the corresponding unit quaternion 

rotation is: 

 𝑞𝑞𝜙𝜙𝜃𝜃𝜙𝜙 =  𝑞𝑞𝜙𝜙 ⨂ 𝑞𝑞𝜃𝜃⨂ 𝑞𝑞𝜙𝜙 (22) 

Where 

 

𝑞𝑞𝜙𝜙 =  

⎝

⎜
⎜
⎛cos𝜙𝜙2

0
0

sin𝜙𝜙2⎠

⎟
⎟
⎞

, 𝑞𝑞𝜃𝜃 =  

⎝

⎜⎜
⎛cos 𝜃𝜃2

0
sin𝜃𝜃2

0 ⎠

⎟⎟
⎞

, 𝑞𝑞𝜙𝜙 =  

⎝

⎜
⎜
⎛cos𝜓𝜓2

0
0

sin𝜓𝜓2⎠

⎟
⎟
⎞

 

(23) 

Thus, the corresponding unit quaternion vector is: 

 

𝑞𝑞𝜙𝜙𝜃𝜃𝜙𝜙 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎛ cos𝜃𝜃2 cos𝜓𝜓 + 𝜙𝜙

2
− sin𝜃𝜃2 sin𝜓𝜓 − 𝜙𝜙

2
sin𝜃𝜃2 cos𝜓𝜓 − 𝜙𝜙

2
cos𝜃𝜃2 sin𝜓𝜓 + 𝜙𝜙

2 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

(24) 
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Chapter 4: Supervised deep learning approaches developed in 

this thesis 

This chapter presents two supervised deep learning approaches developed in this thesis work 

for analyzing a combination of continuous conformational and rigid-body heterogeneity of 

biomolecular complexes in cryo-EM single-particle images. The first approach is DeepHEMNMA, 

which is based on a Resnet deep learning network architecture. We describe DeepHEMNMA and 

show its performance with synthetic and experimental datasets originally published in one peer-

review conference article and one peer-review journal article 25,26. The second approach (unpublished) 

is based on a Vision Transformer. 

1. DeepHEMNMA 
DeepHEMNMA is a supervised convolutional neural network that imitates the conformational 

variability analysis that can be performed by HEMNMA, in order to speed up the analyses of larger 

datasets for which HEMNMA is impractical to use as too computationally demanding. HEMNMA 

combines elastic and rigid-body 3D-to-2D iterative alignments of a flexible 3D reference (atomic 

structure or EM density map) to match the conformation, orientation, and position of the complex in 

each single particle image. The elastic matching in HEMNMA combines molecular mechanics 

simulation (by NMA of the 3D reference) and experimental, single-particle image data analysis. The 

conformational parameters (amplitudes of normal modes) of the complexes in each single particle 

image are obtained through the alignment and are processed to visualize the distribution of 

conformations in the space of lower dimension (typically, 2D or 3D), referred to as the space of 

conformations. This allows a visually interpretable insight into the dynamics of the complexes, by 

calculating 3D reconstructions of images with similar structural conformational information from 

selected regions and by recording movies of the 3D reference's displacement along selected 

trajectories through the densest regions.  

The first article published during this thesis work (a conference article [60]) describes the 

concepts of DeepHEMNMA, and uses synthetic datasets to show preliminary results. The second 

article published during this thesis work [119] presents the DeepHEMNMA method and its 
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performance with synthetic data in detail and demonstrates the effectiveness of DeepHEMNMA on a 

publicly available experimental dataset EMPIAR-10016.  

Methods 
DeepHEMNMA workflow is shown in (Figure 27) and has three stages. It uses an input set of 

images split into two subsets (indicated as Image set 1 and Image set 2 in Figure 27) and an input 

atomic structure or EM map (the reference for HEMNMA rigid-body and elastic alignment). In the 

first stage, HEMNMA is used to estimate the conformational (normal-mode amplitudes), 

orientational, and translational parameters for the images in Image set 1, through an iterative normal-

mode-based elastic and rigid-body 3D-to-2D alignment of the reference with each single-particle 

image. In the second stage, the neural network is trained using Image set 1 (referred to as training set 

from now on) and the parameters estimated by HEMNMA for this set of images; then, the trained 

network is used to predict the parameters for the images in Image set 2 (referred to as test set from 

now on). The third stage consists of projecting the predicted conformational parameters onto a low-

dimensional space and exploring this space, using a HEMNMA module. In this low-dimensional 

space, which could be considered as an essential conformational space, close points correspond to 

images with similar conformations and distant points to images with different conformations. The 

exploration of this space includes (1) generating animations of the displacement of the reference along 

the data distribution directions and (2) interactive grouping of images with similar conformations and 

calculating 3D reconstructions from these groups. In DeepHEMNMA, the parameters predicted by 

the network and those estimated by HEMNMA can optionally be combined into a single 

conformational space. 

The deep neural network in DeepHEMNMA is a ResNet CNN feature extractor followed by 

a Multilayer Perceptron (MLP) block. The ResNet feature extractor consists of a ResNet 34 

architecture (a 34-layer network) that extracts general relevant features from single-particle images. 

The MLP block predicts the conformational, orientational, and shift parameters based on the features 

extracted by ResNet.  

In the remaining part of this section, we present the different steps of DeepHEMNMA in more 

detail. 
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Stage 1: hemnma estimation of the conformational and rigid-body parameters from 
the training images (image set 1) 

HEMNMA combines cryo-EM image analysis and NMA of the reference. It simultaneously 

estimates the particle's conformational parameters (normal-mode amplitudes) and rigid-body 

parameters (orientations and translations) in each particle image. If the reference is an EM map, this 

EM map must be converted into a collection of 3D Gaussian functions, referred to as pseudoatoms 
146, before NMA can be performed.  

We next briefly recall the theory of NMA and the iterative elastic and rigid-body 3D-to-2D 

alignment of HEMNMA, which are mandatory steps at Stage 1 of DeepHEMNMA. The projection 

of images onto a low-dimensional conformational space and the analysis of this space, which were 

originally developed for HEMNMA and are now also used in DeepHEMNMA, will be recalled at 

Stage 3 of DeepHEMNMA.  

 

 
Figure 26 Flowchart of DeepHEMNMA combining HEMNMA and deep neural 
network methods. It uses an input atomic structure or EM map (reference) and an 
input set of images split into two subsets indicated as Image set 1 (referred to as 
training set) and Image set 2 (referred to as test set). 
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Normal Mode Analysis (NMA) 
NMA is based on the so-called elastic network model (ENM) of the molecular system 122, 

which is a simple and fast method to calculate vibrational modes and has been successfully used to 

predict biologically relevant motions 147-151. Normal modes are the vectors along which the system is 

displaced and are calculated using a harmonic approximation of the potential energy function of the 

system around a given reference conformation. The reference conformation can be represented with 

atoms or pseudoatoms (3D Gaussian functions with which an EM map, reconstructed from single-

particle images, can be represented 146). In the ENM, close atoms or pseudoatoms are connected with 

elastic springs (the interaction radius is a parameter that determines the size of the region beyond 

which the atom is not connected with other atoms and do not interact with them) 122. Normal modes 

are calculated by diagonalizing the Hessian matrix (the matrix of the second derivatives of the 

potential energy function) 122, which can be made faster in the case of atomic structures by splitting 

Figure 27 Graphical summary of HEMNMA steps. (a) Input EM map or atomic 
structure (the reference) and input single particle images. (b) Normal mode analysis of 
the reference and selection of normal modes (vectors). (c) Elastic and rigid-body 
alignment of each single particle image with the reference using the selected normal 
modes. (d) Mapping of single particle images onto a low-dimensional (here, 2D) 
conformational space in which the reference can be animated (denser regions are 
marked with a darker red color; close points correspond to images with similar 
conformations and distant points to images with different conformations). (e) 3D 
reconstructions from the densest areas in the low-dimensional conformational space 
shown by squares in (d). 
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the structure into blocks of consecutive residues (RTB blocks) that are only allowed to rotate and 

translate97. Normal modes and their squared frequencies are eigenvectors and eigenvalues of the 

Hessian matrix, respectively. Lower-frequency normal modes describe more collective motions 

(displacing most of the atoms or pseudoatoms together, synergistically), whereas higher-frequency 

normal modes describe more localized movements of atoms. Several studies have shown that low-

frequency normal modes correspond to functionally relevant biomolecular motions and that 

conformational transitions can be globally well described using a few low-frequency modes 147-151. 

Therefore, only a few low-frequency normal modes are usually selected for further analyses. In 

general, the six lowest-frequency normal modes are not used as related to rigid-body motions. 

The elements of a normal-mode vector provide information on the direction of the 

displacement of each atom or pseudoatom with this normal mode (in HEMNMA, this displacement 

is in angstroms, Å, which are the standard atomic-coordinate units). The total number of normal 

modes and the length of each vector are equal to 3 times the number of atoms or pseudoatoms (the 

total number of the atomic or pseudoatomic coordinates). Atoms or pseudoatoms are displaced to 

form a new conformation (model), using a linear combination of normal modes. Normal-mode 

amplitudes are the coefficients of the linear combination and indicate the contributions of the different 

normal modes to the global displacement (in HEMNMA, the normal-mode amplitudes have no 

physical units). NMA allows calculating normal modes (vectors of the displacement), but not the 

normal-mode amplitudes (amplitudes of the displacement along the vectors). The normal-mode 

amplitudes can be determined by fitting the conformational model with the experimental data, 

through numerical optimization of the coefficients of the linear combination of normal modes used 

for modeling, as described next.  

Iterative elastic and rigid-body 3D-to-2D alignment 
In this step, HEMNMA iteratively maximizes a measure of similarity between a given particle 

image and the 2D projection of the reference conformation being elastically modified (using normal 

modes), rotated, and shifted, until the best elastic and rigid-body alignment is achieved between the 

image and the projection. It results in a quasi-simultaneous determination of the conformation (the 

coefficients of the linear combination of normal modes used for the conformational model, i.e., 

normal-mode amplitudes), orientation (three Euler angles), and position (two in-plane shifts) of the 

particle in each particle image. The HEMNMA-estimated parameters (normal-mode amplitudes, 
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three Euler angles, and two in-plane shifts) are then used to train the neural network at Stage 2 of 

DeepHEMNMA. 

Stage 2: Deep learning of the relationships between the training images and their 
HEMNMA-estimated parameters (Image set 1) and prediction of the unknown 
parameters from the test images (Image set 2) 

At Stage 2, DeepHEMNMA uses a deep learning neural network, which accelerates the 

determination of the conformational and rigid-body parameters (normal-mode amplitudes, Euler 

angles, and in-plane shifts) for large sets of single particle images. This network is trained to learn 

the complex non-linear relationships between a subset of images (Image set 1) and their 

conformational and rigid-body parameters estimated at Stage 1 of DeepHEMNMA. The same 

network architecture is separately trained for each of the three types of parameters (normal-mode 

amplitudes, angles, and shifts). The three trained network models are then used to predict the three 

sets of parameters for the remaining subset of images (Image set 2 unseen by the network during the 

training). 

The neural network in DeepHEMNMA is a combination of a ResNet feature extraction block 

and an MLP estimator (predictor) block (Figure 29). Residual networks allow training of very deep 

CNNs, by introducing residual blocks (skip connections) in the network architecture 137. They are 

very effective as feature extractors and have shown great results in classification tasks 152,153. 

DeepHEMNMA uses ResNet 34 CNN architecture, which has 34 layers 137. In the training phase, 

ResNet 34 takes a subset of the input particle images (Image set 1) and extracts features that capture 

the pose (orientations and translations) and the motions of the biomolecular complex in the images. 

The extracted features are passed onto the MLP that maps them onto each of the three sets of 

parameters (normal-mode amplitudes, orientations, and translations). The training involves updating 

the weights of the whole network (ResNet and MLP blocks) to minimize the error of the parameter 

prediction by the network with respect to the parameters estimated by HEMNMA (mean absolute 

error type of loss), though Adam backpropagation stochastic optimization method 154. The MLP takes 

the input flattened features maps, obtained by ResNet, and captures a multimodal distribution of the 

particle pose and motion parameters through a stack of 4 fully connected layers. The first 3 layers 

(1000, 512, 128 nodes, respectively) have a nonlinear function (Rectified Linear Unit) applied to each 

layer, to model complex nonlinear functions. The last layer has the nodes with linear functions and 

their number is equal to the number of the output parameters. In the test phase, the trained entire 
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network model (ResNet and MLP blocks) predicts the pose and motion parameters of the particle 

from the remaining input particle images (Image set 2). The network is implemented using Python 

3.8 and PyTorch 1.8. 

