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Abstract : Magnetic resonance Imaging (MRI) is a
popular non-invasive medical imaging technique to un-
derstand structures of tissues in the human body. Ho-
wever, its reach and use is strongly limited by long
acquisition times, as the data acquisition is segmen-
ted in time and performed in the Fourier domain of
the image or k-space. Compressed sensing theories en-
abled shorter scan times by sensing less compressible
information, particularly by adopting a variable density
sampling (VDS) in k-space : i.e. the lower frequen-
cies (center of k-space) have to be sampled more den-
sely than the higher at its periphery. Efficient ways to
achieve such VDS is through the use of non-Cartesian
sampling, where k-space is sampled along curves ra-
ther than conventional gridded lines. Essentially, this
involves the optimization of 1) the sampling pattern in
k-space under MR hardware constraints and 2) image
reconstruction from undersampled k-space data.

In this thesis, we address the above issues in the

context of accelerated 3D MRI. Firstly, we extend the
earlier developed SPARKLING algorithm to 3D, which
results in hardware compliant non-Cartesian trajecto-
ries that meet a user specified target sampling den-
sity (TSD) in k-space. Secondly, we tackle the issue
of off-resonance artifacts in these SPARKLING trajec-
tories through a modification of the underlying algo-
rithm, to allow for signal recovery at regions where the
off-resonance is high. Thirdly, we shift to data-driven
learning based approach to learn the TSD for SPARK-
LING trajectories. Last but not least, we propose a
novel deep learning based approach to learn hardware
compliant k-space sampling trajectories jointly with a
corresponding image reconstruction network. Overall,
our efforts in this thesis allowed for an acceleration of
up to 20x in 3D MRI scans with a significant reduc-
tion in off-resonance artifacts, allowing to image with
minimum degradation in reconstructed image quality.

Titre : Conception et apprentissage de trajectoires d’échantillonnage non cartésiennes dans l’espace k pour
l’IRM 3D accélérée
Mots clés : reconstruction d’image IRM ; imagerie pondérée en susceptibilité magnétique ; acquisitions non-
cartésiennes ; correction d’effet hors-resonance ; apprentissage profond ; trajectoires SPARKLING.

Résumé : L’imagerie par résonance magnétique (IRM)
est une technique d’imagerie médicale non invasive très
répandue qui permet de comprendre les structures des
tissus du corps humain. Cependant, sa portée et son
utilisation sont fortement limitées par les longs temps
d’acquisition, car l’acquisition des données est segmen-
tée en temps et réalisée dans le domaine de Fourier
de l’image ou espace k. Les théories d’échantillonnage
compressif ont permis d’accéder à des temps d’exa-
men plus courts en collectant moins d’information com-
pressible, en particulier en adoptant dun échantillon-
nage à densité variable (EDV) dans l’espace k : les
basses fréquences (au centre de l’espace k) doivent
être échantillonnées plus densément que les hautes fré-
quences situées à la périphérie de celui-ci. Un moyen ef-
ficace d’obtenir un tel EDV est d’utiliser un échantillon-
nage non cartésien, où l’espace k est échantillonneur le
long de courbes plutôt que de lignes alignées sur une
grille cartésienne. Essentiellement, cela implique l’opti-
misation 1) du modèle d’échantillonnage dans l’espace
k sous les contraintes matérielles de l’IRM et 2) la
reconstruction de l’image à partir des données sous-
échantillonnées de l’espace k.

Dans cette thèse, nous abordons les questions ci-

dessus dans le contexte de l’IRM 3D accélérée. Tout
d’abord, nous étendons l’algorithme SPARKLING dé-
veloppé précédemment à l’imagerie 3D, ce qui permet
d’obtenir des trajectoires non cartésiennes conformes
aux contraintes matérielles et fidèles à une densité
d’échantillonnage cible (DEC) spécifiée par l’utilisateur
dans l’espace k. Ensuite, nous abordons le problème
des artefacts hors résonance présents au sein des tra-
jectoires SPARKLING en modifiant l’algorithme sous-
jacent, afin de permettre la récupération du signal dans
les régions où la hors résonance est élevée. Dans la
dernière partie de la thèse, nous passons à une ap-
proche basée sur l’apprentissage piloté par les données
pour apprendre la DEC pour les trajectoires SPARK-
LING. Enfin, nous proposons une nouvelle approche
basée sur l’apprentissage profond pour apprendre des
courbes d’échantillonnage de l’espace k conformes aux
contraintes matérielles conjointement avec un réseau
de reconstruction d’images adapté. Dans l’ensemble,
nos efforts dans cette thèse ont permis d’accélérer jus-
qu’à 20 fois les scans IRM 3D avec une réduction signi-
ficative des artefacts hors résonance, permettant ainsi
une dégradation minimale de la qualité des images re-
construites.
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General Introduction

Context & Motivations

T he quest for efficient sampling strategies has been a major challenge in Magnetic Reson-
ance Imaging (MRI) since its invention. The theory of Compressed Sensing (CS) [Lus+07]

boosted this quest by providing significant theoretical insights. It was proved and observed
empirically that for under-sampled acquisitions and compressible signals in an orthogonal
basis, an efficient implementation relies on trajectories with a variable density in k-space:
The lower frequencies located in the center of k-space have to be sampled more densely than
the higher in its periphery [Puy+11; Cha+14; Adc+17; Boy+19]. Non-Cartesian k-space
trajectories (e.g. spiral, radial, rosette, etc.) [Ahn+86a; Mey+92; Jac+92; Nol97; Law+09;
Lus+05a] have been proposed for accelerated and robust-to-motion 2D imaging, prior to
the existence of theoretical CS foundations. While being compliant with scanner hardware
constraints on the gradients, these trajectories do not sample the k-space according to a
well controlled TSD. For instance, in spiral imaging, fulfilling these constraints transforms
an initially prescribed density into another one [Cha15, p. 97]. Recently, the SPARKLING
algorithm [Boy+16; Cha+17; Laz+19] has been shown to automatically generate optimized
non-Cartesian sampling patterns compatible with MR hardware constraints on maximum
gradient amplitude and slew rate. SPARKLING optimally samples the k-space (see [Puy+11;
Cha+14]) with a controlled distribution of samples (e.g., Variable Density Sampling (VDS))
and a locally uniform k-space coverage.

Contributions

The main focus and goal of this thesis involves designing and learning 3D k-space sampling
trajectories for minimally artifacted and accelerated acquisitions. In this regard, we initially
focus on extending and improving the SPARKLING trajectories, and later use foundations
of deep learning to learn hardware compliant k-space sampling trajectories. The main
contributions and goals of this PhD thesis can be sorted out into the following categories:

Towards fully 3D SPARKLING algorithm [Cha+22d]

Due to Signal-to-Noise Ratio (SNR), 3D imaging is preferred to reach isotropic high-resolution
imaging (e.g. 600µm isotropic). In this regard, multiple approaches have been utilized to
efficiently down-sample 3D k-space. Some of these involve a combination of a readout in
the z-direction with a 2D under-sampled mask based on Poisson disk sampling [Vas+10].
Additional attempts on full 3D readouts were proposed like 3D radial trajectory [Lar+08],
3D cones [Ira+95], twisted projections [Boa+97] and hybrid radial-cones [Joh17]. However,
these trajectories were primarily based on parameterizing a k-space sampling curve, and
the final sampling pattern was not optimized with respect to image reconstruction quality.
Some recent studies explored how to optimize the sampling pattern [Dal+04; Mir+04;
Kum+08], but did not include a clear sampling criterion in order to maximize the image
reconstruction quality. While methods like [HK19; See+10] do use Cramér-Rao bound for
sparse signals [BE10] as a tailored optimality criterion, they are computationally demanding
thereby limiting its use to the Cartesian setting. Other methodologies in the literature
involved stacking a 2D under-sampled trajectory like stack of stars [Son+04; Lo08], stack of
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spirals [Ira+95; The+99] and stack of 2D SPARKLING [Laz+20a]. Further in [Laz+20a],
a local 3D SPARKLING approach was proposed by designing a single trajectory within a
cone obtained from a parcellation of the 3D spherical k-space. Then all the cones covering a
given elevation plane were filled up using the replication of the same trajectory. However,
this method did not ensure a locally uniform sampling pattern at the boundaries of cones as
the problem was only solved locally.

Solving the SPARKLING problem globally in 3D is computationally expensive with O(N2)
order of computational complexity, whereN represents the number of sampling locations in the
pattern. We proposed an implementation based on fast multipole methods (FMM) [Wan+19;
Fon+09a] that allowed us to design sampling patterns with up to 107 k-space samples, thus
opening the door to 3D VDS. We compared multi-CPU and GPU implementations and
demonstrated that the latter is optimal for 3D imaging in the high-resolution acquisition
regime (600µm isotropic). Finally, we showed that this novel optimization for full 3D
SPARKLING outperforms stacking strategies or 3D twisted projection imaging through both
retrospective and prospective studies on both a NIST phantom and in vivo brain scans at 3
Tesla. Overall the proposed method allows for 2.5-3.75x shorter scan times compared to
GRAPPA-4 parallel imaging acquisition at 3 Tesla without compromising image quality.

Addressing issues in prospective scans for non-Cartesian
imaging [Cha+22a; Cha+22c; Cha+22b; Cha+]
After extending the SPARKLING trajectories to 3D, a large gap was observed in the
reconstructed image quality between retrospective simulations and actual prospective scans
(see [Cha+22d, Fig. 10]) in the case of T ∗2 -weighted imaging. Such a discrepancy in prospective
setting was identified [Cha+22d, S2.B],[Dav+22] to be due to the presence of a strong off-
resonance effects and T ∗2 decay whose effects are accumulated in T ∗2 -w contrast due to longer
Echo Time (TE) used to enhance the susceptibility contribution. This effect is amplified in
non-Cartesian imaging and notably in 3D SPARKLING as such trajectories have arbitrary
readout directions, leading to local k-space inconsistencies. Although these artifacts can be
corrected [Sut+03] without needing any supplementary scan for ∆B0 map [Dav+22], such
corrections are computationally expensive.

Additionally, another limitation of the SPARKLING trajectories is that we use affine TE
constraints, where we limit the trajectory to pass through the center of k-space at echo time
to obtain images at required target imaging contrast. This results in a strong oversampling
of the center of k-space compared to the Nyquist criteria which can be sub-optimal as the
extra samples can be assigned to higher frequencies instead, thus resulting in improved image
reconstructions with finer details in structures.

In this work, we address both above described issues through modification of the SPARK-
LING cost function and constraint set. Through MORE-SPARKLING , we introduced a
temporal weighting in the traditional SPARKLING optimization problem which takes the
temporal nature of the sampled data into account. In GoLF-SPARKLING , we incorporated
the features of Cartesian sampling into the SPARKLING framework through more general
affine constraints and adaptation of the TSD to match these Nyquist criteria constraints. Pro-
spective k-space data was acquired at 3 Tesla on 20-fold accelerated trajectories as compared
to fully sampled Cartesian reference. Through in vivo experiments, MORE-SPARKLING
allowed us to recover signal dropouts observed on original SPARKLING acquisitions at larger
B0 field inhomogeneities. Further, through GoLF-SPARKLING i.e. Cartesian sampling at
center of k-space provided improved reconstructed image quality with reduced artifacts.

Jointly learning k-space sampling pattern and reconstruction
network [CRC21; CRC22; CC22; CC]
A limitation of SPARKLING algorithm is the need to setup a TSD as an input to the
algorithm. For this, we learned the sampling density using LOUPE [Bah+20a], and used it
as TSD to the SPARKLING algorithm to generate 2D SPARKLING trajectories [CRC21].
However, the gridded TSD was learned in the Cartesian domain, while the actual trajectory
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being optimized was non-Cartesian. As this could lead to suboptimal results, there is a need
for directly learning hardware compliant k-space sampling trajectories along with an image
reconstruction network in a non-Cartesian setting.

In this regard, new methods [Wei+20; Wan+21; Ved+20] have been developed to overcome
the need for estimating a TSD, through direct joint learning of the non-Cartesian k-space
sampling trajectories and MR image reconstruction in a data-driven manner on the fastMRI
dataset [Zbo+18]. In [Wei+20; Ved+20], the authors jointly learned PILOT trajectories
along with U-net parameters as a reconstruction model to denoise the basic image yielded by
the adjoint of the Nonuniform Fast Fourier Transform (NUFFT) operator. However, this
method relies on auto-differentiation of the NUFFT operator, which is inaccurate numerically
as observed in [WF23], resulting in sub-optimal local minima. This suboptimality was
actually reflected in the final shape of the learned trajectories, which only slightly deviated
from their initialization. In BJORK [Wan+21], the authors used [WF23] to obtain a more
accurate Jacobian approximation of the NUFFT operator for backpropagation. Both above
referenced approaches [Wei+20; Wan+21] enforced the hardware constraints by adding
penalty terms to the the loss that is minimized during training. Although a viable option,
this requires tuning a hyper-parameter associated with each of these penalty terms in the cost
function and it does not guarantee that the optimized trajectories will strictly meet these
constraints. Further, these penalty terms affect the overall gradients of the loss function,
thereby resulting in suboptimality of the trajectories.

In this work [CC], we first developed a generic model called PROjection for Jointly
lEarning non-Cartesian Trajectories while Optimizing Reconstructor (PROJeCTOR). More
precisely, we introduced a method that learns the k-space trajectories in a data-driven manner
while embedding a projected gradient descent algorithm [Cha+16] to fulfill the hardware
constraints during the training stage. Unlike BJORK, we directly learned the k-space
sampling trajectories and used multi-resolution [Leb+19] similar to SPARKLING to limit
the number of trainable parameters at each step. Then, we compared these PROJeCTOR
results to PILOT [Wei+20] and BJORK [Wan+21] in 2D MRI. In 2D retrospective studies,
our novel PROJeCTOR trajectories presents an improved image reconstruction quality at a
20-fold acceleration factor on the fastMRI data set with SSIM scores of nearly 0.92-0.95 in as
compared to corresponding Cartesian reference and also see 3-4dB gain in PSNR as compared
to earlier state-of-the-art methods. In a more controlled setting we showed the importance
of the projection step during the optimization of k-space trajectories and demonstrated
its superiority over penalty-based methods like PILOT and BJORK to enforce hardware
constraints. Finally we extended the algorithm to 3D and by comparing optimization to
learning based projection schemes, we brought evidence that data-driven joint learning based
PROJeCTOR trajectories outperform model-based methods like SPARKLING through a
2dB gain in PSNR and 0.02 gain in SSIM.

Thesis Outline

Chapter 1: Introduction to Magnetic Resonance Imaging introduces to MRI, the source
of the measured signal and how it is localized. Later, we discuss on the need for accelerating
the Magnetic Resonance (MR) scan and discuss some methods used to accelerate scans in
traditional Cartesian MRI.

Chapter 2: Compressed Sensing and Non-Cartesian MRI introduces CS based recon-
struction of MRI data. Further, we discuss the need to sample k-space with VDS for reaching
higher acceleration factors which can be achieved through sampling the k-space along curves
using non-Cartesian sampling. For this, we present a generalized framework for sampling
the k-space using trajectories and discuss its constraints. We finally present some novel
non-Cartesian k-space sampling trajectories proposed in literature.

Chapter 3: Deep Learning for MRI focuses on some fundamentals and formalism of DL.
We present some popular DL architectures and discuss the methods proposed in literature to
reconstruct the MR image from under-sampled k-space data. Further, we also summarize
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the literature on learning based techniques to optimize the k-space sampling patterns and
trajectories.

We later focus on the main contributions during this thesis. In Chapter 4: Optimizing
full 3D SPARKLING trajectories, we extend the SPARKLING algorithm to 3D allowing
us to accelerate the MRI in all the 3 dimensions. However, strong off-resonance artifacts
was observed in prospective studies as these optimized trajectories had arbitrary readout
directions.

To tackle this, in Chapter 5: Reducing artifacts in SPARKLING we present 2 novel
updates to the SPARKLING algorithm: MORE and GoLF.

As the SPARKLING algorithm needs TSD as input, in Chapter 6: Learning sampling
density for 2D SPARKLING we present 4 different candidate densities and show that
data-driven learned LOUPE method provides the best TSD. However, this method involves a
gridded TSD, which is learned in Cartesian setting and later used to generate non-Cartesian
trajectories. This mismatch in learning domains where training is done in Cartesian setting
and testing is done in non-Cartesian setting is a major drawback of this method.

This issue is tackled through direct learning of the k-space trajectories in Chapter 7: Learn-
ing trajectories with reconstructor, and we emphasize the need for a projection step
inspired from SPARKLING to prevent suboptimality.

Finally, in Chapter 8: Conclusions and Perspectives we summarize the contributions of
this thesis and discuss the future directions and perspectives.

In Appendix A: 3D SPARKLING and Appendix B: MORE and GoLF we present some
additional theoretical and experimental results to complete the contributions in Chapter 4
and Chapter 5 respectively.

Finally, in Appendix C: Software and Open Source Contributions I discuss some software
packages developed during the course of the thesis and some open source contributions.
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Résumé étendu en français

Contexte & motivations

Depuis son invention, la recherche de stratégies d’échantillonnage efficaces a constitué un défi
majeur pour l’imagerie par résonance magnétique (IRM). La théorie du compressed sensing
(CS) [Lus+07] a donné un coup de fouet à cette quête en apportant des éclaircissements
théoriques significatifs. Il a été prouvé et observé empiriquement que pour des acquisitions
sous-échantillonnées et des signaux compressibles dans une base orthogonale, une mise en
œuvre efficace repose sur des trajectoires à densité variable dans l’espace k : Les fréquences
les plus basses situées au centre de l’espace-k doivent être échantillonnées plus densément
que les plus hautes à sa périphérie [Puy+11; Cha+14; Adc+17; Boy+19].

Des trajectoires non cartésiennes dans l’espace k (par exemple spirales, radiales, rosettes,
etc.) [Ahn+86a; Mey+92; Jac+92; Nol97; Law+09; Lus+05a] ont été proposées pour
l’imagerie 2D accélérée et robuste au mouvement, avant l’existence des fondements théoriques
de la CS. Bien qu’elles soient conformes aux contraintes matérielles du scanner sur les
gradients, ces trajectoires n’échantillonnent pas l’espace k selon un Target Sampling Density
(TSD) bien contrôlé. Par exemple, dans l’imagerie spirale, le respect de ces contraintes
transforme une densité initialement prescrite en une autre [Cha15, p. 97]. Récemment,
l’algorithme Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING)
[Boy+16; Cha+17; Laz+19] s’est avéré capable de générer automatiquement des modèles
d’échantillonnage non cartésiens optimisés compatibles avec les contraintes du matériel MR
sur l’amplitude maximale du gradient et la vitesse de balayage. SPARKLING échantillonne
de manière optimale l’espace k (voir [Puy+11; Cha+14]) avec une distribution contrôlée des
échantillons (par exemple, Variable Density Sampling (VDS)) et une couverture localement
uniforme de l’espace k.

Contributions

L’objectif principal de cette thèse est de concevoir et d’apprendre des trajectoires d’échantillonnage
3D dans l’espace k pour minimiser les artefacts et accélérer les acquisitions. A cet égard, nous
nous concentrons d’abord sur l’extension et l’amélioration des trajectoires SPARKLING ,
puis nous utilisons les fondements de l’apprentissage profond pour apprendre des trajectoires
d’échantillonnage de l’espace k compatibles avec le matériel. Les principales contributions et
les objectifs de cette thèse de doctorat peuvent être classés dans les catégories suivantes :

Vers un algorithme d’étincelle entièrement 3D [Cha+22d]

En raison de Signal-to-Noise Ratio (SNR), l’imagerie 3D est préférée pour obtenir une
imagerie isotrope à haute résolution (par exemple 600µm isotrope). À cet égard, de nom-
breuses approches ont été utilisées pour réduire efficacement l’échantillonnage de l’espace k en
3D. Certaines d’entre elles impliquent une combinaison d’une lecture dans la direction z avec
un masque sous-échantillonné en 2D basé sur l’échantillonnage du disque de Poisson [Vas+10].
D’autres tentatives de lectures 3D complètes ont été proposées, comme la trajectoire radiale
3D [Lar+08], les cônes 3D [Ira+95], les projections torsadées [Boa+97] et les cônes radiaux
hybrides [Joh17]. Cependant, ces trajectoires étaient principalement basées sur la paramétrisa-
tion d’une courbe d’échantillonnage dans l’espace k, et le motif d’échantillonnage final n’était
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pas optimisé en ce qui concerne la qualité de la reconstruction de l’image. Certaines études
récentes ont exploré la manière d’optimiser le modèle d’échantillonnage [Dal+04; Mir+04;
Kum+08], mais n’ont pas inclus de critère d’échantillonnage clair afin de maximiser la qualité
de la reconstruction de l’image. Bien que des méthodes comme [HK19; See+10] utilisent
la limite de Cramér-Rao pour les signaux épars [BE10] comme critère d’optimalité adapté,
elles sont très exigeantes en termes de calcul, ce qui limite leur utilisation à l’environnement
cartésien. D’autres méthodologies dans la littérature impliquent l’empilement d’une tra-
jectoire 2D sous-échantillonnée comme l’empilement d’étoiles [Son+04; Lo08], l’empilement
de spirales [Ira+95; The+99] et l’empilement de 2D SPARKLING [Laz+20a].

Dans [Laz+20a], une approche locale de l’étincelle 3D a été proposée en concevant une
trajectoire unique à l’intérieur d’un cône obtenu à partir d’une parcellation de l’espace
sphérique 3D k. Ensuite, tous les cônes couvrant un plan d’élévation donné ont été remplis à
l’aide de la réplication de la même trajectoire. Toutefois, cette méthode ne garantit pas un
modèle d’échantillonnage localement uniforme aux limites des cônes, car le problème n’est
résolu que localement.

La résolution globale du problème de l’étincelle en 3D est coûteuse en termes de calcul, avec
une complexité d’ordre O(N2), où N représente le nombre d’emplacements d’échantillonnage
dans le modèle. Nous avons proposé une implémentation basée sur les méthodes multi-
polaires rapides (FMM) [Wan+19; Fon+09a] qui nous a permis de concevoir des motifs
d’échantillonnage avec jusqu’à 107 d’échantillons dans l’espace k, ouvrant ainsi la porte
aux VDS en 3D. Nous avons comparé les implémentations multi-CPU et GPU et démontré
que cette dernière est optimale pour l’imagerie 3D dans le régime d’acquisition à haute
résolution (600µm isotrope). Enfin, nous avons montré que cette nouvelle optimisation pour
l’étincelle 3D complète surpasse les stratégies d’empilement ou l’imagerie par projection
torsadée 3D par le biais d’études rétrospectives et prospectives sur un fantôme NIST et
des scanners cérébraux in vivo à 3 Tesla. Globalement, la méthode proposée permet de
réduire de 2,5 à 3,75 fois le temps de balayage par rapport à l’acquisition d’imagerie parallèle
GRAPPA-4 à 3 Tesla, sans compromettre la qualité de l’image.

Aborder les questions relatives aux scans prospectifs pour l’imagerie
non cartésienne [Cha+22a; Cha+22c; Cha+22b; Cha+]

Après avoir étendu les trajectoires des étincelles à la 3D, un écart important a été observé dans
la qualité de l’image reconstruite entre les simulations rétrospectives et les scans prospectifs
réels (voir [Cha+22d, Fig. 10]) dans le cas de l’imagerie pondérée par l’T ∗2 . Un tel écart
dans un contexte prospectif a été identifié comme étant dû à la présence d’un fort effet de
hors-résonance et d’une décroissance dont les effets sont accumulés dans le contraste T ∗2 -w
en raison de la longueur des Echo Time (TE) utilisées pour améliorer la contribution de
la susceptibilité. Cet effet est amplifié en imagerie non cartésienne et notamment en 3D
SPARKLING car ces trajectoires ont des directions de lecture arbitraires, ce qui conduit à des
incohérences locales dans l’espace k. Bien que ces artefacts puissent être corrigés [Sut+03]
sans nécessiter de balayage supplémentaire pour ∆B0 map [Dav+22], de telles corrections
sont coûteuses en termes de calcul.

En outre, une autre limitation des trajectoires SPARKLING est que nous utilisons des
contraintes affines TE, où nous limitons la trajectoire à passer par le centre de l’espace k au
moment de l’écho pour obtenir des images au contraste d’imagerie cible requis. Il en résulte
un suréchantillonnage important du centre de l’espace k par rapport au critère de Nyquist,
qui peut être sous-optimal car les échantillons supplémentaires peuvent être affectés à des
fréquences plus élevées, ce qui permet d’obtenir de meilleures reconstructions d’images avec
des détails plus fins dans les structures.

Dans ce travail, nous abordons les deux problèmes décrits ci-dessus en modifiant la fonction
de coût et l’ensemble des contraintes d’SPARKLING . Avec Minimized Off Resonance Effect
(MORE)-SPARKLING , nous avons introduit une pondération temporelle dans le problème
d’optimisation traditionnel d’SPARKLING qui prend en compte la nature temporelle des
données échantillonnées. Dans Gridding of Low Frequencies (GoLF)-SPARKLING , nous
avons incorporé les caractéristiques de l’échantillonnage cartésien dans le cadre d’SPARKLING
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grâce à des contraintes affines plus générales et à l’adaptation de TSD pour correspondre à
ces contraintes de critères de Nyquist. Les données prospectives de l’espace k ont été acquises
à 3 Tesla sur des trajectoires 20 fois plus rapides que la référence cartésienne entièrement
échantillonnée. Grâce à des expériences in vivo, MORE-SPARKLING nous a permis de
récupérer les pertes de signal observées sur les acquisitions originales de SPARKLING à
des inhomogénéités de champ B0 plus importantes. En outre, grâce à GoLF-SPARKLING ,
l’échantillonnage cartésien au centre de l’espace k a permis d’améliorer la qualité de l’image
reconstruite en réduisant les artefacts.

TSD pour SPARKLING [CRC21]

L’une des limites de l’algorithme SPARKLING est la nécessité de définir un TSD en tant
qu’entrée de l’algorithme. Dans nos études antérieures, nous nous sommes appuyés sur des
méthodes heuristiques pour définir cette densité d’échantillonnage. Cette dernière a été
paramétrée pour être radialement décroissante (sur la base de connaissances préalables issues
des théories CS) et ses paramètres optimaux (décroissance, coupure) ont été recherchés sur
une grille au cours d’études de reconstruction rétrospective dans lesquelles la qualité de
l’image a été maximisée en fonction de trajectoires optimisées pour des densités de cible
variées. Cependant, cette approche est trop coûteuse en termes de calcul. De plus, avec une
densité de cible paramétrée, l’espace de recherche est trop contraint, ce qui nous empêche
d’obtenir des schémas d’échantillonnage spécifiques à l’organe, au contraste de l’image ou
à l’orientation. Une façon de résoudre ce problème consiste à apprendre les TSD à l’aide
d’approches basées sur les données.

Dans [Kno+11], les auteurs ont proposé une approche naïve pour choisir les TSD en faisant
la moyenne des spectres de puissance de plusieurs images RM dans un ensemble de données.
Cette méthode aboutit à des densités d’échantillonnage qui imposent un échantillonnage
plus dense dans les basses fréquences. Dans [Kno+11], les auteurs ont montré que cette
approche est plus performante que le VDS standard et qu’elle reste robuste à la variabilité
de l’anatomie et de l’orientation. Cependant, cette méthode se concentre uniquement sur
l’ensemble des données d’IRM et ne dépend pas de la technique de reconstruction. Tous
les algorithmes de reconstruction de l’IRM appliquent un a priori (comme la rareté dans le
domaine des ondelettes ou du gradient de l’image). Les récents algorithmes de reconstruction
par apprentissage profond (DL) [Kno+20; Muc+21b; RCS20] ont appris des a priori plus
complexes basés sur l’ensemble de données spécifiques à l’organe ou au contraste. Le TSD
peut être plus efficace s’il prend en compte ces prieurs et impose des échantillons plus denses
dans les régions où le degré d’incertitude associé à ces prieurs pour la reconstruction est plus
élevé.

Plus récemment, des méthodes comme [She+20; Bah+20a] apprennent le modèle
d’échantillonnage pour l’IRM d’une manière axée sur les données tout en optimisant la
qualité de l’image à l’étape de la reconstruction. Dans le cadre de l’apprentissage profond,
LOUPE [Bah+20a] optimise conjointement la densité d’échantillonnage et les poids d’une
architecture de réseau en U pour la reconstruction de l’image. Cependant, ces études restent
limitées à l’échantillonnage cartésien.

Dans ce travail, nous utilisons la densité de cible obtenue par LOUPE comme entrée de
l’algorithme SPARKLING pour générer des trajectoires non cartésiennes 2D SPARKLING.
Nous réalisons des études rétrospectives et les comparons avec celles qui résultent d’autres
densités telles que le spectre de puissance (log-)moyen sur l’ensemble des données de l’IRM
rapide. Nous effectuons une reconstruction d’image en utilisant à la fois la technique CS
et l’architecture NC-PDNet [RSC21a] nouvellement développée, qui est un réseau neuronal
déroulé à densité compensée pour la reconstruction non cartésienne de l’IRM. Nous concluons
que la solution proposée (LOUPE+2D SPARKLING) surpasse les autres approches VDS en
termes de qualité d’image.
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Apprentissage conjoint du modèle d’échantillonnage de l’espace k et du
réseau de reconstruction [CRC22; CC22; CC]

L’une des limites de l’algorithme SPARKLING est la nécessité de définir un TSD comme
entrée de l’algorithme. Pour cela, nous avons appris la densité d’échantillonnage à l’aide de
LOUPE [Bah+20a], et l’avons utilisée comme TSD pour l’algorithme SPARKLING afin de
générer des trajectoires 2D SPARKLING [CRC21]. Cependant, la grille TSD a été apprise
dans le domaine cartésien, alors que la trajectoire réelle optimisée n’était pas cartésienne.
Comme cela pourrait conduire à des résultats sous-optimaux, il est nécessaire d’apprendre
directement des trajectoires d’échantillonnage dans l’espace k conformes au matériel ainsi
qu’un réseau de reconstruction d’images dans un cadre non cartésien.

À cet égard, de nouvelles méthodes [Wei+20; Wan+21; Ved+20] ont été développées pour
surmonter le besoin d’estimer un TSD, grâce à l’apprentissage conjoint direct des trajectoires
d’échantillonnage de l’espace k non cartésien et de la reconstruction d’images RM d’une
manière axée sur les données sur l’ensemble de données IRM rapide [Zbo+18]. Dans [Wei+20;
Ved+20], les auteurs ont appris conjointement les trajectoires PILOT et les paramètres U-net
en tant que modèle de reconstruction pour débruiter l’image de base produite par l’adjoint
de l’opérateur Nonuniform Fast Fourier Transform (NUFFT). Toutefois, cette méthode
repose sur l’auto-différenciation de l’opérateur NUFFT, qui est imprécise numériquement
comme observé dans [WF23], ce qui entraîne des minima locaux sous-optimaux. Cette sous-
optimalité se reflète en fait dans la forme finale des trajectoires apprises, qui ne s’écartent
que légèrement de leur initialisation. Dans BJORK [Wan+21], les auteurs ont utilisé [WF23]
pour obtenir une approximation jacobienne plus précise de l’opérateur NUFFT pour la
rétropropagation. Les deux approches susmentionnées [Wei+20; Wan+21] ont appliqué
les contraintes matérielles en ajoutant des termes de pénalité à la perte qui est minimisée
pendant l’apprentissage. Bien qu’il s’agisse d’une option viable, elle nécessite le réglage d’un
hyperparamètre associé à chacun de ces termes de pénalité dans la fonction de coût et ne
garantit pas que les trajectoires optimisées respecteront strictement ces contraintes. En outre,
ces termes de pénalité affectent les gradients globaux de la fonction de perte, ce qui entraîne
une sous-optimalité des trajectoires.

Dans ce travail [CC], nous avons d’abord développé un modèle générique appelé PRO-
jection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor
(PROJeCTOR). Plus précisément, nous avons introduit une méthode qui apprend les tra-
jectoires de l’espace k d’une manière axée sur les données tout en intégrant un algorithme de
descente du gradient projeté [Cha+16] afin de respecter les contraintes matérielles au cours
de la phase d’apprentissage. Contrairement à BJORK, nous avons appris directement les
trajectoires d’échantillonnage de l’espace k et utilisé la multirésolution [Leb+19] similaire à
SPARKLING pour limiter le nombre de paramètres entraînables à chaque étape. Nous avons
ensuite comparé ces résultats PROJeCTOR à PILOT [Wei+20] et BJORK [Wan+21] dans
Magnetic Resonance Imaging (MRI) 2D. Dans les études rétrospectives en 2D, nos nouvelles
trajectoires PROJeCTOR présentent une qualité de reconstruction d’image améliorée avec un
facteur d’accélération de 20 fois sur l’ensemble de données IRM rapide avec des scores SSIM
de près de 0,92-0,95 par rapport à la référence cartésienne correspondante et voient également
un gain de 3-4dB en PSNR par rapport aux méthodes antérieures de pointe. Dans un cadre
plus contrôlé, nous avons montré l’importance de l’étape de projection lors de l’optimisation
des trajectoires dans l’espace k et avons démontré sa supériorité sur les méthodes basées sur
la pénalité comme PILOT et BJORK pour mettre en œuvre les contraintes matérielles. Enfin,
nous avons étendu l’algorithme à la 3D et, en comparant l’optimisation aux schémas de
projection basés sur l’apprentissage, nous avons démontré que les trajectoires PROJeCTOR
basées sur l’apprentissage conjoint et guidées par les données sont plus performantes que les
méthodes basées sur un modèle comme SPARKLING, grâce à un gain de 2 dB en PSNR et
un gain de 0,02 en SSIM.



CONTENTS 9

Schéma de thèse

Chapter 1: Introduction to Magnetic Resonance Imaging X introduit dans MRI la source
du signal mesuré et la manière dont il est localisé. Par la suite, nous discuterons de la
nécessité d’accélérer le balayage Magnetic Resonance (MR) et de certaines méthodes utilisées
pour accélérer les balayages en MRI cartésien traditionnel.

Chapter 2: Compressed Sensing and Non-Cartesian MRI X introduit la reconstruc-
tion basée sur Compressed Sensing (CS) des données MRI. En outre, nous discutons de la
nécessité d’échantillonner l’espace k avec VDS pour atteindre des facteurs d’accélération
plus élevés, ce qui peut être réalisé en échantillonnant l’espace k le long des courbes à l’aide
d’un échantillonnage non cartésien. Pour cela, nous présentons un cadre généralisé pour
l’échantillonnage de l’espace k à l’aide de trajectoires et discutons de ses contraintes. Enfin,
nous présentons quelques nouvelles trajectoires non cartésiennes d’échantillonnage de l’espace
k proposées dans la littérature.

Chapter 3: Deep Learning for MRI se concentre sur certains principes fondamentaux et
le formalisme de Deep Learning (DL). Nous présentons quelques architectures DL populaires
et discutons des méthodes proposées dans la littérature pour reconstruire l’image MR à
partir de données sous-échantillonnées de l’espace k. En outre, nous résumons également
la littérature sur les techniques basées sur l’apprentissage pour optimiser les modèles et les
trajectoires d’échantillonnage de l’espace k.

Nous nous concentrons ensuite sur les principales contributions de cette thèse.DansChapter 4:Op-
timizing full 3D SPARKLING trajectories, nous étendons l’algorithme SPARKLING à la
3D, ce qui nous permet d’accélérer le MRI dans toutes les 3 dimensions. Cependant, de forts
artefacts hors résonance ont été observés dans les études prospectives, car ces trajectoires
optimisées avaient des directions de lecture arbitraires.

Pour remédier à ce problème, nous présentons dans Chapter 5:Reducing artifacts in
SPARKLING 2 nouvelles mises à jour de l’algorithme SPARKLING : MORE et GoLF.

Comme l’algorithme SPARKLING a besoin de TSD en entrée, dans Chapter 6:Learning
sampling density for 2D SPARKLING nous présentons 4 densités candidates différentes et
montrons que la méthode LOUPE apprise en fonction des données fournit la meilleure TSD.
Cependant, cette méthode implique une grille TSD, qui est apprise dans un cadre cartésien
et utilisée par la suite pour générer des trajectoires non cartésiennes. Cette inadéquation
dans les domaines d’apprentissage où la formation est effectuée dans un cadre cartésien et où
le test est effectué dans un cadre non cartésien constitue un inconvénient majeur de cette
méthode.

Ce problème est résolu par l’apprentissage direct des trajectoires de l’espace k dansChapter 7:Learn-
ing trajectories with reconstructor, et nous soulignons la nécessité d’une étape de projection
inspirée de SPARKLING pour éviter la sous-optimalité.

Enfin, dans Chapter 8: Conclusions and Perspectives nous résumons les contributions de
cette thèse et discutons des orientations et perspectives futures.

Dans Appendix A:3D SPARKLING et Appendix B:MORE and GoLF nous présentons
quelques résultats théoriques et expérimentaux supplémentaires pour compléter les contribu-
tions du Chapitre 4 et du Chapitre 5 respectivement.

Enfin, dans Appendix C:Software and Open Source Contributions, je discute de certains
progiciels développés au cours de la thèse et de certaines contributions à des logiciels libres.
je discute de certains logiciels développés au cours de la thèse et de certaines contributions
open source.
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M agnetic resonance imaging or MRI is a popular non-invasive medical imaging technique
that involves strong magnetic fields and Radio Frequency (RF) waves to produce detailed

images of organs of interest. These Magnetic Resonance (MR) images can be crucial in
diagnosis of a variety of disorders that occur in different body regions like brain, neck, spine,
abdomen or the msucotoskeletal system. One of the strong motivations for using Magnetic
Resonance Imaging (MRI) is its non-invasiveness as it does not involve any radiation exposure
for the patient. Further, MRI is a versatile tool for physicians as it can be used to image
different tissues in a variety of organs with a large and complementary set of weighting
contrasts. Additionally, with advances in MR technology, high resolution imaging up to 0.1
mm isotropic ex vivo [Edl+19] and 0.2mm isotropic in vivo [Stu+15] becomes feasible which
allows for finer biomarker delineation and quantification for diagnosis and patient follow-up,
such as abnormal structural and/or functional connectivity in the brain of patients with
neurodegenerative condition.

In this chapter, we discuss how an MRI system works, and the underlying physics
principles used for imaging. Particularly, we describe the source of the MR signal and
how it is localized in the image space. We emphasize on how the acquisition for MRI is
not performed in the image domain or the pixel-space but rather in k-space, which ideally
is the spatial frequency domain or multidimensional Fourier space. Later on, we discuss
the importance of Signal-to-Noise Ratio (SNR) and how it can be improved using parallel
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imaging. Finally, we outline the need to speed up the acquisition process for MRI and the
approaches that have been developed to achieve this goal.

1.1 How does MRI work?

In this section we briefly cover the physics principles behind MRI which would later serve
as a background for Chapter 2, where we discuss in detail the data acquisition and image
reconstruction processes. This section is surely not exhaustive and to build a deeper
understand we recommend the reader to refer to the following resources, which also served
as an inspiration while writing this section:

• Bernstein et al. [BKZ04a] and Brown et al. [Bro+14]: classical MRI handbooks (the
latter being usually known as Haacke et al. 1999);

• imaios.com/en/e-Courses/e-MRI [08]: an online course with a lot of explanatory videos;

• mriquestions.com [EB01]: an online course presented in the form of an FAQ;

• the dissertations of former PhD candidates in the same team at NeuroSpin, particularly
Lazarus [Laz18] and Ramzi [Ram22].

