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Magnetic resonance Imaging (MRI) is a popular non-invasive medical imaging technique to understand structures of tissues in the human body. However, its reach and use is strongly limited by long acquisition times, as the data acquisition is segmented in time and performed in the Fourier domain of the image or k-space. Compressed sensing theories enabled shorter scan times by sensing less compressible information, particularly by adopting a variable density sampling (VDS) in k-space : i.e. the lower frequencies (center of k-space) have to be sampled more densely than the higher at its periphery. Efficient ways to achieve such VDS is through the use of non-Cartesian sampling, where k-space is sampled along curves rather than conventional gridded lines. Essentially, this involves the optimization of 1) the sampling pattern in k-space under MR hardware constraints and 2) image reconstruction from undersampled k-space data.

In this thesis, we address the above issues in the context of accelerated 3D MRI. Firstly, we extend the earlier developed SPARKLING algorithm to 3D, which results in hardware compliant non-Cartesian trajectories that meet a user specified target sampling density (TSD) in k-space. Secondly, we tackle the issue of off-resonance artifacts in these SPARKLING trajectories through a modification of the underlying algorithm, to allow for signal recovery at regions where the off-resonance is high. Thirdly, we shift to data-driven learning based approach to learn the TSD for SPARK-LING trajectories. Last but not least, we propose a novel deep learning based approach to learn hardware compliant k-space sampling trajectories jointly with a corresponding image reconstruction network. Overall, our efforts in this thesis allowed for an acceleration of up to 20x in 3D MRI scans with a significant reduction in off-resonance artifacts, allowing to image with minimum degradation in reconstructed image quality. व ा ददा त वनयं वनया ा त पा ताम् । पा वा नमा ो त धना म ततः सु खम् ॥ ५ ॥ knowledge gives humility & discipline, from these comes worthiness to render good deeds, & from that comes joy! -Saral Hitopadesha, Sanskrit Fables © Chaithya G R 2023 in the completion of this thesis. First and foremost, I extend my deepest appreciation to my parents for their unwavering support, encouragement, and belief in my abilities throughout this journey. I am profoundly indebted to my supervisor, Philippe Ciuciu, for his invaluable guidance, mentorship, and dedication to my academic growth. I extend my sincere thanks to Alexandre Vignaud and Frank Mauconduit
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Résumé : L'imagerie par résonance magnétique (IRM) est une technique d'imagerie médicale non invasive très répandue qui permet de comprendre les structures des tissus du corps humain. Cependant, sa portée et son utilisation sont fortement limitées par les longs temps d'acquisition, car l'acquisition des données est segmentée en temps et réalisée dans le domaine de Fourier de l'image ou espace k. Les théories d'échantillonnage compressif ont permis d'accéder à des temps d'examen plus courts en collectant moins d'information compressible, en particulier en adoptant dun échantillonnage à densité variable (EDV) dans l'espace k : les basses fréquences (au centre de l'espace k) doivent être échantillonnées plus densément que les hautes fréquences situées à la périphérie de celui-ci. Un moyen efficace d'obtenir un tel EDV est d'utiliser un échantillonnage non cartésien, où l'espace k est échantillonneur le long de courbes plutôt que de lignes alignées sur une grille cartésienne. Essentiellement, cela implique l'optimisation 1) du modèle d'échantillonnage dans l'espace k sous les contraintes matérielles de l'IRM et 2) la reconstruction de l'image à partir des données souséchantillonnées de l'espace k.

Dans cette thèse, nous abordons les questions ci-dessus dans le contexte de l'IRM 3D accélérée. Tout d'abord, nous étendons l'algorithme SPARKLING développé précédemment à l'imagerie 3D, ce qui permet d'obtenir des trajectoires non cartésiennes conformes aux contraintes matérielles et fidèles à une densité d'échantillonnage cible (DEC) spécifiée par l'utilisateur dans l'espace k. Ensuite, nous abordons le problème des artefacts hors résonance présents au sein des trajectoires SPARKLING en modifiant l'algorithme sousjacent, afin de permettre la récupération du signal dans les régions où la hors résonance est élevée. Dans la dernière partie de la thèse, nous passons à une approche basée sur l'apprentissage piloté par les données pour apprendre la DEC pour les trajectoires SPARK-LING. Enfin, nous proposons une nouvelle approche basée sur l'apprentissage profond pour apprendre des courbes d'échantillonnage de l'espace k conformes aux contraintes matérielles conjointement avec un réseau de reconstruction d'images adapté. Dans l'ensemble, nos efforts dans cette thèse ont permis d'accélérer jusqu'à 20 fois les scans IRM 3D avec une réduction significative des artefacts hors résonance, permettant ainsi une dégradation minimale de la qualité des images reconstruites.

Résumé étendu en français

Contexte & motivations

Depuis son invention, la recherche de stratégies d'échantillonnage efficaces a constitué un défi majeur pour l'imagerie par résonance magnétique (IRM). La théorie du compressed sensing (CS) [Lus+ ] a donné un coup de fouet à cette quête en apportant des éclaircissements théoriques significatifs. Il a été prouvé et observé empiriquement que pour des acquisitions sous-échantillonnées et des signaux compressibles dans une base orthogonale, une mise en oeuvre efficace repose sur des trajectoires à densité variable dans l'espace k : Les fréquences les plus basses situées au centre de l'espace-k doivent être échantillonnées plus densément que les plus hautes à sa périphérie [Puy+ ; Cha+ ; Adc+ ; Boy+ ]. Des trajectoires non cartésiennes dans l'espace k (par exemple spirales, radiales, rosettes, etc.) [Ahn+ a; Mey+ ; Jac+ ; Nol ; Law+ ; Lus+ a] ont été proposées pour l'imagerie D accélérée et robuste au mouvement, avant l'existence des fondements théoriques de la CS. Bien qu'elles soient conformes aux contraintes matérielles du scanner sur les gradients, ces trajectoires n'échantillonnent pas l'espace k selon un Target Sampling Density (TSD) bien contrôlé. Par exemple, dans l'imagerie spirale, le respect de ces contraintes transforme une densité initialement prescrite en une autre [Cha , p. ]. Récemment, l'algorithme Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) [Boy+ ; Cha+ ; Laz+ ] s'est avéré capable de générer automatiquement des modèles d'échantillonnage non cartésiens optimisés compatibles avec les contraintes du matériel MR sur l'amplitude maximale du gradient et la vitesse de balayage. SPARKLING échantillonne de manière optimale l'espace k (voir [Puy+ ; Cha+ ]) avec une distribution contrôlée des échantillons (par exemple, Variable Density Sampling (VDS)) et une couverture localement uniforme de l'espace k.

Contributions

L'objectif principal de cette thèse est de concevoir et d'apprendre des trajectoires d'échantillonnage D dans l'espace k pour minimiser les artefacts et accélérer les acquisitions. A cet égard, nous nous concentrons d'abord sur l'extension et l'amélioration des trajectoires SPARKLING , puis nous utilisons les fondements de l'apprentissage profond pour apprendre des trajectoires d'échantillonnage de l'espace k compatibles avec le matériel. Les principales contributions et les objectifs de cette thèse de doctorat peuvent être classés dans les catégories suivantes :

Vers un algorithme d'étincelle entièrement D [Cha+ d]

En raison de Signal-to-Noise Ratio (SNR), l'imagerie D est préférée pour obtenir une imagerie isotrope à haute résolution (par exemple µm isotrope). À cet égard, de nombreuses approches ont été utilisées pour réduire efficacement l'échantillonnage de l'espace k en D. Certaines d'entre elles impliquent une combinaison d'une lecture dans la direction z avec un masque sous-échantillonné en D basé sur l'échantillonnage du disque de Poisson [Vas+ ]. D'autres tentatives de lectures D complètes ont été proposées, comme la trajectoire radiale D [Lar+ ], les cônes D [Ira+ ], les projections torsadées [Boa+ ] et les cônes radiaux hybrides [Joh ]. Cependant, ces trajectoires étaient principalement basées sur la paramétrisation d'une courbe d'échantillonnage dans l'espace k, et le motif d'échantillonnage final n'était pas optimisé en ce qui concerne la qualité de la reconstruction de l'image. Certaines études récentes ont exploré la manière d'optimiser le modèle d'échantillonnage [Dal+ ; Mir+ ; Kum+ ], mais n'ont pas inclus de critère d'échantillonnage clair afin de maximiser la qualité de la reconstruction de l'image. Bien que des méthodes comme [HK ; See+ ] utilisent la limite de Cramér-Rao pour les signaux épars [BE ] comme critère d'optimalité adapté, elles sont très exigeantes en termes de calcul, ce qui limite leur utilisation à l'environnement cartésien. D'autres méthodologies dans la littérature impliquent l'empilement d'une trajectoire D sous-échantillonnée comme l'empilement d'étoiles [Son+ ; Lo ], l'empilement de spirales [Ira+ ; The+ ] et l'empilement de D SPARKLING [Laz+ a].

Dans [Laz+ a], une approche locale de l'étincelle D a été proposée en concevant une trajectoire unique à l'intérieur d'un cône obtenu à partir d'une parcellation de l'espace sphérique D k. Ensuite, tous les cônes couvrant un plan d'élévation donné ont été remplis à l'aide de la réplication de la même trajectoire. Toutefois, cette méthode ne garantit pas un modèle d'échantillonnage localement uniforme aux limites des cônes, car le problème n'est résolu que localement.

La résolution globale du problème de l'étincelle en D est coûteuse en termes de calcul, avec une complexité d'ordre O(N 2 ), où N représente le nombre d'emplacements d'échantillonnage dans le modèle. Nous avons proposé une implémentation basée sur les méthodes multipolaires rapides (FMM) [Wan+ ; Fon+ a] qui nous a permis de concevoir des motifs d'échantillonnage avec jusqu'à 10 7 d'échantillons dans l'espace k, ouvrant ainsi la porte aux VDS en D. Nous avons comparé les implémentations multi-CPU et GPU et démontré que cette dernière est optimale pour l'imagerie D dans le régime d'acquisition à haute résolution ( µm isotrope). Enfin, nous avons montré que cette nouvelle optimisation pour l'étincelle D complète surpasse les stratégies d'empilement ou l'imagerie par projection torsadée D par le biais d'études rétrospectives et prospectives sur un fantôme NIST et des scanners cérébraux in vivo à Tesla. Globalement, la méthode proposée permet de réduire de , à , fois le temps de balayage par rapport à l'acquisition d'imagerie parallèle GRAPPA-à Tesla, sans compromettre la qualité de l'image.

Aborder les questions relatives aux scans prospectifs pour l'imagerie non cartésienne [Cha+ a; Cha+ c; Cha+ b; Cha+]

Après avoir étendu les trajectoires des étincelles à la D, un écart important a été observé dans la qualité de l'image reconstruite entre les simulations rétrospectives et les scans prospectifs réels (voir [Cha+ d, Fig. ]) dans le cas de l'imagerie pondérée par l'T * 2 . Un tel écart dans un contexte prospectif a été identifié comme étant dû à la présence d'un fort effet de hors-résonance et d'une décroissance dont les effets sont accumulés dans le contraste T * 2 -w en raison de la longueur des Echo Time (TE) utilisées pour améliorer la contribution de la susceptibilité. Cet effet est amplifié en imagerie non cartésienne et notamment en D SPARKLING car ces trajectoires ont des directions de lecture arbitraires, ce qui conduit à des incohérences locales dans l'espace k. Bien que ces artefacts puissent être corrigés [Sut+ ] sans nécessiter de balayage supplémentaire pour ∆B 0 map [Dav+ ], de telles corrections sont coûteuses en termes de calcul.

En outre, une autre limitation des trajectoires SPARKLING est que nous utilisons des contraintes affines TE, où nous limitons la trajectoire à passer par le centre de l'espace k au moment de l'écho pour obtenir des images au contraste d'imagerie cible requis. Il en résulte un suréchantillonnage important du centre de l'espace k par rapport au critère de Nyquist, qui peut être sous-optimal car les échantillons supplémentaires peuvent être affectés à des fréquences plus élevées, ce qui permet d'obtenir de meilleures reconstructions d'images avec des détails plus fins dans les structures.

Dans ce travail, nous abordons les deux problèmes décrits ci-dessus en modifiant la fonction de coût et l'ensemble des contraintes d'SPARKLING . Avec Minimized Off Resonance Effect (MORE)-SPARKLING , nous avons introduit une pondération temporelle dans le problème d'optimisation traditionnel d'SPARKLING qui prend en compte la nature temporelle des données échantillonnées. Dans Gridding of Low Frequencies (GoLF)-SPARKLING , nous avons incorporé les caractéristiques de l'échantillonnage cartésien dans le cadre d'SPARKLING grâce à des contraintes affines plus générales et à l'adaptation de TSD pour correspondre à ces contraintes de critères de Nyquist. Les données prospectives de l'espace k ont été acquises à Tesla sur des trajectoires fois plus rapides que la référence cartésienne entièrement échantillonnée. Grâce à des expériences in vivo, MORE-SPARKLING nous a permis de récupérer les pertes de signal observées sur les acquisitions originales de SPARKLING à des inhomogénéités de champ B 0 plus importantes. En outre, grâce à GoLF-SPARKLING , l'échantillonnage cartésien au centre de l'espace k a permis d'améliorer la qualité de l'image reconstruite en réduisant les artefacts.

TSD pour SPARKLING [CRC ]

L'une des limites de l'algorithme SPARKLING est la nécessité de définir un TSD en tant qu'entrée de l'algorithme. Dans nos études antérieures, nous nous sommes appuyés sur des méthodes heuristiques pour définir cette densité d'échantillonnage. Cette dernière a été paramétrée pour être radialement décroissante (sur la base de connaissances préalables issues des théories CS) et ses paramètres optimaux (décroissance, coupure) ont été recherchés sur une grille au cours d'études de reconstruction rétrospective dans lesquelles la qualité de l'image a été maximisée en fonction de trajectoires optimisées pour des densités de cible variées. Cependant, cette approche est trop coûteuse en termes de calcul. De plus, avec une densité de cible paramétrée, l'espace de recherche est trop contraint, ce qui nous empêche d'obtenir des schémas d'échantillonnage spécifiques à l'organe, au contraste de l'image ou à l'orientation. Une façon de résoudre ce problème consiste à apprendre les TSD à l'aide d'approches basées sur les données.

Dans [Kno+ ], les auteurs ont proposé une approche naïve pour choisir les TSD en faisant la moyenne des spectres de puissance de plusieurs images RM dans un ensemble de données. Cette méthode aboutit à des densités d'échantillonnage qui imposent un échantillonnage plus dense dans les basses fréquences. Dans [Kno+ ], les auteurs ont montré que cette approche est plus performante que le VDS standard et qu'elle reste robuste à la variabilité de l'anatomie et de l'orientation. Cependant, cette méthode se concentre uniquement sur l'ensemble des données d'IRM et ne dépend pas de la technique de reconstruction. Tous les algorithmes de reconstruction de l'IRM appliquent un a priori (comme la rareté dans le domaine des ondelettes ou du gradient de l'image). Les récents algorithmes de reconstruction par apprentissage profond (DL) [Kno+ ; Muc+ b; RCS ] ont appris des a priori plus complexes basés sur l'ensemble de données spécifiques à l'organe ou au contraste. Le TSD peut être plus efficace s'il prend en compte ces prieurs et impose des échantillons plus denses dans les régions où le degré d'incertitude associé à ces prieurs pour la reconstruction est plus élevé.

Plus récemment, des méthodes comme [She+ ; Bah+ a] apprennent le modèle d'échantillonnage pour l'IRM d'une manière axée sur les données tout en optimisant la qualité de l'image à l'étape de la reconstruction. Dans le cadre de l'apprentissage profond, LOUPE [Bah+ a] optimise conjointement la densité d'échantillonnage et les poids d'une architecture de réseau en U pour la reconstruction de l'image. Cependant, ces études restent limitées à l'échantillonnage cartésien.

Dans ce travail, nous utilisons la densité de cible obtenue par LOUPE comme entrée de l'algorithme SPARKLING pour générer des trajectoires non cartésiennes D SPARKLING. Nous réalisons des études rétrospectives et les comparons avec celles qui résultent d'autres densités telles que le spectre de puissance (log-)moyen sur l'ensemble des données de l'IRM rapide. Nous effectuons une reconstruction d'image en utilisant à la fois la technique CS et l'architecture NC-PDNet [RSC a] nouvellement développée, qui est un réseau neuronal déroulé à densité compensée pour la reconstruction non cartésienne de l'IRM. Nous concluons que la solution proposée (LOUPE+ D SPARKLING) surpasse les autres approches VDS en termes de qualité d'image.

Apprentissage conjoint du modèle d'échantillonnage de l'espace k et du réseau de reconstruction [CRC ; CC ; CC]

L'une des limites de l'algorithme SPARKLING est la nécessité de définir un TSD comme entrée de l'algorithme. Pour cela, nous avons appris la densité d'échantillonnage à l'aide de LOUPE [Bah+ a], et l'avons utilisée comme TSD pour l'algorithme SPARKLING afin de générer des trajectoires D SPARKLING [CRC ]. Cependant, la grille TSD a été apprise dans le domaine cartésien, alors que la trajectoire réelle optimisée n'était pas cartésienne. Comme cela pourrait conduire à des résultats sous-optimaux, il est nécessaire d'apprendre directement des trajectoires d'échantillonnage dans l'espace k conformes au matériel ainsi qu'un réseau de reconstruction d'images dans un cadre non cartésien.

À cet égard, de nouvelles méthodes [Wei+ ; Wan+ ; Ved+ ] ont été développées pour surmonter le besoin d'estimer un TSD, grâce à l'apprentissage conjoint direct des trajectoires d'échantillonnage de l'espace k non cartésien et de la reconstruction d'images RM d'une manière axée sur les données sur l'ensemble de données IRM rapide [Zbo+ ]. Dans [Wei+ ; Ved+ ], les auteurs ont appris conjointement les trajectoires PILOT et les paramètres U-net en tant que modèle de reconstruction pour débruiter l'image de base produite par l'adjoint de l'opérateur Nonuniform Fast Fourier Transform (NUFFT). Toutefois, cette méthode repose sur l'auto-différenciation de l'opérateur NUFFT, qui est imprécise numériquement comme observé dans [WF ], ce qui entraîne des minima locaux sous-optimaux. Cette sousoptimalité se reflète en fait dans la forme finale des trajectoires apprises, qui ne s'écartent que légèrement de leur initialisation. Dans BJORK [Wan+ ], les auteurs ont utilisé [WF ] pour obtenir une approximation jacobienne plus précise de l'opérateur NUFFT pour la rétropropagation. Les deux approches susmentionnées [Wei+ ; Wan+ ] ont appliqué les contraintes matérielles en ajoutant des termes de pénalité à la perte qui est minimisée pendant l'apprentissage. Bien qu'il s'agisse d'une option viable, elle nécessite le réglage d'un hyperparamètre associé à chacun de ces termes de pénalité dans la fonction de coût et ne garantit pas que les trajectoires optimisées respecteront strictement ces contraintes. En outre, ces termes de pénalité affectent les gradients globaux de la fonction de perte, ce qui entraîne une sous-optimalité des trajectoires.

Dans ce travail [CC], nous avons d'abord développé un modèle générique appelé PROjection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor (PROJeCTOR). Plus précisément, nous avons introduit une méthode qui apprend les trajectoires de l'espace k d'une manière axée sur les données tout en intégrant un algorithme de descente du gradient projeté [Cha+ ] afin de respecter les contraintes matérielles au cours de la phase d'apprentissage. Contrairement à BJORK, nous avons appris directement les trajectoires d'échantillonnage de l'espace k et utilisé la multirésolution [Leb+ ] similaire à SPARKLING pour limiter le nombre de paramètres entraînables à chaque étape. Nous avons ensuite comparé ces résultats PROJeCTOR à PILOT [Wei+ ] et BJORK [Wan+ ] dans Magnetic Resonance Imaging (MRI) D. Dans les études rétrospectives en D, nos nouvelles trajectoires PROJeCTOR présentent une qualité de reconstruction d'image améliorée avec un facteur d'accélération de fois sur l'ensemble de données IRM rapide avec des scores SSIM de près de , -, par rapport à la référence cartésienne correspondante et voient également un gain de -dB en PSNR par rapport aux méthodes antérieures de pointe. Dans un cadre plus contrôlé, nous avons montré l'importance de l'étape de projection lors de l'optimisation des trajectoires dans l'espace k et avons démontré sa supériorité sur les méthodes basées sur la pénalité comme PILOT et BJORK pour mettre en oeuvre les contraintes matérielles. Enfin, nous avons étendu l'algorithme à la D et, en comparant l'optimisation aux schémas de projection basés sur l'apprentissage, nous avons démontré que les trajectoires PROJeCTOR basées sur l'apprentissage conjoint et guidées par les données sont plus performantes que les méthodes basées sur un modèle comme SPARKLING, grâce à un gain de dB en PSNR et un gain de , en SSIM.

Schéma de thèse

Chapter : Introduction to Magnetic Resonance Imaging X introduit dans MRI la source du signal mesuré et la manière dont il est localisé. Par la suite, nous discuterons de la nécessité d'accélérer le balayage Magnetic Resonance (MR) et de certaines méthodes utilisées pour accélérer les balayages en MRI cartésien traditionnel.

Chapter : Compressed Sensing and Non-Cartesian MRI X introduit la reconstruction basée sur Compressed Sensing (CS) des données MRI. En outre, nous discutons de la nécessité d'échantillonner l'espace k avec VDS pour atteindre des facteurs d'accélération plus élevés, ce qui peut être réalisé en échantillonnant l'espace k le long des courbes à l'aide d'un échantillonnage non cartésien. Pour cela, nous présentons un cadre généralisé pour l'échantillonnage de l'espace k à l'aide de trajectoires et discutons de ses contraintes. Enfin, nous présentons quelques nouvelles trajectoires non cartésiennes d'échantillonnage de l'espace k proposées dans la littérature.

Chapter : Deep Learning for MRI se concentre sur certains principes fondamentaux et le formalisme de Deep Learning (DL). Nous présentons quelques architectures DL populaires et discutons des méthodes proposées dans la littérature pour reconstruire l'image MR à partir de données sous-échantillonnées de l'espace k. En outre, nous résumons également la littérature sur les techniques basées sur l'apprentissage pour optimiser les modèles et les trajectoires d'échantillonnage de l'espace k.

Nous nous concentrons ensuite sur les principales contributions de cette thèse.Dans Chapter :Optimizing full D SPARKLING trajectories, nous étendons l'algorithme SPARKLING à la D, ce qui nous permet d'accélérer le MRI dans toutes les dimensions. Cependant, de forts artefacts hors résonance ont été observés dans les études prospectives, car ces trajectoires optimisées avaient des directions de lecture arbitraires.

Pour remédier à ce problème, nous présentons dans Chapter :Reducing artifacts in SPARKLING nouvelles mises à jour de l'algorithme SPARKLING : MORE et GoLF.

Comme l'algorithme SPARKLING a besoin de TSD en entrée, dans Chapter :Learning sampling density for D SPARKLING nous présentons densités candidates différentes et montrons que la méthode LOUPE apprise en fonction des données fournit la meilleure TSD. Cependant, cette méthode implique une grille TSD, qui est apprise dans un cadre cartésien et utilisée par la suite pour générer des trajectoires non cartésiennes. Cette inadéquation dans les domaines d'apprentissage où la formation est effectuée dans un cadre cartésien et où le test est effectué dans un cadre non cartésien constitue un inconvénient majeur de cette méthode.

Ce problème est résolu par l'apprentissage direct des trajectoires de l'espace k dans Chapter :Learning trajectories with reconstructor, et nous soulignons la nécessité d'une étape de projection inspirée de SPARKLING pour éviter la sous-optimalité. Enfin, dans Appendix C:Software and Open Source Contributions, je discute de certains progiciels développés au cours de la thèse et de certaines contributions à des logiciels libres. je discute de certains logiciels développés au cours de la thèse et de certaines contributions open source.
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• Chaithya, G R, Z. Ramzi and P. Ciuciu. "Hybrid learning of Non-Cartesian k-space trajectory and MR image reconstruction networks". In: IEEE th international symposium on biomedical imaging (ISBI). Kolkata, India, Mar. M agnetic resonance imaging or MRI is a popular non-invasive medical imaging technique that involves strong magnetic fields and Radio Frequency (RF) waves to produce detailed images of organs of interest. These Magnetic Resonance (MR) images can be crucial in diagnosis of a variety of disorders that occur in different body regions like brain, neck, spine, abdomen or the msucotoskeletal system. One of the strong motivations for using Magnetic Resonance Imaging (MRI) is its non-invasiveness as it does not involve any radiation exposure for the patient. Further, MRI is a versatile tool for physicians as it can be used to image different tissues in a variety of organs with a large and complementary set of weighting contrasts. Additionally, with advances in MR technology, high resolution imaging up to . mm isotropic ex vivo [Edl+ ] and . mm isotropic in vivo [Stu+ ] becomes feasible which allows for finer biomarker delineation and quantification for diagnosis and patient follow-up, such as abnormal structural and/or functional connectivity in the brain of patients with neurodegenerative condition.

In this chapter, we discuss how an MRI system works, and the underlying physics principles used for imaging. Particularly, we describe the source of the MR signal and how it is localized in the image space. We emphasize on how the acquisition for MRI is not performed in the image domain or the pixel-space but rather in k-space, which ideally is the spatial frequency domain or multidimensional Fourier space. Later on, we discuss the importance of Signal-to-Noise Ratio (SNR) and how it can be improved using parallel imaging. Finally, we outline the need to speed up the acquisition process for MRI and the approaches that have been developed to achieve this goal.

. How does MRI work?

In this section we briefly cover the physics principles behind MRI which would later serve as a background for Chapter , where we discuss in detail the data acquisition and image reconstruction processes. This section is surely not exhaustive and to build a deeper understand we recommend the reader to refer to the following resources, which also served as an inspiration while writing this section:

• Bernstein et al. [BKZ a] and Brown et al. [Bro+ ]: classical MRI handbooks (the latter being usually known as Haacke et al.

);

• imaios.com/en/e-Courses/e-MRI [ ]: an online course with a lot of explanatory videos;

• mriquestions.com [EB ]: an online course presented in the form of an FAQ;

• the dissertations of former PhD candidates in the same team at NeuroSpin, particularly Lazarus [Laz ] and Ramzi [Ram ].

Note that the below description of the physics of MRI is based on the classical model with tiny magnets that spin like tops, which are subject to macroscopic laws of electromagnetism. This view helps for easier understanding and provides a big picture which is sufficient for the purpose of this thesis. However, for a deep understanding of the actual underlying dynamics, the reader needs to rely on the quantum mechanical model, with spin states and discrete energy levels which go beyond the scope of this thesis.

. . Nuclear Magnetic Resonance

The key signal being measured in MRI is the Nuclear Magnetic Resonance (NMR) signal, which is a result of the interaction between the RF field and the nuclear spins in the body, particularly the spins associated with hydrogen atoms. The hydrogen atoms are present in the body in the form of water molecules, which are the main constituent of the human body.

The magnetic moment associated with the nucleus of these hydrogen atoms can be viewed as tiny magnets as shown in Figure . . (a). When these tiny magnets (i.e. hydrogen nuclei, Figure . . (b)) are placed in a strong static magnetic field B 0 , they align themselves with the field direction in a parallel or anti-parallel manner as shown in Figure . . (c). Further, each of these hydrogen nuclei precesses around the magnetic axis characterized by the Larmor frequency ω 0 = γB 0 , where γ is the gyromagnetic ratio of the hydrogen atom and B 0 is the strength of the static magnetic field. For hydrogen nuclei γ = 42.58M Hz/T and generally, based on the scanners, B 0 can vary from . T, T, up to T and even . T . This precession of the hydrogen nuclei occurs along a cone as shown in Figure . . (d), and on a macroscopic scale, this leads to a net magnetization of the body M 0 in the direction of the magnetic field.

Ideally, we would like to measure this magnetization M 0 directly, however it is not possible as the magnetization is very small and defined along the same direction as the large applied magnetic field strength B 0 . For this reason, we rely on the resonance phenomenon RF pulse of frequency ω 1 to the body, leading to additional pulsating magnetic fields B 1 , which are perpendicular to the applied magnetic field B 0 . To induce a resonance phenomenon, the frequency of this pulse must equate the Larmor frequency, ω 1 = ω 0 , i.e. the Larmor frequency in the B 0 field in order to tip the magnetization vector M 0 in a plane orthogonal to B 0 . After the excitation, the RF pulse is turned off and the spins enter the relaxation phase where the M 0 vector precesses around the B 0 field and relaxes back to the equilibrium position (Figure. . (a)). During this process, orthogonal RF coils in the transverse plane are used to measure the tipped signal, called Free Induction Decay (FID) signal Figure . .

(c).

See this press release: www.cea.fr/english/Pages/News/premieres-images-irm-iseult-.aspx

Figure . -A hydrogen atom (a) and associated magnetic field, which can be modelled as a bar magnet. (b) The bunch of hydrogen nuclei in absence of B 0 . When applying B 0 , the spin of these nuclei aligns in a parallel or anti-parallel manner to this field (c). Further, the hydrogen atom precesses around the direction of the applied field at frequency ω 0 .

Figure . -(a) The relaxation of a spin after RF pulse is switched off. (b) The RF receiver coil used to measure the FID signal (c).

Mathematically, when the RF field is applied, the magnetization M 0 is split into the traverse component M xy and the longitudinal component M z . We write the following Bloch equations to describe the dynamics of the magnetization vector M 0 during relaxation:

dM xy dt = - M xy T 2 ( . ) dM z dt = M 0 -M z T 1 ( . )
where T 1 and T 2 are the longitudinal and transverse relaxation times respectively, which vary as a function of the tissue type. Particularly, T 1 captures the interactions of the spins with their surrounding lattice and is referred to as spin-lattice relaxation time, while T 2 captures the loss of phase coherence between the rotating spins in transverse plane and is called spin-spin relaxation time. However, in practice, the applied field B 0 is not uniform throughout the body, leading to a faster decay of the transverse decay than expected, which is modelled using T * 2 that is linked to T 2 as follows:

1 T * 2 = 1 T 2 + γ∆B 0 (r) ( . )
where ∆B 0 (r) is the magnetic field fluctuation in space at position r. Solving Eq. ( . ) at a specific position r = [x, y, z] T gives the following longitudinal and transverse magnetization profiles:

M xy (t) = M 0 (t, r)e -t/T2 ( . ) M z (t) = M 0 (t, r) 1 -e -t/T1 ( . )
The measured FID signal is measured in orthogonal RF coils is the projections of M xy along x and y axes and is given by: M x (t) = M 0 (t, r)e -t/T2 sin ω 0 t ( . )

M y (t) = M 0 (t, r)e -t/T2 cos ω 0 t . ( . )

. .

Localizing the MR signal

Notice that the magnetization M 0 (t, r) signal in Eq. ( . ) varies with spatial position r. However, the above measured signals M x (t) and M y (t) at the RF receiver is a sum of all the signals in the excited volume, and hence cannot be used to localize the signal spatially.

In this section, we will discuss how the acquired signal can be spatially localized through spatial encoding.

Spatial encoding using magnetic gradients

In order to distinguish the signal from different locations, the fundamental property of the spin related to their Larmor frequency ω 0 and its proportionality to the magnetic field strength B 0 is used. This Larmor frequency is varied spatially through the application of spatially varying magnetic field gradients G x , G y and G z along each axis x, y and z respectively. These gradients result in an additional magnetic field over B 0 , that varies linearly with respect to space. For example, the gradient G x along x results in the following magnetic field variation given by B x = B 0 + G x x.

In the following sections, we discuss how these gradients can be used for D and D MRI and introduce the notion of k-space. However, here for the sake of simplicity, we limit ourselves to Cartesian imaging, which consists in collecting data on a regular grid. We will introduce the concepts of non-Cartesian imaging framework later in Chapter through generalization of foundations we describe below.

D imaging

In D MRI, the slice-selecting gradient G slice is applied along the z axis, which results in Larmor frequencies to vary linearly with z as ω 0 (r) = γ (B 0 + G slice z). Only a slice of the body or the D FOV along plane z = z 0 is selectively excited by applying a RF pulse with a frequency ω 0 (z 0 ). Going forward, we refer to ω 0 (z 0 ) as just ω 0 for mathematical brevity.

Later, the RF signal is turned off and a phase-encoding gradient G phase is applied along the y axis, which causes the excited spins to precess slightly at different rates given by ω 0 (r) = ω 0 + γG φ y. Once this gradient G φ is turned off, the spins return to precess at ω 0 (z), but now have a spatially varying phase along y axis given by:

φ y (r, t) = ω 0 t -γyt φ G φ ( . )
where t φ is the time for which the gradient G φ is applied. Finally, during the signal measurement with the RF coil, a frequency-encoding gradient G freq is applied along the x axis, which causes the spins to precess at different rates along x axis given by ω 0 (r) = ω 0 (z) -γG freq x. Due to this, the spins precess at different rates along x axis, and have varying phases along y axis. The measurement time for the signal at the receiver RF coil is called the readout time or Observation time (T Obs ). The whole timing diagram of applying the gradients and RF pulses is shown in Figure . . and is called a chronogram. Overall, the phase shift induced on spins at location r = [x, y] T is given by (we ignore the z component as this is D MRI, and we only excite a slice of the body):

∆φ(r, t) = ω 0 t -γ (yt φ G φ -xtG freq ) .
( . )

If ρ(r) corresponds to the number of spins at location r and ignoring effect of T 2 relaxation for mathematical simplicity, the acquired signal in the RF coil is given by the sum of all the excited spins: (r,t) dr ( . )

S(t) = FOV ρ(r)e i∆φ
S(t) = FOV ρ(x, y)e i(ω0t-γ(yt φ G φ -xtG freq )) dxdy ( . )
The phase factor of e iω0t is a modulation factor representing the Larmor precession of spins and this signal can be demodulated using a carrier frequency of ω 0 , to yield:

s(t) = FOV ρ(x, y)e -ikx(t)•x-iky(t φ )•y dxdy ( . )
where k x (t) = γG freq t and k y (t φ ) = γG φ t φ .

If we consider and k ∀ ∈ {x, y} as respective Fourier conjugates, then Eq. ( .) is a D Fourier transform of the ρ(x, y). With this, ρ(x, y) or the "MR image" can be reconstructed from the acquired signal s(t) using the Inverse Fast Fourier Transform (IFFT).

Due to Eq. ( . ), we need to acquire data in the (k x , k y ) domain, which is conventionally denoted as k-space, prior to being able to reconstruct an image in the (x, y) plan. The letter k has been used in other fields of physics to refer to spatial frequencies, which is the reason for the popularity of this convention in the MR literature.

This k-space is just the Fourier domain of the MR image being acquired during the MR acquisition process. Notice that in the time frame associated with a single RF pulse as described above, we sample a single line in k-space. After a fixed amount of time, called Repetition Time (TR), this process is repeated with a different G φ to sample another line in k-space. As the MR signal decays in time, the measurement process is segmented into multiple "shots" or "readouts" and the number of readouts is denoted by N ro .

Figure . -Illustration of (a) k-space, and its corresponding (b) MR image related through Fourier transform (FT). We mark the FOV, k-space maximum K max and resolution in k-space and image space.

D imaging

The steps mentioned in the previous section cannot be carried out to reach high isotropic spatial resolution using just D imaging. In this setting, MRI instead consists in exciting the whole D FOV and acquiring data in a three-dimensional ( D) k-space.