 
.   

 

DeepHEMNMA uses a unit quaternion representation for the orientation in 3D space, meaning 

that the three Euler angles estimated with HEMNMA for each single-particle image are converted 

into the corresponding quaternion and these quaternions are used to train the network. Similarly, the 

quaternions predicted by the network are converted back to the Euler-angle representation, for use 

with methods based on the orientation representation with Euler angles (the majority of cryo-EM 

methods), as the 3D reconstruction method used at Stage 3 of DeepHEMNMA. Quaternions provide 

an extensive representation of the orientations through a four-tuple system and help overcome the 

gimbal lock drawback of the representation by Euler angles 145. For more information, the reader is 

referred to the recent review 145. We have compared the performance of our deep learning network 

using the two representations and found that the network achieves slightly worse results with the 

Euler-angle representation. Therefore, we decided to use the quaternion representation for our deep 

learning network. 

As the network is trained separately for each of the three types of parameters, the number of 

outputs in the final MLP layer is different for the three trained models (M outputs for M normal-mode 

Figure 28 DeepHEMNMA neural network step. The deep learning neural network is a 
combination of a ResNet 34 feature extractor (ResNet block) and a 4-layer multilayer 
perceptron (MLP block). It is trained to map each single-particle image onto the 
corresponding, HEMNMA-estimated conformational parameters (M normal-mode 
amplitudes), orientational parameters (3 Euler angles), and positional parameters (2 in-plane 
shifts) of the particle in the image. DeepHEMNMA converts the Euler-angle representation of 
the orientation used in HEMNMA into a 4-parameter quaternion representation, which is 
learned by the neural network internally. The learned quaternion representation of the 
orientation is then converted back to the Euler-angle representation for the analysis at Stage 
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amplitudes, 4 outputs for the quaternion representation of 3D orientation, and 2 outputs for the shifts 

in x and y directions in the image plane).  

We have tested DeepHEMNMA with the ResNet architectures deeper than ResNet 34 (ResNet 

50 and ResNet 101 having 50 and 101 layers, respectively) and found that the little improvement of 

the results obtained with such deeper networks does not to justify the extra time required for their 

training.  

In this work, the neural network training was performed on a 4-GPU computing node 

(NVIDIA V100, 5120 CUDA cores per GPU card) using a batch size of 2 and 400 epochs of Adam 

optimization method. The starting learning rate was  10−5.  The learning rate was gradually decreased 

by dividing it by 10 each 80 epochs. 

The conformational parameters (M normal-mode amplitudes), orientational parameters (3 

Euler angles obtained by conversion from 4-parameter quaternions), and translational parameters (2 

shifts in x and y directions in the image plane) predicted at Stage 2 are then analyzed at Stage 3 of 

DeepHEMNMA, as explained next.   

Stage 3: conformational-space dimension reduction and analysis 
At Stage 3 of DeepHEMNMA, a dimensionality reduction method is first used to project the 

set of M normal-mode amplitudes predicted by the neural network onto a lower-dimensional space 

(usually, a 2D or 3D space), which can then be visualized. The dimensionality reduction in 

DeepHEMNMA is a feature brought by HEMNMA. Several dimensionality reduction methods are 

available in HEMNMA and we usually use PCA, which is a widely used and intuitively clear 

dimensionality reduction method. In the lower-dimensional conformational space (Figure 30), each 

point represents a conformation predicted for a given single-particle image and close points 

correspond to similar conformations. For each point, the predicted orientation and position of the 

particle in the image are also available and can be used to calculate 3D reconstructions from groups 

of images with similar conformations, interactively selected in high-density regions of this space. The 
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interactive grouping of images with similar conformations in DeepHEMNMA is also a feature 

brought by HEMNMA.  

Beside using 3D reconstructions, the conformations predicted by the neural network can also be inspected 

by visualizing movies of the motion of the reference along the data distribution directions in this space. 

Additionally, it can be noted that the dimensionality reduction and further analysis can also be performed 

for the conformational space that combines the conformations estimated by HEMNMA and those 

predicted by the network.  

 

2. Results 
To evaluate the performance of DeepHEMNMA thoroughly, we carefully designed and run 

several experiments with synthetic datasets of the chain A of adenylate kinase (AK) from the PDB 

database (PDB:4AKE) 155 and with the experimental cryo-EM dataset of yeast 80S ribosome-tRNA 

complexes from the EMPIAR database (EMPIAR:10016) 156. In this section, we describe these 

experiments and show their results. 

 

Figure 29 Illustration of a lower-dimensional (here, 2D) conformational space obtained by 
principal component analysis of the conformational parameters (normal-mode amplitudes) 
estimated by HEMNMA or predicted by the neural network of DeepHEMNMA. Different points 
represent different particle images. Each point corresponds to the conformational parameters 
(normal-mode amplitudes) of the molecular complex in the corresponding sigle-particle image. 
For each point, the orientation and position of the molecular complex are also available 
(estimated by HEMNMA or predicted by the neural network) and can be used to calculate 3D 
reconstructions from interactivelly selected groups of images with similar conformations in the 
densest regions of this space (not shown in this illustration but in the experiments below).  
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Performance of DeepHEMNMA with synthetic data 
In this section, we present results obtained with synthetic single particle images affected by 

noise and contrast transfer function (CTF) of the simulated microscope, to demonstrate the entire 

DeepHEMNMA protocol and show its accuracy and speed. The dataset was obtained by randomly 

sampling synthetic continuous conformational transitions, orientations, and positions of AK. The 

parameters of the synthetic AK conformation, orientation, and position were used as the ground-truth 

parameters to assess the accuracy of the prediction of these parameters by the neural network. As the 

network was trained using HEMNMA-estimated parameters, the accuracy of the neural network 

prediction was also assessed with respect to the HEMNMA-estimated parameters.  

Methods used to assess the neural-network prediction (inference) accuracy 
The accuracy of the parameters predicted (inferred) by the neural network from images 

(normal-mode amplitudes, angles, and shifts) was assessed with respect to the ground-truth and 

HEMNMA-estimated parameters. The metrics to assess the accuracy of the inferred normal-mode 

amplitudes and shifts was the mean absolute error. The metrics to assess the accuracy of the inferred 

Euler angles was the average angular distance between the rotated coordinate-system axes (the 

inferred Euler angles mean the angles obtained by conversion from the inferred quaternions). As a 

complementary metrics to assess the accuracy of the inferred parameters, we used the root mean 

squared deviation (RMSD) between the atomic coordinates of AK displaced with the inferred and 

ground-truth parameters. More precisely, for each synthetic particle image, we calculated the RMSD 

between the AK atomic coordinates displaced with the inferred and ground-truth parameters using, 

for the displacement, one type of parameters at a time (normal-mode amplitude, angles, or shift). 

Then, we averaged the RMSDs over all images, for each parameter type separately. Additionally, we 

assessed the inference accuracy using 3D reconstructions from the groups of images with similar 

inferred conformations (the groups selected from different dense areas of the low-dimensional 

conformational space obtained by PCA of the inferred normal-mode amplitudes). We assessed the 

quality of each of these 3D reconstructions using Fourier Shell Correlation (FSC) with respect to the 

map simulated from the atomic model of conformation corresponding to the centroid of the image 

group used for 3D reconstruction. 
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Data synthesis: To synthesize the data for the experiment shown in this section, we followed the steps 

in the flowchart presented in Figure 31. The synthetic conformations were obtained by modifying the 

atomic AK structure using a linear combination of modes 7-9 (three lowest-frequency non-rigid 

normal modes), which is an arbitrary choice of normal modes made for this experiment. The linear 

combination of modes 7-9 was determined by their amplitudes 𝑞𝑞7- 𝑞𝑞9, respectively, which were 

randomly sampled from an arbitrary synthetic continuous conformational transition, as follows: 

 𝑞𝑞7(𝑜𝑜) = −200 ∙ 𝑜𝑜,   𝑞𝑞8(𝑜𝑜) = 200 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛  (𝜋𝜋 ∙ 𝑜𝑜) , 𝑞𝑞9(𝑜𝑜) = 200 ∙ 𝑐𝑐𝑜𝑜𝑠𝑠  (𝜋𝜋 ∙ 𝑜𝑜), (25) 

where 𝑜𝑜 is a random variable, uniformly distributed between 0 and 1. It should be noted that 

the hypothetical ground-truth trajectory here, randomly sampled, has a parabolic shape that facilitates 

a qualitative (visual) inspection of the inference accuracy in the synthetic-data experiments shown in 

this article. Indeed, a quick visual inspection of the spread of the inferred points around the 

hypothetical ground-truth trajectory can be an additional indicator of the inference accuracy, beside 

the quantitative assessment by evaluating the parameter inference errors and 3D reconstructions. The 

obtained conformations were then converted into density maps 157 (map size 256 × 256 × 256 voxels; 

voxel size: 0.325 Å × 0.325 Å × 0.325 Å). These maps were rotated and shifted using random angles 

and shifts (random uniform distribution) and, then, projected onto the image plane of size of 256 × 

256 pixels (pixel size: 0.325 Å × 0.325 Å). The total number of synthesized images was 70, 000. It 

can be noted that the synthesized data are such that the conformation in each particle image can be 

unique (a different conformation can be present in each different image). The rotation followed the 

ZYZ angular convention, with the first and third rotation angles (around z-axis) between 0° and 360° 

and the second rotation angle (around y-axis) between 0° and 180°. The shifts were between -5 and 

+5 pixels in x and y directions. Finally, noise and CTF were applied to each synthesized image. In the 

experiment shown in this section, the SNR was 0.1 and the CTF was simulated for a 200-kV 

microscope with a spherical aberration of 2 mm, a magnification of 50,000 and a defocus of -0.5 µm. 

An example of simulated images following Figure 31, with different defocus and SNR values is 

shown in Figure 32. 
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Experiment and results: The synthesized set of images was split into a training set of 20,000 images 

(Image set 1 in Figure 27) and a test set of 50,000 images (Image set 2 in Figure 27). Before running 

HEMNMA, the images were CTF-phase corrected (phase flip), as it would be done with experimental 

cryo-EM images. The CTF-phase flipped images were then downscaled to the size of 128 × 128 pixels 

(pixel size: 0.65 Å × 0.65 Å). The image size reduction was preceded by an antialiasing low-pass 

filtering, as usually done before image downscaling (in this case, the low-pass cutoff was 1.3 Å). 

Image size reduction not only speeds up processing, but also reduces noise in images, which generally 

yields better results, as also observed in our experiments  

 

 

Figure 30 Flowchart of image synthesis for evaluating the performance 
of DeepHEMNMA. See the text for the details on the synthesis of random normal-mode 
amplitudes, angles, and shifts. 
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HEMNMA was used to estimate the normal-mode amplitudes, angles, and shifts for the 

training set of images (20,000 images). The images whose HEMNMA-estimated normal-mode 

amplitudes were far away from the majority were removed using the Mahalanobis distance measure 
158. The Mahalanobis distance threshold of 3.2 was applied to the normal-mode amplitudes, which 

resulted in keeping 18,055 images for further processing. The network was trained using 14,055 

images (from the kept 18,055 images). From the remaining 4,000 images, we used 2,000 images for 

tuning the network’s hyperparameters (the step referred to as validation in neural network 

terminology). The remaining 2,000 images were used for quickly testing and comparing the finally 

trained models and this set of images will here be referred to as small test set. The test set of 50,000 

images was used to test the finally selected trained model and will here be referred to as large test set. 

In this section, we show the results of both tests (with 2,000 and 50,000 images). 