Note that the below description of the physics of MRI is based on the classical model with
tiny magnets that spin like tops, which are subject to macroscopic laws of electromagnetism.
This view helps for easier understanding and provides a big picture which is sufficient for the
purpose of this thesis. However, for a deep understanding of the actual underlying dynamics,
the reader needs to rely on the quantum mechanical model, with spin states and discrete
energy levels which go beyond the scope of this thesis.

1.1.1 Nuclear Magnetic Resonance
The key signal being measured in MRI is the Nuclear Magnetic Resonance (NMR) signal,
which is a result of the interaction between the RF field and the nuclear spins in the body,
particularly the spins associated with hydrogen atoms. The hydrogen atoms are present in
the body in the form of water molecules, which are the main constituent of the human body.
The magnetic moment associated with the nucleus of these hydrogen atoms can be viewed
as tiny magnets as shown in Figure. 1.1(a). When these tiny magnets (i.e. hydrogen nuclei,
Figure. 1.1(b)) are placed in a strong static magnetic field B0, they align themselves with the
field direction in a parallel or anti-parallel manner as shown in Figure. 1.1(c). Further, each
of these hydrogen nuclei precesses around the magnetic axis characterized by the Larmor
frequency ω0 = γB0, where γ is the gyromagnetic ratio of the hydrogen atom and B0 is the
strength of the static magnetic field. For hydrogen nuclei γ = 42.58MHz/T and generally,
based on the scanners, B0 can vary from 1.5T, 3T, up to 7T and even 11.7T 1. This precession
of the hydrogen nuclei occurs along a cone as shown in Figure. 1.1(d), and on a macroscopic
scale, this leads to a net magnetization of the body M0 in the direction of the magnetic field.

Ideally, we would like to measure this magnetization M0 directly, however it is not
possible as the magnetization is very small and defined along the same direction as the large
applied magnetic field strength B0. For this reason, we rely on the resonance phenomenon RF
pulse of frequency ω1 to the body, leading to additional pulsating magnetic fields B1, which
are perpendicular to the applied magnetic field B0. To induce a resonance phenomenon,
the frequency of this pulse must equate the Larmor frequency, ω1 = ω0, i.e. the Larmor
frequency in the B0 field in order to tip the magnetization vector M0 in a plane orthogonal
to B0. After the excitation, the RF pulse is turned off and the spins enter the relaxation
phase where the M0 vector precesses around the B0 field and relaxes back to the equilibrium
position (Figure. 1.2(a)). During this process, orthogonal RF coils in the transverse plane are
used to measure the tipped signal, called Free Induction Decay (FID) signal Figure. 1.2(c).

1See this press release: www.cea.fr/english/Pages/News/premieres-images-irm-iseult-2021.aspx

https://www.imaios.com/en/e-Courses/e-MRI
http://mriquestions.com/index.html
https://www.cea.fr/english/Pages/News/premieres-images-irm-iseult-2021.aspx
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Figure 1.1 – A hydrogen atom (a) and associated magnetic field, which can be modelled as a
bar magnet. (b) The bunch of hydrogen nuclei in absence of B0. When applying B0, the
spin of these nuclei aligns in a parallel or anti-parallel manner to this field (c). Further, the
hydrogen atom precesses around the direction of the applied field at frequency ω0.

Figure 1.2 – (a) The relaxation of a spin after RF pulse is switched off. (b) The RF receiver
coil used to measure the FID signal (c).

Mathematically, when the RF field is applied, the magnetization M0 is split into the
traverse component Mxy and the longitudinal component Mz. We write the following Bloch
equations to describe the dynamics of the magnetization vector M0 during relaxation:

dMxy

dt = −Mxy

T2
(1.1)

dMz

dt = M0 −Mz

T1
(1.2)

where T1 and T2 are the longitudinal and transverse relaxation times respectively, which
vary as a function of the tissue type. Particularly, T1 captures the interactions of the spins
with their surrounding lattice and is referred to as spin-lattice relaxation time, while T2
captures the loss of phase coherence between the rotating spins in transverse plane and is
called spin-spin relaxation time. However, in practice, the applied field B0 is not uniform
throughout the body, leading to a faster decay of the transverse decay than expected, which
is modelled using T ∗2 that is linked to T2 as follows:

1
T ∗2

= 1
T2

+ γ∆B0(r) (1.3)

where ∆B0(r) is the magnetic field fluctuation in space at position r.
Solving Eq. (1.1) at a specific position r = [x, y, z]T gives the following longitudinal and
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transverse magnetization profiles:

Mxy(t) = M0(t, r)e−t/T2 (1.4)

Mz(t) = M0(t, r)
(

1− e−t/T1
)

(1.5)

The measured FID signal is measured in orthogonal RF coils is the projections of Mxy

along x and y axes and is given by:

Mx(t) = M0(t, r)e−t/T2 sinω0t (1.6)
My(t) = M0(t, r)e−t/T2 cosω0t . (1.7)

1.1.2 Localizing the MR signal

Notice that the magnetization M0(t, r) signal in Eq. (1.6) varies with spatial position r.
However, the above measured signals Mx(t) and My(t) at the RF receiver is a sum of all
the signals in the excited volume, and hence cannot be used to localize the signal spatially.
In this section, we will discuss how the acquired signal can be spatially localized through
spatial encoding.

Spatial encoding using magnetic gradients

In order to distinguish the signal from different locations, the fundamental property of the
spin related to their Larmor frequency ω0 and its proportionality to the magnetic field
strength B0 is used. This Larmor frequency is varied spatially through the application
of spatially varying magnetic field gradients Gx, Gy and Gz along each axis x, y and z
respectively. These gradients result in an additional magnetic field over B0, that varies
linearly with respect to space. For example, the gradient Gx along x results in the following
magnetic field variation given by Bx = B0 + Gxx.

In the following sections, we discuss how these gradients can be used for 2D and 3D
MRI and introduce the notion of k-space. However, here for the sake of simplicity, we limit
ourselves to Cartesian imaging, which consists in collecting data on a regular grid. We will
introduce the concepts of non-Cartesian imaging framework later in Chapter 2 through
generalization of foundations we describe below.

2D imaging

In 2D MRI, the slice-selecting gradient Gslice is applied along the z axis, which results in
Larmor frequencies to vary linearly with z as ω0(r) = γ (B0 +Gslicez). Only a slice of the
body or the 2D FOV along plane z = z0 is selectively excited by applying a RF pulse with a
frequency ω0(z0). Going forward, we refer to ω0(z0) as just ω0 for mathematical brevity.

Later, the RF signal is turned off and a phase-encoding gradient Gphase is applied along
the y axis, which causes the excited spins to precess slightly at different rates given by
ω0(r) = ω0 + γGφy. Once this gradient Gφ is turned off, the spins return to precess at ω0(z),
but now have a spatially varying phase along y axis given by:

φy(r, t) = ω0t− γytφGφ (1.8)

where tφ is the time for which the gradient Gφ is applied.
Finally, during the signal measurement with the RF coil, a frequency-encoding gradient

Gfreq is applied along the x axis, which causes the spins to precess at different rates along
x axis given by ω0(r) = ω0(z) − γGfreqx. Due to this, the spins precess at different rates
along x axis, and have varying phases along y axis. The measurement time for the signal
at the receiver RF coil is called the readout time or Observation time (TObs). The whole
timing diagram of applying the gradients and RF pulses is shown in Figure. 1.3 and is called
a chronogram.
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Figure 1.3 – The MR pulse sequence diagram for 2D imaging. The timing profiles of the RF
pulse, Gslice applied along z axis (Gz), Gφ applied along y axis (Gy) and Gfreq along x axis
(Gx) are shown. (This figure is slightly modified version of that shown in [Pui+21])

Overall, the phase shift induced on spins at location r = [x, y]T is given by (we ignore
the z component as this is 2D MRI, and we only excite a slice of the body):

∆φ(r, t) = ω0t− γ (ytφGφ − xtGfreq) . (1.9)

If ρ(r) corresponds to the number of spins at location r and ignoring effect of T2 relaxation
for mathematical simplicity, the acquired signal in the RF coil is given by the sum of all the
excited spins:

S(t) =
∫

FOV
ρ(r)ei∆φ(r,t)dr (1.10)

S(t) =
∫

FOV
ρ(x, y)ei(ω0t−γ(ytφGφ−xtGfreq))dxdy (1.11)

The phase factor of eiω0t is a modulation factor representing the Larmor precession of
spins and this signal can be demodulated using a carrier frequency of ω0, to yield:

s(t) =
∫

FOV
ρ(x, y)e−ikx(t)·x−iky(tφ)·ydxdy (1.12)

where kx(t) = γGfreqt and ky(tφ) = γGφtφ.
If we consider ` and k` ∀ ` ∈ {x, y} as respective Fourier conjugates, then Eq. (1.12)

is a 2D Fourier transform of the ρ(x, y). With this, ρ(x, y) or the “MR image” can be
reconstructed from the acquired signal s(t) using the Inverse Fast Fourier Transform (IFFT).

Due to Eq. (1.12), we need to acquire data in the (kx, ky) domain, which is conventionally
denoted as k-space, prior to being able to reconstruct an image in the (x, y) plan. The letter
k has been used in other fields of physics to refer to spatial frequencies, which is the reason
for the popularity of this convention in the MR literature.

This k-space is just the Fourier domain of the MR image being acquired during the MR
acquisition process. Notice that in the time frame associated with a single RF pulse as
described above, we sample a single line in k-space. After a fixed amount of time, called
Repetition Time (TR), this process is repeated with a different Gφ to sample another line
in k-space. As the MR signal decays in time, the measurement process is segmented into
multiple “shots” or “readouts” and the number of readouts is denoted by Nro.
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Figure 1.4 – Illustration of (a) k-space, and its corresponding (b) MR image related through
Fourier transform (FT). We mark the FOV, k-space maximum Kmax and resolution in k-space
and image space.

3D imaging

The steps mentioned in the previous section cannot be carried out to reach high isotropic
spatial resolution using just 2D imaging. In this setting, MRI instead consists in exciting
the whole 3D FOV and acquiring data in a three-dimensional (3D) k-space.

Post excitation, a partition-encoding gradient Gp is applied along the z axis for time
tp, to encode phase information along z axis. Later, Gφ is applied followed by acquisition
during Gfreq. This process of chaining Gp → Gφ → Gfreq with kz(tp) = γGptp, modifies the
acquired signal model Eq. (1.12) into:

s(t) =
∫

FOV
ρ(x, y, z)e−ikx(t)·x−iky(tφ)·y−ikz(tp)·z dxdydz . (1.13)

Again, during the MR acquisition process, we need to sample this entire 3D k-space to
reconstruct the image using a 3D IFFT.

k-space, FOV and resolution

We now proceed to discuss the relationship between the FOV, k-space and resolution. Without
loss of generality, we stick to 3D MRI, for FOV given by FOVx × FOVy × FOVz. If the 3D
MR volume to be reconstructed is Nx ×Ny ×Nz-dimensional, then the resolution in each
direction is given by ∆` = FOV`

N`
∀ ` ∈ {x, y, z}.

From Shannon-Nyquist sampling theorem, with the defined FOV, the spacing between
samples in k-space must be within ∆k` = 1

FOV` ∀ ` ∈ {x, y, z}. Further, the maximum
spatial frequency that needs to be sampled is given by K`

max = 1
2∆` . With this, we can define

the k-space as [−Kx
max,K

x
max]× [−Ky

max,K
y
max]× [−Kz

max,K
z
max], with K`

max = N`
2FOV` .

We show Figure. 1.4 to illustrate this relationship between FOV, k-space and resolution.
For each readout interval, we sample a line in k-space, thus the total number of readouts
Nro = Ny ×Nz (assuming Gfreq is applied along x axis) and overall scan time is given by
Tacq = TR ×Nro.

1.2 SNR and Parallel Imaging

The acquired signal s(t) in Eq. (1.13) is usually very small and in the order of millivolts,
which results in very low SNR and poor diagnostic quality of the reconstructed MR image.
The major source of noise in the measurements is due to the thermal noise at the level of the
RF receiver coil which is given by

σnoise ∝
√

4kTcoil∆fReff (1.14)

where k is Boltzmann’s constant, Tcoil is the temperature of the coil, ∆f is the receiver
bandwidth and Reff is the effective resistance of the coil, which is a combination of coil
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Figure 1.5 – The MR receiver coils used for scanning the human brain. (a) A single channel
birdcage coil used on a 7T MR system at NeuroSpin. (b) A 32-channel phased array coil,
with individual coils are shown in color (from [Pao+15]).

resistance Rcoil, the electronics Re and the sample being imaged Rsample. Usually, Reff ≈
Rsample which in turn is proportional to the volume of the region of body being sampled,
i.e. the region in body which from where the FID signal s(t) is acquired, denoted by Vsens.
Hence, in order to boost the SNR, an improved strategy consists in choosing a smaller Vsens,
which can be achieved by reducing the coil size and using multiple receivers in a specified
configuration. These parallel imaging techniques help reach higher SNR as each individual
coil has a smaller Vsens which reduces noise levels while still having high signal sensitivity.

1.2.1 Phased array coils

A phased array coil is a set of multiple RF coils arranged in a specific geometric pattern (see
Figure. 1.5), such that they have complementary sensitivity profiles, the combination of
which allow us to reconstruct a single full FOV image. Based on this geometry and the
corresponding sensitivity profiles, each coil element measures the FID signal s(t) for a portion
of the FOV. Due to this, the Vsens for each coil is lower than the FOV, thereby reducing
the measured noise in Eq. (1.14) and increasing the SNR while having a large effective FOV.
Also, such Parallel Imaging (PI) schemes can help accelerate the scanning process whose
details are given in Section. 1.4.

However, in order to obtain an optimal SNR, these phased array coils must be placed
such that the noise measured across coils is largely uncorrelated, which is performed by
minimizing electromagnetic interaction and coupling between the coils. Further, each receiver
coil must have an individual RF receiver chain.

1.2.2 Coil compression

Most reconstruction algorithms scale linearly with the number of receiver coils Q, leading to
larger reconstruction time for large coil arrays used to increase SNR. However, the redundancy
in the information of the signal acquired across the multiple coils can be exploited to reduce
the number of coils used for reconstruction. This is done by linearly combining the signals
from different coils to reduce the coil dimensionality while having minimal loss in information,
resulting in compressed effective coil signals.

One effective way to do this is by using Singular Value Decomposition (SVD), which
allows us to order the compressed channels by the amount of variance, which can be a good
candidate to assess information content. However, this technique could lead to high signal
sensitivity and reduced image quality in the overlapping coil areas usually in the center of
the measured object [Bue+07]. This issue is usually tackled through orthonormalization of
the sensitivity profiles to better balance the compression error, which is efficient for imaging
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Figure 1.6 – The MR object being imaged by two coils and the corresponding per-channel
images. The coil sensitivity map profiles are also shown.

and allows nearly three-fold reduction in coils without significant loss in image quality and
diagnostic power.

1.2.3 Coil combination
While coil compression is helpful to reduce the number of channels to reconstruct, they cannot
be used to reduce them down to a single channel as that leads to loss of information. Complex-
valued image is reconstructed per compressed channel using IFFT and then combined through
coil combination to form the final image. Note that coil combination algorithms compile the
reconstructed images from each channel into one image for diagnosis, while coil compression
methods are applied to reduce the computational load of parallel imaging.

Most coil combination techniques require the prior knowledge of the coil acquisition
profiles [Roe+90] (Figure. 1.62), called coil sensitivity maps S` ∀` ∈ {1, 2, . . . Q}, which
depend on the coil geometry and the object being scanned. Hence, we require a separate
scan to obtain the sensitivity profiles in each exam. With the senstivity maps S`, we can
recombine the MR image f from the coil specific images f` as:

f(r) =

Q∑
`1=1

Q∑
`2=1

SH`1 (r)Σ−1
`1,`2

f`2(r)

Q∑
`1=1

Q∑
`2=1

SH`1 (r)Σ−1
`1,`2

S`1(r)
(1.15)

where Σ`1,`2 is the noise correlation profiles between `th1 and `th2 coils, measured at the
beginning of scan and H is the conjugate transpose operator.

The most common methods to obtain magnitude only images involves combining the
images through Sum-of-Squares (SoS):

f(r) =

√√√√ Q∑
`=1

|f`(r)|2 . (1.16)

2from https://mriquestions.com/senseasset.html

https://mriquestions.com/senseasset.html
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However, if the whole phase of the image is required, then virtual coil combination as
proposed by [Par+14] can be used to establish a “virtual” coil and synchronize the phase of
original or compressed coil images.

Note that all the above methods require the prior knowledge of the coil sensitivity maps,
which can be obtained using a separate scan. However, there exists self-calibrated methods
that can directly estimate the coil sensitivity maps from the data itself [Uec+14; El +18b].
Additionally, alternative approaches called calibrationless reconstruction techniques get rid
of the need for this prior knowledge on the coil sensitivity maps and reconstruct as many
images as the number of coil elements by enforcing group sparsity in the wavelet domain for
instance [El +21a].

Overall, a diverse set of coil combination methods exist, and for a formal review, we
invite the reader to dive into [Rob+17].

1.3 Need to speed up MR acquisition

From previous section, we see that the MR acquisition process involves sequential sampling of
the lines in k-space. Due to this, achieving high resolution isotropic 3D MR imaging requires
shortening scan times. For the specific case of Susceptibility Weighted Imaging (SWI), where
TR is in the range of 30-40ms, for an isotropic resolution of 0.6mm for human brain with
FOV of 230 × 230 × 124mm3, the scan time is nearly 50 minutes. Further, according to
NHS [18], the times for MR can vary from 15 minutes to 1.5 hours. Such long scan time for
a patient to stay still in the MR system, is not feasible for many clinical applications. This
calls for the need to speed up the MR acquisition process for the following important reasons:

• Patient throughput and cost: Faster MR scans would imply a higher patient
throughput, which increases the utilization of the costly MR machine.

• Accessibility: Some patients like people suffering from Parkinson’s disease, young
children and the elderly people may not stay still in the scanner for a long time.
Additionally, patients with claustrophobia cannot tolerate long scan times as the
confined space could cause panic attacks and anxiety.

• Motion: The probablity of motion increases with longer scan times, which can lead to
motion artifacts, which is one of the primary sources of image quality degradation in
MRI.

• Patient comfort: The patient needs to be present in a claustrophobia inducing MR
scanner till the end of scan, which can be very uncomfortable.

For these reasons, throughout the MR literature, multiple methods have been employed
to accelerate the MR acquisition process.

1.4 Cartesian sampling and acceleration

In Section. 1.1.2, we described the most basic MR acquisition process, wherein we sample the
k-space sequentially along lines. This results in sampling of the k-space at specific gridded
locations called Cartesian voxels, which is the most common sampling scheme in MRI, called
Cartesian sampling. However, as described in Section. 1.3, this naive line by line sequential
approach to acquisition leads to long scan times which is not feasible for many clinical
applications.

1.4.1 Longer readouts
One common method to accelerate the acquisition process is to acquire multiple lines of the
k-space in a single readout after RF pulse as done in Echo Planar Imaging (EPI) [STM91].
In EPI, a strong switched frequency-encoding gradient is applied simultaneously with an
intermittent blip low magnitude phase-encoding gradient, to acquire multiple lines of the
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Figure 1.7 – (a) Full k-space imaging and reconstruction. Partial Fourier imaging, where
missing k-space lines are synthesized from acquired data using conjugate symmetry (from
[Fer+13]).

k-space in a single readout in the form of raster scans. However, this method is limited to
scans with a larger time for readout, called TObs. Further, the reconstructed MR images from
EPI are susceptible to geometric distortions and off-resonance artifacts dues to this longer
TObs. We discuss off-resonance and its effects in detail in the next chapter. Conventionally,
EPI is used in dynamic imaging applications like Functional MRI (fMRI).

1.4.2 Partial Fourier imaging

In most scenarios, as the object being imaged is a real-valued image, the corresponding
Fourier domain or the k-space is redundant and possesses conjugate symmetry. Due to
this, the effective number of samples required to reconstruct the image is only half of the
total number of samples in the k-space, thereby reducing the scan time by theoretically one
half [Fei+86], however in practice it’s often less.

However, due to measurement noise, physiological motion and inhomogeneities phase
errors exist and conjugate symmetry approximations are not perfect. Additionally, some
imaging modalities rely on the magnetic susceptibility variations, like SWI which require the
phase information of the image being reconstructed for diagnostic use. Hence, in practice,
partial Fourier imaging techniques involve sampling slightly more than half of the lines in
k-space typically varying from 60-75% of the total number of lines in k-space. These extra
lines are later used to generate phase correction maps to more accurately predict the missing
values [McG+93] (Figure. 1.7).

1.4.3 Parallel Imaging based techniques

Another popular strategy in the MRI community is to exploit the spatial sensitivity of the
MR coils to accelerate the acquisition process. For doing so, during acquisition, a subset
of the k-space is acquired through uniform under-sampling, where only one k-space line is
acquired after skipping a fixed number of lines based on the chosen acceleration factor. This
leads to strong aliasing artifacts in the k-space along the phase encoding direction (that
direction along which under-sampling is implemented), which is later corrected using the
spatial sensitivity of the MR coils. For this, the central portion of the k-space is acquired
for calibration (used directly in [Gri+02]) or measuring a low resolution sensitivity map
(used in [Pru+99]). This information from central k-space can later be utilized to fill up
the missing values in the k-space across coils linearly [Gri+02]. Such correction can also be
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carried out in the image space by using the coil sensitivity maps and solving a linear system
of equations [Pru+99].

Both the above methods help shorten the scan duration by up to a factor of 4 while
retaining a good reconstructed image quality. Additionally, his method can easily be extended
in 3D and allows for accelerations in both the phase and partition encoding directions.
However, using such a uniform sub-sampling pattern, the aliasing artifacts in the image
usually lie along the central lines in image space, which overlap with the reconstructed images.
In order to reduce artifacts and accelerate further, in Controlled Aliasing in Parallel Imaging
Results in Higher Acceleration (CAIPIRINHA) [Bre+05], the under-sampling pattern along
the readout directions are acquired in a staggered fashion to shift the aliasing artifacts towards
the diagonals in the image space. Further extension of this method can be carried out where
we undersample even in readout direction through the use of corkscrew like patterns in
acquisition of k-space rather than lines (kindly refer to the next chapter for more details on
such acquisition trajectories). This process is called Wave-CAIPI [Bil+15] and can be used
to accelerate the scan by up to a factor of 6 to 8. More details on recent developments in
parallel imaging based techniques can be found in [HFS17].

1.4.4 Towards Compressed Sensing
The above described methods help reduce the scan times, thereby have been successfully
implemented commercially in MR scanners and are in active use in clinical applications.
However, the above methods do not exploit the compressibility characteristics of the MR
image, which is a common property of natural images in a wavelet transformed domain.
Going forward, we discuss in the next chapter the sparsity or compressibility properties of
MR images and how it can be exploited to further accelerate the scan times. This intrinsically
relies on the concept of Variable Density Sampling (VDS), which can be more efficiently
achieved using non-Cartesian sampling, where sampling of the k-space is then performed
along curves off the Cartesian grid and no longer on straight lines.

] ] ]
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I n this chapter, we discuss in depth Compressed Sensing (CS) based reconstructions and
non-Cartesian sampling techniques in Magnetic Resonance Imaging (MRI). We start by

describing the foundations of CS in MRI and intuitively show that sampling the k-space
through Variable Density Sampling (VDS) is ideal for maximally accelerating the acquisition
process, with minimal degradation in the reconstructed image quality.

Efficient way to achieve this is through non-Cartesian sampling techniques, where the
k-space is sampled along curves that are not necessarily on the Cartesian grid. For this,

27
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we generalize the notion of k-space sampling established in the previous chapter to form
foundations for sampling the k-space along curves rather than lines. Later, we discuss the
constraints imposed on these sampling curves due to gradient hardware, imaging contrast or
physiological constraints.

We then highlight the major issue met in non-Cartesian sampling, i.e. the presence of
amplified off-resonance artifacts. We discuss the causes of these artifacts, their modeling and
correction strategies. Finally, we briefly introduce methods to analyze the performance of
k-space sampling patterns. Particularly, we discuss the use of Point Spread Function (PSF)
analysis in the absence of image datasets, which can be an accurate tool for comparing multiple
sampling patterns, their performances and robustness to off-resonance effects. Additionally,
image quality metrics can be used to assess the retrospective performance of the sampling
pattern and corresponding reconstruction.

Throughout the chapter, our presentation will be tailored to the case of 3D MRI, while it
can be of course applied to 2D MRI as well after a slice-selective gradient pulse.

2.1 Compressed sensing based reconstruction

CS theory has been applied and widely used in MRI [Lus+05b; LDP07] for accelerating
acquisitions with minimum loss in reconstructed image quality. From the previous chapter,
in an idealized scenario, M k-space data samples y ∈ CM of an image x ∈ CN with N voxels
can be modeled through a Fourier operator FΩ ∈ CM×N as follows:

y = FΩx (2.1)

where Ω is the set of M measured k-space samples. We now need to recover an image x̂
as close as possible to x from the k-space data y, under accelerated acquisition scenario
with M << N . This problem is ill-posed with infinite number of solutions, and some prior
knowledge on x is needed to recover a satisfactory x̂ such that ‖x̂− x ‖ In the case of MRI
like in other imaging fields, the sparsity or the compressibility of x in the wavelet domain
plays a key role, the difference between the two notions being clarified hereafter. We proceed
to detail on some fundamental concepts needed to understand CS based reconstruction.

2.1.1 Sparse representation
CS is based on the idea that the image x can be represented as a sparse linear combination
of a set of basis functions Ψ ∈ CN×K as z = Ψx, where K is the number of basis functions.
The coefficients z of this linear combination are the sparse representation of the image x, i.e.
the values of z are mostly zeros except for a few s� K atoms where it has non-zero values.
If such a linear operator exists, then the image x in the noise-free model Eq. (2.1) can be
perfectly reconstructed as follows:

ẑ = arg min
z∈CK

‖z‖0 such that FΩΨHz = y (2.2)

x̂ = Ψẑ (2.3)

where ΨH is the Hermitian transpose of Ψ. Generally, `1 relaxation is applied to the above
problem as the `0 norm leads to NP-hard optimization problem [FR13].

However, in reality the acquired k-space data is noisy and also practically, the coefficients
z are not exactly sparse but instead compressible, wich means most values being very close
to zero but not exactly zero due to the presence of noise. In this more realistic scenario, the
optimization problem becomes:

ẑ = arg min
z∈CN

1
2‖FΩΨHz− y‖22 + λ‖z‖1 (2.4)

where λ is a regularization parameter used to balance the data consistency term at the left and
the regularization term at the right. The factor of 0.5 is added to the data consistency term
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to simplify the derivation of the gradient of the objective function. This way of expressing
the problem as optimizing the analysis coefficients is classically known as the synthesis
formulation. On the contrary, the analysis formulation is to optimize the image directly,
where z is replaced with Φx, which is more conveniently used when Ψ is overcomplete, which
generally yields better reconstructed images [SF09] at the expense of longer computation
times (see [EMR07; SF09; Che+18] for detailed discussions).

In the case of multi-coil acquisitions involving Q coils with sensitivity maps S`, we obtain
k-space measurements y` ∀` ∈ {1, 2, . . . Q}. The reconstruction problem then becomes:

ẑ = arg min
z∈CN

1
2

Q∑
`=1

‖FΩS`ΨHz− y`‖22 + λ‖z‖1 . (2.5)

The sensitivity maps S` can be estimated from the data itself using ESPIRiT [Uec+13]
or low-frequency content [El +18b] methods. The above mentioned problem can also be
formulated to decompose the coefficients z for each coil, and apply regularization jointly
across cois to result in calibrationless schemes that thus get rid of estimating sensitivity
maps as a first step. Typical regularization schemes that promote structured sparsity across
coils are GroupLASSO and OSCAR penalizations [El +19; El +21b], the latter allowing for
a sorting of coils with respect to the information they bring up in contrast to the former
which assigns uniform weitghting to all coils.

2.1.2 Basis functions Ψ and regularizer
As seen in previous section, CS relies on the presence of a sparsifying transform Ψ, which
is a linear operator that maps the image x to a sparse representation z. In reality, as the
Magnetic Resonance (MR) image is like a natural image with locally smooth regions, a large
diversity of the sparsifying operators exist and have been used in the literature.

Particularly for the case of MRI, early works [LDP07] showed that discrete cosine
transform and the wavelet basis (from a wide variety of wavelets like Symlet, Morlet etc.)
can serve as a good sparsifying domain. We present a 2D MR image and its decomposition
in the wavelet basis in Figure. 2.1. Notice that the decomposition is sparse in the detail
coefficients in the wavelet basis.

More advanced sparse domains can be learned directly from the data through Dictionary
Learning [RB10; RB15], which helps to build complex object and contrast specific priors.
Under this framework, the dictionary Ψ is learned from the data by learning patches which
can be linearly combined in a sparse manner to yield the target image of interest. Recently,
more complex priors have been learned through the help of Convolutional Neural Network
(CNN) and Deep Learning (DL) [AMJ18; AÖ18; Ham+19; GOW19; Sri+20] which will be
discussed in the next chapter.

2.1.3 Reconstruction algorithms
Having formulated the reconstruction problem in Eq. (2.5), and choosing appropriate
sparsifying transform Ψ, we now discuss the reconstruction algorithms. A broad range
of convex optimization methods exist in the literature to solve the above formulated problem
which can broadly be classified into the following categories:

• Proximal gradient algorithms: Iterative Soft Thresholding Algorithm (ISTA) [DDD04],
Faster ISTA (FISTA) [BT09], Subband adaptative ISTA (SISTA) [BS09], Expo-
nential Wavelet ISTA (EWISTA) [Zha+15], Proximal Optimal Gradient Method
(POGM’) [KF18], Fast Composite Splitting Algorithm (FCSA) [Jia+13], etc.

• Primal-dual algorithms: Alternating Direction Method of Multipliers (ADMM) [Boy+11],
Primal-Dual Hybrid Gradient (PDHG) [CP11c], Condat-Vu [Con13], etc.

Extensive review of the above reconstruction algorithms particularly for the case of MRI
was performed in [Fes20]. Throughout this thesis, we rely on Symlet-8 wavelet basis and
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Figure 2.1 – Wavelet decomposition of an MR image (left) using the Daubechies wavelets to
obtain coefficients over three scales (right). The non-sparse approximation coefficients are
presented in top-left corner of this combined image, while rest of the image holds the sparse
detail coefficients organized in subbands along the vertical, horizontal and diagonal axes.

FISTA [BT09] algorithm for reconstruction, which is an accelerated version of the standard
proximal gradient method (also called Forward Backward). The proximal operator of a
semi-continous function R in hilbert space is given by:

proxR(x1) = arg min
x2

R(x2) + 1
2‖x1 − x2‖22 . (2.6)

The proximal operator gives an improved solution for the function R in the vicinity of
point x1

1. This is particularly useful when the gradient of the function R does not exist due
to the presence of multiple subgradients.

Algorithm 1: Fast Iterative Soft Thresholding Algorithm for solving Eq. (2.5)
Inputs :Niter, maximum iterations, β the step size
Output: ẑ the optimized sparse coefficients x̂ and the reconstructed image

1 Initializations: z(0) an initial guess of the solution, k=0 iteration counter, θ(0) = 1
2 while k < Niter do

// Gradient step

3 w(k+1) = z(k) − β
∑Q
`=1 ΨSH` FHΩ

(
FΩS`ΨHz(k) − y`

)
// FISTA speedup using Nesterov’s acceleration [Nes83]

4 θ(k+1) = 1
2

(
1 +
√

4θ(k) 2 + 1
)

// Proximal step

5 z(k+1) = softλβ
(
w(k+1) + θ(k)−1

θ(k+1)

(
w(k+1) −w(k)))

// Iteration update

6 k = k + 1

Having defined the proximal operator, the FISTA algorithm is described in 1, where β the
step size is chosen smaller than the inverse of Lipschitz constant of the data consistency term
1
2
∑Q
`=1‖FΩS`ΨHz− y`‖22 in Eq. (2.5) to prevent exploding gradient. The soft thresholding

operator is given by:

softλ(x) =
{

0 if |x| ≤ λ
x− sign(x)λ otherwise

(2.7)

1We request the reader to refer to proximity-operator.net [Chi+16] to understand Proximity operators
and its properties with example.

http://proximity-operator.net/
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This implementation of FISTA involves speed up of ISTA [DDD04] through Nestorov
acceleration [Nes83] and more improvement can be obtained through restart, enhanced
momentum and greedy acceleration [LS18]. Further extensions for FISTA include faster
FISTA or POGM’ [Zac+19].

2.1.4 Incoherence and variable density sampling
In the above sections, we described the methods used in CS literature to reconstruct the
image x̂ from undersampled k-space data y. However, it is important to understand about
the guarantees that the reconstructed image x̂ is close to the original image x. To understand
this, we define the following domains:

• Signal space: The space of the original image x is called the signal space.

• Measurement Domain: The space of the undersampled k-space data y is called the
measurement space. In an ideal setting, this matches the Fourier domain of the signal
x.

• Sparsifying domain: The space of the sparse coefficients z is called the sparsifying
domain. This space is characterized by transforming the image through the sparsifying
transform Ψ. Typically, this is the wavelet domain.

Further, we define the measuremnt operator or measurement matrix as the linear operator
that maps the sparsifying domain to the measurement space. In the case of MRI, the
measurement matrix is given by A = FΩΨH ∈ CM×K (we remind that M is the number of
acquired k-space samples and K is the number of coefficients in the sparsifying domain).

We now try to estimate the lower bound on the probability of exact recovery of the image
x from the undersampled k-space data y. For this, we define the coherence function κ on
the measurement matrix A composed with coefficients

(
(ai,j)Mi=1

)K
j=1

as:

κ(A) = N ×max
i,j

(|ai,j |2), κ(A) ∈ [1, N ]. (2.8)

Then the probability of exact recovery η of the image x from the undersampled k-space
data y by solving Eq. (2.5) is such that [Rau10; CP11a]:

M ≥ C × s× κ(A)× log
(

N

1− η

)
(2.9)

where s is the level of sparsity of the signal x in sparsifying domain, C is a constant. We
note that the coherence of the measurement matrix A must be minimized to have a higher
probability of recovery η.

Intuitively, we need to sample those regions in the k-space or the measurement domain,
which is coherent with sparsifying domain and which cannot be reconstructed through
sparsity priors. The commonly used sparsifying transform Ψ is a wavelet transform, whose
detail coefficients are sparse which usually contains information on the edges or the high
frequency contents of the image. However, the approximation coefficients of the wavelet
transform of MR images are not sparse and need to be acquired during the acquisition
process. These approximation coefficients are a low resolution version of the image of interest
and holds the low frequency information of the image. Mathematically, this implies that the
low frequency information is coherent between the sparsifying domain and the measurement
domain. This guides the intuition that we need to sample the k-space using VDS scheme,
where lower frequencies must be sampled more densely than high frequencies (please see
[Puy+11; Cha+14; Adc+17; Boy+19] for mathematical details).

However, sampling patterns that obey such VDS schemes are not possible with Cartesian
sampling where the acquisition is carried out using lines. For this, we need to generalize how
the k-space is sampled and introduce how sampling can occur on curves, resulting in sampling
locations which are off the grid, an approach referenced to as non-Cartesian sampling or
imaging in the literature.
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2.2 Generalizing k-space sampling

In the previous chapter, we introduced how the localization of the Nuclear Magnetic Resonance
(NMR) signal was performed using spatial encoding gradients. However, for the sake of
clarity, we restricted the discussion to acquiring the signal along different k-space lines. In
this section, we generalize the notion of k-space sampling to include sampling along curves,
which will be useful in the later sections, particularly when we introduce non-Cartesian
sampling in Section. 2.3.

2.2.1 K-space sampling trajectories
Under the general setting, we apply time varying gradient fields Gx(t), Gy(t) and Gz(t) along
the x, y and z axes respectively during the acquisition of the signal. Note that we do not
apply any gradients in between Radio Frequency (RF) pulse and the signal readout.

Due to this, the spins accumulate the following time varying phase difference during the
acquisition time:

∆φ(x, y, z, t) = ω0t− γ
(
x

∫ t

0
Gx(τ)dτ + y

∫ t

0
Gy(τ)dτ + z

∫ t

0
Gz(τ)dτ

)
(2.10)

the corresponding demodulated signal is given by:

s(t) =
∫

FOV
ρ(x, y, z)e−ikx(t)·x−iky(t)·y−ikz(t)·z dxdydz (2.11)

k`(t) = γ

∫ t

0
G`(τ)dτ, ∀ ` ∈ {x, y, z} (2.12)

Throughout the readout time, also called Observation time (TObs), this signal is sampled
at discrete time rate by Analog to Digital Converter (ADC), at a dwell time pace, denoted
by δt. Thus, the number of k-space samples acquired during the readout time TObs is given
by
⌊
Tobs
δt

⌋
. Typically, the dwell time varies from 1 to 10 µs, depending on the Signal-to-Noise

Ratio (SNR) requirements and the hardware constraints from ADC.
During each readout, the applied gradients G`(t),∀ ` ∈ {x, y, z} control the spatial

location where the k-space signal is acquired during TObs. This sampling location varies with
time and is given by k(t) = [kx(t), ky(t), kz(t)]T , which is called k-space sampling trajectory
or a "shot". Different time varying gradient profiles are applied along each axis for each
readout, which results in different sampling trajectories or curves, that each sample a different
region in the k-space. We denote Nc as the number of shots or readouts involved in the
acquisition of the field-of-view (FOV). Thus, the k-space sampling trajectories are composed
of ki(t) = (ki,x(t), ki,y(t), ki,z(t)), which in turn are controlled by magnetic field gradients
Gi(t) = (Gi,x(t), Gi,y(t), Gi,z(t)), where i ∈ {1, 2, . . . , Nc}. A sample k-space trajectory and
its corresponding gradients are shown in Figure. 2.2.

Typically, during the acquisition process, the overall k-space sampling pattern and its
corresponding trajectories are chosen, whose derivatives give the gradient profiles to be played
by scanner as (see Eq. (2.12)):

Gi,` = 1
γ

dki,`(t)
dt

, ∀ ` ∈ {x, y, z} . (2.13)

2.2.2 Constraints on k-space sampling trajectories
Note that these k-space sampling trajectories are defined based on the time varying gradient
profiles applied during the acquisition by the gradient hardware of the scanner. Due to this,
the k-space sampling trajectories are constrained by the hardware limits (see Figure. 2.3).
Further, additional constraints are present due to physiological constraints and image contrast
requirements. We detail each of them and present a mathematical constraint set for the
k-space sampling trajectories in the following subsections. A detailed mathematical treatment
for these constraints has been introduced in. [Cha+16].
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Figure 2.2 – (a) A single 3D k-space sampling trajectory and (b) its corresponding gradients
in x, y and z directions obtained with Eq. (2.13), which is played during readout of time
period TObs.

Figure 2.3 – Illustration of source of gradient constraints. The gradient amplitude is limited
by the peak gradient strength Gmax. Also, the rise time results in limiting the maximum
slew rate Smax.

Gradient constraints

The gradient profiles (Gx(t), Gy(t) and Gz(t)) are played by gradient coils driven by electrical
currents that are pulsed to give a trapezoidal waveform (Figure. 2.3). This underlying
hardware that produces such waveforms is limited by:

• Gradient raster time: While the waveforms are continuous, they can be played by
the hardware at a discretized time period, called gradient raster time ∆t. Typically,
the values of this on scanners vary from 4µs (on GE MR750 3T) to 10µs (on Siemens
Magnetom PrismaFIT 3T). Due to this, the k-space trajectory curves are also discretized
at every ∆t, giving a discrete set of sample points along curve: (ki[n])Ns−1

n=0 , where

Ns =
⌊
Tobs

∆t

⌋
is the number of samples per shot. In Figure. 2.4, we show an example

of continuous sampling trajectory in a normalized k-space (red) and corresponding
gradient profile, and its discretized version with ∆t = 10µs. Notice that intermediate
acquired samples at ADC are a linearly interpolated version of this discrete trajectory.