Post excitation, a partition-encoding gradient G p is applied along the z axis for time t p , to encode phase information along z axis. Later, G φ is applied followed by acquisition during G freq . This process of chaining G p → G φ → G freq with k z (t p ) = γG p t p , modifies the acquired signal model Eq. ( . ) into:

s(t) = FOV ρ(x, y, z)e -ikx(t)•x-iky(t φ )•y-ikz(tp)•z dxdydz . ( . )
Again, during the MR acquisition process, we need to sample this entire D k-space to reconstruct the image using a D IFFT.

k-space, FOV and resolution

We now proceed to discuss the relationship between the FOV, k-space and resolution. Without loss of generality, we stick to D MRI, for FOV given by FOV x × FOV y × FOV z . If the D MR volume to be reconstructed is N x × N y × N z -dimensional, then the resolution in each direction is given by ∆ = FOV N ∀ ∈ {x, y, z}. From Shannon-Nyquist sampling theorem, with the defined FOV, the spacing between samples in k-space must be within ∆k = 1 FOV ∀ ∈ {x, y, z}. Further, the maximum spatial frequency that needs to be sampled is given by K max = 1 2∆ . With this, we can define the k-space as

[-K x max , K x max ] × [-K y max , K y max ] × [-K z max , K z max ], with K max = N 2F OV . We show Figure.
. to illustrate this relationship between FOV, k-space and resolution. For each readout interval, we sample a line in k-space, thus the total number of readouts N ro = N y × N z (assuming G freq is applied along x axis) and overall scan time is given by T acq = TR × N ro .

.

SNR and Parallel Imaging

The acquired signal s(t) in Eq. ( .) is usually very small and in the order of millivolts, which results in very low SNR and poor diagnostic quality of the reconstructed MR image.

The major source of noise in the measurements is due to the thermal noise at the level of the RF receiver coil which is given by

σ noise ∝ 4kT coil ∆f R ef f ( . )
where k is Boltzmann's constant, T coil is the temperature of the coil, ∆f is the receiver bandwidth and R ef f is the effective resistance of the coil, which is a combination of coil resistance R coil , the electronics R e and the sample being imaged R sample . Usually, R ef f ≈ R sample which in turn is proportional to the volume of the region of body being sampled, i.e. the region in body which from where the FID signal s(t) is acquired, denoted by V sens . Hence, in order to boost the SNR, an improved strategy consists in choosing a smaller V sens , which can be achieved by reducing the coil size and using multiple receivers in a specified configuration. These parallel imaging techniques help reach higher SNR as each individual coil has a smaller V sens which reduces noise levels while still having high signal sensitivity.

. . Phased array coils

A phased array coil is a set of multiple RF coils arranged in a specific geometric pattern (see Figure . . ), such that they have complementary sensitivity profiles, the combination of which allow us to reconstruct a single full FOV image. Based on this geometry and the corresponding sensitivity profiles, each coil element measures the FID signal s(t) for a portion of the FOV. Due to this, the V sens for each coil is lower than the FOV, thereby reducing the measured noise in Eq. ( . ) and increasing the SNR while having a large effective FOV. Also, such Parallel Imaging (PI) schemes can help accelerate the scanning process whose details are given in Section. . . However, in order to obtain an optimal SNR, these phased array coils must be placed such that the noise measured across coils is largely uncorrelated, which is performed by minimizing electromagnetic interaction and coupling between the coils. Further, each receiver coil must have an individual RF receiver chain.

. . Coil compression

Most reconstruction algorithms scale linearly with the number of receiver coils Q, leading to larger reconstruction time for large coil arrays used to increase SNR. However, the redundancy in the information of the signal acquired across the multiple coils can be exploited to reduce the number of coils used for reconstruction. This is done by linearly combining the signals from different coils to reduce the coil dimensionality while having minimal loss in information, resulting in compressed effective coil signals.

One effective way to do this is by using Singular Value Decomposition (SVD), which allows us to order the compressed channels by the amount of variance, which can be a good candidate to assess information content. However, this technique could lead to high signal sensitivity and reduced image quality in the overlapping coil areas usually in the center of the measured object [Bue+ ]. This issue is usually tackled through orthonormalization of the sensitivity profiles to better balance the compression error, which is efficient for imaging 

. . Coil combination

While coil compression is helpful to reduce the number of channels to reconstruct, they cannot be used to reduce them down to a single channel as that leads to loss of information. Complexvalued image is reconstructed per compressed channel using IFFT and then combined through coil combination to form the final image. Note that coil combination algorithms compile the reconstructed images from each channel into one image for diagnosis, while coil compression methods are applied to reduce the computational load of parallel imaging. Most coil combination techniques require the prior knowledge of the coil acquisition profiles [Roe+ ] (Figure . . ), called coil sensitivity maps S ∀ ∈ {1, 2, . . . Q}, which depend on the coil geometry and the object being scanned. Hence, we require a separate scan to obtain the sensitivity profiles in each exam. With the senstivity maps S , we can recombine the MR image f from the coil specific images f as:

f (r) = Q 1 =1 Q 2=1 S H 1 (r)Σ -1 1, 2 f 2 (r) Q 1 =1 Q 2=1 S H 1 (r)Σ -1 1 , 2 S 1 (r) ( . )
where Σ 1 , 2 is the noise correlation profiles between th 1 and th 2 coils, measured at the beginning of scan and H is the conjugate transpose operator.

The most common methods to obtain magnitude only images involves combining the images through Sum-of-Squares (SoS):

f (r) = Q =1 |f (r)| 2 .
( . )

from https://mriquestions.com/senseasset.html However, if the whole phase of the image is required, then virtual coil combination as proposed by [Par+ ] can be used to establish a "virtual" coil and synchronize the phase of original or compressed coil images. Note that all the above methods require the prior knowledge of the coil sensitivity maps, which can be obtained using a separate scan. However, there exists self-calibrated methods that can directly estimate the coil sensitivity maps from the data itself [Uec+ ; El + b]. Additionally, alternative approaches called calibrationless reconstruction techniques get rid of the need for this prior knowledge on the coil sensitivity maps and reconstruct as many images as the number of coil elements by enforcing group sparsity in the wavelet domain for instance [El + a].

Overall, a diverse set of coil combination methods exist, and for a formal review, we invite the reader to dive into [Rob+ ].

.

Need to speed up MR acquisition

From previous section, we see that the MR acquisition process involves sequential sampling of the lines in k-space. Due to this, achieving high resolution isotropic D MR imaging requires shortening scan times. For the specific case of Susceptibility Weighted Imaging (SWI), where TR is in the range of -ms, for an isotropic resolution of . mm for human brain with FOV of 230 × 230 × 124mm 3 , the scan time is nearly minutes. Further, according to NHS [ ], the times for MR can vary from minutes to . hours. Such long scan time for a patient to stay still in the MR system, is not feasible for many clinical applications. This calls for the need to speed up the MR acquisition process for the following important reasons:

• Patient throughput and cost: Faster MR scans would imply a higher patient throughput, which increases the utilization of the costly MR machine.

• Accessibility: Some patients like people suffering from Parkinson's disease, young children and the elderly people may not stay still in the scanner for a long time. Additionally, patients with claustrophobia cannot tolerate long scan times as the confined space could cause panic attacks and anxiety.

• Motion: The probablity of motion increases with longer scan times, which can lead to motion artifacts, which is one of the primary sources of image quality degradation in MRI.

• Patient comfort: The patient needs to be present in a claustrophobia inducing MR scanner till the end of scan, which can be very uncomfortable.

For these reasons, throughout the MR literature, multiple methods have been employed to accelerate the MR acquisition process.

.

Cartesian sampling and acceleration

In Section. . . , we described the most basic MR acquisition process, wherein we sample the k-space sequentially along lines. This results in sampling of the k-space at specific gridded locations called Cartesian voxels, which is the most common sampling scheme in MRI, called Cartesian sampling. However, as described in Section. . , this naive line by line sequential approach to acquisition leads to long scan times which is not feasible for many clinical applications.

. . Longer readouts

One common method to accelerate the acquisition process is to acquire multiple lines of the k-space in a single readout after RF pulse as done in Echo Planar Imaging (EPI) [STM ].

In EPI, a strong switched frequency-encoding gradient is applied simultaneously with an intermittent blip low magnitude phase-encoding gradient, to acquire multiple lines of the Figure . -(a) Full k-space imaging and reconstruction. Partial Fourier imaging, where missing k-space lines are synthesized from acquired data using conjugate symmetry (from [Fer+ ]).

k-space in a single readout in the form of raster scans. However, this method is limited to scans with a larger time for readout, called T Obs . Further, the reconstructed MR images from EPI are susceptible to geometric distortions and off-resonance artifacts dues to this longer T Obs . We discuss off-resonance and its effects in detail in the next chapter. Conventionally, EPI is used in dynamic imaging applications like Functional MRI (fMRI).

. . Partial Fourier imaging

In most scenarios, as the object being imaged is a real-valued image, the corresponding Fourier domain or the k-space is redundant and possesses conjugate symmetry. Due to this, the effective number of samples required to reconstruct the image is only half of the total number of samples in the k-space, thereby reducing the scan time by theoretically one half [Fei+ ], however in practice it's often less. However, due to measurement noise, physiological motion and inhomogeneities phase errors exist and conjugate symmetry approximations are not perfect. Additionally, some imaging modalities rely on the magnetic susceptibility variations, like SWI which require the phase information of the image being reconstructed for diagnostic use. Hence, in practice, partial Fourier imaging techniques involve sampling slightly more than half of the lines in k-space typically varying from -% of the total number of lines in k-space. These extra lines are later used to generate phase correction maps to more accurately predict the missing values [McG+ ] (Figure. . ).

. . Parallel Imaging based techniques

Another popular strategy in the MRI community is to exploit the spatial sensitivity of the MR coils to accelerate the acquisition process. For doing so, during acquisition, a subset of the k-space is acquired through uniform under-sampling, where only one k-space line is acquired after skipping a fixed number of lines based on the chosen acceleration factor. This leads to strong aliasing artifacts in the k-space along the phase encoding direction (that direction along which under-sampling is implemented), which is later corrected using the spatial sensitivity of the MR coils. For this, the central portion of the k-space is acquired for calibration (used directly in [Gri+ ]) or measuring a low resolution sensitivity map (used in [Pru+ ]). This information from central k-space can later be utilized to fill up the missing values in the k-space across coils linearly [Gri+ ]. Such correction can also be carried out in the image space by using the coil sensitivity maps and solving a linear system of equations [Pru+ ].

Both the above methods help shorten the scan duration by up to a factor of while retaining a good reconstructed image quality. Additionally, his method can easily be extended in D and allows for accelerations in both the phase and partition encoding directions. However, using such a uniform sub-sampling pattern, the aliasing artifacts in the image usually lie along the central lines in image space, which overlap with the reconstructed images. In order to reduce artifacts and accelerate further, in Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA) [Bre+ ], the under-sampling pattern along the readout directions are acquired in a staggered fashion to shift the aliasing artifacts towards the diagonals in the image space. Further extension of this method can be carried out where we undersample even in readout direction through the use of corkscrew like patterns in acquisition of k-space rather than lines (kindly refer to the next chapter for more details on such acquisition trajectories). This process is called Wave-CAIPI [Bil+ ] and can be used to accelerate the scan by up to a factor of to . More details on recent developments in parallel imaging based techniques can be found in [HFS ].

. . Towards Compressed Sensing

The above described methods help reduce the scan times, thereby have been successfully implemented commercially in MR scanners and are in active use in clinical applications. However, the above methods do not exploit the compressibility characteristics of the MR image, which is a common property of natural images in a wavelet transformed domain.

Going forward, we discuss in the next chapter the sparsity or compressibility properties of MR images and how it can be exploited to further accelerate the scan times. This intrinsically relies on the concept of Variable Density Sampling (VDS), which can be more efficiently achieved using non-Cartesian sampling, where sampling of the k-space is then performed along curves off the Cartesian grid and no longer on straight lines.

Chapter

Compressed Sensing and Non-Cartesian MRI I n this chapter, we discuss in depth Compressed Sensing (CS) based reconstructions and non-Cartesian sampling techniques in Magnetic Resonance Imaging (MRI). We start by describing the foundations of CS in MRI and intuitively show that sampling the k-space through Variable Density Sampling (VDS) is ideal for maximally accelerating the acquisition process, with minimal degradation in the reconstructed image quality.

Efficient way to achieve this is through non-Cartesian sampling techniques, where the k-space is sampled along curves that are not necessarily on the Cartesian grid. For this, we generalize the notion of k-space sampling established in the previous chapter to form foundations for sampling the k-space along curves rather than lines. Later, we discuss the constraints imposed on these sampling curves due to gradient hardware, imaging contrast or physiological constraints.

We then highlight the major issue met in non-Cartesian sampling, i.e. the presence of amplified off-resonance artifacts. We discuss the causes of these artifacts, their modeling and correction strategies. Finally, we briefly introduce methods to analyze the performance of k-space sampling patterns. Particularly, we discuss the use of Point Spread Function (PSF) analysis in the absence of image datasets, which can be an accurate tool for comparing multiple sampling patterns, their performances and robustness to off-resonance effects. Additionally, image quality metrics can be used to assess the retrospective performance of the sampling pattern and corresponding reconstruction.

Throughout the chapter, our presentation will be tailored to the case of D MRI, while it can be of course applied to D MRI as well after a slice-selective gradient pulse.

.

Compressed sensing based reconstruction

CS theory has been applied and widely used in MRI [Lus+ b; LDP ] for accelerating acquisitions with minimum loss in reconstructed image quality. From the previous chapter, in an idealized scenario, M k-space data samples y ∈ C M of an image x ∈ C N with N voxels can be modeled through a Fourier operator F Ω ∈ C M ×N as follows:

y = F Ω x ( . )
where Ω is the set of M measured k-space samples. We now need to recover an image x as close as possible to x from the k-space data y, under accelerated acquisition scenario with M << N . This problem is ill-posed with infinite number of solutions, and some prior knowledge on x is needed to recover a satisfactory x such that xx In the case of MRI like in other imaging fields, the sparsity or the compressibility of x in the wavelet domain plays a key role, the difference between the two notions being clarified hereafter. We proceed to detail on some fundamental concepts needed to understand CS based reconstruction.

. . Sparse representation

CS is based on the idea that the image x can be represented as a sparse linear combination of a set of basis functions Ψ ∈ C N ×K as z = Ψx, where K is the number of basis functions.

The coefficients z of this linear combination are the sparse representation of the image x, i.e. the values of z are mostly zeros except for a few s K atoms where it has non-zero values. If such a linear operator exists, then the image x in the noise-free model Eq. ( . ) can be perfectly reconstructed as follows:

ẑ = arg min z∈C K z 0 such that F Ω Ψ H z = y ( . ) x = Ψẑ ( . )
where Ψ H is the Hermitian transpose of Ψ. Generally, 1 relaxation is applied to the above problem as the 0 norm leads to NP-hard optimization problem [FR ]. However, in reality the acquired k-space data is noisy and also practically, the coefficients z are not exactly sparse but instead compressible, wich means most values being very close to zero but not exactly zero due to the presence of noise. In this more realistic scenario, the optimization problem becomes:

z = arg min z∈C N 1 2 F Ω Ψ H z -y 2 2 + λ z 1 ( . )
where λ is a regularization parameter used to balance the data consistency term at the left and the regularization term at the right. The factor of . is added to the data consistency term to simplify the derivation of the gradient of the objective function. This way of expressing the problem as optimizing the analysis coefficients is classically known as the synthesis formulation. On the contrary, the analysis formulation is to optimize the image directly, where z is replaced with Φx, which is more conveniently used when Ψ is overcomplete, which generally yields better reconstructed images [SF ] at the expense of longer computation times (see [EMR ; SF ; Che+ ] for detailed discussions).

In the case of multi-coil acquisitions involving Q coils with sensitivity maps S , we obtain k-space measurements y ∀ ∈ {1, 2, . . . Q}. The reconstruction problem then becomes:

z = arg min z∈C N 1 2 Q =1 F Ω S Ψ H z -y 2 2 + λ z 1 . ( . )
The sensitivity maps S can be estimated from the data itself using ESPIRiT [Uec+ ] or low-frequency content [El + b] methods. The above mentioned problem can also be formulated to decompose the coefficients z for each coil, and apply regularization jointly across cois to result in calibrationless schemes that thus get rid of estimating sensitivity maps as a first step. Typical regularization schemes that promote structured sparsity across coils are GroupLASSO and OSCAR penalizations [El + ; El + b], the latter allowing for a sorting of coils with respect to the information they bring up in contrast to the former which assigns uniform weitghting to all coils.

. . Basis functions Ψ and regularizer

As seen in previous section, CS relies on the presence of a sparsifying transform Ψ, which is a linear operator that maps the image x to a sparse representation z. In reality, as the Magnetic Resonance (MR) image is like a natural image with locally smooth regions, a large diversity of the sparsifying operators exist and have been used in the literature.

Particularly for the case of MRI, early works [LDP ] showed that discrete cosine transform and the wavelet basis (from a wide variety of wavelets like Symlet, Morlet etc.) can serve as a good sparsifying domain. We present a D MR image and its decomposition in the wavelet basis in Figure . . . Notice that the decomposition is sparse in the detail coefficients in the wavelet basis.

More advanced sparse domains can be learned directly from the data through Dictionary Learning [RB ; RB ], which helps to build complex object and contrast specific priors. Under this framework, the dictionary Ψ is learned from the data by learning patches which can be linearly combined in a sparse manner to yield the target image of interest. Recently, more complex priors have been learned through the help of Convolutional Neural Network (CNN) and Deep Learning (DL) [AMJ ; AÖ ; Ham+ ; GOW ; Sri+ ] which will be discussed in the next chapter.

. . Reconstruction algorithms

Having formulated the reconstruction problem in Eq. ( . ), and choosing appropriate sparsifying transform Ψ, we now discuss the reconstruction algorithms. A broad range of convex optimization methods exist in the literature to solve the above formulated problem which can broadly be classified into the following categories: Extensive review of the above reconstruction algorithms particularly for the case of MRI was performed in [Fes ]. Throughout this thesis, we rely on Symlet-wavelet basis and FISTA [BT ] algorithm for reconstruction, which is an accelerated version of the standard proximal gradient method (also called Forward Backward). The proximal operator of a semi-continous function R in hilbert space is given by: prox

R (x 1 ) = arg min x2 R(x 2 ) + 1 2 x 1 -x 2 2 2 . ( . )
The proximal operator gives an improved solution for the function R in the vicinity of point x 1 . This is particularly useful when the gradient of the function R does not exist due to the presence of multiple subgradients.

Algorithm : Fast Iterative Soft Thresholding Algorithm for solving Eq. ( . )

Inputs : N iter , maximum iterations, β the step size Output: ẑ the optimized sparse coefficients x and the reconstructed image Initializations: z (0) an initial guess of the solution, k= iteration counter, θ (0) = 1 while k < N iter do // Gradient step

w (k+1) = z (k) -β Q =1 ΨS H F H Ω F Ω S Ψ H z (k) -y
// FISTA speedup using Nesterov's acceleration [Nes ] θ

(k+1) = 1 2 1 + √ 4θ (k) 2 + 1 // Proximal step z (k+1) = soft λβ w (k+1) + θ (k) -1 θ (k+1) w (k+1) -w (k) // Iteration update k = k + 1
Having defined the proximal operator, the FISTA algorithm is described in , where β the step size is chosen smaller than the inverse of Lipschitz constant of the data consistency term

1 2 Q =1 F Ω S Ψ H z -y 2
2 in Eq. ( . ) to prevent exploding gradient. The soft thresholding operator is given by:

soft λ (x) = 0 if |x| ≤ λ x -sign(x)λ otherwise ( . )
We request the reader to refer to proximity-operator.net [Chi+ ] to understand Proximity operators and its properties with example.

This implementation of FISTA involves speed up of ISTA [DDD ] through Nestorov acceleration [Nes ] and more improvement can be obtained through restart, enhanced momentum and greedy acceleration [LS ]. Further extensions for FISTA include faster FISTA or POGM' [Zac+ ].

. . Incoherence and variable density sampling

In the above sections, we described the methods used in CS literature to reconstruct the image x from undersampled k-space data y. However, it is important to understand about the guarantees that the reconstructed image x is close to the original image x. To understand this, we define the following domains:

• Signal space: The space of the original image x is called the signal space.

• Measurement Domain: The space of the undersampled k-space data y is called the measurement space. In an ideal setting, this matches the Fourier domain of the signal x.

• Sparsifying domain: The space of the sparse coefficients z is called the sparsifying domain. This space is characterized by transforming the image through the sparsifying transform Ψ. Typically, this is the wavelet domain.

Further, we define the measuremnt operator or measurement matrix as the linear operator that maps the sparsifying domain to the measurement space. In the case of MRI, the measurement matrix is given by A = F Ω Ψ H ∈ C M ×K (we remind that M is the number of acquired k-space samples and K is the number of coefficients in the sparsifying domain).

We now try to estimate the lower bound on the probability of exact recovery of the image x from the undersampled k-space data y. For this, we define the coherence function κ on the measurement matrix A composed with coefficients (a i,j ) M i=1 K j=1 as:

κ(A) = N × max i,j (|a i,j | 2 ), κ(A) ∈ [1, N ].
( . )

Then the probability of exact recovery η of the image x from the undersampled k-space data y by solving Eq. ( .) is such that [Rau ; CP a]:

M ≥ C × s × κ(A) × log N 1 -η ( . )
where s is the level of sparsity of the signal x in sparsifying domain, C is a constant. We note that the coherence of the measurement matrix A must be minimized to have a higher probability of recovery η.

Intuitively, we need to sample those regions in the k-space or the measurement domain, which is coherent with sparsifying domain and which cannot be reconstructed through sparsity priors. The commonly used sparsifying transform Ψ is a wavelet transform, whose detail coefficients are sparse which usually contains information on the edges or the high frequency contents of the image. However, the approximation coefficients of the wavelet transform of MR images are not sparse and need to be acquired during the acquisition process. These approximation coefficients are a low resolution version of the image of interest and holds the low frequency information of the image. Mathematically, this implies that the low frequency information is coherent between the sparsifying domain and the measurement domain. This guides the intuition that we need to sample the k-space using VDS scheme, where lower frequencies must be sampled more densely than high frequencies (please see [Puy+ ; Cha+ ; Adc+ ; Boy+ ] for mathematical details).

However, sampling patterns that obey such VDS schemes are not possible with Cartesian sampling where the acquisition is carried out using lines. For this, we need to generalize how the k-space is sampled and introduce how sampling can occur on curves, resulting in sampling locations which are off the grid, an approach referenced to as non-Cartesian sampling or imaging in the literature.

. Generalizing k-space sampling

In the previous chapter, we introduced how the localization of the Nuclear Magnetic Resonance (NMR) signal was performed using spatial encoding gradients. However, for the sake of clarity, we restricted the discussion to acquiring the signal along different k-space lines. In this section, we generalize the notion of k-space sampling to include sampling along curves, which will be useful in the later sections, particularly when we introduce non-Cartesian sampling in Section. . .

. . K-space sampling trajectories

Under the general setting, we apply time varying gradient fields G x (t), G y (t) and G z (t) along the x, y and z axes respectively during the acquisition of the signal. Note that we do not apply any gradients in between Radio Frequency (RF) pulse and the signal readout. Due to this, the spins accumulate the following time varying phase difference during the acquisition time:

∆φ(x, y, z, t) = ω 0 t -γ x t 0 G x (τ )dτ + y t 0 G y (τ )dτ + z t 0 G z (τ )dτ ( . )
the corresponding demodulated signal is given by:

s(t) = FOV ρ(x, y, z)e -ikx(t)•x-iky(t)•y-ikz(t)•z dxdydz ( . ) k (t) = γ t 0 G (τ )dτ, ∀ ∈ {x, y, z} ( . )
Throughout the readout time, also called Observation time (T Obs ), this signal is sampled at discrete time rate by Analog to Digital Converter (ADC), at a dwell time pace, denoted by δt. Thus, the number of k-space samples acquired during the readout time T Obs is given by T obs δt . Typically, the dwell time varies from 1 to 10 µs, depending on the Signal-to-Noise Ratio (SNR) requirements and the hardware constraints from ADC.

During each readout, the applied gradients G (t), ∀ ∈ {x, y, z} control the spatial location where the k-space signal is acquired during T Obs . This sampling location varies with time and is given by k

(t) = [k x (t), k y (t), k z (t)]
T , which is called k-space sampling trajectory or a "shot". Different time varying gradient profiles are applied along each axis for each readout, which results in different sampling trajectories or curves, that each sample a different region in the k-space. We denote N c as the number of shots or readouts involved in the acquisition of the field-of-view (FOV). Thus, the k-space sampling trajectories are composed of k i (t) = (k i,x (t), k i,y (t), k i,z (t)), which in turn are controlled by magnetic field gradients G i (t) = (G i,x (t), G i,y (t), G i,z (t)), where i ∈ {1, 2, . . . , N c }. A sample k-space trajectory and its corresponding gradients are shown in Figure . . . Typically, during the acquisition process, the overall k-space sampling pattern and its corresponding trajectories are chosen, whose derivatives give the gradient profiles to be played by scanner as (see Eq. ( .)):

G i, = 1 γ dk i, (t) dt , ∀ ∈ {x, y, z} . ( . )
. .

Constraints on k-space sampling trajectories

Note that these k-space sampling trajectories are defined based on the time varying gradient profiles applied during the acquisition by the gradient hardware of the scanner. Due to this, the k-space sampling trajectories are constrained by the hardware limits (see Figure . . ). Further, additional constraints are present due to physiological constraints and image contrast requirements. We detail each of them and present a mathematical constraint set for the k-space sampling trajectories in the following subsections. A detailed mathematical treatment for these constraints has been introduced in. Figure . -Illustration of source of gradient constraints. The gradient amplitude is limited by the peak gradient strength G max . Also, the rise time results in limiting the maximum slew rate S max .

Gradient constraints

The gradient profiles (G x (t), G y (t) and G z (t)) are played by gradient coils driven by electrical currents that are pulsed to give a trapezoidal waveform (Figure . . ). This underlying hardware that produces such waveforms is limited by:

• Gradient raster time: While the waveforms are continuous, they can be played by the hardware at a discretized time period, called gradient raster time ∆t. Typically, the values of this on scanners vary from µs (on GE MR T) to µs (on Siemens Magnetom Prisma FIT T). Due to this, the k-space trajectory curves are also discretized at every ∆t, giving a discrete set of sample points along curve: (k i [n]) Ns-1 n=0 , where N s = T obs ∆t is the number of samples per shot. In Figure . . , we show an example of continuous sampling trajectory in a normalized k-space (red) and corresponding gradient profile, and its discretized version with ∆t = 10µs. Notice that intermediate acquired samples at ADC are a linearly interpolated version of this discrete trajectory.

• Maximum gradient amplitude: The trapezoidal current waveforms are limited by (c). Also, we highlight the maximum feasible gradient amplitude G max = 40mT /m that can be played by the gradient hardware with a solid black line. maximum gradient amplitude G max measured typically in mT/m. Usually, G max varies from -mT/m on high field scanners and -mT/m on low field scanners. As a result of this constraint, the maximum playable gradient is limited which thereby limits the maximal speed at which the trajectory traverses the k-space:

|G i, [n]| = |k i, [n] -k i, [n -1]| γ∆t ≤ G max , ∀ ∈ {x, y, z}, ∀ i ∈ {1, 2, . . . , N c }, ∀ n ∈ {0, 1, . . . , N s -1} ( . )
As an example, we show in Figure . . an example of non-feasible k-space sampling trajectory (red) which violates the maximum gradient G max = 40mT /m constraint, and the closest feasible k-space trajectory (green). Also, we highlight the maximum feasible gradient amplitude S max = 200T /m/s that can be played by the gradient hardware with a solid black line.

• Maximum slew rate: The gradient hardware takes a minimum time called rise time t r to change the gradient strength. This minimum rise time constraint is measured as maximum achievable slew rate S max = G max /t r . Typically, the value of S max varies from -mT/m/s on high field scanners and -mT/m/s on low field scanners. This constraint limits the rate at which the gradient can change its strength, which in turn limits the rate at which the k-space trajectory can change its direction, or its acceleration:

|G i, [n] -G i, [n -1]| ∆t = |k i, [n + 1] -2k i, [n] + k i, [n -1]| ∆t 2 ≤ S max ( . )
As an example, we show in Figure . . an example of non-feasible k-space sampling trajectory (red) which violates the maximum slew rate S max = 200T /m/s constraint, and the closest feasible k-space trajectory (green).

Constraints for stable contrast

Note that, the underlying received signal equation (Eq. ( . )) does not take the effect of T * 2 relaxation into account. Taking it into account, we have a decay of the magnetization of spins which is accumulated at the received signal as follows:

s(t) = FOV ρ(r)e -αrt e -i(ki(t)•r) dr ( . )
where

α r = 1 T * 2
is the spatially varying decay rate of the signal at position r = [x, y, z] T . In order to have a stable imaging contrast, the low frequency content of the MR image should be sampled at the same time, which usually corresponds to the Echo Time (TE) of the sequence. This imposes an affine constraint on the k-space trajectory where the trajectories are constrained to pass through the center of k-space, i.e. [0, 0, 0] T at TE during every shot:

k i, [n TE ] = 0. ∀ ∈ {x, y, z}, ∀ i ∈ {1, 2, . . . , N c } ( . )
where n TE = T TE ∆t is the index of the sample point at TE.

Physiological constraints

The varying gradient profiles applied during the MR acquisition leads to electrical potentials, which could induce excitation of nerves in the extremities, called as Peripheral Nerve Stimulation (PNS) [SBN ]. This can be perceived by the patient as a tingling sensation, which can be uncomfortable. The levels of PNS must be controlled and limited under safe levels to prevent risking the heart. While models exist to predict the PNS levels given the gradient profiles [HG ], this relationship is usually complex, and in practice lowering the S max of the trajectory would also result in reduced PNS.

.

Non-Cartesian Sampling

Having generalized the k-space data acquisition in the previous section, we now discuss different sampling schemes to collect k-space data using such generalized constrained kspace curves. One of the crucial reasons to use non-Cartesian sampling is to increase efficiency of k-space coverage, allowing us to sample broader k-space regions in a shorter time. Further, sampling along curves adds a degree of freedom to the sampling scheme which can help in achieving a prescribed In this section, the focus will be to highlight some popular non-Cartesian sampling patterns, their advantages and applications. Finally, we provide a brief note on how such non-Cartesian k-space data is reconstructed to form an MR image.

. . Trajectories

While our primary focus here will be on D non-Cartesian k-space sampling trajectories, we still discuss some popular D trajectories which could be extended to D through stacking along slice direction or rotations. However, full D k-space trajectories that efficiently accelerate even in the third dimension outperform such stacked and rotated trajectories.

Radial sampling [Lau ] (Figure . . (a)) is a popular sampling scheme in MR imaging, where the k-space trajectory is sampled along radial lines from the center of k-space (i.e. center out). This scheme was introduced even before the advent of CS theory and parallelimaging. They have gained popularity in MR imaging as they naturally enforce a VDS, with oversampling at the center of k-space. Further, repeated sampling of the center of k-space allows for robust-to-motion imaging. While D versions of the trajectories exist (i.e. Koosh-Balls [Lar+ ]), extensions to can also be achieved through stacking, resulting in stack-of-stars, which is known to be efficient for dynamic imaging like Cardiac MRI.

Spiral trajectories (Figure . . (b)) are used to accelerate imaging as they result in images which are robust to motion, flow and aliasing artifacts. These trajectories take full advantage of the gradient hardware where the trajectories are limited by slew rate S max in the center of k-space and maximum gradient limited at the edges of k-space [Del+ ]. This is controlled through parameter choices [Glo ; KAS ; Lee+ ] which remain restrained by this design on the G max and S max constraints.

Three-dimensional extensions of the spiral trajectories are achieved in the form of stacks [Ira+ ] or cones [GHN ]. Other extensions include hybrid radial-cones [Joh ] where a single cone is distributed along the D k-space through rotation. More recently, Fermat Looped ORthogonal Encoded Trajectories (FLORET)[Pip+ a] (Figure . . (e)) were introduced to be more efficient than conventional stack-of-cones with the same SNR efficient but half the scan time. As radial trajectories are inefficient in higher frequencies (as they leave out large gaps between radial lines), they are combined with trajectories to get TWisting Radial Lines (TWIRL) [JNM ] in D and Twisted Projection Imaging (TPI) [Boa+ ] in D, which can be used to image irregular flow or in MRSI imaging. In recent years, there has been a shift to design non-Cartesian trajectories through optimization that result in more efficient non-parametric sampling patterns. The optimization criteria could be either heuristic [Dal+ ; Mir+ ; Kum+ ] (Figure . . (f-h)) or chosen within a set of pseudo-random or well defined trajectories [See+ ; RB ; Liu+ ]. Further, the Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) algorithm [Boy+ ; Cha+ ; Laz+ ] has been shown to automatically generate optimized non-Cartesian sampling patterns compatible with MR hardware constraints on maximum gradient amplitude and slew rate. SPARKLING optimally samples the k-space (see [Puy+ ; Cha+ ]) with a controlled distribution of samples (e.g., variable density) and a locally uniform k-space coverage.

. . Reconstruction

As discussed earlier, in non-Cartesian sampling the measured k-space data is not sampled on a regular grid, and hence the reconstruction of the image from the k-space data is not straightforward. Further, accelerated schemes under-sample some k-space region, particularly the periphery when VDS is implemented. In this section, we will briefly discuss the reconstruction of non-Cartesian data to form an image.

Non-uniform fast Fourier transform

Throughout the reconstruction process, the Nonuniform Fast Fourier Transform (NUFFT) operator plays an important role as it helps us to map the k-space data which does not belong on a grid to the gridded image domain, and vice versa. This mapping involves gridding the k-space data followed by Inverse Fast Fourier Transform (IFFT). Conversely, we can also simulate the acquired non-Cartesian k-space data from an image by interpolating the Fourier domain of the image to trajectory locations. This mandatory step of gridding the k-space data (Figure . . ) can be performed in two alternative ways (see [Pau] for a detailed discussion):

• Grid-driven methods: This is a naive approach where the value of k-space data at each grid point is computed by interpolating it from the off-the-grid measurements. These measurements are usually a subset of the k-space data at locations within a maximum parametrized from the grid point. However, under this method some data may be skipped as they are outside this parametrized radius. To prevent this, the radius is chosen such that there is a wide overlap between these grid point neighborhoods, which can potentially lead to inaccuracies. Other way to tackle this is to upsample the grid to a higher resolution, which can become computationally expensive.

• Data-driven methods: This method works in an opposite way and distributes the contributions of each k-space measurement onto the neighborhood of the grid points. Similar to grid-driven approach, upscaling the Cartesian grid can help to apply more precise approximations, however this does not increase the computational cost drastically as number of data points remain the same. A gridding kernel is chosen to interpolate the data onto the Cartesian neighborhood, and typically Kaiser-Bessel kernel is used [Jac+ ; ST ; Ras+ ].

However, as this method adds the sample contributions, densely acquired data points are over-represented and there is a need to compensate for this through Density Compensation (DCp). This compensation is typically done by weighing the k-space data inversely with respect to the density of samples in the specific locations where the data was acquired. One popular scheme [PM ] to estimate this density compensator vector w = [w m ] M m=1 , where M is the number of k-space samples is through the following iteration having initialized the weights with ∀m, w

(1) m = 1:

w (i+1) = w (i) w (i) ⊗ Ψ kb ( . )
with Ψ kb the chosen kernel (usually Kaiser-Bessel) and ⊗ the convolution operator.