Table 3 shows the distance (mean and standard deviation) of each inferred parameter with 

respect to its ground-truth and HEMNMA-estimated values, obtained using the small test set (2,000 

images), and also includes the distance between the HEMNMA-estimated and ground-truth values for 

the same test set. The distance between the inferred and ground-truth values of each parameter, 

expressed in RMSD terms, is shown in Table 4. For the metrics used, please recall Methods used to 

assess the neural-network prediction (inference) accuracy paragraph in this section. An overlap 

between the inferred, ground-truth, and HEMNMA-estimated normal-mode amplitudes obtained 

Figure 31 Examples of noisy and CTF-affected images of Adenylate Kinase chain A (same 
view) synthesized with the SNR of 0.3 (a) and 0.1 (b) and with the CTF defocus of -0.5 µm 
(bottom left in (a) and (b)) and -1 µm (bottom right in (a) and (b)). Images without noise (top 
left in (a) and (b)) and without CTF (top right in (a) and (b)) are also shown. 
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using the small test set is provided in (Figure 33), which shows that the inferred normal-mode 

amplitudes follow the ground-truth continuous conformational transition globally well. The distances 

between the inferred and ground-truth values of parameters obtained using the large test set (50,000 

images) and these distances expressed in RMSD terms are shown in Table 3 and Table 4, respectively. 

These tables show the same range of the parameter inference errors for the small and large test 

datasets, which indicates that the network model has successfully generalized during the training. 

Figure 34 shows a 2D conformational space obtained by PCA of the inferred normal-mode 

amplitudes. In this space, it is possible to calculate 3D reconstructions either from the reduced-size 

images (128 × 128 pixels), which were used for training and inference, or from the original-size  

images (256 × 256 pixels). Here, we demonstrate the reconstructions from the original-size images 

(using the inferred shifts, after their multiplication by 2, and the inferred angles). Ten 3D 

reconstructions were calculated from the images in the corresponding ten dense regions of the 2D 

PCA space. In Figure 34, each reconstructed map is overlapped with the atomic model that 

corresponds to the centroid of the region used for the reconstruction.  Figure 34 also shows the number 

of images used for the reconstruction and the 0.5-FSC resolution of the reconstructed map with 

respect to the map simulated from the corresponding centroid atomic model. The resolution is in the 

range 3-4 Å 

Table 3 Mean and standard deviation (Std) of the distance between inferred, ground-truth, and 
HEMNMA-estimated values of parameters (normal-mode amplitudes, angles, and shifts) for a small 
test set of 2,000 synthetic images (the data used for quick tests at the training step 

Parameter dis-

tance 

Normal-mode amplitudes Angles 

[°] 

Shifts X 

[Å] 

Shifts Y 

[Å] Mean 

over 

modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Inferred vs. 

Ground-truth 

7.5 5.4 6.5 8.2 9.2 8.9 10.5 2.5 3.3 0.2 0.1 0.2 0.1 

Inferred vs. 

HEMNMA 

6.9 5.4 6.7 7.3 9.0 7.9 9.6 1.9 3.4 0.2 0.1 0.2 0.1 

HEMNMA vs. 

Ground-truth 

6.6 5.7 8.4 6.2 7.2 7.8 7.2 1.0 0.9 0.2 0.2 0.2 0.2 
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Table 4 Mean and standard deviation (Std) of the distance between inferred and ground-truth 
parameters from Table 3 (for a small test set of 2,000 synthetic images), but expressed in RMSD 
terms. 
 
 
 
 

 

 

 

 

 

 

 

RMSD 

 

 Normal-mode  

amplitudes 

[Å] 

Angles 

[Å] 

Shifts 

[Å] 

Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth  0.4 0.2 0.9 1.0 0.3 0.2 

Parameter 

distance 

Normal-mode amplitudes Angles 

[°] 

Shifts X 

[Å] 

Shifts Y 

[Å] Mean 

over 

modes 

7-9 

Mode 7 Mode 8 Mode 9 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Inferred vs. 

Ground-

truth 

7.8 6.6 8.7 9.5 10.6 7.3 9.9 2.6 3.4 0.2 0.2 0.2 0.2 

Figure 32 Overlap between inferred, ground-truth, and HEMNMA-estimated values of 
conformational parameters (normal-mode amplitudes) for a small test set of 2,000 synthetic 
images. Each point corresponds to an image and a molecular conformation inside it. Close 
points correspond to similar conformations and vice versa. See also Tables 3-4. 
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Table 5 Mean and standard deviation (Std) of the distance between inferred and ground-truth values 
of parameters (normal-mode amplitudes, angles, and shifts) for a large test set of 50,000 synthetic 
images (the data used to test the generalization of the finally trained network on a large set of 
images). 
 
 

 

 

 
 
 
 
 
 
Table 6 Mean and standard deviation (Std) of the distance between inferred and ground-truth 
parameters from Table 5 (for a large test set of 50,000 synthetic images), but expressed in RMSD 
terms. 
 

 

 

RMSD  Normal-mode  

amplitudes 

[Å] 

Angles 

[Å] 

Shifts 

[Å] 

Mean Std Mean Std Mean Std 

Inferred vs. Ground-truth  0.4 0.2 0.9 1.2 0.3  0.2 
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Speed assessment: DeepHEMNMA is faster than HEMNMA alone and it is even faster for larger 

datasets. HEMNMA was run on 160 INTEL 2.6 GHz CPU cores. The neural network was run on 4 

GPU cards at the training step and on 1 GPU card at the inference step (NVIDIA V100 with 5120 

CUDA cores per card). The estimated total number of computing hours needed by DeepHEMNMA 

for obtaining normal-mode amplitudes, angles, and shifts for 1 million synthetic AK images of size 

128 × 128 pixels with 3 normal modes is around 44 times smaller compared to HEMNMA. Indeed, 

HEMNMA alone would require 64,000 CPU hours, whereas DeepHEMNMA would require 1,232 

CPU hours and 233 GPU hours. A detailed comparison of HEMNMA and DeepHEMNMA in terms 

of processing time is detailed Table 7 Times needed for HEMNMA estimation of all three types of 

parameters (three normal-mode amplitudes, three angles, and two shifts). The shaded cells of the table 

show a rough estimation of the expected time.Table 9 Times needed for CNN inference of one of the 

three types of parameters (normal-mode amplitudes, angles, and shifts). The shaded cells of the table 

show a rough estimation of the expected time..  

HEMNMA 
160 INTEL 2.6 GHz CPU cores  

 
1 image 

 
20,000 images 

 
106 images 

256x256 pixels 8 min 15.6 h 800 h 
128x128 pixels 4 min 7.7 h 400 h 

Table 7 Times needed for HEMNMA estimation of all three types of parameters (three normal-mode 
amplitudes, three angles, and two shifts). The shaded cells of the table show a rough estimation of 
the expected time. 
 

Training 
4 NVIDIA V100 / 5120 CUDA cores 

 
6,000 images 

 
14,000 images 

 
50,000 images 

256x256 pixels 15 h 28 h 75 h 
128x128 pixels 11 h 19 h 55 h 

 
 

Figure 33 Low-dimensional (here, 2D) conformational space obtained by principal 
component analysis of the inferred conformational parameters (normal-mode amplitudes) 
for a large test set of 50,000 synthetic images, together with ten 3D reconstructions from 
ten different dense regions of this space supperposed with the corresponding atomic 
models (centroids of the regions). The network training and inference of normal-mode 
amplitudes, angles, shifts were done using images of size 128 × 128 pixels (for the 
inferrence accuracy, see Tables 5-6) and the reconstructions were obtained from images 
of size 256 × 256 pixels. The number of images used for each reconstruction and the 0.5-
FSC resolution of the reconstructed map are also shown . Each point in the 
conformational space corresponds to an image and a molecular conformation inside it. 
Close points correspond to similar conformations and vice versa. 
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Table 8 Times needed for CNN training to learn one of the three types of parameters (normal-mode 
amplitudes, angles, and shifts). The shaded cells of the table show a rough estimation of the 
expected time. Images used for validation (2000 images) are not counted in the number of images 
displayed in the labels of the table columns. 
 

 
Table 9 Times needed for CNN inference of one of the three types of parameters (normal-mode 
amplitudes, angles, and shifts). The shaded cells of the table show a rough estimation of the 
expected time. 

Performance of DeepHEMNMA with experimental data 
In this subsection, we show the results of DeepHEMNMA using cryo-EM data of yeast 80S 

ribosome-tRNA complexes available in EMPIAR database under the accession code EMPIAR-10016 
156.  

Dataset: The dataset consists of a stack of single particle images of size 360 × 360 pixels and pixel 

size of 1.05 Å (normalized so that the average of the image is zero and the standard deviation is 10) 

and 5 metadata files containing the orientation and translation parameters for 5 image classes obtained 

in 156 using FREALIGN 159. Two of these metadata files, with the parameters of 23,726 and 22,369 

images, were used in 156 to reconstruct two cryo-EM maps, accessible in EMDB database with the 

codes EMD-5976 (rotated conformation with 1 tRNA at resolution of 6.2 Å) and EMD-5977 

(nonrotated conformation with 2 tRNA at resolution of 6.3 Å), respectively.  

Data preprocessing and data splitting for neural network: After inspecting all 5 classes obtained in 
156 (quality and number of images in each class as well as 3D reconstruction reproduced for each 

class), we decided to run DeepHEMNMA only on images used for reconstructing EMD-5976 and 

EMD-5977 (46,095 images in total). The other 3 classes seemed less “clean” (many images seem to 

contain different objects than ribosomes) and the number of images in these classes was much smaller. 

Before running DeepHEMNMA, images were CTF-phase flipped and downscaled to the size of 128 

× 128 pixels (pixel size: 2.95 Å). Our preliminary tests with this experimental cryo-EM dataset have 

shown large angular prediction errors (with respect to HEMNMA estimation) for the network trained 

using 20,000 images (recall that this is the number of images used to train the network with synthetic 

data). Therefore, we decided to split the set of 46,095 images as follows: (1) 32,000 images for 

Inference 
1 NVIDIA V100 / 5120 CUDA cores  

1 image 
 

2,000 images 
 

50,000 images 
 

106 images 

256x256 pixels 10 ms 0.3 min 5.6 min 16.7 min 
128x128 pixels 5 ms 0.2 min 4.5 min 8.3 min 
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training; (2) 2,000 images for validation (adjusting hyperparameters of the network); (3) 12,095 

images for testing (large test set), out of which 2,000 images for quickly testing and comparing the 

trained models (small test set). Images from both FREALIGN classes were uniformly distributed in 

each of these image subsets.  

Reference model and normal mode analysis: The reference model used by HEMNMA to calculate 

normal modes and to analyze images with these normal modes was a coarse-grain model of the 

nonrotated conformation, which was made by keeping only Cα and P atoms from the atomic model 

available in the PDB database under the code PDB:3j78 (the atomic model derived from EMD-5977 

map in 156). The coarse-grain model had 17,082 atoms (Cα and P). Its normal modes were calculated 

using an RTB block size of 20 residues and an interaction radius of 20 Å. 

Selection of normal modes for image analysis with HEMNMA: Regarding the selection of normal 

modes, an option was to only select the mode that describes the rotation between the large and small 

subunits of the ribosome, which is often informative enough to separate different ribosome states, as 

shown in our previous work 22. However, we decided to include more normal modes to demonstrate, 

using this experimental dataset, the performance of our deep neural network learning and prediction 

of a larger number of normal-mode amplitudes. Therefore, in this work, we selected normal modes 

by analyzing the motion field between the conformations obtained in 156 with FREALIGN. More 

precisely, we performed flexible fitting of the coarse-grain reference model (obtained from PDB:3j78) 

into EMD-5976 map, using 7 lowest-frequency non-rigid-body normal modes (modes 7-13), by 

employing our normal-mode-based 3D-to-3D flexible fitting approach of HEMNMA-3D 131. The 7 

obtained normal-mode amplitudes indicate that all 7 modes contribute to the motion between the two 

conformations. From this set of modes, we selected 4 modes with the highest contribution (modes 7-

9 and 11), among which the mode describing the rotation between the ribosome subunits.  

DeepHEMNMA data analysis: HEMNMA was run to analyze images with the four selected normal 

modes, to obtain the conformations (normal-mode amplitudes), Euler angles, and shifts 

corresponding to these images, which were then used for the network training. The trained network 

was used to predict (infer) the normal-mode amplitudes, Euler angles, and shifts for the test images. 