• Maximum gradient amplitude: The trapezoidal current waveforms are limited by
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Figure 2.4 – (a) An example of continuous sampling trajectory in a normalized k-space (red)
and corresponding gradient profile. The discretized gradient profile with a Gradient raster
time ∆t = 10µs is shown in green and its corresponding discretized trajectory is also shown
in (a).
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Figure 2.5 – (a) An example of non-feasible k-space sampling trajectory (red) which violates
the maximum gradientGmax = 40mT/m constraint, and the closest feasible k-space trajectory
(green). The corresponding gradient profiles Gx and Gy are shown in (b)-(c). Also, we
highlight the maximum feasible gradient amplitude Gmax = 40mT/m that can be played by
the gradient hardware with a solid black line.

maximum gradient amplitude Gmax measured typically in mT/m. Usually, Gmax varies
from 30-45mT/m on high field scanners and 15-25mT/m on low field scanners. As
a result of this constraint, the maximum playable gradient is limited which thereby
limits the maximal speed at which the trajectory traverses the k-space:

|Gi,`[n]| = |ki,`[n]− ki,`[n− 1]|
γ∆t ≤ Gmax,

∀ ` ∈ {x, y, z},
∀ i ∈ {1, 2, . . . , Nc},
∀ n ∈ {0, 1, . . . , Ns − 1}

(2.14)

As an example, we show in Figure. 2.5 an example of non-feasible k-space sampling
trajectory (red) which violates the maximum gradient Gmax = 40mT/m constraint,
and the closest feasible k-space trajectory (green).
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Figure 2.6 – (a) An example of non-feasible k-space sampling trajectory (red) which violates
the maximum slew rate Smax = 200T/m/s constraint, and the closest feasible k-space
trajectory (green). The corresponding slew rate profiles Sx and Sy are shown in (b)-(c).
Also, we highlight the maximum feasible gradient amplitude Smax = 200T/m/s that can be
played by the gradient hardware with a solid black line.

• Maximum slew rate: The gradient hardware takes a minimum time called rise time
tr to change the gradient strength. This minimum rise time constraint is measured as
maximum achievable slew rate Smax = Gmax/tr. Typically, the value of Smax varies
from 150-200mT/m/s on high field scanners and 50-100mT/m/s on low field scanners.
This constraint limits the rate at which the gradient can change its strength, which
in turn limits the rate at which the k-space trajectory can change its direction, or its
acceleration:

|Gi,`[n]−Gi,`[n− 1]|
∆t = |ki,`[n+ 1]− 2ki,`[n] + ki,`[n− 1]|

∆t2 ≤ Smax (2.15)

As an example, we show in Figure. 2.6 an example of non-feasible k-space sampling
trajectory (red) which violates the maximum slew rate Smax = 200T/m/s constraint,
and the closest feasible k-space trajectory (green).

Constraints for stable contrast

Note that, the underlying received signal equation (Eq. (2.11)) does not take the effect of T ∗2
relaxation into account. Taking it into account, we have a decay of the magnetization of
spins which is accumulated at the received signal as follows:

s(t) =
∫

FOV
ρ(r)e−αrte−i(ki(t)·r) dr (2.16)

where αr = 1
T∗2

is the spatially varying decay rate of the signal at position r = [x, y, z]T . In
order to have a stable imaging contrast, the low frequency content of the MR image should
be sampled at the same time, which usually corresponds to the Echo Time (TE) of the
sequence. This imposes an affine constraint on the k-space trajectory where the trajectories
are constrained to pass through the center of k-space, i.e. [0, 0, 0]T at TE during every shot:

ki,`[nTE] = 0. ∀ ` ∈ {x, y, z},∀ i ∈ {1, 2, . . . , Nc} (2.17)

where nTE =
⌊
TTE

∆t

⌋
is the index of the sample point at TE.

Physiological constraints

The varying gradient profiles applied during the MR acquisition leads to electrical potentials,
which could induce excitation of nerves in the extremities, called as Peripheral Nerve
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Stimulation (PNS) [SBN00]. This can be perceived by the patient as a tingling sensation,
which can be uncomfortable. The levels of PNS must be controlled and limited under safe
levels to prevent risking the heart.

While models exist to predict the PNS levels given the gradient profiles [HG00], this
relationship is usually complex, and in practice lowering the Smax of the trajectory would
also result in reduced PNS.

2.3 Non-Cartesian Sampling

Having generalized the k-space data acquisition in the previous section, we now discuss
different sampling schemes to collect k-space data using such generalized constrained k-
space curves. One of the crucial reasons to use non-Cartesian sampling is to increase
efficiency of k-space coverage, allowing us to sample broader k-space regions in a shorter
time. Further, sampling along curves adds a degree of freedom to the sampling scheme which
can help in achieving a prescribed Target Sampling Density (TSD), which helps achieve
a required VDS as recommended by CS literature [Puy+11; Cha+14; Adc+17; Boy+19].
Additionally, non-Cartesian sampling can also be used to achieve robust-to-motion sampling
schemes, where the central low frequencies in k-space are sampled repetitively as performed in
PROPELLER/BLADE [Hir+08; Pip99] (Figure. 2.7(c)) and Rosettes [Nol97] (Figure. 2.7(d)).
Finally non-Cartesian sampling patterns allow for acquiring k-space samples with minimal
TE which is useful for Magnetic Resonance Spectroscopy Imaging (MRSI) and Ultrashort
Echo Time (UTE) imaging.

In this section, the focus will be to highlight some popular non-Cartesian sampling
patterns, their advantages and applications. Finally, we provide a brief note on how such
non-Cartesian k-space data is reconstructed to form an MR image.

2.3.1 Trajectories

While our primary focus here will be on 3D non-Cartesian k-space sampling trajectories, we
still discuss some popular 2D trajectories which could be extended to 3D through stacking
along slice direction or rotations. However, full 3D k-space trajectories that efficiently
accelerate even in the third dimension outperform such stacked and rotated trajectories.

Radial sampling [Lau73] (Figure. 2.7(a)) is a popular sampling scheme in MR imaging,
where the k-space trajectory is sampled along radial lines from the center of k-space (i.e.
center out). This scheme was introduced even before the advent of CS theory and parallel-
imaging. They have gained popularity in MR imaging as they naturally enforce a VDS,
with oversampling at the center of k-space. Further, repeated sampling of the center of
k-space allows for robust-to-motion imaging. While 3D versions of the trajectories exist (i.e.
Koosh-Balls [Lar+08]), extensions to can also be achieved through stacking, resulting in
stack-of-stars, which is known to be efficient for dynamic imaging like Cardiac MRI.

Spiral trajectories (Figure. 2.7(b)) are used to accelerate imaging as they result in images
which are robust to motion, flow and aliasing artifacts. These trajectories take full advantage
of the gradient hardware where the trajectories are limited by slew rate Smax in the center of
k-space and maximum gradient limited at the edges of k-space [Del+10]. This is controlled
through parameter choices [Glo99; KAS03; Lee+03] which remain restrained by this design
on the Gmax and Smax constraints.

Three-dimensional extensions of the spiral trajectories are achieved in the form of
stacks [Ira+95] or cones [GHN06]. Other extensions include hybrid radial-cones [Joh17]
where a single cone is distributed along the 3D k-space through rotation. More recently,
Fermat Looped ORthogonal Encoded Trajectories (FLORET)[Pip+11a] (Figure. 2.7(e)) were
introduced to be more efficient than conventional stack-of-cones with the same SNR efficient
but half the scan time. As radial trajectories are inefficient in higher frequencies (as they leave
out large gaps between radial lines), they are combined with trajectories to get TWisting
Radial Lines (TWIRL) [JNM92] in 2D and Twisted Projection Imaging (TPI) [Boa+97] in
3D, which can be used to image irregular flow or in MRSI imaging.
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Figure 2.7 – Some 2D (top row) and 3D (bottom row) non-Cartesian k-space sampling
trajectories proposed in literature. (a) Radial [Lau73] (b) Spiral [Ahn+86b] (c) PRO-
PELLER [Hir+08; Pip99] (d) Rosettes [Nol97] (e) FLORET [Pip+11a] (f) Genetic [Dal+04]
(g) Missile [Mir+04](h) Durga [Kum+08]

In recent years, there has been a shift to design non-Cartesian trajectories through
optimization that result in more efficient non-parametric sampling patterns. The optimiz-
ation criteria could be either heuristic [Dal+04; Mir+04; Kum+08] (Figure. 2.7(f-h)) or
chosen within a set of pseudo-random or well defined trajectories [See+10; RB11; Liu+12].
Further, the Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING)
algorithm [Boy+16; Cha+17; Laz+19] has been shown to automatically generate optimized
non-Cartesian sampling patterns compatible with MR hardware constraints on maximum
gradient amplitude and slew rate. SPARKLING optimally samples the k-space (see [Puy+11;
Cha+14]) with a controlled distribution of samples (e.g., variable density) and a locally
uniform k-space coverage.

2.3.2 Reconstruction
As discussed earlier, in non-Cartesian sampling the measured k-space data is not sampled
on a regular grid, and hence the reconstruction of the image from the k-space data is not
straightforward. Further, accelerated schemes under-sample some k-space region, particu-
larly the periphery when VDS is implemented. In this section, we will briefly discuss the
reconstruction of non-Cartesian data to form an image.

Non-uniform fast Fourier transform

Throughout the reconstruction process, the Nonuniform Fast Fourier Transform (NUFFT)
operator plays an important role as it helps us to map the k-space data which does not belong
on a grid to the gridded image domain, and vice versa. This mapping involves gridding the
k-space data followed by Inverse Fast Fourier Transform (IFFT). Conversely, we can also
simulate the acquired non-Cartesian k-space data from an image by interpolating the Fourier
domain of the image to trajectory locations.

This mandatory step of gridding the k-space data (Figure. 2.8) can be performed in two
alternative ways (see [Pau] for a detailed discussion):

• Grid-driven methods: This is a naive approach where the value of k-space data at
each grid point is computed by interpolating it from the off-the-grid measurements.
These measurements are usually a subset of the k-space data at locations within a
maximum parametrized from the grid point. However, under this method some data
may be skipped as they are outside this parametrized radius. To prevent this, the radius



38 CHAPTER 2. COMPRESSED SENSING AND NON-CARTESIAN MRI

(a) Grid-driven. (b) Data-driven .

Figure 2.8 – The two approaches for gridding step in the NUFFT are represented: the grid-
driven methods (left) compute the on-the-grid values (+) by interpolating the off-the-grid
acquired samples (◦), and data-driven techniques (right) apply kernels to each off-the-grid
sample to accumulate information over the gridded voxels.

is chosen such that there is a wide overlap between these grid point neighborhoods,
which can potentially lead to inaccuracies. Other way to tackle this is to upsample the
grid to a higher resolution, which can become computationally expensive.

• Data-driven methods: This method works in an opposite way and distributes
the contributions of each k-space measurement onto the neighborhood of the grid
points. Similar to grid-driven approach, upscaling the Cartesian grid can help to apply
more precise approximations, however this does not increase the computational cost
drastically as number of data points remain the same. A gridding kernel is chosen
to interpolate the data onto the Cartesian neighborhood, and typically Kaiser-Bessel
kernel is used [Jac+91; ST95; Ras+99].
However, as this method adds the sample contributions, densely acquired data points
are over-represented and there is a need to compensate for this through Density
Compensation (DCp). This compensation is typically done by weighing the k-space
data inversely with respect to the density of samples in the specific locations where the
data was acquired. One popular scheme [PM99] to estimate this density compensator
vector w = [wm]Mm=1, where M is the number of k-space samples is through the
following iteration having initialized the weights with ∀m,w(1)

m = 1:

w(i+1) = w(i)

w(i) ⊗Ψkb
(2.18)

with Ψkb the chosen kernel (usually Kaiser-Bessel) and ⊗ the convolution operator.

Over the years, there have been many implementations of the NUFFT operator that
are faster, optimized and more accurate [FS03; GL04]. Many practical implementations
exist for the NUFFT operator varying from CPU implementations [GL04; KKP09; Vai+23;
BMK18], to GPU [Lin18; Kno+14; Shi+21] and extensions to tensor-centeric frameworks
like TensorFlow [Mon22; RC23] and PyTorch [Muc+20]. Some of these libraries [Kno+14;
Mon22; RC23] also have inbuilt routines to estimate the density compensator vector w.

Algorithms

Most reconstruction algorithms for accelerated non-Cartesian MRI are direct extensions of
the algorithms described in Section. 2.1, but the Fourier transform operator is replaced by
the NUFFT operator.
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Figure 2.9 – The water/air interfaces (blue) in the brain (black), such as the ones in the ears
(middle) or near the bucco-nasal cavities (right). From [Pin21].

Further, to speed up most of the optimization schemes, the adjoint operator FHΩ operating
on the k-space data y` is pre-conditioned with the density compensator vector w in the
iteration step in 1, as shown below:

z(k+1) = softλτ

(
z(k)−τ

L∑
`=1

ΨS∗`FHΩ D
(
FΩS`Ψ∗z(k)−y`

))
where all notations are the same as above and D is the diagonal matrix with diagonal
elements as w.

2.4 Off-resonance effects

One popular issue with non-Cartesian imaging, is the amplification of off-resonance artifacts.
In this section, we briefly introduce the sources of these off-resonance effects and how they
can lead to artifacts in the reconstructed MR images. We also discuss some methods in
literature to mitigate these artifacts. This section will serve as a good introduction for the
Chapter, where we try to tackle these artifacts in non-Cartesian imaging during trajectory
design.

2.4.1 Sources and modelling
The applied B0 magnetic field by the scanner is customized to be as homogenous spatially
as possible through shimming, so that all the corresponding spins have the same expected
Larmor frequency. However, air-tissue interfaces exists inside the human body particularly
near ear-canals or in vicinity of bucco-nasal region, as illustrated in Figure. 2.9. These
interfaces have differences in magnetic susceptibility leading to perturbations in B0 field
which leads to so-called off-resonance artifacts. The latter can considerably degrade the
image quality during data acquisition.

These perturbations in B0 field can be modeled as a spatially varying magnetic field
∆B0(r) which lead to spatially varying changes in Larmor frequencies ωr:

∆B0 = ∆χ×B0 (2.19)
ω(r, t) = γ(B0 +G(t) · r + ∆B0(r)) . (2.20)

where ∆χ is spatially varying profile of magnetic susceptibility variations.
The generalized signal equation with T ∗2 decay, i.e. Eq. (2.16), can be extended by taking

the spatially varying field perturbations ωr into account as follows:

s(t) =
∫

FOV
ρ(r)e−αrt−iωrte−i(ki(t)·r) .dr (2.21)
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The additional term e−αrt−iωrt in the signal equation is both spatially and temporally varying,
which results in diverging from the conventional Fourier model of the acquired signal.

2.4.2 Estimating a ∆B0 field map
In the absence of these effects, the MR image x can be reconstructed from the acquired
signal s as:

x(r) =
Nc∑
i=1

∫
Tobs

s(t)eiki(t)·rdt . (2.22)

This corresponds to the adjoint operator of NUFFT operator. However, in the presence of
off-resonance effects, the signal equation Eq. (2.21) yields a more complicated signal-to-image
relation:

x̂(r) =
Nc∑
i=1

∫
Tobs

s(t)ei(ki(t)·r+ωrt)dt . (2.23)

The additional term ωr needs knowledge of ∆B0 field map to be corrected.
Most common methods to estimate this maps involve measurement of the observed phase

shift φ∆B0(r) of the MR image x at position r. As an approximation, this observed phase at
TE is related through a linear relationship [GJ16; Rob+11]:

φ∆B0(r, TE) = TE × ωr = TE × γ∆B0(r) . (2.24)

With this, a ∆B0 map can be estimated by performing acquisitions with multiple echo
times [GJ16], and consider other phase contributions as constant with respect to TE.
Particularly, considering two echo times such that TE1 < TE2, we obtain:

ωr = φ(r, TE2)− φ(r, TE1)
TE2 − TE1

. (2.25)

2.4.3 Correcting effects of ωr

Diverse schemes have been proposed in the literature for correcting the effects of ωr. In
[AP00] and [Lin+12], authors consider the perturbations from ωr as applying a convolution,
either in image domain with a modified PSF (more details on this in the next Section) or
in k-space with the so-called Modulation Transfer Function (MTF), respectively. As the
underlying term ωrt in Eq. (2.21) is dependent on both spatial and temporal (i.e. k-space)
domain, some methods have been developed [Nol+91; MPM97b; SNF03; Fes+05] that
involve splitting it into a sum of variables that are each dependent in a single domain.

However, both the above described methods require high resolution ∆B0 field maps for
accurate corrections, which can be estimated only with additional scans. Hence, methods have
been explored in the literature that estimate these field maps internally during correction.
These internal estimation methods can be optimization driven [MPM97a; SNF04; Pat+20;
PWP21] or based on multi-echo imaging sequences [NN00; BN17].

2.5 Analyzing the performances of sampling patterns

It is important to analyze the performances of the designed k-space trajectories and cor-
responding reconstruction algorithms to understand their potential limitations in terms of
image quality and then benchmark their robustness to noise and off-resonance.

2.5.1 Point Spread Function analysis
The first step in analyzing the performance of a subsampled k-space sampling pattern consists
in computing its PSF. The PSF is defined as the impulse response of this subsampling system
characterized by the k-space sampling pattern. Briefly, it represents the output reconstructed
image in response to a hypothetical point source in the image domain. Such PSF analysis is
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Figure 2.10 – An illustration showing how the ideal reconstructed image can be viewed as
the convolution of the PSF of the subsampling pattern with the object image.

important for any imaging system as it affects the spatial mapping of the ideal representation
of an object into the observed imaging, which helps to analyze how the imaging method
affects image quality, spatial resolution and behaves in presence of noise and off-resonance
effects. In an ideal case where MR acquisition process can be modelled as a linear shift
invariant system, the PSF of a subsampling pattern can be used to predict the reconstructed
image of an object through convolution, see Figure. 2.102.

The PSF of a subsampling pattern for an idealistic setting in absence of δB0 and T ∗2
decay can be estimated through adjoint NUFFT operation on the acquired k-space data
from the hypothetical point source of the image. The latter being defined as the Dirac
delta function in the image domain, its Fourier transform is a constant unity. Then for PSF
analysis the acquired k-space data is unity for any location in k-space. However, in the
case of non-Cartesian imaging, as described in Section. 2.3.2, the simple adjoint NUFFT of
this k-space data would over-represent the densely acquired data points. To avoid this, this
constant unity k-space data is precompansated with DCp, through multiplication with the
density compensators w (see [Pau, Sec. 5.5.3]). Mathematically, the PSF of a subsampling
pattern Ω can be estimated as:

PSF(Ω) = FHΩ D1Ω (2.26)

with FHΩ being the adjoint NUFFT operator, 1Ω being the constant unity k-space data and
D is the diagonal matrix with w as diagonal entries (as described in Section. 2.3.2).

Note that while we could use the reconstruction algorithm to reconstruct the PSF,
the PSF is a tool used to reflect the quality of the subsampling pattern alone and not the
reconstruction algorithms. This is particularly the case when using CS based reconstruction as
the reconstruction algorithms enforce some priors of the image being met during reconstruction
process. However, the PSF is defined as the impulse response of the subsampling system,
hence it involves a point source as input and thus may depart from the priors used on
conventional MR images. As a consequence, using a reconstruction algorithm to conduct
the PSF would not be fair and would influence the results and estimation of that PSF.
This influence is more pronounced in the case of learning based reconstruction algorithms
discussed in the next chapter, where the priors learned are more complex and specific to the
use case of MRI for a specific organ and possibly a given imaging contrast. The use of PSF
is merely a tool to understand the nature of a subsampling pattern, the type of artifacts it
may introduce and to assess its robustness to off-resonance and noise through its metrics
discussed hereafter.

2Source: https://en.wikipedia.org/wiki/Point_spread_function

https://en.wikipedia.org/wiki/Point_spread_function
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Simulating effects of off-resonance and T ∗2

A significant use of PSF is that we can do a first level analysis of the k-space sampling
trajectory in the presence of off-resonance and T ∗2 , by assuming a spatially constant ∆B0 and
T ∗2 . For this, we simulate the effects of a spatially constant off-resonance given by ωr = ωc
and T ∗2 given by αr = αc on the potentially acquired k-space data 1ω. Assuming the k-space
sampling pattern Ω with trajectories ki[n] ∀ i ∈ {1, 2, . . . Nc}, n ∈ {1, 2, . . . Ns} of Nc shots
and Ns samples per shot, the simulated k-space data y = (yi[n])Nci=1, ∀n ∈ {1, 2, . . . ,

⌊
Tobs
δt

⌋
}

is given by:

yi[n] = e−(αc+iωc)(nδt+t0),
∀i ∈ {1, 2, . . . Nc}

∀n ∈ {1, 2, . . . ,
⌊
Tobs
δt

⌋
} (2.27)

where δt is the dwell time of ADC and t0 is the time of acquiring the first shot after RF
excitation. Then the simulated PSF is given by PSF(Ω, ωr, αr) = FHΩ Dy.

PSF metrics

Having estimated the PSF, we define some metrics to characterize and quantify the PSF
which reflects the performance of the subsampling pattern. We also show these metrics in
Figure. 2.11 for clearer understanding.

• Full Width at Half Maximum (FWHM): We define FWHM as the width of the
main peak of the PSF at half of its maximal value. This metric is a measure of the
peakiness of a given PSF. In order to have a clear sharp reconstructed image, it is
important to have a peaky PSF with a small FWHM. In an ideal imaging scenario, the
PSF would be a Dirac pulse with FWHM of zero.

• Peak-to-Sidelobe Level (PSL): The PSF of most sampling patterns consist of the
main peak and a number of sidelobes. The PSL is defined as the ratio of the main peak
to the maximum of the sidelobes. This metric is also a measure of peakiness of the PSF
as it measures the relative strength of the main peak with respect to sidelobes. For
good imaging, the PSL should be high, and it is unbounded for positive improvements.

• Peak-to-Noise Level (PNL): The subsampling of k-space results in a noise like
characteristics in the PSF at locations further from the central peak. Note that this
noise is purely from subsampling and is not associated with the acquisition noise in
k-space. The PNL is defined as the ratio of the main peak to the noise floor level and
inherently measures the level of incoherent noise like artifacts in the reconstructed
image. Again, for good imaging, the PNL should be high, and it is unbounded for
positive improvements.

Transform point spread function

While the above discussed PSF is a natural tool to measure the performance of a subsampling
pattern, it does not account for the sparsity priors enforced in a sparsifying domain through
Ψ and corresponding CS based reconstruction schemes as discussed in Section. 2.1.3. For this
the notion of PSF was generalized to Transform Point Spread Function (TPSF) in [Lus+07],
which measured how a single coefficient in sparse domain is influenced and influences other
coefficients through under-sampling in the measurement domain. In the particular case of
2D these coefficients are defined as:

TPSF[i;j] = e∗jΨFHΩ FΩΨHei (2.28)

where ei and ej are unit coefficients in the sparse domain. Characterizing the TPSF and
measuring its sidelobes can be helpful in measuring the level of incoherence in the subsampling
pattern.
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Figure 2.11 – A sample figure showing the PSF of a hypothetical subsampling pattern. The
PSF along the z line in mid x and y planes is shown on left with a zoom in to show the
FWHM. We represent the same line plot in log scale, scaled to dB on the right and highlight
the PSL and PNL in the plot.

2.5.2 Image quality metrics

A large variety of image quality metrics have been proposed in literature to evaluate and
quantify the performance of subsampling pattern and corresponding reconstruction algorithms.
However, most of these metrics rely on the knowledge of the ground truth image, which is
not available in practice always. Furthermore, these ground truth images must be acquired
with the same acquisition parameters as the subsampled k-space data in the same orientation
without any motion of the patient, which is not always possible. This prevents the use
of these metrics in prospective evaluations at scanner as ground truth cannot be obtained
through fully sampled Cartesian acquisitions, which usually suffer from inter scan motion.
In such cases, qualitative analysis of the reconstructed images is the only viable option to
evaluate performance.

However, the below described image quality metrics can be efficiently used to evaluate the
performance in the case of retrospective studies, where the acquired k-space data is simulated
by using NUFFT. Such retrospective studies can be really helpful to quickly benchmark
a variety of trajectories and reconstruction algorithms, and also grid-search the optimal
regularization or target sampling density parameters.

In what follows, we describe the image quality metrics between ground truth image x and
the reconstructed image x̂. Usually to both these images are normalized with their maximum
or average values to yield consistent metric values in the same range to judge reconstruction
performance over varied imaging dataset.

MSE

The most common metric is the L2 norm between the ground truth image x and the
reconstructed image x̂ given by MSE:

MSE(x, x̂) = 1
N
‖x− x̂‖22 . (2.29)

Variations of this metric exists like Root Mean Squared Error (RMSE), which is square root
of MSE and Normalized Mean Squared Error (NMSE) which normalizes the loss with respect
to ground truth and is given by:

NMSE = MSE(x, x̂)
MSE(x,0) (2.30)

Typically, the lower the value of these metrics, the better the reconstructed image is.
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PSNR

Inspired by the use of SNR, another metric used to evaluation reconstructed image perform-
ance which is a mix between SNR and MSE is PSNR:

PSNR(x, x̂) = 20 log10

(
max(|x̂|)

RMSE(x, x̂)

)
(2.31)

Notice that PSNR is a logarithmic scale, and inversely propotional to RMSE, hence the
higher the value of PSNR, the better the reconstructed image is. Additionally, PSNR metric
is unbounded for any improvement in the reconstructed image quality.

SSIM

Some advanced metrics like SSIM [Wan+04] have been proposed in literature which is
based on human visual perception of images and characterized through several indices like
luminance l, contrast c and structure s defined as follows:

l(x, x̂) = 2µ(x)µ(x̂) + c2
µ2(x)µ2(x̂) + c2

(2.32)

c(x, x̂) = 2σ(x)σ(x̂) + c2
σ2(x)σ2(x̂) + c2

(2.33)

s(x, x̂) = σ(x, x̂) + c3
σ(x)σ(x̂) + c3

(2.34)

with µ the averaging function, σ the standard deviation and σ2(x, x̂) the covariance of x and
x̂, and c1, c2, c3 constants relative to maximum image values as explained in [WSB03b].

From [Wan+04], the SSIM is defined as:
SSIM(x, x̂) = l(x, x̂)α × c(x, x̂)β × s(x, x̂)γ (2.35)

where the parameters α, β, γ are coefficients to weigh the importance of each term and are
all set to 1 in [Wan+04].

An extension to SSIM is multi-scale SSIM [WSB03b], which proposes to analyze the
image at multiple scales MS :

MSSIM(x, x̂) = l(x, x̂)αMS
MS∏
j=1

c(x, x̂)βj × s(x, x̂)γj (2.36)

where all the weighing factors αj , βj , γj are set to 1 for simplicity in [WSB03b]. Throughout
our experiments, we used the default values for these weighing factors from their implement-
ation functions in SciKit-Image and TensorFlow.

2.6 Towards the use of deep learning

Throughout this chapter, we have summarized the core concepts of CS in MRI, the need for
VDS which is achieved efficiently through non-Cartesian imaging. Particularly, we discussed
how to undersample the k-space trajectories and discussed a variety of reconstruction
algorithms to obtain image from this k-space data. However, in recent years, there has been a
paradigm shift in the field of MRI from the conventional CS to using DL based reconstruction
algorithms. This trend is on rise ever since MR imaging datasets like fastMRI [Zbo+18] and
the Calgary dataset [Sou+18] have been made publicly available. As these datasets also
contain the raw acquired k-space data, they have been instrumental for benchmarking not
only DL based MR image reconstruction algorithms but also data-driven learning based
frameworks to optimize the k-space sampling patterns.

In the next chapter, we review some fundamentals of DL and review some literature on
DL based reconstruction networks and its rising use in k-space sampling pattern design.

] ] ]
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Deep Learning for MRI
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B riefly, from earlier chapters, we can break down the problem of speeding up Magnetic
Resonance (MR) scan into two major sub-problems:

• Sampling pattern design: How to under-sample the k-space and optimally acquire
data through constrained k-space sampling trajectories.

• Reconstruction: Having under-sampled the k-space, how to reconstruct the corres-
ponding MR image from this under-sampled data.

The latter problem can be viewed as an ill-posed inverse problem. In recent years,
there has been a strong propensity to tackle such problems using DL, which helps design
parameterized nonlinear models for a specific target task like regression, classification or
segmentation. Later, the corresponding parameters of these models can be calibrated or
learned from a given dataset. In the context of inverse problems, such carefully crafted and
learned nonlinear models can be used as good priors over the data, which can be helpful in
extending the Compressed Sensing (CS) based methods described in previous chapter to
obtain improved image reconstruction quality.
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In this chapter, we focus on the fundamentals of DL, its formalism and the key idea of
backpropagation which allows for optimizing large and complex networks to model intricate
dynamic systems. Later, we review some literature on learning of Magnetic Resonance
Imaging (MRI) reconstruction networks. More recently, with the rise of publicly available
raw k-space datasets, DL has also been applied to learn optimal k-space sampling patterns
within a given scan time budget at a given target contrast. We therefore summarize these
new methods (e.g. PILOT, BJORK) to learn such k-space sampling trajectories.

We emphasize that during this thesis, the discussed reconstruction networks are purely
applied, and we do not develop new methods or update current ones in the literature. However,
the core contributions and novelty of this thesis involves learning the under-sampling patterns
in the form of physically compliant k-space trajectories jointly along with the corresponding
reconstruction networks.

3.1 Deep Learning fundamentals

In this section, we briefly review the fundamentals of DL and particularly focus on back-
propagation which is a method to obtain the gradients of a loss with respect to network
parameters. Later, we discuss some basic architectural blocks present in the literature which
can be combined to yield a complex structure that can be eventually used to model a highly
nonlinear function. Finally, we discuss how to learn the network parameters for such complex
models using the gradients of the loss function.

3.1.1 Formalism and Backpropagation
DL involves approximating a function f , which maps inputs x to outputs y, using composition
of simple parameterized and nonlinear functions, leading to a complex model fθ which is
highly parameterized by θ. These parameters θ are stochastically optimized or “learned”
during the training step, wherein the parameters are iteratively updated to minimize a target
loss function L with respect to a training dataset D of length NT which consists of a set
of input and output data pairs given by (xi, yi) ∀ i ∈ {1, . . . , NT }. Such a network is built
and optimized in order to model and learn an unknown or partially known process. In some
situations, it is done to structure a currently known model using a strongly parallelized
connected network to speed up its computations on Graphical Processing Unit (GPU).
Mathematically, this learning process can be written as the following optimization problem:

θ̂ = arg min
θ

NT∑
i=1
L(fθ(xi), yi) (3.1)

For a basic sequential neural network consisting of NL composition of simpler functions
called “layers”, the function fθ can be written as:

fθ = fNL ◦ fNL−1 ◦ · · · ◦ f2 ◦ f1 (3.2)

In order to solve the optimization problem in Eq. (3.1), we need to compute the gradients of
the loss L with respect to the network parameters θ. The backbone of obtaining such gradients
efficiently for composed architectures given by Eq. (3.2) is the backpropagation algorithm.
The gradients associated with the loss L with respect to a set of network parameters θn
associated with the intermediate layer fn can be computed using the chain rule as:

∂L
∂θn

= ∂L
∂fn

∂fn
∂θn

= ∂L
∂fNL

∂fNL
∂fNL−1

· · · ∂fn+1

∂fn

∂fn
∂θn

(3.3)

Notice that all the partial derivatives in Eq. (3.3) except the last one is independent of θn.
Further, all the these intermediate partial derivatives can be used for gradient computation
of the previous layer n− 1 as:

∂L
∂θn−1

= ∂L
∂fn

∂fn
∂fn−1

∂fn−1

∂θn−1
(3.4)
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This process can be repeated iteratively as we calculate gradients for the last layer fNL to the
first layer f1 and is called backpropagation as the gradients are propagated backwards from
the last layer to the first layer. Such first-order gradient based optimization methods is used
commonly in DL, even though in practice some underlying composing layers or functions
may not be differentiable.

3.1.2 Optimization and learning

Once the gradients of loss L are computed for network fθ with respect to the network
parameters θ, one can use simple gradient descent based algorithms to iteratively update the
network parameters. However, note that as the loss in Eq. (3.1) is a sum of loss over the
entire training dataset D, the gradient of the loss with respect to the network parameters
θ is also a sum of gradients over the entire training dataset. This can be computationally
expensive as the gradients are computed for each training sample and then summed up.
Further, in the case of implementations using GPU, the entire dataset D has to be loaded
into the GPU memory which can be a bottleneck for large datasets. To reduce the memory
and computational cost, one can use a Stochastic Gradient Descent (SGD) algorithm which
uses a subset of the training dataset D to compute the gradient. This is done by randomly
sampling a subset of the training dataset D of length NB called a “batch” and computing
the gradients of the loss with respect to the network parameters θ using this batch. The
batch size NB is a hyperparameter that can be tuned to achieve a good trade-off between
the computational cost and the quality of the optimization. The network parameter update
for the SGD algorithm can be written as:

θt+1 = θt − η
NB∑
i=1

∂L(fθ(xi), yi)
∂θ

(3.5)

where η is the learning rate of the algorithm which needs to be appropriately tuned to
have fast and stable convergence rate. Such a SGD algorithm shows a trade-off between
the computing time and the accuracy of the gradients, controlled by the batch size NB . In
practice, the accuracy of the gradients determines the maximum allowable learning rate η to
ensure stable convergence, thereby affecting the convergence rate.

The above SGD update is the simplest form of SGD and is called the “vanilla” SGD.
There are many other variants of SGD which are used in practice to achieve faster conver-
gence. The most commonly used variants use “momentum” to track the previous descent
directions [Sut+13]:

vt+1 = βvt + η

NB∑
i=1

∂L(fθ(xi), yi)
∂θ

(3.6)

θt+1 = θt − vt+1 (3.7)

where β is a hyperparameter that weighs the current gradient compared to earlier accumulated
gradients. More advanced methods rely on normalizing the gradients like adaptive gradient
descent (AdaGrad) [DHS11] and adaptive moment estimation (Adam) [KB14]. However,
Adam is sometimes unstable and hence in order to accurately learn reconstruction networks,
Rectified Adam (RAdam) [Liu+19], which is a more stable variant of Adam with faster
convergence, has been widely used.

3.1.3 Architectural blocks

In this subsection, we briefly discuss some commonly used architectural blocks in DL which
are used to build the network fθ. These linear and nonlinear basic building blocks are
then exploited to build more complex networks through composition (see Eq. (3.2)) and are
disseminated in many applications.
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Nonlinear layers

An important aspect of DL is the use of “activation” functions, which are used to introduce
non-linearity in the network. Typically, such activation functions map the input to the
output through a pointwise nonlinear function where the function is applied independently
for all the inputs to produce outputs of the same dimension. For a more extended discussion
on non-linearities we refer the reader to the review of [Nwa+18].

The common activation functions used in DL are (see Figure. 3.1):

• ReLU and variants: One of the most commonly used activation functions is Rectified
Linear Unit (ReLU) [NH10] which is defined as the following pointwise function:

ReLU(x) = max(0, x) (3.8)

This basic non-linearity allows the network to select a subset of the input features
and ignore the rest. However, note that the ReLU function is not differentiable at
x = 0, while this is usually ignored in practice. Further, the gradients of the ReLU
function are zero for negative inputs, which can cause the network to have the so called
“vanishing gradient” problem.
To address this issue, variants of the ReLU function have been proposed in the literature.
Some commonly used variants include Leaky ReLU (LReLU) [MHN13] function which
is defined as:

LeakyReLU(x) = max(αx, x) (3.9)

where α ≥ 0 is a hyperparameter which controls the slope of the function for negative
inputs. An extension to LReLU function is the Parametric ReLU (PReLU) [He+15]
function where the slope α is learned during training and can be a vector of length
equal to the number of input features for an improved control. Many other variants of
ReLU have been proposed in the state of the art [RZL17; Zhe+15].

• Sigmoid, Softmax and Tanh: Some DL neural networks are used for classification
between 2 classes, in which case the output of the network must be as discretized as
possible and lie bounded between two values signifying 2 classes (like 0 and 1). In such
cases, the sigmoid nonlinear function, which is defined as follows, is used:

σ(x) = 1
1 + e−x (3.10)

The sigmoid function is differentiable and has a smooth gradient which is useful for
training. An extension to this for multi-class classification using a vector of inputs
x ∈ RK , involves the network outputting a vector of probabilities, for which the
SoftMax function is used:

SoftMax(x) = ex∑K
j=1 exj

(3.11)

where K is the number of classes. The SoftMax naming comes from the fact that the
function indicates the maximum of the input vector smoothly allowing for differentiab-
ility.
Finally, the tanh function is used to map the input to the range [−1, 1] and is defined
as:

tanh(x) = ex − e−x
ex + e−x . (3.12)

However, this function is not used as much in recent years as it is very close to the
Sigmoid function, which returns values in the range [0, 1].
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Figure 3.1 – Illustration of common activation functions in deep learning.

Perceptron

The perceptron [Ros58] is the simplest building block of a DL network. It is a linear function
which takes a vector of inputs x and outputs a scalar value f(x). Many perceptrons can be
chained to form Multi-Layer Perceptron (MLP), which takes a vector of inputs x ∈ Rpinp
and produces a vector of outputs f(x) ∈ Rpout . The perceptron can be written as:

f(x) = σ(Wx+ b) (3.13)

where W ∈ Rpout×pinp is the weight matrix, b ∈ Rpout is the bias vector and σ is the nonlinear
activation function described in previous subsection. Such a perceptron can also be used to
model a linear function f(x) = Wx+ b by setting σ(x) = x.

Convolutional layers

With the rise of use of DL in computer vision, the need for a more efficient way to process
images arose. Conventional MLP networks are not suitable for processing images as they
require the input to be a vector, which is not the case for images. While the input to a
MLP network can be reshaped to a vector, this is not a good solution as it loses the spatial
information of the image. Further, there was a need to learn a function which is equivariant
with respect to translation, i.e. the output of the function for a translated input must be the
same output translated in the same way:

f(T (x)) = T (f(x)) (3.14)

where T is a translation operator. This is a desirable property for many computer vision
tasks, such as object detection and segmentation.

The Convolutional Neural Network (CNN) [LeC+89; Kri09] was proposed to address this
problem, which is now a basic building block of DL networks for imaging related applications.
The CNN is a special type of MLP network, where the weights are reshaped to a 2D image
and used as a convolutional kernel. The CNN opertaor which takes x ∈ Rpinp×h×w as input
and produces f(x) ∈ Rpout×h′×w′ as output, where h′ and w′ are the height and width of
the output image, is defined as:

f(x) = σ(W ∗ x+ b) (3.15)
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where W ∈ Rpout×pinp×k×k is the weight matrix, b ∈ Rpout is the bias vector, σ is the
nonlinear activation function and ∗ is the convolution operator.

In practice, the convolution operation is not well defined at the boundaries of the image,
where the kernel is not fully contained in the image. To address this point, the most common
method involves padding the image with zeros at edges, which is called zero-padding.