Over the years, there have been many implementations of the NUFFT operator that are faster, optimized and more accurate [FS ; GL ]. Many practical implementations exist for the NUFFT operator varying from CPU implementations [GL ; KKP ; Vai+ ; BMK ], to GPU [Lin ; Kno+ ; Shi+ ] and extensions to tensor-centeric frameworks like TensorFlow [Mon ; RC ] and PyTorch [Muc+ ]. Some of these libraries [Kno+ ; Mon ; RC ] also have inbuilt routines to estimate the density compensator vector w.

Algorithms

Most reconstruction algorithms for accelerated non-Cartesian MRI are direct extensions of the algorithms described in Section. . , but the Fourier transform operator is replaced by the NUFFT operator.

Figure . -The water/air interfaces (blue) in the brain (black), such as the ones in the ears (middle) or near the bucco-nasal cavities (right). From [Pin ].

Further, to speed up most of the optimization schemes, the adjoint operator F H Ω operating on the k-space data y is pre-conditioned with the density compensator vector w in the iteration step in , as shown below:

z (k+1) = soft λτ z (k) -τ L =1 ΨS * F H Ω D F Ω S Ψ * z (k) -y
where all notations are the same as above and D is the diagonal matrix with diagonal elements as w.

.

Off-resonance effects

One popular issue with non-Cartesian imaging, is the amplification of off-resonance artifacts.

In this section, we briefly introduce the sources of these off-resonance effects and how they can lead to artifacts in the reconstructed MR images. We also discuss some methods in literature to mitigate these artifacts. This section will serve as a good introduction for the Chapter, where we try to tackle these artifacts in non-Cartesian imaging during trajectory design.

. .

Sources and modelling

The applied B 0 magnetic field by the scanner is customized to be as homogenous spatially as possible through shimming, so that all the corresponding spins have the same expected Larmor frequency. However, air-tissue interfaces exists inside the human body particularly near ear-canals or in vicinity of bucco-nasal region, as illustrated in Figure . . . These interfaces have differences in magnetic susceptibility leading to perturbations in B 0 field which leads to so-called off-resonance artifacts. The latter can considerably degrade the image quality during data acquisition. These perturbations in B 0 field can be modeled as a spatially varying magnetic field ∆B 0 (r) which lead to spatially varying changes in Larmor frequencies ω r :

∆B 0 = ∆χ × B 0 ( . ) ω(r, t) = γ(B 0 + G(t) • r + ∆B 0 (r)) . ( . 
)
where ∆χ is spatially varying profile of magnetic susceptibility variations.

The generalized signal equation with T * 2 decay, i.e. Eq. ( . ), can be extended by taking the spatially varying field perturbations ω r into account as follows:

s(t) = FOV ρ(r)e -αrt-iωrt e -i(ki(t)•r) .dr ( . )
The additional term e -αrt-iωrt in the signal equation is both spatially and temporally varying, which results in diverging from the conventional Fourier model of the acquired signal.

. . Estimating a ∆B 0 field map

In the absence of these effects, the MR image x can be reconstructed from the acquired signal s as:

x(r) = Nc i=1 T obs s(t)e iki(t)•r dt . ( . )
This corresponds to the adjoint operator of NUFFT operator. However, in the presence of off-resonance effects, the signal equation Eq. ( .) yields a more complicated signal-to-image relation:

x(r) = Nc i=1 T obs s(t)e i(ki(t)•r+ωrt) dt . ( . )
The additional term ω r needs knowledge of ∆B 0 field map to be corrected.

Most common methods to estimate this maps involve measurement of the observed phase shift φ ∆B0 (r) of the MR image x at position r. As an approximation, this observed phase at TE is related through a linear relationship [GJ ; Rob+ ]:

φ ∆B0 (r, T E) = T E × ω r = T E × γ∆B 0 (r) . ( . )
With this, a ∆B 0 map can be estimated by performing acquisitions with multiple echo times [GJ ], and consider other phase contributions as constant with respect to T E.

Particularly, considering two echo times such that T E 1 < T E 2 , we obtain:

ω r = φ(r, T E 2 ) -φ(r, T E 1 ) T E 2 -T E 1 . ( . )
. .

Correcting effects of ω r

Diverse schemes have been proposed in the literature for correcting the effects of ω r . In [AP ] and [Lin+ ], authors consider the perturbations from ω r as applying a convolution, either in image domain with a modified PSF (more details on this in the next Section) or in k-space with the so-called Modulation Transfer Function (MTF), respectively. As the underlying term ω r t in Eq. ( .) is dependent on both spatial and temporal (i.e. k-space) domain, some methods have been developed [Nol+ ; MPM b; SNF ; Fes+ ] that involve splitting it into a sum of variables that are each dependent in a single domain. However, both the above described methods require high resolution ∆B 0 field maps for accurate corrections, which can be estimated only with additional scans. Hence, methods have been explored in the literature that estimate these field maps internally during correction. These internal estimation methods can be optimization driven [MPM a; SNF ; Pat+ ; PWP ] or based on multi-echo imaging sequences [NN ; BN ].

. Analyzing the performances of sampling patterns

It is important to analyze the performances of the designed k-space trajectories and corresponding reconstruction algorithms to understand their potential limitations in terms of image quality and then benchmark their robustness to noise and off-resonance.

. . Point Spread Function analysis

The first step in analyzing the performance of a subsampled k-space sampling pattern consists in computing its PSF. The PSF is defined as the impulse response of this subsampling system characterized by the k-space sampling pattern. Briefly, it represents the output reconstructed image in response to a hypothetical point source in the image domain. Such PSF analysis is important for any imaging system as it affects the spatial mapping of the ideal representation of an object into the observed imaging, which helps to analyze how the imaging method affects image quality, spatial resolution and behaves in presence of noise and off-resonance effects. In an ideal case where MR acquisition process can be modelled as a linear shift invariant system, the PSF of a subsampling pattern can be used to predict the reconstructed image of an object through convolution, see Figure . . . The PSF of a subsampling pattern for an idealistic setting in absence of δB0 and T * 2 decay can be estimated through adjoint NUFFT operation on the acquired k-space data from the hypothetical point source of the image. The latter being defined as the Dirac delta function in the image domain, its Fourier transform is a constant unity. Then for PSF analysis the acquired k-space data is unity for any location in k-space. However, in the case of non-Cartesian imaging, as described in Section. . . , the simple adjoint NUFFT of this k-space data would over-represent the densely acquired data points. To avoid this, this constant unity k-space data is precompansated with DCp, through multiplication with the density compensators w (see [Pau, Sec. . . ]). Mathematically, the PSF of a subsampling pattern Ω can be estimated as:

PSF(Ω) = F H Ω D1 Ω ( . )
with F H Ω being the adjoint NUFFT operator, 1 Ω being the constant unity k-space data and D is the diagonal matrix with w as diagonal entries (as described in Section. . . ).

Note that while we could use the reconstruction algorithm to reconstruct the PSF, the PSF is a tool used to reflect the quality of the subsampling pattern alone and not the reconstruction algorithms. This is particularly the case when using CS based reconstruction as the reconstruction algorithms enforce some priors of the image being met during reconstruction process. However, the PSF is defined as the impulse response of the subsampling system, hence it involves a point source as input and thus may depart from the priors used on conventional MR images. As a consequence, using a reconstruction algorithm to conduct the PSF would not be fair and would influence the results and estimation of that PSF. This influence is more pronounced in the case of learning based reconstruction algorithms discussed in the next chapter, where the priors learned are more complex and specific to the use case of MRI for a specific organ and possibly a given imaging contrast. The use of PSF is merely a tool to understand the nature of a subsampling pattern, the type of artifacts it may introduce and to assess its robustness to off-resonance and noise through its metrics discussed hereafter.

Source: https://en.wikipedia.org/wiki/Point_spread_function A significant use of PSF is that we can do a first level analysis of the k-space sampling trajectory in the presence of off-resonance and T * 2 , by assuming a spatially constant ∆B 0 and T * 2 . For this, we simulate the effects of a spatially constant off-resonance given by ω r = ω c and T * 2 given by α r = α c on the potentially acquired k-space data 1 ω . Assuming the k-space sampling pattern Ω with trajectories

k i [n] ∀ i ∈ {1, 2, . . . N c }, n ∈ {1, 2, . . . N s } of N c shots
and N s samples per shot, the simulated k-space data y = (y i [n]) Nc i=1 , ∀n ∈ {1, 2, . . . , T obs δt } is given by:

y i [n] = e -(αc+iωc)(nδt+t0) , ∀i ∈ {1, 2, . . . N c } ∀n ∈ {1, 2, . . . , T obs δt } ( . )
where δt is the dwell time of ADC and t 0 is the time of acquiring the first shot after RF excitation. Then the simulated PSF is given by PSF(Ω, ω r , α r ) = F H Ω Dy.

PSF metrics

Having estimated the PSF, we define some metrics to characterize and quantify the PSF which reflects the performance of the subsampling pattern. We also show these metrics in Figure . . for clearer understanding.

• Full Width at Half Maximum (FWHM): We define FWHM as the width of the main peak of the PSF at half of its maximal value. This metric is a measure of the peakiness of a given PSF. In order to have a clear sharp reconstructed image, it is important to have a peaky PSF with a small FWHM. In an ideal imaging scenario, the PSF would be a Dirac pulse with FWHM of zero.

• Peak-to-Sidelobe Level (PSL): The PSF of most sampling patterns consist of the main peak and a number of sidelobes. The PSL is defined as the ratio of the main peak to the maximum of the sidelobes. This metric is also a measure of peakiness of the PSF as it measures the relative strength of the main peak with respect to sidelobes. For good imaging, the PSL should be high, and it is unbounded for positive improvements.

• Peak-to-Noise Level (PNL): The subsampling of k-space results in a noise like characteristics in the PSF at locations further from the central peak. Note that this noise is purely from subsampling and is not associated with the acquisition noise in k-space. The PNL is defined as the ratio of the main peak to the noise floor level and inherently measures the level of incoherent noise like artifacts in the reconstructed image. Again, for good imaging, the PNL should be high, and it is unbounded for positive improvements.

Transform point spread function

While the above discussed PSF is a natural tool to measure the performance of a subsampling pattern, it does not account for the sparsity priors enforced in a sparsifying domain through Ψ and corresponding CS based reconstruction schemes as discussed in Section. . . . For this the notion of PSF was generalized to Transform Point Spread Function (TPSF) in [Lus+ ], which measured how a single coefficient in sparse domain is influenced and influences other coefficients through under-sampling in the measurement domain. In the particular case of D these coefficients are defined as:

TPSF[i;j] = e * j ΨF H Ω F Ω Ψ H e i ( .
)

where e i and e j are unit coefficients in the sparse domain. Characterizing the TPSF and measuring its sidelobes can be helpful in measuring the level of incoherence in the subsampling pattern. 

. . Image quality metrics

A large variety of image quality metrics have been proposed in literature to evaluate and quantify the performance of subsampling pattern and corresponding reconstruction algorithms. However, most of these metrics rely on the knowledge of the ground truth image, which is not available in practice always. Furthermore, these ground truth images must be acquired with the same acquisition parameters as the subsampled k-space data in the same orientation without any motion of the patient, which is not always possible. This prevents the use of these metrics in prospective evaluations at scanner as ground truth cannot be obtained through fully sampled Cartesian acquisitions, which usually suffer from inter scan motion.

In such cases, qualitative analysis of the reconstructed images is the only viable option to evaluate performance. However, the below described image quality metrics can be efficiently used to evaluate the performance in the case of retrospective studies, where the acquired k-space data is simulated by using NUFFT. Such retrospective studies can be really helpful to quickly benchmark a variety of trajectories and reconstruction algorithms, and also grid-search the optimal regularization or target sampling density parameters.

In what follows, we describe the image quality metrics between ground truth image x and the reconstructed image x. Usually to both these images are normalized with their maximum or average values to yield consistent metric values in the same range to judge reconstruction performance over varied imaging dataset.

MSE

The most common metric is the L norm between the ground truth image x and the reconstructed image x given by MSE:

MSE(x, x) = 1 N x -x 2 2 . ( . )
Variations of this metric exists like Root Mean Squared Error (RMSE), which is square root of MSE and Normalized Mean Squared Error (NMSE) which normalizes the loss with respect to ground truth and is given by:

NMSE = MSE(x, x) MSE(x, 0) ( . )
Typically, the lower the value of these metrics, the better the reconstructed image is.

PSNR

Inspired by the use of SNR, another metric used to evaluation reconstructed image performance which is a mix between SNR and MSE is PSNR:

PSNR(x, x) = 20 log 10 max(|x|) RMSE(x, x) ( . )
Notice that PSNR is a logarithmic scale, and inversely propotional to RMSE, hence the higher the value of PSNR, the better the reconstructed image is. Additionally, PSNR metric is unbounded for any improvement in the reconstructed image quality.

SSIM

Some advanced metrics like SSIM [Wan+ ] have been proposed in literature which is based on human visual perception of images and characterized through several indices like luminance l, contrast c and structure s defined as follows:

l(x, x) = 2µ(x)µ(x) + c 2 µ 2 (x)µ 2 (x) + c 2 ( . ) c(x, x) = 2σ(x)σ(x) + c 2 σ 2 (x)σ 2 (x) + c 2 ( . ) s(x, x) = σ(x, x) + c 3 σ(x)σ(x) + c 3 ( . )
with µ the averaging function, σ the standard deviation and σ 2 (x, x) the covariance of x and x, and c 1 , c 2 , c 3 constants relative to maximum image values as explained in [ WSB b].

From [Wan+ ], the SSIM is defined as:

SSIM(x, x) = l(x, x) α × c(x, x) β × s(x, x) γ ( . )
where the parameters α, β, γ are coefficients to weigh the importance of each term and are all set to 1 in [Wan+ ].

An extension to SSIM is multi-scale SSIM [ WSB b], which proposes to analyze the image at multiple scales M S :

MSSIM(x, x) = l(x, x) α M S M S j=1 c(x, x) βj × s(x, x) γj ( . )
where all the weighing factors α j , β j , γ j are set to 1 for simplicity in [ WSB b]. Throughout our experiments, we used the default values for these weighing factors from their implementation functions in SciKit-Image and TensorFlow.

.

Towards the use of deep learning

Throughout this chapter, we have summarized the core concepts of CS in MRI, the need for VDS which is achieved efficiently through non-Cartesian imaging. Particularly, we discussed how to undersample the k-space trajectories and discussed a variety of reconstruction algorithms to obtain image from this k-space data. However, in recent years, there has been a paradigm shift in the field of MRI from the conventional CS to using DL based reconstruction algorithms. This trend is on rise ever since MR imaging datasets like fastMRI [Zbo+ ] and the Calgary dataset [Sou+ ] have been made publicly available. As these datasets also contain the raw acquired k-space data, they have been instrumental for benchmarking not only DL based MR image reconstruction algorithms but also data-driven learning based frameworks to optimize the k-space sampling patterns.

In the next chapter, we review some fundamentals of DL and review some literature on DL based reconstruction networks and its rising use in k-space sampling pattern design. B riefly, from earlier chapters, we can break down the problem of speeding up Magnetic Resonance (MR) scan into two major sub-problems:

Chapter

• Sampling pattern design: How to under-sample the k-space and optimally acquire data through constrained k-space sampling trajectories.

• Reconstruction: Having under-sampled the k-space, how to reconstruct the corresponding MR image from this under-sampled data.

The latter problem can be viewed as an ill-posed inverse problem. In recent years, there has been a strong propensity to tackle such problems using DL, which helps design parameterized nonlinear models for a specific target task like regression, classification or segmentation. Later, the corresponding parameters of these models can be calibrated or learned from a given dataset. In the context of inverse problems, such carefully crafted and learned nonlinear models can be used as good priors over the data, which can be helpful in extending the Compressed Sensing (CS) based methods described in previous chapter to obtain improved image reconstruction quality.

In this chapter, we focus on the fundamentals of DL, its formalism and the key idea of backpropagation which allows for optimizing large and complex networks to model intricate dynamic systems. Later, we review some literature on learning of Magnetic Resonance Imaging (MRI) reconstruction networks. More recently, with the rise of publicly available raw k-space datasets, DL has also been applied to learn optimal k-space sampling patterns within a given scan time budget at a given target contrast. We therefore summarize these new methods (e.g. PILOT, BJORK) to learn such k-space sampling trajectories.

We emphasize that during this thesis, the discussed reconstruction networks are purely applied, and we do not develop new methods or update current ones in the literature. However, the core contributions and novelty of this thesis involves learning the under-sampling patterns in the form of physically compliant k-space trajectories jointly along with the corresponding reconstruction networks.

. Deep Learning fundamentals

In this section, we briefly review the fundamentals of DL and particularly focus on backpropagation which is a method to obtain the gradients of a loss with respect to network parameters. Later, we discuss some basic architectural blocks present in the literature which can be combined to yield a complex structure that can be eventually used to model a highly nonlinear function. Finally, we discuss how to learn the network parameters for such complex models using the gradients of the loss function.

. . Formalism and Backpropagation

DL involves approximating a function f , which maps inputs x to outputs y, using composition of simple parameterized and nonlinear functions, leading to a complex model f θ which is highly parameterized by θ. These parameters θ are stochastically optimized or "learned" during the training step, wherein the parameters are iteratively updated to minimize a target loss function L with respect to a training dataset D of length N T which consists of a set of input and output data pairs given by (x i , y i ) ∀ i ∈ {1, . . . , N T }. Such a network is built and optimized in order to model and learn an unknown or partially known process. In some situations, it is done to structure a currently known model using a strongly parallelized connected network to speed up its computations on Graphical Processing Unit (GPU).

Mathematically, this learning process can be written as the following optimization problem:

θ = arg min θ N T i=1 L(f θ (x i ), y i ) ( . )
For a basic sequential neural network consisting of N L composition of simpler functions called "layers", the function f θ can be written as:

f θ = f N L • f N L -1 • • • • • f 2 • f 1 ( . )
In order to solve the optimization problem in Eq. ( . ), we need to compute the gradients of the loss L with respect to the network parameters θ. The backbone of obtaining such gradients efficiently for composed architectures given by Eq. ( .) is the backpropagation algorithm.

The gradients associated with the loss L with respect to a set of network parameters θ n associated with the intermediate layer f n can be computed using the chain rule as:

∂L ∂θ n = ∂L ∂f n ∂f n ∂θ n = ∂L ∂f N L ∂f N L ∂f N L -1 • • • ∂f n+1 ∂f n ∂f n ∂θ n ( . )
Notice that all the partial derivatives in Eq. ( .) except the last one is independent of θ n . Further, all the these intermediate partial derivatives can be used for gradient computation of the previous layer n -1 as:

∂L ∂θ n-1 = ∂L ∂f n ∂f n ∂f n-1 ∂f n-1 ∂θ n-1 ( . )
This process can be repeated iteratively as we calculate gradients for the last layer f N L to the first layer f 1 and is called backpropagation as the gradients are propagated backwards from the last layer to the first layer. Such first-order gradient based optimization methods is used commonly in DL, even though in practice some underlying composing layers or functions may not be differentiable.

. . Optimization and learning

Once the gradients of loss L are computed for network f θ with respect to the network parameters θ, one can use simple gradient descent based algorithms to iteratively update the network parameters. However, note that as the loss in Eq. ( .) is a sum of loss over the entire training dataset D, the gradient of the loss with respect to the network parameters θ is also a sum of gradients over the entire training dataset. This can be computationally expensive as the gradients are computed for each training sample and then summed up. Further, in the case of implementations using GPU, the entire dataset D has to be loaded into the GPU memory which can be a bottleneck for large datasets. To reduce the memory and computational cost, one can use a Stochastic Gradient Descent (SGD) algorithm which uses a subset of the training dataset D to compute the gradient. This is done by randomly sampling a subset of the training dataset D of length N B called a "batch" and computing the gradients of the loss with respect to the network parameters θ using this batch. The batch size N B is a hyperparameter that can be tuned to achieve a good trade-off between the computational cost and the quality of the optimization. The network parameter update for the SGD algorithm can be written as:

θ t+1 = θ t -η N B i=1 ∂L(f θ (x i ), y i ) ∂θ ( . )
where η is the learning rate of the algorithm which needs to be appropriately tuned to have fast and stable convergence rate. Such a SGD algorithm shows a trade-off between the computing time and the accuracy of the gradients, controlled by the batch size N B . In practice, the accuracy of the gradients determines the maximum allowable learning rate η to ensure stable convergence, thereby affecting the convergence rate.

The above SGD update is the simplest form of SGD and is called the "vanilla" SGD. There are many other variants of SGD which are used in practice to achieve faster convergence. The most commonly used variants use "momentum" to track the previous descent directions [Sut+ ]:

v t+1 = βv t + η N B i=1 ∂L(f θ (x i ), y i ) ∂θ ( . ) θ t+1 = θ t -v t+1 ( . )
where β is a hyperparameter that weighs the current gradient compared to earlier accumulated gradients. More advanced methods rely on normalizing the gradients like adaptive gradient descent (AdaGrad) [DHS ] and adaptive moment estimation (Adam) [KB ]. However, Adam is sometimes unstable and hence in order to accurately learn reconstruction networks, Rectified Adam (RAdam) [Liu+ ], which is a more stable variant of Adam with faster convergence, has been widely used.

. . Architectural blocks

In this subsection, we briefly discuss some commonly used architectural blocks in DL which are used to build the network f θ . These linear and nonlinear basic building blocks are then exploited to build more complex networks through composition (see Eq. ( .)) and are disseminated in many applications.

Nonlinear layers

An important aspect of DL is the use of "activation" functions, which are used to introduce non-linearity in the network. Typically, such activation functions map the input to the output through a pointwise nonlinear function where the function is applied independently for all the inputs to produce outputs of the same dimension. For a more extended discussion on non-linearities we refer the reader to the review of [Nwa+ ].

The common activation functions used in DL are (see Figure . . ):

• ReLU and variants: One of the most commonly used activation functions is Rectified Linear Unit (ReLU) [NH ] which is defined as the following pointwise function:

ReLU(x) = max(0, x) ( . )
This basic non-linearity allows the network to select a subset of the input features and ignore the rest. However, note that the ReLU function is not differentiable at x = 0, while this is usually ignored in practice. Further, the gradients of the ReLU function are zero for negative inputs, which can cause the network to have the so called "vanishing gradient" problem.

To address this issue, variants of the ReLU function have been proposed in the literature. Some commonly used variants include Leaky ReLU (LReLU) [MHN ] function which is defined as:

LeakyReLU(x) = max(αx, x) ( . )
where α ≥ 0 is a hyperparameter which controls the slope of the function for negative inputs. An extension to LReLU function is the Parametric ReLU (PReLU) [He+ ] function where the slope α is learned during training and can be a vector of length equal to the number of input features for an improved control. Many other variants of ReLU have been proposed in the state of the art [RZL ; Zhe+ ].

• Sigmoid, Softmax and Tanh: Some DL neural networks are used for classification between classes, in which case the output of the network must be as discretized as possible and lie bounded between two values signifying classes (like and ). In such cases, the sigmoid nonlinear function, which is defined as follows, is used:

σ(x) = 1 1 + e -x ( . )
The sigmoid function is differentiable and has a smooth gradient which is useful for training. An extension to this for multi-class classification using a vector of inputs x ∈ R K , involves the network outputting a vector of probabilities, for which the SoftMax function is used:

SoftMax(x) = e x K j=1 e xj ( . )
where K is the number of classes. The SoftMax naming comes from the fact that the function indicates the maximum of the input vector smoothly allowing for differentiability.

Finally, the tanh function is used to map the input to the range [-1, 1] and is defined as:

tanh(x) = e x -e -x e x + e -x . ( . )
However, this function is not used as much in recent years as it is very close to the Sigmoid function, which returns values in the range [0, 1].

Figure . -Illustration of common activation functions in deep learning.

Perceptron

The perceptron [Ros ] is the simplest building block of a DL network. It is a linear function which takes a vector of inputs x and outputs a scalar value f (x). Many perceptrons can be chained to form Multi-Layer Perceptron (MLP), which takes a vector of inputs x ∈ R pinp and produces a vector of outputs f (x) ∈ R pout . The perceptron can be written as:

f (x) = σ(Wx + b) ( . )
where W ∈ R pout×pinp is the weight matrix, b ∈ R pout is the bias vector and σ is the nonlinear activation function described in previous subsection. Such a perceptron can also be used to model a linear function f (x) = Wx + b by setting σ(x) = x.

Convolutional layers

With the rise of use of DL in computer vision, the need for a more efficient way to process images arose. Conventional MLP networks are not suitable for processing images as they require the input to be a vector, which is not the case for images. While the input to a MLP network can be reshaped to a vector, this is not a good solution as it loses the spatial information of the image. Further, there was a need to learn a function which is equivariant with respect to translation, i.e. the output of the function for a translated input must be the same output translated in the same way:

f (T (x)) = T (f (x)) ( . )
where T is a translation operator. This is a desirable property for many computer vision tasks, such as object detection and segmentation. The Convolutional Neural Network (CNN) [LeC+ ; Kri ] was proposed to address this problem, which is now a basic building block of DL networks for imaging related applications. The CNN is a special type of MLP network, where the weights are reshaped to a D image and used as a convolutional kernel. The CNN opertaor which takes x ∈ R pinp×h×w as input and produces f (x) ∈ R pout×h ×w as output, where h and w are the height and width of the output image, is defined as:

f (x) = σ(W * x + b) ( . )
where W ∈ R pout×pinp×k×k is the weight matrix, b ∈ R pout is the bias vector, σ is the nonlinear activation function and * is the convolution operator.

In practice, the convolution operation is not well defined at the boundaries of the image, where the kernel is not fully contained in the image. To address this point, the most common method involves padding the image with zeros at edges, which is called zero-padding.

Pooling and upsampling layers

Inspired by the wavelet operators, it is important to analyze images at multiple scales to extract features and improve the overall network performance. For this, pooling and upsampling layers are used in conjunction with CNN networks. Pooling is used to downsize an image by reducing the spatial resolution through the following operations:

• Max pooling: The maximum value of a window of size k × k is taken as the output.

• Average pooling: The average value of a window of size k × k is taken as the output.

On the other hand, during upsampling, the image is upscaled to a higher resolution by repeating the pixels in the image by a factor of k.

Normalization layers

Deeper CNN networks are prone to suffer from vanishing and exploding gradients, as the gradients accumulate through backpropagation across such deep layers and can become very small or large. Normalization layers are used to address this problem by normalizing the input to each layer, thereby making the networks more stable. Mathematically, the normalization layer is defined as:

f (x) = γ x -µ σ(x) 2 + + β ( . )
where µ and σ are the mean and standard deviation of the input, γ and β are hyperparameters to control the new mean and variance of the input, is a small constant to avoid division by zero. Such normalization is applied repeatedly in the network to control the mean and standard deviation of the input to each layer, to explicitly control the energy of the input to the network thereby leading to preconditioning of the corresponding gradients. Such normalization layers are shown [IS ; San+ ] to improve the stability, convergence rate and performance of the network. In practice, such normalization is applied along a dimension of the input, and many variants of such normalization layers exist, such as batch normalization [IS ], layer normalization [BKH ] and instance normalization [UVL ].

Residual and skip connections

While it is possible to learn a function f by stacking a large number layers of nonlinear functions, the output of such a large and deep network can lose coherence with respect to the input for out-of-distribution cases. A way to tackle this issue is to have some skip connections where the features of a layer are concatenated with the inputs of the network for next layer, so that some coarse information of the input exists. This way, the backpropagation can be split into a deep and a shallow path, where the shallow path can learn the coarse information of the input and the deep path can learn the fine details of the input.

Another way to tackle this issue is to use residuals, where the network is learned to output the difference between the inputs and targets, instead of the targets directly:

f (x) = x -f θ (x) ( . )
Here we learn the function f θ (x), which is parametrized by θ, to model the difference between the input x and the target f (x). Such residual connections are particularly useful for image reconstruction tasks where the input and target are similar, and the network is expected to learn the difference between the two.

Dropout and regularization

As the number of trainable parameters grows with the depth of the network, the network is prone to overfitting the training data. To address this issue, regularization is carried out where the network penalties are penalized for large weights through addition of a regularization term (usually the L norm of the weights) to the loss function.

Another popular method to address overfitting in DL is to use dropout [Sri+ ], where a fraction of the neurons are randomly dropped out during training. This way, the network is forced to learn robust features which are not dependent on a particular neuron.

Finally, data augmentation is used to increase the size of the training data by applying random transformations to the training data, such as random cropping, random rotation, random flipping, etc. This way, the network is forced to learn robust features which are not dependent on a particular transformation of the input.

. . Universal approximation theorem

The goal of DL is to approximate the unknown function f through learning of network parameters θ of the model f θ . This raises the question if the network of nonlinear and parameterized functions as shown in Eq. ( .) can approximate any function f . To answer this question, some theoretical results [HSW ; AZ ; Han ] have been obtained in the mathematical literature of DL, which states that neural networks are universal function approximates, i.e. sufficiently large and deep network can approximate any function f arbitrarily well. However, the underlying theory still lacks to fully understand the dynamics of such networks and is still an active area of research in theory of DL.

The above result of universal approximation of neural networks can be generalized to other types of networks like CNN [Mar+ ; Yar ] which is translation-equivariant network commonly used for image domain applications. In practice, the performance of such networks increases with the depth of the network [Tel ; Pez+ b], as this drastically improves the flexibility of the network to model complex functions.

. . Limitations of DL

DL is a powerful tool for learning complex functions, however, it is not a panacea for all problems. The theory of DL is evolving rapidly as it is subject to intensive research. Therefore there are many open problems in the field:

• Non-Convexity: The optimization problem in Eq. ( .) is non-convex and the optimization can get stuck in local minima. Due to this, the initial parameters of the network can have a significant impact on the final performance of the network [TF ; PP ; Sou ]. This raises a need to open source the codes along with the seeds used for any random initialization of network parameters in all scientific communications, so that the community can reproduce the results and compare them with other methods.

• Generalization and Overfitting: The objective of DL is to learn the underlying function f from a set of training data pairs (x i , y i ). However, as discussed earlier, as the performance of network increases with increase in the depth of the network, there is a propensity to over-parameterize the architectures that fit the training data well, but fail to generalize and model the function f well thereby leading to poor performance on out-of-distribution data. This phenomenon is called overfitting and to overcome it the training data is often accompanied by a validation set to monitor the performance of the network on unseen data.

• Interpretability: The network parameters θ are often not interpretable, and it is difficult to understand the underlying function f from the network parameters θ. Due to this, the network parameters θ are often not used for clinical decision-making.

• Computational Complexity: The computational complexity of training a neural network is often high and the training time increases with the increase in the depth of the network. Particularly, for the case of reconstruction multi-channel D MRI data, the training time can be days to weeks. Further, as the training is usually carried out on GPU, the network depths are limited by amount of GPU memory available. Downsizing the network to fit into memory reduces the expressivity of the network thereby underfitting the data.

• Proxy loss functions: The choice of loss function is often subjective and depends on the application and such a choice affects the overall performance of the network. However, a key requirement of this loss L is that it must be differentiable to be able to use gradient based optimization methods. This may not be always possible as the associated loss for some target applications could be extremely complex and even subjective without any well-defined mathematical formulation. This is particularly true for the case of MRI reconstruction where the performance of networks is subjective and based on organ, contrast and depends strongly on the diagnostic utility of the image. However, such complex criteria cannot be formulated and in practice image quality metrics between the ground truth and the network output are used as a proxy instead which may not perfectly fit the given task at hand.

• Dataset and biases: The performance of DL is often dependent on the dataset used for training, and it is crucial to have a large dataset which spans all the important use cases. Additionally, some features in the dataset may be over-represented and bias the solution [Tom+ ].

.

Learning for MRI reconstruction

In recent years, there has been a paradigm shift in applying DL based methods for solving inverse problems, as such methods can learn stronger and more complex priors from a large dataset of training data, thereby outperforming the traditional variational methods that rely on hand crafted priors (e.g. total variation or wavelet-based regularization). Ever since the availability of large MR datasets like fastMRI [Zbo+ ], there has been a surge in the number of DL based methods for MRI reconstruction. The main reason for this is that such DL based methods can be used to model the complex priors from the k-space data, allowing for more accurate reconstruction of the image as compared to sparsifying transforms as used in CS based methods. Further, such priors can be used to remove the artifacts in the reconstructed image caused by k-space under-sampling, thereby allowing for reaching higher acceleration factors without compromising image quality.

A large variety of methods exists in the literature to learn these priors from data and later also using them during the reconstruction process. Broadly, these methods can be categorized into models which learn under constrained setting such that the solutions satisfy the underlying MR physics, and models which are physics-blind and learn the priors from the dataset without any constraints.

In what follows, we discuss these methods to learn a network f θ parametrized by θ, to reconstruct an image x from the k-space measurements y. We assume we have a training dataset D = {(x i , y i )} with N T data points, where x i is the ground truth MR image obtained by fully sampling the k-space and y i is the undersampled k-space measurements corresponding to the image x i .

. . Physics-blind methods

In the initial years of DL based methods for MRI reconstruction, the methods were physicsblind and the DL architectures were versatile with the goal to reconstruct the image purely based on the measurements in the k-space. Such methods ignore the underlying MR physics described in the past two chapters and solely treat the problem as solving a generalized ill-posed inverse problem.

During the training stage, the network is trained to minimize the reconstruction loss L between the ground truth image x i and the reconstructed image x i = f θ (y i ) from undersampled k-space measurements y i , where (x i , y i ) ∈ D. Mathematically, this can be written as:

θ = arg min θ N T i=1 L(x i , f θ (y i )) ( . )
where θ is the optimal set of parameters of the network which minimizes the reconstruction loss L. Later, the trained network is used to reconstruct the image from the k-space measurements as x = f θ (y). Note that in this method, the input to the network are the k-space measurements y presented in the Fourier domain and the output is in the image domain.

Such a method was first applied in AUTOmated transform by Manifold APproximation (AUTOMAP) [Zhu+ ] where the authors proposed a DL based method to reconstruct the image directly from the k-space measurements. The authors used MLPs as kernels to translate the k-space measurements to the image domain, followed by CNN to refine the reconstructed image. As the method was completely blind to MR physics and the undersampling patterns involved, it could be applied directly for both Cartesian and non-Cartesian sampling patterns. Further, this method could also be directly extended to other medical imaging modalities such as Computed Tomography (CT) and Positron Emission Tomography (PET). However, the underlying MLP kernels did not scale well for high resolution and D MRI data. This was particularly the case as these MLPs learned the mapping from Fourier domain to image domain as pseudo Discrete Fourier Transform (DFT) matrices, which are computationally expensive. Knowing that fast implementations for DFT already exists in literature (i.e. Fast Fourier Transform (FFT)), it was natural to use them in the network architecture itself, thereby learning to minimize the loss L in a single domain.

Such models can be briefly categorized based on whether they worked in the image domain or the k-space domain:

θ = arg min θ N T i=1 L(x i , f θ (F Ω y)) ( . ) θ = arg min θ N T i=1 L(x i , F Ω f θ (y)) ( . )
where F Ω is the FFT operator and Ω is the sampling pattern. Notice that Eq. ( . ) learns a network in the image domain while Eq. ( . ) learns a network in the k-space domain.

Both methods are constantly used in the literature where the networks primarily consist of CNN layers [Hyu+ ; Lee+ ; Han+ ; Akç+ ; HSY ].