The inferred normal-mode amplitudes were analyzed by PCA and 3D reconstructions were calculated 

from groups of images in this space using their inferred Euler angles and shifts.  
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The 2D PCA space obtained for the set of 12,095 test images was split along the first principal 

axis into two groups of images, one with 4,741 images and the other with 4,219 images, as illustrated 

in Figure 35. The two 3D reconstructions obtained from these two groups (Figure 37A-D) indicate 

two different average conformations, with an additional mass in one reconstruction where the 

additional tRNA is expected (the region indicated by a red ellipse in Figure 37A) and without this 

additional mass in the other reconstruction (Figure 37B). The reconstructions obtained using 

FREALIGN metadata files from EMPIAR-10016 156 (Figure 37I-L) show similarity with those 

obtained with DeepHEMNMA (Figure 37A-D and Figure 37M-P). Note however that the two 

reconstructions from FREALIGN metadata files were obtained using 22,369 and 23,726 images 

(related to EMD-5977 and EMD-5976 maps, respectively). 

 
Furthermore, we found that the additional mass in the map reconstructed using inferred 

parameters (Figure 37A) could be better resolved if more images were used for this 3D reconstruction. 

We illustrate this by using a larger set of 22,095 images that were obtained by combining (1) 12,095 

images with inferred parameters and (2) 10,000 images with HEMNMA-estimated parameters (from 

32,000 images used for network training). The 2D PCA space for this set of 22,095 images, shown in  

Figure 36, was split along the first principal axis into two groups of images, one with 7,870 images 

and the other with 6,682 images. The 3D reconstructions from the latter two groups of images (Figure 

37E-H) are similar to those obtained from the images with inferred parameters (Figure 37A-D) but 

Figure 34 Two-dimensional conformational space for the EMPIAR-10016 dataset (cryo-EM 
single particle images of yeast 80S ribosome-tRNA complexes) obtained by principal 
component analysis of normal-mode amplitudes inferred from 12,095 images, with panels A 
and B showing two selected groups of images (yellow) used for the 3D reconstructions 
shown in Figure 37A (4,741 images) and Figure 37B (4,219 images), respectively. The 
groups of images were selected automatically using logical operators on the coordinates of 
the two principal axes (principal axis 1: [-900, -100] in A and [100, 900] in B; principal 
axis 2: [-900, 900] in A and B). 
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some details are better resolved in Figure 37E-H, such as the additional mass related to tRNA (region 

marked by red in Figure 37E), which is directly linked to the use of more images for the 

reconstructions in Figure 37E-H. 
Figure 35 Two-dimensional conformational space for the EMPIAR-10016 dataset (cryo-EM single 
particle images of yeast 80S ribosome-tRNA complexes) obtained by principal component analysis 
of a combination of normal-mode amplitudes inferred from 12,095 images and HEMNMA-
estimated from 10,000 images (the total of 22,095 images represented in this space), with panels A 
and B showing two selected groups of images (yellow) used for the 3D reconstructions shown in 
Figure 37E (7,870 images) and Figure 37F (6,682 images), respectively. The groups of images 
were selected automatically using logical operators on the coordinates of the two principal axes 
(principal axis 1: [-1100, -100] in A and [100, 1100] in B; principal axis 2: [-900, 900] in A and B). 
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The need to use more images for 3D reconstruction in order to better resolve the tRNA could 

be explained by a larger conformational heterogeneity of the dataset. In Figure 38, we show more 

extensively the conformational variability using 3D reconstructions from a larger number of groups 

of images selected along the first principal axis of the 2D PCA space of the 12,095 images used for 

the inference. The PCA space was split quasi-uniformly in the way to get at least 900 images per 

group. One can note a variable degree of rotation between the small and large subunits as well as the 

presence and absence of the additional tRNA over the seven maps reconstructed from 1018, 1148, 

1461, 1816, 1771, 975, and 949 images (Figure 38 bottom, from left to right).  

Figure 36 Two average conformations of yeast 80S ribosome-tRNA complexes obtained by 3D 
reconstruction from EMPIAR-10016 cryo-EM images, with and without additional mass in the region 
marked with a red ellipse, using DeepHEMNMA and using the original Frealign classification 
parameters from EMPIAR-10016 dataset. 
A-B Same view of two reconstructions obtained from the conformational space based on 12,095 images 
with inferred parameters from which groups of 4,741 and 4,219 images were used for the 
reconstructions.       C-D Two views of the superposed reconstructions from A and B.  
E-F Same view of two reconstructions obtained from the conformational space based on 12,095 images 
with inferred parameters and 10,000 images with HEMNMA-estimated parameters, from which groups 
of 7,870 and 6,682 images were used for the reconstructions. G-H Two views of the superposed 
reconstructions from E and F.  
I-J Same view of two reconstructions obtained using Frealign parameters for 22,369 and 23,726 images 
resulting in EMD-5977 and EMD-5976 maps, respectively. K-L Two views of the superposed 
reconstructions from I and J.  
M-N Superposition of the reconstructions obtained from images with inferred parameters and those 
obtained using Frealign parameters (M: overlap between the reconstructions shown in A and I; N: 
overlap between the reconstructions shown in B and J). O-P Different view of the superposed volumes 
shown in M-N, respectively.  
The red ellipse shown in panels A, E, I, M indicates the region with the additional mass (corresponding 
to the additional tRNA), with respect to the same region in panels B, F, J, N, respectively. All surfaces 
are shown in solid color except for the yellow surface in M that is shown transparent for a better 
visualization of the additional mass (red ellipse).  
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This experiment shows that DeepHEMNMA can be useful for extensive analyses of 

conformational variability of biomolecular complexes, where large sets of experimental single 

particle images can be obtained. At least 30,000 particle images would be required for the neural 

network training. To take full advantage of the power of the trained network, one should aim at 

analyzing millions of single-particle images. The analysis of such large datasets is not practical with 

conventional methods, whereas it has a low computational cost with trained neural networks. 

3. Discussion  
This cahpter introduces DeepHEMNMA, a hybrid method using HEMNMA image analysis 

(based on normal mode analysis) and a deep ResNet-based neural network to study continuous 

conformational variability of biomolecular complexes from single particle cryo-EM images. The 

purpose of the neural network is to accelerate HEMNMA-based continuous conformational landscape 

determination from cryo-EM images. DeepHEMNMA determines the conformational parameters 

(normal-mode amplitudes) and rigid-body parameters (three Euler angles and two in-plane shifts) of 

the biomolecular complex in each single particle images. To this goal, HEMNMA is first used to 

estimate these parameters from a subset of images. Then, the neural network is trained to learn the 

relationships between this subset of images and its HEMNMA-estimated parameters. The network is 

a ResNet 34 feature extractor followed by a multilayer layer perceptron. The trained network is then 

used to predict the parameters from the remaining images (unseen during the training). Finally, the 

conformational landscape is obtained by mapping the inferred normal-mode amplitudes onto a lower-

dimensional space, which allows 3D reconstructions using the inferred angles and shifts. Also, this 

space allows animations of a model displacement and identification of possible hidden conformations. 

Figure 37 Two-dimensional conformational space of yeast 80S ribosome-tRNA complexes from 
the EMPIAR-10016 cryo-EM images, obtained by principal component analysis of normal-
mode amplitudes inferred from 12,095 images (top, left), with 7 average conformations obtained 
by 3D reconstruction (bottom) from groups of images selected along the first principal axis, and 
an overlap of the maps reconstructed from the first (gray), fourth (violet), and seventh (orange) 
groups (top, right). The far left and far right images (blue) were not used for the reconstructions 
and the remaining part of the conformational space was split quasi-uniformly in the way to get 
at least 900 images per group. The reconstructions were obtained from 1018, 1148, 1461, 1816, 
1771, 975, and 949 images (bottom, from left to right). The color of the reconstructed map 
(bottom) corresponds to the color of the group of points in the conformational space (top). The 
blue ellipse overlapped with the reconstructed maps indicates the region where the additional 
mass, corresponding to the additional tRNA, is present or absent 



81 
 

We described this new approach and showed its performance with synthetic and experimental 

data. Using a synthetic dataset and a publicly available experimental dataset, we demonstrated a good 

generalization capability of the network (no overfitting against the training data), meaning that the 

trained network is able to accurately predict the conformation, orientation, and position of the 

molecule in the images that were not used for the training. 

DeepHEMNMA has a general purpose and could be useful in analyzing conformational 

variability of various molecular complexes, as is the case for HEMNMA on which it is based. 

HEMNMA has been demonstrated on complexes of various sizes and architectures 22. It is thus 

expected that DeepHEMNMA performs like HEMNMA on the same complex.  However, it should 

be noted that the network should be trained for each different molecular complex because each 

different complex will require a separate normal mode analysis, which depends on the shape of the 

complex.  

We trained the network separately for normal-mode amplitudes, orientations, and shifts. This 

training strategy has the advantage that the number of images used for training can be adjusted for 

the different types of parameters. Indeed, with experimental data, we observed that learning of 

orientations requires around twice more images than learning of shifts or normal-mode amplitudes. 

However, in the future, we will add an option to our open-source DeepHEMNMA software to allow 

a combined training for all three types of parameters, which is expected to be faster than the separate 

training for each parameter type, for the same size of the training dataset. 

4. Supervised Cryo-ViT 
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In this subsection, we describe a second supervised deep learning method that was developed 

in this thesis for continuous conformational variability analysis, which assumes that the given input 

dataset contains a set of single particle images and the corresponding 3D atomic representation for 

each particle image. The recently published MDSPACE method 29, based on a combined use of NMA 

and MD simulation to extract an atomic model from each individual particle image, is able to provide 

a set of atomic models, which, together with the corresponding set of particle images could be fed to 

the method described below. The idea would be to make the method below imitate the MDSPACE 

analysis, so as to be able to predict the atomic models for larger datasets for which MDSPACE is 

impractical to use as very computing-time demanding. 

This thesis implemented a second supervised approach for continuous conformational 

variability analysis called supervised. Instead of estimating 𝑀𝑀 normal mode amplitudes, in this 

approach, an encoder-decoder network was developed to estimate the rotated, translated, and 

displaced 3D atomic coordinates with 𝑆𝑆 atoms given a single particle image. The encoder is a ViT 

that encodes a given single-particle image represented as patches into a discrete latent representation. 

The patches are of size 16 × 16 pixels and they are generated internally for each image. The decoder 

is a feedforward network, with 6 LeakyReLU non-linear layers, and a final linear layer of a size 3𝑆𝑆. 

The network is trained in a supervised fashion were the encoder is fed a single particle image and 

encodes it in a latent representation of 256𝑃𝑃. The decoder then estimates the correspondent displaced 

3D atomic coordinates. Then the predicted rotated shifted and displaced atomic coordinates are 

Figure 38 Pipeline of the proposed neural network (supervised Cryo-ViT) for image to atomic 
coordinates estimation from single-particle images. The network consists of a VAE composed of a 
ViT encoder, and a 6-layerd MLP decoder. 
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aligned against a reference atomic structure, and a dimensionality reduction, in this case PCA, on the 

predicted and aligned atomic coordinates is needed to visualize the conformational space. 

Preliminary results on synthetic dataset 
 

This experiment aims to retrieve the ground truth of continuous conformational variability 

from a synthesized dataset by training the proposed approach in a supervised fashion with various 

configurations. For instance, our goal is to train the neural network to learn how to project each image 

back to its corresponding 3D deformed atomic coordinates and retrieve the conformational 

heterogeneity present in the image set. For this experiment, we used the same image set used in 

DeepHEMNMA experiment, where we synthesized 10,000 images of the atomic structure of AK 

(PDB:4AKE) following the same steps shown in Figure 31, used in DeepHEMNMA synthetic data 

experiment. The synthetic conformations were obtained by modifying the atomic structure using a 

linear combination of the normal modes (7-9) shown in Eq.(24). Moreover, the deformed rotated and 

shifted atomic coordinates for each image were generated to permit training of the neural network in 

a supervised fashion.  

This experiment aims to test this approach's ability to retrieve the conformational 

heterogeneity alongside the rotations and translations for each image. Therefore, we trained the neural 

network on 8,000 images and inferred on the rest 2,000 images. The RMSDs between the inferred 

and ground-truth aligned atomic coordinates are shown in Table 10.  