Pooling and upsampling layers

Inspired by the wavelet operators, it is important to analyze images at multiple scales
to extract features and improve the overall network performance. For this, pooling and
upsampling layers are used in conjunction with CNN networks. Pooling is used to downsize
an image by reducing the spatial resolution through the following operations:

• Max pooling: The maximum value of a window of size k × k is taken as the output.

• Average pooling: The average value of a window of size k× k is taken as the output.

On the other hand, during upsampling, the image is upscaled to a higher resolution by
repeating the pixels in the image by a factor of k.

Normalization layers

Deeper CNN networks are prone to suffer from vanishing and exploding gradients, as the
gradients accumulate through backpropagation across such deep layers and can become
very small or large. Normalization layers are used to address this problem by normalizing
the input to each layer, thereby making the networks more stable. Mathematically, the
normalization layer is defined as:

f(x) = γ
x− µ

σ(x)2 + ε
+ β (3.16)

where µ and σ are the mean and standard deviation of the input, γ and β are hyperparameters
to control the new mean and variance of the input, ε is a small constant to avoid division
by zero. Such normalization is applied repeatedly in the network to control the mean
and standard deviation of the input to each layer, to explicitly control the energy of the
input to the network thereby leading to preconditioning of the corresponding gradients.
Such normalization layers are shown [IS15; San+18] to improve the stability, convergence
rate and performance of the network. In practice, such normalization is applied along a
dimension of the input, and many variants of such normalization layers exist, such as batch
normalization [IS15], layer normalization [BKH16] and instance normalization [UVL16].

Residual and skip connections

While it is possible to learn a function f by stacking a large number layers of nonlinear
functions, the output of such a large and deep network can lose coherence with respect to the
input for out-of-distribution cases. A way to tackle this issue is to have some skip connections
where the features of a layer are concatenated with the inputs of the network for next layer,
so that some coarse information of the input exists. This way, the backpropagation can be
split into a deep and a shallow path, where the shallow path can learn the coarse information
of the input and the deep path can learn the fine details of the input.

Another way to tackle this issue is to use residuals, where the network is learned to
output the difference between the inputs and targets, instead of the targets directly:

f(x) = x− fθ(x) (3.17)

Here we learn the function fθ(x), which is parametrized by θ, to model the difference between
the input x and the target f(x). Such residual connections are particularly useful for image
reconstruction tasks where the input and target are similar, and the network is expected to
learn the difference between the two.
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Dropout and regularization

As the number of trainable parameters grows with the depth of the network, the network is
prone to overfitting the training data. To address this issue, regularization is carried out where
the network penalties are penalized for large weights through addition of a regularization
term (usually the L2 norm of the weights) to the loss function.

Another popular method to address overfitting in DL is to use dropout [Sri+14], where a
fraction of the neurons are randomly dropped out during training. This way, the network is
forced to learn robust features which are not dependent on a particular neuron.

Finally, data augmentation is used to increase the size of the training data by applying
random transformations to the training data, such as random cropping, random rotation,
random flipping, etc. This way, the network is forced to learn robust features which are not
dependent on a particular transformation of the input.

3.1.4 Universal approximation theorem
The goal of DL is to approximate the unknown function f through learning of network
parameters θ of the model fθ. This raises the question if the network of nonlinear and
parameterized functions as shown in Eq. (3.2) can approximate any function f . To answer
this question, some theoretical results [HSW89; AZ17; Han19] have been obtained in the
mathematical literature of DL, which states that neural networks are universal function
approximates, i.e. sufficiently large and deep network can approximate any function f
arbitrarily well. However, the underlying theory still lacks to fully understand the dynamics
of such networks and is still an active area of research in theory of DL.

The above result of universal approximation of neural networks can be generalized to
other types of networks like CNN [Mar+19; Yar21] which is translation-equivariant network
commonly used for image domain applications. In practice, the performance of such networks
increases with the depth of the network [Tel16; Pez+20b], as this drastically improves the
flexibility of the network to model complex functions.

3.1.5 Limitations of DL
DL is a powerful tool for learning complex functions, however, it is not a panacea for all
problems. The theory of DL is evolving rapidly as it is subject to intensive research. Therefore
there are many open problems in the field:

• Non-Convexity: The optimization problem in Eq. (3.1) is non-convex and the op-
timization can get stuck in local minima. Due to this, the initial parameters of the
network can have a significant impact on the final performance of the network [TF95;
PP04; Sou16]. This raises a need to open source the codes along with the seeds used
for any random initialization of network parameters in all scientific communications, so
that the community can reproduce the results and compare them with other methods.

• Generalization and Overfitting: The objective of DL is to learn the underlying
function f from a set of training data pairs (xi, yi). However, as discussed earlier, as
the performance of network increases with increase in the depth of the network, there is
a propensity to over-parameterize the architectures that fit the training data well, but
fail to generalize and model the function f well thereby leading to poor performance
on out-of-distribution data. This phenomenon is called overfitting and to overcome it
the training data is often accompanied by a validation set to monitor the performance
of the network on unseen data.

• Interpretability: The network parameters θ are often not interpretable, and it is
difficult to understand the underlying function f from the network parameters θ. Due
to this, the network parameters θ are often not used for clinical decision-making.

• Computational Complexity: The computational complexity of training a neural
network is often high and the training time increases with the increase in the depth of
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the network. Particularly, for the case of reconstruction multi-channel 3D MRI data,
the training time can be days to weeks. Further, as the training is usually carried
out on GPU, the network depths are limited by amount of GPU memory available.
Downsizing the network to fit into memory reduces the expressivity of the network
thereby underfitting the data.

• Proxy loss functions: The choice of loss function is often subjective and depends
on the application and such a choice affects the overall performance of the network.
However, a key requirement of this loss L is that it must be differentiable to be able
to use gradient based optimization methods. This may not be always possible as the
associated loss for some target applications could be extremely complex and even
subjective without any well-defined mathematical formulation. This is particularly true
for the case of MRI reconstruction where the performance of networks is subjective and
based on organ, contrast and depends strongly on the diagnostic utility of the image.
However, such complex criteria cannot be formulated and in practice image quality
metrics between the ground truth and the network output are used as a proxy instead
which may not perfectly fit the given task at hand.

• Dataset and biases: The performance of DL is often dependent on the dataset used
for training, and it is crucial to have a large dataset which spans all the important use
cases. Additionally, some features in the dataset may be over-represented and bias the
solution [Tom+17].

3.2 Learning for MRI reconstruction

In recent years, there has been a paradigm shift in applying DL based methods for solving
inverse problems, as such methods can learn stronger and more complex priors from a large
dataset of training data, thereby outperforming the traditional variational methods that
rely on hand crafted priors (e.g. total variation or wavelet-based regularization). Ever since
the availability of large MR datasets like fastMRI [Zbo+18], there has been a surge in the
number of DL based methods for MRI reconstruction. The main reason for this is that
such DL based methods can be used to model the complex priors from the k-space data,
allowing for more accurate reconstruction of the image as compared to sparsifying transforms
as used in CS based methods. Further, such priors can be used to remove the artifacts in the
reconstructed image caused by k-space under-sampling, thereby allowing for reaching higher
acceleration factors without compromising image quality.

A large variety of methods exists in the literature to learn these priors from data and
later also using them during the reconstruction process. Broadly, these methods can be
categorized into models which learn under constrained setting such that the solutions satisfy
the underlying MR physics, and models which are physics-blind and learn the priors from
the dataset without any constraints.

In what follows, we discuss these methods to learn a network fθ parametrized by θ, to
reconstruct an image x̂ from the k-space measurements y. We assume we have a training
dataset D = {(xi,yi)} with NT data points, where xi is the ground truth MR image
obtained by fully sampling the k-space and yi is the undersampled k-space measurements
corresponding to the image xi.

3.2.1 Physics-blind methods

In the initial years of DL based methods for MRI reconstruction, the methods were physics-
blind and the DL architectures were versatile with the goal to reconstruct the image purely
based on the measurements in the k-space. Such methods ignore the underlying MR physics
described in the past two chapters and solely treat the problem as solving a generalized
ill-posed inverse problem.

During the training stage, the network is trained to minimize the reconstruction loss
L between the ground truth image xi and the reconstructed image x̂i = fθ(yi) from
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undersampled k-space measurements yi, where (xi,yi) ∈ D. Mathematically, this can be
written as:

θ̂ = arg min
θ

NT∑
i=1
L(xi, fθ(yi)) (3.18)

where θ̂ is the optimal set of parameters of the network which minimizes the reconstruction
loss L. Later, the trained network is used to reconstruct the image from the k-space
measurements as x̂ = fθ̂(y). Note that in this method, the input to the network are the
k-space measurements y presented in the Fourier domain and the output is in the image
domain.

Such a method was first applied in AUTOmated transform by Manifold APproximation
(AUTOMAP) [Zhu+18] where the authors proposed a DL based method to reconstruct the
image directly from the k-space measurements. The authors used MLPs as kernels to translate
the k-space measurements to the image domain, followed by CNN to refine the reconstructed
image. As the method was completely blind to MR physics and the undersampling patterns
involved, it could be applied directly for both Cartesian and non-Cartesian sampling patterns.
Further, this method could also be directly extended to other medical imaging modalities
such as Computed Tomography (CT) and Positron Emission Tomography (PET). However,
the underlying MLP kernels did not scale well for high resolution and 3D MRI data. This
was particularly the case as these MLPs learned the mapping from Fourier domain to image
domain as pseudo Discrete Fourier Transform (DFT) matrices, which are computationally
expensive. Knowing that fast implementations for DFT already exists in literature (i.e. Fast
Fourier Transform (FFT)), it was natural to use them in the network architecture itself,
thereby learning to minimize the loss L in a single domain.

Such models can be briefly categorized based on whether they worked in the image
domain or the k-space domain:

θ̂ = arg min
θ

NT∑
i=1
L(xi, fθ(FΩy)) (3.19)

θ̂ = arg min
θ

NT∑
i=1
L(xi, FΩfθ(y)) (3.20)

where FΩ is the FFT operator and Ω is the sampling pattern. Notice that Eq. (3.19) learns
a network in the image domain while Eq. (3.20) learns a network in the k-space domain.

Both methods are constantly used in the literature where the networks primarily consist
of CNN layers [Hyu+18; Lee+18; Han+18; Akç+19; HSY19].

However, similar to wavelets it is important to have CNN layers with different receptive
fields to capture the different scales of the image. For this, U-Net [RFB15b] was implemented
which consists of CNN kernels operating at different scales. In practice, this is obtained by
applying CNN kernels with different receptive fields through downsizing the image using
pooling layers. Later, these features are upsampled and concatenated with the features from
the corresponding layer at the same scale as skip connections. Such a network is shown in
3.2, and is called U-Net as it looks like a U-shape.

Note that the use of CNN kernels in the image domain is justified due to the desired trans-
lation equivariance. However, its application along with non-linearities in k-space [HSY19]
can pose issues due to lack of such equivariance and also as the energies in k-space are
extremely skewed with most of the signal energy concentrated at the center of k-space. Some
models are explored in the literature which extend the linear Generalized Autocalibrating
Partially Parallel Acquisitions (GRAPPA) kernel to a nonlinear kernel leading to Robust
Artificial neural network for K-space Interpolation (RAKI) [Akç+19].

A major limitation of such physics-blind methods is the lack of data consistency steps,
which reduce the recovery guarantees of the reconstructed images. Further, the probability
of hallucinations (see Figure. 3.3) is also high in such methods, which is can be detrimental
for the use of such methods in medical diagnosis.
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Figure 3.2 – A typical illustration of the U-Net multi-scale network with feature maps in
blue, skip-connections in green. From [Çiç+16].

Figure 3.3 – A typical illustration of hallucinations occurring in reconstruction of MR images
using DL. From [Muc+21b]. The left image is the original image, the middle image is the
reconstructed image with hallucination artifact pointed with a red arrow, the right image
corresponding to the residuals, i.e. their absolute difference.

3.2.2 Unrolled Networks
As illustrated earlier, the presence of data fidelity or data consistency is important for stable
reconstruction of images with some guarantees. In practice, this is achieved by unrolling
the iterative reconstruction algorithms and learning the required priors in the network
architecture. This method improves the guarantees of the reconstruction and also reduces
the hallucinations in the reconstructed images, as the networks learn to only improve the
images with respect to noise and artifacts from under-sampling of k-space.

The most common method to do this involves learning the prior in the form of a regularizer
or its proximal operator in the iteration step for CS based reconstruction. With this, the
reconstruction iteration step for the single coil case can be written as:

x(k+1) = f
(k)
θ (x(k) − FHΩ (FΩx(k) − y)) (3.21)

where f (k)
θ is the proximal network to denoise the image at iteration k. While each of

the networks f (k)
θ at all the iterations must be trained end-to-end [Sch+17; Eo+18] for

best performance, in practice for high resolution and 3D multi-coil MRI it is done step-
by-step [Ozt+22] to reduce the computational cost. Additionally, to reduce the model’s
memory footprint, in some methods like MoDL [AMJ19], the network weights are shared
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across iterations. The above defined unrolled iteration involves networks to correct the image
in a single domain only with data fidelity applied in the k-space domain. A generalized
version of this algorithm would also involve the use of networks to correct the image in the
Fourier domain [Eo+18], as shown in Figure. 3.4

Figure 3.4 – The measurements y acquired following the sampling pattern Ω to obtain the
reconstructed image x̂, with F the Fourier transform and NC the number of iterations. The
inter-iteration connections are omitted for clarity. From [RSC21b].

Regularization penalty of ‖x(n) − fθ(x(n))‖22 was added in Model-based Deep Learning
(MoDL) by [AMJ18] to reduce the impact of the model and thereby hopefully reducing the
amount of hallucinations. More advanced and versatile methods have been proposed in the
literature [AÖ18; Ham+19; GOW19; Sri+20] which are inspired through unrolling different
iterative algorithms. A popular method is the Primal-Dual (PD) network [AÖ18] which is
inspired by the PD algorithm [CP11b]. These algorithms are further accelerated through the
use of “memory” by concatenation of past iteration outputs, giving the algorithm an effect
similar to momentum in traditional optimization algorithms [BT09; AO17].

These methods were extensively reviewed and benchmarked on the fastMRI [Zbo+18]
dataset in [Ram+20] where the PDNet showed to outperform all the other methods. The
results of such benchmarking is shown in Figure. 3.6 for knee MR images and Figure. 3.5 for
brain MR images.

3.2.3 Reconstructions for non-Cartesian k-space data

Most of the above described physics-based reconstruction methods are designed for Cartesian
sampling of k-space data. However, they can be extended to non-Cartesian imaging applic-
ation by changing FFT operator FΩ to the Nonuniform Fast Fourier Transform (NUFFT)
operator described in previous chapter. Such extension of such a method was carried out
in [Sch+19], while it was later noted in [Ram+22c] that such generalization needs density
compensation for accelerated convergence and improved reconstructed image quality.
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Figure 3.5 – Multiple DL architectures compared one another and to the reference (left)
for reconstructing 2D knee images (top row) from Cartesian undersampled k-space data.
Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive
reconstruction approach without DL. The best performing architecture is the PDNet. From
[Ram+20].

Figure 3.6 – Multiple DL architectures compared one another and to the reference (left)
for reconstructing 2D brain images (top row) from Cartesian undersampled k-space data.
Absolute errors are shown at the bottom row. The zero-filled case corresponds to the naive
reconstruction approach without DL. The best performing architecture is the PDNet. From
[Ram+20].

3.3 Learning the sampling patterns

The creation of the fastMRI [Zbo+18] dataset was not only a major step for learning the
reconstruction networks, but also for learning the sampling patterns. This is primarily
because learning of sampling patterns crucially required the presence of raw k-space data,
which did not exist in the community for many datasets previously including Open Access
Series of Imaging Studies (OASIS) [LaM+18] and OpenNeuro1. While the magnitude images
are available, and the k-space is the Fourier domain of these images, note that the images are
obtained after a processing pipeline conventionally carried out by the scanner which is not
known. Using such methods to infer the k-space data to learn the sampling patterns and also
reconstruction networks can produce biased results with inflated performance scores [Shi+22].

With the availability of raw k-space data, for 2D knee and brain MRI in the fastMRI
dataset [Zbo+18] and 3D brain MRI in Calgary-Campinas dataset [Sou+18], the community

1https://openneuro.org/

https://openneuro.org/
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has started to explore the learning of sampling patterns. In this section we will review the
methods proposed in the literature for learning the sampling patterns. We start by methods
which learn Cartesian sampling patterns, followed by methods which learn the gridded Target
Sampling Density (TSD) of the k-space. Finally, we discuss some recent strategies to directly
learn hardware compliant k-space trajectories. Note that some of these methods did not
exist during the course of this thesis, and their overview and comparisons with methods
proposed in this thesis are provided in respective chapters (Chapters 6 and 7). We still
discuss these methods here for the sake of completeness. Further, the main focus of this
thesis lies in non-Cartesian k-space sampling patterns, which are composed of hardware
compliant trajectories. While we do present the most important methods to learn gridded
under-sampling patterns for Cartesian sampling, we do not go in depth with these methods,
as it is beyond the scope of this thesis.

3.3.1 Cartesian sampling

Perhaps the first method to obtain a TSD and corresponding Cartesian sampling patterns
was [Kno+11], where the authors used normalized averaged k-space magnitude spectrum of a
template MRI dataset as candidate for TSD. This method was purely data-driven and the
corresponding optimized sampling patterns did not depend on the type of reconstruction
algorithm used. This enforces the sampling points to be densely sampled in regions of
high signal energy in k-space, particularly in the center of k-space. While such sampling
patterns can be optimal for CS based reconstruction, however improved reconstruction quality
can be reached if the sampling was carried out in regions of k-space which cannot be well
reconstructed by reconstruction methods.

Taking this into account, in [Göz+18b] a learning-based framework was proposed to learn
the subsampling patterns in k-space for a given reconstruction algorithm. The framework
is learned through a parameter-free greedy mask selection method which could adapt to a
constraint on sampling locations to be in the form of k-space lines, having direct applications
in Cartesian MRI. The scaling issues of this algorithm was addressed in [San+19] through a
stochastic greedy algorithm, which allowed it to be scaled to 3D parallel MRI and dynamic
imaging applications.

As more recent networks try to jointly learn the under-sampling pattern and reconstruction
network, in [ZKR21] an alternated learning approach was proposed and applied for parallel
MRI. The authors posed a bias-accelerated subset selection algorithm to optimize the
sampling pattern. The optimized sampling patterns were shown to exploit the partial
conjugate symmetry of the k-space data as discussed in the first chapter.

Later in [She+20], the authors proposed a bi-level learning framework to learn the sparse
sampling patterns in k-space and the corresponding regularization weighting. This method
was formulated and developed in a supervised setting, using training sets of ground truth
images and corresponding k-space measurements. However, the authors showed that only 7
training pairs were sufficient to achieve a high reconstructed image quality.

3.3.2 Learning the sampling policy

Most of the algorithms presented above learned the sampling mask under a given limited scan
time budget. However, with a rise in reinforcement learning based methods, there has been
increasing interest in the MR community to learn a sampling policy directly. These sampling
policies can choose the next sampling location based on the current reconstructed images,
and can be used to learn the sampling mask as well. Such methods have wider applications
into real time imaging or so-called “active MRI” where the sampling mask is patient specific
and dynamic, with scan time promotional to the required reconstructed image quality.

First method in this direction is probably [JUY19], which proposed a self-supervised
Monte Carlo Tree Search (MCTS) based approach to learn the “SampleNet” which chooses
the next sample position in k-space, along with a corresponding “ReconNet” to reconstruct
MR images from the sampled k-space data (Figure. 3.7).
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Figure 3.7 – Overall framework of [JUY19] which trains 2 deep neural networks, one to
reconstruct the images and the other to estimate a policy to determine the position of the
next sample to be collected.

Later in [Pin+20], the task of k-space sampling was modeled as a sequential decision
process and used a deep reinforcement learning based approach to learn this sampling policy.
In practice, training was performed on large scale fastMRI [Zbo+18] knee dataset using
Double Deep Q-Network (DDQN) [HGS15] algorithm.

Figure 3.8 – Sampling pattern parametrization in [AJ20] for (a) sampling in 1D parameterized
with lines on non-integer locations and (b) sampling in 2D parameterized by horizontal and
vertical lines.

Pseudo-Cartesian sampling

All the above methods learn the Cartesian sampling patterns in the form of a gridded mask of
binary values indicating the locations of acquired samples. In efforts to extend the algorithm
[AJ20] incorporated the NUFFT operator and learned sampling patterns on continuous
k-space. However, to tackle the issues of scalability, the sampling patterns were parameterized
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in the form of sets of orthogonal lines in the k-space, leading to “pseudo-Cartesian” sampling
patterns (Figure. 3.8).

3.3.3 Learning the sampling density
Directly learning non-Cartesian k-space sampling patterns is a challenging and needs more
memory, as the samples no longer lie on any Cartesian grid thereby requiring to optimize for
the coordinates of the sampling locations. Further, this would need an optimization algorithm
where the FFT operators are replaced with NUFFT operators, which are computationally
expensive. As an intermediary step, many methods learned the TSD density in k-space,
which can be used to draw both Cartesian and non-Cartesian sampling patterns.

To this end, Learning-based Optimization of the Under-sampling PattErn (LOUPE) [Bah+20a]
was introduced as a means to learn a probabilistic mask, which was a good candidate for
TSD in k-space. The sampling masks were chosen by thresholding the probabilistic mask and
the network was trained jointly with the U-net [RFB15b], which was used for reconstructing
images from the sampled k-space data. Interestingly, the optimized TSD varied with changes
in image anatomy (Figure. 3.9).

Figure 3.9 – LOUPE-optimized under-sampling masks for under-sampling factor of 8 com-
pared side by side for knee and brain anatomies.

Later, [GGW22] proposed a Bayesian optimization based approach to learn the TSD
of k-space. Further, in this method, the authors also optimized the hardware-compliant
sampling trajectories through the “sampler”, which is an iterative algorithm to minimize
the discrepancy [Cha+17], as done in Spreading Projection Algorithm for Rapid K-space
sampLING (SPARKLING) [Laz+19].

3.3.4 Non-Cartesian trajectory optimization
With an exponential increase in compute power through GPU and the availability of im-
plementations of the NUFFT operator in frameworks which allowed differentiable program-
ming (like TensorFlow [Mon22; RC23] and PyTorch [Muc+20]), the focus shifted to learning
the non-Cartesian sampling trajectories directly. The first work in this direction was Physics-
informed learned optimal trajectories (PILOT) [Wei+20] (Figure. 3.10(a)) which produced
2D learned non-Cartesian sampling trajectories and then later extended to 3D [Ved+20] (Fig-
ure. 3.10(b)). This method learned hardware compliant k-space sampling trajectories along
with U-net [RFB15b] reconstruction network, which was applied on the NUFFT adjoint of
the k-space data. Through implementations in PyTorch using TorchKbNufft [Muc+20], this
method could backpropagate through the NUFFT operator. However, auto-differentiation
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schemes from PyTorch was used to obtain the gradients with respect to k-space sampling
locations. These gradients were later shown to be inaccurate in [WF23], which resulted in
suboptimality. Later, to overcome this issue, B-spline parameterized Joint Optimization of
Reconstruction and K-space trajectories (BJORK) [Wan+21] (Figure. 3.10(c)) was introduced
to learn the 2D k-space sampling trajectories using more accurate gradients as described
in [WF23].

Figure 3.10 – Different methods to learn hardware-compliant k-space sampling trajectories.
(a) PILOT [Wei+20], (b) 3D-FLAT [Ved+20] and (c) BJORK [Wan+21].

In order to ensure hardware compliance, all the current state-of-the-art methods enforce
penalties in the loss function to penalize the trajectories gradients and slew rates and maintain
them below the hardware limits. As the sampling locations are being learned, this leads
to many trainable parameters in the overall network, which could lead to suboptimality
and convergence to a local minima [Gou+21]. This is tackled in BJORK [Wan+21] through
B-spline parametrization of the sampling trajectories, and then multi-scale optimization
of the B-spline coefficients similarly to what was originally implemented in SPARKLING
[Laz+19].
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gorithm is an optimization-driven method that has been recently introduced for ac-
celerated 2D MRI using compressed sensing. It has then been extended to address 3D
imaging using either stacks of 2D sampling patterns or a local 3D strategy that optimizes a
single sampling trajectory at a time. 2D SPARKLING actually performs Variable Density
Sampling (VDS) along a prescribed target density while maximizing sampling efficiency and
meeting the gradient-based hardware constraints. However, 3D SPARKLING has remained
limited in terms of acceleration factors along the third dimension if one wants to preserve a
peaky Point Spread Function (PSF) and thus good image quality. In this paper, in order
to achieve higher acceleration factors in 3D imaging while preserving image quality, we
propose a new efficient algorithm that performs optimization on full 3D SPARKLING .
The proposed implementation based on fast multipole methods (FMM) allows us to design
sampling patterns with up to 107 k-space samples, thus opening the door to 3D VDS. We
compare multi-CPU and GPU implementations and demonstrate that the latter is optimal
for 3D imaging in the high-resolution acquisition regime (600µm isotropic). Finally, we show
that this novel optimization for full 3D SPARKLING outperforms stacking strategies or 3D
twisted projection imaging through retrospective and prospective studies on NIST phantom
and in vivo brain scans at 3 Tesla taking the particular case of T2*-w imaging. Overall the
proposed method allows for 2.5-3.75x shorter scan times compared to GRAPPA-4 parallel
imaging acquisition at 3 Tesla without compromising image quality.

4.1 Introduction

The quest for efficient sampling strategies has been a major challenge in MRI since its
invention. The theory of Compressed Sensing (CS) [Lus+07] boosted this quest by providing
significant theoretical insights. It was proved and observed empirically that for under-
sampled acquisitions and approximately sparse signals in an orthogonal basis, an efficient
implementation relies on trajectories with a variable density in k-space: the lower frequen-
cies (center of k-space) have to be sampled more densely than the higher at the borders
of k-space [Puy+11; Cha+14; Adc+17; Boy+19]. Non-Cartesian k-space trajectories (e.g.
spiral, radial, rosette, etc.) [Ahn+86a; Mey+92; Jac+92; Nol97; Law+09; Lus+05a] have
been proposed for accelerated and robust-to-motion 2D imaging, prior to the existence of
theoretical foundations. While being compliant with scanner hardware constraints on the
gradients, these trajectories do not sample the k-space according to a well controlled target
sampling density. For instance, in spiral imaging, fulfilling these constraints transforms an
initially prescribed density into another one [Cha15, p. 97]. Recently, the SPARKLING
algorithm [Boy+16; Cha+17; Laz+19] has been shown to automatically generate optimized
non-Cartesian sampling patterns compatible with MR hardware constraints on maximum
gradient amplitude and slew rate. SPARKLING optimally samples the k-space (see [Puy+11;
Cha+14]) with a controlled distribution of samples (e.g., variable density) and a locally
uniform k-space coverage.

However, for the sake of signal-to-noise ratio (SNR), 3 dimensional (3D) imaging is
preferred to reach isotropic high-resolution imaging (e.g. 600µm isotropic). In this regard,
multiple approaches have been utilized to efficiently down-sample 3D k-space. Some of these
involve a combination of a readout in the z-direction with a 2D under-sampled mask based on
Poisson disk sampling [Vas+10]. Additional attempts on full 3D readouts were proposed like
3D radial trajectory [Lar+08], 3D cones [Ira+95], twisted projections [Boa+97] and hybrid
radial-cones [Joh17]. However, these trajectories were primarily based on parameterizing
a k-space sampling curve, and the final sampling pattern was not optimized with respect
to the reconstruction quality. Some recent studies explored how to optimize the sampling
pattern [Dal+04; Mir+04; Kum+08], but did not include a clear sampling criterion in order
to maximize the image reconstruction quality.

Other methodologies in the literature involved stacking a 2D under-sampled trajectory
like stack of stars [Son+04; Lo08], stack of spirals [Ira+95; The+99] and stack of 2D
SPARKLING [Laz+20a]. Uniform (i.e. cylindrical) stacking is usually implemented even
though a spherical strategy, with a number of shots varying as a function of the latitude
plan, was shown to be beneficial on image quality for SPARKLING trajectories [Laz+20a].
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Further in [Laz+20a], a local 3D SPARKLING approach was proposed by designing a single
trajectory within a cone obtained from a parcellation of the 3D spherical k-space. Then all
the cones covering a given elevation plane were filled up using the replication of the resulting
trajectory. However, this method did not ensure a locally uniform sampling pattern at the
boundaries of cones as the problem was solved locally.

The recent rise of machine and deep learning has impacted the literature on MRI
sampling [HK19; See+10; Bal+16; Göz+18a; Bah+20b; She+20; Wei+20; Ved+20]. These
approaches rely on supervised learning techniques, which means that they need a ground truth
corresponding to fully sampled data (like the fastMRI dataset [Zbo+18]), to learn an optimal
under-sampling pattern, whether it is Cartesian or not. In [HK19; See+10], the authors
explore the use of experimental design to choose the best subset of prescribed trajectories.
Although there are substantial differences between these two methodologies (deterministic
vs Bayesian, offline vs online design, etc.) they share a similar theoretical background with
ours in that sparsity is the key underlying hypothesis. In particular, [See+10; HK19] use
the Cramér-Rao bound for sparse signals [BE10] as a tailored optimality criteria. However,
such methods are computationally demanding as they try to solve a nonconvex integer
programming problem. Hence, in a given time budget this limits the exploration and the
potential number of prescribed trajectories.

In [Bal+16; Göz+18a], the authors proposed to step away from the theoretical con-
sideration in CS and adopted a purely data-driven approach. The authors proposed to
find an optimal subset of Cartesian sampling lines by using a greedy algorithm aimed at
maximizing the SNR. This algorithm can automatically adapt to different reconstruction
algorithms and optimality criteria, but its use is limited to Cartesian imaging. More recent
approaches made some advance on learning gridded sampling patterns [Bah+20b; She+20].
Additionally, to the best of our knowledge, the only works that have learned a non-Cartesian
trajectory under hardware constraints are PILOT [Wei+20] BJORK [Wan+21] and 3D
FLAT [Ved+20] for 2D and 3D imaging, respectively. These works seem very promising
despite significant theoretical and numerical challenges with a combinatorial number of local
minimizers [Gou+21]. In contrast, our work is based on clear theoretical considerations with
provable convergence [CB18] in short computing times [MSS21]. Of interest, let us notice
that the sampling patterns generated by these methods resemble the SPARKLING ones very
much [Wei+20; Wan+21], suggesting that the main ideas behind are now reaching a mature
and reliable state. Nonetheless, it is worth noting that none of these approaches has been
prospectively validated on real 3D acquisitions. For all these reasons, these works won’t be
discussed any further in this paper.

In this paper, for the first time, we solve the SPARKLING optimization fully in 3
dimensions. First, in Sec 5.2, we remind the optimization problem to be solved for generating
SPARKLING trajectories. Then we focus on major computational bottlenecks that prevented
us from scaling the original solution to 3D and provide detail on our main contributions.
One key ingredient in SPARKLING is the setting of the right target sampling density. The
latter may vary as a function of the resolution, the imaging contrast, the acceleration factor
and the object to be scanned. For that purpose, we parameterize radially decaying densities
by two parameters (cut-off, decay) and find the optimal density through a grid search over
pairs of parameters. This study can be conducted through a retrospective analysis on the
target imaging contrast, the organ and given a coil geometry of interest and then the sought
optimal density can be used further in prospective acquisitions. For demonstrating the
performance of our new trajectories, we use prospective T2*-w imaging of in vivo human
brain. In Sec. 5.4, we present the experimental data sets on which the numerical studies
are performed later on for validation and comparison purposes. In this regard, we carry out
retrospective and prospective analysis on NIST phantom data collected at 3 Tesla (3T). Then
we perform prospective in vivo brain imaging acquisitions on a healthy adult volunteer still at
3T and compare the proposed full 3D SPARKLING with the existing spherical stack of 2D
SPARKLING . We do not include any comparison with 3D radial sampling scheme or stack of
spirals as this was already done in [Laz+20a]. However, we do compare our trajectories with
improved 3D non-Cartesian trajectories, namely twisted projection imaging (TPI) [Boa+97].
TPI trajectories have better k-space coverage as compared to full 3D radial sampling scheme
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as these trajectories shift to pappus spirals after a fraction of readout.

4.2 Theory

In this section we briefly introduce the SPARKLING algorithm as described in [Laz+19].
We detail the particular steps involved in the optimization process. We point to some
computational bottlenecks in each of these steps. Later, we describe the methods used to
overcome these computational challenges, thereby allowing us to scale the problem to 3
dimensions. Most of the theoretical aspects are directly based on earlier works in [Cha+16;
Boy+16; Cha+17], which can be consulted for the problem description and derivations
of (5.3).

4.2.1 3D K-space sampling
A 3D k-space sampling pattern K is usually composed of several shots or curves, say Nc,
K = (ki)Nci=1, where each 3D shot ki(t) = (ki,x(t), ki,y(t), ki,z(t)), is controlled by magnetic
field gradients Gi(t) = (Gi,x(t), Gi,y(t), Gi,z(t)) as follows:

ki(t) = γ

2π

∫ t

0
Gi(τ)dτ , (4.1)

with γ the gyro-magnetic ratio (γ = 42.57MHz/T for proton imaging). In practice, throughout
the readout duration Tobs, we sample each shot ki(t) by a time period ∆t, the gradient
raster time as the scanner gradient hardware can play gradients at this pace. In the rest of
the section, we refer to location of the k-space samples K as the samples on gradient raster
points. Then the number of gradient time steps is given by Ns =

⌊
Tobs

∆t

⌋
and the full 3D

sampling pattern K finally consists of p = Nc ×Ns points. Additionally, we limit ourselves
to a long readout (Tobs ' 20ms) for T ∗2 -weighted imaging, as this allows the trajectory to be
longer and maximally explore the k-space.

The k-space domain for a 3D MR volume of size Nx × Ny × Nz over a field of view
FOVx×FOVy×FOVz, is defined within [−Kx

max,K
x
max]× [−Ky

max,K
y
max]× [−Kz

max,K
z
max],

with K`
max = N`

2FOV` and ` = x, y, z. For the sake of simplicity, in what follows we assume
the same spatial resolution along the three dimensions so Kx

max = Ky
max = Kz

max = Kmax
even though we meet different matrix and FOV dimensions (Nz 6= (Nx = Ny) and FOVz 6=
(FOVx = FOVy)). Hereafter, the 3D k-space domain will be normalized to Ω = [−1, 1]3.

Hardware constraints on the maximum gradient amplitude (Gmax) and slew rate (Smax)
induce limitations in trajectory speed and acceleration. These limits can be expressed
as box constraints on the amplitude of the discrete derivatives of the k-space trajectory
(ki[n])Ns−1

n=0 . These hardware constraints can be applied on a per dimension basis, giving
rotation variant (RV) constraints, whose resulting trajectories cannot be run on the scanner
if the FOV is rotated. Due to this limitation, in this work, we focus on rotation invariant
speed and acceleration constraints which can be expressed as follows: 1

QNcα,β =


∀i = 1, . . . , Nc, ki ∈ R3×Ns ,

Aki = v,
‖ki‖∞ ≤ 1, ‖k̇i‖2,∞ ≤ α, ‖k̈i‖2,∞ ≤ β,

 (4.2)

where

k̇i[n] = ki[n]− ki[n− 1]
∆t

k̈i[n] = ki[n+ 1]− 2ki[n] + ki[n− 1]
∆t2

‖c‖2,∞ = sup
0≤n≤Ns−1

(
|cx[n]|2 + |cy[n]|2 + |cz[n]|2

)1/2
,

1In [Cha+16], we have also dealt with the case of RV constraints where the `∞-norm replaces the mixed
`2,∞-norm used here.
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for all c ∈ ΩNs and (α, β) are obtained by normalizing hardware and Nyquist constraints to
the sampling domain Ω (from [Laz+19]):

α = 1
Kmax

min
(
γGmax

2π ,
1

FOV · δt

)
(4.3a)

β = γSmax

2πKmax
(4.3b)

The purpose of A and v are to model linear constraints on the trajectory, like the Echo
Time (TE)point constraint, which ensures that each trajectory passes through center of k-space
at TE. More sophisticated linear constraints (e.g. gradient moment nulling) can be modeled
too, see details in [Cha+16]. The normalized constraint αδt ≤ 1

FOV×Kmax
ensures that the

distance between k-space locations associated with two consecutive measurements, sampled
by the analog-to-digital converter (ADC) at the dwell time period δt (see Subsection 4.4.1
for the relationship between ∆t and δt), is lower than the Nyquist rate, which is essential to
discard some undesired filtering effects [Laz+20b].

4.2.2 3D SPARKLING formulation
Let ρ : Ω→ R denote a target sampling density, with ρ(x) ≥ 0 for all x and

∫
ρ(x) dx = 1.

Following previous works [Grä+12; Sch+10; Ehl+19; Laz+19], we obtain K ∈ Ωp by solving:

K̂ = arg min
K∈QNc

α,β

Fp(K) =
[
F a
p (K)− F r

p(K)
]

(4.4)

with QNcα,β being the constraint set for the Nc shots. Here we remind that p refers to the
total number of k-space samples (or particles), so p = Nc ×Ns.

The term F a
p (K) corresponds to an attraction term which ensures that the final distribu-

tion of the k-space sampling points follows the target density ρ and F r
p(K) is the repulsion

term to ensure that the sampling is locally uniform and that we don’t have any local clusters.
These terms are defined as:

F a
p (K) = 1

p

p∑
i=1

∫
Ω
H(x−K[i])ρ(x) dx (4.5a)

F r
p(K) = 1

2p2

∑
1≤i,j≤p

H(K[i]−K[j]) (4.5b)

where K[i] ∈ Ω describe the locations of k-space samples in a shot-based lexicographical
order [k1, . . .kNc ]. The function H is a well chosen kernel, typically H(x) = ‖x‖2. Note
that alternative choices such as H(x) = log(x) have been also investigated in [Teu+11]. The
minimization problem (5.3) can be attacked by various nonlinear programming procedures.
In this work, we propose to use a projected gradient descent as described below:

K(t+1) = ΠQNc
α,β

(
K(t) − η(t)∇Fp(K(t))

)
(4.6)

The computational bottlenecks in (5.3) involve the calculation of ∇Fp(K) = ∇F a
p (K)−

∇F r
p(K), and the projection of each shot onto the constraint set QNcα,β .

4.2.3 Gradient Descent Step
In what follows, we provide details about the calculation of Fp and ∇Fp.

Evaluating F a
p and its gradient

To calculate the attraction term and its gradient, we can re-write (4.5a) as:

F a
p (K) = 1

p

p∑
i=1

(H ? ρ)(K[i]) (4.7)
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where ? denotes the convolution-product in the continuous setting. The main difficulty is
thus to quickly evaluate (H ? ρ)(x) (optional, if we want to compute the cost function) and
its derivatives. To this end, we discretize the target sampling distribution ρ as follows:

ρ[i, j, k] = ρ(i/N, j/N, k/N) (4.8)

where i, j, k ∈ [−N,N ], andN ∈ N describes the number of discretization points. We typically
take N twice as large as max(Nx, Ny, Nz) to define the density at a better resolution than
the image size. Similarly we compute a discrete version of the filter H as:

H[i, j, k] = H(i/N, j/N, k/N) (4.9)

Letting ∗ denote the discrete convolution-product, we use the following approximation

(H ? ρ)(K[i]) ' I(H ∗ ρ)(K[i]), (4.10)

where I : R(2N+1)3 → C0(Ω) denotes a tri-linear interpolant function. Hence, the computa-
tion of F a

p (K) requires to precompute H ∗ ρ on a discrete grid with fast Fourier transforms
once for all. The computation of the sum in (4.7) then has a complexity O(p), which is linear
in the number of particles.