However, similar to wavelets it is important to have CNN layers with different receptive fields to capture the different scales of the image. For this, U-Net [RFB b] was implemented which consists of CNN kernels operating at different scales. In practice, this is obtained by applying CNN kernels with different receptive fields through downsizing the image using pooling layers. Later, these features are upsampled and concatenated with the features from the corresponding layer at the same scale as skip connections. Such a network is shown in . , and is called U-Net as it looks like a U-shape. Note that the use of CNN kernels in the image domain is justified due to the desired translation equivariance. However, its application along with non-linearities in k-space [HSY ] can pose issues due to lack of such equivariance and also as the energies in k-space are extremely skewed with most of the signal energy concentrated at the center of k-space. Some models are explored in the literature which extend the linear Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) kernel to a nonlinear kernel leading to Robust Artificial neural network for K-space Interpolation (RAKI) [Akç+ ].

A major limitation of such physics-blind methods is the lack of data consistency steps, which reduce the recovery guarantees of the reconstructed images. Further, the probability of hallucinations (see Figure . . ) is also high in such methods, which is can be detrimental for the use of such methods in medical diagnosis. 

. . Unrolled Networks

As illustrated earlier, the presence of data fidelity or data consistency is important for stable reconstruction of images with some guarantees. In practice, this is achieved by unrolling the iterative reconstruction algorithms and learning the required priors in the network architecture. This method improves the guarantees of the reconstruction and also reduces the hallucinations in the reconstructed images, as the networks learn to only improve the images with respect to noise and artifacts from under-sampling of k-space.

The most common method to do this involves learning the prior in the form of a regularizer or its proximal operator in the iteration step for CS based reconstruction. With this, the reconstruction iteration step for the single coil case can be written as:

x (k+1) = f (k) θ (x (k) -F H Ω (F Ω x (k) -y)) ( . )
where

f (k) θ
is the proximal network to denoise the image at iteration k. While each of the networks f (k) θ at all the iterations must be trained end-to-end [Sch+ ; Eo+ ] for best performance, in practice for high resolution and D multi-coil MRI it is done stepby-step [Ozt+ ] to reduce the computational cost. Additionally, to reduce the model's memory footprint, in some methods like MoDL [AMJ ], the network weights are shared across iterations. The above defined unrolled iteration involves networks to correct the image in a single domain only with data fidelity applied in the k-space domain. A generalized version of this algorithm would also involve the use of networks to correct the image in the Fourier domain [Eo+ ], as shown in Figure . . These methods were extensively reviewed and benchmarked on the fastMRI [Zbo+ ] dataset in [Ram+ ] where the PDNet showed to outperform all the other methods. The results of such benchmarking is shown in Figure . . for knee MR images and Figure . . for brain MR images.

. . Reconstructions for non-Cartesian k-space data

Most of the above described physics-based reconstruction methods are designed for Cartesian sampling of k-space data. However, they can be extended to non-Cartesian imaging application by changing FFT operator F Ω to the Nonuniform Fast Fourier Transform (NUFFT) operator described in previous chapter. Such extension of such a method was carried out in [Sch+ ], while it was later noted in [Ram+ c] that such generalization needs density compensation for accelerated convergence and improved reconstructed image quality. .

Learning the sampling patterns

The creation of the fastMRI [Zbo+ ] dataset was not only a major step for learning the reconstruction networks, but also for learning the sampling patterns. This is primarily because learning of sampling patterns crucially required the presence of raw k-space data, which did not exist in the community for many datasets previously including Open Access Series of Imaging Studies (OASIS) [LaM+ ] and OpenNeuro . While the magnitude images are available, and the k-space is the Fourier domain of these images, note that the images are obtained after a processing pipeline conventionally carried out by the scanner which is not known. Using such methods to infer the k-space data to learn the sampling patterns and also reconstruction networks can produce biased results with inflated performance scores [Shi+ ].

With the availability of raw k-space data, for D knee and brain MRI in the fastMRI dataset [Zbo+ ] and D brain MRI in Calgary-Campinas dataset [Sou+ ], the community https://openneuro.org/ has started to explore the learning of sampling patterns. In this section we will review the methods proposed in the literature for learning the sampling patterns. We start by methods which learn Cartesian sampling patterns, followed by methods which learn the gridded Target Sampling Density (TSD) of the k-space. Finally, we discuss some recent strategies to directly learn hardware compliant k-space trajectories. Note that some of these methods did not exist during the course of this thesis, and their overview and comparisons with methods proposed in this thesis are provided in respective chapters (Chapters and ). We still discuss these methods here for the sake of completeness. Further, the main focus of this thesis lies in non-Cartesian k-space sampling patterns, which are composed of hardware compliant trajectories. While we do present the most important methods to learn gridded under-sampling patterns for Cartesian sampling, we do not go in depth with these methods, as it is beyond the scope of this thesis.

. . Cartesian sampling

Perhaps the first method to obtain a TSD and corresponding Cartesian sampling patterns was [Kno+ ], where the authors used normalized averaged k-space magnitude spectrum of a template MRI dataset as candidate for TSD. This method was purely data-driven and the corresponding optimized sampling patterns did not depend on the type of reconstruction algorithm used. This enforces the sampling points to be densely sampled in regions of high signal energy in k-space, particularly in the center of k-space. While such sampling patterns can be optimal for CS based reconstruction, however improved reconstruction quality can be reached if the sampling was carried out in regions of k-space which cannot be well reconstructed by reconstruction methods. Taking this into account, in [Göz+ b] a learning-based framework was proposed to learn the subsampling patterns in k-space for a given reconstruction algorithm. The framework is learned through a parameter-free greedy mask selection method which could adapt to a constraint on sampling locations to be in the form of k-space lines, having direct applications in Cartesian MRI. The scaling issues of this algorithm was addressed in [San+ ] through a stochastic greedy algorithm, which allowed it to be scaled to D parallel MRI and dynamic imaging applications.

As more recent networks try to jointly learn the under-sampling pattern and reconstruction network, in [ZKR ] an alternated learning approach was proposed and applied for parallel MRI. The authors posed a bias-accelerated subset selection algorithm to optimize the sampling pattern. The optimized sampling patterns were shown to exploit the partial conjugate symmetry of the k-space data as discussed in the first chapter.

Later in [She+ ], the authors proposed a bi-level learning framework to learn the sparse sampling patterns in k-space and the corresponding regularization weighting. This method was formulated and developed in a supervised setting, using training sets of ground truth images and corresponding k-space measurements. However, the authors showed that only training pairs were sufficient to achieve a high reconstructed image quality.

. . Learning the sampling policy

Most of the algorithms presented above learned the sampling mask under a given limited scan time budget. However, with a rise in reinforcement learning based methods, there has been increasing interest in the MR community to learn a sampling policy directly. These sampling policies can choose the next sampling location based on the current reconstructed images, and can be used to learn the sampling mask as well. Such methods have wider applications into real time imaging or so-called "active MRI" where the sampling mask is patient specific and dynamic, with scan time promotional to the required reconstructed image quality. First method in this direction is probably [JUY ], which proposed a self-supervised Monte Carlo Tree Search (MCTS) based approach to learn the "SampleNet" which chooses the next sample position in k-space, along with a corresponding "ReconNet" to reconstruct MR images from the sampled k-space data (Figure. . ).

Figure . -Overall framework of [JUY ] which trains deep neural networks, one to reconstruct the images and the other to estimate a policy to determine the position of the next sample to be collected.

Later in [Pin+ ], the task of k-space sampling was modeled as a sequential decision process and used a deep reinforcement learning based approach to learn this sampling policy. In practice, training was performed on large scale fastMRI [Zbo+ ] knee dataset using Double Deep Q-Network (DDQN) [HGS ] algorithm. Figure . -LOUPE-optimized under-sampling masks for under-sampling factor of compared side by side for knee and brain anatomies.

Later, [GGW ] proposed a Bayesian optimization based approach to learn the TSD of k-space. Further, in this method, the authors also optimized the hardware-compliant sampling trajectories through the "sampler", which is an iterative algorithm to minimize the discrepancy [Cha+ ], as done in Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) [Laz+ ].

. . Non-Cartesian trajectory optimization

With an exponential increase in compute power through GPU and the availability of implementations of the NUFFT operator in frameworks which allowed differentiable programming (like TensorFlow [Mon ; RC ] and PyTorch [Muc+ ]), the focus shifted to learning the non-Cartesian sampling trajectories directly. The first work in this direction was Physicsinformed learned optimal trajectories (PILOT) [Wei+ ] b)). This method learned hardware compliant k-space sampling trajectories along with U-net [RFB b] reconstruction network, which was applied on the NUFFT adjoint of the k-space data. Through implementations in PyTorch using TorchKbNufft [Muc+ ], this method could backpropagate through the NUFFT operator. However, auto-differentiation schemes from PyTorch was used to obtain the gradients with respect to k-space sampling locations. These gradients were later shown to be inaccurate in [WF ], which resulted in suboptimality. Later, to overcome this issue, B-spline parameterized Joint Optimization of Reconstruction and K-space trajectories (BJORK) [Wan+ ] (Figure . . (c)) was introduced to learn the D k-space sampling trajectories using more accurate gradients as described in [WF ].

Figure . -Different methods to learn hardware-compliant k-space sampling trajectories. (a) PILOT [Wei+ ], (b) D-FLAT [Ved+ ] and (c) BJORK [Wan+ ].

In order to ensure hardware compliance, all the current state-of-the-art methods enforce penalties in the loss function to penalize the trajectories gradients and slew rates and maintain them below the hardware limits. As the sampling locations are being learned, this leads to many trainable parameters in the overall network, which could lead to suboptimality and convergence to a local minima [Gou+ ]. This is tackled in BJORK [Wan+ ] through B-spline parametrization of the sampling trajectories, and then multi-scale optimization of the B-spline coefficients similarly to what was originally implemented in SPARKLING [Laz+ ]. T he Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) al- gorithm is an optimization-driven method that has been recently introduced for accelerated D MRI using compressed sensing. It has then been extended to address D imaging using either stacks of D sampling patterns or a local D strategy that optimizes a single sampling trajectory at a time. D SPARKLING actually performs Variable Density Sampling (VDS) along a prescribed target density while maximizing sampling efficiency and meeting the gradient-based hardware constraints. However, D SPARKLING has remained limited in terms of acceleration factors along the third dimension if one wants to preserve a peaky Point Spread Function (PSF) and thus good image quality. In this paper, in order to achieve higher acceleration factors in D imaging while preserving image quality, we propose a new efficient algorithm that performs optimization on full D SPARKLING . The proposed implementation based on fast multipole methods (FMM) allows us to design sampling patterns with up to 10 7 k-space samples, thus opening the door to D VDS. We compare multi-CPU and GPU implementations and demonstrate that the latter is optimal for D imaging in the high-resolution acquisition regime ( µm isotropic). Finally, we show that this novel optimization for full D SPARKLING outperforms stacking strategies or D twisted projection imaging through retrospective and prospective studies on NIST phantom and in vivo brain scans at Tesla taking the particular case of T 2 *-w imaging. Overall the proposed method allows for . -. x shorter scan times compared to GRAPPA-parallel imaging acquisition at Tesla without compromising image quality.

Part

. Introduction

The quest for efficient sampling strategies has been a major challenge in MRI since its invention. The theory of Compressed Sensing (CS) [Lus+ ] boosted this quest by providing significant theoretical insights. It was proved and observed empirically that for undersampled acquisitions and approximately sparse signals in an orthogonal basis, an efficient implementation relies on trajectories with a variable density in k-space: the lower frequencies (center of k-space) have to be sampled more densely than the higher at the borders of k-space [Puy+ ; Cha+ ; Adc+ ; Boy+ ]. Non-Cartesian k-space trajectories (e.g. spiral, radial, rosette, etc.) [Ahn+ a; Mey+ ; Jac+ ; Nol ; Law+ ; Lus+ a] have been proposed for accelerated and robust-to-motion D imaging, prior to the existence of theoretical foundations. While being compliant with scanner hardware constraints on the gradients, these trajectories do not sample the k-space according to a well controlled target sampling density. For instance, in spiral imaging, fulfilling these constraints transforms an initially prescribed density into another one [Cha , p. ]. Recently, the SPARKLING algorithm [Boy+ ; Cha+ ; Laz+ ] has been shown to automatically generate optimized non-Cartesian sampling patterns compatible with MR hardware constraints on maximum gradient amplitude and slew rate. SPARKLING optimally samples the k-space (see [Puy+ ; Cha+ ]) with a controlled distribution of samples (e.g., variable density) and a locally uniform k-space coverage. However, for the sake of signal-to-noise ratio (SNR), dimensional ( D) imaging is preferred to reach isotropic high-resolution imaging (e.g. µm isotropic). In this regard, multiple approaches have been utilized to efficiently down-sample D k-space. Some of these involve a combination of a readout in the z-direction with a D under-sampled mask based on Poisson disk sampling [Vas+ ]. Additional attempts on full D readouts were proposed like D radial trajectory [Lar+ ], D cones [Ira+ ], twisted projections [Boa+ ] and hybrid radial-cones [Joh ]. However, these trajectories were primarily based on parameterizing a k-space sampling curve, and the final sampling pattern was not optimized with respect to the reconstruction quality. Some recent studies explored how to optimize the sampling pattern [Dal+ ; Mir+ ; Kum+ ], but did not include a clear sampling criterion in order to maximize the image reconstruction quality.

Other methodologies in the literature involved stacking a D under-sampled trajectory like stack of stars [Son+ ; Lo ], stack of spirals [Ira+ ; The+ ] and stack of D SPARKLING [Laz+ a]. Uniform (i.e. cylindrical) stacking is usually implemented even though a spherical strategy, with a number of shots varying as a function of the latitude plan, was shown to be beneficial on image quality for SPARKLING trajectories [Laz+ a].

Further in [Laz+ a], a local D SPARKLING approach was proposed by designing a single trajectory within a cone obtained from a parcellation of the D spherical k-space. Then all the cones covering a given elevation plane were filled up using the replication of the resulting trajectory. However, this method did not ensure a locally uniform sampling pattern at the boundaries of cones as the problem was solved locally.

The recent rise of machine and deep learning has impacted the literature on MRI sampling [HK ; See+ ; Bal+ ; Göz+ a; Bah+ b; She+ ; Wei+ ; Ved+ ]. These approaches rely on supervised learning techniques, which means that they need a ground truth corresponding to fully sampled data (like the fastMRI dataset [Zbo+ ]), to learn an optimal under-sampling pattern, whether it is Cartesian or not. In [HK ; See+ ], the authors explore the use of experimental design to choose the best subset of prescribed trajectories. Although there are substantial differences between these two methodologies (deterministic vs Bayesian, offline vs online design, etc.) they share a similar theoretical background with ours in that sparsity is the key underlying hypothesis. In particular, [See+ ; HK ] use the Cramér-Rao bound for sparse signals [BE ] as a tailored optimality criteria. However, such methods are computationally demanding as they try to solve a nonconvex integer programming problem. Hence, in a given time budget this limits the exploration and the potential number of prescribed trajectories.

In [Bal+ ; Göz+ a], the authors proposed to step away from the theoretical consideration in CS and adopted a purely data-driven approach. The authors proposed to find an optimal subset of Cartesian sampling lines by using a greedy algorithm aimed at maximizing the SNR. This algorithm can automatically adapt to different reconstruction algorithms and optimality criteria, but its use is limited to Cartesian imaging. More recent approaches made some advance on learning gridded sampling patterns [Bah+ b ; She+ ]. Additionally, to the best of our knowledge, the only works that have learned a non-Cartesian trajectory under hardware constraints are PILOT [Wei+ ] BJORK [Wan+ ] and D FLAT [Ved+ ] for D and D imaging, respectively. These works seem very promising despite significant theoretical and numerical challenges with a combinatorial number of local minimizers [Gou+ ]. In contrast, our work is based on clear theoretical considerations with provable convergence [CB ] in short computing times [MSS ]. Of interest, let us notice that the sampling patterns generated by these methods resemble the SPARKLING ones very much [Wei+ ; Wan+ ], suggesting that the main ideas behind are now reaching a mature and reliable state. Nonetheless, it is worth noting that none of these approaches has been prospectively validated on real D acquisitions. For all these reasons, these works won't be discussed any further in this paper.

In this paper, for the first time, we solve the SPARKLING optimization fully in dimensions. First, in Sec . , we remind the optimization problem to be solved for generating SPARKLING trajectories. Then we focus on major computational bottlenecks that prevented us from scaling the original solution to D and provide detail on our main contributions. One key ingredient in SPARKLING is the setting of the right target sampling density. The latter may vary as a function of the resolution, the imaging contrast, the acceleration factor and the object to be scanned. For that purpose, we parameterize radially decaying densities by two parameters (cut-off, decay) and find the optimal density through a grid search over pairs of parameters. This study can be conducted through a retrospective analysis on the target imaging contrast, the organ and given a coil geometry of interest and then the sought optimal density can be used further in prospective acquisitions. For demonstrating the performance of our new trajectories, we use prospective T 2 *-w imaging of in vivo human brain. In Sec. . , we present the experimental data sets on which the numerical studies are performed later on for validation and comparison purposes. In this regard, we carry out retrospective and prospective analysis on NIST phantom data collected at Tesla ( T). Then we perform prospective in vivo brain imaging acquisitions on a healthy adult volunteer still at T and compare the proposed full D SPARKLING with the existing spherical stack of D SPARKLING . We do not include any comparison with D radial sampling scheme or stack of spirals as this was already done in [Laz+ a]. However, we do compare our trajectories with improved D non-Cartesian trajectories, namely twisted projection imaging (TPI) [Boa+ ]. TPI trajectories have better k-space coverage as compared to full D radial sampling scheme CHAPTER . OPTIMIZING FULL D SPARKLING TRAJECTORIES as these trajectories shift to pappus spirals after a fraction of readout.

. Theory

In this section we briefly introduce the SPARKLING algorithm as described in [Laz+ ].

We detail the particular steps involved in the optimization process. We point to some computational bottlenecks in each of these steps. Later, we describe the methods used to overcome these computational challenges, thereby allowing us to scale the problem to dimensions. Most of the theoretical aspects are directly based on earlier works in [Cha+ ; Boy+ ; Cha+ ], which can be consulted for the problem description and derivations of ( . ).

. . D K-space sampling

A D k-space sampling pattern K is usually composed of several shots or curves, say

N c , K = (k i ) Nc i=1 , where each D shot k i (t) = (k i,x (t), k i,y (t), k i,z (t)), is controlled by magnetic field gradients G i (t) = (G i,x (t), G i,y (t), G i,z (t)) as follows: k i (t) = γ 2π t 0 G i (τ )dτ , ( . )
with γ the gyro-magnetic ratio (γ = 42.57MHz/T for proton imaging). In practice, throughout the readout duration T obs , we sample each shot k i (t) by a time period ∆t, the gradient raster time as the scanner gradient hardware can play gradients at this pace. In the rest of the section, we refer to location of the k-space samples K as the samples on gradient raster points. Then the number of gradient time steps is given by N s = T obs ∆t and the full D sampling pattern K finally consists of p = N c × N s points. Additionally, we limit ourselves to a long readout (T obs 20ms) for T * 2 -weighted imaging, as this allows the trajectory to be longer and maximally explore the k-space.

The k-space domain for a D MR volume of size

N x × N y × N z over a field of view FOV x × FOV y × FOV z , is defined within [-K x max , K x max ] × [-K y max , K y max ] × [-K z max , K z max ], with K max = N
2F OV and = x, y, z. For the sake of simplicity, in what follows we assume the same spatial resolution along the three dimensions so K x max = K y max = K z max = K max even though we meet different matrix and FOV dimensions (N z = (N x = N y ) and FOV z = (FOV x = FOV y )). Hereafter, the D k-space domain will be normalized to Ω = [-1, 1] 3 .

Hardware constraints on the maximum gradient amplitude (G max ) and slew rate (S max ) induce limitations in trajectory speed and acceleration. These limits can be expressed as box constraints on the amplitude of the discrete derivatives of the k-space trajectory (k i [n]) Ns-1 n=0 . These hardware constraints can be applied on a per dimension basis, giving rotation variant (RV) constraints, whose resulting trajectories cannot be run on the scanner if the FOV is rotated. Due to this limitation, in this work, we focus on rotation invariant speed and acceleration constraints which can be expressed as follows:

Q Nc α,β =    ∀i = 1, . . . , N c , k i ∈ R 3×Ns , Ak i = v, k i ∞ ≤ 1, ki 2,∞ ≤ α, ki 2,∞ ≤ β,    ( . ) where ki [n] = k i [n] -k i [n -1] ∆t ki [n] = k i [n + 1] -2k i [n] + k i [n -1] ∆t 2 c 2,∞ = sup 0≤n≤Ns-1 |c x [n]| 2 + |c y [n]| 2 + |c z [n]| 2 1/2 , In [Cha+ ],
we have also dealt with the case of RV constraints where the ∞-norm replaces the mixed 2,∞ -norm used here.

for all c ∈ Ω Ns and (α, β) are obtained by normalizing hardware and Nyquist constraints to the sampling domain Ω (from [Laz+ ]):

α = 1 K max min γG max 2π , 1 F OV • δt ( . a) β = γS max 2πK max ( . b)
The purpose of A and v are to model linear constraints on the trajectory, like the Echo Time (TE)point constraint, which ensures that each trajectory passes through center of k-space at TE. More sophisticated linear constraints (e.g. gradient moment nulling) can be modeled too, see details in [Cha+ ]. The normalized constraint αδt ≤ 1 F OV ×Kmax ensures that the distance between k-space locations associated with two consecutive measurements, sampled by the analog-to-digital converter (ADC) at the dwell time period δt (see Subsection . . for the relationship between ∆t and δt), is lower than the Nyquist rate, which is essential to discard some undesired filtering effects [Laz+ b].

. . D SPARKLING formulation

Let ρ : Ω → R denote a target sampling density, with ρ(x) ≥ 0 for all x and ρ(x) dx = 1. Following previous works [Grä+ ; Sch+ ; Ehl+ ; Laz+ ], we obtain K ∈ Ω p by solving:

K = arg min K∈Q Nc α,β F p (K) = F a p (K) -F r p (K) ( . )
with Q Nc α,β being the constraint set for the N c shots. Here we remind that p refers to the total number of k-space samples (or particles), so p = N c × N s .

The term F a p (K) corresponds to an attraction term which ensures that the final distribution of the k-space sampling points follows the target density ρ and F r p (K) is the repulsion term to ensure that the sampling is locally uniform and that we don't have any local clusters. These terms are defined as:

F a p (K) = 1 p p i=1 Ω H(x -K[i])ρ(x) dx ( . a) F r p (K) = 1 2p 2 1≤i,j≤p H(K[i] -K[j]) ( . b)
where

K[i] ∈ Ω describe the locations of k-space samples in a shot-based lexicographical order [k 1 , . . . k Nc ].
The function H is a well chosen kernel, typically H(x) = x 2 . Note that alternative choices such as H(x) = log(x) have been also investigated in [Teu+ ]. The minimization problem ( . ) can be attacked by various nonlinear programming procedures.

In this work, we propose to use a projected gradient descent as described below:

K (t+1) = Π Q Nc α,β K (t) -η (t) ∇F p (K (t) ) ( . )
The computational bottlenecks in ( . ) involve the calculation of ∇F p (K) = ∇F a p (K) -∇F r p (K), and the projection of each shot onto the constraint set Q Nc α,β .

. . Gradient Descent Step

In what follows, we provide details about the calculation of F p and ∇F p .

Evaluating F a p and its gradient To calculate the attraction term and its gradient, we can re-write ( . a) as:

F a p (K) = 1 p p i=1 (H ρ)(K[i]) ( . )
where denotes the convolution-product in the continuous setting. The main difficulty is thus to quickly evaluate (H ρ)(x) (optional, if we want to compute the cost function) and its derivatives. To this end, we discretize the target sampling distribution ρ as follows:

ρ[i, j, k] = ρ(i/N, j/N, k/N ) ( . )
where i, j, k ∈ [-N, N ], and N ∈ N describes the number of discretization points. We typically take N twice as large as max(N x , N y , N z ) to define the density at a better resolution than the image size. Similarly we compute a discrete version of the filter H as:

H[i, j, k] = H(i/N, j/N, k/N ) ( . )
Letting * denote the discrete convolution-product, we use the following approximation

(H ρ)(K[i]) I(H * ρ)(K[i]), ( . 
)
where I : R (2N +1) 3 → C 0 (Ω) denotes a tri-linear interpolant function. Hence, the computation of F a p (K) requires to precompute H * ρ on a discrete grid with fast Fourier transforms once for all. The computation of the sum in ( . ) then has a complexity O(p), which is linear in the number of particles.

Similarly, the computation of ∇F a p (K) involves the calculation of the partial derivatives ∂ i,l F a p (K) where 1 ≤ i ≤ p is the index of a particle and 1 ≤ ≤ 3 the index of a dimension. According to ( . ), the partial derivative is:

∂ i, F a p (K) = 1 p (∂ H ρ)(K[i]) ( . )
Thus, letting ∇H ∈ R (2N +1) 3 ×3 denote a discretization of ∇H, we can precompute the discrete vector field ∇H * ρ on a Cartesian grid using fast Fourier transforms and then use a tri-linear interpolant to evaluate it off the grid.

Evaluating F r and its gradient

The problem addressed here is to compute F r p and ∇F r p (K). For purposes of simplification, we introduce r ij = K[i] -K[j] 2 and consider H to be a radial function depending on r ij only. Letting K denote the spatial components of K = [K 1 , K 2 , K 3 ], we get:

F r p (K) = 1≤i,j≤p H(r ij ) ( . a) ∂ i, F r p (K) = 1 p 2 j =i K [i] -K [j] r ij ∂ H(r ij ) ( . b)
The evaluation of all the components of the gradient require O(p 2 ) computations, where p can reach 10 8 for high resolution imaging. An efficient implementation is therefore critical. In this work, we explored two possibilities.

Brute force calculation using PyKeops

The computation of ( . a) and ( . b) can be highly parallelized, which is amenable to efficient GPU implementations. Carrying out such computations on array centric frameworks like PyTorch and Tensorflow would require the use of huge p × p-dimensional matrices. This would result in a large memory footprint, much larger than what is typically available on current modern GPUs. For the sake of efficient memory usage, we used PyKeops, a library that permits low cost calculations of large kernel operations [Cha+ ]. PyKeops carries out the naive and direct computations using online map reduce schemes from CUDA routines for summations. Due to this, the whole matrices are not stored in the GPU memory, but rather just the final results. 

[i] = p j=1 Ψ(K[i], K[j])w[j] .
The FMM utilizes a multipole expansion of the kernel Ψ, which allows for a hierarchical grouping of closely spaced k-space points and treat them as a single source. This results in a massive acceleration of the above computation with a complexity O(p log p/ ), where is a user-prescribed precision. For our implementations, we used the Parallel Black box FMM [Wan+ ; Fon+ a] in D (PBBFMM D ), which can be run with any arbitrary kernel Ψ.

To evaluate the cost function F r p , we only need to set

Ψ(K[i], K[j]) = H(r ij ) and w[j] = 1, ∀j.
To evaluate the gradient (∂ i, F r p (K)) i , we set w[j] = 1 and

Ψ(K[i], K[j]) = K [i] -K [j] r ij ∂ H(r ij ) .
Comparisons From Fig . , we see that naive GPU implementations on PyKeops outperforms the PBBFMM D implementation for p < 5 × 10 6 . Beyond this value, PBBFMM D gets faster. It is likely that faster computations with the FMM would be obtained with a GPU implementation. Unfortunately, we did not find any robust and efficient GPU implementation of FMM.

Choice of step size

In our implementation, we use a combination of two step sizes. In the first iterations, we use a fixed step size: η (t) = η. As analyzed in [Cha+ ], this strategy provides a convergence guarantee to a local minimizer of the cost function given that: • The step size is inversely proportional to the Lipschitz constant.

These conditions are satisfied with a regularized norm of the form H(r) = √ r 2 + 2 . We can then set η (t) proportional to (i.e. 6.25 -2 ). The value of can be chosen as a fraction of the minimal distance between two points at a stationary point.

A constant step size is too conservative and a faster convergence can be obtained using a second-order dynamics close to the minimizer. This justifies switching to a Barzilai-Borwein [Bar+ ] after first few iterations. Few theoretical guarantees are available for this technique, but it significantly accelerates the convergence empirically.

. . Projection step

The projection step in ( . ) for a general single k-space shot onto a given constraint set parameterized by (α, β) has been explored in [Cha+ ; Cha+ ]. For our implementations, we needed to extend the single shot iterative procedure called Algorithm in [Cha+ ] to projecting N c shots. Note that the actual projection of a k-space shot is independent of other shots, and thus the computation can be done in parallel. Hence, we have implemented this step both on multi-CPU and GPU. To efficiently utilize a GPU, we used the CuPy module [Oku+ ]. The computation times with different implementations for varying N c and N s are shown in Fig. . . We found that the computation times vary linearly with N s and are drastically reduced for the GPU implementation compared to the CPU versions (single and multicore). At lower N s , we found that m-CPU and GPU implementations are latency bound, giving anomalously higher computation times. However, the speedup obtained for larger N s offsets these anomalous cases, giving an overall efficient implementation.

. . Multi-resolution strategy for faster convergence

In order to allow for the algorithm to reach faster convergence and lead to a better approximation of the target density, a multi-resolution approach as described in [Leb+ ] was implemented. Under this methodology, the optimization of the sampling pattern was carried out on down-sampled curves. The interpolated solution was later used as a warm restart for the up-sampled problem. Our implementations involved dyadic scaling and up-scaling through simple linear interpolation of k-space shots. Let the linear interpolator be of the form L 2d : Ω d → Ω 2d . We define the parameter N d as the number of decimation steps in the algorithm. Note that the constraint space needs to be equally scaled with the problem, which results in scaling the α and β constraints mentioned in ( . ) to:

α = γG max 2 N d 2πK max , β = γS max 2 N d 2πK max ( . )
As we move through the dyadic decimation steps and up-sample the curve, these constraints are halved.

. . Overall algorithm

Algorithm Algorithm summarizes how to concretely compute the SPARKLING solution along with multi-resolution steps described in Sec. . . . For more details on the iterative procedure involved in the projection step

Π Q Nc α,β
, the reader can refer to [Cha+ ].

Algorithm : Multi-resolution implementation of SPARKLING Inputs : ρ, G max , S max , N c , N s , N d , n git , n pit Output: K, the k-space sampling pattern 

Initializations: K (0) ∈ Ω Nc ×Ns 2 N d = Ω p α ← γGmax2 N d 2πKmax , β ← γSmax2 N d 2πKmax while N d > 0 do p ← Nc×Ns 2 N d for t = 1 . . . n git do K (t-1/2) = K (t-1) -η (t) ∇F p (K (t-1) ) K (t) = Π Q Nc α,β K (t-1/2) ,
for s = 1 . . . N c do k (0) s ← L Ns 2 N d -1 k (ngit) s K (0) ← k (0) 1 , . . . , k (0) Nc // Scale constraints α ← α 2 , β ← β 2 N d ← N d -1
.

Numerical experiments and data acquisition

The sampling patterns were obtained by carrying out projected gradient descent as described above. With the above described improvements, the SPARKLING Generation time was just minutes for D and nearly -hours for D on NVIDIA V with CUDA cores and GB DDR X memory.

. . SPARKLING: a Python package

In the ethos of reproducible research and to move forward into better optimized patterns for MRI acquisition, all the implementations as described above is present in a Python package at the private repository . All codes in the package scale to and dimensions directly, and most codes are agnostic and can be run on CPU or GPU with some change in run parameters. All the scanner constants and trajectory specification can be provided through a configuration file, and most of the codes are modular in nature. Interested researchers are requested to contact the authors for obtaining access to this package .

. . Acquisition parameters

With a goal of µm isotropic resolution in D MRI acquisitions, we planned to obtain a volume of (N x × N y × N z ) = (384 × 384 × 208) size in order to cover the whole brain. For the sake of consistency, we used the same matrix size and resolution for our acquisitions on the NIST phantom . The trajectories were generated for a clinical T MR system (Magnetom Prisma FIT , Siemens Healthcare, Erlangen, Germany) with maximum gradient strength G max = 40mT/m and peak slew rate S max = 180T/m/s. As the readout time was set to T obs = 20.48ms and the gradient raster time is ∆t = 10µs, the number of samples per shot k i , was N s = 2048. The number of shots N c was varied based on the study described hereafter. For our in vivo studies, the k-space data was acquired on a Siemens channel Head/Neck coil, while using channels around the head during acquisition. The TE was 20ms and Repetition Time (TR) was 37ms. The flip angle was set to 15°, and the slice excitation was slab selective. We also obtained a reference volume collected using a -fold accelerated Cartesian acquisition (acquisition time or TA= min sec) based on GRAPPA parallel imaging technique [Gri+ ] with the same TE, TR and T obs = 20ms. The projected gradient descent was carried out with multi-resolution decimation steps N d = 6 for faster convergence. The algorithm was run for n git = 100 outer gradient descent iterations with n pit = 100 steps in the inner projection loop.

Choice of target sampling density

The target sampling density was chosen to be radially isotropic, which decays as an inverse polynomial with a constant plateau in the center of k-space. The density was defined with C, the cutoff frequency in k-space center having a constant density and D, the rate of decay for higher frequencies. Mathematically, we define the target density π C,D (x) : Ω d → R + as follows:

π C,D (x) =    κ |x| < C κ C |x| D |x| > C ( . )
where κ is a constant obtained through normalization as κ =

1-D 2C(C D-1 -D)
. The resulting density is radially symmetric and is of the form described in Fig. . . The choice of a radial density was motivated by the wish to provide rotation invariant reconstruction results. Notice that the recent learning based approaches [She+ ; Bah+ b] result in non-symmetric densities. This is probably due to the fact that brains or knees databases such as fastMRI [Zbo+ ] used for training have boundaries which are dominantly vertical or horizontal. However, the fine details may be in arbitrary orientations.

The choice of the density was carried out by grid searching for optimal parameters Ĉ and D on the target sampling distribution as defined in (B. ). We performed retrospective reconstruction on complex Cartesian reference (with phase to account for off-resonance artifacts by phase accrual) in vivo brain data obtained through virtual coil combination [Par+ ] https://gitlab.com/cea-cosmic/CSMRI_sparkling It cannot be made open source given patent application. NIST Phantom of raw multi-channel images (see Sec. A. in Appendix). We chose a target sampling distribution of Ĉ = 25% and D = 2 as it is gives the best image quality as well as more reliable image reconstruction performance in the single-channel setting. Improved reconstruction performances can be observed using an optimal target density of Ĉ = 1% and D = 1 for our multi-channel coil configuration (see Fig. A-). However, this setting was not retained in this work to ensure that optimized D SPARKLING trajectories are generic and do not specifically depend on our given coil configuration (Siemens Rx head/neck).

Initialization and Perturbation

As the problem being solved in ( . ) is non-convex, different choices of initialization would lead to different solutions. In [Laz+ ] for D imaging we observed that radial initialization performed the best for exploring the k-space. Hence, here for D imaging we stick to D radial initialization too. For the sake of simplicity, and also to ensure radially symmetric initialization, we set up the trajectories with √ N c shots in x-y plane and then rotate each shot √ N c times along an in-plane axis orthogonal to the shot. More generic solution can be obtained by solving for the minimum electrostatic potential energy configuration of N c electrons over the surface of a unit sphere, however this approach was not pursued in this work.