 

 

 

 

 

RMSD Aligned atomic coordinates 

[Å] 

Mean Std 

Inferred vs. Ground-truth  1.3 0.9 

Table 10 Mean and standard deviation (Std) of the distance between inferred and ground-truth atomic 
coordinates (predicted on 2000 images), expressed in terms of RMSD. 
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Figure 39 The predicted conformational variability for Chain A of AK synthetic dataset with 
supervised cryo-ViT. a 2D Conformational space obtained by PCA of the aligned predicted 
atomic coordinates. b 2D scatter plot of the ground-truth amplitude of normal modes 7-8 
used to synthesize the images. c-e Three predicted atomic coordinates selected from the 
predicted 2D conformational space in two different views a. 
d-f Three ground-truth atomic coordinates selected from the ground-truth 2D 
conformational space b in two different views. 
g-h superposition of three predicted atomic coordinates and their correspondent ground-
truth atomic coordinates in two different views. 
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Qualitative results are shown in Figure 40. Figure 40.a-b shows the 2D conformational space 

obtained by applying PCA on the predicted atomic coordinates aligned against a reference atomic 

model and the ground-truth atomic coordinates aligned using the angles and shifts used to synthesize 

the images. In this space, each point represents an atomic structure, and points close to each other 

share similar structural information. We selected three points from the predicted conformational space 

a and fetched their correspondent from the ground-truth conformational space b, the atomic models 

are shown in Figure 40.c-f. Figure 40.g-h show the superposition of the predicted and ground-truth 

atomic coordinates. Although the neural network captured the motion as illustrated in Figure 40.b 

and the inferred atomic coordinates follow the ground-truth continuous conformational transition 

globally (Figure 40.a-b), the amplitude of the predicted motion is smaller compared to the ground-

truth motion as one can notice from the predicted and ground-truth PCA space , which means that the 

network had some difficulties in estimating the parameters precisely. Further investigations of this 

problem led to our conclusion that this may come from the difficulty of the network to simultaneously 

predict the conformational and rigid-body parameters for a given, relatively small set of images. 

With the unavailability of such a dataset where each single-particle image is associated with 

its displaced 3D atomic coordinates, this approach is impractical, and few adjustments of this neural 

network are needed to exploit it. Hence, the straightforward idea is to benefit from the advantages of 

unsupervised learning and dispose of the bias of supervised learning. The next chapter extensively 

reviews the unsupervised version of this neural network and provides all the details of the network 

and how it is trained with synthetic and experimental datasets. The supervised version of the network 

is currently referred to as supervised Cryo-ViT, whereas the unsupervised version of it is referred to 

as unsupervised Cryo-ViT. 
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Chapter 5: Unsupervised deep learning approaches devel-

oped in this thesis 

This chapter presents unsupervised cryo-ViT, an unsupervised extension of the supervised deep learning 

method presented in Chapter 5 for analyzing macromolecular continuous conformational variability in 

cryo-EM single-particle images. Unsupervised cryo-ViT benefits from the VAE architecture to learn a 

continuous lower-dimensional conformational space that allows exploring conformational variability, 

generating motion trajectories and obtaining 3D reconstruction by grouping conformationally similar 

single-particle images without imposing any prior knowledge on the analysis of the conformational 

variability. The lower-dimensional conformational space reveals the nature of the heterogeneity, 

continuous or discrete, that the studied complex may underly. 

This chapter presents the unsupervised cryo-ViT method and its performance in analyzing 

continuous conformational variability. Unsupervised cryo-ViT was tested on simulated datasets and 

on experimental datasets of the yeast Ribosome 80S and the TMEM16F Calcium-Activated Ion 

Channel. The results obtained from these experiments are encouraging and coherent with previous 

findings.  

1. Unsupervised cryo-ViT  
Unsupervised cryo-ViT is a VAE-based method that learns the motion of flexible protein 

molecules at the atomic level from single-particle cryo-EM images. To learn how to map between 

single particle images and the three-dimensional atomic coordinates, unsupervised cryo-ViT uses 

three inputs (1) a cryo-EM single particle image set; (2) the estimated rigid-body alignment 

parameters of these images (three Euler angles in ZYZ convention and in-plane shifts, which can be 

estimated using standard discrete-classification approaches that do not take into account continuous 

conformational heterogeneity); (3) an initial model of the complex represented by backbone (Cα) 

atomic coordinates (referred to as “reference atomic coordinates”). The workflow of unsupervised 

cryo-ViT is illustrated in Figure 41. The network learns the conformational variability by mapping 

each single particle image to the corresponding displacement of the reference atomic coordinates 

through a comparison of the projection of the mapped structure with the input image. To interpret the 

learned conformational heterogeneity, molecular movies, and 3D reconstructions can be computed 
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(1) in the conformational latent representation of 32 dimensions by reducing its dimension first; and 

(2) in a low-dimension space of the predicted and aligned atomic structures. The main difference with 

respect to the method presented in the previous chapter regarding the inputs, is the use of a reference 

model and initial rigid-body alignment parameters of the images. This method is trained to predict, 

for each input particle image, the corresponding coordinate displacements with respect to the 

reference atomic coordinates. This predicted coordinate displacement is a combination of 

conformational displacement and rigid-body displacement. In the end, the predicted rigid-body 

displacements are combined with the initial rigid-body alignment parameters to correct for the rigid-

body alignment of the images before they can be used for 3D reconstructions. 

 

VAE for unsupervised learning of continuous conformational variability 

Let 𝛸𝛸 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛},𝑋𝑋 ∈ ℝ𝟚𝟚, be a set of cryo-EM single-particle projection images of 

a specific biomolecular complex, where 𝜲𝜲 follows a mixture of unknown continuous distributions 

(orientational and conformational heterogeneity), and  𝑃𝑃 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑛𝑛}, 𝑃𝑃 ∈ ℝ𝟛𝟛, a set of the 

corresponding atomic coordinates. Our objective is to determine by projecting back the atomic 

coordinates 𝑠𝑠𝑖𝑖 given a single particle image 𝑥𝑥𝑖𝑖: 

Figure 40 Overview of the proposed unsupervised Cryo-ViT network, a VAE composed of a ViT 
encoder, three latent variables (conformational, orientational and translational latent variables), a 
6-layered MLP decoder, and a non-learnable projection module that takes the estimated atomic 
coordinates and generates a cryo-EM image affected by the CTF. The conformational latent 
variable is used to predict the displacement of the atoms while the orientational latent space 
generates a 3x3 rotation matrix and the translational latent variable predicts the two shifts (x,y) to 
refine the initial input rigid-body alignment parameters. 
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𝑃𝑃(𝑠𝑠𝑖𝑖) =  𝑥𝑥𝚤𝚤� , 𝑥𝑥𝚤𝚤� ≈ 𝑥𝑥𝑖𝑖 

where 𝑃𝑃(𝑠𝑠𝑖𝑖) is the projection function of the 𝑖𝑖𝑡𝑡ℎ atomic structure 𝑠𝑠, and x�𝑖𝑖 is a 2D projection 

similar to 𝑥𝑥𝑖𝑖. 

We train the neural network to learn a function 𝑓𝑓(𝑥𝑥):ℝ𝟚𝟚 → ℝ𝟛𝟛, that projects a single particle 

image back to a displacement (delta) of the reference atomic coordinates, 𝑠𝑠 ∈ ℝ𝟛𝟛, given the initial 

non-refined orientations and translation of the image. Cryo-ViT, based on a VAE 142, learns to 

approximate a posterior distribution 𝑞𝑞(𝑧𝑧|𝑥𝑥) to the true posterior distribution 𝑝𝑝(𝑧𝑧|𝑥𝑥) of conformations 

present in input images. 

In the first step, the encoder, in this case a ViT, extracts relevant features and approximates 

the input image’s distribution in a lower dimensional latent representation. This latent space embeds 

the representation of each image in terms of the atomic displacement (delta) with respect to the 

reference atomic structure. The decoder generates an atomic structure for each single particle image 

given the latent representation and the reference atomic structure. In the decoder step, a 6-layer MLP 

takes the latent space as input and generates the delta for each single particle image, and this delta 

(conformational variation) is then added to the reference atomic coordinates to get a structure that 

will be projected on an image plane. Before projecting, the obtained structure is rotated and shifted 

using the input rigid-body alignment parameters. Then the generated atomic structures are projected, 

and the CTF is applied to the projections. The obtained projection image is compared with the input 

image. 

Encoder: The encoder consists of a vanilla vision transformer (vanilla-ViT) 160; it encodes an input 

image represented as a set of patches, typically 16 × 16 pixels, into a feature vector space. It is worth 

mentioning that the patches are generated internally. In this work, we use a ViT with 16 heads; here 

heads refer to the number of heads in the multihead attention; the original implementation inspires 

the choice of 16 heads, and the depth of each one is 6 (the depth here represents the number of  

Transformer blocks used), and an MLP of size 1024.  From the vector space, we sample three latent 

variables: the conformational latent variable (𝑧𝑧𝑐𝑐), the orientational latent variable (𝑧𝑧𝐴𝐴), and the 

translational latent variable 𝑧𝑧𝑇𝑇 where 𝑧𝑧𝑐𝑐 is considered as a lower dimensionality representation of the 

conformational variability presented in the images and 𝑧𝑧𝐴𝐴and 𝑧𝑧𝑇𝑇 is considered latent variables that 

refines the error of the initial rigid-body alignment parameters. 
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Latent variable: The idea of having spereate latent variables 𝑧𝑧𝑐𝑐, 𝑧𝑧𝑜𝑜 and 𝑧𝑧𝑇𝑇, as mentioned in the 

previous section, is to disentangle conformational heterogeneity from orientational and transitional 

heterogeneity, where the angles are sampled from a continuous gaussian distribution for rigid-body 

rigid-body alignment parameters refinement. The latent space for conformational variability (𝑧𝑧𝑐𝑐) and 

translations (𝑧𝑧𝑇𝑇) is a classical latent space 142 of dimension 32 where 𝑧𝑧𝑐𝑐 is sampled from a standard 

normal distribution shown in top panel of Figure 42. In contrast to 𝑧𝑧𝑐𝑐, 𝑧𝑧𝐴𝐴 should be sampled from a 

symmetrical Gaussian distribution that is invariant to the rotation transformation. 

In this case, we use the SO(3)-valued latent space 14, where the classical reparameterization 

trick is extended to compact the SO(3) Lie group, and therefore we can extract a rotation matrix.  

Moreover, 𝑧𝑧𝐴𝐴 is sampled from a reparameterizable distribution and mapping it to the Lie group SO(3) 

using an exponential map. 

 The top panel of Figure 42. ((a) to (b)) illustrates the building blocks of the classical 

reparameterization trick used in the conformational latent space 𝑧𝑧𝑐𝑐, where first the standard deviation 

𝜎𝜎 is multiplied by a noise parameter 𝜖𝜖, (𝑣𝑣 =  𝜖𝜖𝜎𝜎), to approximate the intractable true posterior 

Figure 41 Illustration of the continuous reparameterization trick on SO(3) and the extension of 
the classical reparameterization trick. Top panel, the steps required to perform the classical 
reparameterization trick from (a) to (c). Bottom panel, the steps required to extend the classical 
reparameterization trick from (a) to (c). Adapted from 14. 
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distribution, (𝒗𝒗~𝑜𝑜(𝒗𝒗|𝜎𝜎), and to allow the gradient flow during backpropagation, as explained in 

Chapter 3, then the mean 𝜇𝜇 is introduced ((b) to (c)) to the distribution to change its location and fit 

the input data. The bottom panel of Figure 42. demonstrates the expansion of the reparameterization 

trick for the orientational latent variable, where the sampled distribution is first mapped using an 

exponential map ((a) to (b)); note that in the classical reparameterization trick, the mapping is done 

using an identity matrix 𝐼𝐼, then, the pushforward of the mean 𝑅𝑅𝜇𝜇, obtained by applying the exponential 

to the mean, is left multiplied ((b) to (c)) by the mapped distribution, 𝑅𝑅~𝑞𝑞�(𝑅𝑅|𝜎𝜎), to change the 

location of the distribution. The reader is referred to 14 for further details on the extension of the 

reparameterization trick. 