Similarly, the computation of ∇F a
p (K) involves the calculation of the partial derivatives

∂i,lF
a
p (K) where 1 ≤ i ≤ p is the index of a particle and 1 ≤ ` ≤ 3 the index of a dimension.

According to (4.7), the partial derivative is:

∂i,`F
a
p (K) = 1

p
(∂`H ? ρ)(K[i]) (4.11)

Thus, letting ∇H ∈ R(2N+1)3×3 denote a discretization of ∇H, we can precompute the
discrete vector field ∇H ∗ ρ on a Cartesian grid using fast Fourier transforms and then use a
tri-linear interpolant to evaluate it off the grid.

Evaluating F r and its gradient

The problem addressed here is to compute F r
p and ∇F r

p(K). For purposes of simplification,
we introduce rij = ‖K[i]−K[j]‖2 and consider H to be a radial function depending on rij
only. Letting K` denote the spatial components of K = [K1,K2,K3], we get:

F r
p(K) =

∑
1≤i,j≤p

H(rij) (4.12a)

∂i,`F
r
p(K) = 1

p2

∑
j 6=i

(
K`[i]−K`[j]

rij

)
∂`H(rij) (4.12b)

The evaluation of all the components of the gradient require O(p2) computations, where
p can reach 108 for high resolution imaging. An efficient implementation is therefore critical.
In this work, we explored two possibilities.

Brute force calculation using PyKeops The computation of (4.12a) and (4.12b) can
be highly parallelized, which is amenable to efficient GPU implementations. Carrying out
such computations on array centric frameworks like PyTorch and Tensorflow would require
the use of huge p× p-dimensional matrices. This would result in a large memory footprint,
much larger than what is typically available on current modern GPUs. For the sake of
efficient memory usage, we used PyKeops, a library that permits low cost calculations of
large kernel operations [Cha+20]. PyKeops carries out the naive and direct computations
using online map reduce schemes from CUDA routines for summations. Due to this, the
whole matrices are not stored in the GPU memory, but rather just the final results.
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Figure 4.1 – Computation times for the repulsion term F r as a function of the number of
particles p.

Fast Multipole Methods Sums of the form (4.12a) and (4.12b) appear in many n-body
problems and can be computed efficiently using Fast Multipole Methods (FMM) [Fon+09b].
Given a set of positions K[i], a kernel Ψ : Rd × Rd → R and a set of weights w ∈ Rp, the
FMM method allows for the efficient computation of vector b of the form

b[i] =
p∑
j=1

Ψ(K[i],K[j])w[j] .

The FMM utilizes a multipole expansion of the kernel Ψ, which allows for a hierarchical
grouping of closely spaced k-space points and treat them as a single source. This results in a
massive acceleration of the above computation with a complexity O(p log p/ε), where ε is a
user-prescribed precision. For our implementations, we used the Parallel Black box FMM
[Wan+19; Fon+09a] in 3D (PBBFMM3D2), which can be run with any arbitrary kernel Ψ.

To evaluate the cost function F r
p , we only need to set

Ψ(K[i],K[j]) = H(rij) and w[j] = 1,∀j.

To evaluate the gradient (∂i,`F r
p(K))i, we set w[j] = 1 and

Ψ(K[i],K[j]) =
(
K`[i]−K`[j]

rij

)
∂`H(rij) .

Comparisons From Fig 4.1, we see that naive GPU implementations on PyKeops outper-
forms the PBBFMM3D implementation for p < 5× 106. Beyond this value, PBBFMM3D

gets faster. It is likely that faster computations with the FMM would be obtained with a GPU
implementation. Unfortunately, we did not find any robust and efficient GPU implementation
of FMM.

Choice of step size

In our implementation, we use a combination of two step sizes. In the first 20 iterations, we
use a fixed step size: η(t) = η. As analyzed in [Cha+17], this strategy provides a convergence
guarantee to a local minimizer of the cost function given that:

2see https://github.com/ruoxi-wang/PBBFMM3D.

https://github.com/ruoxi-wang/PBBFMM3D
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Figure 4.2 – Computation times for varying Ns and Nc for the projection step ΠQNc
α,β

(·, npit)
that was run over npit = 200 iterations with Gmax = 40mT/m and Smax = 180T/m/s.

• The kernel H has a L-Lipschitz continuous gradient.

• The step size is inversely proportional to the Lipschitz constant.

These conditions are satisfied with a regularized norm of the form H(r) =
√
r2 + ε2. We can

then set η(t) proportional to ε (i.e. 6.25−2). The value of ε can be chosen as a fraction of the
minimal distance between two points at a stationary point.

A constant step size is too conservative and a faster convergence can be obtained using a
second-order dynamics close to the minimizer. This justifies switching to a Barzilai−Borwein
[Bar+88] after first few iterations. Few theoretical guarantees are available for this technique,
but it significantly accelerates the convergence empirically.

4.2.4 Projection step

The projection step in (4.6) for a general single k-space shot onto a given constraint set
parameterized by (α, β) has been explored in [Cha+16; Cha+17]. For our implementations,
we needed to extend the single shot iterative procedure called Algorithm 1 in [Cha+16] to
projecting Nc shots. Note that the actual projection of a k-space shot is independent of
other shots, and thus the computation can be done in parallel. Hence, we have implemented
this step both on multi-CPU and GPU. To efficiently utilize a GPU, we used the CuPy
module [Oku+17]. The computation times with different implementations for varying Nc and
Ns are shown in Fig. 4.2. We found that the computation times vary linearly with Ns and
are drastically reduced for the GPU implementation compared to the CPU versions (single
and multicore). At lower Ns, we found that m-CPU and GPU implementations are latency
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bound, giving anomalously higher computation times. However, the speedup obtained for
larger Ns offsets these anomalous cases, giving an overall efficient implementation.

4.2.5 Multi-resolution strategy for faster convergence
In order to allow for the algorithm to reach faster convergence and lead to a better approx-
imation of the target density, a multi-resolution approach as described in [Leb+19] was
implemented. Under this methodology, the optimization of the sampling pattern was carried
out on down-sampled curves. The interpolated solution was later used as a warm restart
for the up-sampled problem. Our implementations involved dyadic scaling and up-scaling
through simple linear interpolation of k-space shots. Let the linear interpolator be of the
form L2d : Ωd → Ω2d. We define the parameter Nd as the number of decimation steps in
the algorithm. Note that the constraint space needs to be equally scaled with the problem,
which results in scaling the α and β constraints mentioned in (7.2) to:

α = γGmax2Nd
2πKmax

, β = γSmax2Nd
2πKmax

(4.13)

As we move through the dyadic decimation steps and up-sample the curve, these con-
straints are halved.

4.2.6 Overall algorithm
Algorithm Algorithm 2 summarizes how to concretely compute the SPARKLING solution
along with multi-resolution steps described in Sec. 4.2.5. For more details on the iterative
procedure involved in the projection step ΠQNc

α,β
, the reader can refer to [Cha+16].

Algorithm 2: Multi-resolution implementation of SPARKLING
Inputs : ρ, Gmax, Smax, Nc, Ns, Nd, ngit, npit
Output: K, the k-space sampling pattern

1 Initializations: K(0) ∈ Ω
Nc×Ns

2Nd = Ωp

2 α← γGmax2Nd
2πKmax

, β ← γSmax2Nd
2πKmax

3 while Nd > 0 do
4 p← Nc×Ns

2Nd
5 for t = 1 . . . ngit do
6 K(t−1/2) = K(t−1) − η(t)∇Fp(K(t−1))
7 K(t) = ΠQNc

α,β

(
K(t−1/2), npit

)
// Warm restart next decimation step with linear interpolation

// The dimension of k is doubled at each decimation step

8 for s = 1 . . . Nc do
9 k(0)

s ← L Ns

2Nd−1

(
k(ngit)
s

)
10 K(0) ←

[
k(0)

1 , . . . ,k(0)
Nc

]
// Scale constraints

11 α← α
2 , β ←

β
2

12 Nd ← Nd − 1

4.3 Numerical experiments and data acquisition

The sampling patterns were obtained by carrying out projected gradient descent as described
above. With the above described improvements, the SPARKLING Generation time was just
10 minutes for 2D and nearly 6-9 hours for 3D on NVIDIA V100 with 5120 CUDA cores
and 16GB DDR5X memory.
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4.3.1 SPARKLING: a Python package

In the ethos of reproducible research and to move forward into better optimized patterns for
MRI acquisition, all the implementations as described above is present in a Python package
at the private repository3. All codes in the package scale to 2 and 3 dimensions directly,
and most codes are agnostic and can be run on CPU or GPU with some change in run
parameters. All the scanner constants and trajectory specification can be provided through
a configuration file, and most of the codes are modular in nature. Interested researchers are
requested to contact the authors for obtaining access to this package4.

4.3.2 Acquisition parameters

With a goal of 600µm isotropic resolution in 3D MRI acquisitions, we planned to obtain a
volume of (Nx ×Ny ×Nz) = (384× 384× 208) size in order to cover the whole brain. For
the sake of consistency, we used the same matrix size and resolution for our acquisitions
on the NIST phantom5. The trajectories were generated for a clinical 3T MR system
(Magnetom PrismaFIT, Siemens Healthcare, Erlangen, Germany) with maximum gradient
strength Gmax = 40mT/m and peak slew rate Smax = 180T/m/s. As the readout time was
set to Tobs = 20.48ms and the gradient raster time is ∆t = 10µs, the number of samples per
shot ki, was Ns = 2048. The number of shots Nc was varied based on the study described
hereafter. For our in vivo studies, the k-space data was acquired on a Siemens 64 channel
Head/Neck coil, while using 44 channels around the head during acquisition. The TE was
20ms and Repetition Time (TR) was 37ms. The flip angle was set to 15°, and the slice
excitation was slab selective. We also obtained a reference volume collected using a 4-fold
accelerated Cartesian acquisition (acquisition time or TA=15min 13sec) based on GRAPPA
parallel imaging technique [Gri+02] with the same TE, TR and Tobs = 20ms. The projected
gradient descent was carried out with multi-resolution decimation steps Nd = 6 for faster
convergence. The algorithm was run for ngit = 100 outer gradient descent iterations with
npit = 100 steps in the inner projection loop.

Choice of target sampling density

The target sampling density was chosen to be radially isotropic, which decays as an inverse
polynomial with a constant plateau in the center of k-space. The density was defined with
C, the cutoff frequency in k-space center having a constant density and D, the rate of decay
for higher frequencies. Mathematically, we define the target density πC,D(x) : Ωd → R+ as
follows:

πC,D(x) =

κ |x| < C

κ
(
C
|x|

)D
|x| > C

(4.14)

where κ is a constant obtained through normalization as κ = 1−D
2C(CD−1−D) . The resulting

density is radially symmetric and is of the form described in Fig. 4.3. The choice of
a radial density was motivated by the wish to provide rotation invariant reconstruction
results. Notice that the recent learning based approaches [She+20; Bah+20b] result in
non-symmetric densities. This is probably due to the fact that brains or knees databases
such as fastMRI [Zbo+18] used for training have boundaries which are dominantly vertical
or horizontal. However, the fine details may be in arbitrary orientations.

The choice of the density was carried out by grid searching for optimal parameters Ĉ
and D̂ on the target sampling distribution as defined in (B.1). We performed retrospective
reconstruction on complex Cartesian reference (with phase to account for off-resonance arti-
facts by phase accrual) in vivo brain data obtained through virtual coil combination[Par+14]

3https://gitlab.com/cea-cosmic/CSMRI_sparkling
4It cannot be made open source given patent application.
5NIST Phantom

https://gitlab.com/cea-cosmic/CSMRI_sparkling
https://www.nist.gov/programs-projects/quantitative-mri
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Figure 4.3 – Parameterization of variable density with cutoff C and decay D.

of raw multi-channel images (see Sec. A.3 in Appendix). We chose a target sampling distri-
bution of Ĉ = 25% and D̂ = 2 as it is gives the best image quality as well as more reliable
image reconstruction performance in the single-channel setting. Improved reconstruction
performances can be observed using an optimal target density of Ĉ = 1% and D̂ = 1 for
our multi-channel coil configuration (see Fig. A-4). However, this setting was not retained
in this work to ensure that optimized 3D SPARKLING trajectories are generic and do not
specifically depend on our given coil configuration (Siemens 64Rx head/neck).

Initialization and Perturbation

As the problem being solved in (5.3) is non-convex, different choices of initialization would
lead to different solutions. In [Laz+19] for 2D imaging we observed that radial initialization
performed the best for exploring the k-space. Hence, here for 3D imaging we stick to 3D
radial initialization too. For the sake of simplicity, and also to ensure radially symmetric
initialization, we set up the trajectories with

√
Nc shots in x-y plane and then rotate each

shot
√
Nc times along an in-plane axis orthogonal to the shot. More generic solution can

be obtained by solving for the minimum electrostatic potential energy configuration of Nc
electrons over the surface of a unit sphere, however this approach was not pursued in this
work.

For best reconstructed image results, we would want each k-space shot to maximally
explore the k-space. The 3D radial initialization is too structured with each k-space shot
traveling only from end to end of k-space. To enable a broader k-space exploration and
obtain a better minimizer of the original problem, we added a perturbation to each initial
shot. To achieve this, we perturbed each trajectory sample point in k-space by adding zero
mean uniform random noise along each dimension. Particularly, we compared the resulting
optimized trajectory obtained after a perturbation as a random motion of each k-space
point with maximum amplitude set at 0.1 and 0.75 (we remind that the sampling domain is
normalized to Ω = [−1, 1]3). The optimized trajectory patterns are presented in Fig. 4.4. We
clearly show that with more perturbation, the k-space trajectory tends to explore a broader
part of k-space giving a better coverage overall. We also notice quantitatively that with more
perturbation the value of the cost function converges to a lower local minimum. Further,
we would like to emphasize that these trajectories are particularly useful in cases of high
receiver sampling rates, as they would then sample more of the k-space per shot and would
overall prevent the presence of any hole in the sampling pattern.



74 CHAPTER 4. OPTIMIZING FULL 3D SPARKLING TRAJECTORIES

Initialization Generated Trajectory

(a
)
P=

0.
25

C
o

s
t

=
0

.0
0

0
7

5
7

(b
)
P=

0.
75

C
o

s
t

=
0

.0
0

0
7
4

8

Figure 4.4 – Effect of adding a perturbation (P) to the initial k-space trajectory in Ω = [−1, 1]3
as zero mean uniform random noise at each trajectory sample. Trajectories are generated
with maximum displacement of k-space point to (a) 0.25 and (b) 0.75 in the initialization.
The left side of the figure is the initialization to SPARKLING algorithm and the right is the
output of the algorithm. We also present the values of the cost obtained with (5.3).

4.4 Results

4.4.1 From trajectories to k-space data

The k-space data Y = (yi)Nci=1 is sampled by the ADC at the dwell time period δt. In practice,
the dwell-time δt is a fraction of the raster time ∆t and was set to δt = 2µs. This means
that yi ∈ Cm with m = Ns

⌊∆t
δt

⌋
the number of measurements per shot. Overall, we collect

M = Ncm k-space data points in Y. Consequently, during the image reconstruction process,
we obtain the k-space locations of Y by linearly interpolating the optimized trajectory K̂
originally sampled at ∆t, to the δt period.

4.4.2 Assessment of point spread function

We present the full 3D SPARKLING , obtained with Nc = 4096 in Fig. 4.5. We visualize
the trajectory along the mid-planes of 3 orthogonal orientations and provide an approximate
sampling mask in these planes. Further, to understand why these trajectories are expected to
yield good image reconstructions, we measure the 3D PSF. Each point spread function was
computed by taking a density compensated Nonuniform Fast Fourier Transform (NUFFT)
adjoint of k-space measurements set to 1 (yi[n] = 1,∀i = 1, · · · , Nc,∀n = 0, · · · ,m − 1)
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as described in [Pau]. In Fig. 4.6 we compare the PSF with respect to earlier generated
spherical stack of 2D SPARKLING (SpSOS) trajectories. Particularly, we emphasize the
reduction in sidelobes along the z axis. Further, for the purpose of numerical comparison,
we computed the Full Width at Half Maximum (FWHM), Peak-to-Sidelobe Level (PSL) and
Peak-to-Noise Level (PNL) in Tab. 4.1. The FWHM is calculated as the width of the peak of
PSF at half of the maximum value and the PSL and PNL are calculated in dB as presented
in Fig. 4.6(d).

Figure 4.5 – Full 3D SPARKLING Trajectory for Nc = 4096, Ns = 2048 and the PSF along
the mid z-plane computed from the sampling mask (measurements sampled at the dwell-time
period δt).

Table 4.1 – Comparing metrics of PSF with FWHM (lower is better), PSL and PNL (higher
is better).

Trajectory FWHM
(in voxel units)

PSL
(in dB)

PNL
(in dB)

x y z
Full 3D 2.3 2.4 2.5 35.80 67.25
SpSOS 2.4 2.4 2.5 31.65 65.44

As shown in Fig. 4.6, we see that the full 3D pattern provides us with much higher
PSL (4.15 dB more) and PNL (1.81 dB more), two quantitative indices that demonstrate the
full 3D SPARKLING methodology outperforms the spherically stacked version. In contrast,
we observe that the FWHM is nearly the same for both methods, even though the FWHM
along the x axis is slightly lower for the full 3D pattern. However, this minor difference in
FWHMs and the slight anisotropy in FWHM can be explained by the fact that the full 3D
initialization was severely perturbed (0.75) as described in Sec. 4.3.2.
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Full 3D

SPARKLING

SpSOS

SPARKLING

(a) (b) (c) (d)

Figure 4.6 – Comparison of PSF between full 3D SPARKLING and SpSOS sampling
masks (measurements collected at the dwell-time period over the corresponding trajectories).
The logarithm of 3D PSF (in voxel units) are viewed along the mid-slices in (a) axial plane
(x, y, 0), (b) sagittal plane (x, 0, z) and (c) coronal plane (0, y, z). (d) The PSF are
compared in logarithmic scale along the z direction.

4.4.3 Non-Cartesian MR image reconstruction

All MR images that rely on non-Cartesian k-space data in this paper were reconstructed using
a self-calibrated synthesis-based CS reconstruction algorithm [PM99; Kno+14; Gue+20; El
+18a] whose details are provided in Appendix (cf. Sec. A.2). For the sake of reproducibility,
the code for MR image reconstruction is made open source in pysap-mri6, a plugin of the
PySAP software [Far+20a]. Of course, future work will combine deep-learning based image
reconstruction with full 3D SPARKLING .

In this work, we did not carry out off-resonance artifact corrections using [Sut+03], as
it is beyond the scope of this manuscript. However, note that this does not require any
supplementary scan for obtaining ∆B0 map as the latter can be directly estimated from
phase information using [Dav+21]. For the sake of completeness, we show in appendix the
performance of our trajectory with off-resonance corrections for Acceleration Factor (AF)=10
in Fig. A-7.

4.4.4 Phantom

Retrospective studies

We proceed by carrying out a retrospective study to assess the quality of reconstructed
images. We varied the AF = Ny×Nz

Nc
for 3D MR imaging, i.e. computed with respect to

fully sampled data) from 10 (TA=4min 58sec) to 40 (TA=1min 16sec) compared to a fully
sampled scenario or equivalently from 2.5 to 10 compared to the reference Cartesian p4 (i.e.
AF=4) under-sampled acquisition, reconstructed using the GRAPPA algorithm [Gri+02].
Our motivation was to understand the degradation in image quality while decreasing the
number of collected spokes. Further, a study was also carried out with the TPI [Boa+97], as
a comparison with a non-Cartesian reference from the literature. The results are presented
in Tab. 4.2. They clearly show that the optimized full 3D SPARKLING strategy is robust
to high acceleration factors in terms of image quality as reflected by the higher SSIM scores.
In contrast, the performances of the SpSOS approach start to get worse already for AF=20.
Finally, the SSIM score for TPI for AF=10 is already significantly lower than that of SpSOS.
The reconstructed images are presented in the Appendix (see Fig. A-5).

6https://github.com/CEA-COSMIC/pysap-mri

https://github.com/CEA-COSMIC/pysap-mri
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Table 4.2 – Comparing SSIM metrics of retrospective phantom image reconstruction.

Trajectory AF10 AF15 AF20 AF40
Full 3D 0.964 0.935 0.923 0.816
SpSOS 0.927 0.864 0.737 0.575
TPI 0.63 0.592 0.573 -

Prospective acquisition

In order to understand how the effective spatial resolution compares to the target resolu-
tion (here 0.6mm isotropic), we performed prospective acquisitions on the NIST phantom
for full 3D SPARKLING and SpSOS trajectories with varying AF (AF=15 and 20 for both,
AF=40 for full 3D). The results are presented in Fig. 4.7. Particularly, we show a slice that
includes the resolution insets present on the NIST phantom (coffin of plate 4). The latter
can be used to estimate the effective resolution. This slice consists of 5 resolution insets,
each having 2x16 circles. The diameters of these circles vary linearly from 0.8mm down to
0.4mm. The inter-circle space (measured between the centers of the circles) also reduces
linearly from 1.6mm down to 0.8mm in steps of 0.2mm.

(a) Cartesian p4 (b) Full 3D SPARKLING (c) SpSOS
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Figure 4.7 – Comparison of resolution insets for Full 3D SPARKLING (b) and SpSOS (c)
with prospective phantom scans at (i) AF=15, (ii) AF=20 as compared to Cartesian p4 (a).
Additionally, we present the results for full 3D SPARKLING trajectory at (iii) AF=40 at
the bottom-left.

We see that the intensity profile of our reconstructed MR images does not follow that of
Cartesian reference as we did not carry out coil sensitivity normalization in our reconstructions.
This can be performed using the rapid pre-scan coil sensitivity measurements done in a few
seconds. This point will be addressed in future works. Overall, we observe that full 3D
SPARKLING trajectories provide less noisy images compared to SpSOS ones. Further, it
is worth noting that at AF=10 and 20, we can distinguish in between the resolution insets
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down to 0.7mm, with an increasing noise level over the image for a higher acceleration
factor. However, we observe some resolution loss over the images based on SPARKLING
trajectories (more pronounced for SpSOS), where we see some blurring for circles of diameter
0.6mm separated by 1.2mm (taken from the center of circle). This helps us understand
the expected degradation in image resolution. Therefore, the effective image resolution is
estimated to be 0.6-0.7mm isotropic at AF=10 and 20 and is evolving toward 0.7-0.8mm at
AF=40 for full 3D SPARKLING .

(a) AF = 10 (b) AF = 15 (c) AF = 20 (d) AF = 40
SSIM = 0.964 SSIM = 0.937 SSIM = 0.918 SSIM = 0.792
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Figure 4.8 – Comparison of retrospective results for (i) fully optimized 3D SPARKLING
(top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right,
AF=10 (a), 15 (b) and 20 (c)) on in vivo human brain scans. Cartesian Reference (e) is
provided for comparison and results for full 3D trajectory at AF 40 (d) is also presented.
SSIM scores are reported for each setup.

4.4.5 In vivo
We collected in vivo data with full 3D SPARKLING and SpSOS trajectories for brain
imaging on a healthy volunteer (male, 25 y.o.). This study was approved by a national ethics
committee (CPP 100048). The volunteer signed a written informed consent form.

Retrospective studies

To understand how the trajectories perform for in vivo brain data, we repeat the earlier
retrospective study on Cartesian p4 scans acquired on the volunteer. The results of the scans
are presented in Fig. 4.8. We see that full 3D SPARKLING trajectories outperforms the
SpSOS trajectories both visually and quantitatively in SSIM metrics with maximum SSIM
of 0.964 (AF=10). Moreover we show that both SPARKLING trajectories outperform TPI
in Fig. A-6 in Appendix. Additionally, the SSIM metrics follow the similar trend as seen for
phantom data, with the SSIMs for SpSOS dropping off more rapidly from 0.93 (AF=10)
to 0.759 (AF=20). In contrast, the full 3D SPARKLING trajectories tend to preserve the
structures (SSIM scores above 0.9 at AF=15 and 20) and show some blurring artifacts only
at AF=40 where SSIM drops to 0.792. Particularly, it is interesting to note that full 3D
SPARKLING at AF=40 outperforms SpSOS at AF=20.

Prospective acquisition

Finally, we collected prospectively accelerated in vivo data at 3T on the same individual
using the same SPARKLING trajectories. We present the reconstructed images for various
accelerations factors in Fig. 4.9. They clearly show superiority of the full 3D SPARKLING
pattern compared to SpSOS. Image quality is well preserved for AF=10 and 15 and slightly
noisy at AF=20 in full 3D strategy (Fig. 4.9, top row), while it tends to get noisy at AF=15
and severely impaired at AF=20 for SpSOS strategy (Fig. 4.9, bottom row). Moreover, we
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observed that the quality of AF=15, AF=20 and AF=40 in full 3D strategy is comparable
to AF=10, AF=15 and AF=20 in SpSOS pattern respectively, allowing for an additional 2x
shorter scan time. Further, we found that the full 3D SPARKLING pattern at AF=15 is
comparable to GRAPPA Cartesian p4.

It is important to note that the volunteer slightly moved between some scans, hence
prospective image comparisons can only be carried out qualitatively. To better understand
reconstruction quality, we present zoomed in visualizations for prospective result at AF=10
in Fig. 4.10. Further, for the sake of comparison between retrospective simulations and actual
prospective scans, we also show the retrospective results for AF=10 with full 3D trajectory.
We find that full 3D strategy retains better structures of the brain in the MR image than
SpSOS, which is clearly visible in the cerebellum in the sagittal view.

The comparison with retrospective image allows us to directly identify some degradation
and loss of small details in prospective images. Potential explanations for this effect are the
T2* blurring and off-resonance artifacts, which drastically drop the effective SNR obtained
(see Fig. A-2 in Appendix). This confirms that in vivo acquisitions are more challenging.

(a) AF = 10 (b) AF = 15 (c) AF = 20 (d) AF = 40
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Figure 4.9 – Comparison of prospective results for (i) fully optimized 3D SPARKLING
(top row) and (ii) SpSOS (bottom row) for varying acceleration factors (from left to right,
AF=10 (a), 15 (b) and 20 (c)) on in vivo human brain scans. Cartesian p4 scan (e) is
provided for comparison and results for full 3D trajectory at AF 40 (d) is also presented.
The scan times are reported for each AF.

4.5 Discussion

One key aspect of optimized full 3D SPARKLING trajectories is that it results in a sampling
pattern that enforces variable density sampling in all the 3 dimensions. We hypothesized
that this allows us to efficiently under-sample the k-space acquisitions, thus making it
possible to push the acceleration factor to a larger value than what was achieved earlier,
while still maintaining a good image quality. The current work actually demonstrates that
at fixed acceleration factor, full 3D SPARKLING significantly outperforms the stacking
strategy [Laz+20a] in terms of image quality. Alternatively, we show that this gain can be
translated into shorter scan time by a factor of one third (AF=15 for full 3D vs AF=10 for
SpSOS) for a given image quality.

Further, the full 3D trajectory is constrained to pass through the center of k-space for
each shot at echo time. This ensures that we obtain the lower frequency image content
repeatedly, hence we can potentially use these trajectories for motion correction. Also, as the
center of k-space is visited repeatedly at different time intervals in scan, this allows for easy
adaptability of this trajectory for dynamic imaging like functional MRI. Such a trajectory
can also be used for correcting certain artifacts causing off-resonance effects, which are due
to static and dynamic B0 inhomogeneities (heart beat, breathing). A preliminary solution
has been proposed for static B0 inhomogeneities estimation and correction in [Dav+21].
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Cartesian Retrospective Prospective
Reference Full 3D Full 3D SpSOS

?

Figure 4.10 – Comparison of prospective results for fully optimized 3D SPARKLING (right-
left) and SpSOS (right most) with Cartesian reference (left) and retrospective full 3D
SPARKLING (center) for AF=10 (scan time = 4min 58sec). In each panel of the top row,
axial (left), sagittal (top right) and coronal (bottom right) slices are shown and a red frame
is delineated in the central part of the brain for zooming purpose. Bottom row shows the
magnified views with the same layout (axial, sagittal and coronal slices in the left, top-right
and bottom right insets, respectively).

As the developed trajectories exploit the scanner hardware constraints nearly to the
maximum, it is worth paying attention to the eddy current effects on the trajectory. To this
end, we measured the trajectory with the help of a Skope field camera [De +08] and observed
in Sec. A.1.3 that the error between the prescribed and actual trajectories is minimal (cf.
Fig. A-3).

While the current SPARKLING algorithm is generic and can be applied to any imaging
contrast a priori, we choose T ∗2 -w imaging as it allows us to keep longer Tobs hence enabling
a full exploration of 3D k-space. In order to understand the effects of T ∗2 blurring and
off-resonance, we simulated the PSF under these scenarios in Sec. A.1.2. Additionally, as we
interfaced a GRE pulse sequence (FLASH in the Siemens taxonomy) with the SPARKLING
outputs, the adaptation of this algorithm to other contrasts (e.g. T2) would potentially need
the development of a turbo spin echo (TSE) sequence that is able to play arbitrary gradients.
These developments are left for future work. However, prospective implementations of T1-w
contrast have already been done in 2D for comparison with BJORK in [Wan+21] (outside of
our group).

One limitation of SPARKLING is that the original optimization problem (5.3) is non-
convex and the fact we used a locally convergent optimization algorithm to compute a
minimizer. Hence the final solution heavily depends on its initialization. To overcome this
issue, we introduced some perturbation (uniform random noise in the k-space locations) and
illustrated in Fig. 4.4 that a larger perturbation results in a much better k-space coverage,
allowing us to reach a better minimizer to the original optimization problem. However,
there is no theoretical guarantee this approach provides a systematic better solution as the
underlying optimization process remains rather disconnected from MR image reconstruction
and the maximization of image quality.

In the same vein, another limitation of the resulting reconstructed MR images is that
they heavily depend on the target sampling distribution. We obtained our results by
parameterizing this distribution, thereby optimizing for its parameters using a grid search on
in vivo brain data. However, these optimal parameters are not generalizable for different
contrast and organs. Further, such parametrization can prevent us from using more complex
target sampling densities. To overcome this limitation, ongoing work intends to couple
SPARKLING with the learning of the target sampling density from the magnitude spectrum
of human brain MR images [CRC21]. Akin to this work, we could also jointly optimize for the
acquisition (sampling pattern) and reconstruction schemes (regularization parameters) under
MR hardware and imaging contrast constraints, either in a bilevel optimization [She+20]
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or using deep learning approaches [Wei+20; Ved+20; Wan+21; CRC22]. These extensions
would help us to take some factors, like the anatomy and the imaging contrast, into account
in the design of trajectories with perfectly matched target sampling densities for these cases.

4.6 Conclusion

In this paper, we proposed an optimization for full 3D SPARKLING k-space trajectories for
accelerated high resolution 3D magnetic resonance imaging and demonstrated its superiority
over the previously proposed stacking strategies on phantom and in vivo human brain data at
3T for the particular case of T2*-weighted imaging. We discussed the major computational
bottlenecks that prevented us earlier from proceeding towards these full 3D trajectories.
We then derived some implementations (GPU and multi-CPU) that helped us massively
accelerate the original algorithm. Our results showed that a 600µm isotropic scan on human
brain is achievable in 1min 16sec, whereas 3m 22sec is required to reach image quality
comparable to GRAPPA-4 parallel imaging. Overall, this is a significant step forward for CS
acquisitions in MRI. Future work will be devoted to the extension to 4D imaging, namely for
fMRI.
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This chapter covers content that has been submitted to a peer-reviewed journal:

• Chaithya, G R, G. Daval-Frérot, A. Massire, A. Vignaud and P. Ciuciu. “Improving
SPARKLING trajectories through Minimized Off-Resonance Effects and Gridding of
Low Frequencies”. In: under review MRM

A part of this work was also presented in an international peer-reviewed conference
with proceedings:

• Chaithya, G R, G. Daval-Frérot, A. Massire, B. Mailhe, M. Nadar, A. Vignaud
and P. Ciuciu. “MORE-SPARKLING: Non-Cartesian trajectories with Minimized
Off-Resonance Effects”. In: ISMRM. 1435. London, UK, May 2022

5.1 Introduction

Non-Cartesian (NC) sampling trajectories are crucial to have optimal k-space coverage, to
help reduce the acquisition times in Magnetic Resonance Imaging (MRI). This reduction in
scan time is instrumental in increasing patient throughput and reducing the motion artifacts

83
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as the patient spends a shorter time period in the scanner environment. In this regard a lot
of parameterized NC trajectories have been explored in the literature like radials, spirals
and rosette [Ahn+86a; Mey+92; Jac+92; Nol97; Law+09; Lus+05a]. However, based on
CS theories, efficient ways to undersample the k-space is through VDS, where the center of
k-space (low frequencies) is sampled more densely than its periphery (higher frequencies).
While the traditional NC trajectories do sample the k-space using VDS, they do not enforce
a user-defined TSD in the k-space, which could be crucial for tailoring optimum sampling
strategies based on a given target organ, contrast and coil configuration.

Recently, SPARKLING [Laz+19] was introduced as a means to optimize k-space sampling
pattern according to a prescribed TSD while each underlying NC k-space trajectory followed
the MR hardware constraints, particularly maximum gradient Gmax and slew rate Smax.
This work was successfully extended to 3 dimensions [Cha+22d] which enabled reduction
in acquisition times (nearly 4× as compared to GRAPPA 4 [Gri+02]) with negligible
degradation in retrospective reconstructed image quality.

However, a large gap was observed in the reconstructed image quality between simple
retrospective simulations and actual prospective scans (see [Cha+22d, Fig. 10]) in the
case of T ∗2 -w imaging. Such a discrepancy in prospective setting was identified [Cha+22d,
S2.B],[Dav+22] to be due to the presence of strong off-resonance effects and T ∗2 decay whose
impact is accumulated in T ∗2 -w contrast due to longer TE used to enhance the susceptibility
contribution. This effect is amplified in NC imaging and notably in 3D SPARKLING as
such trajectories have arbitrary readout directions, leading to local k-space inconsistencies.
Although these artifacts can be corrected [Sut+03] without needing any supplementary scan
for ∆B0 map [Dav+22], such corrections are computationally expensive. In this work, we
insert temporal weights into the cost function of the SPARKLING algorithm, giving us
temporally smooth k-space trajectories which present with MORE.

Additionally, another limitation of the SPARKLING trajectories is that we use affine TE
constraints, where we limit the shots to pass through the center of k-space at echo time to
obtain images at chosen target contrast. This results in strong oversampling of the center of
k-space with respect to the Nyquist criteria which can be detrimental to image quality as it
results in increased ∆B0 artifacts due to multiple trajectories crossing the center of k-space
along different trajectory paths. Further, such oversampling is sub-optimal as these extra
samples can be used to sample higher frequencies resulting in improved image reconstructions
with finer details in structures. Although this is counterintuitive to CS theories which justifies
VDS theoretically, note that CS theories are relative and do not prescribe how many samples
must be collected in practice. Having a TSD which enforces k-space samples beyond the
Nyquist criteria can lead to suboptimality. We tackle this issue by updating the constraint set
in SPARKLING algorithm giving us trajectories with gridded sampling at center of k-space.

With this, we introduce novel MORE and GoLF features which can be used individually
and in conjunction to design trajectories that exhibit minimized ∆B0 artifacts and improved
reconstructed image quality. We limit ourselves to the case of T ∗2 -w imaging where maximal
∆B0 artifacts are accumulated. Note that while this work is specifically applied to the design
of SPARKLING trajectories, the constraints and penalties developed are more generic and
could be used more widely in any trajectory optimization process including state-of-the-art
learning based NC trajectory design like PILOT [Wei+20; Ved+20], BJORK [Wan+21] and
HybLearn [CRC22].

The sections below are organized as follows. We first develop the required theory for
the case of 3D non-Cartesian imaging in Sec. 5.2, then we briefly discuss the limitations
and ways to tackle them in the current algorithm in Sec. 5.3. Later in Sec. 5.4, we proceed
to fine tune our algorithm through PSF analysis and grid-search on prospectively acquired
k-space data on 3T. Finally, we carry out benchmark studies on both in silico and in vivo
settings prospectively to demonstrate the gain in scan acceleration obtained by using these
novel improvements.
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5.2 Theory

Following the formulation in [Cha+22d], the k-space domain that is acquired for a 3D MR
volume of sizeNx×Ny×Nz over a field-of-view (FOV) FOVx×FOVy×FOVz, is defined within
[−Kx

max,K
x
max]× [−Ky

max,K
y
max]× [−Kz

max,K
z
max], with K`

max = N`
2FOV` and ` = x, y, z. For

the sake of simplicity, in what follows we assume the same spatial resolution and FOV along
the three dimensions so Kx

max = Ky
max = Kz

max = Kmax and FOVx = FOVy = FOVz = FOV.
Also, the 3D k-space sampling domain is normalized to Ω = [−1, 1]3.

We optimize the 3D k-space sampling pattern K = (ki)Nci=1 which is composed of Nc shots,
each 3D shot ki(t) = (ki,x(t), ki,y(t), ki,z(t)), being controlled by magnetic field gradients
Gi(t) = (Gi,x(t), Gi,y(t), Gi,z(t)) as follows: ki(t) = γ

2π
∫ t

0 Gi(τ)dτ , with γ the gyro-magnetic
ratio (γ = 42.57MHz/T for proton imaging). In contrast to 2D imaging, here in 3D each
Gi(t) is played by the scanner throughout the readout duration Tobs at a pace of gradient

raster time (∆t) resulting in a number of samples per shot Ns =
⌊
Tobs

∆t

⌋
. The k-space data

is later sampled at the Analog to Digital Converter (ADC) at every dwell time δt which is a
fraction of ∆t.

5.2.1 Trajectory Constraints
Hardware constraints on the maximum gradient amplitude (Gmax) and slew rate (Smax)
induce limitations in trajectory speed and acceleration, respectively. These limits can be
expressed as box constraints on the amplitude of the discrete derivatives of the k-space
trajectory (ki[n])Nsn=1, where ki[n] is the obtained by discretizing k(t) at n∆t, with ∆t the
gradient raster time. We obtain these constraints from [Cha+22d, Eq. (2)] as:

QNcA,b =


∀i = {1, . . . , Nc}, ki ∈ ΩNs ,

Aiki = bi,
‖ki‖∞ ≤ 1, ‖k̇i‖2,∞ ≤ α, ‖k̈i‖2,∞ ≤ β,

 (5.1)

where

k̇i[n] = ki[n]− ki[n− 1]
∆t

k̈i[n] = ki[n+ 1]− 2ki[n] + ki[n− 1]
∆t2

‖c‖2,∞ = sup
0≤n≤Ns−1

(
|cx[n]|2 + |cy[n]|2 + |cz[n]|2

)1/2
,

for all c ∈ ΩNs and (α, β) are obtained by normalizing hardware and Nyquist constraints to
the sampling domain Ω (see [Cha+22d, Eq. (2a-b)]).

The purpose of Ai = (ai,1|ai,2| · · · |ai,ci)T ∈ {0, 1}
3ci×Ns with

ai,j =

 axi,j [1] ayi,j [1] azi,j [1]
...

...
...

axi,j [Ns] ayi,j [Ns] azi,j [Ns]


and bi = (bi,1, . . . ,bi,ci)

T ∈ R3ci where bi,j = (bxi,j , b
y
i,j , b

z
i,j)T are to model affine constraints

on the trajectory, where j ∈ {1, . . . , ci}, and ci is the number of affine constraints on ith

k-space shot. The purpose of Ai is to select the portion of k-space shot where the constraints
need to be active and vector bi defines the specified constraints, i.e. the locations in k-space
to go through. Note that as compared to [Cha+16], here the set of affine constraints is
generalized as its number ci > 1 and the constraints themselves (Ai, bi) may vary across
shots.