For best reconstructed image results, we would want each k-space shot to maximally explore the k-space. The D radial initialization is too structured with each k-space shot traveling only from end to end of k-space. To enable a broader k-space exploration and obtain a better minimizer of the original problem, we added a perturbation to each initial shot. To achieve this, we perturbed each trajectory sample point in k-space by adding zero mean uniform random noise along each dimension. Particularly, we compared the resulting optimized trajectory obtained after a perturbation as a random motion of each k-space point with maximum amplitude set at 0.1 and 0.75 (we remind that the sampling domain is normalized to Ω = [-1, 1] 3 ). The optimized trajectory patterns are presented in Fig. . . We clearly show that with more perturbation, the k-space trajectory tends to explore a broader part of k-space giving a better coverage overall. We also notice quantitatively that with more perturbation the value of the cost function converges to a lower local minimum. Further, we would like to emphasize that these trajectories are particularly useful in cases of high receiver sampling rates, as they would then sample more of the k-space per shot and would overall prevent the presence of any hole in the sampling pattern.

Initialization Generated Trajectory

(a) P= . .

Results

. . From trajectories to k-space data

The k-space data Y = (y i ) Nc i=1 is sampled by the ADC at the dwell time period δt. In practice, the dwell-time δt is a fraction of the raster time ∆t and was set to δt = 2µs. This means that y i ∈ C m with m = N s ∆t δt the number of measurements per shot. Overall, we collect M = N c m k-space data points in Y. Consequently, during the image reconstruction process, we obtain the k-space locations of Y by linearly interpolating the optimized trajectory K originally sampled at ∆t, to the δt period.

. . Assessment of point spread function

We present the full D SPARKLING , obtained with N c = 4096 in Fig. . . We visualize the trajectory along the mid-planes of orthogonal orientations and provide an approximate sampling mask in these planes. Further, to understand why these trajectories are expected to yield good image reconstructions, we measure the D PSF. Each point spread function was computed by taking a density compensated Nonuniform Fast Fourier Transform (NUFFT) adjoint of k-space measurements set to (y i

[n] = 1, ∀i = 1, • • • , N c , ∀n = 0, • • • , m -1)
as described in [Pau]. In Table . -Comparing metrics of PSF with FWHM (lower is better), PSL and PNL (higher is better).

Trajectory FWHM

(in voxel units) PSL (in dB) PNL (in dB) x y z Full D . . . . . SpSOS . . . . .
As shown in Fig. . , we see that the full D pattern provides us with much higher PSL ( . dB more) and PNL ( . dB more), two quantitative indices that demonstrate the full D SPARKLING methodology outperforms the spherically stacked version. In contrast, we observe that the FWHM is nearly the same for both methods, even though the FWHM along the x axis is slightly lower for the full D pattern. However, this minor difference in FWHMs and the slight anisotropy in FWHM can be explained by the fact that the full D initialization was severely perturbed ( . ) as described in Sec. . . . 

. . Non-Cartesian MR image reconstruction

All MR images that rely on non-Cartesian k-space data in this paper were reconstructed using a self-calibrated synthesis-based CS reconstruction algorithm In this work, we did not carry out off-resonance artifact corrections using [Sut+ ], as it is beyond the scope of this manuscript. However, note that this does not require any supplementary scan for obtaining ∆B0 map as the latter can be directly estimated from phase information using [Dav+ ]. For the sake of completeness, we show in appendix the performance of our trajectory with off-resonance corrections for Acceleration Factor (AF)= in 

. . Phantom

Retrospective studies

We proceed by carrying out a retrospective study to assess the quality of reconstructed images. We varied the AF = Ny×Nz Nc for D MR imaging, i.e. computed with respect to fully sampled data) from (TA= min sec) to (TA= min sec) compared to a fully sampled scenario or equivalently from . to compared to the reference Cartesian p (i.e. AF= ) under-sampled acquisition, reconstructed using the GRAPPA algorithm [Gri+ ]. Our motivation was to understand the degradation in image quality while decreasing the number of collected spokes. Further, a study was also carried out with the TPI [Boa+ ], as a comparison with a non-Cartesian reference from the literature. The results are presented in Tab. . . They clearly show that the optimized full D SPARKLING strategy is robust to high acceleration factors in terms of image quality as reflected by the higher SSIM scores. In contrast, the performances of the SpSOS approach start to get worse already for AF= . Finally, the SSIM score for TPI for AF= is already significantly lower than that of SpSOS. The reconstructed images are presented in the Appendix (see Fig. 

Prospective acquisition

In order to understand how the effective spatial resolution compares to the target resolution (here . mm isotropic), we performed prospective acquisitions on the NIST phantom for full D SPARKLING and SpSOS trajectories with varying AF (AF= and for both, AF= for full D). The results are presented in Fig. . . Particularly, we show a slice that includes the resolution insets present on the NIST phantom (coffin of plate ). The latter can be used to estimate the effective resolution. This slice consists of resolution insets, each having x circles. The diameters of these circles vary linearly from 0.8mm down to 0.4mm. The inter-circle space (measured between the centers of the circles) also reduces linearly from 1.6mm down to 0.8mm in steps of 0.2mm. We see that the intensity profile of our reconstructed MR images does not follow that of Cartesian reference as we did not carry out coil sensitivity normalization in our reconstructions. This can be performed using the rapid pre-scan coil sensitivity measurements done in a few seconds. This point will be addressed in future works. Overall, we observe that full D SPARKLING trajectories provide less noisy images compared to SpSOS ones. Further, it is worth noting that at AF= and , we can distinguish in between the resolution insets down to . mm, with an increasing noise level over the image for a higher acceleration factor. However, we observe some resolution loss over the images based on SPARKLING trajectories (more pronounced for SpSOS), where we see some blurring for circles of diameter . mm separated by . mm (taken from the center of circle). This helps us understand the expected degradation in image resolution. Therefore, the effective image resolution is estimated to be . -. mm isotropic at AF= and and is evolving toward . -. mm at AF= for full D SPARKLING . 

. . In vivo

We collected in vivo data with full D SPARKLING and SpSOS trajectories for brain imaging on a healthy volunteer (male, y.o.). This study was approved by a national ethics committee (CPP ). The volunteer signed a written informed consent form.

Retrospective studies

To understand how the trajectories perform for in vivo brain data, we repeat the earlier retrospective study on Cartesian p scans acquired on the volunteer. The results of the scans are presented in Fig. . . We see that full D SPARKLING trajectories outperforms the SpSOS trajectories both visually and quantitatively in SSIM metrics with maximum SSIM of .

(AF= ). Moreover we show that both SPARKLING trajectories outperform TPI in Fig. A-in Appendix. Additionally, the SSIM metrics follow the similar trend as seen for phantom data, with the SSIMs for SpSOS dropping off more rapidly from .

(AF= ) to .

(AF= ). In contrast, the full D SPARKLING trajectories tend to preserve the structures (SSIM scores above . at AF= and ) and show some blurring artifacts only at AF= where SSIM drops to .

. Particularly, it is interesting to note that full D SPARKLING at AF= outperforms SpSOS at AF= .

Prospective acquisition

Finally, we collected prospectively accelerated in vivo data at T on the same individual using the same SPARKLING trajectories. We present the reconstructed images for various accelerations factors in observed that the quality of AF= , AF= and AF= in full D strategy is comparable to AF= , AF= and AF= in SpSOS pattern respectively, allowing for an additional x shorter scan time. Further, we found that the full D SPARKLING pattern at AF= is comparable to GRAPPA Cartesian p .

It is important to note that the volunteer slightly moved between some scans, hence prospective image comparisons can only be carried out qualitatively. To better understand reconstruction quality, we present zoomed in visualizations for prospective result at AF= in Fig. . . Further, for the sake of comparison between retrospective simulations and actual prospective scans, we also show the retrospective results for AF= with full D trajectory. We find that full D strategy retains better structures of the brain in the MR image than SpSOS, which is clearly visible in the cerebellum in the sagittal view.

The comparison with retrospective image allows us to directly identify some degradation and loss of small details in prospective images. Potential explanations for this effect are the T 2 * blurring and off-resonance artifacts, which drastically drop the effective SNR obtained (see Fig. A-in Appendix). This confirms that in vivo acquisitions are more challenging. 

. Discussion

One key aspect of optimized full D SPARKLING trajectories is that it results in a sampling pattern that enforces variable density sampling in all the dimensions. We hypothesized that this allows us to efficiently under-sample the k-space acquisitions, thus making it possible to push the acceleration factor to a larger value than what was achieved earlier, while still maintaining a good image quality. The current work actually demonstrates that at fixed acceleration factor, full D SPARKLING significantly outperforms the stacking strategy [Laz+ a] in terms of image quality. Alternatively, we show that this gain can be translated into shorter scan time by a factor of one third (AF= for full D vs AF= for SpSOS) for a given image quality. Further, the full D trajectory is constrained to pass through the center of k-space for each shot at echo time. This ensures that we obtain the lower frequency image content repeatedly, hence we can potentially use these trajectories for motion correction. Also, as the center of k-space is visited repeatedly at different time intervals in scan, this allows for easy adaptability of this trajectory for dynamic imaging like functional MRI. Such a trajectory can also be used for correcting certain artifacts causing off-resonance effects, which are due to static and dynamic B inhomogeneities (heart beat, breathing). A preliminary solution has been proposed for static B inhomogeneities estimation and correction in [Dav+ ]. As the developed trajectories exploit the scanner hardware constraints nearly to the maximum, it is worth paying attention to the eddy current effects on the trajectory. To this end, we measured the trajectory with the help of a Skope field camera [De + ] and observed in Sec. A. . that the error between the prescribed and actual trajectories is minimal (cf.

Fig. A-).

While the current SPARKLING algorithm is generic and can be applied to any imaging contrast a priori, we choose T * 2 -w imaging as it allows us to keep longer T obs hence enabling a full exploration of D k-space. In order to understand the effects of T * 2 blurring and off-resonance, we simulated the PSF under these scenarios in Sec. A. . . Additionally, as we interfaced a GRE pulse sequence (FLASH in the Siemens taxonomy) with the SPARKLING outputs, the adaptation of this algorithm to other contrasts (e.g. T 2 ) would potentially need the development of a turbo spin echo (TSE) sequence that is able to play arbitrary gradients. These developments are left for future work. However, prospective implementations of T 1 -w contrast have already been done in D for comparison with BJORK in [Wan+ ] (outside of our group).

One limitation of SPARKLING is that the original optimization problem ( . ) is nonconvex and the fact we used a locally convergent optimization algorithm to compute a minimizer. Hence the final solution heavily depends on its initialization. To overcome this issue, we introduced some perturbation (uniform random noise in the k-space locations) and illustrated in Fig. . that a larger perturbation results in a much better k-space coverage, allowing us to reach a better minimizer to the original optimization problem. However, there is no theoretical guarantee this approach provides a systematic better solution as the underlying optimization process remains rather disconnected from MR image reconstruction and the maximization of image quality.

In the same vein, another limitation of the resulting reconstructed MR images is that they heavily depend on the target sampling distribution. We obtained our results by parameterizing this distribution, thereby optimizing for its parameters using a grid search on in vivo brain data. However, these optimal parameters are not generalizable for different contrast and organs. Further, such parametrization can prevent us from using more complex target sampling densities. To overcome this limitation, ongoing work intends to couple SPARKLING with the learning of the target sampling density from the magnitude spectrum of human brain MR images [CRC ]. Akin to this work, we could also jointly optimize for the acquisition (sampling pattern) and reconstruction schemes (regularization parameters) under MR hardware and imaging contrast constraints, either in a bilevel optimization [She+ ] or using deep learning approaches [Wei+ ; Ved+ ; Wan+ ; CRC ]. These extensions would help us to take some factors, like the anatomy and the imaging contrast, into account in the design of trajectories with perfectly matched target sampling densities for these cases.

. Conclusion

In this paper, we proposed an optimization for full D SPARKLING k-space trajectories for accelerated high resolution D magnetic resonance imaging and demonstrated its superiority over the previously proposed stacking strategies on phantom and in vivo human brain data at T for the particular case of T 2 *-weighted imaging. We discussed the major computational bottlenecks that prevented us earlier from proceeding towards these full D trajectories. We then derived some implementations (GPU and multi-CPU) that helped us massively accelerate the original algorithm. Our results showed that a µm isotropic scan on human brain is achievable in min sec, whereas m sec is required to reach image quality comparable to GRAPPA-parallel imaging. Overall, this is a significant step forward CS acquisitions in MRI. Future work will be devoted to the extension to D imaging, namely for fMRI.

as the patient spends a shorter time period in the scanner environment. In this regard a lot of parameterized NC trajectories have been explored in the literature like radials, spirals and rosette [Ahn+ a; Mey+ ; Jac+ ; Nol ; Law+ ; Lus+ a]. However, based on CS theories, efficient ways to undersample the k-space is through VDS, where the center of k-space (low frequencies) is sampled more densely than its periphery (higher frequencies). While the traditional NC trajectories do sample the k-space using VDS, they do not enforce a user-defined TSD in the k-space, which could be crucial for tailoring optimum sampling strategies based on a given target organ, contrast and coil configuration.

Recently, SPARKLING [Laz+ ] was introduced as a means to optimize k-space sampling pattern according to a prescribed TSD while each underlying NC k-space trajectory followed the MR hardware constraints, particularly maximum gradient G max and slew rate S max . This work was successfully extended to dimensions [Cha+ d] which enabled reduction in acquisition times (nearly 4× as compared to GRAPPA [Gri+ ]) with negligible degradation in retrospective reconstructed image quality.

However, a large gap was observed in the reconstructed image quality between simple retrospective simulations and actual prospective scans (see [Cha+ d, Fig. ]) in the case of T * 2 -w imaging. Such a discrepancy in prospective setting was identified [Cha+ d, S .B], [Dav+ ] to be due to the presence of strong off-resonance effects and T * 2 decay whose impact is accumulated in T * 2 -w contrast due to longer TE used to enhance the susceptibility contribution. This effect is amplified in NC imaging and notably in D SPARKLING as such trajectories have arbitrary readout directions, leading to local k-space inconsistencies. Although these artifacts can be corrected [Sut+ ] without needing any supplementary scan for ∆B 0 map [Dav+ ], such corrections are computationally expensive. In this work, we insert temporal weights into the cost function of the SPARKLING algorithm, giving us temporally smooth k-space trajectories which present with MORE.

Additionally, another limitation of the SPARKLING trajectories is that we use affine TE constraints, where we limit the shots to pass through the center of k-space at echo time to obtain images at chosen target contrast. This results in strong oversampling of the center of k-space with respect to the Nyquist criteria which can be detrimental to image quality as it results in increased ∆B 0 artifacts due to multiple trajectories crossing the center of k-space along different trajectory paths. Further, such oversampling is sub-optimal as these extra samples can be used to sample higher frequencies resulting in improved image reconstructions with finer details in structures. Although this is counterintuitive to CS theories which justifies VDS theoretically, note that CS theories are relative and do not prescribe how many samples must be collected in practice. Having a TSD which enforces k-space samples beyond the Nyquist criteria can lead to suboptimality. We tackle this issue by updating the constraint set in SPARKLING algorithm giving us trajectories with gridded sampling at center of k-space.

With this, we introduce novel MORE and GoLF features which can be used individually and in conjunction to design trajectories that exhibit minimized ∆B 0 artifacts and improved reconstructed image quality. We limit ourselves to the case of T * 2 -w imaging where maximal ∆B 0 artifacts are accumulated. Note that while this work is specifically applied to the design of SPARKLING trajectories, the constraints and penalties developed are more generic and could be used more widely in any trajectory optimization process including state-of-the-art learning based NC trajectory design like PILOT [Wei+ ; Ved+ ], BJORK [Wan+ ] and HybLearn [CRC ].

The sections below are organized as follows. We first develop the required theory for the case of D non-Cartesian imaging in Sec. . , then we briefly discuss the limitations and ways to tackle them in the current algorithm in Sec. . . Later in Sec. . , we proceed to fine tune our algorithm through PSF analysis and grid-search on prospectively acquired k-space data on T. Finally, we carry out benchmark studies on both in silico and in vivo settings prospectively to demonstrate the gain in scan acceleration obtained by using these novel improvements.

. Theory

Following the formulation in [Cha+ d], the k-space domain that is acquired for a D MR volume of size N x ×N y ×N z over a field-of-view (FOV) FOV x ×FOV y ×FOV z , is defined within

[-K x max , K x max ] × [-K y max , K y max ] × [-K z max , K z max ],
with K max = N 2F OV and = x, y, z. For the sake of simplicity, in what follows we assume the same spatial resolution and FOV along the three dimensions so

K x max = K y max = K z max = K max and FOV x = FOV y = FOV z = FOV. Also, the D k-space sampling domain is normalized to Ω = [-1, 1] 3 .
We optimize the D k-space sampling pattern K = (k i ) Nc i=1 which is composed of N c shots, each D shot k i (t) = (k i,x (t), k i,y (t), k i,z (t)), being controlled by magnetic field gradients

G i (t) = (G i,x (t), G i,y (t), G i,z (t)) as follows: k i (t) = γ 2π t 0 G i (τ )
dτ , with γ the gyro-magnetic ratio (γ = 42.57MHz/T for proton imaging). In contrast to D imaging, here in D each G i (t) is played by the scanner throughout the readout duration T obs at a pace of gradient raster time (∆t) resulting in a number of samples per shot N s = T obs ∆t . The k-space data is later sampled at the Analog to Digital Converter (ADC) at every dwell time δt which is a fraction of ∆t.

. . Trajectory Constraints

Hardware constraints on the maximum gradient amplitude (G max ) and slew rate (S max ) induce limitations in trajectory speed and acceleration, respectively. These limits can be expressed as box constraints on the amplitude of the discrete derivatives of the k-space trajectory (k i [n]) Ns n=1 , where k i [n] is the obtained by discretizing k(t) at n∆t, with ∆t the gradient raster time. We obtain these constraints from [Cha+ d, Eq. ( )] as:

Q Nc A,b =    ∀i = {1, . . . , N c }, k i ∈ Ω Ns , A i k i = b i , k i ∞ ≤ 1, ki 2,∞ ≤ α, ki 2,∞ ≤ β,    ( . ) where ki [n] = k i [n] -k i [n -1] ∆t ki [n] = k i [n + 1] -2k i [n] + k i [n -1] ∆t 2 c 2,∞ = sup 0≤n≤Ns-1 |c x [n]| 2 + |c y [n]| 2 + |c z [n]| 2 1/2 ,
for all c ∈ Ω Ns and (α, β) are obtained by normalizing hardware and Nyquist constraints to the sampling domain Ω (see [Cha+ d, Eq. ( a-b)]). The purpose of

A i = (a i,1 |a i,2 | • • • |a i,ci ) T ∈ {0, 1} 3ci×Ns with a i,j =    a x i,j [1] a y i,j [1] a z i,j [1] . . . . . . . . . a x i,j [N s ] a y i,j [N s ] a z i,j [N s ]    and b i = (b i,1 , . . . , b i,ci ) T ∈ R 3ci where b i,j = (b x i,j , b y i,j , b z i,j
) T are to model affine constraints on the trajectory, where j ∈ {1, . . . , c i }, and c i is the number of affine constraints on i th k-space shot. The purpose of A i is to select the portion of k-space shot where the constraints need to be active and vector b i defines the specified constraints, i.e. the locations in k-space to go through. Note that as compared to [Cha+ ], here the set of affine constraints is generalized as its number c i > 1 and the constraints themselves (A i , b i ) may vary across shots.

In [Cha+ d], a TE constraint was used, which ensures that each shot passes through the k-space center at TE. This is done to ensure that the same target contrast is measured across multiple shots crossing the center of k-space at the same time point, i.e. TE. The index of k-space sample at TE being given by 1 ≤ k TE = TE ∆t ≤ N s , this corresponds to a single constraint on every shot i, i.e. c i = 1 with: 

a d i,1 [k] =    1 k = k TE , ∀d ∈ {x,

. . D SPARKLING

From [Boy+ ; Cha+ ; Laz+ ; Cha+ d] we optimize the D trajectory K ∈ Ω N with N = N c × N s sampling points using the SPARKLING algorithm:

K = arg min K∈Q A,b Nc F N (K; Π) = F a N (K; Π) -F r N (K) ( . )
where F a N (K; Π) is the attraction term which ensures the sampling pattern K follows a prescribed TSD Π and F r N (K) the repulsion term to avoid clustering of samples. From [Cha+ d; Laz+ ]:

F a N (K; Π) = 1 N N n=1 Ω x -K[n] 2 Π(x)dx , ( . a) F r N (K) = 1 2N 2 1≤n,n ≤N K[n] -K[n ] 2 . ( . b)
The sampling pattern K is optimized using projected gradient descent algorithm, as described in [Cha+ d, Algorithm ].

In practice, the optimization is performed through multi-resolution (see [Cha+ d, Sec.II-E]) which starts by spreading N R max = N/2 R max samples at the maximal R max = 5 decimation levels and iterates through a dyadic process, i.e. N R max -R = 2 R N R max for R = 1 to (N 0 = N ). This is performed to ensure that the optimization is carried out with faster convergence when we coarsely optimize the k-space trajectory initially (R = R max ). Then optimization is refined at finer resolutions as we approach convergence (R = 1).

. Methods

In this section, we briefly describe two major extensions of SPARKLING that provide improved reconstructed image quality with reduced off-resonance artifacts.

. . MORE-SPARKLING

From [Fes ; Don ], the measured k-space samples Y = (y i ) Nc i=1 across the N c shots are given by:

y i (t) = F OV
x r e -(αr +ıωr )t e -2ıπ(ki(t)•r) dr ( . ) with x r the transverse magnetization of the object, α r the T * 2 decay and ω r the off-resonance at voxel r. Note that the temporal dependence of Y on α r and ω r , was not considered in the original SPARKLING formulation. Due to this, the SPARKLING trajectories result in a sampling pattern where multiple samples present nearby in k-space are collected at different times, thereby inducing artifacts. To observe this, we present temporal sampling plot for mid-plane of k-space along z-axis in Fig. . (A), where we use rainbow coloring scheme to show the time at which the k-space sample is collected in each shot. We see that in region marked with blue arrow, for conventional SPARKLING trajectories, the k-space is not smooth temporally, resulting in trajectories that may be locally inconsistent leading to amplified ∆B 0 artifacts.

We mitigate the impact of B 0 inhomogeneities by adding temporal weights in the repulsion term F r N (K) to obtain F r N,τ (K):

F r N,τ (K) = 1 2N 2 1≤n,n ≤N e |tn -t n |•τ 2 R max -R K[n] -K[n ] 2 ( . )
where k-space sample location K[n] is sampled at time t n = n∆t after the RF pulse during Observation time (T Obs ) and τ ≥ 0 is a scalar user-defined repulsion weighting parameter.

The purpose of the weighting 1 2 R max -R is to shape the amount of temporal repulsion added as a function of the current decimation level, where we have a stronger temporal repulsion at initial stages of the algorithm. As we approach convergence and finer resolution levels (lower R), the amount of temporal weighting is significantly reduced to prevent the presence of unwanted k-space holes.

Notice that when t n ≈ t n , then F r N,τ ≈ F r N , and we are still solving the original problem in Eq. ( . ). In contrast, when t n = t n and τ ≥ 0, then F r N,τ > F r N , thereby the sample points are facing a stronger repulsion, pushing them apart. This way, the k-space locations which are sampled at different time points are pushed apart, thereby ensuring a smooth temporal sampling of the k-space while also satisfying the TSD Π. These updated k-space sampling trajectories are presented in Fig. . (B)-(F) and moving forward, we call these trajectories as MORE-SPARKLING . Note that when τ = 0, F r N,τ = F r N and the resulting trajectories are the conventional SPARKLING .

With this, we generate MORE-SPARKLING trajectories, with TSD which takes the TE constraints into account (see [Laz+ , Sec. . ]) for varying τ values and present them in Fig. . (A)-(F). We observe that strong weighting of this repulsion term with an increased τ results in k-space holes (marked by red arrows), which is detrimental to optimal reconstructed image quality. To prevent this, τ needs to be grid-searched appropriately to enforce temporally smooth k-space sampling, while avoiding undesirable k-space holes. The effect of varying τ is presented in Fig. . . In our studies (Sec. . . ), we observed that τ = 1.0 (Fig. . D) resulted in maximal signal recovery with minimal impact of the k-space holes on final reconstructed image quality.

. . GoLF-SPARKLING

Another concern of traditional SPARKLING trajectories is the presence of TE constraints on the k-space sampling trajectories. These constraints are specifically added to the SPARKLING formulation to ensure that the center of k-space or the low frequencies are sampled at the same time after the RF pulse (i.e. at TE) as described in Sec. . . . Consequently, resulting k-space trajectories sample the central frequencies at a rate higher than Nyquist rate, resulting in multiple samples collected within a Cartesian k-space voxel. Although such oversampling is fully justified by CS theory and VDS, in practice it leads to accumulation of ∆B 0 artifacts as multiple samples are acquired in the same Cartesian k-space voxel through an integration over different k-space trajectory paths (see Eq.( .)). Instead, these samples could be dispatched in other portions of k-space (e.g. in higher frequencies) to increase its coverage at no additional cost and provide more details in the images.

This oversampling of the center can be tackled partially by updating the TSD by taking the TE point constraint into account (see [Laz+ , Sec. . ]) and reducing the density around the center of k-space to limit the number of samples per Cartesian k-space voxel. However, we don't fully mitigate this problem as we still end up with N c k-space sample points at the center of k-space [0, 0, 0] T causing nearby regions to be still sampled densely. This problem cannot be addressed plainly with removal of TE point constraint and using temporal weights (from Sec. . . ) to achieve temporally smooth sampling within Nyquist criteria, as then the resulting sampling pattern would not sample the center of k-space at TE to obtain the desired target contrast.

In order to efficiently mitigate such issues of oversampling, note that an optimal way to sample a region of k-space at Nyquist with minimum redundancy is through Cartesian sampling. We use this fact and add affine constraints into our projection set Q Nc A,b such that we carry out Cartesian sampling at center of k-space. Each k-space sample shot k i , ∀i ∈ {1, . . . , N c }, is constrained to pass through the lower frequencies in the form of a Cartesian line as shown in Fig. . . This constraint is enforced by crafting individual A i and b i in a specific manner for each shot i.

In practice, we cover a sphere S in the center of k-space defined in Ω with Cartesian sampling as shown in Fig. . (A With this, we obtain r S = 2 Ñ Nc π . Based on Nyquist criteria, we need to sample at least every ∆x = 2 Ñ to have non-aliased reconstructed image. However, as the k-space data is sampled at every dwell time δt < ∆t, in practice, the scanner can play k-space trajectory to take at least ∆x∆t δt samples at every ∆t. Generalizing this, we introduce k-space velocity at center of k-space as a dimensionless parameter v ≥ 0, which is the number of Nyquist voxel steps ∆x taken in readout direction per gradient raster time ∆t. Particularly, k-space trajectory takes steps of size v∆x < ∆x∆t δt at every ∆t. The purpose of v is to efficiently utilize the gradient hardware in traversing the center of k-space at maximum feasible speed while maintaining Nyquist criteria after sampling at ADC at every δt. Say the Cartesian portion of i th k-space shot k i , starts as a k-space line at x s i and ends at x e i , then we obtain the number of samples at center of k-space for this shot as follows:

N K i = x e i -x s i v∆x . ( . )
The k-space locations of these Nyquist points are given by:

x i = x s i + (x e i -x s i ) N K i , ∀ ∈ {1, . . . , N K i } . ( . )
This results in c i = N K i constraints which are applied to i th k-space shot k i at

N K i indices between k L i = Nc-N K i 2 and k H i = Nc+N K i 2
, where L and H stand for lower and higher
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indices, respectively. With this, Eq. ( . ) updates as follows:

a d i,j [k] =    for k = k L i + j j ∈ {1, . . . , c i } i ∈ {1, . . . , N c } d ∈ {x, y, z} 0 otherwise ( . a) b i, = x i ∀ ∈ {1, . . . , N K i } . ( . b)
Then, the affine constraints in matrix formulation in Eq. ( . ) read:

k i [k L i + ] = x i , ∀ ∈ {1, . . . , N K i } match the affine constraints in Q Nc A,b .
We call this update to SPARKLING as Gridding of Low Frequencies or GoLF.

. . TSD characterization for GoLF

In this section, we derive the mathematical expression for the TSD in k-space for the particular case of GoLF-SPARKLING , such that we enforce Nyquist sampling at the center of k-space. It is important to note that as we add constraints on k-space trajectories in the center of k-space, the corresponding TSD is also affected. For simplicity, we derive the TSD for the specific case of v = 1 i.e. we sample Nyquist voxel every ∆t. However, in Sec. B. , we derive the TSD for the general case of v in detail.

Following [Cha+ d], we parameterize the TSD as radially isotropic which decays at an inverse polynomial rate D and reaches a constant plateau in center of k-space up to a cutoff frequency C. For the case of GoLF, we set C = r S and parameterize the TSD in k-space as follows:

Π r S ,D (x) =    κ |x| < r S κ r S |x| D |x| > r S ( . )
where κ, the normalizing constant is the density of the plateau, which for GoLF trajectories must match the density for Nyquist criteria.

For a total number of gradient raster sampling points N = N c × N s , the number of samples within the center of k-space (|x| < r S ) is given by N |x|<r S :

N |x|<r S = N κ 4 3 πr 3 S . ( . )
With Cartesian sampling in the center of k-space, we sample once per Nyquist voxel of side length ∆x. Thus, the number of Cartesian Nyquist sample points N Nyq in the center of k-space is given by:

N Nyq = 4 3 πr 3 S ∆x 3 . ( . )
Then the Nyquist sampling criteria are enforced for the center of k-space by setting N |x|<r S = N Nyq to get:

κ = 1 N ∆x 3 . ( . )
Finally, as Π r S ,D (x) is a distribution, we need to ensure that it is normalized (i.e. sum to ) giving us (see B. for details):

κ4π r 3 S 3 + (r S ) D -r 3 S 3 -D = 1 . ( . )
With this, the decay D can be obtained by solving Eq. ( .) iteratively, and we present it and the corresponding r S at the top of AF values. However, in the asymptotic regime, D is nearly . , while even at high AF= , prescribed by N c = 1141, we still have r S = 12% of center of k-space sampled on a grid.

In the case of NC sampling at Nyquist rate in a region, we need to use Poisson disk sampling. Particularly in D, this is equivalent to filling up the k-space with a sphere of diameter ∆x (rather than a Nyquist voxel of side length ∆x). Hence, as already known [BKZ b, Chap. ] with NC sampling we need more samples to satisfy the Nyquist criteria as compared to Cartesian sampling. The ratio of number of Nyquist samples with D NC imaging (N nc ) to the case of D Cartesian imaging (N c ) is given by the inverse of ratio of the corresponding volumes:

N nc N c = ∆x 3 4 3 π ∆x 2 3 = 6 π . ( . )
Note that at the edges where we switch from Cartesian sampling to NC sampling, we need a larger target density to ensure we still satisfy Nyquist criteria. We take this into account in our detailed generic formulation in Sec. B. . Finally, we can apply D Inverse fast Fourier transform (IFFT) on the k-space data within the gridded sampling region (see Fig. 

. . MORE + GoLF SPARKLING

In the above sections, we introduced novel important features to the vanilla SPARKLING trajectories, which help in reducing artifacts and improving the reconstructed image quality.

Observe that MORE feature involves only a change to the repulsion term F r N,τ , GoLF involves a change to the constraint set Q Nc A,b and a corresponding change to the TSD (Π) and thereby the attraction term F a N,Π . Hence, MORE and GoLF features are totally independent and can be combined to form MORE+GoLF-SPARKLING trajectories with temporally smooth k-space sampling pattern and gridded sampling in center of k-space.

. . MRI acquisition parameters

We carried out in silico and in vivo measurements to validate and benchmark the improvements of the new trajectories MORE and GoLF. In all the experiments, the target resolution is 0.6mm 3 isotropic, with N x = N y = 384 (FOV x = FOV y = 23cm) and N z = 208 (FOV z = 12.48cm). We use an AF of (N c = 3969), except in the case of variable AF study. All the prospective scans were carried out on a clinical T MR system (Magnetom Prisma FIT , Siemens Healthcare, Erlangen, Germany) where the k-space data was acquired using a Siemens channel Head/Neck coil. T * 2 -w images were obtained with flip angle of 15 • and slab selective excitation with TE of ms and TR of ms. The k-space data was acquired with T Obs = . ms (N s = 2048, hence ∆t = 10 µs) and data was sampled by the ADC at δt = 2 µs. Additionally, a ∆B 0 map was acquired with a D gradient echo sequence in the same FOV at mm isotropic resolution with TE 1 = 4.92ms and TE 2 = 7.38ms. These TEs enable the coverage of ∆B 0 inhomogenieties in range [-203, 203]Hz, resulting in phase wrap present in all references which was unwrapped using [Her+ ]. For in silico scans, we used the NIST/ISMRM MRI system phantom [ ] for calibrations and testing as this phantom can be used for assessing geometry distortions, image uniformity and resolution. Our in vivo scans was done on one volunteer with approvals from local and national ethical committees for the protocol (CPP ), and after a written consent was obtained from the volunteer.

Off-resonance frequency with

. . MR image reconstruction

All the reconstructions for the data from SPARKLING trajectories were carried out offline using self calibrating MR reconstruction [El + b] using pysap-mri , a plugin for PySAP [Far+ a]. We used the synthesis formulation of self-calibrated CS reconstruction with 1 -norm regularization in symlet-wavelet domain to promote sparsity. Optimization of this cost function was performed using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). To reduce computational complexity, k-space data was coil compressed to channels using the principal component analysis-based method proposed by [Bue+ ]. For Cartesian references, the corresponding magnitude and phase DICOMs were directly obtained from the scanner.

. Results

In this section, we present the results for different experiments carried out for optimizing parameters in the new SPARKLING trajectories using MORE and GoLF features. Later, we proceed to present the overall improvement observed when combining MORE and GoLF features under optimal settings. All the proposed experiments were performed in a prospective validation setting i.e. in truly accelerated imaging scenarios.

. . MORE: Optimizing τ

In this experiment we optimized the parameter τ for MORE-SPARKLING through two studies: (i) Analysis of the PSF and (ii) through prospective study.

PSF

We computed the PSF of the MORE-SPARKLING trajectories for different values of τ and show the results in Fig. . . The details on how to compute the PSF are given in Sec. B. . For optimal visualization of D PSF, we present accumulated energies within concentric radial shells with different radii as a percentage of total energy. These plots help us understand how peaky the PSF is and having a higher percentage of energy within a smaller central portion of k-space leads to minimal blurring and reduced artifacts in the reconstructed image.

Varying levels of ∆B 0 were superimposed to the k-space data to understand the behavior of trajectories in different settings. For T * 2 -w imaging at T, the PSF was obtained with T * 2 = ms (mean T * 2 value for gray and white matter [Pet+ ])and the off resonance frequencies were chosen at levels: (A) Ideal case with no ∆B 0 ( Hz), (B) medium level of ∆B 0 ( Hz) and (C) maximum level of ∆B 0 ( Hz). We also present similar results for . T and T in Fig. B-in Sec. B. . From Fig. . we see that for τ = 0 (SPARKLING trajectory), the PSF strongly degrades when ∆B 0 increases, with only 20% of energy in the 20% of the central region. In contrast, we observe that with addition of temporal weighting (τ > 0), this PSF is improved strongly with nearly 60% of energy within 4% (respectively, 8%) of the central region around the peak at Hz (resp. at Hz). Further, we see that the improvement of the PSF with increase in τ beyond τ = 0.8 is very limited and incremental. With this study, we conclude that τ ≥ 0.8 is the optimal setting for MORE SPARKLING the case of T * 2 imaging at T.