Decoder: The decoder is a 6-layered non-linear Multi-Layer Perceptron (MLP), in this case, 

LeakyReLU 161 activation function, where each layer has 256 hidden units followed by a final linear 

layer. This final layer has 𝑀𝑀 hidden units (𝑀𝑀 = 𝑛𝑛𝑢𝑢𝑚𝑚𝑛𝑛𝑛𝑛𝑜𝑜 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚𝑠𝑠 × 3). For each image, the 

decoder generates from the approximated posterior distribution 𝑞𝑞(𝑧𝑧|𝑥𝑥) of the latent space 𝑧𝑧𝑐𝑐 the delta 

(conformational variations) and applies it to the initial reference atomic coordinates. 𝑧𝑧𝐴𝐴 serves us here 

to correct the angular and shift errors by generating eight parameters, six values will be used to 

generate the rotation matrix 162 (6 parameters are enough to determine the other three parameters of 

the rotation matrix) and correct the angular errors, and the two values will be used to correct shifts 

in-plane. The predicted atomic structures must be projected to 2D images to train the neural network 

in an end-to-end unsupervised fashion. 

Projection module: The projection module is a non-trainable differential block. The atomic 

coordinates are first rotated and translated using the refined angles, represented as a rotation matrix, 

and in-plane (x and y axes) shifts. The atomic coordinates are then converted into pseudo-atoms where 

a gaussian function with a standard deviation, typically 1, replaces each atom. The pseudo-atoms are 

then projected into 2D images along the z-axis, and a CTF model is applied to add imperfections to 

the projections to be compared to the input images. It is worth mentioning that additive Gaussian 

noise was tested; however, it did not affect the results. 

The projection module consists of the following: 

 𝑃𝑃𝑠𝑠𝑖𝑖𝑚𝑚 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 ∗ ℎ(𝑜𝑜); (26) 
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Where 𝜎𝜎 is the standard deviation of the Gaussian functions, 𝑆𝑆 is the number of atoms in the 

model with the coordinates 𝑋𝑋𝑛𝑛 = (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛),𝑛𝑛 = 1,𝑆𝑆, and 𝑎𝑎𝑥𝑥𝑛𝑛 and 𝑎𝑎𝑦𝑦𝑛𝑛 are the coordinates of the 𝑛𝑛𝑡𝑡ℎ 

rotated and translated atoms, respectively. To add CTF effect (ℎ(𝑜𝑜)), we use the the same CTF model 

described in Eq. (3). 

Exploring the conformational space: Two ways can be used to visualize the conformational 

variability. The first one is to explore the conformational landscape at the atomic level; this can be 

achieved either by (1) using PCA on the predicted atomic structures and creating trajectories of the 

atomic structure from this PCA low-dimensional space to visualize the motion of the protein complex; 

or (2) by using the conformational latent variable 𝑧𝑧𝑐𝑐 either in the original dimensions (where each 

dimension is considered as a single continuous motion) or in a low-dimensional space of 𝑧𝑧𝑐𝑐 (in the 

next section, we explain what dimensionality reduction methods we tested) to obtain possible 

trajectories of the protein complex. A second way to explore possible conformations is to perform 3D 

reconstructions. To do this, one can either group points (1) from the PCA low-dimensional space of 

the predicted atomic coordinates, or (2) from the low-dimensional space of the latent variable 𝑧𝑧𝑐𝑐. 

Each point in the low-dimensional space is considered an image, and close points correspond to 

similar conformations. 

Training: During training, the image log-likelihood and the 𝐾𝐾𝐿𝐿 divergence terms must be optimized. 

In addition to the loss computed from reconstructing images (mean squared error between the 2D 

projection of the predicted atomic coordinates and the given input image) and the 𝐾𝐾𝐿𝐿 divergence 

term, we add a loss term based on the difference between the center of mass of the reference atomic 

coordinates and the center of mass of the predicted atomic coordinates. The latter loss helps 

significantly in keeping the predictions physically plausible (without this center of mass term, the 

model does not train successfully). As explained in 143, we weigh the contribution of the 𝐾𝐾𝐿𝐿 term with 

a parameter (𝛽𝛽) in order to control the tradeoffs between the quality of predicted atomic coordinates 
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and the posterior approximation. Additionally, we weigh the contribution of the center of the mass 

term with a parameter 𝛾𝛾 = 10−3. Hence, the objective function per image is:  

 
−𝑙𝑙𝑜𝑜𝑔𝑔 �
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(27) 

Where the first term, the image log-likelihood, is optimized with the mean squared error 

between the input image and the image reconstructed by the decoder given 𝑧𝑧𝑖𝑖 ... 𝑧𝑧𝑛𝑛 sampled from the 

posterior 𝑃𝑃𝜃𝜃(𝑧𝑧|𝑥𝑥𝑖𝑖), and the second term is the weighted 𝐾𝐾𝐿𝐿 divergence between the posterior and the 

prior, and the third term is the mean absolute difference between the center of mass of the reference 

atomic structure 𝑋𝑋 and the aligned atomic structure 𝑋𝑋′ decoded from the latent variable 𝑧𝑧, 𝑀𝑀 is the 

mass of atoms, and it is assumed to be 1. We find that the initial rigid-body alignment parameters 

must be provided to train the model successfully.  

Noteworthy, the results of the experiments with synthetic datasets were obtained using a 

potential energy term instead of the center of mass, which restricted the movement in the tests with 

experimental datasets. 

Inference: Once the network is trained, we first predict the 32-dimensional latent representation for 

each new image, then the predicted atomic coordinates (the values of delta added to the given 

reference atomic coordinates). Afterward, we perform 3D reconstructions or produce molecular 

movies using either a lower dimensional latent representation or a lower dimensional representation 

of the predicted atomic coordinates to visualize the conformational changes. However, in our 

experiments, we use the lower dimensional latent representation because the 𝛽𝛽 parameter selected 

penalizes the reconstructions and affects the quality of the predicted atomic coordinates. 

2. Results 
This section presents the experiments and discusses the results of several experiments we 

conducted on simulated and experimental data. 

Performance of the method on simulated data 
This section describes the experiments and results obtained on synthetic datasets. 

Dataset simulation model 
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We use an NMA-based image generation approach to generate a realistic synthetic cryo-EM 

image set. To synthesize the images, we (1) displace the atomic model using a combination of a set 

of lower-frequency non-rigid-body normal modes (different amplitudes of normal modes were used 

depending on the complex), (3) rotate and shift each displaced atomic model with random angles and 

shifts and (4) project to a 2D single particle image, (5) apply a CTF model and add noise as explained 

in chapter 2.  

The rotations are represented by Euler angles that follow the ZYZ angular convention, with 

the first and third rotation angles (around the z-axis) between 0° and 180° and the second rotation 

angle (around the y-axis) between 0° and 360° (random uniform angular distribution). The shifts were 

[-5, +5] pixels in the x and y directions (random normal shift distribution). In the synthetic 

experiments of this method, we used an SNR of 0.1, and the CTF was simulated for a 200-kV 

microscope with a spherical aberration of 2 mm and a defocus of -0.5 µm. The size of the synthesized 

images and the pixel size was 128 × 128 pixels. 

Adenylate kinase chain A (4AKE) 
This experiment aims to retrieve the ground truth of continuous conformational variability 

from a synthesized dataset by training the proposed approach (Cryo-VIT) in an unsupervised fashion. 

Also, we would like to reproduce the results obtained with the network trained in a supervised manner, 

described in Chapter 4.  We first conducted an experiment to test the ability of the method to retrieve 

the conformational heterogeneity when the orientation and shifts are precise. Therefore, we used the 

synthesized 10,000 images set of the supervised experiment, illustrated in Chapter 4, generated using 

amplitudes of normal modes 7-9. However, instead of using the original size of images, 128 × 128 

pixels, the images are down-sampled to 64 × 64 pixels to reduce the processing time of the projection 

module. Then we trained our neural network on 8,000 images for 60 epochs using the ground truth 

rigid-body parameters and the reference atomic coordinates 4AKE used to synthesize the images and 

trained to determine only the conformational heterogeneity without performing a refinement of the 

rigid-body parameters. After training, we inferred on 2,000 images that the network did not use in 

training to predict the corresponding atomic coordinates. 

Then, we applied a PCA on the predicted 32-dimensional latent representation to visualize the 

2D conformational space. Figure 43.a  illustrates the ground-truth amplitudes of normal modes 7-8 

used to add heterogeneity to synthesize the images. Figure 43.b illustrates the k-means clustering in 



94 
 

10 clusters on the predicted 2D conformational space alongside each cluster's centroid atomic 

structures. Indeed, the predicted conformational heterogeneity follows the ground-truth continuous 

conformational transition introduced by a relationship between the normal mode amplitudes when 

synthesizing the images, as shown in Figure 43.b. Although it is possible to produce 3D 

reconstructions for each cluster, here, we draw ten centroids of each group to visualize the 

conformational variability at the atomic level for straightforward qualitative assessment (compare 

with Figure 40). 

 

 

 

 

Figure 42 The predicted conformational variability for Chain A of AK synthetic dataset with 
unsupervised cryo-ViT. a 2D scatter plot of amplitudes of normal mode 7-9 used to synthesize the 
images (a) 2D conformational space obtained from PCA on the predicted 32-dimensional latent 
space with cryo-ViT from synthetic AK data, colored by the clusters obtained from K-means. b) 
Atomic coordinates displayed in side, forward and top view obtained from the centroid of each 
class of K-means. 
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The RMSDs between the inferred and ground-truth aligned atomic coordinates are shown in 

Table 11 . Comparing Table 11 and Table 10, it is evident that unsupervised cryo-ViT improved the 

amplitude of the extracted conformational variability.  

Tmr ABC exporter (6RAH) 
This experiment aims to retrieve the ground-truth continuous conformational variability from 

a synthesized dataset by training the proposed approach (Cryo-VIT) in an unsupervised fashion. For 

this experiment, we synthesized 20,000 images of size of 128 × 128 pixels of Tmr ABC exporter 

(PDB:6RAH) where the pixel size was 2.154 × 2.154 Å. To synthesize images with conformational 

heterogeneity, we use the same data synthesis protocol used in DeepHEMNMA using only the two 

first lowest normal modes (modes 7-8) following: 

 𝑞𝑞7(𝑜𝑜) = −150 ∙ 𝑜𝑜,   𝑞𝑞8(𝑜𝑜) = 150 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛  (𝜋𝜋 ∙ 𝑜𝑜) 28 
 

where 𝑜𝑜 is a random variable uniformly distributed between 0 and 1. We conducted two 

experiments. In the first experiment, the goal was to test the ability of our approach to retrieve the 

conformational heterogeneity when using the ground truth rigid-body parameters; therefore, we used 

the ground truth rigid-body parameters and trained our neural network on 10,000 down-sampled 

images of size 64 x 64 pixels for 60 epochs to determine only the conformational heterogeneity 

without performing any rigid-body alignment parameters refinement. In the second experiment, the 

goal was to test the ability of cryo-VIT to determine the conformational variability in the presence of 

rigid-body parameters estimations errors, and thus, we trained our neural network to retrieve the 

conformational heterogeneity and refine the rigid-body parameters simultaneously. Hence, we used a 

random Gaussian variable to introduce an angular error with the following parameters μ =  0,σ =

RMSD Aligned atomic coordinates 

[Å] 

Mean Std 

Inferred vs. Ground-truth  0.8 0.6 

Table 11 Mean and standard deviation (Std) of the distance between inferred and ground-truth 
atomic coordinates (predicted on 2000 images), expressed in terms of RMSD. 
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 3 to the ground truth angles, and a random Gaussian error with 𝜇𝜇 =  0,𝜎𝜎 =  2 to the ground truth 

shifts. 

In both experiments, a continuous distribution of conformational variability is estimated, 

globally similar to the ground truth (Figure 44.a) conformational variability introduced by a 

relationship between the normal mode amplitudes when synthesizing the images. The results show a 

slightly less compact distribution with some outliers in the second case, as shown in Figure 44.c. This 

was expected due to the errors added to the rigid body parameters. 