In [Cha+22d], a TE constraint was used, which ensures that each shot passes through
the k-space center at TE. This is done to ensure that the same target contrast is measured
across multiple shots crossing the center of k-space at the same time point, i.e. TE. The
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index of k-space sample at TE being given by 1 ≤ kTE =
⌊

TE
∆t

⌋
≤ Ns, this corresponds to a

single constraint on every shot i, i.e. ci = 1 with:

adi,1[k] =

 1 k = kTE,∀d ∈ {x, y, z},
and ∀i ∈ {1, . . . , Nc}

0 otherwise
(5.2a)

bi,i = [0, 0, 0]T ∀i (5.2b)

This way the constraint Aiki = bi ensures that at TE, the k-space samples ki[kTE] =
[0, 0, 0]T , ∀i = 1 . . . Nc. More sophisticated linear constraints like gradient moment nulling
can be modeled through Ai and bi, by not limiting entries in Ai to be binary (see details
in [Cha+16]).

5.2.2 3D SPARKLING
From [Boy+16; Cha+17; Laz+19; Cha+22d] we optimize the 3D trajectory K ∈ ΩN with
N = Nc ×Ns sampling points using the SPARKLING algorithm:

K̂ = arg min
K∈QA,bNc

FN (K; Π) =
[
F a
N (K; Π)− F r

N (K)
]

(5.3)

where F a
N (K; Π) is the attraction term which ensures the sampling pattern K follows a

prescribed TSD Π and F r
N (K) the repulsion term to avoid clustering of samples. From

[Cha+22d; Laz+19]:

F a
N (K; Π) = 1

N

N∑
n=1

∫
Ω
‖x−K[n]‖2 Π(x)dx , (5.4a)

F r
N (K) = 1

2N2

∑
1≤n,n′≤N

‖K[n]−K[n′]‖2 . (5.4b)

The sampling pattern K is optimized using projected gradient descent algorithm, as described
in [Cha+22d, Algorithm 1].

In practice, the optimization is performed through multi-resolution (see [Cha+22d,
Sec.II-E]) which starts by spreading NRmax = N/2Rmax samples at the maximal Rmax = 5
decimation levels and iterates through a dyadic process, i.e. NRmax−R = 2RNRmax for R = 1
to 5 (N0 = N). This is performed to ensure that the optimization is carried out with faster
convergence when we coarsely optimize the k-space trajectory initially (R = Rmax). Then
optimization is refined at finer resolutions as we approach convergence (R = 1).

5.3 Methods

In this section, we briefly describe two major extensions of SPARKLING that provide
improved reconstructed image quality with reduced off-resonance artifacts.

5.3.1 MORE-SPARKLING
From [Fes10; Don20], the measured k-space samples Y = (yi)Nci=1 across the Nc shots are
given by:

yi(t) =
∫
FOV

xr e−(αr+ıωr)t e−2ıπ(ki(t)·r) dr (5.5)

with xr the transverse magnetization of the object, αr the T ∗2 decay and ωr the off-resonance
at voxel r. Note that the temporal dependence of Y on αr and ωr, was not considered in
the original SPARKLING formulation. Due to this, the SPARKLING trajectories result
in a sampling pattern where multiple samples present nearby in k-space are collected at
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different times, thereby inducing artifacts. To observe this, we present temporal sampling
plot for mid-plane of k-space along z-axis in Fig. 5.1(A), where we use rainbow coloring
scheme to show the time at which the k-space sample is collected in each shot. We see that
in region marked with blue arrow, for conventional SPARKLING trajectories, the k-space is
not smooth temporally, resulting in trajectories that may be locally inconsistent leading to
amplified ∆B0 artifacts.

We mitigate the impact of B0 inhomogeneities by adding temporal weights in the repulsion
term F r

N (K) to obtain F r
N,τ (K):

F r
N,τ (K) = 1

2N2

∑
1≤n,n′≤N

e

(
|tn−tn′ |·τ

2Rmax−R

)
‖K[n]−K[n′]‖2 (5.6)

where k-space sample location K[n] is sampled at time tn = n∆t after the RF pulse during
Observation time (TObs) and τ ≥ 0 is a scalar user-defined repulsion weighting parameter.
The purpose of the weighting 1

2Rmax−R is to shape the amount of temporal repulsion added
as a function of the current decimation level, where we have a stronger temporal repulsion
at initial stages of the algorithm. As we approach convergence and finer resolution levels
(lower R), the amount of temporal weighting is significantly reduced to prevent the presence
of unwanted k-space holes.

Notice that when tn ≈ tn′ , then F r
N,τ ≈ F r

N , and we are still solving the original problem
in Eq. (5.3). In contrast, when tn 6= tn′ and τ ≥ 0, then F r

N,τ > F r
N , thereby the sample

points are facing a stronger repulsion, pushing them apart. This way, the k-space locations
which are sampled at different time points are pushed apart, thereby ensuring a smooth
temporal sampling of the k-space while also satisfying the TSD Π. These updated k-space
sampling trajectories are presented in Fig. 5.1(B)-(F) and moving forward, we call these
trajectories as MORE-SPARKLING . Note that when τ = 0, F r

N,τ = F r
N and the resulting

trajectories are the conventional SPARKLING .
With this, we generate MORE-SPARKLING trajectories, with TSD which takes the TE

constraints into account (see [Laz+19, Sec. 2.3]) for varying τ values and present them in
Fig. 5.1(A)-(F). We observe that strong weighting of this repulsion term with an increased τ
results in k-space holes (marked by red arrows), which is detrimental to optimal reconstructed
image quality. To prevent this, τ needs to be grid-searched appropriately to enforce temporally
smooth k-space sampling, while avoiding undesirable k-space holes. The effect of varying τ is
presented in Fig. 5.1. In our studies (Sec. 5.3.1), we observed that τ = 1.0 (Fig. 5.1D) resulted
in maximal signal recovery with minimal impact of the k-space holes on final reconstructed
image quality.

5.3.2 GoLF-SPARKLING
Another concern of traditional SPARKLING trajectories is the presence of TE constraints on
the k-space sampling trajectories. These constraints are specifically added to the SPARKLING
formulation to ensure that the center of k-space or the low frequencies are sampled at the
same time after the RF pulse (i.e. at TE) as described in Sec. 7.2.7.

Consequently, resulting k-space trajectories sample the central frequencies at a rate higher
than Nyquist rate, resulting in multiple samples collected within a Cartesian k-space voxel.
Although such oversampling is fully justified by CS theory and VDS, in practice it leads to
accumulation of ∆B0 artifacts as multiple samples are acquired in the same Cartesian k-space
voxel through an integration over different k-space trajectory paths (see Eq.(5.5)). Instead,
these samples could be dispatched in other portions of k-space (e.g. in higher frequencies) to
increase its coverage at no additional cost and provide more details in the images.

This oversampling of the center can be tackled partially by updating the TSD by taking
the TE point constraint into account (see [Laz+19, Sec. 2.3]) and reducing the density around
the center of k-space to limit the number of samples per Cartesian k-space voxel. However,
we don’t fully mitigate this problem as we still end up with Nc k-space sample points at the
center of k-space [0, 0, 0]T causing nearby regions to be still sampled densely. This problem
cannot be addressed plainly with removal of TE point constraint and using temporal weights
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Figure 5.1 – Comparison of different MORE-SPARKLING trajectories with vary-
ing temporal weights (τ):
Comparison of different SPARKLING trajectories generated with Nc = 3639 (AF=20),
Ns = 2048 (A) without temporal weights (τ = 0) i.e. original SPARKLING , and with τ
varying from 0.2 to 1.2 as shown from (B) to (F), respectively. A rainbow coloring scheme
overlays the sampling trajectories to encode the time over k-space samples.

(from Sec. 5.3.1) to achieve temporally smooth sampling within Nyquist criteria, as then
the resulting sampling pattern would not sample the center of k-space at TE to obtain the
desired target contrast.

In order to efficiently mitigate such issues of oversampling, note that an optimal way
to sample a region of k-space at Nyquist with minimum redundancy is through Cartesian
sampling. We use this fact and add affine constraints into our projection set QNcA,b such
that we carry out Cartesian sampling at center of k-space. Each k-space sample shot
ki,∀i ∈ {1, . . . , Nc}, is constrained to pass through the lower frequencies in the form of a
Cartesian line as shown in Fig. 5.2. This constraint is enforced by crafting individual Ai

and bi in a specific manner for each shot i.
In practice, we cover a sphere S in the center of k-space defined in Ω with Cartesian

sampling as shown in Fig. 5.2(A) where we present GoLF-SPARKLING trajectories for
Nc = 256 and Nx = Ny = Nz = Ñ = 64. The lower resolution and number of shots
is particularly chosen for better visualization. The entire k-space trajectory can be split
into a non-Cartesian part (blue, Fig 5.2(B)) and a Cartesian part (green, Fig 5.2(C)).
Further, for mathematical simplicity, we assume the image matrix sizes to be equal, i.e.
Ñ = Nx = Ny = Nz, while extensions to non-isotropic matrix sizes can be carried out as the
k-space sampling space is normalized in Ω ∈ [−1, 1]3. Particularly, we cover S with straight
line readouts along x as shown in Fig. 5.2(E), and cover a circle of radius rS in ky and
kz encoding directions as seen in Fig. 5.2(D). Thus, the pixel size of the Cartesian grid in
k-space is given by 2/Ñ . As each k-space shot forms a Cartesian line, from Fig. 5.2(F) we
obtain the area in the central slice with Cartesian sampled circle as:

Area = πr2
S '

(
2
Ñ

)2

Nc .
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Figure 5.2 –GoLF-SPARKLING trajectories for Nc = 256, with Ñ = 64 (for clearer
visualization):
(A) GoLF-SPARKLING trajectory which is composed of (B) non-Cartesian SPARKLING
portion in blue and (C) gridded low frequencies in green. Slice profile of the Cartesian
portion of the k-space trajectory is presented along (D) kx = 0 plane and (E) ky = 0 plane.
(F) The ordering of Nc k-space shots in sphere S at Nyquist criteria.

With this, we obtain rS = 2
Ñ

⌊√
Nc
π

⌋
. Based on Nyquist criteria, we need to sample at least

every ∆x = 2
Ñ

to have non-aliased reconstructed image. However, as the k-space data is
sampled at every dwell time δt < ∆t, in practice, the scanner can play k-space trajectory
to take at least ∆x∆t

δt samples at every ∆t. Generalizing this, we introduce k-space velocity
at center of k-space as a dimensionless parameter v ≥ 0, which is the number of Nyquist
voxel steps ∆x taken in readout direction per gradient raster time ∆t. Particularly, k-space
trajectory takes steps of size v∆x < ∆x∆t

δt at every ∆t. The purpose of v is to efficiently
utilize the gradient hardware in traversing the center of k-space at maximum feasible speed
while maintaining Nyquist criteria after sampling at ADC at every δt.
Say the Cartesian portion of ith k-space shot ki, starts as a k-space line at xsi and ends at
xei , then we obtain the number of samples at center of k-space for this shot as follows:

NK
i =

⌈
xei − xsi
v∆x

⌉
. (5.7)

The k-space locations of these Nyquist points are given by:

x`i = xsi + ` (xei − xsi )
NK
i

, ∀` ∈ {1, . . . , NK
i } . (5.8)

This results in ci = NK
i constraints which are applied to ith k-space shot ki at NK

i indices
between kLi =

⌊
Nc−NKi

2

⌋
and kHi =

⌊
Nc+NKi

2

⌋
, where L and H stand for lower and higher



90 CHAPTER 5. REDUCING ARTIFACTS IN SPARKLING

indices, respectively. With this, Eq. (5.2) updates as follows:

adi,j [k] =

 1 for k = kLi + j j ∈ {1, . . . , ci}
i ∈ {1, . . . , Nc} d ∈ {x, y, z}

0 otherwise
(5.9a)

bi,` = x`i ∀` ∈ {1, . . . , NK
i } . (5.9b)

Then, the affine constraints in matrix formulation in Eq. (5.2) read: ki[kLi + `] = x`i ,∀` ∈
{1, . . . , NK

i } match the affine constraints in QNcA,b. We call this update to SPARKLING as
Gridding of Low Frequencies or GoLF.

5.3.3 TSD characterization for GoLF
In this section, we derive the mathematical expression for the TSD in k-space for the
particular case of GoLF-SPARKLING , such that we enforce Nyquist sampling at the center
of k-space. It is important to note that as we add constraints on k-space trajectories in the
center of k-space, the corresponding TSD is also affected. For simplicity, we derive the TSD
for the specific case of v = 1 i.e. we sample 1 Nyquist voxel every ∆t. However, in Sec. B.1,
we derive the TSD for the general case of v in detail.

Following [Cha+22d], we parameterize the TSD as radially isotropic which decays at an
inverse polynomial rate D and reaches a constant plateau in center of k-space up to a cutoff
frequency C. For the case of GoLF, we set C = rS and parameterize the TSD in k-space as
follows:

ΠrS ,D(x) =

κ |x| < rS

κ
(
rS
|x|

)D
|x| > rS

(5.10)

where κ, the normalizing constant is the density of the plateau, which for GoLF trajectories
must match the density for Nyquist criteria.

For a total number of gradient raster sampling points N = Nc × Ns, the number of
samples within the center of k-space (|x| < rS) is given by N|x|<rS :

N|x|<rS = Nκ
4
3πr

3
S . (5.11)

With Cartesian sampling in the center of k-space, we sample once per Nyquist voxel of side
length ∆x. Thus, the number of Cartesian Nyquist sample points NNyq in the center of
k-space is given by:

NNyq =
4
3πr

3
S

∆x3 . (5.12)

Then the Nyquist sampling criteria are enforced for the center of k-space by setting N|x|<rS =
NNyq to get:

κ = 1
N∆x3 . (5.13)

Finally, as ΠrS ,D(x) is a distribution, we need to ensure that it is normalized (i.e. sum
to 1) giving us (see B.1 for details):

κ4π
(
r3
S
3 + (rS)D − r3

S
3−D

)
= 1 . (5.14)

With this, the decay D can be obtained by solving Eq. (5.14) iteratively, and we present it
and the corresponding rS at the top of Fig. 5.3, as a function of AF specified by AF= Ny×Nz

Nc
.

Additionally in Fig. 5.3, we see that D increases and rS (i.e. C) decreases as AF increases,
hence higher frequencies are more sparsely sampled resulting in a more peaky TSD for higher
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Figure 5.3 – Characterization of cutoff C and decay D for GoLF-SPARKLING trajectories
with v = 1 and varying AF (specified at top) and its corresponding number of trajectories
(specified at bottom).

AF values. However, in the asymptotic regime, D is nearly 2.2, while even at high AF=70,
prescribed by Nc = 1141, we still have rS = 12% of center of k-space sampled on a grid.

In the case of NC sampling at Nyquist rate in a region, we need to use Poisson disk sampling.
Particularly in 3D, this is equivalent to filling up the k-space with a sphere of diameter ∆x
(rather than a Nyquist voxel of side length ∆x). Hence, as already known [BKZ04b, Chap.
13] with NC sampling we need more samples to satisfy the Nyquist criteria as compared to
Cartesian sampling. The ratio of number of Nyquist samples with 3D NC imaging (Nnc) to
the case of 3D Cartesian imaging (N c) is given by the inverse of ratio of the corresponding
volumes:

Nnc

N c
= ∆x3

4
3π
(∆x

2
)3 = 6

π
. (5.15)

Note that at the edges where we switch from Cartesian sampling to NC sampling, we
need a larger target density to ensure we still satisfy Nyquist criteria. We take this into
account in our detailed generic formulation in Sec. B.1.

Finally, we can apply 3D Inverse fast Fourier transform (IFFT) on the k-space data
within the gridded sampling region (see Fig. 5.2(C)) to obain an artifact-free low resolution
version of the 3D MR images. Such volumes can be computed for all coils to estimate the
coil sensitivity maps through self-calibration [El +18b] without any additional scan, which
can be instrumental in the image reconstruction process.

5.3.4 MORE + GoLF SPARKLING
In the above sections, we introduced 2 novel important features to the vanilla SPARKLING
trajectories, which help in reducing artifacts and improving the reconstructed image quality.
Observe that MORE feature involves only a change to the repulsion term F rN,τ , GoLF involves
a change to the constraint set QNcA,b and a corresponding change to the TSD (Π) and thereby
the attraction term F aN,Π. Hence, MORE and GoLF features are totally independent and
can be combined to form MORE+GoLF-SPARKLING trajectories with temporally smooth
k-space sampling pattern and gridded sampling in center of k-space.

5.3.5 MRI acquisition parameters
We carried out in silico and in vivomeasurements to validate and benchmark the improvements
of the new trajectories MORE and GoLF. In all the experiments, the target resolution
is 0.6mm3 isotropic, with Nx = Ny = 384 (FOVx = FOVy = 23cm) and Nz = 208
(FOVz = 12.48cm). We use an AF of 20 (Nc = 3969), except in the case of variable AF
study. All the prospective scans were carried out on a clinical 3T MR system (Magnetom
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Figure 5.4 – Proportion of total energy around the center of PSF for varying
levels of ∆B0 .
The accumulated proportion of energy for MORE-SPARKLING trajectories with varying τ
from 0 to 1.2. The energy of the 3D PSF within a radial shell with radii at different distances
from center shown on x-axis on a log scale. The PSF is obtained with a constant T ∗2 = 60ms
and off resonance frequencies of (A) 0 Hz, (B) 100 Hz and (C) 250 Hz.

PrismaFIT, Siemens Healthcare, Erlangen, Germany) where the k-space data was acquired
using a Siemens 64 channel Head/Neck coil. T ∗2 -w images were obtained with flip angle of
15◦ and slab selective excitation with TE of 20ms and TR of 37ms. The k-space data was
acquired with TObs= 20.48ms (Ns = 2048, hence ∆t = 10 µs) and data was sampled by the
ADC at δt = 2 µs. Additionally, a ∆B0 map was acquired with a 2D gradient echo sequence
in the same FOV at 2mm isotropic resolution with TE1 = 4.92ms and TE2 = 7.38ms. These
TEs enable the coverage of ∆B0 inhomogenieties in range [−203, 203]Hz, resulting in 1 phase
wrap present in all references which was unwrapped using [Her+02]. For in silico scans,
we used the NIST/ISMRM MRI system phantom [21] for calibrations and testing as this
phantom can be used for assessing geometry distortions, image uniformity and resolution.
Our in vivo scans was done on one volunteer with approvals from local and national ethical
committees for the protocol (CPP 100048), and after a written consent was obtained from
the volunteer.

5.3.6 MR image reconstruction

All the reconstructions for the data from SPARKLING trajectories were carried out off-
line using self calibrating MR reconstruction [El +18b] using pysap-mri1, a plugin for
PySAP2 [Far+20a]. We used the synthesis formulation of self-calibrated CS reconstruction
with `1-norm regularization in symlet-8 wavelet domain to promote sparsity. Optimiz-
ation of this cost function was performed using Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA). To reduce computational complexity, k-space data was coil compressed
to 10 channels using the principal component analysis-based method proposed by [Bue+07].
For Cartesian references, the corresponding magnitude and phase DICOMs were directly
obtained from the scanner.

5.4 Results

In this section, we present the results for different experiments carried out for optimizing
parameters in the new SPARKLING trajectories using MORE and GoLF features. Later,
we proceed to present the overall improvement observed when combining MORE and GoLF
features under optimal settings. All the proposed experiments were performed in a prospective
validation setting i.e. in truly accelerated imaging scenarios.

1https://github.com/CEA-COSMIC/pysap-mri
2https://github.com/CEA-COSMIC/pysap
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5.4.1 MORE: Optimizing τ
In this experiment we optimized the parameter τ for MORE-SPARKLING through two
studies: (i) Analysis of the PSF and (ii) through prospective study.

PSF

We computed the PSF of the MORE-SPARKLING trajectories for different values of τ and
show the results in Fig. 5.4. The details on how to compute the PSF are given in Sec. B.2. For
optimal visualization of 3D PSF, we present accumulated energies within concentric radial
shells with different radii as a percentage of total energy. These plots help us understand
how peaky the PSF is and having a higher percentage of energy within a smaller central
portion of k-space leads to minimal blurring and reduced artifacts in the reconstructed image.
Varying levels of ∆B0 were superimposed to the k-space data to understand the behavior of
trajectories in different settings. For T ∗2 -w imaging at 3T, the PSF was obtained with T ∗2 =
60 ms (mean T ∗2 value for gray and white matter [Pet+07])and the off resonance frequencies
were chosen at 3 levels: (A) Ideal case with no ∆B0 (0 Hz), (B) medium level of ∆B0 (100
Hz) and (C) maximum level of ∆B0 (250 Hz). We also present similar results for 1.5T and
7T in Fig. B-1 in Sec. B.2.

From Fig. 5.4 we see that for τ = 0 (SPARKLING trajectory), the PSF strongly degrades
when ∆B0 increases, with only 20% of energy in the 20% of the central region. In contrast,
we observe that with addition of temporal weighting (τ > 0), this PSF is improved strongly
with nearly 60% of energy within 4% (respectively, 8%) of the central region around the
peak at 100 Hz (resp. at 250Hz). Further, we see that the improvement of the PSF with
increase in τ beyond τ = 0.8 is very limited and incremental. With this study, we conclude
that τ ≥ 0.8 is the optimal setting for MORE SPARKLING the case of T ∗2 imaging at 3T.

Prospective study

As described in Sec. 5.3.1, the amount of temporal repulsion or τ needs to be grid searched to
obtain an optimal value which maximally reduces the impact of ∆B0 without causing artifacts
induced by k-space holes in sampling patterns. For this, we obtained MORE-SPARKLING
trajectories with varying τ from 0 to 1.2, and a prospective study was run first on the NIST
phantom (Fig. 5.5(1)) and then in vivo on a healthy volunteer (Fig. 5.5(2)).

For phantom, volumes were first collected in a standard acquisition setup with low
artifacts (Fig. 5.5(1a)), to observe any loss in image quality due to k-space holes emerging
from large τ . To understand the extent to which MORE-SPARKLING trajectories can
mitigate ∆B0 artifacts, strong B0 inhomogeneities were added by degrading the machine
B0 shimming with spherical harmonics (Fig. 5.5(1b)). The prospective study on phantom
(Fig. 5.5) shows significant improvements over B0 inhomogeneities where an increase in τ
results in minimized blurring and signal recovery in regions marked with green arrow (see
Fig. 5.5(1b)F).

Further, we tested the same trajectories in the in vivo environment and present results
along mid axial plane (Fig. 5.5(2a)) and mid-sagittal plane (Fig. 5.5(2b)). Maximal signal
losses are seen for SPARKLING trajectories shown with red arrow as shown in Fig. 5.5(C).
Additionally, we clearly see a gradual signal recovery when increasing τ in the same marked
regions. Finally, we observe that τ = 1.0 is optimal in terms of maximal signal recovery with
minimal k-space holes (from Fig. 5.5(F)).

In both degraded acquisition settings, Fig. 5.5 demonstrates that accelerated Cartesian
imaging (GRAPPA-4) is more robust to ∆B0 inhomogeneities than MORE-SPARKLING due
to increased temporal smoothness (i.e. imposed by a one-dimensional readout) in Cartesian
sampling. However, these Cartesian scans are 6.3-fold longer.

5.4.2 GoLF: Varying trajectory velocity at the center of k-space
Based on Eq. (5.7), the velocity of the Cartesian portion of the k-space trajectory at the
center of k-space can be controlled using v. Under the maximum gradient strength of
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Figure 5.5 – Prospective results with varying temporal weights (τ) on phantom
and in vivo (brain imaging):
Different trajectories are compared on (1) NIST phantom with (a) standard B0 and (b)
added B0 inhomogeneities by degrading the shim and (2) in vivo volunteer along (a) axial
and (b) sagittal planes. SPARKLING (τ = 0) and MORE-SPARKLING acquisitions are
carried out at AF=20 (scan time = 2min30sec) and for varying values of τ as shown in
the figure (C)-(G). Further we present (A) GRAPPA 4-fold (p4) acquisition as Cartesian
reference (scan time = 15min30sec) and (B) the corresponding ∆B0 field map. The regions
with maximum degradation due to ∆B0 is marked with red arrows in (C) and the regions
with improvement in signal recovery and image quality are marked with green arrows in (F).

40mT/m and the acquisition parameters as described in Sec. 5.3.5, a maximum of 3.92
Nyquist steps can be taken by the MR scanner in a given ∆t (see Sec. B.3). High velocities at
center of k-space is useful to result in longer k-space trajectory, which leads to larger k-space
coverage. However, in the prospective setting, traversing the center of k-space at higher
velocity may lower the SNR as the MR signal in k-space is accumulated over a shorter time
interval. Consequently, there is a need to find an optimal value of v that reaches the best
trade-off between an improved k-space coverage and a limited SNR loss to avoid degrading
too much image quality.

Prospective scans were done on the NIST phantom for GoLF-SPARKLING trajectories
with v = 0.6, 1, 2 and 3 (Fig. 5.6). The NIST phantom can help optimally tune v as it
embodies resolution insets, which can be used to quantify image quality (see [Cha+22d,
Sec IV.D2]). Overall, in the axial plane, Fig. 5.6 shows an increase in artifact level appearing
first at v = 2 and becoming more prominent for v = 3, as marked with red arrow in the
bottom row. Further, when zooming into the resolution insets, for v > 1, we see significant
losses in the details. This careful analysis indicates that v ≤ 1 is better for T ∗2 -w imaging
at 3T. Within this range, for the sake of broader k-space coverage we chose v = 1, i.e. the
highest possible velocity to spend minimum time in the center of k-space and collect more
samples in the high frequency region, resulting in sharper edges (green arrow in the bottom
row).

5.4.3 Joint MORE and GoLF SPARKLING
In this section, we demonstrate the overall gain obtained when combining MORE and GoLF
to minimize ∆B0 artifacts and improve image quality through gridded sampling at center of
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Figure 5.6 – Prospective results for GoLF-SPARKLING with varying trajectory velocity at
the center of k-space on NIST phantom with k-space velocity as (A) v = 0.6, (B) v = 1, (C)
v = 2 and (D) v = 3. We show slices from each orientation (top row), the zoomed in region
into the resolution insets (mid-row) and zoomed in region in axial plane (bottom row).

k-space. For doing so, in Fig. 5.7 we present the in vivo results at AF = 20 with SPARKLING
, MORE-SPARKLING , and finally their combination GoLF+MORE-SPARKLING .

As predicted, MORE-SPARKLING appears more robust than classic SPARKLING to
∆B0 inhomogeneities and present minimized artifacts. With GoLF+MORE-SPARKLING
we observe overall a clear gain in image quality with significant reduction in noise levels and
closer contrast to the Cartesian reference, paving the way towards improved clinical use of
the SPARKLING trajectories in the near future.

5.4.4 Varying acceleration factors (AF)
Prospective k-space data was also acquired in vivo from the same healthy volunteer at varying
AF values from 15 to 50 for both MORE-SPARKLING and GoLF+MORE-SPARKLING
trajectories. The aim of this experiment was to assess how image quality evolves as a
function of scan time. The results are presented in Fig. 5.8. Overall, we observe that
GoLF feature is crucial and provides less noisy and more detailed images as compared to
the sole MORE-SPARKLING trajectories. The image quality is preserved up to AF=20
for GoLF+MORE-SPARKLING trajectories while we observe degradation at AF=20 for
MORE-SPARKLING . Additionally, a direct diagonal comparison can be drawn between the
two approaches: We observe that image quality at AF=20, AF=30, AF=40 and AF=50
for GoLF+MORE-SPARKLING trajectories is comparable to that of MORE-SPARKLING
trajectories at AF=15, AF=20, AF=30 and AF=40, respectively.

5.5 Discussion and Conclusions

Arbitrary readout directions in non-Cartesian MRI leads to improved k-space coverage,
but may cause increased off-resonance artifacts due to accumulation of ∆B0 from different
arbitrary trajectory paths. This major issue was observed in SPARKLING trajectories,
particularly in the case of T ∗2 -w imaging due to larger TObs (i.e. readouts) and TEs. In
this work, we introduced two important features for SPARKLING trajectories to result in
improved reconstructed images: MORE and GoLF.
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Figure 5.7 – Comparison of prospective results for on healthy volunteer at AF=20 (scan
time = 2min30sec) with (B) conventional SPARKLING , (C) MORE-SPARKLING and
(D) GoLF + MORE-SPARKLING trajectories. We have also presented (A) a Cartesian
reference obtained with 4-fold GRAPPA acceleration (scan time = 15min30sec).

Through MORE, we introduced a temporal weighting in the traditional SPARKLING
optimization problem which takes the temporal nature of the sampled data into account.
The optimized trajectories resulted in temporally smoother k-space sampling, which led to
reduced off-resonance artifacts with limited blurring and strong signal recovery in regions
with large ∆B0 . This temporal weighting can also be added to other k-space sampling
pattern optimization problems, making this feature more generic and applicable widely to
non-Cartesian MRI. For instance, these temporally smooth sampling patterns are extremely
beneficial for X-Nuclei imaging where the values of T2 relaxation times are small. MORE-
SPARKLING trajectories sample a given region of k-space at the same time during scan
leading to a stable signal level and overall an improved image quality. Preliminary data shows
that center-out version of MORE-SPARKLING with shorter Tobs and utra-short TE were
applied to Sodium Imaging in [Bap+22b] and were shown to outperform the state-of-the-art
twisted projection imaging (TPI) [Boa+97] with clearer visibility in brain structure. In the
latter context, further comparison with improved FLORET trajectories [Pip+11b; RAP17]
would be insightful.

Cartesian sampling can sample a given region of k-space with minimum redundancy
when sticking to the Nyquist criteria. Also, such sampling results in structured off-resonance
artifacts, which can be corrected with simple post-processing. In GoLF, we incorporated
these features of Cartesian sampling into the SPARKLING framework through more general
affine constraints and adaptation of the TSD to match these Nyquist criteria constraints. The
result was a significant decrease in artifacts and overall an improved image reconstruction
quality.

Through this work, we introduced a novel compound sampling approach to measure the
k-space with trajectories having both Cartesian and non-Cartesian parts to extract the best



5.5. DISCUSSION AND CONCLUSIONS 97

of both worlds. With the GoLF feature, through Cartesian sampling at center of k-space,
we can quickly obtain sensitivity maps in all our scans through simple IFFT of this central
k-space data. As an extension to this, we can now incorporate parallel imaging methods
like GRAPPA [Gri+02], SENSE [Pru+99] and CAIPIRINHA [Bre+05] to further increase
the AF or increase the percentage of center of k-space sampled with Cartesian sampling,
resulting in further improved image clarity.

Another extension to GoLF involves having the same k-space trajectory passing through
the center of k-space as Cartesian line multiple times, resulting in a larger portion of center
of k-space sampled with Cartesian sampling. This coupled with a high trajectory velocity
(like v = 3), results in trajectories closer to echo planar imaging (EPI). Such trajectories
can be helpful in achieving extremely high AF, which is crucial for imaging modalities like
functional MRI. These extensions and specific applications to different modalities will be
addressed in future works.

Concluding, we applied the above two features to SPARKLING framework, resulting in
improved reconstructed image quality with reduced off resonance artifacts and noise level as
well as clearer visibility in the structures. Using both features in conjunction allows us to
accelerate the scans at unprecedented speeds, enabling to reach higher AF with significantly
reduced degradation in image quality. As of now, we can speed up scans by 6.3 times
compared to GRAPPA-4, leading to a 600 µm isotropic resolution scan in 3D T ∗2 -w imaging
possible in just 2.5 minutes at 3T with negligible degradation in image quality.

] ] ]
] ]
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Figure 5.8 – Varying AF study on prospective in vivo:
Comparison of prospective results at varying AF on a healthy volunteer with (A) MORE-
SPARKLING and (B) GoLF + MORE-SPARKLING trajectories with τ = 1 at (1) AF=15,
(2) AF=20, (3) AF=30, (4) AF=40 and (5) AF=50. The corresponding number of shots
and scan times are also reported in the y-axis.
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This chapter covers content that has been published in a peer-reviewed Conference:

• Chaithya, G R, Z. Ramzi and P. Ciuciu. “Learning the sampling density in 2D
SPARKLING MRI acquisition for optimized image reconstruction”. In: 29th European
Signal Processing Conference (EUSIPCO). Dublin, Ireland, Sept. 2021, pp. 960–964

The SPARKLING algorithm was originally developed for accelerated 2D magnetic reson-
ance imaging (MRI) in the compressed sensing (CS) context. It yields non-Cartesian sampling
trajectories that jointly fulfill a target sampling density while each individual trajectory
complies with MR hardware constraints. However, the two main limitations of SPARKLING
are first that the optimal target sampling density is unknown and thus a user-defined para-
meter and second that this sampling pattern generation remains disconnected from MR
image reconstruction thus from the optimization of image quality. Recently, data-driven
learning schemes such as LOUPE have been proposed to learn a discrete sampling pattern,
by jointly optimizing the whole pipeline from data acquisition to image reconstruction. In
this work, we merge these methods with a state-of-the-art deep neural network for image
reconstruction, called XPDNet, to learn the optimal target sampling density. Next, this
density is used as input parameter to SPARKLING to obtain 20x accelerated non-Cartesian
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trajectories. These trajectories are tested on retrospective compressed sensing (CS) studies
and show superior performance in terms of image quality with both deep learning (DL) and
conventional CS reconstruction schemes.

6.1 Introduction

Compressed sensing (CS) in MRI [Lus+07] has led to a large reduction in scan time while
maintaining a reasonable reconstructed MR image quality. Practically, CS is implemented by
undersampling pseudo-randomly the k-space according to a variable sampling density [Puy+11;
Cha+13; Cha+14; Adc+17; Boy+19]. The sampling pattern may be composed of multiple
individual Cartesian lines (Cartesian Sampling), in which case variable density sampling (VDS)
is implemented only along the phase encoding dimension. To go to higher reduction in
scan times, non-Cartesian sampling is really helpful as it permits the implementation of 2D
VDS with the help of non-Cartesian trajectories, such as radial spokes [Lau73] and spiral
interleaves [Ahn+86a]). Although radial and spiral sampling are widespread, they are not
really optimal as radial spokes don’t cover the k-space perfectly and spiral interleaves do not
exactly match a prescribed sampling density. Hence, severe artifacts impede image quality
during CS reconstruction.

The Spreading Projection Algorithm for Rapid K-space samplING, or SPARKLING [Laz+19]
has been introduced as an iterative scheme that optimizes for each k-space trajectory to
be compliant with MRI hardware constraints (particularly maximum gradient and slew
rate constraints), while ensuring that the overall sampling pattern obtained with all the
trajectories follows a target sampling density. Further, the algorithm ensures that optimized
k-space sampling pattern does not have any local clusters, leading to locally uniform sampling
patterns. This algorithm was extended to 3D [Laz+20a; Cha+22d] and showed superior
performance in both terms of a peaky point spread function and image quality.

However, a major drawback of SPARKLING algorithm is the need to setup a target
sampling density as an input to the algorithm. In our earlier studies, we relied on heuristic
methods to set this sampling density. The latter was parameterized to be radially decaying and
its optimal parameters (decay, cutoff) were grid searched during retrospective reconstruction
studies in which image quality was maximized as a function of optimized trajectories for
varied target densities. However, this approach is too computationally expensive. Also, with
a parameterized target density, the search space is too constrained, preventing us to obtain
organ, imaging-contrast or orientation-specific sampling schemes. One way to tackle this
problem is by learning the target sampling density using data-driven approaches.

In [Kno+11], the authors proposed a naive approach to choose the target sampling density
by averaging the power spectra of multiple MR images in a dataset. This method results
in sampling densities that enforce denser sampling in the low frequencies. In [Kno+11]
the authors showed that this approach outperforms standard VDS and remains robust
to variability in anatomy and orientation. However, this method focuses purely on the
MRI dataset and is agnostic to the reconstruction technique. All MRI reconstruction
algorithms enforce a prior (like sparsity in the wavelet or image gradient domain). Recent
deep learning (DL) reconstruction algorithms [Kno+20; Muc+21b; RCS20] have learned
more complex priors based on the organ or contrast-specific dataset. The target sampling
density can be more efficient if it takes these priors into account and enforce denser samples
in regions where the degree of uncertainty associated with such priors for reconstruction is
higher.

More recently, methods like [She+20; Bah+20a] learn the sampling pattern for MRI in a
data-driven manner while optimizing for image quality at the reconstruction stage. In the
deep learning setting, LOUPE [Bah+20a] jointly optimizes the sampling density and the
weights of a U-net architecture for image reconstruction. However, these studies are limited
to Cartesian sampling. Most appealing contributions [Wei+20; Ved+20] tend to directly
learn the trajectories in a data-driven manner under MR hardware constraints. Particularly,
in [Wei+20], the authors use multi-resolution to overcome the problem of a large number
of trainable parameters which crops up in such direct optimization. However, the final
trajectories were similar to perturbed versions of the initialization.
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In this work, we use the target density obtained by LOUPE as an input to the SPARKLING
algorithm to generate 2D SPARKLING non-Cartesian trajectories. We carry out retrospective
studies and compare them with those that result from other densities such as the average
(log-)power spectra over the fastMRI dataset. We perform image reconstruction using both
CS technique and the newly developed NC-PDNet [RSC21a] architecture which is a density
compensated unrolled neural network for non-Cartesian MRI reconstruction. We conclude
that the proposed solution (LOUPE+2D SPARKLING) outperforms other VDS approaches
in terms of image quality.

6.2 Materials and methods

Here, we detail the methods used to optimize for sampling density and thereby how the latter
is injected as an input to SPARKLING algorithm to generate non-Cartesian trajectories. We
later study the performance of the corresponding sampling schemes on retrospective MR
image reconstruction studies.

6.2.1 2D Non-Cartesian trajectories
Throughout this work, we follow the formulation we developed in [Cha+22d], for the case of
2D imaging. Let the MR image size be N ×N , over a field of view F × F . Then the 2D
k-space of the image is defined in [−Kmax,Kmax]2, with Kmax = N

2F . In all our trajectories,
we kept N = 320 and F = 0.23 m. For the sake of simplicity, let us normalize the k-space to
Ω = [−1, 1]2. We are optimizing for the 2D k-space sampling pattern K which is composed
of several shots Nc, K = (ki)Nci=1. Each 2D shot ki(t) = (ki,x(t), ki,y(t)) is controlled by the
magnetic field gradients Gi(t) = (Gi,x(t), Gi,y(t)) as follows: ki(t) = γ

2π
∫ t

0 Gi(τ) dτ with γ
the gyro-magnetic ratio (γ = 42.57MHz/T for proton imaging). Each shot is sampled at the
pace of gradient raster time ∆t, throughout the readout time Tobs, resulting in Ns = bTobs

∆t c
samples per shot. The k-space data from the scanner is sampled at dwell time δt, which
in practice is a fraction of ∆t. Thus the total received k-space samples are of the form
K ∈ CNc×Ns×∆t

δt . In our studies, we used dwell time (δt = 2µs) and gradient raster time
(∆t = 10µs), thereby having 5 times more k-space sample points than the measurements
defined by the gradient wave forms.

The MR hardware constraints of maximum gradient strength (Gmax = 40 mT/m) and
slew rate (Smax = 180 T/m/s) results in a constrained trajectory with limited speed (α)
and acceleration (β). Note that the speed constraint also handles the Nyquist sampling
criterion (see [Cha+17]). We define this constraint set as QNcα,β , see [Cha+22d].