Prospective study

As described in Sec. . . , the amount of temporal repulsion or τ needs to be grid searched to obtain an optimal value which maximally reduces the impact of ∆B 0 without causing artifacts induced by k-space holes in sampling patterns. For this, we obtained MORE-SPARKLING trajectories with varying τ from to . , and a prospective study was run first on the NIST phantom (Fig. Additionally, we clearly see a gradual signal recovery when increasing τ in the same marked regions. Finally, we observe that τ = 1.0 is optimal in terms of maximal signal recovery with minimal k-space holes (from Fig. . (F)).

In both degraded acquisition settings, Fig.

. demonstrates that accelerated Cartesian imaging (GRAPPA-) is more robust to ∆B 0 inhomogeneities than MORE-SPARKLING due to increased temporal smoothness (i.e. imposed by a one-dimensional readout) in Cartesian sampling. However, these Cartesian scans are . -fold longer.

. . GoLF: Varying trajectory velocity at the center of k-space

Based on Eq. ( . ), the velocity of the Cartesian portion of the k-space trajectory at the center of k-space can be controlled using v. Under the maximum gradient strength of 40mT/m and the acquisition parameters as described in Sec. . . , a maximum of . Nyquist steps can be taken by the MR scanner in a given ∆t (see Sec. B. ). High velocities at center of k-space is useful to result in longer k-space trajectory, which leads to larger k-space coverage. However, in the prospective setting, traversing the center of k-space at higher velocity may lower the SNR as the MR signal in k-space is accumulated over a shorter time interval. Consequently, there is a need to find an optimal value of v that reaches the best trade-off between an improved k-space coverage and a limited SNR loss to avoid degrading too much image quality.

Prospective scans were done on the NIST phantom for GoLF-SPARKLING trajectories with v = 0.6, 1, 2 and 3 (Fig. . ). The NIST phantom can help optimally tune v as it embodies resolution insets, which can be used to quantify image quality (see [Cha+ d, Sec IV.D ]). Overall, in the axial plane, Fig. . shows an increase in artifact level appearing first at v = 2 and becoming more prominent for v = 3, as marked with red arrow in the bottom row. Further, when zooming into the resolution insets, for v > 1, we see significant losses in the details. This careful analysis indicates that v ≤ 1 is better for T * 2 -w imaging at T. Within this range, for the sake of broader k-space coverage we chose v = 1, i.e. the highest possible velocity to spend minimum time in the center of k-space and collect more samples in the high frequency region, resulting in sharper edges (green arrow in the bottom row).

. . Joint MORE and GoLF SPARKLING

In this section, we demonstrate the overall gain obtained when combining MORE and GoLF to minimize ∆B 0 artifacts and improve image quality through gridded sampling at center of

(A) v = 0.6

Resolution insets zoomed

Axial plane zoomed 

(B) v = 1 (C) v = 2 (D) v = 3

. . Varying acceleration factors (AF)

Prospective k-space data was also acquired in vivo from the same healthy volunteer at varying AF values from to for both MORE-SPARKLING and GoLF+MORE-SPARKLING trajectories. The aim of this experiment was to assess how image quality evolves as a function of scan time. The results are presented in Fig. . . Overall, we observe that GoLF feature is crucial and provides less noisy and more detailed images as compared to the sole MORE-SPARKLING trajectories. The image quality is preserved up to AF= for GoLF+MORE-SPARKLING trajectories while we observe degradation at AF= for MORE-SPARKLING . Additionally, a direct diagonal comparison can be drawn between the two approaches: We observe that image quality at AF= , AF= , AF= and AF= for GoLF+MORE-SPARKLING trajectories is comparable to that of MORE-SPARKLING trajectories at AF= , AF= , AF= and AF= , respectively.

. Discussion and Conclusions

Arbitrary readout directions in non-Cartesian MRI leads to improved k-space coverage, but may cause increased off-resonance artifacts due to accumulation of ∆B 0 from different arbitrary trajectory paths. This major issue was observed in SPARKLING trajectories, particularly in the case of T * 2 -w imaging due to larger T Obs (i.e. readouts) and TEs. In this work, we introduced two important features for SPARKLING trajectories to result in improved reconstructed images: MORE and GoLF. Through MORE, we introduced a temporal weighting in the traditional SPARKLING optimization problem which takes the temporal nature of the sampled data into account. The optimized trajectories resulted in temporally smoother k-space sampling, which led to reduced off-resonance artifacts with limited blurring and strong signal recovery in regions with large ∆B 0 . This temporal weighting can also be added to other k-space sampling pattern optimization problems, making this feature more generic and applicable widely to non-Cartesian MRI. For instance, these temporally smooth sampling patterns are extremely beneficial for X-Nuclei imaging where the values of T 2 relaxation times are small. MORE-SPARKLING trajectories sample a given region of k-space at the same time during scan leading to a stable signal level and overall an improved image quality. Preliminary data shows that center-out version of MORE-SPARKLING with shorter T obs and utra-short TE were applied to Sodium Imaging in [Bap+ b] and were shown to outperform the state-of-the-art twisted projection imaging (TPI) [Boa+ ] with clearer visibility in brain structure. In the latter context, further comparison with improved FLORET trajectories [Pip+ b; RAP ] would be insightful.

Cartesian sampling can sample a given region of k-space with minimum redundancy when sticking to the Nyquist criteria. Also, such sampling results in structured off-resonance artifacts, which can be corrected with simple post-processing. In GoLF, we incorporated these features of Cartesian sampling into the SPARKLING framework through more general affine constraints and adaptation of the TSD to match these Nyquist criteria constraints. The result was a significant decrease in artifacts and overall an improved image reconstruction quality.

Through this work, we introduced a novel compound sampling approach to measure the k-space with trajectories having both Cartesian and non-Cartesian parts to extract the best of both worlds. With the GoLF feature, through Cartesian sampling at center of k-space, we can quickly obtain sensitivity maps in all our scans through simple IFFT of this central k-space data. As an extension to this, we can now incorporate parallel imaging methods like GRAPPA [Gri+ ], SENSE [Pru+ ] and CAIPIRINHA [Bre+ ] to further increase the AF or increase the percentage of center of k-space sampled with Cartesian sampling, resulting in further improved image clarity.

Another extension to GoLF involves having the same k-space trajectory passing through the center of k-space as Cartesian line multiple times, resulting in a larger portion of center of k-space sampled with Cartesian sampling. This coupled with a high trajectory velocity (like v = 3), results in trajectories closer to echo planar imaging (EPI). Such trajectories can be helpful in achieving extremely high AF, which is crucial for imaging modalities like functional MRI. These extensions and specific applications to different modalities will be addressed in future works.

Concluding, we applied the above two features to SPARKLING framework, resulting in improved reconstructed image quality with reduced off resonance artifacts and noise level as well as clearer visibility in the structures. Using both features in conjunction allows us to accelerate the scans at unprecedented speeds, enabling to reach higher AF with significantly reduced degradation in image quality. As of now, we can speed up scans by . times compared to GRAPPA-, leading to a µm isotropic resolution scan in D T * 2 -w imaging possible in just . minutes at T with negligible degradation in image quality. The SPARKLING algorithm was originally developed for accelerated D magnetic resonance imaging (MRI) in the compressed sensing (CS) context. It yields non-Cartesian sampling trajectories that jointly fulfill a target sampling density while each individual trajectory complies with MR hardware constraints. However, the two main limitations of SPARKLING are first that the optimal target sampling density is unknown and thus a user-defined parameter and second that this sampling pattern generation remains disconnected from MR image reconstruction thus from the optimization of image quality. Recently, data-driven learning schemes such as LOUPE have been proposed to learn a discrete sampling pattern, by jointly optimizing the whole pipeline from data acquisition to image reconstruction. In this work, we merge these methods with a state-of-the-art deep neural network for image reconstruction, called XPDNet, to learn the optimal target sampling density. Next, this density is used as input parameter to SPARKLING to obtain x accelerated non-Cartesian trajectories. These trajectories are tested on retrospective compressed sensing (CS) studies and show superior performance in terms of image quality with both deep learning (DL) and conventional CS reconstruction schemes.

. Introduction

Compressed sensing (CS) in MRI [Lus+ ] has led to a large reduction in scan time while maintaining a reasonable reconstructed MR image quality. Practically, CS is implemented by undersampling pseudo-randomly the k-space according to a variable sampling density [Puy+ ; Cha+ ; Cha+ ; Adc+ ; Boy+ ]. The sampling pattern may be composed of multiple individual Cartesian lines (Cartesian Sampling), in which case variable density sampling (VDS) is implemented only along the phase encoding dimension. To go to higher reduction in scan times, non-Cartesian sampling is really helpful as it permits the implementation of D VDS with the help of non-Cartesian trajectories, such as radial spokes [Lau ] and spiral interleaves [Ahn+ a]). Although radial and spiral sampling are widespread, they are not really optimal as radial spokes don't cover the k-space perfectly and spiral interleaves do not exactly match a prescribed sampling density. Hence, severe artifacts impede image quality during CS reconstruction. The Spreading Projection Algorithm for Rapid K-space samplING, or SPARKLING [Laz+ ] has been introduced as an iterative scheme that optimizes for each k-space trajectory to be compliant with MRI hardware constraints (particularly maximum gradient and slew rate constraints), while ensuring that the overall sampling pattern obtained with all the trajectories follows a target sampling density. Further, the algorithm ensures that optimized k-space sampling pattern does not have any local clusters, leading to locally uniform sampling patterns. This algorithm was extended to D [Laz+ a; Cha+ d] and showed superior performance in both terms of a peaky point spread function and image quality.

However, a major drawback of SPARKLING algorithm is the need to setup a target sampling density as an input to the algorithm. In our earlier studies, we relied on heuristic methods to set this sampling density. The latter was parameterized to be radially decaying and its optimal parameters (decay, cutoff) were grid searched during retrospective reconstruction studies in which image quality was maximized as a function of optimized trajectories for varied target densities. However, this approach is too computationally expensive. Also, with a parameterized target density, the search space is too constrained, preventing us to obtain organ, imaging-contrast or orientation-specific sampling schemes. One way to tackle this problem is by learning the target sampling density using data-driven approaches.

In [Kno+ ], the authors proposed a naive approach to choose the target sampling density by averaging the power spectra of multiple MR images in a dataset. This method results in sampling densities that enforce denser sampling in the low frequencies. In [Kno+ ] the authors showed that this approach outperforms standard VDS and remains robust to variability in anatomy and orientation. However, this method focuses purely on the MRI dataset and is agnostic to the reconstruction technique. All MRI reconstruction algorithms enforce a prior (like sparsity in the wavelet or image gradient domain). Recent deep learning (DL) reconstruction algorithms [Kno+ ; Muc+ b; RCS ] have learned more complex priors based on the organ or contrast-specific dataset. The target sampling density can be more efficient if it takes these priors into account and enforce denser samples in regions where the degree of uncertainty associated with such priors for reconstruction is higher.

More recently, methods like [She+ ; Bah+ a] learn the sampling pattern for MRI in a data-driven manner while optimizing for image quality at the reconstruction stage. In the deep learning setting, LOUPE [Bah+ a] jointly optimizes the sampling density and the weights of a U-net architecture for image reconstruction. However, these studies are limited to Cartesian sampling. Most appealing contributions [Wei+ ; Ved+ ] tend to directly learn the trajectories in a data-driven manner under MR hardware constraints. Particularly, in [Wei+ ], the authors use multi-resolution to overcome the problem of a large number of trainable parameters which crops up in such direct optimization. However, the final trajectories were similar to perturbed versions of the initialization. number and n is the total number of images (for simplicity, we used magnitude-only images). Let v j ∈ C N ×N n j=1 correspond to their respective discrete k-spaces on a grid (Fourier spectrum) obtained by a fast Fourier transform.

VDS-based

The first method we employed to obtain a density is based on naive VDS. For this, we parameterized the density as radially decaying with cutoff C and decay D as described in [Cha+ d]:

ρ C,D vds (x) =    κ |x| < C κ C |x| D |x| > C ( . )
In our experiments, we heuristically grid searched for optimal parameters and used C = 25% and D = 2 as the best density.

Spectrum-based

Next we obtained a sampling density based on [Kno+ ] which involves averaging the spectra of brain images from the fastMRI dataset. Let v avg correspond to the average of all the spectra v j in the dataset. Then we can normalize the D spectrum to obtain a sampling density ρ sb on the N × N grid:

ρ sb (p, q) = v avg (p, q) -min(v avg ) p,q [v avg (p, q) -min(v avg )] . ( . )
Further, we observed that the spectra have very large magnitudes at lower frequencies as compared with higher frequencies. In an effort to flatten the distribution so that we may better balance all frequencies, we relied on an average log-spectrum v lavg of the fastMRI images and obtained the distribution ρ lsb by replacing v avg with v lavg in Eq. ( . ).

LOUPE-based

As the spectrum-based methods are agnostic to image reconstruction, to fill this gap we used the Cartesian acquisition model from LOUPE [Bah+ a]. LOUPE is actually a DL-based optimization scheme that learns a Cartesian under-sampling pattern for a prescribed sparsity level γ, which provides the percentage of discarded measurements as compared to a full sampling. Hence, γ is defined as the inverse of the under-sampling factor R (=

N ×N Nc×Ns× ∆t δt = 1 γ
for non-Cartesian sampling). In practice, we used R = 2.5 (γ = 0.4). Using LOUPE, we can learn a gridded sampling density ρ lb by jointly optimizing the acquisition and reconstruction frameworks in the Cartesian domain. In [Bah+ a], the authors used conventional U-Net [RFB a] for carrying out reconstruction. In contrast here, we integrate LOUPE's acquisition network with a modular cross-domain neural network called XPDNet [RSC b] which stood second in the fastMRI brain reconstruction challenge [ Muc+ b]. Hence, we jointly optimize for the sampling distribution ρ lb and the reconstruction network. In regards to the LOUPE model, we initialize the sigmoid sample slope s = 20 and trained this network for epochs over all the training set (n = 4469 MR images) and probed for the target sampling density. We ensured that there was no leaking of the k-space data into the reconstruction network by checking the resulting binary sampling masks (see [Bah+ a] for details).

. . Retrospective studies

With different target sampling distributions as input, we carried out an extensive retrospective study on slices from the validation set of the FastMRI dataset. The k-space measurements were obtained by applying a forward NUFFT operator (F ) to the input multi-coil brain MR images. We performed image reconstruction using two different methods:

CS reconstruction

First we used the the synthesis formulation of self-calibrating CS image reconstruction [El + a] by solving for the wavelet coefficients z as follows:

z = argmin z∈C N ×N 1 2 L =1 F Ω S Ψ * z -y 2 2 + λ z 1 ( . )
where the L is the number of coils. Here the data consistency is enforced with SENSE operators (F Ω S ) , where F Ω is the NUFFT masked to Ω and S is sensitivity map for th coil estimated by density compensated adjoint of the % of acquired k-space center (see details in [El + a]). λ > 0 is the regularization parameter for 1 -sparsity which was promoted in the wavelet domain Ψ. For our reconstructions, we used Symlet wavelet with scales for Ψ. The regularization parameter λ was grid searched between (10 -4 , 10 0 ) while maximizing for the reconstruction quality using structural similarity index (SSIM) in retrospective reconstruction. In order to accelerate convergence, we preconditioned the k-space using density compensation. The compensation weights were estimated with iterations of method as described in [PM ]. Final MR images were reconstructed as x = Ψ z.

DL reconstruction network (NC-PDNet)

For an extension into DL-based reconstruction, we used NC-PDNet [RSC a], which is a non-Cartesian extension of the XPDNet used for learning the sampling density. More precisely, we used a density compensated unrolled non-Cartesian reconstruction network, whose parameters are the same as those described in [RSC a]. This model was trained for k gradient descent steps on the respective contrasts (T 1 -w and T 2 -w) from multi-coil brain dataset with SPARKLING trajectories obtained in Fig. . .

. Results

In this section we briefly present the densities and trajectories for various methods of estimating the target sampling densities as described in Sec. . . . Then we briefly go through the retrospective reconstruction results that we obtained.

. . Densities and trajectories

The varied target sampling densities and their respective SPARKLING trajectories are presented in Fig. . . We see that the direct spectrum-based density ρ sb is extremely dense at the center of k-space, leading to really dense sampling here in the respective trajectories.

The log-spectrum method does indeed flatten out the density ρ lsb , allowing the trajectories to explore more high frequencies. Finally, the LOUPE based density does oversample the center of k-space resulting in a scheme very similar to variable density sampling. However, the density ρ lb from LOUPE is more grainy since the learning of this density happens on a Cartesian grid.

. . Retrospective image reconstruction studies

Quantitative results

We carried out retrospective studies on slices of the validation data (two imaging contrasts, namely T 1 and T 2 ) in the fastMRI dataset for all the above generated trajectories. We computed the SSIM and peak signal-to-noise ratio (PSNR) metrics on the reconstructed MR images with a mask on the brain in order to assess image quality. We present the results as boxplots and annotated the significance as paired t-test in Fig. . . Firstly, we note that all methods perform pretty decently as long as the sampling density has been optimized, with NC-PDNet consistently outperforming traditional reconstruction schemes. However, we see that the SPARKLING trajectories with ρ lb densities consistently perform well throughout with SSIMs always larger than . / . for T /T contrast (red boxes). Additionally, this method has the highest PSNR. This confirms our hypothesis that a method which is both data-driven and reconstruction aware outperforms its competitors for learning a target sampling density. Finally, we noticed that ρ vds performs similarly to ρ lb with respect to SSIM in most cases. This might be due to the properties of k-space content in brain imaging, which is radially symmetric. Hence optimizing for a radially decaying density gives similar performances to LOUPE-based methods. However, it is worth mentioning that this optimization of parameterized density is very computationally intensive as it involves both trajectory generation and retrospective reconstruction in order to understand which parameter affects the most image quality.

Qualitative results

For visual inspection, we present the results of image reconstruction from data undersampled using SPARKLING trajectories generated for various target densities in Fig. . (T 1 -w images) and Fig. . (T 2 -w images). For the sake of space, we only report the best reconstruction results, i.e. with NC-PDNet. For T 1 -weighted contrast, we show that all methods give similarly performing results, however ρ vds and ρ lb provide the best SSIM scores. Further, we observe that in this case, ρ vds is slightly better than ρ lb . On the contrary, for T 2 -w contrast, ρ lb outperforms the other densities as reflected both visually in Fig. 

. Conclusions

In this study, we addressed the main drawback of the SPARKLING algorithm, namely the need for a good target sampling density as an input parameter. We setup four different methods to generate optimized target sampling densities and design SPARKLING trajectories accordingly. We showed that the LOUPE-based approach is the most promising as it provides consistent results across contrasts. A limitation of this work is that there remains some split between the acquisition and reconstruction models in a fully non-Cartesian setting.

Under the current study, the sampling density was jointly optimized with a Cartesian DL reconstruction network. Then, non-Cartesian SPARKLING trajectories were generated and retrospective validation was performed using a non-Cartesian DL network. There is thus still a gap between the training and validation stage in this pipeline. In spite of this limitation, we obtained promising results. In terms of perspective, we plan to work on a joint network between NC-PDNet and SPARKLING to efficiently learn the k-space trajectories in a data-driven manner, under the MR Hardware constraints.

Chapter

Learning trajectories with reconstructor A part of this work was also presented in an international peer-reviewed conference with proceedings:

• Chaithya, G R and P. Ciuciu. "Benchmarking learned non-Cartesian k-space trajectories and reconstruction networks". In: ISMRM.

. London, UK, May

Compressed sensing in Magnetic resonance Imaging essentially involves the optimization of ) the sampling pattern in k-space under MR hardware constraints and ) image reconstruction from undersampled k-space data. Recently, deep learning methods have allowed the community to address both problems simultaneously, especially in the non-Cartesian acquisition setting. This work aims to contribute to this field by tackling some major concerns in existing approaches. Particularly, current state-of-the-art learning methods seek hardware compliant k-space sampling trajectories by enforcing the hardware constraints through additional penalty terms in the training loss. Through ablation studies, we rather show the benefit of using a step to enforce these constraints and demonstrate that the resulting k-space trajectories are more flexible under a projection-based scheme, which results in superior performance in reconstructed image quality. In D studies, our novel PROjection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor (PROJeCTOR) trajectories presents an improved image reconstruction quality at -fold acceleration factor on the fastMRI data set with SSIM scores of nearly . -. in our retrospective studies as compared to corresponding Cartesian reference and also see -dB gain in PSNR as compared to earlier state-of-the-art methods. Finally we extend the algorithm to D and by comparing optimization as learning based projection schemes, we show that data-driven joint learning based PROJeCTOR trajectories outperform model-based methods like SPARKLING through a dB gain in PSNR and . gain in SSIM.

. Introduction

A major challenge limiting the use of Magnetic Resonance Imaging (MRI) is long acquisition times, arising due to short decay of the MR signal which is used to sample multi-dimensional k-space data through numerous and repetitive radio-frequency pulses. Using Compressed Sensing (CS) theories [Lus+ ], significant speed up can be obtained by undersampling the k-space according to Variable Density Sampling (VDS) [Puy+ ; Cha+ ; Cha+ ; Adc+ ; Boy+ ], whose shape depends on the underlying anatomy, contrast and coil structure. Non-Cartesian sampling can be used to efficiently achieve VDS of k-space, as this type of sampling, which relies on curves, is more flexible and efficient compared to straight lines used in traditional Cartesian acquisitions. While conventional non-Cartesian sampling patterns like spiral, radial, rosette, etc. [Ahn+ b; Mey+ ; Jac+ ; Nol ; Law+ ; Lus+ a] have been proposed in literature which can sample the k-space according to VDS, they do not sample at a well defined user specified Target Sampling Density (TSD). Tailoring such non-Cartesian trajectories according to a MR imaging protocol and a given TSD is hard as these k-space sampling curves or trajectories are constrained by the MR hardware limits notably on the maximum gradient magnitude G max and slew rate S max . To meet these constraints in a safe manner, the SPARKLING was introduced in [Laz+ ; Laz+ a] and then extended to D [Cha+ d] as an iterative procedure to optimize a non-Cartesian k-space sampling pattern according to a prescribed TSD. Such patterns are typically segmented in multiple shots or k-space trajectories, each of them being compliant with the above mentioned MR hardware constraints. Further, the algorithm results in locally uniform sampling patterns and thus avoids holes and clusters in k-space. However, SPARKLING is a model-driven framework, which is characterized by a TSD that needs to be known in advance to feed the optimization process. Previously in [CRC ], to address this issue, we learned the TSD in a deep learning setting using LOUPE [Bah+ a] as an acquisition model. Although this allowed us to improve reconstruction performances, there was still a mismatch in the learning process. Using LOUPE [Bah+ a], gridded TSD was learned in the Cartesian domain, while the actual trajectory being optimized was non-Cartesian. Additionally, we had to learn a different non-Cartesian image reconstruction model (e.g. a convolutional neural network or CNN) that was disconnected from the optimized trajectories, making the overall process computationally expensive. Further, as such disjointedness between training a TSD and testing on different non-Cartesian trajectories and image reconstruction neural nets could lead to suboptimal results, there is a need to jointly learn both the TSD and the image reconstruction deep learning architecture in a non-Cartesian setting.

Recently, new methods [Wei+ ; Wan+ ; Ved+ ] have been developed to overcome the need for estimating a TSD, through direct joint learning of the non-Cartesian k-space sampling trajectories and MR image reconstruction in a data-driven manner on the fastMRI dataset [Zbo+ ]. In [Wei+ ; Ved+ ], the authors jointly learned Physics-informed learned optimal trajectories (PILOT) trajectories along with U-net parameters as a reconstruction model to denoise the basic image yielded by the adjoint of the Nonuniform Fast Fourier Transform (NUFFT) operator. However, this method relies on auto-differentiation of the NUFFT operator, which is inaccurate numerically as observed in [WF ], resulting in sub-optimal local minima. This suboptimality was actually reflected in the final shape of the learned trajectories, which only slightly deviated from their initialization.

B-spline parameterized Joint Optimization of Reconstruction and K-space trajectories (BJORK) [Wan+ ], the authors use [WF ] to obtain a more accurate Jacobian approximation of the NUFFT operator. Both above referenced approaches [Wei+ ; Wan+ ] enforced the hardware constraints by adding penalty terms to the the loss that is minimized during training. Although a viable option, this requires tuning a hyper-parameter associated with each of these penalty terms in the cost function. Moreover it does not guarantee that the optimized trajectories will strictly meet these constraints. Further, these penalty terms affect the overall gradients of the loss function, thereby resulting in suboptimality of the trajectories. In BJORK [Wan+ ] the trajectories were parameterized with B-spline curves in order to reduce the number of trainable parameters. Although this strategy drastically minimizes the search space and the training time, such parameterization severely limits the degrees of freedom of the trajectories and prevents them from an improved exploration of the k-space. Finally, both methods do not make use of Data Consistency (DC) which plays a key role in obtaining clearer MR images in the non-Cartesian deep learning setting [ Ram+ b].

In this work, we first develop a generic model for PROJeCTOR. More precisely, we introduce a method that learns the k-space trajectories in a data-driven manner while embedding a projected gradient descent algorithm [Cha+ ] to fulfill the hardware constraints during the training stage. Unlike BJORK, we directly learn the k-space sampling trajectories and use multi-resolution [Leb+ ] similar to SPARKLING to limit the number of trainable parameters at each step. Then, we compare these PROJeCTOR results to two state-of-the-art methods, PILOT [Wei+ ] and BJORK [Wan+ ] in D MRI. In a more controlled setting we show the importance of the projection step during the optimization of k-space trajectories and demonstrate its superiority over penalty-based methods like PILOT and BJORK to enforce hardware constraints. Finally, we compare and show the superiority of data-driven PROJeCTOR trajectories compared to model-based non-Cartesian SPARKLING trajectories.

.

Materials and Methods

In this section, we present a generic and modular framework (Fig. . ) for learning non-Cartesian k-space trajectories and deep neural networks for MR image reconstruction. Particularly, we discuss sub-models namely, ) an Acquisition model parameterized by k-space trajectory and ) an Reconstruction model parameterized by a deep neural network. Later, we discuss in detail how to handle the MR hardware constraints and which approach seems the most efficient within the sampling pattern optimization process to end up with hardware compliant k-space trajectories.

. .

Data and preprocessing

In order to reduce the memory footprint and the training time, we did not process multicoil k-space data as input in the pipeline shown in Fig. . . Instead we learn the trajectories and image reconstruction model on emulated single coil data obtained using virtual coil combination [Par+ ] of per-channel images. This is done through phase reconstruction from multi-coil data through the use of a virtual reference coil. This virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The multiple phase-corrected coil complex images are combined using the inverse covariance matrix, to result in a complex image with optimal estimates of the absolute magnetization phase (see [Par+ ] for mathematical details). Overall, we rely on notations developed in [Cha+ d], and we assume isotropic resolution and FOV with matrix size in each axis as N . This assumption is purely for notational convenience and does not limit the applicability of our framework to isotropic data. If D is the imaging dimension, we denote an MR image or volume as x ∈ C N D , over a field of view F D . Throughout the manuscript, we refer to x as MR image, while it can be MR volume when D = 3. The k-space of this acquisition is defined in [-K max , K max ] D , with K max = N 2F . However, for the sake of simplicity, we normalize the k-space to Ω = [-1, 1] D . For both where ki

[n] = k i [n] -k i [n -1] ∆t ki [n] = k i [n + 1] -2k i [n] + k i [n -1] ∆t 2 c 2,∞ = sup 0≤n≤Ns-1 |c x [n]| 2 + |c y [n]| 2 + |c z [n]| 2 1/2 ,
for all c ∈ Ω Ns and (α, β) are obtained by normalizing hardware and Nyquist constraints to the sampling domain Ω (from [Laz+ ]):

α = 1 K max min γG max 2π , 1 F OV • δt ( . a) β = γS max 2πK max ( . b)
The TE point constraints are modeled through A and v in ( . ) (see [Cha+ ] for details and more complex affine constraints). A and v are tailored to have the following equivalent expression on each k-space trajectory:

k d i [k te ] = 0 ∀ i ∈ {1, . . . N c }, ∀ d ∈ {x, y, z}, k te = T E ∆t .
( . )

. . Acquisition Model (F K )

With the k-space sampling pattern K, we model the acquisition process at the MR scanner with non-uniform fast Fourier transform (NUFFT) [FS ] operator F K . However, in practice, the k-space data is sampled in Analog to Digital Converter (ADC) at every dwell time δt, with o = ∆t δt ≥ 1 the oversampling factor along each trajectory. Thus, a more realistic acquisition model of k-space data y ∈ C Nc×Ns×o is:

y = F S(K) x + ( . )
where S is linear interpolator, which interpolates the k-space trajectory to have o × N s samples during readout, to model the oversampling by ADC and is the simulated noise which is already present in the data set as they are prospectively acquired the MR system. As the k-space trajectories are non-Cartesian, this creates a variable density sampling in k-space, due to which a simple adjoint of NUFFT operator F * K is not close to the inverse operator and is not sufficiently accurate to reconstruct a clear MR image. To prevent this, a density compensation (DC) mechanism has been introduced in the non-Cartesian image reconstruction community for more than years [PM ]. It allows us to more fairly balance the weights of k-space samples associated with the low and high frequencies during the iterative reconstruction process. Following this principle, we obtained D S(K) for the linearly interpolated k-space trajectory S(K), which is computed by iterations of the algorithm described in [PM ]. As noted in [Ram+ b], DC is crucial for deep learning based reconstruction to avoid numerical issues and result in better reconstructed image quality.

. . Reconstruction model: Deep neural network (R θ K )

The reconstruction network R θ K is a deep neural network that reconstructs an MR image x from the k-space data y and the k-space trajectory S(K). The estimated DC are also provided as input to the network, to better condition the reconstruction problem resulting in faster convergence giving us:

x = R θ K (y, D S(K) ) . ( . )
A simple parameter-free reconstruction would be the density compensated adjoint, i.e. R θ K = D S(K) F * K . To go further, we implemented the density compensated non-Cartesian primal dual network (NC-PDNet [ Ram+ b]) as the reconstruction network. The latter alternates between a data consistency step in k-space and convolutional neural network (CNN) based denoising in the image domain with kernel size 3 × 3 in D and 3 × 3 × 3 in D. We used the same network architecture as in [Ram+ b] except that this time we expanded the architecture over unrolled iterations and the number of filters per iteration N f = filters.

. . Loss, gradients and optimizer

The reconstruction error used as loss function L r (between the reference MR image x and its reconstruction x) in this study was inspired by [Pez+ a] and is defined as a weighted sum of 1 , 2 and multi-scale structural similarity index (S) [WSB a]:

L r (x, x) = α(1 -S(x, x)) + ᾱ||x -x|| 1 + ᾱ2 2 ||x -x|| 2
with ᾱ = 1 -α and the value of α was tuned to . to give nearly equally balanced loss terms. The training was carried out by minimizing reconstruction loss L r with respect to both parameters θ of the reconstruction network and k-space trajectory K as follows:

( K, θ) = arg min

(K∈Q Nc α,β ,θ) L r x, R θ K F S(K) x ( . )
For optimizing the trajectory K, we derived the gradient of the loss function L r with respect to K:

∂L r (x, x) ∂K = ∇L r (x, x) ∂ x ∂K = ∇L r (x, x) ∂R θ K (y) ∂K ( . )
For ease of mathematical derivation, here we take the case of a parameter-free reconstruction as described in Sec. . . with R θ K = D S(K) F * S (K). In order to simplify this gradient calculation and reduce its computational complexity, we neglect the contribution of gradients from density compensators D S(K) . This contribution of gradients from D S(K) was also ignored in realistic implementations to reduce gradient computation time and GPU memory requirements. These assumptions lead to the following gradient expression:

∂L r ∂K = ∇L r ∂ x ∂D S(K) y D S(K) ∂ F S(K) x ∂K + ∂F * S(K)

∂K

In order to compute the gradient of NUFFT operators F S(K) and F * S(K) with respect to the k-space trajectory K, we used [WF ] to obtain a fast and accurate approximation of the Jacobians. As these underlying gradients vary extremely in norm depending on the k-space region (as noted in [Gou+ ]), we used the ADAM optimizer for learning the trajectories, while we relied on a rectified-ADAM solver for optimizing the image reconstruction network R K θ .

During training, the gradient descent was carried out stochastically with a batch size of in D, while due to memory limitations, it was limited to in D. However, as the gradients with respect to k-space trajectory were extremely noisy for this low batch size in D, we relied on a smaller learning rate of 2 × 10 -4 as compared to 10 -3 in D runs. On the other hand, for the optimization for the reconstruction networks, the corresponding gradients were more reliable and hence the learning rate was always set to 10 -3 . The noise levels in gradients and their reliablity are quantified through the descent rate of the loss while optimizing with a fixed learning rate of 10 -3 at varying batch sizes obtained through gradient accumulation. During gradient accumulation, gradients for the target batch size was obtained by running the network sequentially on multiple single data points repeatedly and accumulating the gradients.

. . Multi-Resolution

Inspired by SPARKLING [Cha+ d], the learning of the k-space sampling trajectories was performed using a multi-resolution strategy [Leb+ ] which starts by learning 2 R max times decimated sampling trajectories K at the maximal R max = 5 decimation level. Next, the solution K 2 R max at the resolution level R max was then interpolated and used as a warm restart for the up-sampled problem at resolution level R max -1.

We used dyadic scaling and trained our trajectory over five decimation levels (R max = 5). This implies that the underlying trajectories were optimized first at 2 5 = 32 decimation level ( times downsampled trajectory), followed by upscaling the problem by , following the decimation levels as 16 → 8 → 4 → 2 → 1. This multiresolution strategy was instrumental in ensuring fast convergence toward a local minimizer. Indeed initially the optimization is carried out with faster convergence as we coarsely optimize the k-space trajectory over a reduced number of locations (R = R max = 5). Then the process is refined at higher resolutions as we approach convergence (R = 1).

. . Constraints: Projection vs Penalty

A common method in the literature [Wan+ ; Wei+ ; Ved+ ; Wan+ ] to enforce these constraints is to add a penalty L (K) to the loss L, which acts like a regularizer on the k-space trajectories K being optimized. With this, the loss function L becomes:

L(x, x, K) = L r (x, x) + L c (K), ( . 
)
where the penalty L c (K) follows the expression from [Wan+ ; Wan+ ]:

L c (K) = Nc i=1 Ns n=1 λ 1 φ α ki [n] 2 + λ 2 φ β ki [n] 2 + λ 3 φ 0 k[k TE ] 2 ( . )
with φ a (x) = max(0, x -a) and λ 1 , λ 2 and λ 3 are hyper-parameters to balance the penalty terms with respect to the reconstruction loss L r . However, this penalty based approach has the following limitations:

• Need for hyper-parameter tuning: Under the penalty based formulation, the hyperparameters λ i ∀ i ∈ {1, 2, 3} need to be tuned, which requires additional computation.

Note that while we can view Eq. ( . ) as an augmented Lagrangian form for the constrained optimization problem Eq. ( . ), the corresponding Karush-Kuhn-Tucker (KKT) conditions are computationally complex to be solved. Further, as we do not satisfy the Slater's conditions, as the reconstruction loss L r is non-convex, the solutions of the KKT conditions are not guaranteed to be global minima.