Figure 43 The predicted conformational variability for Tmr ABC exporter synthetic dataset with 
cryo-ViT. a the amplitudes of normal mode 7-8 used to synthesize the images.  b The 2D 
conformational space obtained by applying PCA to the predicted 32-dimensional latent 
representation for the network trained with ground-truth rigid-body alignment parameters. c The 
2D conformational space obtained by applying PCA to the predicted 32-dimensional latent 
representation for the network trained to refine the rigid-body alignment parameters.d Atomic 
model sampled from the 2D conformational space b.  e Atomic models sampled from the 2D 
conformational space c. 
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Figure 44.b shows the 2D conformational space obtained by applying PCA on the predicted 

32-dimensional latent representation for the network trained with ground-truth rigid-body alignment 

parameters. Figure 44.b shows the 2D conformational space obtained by applying PCA on the 

predicted 32-dimensional latent representation from the network trained to refine rigid-body 

alignment parameters. Figure 44.d shows 50 atomic models sampled from a trajectory of the 2D 

conformational space where the network was trained using ground-truth rigid-body alignment 

parameters (Figure 44.b). Figure 44.e shows the same 50 atomic models but sampled from the 2D 

conformational space of the experiment where the network was trained to refine rigid-body alignment 

while learning the conformational heterogeneity (Figure 44.c). comparing the atomic models in 

Figure 44.d-e, one can notice that the network can predict the conformational variability in the 

presence of 3 degrees of orientations errors and 2 pixels of shifts.  

Performance of the method on Experimental data 
To test our method, we consider two publicly available EMPIAR datasets, each exhibiting 

different types of heterogeneity. The observed variability is well-known in each case, validating the 

method. 

Yeast 80S Ribosome 
In this experiment, we use the same Yeast 80s ribosome used in DeepHEMNMA experiment. 

The goal is to check if we obtain coherent results with what was already published 156 and the finding 

of DeepHEMNMA, allowing quantitative comparative analysis. The most significant motion in this 

data is the rotation of the two sub-units, the 40S, and 60S, which is related to the presence and absence 

of an additional tRNA in one of the conformations.  As highlighted in DeepHEMNMA experiments, 

the orientations and shifts were provided with the images and estimated using FREALIGN 159. Two 

atomic models, 3j77 and 3j78, were fitted into the provided density maps, EMD-5977 nonrotated 

conformation with two tRNA and EMD-5976 rotated conformation with one tRNA, respectively. 

Since unsupervised cryo-ViT needs the initial rigid-body alignment parameters beforehand, we 

trained unsupervised cryo-ViT for 60 epochs on 10,000 down-sampled images (size 128 × 128 pixels) 

using the rigid-body alignment parameters estimated by FREALIGN, together with the provided 

atomic model 3j78 (as the reference model). After training, we performed the inference on 10,000 

new images that were not used during training. As mentioned before, the conformational space can 
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be extracted either from the latent representation or a low-dimensional representation of the predicted 

atomic coordinates. 

 Hence, we applied PCA on the 32-dimensional latent representation of the predicted 10,000 

images and explored the first two components, as shown in Figure 45. Figure 45.a illustrates the first 

dimension of the latent space alongside the obtained 3D reconstructions. The 2D PCA space obtained 

for the set of 10,000 test images was split along the first principal axis into two groups of images, and 

two reconstructed maps were produced using 1,000 particles per map following the first axis of the 

latent space. The resulting structures show a slight rotation of the two sub-units, the 60S and 40S. 

The amplitude of the motion extracted by the neural network is relatively small compared to 

the motion learned by DeepHEMNMA. We suspect that the size of the data set used to train the 

network is too small to accurately learn the rotation conformation amplitude. Additionally, the image 

size of 64 x 64 pixels and the size of the atomic model may limit the quality of the features learned 

by the network.  More experiments will be performed in the future to improve the results for this 

specific dataset. 
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Transmembrane TMEM16F 
Dataset: In this experiment, we used the public dataset consisting of transmembrane ion channels, 

namely TMEM16F, in which the channel is activated by calcium binding. To collect such dataset, 

Feng et al.163 prepared cryo-EM experiments using different 𝐶𝐶𝑎𝑎+2 conditions to resolve 

TMEM16F’s 𝐶𝐶𝑎𝑎+2 bound and unbound conformations and their effect on lipid scrambling. The 

dataset consists of a stack of images of 256 × 256 pixels with a pixel size of 1.059 Å. Moreover, 

RELION 72 was used to process 1.2 million images, and only 13%  of the particles (170,827) were 

kept and used to generate the final reconstruction of the 𝐶𝐶𝑎𝑎+2-bound conformation provided with the 

images at a resolution of 3.5 Å. Figure 46 shows a representation of the TMEM16F conformational 

changes from the closed to open states in the absence and presence of 𝐶𝐶𝑎𝑎+2. 

Figure 48 conformations of transmembrane TMEM16F. a Schematic representation of the TMEM16 
closed and open states in the absence and presence of 𝐶𝐶𝑎𝑎+2. b Closed and open states of the helix 
TM6. Adapted from 164 
 

In this work, we repeat the same experiment established in Cryo-BIFE 98. The goal was to 

extract the 𝐶𝐶𝑎𝑎+2-unbound state from the 13% particles used to generate the averaged reconstruction 

of the 𝐶𝐶𝑎𝑎+2 bound conformation, as demonstrated 98. We used the same setup as the previous systems 

in this experiment to train the neural network. 

Here, we used the rigid-body alignment parameters provided with the data, estimated using 

RELION. First, we down-sampled the images to 64 × 64 pixels and trained the network using 15,000 

images for 60 epochs. As the reference model, we used the atomic model (PDB:6p46) fitted to the 

Figure 47 a) 2D conformational space obtained from PCA of the low dimensional latent 
representation. b) superposition of two 3D reconstructions obtained by grouping images of two 
clusters c) 3D reconstruction obtained by grouping images from cluster 1, d) 3D reconstruction 
obtained by grouping images from cluster 2. 
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provided averaged reconstruction. Furthermore, we use only the 𝐶𝐶𝛼𝛼 atomic model to simplify and 

speed up the image projection step. After training, we performed the inference on 20,000 new images 

(not used during training). Then, we applied PCA to reduce the latent representation from 32 to 2 

dimensions to explore the obtained conformational variability. We then grouped the images into two 

clusters, each reconstructed in 3D. The observed conformational differences are coherent with the 

known states, as demonstrated in 98 and shown in Figure 47.  

The 2D PCA space obtained for the set of 20,000 test images was split along the first principal 

axis into two groups of images, one with 4,488 images and the other with 4,394 images. The two 3D 

reconstructions obtained from these two groups (Figure 47.A-F) indicate two different average 

conformations, with a closed hydrophilic groove and lipid-conductive cavity (Figure 47.A,D)  and an 

open hydrophilic groove and lipid-conductive cavity (Figure 47.B,E). The reconstructions were 

obtained using RELION metadata files from EMPIAR-10278 (Ca+2 bound conformation) and 

EMPIAR-10279 (Ca+2 unbound conformation)163 (Figure 47.G,J and Figure 47.H,K) show 

similarity with those obtained with our neural network. It is worth mentioning that the two 

reconstructions from RELION classification were obtained using 170,827 and 324,627 images 

(related to EMD-20244 and EMD-20245 maps), respectively, whereas the 3D reconstructions were 

obtained using a much smaller number of images with our method.  

Moreover, we validated the findings of 98, where the network successfully extracted the  𝐶𝐶𝑎𝑎+2-

unbound state from the dataset that mainly was used to produce the 𝐶𝐶𝑎𝑎+2-bound state. However, the 

bending of 𝛼𝛼-helices representing the channel bending inside the membrane as demonstrated in 163 

and presented in EMD-20244 and EMD-20245 maps, were not resolved due to the low-resolution 

maps reconstructed from the predicted conformational space (Figure 47.A-B). As the channel is 

covered by the nanodisk, more images are needed to reconstruct high-resolution maps to visualize 

the 𝛼𝛼 helices bending, more specifically, the TM6 𝛼𝛼 helix. 

This experiment demonstrates that the neural network can be useful for extensive analyses of 

conformational variability of biomolecular complexes but that larger sets of images than those used 
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here may be needed to train the neural network for better accuracy of learning and higher resolution 

3D reconstructions of the different conformational states.  
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3. Discussion  
This chapter introduced cryo-ViT, an unsupervised end-to-end neural network approach to 

studying the continuous conformational variability of biomolecular complexes from single-particle 

cryo-EM images. The neural network aims to learn a continuous conformational landscape from cryo-

EM images. Unsupervised cryo-ViT determines the corresponding atomic coordinates variation of 

the biomolecular complex for each single-particle image. Initial rigid-body alignment parameters can 

be obtained with a standard discrete classification method. Then, these rigid-body alignment 

parameters are refined while training the neural network to learn the atomic coordinates variation 

from images. Unsupervised cryo-ViT is a VAE, where the encoder is a ViT feature extractor, and the 

decoder is an MLP. The trained network is then used to predict the parameters from the remaining 

images (unseen during the training). Finally, the conformational landscape is obtained by mapping 

either the inferred atomic coordinates onto a lower-dimensional space or by mapping the latent 

representation onto a lower-dimensional space, allowing 3D reconstructions using the refined angles 

and shifts. Also, this space allows animations of a model displacement and identification of possible 

conformations. 

We detailed this new approach and highlighted its potential with synthetic and experimental 

data. The validation of unsupervised cryo-ViT is still a work in progress and requires more 

investigation (e.g., the use of larger datasets for training and larger images). Unsupervised cryo-ViT 

software will be publicly available as part of ContinuousFlex27 plugin for Scipion V3165.  

Figure 49  2D conformational space obtained from PCA (first two component shown) of 32-
dimensioanl latent variable predicted for 20,000 cryo-EM images of TMEM16F complexes 
from EMPIAR-10278, and two average conformations of TMEM16F obtained by 3D 
reconstruction by Cryo-ViT and original RELION classification results. 
A-B Forward view of two reconstructions obtained from the conformational space from which 
groups of 4,488 and 4,394 images were used for the reconstructions.    C the superposed 
reconstructions from A and B.  
D-E Top view of the same two reconstruction from A and B. F the superposed reconstructions 
from D and E.  
G-H Forward view of two reconstructions obtained using RELION parameters for 170,827 
and 324,627 images resulting in EMD-20244 and EMD-20245 maps, respectively. I the 
superposed reconstructions from G and H.  
J-K Top view of the same two reconstruction from G and H. L the superposed reconstructions 
from J and K.  
M The superposition of reconstruction A with reconstruction G. N The superposition of 
reconstruction B with reconstruction H. P The superposition of reconstruction D with 
reconstruction J. Q The superposition of reconstruction E and K. 
O-R superposition of atomic structures (PDB: 6p46 and PDB:6p47) of TMEM16F. 
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Chapter 6: Software contributions 

DeepHEMNMA software is publicly available as part of the cryo-EM/ET data processing of 

the open-source software package ContinuousFlex27,166, which is also available as a plugin of Scipion 

software165 whose backend is based on Xmipp software167,168. On the other hand, Cryo-ViT is under 

in-depth tests and will be integrated into ContinuousFlex after finalizing all the experiments 

(validation). 

This chapter presents the software development contributed to ContinuousFlex software 

package during the work on this thesis. 

1. ContinuousFlex 
ContinuousFlex is an open-source software package designed for conformational 

heterogeneity analysis of macromolecules by conducting an exhaustive analysis of their continuous 

conformational variability in cryo-EM/ET data. It also provides methods for MD-simulation-based 

flexible fitting of cryo-EM maps and cryo-EM images with atomic models. ContinuousFlex is 

available as a plugin of Scipion. This pluginization allows for better maintenance, faster development, 

and more frequent releases of bug fixes and developed methods. As a plugin of Scipion, 

ContinuousFlex enables reproducible research, as all the data processing steps used in experiments 

are automatically stored on the disk (with their parameters) and can be reproduced at any moment 

using the same or modified parameters. Additionally, the project containing all the data processing 

steps can be directly uploaded to EMPIAR, as allowed by Scipion166. 

2. HEMNMA and DeepHMEMNA in ContinuousFlex 
ContinuousFlex allows performing all the steps of HEMNMA, as shown in Figure 47. The 

steps performed through the graphical interface are as follows: 

1- Importing an atomic structure or an EM map. If an EM map is imported, it is converted to a 

pseudoatomic structure.  