6.2.2 SPARKLING algorithm
Let the target sampling distribution be ρ : Ω→ R, with ρ(x) ≥ 0 for all x and

∫
ρ(x) dx = 1.

Given ρ, the SPARKLING algorithm optimizes for the k-space sampling pattern K such
that the actual sampling distribution is closest to ρ, while being locally uniform. Although
theoretically SPARKLING takes a continuous distribution ρ as input parameter, in practice,
we discretize the distribution to obtain ρ ∈ RN×N . Further, the algorithm ensures that the
each k-space shot ki(t) in optimal K̂ lies in QNcα,β . We can now summarize the SPARKLING
algorithm as follows:

K̂ = S(ρ,QNcα,β ,K0) (6.1)

with K0 being the initialization. The detailed algorithm is presented in [Cha+22d]. Hereafter,
we discuss different gridded distributions ρ that were obtained for our study.

6.2.3 Target sampling density learning
In this work, we broadly use four methods for estimating or learning a target sampling density.
All these methods are data-driven and we rely on the fastMRI dataset [Zbo+18] to compute
them. Let

{
xj ∈ RN×N

}n
j=1 denote brain MR images from this dataset, where j is the scan
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number and n is the total number of images (for simplicity, we used magnitude-only images).
Let

{
vj ∈ CN×N

}n
j=1 correspond to their respective discrete k-spaces on a grid (Fourier

spectrum) obtained by a fast Fourier transform.

VDS-based

The first method we employed to obtain a density is based on naive VDS. For this, we
parameterized the density as radially decaying with cutoff C and decay D as described in
[Cha+22d]:

ρC,Dvds (x) =

κ |x| < C

κ
(
C
|x|

)D
|x| > C

(6.2)

In our experiments, we heuristically grid searched for optimal parameters and used C = 25%
and D = 2 as the best density.

Spectrum-based

Next we obtained a sampling density based on [Kno+11] which involves averaging the spectra
of brain images from the fastMRI dataset. Let vavg correspond to the average of all the
spectra vj in the dataset. Then we can normalize the 2D spectrum to obtain a sampling
density ρsb on the N ×N grid:

ρsb(p, q) = vavg(p, q)−min(vavg)∑
p,q [vavg(p, q)−min(vavg)]

. (6.3)

Further, we observed that the spectra have very large magnitudes at lower frequencies as
compared with higher frequencies. In an effort to flatten the distribution so that we may
better balance all frequencies, we relied on an average log-spectrum vlavg of the fastMRI
images and obtained the distribution ρlsb by replacing vavg with vlavg in Eq. (6.3).

LOUPE-based

As the spectrum-based methods are agnostic to image reconstruction, to fill this gap we used
the Cartesian acquisition model from LOUPE [Bah+20a]. LOUPE is actually a DL-based
optimization scheme that learns a Cartesian under-sampling pattern for a prescribed sparsity
level γ, which provides the percentage of discarded measurements as compared to a full
sampling. Hence, γ is defined as the inverse of the under-sampling factor R (= N×N

Nc×Ns×∆t
δt

= 1
γ

for non-Cartesian sampling). In practice, we used R = 2.5 (γ = 0.4). Using LOUPE, we can
learn a gridded sampling density ρlb by jointly optimizing the acquisition and reconstruction
frameworks in the Cartesian domain. In [Bah+20a], the authors used conventional U-
Net [RFB15a] for carrying out reconstruction. In contrast here, we integrate LOUPE’s
acquisition network with a modular cross-domain neural network called XPDNet [RSC21b]
which stood second in the 2020 fastMRI brain reconstruction challenge [Muc+21b]. Hence,
we jointly optimize for the sampling distribution ρlb and the reconstruction network. In
regards to the LOUPE model, we initialize the sigmoid sample slope s = 20 and trained this
network for 100 epochs over all the training set (n = 4469 MR images) and probed for the
target sampling density. We ensured that there was no leaking of the k-space data into the
reconstruction network by checking the resulting binary sampling masks (see [Bah+20a] for
details).

6.2.4 Retrospective studies
With different target sampling distributions as input, we carried out an extensive retrospective
study on 50 slices from the validation set of the FastMRI dataset. The k-space measurements
were obtained by applying a forward NUFFT operator (F ) to the input multi-coil brain MR
images. We performed image reconstruction using two different methods:
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CS reconstruction

First we used the the synthesis formulation of self-calibrating CS image reconstruction [El
+18a] by solving for the wavelet coefficients z as follows:

ẑ = argmin
z∈CN×N

1
2

L∑
`=1

‖FΩS`Ψ∗z− y`‖22 + λ‖z‖1 (6.4)

where the L is the number of coils. Here the data consistency is enforced with SENSE
operators (FΩS`)`, where FΩ is the NUFFT masked to Ω and S` is sensitivity map for `th
coil estimated by density compensated adjoint of the 20% of acquired k-space center (see
details in [El +18a]). λ > 0 is the regularization parameter for `1-sparsity which was
promoted in the wavelet domain Ψ. For our reconstructions, we used Symlet 8 wavelet
with 4 scales for Ψ. The regularization parameter λ was grid searched between (10−4, 100)
while maximizing for the reconstruction quality using structural similarity index (SSIM)
in retrospective reconstruction. In order to accelerate convergence, we preconditioned the
k-space using density compensation. The compensation weights were estimated with 10
iterations of method as described in [PM99]. Final MR images were reconstructed as x̂ = Ψẑ.

DL reconstruction network (NC-PDNet)

For an extension into DL-based reconstruction, we used NC-PDNet [RSC21a], which is
a non-Cartesian extension of the XPDNet used for learning the sampling density. More
precisely, we used a density compensated unrolled non-Cartesian reconstruction network,
whose parameters are the same as those described in [RSC21a]. This model was trained for
70k gradient descent steps on the respective contrasts (T1-w and T2-w) from multi-coil brain
dataset with SPARKLING trajectories obtained in Fig. 6.1.

6.3 Results

In this section we briefly present the densities and trajectories for various methods of
estimating the target sampling densities as described in Sec. 6.2.3. Then we briefly go
through the retrospective reconstruction results that we obtained.

6.3.1 Densities and trajectories
The varied target sampling densities and their respective SPARKLING trajectories are
presented in Fig. 6.1. We see that the direct spectrum-based density ρsb is extremely dense
at the center of k-space, leading to really dense sampling here in the respective trajectories.
The log-spectrum method does indeed flatten out the density ρlsb, allowing the trajectories
to explore more high frequencies. Finally, the LOUPE based density does oversample the
center of k-space resulting in a scheme very similar to variable density sampling. However,
the density ρlb from LOUPE is more grainy since the learning of this density happens on a
Cartesian grid.

6.3.2 Retrospective image reconstruction studies
Quantitative results

We carried out retrospective studies on 50 slices of the validation data (two imaging contrasts,
namely T1 and T2) in the fastMRI dataset for all the above generated trajectories. We
computed the SSIM and peak signal-to-noise ratio (PSNR) metrics on the reconstructed MR
images with a mask on the brain in order to assess image quality. We present the results as
boxplots and annotated the significance as paired t-test in Fig. 6.2.

Firstly, we note that all methods perform pretty decently as long as the sampling density
has been optimized, with NC-PDNet consistently outperforming traditional reconstruction
schemes. However, we see that the SPARKLING trajectories with ρlb densities consistently
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Figure 6.1 – (A): The target sampling densities obtained for T1-weighted images with: (i)
VDS (ρvds), a radially decaying parameterized density, with C=25% and D=2 in [Cha+22d];
(ii) Average spectrum (ρsb) over the dataset based on [Kno+11]; (iii) Average logarithm
of the spectrum (ρlsb) over the dataset, to flatten the density in (ii); (iv) LOUPE (ρlb)
[Bah+20a] coupled with XPDNet [RSC21b] reconstruction. (B): Corresponding k-space
trajectories generated with Nc = 16 (R = 2.5), Ns = 512, Gmax = 40 mT/m and Smax = 180
T/m/s. For illustration purpose, a single shot is colored in red.
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(A) T1-w Images
SSIM PSNR

(B) T2-w Images
SSIM PSNR

Figure 6.2 – Retrospective study on different trajectories for R = 2.5 on 50 slices of (A)
T1-w and (B) T2-w Images. The reconstructions were performed with both CS based
reconstruction (Sec. 6.2.4) and using NC-PDNet (Sec.6.2.4) The median SSIM and PSNR
scores are indicated.

perform well throughout with SSIMs always larger than 0.95/0.91 for T1/T2 contrast (red
boxes). Additionally, this method has the highest PSNR. This confirms our hypothesis that
a method which is both data-driven and reconstruction aware outperforms its competitors
for learning a target sampling density. Finally, we noticed that ρvds performs similarly to ρlb
with respect to SSIM in most cases. This might be due to the properties of k-space content in
brain imaging, which is radially symmetric. Hence optimizing for a radially decaying density
gives similar performances to LOUPE-based methods. However, it is worth mentioning that
this optimization of parameterized density is very computationally intensive as it involves
both trajectory generation and retrospective reconstruction in order to understand which
parameter affects the most image quality.

Qualitative results

For visual inspection, we present the results of image reconstruction from data undersampled
using SPARKLING trajectories generated for various target densities in Fig. 6.3 (T1-w images)
and Fig. 6.4 (T2-w images). For the sake of space, we only report the best reconstruction
results, i.e. with NC-PDNet. For T1-weighted contrast, we show that all methods give
similarly performing results, however ρvds and ρlb provide the best SSIM scores. Further,
we observe that in this case, ρvds is slightly better than ρlb. On the contrary, for T2-w
contrast, ρlb outperforms the other densities as reflected both visually in Fig. 6.4 and
quantitatively (see Fig. 6.2).
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Reference T1-w Image (i) ρvds (ii) ρsb (iii) ρlsb (iii) ρlb
SSIM = 0.9566 SSIM = 0.9529 SSIM = 0.9522 SSIM = 0.9555

Figure 6.3 – NC-PDNet-based image reconstruction for retrospective T1-w imaging with
slice 6 in file_brain_AXT1_201_6002725.h5 from validation data in fastMRI dataset for
different target sampling densities.

Reference T2-w Image (i) ρvds (ii) ρsb (iii) ρlsb (iii) ρlb
SSIM = 0.9691 SSIM = 0.9625 SSIM = 0.9685 SSIM = 0.9728

Figure 6.4 – NC-PDNet-based image reconstruction for retrospective T2-w imaging with
slice 5 in file_brain_AXT2_200_2000019.h5 from validation data in fastMRI dataset for
different target sampling densities.

6.4 Conclusions

In this study, we addressed the main drawback of the SPARKLING algorithm, namely the
need for a good target sampling density as an input parameter. We setup four different
methods to generate optimized target sampling densities and design SPARKLING trajectories
accordingly. We showed that the LOUPE-based approach is the most promising as it provides
consistent results across contrasts. A limitation of this work is that there remains some
split between the acquisition and reconstruction models in a fully non-Cartesian setting.
Under the current study, the sampling density was jointly optimized with a Cartesian DL
reconstruction network. Then, non-Cartesian SPARKLING trajectories were generated
and retrospective validation was performed using a non-Cartesian DL network. There is
thus still a gap between the training and validation stage in this pipeline. In spite of this
limitation, we obtained promising results. In terms of perspective, we plan to work on a joint
network between NC-PDNet and SPARKLING to efficiently learn the k-space trajectories in
a data-driven manner, under the MR Hardware constraints.
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This chapter covers content that has been published in a peer-reviewed journal:

• Chaithya, G R and P. Ciuciu. “Jointly learning Non-Cartesian k-space trajectories
and reconstruction networks for 2D and 3D MR imaging through projection”. In:
special issue on AI in MRI: Frontiers and Applications, Bioengineering

A part of this work was also presented in an international peer-reviewed conference with
proceedings:

• Chaithya, G R and P. Ciuciu. “Benchmarking learned non-Cartesian k-space
trajectories and reconstruction networks”. In: ISMRM. 3308. London, UK, May 2022

Compressed sensing in Magnetic resonance Imaging essentially involves the optimization
of 1) the sampling pattern in k-space under MR hardware constraints and 2) image recon-
struction from undersampled k-space data. Recently, deep learning methods have allowed
the community to address both problems simultaneously, especially in the non-Cartesian
acquisition setting. This work aims to contribute to this field by tackling some major
concerns in existing approaches. Particularly, current state-of-the-art learning methods seek
hardware compliant k-space sampling trajectories by enforcing the hardware constraints
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through additional penalty terms in the training loss. Through ablation studies, we rather
show the benefit of using a projection step to enforce these constraints and demonstrate that
the resulting k-space trajectories are more flexible under a projection-based scheme, which
results in superior performance in reconstructed image quality. In 2D studies, our novel
PROjection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor
(PROJeCTOR) trajectories presents an improved image reconstruction quality at 20-fold
acceleration factor on the fastMRI data set with SSIM scores of nearly 0.92-0.95 in our ret-
rospective studies as compared to corresponding Cartesian reference and also see 3-4dB gain
in PSNR as compared to earlier state-of-the-art methods. Finally we extend the algorithm
to 3D and by comparing optimization as learning based projection schemes, we show that
data-driven joint learning based PROJeCTOR trajectories outperform model-based methods
like SPARKLING through a 2dB gain in PSNR and 0.02 gain in SSIM.

7.1 Introduction

A major challenge limiting the use of Magnetic Resonance Imaging (MRI) is long acquisition
times, arising due to short decay of the MR signal which is used to sample multi-dimensional
k-space data through numerous and repetitive radio-frequency pulses. Using Compressed
Sensing (CS) theories [Lus+07], significant speed up can be obtained by undersampling the
k-space according to Variable Density Sampling (VDS) [Puy+11; Cha+13; Cha+14; Adc+13;
Boy+19], whose shape depends on the underlying anatomy, contrast and coil structure.
Non-Cartesian sampling can be used to efficiently achieve VDS of k-space, as this type of
sampling, which relies on curves, is more flexible and efficient compared to straight lines used
in traditional Cartesian acquisitions. While conventional non-Cartesian sampling patterns
like spiral, radial, rosette, etc. [Ahn+86b; Mey+92; Jac+92; Nol97; Law+09; Lus+05a]
have been proposed in literature which can sample the k-space according to VDS, they do
not sample at a well defined user specified Target Sampling Density (TSD). Tailoring such
non-Cartesian trajectories according to a MR imaging protocol and a given TSD is hard as
these k-space sampling curves or trajectories are constrained by the MR hardware limits
notably on the maximum gradient magnitude Gmax and slew rate Smax.

To meet these constraints in a safe manner, the SPARKLING was introduced in [Laz+19;
Laz+20a] and then extended to 3D [Cha+22d] as an iterative procedure to optimize a non-
Cartesian k-space sampling pattern according to a prescribed TSD. Such patterns are typically
segmented in multiple shots or k-space trajectories, each of them being compliant with the
above mentioned MR hardware constraints. Further, the algorithm results in locally uniform
sampling patterns and thus avoids holes and clusters in k-space. However, SPARKLING
is a model-driven framework, which is characterized by a TSD that needs to be known in
advance to feed the optimization process. Previously in [CRC21], to address this issue, we
learned the TSD in a deep learning setting using LOUPE [Bah+20a] as an acquisition model.
Although this allowed us to improve reconstruction performances, there was still a mismatch
in the learning process. Using LOUPE [Bah+20a], gridded TSD was learned in the Cartesian
domain, while the actual trajectory being optimized was non-Cartesian. Additionally, we
had to learn a different non-Cartesian image reconstruction model (e.g. a convolutional
neural network or CNN) that was disconnected from the optimized trajectories, making the
overall process computationally expensive. Further, as such disjointedness between training
a TSD and testing on different non-Cartesian trajectories and image reconstruction neural
nets could lead to suboptimal results, there is a need to jointly learn both the TSD and the
image reconstruction deep learning architecture in a non-Cartesian setting.

Recently, new methods [Wei+20; Wan+21; Ved+20] have been developed to overcome
the need for estimating a TSD, through direct joint learning of the non-Cartesian k-space
sampling trajectories and MR image reconstruction in a data-driven manner on the fastMRI
dataset [Zbo+18]. In [Wei+20; Ved+20], the authors jointly learned Physics-informed learned
optimal trajectories (PILOT) trajectories along with U-net parameters as a reconstruction
model to denoise the basic image yielded by the adjoint of the Nonuniform Fast Fourier
Transform (NUFFT) operator. However, this method relies on auto-differentiation of the
NUFFT operator, which is inaccurate numerically as observed in [WF23], resulting in sub-
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optimal local minima. This suboptimality was actually reflected in the final shape of the
learned trajectories, which only slightly deviated from their initialization.

In B-spline parameterized Joint Optimization of Reconstruction and K-space trajectories
(BJORK) [Wan+21], the authors use [WF23] to obtain a more accurate Jacobian approx-
imation of the NUFFT operator. Both above referenced approaches [Wei+20; Wan+21]
enforced the hardware constraints by adding penalty terms to the the loss that is minimized
during training. Although a viable option, this requires tuning a hyper-parameter associated
with each of these penalty terms in the cost function. Moreover it does not guarantee that
the optimized trajectories will strictly meet these constraints. Further, these penalty terms
affect the overall gradients of the loss function, thereby resulting in suboptimality of the
trajectories. In BJORK [Wan+21] the trajectories were parameterized with B-spline curves
in order to reduce the number of trainable parameters. Although this strategy drastically
minimizes the search space and the training time, such parameterization severely limits the
degrees of freedom of the trajectories and prevents them from an improved exploration of the
k-space. Finally, both methods do not make use of Data Consistency (DC) which plays a key
role in obtaining clearer MR images in the non-Cartesian deep learning setting [Ram+22b].

In this work, we first develop a generic model for PROJeCTOR. More precisely, we
introduce a method that learns the k-space trajectories in a data-driven manner while
embedding a projected gradient descent algorithm [Cha+16] to fulfill the hardware constraints
during the training stage. Unlike BJORK, we directly learn the k-space sampling trajectories
and use multi-resolution [Leb+19] similar to SPARKLING to limit the number of trainable
parameters at each step. Then, we compare these PROJeCTOR results to two state-of-the-art
methods, PILOT [Wei+20] and BJORK [Wan+21] in 2D MRI. In a more controlled setting
we show the importance of the projection step during the optimization of k-space trajectories
and demonstrate its superiority over penalty-based methods like PILOT and BJORK to
enforce hardware constraints. Finally, we compare and show the superiority of data-driven
PROJeCTOR trajectories compared to model-based non-Cartesian SPARKLING trajectories.

7.2 Materials and Methods

In this section, we present a generic and modular framework (Fig. 7.1) for learning non-
Cartesian k-space trajectories and deep neural networks for MR image reconstruction.
Particularly, we discuss 2 sub-models namely, 1) an Acquisition model parameterized by
k-space trajectory and 2) an Reconstruction model parameterized by a deep neural network.
Later, we discuss in detail how to handle the MR hardware constraints and which approach
seems the most efficient within the sampling pattern optimization process to end up with
hardware compliant k-space trajectories.

7.2.1 Data and preprocessing
In order to reduce the memory footprint and the training time, we did not process multicoil
k-space data as input in the pipeline shown in Fig. 7.1. Instead we learn the trajectories
and image reconstruction model on emulated single coil data obtained using virtual coil
combination [Par+14] of per-channel images. This is done through phase reconstruction
from multi-coil data through the use of a virtual reference coil. This virtual-reference coil is
generated as a weighted combination of measurements from all receiver coils. The multiple
phase-corrected coil complex images are combined using the inverse covariance matrix, to
result in a complex image with optimal estimates of the absolute magnetization phase
(see [Par+14] for mathematical details).

Overall, we rely on notations developed in [Cha+22d], and we assume isotropic resolution
and FOV with matrix size in each axis as N . This assumption is purely for notational
convenience and does not limit the applicability of our framework to isotropic data. If D is
the imaging dimension, we denote an MR image or volume as x ∈ CND , over a field of view
FD. Throughout the manuscript, we refer to x as MR image, while it can be MR volume
when D = 3. The k-space of this acquisition is defined in [−Kmax,Kmax]D, with Kmax = N

2F .
However, for the sake of simplicity, we normalize the k-space to Ω = [−1, 1]D. For both
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Figure 7.1 – A generic learning-based framework for joint optimization of the MRI acquisition
and reconstruction models. This framework consists of two sub-models: 1) The Acquisition
model FS(K) parameterized by the k-space sampling trajectories K, interpolated through
linear interpolation S(K) and 2) The reconstruction model RK

θ parameterized by θ. The
input training data consists of emulated single coil complex images, from which simulated
k-space data is obtained through FS(K). The loss L is calculated between the reconstructed
image and the ground truth. The gradients are backpropagated to result in k-space trajectory
and reconstructor parameters update. Projection ΠQNc

α,β
is carried out after trajectory update

to make sure it satisfies the hardware constraints and lies in the constraint set QNcα,β . Further,
the density compensators DS(K) of the k-space trajectory serves as input to the reconstruction
network.

2D and 3D imaging, we take Observation time (TObs)=5.12ms (readout time), giving us
Ns = 512 samples per trajectory (see details in subsection 7.2.2). This readout value is fully
compatible with those used in T1 and T2-weighted imaging.

For our experiments in 2D imaging, we used the fastMRI brain MR data set [Zbo+18],
which consists of 1447 T1 and 2678 T2-weighted images with N = 320. In contrast, for
validation in 3D imaging, we used the Calgary brain data set [Sou+18], which consists of 167
T1-w MR volumes at 1 mm isotropic sagittal acquisitions, with matrix size 256× 224× 170.
For both imaging protocols, we used an Acceleration Factor (AF) = ND−1

Nc
of 20 (see

[Cha+22d]), resulting in a number of trajectories Nc = 16 for 2D imaging and Nc = 1681
for 3D imaging (see details in subsection 7.2.2).

7.2.2 K-space trajectory (K)

The acquisition model is parameterized by a k-space sampling pattern K which is composed
of Nc shots, K = (ki)Nci=1. Each shot can be played by the scanner hardware at the pace of
gradient raster time ∆t, throughout the readout time Tobs, resulting in Ns = bTobs

∆t c samples
per shot and overall sampling pattern as K ∈ ΩNc×Ns .

The k-space trajectories are constrained in speed and acceleration by the maximum
gradient strength Gmax and maximum slew rate Smax, respectively. Additionally, affine
constraints are added to the trajectory design to ensure that the center of k-space is
sampled at Echo Time (TE) in every shot, resulting in stable and required target contrast of
reconstructed MR images. From [Cha+16; Cha+22d], we model these constraints as follows:

QNcα,β =


∀i = 1, . . . , Nc, ki ∈ R3×Ns ,

Aki = v,
‖ki‖∞ ≤ 1, ‖k̇i‖2,∞ ≤ α, ‖k̈i‖2,∞ ≤ β,

 (7.1)
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where

k̇i[n] = ki[n]− ki[n− 1]
∆t

k̈i[n] = ki[n+ 1]− 2ki[n] + ki[n− 1]
∆t2

‖c‖2,∞ = sup
0≤n≤Ns−1

(
|cx[n]|2 + |cy[n]|2 + |cz[n]|2

)1/2
,

for all c ∈ ΩNs and (α, β) are obtained by normalizing hardware and Nyquist constraints to
the sampling domain Ω (from [Laz+19]):

α = 1
Kmax

min
(
γGmax

2π ,
1

FOV · δt

)
(7.2a)

β = γSmax

2πKmax
(7.2b)

The TE point constraints are modeled through A and v in (7.1) (see [Cha+16] for details
and more complex affine constraints). A and v are tailored to have the following equivalent
expression on each k-space trajectory:

kdi [kte] = 0
∀ i ∈ {1, . . . Nc},
∀ d ∈ {x, y, z},
kte = bTE∆t c .

(7.3)

7.2.3 Acquisition Model (FK)
With the k-space sampling pattern K, we model the acquisition process at the MR scanner
with non-uniform fast Fourier transform (NUFFT) [FS03] operator FK. However, in practice,
the k-space data is sampled in Analog to Digital Converter (ADC) at every dwell time
δt, with o = ∆t

δt ≥ 1 the oversampling factor along each trajectory. Thus, a more realistic
acquisition model of k-space data y ∈ CNc×Ns×o is:

y = FS(K)x + ε (7.4)

where S is linear interpolator, which interpolates the k-space trajectory to have o × Ns
samples during readout, to model the oversampling by ADC and ε is the simulated noise
which is already present in the data set as they are prospectively acquired by the MR system.

As the k-space trajectories are non-Cartesian, this creates a variable density sampling in
k-space, due to which a simple adjoint of NUFFT operator F∗K is not close to the inverse
operator and is not sufficiently accurate to reconstruct a clear MR image. To prevent this,
a density compensation (DC) mechanism has been introduced in the non-Cartesian image
reconstruction community for more than 20 years [PM99]. It allows us to more fairly
balance the weights of k-space samples associated with the low and high frequencies during
the iterative reconstruction process. Following this principle, we obtained DS(K) for the
linearly interpolated k-space trajectory S(K), which is computed by 10 iterations of the
algorithm described in [PM99]. As noted in [Ram+22b], DC is crucial for deep learning
based reconstruction to avoid numerical issues and result in better reconstructed image
quality.

7.2.4 Reconstruction model: Deep neural network (RθK)
The reconstruction network RθK is a deep neural network that reconstructs an MR image
x̂ from the k-space data y and the k-space trajectory S(K). The estimated DC are also
provided as input to the network, to better condition the reconstruction problem resulting in
faster convergence giving us:

x̂ = RθK(y,DS(K)) . (7.5)
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A simple parameter-free reconstruction would be the density compensated adjoint, i.e.
RθK = DS(K)F∗K. To go further, we implemented the density compensated non-Cartesian
primal dual network (NC-PDNet [Ram+22b]) as the reconstruction network. The latter
alternates between a data consistency step in k-space and convolutional neural network
(CNN) based denoising in the image domain with kernel size 3× 3 in 2D and 3× 3× 3 in 3D.
We used the same network architecture as in [Ram+22b] except that this time we expanded
the architecture over 12 unrolled iterations and the number of filters per iteration Nf = 32
filters.

7.2.5 Loss, gradients and optimizer
The reconstruction error used as loss function Lr (between the reference MR image x and
its reconstruction x̂) in this study was inspired by [Pez+20a] and is defined as a weighted
sum of `1, `2 and multi-scale structural similarity index (S) [WSB03a]:

Lr(x, x̂) = α(1− S(x, x̂)) + ᾱ||x− x̂||1 + ᾱ2

2 ||x− x̂||2

with ᾱ = 1− α and the value of α was tuned to 0.995 to give nearly equally balanced loss
terms. The training was carried out by minimizing reconstruction loss Lr with respect to
both parameters θ of the reconstruction network and k-space trajectory K as follows:

(K̂, θ̂) = arg min
(K∈QNc

α,β
,θ)
Lr
(
x,RθK

(
FS(K)x

))
(7.6)

For optimizing the trajectory K, we derived the gradient of the loss function Lr with respect
to K:

∂Lr(x, x̂)
∂K = ∇Lr(x, x̂) ∂x̂

∂K = ∇Lr(x, x̂)∂R
θ
K(y)
∂K (7.7)

For ease of mathematical derivation, here we take the case of a parameter-free recon-
struction as described in Sec. 7.2.4 with RθK = DS(K)F∗S(K). In order to simplify this
gradient calculation and reduce its computational complexity, we neglect the contribution
of gradients from density compensators DS(K). This contribution of gradients from DS(K)
was also ignored in realistic implementations to reduce gradient computation time and GPU
memory requirements. These assumptions lead to the following gradient expression:

∂Lr
∂K = ∇Lr

(
∂x̂

∂DS(K)y
DS(K)

∂
(
FS(K)x

)
∂K +

∂F∗S(K)

∂K

)

In order to compute the gradient of NUFFT operators FS(K) and F∗S(K) with respect to
the k-space trajectory K, we used [WF23] to obtain a fast and accurate approximation of the
Jacobians. As these underlying gradients vary extremely in norm depending on the k-space
region (as noted in [Gou+21]), we used the ADAM optimizer for learning the trajectories,
while we relied on a rectified-ADAM solver for optimizing the image reconstruction network
RK
θ .
During training, the gradient descent was carried out stochastically with a batch size

of 64 in 2D, while due to memory limitations, it was limited to 1 in 3D. However, as the
gradients with respect to k-space trajectory were extremely noisy for this low batch size
in 3D, we relied on a smaller learning rate of 2 × 10−4 as compared to 10−3 in 2D runs.
On the other hand, for the optimization for the reconstruction networks, the corresponding
gradients were more reliable and hence the learning rate was always set to 10−3. The noise
levels in gradients and their reliablity are quantified through the descent rate of the loss
while optimizing with a fixed learning rate of 10−3 at varying batch sizes obtained through
gradient accumulation. During gradient accumulation, gradients for the target batch size
was obtained by running the network sequentially on multiple single data points repeatedly
and accumulating the gradients.
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7.2.6 Multi-Resolution
Inspired by SPARKLING [Cha+22d], the learning of the k-space sampling trajectories was
performed using a multi-resolution strategy [Leb+19] which starts by learning 2Rmax times
decimated sampling trajectories K at the maximal Rmax = 5 decimation level. Next, the
solution K̂2R

max

at the resolution level Rmax was then interpolated and used as a warm
restart for the up-sampled problem at resolution level Rmax − 1.

We used dyadic scaling and trained our trajectory over five decimation levels (Rmax = 5).
This implies that the underlying trajectories were optimized first at 25 = 32 decimation level
(32 times downsampled trajectory), followed by upscaling the problem by 2, following the
decimation levels as 16→ 8→ 4→ 2→ 1. This multiresolution strategy was instrumental
in ensuring fast convergence toward a local minimizer. Indeed initially the optimization
is carried out with faster convergence as we coarsely optimize the k-space trajectory over
a reduced number of locations (R = Rmax = 5). Then the process is refined at higher
resolutions as we approach convergence (R = 1).

7.2.7 Constraints: Projection vs Penalty
A common method in the literature [Wan+21; Wei+20; Ved+20; Wan+22] to enforce these
constraints is to add a penalty Lc(K) to the loss L, which acts like a regularizer on the
k-space trajectories K being optimized. With this, the loss function L becomes:

L(x, x̂,K) = Lr(x, x̂) + Lc(K), (7.8)

where the penalty Lc(K) follows the expression from [Wan+21; Wan+22]:

Lc(K) =
Nc∑
i=1

Ns∑
n=1

(
λ1φα

(
‖k̇i[n]‖2

)
+ λ2φβ‖k̈i[n]‖2

)
+ λ3φ0‖k[kTE]‖2 (7.9)

with φa(x) = max(0, x− a) and λ1, λ2 and λ3 are hyper-parameters to balance the penalty
terms with respect to the reconstruction loss Lr.

However, this penalty based approach has the following limitations:

• Need for hyper-parameter tuning: Under the penalty based formulation, the hyper-
parameters λi ∀ i ∈ {1, 2, 3} need to be tuned, which requires additional computation.
Note that while we can view Eq. (7.8) as an augmented Lagrangian form for the
constrained optimization problem Eq. (7.6), the corresponding Karush-Kuhn-Tucker
(KKT) conditions are computationally complex to be solved. Further, as we do not
satisfy the Slater’s conditions, as the reconstruction loss Lr is non-convex, the solutions
of the KKT conditions are not guaranteed to be global minima.

• Influence of gradients and convergence: With the addition of penalty terms Lc,
the gradient updates involve added gradients from these penalties ∇Lc, which influence
the overall trajectory development and hence the final optimized k-space trajectories.
Gradient updates with these additional gradient terms can no longer guarantee optimal
image reconstruction by minimizing the reconstruction loss Lr.

• Guarantee of admissibility: Finally, the optimization of the augmented Lagrangian
form does not guarantee that the final optimized k-space trajectory K satisfies the
constraints Eq. (7.1).

To tackle the above issues, we implemented the projector ΠQNc
α,β

from [Cha+16] to project the
k-space trajectories K to the feasible set QNcα,β . This results in a projected gradient descent
based optimization of the loss function L, which is given by the following updating step for
the k-space trajectories K:

Kt+1 = ΠQNc
α,β

(
Kt − ηt∇KLr(x, x̂)

)
. (7.10)
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The projected gradient descent formulation gives an equivalent result to optimizing the
original reconstruction error Lr, with indicator function of the feasible set QNcα,β as the
penalty term. However, as the indicator function is non-differentiable, direct use of such
a penalty term in auto-differentiation frameworks (as an alternative to projection step as
shown in Eq. (7.10)) generates sub-gradients which makes the optimization process extremely
slow, due to oscillations as there are multiple sub-gradients at each evaluation point.

Practical implementations involved 50 iterations of the projection algorithm from [Cha+16]
which was sped up using GPU implementations as shown in [Cha+22d]. In practice, bench-
marking with a very small reconstruction network (NC-PDNet with 3 iterations, rather
than 12) showed 2.25 seconds per step for penalty-based schemes, while with projection, the
computation time was 3.16 seconds per step.

7.2.8 Practical implementations

All our implementations in 2D were carried out on V100 GPU with 32GB memory, while
our 3D implementations needed the next generation A100 GPUs with 80 GB of memory.
Most of the memory in 3D was occupied by the activations from the 3D convolutional neural
networks used in the image denoising step in NC-PDNet. Memory efficient implementations
of NUFFT was carried out by using tensorflow-nufft [Mon22], which is based on tensorflow
implementations of cuFINUFFT [Shi+21].

7.3 Results

In this section, we first compare our results with state-of-the-art methods, particularly
BJORK [Wan+21] and PILOT [Wei+20]. Next, we provide an explanation on why our
approach outperforms its competitors. In short, the reason is tightly linked to the use of
a projection step in the optimization process for enforcing the hardware constraints rather
than using penalty terms in the loss function. Finally, we benchmark our jointly learned
k-space sampling pattern and reconstruction network in 3D by compare it to SPARKLING
trajectories with a learned neural network for image reconstruction.

7.3.1 Comparison with state-of-the-art methods in 2D

We learned k-space trajectories with Nc = 16 shots and Ns = 512 samples per shot (observa-
tion time Tobs = 5.12ms, raster time ∆t = 10µs, dwell time δt = 2µs). For comparison with
an earlier baseline, we used SPARKLING trajectories generated with the learned sampling
density using LOUPE [Bah+20a] as obtained in [CRC21] and trained NC-PDNet [Ram+22b]
as a reconstruction model for it.

We compared our results with PILOT and BJORK trajectories, which were obtained
directly from the respective authors. As we didn’t receive their trained reconstruction
networks, we trained an NC-PDNet by ourselves for a fair comparison: NC-PDNet makes
use of DC and its Cartesian version stood 2nd in the 2020 fastMRI challenge [Muc+21a].
This way, we used the same reconstruction neural network for all the trajectories (with the
same parameters), which was trained individually. Our comparison with PILOT (Fig. 7.3)
was carried out for T1 and T2 weighting contrasts in the fastMRI data set.

As the BJORK trajectory was learned for ∆t = 4µs, to ensure fair comparison, we
obtained trajectories with the same specifications. This comparison (Fig. 7.4) was done at
different Undersampling Factor (UF) = ND

Nc×Ns . Note that UF is a measure of how much the
k-space is under-sampled with respect to fully sampled Cartesian k-space, while AF reflects
on how fast the scan is with respect to the Cartesian reference scan.

We first proceed to analyze the k-space trajectories as compared to those yielded by
BJORK and PILOT. Then, we compare the reconstruction results of the learned trajectories
with BJORK and PILOT.
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Trajectory analysis

When looking at the zoomed portions of optimized trajectories in Fig. 7.2, we observe that
PILOT has a hole at the center of k-space (cf. the white spot shown in the bottom inset)
while BJORK samples the k-space densely slightly off the center (cf. bottom inset), which
is suboptimal. In contrast, PROJeCTOR and SPARKLING methods sample the central
region of k-space more densely, which could help obtain improved image quality, notably the
contrast.

We also observe at the bottom of each panel in Fig. 7.2 that PILOT and BJORK do not
use the hardware gradient capacities at their maximum values and have similar gradient (G(t))
and slew rate (S(t)) profiles, while SPARKLING and PROJeCTOR trajectories, are hitting
the gradient constraints more often for the maximal gradient and almost everywhere for the
slew rate. This difference could be attributed to using a projector for handling hardware
constraints in PROJeCTOR and SPARKLING as compared to handling them through
penalty terms in PILOT and BJORK.

Retrospective study

Next, we compared the results of image reconstruction from retrospectively under-sampled
k-space data using PILOT (Fig. 7.3) and BJORK (Fig. 7.4) trajectories. To this end, we used
512 slices from fastMRI validation data set. We observe that both SPARKLING with a learned
density and PROJeCTOR outperform PILOT and BJORK, with PROJeCTOR yielding the
best scores with a gain of nearly 0.06 in SSIM and 3-4dB in PSNR values as compared to
PILOT and BJORK. We computed paired t-tests on Structural Similarity Index Measure
(SSIM)/Peak Signal-to-Noise Ratio (PSNR) scores between PILOT and PROJeCTOR on one
hand and BJORK and PROJeCTOR on the other hand and obtained p-values p < 10−4, thus
confirming that the improvements we observed visually and quantitatively are statistically
significant.

7.3.2 Hardware Constraints: Penalty vs Projection

In the above section we showed how our method outperforms PILOT and BJORK in terms
of reconstructed image quality. We assume that these results are due to the different manner
the hardware constraints on the gradients are enforced in the learning process (projector vs
regularizer). To validate this hypothesis, we learned 3D hardware compliant k-space sampling
trajectories through joint optimization with a reconstruction network using a penalty term
instead of a projector.

In Fig. 7.5, we present the learned hardware compliant k-space sampling trajectories using
the projection and penalty-based methods and then in Fig. 7.6 we depict their corresponding
slew rate and gradient profiles. Additionally, we also show in Fig. 7.6 the validation SSIM
scores as a function of the penalty weight (λ). For the sake of simplicity, we assume λ = λi,
i ∈ {1, 2, 3} and we obtain results for λ = 10−3, which is the lowest level of penalty resulting
in hardware-compliant trajectories at the end of training. By doing so, we ensure that we
do not influence too much the trajectory shape. However, in our grid search experiments of
varying λ across different orders of magnitude, we did not observe any significant drop in
validation loss within the range [102, 10−3]. Further, to obtain an insightful baseline, we also
obtain results for λ = 0 corresponding to non-admissible trajectories as we do not enforce
any penalty on the gradients and slew rates. Last, we also display the learned trajectories
using the PROJeCTOR.

We observed that the best reconstructed image quality can be obtained for λ = 0 in terms
of validation SSIM and PSNR scores. Further, increasing the weight λ of penalty terms,
the validation SSIM and PSNR scores drop as the k-space trajectories get more constrained.
Interestingly, as λ = 10−3 the k-space trajectories are getting hardware compliant (see
Fig. 7.6(B)(iii))), but they become strongly constrained and do not reach the same level
of flexibility as those learned by PROJeCTOR. This results in a significant decrease in the
performance of penalty-based method as compared to projection-based methods.
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Figure 7.2 – The optimized hardware compliant non-Cartesian k-space trajectories using (a)
PILOT, (b) SPARKLING with learned density using LOUPE, (c) PROJeCTOR scheme,
(d) BJORK. The number of shots is Nc=16. The number of dwell time samples are set to
match the same number of sampling points overall. Zoomed in visualizations of the center
of k-space (bottom) and slightly off-center (top) is presented at the right of corresponding
trajectories. The `2 norm of the corresponding gradient ||G||2 (in mT/m) and slew rate ||S||2
(in T/m/s) profiles are depicted below each trajectory.