• Influence of gradients and convergence: With the addition of penalty terms L c , the gradient updates involve added gradients from these penalties ∇L c , which influence the overall trajectory development and hence the final optimized k-space trajectories. Gradient updates with these additional gradient terms can no longer guarantee optimal image reconstruction by minimizing the reconstruction loss L r .

• Guarantee of admissibility: Finally, the optimization of the augmented Lagrangian form does not guarantee that the final optimized k-space trajectory K satisfies the constraints Eq. ( . ).

To tackle the above issues, we implemented the projector Π Q Nc α,β from [Cha+ ] to project the k-space trajectories K to the feasible set Q Nc α,β . This results in a projected gradient descent based optimization of the loss function L, which is given by the following updating step for the k-space trajectories K:

K t+1 = Π Q Nc α,β K t -η t ∇ K L r (x, x) .
( . )

The projected gradient descent formulation gives an equivalent result to optimizing the original reconstruction error L r , with indicator function of the feasible set Q Nc α,β as the penalty term. However, as the indicator function is non-differentiable, direct use of such a penalty term in auto-differentiation frameworks (as an alternative to projection step as shown in Eq. ( .)) generates sub-gradients which makes the optimization process extremely slow, due to oscillations as there are multiple sub-gradients at each evaluation point.

Practical implementations involved iterations of the projection algorithm from [Cha+ ] which was sped up using GPU implementations as shown in [Cha+ d]. In practice, benchmarking with a very small reconstruction network (NC-PDNet with iterations, rather than ) showed . seconds per step for penalty-based schemes, while with projection, the computation time was . seconds per step.

. . Practical implementations

All our implementations in D were carried out on V GPU with GB memory, while our D implementations needed the next generation A GPUs with GB of memory. Most of the memory in D was occupied by the activations from the D convolutional neural networks used in the image denoising step in NC-PDNet. Memory efficient implementations of NUFFT was carried out by using tensorflow-nufft [Mon ], which is based on tensorflow implementations of cuFINUFFT [Shi+ ].

. Results

In this section, we first compare our results with state-of-the-art methods, particularly BJORK [Wan+ ] and PILOT [Wei+ ]. Next, we provide an explanation on why our approach outperforms its competitors. In short, the reason is tightly linked to the use of a projection step in the optimization process for enforcing the hardware constraints rather than using penalty terms in the loss function. Finally, we benchmark our jointly learned k-space sampling pattern and reconstruction network in D by compare it to SPARKLING trajectories with a learned neural network for image reconstruction.

. . Comparison with state-of-the-art methods in D

We learned k-space trajectories with N c = 16 shots and N s = 512 samples per shot (observation time T obs = 5.12ms, raster time ∆t = 10µs, dwell time δt = µs). For comparison with an earlier baseline, we used SPARKLING trajectories generated with the learned sampling density using LOUPE [Bah+ a] as obtained in [CRC ] and trained NC-PDNet [ Ram+ b] as a reconstruction model for it. We compared our results with PILOT and BJORK trajectories, which were obtained directly from the respective authors. As we didn't receive their trained reconstruction networks, we trained an NC-PDNet by ourselves for a fair comparison: NC-PDNet makes use of DC and its Cartesian version stood nd in the fastMRI challenge [Muc+ a]. This way, we used the same reconstruction neural network for all the trajectories (with the same parameters), which was trained individually. Our comparison with PILOT (Fig. . ) was carried out for T 1 and T 2 weighting contrasts in the fastMRI data set.

As the BJORK trajectory was learned for ∆t = 4µs, to ensure fair comparison, we obtained trajectories with the same specifications. This comparison (Fig. . ) was done at different Undersampling Factor (UF) = N D Nc×Ns . Note that UF is a measure of how much the k-space is under-sampled with respect to fully sampled Cartesian k-space, while AF reflects on how fast the scan is with respect to the Cartesian reference scan.

We first proceed to analyze the k-space trajectories as compared to those yielded by BJORK and PILOT. Then, we compare the reconstruction results of the learned trajectories with BJORK and PILOT.

. . RESULTS

Trajectory analysis

When looking at the zoomed portions of optimized trajectories in Fig. . , we observe that PILOT has a hole at the center of k-space (cf. the white spot shown in the bottom inset) while BJORK samples the k-space densely slightly off the center (cf. bottom inset), which is suboptimal. In contrast, PROJeCTOR and SPARKLING methods sample the central region of k-space more densely, which could help obtain improved image quality, notably the contrast.

We also observe at the bottom of each panel in Fig.

. that PILOT and BJORK do not use the hardware gradient capacities at their maximum values and have similar gradient (G(t)) and slew rate (S(t)) profiles, while SPARKLING and PROJeCTOR trajectories, are hitting the gradient constraints more often for the maximal gradient and almost everywhere for the slew rate. This difference could be attributed to using a projector for handling hardware constraints in PROJeCTOR and SPARKLING as compared to handling them through penalty terms in PILOT and BJORK.

Retrospective study

Next, we compared the results of image reconstruction from retrospectively under-sampled k-space data using PILOT (Fig. . ) and BJORK (Fig. . ) trajectories. To this end, we used slices from fastMRI validation data set. We observe that both SPARKLING with a learned density and PROJeCTOR outperform PILOT and BJORK, with PROJeCTOR yielding the best scores with a gain of nearly . in SSIM and -dB in PSNR values as compared to PILOT and BJORK. We computed paired t-tests on Structural Similarity Index Measure (SSIM)/Peak Signal-to-Noise Ratio (PSNR) scores between PILOT and PROJeCTOR on one hand and BJORK and PROJeCTOR on the other hand and obtained p-values p < 10 -4 , thus confirming that the improvements we observed visually and quantitatively are statistically significant.

. . Hardware Constraints: Penalty vs Projection

In the above section we showed how our method outperforms PILOT and BJORK in terms of reconstructed image quality. We assume that these results are due to the different manner the hardware constraints on the gradients are enforced in the learning process (projector vs regularizer). To validate this hypothesis, we learned D hardware compliant k-space sampling trajectories through joint optimization with a reconstruction network using a penalty term instead of a projector. In Fig. . , we present the learned hardware compliant k-space sampling trajectories using the projection and penalty-based methods and then in Fig. . we depict their corresponding slew rate and gradient profiles. Additionally, we also show in Fig. . the validation SSIM scores as a function of the penalty weight (λ). For the sake of simplicity, we assume λ = λ i , i ∈ {1, 2, 3} and we obtain results for λ = 10 -3 , which is the lowest level of penalty resulting in hardware-compliant trajectories at the end of training. By doing so, we ensure that we do not influence too much the trajectory shape. However, in our grid search experiments of varying λ across different orders of magnitude, we did not observe any significant drop in validation loss within the range [10 2 , 10 -3 ]. Further, to obtain an insightful baseline, we also obtain results for λ = 0 corresponding to non-admissible trajectories as we do not enforce any penalty on the gradients and slew rates. Last, we also display the learned trajectories using the PROJeCTOR.

We observed that the best reconstructed image quality can be obtained for λ = 0 in terms of validation SSIM and PSNR scores. Further, increasing the weight λ of penalty terms, the validation SSIM and PSNR scores drop as the k-space trajectories get more constrained. Interestingly, as λ = 10 -3 the k-space trajectories are getting hardware compliant (see Fig. . (B)(iii))), but they become strongly constrained and do not reach the same level of flexibility as those learned by PROJeCTOR. This results in a significant decrease in the performance of penalty-based method as compared to projection-based methods. Finally, we observed that using projection-based method, the k-space trajectories are closer those obtained with λ = 0.

. . Comparison with SPARKLING in D

Finally, we compared the performances of our data-driven jointly learned k-space trajectories to the model-driven SPARKLING trajectories in D imaging. The networks were trained for epochs, with steps per epoch on the Calgary brain data set [Sou+ ], for trajectories at AF= , resulting in N c = 1681 shots. To ensure a fair comparison, we learned the same NC-PDNet, i.e. image reconstruction neural network for the same number of steps as was done for PROJeCTOR trajectories. details. This can be observed qualitatively through the residual images and quantitatively through box plots indicating SSIM and PSNR scores, taken on test data sets. We see that PROJeCTOR outperforms SPARKLING by nearly . points in SSIM and + dB in PSNR scores. As our evaluation is done on matched data points, we use Wilcoxon signed-rank test, which is a non-parametric statistical hypothesis test used here to compare the locations of two populations using two matched samples. We found that the difference in both the SSIM and PSNR scores are statistically significant with p < 10 -5 .

(A) Non-admissible (B) Admissible

k x k y k z (i) No Penalty, No Projection k x k y k z (ii) Penalty : = 0.0001 k x k y k z (iii) PROJeCTOR k x k y k z
(iv) Penalty : = 0.001

Figure . -Comparison of (iii) PROJeCTOR trajectories with respect to penalty-based versions ((ii) and (iv)). The (A) non-admissible trajectories are shaded in red while admissible trajectories are shaded in green. Also, unconstrained (no penalty and no projection) trajectories are also presented in (i).

. Discussion

In this work, we present a generic framework for jointly learning the trajectory and image reconstruction neural network. We embedded the projection step from [Cha+ ] and learned these PROJeCTOR trajectories through a novel projected gradient descent fashion to ensure hardware compliance.

Although the learned neural networks in PILOT [Wei+ ] and BJORK [Wan+ ] were not available for a full end-to-end comparison, we performed a fair assessment by training a NC-PDNet [Ram+ b] as a common deep neural network reference for image reconstruction. Through retrospective studies in D on the fastMRI validation data set, we showed that PROJeCTOR works across multiple resolutions and leads to superior performance of the trajectories and improved image quality overall, with nearly -dB gain in PSNR value and almost . gain in SSIM score.

This improvement over state-of-the-art methods can be attributed to the embedded projection step as compared to penalty to ensure hardware compliance. We carried out an ablation study and showed that the projection step is crucial for having significantly improved performance of the learned trajectories, as compared to penalty-based approaches.

Finally, in D we compared the model-driven method SPARKLING with the data-driven method PROJeCTOR and showed a gain of dB in PSNR and . gain in SSIM in favor of the latter.

Future prospects of this work include prospective implementations through modifications of T 1 and T 2 -w imaging sequences. Such practical implementations could possibly bring up new sequence-specific constraints on k-space trajectories and also affect the overall performance due to lower Signal-to-Noise Ratio (SNR).

A limitation of current work is that our training paradigm was setup in emulated single coil setting as we were limited by memory constraints on GPU. A more realistic implementation would involve multi-coil imaging setting is mandatory to efficiently utilize parallel imaging and get closer to the real data acquisition context, allowing us to reach higher AF. However, this memory bottleneck can be alleviated through efficient transfers between CPU and GPU or multi-GPU implementations. Further, the network can be improved by extending the currently implemented simple forward acquisition model NUFFT to a more realistic and complex model which takes off-resonance effects due to B 0 inhomogeneities [Dav+ ] and gradient imperfections into account. These aspects will be explored in our future works. strong off-resonance artifacts in the reconstructed images, which were not observed in the simulation based retrospective experiments. While physics informed post-processing based techniques were developed in parallel in the team [Dav+ ] in order to reduce the effects of off-resonance artifacts without needing additional scans for acquiring the ∆B 0 field map, these techniques were computationally expensive and hence not really viable for clinical applications.

We noticed that these strong off-resonance effects observed with SPARKLING trajectories were particularly due to arbitrary readout paths used by optimized trajectories in the k-space. Such arbitrary trajectories lead to temporally discontinuous sampling of the k-space which ignore the temporal nature of the MRI signal being sampled, thereby amplifying the offresonance artifacts in the reconstructed images. To overcome this issue, MORE-SPARKLING was introduced through a new repulsion term that temporally constrains the k-space samples and results in a temporally smooth under-sampling of k-space. In our studies with both phantom with artificially degraded shim and in vivo acquisitions, these new trajectories recovered the signal losses at locations of strong off-resonance effects. Another concern with SPARKLING algorithm involved the Echo Time (TE) point constraint which resulted in oversampling the center of k-space much beyond the Nyquist limit. This suboptimality was tackled through GoLF, which involved additional affine constraints to yield trajectories which fully sample the center of k-space optimally using Cartesian sampling, and have good coverage in periphery through non-Cartesian sampling. Through this compound sampling approach, the reconstructed images were significantly improved as compared to vanilla SPARKLING trajectories, which allowed for further reducing the scan time by x as compared to the same GRAPPA-acquisition at Tesla.

One major limitation of the SPARKLING algorithm was the need for TSD as input, which was obtained through grid-searching over a range of values for a heuristically parameterized density inspired by Compressed Sensing (CS) literature. With the rise of MRI datasets with raw k-space data like fastMRI [Zbo+ ], we shifted our focus from such a model-based designed to data-driven learning of the TSD. To this end, we setup four different candidates for optimized TSD and design SPARKLING trajectories accordingly. Reconstruction was performed using NC-PDNet [ Ram+ b], which was separately trained with the SPARKLING trajectories with these candidate densities. Through our retrospective results performed on the validation fastMRI dataset, we observed that the Learning-based Optimization of the Under-sampling PattErn (LOUPE) [Bah+ b] based sampling density yielded the best performance in terms of image quality metrics.

The gridded LOUPE based sampling density was learned by training in the Cartesian domain, and then used as input to generate non-Cartesian SPARKLING trajectories. Later for validation purposes, these trajectories were used again to learn a non-Cartesian reconstruction network. This two-step process is computationally expensive and also suboptimal as the training paradigm was different as compared to the validation setting. To address this lack of consistency, we proposed to directly learn non-Cartesian k-space sampling trajectories. To this end, we developed a generic framework for jointly learning the trajectory and image reconstruction neural network, while embedding the projection step from [Cha+ ] to ensure hardware compliance of the learned trajectories. These newly learned PROjection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor (PROJeCTOR) trajectories yielded improved retrospective performance as compared to earlier state-of-the-art methods Physics-informed learned optimal trajectories (PILOT) and B-spline parameterized Joint Optimization of Reconstruction and K-space trajectories (BJORK), with nearly -dB gain in PSNR value and almost .

gain in SSIM score. Through an ablation study, we showed that such improvement can be attributed to projection step as compared to penalty terms that are used in concurrent approaches to ensure hardware compliance. Finally, in D we compared the model-driven method SPARKLING with the data-driven method PROJeCTOR and showed a gain of dB in Peak Signal-to-Noise Ratio (PSNR) and . gain in Structural Similarity Index Measure (SSIM) in favor of the latter. However, this method was purely limited to retrospective studies and the learned network was primarily trained on emulated single coil data, resulting in trajectories which do not exploit parallel imaging strategies during acquisition.

. Perspectives

Several perspective directions can be explored to further improve the methods that were developed in the context of this thesis. Although this work shifted from model-based SPARKLING to data-driven PROJeCTOR, we firmly believe that both are equally important and can to be explored further independently. However, the methods and findings discovered in one frameworke can also be exploited and transposed to improve the other. Some of these directions will be soon explored by my peers in the CS-MRI group at NeuroSpin. We briefly discuss the perspectives for SPARKLING and PROJeCTOR trajectories below:

. .

Model-based SPARKLING Extension to D+t or D

The SPARKLING trajectories can be extended to D+time, resulting in trajectories that satisfy the TSD for every fixed time window of scanning, while maintaining incoherence across time windows. This can be particularly useful for dynamic MRI like Cardial imaging and Functional MRI (fMRI). Preliminary studies of applying SPARKLING for fMRI with simple scan-and-repeat protocol showed promising results, where results are comparable to the state-of-the-art Echo Planar Imaging (EPI) [Amo+ c; Amo+ b; Amo+ a].

Application to other modalities which need ultra low echo times

As the SPARKLING algorithm can also be initialized with center-out trajectories, they can be used for imaging applications that need ultra short echo times of acquisition. In such applications, MORE-SPARKLING trajectories can result in improved reconstructed image qualities as compared to current state-of-the-art including Twisted Projection Imaging (TPI) and radial kooshball [Lar+ ]. Currently, this method is being explored for magnetic resonance spectroscopic imaging (MRSI), particularly for Sodium (Na 23+ ) imaging [Bap+ a].

Compound sampling trajectories

By embedding affine constraints in the SPARKLING framework, we introduced novel compound sampling approach to optimize k-space sampling trajectories having both Cartesian and non-Cartesian parts to extract the best of both worlds. However, its implementation in this work was purely done to fully sample the center of k-space using Cartesian sampling and therefore there is room for improvement through the following extensions:

• Cartesian + non-Cartesian sampling pattern: We can extend the above framework to have more complex sampling trajectories which overall result in a Cartesian and non-Cartesian sampling pattern, to reduce the impact of inaccuracies from Nonuniform Fast Fourier Transform (NUFFT) operator and accelerate the reconstruction process.

• Towards EPI+SPARKLING : The proposed GoLF-SPARKLING trajectories can be extended by having every trajectory pass through the center of k-space multiple times as different Cartesian lines, resulting in a larger portion of center of k-space sampled with Cartesian sampling. The optimized trajectories in such cases would provide an intermediate behavior between fully non-Cartesian sampling trajectories and EPI, allowing us to better understand the trade-off between the two.

• Sensitivity maps and wavelet coefficients: As the center of k-space is fully sampled, we can quickly obtain a low resolution estimate of the reconstructed image through simple Inverse Fast Fourier Transform (IFFT). Such low resolution images can be good candidates for the approximation coefficients in the wavelet domain of the reconstructed image, of course in the context of CS reconstruction. Further, they can be used to extract fast and reliable estimates of sensitivity maps.

• Acceleration through parallel imaging: We can now incorporate parallel imaging methods like GRAPPA [Gri+ ], SENSE [Pru+ ] and CAIPIRINHA [Bre+ ] to further increase the Acceleration Factor (AF), while maintaining or even improving excellent image clarity. sampling

Handling PNS constraints

The developed trajectories in this thesis exploit the gradient hardware of the scanner, leading to high gradient amplitudes played on the scanner rapidly. This results in Peripheral Nerve Stimulation (PNS) issues, which was reported by some volunteers and also sometimes the gradient safety watchdog (GSWD) of the scanner was triggered, leading to the scan being aborted. The SAFE model [HG ] can model the working of this GSWD, which can be used to predict the PNS associated with a given trajectory and hence extend the set of hardware constraints on the trajectories by adding physiological ones. However, as of now no projector exists for these PNS constraints, the difficulty lying in the fact they are not necessarily convex. Although penalty terms can be used to control PNS, as proposed in SNOPY [Wan+ ], such penalty terms can however lead to sub-optimal trajectories as shown in Chapter . In order to prevent such PNS issues on the scanner, we generated trajectories with a reduced maximum allowable slew rate of T/m/s, as compared to T/m/s allowed by the scanner hardware. While no PNS issues were reported in all our studies with this lower slew rate, the trajectories are more constrained than required, hence suboptimal. To address this concern, there is a need to develop a PNS projector, which can be used to generate trajectories with higher slew rates, while still maintaining the PNS constraints.

Trajectories for motion correction

The SPARKLING algorithm can be tweaked to have a good navigator within each shot, which can be helpful in prospectively detecting, analyzing and correcting motion during the scan.

. . Data-driven PROJeCTOR

Prospective studies

The currently developed PROJeCTOR trajectories need to be tested in prospective setting to validate their performances in real world scenarios. Any observed gap needs to be accounted for and improved through additional constraints on the trajectory or modeling.

Better forward modelling

The generic framework developed in this work to learn trajectories relies on simple NUFFT operator for forward modeling. However, more realistic forward modeling can be achieved by also incorporating the effects of field inhomogeneities, motion and eddy currents. Further, realistic noise models can be incorporated to better understand the impact of noise on the learned trajectories.

Extension to multi-coil setting

As discussed earlier the current implementation of PROJeCTOR is limited to emulated single coil data due to memory constraints on GPU. A more realistic implementation that would involve a multi-coil imaging setting, is mandatory to efficiently utilize parallel imaging and get closer to the real data acquisition context, allowing us to reach higher AF. However, this memory bottleneck can be alleviated through efficient transfers between CPU and GPU or multi-GPU implementations. This perspective remains a significant step forward.

Inclusion of MORE and GoLF features

As observed with SPARKLING trajectories, the addition of MORE and GoLF features can significantly improve their performances. These features are generic and can also be incorporated into the PROJeCTOR allowing us to anticipate an improved image quality in this extended learning framework. PSF is significantly increased (by 25 -30 dB) when adding ∆B0 and T * 2 decay. Further, we see an increase in sidelobe level when adding ∆B0, which however is reduced when combined with T * 2 decay. We observe that the effective PSF is spread under T * 2 B inhomogeneities, leading to drop in effective resolution, which is studied in depth in the core paper in Sec. . . . This study reveals some of the reasons that explain the gap in image quality between retrospective and prospective results, especially for in vivo acquisitions, where we have spatially varying T * 2 and ∆B0 (i.e. T * 2 (r) and ∆B0(r) maps).

A. . Eddy Current and Trajectory Measurement

As the presented trajectory rapidly explores the k-space, it is vital to ensure that the MRI scanner is able to play the complicated gradient waveforms in Fig. A-with minimal errors. These errors could be induced by eddy currents and gradient imperfections. To this end, we ran the AF= full D SPARKLING trajectory on an Investigative T MR System (MAGNETOM T, Siemens Healthcare, Erlangen, Germany) and measured the trajectory with the SKOPE dynamic field camera [De + ]. We used a T scanner for this study due to compatibility issues at T. However, we do not expect drastic changes in our results as the gradient system is the same for both scanners. We present the theoretical (i.e. prescribed by the D SPARKLING algorithm) and measured trajectories for random k-space shots in Fig. A-. Further, we quantitatively measured the error as to be 0.0016±0.0012 (with the k-space normalized to Ω ∈ [-1, 1] D ).

A. MR image reconstruction

The MR image reconstruction of D multi-channel data acquired from phased array receiver coils was carried out using a self-calibrating Compressed Sensing (CS) reconstruction algorithm [El + a] in the synthesis formulation by solving for the wavelet coefficients z in (A. ): where the number of channels was L = 44 and N x = N y = 384 and N z = 208. Here the data fidelity is enforced with SENSE operators (F Ω S ) L =1 , where F Ω is the Nonuniform Fast Fourier Transform (NUFFT) operator and S is sensitivity map for th channel estimated by density compensated adjoint of the percent of acquired k-space center (see details in [El + a]). λ > 0 is the regularization parameter for promoting sparsity using 1norm regularization in the wavelet domain Ψ. For our reconstructions, we used Symlet wavelet with scales of decomposition for Ψ. The regularization parameter λ was grid searched between (10 -10 , 10 0 ) while maximizing for the reconstruction quality using SSIM score in retrospective reconstruction. As the sampling operator was D non-Cartesian, the reconstruction problem was severely ill-posed with the forward operator F Ω S l Ψ * having a large condition number, thereby impacting the convergence speed. In order to accelerate convergence, we preconditioned the k-space using density compensation. This translates to adding a preconditioner D in the classical proximal gradient descent algorithm (here we used Faster ISTA (FISTA)):

z = argmin z∈C Nx ×Ny ×Nz 1 2 L =1 F Ω S Ψ * z -y 2 2 + λ z 1 (A.
z (k+1) = soft λτ z (k) -τ L =1 ΨS * F H Ω D F Ω S Ψ * z (k) -y
where soft λτ is the soft threshold operator and τ is the step size. The density compensators D were obtained by iterations of method described in [PM ]. The final MR image is given by x = Ψ * z ∈ C Nx×Ny×Nz as Ψ is a basis.

As the raw data was large (for AF= , p = 8, 388, 608 k-space points), we needed to utilize memory efficient methods to carry out the SENSE operation. For this, we implemented python wrappers for gpuNUFFT [Kno+ ] which implements the NUFFT operator in CUDA and utilizes cuBLAS and cuFFT libraries to be efficient in speed and memory. The implementation of the reconstruction was completely done using pysap-mri [Gue+ ], the plugin of PySAP [Far+ a] dedicated to MR image reconstruction. Despite being a D reconstruction problem, the computation time was just -minutes on a machine with the same hardware specifications as described earlier in Sec. . .

B. Generalized TSD characterization for GoLF

In this section, we will complete mathematical details for the generic case (any v > 0) of TSD characterization for GoLF-Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) . From Sec. . . , the TSD at the center of k-space will be different from the edges where we transition from Cartesian to Non-Cartesian (NC) trajectories and hence discontinuous. Thus, we need to re-paramterize the TSD into the following non-continuous form:

Π r S ,D (x) =    κ 1 |x| < r S κ 2 r S |x| D |x| > r S (B. ) Now, if N = N c × N s
is the total number of samples, the number of samples in center of D k-space N |x|<r S is given by following volume integral in a spherical coordinate system:

N |x|<r S = N r S 0 2π 0 π 0 κ 1 x 2 sin θdθdφdx = N κ 1 4 3 πr 3 S (B. )
Additionally, the number of Nyquist points in the center of k-space is given by:

N Nyq = 4 3 πr 3 S ∆x 3 (B. )
includes the work on learning the sampling density and also learning the reconstruction network. This package implements a generic TensorFlow framework to learn trajectories and reconstruction networks, with cohesive modules for specifying the acquisition model, the reconstruction model and train them for a given loss function and optimizer. Further, the trajectory specifications follow the same as SPARKLING , which allows easy integration with SPARKLING package for the projection step.

For now this code is not yet open sourced, due to its dependency with the SPARKLING package, which is not open sourced. However, I plan to make this open source soon by decoupling this dependency in free time, or maintaining the dependency, but have a separate module just for projection step.

C. PySAP-MRI

PySAP-MRI is a plugin for the Python Sparse Data Analysis Package discussed later. This plugin was primarily focussed for MRI reconstructions and while it existed during the start of my thesis, my starting contributions involved refactoring the entire code base. After such a refactoring, I started to maintain these codes, which was actively used by teams at NeuroSpin to reconstruct prospectively acquired k-space data. Through multiple contributions to this package and also the Nonuniform Fast Fourier Transform (NUFFT) operators, the reconstruction time was reduced from hours to minutes for reconstructing non-Cartesian k-space data at . mm isotropic resolution, from k-space data acquired on channels.

C. Contributions

C. . NUFFT operator

One major contribution during my thesis involved in the ensuring that efficient implementation of NUFFT operators were available in Python. At the start of my thesis, the only known stable and used python packages included pyNFFT [Vai+ ] and PyNUFFT [Lin ] for compute on CPU and GPU respectively. However, the gpuNUFFT [Kno+ ] was the most efficient implementation of NUFFT on GPU both in terms of speed and memory requirements, but was not available in Python but rather only in MATLAB. In the course of my thesis, I wrote python bindings to the gpuNUFFT library, which was then merged into mainline. Further, through implementation of concurrency on GPU, the computation time was reduced by nearly half.

As we moved to using TensorFlow models, the tensorflow-nufft [Mon ] was used. However, I contributed extensively to this project to fix the gradient computations and also prevent NaN s in the compute pipeline which came about as original implementation was not stable.

Estimating density compensators

As most of the work in my thesis was done in non-Cartesian Magnetic Resonance Imaging (MRI), the use of density compensators was essential to ensure faster convergence of the reconstruction and improved image quality in lesser iteration steps. Howeever, most of the libraries for NUFFT did not have methods to compute the density compensators. I proceeded to implement the density estimation algorithm proposed in [PM ] for gpuNUFFT [Kno+ ] and also in Tensor centric implementations in tfkbnufft [RC ] and torchKbNUFFT [Muc+ ].

C. . Python Sparse Data Analysis Package

PySAP [Far+ a] is a software package that is the outcome of the COSMIC interdisciplinary research project ( -) between the CS-MRI team at NeuroSpin and the CosmoStat laboratory, the two CEA entities where I pursued my PhD thesis. At its core, PySAP is a sparse reconstruction package that is intended to be used in multiple science contexts: astrophysics, medical imaging, non-destructive evaluation using tomographic and ultrasound imaging.

C. . ModOpt

ModOpt, a module that contains the optimization algorithms used in PySAP and SPARK-LING .

C. . Reconstruction networks

As I actively used reconstruction networks for my thesis, I contributed to the astmrireproducible-benchmark, which was the main contribution by Dr. Zaccharie Ramzi. Also the fastMRI [Zbo+ ] data pipelines in TensorFlow was maintained in tf-fast-mri-data to which I contributed to have pipelines for learning trajectories with the network.

. The Cartesian reference image (AF= , GRAPPA reconstructed) is shown in (a, left top row) [Gri+ ]. SSIM scores are reported for each setup. Global D SPARKLING gives improved results compared to the SpSOS approach which starts to get worse at AF= with some blurring and at AF= the image gets noisier. On the other hand, TPI images are extremely blurry even at AF= . . [CB ] L. Chizat and F. Bach. "On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport". In: Advances in Neural Information Processing Systems (NIPS). Montréal, Canada, Dec. (page ).
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  Enfin, dans Chapter : Conclusions and Perspectives nous résumons les contributions de cette thèse et discutons des orientations et perspectives futures. Dans Appendix A: D SPARKLING et Appendix B:MORE and GoLF nous présentons quelques résultats théoriques et expérimentaux supplémentaires pour compléter les contributions du Chapitre et du Chapitre respectivement.
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Figure

  Figure . -The MR pulse sequence diagram for D imaging. The timing profiles of the RF pulse, G slice applied along z axis (G z ), G φ applied along y axis (G y ) and G freq along x axis (G x ) are shown. (This figure is slightly modified version of that shown in [Pui+ ])

Figure . -

 . Figure . -The MR receiver coils used for scanning the human brain. (a) A single channel birdcage coil used on a T MR system at NeuroSpin. (b) A -channel phased array coil, with individual coils are shown in color (from [Pao+ ]).

Figure

  Figure . -The MR object being imaged by two coils and the corresponding per-channel images. The coil sensitivity map profiles are also shown.

Figure . -

 . Figure . -Wavelet decomposition of an MR image (left) using the Daubechies wavelets to obtain coefficients over three scales (right). The non-sparse approximation coefficients are presented in top-left corner of this combined image, while rest of the image holds the sparse detail coefficients organized in subbands along the vertical, horizontal and diagonal axes.

  [Cha+ ].

  Figure . -(a) A single D k-space sampling trajectory and (b) its corresponding gradients in x, y and z directions obtained with Eq. ( . ), which is played during readout of time period T Obs .

  Figure.-(a) An example of continuous sampling trajectory in a normalized k-space (red) and corresponding gradient profile. The discretized gradient profile with a Gradient raster time ∆t = 10µs is shown in green and its corresponding discretized trajectory is also shown in (a).

  Figure . -(a) An example of non-feasible k-space sampling trajectory (red) which violates the maximum slew rate S max = 200T /m/s constraint, and the closest feasible k-space trajectory (green). The corresponding slew rate profiles S x and S y are shown in (b)-(c).Also, we highlight the maximum feasible gradient amplitude S max = 200T /m/s that can be played by the gradient hardware with a solid black line.

Figure . -

 . Figure . -Some D (top row) and D (bottom row) non-Cartesian k-space sampling trajectories proposed in literature. (a) Radial [Lau ] (b) Spiral [Ahn+ b] (c) PRO-PELLER [Hir+ ; Pip ] (d) Rosettes [Nol ] (e) FLORET [Pip+ a] (f) Genetic [Dal+ ](g) Missile[Mir+ ](h) Durga[Kum+ ] 

Figure . -

 . Figure . -The two approaches for gridding step in the NUFFT are represented: the griddriven methods (left) compute the on-the-grid values (+) by interpolating the off-the-grid acquired samples (•), and data-driven techniques (right) apply kernels to each off-the-grid sample to accumulate information over the gridded voxels.

Figure . -

 . Figure . -An illustration showing how the ideal reconstructed image can be viewed as the convolution of the PSF of the subsampling pattern with the object image.

  Figure . -A sample figure showing the PSF of a hypothetical subsampling pattern. The PSF along the z line in mid x and y planes is shown on left with a zoom in to show the FWHM. We represent the same line plot in log scale, scaled to dB on the right and highlight the PSL and PNL in the plot.
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  Figure . -A typical illustration of the U-Net multi-scale network with feature maps in blue, skip-connections in green. From [Çiç+ ].

Figure

  Figure . -A typical illustration of hallucinations occurring in reconstruction of MR images using DL. From [Muc+ b]. The left image is the original image, the middle image is the reconstructed image with hallucination artifact pointed with a red arrow, the right image corresponding to the residuals, i.e. their absolute difference.

Figure

  Figure . -The measurements y acquired following the sampling pattern Ω to obtain the reconstructed image x, with F the Fourier transform and N C the number of iterations. The inter-iteration connections are omitted for clarity. From [RSC b].

Figure

  Figure . -Multiple DL architectures compared one another and to the reference (left) for reconstructing D knee images (top row) from Cartesian undersampled k-space data.Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive reconstruction approach without DL. The best performing architecture is the PDNet. From[Ram+ ].

Figure

  Figure . -Multiple DL architectures compared one another and to the reference (left) for reconstructing D brain images (top row) from Cartesian undersampled k-space data.Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive reconstruction approach without DL. The best performing architecture is the PDNet. From[Ram+ ].

Figure . -

 . Figure . -Sampling pattern parametrization in [AJ ] for (a) sampling in D parameterized with lines on non-integer locations and (b) sampling in D parameterized by horizontal and vertical lines.

  (Figure. . (a)) which produced D learned non-Cartesian sampling trajectories and then later extended to D [Ved+ ] (Figure. . (
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Figure

  Figure . -Computation times for the repulsion term F r as a function of the number of particles p.

  see https://github.com/ruoxi-wang/PBBFMM D.

Figure . -

 . Figure . -Computation times for varying N s and N c for the projection step Π Q Nc α,β (•, n pit ) that was run over n pit = 200 iterations with G max = 40mT/m and S max = 180T/m/s.

Figure . -

 . Figure . -Parameterization of variable density with cutoff C and decay D.

Figure . -

 . Figure . -Effect of adding a perturbation (P) to the initial k-space trajectory in Ω = [-1, 1] 3 as zero mean uniform random noise at each trajectory sample. Trajectories are generated with maximum displacement of k-space point to (a) 0.25 and (b) 0.75 in the initialization. The left side of the figure is the initialization to SPARKLING algorithm and the right is the output of the algorithm. We also present the values of the cost obtained with ( . ).

  Fig. . we compare the PSF with respect to earlier generated spherical stack of D SPARKLING (SpSOS) trajectories. Particularly, we emphasize the reduction in sidelobes along the z axis. Further, for the purpose of numerical comparison, we computed the Full Width at Half Maximum (FWHM), Peak-to-Sidelobe Level (PSL) and Peak-to-Noise Level (PNL) in Tab. . . The FWHM is calculated as the width of the peak of PSF at half of the maximum value and the PSL and PNL are calculated in dB as presented in Fig. . (d).

Figure . -

 . Figure . -Full D SPARKLING Trajectory for N c = 4096, N s = 2048 and the PSF along the mid z-plane computed from the sampling mask (measurements sampled at the dwell-time period δt).

  Figure . -Comparison of PSF between full D SPARKLING and SpSOS sampling masks (measurements collected at the dwell-time period over the corresponding trajectories). The logarithm of D PSF (in voxel units) are viewed along the mid-slices in (a) axial plane (x, y, ), (b) sagittal plane (x, , z) and (c) coronal plane ( , y, z). (d) The PSF are compared in logarithmic scale along the z direction.