2- Performing NMA. 

3- Reminding the user that HEMNMA software may also be used for NMA and visualization only.  

4- Importing images, synthesizing test images, and resizing the images. We note here that the 

protocol "Synthesize particles" provides test data for the method and is not a part of data 
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processing. Whereas the protocol "Resize images" is an optional data preprocessing that can be 

useful if the size of images is too large. 

5- Performing rigid-body and elastic alignment of images based on NMA. 

6- Obtaining and analyzing the conformational space based on the alignment result. 

Figure 51 Graphical interface of HEMNMA in ContinuousFlex showing the use of deep 
learning in combination with HEMNMA for faster data processing (DeepHEMNMA method). 
Green box: input dataset of single particle images. Red boxes: HEMNMA steps. Blue boxes: 
Additional steps required to accelerate HEMNNA with deep learning. Figure 52 The graphical 
interface of HEMNMA in ContinuousFlex. The green box represents the input single-particle 
images. The red branch is for an input reference choice as an atomic structure, whereas the 
blue branch is an input reference choice for an EM map. 
 

             
           

              
          

Figure 50 The graphical interface of HEMNMA in ContinuousFlex. The green box 
represents the input single-particle images. The red branch is for an input reference choice 
as an atomic structure, whereas the blue branch is an input reference choice for an EM 
map. 
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DeepHEMNMA is part of the Continuousflex plugin, incorporated via optional steps of 

HEMNMA data processing pipeline, as shown in Figure 2. These optional steps allow:  

• Splitting an input single particle dataset into training/inference sets  

• Performing HEMNMA (up to step 5/6 in Figure 1) on the training set.  

• Training DeepHEMNMA on the results of HEMNMA.  

• Using DeepHEMNNA to produce results on the inference set.  

• Obtaining and analyzing the conformational space based on HEMNMA and DeepHEMNNA 

results for the complete input set.  
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Chapter 7. Discussion and perspectives 

Among the various approaches proposed in the literature, deep learning has emerged as a 

technique that could revolutionize cryo-EM data analysis. Generative deep learning was recently 

extensively used in the context of continuous conformational variability analysis, in combination with 

standard cryo-EM methods or as a standalone approach. Although generative deep learning helped 

overcome several challenges of standard cryo-EM methods and offered flexibility in dealing with 

discrete and continuous conformational variability, it still suffers from a few challenges that limit its 

potential. One of the main drawbacks of current deep learning approaches is a manual selection of 

hyperparameters, such as the learning rate, the activation functions, and when to stop the training, 

which is prone to subjectivity. Hyperparameter optimization through automated machine learning 

(AutoML) approaches169,170, such as grid search171 or Bayesian optimization172 can be helpful in to 

search for the best hyperparameter values to achieve the highest accuracy. 

With the growing interest in the on-the-fly 173 approaches, several single-particle cryo-EM 

steps required before conformational variability analysis have been automated to minimize human 

interference. However, most conformational variability analysis approaches, including generative 

deep learning, are time-consuming iterative processes, and in the majority of cases, human 

interference is needed to validate the findings. Therefore, fully automating the conformational 

variability analysis step is an important direction for future work in the cryo-EM field. This thesis 

used deep learning to develop new methods for continuous conformational variability of single-

particle cryo-EM data. Two supervised learning methods (DeepHEMNMA and supervised cryo-ViT), 

and one unsupervised learning method (unsupervised cryo-ViT) have been developed. 

DeepHEMNMA uses a convolutional neural network to accelerate HEMNMA by training the 

network in a supervised manner to learn the values of a set of continuous variables (specifying the 

rigid-body and conformational parameters) that were previously determined by HEMNMA, for each 

single particle image. The parameter estimation by HEMNMA is based on a prior simulation of the 

motion direction by NMA. NMA provides information on the simulated motion direction by a set of 

vectors (called normal modes) along which atoms move, but it does not provide information on the 

motion amplitude. The normal-mode amplitudes are estimated for each image by HEMNMA through 

image alignment with a given 3D model of the molecular complex under study (the given 3D model 
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is either an atomic model or an EM map). The image normal-mode amplitudes determine the 

conformation of the complex in the image, and the conformations obtained from a given set of images 

determine the conformational space. The combination of HEMNMA with a CNN makes the 

conformational space determination faster.  

Although DeepHEMNMA can simultaneously determine the normal-mode amplitudes and the 

rigid-body parameters, selecting the representative normal modes for an unknown motion is 

challenging, and this can lead to misrepresentation of the actual movement of the bimolecular 

complex in the data. Recently, our team developed another approach that, similarly to HEMNMA, 

combines simulation with image analysis. This new hybrid approach is named MDSPACE and uses 

a combination of NMA and classical MD simulation to obtain the continuous conformational 

landscape from single-particle images. An advantage of MDSPACE with respect to HEMNMA is its 

flexibility in exploring motion directions around those fixed by the given set of normal-mode vectors. 

A disadvantage of MDSPACE is a slow image processing based on MD simulation. Therefore, in this 

thesis, we have worked on developing a supervised deep learning approach (currently named 

supervised cryo-ViT) that could imitate image analysis by MDSPACE to speed it up.  

This supervised cryo-ViT learns the relationships between a set of images and the 

corresponding atomic coordinates determined by MDSPACE from these images prior to learning. 

The number of the parameters to learn in the case of supervised cryo-ViT is much larger (three times 

the number of atoms) than in the DeepHEMNMA case (2 shifts, 3 angles, and M normal-mode 

amplitudes, where M is much smaller than the number of atoms). The supervised cryo-ViT method 

has shown encouraging results in the experiments performed during this thesis. However, additional 

experiments are needed to show its efficiency with experimental data. As the development of the 

MDSPACE method (Ph.D. thesis of Rémi Vuillemot) was done in parallel with this thesis work, and 

the MDSPACE validations were finalized only very recently (the article published in January 2023), 

the time allocated for this thesis did not permit to go further with the validations of the supervised 

cryo-ViT method. Instead, considering recent advances in unsupervised deep learning for cryo-EM, 

we considered the possibility of altering the supervised cryo-ViT method to make it learn in an 

unsupervised fashion. In this context, a new approach was developed recently, currently named 

unsupervised cryo-ViT.  



108 
 

The unsupervised CryoViT is an unsupervised VAE that estimates the corresponding displaced 

3D atomic coordinates for every single-particle image. The conformational heterogeneity analysis 

with this method is data-driven; it is not helped by molecular mechanics simulation, but it requires 

an initial atomic 3D model (the atomic displacements with respect to this initial model are estimated 

for each single particle image).  The results of the heterogeneity analysis can be further analyzed 

either from the estimated latent representation of the data or from the lower-dimensional 

representation of the estimated (predicted) atomic coordinates. The current version of the method 

learns to refine the given initial values of the rigid-body alignment parameters while learning to map 

the images to 3D atomic coordinates.  

DeepHEMNMA was tested using synthetic and experimental yeast ribosome 80S data and 

produced results coherent with previous findings. Unsupervised Cryo-ViT showed encouraging 

results on synthetic and experimental datasets, but more experiments, and potentially improvements 

of the method, are required before the method can be used in practice. With the experimental dataset 

of yeast ribosome 80S, unsupervised cryo-ViT showed that it detects the rotation between the two 

ribosome subunits, but the obtained rotation amplitude is smaller than the expected rotation amplitude 

(from the literature and obtained by DeepHEMNMA). With the experimental dataset of 

transmembrane TMEM16F channel, unsupervised cryo-ViT detected conformational changes 

coherent with previous findings on this complex, although at a lower resolution. The lower resolutions 

of the reconstructed conformational states, in both cases TMEM16F and 80S ribosome, is likely due 

to the use of much smaller subsets of images for 3D reconstructions in this work. The experiments 

with unsupervised cryo-ViT presented in this thesis show the potential of the unsupervised cryo-ViT 

method. Once the method is fully tested and possibly improved, benchmarking should also be done 

on other complexes used in the literature, such as Tri-snRNP spliceosome and Spliceosome on precursor 

mRNA, on which other cryo-EM methods have been tested 6,8,113.  

To obtain a low-dimensional conformational landscape, DeepHEMNMA and Cryo-ViT use a 

dimensionality reduction method, typically PCA, on their output. For instance, one can explore the 

conformational landscape in terms of animations of molecular flexibility by displacing the atomic 

coordinates of the reference 3D model in this conformational landscape (interpolation). Another way 

to explore the conformational landscape is to group points that correspond to similar conformations 

in this conformational landscape to produce 3D reconstructions. DeepHEMNMA and Cryo-ViT allow 
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the discovery of both more dominant and less dominant conformations as the conformational space 

describes the full conformational variability and allows an interactive selection of denser and less 

dense regions, respectively. This conformational space allows for deriving models of continuous and 

discrete conformational changes in the case of Cryo-ViT (e.g., yeast ribosome 80S binding with 

different tRNAs, transmembrane TMEM16F channel binding with 𝐶𝐶𝑎𝑎2+), and only those that can be 

described by normal modes in the case of DeepHEMNMA (e.g., ribosome binding with different 

tRNAs).  

DeepHEMNMA and Cryo-ViT are deep learning-based approaches that suffer from the 

manual selection of hyperparameters, which is a limitation of all deep learning approaches proposed 

for cryo-EM so far. 

The dependency of DeepHEMNMA on HEMNMA can be crucial as it relies on a partly 

subjective selection of a small subset of normal modes (usually, up to 6 modes are selected to work 

with HEMNMA). Different selections of normal modes may yield different results of the 

conformational variability analysis in the images. The selection of the set of normal modes is usually 

done based on their collectivity and frequency (the lowest-frequency and highest-collectivity normal 

modes are usually selected). However, some preliminary knowledge on the conformational changes 

of the studied system can also be used to facilitate the selection, which introduces subjectivity. Cryo-

ViT overcomes this problem as it uses a standalone VAE without any strong prior about the 

conformational variability. However, Cryo-ViT suffers from the rigid-body pre-alignment bias, as it 

requires the initial orientation and shift parameter values to be determined beforehand. Using 

synthetic data, we have shown that Cryo-ViT was able to extract the conformational variability in 

presence of errors in the initial rigid-body alignment that was up to 3 degrees off the ground-truth 

alignment. However, in case of larger distances between the initial and ground-truth rigid-body 

alignments, Cryo-VIT may not be efficient. On the contrary, DeepHEMNMA does not require any 

initial rigid-body prealignment (an exhaustive search at each iteration of the search for the 

conformational parameters in HEMNMA determines the rigid-body parameter values). 

A possible future work regarding DeepHEMNMA is to extend it to analyze cryo-electron 

tomography (cryo-ET) 3D subtomogram data. An advantage of cryo-ET over single-particle cryo-

EM is that it allows analyzing the conformational variability of the complexes in their cellular 

environment. Our team has recently proposed an extension of HEMNMA to analyze continuous 
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conformational variability of molecular complexes in cryo-ET subtomograms (the method named 

HEMNMA-3D 131). In this context, a version of DeepHEMNMA to process 3D volumes instead of 

2D images could be developed, combining HEMNMA-3D with a CNN. However, cryo-ET still 

produces small data sets compared to single-particle cryo-EM, but this may change with instrumental 

advances. At present, trials to use DeepHEMNMA on 2D per-particle-tilt images (larger data sets) 

instead of 3D subtomograms could be attempted, although the outcome is uncertain because of 

extremely high noise in the tilt images. 

Regarding Cryo-ViT, the work with supervised Cryo-ViT could be continued in order to allow 

the acceleration of MDSPACE 29. Regarding unsupervised Cryo-ViT, a near-future work direction is 

to improve its robustness and generalization and improve the network’s ability to refine the rigid-

body alignment parameters. A mid-future work is to prevent the rigid-body alignment bias by 

allowing a simultaneous estimation of conformations and rigid-body alignment parameters 

(overcome the need for an initial rigid-body alignment). Another future direction would be to explore 

the potential of Cryo-ViT to analyze continuous conformational variability either from cryo-ET 

subtomograms (an extension of Cryo-ViT to work with input 3D volumes) or from cryo-ET per-

particle-tilt images (an adaptation of Cryo-ViT to work with higher levels of noise or to include input 

data preprocessing to reduce noise). 
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