Finally, we observed that using projection-based method, the k-space trajectories are
closer those obtained with λ = 0.

7.3.3 Comparison with SPARKLING in 3D
Finally, we compared the performances of our data-driven jointly learned k-space trajectories
to the model-driven SPARKLING trajectories in 3D imaging. The networks were trained for
240 epochs, with 32 steps per epoch on the Calgary brain data set [Sou+18], for trajectories
at AF=20, resulting in Nc = 1681 shots. To ensure a fair comparison, we learned the same
NC-PDNet, i.e. image reconstruction neural network for the same number of steps as was
done for PROJeCTOR trajectories.
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Figure 7.3 – (a) Box plots comparing the image reconstruction results on a retrospective
study at UF=2.5 (Nc = 16, Ns = 512, ∆t

δt = 5) using 512 slices of T1 and T2 contrasts
(fastMRI validation data set) using PILOT (blue), SPARKLING with learned density (orange)
and PROJeCTOR (green). SSIMs/PSNRs appear at left/right. The median values of these
metrics are highlighted inside the box plots. The significance levels are indicated as paired t-
test and are all significant with p < 10−4. (b) Top: T1-w reference image and reconstruction
results for a single slice from file_brain_AXT1PRE_209_6001221.h5 with corresponding
strategies. (b) Bottom: The residuals maps, scaled to match and being comparable across
methods.

From the mid-slice cuts of gridded sampling patterns in k-space in Fig. 7.7[A-B](b)-(d),
we see that SPARKLING trajectories present radial-like sampling at the center of k-space
which could induce some k-space holes (see red arrows in (A.b) and (A.c)). This type of
imperfections is not present in the learned PROJeCTOR k-space sampling pattern ((B.b)
and (B.c)). Further, as the trajectories and reconstruction network were learned on partial
Fourier k-space data, PROJeCTOR trajectories also learned to exploit this by not sampling
these regions (see the dark areas pointed by green arrow in (B.b) and (B.d)).

Finally, comparing the actual reconstructed MR images in Fig. 7.8, we see that SPARK-
LING trajectories result in blurrier images, while PROJeCTOR retains the high-frequency
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Figure 7.4 – (a) Box plots comparing the image reconstruction results on a retrospective
study using 512 slices on T2 contrast (fastMRI validation dataset) using BJORK (blue),
SPARKLING with learned density (orange) and PROJeCTOR (green). The median values of
these metrics are highlighted inside the box plots. We present the results at varying UF charac-
terized with Nc = 16, 24 and 32. SSIMs/PSNRs appear at left/right. The significance levels
are indicated as paired t-test and are all significant with p < 10−4. (b) Top: T2-w reference
image and reconstruction results for a single slice from file_brain_AXT2_205_2050175.h5

with corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being
compare across methods.

details. This can be observed qualitatively through the residual images and quantitatively
through box plots indicating SSIM and PSNR scores, taken on 20 test data sets. We see that
PROJeCTOR outperforms SPARKLING by nearly 0.02 points in SSIM and +2dB in PSNR
scores. As our evaluation is done on 20 matched data points, we use Wilcoxon signed-rank
test, which is a non-parametric statistical hypothesis test used here to compare the locations
of two populations using two matched samples. We found that the difference in both the
SSIM and PSNR scores are statistically significant with p < 10−5.
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Figure 7.5 – Comparison of (iii) PROJeCTOR trajectories with respect to penalty-based
versions ((ii) and (iv)). The (A) non-admissible trajectories are shaded in red while
admissible trajectories are shaded in green. Also, unconstrained (no penalty and no projection)
trajectories are also presented in (i).

7.4 Discussion

In this work, we present a generic framework for jointly learning the trajectory and image
reconstruction neural network. We embedded the projection step from [Cha+16] and learned
these PROJeCTOR trajectories through a novel projected gradient descent fashion to ensure
hardware compliance.

Although the learned neural networks in PILOT [Wei+20] and BJORK [Wan+21] were
not available for a full end-to-end comparison, we performed a fair assessment by training a
NC-PDNet [Ram+22b] as a common deep neural network reference for image reconstruction.
Through retrospective studies in 2D on the fastMRI validation data set, we showed that
PROJeCTOR works across multiple resolutions and leads to superior performance of the
trajectories and improved image quality overall, with nearly 3-4dB gain in PSNR value and
almost 0.06 gain in SSIM score.

This improvement over state-of-the-art methods can be attributed to the embedded
projection step as compared to penalty to ensure hardware compliance. We carried out
an ablation study and showed that the projection step is crucial for having significantly
improved performance of the learned trajectories, as compared to penalty-based approaches.

Finally, in 3D we compared the model-driven method SPARKLING with the data-driven
method PROJeCTOR and showed a gain of 2dB in PSNR and 0.02 gain in SSIM in favor of
the latter.

Future prospects of this work include prospective implementations through modifications
of T1 and T2-w imaging sequences. Such practical implementations could possibly bring
up new sequence-specific constraints on k-space trajectories and also affect the overall
performance due to lower Signal-to-Noise Ratio (SNR).

A limitation of current work is that our training paradigm was setup in emulated single coil
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Figure 7.6 – Left: Performance metrics in SSIM and PSNR of penalty-based method at
varying penalty weight λ. The performance PROJeCTOR is also shown for comparison.
Right: The feasibility of the penalty-based learned k-space trajectories at varying penalty
weights (i.e. hyper-parameter) λ, shown by maximum slew rate Smax and maximum gradient
strength Gmax in the entire sampling pattern. The respective admissible upper levels are
drawn with a red dotted line.

setting as we were limited by memory constraints on GPU. A more realistic implementation
would involve multi-coil imaging setting is mandatory to efficiently utilize parallel imaging
and get closer to the real data acquisition context, allowing us to reach higher AF. However,
this memory bottleneck can be alleviated through efficient transfers between CPU and GPU
or multi-GPU implementations. Further, the network can be improved by extending the
currently implemented simple forward acquisition model NUFFT to a more realistic and
complex model which takes off-resonance effects due to B0 inhomogeneities [Dav+22] and
gradient imperfections into account. These aspects will be explored in our future works.
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Figure 7.7 – k-space sampling trajectories for (A) SPARKLING and (B) PROJeCTOR.
For easier visualization, only 70 shots of 3D trajectory are shown in (a). The resulting
gridded sampling pattern is shown for mid-plane slices along (b) y-plane, (c) z-plane and
(d) x-plane.
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SPARKLING and (C) PROJeCTOR trajectories at AF=20 as compared to (A) Cartesian
reference. The reconstructed images are shown in top row, while the residuals are shown in
the bottom. Further, box plots of SSIM and PSNR scores on 20 test data sets are shown in
the bottom-left. The significance levels are marked through paired samples Wilcoxon test.
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D uring the course of this thesis, we significantly contributed to the Magnetic Resonance
Imaging (MRI) community, particularly in the design of hardware compliant non-

Cartesian k-space sampling trajectories that yield improved reconstructed image quality.
These newly developed trajectories were further extending to yield improved images on
prospectively acquired data through Minimized Off Resonance Effect (MORE) and Gridding
of Low Frequencies (GoLF). Finally, in the last stage of the thesis, with a paradigm shift
from model-based design to data-driven learning of trajectories jointly with reconstructor, we
demonstrated we can speed up MRI scans by an order of 15-20x as compared to Cartesian
reference, without much degradation in the reconstructed image quality.

8.1 Contributions and limitations

At the beginning of the thesis, the Spreading Projection Algorithm for Rapid K-space
sampLING (SPARKLING) algorithm developed in-house was sped up through use of Fast
Multipole Methods (FMM) and parallel implementations on multicore CPUs and GPUs.
With this, the SPARKLING algorithm was fully extended to optimize 3D hardware compliant
k-space sampling trajectories, which efficiently under-sampled the k-space in all the three
dimensions, a significant challenge prior to my arrival in the team due to the underlying
computational bottleneck. The optimized trajectories yielded peaky Point Spread Function
(PSF) which was characterized and quantified using PSF metrics: lower Full Width at
Half Maximum (FWHM), and higher Peak-to-Sidelobe Level (PSL) and Peak-to-Noise Level
(PNL). Retrospective studies were carried out to grid-search optimal Target Sampling Density
(TSD), which was an input to the SPARKLING algorithm. Finally, these trajectories were
applied for the case of prospective 3D Susceptibility Weighted Imaging (SWI), which allowed
2.5-3.75x shorter scan times compared to GRAPPA-4 parallel imaging acquisition at 3 Tesla
without compromising image quality. However, in our prospective experiments, we observed

123
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strong off-resonance artifacts in the reconstructed images, which were not observed in the
simulation based retrospective experiments. While physics informed post-processing based
techniques were developed in parallel in the team [Dav+22] in order to reduce the effects
of off-resonance artifacts without needing additional scans for acquiring the ∆B0 field map,
these techniques were computationally expensive and hence not really viable for clinical
applications.

We noticed that these strong off-resonance effects observed with SPARKLING trajectories
were particularly due to arbitrary readout paths used by optimized trajectories in the k-space.
Such arbitrary trajectories lead to temporally discontinuous sampling of the k-space which
ignore the temporal nature of the MRI signal being sampled, thereby amplifying the off-
resonance artifacts in the reconstructed images. To overcome this issue, MORE-SPARKLING
was introduced through a new repulsion term that temporally constrains the k-space samples
and results in a temporally smooth under-sampling of k-space. In our studies with both
phantom with artificially degraded shim and in vivo acquisitions, these new trajectories
recovered the signal losses at locations of strong off-resonance effects. Another concern with
SPARKLING algorithm involved the Echo Time (TE) point constraint which resulted in
oversampling the center of k-space much beyond the Nyquist limit. This suboptimality was
tackled through GoLF, which involved additional affine constraints to yield trajectories which
fully sample the center of k-space optimally using Cartesian sampling, and have good coverage
in periphery through non-Cartesian sampling. Through this compound sampling approach,
the reconstructed images were significantly improved as compared to vanilla SPARKLING
trajectories, which allowed for further reducing the scan time by 5x as compared to the same
GRAPPA-4 acquisition at 3 Tesla.

One major limitation of the SPARKLING algorithm was the need for TSD as input, which
was obtained through grid-searching over a range of values for a heuristically parameterized
density inspired by Compressed Sensing (CS) literature. With the rise of MRI datasets
with raw k-space data like fastMRI [Zbo+18], we shifted our focus from such a model-based
designed to data-driven learning of the TSD. To this end, we setup four different candidates
for optimized TSD and design SPARKLING trajectories accordingly. Reconstruction was
performed using NC-PDNet [Ram+22b], which was separately trained with the SPARKLING
trajectories with these candidate densities. Through our retrospective results performed
on the validation fastMRI dataset, we observed that the Learning-based Optimization of
the Under-sampling PattErn (LOUPE) [Bah+20b] based sampling density yielded the best
performance in terms of image quality metrics.

The gridded LOUPE based sampling density was learned by training in the Cartesian
domain, and then used as input to generate non-Cartesian SPARKLING trajectories. Later for
validation purposes, these trajectories were used again to learn a non-Cartesian reconstruction
network. This two-step process is computationally expensive and also suboptimal as the
training paradigm was different as compared to the validation setting. To address this lack
of consistency, we proposed to directly learn non-Cartesian k-space sampling trajectories.
To this end, we developed a generic framework for jointly learning the trajectory and
image reconstruction neural network, while embedding the projection step from [Cha+16] to
ensure hardware compliance of the learned trajectories. These newly learned PROjection for
Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor (PROJeCTOR)
trajectories yielded improved retrospective performance as compared to earlier state-of-the-art
methods Physics-informed learned optimal trajectories (PILOT) and B-spline parameterized
Joint Optimization of Reconstruction and K-space trajectories (BJORK), with nearly 3-4dB
gain in PSNR value and almost 0.06 gain in SSIM score. Through an ablation study, we
showed that such improvement can be attributed to projection step as compared to penalty
terms that are used in concurrent approaches to ensure hardware compliance. Finally, in
3D we compared the model-driven method SPARKLING with the data-driven method
PROJeCTOR and showed a gain of 2dB in Peak Signal-to-Noise Ratio (PSNR) and 0.02
gain in Structural Similarity Index Measure (SSIM) in favor of the latter. However, this
method was purely limited to retrospective studies and the learned network was primarily
trained on emulated single coil data, resulting in trajectories which do not exploit parallel
imaging strategies during acquisition.
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8.2 Perspectives

Several perspective directions can be explored to further improve the methods that were
developed in the context of this thesis. Although this work shifted from model-based
SPARKLING to data-driven PROJeCTOR, we firmly believe that both are equally important
and can to be explored further independently. However, the methods and findings discovered
in one frameworke can also be exploited and transposed to improve the other. Some of these
directions will be soon explored by my peers in the CS-MRI group at NeuroSpin. We briefly
discuss the perspectives for SPARKLING and PROJeCTOR trajectories below:

8.2.1 Model-based SPARKLING
Extension to 3D+t or 4D

The SPARKLING trajectories can be extended to 3D+time, resulting in trajectories that
satisfy the TSD for every fixed time window of scanning, while maintaining incoherence
across time windows. This can be particularly useful for dynamic MRI like Cardial imaging
and Functional MRI (fMRI). Preliminary studies of applying SPARKLING for fMRI with
simple scan-and-repeat protocol showed promising results, where results are comparable to
the state-of-the-art Echo Planar Imaging (EPI) [Amo+22c; Amo+22b; Amo+22a].

Application to other modalities which need ultra low echo times

As the SPARKLING algorithm can also be initialized with center-out trajectories, they
can be used for imaging applications that need ultra short echo times of acquisition. In
such applications, MORE-SPARKLING trajectories can result in improved reconstructed
image qualities as compared to current state-of-the-art including Twisted Projection Imaging
(TPI) and radial kooshball [Lar+08]. Currently, this method is being explored for magnetic
resonance spectroscopic imaging (MRSI), particularly for Sodium (Na23+) imaging [Bap+22a].

Compound sampling trajectories

By embedding affine constraints in the SPARKLING framework, we introduced novel
compound sampling approach to optimize k-space sampling trajectories having both Cartesian
and non-Cartesian parts to extract the best of both worlds. However, its implementation in
this work was purely done to fully sample the center of k-space using Cartesian sampling
and therefore there is room for improvement through the following extensions:

• Cartesian + non-Cartesian sampling pattern: We can extend the above frame-
work to have more complex sampling trajectories which overall result in a Cartesian and
non-Cartesian sampling pattern, to reduce the impact of inaccuracies from Nonuniform
Fast Fourier Transform (NUFFT) operator and accelerate the reconstruction process.

• Towards EPI+SPARKLING : The proposed GoLF-SPARKLING trajectories can
be extended by having every trajectory pass through the center of k-space multiple
times as different Cartesian lines, resulting in a larger portion of center of k-space
sampled with Cartesian sampling. The optimized trajectories in such cases would
provide an intermediate behavior between fully non-Cartesian sampling trajectories
and EPI, allowing us to better understand the trade-off between the two.

• Sensitivity maps and wavelet coefficients: As the center of k-space is fully
sampled, we can quickly obtain a low resolution estimate of the reconstructed im-
age through simple Inverse Fast Fourier Transform (IFFT). Such low resolution images
can be good candidates for the approximation coefficients in the wavelet domain of the
reconstructed image, of course in the context of CS reconstruction. Further, they can
be used to extract fast and reliable estimates of sensitivity maps.

• Acceleration through parallel imaging: We can now incorporate parallel imaging
methods like GRAPPA [Gri+02], SENSE [Pru+99] and CAIPIRINHA [Bre+05] to
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further increase the Acceleration Factor (AF), while maintaining or even improving
excellent image clarity. sampling

Handling PNS constraints

The developed trajectories in this thesis exploit the gradient hardware of the scanner, leading
to high gradient amplitudes played on the scanner rapidly. This results in Peripheral Nerve
Stimulation (PNS) issues, which was reported by some volunteers and also sometimes the
gradient safety watchdog (GSWD) of the scanner was triggered, leading to the scan being
aborted. The SAFE model [HG00] can model the working of this GSWD, which can be
used to predict the PNS associated with a given trajectory and hence extend the set of
hardware constraints on the trajectories by adding physiological ones. However, as of now
no projector exists for these PNS constraints, the difficulty lying in the fact they are not
necessarily convex. Although penalty terms can be used to control PNS, as proposed in
SNOPY [Wan+22], such penalty terms can however lead to sub-optimal trajectories as
shown in Chapter 7. In order to prevent such PNS issues on the scanner, we generated
trajectories with a reduced maximum allowable slew rate of 100T/m/s, as compared to
200T/m/s allowed by the scanner hardware. While no PNS issues were reported in all our
studies with this lower slew rate, the trajectories are more constrained than required, hence
suboptimal. To address this concern, there is a need to develop a PNS projector, which
can be used to generate trajectories with higher slew rates, while still maintaining the PNS
constraints.

Trajectories for motion correction

The SPARKLING algorithm can be tweaked to have a good navigator within each shot,
which can be helpful in prospectively detecting, analyzing and correcting motion during the
scan.

8.2.2 Data-driven PROJeCTOR
Prospective studies

The currently developed PROJeCTOR trajectories need to be tested in prospective setting to
validate their performances in real world scenarios. Any observed gap needs to be accounted
for and improved through additional constraints on the trajectory or modeling.

Better forward modelling

The generic framework developed in this work to learn trajectories relies on simple NUFFT
operator for forward modeling. However, more realistic forward modeling can be achieved by
also incorporating the effects of field inhomogeneities, motion and eddy currents. Further,
realistic noise models can be incorporated to better understand the impact of noise on the
learned trajectories.

Extension to multi-coil setting

As discussed earlier the current implementation of PROJeCTOR is limited to emulated single
coil data due to memory constraints on GPU. A more realistic implementation that would
involve a multi-coil imaging setting, is mandatory to efficiently utilize parallel imaging and
get closer to the real data acquisition context, allowing us to reach higher AF. However, this
memory bottleneck can be alleviated through efficient transfers between CPU and GPU or
multi-GPU implementations. This perspective remains a significant step forward.

Inclusion of MORE and GoLF features

As observed with SPARKLING trajectories, the addition of MORE and GoLF features
can significantly improve their performances. These features are generic and can also be
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incorporated into the PROJeCTOR trajectories, allowing us to anticipate an improved image
quality in this extended learning framework.
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Appendix A

3D SPARKLING

A.1 Trajectory

A.1.1 Gradients and Slew Rates

W e present the gradients and slew rates obtained for a single shot of full 3D Spreading
Projection Algorithm for Rapid K-space sampLING (SPARKLING) trajectory in

Fig. A-1. We show that the trajectory was mostly slew rate constrained, thereby making
the percentage of readouts with gradient magnitude constraint active to be close to 0. The
gradient waveform was never saturated but achieved its maximum nearby the center of
k-space as shown in Fig. A-1(a). This is because all the trajectories pass through the center
of k-space, thereby drastically increasing the sampling density of the sampling pattern. Due
to this, each trajectory moves at highest velocity to achieve lesser k-space sample points here,
thereby achieving the Target Sampling Density (TSD). Note that although the scanner slew
rate constraint is 200 T/m/s, the trajectories were optimized with a tighter constraint of
maximum allowed slew rate of 180 T/m/s, which explains the lower slew rate limits observed
in the trajectory in Fig. A-1(b).

Figure A-1 – The (a) gradients and (b) slew rates for a single shot from a Full 3D
SPARKLING trajectory with AF=20. We have also marked the Scanner hardware constraints
(Gmax = 40mT/m and Smax =200 T/m/s) with black dotted lines.

A.1.2 Off-resonance and T ∗
2 decay

We carried out off-resonance and T ∗2 -decay simulations on the trajectory and analyzed the
Point Spread Function (PSF) in Fig. A-2. We systematically added a T ∗2 -decay by taking
a constant value of T ∗2 = 30ms, and also performed off-resonance simulations by adding a
constant off-resonance (∆B0) of 25Hz. In Fig. A-2 we observe that the noise level in the
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Figure A-2 – Simulated effects of T2* decay (of 30ms) and constant ∆B0 (of 25Hz) on
the point spread function of the AF=10 full 3D SPARKLING trajectory. All the PSFs are
normalized such that the maximum value is 1, for easier visual comparison.

PSF is significantly increased (by ' 25− 30 dB) when adding ∆B0 and T ∗2 decay. Further,
we see an increase in sidelobe level when adding ∆B0, which however is reduced when
combined with T ∗2 decay. We observe that the effective PSF is spread under T ∗2 and B0
inhomogeneities, leading to drop in effective resolution, which is studied in depth in the core
paper in Sec. 4.4.4. This study reveals some of the reasons that explain the gap in image
quality between retrospective and prospective results, especially for in vivo acquisitions,
where we have spatially varying T ∗2 and ∆B0 (i.e. T ∗2 (r) and ∆B0(r) maps).

A.1.3 Eddy Current and Trajectory Measurement
As the presented trajectory rapidly explores the k-space, it is vital to ensure that the
MRI scanner is able to play the complicated gradient waveforms in Fig. A-1 with minimal
errors. These errors could be induced by eddy currents and gradient imperfections. To
this end, we ran the AF=20 full 3D SPARKLING trajectory on an Investigative 7T MR
System (MAGNETOM 7T, Siemens Healthcare, Erlangen, Germany) and measured the
trajectory with the SKOPE dynamic field camera [De +08]. We used a 7T scanner for this
study due to compatibility issues at 3T. However, we do not expect drastic changes in our
results as the gradient system is the same for both scanners. We present the theoretical (i.e.
prescribed by the 3D SPARKLING algorithm) and measured trajectories for 3 random k-space
shots in Fig. A-3. Further, we quantitatively measured the error as to be 0.0016±0.0012 (with
the k-space normalized to Ω ∈ [−1, 1]D).

A.2 MR image reconstruction

The MR image reconstruction of 3D multi-channel data acquired from phased array re-
ceiver coils was carried out using a self-calibrating Compressed Sensing (CS) reconstruction
algorithm [El +18a] in the synthesis formulation by solving for the wavelet coefficients z
in (A.1):

ẑ = argmin
z∈CNx×Ny×Nz

1
2

L∑
`=1

‖FΩS`Ψ∗z− y`‖22 + λ‖z‖1 (A.1)
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(a) (b)

Figure A-3 – (a) Three random shots from theoretical and measured trajectories for AF=20
full 3D SPARKLING trajectory. (b) Zoomed in at the center of k-space.

where the number of channels was L = 44 and Nx = Ny = 384 and Nz = 208. Here the
data fidelity is enforced with SENSE operators (FΩS`)L`=1, where FΩ is the Nonuniform Fast
Fourier Transform (NUFFT) operator and S` is sensitivity map for `th channel estimated
by density compensated adjoint of the 20 percent of acquired k-space center (see details
in [El +18a]). λ > 0 is the regularization parameter for promoting sparsity using `1-
norm regularization in the wavelet domain Ψ. For our reconstructions, we used Symlet
8 wavelet with 4 scales of decomposition for Ψ. The regularization parameter λ was grid
searched between (10−10, 100) while maximizing for the reconstruction quality using SSIM
score in retrospective reconstruction. As the sampling operator was 3D non-Cartesian, the
reconstruction problem was severely ill-posed with the forward operator FΩSlΨ∗ having a
large condition number, thereby impacting the convergence speed. In order to accelerate
convergence, we preconditioned the k-space using density compensation. This translates to
adding a preconditioner D in the classical proximal gradient descent algorithm (here we used
Faster ISTA (FISTA)):

z(k+1) = softλτ

(
z(k)−τ

L∑
`=1

ΨS∗`FHΩ D
(
FΩS`Ψ∗z(k)−y`

))

where softλτ is the soft threshold operator and τ is the step size. The density compensators
D were obtained by 10 iterations of method described in [PM99]. The final MR image is
given by x̂ = Ψ∗ẑ ∈ CNx×Ny×Nz as Ψ is a basis.

As the raw data was large (for AF=20, p = 8, 388, 608 k-space points), we needed to utilize
memory efficient methods to carry out the SENSE operation. For this, we implemented
python wrappers for gpuNUFFT [Kno+14] which implements the NUFFT operator in
CUDA and utilizes cuBLAS and cuFFT libraries to be efficient in speed and memory. The
implementation of the reconstruction was completely done using pysap-mri1 [Gue+20], the
plugin of PySAP [Far+20a] dedicated to MR image reconstruction. Despite being a 3D
reconstruction problem, the computation time was just 15-30 minutes on a machine with the
same hardware specifications as described earlier in Sec. 4.3.

1https://github.com/CEA-COSMIC/pysap-mri

https://github.com/CEA-COSMIC/pysap-mri
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A.3 Target sampling density

In order to choose optimal TSD, we performed a grid search of the cutoff C and decay
D parameters in (B.1) (Fig. 4.3). This density search was done through retrospective
studies on 100 T2* complex brain images in 2D to reduce computational complexity as the
parameterized density is radially symmetric and can be directly extended to 3D. We present
the results of this density search in Fig. A-4 for both single and multi-channel settings
through retrospective grid search on corresponding emulated single-channel (obtained by
virtual coil combination [Par+14] of multi-channel data) and multi-channel in vivo brain
complex-valued data, respectively. In the single coil setting we observe that while (C=30,
D=3) seems optimal, we choose (C=25, D=2) as it is robust to small changes in density
and is on the plateau of the value function. In the multi-channel coil scenario, we observe
that (C=1, D=1) is both optimal and robust. The optimal decay of 1 can be explained by
the fact that the k-space information is more spread out in the multi-channel setting thereby
allowing sampling density to decay at a lower rate to get a better k-space coverage.

In all our studies, we chose (C=25, D=2) as target density, as the trajectories are more
generic and can be adapted to any coil configuration (as compared to the multi-channel
optimal density, which was only adapted to our coil configuration). Also, notice that (C=25,
D=2) is still a reliable tuning in the multi-channel setting.

Additionally, it is worth mentioning that improved image quality can be obtained by
further exploring the target density parameterization. Finally, this density can be learned in
a data driven manner, as illustrated for T1 and T2-w imaging in [CRC21].

Figure A-4 – Grid search performed on the density parameters (C,D) in 2D and at UF=2.25
to obtain optimal densities in the single channel (a) and multi-channel (b) coil settings.
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Figure A-5 – Comparison of retrospective results for (i) fully optimized 3D SPARKLING
(right, top row) and (ii) SpSOS (right, bottom row) for varying acceleration factors (from left
to right, AF=10 (b), 15 (c) and 20 (d)) on the NIST phantom. Additionally, we present the
results of a retrospective study based on (iii) TPI at AF=10 for comparison purposes with
the state of the art (left, bottom row). The Cartesian reference image (AF=4, GRAPPA
reconstructed) is shown in (a, left top row) [Gri+02]. SSIM scores are reported for each
setup. Global 3D SPARKLING gives improved results compared to the SpSOS approach
which starts to get worse at AF=15 with some blurring and at AF=20 the image gets noisier.
On the other hand, TPI images are extremely blurry even at AF=10.

(a) Cartesian Reference
(b) Full 3D SPARKLING

SSIM = 0.964

(c) SpSOS SPARKLING

SSIM = 0.93

(d) TPI

SSIM = 0.493

Figure A-6 – Comparing the performance of full 3D SPARKLING (b) and SpSOS SPARK-
LING (c) with twisted projection imaging (TPI) (d) using a retrospective study at AF=10
from the Cartesian GRAPPA-4 reference (a).
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Figure A-7 – Prospective reconstruction results (axial and sagittal view only) (b) without
∆B0(r) correction and (c) with ∆B0(r) correction for full 3D SPARKLING trajectory at
AF=10. Cartesian reference views (a) are also shown for comparison purpose. Red arrows in
(b) refer to the regions of strong ∆B0 artifacts. We see that most of the MR signal in these
areas is recovered in (c) using the approach proposed in [Dav+21].
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B.1 Generalized TSD characterization for GoLF

In this section, we will complete mathematical details for the generic case (any v > 0) of TSD
characterization for GoLF-Spreading Projection Algorithm for Rapid K-space sampLING
(SPARKLING) . From Sec. 5.3.3, the TSD at the center of k-space will be different from
the edges where we transition from Cartesian to Non-Cartesian (NC) trajectories and hence
discontinuous. Thus, we need to re-paramterize the TSD into the following non-continuous
form:

ΠrS ,D(x) =

κ1 |x| < rS

κ2

(
rS
|x|

)D
|x| > rS

(B.1)

Now, if N = Nc ×Ns is the total number of samples, the number of samples in center of
3D k-space N|x|<rS is given by following volume integral in a spherical coordinate system:

N|x|<rS = N

∫ rS

0

∫ 2π

0

∫ π

0
κ1x

2 sin θdθdφdx

= Nκ1
4
3πr

3
S (B.2)

Additionally, the number of Nyquist points in the center of k-space is given by:

NNyq =
4
3πr

3
S

∆x3 (B.3)
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If the trajectory velocity is given by v, we have NNyq
v k-space samples in the center of k-space.

From Eq.(B.3) and (B.2), we obtain:

N|x|<rS = NNyq

v

Nκ1
4
3πr

3
S =

4
3πr

3
S

v∆x3

κ1 = 1
vN∆x3 (B.4)

Now as we switch from Cartesian sampling to NC sampling, we move to Poisson disk
sampling for the NC region. From Eq. (5.15) and as the density needed for Cartesian
sampling is v × κ1, we get:

κ2 = vκ1
Nnc

N c
= vκ1

6
π

(B.5)
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Figure B-1 – Proportion of total energy around the center of Point Spread Func-
tion (PSF) for varying levels of ∆B0 for 1.5T and 7T.
The accumulated proportion of energy for Minimized Off Resonance Effect (MORE)-
SPARKLING trajectories with varying τ from 0 to 1.2. The energy of the 3D PSF within a
radial shell with radii at different distances from center shown on x-axis on a log scale. The
PSF is obtained with a constant T ∗2 of (1) 75 ms for 1.5T and (2) 30 ms for 7T and with off
resonance frequencies of (A) 0 Hz, (B) 100 Hz and (C) 250 Hz.

However, in practice we cannot achieve Poisson disk sampling due to curve constraints
on trajectory on speed and acceleration of the trajectory (see Sec. 7.2.7). To prevent any
k-space holes, we sample the annular region where we shift from Cartesian to NC sampling
at 1.5 times the Nyquist criteria, thereby choosing κ2 = vκ1

Nnc

Nc = vκ1
9
π .

Finally, as ΠrS ,D(x) is a distribution, we need to ensure that it is normalized, (i.e. sum
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to 1): ∫ 1

0

∫ 2π

0

∫ π

0
ΠrS ,D(x)x2 sin θdθdφdx = 1

4π
∫ 1

0
ΠrS ,D(x)x2dx = 1

4π
(∫ rS

0
κ1x

2dx+
∫ 1

rS

κ2

(
rS
|x|

)D
x2dx

)
= 1

4π
(
κ1r

3
S

3 + κ2
(rS)D − r3

S
3−D

)
= 1 (B.6)

From Eq. (B.4), (B.5) and (B.6), we can solve iteratively for D.

B.2 Calculating PSF at 1.5 and 7T

We describe how the PSF is computed for any trajectory K where α and ω are respectively
the T ∗2 decay and off-resonance angular frequency that are used over the whole FOV. For
this, we need to simulate the distortions observed during sampling of k-space when we are
measuring a Dirac impulse function centered in the image domain. This Dirac delta function
corresponds to a constant magnitude in k-space and following Eq. (5.5) we simulate the
k-space data Y = (yi)Nci=1 acquired in presence of T ∗2 decay and off-resonance as follows,
yi(t) = e−(α+ıω)t.

We obtain the PSF by carrying out reconstruction of this simulated k-space data as
described in Sec. 5.3.6. However, we do not enforce any sparsity in wavelet domain to ensure
that these sparsity based regularization does not influence the final reconstructed PSF.

With this, we present the proportion of energies in PSF at center for T ∗2 -w imaging at
1.5T in Fig. B-1(1) and 7T in Fig. B-1(2). We again choose average of the T ∗2 values between
white and gray matter from [Pet+07], and the levels of off-resonance frequencies ω is chosen
based on typically observed values at respective field strengths.

We see similar trends as observed in 3T, with a very strong blurring of the PSF peak at
higher ω. Further, we still see that τ = 1.0 is optimal in both the scenarios as any further
increase in temporal weighting leads to minor incremental improvements to the PSF.

B.3 Maximum k-space velocity v under hardware constraints

The k-space velocity in center of k-space along readout direction is parameterized by a
dimensionless parameter v, and is limited by the hardware constraints of the scanner.
Particularly, following the notation set up in the core manuscript, under a maximum gradient
strength Gmax and for an image size Ñ , we get the maximum k-space step in Ω with time
∆t (i.e. α∆t in Eq. (7.1)) as:

α∆t = γGmax

Kx
max

∆t = γGmax
Ñ

2FOVx
∆t (B.7)

where Kx
max is the maximum k-space step in the readout direction x. Now as v represents

the number of Nyquist voxels of size ∆x = 2
Ñ

taken by trajectory in center of k-space in ∆t,
we get maximum velocity vmax as:

vmax = α∆t
∆x = γGmaxFOVx∆t . (B.8)

Using the values from Sec. 5.3.5 (i.e. γ = 42.58Mhz/T, Gmax = 40mT/m, FOVx = 0.23m,
∆t = 10µs), we get vmax = 3.92.





Appendix C

Software and Open Source

Contributions

O ne major aspect of my thesis included writing codes, which game me a lot of joy. Most
of these codes are maintained on public or sometimes private repositories on GitHub

with continuous integration and testing, to ensure reproducibility. Further, in the spirit of
open science, I have contributed to many and also maintained some open source projects. In
this section I will briefly review some of the contributions I have made through the packages
I developed and maintained and also some open source contributions.

Most of these projects are based in Python, and particularly for the machine learning
part, I have used the TensorFlow framework, purely for carrying forward some legacy codes
from previous Ph.D. students. Some works are also in CUDA and C++ with bindings to
Python to help gain speed.

C.1 Packages I wrote or maintained

C.2 SPARKLING

One of the major contributions of my thesis include formalizing the earlier works by Dr.
Carole Lazarus on the SPARKLING method, through a generalized python package which
works for both 2D and 3D. The largest contribution in this package is the binding of Fast
Multipole Methods (FMM) and parallel implementation of the algorithm on multiple cores or
GPUs. The computation times for the SPARKLING trajectories was drastically reduced from
1day to 10 minutes for 2D trajectories and nearly 3 weeks to 6 hours for 3D trajectories. This
allowed us to actively iterate, build and test new trajectories for analyzing both prospective
and retrospective reconstruction performance. This package allows users to set a bunch of
parameters and can be directly run on a cluster or a single machine. Further, it implements
the projection step of the SPARKLING algorithm in a generic way in the form of simple
utility function and can be directly applied to project any other trajectory being optimized,
which was used by us when we learned trajectories.

My contributions of MORE-SPARKLING and GoLF-SPARKLING are also added into
the same package with addition of simple parameters that control the MORE and GoLF
feature, to prevent code redundancy. Due to the presence of patents for SPARKLING , and
also MORE-SPARKLING and GoLF-SPARKLING , this package is not open source and
is only available to the collaborators of the project. However, we have setup processes in
place to allow for research teams to gain access to the codes if a non-disclosure agreement is
signed, which prevents further sharing of codes and limits its for purely research purposes.

C.3 Joint optimization of Trajectory and Reconstruction

The latter part of my thesis involved jointly learning hardware-compliant k-space sampling
trajectories and reconstruction networks. For this, I have written a python package, which
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includes the work on learning the sampling density and also learning the reconstruction
network. This package implements a generic TensorFlow framework to learn trajectories and
reconstruction networks, with cohesive modules for specifying the acquisition model, the
reconstruction model and train them for a given loss function and optimizer. Further, the
trajectory specifications follow the same as SPARKLING , which allows easy integration
with SPARKLING package for the projection step.

For now this code is not yet open sourced, due to its dependency with the SPARKLING
package, which is not open sourced. However, I plan to make this open source soon by
decoupling this dependency in free time, or maintaining the dependency, but have a separate
module just for projection step.

C.4 PySAP-MRI

PySAP-MRI is a plugin for the Python Sparse Data Analysis Package discussed later. This
plugin was primarily focussed for MRI reconstructions and while it existed during the start of
my thesis, my starting contributions involved refactoring the entire code base. After such a
refactoring, I started to maintain these codes, which was actively used by teams at NeuroSpin
to reconstruct prospectively acquired k-space data. Through multiple contributions to
this package and also the Nonuniform Fast Fourier Transform (NUFFT) operators, the
reconstruction time was reduced from 8 hours to 10 minutes for reconstructing non-Cartesian
k-space data at 0.6mm isotropic resolution, from k-space data acquired on 42 channels.

C.5 Contributions

C.5.1 NUFFT operator
One major contribution during my thesis involved in the ensuring that efficient implementation
of NUFFT operators were available in Python. At the start of my thesis, the only known
stable and used python packages included pyNFFT [Vai+23] and PyNUFFT [Lin18] for
compute on CPU and GPU respectively. However, the gpuNUFFT[Kno+14] was the most
efficient implementation of NUFFT on GPU both in terms of speed and memory requirements,
but was not available in Python but rather only in MATLAB. In the course of my thesis,
I wrote python bindings to the gpuNUFFT library, which was then merged into mainline.
Further, through implementation of concurrency on GPU, the computation time was reduced
by nearly half.

As we moved to using TensorFlow models, the tensorflow-nufft [Mon22] was used. However,
I contributed extensively to this project to fix the gradient computations and also prevent
NaNs in the compute pipeline which came about as original implementation was not stable.

Estimating density compensators

As most of the work in my thesis was done in non-Cartesian Magnetic Resonance Imaging
(MRI), the use of density compensators was essential to ensure faster convergence of the recon-
struction and improved image quality in lesser iteration steps. Howeever, most of the libraries
for NUFFT did not have methods to compute the density compensators. I proceeded to im-
plement the density estimation algorithm proposed in [PM99] for gpuNUFFT [Kno+14] and
also in Tensor centric implementations in tfkbnufft [RC23] and torchKbNUFFT [Muc+20].

C.5.2 Python Sparse Data Analysis Package
PySAP [Far+20a] is a software package that is the outcome of the COSMIC interdisciplinary
research project (2016-2020) between the CS-MRI team at NeuroSpin and the CosmoStat
laboratory, the two CEA entities where I pursued my PhD thesis. At its core, PySAP is
a sparse reconstruction package that is intended to be used in multiple science contexts:
astrophysics, medical imaging, non-destructive evaluation using tomographic and ultrasound
imaging.

https://github.com/CEA-COSMIC/pysap
https://github.com/pyNFFT/pyNFFT
https://jyhmiinlin.github.io/pynufft/index.html
https://github.com/andyschwarzl/gpuNUFFT
https://github.com/mrphys/tensorflow-nufft
https://github.com/CEA-COSMIC/pysap
https://cosmic.cosmostat.org/
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C.5.3 ModOpt
ModOpt, a module that contains the optimization algorithms used in PySAP and SPARK-
LING .

C.5.4 Reconstruction networks
As I actively used reconstruction networks for my thesis, I contributed to the astmri-
reproducible-benchmark, which was the main contribution by Dr. Zaccharie Ramzi. Also
the fastMRI [Zbo+18] data pipelines in TensorFlow was maintained in tf-fast-mri-data to
which I contributed to have pipelines for learning trajectories with the network.

] ] ]
] ]

]

https://github.com/CEA-COSMIC/ModOpt
https://github.com/zaccharieramzi/fastmri-reproducible-benchmark/
https://github.com/zaccharieramzi/fastmri-reproducible-benchmark/
https://github.com/zaccharieramzi/tf-fastmri-data
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