  [PM ; Kno+ ; Gue+ ; El + a] whose details are provided in Appendix (cf. Sec. A. ). For the sake of reproducibility, the code for MR image reconstruction is made open source in pysap-mri , a plugin of the PySAP software [Far+ a]. Of course, future work will combine deep-learning based image reconstruction with full D SPARKLING .
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  Figure . -Comparison of resolution insets for Full D SPARKLING (b) and SpSOS (c) with prospective phantom scans at (i) AF= , (ii) AF= as compared to Cartesian p (a). Additionally, we present the results for full D SPARKLING trajectory at (iii) AF= at the bottom-left.

  Figure . -Comparison of retrospective results for (i) fully optimized D SPARKLING (top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right, AF= (a), (b) and (c)) on in vivo human brain scans. Cartesian Reference (e) is provided for comparison and results for full D trajectory at AF (d) is also presented. SSIM scores are reported for each setup.

  Fig. . . They clearly show superiority of the full D SPARKLING pattern compared to SpSOS. Image quality is well preserved for AF= and and slightly noisy at AF= in full D strategy (Fig. . , top row), while it tends to get noisy at AF= and severely impaired at AF= for SpSOS strategy (Fig. . , bottom row). Moreover, we

  Figure . -Comparison of prospective results for (i) fully optimized D SPARKLING (top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right, AF= (a), (b) and (c)) on in vivo human brain scans. Cartesian p scan (e) is provided for comparison and results for full D trajectory at AF (d) is also presented. The scan times are reported for each AF.

  Figure . -Comparison of prospective results for fully optimized D SPARKLING (rightleft) and SpSOS (right most) with Cartesian reference (left) and retrospective full D SPARKLING (center) for AF= (scan time = min sec). In each panel of the top row, axial (left), sagittal (top right) and coronal (bottom right) slices are shown and a red frame is delineated in the central part of the brain for zooming purpose. Bottom row shows the magnified views with the same layout (axial, sagittal and coronal slices in the left, top-right and bottom right insets, respectively).

  y, z}, and ∀i ∈ {1, . . . , N c } 0 otherwise ( . a) b i,i = [0, 0, 0] T ∀i ( . b)This way the constraint A i k i = b i ensures that at TE, the k-space samples k i [k TE ] = [0, 0, 0] T , ∀i = 1 . . . N c . More sophisticated linear constraints like gradient moment nulling can be modeled through A i and b i , by not limiting entries in A i to be binary (see details in[Cha+ ]).

Figure . -

 . Figure . -Comparison of different MORE-SPARKLING trajectories with varying temporal weights (τ ): Comparison of different SPARKLING trajectories generated with N c = 3639 (AF= ), N s = 2048 (A) without temporal weights (τ = 0) i.e. original SPARKLING , and with τ varying from . to . as shown from (B) to (F), respectively. A rainbow coloring scheme overlays the sampling trajectories to encode the time over k-space samples.

Figure . -

 . Figure . -GoLF-SPARKLING trajectories for N c = 256, with Ñ = 64 (for clearer visualization): (A) GoLF-SPARKLING trajectory which is composed of (B) non-Cartesian SPARKLING portion in blue and (C) gridded low frequencies in green. Slice profile of the Cartesian portion of the k-space trajectory is presented along (D) k x = plane and (E) k y = plane. (F) The ordering of N c k-space shots in sphere S at Nyquist criteria.

  Figure . -Characterization of cutoff C and decay D for GoLF-SPARKLING trajectories with v = 1 and varying AF (specified at top) and its corresponding number of trajectories (specified at bottom).

  .

  (C)) to obain an artifact-free low resolution version of the D MR images. Such volumes can be computed for all coils to estimate the coil sensitivity maps through self-calibration [El + b] without any additional scan, which can be instrumental in the image reconstruction process.

Figure . -

 . Figure . -Proportion of total energy around the center of PSF for varying levels of ∆B 0 . The accumulated proportion of energy for MORE-SPARKLING trajectories with varying τ from to . . The energy of the D PSF within a radial shell with radii at different distances from center shown on x-axis on a log scale. The PSF is obtained with a constant T * 2 = ms and off resonance frequencies of (A) Hz, (B) Hz and (C) Hz.

  ( )) and then in vivo on a healthy volunteer (Fig. . ( )). For phantom, volumes were first collected in a standard acquisition setup with low artifacts (Fig. .

  ( a)), to observe any loss in image quality due to k-space holes emerging from large τ . To understand the extent to which MORE-SPARKLING trajectories can mitigate ∆B 0 artifacts, strong B 0 inhomogeneities were added by degrading the machine B 0 shimming with spherical harmonics (Fig.. ( b)). The prospective study on phantom (Fig..) shows significant improvements over B 0 inhomogeneities where an increase in τ results in minimized blurring and signal recovery in regions marked with green arrow (see Fig.. ( b)F).Further, we tested the same trajectories in the in vivo environment and present results along mid axial plane (Fig..( a)) and mid-sagittal plane (Fig. . ( b)). Maximal signal losses are seen for SPARKLING trajectories shown with red arrow as shown in Fig. . (C).

  Figure . -Prospective results with varying temporal weights (τ ) on phantom and in vivo (brain imaging): Different trajectories are compared on ( ) NIST phantom with (a) standard B 0 and (b) added B 0 inhomogeneities by degrading the shim and ( ) in vivo volunteer along (a) axial and (b) sagittal planes. SPARKLING (τ = 0) and MORE-SPARKLING acquisitions are carried out at AF= (scan time = min sec) and for varying values of τ as shown in the figure (C)-(G). Further we present (A) GRAPPA -fold (p ) acquisition as Cartesian reference (scan time = min sec) and (B) the corresponding ∆B 0 field map. The regions with maximum degradation due to ∆B 0 is marked with red arrows in (C) and the regions with improvement in signal recovery and image quality are marked with green arrows in (F).

Figure . -

 . Figure . -Prospective results for GoLF-SPARKLING with varying trajectory velocity at the center of k-space on NIST phantom with k-space velocity as (A) v = 0.6, (B) v = 1, (C) v = 2 and (D) v = 3. We show slices from each orientation (top row), the zoomed in region into the resolution insets (mid-row) and zoomed in region in axial plane (bottom row).

Figure

  Figure . -Comparison of prospective results for on healthy volunteer at AF= (scan time = min sec) with (B) conventional SPARKLING , (C) MORE-SPARKLING and (D) GoLF + MORE-SPARKLING trajectories. We have also presented (A) a Cartesian reference obtained with -fold GRAPPA acceleration (scan time = min sec).
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  Figure . -(A): The target sampling densities obtained for T 1 -weighted images with: (i) VDS (ρ vds ), a radially decaying parameterized density, with C= % and D= in [Cha+ d]; (ii) Average spectrum (ρ sb ) over the dataset based on [Kno+ ]; (iii) Average logarithm of the spectrum (ρ lsb ) over the dataset, to flatten the density in (ii); (iv) LOUPE (ρ lb ) [Bah+ a] coupled with XPDNet [RSC b] reconstruction. (B): Corresponding k-space trajectories generated with N c = 16 (R = 2.5), N s = 512, G max = 40 mT/m and S max = 180 T/m/s. For illustration purpose, a single shot is colored in red.

  Figure . -Retrospective study on different trajectories for R = 2.5 on slices of (A) T 1 -w and (B) T 2 -w Images. The reconstructions were performed with both CS based reconstruction (Sec. . . ) and using NC-PDNet (Sec. . . ) The median SSIM and PSNR scores are indicated.

  . and quantitatively (see Fig..).

Figure

  Figure . -NC-PDNet-based image reconstruction for retrospective T 1-w imaging with slice 6 in file_brain_AXT _ _ .h from validation data in fastMRI dataset for different target sampling densities.

Figure

  Figure . -NC-PDNet-based image reconstruction for retrospective T 2-w imaging with slice 5 in file_brain_AXT _ _ .h from validation data in fastMRI dataset for different target sampling densities.
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Figure . -

 . Figure . -The optimized hardware compliant non-Cartesian k-space trajectories using (a) PILOT, (b) SPARKLING with learned density using LOUPE, (c) PROJeCTOR scheme, (d) BJORK. The number of shots is N c = . The number of dwell time samples are set to match the same number of sampling points overall. Zoomed in visualizations of the center of k-space (bottom) and slightly off-center (top) is presented at the right of corresponding trajectories. The 2 norm of the corresponding gradient ||G|| 2 (in mT/m) and slew rate ||S|| 2 (in T/m/s) profiles are depicted below each trajectory.

Figure

  Figure . -(a) Box plots comparing the image reconstruction results on a retrospective study at UF= . (N c = 16, N s = 512, ∆t δt = 5) using slices of T 1 and T 2 contrasts (fastMRI validation data set) using PILOT (blue), SPARKLING with learned density (orange) and PROJeCTOR (green). SSIMs/PSNRs appear at left/right. The median values of these metrics are highlighted inside the box plots. The significance levels are indicated as paired ttest and are all significant with p < 10 -4 . (b) Top: T 1 -w reference image and reconstruction results for a single slice from file_brain_AXT PRE_ _ .h with corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being comparable across methods.

Figure

  Figure . -(a) Box plots comparing the image reconstruction results on a retrospective study using slices on T 2 contrast (fastMRI validation dataset) using BJORK (blue), SPARKLING with learned density (orange) and PROJeCTOR (green). The median values of these metrics are highlighted inside the box plots. We present the results at varying UF characterized with N c = 16, and . SSIMs/PSNRs appear at left/right. The significance levels are indicated as paired t-test and are all significant with p < 10 -4 . (b) Top: T 2 -w reference image and reconstruction results for a single slice from file_brain_AXT _ _ .h with corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being compare across methods.

Figure . -

 . Figure . -Left: Performance metrics in SSIM and PSNR of penalty-based method at varying penalty weight λ. The performance PROJeCTOR is also shown for comparison. Right: The feasibility of the penalty-based learned k-space trajectories at varying penalty weights (i.e. hyper-parameter) λ, shown by maximum slew rate S max and maximum gradient strength G max in the entire sampling pattern. The respective admissible upper levels are drawn with a red dotted line.

  Figure . -k-space sampling trajectories for (A) SPARKLING and (B) PROJeCTOR. For easier visualization, only shots of D trajectory are shown in (a). The resulting gridded sampling pattern is shown for mid-plane slices along (b) y-plane, (c) z-plane and (d) x-plane.

Figure

  Figure A--Simulated effects of T 2 * decay (of ms) and constant ∆B0 (of Hz) on the point spread function of the AF= full D SPARKLING trajectory. All the PSFs are normalized such that the maximum value is , for easier visual comparison.

  )

  Figure A--(a) Three random shots from theoretical and measured trajectories for AF= full D SPARKLING trajectory. (b) Zoomed in at the center of k-space.

  (a) An example of non-feasible k-space sampling trajectory (red) which violates the maximum slew rate S max = 200T /m/s constraint, and the closest feasible k-space trajectory (green). The corresponding slew rate profiles S x and S y are shown in (b)-(c). Also, we highlight the maximum feasible gradient amplitude S max = 200T /m/s that can be played by the gradient hardware with a solid black line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Some D (top row) and D (bottom row) non-Cartesian k-space sampling trajectories proposed in literature. (a) Radial [Lau ] (b) Spiral [Ahn+ b] (c) PROPELLER [Hir+ ; Pip ] (d) Rosettes [Nol ] (e) Fermat Looped ORthogonal Encoded Trajectories (FLORET) [Pip+ a] (f) Genetic [Dal+ ] (g) Missile [Mir+ ](h) Durga [Kum+ ] . . . . . . . . . . . . . . . . . . . . . . . . . The two approaches for gridding step in the NUFFT are represented: the griddriven methods (left) compute the on-the-grid values (+) by interpolating the off-the-grid acquired samples (•), and data-driven techniques (right) apply kernels to each off-the-grid sample to accumulate information over the gridded voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The water/air interfaces (blue) in the brain (black), such as the ones in the ears (middle) or near the bucco-nasal cavities (right). From [Pin ]. . . . . . . . . . . . An illustration showing how the ideal reconstructed image can be viewed as the convolution of the PSF of the subsampling pattern with the object image. . . . . A sample figure showing the PSF of a hypothetical subsampling pattern. The PSF along the z line in mid x and y planes is shown on left with a zoom in to show the Full Width at Half Maximum (FWHM). We represent the same line plot in log scale, scaled to dB on the right and highlight the Peak-to-Sidelobe Level (PSL) and Peak-to-Noise Level (PNL) in the plot. . . . . . . . . . . . . . . Illustration of common activation functions in deep learning. . . . . . . . . . . . . A typical illustration of the U-Net multi-scale network with feature maps in blue, skip-connections in green. From [Çiç+ ]. . . . . . . . . . . . . . . . . . . . . . . . A typical illustration of hallucinations occurring in reconstruction of MR images using Deep Learning (DL). From [Muc+ b]. The left image is the original image, the middle image is the reconstructed image with hallucination artifact pointed with a red arrow, the right image corresponding to the residuals, i.e. their absolute difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The measurements y acquired following the sampling pattern Ω to obtain the reconstructed image x, with F the Fourier transform and N C the number of iterations. The inter-iteration connections are omitted for clarity. From [RSC b]. . Multiple DL architectures compared one another and to the reference (left) for reconstructing D knee images (top row) from Cartesian undersampled kspace data. Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive reconstruction approach without DL. The best performing architecture is the PDNet. From [Ram+ ]. . . . . . . . . . . . . . . . . . . . . . . Multiple DL architectures compared one another and to the reference (left) for reconstructing D brain images (top row) from Cartesian undersampled k-space data. Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive reconstruction approach without DL. The best performing architecture is the PDNet. From [Ram+ ]. . . . . . . . . . . . . . . . Overall framework of [JUY ] which trains deep neural networks, one to reconstruct the images and the other to estimate a policy to determine the position of the next sample to be collected. . . . . . . . . . . . . . . . . . . . . . . Sampling pattern parametrization in [AJ ] for (a) sampling in D parameterized with lines on non-integer locations and (b) sampling in D parameterized by horizontal and vertical lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Learning-based Optimization of the Under-sampling PattErn (LOUPE)-optimized under-sampling masks for under-sampling factor of compared side by side for knee and brain anatomies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Different methods to learn hardware-compliant k-space sampling trajectories. (a) Physics-informed learned optimal trajectories (PILOT) [Wei+ ], (b) D-FLAT [Ved+ ] and (c) B-spline parameterized Joint Optimization of Reconstruction and K-space trajectories (BJORK) [Wan+ ]. . . . . . . . . . . . . . . . Computation times for the repulsion term F r as a function of the number of particles p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computation times for varying N s and N c for the projection step Π Q Nc α,β (•, n pit ) that was run over n pit = 200 iterations with G max = 40mT/m and S max = 180T/m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameterization of variable density with cutoff C and decay D. . . . . . . . . . . Effect of adding a perturbation (P) to the initial k-space trajectory in Ω = [-1, 1] 3 as zero mean uniform random noise at each trajectory sample. Trajectories are generated with maximum displacement of k-space point to (a) 0.25 and (b) 0.75 in the initialization. The left side of the figure is the initialization to SPARKLING algorithm and the right is the output of the algorithm. We also present the values of the cost obtained with ( . ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full D SPARKLING Trajectory for N c = 4096, N s = 2048 and the PSF along the mid z-plane computed from the sampling mask (measurements sampled at the dwell-time period δt). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of PSF between full D SPARKLING and SpSOS sampling masks (measurements collected at the dwell-time period over the corresponding trajectories). The logarithm of D PSF (in voxel units) are viewed along the mid-slices in (a) axial plane (x, y, ), (b) sagittal plane (x, , z) and (c) coronal plane ( , y, z). (d) The PSF are compared in logarithmic scale along the z direction. . . . . . . . Comparison of resolution insets for Full D SPARKLING (b) and SpSOS (c) with prospective phantom scans at (i) Acceleration Factor (AF)= , (ii) AF= as compared to Cartesian p (a). Additionally, we present the results for full D SPARKLING trajectory at (iii) AF= at the bottom-left. . . . . . . . . . . . . . Comparison of retrospective results for (i) fully optimized D SPARKLING (top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right, AF= (a), (b) and (c)) on in vivo human brain scans. Cartesian Reference (e) is provided for comparison and results for full D trajectory at AF (d) is also presented. SSIM scores are reported for each setup. . . . . . . . . . . Comparison of prospective results for (i) fully optimized D SPARKLING (top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right, AF= (a), (b) and (c)) on in vivo human brain scans. Cartesian p scan (e) is provided for comparison and results for full D trajectory at AF (d) is also presented. The scan times are reported for each AF. . . . . . . . . . Comparison of prospective results for fully optimized D SPARKLING (right-left) and SpSOS (right most) with Cartesian reference (left) and retrospective full D SPARKLING (center) for AF= (scan time = min sec). In each panel of the top row, axial (left), sagittal (top right) and coronal (bottom right) slices are shown and a red frame is delineated in the central part of the brain for zooming purpose. Bottom row shows the magnified views with the same layout (axial, sagittal and coronal slices in the left, top-right and bottom right insets, respectively). . Comparison of different MORE-SPARKLING trajectories with varying temporal weights (τ ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GoLF-SPARKLING trajectories for N c = 256, with Ñ = 64 (for clearer visualization): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characterization of cutoff C and decay D for GoLF-SPARKLING trajectories with v = 1 and varying AF (specified at top) and its corresponding number of trajectories (specified at bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proportion of total energy around the center of PSF for varying levels of ∆B 0 . . . (a) Box plots comparing the image reconstruction results on a retrospective study at UF= . (N c = 16, N s = 512, ∆t δt = 5) using slices of T 1 and T 2 contrasts (fastMRI validation data set) using PILOT (blue), SPARKLING with learned density (orange) and PROJeCTOR (green). SSIMs/PSNRs appear at left/right. The median values of these metrics are highlighted inside the box plots. The significance levels are indicated as paired t-test and are all significant with p < 10 -4 . (b) Top: T 1 -w reference image and reconstruction results for a single slice from file_brain_AXT PRE_ _ .h with corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being comparable across methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . (a) Box plots comparing the image reconstruction results on a retrospective study using slices on T 2 contrast (fastMRI validation dataset) using BJORK (blue), SPARKLING with learned density (orange) and PROJeCTOR (green). The median values of these metrics are highlighted inside the box plots. We present the results at varying Undersampling Factor (UF) characterized with N c = 16, and . SSIMs/PSNRs appear at left/right. The significance levels are indicated as paired t-test and are all significant with p < 10 -4 . (b) Top: T 2 -w reference image and reconstruction results for a single slice from file_brain_AXT _ _ .h with corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being compare across methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of (iii) PROJeCTOR trajectories with respect to penalty-based versions ((ii) and (iv)). The (A) non-admissible trajectories are shaded in red while admissible trajectories are shaded in green. Also, unconstrained (no penalty and no projection) trajectories are also presented in (i). . . . . . . . . . . . . . . . Left: Performance metrics in Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) of penalty-based method at varying penalty weight λ. The performance PROJeCTOR is also shown for comparison. Right: The feasibility of the penalty-based learned k-space trajectories at varying penalty weights (i.e. hyper-parameter) λ, shown by maximum slew rate S max and maximum gradient strength G max in the entire sampling pattern. The respective admissible upper levels are drawn with a red dotted line. . . . . . . . . . . . . . . k-space sampling trajectories for (A) SPARKLING and (B) PROJeCTOR. For easier visualization, only shots of D trajectory are shown in (a). The resulting gridded sampling pattern is shown for mid-plane slices along (b) y-plane, (c) z-plane and (d) x-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qualitative and quantitative comparisons of reconstructed images from D (B) SPARKLING and (C) PROJeCTOR trajectories at AF= as compared to (A) Cartesian reference. The reconstructed images are shown in top row, while the residuals are shown in the bottom. Further, box plots of SSIM and PSNR scores on test data sets are shown in the bottom-left. The significance levels are marked through paired samples Wilcoxon test. . . . . . . . . . . . . . . . . . . . A-The (a) gradients and (b) slew rates for a single shot from a Full D SPARKLING trajectory with AF= . We have also marked the Scanner hardware constraints (G max = mT/m and S max = T/m/s) with black dotted lines. . . . . . . . . A-Simulated effects of T 2 * decay (of ms) and constant ∆B0 (of Hz) on the point spread function of the AF= full D SPARKLING trajectory. All the PSFs are normalized such that the maximum value is , for easier visual comparison. A-(a) Three random shots from theoretical and measured trajectories for AF= full D SPARKLING trajectory. (b) Zoomed in at the center of k-space. . . . . A-Grid search performed on the density parameters (C, D) in D and at UF= . to obtain optimal densities in the single channel (a) and multi-channel (b) coil settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-Comparison of retrospective results for (i) fully optimized D SPARKLING (right, top row) and (ii) SpSOS (right, bottom row) for varying acceleration factors (from left to right, AF= (b), (c) and (d)) on the NIST phantom. Additionally, we present the results of a retrospective study based on (iii) TPI at AF= for comparison purposes with the state of the art (left, bottom row).

  . A-Comparing the performance of full D SPARKLING (b) and SpSOS SPARKLING (c) with twisted projection imaging (TPI) (d) using a retrospective study at AF= from the Cartesian GRAPPA-reference (a). . . . . . . . . . . . . . . . . . . . . A-Prospective reconstruction results (axial and sagittal view only) (b) without ∆B0(r) correction and (c) with ∆B0(r) correction for full D SPARKLING trajectory at AF= . Cartesian reference views (a) are also shown for comparison purpose. Red arrows in (b) refer to the regions of strong ∆B0 artifacts. We see that most of the MR signal in these areas is recovered in (c) using the approach proposed in [Dav+ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-Proportion of total energy around the center of PSF for varying levels of ∆B 0 for . T and T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. Introduction

Non-Cartesian (NC) sampling trajectories are crucial to have optimal k-space coverage, to help reduce the acquisition times in Magnetic Resonance Imaging (MRI). This reduction in scan time is instrumental in increasing patient throughput and reducing the motion artifacts In this work, we use the target density obtained by LOUPE as an input to the SPARKLING algorithm to generate D SPARKLING non-Cartesian trajectories. We carry out retrospective studies and compare them with those that result from other densities such as the average (log-)power spectra over the fastMRI dataset. We perform image reconstruction using both CS technique and the newly developed NC-PDNet [RSC a] architecture which is a density compensated unrolled neural network for non-Cartesian MRI reconstruction. We conclude that the proposed solution (LOUPE+ D SPARKLING) outperforms other VDS approaches in terms of image quality.

.

Materials and methods

Here, we detail the methods used to optimize for sampling density and thereby how the latter is injected as an input to SPARKLING algorithm to generate non-Cartesian trajectories. We later study the performance of the corresponding sampling schemes on retrospective MR image reconstruction studies.

. . D Non-Cartesian trajectories

Throughout this work, we follow the formulation we developed in [Cha+ d], for the case of D imaging. Let the MR image size be N × N , over a field of view F × F. Then the D k-space of the image is defined in [-K max , K max ] 2 , with K max = N 2F . In all our trajectories, we kept N = 320 and F = 0.23 m. For the sake of simplicity, let us normalize the k-space to Ω = [-1, 1] 2 . We are optimizing for the D k-space sampling pattern K which is composed of several shots

dτ with γ the gyro-magnetic ratio (γ = 42.57MHz/T for proton imaging). Each shot is sampled at the pace of gradient raster time ∆t, throughout the readout time T obs , resulting in N s = T obs ∆t samples per shot. The k-space data from the scanner is sampled at dwell time δt, which in practice is a fraction of ∆t. Thus the total received k-space samples are of the form K ∈ C Nc×Ns× ∆t δt . In our studies, we used dwell time (δt = 2µs) and gradient raster time (∆t = 10µs), thereby having times more k-space sample points than the measurements defined by the gradient wave forms.

The MR hardware constraints of maximum gradient strength (G max = 40 mT/m) and slew rate (S max = 180 T/m/s) results in a constrained trajectory with limited speed (α) and acceleration (β). Note that the speed constraint also handles the Nyquist sampling criterion (see [Cha+ ]). We define this constraint set as

. .

SPARKLING algorithm

Let the target sampling distribution be ρ : Ω → R, with ρ(x) ≥ 0 for all x and ρ(x) dx = 1. Given ρ, the SPARKLING algorithm optimizes for the k-space sampling pattern K such that the actual sampling distribution is closest to ρ, while being locally uniform. Although theoretically SPARKLING takes a continuous distribution ρ as input parameter, in practice, we discretize the distribution to obtain ρ ∈ R N ×N . Further, the algorithm ensures that the each k-space shot k i (t) in optimal K lies in Q Nc α,β . We can now summarize the SPARKLING algorithm as follows:

with K 0 being the initialization. The detailed algorithm is presented in [Cha+ d]. Hereafter, we discuss different gridded distributions ρ that were obtained for our study.

. . Target sampling density learning

In this work, we broadly use four methods for estimating or learning a target sampling density. All these methods are data-driven and we rely on the fastMRI dataset [Zbo+ ] to compute them. Let x j ∈ R N ×N n j=1 denote brain MR images from this dataset, where j is the scan is carried out after trajectory update to make sure it satisfies the hardware constraints and lies in the constraint set Q Nc α,β . Further, the density compensators D S(K) of the k-space trajectory serves as input to the reconstruction network.

D and D imaging, we take Observation time (T Obs )= . ms (readout time), giving us N s = 512 samples per trajectory (see details in subsection . . ). This readout value is fully compatible with those used in T and T -weighted imaging.

For our experiments in D imaging, we used the fastMRI brain MR data set [Zbo+ ], which consists of T 1 and T 2 -weighted images with N = 320. In contrast, for validation in D imaging, we used the Calgary brain data set [Sou+ ], which consists of T 1 -w MR volumes at mm isotropic sagittal acquisitions, with matrix size 256 × 224 × 170. 

. . K-space trajectory (K)

The acquisition model is parameterized by a k-space sampling pattern K which is composed of N c shots, K = (k i ) Nc i=1 . Each shot can be played by the scanner hardware at the pace of gradient raster time ∆t, throughout the readout time T obs , resulting in N s = T obs ∆t samples per shot and overall sampling pattern as K ∈ Ω Nc×Ns .

The k-space trajectories are constrained in speed and acceleration by the maximum gradient strength G max and maximum slew rate S max , respectively. Additionally, affine constraints are added to the trajectory design to ensure that the center of k-space is sampled at Echo Time (TE) in every shot, resulting in stable and required target contrast of reconstructed MR images. From [Cha+ ; Cha+ d], we model these constraints as follows: D uring the course of this thesis, we significantly contributed to the Magnetic Resonance Imaging (MRI) community, particularly in the design of hardware compliant non-Cartesian k-space sampling trajectories that yield improved reconstructed image quality. These newly developed trajectories were further extending to yield improved images on prospectively acquired data through Minimized Off Resonance Effect (MORE) and Gridding of Low Frequencies (GoLF). Finally, in the last stage of the thesis, with a paradigm shift from model-based design to data-driven learning of trajectories jointly with reconstructor, we demonstrated we can speed up MRI scans by an order of -x as compared to Cartesian reference, without much degradation in the reconstructed image quality.

.

Contributions and limitations

At the beginning of the thesis, the Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) algorithm developed in-house was sped up through use of Fast Multipole Methods (FMM) and parallel implementations on multicore CPUs and GPUs. With this, the SPARKLING algorithm was fully extended to optimize D hardware compliant k-space sampling trajectories, which efficiently under-sampled the k-space in all the three dimensions, a significant challenge prior to my arrival in the team due to the underlying computational bottleneck. The optimized trajectories yielded peaky Point Spread Function (PSF) which was characterized and quantified using PSF metrics: lower Full Width at Half Maximum (FWHM), and higher Peak-to-Sidelobe Level (PSL) and Peak-to-Noise Level (PNL). Retrospective studies were carried out to grid-search optimal Target Sampling Density (TSD), which was an input to the SPARKLING algorithm. Finally, these trajectories were applied for the case of prospective D Susceptibility Weighted Imaging (SWI), which allowed . -. x shorter scan times compared to GRAPPA-parallel imaging acquisition at Tesla without compromising image quality. However, in our prospective experiments, we observed

Appendices Appendix A

D SPARKLING A. Trajectory

A. .

Gradients and Slew Rates

W e present the gradients and slew rates obtained for a single shot of full D Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) trajectory in Fig. A-. We show that the trajectory was mostly slew rate constrained, thereby making the percentage of readouts with gradient magnitude constraint active to be close to . The gradient waveform was never saturated but achieved its maximum nearby the center of k-space as shown in Fig. A-(a). This is because all the trajectories pass through the center of k-space, thereby drastically increasing the sampling density of the sampling pattern. Due to this, each trajectory moves at highest velocity to achieve lesser k-space sample points here, thereby achieving the Target Sampling Density (TSD). Note that although the scanner slew rate constraint is T/m/s, the trajectories were optimized with a tighter constraint of maximum allowed slew rate of T/m/s, which explains the lower slew rate limits observed in the trajectory in 

Target sampling density

In order to choose optimal TSD, we performed a grid search of the cutoff C and decay D parameters in (B. ) (Fig. . ). This density search was done through retrospective studies on T 2 * complex brain images in D to reduce computational complexity as the parameterized density is radially symmetric and can be directly extended to D. We present the results of this density search in Fig. A-for both single and multi-channel settings through retrospective grid search on corresponding emulated single-channel (obtained by virtual coil combination [Par+ ] of multi-channel data) and multi-channel in vivo brain complex-valued data, respectively. In the single coil setting we observe that while (C = 30, D = 3) seems optimal, we choose (C = 25, D = 2) as it is robust to small changes in density and is on the plateau of the value function. In the multi-channel coil scenario, we observe that (C = 1, D = 1) is both optimal and robust. The optimal decay of can be explained by the fact that the k-space information is more spread out in the multi-channel setting thereby allowing sampling density to decay at a lower rate to get a better k-space coverage.

In all our studies, we chose (C = 25, D = 2) as target density, as the trajectories are more generic and can be adapted to any coil configuration (as compared to the multi-channel optimal density, which was only adapted to our coil configuration). Also, notice that (C = 25, D = 2) is still a reliable tuning in the multi-channel setting.

Additionally, it is worth mentioning that improved image quality can be obtained by further exploring the target density parameterization. Finally, this density can be learned in a data driven manner, as illustrated for T 1 and T 2 -w imaging in [CRC ]. [Gri+ ]. SSIM scores are reported for each setup. Global D SPARKLING gives improved results compared to the SpSOS approach which starts to get worse at AF= with some blurring and at AF= the image gets noisier. On the other hand, TPI images are extremely blurry even at AF= . If the trajectory velocity is given by v, we have

k-space samples in the center of k-space. From Eq.(B. ) and (B. ), we obtain:

Now as we switch from Cartesian sampling to NC sampling, we move to Poisson disk sampling for the NC region. From Eq. ( . ) and as the density needed for Cartesian sampling is v × κ 1 , we get: However, in practice we cannot achieve Poisson disk sampling due to curve constraints on trajectory on speed and acceleration of the trajectory (see Sec. . . ). To prevent any k-space holes, we sample the annular region where we shift from Cartesian to NC sampling at . times the Nyquist criteria, thereby choosing κ 2 = vκ 1

Finally, as Π r S ,D (x) is a distribution, we need to ensure that it is normalized, (i.e. sum B. . CALCULATING PSF AT . AND T to ):

From Eq. (B. ), (B. ) and (B. ), we can solve iteratively for D.

B. Calculating PSF at . and T

We describe how the PSF is computed for any trajectory K where α and ω are respectively the T * 2 decay and off-resonance angular frequency that are used over the whole FOV. For this, we need to simulate the distortions observed during sampling of k-space when we are measuring a Dirac impulse function centered in the image domain. This Dirac delta function corresponds to a constant magnitude in k-space and following Eq. ( . ) we simulate the k-space data Y = (y i ) Nc i=1 acquired in presence of T * 2 decay and off-resonance as follows, y i (t) = e -(α+ıω)t .

We obtain the PSF by carrying out reconstruction of this simulated k-space data as described in Sec. . . . However, we do not enforce any sparsity in wavelet domain to ensure that these sparsity based regularization does not influence the final reconstructed PSF.

With this, we present the proportion of energies in PSF at center for T * 2 -w imaging at . T in Fig. B-( ) and T in Fig. B-( ). We again choose average of the T * 2 values between white and gray matter from [Pet+ ], and the levels of off-resonance frequencies ω is chosen based on typically observed values at respective field strengths.

We see similar trends as observed in T, with a very strong blurring of the PSF peak at higher ω. Further, we still see that τ = 1.0 is optimal in both the scenarios as any further increase in temporal weighting leads to minor incremental improvements to the PSF.

B. Maximum k-space velocity v under hardware constraints

The k-space velocity in center of k-space along readout direction is parameterized by a dimensionless parameter v, and is limited by the hardware constraints of the scanner. Particularly, following the notation set up in the core manuscript, under a maximum gradient strength G max and for an image size Ñ , we get the maximum k-space step in Ω with time ∆t (i.e. α∆t in Eq. ( .)) as:

where K x max is the maximum k-space step in the readout direction x. Now as v represents the number of Nyquist voxels of size ∆x = 2 Ñ taken by trajectory in center of k-space in ∆t, we get maximum velocity v max as:

Using the values from Sec. . . (i.e. γ = 42.58Mhz/T, G max = 40mT/m, FOV x = 0.23m, ∆t = 10µs), we get v max = 3.92.

Appendix C

Software and Open Source Contributions

O ne major aspect of my thesis included writing codes, which game me a lot of joy. Most of these codes are maintained on public or sometimes private repositories on GitHub with continuous integration and testing, to ensure reproducibility. Further, in the spirit of open science, I have contributed to many and also maintained some open source projects. In this section I will briefly review some of the contributions I have made through the packages I developed and maintained and also some open source contributions.

Most of these projects are based in Python, and particularly for the machine learning part, I have used the TensorFlow framework, purely for carrying forward some legacy codes from previous Ph.D. students. Some works are also in CUDA and C++ with bindings to Python to help gain speed.

C.

Packages I wrote or maintained

C. SPARKLING

One of the major contributions of my thesis include formalizing the earlier works by Dr. Carole Lazarus on the SPARKLING method, through a generalized python package which works for both D and D. The largest contribution in this package is the binding of Fast Multipole Methods (FMM) and parallel implementation of the algorithm on multiple cores or GPUs. The computation times for the SPARKLING trajectories was drastically reduced from day to minutes for D trajectories and nearly weeks to hours for D trajectories. This allowed us to actively iterate, build and test new trajectories for analyzing both prospective and retrospective reconstruction performance. This package allows users to set a bunch of parameters and can be directly run on a cluster or a single machine. Further, it implements the projection step of the SPARKLING algorithm in a generic way in the form of simple utility function and can be directly applied to project any other trajectory being optimized, which was used by us when we learned trajectories.

My contributions of MORE-SPARKLING and GoLF-SPARKLING are also added into the same package with addition of simple parameters that control the MORE and GoLF feature, to prevent code redundancy. Due to the presence of patents for SPARKLING , and also MORE-SPARKLING and GoLF-SPARKLING , this package is not open source and is only available to the collaborators of the project. However, we have setup processes in place to allow for research teams to gain access to the codes if a non-disclosure agreement is signed, which prevents further sharing of codes and limits its for purely research purposes.

C. Joint optimization of Trajectory and Reconstruction

The latter part of my thesis involved jointly learning hardware-compliant k-space sampling trajectories and reconstruction networks. For this, I have written a python package, which 

-spline parameterized Joint Optimization of Reconstruction and K-space trajectories , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
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